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Preface

This volume is the third and final part of the series of reference books on
vibrational spectra of minerals. Unlike the two previous parts (Chukanov
2014; Chukanov and Chervonnyi 2016), this book contains not only infrared
(IR) spectra of minerals but also data on their Raman spectra.

In Chap. 1, numerous examples of the application of IR spectroscopy to the
analysis of crystal-chemical features of minerals are considered. In particular,
spectral bands that characterize different local situations around OH� and
BO3

3� groups in vesuvianite-group minerals are revealed. The effect of
symmetry on the parameters of IR spectra of vesuvianite-group minerals is
discussed. By means of IR and Raman spectroscopic methods, it is shown that
the clathrate mineral melanophlogite is not a single species but a mineral
group including minerals with different combinations of small molecules
(CO2, CH4, H2S, N2, H2O, C2H6) entrapped in structural cages. Based on
numerous IR spectra of nakauriite samples from different localities, it is
demonstrated that this mineral does not contain sulfate groups, and its tenta-
tive simplified formula (Mg3Cu

2+)(OH)6(CO3)�4H2O is suggested. A close
crystal chemical relationship between nepskoeite and shabynite is
demonstrated based on their IR spectra, compositional, and X-ray diffraction
data. Contrary to the formula Mg4Cl(OH)7�6H2O accepted for nepskoeite, this
mineral is a borate with the tentative simplified formula Mg5(BO3)(Cl,
OH)2(OH)5�nH2O (n > 4). Consequently, shabynite may be a product of
nepskoeite dehydration. Based on IR spectroscopic data, it is also shown
that some nominally boron-free lead carbonate minerals (molybdophyllite,
hydrocerussite, plumbonacrite, somersetite) often contain minor BO3

3�

admixture which is overlooked in structural and chemical analyses.
Chapter 2 contains IR spectra of 1024 minerals and related compounds

which were not included in the preceding reference books of this series
(Chukanov 2014; Chukanov and Chervonnyi 2016). Most spectra are
accompanied by the information about the origin of reference samples,
methods of their identification, and analytical data.

In Chap. 3, possibilities, advantages, and shortcomings of Raman spectros-
copy as a method of investigation and identification of minerals are discussed.
Numerous examples illustrate capabilities of Raman spectroscopy in identifi-
cation of minerals and analysis of their crystal chemical features, orientation,
and polarization effects, selection rules, as well as difficulties encountered in
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the study of microscopic inclusions in minerals and minerals that are unstable
under laser beam.

Chapter 4 contains data on 2104 Raman spectra of more than 2000 mineral
species taken from various periodicals. The data are accompanied by some
experimental details and information on the reference samples used.

A supplementary chapter provides comments on published IR spectra
which are erroneous, dubious, or of poor quality. This chapter is provided
by a separate list of references.

This work was carried out with assistance of numerous colleagues.
The working partnership with Prof. I.V. Pekov, Dr. A.D. Chervonnyi, and
Dr. S.A. Vozchikova was the most important.
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S. Weiss, N.V. Sorokhtina, Ł. Kruszewski, and many other mineralogists, as
well as mineral collectors, of which the contribution of R. Kristiansen,
G. Möhn, W. Schüller, B. Ternes, G. Blass, B. Dünkel, S. Möckel, and
C. Schäfer was the most important. Collaboration with the crystallographers
N.V. Zubkova, R.K. Rastsvetaeva, S.M. Aksenov, D.I. Pushcharovsky,
T.L. Panikorovskii, O.I. Siidra, S.N. Britvin, M.G. Krzhizhanovskaya,
D.A. Ksenofontov, S.V. Krivovichev, and I. Grey, as well as with specialists
in different areas of geosciences and analytical methods (J. Göttlicher,
K.V. Van, D.A. Varlamov, V.N. Ermolaeva, D.I. Belakovskiy, Yu.S.
Polekhovsky, P. Voudouris, A. Magganas, A. Katerinopoulos,
N.V. Shchipalkina, V.O. Yapaskurt, L.A. Pautov, V.S. Rusakov, R. Scholz,
A.R. Kampf, S. Encheva, P. Petrov, Ya.V. Bychkova, N.N. Koshlyakova, P.
Yu. Plechov, C.L.A. de Oliveira, I.S. Lykova, and T.S. Larikova) was espe-
cially fruitful. All of them are kindly appreciated.
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Some Examples of the Use of IR
Spectroscopy in Mineralogical Studies 1

1.1 Characteristic Bands in IR
Spectra of Vesuvianite-Group
Minerals

Vesuvianite-group minerals (VGM) are wide-
spread and occur in different geological formations
including regional metamorphic rocks, skarns,
rodingites, etc. Specific crystal-chemical features
of these minerals reflect conditions of their
crystallization. As a rule, high-temperature VGM
have high-symmetry structures (space group P4/
nnc), whereas low-temperature samples are
characterized by the symmetry P4/n or P4nc
(Allen and Burnham 1992). The simplified
crystal-chemical formula of VGM is X18(X´Y1)
Y24Y38T0–5(SiO4)10(Si2O7)4O1-2W9 where X,
X´ ¼ Ca, Na, K, Fe2+, and REE (cations with
coordination numbers from 7 to 9); Y1–Y3 ¼ Al,
Mg, Fe2+, Fe3+, Mn2+, Mn3+, Ti, Cr, Сu, Zn;
T ¼ B, Al, □; W ¼ OH, F, O. The Y1 cations
have tetragonal-pyramidal coordination, whereas
the Y2 and Y3 cations occur in octahedra.

IR spectra of VGM are discussed in numerous
publications (Paluszkiewicz and Żabiński 1992;
Groat et al. 1995; Kurazhkovskaya and
Borovikova 2003; Kurazhkovskaya et al. 2005;
Borovikova and Kurazhkovskaya 2006); how-
ever, in most cases their interpretation is ambigu-
ous. We have obtained IR spectra of 33 VGM

samples from different kinds of localities which
have been preliminarily investigated in detail
using electron microprobe (including determina-
tion of boron), single-crystal X-ray structural
analysis, DSC, 27Al NMR, ICP-MS, and
Mössbauer spectroscopy. As a result, characteris-
tic IR bands corresponding to different local
situations in the structures of VGM have been
revealed. Data on crystal structures, crystal chem-
istry, and IR spectra of these samples are
published by Britvin et al. (2003), Panikorovskii
et al. (2016a–d, 2017a–d), and Aksenov et al.
(2016). The most important results of this inves-
tigation are listed below in comparison with data
published elsewhere.

1.1.1 O–H-Stretching Vibrations

The following empirical correlations between O–
H stretching frequencies in IR spectra of minerals
and O���O and H���O distances (from structural
data) were established by E. Libowitzky (1999):

ν cm�1
� � ¼ 3592� 304 � 109

� exp �d O� � �Oð Þ=0:1321½ � ð1:1Þ
ν cm�1
� � ¼ 3632� 1:79 � 106

� exp �d H� � �Oð Þ=0:2146½ � ð1:2Þ
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Two decades ago this publication was of a
great importance because it emphasized the exis-
tence of such correlations as a general trend.
However, over time it became obvious that the
Eqs. (1.1) and (1.2) are a very rough approxima-
tion and have a restricted applicability. First, it is
to be noted that at high frequencies (above
3500 cm�1) substantial deviations from the
correlations (1.1) and (1.2) are common because
O–H stretching frequencies depend not only on
O���O and H���O distances, but also on the nature
of cations coordinating O–H groups and H2O
molecules, as well as on the angle O–H���O, and
the influence of these factors becomes most evi-
dent in case of weak hydrogen bonds. The
Eqs. (1.1) and (1.2) predict that maximum possi-
ble values of O–H stretching frequencies for
minerals are 3592 and 3632 cm�1 respectively.
However, in many minerals including magnesium
serpentines, brucite, kaolinite, amphiboles, etc.
observed frequencies are much higher and even
can exceed 3700 cm�1.

In the IR spectra of VGM some absorption
bands of O–H stretching vibrations are poorly
resolved. In such cases, band component analysis
is the most important source of errors and artifacts
during data processing because of low correctness
of inverse mathematical problems: small errors in
experimental data lead to strong uncertainty of the
final result. Additional uncertainty is connected
with arbitrary choice of the band shape (Gauss,
Lorentz, Voigt, or Lorentz-Gauss cross-product
function), the number of components, and the
acceptable values of the correlation coefficient
R (e.g., 0.99, 0.995, or 0.999). This matter is
discussed in detail by Chukanov and Chervonnyi
(2016) (the section 1.1 “Sources of Errors and
Artifacts in IR Spectroscopy of Minerals”)
where it is shown that different variants of band
shape analysis may give a good and almost iden-
tical approximation accuracy (say, R2 � 0.9995),
but lead to totally different results.

For most VGM investigated by Chukanov et al.
(2018) there are significant discrepancies between
wavenumbers of observed O–H stretching bands
and ν values calculated using correlations
suggested by Libowitzky (1999). The above
considerations explain why the attempts to apply
Eqs. (1.1) and (1.2) to VGM failed.

Groat et al. (1995) distinguished 13 bands of
O–H stretching vibrations in IR spectra of VGM,
which have absorption maxima at the following
wavenumbers (cm�1): 3670 (A), 3635 (B), 3596
(C), 3567 (D), 3524 (E), 3487 (F), 3430 (G), 3383
(H), 3240 (I), 3210 (J), 3156 (K), 3120 (L), and
3054 (M). The polarization of these bands with
respect to the fourfold c axis is as follows:
E^c < 35� for the A–H bands, E⊥c for the I
band, and E||c for the J–M bands (Groat et al.
1995; Bellatreccia et al. 2005). Consequently, the
bands A–H and J–M can be assigned to the
vibrations of differently coordinated O11–H1
and O10–H2 groups, respectively. The I band
was tentatively assigned to O–H stretching
vibrations of silanol group (Chukanov et al.
2018).

Our data show that actually significant
deviations of the A–M band positions from the
“ideal” values indicated by Groat et al. (1995)
take place. In particular, IR spectra of many
VGM samples contain a band in the range
3440–3470 cm�1, i.e., between F and G bands.
Taking into account that in the group of 33 chem-
ically and structurally investigated samples the
intensity of this band shows distinct positive cor-
relation with Ti content, it was assigned to
vibrations of the O11–H1 group coordinated by
Ti (Chukanov et al. 2018). Most Ti-rich samples
are characterized by the space group P4/nnc.
The only exception is a sample from the
Ahkmatovskaya open pit, South Urals with
1.54 apfu Ti, space group P4/n showing bands
at 3488 cm�1 (with a shoulder at 3460 cm�1) and
3424 cm�1 instead of a single band in the range
3440–3470 cm�1 (Fig. 1.1).

Vesuvianite from the Ahkmatovskaya open pit
is the only Ti-bearing VGM having space group
P4/n among 33 samples investigated by
Chukanov et al. (2018). The observed splitting
of the band of TiO–H stretching vibrations is the
result of distribution of Ti between the sites Y3A
and Y3B, whereas in high-temperature VGM hav-
ing the space group P4/nnc Ti is accumulated in
the single Y3 site.

IR band in the range 3375–3380 cm�1 which is
close to the H band by Groat et al. (1995) was
observed by us only for two samples with the
symmetry P4/n and high contents of Cu and
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Mn3+. This band is more intense in the IR spec-
trum of the sample from the N’Chwaning III mine,
Kuruman, South Africa with a relatively higher
content of Mn3+ (1.83 apfu). Based on these data,
the band in the range 3375–3380 cm�1 can be
assigned to the Y3Mn3+���O11–H1 group.

The nominal position of the D band is
3567 cm�1 (Groat et al. 1995), but in IR spectra
of some samples this band is shifted towards
lower wavenumbers (up to 3560 cm�1). The D
band is not observed in IR spectra of F-poor
VGM and has the highest intensities in IR spectra
of samples with most high contents of F (Britvin
et al. 2003; Galuskin et al. 2003; Chukanov et al.
2018; see Fig. 1.2). Taking into account polariza-
tion E^c < 35� (Groat et al. 1995), the D band is
to be assigned to the group O11–H1 in the situa-
tion when F occupies neighboring O11 site.

Galuskin et al. (2003) supposed that the J band
corresponds to OH groups in the O10 site
coordinating Fe in Y1 and forming hydrogen
bond with F in the neighboring O10 site. How-
ever, this assumption was not confirmed by our
investigations: IR spectra of most VGM,

including F- and Fe-poor ones, contain distinct J
band whose wavenumber varies from 3190 to
3225 cm�1. These values correspond to strong
hydrogen bonds, which is hardly possible in
cases when F is the H-bond acceptor.

The weak B band (in the range from 3628 to
3632 cm�1) is often observed in IR spectra of
low-symmetry VGM. This band corresponds to
very weak H-bonds formed by the groups O11–
H1 with low values of the angle between O11–H1
and H1���O7 (see Lager et al. 1999).

1.1.2 B–O-Stretching Vibrations

In VGM boron can occupy sites with coordina-
tion numbers 3 or 4. IR spectra of most VGM
samples contain shoulders in the range
1070–1170 cm�1 corresponding to stretching
vibrations of [BO4] tetrahedra.

BO3 groups are connected with Y1O64O10
polyhedra viaO10 oxygen atom to form the cluster
T2Y1O7 (Fig. 1.3) where T2 ¼ B and Y1 ¼ Fe3+,
Fe2+, Mn3+, Cu2+, Al, or Mg. As a result, four

Fig. 1.1 IR spectra of vesuvianite-group minerals with
different contents of Ti in the region of O–H-stretching
vibrations: a sample from Alchuri, Shigar Valley, Pakistan
(Aksenov et al. 2016) with Ti2.21 (a); a sample from
Hazlov, Karlovy Vary Region, Czech Republic with
Ti0.48 (b); a sample from Myrseter area, Drammen,

Buskerud, Norway with Ti0.00 (c); VGM from the
Ahkmatovskaya open pit, South Urals, Russia with Ti1.54
(anomalous Ti-rich sample, space group P4/n) (d ). Two
vertical lines outline the region of the band corresponding
to the Ti���O11–H1 group in P4/nnc VGM

1.1 Characteristic Bands in IR Spectra of Vesuvianite-Group Minerals 3



degrees of freedom corresponding to the bond
lengths T2–O12 (�2), T2–O10, and Y1–O10 are
involved in stretching vibrations of BO3

3�. This
results in four nondegenerate modes and, conse-
quently, the expected number of absorption
bands in the region of stretching vibrations of
BO3 groups (i.e., 1200–1570 cm�1) is equal to 4.
However, in the IR spectrum of wiluite only three
bands are observed in this region: the peaks at
1267 and 1373 cm�1 and the shoulder at

1415 cm�1 (Panikorovskii et al. 2017b; see
Fig. 1.4). The fourth band corresponding to sym-
metric vibrations of BO3

3� is forbidden for a regu-
lar BO3 triangle and is weak in case of weak-
distorted BO3 triangle. The latter case takes place
in wiluite: the bond lengths T2–O10 and T2–O12
are 1.39–1.40 and 1.32 Å, respectively
(Panikorovskii et al. 2017b). Weak absorption
between 1267 and 1373 cm�1 may correspond to
the symmetric stretching mode of BO3

3� groups
(Fig. 1.4).

Unlike wiluite, most boron-rich VGM contain
significantly distorted BO3 triangle. For example,
in a sample from Gulshad, Kazakhstan the bond
lengths T2–O10 and T2–O12 are equal to 1.384
and 1.20 Å, respectively. As a result, four distinct
IR bands (at 1557, 1467, 1419, and 1365 cm�1)
are observed in the range 1200–1570 cm�1 (curve
b in Fig. 1.4). As compared to wiluite, these bands
are substantially shifted towards high frequencies
because of shorter B–O bonds and shortened Y1–
O bond (2.044 Å for the mineral from Gulshad
and 2.15 Å for wiluite: Chukanov et al. 2018;
Panikorovskii et al. 2017b). These differences
may be due to different predominant cations in
the Y1 site: Mg in wiluite and Fe3+ in the sample
from Gulshad.

Fig. 1.2 IR spectra of
vesuvianite-group minerals
with different contents of F
in the region of O–H-
stretching vibrations:
fluorvesuvianite holotype
with 7.16 apfu F (a); VGM
from Sakharyok massif,
Keyvy Mts., Kola
Peninsula with 3.06 apfu F
(b); VGM from Gulshad,
Kazakhstan with 0.24 apfu
F (c); F-free
alumovesuvianite holotype
(d ). Vertical line
corresponds to the nominal
position of the D band

Fig. 1.3 Local environment of the T2 and Y1 sites in
vesuvianite-group minerals
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An anomalous IR spectrum with six absorp-
tion bands in the range 1200–1570 cm�1 shows
boron-rich VGM from Titivskoe boron deposit,
Yakutia, Russia (curve d in Fig. 1.4). Structural
investigation of this sample (Panikorovskii et al.
2016a) showed the presence of domains with
different symmetry (P4/nnc and P4/n).

1.1.3 Stretching and Bending
Vibrations of SiO4

42

and Si2O7
62 Groups

Based on the available data on IR spectra of a
restricted set of VGM Kurazhkovskaya and
Borovikova (2003) concluded that for low-
symmetry samples the band of Si–O-stretching
vibrations in the range from 960 to 990 cm�1 is
shifted on 10–15 cm�1 towards lower frequencies
as compared to high-symmetry VGM. Our data
confirm this conclusion only partly. Indeed,
among nine samples with the space group P4/n,
eight samples show strong IR bands in the range
962–968 cm�1, and in the IR spectrum of one
more sample a band at 973 cm�1 is observed.
Among 21 boron-poor samples with the space
group P4/nnc, for 16 samples bands in the range

976–986 cm�1 are observed, but 5 samples show
bands between 962 and 968 cm�1.

Another specific feature of low-symmetry
VGM indicated by Kurazhkovskaya and
Borovikova (2003), as well as by Borovikova
and Kurazhkovskaya (2006) is the doublet ~575
+615 cm�1 corresponding to O–Si–O bending
vibrations. This regularity was confirmed by us
as a general trend; however, among 21 boron-
poor samples with the space group P4/nnc,
3 samples show doublets in the range
~575–615 cm�1 with components of approxi-
mately equal intensity.

1.2 Problem of Melanophlogite

Melanophlogite is a clathrate compound which
contains guest molecules N2, CO2, and CH4

entrapped within the cages of the 3D framework
built by SiO4 tetrahedra (Gies 1983; Nakagawa
et al. 2001; Kolesov and Geiger 2003). The cubic
unit cell of the structure of melanophlogite
includes two [512] cages and six [51262] cages
(Fig. 1.5). The former are considered to be
occupied mainly by CH4 molecules and the latter
by N2 and CO2 (Gies et al. 1982; Gies 1983). In

Fig. 1.4 IR spectra of
vesuvianite-group minerals
in the region of B–O-
stretching vibrations:
wiluite from its type
locality (a), B-rich VGM
from Gulshad (b), a typical
B-bearing vesuvianite from
Somma-Vesuvius complex,
Italy (c), and anomalous
B-rich VGM from
Titivskoe (d )
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melanophlogite from Mt. Hamilton, California,
USA, the occupancy factor of the CH4 site in
the [512] cage is about 90% (Gies 1983). The
molecules of carbon dioxide located in the
[51262] cages can rotate and are statistically
distributed between 12 possible equivalent
orientations. Most part of N2 and CO2 occurs in
the [51262] cage, but minor part of these
molecules can be present in the [512] cage (Gies
1983; Kolesov and Geiger 2003). Based on the

available structural data, the general formula of
melanophlogite can be written as follows: (CH4,
N2,CO2)2–x(N2,CO2)6–y(Si46O92).

The IR spectrum of melanophlogite from
Fortullino, Livorno province, Tuscany, Italy
(cubic, with a ¼ 13.4051(13) Å, according to
single-crystal X-ray diffraction data) contains a
strong band at 2330–2336 cm�1 corresponding to
antisymmetric vibrations of CO2 molecules
(Chukanov and Chervonnyi 2016; see Fig. 1.6).

Fig. 1.5 [512] cages (a)
and [51262] cages (b) in the
structure of melanophlogite

Fig. 1.6 Powder IR
spectrum of melanophlogite
from Fortullino, Italy
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A weaker peak at ~2375 cm�1 present it IR spec-
tra of some melanophlogite samples from this
locality (Chukanov 2014) may be due to rota-
tional splitting or correspond to a minor amount
of CO2 molecules in the [512] cages, which are
predominantly occupied by CH4. Weak bands at
3700 and 3596 cm�1 (Fig. 1.7) are, respectively,
due to asymmetric and symmetric stretching
vibrations of H2O molecules that do not form
hydrogen bonds. The band at 3316 cm�1 can
be tentatively assigned to silanol groups or
H-bonded H2O molecules.

Two CO2 modes at 1277 and 1378 cm�1

observed in the Raman spectrum of
melanophlogite from Mt. Hamilton, California,
USA correspond to the first overtone of the ν2-
bending mode and the symmetric ν1-stretching
mode, respectively, both bands being components
of a vibrational system coupled via Fermi reso-
nance (Kolesov and Geiger 2003).

Raman spectrum of melanophlogite from
Mt. Hamilton has been investigated previously
at 4 K (Kolesov and Geiger 2003). The bands at
2900 and 2909 cm�1 in the single-crystal Raman
spectrum of melanophlogite from this locality
have been assigned to asymmetric stretching
modes of CH4 located in the [512] and [51262]
cages, respectively. Along with the main band at

1378.5 cm�1 assigned to CO2 molecules in the
[51262] cages, the shoulder at 1376 cm�1 was
registered and was attributed to CO2 in the [512]
cages. Kolesov and Geiger (2003) also reported
the presence of the band of symmetric N�N-
stretching vibrations located at 2321 cm�1

which corresponds to N2 molecules. The IR for-
bidden band of N2 in binary mixtures with other
molecules has been observed at about 2328 cm�1

(Bernstein and Sandford 1999). It is to be noted
that this value is close to the wavenumber of
antisymmetric vibrations of CO2 molecules,
which is forbidden in Raman spectra. However,
this band is not observed by us in Raman spectra
of melanophlogite from different Italian localities
(Figs. 1.8, 1.9 and 1.10).

Raman spectrum of the sample from Fortullino
(Fig. 1.8) exhibits strong bands of CO2 at 1277
and 1383 cm�1. Two weak bands at 1257 and
1398 cm�1 accompanying the components of the
Fermi-doublet are the so-called hot bands arising
from the transitions from an excited vibrational
level to the ground vibrational level (Wang et al.
2011). In accordance with Frezzotti et al. (2012)
and Wang et al. (2011), carbon dioxide in this
mineral is in the high density fluid state with
D � 1 g/cm3. This is confirmed by the down
shift of the Fermi doublet frequencies from 1388

Fig. 1.7 IR spectrum of
melanophlogite from
Fortullino in the
1400–3800 cm�1 range.
Very weak bands in the
range from 2800 to
3000 cm�1 correspond to
grease impurity
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and 1285 cm�1 (Δ ¼ 103 cm�1) for CO2 at
normal conditions to the values 1383 and
1277 cm�1 (Δ ¼ 106 cm�1); the increased value
of Δ in the spectrum of melanoflogite from
Fortullino (Fig. 1.8) also corresponds to a high-
density CO2 fluid. The very weak band at
2908 cm�1 which is attributed to CH4 and the
band at 3611 cm�1 attributed to OH-groups are in
a good agreement with the IR spectrum of this
sample (Chukanov and Chervonnyi 2016). Thus,
nitrogen, which is a substantial component in

melanophlogite from Mt. Hamilton, is absent in
the sample from Rio Fortullino.

Melanophlogite from Racalmuto, Sicily
(Fig. 1.9) is characterized by a higher content of
CH4 detected by the bands at 2901 and
3055 cm�1 and by a trace amount of C2H6

detected by the very weak bands at 998 and
2945 cm�1 (Kohlrausch 1943; Momma et al.
2011). The presence of H2S molecules is detected
by the presence in the Raman spectrum of the
band at 2595 cm�1. This sample does not contain
N2 and CO2 molecules in detectable amounts.
The sample of melanophlogite from Racalmuto
contains a small amount of mineral impurities of
calcite or aragonite (the band at 1087 cm�1:
Edwards et al. 2005) and celestine (998 cm�1:
Frezzotti et al. 2012). The weak band at 802 cm�1

and the bands at 363 and 276 cm�1 relate to the
spectrum of the melanophlogite-type silicon-oxy-
gen framework.

Melanophlogite from Miniera Giona, Sicily
(Fig. 1.10) contains H2S molecules (the band of
H–S-stretching vibrations at 2593 cm�1) and a
low amount of CH4 molecules (2904 cm�1)
whereas bands of N2 and CO2 are not observed
in its Raman spectrum. This sample contains
anhydrite admixture detected by the Raman
bands at 1132 and 1004 cm�1 (Frezzotti et al.

Fig. 1.8 Raman spectrum
of melanophlogite from
Fortullino

Fig. 1.9 Raman spectrum of melanophlogite from
Racalmuto
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2012). Broad peaks in Figs. 1.9 and 1.10 are due
to fluorescence.

Powder IR spectra of melanophlogite from
some other localities do not show any presence
of methane molecules. In the frequency range
from 2800 to 3000 cm�1, a sample from
Chvaletice, Bohemia shows the presence of
three overlapping, relatively broad bands indica-
tive of the contamination by a polyatomic ali-
phatic hydrocarbon, most probably grease.
Similar but much weaker bands are present in
the IR spectrum of melanophlogite from
Fortullino, Italy (Fig. 1.7), but no characteristic
bands of methane are observed in this
spectrum too.

The IR spectra of melanophlogite samples
from Racalmuto and Miniera Giona (Fig. 1.11)
show much lower contents of CO2 (the bands at
2337–2338 cm�1) and substantially higher
contents of CH4 (the bands at 3005–3008 cm�1)
as compared with the sample from Fortullino.
Moreover, the bands in the range from 2850 to
2950 cm�1 in the IR spectrum of melanophlogite
samples from Miniera Giona indicate the pres-
ence of hydrocarbons heavier than methane. IR
spectrum of the sample from Racalmuto confirms
the presence of H2S (Fig. 1.12).

The band assignment and the distribution of
different components between [512] and [51262]
cages in melanophlogite samples from different
localities are given in Table 1.1. These examples
show that, in all probability, melanophlogite is
not a single mineral species, but a mineral group
including minerals with different combinations of
small molecules (CO2, CH4, H2S, N2, H2O,
C2H6) entrapped in the [512] and [51262] cages.
In particular, the mineral from Fortullino may be
the CO2-dominant analogue of melanophlogite,
and in the samples from Racalmuto and Miniera
Giona H2S may be a species-defining component.

1.3 Problem of Nakauriite

Nakauriite was initially described as a new min-
eral with the general formula (Mn,Ni,
Cu)8(SO4)4(CO3)(OH)6�48H2O (Suzuki et al.
1976). The mineral occurs in fissure-fillings in
brucite-bearing serpentine at Nakauri, Aichi Pre-
fecture, Japan, and is intimately intergrown with
chrysotile. Most analytical data for nakauriite,
including powder X-ray diffraction pattern,
chemical composition and IR spectrum, have
been obtained for a polymineral mixture, in

Fig. 1.10 Raman
spectrum of melanophlogite
from Miniera Giona
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which chrysotile is the main phase. The above
formula does not conform to analytical data of
Suzuki et al. (1976). Taking into account strong
predominance of Cu over Mn and Ni, the
simplified formula Cu8(SO4)4(CO3)(OH)6∙48H2O
is given for nakauriite in the IMA list of minerals.
Published IR spectrum of nakauriite from its type

locality contains strong bands of admixed chryso-
tile at 1075, 950 and 613 cm�1 (Suzuki et al.
1976; see curve a in Fig. 1.13), but characteristic
bands of sulfate anions are not observed.

Later nakauriite was reported from several
localities in Great Britain, USA, Austria, Italy,
and Russia (Braithwaite and Pritchard 1983;

Fig. 1.11 Powder IR
spectra of melanophlogite
from Racalmuto (a) and
Miniera Giona (b)

Fig. 1.12 IR spectrum of
melanophlogite from
Racalmuto in the region of
S–H-stretching vibrations
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Barnes 1986; Postl and Moser 1988; Palenzona
and Martinelli 2007; Popov et al. 2016), as well as
a secondary product in metallurgic slags. All
available data indicate that nakauriite (1) does
not contain sulfate anion and (2) usually forms
fine intergrowths with magnesium serpentine-
group minerals (see curve b in Fig. 1.13). In

particular, electron microprobe analyses of
nakauriite from Japan and from Nevada (Peacor
et al. 1982) do not show substantial amounts of
sulfur. Microchemical tests show only traces of
SO4

2� (Braithwaite and Pritchard 1983).
We managed to obtain an almost pure fraction

of nakauriite from its type locality. Its IR

Table 1.1 The assignment of IR and Raman bands and the distribution of different enclathrated components between
[512] and [51262] cages for melanophlogite samples from different localities

Locality
Wavenumber
(cm�1) Assignment

Mt.
Hamiltona

3050w (R) CH4 (first overtone of the doubly degenerate ν2-bending mode?)
2909w (R) CH4 in [51262] (symmetric stretching mode)
2900 (R) CH4 in [512] (symmetric stretching mode)
2321 (R) N2 in [51262]
1378.5 (R) CO2 in [51262] (symmetric stretching mode)
1376 (R) CO2 in [512] (symmetric stretching mode)
1277 (R) CO2: Fermi resonance between symmetric stretching mode and first overtone of the

bending mode
Fortullino 3700 (IR) H2O (antisymmetric stretching mode)

3611 (R) H2O (?) O–H-stretching mode
3596 (IR) H2O (symmetric stretching mode)
3316 (IR) H2O (?) O–H-stretching mode (H-bonded OH)
2908w (R) CH4 in [51262]
2344 (IR) 12CO2 in [512] (antisymmetric stretching mode)
2336 (IR) 12CO2 in [51262] (antisymmetric stretching mode)
2273w (IR) 13CO2 (antisymmetric stretching mode)
1398w (R) CO2 (“hot band”)
1383 (R) CO2 in [51262] (symmetric stretching mode)
1377 (R) CO2 in [512] (symmetric stretching mode)
1277 (R) CO2: Fermi resonance between symmetric stretching mode and first overtone of the

bending mode
1257w (R) CO2 (“hot band”)

Racalmuto 3055w (R) Hydrocarbon other than methane
3005w (IR) CH4 in [512] (asymmetric stretching mode)
2945w (R) C2H6?
2901 (R) CH4 in [512] (symmetric stretching mode)
2595 (R) H2S (symmetric stretching mode)
2512 (IR) H2S (antisymmetric stretching mode)
2338w (IR) 12CO2 in [51262] (antisymmetric stretching mode)

Miniera
Giona

3008w (IR) CH4 in [512] (asymmetric stretching mode)
2945w (IR) Hydrocarbon other than methane
2920w (IR) Hydrocarbon other than methane
2904w (R) CH4 in [512] (symmetric stretching mode)
2894w (IR) Hydrocarbon other than methane
2851w (IR) Hydrocarbon other than methane
2593 (R) H2S (symmetric stretching mode)
2337 (IR) 12CO2 in [51262] (antisymmetric stretching mode)

R Raman spectrum, IR infrared spectrum, w weak band
aData from Kolesov and Geiger (2003)
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spectrum is given in Fig. 1.13 (curve c). Specific
features of the mineral are unusually low fre-
quency of the non-split band of C–O-stretching
vibrations (1361 cm�1), as well as relatively low
intensity and high width of the band of out-of-
plane bending vibrations of CO3

2� groups at
864 cm�1. The bands at 1600 and 1650 cm�1

indicate the presence of H2O molecules. The
same features are inherent in carbonate members
of the hydrotalcite group (Chukanov 2014) whose
structures contain brucite-like layers and inter-
layer CO3

2� anions and water molecules. Weak
bands at 1066 and 1143 cm�1 may be due to the
presence of trace amounts of SO4

2� anions.
Our electron microprobe analyses of nakauriite

samples from Nakauri (Japan), Karkodin, (Russia)
and Monte Ramazzo mine (Italy) show that this
mineral is Mg-dominant. Only three metal cations
have been found, namelyMg, Cu2+, and Ni2+. The
atomic ratio Mg:Cu:Ni in a sample from Nakauri
is 0.75:0.23:0.02. In another sample from Nakauri
Mg:Cu:Ni ¼ 0.80:0.19:0.01. In the sample from
Karkodin Mg:Cu:Ni ¼ 0.75:0.23:0.02. Nakauriite
from Monte Ramazzo does not contain Ni in
detectable amounts; Mg:Cu ¼ 0.80:0.20. In all

analyzed samples the content of sulfur is below
its detection limit. The predominance of Mg over
Cu in nakauriite from Karkodin was noted also by
Popov et al. (2016).

Thermal data for nakauriite from Suzuki et al.
(1976) are nearly consistent with the general
simplified formula (Mg3Cu

2+)(OH)6(CO3)�
4H2O. Hypothetically, nakauriite can be an inter-
stratification of brucite and copper carbonate
modules. Powder X-ray diffraction data of
nakauriite from South Urals kindly provided by
I.V. Pekov are given in Table 1.2.

Suzuki et al. (1976) reported the absence of the
reflection near 7.8 Å in some samples from
Nakauri. It was supposed that this reflection may
be due to an impurity (Peacor et al. 1982;
Braithwaite and Pritchard 1983). However,
nakauriite from Karkodin shows a relatively
strong reflection at 7.88 Å (Table 1.2). In our
opinion, the reflections at 7.32 and 7.88 Å may
correspond to nakauriite-type phases with differ-
ent contents of interlayer water.

A further detailed investigation of nakauriite
and revision of its chemical formula are
required.

Fig. 1.13 IR spectra of
nakauriite-bearing samples
from Nakauri drawn using
data from Suzuki et al.
(1976) (a), and from
Karkodin, South Urals,
Russia (b) and IR spectrum
of an almost pure nakauriite
from Nakauri (c). Bands of
admixed serpentine are
marked by asterisk
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1.4 Relationship Between
Nepskoeite and Shabynite

Nepskoeite was initially described as a new
chloride-hydroxide mineral with the formula
Mg4Cl(OH)7�6H2O (Apollonov 1998). However,
IR spectrum of nepskoeite published by
Apollonov (1998) contains very strong band at
1297 cm�1 corresponding to stretching vibrations
of orthoborate groups, as well as distinct band at
cm�1 that may correspond to bending vibrations
of orthoborate groups (Fig. 1.14).

Our reinvestigation of nepskoeite from the type
material confirmed the presence of boron in this
mineral. In particular, IR spectrum contains strong
bands at 1301 and 734 cm�1 corresponding to
stretching and bending vibrations of BO3

3�

anions, respectively (Chukanov 2014; see
Fig. 1.15). Moreover, color reaction with
quinalizarin shows a high content of boron in
nepskoeite.

IR spectrum of nepskoeite shows similarity
with that of shabynite Mg5(BO3)(Cl,OH)2
(OH)5�4H2O (Fig. 1.16). In particular, the IR
spectrum of shabynite contains strong bands at
1302 and 732 cm�1. However, substantial
differences between these spectra are observed
in the region of vibrations of H2O molecules
above 1500 cm�1.

There is also close similarity between powder
X-ray diffraction (PXRD) patterns of nepskoeite
and shabynite (Table 1.3). However, nepskoeite
shows strong reflections at 10.64 and 3.498 cm�1

that are absent in the PXRD pattern of shebynite.
On the other hand, strongest reflections of differ-
ent shabynite samples are observed at 9.62 and
3.191 cm�1. Refraction indices of nepskoeite
(α ¼ 1.532, β � γ ¼ 1.562) are somewhat lower
than those of shabynite (α ¼ 1.543, β ¼ 1.571,
γ ¼ 1.577).

Based on these data, nepskoeite can be tenta-
tively considered as a hydrous orthoborate chlo-
ride, a high-hydrated analogue of shabynite. Both
minerals need further investigations, first of all,
determination of unit-cell dimensions and H2O
content by means of direct methods.

Table 1.2 Powder X-ray diffraction data of nakauriite
from Karkodin, South Urals, Russia (MoKa radiation)

d, Å I, % d, Å I, % d, Å I, %

7.88 19 2.845 4 1.5947 1
7.32 100 2.677 4 1.5762 1
5.11 12 2.612 8 1.5447 12
4.835 17 2.536 4 1.5185 5
4.629 12 2.365 43 1.5107 4
4.485 14 2.258 7 1.4569 5
4.217 4 2.221 4 1.4210 3
3.928 12 2.096 1 1.4035 3
3.642 13 2.037 2 1.3523 1
3.539 15 1.956 3 1.2985 4
3.335 6 1.910 24 1.2910 4
3.305 8 1.820 2 1.2404 1
3.105 4 1.782 3 1.2281 2
3.065 4 1.7206 4 1.2170 2
2.976 3 1.6951 2 1.2021 2
2.939 3 1.6657 2 1.1973 2
2.874 4 1.6439 5 1.1082 1

Fig. 1.14 IR spectrum of
nepskoeite drawn using
data from Apollonov
(1998)
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1.5 Orthoborate Groups in Lead
Carbonate Minerals

The CO3
2� and BO3

3� anions have the same tri-
gonal planar configuration, but in most orthoborate
and carbonate minerals these groups do not show
appreciable isomorphous substitutions. The main
causes of the absence of isomorphous substitutions
between these groups are differences in their
charges and sizes. In addition, BO3

3� groups are
often significantly distorted (see, e.g., Kolitsch
et al. 2012, as well as Sect. 1.1). However, some

lead carbonate minerals are exceptions from this
regularity. For example, IR spectra of some
samples of molybdophyllite Pb8Mg9(Si10O28)
(CO3)3(OH)8O2�H2O, which is nominally a
boron-free mineral, show weak IR bands of B–O-
stretching vibrations at 1170 and 1240 cm�1)
(Fig. 1.17), whereas Raman spectrum of the struc-
turally investigated molybdophyllite sample does
not show bands of borate groups (Kolitsch et al.
2012).

The crystal structure of molybdophyllite
(Kolitsch et al. 2012) does not contain boron-

Fig. 1.15 IR spectrum of nepskoeite drawn using data from Chukanov (2014)

Fig. 1.16 IR spectrum of shabynite drawn using data from Chukanov (2014)
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dominant sites and, consequently, BO3
3� anions

occur in CO3
2�-dominant positions, unlike

roymillerite Pb24Mg9(Si9AlO28)(SiO4)(BO3)
(CO3)10(OH)14O4 and britvinite Pb15Mg9
(Si10O28)(CO3)2(BO3)4(OH)12O2, in which
orthoborate and carbonate groups are ordered in
different sites (Yakubovich et al. 2008; Chukanov
et al. 2017b; see Fig. 1.18).

The IR spectrum of hydrocerussite
Pb3(OH)2(CO3)2 from Långban (curve b in
Fig. 1.19) contains weak bands at 1230 (shoulder),
742, and 470 cm�1. These bands may be assigned
to stretching and bending vibrations of orthoborate
anions partly substituting regular CO3 triangles in
the hydrocerussite structure. Indeed, in the IR
spectrum of fluoborite containing regular BO3 tri-
angle strong bands of B–O-stretching and O–B–O
bending vibrations are observed at 1241, 743, and
468 cm�1 (Chukanov 2014). It is important to note
that bands of orthoborate groups are absent in the
IR spectra of hydrocerussite from Merehead
quarry, England (curve a in Fig. 1.19), some
related minerals (curves c and d in Fig. 1.19), as
well as synthetic analogues of hydrocerussite and
plumbonacrite (Brooker et al. 1983). In all proba-
bility, the presence of borate groups in
hydrocerussite from Långban is the result of high
activity of boron that accompanied formation of
this deposit where different borate minerals are
common.

Table 1.3 Strongest lines (with I 	 10%) of the PXRD
patterns of nepskoeite and shabynite

Nepskoeite
(Apollonov 1998)

Shabynite, sample No. 3
(Pertsev et al. 1980)

d, Å I, % d, Å I, %

11.41 29 11.33 10
10.64 18 –

a
–
a

9.78 46 9.72 17
9.60 38 – –

5.57 17 – –

5.48 16 5.48
5.41

16
16

– – 4.86 19
4.78 15 4.77 19
4.25 20 4.266

4.230
16
17

– – 4.133 29
3.726 15 3.726 17
3.624 14 3.648 10
3.498 100 – –

– – 3.191 100
3.184 10 – –

2.977 10 – –

2.739 16 – –

2.448 18 2.447 19
2.395 17 2.390 11
2.284 11 – –

1.749 10 – –

aThe strongest reflection of the powder X-ray diffraction
pattern of shabynite sample No. 2 (Pertsev et al. 1980) is
observed at 9.62 Å

Fig. 1.17 IR spectrum of molybdophyllite from the Långban deposit, Bergslagen ore region, Filipstad district,
Värmland, Sweden (Chukanov 2014, sample Sil247). The wavenumbers of BO3

3� groups are indicated
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The IR spectra of plumbonacrite Pb5O
(OH)2(CO3)3 from Merehaad and Långban
(Fig. 1.20) are similar and differ from the IR spectra
of synthetic plumbonacrite analogue (Brooker et al.
1983) by additional bands of BO3

3� groups at
1270, 1221, 742, and 464–465 cm�1. Unlike
hydrocerussite, a mineral with the only site of
CO3

2� groups, in the crystal structure,
plumbonacrite is characterized by five positions of
carbonate groups (Krivovichev and Burns 2000).
The IR spectrum of plumbonacrite contains two
bands of asymmetric B–O-stretching vibrations
(at 1270 and 1221 cm�1), which indicates the pres-
ence of BO3

3� groups in different sites.
The IR spectrum of somersetite (curve c in

Fig. 1.20) is similar to those of plumbonacrite
and hydrocerussite and contains bands of BO3

3�

groups at 1217 and 738 cm�1. The crystal struc-
ture of somersetite consists of electroneutral
[Pb3(OH)2(CO3)2] hydrocerussite block and
electroneutral [Pb5O2(CO3)3] block with the
structure derivative from plumbonacrite. The

Fig. 1.18 IR spectra of (a) roymillerite and (b) britvinite
from Långban, Värmland, Sweden. Bands of stretching
vibrations of BO3

3� groups are indicated

Fig. 1.19 IR spectra of (a) hydrocerussite fromMerehead
quarry, (b) hydrocerussite from Långban, (c)
hydrocerussite-related phase NaPb5(CO3)4(OH)3 from
Lavrion, and (d ) cerussite from Merehead quarry. Bands
of BO3

3� groups are indicated

Fig. 1.20 IR spectra of (a) plumbonacrite fromMerehead
quarry, (b) plumbonacrite from Långban, (c) somersetite,
and (d ) mereheadite. Bands of stretching vibrations of
BO3

3� groups are indicated
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only band of B–O-stretching vibrations observed
in the IR spectrum of somersetite indicates that all
admixed BO3

3� groups belong to the
hydrocerussite block.

The relatively weak bands at 480 and
1200 cm�1 in the IR spectrum of grootfonteinite
Pb3O(CO3)2 indicate the presence of minor
amounts of undistorted orthoborate groups, but
these groups are absent in most samples of struc-
turally related minerals and compounds (see
Fig. 1.21).

In hydrocerussite, plumbonacrite, somersetite,
and grootfonteinite CO3/BO3 are undistorted. As a
result, bands of admixed B–O-stretching vibrations
of BO3

3� anions are observed in the narrow
wavenumber range from 1200 to 1270 cm�1. In
contrast to these minerals, in mereheadite
Pb47O24(OH)13Cl25(BO3)2(CO3) BO3 triangles
are significantly distortedwith B–Odistances vary-
ing from 1.23 to 1.32 Å (Krivovichev et al. 2009).
This results in splitting of the band of B–O-
stretching vibrations into several components
(at 1141, 1183, and 1261 cm�1); in addition,
broad band at 1324 cm�1 corresponding to a
mixed mode involving B–O- and C–O-stretching
vibrations appears (curve d in Fig. 1.20).

Fig. 1.21 IR spectra of (a) grootfonteinite holotype, (b)
synthetic compound KPb2(CO3)2(OH) (Brooker et al.
1983), (c) synthetic compound NaPb2(CO3)2(OH)
(Brooker et al. 1983), and (d ) abellaite holotype (Ibáñez-
Insa et al. 2017). Band of stretching vibrations of BO3

3�

groups is indicated

1.5 Orthoborate Groups in Lead Carbonate Minerals 17



IR Spectra of Minerals and Related
Compounds, and Reference Samples Data 2

This chapter contains IR spectra of mineral spe-
cies and varieties, most of which was not included
in the preceding reference books (Chukanov
2014; Chukanov and Chervonnyi 2016). Along
with spectra obtained by us, we provide most
reliable new data on infrared spectra of
791 minerals and related synthetic compounds
published elsewhere. Each spectrum is
accompanied with analytical data on the reference
sample, its occurrence and general appearance,
associated minerals, as well as kind of sample
preparation and/or method of registration of the
spectrum.

The Sects. 2.1, 2.2, 2.3, etc. are arranged in
ascending order of the atomic number Za of the
main species-defining element for a given class of
minerals: first for borate minerals (with Za ¼ 5 for
boron), then for carbon, carbides, carbonates, and
organic substances (with Za ¼ 6 for carbon), for
nitrates (with Za ¼ 7 for nitrogen), for oxides and
hydroxides (with Za ¼ 8 for oxygen), and so on.

A total of 174 spectra presented in this chapter
have been obtained by one of the authors (NVC).
In order to obtain absorption infrared spectra,
powdered mineral samples have been mixed
with anhydrous KBr, pelletized, and analyzed
using an ALPHA FT IR spectrometer (Bruker
Optics, Ettlingen, Germany) with a resolution of
4 cm�1 and 16 scans. IR spectrum of an analo-
gous disc of pure KBr was used as a reference. It
is important to note that reflectance mode IR
spectra, IR spectra obtained without immersion
medium (e.g., KBr), as well as IR spectra of

single crystals, coarse-grained, or textured
aggregates cannot be considered as stable and
reliable diagnostic characteristics of mineral spe-
cies due to specific effects induced by orientation,
polarization, scattering, and reflection conditions.
For example, in case of a single crystal, bands
corresponding to normal vibrations with polariza-
tion vector parallel to the direction of propagation
of IR radiation are absent in the spectrum. How-
ever these bands can be observed at another ori-
entation of the crystal. In more detail these
aspects were considered above (see Chukanov
and Chervonnyi 2016, the section “Sources of
Errors and Artifacts in IR Spectroscopy of
Minerals”). For the above reasons, only transmit-
tance or absorbance IR spectrum of a pulverized
sample dispersed in an immersion medium is a
stable characteristic of a mineral and can be used
as a diagnostic tool.

Additional information includes general
appearance, associated minerals, methods of the
mineral species identification, and the list of
wavenumbers of absorption bands with the indi-
cation of strong bands, weak bands, and
shoulders. IR spectroscopy itself can be consid-
ered as an adequate identification method if IR
spectrum is unique for a given mineral and
coincides with IR spectrum of a well-investigated
sample. For most synthetic samples the method of
synthesis is shortly characterized.

For more than 100 samples (mainly holotypes
of mineral species), a more detailed information is
given including unit-cell dimensions, symmetry,
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strongest reflections of the powder X-ray diffrac-
tion pattern, empirical formula, optical data,
density, etc.

The following abbreviations are used in this
chapter:

Mt. mountain
Co. county
IR infrared
D density
Dmeas measured density
Dcalc calculated density
apfu atoms per formula unit
Z the number of formula units per unit cell
α, β,
γ

refractive indices for biaxial minerals

ω, ε refractive indices for uniaxial minerals
n refractive index for isotropic minerals
2V angle between optic axes
d interplanar spacing
I relative intensity of a line in the powder

X-ray diffraction pattern
REE rare-earth elements
Ln lanthanides
s strong band

w weak band
sh shoulder
□ vacancy

In most cases, the terms “strong band” and
“weak band” mean band having transmittance
minimum below and above any conventional
values, respectively. As a rule, “shoulder”
means inflection point of the spectral curve. For
the convenience of visual perception, the
positions of all peaks and shoulders in most
figures are indicated by arrows.

For the numeration of samples, double letter-
figure symbols are used. This numbering is a
continuation of the numbering used in the previ-
ous books of this series (Chukanov 2014;
Chukanov and Chervonnyi 2016). The meaning
of letter parts of the symbols is explained in
Table 2.1. It is to be noted that these designations
are conventional and not unambiguous. For
example, zirsilite-(Ce), Na12-x(Ce,
Na)3Ca6Mn3Zr3NbSi25O73(OH)3(CO3)�H2O, can
be classified as cyclosilicate, as zirconosilicate or
as carbonatosilicate.

Table 2.1 The meaning of letter symbols used in the numbering of reference samples

Symbol Meaning of the symbol Symbol Meaning of the symbol

Bo Borates with isolated orthogroups BO3 PSi Phosphato-silicates
B Other borates SSi Sulfato-silicates
BC Carbonatoborates TiSi Titanosilicates and related zircono-

, niobo-, and stannosilicates
BAs Arsenatoborates AsSi Arsenato-silicates
C Carbon and carbonates USi Silicates with uranyl groups UO2

2+

(except nesosilicates)
Org Organic compounds and salts of organic acids P Phosphides and phosphates
N Nitrides and nitrates S Sulfates
O Oxides and hydroxides SC Carbonato-sulfates
F Fluorides SP Phosphato-sulfates
Sio Nesosilicates (i.e., silicates with orthogroups SiO4) SMo Sulfatomolybdates
Sid Sorosilicates (i.e., silicates with diorthogroups Si2O7 or

SiAlO7)
Cl Chlorides and hydroxychlorides

Siod Silicates containing both orthogroups SiO4 and
diorthogroups Si2O7

V Vanadates, V oxides, and
hydroxides

Sit Triorthosilicates with groups Si3O10 Cr Chromates
Siot Ortho-triorthosilicates Ge Germanates
Sir Cyclosilicates

(“r” means “ring”)
As Arsenic, arsenides, arsenites,

arsenates, and sulfato-arsenates
Sic Inosilicates with chains formed by SiO4 and AlO4

tetrahedra
UAs Uranyl arsenates

(continued)
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2.1 Borates, Including Arsenatoborates and Carbonatoborates

Bo36 Barium strontium orthoborate fluoride Ba3Sr4(BO3)3F5

Origin: Synthetic.
Description: Prepared from BaF2, BaCO3, SrCO3, and H3BO3 by using a high-temperature solid-state

technique. The crystal structure is solved. Hexagonal, space group P63mc, a ¼ 10.8953(16),
c ¼ 6.9381(15) Å, V ¼ 713.3(2) Å3, Z ¼ 2. Dcalc ¼ 4.814 g/cm3. Characterized by powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Zhang et al. (2009a).
Wavenumbers (cm21): 1312sh, 1255s, 1221s, 1177s, 921w, 810, 779, 771sh, 753, 604, 585.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Table 2.1 (continued)

Symbol Meaning of the symbol Symbol Meaning of the symbol

Sib Inosilicates with bands formed by SiO4 and AlO4 tetrahedra AsS Sulfato-arsenates
Sil Phyllosilicates with layers formed by SiO4 and AlO4

tetrahedra
Se Selenium, selenides, and selenites

Sif Tectosilicates (aluminosilicates with 3d frameworks formed
by SiO4 and AlO4 tetrahedra), except zeolites

Br Bromides and bromates

Sif_Z Zeolites Mo Molybdates and Mo-beariung
oxides

Si Silicon, silicides, and silicates with unknown or complex
structures

Te Tellurides, tellurites, and tellurates

Sia Amorphous silicates I Iodides, iodites, and iodates
BeSi Beryllosilicates Xe Xenates
BSi Borosilicates and borato-silicates W Tungstates and W-bearing oxides
CSi Carbonato-silicates
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Bo37 Barium zirconium orthoborate BaZr(BO3)2

Origin: Synthetic.
Description: Powder obtained by means of standard solid-state reaction from the stoichiometric

mixture of BaCO3, ZrO2, and B2O3 pressed into a pellet and heated first at 550 �C for 48 h and
thereafter heated twice at 910 �C for 20 h. Trigonal, a ¼ 5.167, c ¼ 33.913 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc (in the
1500–400 cm�1 region) and Nujol suspension (in the 500–50 cm�1 region). Transmission.

Source: Mączka et al. (2015).
Wavenumbers (IR, cm21): 1270s, 1230s, 998w, 761, 736, 613, 380sh, 369sh, 334s, 214, 195w,

137w, 109, 87sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1272w, 1258w, 1250w, 1228s, 739w, 622w, 380s, 369s, 348w,

137, 112w, 59.

Bo38 Cesium beryllium orthoborate CsBe4(BO3)3
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Origin: Synthetic.
Description: Prepared from Cs2CO3, BeO, and B2O3 by solid-state reaction at 800 �C for 48 h in air.

The crystal structure is solved. Orthorhombic, space group Pnma, a ¼ 8.3914(5), b ¼ 13.3674(7),
c ¼ 6.4391(3) Å, V ¼ 722.28(7) Å3, Z ¼ 4. Dcalc ¼ 3.176 g/cm3. Characterized by powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Huang et al. (2013a).
Wavenumbers (cm21): (3430), (1625sh), 1430, 1360sh, 1339s, 1220sh, 1197s, 1020, 881, 840, 785s,

760, 722, 669, 595, 545, 501, 448.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands at 3430 and 1625 cm�1 may correspond to adsorbed water. Weak
bands in the range from 2300 to 2400 cm�1 correspond to atmospheric CO2.

Bo39 Calcium orthoborate fluoride Ca5(BO3)3F

Origin: Synthetic.
Description: Synthesized by high-temperature solid-state reaction from the mixture of CaCO3,

H3BO3, and CaF2 with the molar ratio 9:6:1. After heating at 500 �C for 1 day, the mixture was
cooled down to room temperature, ground again, then pressed and sintered at 1000 �C for 2 days.
Monoclinic, space group a ¼ 8.125(3), b ¼ 16.051(5), c ¼ 3.538(2) Å, β ¼ 100.90(4)�, Z ¼ 2.
Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Chen et al. (2006a).
Wavenumbers (cm21): 1117s, 990, 852, 755w, 536, 420w.
Note: The IR spectrum contains additional bands in the range from 1500 to 4000 cm�1 that correspond

to adsorbed (?) water molecules.
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Bo40 Lanthanum orthoborate La(BO3)

Origin: Synthetic.
Description: Prepared hydrothermally from La2O3 and B2O3 at 200 �C for 24 h. Characterized by

powder X-ray diffraction data. Orthorhombic, a ¼ 5.0960(8), b ¼ 8.2514(4), c ¼ 5.8726(6) Å.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Ma et al. (2007).
Wavenumbers (cm21): 1347, 1310s, 1288s, 940, 705s, 613, 596w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Bo41 Lead aluminium orthoborate fluoride Pb6Al(BO3)2OF7 Pb6Al(BO3)2OF7
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Origin: Synthetic.
Description: Prepared from a stoichiometric mixture of PbF2, Al2O3, and H3BO3 at 430 �C with

several intermediate grindings. Characterized by powder X-ray diffraction data. The crystal struc-
ture is solved. Orthorhombic, space group Cmca, a ¼ 11.649(7), b ¼ 18.300(11), c ¼ 6.394(4) Å,
V¼ 1363.1(15) Å3, Z¼ 4.Dcalc¼ 7.488 g/cm3. In the structure, Al atoms coordinated by F (to form
slightly distorted AlF6 octahedra) are situated between the [Pb6BO11F10] layers.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Dong et al. (2012).
Wavenumbers (cm21): 1648w, 1520w, 1219s, 912w, 761w, 702s, 665sh, 612sh, 561s, 533s, 423.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Bo42 Lead bismuth orthoborate PbBi(BO3)O

Origin: Synthetic.
Description: Synthesized by solid-state reaction of a stoichiometric mixture of PbO, Bi2O3, and

H3BO3 powders. The crystal structure is solved. Orthorhombic, space group Cmca, a ¼10.782
(3), b ¼ 10.502(3), c ¼ 7.477(2) Å, V ¼ 846.7(4) Å3, Z ¼ 8. Dcalc ¼ 7.704 g/cm3. Each Bi atom is
coordinated to six O atoms. The BiO6 octahedra are connected via common vertices and edges to
form infinite [BiO4] layer.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Zhao et al. (2011).
Wavenumbers (cm21): 1480w, 1219s, 1189s, 897, 744, 711s, 603, 579, 526, 452sh, 437s, 422s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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Bo43 Lead cadmium orthoborate Pb8Cd(BO3)6

Origin: Synthetic.
Description: Synthesized via solid-state reaction. Characterized by powder X-ray diffraction data. The

crystal structure is solved. Trigonal, space group R-3, a¼ 9.5584(16), c¼ 18.670(3) Å, V¼ 1477.2
(4) Å3, Z ¼ 3. Dcalc ¼ 7.159 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Huang et al. (2013c).
Wavenumbers (cm21): 1411, 917, 752, 736, 724, 621, 581, 454.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Bo44 Lead copper orthoborate Pb2Cu(BO3)2
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Origin: Synthetic.
Description: Prepared by a solid-state reaction method using PbO, CuO, and B2O3 as the starting

components in the molar ratio 2:1:1. Characterized by powder X-ray diffraction data. The crystal
structure is solved. Monoclinic, space group P21/c, a¼ 5.6311(6), b¼ 8.7628(9), c¼ 6.2025(6) Å,
β ¼ 115.7060(10)�, V ¼ 275.77(5) Å3, Z ¼ 2. Dcalc ¼ 7.172 g/cm3. Cu atoms have rectangular
planar coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Pan et al. (2006).
Wavenumbers (cm21): 1368sh, 1300sh, 1232s, 1195s, 1156s, 1024, 900, 694, 608, 575.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Bo45 Lead orthoborate tungstate Pb6(BO3)2(WO4)O2

Origin: Synthetic.
Description: Crystals obtained from the melt of Bi2O3, PbO, WO3, and H3BO3 with the molar ratio of

3:12:2:2. Characterized by powder X-ray diffraction data. The crystal structure is solved. Ortho-
rhombic, space group Cmcm, a ¼ 18.4904(5), b ¼ 6.35980(10), c ¼ 11.6789(2) Å, V ¼ 1373.38
(5) Å3, Z ¼ 4. Dcalc ¼ 7.935 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Li et al. (2011b).
Wavenumbers (cm21): 1215s, 1190, 902w, 790s, 690s, 606, 560, 498.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Bo46 Lithium aluminium orthoborate Li3Al(BO3)2

Origin: Synthetic.
Description: Prepared from the mixture of Li2CO3, Al2O3, and H3BO3 in stoichiometric proportion, at

690 �C for 1–2 days, with one intermediate grinding. Characterized by powder X-ray diffraction
data. The crystal structure is solved. Triclinic, space group P-1, a ¼ 4.876(8), b ¼ 6.191(16),
c ¼ 7.910(20) Å, α ¼ 74.46(18)�, β ¼ 89.44(17)�, γ ¼ 89.52(18)�, V ¼ 230.0(9) Å3, Z ¼ 2.
Dcalc ¼ 2.388 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: He et al. (2002).
Wavenumbers (cm21): 1415, 1366, 1191s, 992, 946, 810, 770, 734, 618, 595, 531s, 475s, 410, 384.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Bo47 Lead orthoborate tungstate Pb6(BO3)2(WO4)O2

Origin: Synthetic.
Description: Obtained by a solid-state reaction method. The crystal structure is solved. Orthorhombic,

space group Cmcm, a ¼ 18.480(4), b ¼ 6.3567(13), c ¼ 11.672(2) Å, V ¼ 1371.1(5) Å3, Z ¼ 4.
Dcalc ¼ 7.948 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Reshak et al. (2012b).
Wavenumbers (cm21): 1216s, 790s, 694, 606.5, 561, 500.5, 441, 409.

Bo48 Lithium strontium orthoborate LiSr4(BO3)3
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Origin: Synthetic.
Description: Obtained in the solid-state reaction from the stoichiometric mixture of Li2CO3, SrCO3,

and H3BO3 at 750 �C, with several grindings. Characterized by powder X-ray diffraction data. The
crystal structure is solved. Cubic, space group Ia-3d, a ¼ 14.95066(5) Å, V ¼ 3341.80(3) Å3,
Z ¼ 16. Dcalc ¼ 4.243 g/cm3. In the structure, isolated BO3 groups are perpendicular to each other.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Wu et al. (2005).
Wavenumbers (cm21): 1284s, 1182s, 788, 758s, 607, 565w, 362.

Bo49 Magnesium orthoborate fluoride Mg5(BO3)3F

Origin: Synthetic.
Description: Crystals grown from the flux prepared from MgF2, LiF, Na2CO3, and H3BO3.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic,
space group Pnma, a ¼ 10.068(5), b ¼ 14.858(7), c ¼ 4.540(2) Å, V ¼ 679.2(6) Å3, Z ¼ 4.
Dcalc ¼ 3.100 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bai et al. (2014).
Wavenumbers (cm21): 1308s, 1262s, 1243s, 1168s, 900sh, 790sh, 739s, 680, 606, 510, 478, 433.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band designed by the authors as 1275 cm�1 is a doublet 1262+1243 cm�1.
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Bo50 Potassium calcium orthoborate KCa4(BO3)3

Origin: Synthetic.
Description: Obtained by heating stoichiometric mixture of K2CO3, CaCO3, and H3BO3 first at

600 �C to decompose carbonates, and thereafter at 900 �C for 72 h. The crystal structure is solved.
Orthorhombic, space group Ama2, a ¼ 10.63455(10), b ¼ 11.51705(11), c ¼ 6.51942(6) Å,
V ¼ 798.49(2) Å3, Z ¼ 4. Dcalc ¼ 3.161 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Wu et al. (2006a).
Wavenumbers (cm21): 1266s, 1226s, 1207s, 1150, 902, 804w, 772, 731, 636, 599, 362s, 301s, 232.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Bo51 Potassium magnesium orthoborate KMg(BO3)
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Origin: Synthetic.
Description: Prepared through solid-state reaction from the stoichiometric mixture of metal carbonates

and H3BO3. Characterized by powder X-ray diffraction data. The crystal structure is solved. Cubic,
space group P213, a ¼ 6.83443(4), V ¼ 319.23(1) Å3, Z ¼ 4. Dcalc ¼ 2.543 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Wu et al. (2010a).
Wavenumbers (cm21): 1567sh, 1381sh, 1331s, 1314s, 1040sh, 920w, 882w, 774, 747s, 641s, 547.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band designed by the authors as 1318 cm�1 is a doublet 1331+1314 cm�1.

Bo52 Potassium strontium orthoborate KSr4(BO3)3

Origin: Synthetic.
Description: Synthesized by solid-state reaction of a stoichiometric mixture of K2CO3, SrCO3, and

H3BO3, heated first at 400 �C for 5 h and thereafter at 900 �C for 48 h with several intermediate
grindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Ortho-
rhombic, space group Ama2, a ¼ 11.025(10), b ¼ 11.977(10), c ¼ 6.872(6) Å, V ¼ 907.4(14) Å3,
Z ¼ 4. Dcalc ¼ 4.143 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Zhao et al. (2012).
Wavenumbers (cm21): 1458, 1408s, 1357, 1321, 1284s, 1135w, 1067, 997s, 931s, 862s, 930, 862,

809, 756, 726, 705, 679, 629, 615, 596, 586sh, 566w, 431w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Bo53 Samarium orthoborate Sm(BO3)

Origin: Synthetic.
Description: Synthesized by a solid-state method from stoichiometric amounts of H3BO3 and Sm2O3

first at 500 �C for 5 h, thereafter at 700 �C for 5 h, and finally at 900 �C for 5 h with intermediate
grindings. Characterized by powder X-ray diffraction data. Triclinic (see JCPDS card No. 13-0489).
Contains minor admixture of the vaterite-type polymorph.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Velchuri et al. (2011a).
Wavenumbers (cm21): 1384sh, 1315s, 1215, 1166s, 939, 759, 725, 669, 576w, 559w.

Bo54 Scandium lanthanum orthoborate LaSc3(BO3)4
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Origin: Synthetic.
Description: Bi-doped single crystals obtained by means of spontaneous crystallization from flux at

starting molar composition of the melt La2O3:Sc2O3:Bi2O3:B2O3 ¼ 1:1.5:13:13. The crystal
structure is solved. Trigonal, space group R32, a ¼ 9.8370(14), c ¼ 7.9860(14) Å, Z ¼ 3. The
empirical formula is (electron microprobe): Bi0.21La0.91Sc2.88(BO3)4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol
mull. Absorption.

Source: Mączka et al. (2010).
Wavenumbers (IR, cm21): 1322sh, 1292s, 1224sh, 1208s, 964w, 774w, 749, 720, 662, 628w, 467sh,

412s, 362w, 339w, 300, 285sh, 253, 226w, 208w, 173w, 85, 67w.
Note: In the cited paper, polarized Raman spectra of an oriented single crystal are given.
Wavenumbers (Raman, for the x(yy)x polarization, cm21): 1406, 1278, 1248sh, 1232, 1223,

983, 968w, 738, 712w, 663, 626, 607, 590, 457, 430s, 393sh, 384, 339s, 307sh, 298, 293,
248, 230, 227, 222sh, 207w, 176, 155, 90.

Bo55 Sodium calcium orthoborate NaCa(BO3)

Origin: Synthetic.
Description: Orthorhombic. In the crystal structure, Na and Ca atoms are disordered.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Wu et al. (2006b).
Wavenumbers (cm21): 1267s, 1254sh, 1245s, 1223s, 1196s, 1177s, 1148sh, 933w, 909w, 876w,

798, 747w, 647w, 603, 385sh, 375.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Bo56 Sodium calcium orthoborate NaCa4(BO3)3

Origin: Synthetic.
Description: Polycrystalline sample prepared by sintering a stoichiometric mixture of Na2CO3,

CaCO3, and H3BO3, first at 600 �C and thereafter at 880 �C for 72 h with intermediate grinding.
Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic,
space group Ama2, a ¼ 10.68004(11), b ¼ 11.28574(11), c ¼ 6.48521(6) Å, V ¼ 781.68(2) Å3,
Z ¼ 4. Dcalc ¼ 3.056 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Wu et al. (2006a).
Wavenumbers (cm21): 1261s, 1213s, 1146, 901w, 784w, 752, 726, 638w, 605w, 356s, 316s, 296s,

263sh, 229w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Bo57 Sodium lanthanum orthoborate Na3La9(BO3)8O3
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Origin: Synthetic.
Description: Synthesized from La2O3, Na2CO3, and H3BO3 by using high-temperature solid-state

techniques, first at 600 �C for 10 h and thereafter at 1100 �C for 36 h with intermediate grinding.
Characterized by powder X-ray diffraction data and elemental analysis. Hexagonal, a ¼ 78.9214,
c ¼ 8.7267 Å. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are:
4.3378 (46) (002), 3.1032 (100) (112), 2.9038 (60) (210), 2.2140 (56) (302), 2.1724 (34) (004),
2.1682 (38) (221), 2.0724 (32) (311), 1.5661 (53) (412).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Zhang et al. (2005).
Wavenumbers (cm21): 1583w, 1574w, 1497w, 1356s, 1335s, 1307sh, 1287s, 1274sh, 1245s, 1212s,

1188s, 1143s, 959, 904, 798, 778, 739, 694, 620, 596, 568, 463, 437.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Bo58 Sodium samarium orthoborate Na3Sm2(BO3)3

Origin: Synthetic.
Description: Synthesized by heating a mixture of Sm2O3, Na2CO3, and H3BO3 first at 500 �C for 10 h,

and thereafter (after intermediate grinding) at 800 �C for 24 h. Orthorhombic, a ¼ 5.0585,
b ¼ 11.0421, c ¼ 7.0316 Å. The strongest lines of the powder X-ray diffraction pattern [d, Å (I,
%) (hkl)] are: 5.5210 (58) (020), 5.0521 (80) (100), 3.7232 (69) (120), 2.9685 (65) (022), 2.8851
(81) (102), 2.5602 (100) (122).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Zhang et al. (2002b).
Wavenumbers (cm21): 1268s, 1208s, 980, 939, 923sh, 890sh, 781, 749, 735s, 676, 647w, 627, 600,

568sh, 509w, 473sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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Bo59 Sodium strontium orthoborate NaSr4(BO3)3

Origin: Synthetic.
Description: Obtained in the solid-state reaction from the stoichiometric mixture of Na2CO3, SrCO3,

and H3BO3 at 800 �C, with several grindings. Characterized by powder X-ray diffraction data. The
crystal structure is solved. Cubic, space group Ia-3d, a ¼ 15.14629(6), V ¼ 3474.71(4) Å3, Z ¼ 16.
Dcalc ¼ 4.203 g/cm3. In the structure, isolated BO3 groups are perpendicular to each other.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Wu et al. (2005).
Wavenumbers (cm21): 1283s, 1182s, 785, 753s, 605, 578w, 307s.

Bo60 Sodium strontium orthoborate NaSr(BO3)
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Origin: Synthetic.
Description: Prepared by heating a mixture of Na2CO3, SrCO3, and H3BO3 first at 650 �C and

thereafter at 850 �C for 72 h with intermediate grinding. Characterized by powder X-ray diffraction
data. The crystal structure is solved. Monoclinic, space group P21/c, a¼ 5.32446(7), b¼ 9.2684(1),
c ¼ 6.06683(8) Å, β ¼ 100.589(1)�, V ¼ 294.30(8) Å3, Z ¼ 4. Dcalc ¼ 3.824 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Wu et al. (2006b).
Wavenumbers (cm21): 1331, 1305sh, 1280s, 1257s, 1243sh, 815, 780, 605, 583, 323sh, 287s, 270sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Bo61 Zinc orthoborate hydroxide Zn8(BO3)3O2(OH)3

Origin: Synthetic.
Description: Prepared hydrothermally from a mixture of 0.637 mmol of Zn3B2O6, 0.2 ml of

CH3COOH, 0.2 ml of NH2CH2CH2NH2, and 1 ml of H2O, at 170 �C for 1 week. Characterized
by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group R32,
a ¼ 8.006(2), c ¼ 17.751(2) Å, V ¼ 985.3(4) Å3, Z ¼ 3. Dcalc ¼ 3.956 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2006b).
Wavenumbers (cm21): 3570, 3550sh, (3497), (3471), (3435), (3405), (3368), 2660w, 2546w,

2505sh, 2230w, 2197w, 1605sh, 1334sh, 1285sh, 1249s, 1032w, 927w, 861, 758, 730s, 705sh,
653, 530sh, 513s, 481sh, 465.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.
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Bo62 Zinc orthoborate orthophosphate Zn3(BO3)(PO4)

Origin: Synthetic.
Description: Prepared by heating a mixture of ZnCO3, H3BO3, and (NH4)2(HPO4), taken in stoichio-

metric amounts, at 870 �C. Characterized by powder X-ray diffraction data. Hexagonal, a ¼ 8.435
(4), c ¼ 13.032(6) Å. The strongest reflections are observed at 4.2113 and 2.5761 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Wang et al. (2002).
Wavenumbers (cm21): 1458w, 1392w, 1342w, 1306sh, 1268, 1230s, 1098, 1071, 1013s, 975sh,

819sh, 751sh, 728, 685sh, 645, 592, 552, 464, 438.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Bo63 Cobalt dinickel orthoborate CoNi2(BO3)2
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Origin: Synthetic.
Description: Synthesized by heating a stoichiometric mixture of cobalt nitrate, nickel nitrate, and boric

acid, first at 450 �C for 4 h, thereafter (after cooling to room temperature and grinding) at 600 �C for
3 h, and finally at 900 �C for 48 h. Characterized by powder X-ray diffraction data. Isostructural
with kotoite. Orthorhombic, space group Pnmn, a¼ 5.419(9), b¼ 8.352(0), c¼ 4.478(8) Å, Z¼ 2.
Dmeas ¼ 4.48 g/cm3. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)]
are: 3.9420 (38) (011), 2.6591 (100) (121), 2.4755 (36) (130), 2.2339 (55) (211), 1.7258 (30) (202),
1.6610 (33) (132).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Güler and Tekin (2009).
Wavenumbers (cm21): 3564, 3490, 3426, 2360, 2340sh, 1613, 1382, 1285sh, 1253, 1180, 712, 688,

622, 476, 422sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The sample is strongly contaminated with a hydrous phase (the bands at
3564, 3490, 3426, and 1613 cm�1). The bands at 2360 and 2340 cm�1 may correspond to
atmospheric CO2.

Bo64 Berborite Be2(BO3)(OH,F)�H2O

Origin: Vevja quarry, Tvedalen, Larvik, Vestfold, Norway.
Description: Colorless crystals from the association with natrolite. Holotype sample. Characterized by

single-crystal X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3508, 3370sh, 3275sh, 3060sh, 2865, 2745sh, 2630sh, 2483, 2080sh, 1862,

1676, 1420, 1307s, 1065w, 1015sh, 895, 807s, 741s, 676, 648, 586, 520sh, (445w), (419w), 384w.
Note: The spectrum was obtained by N.V. Chukanov.
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B160 Lüneburgite Mg3[B2(OH)6(PO4)2]∙6H2O

Origin: Morro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile.
Description: Yellow nodule from clay. Investigated by I.V. Pekov. Identified by IR spectrum and

qualitative electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3505, 3431s, 3397s, 3258, 3225s, 3113, 2974, 2639w, 2450w, 2295w, 1665,

(1560w), 1326, 1283, 1185, 1122s, 1075s, 1020s, 974, 895, 834, 785, 709, 665, 636, 600sh,
576, 538, 522, 465w, 393, 383.

Note: The spectrum was obtained by N.V. Chukanov.

B161 Ammonium pentaborate (NH4)B5O8
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Origin: Synthetic.
Description: Crystals of commercially available ammonium pentaborate grown from aqueous solu-

tion. Characterized by powder X-ray diffraction data. Monoclinic, a ¼ 7.189(5), b ¼ 11.308(5),
c ¼ 7.217(6) Å, β ¼ 100.12(7)�, V ¼ 578(2) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Balakrishnan et al. (2008).
Wavenumbers (cm21): 3436s, 3327sh, 1642, 1433s, 1397s, 1355s, 1245, 1102, 1024, 924, 782,

695, 591w, 504w.
Note: In the cited paper, the wavenumber 1245 cm�1 is erroneously indicated as 1345 cm�1.

B162 Barium borate BaB8O11(OH)4

Origin: Synthetic.
Description: Synthesized from Ba(NO3)2 and H3BO3 by using a low-temperature molten salt tech-

nique at 458 K. The crystal structure is solved at 173 K. It is built from borate layers consisting of
[B6O9(OH)] clusters. Monoclinic, pseudo-orthorhombic, space group P21/n, a ¼ 7.9080(16),
b ¼ 13.939(3), c ¼ 10.047(2) Å, β ¼ 90.00(3)�, V ¼ 1107.6(4) Å3, Z ¼ 4. Dcalc ¼ 2.806 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Sun et al. (2010a).
Wavenumbers (IR, cm21): 3416, 3377s, 2443w, 1630, 1456sh, 1404s, 1361s, 1317s, 1225, 1185,

1131, 1038s, 1003s, 962, 933, 890, 804, 771w, 734, 686sh, 668, 635, 599w, 539w, 486w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1305, 1170w, 1112w, 1011s, 1050w, 987s, 886w, 858, 822, 761s,

736s, 658, 638, 540, 472s, 453s, 434, 424, 410, 367s, 243, 202w, 166w, 135w, 116s.
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B163 Barium calcium diborate BaCa(B2O5)

Origin: Synthetic.
Description: Crystals grown from the mixture of barium nitrate, calcium oxide, and boric acid first

preheated at 500 �C for 7 h, then gradually heated to 900 �C, and kept at this temperature for 72 h with
several intermediate grindings and mixing. The crystal structure is solved. Monoclinic, space group
P21/c, a ¼ 6.568(2), b ¼ 20.545(7), c ¼ 8.201(2) Å, β ¼ 117.00(2)�, Z ¼ 4. Dcalc ¼ 3.759 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Liu et al. (2015b).
Wavenumbers (cm21): 1615sh, 1405sh, 1383s, 1214, 1117s, 954, 881sh, 819, 735, 637sh, 600.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B164 Ammonium calcium borate (NH4)2Ca[B4O5(OH)4]2�8H2O
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Origin: Synthetic.
Description: Synthesized through slow evaporation of a solution containing CaCl2, H3BO3 and NH3.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic,
space group P212121, a ¼11.556(7), b ¼ 12.583(8), c ¼ 16.679(8) Å, V ¼ 2425.2(2) Å3, Z ¼ 4.
Dcalc ¼ 1.651 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Li et al. (2011a).
Wavenumbers (cm21): 3392s, 3210s, 3055, 2927, 2427, 2090, 1592s, 1482sh, 1429s, 1399s, 1322,

1238w, 1131, 1078s, 1057sh, 1018, 980, 957, 928, 825, 802, 784, 743, 710, 673, 572, 529, 507,
428.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

B165 Cesium calcium borate Cs2Ca[B4O5(OH)4]2∙8H2O

Origin: Synthetic.
Description: Crystals grown by slow evaporation from the 2:1 (vol.) aqueous acetone solution of

Cs2CO3, CaCl2, and H3BO3 with a molar ratio of 2:1:8. The crystal structure is solved. Orthorhom-
bic, space group P212121, a ¼ 11.5158(7), b ¼ 12.8558(7), c ¼ 16.7976(10) Å, V ¼ 2486.8(3) Å3,
Z ¼ 4. Dcalc ¼ 2.224 g/cm3. Characterized by DSC and TG data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Huang et al. (2013b).
Wavenumbers (cm21): 3620, 3440s, 3313s, 3205s, 2602w, 2440w, 1668, 1626, 1450s, 1345s,

1229w, 1147, 1121, 1060s, 1003s, 946s, 904sh, 831s, 814sh, 705, 663, 588, 532, 466, 434sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B166 Calcium borate CaB6O10

Origin: Synthetic.
Description: Colorless crystals prepared from corresponding oxides by solid-state reaction at 735 �C

for 2 weeks. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Monoclinic, space group P21/c, a ¼ 9.799(1), b ¼ 8.705(1), c ¼ 9.067(1) Å, β ¼ 116.65(1)�,
V ¼ 691.23(13) Å3, Z ¼ 4. Dcalc ¼ 2.546 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2008b).
Wavenumbers (cm21): 2369w, 2264w, 1406s, 1342sh, 1150s, 1191s, 1088s, 1008sh, 942, 916,

815w, 769sh, 705w, 672w, 635w, 533, 504sh, 418w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B167 Calcium tetraborate β-CaB4O7
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Origin: Synthetic.
Description: High-pressure β-modification isotypic with orthorhombic SnB4O7.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Knyrim et al. (2007).
Wavenumbers (cm21): 1623sh, 1353, 1285sh, 1193, 1142, 1067s, 982s, 896, 884sh, 826, 814, 788sh,

765, 736, 712, 650, 623s, 604, 558, 509, 446w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

B168 Dicalcium hexaborate monohydrate Ca2B6O11∙H2O

Origin: Synthetic.
Description: Synthesized hydrothermally from H3BO3 and CaO mixed with the mole ratio ranging

from 1.5:1 to 2:1, at 234–300 �C for 48–96 h. Characterized by powder X-ray diffraction data.
Orthorhombic, space group Pbn21.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Guo et al. (2000).
Wavenumbers (cm21): 3530, 3458s, 2908w, 2842w, 1623w, 1438, 1403, 1282s, 1171, 1121, 1066s,

1019s, 966s, 953s, 905, 871, 842, 767, 701, 686, 643, 623, 559, 524, 482, 422w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B169 Dipotassium sodium zinc pentaborate K2NaZnB5O10

Origin: Synthetic.
Description: Synthesized by employing a high-temperature solution reaction method. The crystal

structure is solved. Monoclinic, space group C2/c, a¼ 7.9244(16), b¼ 12.805(3), c¼ 18.962(4) Å,
β ¼ 99.39(3)�, V ¼ 1898.4(7) Å3, Z ¼ 8. Dcalc ¼ 2.663 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2010).
Wavenumbers (cm21): 1447s, 1436sh, 1394s, 1358s, 1272s, 1199s, 1132, 1060sh, 1032, 1006,

949, 928, 883sh, 827, 777, 752, 726, 702sh, 673sh, 635w, 606sh, 557w, 527w, 498sh, 477w,
462w, 440w, 417w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

B170 Double-ring borate (Na,K)3Sr(B5O10) (Na,K)3Sr(B5O10)
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Origin: Synthetic.
Description: Synthesized from the melt prepared from Na2CO3, SrCO3, H3BO3, and K2B4O7 in the

molar ratio 3:2:10:2 at 800 �C for 10 days. Triclinic, space group P-1, a ¼ 7.3900(15), b ¼ 7.6490
(15), c ¼ 9.773(2) Å, α ¼ 79.31(2)�, β ¼ 70.85(2)�, γ ¼ 62.09(1)�, V ¼ 460.82(17) Å3, Z ¼ 2.
Dcalc ¼ 2.766 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2011).
Wavenumbers (cm21): 1449s, 1400sh, 1386s, 1322sh, 1225sh, 1183s, 1085, 1061, 1051, 1029, 1011,

934, 910, 834sh, 776, 760, 748, 728, 702, 628w, 620w, 573w, 560w, 508w, 465w, 450sh,
430w, 416w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

B171 Lead borate Pb6B11O18(OH)9 Pb6B11O18(OH)9

Origin: Synthetic.
Description: Synthesized hydrothermally from Pb(CH3COO)2 and H3BO3 in the presence of

H2NCH2CH2NH2 and CH3COOH, at 180� for 2 days. The crystal structure is solved. Trigonal,
space group P32, a¼ 11.7691(7), c¼ 13.3361(12) Å, V¼ 1599.7(2) Å3, Z¼ 3.Dcalc¼ 5.615 g/cm3.
The structure is based on infinite and finite chains built up from BO4 and BO3 units.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yu et al. (2002).
Wavenumbers (cm21): 3600sh, 3550sh, 3440s, 1858w, 1823w, 1768sh, 1755sh, 1715sh, 1668sh,

1628, 1532w, 1495w, 1430sh, 1357, 1300s, 1270sh, 1162sh, 1080s, 1051sh, 936, 877sh, 867sh,
856, 814, 723, 685sh, 554, 490sh, 459.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

48 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



B172 Lead borate PbB4O7 PbB4O7

Origin: Synthetic.
Description: Obtained from stoichiometric melt of PbO and B2O3 heated to 1060 K. Orthorhombic

P21nm, space group, a ¼ 4.251, b ¼ 4.463, c ¼ 10.86 Å, Z ¼ 2. Characterized by powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc (for the
1500–400 cm�1 region) and Nujol mull (for the 500–50 cm�1 region). Transmission.

Source: Hanuza et al. (2008b).
Wavenumbers (cm21): 1215sh, 1152s, 1083s, 1009s, 959s, 881, 808, 761, 715, 652, 629, 612, 545,

505w, 486sh, 432w, 350w, 291w, 258w, 245w, 145sh, 116, 65sh.
Note: In the cited paper, Raman spectra are given for different polarization and crystal orientation.

B173 Lithium aluminoborate Li2AlBO4
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Origin: Synthetic.
Description: Prepared from a stoichiometric mixture of Li2CO3, B2O3, and Al2O3 (corundum) by

solid-state reaction at 600 �C for ca. 2 months. Characterized by powder X-ray diffraction data. The
crystal structure is solved. Monoclinic, space group P21/c, a ¼ 6.2720(3), b ¼ 5.0701(3),
c ¼ 10.2989(6) Å, β ¼ 95.882(2)�, V ¼ 325.78 Å3, Z ¼ 4. Dcalc ¼ 2.63 g/cm3. The structure is
based on the sheets consisting of metaboroaluminate rings, B2Al2O8, which are formed of
alternating corner-sharing AlO4 tetrahedra and BO3 triangles.

Kind of sample preparation and/or method of registration of the spectrum: Reflectance data for a
pelletized sample have been transformed by Kramers-Kronig analysis and presented in the absorp-
tion coefficient formalism.

Source: Psycharis et al. (1999).
Wavenumbers (cm21): 1441, 1404, 1396sh, 1360sh, 1248, 1215sh, 1176, 1199s, 956, 907s, 786sh,

776, 751, 705, 632, 593, 569, 523, 493s, 438sh, 426, 384, 330, 315, 278, 245w, 229w, 195w, 182w,
159w, 105w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

B174 Lithium cesium borate Li4Cs3B7O14 Li4Cs3B7O14

Origin: Synthetic.
Description: Synthesized via solid-state reaction from the mixture of Li2CO3, Cs2CO3, and H3BO3 in

a molar ratio of 4:3:14, at 560 �C, for 48 h, with several intermediate grindings and mixings.
Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space
group P3121, a ¼ 6.9313(6), c ¼ 26.799(3) Å, V ¼ 1115.01(19) Å3, Z ¼ 3. Dcalc ¼ 3.244 g/cm3.
The crystal structure contains isolated tricyclic B7O14 units in which five trigonal BO3 units and two
tetrahedral BO4 units are linked by vertical oxygen atoms.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yang et al. (2011e).
Wavenumbers (cm21): (3428w), 1512sh, 1458s, 1421s, 1288, 1201sh, 1165s, 1090, 934, 905,

828, 766, 728, 707sh, 679, 635, 579.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The wavenumber at 1129 cm�1 given by the authors is erroneous.

B175 Lithium sodium borate LiNaB4O7 LiNaB4O7

Origin: Synthetic.
Description: Synthesized from the mixture of Na2CO3, Ga2O3, H3BO3, and Li2B4O7 in the molar ratio

2:1:8:1 by employing high temperature solution reaction method. Ga2O3 acted as a flux for the
crystal growth. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Orthorhombic, space group Fdd2, a ¼ 13.326(3), b ¼ 14.072(3), c ¼ 10.238(2) Å, V ¼ 1919.9
(7) Å3, Z ¼ 16. Dcalc ¼ 2.563 g/cm3. The basic structural unit is a bicyclic B4O9 group that consists
of two vertex-sharing BO4 tetrahedra and two bridging BO3 triangles.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Reshak et al. (2012a).
Wavenumbers (cm21): 1440sh, 1369s, 1339sh, 1283sh, 1126, 968s, 900, 885sh, 848, 786, 759, 722,

678, 648, 637sh, 605sh, 543, 505, 479w, 453w, 423w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

2.1 Borates, Including Arsenatoborates and Carbonatoborates 51



B176 Lithium strontium borate Li2Sr4B12O23 Li2Sr4B12O23

Origin: Synthetic.
Description: Synthesized from stoichiometric mixture of Li2CO3, SrCO3, and H3BO3 by solid-state

reaction method at 710 �C for 60 h, with several intermediate grindings and mixings. Characterized
by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group P21/c,
a ¼ 6.4664(4), b ¼ 8.4878(4), c ¼ 15.3337(8) Å, β ¼ 102.024(3)�, V ¼ 823.13(8) Å3, Z ¼ 2.
Dcalc ¼ 3.478 g/cm3. The structure is based on the B10O18 network, consisting of BO4 tetrahedra
and BO3 triangles, and isolated B2O5 unit.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Zhang et al. (2012a).
Wavenumbers (cm21): 1488sh, 1442, 1345, 1264, 1129s, 1081s, 989s, 942s, 913s, 865, 791,

767, 708, 681, 627, 606, and a series of weak bands below 600 cm�1.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

52 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



B177 Lithium tetraborate Li2B4O7

Origin: Synthetic.
Description: Single crystals grown by the Czochralski method from a stoichiometric melt.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Tetragonal, space
group I41cd, a ¼ 9.477, c ¼ 10.286 Å, Z ¼ 8. The structure contains pairs of BO4 tetrahedra linked
by a common O atom to form a B2O7 group. BO3 triangles join these groups to yield a B4O7

network.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc (for the

region 500–1600 cm�1), CsI disc (200–700 cm�1), and polyethylene disc (50–300 cm�1).
Absorption.

Source: Zhigadlo et al. (2001).
Wavenumbers (cm21): 1458, 1378s, 1358s, 1330, 1142, 1021sh, 980s, 904s, 888sh, 809w,

780, 763sh, 719, 710, 691, 683, 666, 656, 600w, 549, 516, 509, 491w, 461w, 419, 348,
315, 297sh, 262, 226sh, 201, 191sh, 167, 156, 125, 94w, 77w, 61w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published
spectrum.
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B178 Magnesium strontium diorthoborate MgSr(B2O5)

Origin: Synthetic.
Description: Synthesized by solid-state reaction from the stoichiometric mixture of MgO, Sr(NO3)2,

and H3BO3 heated first at 500 �C for 24 h and then at 900 �C for 72 h with several intermediate
grindings and mixings. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Monoclinic, space group P21/c, a ¼ 6.478(4), b ¼ 5.327(4), c ¼ 12.048(8) Å, β ¼ 102.805
(8)�, V ¼ 405.4(5) Å3, Z ¼ 4. Dcalc ¼ 3.499 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Guo et al. (2014b).
Wavenumbers (cm21): 1415s, 1372s, 1333s, 1293s, 1260s, 1197s, 1157s, 1006, 849w, 780sh,

729, 685, 643, 492, 440.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B179 Potassium barium borate KBaB5O9 KBaB5O9

54 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



Origin: Synthetic.
Description: Prepared by the solid-state reaction of a stoichiometric mixture containing KNO3, Ba

(NO3)2, and H3BO3, first at 500 �C for 4 h, and thereafter (after regrinding) at 650 �C and for 48 h.
Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space
group P21/c, a ¼ 6.7168(11), b ¼ 8.2724(13), c ¼ 14.262(2) Å, β ¼ 92.724(2)�, V¼ 791.5(2) Å3,
Z ¼ 4. Dcalc ¼ 5.572 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Yu et al. (2014).
Wavenumbers (cm21): 1428s, 1325s, 1251sh, 1221, 1100, 1065, 1002sh, 955s, 898s, 858s, 811, 784,

735, 697, 646, 620, 598sh, 560, 491w, 464w, 424w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B180 Potassium borate KB3O5∙H2O KB3O5∙H2O

Origin: Synthetic.
Description: Prepared in the reaction between fine powders of K2B4O7�4H2O and KB5O8�4H2O under

exposure of water vapor, with subsequent heating to 110 �C. X-ray amorphous. Characterized
by DTA.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Salentine (1987).
Wavenumbers (cm21): 1645sh, 1450sh, 1360s, 1270sh, 1165sh, 1048s, 1033sh, 923, 870, 816sh,

753, 701, 455w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B181 Potassium chloride borate perovskite-related K3B6O10Cl

Origin: Synthetic.
Description: Prepared by heating stoichiometric mixture of K2CO3, KCl, and H3BO3, first at 500 �C

for 10 h and thereafter (after intermediate grinding) at 720 �C for 2 days. Characterized by powder
X-ray diffraction data. The crystal structure is solved. Trigonal, space group R3m, a¼ 10.0624(14),
c ¼ 8.8361(18) Å, V ¼ 774.8(2) Å3, Z ¼ 3. Dcalc ¼ 2.428 g/cm3. The structure is based on a 3D
framework containing [B6O10] units in which three BO4 tetrahedra are shared by the oxygen vertex
and are connected with three BO3 triangles.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Wu et al. (2011).
Wavenumbers (cm21): 1446, 1411sh, 1340sh, 1315s, 1176, 1006s, 996sh, 877s, 825, 755, 734, 686,

634, 597, 568, 491, 444sh.

B182 Potassium pentaborate KB5O8
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Origin: Synthetic.
Description: Crystals obtained by slow evaporation of aqueous solution containing potassium car-

bonate and boric acid in the stoichiometric ratio. Characterized by powder X-ray diffraction data.
Orthorhombic, space group Aba2, a ¼ 11.065, b ¼ 11.171, c ¼ 9.054 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmis-
sion. The procedure of baseline correction has been applied.

Source: Mary et al. (2008).
Wavenumbers (IR, cm21): 3443s, 3377s, 3042, 2650w, 2590sh, 2472w, 2360w, 2263sh, 2166w,

1854w, 1654, 1433s, 1358s, 1250, 1103s, 1025s, 925s, 782, 766, 735, 696, 591, 552w, 508, 459w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 917s, 786, 730, 559s, 456s, 373 (weak bands are not indicated).

B183 Potassium sodium zinc borate K2NaZnB5O10 K2NaZnB5O10

Origin: Synthetic.
Description: Colorless prismatic crystals obtained from K2CO3, ZnO, H3BO3, and Na2B4O7�10H2O

in the molar ratio of 3:2:10:2 by employing a high-temperature solution reaction method. The
crystal structure is solved. Monoclinic, space group C2/c, a ¼ 7.9244(16), b ¼ 12.805(3),
c ¼ 18.962(4) Å, β ¼ 99.39 (3)�, V ¼ 1898.4(7) Å3, Z ¼ 8. Dcalc ¼ 2.663 g/cm3. The structure
is based on the [B5O10]

5� group that consists of one BO4 tetrahedron and four BO3 triangles
condensed to a double ring via the common tetrahedron.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2010).
Wavenumbers (cm21): 1447s, 1436sh, 1394s, 1358s, 1272s, 1199s, 1133, 1080sh, 1059sh, 1032s,

1006, 969sh, 949, 928, 900sh, 880sh, 830, 777, 752, 726, 698sh, 672sh, 636w, 607w, 583sh, 556w,
527w, 503w, 477w, 463w, 442w, 417w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.
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B184 Potassium triborate KB3O5

Origin: Synthetic.
Description: A high-pressure monoclinic polymorph. Characterized by powder X-ray diffraction data.

The crystal structure is solved. Monoclinic, space group C2/c, a ¼ 9.608(2), b ¼ 8.770(2),
c ¼ 9.099(2) Å, β ¼ 104.4(1)�, V ¼ 742.8(3) Å3, Z ¼ 8.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection (?).

Source: Sohr et al. (2014).
Wavenumbers (cm21): 1362sh, 1317s, 1178, 1113, 1066, 1028, 956s, 902, 836s, 783, 757s,

698, 651, 609w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

B185 Sodium aluminum borate Na2Al2B2O7 Na2Al2B2O7
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Origin: Synthetic.
Description: Prepared by heating stoichiometric mixture of NaHCO3, Al2O3, and H3BO3, first at

400 �C for 10 h and thereafter at 950 �C for 2 days. The crystal structure is solved by the Rietveld
technique. Trigonal, space group P-31c, a ¼ 4.8113(1), c ¼ 15.2781(3) Å, V ¼ 306.29(2) Å3,
Z ¼ 2. Dcalc ¼ 2.532 g/cm3. The structure contains infinite [Al2B2O7] sheets. The strongest lines of
the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.02 (59) (101), 3.820 (55) (004), 2.815
(100) (104), 2.406 (33) (110), 2.295 (36) (112).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: He et al. (2001).
Wavenumbers (cm21): 1263s, 1015, 992, 765s, 525s, 495sh, 331, 325sh, 244w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B186 Sodium barium borate NaBaB5O9 NaBaB5O9

Origin: Synthetic.
Description: Prepared by solid-state reaction techniques from a stoichiometric ratio of NaNO3, Ba

(NO3)2, and H3BO3 preheated at 500 �C for 4 h and thereafter (after intermediate grinding) heated at
650 �C for 48 h. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Monoclinic, space group P21/c, a ¼ 6.5773(19), b ¼ 13.872(4), c ¼ 8.371(2) Å, β ¼ 105.393(3)�,
V ¼ 736.4(4) Å3, Z ¼ 4. Dcalc ¼ 3.232 g/cm3. The structure is based on infinite corrugated layers
containing B5O9

3� double rings.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Yu et al. (2014).
Wavenumbers (cm21): 1301s, 1225s, 1132sh, 1110, 1055, 1008s, 964s, 940sh, 885sh, 870s, 854sh,

824s, 773, 742, 726, 707s, 646, 570, 552, 498w, 486sh, 424w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B187 Sodium borate Na2B5O8(OH)∙2H2O Na2B5O8(OH)∙2H2O

Origin: Synthetic.
Description: Synthesized hydrothermally from Na2B4O7�10H2O and H3BO3 at 180 �C for 3 days,

with subsequent cooling to room temperature for 9 days. Characterized by powder X-ray diffraction
data and elemental analysis. The crystal structure is solved. Orthorhombic, space group Pna21,
a¼ 11.967(2), b¼ 6.5320(13), c¼ 11.126(2) Å, V¼ 869.7(3) Å3, Z¼ 4.Dcalc¼ 2.146 g/cm3. The
structure is based on the double hexagonal ring B5O8(OH)

2� containing three BO3 triangles and
two BO4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Wang et al. (2009b).
Wavenumbers (cm21): 3367s, 1646, 1362s, 1149s, 1067s, 970sh, 936sh, 860, 806, 750, 688.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B188 Sodium borophosphate Na5(B2P3O13) Na5(B2P3O13)
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Origin: Synthetic.
Description: Prepared by solid-state reaction techniques, by heating the mixture of Na2CO3, H3BO3,

and (NH4)(H2PO4) in the molar ratio 2.5:2:(3.01–3.05) first at 500 �C for 10 h and thereafter at
700 �C for 24 h with intermediate grinding. Monoclinic, space group C2. Characterized by powder
X-ray diffraction data. Dmeas ¼ 2.68 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Li et al. (2003).
Wavenumbers (cm21): 1197s, 1166, 1150sh, 1130, 1097s, 1036, 1002s, 983, 950sh, 926s, 869, 834,

825, 751, 688w, 671, 615w, 585, 566, 539, 517, 473, 455.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

B189 Sodium borosulfate Na5[B(SO4)4] Na5[B(SO4)4]

Origin: Synthetic.
Description: Colorless crystals prepared by solid-state reaction techniques, by heating the mixture of

NaHSO4�H2O and B(OH)3 at 673 K for 12 h. Characterized by powder X-ray diffraction data. The
crystal structure is solved. Orthorhombic, space group Pca21, a ¼ 10.730(2), b ¼ 13.891(3),
c ¼ 18.197(4) Å, Z ¼ 8. Dcalc ¼ 2.498 g/cm3. The structure contains open-branched pentameric
anion [B(SO4)4]

5� with the borate tetrahedron in the center.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection.
Source: Daub et al. (2013).
Wavenumbers (IR, cm21): 1290sh, 1278sh, 1246s, 1229s, 1212s, 1111w, 1095, 1073, 1045,

975, 955sh, 941, 926, 892, 864, 821, 746sh, 729sh, 718w, 710sh, 661, 627, 604sh, 585, 580sh,
568, 477sh, 451w, 424w, 416w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published
spectrum. In the cited paper, a figure of the Raman spectrum is given.
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B190 Sodium calcium pentaborate Na3Ca(B5O10) Na3Ca(B5O10)

Origin: Synthetic.
Description: Colorless prismatic crystals obtained by heating a powder mixture of CaCO3, Bi2O3,

H3BO3, and Na2B4O7�10H2O with the molar ratio 1:1:2:4.63 at 750 �C for 1 day, with subsequent
cooling down to 730 �C at a rate of 1 �C/h. Characterized by energy-dispersive X-ray analyses. The
crystal structure is solved. Triclinic, space group P-1, a ¼ 7.4403(6), b ¼ 9.7530(10), c ¼ 12.9289
(9) Å, α ¼ 90.972(7)�, β ¼ 90.073(7)�, γ ¼ 109.656(6)�, V ¼ 883.37(13) Å3, Z ¼ 4.
Dcalc ¼ 2.429 g/cm3. The basic structural unit is a [B5O10]

5� group that consists of one BO4

tetrahedron and four BO3 triangles condensed to a double ring via the common tetrahedron.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Chen et al. (2007b).
Wavenumbers (cm21): 1617sh, 1530sh, 1468s, 1434sh, 1393, 1335, 1316sh, 1204s, 1078, 1050,

1012, 947, 918, 783, 754, 716, 625, 580w, 513w, 480w, 430w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B191 Sodium magnesium pentaborate Na3MgB5O10 Na3MgB5O10

Origin: Synthetic.
Description: Colorless prismatic crystals obtained by heating a powder mixture of Na2CO3, Mg

(NO3)2, H3BO3, and Na2B4O7�10H2O with the molar ratio 3:2:5:2 at 750 �C for 4 days, with
subsequent cooling down to 700 �C at a rate of 1 �C/h and to 600 �C at a rate of 5 �C/h.
Characterized by energy-dispersive X-ray analyses. The crystal structure is solved. Orthorhombic,
space group Pbca, a ¼ 7.838(1), b ¼ 12.288(1), c ¼ 18.180(2) Å, V ¼ 1751.0(3) Å3, Z ¼ 8.
Dcalc ¼ 2.332 g/cm3. The basic structural unit is a [B5O10]

5� group that consists of one BO4

tetrahedron and four BO3 triangles condensed to a double ring via the common tetrahedron.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Chen et al. (2007b).
Wavenumbers (cm21): 1620sh, 1522sh, 1458s, 1407s, 1260s, 1192s, 1079w, 1050, 1027s, 950, 932,

779, 760, 725, 651w, 626, 572, 506, 436.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B192 Sodium strontium aluminum borate NaSr7AlB18O36 NaSr7AlB18O36

Origin: Synthetic.
Description: Crystals grown from the melt prepared from SrCO3, Al(OH)3, and Na2B4O7�10H2O

(with the ratio 1:4:3) at 860 �C by cooling down to 700 �C at a rate of 2.0 �C/h, to 500 �C at
5.0 �C/h, and finally to room temperature at 20 �C/h. Characterized by powder X-ray diffraction
data. The crystal structure is solved. Trigonal, space group R-3c, a ¼ 11.356(2), c ¼ 36.655(7) Å,
V ¼ 4093.7(12) Å3, Z ¼ 6. Dcalc ¼ 3.490 g/cm3. The crystal structure contains a polycyclic B18O36

building unit consisting of 12 BO3 triangles and 6 BO4 tetrahedra.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Chen et al. (2014a).
Wavenumbers (cm21): 1456, 1400s, 1232, 990s, 946s, 847, 765w, 721s, 700s, 663, 632s, 550, 479,

450, 437.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B193 Sodium vanadyl borate Na3(VO2)B6O11 Na3(VO2)B6O11
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Origin: Synthetic.
Description: Synthesized by solid-state reaction between Na2CO3, V2O5, and H3BO3. A stoichiomet-

ric mixture of these reactants was heated first at 300 �C for 5 h, thereafter at 500 �C for 5 h, and
finally at 600 �C for 2 days with several intermediate grindings. Orthorhombic, space group
P212121, a ¼ 7.7359(9), b ¼ 10.1884(12), c ¼ 12.5697(15) Å, V ¼ 990.7(2) Å3, Z ¼ 4. The
strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.1325 (39) (121),
3.6679 (57) (103), 3.1309 (100) (004), 3.0821 (38) (220), 2.9814 (39) (032).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Fan et al. (2010).
Wavenumbers (cm21): 1615sh, 1555sh, 1469s, 1427s, 1340s, 1241, 1158, 1130, 1094, 1062, 1008s,

941, 921sh, 827s, 775sh, 716, 683w, 656sh, 628w, 581w, 531w, 510w, 465, 446.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B194 Sodium yttrium tellurate borate Na2Y2(Te
6+B2O10) Na2Y2(Te

6+B2O10)

Origin: Synthetic.
Description: Synthesized by heating a mixture of NaCO3, TeO2, H3BO3, and Y2O3 at 830 �C for 10 h

with subsequent cooling down to 600 �C at 3–5 �C/h rate. Characterized by powder X-ray
diffraction data and EDS elemental analyses. The crystal structure is solved. Monoclinic, space
group P21/c, a¼ 6.3073(7), b¼ 9.9279(8), c¼ 6.7219(6) Å, β ¼ 104.260(10)�, V¼ 407.94(7) Å3,
Z ¼ 2. Dcalc ¼ 4.339 g/cm3. The structure is based on a 3D framework composed of linear
[TeO4(BO3)2]

8� anions interconnected by Y3+ cations.
Kind of sample preparation and/or method of registration of the spectrum: Transmission? Kind of

sample preparation is not indicated.
Source: Feng et al. (2015a).
Wavenumbers (cm21): 1418sh, 1366s, 1350s, 1220, 1183sh, 1165s, 1014sh, 941, 885sh, 825w,

775, 766sh, 720s, 708s, 674s, 650s, 610, 552, 488, 432s, 409s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B195 Sodium zinc pentaborate Na3ZnB5O10 Na3ZnB5O10

Origin: Synthetic.
Description: Prepared by a solid-state reaction method, by heating the mixture of Na2CO3, ZnO,

H3BO3, and Na2B4O7�10H2O (with the molar ratio 1:2:2:1) at 750 �C for 1 day with subsequent
cooling down to 730 �C at a rate of 1 �C/h, then to 720 �C at 0.5 �C/h, and finally to room
temperature at 20 �C/h. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Monoclinic, space group P21/n, a ¼ 6.6725(7), b ¼ 18.1730(10), c ¼ 7.8656(9) Å,
β ¼ 114.604(6)�, V¼ 867.18(14) Å3, Z ¼ 4. Dcalc ¼ 2.668 g/cm3. The structure contains double
rings [B5O10]

5� bridged by ZnO4 tetrahedra through common O atoms to form a 2D layer.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Chen et al. (2007a).
Wavenumbers (cm21): 1441s, 1383s, 1268s, 1201s, 1081, 1045sh, 1027s, 939s, 777, 722s, 653, 627,

615sh, 561, 479, 439w, 430sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B196 Strontium borate chloride Sr2B5O9Cl Sr2B5O9Cl

Origin: Synthetic.
Description: Obtained by stepwise heating a precipitate formed by adding SrCl2 aqueous solution to

Na2B4O7 aqueous solution at 600, 700, and 800 �C for 8 h at each temperature. Characterized by
powder X-ray diffraction data. Orthorhombic, a ¼ 11.381, b ¼ 11.319, and c ¼ 6.498 Å (see
JCPDS Card No. 27-0835).

Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Zhu et al. (2013).
Wavenumbers (cm21): 1630w, 1489w, 1435, 1396, 1355, 1306s, 1101, 1024s, 978s, 920s, 878, 824,

773, 721w, 746w, 692w, 650w, 632w, 609w, 582w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B197 Strontium borate SrB2O4 SrB2O4
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Origin: Synthetic.
Description: Synthesized by heating a mixture of appropriate amounts of SrCO3 and H3BO3 at

1000 �C for 2 h in air. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Orthorhombic, a � 12.01, b � 4.34, and c � 6.59 Å (see JCPDS card No. 84-2175).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Onodera et al. (1999).
Wavenumbers (cm21): 1483s, 1433s, 1183s, 1070w, 853w, 765w, 737, 704, 690, 638.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

B198 Strontium borate SrB8O13 SrB8O13

Origin: Synthetic.
Description: Synthesized by heating a powder mixture of Bi2O3, SrCO3, and H3BO3 (with a molar

ratio 3:3:26) at 735 �C for 2 weeks. The product was then cooled down to 500 �C at a rate of 5 �C/h
and thereafter cooled to room temperature at a rate of 20 �C/h. Characterized by powder X-ray
diffraction data. The crystal structure is solved. Monoclinic, space group P21/c, a ¼ 8.408(1),
b ¼ 16.672(2), c ¼ 13.901(2) Å, β ¼ 106.33(1)�, V ¼ 1870.0(4) Å3, Z ¼ 4. Dcalc ¼ 2.714 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Tang et al. (2008).
Wavenumbers (cm21): 1438s, 1419s, 1392sh, 1340, 1286, 1250sh, 1235s, 1221sh, 1206s, 1147,

1101s, 1058s, 1023s, 979, 951sh, 932, 915s, 889sh, 867, 823w, 806w, 783w, 759sh, 724sh,
702, 681, 662sh, 647w, 622w, 600w, 572sh, 564sh, 554, 541, 523, 511, 477sh, 452sh, 420w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.
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B199 Strontium boroarsenate Sr(BAsO5) Sr(BAsO5)

Origin: Synthetic.
Description: Synthesized by heating a mixture of SrCO3, As2O5, and H3BO3 in a 2:1:2 molar ratio at

900 �C for 15 h. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Hexagonal, space group P2121, a ¼ 7.056(3), c ¼ 6.898(1) Å, V ¼ 571.6(3) Å3, Z ¼ 3. In the
infinite loop-branched [BAsO5] chain, both B and As have fourfold coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Birsöz and Baykal (2008).
Wavenumbers (IR, cm21): 1179w, 1141w, 1125w, 978s, 908s, 892sh, 834s, 792s, 785sh, 743s, 720s,

700sh, 675, 642w, 622sh, 607w, 585, 568sh, 545w, 523, 507w, 489, 463, 421sh, 409.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, a figure of the Raman spectrum is given.

B200 Tin tetraborate β-SnB4O7
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Origin: Synthetic.
Description: Prepared by compressing a mixture of SnO2 and B2O3, taken in stoichiometric amounts,

to 7.5 GPa for 3 h with subsequent heating first at 1100 �C for 5 min and thereafter at 750 �C for
15 min. The crystal structure is solved. Orthorhombic, space group Pmn21, a ¼ 10.864(2),
b ¼ 4.4480(9), c ¼ 4.2396(8) Å, V ¼ 204.9(1) Å3, Z ¼ 2. Dcalc ¼ 4.44 g/cm3. The structure is
based on a network of corner-sharing BO4 tetrahedra with channels built from four- and
six-membered rings.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Knyrim et al. (2007).
Wavenumbers (cm21): 1213sh, 1154s, 1090, 1020s, 952s, 876, 813s, 777s, 758s, 719s, 655, 635,

611, 543, 523sh, 496, 467sh, 453sh, 426.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

B201 Yttrium barium borate YBa3B9O18 YBa3B9O18

Origin: Synthetic.
Description: Crystals prepared by stepwise heating a mixture of BaCO3, Y2O3, and H3BO3 (with the

molar ratios Y:Ba:B ¼ 1:1:9) to 1050 �C for 12 h followed by cooling down to 800 �C at a rate of
1 �C/h and from 800 to 600 �C at a rate of 2 �C/h. Characterized by powder X-ray diffraction data.
The crystal structure is solved. Hexagonal, space group P63/m, a ¼ 7.1761(6), c ¼ 16.9657(6) Å,
V¼ 756.1(1) Å3, Z¼ 2.Dcalc¼ 3.89 g/cm3. The fundamental building unit of the crystal structure is
the planar B3O6 group.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Li et al. (2004a).
Wavenumbers (cm21): 1411s, 1398s, 1385s, 1375sh, 1363sh, 1262s, 1249s, 1238sh, 1200, 969, 954,

777w, 766w, 712, 697, 684sh, 671sh, 499w, 410, 338, 262.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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B202 Admontite MgB6O10∙7H2O

Origin: Synthetic.
Description: Prepared hydrothermally from MgO and H3BO3, taken in the molar ratio 1:6, at 100 �C

for 120 min. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection of a powdered sample.
Source: Derun et al. (2015).
Wavenumbers (cm21): 1660w, 1636sh, 1468sh, 1419, 1365sh, 1348, 1236, 1178, 1137, 1095s,

1024s, 1007, 988sh, 956s, 911sh, 898, 861s, 809s, 703sh, 674.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B203 Fontarnauite (Na,K)2(Sr,Ca)(SO4)[B5O8(OH)]∙2H2O
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Origin: Village of Doğanlar, Kütahya Province, Western Anatolia, Turkey (type locality).
Description: Colorless to light-brown prismatic crystals from the association with probertite,

glauberite, and celestine. Holotype sample. The crystal structure is solved. Monoclinic, space
group P21/c, a ¼ 6.458(2), b ¼ 22.299(7), c ¼ 8.571(2) Å, β ¼ 103.047(13)�, V ¼ 1202.5
(10) Å3, Z ¼ 4. Dcalc ¼ 2.533g/cm3. Optically biaxial (�), α ¼ 1.517(2), β ¼ 1.517(2),
γ ¼ 1.543(2), 2V ¼ 46(1)�. The empirical formula is (Na1.84K0.16)(Sr0.82Ca0.18)S1.00B5H5O15.
The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 11.1498 (100)
(020), 3.3948 (8) (061), 3.3389 (20) (042), 3.1993+3.1990 (10) (160, –142), 3.0458 (10) (052),
3.0250 (7) (220), 2.7500 (10) (�222, 142), 2.3999 (8) (260), 2.2284 (7) (0.10.0, 222), 1.9237
+1.9237 (7) (311, –224).

Kind of sample preparation and/or method of registration of the spectrum: The spectrum was
obtained from a small cleavage sheet crushed in a diamond-cell holder.

Source: Cooper et al. (2016b).
Wavenumbers (IR, cm21): 3587, 3531, 3404, 3288, 2359w, 1657, 1502sh, 1449sh, 1365s, 1315s,

1217sh, 1136s, 1085, 1046, 989s, 920, 879, 842w, 812sh, 773w, 756w, 729w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band position denoted by Cooper et al. (2016b) as 862 cm�1 was
determined by us at 842 cm�1. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 975s, 470, 430, 160, 129.

B204 Sinhalite MgAl(BO4)

Origin: Synthetic.
Description: Synthesized hydrothermally from a gel of suitable composition at 700 �C for 500 h.

Characterized by powder X-ray diffraction data. Orthorhombic, space group Pnma.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Tarte et al. (1985).
Wavenumbers (cm21): 1100s, 960s, 930s, 800, 780, 700s, 605sh, 586s, 551, 510s, 490s, 452w,

425, 406, 330, 283w.
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B205 Sborgite NaB5O6(OH)4∙3H2O

Origin: Synthetic.
Description: Synthesized from aqueous solutions of boric acid and borax. Characterized by powder

X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Chen and Pei (2016).
Wavenumbers (IR, cm21): 3450s, 3392s, 3210, 2375w, 2211w, 1681, 1518sh, 1413s, 1330s, 1205,

1166, 1084, 1038sh, 1021, 950sh, 933, 917, 875sh, 786, 775sh, 696, 643, 592, 559, 488, 471.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 922, 856s, 774, 529s, 494, 468w, 386w.

B206 Potassium borate KB3O3(OH)4∙H2O KB3O3(OH)4∙H2O
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Origin: Synthetic.
Description: Prepared in the reaction between fine powders of K2B4O7�4H2O and KB5O8�4H2O under

exposure of water vapor. The crystal structure is solved. Monoclinic, space group C2/c, a¼ 15.540
(5), b ¼ 6.821(2), c ¼ 14.273(4) Å, β ¼ 104.44(2)�, V ¼ 1465.1 Å3, Z ¼ 8. The structure contains
an isolated B3O3(OH)4

� anion formed from a B3O3 ring consisting of one BO2(OH)2 tetrahedron
and two BO2(OH) triangles.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Salentine (1987).
Wavenumbers (IR, cm21): 1634sh, 1492, 1450s, 1428, 1404, 1310s, 1270sh, 1198s, 1181sh, 1145,

1041sh, 1006s, 992s, 934, 870s, 862sh, 795sh, 763w, 709, 691sh, 656sh, 638, 617, 567, 533,
494, 461, 413w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. In the cited paper, Raman spectrum is given. The band position denoted by
Salentine (1987) as 1000 cm�1 was determined by us as doublet (1006+992 cm�1).

Wavenumbers (Raman, cm21): 1194w, 966, 753s, 624s, 488, 453, 407, 212w, 176, 137, 116.

B207 Tyretskite (monoclinic polytype) Ca2B5O9(OH)∙H2O

Origin: Synthetic.
Description: Synthesized under solvothermal conditions. The crystal structure is solved. Monoclinic,

space group Cc, a ¼ 10.790(5), b ¼ 6.5174(18), c ¼ 12.359(6) Å, β ¼ 114.975(19)�, V ¼ 787.8
(6) Å3, Z ¼ 4. Dcalc ¼ 2.641 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.
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Source: Wei et al. (2014).
Wavenumbers (cm21): 3549, 3415s, 1645, ~1371s, 1335s, 1108s, 1021s, 855, 767w, 657w,

622, 550, 514.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

B208 Satimolite KNa2(Al5Mg2)[B12O18(OH)12](OH)6Cl4�4H2O

Origin: Chelkar salt dome, Aksai Valley, Aktobe (Aqtöbe) region, Kazakhstan.
Description: Isolated colorless crystals from the association with sylvite, halite, anhydrite, and

boracite. Characterized by powder and single-crystal X-ray diffraction data. The crystal structure
is solved. Trigonal, space group R-3m, a ¼ 15.1406(4), c ¼ 14.3794(9) Å, V ¼ 2854.7(2) Å3. The
structural formula is (□0.68Na0.32)6(Cl0.68K0.22□h0.10)6(Al0.66Mg0.31Fe

3+
0.03)7[B12O18(OH)12]

(OH)6�4H2O
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3430, 3272s, 2518w, 1651, 1435sh, 1376, 1304s, 1166, 1150sh, 979s,

840, 797, 745w, 696s, 639, 568, 528, 455, 429.
Note: The spectrum was obtained by N.V. Chukanov.
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B209 Priceite Ca4B10O19�7H2O

Origin: Inder boron deposit, Atyrau region, Kazakhstan.
Description: White powdery aggregate. Confirmed by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3584, 3555, 3461, 3390sh, 3094, 2960sh, 2580w, 2540w, 1663, 1424, 1373,

1352, 1311, 1293, 1195sh, 1095sh, 1065s, 1016, 903s, 825, 795, 716, 670, 599w, 587w, 572, 520, 474.
Note: The spectrum was obtained by N.V. Chukanov.

B210 Probertite NaCaB5O7(OH)4�3H2O
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Origin: Banderma (Pandirma), Balikesir province, Turkey.
Description: Grey radial aggregate. Confirmed by the IR spectrum and qualitative electron microprobe

analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3634, 3564, 3506, 3372s, 3289, 3250sh, 3092, 1678, 1474, 1435, 1380s,

1351s, 1323, 1216, 1186, 1150sh, 1133, 1085s, 1041s, 994s, 959s, 934s, 906s, 850sh, 835, 805sh,
755, 737w, 726w, 686, 649w, 615, 600sh, 557, 517, 478, 456w, 447w, 424w, 400w.

Note: The spectrum was obtained by N.V. Chukanov.

BC10 Mereheadite Pb47Cl25(OH)13O24(CO3)(BO3)2

Origin: Merehead Quarry, Cranmore, Somerset, England, UK (type locality).
Description: Reddish-orange grains. The crystal structure is solved. Monoclinic, space group Cm,

a ¼ 17.372(1), b ¼ 27.9419(19), c ¼ 10.6661(6) Å, β ¼ 93.152(5)�, V ¼ 5169.6(5) Å3, Z ¼ 2.
Dcalc ¼ 7.236 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3331, 1373s, 1324s, 1261s, 1183, 1141s, 1071, 1050, 1000sh, 902w,

841, 813w, 734, 709, 615, 542w, 457s, 398s.
Note: The spectrum was obtained by N.V. Chukanov.
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2.2 Carbonates

C342 Parisite-(La) CaLa2(CO3)3F2

Origin: Rio dos Remédios Group, Mula mine, near Tapera village, Novo Horizonte Co., Bahia, Brazil
(type locality).

Description: Greenish-yellow inner zone of a pseudohexagonal crystal from the association with
hematite, rutile, almeidaite, fluocerite-(Ce), brockite, monazite-(La), rhabdophane-(La), and
bastnäsite-(La). Holotype sample. Monoclinic, space group: C2, Cm, or C2/m, a ¼ 12.356(1),
b ¼ 7.1368(7), c ¼ 28.299(3) Å, β ¼ 98.342(4)�, V ¼ 2469.1(4) Å3, Z ¼ 12. Dcalc ¼ 4.273 g/cm3.
Optically pseudo-uniaxial (+), ω ¼ 1.670(2), ε ¼ 1.782(5). The empirical formula is
Ca0.98(La0.83Nd0.51Ce0.37Pr0.16Sm0.04Y0.03)C3.03O8.91F2.09. The strongest lines of the powder
X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 13.95 (55) (002), 4.655 (37) (006), 3.555
(88) (020, –311), 2.827 (100) (026, 315, –317), 2.055 (58) (�331, –602), 1.950 (38) (0.2.12,
3.1.11, –3.1.13), 1.880 (36) (335, –337, 604, –608).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 2918w, 2870w, 2497w, 1843w, 1823w, 1750w, 1454sm 1430sh, 1089, 1081,

871s, 850sh, 746w, 734, 679w, 670w, 602w, 368.
Note: The spectrum was obtained by N.V. Chukanov.
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C343 Parisite-(Ce) CaCe2(CO3)3F2

Origin: White Cloud Mine, Pyrites, Ravalli Co., Montana, USA.
Description: Beige crystal. The empirical formula is (electron microprobe):

Ca1.08(Ce0.93La0.47Nd0.32Pr0.06Y0.08Th0.06)(CO3)3.00F1.88.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 2920w, 2500w, 1820w, 1746w, 1459s, 1411s, 1077, 869s, 850sh,

736, 685sh, 609w.
Note: The spectrum was obtained by N.V. Chukanov.

C344 Stichtite Mg6Cr2(OH)16(CO3)�4H2O
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Origin: Kara-Uyuk stream, Terektinskiy ridge, Altai Mts., Siberia, Russia.
Description: Lilac scaly aggregate from the association with serpentine. An Al-rich variety. The

empirical formula is (electron microprobe): Mg5.98(Cr1.13Al0.73Fe0.16)(OH)16(CO3)�
4H2O. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3580sh, 3482s, 3050sh, (1735sh), 1653, 1365s, 1080sh, 1050w, 940sh,

845sh, 710sh, 686s, 633s, 525, 413s.
Note: The spectrum was obtained by N.V. Chukanov.

C345 Ammonium bicarbonate NH4HCO3

Origin: Synthetic.
Description: Commercial reactant purchased from Aldrich. Characterized by elemental analysis and

PXRD. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)] are: 5.36 (26.5),
4.04 (19), 3.00 (100).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Meng et al. (2005).
Wavenumbers (cm21): 3205s, 3098s, 2923, 2856, 2572, 2243w, 2138w, 1685w, 1600s, 1494s,

1441s, 1370s, 1275s, 1041, 1022, 952, 831, 702, 649.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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C346 Copper(II) carbonate CuCO3

Origin: Synthetic.
Description: CuCO3 can be prepared from azurite, malachite or CuO by reaction with CO2 at a

pressure of 20 kb and a temperature of 500 �C. Monoclinic, space group Pa, a ¼ 6.092, b ¼ 4.493,
c ¼ 7.030 Å, β ¼ 101.34�, V ¼ 188.7 Å3, Z ¼ 4. In the structure, Cu has the fivefold (square
pyramid) coordination. Dmeas ¼ 4.18 g/cm3, Dcalc ¼ 4.35 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc (above
190 cm�1) and polyethylene mull (below 190 cm�1). Transmission.

Source: Seidel et al. (1974).
Wavenumbers (cm21): 1460sh, 1420s, 1090w, 860s, 760, 743, 425, 383sh, 305, 268, 250, 212,

194, 166, 158, 151, 130, 113, 103, 97, 90, 83, 61, 55, 49, 44, 38, 31.

C347 Potassium lead carbonate fluoride KPb2(CO3)2F
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Origin: Synthetic.
Description: Synthesized by a conventional solid-state technique from the stoichiometric mixture of

KF and PbCO3, at 250 �C, in flowing CO2 gas, for 2 days. Characterized by powder X-ray
diffraction data. The crystal structure is solved. Hexagonal, space group P63/mmc, a ¼ 5.3000
(2), c ¼ 13.9302(8) Å, V ¼ 338.88(3) Å3, Z ¼ 2. Dcalc ¼ 5.807 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Reflection of a
powdered sample.

Source: Tran and Halasyamani (2013).
Wavenumbers (cm21): 1741w, 1398s, 1350sh, 1107w, 1045, 995w, 855w, 833, 815sh, 743w, 680s,

541w, 515w, 491w, 466w, 425w, 382.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

C348 Sodium lithium gadolinium carbonate Na2LiGd(CO3)3 Na2LiGd(CO3)3

Origin: Synthetic.
Description: Obtained hydrothermally from GdF3, Na2CO3, and Li2CO3 with molar ratio 1:6:2 at

230 �C for 48 h. Characterized by powder X-ray diffraction data. Cubic, space group Fd-3m,
a � 14.4 Å, Z ¼ 8.

Kind of sample preparation and/or method of registration of the spectrum: A diamond-anvil cell
as a micro-sampling device was used.

Source: Ali et al. (2004b).
Wavenumbers (cm21): 1498s, 1381+1375, 1083, 861s, 796w, 730, 718, (707), (696), 680w, 668.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, a figure of the Raman spectrum is given.
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C349 Sodium scandium carbonate Na5Sc(CO3)3∙2H2O Na5Sc(CO3)3∙2H2O

Origin: Synthetic.
Description: Obtained from aqueous solutions of scandium chloride and sodium carbonate. The

crystal structure is solved. Tetragonal, space group P-421c, a ¼ 7.4637(4), c ¼ 11.570(2) Å,
V ¼ 644.55(13) Å3, Z ¼ 2. Dmeas ¼ 2.23 g/cm3, Dcalc ¼ 2.246 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol
mull. Transmission.

Source: Dahm and Adam (2001).
Wavenumbers (IR, cm21): 3528sh, 3369sh, 3311s, 3108w, 2955sh, 2924, 2854w, 2662w, 2631sh, 2604,

2458w, 2399, 2330, 2114, 1804, 1708, 1556s, 1414s, 1354s, 1259sh, 1122sh, 1059s, 868s, 841w, 743s,
712s, 699sh, 680sh, 644, 359s, 261s, 230, 215, 195sh, 180, 165, 145, 122w, 101w, 93, 63w.

Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1739, 1702, 1601, 1575s, 1439, 1355, 1061s, 1039, 867, 764, 744s,

682, 668, 644, 354, 300, 277s, 245s, 231s, 216s, 187s, 165s, 132s.

C350 Strontium iron(III) oxycarbonate Sr4Fe2O6(CO3)
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Origin: Synthetic.
Description: Prepared by heating an appropriate mixture of SrO, SrCO3, and Fe2O3 at 1200 �C for

12 h under vacuum with subsequent cooling down to room temperature, annealing at 500 �C for
30 min in air and quenching. Characterized by EDS analysis, Mössbauer spectroscopy, powder
X-ray diffraction, neutron powder diffraction, and single-crystal electron diffraction data. Ortho-
rhombic, space group I4/mmm, a ¼ 3.88965(3), c ¼ 27.9906(1) Å.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of
sample preparation is not indicated.

Source: Bréard et al. (2004).
Wavenumbers (cm21): 1771w, 1506s, 1437s, 1098sh, 869, 640, 569s.
Note: The band at 569 cm�1 may correspond to polymerized Fe3+O6 and/or Fe

3+O5 polyhedra.

C351 Barentsite Na7Al(HCO3)2(CO3)2F4

Origin: Restin’yun Mt., Khibiny massif, Kola Peninsula (type locality).
Description: Colorless anhedral grains from the association with shortite, albite, natrolite, trona,

natrite, villiaumite, etc. Holotype sample. Triclinic, a ¼ 6.472(2), b ¼ 6.735(2), c ¼ 8.806(2) Å,
α ¼ 92.50(2)�, β ¼ 97.33(2)�, γ ¼ 119.32(2)�, V ¼ 329.41 Å3, Z ¼ 1. Dmeas ¼ 2.56(2) g/cm3,
Dcalc ¼ 2.55 g/cm3. Optically biaxial (�), α¼ 1.358(2), β ¼ 1.479(2), γ ¼ 1.530(2), 2V¼ 62�. The
strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 2.887
(84) (003, 2�11), 2.778 (100) (200, –103), 2.658 (100) (2�21), 2.316 (50) (2�22), 2.169
(70) 120, 004), 1.870 (42) (�331, –204).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Khomyakov et al. (1983).
Wavenumbers (cm21): 3430, 2885, 2550, 2322, 1649s, 1484, 1424sh, 1370s, 1328s, 1063, 1021,

984, 856w, 823, 723w, 692sh, 677, 645, 584s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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C352 Chukanovite Fe2(CO3)(OH)2

Origin: Synthetic.
Description: Obtained by heating a mixture of powdered claystone (a rock containing clay minerals,

Ca-Mg-Fe carbonates and quartz as the main components) and iron powder, in the presence of iron
plates and an aqueous solution containing NaCl and CaCl2 at 90 �C for 6 months. The synthetic
analogue of chukanovite was formed as randomly oriented powder on the iron plates. Characterized
by powder X-ray diffraction and electron diffraction data. Monoclinic, space group P21/a, a¼ 12.5
(3), b ¼ 9.5(2), c ¼ 3.2(1) Å, β ¼ 97.6(5)�, V ¼ 377(17) Å3.

Kind of sample preparation and/or method of registration of the spectrum: Reflection from an
iron plate covered by the synthetic analogue of chukanovite.

Source: Pignatelli et al. (2014).
Wavenumbers (cm21): 3485s, 3327s, 1992 (broad), 1748w, 1552s, 1525sh, 1408, 1368sh, 1340,

1116sh, 1069, 955, 837, 779, 757sh, 713sh, 690, 642.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

C353 Lecoqite-(Y) Na3Y(CO3)3∙6H2O
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Origin: Synthetic.
Description: Prepared hydrothermally from Na2CO3, YF3, and H2O in the molar ratio 25:1:55 at

220 �C for 48 h. Characterized by thermoanalytical data. The crystal structure is solved. Hexagonal,
space group P63, a ¼ 11.347(5), c ¼ 5.935(5) Å, V ¼ 661.8(5) Å3, Z ¼ 2. Dmeas ¼ 2.25(5) g/cm3,
Dcalc ¼ 2.24 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. A
diamond-anvil cell as a microsampling device was used.

Source: Ali et al. (2004a).
Wavenumbers (IR, cm21): 3593w, 3320sh, 3115, 2778, 2305w, 2112w, 1634w, 1485s, 1375s, 1065,

1045sh, 890sh, 875, 760sh, 755, 715, 680s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1635, 715s, 680.

C354 Somersetite [Pb3(OH)2(CO3)2][Pb3(Pb2O2 )(CO3)3]

Origin: Torr Works (“Merehead Quarry”), Somerset, England, UK (type locality).
Description: Greenish grains from the association with calcite, aragonite, and quartz. Holotype

sample. The crystal structure is solved. Hexagonal, space group P63/mmc, a ¼ 5.2427(7),
c ¼ 40.624(6) Å, V ¼ 967.0(3) Å3, Z ¼ 2. Dcalc ¼ 7.11 g/cm3. The empirical formula is
Pb8.004C4.998H1.998O19. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 4.308 (33) (103), 3.581 (40) (107), 3.390 (100) (108), 3.206 (55) (109), 2.625 (78) (110),
2.544 (98) (0.0.16).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3539, (3280w), 2524w, 1734w, 1403s, 1217, 1046w, 849w, 738w, 690sh,

683s, 615w, 507w, 391.
Note: The spectrum was obtained by N.V. Chukanov. The bands at 1217 and 738 cm�1 correspond to

a minor admixture of BO3
3� groups substituting CO3

2� groups.
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C355 “Hydrucerussite-like mineral 9-40” Lead hydroxycarbonate

Origin: Torr Works (“Merehead Quarry”), Somerset, England, UK.
Description: Investigated by O.I. Siidra. Characterized by single-crystal X-ray diffraction data.

Trigonal, a ¼ 9.0929(5), c ¼ 40.660(6) Å, V ¼ 2911.42(9) Å3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3531, (3422), 1733, (1619w), 1404s, 1220, 1046w, 984w, 848w, 741w, 683s,

595w, 575w, 391.
Note: The spectrum was obtained by N.V. Chukanov. The bands at 1220 and 741 cm�1 correspond to

a minor admixture of BO3
3� groups substituting CO3

2� groups.

C356 Quintinite-related hydroxyde carbonate Mg4Cr2(OH)12(CO3)∙nH2O Mg4Cr2(OH)12(CO3)
∙nH2O
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Origin: Synthetic.
Description: Synthesized by the coprecipitation method from Mg(NO3)2, Cr(NO3)3, and Na2(CO3) in

the presence of NaOH. Characterized by thermoanalytical and powder X-ray diffraction data, and
by atomic absorption spectrometry. The empirical formula is
Mg0.68Cr0.32(OH)2(CO3)0.16�0.86H2O. The strongest line of the powder X-ray diffraction pattern
is observed at 22.92 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Labajos and Rives (1996).
Wavenumbers (cm21): 3410s, 3020sh, 1625w, 1360s, 1077sh, 845sh, 762, 608, 517.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

C357 Quintinite-related hydroxyde carbonate Ni4Cr2(OH)12(CO3)∙nH2O Ni4Cr2(OH)12(CO3)
∙nH2O

Origin: Synthetic.
Description: Synthesized by the coprecipitation method from Ni(NO3)2, Cr(NO3)3, and Na2(CO3)

in the presence of NaOH. Characterized by thermoanalytical and powder X-ray diffraction
data, and by atomic absorption spectrometry. The empirical formula is
Ni0.65Cr0.35(OH)2(CO3)0.15�0.99H2O. The strongest line of the powder X-ray diffraction pattern is
observed at 22.50 Å.

88 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Labajos and Rives (1996).
Wavenumbers (cm21): 3382s, 3020sh, 1624w, 1354s, 1060sh, 806s, 687sh, 580, 521.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

C358 Scarbroite Al5(CO3)(OH)13∙5H2O

Origin: The former Fonte Civillina, the town of RecoaroTerme, Vicenza, NE Italy.
Description: Nests of microcrystalline aggregates from the association with quartz, baryte, galena,

cerussite, etc. Characterized by powder X-ray diffraction data and semiquantitative electron micro-
probe analyses. Triclinic, a¼ 9.892(1), b¼ 14.934(2), c¼ 26.321(4) Å, α¼ 98.89(1)�, β¼ 97.49(1)�,
γ ¼ 89.04(1)�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Boscardin et al. (2009).
Wavenumbers (IR, cm21): 3614w, 3583w, 3370 (broad), 2102w, (1773w), 1651w, 1622sh, (1573w),

1474sh, 1459sh, 1419s, 1288sh, 1096sh, 1084sh, 1052sh, 1020s, 963sh, 886, 868sh, 720, 622s,
540s, 497s, 451s.

Note: In the cited paper, the wavenumber 720 cm�1 is erroneously indicated as 750 cm�1. The
wavenumbers were partly determined by us based on spectral curve analysis of the published
spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3668, 3614s, 3593, 2994s, 1421, 1342, 1107s, 983, 889, 696, 600s,
449, 376, 267.
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C359 Bayleyite Mg2(UO2)2(CO3)3�18H2O

Origin: Hideout #1 mine, San Juan Co., Utah, USA.
Description: Yellow crystals from the association with gypsum. The sample was kindly provided by

A.V. Kasatkin.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3570sh, 3425, 3346s, 3260sh, 2579w, 2290sh, 1655sh, 1635, 1539s, 1373s,

1120sh, 1088w, 1059w, 1031w, 1009w, 898, 876, 744, 695sh, 649, 630sh, 575sh, 542, 471, 430.
Note: The spectrum was obtained by N.V. Chukanov.

C360 Línekite K2Ca3[(UO2)(CO3)3]2�8H2O
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Origin: Geschieber vein, Svornost Mine, Jáchymov, Jáchymov District, Krušné Hory Mts, Karlovy
Vary Region, Bohemia, Czech Republic (type locality).

Description: Greenish-yellow tabular crystals from the association with braunerite. Investigated by
A.V. Kasatkin. The empirical formula is (electron microprobe): K1.94Ca3.03(UO2)2.00(CO3)6�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3496s, 3420s, 3270sh, 2612w, 1604s, 1555s, 1372s, 1168w, 1148w, 1071,

1025sh, 893s, 850, 741, 691, 538, 474.
Note: The spectrum was obtained by N.V. Chukanov.

C361 Wermlandite carbonate analogue Mg7Al2(OH)18[Ca(H2O)6](CO3,SO4)2∙6H2O

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Description: Pale greenish-gray hexagonal platelets on calcite crystals. The crystal structure is solved.

Trigonal, space group P-3c1, a¼ 9.303(3), c¼ 22.57(1) Å, V¼ 1692 Å3. Z¼ 2.Dmeas¼ 1.93 g/cm3,
Dcalc ¼ 1.96 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Rius and Allmann (1984).
Wavenumbers (cm21): 1365s, 1264, 1105w, 1024sh, 650s, 564sh, 416s, 317w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, the mineral is described as wermlandite s.s.,
Mg7Al2(OH)18[Ca(H2O)6](SO4)2∙6H2O. However the intensities of the bands of asymmetric
vibrations of carbonate and sulfate anions (at 1365 and 1105 cm�1, respectively) indicate that it
is a CO3-dominant mineral. The value of measured density confirms this conclusion.
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C362 Nakauriite Cu8(SO4)4(CO3)(OH)6∙48H2O

Origin: Nakauri mine, near Shinshiro city, Aichi pref., Chubu Region, Honshu Island, Japan (type
locality).

Description: Light blue crust consisting of radial aggregates. The associated minerals are chrysotile
and brucite. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Wavenumbers (cm21): 3686w, 3650, 3495, 3275sh, 2996, 2435w, 1650sh, 1600, 1361s, 1143w,
1066w, 959w, 864w, 760sh, 689s, 672s, 514, 423, 376s.

Note: The spectrum was obtained by N.V. Chukanov. The formula accepted for nakauriite is wrong
and is to be revised: actually, nakauriite does not contain sulfate groups. The weak bands at 959 and
3686 cm�1 correspond to chrysotile impurity.

C363 Nakauriite Cu8(SO4)4(CO3)(OH)6∙48H2O
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Origin: Nakauri mine, near Shinshiro city, Aichi pref., Chubu Region, Honshu Island, Japan (type
locality).

Description: Holotype sample with impurities (see Sect. 1.3 in this book).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Suzuki et al. (1976).
Wavenumbers (cm21): 3700s, 3650s, 3500, 2990, 2430, 1660sh, 1404 (plateau), 1355s, 1075s,

1020sh, 983sh, 950s, 613s (broad), 454s.
Note: The strong bands at 3700, 1075, 950, 613, and 454 cm�1 correspond to chrysotile impurity.

C364 Nakauriite Cu8(SO4)4(CO3)(OH)6∙48H2O

Origin: Chromite quarry near Karkodin railway station, Chelyabinsk region, South Urals.
Description: Blue crystalline crust on serpentine. Investigated by I.V. Pekov and N.V. Chukanov. For

the description see Sect. 1.3 in this book.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Wavenumbers (cm21): 3688s, 3651s, 3504, 3000s, 2490sh, 1678, 1500sh, 1361s, 1139w, 1074,

1025, 954s, 866w, 784w, 690sh, 669s, 614, 509, 440s, 426s, 398, 376s.
Note: The spectrum was obtained by N.V. Chukanov. The formula accepted for nakauriite is wrong

and is to be revised: actually, nakauriite does not contain sulfate groups. The bands at 3688, 1074,
1025, 954, 614, and 376 cm�1 correspond to serpentine.

2.2 Carbonates 93



C365 Paratooite-(La) (La,Ca,Na,Sr)12Cu2(CO3)16

Origin: Paratoo copper mine, Yunta, Olary Province, South Australia, Australia (type locality).
Description: Light blue clusters. The sample was kindly provided by A. Pring, the author of the first

description of paratooite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3561w, 3142w, 2944w, 1760sh, 1502s, 1455sh, 1387, 1076, 1034, 1015sh,

917w, 859, 798w, 764w, 727, 697, 674w, 536w, 472, 397.
Note: The spectrum was obtained by N.V. Chukanov.

C366 Coalingite Mg10Fe
3+

2(OH)24(CO3)�2H2O

Origin: Union Carbide Asbestos pit, New Idria district, Diablo Range, Fresno Co., California, USA
(type locality).

Description: Brown crust on serpentine. Identified by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
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Wavenumbers (cm21): 3693s, 3647, 3445, 1632, 1601, 1395sh, 1384, 1349w, 1285w, 1235w, 1077,
1021w, 958, 825sh, 755sh, 558s, 443s, 399s, 371s.

Note: The spectrum was obtained by N.V. Chukanov.

C369 Ikaite Ca(CO3)∙6H2O

Origin: Artificial river bed in an alpine valley situated in the eastern part of Austria.
Description: Beige precipitate collected in February, 2014. Characterized by powder X-ray

diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection of powdered mineral.
Source: Boch et al. (2015).
Wavenumbers (cm21): 3350s, 2000w, 1650, 1455sh, 1400s, 1080, 873s, 743, 700w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

C370 Abellaite NaPb2(CO3)2(OH)
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Origin: Eureka mine, southern Pyrenees, Lleida province, Catalonia, Spain (type locality).
Description: White coating on the surface of the aggregate of primary minerals (roscoelite, pyrite,

uraninite, sulfides, etc.). Holotype sample. Trigonal, space group P63mc, a ¼ 5.254(2), c ¼ 13.450
(5) Å, V ¼ 321.5(2) Å3, Z ¼ 2. Dcalc ¼ 5.93 g/cm3. The empirical formula is
Na0.96Ca0.04Pb1.98(CO3)2(OH). The strongest lines of the powder X-ray diffraction pattern [d, Å
(I, %) (hkl)] are: 3.193 (100) (013), 2.627 (84) (110), 2.275 (29) (020), 2.242 (65) (021, 006), 2.029
(95) (023).

Source: Ibáñez-Insa et al. (2017).
Wavenumbers (IR, cm21): 3500, (3400), 1750w, (1600sh), 1425s, 1098w, 1053w, 998w, 878w,

844, 688s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3504w, 1391, 1058s, 1038w, 868w, 683, 280, 202.

C371 Shannonite Pb2O(CO3)

Origin: Tonopah-Belmont mine, Belmont Mt., Tonopah, Osborn district, Big Horn Mts., Maricopa
Co., Arizona, USA.

Description: White massives from the association with plumbojarosite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (3532w), 2470w, 2396w, 1745sh, 1735w, 1433s, 1392s, 1374s, 1102w,

1050, 1009w, 841, 682, 473, 425, 376.
Note: The spectrum was obtained by N.V. Chukanov.
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CSi30 Roymillerite Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4

Origin: Kombat Mine, Grootfontein district, Otjozondjupa region, Namibia (type locality).
Description: Colorless platy single-crystal grains from the association with jacobsite, cerussite,

hausmannite, sahlinite, rhodochrosite, baryte, grootfonteinite, Mn-Fe-oxides, and melanotekite.
Holotype sample. The crystal structure is solved. Triclinic, space group P-1, a ¼ 9.315(1),
b ¼ 9.316(1), c ¼ 26.463(4) Å, α ¼ 83.295(3)�, β ¼ 83.308(3)�, γ ¼ 60.023(2)�, V ¼ 1971.2
(6) Å3, Z¼ 1. Dcalc¼ 5.973 g/cm3. Optically biaxial (�), α¼ 1.86(1), β � γ ¼ 1.94(1), 2V¼ 5(5)�.
The empirical formula is Pb24.12Mg8.74Mn1.25Fe0.94B1.03Al1.04C9.46Si9.39H14.27O83. The strongest
lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 25.9 (100) (001), 13.1
(11) (002), 3.480 (12) (017, 107, –115, 1�15), 3.378 (14) (126, 216), 3.282 (16) (�2–15, –
1�25), 3.185 (12) (�116, 1�16), 2.684 (16) (031, 301, 030, 300, 332, –109, 0–19, 1�18),
2.382 (11) (0.0.–11).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3700, 3583, 3513, 3352, 1726w, 1385s, 1231, 1204, 1083, 1050sh, 1042,

999s, 915, 898, 875sh, 842w, 806w, 780w, 725w, 688, 679, 635w, 605w, 580w, 548w, 467s,
420sh, 400sh.

Note: The spectrum was obtained by N.V. Chukanov.
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2.3 Organic Compounds and Salts of Organic Acids

Org70 Barium formate Ba(HCO2)2

Origin: Synthetic.
Description: Prepared from formic acid and barium carbonate. Orthorhombic, space group P212121,

a ¼ 6.81, b ¼ 8.91, c ¼ 7.67 Å, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Harvey et al. (1963).
Wavenumbers (cm21): 2975w, 2920sh, 2912, 2865, 2822, 2765sh, 2745, 2700w, 1600s, 1570s,

1398, 1385, 1355, 1345, 1069w, 1060sh, 765, 756.
Note: For the IR spectrum of barium formate see also Liu et al. (2001).

Org71 Cadmium formatedihydrate Cd(HCOO)2∙2H2O
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Origin: Synthetic.
Description: Monolinic, space group P21/c, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Abraham and Aruldhas (1994).
Wavenumbers (cm21): 3432sh, 3382, 3257sh, 3112sh, 2962w, 2896, 2862s, 2774, 2740w, 2690w,

(2352w), (2314w), 1588s, 1405s, 1358s, 1348s, 1059w, 901w, 826w, 788w, 764s, 662w, 600w,
525w, 361, 299, 264, 231, 195, 154, 138, 121, 113, 103, 84, 68.

Note: Weak bands in the range from 2300 to 2400 cm�1 may correspond to atmospheric CO2.

Org72 Cadmium oxalate trihydrate Cd(C2O4)∙3H2O

Origin: Synthetic.
Description: Colorless crystals grown at room temperature in silica gel, in the presence of Cd2+ ions

impregnated with oxalic acid. Triclinic, a¼ 6.0059, b¼ 6.66, c¼ 8.49 Å, α¼ 105.71�, β¼ 98.99�,
γ ¼ 74.66�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Raj et al. (2008).
Wavenumbers (cm21): 3542s, 3496s, 2919w, 1613s, 1461, 1381, 1314s, 778s, 599, 519.
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Org73 Copper strontium formate CuSr(HCOO)4

Origin: Synthetic.
Description: Prepared by neutralization of the corresponding carbonates with dilute formic acid

solution at 60–70 �C. Monoclinic, space group P2/c.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stoilova and Vassileva (1999).
Wavenumbers (cm21): 1608s, 1571s, 1411w, 1401, 1375, 1354, 1337, 1312, 1063.
Note: In the cited paper, the wavenumber 1401 cm�1 is erroneously indicated as 1407 cm�1.

Org74 Lead(II) oxalate Pb(C2O4)
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Origin: Synthetic.
Description: Prepared by reacting equimolecular amounts of 0.2 M solutions of lead nitrate and (NH4)

(HC2O4). Characterized by powder X-ray diffraction data. Triclinic, space group P-1, Z ¼ 2 (see
JCPDF 14–0803).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Mancilla et al. (2009b).
Wavenumbers (IR, cm21): 1630sh, 1587s, 1365w, 1312, 1289s, 782, 773, 524, 504.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1707w, 1589s, 1476s, 1436s, 1400w, 1366w, 911w, 891, 854,

572w, 497s, 484s.

Org75 Neptunium(IV) oxalate hexahydrate Np(C2O4)2∙6H2O

Origin: Synthetic.
Description: Obtained by precipitation from aqueous solution. The strongest lines of the powder X-ray

diffraction pattern [d, Å (I, %)] are: 7.88 (70), 6.36 (100), 5.04 (15), 4.91 (20), 3.93 (90), 3.18 (15).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Lindsay et al. (1970).
Wavenumbers (cm21): 3542, 3480s, 3170sh, 2974w, 2332w, 1638s, 1495w, 1477w, 1461sh, 1360s,

1316, 1172w, 1098w, 1039w, 934w, 818s, 805sh, 694, 499, 456, 407, 309sh, 279sh, 245sh, 212sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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Org76 Samarium oxalate decahydrate Sm2(C2O4)3∙10H2O

Origin: Synthetic.
Description: Single crystals grown using diffusion gel technique from samarium nitrate hexahydrate

and oxalic acid dihydrate in the presence of sodium silicate (meta)nonahydrate. Characterized by
powder X-ray diffraction data and thermal analysis. Monoclinic, space group P21/c.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Vimal et al. (2014).
Wavenumbers (cm21): 3360s, 1628s, 1495sh, 1357, 1317s, 807, 761w, 595, 490.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Org77 Uranium(IV) oxalate fluoride hydrate U2(C2O4)F6∙2H2O
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Origin: Synthetic.
Description: Prepared hydrothermally from UO2, HF, and oxalic acid dihydrate at 120 �C for 3 days.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space
group C2/c, a ¼ 17.246(3), b ¼ 6.088(1) Å, c ¼ 8.589(2) Å, β ¼ 95.43(3)�, Z ¼ 8.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Wang et al. (2006b).
Wavenumbers (cm21): 3370 (broad), 1691s, 1680sh, 1638s, 1350, 1310, 804s, 638sh, 582s,

491, 405s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Org78 Zirconium basic oxalate Zr(C2O4)(OH)2�0.5H2O

Origin: Synthetic.
Description: Obtained by interdiffusion of oxalic acid and ZrO(NO3)2 in silicate gel. Characterized by

TG analysis. The crystal structure is solved. Tetragonal, space group I4/m, a¼ 12.799(5), c¼ 7.527
(5) Å, V ¼ 1233.0(1) Å3, Z ¼ 8. Dcalc ¼ 2.35 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Hamdouni et al. (2013).
Wavenumbers (cm21): 3350, 1600s, 1300s, 920w, 798.
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Org79 Bacalite

Origin: El Gallo, near El Rosario, Late Cretaceous El Gallo Formation, Baja California, northwestern
Mexico.

Description: Reddish to brownish yellow fossil resin forming lumps up to 5 cm in size from yellowish-
brown mud and fine-grained sandstones.

Kind of sample preparation and/or method of registration of the spectrum: Synchrotron-based
FTIR microspectroscopy.

Source: Riquelme et al. (2014).
Wavenumbers (cm21): 3420, 2910s, 2868s, 2845s, 1693s, 1444, 1375, 1255, 1110, 1002, 845, 755.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. For IR spectra of some other fossil resins (succinite, gedanite, gedano-
succinite, rumanite, and retinite) see Golubev and Martirosyan (2012).

Org80 Caoxite Ca(C2O4)∙3H2O
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Origin: Synthetic.
Description: Obtained by the reaction between an aqueous solution of diethyl oxalate and calcite

crystals. Characterized by powder X-ray diffraction data. Triclinic, space group P-1, a ¼ 6.1097
(13), b ¼ 7.1642(10), c ¼ 8.4422(17) Å, α ¼ 76.43(1)�, β ¼ 70.19(2)�, γ ¼ 70.91(2)�, V ¼ 325.3
(1) Å3, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: A single crystal
pressed in a diamond anvil cell. Transmission.

Source: Conti et al. (2015).
Wavenumbers (IR, cm21): 3528s, 3427s, 3222, 1668s, 1624s, 1377w, 1327, 783.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given. Raman bands at 2941 and
2882 cm�1 may correspond to a compound with C–H bonds. Raman shifts above 3000 cm�1 are
not given in the cited paper.

Wavenumbers (Raman, cm21): 2941, 2882, 1472s, 912s, 507, 156.

Org81 Caoxite Ca(C2O4)∙3H2O

Origin: Synthetic.
Description: Crystals synthesized at room temperature by reaction of aqueous solution of dimethyl

oxalate with an aqueous solution of anhydrous calcium chloride in a stoichiometric proportion.
Characterized by TG and DTA data.

Kind of sample preparation and/or method of registration of the spectrum: Single crystal placed
on a KBr plate. Transmission.

Source: Echigo et al. (2005).
Wavenumbers (cm21): 3615sh, 3429s, 3265sh, 2955, 2815sh, 2105, 1915, 1640sh, 1610s, 1386,

1323, 1254sh, 1173sh, 1114sh, 1080, 1041, 908sh, 887sh, 867sh, 783, 714.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands in the range from 2800 to 3000 cm�1 correspond to the admixture
of an organic substance with C–H bonds.
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Org82 Coahuilite

Origin: El Gallo, near El Rosario, Late Cretaceous El Gallo Formation, Baja California, northwestern
Mexico.

Description: Yellow to orange-brown fossil resin insoluble in alcohol and acetone, with a relatively
high content of aromatic groups.

Kind of sample preparation and/or method of registration of the spectrum: Synchrotron-based
FTIR microspectroscopy.

Source: Riquelme et al. (2014).
Wavenumbers (cm21): 3287, 2975, 2921, 2895, 2865, 1707, 1600, 1513s, 1451, 1411, 1375, 1308w,

1220s, 1070s, 1038s, 1012, 812, 753.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. For IR spectra of some other fossil resins (succinite, gedanite, gedano-
succinite, rumanite, and retinite) see Golubev and Martirosyan (2012).

Org83 Deveroite-(Ce) Ce2(C2O4)3∙10H2O
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Origin: Synthetic.
Description: Synthesized by mixing aqueous solutions of stoichiometric amounts of CeCl3�7H2O and

oxalic acid. Characterized by powder X-ray diffraction data, DTA–TG–DTG, and elemental
analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Gabal et al. (2012).
Wavenumbers (cm21): 3375, 2910w, 1615s, 1361, 1316, 1118w, 999, 797s, 749, 591s, 495, 371.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Org84 Refikite C20H32O2

Origin: Krásno, Slavkovský Les Mts., western Bohemia, Czech Republic.
Description: Polycrystalline crusts on pinetree bark and wood. The crystal structure is solved.

Orthorhombic, space group P21212, a ¼ 22.6520(7), b ¼ 10.3328(3), c ¼ 7.6711(2) Å,
V ¼ 1795.49(9) Å3, Z ¼ 4. Dcalc ¼ 1.1334 g/cm3. The empirical formula is C19H33COOH.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection.

Source: Pažout et al. (2015).
Wavenumbers (IR, cm21): 2919s, 2865s, 2847s, 2651, 2545, 2456, 1737w, 1689s, 1472, 1442, 1410,

1383, 1363, 1334, 1279, 1254, 1248, 1225w, 1185, 1139, 1101w, 1092w, 1046w, 1032w, 1015w,
960, 940, 904w, 885w, 875w, 856w, 836w, 823w, 794w, 770w, 747w, 703, 633w, 586w, 535w,
507w, 461w, 420w, 412w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3013, 2952s, 2935s, 2890s, 2844s, 1474s, 1452s, 1383, 1362, 1249,
1202, 739, 725s.
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Org85 Simojovelite

Origin: La Pimienta, near Simojovel, Chiapas Highlands, Mexico.
Description: Fossil resin.
Kind of sample preparation and/or method of registration of the spectrum: Synchrotron-based

FTIR microspectroscopy.
Source: Riquelme et al. (2014).
Wavenumbers (cm21): 3400 (broad), 2923s, 2860s, 1700s, 1440, 1378, 1235, 1098, 970, 846.
Note: For IR spectra of some other fossil resins (succinite, gedanite, gedano-succinite, rumanite, and

retinite) see Golubev and Martirosyan (2012).

Org86 Stepanovite NaMgFe3+(C2O4)3∙8–9H2O
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Origin: Synthetic.
Description: Obtained by the reaction of an aqueous solution of Na3[Fe(C2O4)3]�5H2O (prepared by

reaction of a suspension of freshly precipitated Fe(OH)3 with an aqueous solution of NaHC2O4)
with a great excess of MgCl2. The crystal structure is solved. Trigonal, space group P3c1,
a ¼ 17.0483(4), c ¼ 12.4218(4) Å, V ¼ 3126.7(1) Å3, Z ¼ 6. Dcalc ¼ 1.687 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Piro et al. (2016).
Wavenumbers (IR, cm21): 3518s, 3450s, 3371s, 3233, 1674s, 1400s, 1324w, 1265, 900, 798,

696, 627, 536, 483, 423.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3450w, 3350w, 3275w, 1728s, 1666, 1478, 1460, 1523, 1398, 1267,

903, 599, 537, 480s.

Org87 Zhemchuzhnikovite NaMgAl(C2O4)3∙8H2O

Origin: Synthetic.
Description: Fe-rich variety, NaMg(Al0.55Fe

3+
0.45)(C2O4)3∙nH2O, obtained by the mixing aqueous

solutions of NaMg[Fe(C2O4)3]�9H2O and NaMg[Al(C2O4)3]�9H2O. The crystal structure is solved.
Trigonal, space group P3c1, a ¼ 16.8852(5), c ¼ 12.5368(5) Å, V ¼ 3095.5(2) Å3, Z ¼ 6.
Dcalc ¼ 1.652 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Piro et al. (2016).
Wavenumbers (IR, cm21): 3458s, 3355s, 3219s, 1684s, 1404s, 1298, 1276, 1146w, 916, 901,

811, 765sh, 729, 581, 534, 490, 475, 419w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3467, 3222, 1788s, 1688, 1520w, 1479, 1440s, 1266, 991, 923,

856, 565, 533, 479s.
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Org88 Deveroite-(Ce) Ce2(C2O4)3∙10H2O

Origin: Synthetic.
Description: Sm3+ doped crystal synthesized using single diffusion gel technique. Characterized by

powder X-ray diffraction data and EDS analysis. Monoclinic, a ¼ 11.34, b ¼ 9.630, c ¼ 10.392 Å,
β ¼ 114.5�.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Unnikrishnan and Ittyachen (2016).
Wavenumbers (cm21): 3257, 1615s, 1364, 1316s, 915w, 860w, 796, 582, 495.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Org89 Triazolite NaCu2(N3C2H2)2(NH3)2Cl3�4H2O where N3C2H2
� is 1,2,4-triazolate anion
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Origin: Pabellón de Pica Mountain, 1.5 km south of Chanabaya village, Iquique Province, Tarapacá
Region, Chile (type locality).

Description: Clusters and radiated aggregates of prismatic crystals from the association with
salammoniac, halite, ammineite, joanneumite, chanabayaite, nitratine, natroxalate, and möhnite.
Holotype sample. The crystal structure is solved. Orthorhombic, space group P212121, a¼ 19.3575
(5), b¼ 7.15718(19), c¼ 12.5020(4) Å, V ¼ 1732.09(8) Å3, Z¼ 4. Dcalc ¼ 2.028 g/cm3. Optically
biaxial (�), α ¼ 1.582(4), β ¼ 1.625(3), γ ¼ 1.625(3), 2V ¼ 5(3)�. The empirical formula is
Na1.14(Cu1.86Fe0.14)(Cl2.99S0.23)N9.23C3.43H23.34O4.29. The strongest lines of the powder X-ray
diffraction pattern [d, Å (I, %) (hkl)] are: 10.22 (97) (101), 6.135 (40) (011), 5.696 (17) (301),
5.182 (59) (202), 5.119 (100) (211), 4.854 (19) (400), 3.752 (16) (312, 501), 3.294 (18) (221),
2.644 (17) (404), 2.202 (18) (324, 713).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3500sh, 3431s, 3371s, 3302s, 3215s, 3173s, 3145sh, 3047s, 2935sh, 2855,

2812, 2050w, 1751, 1653, 1635, 1621, 1510, 1414, 1300, 1267, 1198w, 1172, 1095, 1062, 1036w,
1002, 990sh, 887, 778w, 669, 638w, 575, 513w, 440w.

Note: The spectrum was obtained by N.V. Chukanov.

2.4 Nitrides and Nitrates

N20 Hexaamminenickel(II) nitrate [Ni(NH3)6](NO3)2

Origin: Synthetic.
Description: Prepared in the reaction between nickel nitrate hexahydrate and gaseous ammonia in the

presence of silica gel. The crystal structure is solved. Cubic, space group Fm-3m, a¼ 10.8738(6) Å,
V ¼ 1285.73(7) Å3, Z ¼ 4. Dcalc ¼ 1.471(1) g/cm3.
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Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Breternitz et al. (2015).
Wavenumbers (cm21): 3364, 3282w, 1616w, 1329, 1202s, 832, 648s.
Note: In the cited paper, the wavenumber 832 cm�1 is erroneously indicated as 823 cm�1.

N21 Lantanum nitrate hexahydrate La(NO3)3∙6H2O

Origin: Synthetic.
Description: Commercial reactant. Triclinic, space group P21/c, a ¼ 7.386(3), b ¼ 7.716(3),

c ¼ 11.345(4) Å, α ¼ 99.773(5)�, β ¼ 91.141(6)�, γ ¼ 115.58(5)�, V ¼ 571.6(3) Å3, Z ¼ 2.
Dmeas ¼ 2.39(3) g/cm3, Dcalc ¼ 2.391 g/cm3. Optically biaxial (�), α ¼ 1.554(2), β ¼ 1.558(2),
γ ¼ 1.566(2), 2V ¼ 70(5)�. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 11.089 (100) (001), 3.540 (81) (0–13, –1�12), 5.484 (79) (002, 101), 2.918 (60) (�122),
3.089 (33) (�113, 201), 4.022 (30) (102, –112), 6.826 (23) (010).

Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflection of
powdered sample mixed with KBr. The transformation into absorbance spectra was carried out by
using background spectra collected under identical conditions with KBr powder in the holder.

Source: Klingenberg and Vannice (1996).
Wavenumbers (cm21): 3525s, 3246sh, 2804w, 2495, 2366, 2108w, 2069w, 1772, 1643s, 1554s,

1415sh, 1379, 1276, 1042, 815, 752.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, the wavenumber 2178 cm�1 is erroneously indicated as
2108 cm�1.
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N22 Uranyl nitrate hexahydrate UO2(NO3)2∙6H2O

Origin: Synthetic.
Description: Commercial reactant.
Kind of sample preparation and/or method of registration of the spectrum: A mixture with KBr.

Transmission.
Source: Caldow et al. (1960).
Wavenumbers (cm21): 1531s, 1515s, 1392s, 1300, 1032, 933s, 804, 752, 745sh.
Note: The band at 1392 cm�1may correspond toKNO3 formed in the reaction betweenUO2(NO3)2∙6H2O

and KBr. Consequently, the presence of uranyl bromide in the sample is not excluded.

N23 Nierite β-Si3N4

Origin: Synthetic.
Description: Prepared by reacting silicon powder with nitrogen at 1350 �C for 2 h followed by heating

at 1500 �C for 16 h. Hexagonal, space group P63/m, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.
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Source: Wild et al. (1978).
Wavenumbers (cm21): 1035, 938s, 915s, 579, 441, 380.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

N24 Nitratine Na(NO3)

Origin: Synthetic.
Kind of sample preparation and/ormethod of registration of the spectrum: Nujolmull. Transmission.
Source: Miller and Wilkins (1952).
Wavenumbers (cm21): 2428w, 1790w, 1358s, 836.
Note: A shoulder near 1447 cm�1 corresponds to Nujol.

N25 Osbornite TiN
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Origin: Synthetic.
Description: A layer deposited using sequential additions of TiCl4 and NH3 on fumed silica powder.
Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflection of a

mixture with KBr powder.
Source: Snyder et al. (2006).
Wavenumbers (cm21): 765, 670s, 530sh.

N26 Qingsongite BN

Origin: Synthetic.
Description: Produced from hexagonal BN by spontaneous high pressure (5.5 GPa) and high

temperature (1800–1900 K) nucleation using Mg as a solvent-catalyst.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Kutsay et al. (2010).
Wavenumbers (IR, cm21): 1398, 1223, 1100, 1022.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The weak band at 1398 cm�1 corresponds to the admixture of hexagonal BN. In the cited
paper, a figure of qingsongite Raman spectrum is given.
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N27 Qingsongite (C-bearing) C0.3(BN)0.7

Origin: Synthetic.
Description: Obtained from a mixture of hexagonal BN and graphite powders at 30 GPa and

temperature between 2000 and 2500 K. Cubic, a ¼ 3.613(3). The observed lines of the powder
X-ray diffraction pattern [d, Å (hkl)] are: 2.086 (111), 1.806 (200) (very weak), 1.276 (220).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Knittle et al. (1995).
Wavenumbers (IR, cm21): ~1045.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1323.

N28 Sinoite Si2N2O

Origin: Synthetic.
Description: Orthorhombic, space group Cmc21.
Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Mirgorodsky et al. (1989).
Wavenumbers (cm21): 1130, 1070sh, 1030sh, 990, 953s, 906s, 730sh, 679, 648w, 542, 496,

448, 327, 252.
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2.5 Oxides and Hydroxides

O495 Ferricoronadite Pb(Mn4+6Fe
3+

2)O16

Origin: “Mixed Series”metamorphic complex near the Nežilovo village, Pelagonian massif, Republic
of Macedonia (type locality).

Description: Veinlets in granular aggregate consisting of franklinite, gahnite, hetaerolite, roméite,
almeidaite, Mn-analogue of plumboferrite, högbomite-group minerals, Zn-bearing talc, baryte,
quartz, etc. Holotype sample. The crystal structure is solved. Tetragonal, space group I4/m,
a ¼ 9.9043(7), c ¼ 2.8986(9) Å, V ¼ 284.34(9) Å3, Z ¼ 1. Dcalc ¼ 5.538 g/cm3. The empirical
formula is (electron microprobe): Pb1.03Ba0.32(Mn4+4.85Fe

3+
1.35Mn3+1.18Ti0.49Al0.09Zn0.04)O16.

According to the Mössbauer spectrum, all iron is trivalent. The Mn K-edge XANES spectroscopy
shows that Mn is predominantly tetravalent, with subordinate Mn3+. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.497 (33) (220), 3.128 (100) (�130, 130),
2.424 (27) (�121, 121), 2.214 (23) (240, –240), 2.178 (17) (031), 1.850 (15) (141, –141), 1.651
(16) (060), 1.554 (18) (�251, 251).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1078w, 795sh, 700, 665, 560s, 510s, 475sh, 400sh.
Note: The spectrum was obtained by N.V. Chukanov.
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O496 Ferrihollandite Ba(Mn4+6Fe
3+

2)O16

Origin: Sörhårås, Ultevis, Lappland, Sweden.
Description: Black prismatic crystals. The empirical formula is (electron microprobe):

(Ba0.79K0.17Pb0.11Sr0.07Na0.07)(Mn6.22Fe0.93Al0.43Ti0.32Mg0.10Zn0.02)O8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1095w, 708, 572s, 525s, 485sh.
Note: The spectrum was obtained by N.V. Chukanov.

O497 Cesàrolite PbMn4+3O6(OH)2
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Origin: Belorechenskoe deposit, Adygea (Adygeya) Republic, Northern Caucasus, Russia.
Description: Black massive, with brown streak, from the association with baryte, dolomite, fluorite,

galena, and gypsum. Investigated by A.V. Kasatkin. The empirical formula is (electron micro-
probe): Pb0.75Cu0.2Zn0.1Mn3.0(O,OH)8. The strongest lines of the powder X-ray diffraction pattern
are observed at 3.42, 3.13, 2.39, 2.21, 2.11, 1.88, 1.77, 1.69, 1.57, 1.48, and 1.41 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3381, 3158s, 1630, 1570, 1420w, 1165sh, 1080, 480, (420sh).
Note: The band at 1630 cm�1 may correspond to adsorbed water; the weak band at 1420 cm�1 may be

due to dolomite impurity.
Note: The spectrum was obtained by N.V. Chukanov.

O498 Sodalite Ca-Al-Mo-W-analogue Ca8(Al12O24)[(MoO4)1.5(WO4)0.5]

Origin: Synthetic.
Description: Synthesized in a solid-state reaction from the stoichiometric mixture of γ-Al2O3, CaCO3,

MoO3, and WO3. The sample was provided by Prof. W. Depmeier. Cubic or pseudocubic. MoO4
2�

and WO4
2� are extra-framework anions. The composition is confirmed by electron microprobe

analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1080sh, 1009, 982, 885s, 868s, 846s, 832s, 679, 668, 640, 630sh, 606, 570sh,

491w, 470w, 403s.
Note: The spectrum was obtained by N.V. Chukanov. The anions MoO4

2� and WO4
2� are almost

indistinguishable by means of IR spectroscopy (compare powellite and scheelite).
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O499 Sodalite Ca-Al-Mo-W-analogue Ca8(Al12O24)[(MoO4)(WO4)]

Origin: Synthetic.
Description: Synthesized in a solid-state reaction from the stoichiometric mixture of γ-Al2O3, CaCO3,

MoO3, and WO3. The sample was provided by Prof. W. Depmeier. Cubic or pseudocubic. MoO4
2�

and WO4
2� are extra-framework anions. The composition is confirmed by electron microprobe

analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1080sh, 1009, 981, 885s, 869s, 846s, 833s, 679, 668, 640, 630sh, 606, 568w,

490w, 470w, 406s.
Note: The spectrum was obtained by N.V. Chukanov. The anions MoO4

2� and WO4
2� are almost

indistinguishable by means of IR spectroscopy (compare powellite and scheelite).

O500 Sodalite Ca-Al-Mo-analogue Ca8(Al12O24)[(MoO4)(WO4)]
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Origin: Synthetic.
Description: Synthesized in a solid-state reaction from the stoichiometric mixture of γ-Al2O3, CaCO3,

and MoO3. The sample was provided by Prof. W. Depmeier. Cubic or pseudocubic. MoO4
2� is

extra-framework anion. The composition is confirmed by electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1080, 1008, 981, 885s, 868s, 846s, 833s, 679, 667, 641, 635sh, 606, 568w,

491w, 470w, 404s.
Note: The spectrum was obtained by N.V. Chukanov.

O501 Lesukite Cu-bearing variety (Al,Cu)2(OH)5-xCl∙nH2O (n � 2)

Origin: Cerro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile.
Description: Lemon-yellow powdery aggregate consisting of microscopic cubic crystals from the

association with gypsum, atacamite, and goethite. Investigated by I.V. Pekov. Characterized by
powder X-ray diffraction data. The empirical formula is (electron microprobe): (Al1.85Cu0.15)
(OH)4.85Cl1.00�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3445sh, 3418s, 3310s, 2271w, 1933w, 1670sh, 1602, 1170sh, 1148, 1111,

1030sh, 986, 720sh, 700sh, 647s, 598s, 546, 535sh, 440w, 395w.
Note: The spectrum was obtained by N.V. Chukanov.
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O502 Deltalumite δ-Al2O3

Origin: Western lava flow of the 2012–2013 Tolbachik Fissure Eruption, Tolbachik volcano,
Kamchatka Peninsula, Far-Eastern Region, Russia (type locality).

Description: Pale beige spherical clusters from the association with corundum and moissanite.
Holotype sample. Tetragonal, space group P-4m2, a ¼ 5.608(1), c ¼ 23.513(7) Å, V ¼ 739.4
(4) Å3, Z ¼ 16. Dcalc ¼ 3.663 g/cm3. Optically uniaxial (�), ω ¼ 1.654(2), ε ¼ 1.653(2). The
empirical formula is (electron microprobe): Al2.00O3. The strongest lines of the powder X-ray
diffraction pattern [d, Å (I, %) (hkl)] are: 2.728 (61) (202), 2.424 (51) (212), 2.408 (49) (213), 2.281
(42) (206), 1.993 (81) (1.0.11, 220, 221), 1.954 (48) (0.0.12), 1.396 (100) (327, 3.0.11, 400, 401,
2.1.14, 2.2.12).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1157w, 1100w, 1063w, 1024w, 865sh, 820s, 755s, 703s, 628, 571s, 391.
Note: The spectrum was obtained by N.V. Chukanov.

O503 Magnesiohögbomite-2N3S (Mg,Fe,Zn,Ti)4(Al,Fe)10O19(OH)
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Origin: Sadok Lake, Chelyabinsk region, South Urals.
Description: Dark brown platy grains from clinopyroxenite. Characterized by powder X-ray

diffraction data and Mössbauer spectroscopy. Hexagonal, a ¼ 5.715(5), c ¼ 23.931(2) Å,
V ¼ 677.01(4) Å3. The empirical formula is (Mg5.4–5.7Fe

3+
1.4–1.7Fe

2+
0.8–0.9)(Al18.0–18.6Ti1.0–1.1

Fe3+0.4–0.9Cr0–0.1)O38(OH)2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Korinevsky et al. (2016).
Wavenumbers (cm21): 3355, 675s, 630s, 536s, 511sh, 440.

O504 Woodallite Mg6Cr2(OH)16Cl2∙4H2O

Origin: Kyzyl-Uyuk stream, Terektin ridge, Altai Mts., Siberia, Russia.
Description: Lilac crust on serpentine. Investigated by I.V. Pekov. The empirical formula is (electron

microprobe): (Mg5.90Fe0.10)(Cr0.94Fe0.89Al0.17)Cl1.92(SO4)0.02(CO3)x(OH)16�4H2O (x � 1). The
sample contains zones with Fe:Cr � 1:1 in atomic units.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3640sh, 3520s, 3370sh, 1635, 1390w, 1076w, 940sh, 600s, 392s.
Note: The spectrum was obtained by N.V. Chukanov.
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O505 Gallium(III) oxide α-Ga2O3

Origin: Synthetic.
Description: Prepared by the precipitation from GaCl3 aqueous solution, by adding aqueous solution

of tetramethyl ammonium hydroxide up to pH 7.82. After 2 h of aging at room temperature the
precipitate was dried and heated at 500 �C for 4 h in air. Confirmed by powder X-ray diffraction
data. Trigonal, space group R-3c, a ¼ 4.982, c ¼ 13.433 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ristić et al. (2005).
Wavenumbers (cm21): 680sh, 577, 520s, 418, 360s.

O506 Gallium(III) oxyhydroxide α-GaOOH
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Origin: Synthetic.
Description: Prepared by the precipitation from GaCl3 aqueous solution, by adding aqueous solution

of tetramethyl ammonium hydroxide up to pH 7.82. Confirmed by powder X-ray diffraction data.
Isostructural with goethite. Orthorhombic, space group Pbnm, a ¼ 4.58, b ¼ 9.80, c ¼ 2.97 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ristić et al. (2005).
Wavenumbers (cm21): 3403, 3243s, 2990, 2000, 1950, 1642w, 1221w, 1015s, 958s, 688, 640, 500s,

388s, 295.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O507 Aluminium niobate AlNbO4

Origin: Synthetic.
Description: Prepared by firing intimate mixture of Al(OH)3 and Nb2O5 in air at 1350 �C. Monoclinic.

Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Blasse and ‘T Lam (1978).
Wavenumbers (IR, cm21): 965, 840, 710, 620sh, 570.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 940sh, 800, 730, 690, 600, 400.
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O508 Barium cerium tantalite Ba2CeTaO6

Origin: Synthetic.
Description: Obtained in the solid-state reaction between BaCO3, Ce2(CO3)3, and Ta2O5. The

reactant mixture taken in stoichiometric ratio was calcined at 1350 �C for 15 h. The calcined
sample was palletized into a disk with polyvinyl alcohol as binder and sintered at 1370 �C for 5 h.
Characterized by powder X-ray diffraction data. Monoclinic, a ¼ 9.78, b ¼ 9.02, c ¼ 4.27 Å,
β ¼ 93.8�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bharti and Sinha (2011).
Wavenumbers (cm21): 645, 573sh, 512s, 404.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The bands at 1747, 1415, 1058, 857, 796(sh), and 691 cm�1 correspond to the admixture
of a carbonate. In the cited paper, the absorptions in the ranges 1700–1800 and 1400–1500 cm�1

have been erroneously assigned to the presence of adsorbed moisture in KBr and symmetric
stretching vibrations of TaO6 octahedra, respectively.
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O509 Barium cobalt antimonate Ba3CoSb2O9

Origin: Synthetic.
Description: A compound with ordered hexagonal perovskite-type structure.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Liegeois-Duyckaerts (1985).
Wavenumbers (cm21): 723, 678s, 551, 493, 408s, 361, 298, 222, 139, 112.

O510 Barium cobaltate Ba2CoO4
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Origin: Synthetic.
Description: Synthesized from the mixture of barium and cobalt carbonates at 950 �C. Confirmed by

chemical analyses and powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran (1973).
Wavenumbers (cm21): 670s, 645s, 620s, 340, 305, 299.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O511 Barium nickel oxide BaNiO2 BaNiO2

Origin: Synthetic.
Description: Prepared by the conventional sintering process from NiO and BaCO3. Characterized by

Mössbauer spectrum and powder X-ray diffraction data. Orthorhombic, a ¼ 5.737, b ¼ 9.190,
c ¼ 4.760 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Gottschall et al. (1998).
Wavenumbers (cm21): 570, 560sh, 487s, 444s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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O512 Barium nickel oxide BaNiO3 BaNiO3

Origin: Synthetic.
Description: Prepared by the conventional sintering process from NiO and BaCO3. Characterized by

Mössbauer spectrum and powder X-ray diffraction data. Hexagonal, a ¼ 5.635, c ¼ 4.8041 Å.
Hypothetically, Ni is trivalent and the formula is Ba2+Ni3+O2�

2(O˙)
�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Gottschall et al. (1998).
Wavenumbers (cm21): 611sh, 595, 490s, 406.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O513 Barium niobate BaNb2O6
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Origin: Synthetic.
Description: Prepared by heating stoichiometric mixture of Nb2O5 and BaCO3 pressed in a pellet at

1200 �C for 60 h. Orthorhombic, space group Pbmm, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Repelin et al. (1979).
Wavenumbers (IR, cm21): 830w, 760, 700sh, 635s, 560s, 470sh, 450, 410w, 375sh, 355, 310s,

295sh, 238, 170, 151, 87.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 847, 712s, 633, 557s, 496, 379, 366, 306, 280, 230, 200, 190,

141, 120, 112, 100.

O514 Barium titanate Ba2TiO4

Origin: Synthetic.
Description: Obtained by heating a mixture of TiO2 and BaCO3 at 1200–1300 �C for 1–3 days.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Wijzen et al. (1994).
Wavenumbers (cm21): 774, 753, 719s, 695s, 370, 340, 319w.
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O515 β-Gallium(III)-oxide β-Ga2O3

Origin: Synthetic.
Description: Monoclinic, space group C2/m, a ¼ 12.21, b ¼ 3.037, c ¼ 5.798 Å, β ¼ 103.838�.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Ristić et al. (2005).
Wavenumbers (cm21): 680, 644, 482s, 374, 325, 289.

O516 Bismuth(III) aluminate Bi2Al4O9 Bi2Al4O9
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Origin: Synthetic.
Description: Synthesized from a stoichiometric mixture of Bi(NO3)3�5H2O and Al(NO3)3�9H2O

together with 10 wt.% of glycerine. The mixture was heated first at 353 K, then at 473 K for 2 h,
and finally (after homogenization the powder) at 1210 K for 48 h. Structurally related to mullite.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Absorption.

Source: Murshed et al. (2015).
Wavenumbers (IR, cm21): (943sh), 920, 846sh, 772sh, 728s, 691sh, 649, 601sh, 572s, 536sh, 522s,

497s, 470sh, 421w, 399, 378sh, 373, 353, 297w, 289sh, 286w, 251w, 204w, 185, 172, 166, 159,
97w.

Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 840, 763, 691, 633, 615, 571, 509, 491, 478, 441, 406, 385,

373, 345, 322, 312, 281, 274s, 251, 184, 138, 120s, 103.

O517 Bismuth(III) aluminoferrite Bi2Fe3AlO9 Bi2Fe3AlO9

Origin: Synthetic.
Description: Produced by thermal decomposition of a mixture of corresponding metal nitrates using a

glycerine method. Structurally related to mullite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Voll et al. (2006).
Wavenumbers (cm21): 1144w, 1100sh, 887w, 852, 819, 650sh, 624s, 512sh, 464s, 448sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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O518 Bismuth(III) stannate pyrochlore-type Bi2Sn2O7

Origin: Synthetic.
Description: Obtained by sintering at 1173 K of pelletized precipitate formed after adding ammonia

solution to the 0.01 M solution containing bismuth chloride and stannous oxy chloride in stoichio-
metric ratio. Tetragonal, a ¼ 21.328, c ¼ 21.4 Å.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Ravi et al. (1999).
Wavenumbers (cm21): 731s, 694s, 686sh, 636sh, 627sh, 588sh, 576sh, 563, 556sh, 496sh, 487, 480,

469sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O519 Bismuth(III) tantalate Bi7Ta3O18 Bi7Ta3O18
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Origin: Synthetic.
Description: Obtained from Bi2O3 and Ta2O5 by solid-state method at 950 �C for 18 h. Monoclinic,

space group C2/m, a ¼ 34.060(3), b ¼ 7.618 (9), c ¼ 6.647(6) Å, β ¼ 109.210 (7)�, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Chon et al. (2014).
Wavenumbers (cm21): 874, 687sh, 590s, 502s, 308w.

O520 Bismuth(III) titanate Bi4Ti3O12 Bi4Ti3O12

Origin: Synthetic.
Description: Prepared hydrothermally. Structurally related to perovskite. The strongest lines of the

powder X-ray diffraction pattern are observed at 3.81, 2.95, 2.72, 2.26, 1.92, and 1.61 Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Chen and Jiao (2001).
Wavenumbers (cm21): 822, 680sh, 582s, 447sh, 374s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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O521 Bismuth ferrite BiFeO3

Origin: Synthetic.
Description: Obtained by two-stage solid phase synthesis from Bi2O3 and Fe2O3, first at 923 K for 1 h

and thereafter (after re-grounding and pressing) at 1123 K for 2 h. The compound has
rhombohedrally distorted perovskite structure, space group R3c.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bujakiewicz-Korońska et al. (2011).
Wavenumbers (cm21): 832sh, 814w, 543s, 440s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, also FIR spectrum for a sample suspended in Apiezon N
grease is given.

O522 Calcium indium oxide Ca2InO4 Ca2InO4
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Origin: Synthetic.
Description: Prepared from indium and calcium nitrates, in solid-state reaction at 1173 K for 2 h.

Characterized by powder X-ray diffraction data. Orthorhombic, space group Pca21 or Pbcm, Z ¼ 4
(see JCPDS 017-0643).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Zheng et al. (2012).
Wavenumbers (IR, cm21): 1639w, 1412w, 1378w, 872w, 639, 602, 556sh, 485sh, 470s, 417sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The weak bands at 1639, 1412+872, and 1378 cm�1 may correspond to
H2O, CO3

2�, and NO3
� impurities, respectively. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 648w, 543s, 495, 455, 403, 370w, 336, 284w, 258, 199, 113s.

O523 Cadmium stannate CdSnO3

Origin: Synthetic.
Description: Obtained by thermal decomposition of CdSn(OH)6 at 540 �C during 15 min.

Characterized by powder X-ray diffraction data. Isostructural with ilmenite.
Kind of sample preparation and/or method of registration of the spectrum: CsIr disc.

Transmission.
Source: Botto and Baran (1980).
Wavenumbers (cm21): 605, 565sh, 521s, 472s, 400sh, 348w, 315.
Note: The sample contains minor admixture of a spinel-type stannate.
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O524 Cesium uranyl niobate Cs2(UO2)2(Nb2O8) Cs2(UO2)2(Nb2O8), or CsUNbO6

Origin: Synthetic.
Description: Carnotite-type niobate with UNbO6 layers.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Saad et al. (2008).
Wavenumbers (cm21): 910, 881, 865, 809w, 776sh, 735, 646, 617sh, 572s, 497, 439s.

O525 Cesium uranyl niobate Cs9[(UO2)8O4(NbO5)(Nb2O8)2] Cs9[(UO2)8O4(NbO5)(Nb2O8)2]
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Origin: Synthetic.
Description: Prepared from CsNO3, U3O8, and Nb2O5 by solid-state reaction at 1000 �C in air.

Monoclinic, space group P21/c, a ¼ 16.729(2), b ¼ 14.933(2), c ¼ 20.155(2) Å, β ¼ 110.59(1)�,
V ¼ 4713.5(1) Å3, Z ¼ 4. Dmeas ¼ 5.94(2) g/cm3, Dcalc ¼ 5.95(3) g/cm3. The crystal structure is
based on the uranyl niobate layer containing UO7 pentagonal bipyramids and NbO5 square
pyramids.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Saad et al. (2008).
Wavenumbers (cm21): 905, 884, 866, 833sh, 809w, 778w, 733, 668sh, 644, 615, 570s, 495, 436s.

O526 Calcium antimonite CaSb2O6

Origin: Synthetic.
Description: Obtained in a solid-state reaction between CaCO3 and Sb2O3. In the crystal structure,

SbO6 octahedra are present. Trigonal, space group P-31/m, a ¼ 5.22, c ¼ 5.01 Å.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Husson et al. (1984).
Wavenumbers (IR, cm21): 620sh, 580s, 542s, 335s, 305sh, 220, 202.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 678s, 530, 498w, 345, 332, 243s.
Note: The wavenumbers of Sb–O stretching bands (at 580 and 542 cm�1) are anomalously low as

compared with most other Sb(V) oxides.
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O527 Calcium copper titanate CaCu3Ti4O12 CaCu3Ti4O12

Origin: Synthetic.
Description: Nano-sized powder synthesized by a polymerization-based complex method and cal-

cined at 800 �C in air for 8 h. A perovskite-type compound. Characterized by powder X-ray
diffraction data. Cubic, a ¼ 7.398(2) Å.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Masingboon et al. (2008).
Wavenumbers (cm21): 561s, 516, 437.
Note: The sample exhibits a giant dielectric constant (Masingboon et al. 2009)

O528 Calcium niobate columbite-type CaNb2O6
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Origin: Synthetic.
Description: White solid prepared from the mixture of Nb2O5 and CaCO3 powders at 1300 �C for

48 h. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Powder spread on

polyethylene film and on CsI plate. Transmission.
Source: Husson et al. (1977a).
Wavenumbers (IR, cm21): 895, 870, 855, 745s, 653, 590s, 492s, 456, 438, 400, 390, 364, 337,

311sh, 290, 275sh, 262, 237, 232, 219sh, 207w, 194w, 180w, 165w, 155w, 145w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 904s, 849, 664, 627, 600, 540s, 495, 487, 462, 430, 385s, 379, 369,

344, 340, 314, 293s, 286, 264, 259, 239s, 223, 213w, 194s, 186, 162, 136s, 127, 108, 84, 63.

O529 Calcium plumbate Ca2PbO4

Origin: Synthetic.
Description: Obtained by standard solid-state reaction, starting with stoichiometric mixture of PbO2/

CaCO3, heated between 850 and 900 �C, in the presence of a continuous air stream. Orthorhombic,
space group Pbam, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Diez et al. (1995).
Wavenumbers (cm21): 540, 499, 420s, 387s, 351sh, 326w, 294.
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O530 Chromium uranium oxide Cr2UO6 Cr2UO6

Origin: Synthetic.
Description: Synthesized hydrothermally from Cr(NO3)3�9H2O and γ-UO3 at 325–425 �C.

Characterized by powder X-ray diffraction data.
Hexagonal, a ¼ 4.988(1), c ¼ 4.620(1) Å. Dcalc ¼ 7.31 g/cm3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Absorption.
Source: Hoekstra and Siegel (1971).
Wavenumbers (cm21): 670sh, 570s, 487s, 455sh, 326, 234, 205w.

O531 Cobalt zinc tellurium oxide Co3Zn2TeO8

Origin: Synthetic.
Description: Spinel-type compound obtained in the solid-state reaction between TeO2, CoCO3, and

ZnCO3 at 1050 �C.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Baran and Botto (1980).
Wavenumbers (cm21): 678, 630s, 512s, 460, 438, 406s, 360w.

O532 Copper(II) hydroxide Cu(OH)2

Locality: Synthetic.
Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group Cmcm,

a ¼ 2.936(5), b ¼ 10.54(1), c ¼ 5.238(8) Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Schönenberger et al. (1971).
Wavenumbers (cm2l): 3574s, 3304s, 940, 695s, 640, 517, 485, 420.

O533 Cobalt ferrite spinel-type CoFe2O4
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Origin: Synthetic.
Description: Prepared using a conventional ceramic technique. The powder X-ray diffraction showed

a single phase and a spinel structure.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Srinivasan et al. (1984).
Wavenumbers (cm21): 650, 570, 390, 340.

O534 Indium oxide In2O3

Origin: Synthetic.
Description: Commercial reactant.
Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflection of a

powdery sample pressed into pellet with KBr. The absorption spectrum was calculated from
reflection spectrum by using the Kubelka-Munk function.

Source: Jiang et al. (2011).
Wavenumbers (cm21): 602, 566, 538, 471s, 441sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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O535 Lanthanum aluminum oxide LaAlO3

Origin: Synthetic.
Description: Cubic, with the perovskite-type structure (see JCPDS 85-848). Characterized by powder

X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Zhou et al. (2004).
Wavenumbers (cm21): 656, 440s.

O536 Lanthanum iron(III) oxide LaFeO3
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Origin: Synthetic.
Description: Prepared from stoichiometric mixture of La2O3 and Fe2O3 in the presence of excess of

the euthectic mixture of NaCl and KCl at 900 �C for 6 h. Characterized by powder X-ray diffraction
data. Orthorhombic, space group Pnma, a ¼ 5.5676(2), b ¼ 7.8608(3), c ¼ 5.5596(2) Å.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Romero et al. (2014).
Wavenumbers (IR, cm21): 581sh, 531s, 508sh, 475w, 461sh, 455w, 434w, 424w, 416w.
Note: In the cited paper, Raman spectrum is given. The Raman bands at 1310 and 1143 cm�1 have

been assigned to second-order excitations.
Wavenumbers (Raman, cm21): 1310s, 1143, 650s, 500, 486, 433s, 431, 411, 288, 264, 173, 151,

101.

O537 Lead(II) stannate Pb2SnO4 Pb2SnO4

Origin: Synthetic.
Description: Prepared from the stoichiometric mixture of PbO and SnO2 at 700 �C for 25 h in air.

Tetragonal, a ¼ 8.74, c ¼6.30 Å (see JCPDS No. 24-0589).
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Vigouroux et al. (1982).
Wavenumbers (IR, cm21): 573, 495s, 451, 421, 364, 320w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 613w, 540, 457s, 379, 292s, 275, 196, 129s, 80, 35.
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O538 Lead tin oxide Pb2+4Pb
4+Sn4+O8 Pb2+4Pb

4+Sn4+O8

Origin: Synthetic.
Description: Prepared from a mixture of SnPb2O4 and Pb3O4 powders at 580 �C for several months.

The crystal structure is solved. Tetragonal, space group P42/m, a ¼ 8.77, c ¼ 6.43 Å.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Absorption.
Source: Vigouroux et al. (1982).
Wavenumbers (IR, cm21): 545, 465s, 415, 345, 300w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 550s, 260, 195, 152w, 125s.

O539 Lithium aluminate LiAl5O8 LiAl5O8
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Origin: Synthetic.
Description: Prepared by sintering a mixture of Li2CO3 and Al2O3 at 1300 �C. A compound with

ordered spinel-type structure. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Brabers (1976).
Wavenumbers (cm21): 680s, 646s, 611s, 558s, 531s, 486s, 442s, 417w, 396, 385, 357w, 334.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O540 Lithium aluminate LiAlO2-beta β-LiAlO2

Origin: Synthetic.
Description: Prepared from lithium ethoxide and aluminu methoxide with subsequent hydrolysis and

heating to 600 �C. Characterized by powder X-ray diffraction data. Monoclinic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Hirano et al. (1987).
Wavenumbers (cm21): 820sh, 787s, 655, 614w, 575sh, 518, 462, 415w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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O541 Lithium aluminate LiAlO2-gamma γ-LiAlO2

Origin: Synthetic.
Description: Prepared from lithium ethoxide and aluminum ethoxide with subsequent hydrolysis and

heating to 1000 �C. Characterized by powder X-ray diffraction data. Tetragonal.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Hirano et al. (1987).
Wavenumbers (cm21): 834sh, 800s, 787sh, 745sh, 655, 550s, 520, 482, 450.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O542 Lithium aluminium oxide-alpha α-LiAlO2

Origin: Synthetic.
Description: The polymorph with trigonally distorted NaCl-type structure synthesized in a solid-state

reaction from Al oxide and Li carbonate.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Moore and White (1970).
Wavenumbers (cm21): 590s, 500s, 365sh, 290, 277, 253, 233w, 187w

O543 Lithium aluminium oxide-gamma γ-LiAlO2

Origin: Synthetic.
Description: Synthesized in a solid-state reaction from Al oxide and Li carbonate. The structure

consists of corner-linked tetrahedra in which both Li and Al are four-coordinated. The space group
is P41212, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Moore and White (1970).
Wavenumbers (cm21): 850sh, 807, 649, 540, 516, 473w, 442, 361, 322, 282s, 192w.

O544 Lithium cobalt(III) iron(III) oxide delafossite-type LiCo0.5Fe0.5O2
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Origin: Synthetic.
Description: Prepared by heating up to 600 �C a gel obtained from the stoichiometric mixture of Li,

Co, and Fe nitrates and aqueous solution of maleic acid. Characterized by powder X-ray diffraction
data. Trigonal, space group R3m.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Khosravi et al. (2013).
Wavenumbers (cm21): 590s, 532s, 450, 240w.

O545 Lithium ferrite LiFe3+5O8 LiFe3+5O8

Origin: Synthetic.
Description: Prepared by sintering a mixture of Li2CO3 and Fe2O3 at 1300 �C. A compound with

ordered spinel-type structure. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Brabers (1976).
Wavenumbers (cm21): 672w, 590s, 550s, 471, 442, 400, 376, 365sh, 336, 315sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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O546 Lithium iron(III) oxide γ-LiFeO2

Origin: Synthetic.
Description: Synthesized in a solid-state reaction from Al oxide and Li carbonate. The structure

consists of corner-linked tetrahedra in which both Li and Al are four-coordinated. The space group
is P41212, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Moore and White (1970).
Wavenumbers (cm21): 550sh, 490s, 450s, 400sh, 355s, 330sh, 290s, 250.

O547 Lithium magnesium manganese(IV) oxide spinel-type Li2MgMn3O8
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Origin: Synthetic.
Description: Prepared by solid-state reaction using Li2CO3, MnO2, and MgO. Characterized by

powder X-ray diffraction data. Cubic, space group Fd3m, a ¼ 8.2794(2) Å.
Kind of sample preparation and/or method of registration of the spectrum: TlBr disc. Absorption.
Source: Strobel et al. (2003).
Wavenumbers (cm21): 633s, 489s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O548 Lithium manganese oxide spinel-type LiMn3+Mn4+O4

Origin: Synthetic.
Description: Prepared by solid-state reaction. Cubic, space group Fd3m, a ¼ 8.1967 Å. A normal

spinel containing Li at tetrahedral site and Mn at octahedral site.
Kind of sample preparation and/or method of registration of the spectrum: TlBr disc. Absorption.
Source: Strobel et al. (2003).
Wavenumbers (IR, cm21): 610, 500s, 435sh.
Note: For the vibrational spectra of LiMn3+Mn4+O4 see also Helan and Berchmans (2011) and Julien

et al. (1998). In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 627s, 588s, 486, 421, 368w.
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O549 Lithium niobateilmenite-type LiNbO3

Origin: Synthetic.
Description: Obtained by hydrothermal synthesis. Metastable modification isostructural with ilmenite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran et al. (1986).
Wavenumbers (IR, cm21): 783, 630sh, 595s, 500sh, 398, 318s, 245s.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 735s, 677w, 470, 381w, 291, 275, 214, 173w.

O550 Lithium zinc niobium oxide spinel-type LiZnNbO4
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Origin: Synthetic.
Description: Synthesized in the solid-state reaction between Li2CO3, ZnO, and Nb2O5 at 1000 �C for

10 h. Tetragonal, space group P4122, a ¼ 6.079, c ¼ 8.401 Å.
Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc.

Transmission.
Source: Keramidas et al. (1975).
Wavenumbers (IR, cm21): 798, 725, 662s, 590s, 572, 488s, 454, 437w, 405, 370s, 308s, 270, 240,

208, 196sh, 171, 158sh, 122w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 868w, 819s, 762w, 718, 684w, 616s, 589s, 582, 496, 460, 435,

366w, 335, 323, 300w, 266, 250s, 237s, 222s, 193, 155, 152, 134s, 120, 94s.

O551 Manganese(II) antimony(III) oxide MnSb2O4

Origin: Synthetic.
Description: Synthesized hydrothermally from the stoichiometric mixture of MnO and Sb2O3 in the

presence of 5% HF, at 500 �C. Tetragonal, space group P42/mbc, a¼ 8.7145, c¼ 6.0011 Å, Z¼ 4.
Sb has tetrahedral SbO3E coordination where E is a lone pair.

Kind of sample preparation and/or method of registration of the spectrum: KBr and CsI discs.
Transmission.

Source: Chater et al. (1986).
Wavenumbers (IR, cm21): 680, 647s, 569s, 495s, 385w, 340s, 250sh, 198, 170, 134, 96.5, 79.
Note: In the cited paper, Raman spectrum is given. For the vibrational spectra of MnSb2O4 see also

Gavarri et al. (1988).
Wavenumbers (Raman, cm21): 670s, 620, 547w, 527, 473.5sh, 465, 398.5w, 350, 345sh, 292s,

254.5, 221, 215, 189, 155.5, 124s, 118w, 112w, 105s, 52, 47.
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O552 Nickel manganese(IV) oxide Ni6MnO8

Origin: Synthetic.
Description: Prepared by addition an excess of oxalic acid to boiled solution of Ni(II) and Mn

(II) acetates in acetic acid (25%) with subsequent drying and calcination at 873 K for 3 h.
Characterized by powder X-ray diffraction data. Cubic, space group Fm3m, a ¼ 8.306(3).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Porta et al. (1991).
Wavenumbers (cm21): 582sh, 562s, 482, 443s, 406sh, 331.

O553 Potassium diuranate K2U2O7
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Origin: Synthetic.
Description: Prepared by heating stoichiometric mixture of U3O8 and K2CO3 in air. Characterized by

powder X-ray diffraction data. Orthorhombic, a ¼ 6.95(2), b ¼ 7.97(2), c ¼ 22.16(2) Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Volkovich et al. (1998).
Wavenumbers (IR, cm21): 816s, 778sh, 588, 554sh, 497sh, 452s, 401sh, 361sh, 292.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 778s, 562w, 491w, 434, 336, 287, 267w, 245w, 150sh, 133, 100w.

O554 Potassium niobate KNbO3

Origin: Synthetic.
Description: Synthesized hydrothermally from Nb2O5 and KOH at 200 �C. Characterized by powder

X-ray diffraction data and electron microprobe analysis. Orthorhombic, a ¼ 5.697, b ¼ 3.971,
c ¼ 5.721 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Wang et al. (2007).
Wavenumbers (cm21): 875, 846, 782sh, 656s, 526s, 477sh, 412s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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O555 Potassium niobate KNb7O18 KNb7O18

Origin: Synthetic.
Description: Structurally related to TlNb7O18 (tetragonal, space group P4/mbm, a ¼ 27.50,

c ¼ 3.94 Å, Z ¼ 8).
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Bhide et al. (1980).
Wavenumbers (cm21): 845sh, 725s, 640s, 590s, 480, 435, 360, 270.

O556 Potassium niobate perovskite-type KNbO3
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Origin: Synthetic.
Description: Prepared in a solid-state reaction, by double-ply heating the stoichiometric mixture of

Nb2O5 and KNO3 at 1000 �C for 1 h with intermediate grinding. Structurally related to perovskite.
Orthorhombic, space group Bmm2, a ¼ 5.697, b ¼ 3.971, c ¼5.721 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc and
polyethylene matrix. Transmission.

Source: Rocchiccioli-Deltcheff (1973).
Wavenumbers (cm21): 750sh, 625s, 550sh, 370, 180.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O557 Potassium niobate tungstate KNbWO6

Origin: Synthetic.
Description: Prepared by the solid-state reaction between WO3, Nb2O5, and KNO3 at 973 K. The

crystal structure solved by the Rietveld method is related to that of pyrochlore. Cubic, space group
Fd3m, a ¼ 10.5001(7), V ¼ 1057.67(2) Å3, Z ¼ 8. Dcalc ¼ 4.7529 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol
suspension. Absorption.

Source: Knyazev et al. (2010).
Wavenumbers (IR, cm21): 935sh, 719s, 618s, 408sh, 385s, 329sh, 255, 212, 142.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 934w, 861w, 664s, 576, 473w, 438w, 360w, 246sh, 196s, 152s.
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O558 Potassium tantalite perovskite-type KTaO3

Origin: Synthetic.
Description: Prepared in a solid-state reaction, by double-ply heating the stoichiometric mixture of

Nb2O5 and KNO3 at 1230 �C for 4 h with intermediate grinding. Structurally related to perovskite.
Cubic, a ¼ 3.989 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc and
polyethylene matrix. Transmission.

Source: Rocchiccioli-Deltcheff (1973).
Wavenumbers (cm21): 755sh, 605s, 340.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O559 Potassium tantalate tungstate KTaWO6
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Origin: Synthetic.
Description: Prepared by the solid-state reaction between WO3, Nb2O5, and KNO3 at 973 K. The

crystal structure solved by the Rietveld method is related to that of pyrochlore. Cubic, space group
Fd3m, a ¼ 10.4695(1), V ¼ 1147.57(3) Å3, Z ¼ 8. Dcalc ¼ 5.8197 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol
suspension. Absorption.

Source: Knyazev et al. (2010).
Wavenumbers (IR, cm21): (933sh), 719s, 629s, 412s, 382sh, 340, 263sh, 203, 133.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 937, 870, 664s, 580sh, 481w, 452w, 359w, 248s, 191s, 145s.

O560 Potassium urinate K2UO4

Origin: Synthetic.
Description: Prepared by heating stoichiometric mixture of U3O8 with K2CO3 at 800 �C for several

hours, with several intermediate grindings. Characterized by powder X-ray diffraction data. Tetrag-
onal, a ¼ 4.31(2), c ¼ 13.09(2) Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Volkovich et al. (1998).
Wavenumbers (IR, cm21): 833w, 728s, 648sh, 611sh, 571s, 540s, 472sh, 395sh, 327sh, 261sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 694s, 492, 439, 344w, 293w, 221, 168.
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O561 Sodium diuranate Na2U2O7

Origin: Synthetic.
Description: Prepared by heating stoichiometric mixture of U3O8 and Na2CO3 in air. Characterized by

powder X-ray diffraction data. Orthorhombic, a ¼ 6.77(1), b ¼ 7.97(1), c ¼ 18.32(1) Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Volkovich et al. (1998).
Wavenumbers (IR, cm21): 827s, 793, 767, 634sh, 602sh, 568s, 537sh, 486sh, 449s, 418sh, 347w,

278.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 826w, 788s, 779s,752, 599sh, 584, 536w, 420s, 357w, 313s,

274, 233, 202, 146, 117s, 100w.

O562 Sodium stannate Na4SnO4
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Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Kessler et al. (1979).
Wavenumbers (IR, cm21): 680, 650s, 360, 290s, 260, 230.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 679, 664s, 638, 612w, 310, 235, 212w, 180, 160, 145, 100.

O563 Sodium tantalite perovskite-type NaTaO3

Origin: Synthetic.
Description: Prepared in a solid-state reaction, by double-ply heating the stoichiometric mixture of

Ta2O5 and NaNO3 at 1200 �C for 6 h and for 12 h with intermediate grinding. Structurally related to
perovskite. Orthorhombic, space group Pc21n, a � 5.51–5.52, b � 7.75–7.79, c � 5.48–5.50 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc and
polyethylene matrix. Transmission.

Source: Rocchiccioli-Deltcheff (1973).
Wavenumbers (cm21): 750sh, 680s, 590s, 365sh, 340, 310sh, 217sh, 173, 127.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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O564 Sodium uranate Na2UO4

Origin: Synthetic.
Description: Prepared by heating stoichiometric mixture of U3O8 and Na2CO3 at 800 �C for several

hours, with several intermediate grindings. Characterized by powder X-ray diffraction data. Ortho-
rhombic, a ¼ 6.77(1), b ¼ 7.97(1), c ¼ 18.32(1) Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Volkovich et al. (1998).
Wavenumbers (IR, cm21): 809w, 774s, 732s, 706w, 518s, 488, 453s, 310, 257s.
Note: The IR data are taken from Volkovich et al. (1998). There are strong discrepancies between these

data and the figure of the IR spectrum of Na2UO4 given in this paper. In the cited paper, Raman
spectrum is given.

Wavenumbers (Raman, cm21): 736w, 712s, 547w, 506w, 442w, 362w, 329w, 238s, 177w, 140w.

O565 Sodium yttrium titanate NaYTiO4

Origin: Synthetic.
Description: Tetragonal, structurally related to perovskite. The structure based on double layers of Y3+

ions and double layers of Na+ ions perpendicular to the c axis.
Kind of sample preparation and/or method of registration of the spectrum: No data in the cited

paper.
Source: Blasse and van den Heuvel (1974).
Wavenumbers (cm21): 878, 760w, 624s, 594s, 518w, 459, 377s, 288, 259sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The band at 878 cm�1 is ascribed by the authors to stretching vibrations of the Ti–O bond
directed towards the Na-layers. In the cited paper, a figure of the Raman spectrum is given.
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O566 Strontium aluminum hydroxide Sr3Al2(OH)12

Hydrogarnet Sr3Al2(OH)12 Sr3Al2(OH)12

Origin: Synthetic.
Description: Prepared hydrothermally. Characterized by powder X-ray diffraction data. Cubic, struc-

turally related to garnet-group minerals.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Li et al. (1997).
Wavenumbers (cm21): 3643s, 3430, 1715w, 1624, 1445, 1369, 1095w, 1048w, 1002w,

839, 776, 505s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O567 Strontium cerium antimonate perovskite-type Sr2CeSbO6
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Origin: Synthetic.
Description: A compound with ordered perovskite-type structure prepared by heating a mixture of

SrCO3, Ce2(CO3)3, and Sb2O5, taken in stoichiometric ratio, at 1350 �C for 15 h. Characterized by
powder X-ray diffraction data and energy dispersive X-ray spectrum. Orthorhombic, a ¼ 8.84,
b ¼ 6.22, c ¼ 5.83 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bharti, and Sinha (2010).
Wavenumbers (cm21): 1443w, 670s, 550.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The weak band at 1443 cm�1 may correspond to the admixture of a carbonate.

O568 Strontium magnesium niobate Sr3MgNb2O9

Origin: Synthetic.
Description: A compound with ordered perovskite-type structure prepared by a solid-state reaction

technique. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc (?).

Transmission.
Source: Blasse, and Corsmit (1974).
Wavenumbers (IR, cm21): 660s, 540, 450sh, 395s, 370s, 340s, 315, 285w, 250w, 225w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 830s, 535w, 455, 400, 310w, 240w.
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O569 Tellurite rhombohedral polymorph TeO3

Origin: Synthetic.
Description: Prepared by stepwise heating a mixture of α-TeO2 and I2O5 (with the molar ratio 1:2) at

250, 280, and 310 �C (for 2 h at each temperature) and 340 �C for 24 h. Characterized by powder
X-ray diffraction data. Rhombohedral, a ¼ 5.00383, c ¼ 13.22429 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Cornette et al. (2011).
Wavenumbers (IR, cm21): 855sh, 794s, 780sh, 490sh, 439s, 331, 270s, 239.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 844, 663w, 487, 333s, 261.

O570 Tellurium(IV) tin oxide Te3SnO8 Te3SnO8
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Origin: Synthetic.
Description: Prepared by heating a mixture of TeO2 and SnO2 taken in stoichiometric amounts, at

700–750 �C for 12–15 h with several intermediate grindings. Cubic, space group Ia3, Z ¼ 8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Botto and Baran (1981).
Wavenumbers (cm21): 788, 743, 708s, 482, 403sh, 375s, 290w.

O571 Tellurium(IV) titanium oxide Te3TiO8 Te3TiO8

Origin: Synthetic.
Description: Prepared by heating a mixture of TeO2 and TiO2 taken in stoichiometric amounts, at

700–750 �C for 12–15 h with several intermediate grindings. Cubic, space group Ia3, Z ¼ 8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Botto and Baran (1981).
Wavenumbers (cm21): 758, 665s, 610s, 484, 430sh, 382sh, 358s.
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O572 Tellurium(IV) zirconium oxide Te3ZrO8 Te3ZrO8

Origin: Synthetic.
Description: Prepared by heating a mixture of TeO2 and ZrO2 taken in stoichiometric amounts, at

700–750 �C for 12–15 h with several intermediate grindings. Cubic, space group Ia3, Z ¼ 8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Botto and Baran (1981).
Wavenumbers (cm21): 778, 698, 650s, 472w, 410sh, 355, 290.

O573 Tin(IV) hydroxide Sn(OH)4
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Origin: Synthetic.
Description: Synthesized by dissolving tin metal in concentrated HCl followed by addition of

concentrated NH4OH.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Prodjosantoso et al. (2015).
Wavenumbers (cm21): 3436s, 1625, 1402w, 580s.

O574 Tungsten trioxide monoclinic WO3

Origin: Synthetic.
Description: Obtained as a result of thermal decomposition of (NH4)10W12O41�nH2O at 1223 K for

5 h. Characterized by powder X-ray diffraction data. Monoclinic, space group P21/n, a ¼ 7.319,
b ¼ 7.556, c ¼ 7.722 Å, β ¼ 90.48� (see JCPDS card 43-1035).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Kustova et al. (2011).
Wavenumbers (cm21): 943sh, 900sh, 873s, 815s, 777s, 766sh, 730sh, 631sh, 415sh, 390, 377, 362sh,

341, 325, 287, 273w, 228w.
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O575 Tungsten trioxide orthorhombic WO3

Origin: Synthetic.
Description: Obtained as a result of thermal decomposition of (NH4)10W12O41�nH2O at 873 K for 6 h.

Characterized by powder X-ray diffraction data. Orthorhombic, space group Pcnb, a ¼ 7.339,
b ¼ 7.574, c ¼ 7.742 Å (see JCPDS card 20-1324).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Kustova et al. (2011).
Wavenumbers (cm21): 930sh, 867sh, 815s, 768s, 705sh, 644sh, 374, 360sh, 325, 285, 230w.

O576 Tungsten trioxide triclinic WO3
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Origin: Synthetic.
Description: Obtained by mechanical treatment (grinding and pressing) of monoclinic WO3.

Characterized by powder X-ray diffraction data. Orthorhombic, space group P-1, a ¼ 7.309,
b ¼ 7.522, c ¼ 7.671 Å, α ¼ 88.8�, β ¼ 90.93�, γ ¼ 90.93� (see JCPDS card 32-1395).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Kustova et al. (2011).
Wavenumbers (cm21): 908sh, 866sh, 823s, 765s, 719sh, 627sh, 389sh, 378sh, 358, 325, 309, 299,

282w, 257, 229w.

O577 Vanadium oxide bariandite-type V10O24∙9H2O

Origin: Synthetic.
Description: Mixed valence vanadium(IV)/(V) nanostructured oxide with a bariandite-like structure

prepared by sol-gel processing of themolecular vanadium(IV) alkoxide [V2(OPr
i)8]

(OPri ¼ isopropoxide).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Menezes et al. (2009).
Wavenumbers (IR, cm21): 1632, 1396, 1261w, 1158w, 1104w, 1062w, 1001, 758, 669, 544s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1022, 908s, 518s, 429w, 409w, 270s.
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O578 Yttrium iron antimony(V) oxide pyrochlore-type Y2FeSbO7

Origin: Synthetic.
Description: Prepared by heating a mixture of Y2O3, Fe2O3, and Sb2O3, taken in stoichiometric

amounts, at 1150 �C for 4.5 h. Characterized by powder X-ray diffraction data. Cubic,
a ¼ 10.223 Å. Dcalc ¼ 5.811 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Jana et al. (2016).
Wavenumbers (cm21): 642s, 564w, 535sh, 512sh, 495, 490, 478sh, 465, 455, 447, 432s, 429sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O579 Yttrium oxide Y2O3
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Origin: Synthetic.
Description: Commercial reactant. Characterized by powder X-ray diffraction data. Cubic, space

group Ia3.
Kind of sample preparation and/or method of registration of the spectrum: Thin powdery film on

polyethylene sheet. Transmission.
Source: White and Keramidas (1972).
Wavenumbers (IR, cm21): 562s, 465s, 408s, 346, 311, 243.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 603, 576w, 480s, 440, 389s, 337, 325, 236w, 162.

O580 Franklinite ZnFe2O4

Origin: Synthetic.
Description: Prepared using a conventional ceramic technique. Characterized by powder X-ray

diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Srinivasan et al. (1984).
Wavenumbers (cm21): 660sh, 550s, 415s, 338.
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O581 Zinc stannate ZnSnO3

Origin: Synthetic.
Description: Prepared in the reaction between solid Li2SnO3 and ZnCl2 melt. Characterized by

powder X-ray diffraction data and electron probe microanalysis. Isostructural with ilmenite.
Trigonal, space group R-3, a ¼ 5.2835, c ¼ 14.0913 Å, Z ¼ 6. The strongest lines of the powder
X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.84 (20) (102), 2.79 (100) (104), 2.64 (88) (110),
1.918 (26) (204), 1.755 (45) (116), 1.553 (32) (214), 1.526 (25) (300).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Kovacheva and Petrov (1998).
Wavenumbers (cm21): 610, 552s, 501.

O583 Bismite α-Bi2O3
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Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Cahen et al. (1980).
Wavenumbers (cm21): 544w, 509, 460sh, 426, 374, 337, 269sh, 216s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O584 Bismutocolumbite BiNbO4

Origin: Synthetic.
Description: Prepared by stepwise heating of stoichiometric mixture of Bi2O3 and Nb2O5 at 700, 800,

and 900 �C for 6 h at each temperature. Characterized by powder X-ray diffraction data.
Orthorhombic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Rao and Buddhudu (2010).
Wavenumbers (IR, cm21): 1534w, 952w, 809, 680sh, 620s, 610sh, 538sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 984w, 840s, 746w, 621, 540, 474w, 422, 242s, 196s.
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O585 Bismutotantalite triclinic dimorph BiTaO4

Origin: Synthetic.
Description: Prepared from a mixture of oxides at 1373 K for 2 days. Characterized by powder X-ray

diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Zhang et al. (2009b).
Wavenumbers (cm21): 874, 661s, 616s, 563sh, 497w, 432.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O586 Braunite Mn2+Mn3+6O8(SiO4)
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Origin: Synthetic.
Description: Prepared from MnO2, MnCl2, and SiO2 above 615 �C (i.e. above the MnCl2 melting

point). Characterized by powder X-ray diffraction data. The crystal structure is solved. Tetragonal,
space group I41/acd, a ¼ 9.371(2), c ¼ 18.847(8) Å, V ¼ 571.6(3) Å3, Z ¼ 8.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull between
polyethylene plates. Absorption.

Source: Palvadeau et al. (1991).
Wavenumbers (cm21): 951s, 945sh, 710, 666sh, 619sh, 613s, 551, 519s, 479, 450, 419sh,

378, 373sh, 335sh, 317, 283w, 270w, 255w, 233, 218sh, 192w, 166w, 151w, 134w, 120w,
103w, 91w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

O587 Brizzite polymorph Na2Sb2O6

Origin: Synthetic.
Description: Structurally related to pyrochlore.
Source: Vandenborre et al. (1982).
Wavenumbers (cm21): 725s, 455s, 355, 250, 120w.
Note: A weak band between 500 and 600 cm�1 corresponds to H2O impurity.
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O588 Bromellite BeO

Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Hofmeister et al. (1987).
Wavenumbers (cm21): (1160sh), (1100sh), 1000, 780s, 751s, 710s, (680sh), (585sh).

O589 Brookite TiO2
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Origin: Synthetic.
Description: Nanocrystals prepared hydrothermally. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Yanqing et al. (2000).
Wavenumbers (cm21): 545s, 486, 437sh, 401s, 339s, 284sh, 264sh, 251s, 222sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O590 Brucite Co-analogue β-Co(OH)2

Origin: Synthetic.
Description: Nanoplates prepared hydrothermally from CoCl2 and NaOH at 120 �C for 3 h.

Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Zhan (2009).
Wavenumbers (cm21): 3633s, 1566w, 1394w, 675, 490s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands in the range of 600–1600 cm�1 may correspond to impurities.
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O591 Gamma-alumina γ-Al2O3

Origin: Synthetic.
Description: Obtained by calcining commercial boehmite at 550 �C for 5 h. Characterized by powder

X-ray diffraction data. γ-Al2O3 has tetragonally deformed defect spinel-type structure.
Kind of sample preparation and/or method of registration of the spectrum: Thin powdery layer

between two KBr windows. Absorption.
Source: Saniger (1995).
Wavenumbers (cm21): 1403w, 1184w, 1085w, 826s, 764sh, 634s, 506, 393.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O592 Chlormayenite Ca12Al14O32(□4Cl2)
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Origin: Synthetic.
Description: Synthesized by heating of a stoichiometric mixture of CaCO3, Al2O3, and CaCl2 first at

1323 K for 16 h and thereafter at 1473 K for 24 h with intermediate grinding. Characterized by
powder X-ray diffraction data, neutron powder diffraction, and EDX analysis. The crystal structure
is solved. Cubic.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Schmidt et al. (2014).
Wavenumbers (cm21): 842s, 817s, 812sh, 783s, 614, 598, 571, 458s, 440, 405, 344s, 325sh, 312sh,

304sh, 278, 253sh, 246, 229, 209sh, 203w, 195sh, 171w, 150.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, the wavenumber 783 cm�1 is erroneously indicated as
738 cm�1.

O593 Chrysoberyl BeAl2O4

Origin: Colatine, Espirito, Santo, Brazil.
Description: The sample contains 3.1 wt% Fe2O3, which corresponds to 2.5 mol% BeFe2O4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and powder

dispersed in petroleum jelley. Absorption.
Source: Hofmeister et al. (1987).
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Wavenumbers (cm21): 1161sh, 1090, 1032sh, 1009sh, 967, 904, 774, 751sh, 736sh, 719sh, 673, 663,
642, 606, 584, 570s, 556s, 531s, 510s, 500sh, 490sh, 481sh, 470sh, 439, 415 (for a sample pressed
in a disc with KBr); 531s, 512s, 490sh, 480sh, 473, 440, 420sh, 400sh, 373sh, 367, 359sh,
322, 309w, 289w.

Note: In the cited paper, the wavenumber 531 cm�1 is erroneously indicated as 538 cm�1.

O594 Cochromite Ni-bearing Co0.9Ni0.1Cr2O4

Origin: Synthetic.
Description: Spinel-type compound obtained by annealing a mixture of Co(NO3)2�6H2O, Ni

(NO3)2�6H2O, and Cr(NO3)3�9H2O (taken in stoichiometric amounts and preheated at 400 �C) at
1000 �C for 24 h. Characterized by powder X-ray diffraction data. Cubic, a ¼ 8.3323 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol
mull. Transmission.

Source: Ptak et al. (2014).
Wavenumbers (IR, cm21): 664sh, 632s, 528s, 378, 198.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. For the vibration spectra of synthetic cochromite analogue see also Mączka
et al. (2013). In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 683, 601w, 514, 450, 195s.
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O595 Columbite-(Mn) Mn2+Nb2O6

Origin: Synthetic.
Description: Prepared using conventional solid-state reaction techniques. Characterized by powder

X-ray diffraction data. Orthorhombic, a ¼ 14.413(17), b ¼ 5.759(5), c ¼ 5.083(7) Å.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc (above

340 cm�1) and polyethylene film (below 340 cm�1). Transmission.
Source: Husson et al. (1977a, b).
Wavenumbers (IR, cm21): 865, 840sh, 822, 707s, 625s, 560s, 488s, 445sh, 368sh, 342s, 315, 302,

280s, 260, 245, 223, 208w, 188, 165, 152w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 877s, 823, 707w, 634w, 624w, 606, 531s, 487, 440w, 399, 386,

361, 315s, 298w, 288, 275, 264w, 245s, 215, 207, 179, 160w, 140s, 127, 113, 89s.

O596 Corundum α-Al2O3
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Origin: Synthetic.
Description: Irregular grains from 1 to 3 μm across.
Kind of sample preparation and/or method of registration of the spectrum: Free particles

dispersed in air. Absorption.
Source: Mutschke et al. (2013).
Wavenumbers (cm21): 833sh, 670s, 618s, 493, 466, 386w, 354w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O597 Delafossite Al analogue Cu1+AlO2

Origin: Synthetic.
Description: Synthesized from CuO and Al(NO3)3�9H2O by a sol-gel method using ethylene glycol as

solvent. Characterized by powder X-ray diffraction data. Trigonal, space group R-3m, a ¼ 2.852,
c ¼ 16.830 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Benreguia et al. (2015).
Wavenumbers (IR, cm21): (3460), 1637sh, 1385w, 949w, 772, 554s, 526s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands above 1600 cm�1 may correspond to adsorbed water. In the cited
paper, Raman spectrum is given. The band at 1385 cm�1 may correspond to the admixture of
potassium nitrate in KBr.

Wavenumbers (Raman, cm21): 773s, 417s, 255, 214.
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O598 Fluorcalciomicrolite (Ca,Na,□)2Ta2O6F

Origin: No data.
Description: The empirical formula is (electron microprobe): (Ca1.23Na0.745REE0.01Sr0.01)

(Ta1.78Nb0.08Ti0.08Si0.06)O6[F0.57(OH,O,□)0.43].
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Geisler et al. (2004).
Wavenumbers (IR, cm21): (1480w), 1105w, 1031, 1010, 912w, 876w, 740sh, 580s, 396s.
Note: Weak bands in the range from 2300 to 2400 cm�1 correspond to atmospheric CO2. The weak

band at 1480 cm�1 may correspond to the admixture of a carbonate. In the cited paper, Raman
spectrum is given.

Wavenumbers (Raman, cm21): 835, 690s, 504s, 341, 295, 155.

O599 Fluornatropyrochlore (Na,Pb,Ca,REE,U)2Nb2O6F
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Origin: Boziguoer REE deposit, Baicheng County, Akesu, Xinjiang, China (type locality).
Description: A grain from the holotype specimen.
Kind of sample preparation and/or method of registration of the spectrum: Reflection.
Source: Yin et al. (2015).
Wavenumbers (cm21): 932.
Note: The spectrum is wrong. The main broad band at 932 cm�1 may correspond to an anhydrous

metamict silicate [possibly, thorite or chevkinite-(Ce)] that are present in the association with
fluornatropyrochlore.

O601 Gallium hydroxyde hydrate Ga(OH)3∙nH2O Ga(OH)3∙nH2O

Origin: Synthetic.
Description: Obtained by addition of hot water and tetramethylammonium hydroxide solution to the

solution of gallium(III)-isopropoxide dissolved in 2-propanol. X-ray amorphous.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Ristić et al. (2005).
Wavenumbers (cm21): 3443s, 2000w, 1634, 1542w, 1383sh, 1362, 1040sh, 912, 650s, 482s, 345s,

278sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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O602 Harmunite cubic polymorph CaFe2O4

Origin: Synthetic.
Description: Nanoparticles synthesized from a stoichiometric mixture of calcium chloride and iron

(III) nitrate by a sol-gel technique with subsequent annealing. Characterized by powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: An et al. (2015).
Wavenumbers (cm21): 3431, 1625w, 1445, 869w, 690, 624s, 557s, 466sh, 447.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The bands at 3431 and 1625 cm�1 may correspond to water molecules adsorbed on the
surface of the nanoparticles. The bands at 1445 and 869 cm�1 may correspond to the admixture of a
carbonate. The assignment of the band at 1445 cm�1 given in the cited paper is erroneous.

O603 Hausmannite Mn2+Mn3+2O4
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Origin: Synthetic.
Description: Prepared by heating MnCO3 at 1185 �C for 5 h. Characterized by powder X-ray

diffraction data. Tetragonal.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Brabers (1969).
Wavenumbers (cm21): 674sh, 617s, 600sh, 513s, 417, 380sh, 351, 242w
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O604 Hydrokenomicrolite (□,H2O)2Ta2(O,OH)6(H2O)

Origin: Artificial.
Description: Prepared by treating natural fluorcalciomicrolite at 175 �C in a 1 M HCl-CaCl2 solution

for 14 days. The grains are heterogeneous, with fluorcalciomicrolite core and hydrokenomicrolite
outer zones.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Geisler et al. (2004).
Wavenumbers (IR, cm21): 3440, 3230w, 1630w, 1086, 1061, 676s, 402s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the range from 2300 to 2400 cm�1 correspond to atmospheric
CO2. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 1115w, 800, 637, 549, 515, 338s, 302, 248sh, 159, 138, 120.
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O605 Ilsemannite Mo3O8∙nH2O (?)

Origin: Synthetic.
Description: Blue amorphous product of ultrasound irradiation of a slurry of molybdenum

hexacarbonyl. Characterized by DSC and TG data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Dhas and Gedanken (1997).
Wavenumbers (cm21): 3415, 3180, 1621, 1412, 986, 765s, 712sh, 587, 535sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The assignment of the band at 1412 cm�1 made by the authors of the cited paper is
questionable. Weak bands in the range from 2800 to 3000 cm�1 correspond to the admixture of an
organic substance.

O606 Iwakiite-hausmannite intermediate member Mn2+(Mn3+Fe3+)O4
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Origin: Synthetic.
Description: Prepared by heating MnCO3 at 1360 �C for 5 h in air. Characterized by powder X-ray

diffraction data. Tetragonal.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Brabers (1969).
Wavenumbers (cm21): 660sh, 580s, 439s, 344sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O607 Kyawthuite Bi3+Sb5+O4

Origin: Chaung-gyi-ah-le-ywa, Chaung-gyi valley, 5 km north-northeast of the town of Mogok, Pyin-
Oo-Lwin district, Myanmar (type locality).

Description: Reddish orange faceted waterworn crystal of gem quality from alluvium. Holotype (and
the only known) sample. The crystal structure is solved. Monoclinic, space group I2/c, a ¼ 5.4624
(4), b¼ 4.88519(17), c¼ 11.8520(8) Å, β ¼ 101.195(7)�, V¼ 310.25(3) Å3, Z¼ 4. Dmeas ¼ 8.256
(5) g/cm3, Dcalc ¼ 8.127 g/cm3. The empirical formula is (Bi3+0.83Sb

3+
0.18)(Sb

5+
0.99Ta

5+
0.01)O4.

The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.266 (100)
(�112), 2.900 (66) (112), 2.678 (24) (200), 2.437 (22) (020, –114), 1.8663 (21) (024), 1.8026
(43) (�116, 220, 204), 1.6264 (23) (�224, 116), 1.5288 (28) (312, –132).

Kind of sample preparation and/or method of registration of the spectrum: Specular reflection.
Source: Kampf et al. (2016i).
Wavenumbers (IR, cm21): 760sh, 722s, 685s, 641sh, 527sh, 510–430 (broad, with an extremum at

488 cm�1).
Note: Natural origin of kyawthuite is questionable and is to be confirmed by independent finds. In the

cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 793, 736, 453s, 396s, 322, 258, 173s.
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O608 Layered perovskite BaBi2Ta2O9 BaBi2Ta2O9

Origin: Synthetic.
Description: Prepared by solid-state reaction of BaCO3, Bi2O3, and Ta2O5 at 1000 �C for 72 h with

intermediate grindings. Characterized by powder X-ray diffraction data. Tetragonal, space group I4/
mmm, a ¼ 3.954, c ¼ 25.487 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Li et al. (2008).
Wavenumbers (cm21): 809.5, 631s, 512.

O609 Layered perovskite CaBi2Ta2O9 CaBi2Ta2O9
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Origin: Synthetic.
Description: Prepared by stepwise heating of a stoichiometric mixture of CaCO3, Bi2O3, and Ta2O5,

first at 900 �C for 15 h, thereafter at 1000 �C for 15 h, and finally at 1200 �C for 24 h with
intermediate grindings. Characterized by powder X-ray diffraction data. Orthorhombic, space group
A21am, a ¼ 5.467, b ¼ 5.427, c ¼ 24.931 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Li et al. (2008).
Wavenumbers (cm21): 782, 622s, 551.

O610 Layered perovskite SrBi2Ta2O9 SrBi2Ta2O9

Origin: Synthetic.
Description: Prepared by stepwise heating of a stoichiometric mixture of SrCO3, Bi2O3, and Ta2O5,

first at 900 �C for 15 h, thereafter at 1000 �C for 15 h, and finally at 1200 �C for 24 h with
intermediate grindings. Characterized by powder X-ray diffraction data. Orthorhombic, space group
A21am, a ¼ 5.473, b ¼ 5.527, c ¼ 25.031 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Li et al. (2008).
Wavenumbers (cm21): 786, 629s, 558.
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O611 Lueshite NaNbO3

Origin: Synthetic.
Description: Prepared by heating a stoichiometric mixture of NaNO3 and Nb2O5 at 1000 �C for 1 h.

Characterized by powder X-ray diffraction data. Orthorhombic, space group Pbma, a ¼ 5.666,
b ¼ 15.520, c ¼ 5.506 Å.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc.
Transmission.

Source: Rocchiccioli-Deltcheff (1973).
Wavenumbers (cm21): 680sh, 625s, 550sh, 375, 335, 290, 260.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O612 Metastudtite UO3∙2H2O
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Origin: Synthetic.
Description: Obtained by dehydrating synthetic studtite at 90 �C for 48 h. Characterized by powder

X-ray diffraction and thermoanalytical data. Orthorhombic, space group Pnma, a ¼ 8.4184(4),
b ¼ 8.7671(4), c ¼ 6.4943(3) Å, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Guo et al. (2014a).
Wavenumbers (IR, cm21): 3153.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1725, 1652, 869s, 829s. 478w, 356, 280, 190, 156.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O613 Minium Pb2+2Pb
4+O4

Origin: Synthetic.
Description: Commercial reactant. Tetragonal, space group P42/m.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Vigouroux et al. (1982).
Wavenumbers (IR, cm21): 526, 512sh, 448s, 379s, 322s, 281.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 549s, 477, 391s, 313, 232, 152w, 121s, 76, 34w.
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O614 Mopungite NaSb(OH)6

Origin: Synthetic.
Description: Obtained by boiling aqueous solution of NaCl with potassium antimonate.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Siebert (1959).
Wavenumbers (cm21): 3400, 3280sh, 3220s, 2145, 1635w, 1120sh, 1105s, 1075sh, 1030, 775, 735,

695, 628s, 600sh, 586s, 528.

O615 Nichromite Ni2CrO4

Origin: Synthetic.
Description: Synthesized by heating a mixture of corresponding nitrates. Characterized by powder

X-ray diffraction data. Cubic. Contains ~25% admixture of tetragonal (pseudocubic), phase, space
group I41/amd. For the main phase, a ¼ 8.3186(2).

Kind of sample preparation and/or method of registration of the spectrum: A spectrometer fitted
with a photoacoustic detector was used.
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Source: Hosterman et al. (2013).
Wavenumbers (IR, cm21): No quantitative data (only a figure of the IR spectrum is given).
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 678, 508, 427, 190.

O616 Oxybetafite-(Gd) Gd2Ti2O7

Origin: Synthetic.
Description: Obtained using a solid-state reaction technique. Characterized by powder X-ray diffrac-

tion data. Cubic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Knop et al. (1969).
Wavenumbers (cm21): 555s, 460s, 411, 390sh, 295.

O617 Oxybetafite-(Sm) Sm2Ti2O7
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Origin: Synthetic.
Description: Obtained using a solid-state reaction technique. Characterized by powder X-ray diffrac-

tion data. Cubic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Knop et al. (1969).
Wavenumbers (cm21): 539, 445s, 390s, 290.

O618 Oxybismuthobetafite Bi2Ti2O7

Origin: Synthetic.
Description: Obtained using a solid-state reaction technique. Characterized by powder X-ray diffrac-

tion data. The symmetry is not cubic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Knop et al. (1969).
Wavenumbers (cm21): 500s, 437s.

O619 Paramelaconite Cu1+2Cu
2+

2O3
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Origin: Synthetic.
Description: Prepared by oxidation of Cu2O or reduction of CuO. Trtragonal, a � 5.84, c � 9.93 Å.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Djurek et al. (2015).
Wavenumbers (cm21): 590sh, 538s, 512sh, 450, 322w.

O620 Pyrophanite MnTiO3

Origin: Synthetic.
Description: Prepared using solid-state reaction techniques. Characterized by powder X-ray

diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.
Source: Baran and Botto (1978).
Wavenumbers (cm21): 690, 600sh, 547s, 440s, 405, 333, 270, 215w.

O621 Rutile TiO2
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Origin: Unknown.
Description: Natural fibrous crystals included in quartz.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Peng et al. (1995).
Wavenumbers (cm21): 745sh, 610s, 535sh, 395.

O622 Schoenfliesite MgSn(OH)6

Origin: Pitkäranta, Karelia, Russia.
Description: Fibrous affregate from the association with serpentine, chlorite, chondrodite, diopside,

luorite, calcite, dolomite, magnetite, and cassiterite. Cubic, a ¼ 7.77(1). Dmeas ¼ 3.32 g/cm3,
Dcalc ¼ 3.49 g/cm3. The empirical formula is (Mg0.94Mn0.13)Sn0.97(OH)6.00. The strongest lines of
the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.495 (60) (111), 3.898 (100) (200),
2.758 (60) (220), 2.349 (40) (311), 1.741 (50) (420).

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.
Transmission.

Source: Nefedov et al. (1977).
Wavenumbers (cm21): 3230sh, 3160s, 2260w, 1165s, 1089, 1025sh, 960sh, 835, 760s, 647sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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O623 Sodium titanate Na2Ti3O7 Na2Ti3O7

Origin: Synthetic.
Description: Prepared by using a stoichiometric molar ratio of Na2CO3 and TiO2 (rutile) at 1250 �C

for 4 h. Characterized by powder X-ray diffraction data. Monoclinic. The crystal structure contains
distorted TiO5 pyramid.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Peng et al. (1995).
Wavenumbers (cm21): 918, 881, 730sh, 684s, 593sh, 550s, 493s, 475s, 425, 380w.

O624 Lepidocrocite Fe3+O(OH)
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Origin: Hilarion mine, Agios Konstantinos, Lavrion mining District, Attikí (Attika, Attica) Prefecture,
Greece.

Description: Yellowish-brown columnar aggregate from the association with goethote and hematite.
Pseudomorph after rail. The sample was kindly granted by I.V. Pekov. Confirmed by the IR
spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (3500sh), 3105s, 2880sh, 1976w, 1894w, 1155, 1020s, 892, 788, 748, 570sh,

528s, 483s.
Note: The spectrum was obtained by N.V. Chukanov.

O625 Spertiniite Cu(OH)2

Origin: Synthetic.
Description: Acicular crystals. Confirmed by powder X-ray diffraction data and electron microdif-

fraction pattern.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Rodríguez-Clemente et al. (1994).
Wavenumbers (cm21): 3560s, 3292s, 1725, 1620w, 1465w, 1380w, 917, 689s, 636, 514, 484, 448,

412s, 284sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 1620 cm�1 corresponds to adsorbed water. Weak bands in the
range from 2800 to 3000 cm�1 correspond to the admixture of an organic substance.
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O626 Sphaerobismoite β-Bi2O3

Origin: Synthetic.
Description: Orange crystals obtained by rapid pouring an aqueous solution of Bi2(NO3)3 into a

boiling solution of NaOH, followed by immediate filtration of the precipitate. Characterized by
powder X-ray diffraction data. Tetragonal, a ¼ 7.72, c ¼ 5.63 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Cahen et al. (1980).
Wavenumbers (cm21): 639, 580, 527, 489sh, 347, 222s, 211s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O627 Tantite Ta2O5
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Origin: Synthetic.
Description: A crystalline film deposited on Si substrate by using CVD at 430 �C and annealed at

800 �C for 10 min. Surface SiO2 was removed by using a diluted HF solution.
Kind of sample preparation and/or method of registration of the spectrum: A film 100 nm thick.

Absorption.
Source: Ono et al. (2001).
Wavenumbers (cm21): 570sh, 510, 210s.

O628 Tistarite Ti2O3

Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: Reflectance of a single

crystal.
Source: Lucovsky et al. (1977).
Wavenumbers (cm21): 448s, 343 (for E || c); 511, 451s, 376s, 280w (for E ⊥ c).

O629 Trevorite Co-analogue CoFe2O4

Origin: Synthetic.
Description: Synthesized from corresponding nitrates by a solid-state reaction technique at 1000 �C

for 24 h. Characterized by powder X-ray diffraction data. Cubic, space group Fd-3m.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Absorption.
Source: Ptak et al. (2014).
Wavenumbers (IR, cm21): 591, 460w, 384, 186w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 470.
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O630 Ulvospinel Zn-analogue TiZn2O4

Origin: Synthetic.
Description: Synthesized from corresponding oxides by a solid-state reaction technique at 1000 �C for

25 h. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Powder spread

uniformly over the surface of a polyethylene plate. Transmission.
Source: Keramidas et al. (1975).
Wavenumbers (IR, cm21): 674sh, 640sh, 590s, 50sh, 396s, 350.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 780, 722s, 567w, 541w, 478, 441w, 351, 344, 313s, 256, 156,

136, 117, 101.

O631 Vandenbrandeite Cu(UO2)(OH)4
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Origin: Kalongwe deposit, Shaba, province, Zaire (type locality).
Description: Green tabular crystals from the association with kasolite. Characterized by powder X-ray

diffraction data and electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Botto et al. (2002).
Wavenumbers (IR, cm21): 3508s, 3423s, 3262, 2845, 3100sh, 2247, 2035, 1943, 1643w, 1139,

1024, 978s, 897s, 859s, 842s, 803s,694, 655, 548s, 508s, 460s, 400s, 377s, 354s, 340s, 252s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 2233, 2018, 1946, 862, 805s, 474, 186.

O632 Vandenbrandeite hydrogen-free analogue CuUO4

Origin: Synthetic.
Description: Prepared in a solid-state reaction between CuO and UO3. The strongest lines of the

powder X-ray diffraction pattern [d, Å (I, %)] are: 5.08 (50), 4.15 (90), 3.76 (50), 3.44 (100), 3.26
(50), 2.71 (90).

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.
Transmission.

Source: Jakeš et al. (1968).
Wavenumbers (cm21): 877, 755s, ~700, 635sh, ~605, 583, ~544sh, ~510s, ~450s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, also IR spectra of MnUO4, MnU3O10, CoUO4, CoU3O10,
NiUO4, NiU3O10, CuU3O10, AgUO4, and HgUO4 are given.
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O633 Zincite ZnO

Origin: Synthetic.
Description: Commercial reactant.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Musić et al. (2003).
Wavenumbers (cm21): 529, 494s, 443s.

O634 Masuyite Pb(UO2)3O3(OH)2∙3H2O

Origin: Rum Jungle (?), northern Australia.
Description: Specimen No. 26494 from the collections of the Department of Geology and Mineralogy,

University of Queensland. Confirmed by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Wilkins (1971).
Wavenumbers (cm21): 1622, 1522w, 1391w, 1089, 1024, 900s, 796w, 778sh, 692sh, 503sh, 462s, 364s.
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O635 Sodium titanate Na2Ti6O13 Na2Ti6O13

Origin: Synthetic.
Description: Prepared by using a stoichiometric mixture of Na2CO3 and TiO2 (rutile) at 1250 �C for

4 h. Characterized by powder X-ray diffraction data. Monoclinic, with distorted TiO6 octahedra.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Peng et al. (1995).
Wavenumbers (cm21): 964s, 916sh, 816sh, 745, 702s, 560sh, 507s, 473, 447, 390w.

O640 Chibaite SiO2�n(CH4,C2H6,C3H8,C4H10) (nmax ¼ 3/17)

Origin: Arakawa, Minamiboso city, Chiba prefecture, Kanto region, Honshu Island, Japan (type
locality).

Description: White semitransparent crystals. Intergrowths with quartz.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3014w, 2970w, 2928w, 2880w, 2854w, 2003w, 1882w, 1165sh, 1113s,

1093s, 797, 780, 745sh, 695, 609w, 519, 464s, 398, 374.
Note: The bands at 1165, 797, 780, 695, 464s 398, and 374 cm�1 are partly due to quartz.
Note: The spectrum was obtained by N.V. Chukanov.

O641 Samarskite-(Y) (Y,Ce,U,Fe,Nb)(Nb,Ta,Ti)O4

Origin: Herrebøkasa, Aspedammen, Idd, Halden, Østfold, Norway.
Description: Black grains. X-ray amorphous, metamict. The empirical formula is (electron micro-

probe): (Y0.25U0.2Ca0.2Fe0.2Ln0.1)(Nb0.85Ti0.1Ta0.05)O9�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3300sh, 3192s (broad), 1626, 1520, 1403w, 965sh, 851, 593s, 390sh.
Note: The spectrum was obtained by N.V. Chukanov.

O642 Samarskite-(Yb) YbNbO4
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Origin: Little Patsy pegmatite (Patsy pegmatite), South Platte Pegmatite District, Jefferson Co.,
Colorado, USA (type locality).

Description: Black grains in pegmatite. X-ray amorphous, metamict. The empirical formula is (electron
microprobe): (Yb0.13Dy0.07Er0.04Y0.01La0.01)Ca0.24U0.12Th0.08Fe0.18Mn0.02(Nb0.93Ta0.11Ti0.01)�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3160s (broad), 1623, 1530sh, 1412w, 838, 607s, (390sh).
Note: The spectrum was obtained by N.V. Chukanov.

O643 Gauthierite KPb[(UO2)7O5(OH)7]∙8H2O

Origin: Shinkolobwe mine, Shinkolobwe, Katanga province, Democratic Republic of Congo (type
locality).

Description: Yellowish orange crystals from the association with soddyite and a metazeunerite–
metatorbernite series mineral. Holotype sample. The crystal structure is solved. Monoclinic,
space group P21/c, a ¼ 29.844(2), b ¼ 14.5368(8) Å, c ¼ 14.0406(7) Å, β ¼ 103.708(6)�,
V ¼ 5917.8(6) Å3, Z ¼ 8. Dcalc ¼ 5.437 g/cm3. Optically biaxial (�), α ¼ 1.780(5), β ¼ 1.815
(5), γ ¼ 1.825(5), 2V ¼ 70(5)�. The empirical formula is K0.67Pb0.78U7O34H23.77. The strongest
lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.28 (49) (020, 400), 3.566
(67) (040, –802, –204), 3.192 (100) (622, –224), 2.541 (18) (�842, –244), 2.043 (14) (406), 2.001
(23) (662,–264, 14.2.0), 1.962 (14) (426, –146), 1.783 (17) (12.0.4, –10.4.6).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a polycrystalline sample.

Source: Olds et al. (2016a).
Wavenumbers (IR, cm21): 3350sh, 3154 (broad), 2919, 2852, 1980w, 1607, 915s, 764w.
Note: The bands in the range from 2800 to 3000 cm�1 correspond to the admixture of an organic

substance. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 833s, 821s, 696, 558, 539, 464, 454, 403, 355, 328, 260, 204,

160, 128.
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O645 Amakinite (Fe2+,Mg)(OH)2

Origin: Synthetic.
Description: Mg-free, partly deuterated sample. The empirical formula is Fe2+(OH)1.7(OD)0.3.

Characterized by powder X-ray and neutron diffraction data. Trigonal, space group P-3m1,
a ¼ 3.2628(1), c ¼ 4.604(1) Å.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc.
Transmission.

Source: Lutz et al. (1994).
Wavenumbers (IR, cm21): 3624s, 2656, 1020w, 782sh, 488s, 395, 305s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 2656 cm�1 corresponds to D–O-stretching vibrations. In the
cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3573s, 407, 260.

O646 Clarkeite Na(UO2)O(OH)∙nH2O
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Origin: Synthetic.
Description: Obtained by precipitation generated in a uranyl peroxycarbonato complex solution at pH

14 controlled by NaOH, with subsequent drying in vacuum at 100 �C for 3 h.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Kim et al. (2009).
Wavenumbers (cm21): 3450s (broad), 2738w, 2090w (broad), 1845, 1636s, 1537, 1378, 1347,

1126w, 1048sh, 888s, 786w, 720w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O647 Duttonite V4+O(OH)2

Origin: Synthetic.
Description: Nanorods obtained by aqueous precipitation at pH 4.0 in the presence of hydrazine at

95 �C during 4.5 days. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection of a powdered sample.
Source: Besnardiere et al. (2016).
Wavenumbers (cm21): 1600, 1145w, 982, 905, 738, 536s, and broad bands near 2800 and

1900 cm�1).
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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O648 Häggite V3+V4+O2(OH)3

Origin: Synthetic.
Description: Nanorods obtained by aqueous precipitation at pH 3.6–3.8 in the presence of hydrazine at

95 �C during 4.5 days. Characterized by powder X-ray diffraction data. Monoclinic, a ¼ 12.208,
b ¼ 2.997, c ¼ 4.840 Å, β ¼ 98.29�

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of powdered sample.

Source: Besnardiere et al. (2016).
Wavenumbers (cm21): 1618w, 991, 860, 604sh, 536s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O649 Jianshuiite MgMn4+3O7∙3H2O
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Origin: Luzhai Mn deposit, Jianshui Co., Honghe Autonomous Prefecture, Yunnan, China (type
locality).

Description: Aggregate of dark brown microcrystals. Holotype sample. Characterized by powder
X-ray diffraction data. Triclinic, space group P-1, a ¼ 7.534(4), b ¼ 7.525(6), c ¼ 8.204(8) Å,
α ¼ 89.753(8)�, β ¼ 117.375(6)�, γ ¼ 120.000(6)�. Dmeas ¼ 3.50–3.60 g/cm3. The empirical
formula is (Mg0.85Mn2+0.05)Mn4+3.15O7.20�2.80H2O.

Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Yan et al. (1992).
Wavenumbers (cm21): 3396, 3352, 1635, 1096w, 1020w, 645sh, 620, 530s, 496s, 475s, 442s, 312sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the range from 2800 to 3000 cm�1 correspond to the admixture
of an organic substance.

O650 Mushistonite Cu2+Sn4+(OH)6

Origin: Mushiston Sn deposit, Kaznok valley, Penjikent, Zeravshan range, Tajikistan (type locality).
Description: Pseudomorphs after stannite. Holotype sample. Cubic, a ¼ 7.735 Å. The strongest lines

of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.88 (100) (111), 2,740 (50) (220),
2.230 (20) (222), 1.932 (16) (400), 1.729 (35) (420), 1.578 (23) (422).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Marshukova et al. (1984).
Wavenumbers (cm21): 3211s, 3093s, 1603, 1471, 1424, 1178s, 1117sh, 1087sh, 800, 745sh, 597sh,

540s, 495sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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O651 Orthobrannerite U4+U6+Ti4O12(OH)2

Origin: Dengzhong Co., Baoshan prefecture, Yunnan, China (type locality).
Description: Black crystals. Holotype sample. Metamict, X-ray amorphous. The strongest lines of the

powder X-ray diffraction pattern of a heated sample [d, Å (I, %)] are: 4.87 (70), 3.89 (80), 3.17
(100), 2.45 (90), 1.659 (90).

Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: X-ray Laboratory, Peking Institute of Uranium Geology, Wuhan Geological College (1978).
Wavenumbers (cm21): 3480, 1669w, 1620w, 1451, 1405sh, 1157w, 1078w, 1036w, 880, 581sh,

546s, 461sh, 391sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

O652 Pyrochroite Mn2+(OH)2

Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.
Source: Lutz et al. (1994).
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Wavenumbers (IR, cm21): 3631s, 1075w, 1029w, 950w, 606, 450s, 388sh, 290s.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3578s, 401, 234.

O653 Fluorcalciopyrochlore (Ca,Na)2(Nb,Ti)2O6F

Origin: Tatarka River, Krasnoyarskiy Kray, Siberia, Russia.
Description: Yellow-brown octahedral crystal. The empirical formula is (electron microprobe):

(Ca0.85Na0.19REE0.02)(Nb1.91Ti0.04Fe0.03Re0.02)(O,OH)6.36F0.64�nH2O (n � 1).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3426w, 1643w, 1145w, 1075sh, 955sh, 870sh, 725sh, 565s, 416s.
Note: The spectrum was obtained by N.V. Chukanov.

O654 Ferronigerite-2N1S (Al,Fe,Zn)2(Al,Sn)6O11(OH)
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Origin: Three Aloes Mine, Uis, Damaraland District, Kunene Region, Namibia.
Description: Orange-brown tabular crystal. The empirical formula is (electron microprobe):

Al5.97Fe0.79Zn0.15Mg0.07Cr0.02(Sn0.93Ti0.07)O11(OH).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3627w, 3473, 3352w, 1165sh, 1083, 975, 832, 765sh, 746, 712, 616s, 561s,

534s, 470s, 417, 399, 380sh.
Note: The spectrum was obtained by N.V. Chukanov.

O655 Hydroromarchite Sn2+3O2(OH)2

Origin: Synthetic.
Description: Yellow precipitate obtained by addition of water to diethylether solution of Sn(NMe2)2.

Characterized by TG and powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Khanderi et al. (2015).
Wavenumbers (IR, cm21): 3300s, (1623), 724, 544s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the ranges 1000–1500 and 2800–3000 cm�1 correspond to
the admixture of an organic substance. The band at 1623 cm�1 may correspond to adsorbed water
molecules. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 264, 229s, 186, 132s.
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O656 Kusachiite Cu2+Bi3+2O4

Origin: Synthetic.
Description: Prepared hydrothermally from bismuth acetate and copper nitrate in the presence of

NaOH at 140 �C for 12 h. Characterized by powder X-ray diffraction data. Tetragonal, space group
P4/ncc, a ¼ 8.567, c ¼ 5.791 Å, V ¼ 425.17 Å3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Yuvaraj et al. (2016).
Wavenumbers (IR, cm21): 890w, 648, 547s, 522s, 410.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published

spectrum. Bands above 1000 cm�1 correspond to impurities. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 575w, 399, 257s, 187w, 123s, 84w.

O657 Montroydite HgO

Origin: Synthetic.
Description: Commercial reactant. Characterized by powder X-ray diffraction data.
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Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Xhaxhiu et al. (2013).
Wavenumbers (cm21): 1122w, 600, 484.
Note: Bands above 1400 cm�1 correspond to impurities. For the IR spectrum of montroydite see also

Godelitsas et al. (2003).

O658 Romarchite SnO

Origin: Synthetic.
Description: Nanoparticles. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Krishnakumar et al. (2008).
Wavenumbers (cm21): 651s, 613sh, 535sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

O659 Zirconolite-2M (Ca,Y)Zr(Ti,Mg,Al)2O7
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Origin: Synthetic.
Description: Synthesized by a solid-state reaction method at 1400 �C for 16 h. Characterized by

powder X-ray diffraction data. Monoclinic, a ¼ 12.441, b ¼ 7.239, c ¼ 11.341 Å, β ¼ 100.694�.
The empirical formula is Ca0,83Ce0,17ZrTi1,66Al0.34O7.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Souag et al. (2015).
Wavenumbers (cm21): 685, 646, 517s, 473s, 413sh.
Note: The band position denoted by Souag et al. (2015) as 685 cm�1 was determined by us at

675 cm�1.

O660 Magnesiohögbomite-2N3S (Mg,Fe,Zn,Ti)4(Al,Fe)10O19(OH)

Origin: Zelentsovskaya pit, near Zlatoust, Chelyabinsk region, Southern Urals, Russia.
Description: Crystals from the association with clinochlore, magnetite, and spinel. Investigated by

I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Hexagonal, a ¼ 5.743(3),
c ¼ 23.10(2) Å, V ¼ 659.7(8) Å3. The empirical formula is (electron microprobe):
(Mg2.04Fe1.89Zn0.06Mn0.02)(Al9.52Ti0.77)O19(OH).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3435sh, 3332, 835sh, 705sh, 674s, 626s, 540s, 507s, 437.
Note: The spectrum was obtained by N.V. Chukanov.
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O661 Diaoyudaoite NaAl11O17

Origin: Technogenetic, from the slag of the Klyuchevskoi ferroalloy factory, Sverdlovsk region, Russia.
Description: Brown platy crystals from the association with corundum. Investigated by I.V. Pekov.

Characterized by single-crystal X-ray diffraction data. Hexagonal, a ¼ 5.618(10), c ¼ 22.62(3) Å,
V ¼ 618(2) Å3. The composition is close to that of diaoyudaoite end-member.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1120sh, 1069w, 819, 768s, 709s, 668, 624s, 599s, 553, 445, 380.
Note: The spectrum was obtained by N.V. Chukanov.

O662 Zincovelesite-6N6S Zn3(Fe
3+,Mn3+,Al,Ti)8O15(OH)
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Origin: “Mixed Series” metamorphic complex near the Nežilovo village, Jacupica Mountains,
Pelagonia mountain range, Macedonia (type locality).

Description: Black lenticular aggregates from the association with franklinite, gahnite, hetaerolite,
zincochromite, ferricoronadite, baryte, As-rich fluorapatite, dolomite, Zn-bearing talc, almeidaite,
etc. Holotype sample. The crystal structure is refined by the Rietveld technique. Trigonal, probable
space group P-3m1, a¼ 5.902(2) Å, c¼ 55.86(1) Å, V¼ 1684.8(9) Å3, Z¼ 6.Dcalc¼ 5.158 g/cm3.
The empirical formula is H1.05Zn3.26Mg0.21Cu0.05Fe

3+
3.18Mn3+2.32Al1.38Ti0.57Sb0.20O16. The stron-

gest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 2.952 (62) (110), 2.881
(61) (1.0.16), 2.515 (100) (204), 2.493 (88) (1.1.12), 2.451 (39) (1.0.20), 1.690 (19) (304, 2.1.16),
1.572 (19) (2.0.28), 1.475 (29) (221).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3407w, 817sh, 647, 605, 563s, 550sh, 484s, 400sh.
Note: The spectrum was obtained by N.V. Chukanov.

O663 Wölsendorfite Pb7(UO2)14O19(OH)4�12H2O

Origin: Shinkolobwe, Katanga (Shaba), Democratic Republic of Congo.
Description: Orange-red grains. Investigated by A.V. Kasatkin. The empirical formula based on

semiquantitative electron microprobe analysis is Pb5.3Ca1.0As0.4(UO2)14.35(O,OH)x�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3470s, 3344s, 1645, 1515, 1423, 992, 808s, 739, 707, 542w, 437s, 402.
Note: The spectrum was obtained by N.V. Chukanov.
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O664 Hydrocalumite Ca2Al(OH)6(Cl,OH)�3H2O

Origin: Bellerberg, near Ettringen, Eifel Mts., Rhineland-Palatinate (Rheinland-Pfalz), Germany.
Description: Colorless platy crystal from the association with ettringite. Confirmed by qualitative

electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3670, 3645s, 3629, 3598, 3500sh, 3475s, 3368, 3207, 3108, 2700sh, 2149w,

1973w, 1795w, 1641, 1404s, 990sh, 874, 804s, 713, 531s, 422s.
Note: The spectrum was obtained by N.V. Chukanov.

O665 Magnesiohögbomite-2N4S (Mg,Fe2+)10Al22Ti
4+

2O46(OH)2
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Origin: Kastor, Kirkkjokk, Sweden.
Description: Black grains. The empirical formula is (electron microprobe): (Mg5.64Fe4.26Mn0.12)

(Al23.2Fe0.80)(Ti1.87Fe0.13)O44(OH)2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3490sh, 3475, 1185sh, 1100sh, 667, 530s, 442, 370sh.
Note: The spectrum was obtained by N.V. Chukanov.

O667 Hyalite SiO2�H2O

Origin: Tarcal, Borsod-Abaúj-Zemplén Hungary.
Description: Colorless sinter aggregate.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3652w, 3471sh, 3324w, 2000w, 1879w, 1625w, 1185sh, 1104s,

797, 540sh, 470s.
Note: The spectrum was obtained by N.V. Chukanov. The spectrum is very close to that of quartz glass

but contains weak bands of H2O molecules.
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O668 Clinocervantite Sb3+Sb5+O4

Origin: Le Cetine di Cotorniano Mine, Chiusdino, Siena Province, Tuscany, Italy.
Description: Colorless acicular crystals.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1105sh, 1025sh, 745sh, 731, 654s, 470sh, 425s, 364s.
Note: The spectrum was obtained by N.V. Chukanov.

O669 Ishikawaite U1-xFeNb2O8
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Origin: Pit No. 298, Ilmenskiy Natural Reserve, Ilmeny Mts., Chelyabinsk region, Southern Urals,
Russia.

Description: Black prismatic crystal from the association with corundum. X-ray amorphous, metamict.
The empirical formula is (electron microprobe): U0.42Th0.18REE0.11Fe0.88Nb1.91Ti0.09O8�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3364 (broad), 1645w, 1088w, 825sh, 583s (broad), 463s, 400s.
Note: The spectrum was obtained by N.V. Chukanov.

O670 Samarskite-(Y) YFe3+Nb2O8

Origin: Blyumovskaya Pit (Pit No. 50), Ilmenskiy Natural Reserve, Ilmeny Mts., Chelyabinsk region,
Southern Urals, Russia (type locality).

Description: Black prismatic crystal. X-ray amorphous, metamict. Confirmed by qualitative electron
microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3418 (broad), 1655w, 1088w, 850sh, 599s, 530sh, 475sh.
Note: The spectrum was obtained by N.V. Chukanov.
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2.6 Fluorides and Fluorochlorides

F76 Carlhintzeite Ca2AlF7�H2O

Origin: Synthetic.
Description: Aggregate of colorless crystals from the association with pachnolite, strengite, and

tobermorite. Confirmed by qualitative electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3577, 3528, 1655, 1387w, 718, 638s, 575sh, 552s, 450, 405sh, 390, 380.
Note: The spectrum was obtained by N.V. Chukanov.

F77 Ammonium zirconofluoride (NH4)2ZrF6

Origin: Synthetic.
Description: Prepared by dissolving stoichiometric quantities of zirconium chloride and ammonium

fluoride in concentrated hydrofluoric acid. Orthorhombic, space group Pca21, Z ¼ 8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
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Source: Kruger and Heyns (1997).
Wavenumbers (IR, cm21): 3190, 3080, 2864w, 1690w, 1417s, 500s.
Note: The band at 1690 cm�1 indicates the presence of H2O. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3146s, 1698, 1412w, 536s, 475w, 377w.

F78 Barium magnesium fluoride BaMgF4

Origin: Synthetic.
Description: Synthesized hydrothermally from BaF2 and MgF2 in the presence of CF3COOH, at

230 �C for 24 h. Orthorhombic, space group Cmc21. Characterized by DSC and powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Kim et al. (2010b).
Wavenumbers (cm21): 511s, 483, 434.

F79 Barium manganese fluoride BaMnF4
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Origin: Synthetic.
Description: Synthesized hydrothermally from BaF2 and MnF2 in the presence of CF3COOH, at

230 �C for 24 h. Orthorhombic, space group Cmc21. Characterized by DSC and powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Kim et al. (2010b).
Wavenumbers (cm21): 624, 462, 425, 414s.

F80 Cesium hexafluorphosphate CsPF6

Origin: Synthetic.
Description: Prepared by crystallization from aqueous solution containing equimolar quantities of

HPF6 and Cs2CO3. Cubic, a ¼ 8.218 Å. The strongest lines of the powder X-ray diffraction pattern
[d, Å (I, %) (hkl)] are: 4.113 (100) (200), 2.9051 (29) (220), 2.4787 (29) (311), 2.3726 (8) (222),
1.8381 (9) (420).

Kind of sample preparation and/or method of registration of the spectrum: No data in the cited
paper.

Source: Heyns et al. (1981).
Wavenumbers (IR, cm21): 1410w, (1260w), 890sh, 850s, 790sh, 773sh, 743w, 665w, 559s, 76s.
Note: In the cited paper, Raman spectra with different polarization are given.
Wavenumbers (Raman, cm21): 744, 575–577, 472–475.
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F81 Cesium hexafluorphosphate CsPF6

Origin: Synthetic.
Description: Cubic, space group Fm3m, a ¼ 8.228(5) Å, V ¼ 557(1) Å3, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: English and Heyns (1984).
Wavenumbers (IR, cm21): 1405w, 890sh, 846s, 790w, 743w, 559s, 470s, 310w, 230w, 215w, 79.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 744, 578. 476.

F82 Cesium stibiofluoride CsSbF6
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Origin: Synthetic.
Description: Prepared from Cs2CO3, Sb2O5, and an excess of hydrofluoric acid. Characterized by

powder X-ray diffraction data. Trigonal, space group R-3m, a ¼ 7.9037, c ¼ 8.2543 Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr pellet and Nujol

mull. Transmission.
Source: De Beer et al. (1980).
Wavenumbers (cm21): 1300w, 1260w, 950w, 845w, 668sh, 655s, 635sh, 560w, 450w, 288sh, 280s,

180–195sh, 66s.

F83 Lithium hexafluorosilicate Li2SiF6

Origin: Synthetic.
Description: Crystals grown by pressure-induced crystallization at 5.5 GPa and 750 �C. Characterized

by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group P321,
a¼ 8.219(2), c¼ 4.5580(9) Å, V ¼ 266.65(8) Å3, Z¼ 3. Dcalc ¼ 2.914 g/cm3. Both Li and Si have
octahedral coordination.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Hinteregger et al. (2014).
Wavenumbers (IR, cm21): 705s, 675sh, 540w, 510, 460.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, a single-crystal Raman spectrum is given.
Wavenumbers (Raman, cm21): 1100, 660s, 500, 420.
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F84 Nickel antimonate fluoride Ni3Sb4O6F6

Origin: Synthetic.
Description: Green crystals obtained hydrothermally from NiF2 and Sb2O3 at 230 �C for 4 days. The

crystal structure is solved. Cubic, space group I-43m, a ¼ 8.0778(1), V ¼ 527.08(1) Å3, Z ¼ 2.
Dcalc ¼ 5.501 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Reflection.
Source: Hu et al. (2014).
Wavenumbers (cm21): 790sh, 726s, 530s, 487sh, 476w, 440s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

F85 Potassium antimony fluoride KSbF6

Origin: Synthetic.
Description: Tetragonal, space group P-42m, a ¼ 5.16(1), c ¼ 10.07(2) Å.
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Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Heyns and van den Berg (1995).
Wavenumbers (IR, cm21): 690sh, 661s, 635sh, 279s, 123, 70w, 49w, 32.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 661s, 575, 292s [with the z(yy)x polarization].

F86 Potassium manganese(III) fluoride K3MnF6

Origin: Synthetic.
Description: The crystal structure contains distorted MnF6

3� octahedron.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Wieghardt and Siebert (1971).
Wavenumbers (cm21): 565s, 394, 293, ~200.

F87 Potassium uranyl fluoride K3(UO2)F5
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Origin: Synthetic.
Description: Yellow crystals obtained by heating an aqueous solution containing stoichiometric

amounts of uranyl and potassium fluorides to 80 �C with subsequent cooling and adding ethanol.
Tetragonal, a ¼ 9.160, c ¼ 18.167 Å, Z ¼ 8. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.
Transmission.

Source: Ohwada et al. (1972).
Wavenumbers (cm21): 1655w, 860s, 376s, 289, 220, 195, 131, 118, 81w.

F88 Tetrammine zinc borofluoride [Zn(NH3)4](BF4)2

Origin: Synthetic.
Description: Orthorhombic, space group Pnma, a ¼ 10.523, b ¼ 7.892, c ¼ 13.354 Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Absorption.
Source: Mikuli et al. (2007).
Wavenumbers (IR, cm21): 3385s, 3310, 3240w, 3211w, 1628, 1383sh, 1277s, 1080sh, 1057s,

1039s, 769w, 702s, 523, 423, 354w, 175s, 83.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3381, 3314s, 3210, 1624, 1085w, 1045sh, 770s, 704w, 525, 436s,

355, 172s.
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F89 Uranyl fluoride UO2F2

Origin: Synthetic.
Description: Trigonal, space group R-3m.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.
Source: Ohwada (1972).
Wavenumbers (cm21): 260s, 234s, 146.

F90 Zinc hydroxyfluoride Zn(OH)F

Origin: Synthetic.
Description: Obtained by boiling an aqueous solution of ZnF2. Orthorhombic, space group Pna21, Z¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Transmission.
Source: Lutz et al. (1993).
Wavenumbers (cm21): 3562s, 3401s, 1028s, 898, 792s, 530w, 375s.

234 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



F91 Gananite BiF3

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. The crystal structure is solved.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull or

polyethylene disc.
Source: Ignat’eva et al. (2006).
Wavenumbers (cm21): 455w, 381w, 264s, 228s, 161s, 143sh, 109w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

F92 Waimirite-(Yb) YbF3
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Origin: Synthetic.
Description: Reagent grade commercial product. Orthorhombic.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Taylor et al. (1972).
Wavenumbers (cm21): 425, 345s, 275, 215.

F93 Heklaite
Origin: Synthetic.
Description: Colorless hexagonal dipyramid. Characterized by powder X-ray diffraction data. Ortho-

rhombic, a ¼ 9.3375(5), b ¼ 5.5009(3), c ¼ 9.7912(7) Å, V ¼ 502.92(4) Å3, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection of powdered mineral.
Source: RRUFF (2007).
Wavenumbers (cm21): 712s, 663w, 479.
Note: The wavenumbers were determined by us based on spectral curve analysis.

2.7 Silicates

Sio160 Magnesiochloritoid MgAl2O(SiO4)(OH)2

Origin: Allalin glacier, Allalin area, Saas-Almagell, Saas Valley, Zermatt – Saas Fee area, Wallis
(Valais), Switzerland (type locality).

Description: Greenish-gray platy grains from the association with chlorite, paragonite, and amphibole.
The empirical formula is (electronmicroprobe): (Mg1.22Fe

2+
0.77Mn0.01)(Al3.96Fe

3+
0.04)Si2.00O10(OH)4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3627w, 3486, 3467, 3450sh, 3190sh, 3045, 3010sh, 2158, 1910w, 1845,

1495w, 1095, 960sh, 935sh, 906s, 866, 809, 753s, 685, 611, 595sh, 565sh, 553, 520, 448s, 400sh,
383.

Note: The spectrum was obtained by N.V. Chukanov.
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Sio161 Morimotoite Ca3(TiFe
2+)(SiO4)3

Origin: Odihkincha alkaline massif, Taimyr district, Krasnoyarsk Krai, Siberia, Russia.
Description: Black grains from the association with diopside. Investigated by I.V. Pekov. The empirical

formula is (electron microprobe): (Ca2.75Mg0.17Na0.05Mn0.03)(Ti0.89Fe
2+

0.79Fe
3+

0.38Zr0.02)(Si2.69
Fe3+0.22Al0.09)O12.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1190sh, 1075sh, 950sh, 910s, 816s, 670sh, 645, 584, 513, 424s, 385s.
Note: The spectrum was obtained by N.V. Chukanov.

Sio162 Wadalite Ca6Al5Si2O16Cl3

Origin: Bellerberg, near Ettringen, Eifel Mts., Rhineland-Palatinate (Rheinland-Pfalz), Germany.
Description: Yellow crystals from the association with calcite and gypsum. The empirical formula is

(electron microprobe): (Ca5.30Mg0.70)(Al2.62Fe0.35Ti0.03)(Si2.04Al1.96)Cl3.25Ox.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1003s, 941s, 898s, 860sh, 830s, 720sh, 590sh, 576, 467s, 425sh.
Note: The spectrum was obtained by N.V. Chukanov.

Sio163 Lanthanum orthosilicate La9.33(SiO4)6O2

Origin: Synthetic.
Description: Apatite-type compound.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Smirnov et al. (2010).
Wavenumbers (cm21): 988s, 916s, 887sh, 844sh, 813sh, 745w, 633w, 543s, 503s, 458, 403, 358sh,

283sh, 266s, 239sh, 213sh, 191sh, 165w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Sio164 Fluorchegemite Ca7(SiO4)3F2
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Origin: Lakargi Mt., Upper Chegem caldera, Kabardino-Balkarian Republic, Northern Caucasus,
Russia (type locality).

Description: Lens-shaped aggregate. The associated minerals arelarnite, edgrewite, wadalite,
eltyubyuite, rondorfite, lakargiite, Th-rich kerimasite, as well as their alteration products. Holotype
sample. Orthorhombic, space group Pbnm, a ¼ 5.0620(1), b ¼ 11.3917(2), c ¼ 23.5180(3) Å,
V ¼ 1356.16(4) Å3, Z ¼ 4. Dcalc ¼ 2.91 g/cm3. Optically biaxial (�), α ¼ 1.610(2), β ¼ 1.615(2),
γ ¼ 1.619(2), 2V ¼ 80(8)�. The empirical formula is (electron microprobe, OH calculated):
Ca7.01Mg0.01Ti0.01Si2.98O12F1.40(OH)0.60. The experimental powder X-ray diffraction pattern was
not obtained.

Kind of sample preparation and/or method of registration of the spectrum: Reflection from a
polished grain.

Source: Galuskina et al. (2015).
Wavenumbers (IR, cm21): 3552w, 1102sh, 1031sh, 991sh, 962s, 934, 914s, 889s, 866sh, 844sh,

821w, 805w, 795sh, 756sh.
Note: The wavenumbers are indicated only for the maxima of individual bands obtained by Galuskina

et al. (2015) as a result of the spectral curve analysis. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3552, 3548s, 3539, 992s, 843, 817s, 560, 442, 410, 297, 258w.

Sio165 Hatrurite triclinic polymorph Ca3(SiO4)O

Origin: Synthetic.
Description: Prepared by heating a mixture of calcium carbonate and silica gel (with the CaO:SiO2

molar ratio of 3:1) pressed into a pellet, at 1450 �C. Characterized by powder X-ray diffraction data.
Triclinic, a ¼ 11.630, b ¼ 14.216, c ¼ 13.690 Å, α ¼ 105.345�, β ¼ 94.558�, γ ¼ 89.845�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
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Source: Del Bosque et al. (2014).
Wavenumbers (cm21): 996, 977, 949, 938s, 909, 875s, 848, 837sh, 810, (666), 525, 511, 462sh, 450.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 666 cm�1 corresponds to atmospheric CO2. In the cited paper,
the wavenumber 949 cm�1 is erroneously indicated as 959 cm�1.

Sio166 Pilawite-(Y) Ca2Y2Al4(SiO4)4O2(OH)2

Origin: Piława Górna granitic pegmatite, Lower Silesia, Poland (type locality).
Description: White grains from the association with keiviite-(Y), gadolinite-(Y), hingganite-(Y),

xenotime-(Y), etc. Holotype sample. The crystal structure is solved. Monoclinic, space group
P21/c, a ¼ 8.558(3) Å, b ¼ 7.260(3) Å, c ¼ 11.182(6) Å, β ¼ 90.61(4)�, V ¼ 694.7(4) Å3,
Z ¼ 2. Dcalc ¼ 4.007 g/cm3. Optically biaxial (+), α ¼ 1.743(5), β ¼ 1.754(5), γ ¼ 1.779(5),
2V ¼ 65(2)�. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are:
3.044 (100) (022), 2.791 (43) (004), 2.651 (46) (310), 2.583 (54) (�311), 2.485 (62) (�222,
114, 123), 2.408 (45) (�312).

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of
sample preparation is not indicated.

Source: Pieczka et al. (2015).
Wavenumbers (IR, cm21): 2990sh, 2965s, 2309, 2050sh, 1995.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published

spectrum. The narrow band at 2309 cm�1 may correspond to CO2 molecules present in cavities of the
heteropolyhedral framework. In the cited paper, a figure of the Raman spectrum is given.
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Sio167 Spessartine Ca-rich (Mn1.31Ca1.02Fe
2+

0.52Mg0.10)(Al1.59Fe
3+

0.46Ti0.06)Si2.90O12

Origin: Pit no. 287, Ilmeny Mts., Chelyabinsk region, South Urals, Russia.
Description: Brown-red grains from the association with diopside, quartz, and scapolite. Cubic,

a ¼ 11.736 Å. Mössbauer spectroscopy indicates that 46% of iron is trivalent. The strongest lines
of the powder X-ray diffraction pattern [d, Å (I, %)] are: 2.935 (38), 2.624 (100), 2.396 (26), 1.904
(24), 1.627 (23), 1.569 (33).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Korinevsky (2015).
Wavenumbers (IR, cm21): 1724w, 1087sh, 972sh, 941s, 876s, 863sh, 623, 553, 469s, 447s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1009, 891s, 834, 623w, 536, 354s, 218, 154.

Sio168 Kirschsteinite CaFe2+(SiO4)
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Origin: Dolores mine, Pastrana, Mazarrón, Murcia, Spain.
Description: Orthorhombic, a ¼ 4.8613(3), b ¼ 11.0995(5), c ¼ 6.3989(8) Å, V ¼ 345.28(4) Å3.

Dmeas ¼ 2.39(3) g/cm3, Dcalc ¼ 2.391 g/cm3. The empirical formula is (electron microprobe):
(Ca0.95Mn0.02Mg0.02Na0.01)(Fe

2+
0.83Mg0.16Fe

3+
0.01)Si1.00O4.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of powdered mineral.

Source: RRUFF (2007).
Wavenumbers (cm21): 1456, 1049, 964sh, 939, 912sh, 876s, 823, 567, 504s, 496sh, 432, 420,

405, 384.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Sio169 Laihunite (Fe3+,Fe2+,□)2(SiO4)

Origin: Laihe Fe deposit, Qianshan District, Liaoning Province, China (type locality).
Description: Black tabular crystals. Holotype sample. Characterized by Mössbauer spectroscopy and

powder X-ray diffraction data. Orthorhombic, space group Pb21m, a ¼ 4.800(5), b ¼ 10.238(5),
c ¼ 5.857(5) Å. Dmeas ¼ 3.92 g/cm3. The empirical formula is Fe3+1.50Fe

2+
0.58Mg0.03Si0.96O4.

Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Laihunite Resh Group (1976).
Wavenumbers (cm21): 1110sh, 1040sh, 955s, 885s, 830s, 640, 580, 535sh, 510s, 460sh, 410sh.
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Sio170 Oxybritholite thorium analogue Th2Ca3(SiO4)3O

Origin: Synthetic.
Description: Synthesized by solid-state reaction between thorium nitrate, calcium nitrate, and silicon

oxide at 1553 K for 30 h with intermediate grindings every 2 h. The crystal structure is solved.
Hexagonal, space group P63/m, a ¼ 9.50172(9), c ¼ 6.98302(8) Å, V ¼ 545.98(1) Å3, Z ¼ 2.
Dcalc ¼ 4.966 g/cm3. The crystal-chemical formula is (Ca3.84Th0.16)(Th3.21Ca2.79)(SiO4)6O2.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Bulanov et al. (2015).
Wavenumbers (cm21): 1095w, 981, 908s, 845, 810, 718, 550, 485s, 420s.

Sio171 Ulfanderssonite-(Ce) (Ce15Ca)Mg2(SiO4)10(SiO3OH)(OH,F)5Cl3
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Origin: Malmkärra Mine, Norberg, Västmanland, Sweden (type locality).
Description: Grey grains from the association with cerite-(Ce) and bastnäsite-(Ce). Confirmed by

semiquantitative electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 475w, 3160w, 2135w, (1448), 1025, 950, 915sh, 881s, (875sh), 682w, 616w,

565sh, 528, 500, 485sh, 395w.
Note: The spectrum was obtained by N.V. Chukanov. The bands at 1448 and 857 cm�1 correspond to

admixed bastnäsite-(Ce).

Sid47 Cuspidine Ca8(Si2O7)2F4

Origin: Bellerberg, near Ettringen, Eifel Mts., Rhineland-Palatinate (Rheinland-Pfalz), Germany.
Description: Colorless crystals from the association with dorrite, clinopyroxene, spinel, and gypsum.

Confirmed by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3547w, 1061, 1032s, 980sh, 966s, 915sh, 856s, 653, 550sh, 540, 515,

491, 480sh, 442, 395sh.
Note: The spectrum was obtained by N.V. Chukanov.
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Sid48 Nasonite Ca4Pb6(Si2O7)3Cl2

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden.
Description: Lemon yellow grains from the association with barysilite and jacobsite. The empirical

formula is (electron microprobe): (Pb5.78Ca0.22)(Ca3.98Mnx)Si6.00O21[Cl1.75(OH)0.25] (x � 1).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3446w, 1015s, 913s, 869, 820s, 668, 537, 515s, 481, 446, 415.
Note: The spectrum was obtained by N.V. Chukanov.

Sid49 Åkermanite Ca2Mg(Si2O7)

Origin: Synthetic.
Description: Single crystal grown by Czochralski method. Characterized by X-ray diffraction data.

Tetragonal, space group P-421m, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Hanuza et al. (2012).
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Wavenumbers (IR, cm21): 1038s, 1009s, 991, 972s, 934s, 906sh, 852s, 683w, 644w, 625sh, 586w,
510sh, 491sh, 475s, 457sh, 400, 371sh, 340w, 288sh, 276w, 253sh, 218w, 197, 181, 158, 128.

Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 992w, 941w, 910s, 666, 605w, 450w, 318w, 227w, 211w, 107w.

Sid50 Barysilite Pb8Mn(Si2O7)3

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden.
Description: The crystal structure is solved. Trigonal, space group R-3c, a¼ 9.821(5), c¼ 38.38(6) Å,

Z ¼ 6.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Lajzérowicz (1966).
Wavenumbers (cm21): 970sh, 934s, 914s, 892s, 872sh, 832s, (780), 702, 553, 528, 479,

464, 446–444, 423–418, 393, 258.

Sid51 Hardystonite Ca2Zn(Si2O7)

Origin: Synthetic.
Description: Single crystal grown by Czochralski method. Characterized by powder X-ray diffraction

data. Characterized by X-ray diffraction data. Tetragonal, space group P-421m, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Hanuza et al. (2012).
Wavenumbers (IR, cm21): 1042s, 1010, 970s, 915s, 839s, 682w, 621, 592sh, 545sh, 531sh,

501, 475sh, 455, 373w, 344w, 330w, 277, 223w, 197w, 183w, 157w, 122w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1019w, 1004w, 994w, 939w, 908s, 664s, 615w, 551w, 480w, 445w,

315w, 280w, 204w, 147w, 100w.
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Sid52 Keiviite-(Yb) β-Yb2Si2O7

Origin: Synthetic.
Description: Synthesized from Yb(NO3)3 and Si(OC2H5)4 by a sol-gel method with subsequent

calcination at 1200 �C for 2 h. Characterized by powder X-ray diffraction data. Monoclinic,
space group C2/m, a ¼ 6.80053, b ¼ 8.87508, c ¼ 4.70740 Å, β ¼ 101.984.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Zhao et al. (2013a).
Wavenumbers (cm21): 1133sh, 1108, 983sh, 912s, 853s, 567, 502, 474.

Sid53 Lawsonite CaAl2(Si2O7)(OH)2∙H2O
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Origin: Tiburon Peninsula, California, USA.
Description: Equant to tabular crystals. Characterized by electron microprobe analyses and powder

X-ray diffraction data. Orthorhombic, space group Ccmm, a¼ 8.795 Å, b¼ 5.847 Å, c¼ 13.142 Å.
Kind of sample preparation and/or method of registration of the spectrum: Powder dispersed in

KBr disc and in polyethylene substrate. Absorption.
Source: Le Cléac’h and Gillet (1990).
Wavenumbers (IR, cm21): 3560, 3225, 1600w, 1125sh, 1000sh, 980sh, 953s, 915sh, 885s, 680sh,

614sh, 605sh, 578, 536, 500sh, 486s, 460, 420, 407 (in KBr); 614sh, 605sh, 578s, 536, 500sh,
486, 460, 420, 407, 368, 212, 171w, 95w (in polyethylene).

Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3540, 1578, 1047, 955sh, 935s, 915sh, 810, 694s, 455w, 400w,

372w, 328, 280s.

Sid54 Scottyite BaCu2Si2O7

Origin: Synthetic.
Description: Dark blue polycrystalline sample synthesized by a mild hydrothermal method from

BaCl2�4H2O, Na2SiO3�9H2O, and CuO. Characterized by energy dispersive spectroscopy and
powder X-ray diffraction data. Orthorhombic, space group Pnma, a ¼ 6.86317(15), b ¼ 13.1773
(3), c ¼ 6.86317(15) Å, V ¼ 623.68(2) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2014b).
Wavenumbers (cm21): 988s, 967s, 919s, 899s, 850s, 676, 617, 564, 537, 468, 444w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Sid57 Junitoite CaZn2Si2O7∙H2O

Origin: Christmas Mine, Christmas area, Banner District, Dripping Spring Mts, Gila Co., Arizona,
USA (type locality).

Description: Aggregate of colorless platelets. The empirical formula is (electron microprobe):
Ca1.05Zn2.07Si1.85Al0.02Fe0.01O7�H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3430sh, 3336, 3305sh, 1838w, 1677, 1055sh, 980sh, 935s, 915s, 857s,

715, 640sh, 620sh, 578, 520, 484, 475sh, 445sh, 399w.
Note: The spectrum was obtained by N.V. Chukanov.

Sid58 Rowlandite-like mineral REE4FeSi4(O,F,OH)16�nH2O
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Origin: Heftetjern pegmatite, Tørdal, Telemark, Norway.
Description: Anhedral grains from the association with fluorite. Amorphous, metamict. The empirical

formula is (electron microprobe): Y2.5Ln1.6Fe0.8Si4.05O14(F,OH)2�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3500sh, 3483. 3380sh, 1649w, 965sh, 931s, 807sh, 765sh, 699, 511, 457.
Note: The spectrum was obtained by N.V. Chukanov.

Siod66 Cyprine Ca19Cu
2+(Al10Mg2)Si18O68(OH)10

Origin: Wessels mine, near Hotazel, Kalahari Manganese Field, North Cape province, South Africa
(type locality).

Description: Dark red prismatic crystals from the association with calcite, apatite, andradite,
henritermierite, and rhodochrosite. Holotype sample. The crystal structure is solved. Tetragonal,
space group P4/n, a ¼ 15.569(1), c ¼ 11.804(1) Å, V ¼ 2861.6(2) Å3, Z ¼ 4. Dcalc ¼ 2.65 g/cm3.
Optically uniaxial (�), ω¼ 1.744(2), ε¼ 1.732(2). The empirical formula is (electron microprobe):
Ca19(Cu0.91Mg0.09)Σ1.00(Al8.38Mg1.64Mn3+1.87Fe

3+
0.29Cr0.10)Σ12.28Si17.86O67.86(OH9.28O0.72). The

strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.89 (12) (002),
2.950 (47) (004), 2.752 (100) (432), 2.594 (76) (522), 2.459 (35) (620), 1.622 (28) (672).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3630, 3563, 3380sh, 3335, 1280w, 1234w, 1140sh, 1110sh, 1015s, 969s,

900s, 855sh, 815sh, 665sh, 602, 574, 505sh, 486s, 434, 418, (380sh).
Note: The weak bands at 1280, 1234, 1140, and 1110 cm21 correspond to stretching vibrations of

admixed borate groups.
Note: The spectrum was obtained by N.V. Chukanov.
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Siod67 Alumovesuvianite Ca19Al(Al10Mg2)Si18O69(OH)9

Origin: Jeffrey mine, Asbestos, Estrie Region, Québec, Canada (type locality).
Description: Pink prismatic tetragonal crystals from the association with diopside and prehnite. Holo-

type sample. Characterized by powder MAS NMR data. The crystal structure is solved. Tetragonal,
space group P4/n, unit-cell parameters refined from the powder data are a ¼ 15.5603(5) Å,
c ¼ 11.8467(4) Å, V ¼ 2868.3(4) Å3, Z ¼ 2. Dmeas ¼ 3.31(1) g/cm3, Dcalc ¼ 3.36 g/cm3. Optically
uniaxial (�), ω ¼ 1.725(2), ε ¼ 1.722(2). The empirical formula is Ca19.00(Al0.92
Fe3+0.08)Σ1.00(Al9.83Mg1.80Mn3+0.25)Σ11.88Si17.98O69.16(OH)8.44. The strongest lines of the powder
X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 2.96 (22) (004), 2.761 (100) (432), 2.612
(61) (224), 2.593 (25) (600), 1.7658 (20) (831), 1.6672 (20) (734), 1.6247 (21) (912), 1.3443
(22) (880).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3671w, 3632, 3527, 3407, 3212, 3051, 1890w, 1070sh, 1024s, 962s, 919s,

897s, 863, 804, 713w, 695w, 660sh, 630sh, 609, 577, 491s, 442s, 412, 386.
Note: The spectrum was obtained by N.V. Chukanov.

Siod68 “Ferrovesuvianite” Ca19Fe
2+(Al,Mg)12Si18O69(OH)9
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Origin: Valle d’Aosta (Aosta valley), Italy.
Description: Dark brownish-green crystals. The empirical formula is (electron microprobe):

Ca19.0(Al9.3Mg1.9Fe1.2Ti0.4Mn0.1Cr0.1)Si18(O,OH)78.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3673w, 3645sh, 3630, 3527w, 3487w, 3143, 1795w, 1165sh, 1070sh, 1018s,

969s, 944, 917s, 888s, 865sh, 802, 711w, 655, 615sh, 603, 573, 520sh, 484s, 432s, 409, 379.
Note: The spectrum was obtained by N.V. Chukanov.

Siod69 Wiluite Ca19(Al,Mg)13(B,□,Al)5(SiO4)10(Si2O7)4(O,OH)10

Origin: Siki-Yadunskiy fault, Siki River basin, Evenki Autonomous Area, Siberia, Russia.
Description: Greenish-gray short-prismatic crystals from the association with grossular. The empirical

formula is (electron microprobe): (Ca18.78Na0.17)(Al5.77Mg5.16Fe1.37Ti0.58Mn0.06Cr0.06)(BxAl1.03□y)
Si18O68(O,OH)10.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3626w, 3566, 3495sh, 3340, 1667w, 1535w, 1420sh, 1376, 1269, 1110sh,

1075sh, 998s, 960sh, 913s, 871, 801, 780sh, 750sh, 679w, 615sh, 550sh, 514, 463, 427s, 377sh.
Note: The spectrum was obtained by N.V. Chukanov.
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Siod70 Magnesiovesuvianite Ca19Mg(Al10Mg2)Si18O68(OH)10

Origin: Tuydo combe, near Lojane, Republic of Macedonia (type locality).
Description: Light pink acicular tetragonal crystals from the association with calcite, garnet of the

grossular-andradite series, and clinochlore. Holotype sample. The crystal structure is solved. Tetragonal,
space group P4/n, a¼ 15.5026(3), c¼ 11.7858(5) Å, V¼ 2832.4(2) Å3, Z¼ 2.Dmeas¼ 3.30(3) g/cm3,
Dcalc ¼ 3.35 g/cm3. Optically uniaxial (�), ω ¼ 1.725(2), ε ¼ 1.721(2). The empirical formula
is (electron microprobe): (Ca18.99Na0.01)Σ19.00(Mg0.60Al0.40)Σ1.00(Al11.05Mg0.70Mn0.07Fe0.02)Σ11.84Si17.84
O68.72(OH)9. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.96
(23) (110), 3.46 (22) (240), 3.038 (33) (510), 2.740 (100) (432), 2.583 (21) (522), 2.365 (94) (620),
2.192 (19) (710), 1.6165 (25) (672).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3668w, 3627, 3508, (3445), 3398, 3183, 3050sh, 1890w, (1085sh), 1024s,

971s, 915s, 905s, 862, 803, 713w, 689w, 655sh, 625sh, 607, 579, 491s, 445s, 416, 400sh.
Note: The spectrum was obtained by N.V. Chukanov.

Siod71 Ganomalite Pb9Ca6(Si2O7)4(SiO4)O
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Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Description: Colorless anhedral grains from the association with native lead, baryte, calcite, and pyrochroite.

The empirical formula is (electron microprobe): (Pb8.58Ca0.42)Ca5.00(Mn0.68Ca0.32)(Si2O7)4(SiO4)O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1009, 915s, 875sh, 866s, 819, 672, 565, 520, 478, 457, 416, 405.
Note: The spectrum was obtained by N.V. Chukanov.

Siod72 Uedaite-(Ce) Mn2+CeAl2Fe
2+(Si2O7)(SiO4)O(OH)

Origin: Heftetjern amazonite pegmatite, Tørdal, Telemark, Norway.
Description: Black zone in an allanite-(Ce) crystal. The empirical formula is (electron microprobe):

(Ce0.59La0.27Nd0.12)(Mn0.61Ca0.39)(Al1.54Fe1.35Ti0.04Mg0.04Mn0.04)(Si2.94Al0.06)(O,OH)13.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3285, 3230sh, 1033s, 921s, 630, 573, 502s, 465sh, 400, 372.
Note: The spectrum was obtained by N.V. Chukanov.

Siod73 Okhotskite Ca2(Mn,Mg)(Mn3+,Al,Fe3+)2(Si2O7)(SiO4)(OH)2∙H2O
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Origin: South Minusa Intermontane Trough, Siberia, Russia.
Description: Main component of the okhotskite-braunite ore. Characterized by powder X-ray diffrac-

tion data and electron microprobe analyses. Contains Al-enriched zones corresponding to
pumpellyite-(Mn2+).

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of
sample preparation is not indicated.

Source: Kassandrov and Mazurov (2009).
Wavenumbers (cm21): 3414, 3250, 1115sh, 1042sh, 1002sh, 960sh, 933s, 888s, 864sh, 741, 687,

613, 568, 525, 480s, 435, 390, 371, 350.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Siod74 Wiluite Ca19(Al,Mg)13(B,□,Al)5(SiO4)10(Si2O7)4(O,OH)10

Origin: Wiluy River, Yakutia, Russia (type locality).
Description: Dark green crystal from the association with a chlorite-group mineral, Al-bearing

diopside, fluorapatite, goethite, pyrite, grossular, apatite, wollastonite, and perovskite.
Characterized by Mösbauer spectroscopy. The crystal structure is solved. Tetragonal, space
group P4/nnc, a ¼ 15.7027(3), c ¼ 11.7008(3) Å, V ¼ 2885.1(1) Å3. The crystal-chemical
formula is X1(Ca)2.00

X2(Ca)8.00
X3(Ca)8.00

X4(Ca)1.00
Y1(Mg0.56Fe

2+
0.27Fe

3+
0.17)Σ1.00

Y2(Al3.90
Fe2+0.10)Σ4.00

Y3(Al3.82Mg3.14Ti0.63Fe
3+

0.21Fe
2+

0.16Mn0.04)Σ8.00
Z1(Si)2.00

Z2(Si)8.00
Z3(Si)8.00(O)68.00

T1+T2

(B3.04Al0.72□1.24)Σ5.00
W(O8.32OH0.96)Σ9.28

12O1.52.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3634w, 3566w, 3481w, 3338w, 1415sh, 1373, 1267, 1165sh, 1110sh,

1080sh, 1002s, 965sh, 914s, 870sh, 803, 782, 755sh, 679w, 615sh, 560sh, 510sh, 466s, 430s, 376.
Note: The spectrum was obtained by N.V. Chukanov.

Siod75 Ferrovesuvianite Ca19Fe
2+(Al,Fe,Ti)12(SiO4)10(Si2O7)4(OH,O)10

Origin: Alchuri, Shigar Valley, Northern Areas, Pakistan.
Description: Reddish-brown blocky prismatic crystals from the association with quartz, clinochlore,

albite, potassium feldspar, aegirine-augite, andradite, zoisite, calcite, titanite, fluorapatite, and zircon.
Characterized by 27Al NMR and Mössbauer spectroscopy. The crystal structure is solved. Tetragonal,
space group P4/nnc, a¼ 15.5326(2), c¼ 11.8040(2)Ǻ, V¼ 2847.87(8) Å3, Z¼ 2.Dcalc¼ 3.460 g/cm3.
Optically uniaxial (�), ε ¼ 1.740(4), ω ¼ 1.749(2). The empirical formula is (electron
microprobe): (Ca18.11Na0.885)(Mg0.63Fe

2+
0.79Fe

3+
1.765Al7.99Ti2.21)Si17.62O69.92(OH)7.37F1.33.

The crystal-chemical formula is [829](Ca17.1Na0.9)
[8]Ca1.0

[5](Fe2+0.44Fe
3+

0.34Mg0.22)
[6](Al3.59Mg0.41)

[6](Al4.03Ti2.20Fe
3+

1.37Fe
2+

0.40) Si18O68) [(OH)5,84O2.83F1.33].
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3563w, 3453, 3220w, 1070sh, 1021s, 993s, 906s, 836s, 806, 750, 677w,

626, 578, 530sh, 485s, 439s, 420sh.
Note: The spectrum was obtained by N.V. Chukanov.
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Siod76 Fluorvesuvianite A3O4H2O3P4O3(H)�H2O

Origin: Abandoned Lupikko iron mine, Pitkäranta, Karelia, Russia (type locality).
Description: Colorless acicular crystals from the association with sphalerite and clinochlore. Con-

firmed by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3645sh, 3630w, 3560, 3431, 3183w, 1160sh, 1075sh, 1020s, 982s, 903s,

875sh, 799, 710w, 638, 605, 578, 560sh, 491s, 445s, 416, 376.
Note: The spectrum was obtained by N.V. Chukanov.

Siod77 Epidote-(Sr) CaSr(Al2Fe
3+)(Si2O7)(SiO4)O(OH)
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Origin: N’Chwaning Mine, Kuruman, Kalahari manganese fields, Northern Cape province,
South Africa.

Description: Clusters of dark red crystals with thin zones of manganipiemontite-(Sr) . The typical
composition corresponds to the formula Ca1.0Sr1.0(Al1.8Fe0.9Mn0.3(Si2O7)(SiO4)O(OH).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3420, 1114, 1083, 1012, 940s, 878s, 827, 669w, 650sh, 620, 589, 543, 503s,

449, 394s, 376s.
Note: The spectrum was obtained by N.V. Chukanov.

Siod78 Ferriakasakaite-(La) CaLaFe3+AlMn2+(Si2O7)(SiO4)O(OH)

Origin: In den Dellen pumice quarry, Niedermendig, Mendig, Laach Lake volcanic complex, Eifel,
Rhineland-Palatinate, Germany.

Description: Black thick-tabular crystals from sanidinite, from the association with nosean and/or
haüyne, Mn-bearing biotite, magnetite, ilmenite-pyrophanite series members, Mn-bearing zirconolite,
and secondary jarosite. The crystal structure is solved. Monoclinic, space group P21/m, a ¼ 8.90540
(13), b ¼ 5.75454(7), c ¼ 10.10367(15) Å, β ¼ 114.1030(18)�, V ¼ 472.634(11) Å3. The empirical
formula is (Ca0.68Mn2+0.32)Σ1.00(La0.49Ce0.39Pr0.02Nd0.02Sm0.01Eu0.01Gd0.01Th0.01Ca0.04) (Fe3+0.52
Fe2+0.04Al0.34Ti

4+
0.10)Σ1.00Al1.00(Mn2+0.53Fe

2+
0.34Mg0.13)Σ1.00(Si2.98Al0.02)Σ3.00O12.00(OH).
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (3300sh), 3164, 1045s, 928s, 885sh, 675sh, 626, 573, 499s, 455, 394, 366.
Note: The spectrum was obtained by N.V. Chukanov.

Siod79 Vesuvianite Ca19Fe
3+[Al10(Fe

2+,Mn2+,Mg)2](Si2O7)4(SiO4)10O(OH)9,

Origin: Somma-Vesuvius volcanic complex, Campania region, Italy (type locality).
Description: Greenish brown crystals from skarn xenolith. Neotype sample used for vesuvianite

formula revision. Characterized by Mössbauer spectroscopy, 27Al MAS NMR, powder
X-tay diffraction and thermal analysis. The crystal structure is solved. Tetragonal, space
group P4/nnc; a ¼ 15.5720(3), c ¼ 11.8158(5). The crystal-chemical formula is
X1(Ca)2.00

X2(Ca)8.00
X3(Ca)8.00

X4(Ca0.97Na0.03)1.00
Y1(Fe3+0.50Mg0.28Fe

2+
0.22)

Y2(Al3.85Fe
2+

0.15)
Y3

(Al5.26Mg1.83Fe
3+

0.54Fe
2+

0.26Mn0.11)
Z1(Si)2.00

Z2(Si)8.00
Z3(Si)8.00(O)68.00

T1+T2(Al0.44B0.25□4.31)
W

(OH5.65F2.00O1.30Cl0.05).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3565, 3450w, 3629w, 3210w, 1568w, 1478w, 1170sh, 1075 sh, 1018s, 976s,

914s, 900sh, 870sh, 799, 629, 599, 572, 486s, 436s, 415, 384.
Note: The spectrum was obtained by N.V. Chukanov.
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Siod80 Vesuvianite Cr-bearing Ca19Fe
3+[(Al,Cr)10(Fe

2+,Mn2+,Mg)2](Si2O7)4(SiO4)10O(OH)9

Origin: Lekhoilinskoe Cr deposit, Voikaro-Syn’inskiy ultrabasite massif, Polar Urals.
Description: Emerald-green crystals on chromite. Investigated by T.L. Panikorovskiy.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3672w, 3633, 3520sh, 3483, 3416, 3146, 1880w, 1796w, 1661w, 1577w,

1465sh, 1424w, 1160sh, 1075sh, 1018s, 964s, 918s, 895sh, 865sh, 803, 710w, 690w, 615sh,
605, 573, 520sh, 485s, 434s, 412, 380.

Note: The spectrum was obtained by N.V. Chukanov. The band at 3416 cm�1 is characteristic for
Cr-bearing vesuvianite.

Siod81 Vesuvianite S-bearing Ca19Fe
3+[Al10(Fe

2+,Mn2+,Mg)2](Si2O7)4(SiO4)10Sx(OH,O)10 (?)
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Origin: Monzoni Mts., Fassa valley, Trento Province, Trentino-Alto Adige (Trentino-Südtirol), Italy.
Description: Yellow crystal. Investigated by T.L. Panikorovskiy.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3665w, 3634, 3535, 3146, 1588sh, 1560w, 1463w, 1412sh, 1355sh, 1165sh,

1075sh, 1017s, 963s, 918s, 894, 870sh, 803, 705sh, 683w, 606, 573, 485s, 440s, 415, 384.
Note: The spectrum was obtained by N.V. Chukanov.

Siod82 “Hydrovesuvianite” Ca19Fe
3+[Al10(Fe

2+,Mn2+,Mg)2](Si2O7)4[SiO4,(OH)4]10O(OH)9

Origin: Vilyui River Basin (Wilui River Basin), Sakha Republic (Yakutia), Eastern-Siberian Region,
Russia.

Description: Epitaxy on wiluite crystals from the association with grossular. Investigated by
T.L. Panikorovskiy.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3631, 3546, 3160, 1547w, 1465sh, 1435w, 1363sh, 1323w, 1275w, 1165sh,

1013s, 963s, 914s, 880sh, 655sh, 595, 566, 520sh, 477s, 433s, 376.
Note: The spectrum was obtained by N.V. Chukanov. The band at 3546 cm�1 may correspond to

(OH)4 tetrahedra.
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Siod83 Vesuvianite B-bearing

Origin: Gulshad, Northern Balkhash Lake Area, Kazakhstan.
Description: Investigated by T.L. Panikorovskiy. The crystal structure is solved. The crystal-chemical

formula is Ca19.00
Y1(Fe0.62Mg0.38)

Y2Al4.00
Y3[(Al,Mg)7.34(Fe,Ti)0.66]

T1[B0.45Al0.80]1.25
T2B0.50Si18O68(OH,

O)10.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3669sh, 3636, 3563, 3463, 3210, 1562, 1464, 1160sh, 1075sh, 1012s, 962s,

915s, 875sh, 800, 680w, 625sh, 601, 568, 479s, 434s, 415sh, 380.
Note: The spectrum was obtained by N.V. Chukanov. The bands at 1562 and 1464 cm�1 correspond to

BO3 triangles with shortened (as compared to wiluite) B–O bonds.
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Siod84 Vesuvianite B-bearing

Origin: Gulshad, Northern Balkhash Lake Area, Kazakhstan.
Description: Investigated by T.L. Panikorovskiy. The crystal structure is solved. The crystal-chemical

formula is Ca19.00
Y1(Fe0.87Mg0.13)

Y2Al4.00
Y3[(Al,Mg)6.45(Fe,Mn)1.55]

T1B2.06
T2B1.00Si18O68(OH,O)12.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3623w, 3565, 3450sh, 1800w, 1543w, 1469, 1417, 1388, 1300sh, 1269,

1130sh, 1070sh, 1000s, 913s, 882, 855sh, 802, 782, 670w, 620sh, 552, 520sh, 460s, 434s, 376.
Note: The spectrum was obtained by N.V. Chukanov. The bands at 1543 and 1469 cm�1 correspond to

BO3 triangles with shortened (as compared to wiluite) B–O bonds.

Sic27 Khesinite Ca4(Mg3Fe
3+

9)O4(Fe
3+

9Si3)O36
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Origin: Burned dump of the Korkinskiy quarry, Chelyabinsk coal basin, Kopeisk, South Urals, Russia.
Description: Black tabular crystals from the association with melilite, pyroxene, amphibole, wollas-

tonite, anorthite, and calcium ferrites. Technogenetic. Investigated by B.V. Chesnokov. Related to
aenigmatite-group minerals. Triclinic, а ¼ 10.58(3), b ¼ 10.90(3), c ¼ 9.10(4) Å, α ¼ 107.08(2)�,
β ¼ 95.02(2)�, γ ¼ 124.45(2)�. The empirical formula is Ca1.16Fe

3+
4.16Mg0.32Ti0.02Al0.64Si0.65O10.

Dcalc ¼ 4.09 g/cm3. The strongest lines of powder X-ray diffraction pattern [d, Å (I, %)] are 2.993
(70), 2.721 (80), 2.587 (100), 2.526 (90), 2.473 (40), 2.132 (55), 1.626 (52), 1.517 (70), 1.506 (50).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 953s, 902s, 838, 824, 801, 750, 690sh, 640s, 596s, 500s, 463s.
Note: The spectrum was obtained by N.V. Chukanov.

Sic105 Fowlerite CaMn3Zn(Si5O15)

Origin: Franklin, Ogdensburg, Sussex Co., New Jersey, USA.
Description: Pinkish-brown grains. The empirical formula is Ca0.75Mn3.16Zn0.56Fe0.31Mg0.25(Si5O15).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1089s, 1061s, 1032s, 1003, 945s, 910sh, 899s, 875sh, 724, 693w, 669, 650sh,

579, 562, 535sh, 515sh, 505sh, 493, 454s, 415, 390, 365.
Note: The spectrum was obtained by N.V. Chukanov.
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Sic106 Ferrorhodonite CaMn3Fe(Si5O15)

Origin: Broken Hill Pb-Zn deposit, Yancowinna Co., New South Wales, Australia (type locality).
Description: Brownish red coarse crystalline aggregates in the association with galena, chalcopyrite,

spessartine, and quartz. Holotype sample. The crystal structure is solved. Triclinic, space group P-1,
a ¼ 6.6766(5), b ¼ 7.6754(6), c ¼ 11.803(1) Å, α ¼ 105.501(1)�, β ¼ 92.275(1)�, γ ¼ 93.919(1)�,
V ¼ 580.44(1) Å3, Z ¼ 2. Dmeas ¼ 3.71(2) g/cm3, Dcalc ¼ 3.701 g/cm3. Optically biaxial (+),
α ¼ 1.731(4), β ¼ 1.736(4), γ ¼ 1.745(5), 2V ¼ 80(10)�. The crystal-chemical formula is
(Ca0.81Mn0.19)(Mn2.52Fe0.48)(Fe

2+
0.81Mn0.12Mg0.04Zn0.03)(Si5O15). The strongest lines of the pow-

der X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.337 (32) (�1�13), 3.132 (54) (�210), 3.091
(41) (0�23), 2.968 (100) (�2�11), 2.770 (91) (022), 2.223 (34) (�204), 2.173 (30) (�310).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1092s, 1053s, 1025, 1000sh, 946, 897, 875sh, 721, 694, 667, 650sh,

577, 563sh, 530sh, 510sh, 492, 453s, 416sh, 388, 368.
Note: The spectrum was obtained by N.V. Chukanov.

Sic107 Lithium metasilicate Li2SiO3
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Origin: Synthetic.
Description: Commercial reactant. Orthorhombic, space group Cmc21, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Devarajan and Shurvell (1977).
Wavenumbers (IR, cm21): 1080s, 1034sh, 980, 950s, 850s, 801w, 781w, 735, 697w, 604, 580w,

520s, 505sh, 450, 410, 398, 370, 345w, 305, 280sh, 248w, 230w, 214w, 204w, 196w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1087, 1034, 1001sh, 983s, 945, 852, 731, 645, 610s, 587sh,

567, 520, 496, 465, 450w, 410, 398sh, 345w, 325w, 291sh, 297, 273w, 258w, 234, 210, 186, 141.

Sic108 Alamosite polymorph PbSiO3

Origin: Synthetic.
Description: Prepared by crystallization at 650 �C from the undercooled melt. Characterized by

powder X-ray diffraction data. Hexagonal.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Furukawa et al. (1979).
Wavenumbers (IR, cm21): 1054, 999s, 961s, 938sh, 910s, 885s, 850, 720, 687w, 658, 629w, 604w,

530, 511, 480, 445, 384.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1070, 1012, 936, 915s, 871, 850, 731w, 685w, 669w, 628w, 615w,

545, 513, 503, 484, 438, 406, 358s, 316, 294, 263s, 243, 231, 144, 106, 91, 52.

266 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



Sic109 Dorrite Ca4[Mg3Fe
3+

9]O4[Si3Al8Fe
3+O36]

Origin: Bellerberg, near Ettringen, Eifel Mts., Rhineland-Palatinate (Rheinland-Pfalz), Germany.
Description: Brown equant crystals from the association with cuspidine, clinopyroxene, spinel, and

gypsum. The empirical formula is (electron microprobe): Ca4.1(Mg3.6Mn0.2Fe7.4Al0.4Ti0.3)
(Si3.8Al8.2)O40.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (3412w), 1000sh, 979, 902, 846, 750sh, 677s, 510s, 463s, 420sh.
Note: The spectrum was obtained by N.V. Chukanov.

Sic110 Aegirine-augite (Ca,Na)(Fe3+,Mg,Fe2+)Si2O6
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Origin: Harstigen Mine, Pajsberg, Persberg district, Filipstad, Värmland, Sweden.
Description: Olive-green anhedral grains from the association with julgoldite-(Fe3+) and calcite.

The empirical formula is (electron microprobe): (Ca0.49Na0.42Mn0.09)(Fe0.52Mg0.44Mn0.04)
(Si1.96Al0.03Fe0.01O6).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1066s, 997s, 945sh, 905s, 880sh, 698w, 636, 530sh, 509, 461s, 395, 387sh,

377sh.
Note: The spectrum was obtained by N.V. Chukanov.

Sic111 Vittingeite Mn5(Si5O15)

Origin: Vittinge iron mines, Isokyrö, Western and Inner Finland Region, Finland (type locality).
Description: Anhedral grains from the association with quartz and pyroxmangite. Holotype sample.

The crystal structure is solved. Triclinic, space group P-1, a ¼ 6.6980(3), b ¼ 7.6203(3),
c ¼ 11.8473(5) Å, α ¼ 105.663(3)�, β ¼ 92.400(3)�, γ ¼ 94.309(3)�, V ¼ 579.38(7) Å3, Z ¼ 2.
Dmeas ¼ 3/62(2) g/cm3, Dcalc ¼ 3.737 g/cm3. Optically biaxial (+),(+), α ¼ 1.725(4), β ¼ 1.733(4),
γ ¼ 1.745(5), 2V ¼ 75(10)�. The empirical formula is (electron microprobe):
Ca0.11Mn4.71Fe0.11Mg0.08Zn0.01Si4.99O15.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1112, 1053s, 1020s, 950s, 930sh, 915sh, 891s, 824, 718, 693, 664, 578, 559,

515, 492, 458s, 391.
Note: The spectrum was obtained by N.V. Chukanov.
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Sic112 Haradaite Sr(VO)(Si2O6)

Origin: Yamato mine, Amami-Oshima Island, Kagoshima Prefecture, Nansei Archipelago, Kyushu
region, Japan (type locality).

Description: Bright green grains.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1254, 1177, 1115, 1076s, 1020s, 1010s, 971s, 904s, 663, 635w, 610, 576,

507, 434s, 394, 380s.
Note: The spectrum was obtained by N.V. Chukanov.

Sic113 Dalnegorskite Ca5Mn(Si3O9)2
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Origin: Dalnegorskoe boron deposit, town of Dalnegorsk, Primorskiy Kray, Russian Far East, Russia
(type locality).

Description: Tight aggregate consisting of split thin fiber-like individuals from the association with
Mn-bearing hedenbergite and datolite. Holotype sample. Triclinic, Space group: P-1, a ¼ 7.2588
(11), b ¼ 7.8574(15), c ¼ 7.8765(6) Å, α ¼ 88.550(15)�, β ¼ 62.582(15)�, γ ¼ 76.621(6)�,
V ¼ 386.23(11) Å3, Z ¼ 1. Dmeas ¼ 3.02(2) g/cm3, Dcalc ¼ 3.062 g/cm3. Optically biaxial (�),
α ¼ 1.640(3), β ¼ 1.647(3), γ ¼ 1.650(3), 2V ¼ 75(10)�. The empirical formula is (electron
microprobe): Ca5.03Mn0.50Fe0.36Mg0.04Si6.03O18. The strongest lines of the powder X-ray diffrac-
tion pattern [d, Å (I, %)] are: 3.80 (57), 3.48 (57), 3.28 (42), 2.952 (100), 2.951 (66), 1.815 (34),
1.708 (34), 1.703 (34).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1892w, 1077s, 1025s, 937s, 905s, 693, 653, 563, 513, 505, 470sh, 458s,

445sh, 407.
Note: The spectrum was obtained by N.V. Chukanov.

Sib152 Magnesio-ferri-hornblende

Origin: Otamo dolomite quarry, Siikainen, Finland.
Description: Dark green grains from the association with plagioclase, dolomite, and calcite. The

crystal structure is solved. Monoclinic, space group C2/m, a ¼ 9.855(1), b ¼ 18.084(1), c ¼ 5.289
(1) Å, β ¼ 91.141(6)�, V ¼ 104.853(2) Å3, Z ¼ 2. Dcalc ¼ 3.057 g/cm3. The empirical formula is
K0.03(Ca1.92Na0.07)[(Mg4.01Fe

2+
0.33Mn2+0.03)(Fe

3+
0.48Al0.15)][(Si7.43Al0.57O22](OH)2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3673, 3660w, 3650sh, 3627w, 1099s, 1049s, 993s, 951s, 919s, 755, 725sh,

686, 660, 645sh, 535sh, 507s, 461s, 445sh, 425sh.
Note: The spectrum was obtained by N.V. Chukanov.
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Sib153 Ferro-ferri-katophorite Na(NaCa)(Fe2+4Fe
3+)(Si7Al)O22(OH)2

Origin: In den Dellen (Zieglowski) pumice quarry, 1.5 km NE of Mendig, Laacher See volcano, Eifel
region, Rhineland-Palatinate (Rheinland-Pfalz), Germany.

Description: Black crystals on sanidinite. Characterized by Mössbauer spectrum. The empirical
formula is (electron microprobe): (Na0.68K0.32)(Ca1.31Na0.69)(Mg1.17Fe

2+
1.79Mn0.66Fe

3+
1.19Ti0.19)

(Si6.20Al1.80O22)(OH)1.92O0.08.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3667w, 3655sh, 3647w, 1050s, 953s, 795sh, 738, 667, 613, 490sh, 452s.
Note: The spectrum was obtained by N.V. Chukanov.

Sib154 Ferro-pargasite NaCa2(Fe
2+

4Al)(Si6Al2)O22(OH)2
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Origin: Ilmeny (Il’menskie) Mts., South Urals, Russia.
Description: Black grains with blue streak from fenite. The empirical formula is (electron micro-

probe): K0.4Na1.5Ca1.1(Fe3.2Mg0.8Mn0.3Al0.6Ti0.1)(Si6.3Al1.7O22)(OH)2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3670w, 3647w, 3627w, 1041s, 960s, 885sh, 794, 747w, 669, 605,

526, 480sh, 450s, 405sh.
Note: The spectrum was obtained by N.V. Chukanov.

Sib155 Ferro-ferri-nybøite NaNa2(Fe
2+

3Fe
3+

2)(Si7Al)O22(OH)2

Origin: Poudrette quarry, Mont Saint-Hilaire, La Vallée-du-Richelieu RCM, Montérégie (Rouville)
Co., Québec, Canada (type locality).

Description: Black crystals from the association with a eudialyte-group mineral, an astrophyllite-
group mineral, albite, and nepheline. Fragment of the holotype sample kindly granted by
A.V. Kasatkin. The crystal structure is solved. Monoclinic, space group C2/m, a ¼ 9.9190(5),
b¼ 18.0885(8), c¼ 5.3440(3) Å, β¼ 103.813(1)�, V¼ 931.09(13) Å3, Z¼ 2.Dcalc¼ 3.424 g/cm3.
The empirical formula is (Na0.68K0.27)(Na1.83Ca0.17)(Mg0.06Fe

2+
3.17Mn0.31Zn0.01Fe

3+
1.36Ti0.06)

(Si7.41Al0.59O22)(OH)1.58F0.42. The strongest lines of the powder X-ray diffraction pattern [d, Å
(I, %) (hkl)] are: 8.520 (100) (110), 3.162 (55) (310), 2.834 (24) (330), 1.671 (19) (461), 2.732
(10) (151), 2.552 (10) (�202), 2.344 (9) (�351), 3.298 (7) (240), 2.606 (6) (061), 1.446 (6) (�661,
4.10.0).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3683sh, 3670w, 3655w, 3647w, 1124, 1064s, 990sh, 959s, 744, 655sh,

637, 607w, 525sh, 483, 446s, 376.
Note: The spectrum was obtained by N.V. Chukanov.
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Sib156 Potassic-magnesio-fluoro-arfvedsonite KNa2(Mg4Fe
3+)Si8O22F2

Origin: Highway 366 road cut, Val-des-Monts, Québec, Canada (type locality).
Description: Fragment of the holotype sample kindly granted by A.V. Kasatkin.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3704w, 3667w, 3651w, (3636w), (3619w), 1144, 1088s, 1020s, 972s, 905sh,

890, 785w, 752, 711w, 673, 546, 518s, 461s, 440sh.
Note: The spectrum was obtained by N.V. Chukanov.

Sib157 Ferro-ferri-fluoro-leakeite NaNa2(Fe
2+

2Fe
3+

2Li)Si8O22F2

Origin: Aryskan REE deposit, Tyva Republic, Russia.
Description: Black prismatic crystals from the association with aegirine, polylithionite, quartz, and

albite. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe, Li calculated):
(Na0.46K0.32)Na2.00(Mg0.09Fe

2+
1.99Li0.80Mn0.10Zn0.06Fe

3+
1.73Al0.16Ti0.06)(Si8.00O22)F1.42(OH)0.58.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

2.7 Silicates 273



Wavenumbers (cm21): 3674w, 3646w, 3620w, 1120sh, 1084s, 1030sh, 977s, 910sh, 875sh, (801w),
(779w), 758, 710w, 646, 540, 485sh, 454s, 397.

Note: The spectrum was obtained by N.V. Chukanov.

Sib160 Ferri-fluoro-leakeite NaNa2(Mg2Fe
3+

2Li)Si8O22F2

Origin: Norra Kärr, Gränna, Jönköping, Småland, Sweden.
Description: Dark green prismatic crystals from the association with aegirine and albite. The empirical

formula is (electron microprobe; ICP MS analysis for Li): (Na0.55K0.44)(Na1.97Ca0.02Mn0.01)
(Mg1.78Mn0.09Zn0.06)Li1.05(Fe1.44Al0.51Ti0.08)(Si7.83Al0.17O22)F1.18(OH)0.82.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (3727w), 3681w, 3622w, 1143, 1085s, 971s, 915sh, 760, 710w, 679w,

661, 551, 485sh, 462s, 439sh, 374.
Note: The spectrum was obtained by N.V. Chukanov.

Sib161 Ferri-leakeite NaNa2(Mg2Fe
3+

2Li)Si8O22(OH)2
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Origin: Norra Kärr, Gränna, Jönköping, Småland, Sweden.
Description: Dark green prismatic crystals from the association with aegirine and albite. Characterized

by Mössbauer spectroscopy. The empirical formula is (electron microprobe; ICP MS analysis for
Li): (Na0.56K0.44)(Na1.90Mn0.08Ca0.02)(Mg1.88Fe

2+
0.10Mn0.02)Li1.12(Fe

3+
1.08Al0.50Fe

2+
0.24Ti0.06)

(Si7.97Al0.03O22)(OH)1.11F0.89.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (3742w), 3680w, 3648w, 3620w, 1143, 1086s, 985sh, 971s, 915sh,

761, 710w, 679w, 661, 551, 485sh, 464s, 440sh, 374.
Note: The spectrum was obtained by N.V. Chukanov.

Sib162 Potassic-ferri-leakeite KNa2(Mg2Fe
3+

2Li)Si8O22(OH)2

Origin: Kedykverpakhk Mt., Lovozero alkaline complex, Kola peninsula, Murmansk region, Russia.
Description: Greenish-gray fibrous aggregate from the association with natrolite and ussingite.

Investigated by I.V. Pekov.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3727w, 3701w, 3683w, 3622w, 1141, 1089s, 1035sh, 1007s, 961s, 920, 757,

707w, 675w, 661, 549, 508, 457s, 430sh, 400sh, 375.
Note: Actually, this sample may be the F-dominant analogue of potassic-ferri-leakeite. The spectrum

was obtained by N.V. Chukanov.
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Sib163 Potassic-ferro-pargasite KCa2(Fe
2+

4Al)(Si6Al2)O22(OH)2

Origin: Sal’nye Tundry Mts., Kola Peninsula, Russia.
Description: Black grains from the association with chlorapatite, almandine, diopside, enstatite, Cl-rich

biotite, potassic-chloropargasite, marialite, and plagioclase. The empirical formula is (electron micro-
probe): (K0.55Na0.42)(Ca1.98Na0.02)(Mg1.98Fe

2+
2.11Al0.65Ti0.26)(Si6.03Al1.97O22)(OH)1.62Cl0.38.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3667w, 3645w, 3627w, 1044s, 973s, 934s, 798, 727, 715, 674, 611w,

507, 493, 455s, 401sh, 385sh, 370.
Note: The spectrum was obtained by N.V. Chukanov.

Sib164 Oxo-magnesio-hastingsite NaCa2(Mg2Fe
3+

3)(Si6Al2)O22O2
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Origin: Deeti volcanic cone, Gregory rift, northern Tanzania (type locality).
Description: Brown megacryst from volcanic tuff. Holotype sample. The crystal structure is solved.

Monoclinic, space group C2/m, a¼ 9.8837(3), b¼ 18.0662(6), c¼ 5.3107(2) Å, β ¼ 105.278(1)�,
V¼ 914.77(5) Å3, Z¼ 2.Dmeas¼ 3.19(1) g/cm3. Optically biaxial (�), α¼ 1.706(2), β¼ 1.715(2),
γ ¼ 1.720(2). The empirical formula is (Na0.67K0.33)(Ca1.87Ma0.14Mn0.01)(Mg3.27
Fe3+1.25Ti0.44Al0.08)(Si6.20Al1.80O22)[O1.40(OH)0.60]. The strongest lines of the powder X–ray dif-
fraction pattern [d, Å (I, %) (hkl)] are: 3.383 (62) (131), 2.708 (97) (151), 2.555 (100) (�202), 2.349
(29) (�351), 2.162 (36) (261).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Zaitsev et al. (2013).
Wavenumbers (cm21): 3682w, 3660w, 3642w, 1055s, 975sh, 940s, 737w, 681, 664, 633, 508s, 460s.
Note: The band positions denoted by Zaitsev et al. (2013) as 3662, 3652, and 3645 cm�1 were

determined by us at 3682, 3660, and 3642 cm�1, respectively.

Sib165 Ferri-fluoro-katophorite Na(CaNa)(Mg4Fe
3+)(AlSi7O22)F2

Origin: Bear Lake diggings, Monmouth township, Haliburton Co., Ontario, Canada (type locality).
Description: Black crystal. Fragment of holotype.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3671w, 3652w, 1115sh, 1065s, 971s, 922s, 805sh, 745, 664, 510s, 460s.
Note: The spectrum was obtained by N.V. Chukanov.
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Sib166 Fluoro-pargasite NaCa2Mg4Al(Al2Si6O22)(F,OH)2

Origin: Pargas (Parainen), Southwestern Finland Region, Finland.
Description: Dark green crystals from the association with fluorphlogopite and calcite. The empirical

formula is (electron microprobe): (Na0.7K0.3)Ca2.0(Mg3.6Fe0.7Al0.6Ti0.1)(Si6.4Al1.6O22)F1.7(OH)0.3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3688w, 3674w, 3653w, 3630w, 1056s, 984s, 935s, 925sh, 808, 734, 695sh,

681, 667, 650sh, 510s, 462s.
Note: The spectrum was obtained by N.V. Chukanov.

Sib167 Tobermorite [Ca4Si6O17�2H2O](Ca�3H2O)
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Origin: Pervomaiskiy quarry, Crimea, Russia.
Description: White fibrous aggregate from the association with prehnite and laumontite. Investigated

by I.S. Lykova. The empirical formula is (electron microprobe): Ca4.68Si6O15(O,OH)2�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3594, 3525sh, 3355sh, 3240sh, 1624, 1420w, 1211, 1061, 983s, 910, 798w,

764w, 732w, 665, 527, 480, 444s, 402.
Note: The spectrum was obtained by N.V. Chukanov.

Sir199 Colinowensite BaCuSi2O6

Origin: Synthetic.
Description: Prepared hydrothermally from BaCl2�4H2O, Na2SiO3�9H2O, and CuO at 250 �C for

48 h. Characterized by powder X-ray diffraction data. Tetragonal, space group I41/acd, a¼ 9.97511
(17), c ¼ 22.2887(5) Å, V ¼ 2217.79(7) Å3, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2014b).
Wavenumbers (cm21): 1125sh, 1057s, 972, 920s, 891sh, 724, 644, 564, 498, 432.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sir200 Gerenite-(Y) (Ca,Na)2Y3Si6O18∙2H2O

Origin: Strange Lake peralkaline complex, Quebec-Labrador boundary, Canada (type locality).
Description: Creamy aggregate. Holotype sample. Triclinic, a ¼ 9.245(5), b ¼ 9.684(6), c ¼ 5.510

(3) Å, α ¼ 97.44(6)�, β ¼ 100.40(6)�, γ ¼ 116.70(6)�. Dcalc ¼ 3.46 g/cm3. Optically biaxial (�),
α ¼ 1.602(l), β ¼ 1.607(1), γ ¼ 1.611(1), 2V ¼ 73(3)�.
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Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Jambor et al. (1998).
Wavenumbers (cm21): 3480, 1655, 943, 668, 430, 340, 328, 306.
Note: Some other bands overlap with strong bands of admixed quartz.

Sir201 Pabstite BaSnSi3O9

Origin: Synthetic.
Description: Synthesized using a solid-state reaction technique.
Kind of sample preparation and/or method of registration of the spectrum: KI disc. Transmission.
Source: Choisnet et al. (1975).
Wavenumbers (cm21): 1060sh, 1030s, 965s, 923s, 762s, 561, 476sh, 455s, 397, 327, 275, 231.

Sir202 Wadeite dimorph K2ZrSi3O9
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Origin: Synthetic.
Description: Synthesized from a glass having wadeite composition by repeatedly crushing and heating

at 973–993 K. Characterized by powder X-ray diffraction data. The structure contains four-
membered rings of SiO4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Geisinger et al. (1987).
Wavenumbers (IR, cm21): 1135, 1022sh, 1010s, 758, 747, 692, 685, 591, 477, 461, 446s, 420, 405,

351.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1154, 1074, 1014w, 800, 744w, 539, 524, 511s, 419s, 400, 339,

311, 304, 215, 179, 149, 111, 90, 67, 52.

Sir203 Wadeite Rb analogue Rb2TiSi3O9

Origin: Synthetic.
Description: Prepared from Rb2CO3, TiO2, and SiO2 using a solid-state reaction technique.
Kind of sample preparation and/or method of registration of the spectrum: KI disc. Transmission.
Source: Choisnet et al. (1975).
Wavenumbers (cm21): 1033sh, 1010s, 950sh. 926s, 760sh, 724s, 639w, 576, 458, 372s, 342s, 245.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Sir204 Davinciite Na12K3Ca6Fe
2+

3Zr3(Si26O73OH)Cl2

Origin: RasvumchorrMt., Khibiny alkaline complex,Kola peninsula,Murmansk region, Russia (type locality).
Description: Dark lavender grains from the association with nepheline, sodalite, potassium feldspar,

delhayelite, aegirine, shcherbakovite, villiaumite, natrite, nacaphite, rasvumite, and djerfisherite.
Holotype sample. The crystal structure is solved. Trigonal, space group R3m, a ¼ 14.2956(2),
c¼ 30.0228(5) Å, V¼ 5313.6(2) Å3, Z¼ 3. Dmeas ¼ 2.82(2) g/cm3, Dcalc ¼ 2.848 g/cm3. Optically
uniaxial (+), ω ¼ 1.603(2), ε ¼ 1.605(2). The empirical formula is (electron microprobe,
H2O calculated): (Na11.75Sr0.29Ba0.03)(K2.28Na0.72)Ca5.99(Fe2.26Mn0.16)(Zr2.80Ti0.15Hf0.03Nb0.02)
(Si1.96Al0.04)(Si3O9)2(Si9O27)2[(OH)1.42O0.58]Cl1.62�0.48H2O. The strongest lines of the powder
X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 2.981 (100) (315), 2.860 (96) (404), 4.309
(66) (205), 3.207 (63) (208), 6.415 (54) (104), 3.162 (43) (217).

Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Khomyakov et al. (2013).
Wavenumbers (cm21): 3520w, 3450w, 3350w, 1650w, 1046sh, 1021s, 989s, 967s, 930s, 738s,

699, 657, 544, 480s, 450s.
Note: The band position denoted by Khomyakov et al. (2013) as 3590 cm�1 was determined by us at

3520 cm�1.

Sir205 Rippite K2(Nb,Ti)2(Si4O12)O(O,F)
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Origin: Chuktukon carbonatite massif, Chadobets upland, southern Siberian craton, Krasnoyarsky
Kray, Russia (type locality).

Description: Prismatic crystals from the association with pyrochlore-supergroup minerals, quartz,
goethite, baryte, monazite-(Ce), K-feldspar, fluorite, fluorapatite, Ca-REE-fluorcarbonates, Nb-rich
rutile, olekminskite, aegirine, etc. Holotype sample. The crystal structure is solved. Tetragonal,
space group P4bm, a ¼ 8.7388(2), c ¼ 8.1277(2) Å, V ¼ 620.69(2) Å3, Z ¼ 2. Dmeas ¼ 3.17(2)
g/cm3, Dcalc ¼ 3.198 g/cm3. Optically uniaxial (+), ω ¼ 1.738(2), ε ¼ 1.747(2). The empirical
formula is (electron microprobe): K2.00(Nb1.88Ti0.10Zr0.02)(Si4.00O12)O(O0.88F0.12). The strongest
lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.205 (100) (001), 4.383
(83) (020), 4.082 (90) (002), 3.530 (87) (121), 2.985 (81) (022), 2.822 (70) (122), 2.768 (99) (130).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1999w, 1878w, 1660w, 1415sh, 1238s, 1073s, 954s, 910s, 813s, 740sh,

707, 683, 577, 552, 489s, 396s.
Note: The spectrum was obtained by N.V. Chukanov.

Sir206 Dualite Na30(Ca,Na,Ce,Sr)12(Na,Mn,Fe,Ti)6Zr3Ti3MnSi51O144(OH,H2O,Cl)9

Origin: AlluaivMt., Lovozero alkaline complex, Kola peninsula, Murmansk region, Russia (type locality).
Description: Yellow anhedral grains from the association with K-Na feldspar, nepheline, sodalite,

cancrinite, aegirine, alkaline amphibole, eudialyte, lovozerite, lomonosovite, vuonnemite,
lamprophyllite, sphalerite, and villiaumite. Holotype sample. The crystal structure is solved.
Trigonal, space group R3m, a¼ 14.153(9), c¼ 60.72(5) Å, V¼ 10,533(22) Å3, Z¼ 3.Dmeas¼ 2.84
(3) g/cm3, Dcalc ¼ 2.814 g/cm3. Optically uniaxial (+), ω ¼ 1.610(1), ɛ ¼ 1.613(1). The crystal-
chemical formula is (Na29.79Ba0.1K0.10)Σ30(Ca8.55Na1.39REE1.27Sr0.79)(Na3.01Mn1.35Fe

2+
0.87Ti0.77)

(Zr2.61Nb0.39)(Ti2.52Nb0.48)(Mn0.82Si0.18)(Si50.77Al0.23)O144[(OH)6.54(H2O)1.34�Cl0.98]. The stron-
gest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.11 (40) (110), 4.31
(50) (0.2.10), 2.964 (100) (1.3.10), 2.839 (90) (048), 2.159 (60) (2.4.10, 0.4.20), 1.770 (60) (2.4.22,
4.0.28, 440), 1362 (50) (5.5.12, 3.0.42).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3485w, 3314w, 1650w, 1063s, 1015s, 995s, 931s, 780w, 740, 694, 652, 525,

485, 450, 395sh, 375.
Note: The spectrum was obtained by N.V. Chukanov.
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Sir207 Roedderite Na-free analogue K2Mg2(Mg3Si12)O30

Origin: Synthetic.
Description: Prepared in a solid-state reaction. The crystal structure is solved. Hexagonal, space group

P6/mcc, a ¼ 10.211, c ¼ 14.152 Å, V ¼ 1277.8 Å3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Nguyen et al. (1980).
Wavenumbers (cm21): 1203sh, 1170sh, 1140sh, 1110s, 1060sh, 1020s, 900sh, 785, 755sh, 648, 606,

567, 534s, 476sh, 460s, 437s, 398sh, 385s.

Sil308 Luanshiweiite KLiAl1.5(Si3.5Al0.5)O10(OH)2
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Origin: Ognyovskoe Ta deposit, Ognyovka-Bakennoe pegmatite field, Kalba ridge, Kazakhstan.
Description: Lilac grains from the association with albite, microcline, and quartz. Investigated by

A.V. Kasatkin. The empirical formula is (K0.86Na0.05Cs0.02)(Li1.10Al1.51Mn0.09)(Si3.26Al0.74O10)
(OH)1.53F0.47.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3634, 1087s, 1015sh, 1002s, 801, 753, 700sh, 555sh, 531s, 479s, 438.
Note: The spectrum was obtained by N.V. Chukanov.

Sil309 Sodium lithium aluminosilicate Na3Li2(AlSi2O8) Na3Li2(AlSi2O8)

Origin: Synthetic.
Description: Synthesized by heating a stoichiometric mixture of Li2CO3, Na2CO3, Al2O3, and SiO2 at

630 �C for 48 h with several intermediate grindings and mixings. Characterized by powder X-ray
diffraction data. The crystal structure is solved. Orthorhombic, space group Cmca, a ¼ 14.1045
(19) Å, b ¼14.7054(19) Å, c ¼ 7.0635(9) Å, V ¼ 1465.1(3) Å3, Z ¼ 8. Dcalc ¼ 2.666 g/cm3. The
structure is based on a 2D layer, which is composed of [Al2Si2O12] rings and SiO4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Han et al. (2013).
Wavenumbers (cm21): 1640sh, 1505, 1458s, 1051s, 1012s, 990sh, 951s, 872sh, 858s, 720sh,

680, 607w, 491.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 1458 cm�1 (erroneously assigned by the authors to the Si–O–Al
bridges) indicates that the sample is contaminated by a carbonate.
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Sil310 Tobelite hydrated variety (NH4,H2O)Al2[(Si,Al)4O10](OH)2�nH2O (?)
“Ammonium illite”

Origin: Synthetic.
Description: Prepared hydrothermally from metakaolin powder and 25% NH3 solution at 300 �C for

1 h. Characterized by powder X-ray diffraction data. The basal spacing of the product is 10.74 Å.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Wang et al. (2013).
Wavenumbers (cm21): 3634, 3446, 3340sh, 3075sh, 2850sh, 1635, 1432, 1278w, 1182sh, 1014s,

982sh, 940sh, 825w, 801w, 741sh, 723, 538s, 481s, 421sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sil311 Falcondoite Ni4Si6O15(OH)2∙6H2O
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Origin: Falcondo Mine, Bonao, La Vega Province, Dominican Republic (type locality).
Description: Green sample confirmed by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.
Source: Reddy et al. (1987).
Wavenumbers (cm21): 3400, 3200, 1630, 1195, 1048, 1000s, 775sh, 674, 651sh, 465s, 440sh, 365sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sil312 Imogolite Al2SiO3(OH)4

Origin: Natural sample; the locality is not indicated.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Farmer et al. (1979).
Wavenumbers (cm21): 989s, 941s, 691, 593s, 504, 423, 346.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Sil313 Imogolite Al2SiO3(OH)4
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Origin: Synthetic.
Description: Amorphous product of interaction between hydroxyaluminium and orthosilicic acid in

dilute aqueous solutions of pH < 5.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Farmer et al. (1979).
Wavenumbers (cm21): 985s, 938s, 691, 579s, 505, 423, 346.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Sil314 Kanemite HNaSi2O5∙3H2O

Origin: Synthetic.
Description: Synthesized according to known methods. Characterized by powder X-ray

diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Huang et al. (1998).
Wavenumbers (IR, cm21): 3582, 3463s, 1692sh, 1642, 1433, 1167s, 1087sh, 1049s, 1012sh,

899, 777, 687w, 661w, 619sh, 571, 508sh, 457s, 393sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3150w, 1060s, 1015s, 788w, 699w, 646w, 503w, 489w, 465s,

419, 372, 285, 261, 237, 185w, 173w, 154w, 137w, 129, 122, 107w, 100w.
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Sil315 Margarite CaAl2Si2Al2O10(OH)2

Origin: Enontekiö, northern Finland.
Description:A Li- and Be-poor variety.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Lahti and Saikkonen (1985).
Wavenumbers (cm21): 3634, 3461w, 1825w, 1634w, 1400w, 987sh, 925s, 910sh, 828sh, 734sh,

698s, 609, 541s, 490s, 442, 392, 273.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the range from 2800 to 3000 cm�1 correspond to the admixture
of an organic substance.

Sil316 Plumbophyllite Pb2Si4O10∙H2O
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Origin: Blue Bell claims, near Baker, San Bernardino Co., California, USA (type locality).
Description: Pale blue prismatic crystals from the association with cerussite, chrysocolla, fluorite,

goethite, gypsum, mimetite, opal, plumbotsumite, quartz, sepiolite, and wulfenite. Holotype sam-
ple. The crystal structure is solved. Orthorhombic, space group Pbcn, a ¼ 13.2083(4), b ¼ 9.7832
(3), c ¼ 8.6545(2) Å, V ¼ 1118.33(5) Å3, Z ¼ 4. Dmeas ¼ 3.96(5) g/cm3, Dcalc ¼ 3.940 g/cm3.
Optically biaxial (+), α¼ 1.674(2), β¼ 1.684(2), γ ¼ 1.708(2), 2V¼ 66(2)�. The empirical formula
is Pb1.79Cu0.02Si4.00O9.62(OH)0.38�1.02H2O. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 7.88 (97) (110), 6.63 (35) (200), 4.90 (38) (020), 3.623 (100) (202),
3.166 (45) (130), 2.938 (57) (312, 411, 222), 2.555 (51) (132, 213), 2.243 (50) (521, 332).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of powdered mineral.

Source: Kampf et al. (2009b).
Wavenumbers (IR, cm21): 3452, 3200w, 1636w, 1067, 1019sh, 958s, 915sh, 771, 711, 640w,

499, 465s, 439s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3561, 3468, 3338, 3209, 1062, 1024s, 980, 923s, 641, 506, 480, 347,

329, 251, 209, 146, 94s.

Sil317 Protoimogolite

Origin: Synthetic.
Description: Amorphous product of interaction between hydroxyaluminium species and orthosilicic

acid in dilute aqueous solutions of pH < 5 at 20 �C.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Farmer et al. (1979).
Wavenumbers (cm21): 968s, 691sh, 588s, 504sh, 423, 344.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

290 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



Sil318 Pyrophyllite Al2Si4O10(OH)2

Origin: Nakamuraguchi, Yano-Shokozan area, Hiroshima Prefecture, Japan.
Description: Fine-grained aggregate. Characterized by powder X-ray diffraction data and electron

microprobe analyses. Triclinic, a ¼ 5.16(1), b ¼ 8.96(1), c ¼ 9.37(2) Å, α ¼ 90.8(2)�, β ¼ 101.0
(2)�, γ ¼ 89.8(2)�. The empirical formula is close to that of the end-member.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Wiewióra and Hida (1996).
Wavenumbers (cm21): 3676, 3646, 1121s, 1070s, 1052s, 950s, 853, 835, 813, 737w, 625w,

576, 541s, 520, 484s, 462, 418, 396w, 359, 334w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sil319 Silinaite NaLiSi2O5∙2H2O
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Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. Monoclinic, space group A2/n, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Huang et al. (1999a).
Wavenumbers (IR, cm21): 3558sh, 3490s, 3396, 3265, 1667, 1639, 1376w, 1189, 1159, 1111,

1042sh, 1026s, 955s, 757, 677w, 627, 535, 456s, 430sh, 375, 339w.
Note: The weak band at 1376 cm�1 corresponds to the admixture of a nitrate in KBr. The

wavenumbers were partly determined by us based on spectral curve analysis of the published
spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3472, 3389, 3259, 1652, 1068s, 1000w, 956, 773w, 734w,
635, 609s, 501, 490w, 466, 423, 408, 371, 342, 327, 279, 259, 250, 227, 196, 163, 148, 126, 107.

Sil320 Cookeite (Al,Li)3Al2(Si,Al)4O10(OH)8

Origin: Nagol’nyi Kryazh, Lugansk region, Ukraine (type locality).
Description: White scales with pearly lustre from the association with quartz. Investigated by

A.V. Kasatkin and Y.V. Bychkova. The empirical formula is Li0.92Al3.97(Si3.29Al0.71O10)(OH,O)8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3694, 3650, 3620, 3528, 3327, 1165sh, 1110sh, 1045sh, 1025sh, 1008s,

950sh, 925sh, 835sh, 795sh, 749, 707w, 639w, 565sh, 536s, 518s, 475s, 432w, 415w.
Note: The spectrum was obtained by N.V. Chukanov.
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Sil321 Windhoekite Na-bearing variety (Ca,Na)2Fe
3+

3+x[(Si,Al)8O20](OH)4�nH2O

Origin: Ariskop Quarry, Aris, near Windhoek, Windhoek district, Khomas Region, Namibia (type locality).
Description: Clusters of brown acicular crystals from the association with fluorapofillite, aegirine, and

microcline. The crystal structure is solved. Monoclinic, space group C2/m, a ¼ 14.0626(3),
b ¼ 17.9007(8), c ¼ 5.2527(2) Ǻ, β ¼ 104.4(6)�, V ¼ 1280.3(2) Ǻ3, Z ¼ 2. A specific feature of
Na-rich windhoekite is the presence of the fivefold coordinationM(4)-site occupied by Ca and Na in
the atomic ratio 1:1, which is attached to a ribbon consisting of Fe3+- and Ca-centered octahedra and
sandwiched between two opposing tetrahedral ribbons. The empirical formula is (electron micro-
probe): K0.08Na0.42Ca1.15Fe

3+
3.52Mn0.41Cr0.04Ti0.10(Si7.44Al0.56)O20(OH)x�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3558, 3434, 3245w, 1636, 1175, 1012s, 810w, 678w, 490sh, 452s.
Note: The spectrum was obtained by N.V. Chukanov.

Sil322 Stevensite (Ca,Na)xMg3-ySi4O10(OH)2
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Origin: Ghassoul locality, Atlas Mts., Morocco.
Description: Characterized by powder X-ray diffraction data, thermal and chemical analyses. Basal

spacing value is equal to 13.5 Å. Weight loss on ignition at 1000 �C is 7.19%.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Benhammou et al. (2011).
Wavenumbers (cm21): 3678, 3630, 3447, 1650, 1022s, 787sh, 692sh, 675, 527sh, 471s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. Weak bands in the ranges from 2800 to 3000 cm�1 and from 2300 to 2400 cm�1

correspond to the admixture of an organic substance and to atmospheric CO2, respectively.

Sil323 Sudoite Mg2Al3(Si3Al)O10(OH)8

Origin: Kamikita, Aomori prefecture, Japan.
Description: The empirical formula is (K0.01Na0.115Ca0.005Mg1.385Fe

3+
0.035Al3.29)(Si3.125Al0.875)

O10(OH)8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Shirozu and Ishida (1982).
Wavenumbers (cm21): 3610, 3530, 3340w, 1049sh, 993s, 940sh, 918sh, 835w, 700, 557,

527, 472s, 455s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Sil324 “Tetraferrinontronite” Na0.75Fe2(Si3.25Fe0.75O10)(OH)2

Origin: Synthetic.
Description: Synthesized hydrothermally. Characterized by powder X-ray diffraction data; b �

9.25 Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorpion.
Source: Petit et al. (2015).
Wavenumbers (cm21): 989, 859sh, 813, 710, 671, 597, 490, 450, 425.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, the following wavenumbers are given: 3562, 993s, 851sh, 812, 710w,
669w, 598w, 490s, 449, 420.

Note: The compound is described as a smectite, but compositional and PXRD data correspond to a
dioctahedral mica.

Sil325 Yangzhumingite KMg2.5Si4O10F2

Origin: A lamproitic dyke at the Kvaløya Island, North Norway.
Description: Grains from the association with low-Al phlogopite, apatite, Fe-bearing potassium

feldspar, quartz, and alkali amphibole. The crystal structure is solved. Monoclinic, space group
C2/m, a ¼ 5.2677(3), b ¼ 9.1208(5), c ¼ 10.1652(6) Å, β ¼ 100.010(4)�. The empirical formula is
(K0.98Na0.03)(Mg2.35Fe0.23Cr0.01Ti0.02Ni0.01□0.38)(Si3.66Al0.34O10)F1.16(OH)0.84.

Kind of sample preparation and/or method of registration of the spectrum: Micro-FTIR measure-
ment on a crystal mounted on glass capillary.

Source: Schingaro et al. (2014).
Wavenumbers (cm21): 3605w, 3586, 3550, 3537, 1638w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Sil326 Montmorillonite (Na,Ca)0.3(Al,Mg)2(Si4O10)(OH)2�nH2O

Origin: Voudia bentonite quarry, Milos Island, Greece.
Description: Gray nodule from the association with natroalunite. The empirical formula is (electron

microprobe): (Ca0.12K0.06Na0.04)(Al1.40Mg0.35Fe0.20Ti0.04Cr0.01)(Si3.83Al0.17O10)�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3630, 3420, 3250sh, 1638, 1405sh, 1110sh, 1041s, 917, 890sh, 842w, 800sh,

695sh, 619, 525s, 467s, 424.
Note: The spectrum was obtained by N.V. Chukanov.

Sil328 Hydrobiotite K(Mg,Fe2+)6(Si,Al)8O20(OH)4∙nH2O

Origin: Tsigrado perlite quarry, Milos Island, Greece.
Description: Dark brown platy crystals from perlite. The empirical formula is (electron microprobe):

(K0.35Na0.10Ca0.04)(Mg1.67Fe1.08Ti0.23Mn0.02)(Si2.76Al1.21Fe0.03O10)(OH)2�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3525sh, 3406, 3250sh, 1638, 1075sh, 1010s, 715sh, 677, 448s.
Note: The spectrum was obtained by N.V. Chukanov.
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Sil329 Cookeite (Al,Li)3Al2(Si,Al)4O10(OH)8

Origin: Coronel Murta, Minas Gerais, Brazil.
Description: Yellow split platelets from the association with F-rich muscovite and elbaite. A hydrated

sample. The empirical formula is (Li1.07Al3.82Fe0.11)(Si3.14Al0.86O10)(OH)7.8F0.2�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3640sh, 3610sh, 3588, 3535sh, 3355, 1644w, 1085sh, 1040sh, 1008s,

749, 635w, 521s, 476s, 430sh, 420sh, (363).
Note: The spectrum was obtained by N.V. Chukanov.

Sil330 Ferrisepiolite (Fe3+,Fe2+,Mg)4[(Si,Fe
3+)6O15](O,OH)2∙6H2O

Origin: Flora (Selsurt) Mt., Lovozero alkaline complex, Kola Peninsula, Murmansk region, Russia.
Description: Beige fibrous aggregate from the association with yofortierite and narsarsukite.

Characterized by semiquantitative electron microprobe analyses. Confirmed by the IR spectrum.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1653, 1193, 1108, 1034s, 995sh, 822w, 789w, 732w, 680, 652, 475s, 451s.
Note: The spectrum was obtained by N.V. Chukanov.

Sil331 Wesselsite SrCuSi4O10

Origin: Synthetic.
Description: Synthesized via sol-gel method and calcined at 900 �C. Characterized by powder X-ray

diffraction data and EDS analyses. Tetragonal, a ¼ 7.366, c ¼ 15.574 Å.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Zhang et al. (2016b).
Wavenumbers (cm21): 1226s, 1161s, 1082sh, 1054s, 1009s, 793w, 753, 661s, 596, 562,

521, 479s, 425s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Bands above 1400 cm�1 are due to impurities.

Sil332 Hydronaujakasite Na2(H2O,H3O)4Fe[Al4Si8O22(OH,O)4]
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Origin: Tuperssuatsiait bay, southern part of the Ilímaussaq alkaline complex, Narsaq, Kujalleq, South
Greenland (type locality).

Description: Peripheral zones (replacement rims) up to 1 mm thick of naujakasite crystals. The crystal
structure is solved. Monoclinic, space group C2/m, a ¼ 14.983(8), b ¼ 7.998(4), c ¼ 10.403(6) Å,
β ¼ 113.874(8)�, V¼ 1140.0(11) Å3, Z¼ 2. Dmeas ¼ 2.66(1) g/cm3, Dcalc ¼ 2.673 g/cm3. Optically
biaxial (+), α ¼ 1.525(2), β ¼ 1.530(2), γ ¼ 1.545. The empirical formula is H10.78Na1.83Ca0.09
Fe2+0.90Mn0.20Al3.95Si8.05O29.52.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3540sh, 3420, 3260sh, 1646w, 1103s, 1065sh, 1018s, 994s, 985s, 928s,

875sh, 742, 708, 700sh, 625w, 593, 550sh, 533, 502, 460s, 399, 385sh.
Note: The spectrum was obtained by N.V. Chukanov.

Sil333 “Hydrochamosite-1M” (Fe,Al,Mg)6(Si,Al)4O10(OH)8�nH2O

Origin: Karagach ridge, Karadag Mts., Crimea Peninsula, Russia.
Description: Olive-green, powdery. Investigated by A.V. Kasatkin. The observed lines of the powder

X-ray diffraction pattern [d, Å] are: 14.50s, 7.18s, 4.80w, 4.61, 3.57, 2.85, 2.65, 2.49s, 2.09s,
1.55w, 1.52, 1.47w, 1.42w, 1.34w, 1.30, 1.23w, 1.18w.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3579s, 3380sh, 1652, 1075sh, 991s, 947s, 770sh, 730sh, 671, 634, 545sh,

445sh, 433s.
Note: The spectrum was obtained by N.V. Chukanov.
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Sil334 “Ferrisaponite” Cax(Fe
3+,Mg)3-y[(Si,Al)4O10](O,OH)2�nH2O

Origin: Pervomaiskiy quarry, Crimea Peninsula, Russia.
Description: Brownish-black grains with submetallic lustre. A product of ferrosaponite oxidation. The

empirical formula is (electron microprobe): Ca0.32Na0.10(Fe1.7Mg1.1)(Si3.2Al0.8O10)(O,
OH)2�nH2O. The observed lines of the powder X-ray diffraction pattern [d, Å] are: 14.82w,
4.58s, 2.64s, 2.58, 2.42, 2.30, 1.54s.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3510sh, 3440sh, 3406, 3250sh, 1635, (1420), 1090sh, 1014s, 830sh,

727, 673, 628, 437s.
Note: The spectrum was obtained by N.V. Chukanov.

Sif148 Glass (K,Cs)AlSi5–6Ox
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Origin: Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great
Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka peninsula, Russia.

Description: Greenish with conchoidal fracture. Investigated by I.V. Pekov. Characterized by qualita-
tive electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3565, (3340w), 1140sh, 1110sh, 1087s, 885sh, 793, 735sh, 673, 619w,

606w, 463s.
Note: The spectrum was obtained by N.V. Chukanov.

Sif149 Hydroxycancrinite (?) Na8-x(Si6Al6O24)(CO3)<1�nH2O
Cancrinite CO3-deficient

Origin: Synthetic.
Description: Synthesized hydrothermally at 200 �C from a charge containing 0.7 g of kaolinite,

0.425 g of Na2CO3, and 17 ml of 0.8 M NaOH solution during 22 h, see Chukanov et al. (2012a).
Characterized by powder X-ray diffraction and semiquantitative electron microprobe analyses.
Hexagonal, a ¼ 12.703(1), c ¼ 5.181(1) Å, V ¼ 723.9(3) Å3. The empirical formula is Na6-
7(Si6.1Al5.9O24)(CO3)x�nH2O (x � 0.45).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3600, 3540w, 1636, 1477, 1409w, 1385sh, 1262w, 1110, 1130sh, 1007s,

758w, 686, 626, 572, 495sh, 461s, 433s, 394.
Note: The spectrum was obtained by N.V. Chukanov.
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Sif150 Depmeierite Na8[Al6Si6O24](PO4,CO3)1-x�3H2O (x < 0.5)

Origin: Synthetic.
Description: Synthesized hydrothermally at 200 �C from a charge containing 0.7 g of kaolinite, 1.7 g of

Na3PO4, and 17 ml of 0.8 M NaOH solution during 10 h, see Chukanov et al. (2012a). Characterized
by powder X-ray diffraction and electron microprobe analyses. Hexagonal, a¼ 12.703(4), c¼ 5.166
(2) Å, V ¼ 722.0(5) Å3. The empirical formula is HxNa7.15(Si6.22Al5.78O24)(PO4)0.59�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3607, 3533w, 1635, 1150sh, 1095, 1006s, 850w, 758w, 685, 624, 562, 550sh,

505, 460s, 433s, 391.
Note: The spectrum was obtained by N.V. Chukanov.

Sif151 Vishnevite potassium analogue K2Na6[Al6Si6O24](SO4)�nH2O
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Origin: Synthetic.
Description: Synthesized hydrothermally at 200 �C from a charge containing 0.7 g of kaolinite, 1.7 g of

K2SO4, and 17 ml of 0.8 M NaOH solution during 10 h, see Chukanov et al. (2012a). Characterized
by powder X-ray diffraction and electron microprobe analyses. Hexagonal, a¼ 12.800(1), c¼ 5.246
(1) Å, V ¼ 744.3(2) Å3. The empirical formula is K2.02Na6.17(Si6.01Al5.99O24)(SO4)0.94(OH)x�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3617, 3555sh, 1635, (1552w), 1156, 1103s, 1014s, 981s, 756w, 679, 625,

564, 497, 454s, 429s, 391.
Note: The spectrum was obtained by N.V. Chukanov.

Sif152 Vishnevite Na8(Si6Al6O24)(SO4)�2H2O

Origin: Synthetic.
Description: Synthesized hydrothermally at 200 �C from a charge containing 0.7 g of kaolinite, 1.7 g of

Na2SO4, and 17 ml of 0.8 M NaOH solution during 10 h, see Chukanov et al. (2012a). Characterized
by powder X-ray diffraction and electron microprobe analyses. Hexagonal, a¼ 12.689(1), c¼ 5.180
(1) Å, V ¼ 722.2(2) Å3. The empirical formula is Na8.03(Si6.01Al5.99O24)(SO4)0.96(CO3,OH)x�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3603, 3526w, 3430, 1635, 1164, 1152, 1101s, 1035s, 1007s, 980sh, 876w,

762w, 684, 622, 572, 503, 461, 430, 391.
Note: The spectrum was obtained by N.V. Chukanov.
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Sif153 Vishnevite CO3-bearing Na8(Si6Al6O24)(SO4,CO3)�2H2O

Origin: Synthetic.
Description: Synthesized hydrothermally at 200 �C from a charge containing 0.7 g of kaolinite, 0.43 g

of Na2CO3, 0.43 g of Na3PO4, 0.43 g of Na3SO4, 0.43 g of Na2C2O4, and 17 ml of 0.8 M NaOH
solution during 67 h, see Chukanov et al. (2012a). Characterized by powder X-ray diffraction and
electron microprobe analyses. Hexagonal, a ¼ 12.674(1), c ¼ 5.1667(2) Å, V ¼ 718.7(4) Å3. The
empirical formula is Na7.52(Si6.18Al5.82O24)(SO4)0.62(CO3)0.19(PO4)0.03�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3608, 3536w, 1631w, 1425w, 1151, 1107s, 1036s, 1008s, 963s, 762w,

684, 623, 573, 500, 463s, 425s, 391.
Note: The spectrum was obtained by N.V. Chukanov.

Sif154 Cancrinite NO3-analogue Na8(Si6Al6O24)(NO3,CO3)2–x�3H2O
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Origin: Synthetic.
Description: Synthesized hydrothermally at 160 �C from a charge containing 1 g of kaolinite, 4 g of

NaNO3, and 45 ml of 8 M NaOH solution during 120 h (see Chukanov et al. 2011, 2012a).
Characterized by powder X-ray diffraction and electron microprobe analyses and gas chromatogra-
phy of annealing products. The crystal structure is solved. Hexagonal, space group P63,
a ¼ 12.6743(2), c ¼ 5.18289(13) Å, V ¼ 721.02(2) Ǻ3. The empirical formula is
Na7.8(Si6.05Al5.95O24)(NO3)1.32(CO3)0.27�3.3H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3611, 3535, 3449, 1629, 1438sh, 1423s, 1384w, 1117, 1036s, 998s, 823w,

763w, 730w, 684, 675sh, 622, 575, 504, 464s, 433s, 389.
Note: The spectrum was obtained by N.V. Chukanov.

Sif155 Cancrinite NO3-analogue low-hydrous Na8(Si6Al6O24)(NO3,CO3)2–x�H2O

Origin: Synthetic.
Description: Product of partial dehydration of the NO3-analogue of cancrinite Sif154 at 300 �C (see

Chukanov et al. 2011, 2012a). The empirical formula is Na7.8(Si6.05Al5.95O24)
(NO3)1.32(CO3)0.27�nH2O (n � 1).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3604w, 1628w, 1438sh, 1422s, 1384w, 1108, 1036s, 997s, 823w, 762w,

730w, 684, 675sh, 624, 575, 507, 464s, 434s, 387.
Note: The spectrum was obtained by N.V. Chukanov.
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Sif156 Cancrinite Ca-free analogue Na8[Al6Si6O24](CO3)∙4H2O

Origin: Synthetic.
Description: Synthesized hydrothermally from kaolinite, NaOH, and NaHCO3 at 473 K for 48 h.

Characterized by thermal data and powder X-ray diffraction. Hexagonal, space group P63,
a ¼ 12.663(2), c ¼ 5.1738(9) Å. The empirical formula is Na8.28[Al5.93Si6.07O24]
(CO3)0.93(OH)0.49∙3.64H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Kurdakova et al. (2014).
Wavenumbers (cm21): 3601s, 3530s, 2520w, 2425w, 2060w, 1950w, 1630, 1474, 1370, 1114,

1044s, 1010s, 960s, 875sh, 761w, 683, 625, 573.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sif157 Carnegieite (high) Na(AlSiO4)
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Origin: Synthetic phase polymorphous with nepheline.
Description: Prepared from hydrated alumina gel, NaOH, and highly reactive aerosol silica at 800�

with subsequent annealing at 1300 �C. Characterized by powder X-ray diffraction data. Cubic,
space group P213.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Nayak and Kutty (1998).
Wavenumbers (cm21): 1100sh, 996s, 925sh, 700s, 640, 583, 517, 474s.

Sif158 Carnegieite (low) Na(AlSiO4)

Origin: Synthetic phase polymorphous with nepheline.
Description: Prepared from hydrated alumina gel, NaOH, and highly reactive aerosol silica at 800�.

Characterized by powder X-ray diffraction data. Orthorombic, space group Pb21a.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Nayak and Kutty (1998).
Wavenumbers (cm21): 1100sh, 1016s, 950sh, 687, 620sh, 586sh, 468, 439sh.
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Sif159 Hexacelsian Ba(Al2Si2O8)

Origin: Synthetic.
Description: Prepared by heating Ba-exchanged synthetic zeolite 4A (Na12Al12Si12O48�27H2O) up to

1300 �C at a rate of 10 �C/min. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Aronne et al. (2002).
Wavenumbers (cm21): 1223s, 934s, 878sh, 662, 630, 570, 481s, 460s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. For the IR spectra of hexacelsian and its polymorphs see also Dondur et al.
(2005) and Colomban et al. (2000).

Sif160 Rubicline Rb(AlSi3O8)
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Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Roy (1987).
Wavenumbers (cm21): 1134s, 1093s, 1053s, 1004s, 770, 725, 645, 607, 578, 537, 465, 419s,

372, 325, 297sh, 274w, 210.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sif161 Sodalite nitrite analogue Na8[AlSiO4]6(NO2)2�nH2O

Origin: Synthetic.
Description: Prepared hydrothermally from kaolinite, in the presence of NaNO2. Characterized by

powder X-ray diffraction data. Cubic, a ¼ 8.931(1) Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Buhl (1991).
Wavenumbers (cm21): 3645w, 3445w, 1620sh, 1435, 1372sh, 1264, 1005sh, 972s, 722s, 699, 654s,

455s, 424s, 400sh, 350sh, 326sh, 282.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The bands at 1264 and 1372 cm�1 correspond to stretching vibrations of NO2
� and

NO3
�, respectively. The band at 1435 cm�1 indicates the presence of CO3

2�.
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Sif162 Sulfhydrylbystrite Na5K2Ca[Al6Si6O24](S5)
2�(SH)�

Origin: Malobystrinskoye lazurite deposit, Malaya Bystraya River basin, Lake Baikal area, Eastern
Siberian Region, Russia (type locality).

Description: Anhedral grains from the association with lazurite, calcite, diopside, phlogopite, and pyrite.
Holotype sample. The crystal structure is solved. Hexagonal, space group P31c, a ¼ 12.9567(6),
c¼ 10.7711(5) Å, V¼ 1566.0(1) Å3, Z¼ 2.Dmeas¼ 2.391(1) g/cm3, Dcalc¼ 2.368 g/cm3. Optically
uniaxial (+), ω ¼ 1.661(2), ε ¼ 1.584(2). The empirical formula is Na5.17K1.87Ca0.99(Al6.01Si5.99O24)
(S5)

2�
0.86(SH)0.86Cl0.07. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)]

are: 4.857 (48) (102), 3.948 (38) (211), 3.739 (94) (300), 3.331 (100) (212), 2.715 (32) (401), 2.692
(56) (004).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Sapozhnikov et al. (2016).
Wavenumbers (cm21): 3436, 2926, 2855, 2514, 1798, 1634, 1071, 1000, 926, 876, 712, 673, 631sh,

619, 583, 534, 501, 462.
Note: The bands at 3436 and 1634 cm�1 correspond to H2O molecules that are not indicated in the

chemical formula of sulfhydrylbystrite. Weak bands in the range from 2800 to 3000 cm�1 corre-
spond to the admixture of an organic substance. The assignment of the very weak band at
2514 cm�1 to S–H-stretching vibrations made by the authors is ambiguous and questionable.
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Sif163 Thallium feldspar TlAlSi3O8

Origin: Synthetic.
Description: Synthesized from a powdered sample of natural low albite and TlNO3 in a 1:1 weight

ratio under hydrothermal conditions, at 550 �C for 5 days. The crystal structure is solved.
Monoclinic, space group C2/m, a ¼ 8.882(3), b ¼ 13.048(2), c ¼ 7.202(2) Å, β ¼ 116.88(1)�,
V ¼ 744.5(4) Å3, Z ¼ 4. Dcalc ¼ 3.958 g/cm3. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 3.94 (64) (200, 111), 3.63 (70) (13�1), 3.62 (80) (22�1), 3.45
(92) (11�2), 3.372 (100) (220), 3.197 (54) (002), 2.992 (78) (131).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Kyono and Kimata (2001).
Wavenumbers (cm21): 1116s, 1027s, 1014sh, 776, 751, 718, 620sh, 581, 542, 463sh, 423s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Sif164 Thallium sodalite Tl6(Al6Si6O24)

2.7 Silicates 311



Origin: Synthetic.
Description: Obtained in the ion-exchange reaction between hydroxysodalite Na8(Al6Si6O24)

(OH)2�2H2O and 1 M aqueous solution of TlNO3 at 100 �C. The product was dried at 425 �C for
5 h under a vacuum of 10�5 Torr. Characterized by powder X-ray diffraction data. The structure
was refined by Rietveld analysis. Cubic, a ¼ 8.9653(1) Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Latturner et al. (1999).
Wavenumbers (cm21): 1075, 1013sh, 980s, 960s, 725, 690, 640, 610w, 580w, 535w, 460s, 425s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sif165 Kalsilite KAlSiO4

Origin: Koashva Mt., Khibiny alkaline complex, Kola peninsula, Murnansk region, Russia.
Description: Crystals from the association with carbobystrite. Investigated by I.V. Pekov.

Characterized by powder and single-crystal X-ray diffraction data, as well as electron microprobe
analyses. Hexagonal, space group P63.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 2063w, 1992w, 1953w, 1055sh, 1030s, 983s, 689s, 650sh, 480sh, 462s, 383.
Note: The spectrum was obtained by N.V. Chukanov.
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Sif166 Dmisteinbergite Ca(Al2Si2O8)

Origin: Burned dump of the Chelyabinsk coal basin, Kopeisk, South Urals, Russia (type locality).
Description: Hexagonal platelets from the association with anorthite, svyatoslavite, troilite, and

cohenite. The empirical formula is (electron microprobe): Ca1.00Al2.01Si2.03O8.07.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Simakin et al. (2010).
Wavenumbers (IR, cm21): (1463), (1392), 1231, 1190sh, 1128, 1094, 1049, 1007sh, 935sh, 905s,

650s, 584sh, 510sh, 490s, 443sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the range 1300–1500 cm�1 correspond to the admixture of a
carbonate. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 903s, 809, 651, 485s, 432s.

Sif_Z127 Erionite-K K10[Si26Al10O72]∙30H2O
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Origin: Karadag Mts., Crimea Peninsula, Russia.
Description: Light green crystals of erionite-K with zones of erionite-Na. Investigated by A.V. Kasatkin.

The empirical formula is (electron microprobe): K1.82Ca1.78Na1.70Mg0.57(Si27.42Al8.27Fe0.30O72)�
nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3575sh, 3455s, 3275sh, 1645, 1135sh, 1058s, 1040sh, 775, 720, 623, 579,

545, 470s, 435, 415.
Note: The spectrum was obtained by N.V. Chukanov.

Sif_Z128 Merlinoite K5Ca2(Si23Al9)O64∙24H2O

Origin: Fosso Attici, Sacrofano, Italy.
Description: Yellowish prismatic crystals from the association with phillipsite. The crystal structure is

solved. Orthorhombic, space group Immm, a ¼ 14.066(5), b ¼ 14.111(5), c ¼ 9.943(3) Å
(at 100 K). Dcalc ¼ 2.177 g/cm3. The empirical formula is (K5.69Na0.37)(Ca1.93Ba0.40Mg0.01)
(Si21.38Al10.55Fe

3+
0.02)O64�19.6H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Gatta et al. (2015a).
Wavenumbers (IR, cm21): 3589sh, 3539, 1649, 1375, 1156sh, 1015s, 789sh, 764, 698, 647, 592,

440sh, 425s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3470, 1637, (with a 473.1 nm laser); 1087, 496, 422, 320, 125 (with

a 632.8 nm laser).
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Sif_Z129 Phillipsite-NH4 (NH4,Na)9(Al9Si27O72]∙24H2O

Origin: Artificial.
Description: NH4

+-exchanged Si-poor phillipsite from Vallerano, Rome, Italy. The crystal structure is
solved. Monoclinic, a ¼ 10.0507(5), b ¼ 14.2016(8), c ¼ 8.7281(8) Å, β ¼ 125.123(5)�,
V¼ 1019.0(9) Å3, Z¼ 4. The empirical formula is (NH4)11.41Na1.36(Al13.36Si22.64O72.45)�20.6H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Gualtieri (2000).
Wavenumbers (cm21): 3580, 3402sh, 3131s, 3022sh, 1640, 1465sh, 1406s, 1092sh, 996s, 775sh,

739, 689, 607, 446sh, 438s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sif_Z130 Phillipsite-NH4 (NH4,Na)9(Al9Si27O72]∙24H2O

2.7 Silicates 315



Origin: Artificial.
Description: NH4

+-exchanged phillipsite from Perrier, Puy du Dȏme, France. The crystal structure is
solved. Monoclinic, a ¼ 10.0122(8), b ¼ 14.1943(12), c ¼ 8.7284(17) Å, β ¼ 125.024(11)�,
V ¼ 1015.81(2) Å3, Z ¼ 4. The empirical formula is (NH4)9.89Na0.45(Al9.92Si26.08O71.96)�18.2H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Gualtieri (2000).
Wavenumbers (cm21): 3400–3600 (broad), 3141s, 1645, 1460sh, 1407s, 980–1180 (broad), 786sh,

729, 700, 622, 463s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sif_Z131 Faujasite-Ca (Ca,Na,Mg)2(Si,Al)12O24∙15H2O

Origin: Quarry No. 1, Limberg, Sasbach, Germany.
Description: Colorless octahedral crystals from cavities in basalt. The empirical formula is (electron

microprobe): (Ca11.5Mg10.5Na7)(Si141Al51O384)�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3575sh, 3442, 3250sh, 1645, 1140sh, 1021s, 791, 706, 573, 503, 456s, 381.
Note: The spectrum was obtained by N.V. Chukanov.
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Sif_Z132 Tschernichite CaAl2Si6O16∙8H2O

Origin: Markaz, Lis-Kas-Kő, Hungary.
Description: Colorless crystals. Identified by morphological features and qualitative electron micro-

probe analyses. Confirmed by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3577, 3430, 3260sh, 1648, 1210s, 1145, 1035s, 765sh, 711, 620sh,

591, 549sh, 520sh, 508, 460s, 418.
Note: The spectrum was obtained by N.V. Chukanov.

Sif_Z133 Mazzite-Na Na8(Si28Al8)O72∙30H2O
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Origin: Synthetic.
Description: Prepared hydrothermally in the reaction between magadiite, sodium aluminate, and

NaOH in the presence of glycerol, at 120 �C with subsequent crystallization for several days
under autogenous pressure. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Cui et al. (2014).
Wavenumbers (cm21): 3610sh, 3447s, 2927w, 1641, 1454w, 1107sh, 1046s, 825, 764,

731, 620, 445s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Sif_Z134 Martinandresite Ba2(Al4Si12O32)�10H2O

Origin: Wasenalp, near the Isenwegg peak, Ganter valley, Simplon region, Switzerland (type locality).
Description: Tan-colored blocky crystal from the association with armenite, quartz, dickite, and

chlorite. Holotype sample. The crystal structure is solved. Orthorhombic, space group Pmmn,
a ¼ 9.4640(5), b ¼ 14.2288(6), c ¼ 6.9940(4) Å, V ¼ 941.82(8) Å3, Z ¼ 1. Dmeas ¼ 2.482(5) g/
cm3, Dcalc ¼ 2.495 g/cm3. Optically biaxial (�), α¼ 1.500(2), β ¼ 1.512(2), γ ¼ 1.515(2), 2V¼ 55
(10)�. The empirical formula is Na0.17K0.04Ba2.00(Al4.19Si11.81O32)H19.85O9.93. The strongest lines
of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.98 (74) (001), 6.26 (83) (011), 5.61
(100) (101), 3.933 (60) (220, 031), 3.191 (50) (112), 3.170 (62) (041), 3.005 (79) (231, 141).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3625, 3570sh, 3260sh, 1638, 1167, 1028s, 774w, 728w, 700w,

616, 551, 432s.
Note: The spectrum was obtained by N.V. Chukanov.
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Sif_Z135 Rongibbsite Pb2(Si4Al)O11(OH)

Origin: Big Horn Mts, Maricopa Co., Arizona, USA (type locality).
Description: Colorless prismatic crystals. The empirical formula is (electron microprobe):

Pb2.0Si3.75Al1.1Mg0.05(O,OH)12.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3524, 3436, (3347), (1425w), 1103s, 1065s, 1004s, 946s, 794, 724, 656, 600,

569, 549, 485sh, 444s, 425sh, 400, 373.
Note: The spectrum was obtained by N.V. Chukanov.

Sif_Z136 Ferrierite-NH4 (NH4,Mg0.5)5(Al5Si31O72)�22H2O

2.7 Silicates 319



Origin: Libous lignite quarry, near Chomutov, Ústí Region, Bohemia, Czech Republic (type locality).
Description: Radiated aggregates consisting of fibrous crystals from the association with siderite, opal,

kaolinite, goethite, and organic matter. Holotype sample. Orthorhombic, space group Immm,
a ¼ 19.10(1), b ¼ 14.15(1), c ¼ 7.489(3) Å, V ¼ 2024(3) Å3, Z ¼ 1. Dcalc ¼ 2.154 g/cm3.
Optically biaxial (+), α ¼ 1.518(2), β ¼ 1.520(2), γ ¼ 1.522(2). The empirical formula is
H0.35[(NH4)2.74Mg1.07Na0.21](Al5.44Si30.56O72)�21.55H2O. The strongest lines of the powder
X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.95 (28) (101), 6.60 (19) (011), 3.988
(61) (321, 031, 420), 3.784 (19) (330), 3.547 (73) (112, 040), 3.482 (100) (202), 3.143
(37) (141, 312).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3610, 3565sh, 3360w, 3250, 3220sh, 1646, 1474, 1216s, 1076s, 1060sh,

791, 730, 707, 681, 647w, 564s, 530sh, 474s, 435s.
Note: The spectrum was obtained by N.V. Chukanov.

Si49 Chromium disilicide CrSi2

Origin: Synthetic.
Description: Thin film prepared by laser ablation of a cast stoichiometric CrSi target under vacuum.

The temperature of the substrate was 773 K. Hexagonal, space group P6222. Characterized by
powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission of a
polycrystalline film.

Source: Chaix-Pluchery and Lucazeau (1998).
Wavenumbers (IR, cm21): 382, 355s, 297, 290, 252s, 229.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, single crystal, polarization Y(XX)-Y + εY(XZ)-Y, cm21): 412s, 397, 354,

305s, 300sh, 290w.
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Si50 Bridgmanite MgSiO3

Magnesium silicon oxide perovskite-type

Origin: Synthetic.
Description: Obtained from the MgSiO3 glass in a laser heated diamond anvil cell at 500 kbar.
Kind of sample preparation and/or method of registration of the spectrum: CsI or KBr disc. Absorption.
Source: Madon and Price (1989).
Wavenumbers (cm21): 789s, 694, 612s, 550s, 522s, 390w, 347, 320, 282.

Si51 Akimotoite MgSiO3

Origin: Synthetic.
Description: Synthesized from MgSiO3 glass in a laser heated diamond anvil cell at 500 kbar.
Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc. Absorption.
Source: Madon and Price (1989).
Wavenumbers (cm21): 825s, 677s, 631s, 528, 457, 388, 347, 320w, 282.
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Si52 Luobusaite β-FeSi2

Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: Thin film on single

crystal Si substrate. Absorption.
Source: Fenske et al. (1996).
Wavenumbers (cm21): 456sh, 423, 385w, 363sh, 348s, 312s, 297s, 284sh, 275w, 263, 255sh, 246sh,

229w, 211sh, 199w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Si53 Mendeleevite-(Nd) Cs6[(Nd,REE)23Ca7)(Si70O175)(OH,F)19�16H2O

Origin: Dara-i Pioz glacier, Dara-i Pioz alkaline massif, Tien Shan Mts., Tajikistan (type locality).
Description: Anhedral grains from the association with pectolite grains, quartz, aegirine, fluorite, etc.

Holotype sample. Cubic, space group Pm-3, a ¼ 21.9106(4) Å, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Agakhanov et al. (2016a).
Wavenumbers (cm21): 3408, 1612, 1011s, 980s, 695sh, 547sh.

Si54 Bridgmanite trigonal polymorph MgSiO3

Origin: Synthetic.
Description: Isostructural with ilmenite. Single crystal.
Kind of sample preparation and/or method of registration of the spectrum: Unpolarized

reflection.
Source: Hofmeister and Ito (1992).
Wavenumbers (cm21): 951, 665, 619, 536w, 448, 377.
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Si55 Sapphirine Mg4(Mg3Al9)O4[Si3Al9O36]

Origin: Betroka, Anosy Region, Tuléar (Toliara) province, Madagascar.
Description: Metacrystal from metamorphic schist.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Povarennykh (1970).
Wavenumbers (cm21): 1092s, 1060sh, 1018sh, 913w, 850w, 801, 785, 730, 700, 635w, 590, 564,

515, 472s, 432, 408w.

Sia24 Pearlite (Na,K)x(Si1-xAlxO2)�nH2O (x � 1)
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Origin: Tsigrado quarry, Milos Island, Greece.
Description: Light gray, semitransparent, massive, from the association with hydrobiotite. The sample

contains quartz inclusions.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3442, 1634w, 1160sh, 1078s, 796, 783, 695w, 461s, 400, 375.
Note: The spectrum was obtained by N.V. Chukanov.

BeSi74 Sphaerobertrandite Be3SiO4(OH)2

Origin: Sagåsen, Tvedalen, Larvik, S. Norway.
Description: Yellow spherulites from the association with diaspor. Identified by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3618s, 3551s, 1155, 1108, 1035sh, 965s, 933s, 897s, 836s, 770s, 721s, 685sh,

643, 576w, 554w, 493, 419.
Note: The spectrum was obtained by N.V. Chukanov.

BeSi75 Hydroxylgugiaite (Ca3□)(Si3.5Be2.5)O11(OH)3
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Origin: Larvik plutonic complex, Porsgrunn, Telemark, Norway (type locality).
Description: Pale grey crystals from the association with chlorite and calcite. Holotype sample. The

crystal structure is solved. Tetragonal, space group P-421/m, a ¼ 7.4151(2), c ¼ 4.9652(1) Å,
V¼ 272.9(1) Å3, Z¼12. Optically uniaxial (+), ω¼ 1.622(2), ε¼ 1.632(2). The empirical formula
is (Ca2.76Na0.31Mn0.05Fe0.01)(Si3.45Be2.53Al0.07)O11[(OH)2.57F0.43].

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3574, 3500sh, 1105sh, 950s, 925sh, 875sh, 710sh, 676, 539, 487, 447.
Note: The spectrum was obtained by N.V. Chukanov.

BeSi76 “Hydroxylgadolinite-(Y)” (Y,Ca)2(Fe,□)Be2Si2O8(OH,O)2

Origin: Heftetjern granitic pegmatite, Southern Norway.
Description: Bottle-green grains and short-prismatic crystals from the association with feldspar,

quartz, and intermediate members of the gadolinite-(Y)–hingganite-(Y) solid-solution series. The
crystal structure is solved. Monoclinic, space group P21/c, a ¼ 4.7514(10), b ¼ 7.5719(16),
c ¼ 9.9414(2) Å, β ¼ 90.015(4)�, V ¼ 357.663(3) Å3, Z ¼ 2. Dcalc ¼ 3.967 g/cm3. Optically
biaxial (+), α ¼ 1.760(4), β ¼ 1.770(4), γ ¼ 1.785(4), 2V ¼ 80(10)�. The empirical formula is
(Y1.285Ca0.55Ce0.07La0.04Nd0.01)Fe

2+
0.57Be2.02Si1.995O8.48(OH)1.52. The strongest lines of the pow-

der X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.761 (48) (100), 3.554 (30) (021), 3.452
(30) (10–2, 102), 3.138 (81) (11–2, 112), 2.972 (39) (120), 2.849 (100) (12–1, 121), 2.570
(59) (11–3, 113, 12�2), and 2.215 (27) (211, 12–3, 123).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3517, 3485sh, 970sh, 936s, 809, 752, 704, 585sh, 514, 455, 395sh.
Note: The spectrum was obtained by N.V. Chukanov.
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BeSi77 Gadolinite-(Y) Y2Fe
2+Be2Si2O10

Origin: Row Lake, Keivy Mts., Kola Peninsula, Russia.
Description: Black grains from pegmatite. X-ray amorphous, metamict. Confirmed by semiquantita-

tive electron microprobe analysis.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3518w, 1070sh, 942s, 805sh, 785sh, 715sh, 508, 470.
Note: The spectrum was obtained by N.V. Chukanov.

BeSi78 Hingganite-(Y) Y2□Be2Si2O8(OH)2

Origin: Heftetjern pegmatite, Tørdal, Telemark, Norway.
Description: Olive-green crystals from the association with REE-bearing epidote. A Ca- and Fe-rich variety.

The empirical formula is (electron microprobe): ~(Y1.1Ca0.8Ln0.1)(Fe0.35Al0.05)Be2Si2O8.05(OH)1.95.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3510, 3490sh, 1145sh, 1015sh, 973s, 927s, 800, 725sh, 585sh, 511, 460, 398w.
Note: The spectrum was obtained by N.V. Chukanov.
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BeSi79 Bityite CaLiAl2(Si2BeAl)O10(OH)2

Origin: Maantienvarsi pegmatite, Eräjärvi area, Orivesi, southern Finland.
Description: Fine-scaled white to yellowish mass with a pearly lustre from the association with beryl,

bertrandite, fluorite, and fluorapatite. Characterized by powder X-ray diffraction data. Monoclinic,
space group C2/c or Cc, a ¼ 4.99, b ¼ 8.68, c ¼ 19.04 Å, β ¼ 95.17�, V ¼ 821.33 Å3.
Dmeas ¼ 3.05 g/cm3, Dcalc ¼ 3.12 g/cm3. Optically biaxial (�), α ¼ 1.650, β ¼ 1.658, γ ¼ 1.660,
2V ¼ 52.9�. The empirical formula is (wet chemical analysis, Z ¼ 2): (Ca1.93K0.03Na0.02)
(Li1.19Al3.68Mg0.35Fe0.13)(Si4.26Be2.21Al1.53)O19.30(OH)4.54F0.16.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Lahti and Saikkonen (1985).
Wavenumbers (cm21): 3620, 3451, (2924), (2853sh), 1634w, 1453sh, 1400w, 949s, 707s, 568sh,

537s, 431.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

BeSi80 Chiavennite CaMn2+(BeOH)2Si5O13∙2H2O
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Origin: Chiavenna, Valchiavenna, Sondrio Province, Lombardy, Italy (type locality).
Description: Euhedral orange grains and crusts from the association with beryl and bavenite. Holotype

sample. Orthorhombic, space group P21ab, a ¼ 8.729(5), b ¼ 31.326(11), c ¼ 4.903(2) Å, Z ¼ 4.
Dmeas ¼ 2.64(1) g/cm3, Dcalc ¼ 2.657 g/cm3. Optically biaxial (�), α¼ 1.581(1), γ ¼ 1.600(l),
2V ¼ 70(5)�. The empirical formula is (Ca0.97Na0.05)Mn0.97(Be1.98Al0.03)(Si4.65Al0.35)
O12.63(OH)2.37�2.16H2O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 15.7 (100) (020), 4.15 (30) (041), 3.93 (30) (080), 3.82 (30) (240), 3.28 (75) (201), 2.903
(100) (251, 181), 1.944 (30) (3.12.0).

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of
sample preparation is not indicated.

Source: Bondi et al. (1983).
Wavenumbers (cm21): 3590, 3490, 3410, (2910), (2850), (2360), (2330), 1735, 1640, 1625sh, 1458,

1420, 1372sh, 1190sh, 1170, 1035, 995sh, 965sh, 900, 845, 790, 745sh, 680, 650, 585, 515sh,
485, 465sh, 440, 375, 345, 285sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. Weak bands in the ranges from 2300 to 2400 cm�1 and from 2800 to
3000 cm�1 correspond to atmospheric CO2 and the admixture of an organic substance.

BeSi81 Gugiaite Ca2BeSi2O7

Origin: Dugdu alkaline massif, Tuva Republic, Eastern Siberia, Russia.
Description: Rosette-like aggregates of white semitransparent crystals from the association with

meliphanite. Confirmed by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1025sh, 1015s, 975s, 915s, 841, 729, 697, 610sh, 564, 470, 419, 404.
Note: The spectrum was obtained by N.V. Chukanov.
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BeSi82 Leifite NaNa6Be2Al3Si15O39F2

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie,
Québec, Canada.

Description: White radiated aggregate of prismatic crystals. Investigated by A.V. Voloshin. Con-
firmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1175s, 1094s, 1058s, 1023s, 1000s, 935sh, 795sh, 764s, 712, 610sh, 545sh,

515sh, 502, 481, 457, 440s, 419.
Note: The spectrum was obtained by N.V. Chukanov.

BeSi83 Danalite Fe2+4Be3(SiO4)3S

Origin: Lupikko deposit, near Pitkäranta, Ladoga lake, Karelia, Russia.
Description: Dark red grain in skarn, in the association with clinochlore, calcite, and fluorite. The

empirical formula is (electron microprobe): HxFe2.6Mn0.8Zn0.6Be3Si3O12S0.9.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 2922 (broad), 1907w, 1830w, 1667w, 1473w, 975sh, 948s, 924s, 910s,

771, 747, 710, 538, 416.
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Note: The spectrum was obtained by N.V. Chukanov. The broad band at 2922 cm�1 indicates the
presence of OH groups forming strong hydrogen bonds.

BSi99 Cesium borosilicate pollucite-type CsBSi2O6

Origin: Synthetic.
Description: Synthesized from the stoichiometric mixture of Cs2CO3, H3BO3, and SiO2 by a conven-

tional solid-state reaction technique at 800 �C. Structurally related to pollucite.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Rulmont and Tarte (1987).
Wavenumbers (cm21): 1037s, 886, 765w, 487, 350w, 88.

BSi100 Potassium borosilicate pollucite-type K(BSi2O6)
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Origin: Synthetic.
Description: Obtained by heating the stoichiometric mixture of K2CO3, H3BO3, and SiO2 to 800 �C.

Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Rulmont and Tarte (1987).
Wavenumbers (cm21): 1120s, 1010s, 900s, 788w, 575w, 495, 427, 340w, 117s.

BSi101 Nolzeite NaMn2(Si3BO9)(OH)2∙2H2O

Origin: Poudrette quarry, La Vallée-du-Richelieu, Montérégie (formerly Rouville County), Québec,
Canada (type locality).

Description: Pale green acicular crystals from the association with aegirine, nepheline, sodalite,
eudialyte-group minerals, analcime, natron, pyrrhotite, catapleiite, and steedeite. Holotype sample.
The crystal structure is solved. Boron has fourfold coordination. Triclinic, space group P-1, a¼ 6.894
(1), b ¼ 7.632(2), c ¼ 11.017(2) Å, α ¼ 108.39(3)�, β ¼ 99.03(3)�, γ ¼ 103.05(3)�, V ¼ 519.27 Å3,
Z¼ 2.Dcalc¼ 2.79 g/cm3. Optically biaxial, nmin¼ 1.616(2), nmax¼1.636(2). The empirical formula
is Na1.04(Mn1.69□0.24Fe0.05Ca0.02)(Si2.96S0.04)(B0.70Si0.30)O9(OH)2�2H2O. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.113 (100) (00�1), 6.911 (16) (0�10),
3.593 (13) (0�13), 3.026 (15) (0�23), 2.808 (50) (211, 2�20), 2.675 (12) (0�1�3).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Haring and McDonald (2016).
Wavenumbers (IR, cm21): 3583, 3434s, 3395sh, 3254sh, 3083w, 3062w, 3028w, 2922, 2852w,

1631, 1607sh, 1493w, 1453w, 1385w, 1320w, 1247, 1192sh, 1143s, 1117sh, 1086s, 1044sh, 1030,
993s, 951, 926, 840, 752sh, 717, 697, 685sh, 653w, 618w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. Weak bands in the range from 2800 to 3100 cm�1 may correspond to the
admixture of an organic substance. Weak bands in the range from 1240 to 1500 cm�1 may
correspond to the admixture of an organic substance and/or (partly) carbonate groups. In the cited
paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3548, 3399, 1588, 1290, 1009, 842, 626, 553, 390, 341, 268,
223, 167.
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BSi102 Proshchenkoite-(Y) (Y,REE,Ca,Na,Mn)15Fe
2+Ca(P,Si)Si6B3(O,F)48

Origin: Tommot REE-Nb deposit, Yakutia, Russia (type locality).
Description: Reddish-brown grains. Trigonal, space group R3m, a ¼ 10.7527(7), c ¼ 27.4002(18) Å,

V ¼ 2743.6(6) Å3, Z ¼ 3. Uniaxial (�), ω ¼ 1.734(2), ε ¼ 1.728(2). The empirical formula is
(Y3.70REE7.54Ca1.55Na1.16Mn0.77Th0.10Pb0.01)(Fe

2+
0.83Mn0.15Ti0.02)Ca1.00(P0.70Si0.26As0.04)

Si6.05B3.20(O34.55F13.45). The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 4.441 (36) (202), 3.144 (77) (214), 3.028 (45) (009), 2.968 (100) (027), 1.782 (32) (330),
1.713 (32) (1.2.14).

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.
Source: Kristiansen (2016); for the sample description see Raade et al. (2008).
Wavenumbers (cm21): 972s, 871sh.
Note: Strong bands above 1200 cm�1 correspond to Nujol.

BSi103 Darrellhenryite Na(LiAl2)Al6(BO3)3Si6O18(OH)3O
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Origin: Nová Ves, Český Krumlov, South Bohemia Region, Czech Republic (type locality).
Description: Pink grains. Fragments of the cotype sample. Characterized by electron microprobe

analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3650w, 3584, 3463, 1509w, 1467w, 1385sh, 1359, 1304, 1190sh, 1105sh,

1079s, 1032s, 996s, 880sh, 786, 750sh, 720, 625sh, 565sh, 511s, 495sh, 465sh, 400w, 376w.
Note: The spectrum was obtained by N.V. Chukanov.

BSi104 Darrellhenryite Na(LiAl2)Al6(BO3)3Si6O18(OH)3O

Origin: Aleksandrovskoe Ta deposit, Irkutsk region, Siberia, Russia.
Description: Colorless grains from pegmatite. Investigated by A.V. Kasatkin. The empirical formula

is (electron microprobe, Li calculated): Na0.59LiAl7.98Ti0.02(BO3)3(Si6O18)(OH)3(O,OH).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3649w, 3585, 3469, 3320w, 1507w, 1465w, 1415sh, 1385sh, 1360, 1280, 1185sh,

1080s, 1029s, 990s, 885sh, 830w, 785, 745sh, 719, 635sh, 580sh, 530sh, 510s, 483s, 405sh, 375.
Note: The spectrum was obtained by N.V. Chukanov.

2.7 Silicates 333



BSi105 Fluor-dravite NaMg3Al6(Si6O18)(BO3)3(OH)3F

Origin: Crabtree Emerald mine, Mitchell Co., North Carolina, USA (type locality).
Description: Olive-green grains from the association with quartz. The empirical formula is (electron

microprobe): (Na0.78Ca0.05)(Mg1.75Fe1.14Mn0.11)(Al5.78Fe0.17Ti0.05)(Si5.91Al0.09)(BO3)3(OH)3F0.68(O,
OH)0.32.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3566, 3490sh, 1347, 1253, 1095s, 1052s, 992s, 780, 760, 715, 681, 649, 611,

579, 508s, 488s, 421, 402w, 381w.
Note: The spectrum was obtained by N.V. Chukanov.

BSi106 Luinaite-(OH) NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)

Origin: Cleavland Tin mine, Luina, Waratah, Tasmania, Australia (type locality).
Description: Aggregate of light green acicular crystals.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
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Wavenumbers (cm21): 3550sh, 3521, 1346, 1268, 1093sh, 1033s, 986s, 854w, 775, 753, 704, 652,
600sh, 575sh, 550sh, 509s, 435sh, 374w.

Note: The spectrum was obtained by N.V. Chukanov.

SSi14 Chlorellestadite Ca10[(SiO4)3(SO4)3]Cl2

Origin: Synthetic.
Description: Synthesized by heating of an appropriate mixture of CaO, CaSO4, SiO2, CaCl2, and CaF2

first at 900 �C for 5 h and then at 950 �C for 9 h with intermediate grinding. Characterized by
powder X-ray diffraction data. The crystal structure is solved. Hexagonal, space group P63/m,
a ¼ 9.6239(3), c ¼ 6.87749(3) Å, V ¼ 551.64(2) Å3. The formula is Ca10(SiO4)3(SO4)3Cl1.6F0.4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Fang et al. (2011).
Wavenumbers (cm21): 1138s, 938s, 910sh, 865sh, 670sh, 644, 615, 561, 508.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, the wavenumber 670 cm�1 is erroneously indicated as
660 cm�1.
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TiSi318 Fluorbarytolamprophyllite (Ba,Sr)2[(Na,Fe
2+)3(Ti,Mg)F2][Ti2(Si2O7)2O2]

Origin: Niva alkaline intrusion, Kola Alkaline Province, Murmansk Region, Russia (type locality).
Description: Brown prismatic crystals from the association with orthoclase, titanian aegirine-augite,

arfvedsonite, aenigmatite, lamprophyllite, fluorlamprophyllite, barytolamprophyllite,
shcherbakovite, and natrolite. Holotype sample. The crystal structure is solved. Monoclinic,
space group: С2/m, a ¼ 19.538(1), b ¼ 7.092(1), c ¼ 5.391(2) Å, β ¼ 96.704(8)�, V ¼ 741.8
(3) Å3, Z¼ 2.Dcalc¼ 3.662 g/cm3. Optically biaxial (+), α¼ 1.738 (3), β¼ 1.745(4), γ ¼ 1.777 (4),
2V ¼ 55(5)�. The empirical formula is (Ba0.865Sr0.44K0.46Na0.26)(Na2.38Ca0.09Fe0.47Mn0.06)
(Ti2.79Mg0.09Fe0.035Nb0.06Zr0.015Ta0.01)(Si3.99Al0.01)O16[F1.04O0.72(OH)0.24]. The strongest lines
of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.692 (40) (200), 3.726
(59) (�311), 3.414 (67) (311, 510, 401), 3.230 (96) (600), 3.013 (53) (�5�11), 2.780 (100) (221).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (3610w), 1031, 950s, 866s, 701w, 556, 510sh, 461, 402s.
Note: The spectrum was obtained by N.V. Chukanov.

TiSi319 Polyakovite-(Ce) (Ce,Ca)4MgCr2(Ti,Nb)2Si4O22

336 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



Origin: Pit No. 97, Ilmen (Il’menskie) Mts, Chelyabinsk region, Southern Urals, Russia (type
locality).

Description: Black grain from the association with calcite, dolomite, fluororichterite, phlogopite,
forsterite, monazite-(Ce), clinohumite, chromite, and davidite-(Ce). X-ray amorphous, metamict.
The empirical formula is (electron microprobe): (Ce1.8La1.2Nd0.4Pr0.2Ca0.3Th1.15)(Cr1.3Fe0.8)
Mg0.7Ti1.6Nb0.4Si4O22.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1070sh, 975sh, 952s, 935sh, 675sh, 500sh, 483s, 390sh.
Note: The spectrum was obtained by N.V. Chukanov.

TiSi320 Yoshimuraite Ba2Mn2+2Ti(Si2O7)(PO4)O(OH)

Origin: Tanohata mine, Tanohata-mura, Shimohei-gun, Iwate Prefecture, Tohoku Region, Honshu
Island, Japan.

Description: Brown platelets. The empirical formula is (electron microprobe): (Ba3.6Sr0.3Na0.1)
(Mn3.5Fe0.3Mg0.1)(Ti1.8Fe0.2)(Si2O7)2.05[(PO4)1.1(SO4)0.7(CO3)x]O2(OH)1.1F0.9.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3665w, 3546w, 1438, 1413, 1177, 1130sh, 1120, 1060sh, 1011s, 922s, 904s,

856s, 805sh, 641w, 617w, 594, 580sh, 562, 526, 448, 374s.
Note: The spectrum was obtained by N.V. Chukanov.
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TiSi321 Lavenite Fe-analogue (Na,Ca)2(Fe,Mn)(Zr,Ti,Nb)(Si2O7)(O,F)2

Origin: Ankisuai valley, Suoluaiv Mt., southeastern part of Lovozero alkaline complex, Kola penin-
sula, Murnansk region, Russia.

Description: Brown crystals from the association with seidozerite, aegirine and K-feldspar. The
empirical formula is (electron microprobe): (Na1.66Ca0.34)(Fe0.27Mn0.24Ti0.24Ca0.18Al0.05)
(Zr0.84Nb0.15Ti0.01)(Si1.99Al0.01)O7(OH,F)2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1084s, 928s, 875s, 720sh, 595sh, 562, 522, 450s, 411.
Note: The spectrum was obtained by N.V. Chukanov.

TiSi322 Potassium titanium silicate K2TiSi3O9∙H2O K2TiSi3O9∙H2O
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Origin: Synthetic.
Description: Prepared hydrothermally from a solution containing TiCl4, H2O2, SiO2, KOH, and

NaOH, at 180 �C for 7 days. Characterized by powder X-ray diffraction data and elemental analysis.
The crystal structure is solved. Orthorhombic, space group P212121, a¼ 9.9081(4), b¼ 12.9445(5),
c¼ 7.1384(3) Å, V ¼ 915.5 Å3, Z¼ 4. Dcalc ¼ 2.701 g/cm3. The microporous structure is based on
a heteropolyhedral framework containing Si3O9 chains.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bortun et al. (2000).
Wavenumbers (cm21): 3270, 3110, 1635, 1103, 1026s, 952s, 893s, 752, 711, 626w, 575, 547,

487, 461.

TiSi323 Sodium titanium silicate Na2TiSi2O7∙2H2O Na2TiSi2O7∙2H2O

Origin: Synthetic.
Description: White powder. A compound with layered structure synthesized hydrothermally from

TiCl4, silicic acid, NaOH, and H2O2 at 200 �C for 7 days. Characterized by powder X-ray
diffraction, TG analysis, MAS 29Si, and 23Na NMR. The strongest reflection is observed at 14.97 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Clearfield et al. (1997).
Wavenumbers (cm21): 3436s, (3250), (3100), 1632, 1385w, 1115sh, 1073sh, 1011sh, 973s, 902s,

779, 768sh, 698sh, 568, 536sh, 435sh, 412s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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TiSi324 Batievaite-(Y) Y2Ca2Ti(Si2O7)2(OH)2�4H2O

Origin: Sakharjok alkaline massif, Kola Peninsula, Russia (type locality).
Description: Brownish euhedral crystals from the association with hainite, nepheline, albite, calcite,

and zeolite-group minerals. Holotype sample. The crystal structure is solved. Triclinic, space group
P-1, a¼ 9.4024(8), b ¼ 5.5623(5), c¼ 7.3784(6) Å, α¼ 89.919(2)�, β ¼ 101.408(2)�, γ ¼ 96.621
(2)�, V ¼ 375.65(6) Å3, Z ¼ 1. Dmeas ¼ 3.45(5) g/cm3, Dcalc ¼ 3.357 g/cm3. Optically biaxial (+),
α ¼ 1.745(5), β ¼ 1.745(7), γ ¼ 1.752(5), 2V ¼ 60(5)�. The empirical formula is (electron
microprobe; grouping of the components is based on structural data): (Y0.81Ca0.65Ln0.23
Mn0.15Zr0.12Fe0.04)[(H2O)0.75Ca0.70□0.55]Ca2.00[□0.61Na0.25(H2O)0.14](Ti0.76Nb0.15Zr0.09)[Si3.91
Al0.09O14][(OH)1.56F0.44][(H2O)1.27F0.73]. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 9.145 (17) (100), 7.238 (36) (00�1), 4.350 (23) (0�1�1), 4.042
(16) (11�1), 3.745 (13) (2�10), 3.061 (30) (300), 2.991 (100) (11�2), 2.819 (16) (3�10).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Lyalina et al. (2016).
Wavenumbers (cm21): 3426, 1732w, 1646, 1630, 1258sh, 1172sh, 1077sh, 985s, 877, 800w, 780sh,

664sh, 649, 584, 493s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 1732 cm�1 indicates possible presence of H3O
+ or H5O2

+ groups.
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TiSi325 Bazirite BaZr(Si3O9)

Origin: Synthetic.
Description: Synthesized using solid-state reaction thchniques from the stoichiometric mixture of

BaCO3, ZrO2, and SiO2.
Kind of sample preparation and/or method of registration of the spectrum: KI disc. Transmission.
Source: Choisnet et al. (1975).
Wavenumbers (cm21): 1055sh, 1038s, 979sh, 930s, 760s, 465sh, 454s, 382, 361, 320, 291, 240.

TiSi326 Fogoite-(Y) Na3Ca2Y2Ti(Si2O7)2OF3
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Origin: Lagoa do Fogo, the São Miguel Island, the Azores, Portugal (type locality).
Description: Colorless long-prismatic crystals from the association with sanidine, astrophyllite,

fluornatropyrochlore, ferrokentbrooksite, quartz, and ferro-katophorite. Holotype sample. The
crystal structure is solved. Triclinic, space group P-1, a ¼ 9.575(6), b ¼ 5.685(4), c ¼ 7.279
(5) Å, α¼ 89.985(6)�, β¼ 100.933(4)�, γ ¼ 101.300(5)�, V¼ 381.2(7) Å3, Z¼ 1.Dcalc¼ 3.523 g/cm3.
Optically biaxial (+), α ¼ 1.686(2), β ¼ 1.690(2), γ ¼ 1.702(5), 2V ¼ 57(1)�. The empirical
formula is (electron microprobe): (Na2.74Mn0.15)Ca2(Y1.21Ln0.35Mn0.16Zr0.11Nb0.09Fe0.07Ca0.01)
(Ti0.76Nb0.23Ta0.01)(Si4.03O14)O1.12F2.88. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 2.954 (100) (�1�12, �310), 3.069 (42) (300, 0�12), 2.486
(24) (310, 2�12), 3.960 (23) (�1�11, �210), 2.626 (21) (�220), 1.820 (20) (�104).

Kind of sample preparation and/or method of registration of the spectrum: Absorption of a crystal
fragment using an IR microscope. A procedure of baseline correction was applied.

Source: Cámara et al. (2016b).
Wavenumbers (cm21): 1367sh, 1250, 1122sh, 1088s, 1072s, 1061s, 1046s, 1036s, 1000s, 963sh,

946s, 930s, 862s, 803, 743w, 677.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

TiSi327 Ivanyukite-Cs Cs3HTi4O4(SiO4)3∙4H2O

Origin: Synthetic.
Description: Prepared using a gel technique at 200 �C for 48 h. Characterized by TG and powder

X-ray diffraction data. Cubic, space group P-43m, a ¼ 7.7644(3), Z ¼ 1.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Behrens et al. (1996).
Wavenumbers (cm21): 3208, 1645w, (1347w), 866s, 546s, 460s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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TiSi328 Schülerite-type mineral Ba2Na2Mg2Ti2(Si2O7)2O2F2

Origin: Eifel volcanic region, Germany.
Description: Pale yellow zones of the two grains obtained from an American mineral collector.

Erroneously described as “schülerite.” The crystal structure is solved. Triclinic, space group P-1,
a ¼ 5.396(1), b ¼ 7.071(1), c ¼ 10.226(2) Å, α ¼ 99.73(3)�, β ¼ 99.55(3)�, γ ¼ 90.09(3)�,
V ¼ 379.1(2) Å3, Z ¼ 1. Dcalc ¼ 3.879 g/cm3. Structurally related to schülerite. The
empirical formula is (Ba1.57Sr0.14K0.14)(Na1.10Ca0.43Mn0.30Fe0.17)(Fe0.88Mg0.79Na0.33)
(Ti1.67Fe0.21Nb0.09Zr0.02Al0.01)Si3.95O15.93F2.07. The Mössbauer spectrum given by Sokolova
et al. (2013) cannot be used for precise determination of the Fe2+:Fe3+ ratio because of a strong
scatter of experimental points. Consequently, the existence of a Mg-dominant site is questionable.

Kind of sample preparation and/or method of registration of the spectrum: Transmission using an
IR microscope and a diamond micro compression cell.

Source: Sokolova et al. (2013).
Wavenumbers (cm21): 995sh, 967s, 860s, 675w.

TiSi329 Hydroterskite Na2ZrSi6O12(OH)6
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Origin: Saint-Amable sill, Demix-Varennes quarry, near Varennes, Québec, Canada (type locality).
Description: Short prismatic crystals from the association with aegirine, analcime, an astrophyllite-

group mineral, catapleiite, a eudialyte-group mineral, fluorite, monazite, natrolite, and a rinkite-
group species. Holotype sample. The crystal structure is solved. Orthorhombic, space group Pnca,
a ¼ 13.956(6), b ¼ 14.894(7), c ¼ 7.441(4) Å, V ¼ 1546.8(20) Å3, Z ¼ 4. Dcalc ¼ 2.57 g/cm3.
Optically biaxial (�), α ¼ 1.562(2), β ¼ 1.567(2), γ ¼ 1.571(2), 2V ¼ 86(3)�. The empirical
formula (after excluding of trace components) is (Na1.54K0.01Ca0.07Ce0.01La0.05)
(Zr0.74Ti0.09Nb0.05Th0.005Fe0.08Mn0.06Al0.01)Si6.09O12(OH)5.96F0.035. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.427 (56) (020), 6.638 (48) (011), 6.327
(47) (210), 5.093 (49) (220), 4.123 (55) (031), 3.716 (53) (002, 040), 3.482 (51) (321), 3.322 (100)
(022), 3.283 (80) (202, 240), 3.158 (54) (420), 3.091 (50) (411), 2.625 (48) (042), 2.544 (57) (402).

Kind of sample preparation and/or method of registration of the spectrum: Transmission using
adiamond-anvil cell microsampling device.

Source: Grice et al. (2015).
Wavenumbers (cm21): 3569, 3393, 3138sh, 1644, 1139sh, 1040s, 1005s, 917sh, 843sh, 740, 695,

665w, 610w, 587w, 521.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

TiSi330 Betalomonosovite Na2□4Na2Ti2Na2Ti2(Si2O7)2[PO3(OH)][PO2(OH)2]O2(OF)

Origin: Vostochnyi (Eastern) apatite mine, Khibiny alkaline complex, Kola Peninsula, Russia.
Description: Yellow tabular crystals from the association with lamprophyllite, pectolite, aegirine,

and eudialyte. The crystal structure is solved. Triclinic, space group P-1, a ¼ 5.3185(3),
b ¼ 14.1333(9), c ¼ 14.4147(8) Å, α ¼ 101.934(3)�, β ¼ 96.040(3)�, γ ¼ 90.120(3)�,
V ¼ 1053.89(10) Å3, Z ¼ 1. The empirical formula is (electron microprobe): (Na5.40Ca0.50)
(Ti3.22Fe

3+
0.43Mg0.10Mn0.09Nb0.07)Si4.00P1.97O21.15(OH)4.85. The crystal-chemical formula is

{Na1.49(Ti1.45Fe
3+

0.55)O2.47(OH)1.63}{Na0.81Ca0.27Mn0.06(Ti1.84Mg0.10Nb0.06)[Si2O7]2}{Na3.22Ca0.22
Mn0.03[P2.00O5.62(OH)2.38]}.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3490, 3300sh, 3126, 3020, 2427w, 1736w, 1517w, 1200sh, 1140, 1090sh,

1040s, 921s, 790sh, 718w, 565sh, 543s, 460sh, 420sh, 380s, (367).
Note: The spectrum was obtained by N.V. Chukanov.
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TiSi331 Betalomonosovite Na2□4Na2Ti2Na2Ti2(Si2O7)2[PO3(OH)][PO2(OH)2]O2(OF)

Origin: Olenii Ruchei (Reindeer Creek) open pit of the Olenii Ruchei apatite mine, Niorkpakhk Mt.,
Khibiny alkaline complex, Kola Peninsula, Russia.

Description: Beige lamellae crystals from the association with microcline, aegirine, and lamprophyllite.
The crystal structure is solved. Triclinic, space group P-1, a ¼ 5.30090(18), b ¼ 14.1460(4),
c ¼ 14.4435(4) Å, α ¼ 103.3862(15)�, β ¼ 90.4128(17)�, γ ¼ 90.4128(17)�, V ¼ 1046.21(6) Å3,
Z ¼ 1. The empirical formula is (electron microprobe): (Na4.40Ca0.52K0.01)(Ti3.14Fe

3+
0.41

Mg0.12Nb0.11Mn0.10)(Si3.98Al0.02)P1.94O19.91(OH)6.06. The crystal-chemical formula is
{Na1.04(Ti1.42Fe

3+
0.46Mn0.12)O1.60(OH)2.40}{Na1.03Ca0.22(Ti1.74Mg0.16Nb0.10)[Si2O7]2}{Na2.33Ca0.24

[P2.00O4.80(OH)3.20]}.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3480sh, 3373, 3230sh, 2950sh, 2420w, 1636w, 1250sh, 1200sh, 1156,

1090sh, 1033s, 940sh, 921s, 798, 714w, 690sh, 560sh, 538s, 525sh, 400sh, 367s.
Note: The spectrum was obtained by N.V. Chukanov.

TiSi332 Bulgakite Li2(Ca,Na)Fe
2+

7Ti2(Si4O12)2O2(OH)4(F,O)(H2O)2
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Origin: Dara-i Pioz glacier, Dara-i Pioz alkaline massif, Tien Shan Mts., Tajikistan (type locality).
Description: Brownish orange grains from the association with amphibole, quartz, feldspar,

brannockite, sogdianite, bafertisite, albite, and titanite. Holotype sample. A member of the
astrophyllite supergroup. The crystal structure is solved. Triclinic, space group P-1, a ¼ 5.374
(1), b ¼ 11.965(2), c ¼ 11.65(3) Å, α ¼ 113.457(8)�, β ¼ 94.533(8)�, γ ¼ 103.08(1)�, V ¼ 657.5
(8) Å3, Z ¼ 1. Dmeas ¼ 3.30(2) g/cm3, Dcalc ¼ 3.326 g/cm3. Optically biaxial (+), α ¼ 1.695(3),
β ¼ 1.711(2), γ ¼ 1.750(3), 2V ¼ 70(5)�. The empirical formula is (Li0.94K0.91Rb0.12Cs0.03)
(Ca0.60Na0.40)(Fe5.34Mn1.32Li0.25Mg0.05Na0.04Zn0.02)(Ti1.82Sn0.10Nb0.05Zr0.04)[(Si7.78Al0.24)O24]
O2.30(OH)4O0.30�0.94H2O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 10.54 (100) (001), 3.50 (100) (003), 2.578 (100) (130), 2.783 (90) (1�42), 1.576
(68) (3–51, –3�22), 2.647 (55) (�211).

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of
sample preparation is not indicated.

Source: Agakhanov et al. (2016b).
Wavenumbers (IR, cm21): 3655sh, 3639w, 3600sh, 3589, 1622, 1122sh, 1041s, 965s, 915sh, 844sh,

768sh, 695.
Note: Based on chemical data, the simplified formula of bulgakite should be LiK(Ca,Na)

Fe2+7Ti2(Si4O12)2O2(OH)4(F,O)(□,H2O)2. The wavenumbers were partly determined by us based
on spectral curve analysis of the published IR spectrum. The band position denoted by Agakhanov
et al. (2016b) as 940 cm�1 actually corresponds to a strong peak with absorption maximum at
965 cm�1 and a shoulder at 915 cm�1. The IR band at 695 cm�1 is erroneously assigned to Si–O-
stretching vibrations. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 1041, 910s, 785sh, 733s, 660s, 569s, 420, 395, 367, 258, 233, 170,
133.

TiSi333 Catapleiite heating product Na6Zr3[Si9O27]
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Origin: Artificial.
Description: Product of heating (from room temperature to 950 �C at a rate of 5 �C/min) of a

catapleiite crystal from Aikuaivenchorr Mt., Khibiny alkaline complex, Kola peninsula, Murmansk
region, Russia. The crystal structure is solved. Hexagonal, space group P63/mcm, a ¼ 11.5901(9),
c ¼ 9.9546(9) Å, V ¼ 1158.05(16) Å3. The structure is based on the heteropolyhedral framework
which principally differs from that of catapleiite and is built by isolated [ZrO6] octahedra connected
with each other by nine-membered rings [Si9O27] formed by SiO4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3446w, 3356w, 3345sh, 1181, 1070sh, 1051s, 1019, 942s, 912s, 760w,

707, 660w, 599w, 483, 424, 400, 390.
Note: The spectrum was obtained by N.V. Chukanov. The mands in the range from 3300 to 3600 cm�1

may correspond to adsorbed water.

PSi11 Calcium orthophosphate orthosilicate Ca5(PO4)2(SiO4)

Origin: Synthetic.
Description: Obtained by sintering of compacted mixture of calcium hydrogen phosphate,

calciumcarbonate, and silicon oxide. Characterized by powder X-ray diffraction data. Hexagonal.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Lugo et al. (2015).
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Wavenumbers (IR, cm21): 1110sh, 1040s, 935s, 880s, 601, 570, 510.
Note: The wavenumber 935 cm�1 is erroneously indicated by Lugo et al. (2015) as 960 cm�1. In the

cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1084, 1058, 963s, 857s, 642, 587, 439, 435, 402, 297w, 218.

AsSi14 Wiklundite Pb2(Mn2+,Zn)3(Fe
3+,Mn2+)2(Mn2+,Mg)19(As

3+O3)2[(Si,As
5+)O4]6(OH)18Cl6

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Description: Brown radiating aggregates from the association with tephroite, mimetite, turneaurite,

johnbaumite, jacobsite, barite, native lead, filipstadite, and parwelite. Holotype sample. The crystal
structure is solved. Rhombohedral, space group R-3c, a ¼ 8.257(2), c ¼ 126.59(4) Å, V ¼ 7474
(6) Å3, Z ¼ 6. Dcalc ¼ 4.072 g/cm3. Optically uniaxial (�). The Mössbauer spectrum contains only
one quadrupole doublet corresponding to Fe3+. The empirical formula is Pb2.04Mn21.23
Fe3+1.76Zn0.30Mg0.23Ca0.05Al0.04Si5.85As2.37O30(OH)18.10Cl5.90. The strongest lines of the powder
X-ray diffraction pattern [d, Å (I, %)] are: 4.740 (40), 4.128 (83), 4.062 (58), 3.561 (40), 3.098 (81),
2.882 (100), 2.806 (90).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a single crystal.

Source: Cooper et al. (2016c).
Wavenumbers (cm21): 3536w, 3496, 3441, 3404sh, 3316w, 3128w, 1020w, 959, 938, 875s, 861sh,

848sh, 813s, 795sh, 712w, 681.
Note: The presence of Mn2+ in the Fe3+-dominant siteM(1) with the meanM(1)–O distance of 2.06 Å

is questionable.
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USi11 Potassium uranium(V) sorosilicate K3(U3O6)(Si2O7)

Origin: Synthetic.
Description: Dark red needle crystals synthesized hydrothermally KOH, KF, UO3, and SiO2 (in the

molar ratio K:U:Si:F ¼ 15:1:2:10) at 600 �C for 5 days. Characterized by powder X-ray diffraction
data. The crystal structure contains an uranate column formed by corner-sharing UO6 octahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Lin et al. (2008).
Wavenumbers (IR, cm21): 1068sh, 1057, 1005s, 991sh, 909s, 891s, 651s, 598sh, 579, 567, 550, 541,

527, 512sh, 487, 457sh, 441sh, 425sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (for Raman bands indicated by the authors, cm21): 972, 924, 888, 770, 570, 361, 232.

USi12 Swamboite-(Nd) Nd0.333[(UO2)(SiO3OH)]�2.5H2O
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Origin: Swambo Hill (Swambo Mine), Kambove District, Katanga (Shaba), Democratic Republic of
Congo (type locality).

Description: Yellow acicular crystals. Investigated by A.V. Kasatkin. Characterized by single-crystal
X-ray diffraction data and qualitative electron microprobe analyses. Monoclinic, a ¼ 6.70(4),
b ¼ 7.010(7), c ¼ 8.86(2) Å, β ¼ 102.2(3)�, V ¼ 407(3) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3433s, 3250sh, 1638, (1427w), 1150sh, 1075sh, 1000s, 936s, 859s, 785sh,

610sh, 556, 471.
Note: The spectrum was obtained by N.V. Chukanov. The spectrum is very close to that of

uranophane.
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P652 Zincoberaunite ZnFe3+5(PO4)4(OH)5�6H2O

Origin: Hagendorf South granitic pegmatite, Hagendorf, Bavaria, Germany (type locality).
Description: Greenish-gray radial aggregates from the association with feldspar, quartz, jungite,

phosphophyllite, and mitridatite . Holotype sample. The crystal structure is solved. Monoclinic, space
group C2/c, a¼ 20.837(2), b¼ 5.1624(4), c¼ 19.250(1) Å, β ¼ 93.252(5)�, V¼ 2067.3(3) Å3, Z¼ 4.
Dcalc¼ 2.92 g/cm3. Optically biaxial (�), α ¼ 1.745(5), β ¼ 1.760(5), γ ¼ 1.770(5), 2V¼ 80(5)�. The
empirical formula is (Zn0.83Ca0.08Mg0.06)∑0.97(Fe

3+
4.88Al0.16)∑5.04(PO4)4.09(OH)4.78�5.86H2O. The

strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.37 (100) (200), 9.58
(32) (002), 7.24 (26) (20�2), 4.817 (22) (111), 4.409 (13) (112), 3.483 (14) (11–4, 600), 3.431
(14) (404), 3.194 (15) (006, 31�4), 3.079 (33) (314).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3562, 3515w, 3276, 2990sh, 1645sh, 1625, 1140sh, 1070s, 1032s, 990s,

970sh, 940sh, 885sh, 798w, 782w, 665sh, 603, 580, 466, 440sh, 405sh, 368.
Note: The spectrum was obtained by N.V. Chukanov.
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P653 Beraunite Fe2+Fe3+5(PO4)4(OH)5∙6H2O

Origin: Levaäniemi mine, Svappavaara, Kiruna district, Lappland, Sweden.
Description: Black spherulites from the association with cacoxenite. Al-bearing variety. Investigated by

A.V. Kasatkin. The empirical formula is (electron microprobe): Fe5.26Al0.74(PO4)4.00(OH)5∙6H2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3572, 3500sh, 3360sh, 3286, 3192, 1626, 1135sh, 1060sh, 1031s, 1015sh,

991s, 866, (733w), 604, 690sh, 456.
Note: The spectrum was obtained by N.V. Chukanov.

P654 Natrodufrénite NaFe2+Fe3+5(PO4)4(OH)6∙2H2O

Origin: Chino open pit, near Santa Rita, New Mexico, USA.
Description: Black spherulites with greenish-blue streak. Investigated by A.V. Kasatkin. The empiri-

cal formula is (electron microprobe): Na0.93Ca0.15Fe5.50Al0.42(PO4)4.00(OH)6�2H2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3567w, 3355sh, 3215, 3140, 1625w, 1580sh, 1167s, 1060sh, 1031s, 970s,

890sh, 786w, 620, 586, 561, 471s, 401s.
Note: The spectrum was obtained by N.V. Chukanov.
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P655 Tvrdýite Fe2+Fe3+2Al3(PO4)4(OH)5(H2O)4∙2H2O

Origin: Hagendorf South pegmatite, Cornelia mine, Hagendorf, Waidhaus, Upper Palatinate, Bavaria,
Germany.

Description: Greenish-gray radial-fibrous aggregates. Al-deficient variety. The empirical formula is (electron
microprobe): Ca0.05-0.08Zn0.34-0.50Mn0.04-0.07Mg0-0.05Fe3.85-3.99Al1.44-1.66Cr0.06(PO4)4(OH)5(H2O)4∙2H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3569, 3394, 3280, 3210sh, 3100sh, 1627, 1140sh, 1054s, 1018s, 990s, 945sh,

874, 802w, 610, 585sh, 480sh, 460, 425sh.
Note: The spectrum was obtained by N.V. Chukanov.

P656 Minyulite KAl2(PO4)2(F,OH)∙4H2O

Origin: Cerro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile.
Description: A F-rich sample. Investigated by I.V. Pekov.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3656w, 3229 (broad), 3150sh, 2110w (broad), 1615, 1105sh, 1080s, 1013s,

917, 886, 840sh, 800sh, 656s, 597s, 564, 530sh, 507, 480sh, 451s, 408s, 381.
Note: The spectrum was obtained by N.V. Chukanov.

352 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



P657 Variscite-4O Al(PO4)∙2H2O

Origin: Cerro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile.
Description: Colorless crystals from the association with gypsum and minyulite. Investigated by

I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Orthorhombic, a ¼ 9.675(4),
b ¼ 9.893(4), c ¼ 17.203(9) Å, V ¼ 1647(1) Å3. The empirical formula is (electron microprobe):
Al1.00(PO4)1.00∙2H2O

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3585, 3344s, 3228s, 3100sh, 2950sh, 1670, 1639, 1135sh, 1049s, 905, 846,

804, 745sh, 637, 590s, 547, 500sh, 465sh, 448s, 416s, 405sh.
Note: The spectrum was obtained by N.V. Chukanov.

P658 Beraunite Fe2+Fe3+5(PO4)4(OH)5∙6H2O
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Origin: Hagendorf South pegmatite, Cornelia mine, Hagendorf, Waidhaus, Upper Palatinate, Bavaria,
Germany.

Description: Black radial aggregates. A Mn-bearing variety. The empirical formula is (electron
microprobe): Fe5.44Mn0.49Zn0.07(PO4)4.00(OH)5∙6H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3554, 3510, 3265, 3213, 1625, 1145sh, 1069s, 1032s, 989s, 965sh, 940s,

810sh, 677, 584s, 465, 430, 400sh.
Note: The spectrum was obtained by N.V. Chukanov.

P659 Manitobaite Na16Mn2+25Al8(PO4)30

Origin: Cross Lake, Manitoba, Canada (type locality).
Description: Green grain. A fragment of holotype kindly granted by A.V. Kasatkin. The crystal

structure is solved. Monoclinic, space group Pc, a ¼ 13.4516(15), b ¼ 12.5153(16), c ¼ 26.661
(3) Å, β ¼ 101.579(10)�, V ¼ 4397.1(6) Å3, Z ¼ 2. Dmeas ¼ 3.621(6) g/cm3, Dcalc ¼ 3.628 g/cm3.
Optically biaxial (�), α ¼ 1.682(1), β ¼ 1.692(1), γ ¼ 1.697(1), 2V ¼ 78.1(6)�. The empirical
formula is Na15.55Ca1.47Mg0.88Fe

2+
4.19Mn2+18.78Zn0.32Al6.54Fe

3+
1.05P30.08O120.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1120sh, 1084s, 1036s, 993s, 957, 594, 574, 560, 511w, 450, 416, 400.
Note: The spectrum was obtained by N.V. Chukanov.
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P660 Ammonium vanadyl pyrophosphate α-(NH4)2(VO)3(P2O7)2

Origin: Synthetic.
Description: Prepared from the mixture of V2O5 and (NH4)2(HPO4) which was firstly heated up to

200 �C, homogenized and further heated at 325 �C for 2 h in air. Orthorhombic, space group Pnma,
Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Baran and Rabe (1999).
Wavenumbers (cm21): 3262 (broad), 1635w, 1427, 1189sh, 1175s, 1180s, 1085sh, 1054w, 1114s,

1004, 978s, 938s, 915w, 744, 643, 622sh, 601, 568s, 548sh, 527sh, 485, 411w, 385, 326.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P661 Aluminium phosphate hydrate Al(PO4)�nH2O
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Origin: Synthetic.
Description: Ce-doped mesoporous material synthesized by the hydrothermal method, starting from

aluminium hydroxide, 85% phosphoric acid, hydrated ceriumchloride and di-isopropylamine as an
organic template agent. The empirical formula is Ce0.04Al0.97P1.01O4.04�nH2O. Characterized by
powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Souza de Araujo et al. (1997).
Wavenumbers (cm21): 1250–1000 (broad), 835, 820–650, 750–650, 600–560, 464, 420–300.
Note: The material was described as an anhydrous phosphate, but bands above 1550 cm21 indicate the

presence of H2O molecules.

P662 Struvite Cd analogue
Ammonium cadmium phosphate hexahydrate Cd(NH4)(PO4)∙6H2O

Origin: Synthetic.
Description: Obtained by slow evaporation at ordinary temperatures from the aqueous equimolar

solutions of ammonium dihydrogen phosphate and cadmium sulfate. Structurally related to struvite.
Orthorhombic, a¼ 13.882, b¼ 12.249, c¼ 11.395 Å. Characterized by thermal and powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Ravikumar et al. (2002).
Wavenumbers (cm21): 3440s, 3220s, 2360, 1680s, 1450s, 1110s, 1070s, 1040s, 985, 760, 620s,

605, 580sh.
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P663 Ammonium iron(II) phosphate hydrate (NH4)Fe(PO4)∙H2O

Origin: Synthetic.
Description: White crystals obtained from the equimolar mixture of (NH4)3(PO4)�3H2O and

FeSO4�7H2O ground in the presence of the surfactant PEG-400 and heated at 40 �C for 48 h.
Characterized by powder X-ray diffraction data. Orthorhombic, space group Pmm21, a ¼ 5.660,
b ¼ 8.825, c ¼ 4.826 Å, V ¼ 241 Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Yuan et al. (2008).
Wavenumbers (cm21): 3347, 3325sh, 3130, (3085), (3052), (3014), (3000), (2970), (2886),

(2850sh), (2773), 2740, 1634, 1620sh, 1545, 1528, 1460, 1431, 1400, 1081sh, 1058s, 970s,
775, 646, 584, 500sh, 488, 457, 442.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

P664 Ammonium magnesium phosphate (NH4)Mg(PO4)∙H2O
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Origin: Synthetic.
Description: Obtained by adding 0.5 M solution of MgCl2�6H2O to an excess of saturated (NH4)2H

(PO4) solution. Characterized by thermal analysis and powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Sronsri et al. (2014).
Wavenumbers (cm21): 3424s, 3218, 3040, 2924, 2775, 2327w, 2118, 1948, 1882, 1657, 1470s,

1430, 1319sh, 1102s, 1055s, 974s, 949sh, 772, 627s, 568s, 472w, 419.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P665 Ammonium titanophosphate (NH4)2Ti2O(HPO4)(PO4)2 ?

Origin: Synthetic.
Description: Synthesized hydrothermally from Ti(SO4)2, H3(PO4)3, and ammonia solution at 200 �C

for several hours. Characterized by powder X-ray diffraction data and thermal analysis.
Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Li et al. (2004b).
Wavenumbers (cm21): 3407, 3187, 3081w, 2894w, 2826w, 1630, 1436, 1417, 1181, 1145s, 1067s,

1044s, 1006s, 947, 760, 624, 578, 471.
Note: The formula is questionable and is to be checked.
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P666 Antimony(III) phosphate SbPO4

Origin: Synthetic.
Description: Prepared in the reaction of antimony with freshly prepared metaphosphoric acid at high

temperatures. Characterized by powder X-ray diffraction data. Monoclinic, space group P21/m,
Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Brockner, and Hoyer (2002).
Wavenumbers (IR, cm21): 1152s, 1054s, 993s, 957s, 651, 586, 500, 472, 378, 337w, 239.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1054, 977, 937w, 623, 584, 548w, 478, 356s.

P667 Antimony(V) oxophosphate SbO(PO4)
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Origin: Synthetic.
Description: Monoclinic, space group C2c, a ¼ 6.791(1), b ¼ 8.033(1), c ¼ 7.046(1) Å, β ¼ 115.90

(1)�, Z ¼ 4. The crystal structure consists of chains of corner shared distorted octahedra linked
together by PO4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: See Husson et al.
(1988b).

Source: Husson et al. (1988a).
Wavenumbers (IR, cm21): 1080s, 1040s, 872s, 658, 600w, 564, 504, 390, 364, 332s, 297, 280, 231s,

212.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1122, 1060w, 1050, 1010, 788, 585s, 528s, 460w, 417, 375, 312s,

278, 197, 152, 135, 117w.

P668 Minjiangite BaBe2(PO4)2
Barium beryllium phosphate BaBe2(PO4)2

Origin: Synthetic.
Description: Colorless crystals synthesized hydrothermally from BeO, Ba(OH)2�8H2O, and H3PO4

(85%) at 200 �C for 7 days. The crystal structure is based on of double layers of tetrahedra, which
contain both Be and P in a 1:1 ratio. The Ba atoms are located in regular 12-coordinated polyhedra
and connect two successive double layers. Hexagonal, space group P6/mmm, a ¼ 5.028(1),
c ¼ 7.466(1) Å, V ¼ 162.51(1) Å3, Z ¼ 1. Dcalc ¼ 3.507 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Dal Bo et al. (2014).
Wavenumbers (cm21): 1305, 1022s, 745sh, 694, 670s, 541s, 475.
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P669 Barium chromium pyrophosphate BaCr2(P2O7)2

Origin: Synthetic.
Description: Green solid synthesized by the conventional solid-state reaction technique, by heating

stoichiometric mixture of BaCO3, Cr2O3, and (NH4)(H2PO4) up to 1200 �C. Characterized by
powder X-ray diffraction data. Triclinic, space group P-1, a ¼ 6.1408(5), b ¼ 6.1898(4),
c ¼ 7.8027(6) Å, α ¼ 96.692(5)�, β ¼ 101.686(5)�, γ ¼ 105.542(4)�, V ¼ 275.19(4) Å3, Z ¼ 1.
Dmeas ¼ 2.39(3) g/cm3, Dcalc ¼ 2.391 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Tao et al. (2014).
Wavenumbers (cm21): 1245, 1160s, 1087s, 1047, 1024, 960s, 780, 638w, 610, 575, 525, 500,

440, 405.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P670 Barium sodium cyclotriphosphate hydrate BaNa(P3O9)∙3H2O
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Origin: Synthetic.
Description: Pink crystals obtained by adding barium nitrate to a saturated aqueous solution of sodium

cyclotriphosphate in the stoichiometric ratio. The resulting mixture was left to stand at room
temperature for 2 weeks. The crystal structure is solved. Triclinic, space group P-1, a ¼ 7.0350
(3), b¼ 9.0470(3), c¼ 9.8800(2) Å, α¼ 116.551(3)�, β ¼ 95.932(2)�, γ ¼ 74.088(3)�, V¼ 540.81
(3) Å3, Z ¼ 2. Dcalc ¼ 2.771 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ezzaafrani et al. (2014).
Wavenumbers (cm21): 3522, 3465w, 3269w, 2959, 2829, 2387, 1659w, 1606, 1385, 1298s, 1157,

1126s, 1101s, 1055, 976s, 926sh, 772, 750, 687, 638w, 509s, 405w.
Note: The bands in the range from 2300 to 2900 cm�1 indicate the presence of acid P–OH groups.

Possibly, the correct formula is BaNa(HP3O9)(OH)∙2H2O. This assumption could explain
discrepancies between observed wavenumbers and those calculated according to the Libowitzky
formula.

P671 Barium vanadyl phosphate α-Ba(VO2)(PO4)

Origin: Synthetic.
Description: Synthesized hydrothermally from V2O5, H3PO4, and BaCO3. Monoclinic, space group

P21/c.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Borel et al. (2000).
Wavenumbers (cm21): 1109, 1102, 1024, 994, 973sh, 952sh, 944s, 924s, 834s, 635, 577, 547, 518sh,

506, 467w, 421.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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P672 β-Vanadyl pyrophosphate β-(VO)2(P2O7)

Origin: Synthetic.
Description: Orthorhombic, space group Pca2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Bordes et al. (1984).
Wavenumbers (cm21): 1650w, 1280s, 1227, 1158s, 1145, 1070, 1024, 990, 953s, 937s, 910sh,

836sh, 906, 754, 643, 568, 523, 456sh, 438, 409, 376, 319w, 304w, 293w, 281w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P673 Bismuth(III) calcium oxophosphate BiCa4(PO4)3O
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Origin: Synthetic.
Description: Prepared by high temperature solid-state method, by stepwise heating stoichiometric

mixture of Bi2O3, Ca(CO3), and (NH4)(H2PO4) up to 1050 �C. Characterized by powder X-ray
diffraction data. Structurally related to apatite, space group P63/m.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Sumathi and Gopal (2015).
Wavenumbers (cm21): 1041s, 995sh, 935s, 628sh, 602s, 557s, 464w, 445w, 409sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P674 Bismuth(III) nickel oxophosphate BiNi(PO4)O BiNi(PO4)O

Origin: Synthetic.
Description: Prepared by solid-state reaction. Monoclinic, a ¼ 7.1664(8), b ¼ 11.206(1), c ¼ 5.1732

(6) Å, β ¼ 107.281(6)�. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 4.727 (44) (�101), 4.338 (69) (120), 3.372 (70) (111), 2.850 (100) (�221), 2.568
(43) (131), 2.516 (41) (230).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ketatni et al. (1999).
Wavenumbers (cm21): 1046s, 1009s, 979s, 609sh, 590, 561s, 520, 468, 440.
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P675 Boron phosphate BPO4

Origin: Synthetic.
Description: Structurally related to cristobalite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Osaka et al. (1984).
Wavenumbers (cm21): 1386w, 1168sh, 1090s, 1070sh, 935s, 739sh, 630, 600, 560.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P676 Magnesium borophosphate (H3O)Mg(BP2O8)∙3H2O
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Origin: Synthetic.
Description: Synthesized fromMgCl2, B2O3, and H3PO4 in the presence of pyridine and HCl, under mild

hydrothermal conditions (at 170 �C for 3 days). The crystal structure is solved. Hexagonal, space group
P6(1)22, a ¼ 9.4462(7), c ¼ 15.759(2) Å, V ¼1217.8(2) Å3, Z ¼ 6. Dcalc ¼ 2.439(3) g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yang et al. (2011f).
Wavenumbers (cm21): 3494, 3348s, 1643, 1198s, 1159, 1105, 1016s, 959s, 940sh, 851, 812sh,

678w, 645, 576, 523, 491, 411.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P677 Cesium acid (pentahydrogen) phosphate CsH5(PO4)2

Origin: Synthetic.
Description: Crystals grown from an aqueous solution of Cs2CO3 and H3PO4 (at the mole ratio 1:2) by

evaporation at room temperature. Monoclinic, space group P21/c, a ¼ 10.879, b ¼ 7.768,
c ¼ 9.526 Å, β ¼ 96.60�, Z ¼ 4. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Lavrova et al. (2006).
Wavenumbers (cm21): 3414w (broad), 2770 (broad), 2350 (broad), 1630 (broad), 1293, 1212, 1127s,

1105sh, 1001sh, 980s, 907, 878, 571w, 536sh, 523w, 497, 468, 425, 377, 300w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, a figure of the Raman spectrum is given.
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P678 Cesium manganese(II) pyrophosphate Cs2MnP2O7

Origin: Synthetic.
Description: Pink solid prepared from aqueous solutions of Mn(NO3)2�4H2O, CsCl, and NH4(H2PO4)

as starting materials by heating resulting powder progressively from 200 to 700 �C with intermedi-
ate regrindings. The crystal structure is solved. Orthorhombic, space group Pnma, a ¼ 16.3398(3),
b ¼ 5.3872(1), c ¼ 9.8872(2) Å, V ¼ 870.33(3) Å3, Z ¼ 4. Dcalc ¼ 3.775 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflection of a
mixture with KBr.

Source: Kaoua et al. (2013).
Wavenumbers (IR, cm21): 1186s, 1151s, 1125s, 1097s, 1041s, 995, 900sh, 891s, 740, 697sh, 674w,

661sh, 649sh, 623, 580sh, 568s, 525sh, 514sh, 506w, 485, 465sh, 457sh, 441w, 429w,
421w, 406w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. The strong band at 891 cm�1 and shoulder at 900 cm�1 are indicated by
Kaoua et al. (2013) as strong band at 896 cm�1. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 1197w, 1165w, 1154w, 1142w, 1129, 1128w, 1107w, 1098w,
1081w, 1060w, 1041w, 1021s, 954w, 934w, 898w, 700s, 635w, 598w, 576w, 562, 536w, 521w,
498w, 466w, 428, 364, 327, 269w, 245w, 205, 202, 166w, 140w, 129w, 124w.
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P679 Cesium uranyl oxophosphate Cs3(UO2)2(PO4)O2

Origin: Synthetic.
Description: Yellow crystals obtained in the reaction of triuranyl diphosphate tetrahydrate with a CsI flux

at 750 �C. The crystal structure is solved. Monoclinic, space group C2/c, a¼ 13.6261(13), b¼ 8.1081
(8), c ¼ 12.3983(12) Å, β ¼ 114.61(12)�, V ¼ 1245.41(20) Å3, Z ¼ 4. Dcalc ¼ 2.684 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Yagoubi et al. (2013).
Wavenumbers (cm21): 1056sh, 1033s, 984s, 949sh, 885s, 855sh, 838, 805, 795, 769w, 723, 694w,

595, 574, 545, 504sh, 473, 451sh, 435w, 418w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P680 Calcium chlorophosphate (“chlor-spodiosite”) Ca2(PO4)Cl
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Origin: Synthetic.
Description: Crystals grown from melt by means of a reaction flux technique using Ca3(PO4)2 and

CaCl2 as starting materials. Orthorhombic, space group Pbcm.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Kowalczyk and Condrate Sr (1974).
Wavenumbers (IR, cm21): 1099s, 1080sh, 1046s, 999s, 959, 596, 536, 529sh, 471w, 425w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1077, 1063, 1048w, 1026w, 995, 958s, 627, 611, 551, 463, 397.

P681 Calcium dihydrophosphate monohydrate Ca(H2PO4)2∙H2O

Origin: Synthetic.
Description: Commercial reactant. Triclinic, space group P-1, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Xu et al. (1998).
Wavenumbers (IR, cm21): 3461, 3220, 2967, 2934, 2868sh, 2423w, 2330, 1700sh, 1635w, 1239s,

1225sh, 1158, 1120sh, 1092s, 975sh, 962s, 914w, 888w, 864w, 675w, 570w, 545w, 504s, 500sh,
444w, 355, 250sh, 230.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 2810, 2386, 1217, 1159, 1112s, 1016, 988s, 956, 916s, 906, 580,
523, 499, 421, 366, 337, 251, 210, 170, 141, 124, 103, 85.
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P682 Calcium magnesium lanthanum phosphate Ca8MgLa(PO4)7

Origin: Synthetic.
Description: Eu-doped sample synthesized in a solid-state reaction from the mixture of magnesium

carbonate basic pentahydrate, CaCO3, (NH4)2HPO4, La2O3, and Eu2O3. Structurally related to
whitlockite. Hexagonal, space group R3c ,a ¼ 10.38848, c ¼ 37.23035 Å, V ¼ 4017.89 Å3.
Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Huang et al. (2009).
Wavenumbers (cm21): 1121s, 1065s, 1047sh, 969, 939, 598, 552, 473w, 419w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P683 Calcium magnesium yttrium phosphate Ca8MgY(PO4)7
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Origin: Synthetic.
Description: Eu-doped sample synthesized in a solid-state reaction from a mixture of magnesium

carbonate basic pentahydrate, CaCO3, (NH4)2HPO4, Y2O3, and Eu2O3. Structurally related to
whitlockite. Hexagonal, space group R3c, a ¼ 10.32966, c ¼ 36.94593 Å, V ¼ 3942.20 Å3.
Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Huang et al. (2009).
Wavenumbers (cm21): 1151sh, 1130s, 1039s, 1000sh, 969s, 938s, 910sh, 608, 590, 551, 450sh,

415sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P684 Cerium(IV) pyrophosphate CeP2O7

Origin: Synthetic.
Description: Obtained by adding aqueous solution of cerium(IV) sulfate to the solution of sodium

pyrophosphate. Cubic, a ¼ 8.607(4) Å. The strongest lines of the powder X-ray diffraction pattern
[d, Å (I, %) (hkl)] are: 4.97 (30) (111), 4.31 (100) (200), 3.85 (15) (210), 3.51 (15) (211), 3.057
(28) (220), 2.599 (41) (311), 1.925 (17) (420).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Botto and Baran (1977).
Wavenumbers (cm21): 1140sh, 1067s, 942s, 738w, 615w, 548sh, 530, 330.
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P685 Cerium(III) polyphosphate Ce(PO3)3

Origin: Synthetic.
Description: Prepared from aqueous solutions of cerium(III) chloride and sodium cyclotriphosphate

with subsequent annealing of the precipitate formed up to 1123 K. Orthorhombic, space group
C2221. The structure is based on infinite chains of PO4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Ternane et al. (2008).
Wavenumbers (cm21): 1270s, 1152s, 1124s, 1055s, 1009s, 951s, 806, 770, 682w, 568, 532,

496, 476, 456.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P686 Cerium metaphosphate trihydrate Ce(P3O9)∙3H2O
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Origin: Synthetic.
Description: Prepared from aqueous solutions of cerium(III) chloride and sodium cyclotriphosphate.

Hexagonal, space group P-6. The cyclotriphosphate anion P3O9
3� has a benitoite-type planar

configuration.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Ternane et al. (2008).
Wavenumbers (cm21): 3618, 3510, 3225sh, 1627, 1284s, 1105s, 1039s, 1029sh, 909sh, 761, (667w),

497s, 430sh, 417sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. Weak bands in the range from 2300 to 2400 cm�1 and at 667 cm�1 correspond to
atmospheric CO2.

P687 Copper tinanium oxyphosphate α-CuTi2(PO4)2O2

Origin: Synthetic.
Description: Prepared by coprecipitation from aqueous solutions of Cu(NO3)2�3H2O and NH4(H2PO4)

taken in of stoichiometric quantities and ethanol solution of TiCl4. After evaporation of the solvent,
the solid was stepwise heated up to 950 �C. The crystal structure is solved. Monoclinic, space group
P21/c, a ¼ 7.5612(4), b ¼ 7.0919(4), c ¼ 7.4874(4) Å, β ¼ 122.25(1)�, V ¼ 339.55(6) Å3, Z ¼ 4.
Dmeas ¼ 3.71(2) g/cm3, Dcalc ¼ 3.729 g/cm3. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 6.393 (30) (100), 4.746 (23) (110), 3.334 (27) (21�1), 3.307 (100)
(11�2), 3.233 (49) (111), 3.198 (36) (200), 3.093 (40) (02�1), 2.585 (23) (22�1).

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Benmokhtar et al. (2007a).
Wavenumbers (IR, cm21): 1146, 1085sh, 1054s, 1025s, 1003s, 972s, 835, 778, 641, 602, 562, 531sh,

490, 447sh, 433s, 405, 386s, 352, 325, 304, 264, 225, 213.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1119, 1069, 1057, 1036, 1026, 1007s, 986, 835, 732s, 571, 470,

445, 417, 392, 371, 353.
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P688 γ-Vanadyl pyrophosphate γ-(VO)2(P2O7)

Origin: Synthetic.
Description: Prepared by thermal decomposition of γ-VOHPO4∙0.5H2O at 750 �C for 3 h.

Characterized by powder X-ray diffraction data. Orthorhombic, space group Pbc21, a ¼ 9.571,
b ¼ 7.728, c ¼ 16.568 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bordes et al. (1984).
Wavenumbers (cm21): 1585w, 1471w, 1381sh, 1331sh, 1231s, 1213, 1130s, 1073, 964s, 824w,

797w, 740, 624, 565, 504, 419, 398sh, 373sh, 311, 282sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P689 Lanthanum calcium oxophosphate LaCa4(PO4)3O
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Origin: Synthetic.
Description: Apatite-type compound synthesized by high-temperature solid-state reaction from a

stoichiometric mixture of preheated La2O3, CaCO3, and (NH4)(H2PO4). Characterized by powder
X-ray diffraction data. Hexagonal, space group P63, a ¼ 9.463(8), c ¼ 6.92(1) Å, V ¼ 536.64 Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Buvaneswari and Varadaraju (2000).
Wavenumbers (cm21): 1097sh, 1051s, 602, 572, 513, 459.

P690 Lanthanum strontium oxophosphate LaSr4(PO4)3O

Origin: Synthetic.
Description: Apatite-type compound synthesized by high-temperature solid-state reaction from a

stoichiometric mixture of preheated La2O3, SrCO3, and (NH4)(H2PO4). Characterized by powder
X-ray diffraction data. Hexagonal, space group P63, a ¼ 9.71(1), c ¼ 7.30(1) Å, V ¼ 596.05 Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Buvaneswari and Varadaraju (2000).
Wavenumbers (cm21): 1085s, 1041s, 948sh, 591, 566, 513w, 460w.

2.8 Phosphides and Phosphates 375



P691 Iron(II) acid phosphate hydrate Fe(H2PO4)2∙2H2O

Origin: Synthetic.
Description: Synthesized from acidic phosphate solution containing 5–9 wt% FeO and 65 wt% H3PO4

by a salting out procedure with ethyl alcohol. Monoclinic, space group P21/n, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Koleva and Effenberger (2007).
Wavenumbers (cm21): 3340s, 3150sh, 2420w, 2350w, 1700sh, 1630, 1568w, 1262, 1140s, 1090,

1055s, 1030sh, 968s, 905, 820, 790, 625w, 590w, 550, 520, 500, 470.

P692 Lead beryllium phosphate hurlbutite-type PbBe2(PO4)2
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Origin: Synthetic.
Description: Synthesized hydrothermally from BeO, H3PO4 (85%), (NH4)(H2PO4), and Pb(NO3)2 at

200 �C for 7 days. The crystal structure is solved. Monoclinic, space group P21/c, a ¼ 8.088(1),
b ¼ 9.019(1), c ¼ 8.391(1) Å, β ¼ 90.12(1)�, V ¼ 612.22(1) Å3, Z ¼ 4. Dcalc ¼ 4.504 g/cm3.
Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Dal Bo et al. (2014).
Wavenumbers (cm21): 1187, 1137, 1106, 1065, 1033, 997s, 816, 753, 738, 674s, 649, 598, 566s,

531, 489, 481, 465, 441.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P693 Lead iron(III) phosphate Pb3Fe2(PO4)4

Origin: Synthetic.
Description: Prepared from a stoichiometric mixture of Fe2O3, PbCO3, and (NH4)(H2PO4) by a ceramic

technique. Characterized by elemental analysis, powder X-ray diffraction data, and Mössbauer
spectrum. The crystal structure is solved. Monoclinic, space group P21/c, a ¼ 9.0065(6),
b ¼ 9.0574(6), c ¼ 9.3057(6) Å, β ¼ 116.880(4)�, V ¼ 677.10(8) Å3, Z ¼ 2. Dcalc ¼ 5.412 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Malakho et al. (2005).
Wavenumbers (cm21): 1139, 1067sh, 1052s, 1025s, 1002s, 978s, 965sh, 624, 598, 573, 544,

477sh, 449w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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P694 Lead phosphate nitrate hydrate Pb2(NO3)(PO4)∙H2O

Origin: Synthetic.
Description: Crystals grown by a sol-gel method in the presence of sodium metasilicate. Monoclinic,

space group P21/c, a ¼19.511, b ¼ 7.37, c ¼ 10.994 Å, β ¼ 113�.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Vivekanandan et al. (1995).
Wavenumbers (IR, cm21): 3544, 3415, 2940sh, 1748w, 1603, 1453sh, 1419sh, 1384s, 1359sh,

1348s, 1037sh, 1004s, 955s, 923s, 823, 725w, 718w, 673, 608, 556sh, 542, 518.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3500, 1653w, 1620w, 1370w, 1353, 1062s, 1044w, 1016s, 967, 947,

733, 722w, 617, 574w, 535w, 444w, 415, 392w, 239, 205w, 144, 125s, 96s, 75, 66.

P695 Lead phosphate sulfate Pb4(PO4)2(SO4)
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Origin: Synthetic.
Description: Prepared by a solid-state reaction from a stoichiometric mixture of Pb3(CO3)2(OH)2,

(NH4)2(SO4), and (NH4)2(HPO4) in air at 700 �C for several days. Cubic, space group I43d, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Massaferro et al. (1999).
Wavenumbers (IR, cm21): 1118sh, 1080s, 989s, 936sh, 613sh, 606, 565sh, 551, 460sh, 430sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1120, 1085, 987s, 963sh, 944s, 609, 551, 459, 440, 430, 262.

P696 Lead silver phosphate apatite-type Pb4Ag(PO4)3

Origin: Synthetic.
Description: Prepared hydrothermally from a stoichiometric mixture of Pb3(PO4)2 and Ag3(PO4) at

215 �C for 1 day. Hexagonal, space group P63/m, a ¼ 9.772(4), c ¼ 7.210(3) Å. In the apatite-type
structure, Ag+ ions concentrate in the column positions. The strongest lines of the powder X-ray
diffraction pattern [d, Å (I, %) (hkl)] are: 4.238 (53) (200), 4.051 (53) (111), 3.202 (52) (210), 2.926
(100) (211), 2.904 (71) (112), 2.823 (72) (300).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Ternane et al. (2000).
Wavenumbers (IR, cm21): 1178sh, 1121sh, 1037s, 988s, 907sh, 574, 548, 535, 444w, 385w, 377w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1017, 963s, 933s, 577s, 558, 421, 388.
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P697 Lead sodium calcium phosphate apatite-type Pb3CaNa(PO4)3

Origin: Synthetic.
Description: Prepared by a solid-state reaction from a mixture of Na2CO3, (NH4)2(HPO4), CaCO3,

and PbO powders heated at 1073 K in air for 12 h and at 1173 K for 12 h. Characterized by powder
X-ray diffraction data and chemical analysis. Hexagonal, space group P63/m, a ¼ 9.658(8),
c ¼ 7.081(6) Å, V ¼ 572.01(8) Å3, Z ¼ 2. Dcalc ¼ 5.63 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Naddari et al. (2003).
Wavenumbers (cm21): 1113, 1024s, 604, 559, 459w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P698 Lithium chromium pyrophosphate LiCrP2O7
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Origin: Synthetic.
Description: Prepared by solid-state reaction from a stoichiometric mixture of Li(H2PO4),

NH4(H2PO4), and CrCl3�6H2O, first at 200 �C for 5 h, then at 700 �C for 20 h, and finally at
950 �C for 20 h with intermediate grindings and pelletizing. Characterized by powder X-ray
diffraction data. The crystal structure is solved. Monoclinic, space group P21, a ¼ 4.7867(7),
b¼ 8.0049(11), c¼ 6.9093(10) Å, β¼ 109.003(2)�, V¼ 250.32(6) Å3, Z¼ 2.Dcalc¼ 3.090 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: The spectrum was
recorded using a Pike MIRacle micrometer pressure clamp.

Source: Pachoud et al. (2013).
Wavenumbers (cm21): 1238w, 1144sh, 1138s, 1102sh, 1096s, 1074s, 1042w, 1034w, 968, 953,

772, 655, 646, 634sh, 628s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P699 Lithiumiron(III) pyrophosphate LiFe3+(P2O7)

Origin: Synthetic.
Description: Obtained from Li and Fe nitrates, and (NH4)2(HPO4) by the co-precipitation method with

subsequent heating of the obtained precipitate up to 750 �C with several intermediate grindings.
Monoclinic space group P21, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Parajón-Costa et al. (2013).
Wavenumbers (IR, cm21): 1227, 1170sh, 1125s, 1098s, 1075s, 1032, 970sh, 945s, 761, 618,

577, 533, 510, 442.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1122s, 1105s, 1073s, 1037, 975, 941, 767, 761, 618, 559, 537, 520,

512, 448, 427, 415.
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P700 Lithium magnesium phosphate olivine-type LiMg(PO4)

Origin: Synthetic.
Description: White solid synthesized by solid-state reaction between Li2CO3, MgO, and

(NH4)2(HPO4) at 800 �C for 4 days. Orthorhombic, space group Pnma.
Kind of sample preparation and/or method of registration of the spectrum: KI and polyethylene

discs. Transmission.
Source: Paques-Ledent and Tarte (1974).
Wavenumbers (cm21): 1157s, 1113s, 1070s, 1000s, 958, 669, 655, 593, 558s, 535, 517, 479, 407s,

372, 335, 322, 294, 280, 242, 229w, 158w.

P701 Lithium nickel phosphate triphylite-type LiNi(PO4)
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Origin: Synthetic.
Description: Synthesized by a solid-state reaction technique from the stoichiometric mixture of

Li2CO3, (NH4)2(HPO4), and NiO at 773 K for 48 h. Characterized by powder X-ray diffraction
data. Orthorhombic, space group Pnma, a ¼ 10.0252(7), b ¼ 5.8569(5), c ¼ 4.6758(4) Å,
V ¼ 274.546 Å3.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of
sample preparation is not indicated.

Source: Bechir et al. (2014).
Wavenumbers (IR, cm21): 1150, 1100s, 1057s, 975, 940sh, 653, 580, 547, 525sh, 477.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1085, 1070, 1009s, 946s, 637, 597w, 590, 575w, 460w, 320w,

300, 280, 252w, 233w, 170, 165, 116w.

P702 Lithium cyclo-hexaphosphate trihydrate Li6P6O18∙3H2O

Origin: Synthetic.
Description: Acicular crystals grown by a hydrothermal method from the solution of Li6P6O18∙6H2O

in the methanol-water (2:1 vol.) mixture. Trigonal, space group R-3m, a¼ 15.7442(2), c¼ 12.5486
(2) Å, V ¼ 2693.8 Å3, Z ¼ 6.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Houlbert et al. (2004), Toumi et al. (1998).
Wavenumbers (cm21): 3501, 1637, 1309, 1267sh, 1257s, 1173, 1146, 1096, 1047, 987s, 794, 755,

716w, 617, 558sh, 530sh, 514, 440.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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P703 Lithium strontium orthophosphate LiSr(PO4)

Origin: Synthetic.
Description: Synthetized by a solid-state reaction between Li2CO3, SrCO3, and (NH4)2(HPO4) at

950 �C for 1 week, with several intermediate mixings and grindings. Characterized by powder
X-ray diffraction data. Monoclinic (?). Structurally related to RbLi(SO4).

Kind of sample preparation and/ormethod of registration of the spectrum: Pressed discs. Transmission.
Source: Paques-Ledent (1978).
Wavenumbers (cm21): 1038s, 948, 623, 593s, 576s, 520, 469sh, 431, 405, 346, 273w, 234, 215sh,

188s, 174sh, 154, 127, 107, 89w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P704 Lithium vanadyl phosphate α-Li(VO)(PO4)
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Origin: Synthetic.
Description: Synthesized from V2O5, LiOH, and H3PO4 in the ratio Li:V:P ¼ 5:1:5 via intermediate

vanadyl oxalate by a microwave-assisted solvothermal method. Characterized by powder X-ray
diffraction data. Triclinic, a ¼ 6.7872(3), b ¼ 7.2152(2), c ¼ 7.8861(3) Å, α ¼ 89.904(2)�,
β ¼ 88.578(2)�, γ ¼ 62.835(3)�, V ¼ 343.46(2) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Harrison and Manthiram (2013).
Wavenumbers (cm21): 1160sh, 1045s, 995sh, 950sh, 887s, 634w, 576w, 497, 423.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P705 Lithium vanadyl phosphate Li(VO)(PO4)

Origin: Synthetic.
Description: Synthesized using LiAc�2H2O, V2O5, (NH4)(H2PO4), and citric acid as the starting

reagents. After evaporation the solvent, the product was sintered at 600 �C. Characterized by
powder X-ray diffraction data. Triclinic, a ¼ 6.731(5), b ¼ 7.202(4), c ¼ 7.923(2) Å,
α ¼ 89.859(8)�, β ¼ 91.261(5)�, γ ¼ 116.891(10)�, V ¼ 342.507 Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yang et al. (2008b).
Wavenumbers (cm21): 1633w, 1458w, 1385w, 1161, 1047s, 991s, 950, 907s, 666, 637, 617, 579,

546, 516sh, 500, 461sh, 423s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 1385 cm�1 may correspond to NO3
� admixture in KBr. The

band at 1633 cm�1 corresponds to adsorbed (?) water.
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P706 Lithium vanadyl phosphate β-LiVOPO4

Origin: Synthetic.
Description: Prepared by a hydrothermal method. Characterized by powder X-ray diffraction data.

Orthorhombic, space group Pnma, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran et al. (1994).
Wavenumbers (IR, cm21): 1160s, 1151sh, 1055s, 1038sh, 995s, 966s, 896s, 637, 619sh, 614, 476s,

453s, 368s, 335, 310sh, 294w, 256w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1104, 1077, 1062, 1025, 1005, 979, 936, 884s, 629, 468, 429, 363,

332, 322, 310, 266, 250.

P707 Lithium zinc phosphate monohydrate α-LiZn(PO4)∙H2O
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Origin: Synthetic.
Description: Prepared from LiH2(PO4)�H2O and ZnSO4�7H2O in the presence of (NH4)(HCO3) and

polyethylene glycol. Characterized by powder X-ray diffraction data. Orthorhombic, a ¼ 10.51848
(8), b ¼ 8.12715(6), c ¼ 5.02215(5) Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Liao et al. (2009).
Wavenumbers (cm21): 3447, 3417, 3182, 3045, 2932sh, 2854w, 1612, 1436, 1272w, 1079s, 1018,

630s, 580, 455.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, the wavenumber 455 cm�1 is erroneously indicated as
415 cm�1. The bands in the range from 2800 to 3000 cm�1 correspond to the admixture of an
organic substance. The band at 1436 cm�1 may correspond to a carbonate.

P708 Magnesium acid phosphate hydrate Mg(H2PO4)2∙2H2O

Origin: Synthetic.
Description: Obtained by salting out with acetone from MgO solution in 65 wt% H3PO4. Monoclinic,

space group P21/n, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Koleva and Effenberger (2007).
Wavenumbers (cm21): 3435sh, 3360, (3180sh), 2450w, 2300w, 2130w, 1740sh, 1618, 1256s, 1180s,

1138s, 1063s, 946sh, 906s, 820, 765, 623, 548, 533sh, 458.
Note: Unlike structurally investigated Ni, Zn, and Cd analogues (Koleva and Effenberger 2007), bands

of acid OH groups in the range 2200–2500 cm�1 are anomalously weak.
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P709 Manganese acid phosphate hydrate Mn(H2PO4)2∙2H2O

Origin: Synthetic.
Description: Obtained by salting out with acetone from MnO solution in 65 wt% H3PO4. Monoclinic,

space group P21/n, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Koleva and Effenberger (2007).
Wavenumbers (cm21): 3400sh, 3300s, 3130sh, 2435sh, 2300sh, 2170w, 2050w, 1700sh, 1652,

1562sh, 1250, 1150s, 1095sh, 1046s, 960s, 900, 795, 637w, 547, 523, 480, 420.

P710 Manganese(II) titanium orthophosphate MnTi4(PO4)6
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Origin: Synthetic.
Description: Orange crystals obtained hydrothermally from TiCl4, Mn, and H3PO4 in the presence of

H2O2, at 250 �C for 20 days. The crystal structure is solved. Hexagonal, space group R-3,
a ¼ 8.51300(10), c ¼ 21.0083(3) Å, V ¼ 1318.52(3) Å3, Z ¼ 6. Dmeas ¼ 2.39(3) g/cm3,
Dcalc ¼ 3.083 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Essehli et al. (2009).
Wavenumbers (cm21): 1267, 1180, 1089s, 1049s, 980s, 944s, 642, 596, 539w, 482, 447w, 419.

P711 Manganese(II) titanium phosphate MnTi4(PO4)6 MnTi4(PO4)6

Origin: Synthetic.
Description: Prepared from the stoichiometric mixture of MnCO3, TiO2, and (NH4)(H2PO4) using a

solid-state reaction technique. Characterized by powder X-ray diffraction data. Hexagonal, space
group R-3.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Pikl et al. (1998).
Wavenumbers (IR, cm21): 1267, 1185, 1090sh, 1083s, 1057sh, 1046s, 988s, 944s, 643, 594, 571w,

542, 441, 382, 360, 319s, 283w, 264w, 255w, 186w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1221w, 1091, 1083, 1050, 1034s, 1005, 976s, 939s, 696, 654,

604, 537, 454, 445, 438, 358, 350, 313, 285, 271, 259, 241, 199w.
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P712 Mercury(I) acid phosphate (Hg2)2(H2PO4)(PO4)

Origin: Synthetic.
Description: White precipitate obtained by adding a solution of Hg2(NO3)2�2H2O with minor HNO3

to excess of diluted orthophosphoric acid. The crystal structure is solved. Monoclinic, space group
C2/c, a ¼ 9.597(2), b ¼ 12.673(2), c ¼ 7.976(1) Å, β ¼ 110.91(1)�, V ¼ 906.2(2) Å3, Z ¼ 4.
Dcalc ¼ 7.296 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Weil (2000).
Wavenumbers (cm21): 1585w, 1218, 1069s, 1005s, 940s, 886, 829, 592s, 523s.

P713 Molybdyl phosphate α-(MoO)(PO4)

390 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



Origin: Synthetic.
Description: Obtained from the melt prepared from ammonium paramolybdate and H3PO4 at 950 �C.

Tetragonal, space group P4/n, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stranford and Condrate Sr (1984b).
Wavenumbers (IR, cm21): 1193, 998s, 631w, 585.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1079, 1013s, 947s, 621, 607, 447, 361, 292.

P714 Nickel vanadyl phosphate hydrate Ni(VO)(PO4)2�4H2O

Origin: Synthetic.
Description: Tetragonal. The structure is based on VPO5 1ayers linked by NiO6 octahedra. V has

fivefold coordination.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran et al. (1995).
Wavenumbers (cm21): 3505sh, 3347, 3302s, 3070sh, 1687, 1558w, 1119, 1026s, 1005sh, 854w,

681, 550, 467s, 455s, 436sh, 391s, 370, 306, 289, 255, 227, 190.
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P715 Niobylphosphate β-(NbO)(PO4)

Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stranford and Condrate Sr (1984b).
Wavenumbers (IR, cm21): 1179, 1096, 1017s, 833, 779, 616, 585.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1120, 1097, 1022, 990, 969, 834, 785, 632, 609, 599, 583, 530, 442,

416, 383, 363, 347, 311, 288, 276, 241, 212, 177, 140, 115, 95, 80.

P716 Niobyl phosphate α-NbPO5
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Origin: Synthetic.
Description: Tetragonal, space group P4/n, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stranford and Condrate Sr (1984b).
Wavenumbers (IR, cm21): 1211, 1040s, 891s, 629, 583.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1113, 1014s, 984s, 800, 612, 467, 458, 376, 288, 200, 177, 160, 111.

P717 Ammonium manganese(II) borophosphate [NH4]4[Mn9B2(OH)2(HPO4)4(PO4)6]

Origin: Synthetic.
Description: Pink stick-like crystals prepared hydrothermally from Mn(OAc)2�4H2O, H3BO3, and

(NH4)2(HPO4) at 200 �C for 5 days. Monoclinic, space group C2/c, a ¼ 32.603(7), b ¼ 10.617(2),
c ¼ 10.718(2) Å, β ¼ 108.26(3)�, V ¼ 3523.2(12) Å3, Z ¼ 4. Dcalc ¼ 2.971 g/cm3. In the crystal
structure, layers [Mn9(OH)2(HPO4)4(PO4)6] are connected by B atoms having tetrahedral coordi-
nation to form 3D framework. Mn2+ has five- and sixfold coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yang et al. (2006).
Wavenumbers (cm21): 3498, 3226s, 3084, 2848, 1684w, 1437, 1096s, 1044s, 1021s, 960, 930s,

875, 837sh, 685, 626, 583, 557, 521, 482sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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P718 Potassium acid phosphate K2(HPO4)

Origin: Synthetic.
Description: Prepared by slow evaporation of aqueous solution of a commercial sample at 60 �C.

Orthorhombic, space group Pna21, Z ¼ 12.
Kind of sample preparation and/or method of registration of the spectrum: Nujol and Fluorolube

mulls. Transmission.
Source: Hadrich et al. (2001).
Wavenumbers (IR, cm21): 2860s, 2480s, 2370s, 1870, 1650sh, 1310, 1280, 1124s, 1085s, 1065sh,

972s, 950sh, 847s, 832s, 622, 535, 515sh, 425, 407, 385sh.
Note: The band at ~720 cm�1 corresponds to Nujol. The wavenumbers were partly determined by us

based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is
given.

Wavenumbers (Raman, cm21): 1129w, 1119w, 1111w, 1100w, 1081w, 1066w, 1000, 969s, 946s,
856, 839sh, 828w, 587w, 571w, 559, 547, 534, 511w, 427w, 405w, 389, 382sh.

P719 Potassium acid pyrophosphate hydrate K3(HP2O7)∙3H2O
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Origin: Synthetic.
Description: Prepared in the reaction between a concentrated aqueous solution of potassium pyro-

phosphate and equimolar quality of acetic acid at 0–5 �C. Monoclinic, space group P21/c, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: Nujol and hexachlor-

obutadiene mulls. Transmission.
Source: Sarr and Diop (1984).
Wavenumbers (IR, cm21): 3414, 3316s, 3210s, 2720w, 2360 (broad), 1714, 1660, 1366, 1304, 1246,

1210sh, 1190s, 1160, 1125s, 1110sh, 1060s, 1015, 1005, 966s, 932–870s (broad), 720, 700sh,
686sh, 648w, 630w, 620w, 610w, 590sh, 562sh, 536sh, 531, 502, 480sh, 454, 444sh, 418, 407sh,
334, 306sh, 264sh, 247.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

P720 Potassium antimony(V) oxophosphate K5Sb5P2O20

Origin: Synthetic.
Source: Husson et al. (1984).
Wavenumbers (IR, cm21): 1288w, 1244sh, 1216s, 1074s, 960s, 905, 860, 755s, 670, 640, 622s,

601w, 558s, 490s, 450, 405, 376, 304, 285, 252, 235s, 208s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1240, 1180, 1070, 975, 821w, 775w, 647s, 599s, 566w, 543, 507,

489, 472, 440w, 380w, 339s, 322, 267, 215w, 161, 108sh, 74.
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P721 Potassium antimony oxophosphate K2Sb(PO4)O2

Origin: Synthetic.
Description: Obtained by a solid-state reaction technique. The crystal structure is solved. Orthorhom-

bic, space group Pnma, a ¼ 9.429(4), b ¼ 5.891(3), c ¼ 11.030(5) Å, V ¼ 612.72 Å3, Z ¼ 4.
Dmeas ¼ 3.50(5) g/cm3, Dcalc ¼ 3.53 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Botto and Garcia (1989).
Wavenumbers (IR, cm21): 1212s, 1070s, 1060sh, 925sh, 895s, 850s, 758w, 670, 662sh, 640, 620,

585, 540s, 480, 390, 370, 300w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1190, 1071s, 653s, 620w, 600, 545s, 537sh, 508w, 496w, 487w,

473w, 434w, 326, 308, 266s.

P722 Potassium bismuth(III) phosphate K3Bi2(PO4)3
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Origin: Synthetic.
Description: Prepared by crystallization from the melt obtained by heating stoichiometric mixture of

K2CO3, Bi2O3, and (NH4)(H2PO4) to 1223 K. Characterized by powder X-ray diffraction data.
Orthorhombic, possibly isostructural with Na3Bi2(PO4)3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Mariappan et al. (2005).
Wavenumbers (cm21): 1132, 1095s, 990s, 964s, 952s, 938s, 933sh, 901s, (667w), (658w), 592, 585,

555s, 548s, (517), (482w), (470w), (455w), (440w), (434w), (425w), (417w).
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P723 Potassium difluorphosphate K(PO2F2)

Origin: Synthetic.
Description: Obtained from a melt prepared from KPF6 and KPO3. Orthorhombic (?).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Bühler and Bues (1961).
Wavenumbers (cm21): 1330sh, 1311s, 1145s, 857s, 834, 535w, 512sh, 481, 286w.
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P724 Potassium iron pyrophosphate KFe(P2O7)

Origin: Synthetic.
Description: Obtained by evaporation of an aqueous solution containing a stoichiometric mixture of

KNO3, Fe(NO3)3, and (NH4)2(HPO4) followed by stepwise heating up to 750 �C with intermediate
grindings. Monoclinic, space group P21/c, a ¼ 7.3523, b ¼ 9.9875, c ¼ 8.1872 Å, β ¼ 106.499�,
V ¼ 576.45 Å3, Z ¼ 4. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Belkouch et al. (1995).
Wavenumbers (cm21): 1240s, 1175s, 1115s, 1100sh, 1075s, 1060sh, 1030, 945s, 780sh, 770, 645w,

600sh, 590, 560, 500, 480, 440, 412, 371, 339s, 289, 265sh, 252sh, 245, 226.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P725 Potassium lead borophosphate KPb(BP2O8)
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Origin: Synthetic.
Description: Colorless crystals grown by the top seed growth method from a K2O–PbO–B2O3–P2O5

system. The melt was kept at 880 �C for 24 h and then cooled first to 865 �C at a rate of 0.5 �C/min
and thereafter to 861 �C within 20 h. Characterized by powder X-ray diffraction data. The crystal
structure is solved. Tetragonal, space group I-42d, a ¼ 7.1464(7), c ¼13.8917(16) Å, V ¼ 709.46
(13) Å3, Z ¼ 4. Dcalc ¼ 4.185g/cm3. The structure contains 12-membered rings, in which 6 PO4

tetrahedra and 6 BO4 tetrahedra are linked by O atoms.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Li et al. (2013).
Wavenumbers (cm21): 1139s, 1036s, 932s, 610, 538.

P726 Potassium lead phosphate KPb4(PO4)3

Origin: Synthetic.
Description: Prepared in a solid-state reaction, by heating a mixture of PbO, K2CO3, and

(NH4)2(HPO4) first to 500 �C, and thereafter (after intermediate grinding) at 700 �C for 48 h.
Characterized by powder X-ray diffraction data. Hexagonal, space group P63/m, a ¼ 9.8276(3),
c ¼ 7.3010(4) Å, V ¼ 610.67(2) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Azrour et al. (2011).
Wavenumbers (IR, cm21): 1055s, 988s, 928sh, 576, 554, 534, 447w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1025, 976, 959s, 933s, 583s, 558, 418, 389, 235sh, 204, 159w, 130s.
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P727 Potassium magnesium acid phosphate hydrate KMg2H(PO4)2∙15H2O

Origin: Synthetic.
Description: Prepared by the precipitation reaction between MgSO4 and K2(HPO4) solutions.

Characterized by powder X-ray diffraction data. Triclinic, a ¼ 6.2908, b ¼ 12.2451,
c ¼ 6.5551 Å, α ¼ 93.64�, β ¼ 89.14�, γ ¼ 94.73�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol
mull. Transmission.

Source: Koleva et al. (2015).
Wavenumbers (cm21): 3200s, 2390, 1704, 1633, 1390w, 1031s, 905, 790s, 720s, 530, 429w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P728 Potassium magnesium acid pyrophosphate hydrate KMg0.5(H2P2O7)∙H2O
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Origin: Synthetic.
Description: Prepared in the reaction of aqueous solutions of MgCl2 and K4P2O7 in the presence of

HCl. The crystal structure is solved. Triclinic, space group P-1, a ¼ 6.8565(2), b ¼ 7.3621(3),
c ¼ 7.6202(3) Å, α ¼ 81.044(2)�, β ¼ 72.248(2)�, γ ¼ 83.314(3)�, V ¼ 360.90(2) Å3, Z ¼ 2.
Dcalc ¼ 2.257 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Harcharras et al. (2003).
Wavenumbers (IR, cm21): 3498sh, 3389sh, 3299, 2858, 2383 (broad), 2201, 1687, 1669sh, 1385w,

1333, 1290, 1262, 1200s, 1179sh, 1097s, 1033s, 1002sh, 994s, 978sh, 946s, 931sh, 802, 751,
717, 622w, 577, 544, 520, 491, 431w.

Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3484w, 3387, 3318, 3281s, 2787w, 2405w, 2176w, 1705w, 1605w,

1332w, 1278w, 1217s, 1165, 1121, 1115w, 1081, 1048s, 1023, 992, 955w, 900w, 763s, 729, 589s,
555, 534, 512, 472, 452, 409s, 381, 373s, 365, 339, 311, 300s, 245.

P729 Potassium magnesium orthophosphate KMg4(PO4)3 KMg4(PO4)3

Origin: Synthetic.
Description: Obtained from K2WO4–WO3 flux containing K(H2PO4) and MgO in the molar ratio 2:1.

The crystal structure is solved. Orthorhombic, space group Pnnm, a ¼ 16.361(3), b ¼ 9.562(19),
c ¼ 6.171(12) Å, V ¼ 965.4(3) Å3, Z ¼ 4. Dcalc ¼ 2.898 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc
(400–1500 cm�1) and Nujol mull (30–500 cm�1). Absorption.

Source: Tomaszewski et al. (2005).
Wavenumbers (IR, cm21): 1209w, 1189, 1155sh, 1149s, 1108s, 1087s, 1049s, 1035s, 1000s,

978, 961, 907, 638, 619, 591, 570, 562, 532, 473, 452, 428, 411, 385sh, 374, 335, 323, 295,
276, 266, 258, 236w, 215w, 202w, 170w, 159w, 144w, 119w, 77w, 71sh, 50w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. In the cited paper, polarized Raman spectra are given.

Wavenumbers (Raman, [z(xx)–z] polarization, cm21): 1152w, 1141w, 1103w, 1086, 1079, 1016s,
982s, 956, 636, 624w, 604w, 589w, 565, 550w, 509w, 471w, 415, 298w, 283, 275w, 253w,
156, 132.
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P730 Potassium magnesium yttrium phosphate (xenotime-type) KMgY(PO4)2

Origin: Synthetic.
Description: Obtained from stoichiometric amounts of (NH4)2(HPO4), K2CO3, MgO, and Y2O3, with

NH4Cl as a flux, first at 850 �C for several hours, and thereafter (after adding KCl and grinding) at
650–850 �C for 2 days, with subsequent washing with cold water. Characterized by powder X-ray
diffraction data and elemental analysis. Tetragonal, space group I41/amd, a ¼6.886, c ¼ 6.025 Å,
Z ¼ 2. Dmeas ¼ 3.940 g/cm3, Dcalc ¼ 3.983 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Shao-Long et al. (1996).
Wavenumbers (IR, cm21): 1072s, 1036s, 643, 528, 338.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1061s, 1030, 1004s, 669, 659w, 590, 569w, 553w, 533w, 488, 338,

305s, 225w, 205, 195, 165, 92w, 85w.

P731 Potassium monofluorphosphate K2(PO3F)
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Origin: Synthetic.
Description: Obtained from the melt containing KF and KPO3. Orthorhombic, a ¼ 7.554, b ¼ 5.954,

c ¼ 10.171 Å, V ¼ 457 Å3, Z ¼ 4 (Payen et al. 1979).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Bühler and Bues (1961).
Wavenumbers (cm21): 1170s, 1008s, 705s, 530.

P732 Potassium niobium oxophosphate K3Nb5O11(PO4)2

Origin: Synthetic.
Description: Prepared in the cation exchange reaction between Tl3Nb5O11(PO4)2 and excess of KCl at

460 �C for 24 h. Characterized by powder X-ray diffraction data and electron microprobe analysis.
Trigonal, space group R-3c, a ¼ 13.002(7), c ¼ 53.742(3) Å, V ¼ 7868(13) Å3, Z ¼ 18.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Fakhfakh et al. (2003).
Wavenumbers (cm21): 1136sh, 1099s, 1036s, 1013sh, 874, 806, 663sh, 603, 579s, 563s,

471, 460, 424w.
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P733 Potassium tin orthophosphate KSn4(PO4)3

Origin: Synthetic.
Description: Synthesized hydrothermally from SnCl2 and K(H2PO4) at 170 �C for 3 days.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space
group R3c, a ¼ 9.7124(11), c ¼ 24.363(3) Å, V ¼ 1990.3(4) Å3, Z ¼ 6. Dcalc ¼ 3.999 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bontchev and Moore (2004).
Wavenumbers (cm21): 1073s, 1012s, 604, 579, 529.
Note: Bands above 1400 cm�1 indicate that the sample was contaminated with a compound containing

acid OH groups and H2O molecules.

P734 Potassium titanium oxophosphate KTi(PO4)O
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Origin: Synthetic.
Description: Orthorhombic, space group Pn21a. The structure contains distorted TiO6 octahedra

whereas PO4 tetrahedra are stated as being undistorted. However the strong band at 964 cm�1

indicates that PO4 tetrahedra are actually distorted.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.

Transmission.
Source: Jacco (1986).
Wavenumbers (cm21): 1124, 1100, 1048s, 1023s, 1000s, 964s, 820, 785, 712s, 635, 594w,

560, 503sh, 492, 469, 430, 402, 381s, 324sh, 315, 287, 270.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P735 Potassiumvanadyl phosphate K2(VO2)(PO4)

Origin: Synthetic.
Description: Yellow crystals prepared from the powders of NH4VO3, (NH4)2(HPO4), and KNO3

mixed in the molar ratio 1:1:2 and heated first at 350 �C for 2 h and thereafter for 440 �C for 1 h. The
crystal structure is solved. Monoclinic, space group P21/n, a ¼ 6.863(2), b ¼ 13.479(5), c ¼ 7.505
(1) Å, β ¼ 111.02 (10)�, V ¼ 648.0(3) Å3, Z ¼ 4. Vanadium has fivefold coordination with two
short V–O distances.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Korthuis et al. (1993).
Wavenumbers (cm21): 1191s, 1167s, 1057, 1005s, 974s, 939s, 899s, 892sh, 655s, 648, 575,

560, 546, 518, 436, 420, 400.
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P736 Potassium ytterbium acid orthoborate acid orthophosphate K3Yb[BO(OH)2]2(HPO4)2

Origin: Synthetic.
Description: Prepared hydrothermally from Yb2O3 preliminarily dissolved in concentrated HCl,

K2B4O7�4H2O, and K2HPO4 (with the molar ratio K:Yb:B:P ¼ 18:1:8:7) at 453 K for 5 days.
Characterized by electron microprobe analyses. The crystal structure is solved. Trigonal, space
group R-3, a ¼ 5.6809(2), c ¼ 36.594(5) Å, V ¼ 1022.8(2) Å3, Z ¼ 3. Dcalc ¼ 2.942 g/cm3. In
B-centered triangles, O atoms and OH groups are disordered.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Zhou et al. (2011).
Wavenumbers (cm21): 2859, 2805, 2635sh, 2600w, 2441w, 2380, 1456sh, 1409, 1204, 1031s, 994s,

875, 706, 680, 585s, 538, 520s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P737 Potassium zinc acid pyrophosphate hydrate K2Zn(H2P2O7)2∙2H2O
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Origin: Synthetic.
Description: The crystal structure is solved. Orthorhombic, space group Pnma, a ¼ 9.901(17),

b ¼ 11.071(14), c ¼ 13.65(4) Å, V ¼ 1496 Å3, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Khaoulaf et al. (2012).
Wavenumbers (IR, cm21): 3864, 3612, 3466, 2829, 2421, 1891w, 1764w, 1676, 1545sh, 1453,

1363, 1222s, 1129, 1036, 990s, 951s, 850sh, 785, 715w, 637, 589s, 534s, 444.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3544, 3401s, 3300, 2750, 2316w, 1787w, 1665w, 1312, 1190s,

1136, 1070s, 1006, 918, 755s, 823w, 609s, 609s, 572, 524w, 464s, 416s, 389, 341s, 314w, 267s.

P738 Potassium zinc cyclotriphosphate benitoite-type KZn(P3O9)

Origin: Synthetic.
Description: Synthesized by solid-state reaction techniques from a stoichiometric mixture of (NH4)

(H2PO4), KHCO3, and ZnO (or ZnCO3) at 600 �C with several intermediate grindings.
Characterized by powder X-ray diffraction data. Hexagonal, isostructural with benitoite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Tarte et al. (1987).
Wavenumbers (cm21): 1287s, 1113s, 1102s, 1046s, 1027s, 769s, 540, 495s, 487sh, 385, 347w, 317.
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P739 Praseodymium cyclotriphosphatetrihydrate Pr(P3O9)∙3H2O

Origin: Synthetic.
Description: Prepared by mixing PrCl3�6H2O and Na3P3O9 0.1 M aqueous solutions in a 1:1 ratio. The

crystal structure is solved. Hexagonal, space group P-6, a ¼ 6.7677(4), c ¼ 6.0501(4) Å,
V ¼ 239.98(3) Å3, Z ¼ 1. Dcalc ¼ 2.988 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Jouini et al. (2006).
Wavenumbers (IR, cm21): 3620, 3512, 3230sh, (2928), 1626, 1289s, 1108s, 1036s, 915sh, 764s,

(672), (653), (514), 501s, 394.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The wavenumber 1289 cm�1 is erroneously indicated by Jouini et al. (2006)
as 1298 cm�1. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 1248s, 1176s, 1103, 900, 656s, 662, 481, 357s, 306s, 269, 202w,
169, 131, 78.

P740 Rubidium iron(III) pyrophosphate RbFe3+(P2O7)
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Origin: Synthetic.
Description: Prepared from aqueous solutions of corresponding nitrates and (NH4)2(HPO4) using a

co-precipitation method, with subsequently heating precipitate at 750 �C at 15–20 h. Characterized
by powder X-ray diffraction data. Triclinic, space group P21/c, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Parajón-Costa et al. (2013).
Wavenumbers (IR, cm21): 1233, 1170sh, 1091s, 1067s, 1057s, 1022, 927s, 766sh, 757, 634,

586, 548, 490, 470, 427, 402.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1156s, 1119s, 1094s, 1066s, 908, 765, 640, 598, 574, 548, 473, 431,

406.

P741 Rubidium vanadyl phosphate Rb(VO)(PO4)

Origin: Synthetic.
Description: Obtained by heating pelletized mixture of Rb4V2O7, V2O3, and P2O5 in a molar ratio of

1:1:2 at 785 �C. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Orthorhombic, space group P212121, Z ¼ 4. The structure contains square pyramidal VO5 groups
(with one short V–O bond of 1.579 Å) and tetrahedral PO4 units.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Baran et al. (1996).
Wavenumbers (IR, cm21): 1128s, 1093s, 1047s, 1035sh, 1010sh, 990s, 962s, 657sh, 650, 632,

592, 574, 563, 534s, 529sh, 449w, 415, 389, 373, 362sh, 348, 337, 306, 284w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1149, 1125, 1094, 1077, 1045, 1005s, 964, 664, 630, 593, 560, 523,

450, 405, 351, 320, 285s.
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P742 Samarium metaphosphate Sm(PO3)3

Origin: Synthetic.
Description: Synthesized from the mixture of Sm2O3 and (NH4)(H2PO4) heated successively at

170, 240, 350, 440, and 550 �C for 24 h. Characterized by powder X-ray diffraction data.
Orthorhombic, space group C2221.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Ilieva et al. (2001).
Wavenumbers (IR, cm21): 1345sh, 1295sh, 1280s, 1157s, 1129, 1070, 1040sh, 1017s, 960s, 816w,

776, 718w, 688w, 574, 538, 500, 477, 460.
Note: In the cited paper, IR and Raman spectra of Ga, In, Y, Sm, Gd, and Dy metaphosphates are given.
Wavenumbers (Raman, cm21): 1305, 1270s, 1200s, 1170, 1131, 1093, 1064, 983, 753, 720, 692s,

580, 565, 538, 501, 469, 405, 366, 350, 326, 294, 276, 250, 230, 145.

P743 Silver iron(III) pyrophosphate AgFe3+(P2O7)
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Origin: Synthetic.
Description: Obtained by heating precipitate obtained in the reaction between aqueous solutions of Ag

and Fe nitrates and (NH4)2(HPO4) at 750 �C for 15–20 h with several grindings. Monoclinic,
a ¼ 9.566(4), b ¼ 8.001(2), c ¼ 7.325(2) Å, β ¼ 111.86(1)�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Parajón-Costa et al. (2013).
Wavenumbers (IR, cm21): 1244, 1198, 1126s, 1094s, 1074s, 1034s, 939s, 725, 613, 588, 547,

513, 484, 438w, 421w, 409w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1225, 1136, 1105s, 1084s, 1050, 1038, 1020, 933, 741, 625, 569,

535w, 511, 490, 443, 415w, 400w.

P744 Sodium acid pyrophosphate hydrate Na3(HP2O7)∙9H2O

Origin: Synthetic.
Description: Needle-like crystals obtained at 0 �C by crystallization from an aqueous solution

containing stoichiometric amounts of H4P2O7 and NaOH. Monoclinic, space group P21/c, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: Nujol or hexachlor-

obutadiene mull. Transmission.
Source: Sarr and Diop (1987).
Wavenumbers (IR, cm21): 3500s, 3450s, 3380s, 3320sh, 3140sh, 2800, 2430, 1700, 1680, 1660,

1392sh, 1356sh, 1340, 1185s, 1115s, 1080, 1000sh, 960s, 895, 820sh, 735, 720, 620, 590, 545s,
515s, 480s, 450sh, 410sh, 400sh, 370sh, 325, (211).

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3507, 3436, 3376, 3325, 2807w, 2360w, 1713w, 1670w, 1426w,
1351w, 1328w, 1189, 1102s, 1088, 1070, 976, 963, 945w, 940w, 732sh, 726, 552w, 529w,
488, 451w, 426w.
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P745 Sodium gadolinium oxophosphate Na2GdO(PO4)

Origin: Synthetic.
Description: Obtained in the solid-state reaction between Gd2O3 and Na4P2O7. Characterized by

powder X-ray diffraction data. Orthorhombic, space group Pmm2 (?), a ¼ 14.709(6), b ¼ 10.661
(4), c ¼ 13.081(6) Å. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)]
are: 14.6929 (30) (100), 6.4964 (60) (002), 3.1178 (43) (231), 2.9417 (45) (500), 2.7821 (100)
(323), 2.6547 (50) (040).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Gönen et al. (2000), Uztetik-Amour and Kizilyalli (1995).
Wavenumbers (cm21): 1136sh, 1099s, 1034s, 982s, 965sh, 945sh, 926s, 909sh, 604, 579, 560sh,

548, 523sh, 470, 406w, 381, 367.

P746 Sodium iron(II) iron(III) phosphate alluaudite-type Na2Fe
2+

2Fe
3+(PO4)3
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Origin: Synthetic.
Description: Synthesized hydrothermally from stoichiometric quantities of NaH2PO4�H2O, FePO4,

and FeO at 400 �C for 7 days. Characterized by powder X-ray diffraction data. Monoclinic, space
group C2/c, a¼ 11.849(2), b¼ 12.539(1), c¼ 6.486(1) Å, β¼ 114.51(1)�, V¼ 876.8(1) Å3, Z¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Hatert et al. (2005).
Wavenumbers (cm21): 1094s, 1001s, 936s, 909sh, 653sh, 638sh, 595sh, 580s, 545, 520sh, 463sh,

433.
Note: A weak band between 1370 and 1380 cm�1 may correspond to the NO3

� impurity.

P747 Sodium iron(II) pyrophosphate Na2Fe(P2O7)

Origin: Synthetic.
Description: Synthesized by a solid-state route from a mixture containing stoichiometric molar

amounts of Na(HCO3), Fe(C2O4)�2H2O, and (NH4)2(HPO4) at 600 �C for 12 h in a reducing
atmosphere. Characterized by powder X-ray diffraction data and Mössbauer spectrum. Triclinic,
space group P-1, a¼ 6.4415(3), b¼ 9.4576(4), c¼ 11.0076(5) Å, α¼ 64.685(2)�, β¼ 85.989(3)�,
γ ¼ 73.033(3)�, V ¼ 578.64(4) Å3. Fe2+ occupies two independent sites.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Barpanda et al. (2014).
Wavenumbers (cm21): 1452w, 1196sh, 1150s, 1038s, 1014, 999, 956s, 903s, 881, 736, 616sh,

595sh, 566s, 531s, 489, 462.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The band at 1452 cm�1 may correspond to the admixture of a carbonate.
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P748 Sodium iron(III) pyrophosphate NaFe(P2O7)

Origin: Synthetic.
Description: Synthesized by stepwise heating of a solid obtained by evaporation of an aqueous

solution containing a stoichiometric mixture of NaNO3, Fe(NO3)3�nH2O, and (NH4)2(HPO4) first
at 120 �C for 24 h, thereafter at 320 �C (to decompose NH4NO3 and finally, after grinding, at 750 �C
for 16 h. Monoclinic, space group P21/c, a ¼ 7.3244, b ¼ 7.9045, c ¼ 9.5745 Å, β ¼ 111.858�,
V ¼ 514.5 Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Belkouch et al. (1995).
Wavenumbers (cm21): 1260, 1225, 1140s, 1115sh, 1090s, 1060s, 1040s, 940s, 740, 625, 600, 560,

520, 493w, 442sh, 428, 382, 336sh, 327, 285, 277sh, 254.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P749 Sodium lanthanum pyrophosphate NaLaP2O7
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Origin: Synthetic.
Description: Crystals obtained by heating a mixture containing 3 g of Na3P3O9 and 0.5 g of La2O3,

first at 1000 �C for 20 days and thereafter at 600 �C for 10 h. The crystal structure is solved.
Orthorhombic, space group Pnma, a ¼ 8.645(2), b ¼ 5.317(1), c ¼ 12.737(2) Å, V ¼ 585.5(2) Å3,
Z ¼ 4. Dcalc ¼ 3.810 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Férid and Horchani-Naifer (2004).
Wavenumbers (IR, cm21): 1182sh, 1163s, 1108s, 1066s, 1050sh, 1010, 970s, 763, 623, 580, 557s,

530, 492, 476, 451sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1152, 1132, 1086, 1072s, 1005, 939, 778s, 618, 580, 535, 523w,

486, 463, 367w, 324, 305w, 251, 221.

P750 Sodium magnesium orthophosphate pyrophosphate Na4Mg3(PO4)2(P2O7)
Na4Mg3(PO4)2(P2O7)

Origin: Synthetic.
Description: Crystals grown from the melt of a mixture of Na2CO3, MgO, and (NH4)(H2PO4) in the

molar ratio Na:Mg:P ¼ 4:3:4, by stepwise heating the mixture at 200, 500, and 900 �C followed by
cooling down to 400 �C at the rate of 10 �C/h. Characterized by powder X-ray diffraction data. The
crystal structure is solved. Orthorhombic, space group Pn21a, a ¼ 17.985(2), b ¼ 6.525(9),
c ¼ 10.511(1) Å, V ¼ 1233.58(18) Å3, Z ¼ 4. Dcalc ¼ 2.847 g/cm3. The structure is based on a
3D framework [Mg3P2O13] formed by PO4

3�and P2O7
4� groups and MgO6 octahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Essehli et al. (2010).
Wavenumbers (cm21): 1205sh, 1180sh, 1173s, 1126s, 1113sh, 1095s, 1068, 1053, 1009sh, 999s,

968, 953, 914s, 730, 631, 590, 575s, 561s, 542sh, 494, 471sh, 457w.
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P751 Sodium manganese(II) iron(III) phosphate alluaudite-type Na2Mn2+2Fe
3+(PO4)3

Origin: Synthetic.
Description: Synthesized hydrothermally from stoichiometric quantities of NaH2PO4�H2O, FePO4,

and MnO at 400 �C for 7 days. Characterized by powder X-ray diffraction data. Monoclinic, space
group C2/c, a¼ 12.024(4), b¼ 12.629(6), c¼ 6.515(3) Å, β¼ 114.58(4)�, V¼ 899.6(5) Å3, Z¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Hatert et al. (2005).
Wavenumbers (cm21): 1082s, 990s, 930s, 634sh, 602s, 583, 545, 516sh, 466w, 415.
Note: A weak band between 1370 and 1380 cm�1 may correspond to the NO3

� impurity.

P752 Sodium niobium oxophosphate Na3Nb5O11(PO4)2
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Origin: Synthetic.
Description: Prepared in the cation exchange reaction between Tl3Nb5O11(PO4)2 and excess of KCl at

460 �C for 24 h. Characterized by powder X-ray diffraction data and electron microprobe analysis.
Trigonal, space group R-3c, a ¼ 12.979(3), c ¼ 53.613(2) Å, V ¼ 7822(7) Å3, Z ¼ 18.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Fakhfakh et al. (2003).
Wavenumbers (cm21): 1142, 1097sh, 1050s, 999sh, 879, 797, 622s, 545, (454w), (424w).

P753 Sodium tin orthophosphate NaSn4(PO4)3

Origin: Synthetic.
Description: Prepared hydrothermally from SnCl2, NaOH, and H3PO4 at 170 �C for 3 days.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space
group R3c, a ¼ 9.5508(13), c ¼ 24.083(3) Å, V ¼ 1902.4(4) Å3, Z ¼ 6. Dcalc ¼ 4.099 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bontchev and Moore (2004).
Wavenumbers (cm21): 1059s, 1002s, 601, 581, 543sh.
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P754 Sodium vanadyl phosphate Na2(VO2)(PO4) Na2(VO2)(PO4)

Origin: Synthetic.
Description: Prepared by heating a mixture of NH4VO3, (NH4)2(HPO4), and KNO3 in the molar ratio

1:1:2, first at 350 �C for 2 h and thereafter at 440 �C for 1 h. The crystal structure is solved.
Monoclinic, space group P21/n, a ¼ 6.1805(7), b ¼ 12.436(1), c ¼ 7.386(1) Å, β ¼ 107.00(1)�,
V ¼ 542.9(1) Å3, Z ¼ 4. Vanadium has fivefold coordination with two short V–O bonds.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Korthuis et al. (1993).
Wavenumbers (cm21): 1195, 1166, 1067, 1014s, 975s, 947s, 934s, 916s, 660, 647, 578, 565sh,

549, 524, 439, 427, 404.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P755 Sodium vanadyl phosphate Na(VO)PO4 Na(VO)PO4
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Origin: Synthetic.
Description: Prepared hydrothermally. Characterized by powder X-ray diffraction data. The crystal

structure is solved. Monoclinic, space group P21/c, Z ¼ 4. Vanadium has octahedral coordination.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran et al. (1994).
Wavenumbers (IR, cm21): 1134, 1055sh, 1030sh, 1019s, 1002sh, 975s, 952s, 896s, 621, 597w,

554, 527sh, 509, 413, 366, 348, 339sh, 310w, 281w, 265sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1025, 1012sh, 1000, 970, 930, 878s, 620, 600, 388, 340, 319, 268.

P756 Sodium zinc orthophosphate NaZn(PO4)

Origin: Synthetic.
Description: Single crystals obtained from a Na2MoO4 flux, decreasing the temperature. Monoclinic,

space group P21/n, Z ¼ 12. Structurally related to beryllonite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Botto and Vassallo (1989).
Wavenumbers (IR, cm21): 1108sh, 1080sh, 1065sh, 1050s, 1028s, 978, 970, 635s, 622sh, 560, 515,

480, 454w, 440w, 390, 296, 242.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1096, 1066w, 1036, 1029, 1023, 975s, 969s, 634w, 564w, 505w,

384, 378, 222w.
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P757 Sodium zinc pyrophosphate Na2ZnP2O7

Origin: Synthetic.
Description: Synthesized by heating stoichiometric quantities of Na2CO3, ZnO, and (NH4)2(HPO4)

first at 523 K and then at 623 K. Characterized by powder X-ray diffraction data. The crystal
structure is solved. Tetragonal, space group P42/n, a¼ 21.771, c¼ 10.285 Å. The structure is based
on [ZnP2O7] layers.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Chouaib et al. (2011).
Wavenumbers (cm21): 1220s, 1176s, 1086s, 1028sh, 1005, 916s, 777w, 759w, 722, 626, 602, 550s,

498s, 485sh, 453sh, 420sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P758 Strontium iron phosphate whitlockite-related Sr9Fe(PO4)7
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Origin: Synthetic.
Description: Prepared by heating a mixture of SrCO3, Fe2O3, and (NH4)(H2PO4) with a weight ratio of

9:0.5:7, first at 900 K, and thereafter at 1370 K for 120 h with several intermediate grindings.
Characterized by Mössbauer spectroscopy and powder X-ray diffraction data. The crystal structure
is solved from powder neutron diffraction data. Monoclinic, space group C2/c, a ¼ 14.4971(2),
b ¼10.6005(13), c ¼ 17.9632(3) Å, β ¼ 112.5053(9)�, V ¼ 2550.28(7) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Belik et al. (2005).
Wavenumbers (IR, cm21): 1130s, 1111sh, 1090s, 1072sh, 1060s, 1033, 1008, 983s, 931w, 901s,

881, 619, 601, 590, 577, 545s, 424w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, a figure of the Raman spectrum is given.

P759 Strontium magnesium pyrophosphate SrMgP2O7

Origin: Synthetic.
Description: Prepared by stepwise heating a mixture of SrCO3, MgCO3, and (NH4)(H2PO4), taken in

stoichiometric amounts, at 500, 700, and 900 �C, for 5 h at each temperature, with intermediate
grindings. Monoclinic, a ¼ 5.309, b ¼ 8.299, c ¼ 12.68 Å, β ¼ 90.6�, V ¼ 558.64 Å3 (see JCPDS
card No. 49-1027).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Velchuri et al. (2011b).
Wavenumbers (cm21): 1232sh, 1192, 1164s, 1132s, 1098s, 1050, 1022, 975sh, 960s, 744, 647w,

589, 562, 538, 506, 486sh, 439, 409.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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P760 Calcium strontium orthophosphate whitlockite-type Ca2Sr(PO4)2

Origin: Synthetic.
Description: Prepared by heating a mixture of CaCO3, Ce2P2O7, and Sr3(PO4)2 at 1000 �C for 120 h

with grinding every 30 h. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Trigonal, space group R3c, a ¼ 10.5612(2), c ¼ 38.0588(5) Å, V¼ 3676.32(9) Å3, Z ¼ 21.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Belik et al. (2002).
Wavenumbers (cm21): 1117s, 1039s, 1019s, 981sh, 946sh, 607sh, 600s, 589, 575w, 566w, 556sh,

551s, 544s.

P761 Tantalum oxyphosphate β-Ta(PO4)O
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Origin: Synthetic.
Description: Prepared by dehydration of a Ta(PO4)O�nH2O precursor at 900 �C. For details of

synthesis techniques see Hahn (1951). Monoclinic, space group P21 (?).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stranford and Condrate Sr (1984c, 1990).
Wavenumbers (IR, cm21): 1202, 1108, 1048s, 883, 828, 666, 589w.
Note: In the cited papers, Raman spectra are given.
Wavenumbers (Raman, cm21): 1135, 1107, 1041, 1019, 997, 882w, 810w, 671w, 636w, 616w,

606w, 593w, 558w, 471w, 425w, 412w, 384w, 366, 334, 287, 269, 236, 214, 176, 118.

P763 Tellurium(IV) oxyphosphate Te2(PO4)2O

Origin: Synthetic.
Description: Colorless crystals prepared by heating a mixture of TeO2 and P4O10 at 550 �C for 24 h.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space
group Cc, a¼ 5.3819(7), b¼ 13.6990(19), c¼ 9.5866(12) Å, β¼ 103.682(2)�, V¼ 686.73(16) Å3,
Z ¼ 4. Te has fivefold coordination.

Kind of sample preparation and/or method of registration of the spectrum: A sample pressed
between two KBr pellets (Authors’ wording, maybe erroneous). Transmission.

Source: Kim et al. (2010a).
Wavenumbers (cm21): 1121, 1047sh, 1004s, 975s, 961, 773, 628, 606, 577, 543w, 524, 498, 476sh,

451, (416).
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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P764 Thorium hydrogenphosphate Th2(PO4)2(HPO4)∙H2O

Origin: Synthetic.
Description: Prepared hydrothermally from thorium nitrate and phosphorous acid at 190 �C for 7 days.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Triclinic, space
group P21, a ¼ 6.7023(8), b ¼ 7.0150(8) Å, c ¼ 11.184(1) Å, β ¼ 107.242(4)�, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Salvadó et al. (2005).
Wavenumbers (cm21): 3410, 1636w, 1250, 1144sh, 1111s, 1075s, 1030, 1010sh, 947s, 940s, 635sh,

629, 580, 563w, 534, 500.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Typical bands of P–OH groups (in the range 1800–3000 cm�1) are absent in
the IR spectrum. However, in the IR spectrum of Th2(PO4)2(HPO4)∙H2O given by Brandel et al.
(2001) a weak band at 2400 cm�1 is observed.

P765 Titanium(III) orthophosphate Ti(PO4)
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Origin: Synthetic.
Description: Prepared by heating a mixture of TiO2 and (NH4)2(HPO4) (in a molar ratio of 1.0:1.1) at

950 �C under reducing conditions (in argon gas, in the presence of iron wires and porous titanium
metal). Orthorhombic, isostructural with β-Cr(PO4).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Baran et al. (1989).
Wavenumbers (cm21): 1078s, 1015s, 949s, 677, 574sh, 559sh, 530, 467, 420, 397, 350, 285.

P766 Titanium acid phosphate monohydrate α-Ti(HPO4)2∙H2O

Origin: Synthetic.
Description: Prepared in the reaction of a solution of TiCl4 in HCl(aq) with an aqueous solution of

phosphoric acid. Characterized by powder X-ray diffraction data. Monoclinic, a ¼ 8.85(6),
b ¼ 5.21(3), c ¼ 15.2(1) Å, β ¼ 115.8�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Slade et al. (1997).
Wavenumbers (IR, cm21): 3561, 3484, 3175 (broad), 1617w, 1242, 1108s, 1029s, 932, 702w, 615.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3559w, 3552, 3528, 3484, 3209, 3012, 1204, 1048sh, 1034sh,

1024s, 1016s, 975w, 588, 492w, 428, 329s, 233, 198, 181, 154w, 108w, 79w.
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P767 Titanium oxophosphate hydrate Ti2(PO4)2O�H2O

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. The crystal structure is solved. Mono-

clinic, space group P21, a ¼ 7.3735(12), b ¼ 7.0405(10), c ¼ 7.6609(10) Å, β ¼ 121.48(2)�,
V¼ 339.2(1) Å3, Z¼ 4. Dmeas ¼ 3.10 g/cm3, Dcalc ¼ 3.13 g/cm3. The strongest lines of the powder
X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.795 (64) (�111), 4.688 (37) (110), 3.364
(33) (�112), 2.396 (56) (�222), 2.392 (56) (022), 2.344 (100) (220), 2.300 (39) (�312), 2.293
(38) (112), 1.682 (37) (�224).

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Benmokhtar et al. (2007b).
Wavenumbers (IR, cm21): 3256, 1651w, 1514w, 1192, 1110s, 1064s, 1028sh, 1010s, 962sh, 896s,

816w, 727s, 628, 608, 594, 559w, 536w, 492, 461, 442sh, 383, 338, 323, 287, 242, 228, 196, 130.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1087, 1050w, 1015sh, 1006s, 972sh, 904w, 681s, 642, 614,

601, 585, 536, 498, 451, 410, 376, 348, 323, 287, 268, 245s, 213.
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P768 Tungsten(VI) oxyphosphate W2O3(PO4)2

Wavenumbers (IR, cm21): 1225, 1162, 1125, 1100, 1070, 990, 960, 918, 869, 785, 725sh, 659, 629,
595, 575, 545, 450, 431, 400, 388, 341, 320.

Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1210, 1170, 1110, 1090, 1020, 999, 995, 980, 950, 912, 857,

810, 715, 660, 640, 613, 580, 448, 432, 421, 407, 393, 380, 350, 320, 300, 278, 257, 242,
222, 205, 172.

P769 Uranyl oxy-hydroxyphosphate (UO2)3(PO4)O(OH)∙3H2O

Origin: Synthetic.
Description: Crystals prepared by hydrothermal treatment of crystals of natural albite with inclusions

of natural phosphates with 0.1 M solution of uranyl nitrate. Characterized by electron microprobe
analysis. The crystal structure is solved. Tetragonal, space group P42/mbc, a ¼ 14.015(1),
c ¼ 13.083(2) Å, V ¼ 2575.6(4) Å3, Z ¼ 8. Dcalc ¼ 5.092 g/cm3. The structure contains chains
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composed of uranyl pentagonal and hexagonal bipyramids and phosphate tetrahedra linked via
common edges.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Burns et al. (2004).
Wavenumbers (cm21): 3439, 3237sh, 2040, 1614, 1547sh, 1093, 1008s, 931, 887s, 818.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P770 Yttrium metaphosphate Y(PO3)3

Origin: Synthetic.
Description: Prepared by stepwise heating a mixture of Y2O3 and (NH4)(H2PO4) at 170, 240,

350, 440, and 550 �C. Monoclinic. Powder X-ray diffraction pattern corresponds to JCPDS card
no. 42-0501.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ilieva et al. (2001).
Wavenumbers (IR, cm21): 1277sh, 1256s, 1235sh, 1179sh, 1171w, 1096s, 1023s, 944s, 789sh,

772w, 748w, 716w, 685w, 593w, 579sh, 541sh, 522s, 483s, 416w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1237s, 1205s, 1171, 1123, 1095, 1055, 1000w, 726, 681s, 568w,

510, 493, 416, 374, 350, 302w, 273w, 250w, 188w.
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P771 Zinc vanadyl phosphate Zn2(VO)(PO4)2

Origin: Synthetic.
Description: Prepared by heating a mixture of ZnO, VO2, and P2O5, taken in stoichiometric amounts,

at 850 �C for 2 days. Characterized by powder X-ray diffraction data. Tetragonal, space group I4cm,
a ¼ 8.9227(13), c ¼ 9.039(3) Å, Z ¼ 4. The Zn2+ ions exhibit a square pyramidal coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Baran and Lii (1992).
Wavenumbers (IR, cm21): 1235s, 1058s, 1007s, 976sh, 956s, 921sh, 681, 668, 598, 565, 556sh,

465sh, 426s, 320, 288.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1125, 1067, 1010, 976s, 915, 662, 595, 570, 470sh, 430, 413,

325, 285, 248.

P772 Zirconium acid phosphate monohydrate α-Zr(HPO4)2∙H2O
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Origin: Synthetic.
Description: Characterized by DSC and powder X-ray diffraction data. Monoclinic, a � 9.06–9.07,

b � 5.26–5.31, c � 16.0–16.3 Å, β � 111�.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Slade et al. (1997).
Wavenumbers (IR, cm21): 3598, 3515, 3159, 1617, 1401w, 1250, 1046s, 963.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3914w, 3592w, 3515w, 3142w, 2751w, 1613w, 1145w, 1081,

1055s, 990, 964, 591, 540, 517w, 432, 418, 399, 294, 214, 186w, 157, 118w, 107, 79, 63, 55w.
Note: Bands of acid phosphate groups (in the range of 2000–2400 cm�1) are anomalously weak.

However, distinct and stronger bands in this range are observed in the IR spectrum of α-Zr
(HPO4)2∙H2O given by Casciola et al. (2007).

P773 Zirconium acid phosphate monohydrate α-Zr(HPO4)2∙H2O

Origin: Synthetic.
Description: Prepared by the direct precipitation method in the presence of HF. Characterized by

powder X-ray diffraction data. Monoclinic (see Slade et al. 1997).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Photoacoustic method of registration.
Source: Casciola et al. (2007).
Wavenumbers (cm21): 3593, 3511, 3144 (broad), 2295w, 2094w, 1618, 1249, 1095s, (1062, 1024—

artifacts), 960s, 793sh, 651, 592s, 527s.
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P774 Alforsite Ba5(PO4)3Cl

Origin: Synthetic.
Description: Hexagonal, space group P63/m, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran and Aymonino (1972).
Wavenumbers (cm21): 1045s, 1008s, 933, 576, 557, 440w.

P775 Alforsite F-analogue Ba5(PO4)3F
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Origin: Synthetic.
Description: Mn-doped sample obtained by repeated heating a mixture of BaCO3 , Mn2O3, NH4F, and

(NH4)(H2PO4), taken in appropriate amounts, at 1250 �C for 12 h. Characterized by powder X-ray
diffraction data. The empirical formula is (Z ¼ 1): Ba10[P0.95Mn0.05)O4]6F2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Dardenne et al. (1998).
Wavenumbers (cm21): 1057s, 1033sh, 1012s, 935.5w, 796w, 783.5, 777, 769sh, 580, 561, 556sh,

290, (213).
Note: The bands in the range from 760 to 800 cm�1 may correspond to [MnO4]

3� vibrational modes.

P776 Ankoleite K(UO2)(PO4)∙nH2O

Origin: Synthetic.
Description: Obtained from uranyl nitrate, potassium nitrate, and phosphoric acid mixed in stoichio-

metric proportions by a wet chemistry method at 60 �C for 4 days. Characterized by TG and powder
X-ray diffraction data. Tetragonal, space group P4/ncc.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Clavier et al. (2016).
Wavenumbers (IR, cm21): 3589, 3468, 3350, 3201, 2990, 1658, 1622, 1109, 1059, 985, 904,

866, 813, 666, 541, 529.
Note: The wavenumbers are taken from the table given in the cited paper. There are strong

discrepancies between these values and the figure of the IR spectrum of ankoleite from this
paper. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3805w, 3498w, 3375w, 3237w, 3110w, 2786w, 1004s, 994s, 831s,
826s, 400, 291, 195, 173, 113, 108.

P777 Calcium iron(III) tin orthophosphate CaFeSn(PO4)3
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Origin: Synthetic.
Description: Synthesized by a solid-state reaction technique from a mixture of CaCO3, SnO2, Fe2O3,

and (NH4)(H2PO4) taken in stoichiometric proportion. Trigonal, space group R-3c, Z ¼ 6.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Antony et al. (2011).
Wavenumbers (IR, cm21): 1248s, 1189sh, 1140sh, 1092sh, 1083s, 1041sh, 1035s, 954s, 641, 561,

532.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1213, 1106s, 1046sh, 999sh, 977sh, 784, 657, 600, 576, 486sh,

436s, 380w, 348, 309, 254sh, 226, 201, 145.

P778 Jörgkellerite (Na,□)3Mn3+3(PO4)2(CO3)(O,OH)2∙5H2O

Origin: Oldoinyo Lengai volcano, Gregory Rift, northern Tanzania (type locality).
Description: Brown spherulites from the association with shortite, calcite, fluorite, magnetite, and

khanneshite. Holotype sample. The crystal structure is solved. Trigonal, space group P-3,
a ¼ 11.201(2), c ¼ 10.969(2) Å, V ¼ 1191.9(7) Å3, Z ¼ 3. Dcalc ¼ 2.56 g/cm3. Optically uniaxial
(�), ω ¼ 1.700(2), ε ¼ 1.625(2). The empirical formula is (electron microprobe, H2O and CO2

calculated): (Na2.46K0.28Ca0.08Sr0.04Ba0.02)(Mn3+2.39Fe
3+

0.56)(PO4)1.95(SO4)0.05(CO3)
[O1.84(OH)0.16]�5H2O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 10.970 (100) (001), 5.597 (15) (002), 4.993 (8) (111), 2.796 (14) (220), 2.724 (20) (004).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection using IR microscope.
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Source: Zaitsev et al. (2017).
Wavenumbers (cm21): 1629, 1483sh, 1459sh, 1443s, 1404s, 1091sh, 1075, 1035, 939s,

861, 821, 733w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The tentative assignment of the strongest band at 939 cm�1 to phosphate
groups made in the cited paper is questionable.

P779 Ferrivauxite Fe3+Al2(PO4)2(OH)3∙5H2O

Origin: Llallagua tin deposit, Rafael Bustillo province, Potosí department, Bolivia (type locality).
Description: Golden brown pseudomorphs after vauxite from the association with sigloite and

crandallite. Holotype sample. The crystal structure is solved. Triclinic, space group P-1,
a ¼ 9.198(2), b ¼ 11.607(3), c ¼ 6.112(2) Å, α ¼ 98.237(9)�, β ¼ 91.900(13)�, γ ¼ 108.658
(9)�, V ¼ 609.7(5) Å3, Z ¼ 2. Dcalc ¼ 2.39 g/cm3. Optically biaxial (�), α ¼ 1.589(1), β ¼ 1.593
(1), γ ¼ 1.596(1), 2V ¼ 60(4)�. The empirical formula is (electron microprobe):
Fe3+0.94Mn0.01Al1.98P2.05O8(OH)3�5H2O. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 10.834 (100) (010), 8.682 (24) (100), 8.242 (65) (�110), 6.018
(28) (001), 5.918 (23) (110), 5.491 (30) (�120), 4.338 (26) (200), 2.898 (32) (300).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. A
diamond anvil microsample cell was used.

Source: Raade et al. (2016).
Wavenumbers (cm21): 3640, 3490sh, 3348s, 1638, 1447sh, 1142sh, 1087s, 1007s, 932sh, 645sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

434 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



P780 Kosnarite NH4-analogue (NH4)Zr2(PO4)3

Origin: Synthetic.
Description: Prepared hydrothermally. Rhombohedral, a ¼ 8.676(1), c ¼ 24.288(5) Å. The strongest

lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.394 (67) (102), 4.721
(72) (104), 4.340 (80) (110), 3.825 (92) (113), 3.194 (57) (204), 2.960 (100) (116).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Clearfield et al. (1984).
Wavenumbers (cm21): 3290, 3185sh, 3090sh, 2226w, 2037w, 1665, 1458, 1232s, 1069s, 672, 601,

541sh, 457, 416s, 356s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 1665 cm�1 indicates the presence of H2O molecules.

P781 Kosnarite NH4-analogue cubic polymorph (NH4)Zr2(PO4)3

2.8 Phosphides and Phosphates 435



Origin: Synthetic.
Description: Prepared by heating a mixture of ZrO2 and (NH4)(H2PO4) at 608 K for 72 h. Cubic,

a ¼ 1.0186(3) Å. Contains minor admixture of rhombohedral (NH4)Zr2(PO4)3. The strongest lines
of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.893 (75) (111), 4.562 (100) (210),
4.164 (33) (211), 3.222 (86) (310), 3.072 (40) (311), 2.723 (75) (321), 1.895 (35) (520).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ono (1985).
Wavenumbers (cm21): (1630w), 1424s, 1260w, 1203sh, 1107sh, 1044s, 1021s, 828sh, 752w,

640, 566, 536, 436s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P782 Kummerite Mn2+Fe3+Al(PO4)2(OH)2∙8H2O

Origin: Hagendorf South pegmatite, Cornelia mine, Hagendorf, Waidhaus, Upper Palatinate, Bavaria,
Germany (type locality).

Description: Sprays or rounded aggregates of thin amber yellow laths from the association with
Zn-and Al-bearing beraunite. Holotype sample. The crystal structure is solved. Triclinic, space
group P-1, a ¼ 5.316(1) Å, b ¼ 10.620(3) Å, c ¼ 7.118(1) Å, α ¼ 107.33 (3)�, β ¼ 111.22 (3)�,
γ ¼ 72.22 (2)�, V ¼ 348.4(2) Å3, Z ¼ 1. Dcalc ¼ 2.34 g/cm3. Optically biaxial (�), α ¼ 1.565(5),
β ¼ 1.600(5), γ ¼ 1.630(5), 2V ¼ 70(5)�. The empirical formula is (Mn0.37Mg0.27Zn0.03Fe

2+
0.33)

(Fe3+1.06Al0.94)(PO4)1.91(OH)2.27�7.73H2O. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 9.885 (100) (010), 6.47 (20) (001), 4.942 (30) (020), 3.988
(9) (�110), 3.116 (18) (1�20), 2.873 (11) (�121).
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Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of an individual crystal.

Source: Grey et al. (2016a).
Wavenumbers (cm21): 3530, 3375sh, 3235s, 2955sh, 2655, 1640, 1145sh, 985s, 783w, 674.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P783 Krásnoite Ca3Al7.7Si3P4O22.9(OH)13.3F2∙8H2O

Origin: Huber open pit, Krásno ore district, Czech Republic (type locality).
Description: Aggregates of colorless platy crystals. Holotype sample. Trigonal, space group

P-3m1, a ¼ 6.9956(4), c ¼ 20.200(2) Å, V ¼ 856.09(9) Å3, Z ¼ 3. Dmeas ¼ 2.48(4) g/cm3,
Dcalc ¼ 2.476 g/cm3. Optically uniaxial (+), ω ¼ 1.548(2), ε ¼ 1.549(2). The empirical formula is
Ca3Al7.7Si3P4O22.9(OH)12.1F2∙8H2O. The strongest lines of the powder X-ray diffraction pattern [d,
Å (I, %) (hkl)] are: 20.186 (97) (001), 6.736 (100) (003), 5.800 (67) (101, 011), 3.496 (60) (110),
2.8730 (87) (114, 11�4), 2.7633 (73) (203), 2.1042 (75) (109).

Kind of sample preparation and/or method of registration of the spectrum: Micro-diffuse
reflectance of a mixture with KBr recalculated in Kubelka-Munk units.

Source: Mills et al. (2012b).
Wavenumbers (IR, cm21): 3463s, 3017, 174w1, 1645, 1465w, 1453w, 1429w, 1223, 1175, 1098,

1048s, 963, 865w, 820w, 647sh, 608s, 580, 542, 467.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers [Raman, cm21, for the wavelengths 532 nm (785 nm)]: 1425 (1422), (1289), 1190

(1196), 1091 (1091), 1032 (1032), 1009 (1007), 960 (962), 920 (920), 705 (706), 634 (638),
620 (621), 512 (508), 477 (460), 424 (430), 364 (363), 271, 190, 143.

2.8 Phosphides and Phosphates 437



P784 Minjiangite BaBe2(PO4)2

Origin: Nanping No. 31 pegmatite, Fujian Province, southeastern China (type locality).
Description: White crystals from the association with montebrasite, quartz, muscovite, hydroxylapa-

tite, and palermoite. Holotype sample. The crystal structure is solved. Hexagonal, space group P6/
mmm, a¼ 5.029(1), c¼ 7.466(1) Å, V¼ 163.52(1) Å3, Z¼ 1.Dcalc¼ 3.49 g/cm3. Optically biaxial
(+), ω ¼ 1.587(3), ε ¼ 1.602(2). The empirical formula is (Ba0.99Ca0.01)Be1.98(P1.99Si0.01)O8.

Kind of sample preparation and/or method of registration of the spectrum: Reflection.
Source: Rao et al. (2015).
Wavenumbers (IR, cm21): 1375s, 1363s, 1339s, 1101sh, 1068s, 1027sh, 781, 730, 683w, 660w.
Note: Possibly, an erroneous spectrum. In particular, assignment of the strong bands at 1375, 1363,

and 1339 cm�1 to Be–O-stretching vibrations (Rao et al. 2015) is questionable. Dal Bo et al. (2014)
give another IR spectrum for the synthetic analogue of minjiangite. The wavenumbers were partly
determined by us based on spectral curve analysis of the published spectrum. In the cited paper,
Raman spectrum is given.

Wavenumbers (Raman, cm21): 1233s, 1050s, 491, 478, 328w, 189w.

P785 Xanthoxenite Ca4Fe
3+

2(PO4)4(OH)2∙3H2O
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Origin: Palermo No. 1 mine, Groton, Grafton Co., New Hampshire, USA.
Description: Beige crust. Investigated by A.V. Kasatkin. The empirical formula is (electron micro-

probe): (Ca3.49Mn0.49)Fe2.10(PO4)3.92(OH)x�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3605w, 3334, 3103s, 1674w, 1518w, 1115s, 1080sh, 1030sh, 1001s, 977sh,

921s, 767, 658w, 585, 559s, 448w.
Note: The spectrum was obtained by N.V. Chukanov.

P786 Oxypyromorphite Pb10(PO4)6O

Origin: Synthetic.
Description: Hexagonal, space group P63/m or P-6, a ¼ 9.826, c ¼ 7.431 Å.
Kind of sample preparation and/or method of registration of the spectrum: RbI disc. Transmission.
Source: Engel (1973).
Wavenumbers (cm21): 3560w, 1028s, 979s, 921sh, 572s, 549sh, 538s, 428, 393, 241.

P787 Fluorwavellite Al3(PO4)2(OH)2F�5H2O
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Origin: Baturovskiy stone quarry, Chelyabinsk region, South Urals, Russia.
Description: Pale green radiated aggregate from the association with quartz and crandallite.

Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe):
Al2.96(PO4)2.04F0.95(OH)x�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3519s, 3422, 3320, 3210, 3100sh, 1647, 1595sh, 1145, 1085sh, 1055s, 1022s,

934w, 863w, 665sh, 644s, 595, 552, 493, 479, 448, 430sh.
Note: Many samples regarded earlier as wavellite are actually fluorwavellite. The spectrum was

obtained by N.V. Chukanov.

P788 Smirnovskite (Th,Ca)(PO4)∙nH2O

Origin: Etyka (Etykinskoe) Ta deposit, Baley district, Transbaikal area, Siberia, Russia.
Description: Dark red-brown grain. Investigated by A.V. Kasatkin. X-ray amorphous, metamict. The

empirical formula is (electron microprobe): (Th0.84Ca0.22Pb0.02)(PO4)0.93(H2O,OH)x.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3480sh, 3280s, 3217s, 1645, 1543, 1398w, 1049s, 710sh, 608, 554s.
Note: The spectrum was obtained by N.V. Chukanov.
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P789 Goryainovite Ca2(PO4)Cl

Origin: Synthetic.
Description: Crystals grown from the melt using excess CaCl2 as flux (“chlorospodiosite”).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Banks et al. (1967).
Wavenumbers (cm21): 1100, 1050s, 1000s, 955, 600, 538, 530sh, 404w, 309s, 287s, 260s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P790 Sodium iron(III) tin orthophosphate Na2FeSn(PO4)3
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Origin: Synthetic.
Description: Powdery sample synthesized from Na2CO3, SnO2, Fe2O3, and (NH4)(H2PO4) by a solid-

state reaction technique. Hexagonal, space group R-3C, Z ¼ 6.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Antony et al. (2011).
Wavenumbers (IR, cm21): 1230sh, 1088s, 735w, 633, 568, 536w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): (1250), 1042s, 571, 530, 449s, 416, 250, 220, 168.

P791 Sodium tin phosphate NaSn2(PO4)3

Origin: Synthetic.
Description: Synthesized from Na2CO3, SnO2, and (NH4)2(HPO4) by a solid-state reaction technique.

Trigonal, space group R-3c, Z ¼ 6.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Tarte et al. (1986).
Wavenumbers (cm21): 1230, 1207, 1119sh, 1102s, 1087s, 1052s, 663, 636, 574, 541, 455w,

435, 395s, 385sh, 348s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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P792 Väyrynenite BeMn2+(PO4)(OH)

Origin: Chalot (Chalotuy) Be-Ta pegmatite deposit, Onon district, Transbaikal area, Siberia, Russia.
Description: Pink grains from the association with moraesite, eosphorite, and fluorapatite.

Investigated by I.S. Lykova. Characterized by single-crystal X-ray diffraction data. Monoclinic,
a ¼ 4.726(6), b ¼ 14.525(16), с ¼ 5.416(3), β ¼ 102.81(8)�, V ¼ 362.6(7) Å3. The empirical
formula is (electron microprobe): Be1.00(Mn0.69Fe0.22Mg0.03Ca0.03)∑0.97P1.01O4(OH).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3360sh, 3315sh, 3213s, 3100sh, 2306w, 2199w, 2096w, 2050w, 1769w,

1177, 1136s, 1095sh, 1078s, 1051s, 989s, 922, 900sh, 799, 748s, 654, 609, 587, 544, 515, 471,
417, 393.

Note: The spectrum was obtained by N.V. Chukanov.

P793 Wavellite-(OH) Al3(PO4)2(OH)2(OH,F)�5H2O
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Origin: Mauldin Mt. quarries, Arkansas, USA.
Description: White radiated aggregate from the association with quartz. OH-dominant sample.

Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe):
Al2.95(PO4)2.08(OH,H2O)2[(OH)0.53F0.47]�5H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3223s, 3419, 3315, 3223, 3100, 1647, 1595sh, 1145, 1090sh, 1054s, 1021s,

940sh, 861w, 730sh, 645s, 593s, 552, 540sh, 486, 448, 425sh, 380sh.
Note: The spectrum was obtained by N.V. Chukanov.

P794 Rockbridgeite Fe2+Fe3+4(PО4)3(OH)5

Origin: Kyz-Aul deposit, Naberezhnoe, Kerch Peninsula, Kerch iron-ore basin, Russia.
Description: Black crystalline crust from the association with leucophosphite. The empirical formula

is (electron microprobe): (Fe0.93Mn0.03Mg0.02Ca0.02)Fe4(PO4)2.98(SiO4)0.02(OH)5. The strongest
lines of the powder X-ray diffraction pattern [d, Å (I, %)] are: 6.97 (29), 4.847 (28), 4.659 (21),
3.603 (31), 3.460 (34), 3.405 (43), 3.198 (43), 3.198 (100), 2.428 (33).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3585, 3569, 3241, 2360w, 2020w, 1620sh, 1566w, 1170, 1054s, 1022s,

1003s, 963s, 752, 610sh, 595, 563, 465sh, 430sh, 412.
Note: The spectrum was obtained by N.V. Chukanov.
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P795 Sodium titanium phosphate NaTi2(PO4)3

Origin: Synthetic.
Description: Synthesized from stoichiometric quantities of Na2CO3, TiO2, and (NH4)2(HPO4) by

conventional solid-state reaction techniques. Characterized by powder X-ray diffraction data.
Hexagonal, space group R-3c, Z ¼ 6

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Tarte et al. (1986).
Wavenumbers (cm21): 1227, 1033s, 1000, 638, 568, 434, 382s, 295, 279.

P796 Strontiohurlbutite SrBe2(PO4)2
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Origin: Synthetic.
Description: Synthesized hydrothermally from BeO, H3PO4, and Sr(NO3)2 at 200 �C for 7 days with

subsequent rapid cooling. The crystal structure is solved. Monoclinic, space group P21/c, a¼ 8.000
(1), b ¼ 8.986(1), c ¼ 8.418(1) Å, β ¼ 90.22(1)�, V ¼ 605.10(6) Å3, Z ¼ 4. Dcalc ¼ 3.244 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Dal Bo et al. (2014).
Wavenumbers (cm21): 1189, 1153s, 1118s, 1068s, 1046s, 1001s, 853sh, 827, 770s, 754s, 686s,

609, 572s, 531s, 507, 491s, 440.

P798 Triphylite Mg-analogue LiMg(PO4)

Origin: Synthetic.
Description: Obtained in a solid-state reaction between (NH4)Mg(PO4)�H2O and Li2(CO3).

Characterized by powder X-ray diffraction data. Orthorhombic, space group Pmn21 (?),
a ¼ 10.114(4), b ¼ 5.928(9), c ¼ 4.666(1) Å, V ¼ 279.813(3) Å3, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Sronsri et al. (2014).
Wavenumbers (cm21): 1157, 1112s, 1081s, 1009s, 655, 594, 559, 517, 480w, 425.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. Bands above 3200 cm�1 may be due to adsorbed water.
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P799 Tvrdýite Fe2+Fe3+2Al3(PO4)4(OH)5(H2O)4∙2H2O

Origin: Krásno, near Horní Slavkov, Czech Republic (type locality).
Description: Aggregates of olive-greyish-green acicular crystals from the association with quartz,

Al-rich beraunite, fluorapatite, and pharmacosiderite. Holotype sample. The crystal structure is
solved. Triclinic, space group C2/c, a ¼ 20.564, b ¼ 5.101(1), c ¼ 18.883(4) Å, β ¼ 93.68(3)�,
V ¼ 1976.7(7) Å3, Z ¼ 4. Dcalc ¼ 2.834 g/cm3. Optically biaxial (�), α ¼ 1.650(2), β ¼ 1.671(1),
γ ¼ 1.677(1), 2V ¼ 56(1)�. The empirical formula based on electron microprobe analyses is
Zn0.52Fe

2+
0.50Fe

3+
2.21Al2.75(PO4)3.86(AsO4)0.19(OH)4.60F0.23�nH2O. The strongest lines of the pow-

der X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.227 (100) (200), 9.400 (6) (002), 7.156
(14) (20�2), 5.120 (7) (400), 3.416 (11) (600), 3.278 (6) (60�2), 2.562 (5) (800), 2.0511
(3) (10.0.0).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of powdered mineral.

Source: Sejkora et al. (2016).
Wavenumbers (IR, cm21): 3610sh, 3394, 3255, 1631, 1191sh, 1058s, 1017sh, 994s, 936sh, 843sh,

613, 485.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1623, 1194, 1102, 1023s, 860s, 698,637, 586, 496, 415, 303,

281, 233, 143.
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P800 Wilhelmgümbelite ZnFe2+Fe3+3(PO4)3(OH)4�7H2O

Origin: Hagendorf South pegmatite, Cornelia mine, Hagendorf, Waidhaus, Upper Palatinate, Bavaria,
Germany (type locality).

Description: Radiating sprays of needle-like rectangular laths from the association with steinmetzite,
chalcophanite, jahnsite, mitridatite, albite, apatite, muscovite, and quartz. Holotype sample. The crystal
structure is solved. Orthorhombic, space group Pmab, a¼ 10.987(7), b¼ 25.378(13), c¼ 6.387(6) Å,
V¼ 1781(2) Å3, Z¼ 4.Dcalc¼ 2.82 g/cm3. Optically biaxial (+), α¼ 1.560(2), β¼ 1.669(2), γ¼ 1.718
(2), 2V¼ 63(1)�. The empirical formula is Zn1.50Mn2+0.27Fe

2+
0.60Fe

3+
2.33(PO4)3(OH)2.73�8.27H2O. The

strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 12.65 (100) (020), 8.339
(5) (120), 6.421 (14) (001), 6.228 (8) (011), 4.223 (30) (120) and 2.111 (7) (0.12.0).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of powdered mineral.

Source: Grey et al. (2016c).
Wavenumbers (cm21): 3200s, 1635, 970s.

P801 Ximengite polymorph Bi(PO4)
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Origin: Synthetic.
Description: Obtained by heating trigonal Bi(PO4) (ximengite) at 673 K for 5 h. Characterized by

powder X-ray and neutron diffraction. Monoclinic, space group P21/n, a ¼ 6.7552(1), b ¼ 6.9417
(2), c ¼ 6.4772(2) Å, β ¼ 103.691(2)�, V ¼ 295.10(1) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Achary et al. (2013).
Wavenumbers (IR, cm21): 1076s, 1031sh, 1011s, 958s, 930s, 876sh, 604s, 564, 554, 529, 473w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1050, 1039, 1021, 981, 970, 948, 926, 604, 598, 573, 557, 523, 496,

464, 457, 407, 388, 284, 273, 237, 230, 207, 183, 177, 170, 136, 131, 109, 97, 90, 70, 60, 51.

P802 Ximengite polymorph Bi(PO4)

Origin: Synthetic.
Description: Obtained by heating trigonal Bi(PO4) (ximengite) at 973 K for 5 h. Characterized by

powder X-ray and neutron diffraction data. Monoclinic, space group P21/m, a ¼ 4.8804(1),
b ¼ 7.0684(2), c ¼ 4.7033(1) Å, β ¼ 96.285(3)�, V ¼ 161.27(1) Å3, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Achary et al. (2013).
Wavenumbers (IR, cm21): 1105s, 1029sh, 1005s, 963, 928sh, 630s, 554, 527sh, 513, 494, 472w,

457w, 451sh, 434sh, 421w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1046, 1038, 983, 966, 610, 557, 548, 486, 354, 244, 214, 171,

144, 136, 92, 69, 56.
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P803 Buchwaldite dimorph NaCa(PO4)

Origin: Synthetic.
Description: A sample doped with 1 mol% Sm3+ prepared by heating a stoichiometric mixture of

(NH4)(H2PO4), Na2CO3, CaCO3, and Sm2O3 firstly at 185 �C for 2 h, then 714 �C for 1 h and
finally at 950 �C for 3 h in air. Characterized by powder X-ray diffraction data. Orthorhombic, space
group Pn21a, a ¼ 20.39, b ¼ 5.412, c ¼ 9.161 Å.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Ratnam et al. (2014).
Wavenumbers (IR, cm21): 3430, 2050w, 2000w, 1975w, 1616w, 1082s, 1049sh, 1038s, 1022sh,

957s, 602, 578s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands at 3430 and 1616 cm�1 correspond to the admixture of water
molecules. For the IR spectrum of Eu-doped buchwaldite dimorph see also Grandhe et al. (2012). In
the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 1158, 965s, 898.
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P804 Nalipoite NaLi2(PO4)

Origin: Synthetic.
Description: Obtained by mixing aqueous solutions containing stoichiometric amounts of NaOH,

H3PO4, and LiOH, followed by drying at 100 �C in air. Characterized by powder X-ray diffraction
data. Orthorhombic, space group Pmnb, a ¼ 6.8751(1), b ¼ 9.9888(3), c ¼ 4.9315(6) Å,
V ¼ 338.66(8) Å3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: López et al. (2014a).
Wavenumbers (cm21): 1085sh, 1052s, 1022s, 944, 733sh, 588s, 447, 422s, 367sh, 293.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P806 Fluorcarmoite-(BaNa) Ba□Na2Na2□CaMg13Al(PO4)11(PO3OH)F2
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Origin: Costa Balzi Rossi, Magliolo, Savona, Liguria, Italy (type locality).
Description: Yellow grain.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1097s, 1050s, 1017s, 930sh, 799w, 780w, 675sh, 630sh, 602, 574, 520w,

475, 430, 363.
Note: The spectrum was obtained by N.V. Chukanov.

P807 Florencite-(Nd) NdAl3(PO4)2(OH)6

Origin: Svodovy area, Maldynyrd Ridge, Subpolar Urals, Russia.
Description: Pink crystals from the association with xenotime-(Y) and quartz. The empirical formula

is (electron microprobe): (Nd0.36Sm0.23Ce0.23La0.05Pr0.05Sr0.05Ca0.01)Al1.99Fe0.02(PO4)2.00(OH,
H2O)6.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3527w, 3460sh, 3415sh, 3370, 3090sh, 2951s, 2600sh, 2389, 2320, 2085w,

1991w, 1853w, 1792w, 1224, 1092s, 1036s, 923, 850sh, 806w, 660, 619s, 605sh, 581, 510, 475sh,
466, 368s.

Note: The bands in the range from 1700 to 2400 cm�1 indicate the presence of acid phosphate groups.
Note: The spectrum was obtained by N.V. Chukanov.
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P808 Lulzacite Sr2Fe
2+

3Al4(PO4)4(OH)10

Origin: Bois-de-la-Roche quarry, Saint-Aubin-des-Châteaux, Loire-Atlantique, Pays de la Loire,
France (type locality).

Description: Light greenish-gray columnar aggregate. The empirical formula is (electron microprobe):
(Sr1.9Ca0.1)(Fe1.9Mg0.9Zn0.1Mn0.1)(Al3.7Fe0.3)(PO4)4.0(OH)10.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3607, 3422s, 3209, 3074, 2270w, 2170w, 1814w, 1683w, 1145sh, 1120s,

1099s, 1035sh, 1015s, 968, 939s, 869, 803, 760sh, 648, 613, 560, 516, 493, 438s, 404, 395sh.
Note: The spectrum was obtained by N.V. Chukanov.

P809 Penikisite BaMg2Al2(PO4)3(OH)3
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Origin: Blow River, Yukon, Canada.
Description: Blue crystals. The empirical formula is (electron microprobe):

Ba1.01(Mg0.99Fe0.92Mn0.08)(Al1.84Fe0.13Ti0.03)(PO4)3.00(OH)3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3525, 3368w, 3203, 2200sh, 2130w, 2025w, 1953w, 1805w, 1202, 1146s,

1090s, 1065sh, 1019s, 963s, 899, 662, 616, 573, 548s, 519, 489, 480, 454s, 435sh, 395w.
Note: The spectrum was obtained by N.V. Chukanov.

P810 Trolleite Al4(PO4)3(OH)3

Origin: Hålsjöberg (Horrsjöberg), Torsby, Värmland, Sweden.
Description: Pale bluish-green grains from the association with scorzalite, kyanite, and rutil. Con-

firmed by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3519, 3430, 2970w, 2213w, 2030w, 1247, 1190s, 1150, 1133, 1118, 1081s,

984, 847, 815, 706, 671, 650w, 624, 580, 516s, 471s, 444, 417, 400sh, 369.
Note: The spectrum was obtained by N.V. Chukanov.
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P811 Petitjeanite Bi3O(PO4)2(OH)

Origin: Schneeberg District, Erzgebirge (Ore Mts.), Saxony, Germany.
Description: Spherulitic crust. The empirical formula is (electron microprobe): (Bi2.85Pb0.1Ca0.1)

[(PO4)0.9(AsO4)0.4(VO4)0.3](OH).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1076s, 1049s, 992, 955sh, 795s, 777s, 570, 556, 523, 504, 477sh, 457s,

430, 421.
Note: The spectrum was obtained by N.V. Chukanov.

P812 Varulite NaCaMn2+3(PO4)3
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Origin: Solleftea, Ångermanland, Sweden.
Description: Anhedral grains. Ca-deficient variety or analogue of varulite. The empirical formula is

(electron microprobe): Na1.5Ca0.3Mn2.4Fe0.8(PO4)3.0. The strongest lines of the powder X-ray
diffraction pattern [d, Å (I, %)] are: 6.12 (90), 5.47 (40), 3.50 (70), 3.146 (100), 2.736 (100),
2.560 (30).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (1382), 1082s, 1044s, 983s, 887, 630w, 580, 552s, 530, 465.
Note: The spectrum was obtained by N.V. Chukanov. The band at 1382 cm�1 may correspond to an

impurity.

P813 Daqingshanite-(Ce) Sr3Ce(PO4)(CO3)3

Origin: Bayan Obo deposit, Bayan Obo Mining District, Baotou Prefecture, Inner Mongolia, China
(type locality).

Description: Pale yellow crystalsand grains from the association with benstonite, huntite, strontianite,
pyrite, phlogopite, and monazite. Holotype sample. Trigonal, a ¼ 10.058, c ¼ 9.225 Å.
Dmeas ¼ 3.81 g/cm3, Dcalc ¼ 3.71 g/cm3. Optically uniaxial (�), ε ¼ 1.609, ω ¼ 1.708. The
strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)] are: 3.95 (60), 3.16 (100), 2.52
(70), 2.110 (50), 2.040 (60), 1.941 (60).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Ren et al. (1983).
Wavenumbers (cm21): 2930, 2840, 2495w, 1617, 1438s, 1178sh, 1094sh, 1078sh, 1040s,

872, 724sh, 694, 604, 570, 450.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Bands in the ranges 3000–4000 and 1600–1700 cm�1 may be due to absorbed
water.
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P814 Sodium calcium silicophosphate Na2Ca4(PO4)2SiO4 (apatite-type) Na2Ca4(PO4)2SiO4

Origin: Synthetic.
Description: Fine powder. Characterized by thermal and powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Pirayesh and Nychka (2013).
Wavenumbers (cm21): 1033s, 935s, 879, 692w, 619, 580w, 523, 462.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

P815 Mangangordonite Mn2+Al2(PO4)2(OH)2∙8H2O
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Origin: Foote Mine, Kings Mountain, Cleveland Co., North Carolina, USA (type locality).
Description: Pale yellow prismatic crystals from the association with whiteite-(MnFeMg) and

birnessite. The empirical formula is (electron microprobe): (Mn0.7Fe0.2Mg0.1)(Al0.8Fe0.2)
(PO4)2.0(OH)2�8H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3607, 3545, 3420, 3253s, 2960sh, 1657, 1560sh, 1442w, 1157, 1045s, 975sh,

720sh, 679, 650s, 587, 536, 456, 386.
Note: The spectrum was obtained by N.V. Chukanov.

P817 Althausite Mg4(PO4)2(OH,O)(F,□)

Origin: Tingelstadtjern quarry, Modum, Buskerud, Norway (type locality).
Description: Brownish single-crystal grain. Confirmed by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3682w, 3505, 3359w, 2022w, 1695sh, 1520sh, 1142s, 1105sh, 1087s,

1075sh, 1037s, 990sh, 946, 885sh, 866, 759w, 639, 600s, 510sh, 480sh, 452s, 417s, 381s.
Note: The spectrum was obtained by N.V. Chukanov.
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P818 Cu,Al-hydroxyphosphate CuAl5(PO4)(OH)13F�nH2O

Origin: West Caradon Adit, Cornwall, GB.
Description: Blue collophorm crust from the association with fluorite. X-ray amorphous. The empiri-

cal formula is (Cu0.89Mg0.03Zn0.02Cu0.02)Al5.03[(PO4)0.39(SiO34)0.33(AsO4)0.18(SO4)0.12]
(OH)12.74F1.00�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3500s, 3360s, 2090w, 1653, 1520w, 1455w, 1059s, 995sh, 870sh, 571s,

(385sh).
Note: The spectrum was obtained by N.V. Chukanov.

P819 Kuksite trigonal dimorph Pb3Zn3TeO6(PO4)2
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Origin: Synthetic.
Description: Synthesized by conventional solid-state methods from stoichiometric amounts of PbO,

ZnO, H2TeO4�2H2O, and KH2PO4 first at 400 �C for 20 h to decompose H2TeO4�2H2O and
KH2PO4, and thereafter at 700 �C for 5 days, with intermediate grindings. Characterized by powder
and single-crystal X-ray diffraction data. Trigonal, space group P321, a ¼ 8.3831(3), c ¼ 5.1930
(4) Å, V ¼ 316.05(3) Å3, Z ¼ 1. Dcalc ¼ 6.469 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yu et al. (2016).
Wavenumbers (cm21): 1075sh, 1050, 1034, 1007s, 961w, 717, 669sh, 642s, 615, 604sh, 587sh,

567s, 544s, 519s, 486sh, 443.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

P820 Kuksite trigonal Mg analogue Pb3Mg3TeO6(PO4)2

Origin: Synthetic.
Description: Synthesized by conventional solid-state methods from stoichiometric amounts of PbO,

MgO, H2TeO4�2H2O, and KH2PO4 first at 400 �C for 20 h to decompose H2TeO4�2H2O and
KH2PO4, and thereafter at 850 �C for 5 days, with intermediate grindings. Characterized by powder
and single-crystal X-ray diffraction data. Trigonal, space group P321, a ¼ 8.4072(4), c ¼ 5.2158
(5) Å, V ¼ 319.27(4) Å3, Z ¼ 1. Dcalc ¼ 5.763 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yu et al. (2016).
Wavenumbers (cm21): 1183w, 1024sh, 1006, 968sh, 920sh, 722, 671, 641, 603s, 557, 522s, 477sh,

447sh, 436s, 425sh, 405.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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P821 Natrophilite NaMn2+(PO4)

Origin: Synthetic.
Description: Prepared hydrothermally from KMnPO4�H2O and NaCH3COO�3H2O at a ratio of 1:10 at

200 �C for 15 h. Characterized by powder X-ray diffraction data. Orthorhombic, a ¼ 10.5177(3),
b ¼ 6.3144(2), c ¼ 4.9873(2) Å, V ¼ 331.227(22) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Boyadzhieva et al. (2015).
Wavenumbers (IR, cm21): 1129, 1078s, 1060s, 969s, 943w, 630sh, 618, 580, 545.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1048w, 1006w, 946s, 650s, 577.

P822 Paganoite phosphate analogue NiBi3+O(PO4)
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Origin: Synthetic.
Description: Prepared by solid-state reaction from Bi2O3, CoO, and (NH4)2(HPO4). The crystal

structure is solved. Monoclinic, space group P21/n, a ¼ 7.2470(l), b ¼11.2851(2), c ¼ 5.2260
(l) Å, β ¼ 107.843(1)�, V ¼ 406.91 Å3, Z ¼ 4. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 4.727 (44) (�101), 4.338 (69) (120), 3.372 (70) (111), 2.850 (100)
(�221), 2.568 (43) (131), 2.516 (41) (230).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ketani et al. (1999).
Wavenumbers (cm21): 1046s, 1009s, 979s, 609sh, 590, 561s, 520, 468, 440.

P823 Phosphorrösslerite Mg(HPO4)∙7H2O

Origin: Synthetic.
Description: Commercial reactant (?).
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Pucka et al. (2000).
Wavenumbers (cm21): 1272, 1219, 1210, 1145, 1137, 1118sh, 1074w, 1044, 1007, 982w, 909, 887,

871, (796).
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P824 Potassium zinc hydrogen phosphate KZn2(PO4)(PO3OH)

Origin: Synthetic.
Description: The sample may contain KZn(PO4) impurity.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Alibakhshi et al. (2012).
Wavenumbers (IR, cm21): 3424, 3316, 3247, 3160, 3081, 2938, 2426, 2304w, 2204w, 2161w,

2136w, 2103w, 2055w, 1894w, 1838w, 1618, 1559, 1488, 1383, 1212, 1140s, 1108s, 1056s,
1031s, 963s, 920s, 782, 712, 634, 604s, 574sh, 528, 493w, 474sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3429s (broad), 3315, 3093, 2451, 2399, 2162w, 1979w, 1874w,
1813w, 1322w, 1240w, 1137, 1074, 1013s, 910s, 766w, 590, 490, 303s.

P825 Raadeite Mg7(PO4)2(OH)8

Origin: Tingelstadtjern quarry, Modum, Buskerud, Norway (type locality).
Description: Anhedral inclusion in holtedahlite. Holotype sample. The crystal structure is solved.

Monoclinic, space group P21/n, a¼ 5.250(1), b¼ 11.647(2), c¼ 9.655(2) Å, β¼ 95.94(1)�, Z¼ 2.
Optically biaxial (�), α ¼ 1.5945(5), β ¼ 1.6069(5), γ ¼ 1.6088(5), 2V ¼ 45.6(1)�.

Kind of sample preparation and/or method of registration of the spectrum: Reflection of a single-
crystal grain.

Source: Chopin et al. (2001).
Wavenumbers (cm21): 3580, 3540, 3475, 3375.
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P826 Vyacheslavite U4+(PO4)(OH)∙2.5H2O

Origin: Synthetic.
Description: Prepared hydrothermally using hydrolyzed uranium bromide phosphate. Characterized

by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Brandel et al. (2001).
Wavenumbers (cm21): 3544, 1636w, 1144s, 1058s, 978, 932s, 814, 636s, 558, 540, 490, 420.

P827 Vyacheslavite anhydrous Th analogue Th4+(PO4)(OH)
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Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. The crystal structure is solved. Ortho-

rhombic, space group Cmca, a ¼ 7.1393(2), b ¼ 9.2641(2), c ¼ 12.5262(4) Å, V ¼ 828.46(4) Å3,
Z ¼ 8.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Brandel et al. (2001), Dacheux et al. (2007).
Wavenumbers (IR, cm21): 3560, 1130s, 1052s, 964, 908s, 787, 626, 550, 536, 512, 474, 414.
Note: Raman spectrum is given by Dacheux et al. (2007).
Wavenumbers (Raman, cm21): 3568s, 1195w, 1078s, 1060s, 989s, 799w, 789w, 618, 568, 556, 449,

416, 368, 282, 236.

P828 Fupingqiuite (Na,Mn2+,□)2Mn2+2Fe
3+(PO4)3

Origin: Nancy pegmatite, Chacabuco department, San Luis, Argentina (type locality).
Description: Dark brownish-gray grains with perfect cleavage. Partly altered and contaminated by a

hydrous phosphate.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): (3563w), (3384), (3250), 1636w, 1587w, 1040sh, 1023s, 1015sh, 965sh,

594s, 578, 549, 474w, 390sh.
Note: The spectrum was obtained by N.V. Chukanov.
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P829 Guimarãesite Ca2Be4Zn5(PO4)6(OH)4�6H2O

Origin: Piauí River, Itinga County, Minas Gerais, Brazil (type locality).
Description: Peripheral zones of zanazziite crystals from the association with albite, microcline,

quartz, elbaite, lepidolite, schorl, eosphorite, moraesite, and saleeite. Monoclinic, a ¼ 15.98
(1) Å, b ¼ 11.84(2) Å, c ¼ 6.63(1) Å, β ¼ 95.15(15)�, V ¼ 1249.4(34) Å3, Z ¼ 2.
Dcalc ¼ 2.963 g/cm3. Optically biaxial (�), α ¼ 1.562(2), β ¼ 1.600(2), γ ¼ 1.602(2),
2V ¼ 55–75�. The empirical formula is Ca1.93(Zn2.61Mg1.11Fe

2+
0.41Al0.37Mn0.34)

Be4.00(PO4)6.00(OH)3.90�6.41H2O. The strongest lines of the powder X-ray diffraction pattern [d,
Å (I, %) (hkl)] are: 9.98 (90) (110), 5.98 (100) (020), 4.82 (80) (310), 3.152 (90) (�202), 3.052
(70) (�421), 2.961 (70) (040, 202), 2.841 (70) (�312), 2.708 (80) (041).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3610sh, 3485, 3336s, 3295sh, 1667, 1594w, 1537w, 1416w, 1110sh, 1087s,

1030sh, 1016s, 827, 770sh, 723s, 616, 567s, 523, 502, 452, 380.
Note: The spectrum was obtained by N.V. Chukanov.
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P830 Drugmanite Pb2Fe
3+(PO4)(PO3OH)(OH)2

Origin: Bleialf, Prüm, Eifel, Germany.
Description: Spherulitic crust on galena. The empirical formula is (electron microprobe):

HxPb2.18(Fe0.99Al0.01)(PO4)2.00(OH)2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3491w, 3445, 1387, 1025s, 942, 915sh, 790, 766, 590, 537, 498, 459, 392.
Note: The spectrum was obtained by N.V. Chukanov. The band at 1387 cm�1 corresponds to isolated

H+ cation. Weak bands between 1400 and 3000 cm�1 are due to an organic impurity.

P831 Roscherite Ca2(Mn,Fe2+,Fe3+,Mg,Al,Zn)5Be4(PO4)6(OH)4�6H2O
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Origin: Taquaral, Itinga, Minas Gerais, Brazil.
Description: Olive-green spherulite from the association with eosphorite, feldspar, and metaautunite.

The empirical formula is (electron microprobe): Ca2.0(Mn1.5Fe1.3Zn1.1Mg0.5Al0.1)
Be4(PO4)6.0(OH)4�6H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3605sh, 3439, 3336s, 3290sh, 2950sh, 2217w, 1667, 1538w, 1450sh, 1084s,

1033s, 1020sh, 820, 771, 722s, 615, 563s, 523, 497, 451, 374.
Note: The spectrum was obtained by N.V. Chukanov.

P832 Thadeuite Ca(Mg,Fe2+)3(PO4)2(OH,F)2

Origin: Panasqueira Mines, Covilhã, Castelo Branco district, Portugal (type locality).
Description: Yellow anhedral grains. Investigated by A.V. Kasatkin. Characterized by single-crystal

X-ray diffraction data and qualitative electron microprobe analyses. Orthorhombic, a ¼ 6.465(14),
b ¼ 13.525(7), c ¼ 8.539(5) Å, V ¼ 727(2) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 2120sh, 2060w, 1141s, 1083s, 1066s, 1038s, 978, 629, 599, 584s, 440, 407s.
Note: The spectrum was obtained by N.V. Chukanov.

468 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



P833 Minjiangite BaBe2(PO4)2

Origin: Nanping No. 31 pegmatite, Fujian Province, southeastern China (type locality).
Description: White crystals from the association with montebrasite, quartz, muscovite, hydroxylapa-

tite, and palermoite. Holotype sample. The crystal structure is solved. Hexagonal, space group P6/
mmm, a¼ 5.029(1), c¼ 7.466(1) Å, V¼ 163.52(1) Å3, Z¼ 1.Dcalc¼ 3.49 g/cm3. Optically biaxial
(+), ω ¼ 1.587(3), ε ¼ 1.602(2). The empirical formula is (Ba0.99Ca0.01)Be1.98(P1.99Si0.01)O8.

Kind of sample preparation and/or method of registration of the spectrum: Reflection.
Source: Rao et al. (2015).
Wavenumbers (IR, cm21): 1375s, 1363s, 1339s, 1101sh, 1068s, 1027sh, 781, 730, 683w, 660w.
Note: Possibly, an erroneous spectrum. In particular, assignment of the strong bands at 1375, 1363,

and 1339 cm�1 to Be–O-stretching vibrations (Rao et al. 2015) is questionable. Dal Bo et al. (2014)
give another IR spectrum for the synthetic analogue of minjiangite. The wavenumbers were partly
determined by us based on spectral curve analysis of the published spectrum. In the cited paper,
Raman spectrum is given.

Wavenumbers (Raman, cm21): 1233s, 1050s, 491, 478, 328w, 189w.
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2.9 Sulfides, Sulfites, Sulfates, Carbonato-Sulfates, Phosphato-Sulfates,
and Tellurato-Sulfates

S554 Eleomelanite (K2Pb)Cu4O2(SO4)4

Origin: Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great
Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Far-Eastern Region,
Russia (type locality).

Description: Dark green crystalline crust from the association with euchlorine, wulffite,
klyuchevskite, alumoklyuchevskite, fedotovite, anglesite, cryptochalcite, langbeinite, aphthitalite,
chalcocyanite, dolerophanite, piypite, anhydrite, steklite, etc. Holotype sample. The crystal struc-
ture is solved. Monoclinic, space group P21/n, a ¼ 9.3986(3), b ¼ 4.9811(1), c ¼ 18.2293(5) Å,
β ¼ 104.409(3)�, V ¼ 811.63(4) Å3, Z ¼ 2. Dcalc ¼ 3.790 g/cm3. Optically biaxial (�), α ¼ 1.646
(3), β ¼ 1.715(6), γ ¼ 1.734(6), 2V ¼ 60(15)�. The empirical formula is (electron microprobe):
(K1.88Pb0.79Ca0.20Rb0.05Cs0.02)Σ2.94Cu4.07S3.99O18. The strongest lines of the powder X-ray diffrac-
tion pattern [d, Å (I, %) (hkl)] are: 9.07 (63) (�101), 7.38 (44) (101), 3.699 (78) (112, 202), 3.658
(100) (�204), 3.173 (40) (211, –213), 2.576 (51) (310, –116).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1235sh, 1202s, 1145s, 1108s, 1080sh, 1025s, 975sh, 662, 615, 601s,

547, 508, 500sh.
Note: The spectrum was obtained by N.V. Chukanov.
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S555 Kottenheimite dimorph Ca3Si(SO4)2(OH)6∙12H2O

Origin: Bellerberg, near Mayen, Eifel, Rheinland-Pfalz (Rhineland-Palatinate), Germany.
Description: White random aggregate of acicular crystals. Isostructural with thaumasite. The empirical

formula is (electron microprobe): Ca3.05(Si0.9Al0.1)(SO4)[(SO4)0.6(CO3)0.4](OH)6�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3505s, 3460sh, 3417s, 1688, 1650, 1396s, 1100s, 990w, 880, 750s, 673, 632,

596, 499.
Note: The spectrum was obtained by N.V. Chukanov.

S556 Bobcookite NaAl(UO2)2(SO4)4∙18H2O
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Origin: Blue Lizard Mine, Red Canyon, White Canyon District, San Juan Co., Utah, USA (type
locality).

Description: Green-yellow crystals. Investigated by A.V. Kasatkin, the coauthor of bobcookite first
description.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3610sh, 3578, 3502, 3370, 3200sh, 3100sh, 2960sh, 2523w, 2400sh, 1630,

1210, 1169s, 1130sh, 1114s, 1100sh, 1024s, 1004s, 933, 843w, 740sh, 708w, 628, 594, 583, 471,
445sh.

Note: The spectrum was obtained by N.V. Chukanov.

S557 Riotintoite Al(SO4)(OH)�3H2O

Origin: La Vendida copper mine (Mina La Vendida), about 5 km WNW of Sierra Gorda, Antofagasta
Region, Atacama desert, Chile (type locality).

Description: Colorless platy crystals from cavities in massive aggregates of eriochalcite, Mg-rich
aubertite, magnesioaubertite, belloite, and clay minerals. Holotype sample. Triclinic, space group
P-1, a ¼ 5.6000, b ¼ 7.4496(8), c ¼ 7.6709(9) Å, α ¼ 74.7847�, β ¼ 86.0419�, γ ¼ 75.8103�,
V ¼ 299.37 Å3, Z ¼ 2. Dmeas ¼ 2.11(2) g/cm3, Dcalc ¼ 2.129 g/cm3. Optically biaxial (�),
α ¼ 1.513(2), β ¼ 1.522(2), γ ¼ 1.526(2), 2V ¼ 70(5)�. The empirical formula is
Al0.93(SO4)0.99(OH)0.81�3.25H2O. The strongest lines of the powder X-ray diffraction pattern [d,
Å (I, %)] are: 6.975 (100), 4.466 (18), 4.379 (19), 3.698 (18), 3.487 (20), 2.882 (17), 2.669 (54),
2.397 (40).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3540, 3335sh, 3145s, 3110sh, 3010sh, 2900sh, 2480, 2110w, 1933w, 1690,

1647, 1186s, 1117s, 1095s, 1021, 968, 880sh, 850sh, 814, 745sh, 683, 607s, 549, 485, 465, 455sh,
435sh, 382.

Note: The spectrum was obtained by N.V. Chukanov.
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S558 Rhomboclase (H5O2)Fe
3+(SO4)2∙2H2O

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province, Antofagasta, Chile.
Description: Light gray grains. Investigated by I.V. Pekov. Characterized by single-crystal X-ray

diffraction data. Orthorhombic, a ¼ 5.426(3), b ¼ 9.470(7), c ¼ 18.333(17) Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3640sh, 3255s (broad), 2185w, 2045w, 1690sh, 1653, 1625sh, 1185sh,

1168s, 1150sh, 1034s, 1025s, 888w, 857w, 747w, 665, 630, 588, 471, 460, 421w.
Note: The sample has altered as a result of a reaction with KBr. The spectrum was obtained by

N.V. Chukanov.

S559 Ferrinatrite Na3Fe
3+(SO4)3∙3H2O

Origin: Coronel Manuel Rodríguez mine, Mejillones peninsula, Mejillones, Antofagasta Province,
Antofagasta Region, Chile.

Description: White aggregate of acicular crystals. Investigated by I.V. Pekov. Characterized by
powder X-ray diffraction data and electron microprobe analyses.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3594, 3517, 2215w, 2128w, 2005w, 1939w, 1637, 1614, 1232s, 1133s,

1014s, 994s, 966s, 680, 606, 563, 491, 450, 416, 373.
Note: The spectrum was obtained by N.V. Chukanov.

S560 Magnesioaubertite MgAl(SO4)2Cl∙14H2O

Origin: La Vendida copper mine, about 5 km WNW of Sierra Gorda, Antofagasta Region, Atacama
desert, Chile.

Description: Turquoise-blue granular aggregate from the association with vendidaite and eriochalcite.
Investigated by I.V. Pekov. Characterized by powder X-ray diffraction data. The empirical formula
is (electron microprobe): Mg0.56Cu0.39Al1.09(SO4)2.00Cl0.65(OH)x�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3376s, 3330s, 3241s, 3005s, 2519, 2060w, 1675sh, 1656, 1112s, 1070s,

990, 950, 802, 706s, 626, 600, 518, 468, 450sh.
Note: The spectrum was obtained by N.V. Chukanov.

S561 Antofagastaite Na2Ca(SO4)2�1.5H2O
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Origin: Coronel Manuel Rodríguez mine, Mejillones peninsula, Mejillones, Antofagasta region, Chile
(type locality).

Description: Colorless prismatic crystals from the association with sideronatrite, metasideronatrite,
aubertite, gypsum, ferrinatrite, glauberite, and amarillite. Holotype sample. The crystal structure is
solved. Monoclinic, space group P21/m, a ¼ 6.4596(4), b ¼ 6.8703(5), c ¼ 9.4685(7) Å,
β ¼ 104.580(4)�, V ¼ 406.67(5) Å3, Z ¼ 2. Dmeas ¼ 2.42(1) g/cm3, Dcalc ¼ 2.465 g/cm3. Optically
biaxial (�), α ¼ 1.489 (2), β ¼ 1.508 (2), γ ¼ 1.510 (2), 2V ¼ 40(10)�. The empirical formula is
Na2.06Ca0.95S2.01O8�1.35H2O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I,
%) (hkl)] are: 9.17 (100) (001), 5.501 (57) (011), 4.595 (32) (002), 3.437 (59) (020), 3.058
(43) (�103, 003), 2.918 (50) (�211), 2.795 (35) (�113, 013).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3598, 3373, 3300sh, 1685w, 1629w, 1220, 1153s, 1128s, 1090s, 1060sh,

1015sh, 982, 758, 656, 613, 480, 458.
Note: The spectrum was obtained by N.V. Chukanov. Very weak absorptions in the range

2100–2250 cm�1 correspond to overtones and combination modes.

S562 Römerite Fe2+Fe3+2(SO4)4∙14H2O

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province, Antofagasta, Chile.
Description: Reddish-brown crystals from the association with coquimbite, metavoltine, and voltaite.

Investigated by I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Triclinic,
a ¼ 6.317(4), b ¼ 6.453(4), c ¼ 15.318(10) Å, α ¼ 85.61(5)�, β ¼ 89.78(5)�, γ ¼ 79.06(5)�,
V ¼ 611.2(7) Å3. Only Fe and S have been found by means of electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3580sh, 3515sh, 3334s, 3200s, 3100sh, 2495w, 2320sh, 1670sh, 1645,

1129s, 1072s, 1034s, 995s, 905sh, 785sh, 715sh, 660sh, 646, 599s, 484, 460sh, 414, 405sh.
Note: The spectrum was obtained by N.V. Chukanov.
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S563 Calamaite Na2TiO(SO4)2�2H2O

Origin: Alcaparrosa mine, Cerro Alcaparrosa, Calama commune, El Loa province, Antofagasta
region, Chile (type locality).

Description: Colorless acicular crystals from the association with römerite, coquimbite, metavoltine,
rhomboclase, tamarugite, halotrichite, and szomolnokite. Holotype sample. The crystal structure is
solved. Orthorhombic, space group Ibam, a ¼ 16.0989(11), b ¼ 16.2399(9), c ¼ 7.0135(4) Å,
V ¼ 1833.6(2) Å3, Z ¼ 8. Dcalc ¼ 2.45 g/cm3. Optically biaxial (+), α ¼ 1.557(2), β ¼ 1.562(2),
γ ¼ 1.671(3), 2V ¼ 30(10)�. The empirical formula is (electron microprobe): Na1.97(Ti0.92Fe

3

+
0.07)Σ0.99S2.02O9�2H2O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 8.10 (100) (020, 200), 5.04 (55) (121, 211), 3.787 (26) (231), 3.619 (18) (240, 420),
3.417 (27) (141, 411), 2.943 (20) (341, 431), 2.895 (20) (132, 312).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3598, 3470sh, 3320s, 3240sh, 2324w, 1655s, 1250sh, 1231s, 1133s, 1085sh,

987s, 906w, 767s, 603, 489, 395sh, 373.
Note: The spectrum was obtained by N.V. Chukanov.

S564 Metasideronatrite Na2Fe
3+(SO4)2(OH)∙H2O
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Origin: Coronel Manuel Rodríguez mine, Mejillones peninsula, Mejillones, Antofagasta Province,
Antofagasta Region, Chile.

Description: Orange-beige pseudomorphs after prismatic sideronatrite crystals. Investigated by
I.V. Pekov. Characterized by powder X-ray diffraction data and electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3603, 3383, 3362, 3310sh, 3225sh, 2135w, 2004w, 1632, 1260, 1206s,

1135s, 1117s, 1056, 1032, 996s, 979s, 665sh, 650, 634, 618, 610, 595w, 514s, 470sh, 407.
Note: The spectrum was obtained by N.V. Chukanov.

S565 Parabutlerite Fe3+(SO4)(OH)∙2H2O

Origin: Coronel Manuel Rodríguez mine, Mejillones peninsula, Mejillones, Antofagasta Province,
Antofagasta Region, Chile.

Description: Orange-brown crystals from the association with gypsum. Investigated by I.V. Pekov.
Characterized by single-crystal X-ray diffraction data. Orthorhombic, a ¼ 7.386(3), b ¼ 7.405(4),
c ¼ 20.091(10) Å, V ¼ 1072(1) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3500sh, 3276s, 3223s, 3285w, (2200sh), 1670, 1660sh, 1222s, 1170sh,

1126s, 1012s, 997s, 658, 601, 505s.
Note: The spectrum was obtained by N.V. Chukanov.
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S566 Yavapaiite KFe3+(SO4)2

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province, Antofagasta, Chile.
Description: Pink platy crystals from the association with coquimbite and rhomboclase. Investigated

by I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Monoclinic, a ¼ 8.186(8),
b¼ 5.156(6), c ¼ 7.893(8) Å, β ¼ 94.69(10)�, V ¼ 332.0(6) Å3. The empirical formula is (electron
microprobe): K0.98Fe1.01(SO4)2.00.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 2470w, 2262w, 2212w, 2117w, 2049w, 2032w, 1240s, 1110sh, 1087s,

1027s, 680, 660sh, 621, 591, 470, 446, 377.
Note: The spectrum was obtained by N.V. Chukanov.

S567 Szomolnokite Fe(SO4)∙H2O
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Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province, Antofagasta, Chile.
Description: Pale greenish-yellow crystals from the association with metavoltine, coquimbite, and

römerite. Investigated by I.V. Pekov. Characterized by single-crystal X-ray diffraction data.
Monoclinic, a ¼ 7.66, b ¼ 7.53, c ¼ 7.09 Å, β ¼ 116.66�, V ¼ 365.7 Å3. The empirical formula
is (electron microprobe): (Fe0.89Zn0.05Mg0.03)S1.01O4�H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3410sh, 3320sh, 3243s, 2076w, 2020w, 1637, 1497, 1160sh, 1133s, 1105s,

1016s, 837s, 667, 624, 604, 530s.
Note: The spectrum was obtained by N.V. Chukanov.

S568 Metathénardite Na2(SO4)

Origin: Yadovitaya (Poisonous) fumarole, Second scoria cone, Tolbachik volcano, Kamchatka
peninsula, Far-Eastern Region, Russia.

Description: Pale blue crystals. Investigated by I.V. Pekov, the author of the first description of
metathénardite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 2125w, 1150sh, 1136s, 1115sh, 993, 970sh, 630sh, 618s.
Note: The spectrum was obtained by N.V. Chukanov.
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S569 Magnesiovoltaite K2Mg5Fe
3+

3Al(SO4)12�18H2O

Origin: Alcaparrosa mine, Cerro Alcaparrosa, El Loa province, Antofagasta region, Chile (type
locality).

Description: Yellow crystals from the association with coquimbite, tamarugite, alum-(Na),
rhomboclase, yavapaiite, voltaite, and opal. Holotype sample. The crystal structure is solved.
Cubic, space group Fd-3c, a ¼ 27.161(1) Å, V ¼ 20038(2) Å3, Z ¼ 16. Dmeas ¼ 2.51(2) g/cm3,
Dcalc ¼ 2.506 g/cm3. Optically anomalously anisotropic, uniaxial with ε¼ 1.584 (2) and ω¼ 1.588
(2), or biaxial (�) with α ¼ 1.584 (2), β ¼ 1.587 (2), and γ ¼ 1.588 (2). The empirical formula is
(K1.85Na0.08)(Mg4.25Mn0.46Zn0.14)Fe

3+
3.14Al0.91(SO4)11.91(H2O)18.325O0.035. The strongest lines of

the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.56 (29) (022), 6.77 (37) (004), 5.53
(61) (224), 3.532 (68) (137), 3.392 (100) (008), 3.034 (45) (048), 2.845 (30) (139).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3565sh, 3480sh, 3441, 3134, (3070sh), 2496w, 1684w, 1640sh, 1624, 1168s,

1133s, 1067s, 1011s, 995sh, 876w, 718sh, 660sh, 629, 596, 440.
Note: The spectrum was obtained by N.V. Chukanov.
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S570 Barium titanium sulfide Ba2TiS4

Origin: Synthetic.
Description: Orthorhombic, space group Pnma. The crystal structure contains TiS4 tetrahedra.
Kind of sample preparation and/or method of registration of the spectrum: Transmission of a

polycrystalline powder sample.
Source: Ishii and Saeki (1992).
Wavenumbers (IR, cm21): 491sh, 462s, 405, 218w, 192w, 144, 129, 90, 60w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 477, 457w, 441w, 445sh, 403s.

S571 Barium titanium sulfide Ba3TiS5

2.9 Sulfides, Sulfites, Sulfates, Carbonato-Sulfates, Phosphato-Sulfates, and Tellurato-Sulfates 481



Origin: Synthetic.
Description: Tetrahedral, space group I4/mcm. The crystal structure contains TiS4 tetrahedra.
Kind of sample preparation and/or method of registration of the spectrum: Transmission of a

polycrystalline powder sample.
Source: Ishii and Saeki (1992).
Wavenumbers (IR, cm21): 463s, 439sh, 195, 152, 121, 63w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 478, 462, 416s.

S572 Bismuth copper sulfate tellurite BiCu2(TeO3)(SO4)(OH)3

Origin: Synthetic.
Description: Synthesized hydrothermally from Bi2O3, CuSO4�5H2O, TeO2, and H2SO4 at 230 �C for

3 days. Monoclinic, space group P21/n, a ¼ 9.5513(15), b ¼ 6.3022(10), c ¼13.955(2) Å,
β ¼ 102.845(3)�, V ¼ 819.0(2) Å3, Z ¼ 4. Dcalc ¼ 5.318 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2015a).
Wavenumbers (IR, cm21): 1127, 1089s, 1071s, 976, 858w, 767, 742sh, 675s, 607, 542, 494sh,

468, 441.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1110w, 1092w, 1071w, 977, 760, 690w, 630, 563w, 438, 412, 354s,

273, 228, 211, 155, 134s, 120s.
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S573 Bismuth sulfate Bi2(SO4)3

Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Botto et al. (1995).
Wavenumbers (cm21): 1131s, 1056s, 968, 652s, 613, 597, 444w, 422w, 290sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

S574 Bismuthyl sulfate (BiO)2(SO4)
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Origin: Synthetic.
Description: Product of heating of tetradymite at 500 �C in air. The sample contains admixture of

tellurium oxide.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Botto et al. (1995).
Wavenumbers (cm21): 1110sh, 1074s, 1033sh, 971sh, 745, 689, 628s, 599, 475, 421w,

396, 350, 316w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The bands located at 745 and 689 cm�1 can be tentatively assigned to a tellurium oxide.

S575 Cesium iron sulfate Cs3Fe(SO4)3

Origin: Synthetic.
Description: Trigonal, space group R3c.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Bremard et al. (1986).
Wavenumbers (IR, cm21): 1220, 1200s, 1110s, 1030, 1000s, 875sh, 665w, 645w, 610, 595, 510w,

485w, 445w, 450w, 314, 264w, 244w, 200w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21, at 77 K): 1237sh, 1225sh, 1205, 1115w, 1035sh, 1030w, 1010, 990s,

650w, 620, 615sh, 603, 597, 463, 447, 263, 258, 246sh, 204, 178sh, 168w, 155w, 138w, 57w,
37.5w.
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S576 Dysprosium copper hydroxysulfate Dy2Cu(SO4)2(OH)4 Dy2Cu(SO4)2(OH)4

Origin: Synthetic.
Description: Synthesized by a hydrothermal method. Monoclinic, space group P21/c, a ¼ 6.304(4),

b ¼ 6.663(4), c ¼ 10.724(6) Å, β ¼ 98.527(1)�, V ¼ 445.5(5) Å3, Z ¼ 2. Dcalc ¼ 4.806 g/cm3.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Tang et al. (2015).
Wavenumbers (cm21): 3573, 3435, 3320sh, 1635w, 1232s, 1168s, 1023s, 970, 870, 744, 739sh,

661, 634s, 612s, 589, 512w, 491w, 454, 409w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S577 Iron(III) basic sulfate Fe(SO4)(OH)
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Origin: Synthetic.
Description: Prepared hydrothermally from Fe2(SO4)3�nH2O. Monoclinic, space group P21/c.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection of a powdered sample.
Source: Gomez et al. (2013).
Wavenumbers (IR, cm21): 3452, 1168, 1095s, 1058, 999s, 651sh, 636, 584w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3077, 3453s, 3587w, 1183, 1122, 1100s, 1062, 1026, 914w,

645, 556, 480, 418w, 370, 231.

S578 Iron(III) basic sulfate Fe(SO4)(OH)

Origin: Synthetic.
Description: Orthorhombic, space group Pnma, a ¼ 7.33, b ¼ 6.42, c ¼ 7.14 Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr and TlBr discs.

Transmission.
Source: Powers et al. (1975).
Wavenumbers (cm21): 3458s, 1172s, 1138s, 1112s, 1058, 1020s, 650, 638, 585, 538, 505, 468,

410w, 380, 331s, 270w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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S579 Lanthanum oxosulfate La(SO4)O2

Origin: Synthetic.
Description: Synthesized by a template-assisted route described elsewhere. Characterized by powder

X-ray diffraction data. Monoclinic, a ¼ 14.354(3), b ¼ 4.2862(6), c ¼ 8.388(2) Å, β ¼ 107.16(2).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Zhang et al. (2008).
Wavenumbers (cm21): 1185s, 1106s, 1067s, 992w, 655, 618, 595, 487.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

S580 Lead(II) oxysulfate Pb5(SO4)O4
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Origin: Synthetic.
Description: Microcrystalline powder obtained by the reaction of PbO with diluted H2SO4 at 80 �C

during 4–6 h and subsequent heating of the product at 550 �C. Monoclinic, space group P21/c,
Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Grasselli and Baran (1984).
Wavenumbers (cm21): 1135s, 1105s, 1077sh, 1051s, 965, 614sh, 609, 600, 483, 445, 430sh, 408sh,

372s, 341sh, 290, 278w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S581 Lithium iron(II) sulfate fluoride tavorite-type LiFe(SO4)F

Origin: Synthetic.
Description: Prepared from Fe(SO4)�H2O and LiF by a low-temperature solvothermal approach.

Characterized by powder X-ray diffraction data. Triclinic, space group P-1, a ¼ 5.1760(4),
b ¼ 5.4909(4), c ¼ 7.2214(5) Å, α ¼ 106.511�, β ¼ 107.187(3)�, γ ¼ 97.847(2)�, V ¼ 182.46
(2) Å3.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Sobkowiak et al. (2013).
Wavenumbers (cm21): 2156, 1110sh, 1094s, 1000, 646, 617s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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S582 Magnesium hydroxysulfate hydrate Mg3(SO4)2(OH)2∙2H2O

Origin: Synthetic.
Description: Crystals grown hydrothermally from NaOH and MgSO4 at 160 �C for 21 days. The

crystal structure is solved. Orthorhombic, space group Pbcm, a ¼ 7.177(1), b ¼ 9.804(2),
c ¼ 12.775(2) Å, V ¼ 898.9(2) Å3, Z ¼ 4. Dcalc ¼ 2.476 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Tao et al. (2002).
Wavenumbers (IR, cm21): 3607, 3567, 3483, 3200w, 2964w, 2207w, 2148w, 2081w, 1633, 1606,

1534w, 1261sh, 1224s, 1187s, 1126s, 1066s, 1012, 943, 813, 725w, 652, 616, 516, 416s.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3604s, 3565s, 3484s, 1215, 1103, 1027s, 653, 634, 494, 459, 270.

S583 Manganese hydroxysulfate Mn5(SO4)(OH)8 Mn5(SO4)(OH)8
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Origin: Synthetic.
Description: Prepared under mild hydrothermal conditions. Characterized by powder X-ray diffrac-

tion data. The crystal structure is solved. Triclinic, space group P-1, a ¼ 7.5501(5), b ¼ 8.5558(6),
c ¼ 8.6059(5) Å, α ¼ 98.122(4)�, β ¼ 102.370(4)�, γ ¼ 99.646(4)�, V ¼ 526.19(6) Å3, Z ¼ 2.
Dcalc ¼ 3.199 g/cm3. Mn atoms have five- and sixfold coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Fan et al. (2005).
Wavenumbers (cm21): 3626, 3560, 3487, 3424s, 1310sh, 1148s, 1106, 1049, 954, 916, 857sh,

841, 809, 753sh, 716, 670, 637, 601s, 569sh, 505, 470, 425.
Note: The wavenumbers were partly determined by us based on spectsral curve analysis of the

published spectrum.

S584 Magnesium sulfate hydroxide Mg6(SO4)(OH)10∙7H2O Mg6(SO4)(OH)10∙7H2O

Origin: Synthetic.
Description: Synthesized in the reaction between MgO and MgSO4 aqueous solutions in the presence

of citric acid, at 20 �C for 168 h. Characterized by powder X-ray diffraction data. The crystal
structure is solved. Monoclinic, space group I121, a ¼ 10.260(3), b ¼ 6.307(1), c ¼ 15.138(3) Å,
β ¼ 103.98(2)�, V ¼ 950.6(4) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Runčevski et al. (2013).
Wavenumbers (cm21): 3720, 3640, 3400s, 1646, 1450, 1152sh, 1105s, 1086sh, 987w, 640, 546s,

517sh, 450w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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S585 Nickel hydroxysulfate hydrate Ni3(SO4)2(OH)2∙2H2O Ni3(SO4)2(OH)2∙2H2O

Origin: Synthetic.
Description: Green crystals prepared hydrothermally from Ni(SO4)�7H2O and NaOH with the ratio

Ni:Na:H2O ¼ 1:0.25:250 at 215–240 �C for 1–4 days. Orthorhombic, space group Pbcm,
a ¼ 7.1485(3), b ¼ 9.6844(4), c ¼ 12.6643(3) Å, V ¼ 876.74(6) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Vilminot et al. (2003).
Wavenumbers (cm21): 3570sh, 3541, 3477, 3442, 1619, 1202s, 1159s, 1109s, 1035s, 995, 881,

862, 780w, 760w, 727sh, 709w, 648, 627, 600, 499.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S586 Niobium sulfide NbS3 NbS3
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Origin: Synthetic.
Description: Obtained by a chemical vapor transport method. Triclinic, space group P1, a¼ 4.963(2),

b ¼ 6.730(2), c ¼ 9.144(4) Å, α ¼ 90�, β ¼ 97.17(1)�, γ ¼ 90�.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Sourisseau et al. (1990).
Wavenumbers (IR, cm21): 576, 564w, 405w, 385sh, 345s, 336s, 320sh, 300w, 276, 261, 246, 236sh,

197, 193sh, 175, 150w, 108w, 101, 66.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 602w, 573, 559w, 522w, 462w, 400sh, 392, 388sh, 380, 352,

341, 323, 303, 300, 288w, 281, 263, 257, 241w, 203sh, 195s, 172sh, 160, 152s, 133w,
108, 94, 85, 68.

S587 Potassium borosulfate K5[B(SO4)4] K5[B(SO4)4]

Origin: Synthetic.
Description: Single crystals obtained by thermal decomposition of K3[B(SO4)3] at 673 K for 12 h. The

crystal structure is solved. Tetragonal, space group P41, a ¼ 9.9044(14), c ¼ 16.215(3) Å, Z ¼ 4.
Dcalc ¼ 2.466 g/cm3. The structure contains isolated [B(SO4)4]

5� anions.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection.
Source: Daub et al. (2013).
Wavenumbers (IR, cm21): 1302, 1271, 1249, 1226s, 1204s, 1135w, 1113w, 1080w, 1023, 1004,

926, 857, 807, 696, 648, 603, 585, 549, 526, 484, 470, 417w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, a figure of the Raman spectrum is given.
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S588 Potassium sodium vanadyl sulfate K6Na2(VO)2(SO4)7

Origin: Synthetic.
Description: Prepared from the mixture of Na2S2O7, K2S2O7, and V2O5 at 325 �C. The crystal

structure is solved. Tetragonal, space group P43212, a ¼ 9.540(3), c ¼ 29.551(5) Å, V ¼ 2689.5
(13) Å3, Z ¼ 4. Dcalc ¼ 2.684 g/cm3. The shortest V–O bond length is equal to 1.552(6) Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Karydis et al. (2002).
Wavenumbers (IR, cm21): 1320sh, 1290sh, 1220s, 1185sh, 1126s, 1065sh, 1028s, 980s, 962s,

880, 875sh, 850, 792, 725, 700sh, 670w, 655, 630, 610, 594sh, 580, 510sh, 460w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1310w, 1230w, 1165w, 1028, 1005, 968, 895w, 860w, 790, 685w,

630s, 605s, 570w, 490w, 445w, 396s, 302, 260w, 174s, 140s.

S589 Potassium zinc sulfate chloride trihydrate KZn(SO4)Cl∙3H2O

Kainite Zn-analogue
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Origin: Synthetic.
Description: Single crystals doped by Cu2+ ions. Monoclinic, space group C2/m.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Narasimhulu et al. (2000).
Wavenumbers (cm21): 3230s, 2236, 1700, 1559, 1146s, 1096s, 984, 756, 631s, 608sh, 575, 459,

436w, 420sh.

S590 Potassium zinc sulfate hexahydrate K2Zn(SO4)2∙6H2O
Picromerite Zn-analogue

Origin: Synthetic.
Description: Crystals grown from aqueous solution by slow evaporation. Characterized by powder

X-ray diffraction data. Monoclinic, space group P21/c. Isostructural with picromerite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Manonmoni et al. (2014).
Wavenumbers (cm21): 3233s, 3140sh, 2360, 2328w, 2238, 2070w, 1699, 1559, 1142s, 1098s,

983, 862sh, 760, 631s, 572, 451, 441.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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S591 Rubidium beryllium sulfate hydrate Rb2Be(SO4)2∙2H2O

Origin: Synthetic.
Description: Obtained from the three-component system Rb2SO4–BeSO4–H2O by the method of

isothermal decrease of supersaturation. The crystal structure is solved. Monoclinic, space group P21/
c, a¼ 11.371(2), b¼ 11.858(2), c¼ 7.431(1) Å, β¼ 96.33(1)�, V¼ 996.0 Å3, Z¼ 4.Dcalc¼ 2.722 g/
cm3. In the structure, the [Be(SO4)2(H2O)2]

2� units are arranged to form double layers.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Georgiev et al. (2007).
Wavenumbers (IR, cm21): 3226s, 3090sh, 2413, 2320sh, 1688w, 1639, 1203s, 1188s, 1178sh, 1151s,

1127sh, 1081sh, 1060s, 993s, 928, 852w, 776, 736, 620s, 613sh, 599, 565s, 460, 452, 442sh.
Note: The bands indicated by Georgiev et al. (2007) at 3054 and 2294 cm�1 are observed as shoulders

at 3090 and 2320 cm�1. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1212, 1185, 1156, 1120w, 1078s, 1007s, 993sh, 924w, 757, 633,

606, 589, 557w, 497, 461, 436, 387, 311w, 266.

S592 Silver indium sulfide AgIn5S8 AgIn5S8
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Origin: Synthetic.
Description: A compound with cubic spinel-type structure. Space group Fd3m, Z ¼ 2. One indium

atom has tetrahedral coordination, and four indium atoms have octahedral coordination.
Kind of sample preparation and/or method of registration of the spectrum: Reflection of a single

crystal.
Source: Gasanly et al. (1993).
Wavenumbers (IR, cm21): 359w, 327s, 282, 222s, 87.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 354, 328s, 292, 181, 69.

S593 Silver tantalum sulfide AgTaS3

Origin: Synthetic.
Description: Prepared by heating a mixture of Ta, S, and Ag2S powders at 500 �C for 4 days.

Orthorhombic, with a layered structure; a ¼ 3.3755(2), b ¼ 14.0608(11), c ¼ 7.7486(7) Å,
Z ¼ 4. Dmeas ¼ 6.82(3) g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Ishii and Wada (2000).
Wavenumbers (IR, cm21): 350, 314, 281s, 216s, 192sh, 158sh, 48w, 31sh, 24w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 384s, 355, 322, 307, 260, 209, 166, 124s, 111s, 30.
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S594 Sodium cadmium sulfate hydrate NaCd(SO4)2∙2H2O

Origin: Synthetic.
Description: Monoclinic, space group P21/c.
Kind of sample preparation and/or method of registration of the spectrum: CsI and/or KBr disc.

Transmission.
Source: Peytavin et al. (1972a).
Wavenumbers (IR, cm21): 1185s, 1165s, 1140s, 1100s, 1060s, 985, 834w, 800sh, 750, 654,

630, 610, 587, 470, 453, 390sh, 385w, 280sh, 263s, 250sh, 220.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1174, 1165sh, 1132s, 1120sh, 1047s, 991s, 800w, 750w, 652, 633,

619, 590, 467s, 446s, 358w, 310sh, 270, 260, 220sh, ~150sh.

S595 Sodium manganese(II) sulfate alluadite-type Na2+xMn2-x/2(SO4)3
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Origin: Synthetic.
Description: Prepared by dehydratation of the compound Na2Mn(SO4)3�2H2O with a kröhnkite-type

structure. Characterized by powder X-ray diffraction data. The crystal structure is solved. Mono-
clinic, space group P21/c, a ¼ 11.541(1), b ¼ 12.944(1), c ¼ 6.5875(6) Å, β ¼ 95.149(3)�,
V ¼ 980.13(26) Å3, Z ¼ 4. Dcalc ¼ 3.078 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Marinova et al. (2015).
Wavenumbers (IR, cm21): 1627w, 1178, 1123s, 1111s, 1083s, 1067s, 999, 991, 647sh, 629, 611,

599, ~450w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The weak band at 1627 cm�1 corresponds to the admixture of H2O. In the
cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 1220w, 1117w, 1051w, 1012s, 993sh, 664, 635, 616, 602, 466.

S596 Sodium thioborate Na3B3S6 Na3B3S6

Origin: Synthetic.
Description: Obtained from melt prepared from Na2S and B2S3. Characterized by powder X-ray

diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Martin and Bloyer (1991).
Wavenumbers (cm21): 1239w, 1221, 1104w, 957sh, 934, 914s, 872s, 828, 525w, 513w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands above 1100 cm�1 may correspond to the admixture of a borate.
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S597 Sodium thioborate Na3BS3 Na3BS3

Origin: Synthetic.
Description: Obtained from melt prepared from Na2S and B2S3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Martin and Bloyer (1991).
Wavenumbers (cm21): 1242, 1155, 1027w, 914w, 843, 818s, 800s, 770s, 749sh, 710sh, 527sh,

486w, 465, 425w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands above 1100 cm�1 may correspond to the admixture of a borate.

S598 Tellurium(IV) oxosulfate Te2(SO4)O3
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Origin: Synthetic.
Description: Orthorhombic, space group P21mn, a ¼ 4.676(2), b ¼ 8.911(3), c ¼ 6.879(4) Å,

V ¼ 286.63 Å3, Z ¼ 2. Dcalc ¼ 4.61 g/cm3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Gaitán et al. (1985).
Wavenumbers (cm21): 1195, 1055s, 1000s, 965, 855sh, 848w, 780, 687sh, 650s, 620, 505, 460w,

430, 310.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S599 Triammoniun hydrogen disulfate (NH4)3H(SO4)2

Origin: Synthetic.
Description: Monoclinic, space group C2/c, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: Nujol and Fluorolube

mulls. Transmission.
Source: Kamoun et al. (1988).
Wavenumbers (IR, cm21): 3223s, 3043s, 2855, 1733w, 1680w, 1414s, 1180s, 1125s, 1080, 960sh,

910, 597s, (570), 444.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3145, 2870sh, 1674w, 1415w, 1078s, 966s, 619, 606, 590, 467, 442.
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S600 Alpersite (Mg,Cu)(SO4)∙7H2O

Origin: Malanjkhand porphyry copper mine, near Balaghet, Madhya Pradesh, India.
Description: Light blue crusts associated with epsomite, hexahydrite, and gypsum. Characterized by

powder X-ray diffraction data and semiquantitative electron microprobe analysis.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Equeenuddin (2015).
Wavenumbers (cm21): 3600, 3054s, 2312, 2121sh, 2077sh, 1679s, 1184s, (1152sh), (1111), (1092),

(1074sh), 984w, 859, (809sh), 790, (765sh), 460sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands of H2O (at 3054 and 1679 cm�1) are anomalously strong and
may be due to adsorbed water.

S601 Aluminocopiapite (Al,Mg)Fe3+4(SO4)6(OH,O)2∙20H2O
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Origin: Synthetic.
Description: Prepared from Fe2(SO4)3�6.25H2O and Al2(SO4)3�17H2O at 25�, in the presence of

excess of water. Characterized by powder X-ray diffraction data. Triclinic, a ¼ 7.3853(7),
b ¼ 18.249(2), c ¼ 7.3280(6) Å, α ¼ 93.873(7)�, β ¼ 102.221(6)�, γ ¼ 99.163(6)�, V ¼ 947.7
(2) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Absorption.
Source: Majzlan and Michallik (2007).
Wavenumbers (cm21): 3528sh, 3348, 3150 (broad), 1630, 1127s, 1075, 1030, 988s, 657sh, 595, 551.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

S602 Amarillite NaFe3+(SO4)2∙6H2O

Origin: Xitieshan Pb-Zn deposit, Qaidam basin, Qinghai province, China.
Description: Pale yellow or white, fibrous and tabular aggregates, from the association with copiapite,

römerite, coquimbite, and melanterite. The crystal structure is solved. Monoclinic, space group
P12/c1, a ¼ 8.4219(17), b ¼ 10.844(2), c ¼ 12.461(3) Å, β ¼ 95.59(3)�, V ¼ 1132.6(4) Å3, Z ¼ 4.
Dcalc ¼ 2.223 g/cm3. The empirical formula is (Na0.97Ca0.01Pb0.01)
Fe1.04Al0.07(SO4)1.05(OH)0.42�5.78H2O.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Yang and Giester (2016).
Wavenumbers (cm21): 3522sh, 3478, 3350sh, 3110, 1631, 1213w, 1092s, 989s, 708, 675, 634, 595,

549s, 446.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band position denoted by Yang and Giester (2016) as 3442 cm�1 was
determined by us at 3478 cm�1.
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S603 Campostriniite (Bi2.5Na0.5)(NH4)2Na2(SO4)6∙H2O

Origin: La Fossa crater, Vulcanoisland, Lipari, Eolie (Aeolian) islands, Messina province, Sicily, Italy
(type locality).

Description: White prismatic crystals from the association with adranosite, demicheleite-(Br),
demicheleite-(I), argesite, and sassolite. Holotype sample. The crystal structure is solved. Mono-
clinic, space group C2/c, a ¼ 17.748(3), b ¼ 6.982(1), c ¼ 18.221(3) Å, β ¼ 113.97(1)�, V ¼ 2063
(1) Å3, Z ¼ 4. Dcalc ¼ 3.87 g/cm3. The empirical formula is Bi2.43N1.52Na2.41K0.48S6.07H8.08O25.
The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.396 (100) (110),
7.507 (75) (�202), 2.766 (60) (�316), 3.380 (57) (312), 5.677 (55) (111), 3.166 (50) (402).

Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Demartin et al. (2015).
Wavenumbers (cm21): 3470, 3265s, 3071, 1654, 1588, 1553sh, 1418s, 1198s, 1043s, 1036s,

1021sh, 932s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published

spectrum. Weak bands in the range from 2800 to 3000 cm�1 correspond to the admixture of an
organic substance. Weak bands in the range from 2300 to 2400 cm�1 correspond to atmospheric CO2.

S604 Changoite (slightly deuterated) Na2Zn(SO4)2∙4H2O
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Origin: Synthetic.
Description: Prepared by crystallization from aqueous solurion. Monoclinic, space group P21/a,

a ¼ 5.536, b ¼ 8.249, c ¼ 11.078 Å, β ¼ 100.25�.
Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Peytavin et al. (1972b).
Wavenumbers (cm21): 3400s, 3340s, 3230, 3140s, 2520w, 2480w, 2380w, 2340w, 1820w, 1720sh,

1675, 1600, 1165s, 1105s, 1084sh, 1080s, 990, 910, 855, 730, 670, 632, 622, 608, 590, 465, 443sh,
435.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. The weak bands in the range from 2000 to 2600 cm�1 correspond to D–O-
stretching vibrations.

S605 Copiapite Fe2+Fe3+4(SO4)6(OH)2∙20H2O

Origin: Synthetic.
Description: Prepared from Fe2(SO4)3�6.25H2O and Fe(SO4)�7H2O at 25�, in the presence of excess

of water. Characterized by powder X-ray diffraction data. Triclinic, a ¼ 7.3858(9), b ¼ 18.592(3),
c ¼ 7.3543(8) Å, α ¼ 92.273(9)�, β ¼ 102.274(8)�, γ ¼ 98.290(9)�, V ¼ 973.9(2) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Absorption.
Source: Majzlan and Michallik (2007).
Wavenumbers (cm21): 3523sh, 3344, 3234sh, 1630, 1216s, 1130s, 1075s, 1035s, 991s, 657, 597,

551.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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S606 Ferricopiapite Fe3+0.67Fe
3+

4(SO4)6(OH)2∙20H2O

Origin: Synthetic.
Description: Prepared from Fe2(SO4)3�6.25H2O in the presence of excess of water at 25 �C.

Characterized by powder X-ray diffraction data. Triclinic, a ¼ 7.3871(5), b ¼ 18.362(1),
c ¼ 7.3286(4) Å, α ¼ 93.938(5)�, β ¼ 102.208(4)�, γ ¼ 98.920(4)�, V ¼ 954.5(1) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Absorption.
Source: Majzlan and Michallik (2007).
Wavenumbers (cm21): 3532sh, 3343, 3170, 1628, 1215s, 1127s, 1071s, 1030s, 988s, 656w, 551sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

S607 Geschieberite (?) K2(UO2)(SO4)2∙2H2O
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Origin: Synthetic.
Description: Prepared by cooling a hot saturated solution of potassium sulfate and uranyl sulfate

mixed in equimolar proportions. Characterized by chemical analyses.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.

Transmission.
Source: Narasimham and Girija (1967).
Wavenumbers (cm21): 3717sh, 3658, 3623sh, 3334sh, 3284s, 3226sh, 3106, 2970sh, 2950s, 2920sh,

2247w, 2008w, 1850w, 1704sh, 1638sh, 1600, 1543w, 1444s, 1395, 1370, 1220sh, 1207sh, 1173s,
1141s, 1114s, 1070, 1027s, 996s, 924s, 837w, 785w, 771w, 717w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

S608 Gianellaite (Hg2N)2(SO4)�nH2O

Origin: Perry Pit of the Mariposa mine, Terlingua District, Brewster Co., Texas, USA (type locality).
Description: Type material deposited in the Natural History Museum of Los Angeles Co., Museum

No. 44159. The crystal structure is solved. Cubic, space group F-43m, a¼ 863.1(16) Å, Z¼ 4. The
(NHg4) tetrahedra sharing corners form a framework of the cuprite-type structure.

Kind of sample preparation and/or method of registration of the spectrum: Thin film, prepared by
a diamond micro-compression cell. Absorption.

Source: Cooper et al. (2016a).
Wavenumbers (cm21): 3390sh, 3342, 3310, 1640sh, 1610, 1600sh, 1315w, 1265w, 1088sh, 1064s,

953, 872w, 803, 688s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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S609 Gordaite NaZn4(SO4)(OH)6Cl∙6H2O

Origin: Juan de Fuca Ridge, northeastern Pacific Ocean (130� 220 3400 W, 44� 380 5300 N).
Description: Tabular crystals from the association with sphalerite, baryte, with minor pyrite, pyrrho-

tite, sulfur, and Fe-hydroxides. Characterized by electron microprobe analysis. Trigonal, a ¼ 8.353
(2), c ¼ 13.087(8) Å. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)]
are: 13.19 (100) (001), 3.737 (24) (103), 2.967 (30) (104), 2.737 (24) (120), 2.675 (34) (121), 2.523
(30) (122), 2.098 (24) (124).

Kind of sample preparation and/or method of registration of the spectrum: Thin-tabular chip.
Transmission.

Source: Nasdala et al. (1998).
Wavenumbers (IR, cm21): 3577w, 3508s, 3454, 3401s, 3342s, 3235sh, 1687, 1649, 1530, 1460w,

1400w, 1144sh, 1116s, 1074sh, 1033w, 988s, 913w, 837, 784s, 756sh, 678w, 651sh, 603s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3508, 3422, 1099, 973s, 598, 394.

S610 Ivsite Na3H(SO4)2

Origin: Synthetic.
Description: Monoclinic, space group P21/c, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: Nujol and Fluorolube

mulls at 20 K. Transmission.
Source: Fillaux et al. (1991).
Wavenumbers (IR, cm21): 1635, 1535, 1400, 1236, 1197, 1170, 1095, 972, 940, 850sh, 772, 658,

610, 580, 530, 500, 458, 438, 310.
Note: These wavenumbers given by Fillaux et al. (1991) in a table don’t conform to the figure from this

paper. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1242, 1198, 1162, 1154, 1115, 973, 639, 613, 604, 522, 479,

445, 437, 308, 182, 155, 126, 95, 76, 51.
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S611 Joegoldsteinite MnCr2S4

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. Cubic, space group Fd3m.
Kind of sample preparation and/or method of registration of the spectrum: Reflection.
Source: Lutz et al. (1983).
Wavenumbers (cm21): 385s, 321s, 257w, 118w.

S612 Kalininite ZnCr2S4

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. Cubic, space group Fd3m.
Kind of sample preparation and/or method of registration of the spectrum: Reflection.
Source: Lutz et al. (1983).
Wavenumbers (cm21): 390s, 342s, 245w, 112w.

S613 KröhnkiteMn analogue Na2Mn(SO4)2∙2H2O

Origin: Synthetic.
Description: Prepared by crystallization from the Na2SO4–MnSO4–H2O system at 25 �C using the

method of isothermal decrease in super-saturation. Characterized by DTA, TG, and powder X-ray
diffraction data. Monoclinic, space group P21/c, a ¼ 5.8206(2), b ¼ 12.9958(21), c ¼ 5.4920
(18) Å, β ¼ 106.10(4)�, V ¼ 399.1 Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Marinova et al. (2015).
Wavenumbers (IR, cm21): 1708w, 1192s, 1146s, 1097s, 1079s, 1063s, 985, 825w, 750, 646,

630, 607, 582, 472w, 456w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1170w, 1128, 1045, 1020, 988s, 646w, 632w, 619, 463, 446w.
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S614 Lishizhenite ZnFe3+2(SO4)4∙14H2O

Origin: Xitieshan, Qinghai Province, China (type locality).
Description: Pale violet tabular crystals from the association with römerite, copiapite, sulfur, gypsum,

pyrite, and quartz. Holotype sample. Triclinic, space group P, a ¼ 6.477(1), b ¼ 15.298(3),
c¼ 6.309(1), α¼ 90.20(1)�, β¼ 101.11(1)�, γ ¼ 93.97(1)�, V¼ 611.9(1) Å3, Z¼ 1.Dmeas¼ 2.206
(4) g/cm3, Dcalc ¼ 2.201 g/cm3. Optically biaxial (�), α ¼ 1.522(2), β ¼ 1.568(1), γ ¼ 1.578(4),
2V ¼ 70(5)�.

Source: Li and Chen (1990).
Wavenumbers (cm21, for absorption intervals): 3351–3035s, 1658–1651, 1131–997s, 667–537,

481.

S615 Magnesiocopiapite MgFe3+4(SO4)6(OH)2∙20H2O

Origin: Synthetic.
Description: Prepared from Fe2(SO4)3�6.25H2O and Mg(SO4)�7H2O at 25�, in the presence of excess

of water. Characterized by powder X-ray diffraction data. Triclinic, a ¼ 7.3451(4), b ¼ 18.794(1),
c ¼ 7.3891(4) Å, α ¼ 91.369(5)�, β ¼ 102.169(4)�, γ ¼ 98.831(4)�, V ¼ 983.6(1) Å3.

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Absorption.
Source: Majzlan and Michallik (2007).
Wavenumbers (cm21): 3523sh, 3308s, 3278s, 3242sh, 3125sh, 1634, 1215s, 1188sh, 1127s, 1078,

1030, 991s, 721sh, 657sh, 633sh, 595s, 552.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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S616 Mercallite KHSO4

Origin: Synthetic.
Description: Crystals grown from aqueous solution of H2SO4 and K2SO4 by slow evaporation.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Transmission.
Source: Dey et al. (1982).
Wavenumbers (IR, cm21): 3100s, 2930, 2510, 1328s, 1295sh, 1284s, 1255s, 1228s, 1170s, 1084sh,

1068s, 1005s, 884s, 872s, 849s, 660, 632, 616s, 589s, 576s, 454, 435, 405w, 265, 220, 183, 160,
153, 141sh, 132sh, 112, 103, 94, 80, 54, 36.

Note: The intensities of the IR bands are indicated in accordance with authors’ tabular data. In the cited
paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 2700, 1337, 1265, 1242, 1170, 1026, 1001, 872, 855, 598, 589,
581, 572, 452, 445, 182, 139, 126, 102, 82, 50, 46.

S617 Mercallite KHSO4

510 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



Origin: Synthetic.
Description: Pyramidal crystals grown from aqueous solution of H2SO4 and K2SO4. Orthorhombic,

space group Pbca.
Kind of sample preparation and/or method of registration of the spectrum: Absorption of a

polycrystalline sample at 90 K. Kind of sample preparation is not indicated.
Source: Goypiron et al. (1980).
Wavenumbers (IR, cm21): 2984sh, 2873, 2587, 2460, 2405, 2210sh, 1916w, 1730w, 1687w, 1608w,

1555w, 1342s, 1303sh, 1290s, 1259, 1230, 1200sh, 1175s, 1089, 1073s, 1000s, 889s, 855s,
835, 665, 640, 615s, 597s, 591sh, 576s, 456s, 435, 431sh, 416w, 404

Note: The wavenumbers were determined by us based on spectral curve analysis of the published
spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, for a polycrystalline sample at 300 K, cm21): 2860w, 1257sh, 1244w,
1219w, 1171w, 1026s, 1001s, 883w, 870w, 855, 837w, 625w, 600sh, 596, 589, 581, 573sh, 455sh,
444, 419sh, 411, 192, 182, 139, 128, 126, 124, 116, 108, 102, 96, 84, 83, 82, 76, 75, 60, 50, 47, 45,
37.

S618 Plášilite Na(UO2)(SO4)(OH)∙2H2O

Origin: Blue Lizard mine, White Canyon District, San Juan County, Utah, USA (type locality).
Description: Yellow platelets. Investigated by A.V. Kasatkin. Characterized by single-crystal X-ray

diffraction data. Monoclinic, a¼ 8.702, b¼ 13.822, c¼ 7.042 Å, β ¼ 112.08�, V ¼ 384.9 Å3. The
empirical formula is (electron microprobe): Na0.88(UO2)1.06(SO4)1.06(OH)x�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3614s, 3535, 3430sh, 3405, 3360, 3250sh, 2060w, 1624, 1426w, 1191s,

1127s, 1073s, 1006, 927s, 898, 833, 797w, 693w, 671, 611, 601, 536, 472, 431, 384.
Note: The spectrum was obtained by N.V. Chukanov.
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S619 Picromerite dimorph (?) K2Mg(SO4)2∙6H2O

Origin: Synthetic.
Description: Crystals obtained from saturated aqueous solution by slow evaporation at room temper-

ature. Characterized by thermoanalytical data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Dhandapani et al. (2006).
Wavenumbers (cm21): 3243s, 2265, 2226, 2208, 2146, 2115, 2083, 1955, 1698, 1600, 1555, 1115s,

983s, 882, 749, 618s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands at 2265, 2226, 2208, 2146, 2115, 2083, and 1955 cm�1 may
correspond to acid groups.

S620 Hydronium jarosite Pb,As-bearing (H3O,Pb)Fe
3+

3(SO4,AsO4)2(OH,H2O)6
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Origin: Synthetic.
Description: Prepared from an aqueous solution containing Pb(NO3)2, Fe2(SO4)3�5H2O, and H3AsO4 at

95 �C. Characterized by elemental analysis and powder X-ray diffraction data. Trigonal, a¼ 7.3417(8),
c¼ 16.9213(6)Å. The empirical formula is (H3O)0.68Pb0.32Fe2.86(SO4)1.69(AsO4)0.31(OH)5.59(H2O)0.41.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Forray et al. (2014).
Wavenumbers (cm21): 3343s, 2930sh, 1634, 1189, 1090s, 1083sh, 1005sh, 999s, 855, 814,

625, 507s, 472s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S621 Hydronium jarosite Pb,Cu-bearing (H3O,Pb)(Fe
3+,Cu2+)3(SO4)2(OH)6

Origin: Synthetic.
Description: Prepared from an aqueous solution containing Pb(NO3)2, Fe2(SO4)3�5H2O, and H2SO4,

and Cu(SO4)�5H2O at 95 �C. Characterized by elemental analysis and powder X-ray diffraction
data. Trigonal, a ¼ 7.3208(8), c ¼ 17.0336(7) Å. The empirical formula is
(H3O)0.67Pb0.33Fe2.71Cu0.25(SO4)2.00(OH)5.96(H2O)0.04.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Forray et al. (2014).
Wavenumbers (cm21): 3362s, 1642, 1195, 1092s, 1083sh, 1016s, 1005sh, 628, 513s, 475.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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S622 Hydronium jarosite Pb,Zn-bearing (H3O,Pb)(Fe
3+,Zn)3(SO4)2(OH)6

Origin: Synthetic.
Description: Prepared from an aqueous solution containing Pb(NO3)2, Fe2(SO4)3�5H2O, and H2SO4,

and Zn(SO4)�7H2O at 95 �C. Characterized by elemental analysis and powder X-ray diffraction
data. Trigonal, a ¼ 7.3208(8), c ¼ 17.0336(7) Å. The empirical formula is
(H3O)0.57Pb0.43Fe2.70Zn0.21(SO4)2.00(OH)5.95(H2O)0.05.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Forray et al. (2014).
Wavenumbers (cm21): 3357s, 1634, 1199, 1089s, 1083sh, 1015s, 1005sh, 631, 587, 505s, 475.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S623 Shumwayite (UO2)2(SO4)2∙5H2O
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Origin: White Canyon district, San Juan Co., Utah, USA (type locality).
Description: Greenish-yellow prisms from the association with other secondary sulfates. Holotype

sample. The crystal structure is solved. Monoclinic, space group P21/c, a ¼ 6.74747(15),
b ¼ 12.5026(3), c ¼ 16.9032(12) Å, β ¼ 90.919(6)�, V ¼ 1425.79(11) Å3, Z ¼ 4.
Dcalc ¼ 3.831 g/cm3. Optically biaxial (+/�), α ¼ 1.581(1), β ¼ 1.588(1), γ ¼ 1.595(1),
2V ¼ 89.8(8)�. The empirical formula is (electron microprobe): U2.01S1.99O12.00�5H2O. The stron-
gest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.58 (48) (�111, 111), 5.11
(100) (013), 4.86 (44) (�112, 112), 4.04 (47) (031), 3.459 (42) (�131, –114, 114), 3.373
(50) (200, 033, –132).

Kind of sample preparation and/or method of registration of the spectrum: Reflection of
powdered mineral mixed with KBr.

Source: Kampf et al. (2016f).
Wavenumbers (IR, cm21): 3500, 3425, 3230sh, 1635, 1615w, 1435w, 1400w, 1365w, 1295w, 1202,

1143s, 1110s, 1055s, 1015, 951, 937, 868, 854, 810, 795, 730, 670, 655.
Note: The band position denoted by Kampf et al. (2016f) as 927 cm�1 was determined by us at

937 cm�1. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1185, 1155, 1100, 1073s, 1050, 1035, 1015, 930, 865s, 850s,

645, 615, 470, 430, 273sh, 255, 210, 200s, 160, 150.

S624 Carlsonite (NH4)5Fe
3+

3(SO4)6O∙7H2O

Origin: Near Huron River, 6.1 km WSW of Milan, USA (type locality).
Description: Yellow to orange-brown crystals from the association with anhydrite, boussingaultite,

gypsum, and lonecreekite. Holotype sample. The crystal structure is solved. Triclinic, space group
P-1, a ¼ 9.5927(2), b ¼ 9.7679(3), c ¼ 18.3995(13) Å, α ¼ 93.250(7)�, β ¼ 95.258(7)�,
γ ¼ 117.993(8)�, V ¼ 1506.15(16) Å3, Z ¼ 2. Dcalc ¼ 2.167 g/cm3. Optically biaxial (�),
α ¼ 1.576(1), β ¼ 1.585(1), γ ¼ 1.591(1), 2V ¼ 80(1)�. The empirical formula is
[(NH4)4.64Na0.24K0.12]Fe

3+
3.05O(SO4)6�6.93H2O. The strongest lines of the powder X-ray diffrac-

tion pattern [d, Å (I, %) (hkl)] are: 9.23 (100) (002), 8.26 (40) (100, 011), 7.57 (43) (�111, 1–11,
011), 4.93 (23) (�1–11, –120), and 3.144 (41) (multiple).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of powdered mineral.
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Source: Kampf et al. (2016h).
Wavenumbers (IR, cm21): 3176, 3044, 2858, 1768w, 1644sh, 1624, 1416, 1179s, 1127, 1107,

1054s, 983s, 788sh, 660, 610, 588.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1219, 1188, 1160, 1140, 1104, 1066, 1015s, 670w, 629w, 617w,

576, 552, 514, 487, 436, 275s, 245s.

S625 Huizingite-(Al) (NH4)9(Al,Fe
3+)3(SO4)8(OH)2�4H2O

Origin: Near Huron River, 6.1 km WSW of Milan, USA (type locality).
Description: Yellow drusy aggregates from the association with adranosite-(Al), anhydrite,

boussingaultite, mascagnite, and salammoniac. Holotype sample. The crystal structure is solved.
Triclinic, space group P-1, a ¼ 9.7093(3), b ¼ 10.4341(3), c ¼ 10.7027(8) Å, α ¼ 77.231(5)�,
β ¼ 74.860(5)�, γ ¼ 66.104(5)�, V ¼ 948.73(9) Å3, Z ¼ 1. Dcalc ¼ 2.026 g/cm3. Optically biaxial
(+), α ¼ 1.543(1), β ¼ 1.545(1), γ ¼ 1.563(1), 2V ¼ 40(3)�. The empirical formula is
[(NH4)8.76Na0.22K0.02](Al1.65Fe

3+
3.05)(SO4)8.00�4.02H2O. The strongest lines of the powder X-ray

diffraction pattern [d, Å (I, %) (hkl)] are:
8.82 (60) (100), 5.04 (69) (121), 3.427 (100) (�2�21), 3.204 (68) (�211), 3.043 (94) (2–12, 312).
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection of powdered mineral.
Source: Kampf et al. (2016h).
Wavenumbers (IR, cm21): 3192, 3022, 1667w, 1413, 1215w, 1183w, 1117, 1083sh, 1040s, 1023s,

980s, 831w, 798w, 776w, 751w, 694w, 664w, 640, 605.
Note: Bands in the range from 2800 to 3000 cm�1 correspond to the admixture of an organic

substance. The IR bands at 1083, 798, 776, and 694 cm�1 are close to those of quartz. The
wavenumbers were partly determined by us based on spectral curve analysis of the published
spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 1205, 1151, 1123, 1064, 1027s, 1010s, 1003s, 980s, 673, 641,
618, 478, 468, 448, 263, 223.

516 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



S626 Alunogen Al2(SO4)3(H2O)12∙5H2O

Origin: Kalamos fumarole field, Milos Island, Greece.
Description: White sugar-like aggregate. Characterized by powder X-ray diffraction data. The empiri-

cal formula is (electron microprobe): (Al1.97Fe0.03)(SO4)3�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3500sh, 3353s, 3030s, 2505, 2085w, 1670, 1635sh, 1104s, 983, 933, 895sh,

699, 600, 578, 485sh.
Note: The spectrum was obtained by N.V. Chukanov.

S627 Vanadyl sulfate (VO)(SO4)
Pauflerite tetragonal dimorph
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Origin: Synthetic.
Description: Obtained by heating commercial VSO5�xH2O first at 165 �C for 12 h, then at 260 �C for

4 h, and finally at 330 �C for 1 h. Tetragonal, space group P4/n.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stranford and Condrate Sr (1984a).
Wavenumbers (cm21): 1183, 1091s, 969, 687w, 588.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, a figure of the Raman spectrum is given.

S628 Zaherite Al12(SO4)5(OH)26∙20H2O

Origin: Pofadder, Bushmanland, South Africa.
Description: White to light bluish-green cryptocrystalline aggregate in narrow veins, in close associa-

tion with natro-alunite and hotsonite. Triclinic, a ¼ 5.55, b ¼9.74, c ¼ 18.43 Å, α ¼ 99.71�,
β ¼ 89.13�, γ ¼ 94.97�.

Characterized by chemical analyses and thermal data. The ratio Al:S is close to 12:5. The strongest
lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 18.12 (100) (001), 9.56
(5) (010), 9.08 (4) (002), 4.82 (6) (0�21), 4.61 (8) (110), 4.56 (4) (0�22), 4.44 (4) (021), 3.61
(4) (1�2�1), 3.33 (8) (015).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Beukes et al. (1984).
Wavenumbers (cm21): 3600, 1700, 1150s, 985, 960, 905.
Note: The intensity of the band of O–H-stretching vibrations (at 3600 cm�1) is anomalously low.
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S629 Fibroferrite Fe3+(SO4)(OH)∙5H2O

Origin: Ancient Pb-Zn mine of Saint Felix de Paillères, Anduze, Gard, Languedoc-Roussillon, France.
Description: Hand-picked crystals. The crystal structure is solved. Trigonal, space group R-3,

a ¼ 24.199(3), c ¼ 7.6476(9) Å, V ¼ 3878.4(8) Å3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Ventruti et al. (2016).
Wavenumbers (IR, cm21): 5180w, 4487w, 4234w, 3590sh, 3561sh, 3526, 3400s, 3192sh, 2427w,

2175w, 1662, 1612, 1426w, 1221s, 1134s, 1081s, 1038s, 998s, 659sh, 625sh, 600, 508, 475sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3590, 3522, 3140, 3411, 1175, 1135, 1097, 1073, 1031, 998s,

613, 590, 523, 488, 427, 390, 297, 287, 272, 256, 219, 187, 173, 133, 114.

S630 Pauladamsite Cu4(SeO3)(SO4)(OH)4∙2H2O
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Origin: Santa Rosa mine, Darwin district, Inyo Co., California, USA (type locality).
Description: Green crystals from the association with brochantite, chalcanthite, gypsum, ktenasite,

mimetite, schulenbergite, and smithsonite. Holotype sample. The crystal structure is solved.
Triclinic, space group P-1, a ¼ 6.0742(7), b ¼ 8.4147(11), c ¼ 10.7798 (15) Å, α ¼ 103.665
(7)�, β ¼ 95.224(7)�, γ ¼ 90.004(6)�, V ¼ 533.03(12) Å3, Z ¼ 2. Dcalc ¼ 3.535 g/cm3. Optically
biaxial (�), α ¼ 1.667 (calc.), β ¼ 1.723(2), γ ¼ 1.743(2), 2V ¼ 60(2)�. The empirical formula is
(electron microprobe, H2O calculated): H8.50Cu3.55Zn0.25Se0.98S1.00O13. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.5 (46) (011), 3.245 (100) (001), 5.81
(50) (011), 2.743 (49) (112), 3.994 (67) (012), 3.431 (23) (�112, –1–21, –120), 2.692 (57) (0–32, –
122, –2�12), 2.485 (39) (2–12, –1–32, 0�24).

Kind of sample preparation and/or method of registration of the spectrum: Transmission, with a
micro diamond compression cell.

Source: Kampf et al. (2016d).
Wavenumbers (IR, cm21): 3560, 3450s, 3341s, 1633, 1167, 1125s, 1086s, 980w, 873w, 836, 784,

690.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1166, 1076, 989s, 839s, 745, 679, 638w, 610w, 487, 412, 396, 299,

270, 222, 166, 153.

S631 Katerinopoulosite (NH4)2Zn(SO4)2�6H2O

Origin: Esperanza mine, Lavrion District, Attikí Prefecture, Greece (type locality).
Description: Greenish antholite crust from the association with chalcanthite, nickelboussingaultite,

ammoniojarosite, aurichalcite, and goethite. Holotype sample. Monoclinic, space group: P21/a,
a¼ 9.230(6), b¼ 12.476(4), c¼ 6.249(4) Å, β¼ 106.79(5)�, V¼ 688.9(9) Å3, Z¼ 2.Dmeas¼ 1.97
(2) g/cm3, Dcalc ¼ 1.986 g/cm3. Optically biaxial (+), α ¼ 1.492(2), β ¼ 1.496(2), γ ¼ 1.502(2),
2V ¼ 80(5)�. The empirical formula is (H3O)0.13(NH4)1.91(Zn0.86Ni0.10Cu0.02)
(SO4)2.00�6.62H2O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)]
are: 5.400 (37) (011), 4.411 (19) (200), 4.314 (19) (021), 4.229 (24) (12�1), 4.161 (100) (20–1,
210, 111), 3.749 (53) (130), 3.034 (29) (211, 11�2).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
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Wavenumbers (cm21): 3565sh, 3475sh, 3278s, 3070sh, 2920sh, 2850, 2215w, 2130w, 2050w, 1685,
1640sh, 1468, 1433, 1144s, 1086s, 981, 835sh, 743, 710sh, 627, 615, 552w, 519w, 500sh, 459w, 368w.

Note: The spectrum was obtained by N.V. Chukanov.

S632 Charlesite Ca6Al2(SO4)2B(OH)4(OH,O)12∙26H2O

Origin: Wessels mine, Hotazel, Kalahari manganese fields, Northern Cape province, South Africa.
Description: Yellow. Intermediate zone of a mixed ettringite-charlesite-sturmanite crystal. The empir-

ical formula is (electron microprobe): Ca6.00(Al0.7Fe0.6Si0.5Mn0.2)(SO4)2.27(CO3)x[B(OH)4]~1(OH,
O)12∙nH2O (x � 1).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3620, 3440s, 3250sh, 1678, 1641sh, 1420, 1112s, 986, 935, 876, 615s, 565sh,

475, 324.
Note: The spectrum was obtained by N.V. Chukanov.

S633 Osakaite Zn4(SO4)(OH)6∙5H2O
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Origin: Synthetic.
Description: Obtained by mixing of 1 g ZnO powder with 30 ml 0.5 M solution of ZnSO4 for 72 h.

Characterized by thermal and powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stanimirova et al. (2016).
Wavenumbers (cm21): 1636, 1149s, 1130s, 1074, 1031, 961, 807, 768, 694, 661sh, 606s, 519, 442w.

S634 Stephanite Ag5SbS4

Origin: Proano mine, Fresnillo, Zacatecas, Mexico.
Description: Black pseudohexagonal crystals. Orthorhombic, a ¼ 7.8396(7), b ¼ 12.4684(9),

c ¼ 8.536(1) Å.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection of powdered mineral.
Source: RRUFF (2007).
Wavenumbers (cm21): 343s, 322s, 262, 235.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

S635 Changoite Na2Zn(SO4)2∙4H2O

Origin: Synthetic.
Description: Obtained by crystallization from aqueous solution.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Georgiev et al. (2016).
Wavenumbers (IR, cm21): 1672w, 1620w, 1153s, 1107s, 987, 898sh, 848w, 721, 652sh, 620s, 605s,

460, 430.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1190, 1160w, 1101w, 1067, 989s, 615, 473, 451.
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S636 Galeite Na15(SO4)5ClF4

Origin: Synthetic.
Description: Ce3+-doped sample prepared using a wet chemical method. Characterized by powder

X-ray diffraction data. The crystal structure is solved. Trigonal, space group P31m, a ¼ 12.19,
c ¼ 13.95 Å.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Bhake et al. (2016).
Wavenumbers (cm21): 1132, 1106s, 760w, 624s, 580, 555.

S637 Ktenasite (Cu,Zn)5(SO4)2(OH)6∙6H2O
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Origin: Hirao mine, Minoo, Osaka, Japan.
Description: Aggregates of flattened prismatic crystals from the association with primary sulfides,

gypsum, smithsonite, hydrozincite, aurichalcite, schulenbergite, brianyoungite, serpierite,
brochantite, etc. Characterized by powder X-ray diffraction data. Monoclinic, a ¼ 5.590(1),
b ¼ 6.161(1), c ¼ 23.741(3) Å, β ¼ 95.628(3)�. Dmeas ¼ 2.93 g/cm3. The empirical formula is
(Cu3.446Zn1.451Co0.080Pb0.018Ni0.007)(SO4)2.003(OH)5.998�5.99H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ohnishi et al. (2002).
Wavenumbers (cm21): 3580sh, 3420s, 1630, 1408w, 1118s, 1095s, 983w, 798sh, 710, 615s, 605sh,

480, 420, 387sh, 364w, 340w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S638 Lazaridisite Cd3(SO4)3∙8H2O

Origin: Synthetic.
Description: Crystals grown from aqueous solution by slow evaporation. Monoclinic, space group

C2/c.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Murthy et al. (1992).
Wavenumbers (cm21): 1103s, 980, 610, 453.
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S639 Pyracmonite (NH4)3Fe(SO4)3

Origin: La Fossa crater, Vulcano Island, Lipari, Eolie (Aeolian) islands, Messina province, Sicily,
Italy (type locality).

Description: Holotype sample. Trigonal, space group R3c, a ¼ 15.2171(14), c ¼ 8.9323(8) Å,
V ¼ 1791.3(3) Å3, Z ¼ 6. The empirical formula is [(NH4)2.74K0.23](Fe0.94Al0.04)S3.02O12. The
strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.596 (100) (110),
3.320 (30) (122), 3.371 (26) (131), 4.358 (23) (12�1), 2.829 (14) (312), 2.863 (8) (321).

Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Demartin et al. (2010).
Wavenumbers (cm21): 3203s, 3064s, 1430s.

S640 Rhodium sulfate Rh2(SO4)3

Origin: Synthetic.
Description: The crystal structure is solved. Trigonal, space group R-3, a¼ 8.068(1), c¼ 22.048(4) Å,

V ¼ 1242.8(4) Å3 (at 153 K), Z ¼ 6.
Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Wickleder et al. (2016).
Wavenumbers (cm21): 1214w, 1138w, 1152sh, 1104, 1038sh, 1004s, 956s, 738w, 705, 687, 670sh,

630, 602, 592, 575s, 554.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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S641 Rhodium sulfate hydrate Rh2(SO4)3∙2H2O

Origin: Synthetic.
Description: The crystal structure is solved. Orthorhombic, space group Pnma, a ¼ 9.2046(2),

b ¼ 12.4447(3), c ¼ 8.3337(2) Å, V ¼ 954.61(4) Å3 (at 153 K), Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Wickleder et al. (2016).
Wavenumbers (cm21): 3146, 1614w, 1211, 1157, 1108, 1037sh, 1007s, 957s, 737, 704s, 602s, 575s,

555.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S642 Sanderite Fe2+ analogue Fe2+(SO4)∙2H2O
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Origin: Synthetic.
Description: Synthesized by the hydro/solvothermal method. The crystal structure is solved. Ortho-

rhombic, space group Pccn, a ¼ 6.3160, b ¼7.7550, c ¼ 8.9880 Å, V ¼ 440.2 Å3, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Zhao et al. (2015).
Wavenumbers (cm21): 3328s, 3273s, 3190, 2132w, 2081w, 1640, 1578s, 1498w, 1292sh, 1108s,

630s, 592s, 553, 514s, 477, 448.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

S643 Schairerite Na21(SO4)7ClF6

Origin: Synthetic.
Description: Ce-doped sample synthesized by a wet method. Characterized by powder X-ray

diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Shinde and Dhoble (2015), Shinde et al. (2015).
Wavenumbers (cm21): 3183, 3026, 1405, 1313s, 1125sh, 1090s, 1064, 833, 820sh, 755, 710, 667w,

622s, 557, 517.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The bands in the range from 2800 to 3200 cm�1 indicate the presence of
covalent O–H-bonds. The band at 833 cm�1 may correspond to Na���O–H bending vibrations. The
band at 1313 cm�1 may be due to an impurity.
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S644 Zincobotryogen ZnFe3+(SO4)2(OH)�7H2O

Origin: Xitieshan Pb-Zn deposit, Qinghai, China (type locality).
Description: Orange-red prismatic crystals from the association with jarosite, copiapite,

zincocopiapite, and quartz. Holotype sample. The crystal structure is solved. Monoclinic, space
group P121/n1, a ¼ 10.504(2), b ¼ 17.801(4), c ¼ 7.1263(14) Å, β ¼ 100.08(3)�, V ¼ 1311.9
(5) Å3, Z ¼ 4. Dmeas ¼ 2.20(1) g/cm3, Dcalc ¼ 2.266 g/cm3. Optically biaxial (+), α¼ 1.542(5),
β ¼ 1.551(5), γ ¼ 1.587(5). The empirical formula is (electron microprobe): (Zn0.73Mg0.16Mn0.08)
Fe0.99(SO4)2.04(OH)0.82�7H2O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I,
%) (hkl)] are: 8.92 (100) (110), 6.32 (77) (�101), 5.56 (23) (021), 4.08 (22) (�221), 3.21
(31) (231), 3.03 (34) (032), 2.77 (22) (042).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Yang et al. (2016b).
Wavenumbers (cm21): 3550s, 3420s, 1635, 1213s, 1147s, 1090s, 1032s, 1022sh, 732, 668, 618s,

553, 499, 352w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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S645 Jurbanite Al(SO4)(OH)�5H2O

Origin: Le Cetine di Cotorniano mine, Chiusdino, Siena province, Tuscany, Italy.
Description: White aggregate. Investigated by A.V. Kasatkin. Characterized by powder X-ray dif-

fraction data and electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3432s, 3252s, 3104s, 3025sh, 2519, 2061w, 1685, 1114s, 1057s, 987, 949w,

891, 885sh, 709, 605s, 560sh, 447w, 381.
Note: The spectrum was obtained by N.V. Chukanov.

S646 Beaverite-(Zn) Pb(Fe3+2Zn)(SO4)2(OH)6

2.9 Sulfides, Sulfites, Sulfates, Carbonato-Sulfates, Phosphato-Sulfates, and Tellurato-Sulfates 529



Origin: San Francisco mine, Sierra Gorda, Chile.
Description: Brown crystalline crusts from the association with atacamite and paratacamite.

Characterized by powder X-ray diffraction data and qualitative electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3350sh, 3296s, 2032w, 1947w, 1888w, 1130sh, 1111s, 1067s, 1015, 995s,

965sh, 697w, 655w, 625, 500, 468, 440sh, 346w.
Note: The spectrum was obtained by N.V. Chukanov.

S647 Jouravskite Ca3Mn4+(SO4)(CO3)(OH)6�12H2O

Origin: N’Chwaning 3 mine, Kuruman, Kalahari manganese field, Northern Cape province,
South Africa.

Description: Yellow crystals. A boron-bearing variety. The empirical formula is (electron micro-
probe): Ca3.0(Mn0.95Fe0.04)(SO4)1.00[CO3,B(OH)4](OH,O)6�nH2O. The content of B2O3 deter-
mined by ICP-OES is 0.39 wt%.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3485sh, 3421s, 3385sh, 3245sh, 3085sh, 2880sh, 2455w, 2257w, 1696, 1645,

1392s, 1104s, 1004w, 962, 887, 719, 639, 600sh, 578s, 550sh, 485sh, 460sh, 374.
Note: The spectrum was obtained by N.V. Chukanov.

S648 Zincovoltaite K2Zn5Fe
3+

3Al(SO4)12�18H2O

Origin: Muzhievskoe deposit, Transcarpathian Region, Ukraine.
Description: Black crystals from the association with zincocopiapite, bianchite, and boyleite. A NH4-

bearing variety. Investigated by A.V. Kasatkin. Characterized by single-crystal X-ray diffraction
data and electron microprobe analyses. Cubic, a ¼ 27.2450(14) Å. The empirical formula is
K1.57(NH4)x(Zn3.54Mg0.49Cu0.44Fe

2+
0.36Mn0.08)Fe

3+
2.82Al1.30S11.97O48�18H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3520sh, 3406 (broad), 3134 (broad), 2493w, 1677, 1635, 1429w, 1134s,

1121s, 1051s, 1003, 890sh, 718w, 655sh, 626, 593, 468w, 441w.
Note: The spectrum was obtained by N.V. Chukanov. The band at 1429 cm�1 corresponds to NH4

+

cations.
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S649 Ammoniozippeite (NH4)2[(UO2)2(SO4)O2]�H2O

Origin: Blue Lizard Mine, Red Canyon, White Canyon District, San Juan Co., Utah, USA (cotype
locality).

Description: Yellow acicular crystals. Investigated by A.V. Kasatkin. Characterized by powder X-ray
diffraction data and electron microprobe analyses. The empirical formula is:
(NH4)x[(UO2)2.06(SO4)0.94O2]�nH2O. The observed lines of the powder X-ray diffraction pattern
(d, Å) are: 8.42, 8.10s, 5.46w, 4.24, 3.65, 3.48s, 3.12s, 2.85, 2.65w, 2.37w, 2.20w, 2.11w, 2.04w,
1.96w, 1.87w, 1.74w, 1.70w.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3592, 3526, 3397, 3217s, 1635, 1551w, 1402, 1162s, 1145s, 1100s, 1081s,

901, 825w, 801w, 668, 625, 605w, 583, 462, 440sh, 380.
Note: The spectrum was obtained by N.V. Chukanov. The bands at 1402 cm�1 correspond to NH4

+.
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S650 Motukoreaite-related mineral [(Mg,Al)9(OH)18][Nax(SO4,CO3)2(H2O)12] (?)

Origin: Verkhnekamskoe salt deposit, western Urals, Russia.
Description: Colorless grains from the association with halite. Investigated by I.V. Pekov.

Characterized by X-ray diffraction.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3520sh, 3449s, 3412s, 3320sh, 2104w, 1918w, 1662, 1565sh, 1363, 1162,

1110s, 1010w, 972, 830sh, 784, 670, 620, 548, 444s, 387s.
Note: The spectrum was obtained by N.V. Chukanov.

SC18 Leadhillite Pb4(SO4)(CO3)2(OH)2
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Origin: Leadhills, South Lanarkshire, Strathclyde, Scotland, UK (type locality).
Description: Characterized by chemical analyses and powder X-ray diffraction data. The chemical

composition is very close to that calculated from the ideal formula.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Russell et al. (1983).
Wavenumbers (cm21): 3475, 3360sh, 2890w, 2805w, 2425w, 2368w, 1751sh, 1738w, 1399s,

1170sh, 1140sh, 1085s, 1055s, 1049s, 1043sh, 962, 857, 838, 705, 679s, 626, 602, 419, 392,
370, 342w, 304w, 215.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum.

SC19 Leadhillite Pb4(SO4)(CO3)2(OH)2

Origin: Leadhills, South Lanarkshire, Strathclyde, Scotland, UK (type locality).
Description: Monoclinic, space group P21/a.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Moenke (1962). The spectrum was reproduced by Russell et al. (1983).
Wavenumbers (cm21): 3508, 3392sh, 1638w, 1618w, 1430sh, 1410, 1193, 1115s, 1082s,

995, 852sh, 841, 705sh, 682, 623s, 602, 435.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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SP25 Arangasite Al2(SO4)(PO4)F∙9H2O

Origin: Alyaskitovoye Sn-W deposit, Ust’-Nera, Indigirka River Basin, Sakha Republic (Yakutia),
Russia (type locality).

Description: White granular aggregate. Investigated by I.V. Pekov. The empirical formula is (electron
microprobe): Al2.09(SO4)1.00(PO4)0.89(AsO4)0.105(SiO4)0.005F1.41�nH2O. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %)] are: 10.68 (55), 9.66 (100), 5.33 (26), 4.21 (41), 3.491
(22), 3.145 (22).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3550sh, 3400sh, 3143s (broad), 2511, 2068w, 1669, 1630sh, 1098s, 1060sh,

990sh, 901, 835sh, 806, 655, 605s, 491, 396.
Note: The spectrum was obtained by N.V. Chukanov.

SP26 Ardealite Ca2(PO3OH)(SO4)∙4H2O
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Origin: Cerro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile.
Description: White soft fine-granular aggregate. Investigated by I.V. Pekov. Characterized by quali-

tative electron microprobe analyses. Confirmed by the IR spectrum.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3415sh, 3355s, 3265sh, 3030sh, 2265w, 2092w, 1673, 1155sh, 1139s, 1101s,

999s, 861, 765, 671, 593, 522s, 460sh, 425sh.
Note: The spectrum was obtained by N.V. Chukanov.

STe1 Ammonium sulfate tellurate (NH4)2(SO4)�Te(OH)6

Origin: Synthetic.
Description: As-doped sample produced from an aqueous stoichiometric solution of telluric acid,

ammonium sulfate, ammonium carbonate, and arsenic acid. The empirical formula
(NH4)2(SO4)0.92H(AsO4)0.08Te(OH)6 given in the original paper isn’t charge-balanced. The correct
formula should be (NH4)2[(SO4)0.92(HAsO4)0.08]�Te(OH)6. The crystal structure is solved. Mono-
clinic, space group P21/c, a ¼ 11.382(5), b ¼ 6.615(5), c ¼ 13.707(5) Å, β ¼ 106.731(5)�,
V ¼ 988.3(9) Å3, Z ¼ 4. Dcalc ¼ 2.41 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ghorbel et al. (2015).
Wavenumbers (IR, cm21): 3122s, 3017sh, 2407, 2241, 2041w, 1426sh, 1401s, 1227, 1156sh, 1079s,

1070s, 983sh, 708sh, 669s, 622, 599, 585, 441w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3156, 1687, 1428, 1175, 1086, 977, 652, 622, 600, 475, 443,

363, 339, 323, 135, 96.
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2.10 Chlorides and Hydroxychlorides

Cl71 Schwartzembergite Pb5H2(IO2)O4Cl3

Origin: San Francisco (Beatrix) mine, Caracoles, Sierra Gorda district, Antofagasta Region, Chile.
Description: Orange lenticular crystals from the association with paralaurionite. Investigated by

I.V. Pekov. Characterized by powder X-ray diffraction data and electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1120sh, 800sh, 665, 575sh, 555, 395sh.
Note: The spectrum was obtained by N.V. Chukanov. No bands corresponding to covalent O–H bonds

are observed. The shoulder at 1120 cm�1 may correspond to the essentially ionic bond Cl����H+.

Cl72 Cesium copper chloride CsCuCl3
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Origin: Synthetic.
Description: Crystallized by slow evaporation from hot concentrated aqueous solutions of CsCl and

CuCl2 in a 1:1 mole ratio. Hexagonal, space group P6122, a ¼ 7.2157, c ¼ 18.1777 Å, Z ¼ 6.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull between

polyethylene plates. Transmission.
Source: McPherson and Chang (1973).
Wavenumbers (cm21): 288s, 260s, 188sh, 180sh, 172, 158, 145, 111sh, 95, 80, 72, 50w.
Note: In the cited paper, IR spectra of other compounds CsMCl3 (M ¼Mg, V, Cr, Mn, Fe, Co, Ni) are

given.

Cl73 Cesium magnesium chloride CsMgCl3

Origin: Synthetic.
Description: Prepared by fusing equimolar mixture of CsCl and MgCl2 in evacuated quartz ampoule.

Hexagonal, a ¼ 7.269, c ¼ 6.187 Å, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull between

polyethylene plates. Transmission.
Source: McPherson and Chang (1973).
Wavenumbers (cm21): 317s, 250s, 174, 82, 49.
Note: In the cited paper, IR spectra of other compounds CsMCl3 (M ¼ Cu, V, Cr, Mn, Fe, Co, Ni) are

given.
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Cl74 Cesium sodium stibiochloride Cs2NaSbCl6

Origin: Synthetic.
Description: Prepared by heating a mixture of stoichiometric quantities of SbCl3, CsCl, and NaCl at

800 �C. Characterized by powder X-ray diffraction data. Cubic, a ¼ 10.770.
Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc.

Absorption.
Source: Smit et al. (1990).
Wavenumbers (IR, cm21): 192.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 314, 284, 228, 117, 68, 47, 34.

Cl75 Cesium antimony chloride Cs3Sb2Cl9
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Origin: Synthetic.
Description: Trigonal α-modification prepared by evaporating to dryness a hot aqueous HCI solution

containing appropriate cations.
Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc.

Transmission.
Source: Smit et al. (1990).
Wavenumbers (IR, cm21): 292, 266s, 232, 170s.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 305s, 257s, 127, 102, 88, 55, 48, 42.

Cl76 Calcium hydroxychloride Ca(OH)Cl

Origin: Synthetic.
Description: Prepared by heating stoichiometric amounts of anhydrous CaCl2 and Ca(OH)2 in a

carbon glass crucible at 610 K for 3 weeks. Hexagonal, space group P63mc, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc and Nujol

mull. Transmission.
Source: Lutz et al. (1993).
Wavenumbers (cm21): 3573, 680s, 659sh, 369sh, 346s.
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Cl77 Copper oxychloride hydrate Cu2OCl2∙2H2O.

Origin: Synthetic.
Description: Precipitate prepared by mixing equal volumes of aqueous solutions of 0.1 M

CuCl2�2H2O and 0.5 M of urea. The mixture was heated to ~75 �C for 4–6 h. Characterized by
the elemental analysis.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: El-Metwally and Al Thani (1989).
Wavenumbers (cm21): 3440s, 3347s, 3298s, 1620, 970, 925, 855s, 815s, 572, 505, 440s, 395sh,

375, 305.

Cl78 Magnesium oxychloride hydrate Mg3Cl2(OH)4∙4H2O Mg3Cl2(OH)4∙4H2O
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Origin: Synthetic.
Description: Monoclinic, space group C2/m, a ¼ 15.1263(3), b ¼ 3.1707(1), c ¼ 10.5236(2) Å,

β ¼ 101.546(2). The crystal structure contains strongly distorted MgO6 octahedra.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Bette et al. (2014).
Wavenumbers (cm21): 3671, 3654, 3644, 3568s, 3430s, 3330s, 3196, 3080sh, 1160w, 952sh, 896w,

807, 763, 658s, 587, 561s, 513, 466sh, 444sh, 432.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Cl79 Nickel oxychloride hydrate Ni3Cl2.1(OH)3.9∙4H2O Ni3Cl2.1(OH)3.9∙4H2O

Origin: Synthetic.
Description: Obtained in the reaction between NaOH and nickel chloride solution at 40 �C for

3 months. Characterized by powder X-ray diffraction data and chemical analyses. The crystal
structure is solved. Monoclinic, space group C2/m, a ¼ 14.9575(4), b ¼ 3.1413(1), c ¼ 10.4818
(5) Å, β ¼ 101.482(1)�, V ¼ 482.49(3) Å3, Z ¼ 2. Dcalc ¼ 2.67 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bette et al. (2014).
Wavenumbers (cm21): 3622, 3611, 3582s, 3515s, 3419s, 3280s, 3185s, 3065sh, 1116w, 1041sh,

921w, 815sh, 776, 727, 684, 607s, 454, 410.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Cl80 Potassium mercury chloride hydrate K2HgCl4∙H2O

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group Pbam,

a ¼ 5.258, b ¼ 11.662, c ¼ 8.925 Å, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KCl disc.

Transmission.
Source: Falk and Knop (1977).
Wavenumbers (cm21): 3505, 3404s, 3191w, 1610s, 1108, 865sh, 560, 436.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Cl81 Yttrium hydroxychloride hydrate Y2(OH)5Cl∙1.5H2O
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Origin: Synthetic.
Description: Prepared hydrothermally from YCl3 in the presence of NaOH and NaCl at 150 �C for

12 h. Characterized by powder X-ray diffraction data. Orthorhombic. Space group Pca21 (?).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Poudret et al. (2008).
Wavenumbers (cm21): 3652s, 3570s, 3539s, 3380s, 3327s, 2433, 2177, 1644.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Cl82 Zinc hydroxychloride Zn(OH)Cl

Origin: Synthetic.
Description: Prepared by heating of an aqueous solution of ZnCl2 at 80 �C, in the presence of ZnO.

Orthorhombic, space group Pcab, a � 5.86, b � 6.58, c � 11.33 Å, Z ¼ 8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Transmission.
Source: Lutz et al. (1993).
Wavenumbers (IR, cm21): 3476s, 853s, 798s, 761s, 439, 407, 340, 246.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3456s, 850w, 837w, 789w, 756w, 455w, 386, 349w, 293w,

216, 188s, 171, 114, 87, 57.
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Cl83 Centennialite CaCu3Cl2(OH)6�nH2O (n ~ 0.7)

Origin: Synthetic.
Description: Synthesized from CuCl2�2H2O, CaCl2, LiCl�H2O, and LiOH�H2O through a solid-state

reaction method. Characterized by electron microprobe analyses. The crystal structure is solved.
Trigonal, space group P-3m1, a ¼ 6.6475(9), c ¼ 5.7600(12) Å, V ¼ 220.43(8) Å3, Z ¼ 1.
Dcalc ¼ 3.108 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Sun et al. (2015).
Wavenumbers (cm21): 3505s, 3447s, 3402s, (2925), (2855), 1623, 964, 916, 848sh, 703s, 685sh,

621sh, 490sh, 452s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the range from 2800 to 3000 cm�1 correspond to the admixture
of an organic substance.

Cl84 Comancheite Hg2+55N
3�

24(Cl,Br)34(OH,NH2)4
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Origin: Mariposa mine, Terlingua district, Brewster Co., Texas, USA (type locality).
Description: Orange aggregate on calcite. Specimen No. 26686 from the collections of the Natural

History Museum of Los Angeles Co. Characterized by electron microprobe analyses. The crystal
structure is solved. Orthorhombic, space group Pnnm, a ¼ 18.414(5), b ¼ 21.328(6), c ¼ 6.6976
(19) Å, V ¼ 2630(2) Å3, Z ¼ 1. Dcalc ¼ 8.25 g/cm3. The crystal-chemical formula is
Hg55(Cl24.5Br9.5)N24(OH,O,NH2)4. The N3� anion shows a strong preference for tetrahedral
coordination by Hg2+, which results in a strongly bonded three-dimensional Hg-N framework.

Kind of sample preparation and/or method of registration of the spectrum: Transmission of a
single crystal.

Source: Cooper et al. (2013a).
Wavenumbers (cm21): 3475s, 3426, 3288, 1610.
Note: N was not determined chemically. Despite NH2 group is considered as a subordinate component,

the intensity of the band of H–N–H bending vibrations at 1610 cm�1 is rather high. This band could
be assigned to H–O–H bending vibrations. In the cited paper, Raman spectrum is given.

Cl85 Hydrocalumite Ca2Al(OH)6(Cl,CO3,OH)1-x�2H2O

Origin: Synthetic.
Description: Obtained by adding tricalcium aluminate to an aqueous solution of CaCl2 and keeping

the mixture at 320 K for 3 days. Characterized by powder X-ray diffraction data, as well as
chemical, TG, and DSC analyses. The formula of the sample obtained is Ca2Al
(OH)6Cl0.90(CO3)0.05�2H2O.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Grishchenko et al. (2013).
Wavenumbers (cm21): 3639s, 3484s, 1620, 1390w, 1356w, 787, 575s, 532s, 424s.
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Cl86 Laurionite Ba-analogue Ba(OH)Cl

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data and thermoanalytical methods.

Isostructural with laurionite.
Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc, and

Nujol or poly(chlortrifluorethen) mull. Transmission.
Source: Lutz et al. (1995).
Wavenumbers (IR, cm21): 3566, 695s, 550, 505sh, 309s, 250s.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3594s, 480s, 265s, 249, 195, 142, 130sh, 93w, 78, 64.

Cl87 Simonkolleite Zn5(OH)8Cl2∙H2O
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Origin: Synthetic.
Description: Prepared by precipitation method at about 80–90 �C. Characterized by DTA and powder

X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stoilova and Vassileva (2002).
Wavenumbers (cm21): 3583, 3566, 3491s, 3457s, 3440sh, 904, 886sh, 821w, 721s, 627, 571, 558sh,

533, 513w, 467, 437.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Cl88 Simonkolleite Zn5(OH)8Cl2∙H2O

Origin: Synthetic.
Description: Micro-platelets prepared hydrothermally from Zn(NO3)2�6H2O and NaCl in the presence

of hexamethylenetetramine, at 85 �C. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Attenuated total

reflection.
Source: Sithole et al. (2012).
Wavenumbers (cm21): 3495sh, 3455sh, 3441, 1607w, 1202w, 1040w, 906, 717s, 569, 532, 468s,

427sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Cl89 Terlinguacreekite Hg3O2Cl2

Origin: McDermitt mine, Opalite district, Humboldt Co., Nevada, USA.
Description: Orange powdery from the association with quartz and kleinite. Investigated by

A.V. Kasatkin. The empirical formula is (electron microprobe): Hg3.00O2.2Cl1.6. The observed
lines of the powder X-ray diffraction pattern [d, Å (I, %)] are: 12.8 (2), 6.42 (8), 5.41 (5), 5.27 (6),
4.64 (3), 4.26 (16), 4.06 (6), 3.75 (5), 3.45 (10), 3.34 (63), 3.25 (14), 3.21 (100), 3.02 (12), 2.97
(10).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 647, 561w.
Note: The spectrum was obtained by N.V. Chukanov.

Cl90 Cumengeite Pb21Cu20Cl42(OH)40�6H2O
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Origin: Boleo district, Santa Rosalía, Baja California, Mexico (type locality).
Description: Blue crystals.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3553, 3506w, 3464, 3405s, 3445s, 3322s, 1948w, 1616w, 1028w, 982, 898s,

831w, 782, 690s, 609w, 527, 499, 479, 461s, 448s, (372).
Note: The spectrum was obtained by N.V. Chukanov.

Cl91 Fiedlerite-1A Pb3Cl4F(OH)�H2O

Origin: Pacha Limani (Passa Limani), Lavrion mining district, Attiki Prefecture, Greece.
Description: Colorless platy crystals from the association with phosgenite in ancient metallurgical

slag. The crystal structure is solved. Triclinic, space group P-1, a ¼ 8.5741(7), b ¼ 8.0480(5),
с ¼ 7.2695(4) Å, α ¼ 90.087(5), β ¼ 102.126(6), γ ¼ 103.424(6)�, V ¼ 476.37(6) Å3, Z ¼ 2. The
empirical formula is (electron microprobe): Pb3.00Cl3.98F0.96(OH)1.06�H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3545w, 3515s, 3482, 1592, 700sh, 673s, 654, 592, 447.
Note: The spectrum was obtained by N.V. Chukanov.
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Cl92 Kuliginite Fe3Mg(OH)6Cl2

Origin: Udachnaya kimberlite pipe, Yakutia, Russia (type locality).
Description: Green crystals from the association with iowaite, gypsum, calcite, halite, baryte,

celestine, etc. Holotype sample. The crystal structure is solved. Trigonal, space group R-3,
a ¼ 6.9512(1), c ¼ 14.5713(3) Å, V ¼ 609.74(2) Å3, Z ¼ 3. Dmeas ¼ 3.1(1) g/cm3,
Dcalc ¼ 3.01 g/cm3. Optically biaxial (+), α ¼ 1.709(3), β ¼ 1.709(3), γ ¼ 1.718, 2V ¼ 10(5)�.
The empirical formula is (Fe2.99Mn0.01)(Mg0.90Mn0.10)(OH5.94F0.03Cl0.03)Cl2. The strongest lines
of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.569 (54) (01�1), 2.949 (16) (021),
2.831 (35) (113), 2.324 (100) (024), 2.098 (18) (02�5), 1.856 (13) (033), 1.739 (36) (220).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3567s, 3548s, 1620w, 1550 (broad), 1450sh, 1278w, 1018w, 801s, 760sh,

675sh, 663s, 464, 402s.
Note: The spectrum was obtained by N.V. Chukanov.

Cl93 Magnesium hydroxychlorite atacamite-type Mg2(OH)3Cl
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Origin: Synthetic.
Description: Prepared hydrothermally. Characterized by thermal and powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Bette et al. (2015).
Wavenumbers (IR, cm21): 812s, 780sh, 768, 718, 688s, 674s, 650s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 804, 786, 750s, 712, 635.

Cl94 Nickel hydroxychlorite atacamite-type Ni2(OH)3Cl

Origin: Synthetic.
Description: Prepared hydrothermally. Characterized by thermal and powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Bette et al. (2015).
Wavenumbers (IR, cm21): 825s, 801, 727s, 693, 672.
Note: The band positions denoted by Bette et al. (2015) as 627 cm�1 were determined by us at

672 cm�1. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 823, 799, 757s, 694, 675, 624.
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Cl95 Hydrohalite NaCl∙2H2O

Origin: Synthetic.
Description: A film obtained by slow condensation of H2O vapor is on a cold NaCl plate with

subsequent heating up to –20 �C.
Kind of sample preparation and/or method of registration of the spectrum: Transmission of a

thin film.
Source: Schiffer and Hornig (1961).
Wavenumbers (cm21): 3540, 3472s, 3405s, 3266w, 3242w, 1615s, 1645s, 1315, 1241, 1122,

1009w, 989w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Cl96 Sanguite KCuCl3
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Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc.

Absorption.
Source: Stepakova et al. (2008).
Wavenumbers (IR, cm21): 284s, 208, 205sh, 129w, 94w [indicated by Stepakova et al. (2008)];

298s, 280s, 201s, 164w (determined by us based on spectral curve analysis of the published
spectrum).

Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 274s, 236sh, 146w, 130w, 97w [indicated by Stepakova et al.

(2008)]; 310sh, 274s, 205w (determined by us based on spectral curve analysis of the published
spectrum).

Cl97 Tolbachite CuCl2

Origin: Synthetic.
Description: Obtained by heating copper chloride hydrate to 150 �C.
Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc.

Absorption.
Source: Stepakova et al. (2008).
Wavenumbers (IR, cm21): 284s, 189s, 100w, 92w [indicated by Stepakova et al. (2008)]; 300s,

281, 244, 233sh, 177s (determined by us based on spectral curve analysis of the published
spectrum).

Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 287s, 276sh, 166s, 119w, 107w [indicated by Stepakova et al.

(2008)]; 287s, 276sh (?), 171s (determined by us based on spectral curve analysis of the published
spectrum).
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Cl98 Telluroperite Pb(Te0.5Pb0.5)O2Cl

Origin: Synthetic.
Description: Crystals grown by heating a mixture of Pb3O2Cl2 and TeO2 at 550 �C for 1 day. The

crystal structure is solved. Orthorhombic, space group Bmmb, a ¼ 5.576(1), b ¼ 5.559(1),
c ¼ 12.4929(6) Å, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Porter and Halasyamani (2003).
Wavenumbers (cm21): 661, 628, 509, 439.

2.11 Vanadates and Vanadium Oxides

V116 Schäferite (NaCa2)Mg2(VO4)3

Origin: Slag dump near the Kamariza mine, Lavrion, mining district, Attikí (Attika, Attica) Prefecture,
Greece.

Description: Brown crystals from the association with minerals of the forsterite–liebenbergite series,
trevorite, albite, nosean, haüyne, bannermanite, a Ni-Mg-analogue of lyonsite, etc. The crystal
structure is solved. Cubic, space group Ia3d, a ¼ 12.388(3) Å, V ¼ 1901.1(14) Å3, Z ¼ 8. The
crystal-chemical formula is (Na1.5Ca1.5)(Mg1.1Fe0.5Ni0.4)(V2.8P0.2)(O,OH)12.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3580w, 3350w, 1152w, 1049w, 1000w, 977w, 846s, 803s, 735sh, 570sh,

451w, 383s.
Note: The spectrum was obtained by N.V. Chukanov.
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V117 Aluminium decavanadate hydrate Al2V10O28∙22H2O

Origin: Synthetic.
Description: Synthesized in the reaction between decavanadic acid and basic aluminium acetate.

Confirmeded by chemical analysis, TG, and powder X-ray diffraction data. Orthorhombic, space
group Acmm, a ¼ 10.618(5), b ¼ 18.296(8), c ¼ 21.560(10) Å, Z ¼ 2. Dmeas ¼ 2.35 g/cm3,
Dcalc ¼ 2.23 g/cm3. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)]
are: 10.83 (52) (002), 10.62 (100) (100), 6.94 (52) (120), 5.81 (42) (122), 2.914 (35) (244).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Rigotti et al. (1983).
Wavenumbers (cm21): 3440, 2930, 1630, 973s, 958sh, 831s, 715s, 590s, 540s, 462sh, 450, 418sh,

409, 398, 385sh, 373w, 351, 320w, 301w.

V118 Ammonium uranyl vanadate hydrate (NH4)(UO2)(VO4)∙2.5H2O
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Origin: Synthetic.
Description: Synthesized from (NH4)(VO3) and (UO2)(NO3)2 with subsequent heating of the precipi-

tate at 60 �C for 3 h. Orthorhombic, a¼ 13.29(1), b¼ 16.21(2), c¼ 12.05(1) Å. The strongest lines
of the powder X-ray diffraction pattern [d, Å (I, %)] are: 6.78 (90), 4.23 (40), 3.51 (40), 3.15 (100),
2.15 (20).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Botto and Baran (1976).
Wavenumbers (IR, cm21): 973, 885, 850, 805w, 735, 625s, 575s, 470s, 403, 360sh, 348, 310, 280.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 975, 822, 738, 645, 580, 540, 482, 410, 375, 360sh, 255, 230.

V119 Ammonium vanadyl compound (NH4)0.5V2O5∙nH2O (NH4)0.5V2O5∙nH2O

Origin: Synthetic.
Description: Synthesized using a surfactant-free hydrothermal method. Characterized by powder

X-ray diffraction, TG, and EDX spectroscopy.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Chandrappa et al. (2011).
Wavenumbers (cm21): 3495, 3180, 1628, 1400, 996, 981, 965, 841, 736, 539s.
Note: The formula is questionable and is to be checked.
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V120 Barium lanthanum thorium orthovanadate BaLaTh(VO4)3

Origin: Synthetic.
Description: Obtained by treating stoichiometric mixture of corresponding metal nitrates with ammo-

nium metavanadate in aqueous medium for 1 h followed by evaporation and calcination.
Isostructural with monazite. Monoclinic, a ¼ 7.070(5), b ¼ 7.323(8), c ¼ 6.810(6) Å,
β ¼ 104.96(7)�, V ¼ 340.8 Å3. Dmeas ¼ 5.52 g/cm3, Dcalc ¼ 5.54 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample. KBr disc. Transmission.

Source: Nabar and Mhatre (2001).
Wavenumbers (cm21): 839sh, 810s, 780sh, 770sh, 750sh, 735sh, 478sh, 421, 412sh, 382w, 372sh,

350sh.

V121 Barium vanadyl vanadate Ba2(VO)(V2O8)

Origin: Synthetic.
Description: Prepared by the solid-state reaction of an intimate 4:1:1 mixture of Ba2V2O7, V2O3, and

V2O5 at 950 �C. Monoclinic, space group P21, Z ¼ 2. The crystal structure is built up of infinite
chains of strongly distorted edge-sharing VIVO6 octahedra, connected with VVO4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Baran (1997).
Wavenumbers (IR, cm21): 945, 903sh, 891s, 864s, 835s, (800sh), 766s, 698s, 578sh, 482, 436,

411, 399, 378, 345sh, 293, 271w, 255, 235, 214, 172s, 129s, 116, 98s, 81sh, 57w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 902s, 872, 860sh, 830w, 802s, 762w, 737w, 696w, 676sh, 563w,

499w, 453w, 435sh, 397sh, 371, 345, 294, 268, 243, 212w, 163, 121, 85s.
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V122 Bismuth(III) magnesium oxovanadate BiMg(VO4)O BiMg(VO4)O

Origin: Synthetic.
Description: Prepared by solid-state reaction from a stoichiometric mixture of Bi2O3, MgO, and

NH4VO3 gradually heated at 200, 500, and finally 850 �C for 18 h with intermediate grindings.
Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space
group P21/n, a¼ 7.542(6), b¼ 11.615(5), c¼ 5.305(3) Å, β¼ 107.38(5)�, V¼ 443.5(5) Å3, Z¼ 4.
Dcalc ¼ 5.455 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Benmokhtar et al. (2004).
Wavenumbers (IR, cm21): 1040w, 1019w, 978w, 864s, 837s, 819s, 768s, 581, 523, 507, 442,

423, 384, 359, 311, 285, 219, 188.
Note: Weak bands in the range from 900 to 1100 cm�1 may correspond to the admixture of PO4

3�

groups. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 852s, 805s, 748sh, 570, 389w, 340, 303, 250w, 179, 133, 108.
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V123 Bismuth(III) magnesium oxovanadate BiMg2(VO4)O2

Origin: Synthetic.
Description: Synthesized by heating a mixture of Bi2O3, MgO, and NH4VO3 in the molar ratio Bi:Mg:

V ¼ 2:2:1 first at 700 �C for 12 h, then at 800 �C for 6 h, and finally at 1000 �C for 5 min. The
product was structurally characterized from single crystal X-ray diffraction data. Orthorhombic,
space group Cmcm, a ¼ 7.9136(6), b ¼ 12.246(2), c ¼ 5.444(2) Å, V ¼ 527.6(2) Å3, Z ¼ 4.
Dcalc ¼ 5.093 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Huang and Sleight (1992).
Wavenumbers (cm21): 932s, 895s, 853s, 749s, 579w, 505, 440s.

V124 Calcium orthovanadate trigonal polymorph Ca3(VO4)2
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Origin: Synthetic.
Description: Prepared in a solid-state reaction, from the mixture of CaCO3 and As2O5 at 700 �C for

4 h. Trigonal, space group R3c, Z ¼ 7.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Baran (1976).
Wavenumbers (IR, cm21): 872, 910sh, 841sh, 810, 760sh, 424, 369, 325sh, 297s, 278sh, 236, 190sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 930, 912w, 865s, 850s, 825, 790sh, 770, 410w, 360s, 337s,

285, 225, 195, 163sh, 150.

V125 Chromium iron(III) orthovanadate CrFe(VO4)2

Origin: Synthetic.
Description: Prepared by a solid-state reaction. Characterized by powder X-ray diffraction data.

Monoclinic, space group C2/m. Isostructural with α-MnMoO4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Lavat et al. (1989).
Wavenumbers (cm21): 956s, 924s, 865, 830, 720s, 650, 642sh, 518s, 400sh, 388, 350w, 320w.
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V126 Chromium vanadate Cr2V4O13 Cr2V4O13

Origin: Synthetic.
Description: Monoclinic, with a P-cell, a ¼ 8.2663(17), b ¼ 9.3033(26), c ¼ 7.5373(16) Å,

β ¼ 109.638(37)�, V ¼ 545.932 Å3. Confirmed by chemical analyses. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.0928 (100) (001), 3.8938 (60) (200),
3.7026 (30) (�211), 3.5920 (50) (210), 3.3151 (75) (012), 2.8210 (30) (022).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Filipek et al. (1998).
Wavenumbers (cm21): 980s, 960s, 950s, 920s, 885s, 812sh, 800, 770, 730s, 705, 650, 596w, 580w,

567sh, 540, 525, 508sh, 475w, 445, 425, 390w, 375, 350, 335, 313w, 303w, 291w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, the wavenumber 650 cm�1 is erroneously indicated as 605 cm�1.

V127 Copper divanadate hydroxide hydrate Cu3(V2O7)(OH)2∙nH2O
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Origin: Synthetic.
Description: Nanoparticles obtained by heating (at 140 �C for 24 h) of a precipitate formed in the

reaction between V2O5 and CuSO4�7H2O in the presence of hexamethylenetetramine, Na2SO4, and
H2O. Characterized by EDS analysis and powder X-ray diffraction data. Monoclinic, a ¼ 10.61,
b ¼ 5.86, c ¼ 7.205 Å, β ¼ 94.86� (see JCPDS, No. 46-1443).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Ni et al. (2010a).
Wavenumbers (IR, cm21): 3531, 3470, 3044, 1974w, 1620, 1437w, 1409w, 1012, 900s, 847s, 804s,

763s, 562, 531, 505, 419w.
Note: The wavenumber 1620 cm�1 is erroneously indicated by Ni et al. (2010a) as 1920 cm�1. The

weak bands at 1437 and 1409 cm�1 may correspond to the admixture of a carbonate. In the cited
paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 894s, 820s, 758, 476, 438, 342, 236, 164w.

V128 Dysprosium decavanadate hydrate Dy2V10O28∙24H2O

Origin: Synthetic.
Description: Obtained by slow evaporation of an aqueous solution containing decavanadic acid and

dysprosium acetate. Triclinic, space group P-1, a¼ 9.22(2), b¼ 9.99(7), c¼ 13.98(6) Å, α¼ 108.2
(7)�, β ¼ 62.3(5)�, γ ¼ 89.1(3)�, V ¼ 1063 Å3, Z ¼ 1.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Rigotti et al. (1981).
Wavenumbers (IR, cm21): 980sh, 948s, 840sh, 815, 731s, 712s, 600, 520, 450, 400.
Note: The band at 725 cm�1 indicated by Rigotti et al. (1981) is a doublet (731+712 cm�1). In the cited

paper, Raman spectrum is given as a figure, without indication of positions of the bands.
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V129 Lanthanum uranyl orthovanadate divanadate La(UO2)2(VO4)(V2O7)

Origin: Synthetic.
Description: Prepared by conventional solid-state reaction, using LaCl3�7H2O, U3O8, and V2O5 as

initial materials. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Orthorhombic, space group P212121, a¼ 6.9470(2), b¼ 7.0934(2), c¼ 25.7464(6) Å, V¼ 1268.73
(5) Å3, Z ¼ 4. Dcalc ¼ 5.276 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Mer et al. (2012).
Wavenumbers (IR, cm21): 963sh, 946s, 909s, 900sh, 879, 843s, 820, 783, 767s, 758sh, 736s, 713w,

696, 686, 639s, 549w, 472w, 453w, 418w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 951s, 943, 918, 909s, 898, 868, 860, 787s, 766s, 753, 739s, 711w,

592w, 562w, 516w, 450sh, 431, 413, 360, 345, 334, 328.

V130 Lead iron(III) trivanadate Pb2FeV3O11
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Origin: Synthetic.
Description: Yellow solid formed in the solid-state reaction between FeVO4 and Pb2V2O7. Mono-

clinic, a¼ 11.385(13), b¼ 5.6414(7), c¼ 7.4970(9) Å, β ¼ 81.72(1)�. Dmeas ¼ 5.52(5) g/cm3. The
strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 11.277 (27) (100),
3.372 (27) (�211), 3.126 (100) (310), 3.086 (52) (112), 2.821 (38) (020), 2.767 (26) (401).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Blonska-Tabero (2009).
Wavenumbers (cm21): 1010, 943sh, 905s, 865sh, 795s, 751s, 730s, 623w, 391w, 373w, 346w, 330.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

V131 Lead uranyl divanadate Pb(UO2)(V2O7)

Origin: Synthetic.
Description: Synthesized by solid-state reaction of PbO, V2O5, and U3O8 in the metallic ratio Pb:V:

U ¼ 1:6:2 in air, at 680 �C, for 2 h. Characterized by powder X-ray diffraction data. The crystal
structure is solved. Monoclinic, space group P21/n, a ¼ 6.9212(9), b ¼ 9.6523(13), c ¼ 11.7881
(16) Å, β ¼ 91.74(1)�, V ¼ 787.2(2) Å3, Z ¼ 4. Dmeas ¼ 5.82(3) g/cm3, Dcalc ¼ 5.81(1) g/cm3. The
structure is based on a three-dimensional framework composed by edge- and corner-sharing U- and
V-centered polyhedra forming elliptic tunnels occupied by Pb2+ ions.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Obbade et al. (2004).
Wavenumbers (cm21): 980w, 920sh, 888s, 875, 832sh, 810s, 770, 747s, 727s, 635sh, 580w,

515, 485sh, 445w, 409w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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V132 Lithium nickel vanadate LiNi(VO4)

Origin: Synthetic.
Description: Synthesized by a solid-state reaction technique. Characterized by powder X-ray diffrac-

tion data. Cubic, space group Fd-3m, a ¼ 8.221(1), which corresponds to the inverse spinel
structure.

Kind of sample preparation and/or method of registration of the spectrum: Fine powder painted
onto polyethylene slab. Absorption.

Source: Chitra et al. (2000).
Wavenumbers (IR, cm21): 905sh, 852, 810s, 680s, 648s, 435, 400sh, 340s, 275sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 902sh, 823s, 790s, 660, 481, 420, 337, 190w.

V133 Lithium trivanadate LiV3O8
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Origin: Synthetic.
Description: Prepared by stepwise heating a mixture of Li2CO3 and V2O5 powders up to 700 �C.

Characterized by powder X-ray diffraction data. Monoclinic, space group P21/m, a ¼ 6.68,
b ¼ 3.60, c ¼ 12.03 Å, β ¼ 107�, which corresponds to the JCPDS card No. 72-1193.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ramaraghavulu et al. (2012).
Wavenumbers (IR, cm21): 1723w, 1700w, 1646w, 1392sh, 1224w, 1120sh, 994s, 960s, 750s,

602, 535, 488w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 999w, 782s, 555, 491, 395w, 295.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

V134 Lithium tungstate vanadate brannerite-type LiWVO6

Origin: Synthetic.
Description: Synthesized by heating to 400 �C of a precursor formed in the reaction between Li(NO3),

(NH4)(VO3), and tungstic acid in aqueous solution, in the presence of glycine, with subsequent
calcination of the product at 550 �C. Characterized by powder X-ray diffraction data. Monoclinic,
space group C2, a ¼ 9.347, b ¼ 3.670, c ¼ 6.593 Å, β ¼ 111.83�.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Absorption.
Source: Amdouni et al. (2003).
Wavenumbers (IR, cm21): 972, 956, 936w, 877, 807, 754, 624s, 581s, (463), 443w, 379w, 365w,

316s, 295, 252, (215), 195.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 970s, 860sh, 826, 743, 524w, 449, 324, 268, 238, 207, 146s, 117.
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V135 Magnesium vanadate Mg7V4O16(OH)2∙H2O Mg7V4O16(OH)2∙H2O

Origin: Synthetic.
Description: Prepared hydrothermally from V2O5 and Mg(BO2)2�H2O at 200 �C for 5 days. A

compound with non-centrosymmetric tunnel structure. See supplementary data at doi: https://doi.
org/10.1016/j.inoche.2008.05.019.

Kind of sample preparation and/or method of registration of the spectrum: No data in the cited
paper.

Source: Hu et al. (2008).
Wavenumbers (cm21): 3614, 3538, 3445, (2920w), (2856w), 1635w, 1475w, 1430, 1379w, 1302w,

1258, 1197w, 1013sh, 910s, 867s, 756s, 678, 468.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the range from 2800 to 3000 cm�1 correspond to the admixture
of an organic substance.

V136 Potassium chromium divanadate KCrV2O7
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Origin: Synthetic.
Description: Prepared by solid-state reaction in air, by stepwise heating a stoichiometric mixture of

K2Cr2O7 and V2O5 up to 600 �C with intermediate regrindings. Characterized by powder X-ray
diffraction data. The crystal structure is solved. Monoclinic, space group P2/c, a ¼ 7.9526(1),
b ¼ 4.87543(5), c ¼ 6.8910(1) Å, β ¼ 101.162(1)�, V ¼ 262.1(1) Å3, Z ¼ 2. Vanadium has sixfold
coordination with one long and two short V–O bonds.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.
Transmission.

Source: Tyutyunnik et al. (2006).
Wavenumbers (IR, cm21): 982, 963s, 786s, 760, 724sh, 655sh, 642, 591sh, 551s, 508sh, 484s,

424, 395sh.
Note: For another treatment of the crystal structure see Wang et al. (2012). In the cited paper, Raman

spectrum is given.
Wavenumbers (Raman, cm21): 985s, 960w, 890, 868, 836, 768s, 712, 685, 663, 567w, 562, 542s,

483, 397, 342, 316, 283, 257, 218, 201, 173, 142.

V137 Potassium chromium divanadate KCrV2O7

Origin: Synthetic.
Description: Prepared by a solid-state reaction. Characterized by powder X-ray diffraction data. The

crystal structure is solved. Monoclinic, space group P2/c, a ¼ 7.9529(6), b ¼ 4.87548(5),
c ¼ 6.8917(2) Å, β ¼ 101.15(4)�, V ¼ 262.14 Å3, Z ¼ 2. Vanadium has fivefold coordination
with two short V–O bonds.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of
sample preparation is not indicated.

Source: Wang et al. (2012).
Wavenumbers (cm21): 986, 964s, 787s, 764, 654.
Note: For another treatment of the crystal structure see Tyutyunnik et al. (2006). The wavenumbers

were partly determined by us based on spectral curve analysis of the published spectrum.
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V138 Potassium decavanadate decahydrate K6(V10O28)∙10H2O

Origin: Synthetic.
Description: Brown-orange crystals obtained in the reaction of V2O5 with potassium malate solution.

The crystal structure is solved. Triclinic, space group P-1, a ¼ 10.5334(4), b ¼ 10.6600(4),
c ¼ 17.7351(5) Å, α ¼ 76.940(2)�, β ¼ 75.836(2)�, γ ¼ 64.776(2)�, V ¼ 1729.86(10) Å3, Z ¼ 2.
Dcalc ¼ 2.634 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Guilherme et al. (2010).
Wavenumbers (cm21): 3507s, 3400s, 3245sh, 966s, 942s, 821s, 755, 594, 523, 458, 411.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

V139 Potassium hexavanadate hydrate K2(V6O16)∙1.5H2O
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Origin: Synthetic.
Description: Nanobelts prepared by a low-temperature hydrothermal method. Monoclinic, space

group P21/c, a ¼ 12.29 Å, b ¼ 3.60 Å, c ¼16.01 Å, β ¼ 93.89�. Characterized by powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bai et al. (2013).
Wavenumbers (IR, cm21): 3542, 1620, 1445, 999, 962s, 880w, 741s, 617sh, 537s, 500sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1011w, 774, 686, 507, 270, 154s.

V140 Strontium vanadyl vanadate Sr2(VO)(VO4)2

Origin: Synthetic.
Description: Prepared from a mixture of SrCO3, V2O5, and VO2 pressed into pellet and heated with a

CO2 laser in a nitrogen atmosphere. Monoclinic, space group I2/a, a ¼ 6.929, b ¼ 16.246,
c ¼ 7.260 Å, β ¼ 115.82�, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Baran (1996).
Wavenumbers (IR, cm21): 965sh, 914sh, 901s, 872, 860, 831s, 802s, 769, 745sh, 721s, 672sh, 588w,

465.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 912, 893, 870sh, 860s, 831s, 791w, 772, 720w, 468w, 430s, 400w,

370sh, 358w.
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V141 Tantalum oxyvanadate Ta(VO4)O

Origin: Synthetic.
Description: Prepared by heating a mixture of V2O5 and defect pyrochlore H2Ta6O6�H2O, first at

873 K for 24 h, and thereafter at 1073 K for 12 h. Characterized by powder X-ray diffraction data.
The crystal structure is solved. Orthorhombic, a ¼ l1.860(3), b ¼ 5.516(1), c ¼ 6.928(1) Å. The
strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.96 (94) (101, 200),
4.491 (84) (201), 4.310 (100) (011), 4.050 (92) (111, 210), 3.487 (71) (211, 002), 2.845 (71) (112),
2.609 (68) (212, 410, 302).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Chahboun et al. (1988).
Wavenumbers (cm21): 816s, 684, 418, 351w.

V142 Tellurium(IV) oxovanadate Te2V2O9
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Origin: Synthetic.
Description: Polycrystalline sample prepared by heating a mixture of TeO2 and V2O5 at 450 �C for

24 h with several intermediate grindings and mixings. Characterized by powder X-ray diffraction
data. Orthorhombic. V is in tetrahedral coordination environment with V–O bond lengths ranging
from 1.633 to 1.946 Å. Te has threefold coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Zhang et al. (2012b).
Wavenumbers (cm21): 953, 942, 818, 792sh, 719sh, 696s, 667s, 525, 493, 446, 421w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

V143 Thallium(I) selenite vanadate TlSeVO5 TlSeVO5

Origin: Synthetic.
Description: Yellow crystals prepared hydrothermally from Tl2CO3 and SeO2 at 230 �C for 3 days.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic,
space group Pna21, a¼ 7.1639(15), b¼ 8.6630(19), c¼ 7.8946(17) Å, V¼ 489.95(18) Å3, Z¼ 4.
Dcalc ¼ 5.616 g/cm3. Se and V have three- and sixfold coordination, respectively.

Kind of sample preparation and/or method of registration of the spectrum: A sample pressed
between two KBr pellets. Transmission.

Source: Sivakumar et al. (2007).
Wavenumbers (IR, cm21): 903s, 885s, 808s, 799sh, 767sh, 730, 708, 649s, 606, 581w, 565w,

537, 522, 492, 464, 427w, 419w.
Note: The wavenumber 649 cm�1 is erroneously indicated by Sivakumar et al. (2007) as 657 cm�1.

The wavenumbers were partly determined by us based on spectral curve analysis of the published
spectrum. In the cited paper, Raman spectrum is given.
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V144 Thallium(I) tellurite vanadate TlTeVO5 TlTeVO5

Origin: Synthetic.
Description: Yellow crystals prepared hydrothermally from Tl2CO3 and TeO2 at 230 �C for 3 days.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic,
space group Pna21, a ¼ 7.1639(15), b ¼8.6630(19), c ¼ 7.8946(17) Å, V ¼ 489.95(18) Å3, Z ¼ 4.
Dcalc ¼ 6.103 g/cm3. Te and V have three- and sixfold coordination, respectively.

Kind of sample preparation and/or method of registration of the spectrum: A sample pressed
between two KBr pellets. Transmission.

Source: Sivakumar et al. (2007).
Wavenumbers (IR, cm21): 902, 850s, 829s, 807s, 802s, 784s, 747, 731, 715, 671, 663, 647,

637, 620, 614, 513, 468, 446.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.

V145 Thorium divanadate cubic polymorph α-Th(V2O7)
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Origin: Synthetic.
Description: Prepared by short-time heating a mixture of ThO2 and P2O5 between 600 and 1000 �C.

Characterized by powder X-ray diffraction data. Cubic, a ¼ 8.72, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran et al. (1974).
Wavenumbers (cm21): 958, 923sh, 885s, 858, 830, 799, 774s, 663, 500w, 486w, 350, 323, 310, 290.

V146 Thorium divanadate orthorhombic polymorph β-Th(V2O7)

Origin: Synthetic.
Description: Prepared by long-time heating a mixture of ThO2 and V2O5 at 600 �C. Characterized by

powder X-ray diffraction data. Orthorhombic, a ¼ 7.216, b ¼ 6.964, c ¼ 22.800 Å.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran et al. (1974).
Wavenumbers (cm21): 1015w, 1005w, 965sh, 960, 922sh, 908s, 880, 853s, 832sh, 823, 810s,

790, 773s, 754, 734, 700, 638, 505, 482, 440, 390w, 375w, 360w, 335w, 313w.
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V147 Zinc iron(III) orthovanadate Zn3Fe4(VO4)6

Origin: Synthetic.
Description: Prepared by stepwise heating a mixture of FeVO4 and Zn3(VO4)2, taken in stoichiometric

amounts, at 700, 750, and 800 �C, for 24 h at each temperature. Characterized by powder X-ray
diffraction data. Triclinic, a ¼ 6.681(1), b ¼ 8.021(2), c ¼ 9.778(4) Å, α ¼ 105.25(4)�,
β ¼ 105.00�4, γ ¼ 102.20(4)�, V ¼ 465.8 Å3, Z ¼ 1. Dcalc ¼ 3.95 g/cm3. The strongest lines of
the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.2713 (34) (�201), 3.1997
(45) (2�10), 3.1368 (56) (0�13), 3.0747 (100) (021), 3.0442 (36) (�202).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Kurzawa and Blonska-Tabero (2002).
Wavenumbers (cm21): 945s, 915s, 895sh, 830sh, 750s, 716s, 676, 511, 486, 408w, (394w).
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

V148 Zinc orthovanadate Zn3(VO4)2
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Origin: Synthetic.
Description: Prepared hydrothermally from Zn(NO3)2 and V2O5 in the presence of hexamethylene-

tetramine at 120 �C for 24 h with subsequent annealing of the Zn3(OH)2V2O7�nH2O precursor at
600 �C for 10 h. Characterized by powder X-ray diffraction data. Orthorhombic, a ¼ 8.299,
b ¼ 11.52, c ¼ 6.111 Å (see JCPDS card no. 34-0378).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Ni et al. (2010b).
Wavenumbers (IR, cm21): 901, 848s, 791s, 658s, 624, 442w, 414.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 961s, 816, 797, 692w, 633w, 457w, 394, 374, 318s, 261, 224, 200w,

179w, 156.

V149 Zinc basic pyrovanadate hydrate Zn3(V2O7)(OH)2∙2.5H2O

Origin: Synthetic.
Description: Precipitate obtained by adding 10% aqueous (NH4)(OH) to the solution prepared from

30% aqueous H2O2, V2O5, and of Zn(NO3)2�6H2O. Characterized by powder X-ray diffraction data
and TG analysis. Hexagonal.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Melghit et al. (2007).
Wavenumbers (cm21): 3510s, 3190, 1622, 930s, 800s, 484.
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V150 Zinc vanadyl oxide Zn(VO2)2O2 Zn(VO2)2O2

Origin: Synthetic.
Description: Obtained by the thermal decomposition at 550 �C for 8 h of a precursor prepared from Zn

(CH3COO)2�2H2O and (NH4)(VO3) by a rheological phase reaction method. Characterized by
powder X-ray diffraction data. Monoclinic, a ¼ 9.223, b ¼ 3.511, c ¼ 6.552 Å, β ¼ 111.23�,
V ¼ 197.7 Å3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Liu and Tang (2009).
Wavenumbers (cm21): 870s, 670s, 550.

V151 Alforsite vanadate analogue Ba5(VO4)3Cl
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Origin: Synthetic.
Description: Obtained by double-ply heating a mixture of Ba3(VO4)2 and BaCl2, taken in stoichio-

metric molar ratio, at 950–1000 �C for 1–2 h with intermediate grinding. Characterized by powder
X-ray diffraction data. Hexagonal, space group P63/m, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Baran and Aymonino (1972).
Wavenumbers (cm21): 848s, 828w, 794s, 393, 378, 357.

V152 Clinobisvanite BiVO4

Origin: Synthetic.
Description: Prepared from ammonium vanadate and bismuth nitrate using a complex sol-gel proce-

dure followed by calcination at 600 �C for 2 h. Monoclinic. Characterized by powder X-ray
diffraction data and EDX spectroscopy.

Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Pookmanee et al. (2013).
Wavenumbers (cm21): 1629w, 1382w, 1158w, 826s, 737s, 474w, 412w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands with wavenumbers above 1000 cm�1 may correspond to
impurities.
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V153 Magnesiopascoite Ca2MgV5+
10O28∙16H2O

Origin: Packrat Mine, Gateway, Gateway District, Mesa Co., Colorado, USA.
Description: Orange crust from the association with U,V-oxides. Investigated by A.V. Kasatkin. The

empirical formula is (electron microprobe): Ca2.07Mg1.03V9.90O28�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3567, 3455s, 3240sh, 3105s, 2184w, 1638, 989, 955s, 842, 819, 746, 619,

569, 522, 458, 407.
Note: The spectrum was obtained by N.V. Chukanov.

V154 Vanadinite Sr,OH-analogue Sr10(PO4)(VO4)5(OH)2
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Origin: Synthetic.
Description: Obtained in the reaction between aqueous solution of Sr(NO3)2, containing NH4OH, and

a solution containing (NH4)2(HPO4) and (NH4)(VO3) with subsequently heating a precipitate
formed first at 100 �C for 2 h and thereafter at 850 �C for 2 h. Characterized by powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Galera-Gomez et al. (1982).
Wavenumbers (cm21): 3575, 1042s, 858sh, 815s, 592, 572, 550, 443, 405, 390sh, 370sh,

305, 283, 222s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Bands in the range from 1400 to 1700 cm�1 correspond to impurities.

V155 Wakefieldite-(Pr) PrVO4

Origin: Synthetic.
Description: Obtained by heating a stoichiometric mixture of Pr2O3 and V2O5 powders in air for

several hours, first at 750 �C and thereafter at 1000 �C with intermediate grinding. Tetragonal,
Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Baran and Aymonino (1971).
Wavenumbers (cm21): 870sh, 808s, 441.
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V156 Ziesite and blossite polymorph Cu2V2O7

Origin: Synthetic.
Description: Dark brown powder obtained in a solid-state reaction of CuO and V2O5 at 600 �C for

16 h with intermediate grinding. Characterized by powder X-ray diffraction data. Monoclinic,
a ¼ 6.87, b ¼ 8.11, c ¼ 9.16 Å, β ¼ 109.5�, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Pedregosa et al. (1974).
Wavenumbers (cm21): 905s, 840s, 775s, 690s, 518, 500, 435sh, 360, 330sh.

V157 Reppiaite Mn2+5(VO4)2(OH)4
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Origin: Synthetic.
Description: Dark red columnar crystals hydrothermally grown from Mn2O3 and V2O5 in 3 M CsOH

at 580 �C and 1.5 kbar. The crystal structure is solved. Monoclinic, space group C2/m, a ¼ 9.6568
(9) Å, b ¼ 9.5627(9), c ¼ 5.4139(6) Å, β ¼ 98.529(8)�, V ¼ 494.42(9) Å3, Z ¼ 2. Dcalc ¼ 3.846 g/
cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Sanjeewa et al. (2016).
Wavenumbers (IR, cm21): 3743w, 1743w, 1698w, 1651w, 1549w, 1513w, 1452sh, 1048s, 995s,

886sh, 785sh, 750w, 663sh, 582, 550sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The intensity of the band of O–H-stretching vibrations at 3743 cm�1 is
anomalously low, and the wavenumber is anomalously high. In the cited paper, Raman spectrum
is given.

Wavenumbers (Raman, cm21): 789s, 749w, 402w, 315w.

V158 Ziminaite monoclinic polymorph Fe3+(VO4)

Origin: Synthetic.
Description: Obtained using a sol-gel technique with subsequently heating the sol at 500 �C.

Characterized by electron diffraction. Monoclinic.
Kind of sample preparation and/or method of registration of the spectrum: Film on a Si wafer.

Absorption.
Source: Vuk et al. (2001).
Wavenumbers (cm21): 990w, 965w, 896, 882s, 830s, 766sh, 730sh, 652s, 502.
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V159 Wernerbaurite {(NH4)2[Ca2(H2O)14](H2O)2}{V10O28}

Origin: St Jude Mine, Gypsum Valley, Slick Rock District, San Miguel Co., Colorado, USA (type
locality).

Description: Orange granular aggregate from the association with U,V-oxides. Investigated by
A.V. Kasatkin. Characterized by single-crystal X-ray diffraction data. Triclinic, a ¼ 9.709(10),
b¼ 10.272(11), c¼ 10.599(7) Å, α¼ 90.05(7)�, β ¼ 77.09(7)�, γ ¼ 69.90(9)�, V¼ 964(1) Å3. The
empirical formula is (electron microprobe): (NH4)xCa1.96V10.00O28�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3441s, 3190s, 2800, 2170w, 1670w, 1635, 1410, 956s, 814, 744, 593, 526,

456, 408.
Note: The spectrum was obtained by N.V. Chukanov.

V160 Schäferite Ni analogue (Ca2Na)Ni2(VO4)3
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Origin: Slag dump near the Kamariza mine, Lavrion, mining district, Attikí (Attika, Attica) Prefecture,
Greece.

Description: Dark olive-green crust from the association with trevorite and liebenbergite. The empirical
formula is (electron microprobe): (Ca1.93Na1.04)(Ni1.32Mg0.44Fe0.25)(V2.93P0.06Cr0.03Si0.01)O12.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1040sh, 1005sh, 975sh, 840sh, 801s, 570sh, 519w, 454w, 387.
Note: The spectrum was obtained by N.V. Chukanov.

V161 Pucherite Bi(VO4)

Origin: Neustädtel, Erzgebirge (Ore Mts.), Saxony, Germany.
Description: Yellowish-brown crystals.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1184w, 1083w, 824s, 693, 606s, 507, 470sh, 421, 400.
Note: The spectrum was obtained by N.V. Chukanov.

V162 Cheremnykhite trigonal dimorph Pb3Zn3(TeO6)(VO4)2
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Origin: Synthetic.
Description: Synthesized by conventional solid-state methods from stoichiometric amounts of PbO,

ZnO, H2TeO4�2H2O, and V2O5 first at 400 �C for 20 h to decompose H2TeO4�2H2O and thereafter
at 700 �C for 5 days, with intermediate grindings. Characterized by powder and single-crystal X-ray
diffraction data. Trigonal, space group P321, a¼ 8.608(2), c¼ 5.186(3) Å, V¼ 332.8(2) Å3, Z¼ 1.
Dcalc ¼ 6.343 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yu et al. (2016).
Wavenumbers (cm21): 785, 759s, 691, 640, 604s, 525, 485s, 459s.

V163 Fervanite (?) Fe3+4V
5+

4O16∙5H2O

Origin: Synthetic.
Description: Poor-crystallized yellow powder prepared in the reaction between boiling aqueous

solutions of ferric iron nitrate and V2O5. The empirical formula is FeVO4∙1.1H2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Melghit and Al-Mungi (2007).
Wavenumbers (cm21): 1624, 953, 870sh, 850sh, 839s, 763sh, 757s, 663s, 537w, 511sh, (500),

486, (458), (437), (420).
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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V164 Ronneburgite K2MnV4O12

Origin: Ronneburg, Thuringia, Germany (type locality).
Description: Reddish-brown crystals from the association with hummerite, gypsum, epsomite,

picromerite and hematite. Holotype sample. The crystal structure contains infinite metavanadate
chains of corner-sharing VO4 tetrahedra. Monoclinic, space group P21/n, a ¼ 8.183(3), b ¼ 9.247
(3), c ¼ 8.651(2) Å, β ¼ 109.74(2)�, Z ¼ 2. Dmeas ¼ 2.84 g/cm3, Dcalc ¼ 2.85 g/cm3. Optically
biaxial (�), α ¼ 1.925(5), β ¼ 1.960(10), γ ¼ 1.988(4), 2V ¼ 82�. The empirical formula is
K1.91Mn0.93Mg0.08V4.00O11.96. The strongest lines of the powder X-ray diffraction pattern [d, Å (I,
%) (hkl)] are: 3.701 (55) (�211), 3.336 (100) (121), 3.118 (50) (�122), 3.000 (36) (112), 2.878
(64) (�103, 031), 2.752 (68) (�222).

Kind of sample preparation and/or method of registration of the spectrum: Transmission of a
small plate-like chip using an IR microscope.

Source: Witzke et al. (2001).
Wavenumbers (IR, cm21): (1417), (1335), (1256), (1191), (1149), 1102, 1029s, 978w, 961sh, 923w,

866w, 845w, 816, 749, 622, 529, 494, (464).
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Peaks above 1102 cm�1 may be due to interference. In the cited paper,
Raman spectrum is given.

Wavenumbers (Raman, cm21): 952s, 942sh, 911, 878s, 830w, 658w, 461, 350, 336, 261.
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V165 Wakefieldite-(Y) YVO4

Origin: Synthetic.
Description: Eu-doped sample prepared hydrothermally from sodium orthovanadate and

corresponding nitrates at Y: Eu ¼ 9:1. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Tran et al. (2012).
Wavenumbers (cm21): 3449, 2926w, 1624w, 1526w, 1384, 1061w, 1003sh, 905sh, 880, 841s, 808s,

785sh, 755sh, 451w, 426, 411.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 2926 cm�1 corresponds to the admixture of an organic substance.
The band at 1384 cm�1 indicates possible admixture of nitrate anions. The bands at 3449 and
1624 cm�1 correspond to adsorbed water molecules.

V166 Ziminaite Fe3+6(VO4)6
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Origin: Synthetic.
Description: Nanorods obtained by dehydration of synthetic fervanite at 500 �C. Characterized by

powder X-ray diffraction data and Mössbauer spectroscopy. Triclinic.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Lehnen et al. (2014).
Wavenumbers (IR, cm21): 990sh, 970, 904s, 890s, 849sh, 833s, 730, 692, 648s, 502s, 440, 413w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 965, 931s, 907, 895s, 845s, 832s, 770, 736s, 660w, 633w, 502w,

450, 408, 391, 371, 329, 317.

V167 Janchevite Pb7V
5+(O8.5□0.5)Cl2

Origin: Kombat mine, Grootfontein district, Otjozondjupa region, Namibia (type locality).
Description: Orange-red, thick tabular anhedral grains from the association with baryte, hausmannite,

calcite, magnesite, and kombatite. Holotype sample. Tetragonal, space group I4/mmm, a ¼ 3.9591
(5) Å, c ¼ 22.6897(3) Å, V ¼ 355.65(1) Å3; Z ¼ 1. Dcalc ¼ 8.18 g/cm3. The empirical formula is
(electron microprobe): Pb7.20V

5+
0.38Mo6+0.29Si0.13Cl2.06O8.25. The strongest lines of the powder

X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.889 (24) (011), 3.501 (31) (013), 2.979 (86) (015),
2.833 (25) (008), 2.794 (100) (110), 1.992 (26) (118), 1.988 (49) (020), 1.649 (46) (215).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 870w, 850, 802, 736, 595, 462, 405sh, 366s.
Note: The spectrum was obtained by N.V. Chukanov.
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2.12 Chromates

Cr21 Ammonium dichromate (NH4)2Cr2O7

Origin: Synthetic.
Description: Analytical grade reactant.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: De Waal and Heyns (1992).
Wavenumbers (cm21): 3128s, 1633w, 1402s, 949s, 898s, 724s.
Note: The band at 1633 cm�1 may be due to adsorbed water.

Cr22 Copper chromate CuCrO4
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Origin: Synthetic.
Description: Prepared hydrothermally from CuCO3, Cu(OH)2, and CrO3 at 220 �C for 24 h. Ortho-

rhombic, space group Cmcm, Z ¼ 4. In the crystal structure, strongly distorted CuO6 octahedra are
present.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Baran (1994).
Wavenumbers (IR, cm21): 956s, 805sh, 785s, 475s, 406w, 370, 320, 290, 237.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 966, 944s, 928, 806s, 412, 386, 342, 254.

Cr23 Lead orthoborate chromate Pb6(BO3)2(CrO4)O2

Origin: Synthetic.
Description: Prepared in a solid-state reaction from the powder mixture of PbO, CrO3, and B2O3 with

the molar ratio 15:2:3. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Orthorhombic, space group Pnma, a ¼ 6.4160(13), b ¼ 11.635(2), c ¼ 18.164(4) Å,
V ¼ 1356.0(5) Å3, Z ¼ 4. Dcalc ¼ 7.391 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2009).
Wavenumbers (cm21): 1225s, 841s, 806s, 694s, 608, 567, 500, 449, 426.
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Cr24 Magnesium chromate α-Mg(CrO4)

Origin: Synthetic.
Description: Orthorhombic, space group Cmcm, Z ¼ 4 (see Muller et al. 1969b).
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Muller et al. (1969a).
Wavenumbers (cm21): 950s, 830s, 430sh, 410, 385sh, 365sh, 315s.

Cr25 Potassium magnesium chromate hydrate K2Mg(CrO4)2∙2H2O

Origin: Synthetic.
Description: Prepared by precipitation from aqueous solution of magnesium acetate and potassium

chromate. Triclinic, space group P-1, Z ¼ 1. Structurally related to kröhnkite.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Stoilova et al. (2009).
Wavenumbers (cm21): 3251s, 3180sh, 1640, 953s, 887sh, 867s, 852sh, 682, 556, 458w.

Cr26 Potassium nickel chromate hydrate K2Ni(CrO4)2∙2H2O

Origin: Synthetic.
Description: Prepared by precipitation from aqueous solution of nickel acetate and potassium chro-

mate. Triclinic, space group P-1, Z ¼ 1. Structurally related to kröhnkite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Stoilova et al. (2009).
Wavenumbers (cm21): 3278 (broad), 1640w, 934s, 897s, 855s, 840, 793, 688 (broad).

Cr27 Potassium peroxochromate K3[Cr(O2)4]
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Origin: Synthetic.
Description: Tetragonal, space group I-42m.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Haeuseler and Haxhillazi (2003).
Wavenumbers (IR, cm21): 988w, 883s, 676s, 558s, 426s, 330w, 293w, 185, 166w, 134.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 919s, 879, 838w, 682w, 564s, 526, 464s, 430s, 336, 286,

217w, 183w.

Cr28 Praseodymium chromate(V) PrCrO4

Origin: Synthetic.
Description: Prepared by heating PrCr(C2O4)3�8H2O at 500 �C for 10 min. Characterized by powder

X-ray diffraction data. Triclinic, space group P21/n, a ¼ 6.98(2), b ¼ 7.16(1), c ¼ 6.63(1) Å,
β ¼ 105.22(10)�, V¼ 319.72 Å3, Z¼ 4. The strongest lines of the powder X-ray diffraction pattern
[d, Å (I, %) (hkl)] are: 3.58 (30) (020, 111), 3.36 (59) (200), 3.162 (100) (120), 2.925 (74) (012),
1.989 (30) (212), 1.921 (34) (�132).

Kind of sample preparation and/or method of registration of the spectrum: CsI disc.
Transmission.

Source: Manca and Baran (1981).
Wavenumbers (cm21): 840sh, 800s, 722s, 420, 379, 358, 294.
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Cr29 Embreyite (Pb,Cu,□)2Pb[(Cr,P)O4]2�nH2O

Origin: Krokoitovyi Shurf (Crocoite Pit), Uspenskaya Mt., Berezovskoe ore field, Middle Urals.
Description: Brownish-orange flattened crystals from the association with crocoite, vauquelinite

pyromorphite, and goethite. The crystal structure is solved. Monoclinic, space group C2/m,
a ¼ 9.802(16), b ¼ 5.603(9), c ¼ 7.649(12) Å, β ¼ 114.85(3)o, V ¼ 381.2(11) Å3. The empirical
formula is (electron microprobe, Z ¼ 2): Pb1.29Cu0.07Cr0.52P0.43O4�nH2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3329, 1680w, 1418w, 1356w, 1030sh, 959, 900sh, 855s, 830sh, 560sh,

538, 418w, 383.
Note: The spectrum was obtained by N.V. Chukanov.

Cr30 Embreyite (Pb,Cu,□)2Pb[(Cr,P)O4]2�nH2O
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Origin: Krokoitovyi Shurf (Crocoite Pit), Uspenskaya Mt., Berezovskoe ore field, Middle Urals.
Description: Reddish-brown crystals from the association with vauquelinite. A Cu-rich variety. The

empirical formula is (electron microprobe, Z ¼ 1): Pb2.5Cu0.3Cr1.05P0.95O8�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3301, 1433, 1328w, 1059, 980sh, 966s, 891s, 819s, 572, 543, 465sh, 386.
Note: The spectrum was obtained by N.V. Chukanov.

Cr31 Iranite Pb10Cu(CrO4)6(SiO4)2(OH)2

Origin: Santa Ana mine, Caracoles, Sierra Gorda district, Antofagasta Region, Chile.
Description: Brownish-orange lenticular crystals from the association with wulfenite. Confirmed by

the IR spectrum and qualitative electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3359, 1099w, 1037w, 905sh, 879s, 858s, 807, 785s, 620w, 528, 495,

473, 417w, 389, 379.
Note: The spectrum was obtained by N.V. Chukanov. The weak bands at 1099, 1037, and 620 cm�1

correspond to trace amounts of SO4
2� anions.

596 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



2.13 Germanates

Ge4 Brunogeierite Fe2+2Ge
4+O4

Origin: Synthetic.
Description: Prepared in the solid-state reaction between GeO2 and FeO at 1000 �C.
Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Tarte (1963).
Wavenumbers (cm21): 688s, 402s, 319.

2.14 Arsenides, Arsenites, Arsenates, and Sulfato-Arsenates

As316 Castellaroite Mn2+3(AsO4)2�4H2O
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Origin: Monte Nero Mine, Rocchetta Vara, La Spezia Province, Liguria, Italy (type locality).
Description: White radiated aggregates from the association with rhodochrosite. The sample was

received from L. Chiappino, a coauthor of the first description of castellaroite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3421s (broad), 3280sh, 2940sh, 2500sh, 1624, 1061, 1027, 1001, 948w,

855sh, 836s, 801s, 669w, 610sh, 589, 565sh, 468s, 421.
Note: The spectrum was obtained by N.V. Chukanov.

As317 Magnesiokoritnigite Mg(AsO3OH)�H2O

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type
locality).

Description: Pink crystals from the association with magnesiocanutite. Investigated by I.V. Pekov.
The empirical formula is (electron microprobe): (Mg0.99Mn0.01)(HAsO4)�H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3519, 3310sh, 3220s, 3090sh, 2830, 2385, 2301, 1670, 1576, 1386w, 1307,

1185sh, 1158, 1120w, 850s, 772s, 750sh, 670, 650, 620sh, 599w, 504, 470sh, 439s, 395.
Note: The spectrum was obtained by N.V. Chukanov.
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As318 Chudobaite (Mg,Zn)5(AsO4)2(HAsO4)2�10H2O

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile.
Description: White granular aggregate from the association with hörnesite, gypsum, arsenic, pyrite,

dolomite, and quartz. Investigated by I.V. Pekov. Identified by qualitative electron microprobe
analyses and powder X-ray diffraction data. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %)] are: 10.26 (100), 7.70 (11), 4.79 (15), 3.423 (15), 2.973 (22), 2.735 (11).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3520sh, 3447, 3346s, 3252, 3160, 2990sh, 2295w, 1662, 1560sh, 1404w,

879s, 847s, 789, 734s, 507, 467s, 301s.
Note: The spectrum was obtained by N.V. Chukanov.

As319 Boron arsenate B(AsO4)
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Origin: Synthetic.
Description: Structurally related to cristobalite.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Rulmont et al. (1987).
Wavenumbers (cm21): 965s, 857, 809w, 580w, 488s, 408, 217.

As320 Cesium acid (pentahydrogen) arsenate CsH5(AsO4)2

Origin: Synthetic.
Description: Produced from an aqueous stoichiometric solution of cesium carbonate and orthoarsenic

acid. The crystal structure is solved. Monoclinic, space group P21/c, a ¼ 10.983(1), b ¼ 7.943(1),
c ¼ 9.844(1) Å, β ¼ 96.15(1)�, V ¼ 853.82(6) Å3, Z ¼ 4. Dcalc ¼ 3.235 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Na{̈li et al. (2001).
Wavenumbers (IR, cm21): 3402s (broad), 2760s (broad), 2360s (broad), 1631 (broad), 1399, 1299,

1212, 887s, 782s, 760sh, 434, 398sh, 384, 306.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 830s, 767s, 415s, 370, 335, 290, 265, 235, 200sh, 170w, 125w,

100w, 75, 65, 42, 39, 25.
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As321 Cesium iron arsenate Cs7Fe7O2(AsO4)8 Cs7Fe7O2(AsO4)8

Origin: Synthetic.
Description: Prepared from the mixture of Cs2CO3, Fe2O3, and (NH4)(H2AsO4) in the molar ratio

3:3:4 heated first at 450 �C for 12 h and then at 800 �C for 10 days. The crystal structure is solved.
Monoclinic, space group P21/c, a ¼ 8.464(2), b ¼ 23.146(5), c ¼ 10.214(3) Å, β ¼ 107.87(2)�,
V ¼ 1904.5 Å3, Z ¼ 2. Dcalc ¼ 4.298 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Fitouri et al. (2015).
Wavenumbers (cm21): 980sh, 933, 870, 841s, 806s, 750sh, 590w, 526, 492, 465, 424, 407.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

As322 Calcium chlorarsenate Ca2(AsO4)Cl
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Origin: Synthetic.
Description: Crystals grown from melt by means of a reaction flux technique using As2O3, CaCl2, and

CaCO3 as starting materials. Related to chlor-spodiosite. Orthorhombic, space group Pbcm.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Kowalczyk and Condrate Sr (1974).
Wavenumbers (IR, cm21): 885s, 845sh, 837s, 807s, 460, 434s, 383, 359.
Note: In the paper by Kowalczyk and Condrate Sr (1974) the wavenumber 460 cm�1 is erroneously

indicated as 470 cm�1. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 878s, 870, 838s, 813, 497w, 466w, 390, 314.

As323 Calcium arsenate CaAs2O6 CaAs2O6

Origin: Synthetic.
Description: Obtained in a solid-state reaction between CaCO3 and As2O3. In the crystal structure,

AsO6 octahedra are present. Trigonal, space group P-31/m, a ¼ 4.82, c ¼ 5.07 Å.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Husson et al. (1984).
Wavenumbers (IR, cm21): 783sh, 715, 620s, 585s, 385s, 370s, 330sh, 245, 205.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman, spectrum is given.
Wavenumbers (Raman, cm21): 762s, 590w, 570, 426, 397, 286s.
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As324 Calcium orthoarsenate trigonal polymorph Ca3(AsO4)2

Origin: Synthetic.
Description: Prepared in a solid-state reaction, from a mixture of CaCO3 and As2O5, first at 700 �C for

7 h and thereafter (after trituration of the product) at 800 �C for 3 h. Trigonal, space group R3c,
Z ¼ 7.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc.
Transmission.

Source: Baran (1976).
Wavenumbers (cm21): 902, 875s, 844s, 812sh, 799sh, 786, 467sh, 453, 426, 404, 385, 294, 281sh,

238, 195w.

As325 Calcium samarium thorium arsenate CaSmTh(AsO4)3
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Origin: Synthetic.
Description: Prepared by a standard solid-state method. Structurally related to xenotime-group

minerals. Tetragonal, space group I41/amd, a ¼ 7.175(2), c ¼ 6.409(3) Å, V ¼ 330.0 Å3.
Dmeas ¼ 5.61 g/cm3, Dcalc ¼ 5.63 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: CsBr disc. Absorption.
Source: Nabar and Sakhardande (1985).
Wavenumbers (cm21): 911sh, 886sh, 840s, 803s, 455, 408sh, 380sh, 358sh, 338, 319sh.

As326 Lithium zirconium arsenate LiZr2(AsO4)3

Origin: Synthetic.
Description: Synthesized from stoichiometric amounts of LiNO3, ZrOCl2, and arsenic acid using a

precipitation method. In the structure which has a P1121/n space group, the arsenic atoms occupy
three independent positions.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Absorption.

Source: Borovikova et al. (2014).
Wavenumbers (IR, cm21): 1107w, 1027w, 1006w, 954, 935sh, 883s, 848s, 827, 807sh, 506w,

496sh, 476sh, 455w, 437w, 400w, 378sh, 354, 344sh, 297s, 286s, 241, 126w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 976s, 953, 938w, 876, 869s, 854s, 848, 820, 805w, 474, 430,

388, 364, 354, 336, 269w, 256, 230, 194, 178w.
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As327 Lithium zirconium arsenate LiZr2(AsO4)3

Origin: Synthetic.
Description: Synthesized from stoichiometric amounts of LiNO3, ZrOCl2, and arsenic acid using a

precipitation method. Hexagonal, space group R3c.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Absorption.
Source: Borovikova et al. (2014).
Wavenumbers (IR, cm21): 1084w, 1018, 956, 870s, 849s, 494sh, 467, 377sh, 359sh, 310s,

241, 187sh, 129w, 93w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 979s, 951, 864s, 857, 473, 445w, 380, 359, 346, 333, 253, 189, 176.

As328 Mercury(I) orthoarsenate (Hg2)3(AsO4)2
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Origin: Synthetic.
Description: Obtained as precipitate formed in the reaction of aqueous solutions of orthoarsenic acid

and Hg2(NO3)2�2H2O. The crystal structure is solved. Monoclinic, space group P21/c, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Baran et al. (1999b).
Wavenumbers (IR, cm21): 834, 823, 811, 757s, 438, 392sh, 345, 302sh, 258sh, 242w, 185s, 134s,

112sh, 100s.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): ~845sh, 789, 770sh, 814s, 432s, 390sh, 368w, 312w, 253w, 225w,

148s, 129s, 110w, 98s.

As329 Mercury(II) orthoarsenate Hg3(AsO4)2

Origin: Synthetic.
Description: Obtained as precipitate formed in the reaction of aqueous solutions of orthoarsenic acid

and Hg(NO3)2�H2O. The crystal structure is solved. Monoclinic, space group P21/c, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Baran et al. (1999b).
Wavenumbers (IR, cm21): 893sh, 869s, 851s, 826s, 775s, 763sh, 487, 440, 411sh, 367, 342, 320w,

289, 250w, 230w, 190, 173w, 150w, 126s, 94s, 85sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 876w, 825, 784w, 759, 851s, 501, 415s, 362, 327, 278, 227, 195sh,

170sh, 140s, 110w, 86.
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As330 Potassium antimony oxoarsenate K2Sb(AsO4)O2

Origin: Synthetic.
Description: Obtained in the solid-state reaction between Sb2O3, As2O5, and K2CO3 at 900 �C for

1 day. Characterized by chemical analyses. The crystal structure is solved. Orthorhombic, space
group Pnma, a ¼ 9.603(6), b ¼ 5.972(5), c ¼ 11.304(8) Å, V ¼ 648.27 Å3, Z ¼ 4. Dmeas ¼ 3.76
(5) g/cm3, Dcalc ¼ 3.79 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Botto and Garcia (1989).
Wavenumbers (IR, cm21): 960sh, 932s, 876s, 856w, 790s, 732s, 662, 612, 540s, 526s, 468, 430w,

420, 392, 370, 345, 336.
Note: The wavenumber 516 cm�1 is erroneously indicated by Botto and Garcia (1989) as 526 cm�1. In

the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 984w, 961, 915, 892w, 872s, 644s, 603w, 533s, 508sh, 475, 419w,

404w, 373, 340, 297, 279, 251.
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As331 Potassium iron diarsenate (pyroarsenate) KFe(As2O7)

Origin: Synthetic.
Description: Beige single crystals grown from aqueous solution of KNO3, Fe(NO3)3�9H2O, and

H3AsO4 with the molar ratio of 10:1:20, with subsequent heating up to 700 �C in order to avoid
volatile products. Characterized by qualitative EDX analysis. The crystal structure is solved.
Triclinic, space group P-1, a ¼ 7.662(1), b ¼ 8.402(2), c ¼ 10.100(3) Å, α ¼ 90.42(3)�,
β ¼ 89.74(2)�, γ ¼ 106.39(2)�, V ¼ 623.8(3) Å3, Z ¼ 4. Dcalc ¼ 3.799 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Ouerfelli et al. (2007).
Wavenumbers (cm21): 1163w, 1097w, 970sh, 930s, 902s, 882s, 845sh, 786s, 764s, 601, 530sh,

484sh, 468, 420.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

As332 Potassium magnesium arsenate hexahydrate KMg(AsO4)∙6H2O
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Origin: Synthetic.
Description: Prepared by a simple precipitation procedure of mixing MgSO4�7H2O and K(H2AsO4)

solutions at room temperature. Characterized by powder X-ray diffraction data. The crystal
structure is solved. Orthorhombic, space group Pmn21, a ¼ 6.99(3), b ¼ 6.22(2), c ¼ 11.26
(4) Å, V ¼ 490.63(3) Å3, Z ¼ 2. Isostructural with struvite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc (?).
Absorption.

Source: Abdija et al. (2014).
Wavenumbers (IR, cm21): 3470sh, 3205sh, 2945s, 2348, 1825sh, 1667sh, 1616, 980sh, 930s, 800s,

690, 675sh, 470, 440, 417, 409s, 402s.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3500–2200s, 1760–1500w, 819s, 458w, 414w, 382, 350w.

As333 Potassium manganese arsenate K2Mn2+2Mn3+(AsO4)3

Origin: Synthetic.
Description: Obtained by heating a stoichiometric mixture of manganese oxide, ammonium

dihydrogen arsenate, and potassium carbonate first at 400 �C for 4 h and thereafter at 800 �C for
48 h. The crystal structure is solved. Monoclinic, space group C2/c, a ¼ 12.490(1), b ¼ 13.013(1),
c ¼ 6.888(1) Å, β ¼ 114.46(2)�, V ¼ 1019.2(8) Å3, Z ¼ 4. Dmeas ¼ 4.28(4) g/cm3, Dcalc ¼ 4.30 g/
cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chaalia et al. (2012).
Wavenumbers (cm21): 888, 828s, 803s, 766sh, 730, 670sh, 621sh, 572w, 520sh, 471, 449, 415, 397,

367, 357, 342, 317s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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As334 Potassium sodium iron arsenate Na2.77K1.52Fe2.57(AsO4)4 Na2.77K1.52Fe2.57(AsO4)4

Origin: Synthetic.
Description: Green crystals obtained by solid-state reaction from a mixture of Na2CO3, K2CO3, Fe

(NO3)3�9H2O, and (NH4)(H2AsO4) with a Na:K:Fe:As molar ratio of 1:1:1:5, first at 400 �C for 24 h
and thereafter (after intermediate grinding) at 850 �C for 72 h. Characterized by powder X-ray
diffraction data and EDS analysis. The crystal structure is solved. Orthorhombic, space group
Cmce, a¼ 10.854(4), b¼ 20.985(8), c¼ 6.536(2) Å, V¼ 1488.7(9) Å3, Z¼ 4.Dcalc¼ 3.669 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ouerfelli et al. (2015).
Wavenumbers (cm21): 1081sh, 1017sh, 870s, 796s, 718, 570sh, 518sh, 447, 362s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

As335 Potassium zirconium arsenate KZr2(AsO4)3
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Origin: Synthetic.
Description: Colorless polycrystalline powder obtained by evaporation of aqueous solution containing

stoichiometric amounts of KNO3, ZrOCl2�8H2O, and H3AsO4 at 90 �C, drying at 270 �C and
sintering at 600 and 850–950 �C with intermediate grindings. Characterized by powder X-ray
diffraction data. Trigonal, space group R-3c.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Absorption.

Source: Borovikova et al. (2014).
Wavenumbers (IR, cm21): 1080w, 1017, 954sh, 868s, 847sh, 493w, 468, 396, 371, 348sh, 308s,

288sh, 223, 189w, 173w, 133w, 119w, 84w, 71w, 60w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 982s, 949, 862s, 857s, 842, 468w, 437, 381w, 358, 255, 237.

As336 Scandium arsenate monohydrate Sc(AsO4)∙H2O

Origin: Synthetic.
Description: Colorless platy crystals prepared from Sc2O3, hydrated arsenic acid, and Li2CO3 by

hydrothermal synthesis at 493 K for 7 days. Triclinic, space group P-1, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran et al. (2006).
Wavenumbers (IR, cm21): 3300s, 3203s, 1641, 978s, 899s, 849s, 793s, 746, 540, 486.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1638, 935s, 866s, 832s, 805, 744w, 484, 385, 347, 323w, 287, 244w,

188w, 167, 138.
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As337 Sodium indium arsenate (alluaudite-type) Na3In2(AsO4)3

Origin: Synthetic.
Description: Na3In2(AsO4)3 was synthesized by a solid-state reaction between NaHCO3, In2O3, and

(NH4)(H2AsO4), as well as by a chemical attack of the reagents (NaHCO3, In2O3, As2O3) by nitric
acid. Characterized by powder X-ray diffraction data. The crystal structure is solved by the Rietveld
method. Monoclinic, space group C2/c, a ¼ 12.6025(1), b ¼ 13.1699(1), c ¼ 6.8335(1) Å,
β ¼ 113.7422(5)�, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Khorari et al. (1997).
Wavenumbers (IR, cm21): 917s, 842sh, 820s, 802sh, 772s, 505s, 497sh, 477s, 447, 432, 407s,

379, 349, 340, 312, 298, 257w, 230w, 214s, 186s, 167sh, 125w, 110w, 90w, 80w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 934s, 907w, 990, 866s, 855, 837, 832sh, 806sh, 796, 773, 480s,

472sh, 419, 397, 378w, 369w, 354w, 328, 284, 271, 231w, 168, 149, 133, 122, 96w, 90w, 86w, 78.

612 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



As338 Sodium lead neodymium arsenate chloride (apatite-type) Na2Pb6Nd2(AsO4)6Cl2

Origin: Synthetic.
Description: Prepared by stepwise heating of the mixture of NaCl, PbO, Nd2O3, and As2O5, first at

350 �C and thereafter (after intermediate grindings) at 650, 800, and 850 �C for 2 h at each temperature.
Characterized by powder X-ray diffraction data. Hexagonal, space group P63/m, a ¼ 10.08(1),
c ¼ 7.21(1) Å, V ¼ 634.4 Å3, Z ¼ 1. Dmeas ¼ 6.3 g/cm3, Dcalc ¼ 6.49 g/cm3. The strongest lines of
the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.12 (18) (111), 3.60 (19) (002), 3.294
(27) (210), 2.999 (100) (211), 2.929 (44) (112), 2.906 (53) (300), 1.943 (19) (213), 1.928 (18) (321).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Escobar and Baran (1982).
Wavenumbers (IR, cm21): 858s, 822sh, 803s, 773sh, 441, 412, 385, 335sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 850, 822s, 800, 772, 410, 330.

As339 Sodium nickel iron(III) arsenate NaNiFe2(AsO4)3
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Origin: Synthetic.
Description: Crystals obtained from a stoichiometric mixture of Na2CO3, NiO, Fe2O3, and As2O5 by

solid-state reaction at 800 �C for 15 h with intermediate grindings. Characterized by chemical
analyses and powder X-ray diffraction data. Monoclinic, space group P21/c, a ¼ 7.06(1), b ¼ 9.38
(1), c ¼ 19.63(1) Å, β ¼ 114.2(1)�, V ¼ 1186(2) Å3, Z ¼ 4. Dmeas ¼ 3.40(1) g/cm3, Dcalc ¼ 3.42 g/
cm3. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.63
(56) (�111), 2.847 (98) (�204), 2.815 (100) (�222), 2.654 (56) (220), 2.263 (57) (�227).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Augsburger et al. (1992).
Wavenumbers (cm21): 901s, 860s, 820sh, 789s, 700sh, 592w, 584sh, 515sh, 496, 474, 447sh,

390, 334.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

As340 Sodium zirconium arsenate NaZr2(AsO4)3

Origin: Synthetic.
Description: Obtained by precipitation from aqueous solutions containing stoichiometric amounts of

NaNO3 + ZrOCl2�8H2O and H3AsO4 with subsequent stepwise heating the precipitate at 90, 270,
600, and 850–950 �C with intermediate grindings. Characterized by powder X-ray diffraction data.
Trigonal, space group R-3c, Z ¼ 6.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Absorption.

Source: Borovikova et al. (2014).
Wavenumbers (IR, cm21): 1017, 955, 872s, 852s, 483, 406w, 369sh, 313s, 290, 217w, 206w, 182w,

129w, 93w, 75w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 979s, 948, 863s, 856s, 837, 472w, 446, 389, 363, 340, 256.
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As341 Sodium zirconium arsenate NaZr2(AsO4)3

Origin: Synthetic.
Description: Obtained by evaporation of an aqueous solutions containing stoichiometric amounts of

NaNO3, ZrOCl2�8H2O, and (NH4)(H2AsO4) and subsequent stepwise heating the resulting powder
up to 800 �C with intermediate grindings. Characterized by powder X-ray diffraction data. The
crystal structure is solved. Trigonal, space group R-3c, a ¼ 9.1518(2), c ¼ 23.1097(4) Å,
V ¼ 1676.26(1) Å3, Z ¼ 6.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Chakir et al. (2003).
Wavenumbers (IR, cm21): 1017, 953, 870s, 855s, 478.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 978.5s, 949, 863s, 837, 470w, 446, 390w, 362w, 339, 300w,

255, 236w, 179w, 153w, 115, 63.

As342 Tantalum oxyarsenate Ta(AsO4)O
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Origin: Synthetic.
Description: Orthorhombic, a ¼ 11.57, b ¼ 5.31, c ¼ 6.66 Å.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Chahboun et al. (1988).
Wavenumbers (cm21): 1082, 927sh, 868s, 800, 770, 698, 672sh, 416, 398.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

As343 Zirconium acid arsenate monohydrate α-Zr(HAsO4)2∙H2O

Origin: Synthetic.
Description: Prepared in the reaction of zirconyl chloride with a mixture of arsenic and hydrochloric

acids with subsequent refluxing and drying at 110 �C. Characterized by DSC and powder X-ray
diffraction data. Monoclinic, a ¼ 9.146(1), b ¼ 5.381(5), c ¼ 16.61(2) Å, β ¼ 111.5�.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Slade et al. (1997).
Wavenumbers (IR, cm21): 3573, 3508, 3160s, 1615, 1192, 1004, 926sh, 868s, 784.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the range from 2320 to 2380 cm�1 correspond to atmospheric
CO2. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 983, 882s, 869s, 808, 785, 775, 423sh, 410, 363w, 326, 287, 165w,
136, 107w, 78w, 65w, 51w.
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As344 Allactite Mn2+7(AsO4)2(OH)8

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden.
Description: Red crystals from the association with native lead, calcite, dolomite, domeykite, and

pyrochroite. The crystal structure is solved for two prismatic crystals. Monoclinic, space group P21/
n, a ¼ 5.482–5.5225, b ¼ 12.153–12.276, c ¼ 10.014–10.123 Å, β ¼ 95.55–95.63�, Z ¼ 2.
Dcalc ¼ 3.856 g/cm3. Optically biaxial (�), α ¼ 1.554(2), β ¼ 1.558(2), γ ¼ 1.566(2), 2V ¼ 70(5)�.
The empirical formula is (electron microprobe): Mn2+6.73Ca0.13Mg0.12Zn0.02)As

5+
2.00O16H8.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Gatta et al. (2016).
Wavenumbers (cm21): 3570sh, 3562, 3484s, 3446sh, 3387sh, 3288, 3236sh.

As345 Arhbarite Cu2Mg(AsO4)(OH)3
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Origin: Aghbar Mine (Arhbar Mine), Aghbar, Bou Azzer District, Tazenakht, Ouarzazate Province,
Morocco (type locality).

Description: Blue aggregates from the association with dolomite, hematite, löllingite, pharmacolite,
erythrite, talc, and mcguinessite (the type material). Characterized by powder X-ray diffraction data.
Triclinic, space group P1, a ¼ 5.315(4), b ¼ 5.978(6), c ¼ 5.030(6) Å, α ¼ 113.58(6)�, β ¼ 97.14
(7)�, γ ¼ 89.30(8)�, V ¼ 145.2(1) Å3, Z ¼ 1. The empirical formula is (electron microprobe):
Cu1.98(Mg0.88Cu0.09Ni0.01Co0.01)(AsO4)1.02(OH)2.92.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Krause et al. (2003).
Wavenumbers (IR, cm21): 3520, 3345, 1676sh, 1647, 1547, 1512, 1456, 1371, 1081, 1036,

958, 820s, 690, 504s, 453s, as well as bands in the ranges 3600–3800, 2800–3200, and
1800–2200 cm�1.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the
published spectrum. The bands in the ranges 1800–3000 and 1300–1500 cm�1 indicate possible
presence of acid arsenate groups. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 3525, 3355w, 956w, 840s, 820, 681w, 512sh, 489, 464s, 409w,
331, 318, 141.

As346 Bettertonite Al6(AsO4)3(OH)9∙16H2O

Origin: Penberthy Croft Mine, St Hilary, Mount's Bay District, Cornwall, England, UK (type locality).
Description: No data. Possibly, type material.
Kind of sample preparation and/or method of registration of the spectrum: Powdered sample.

Absorption.
Source: Grey et al. (2016b).
Wavenumbers (cm21): 3250s, 3060sh, (2960), (2930), (2855), 2645w, 1630, 1162w, 1078s, 1064sh,

884sh, 855, 795, 775, 690w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band denoted by Grey et al. (2016b) as 1070 cm�1 was identified as a
doublet (1078+1064 cm�1).
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As347 Canosioite Ba2Fe
3+(AsO4)2(OH)

Origin: Valletta mine, Maira Valley, Cuneo Province, Piedmont, Italy (type locality).
Description: Reddish-brown granules from the association with aegirine, baryte, calcite, hematite,

Mn-bearing muscovite, as well as unidentified Mn oxides and arsenates. Holotype sample. The
crystal structure is solved. Monoclinic, space group P21/m, a ¼ 7.8642(4), b ¼ 6.1083(3),
c ¼ 9.1670(5) Å, β ¼ 112.874(6)�, V ¼ 405.73(4) Å3, Z ¼ 2. Dcalc ¼ 4.943 g/cm3. Optically
biaxial (+), 2V ¼ 84(2)�. The empirical formula is (electron microprobe): (Ba1.92Pb0.05Sr0.02Na0.01)
(Fe3+0.52Mn3+0.29Al0.16Mg0.06)[(As0.64V0.36)O4]2(OH)0.92F0.01�0.07H2O. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.713 (18) (111), 3.304 (100) (21�1), 3.058
(31) (020), 3.047 (59) (10�3), 2.801 (73) (112), 2.337 (24) (220), 2.158 (24) (12�3).

Kind of sample preparation and/or method of registration of the spectrum: Reflection using IR
microscope. Kind of sample preparation is not indicated.

Source: Cámara et al. (2016a).
Wavenumbers (IR, cm21): 3405sh, 3278sh, 3175, 3139sh, (2366), (2326), 1061sh, 1035, 849s, 787s,

762, 692sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Weak bands in the range from 2300 to 2400 cm�1 correspond to atmospheric
CO2. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 896s, 862s, 838s, 820sh, 779w, 719sh, 686, 595w, 507, 478,
457, 368s, 326, 282, 234, 187, 163, 147, 133.
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As348 Cheralite La-bearing CaLaTh(AsO4)3

Origin: Synthetic.
Description: Prepared using a solid-state reaction technique. Characterized by powder X-ray diffrac-

tion data. Monoclinic, isostructural with monazite, space group P21/m, a ¼ 6.883(5), b ¼ 7.070(6),
c ¼ 6.674(7) Å, β ¼ 104.74(8)�, V ¼ 314.1 Å3, Z ¼ 4. Dmeas ¼ 5.80 g/cm3, Dcalc ¼ 5.83 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: CsBr disc.
Transmission.

Source: Nabar and Sakhardande (1985).
Wavenumbers (cm21): 880sh, 874sh, 864sh, 851s, 823sh, 801sh, 790sh, 772sh, 454sh, 440s, 410sh,

350, 320sh.

As349 Fetiasite (Fe2+,Fe3+,Ti4+)3(As
3+

2O5)O2
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Origin: Cervandone Mt., Val Devero, Baceno, Verbano-Cusio-Ossola province, Piedmont, Italy (type
locality).

Description: Brown to black aggregates from the association with asbecasite, cafarsite,
cervandonite, etc. Holotype sample. The crystal structure is solved. Monoclinic, space group
P21/m, a ¼ 10.614(2), b ¼ 3.252(1), c ¼ 8.945(l) Å, β ¼ 108.95(2)�, V ¼ 291.9(2) Å3, Z ¼ 2.
Dmeas ¼ 4.6 g/cm3, Dcalc ¼ 4.76–4.80 g/cm3. The empirical formula is (electron microprobe):
(Fe2+1.38Fe

3+
0.92Ti0.54Mn0.08)(As

3+
2O5)O2. The strongest lines of the powder X-ray diffraction

pattern [d, Å (I, %) (hkl)] are: 2.985 (67) (�103), 2.811 (94) (202, 301), 2.749 (100) (�211, 210),
2.391 (85) (112), 1.779 (48) (�504, –511), 1.709 (35) (510, –603).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Graeser et al. (1994).
Wavenumbers (cm21): 1142w, 1090sh, 1007w, 929sh, 856sh, 774s, 659s, 599sh, 519w, 459sh,

410, 322w, (286).
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. No data on absorptions above 2000 cm�1 are given. Consequently, the presence of OH
groups in fetiasite cannot be excluded.

As350 Johnbaumite Sr-analogue Sr5[(AsO4)2(PO4)](OH)

Origin: Synthetic.
Description: Apatite-type compound prepared from aqueous solutions of Sr(NO3)2, (NH4)2(HPO4),

and Na3(AsO4)�H2O and (NH4)(OH) with subsequently heating a precipitate first at 100 �C for 2 h
and thereafter at 850 �C for 2 h. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Galera-Gomez et al. (1982).
Wavenumbers (cm21): 3593w, 1061sh, 1030s, 946, 848s, 832sh, 593s, 565s, 548sh, 452, 413,

380, 320, 307, (240), (207s), and bands in the range of 1400–1500 cm�1.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. Bands in the range of 1400–1500 cm�1 correspond to carbonate groups.
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As351 Kaatialaite Fe3+(H2AsO4)3∙5H2O

Origin: Synthetic.
Description: Greenish blue aggregates. Monoclinic, space group P21 or P21/m, a ¼ 15.363(5),

b ¼ 19.844(5), c ¼ 4.736(2) Å, β ¼ 91.77(3)�, Z ¼ 4. Dmeas ¼ 2.62(3) g/cm3, Dcalc ¼ 2.62 g/cm3.
Optically biaxial (+), α ¼ 1.581(2), β ¼ 1.582 (calculated), γ ¼ 1.625(2), 2V¼ 15(2)�. The strongest
lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.94 (50) (020), 8.33 (100) (120),
7.68 (70) (200), 6.08 (40) (130), 3.410 (40) (231), 3.153 (45) (24�1).

Kind of sample preparation and/or method of registration of the spectrum: KI disc. Transmission.
Source: Raade et al. (1984).
Wavenumbers (cm21): 2380, 1670sh, 1620, 1390w, 1225w, 1125sh, 865sh, 845s, 770sh, 755, 635sh,

585, 465, 403sh, 358w, 330, 315sh, 285sh, 265sh, 250.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

As352 Katiarsite KTi(AsO4)O
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Origin: Synthetic.
Description: Prepared by heating a mixture of K2CO3/KNO3, TiO2, and (NH4)(H2AsO4) powders

taken in stoichiometric amounts first at 500 �C for 12 h and thereafter at 900 �C for 24 h with
intermediate grinding. Characterized by powder X-ray diffraction data. Orthorhombic, space group
Pna21, a ¼ 12.815(8), b ¼ 6.402(4), c ¼ 10.589(6) Å, V ¼ 868.7 Å3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Rangan et al. (1993).
Wavenumbers (cm21): 965w, 864s, 847s, 815s, 777s, 687s, 520, 473w, 440, 419, 381s, 357, 313.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

As353 Lemanskiite NaCaCu5(AsO4)4Cl∙5H2O

Origin: Abundancia mine, El Guanaco miningdistrict, Region II, Antofagasta province, Chile (type
locality).

Description: Dark sky blue massive nodule from the association with lammerite, olivenite, mansfieldite,
sénarmontite, a mineral of the crandallite group, rutile, anatase, and talc. Holotype sample. Described
as tetragonal (P4122 or P4322) mineral with a¼ 9.9758(4), c¼ 36.714(1) Å, V¼ 653.6(2) Å3, Z¼ 8.
Dmeas ¼ 3.78(1) g/cm3, Dcalc ¼ 3.863(5) g/cm3. Optically uniaxial (�), ε ¼ 1.647(2), ω ¼ 1.749(2).
The empirical formula is Na1.04Ca1.00Cu5.01(AsO4)4.00Cl0.96(OH)0.11�4.93H2O. The strongest lines of
the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.60 (9) (101), 9.177 (100) (004), 4.588
(32) (008), 4.167 (10) (108), 3.059 (15) (0.0.12).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ondruš et al. (2006).
Wavenumbers (cm21): 3559sh, 3521sh, 3437s, 3229sh, 1630sh, 1618, 927, 902sh, 880sh, 839s,

815s, 789s, 541, 485, 440.
Note: Weak bands in the range from 2800 to 3000 cm�1 correspond to the admixture of an organic

substance.
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As354 Lemanskiite NaCaCu5(AsO4)4Cl�3H2O

Origin: Perseverancia deposit, Guanaco, Antofagasta, Chile.
Description: Blue crystals. A sample used for the revision of the lemanskiite chemical formula.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic,
space group P21/m, a ¼ 9.250(2), b ¼ 10.0058(10), c ¼ 10.0412(17) Å, β ¼ 97.37(3)�,
V ¼ 921.7(3) Å3, Z ¼ 2. The empirical formula is Na0.98(Ca0.98Sr0.03)
Cu5.07As3.97O15.97Cl1.03�3H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3551s, 3535sh, 3441, 3419, 3303s, 3224, 1734w, 1621, 1580sh, 1225w,

1102w, 928, 875sh, 838s, 813s, 791s, 629w, 539s, 483s, 439.
Note: The spectrum was obtained by N.V. Chukanov.

As355 Penberthycroftite Al6(AsO4)3(OH)9∙13H2O
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Origin: Penberthy Croft mine, St. Hilary, Cornwall, England, UK (type locality).
Description: White rectangular laths from the association with arsenopyrite, bettertonite, bulachite,

cassiterite, chalcopyrite, chamosite, goethite, liskeardite, pharmacoalumite–pharmacosiderite, and
quartz. Holotype sample. The crystal structure is solved. Monoclinic, space group P21/c, a¼ 7.753
(2) Å, b¼ 24.679(5) Å, c¼ 15.679(3) Å, β ¼ 94.19(3)�, V¼ 2991.9(12) Å3, Z¼ 4. Dcalc ¼ 2.18 g/
cm3. The empirical formula is Al5.96Fe0.04[(As0.97Al0.03)O4]3(SO4)0.26(OH)8.30�13.24H2O. The
strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 13.264 (46) (011),
12.402 (16) (020), 9.732 (100) (021), 7.420 (28) (110), 5.670 (8) (130), 5.423 (6) (�131).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of powdered mineral.

Source: Grey et al. (2016a).
Wavenumbers (cm21): 3275s, 3025sh, 2930sh, 2645w, 1630, 1160sh, 1105sh, 1082, 1057sh, 885sh,

858, 796, 774, 690w, 650w, 617w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

As356 Petewilliamsite-related Cd diarsenate Cd2As2O7

Origin: Synthetic.
Description: Prepared by solid-state reaction of CdO and As2O5 at 873 K for 10–12 days. Monoclinic,

space group C2/m, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Baran and Weil (2004).
Wavenumbers (IR, cm21): 953, 890sh, 854s, 812s, 472, 393, 341, 310.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 880s, 810w, 489w, 358, 423, 323, 294, 216w.
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As357 Bradaczekite NaCu4(AsO4)3

Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka
peninsula, Russia.

Description: Deep blue coarse crystals. Investigated by I.V. Pekov.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Baseline correction has been applied.
Wavenumbers (cm21): 1176w, 1135w, 890sh, 870sh, 837s, 805, 781s, 724, 648, 563, 513w,

459, 442w, 404, 375.
Note: The spectrum was obtained by N.V. Chukanov.

As358 Vysokýite U4+(H2AsO4)4�4H2O
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Origin: Geschieber vein, Svornost shaft, Jáchymov, Krušné Hory Mts. (Ore Mts.), Czech Republic
(type locality).

Description: Aggregates of green acicular crystals from the association with štěpite. The sample was
received from the authors of the first description of vysokýite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3452, 3350, 3273, 3132, 3022, 2368w, 1662, 1463w, 1401, 1231, 1200sh,

1135sh, 1108, 1053w, 936, 869, 853s, 831s, 815s, 757, 651, 621, 591, 575sh, 490sh, 424, 373.
Note: The spectrum was obtained by N.V. Chukanov.

As359 Ludlockite PbFe3+4As
3+

10O22

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Description: Brownish-red acicular crystals from a sulfide aggregate. Investigated by A.V. Kasatkin.

Holotype sample. The empirical formula is (electron microprobe): Pb1.00Fe3.65As10.35O22.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1090w, 1025w, 770, 731, 697w, 632s, 606s, 552, 519, 508, 460, 441, 403w,

365.
Note: The spectrum was obtained by N.V. Chukanov.
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As360 Kamarizaite Fe3+3(AsO4)2(OH)3�3H2O

Origin: Hilarion mine, Agios Konstantinos, Lavrion mining District, Attikí (Attika, Attica) Prefecture,
Greece.

Description: Fine-grained, porcelain-like yellow pseudomorphs after grains of an unknown ore
mineral from the association with goethite, scorodite, and jarosite. Investigated by I.V. Pekov.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3556, 3380sh, 3321s, 3230sh, 3140sh, 2156w, 1635, 1550w, 1150sh, 1089,

1040, 1013, 911s, 886, 870sh, 834s, 805s, 675sh, 614, 540, 505, 477, 431, 387.
Note: The spectrum was obtained by N.V. Chukanov.

As361 Symplesite Fe2+3(AsO4)2∙8H2O
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Origin: Saubach, near Mildenberg, Vogtland, Saxony, Germany.
Description: Black acicular crystals. Characterized by powder X-ray diffraction data. Triclinic, space

group P-1, a ¼ 7.785, b ¼ 9.259, c ¼ 4.751 Å, α ¼ 93.053�, β ¼ 98.139�, γ ¼ 106.379�.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Makreski et al. (2015b).
Wavenumbers (cm21): 3377, 3000s, 1630, 848, 779s, 736, 578w, 433.

As362 Agardite-(Ce) CeCu2+6(AsO4)3(OH)6�3H2O

Origin: Clara Mine, Schwarzwald, Germany (type locality).
Description: Random aggregates of olive green acicular hexagonal crystals growing on fluorite. The

crystal structure is solved. Hexagonal, space group P63/m, a ¼ 13.598(6) Å, c ¼ 5.954(3) Å,
V ¼ 953.5(2) Å3, Z ¼ 2. The empirical formula is (electron microprobe):
[(Ce0.32La0.19Nd0.15Pr0.06Gd0.04Y0.04Sm0.03Eu0.02)Ca0.20Sr0.06](Cu5.74Fe

3+
0.16Mn2+0.02)

[(AsO4)2.89(PO4)0.04(SiO4)0.04(SbO4)0.03](OH)5.97O0.03�3H2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3492, 3340, 1965w, 1720sh, 1641, 1560w, 1460w, 1397w, 1243w, 1154w,

1092w, 993, 876s, 846s, 807s, 695, 530s, 499, 464, 429, 385.
Note: The spectrum was obtained by N.V. Chukanov. The weak bands in the range from 1092 to

1560 cm�1 correspond to isolated H+ cations that do not form strong covalent bonds with
coordinating O atoms.
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As363 Agardite-(Nd) NdCu2+6(AsO4)3(OH)6�3H2O

Origin: Hilarion Mine, Agios Konstantinos (Kamariza), Lavrion District, Attikí Prefecture.
Description: Bluish green acicular crystals growing [with zones of agardite-(La)] from the association

with zincolivenite, azurite, malachite, and calcite. Holotype sample. Hexagonal, space group P63/m,
a ¼ 13.548(8) Å, c ¼ 5.894(6) Å, V ¼ 937(2) Å3, Z ¼ 2. The empirical formula is
[(Nd0.19La0.14Y0.12Pr0.05Gd0.02Ce0.02Sm0.02Dy0.02)Ca0.39](Cu5.49Zn0.44)
(AsO4)3(OH)5.38�2.64H2O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3491, 3340, 3220sh, 1968w, 1660, 1547w, 1460w, 1420w, 1250w, 1160w,

1098w, 1057w, 991, 874s, 843s, 804s, 695, 529s, 496, 469, 432, 393.
Note: The spectrum was obtained by N.V. Chukanov. The weak bands in the range from 1057 to

1547 cm�1 correspond to isolated H+ cations that do not form strong covalent bonds with
coordinating O atoms.

As364 Chlorophoenicite Mn3Zn2(HAsO4)(OH)8
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Origin: Sterling Hill, New Jersey, USA.
Description: White fibrous aggregate on rhodochrosite. The empirical formula is (electron micro-

probe): (Mn2.68Mg0.24Fe0.02)Zn2.06[H(As0.98S0.02)O4](OH)8.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3651, 3575, 3322s, 3180sh, 2930sh, 2487w, 2186w, 1700sh, 1577, 1235w,

1092, 998, 933w, 894, 793s, 688, 580, 503, 435, 419, 385w.
Note: The spectrum was obtained by N.V. Chukanov. Additional bands at 1424, 866, and 724 cm�1

correspond to admixed rhodochrosite.

As365 Gerdtremmelite ZnAl2(AsO4)(OH)5

Origin: Tsumeb Mine, Tsumeb, Oshikoto Region, Namibia (type locality).
Description: Brown crust. Cotype sample received from Gerd Tremmel.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3586, 3535, 3389s, 3318, 999, 953, 857s, 825sh, 620sh, 570sh, 550s,

523, 459, (360).
Note: The spectrum was obtained by N.V. Chukanov.
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As367 Badalovite Na2Mg2Fe
3+(AsO4)3

Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka
peninsula, Russia (type locality).

Description: Yellow prismatic crystals from the association with calciojohillerite, hematite,
fluorphlogopite, aphthitalite, and cassiterite. Investigated by I.V. Pekov. Characterized by single-
crystal X-ray diffraction data. Monoclinic, space group C2/c, a ¼ 11.90, b ¼ 12.78, c ¼ 6.66 Å,
β ¼ 112.52�, V ¼ 936.6 Å3, Z ¼ 4. The empirical formula is (electron microprobe):
(Na1.61Ca0.33K0.03)(Mg1.78Zn0.05Mn0.03Cu0.01)(Fe0.85Al0.13)
[(AsO4)2.94(PO4)0.04(VO4)0.01(SO4)0.01].

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1695w, 1160sh, 1125sh, 1063w, 1033w, 850s, 832s, 805sh, 769s,

551, 490sh, 455s, 431s, 390sh, 375.
Note: The spectrum was obtained by N.V. Chukanov.
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As368 Svabite Ca5(AsO4)3F

Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka
peninsula, Russia.

Description: White radiated aggregates from the association with calciojohillerite, anhydrite,
berzeliite, diopside, and hematite. Investigated by I.V. Pekov. A V-bearing variety (As:
V � 94:6). Characterized by single-crystal X-ray diffraction data. Hexagonal, space group P63/m,
a ¼ 9.785, c ¼ 6.946 Å, V ¼ 576.1 Å3, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 877, 835s, 643w, 456, 418.
Note: The spectrum was obtained by N.V. Chukanov.
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As369 Calciojohillerite NaCaMg3(AsO4)3

Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka
peninsula, Russia (type locality).

Description: Greenish-brown prismatic crystals from the association with hematite, tenorite, cassiter-
ite, johillerite, bradaczekite, hatertite, nickenichite, badalovite (IMA2016-053), aphthitalite, lang-
beinite, calciolangbeinite, etc. Investigated by I.V. Pekov.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 848s, 830s, 549w, 495sh, 455, 429, 393, 373.
Note: The spectrum was obtained by N.V. Chukanov.
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As370 Nickenichite Na(□,Ca)(□,Cu)(Mg,Fe3+)3(AsO4)3

Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka
peninsula, Russia (type locality).

Description: Violet prismatic crystals from the association with hematite, tenorite, johillerite,
aphthitalite, etc. Investigated by I.V. Pekov. The empirical formula is (electron microprobe):
Na1.41K0.03Ca0.38Cu0.17Mg2.89Fe0.31Al0.09[(As2.86P0.03V0.01Si0.01)O12].

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1175sh, 1109w, 852s, 835s, 772, 619w, 554, 489, 463, 432, 390, 374.
Note: The spectrum was obtained by N.V. Chukanov. The bands at 1175, 1109, and 619 cm�1

correspond to trace amounts of SO4
2� groups.
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As371 Magnesiocanutite NaMnMg2[AsO4]2[AsO2(OH)2]

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type locality).
Description: Brown crystals from the association with magnesiokoritnigite and lavendulan. The

empirical formula is (electron microprobe): H2Na1.0Mn1.0(Mg1.8Mn0.15Cu0.05)As3.0O12.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3290sh, 3180, 2820, 2309, 1577, 1380, 1254, 863s, 837s, 738, 470, 411, 375.
Note: The spectrum was obtained by N.V. Chukanov.

As372 Magnesiocanutite NaMnMg2[AsO4]2[AsO2(OH)2]
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Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type
locality).

Description: Light brown crystals from the association with magnesiokoritnigite. A Mn-rich variety.
The empirical formula is (electron microprobe): H2Na1.0Mn1.0(Mg1.2Mn0.8)As3.0O12.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3290sh, 3110sh, 2825, 2338, 1577, 1372, 1263, 1120sh, 864s, 837s,

740, 472, 414, 374.
Note: The spectrum was obtained by N.V. Chukanov.

As373 Canutite NaMnMn2[AsO4]2[AsO2(OH)2]

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type
locality).

Description: Brown crystals. The empirical formula is (electron microprobe):
H2Na1.0Mn1.0(Mn1.2Mg0.7Cu0.2)As3.0O12.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3290sh, 3110sh, 2825, 2338, 1577, 1372, 1263, 1120sh, 864s, 837s,

740, 472, 414, 374.
Note: The spectrum was obtained by N.V. Chukanov.
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AsS27 Juansilvaite Na5Al3(HAsO4)2(H2AsO4)2(SO4)2�4H2O

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type
locality).

Description: Pink crystals. Investigated by I.V. Pekov.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3578, 3527, 3444, 3105, 2900sh, 2385, 2350w, 2140w, 2098w, 2049w, 1627,

1215sh, 1185sh, 1146s, 1117s, 1068s, 985w, 945sh, 900sh, 883s, 851s, 807, 781, 761, 675, 630sh,
611, 593, 519, 459, 372.

Note: The spectrum was obtained by N.V. Chukanov.

UAs23 Uranospinite Ca(UO2)2(AsO4)2∙10H2O
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Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Wilkins (1971).
Wavenumbers (cm21): 1654, 1400w, 948s, 901, 820s, 623, 602, 487, 405sh, 379s.

2.15 Selenides, Selenites, and Selenates

Se51 Aluminium acid selenite hydrate AlH(SeO3)2∙2H2O

Origin: Synthetic.
Description: Prepared hydrothermally from a mixture of Al(NO3)3�9H2O and H2SeO3 at 70 �C. The

crystal structure is solved. Monoclinic, space group P21/n, a ¼ 7.3853(5), b ¼ 6.4895(6),
c ¼ 7.3958(7) Å, β ¼106.28(9)�, V ¼ 340.24 Å3, Z ¼ 2. Dcalc ¼ 3.054 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Morris et al. (1991).
Wavenumbers (cm21): 3376s, 1654, 1360, 1051, 870sh, 845sh, 790s, 730sh, 569s, 499, and a series

of bands in the range from 2000 to 2800 cm�1.
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Se52 Aluminium selenite hydrate Al2(SeO3)3∙6H2O

Origin: Synthetic.
Description: Prepared hydrothermally from a mixture of Al(NO3)3�9H2O and H2SeO3 at 70 �C. The

crystal structure is solved. Trigonal, space group P31c, a ¼ 8.8020(6), c ¼ 10.7070(8) Å,
V ¼ 718.39 Å3, Z ¼ 2. Dcalc ¼ 2.468 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: No data.
Source: Morris et al. (1991).
Wavenumbers (cm21): 3320s, 1652, 1362, 860sh, 775s, 560, 475w.
Note: The band at 1362 cm�1 may correspond to an impurity.

Se53 Barium cobalt selenite hydrate BaCo2(SeO3)3∙3H2O

Origin: Synthetic.
Description: Purple hexagonal prismatic crystals. Structurally related to zemannite. Hexagonal, space

group P63, a ¼ 18.0430(6), c ¼ 7.6120(2) Å, V ¼ 2146.08(12) Å3, Z ¼ 8. Dcalc ¼ 4.272 g/cm3.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Johnston and Harrison (2011).
Wavenumbers (cm21): 3510, 3175, 3005, 1764w, 1630, (1381), 859, 795, 743s, 667s, 555w,

486s, 442s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 1381 cm�1 may be due to the admixture of potassium nitrate in
the KBr disc.

Se54 Baryte selenate analogue Ba(SeO4)

Origin: Synthetic.
Description: Prepared by precipitation from aqueous solutions of sodium selenate and strontium

chloride. The precipitate was dried at 150 �C. Isostructural with baryte. Orthorhombic, space
group Pnma, a ¼ 9.006, b ¼ 5.690, c ¼ 7.353 Å, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: Thin film on a CsBr
plate. Transmission.

Source: Scheuermann and Schutte (1973b).
Wavenumbers (IR, cm21): 1148w, 1112w, 1089w, 933, 880sh, 855s, 840s, 459, 405s, 390s,

358, 343.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 915, 905sh, 901, 898, 874, 866, 846s, 465, 437w, 423, 421, 418sh,

352s, 338s, 333.
Note: The authors of the cited paper write: “There appears to be no combination of observed bands

which would explain the three bands at 1089, 1112, and 1148 cm�1 satisfactorily.” However, these
bands may correspond to a sulfate impurity, which is typical for selenate reactants.
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Se55 Bismuth(III) tellurite selenate Bi2(TeO3)2(SeO4)

Origin: Synthetic.
Description: Prepared hydrothermally from Bi(NO3)3�5H2O, TeO2, and H2SeO4 at 230 �C for 4 days.

Monoclinic, space group I2/a, a ¼ 8.0995(2), b ¼ 7.4835(2), c ¼ 14.8219(5) Å, β ¼ 97.824(3)�,
V ¼ 890.03(4) Å3, Z ¼ 4. Dcalc ¼ 6.807 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Lee et al. (2013).
Wavenumbers (cm21): 883sh, 856, 802w, 721s, 634s, 497, 449, 412.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se56 Cesium acid arsenate selenate Cs4(SeO4)(HSeO4)2(H3AsO4)
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Origin: Synthetic.
Description: Synthesized by evaporation of aqueous solution of CsHSeO4, Cs3H(SeO4)2, and H3AsO4

at room temperature. Monoclinic, space group P21, a ¼ 5.973(1), b ¼ 13.691(3), c ¼ 11.910(3) Å,
β¼ 94.867(1)�, V¼ 970.39(4) Å3, Z¼ 2.Dmeas¼ 3.782 g/cm3,Dcalc¼ 3.780 g/cm3. Characterized
by DSC and TG data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Amri et al. (2009).
Wavenumbers (cm21): 3434s (broad), 2920, 2854, 2798, 2400, 2338 (broad), 1640, 1492sh, 1414w,

1290, 1228sh, 1054w, 926s, 872s, 800s, 720, 465sh, 442w, 410w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se58 Lead selenate PbSeO4

Origin: Synthetic.
Description: Prepared by precipitation from aqueous solutions of sodium selenate and lead acetate.

Monoclinic, space group P21/n, a ¼ 7.153, b ¼ 7.403, c ¼ 6.957 Å, β ¼ 103.27�, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.

Transmission.
Source: Scheuermann and Schutte (1973b).
Wavenumbers (IR, cm21): 1114w, 1073w, 1044w, 876s, 857s, 820s, 427, 415, 394, 372, 366.
Note: The weak bands between 700 and 730 cm�1 may correspond to Nujol. The weak bands at 1114,

1073, and 1044 cm�1 assigned by Scheuermann and Schutte (1973b) to combination modes may
actually correspond to the admixture of SO4

2� anions. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 861, 844, 829, 818, 435, 428, 422, 411, 402, 385, 357, 326, 314.
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Se59 Copper molybdate selenite Cu2(MoO4)(SeO3)

Origin: Synthetic.
Description: Synthesized hydrothermally from MoO3, CuO, and SeO2 at 210 �C for 4 days.

Monoclinic, space group P21/c, a ¼ 8.148(5), b ¼ 9.023(5), c ¼ 8.392(5) Å, β ¼ 91.141(6)�,
V ¼ 104.675(12) Å3, Z ¼ 4. Dcalc ¼ 4.607 g/cm3. In the crystal structure, Cu occupies two sites,
each five-coordinated by three selenite oxygens and molybdate oxygens in a square pyramidal
geometry.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Zhang et al. (2009c).
Wavenumbers (cm21): 942, 919s, 884sh, 869s, 806, 789, 711s, 679sh, 561, 512, 470.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se60 Indium vanadate selenite In(VSe2O8) In(VSe2O8)
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Origin: Synthetic.
Description: Prepared from In2O3, V2O5, and SeO2 by a standard solid-state reaction technique.

The crystal structure is silved. Monoclinic, space group Pm, a ¼ 4.6348(9), b ¼ 6.9111(14),
c ¼ 10.507(2) Å, β ¼ 97.77(3)�, V ¼ 333.48(11) Å3, Z ¼ 2. Dcalc ¼ 4.498 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Lee et al. (2011).
Wavenumbers (cm21): 974, 940, 876sh, 854, 847, 822, 796, 709s, 701s, 695sh, 687s, 681sh, 674sh,

663, 543, 511, 501sh, 491sh, 458, 427.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Se61 Indium zinc selenite In2Zn(SeO3)4 In2Zn(SeO3)4

Origin: Synthetic.
Description: Obtained by a standard solid-state reaction from ZnO, In2O3, and SeO2. Monoclinic,

space group P21/n, a¼ 8.4331(7), b¼ 4.7819(4), c¼ 14.6583(13) Å, β¼ 101.684(6)�, V¼ 578.87
(9) Å3, Z ¼ 2. Dcalc ¼ 4.606 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Lee et al. (2012).
Wavenumbers (cm21): 878sh, 864sh, 844, 832, 777sh, 747s, 715s, 696sh, 690s, 650sh, 589, 561sh,

535, 465sh, 430.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Se62 Iron dimolybdate selenite hydrate Fe2(Mo2O7)(SeO3)2∙H2O Fe2(Mo2O7)(SeO3)2∙H2O

Origin: Synthetic.
Description: Prepared hydrothermally from MoO3, Fe2O3, and SeO2 at 230 �C for 4 days.

Characterized by TG and powder X-ray diffraction data. Monoclinic, space group C2/c,
a ¼ 19.898(12), b ¼ 5.469(3), c ¼ 13.400(9) Å, β ¼ 132.140(13)�, V ¼ 1081.3(12) Å3, Z ¼ 4.
Dcalc ¼ 4.223 g/cm3. The crystal structure features a pillared-layered architecture composed of iron
(III) selenite layers interconnected by Mo2O10 dimers.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Zhang et al. (2009c).
Wavenumbers (cm21): 3305w, 1643, 1456w, 962s, 910s, 854s, 812, 781, 750sh, 744s, 685sh, 663s,

601s, 507, 460, 446sh, 415.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se63 Lanthanum selenite La2(SeO3)3
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Origin: Synthetic.
Description: Obtained by thermal decomposition of La2(Se2O5)(SeO3)2. Monoclinic, space group

P21/m.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc (above

400 cm�1) and polyethylene disc (below 400 cm�1). Transmission.
Source: Gopinath et al. (1998).
Wavenumbers (IR, cm21): 856s, 800sh, 767s, 740sh, 688s, 486, 460s, 442, 412, 382, 368, 241, 201,

157, 96w, 79w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 852s, 812s, 790w, 744s, 480, 450s, 430sh, 408, 389, 365w,

250, 219sh, 203, 176, 167, 137w, 89w.

Se64 Lanthanum selenite La2Se3O9

Origin: Synthetic.
Description: Monoclinic, space group P21/m, a¼ 14.47(8), b ¼ 6.98(4), c¼ 8.21(5) Å, β ¼ 91.0(7)�,

Z ¼ 4. Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Pedro et al. (1995).
Wavenumbers (cm21): 854s, 838, 809sh, 800, 767s, 745s, 701s, 691sh, 503sh, 484, 460, 443, 415,

383w, 369, 360.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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Se65 Lithium zinc selenite Li2Zn3(SeO3)4∙2H2O Li2Zn3(SeO3)4∙2H2O

Origin: Synthetic.
Description: Prepared hydrothermally from corresponding metal carbonates and SeO2 at 230 �C for

6 days. The crystal structure is solved. Monoclinic, space group P21/c, a ¼ 8.123(4), b ¼ 9.139(4),
c ¼ 7.938(3) Å, β ¼ 12.838(9)�, V ¼ 543.1(4) Å3, Z ¼ 4. Dcalc ¼ 4.501 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Liu et al. (2015c).
Wavenumbers (cm21): 3440, 1630, 1490, 1395, 830, 730s, 670s, 515s.

Se66 Potassium acid selenite K(HSeO3)
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Origin: Synthetic.
Description: Crystals grown by slow evaporation of an aqueous solution formed by dissolving 2 moles

of SeO and 1 mole of K2CO3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Cody et al. (1978).
Wavenumbers (IR, cm21): 3408w, 2784s, 2385s, 1750w, 1621, 1584sh, 1517sh, 1292sh, 1240,

1024, 835s, 728sh, 650s, 512sh, 408.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 826s, 665, 423, 403, 351, 341.

Se67 Potassium hydronium uranyl selenate hydrate K3(H3O)(UO2)4(SeO4)6∙9H2O

Origin: Synthetic.
Description: Yellow-green crystals prepared by evaporation of the mixture of an aqueous solution

containing uranyl nitrate, selenic acid, potassium carbonate, and carbamide. The crystal structure
is solved. Triclinic, space group P21/m, a ¼ 12.001(3), b ¼ 13.613(3), c ¼ 13.753(3) Å,
β ¼ 109.187(4)�, V ¼ 2122.0(8) Å3, Z ¼ 2. Dcalc ¼ 3.467 g/cm3. The structure contains two
kinds of uranyl cations which are coordinated by five and three O atoms.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Gurzhiy et al. (2014).
Wavenumbers (cm21): 3600sh, 3520, 3430s, 3260sh, 1698sh, 1635, 1561w, 1399w, 943s, 851s,

816s, ~680sh, 459, 392.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The weak band 1399 cm�1 indicates that H3O
+ groups are partly dissociated

into H2O and H+.
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Se68 Potassium sodium selenate K3Na(SeO4)2

Origin: Synthetic.
Description: Colorless crystals obtained at 300 K from a stoichiometric solution of sodium and

potassium hydroxides and selenium acid with subsequent recrystallization from an aqueous solu-
tion. Trigonal, space group P-3m1.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Kaczmarski et al. (2000).
Wavenumbers (cm21): 930, 877, 869sh, 848, 426sh, 415sh, 413.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se69 Potassium yttrium selenite KY(SeO3)2
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Origin: Synthetic.
Description: Synthesized hydrothermally from K2CO3, Y(NO3)3�6H2O, and SeO2 at 230 �C for

4 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhom-
bic, space group Pnma, a ¼ 13.3838(2), b ¼ 5.70270(10), c ¼ 8.6759(2) Å, V ¼ 662.18(2) Å3,
Z ¼ 4. Dcalc ¼ 3.831 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bang et al. (2014).
Wavenumbers (cm21): 1425, 865, 850, 825, 797, 747s, 725sh, 670, 482sh, 468, 420sh, 409w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se70 Potassium zinc selenite K2Zn3(SeO3)4 K2Zn3(SeO3)4

Origin: Synthetic.
Description: Prepared hydrothermally from K2CO3, ZnCO3, and SeO2 at 230 �C for 6 days. The

crystal structure is solved. Monoclinic, space group C2/c, a ¼ 11.3584(12), b ¼ 8.6091(9),
c ¼ 13.6816(14) Å, β ¼ 93.456(2)�, V ¼ 1335.4(2) Å3, Z ¼ 4. Dcalc ¼ 3.890 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Liu et al. (2015c).
Wavenumbers (cm21): 1080, 825s, 740s, 690s, 609, 525s, 474.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band at 1080 cm�1 was assigned by the authors to Se–O vibrations.
However this band as well as weak bands above 1080 cm�1 should be assigned to impurities.
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Se71 Scandium vanadyl selenite α-ScVSe2O8

Origin: Synthetic.
Description: Prepared hydrothermally from Sc2O3, V2O5, and SeO2 at 230 �C for 4 days. The crystal

structure is solved. Monoclinic, space group P21/n, a ¼ 8.96460(10), b ¼ 5.12600(10),
c ¼ 14.4802(2) Å, β ¼ 104.5740(10)�, V ¼ 570.09(10) Å3, Z ¼ 4. Dcalc ¼ 3.938 g/cm3. The
Sc3+ cations are in distorted octahedral coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Kim et al. (2013).
Wavenumbers (cm21): 941, 911w, 873s, 751s, 657s, 545, 487, 433w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Se72 Scandium vanadyl selenite β-ScVSe2O8
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Origin: Synthetic.
Description: Prepared by a solid-state reaction from Sc2O3, V2O5, and SeO2, first at 350 �C for 5 h,

and thereafter at 450 �C for 48 h. The crystal structure is solved. Monoclinic, space group P21/c,
a¼ 6.59040(10), b¼ 15.9098(3), c¼ 6.63740(10) Å, β ¼ 92.2790(10)�, V¼ 695.39(2) Å3, Z¼ 4.
Dcalc ¼ 3.647g/cm3. The structure is composed of ScO7, VO5, and SeO3 coordination polyhedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Kim et al. (2013).
Wavenumbers (cm21): 991, 905, 883sh, 872, 860sh, 818s, 802s, 775s, 740s, 698sh, 594s, 566, 523,

480w, 455w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Se73 Sodium acid selenite Na(HSeO3)

Origin: Synthetic.
Description: Crystals grown by slow evaporation of an aqueous solution containing 2 moles of SeO2

and 1 mole of Na2CO3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Cody et al. (1978).
Wavenumbers (IR, cm21): 3423, 2942sh, 2865, 2827sh, 2430, 2070sh, 1783w, 1630, 1450sh,

1412w, 1375sh, 1252sh, 1231, 912sh, 870sh, 842s, 825sh, 788s, 738sh, 650sh, 615s, 600sh, 420.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 871s, 845s, 813s, 785, 601, 583, 449, 439, 378, 353, 337, 319.
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Se74 Sodium cadmium selenate hydrate NaCd(SeO4)2∙2H2O

Origin: Synthetic.
Description: Monoclinic, space group P21/c.
Kind of sample preparation and/or method of registration of the spectrum: CsI or KBr disc.

Transmission.
Source: Peytavin et al. (1972a).
Wavenumbers (IR, cm21): 920s, 900s, 870sh, 863s, 835s, 800sh, 722s, 618, 455, 425, 410s,

387, 372s, 348, 338, 263, 248s, 225, 204s.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 909, 889s, 882, 843s, 831s, 600w, 460, 433, 411, 357, 337, 308sh,

255w, 241sh, 168s.

Se75 Sodium lithium selenate hydrate Na3Li(SeO4)2∙6H2O
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Origin: Synthetic.
Description: Colorless crystals grown by evaporation of an aqueous solution of Na2SeO4 and Li2SeO4

with a 1:1 ratio at 300 K. Trigonal, space group R3c, Z ¼ 2. Confirmed by powder X-ray
diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol
mull. Absorption.

Source: Hanuza et al. (2008a).
Wavenumbers (IR, cm21): 3505sh, 3443, 3370s, 3327, 3190, 2964sh, 1696, 1686, 1522w,

950, 892sh, 875s, 864sh, 852sh, 836sh, 796w, 770w, 677, 583sh, 553, 459w, 420, 398, 347sh,
295w, 242sh, 229, 209, 151, 140, 128, 100, 64w, 56w.

Note: In the cited paper, polarized Raman spectra are given.
Wavenumbers (Raman, with the z(xx)z polarization, cm21): 3440, 3372, 3215, 1690w, 903w,

866sh, 853s, 835s, 807, 454, 419sh, 398, 354, 346sh, 283, 205, 190, 167, 153, 144, 114.

Se76 Sodium yttrium selenite NaY(SeO3)2

Origin: Synthetic.
Description: Colorless crystals prepared hydrothermally from Na2CO3, Y(NO3)3�6H2O, and SeO2 at

230 �C for 4 days. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Orthorhombic, space group P21cn, a ¼ 5.397(2), b ¼ 8.525(2), c ¼ 12.765(2) Å, V ¼ 587.3(3) Å3,
Z ¼ 4. Dcalc ¼ 4.132 g/cm3. The structure is based on a 3D framework consisting of YO7

monocapped trigonal prisms and SeO3 trigonal pyramids.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Bang et al. (2014).
Wavenumbers (cm21): (1420sh), 854, 835, 808sh, 777s, 749s, 728s, 708s, 516w, 500sh, 483, 471,

422.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Se77 Sodium zinc selenite Na2Zn3(SeO3)4∙2H2O Na2Zn3(SeO3)4∙2H2O

Origin: Synthetic.
Description: Prepared hydrothermally from Na2CO3, ZnCO3, and SeO2 (with the molar ratio 1:1:2) at

230 �C for 6 days. The crystal structure is solved. Monoclinic, space group C2/c, a ¼ 15.7940(18),
b¼ 6.5744(8), c¼ 14.6787(17) Å, β¼ 107.396(3)�, V¼ 1454.5(3) Å3, Z¼ 4.Dcalc¼ 3.589 g/cm3.
The structure contains 2D [Zn3(SeO3)4]

2� sheets.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Liu et al. (2015c).
Wavenumbers (cm21): 3560, 1635w, 1545w, 1410w, 800s, 780s, 715s, 496sh, 485s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se78 Strontium bismuth(III) selenite hydrate Sr3Bi2(SeO3)6∙H2O

656 2 IR Spectra of Minerals and Related Compounds, and Reference Samples Data



Origin: Synthetic.
Description: Crystals grown hydrothermally using SrCO3, Bi2O3, and SeO2 as starting reactants, at

230 �C for 4 days. Characterized by powder X-ray diffraction and TG data. The crystal structure is
solved. Monoclinic, space group P21/m, a ¼ 7.0054(10), b ¼ 17.5092(3), c ¼ 7.3053(10) Å,
β ¼ 92.299(10)�, V ¼ 895.34(2) Å3, Z ¼ 2. Dcalc ¼ 5.418 g/cm3. Bi3+ has sevenfold coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Ahn et al. (2015).
Wavenumbers (cm21): 3440, 1633w, 1114w, 807, 740s, 654sh, 469, 414.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se79 Strontium selenate SrSeO4

Origin: Synthetic.
Description: Prepared by precipitation from hot aqueous solutions of sodium selenate and lead acetate.

Monoclinic, space group P21/n, a ¼ 7.087, b ¼ 7.317, c ¼ 6.862 Å, β ¼ 103.55�.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.

Transmission.
Source: Scheuermann and Schutte (1973b).
Wavenumbers (IR, cm21): 1148, 1121w, 1091w, 919s, 904s, 884sh, 867s, 844s, 447s, 425, 414,

396, 381.
Note: The bands in the range from 1000 to 1200 cm�1 may correspond to the admixture of a sulfate.

Bands near 720 cm�1 may correspond to Nujol. In the cited paper, powder Raman spectrum is
given.

Wavenumbers (Raman, cm21): 913, 905, 898, 887, 882, 852, 464, 465, 445, 424, 396, 376,
340, 326.
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Se80 Tellurium(IV) oxyselenate Te2(SeO4)O3

Origin: Synthetic.
Description: Prepared by heating a mixture of Te or Na2(TeO3) with 80% selenic acid at 160 �C.

Characterized by chemical analyses and powder X-ray diffraction data. Orthorhombic, space group
P21mn, a¼ 4.807, b¼ 8.628, c¼ 7.346 Å, V¼ 304.67Å3, Z¼ 2.Dmeas¼ 4.82 g/cm3,Dcalc¼ 4.85 g/
cm3. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.028 (100)
(101), 3.724 (80) (021), 3.649 (70) (111), 2.943 (70) (121), 2.921 (75) (102), 2.450 (75) (003).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Gaitán et al. (1985).
Wavenumbers (cm21): 1160w, 1130w, 915, 875s, 840s, 795s, 775sh, 645s, 505, 465, 430, 370, 350.
Note: The bands above 1100 cm�1 may correspond to the admixture of a sulfate.

Se81 Tellurium oxyselenite Te(SeO3)O
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Origin: Synthetic.
Description: Prepared by heating a mixture of TeO2 and SeO2 (with the 1:1.15 molar ratio) at 370 �C

for 3 days. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Monoclinic, space group Ia, a ¼ 4.3568(8), b ¼ 12.465(3), c ¼ 6.7176(15) Å, β ¼ 90.825(4)�,
V ¼ 364.77(14) Å3, Z ¼ 4. Dcalc ¼ 4.927 g/cm3. Te has fivefold coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Porter et al. (2001).
Wavenumbers (cm21): 833, 715s, 650s, ~510, 488s.

Se82 Vanadium(III) antimony(V) selenite VSb(SeO3)4

Origin: Synthetic.
Description: Prepared by heating a mixture of appropriate amounts of V2O5, Sb2O3, and SeO2, first at

380 �C for 5 h and thereafter at 600 �C for 48 h. After cooling the product to 400 �C at a rate of 6 �C/
h it was quenched to room temperature. Characterized by powder X-ray diffraction data. The crystal
structure is solved. Cubic, space group Pa-3, a ¼ 8.0301(7) Å, V ¼ 517.80(8) Å3, Z ¼ 4.
Dcalc ¼ 4.365 g/cm3. The structure is based on a 3D framework consisting of (V,Sb)O6 octahedra
and SeO3 groups.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Shin et al. (2013).
Wavenumbers (cm21): 875w, 764s, 738sh, 700s, 557s, 466, 412w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Se83 Vanadyl selenite (VO)(SeO3)

Origin: Synthetic.
Description: Prepared by heating a mixture of SeO2 and VO2, taken in stoichiometric amounts, at

400 �C for 24 h. Characterized by powder X-ray diffraction data. The crystal structure contains
dimers [V2O8]

8� consisting of two square pyramids linked via common edge.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Rocha and Baran (1988).
Wavenumbers (cm21): 950, 865s, 775s, 625s, 560s, 535s, 505, 460, 440s, 400, 350,

335, 290w, 270w.

Se84 Yttrium vanadyl oxyselenite Y(VO)(SeO3)2O
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Origin: Synthetic.
Description: Crystals grown hydrothermally from Y2O3, V2O5, and SeO2 at 450 �C for 48 h with three

intermediate regrindings. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Orthorhombic, space group Amb2, a ¼ 10.4036(4), b ¼ 7.5904(3), c ¼ 7.8341(3) Å,
V ¼ 618.64(4) Å3, Z ¼ 4. Dcalc ¼ 4.571 g/cm3. V5+ has sixfold coordination with one short V–
O bond.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Kim et al. (2014).
Wavenumbers (cm21): 926w, 862s, 845sh, 821s, 779s, 735s, 684s, 663s, 555, 538sh,

487, 477sh, 406s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Se85 Alfredopetrovite Al2(Se
4+O3)3∙6H2O

Origin: Synthetic.
Description: Hexagonal, space group P62c, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Ratheesh et al. (1997).
Wavenumbers (IR, cm21): 3286–2900s (broad), 1638 (broad), 1372w, 857sh, 770s, 570, 546

(broad), 492w (broad), 460, 421w, 372sh, 360, 310, 295sh, 241w, 221w.
Note: The band at 1372 cm�1 may correspond to the admixture of NO3

� in KBr. In the cited paper,
Raman spectrum is given.

Wavenumbers (Raman, cm21): 3165s, 3024s, 1640w, 1329w, 874s, 831s, 750w, 722w, 704, 566w,
542, 532, 478w, 439w, 412, 347, 329w, 310w, 232, 191w, 174w, 123, 110, 92w, 74w.

Se86 Cobaltomenite Co(SeO3)∙2H2O
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Origin: Synthetic.
Description: Prepared by precipitating an aqueous solution of cobalt(II) nitrate with aqueous solution

of sodium selenite at 298 K. Characterized by powder X-ray diffraction data and chemical analyses.
Monoclinic, space group P21/n, a ¼ 6.5322, b ¼ 8.8251, c ¼ 7.6455 Å, β ¼ 80.478�,
V ¼ 434.67 Å3, Z ¼ 4. Dcalc ¼ 3.392g/cm3. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 5.7388 (100) (011), 4.4125 (29) (020), 3.7770 (50) (002), 3.2488
(39) (112), 2.7393 (55) (122), 2.6546 (26) (202), 2.5421 (30) (212), 2.4740 (27) (103), 2.3731
(41) (22�1).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Vlaev et al. (2005).
Wavenumbers (cm21): 3430s, 3224s, 3129sh, 2924s, 1613, 1500, 815s, 790s, 700s, 576, 492s.

Se87 Cobalt selenite Co(SeO3)

Origin: Synthetic.
Description: Prepared by dehydration of Co(SeO3)∙2H2O. Characterized by powder X-ray diffraction

data and chemical analyses. Monoclinic, space group C2/c, a ¼ 14.5378, b ¼ 9.9880,
c ¼ 14.0460 Å, β ¼ 107.369�, V ¼ 1946.53 Å3. Dcalc ¼ 4.525 g/cm3. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.3205 (40) (200), 4.1775 (26) (22�1),
3.7518 (24) (221), 3.6602 (32) (400), 2.8914 (100) (42�3), 2.8751 (87) (51�3), 2.8090 (77) (510),
2.7865 (31) (313), 2.4868 (29) (040).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Vlaev et al. (2005).
Wavenumbers (cm21): (3426), (1624w), 845, 826, 742s, 700s, 600, 540, 513, 480, 426w.
Note: The bands at 3426 and 1624 cm�1 may correspond to adsorbed water.
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Se88 Cobalt selenite hydrate Co(SeO3)∙1/3H2O

Origin: Synthetic.
Description: Prepared by partial dehydration of Co(SeO3)∙2H2O. Characterized by powder X-ray

diffraction data and chemical analyses. Triclinic, space group P-1, a ¼ 8.1197, b ¼ 8.4383,
c ¼ 8.5345 Å, α ¼ 123.816�, β ¼ 90.538�, γ ¼ 111.591�, V ¼ 434.02 Å3, Z ¼ 4.
Dcalc ¼ 3.392 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Vlaev et al. (2005).
Wavenumbers (cm21): 3390, 2988, 1626w, 858, 802, 726s, 700s, 526, 491, 460.

Se90 Orlandiite Pb3Cl4(Se
4+O3)∙H2O

Origin: Baccu Locci mine, near Villaputzu, Sardinia, Italy (type locality).
Description: White aggregates from the association with chalcomenite, pseudoboléite, anglesite, etc.

Holotype sample. Triclinic, a ¼ 8.290(8), b ¼ 10.588(13), c ¼ 13.587(15) Å, α ¼ 124.47(8)�,
β ¼ 110.60(9)�, γ ¼ 63.26(9)�, Z ¼ 2. Dcalc ¼ 5.55 g/cm3. The empirical formula is
Pb3[Cl3.68(OH)0.32](SeO3)�H2O. The strongest lines of the powder X-ray diffraction pattern [d, Å
(I, %) (hkl)] are: 4.000 (100) (002), 3.258 (75) (�121), 3.188 (75) (�201), 3.818 (55) (201), 3.731
(44) (122), 2.103 (40) (142).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Campostrini et al. (1999).
Wavenumbers (cm21): 3410–3160 (broad), 1586, 788, 724.
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2.16 Bromides

Br3 Barium bromide dihydrate BaBr2∙2H2O

Origin: Synthetic.
Description: Obtained by crystallization from aqueous solution at room temperature. Monoclinic,

space group C2/c, a ¼ 10.449, b ¼ 7.204, c ¼ 8.385 Å, β ¼ 113.48�, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Lutz et al. (1978).
Wavenumbers (IR, cm21): 3453sh, 3387s, 3200sh, 2775sh, 1613s, 1600s, 1417–1419, 1178–1186,

616sh, 561–566, (452), 420s.
Note: In the cited paper, Raman spectrum is given.
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2.17 Molybdates

Mo40 Ammonium cuprooxopolymolybdate (NH4)4[H6CuMo6O24]∙4H2O (NH4)4[H6CuMo6O24]
∙4H2O

Origin: Synthetic.
Description: Obtained by precipitation in aqueous solution. Characterized by powder X-ray diffrac-

tion data. The crystal structure has been published elsewhere. In the cluster [H6CuMo6O24], both Cu
and Mo have octahedral coordination. Six protons are bonded to the O atoms of the CuO6 central
polyhedron.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Botto et al. (1994).
Wavenumbers (IR, cm21): 3388s, 3144s, 2768sh, 2070w, 1631w, 1399s, 927s, 906, 895sh, 876s,

692sh, 637s, 581, 562, 478w, 403, 352w, 321, 255.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3120w (broad), 936s, 916, 873, 690w, 574w, 495w, 344, 252.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectra.
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Mo41 Ammonium heptamolybdate (NH4)6Mo7O24∙4H2O

Origin: Synthetic.
Description: Commercial reactant characterized by powder and single-crystal X-ray diffraction data.

Monoclinic, a ¼ 8.395(7), b ¼ 36.204(3), c ¼ 10.4765 Å, β ¼ 115.884�.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Wienold et al. (2003).
Wavenumbers (cm21): 3420sh, 3173s, 3017sh, 2817sh, 1642, 1406s, 925sh, 915sh, 887s, 840, 792w,

667, 636s, 578, 479, 406.

Mo42 Ammonium nickel molybdate (NH4)Ni2(HMoO4)(MoO4)(OH)2 (NH4)Ni2(HMoO4)
(MoO4)(OH)2
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Origin: Synthetic.
Description: Prepared as a green precipitate by adding concentrated ammonium hydroxide to the

solution of (NH4)6Mo7O24�4H2O and nickel nitrate containing 0.10 mol of Mo and 0.10 mol of
Ni. The crystal structure is solved. Trigonal, space group R-3m, a ¼ 6.0147(4), c ¼ 21.8812(13) Å,
V ¼ 685.53(7) Å3, Z ¼ 3. Dcalc ¼ 3.446 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Photoacoustic Fourier-
transform IR spectroscopy.

Source: Levin et al. (1996).
Wavenumbers (IR, cm21): 3508sh, 3326, 3180, 3028, 2933, 2823, 1842, 1651, 1608, 1410, 1277,

913, 793, 746, 655, 512.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 904, 321.

Mo43 Bismuth(III) ferrite dimolybdate Bi3(FeO4)(MoO4)2

Origin: Synthetic.
Description: Synthesized from aqueous solution of ferric nitrate, bismuth nitrate, and ammonium

molybdate heated first at 250 �C and then from 600 to 920 �C for 10 h. Characterized by powder
X-ray diffraction data and Mössbauer spectrum. Monoclinic, a ¼ 16.904(1), b ¼ 11.653(1),
c ¼ 5.2544(6) Å, β ¼ 107.15(1)�, V ¼ 989.0(1) Å3. Dcalc ¼ 7.16 g/cm3. In the crystal structure,
Fe and Mo are ordered.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.
Transmission.

Source: Jeitschko et al. (1976).
Wavenumbers (cm21): 1178w, 977s, 951sh, (936s), 925s, 868w, 827w, 769w, 603s, 557w, 461, 428,

386sh, 364sh, 337s, 316sh, 270s, 232, 206.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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Mo44 Bismuth molybdate Bi2MoO6

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group B2cb.
Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Bode et al. (1973).
Wavenumbers (IR, cm21): 880sh, 870, 825sh, 810s, 790sh, 710s, 645, 565, 550, 525, 490sh,

460, 380, 335, 295, 250.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 905, 885, 870, 830, 795, 730, 400, 380, 320, 265, 230, 210, 180.

Mo45 Cadmium molybdate CdMoO4
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Origin: Synthetic.
Description: Prepared hydrothermally from corresponding oxides at 473 K for 48 h. Characterized by

powder X-ray diffraction data and Ritveld crystal structure refinement. Isostructural with scheelite.
Tetragonal, space group I41/a, a ¼ 5.156(1), c ¼ 11.196(1) Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Daturi et al. (1997).
Wavenumbers (IR, cm21): 752s, 435w, 400w, 300, 250, 152, 125.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 863s, 822, 759, 403, 392, 323s, 268, 205, 191, 144, 112, 83.

Mo46 Cesium fluormolybdate CsMoO2F3 CsMoO2F3

Origin: Synthetic.
Description: Produced from Cs2CO3, MoO3�H2O, and HF. Characterized by powder X-ray diffraction

data. Orthorhombic, a ¼ 5.492(1), b ¼ 6.457(1), c ¼ 14.124(2) Å, Z ¼ 4. Dmeas ¼ 4.19 g/cm3,
Dcalc ¼ 4.21 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Mattes et al. (1972).
Wavenumbers (IR, cm21): 970, 919s, 600sh, 581s, 449, 418, 411, 393, 380sh, 293, 279sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 974s, 912s, 580w, 403, 308, 282, 268, 242.
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Mo47 Cesium thorium molybdate Cs2Th(MoO4)3

Origin: Synthetic.
Description: Colorless crystals prepared by cooling down the melt of a mixture of Th(NO3)4�5H2O,

CsNO3, and MoO3 from 1050 to 400 �C at a rate of 5 �C/h in air. The crystal structure is solved.
Orthorhombic, space group Pnnm, a¼ 5.2569(3), b¼ 9.7336(8), c¼ 26.8467(16) Å, V¼ 1373.71
(16) Å3, Z ¼ 4. Dcalc ¼ 4.727 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Xiao et al. (2014).
Wavenumbers (IR, cm21): 941sh, 933, 915, 890s, 837s, 764s, 688sh, 672s, 582sh, 557sh, 472w,

450w, 411w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 959s, 954, 948s, 942, 930, 924, 918, 911, 885, 866s, 828, 775,

751, 693, 465, 421, 405, 373, 360, 344, 334, 300, 292, 276, 187, 168, 144, 136, 124, 110, 98.

Mo48 Lanthanum molybdate La2MoO6
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Origin: Synthetic.
Description: Tetragonal, space group I-42m. The crystal structure can be described as a succession of

La2O2 and MoO4 layers. The MoO4 layer consists of MoO4 tetrahedra.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Bode et al. (1973).
Wavenumbers (IR, cm21): 865s, 775s, 490, 380s, 315w, 298w, 287w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 875s, 860sh, 800, 765, 695, 490, 455, 435, 375w, 325, 295, 275s,

240, 220.

Mo49 Lead orthoborate molybdate Pb6(BO3)2(MoO4)O2

Origin: Synthetic.
Description: Prepared in a solid-state reaction from the powder mixture of PbO, MoO3, and H3BO3

with the molar ratio 15:2:3. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Orthorhombic, space group Cncm, a ¼ 18.446(4), b ¼ 6.3557(13), c ¼ 11.657(2) Å,
V ¼ 1366.6(5) Å3, Z ¼ 4. Dcalc ¼ 7.546 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Chen et al. (2009).
Wavenumbers (cm21): 1215s, 788s, 693, 608, 564, 500, 441, 414.
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Mo50 Lithium molybdate tellurite Li2(MoTeO6)

Origin: Synthetic.
Description: Prepared from Li2CO3, TeO2, and MoO3 by a solid-state technique. Monoclinic, space

group P21/n, a ¼ 5.3830(5), b ¼ 13.0027(11), c ¼ 6.9814(6) Å, β ¼ 94.7420(10)�, V ¼ 486.97
(7) Å3, Z ¼ 4. Dcalc ¼ 4.548 g/cm3. In the crystal structure, each MoO6 octahedron is connected to
three TeO3 groups, and each TeO3 group is connected to three MoO6 octahedra to form a layer.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Nguyen and Halasyamani (2012).
Wavenumbers (cm21): 904s, 874s, 831s, 739, 684s, 627s, 503, 464w, 414.

Mo51 Lithium dimolybdate selenite Li6(Mo2O5)3(SeO3)6
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Origin: Synthetic.
Description: Crystals prepared from a mixture of Li2MoO4 and SeO2 by a solid-state technique.

Orthorhombic, space group Pmn21, a ¼ 8.2687(4), b ¼ 16.6546(7), c ¼ 19.2321(8) Å,
V ¼ 2648.5(2) Å3, Z ¼ 4. Dcalc ¼ 4.060 g/cm3. In the crystal structure, the Mo2O10 dimers are
connected by SeO3 groups to form a layer.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Nguyen and Halasyamani (2012).
Wavenumbers (cm21): 977w, 963, 952, 933, 909s, 886, 813, 775s, 759sh, 722, 709sh, 586s, 539sh,

494, 461, 452sh, 421sh, 415w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Mo52 Potassium aluminium molybdate KAl(MoO4)2

Origin: Synthetic.
Description: Trigonal, space group P-3m1, Z ¼ 1.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Maczka et al. (1999).
Wavenumbers (cm21): 976, 932s, 880s, 500, 423s, 358s, 301, 165, 99.
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Mo53 Sodium aluminium molybdate NaAl(MoO4)2

Origin: Synthetic.
Description: Monoclinic, pseudo-orthorhombic, space group C2/c or C2/m. Structurally related to

yavapaiite.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Transmission.
Source: Maczka et al. (1999).
Wavenumbers (cm21): 988, 976, 934sh, 931s, 889sh, 876s, 816s, 503, 456s, 392s, 366s, 331s,

306, 282, 224w, 198w, 164, 156sh, 115w, 53w.

Mo54 Sodium bismuth molybdate scheelite-type NaBi(MoO4)2
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Origin: Synthetic.
Description: Colorless crystals grown at ca. 1100 K from the melt prepared from a stoichiometric

mixture of Na2CO3, Bi2O3, and MoO3. The crystal structure is solved. Tetragonal, space group I-4,
a ¼ 5.267, c ¼ 11.565 Å, V ¼ 320.83 (10) Å3, Z ¼ 2. Dcalc ¼ 5.713 g/cm3. Structurally related to
scheelite.

Source: Hanuza et al. (1997).
Wavenumbers (IR, cm21): 906, 820, 733s, 669, 650sh, 520sh, 390, 303, 250, 219sh, 185sh,

147, 86, 69, 53w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, polarized Raman spectra are given.
Wavenumbers (Raman, for the x(zz)–x polarization, cm21): 924sh, 909sh, 878s, 857sh, 760w,

409, 320, 192w, 130w, 88w, 54w.

Mo55 Tellurium oxumolybdate α-Te2MoO7

Origin: Synthetic.
Description: Prepared by heating a mixture of TeO2 and MoO3, taken in stoichiometric amounts, at

550–600 �C for 10 h. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Monoclinic, space group P21/c, a¼ 4.286(2), b ¼ 8.618(3), c ¼ 15.945(5) Å, β ¼ 95.68(1)�, Z¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc.
Transmission.

Source: Baran et al. (1981).
Wavenumbers (IR, cm21): 906, 870sh, 862s, 829, 767, 730w, 690, 629s, 549, 511w, 456sh,

440, 371, 340, 331, 305, 296, 244, 230sh, 218.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 911s, 867s, 818s, 737, 619, 548w, 513w, 460sh, 439, 365, 335w,

312w, 290sh, 283, 261w, 218s, 199w, 183w, 183sh, 173s.
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Mo56 Zinc molybdate β-Zn(MoO4)

Origin: Synthetic.
Description: Light gray powder prepared hydrothermally from sodium molybdate and zinc nitrate at

140 �C for 8 h. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Monoclinic, space group P2/c, a ¼ 4.6987(3), b ¼ 5.7487(2), c ¼ 4.9044(2) Å, β ¼ 90.3312�,
V ¼ 132.47 Å3, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Cavalcante et al. (2013).
Wavenumbers (cm21): 829s, 712sh, 665s, 516, 453, 410w, 359, 326, 257.
Note: For the IR spectrum of β-Zn(MoO4) see also Jiang et al. (2014).

Mo57 Zinc telluromolybdate ZnTeMoO6
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Origin: Synthetic.
Description: Orthorhombic, space group P212121, a ¼ 5.255, b ¼ 5.044, c ¼ 8.909 Å.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Baran et al. (1981).
Wavenumbers (cm21): 948, 899s, 782w, 685s, 609, 430, 356, 342sh, 324sh.

Mo58 Zirconium molybdenum oxide (monoclinic) ZrMo2O8

Origin: Synthetic.
Description: Prepared by heating a mixture of ZrO2 and MoO3 taken in the molar ratio of 1:2, at

600 �C for 64 h. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Monoclinic, space group C2/c, a¼ 11.4243(19), b¼ 7.9297(6), c¼ 7.4610(14) Å, β ¼ 122.15(2)�,
V ¼ 572.3(2) Å3, Z ¼ 4. Dcalc ¼ 4.771g/cm3. Mo has fivefold coordination. Two MoO5 polyhedra
share edges with each other forming Mo2O8 moieties.

Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflectance of
a powdered sample.

Source: Sahoo et al. (2009).
Wavenumbers (cm21): 388s, 324sh, 237.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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Mo59 Zirconium molybdenum oxide (trigonal) ZrMo2O8

Origin: Synthetic.
Description: The crystal structure is solved. Trigonal, space group P-31c, a ¼ 10.1391(6),

c ¼ 11.7084(8) Å, Z ¼ 6. Mo has fourfold coordination.
Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflectance of

a powdered sample.
Source: Sahoo et al. (2009).
Wavenumbers (cm21): 313, 254sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. The wavenumber of the main band (313 cm�1) is anomalously low for the MoO4

tetrahedra.

Mo60 Vanadyl molybdate (VO)(MoO4)
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Origin: Synthetic.
Description: Obtained by heating a stoichiometric mixture of VO2 and MoO3 at 700 �C for 48 h.

Tetragonal, space group P4/n.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Stranford and Condrate Sr (1984a).
Wavenumbers (IR, cm21): 963, 834s, 586w, 528w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, a figure of Raman spectrum is given.

Mo61 Kamiokite Fe2+2Mo4+3O8

Origin: Kamioka mine, Hida City, Chubu Region, Honshu Island, Japan (type locality).
Description: Black crystals with submetallic lustre. Investigated by A.V. Kasatkin. Confirmed by

electron microprobe analyses.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 1147, 1055, 1020sh, 855sh, 778, 723, 645sh, 560, 517, 475s, 461s.
Note: The spectrum was obtained by N.V. Chukanov.
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2.18 Tellurides, Tellurites, and Tellurates

Te52 Barium calcium tellurate Ba2CaTeO6

Origin: Synthetic.
Description: Perovskite-type compound. Dcalc ¼ 6.04 g/cm3.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Corsmit and Blasse (1974).
Wavenumbers (IR, cm21): 685, 400.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 752, 618, 412.

Te53 Barium cobalt tellurate Ba2CoTeO6
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Origin: Synthetic.
Description: A compound with ordered hexagonal perovskite-type structure.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Liegeois-Duyckaerts (1985).
Wavenumbers (cm21): 750, 695, 645s, 567, 479, 407s, 385s, 363s, 284, 220, 167w, 150, (133),

(127), 112w.

Te54 Barium copper tellurate tellurite BaCuTe2O7

Origin: Synthetic.
Description: Prepared by solid-state method from the stoichiometric mixture of BaCO3, CuO, TeO2,

and H2TeO4�2H2O at 650 �C. Orthorhombic, space group Ama2, a ¼ 5.4869(8), b ¼ 15.4120(8),
c ¼ 7.2066(4) Å, V ¼ 609.42(10) Å3, Z ¼ 4. Dmeas ¼ 2.39(3) g/cm3, Dcalc ¼ 2.391 g/cm3.
Characterized by powder X-ray diffraction, piezoelectric, and polarization measurements.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Yeon et al. (2011).
Wavenumbers (cm21): 798, 700s, 649s, 629s, 564w, 527, 485, 437.
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Te55 Barium nickel tellurate Ba2NiTeO6

Origin: Synthetic.
Description: Perovskite-type compound. Hexagonal, space group R-3m, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Corsmit and Blasse (1974).
Wavenumbers (cm21): 746, 690sh, 670s, 622s, 462, 423sh, 405s, 365s.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Te56 Barium zinc tellurate Ba2ZnTeO6
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Origin: Synthetic.
Description: Synthesized by solid-state reaction. The stoichiometric mixture of the necessary oxides

and carbonates was heated at 600 �C for about 1 night, then reground and heated up to 1100 �C for
1 day. A compound with perovskite-type cubic structure.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Liegeois-Duyckaerts (1975).
Wavenumbers (IR, cm21): 758, 670s, 665s, 623s, 478, 402s, 367, 315w, 269, 206sh,

150, 127w, 115w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 769s, 691s, 620, 575, 473w, 406, 399, 385, 122, 105.

Te57 Calcium tellurite monohydrate Ca(TeO3)∙H2O

Origin: Synthetic.
Description: Obtained from Ca(NO3)2 and TeO2, in the presence of NaOH, by microwave-assisted

hydrothermal synthesis at 185 �C for 1 h. The crystal structure is solved. Orthorhombic, space
group P21cn, a ¼ 14.78549(4), b ¼ 6.79194(3), c ¼ 8.06261(3) Å, V ¼ 809.665(6) Å3, Z ¼ 8.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Poupon et al. (2015).
Wavenumbers (cm21): 3590, 3330sh, 3130, 2830, 1641w, 882, 783, 765, 737s, 700s, 680s, 545w,

411sh.
Note: The strong band centered at 698 cm�1 and the shoulders at 740 and 770 cm�1 indicated by the

authors of the cited paper were determined by us as bands at 680, 700, 737, 765, and 783 cm�1.
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Te58 Indium vanadate tellurite In(VTe2O8) In(VTe2O8)

Origin: Synthetic.
Description: Prepared from In2O3, V2O5, and TeO2 by a standard solid-state reaction. The

crystal structure is solved. Monoclinic, space group P21/n, a ¼ 7.8967(16), b ¼ 5.1388(10),
c ¼ 16.711(3) Å, β ¼ 94.22(3)�, V ¼ 676.3(2) Å3, Z ¼ 4. Dcalc ¼ 5.391 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Lee et al. (2011).
Wavenumbers (cm21): 955, 948s, 867sh, 861, 789s, 781sh, 732s, 700s, 662s, 613, 547, 511, 433sh,

407.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Te59 Lead copper tellurate tellurite PbCuTe2O7
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Origin: Synthetic.
Description: Prepared by a conventional solid-state method from stoichiometric amounts of PbO,

CuO, TeO2, and H2TeO4�2H2O. Characterized by powder X-ray diffraction data. The crystal
structure is solved. Orthorhombic, space group Pbcm, a ¼ 7.2033(5), b ¼ 15.0468(10),
c ¼ 5.4691(4) Å, V ¼ 592.78(7) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Yeon et al. (2011).
Wavenumbers (cm21): 795, 703s, 663, 627s, 517, 493, 438, 429sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Te60 Lithium tungstate tellurite Li2(WTeO6)

Origin: Synthetic.
Description: Prepared from Li2CO3, TeO2, and WO3 by a solid-state technique. Monoclinic, space

group P21/n, a ¼ 5.3950(5), b ¼ 12.9440(12), c ¼ 7.0149(7) Å, β ¼ 94.2510(10)�, V ¼ 488.52
(8) Å3, Z ¼ 4. Dcalc ¼ 5.729 g/cm3. In the crystal structure, each WO6 octahedron is connected to
three TeO3 groups, and each TeO3 group is connected to three WO6 octahedra to form a layer.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Nguyen and Halasyamani (2012).
Wavenumbers (cm21): 936, 894s, 875s, 818, 727s, 666s, 629, 517, 430w.
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Te61 Magnesium tellurite MgTe2O5 MgTe2O5

Origin: Synthetic.
Description: Obtained in the solid-state reaction between MgO and TeO2 at 680 �C. Characterized by

powder X-ray diffraction data. Orthorhombic, Z ¼ 4.
Kind of sample preparation and/or method of registration of the spectrum: CsI disc.

Transmission.
Source: Baran (1978).
Wavenumbers (IR, cm21): 785, 752, 712s, 700sh, 611, 542, 450sh, 432s, 389, 367s, 326, 312,

261, 242w, 227sh, 205w, 185sh, 174w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 810s, 725, 698s, 540, 437s, 405, 385, 345sh, 330, 267s, 253, 237w,

222s, 200, 185w, 115.

Te62 Potassium acid tellurate hydrate K2[TeO2(OH)4]∙3H2O K2[TeO2(OH)4]∙3H2O
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Origin: Synthetic.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Siebert (1959).
Wavenumbers (cm21): 3250s, 3120sh, 2250, 1630, 1490w, 1095, 820, 740s, 720sh, 610s, 595s,

554, 518, 426.

Te63 Scandium vanadate tellurite ScVTe2O8

Origin: Synthetic.
Description: Prepared by a solid-state reaction from Sc2O3, V2O5, and TeO2, first at 350 �C for 5 h,

and thereafter at 450 �C for 48 h. The crystal structure is solved. Monoclinic, space group P21/n,
a ¼ 7.9774(2), b ¼ 5.08710(10), c ¼ 16.5654(4) Å, β ¼ 93.400(2)�, V ¼ 671.07(3) Å3, Z ¼ 4.
Dcalc¼ 4.742 g/cm3. The structure is composed of ScO6 octahedra, VO4 tetrahedra, and asymmetric
TeO4 polyhedra that are connected via common O atoms.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Kim et al. (2013).
Wavenumbers (cm21): 955s, 947, 866s, 811sh, 788s, 740, 726, 691s, 655s, 622s, 605s, 538w,

511, 483, 432s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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Te64 Sodium acid diarsenite tellurite Na2(H4As2O5)(H2TeO4)

Origin: Synthetic.
Description: Prepared by slow evaporation of an aqueous solution containing stoichiometric amounts

of Te(OH)6, Na2CO3, and H3AsO4. Characterized by EDS and thermal analysis. The crystal
structure is solved. Tetragonal, space group I-4, a ¼ 5.576(2), c ¼ 7.773(5) Å, V ¼ 241.8(2) Å3,
Z ¼ 2. Dcalc ¼ 5.72 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Bechibani et al. (2014).
Wavenumbers (IR, cm21): 3649w, 3578w, 3289s, 3127s, 2885s, 2830sh, 2358s, 2285sh, 1811, 1669w,

1592, 1478w, 1440w, 1350w, 1236s, 1158, 1106, 985, 860s, 790, 750, 720, 667s, 620sh, 560sh, 427w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 1327w, 1237w, 835, 718, 664sh, 650s, 623, 429, 423, 415, 372, 327,

321, 295w, 244w.

Te65 Sodium acid tellurate Na2[TeO2(OH)4] Na2[TeO2(OH)4]
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Origin: Synthetic.
Description: Obtained in the reaction of Te(OH)6 with excess of NaOH in aqueous solution.

Characterized by powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Siebert (1959).
Wavenumbers (cm21): 3110s, 2475, 2270, 1650w, 1200sh, 1141s, 780s, 675s, 587s, 536, 429.

Te66 Sodium molybdenum(VI) tellurite Na2MoTe4O12

Origin: Synthetic.
Description: Synthesized hydrothermally from Na2MoO4�2H2O and TeO2 (with the ratio Na:Mo:

Te¼ 6:3:1) at 225 �C for 4 days with subsequent cooling to room temperature over a period of 36 h.
Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space
group C2/c, a ¼ 17.341(4), b ¼ 5.8262(11), c ¼ 11.268(2) Å, β ¼ 104.38(2)�, V ¼ 1102.7(4) Å3,
Z ¼ 4. Dcalc ¼ 5.086 g/cm3. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)
(hkl)] are: 5.500 (28) (110), 4.194 (29) (400), 4.028 (77) (31�1), 2.976 (49) (51�1), 2.911 (100)
(020), 2.618 (29) (221), 2.085 (29) (422).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Balraj and Vidyasagar (1999).
Wavenumbers (cm21): 899, 833s, 792s, 757s, 696s, 593s, 496, 467.
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Te67 Sodium tellurite β-Na2Te4O9 β-Na2Te4O9

Origin: Synthetic.
Description: Prepared hydrothermally from Na2CO3 and TeO2 at 230 �C for 4 days. The crystal

structure is solved. Orthorhombic, space group Pccn, a¼ 16.317(2), b¼ 10.4544(10), c¼ 10.8874
(10) Å, V ¼ 1857.2(3) Å3, Z ¼ 8.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Lee and Ok (2014).
Wavenumbers (cm21): 908sh, 853sh, 814s, 787, 718s, 689s, 632s, 573, 512sh, 460, 419w.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.

Te68 Sodium tellurate tellurite hydrate Na2Te2O6∙1.5H2O Na2Te2O6∙1.5H2O
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Origin: Synthetic.
Description: Prepared hydrothermally from Na2CO3 and TeO2 at 230 �C for 4 days. The crystal

structure is solved. Monoclinic, space group C2/c, a ¼ 8.9884(19), b ¼ 14.3739(19), c ¼ 10.387
(3) Å, β ¼ 99.429(11)�, V ¼ 1323.9(5) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Lee and Ok (2014).
Wavenumbers (cm21): 3602w, 3498, 3327, 1651, 1635sh, 1221sh, 760s, 692sh, 659sh, 632s,

539, 505, 449, 430, 415sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Te69 Sodium tungsten tellurite Na2WTe4O12

Origin: Synthetic.
Description: Tiny pale yellow crystals. Synthesized hydrothermally from Na2WO4�2H2O and TeO2

(with the ratio Na:W:Te¼ 6:3:1) at 225 �C for 4 days with subsequent cooling to room temperature
over a period of 36 h. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Monoclinic, space group C2/c, a ¼ 17.348(3), b ¼ 5.7755(10), c ¼ 11.269(3) Å,
β ¼ 104.33(2)�, V ¼ 1094.0(4) Å3, Z ¼ 4. Dcalc ¼ 5.660 g/cm3. The strongest lines of the powder
X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.007 (100) (31�1), 3.144 (49) (11�3), 2.966
(72) (51�1), 2.883 (48) (020), 2.597 (59) (221).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Balraj and Vidyasagar (1999).
Wavenumbers (cm21): 917w, 807s, 756, 694, 593s, 495, 467.
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Te70 Strontium copper tellurate tellurite SrCuTe2O7

Origin: Synthetic.
Description: Prepared by heating a mixture of SrCO3, CuO, TeO2, and H2TeO4, taken in stoichiomet-

ric amounts. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Orthorhombic, space group Pbcm, a ¼ 7.1464(7) Å, b ¼ 15.0609(15) Å, c ¼ 5.4380(5) Å,
V ¼ 585.30(10) Å3, Z ¼ 4. The structure is based on 2D layers consisting of corner-shared CuO5

square pyramids, TeO6 octahedra, and TeO4 dispheniods.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Yeon et al. (2011).
Wavenumbers (cm21): 801, 763sh, 707s, 656s, 571w, 553w, 529, 488, 426, 421sh.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Te71 Thallium tellurite β-Tl2TeO3
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Origin: Synthetic.
Description: Light yellow to brown aggregates of crystals prepared by heating a mixture of Tl2CO3

and TeO2, taken in stoichiometric amounts, at 160 �C for 3 days. Characterized by powder X-ray
diffraction data. The crystal structure is solved. Monoclinic, space group P21/c, a¼ 8.9752(18), b¼
4.8534(6), c ¼ 11.884(2) Å, β ¼ 109.67(2)�, V ¼ 487.47(15) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Rieger and Mudring (2007).
Wavenumbers (IR, cm21): 833w, 775w, 753w, 704, 654s, 623s, 343, 308, 286, 203, 185, 163, 111w,

101, 93, 85, 74, 56w, 46w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 708s, 646, 346w, 296, 172sh, 150, 117, 93s, 66w.

Te72 Thorium tellurite ThTe2O6

Origin: Synthetic.
Description: Prepared by heating a mixture of TeO2 and ThO2 (with the molar ratio 1:2) at 600 �C for

48 h. Characterized by powder X-ray diffraction data. Cubic, a ¼ 21.838(8), V ¼ 10414.5 Å3,
Z ¼ 64. Dmeas ¼ 5.7 g/cm3, Dcalc ¼ 5.95 g/cm3. The strongest lines of the powder X-ray diffraction
pattern [d, Å (I, %) (hkl)] are: 3.53 (53) (611), 3.432 (72) (540), 3.167 (100) (444), 2.977 (41) (721),
2.849 (53) (731), 2.028 (35) (864).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Botto and Baran (1982).
Wavenumbers (cm21): 762, 738, 705sh, 662s, 630s, 491, 402sh, 385sh, 358, 326, 307, 260w.
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Te73 Yttrium vanadyl oxytellurite Y(VO)(TeO3)2O

Origin: Synthetic.
Description: Crystals grown hydrothermally from Y2O3, V2O5, and TeO2 at 550 �C for 48 h with three

intermediate regrindings. Characterized by powder X-ray diffraction data. The crystal structure is
solved. Monoclinic, space group C2/m, a ¼ 7.9396(10), b ¼ 7.5625(10), c ¼ 21.282(2) Å,
β ¼ 90.010(10)�, V ¼ 1277.85(3) Å3, Z ¼ 8. Dcalc ¼ 5.438 g/cm3. V5+ has sixfold coordination
with one short V–O bond.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Kim et al. (2014).
Wavenumbers (cm21): 920sh, 857, 821sh, 792sh, 759s, 692s, 640sh, 625sh, 603s, 555sh, 540sh,

507w, 487sh, 423.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Te74 Tellurium Te
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Origin: Synthetic.
Description: A sample prepared by deposition of evaporated Te on crystalline quartz.
Kind of sample preparation and/or method of registration of the spectrum: Polycrystalline film

1500 Å thick. Transmission.
Source: Grosse and Richter (1970).
Wavenumbers (cm21): 140.8, 91.2, 87.5.

Te75 Yafsoanite Ca3Zn3Te
6+

2O12

Origin: Synthetic.
Description: Synthesized by solid-state reaction, starting from CaCO3, ZnO, and TeO2. Confirmed by

powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene

discs. Transmission.
Source: Rulmont et al. (1992).
Wavenumbers (cm21): 725, 684s, 647, 475s, 415s, 379, 268, 245, 225w, 171, 155, 101w.
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Te76 Pingguite Bi6Te
4+

2O13

Origin: Yangjiava, Pinggu Co., Beijing Municipality, China (type locality).
Description: Yellowish green aggregate from the association with malachite, pyromorphite, bismutite,

etc. Holotype sample. Orthorhombic, a ¼ 5.689(1), b ¼ 10.791(1), c ¼ 5.308(1) Å, Z ¼ 1.
Dmeas ¼ 8.44 g/cm3, Dcalc ¼ 8.64 g/cm3. Optically biaxial (�), α ¼ 1.554(2), β ¼ 1.558(2),
γ ¼ 1.566(2), 2V ¼ 70(5)�. The empirical formula is Bi5.80Te2.15O13. The strongest lines of the
powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.146 (100) (121), 2.841 (80) (200), 2.694
(20) (040), 1.695 (20) (321), 1.956 (10) (240), 1.631 (10) (161).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Sun et al. (1994).
Wavenumbers (cm21): 715sh, 660s, 620, 540, 500, 380s, 325, 250.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

Te77 Denningite CaMn2+Te4+4O10
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Origin: Moctezuma (La Bambolla) mine, Moctezuma, Sonora, Mexico (type locality).
Description: Pale yellowish-green granular aggregate from the association with muscovite. The

empirical formula is (electron microprobe): Ca0.79Mn1.15Mg0.05Te4.00O5.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Absorption.
Wavenumbers (cm21): 767, 692s, 609s, 555sh, 481, 454w, 401, 372.
Note: The spectrum was obtained by N.V. Chukanov.

Te78 Poughite Fe3+2(Te
4+O3)2(SO4)∙3H2O

Origin: Moctezuma (La Bambolla) mine, Moctezuma, Sonora, Mexico (type locality).
Description: Yellow spherulites on quartz. The empirical formula is (electron microprobe):

(Fe0.92Al0.08)(TeO3)1.99(SO4)1.02�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Absorption.
Wavenumbers (cm21): 3606, 3508, 3260sh, 3144, 2134w, 2028w, 1633, 1608, 1160sh, 1144s,

1086s, 1048s, 979, 930sh, 800, 785sh, 728s, 693sh, 659, 619s, 522, 484s, 443s, 375.
Note: The spectrum was obtained by N.V. Chukanov.
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Te79 Zemannite Mg0.5ZnFe
3+(Te4+O3)3∙4.5H2O

Origin: Moctezuma (La Bambolla) mine, Moctezuma, Sonora, Mexico (type locality).
Description: Brown acicular crystals from the association with dickite and quartz. The empirical

formula is (electron microprobe): Mg0.63Zn0.84Fe0.98Al0.02Ti0.02(TeO3)3�nH2O.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3430s, 3180, 3125sh, 1654, 1152w, 1075sh, 996, 704s, 645sh, 627s, 464s.
Note: The spectrum was obtained by N.V. Chukanov.

Te80 Plumbotellurite Pb(Te4+O3)

Origin: Synthetic.
Description: Synthesized by crystallization above the solidus temperature of the PbO–TeO2 system.

Characterized by powder X-ray diffraction data and electron microprobe analysis.
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Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Stavrakieva et al. (1988).
Wavenumbers (cm21): 725, 681sh, 650s, 585sh, 480w, 415.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.

2.19 Iodides, Iodites, and Iodates

I15 Copper iodate α-Cu(IO3)2

Origin: Synthetic.
Description: Light yellow green crystal clusters and spherulites obtained by heating bellingerite Cu

(IO3)2�2H2O to 110 �C. Characterized by powder X-ray diffraction data. Point group 2. Optically
biaxial (+) or (�), α ¼ 1.88, β ¼ 1.94, γ ¼ 2.00, 2V is medium. Decomposes at 460 �C.

Kind of sample preparation and/or method of registration of the spectrum: Fluorolube mull
(above 1500 cm�1), KBr disc (from 550 to 1500 cm�1), and Nujol mull (below 550 cm�1).
Transmission.

Source: Nassau et al. (1973).
Wavenumbers (cm21): 799, 762sh, 746s, 736sh, 697, 472s, 458s, 388, 377sh, 366s, 343s, 288, 270s,

228, 210w, 178, 159, 142, 126sh, 118, 108, 89w, 73w.
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I16 Copper iodate β-Cu(IO3)2

Origin: Synthetic.
Description: Light green crystal clusters and dendrites obtained by a gel growth technique.

Characterized by powder X-ray diffraction data. Point group -1. Optically biaxial (�), α ¼ 1.90,
β ¼ 1.94, γ ¼ 1.96, 2V is large. Decomposes at 250 �C to form α-Cu(IO3)2.

Kind of sample preparation and/or method of registration of the spectrum: Fluorolube mull
(above 1500 cm�1), KBr disc (from 550 to 1500 cm�1), and Nujol mull (below 550 cm�1).
Transmission.

Source: Nassau et al. (1973).
Wavenumbers (cm21): 838, 797, 785sh, 774sh, 745s, 717s, 698sh, 495, 479, 450, 395s, 356sh, 346s,

331sh, 311, 280, 260w, 246w, 224w, 200w, 179w, 167, 140w, 126w, 106w, 89w, 72w.

I17 Copper iodate γ-Cu(IO3)2
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Origin: Synthetic.
Description: Dark yellow crystals and crystal clusters obtained by a gel growth technique.

Characterized by powder X-ray diffraction data. Point group 2/m. Optically biaxial (�),
α ¼ 1.89, β ¼ 1.96, γ ¼ 1.99, 2V is medium. Decomposes at 460 �C to form CuO.

Kind of sample preparation and/or method of registration of the spectrum: Fluorolube mull
(above 1500 cm�1), KBr disc (from 550 to 1500 cm�1), and Nujol mull (below 550 cm�1).
Transmission.

Source: Nassau et al. (1973).
Wavenumbers (cm21): 827, 804, 758s, 732, 665, 497, 483sh, 473s, 460sh, 418, 394, 352, 325s,

282, 267s, 235, 195, 180s, 167, 156, 109, 102, 78.
Note: In the cited paper, the wavenumber 180 cm�1 is erroneously indicated as 170 cm�1.

I18 Potassium titanium iodate K2Ti(IO3)6

Origin: Synthetic.
Description: Synthesized hydrothermally from K2CO3, TiO2, and HIO3 at 230 �C for 4 days.

Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space
group R-3, a ¼ 11.2703(6), c ¼ 11.3514(11) Å, V ¼ 1248.68(15) Å3, Z ¼ 3. Dcalc ¼ 4.690 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated.

Source: Chang et al. (2009).
Wavenumbers (cm21): 808sh, 792s, 760s, 664s, 448.
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I19 Copper acid diperiodate hydrate Cu(H4I2O10)∙6H2O

Origin: Synthetic.
Description: Monoclinic, space group P21/c, Z ¼ 2. In the crystal structure, the centrosymmetric

H4I2O10
2� anions are formed by two edge-sharing crystallographically equivalent IO6 octahedra.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection (above 500 cm�1). Nujol mull, transmission (below 500 cm�1).

Source: Jaquet and Haeuseler (2008).
Wavenumbers (IR, cm21): 3526, 3427, 2924s (broad), 2397, 2326, 1626, 1223, 1097, 908, 746s,

623s, 608s, 576s, 553s, 492, 424, 380, 353, 320s, 277, 226, 214, 171, 145sh, 108, 99, 42w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 805s, 756, 746s, 704, 671, 630s, 620s, 443, 413, 396, 356w, 345w,

329, 311.

I20 Sodium titanium iodate Na2Ti(IO3)6
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Origin: Synthetic.
Description: Colorless acicular crystals synthesized hydrothermally from Na2CO3, TiO2, and HIO3 at

230 �C for 4 days. Characterized by powder X-ray diffraction data. The crystal structure is solved.
Hexagonal, space group P63, a ¼ 9.649(3), c ¼ 5.198(3) Å, V ¼ 419.1(3) Å3, Z ¼ 1. Dcalc¼
4.530 g/cm3. The Ti4+ cation is disordered over two half-occupied sites

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of
sample preparation is not indicated. Possibly, a procedure of baseline correction has been applied.

Source: Chang et al. (2009).
Wavenumbers (cm21): 830, 803s, 682sh, 663sh, 630, 481.

I21 Laurionite I-analogue Pb(OH)I

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data and thermoanalytical methods.

Isostructural with laurionite.
Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc, and

Nujol or poly(chlortrifluorethene) mull. Transmission.
Source: Lutz et al. (1995).
Wavenumbers (IR, cm21): 3629, 3592, 3550, 523s, 505sh, 295, 265s, 253.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 3496s, 318w, 244w, 172w, 104, 72, 55s, 50s
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2.20 Xenates

Xe1 Double perovskite KBa(XeNaO6) KBa(XeNaO6)

Origin: Synthetic.
Description: Synthesized hydrothermally from KOH, NaOH, Ba(NO3)2, and Na4XeO6 at 170 �C

for 24 h. Characterized by TGA-DSC data, powder X-ray diffraction, and EDX analyses. The
crystal structure is solved and refined by the Rietveld method. Cubic, space group Fm-3m,
a ¼ 8.3188(2) Å, V ¼ 575.67(3) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Britvin et al. (2015).
Wavenumbers (cm21): 1626w, 1434w, 1383w, 1392w, 879w, 689s, 451s.

Xe2 Double perovskite KCa(XeNaO6) KCa(XeNaO6)
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Origin: Synthetic.
Description: Synthesized hydrothermally from KOH, NaOH, Ca(NO3)2�4H2O, and Na4XeO6 at

170 �C for 24 h. Characterized by TGA-DSC data, powder X-ray diffraction, and EDX analyses.
The crystal structure is solved and refined by the Rietveld method. Tetragonal, space group I4/m,
a ¼ 5.7500(1), c ¼8.1558(2) Å, V ¼ 269.66(1) Å3, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Britvin et al. (2015).
Wavenumbers (cm21): 715s, 474s.

Xe3 Double perovskite KSr(XeNaO6) KSr(XeNaO6)

Origin: Synthetic.
Description: Synthesized hydrothermally from KOH, NaOH, Sr(NO3)2, and Na4XeO6 at 170 �C

for 24 h. Characterized by TGA-DSC data, powder X-ray diffraction, and EDX analyses. The
crystal structure is solved and refined by the Rietveld method. Cubic, space group Fm-3m,
a ¼ 8.1920(1) Å, V ¼ 549.76(2) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Britvin et al. (2015).
Wavenumbers (cm21): 1634w, 1444w, 1396w, 883w, 707s, 454s.
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Xe4 Layered perovskite K4Xe3O12 K4Xe3O12

Origin: Synthetic.
Description: Aggregate of yellow platelets. Hexagonal. The crystal structure contains three-layer

perovskite slabs composed of inner layers of [XeO6]
4� (perxenate) octahedra, which are

sandwiched between the layers of neutral XeO3 molecules.
Kind of sample preparation and/ormethod of registration of the spectrum: Nujolmull. Transmission.
Source: Britvin et al. (2016).
Wavenumbers (cm21): 794s, 768w, 721, 615s, 445w, 419s.
Note: The band at 721 cm�1 is due to absorption of Nujol.
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Origin: Alyaskitovoe Sn-W deposit, eastern Sakha Republic (Yakutia), Siberia, Russia.
Description: Yellow, massive. Investigated by I.V. Pekov. Characterized by qualitative electron

microprobe analyses. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)]
are: 6.93 (100), 3.70 (60), 3.44 (30), 3.25 (40), 2.62 (70), 2.54 (50), 1.95 (70).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Wavenumbers (cm21): 3518, 3359, 3147, 2100sh, 1615sh, 1599, 1002, 916, 800sh, 702s, 650sh,

426w, (375w).
Note: The spectrum was obtained by N.V. Chukanov.

W19 Ammonium paratungstate tetrahydrate (NH4)10[H2W12O42]∙4H2O

Origin: Synthetic.
Description: Reactant produced by H.C. Starck. Confirmed by elemental analysis. Characterized by

powder X-ray diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.
Source: Szilágyi et al. (2004).
Wavenumbers (cm21): 3337sh, 3110, 2992, 2805sh, 1661w, 1624w, 1442sh, 1391s, 929, 859s, 805s,

741s, 687s, 601, 522, 486, 426, 406.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum.
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W20 Bismuth tungstate Bi2WO6

Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group B2cb.
Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Bode et al. (1973).
Wavenumbers (IR, cm21): 820, 725s, 650sh, 595w, 550s, 520sh, 450sh, 415, 345s, 290, 265,

245, 225.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 820, 800s, 720, 605w, 525w, 460w, 420w, 335, 420w, 310s, 285s,

265, 225, 210.

W21 Cadmium tungstate CdWO4
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Origin: Synthetic.
Description: Prepared hydrothermally from corresponding oxides at 473 K for 48 h. Characterized by

powder X-ray diffraction data and Ritveld crystal structure refinement. Isostructural with wolfram-
ite. Monoclinic, space group P2/c, a ¼ 5.026(1), b ¼ 5.078(1), c ¼ 5.867(1) Å, β ¼ 91.47(1)�,
Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene
discs. Transmission.

Source: Daturi et al. (1997).
Wavenumbers (IR, cm21): 884, 835s, 693, 667, 595s, 510, 455, 408, 354sh, 294, 287, 276, 263,

230, 161w, 131w, 107w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 896s, 771, 706, 687, 547, 514, 387, 351, 307s, 269, 248w, 229, 177,

148, 133, 117, 99, 77.

W22 Cesium uranyl tungstate Cs4[(UO2)4(WO5)(W2O8)O2] Cs4[(UO2)4(WO5)(W2O8)O2]

Origin: Synthetic.
Description: Obtained via the high-temperature solid-state method by reacting UO2(NO3)2 with WO3

and CsNO3 (at the molar ratio U:Cs:W ¼ 1:2:3) at 1050 �C for 5 h. The crystal structure is solved.
Monoclinic, space group P21/c, a ¼ 8.1990(4), b ¼ 32.8343(10), c ¼ 10.7529(6) Å, β ¼ 117.594
(4)�, V ¼ 2565.5(2) Å3, Z ¼ 4. Dcalc ¼ 6.243 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Xiao et al. (2015).
Wavenumbers (IR, cm21): 949, 936, 904, 887, 875s, 863s, 852, 842sh, 804, 789, 766w, 740sh, 722s,

705, 678, 651, 634, 618, 585, 530, 484sh, 467s.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 952, 934, 782s, 765s, 548.
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W23 Cesium uranyl tungstate Cs4[(UO2)7(WO5)3O3] Cs4[(UO2)7(WO5)3O3]

Origin: Synthetic.
Description: Obtained via the high-temperature solid-state method by reacting UO2(NO3)2 with WO3

and CsNO3 (at the molar ratio U:Cs:W ¼ 4:4:3) at 950 �C for 15 h. The crystal structure is solved.
Monoclinic, space group P21/c, a ¼ 8.6864(4), b ¼ 41.8958(15), c ¼ 10.8213(7) Å, β ¼ 116.467
(4)�, V ¼ 3525.4(3) Å3, Z ¼ 1. Dcalc¼ 6.173 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
Source: Xiao et al. (2015).
Wavenumbers (IR, cm21): 955sh, 930s, 888s, 873sh, 842, 807, 769, 728, 699, 669, 619, 584,

538, 486, 453, 435sh.
Note: The wavenumbers were determined by us based on spectral curve analysis of the published

spectrum. In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 935, 871, 828, 786s, 766s.

W24 Cesium uranyl tungstate Cs8(UO2)4(WO4)4(WO5)2 Cs8(UO2)4(WO4)4(WO5)2
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Origin: Synthetic.
Description: Synthesized from a mixture of CsNO3, WO3, and U3O8 taken in the ratio Cs:U:

W ¼ 4:2:3 by solid-state reaction in air at 650 �C for 1 week with intermediate grindings.
Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic,
space group P21/n, a ¼ 11.2460(3), b ¼ 13.8113(3), c ¼ 25.7287(6) Å, β ¼ 90.00�,
V ¼ 3996.23(17) Å3, Z ¼ 4. Dmeas ¼ 6.079(2) g/cm3, Dcalc ¼ 6.087(2) g/cm3. In the structure,
the U atoms are in pentagonal bipyramid coordination, while W atoms are in two different
environments, with tetrahedral and square pyramidal coordinations.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Yagoubi et al. (2007).
Wavenumbers (cm21): 950w, 932, 913sh, 886s, 875sh, 861, 858, 849, 821sh, 784s, 761s, 746s,

694, 587, 491w, 448w, 418.

W25 Lithium iron(III) tungstate wolframite-type LiFe(WO4)2

Origin: Synthetic.
Description: Synthesized from lithium carbonate, iron, and tungsten oxides using a ceramic technique.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Transmission.
Source: Fomichev and Kondratov (1994).
Wavenumbers (IR, cm21): 905s, 880, 827, 795, 734, 687, 655, 613s, 592s, 524s, 497, 463, 437, 418,

375sh, 355, 323, 300, 268, 258, 240, 220, 187, 155.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 920s, 875, 786s, 772, 710, 655, 617, 539, 497, 463, 416, 381, 354,

321, 290, 268, 239, 211, 150, 103, 87.

2.21 Tungstates and W-Bearing Oxides 711



W26 Lithium copper tungstate Li2Cu(WO4)2

Origin: Synthetic.
Description: Prepared by solid-state reaction from the stoichiometric mixture of Li2CO3, WO3, and

CuO at 650–700 �C for 146–160 h. Triclinic, space group P-1, Z ¼ 1.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull.

Absorption.
Source: Mączka et al. (2002).
Wavenumbers (IR, cm21): 952sh, 905, 824sh, 765, 615s, 492s, 456, 418, 378s, 340, 295, 284, 248,

190, 169w, 119.
Note: A weak band near 720 cm�1 may correspond to Nujol. In the cited paper, Raman spectrum is

given.
Wavenumbers (Raman, cm21): 902s, 769, 726, 636, 553, 470, 398, 363, 307, 256, 211, 174, 127,

112.
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W27 Lithium nickel tungstate Li2Ni(WO4)2

Origin: Synthetic.
Description: Prepared by solid-state reaction from the stoichiometric mixture of Li2CO3, WO3, and

CuO at 650–700 �C for 146–160 h. Triclinic, space group P-1, Z ¼ 1. Structurally related to
wolframite.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Absorption.
Source: Mączka et al. (2002).
Wavenumbers (IR, cm21): 953sh, 916, 834s, 764s, 602s, 497, 463, 400, 378s, 331, 312, 288sh,

281, 257, 215, 187w, 174w.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 913s, 792, 754, 617w, 553w, 476w, 447w, 418, 387, 353, 311,

282, 266, 222w, 194, 143, 112.

W28 Potassium antimonate tungstate KSbWO6
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Origin: Synthetic.
Description: Prepared by the solid-state reaction between WO3, Sb2O3, and KNO3 at 973 K. The

crystal structure solved by the Rietveld method is related to that of pyrochlore. Cubic, space group
Fd3m, a ¼ 10.23671(7), V ¼ 1072.71(1) Å3. Dcalc ¼ 5.4886 g/cm3.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol
mull. Absorption.

Source: Knyazev et al. (2010).
Wavenumbers (IR, cm21): 874sh, 748s, 635sh, 449, 395, 340w, 267sh, 208w, 163sh.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 960, 909, 864, 721s, 654, 506s, 453, 382, 343, 239, 169s.

W29 Potassium arsenate tungstate K(AsW2O9) K(AsW2O9)

Origin: Synthetic.
Description: Prepared by the solid-state reaction from KNO3, WO3, and (NH4)(H2AsO4) in the molar

ratio of 1:2:1, first at 773 K for 24 h, and thereafter (after regrinding) at 1033 K for 24 h.
Characterized by powder X-ray diffraction data and EDX analysis. The crystal structure is
solved. Orthorhombic, space group P212121, a ¼ 4.9747(3), b ¼ 9.1780(8), c ¼ 16.6817(19) Å,
V ¼ 761.65(12) Å3, Z ¼ 4. Dcalc ¼ 5.457 g/cm3. The structure is based on a 3D framework
consisting of corner-sharing WO6 octahedra and AsO4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
Source: Alekseev et al. (2013).
Wavenumbers (IR, cm21): 1075sh, 1011sh, 987w, 943, 918sh, 900s, 856sh, 836s, 783s, 722s, 672s,

530, 457, 425w, 409, 384w, 370.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The wavenumber 722 cm�1 is erroneously indicated by Alekseev et al.
(2013) as 772 cm�1. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm21): 972s, 893, 805, 710, 654, 273, 246s, 215, 186w, 145s, 134w, 115s,
102w, 83, 69s, 51s, 35s.
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W30 Potassium bismuth(III) tungstate KBi(WO4)2

Origin: Synthetic.
Description: Crystals grown from the solution in K2W2O7 melt. Monoclinic. Dmeas ¼ 7.57 g/cm3,

Dcalc ¼ 7.51 g/cm3.
Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of

sample preparation is not indicated.
Source: Xie et al. (2007).
Wavenumbers (IR, cm21): 916, 864, 803s, 751s, 719s, 588s, (443), 410.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 922w, 868s, 774, 753s, 709, 693, 637, 517, 430, 395sh, 389w,

363, 330, 302w, 287, 251w, 230w, 218.

W31 Potassium ytterbium tungstate KYb(WO4)2
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Origin: Synthetic.
Description: Crystal grown from the solution of K2CO3, WO3, and Yb2O3 by the top-seeded solution

growth method using K2W2O7 as the solvent. Characterized by powder X-ray diffraction data.
Monoclinic, space group C2/c, a ¼ 10.590(4), b ¼ 10.290(6), c ¼ 7.478(2) Å, β ¼ 130.70(2)�,
V ¼ 617.8(5) Å3, Z ¼ 4.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmis-
sion. Conditions of far IR spectrum registration are not characterized.

Source: Zhao et al. (2008a).
Wavenumbers (cm21): 925, 891, 841, 779, 751, 633, 571, 555, 481s, 450sh, 393s, 356s, 314s, 285s,

204s, 183, 159s, 151s, 123, 108, 96w, 79sh, 72.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, figures of Raman spectra with different scattering
configurations are given.

W32 Strontium tungstate SrWO4

Origin: Synthetic.
Description: Single crystal grown by the Czochralski method. Tetragonal, space group I41/a, Z ¼ 2.
Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.
Source: Ling et al. (2006).
Wavenumbers (IR, cm21): 1017w, 921sh, 863sh, 818, 732sh, 552w, 471w, 413, 312s, 274s, 193s,

162s, 135s, 73w.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, figures of polarized Raman spectra are given.
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W33 Huanzalaite MgWO4

Origin: Synthetic.
Description: Prepared hydrothermally from sodium tungstate and magnesium nitrate at a temperature

above 250 �C for 4 days. Characterized by powder X-ray diffraction data. Monoclinic, space group
P2/c, a ¼ 4.687, b ¼ 5.675, c ¼ 4.928 Å, β ¼ 90.71�, Z ¼ 2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc.
Transmission.

Source: Günter and Amberg (1989).
Wavenumbers (cm21): 885, 825, 710, 625s, 605sh, 530, 480, 450w, 385s, 330s, 290.

W34 Yttrium tungstate Y2WO6
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Origin: Synthetic.
Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group B2cb.
Kind of sample preparation and/or method of registration of the spectrum: Transmission.
Source: Bode et al. (1973).
Wavenumbers (IR, cm21): 840w, 740, 690, 660, 630, 600s, 560, 530, 495, 440s, 390, 350, 335, 310,

290, 270, 255, 240, 230, 215.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 935, 835, 710, 695, 675, 625, 600, 555, 525, 505, 450, 430,

400, 370, 345, 315, 290, 275, 260, 240, 225, 200, 185, 145.

W35 Sanmartinite ZnWO4

Origin: Synthetic.
Description: Synthesized using the ceramic technique. Characterized by powder X-ray

diffraction data.
Kind of sample preparation and/or method of registration of the spectrum: Nujol mull (?).

Transmission.
Source: Fomichev and Kondratov (1994).
Wavenumbers (IR, cm21): 877s, 825s, 701s, 610s, 542, 470, 435, 348, 325, 314, 267sh, 240, 197,

187, 166, 143, 130.
Note: In the cited paper, Raman spectrum is given.
Wavenumbers (Raman, cm21): 910s, 788, 710, 676, 548, 518, 411, 356, 345, 316, 276, 199, 168,

150, 127, 94s, 59.
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Re1 Uranyl perrhenate hydrate (UO2)2(ReO4)4�3H2O

Origin: Synthetic.
Description: Crystals obtained by evaporation of a solution of equimolar amounts of UO3 and Re2O7.

Characterized by qualitative energy dispersive analysis. The crystal structure is solved. Triclinic,
space group P-1, a¼ 5.2771(7), b¼ 13.100(2), c¼ 15.476(2) Å, α¼ 107.180(2)�, β¼ 99.131(3)�,
γ ¼ 94.114(2)�, V ¼ 1001.12 Å3, Z ¼ 2. Dcalc ¼ 5.291 g/cm3. The structure contains complex
chains of uranyl pentagonal bipyramids bridging perrhenate groups via common vertices.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
reflection of a powdered sample.

Source: Karimova and Burns (2007).
Wavenumbers (cm21): 3446w, 3267, 3159, 1590, 941w, 897, 807s, 590.
Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum.
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Some Aspects of the Use of Raman
Spectroscopy in Mineralogical Studies 3

3.1 General Principles of Raman
Spectroscopy

Raman scattering is the process of inelastic light
scattering that occurs on fluctuations in the polar-
izability of molecules which are excited to higher
vibrational or rotational energy levels. This phe-
nomenon was discovered in 1928 by C.V. Raman
and K.S. Krishnan (for liquids) and L.I.
Mandelshtam and G.S. Landsberg (for crystals).

In Raman scattering, a monochromatic line of
exciting laser radiation after interaction with a
substance is accompanied by an additional set of
spectral components. The newly appeared lines
are located on the scale of electromagnetic waves
symmetrically with respect to the line of exciting
radiation and are separated from it by the
frequencies of atomic vibrations. The totality of
newly emerging spectral components is the
Raman spectrum of a substance, which is its
diagnostic feature. The phenomenon of Raman
scattering is characteristic of substances that are
in a gaseous, liquid, or solid state consisting of
molecules or molecular complexes with an inter-
nal structure, or atoms combined into crystalline
structures. Monatomic gas particles that do not
interact with each other (for example, inert gases)
do not have Raman spectra.

The source of secondary radiation (Raman
scattering) is a variable in time electric dipole
moment that occurs in the medium as a result of
the interaction of particles of a substance with the
electric component of external electromagnetic
radiation of the visible or close to visible range.
The magnitude of the dipole moment depends on
the magnitude of the external field and on the
polarizability of the substance:

p ¼ âE

where p is the induced electric dipole moment
vector, E is the vector of external electric field
strength, and â is the polarizability.

The polarizability of the substance depends on
the structure of the molecules or crystals forming
it, on the types of bonds in the substance, as well
as on the nature of the motions of the atoms in the
molecules or in the crystals. Polarizability is a
variable in time characteristic of the substance,
which is modulated by the movements of the
particles of the substance itself and the electrical
component of the external electromagnetic field,
causing the appearance of a variable electric
dipole moment in the substance. In accordance
with the basic rule of electrodynamics, a system
with a variable electric dipole moment in time can
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be a source of electromagnetic radiation with a
frequency of change in the dipole moment.

In experiments on Raman scattering using
monochromatic radiation with a frequency of Ω,
spectral components with frequencies Ω, (Ω + ωi)
and (Ω � ωi) are recorded in the spectrum of
scattered radiation, where ωi are the frequencies
of vibrational and rotational motions of particles
of a substance. The spectral region in which the
components are located with frequencies greater
than the frequency of laser radiation (Ω + ωi) is
commonly called the anti-Stokes region, and the
region with lower frequencies (Ω � ωi) is called
the Stokes region.

Under normal conditions, the intensity of the
strongest lines in the Stokes region of the Raman
spectra is usually 10�6

–10�8 of the intensity of
the exciting line (Reshetnyak and Bukanov
1991). The intensity of the anti-Stokes compo-
nent is even less by several decimal exponents of
magnitude and decreases rapidly with increasing
magnitude of the detuning from the laser line. For
this reason, the bulk of the experiments are car-
ried out in the Stokes spectral region. As a source
of spectral information, mainly vibrational spec-
tra are used.

Polarizability is anisotropic and is described
by a second rank tensor, which can be written as
a symmetric matrix:

axx axy axz
â ¼ j ayx ayy ayz j

azx azy azz

The component of the polarizability tensor aij
determines the magnitude of the dipole moment
arising in the medium along the i axis under the
action of an electromagnetic field with the direc-
tion of the polarization vector of the electric field
along the j axis. This means that for different
orientations of the polarization vector of the
laser radiation and the polarization vector of the
detected scattered radiation in the Raman spec-
trum, scattering will be recorded on different
components of the polarizability tensor. In a gen-
eral case, Raman scattering occurs at different
vibrations, and the recorded scattering lines in
the Raman spectra have different frequencies

and intensities. The intensity of the scattering
line in the case of nonpolar normal vibrations is
determined by the following formula:

I
e

X

f i αij ej
h i2

,

i, j ¼ x, y, z

where fi and ej are components of the unit vectors
of the dipole moment polarization and laser radi-
ation, respectively, and αij is the change of the
polarizability tensor component at a given kind of
normal vibrations. Not all types of vibrations can
be detected as lines in the Raman spectra. For
molecules and crystals with an inversion center,
there is an alternative prohibition rule which is
very important for experimental practice.
According to this rule, for compounds with an
inversion center, bands of antisymmetric (with
respect to the inversion center) vibrations are
forbidden in the Raman spectra, and symmetrical
ones are forbidden in the IR spectra. The alterna-
tive prohibition rule relates simultaneously to
Raman spectroscopy and IR absorption spectros-
copy and indicates the complementary nature of
these methods of molecular spectroscopy.

The theory of Raman spectroscopy is
described in more detail in numerous publications
(Brandmüller and Moser 1962; Anderson 1973;
Sushchinsky 1981; Banwell 1983; Zhizhin et al.
1984; Nakamoto 2009).

3.2 Specific Features
and Possibilities of Raman
Spectroscopy: Practical
Recommendations

3.2.1 Advantages and Disadvantages
of the Method

The most important properties of Raman spectros-
copy are that this method is nondestructive and
local. The ability of laser radiation to penetrate
inside transparent minerals makes Raman spec-
troscopy indispensable for diagnosing mineral
phases in inclusions (see, e.g., Figs. 3.1 and 3.2).
In this case, the minimum dimensions of the
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investigated phases are limited by the diameter of
the focal spot of laser radiation. When using high-
quality optical elements, laser radiation can be
focused into a spot with a diameter of up to several
microns. In this case, phase diagnostics can be
carried out in situ, without damage the inclusions
and disbalance the phase equilibrium. The highest
quality Raman spectra are obtained for solid-state
phases because of their high density (Fig. 3.3).

Figure 3.2 illustrates both the large diagnostic
capabilities of Raman spectroscopy and the
difficulties encountered in the study of inclusions.
Laser radiation, before it reaches an inclusion,
goes some distance in the host mineral causing
Raman scattering in the latter. As a result, the
resulting spectrum contains the scattering lines

of both the studied inclusion and the host mineral.
In the cases when the host mineral spectrum is
rich in its own scattering lines, the diagnosis of
the substances of microscopic inclusions can be
significantly complicated. It should be taken into
account that in the spectra of microscopic
inclusions usually only most intense scattering
lines can be observed, which may have low
intensities against the background of the more
powerful spectrum of the host mineral. Obtaining
spectra of inclusions located as close as possible
to the surface of the host mineral reduces the laser
beam path through the latter. The depth at which
diagnostics of inclusions is possible is limited by
the focal length of the lens used.

In some cases, in multiphase inclusions, it is
possible to diagnose not only solid, but also liquid
(Fig. 3.4) and gaseous (Figs. 3.5 and 3.6) phases.

In the region of stretching vibrations of water,
a strong and narrow scattering line with a fre-
quency of 3610 cm�1 is recorded, which refers
to H2O molecules located in the channels of the
aquamarine structure. Due to the small diameter
of the channels (about 0.5 nm), water molecules
exist in a constrained state with hydrogen atoms
attached to the channel walls and do not form
strong hydrogen bonds. This is reflected in the
small half-width of the scattering line of about
4 cm�1. The broad band at 3420 cm�1 with a
shoulder at 3250 cm�1 corresponds to O–H-
stretching vibrations of water molecules forming
rather strong hydrogen bonds and belonging to
the liquid phase of the inclusion.

Fig. 3.1 A three-phase
inclusion in aquamarine.
The transverse size of the
inclusion is about 4–5 μm

Fig. 3.2 A multiphase inclusion in topaz
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Fig. 3.3 Raman spectrum of a microscopic inclusion of
microcline in aquamarine. Bands marked with an asterisk
belong to the aquamarine matrix. The laser emission

wavelength is 532 nm, the spectral resolution is about
6 cm�l, and the laser power is 30 mW

Fig. 3.4 Raman spectrum of the liquid phase of the inclusion in aquamarine

724 3 Some Aspects of the Use of Raman Spectroscopy in Mineralogical Studies



To obtain the maximum possible intensity of
the Raman signal, the focal volume of the laser
beam must be immersed in the substance of the
host mineral and pointed at the object under inves-
tigation. In this case, a defocused luminous spot
forms on the surface of the host mineral at the
entry point of the laser beam, which can cover the
working field. In such a situation, it is not possible
to determine not only the diameter of the focal
spot on the phase being diagnosed, but it is also

generally difficult to understand whether the laser
beam is focused on the inclusion. In this case, one
can judge the success of the experiment only from
the results of a comparison of the Raman spectra
obtained in the pure region of the host mineral and
the spectra obtained from inclusions. Reliable
confirmation of the result in this situation is the
reproducibility of spectral data.

Another difficulty in working with inclusions
is a significant loss of laser power when passing

Fig. 3.5 Raman spectrum
showing weak bands of
gaseous CO2 (gas bubble in
the liquid) in the inclusion
in aquamarine. All strong
narrow bands correspond to
aquamarine matrix

Fig. 3.6 Raman spectrum
showing bands of gaseous
CO2 in a multiphase
inclusion in topaz (see
Fig. 3.2)
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through the boundary of the inclusion. Uneven
boundary can cause strong scattering of the laser
beam, reducing the effective exciting power.
Moreover, the total internal reflection conditions
for a laser beam can be realized on the surface of
the inclusion capsule. In this case, the laser beam
will not penetrate into the inclusion, and
obtaining a Raman spectrum will not be possible.

The “nondestructiveness” and locality of the
Raman spectroscopy method were the reason for
its widespread use in the study of unique minerals
represented by single finds or microscopic
monomineral aggregates. If the studied mineral
is represented by individual prismatic crystals or
thin needles (Fig. 3.7), then to obtain the Raman
spectrum (Fig. 3.8), the sample area was chosen

Fig. 3.7 Sword-like
microcrystals of the rare
mineral katiarsite KTiO
(AsO4) on arsmirandite
crystal crust. SEM image
(in secondary electrons)

Fig. 3.8 Raman spectrum
of catiarsite. A weak band
near 1000 cm�1

corresponds to an admixed
sulfate. The laser emission
wavelength is 532 nm, the
spectral resolution is about
6 cm�l and the laser power
is 30 mW, and the focal
spot diameter is 3 μm

726 3 Some Aspects of the Use of Raman Spectroscopy in Mineralogical Studies



whose linear dimensions are larger than the diam-
eter of the laser beam focal spot. Otherwise, there
will be a loss of power of the exciting radiation
and the Raman scattering signal.

The intensity of the scattered radiation
depends on the number of scattering centers in
the focal volume of the laser beam. Therefore,
ceteris paribus, the best quality of the Raman
spectrum will be obtained in the area of the sam-
ple where the mineral aggregate has the highest
concentration of the substance. For example, with
needle-like or finely prismatic microcrystal
forms, the Raman spectrum should be recorded
at the common base of needle growth. The inter-
pretation of the Raman spectra obtained on the
microaggregates of minerals and the identifica-
tion of the scattering lines related to the mineral
of interest require special attention and analysis.
When working with microscopic aggregates of
minerals, one should take into account the possi-
ble presence of mineral impurities, the removal of
which is impossible due to the small size.

3.2.2 Spectral Band Assignment

Raman spectra primarily reflect the features of the
anionic part of the mineral, as well as some poly-
atomic cations like NH4

+ or UO2
2�. The

frequencies of symmetric stretching vibrations
of some complex anions occurring in the
structures of minerals change mainly in the fol-
lowing ranges (cm�1):

Nesosilicates 820–980 Sulfates 970–1020

Carbonates 1050–1100 Arsenates 800–900

Molybdates 780–880 Tungstates 850–920

Orthophosphates 930–990 Orthovanadates 820–880

Raman shifts of the stretching vibration bands
increase with increasing of polymerization of
coordination polyhedra; e.g., for Al-poor frame-
work silicates they are typically in the range
1040–1130 cm�1.

Thus, scattering lines observed in these ranges
can be used for a preliminary assignment of a
mineral to one or more class of compounds as a
step preceding a more precise specification. When
conducting diagnostic studies, it is necessary to
take into account that the approximate proportion
of the intensities of theRaman lines in the spectra of
complex anions is as follows: MoO4

2�

(� WO4
2�): SO4

2� : PO4
2� : CO3

2� : SiO4
4� ¼

10 : 6 : 3 : 1.5 : 1 (for excitation radiation with a
wavelength between 488 and 515 nm). This fea-
ture can be illustrated by the spectra of cancrinite
Na6Ca2[AlSiO4]6(CO3)2�2H2O (Fig. 3.9) and
vishnevite Na8[AlSiO4]6(SO4)�2H2O (Fig. 3.10),
structurally related tectosilicates with additional

Fig. 3.9 Raman spectrum
of cancrinite
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anions. The additional anions CO3
2� and SiO4

4�

play subordinate role in the chemical composition
of these minerals. However, the strongest lines in
the Raman spectra are the scattering lines
corresponding to the internal fully symmetric
stretching vibrations of just additional anions.
This feature may cause difficulty in determining
chemical class of a mineral.

3.2.3 Effect of Structural Disorder
on Raman Spectra of Minerals

It should be noted that Raman spectroscopy is
sensitive to the degree of crystallinity of the sub-
stance. This is reflected primarily in the half-
widths of the scattering lines. Raman spectra of
minerals with perfect crystal structures are distin-
guished by narrow well-resolved bands
(Fig. 3.11). Disturbance or absence of long-
range order in the structure of matter, cation
disordering and local defects cause broadening
and even the disappearance of some scattering
lines. This effect is most pronounced in the
Raman spectra of metamict minerals, minerals
with a colloid-dispersed structure, and glasses
(Fig. 3.12).

In the spectrum of quartz, narrow clearly
defined scattering lines are recorded that belong
to different types of vibrations: “rocking of

tetrahedra” (210 cm�1), “twisting of tetrahedra”
(353 cm�1), O–Si–O bending (467 cm�1), and
Si–O stretching (1086 cm�1) (Ranieri et al.
2009). The absence of a long-range order in
obsidian, which is a SiO2-rich glass, results in
the absence of specific lines corresponding to
any symmetry elements. The broad bands at

Fig. 3.10 Raman
spectrum of vishnevite

Fig. 3.11 Raman spectrum of quartz powder. The laser
emission wavelength is 532 nm, the spectral resolution is
6 cm�l, and the laser power is 30 mW. The letters L and T
denote components of longitudinal-transverse splitting
(see below)
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480 and 805 cm�1 correspond to the totality of
vibrations in areas with different local structures.

The sensitivity of Raman scattering to the dis-
ordered distribution of atoms between crystallo-
graphic positions is clearly reflected in the
spectra of feldspars. For example, in the structure
of the disordered oligoclase (Na,Ca)[AlSi3O8], Al
atoms are statistically distributed between different

tetrahedral sites, whereas in an ordered variety
they are concentrated mainly in only one of inde-
pendent crystallographic positions. Raman spectra
of the two oligoclase varieties differ markedly
from each other: in the spectrum of an ordered
oligoclase variety, a greater number of scattering
lines (Fig. 3.13, upper curve) are recorded, which
have a smaller half-width than in the spectrum of a
disordered oligoclase (Fig. 3.13, lower curve).

In the study of black microscopic inclusions
(Fig. 3.14) in aquamarine, it was found [based on
the assignment by Sharma et al. (2001)] that they
consist of crystalline graphite, which was
diagnosed by the relatively narrow line at
1574 cm�1, and X-ray amorphous carbon
showing a broad band at 1336 cm�1 (Fig. 3.15).
The Raman spectrum made it possible to suppose
that the substance in the inclusion is compressed,
since the frequencies of the recorded scattering
lines differ from the values of the frequencies
characteristic of the same substances under nor-
mal conditions (i.e., 1360 and 1582 cm�1 for
amorphous carbon and graphite, respectively).

Fig. 3.12 Raman spectrum of obsidian (volcanic glass).
The laser emission wavelength is 532 nm, the spectral
resolution is 6 cm�l, and the laser power is 30 mW

Fig. 3.13 Raman spectra
of the ordered (upper curve)
and disordered (lower
curve) oligoclase varieties.
The laser emission
wavelength is 532 nm, the
spectral resolution is
6 cm�l, and the laser power
is 14 mW
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3.2.4 Selection Rules

The Raman activity of normal modes is deter-
mined by changes of polarizability tensor
components in corresponding vibrations. The
magnitudes of the derivatives of the polarizability
tensor components by normal coordinates deter-
mine the intensities of these vibrational modes
and also form a second-rank symmetric tensor
(so-called the Raman tensor) which is defined

for all point symmetry groups (see, e.g., Zhizhin
et al. 1984; Kolesov 2018). Nonzero elements of
the Raman tensor determine at which relative
orientation of the crystallographic axes and the
polarizations of the laser and scattered radiation
vibrations of a given type of symmetry will be
recorded in the Raman spectrum. Based on the
Raman tensors, selection rules in Raman scatter-
ing for crystals, molecules, molecular groups, and
ions are formulated.

Fig. 3.14 Inclusion of
carbonaceous matter in
aquamarine

Fig. 3.15 Raman
spectrum of a carbonaceous
inclusion in aquamarine.
The laser emission
wavelength is 532 nm, the
spectral resolution is
6 cm�l, the laser power is
30 mW, and signal
accumulation time is 120 s
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For objects with C2v symmetry, to which H2O
and H2S molecules belong, vibrations of the sym-
metry types A1 (symmetric stretching and bend-
ing vibrations) and B1 (antisymmetric stretching
vibrations) are permitted by the selection rules.
Corresponding Raman bands of water molecules
in the gas phase are observed at 3657, 1595, and
3756 cm�l, respectively (Halonen and Carrington
Jr 1988).

For isolated undistorted planar trigonal AB3

ions (symmetry group D3h) like CO3
2�, NO3

�,
and BO3

3�, symmetric stretching vibrations ν1
with the symmetry A1

0 as well as stretching (ν3)
and in-plane bending (ν4) doubly degenerate
vibrations of type E0 are permitted in Raman
spectra by the selection rules. Out-of-plane bend-
ing ν2 vibrations with the symmetry A2

00 are
prohibited.

For isolated tetrahedral AB4 ions with the Td
symmetry (MoO4

2�, AsO4
3�, PO4

3�, VO4
3�,

SO4
2�, SiO4

4�, etc.) in the Raman spectra the
stretching ν1 mode (with the A1 symmetry), bend-
ing doubly degenerate ν2 mode (with the E sym-
metry), and triply degenerate ν3 stretching and ν4
bending modes (with the F2 symmetry) are
allowed by the selection rules.

In real structures of minerals, the symmetry of
tetrahedral ions decreases, sometimes to D2h (flat-
tened tetrahedron) or even to Cs, which leads to
the removal of degeneracy and splitting of degen-
erate vibrations into separate components. To
identify the scattering lines, one can use the
known regularity established by different authors
in numerous experimental studies: in most cases,
the scattering lines corresponding to fully sym-
metric stretching vibrations have a smaller width
and higher peak intensity than the scattering lines
corresponding to degenerate vibrations. This
empirical regularity is explained by the greater
polarizability of bonds with fully symmetric
stretching vibrations (Kolesov 2018).

Symmetry types of the vibrations of isolated
complex ions may differ from that in crystals. For
example, in calcite CaCO3 having D3d symmetry,
CO3

2� ions are located in positions on the third-
order axis (D3 positional symmetry) and do not
change their symmetry compared to the free state.
In this case, the same selection rules are valid as

for an isolated CO3
2� ion. On the other hand, in

aragonite (orthorhombic CaCO3 polymorph with
the D2h symmetry), the crystal structure of which
does not have axes of the third order, the posi-
tional symmetry of the CO3

2� ion decreases to Cs,
and according to the selection rules for the D2h

group, the out-of-plane bending mode (ν2), which
is classified as Ag, is active in the Raman
spectrum of aragonite: corresponding band is
observed at 853 cm�l (Frech et al. 1980).

In vivianite Fe3
2+[PO4]2�8H2O, which is

monoclinic with the symmetry C2h, there are no
axes of the third order, and the symmetry of the
phosphate ion also decreases as compared with
isolated PO4

3�. As a result, all vibrations are
nondegenerate and are classified according to
symmetry types as Ag, Au, Bg, and Bu. In the
Raman spectrum of vivianite, only Ag and Bg

bands appear in accordance with the “alternative
prohibition” rule applied to symmetry groups
with an inversion center:

PO4
3� in aqueous

solution
PO4

3� in vivianite

(Nakamoto 2009), cm�l (Piriou and Poullen 1984),
cm�l

A1 (ν1) 938 Ag (ν1) 951
E (ν2) 420 Ag (ν2) 458; Bg (ν2) 425
F2 (ν3) 1017 Ag (ν3) 1053, 990; Bg (ν3)

1018
F2 (ν4) 567 Ag (ν4) 572, 539

For isolated regular octahedral AB6 groups, ν1
symmetric stretching mode with the symmetry
A1g, doubly degenerate ν2 stretching mode with
the symmetry Eg and triply degenerate ν5 bending
mode with the symmetry F2g are permitted in the
Raman spectra by the selection rules.

In accordance with the “alternative prohibition
rule,” in IR spectra of isolated regular octahedral
AB6 groups, only the ν3 stretching band and the ν4
bending band (both having the F1u symmetry) are
observed. Anionic groups of this type [Si(OH)6,
Al(OH)6, Fe

3+(OH)6, Mn4+(OH)6, etc.] occur in
the structures of ettringite-group minerals. In
ettringite Ca6[Al(OH)6]2(SO4)3�26H2O, the sym-
metry of which is C3v, with triad axes and reflec-
tion planes being the only symmetry elements. As
a result, the symmetry of the [Al(OH)6]

3� group
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is also lowered. The ν5 modes which were forbid-
den in the Raman spectrum according to the
“alternative prohibition rule” for the free anion
become nondegenerate and active. Vibrational
modes of ettringite are classified according to
the symmetry types A1, A2, and E. In accordance
with the selection rules, only bands of A1 and E
vibrations appear in the Raman spectra (presum-
ably, the bands at ~550 and ~345 cm�l: see Deb
et al. 2003; Renaudin et al. 2007). Vibrations of
type A1 can be separately recorded under the
conditions when polarizations of laser and
scattered radiation and the C3 crystallographic
axis of a single crystal are parallel to each other.

The C6 symmetry group of thaumasite Ca3[Si
(OH)6](SO4)(CO3)�12H2O contains axes of the
second, third, and sixth orders. In accordance
with this set of symmetry elements, the “alterna-
tive prohibition rule” becomes inapplicable, and
the degeneration is removed from the triple
degenerate modes. This leads to an increase in
the number of possible scattering lines in the
spectrum. In accordance with the table of group
characters, in the spectra of structures with such
symmetry, the existence of vibrational modes of
the A, B, E1, and E2 types is possible. In accor-
dance with the selection rules and Raman scatter-
ing tensor, vibrations of symmetry types A, E1,
and E2 are active in the Raman spectra. The study
of the polarized Raman spectra of a thaumasite
single crystal showed that the fully symmetric
vibrations of the [Si(OH)6]

2� anion have a fre-
quency of about 660 cm�l (Kononov et al. 1990).

An example of the manifestation of the “alter-
native prohibition rule” is the absence of first-order
Raman spectra in some minerals with inversion
centers. Such minerals, for example, are halite
NaCl and sylvite KCl having a cubic (Oh) symme-
try. All atoms forming the structures of these
minerals are located at the centers of inversion,
and any displacements from their equilibrium
positions violate the symmetry. As a result, the
bands corresponding to all kinds of vibrations are
forbidden in the first-order Raman spectra. How-
ever, with a large signal accumulation time, it is
possible to record weak bands of the second order
Raman spectra (Fig. 3.16). The selection rules for
two-phonon spectra are determined using the tables

of the characters of irreducible representations of
the point group of the mineral under investigation.
Thus, an analysis of the types of symmetry of
two-phonon vibrations in crystals with a point
group Oh shows that among the possible combina-
tion modes in this point group there are vibrations
with symmetry types A1g, Eg and F2g, which are
allowed in the Raman spectra. Consequently, sec-
ond order Raman spectra can also be used for
diagnostic purposes.

3.2.5 The Longitudinal-Transverse
Splitting

The special feature of the Raman scattering
method, which makes it difficult to interpret
the spectra, includes the appearance of the
longitudinal-transverse (LO-TO) splitting of
lines in the spectra in crystals without an inver-
sion center. In such crystals, some vibrations that
are active in the Raman spectra are accompanied
by changes in the dipole moment. As a result,
vibrations of atoms lead to changes in the

Fig. 3.16 Second-order Raman spectra of halite (a) and
sylvite (b). The laser emission wavelength is 532 nm, the
spectral resolution is 6 cm�l, the laser power is 30 mW,
and signal accumulation time is 200 and 25 s, respectively
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macroscopic electric dipole moment in the crys-
tal. The resulting additional electromagnetic field
in turn affects the atoms. In the Raman spectra,
such an interaction can result in the appearance of
additional scattering lines. The LO-TO splitting
theoretically exists in all cases when scattering
occurs on dipole-active vibrations. A weak
splitting results in changes of the shapes of
some lines and appearance of additional
shoulders. However, in crystals with the ionic
character of bonds the magnitude of the LO-TO
splitting can reach considerable values. For exam-
ple, in the Raman spectrum of LiH, it is almost
500 cm�1. In Raman spectra of molecular
crystals, the splitting value only in some cases
reaches 15 cm�1 (Zhizhin et al. 1984), but in
most molecular crystals, the LO-TO splitting is
not observed. The prediction of the LO-TO
splitting in the spectra of the Raman spectra
goes beyond the framework of factor group
analysis.

In the case when a mineral without an inver-
sion center has several dipole-active vibrations,
several additional scattering lines may appear in
the spectrum owing to splitting into LO-TO
components (see, e.g., Raman spectrum of quartz
in Fig. 3.11). As a result, the total number of lines
in the spectrum may exceed the number of normal
vibrations expected according to group theory. It
should be noted that in the infrared absorption
spectra, the frequencies of the longitudinal
vibrations are not recorded, since only transverse
vibrations are excited.

3.2.6 Orientation and Polarization
Effects; Analysis of Water
and OH Groups

A specific feature of Raman scattering is its tensor
character. As a result, Raman spectra of single
crystals depend on their orientation and the direc-
tion of polarization of the vector of the electrical
component of the electromagnetic wave of laser
radiation. Spectra obtained in different experi-
mental geometries may differ from each other
by the number of recorded scattering lines and
their intensity (Fig. 3.17).

With a random orientation of the single crys-
tal, the scattering line intensities are also random.
This uncertainty does not apply to spectra of
powdery samples with chaotic orientation of
microcrystals. A reproducible total spectrum
averaged over all possible spatial orientations of
the microcrystals can be obtained only if the size
of the microcrystals in the powder is much less

Fig. 3.17 Raman spectra of laachite (Ca,Mn)2Zr2Nb2
TiFeO14 (monoclinic, point group C2h) obtained with the
polarization of the laser beam parallel (upper curve) and
perpendicular (lower curve) to the a axis of the crystal.
The laser emission wavelength is 532 nm, the spectral
resolution is 2 cm�l, the laser power is 6 mW, and the
focal spot diameter is about 15 μm

3.2 Specific Features and Possibilities of Raman Spectroscopy: Practical Recommendations 733



than the diameter of the focal spot of the laser
radiation. This mode of spectrum registration is
most suitable for diagnostic purposes. In cases
where it is impossible to prepare the powder, it
is recommended to obtain several spectra at dif-
ferent orientations of the sample in order to select
the most representative version of the spectrum.

Raman spectrum of a single crystal, obtained
using polarized radiation, makes it possible to
draw conclusions regarding the directions of
chemical bonds relative to the crystallographic
axes. This is especially important for determining
the orientation of hydroxyl groups (e.g., in
amphiboles, micas, tourmalines). Raman scatter-
ing is only possible if the electric field vector of
an incident beam is not perpendicular to the O–H
bond direction.

To study structural features of minerals, spec-
tra of Raman spectra of single-crystal samples are
taken. In such experiments, intensities of scatter-
ing lines depend on the mutual orientation of the
crystallographic axes and on the directions of the
polarization vectors of the incident and scattered
radiation. In crystals with a tetragonal, hexagonal/
trigonal, and cubic symmetry, it is possible to
determine the type of symmetry of the vibrational
mode of a group of equivalent coordinates based
on polarized Raman spectra. In crystals having
lower symmetry, polarization measurements
make it possible to obtain information on the
orientations of chemical bonds, since in some
cases (especially in molecular crystals) polariza-
tion of some scattering lines depends on
vibrations of single bonds (Kolesov 2018).

The polarizability of a bond in the longitudinal
direction is much greater than in the transverse
directions. Therefore, the scattering line
corresponding to stretching vibrations of this
bond is most intense when the polarization of
the exciting laser radiation (and in the ideal
case of the scattered light) coincides with the
direction of this bond. This regularity can be
illustrated by the example of micas. In phlogopite
K(Mg,Fe2+)3[AlSi3O10](OH,F)2 having mono-
clinic symmetry, OH groups coordinated by diva-
lent octahedral cations are oriented almost parallel
to the crystallographic c axis, perpendicular to the
cleavage plane. The Raman scattering line at

3709 cm�l corresponding to stretching vibrations
of hydroxyl groups has a maximum intensity when
the polarization of laser radiation is perpendicular to
the cleavage plane of the mineral sample, i.e., paral-
lel to the c axis. A weak additional line at about
3666 cm�l is observed in Raman spectra of phlogo-
pite samples containing trivalent impurity ions, Fe3+

or Al3+. Since the orientation of hydroxyl groups
coordinated by trivalent cations deviates from the
direction perpendicular to the cleavage plane, a
weak scattering line can be recorded in the Raman
spectra with polarization of laser radiation parallel
to the cleavage plane. Inmuscovite KAl2[AlSi3O10]
(OH)2, which is a dioctahedral mica, hydroxyl
groups are almost parallel to the cleavage plane,
and the band of stretching vibrations of OH groups
(at 3628 cm�l) has a maximum intensity in spectra
excited by laser radiation with polarization parallel
to the cleavage plane (Tlili et al. 1989).

Based on polarized spectra of tourmaline
group minerals, it was found that the OH groups
are mainly oriented along the threefold
c crystallographic axis (Gasharova et al. 1997;
Berryman et al. 2016). Polarized Raman spectra
of the orthorhombic mineral magnesiocarpholite
MgAl2Si2O6(OH)4 revealed the presence of three
OH groups, one of which is oriented almost per-
pendicular to the c axis (Fuchs et al. 2001).

In some cases, the orientation of complex
anionic groups can be determined from polarized
Raman spectra. Based on the data obtained for a
columnar thaumasite crystal, Kononov et al.
(1990) have confirmed that almost flat CO3

2�

group (Edge and Taylor 1971) is oriented perpen-
dicular to the С6 axis of the crystal.

Raman spectroscopy has a low sensitivity in
determination of water in minerals. The H2O
molecule has a weak polarizability and, as a
result, a weak response to excitation radiation.
Bands of O–H-stretching vibrations are usually
observed in the range from 3000 to 3800 cm�l,
but bands of acidic OH groups and very strong
hydrogen bonds may have Raman shifts below
3000 cm�l. In most cases, bands of H–O–H bend-
ing vibrations of H2O molecules are observed in
the range 1600–1700 cm�l, but with a low water
content, these bands are recorded with difficulty
and only with a successful selection of
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experimental conditions. An increase in the accu-
mulation time at a given laser power or an
increase in the laser power may lead to local
overheating and dehydration of the sample (see
Fig. 3.18).

In the structure of fluorapophyllite-(K), water
molecules occupying a single crystallographic
position are asymmetric: the positional symmetry
of H2O decreases to C1, and the hydrogen atoms
belonging to the same molecule are nonequiva-
lent. A significant difference in the interactions of
the two hydrogen atoms with their nearest envi-
ronment leads to the fact that stretching vibrations

of OH bonds in the water molecule are practically
independent (Ryskin and Stavitskaya 1990). The
broad band with a maximum of about 3013 cm�l

and the narrow band at 3564 cm�l refer to the
stretching vibrations of OH bonds, which form
strong and very weak hydrogen bonds, respec-
tively (Fig. 3.19).

In the structure of hydroxylapophyllite-(K),
both asymmetric H2O molecules and OH groups
are present. The broad band at about 2990 cm�l

and the narrow band at 3569 cm�l correspond to a
strong and a weak hydrogen bonds formed by
H2O, respectively. Another narrow band (with a

Fig. 3.18 Raman spectra
of martyite Zn3(V2O7)
(OH)2�2H2O obtained at the
laser emission wavelength
of 532 nm, the spectral
resolution of 2 cm�l, the
laser power of 4 and
13 mW, and the signal
accumulation time of
200 and 50 s (for the upper
and lower curves,
respectively)
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half-width of about 3 cm�l) is observed at
3631 cm�l and corresponds to stretching
vibrations of the OH group.

In some cases when the number of hydrogen-
containing groups in the mineral is insignificant,
the Raman spectroscopy method does not allow
one to unambiguously distinguish between
water and hydroxyl groups. In such cases, it is
more appropriate to use infrared absorption
spectroscopy.

3.2.7 Effect of Luminescence

Emission of photoluminescence excited by the
laser beam is a serious problem of Raman spec-
troscopy of minerals. Usually, minescence is
observed as broad bands superimposed on the
Raman scattering spectrum (Fig. 3.20, upper
curve). The intensity of luminescence can be
many times (up to 103–104) greater than the inten-
sity of the Raman signal, which prevents the
registration of a high-quality spectrum or even
makes it impossible to obtain Raman spectrum
at all.

The main cause of luminescence is the coinci-
dence of the frequency of the exciting laser radia-
tion with the frequencies of electronic transitions
of the luminescent center in the mineral. The most
effective way to eliminate luminescence is the use
of laser radiation with a longer wavelength λexc,
the photon energy of which is insufficient to
excite electronic energy levels. Unfortunately,
with increasing wavelength of laser radiation,
the intensity of the useful Raman signal IR
decreases significantly according to the law IR ~
λexc

�4. In such situations, long-time accumulation
of the useful signal leads to an improvement in
the signal-to-noise ratio (Fig. 3.20, lower curve).

In cases when it is not possible to eliminate the
luminescence, one can resort to recording several
spectra using lasers with different wavelengths.
For each type of radiation, the spectral lumines-
cence lines appear in a specific spectral range.
The bands that will be present with a constant
frequency in the spectra obtained at different
wavelengths of the exciting radiation should be
referred to the lines of Raman scattering.

3.2.8 Destructive Effect of Laser
Radiation

Local temperature increase due to strong absorp-
tion of laser radiation may result in alteration or
decomposition of the sample. In the Raman
microprobe analysis this problem is especially

Fig. 3.19 Raman spectra of fluorapophyllite-(K)
KCa4[Si8O20]F�8H2O (upper curve) and
hydroxylapophyllite-(K) KCa4[Si8O20])OH)�8H2O (lower
curve) obtained using 532 nm laser radiation

736 3 Some Aspects of the Use of Raman Spectroscopy in Mineralogical Studies



significant. Therefore, the selection of conditions
for a nondestructive experiment plays an
extremely important role in experiments on
Raman scattering.

Special attention should be paid to proper
selection of laser power when working with
highly colored or opaque minerals, which include
most sulfides and sulfosalts. Dark coloring of
minerals causes a strong absorption of exciting
radiation, which results in attenuation of scattered
signal. To enhance the intensity of the Raman
signal, an increase in the laser pump power is
required. However, it should be borne in mind

that increasing the power of laser radiation leads
to an increase in the energy absorbed by the
mineral. Since most minerals have relatively low
thermal conductivity, the absorbed energy causes
a local increase in temperature in the focal volume
of the laser beam. Too high laser power can result
in local thermal destruction of the mineral struc-
ture, leading to the formation of cavities on the
sample surface (Figs. 3.21 and 3.22) or cavities
with a destroyed structure inside the sample.
However, in most cases optimizing the experi-
mental conditions (reducing the laser excitation
power and increasing the signal accumulation

Fig. 3.20 Raman spectra
of an unoriented sample of
romanorlovite
K8Cu6Cl17(OH)3 obtained
at the laser emission
wavelength of 532 nm, the
spectral resolution of
6 cm�l, the laser power of
3 and 1.5 mW, and the
signal accumulation time of
4 and 17 min (for the upper
and lower curves,
respectively)
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Fig. 3.21 Caverns formed
on the surface of
melanarsite at a laser power
of 13 mW and laser
wavelength of 532 nm,
focal spot diameter of
~15 μm, and signal
accumulation time of 10 s

Fig. 3.22 The thermal
destruction zone formed on
the surface of a crystal of
vorontsovite (Hg5Cu)
TlAs4S12 at a laser power of
1.5 mW and laser
wavelength of 532 nm,
focal spot diameter of
~15 μm, and signal
accumulation time of 1 h.
Field width 100 μm. It was
not possible to obtain
Raman spectrum of the
mineral due to its thermal
instability
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time) makes it possible to obtain scattering
spectra even on thermally unstable samples
(Fig. 3.23).

In some cases, it is possible to reduce the
degree of overheating by placing microscopic
mineral samples on a metal substrate, which
leads to acceleration of the heat sink. The correct
sequence of actions when working with an
unknown colored opaque or especially valuable
sample is the use of low-power laser source at the
initial stage of research. A gradual increase in
power with constant monitoring of the state of
the sample will prevent its damage or destruction.
To improve the quality of the Raman spectra at
low power of the exciting radiation, an increase in
the time of accumulation of the Raman signal
may play a positive role.

Additional information on the practical appli-
cation of Raman spectroscopy can be obtained
from numerous books and review articles
(Reshetnyak and Bukanov 1991; Nasdala et al.
2004; Larkin 2011; Vandenabeele 2013; Kolesov
2018).

Fig. 3.23 Raman spectrum of melanarsite K3Cu7Fe
3+

O4(AsO4)4 obtained at the laser emission wavelength of
532 nm, spectral resolution of 6 cm�l, laser power of
4 mW, focal spot diameter of ~15 μm, and signal accumu-
lation time of 100 s
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Raman Spectra of Minerals 4

This chapter provides data on 2104 Raman spec-
tra of minerals and their synthetic counterparts
taken from various periodicals. The overwhelm-
ing majority of these spectra were obtained on
arbitrarily oriented samples. As a result, absolute
values band intensities are not very informative.
For this reason, we do not show the spectra
figures, but only give lists of Raman shifts with
indication of the strongest and weakest bands.

Data on the Raman spectra are listed in alpha-
betical order of mineral names and are
accompanied by brief descriptions of the
conditions under which the spectra were taken.
In most cases, comments are made regarding the
quality of the spectrum and/or methods of identi-
fication of the reference sample.

Abellaite NaPb2(CO3)2(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488 and 568.2 nm laser radiations. The laser radiation power at the sample was 200 and
100 mW, respectively.

Raman shifts (cm21): 3500w, 1750w, 1730w, 1392s, 1350sh, 1068, 1057s, 1052sh, 1036w,
868, 695sh, 681s, 285 (broad), 202, 125w, 98 (broad), 86 (broad), 52s, 37.

Source: Brooker et al. (1983).
Comments: The band 1036w is a satellite band arising from the isotopic moieties (CI8O16O2

2�). The
sample identification was done and the purity of the substance was proved by powder X-ray
diffraction data.

Abelsonite NiC31H32N4

Origin: Green River Formation, Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 90 mW.
Raman shifts (cm21): ~1230, ~1170, ~1150, ~1120, ~760.
Source: Liu et al. (2015e).
Comments: The wave numbers were estimated by us based on spectral curve analysis of the published

spectrum. The sample was characterized by powder X-ray diffraction data and chemical analysis.

# Springer Nature Switzerland AG 2020
N. V. Chukanov, M. F. Vigasina, Vibrational (Infrared and Raman) Spectra of Minerals and Related
Compounds, Springer Mineralogy, https://doi.org/10.1007/978-3-030-26803-9_4
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Abhurite Sn2+21O6(OH)14Cl16

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on suspension in water

using 785.0 nm laser radiation. The laser radiation power at the sample was 200 mW.
Raman shifts (cm21): 256, 206s, 170, 156, 147.
Source: Chen and Grandbois (2013).
Comments: Spectral analysis and Raman shifts calculation were based on semi-quantitative indirect

hard modeling (IHM) analysis.

Acanthite Ag2S

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an unoriented crystal

using 488.0 nm laser radiation. The laser radiation power is not indicated. The spectrum was
measured at 30 K.

Raman shifts (cm21): 222s, 200.
Source: Milekhin et al. (2011).
Comments: For the Raman spectrum of acanthite see also Martina et al. (2012).

Acetamide solution CH3CONH2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on 0.1 M and 0.4 M

aqueous solutions of acetamide. The wavelengths of laser excitation lines were 220, 240, 250, 365,
and 560 nm. The laser radiation power is not indicated.

Raman shifts (cm21): 1662, 1616, 1457, 1404, 1360, 1131, 1005, 871.
Source: Dudik et al. (1985).
Comments: The line at 871 cm�1 is strong in experiments with the laser radiation wave lengths of

365 and 560 nm. The lines at 1457, 1616, and 1662 cm�1 are strong in experiments with the laser
radiation wave length of 220 nm. For the Raman spectrum of acetamide solution see also
Spinner (1959).

Actinolite Ca2(Mg4.5-2.5Fe
2+

0.5-2.5)Si8O22(OH)2

Origin: Košino, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 and 532.0 nm laser radiations. The laser radiation power is not indicated.
Raman shifts (cm�1): 1056s, 1026, 954, 926, 899, 744w, 672s, 527, 517w, 477w, 433w, 413w,

391, 368, 346.
Source: Jovanovski et al. (2009).
Comments: The identification of the sample was done by results of electron microprobe analysis; the

purity of the substance was proved by powder X-ray diffraction data. For the Raman spectra of
actinolite see also Gopal et al. (2004), Makreski et al. (2006a), Petry et al. (2006), Apopei and
Buzgar (2010), Apopei et al. (2011), Andò and Garzanti (2014), and Leissner et al. (2015).
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Actinolite Ca2(Mg4.5-2.5Fe
2+

0.5-2.5)Si8O22(OH)2

Origin: Tyrol, Austria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 3675, 3661, 1059, 1027s, 949, 929, 892w, 744, 670s, 577w, 522, 482w,

415, 392s, 369s, 294, 247w, 226s.
Source: Apopei et al. (2011).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

actinolite see also Gopal et al. (2004), Makreski et al. (2006a), Petry et al. (2006), Jovanovski et al.
(2009), Apopei and Buzgar (2010), Andò and Garzanti (2014), and Leissner et al. (2015).

Adachiite CaFe2+3Al6(Si5AlO18)(BO3)3(OH)3(OH)

Origin: No data.
Experimental details: A single crystal was used. The wavelengths of laser excitation lines were 488.0

and 514.5 nm. Laser radiation power at the sample was 14 mW. Polarized spectra were collected in
y(zz)y, y(zx)y, and y(xx)y scattering geometries.

Raman shifts (cm21): 3679, 3625, 3570, 3565s, 3486.
Source: Watenphul et al. (2016a).
Comments: The sample was identified by electron microprobe analysis, and boron was determined by

LA-ICP-MS measurement. The Raman shifts are given for the scattering geometry y(zz)y, in which
the Raman intensities are most strong.

Adamite Zn2(AsO4)(OH)

Origin: Lavrion mining District, Attikí (Attika, Attica) Prefecture, Greece.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3552s, 890s, 846s, 820, 539, 496, 458, 422, 380, 325.
Source: Makreski et al. (2013a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of adamite see also Yang et al. (2001).

Adelite CaMg(AsO4)(OH)

Origin: No data
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The Raman shifts have been determined for the
maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3550, 890, 846, 821, 803, 540, 497, 479, 421, 376, 322, 277, 253, 232, 211,
172, 134.

Source: Martens et al. (2003c).
Comments: No independent analytical data are given for the sample used. Intensities of Raman bands

are not indicated.
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Admontite MgB6O10∙7H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample.

The wavelengths of the laser excitation line and laser radiation power are not indicated.
Raman shifts (cm21): 1092w, 963, 881, 637s, 523w, 500w, 428s, 412, 394, 320.
Source: Derun et al. (2015)
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of admontite see also Kipcak et al. (2014).

Adolfpateraite K(UO2)(SO4)(OH)(H2O)

Origin: Svornost mine, Jáchymov, Krušné Hory (Ore Mts.), Bohemia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 780 nm laser radiation. The laser radiation power at the sample was from 4 to 8 mW.
Raman shifts (cm21): 1169w, 1149w, 1116w, 1063w, 1029w, 993s, 935s, 900s, 843w, 638w, 597w,

456, 442, 399w, 350w, 320, 270, 264, 219, 1198, 169w, 130w, 109w.
Source: Plášil et al. (2012b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Aegirine NaFe3+Si2O6

Origin: Kangerdlnarsuk, Greenland (sample 1) and Brewig, Norway (sample 2).
Experimental details: Raman scattering measurements have been performed on unoriented crystals.

The wavelength of the laser excitation line was 532 nm. The nominal laser radiation power was
100 mW.

Raman shifts (cm21): 1130w, 1044s, 953s, 866, 758, 678, 544s, 499, 465w, 385, 342s, 309, 294,
273 (sample 1); 1132w, 1041s, 971s, 952, 866, 757, 678, 558, 544s, 496, 466w, 385, 343s, 295, 267
(sample 2).

Source: Buzatu and Buzgar (2010).
Comments: No independent analytical data are provided for the samples used. For the Raman spectra

of aegirite; see also Andò and Garzanti (2014) and Zhou et al. (2014).

Aegirine Li analogue LiFe3+(Si2O6)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm laser radiation. The nominal laser radiation power was 120 mW.
Raman shifts (cm21): 1084s, 1038s, 1012s, 976, 932, 857, 776w, 684, 575, 553, 519, 493, 387,

363, 347, 325, 313, 294, 284, 263w, 237, 214, 196, 175, 133w, 97.
Source: Zhang et al. (2002a).
Comments: The sample used was prepared from a stoichiometric mixture of finely ground Li2CO3,

Fe2O3 and SiO2 by solid-state ceramic sintering techniques at 1223 K and ambient pressure and
characterized by neutron powder diffraction and Mössbauer measurements. Monoclinic, space
group C2/c, a ¼ 9.6641(2), b ¼ 8.6612(3), c ¼ 5.2924(2) Å, β ¼ 110.12(1)�.
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Aerinite (Ca,Na)6(Fe
3+,Fe2+,Mg,Al)4(Al,Mg)6Si12O36(OH)12(CO3)�12H2O

Origin: Estopiñán dam, Estopiñándel Castillo, Huesca, Aragón, Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1236, 1072, 1049, 1013, 974, 933, 909, 885w, 546, 512, 465w, 392, 365s,
331s, 300, 281, 245, 222.

Source: Frost et al. (2015y).
Comments: The identification of the sample used was done only by means of scanning electron

microscopy. In the cited paper, the band at 1236 cm�1 is assigned to CO3
2� asymmetric stretching

mode or to a Si–O vibrations. In both cases the position of this band would be anomalous.

Aeschynite-(Y) (Y,Ln,Ca,Th)(Ti,Nb)2(O,OH)6

Origin: A granitic pegmatite situated in the Aust-Agder province, southern Norway.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 830, 665, 609, 396, 355, 256, 232, 159, 99.
Source: Tomašić et al. (2004).
Comments: The identification of the sample was done by powder X-ray diffraction. The chemical

composition of the sample was determined by ICP measurement. The Raman spectrum was
obtained on a sample which was regained crystal structure after heating up to 1000 �C. The
spectrum is of poor quality because the crystallization was not completed.

Afmite Al3(OH)4(H2O)3(PO4)(PO3OH)∙H2O

Origin: Fumade, Tarn, France (type locality).
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 514 nm laser radiation. The laser beam was incident on the (001) crystal face. The radiation
power on the sample was 5 mW.

Raman shifts (cm21): No data: only a figure of the Raman spectrum of afmite is given in the cited
paper.

Source: Kampf et al. (2011b).
Comments: The sample was characterized by electron microprobe analysis and powder X-ray

diffraction. The crystal structure is solved. For the Raman spectrum of afmite see also Sanchez-
Moral et al. (2011).

Afwillite Ca3[SiO4][SiO2(OH)2]∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm laser radiation. The radiation power on the sample was 150 mW.
Raman shifts (cm21): 3973, 856s, 819, 785, 550, 410.
Source: Stodolski et al. (1985).
Comments: The sample was characterized by powder X-ray diffraction.
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Agakhanovite-(Y) YCa□2KBe3Si12O30

Origin: Heftetjern pegmatite, Tørdal, Southern Norway (type locality).
Experimental details: No data.
Raman shifts (cm21): 3730w, 3670w, ~3560–3400 (broad), 1120, 1000w, 480s, 360w, 290w, 140.
Source: Hawthorne et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved.

Agardite-(Ce) CeCu2+6(AsO4)3(OH)6∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample was 1 mW.

Raman shifts (cm21): 885, 868s, 834, 809, 527w, 493w, 475, 461w, 427w, 393w, 319w, 283w,
235, 197w, 170w, 158w, 136w.

Source: Frost et al. (2004f).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis, but no analytical data are given in the cited paper.

Agardite-(La) LaCu2+6(AsO4)3(OH)6∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample was 1 mW.

Raman shifts (cm21): 888, 867s, 832, 803, 524w, 491w, 473, 470, 425w, 391, 317w, 274w,
234, 196w, 165, 136w.

Source: Frost et al. (2004f).
Comments: No independent analytical data are given in the cited paper.

Agardite-(Y) YCu2+6(AsO4)3(OH)6∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample was 1 mW.

Raman shifts (cm21): 915, 870s, 833, 798w, 557w, 539w, 514w, 486, 468w, 434w, 294w, 267w,
239, 192, 176w, 167w, 142.

Source: Frost et al. (2004f).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis, but no independent analytical data are given in the cited paper. For the Raman spectrum of
agardite-(Y) see also Morrison et al. (2013).
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Agricolaite K4(UO2)(CO3)3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polycrystalline sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 1569w, 1543w, 1354w, 1320, 1065sh, 1055, 1046sh, 879w, 863w, 806s,
785w, 725, 719w, 693w, 307, 288, 262s, 251w, 249w, 241, 191w, 176sh, 165, 154sh, 132, 123,
119sh, 106, 96w, 91w, 82, 74w, 63, 48w.

Source: Anderson et al. (1980).
Comments: The compound was synthesized hydrothermally and characterized by powder X-ray

diffraction data.

Ahlfeldite Ni(SeO3)∙2H2O

Origin: Pacajake Mine, Bolivia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3466, 3385s, 3329, 3251, 2185, 2130, 861, 832s, 803s, 751, 719, 595, 532,
508, 430s, 421, 348, 267, 218, 177s, 149s.

Source: Frost and Keeffe (2009f).
Comments: No independent analytical data are provided for the sample used.

Ahrensite γ-Fe2(SiO4)

Origin: Tissint Martian meteorite (type locality).
Experimental detail: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.3 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 843, 795, 672, 213.
Source: Ma et al. (2016a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Aikinite CuPbBiS3

Origin: Karrantza Valley, westerner area of the Basque Co., Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm laser radiation with the laser radiation power at the sample of 50 mW
and 785 nm laser radiation with the nominal laser radiation power of 150 mW, using filters of 1%
and 10%.

Raman shifts (cm21): 326s, 227s.
Source: Goienaga et al. (2011).
Comments: The sample identification was done by means of electron fluorescence analysis.
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Ajoite K3Cu
2+

20Al3Si29O76(OH)16∙8H2O

Origin: New Cornelia Mine in the Ajo District of Pima County, Arizona, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample is not indicated.

Raman shifts (cm21): 3619, 3589, 3574, 3553, 3394, 1155, 1139, 1069, 1048, 1015, 962, 796,
672, 630, 516, 484, 437, 411, 343, 325, 304.

Source: Frost and Xi (2012m).
Comments: No independent analytical data are given for the sample used.

Akaganeite (Fe3+,Ni2+)8(OH,O)16Cl1.25�nH2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

powdery sample using 636.4 nm laser radiation. The laser radiation power on the sample was
0.34 mW.

Raman shifts (cm21): 717, 614w, 537, 415sh, 390s, 311s.
Source: Nieuwoudt et al. (2011).
Comments: The identification of the sample was done by powder X-ray diffraction data. For the

Raman spectra of akaganeite see also Das and Hendry (2011) and Aramendia et al. (2014).

Åkermanite Ca2MgSi2O7

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

powdered sample in a 90�-scattering geometry using 488 nm laser radiation. The laser radiation
power on the sample was from 300 up to 500 mW.

Raman shifts (cm21): 1067w, 1012w, 990sh, 948w, 927sh, 906s, 664s, 603, 515, 484, 448, 361sh,
317, 269w, 220, 210, 97.

Source: Sharma et al. (1988).
Comments: The identification of the sample synthesized from glass was performed by comparison

with published Raman data.

Åkermanite Sr analogue Sr2Mg(Si2O7)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed using 632.8 nm laser

radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 984sh, 975w, 901s, 838w, 653, 590w, 568w, 475w, 450w, 315.
Source: Gabelica-Robert and Tarte (1979).
Comments: The sample synthesized by solid-state reaction was characterized by powder X-ray

diffraction.
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Akimotoite MgSiO3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

powdered sample using 514.5 nm laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm21): 802s, 687, 622, 481, 412, 352, 291.
Source: Okada et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis.

For the Raman spectra of akimotoite see also Ferroir et al. (2008) and Chen and Xie (2015).

Aklimaite Ca4[Si2O5(OH)2](OH)4∙5H2O

Origin: Lakargi Mt., Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 532 nm laser radiation. The laser radiation power on the sample was 44 mW.

Raman shifts (cm21): 3611, 3593, 3549, 3535, 3261, 1666, 1575, 1490, 1380, 1344, 1087w, 999s,
960sh, 924sh, 908s, 838, 680s, 569, 543, 488, 444, 406w, 340s, 254s, 191s, 142.

Source: Zadov et al. (2013).
Comments: The wavenumbers are indicated for the maxima of individual bands obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
chemical analysis. The crystal structure is solved.

Alabandite MnS

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.4 nm laser radiation. The laser radiation power on the sample was 2 mW.
Raman shifts (cm21): 580w, 285, 230, 160.
Source: Avril et al. (2013).
Comments: The cubic monosulfide alabandite does not have a first-order Raman spectrum due to its

ideal rock salt structure. Through local symmetry breaking, the inactive or infrared-active vibra-
tional modes become Raman active. As a result, the Raman peaks are broad and have a very weak
intensity. For the Raman spectrum of alabandite see also Ma et al. (2012b).

Alacránite As8S9

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 785 nm laser radiation. The nominal laser radiation power was 3 mW. A non-oriented
crystal.

Raman shifts (cm21): 384, 361, 350sh, 340s, 329, 307, 240sh, 230s.
Source: Pagliai et al. (2011).

Alamosite PbSiO3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 488 nm laser radiation. A 90o-scattering geometry was employed. The nominal
laser radiation power was in the range from 50 to 200 mW.
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Raman shifts (cm21): 1047w, 1002sh, 987, 955, 946, 924w, 897w, 870w, 780w, 735w, 683w, 647w,
590, 534w, 495w, 469w, 448, 388w, 371w, 355, 324w, 306sh, 272w, 218w, 171w, 146w, 109s,
90, 82, 70, 59s.

Source: Furukawa et al. (1979).
Comments: The hydrothermally synthesized sample was characterized by powder X-ray diffraction.

Alarsite Al(AsO4)

Origin: Synthetic.
Experimental detail: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm laser radiation. The laser radiation power at the sample was 400 mW.
Raman shifts (cm21): 1031w, 1000w, 985s, 939, 930sh, 630w, 613w, 573w, 450sh, 420s, 390, 371w,

347, 319, 311, 260w, 226, 198, 136, 123, 98.
Source: Dultz et al. (1975).
Comments: No independent analytical data are provided for the sample used.

Albertiniite Fe2+(SO3)∙3H2O

Origin:Monte Falò Pb-Zn mine, Coiromonte, Armeno municipality, Verbano Cusio Ossola province,
Piedmont, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
single crystal using 473.1 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 3350s, 3215s, 1660w, 970s, 950s, 910, 860w, 825w, 660w, 600w, 495sh,
482, 457, 438sh, 324w, 279w, 241w, 197w, 172, 123.

Source: Vignola et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Albite Na(AlSi3O8)

Origin: Alinci, Macedonia.
Experimental detail: Raman scattering measurements have been performed on a powdered sample

using 532 nm laser radiation. The laser radiation power at the sample was 7 mW.
Raman shifts (cm21): 1115w, 100w, 1034w, 1006w, 976w, 816w, 764w, 726w, 646w, 579w, 508s,

479, 458w, 408w, 329w, 291s, 270sh, 251w, 209w, 185w, 171w, 162w, 148w, 113w.
Source: Makreski et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction. The assignment of Raman

bands given in the cited paper is incorrect. For the correct assignment see Többens et al. (2005). For
the Raman spectra of albite see also Frezzotti et al. (2012), Karwowski et al. (2013), and McKeown
(2005).

Aleksite PbBi2Te2S2

Origin: Panarechensk volcanic-tectonic formation, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm21): 232–235w, 143–147s, 99–103s, (75–79w).
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Source: Voloshin et al. (2015a).
Comments: The samples used were characterized by electron microprobe analyses. For the Raman

spectrum of aleksite see also Gehring et al. (2015).

Alforsite OH-analogue Ba5(PO4)3(OH)

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 nm laser radiation. The nominal laser radiation power at the sample was
10 mW.

Raman shifts (cm21): 3608, 3583w, 1057w, 1029, 1007w, 934s.
Source: Yoder et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis. It

contains 2.95 wt% of a carbonate.

Allactite Mn2+7(AsO4)2(OH)8

Origin: Nordmark, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample is not indicated.

Raman shifts (cm21): 3561s, 3523, 3489s, 3446, 3395, 3292, 1011, 909, 883s, 859s, 834s, 827s,
808s, 779s, 743, 633, 470, 452, 422, 393, 377, 360s, 350, 331, 323, 298, 288, 271, 241, 197, 158.

Source: Frost and Weier (2006).
Comments: The sample was characterized by electron microprobe analysis.

Allanite (Ce) CaCe(Al2Fe
2+)[Si2O7][SiO4]O(OH)

Origin: Brahmaputra River, Bangladesh.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. A nearly 180�-scattering geometry was employed. The laser
radiation power on the sample is not indicated.

Raman shifts (cm21): 1062, 972s, ~900–920sh, 689, ~630, ~550, 457s, 421s, ~380, ~270,~220,
~180.

Source: Andò and Garzanti (2014).
Comments: No independent analytical data are given for the sample used.

Allanite-(Nd) CaNd(Al2Fe
2+)[Si2O7][SiO4]O(OH)

Origin: Kracovice pegmatite, Moldanubian Zone, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 and 633 nm laser radiations. The laser radiation power is not indicated.
Raman shifts (cm21): 1052, 995, 964, 926, 897, 873, 841, 691, 632, 595, 573, 571, 493, 457, 442,

428, 385, 354, 321, 294, 279, 256, 221, 199, 160, 126, 107.
Source: Čopjaková et al. (2015).
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Comments: The sample was characterized by ICP and electron microprobe analyses. The Raman
shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Allanpringite Fe3+3(PO4)2(OH)3∙5H2O

Origin: Grube Mark, near Essershausen, ca. 5 km SE of Weilburg/Lahn, Taunus, Hesse, Germany
(type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 488 nm laser radiation. A 180�-scattering geometry was employed. The laser radiation
power is not indicated.

Raman shifts (cm21): ~3567, 3412, ~3197, ~3060, ~3052, ~1652, ~1100sh, 1060, 1023, 1009,
987, 590, 555, 516, 491, 470, 424, 355, ~309, 292.

Source: Kolitsch et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data and chemical analyses.

The crystal structure is solved.

Allendeite Sc4Zr3O12

Origin: Allende meteorite (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented crystal using 514.5 nm laser radiation. The laser radiation power on the sample was 5 mW.
Raman shifts (cm21): No data: only a figure of the Raman spectrum is given in the cited paper.
Source: Ma et al. (2014b).
Comments: The sample was characterized by powder X-ray diffraction data and chemical analyses.

The strong Raman peaks in the 1300–1000 cm�1 region may be caused by REE luminescence.

Allophane Al2O3(SiO2)1.3-2.0∙2.5–3.0H2O

Origin: Reppia, NW Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 and 785 nm laser radiations. The nominal laser radiation power on the sample was
1.4 and 4 mW, respectively.

Raman shifts (cm21): 3420s (broad), 2942w, 1638w, 1357w, 1103, 982w, 858–859s.

Almandine Fe2+3Al2(SiO4)3

Origin: An unknown locality in Mongolia.
Experimental details: Micro-Raman scattering measurements have been performed on a single

crystal using 488 nm Ar+ laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1038s, 930, 916s, 897, 863, 630, 596, 556, 581, 500s, 475, 370s, 342s,

323, 314, 256, 216s, 171s, 166s.
Source: Kolesov and Geiger (1998).
Comments:Measurements were made perpendicular to the {100} and {110} faces of a single crystal.

The sample identification was done by powder X-ray diffraction data and electron microprobe
analyses. For the Raman spectra of almandine see also Mingsheng et al. (1994), Makreski et al.
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(2005b), Bersani et al. (2009), Ferrari et al. (2009), Jovanovski et al. (2009), Frezzotti et al. (2012),
and Andò and Garzanti (2014).

Almarudite K(□,Na)2(Mn,Fe,Mg)2[(Be,Al)3Si12]O30

Origin: Bellerberg volcano, Eifel area, Germany (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on a single

crystal along [0001], using 633 nm He-Ne laser radiation. The nominal laser radiation power was
17 mW.

Raman shifts (cm21): 1134s, 1053, 991, 931, 847, 778, 698w, 653, 640, 608, 563, 554, 493s,
460, 382, 346w, 311sh, 290s, 276sh, 236w, 160, 135s, 108sh, 84.

Source: Lengauer et al. (2009).
Comments: The Raman shifts were determined by us based on spectral curve analysis of the published

spectrum.

Alstonite Ba Ca(CO3)2

Origin: Moore Hill, England.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polycrystalline sample using 488 and 514.5 nm laser radiations. The nominal laser radiation power
at the sample was 200 mW.

Raman shifts (cm21): 1489, 1092s, 1067s, 709sh, 693, 284, 252w, 211w, 196, 170, 145s, 130, 102,
79s.

Source: Scheetz and White (1977).
Comments: No independent analytical data are provided for the sample used.

Altaite PbTe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 laser radiation. The laser radiation power at the sample was from 1 to 2 mW.
Raman shifts (cm21): Altaite is inactive in Raman due to halite-type structure.
Source: Vymazalová et al. (2014).

Althausite Mg4(PO4)2(OH,O)(F,□)

Origin: Sapucaia pegmatite mine, Minas Gerais, Brazil (?).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3688w, 3653w, 3535, 3523sh, 3511sh, 3500s, 3488, 3472sh, 3455w, 1320br,
1154, 1130s, 1114, 1078w, 1062w, 1049w, 1033s, 993s, 986sh, 964s, 950sh, 917w, 902w, 860w,
668, 638sh, 628sh, 612, 594, 580, 537, 510sh, 499, 488sh, 466, 458, 436sh, 426, 412.

Source: Frost et al. (2014p).
Comments: The sample identification was made only by SEM. The broad band at 1320 cm�1 may be

due to impurities.
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Alum-(K) KAl(SO4)2∙12H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily sample

using 488 nm laser radiation. The nominal laser radiation power at the sample was 220 mW. A
90�-scattering geometry was employed.

Raman shifts (cm21): 3396s, 3072, 1130, 1104w, 989s, 974s, 614, 455, 442w.
Source: Barashkov et al. (2004).
Comments: For the Raman spectra of alum-(K) see also Makreski et al. (2005a), Brooker and Eysel

(1990), and Rao (1941).

Alum-(K) KAl(SO4)2∙12H2O

Experimental details: Raman scattering measurements have been performed on a powdered sample
using 1064 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 1086w, 991s, 872w, 841w, 818w, 804w, 757w, 714w, 684w, 603, 517w,
416w, 386w.

Source: Makreski et al. (2005a).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of alum-(K) see also Rao (1941), Brooker and Eysel (1990), Barashkov et al. (2004), and Frezzotti
et al. (2012).

Aluminite Al2(SO4)(OH)4∙7H2O

Origin: Newhaven, East Sussex, England, UK.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
identified

Raman shifts (cm21): 3588, 3569, 3439, 3378, 3294, 3157, 2930, 2875, 1136w, 1094, 1069w,
999, 93s, 990, 793w, 680, 642, 631, 607, 575, 490, 440, 333, 317, 285.

Source: Frost et al. (2015k).
Comments: The sample was characterized only by qualitative EDS analysis.

Aluminocerite-(Ce) (Ce,REE,Ca)9(Al,Fe
3+)(SiO4)3[SiO3(OH)]4(OH)3

Origin: Ratti quarry, near Baveno, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 514.5 nm Ar+ laser radiation. The nominal laser radiation power at the sample was
from 10 to 50 mW.

Raman shifts (cm21): 3646w, 1098, 1083, 1010w, 977w, 869, 816, 763, 647w, 579, 507s, 478s,
455, 412, 327, 288, 266, 250w, 205, 181, 168, 147w.

Sourse: Nestola et al. (2009).
Comments: The sample was identified by electron microprobe analyses and single-crystal X-ray

diffraction.

754 4 Raman Spectra of Minerals



Aluminocopiapite (Al,Mg)Fe3+4(SO4)6(OH,O)2∙20H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.0 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3566, 3384, 3164, 2428, 1638, 1220, 1123, 1019, 989, 636, 614, 598, 555, 476,

452, 300, 270, 247.
Source: Kong et al. (2011b).
Comments: The sample was identified by powder X-ray diffraction data.

Alumohydrocalcite CaAl2(CO3)2(OH)4∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1091sh, 729, 590.
Source: Jay et al. (2015).
Comments: Alumohydrocalcite was identified by the Raman spectrum using data from the RRUFF

database as a reference.

Alunite KAl3(SO4)2(OH)6

Origin: Argillic zone hosted by volcanic rocks in Bulgaria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 1 mW.
Raman shifts (cm21): 3508s, 3480s, 3068w, 1186, 1151, 1077, 1024s, 653, 560, 508, 484, 381, 345,

234, 161.
Source: Maubec et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

alunite see also Toumi and Tlili (2008) and Frezzotti et al. (2012).

Alunogen Al2(SO4)3(H2O)12∙5H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm laser radiation. The nominal laser radiation power was 9 mW.
Raman shifts (cm21): 3246br, 3078sh, 1126w, 1086w, 992s, 612, 528w, 470, 339w, 309w.
Source: Wang and Zhou (2014).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of alunogen see also Buzatu et al. (2016).

Alwilkinsite-(Y) Y(UO2)3(SO4)2O(OH)3(H2O)7�7H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single sample using 780 nm laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 1325, 1265s, 1135w, 1080w, 1035, 1015, 990, 900w, 840s, 605, 555,
530, 465w, 455, 380, 320, 288, 268, 240, 200, 170, 145w, 135w, 108w, 90w, 72w, 60.

Comments: The broad bands at around 1600 cm�1 are the result of the fluorescence. The sample was
characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal
structure is solved.

Amarantite Fe3+2O(SO4)2∙7H2O

Origin: Caracoles, Sierra Gorda district, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3529s, 3480, 3401, 3340, 3227, 3089, 3025, 1648, 1577, 1441, 1233, 1195,
1131, 1098s, 1054, 1039, 1017s, 1006sh, 650w, 622w, 602w, 543w, 491, 451sh, 409, 399sh,
346, 309, 290, 255, 247, 229, 212, 205, 195s, 183sh, 176, 162, 149, 139, 129, 113, 107.

Source: Frost et al. (2013a, d).
Comments: The sample identification was done only by SEM.

Amblygonite LiAl(PO4)F

Origin: Penig, Saxony, Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488.0 nm laser radiation. The nominal laser radiation power at the sample was
200 mW.

Raman shifts (cm21): 3348 (broad), 1066, 1043s, 1008s, 645s, 604s, 423, 154.
Source: Rondeau et al. (2006).
Comments: The sample identification was done by powder X-ray diffraction data and by electron

microprobe analysis. For the Raman spectra of amblygonite see also Dias et al. (2011) and Frezzotti
et al. (2012).

Ambrinoite [K,(NH4)]2(As,Sb)6(Sb,As)2S13∙H2O

Origin: Oulx, Susa Valley, Torino, Piedmont, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 628 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3475w, 3150w, 1595w, 1423w, 393s, 371, 364, 352, 341, 324, 294, 216, 207.
Source: Biagioni et al. (2011a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved.

Ameghinite NaB3O3(OH)4

Origin: Tincalayu deposit, Salta province, Argentina (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. The laser radiation power is not indicated. The Raman shifts
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have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3385, 3343, 3275, 3249, 3230, 3203s, 3191, 1724, 1604, 1531, 1403, 1371,
1320, 1281, 1245, 1213, 1087, 1061, 1027s, 1014, 887, 861, 786, 769, 755, 730, 711, 701,
656, 624, 620s, 615, 574, 530, 503, 464, 405, 367, 352, 224, 197, 145, 135s, 119.

Source: Frost and Xi (2012i).
Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis.

Amesite Mg2Al(AlSiO5)(OH)4

Origin: Artificial (a product of hydrothermal alteration of olivine in the presence of AlCl3).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~1080w, ~1000w, ~845w, ~700s, ~540s, ~495, ~480, ~405s, ~345w, ~273,

~190.
Source: Andreani et al. (2013).
Comments: The sample was identified as amesite by comparison to the reference spectrum from

RUFF database.

Ammoniojarosite (NH4)Fe
3+

3(SO4)2(OH)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm laser radiation. The nominal laser radiation power was less than 5 mW.
Raman shifts (cm21): 3485sh, 3434, 3360sh, 3210, 1164, 1092, 1006s, 637sh, 623s, 565, 451, 423s,

342w, 301, 218s, 136.
Source: Chio et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of ammoniojarosite see also Sasaki et al. (1998).

Grunerite □Fe2+2Fe
2+

5Si8O22(OH)2

Origin: South Africa.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

fibrous aggregate (“amosite”) using 632 nm laser radiation. The nominal laser radiation power was
20 mW.

Raman shifts (cm21): 1093w, 1020s, 968, 904w, 659s, 528, 507w, 423w, 400w, 368w, 348, 307w,
289w, 252w, 216, 182s, 155s.

Source: Rinaudo et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Analcime Na(AlSi2O6)∙H2O

Origin: Aussig, Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.
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Raman shifts (cm21): 1104, 591w, 483s, 390, 298.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of analcime see also Frost et al. (2014i).

Anapaite Ca2Fe
2+(PO4)2∙4H2O

Origin: Bellver de la Cerdanya, Lérida, Spain.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3248, 3176, 3101, 3022, 2882, 2777, 1658w, 1373w, 1071, 1039, 992w,
965sh, 943s, 808w, 777, 654, 622, 582, 546, 445, 432, 352, 335, 287, 266, 231sh, 281, 202,
186, 170, 155, 149, 136.

Source: Frost et al. (2013t).
Comments: The sample identification was done only by SEM.

Anatase TiO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 488 nm laser radiation. The laser radiation power is not indicated. A 90�-scattering geometry
was employed. The Raman shifts are indicated for the maxima of individual peaks obtained as a
result of the spectral curve analysis.

Raman shifts (cm21): 640s, 515, 398, 198w, 147s.
Source: Balachandran and Eror (1982).
Comments: The sample was characterized by ICP method and electron microprobe analysis. For the

Raman spectra of anatase see also Zajzon et al. (2013), Andò and Garzanti (2014), and Martins
et al. (2014).

Anatase TiO2

Origin: Perkupa, Hungary.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. The nominal laser radiation power at the sample was 13 mW.
Raman shifts (cm21): 470, 248s, 226, 182s, 155.
Source: Zajzon et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectra of anatase see also Balachandran and Eror (1982), Andò and
Garzanti (2014), and Martins et al. (2014).

Ancylite-(Ce) CeSr(CO3)2(OH)∙H2O

Origin: Bear Lodge, Wyoming, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 1106, 1086s, 1077s, 861w, 744w, 725, 705w, 466, 299, 252s, 223s,
193, 130w, 123w.

Source: Chakhmouradian et al. (2017).
Comments: The sample was characterized by electron microprobe analyses.

Andalusite Al2SiO5

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1111, 1065, 952, 920s, 834, 719, 606, 553, 453, 361, 323, 293s, 278.
Source: Frezzotti et al. (2012).
Comments: The data are from the database www.ens-lyon.fr/LST/Raman. For the Raman spectra of

andalusite see also Mernagh and Liu (1991) and Andò and Garzanti (2014).

Andersonite Na2Ca(UO2)(CO3)3∙6H2O

Origin: Grants, New Mexico, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3558, 3510, 2415, 1406, 1370, 1092, 1080, 928, 833, 831, 742, 696, 299,
284, 272, 242, 224, 182, 164.

Source: Frost et al. (2004b).
Comments: For the Raman spectra of andersonite see also Stefaniak et al. (2009) and Driscoll

et al. (2014).

Andradite Ca3Fe
3+

2(SiO4)3

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 4480 Å laser radiation. The nominal laser radiation power was 100–150 mW.
Raman shifts (cm21): 1000w, 870s, 840w, 816w, 726, 576, 573s, 444, 363s, 366w, 228, 168.
Source: Mingsheng et al. (1994).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

andradite see also Kolesov and Geiger (1998), Bersani et al. (2009), Katerinopoulou et al. (2009),
and Andò and Garzanti (2014).

Andradite Ca3Fe
3+

2(SiO4)3

Origin: Maronia area, western Thrace, Greece.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 750, 520, 350.
Source: Katerinopoulou et al. (2009).
Comments: A Cr-, Ti-, and Zr-rich variety was investigated. The empirical formula is (Ca2.99Mn0.03)

(Fe3+0.67Cr0.54Al0.33Ti0.29Zr0.15)(Si2.42Ti0.24Fe0.18Al0.14)O12(OH)0.11. The Mössbauer analysis
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showed that the total Fe is ferric, preferentially located at the octahedral site. For the Raman spectra
of andradite see also Mingsheng et al. (1994), Kolesov and Geiger (1998), Bersani et al. (2009), and
Andò and Garzanti (2014).

Andychristyite PbCu2+Te6+O5(H2O)

Origin: Otto Mt., near Baker, California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 780 nm laser radiation. The laser radiation power at the sample was from 4 to 8 mW.
Raman shifts (cm21): 3306w, 870, 708s, 665s, 625s, 552, 461, 402, 316, 291, 242, 214, 181.
Source: Kampf et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved.

Angastonite CaMgAl2(PO4)2(OH)4∙7H2O

Origin: Angaston, South Australia (type locality).
Experimental details: Raman scattering measurements have been performed using 785 nm laser

radiation. The method of sample preparation and the laser radiation power are not indicated.
Raman shifts (cm21): 1159, 988, 630, 539, 502, 415.
Source: Mills et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Anglesite Pb(SO4)

Origin: Monte Poni, Sardinia, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power at the sample was
100 mW.

Raman shifts (cm21): 1157, 1055w, 978s, 646w, 612, 553w, 450s.
Source: Buzgar et al. (2009).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. Methods of the identification of the sample are not indicated. For the
Raman spectra of anglesite see also Bouchard and Smith (2003), Jehlička et al. (2009b),
and Petrov (2014).

Anhydrite Ca(SO4)

Origin: Bleiberg, Carinthia, Austria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm Nd-YAG laser radiation. The nominal laser radiation power at the sample was
100 mW.

Raman shifts (cm21): 1160, 1129s, 1017s, 678, 630, 503s, 420w, 235w.
Source: Buzgar et al. (2009).
Comments: For the Raman spectra of anhydrite see also Sarma et al. (1998), Makreski et al. (2005a),

White (2009), and Ciobotă et al. (2012).
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Anilite Cu7S4

Origin: Synthetic.
Experimental details: No data.
Raman shift (cm21): 470s.
Source: Palve et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data.

Ankerite Ca(Fe2+,Mg)(CO3)2

Origin: Brusson, Val d’Ayas, Valle d’Aosta, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1091, 716, 283.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used.

Annabergite Ni3(AsO4)2∙8H2O

Origin: 132 North Deposit, Widgiemooltha District, Western Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3419, 3209, 3185, 3010, 941, 854, 800, 676, 466, 442, 401, 350, 321, 286,
260, 242, 225, 203, 175, 160, 155, 119.

Source: Frost et al. (2003g).
Comments: No independent analytical data are provided for the sample used.

Annite KFe2+3(AlSi3O10)(OH)2

Origin: Sierra los Filahres, Spain.
Experimental details: Raman scattering measurements have been performed on a partially oriented

sample using 488 or 514.5 nm laser radiations. The spectrum was recorded with the electric field
polarized either parallel or perpendicular to the cleavage plane. The laser radiation power is not
indicated.

Raman shifts (cm21): 3654, 1045w, 676s, 272w, 182s.
Source: Tlili et al. (1989).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of annite see also Rancourt et al. (2001).

Annite Cl-analogue KFe2+3(AlSi3O10)(Cl,OH)2

Origin: Khlebodarovka, Azov Sea region, Ukraine.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal. The wavelength of laser excitation line and the laser radiation power are not indicated.
Raman shifts (cm21): 3647s, 989s, 811, 660s, 553w, 403, 353.
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Source: Sharygin et al. (2014).
Comments: The Cl-analogue of annite from Khlebodarovka contains up to 7.3 wt% Cl.

Anorpiment As2S3

Origin: Palomo mine, Castrovirreyna province, Huancavelica department, Peru (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 643w, 387sh, 375, 348sh, 334s, 324sh, 234w, 192, 187, 176, 168sh.
Source: Kampf et al. (2011a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The Raman shifts were determined by us based on spectral
curve analysis of the published spectrum.

Anorthite Ca(Al2Si2O8)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488.0 nm laser radiation. The nominal laser radiation power was 600 mW. A 90�-scattering
geometry was employed.

Raman shifts (cm21): 1124w, 1072s, 1044sh, 998sh, 974, 949sh, 908sh, 756w, 741sh, 681, 620w,
590w, 553, 503s, 484sh, 427w, 400w, 369w, 316w, 281, 273, 253, 200sh, 182, 139, 88, 63.

Source: Matson et al. (1986).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of anorthite see also Ling et al. (2011).

Antarcticite CaCl2∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 532.2 nm laser radiation. The nominal laser radiation power was 120 mW.
Raman shifts (cm21): 3431/3430s, 3410, 3404/3405sh, 3386, 3242.
Source: Baumgartner and Bakker (2010).
Comments: The Raman spectrum of antarcticite was recorded at �190 �C.

Antarcticite CaCl2∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at �190 �C on an

arbitrarily oriented sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 3430s, 3384sh, 3245, 1664, 1647.
Source: Uriarte et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data.
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Anthophyllite □Mg2Mg5Si8O22(OH)2

Origin: Bresimo Mine, near Trento, Trentino Alto Adige, Italy.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

fibers using 632 nm laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 1044, 928, 699w, 674s, 539, 503w, 433, 410, 387, 342w, 304, 265, 254, 222w,

188.
Source: Rinaudo et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of anthophyllite see also Petry et al. (2006), Kloprogge et al.
(2001a), and Leissner et al. (2015).

Anthophyllite ☐Mg2Mg5Si8O22(OH)2

Origin: Origätri, Finland.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

fibers, using 244 nm laser radiation. The laser radiation power at the sample was less than 5 mW.
Raman shifts (cm21): 3691s, 3666s, 1052s, 1003sh, 669s, 530s.
Source: Petry et al. (2006).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum

of anthophyllite see also Rinaudo et al. (2004), Kloprogge et al. (2001a), and Leissner et al. (2015).

Anthraxolite
Origin: Perya, Novaya Zemlya Islands, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 1.2 mW.
Raman shifts (cm�1): The first-order spectrum: 1180–1200, 1330–1350, ~1500, 1580–1600,

1610–1620sh. The second-order spectrum: 2500, 2700, 2850, 2950, 3230.
Source: Golubev et al. (2016).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analyses.

Antigorite Mg3Si2O5(OH)4

Origin: Piedmont Alps, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 1044, 683s, 635w, 520w, 375s, 230s.
Source: Rinaudo et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
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Antigorite Mg3Si2O5(OH)4

Origin: Escambray Massif, Central Cuba.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser output power was from 200 to 600 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3774, 3760w, 3729s, 3709, 3687, 3658, 3606w, 685s, 377s, 233s.
Source: Auzende et al. (2004).
Comments: The Raman shifts are partly indicated for the maxima of individual peaks obtained as a

result of the spectral curve analysis.

Antimonselite Sb2Se3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a μm thick layer

using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 252, 189.
Source: Zhou et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and X-ray photoelectron

spectroscopy.

Antimony Sb

Origin: Artificial.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm laser radiation. The laser radiation power at the sample was 0.97 mW.
Raman shifts (cm21): 145s, 105.
Source: Makreski et al. (2013b).
Comments: Antimony was obtained as a product of photo-induced decomposition of stibnite Sb2S3

and identified due to the resemblance to the spectrum of Sb from Degtyareva et al. (2007).
According to Degtyareva et al. (2007) Sb-I (99.999% purity) at ambient pressure is characterized
by the Raman shifts of 151s and 114 cm�1.

Antlerite Cu2+3(SO4)(OH)4

Origin: Chuquicamata, Chile.
Experimental details: The method of the sample preparation is not indicated. Raman scattering

measurements have been performed using 780 nm laser radiation. The laser radiation power was
less than 1 mW.

Raman shifts (cm�1): 3580, 3488, 1905, 1266, 1173, 1148, 1135, 1079s, 990, 985, 902, 786,
759, 651, 629, 606, 600, 485, 469, 440, 415s, 335, 330, 295, 265, 259, 169, 151, 146, 141, 131.

Source: Martens et al. (2003a).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analyses. The band at 1905 cm�1 is attributed to the first overtone of symmetric
stretching vibrations of [SO4]

2�. For the Raman spectra of antlerite see also Bouchard and Smith
(2003), Frost et al. (2004n), Apopei et al. (2014a), and Coccato et al. (2016).
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Apachite Cu2+9Si10O29∙11H2O

Origin: Christmas mine, Christmas area, Banner District, Dripping Spring Mts., Gila Co., Arizona,
USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3651sh, 3614s, 3579, 3491, 3374, 3215, 2997, 2938, 2894, 2746, 1668, 1610,
1536sh, 1364, 1336, 1287, 1264, 1096, 997, 967s, 939, 898, 837, 777, 673s, 663sh, 529, 512,
479, 449sh, 435s, 402, 349, 335, 314, 305, 289, 253, 238, 221, 207, 195sh, 186, 180sh, 151s,
139sh, 113, 106.

Source: Frost and Xi (2012k).
Comments: No independent analytical data are provided for the sample used. The very intense sharp

Raman band at 3614 cm�1 is assigned by the authors of the cited article to stretching vibrations of
OH groups. The authors suppose that the correct formula of apachite could be
Cu9Si10O23(OH)12�5H2O.

Aphthitalite K3Na(SO4)2

Origin: Vesuvius volcano, Somma-Vesuvius complex, Naples province, Campania, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation in a 180�-scattering geometry. The laser radiation power
is not indicated.

Raman shifts (cm21): 1206–1201, 1084, 996–985s, 626–627, 618–617, 452–451s.
Source: Hansteen and Burke (1994).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of aphthitalite see also Jentzsch et al. (2013).

Apjohnite Mn2+Al2(SO4)4∙22H2O

Origin: Coranda-Hondol ore deposit, Certej, Romania.
Experimental details: Method of sample preparation is not indicated. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power at
the sample was 22.9 mW.

Raman shifts (cm21): 3379, 3299, 3237sh, 3007sh, 1630w, 1227sh, 1141w, 1116w, 1108w, 1086w,
1073sh, 996s, 978sh, 619w, 529w, 469w, 432sh, 311w.

Source: Apopei et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts are indicated for the maxima of individual peaks obtained as a result of
the spectral curve analysis. For the Raman spectra of apjohnite see also Reddy et al. (2006) and
Locke et al. (2007).

Apuanite (Fe2+Fe3+2)(Fe
3+

2Sb
3+

4)O12S

Origin: Bucadella Vena, Apuan Alps, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 713sh, 669s, 632sh, 574w, 548, 491, 437sh, 435, 396, 332, 292sh, 274sh,
242sh, 230s, 196, 174, 162sh, 143sh, 121, 106.

Source: Bahfenne (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts are indicated for the maxima of individual peaks obtained as a result of
the spectral curve analysis. For the Raman spectrum of apuanite see also Bahfenne et al. (2011a).

Aradite BaCa6[(SiO4)(VO4)](VO4)2F

Origin: Hatrurim Complex, Negev desert, Israel (type locality).
Experimental details: Experimental details are not identified. The methods used for the investigations

are analogous to those reported by Galuskin et al. (2015b).
Raman shifts (cm21): 989, 968, 942, 874sh, 859s, 835sh, 449w, 386sh, 366, 293w, 222w.
Source: Galuskin et al. (2015e).
Comments: The investigated sample has the crystal-chemical formula BaCa6[(SiO4)1.2

(VO4)0.5(PO4)0.1(SO4)0.2][(VO4)1.51(PO4)0.59]F and is a not an end-member of a complex solid
solution. For the Raman spectrum of aradite see also Galuskin et al. (2015b).

Aragonite Ca(CO3)

Origin: No data.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 1064 nm laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm21): 2905w, 2835w, 1904w, 1574w, 1462w, 1086s, 854w, 717sh, 704w.
Source: Edwards et al. (2005).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of aragonite see also Buzgar and Apopei (2009), Behrens et al. (1995), White (2009), Wehrmeister
et al. (2010), Frezzotti et al. (2012), Kristova et al. (2014), Shatskiy et al. (2015), and Sánchez-
Pastor et al. (2016).

Aragonite Ca(CO3)

Origin: Spania Dolina, Slovakia.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 1050 mW.

Raman shifts (cm21): 1573, 1461, 1083s, 701, 250.
Source: Buzgar and Apopei (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of aragonite see also Edwards et al. (2005), Behrens et al. (1995), White (2009), Wehrmeister et al.
(2010), Frezzotti et al. (2012), Kristova et al. (2014), Shatskiy et al. (2015), and Sánchez-Pastor
et al. (2016).

Arapovite-related silicate (Ca0.5Na0.5)2NaUSi8O20

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

single crystals using 532 nm laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 1139s, 1081, 655, 468, 303, 202w.
Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is

solved.

Aravaipaite Pb3AlF9∙H2O

Origin: Grand Reef mine, Aravaipa mining district, Arizona, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~3370s, ~3250w, ~2935w, ~1640w, ~620, ~550, ~530, ~400, ~385, ~370,

~330w, ~317w, ~260sh, ~233s, ~175, ~170sh.
Source: Kampf et al. (2011c).
Comments: The sample identification was done by single-crystal X-ray diffraction. The crystal

structure is solved.

Arcanite K2(SO4)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 532 nm laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm21): 1147, 1108, 1094, 985s, 623, 458.
Source: Buzgar et al. (2009).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. No independent analytical data are provided for the sample used. For the
Raman spectrum of arcanite see also Martínez-Arkarazo et al. (2007).

Archerite H2K(PO4)

Origin: Petrogale cave, Madura, Western Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3235, 3191, 3151, 3089, 3018, 1724sh, 1704, 1660, 1421, 983sh, 917s, 562sh,
533, 477sh, 461sh, 393s, 347, 328sh, 270w, 180, 144.

Source: Frost et al. (2012f).
Comments: No independent analytical data are provided for the sample used.

Ardealite Ca2(PO3OH)(SO4)∙4H2O

Origin: Moorba cave, Jurien Bay, Western Australia, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 1141, 1102, 1001s, 998sh, 862, 670, 613, 598, 528sh, 505, 448, 421, 363,
230, 198sh, 188, 155, 143.
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Source: Frost et al. (2011g).
Comments: No independent analytical data are provided for the sample used.

Ardennite-(As) Mn2+4Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6

Origin: Salm-Château, Vielsalm, Stavelot massif, Luxembourg province, Belgium (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3298, 3211sh, 3149, 3041, 1605s, 1394sh, 1287sh, 1255s, 1218s, 1197s,
947sh, 935, 920sh, 890sh, 877, 865sh, 785sh, 779, 721, 713, 625, 601, 561, 544sh, 519, 471sh,
460, 445, 430, 414, 396, 365sh, 352, 314, 301, 228, 183, 167, 144.

Source: Frost et al. (2014s).
Comments: No independent analytical data are provided for the sample used. The strong band at

1605 cm�1 corresponds to an impurity. The spectrum contains broad bands of unknown origin near
2100 cm�1.

Arfvedsonite NaNa2(Fe
2+

4Fe
3+)Si8O22(OH)2

Origin: Vodno, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was from 50 to 100 mW.
Raman shifts (cm21): 1055, 1020w, 974s, 921, 892, 815, 793, 772, 749, 725, 676s, 640w, 610w,

583, 539, 478, 435, 370, 335, 317w, 255sh, 215, 172, 149, 112.
Source: Makreski et al. (2006a).
Comments: The sample used is an intermediate member between arfvedsonite and magnesioarf-

vedsonite. The sample was characterized by powder X-ray diffraction data. For the Raman
spectrum of arfvedsonite see also Jovanovski et al. (2009) and Leissner et al. (2015).

Argentojarosite AgFe3+3(SO4)2(OH)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample prepared as a disk 10 mm in diameter with KBr powder. The wavelength of laser excitation
line was 514.5 nm. The laser radiation power at the sample was 38 mW.

Raman shifts (cm21): 1161w, 1107, 1012, 623, 574w, 449sh, 442s, 363w, 306, 228.
Source: Sasaki et al. (1998).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of argentojarosite see also Frost et al. (2006r).

Argutite GeO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in a 180�-scattering geometry using 514.5 nm Ar+ laser radiation. The laser radiation power
is not indicated.
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Raman shifts (cm21): 873, 700s, 170w.
Source: Madon et al. (1991).
Comments: The procedure of verification of the structure of the rutile form GeO2 has been described

by Richet (1990).

Arisite (Ce) NaCe2(CO3)2[F2x(CO3)1-x]F

Origin: Aris phonolite, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3449, 3255s, 2642, 2458s, 2068, 1799, 1596, 1455, 1072s, 704s,

396, 187s, 152s.
Source: Piilonen et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data, LA-ICP-MS, and

electron microprobe analyses. The band at 1596 cm�1 indicates possible presence of H2O
molecules.

Armalcolite (Mg,Fe2+)Ti2O5

Origin: Skallevikshalsen, Lützow-Holm Complex, East Antarctica.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

thin section using 533 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 759, 633s, 393, 201s, 169sh.
Source: Kawasaki et al. (2013).
Comments: The sample was characterized by electron microprobe analyses.

Arrojadite-(KFe) (KNa)Fe2+(CaNa2)Fe
2+

13Al(PO4)11(PO3OH)(OH)2

Origin: Rapid Creek, Richardson Mts., Yukon Territory, Canada.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3574, 3564s, 3553, 3530, 3515, 1714, 1580, 1444, 1187w, 1148w, 1123w,
1092w, 1066, 1024sh, 1005s, 991s, 975s, 951sh, 903, 852, 638, 615, 604sh, 583s, 580, 557s,
548, 540, 513, 479, 463, 449, 424s, 403, 349, 306, 275, 251, 239, 202, 185, 162, 140.

Source: Frost et al. (2013ag).
Comments: There are discrepancies between some frequencies given in the text and figures. The

sample identification was done by XRD and qualitative EDS analysis.

Arsenbrackebuschite Pb2(Fe
3+,Zn)(AsO4)2(OH,H2O)

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 972w, 846sh, ~820s, 730, 620, ~464sh, 420, 405sh, ~345, 308, ~240w,

~102–170.
Source: Costin et al. (2014).
Comments: No independent analytical data are provided for the sample used.
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Arsendescloisite Sr-analogue SrZn(AsO4)(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 or 473 nm laser radiation. The nominal laser radiation power was 10 or 3 mW.
Raman shifts (cm21): ~3400sh, 3300, ~3240w, 818s, 804, 790, ~780w, ~450–300w.
Source: Đorđević et al. (2016).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.

Arsenolamprite As

Origin: Muiane pegmatite, Mozambique.
Experimental details: Raman scattering measurements have been performed on a melt inclusion in a

morganite crystal using 514 or 488 nm Ar+ laser radiation. The laser radiation power at the sample
was 14 mW.

Raman shifts (cm21): 253s, 225w, 220.
Source: Thomas and Davidson (2010).

Arseniosiderite Ca2Fe
3+

3O2(AsO4)3∙3H2O

Origin: Romanêche, near Maĉon, Saoneet-Loirse, France.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 927s, 852s, 828, 772sh, 621, 535, 479w, 441w, 389s, 331w, 298sh, 250s,

227, 197.
Source: Gomez et al. (2010b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of arseniosiderite see also Filippi et al. (2007).

Arsenogorceixite BaAl3(AsO4)(AsO3OH)(OH)6

Origin: Michael mine, Weiler, near Lahr, Schwarzwald (Black Forest), Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 0.01 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 3691, 3621, 3473sh, 3301, 2973sh, 2961sh, 2930, 2891, 2863, 2849, 2725,
1597, 1447, 1332, 1307, 1208, 1160, 1148, 1057, 1014, 972s, 873, 818, 814s, 805, 776, 764, 617,
600, 556, 510, 462, 441s, 407, 388, 340s, 318, 264, 244, 189, 167, 137.

Source: Frost et al. (2012g).
Comments: No independent analytical data are provided for the sample used. There are discrepancies

between the spectrum and its description in the cited paper.

Arsenolite As2O3

Origin: Cobalt City, Ontario, Canada.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 781, 560, 469, 413w, 368s, 265s, 180.
Source: Kloprogge et al. (2006).
Comments: The sample was characterized by SEM/EDS. Raman shifts are indicated for the maxima

of individual peaks obtained as a result of the spectral curve analysis. For the Raman spectrum of
arsenolite see also Guńka et al. (2012).

Arsenopyrite FeAsS

Origin: Nistru mine, Maramures, Romania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in a 180�-scattering geometry using 532 nm laser radiation. The nominal laser radiation
power was 210 mW.

Raman shifts (cm21): 478, 453, 427, 392, 362, 333, 303, 280s, 253, 231, 217s, 200sh, 187, 180sh,
170, 127, 108sh, 94, 84, 73.

Source: Kharbish and Andráš (2014).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analysis. For the Raman spectrum of arsenopyrite see also Mernagh and
Trudu (1993).

Arsentsumebite Pb2Cu(AsO4)(SO4)(OH)

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3458, 3324, 2925, 2876, 2857, 1446, 1161, 1121w, 1070w, 972s, 906, 853,
814s, 620, 604, 464, 442, 412, 390, 340, 324, 308, 248, 241, 197, 188, 171, 145, 102.

Source: Frost et al. (2011n).
Comments: No independent analytical data are provided for the sample used. There are discrepancies

between the spectrum and its description in the cited paper. Spectroscopic data show possible
presence of impurities in the investigated material. For the Raman spectrum of arsentsumebite see
also Costin et al. (2014).

Arsenuranylite Ca(UO2)4(AsO4)2(OH)4∙6H2O

Origin: Cherkasar deposit, Uzbekistan.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3489, 2929, 2872, 926, 883, 795s, 787s, 561, 558, 494, 493, 462, 422,
388, 344, 298, 259, 213, 170, 150.

Source: Frost et al. (2009d).
Comments: No independent analytical data are provided for the sample used.
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Arthurite CuFe3+2(AsO4)2(OH)2∙4H2O

Origin: Majuba Hill, Pershing Co., Nevada, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished sample. The wavelength of laser excitation line and the laser radiation power are not
indicated.

Raman shifts (cm21): 3496, 3307, 3232, 3162, 1050, 907, 850, 812, 784, 551w, 508s, 450, 426,
368, 343, 288, 259, 245s, 221, 186, 153, 138, 101, 70.

Source: Jambor et al. (2002).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of

arthurite see also Frost et al. (2003b) and Palmer and Frost (2011).

Artinite Mg2(CO3)(OH)2∙3H2O

Origin: Aichi prefecture, Japan.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3593s, 3589sh, 3573sh, 3229, 3030, 2291, 1673, 1453, 1092s, 1060sh, 913w,
698, 469, 432, 376, 324, 273, 244, 209, 188.

Source: Frost et al. (2009a).
Comments: No independent analytical data are provided for the sample used. There are discrepancies

between the pattern of the spectrum and its description. For the Raman spectrum of artinite see also
Edwards et al. (2005).

Arzakite Hg2+3S2(Br,Cl)2

Origin: No data.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514.5 or 785 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~585, ~480w, ~390, ~270s, ~215s.
Source: Potgieter-Vermaak et al. (2012).

Asbolane Mn4+(O,OH)2(Co,Ni,Mg,Ca)x(OH)2x∙nH2O

Origin: Democratic Republic of Congo.
Experimental details: No data.
Raman shifts (cm21): 3484w, 1206w, 1084w, 950w, 592s, 539s, 489, 376.
Source: Burlet et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

asbolane see also Burlet and Vanbrabant (2015) and Roqué-Rosell et al. (2010).

Asbolane Mn4+(O,OH)2(Co,Ni,Mg,Ca)x(OH)2x∙nH2O

Origin: Democratic Republic of Congo.
Experimental details: No data.
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Raman shifts (cm21): 3484w, 1206w, 1084w, 950w, 592s, 539s, 489, 376.
Source: Burlet et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

asbolane see also Burlet and Vanbrabant (2015) and Roqué-Rosell et al. (2010).

Asbolane Mn4+(O,OH)2(Co,Ni,Mg,Ca)x(OH)2x∙nH2O

Origin: A Cu-Co supergene deposit, Ruashi, Katanga, Democratic Republic of Congo.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished sample using 532 nm laser radiation. The laser radiation power was 0.2 mW.
Raman shifts (cm21): 3455–3475w, 1580–1600w, 1300–900w (a triplet), 627sh, 596s, 553s,

497, 456sh, 374w.
Source: Burlet and Vanbrabant (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. Raman shifts are indicated for the maxima of individual peaks obtained as a result of the
spectral curve analysis. For the Raman spectra of asbolane see also Burlet et al. (2014) and
Roqué-Rosell et al. (2010).

Aspedamite □□12(Fe
3+,Fe2+)3Nb4[Th(Nb,Fe

3+)12O42][(H2O),(OH)]12

Origin: Herrebøkasa quarry, Aspedammen, Østfold, southern Norway (type locality).
Experimental details: No data.
Raman shifts (cm21): 3465w, 3556sh, 1610w, 933, 865sh, 812, 666s, 448w, 359, 234s, 169s, 117.
Source: Cooper et al. (2012b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Asselbornite Pb(UO2)4(BiO)3(AsO4)2(OH)7∙4H2O

Origin: Horní Halže, the Krušnéhory Mountains, Czech Republic (type locality).
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 785 nm laser radiation. The laser radiation power at
the sample was 4 mW.

Raman shifts (cm21): 1039w, 999w, 962w, 874sh, 842sh, 797s, 673w, 599w, 503, 450w, 395w,
321, 266.

Source: Sejkora and Čejka (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Atacamite Cu2Cl(OH)3

Origin: Atacama, Chile.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 532.8 nm laser radiation. The laser radiation power at the sample was from 0.05 to 1 mW. The
spectrum was obtained in the scattering geometry with polarization of the laser beam oriented at 45�

with respect to the c axis.
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Raman shifts (cm21): 3433, 3348, 975s, 909s, 846, 819s, 587, 513s, 353w, 177s, 148s,
135, 117, 105s.

Source: Bertolotti et al. (2012).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of atacamite see also Frost et al. (2002b), Bouchard and Smith (2003), and Christy et al. (2004).

Atelestite Bi2O(AsO4)(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3095w, 1082w, 887sh, 834s, 802, 782, 767, 623w, 480, 450, 395sh, 370sh,
352, 324, 310, 278s, 219, 200, 173, 118.

Source: Frost et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Atelisite (Y) Y4Si3O8(OH)8

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 8 mW. The spectra
obtained in the scattering geometries X(ZZ)X, X(YY)X, and Y(YZ)X are similar.

Raman shifts (cm21): 3225w, 2964w, 2905w, 885s, 755sh, 709w, 490w.
Source: Malcherek et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Athabascaite Cu5Se4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a nanocrystallione

aggregate. The wavelengths of laser radiation and laser radiation power are not indicated.
Raman shifts (cm21): 128.
Source: Ge and Li (2003).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron

microprobe analysis.

Atokite Pd3Sn

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.068 nm Nd-YAG laser radiation. The laser radiation power at the sample was
between 1 and 2 mW.

Raman shifts (cm21): The obtained spectrum does not show characteristic bands.
Source: Vymazalová et al. (2014).
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Augelite Al2(PO4)(OH)3

Origin: Ehrenfriedersdorf, Saxony, Germany.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented inclusion in quartz using 514.5 nm Ar+ laser radiation. The nominal laser radiation power
at the sample was between 100 and 500 mW.

Raman shifts (cm21): 3537s, 3469s, 3428, 1107, 635s, 367, 252, 227.
Source: Thomas et al. (1998).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum

of augelite see also Frost and Weier (2004b).

Augite (Ca,Mg,Fe)2Si2O6

Origin: Sasa, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power at the sample was 50 or
100 mW.

Raman shifts (cm21): 1025sh, 1009s, 907w, 851w, 654s, 549, 523, 510sh, 492w, 372, 336, 301, 229,
186, 178, 146, 122, 116w.

Source: Makreski et al. (2006b).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
neutron activation analysis. For the Raman spectra of augite see also Buzatu and Buzgar (2010) and
Andò and Garzanti (2014).

Augite (Ca,Mg,Fe)2Si2O6

Origin: Techereu area, Apuseni Mts., Romania.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 532 nm laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm21): 1102sh, 1043sh, 1006s, 928w, 863, 769, 707w, 667s, 555, 533, 392, 355,
327, 299sh, 226w.

Source: Buzatu and Buzgar (2010).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of augite see also Makreski et al. (2006b) and Andò and Garzanti (2014).

Aurichalcite (Zn,Cu)5(CO3)2(OH)6

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm laser radiation. The nominal laser radiation power was 30 mW.
Raman shifts (cm21): 3331, 1511, 1479, 1074s, 843, 750, 734, 709, 503, 463, 437w, 389, 354w,

234, 211, 175, 141.
Source: Bouchard and Smith (2003).
Comments: For the Raman spectra of aurichalcite see also Frost et al. (2007j), Buzgar and Apopei

(2009), and Rotondo et al. (2012).
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Aurostibite AuSb2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 380 K on an arbi-

trarily oriented crystal using 514.5, 501.5, 476.5, and 457.9 nm laser radiation. The nominal laser
radiation power at the sample was ~200, ~190, ~200, and ~150 mW, respectively. The incident
laser light was scattered off a [100] natural cleavage.

Raman shifts (cm21): 158w, 151s, 122sh, 114s.
Source: Freund et al. (1977).
Comments: No independent analytical data are provided for the sample used.

Austinite CaZn(AsO4)(OH)

Origin: Gold Hill Mine, Tooele Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3270, 828s, 814, 802, 779, 418, 403.
Source: Liu et al. (2015a).
Comments: The sample used was characterized by powder and single-crystal X-ray diffraction data.

IR spectrum shows that the sample contains minor SO4
2� substituting arsenate anions. For the

Raman spectrum of austinite see also Martens et al. (2003c).

Autunite Ca(UO2)2(PO4)2∙10–12H2O

Origin: Merrivale Quarry, Tavistock, Cornwall, UK.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 785 nm laser radiation. The nominal laser radiation
power at the source was ~370 mW.

Raman shifts (cm21): 1008s, 990, 900sh, ~400, ~270, 210.
Source: Driscoll et al. (2014).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of

autunite see also Frost (2004d), Frost and Weier (2004c, d).

Avicennite Tl2O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on finely ground powder

pressed into pellets using 488 and 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): A spectrum of Tl2O3, shows no distinct features above 400 cm21 except an
absorption edge near 400 cm21.

Source: White and Keramidas (1972).

Avogadrite KBF4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in N2 atmosphere using 514 nm laser radiation. The laser
radiation power is not indicated.
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Raman shifts (cm21): 1097, 1043, 775s, 534, 360.
Source: Zavorotynska et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

avogadrite see also Bonadeo and Silberman (1970) and Bates and Quist (1974).

Awaruite Ni3Fe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The laser radiation power at the sample was 3 mW.
Raman shifts (cm21): 701, 566s.
Source: Abelló et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data.

Axinite-(Fe) Ca4Fe
2+

2Al4[B2Si8O30](OH)2

Origin: Drum valley, Tulare Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3368, 1084, 1057, 1005sh, 993sh, 979s, 964s, 959sh, 931, 909, 898, 869,
813, 768, 714s, 678, 645, 619, 590, 574, 562, 547, 512, 485, 445, 422, 418, 390, 344, 319, 275s,
256, 212, 170, 140, 110.

Source: Frost et al. (2007b).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of axinite (Fe) see also Andò and Garzanti (2014).

Azurite Cu3(CO3)2(OH)2

Origin: Namibia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1579w, 1459w, 1425w, 1098s, 939, 835s, 766, 544, 404s, 339w, 285, 250s.
Source: Buzgar and Apopei (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of azurite see also Frost et al. (2002d), Bouchard and Smith (2003), and Frezzotti et al. (2012).

Backite Pb2AlTeO6Cl

Origin: Grand Central mine, Tombstone Hills, Cochise Co., Arizona, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain using 785 nm laser radiation. The laser radiation power at the sample was ~1 mW.
Raman shifts (cm21): 967, 733s, 625, 425, 350, 120s.
Source: Tait et al. (2015).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses. The crystal structure is solved. The Raman band at 967 cm�1 is assigned to the
combination mode ~(350+625) cm�1.

Baddeleyite ZrO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal in a thin section using 514.5 nm Ar+ laser radiation. The nominal laser radiation power at the
sample was from 30 to 50 mW. A 90�-scattering geometry was employed.

Raman shifts (cm21): 757w, 643, 622, 559, 538, 503, 476, 384s, 350s, 308, 264w, 225, 190s, 182sh,
105.

Source: Galuskina et al. (2013a).
Comments: The sample was characterized by SEM/EBSD and electron microprobe analysis. The

Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For
the Raman spectrum of baddeleyite see also Zhang et al. (2010a).

Bafertisite BaFe2+2Ti(Si2O7)O(OH,F)2

Origin: Gremyakha-Vyrmes alkaline complex, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1184w, 1116, 1027, 988, 966, 917s, 812s, 688s (broad), 593s, 478, 418,

355, 336, 264, 230w, 178, 163, 135.
Source: Cámara et al. (2016c).
Comments: The sample was characterized by single-crystal X-ray diffraction data, electron micro-

probe analyses, IR, and Mössbauer spectra.

Baghdadite Ca6Zr2(Si2O7)2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power at the sample was 10 mW.
Raman shifts (cm21): 1034w, 1011, 975, 958, 944, 921s, 855, 669s, 624s, 568, 542, 521, 476w,

452, 433, 409, 398, 376, 357s, 321, 295, 280w, 262, 245, 214, 198, 171, 148, 127, 122, 106s,
97, 86.

Source: Dul et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is

solved by the Rietveld method.

Bahianite Al5Sb
5+

3O14(OH)2

Origin: Paramirim region, Bahia Province, Brazil (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.
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Raman shifts (cm21): 3495, 3462, 3190, 2955, 2718, 2531, 2389, 2273, 2079, 1929, 1808, 1756s,
1489, 1438, 998, 975w, 956w, 952w, 883sh, 856sh, 843sh, 818s, 770, 682, 669sh, 589, 567, 534s,
498, 478s, 471sh, 412s, 405sh, 386, 376, 352, 319, 294, 258s, 220, 199, 165, 158sh, 146sh.

Source: Frost and Bahfenne (2010c).

Bairdite Pb2Cu
2+

4Te
6+

2O10(OH)2(SO4)∙H2O

Origin: Otto Mt., near Baker, California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on a partly oriented

platelet (from the [100] face of a crystal) using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was 5 mW.

Raman shifts (cm21): 977, 721s, 634, 558, 518, 378, 336, 238, 208.
Source: Kampf et al. (2013a).
Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is

solved. Chemical data are questionable (total sum is 92.97%).

Balestraite KLi2V
5+Si4O12

Origin: Cerchiara mine, Eastern Liguria, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal in a 180�-scattering geometry using 632.8 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 1136, 973, 888, 868s, 707, 539, 437, 309, 261.
Source: Lepore et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved.

Balkanite Ag5Cu9HgS8

Origin: Röhrerbühel, near Kitzbühel, Tyrol, Eastern Alps, Austria.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 515 nm laser radiation. The laser radiation power at
the sample was 6 mW.

Raman shifts (cm21): 325, 306.
Source: Steiner et al. (2010).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analysis. For the Raman spectrum of balkanite see also Biagioni and
Bindi (2016).

Bambollaite Te analogue Cu(Te,Se)2

Origin: Ozernyi district, Salla-Kuolayarvi, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm21): 157, 134s.
Source: Voloshin et al. (2015b).
Comments: The sample was characterized by electron microprobe analyses.
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Baotite Ba4(Ti,Nb,W)8O16(SiO3)4Cl

Origin: Bayan Obo REE–Fe–Nb deposit, Inner Mongolia, China (type locality).
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 1064 nm laser radiation. The nominal laser radiation
power was from 300 to 380 mW.

Raman shifts (cm21): 982, 777, 550, 450, 392, 344, 295, 241, 172.
Source: Yuran and Li (1998).
Comments: No independent analytical data are provided for the sample used.

Barahonaite-(Al) (Ca,Cu,Na,Fe3+,Al)12Al2(AsO4)8(OH,Cl)x∙nH2O

Origin: Sapucaia pegmatite mine, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3549sh, 3413, 3217, 2993sh, 2702w, 1657w, 1605w, 1450, 1351w, 1304w,

1228w, 1154w, 1072w, 998w, 890sh, 863s, 828s, 802sh, 723w, 529, 506sh, 449, 399, 360, 325,
300, 233, 159.

Source: López et al. (2014e).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. No independent analytical data are provided for the sample used. For the
Raman spectrum of barahonaite-(Al) see also Viñals et al. (2008).

Barahonaite-(Fe) (Ca,Cu,Na,Fe3+,Al)12Fe
3+

2(AsO4)8(OH,Cl)x�nH2O

Origin: Dolores prospect, near the village of Pastrana, Murcia Province, southeastern Spain (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 908sh, 860s, 828s, 799sh, 517, 508sh, 427, 360w, 325w, 219w, 162, 138, 87w,
65w, 40w.

Source: Viñals et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Bararite (NH4)2SiF6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed in 90�-scattering geom-

etry using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was ~1 W.
Raman shifts (cm21): (XX)—3236, 1706, 1428, 1406, 650s, 466, 406s, 180; (YY)—1706, 1430,

650, 466, 406s, 180; (ZZ)—3235, 1428, 1406, 650s, 406s.
Source: Trefler and Wilkinson (1969).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of bararite see also Jenkins (1986).
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Barberiite (NH4)BF4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using Ar+ laser radiation. The wavelengths of laser excitation line and the laser radiation power are
not indicated.

Raman shifts (cm21): 3400–3300w (broad), 3250s, 767s, 529, 523, 355.
Source: Schutte and Van Rensburg (1971).
Comments: No independent analytical data are provided for the sample used.

Barbosalite Fe2+Fe3+2(PO4)2(OH)2

Origin: Sapucaia mine, Galileia, Minas Gerais (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 2261, 2216, 2090, 1138, 1083sh, 1067, 1044, 1033sh, 1020s, 988w, 968w,
831w, 702, 606, 589, 575sh, 503, 475, 461, 439, 398sh, 381, 361sh, 346s, 312s, 291, 275, 256, 241,
198sh, 187, 179, 166, 151, 145, 133s, 125, 113.

Source: Frost et al. (2013q).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Bariandite Al-free analogue V10O24∙9H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

with crystalline nanoparticles using 514.5 nm Ar+ laser radiation. The laser radiation power at the
sample was 0.2 mW.

Raman shifts (cm2l): 1022, 908s, 518s, 429w, 409w, 270s.
Source: Menezes et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data.

Barićite (Mg,Fe)3(PO4)2∙8H2O

Origin: Big Fish River, Rapid creek, Richardson Mts., Yukon, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3480, 3300, 3231, 3121, 3025, 1057, 953s, 859w, 632, 576, 545, 527,
461, 428, 390, 340, 314, 281, 243, 212, 201, 170, 140.

Source: Frost et al. (2002f).
Comments: No independent analytical data are provided for the sample used.
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Barioferrite BaFe3+12O19

Origin: Synthetic.
Experimental details: Polarized Raman spectra were collected at temperatures from 10 to 200 K on a

single crystal in z(xx)–z and z(yx)–z scattering geometries using 610 nm laser radiation. The laser
radiation power at the sample was ~1 mW.

Raman shifts (cm21): ~730sh, ~695, ~627, ~538, ~346 [for the z(xx)–z configuration at 200 K].
Source: Chen et al. (2013b).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of barioferrite see also Kreisel et al. (1998a, b, 1999), and Zhao et al. (2008b).

Barioperovskite BaTiO3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 785 nm laser radiation. The nominal laser radiation power was 500 mW.
Raman shifts (cm21): 719, 517, 292s.
Source: Cernea (2005).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of barioperovskite see also Ma and Rossman (2008).

Barnesite Na2V
5+

6O16∙3H2O

Origin: Cactus Rat Mine, Thompson district, Grand Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3494, 3435, 3403, 3330, 3253.
Source: Frost et al. (2004e).
Raman shifts (cm21): 1010s, 761, 728, 683, 670, 620, 534, 492, 433, 413, 341, 287, 284, 260, 248,

217, 192, 153.
Source: Frost et al. (2005d).
Comments: No independent analytical data are provided in the cited papers.

Barringtonite Mg(CO3)∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

containing other carbonates using 785 nm laser radiation. The nominal laser radiation power was
70 mW.

Raman shifts (cm21): ~1095.
Source: Kristova et al. (2014).
Comments: The sample identification was done by powder X-ray diffraction data.

Barrydawsonite-(Y) Na1.5Y0.5CaSi3O9H

Origin: Merlot Claim, North Red Wine Pluton, Labrador, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 633 nm laser radiation. The nominal laser radiation power was 50 mW.
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Raman shifts (cm21): 1037s, 1004s, 968, 907, 686, 655s, 524, 506, 463, 445, 416, 362, 312, 272,
244, 207, 148, 107.

Source: Mitchell et al. (2015).
Comments: Unpolarized and polarized single-crystal spectra showed only minor differences in

relative band intensities. The sample was characterized by powder X-ray diffraction data and
electron microprobe analysis. The crystal structure is solved.

Bartelkeite PbFe2+Ge6+(Ge4+2O7)(OH)2∙H2O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm21): 3490, 3293, 1558, 812, 758s, 549, 492, 393.
Source: Origlieri et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved.

Barylite BaBe2Si2O7

Origin: Zomba, Malawi.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 150 mW.
Experimental details: Experimental details are not indicated.
Raman shifts (cm21): 1014w, 996w, 982w, 958s, 937, 888, 685s, 627, 573w, 542w, 464, 447,

423, 410, 384, 337s, 262w, 234, 202, 191.
Source: Yang et al. (2013b).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Baryte Ba(SO4)

Origin: Dufton, England.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1167, 1143, 1085, 989s, 648, 619, 461.
Source: Buzgar et al. (2009).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

baryte see also Jehlička et al. (2009b), White (2009), Ciobotă et al. (2012), and Andò and
Garzanti (2014).

Baryte Ba(SO4)

Origin: No data.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 785 nm laser radiation. The laser radiation power at
source was 320 mW.

Raman shifts (cm21): 1166w, 1138w, 1104w, 1084w, 988s, 647w, 617w, 453.
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Source: Jehlička et al. (2009b).
Comments: For the Raman spectra of baryte see also Buzgar et al. (2009), White (2009), Ciobotă et al.

(2012), and Andò and Garzanti (2014).

Barytocalcite BaCa(CO3)2

Origin: Alston Moor, England, UK (type locality).
Experimental details: Raman scattering measurements have been performed on a powdered sample.

The wavelengths of laser radiation and laser radiation power are not indicated.
Raman shifts (cm21): 1510w, 1085s, 715, 700, 688, 314w, 261, 225, 209, 164, 154sh, 127w, 107s,

86w, 70.
Source: Scheetz and White (1977).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of barytocalcite see also Frost and Dickfos (2008).

Bassanite Ca(SO4)∙0.5H2O

Origin: Artificial (obtained by dehydration at ~338 K of gypsum from an unknown salt core location
in India).

Experimental details: Raman scattering measurements have been performed in 90�-scattering geom-
etry using 514.5 nm Ar+ laser radiation. The nominal laser radiation power at the sample was
80 mW.

Raman shifts (cm21): 3552, ~1621, 1026w.
Source: Sarma et al. (1998).
Comments: The new line at 1026 cm�1 appears in the spectrum of partially dehydrated gypsum. For

the Raman spectrum of bassanite see also Apopei et al. (2015).

Bassoite SrV4+
3O7∙4H2O

Origin: Molinello mine, Val Graveglia, eastern Liguria, Italy (type locality).
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using unpolarized 785 nm laser radiation. The nominal laser
radiation power at the sample was ~3 mW.

Raman shifts (cm21): 3534, 3407, 1645.
Source: Bindi et al. (2011a).
Comments: Raman spectrum was obtained only in the regions 1250–2000 and 3000–4000 cm�1. The

sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The
crystal structure is solved.

Bastnäsite-(Ce) Ce(CO3)F

Origin: No data.
Experimental details: Raman scattering measurements have been performed using 488 nm laser

radiation. The laser radiation power was 300 mW.
Raman shifts (cm21): 2621s, 2059, 2009, 1899, 1476s, 1447s, 1345, 1279w, 1098s, 835w, 732w,

670w, 600w, 353, 259.
Source: Hong et al. (1999).
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Comments: For the Raman spectra of bastnäsite-(Ce) see also Yang et al. (2008a) and Frost and
Dickfos (2007a).

Batiferrite Co-bearing BaFe9.4Ti1.3Co1.3O19

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a platy single crystal

oriented perpendicular to the c-axis using 514.5 nm Ar+ laser radiation. The laser radiation power at
the sample was 5 mW.

Raman shifts (cm21): 732sh, 694s, 626, 418, 362.
Source: Kreisel et al. (1999).
Comments: The spectrum was obtained only in the region from 200 to 900 cm�1. The sample was

characterized by powder X-ray diffraction data and electron microprobe analysis.

Baumhauerite Pb12As16S36

Origin: Lengenbach, Binntal, Switzerland (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using slightly defocused 632.8 nm He-Ne laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 380, 362, 331, 291s, 254, 222, 192, 161, 137, 114w, 93w, 82.
Source: Kharbish (2016).
Comments: The Raman shifts have been determined for the maxima of individual peaks obtained as a

result of the spectral curve analysis.

Bavenite Ca4Be2+xAl2-xSi9O26-x(OH)2+x (x ¼ 0 to 1)

Origin: An unknown locality in Siberia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 and 785 nm laser radiation. The laser radiation power at the sample was up to
35 mW for the 785 nm laser.

Raman shifts (cm21): 945, 674, 544, 505, 448, 401w, 395, 348, 330, 286, 259w, 232, 182w,
173, 140s, 108s.

Source: Jehlička et al. (2012).
Comments: No independent analytical data are provided for the sample used. The spectrum may

correspond to bohseite, a mineral related to bavenite.
Comments: For the Raman spectrum of bavenite see also Jehlička and Vandenabeele (2015).

Bayerite Al(OH)3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 25 mW.
Raman shifts (cm21): 3425s, 3439, 3449sh, 3546s, 3552, 3654, 904, 868, 547s, 525, 447w, 438, 392,

362w, 325s, 299s, 250, 240, 204w, 147w, 141, 118, 108.
Source: Rodgers (1993).
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Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of
bayerite see also Rodgers et al. (1989) and Ruan et al. (2001).

Bayldonite Cu3PbO(AsO3OH)2(OH)2

Origin: Tsumeb mine, Tsumeb, Namibia.
Experimental details: Methods of sample preparation are not indicated. Micro-Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation
power at the sample was 0.97 mW.

Raman shifts (cm21): 838s, 804, 759w, 495, 428, 397w, 314, 230, 165, 110.
Source: Makreski et al. (2015a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. Raman spectrum of bayldonite was also published by Frost et al. (2014d) who neither
presented nor assigned the IR bands below 700 cm�1: see comment made by Makreski et al.
(2015a). The bayldonite formula (Cu,Zn)3Pb(AsO3OH)2(OH)2 given by Frost et al. (2014d) is not
charge-balanced. The correct formula should be (Cu,Zn)3Pb(AsO3OH)2O2 or (Cu,Zn)3Pb
(AsO3OH)2O(OH)2.

Bayleyite Mg2(UO2)(CO3)3∙18H2O

Origin: Barbora shaft, Jáchymov ore district, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 3 mW.
Raman shifts (cm21): 3560sh, 3425s (broad), 3260, 3150sh, 1642w, 1627w, 1619w, 1608w, 1586w,

1380w, 1067s, 825–832s, 752s, 718sh, 665sh, 253, 234, 191, 166, 114, 59w.
Source: Škácha et al. (2014b).

Baylissite NH4-analogue (NH4)2Mg(CO3)2�4H2O

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 3240, 3174, 2885, 1703w, 1440w, 1421w, 1098s, 686, 488.
Source: Fischer (2007).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis.

Bazhenovite Ca8S5(S2O3)(OH)12∙20H2O

Origin: Chelyabinsk coal basin, South Urals, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 3.5 mW.
Raman shifts (cm21): 3473, 3227, 2500, 1620w, 940, 507s, 466s, 218.
Source: Bindi et al. (2005).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved. The Raman line at 2500 cm�1 is attributed by authors to H2S in a condensed
form which may be present in the sample.

786 4 Raman Spectra of Minerals



Bazirite BaZrSi3O9

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1148, 1092, 1078, 1067, 1046, 1005, 995, 957s, 948, 937, 639, 579s, 544, 529,

521sh, 507, 480, 464, 448w, 425w, 384s, 369, 356w, 348w, 342, 328, 259, 239, 201s, 184, 173w,
161, 152sh, 143, 133, 117, 109.

Source: Takahashi et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Bazzite Be3(Sc,Fe
3+,Mg)2Si6O18Na0.32∙nH2O

Origin: Furkabasistunnel, Switzerland.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 488 nm laser radiation. The laser radiation power is not indicated. Polarized spectra
were collected in 90�-scattering geometry, and the polarization conditions were: (ZZ), (ZY), (XY),
and (ZZ+ZX).

Raman shifts (cm21): (ZZ): 1093, 1060, 672, 570–610 (broad), 392, 315; (ZY): 970, 917, 902sh,
775, 672, 653sh, 603, 556w, 485w, 451, 375, 243, 224, 131; (XY): 1180, 1163, 970, 909, 777, 731,
672, 653sh, 554–601 (broad), 439, 377, 390, 315, 266w; (ZZ+ZX): 3594s, 3535w.

Source: Hagemann et al. (1990).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Beaverite-(Cu) Pb(Fe3+2Cu)(SO4)2(OH)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3421, 3380, 3354, 1176, 1164, 1156, 1117, 1103s, 1081, 1076, 1018, 1010s,
999s, 645, 624, 619, 577, 560, 481, 456, 441, 433, 392, 356, 335, 328, 298, 278, 259, 242, 216,
202, 173.

Source: Frost et al. (2005m).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of beaverite-(Cu) see also Hudson-Edwards et al. (2008).

Becquerelite Ca(UO2)6O4(OH)6∙8H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.
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Raman shifts (cm21): 3547, 3429, 3211, 879, 854, 838s, 831, 814, 546, 508, 455, 399, 353, 328,
303, 260, 238, 192, 156, 142, 111.

Source: Frost et al. (2007h).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of becquerelite see also Amme et al. (2002).

Behierite Ta(BO4)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 488 and 514.5 nm laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1004, 978s, 900, 848, ~700w, 568s, 461s, 284, 204, 191.
Source: Heyns et al. (1990).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of behierite see also Ross (1972) and Blasse and van den Heuvel (1973).

Behoite Be(OH)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3501, (3489), 3449s, 1133w, 1056, 1031sh, 1000w, 845w, 769, 701, 682, 602,

549w, 459, 446, 400s, 364w, 349s, 280w, 134, 77.
Source: Lutz et al. (1998).
Comments: No independent analytical data are provided for the sample used.

Bĕhounekite U(SO4)2(H2O)4

Origin: Geschieber vein, Jáchymov (St Joachimsthal), Czech Republic (type locality).
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 480 (in the region of 4000–1900 cm�1) and
785 (in the region of 1900–200 cm�1) nm laser radiations. The laser radiation power is not
indicated.

Raman shifts (cm21): 3370s, 3206, 1269, 1251, 1177, 1158, 1102, 1037, 1023s, 994, 638, 619, 598,
451, 438, 417, 268, 250, 198, 178, 125, 116, 98.

Source: Plášil et al. (2011b).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analyses.

Belakovskiite Na7(UO2)(SO4)4(SO3OH)(H2O)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 780 nm laser radiation. The laser radiation power at
the sample was from 2 mW to 6 mW.

Raman shifts (cm21): 1185, 1070, 1040, 1000, 985w, 903w, 865sh, 840s, 820w, 660, 650,
605, 590sh, 480, 450.
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Source: Pláśil et al. (2015c).
Comments: The sample was characterized by single-crystal X-ray diffraction data.

Bellidoite Cu2Se

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.12 nm Ar+ laser radiation. The laser radiation power at the sample was 10 mW.
Raman shifts (cm21): No data: Cu2Se exhibits very weak Raman features.
Source: Izquierdo-Roca et al. (2009).

Bendadaite Fe2+Fe3+2(AsO4)2(OH)2∙4H2O

Origin: Lavra do Almerindo (Almerindo mine), Linópolis, Divino das Laranjeiras Co., Minas Gerais,
Brazil.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 676 nm Kr+ laser radiation. The nominal laser radiation power is unknown.

Raman shifts (cm21): 3385, 3275, 1690w, ~800s.
Source: Kolitsch et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Benitoite BaTiSi3O9

Origin: Synthetic.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 632.8 nm laser radiation. The nominal laser radiation
power was 50 mW.

Raman shifts (cm21): 1080, 951, 939, 930s, 917, 577s, 539s, 505, 480, 398, 374s, 350, 267s.
Source: Choisnet et al. (1975).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

benitoite see also Gaft et al. (2004), Ma and Rossman (2008), and Takahashi et al. (2008).

Benstonite Ba6Ca6Mg(CO3)13

Origin: Minerva mine, Cave-in-Rock, Hardin Co., Illinois, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 and 514.5 nm laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm21): 1100s, 1096s, 1081s, 1074s, 714, 691, 251, 236, 206w, 171, 136, 96w.
Source: Scheetz and White (1977).
Comments: No independent analytical data are given for the sample used.

Beraunite Fe2+Fe3+5(PO4)4(OH)5∙6H2O

Origin: Boca Rica pegmatite, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
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individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample is not indicated.

Raman shifts (cm21): 1174, 1155, 1133, 1116, 1098, 1084sh, 1069, 1058, 1051, 1034, 1011s, 990sh,
969sh, 703sh, 687s, 673, 661, 644, 601, 582, 567s, 546, 503, 491, 478, 468, 455, 437, 403,
398, 336, 322, 309sh, 300, 289, 280, 254, 238, 230, 225, 200, 191sh, 153, 1432, 118, 107.

Source: Frost et al. (2014al).
Comments: No independent analytical data are given for the sample used. In the cited paper incorrect

formula of beraunite is given. Brown color of the sample indicates that it is not beraunite, but its
oxydation product eleonorite, a mineral isostructural with beraunite.

Berdesinskiite V3+
2TiO5

Origin: Vihanti, Northern Finland Region, Finland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. The nominal laser radiation power was 2 or 20 mW.
Raman shifts (cm21): 978w, 898w. 768s, 720s, 647, 593, 512w, 485, 445, 411, 388, 341, 311, 257w,

210, 136w, 83.
Source: Voloshin et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Bergenite Ca2Ba4(UO2)9O6(PO4)6∙16H2O

Origin: Mechelgrün, Vogtland, Saxony, Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3607, 3459, 3295, 2944, 1602, 1330, 1152, 1107, 1059, 995s, 991w, 971w,
961, 948, 810, 798sh, 777, 592, 547, 515, 444, 432, 408, 396, 391, 270, 265, 256, 224, 205,
178, 145, 133, 111.

Source: Frost et al. (2007e).
Comments: The sample was characterized by electron microprobe analysis.

Berlinite Al(PO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

compacted as a pellet using 1064 nm laser radiation. The nominal laser radiation power was
350 mW.

Raman shifts (cm21): 1230, 1111s, 1104sh, 1021, 725w, 650, 566, 524, 462s, 439, 418, 379, 335,
306, 258sh, 221, 196, 163, 149sh, 139w, 119, 107, 84.

Source: Pînzaru and Onac (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of berlinite see also Thomas and Webster (1999), O’Neill et al. (2006), and Frezzotti et al. (2012).
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Berlinite tetragonal polymorph Al(PO4)

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1124s, 485, 391, 382, 279, 191.
Source: O’Neill et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data.

Bermanite Mn2+Mn3+2(PO4)2(OH)2∙4H2O

Origin: El Criolo granitic pegmatite, Cerro Blanco pegmatite group, Córdoba province, Argentina.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3515, 3470, 3425, 3355, 3285, 3202, 3110, 3038, 2961, 1142, 1117, 1071w,
1012sh, 999s, 991s, 978sh, 900, 586, 577, 552sh, 505sh, 489s, 473s, 455, 441, 419, 400, 341, 307,
270, 256, 249sh, 217s, 2009sh, 189, 171, 156sh, 147, 127.

Source: Frost et al. (2013x).
Comments: The sample was characterized only by qualitative electron microprobe analysis.

Bernalite Fe(OH)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 752.6 nm laser radiation. The laser radiation power
was from 0.01 to 10 mW.

Raman shifts (cm21): 398, 299.
Source: Lepot et al. (2006).
Comments: No independent analytical data are provided for the sample used.

Berndtite SnS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power at the sample was 0.4 mW.
Raman shifts (cm21): 355, 315s, 205, 140w, 44, 25.
Source: Fontané et al. (2013).
Comments: For the Raman spectra of berndtite see also Smith et al. (1977), Jiang and Ozin (1997),

and Utyuzh et al. (2010).

Berthierite FeSb2S4

Origin: Zlatá Baňa deposit, eastern Slovakia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in a 180�-scattering geometry using 632 nm laser radiation. The laser output radiation power
was 210 mW.
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Raman shifts (cm21): 347, 334, 318sh, 297, 277sh, 264s, 251sh, 226, 183, 150sh, 131, 90, 76s, 60.
Source: Kharbish and Andráš (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Bertrandite Be4Si2O7(OH)2

Origin: Albany, Maine, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3587, 3551, 1073w, 990, 947w, 928, 821, 772, 753, 725sh, 711, 694, 579, 538,

487w, 427w, 386w, 358, 352, 330, 301, 241, 231s, 206s, 183s.
Source: Hofmeister et al. (1987).
Comments: Methods of the sample identification are not indicated. For the Raman spectrum of

bertrandite see also Jehlička et al. (2012).

Beryl Be3Al2Si6O18

Origin: Čanište, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3663w, 3595s, 1610w, 1128, 1111, 1070, 1005, 915, 770, 689s, 616, 587,

571, 516s, 400, 326, 286s, 248, 196s, 143.
Source: Makreski and Jovanovski (2009).
Comments: Raman shifts are indicated for the maxima of individual peaks obtained as a result of the

spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron
microprobe analysis. For the Raman spectra of beryl see also Hagemann et al. (1990), Kloprogge
and Frost (2000a), Jasinevicius (2009), Jehlička et al. (2012), and Jehlička and
Vandenabeele (2015).

Beryl Be3Al2Si6O18

Origin: Čanište, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3663w, 3595s, 1610w, 1128, 1111, 1070, 1005, 915, 770, 689s, 616, 587,

571, 516s, 400, 326, 286s, 248, 196s, 143.
Source: Makreski and Jovanovski (2009).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analysis. For the Raman spectra of beryl see also Hagemann et al. (1990),
Kloprogge and Frost (2000a), Jasinevicius (2009), Jehlička et al. (2012), and Jehlička and
Vandenabeele (2015).

Beryl Cs-bearing CsLiBe2Al2Si6O18

Origin: Piława Górna, Lower Silesia, SW Poland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

792 4 Raman Spectra of Minerals



Raman shifts (cm21): 1130w, 1100sh, 1069s, 1008, 686s, 531, 400, 323, 245w, 125.
Source: Pieczka et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Beryllonite NaBe(PO4)

Origin: Ehrenfriedersdorf complex, Erzgebirge (Ore Mts.), Germany.
Experimental details:Micro-Raman scattering measurements have been performed on a microscopic

inclusion in quartz using 514 and 488 nm laser radiations. The laser radiation power at the sample
was 10 mW.

Raman shifts (cm21): 1056s, 1012s, 547, 432, 354.
Source: Thomas et al. (2011b).
Comments: The sample was characterized by ion microprobe analysis.
Comments: For the Raman spectra of beryllonite see also Tait et al. (2010) and Frost et al. (2012k).

Berzeliite (NaCa2)Mg2(AsO4)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was between 200 and 300 mW.

Raman shifts (cm21): 912sh, 891, 841s, 800sh, 506, 473, 461, 431sh, 332, 170, 127, 115.
Source: Khorari et al. (1995).
Comments: The sample was characterized by powder X-ray diffraction data.

Berzeliite polymorph alluaudite-type (NaCa2)Mg2(AsO4)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was between 200 and 300 mW.

Raman shifts (cm21): 891, 860s, 800sh, 540w, 469, 426, 402sh, 386, 348, 304w, 217sh, 200.
Source: Khorari et al. (1995).
Comments: The sample was characterized by powder X-ray diffraction data.

Betalomonosovite Na6□4Ti4(Si2O7)2[PO3(OH)][PO2(OH)2]O2(OF)

Origin: Lovozero alkaline massif, Kola Peninsula, Russia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in a 180�-scattering geometry using 532 nm laser radiation.
The laser radiation power is not indicated.

Raman shifts (cm21): 1100, 1030, 925s, 862sh, 804, 678, 587, 548, 493, 456, 414.
Source: Sokolova et al. (2015a).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The crystal structure is solved.
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Beudantite PbFe3+3(AsO4)(SO4)(OH)6

Origin: Tsumeb mine, Tsumeb, Namibia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3449, 3391, 3202, 3123, 3005, 1674w, 1319, 1144, 1107, 1081, 998s, 874sh,
851s, 829sh, 807sh, 622, 616, 578w, 560, 476s, 443, 434s, 410sh, 371w, 328, 311, 301sh,
293, 259sh, 248, 216sh, 202s, 143, 137s.

Source: Frost et al. (2011i).
Comments: No independent analytical data are provided for the sample used.

Beusite Mn2+Fe2+2(PO4)2

Origin: Bull Moose Mine, Custer, South Dakota, USA.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented crystal using 532 nm laser radiation. The laser radiation power at the sample was about
1–5 mW.

Raman shifts (cm21): 1080w, 1068, 1012sh, 999, 950s, 628, 589, 573, 442, 409sh, 322, 250w,
237, 200w, 155.

Source: Schneider et al. (2013).
Comments: The Raman shifts were determined by us based on spectral curve analysis of the published

spectrum.

Beyerite CaBi2O2(CO3)2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm Ar+ laser radiation. The laser radiation power
is not indicated.

Source: Malik et al. (2016).
Raman shifts (cm21): 1302, 1069, 674w, 425, 207, 163s.
Comments: The sample was characterized by powder X-ray diffraction data.

Bianchite or Goslarite Zn(SO4)∙6H2O or Zn(SO4)∙7H2O

Origin: Minei Hill open pit, Baia Sprie deposit, Romania.
Experimental details: Raman scattering measurements have been performed on white fine deposition

material using 632 nm laser radiation. The laser radiation power at the sample was 53.6 mW.
Raman shifts (cm21): 1191, 1080, 1024s, 914, 626, 506, 427, 280, 222.
Source: Buzatu et al. (2012).
Comments: No independent analytical data are provided for the sample used. The Raman spectrum

may correspond to bianchite or goslarite. These two minerals have very similar Raman spectra,
which makes the identification difficult.
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Bikitaite LiAlSi2O6∙H2O

Origin: Bikita, Zimbabwe (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in 90�- and 180�-scattering geometries using 488 and 514.5 nm Ar+ laser radiations. The
laser radiation power is not indicated.

Raman shifts (cm21): 3588, 3477, 3411, 1641, 964, 504, 396, 255, 155, 104—the spectrum obtained
at 5 K.

Source: Kolesov and Geiger (2002).
Comments: Raman spectra in the region below 1900 cm�1 were obtained at 5 K. No independent

analytical data are provided for the sample used.

Billietite Ba(UO2)6O4(OH)6∙8H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3568, 3487, 3398, 3238, 1604, 963, 873, 831, 830, 810, 800, 795, 737,
556, 528, 460, 452, 416, 363, 337, 290, 259, 244, 208, 200, 167, 158, 117, 109.

Source: Frost et al. (2007h).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of billietite see also Qader (2011).

Biotite K(Mg,Fe)3[(Si,Al)4O10](OH)2

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 3680, 3658, 767, 717, 679s, 549, 178.
Source: Frezzotti et al. (2012).

Biphosphammite (NH4,K)H2(PO4)

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1024sh, 925s, 551w, 479, 340, 179.
Source: O’Neill et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of biphosphammite see also Frost et al. (2011r).

Birnessite (Na,Ca,K)0.6(Mn4+,Mn3+)2O4∙1.5H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power density was 100 W/cm2.
Raman shifts (cm21): 730, 656s, 575s, 506, 303, 296.
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Source: Julien et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

birnessite see also Julien et al. (2003) and Roqué-Rosell et al. (2010).

Birnessite (Na,Ca,K)0.6(Mn4+,Mn3+)2O4∙1.5H2O

Origin: Moa Bay lateritic deposits, eastern Cuba.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The nominal laser radiation power was 30 mW.
Raman shifts (cm21): 655s, 573, 491w, 281.
Source: Roqué-Rosell et al. (2010).
Comments: The spectrum in the region from 200 to 900 cm�1 was obtained. The sample was

characterized by powder X-ray diffraction data and chemical analysis. For the Raman spectra of
birnessite see also Julien et al. (2003, 2004).

Bischofite MgCl2∙6H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG pulsed laser with 45 mJ/pulse total energy, up to 20 Hz lasing
frequency, and 8 ns pulse width. 90�-scattering geometry was employed.

Raman shifts (cm21): 3507, 3350.
Source: Garcia et al. (2006).
Comments: No independent analytical data are given for the sample used.

Bismite Bi2O3

Origin: Synthetic.
Raman shifts (cm21): 446, 410w, 314, 282, 210, 184, 151, 139, 118s, 102, 93s, 83s, 67s, 59, 53s.
Source: Betsch and White (1978).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

bismite see also Narang et al. (1994) and Prekajski et al. (2010).

Bismoclite BiOCl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 568.2 nm laser radiation. The laser radiation power at the sample was 25 mW.
Raman shifts (cm21): 400, 202, 146s, 60.
Source: Davies (1973).
Comments: No independent analytical data are given for the sample used. For the Raman spectrum of

bismoclite see also Rulmont (1972).

Bismuth Bi

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a film with thickness

about 0.5–1 mμ using 532 nm laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.
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Raman shifts (cm21): 91, 65s.
Source: Russo et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Bismuthinite Bi2S3

Origin: Panarechensk volcanic-tectonic formation, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm21): 261s, 236s, 185, 169, 100, 83w, 70, 53s.
Source: Voloshin et al. (2015a).
Comments: The samples used were characterized by electron microprobe analyses. For the Raman

spectra of bismuthinite see also Kharbish et al. (2009) and Efthimiopoulos et al. (2014).

Bismutite Bi2O2(CO3)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 and 647.1 nm laser radiations. The laser radiation power is not indicated. A
90�-scattering geometry was employed.

Raman shifts (cm21): 1690w, 1392, 1360, 1067s, 688w, 667, 519w, 445w, 410, 351, 312w, 277w,
203, 172, 162, 158s, 118w, 97w, 94w, 70s, 53s, 51s, 41s, 23.

Source: Taylor et al. (1984).
Comments: The sample was characterized by powder X-ray diffraction data.

Bismutocolumbite BiNbO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm21): 883, 730, 624s, 537, 424, 382, 368, 336, 272s, 255, 220, 199, 153s, 139s,

110, 108, 93, 84s, 60s.
Source: Ayyub et al. (1986).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of bismutocolumbite see also Ayyub et al. (1987), Yu et al. (1990), and Lee et al. (2003).

Bismutoferrite Fe3+2Bi(SiO4)2(OH)

Origin: Jáchymov U deposit, Krušné Hory (Ore Mts.), Western Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3541, 1598, 1536, 1475, 1290, 1219, 1160, 1093, 1004, 695, 669, 501, 472,
440, 430s, 417, 386, 348, 333, 323, 306, 280, 273, 244, 223, 217, 196, 165s, 151s, 144s.

Source: Frost et al. (2010a).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analysis.

Bismutotantalite BiTaO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 1084 nm Ar+ laser radiation. The nominal laser radiation power was 130 mW.
Raman shifts (cm21): 625s, 539, 371, 340, 274, 257s, 222, 201, 157s, 143s, 112, 87, 64.
Source: Lee et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data.

Bitikleite Ca3(SbSn)(AlO4)3

Origin: Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
crystal using 514.5 nm Ar+ laser radiation. The laser radiation output power was 40–60 mW. A
0�-scattering geometry was employed.

Raman shifts (cm21): 832sh, 799, 760, 738sh, 624sh, 600, 500s, 440w, 409w, 356w, 299s,
252, 218w, 190, 161w, 151, 120.

Source: Galuskina et al. (2010a).
Comments: The sample was characterized by electron micro-diffraction, powder X-ray diffraction

data, and electron microprobe analyses.

Bixbyite Mn3+2O3

Origin: An unknown locality in Zaire.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar+ laser
radiation. The nominal laser radiation power was 12.5 mW. A 180�-scattering geometry was
employed.

Raman shifts (cm21): 650sh, 630, 581s, 509.
Source: Bernard et al. (1993a).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman spectrum of

natural bixbyite differs from that of synthetic α-Mn2O3: the Raman shifts of the latter are 698, 645,
592, 481, 404, 314, and 192 cm�1 (Julien et al. 2004). Raman spectrum of presumed bixbyite
published by Baioumy et al. (2013) is questionable.

Blatterite Sb5+3Mn3+9Mn2+35(BO3)16O32

Origin: Bergslagen ore province, south central Sweden.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.4 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 573s, 214w.
Source: Enholm (2016).
Comments: The sample was characterized by electron microprobe analyses.
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Blödite Na2Mg(SO4)2∙4H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on a powdered sample using 532 nm laser radiation. The
laser radiation power at the sample was 2 mW.

Raman shifts (cm~1): ~3300, 1184, 1104, 1058, 995s, 631, 463, 449.
Source: Jentzsch et al. (2011).
Comments: No independent analytical data are provided for the sample used.

Bluebellite Cu6(IO3)(OH)10Cl

Origin: Shallow D shaft, Blue Bell claims, Central Mojave Desert, California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on the (001) face of a flat

single crystal using 514.3 nm laser radiation. Laser beam was incident approximately perpendicular
to the (001) face. The laser radiation power at the sample was 2 mW.

Raman shifts (cm21): ~3500, 1007, 680s, 641, 544, 502w, 254, 203, 172.
Source: Mills et al. (2014b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Bluelizardite Na7(UO2)(SO4)4Cl(H2O)2

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The nominal laser radiation
power was 3 mW.

Raman shifts (cm21): 3606, 3576, 3475, 3422, 3343, 3219, 1216, 1189, 1156, 1143, 1090, 1061,
1050, 1012, 1003, 998, 986, 951, 854s, 848sh, 651, 641, 620, 619, 607, 592, 260, 252, 237, 208.

Source: Plášil et al. (2014a).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analyses. The crystal structure is solved. Plášil et al. (2015d) indicate addi-
tional bands at 465 and 445 cm�1.

Bobcookite NaAl(UO2)2(SO4)4∙18H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 and 780 nm laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 3610, 3565, 3500, 3445, 3380, 3315sh, 3270sh, 3195sh, 1640, 1210, 1145,
1110, 1035, 1010s, 990sh, 845s, 630, 600w, 470, 450, 330w, ~210.

Source: Kampf et al. (2015b).
Comments: Raman shifts in the range of stretching vibrations of water molecules are indicated for the

maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was
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characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal
structure is solved.

Bobdownsite Ca9Mg(PO3F)(PO4)6

Origin: Big Fish River, Yukon, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1088, 1028w, 989, 966s, 923, 626, 605w, 554, 483w, 433, 406, 282, 158w.
Source: Tait et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.

Bobierrite Mg3(PO4)2∙8H2O

Origin: Zheleznyi mine (Iron mine), Kovdor massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3498, 3263, 3212, 3096, 2895, 1072, 998, 951, 909, 842, 787, 717, 693, 668,
631, 583, 557, 542, 468, 435, 420, 364, 318, 290, 282, 262, 233, 215, 182, 170, 149, 136.

Source: Frost et al. (2002f).
Comments: No independent analytical data are provided for the sample used.

Bobshannonite Na2KBa(Mn,Na)8(Nb,Ti)4(Si2O7)4O4(OH)4(O,F)2

Origin: Mont Saint-Hilaire, Québec, Canada (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): ~3655, ~3610, 1038, 970, 901, 716, 680, 608, 580, 510, 410, 341, 310,
240, 207, 143.

Source: Sokolova et al. (2015b).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analyses. The crystal structure is solved.

Bohdanowiczite AgBiSe2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power is not indicated.

Raman shift (cm21): 171, 161.
Source: Rajaji et al. (2016).
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Comments: The sample was characterized by powder X-ray diffraction data. Trigonal, a ¼ 8.412
(6) Å, c ¼ 19.63(3) Å.

Böhmite γ-AlO(OH)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser
radiation power at the sample was 200 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3371, 3220, 3085, 2989, 1072, 732, 674s, 495s, 451, 360s, 228.
Source: Ruan et al. (2001).
Comments: No independent analytical data are provided for the sample used. The Raman shifts have

been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Boleite KAg9Pb26Cu24Cl62(OH)48

Origin: Amelia Mine, Santa Rosalia, Baja, California, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3448, 3408, 3371sh, 921, 817, 757, 731, 696, 478, 455, 386, 361, 300,
234, 161s, 146sh, 128sh.

Source: Frost et al. (2003j).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of boleite see also Frost and Williams (2004).

Boltwoodite (K,Na)(UO2)(SiO3OH)∙1.5H2O

Origin: Kladská U deposit, Slavkovský les Mountains, western Bohemia, Czech Republic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 780 nm laser radiation. The laser radiation output
power was 10 mW.

Raman shifts (cm21): 3387w, 3351w, 3313w, 1606w, 1327w, 958, 938, 847sh, 833sh, 804s,
542, 496, 483, 435, 423, 398, 321, 280, 262, 220, 180, 152, 136, 110,93, 75, 60.

Source: Plášil et al. (2016a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of boltwoodite see also Frost et al. (2006e).

Bonaccordite Ni2Fe
3+O2(BO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 20 mW. Polarized spectrum was collected in the (zz) geometry.

Raman shifts (cm21): 650s, 582s, 570sh, 544, 526, 495, 473sh, 423, 388w, 357w, 314, 285w, 257w.
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Source: Leite et al. (2002).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Bonattite Cu(SO4)∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1126, 1009s, 620, 587, 481, 429, 386, 250, 160, 123.
Source: Fu et al. (2012).
Comments: Bands of H2O stretching vibrations are very weak and poor-resolved. No independent

analytical data are provided for the sample used.

Bonazziite β-As4S4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 647.1 nm Kr+ laser radiation. The laser radiation power at the sample was 60 mW.
Raman shifts (cm21): 388w, 376w, 362s, 352, 343, 332sh, 217, 211sh, 187s, 164, 144, 62, 56, 42w,

32w.
Source: Muniz-Miranda et al. (1996).
Comments: The photo-induced transformation from β-As4S4 to pararealgar takes place in the sample

under the exposure to a more short-wave radiation.

Bonazziite β-As4S4

Origin: Khaidarkan deposit, Kyrgyzstan (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 875 nm diode laser radiation. The laser radiation power was 3 mW.
Raman shifts (cm21): 362s, 352, 343, 217s, 187s, 164.
Source: Bindi et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Boracite Mg3B7O13Cl

Origin: Lüneburg, Lower Saxony, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3581sh, 3494, 3431sh, 3405s, 3334sh, 3277, 3254w, 2903, 2727sh, 1617,
1583, 1348, 1143, 1136, 1121, 1009s, 671, 660sh, 621, 611sh, 582sh, 536w, 515sh, 494, 473sh,
415, 317, 211s, 182s, 163s, 147, 134s.

Source: Frost et al. (2012m).
Comments: No independent analytical data are provided for the sample used. The spectrum shows the

presence of OH groups.
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Borax Na2B4O5(OH)4∙8H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was about 100 mW.
Raman shifts (cm21): 3575s, 3495s, 3447s, 3400s, 3357s, 3140s, 1640w, 957, 860, 776, 590w,

530, 474, 390, 361, 160, 120, 90, 78.
Source: Devi et al. (1994).
Comments: No independent analytical data are provided for the sample used. Polarized spectra of

borax single crystals were collected in x(yy)z, x(yx)z, x(zy)z, and x(zx)z scattering geometries too.
For the Raman spectra of borax see also Krishnamurti (1955) and Kipcak et al. (2014).

Bornite Cu5FeS4

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 638 nm laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 784w, 579, 464w, 377, 266s, 201s.
Source: Lanteigne et al. (2012).

Bosiite NaFe3+3(Al4Mg2)(Si6O18)(BO3)3(OH)3O

Origin: No data.
Experimental details: Polarized -y(zz)y Raman scattering measurements have been performed on a

single crystal using 488.0 or 514.5 nm Ar+ laser radiations. The laser radiation power at the sample
was about 14 mW.

Raman shifts (cm21): No data: only a figure of the Raman spectrum is given in the cited paper.
Source: Watenphul et al. (2016b).
Comments: The sample was characterized by electron microprobe analysis.

Botallackite Cu2Cl(OH)3

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 and 514.5 nm Ar+ laser radiation. The laser
radiation output power was 30 mW at 632.8 nm and is not indicated at 514.5 nm.

Raman shifts (cm21): 3504, 3420, 897, 857, 678w, 503, 450s, 401s, 324, 279, 251, 175, 155, 115.
Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Botryogen MgFe3+(SO4)2(OH)∙7H2O

Origin: Alcaparrosa mine, Antofagasta Province, Chile.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.
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Raman shifts (cm21): 3576, 3441, 3330, 3256, 3107sh, 3186, 1626, 1221, 1202, 1178, 1076, 1041,
1017, 1002s, 607, 563, 499s, 464, 384, 353, 271, 241s, 208, 180, 146.

Source: Frost et al. (2011f).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Bottinoite NiSb5+2(OH)12∙6H2O

Origin: Bottino Mine, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3510sh, 3458, 3368, 3291, 3228sh, 3223sh, 1648, 1163w, 1111w, 1080w,
1045w, 735w, 630sh, 618, 599sh, 575sh, 516sh, 501, 316sh, 336, 317, 302, 254, 235, 207,
169, 146, 125, 114.

Source: Frost and Bahfenne (2010e).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of bottinoite see also Rintoul et al. (2011) and Bahfenne (2011).

Boulangerite Pb5Sb4S11

Origin: Zlatá Baňa, Slanské Vrchy Mts., central Slovakia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 632 nm Nd-YAG laser radiation. The laser radiation power radiation density at the
sample was 8.5�10�3 mW/μm2. A 180�-scattering geometry was employed.

Raman shifts (cm21): 355s, 335, 315, 236, 220, 206, 189, 146, 129sh, 100, 85, 74sh, 62.
Source: Kharbish and Jeleň (2016).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by electron microprobe analysis.

Bournonite CuPbSbS3

Origin: Felsöbanya, Romania.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal with the laser polarization parallel to the a-, b-, and c-axes using 785 nm laser radiation. The
laser radiation power at the sample was 1.7 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 339, 324s, 192, 275, 227w, 197, 181, 166.
Source: Kharbish et al. (2009).
Comments: Slightly varying band positions among polarized spectra are averaged. The sample was

characterized by electron microprobe analysis.

Boussingaultite (NH4)2Mg(SO4)2∙6H2O

Origin: Larderello, Tuscany, Italy.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 785 nm diode laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 3380w, 3290w, 3080, 3040, 2918w, 2845w, 1705, 1678, 1460, 1436, 1133w,
1096w, 1063, 983s, 626, 616, 454, 360w, 310w, <222w.

Source: Culka et al. (2009).
Comments: No independent analytical data are provided for the sample used. Raman shifts are

indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.
For the Raman spectrum of boussingaultite see also Jentzsch et al. (2013).

Boussingaultite (NH4)2Mg2(SO4)3�6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 253.7 nm of mercury radiation and exposition of the order of 16 h.
Raman shifts (cm21): 3396, 3331, 3281, 3060, 2830, 1469w, 1433, 1141, 1121, 1102, 1091, 1072,

1061, 979s, 622, 455, 265w, 220w, 198, 147, 130, 89w, 54.
Source: Shantakumari (1953).
Comments: No independent analytical data are provided for the sample used.

Bowieite Rh2S3

Origin: Svetly Bor complex, Urals, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 374, 308s, 287.
Source: Zaccarini et al. (2016).
Comments: For the Raman spectrum of bowieite see also Singh et al. (2014).

Braccoite NaMn2+5[Si5O14(OH)](AsO3)(OH)

Origin: Valletta mine, Maira Valley, Piedmont, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 632.8 and 532 nm He-Ne and Nd-YAG laser radiations. The nominal laser radiation
power was 20 and 80 mW, respectively. A 180�-scattering geometry was employed.

Raman shifts (cm21): 1040sh, 1017s, 932sh, 907s, 829s, 748, 706, 665s, 618, 563w, 525w, 451, 390,
360w, 291, 261w, 226.

Source: Cámara et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Bracewellite CrO(OH)

Origin: Artificial.
Experimental details: Raman scattering measurements have been performed on a chromium coupon

using 647 nm Kr+ laser radiation. The nominal laser radiation power was 8 mW. A nearly
180�-scattering geometry was employed.

Raman shifts (cm21): ~825w, ~780w, ~620, ~565s, ~310s.
Source: Maslar et al. (2001).
Comments: The sample was characterized by X-ray emission spectrum.
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Brackebuschite Pb2Mn3+(VO4)2(OH)

Origin: Sierra de Cordoba, Argentina (type locality).
Experimental details: No data.
Raman shifts (cm21): 3145w, 859s, 687w, 450w, 334, 158.
Source: Lafuente and Downs (2016).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The crystal structure is solved. The Raman shifts were partly determined by
us based on spectral curve analysis of the published spectrum.

Bradleyite Na3Mg(PO4)(CO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been using 532 nm laser radiation. The nominal laser radiation power was
240 mW.

Raman shifts (cm21): 1079s, 1067w, 1051, 1033, 971s, 733w, 694w, 627w, 591, 484w, 430, 262,
218, 198, 161.

Source: Gao et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Braggite PtS

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 18,794.59 cm�1 Ar+ laser radiation. The laser radiation power at the sample was
between 1 and 2 mW.

Raman shifts (cm21): 378, 360s, 330s, 111.
Source: Bakker (2014).
Comments: For the Raman spectra of braggite see also Mernagh and Hoatson (1995), Pikl et al.

(1999), and Merkle et al. (1999).

Brandholzite MgSb2(OH)12∙6H2O

Origin: Krížnica mine, Pernek deposit, Malé Karpaty Mts., Slovak Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3552, 3483sh, 3466, 3383sh, 3240, 3205sh, 1648w, 1597sh, 1189sh, 1160w,
1093, 1043, 730, 630, 618s, 604, 578sh, 526, 503, 340s, 318s, 303sh, 252w, 232w, 191w,
147w, 115w.

Source: Frost et al. (2009e).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectra of brandholzite see also Rintoul et al. (2011) and Bahfenne (2011).
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Brannerite UTi2O6

Origin: El Cabril mine, near Cordoba, Sierra Albarrana region, southern Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 759s, 615, 523, 435, 375, 327, 265, 194, 161.
Source: Zhang et al. (2013).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was preliminarily annealed and characterized by powder
X-ray diffraction data and electron microprobe analysis. For the Raman spectra of brannerite see
also Frost and Reddy (2011a) and Charalambous et al. (2012).

Brannockite KSn2(Li3Si12)O30

Origin: Golden Horn Batholith, Washington, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 632 nm He-Ne laser radiation. The laser radiation power was 1 mW.
Raman shifts (cm21): 1160, 1141, 1042, 992, 947w, 841, 774, 616, 485, 462s, 382, 365w, 343, 282s,

257w, 248w, 204w, 156s, 128, 103s, 93sh, 63.
Source: Raschke et al. (2016).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The Raman shifts were partly determined by us based on spectral curve
analysis of the published spectrum.

Brassite Mg(AsO3OH)∙4H2O

Origin: Jáchymov U deposit, KrušnéHory (Ore Mts.), Western Bohemia, Czech Republic (type
locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3511, 3450, 3387, 3314, 3035, 878sh, 876sh, 862, 809, 739sh, 699, 609,
448, 404, 387sh, 358sh, 298, 274sh, 242, 199, 181, 158sh, 149, 121, 108.

Source: Frost et al. (2010h).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Braunite Mn2+Mn3+6O8(SiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on microscopic

inclusions in in-glaze pigment of the nineteenth-century relief tiles using 632.8 nm He-Ne laser
radiation. The nominal laser radiation power was 17 mW.

Raman shifts (cm21): 958, 686, 617, 513s, 471, 330w, 217, 121.
Source: Coutinho et al. (2016).
Comments: The sample was characterized by electron microprobe analysis.
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Brazilianite NaAl3(PO4)2(OH)4

Origin: Córrego Frio mine, Linópolis, Divino das Laranjeiras, Doce valley, Minas Gerais, Brazil (type
locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3543, 3519, 3472s, 3447, 3417s, 3355, 3291, 3249, 3157, 1579w, 1395,
1150w, 1117, 1074, 1037sh, 1019s, 988s, 973, 953, 723, 660, 636, 615, 599s, 563s, 534, 508sh,
466, 441, 414, 358, 319, 287, 276, 253, 244, 231, 220, 208, 172, 162w, 149, 113, 105.

Source: Frost and Xi (2012l).
Comments: No independent analytical data are provided for the sample used.

Bredigite (Ca,Ba)Ca13Mg2(SiO4)8

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 991, 977, 950w, 927w, 907sh, 895sh, 884s, 872s, 857s, 847, 575, 554w, 543w,
526w, 514w, 502w, 424w, 406w, 384w, 375w, 298w, 257w, 240w, 211w, 194w, 149w,
125, 109sh, 68w.

Source: Xiong et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Breithauptite NiSb

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 650.
Source: Xie et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data.

Brewsterite-Sr Sr(Al2Si6)O16∙5H2O

Origin: Strontian, Agryll, Scotland, UK (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 1.06 μm Nd-YAG
laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm21): 1136w, 495s, 387, 236, 171.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.
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Brianyoungite Zn3(CO3,SO4)(OH)4

Origin: Esperanza Mine, Laurion district, Greece.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3669, 3631, 3615, 3564, 3571, 3554, 3531, 3518, 3400, 3297, 3193, 3076,
2973, 2938, 2910, 2880, 2851, 1550, 1457, 1440, 1388, 1367, 1298, 1163, 1127, 1086, 1056s,
1038sh, 984, 973s, 958sh, 736, 704, 638, 609, 528, 507sh, 475, 451, 433, 423, 378, 367, 347, 306,
271, 257w, 277, 216, 160sh, 153sh, 151s, 143s, 132sh, 125, 113, 108.

Source: Frost et al. (2015r).
Comments: The sample was characterized only by qualitative electron microprobe analysis.

Briartite Cu2FeGeS4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488.0 or 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was 2 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 437, 412w, 396, 378, 342s, 329sh, 304w, 294, 272, 250, 224, 162w, 141, 109.
Source: Rincón et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of briartite see also Himmrich and Haeuseler (1991).

Britvinite Pb14Mg9(Si10O28)(BO3)4(CO3)2(OH)12F2

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 633 nm laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employeded.

Raman shifts (cm21): 3697s, 3543, 1718, 1696w, 1420, 1335, 1230, 1193, 1093, 1041s, 992, 960,
905, 873w, 842, 817, 802, 775, 740w, 717, 690, 667, 593, 489, 412, 303s, 277, 258, 217, 154.

Source: Kolitsch et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum.

Brizziite NaSbO3

Origin: Le Cetine mine, Chiusdino, Siena province, Tuscany, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 830w, 749w, 660s, 617, 508, 315, 307, 230, 204, 158.
Source: Frost and Bahfenne (2010a).
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Comments:No independent analytical data are provided for the sample used. For the Raman spectrum
of brizziite see also Bittarello et al. (2015).

Brochantite Cu4(SO4)(OH)6

Origin: Chuquicamata, Chile.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 780 nm Nd-YAG laser radiation. The laser radiation power at the sample was
<1 mW.

Raman shifts (cm21): 3580s, 3501sh, 3489s, 1906, 1265w, 1173w, 1135w, 1078, 990s, 786, 770,
749, 629, 608, 600, 517, 501, 482, 467, 442, 415, 340, 330, 295, 265, 247, 238, 228, 213, 172, 149,
141, 124.

Source: Martens et al. (2003a).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by XRD and EDX, but these data are not
provided in the cited paper. For the Raman spectra of brochantite see also Makreski et al. (2005a),
Schmidt and Lutz (1993), Bouchard and Smith (2003), Frost et al. (2004a), Apopei et al. (2014a),
and Coccato et al. (2016).

Brochantite Cu4(SO4)(OH)6

Origin: Bučim, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3587sh, 3565s, 3536sh, 3508w, 3475, 3388s, 3358, 1160sh, 1134w, 1121sh,

1099sh, 1076, 973s, 904, 871w, 840w, 765w, 710w, 660w, 619, 609sh, 590w, 551w, 510, 480w,
431w, 415w, 394, 363sh, 323w, 292w, 237w, 190, 163w, 141w, 137w, 126w, 116w, 83.

Source: Makreski et al. (2005a).
Comments: No independent analytical data are provided for the sample used.

Bromargyrite AgBr

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a partly oriented

crystal, in the x(zz)y + x(zx)y scattering geometry, using 514.5 nm Ar+ laser radiation. The nominal
laser radiation power was 100 mW.

Raman shifts (cm21): 262, 176, 82s.
Source: Bottger and Damsgard (1971).
Comments: The sample was characterized by means of flame emission spectroscopy and mass-

spectrometry.

Bromellite BeO

Origin: Muiane pegmatite, Mozambique.
Experimental details: Raman scattering measurements have been performed on inclusions in mor-

ganite using 488 and 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
14 mW.
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Raman shifts (cm21): 1097, 1081, 722, 684s, 678, 388.
Source: Thomas and Davidson (2010).
Comments: For the Raman spectrum of bromellite see also Devanarayanan et al. (1991).

Brookite TiO2

Origin: Magnet Cove, Arkansas.
Experimental details: Raman scattering measurements have been performed on oriented crystals

using 458, 515 and 633 nm laser radiation. The laser radiation power is not indicated. Polarized
spectra were collected in the following scattering geometries: (xx), (yy), and (zz) for the A1g Raman
mode, (xy) for B1g, (xz) for B2g, and (yz) for B3g.

Raman shifts (cm21):A1g: 640, 545, 492w, 412w, 324w, 246, 194w, 152s, 125; B1g: 622, 449, 381w,
327, 283s, 212, 169; B2g: 584, 460s, 391w, 366s, 325, 254w, 160s; B3g: 500, 416w, 318s, 212w,
132.

Source: Iliev et al. (2013).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of brookite see also Yanqing et al. (2000), Zajzon et al. (2013), and Andò and Garzanti (2014).

Browneite MnS

Origin: Zakłodzie meteorite, Poland (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented grain using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
1.5 mW.

Raman shifts (cm21): ~620, ~460, ~400sh, ~220w.
Source: Ma et al. (2012b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Brownleeite MnSi

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 532 nm Nd-YAG laser radiation. The laser radiation power density was 2�105 W/
cm2. A 180�-scattering geometry was employed. Polarized spectra were collected in the z(yy)-z, z
(xx)-z, z(xy)-z, and z(yx)-z scattering geometries. At different scattering geometries the shifts of the
Raman lines do not exceed 2 cm�1.

Raman shifts (cm21): ~310, ~190.
Source: Tite et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Brownmillerite Ca2Fe
3+AlO5

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 707s, ~550, ~420, ~380, ~310, ~290, 256s.
Source: Dhankhar et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of brownmillerite see also Martínez-Ramírez and Fernández-Carrasco (2011).

Brucite Mg(OH)2

Origin: Mariana convergent plate margin, western Pacific Ocean.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal in a polished thin section using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 722, 442s, 276.
Source: Sagatowska (2010).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of brucite see also Lutz et al. (1994).

Brüggenite Ca(IO3)2∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3470, 3376, 832sh, 811, 767, 754sh, 746sh, 382, 343, 333sh, 322sh, 251sh,

229.
Source: Alici et al. (1992).
Comments: The sample was characterized by powder X-ray diffraction data.

Brugnatellite Mg6Fe
3+(CO3)(OH)13∙4H2O

Origin: Monte Ramazzo, Genoa, Liguria, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 5 mW.
Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3922, 3696s, 3685s, 3656sh, 2933, 1591w, 1323w, 1102, 1087, 959w, 765w,
698sh, 690s, 664w, 644w, 621.

Source: Frost and Bahfenne (2009).
Comments: No independent analytical data are given for the sample used. Raman spectrum from

Monte Ramazzo given as Supplementary Information does not coincide with the spectrum given in
the cited paper.

Brushite Ca(PO3OH)∙2H2O

Origin: Moorba Cave, Jurien Bay, Dandaragan Shire, Western Australia, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632 nm He-Ne laser radiation. The laser radiation power is not detected. Raman shifts
are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.
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Raman shifts (cm21): 3533, 3472, 1055, 1000, 985s, 872, 858sh, 576w, 519s, 498, 411s, 276, 209,
140, 109.

Source: Frost et al. (2012h).
Comments: No independent analytical data are given for the sample used. For the Raman spectrum of

brushite see also Xu et al. (1999).

Buchwaldite NaCa(PO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~1048, ~1026, ~1015, ~966s, ~588s, ~450, ~427.
Source: Suchanek et al. (1998).
Comments: The sample was characterized by powder X-ray diffraction data.

Bukovskýite Fe3+2(AsO4)(SO4)(OH)∙7H2O

Origin: Kaňk, near Kutná Hora, central Bohemia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on microcrystalline

aggregates using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is
not indicated.

Raman shifts (cm21): 3420w, 3219w, 3102sh, 1652w, 1179, 1131, 1090, 1054, 1010, 984s, 911, 886,
847s, 816s, 613, 552, 511, 464, 428s, 315, 263s, 196, 147.

Source: Loun et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of bukovskýite see also Culka et al. (2016).

Bunnoite Mn2+6AlSi6O18(OH)3

Origin: Kamo Mt., Kochi prefecture, Japan (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm21): 3546sh, 3472, 835, 718, 663, 651, 578, 553, 515s, 490s, 464, 451, 438, 385,
319s, 309s, 267w, 235.

Source: Nishio-Hamane et al. (2016a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The Raman shifts were determined by us based on spectral
curve analysis of the published spectrum.

Bunsenite NiO

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on nano-scaled and

slightly agglomerated particles using 532 nm laser radiation. The laser radiation power at the
sample was 2.48 mW.
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Raman shifts (cm21): 1525s, 1093, 497.
Source: Thema et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and TEM/EDX. The

strong band at 1525 cm�1 is attributed to the double magnon scattering, but this assignment is
questionable.

Burangaite NaFe2+Al5(PO4)4(OH)6∙2H2O

Origin: Hålsjöberg, Sweden.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 150 mW.

Raman shifts (cm21): 3618s, 3251s, 1141, 1045s, 1023, 988, 618, 601, 587, 400, 369, 354.
Source: Thomas et al. (1998).
Comments: No independent analytical data are provided for the sample used.

Burbankite (Na,Ca)3(Sr,Ba,Ce)3(CO3)5

Origin: Kalkfeld carbonatite complex, Namibia.
Experimental details: Raman scattering measurements have been performed on microscopic particles

in fluid inclusions using a He-Ne laser with the laser radiation power of 1.8 mW or an Ar+ laser with
the power of 2 mW.

Raman shifts (cm21): 1078s, ~700w.
Source: Bühn et al. (1999).
Comments: The sample was characterized by synchrotron powder X-ray diffraction data and electron

microprobe analysis. For the Raman spectrum of burbankite see also Bühn et al. (2002) and
Chakhmouradian et al. (2017).

Burbankite (Na,Ca)3(Sr,Ba,Ce)3(CO3)5

Origin: Bear Lodge carbonatite, Wyoming, USA.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 1085s, 1069w, (970) (broad), 881w, 872w, 738sh, 728sh, 717w, 703w, 286w,
233, 209w, 160, 143.

Source: Chakhmouradian et al. (2017).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of burbankite see also Bühn et al. (1999, 2002).

Burckhardtite Pb2(Fe
3+Te6+)(AlSi3O8)O6

Origin: Moctezuma, Sonora, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.3 nm cobalt solid-state laser radiation. The laser radiation power at the sample
was 0.6 mW.
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Raman shifts (cm21): 897w, 833w, 690s, 661w, 646s, 619s, 554, 477, ~463sh, 505sh, 391, 322,
295, 202.

Source: Christy et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Burgessite Co2(H2O)4[AsO3(OH)]2(H2O)

Origin: Keeley mine, South Larrain Township, Timiskaming District, Ontario, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on a powdered sample

using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual
peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm21): 3591w, 3395, 3328, 3204sh, 3185sh, 852s, 830s, 806s, 740s, 447, 383, 353sh,
322sh, 215, 162.

Source: Čejka et al. (2011a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Burkeite Na4(SO4)(CO3)

Origin: Searles Lake, San Bernardino Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3465w, 3331w, 1244w, 1132, 1102, 1065s, 1008sh, 994s, 981sh, 704, 645,
635sh, 622, 475, 453, 352, 149s, 112.

Source: López et al. (2014d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectra of burkeite see also Korsakov et al. (2009) and Jentzsch
et al. (2013).

Buseckite (Fe,Zn,Mn)S

Origin: Zakłodzie meteorite, Poland (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 1.2 mW.
Raman shifts (cm21): 322sh, 296.
Source: Ma et al. (2012a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Bustamite (Ca,Mg,Fe)2Si2O6

Origin: Sasa, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 or 100 mW.
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Raman shifts (cm21): 1034, 1007, 972s, 869s, 839, 812, 735w, 714w, 644s, 574w, 548w, 511, 489,
446w, 428w, 404, 364s, 350sh, 310, 285sh, 260w, 232, 172, 154w, 138w, 125w, 116.

Source: Makreski et al. (2006b).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
neutron activation analysis.

Butlerite Fe3+(SO4)(OH)∙2H2O

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa province, Antofagasta, Chile.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3469sh, 3310w, 3155sh, 3012sh, 1225sh, 1198, 1145sh, 1109s, 1088sh, 1024s,
617sh, 600, 543, 469, 450sh, 408, 374sh, 294sh, 247, 221, 181, 154sh.

Source: Čejka et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Buttgenbachite Cu36(NO3)2Cl8(OH)62∙nH2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne or 514.5 nm Ar+ laser radiation. The nominal laser radiation power
was �30 mW.

Raman shifts (cm21): 1054, 1041, 985, 843, 622, 595, 489, 451, 409s, 349, 314, 259, 236, 193, 184,
164, 145s, 128s.

Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data.

Byströmite MgSb5+2O6

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 810w, 749s, 676, 625, 592w, 560w, 570s, 480w, 357, 331, 300, 248w, 231w.
Source: Husson et al. (1979).
Comments: The sample was characterized by powder X-ray diffraction data.

Cabalzarite CaMg2(AsO4)2∙2H2O

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): ~800, ~750s, ~700sh, ~445.
Source: Carey et al. (2015).
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Cabvinite Th2F7(OH)�3H2O

Origin: Su Seinargiu, Sarroch, Cagliari, Sardinia, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): (3407), 3257s, 461, 342, 209s, 113s.
Source: Orlandi et al. (2017).
Comments: The Raman shifts have been partly determined for the maxima of individual peaks

obtained as a result of the spectral curve analysis. The sample was characterized by powder
X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Cacoxenite Fe3+24AlO6(PO4)17(OH)12∙75H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3599, 3504, 3429, 3251s, 3085, 2947, 2667, 2309, 1231w, 1213w, 1153, 1118,
1081, 1041, 1026, 979, 961, 926w, 619, 606w, 573, 526w, 495w, 433w, 411w, 371w, 307w,
273, 262, 245, 217, 199w, 169w, 155.

Source: Frost et al. (2003c).
Comments: No independent analytical data are given for the sample used.

Cadmoindite CdIn2S4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 647.1 nm Kr+ laser radiation. The nominal laser radiation power was <5 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 367s, 360, 315, 301w, 249, 232, 207, 188, 93, 70.
Source: Ursaki et al. (2002).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

cadmoindite see also Unger et al. (1978), Kulikova et al. (1988), and Syrbu et al. (1996a, b).

Cadmoselite CdSe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 201 for CdSe particles with 2.26 nm in diameter and 205 for CdSe particles
with 3.52 nm in diameter.

Source: Nien et al. (2008).
Comments: The samples were characterized by TEM. Bulk CdSe exhibits a Raman peak at 209 cm�1

(Widulle et al. 1999).
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Cafarsite Ca5.9Mn1.7Fe3Ti3(AsO3)12∙4-5H2O

Origin: Cervandone Mt., Val Devero, Piedmont, Italy.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample was 1 mW.

Raman shifts (cm21): 869, 757, 725, 328, 286, 196s.
Source: Frost and Bahfenne (2010d).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

cafarsite see also Kloprogge and Frost (1999b) and Bahfenne (2011).

Cafetite CaTi2O5∙H2O

Origin: Khibiny massif, Kola Peninsula, Russia.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been using 532 nm solid-state laser radiation. The laser radiation output
power was 50 mW.

Raman shifts (cm21): 825, 798, 732w, 602, 482, 449, 419s, 358w, 329, 302, 292, 251s, 203, 190,
177, 152, 126, 110.

Source: Martins et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Cahnite Ca2B(AsO4)(OH)4

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 844, 791, 759, 548, 538, 448, 428, 378, 395, 324, 290.
Source: Ross (1972).
Comments: No independent analytical data are given for the sample used.

Cairncrossite Sr2Ca7(Si4O10)4(OH)2∙15H2O

Origin: Wesselsmine, Kalahari Manganese Field, South Africa (type locality).
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 488 nm Ar+ laser radiation. The nominal laser radiation
power was 8 mW.

Raman shifts (cm21): 3670, 3650, 3550s, 1145, 1060, 1030w, 1000sh, 777, 700, 610s, 456, 438,
346w, 280, 183w, 130.

Source: Giester et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.
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Calaverite AuTe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 50 K on an oriented

crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was <10 mW.
Polarized spectra were collected from the (20-12) face, which is parallel to the b-axis and makes an
angle of 7�050 with the a-axis. A 180�-scattering geometry with laser beam polarizations (xx) and
(yy) for Ag, and (xy) for Bg was employed.

Raman shifts (cm21): Ag(xx): 172, 162, 152, 143w, 128, 119, 101s, 92, 88, 73w, 57w, 47, 42w;
Ag(yy): 163, 155w, 151, 144w, 134, 127, 119, 109w, 106w, 101w, 97, 72, 57, 47; Bg(xy): 162, 154s,
142s, 133, 125s, 118, 108s, 101, 91, 61, 54, 48.

Source: van Loosdrecht et al. (1992).
Comments: The sample was characterized by powder X-ray diffraction data.

Calciborite CaB2O4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1632, 1525s, ~1450, 1428, 1295, 1231, 1172, 1080, 1002, 811, 788, 738s,
683, 653, 549, 504, 389, 328, 230, 209, 179, 171.

Source: Rulmont and Almou (1989).
Comments: Raman frequencies are given for a sample with the isotopic composition 40Ca11B2O4. The

sample was characterized by powder X-ray diffraction data.

Calcio-olivine Ca2(SiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation output power was 0.4 mW.
Raman shifts (cm21): 924, 885, 857, 838s, 813s, 570w, 558w, 525w, 410, 400, 306, 269, 261, 251,

242, 193, 183, 177, 151, 134w, 125w, 118w.
Source: Remy et al. (1997).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of calico-olivine see also Piriou and McMillan (1983).

Calcioaravaipaite PbCa2AlF9

Origin: Grand Reef mine, Arizona, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3580s, 3296, 2925w, 2425, 2344, 2203, 2073, 1939w, 1822, 1441w, ~652,

560s, 538s, 417w, 390w, 366w, 323, 277sh, 263, 234, 203, 191, 177, 167.
Source: Kampf et al. (2011c).
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Comments: The sample identification was done by single-crystal X-ray diffraction data. The crystal
structure is solved. The Raman shifts were determined by us based on spectral curve analysis of the
published spectrum.

Calciolangbeinite K2Ca2(SO4)3

Origin: Artificial (component of clinker).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514 nm laser radiation. The nominal laser radiation power was 5 mW.
Raman shifts (cm21): 1203, 1147, 1107, 993, 630.
Source: Black and Brooker (2007).
Comments: Identification of this phase is tentative and, probably, erroneous. For the Raman spectrum

of calciolangbeinite see also Gastaldi et al. (2008).

Calciolangbeinite K2Ca2(SO4)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed using 632.8 nm laser radiation. The nominal laser radiation
power was 20 mW.

Raman shifts (cm21): 1144w, 1118w, 1025s, 1019s, 1006s, 645, 618, 466, 454.
Source: Gastaldi et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of calciolangbeinite see also Black and Brooker (2007).

Calciopetersite CaCu6(PO4)2(PO3OH)(OH)6∙3H2O

Origin: Domaš, near Olomouc, northern Moravia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3494, 3351w, 3301w, 3243w, 2931w, 2882sh, 1606, 1457sh, 1110, 1079,
1042, 947, 873, 577s, 475s, 394, 341, 208, 174, 144, 118.

Source: Čejka et al. (2011c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Calcite Ca(CO3)

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 2906w, 2835w, 2707w, 1903w, 1749w, 1436w, 1086s, 713w, 283, 156.
Source: Edwards et al. (2005).
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Comments: No independent analytical data are provided for the sample used. For the Raman spectra
of calcite see also Rutt and Nicola (1974), Behrens et al. (1995), Buzgar and Apopei (2009),
Wehrmeister et al. (2010), Ciobotă et al. (2012), Frezzotti et al. (2012), Schmid and Dariz (2015),
Sánchez-Pastor et al. (2016), and Perrin et al. (2016).

Calcurmolite (Ca1-xNax)2(UO2)3(MoO4)2(OH)6-x∙nH2O

Origin: Sokh-Karasu area, Kadzharan Mo Deposit, Kafan District, Armenia (type locality).
Experimental details: Raman scattering measurements have been performed on a powdered sample

using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual
peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm21): 930, 900sh, 868, 823, 794s, 700, 644, 495, 378, 354sh, 271, 206sh, 144w.
Source: Frost et al. (2008c).
Comments: No independent analytical data are provided for the sample used. Strong bands in the

range from 970 to 1150 cm�1 in the IR spectrum of calcurmolite given in the cited paper are mainly
due to an impurity. The assignment of these bands to MOH bending modes is erroneous. The IR
band at 3694 cm�1 may correspond to the admixture of a clay mineral.

Calderite Mn2+3Fe
3+

2(SiO4)3

Experimental details: Only a calculated Raman spectrum of calderite is given in the cited paper.
Raman shifts (cm21): 1017, 897, 887, 884, 871, 840, 597, 580, 552, 493, 486, 450, 373, 355, 349,

344, 300, 293, 284, 217, 211, 186, 169, 158.
Source: Arlt et al. (1998).

Calderónite Pb2Fe
3+(VO4)2(OH)

Origin: Karrantza Valley, western area of the Basque Co., Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser (with the laser radiation power at the sample of 20 mW) and
785 nm diode laser radiation (with the radiation output power of 150 mW).

Raman shifts (cm21): 977s, 684w, 336, 210w, 159w.
Source: Goienaga et al. (2011).
Comments: No independent analytical data are given for the sample used.

Caledonite Cu2Pb5(SO4)3(CO3)(OH)6

Origin: Hard Luck Claim, near Baker, San Bernardino Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample was 1 mW.

Raman shifts (cm21): 3439, 3417, 3379, 1674, 1392, 1358, 1124, 1109, 1083, 1053, 977s, 950, 848,
825, 791, 722, 628, 605, 475, 456, 427, 344, 316, 278, 251, 229, 152.

Source: Frost et al. (2003e).
Comments: No independent analytical data are provided for the sample used.
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Callaghanite Cu2Mg2(CO3)(OH)6∙2H2O

Origin: Gabbs occurrence, Nye Co., Nevada, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample was 1 mW.

Raman shifts (cm21): 3620, 3575, 3564s, 3511, 3502, 3375, 3350, 3040, 2906, 1398s, 1087s, 1013,
961, 944, 871, 840, 749, 707, 688, 517, 499s, 481, 459, 445, 395, 380, 350, 336, 283, 277, 252,
218, 211, 195, 160, 147, 141, 127, 121, 100.

Source: Čejka et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Calomel HgCl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal in the

(zz) polarization using 514.5 and 632.8 nm He-Ne laser radiations. The laser radiation power is not
indicated.

Raman shifts (cm21): 272, 164s, 36s.
Source: Radepont (2013).
Comments: For the Raman spectrum of calomel see also Markov and Roginskii (2011).

Calumetite Cu(OH)2∙2H2O

Origin: No data.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The output laser
radiation power was 30 mW.

Raman shifts (cm21): 3550, 3450, 1054, 1041s, 985, 843, 622, 595, 489, 451, 409, 347, 314, 259,
236, 193, 184, 164, 145, 139, 128.

Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of calumetite see also Bouchard-Abouchacra (2001).

Camaronesite Fe3+2(PO3OH)2(SO4)(H2O)4∙1-2H2O

Origin: Camarones valley, Arica province, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 5 mW.
Raman shifts (cm21): 3463, 3363, 3140, ~1610, 1080s, 1014s, 937, 526, 305, 254, 227.
Source: Kampf et al. (2013d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved.
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Camerolaite Cu6Al3(OH)18(H2O)2[Sb(OH)6](SO4)

Origin: Cap Garonne, France (type locality).
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal with the laser beamorthogonal to the elongation direction of the crystal (b axis) using 532 nm
Nd-YAG laser radiation. The nominal laser radiation power was from 5 to 30 mW.

Raman shifts (cm21): 3596, 3558, 3495, 3200–3120, 2330w, 1064, 1050w, 968, 614s, 526s,
447, 347w, 325, 272, 237.

Source: Mills et al. (2014a).
Comments: The Raman shifts are given for the holotype sample no. 477.067. The sample was

characterized by powder X-ray diffraction data.

Canavesite Mg2(HBO3)(CO3)∙5H2O

Origin: No data.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed using 514.5 nm Ar-Kr laser radiation. The laser radiation
power was from 2 to 5 mW.

Raman shifts (cm21): 3657s, 3484sh, 3392, 3293, 2910, 1458w, 1284, 1105s, 982, 768s, 635w,
548, 174s.

Source: Grice et al. (1986).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Cancrinite (Na,Ca,□)8(Al6Si6)O24(CO3,SO4)2∙2H2O

Origin: Cava Satom, Cameroon.
Experimental details: Raman scattering measurements have been performed on a single crystal using

532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 5 mW.
Raman shifts (cm21): 3647w, 3536w, 1057s, 1042, 1002, 981, 976, 960, 937, 816, 768, 685, 631,

499, 469, 460, 440, 418, 401, 364, 350, 338, 293s, 277, 231, 161, 115, 108.
Source: Gatta et al. (2012a).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. Raman shifts are given for the crystal in two
different orientations (crystal rotated by 90�). For the Raman spectra of cancrinite see also
Mozgawa (2001) and Lotti (2014).

Cancrinite SO4-rich (Na,Ca,□)8(Al6Si6)O24(CO3,SO4)2∙2H2O

Origin: Cinder Lake, Manitoba, Canada.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3591w, 3544, 1060s, 992s, 774w, 720w, 687w, 633w, 515, 465, 441s,

340, 298, 275s, 230, 198, 89s.
Source: Martins et al. (2016).
Comments: The sample was characterized by X-ray microdiffraction data and electron microprobe

analysis.
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Canfieldite Ag8SnS6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514 nm YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 310, 221w, 76s.
Source: Cheng et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and Hall measurements.

Cannonite Bi2O(SO4)(OH)2

Origin: Alfenza, Crodo, Italy.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

with the polarization of the incident laser beam parallel to Y using 514.5 nm Ar+ laser radiation. The
laser radiation power is not indicated.

Raman shifts (cm21): 3439, 3376, 3190w 1114, 1059, 984s, 621w, 605w, 562, 467, 452s, 438s,
400w, 337, 318s, 279, 222s, 189, 147s, 121s, 101s, 80w, 62.

Source: Capitani et al. (2013).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analysis. For the Raman spectra of cannonite see also Gama (2000) and
Capitani et al. (2014).

Carbocernaite (Sr,Ce,La)(Ca,Na)(CO3)2

Origin: Bear Lodge carbonatite, Wyoming, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): Ca-Sr-rich variety: 1099s, 1077s, 979s (broad), 864w, 744w, 728sh, 716, 693,

269s, 215, 181, 127. Na-REE-rich variety: 1104s, 1097s, 1079s, 983 (broad) 874w, 860w,
749, 732sh, 724, 716sh, 704w, 677w, 257s, 188, 122.

Source: Chakhmouradian et al. (2017).
Comments: The samples were characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The broad bands at ~980 cm�1 may be due to fluorescence.

Carbonatecyanotrichite Cu4Al2(CO3)(OH)12∙2H2O

Origin: Grandview mine, Coconino Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal with the laser beam orthogonal to the elongation direction of the crystal (b axis) using
532 nm Nd-YAG laser radiation. The nominal laser radiation power was from 5 to 30 mW.

Raman shifts (cm21): 3657, 3583, 3400–3300, 2329, 1141w, 977s, 591, 524s, 441, 273w, 233w.
Source: Mills et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data.
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Carletonite KNa4Ca4Si8O18(CO3)4(F,OH)∙H2O

Origin: Poudrette Quarry, Saint Hilaire Mt., Quebec, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3595, 3584, 3572, 3570, 3235w, 2905, 2630, 1753w, 1732w, 1662w, 1617w,
1548w, 1481, 1426, 1217, 1086s, 1075s, 1066s, 840, 782, 756w, 735w, 726, 706, 698, 685, 663w,
547, 513, 495, 430, 401, 356, 342, 325w, 316, 289, 235, 217, 194, 174, 157, 142.

Source: Frost et al. (2013ai).
Comments: No independent analytical data are provided for the sample used.

Carlfrancisite Mn2+3(Mn2+,Mg,Fe3+,Al)42(As
3+O3)2(As

5+O4)4[(Si,As
5+)O4]6[(As

5+,Si)O4]2(OH)42

Origin: Kombat mine, Otavi valley, Namibia (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power at
the sample was in the range 5–12.5 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3660w, 3600, 3532. 3463, 1600, 897, 836sh, 819sh, 791s, 732, 616, 514, 400.
Source: Hawthorne et al. (2013).
Comments: The sample was characterized by powder and single-crystal X-ray diffraction data, and

electron microprobe analyses. The Raman shifts were partly determined by us based on spectral
curve analysis of the published spectrum.

Carlfriesite CaTe6+(Te4+)2O8

Origin: Moctezuma mine, New Mexico, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): The IR and Raman spectra of presumed carlfriesite presented in the cited paper
are wrong. Actually, spectra of calcite are given. The bands of calcite are erroneously assigned to
Te–O-stretching vibrations.

Source: Frost et al. (2009g).
Comments: No independent analytical data are provided for the sample used.

Carlinite Tl2S

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 2.5 mW.

Raman shifts (cm21): ~280, ~160 (at room temperature); 280, 192, 171s, 143 (at 12 K).
Source: Chia et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.
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Carlosturanite (Mg,Fe2+,Ti)21(Si,Al)12O28(OH)34∙H2O

Origin: Val Varaita, Piedmont, northern Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 788sh, 776s, 765sh, 706, 692, 671, 451, 363, 329.
Source: Belluso et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Carlsbergite CrN

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on a powdered single-layer coating on silicon substrate using
633 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm21): 619w, 238w.
Source: Barshilia and Rajam (2004).
Comments: The sample was characterized by powder X-ray diffraction data.

Carminite PbFe3+2(AsO4)2(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power was
<1 mW.

Raman shifts (cm21): 3254, 3217, 849, 835, 822, 738, 543, 497, 467, 350, 324, 259, 210.
Source: Frost and Kloprogge (2003).
Comments: No independent analytical data are provided for the sample used.

Carnallite KMgCl3∙6H2O

Origin: A dolerite sill in eastern Siberia, Russia.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3472sh, 3444s, 3425s, 3401, 1641s, 401, 321w, 217, 202, 126, 97, 71, 59.
Source: Grishina et al. (1992).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of carnallite see also Weber et al. (2012).

Carnegieite NaAlSiO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488 nm Ar+ laser radiation. The output laser radiation power was 600 mW. A 90�-scattering
geometry was employed.
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Raman shifts (cm21): 1072, 982, 964, 949, 803w, 721w, 685, 637w, 487, 444, 433, 404, 379s, 347sh,
340sh, 313sh, 262w, 217, 154, 114.

Source: Matson et al. (1986).
Comments: The sample was characterized by powder X-ray diffraction data.

Carnotite K2(UO2)2(VO4)2∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 6471 Å Kr laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 975, 825w, 737s, (645w), 585w, 540w, (475w), 410w, 380, 360w, (310w),

275w, 250w, 230w.
Source: Baran and Botto (1976).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

carnotite see also Biwer et al. (1990) and Frost et al. (2005c).

Carpathite C24H12

Origin: Picacho Peak Area, San Benito Co., California, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm21): 1627, 1615, 1594, 1449, 1437, 1393w, 1366s, 1350s, 1337, 1289w, 1220,
1044w, 1026, 994w, 949w, 660w, 483s, 450, 369, 304w, 238w.

Source: Echigo et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The Raman shifts were determined by us based on spectral curve analysis of the published
spectrum. For the Raman spectrum of carpathite see also Zhao et al. (2013b).

Carpholite Mn2+Al2Si2O6(OH)4

Origin: Vrpsko, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power at the sample was from 50 to
100 mW.

Raman shifts (cm21): 1087, 1029, 987sh, 958, 919s, 883, 828, 777, 735s, 709, 678, 658, 634,
609, 583sh, 559, 503, 469, 441, 404, 371, 345s, 315, 292, 281, 260, 238, 209, 162sh.

Source: Makreski et al. (2006b).
Comments: The sample was characterized by powder X-ray diffraction data and neutron activation

analysis. For the Raman spectrum of carpholite see also Jovanovski et al. (2009).

Carrboydite (Ni1-xAlx)(SO4)x/2(OH)2�nH2O (x < 0.5, n > 3x/2)

Origin: Widgiemooltha, Western Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample was <1 mW.
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Raman shifts (cm21): 3614, 3445 (broad), 1125, 981s, 631, 613, 563, 552, 499, 457, 403, 318,
248, 227, 205.

Source: Frost et al. (2003h).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of carrboydite see also Lin et al. (2006).

Carrollite CuCo2S4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 660s, 509, 474.
Source: Nie et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Caryopilite Mn2+3Si2O5(OH)4

Origin: Santa Cruz Formation, Brazil.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): No data: only a figure of the Raman spectrum is given in the cited book.
Source: Johnson (2015).
Comments: The sample was characterized by electron microprobe analyses.

Cassiterite SnO2

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser
radiation power was 30 mW.

Raman shifts (cm21): 842, 776, 635s, 475.
Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

cassiterite see also Andò and Garzanti (2014) and Evrard et al. (2015).

Castellaroite Mn2+3(AsO4)2�4H2O

Origin: Monte Nero mine, Rocchetta Vara, La Spezia, Liguria, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm Nd-YAG laser radiation. The laser radiation output power was 500 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3942w, 3758w, 3491w, 3241w, 3116w, 2925w, 1663w, 934w, 911sh, 863s,
847sh, 822s, 801s, 578w, 509w, 459sh, 426, 372, 341sh, 275w, 215w, 182w, 150, 143sh, 109.

Source: Kampf et al. (2016a).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses. The crystal structure is solved.

Caswellsilverite NaCrS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Polarized spectra were collected in the y(xy)z and y(xx)z scattering geometries.

Raman shifts (cm21): 317, 252.
Source: Unger et al. (1979).
Comments: No independent analytical data are provided for the sample used. In the y(xy)z scattering

geometry only a band at 252 cm�1 is observed.

Catalanoite Na2(HPO4)∙8H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 40 �C on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 30 mW.
Raman shifts (cm21): 3412s, 3238w, 1089, 987s, 869s, 518, 407w, 388.
Source: Ghule et al. (2003).
Comments: The sample was characterized by thermogravimetric data.

Catapleiite Na2Zr(Si3O9)∙2H2O

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1005s, 928, 622, 563.
Source: Gaft et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis, but no independent analytical data are provided for the sample used.

Cattierite CoS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a CoS2 film using

632.8 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 392s, 316w, 290.
Source: Kinner et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data.

Cavansite Ca(V4+O)(Si4O10)∙4H2O

Origin: Wagholi Quarry, Maharashtra, India.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.
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Raman shifts (cm21): 3654, 3604, 3577w, 3546, 3504, 3429sh, 1109w, 1088w, 1072w, 1043w, 981s,
973sh, 954sh, 935w, 842w, 823w, 713w, 672, 587sh, 574, 542, 477, 437, 388w, 350, 307sh,
291, 251, 230, 194, 131, 113.

Source: Frost and Xi (2012h).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of cavansite see also Prasad and Prasad (2007).

Cebaite (Ce) Ba3Ce2(CO3)5F2

Origin: No data.
Experimental details: Raman scattering measurements have been performed using 488 nm laser

radiation. The nominal laser radiation power was 300 mW.
Source: Hong et al. (1999).
Raman shifts (cm21): 1088, 911, 1516, 718, 625.

Čejkaite Na4(UO2)(CO3)3

Origin: Svornost mine, Jáchymov, Krušné Hory (Ore Mts.), Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 1630, 1371sh, 1342, 1327sh, 1074s, 807, 805s, 734, 730, 703, 693, 419, 412,
347, 311s, 291, 281, 262, 194, 165, 143, 122.

Source: Čejka et al. (2010b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Celadonite KMgFe3+Si4O10(OH)2

Origin: Akaky River, Cyprus.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 0.9 mW.
Raman shifts (cm21): 3604w, 3583w, 3566s, 3538w, 1597, 1132, 1086, 1056w, 1017sh, 961, 797w,

769w, 701, 551s, 460w, 445w, 393, 318w, 273, 174s.
Source: Correia et al. (2007).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of celadonite see also Ospitali et al. (2008).

Celestine Sr(SO4)

Origin: Dufton, England.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1160, 1112w, 1003s, 641sh, 623, 461.
Source: Buzgar et al. (2009).
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Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of
the spectral curve analysis. The sample was characterized by EMPA. No independent analytical
data are provided for the sample used. For the Raman spectra of celestine see also Kloprogge et al.
(2001b), Andò and Garzanti (2014), and Culka et al. (2016a).

Celsian Ba(Al2Si2O8)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~1050w, ~990, ~940, ~920sh, ~750w, ~715w, ~695w, ~550w, ~505s, ~470,

~405w, ~365w, ~305, ~250, ~195, ~165.
Source: Galuskina et al. (2016b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of celsian see also Graham et al. (1992) and Colomban et al. (2000).

Cerianite-(Ce) CeO2

Origin: Kerimasi volcano, Gregory Rift, northern Tanzania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 825–820w, 571, 449s, 184.
Source: Zaitsev et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectra of cerianite-(Ce) see also Nakajima et al. (1994), Wang et al.
(1998b), and Hao (2008).

Černýite Cu2CdSnS4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film. Other

experimental details are not described.
Raman shifts (cm21): 333, 304, 284.
Source: Guo et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the IR spectrum of černýite see also Rincón et al. (2015).

Ceruleite Cu2Al7(AsO4)4(OH)13∙11.5H2O

Origin: Emma Louisa gold mine, Guanaco district, Antofagasta, Chile.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3611sh, 3608s, 3597s, 3384, 3222, 3198sh, 3056, 1654w, 1042, 1003w,
951, 932, 903s, 870, 845, 827, 747w, 700w, 662w, 597s, 579sh, 515, 500sh, 464, 451sh, 430sh,
417, 400, 373, 335, 316, 299, 280, 262, 239, 231sh, 208, 195sh, 184sh, 176, 152, 132, 118, 111.

Source: Frost et al. (2013b).
Comments: No independent analytical data are provided for the sample used.
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Cerussite Pb(CO3)

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser
radiation power was 30 mW.

Raman shifts (cm21): 1477, 1370, 1052s, 246, 225, 176, 152.
Source: Bouchard and Smith (2003).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of cerussite see also Ciomartan et al. (1996), Frost et al. (2003e, f), and Frezzotti et al. (2012).

Cervantite Sb3+Sb5+O4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 402w, 199, 96s.
Source: Jamal et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

cervantite see also Cody et al. (1979) and Makreski et al. (2013b).

Cesanite Ca2Na3(SO4)3OH

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1104sh, 1004s, 647, 626s, 474, 448s.
Source: Frezzotti et al. (2012).
Comments: No independent analytical data are provided for the sample used.

Chabazite-Ca Ca2[Al4Si8O24]∙13H2O

Origin: Nidda, Germany.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 300 mW.

Raman shifts (cm21): 1161w, 1082w, 808w, 697w, 465s, 402w, 357, 264, 204, 128.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of chabazite-Ca see also Pechar and Rykl (1983).

Chalcanthite Cu(SO4)∙5H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the source was 30 mW.
Raman shifts (cm21): 3482, 3345, 3206, 1143, 1096, 986s, 612, 465, 426, 332w, 281, 202, 135, 124.
Source: Bouchard and Smith (2003).
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Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of
chalcanthite see also Berger (1976), Christy et al. (2004), Fu et al. (2012), and Bissengaliyeva
et al. (2016).

Chalcoalumite CuAl4(SO4)(OH)12∙3H2O

Origin: Červená vein, Jáchymov, Czech Republic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 nm laser radiation. The output laser radiation power was 2 mW.
Raman shifts (cm21): 3670, 3610, 3450s, 3270sh, 2940w, 2780w, 2650w, 1610w, 1455, 1135,

1110sh, 1005, 981s, 803w, (642sh), 594s, 494, 455, 415w, 220w, 175.
Source: Plášil et al. (2014d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Chalcocite Cu2S

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 465s, 257w.
Source: Kumar and Nagarajan (2011).
Comments: The sample was characterized by powder X-ray diffraction data and ICP analysis.

Chalcocyanite Cu(SO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1205, 1101, 1045s, 1014s, 671w, 623, 514, 480sh, 448sh, 423, 347,

270, 250sh.
Source: Buzgar et al. (2009).
Comments: No independent analytical data are provided for the sample used. For the IR spectrum of

chalcocyanite see also Fu et al. (2012).

Chalcomenite Cu(Se4+O3)∙2H2O

Origin: El Dragon Mine, Potosi, Bolivia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3506w, 3184w, 2953w, 813s, 720, 690sh, 552, 472, 400w, 367w, 260, 218,
141, 128.

Source: Frost and Keeffe (2008b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis, but no analytical data are provided in the cited paper.
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Chalconatronite Na2Cu(CO3)2∙3H2O

Origin: Product of surface alterations of bronze.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1600, 1329, 1073, 1053, 764, 698w, 327s, 261–268.
Source: Chiavari et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Chalcophanite ZnMn4+3O7∙3H2O

Origin: Xiangguang Mn-Ag deposit, northern China.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 651, 606, 502sh, 384w, 273w, 163.
Source: Fan et al. (2015).
Comments: The sample was characterized by LA-ICP-MS method and electron microprobe analysis.

For the Raman spectrum of chalcophanite see also Kim and Stair (2004).

Chalcophyllite Cu18Al2(AsO4)4(SO4)3(OH)24∙36H2O

Origin: Burrus Mine, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3555w, 3390sh, 3129sh, 1636w, 981, 968sh, 867sh, 841s, 814sh, 499, 386,
221sh, 202, 142.

Source: Frost et al. (2010g).
Comments: No independent analytical data are provided for the sample used. The IR spectrum of

presumed chalcophyllite from Burrus Mine given in the cited paper differs substantially from IR
spectra of chalcophyllite published elsewhere (Moenke 1962; Chukanov 2014).

Chalcopyrite CuFeS2

Origin: Mt. Morgan, Queensland, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was in the range
1–10 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 378, 352, 322, 293s.
Source: Mernagh and Trudu (1993).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

chalcopyrite see also Sasaki et al. (2009) and White (2009).
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Chalcosiderite CuFe3+6(PO4)4(OH)8∙4H2O

Origin: Siglo XX mine, Andes Mts., Bustillo province, Bolivia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3543sh, 3514s, 3501sh, 3482sh, 3480sh, 3384sh, 3306, 3200sh, 1194, 1168sh,
1159, 1102, 1062sh, 1042s, 1027sh, 990, 826w, 794sh, 768, 741sh, 636, 598sh, 580, 536,
484, 475sh, 420s, 415sh, 388, 351sh, 333, 293, 272, 264sh, 243sh, 235, 203, 182sh, 176, 153sh,
136s, 125s, 107.

Source: Frost et al. (2013af).
Comments: The sample was characterized by powder X-ray diffraction data and SEM/EDS, which

may correspond to turquoise.

Chalcostibite CuSbS2

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 329s, 251, 152.
Source: Zhang et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of chalcostibite see also Rath et al. (2015).

Challacolloite KPb2Cl5

Origin: Artificial (a phase in a fifteenth-century polychrome terracotta relief).
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 785 nm laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 202, 169, 158, 119s, 96, 85, 73.
Source: Bezur et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectra of oriented challacolloite crystals see Vtyurin et al. (2004).

Chambersite Mn3B7O13Cl

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 1684, 1660, 1634sh, 1596m 1548sh, 1426sh, 1412sh, 1399, 1368sh, 1346,
1326sh, 1209, 1169sh, 1146sh, 1129, 1091sh, 1075, 1056, 1045, 1027sh, 989w, 963, 942,
920, 902sh, 871, 853, 836, 797w,7766, 755w, 721, 705w, 679sh, 660s, 642sh, 617w, 597, 559,
544sh, 523, 508, 402, 393sh, 371sh, 357s, 339sh, 302, 273, 259, 241, 229, 209, 185sh, 177sh, 161s,
143s, 116.

Source: Frost et al. (2014f).
Comments: No independent analytical data are provided for the sample used.
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Chamosite (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8

Origin: Turamdih, India.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished section using 514.5 nm Ar+ laser radiation. The laser radiation power behind the objective
was in the range 0.03–0.8 mW. A nearly 180�-scattering geometry was employed.

Raman shifts (cm�1): 3644s, 3625s, 3560s, 3434, ~1030, 665s, 615sh, 545s, 518sh, 428w, 361, 198,
127.

Source: Nasdala et al. (2006).
Comments: The sample was characterized by electron microprobe analysis.

Changbaiite PbNb2O6

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 700sh, 676s, 550sh, 529w, 477, 453sh, 423w, 379sh, 361, 323, 3009w,

277, 247, 230w, 202s, 179s, 141s, 119, 89s, 61.
Source: Repelin et al. (1980).
Comments: No independent analytical data are provided for the sample used.

Changoite Na2Zn(SO4)2∙4H2O

Origin: Synthetic.
Experimental details:
Raman shifts (cm21): 3409, 3118, 1189, 1160, 1099, 1064, 985s, 628sh, 612, 473sh, 451.
Source: Jentzsch et al. (2013).

Chapmanite Fe3+2Sb
3+(SiO4)2(OH)

Origin: Boňenov, near Mariánské Láznĕ, western Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3563, 3555, 1590, 1317w, 1120, 1077, 1013, 903, 808, 773, 709, 553, 473w,
436sh, 422, 408, 391, 361sh, 350, 334sh, 313, 293w, 256, 219, 208, 186, 177, 147, 114, 107.

Source: Frost et al. (2010a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Charoite (K,Sr,Ba,Mn)15-16(Ca,Na)32[Si70(O,OH)180](OH,F)4∙nH2O

Origin: Murun massif (Murunskii alkaline complex), Aldan Shield, southwest Yakutia, Siberia,
Russia (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering
measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.
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Raman shifts (cm21): 2403, 2367, 1135, 1116sh, 1054, 675s, 638, 434w, 242w.
Source: Buzatu and Buzgar (2010).
Comments: No independent analytical data are provided for the sample used.

Chegemite Ca7(SiO4)3(OH)2

Origin: Upper Chegem volcanic structure, Northern Caucasus, Kabardino-Balkaria, Russia (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 20 mW. A
0�-scattering geometry was employed.

Raman shifts (cm�1): 3563s, 3551sh, 3532, 3478s, 924s, 893, 845, 818s, 774, 766, 549, 526s,
403, 389s, 311, 293, 273, 226.

Source: Galuskin et al. (2009).
Comments: The Raman shifts have been determined for the maxima of individual peaks obtained as a

result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data
and electron microprobe analysis. The crystal structure is solved.

Chekhovichite Bi3+2Te
4+

4O11

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power at the sample
was 87 mW.

Raman shifts (cm21): 761w, 726s, 674sh, 642s, 551w, 419w, 380, 298, 270, 224, 180.
Source: Durand (2006).
Comments: The sample was characterized by powder X-ray diffraction data.

Chenevixite Cu(Fe3+,Al)(AsO4)(OH)2

Origin: Manto Cuba Mine, San Pedro de Cachiyuyo district, Chañara lprovince, Atacama, Chile.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3501sh, 3405w, 3315sh, 2931w, 2870w, 1688, 1613, 1536, 1238, 1211, 1151,
1130, 883sh, 855s, 836sh, 807s, 495, 450sh, 435s, 408sh, 359, 350, 300.

Source: Frost et al. (2015f).
Comments: The sample was characterized by qualitative electron microprobe analysis that shows

admixture of a silicate. The bands at 1688 and 1613 cm�1 indicate the presence of H2O molecules.

Cheralite CaTh(PO4)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

pellet using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 10 mW.
A 180�-scattering geometry was employed.
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Raman shifts (cm21): 1088w, 982s, 623w, 597w, 573, 537w, 54, 425, 399sh, 289w, 235w.
Source: Raison et al. (2008).
Comments: The sample was characterized by XRD. For the IR spectrum of cheralite see also Terra

et al. (2008).

Chernikovite (H3O)(UO2)(PO4)∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was about
1–4 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3425w, 3215sh, 3078w, 999s, 986, 842s, 458w, 402, 287, 193s, 110.
Source: Clavier et al. (2016).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
ICP-AES.

Chernovite-(Y) Y(AsO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 888s, 880s, 835s, 395, 255w, 234w, 177w.
Source: Pradhan et al. (1987).
Comments: The sample was characterized by powder X-ray diffraction data.

Chervetite Pb2V
5+

2O7

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 nm Ar+ laser radiation. The laser radiation power
is not indicated.

Raman shifts (cm21): 876s, 817s, 751w, 673w, 582, 371, 351s, 324, 258w, 232, 196w, 181w, 140w,
124, 112w, 89, 74.

Source: Schwendt and Joniaková (1975).
Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis.

Chiavennite CaMn2+(BeOH)2Si5O13∙2H2O

Origin: Prata, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1068w, 996w, 960w, 919w, 682w, 559, 508, 460s, 428w, 360w, 356w, 352w,

347w, 342w, 299w, 257w, 234w, 324w, 204w, 195w, 148w, 115w, 95w.
Source: Jehlička et al. (2012).
Comments: No independent analytical data are provided for the sample used.
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Chibaite SiO2�n(CH4,C2H6,C3H8,C4H10) (nmax ¼ 3/17)

Origin: Arakawa, Chiba prefecture, Honshu Island, Japan (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 3050w, 2960w, 2936, 2908s, 2900, 2866, 989, 873, 805, and a series of bands

below 400 cm�1.
Source: Likhacheva et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of chibaite see also Momma et al. (2011).

Childrenite Fe2+Al(PO4)(OH)2∙H2O

Origin: Ponte do Piauí mine, Piauí valley, Itinga, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3471, 3420sh, 3333, 3199sh, 3043, 1724, 1673, 1573, 1183w, 1142, 1091w,
1011s, 978sh, 969s, 864w, 816w, 608sh, 595s, 562, 466s, 427sh, 405, 347sh, 310, 251, 228, 208,
188sh, 147sh, 138.

Source: Frost et al. (2013am).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Chiolite Na5Al3F14

Experimental details: Raman scattering measurements have been performed on an oriented single
crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was between 0.5
and 1 W.

Raman shifts (cm21): A1g (xx +yy): 530s, 356, 203, 110s; A1g (zz): 530s, 414, 356, ~312w, 203w,
110; B1g (xx –yy): 441w, 320w, ~250w (?); B2g (xy): 390w, ~250w (?), 223w, 208w; Eg(xz, yz):
426w, 408, 360w, 248s, 28.

Source: Rocquet et al. (1985).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of chiolite see also Carey et al. (2015).

Chloraluminite AlCl3�6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1150, 835, 710w, 615, 572, 530, 430, 315s, 180, 115s, 82w, 57s.
Source: Stefov et al. (1992).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.
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Chlorapatite Ca5(PO4)3Cl

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1127w, 1039, 963s, 581w, 430w.
Source: Frezzotti et al. (2012).
Comments: The methods of the identification of the sample are not indicated. For the Raman spectrum

of chlorapatite see also Chen et al. (1995).

Chlorargyrite AgCl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 568 nm laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 386, 240, 149.
Source: Bottger and Damsgard (1971).
Comments: Second order Raman spectrum at 300 K is given.

Chloritoid Fe2+Al2O(SiO4)(OH)2

Origin: Tipam Formation, Bangladesh.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystalin Canada Balsam using 532 nm diode laser radiation. The laser radiation power is not
indicated. A nearly 180�-scattering geometry was employed.

Raman shifts (cm21): 880w, 596s, 160.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used.

Chlorkyuygenite Ca12Al14O32[(H2O)4Cl2]

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 652 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): ~3400 (broad), ~3200 (broad), 907sh, 881, 776s, 705s, 511s, 321, 208, 161.
Source: Galuskin et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. No Raman bands of H2O molecules are observed in the
range from 1500 to 1700 cm�1.

Chlormayenite Ca12Al14O32[□4Cl2]

Origin: Ettringer Bellerberg volcano, near Mayen, Eifel Mts., Germany (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was in the range
30–50 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3669, 3644sh, 3570sh, 3400, 1094w, 991, 881, 816sh, 772s, 703, 512s, 323.
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Source: Galuskin et al. (2012c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. For the Raman spectrum of chlormayenite see also Ma et al.
(2011a).

Chlorocalcite KCaCl3

Origin: A dolerite sill in eastern Siberia, Russia.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 195, 140s, 128sh, 82, 67, 57.
Source: Grishina et al. (1992).
Comments: No independent analytical data are provided for the sample used.

Chloromagnesite MgCl2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 5 mW.
Raman shifts (cm21): 243s, 157w.
Source: Brambilla et al. (2004).
Comments: No independent analytical data are provided for the sample used.

Chloroxiphite Pb3CuO2Cl2(OH)2

Origin: Merehead Quarry, Shepton Mallet, Somerset, UK (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on arbitrarily

oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the
maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation
power was 0.1 mW.

Raman shifts (cm21): 3466, 3437, 3400, 3338, 875, 782, 692, 482, 469, 406, 350, 312, 286, 250,
226, 190, 179, 166, 145, 139s.

Source: Frost and Williams (2004).
Comments: No independent analytical data are provided for the sample used.

Chondrodite Mg5(SiO4)2F2

Origin: Sparta, Sussex Co., New Jersey, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3576, 3570, 3561, 967, 931, 878w, 860s, 845s, 832s, (818w), 786w, 755, 607,
587s, 572, 547s, 430, 390.

Source: Frost et al. (2007k).
Comments: The sample was characterized by powder X-ray diffraction data and electron

microprobe analysis. Raman shifts are given for chondrodite with the empirical formula
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Mg5.04Fe
2+

0.09Ti0.02Na0.10(SiO4)2F1.38(OH)x. For the Raman spectra of chondrodite see also
Mernagh et al. (1999) and Lin et al. (1999).

Chromatite CaCr6+O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal. Other experimental details are not described.
Raman shifts (cm21): ~900, ~875s.
Source: Sánchez-Pastor et al. (2010).
Comments: The sample was characterized by electron microprobe analysis.

Chromite Fe2+Cr2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 647.1 nm Kr+ laser radiation. The nominal laser radiation power was 0.1 mW.
Raman shifts (cm21): 678s, 635sh, 531.
Source: Hosterman (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectra of chromite see also Reddy and Frost (2005), Karwowski et al.
(2013), Chen et al. (2008a), Sagatowska (2010), Lenaz and Lughi (2013), Andò and Garzanti
(2014), and D’Ippolito et al. (2015).

Chromite Fe2+Cr2O4

Origin: Morasko iron meteorite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 10 mW.
Raman shifts (cm21): 683s, 642sh, 604w, 513w, 446w.
Source: Karwowski et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. Its empirical formula is (Mg0.34Mn0.04Zn0.07Al0.01Fe
2+

0.55Fe0.01Cr1.96)O4. For the Raman
spectra of chromite see also Hosterman (2011), Reddy and Frost (2005), Chen et al. (2008a),
Sagatowska (2010), Lenaz and Lughi (2013), Andò and Garzanti (2014), and D’Ippolito et al.
(2015).

Chrysoberyl BeAl2O4

Origin: Colatine, Esperito Santo, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1040w(?), 1020w, 931s, 816, 776, 747, 711, 679, 658, 639s, 567, 546, 518s,

501, 477s, 459, 447, 422, 397, 371w, 242w, 218w.
Source: Hofmeister et al. (1987).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

chrysoberyl see also Jehlička et al. (2012), Beurlen et al. (2013), and Culka et al. (2016a).
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Chrysocolla (Cu2-xAlx)H2-xSi2O5(OH)4∙nH2O

Origin: An unknown locality in Peru.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 785 nm diode laser radiation. The laser radiation power at the sample was
below 0.5 mW.

Raman shifts (cm21): ~1045w, ~945w, ~798w, 676s, ~490sh, 413s, 341, ~210.
Source: Bernardino et al. (2016).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

chrysocolla see also Frost and Xi (2013a) and Coccato et al. (2016).

Chrysothallite K6Cu6Tl
3+Cl17(OH)4�H2O

Origin: Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption,
Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 532 nm diode laser radiation. The laser radiation power at the sample was ~0.1 mW.

Raman shifts (cm21): 3443s, 1580w, 949, 902sh, 465, 320, 295, 275s, 250sh, 206s.
Source: Pekov et al. (2015c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved.

Chrysotile Mg3Si2O5(OH)4

Origin: Salem, Tamil Nadu, India.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1105, 692s, 622, 464, 438w, 390s, 348, 325, 304w, 232s, 180.
Source: Anbalagan et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

chrysotile see also Rinaudo et al. (2003), Auzende et al. (2004), and Petry et al. (2006).

Chukanovite Fe2(CO3)(OH)2

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was
0.1 mW.

Raman shifts (cm21): 3454, 3321, 1510, 1434w, 1070s, 926w, 730, 389, 238w.
Source: Saheb et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of chukanovite see also Rémazeilles and Refait (2009).

Chukhrovite (Ca) Ca3Ca1.5Al2(SO4)F13∙12H2O

Origin: Val Cavallizza Pb-Zn-(Ag) mine, Cuasso al Monte, Varese province, Italy (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation
power is not indicated.
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Raman shifts (cm21): 3560, 3470, 3440, 3270, 1632, 1112, 977s, 553, 449, 395w, 345, 281,
211, 181, 140w.

Source: Vignola et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.

Churchite-(Nd) (?) Nd(PO4)∙2H2O

Origin: Costa Balzi Rossi, Magliolo, Liguria, Italy.
Experimental details: No data.
Raman shifts (cm21): 1316, 1181s, 974, 872w, 805, 742, 677, 633, 532s, 475, 424w, 249, 170w.
Source: Bracco et al. (2012).
Comments: The sample of presumed churchite-(Nd) was characterized only by electron microprobe

analyses. The Raman shifts were determined by us based on spectral curve analysis of the published
spectrum.

Churchite-(Y) Y(PO4)∙2H2O

Origin: Grube Leonie, Auerbach, Oberphalz, Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm21): 3327sh, 3205w, 3127w, 3065sh, 1067s, 1029w, 995sh, 984s, 981sh, 707w,
681, 662sh, 649, 565,497, 369sh, 362, 344sh, 307, 287, 269, 249, 210, 199, 188, 180, 162w,
145, 116sh, 109.

Source: Frost et al. (2014g).
Comments: No independent analytical data are provided for the sample used.

Cinnabar α-HgS

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm laser radiation. The laser radiation power at the sample was from 50 to 520 μW.
Raman shifts (cm21): 343w, 282w, 251s, 40s.
Source: Radepont (2013).
Comments: For the Raman spectra of cinnabar see also Lepot et al. (2006) and Frost et al. (2010c).

Claringbullite Cu2+4Cl(OH)(OH)6

Origin: Nchanga Open Pit, Chingola, Zambia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.
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Raman shifts (cm21): 3458sh, 3433s, 3351s, 3331sh, 3211, 970, 906, 815, 579, 511s, 447, 389,
356, 260, 231, 163, 147, 136, 119.

Source: Frost et al. (2003i).
Comments: No independent analytical data are provided for the sample used.

Claudetite As2O3

Origin: Jáchymov U deposit, KrušnéHory (Ore Mts.), Western Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 100 mW.
Raman shifts (cm21): 814, 632, 626s, 541s, 459s, 356, 354, 284, 284, 259s, 248s, 218, 193, 175.
Source: Origlieri et al. (2009).
Comments: For the Raman spectrum of claudetite see also Guńka et al. (2012).

Clausthalite PbSe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a nanocrystalline

aggregate. No other experimental details are described.
Raman shifts (cm21): 791, 136s.
Source: Ge and Li (2003).
Comments: The sample was characterized by powder X-ray diffraction data. The band at 791 cm�1

may correspond to an impurity.

Clinoatacamite Cu2Cl(OH)3

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The output laser
radiation power was 30 mW.

Raman shifts (cm21): 3442, 3355, 3310, 930, 911, 896, 842s, 820s, 804, 590, 511s, 450, 420, 364.
Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

clinoatacamite see also Chu et al. (2011), Bertolotti et al. (2012), and Coccato et al. (2016).

Clinoatacamite Cu2Cl(OH)3

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation
power at the sample was in the range 0.05–1 mW.

Raman shifts (cm21): 3434, 3348, 3326, 3308, 971, 927, 893, 818, 581, 511s, 446, 361, 139.
Source: Bertolotti et al. (2012).
Comments: The sample was characterized by electron microprobe analysis, X-ray photoelectron

spectroscopy, and IR spectroscopy. The band at 3326 cm�1 may be due to an impurity. For the
Raman spectra of clinoatacamite see also Bouchard and Smith (2003), Chu et al. (2011), and
Coccato et al. (2016).
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Clinobisvanite Bi(VO4)

Origin: Londonderry feldspar quarry, Coolgardie area, Western Australia.
Experimental details: Micro-Raman scattering measurements have been performed on arbitrarily

oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the
maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 828s, 756, 712, 368, 329, 245, 211, 185, 167.
Source: Frost et al. (2006i).
Comments: No independent analytical data are given for the sample used.

Clinocervantite Sb3+Sb5+O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on packed powder using

488 nm Ar+ laser radiation. The laser radiation power at the sample was ~300 mW. A 90�-scattering
geometry was employed.

Raman shifts (cm21): 754w, 635w, 466, 439w, 405s, 283w, 212s, 195sh, 142, 94, 79s.
Source: Cody et al. (1979).
Comments: The sample was characterized by powder X-ray diffraction data.

Clinochalcomenite Cu(Se4+O3)∙2H2O

Origin: El Dragon Mine, Potosi, Bolivia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3507w, 3193w, 2909w, 967w, 817sh, 811s, 792sh, 749, 700, 552, 489, 378sh,
361, 349sh, 219, 180, 129.

Source: Frost and Keeffe (2008b).
Comments: Questionable data: the Raman spectrum of presumed clinochalcomenite is very close to

that of chalcomenite. No independent analytical data are given for the sample used.

Clinochlore Mg5Al(AlSi3O10)(OH)8

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A 135�-scattering
geometry was employed.

Raman shifts (cm21): 3679, 3647, 3605, 3477, 679s, 548, 358, 198, 104.
Source: Kleppe et al. (2003).
Comments: End-member clinochlore, (Mg5Al)(Si3Al)O10(OH)8, has been studied. Raman shifts for

the range of the OH-stretching vibrations are indicated for the maxima of individual peaks obtained
as a result of the spectral curve analysis.
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Clinoclase Cu3(AsO4)(OH)3

Origin: Tin Stope, Majuba Hill mine, Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3559, 3339, 983, 850, 832s, 783, 607, 539, 508, 482, 460, 438, 348, 318, 308,
306, 295, 247, 231, 185, 171, 160, 136.

Source: Frost et al. (2002e).
Comments: The sample identification was done by PXRD, by SEM and by EMPA, but corresponding

analytical data are not given in the cited paper. For the Raman spectrum of clinoclase see also
Martens et al. (2003b).

Clinoenstatite Mg2Si2O6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was ~50 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1034s, 1012s, 927w, 848w, 755w, 689s, 666s, 583w, 577w, 523, 480w, 453w,
432, 418, 405, 388w, 371, 344s, 324w, 304w, 279w, 245, 233w, 206, 195, 158, 143.

Source: Lin (2004).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Clinohedrite CaZn(SiO4)∙H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 985sh, 951, 857s, 844s, 568sh, 550, 501, 465, 387s, 340, 308, 280w,

235s, 208s.
Source: Annen and Davis (1993).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Clinometaborite HBO2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 nm Ar+ laser radiation. The laser radiation power
is not indicated.

Raman shifts (cm21): 3130, 2930, 2725w, 1430w, 1400w, 1341w, 1330w, 1264w, 1227w, 1173w,
1135w, 1080w, 980w, 918w, 785s, 765sh, 710w, 680sh, 655, 628, 536, 522, 477, 432, 397, 379,
346sh, 338, 307sh, 293, 277, 226w, 198, 185sh, 178, 147, 131, 119, 108, 94, 77.

Source: Bertoluzza et al. (1980).
Comments: The sample was characterized by IR spectrum.
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Clinoptilolite Na Na6(Si30Al6)O72∙20H2O

Origin: Dylagówka, Poland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 300 mW.

Raman shifts (cm21): 1129w, 799w, 514s, 471s, 410s, 182.
Source: Mozgawa (2001).
Comments: The idealized formula (Na,K)6(Al6Si30O72)�20H2O is given for the sample described in

the cited paper, but no chemical data are presented. The sample was characterized only by powder
X-ray diffraction data.

Clinotobermorite-like mineral Ca4Si6O17(H2O)2∙(Ca∙3H2O)(?)

Origin: Artificial (an intermediate clinotobermorite-like phase formed during the thermal conversion
of tobermorite 11 Å to tobermorite 10 Å).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1077, 1011s, 996, 682s, 619, 523, 484, 445, 410, 360, 302.
Source: Biagioni et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data.

Clinozoisite Ca2Al3[Si2O7][SiO4]O(OH)

Origin: Beura, Verbania, Piemonte, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 1092, 1050w, 985, 963, 919, 875, 832, 692, 605, 570s, 527, 513, 468sh,
452, 428s, 396, 353w, 328w, 305w, 276, 252, 233, 166w, 138.

Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Clintonite CaAlMg2(SiAl3O10)(OH)2

Origin: Ilmeno-Vishnevogorsky Complex, South Urals, Russia.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was
20 mW.

Raman shifts (cm21): 894, 828, 800, 550, 656s, 397, 346, 233, 184, 123.
Source: Korinevsky (2015).
Comments: The Raman shifts were partly determined by us based on spectral curve analysis of the

published spectrum. For the Raman spectrum of clintonite see also Neuville et al. (2002).
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Coalingite Mg10Fe
3+

2(CO3)(OH)24∙2H2O

Origin: Union Carbide mine, San Benito Co., California, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The laser radiation power at the sample was below 5 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3632, 3596, 3585, 3228, 3030, 2807sh, 2261w, 1768sh, 1655s, 1555sh, 1420,
1093s, 1065sh, 928w, 797w, 702.

Source: Frost and Bahfenne (2009).
Comments: The spectrum is questionable. No independent analytical data are provided for the sample

used. Data in the paper do not coincide with data in supplementary information. IR spectrum of the
sample used shows significant admixture of serpentine.

Cobaltarthurite CoFe3+2(AsO4)2(OH)2∙4H2O

Origin:Dolores showing, Pastrana, about 10 km east of Mazarrón, the province of Murcia, Spain (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 3557, 3250, 3186, 1750–1550w (broad), 1042, 907, 846s, 816, 779, 555w,
509, 458w, 405, 348, 277, 260w, 240s, 231sh, 187, 151, 136, 98, 79, 35.

Source: Jambor et al. (2002).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Cobaltaustinite CaCo(AsO4)(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3289, 3284, 918sh, 825s, 808, 795, 765, 469, 430, 387, 339, 327, 226, 214,
213, 168.

Source: Martens et al. (2003c).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of cobaltaustinite see also Yang et al. (2007a).

Cobaltkoritnigite Co(AsO3OH)∙H2O

Origin: Richelsdorf District, Hessen, Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3438w, 3165w, 2922, 2862sh, 1687sh, 1611, 1435, 1347, 1291, 1071sh,
1058sh, 1050, 1013sh, 1001s, 985sh, 973sh, 927, 907sh, 838s, 828s, 812sh, 726sh, 681, 637sh,
570w, 554w, 513w, 482, 461w, 430sh, 416sh, 401sh, 386, 367sh, 352sh, 301, 248w, 237sh, 205w,
190w, 166w, 152w, 140sh, 117w, 110w.

Source: Frost et al. (2014o).
Comments: No independent analytical data are provided for the sample used.

Cobaltomenite Co(Se4+O3)∙2H2O

Origin: El Dragon Mine, Potosi, Bolivia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3450sh, 3209, 2962sh, 815sh, 813s, 716, 512, 443, 368w, 280w, 196w.
Source: Frost and Keeffe (2008b).
Comments: No independent analytical data are provided for the sample used. The Raman spectrum

may correspond to Co-rich ahlfeldite.

Cobaltpentlandite Co9S8

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on nanoparticles using

514.5 nm Ar+ laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): ~650.
Source: Feng et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of cobaltpentlandite see also Yin et al. (2008).

Coccinite HgI2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 90o-scattering
geometry was employed.

Raman shifts (cm21): 116, 32, 21.
Source: Nakashima et al. (1973).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of coccinite see also Durig et al. (1969).

Cochromite CoCr2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an anosized (about

20–25 nm) sample using 632 or 780 nm He-Ne or diode laser radiation. The laser radiation powers
are not indicated.

Raman shifts (cm21): 684, 603, 514, 449, 195.
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Source: Zákutná et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Coconinoite Fe3+2Al2(UO2)2(PO4)4(SO4)(OH)2∙20H2O

Origin: Jomac mine, White Canyon, San Juan Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1103w, 1085w, 1044sh, 1020s, 998s, 985s, 974sh, 847s, 837s, 826sh,
637w, 620w, 551w, 502sh, 492w, 447w, 409w, 377w, 320w, 229sh, 210sh, 199s, 181s, 147s, 110sh.
Source: Frost et al. (2011d).
Comments: No independent analytical data are provided for the sample used.

Coesite SiO2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 457.8, 488.0, and 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated. A 135�-scattering geometry was employed.

Raman shifts (cm�1): 1164w, 1144w, 1065w, 1036w, 815w, 795w, 661w, 521s, 466, 427, 355, 326,
269s, 204, 176s, 151, 116s, 77s.

Source: Hemley (1987a, b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of coesite see also Yang et al. (2007b), Palmeri et al. (2009), Miyahara et al. (2013), and Perraki and
Faryad (2014).

Coffinite U(SiO4)�nH2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample.

Kind of laser radiation is not indicated.
Raman shifts (cm21): 919s, 906sh, 591, 424.
Source: Mesbah et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of coffinite see also Clavier et al. (2014).

Colemanite CaB3O4(OH)3∙H2O

Origin: Death Valley, Inyo Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3605s, 3534, 3389sh, 3300, 3182, 3069sh, 1603w, 1527sh, 1323, 1301sh,
1257, 1154, 1084, 1065, 1000sh, 988, 970, 907sh, 892, 876s, 846sh, 813, 788, 745, 709w,
684, 669, 611s, 565, 534, 505, 498, 479w, 455, 436w, 388, 350w, 325sh, 309, 267, 241, 223,
178, 167sh, 149, 129.

Source: Frost et al. (2013z).
Comments: No quantitative analytical data are provided for the sample used. For the Raman spectrum

of colemanite see also Krishnamurti (1955).

Colimaite K3VS4

Origin: Colima volcano, State of Colima, Mexico (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 990, 968, 879, 848, 689, 517, 482, 454, 401s, 387, 367w, 347, 338, 318, 297,
277s, 264s, 245s, 227, 203s, 192s, 180, 168.

Source: Ostrooumov et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Colinowensite BaCuSi2O6

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 1060w, 976, 579s, 506s, 454, 372w, 347w, 268, 231w, 173.
Source: Finger et al. (1989).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The crystal structure is solved.

Coloradoite HgTe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 90 K on a thin

oriented sample with a (111) face using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was <100 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 137s, 117, ~106sh.
Source: Ingale et al. (1989).
Comments: No independent analytical data are provided for the sample used.

Columbite-(Mg) MgNb2O6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 647.1 nm Kr+ laser radiation. The nominal laser radiation power was 400 mW.
Raman shifts (cm21): 997, 906s, 850, 721w, 658, 616, 568, 533s, 497, 489, 460w, 451, 411s, 403sh,

389, 379w, 344, 324, 222, 205, 190, 170, 151, 140w, 125sh, 112, 88.
Source: Husson et al. (1977a).
Comments: The sample was characterized by powder X-ray diffraction data.
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Columbite-(Mn) Mn2+Nb2O6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 647.1 nm Kr+ laser radiation. The nominal laser radiation power was 400 mW.
Raman shifts (cm21): 877s, 823, 707w, 634, 624, 606, 531s, 485, 438w, 399, 386w, 361, ~ 340sh,

314s, 297sh, 287, 274, 263, 248sh, 244s, 214, 206sh, 189sh, 179, 160w, 140s, 127, 113, 89.
Source: Husson et al. (1977a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of columbite-(Mn) see also Moreira et al. (2010a).

Comancheite Hg2+55N
3�

24(NH2,OH)4(Cl,Br)34

Origin: Mariposa mine, Terlingua district, Brewster Co., Texas, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The laser radiation
power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 633sh, 577s, 545s, 470w, 440w, 315s, 268, 228s, 188s, 174s, ~140s.
Source: Cooper et al. (2013a).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.

Combeite Na4.5Ca3.5Si6O17.5(OH)0.5

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
22 mW.

Raman shifts (cm21): 1039w, 986s, 903, 620, 588s, 532, 453w, 423, 346w, 279.
Source: Lin et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data.

Compreignacite K2(UO2)6O4(OH)6∙7H2O

Origin: West Wheal Owles, St. Just, Cornwall, UK.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The output laser radiation
power was 380 mW.

Raman shifts (cm21): 834s, 785sh, 549, 460, 402, 329, 204.
Source: Driscoll et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of compreignacite see also Frost et al. (2008g).

Conichalcite CaCu(AsO4)(OH)

Origin: Lorena mine, Cloncurry, Queensland, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
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individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample was 1 mW.

Raman shifts (cm21): 3233, 3158, 3086, 962w, 907, 832s, 821sh, 811sh, 781m 750, 534, 463, 446m
430, 389, 358, 335, 328, 303, 286, 274, 206, 180, 161, 121.

Source: Martens et al. (2003c).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

conichalcite see also Reddy et al. (2005) and Đorđević et al. (2016).

Connellite Cu36(SO4)(OH)62Cl8∙6H2O

Origin: Monte Fucinaia, central Western Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 532 and 785 nm laser
radiations. The laser radiation power at the sample was 4 and 1.4 mW, respectively.

Raman shifts (cm21): 3550w, 984s, 585, 524, 446, 404s, 350, 262w, 236w, 192, 184, 132m.
Source: Coccato et al. (2016).
Comments: The sample identification was done by powder X-ray diffraction. For the Raman spectrum

of connellite see also Bouchard and Smith (2003).

Cooperite PtS

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation output
power was 500 mW.

Raman shifts (cm21): 328, 325sh (for pure PtS); 454sh, 430, 405sh, 382s, 358, 335, 317 (for a
Pd-bearing sample).

Source: Pikl et al. (1999).
Comments: The samples were characterized by powder X-ray diffraction data and electron micro-

probe analysis. For the Raman spectrum of cooperite see also Mernagh and Hoatson (1995).

Copiapite Fe2+Fe3+4(SO4)6(OH)2∙20H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG
laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 3527, 3179, 1644, 1224, 1138sh, 1115, 1026, 1005s, 996, 637, 614, 594,
554, 304, 270, 243.

Source: Kong et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction data and laser-induced

breakdown spectroscopy. For the Raman spectra of copiapite see also Frost (2011c), Sobron and
Alpers (2013), Rull et al. (2014), and Apopei et al. (2014a).

Copiapite Fe2+Fe3+4(SO4)6(OH)2∙20H2O

Origin: Coranda-Hondol ore deposit, Certej, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG
laser radiation. The nominal laser radiation power was 7.4 mW.
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Raman shifts (cm21): 3147, 1651w, 1247, 1143sh, 1113, 1031s, 999s, 748w, 637sh, 609, 558, 477s,
304sh, 274s, 246sh.

Source: Apopei et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

copiapite see also Frost (2011c), Kong et al. (2011b), Sobron and Alpers (2013), and Rull
et al. (2014).

Coquandite Sb3+6+xO8+x(SO4)(OH)x�H2O(1-x) (x ¼ 0.3)

Origin: Pereta Mine, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3449w, 3318w, 3193w, 3122w, 2961w, 2900w, 2764w, 1588w, 1217sh,
1168w, 1151, 1100, 1072sh, 1020sh, 1007, 990s, 980, 970, 949sh, 787, 751, 600w, 638, 629sh,
610, 600, 508, 459, 429, 417, 375, 359, 317w, 291w, 270sh, 253, 229, 218sh, 216s, 203s,
178, 167s, 149, 129.

Source: Frost and Bahfenne (2010f).
Comments: No independent analytical data are provided for the sample used.

Coquimbite Fe3+2(SO4)3∙9H2O

Origin: Baia Spriemining area, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 3388w, 1681w, 1202, 1167w, 1098, 1024, 882w, 604, 503, 457w, 285.
Source: Buzatu et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

coquimbite see also Apopei et al. (2012, 2014a), Sobron and Alpers (2013), Rull et al. (2014), and
Frost et al. (2014b).

Corderoite Hg3S2Cl2

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 288sh, 280s, 132, 115, 63, 50s, 36, 24s.
Source: Radepont (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Cordierite Mg2Al4Si5O18

Origin: Northern part of the Strangways Metamorphic Complex, central Australia.
Experimental details: Raman scattering measurements have been performed on a polished section ||

(010) of a single crystal using 632.8 nm He-Ne laser radiation. The output laser radiation power was
<0.8 mW. A 180�-scattering geometry was employed.

4 Raman Spectra of Minerals 855



Raman shifts (cm21): 1184, 971, 669, 577, 555, 366, 260s, 127 (for E||a); 1010s, 971, 669, 577, 554s,
260 (for E||c).

Source: Nasdala et al. (2006).
Comments: The sample was characterized by electron microprobe analysis. The empirical formula is

Mg1.6Fe
2+

0.4Al4Si5O18. For the Raman spectrum of cordierite see also Majumdar and Mathew
(2015). For the Raman spectrum of cordierite (“iolite”) see also Culka et al. (2016a).

Cordylite (Ce) (Na,Ca,□)BaCe2(CO3)4(F,O)

Origin: No data.
Experimental details: Raman scattering measurements have been performed using 488 nm laser

radiation. The nominal laser radiation power was 300 mW.
Raman shifts (cm21): 1538, 1088, 967, 720, 628.
Source: Hong et al. (1999).

Corkite PbFe3+3(SO4)(PO4)(OH)6

Origin: Horn Silver mine, near Frisco, Beacer Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3436, 3347, 3163sh, 1184sh, 1162, 1104s, 1050, 1003s, 996s, 983sh,
857, 821sh, 629sh, 620, 608sh, 572sh, 554, 466sh, 446, 430sh, 381, 274w, 217sh, 201, 144,
131sh, 104.

Source: Frost and Palmer (2011a).
Comments: No independent analytical data are provided for the sample used.

Cornetite Cu3(PO4)(OH)3

Origin: Banská Bystrica, central Slovakia.
Experimental details: Raman scattering measurements have been performed on an oriented crystal, at

E||b and E⊥b, using 632 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW.
A 180�-scattering geometry was employed.

Raman shifts (cm21): 3414, 1137w, 1112w, 1083, 1055, 1016, 971, 945sh, 861, 818, 801w,
750, 703w, 664w, 639w, 606, 539, 515, 477s, 446s, 412, 363, 297, 254w, 241, 214, 209, 174s,
131s, 109s, 86s (for E⊥b).

Source: Kharbish et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of cornetite see also Frost et al. (2002g).

Cornubite Cu5(AsO4)2(OH)4

Origin: Daly mine, Flinders Ranges, South Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power was 1 mW. The Raman shifts have
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been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3324, 3042sh, 962w, 815s, 780w, 525w, 496w, 440s, 398, 365w, 327w,
301, 259, 249, 211, 168, 151.

Source: Frost et al. (2002e).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of cornubite see also Janeczek et al. (2016).

Cornwallite Cu5(AsO4)2(OH)4

Origin: Penberthy Croft mine, St Hilary, Cornwall, UK.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power was 1 mW. The Raman shifts have
been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3411w, 3350sh, 962w, 877sh, 859s, 806w, 763w, 606, 542, 512w, 454, 449s,
436s, 422, 363sh, 347s, 330sh, 311sh, 275, 279, 246, 203, 169s, 160, 137.

Source: Frost et al. (2002e).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of cornwallite see also Ciesielczuk et al. (2016) and Janeczek et al. (2016).

Coronadite Pb(Mn4+6Mn3+2)O16

Origin: Imini, Morocco.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 10 mW. A nearly 180�-scattering geometry was employed.

Raman shifts (cm21): 626s, 585s, 495, 388, 332.
Source: Julien et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts given

by Julien et al. (2004) in Table 5 do not correspond to band positions in Fig. 5 of the cited paper. For
the Raman spectrum of coronadite see also Fan et al. (2015).

Correianevesite Fe2+Mn2+2(PO4)2�3H2O

Origin: Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (3462), 3445s, (3400), 3265sh, 1641w, 1587sh, 1572w, 1553sh, 1193w,
1104w, (1093), 1064w, 1007s, 970+963s (unresolved doublet?), (951), 753, 588s, 569sh, (549),
531, 504sh, 482, 458sh, 420, (405), 373, 330w, 286sh, 260, 241w, 223w, 179, 164, 144.

Source: Frost et al. (2012j).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. In the cited paper the mineral is described under the name “reddingite.”Our investigations
showed that it is correianevesite, a new mineral species of the reddingite group with ordered Fe2+

and Mn2+.
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Corundum Al2O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 780 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 751, 645, 578, 451w, 432, 418s, 378s.
Source: Jasinevicius (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of corundum see also Shoval et al. (2001) and Andò and Garzanti (2014).

Cosalite Pb2Bi2S5

Origin: An abandoned mine in the Karrantza valley, Basque Co., Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 or 785 nm Ar+ and diode laser radiation. The laser radiation power at the sample
was 20 mW.

Raman shifts (cm21): 439, 251s, 140s.
Source: Goienaga et al. (2011).
Comments: The sample was characterized by energy dispersive X-ray fluorescence. For the Raman

spectrum of cosalite see also Fermo and Padeletti (2012).

Cotunnite PbCl2

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632 nm He-Ne laser radiation. The laser radiation output
power was 30 mW.

Raman shifts (cm21): 202, 169, 158.
Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data.

Coulsonite Fe2+V3+
2O4

Origin: Vihanti deposit, Northern Finland Region, Finland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. The nominal laser radiation power was 2 or 20 mW.
Raman shifts (cm21): 1188w, 1144w, 1119w, 1062, 1020w, 994w, 962w, 937w, 908, 873w, 840w,

813w, 772w, 670s, 576, 526, 498, 469, 398w, 351w, 296w, 268w, 236w, 212w, 167, 131, 116.
Source: Voloshin et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Covellite CuS

Origin: Guinaoang, NW Luzon, Philippines.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was<10 mW. A
180�-scattering geometry was employed.
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Raman shifts (cm21): 471s, 263, 139, 116.
Source: Mernagh and Trudu (1993).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
Comments: For the Raman spectra of covellite see also Bouchard and Smith (2003) and Kumar and

Nagarajan (2011).

Crandallite CaAl3(PO4)(PO3OH)(OH)6

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne
laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm21): 3546sh, 3471, 3305, ~3150, ~1330w, 1228w, 1160, 1108s, 1035s, 982s,
858, 828, 720w, 693, 634, 615, 580, 555sh, 528, 462, 396s, 365, 258s, 223sh, 184s.

Source: Breitinger et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

crandallite see also Frost et al. (2011w) and Grey et al. (2011).

Cranswickite Mg(SO4)∙4H2O

Origin: Calingasta, San Juan province, Argentina (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 632 nm He-Ne laser
radiation. The laser radiation power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): ~3430, ~3300, 1156, 1120, 1090w, 1002s, 617, 466.
Source: Peterson (2011).
Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe

analysis, and ICP-MS.

Creaseyite Cu2Pb2Fe
3+

2Si5O17∙6H2O

Origin: St. Anthony Mine, Tiger, Pinal Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3626s, 3525s, 3470sh, 3162, 2902, 2750sh, 1603, 1543, 1348w, 1071, 998s,
958sh, 920sh, 869s, 802, 712s, 672sh, 603, 511, 481sh, 443, 371, 351, 318, 295, 258sh, 237s,
211sh, 196s, 152sh, 139s, 126.

Source: Frost and Xi (2012g).
Comments: No independent analytical data are given for the sample used.

Crednerite CuMnO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film on quartz

substrate using 532 nm diode laser radiation. The nominal laser radiation power was 13 mW.
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Raman shifts (cm21): 688s, 381w, 314w.
Source: Chen et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data.

Creedite Ca3Al2(SO4)(OH)2F8∙2H2O

Origin: Santa Eulalia mining district, Chihuahua province, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3584, 3524s, 3458, 3382sh, 3349, 3248, 1673w, 1575w, 1503, 1499, 1234w,
1184, 1135, 1084w, 1033w, 1026w, 989sh, 986s, 983sh, 922w, 891, 819w, 765, 663, 629, 601,
596sh, 568w, 548, 483, 457sh, 440, 394, 371w, 348w, 322w, 311w, 286w, 278, 353w, 225, 217sh,
203, 190, 173, 149, 126.

Source: Frost et al. (2013al).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Cristobalite SiO2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 476.5 nm laser radiation. The nominal laser radiation power was 400 mW.
Raman shifts (cm21): 1195, 1089, 1079, 795, 785, 485, 416, 380, 368, 287, 275, 230, 110.
Source: Etchepare et al. (1978).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

cristobalite see also Ling et al. (2011), Shoval et al. (2001), Ilieva et al. (2007), Wilson (2014), and
Ferrero et al. (2016).

Cristobalite SiO2

Origin: Lunar soil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was in the range from 3 to
5 mW.

Raman shifts (cm21): 1075w, 781w, 411s, 229s.
Source: Ling et al. (2011).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

cristobalite see also Etchepare et al. (1978), Shoval et al. (2001), Ilieva et al. (2007), Wilson (2014),
and Ferrero et al. (2016).

Crocoite Pb(CrO4)

Origin: Dundas, Tasmania, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sampling lens was
100 mW.

Raman shifts (cm21): 853sh, 840s, 825sh, 400, 377, 358s, 348, 338, 326, 179w, 135, 118w.
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Source: Rodgers (1992).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample identification was done by XRD, by SEM, and by electron
probe analysis. For the Raman spectra of crocoite see also Frost (2004c) and Nasdala et al. (2004).

Cryptohalite (NH4)2SiF6

Origin: Synthetic.
Experimental details: Raman scattering measurements in the region of N–H-stretching vibrations

have been performed using 488 and 514.5 nm Ar+ laser radiations. The laser radiation power at the
sample was about 100 mW.

Raman shifts (cm21): 3235.
Source: Jenkins (1986).

Cryptomelane K(Mn4+7Mn3+)O16

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 743w, 626s, 574s, 508, 470, 386, 257w, 183.
Source: Santos et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and ICP analysis. For the

IR spectrum of cryptomelane see also Kim and Stair (2004).

Cubanite CuFe2S3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 488 nm Ar+ laser
radiation. The nominal laser radiation power was below 10 mW.

Raman shifts (cm�1): 469s, 374, 328w, 286s.
Source: Chandra et al. (2011a, b).
Comments: The sample was characterized by powder X-ray diffraction data and Mössbauer spectros-

copy. For the Raman spectrum of cubanite see also Petrov (2014).

Cuboargyrite AgSbS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a bulk polycrystalline

sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm21): 324s, ~311w, 292, 282w, 240sh, 140, 125sh.
Source: Gutwirth et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Cumengeite Pb21Cu20Cl42(OH)40∙6H2O

Origin: Beleo, Baja California, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
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have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3588sh, 3482s, 3413s, 3366sh, 3180, 1023sh, 984, 891w, 830sh, 797, 715sh,
676s, 500, 465, 376, 347, 307, 271, 243, 192, 154s.

Source: Frost et al. (2003j).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of cumengeite see also Bouchard and Smith (2003) and Frost and Williams (2004).

Cummingtonite □Mg2Mg5Si8O22(OH)2

Origin: Ca’Mondey, Montescheno, Piemonte, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514 and 785 nm laser radiations. The laser radiation
power is not indicated.

Raman shifts (cm21): 3668, 3653, 1038, 671s, 384, 200, 186.
Source: Andò and Garzanti (2014).
Comments: The methods of the identification of the sample are not indicated. Raman spectrum of

presumed cummingtonite was published by Mohanan (1993) and Kloprogge et al. (2001a), but
chemical composition of this sample (Mohanan 1993) does not correspond to cummingtonite. For
the Raman spectrum of cummingtonite see also Leissner et al. (2015).

Cuprite Cu2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a crushed sample and

a single crystal using 647.1 nm Kr+ laser radiation. The nominal laser radiation power was 20 mW.
A 90�-scattering geometry was employed.

Raman shifts (cm21): 640w, 485w, 420w, 300w, 220s, 204, 192, 190, 160w, 150, 125w, 106 (crushed
sample); 640, 220, 204, 192, 150 (single crystal).

Source: Taylor and Weichman (1971).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of cuprite see also Bouchard and Smith (2003).

Cuprocopiapite Cu2+Fe3+4(SO4)6(OH)2∙20H2O

Origin: Rio Tinto Valley near Nerva, Spain.
Experimental details: No data.
Raman shifts (cm21): 997s, 978s, ~620, ~450.
Source: Chemtob et al. (2006).
Comments: The Raman spectrum is questionable: blue color is very unusual for cuprocopiapite. No

independent analytical data are provided for the sample used.

Cuproiridsite CuIr2S4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed in a back-scattering geometry using 514.5 nm laser radiation.
The laser radiation power is not indicated.

862 4 Raman Spectra of Minerals



Raman shifts (cm�1): ~402, ~375, ~327, ~300s.
Source: Zhang et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of cuproiridsite see also Zhang et al. (2010b).

Cupromolybdite Cu2+3O(Mo6+O4)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal in

different scattering geometries using laser radiation with different wavelengths. The laser radiation
power is not indicated.

Raman shifts (cm�1): ~961, ~934, ~864w, ~842, ~813 [for the 532 nm laser radiation, in the x(y, y
+z)-x scattering geometry].

Source: Sato et al. (2014).
Comments: The sample was characterized by X-ray diffraction.

Cuprorhodsite CuRh2S4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): ~388, ~358, ~318, ~277s.
Source: Ito et al. (2003).
Comments: No independent analytical data are provided for the sample used.

Cuprorivaite CaCuSi4O10

Origin: No data in the cited paper.
Experimental details: No data in the cited paper.
Raman shifts (cm21): 1086s, 1013, 991, 788, 572, 473, 431s.
Source: Boschetti et al. (2008).
Comments: Methods of the sample identification are not indicated. For the Raman spectrum of

cuprorivaite see also Pagès-Camagna et al. (1999).

Cuprosklodowskite Cu(UO2)2(SiO3OH)2∙6H2O

Origin: Shinkolobwe mine, Shaba province, Democratic Republic of Congo (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3694w, 3571w, 3499, 3435s, 3282s, 2920, 1504, 1297, 1246, 1156, 974, 919w,
917, 901w, 847w, 812sh, 787s, 774w, 759w, 747, 535, 507w, 477w, 411w, 387, 301, 277, 267,
218, 206, 185, 165w, 134w, 114.

Source: Frost et al. (2006e).
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Comments:No independent analytical data are provided for the sample used. For the Raman spectrum
of cuprosklodowskite see also Driscoll et al. (2014).

Cuprospinel Cu2+Fe3+2O4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
output power was 3 mW.

Raman shifts (cm�1): 632, 656, 549, 462s, 346, 271, 211, 168s (for a sample annealed at 1200�C).
Source: Silva et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of cuprospinel see also Li et al. (2015).

Cuprotungstite Cu2+3(WO4)2(OH)2

Origin: Cordillera Mine, Peelwood, Australia (?).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 785 nm Nd-YAG laser. The laser radiation power at the sample was 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 926s, 769w, 566, 498w, 415, 353sh, 329, 253, 212, 173w.
Source: Frost et al. (2004d).
Comments:Questionable data: qualitative electron microprobe analysis given in the cited paper shows

a high content of Ca.

Curienite Pb(UO2)2(VO4)2∙5H2O

Origin: Mounana Mine, Haut Ogoue, Gabon (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 976sh, 959, 860w, 825, 741s, 655w, 569, 534, 465, 410, 374s, 362, 312,
288, 264, 234, 193sh.

Source: Frost et al. (2005c).
Comments: No independent analytical data are given for the sample used.

Curite Pb3+x[(UO2)4O4+x(OH)3-x]2∙2H2O

Origin: Ranger U Mine, Northern Territory, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3437, 3297, 1530, 886w, 807w, 791, 772, 742w, 650, 561, 503, 415sh,
455, 393, 367, 340, 301sh, 273, 250, 225w, 212, 184, 163sh, 154sh, 144.
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Source: Frost et al. (2007g).
Comments: No independent analytical data are given for the sample used. For the Raman spectrum of

curite see also Frost et al. (2007h).

Cuspidine Ca8(Si2O7)2F4

Origin: Anakitskii massif, Siberia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal. No other experimental details are described.
Raman shifts (cm21): 910s, 654, 361, 300.
Source: Sharygin et al. (1996a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of cuspidine see also Sharygin et al. (1996b).

Cyanochroite K2Cu(SO4)2∙6H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power at
the sample was 20 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 1159w, 1133w, 1081, 983s, 629, 609, 457, 438, 256, 187, 112, 66.
Source: Majzlan et al. (2015)
Comments: For the Raman spectrum of cyanochroite see also Jentzsch et al. (2013).

Cyanotrichite Cu4Al2(SO4)(OH)12(H2O)2

Origin: Cap Garonne mine, near La Pradet, Var, France.
Experimental details: Raman scattering measurements have been performed on a single crystal with

the laser beam orthogonal to the elongation direction (b axis) using 532 nm Nd-YAG laser
radiation. The laser radiation power was below 30 mW.

Raman shifts (cm21): 3590, 3300–3400, 2330w, 1142w, 377s, 609w, 592, 525s, 448, 274, 230.
Source: Mills et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data.

Cymrite Ba(Si,Al)4(O,OH)8∙H2O

Origin: Synthetic.
Experimental details: Unpolarized micro-Raman scattering measurements have been performed on a

microcrystalline aggregate using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 3567sh, 3500, 1626w, (1555w), 1091w, 953w, 800w, 673w, 470w,
396, 297w, 104s.

Source: Graham et al. (1992).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.
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Cyrilovite NaFe3+3(PO4)2(OH)4∙2H2O

Origin: Sapucaia (Proberil) mine, Conselheiro Pena pegmatitedistrict, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3452, 3328, 3244sh, 3194sh, 1184sh, 1177, 1136, 1105, 1087sh, 1065sh,
1055s, 1038sh, 1013sh, 992s, 974sh, 852, 811, 7762sh, 631s, 612s, 588sh, 541, 498sh, 482, 437,
411, 3065s, 279sh, 261, 216, 197sh, 165, 156, 148, 131sh, 117.

Source: Frost et al. (2013u).
Comments: No independent analytical data are given for the sample used.

Czochralskiite Na4Ca3Mg(PO4)4

Origin: Morasko IAB-MG iron meteorite, Poland (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1119, 1067w, 1053, 1039, 1022, 1011, 986s, 974s, 966s, 606, 585, 578, 441.
Source: Karwowski et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Dachiardite Na Na4(Si20Al4)O48∙13H2O

Origin: Elba Island, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1060 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 300 mW.

Raman shifts (cm21): 1090w, 714s, 558, 479, 409, 248, 182.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Danburite CaB2Si2O8

Origin: No data.
Experimental details: Polarized Raman scattering measurements have been performed on an oriented

crystal in different scattering configurations using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): z(xx)y—1115, 1018, 983, 957, 925, 917, 783, 635, 619s, 572, 489, 450, 434,
357, 321, 255, 220, 190, 176, 139; z(xy)x—1185w, 1087w, 1037w, 963w, 885w, 760w, 645w,
619w, 592w, 556w, 472w, 465w, 450w, 344w, 288, 268w, 216w, 201, 150, 136w; z(xz)x—1160w,
1050w, 1006w, 983, 908, 880w, 783w, 684w, 637, 619, 581w, 471, 450w, 434w, 339, 305,
255, 236, 204, 193, 135, 126; z(yz)x—1185w, 1037w, 1013w, 980w, 932w, 786w, 725w, 634w,
619w, 562w, 418w, 404w, 315w, 278w, 213, 190w, 162, 148w.

Source: Best et al. (1994).
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Comments: No independent analytical data are provided for the sample used. For the Raman spectra
of danburite see also Kimata (1993) and Manara et al. (2009).

Darapskite Na3(SO4)(NO3)∙H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power at the
sample was 2 mW.

Raman shifts (cm21): 3479sh, 3451w, 1424, 1353, 1171, 1124, 1085, 1060s, 993s, 729, 706,
639, 618, 472w, 455.

Source: Jentzsch et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

darapskite see also Jentzsch et al. (2012b) and Linnow et al. (2013).

Darrellhenryite Na(Al2Li)Al6(Si6O18)(BO3)3(OH)3O

Origin: No data in the cited paper.
Experimental details: Raman scattering measurements have been performed on an oriented crystal in

the -y(zz)y scattering geometry using 514.5 or 488 nm Ar+ laser radiation. The laser radiation power
at the sample was 14 mW.

Raman shifts (cm21): 3593�4, 3562�4, 3494�8, 3465�11, 1085, 975, 750, 707s, 643, 534sh,
515, 407, 374s, 335w, 315, 268, 249, 223s.

Source: Watenphul et al. (2016b).
Comments: The sample was characterized by electron microprobe analysis and LA-ICP-MS. The

Raman shifts were partly determined by us based on spectral curve analysis of the published
spectrum.

Dashkovaite Mg(HCOO)2∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. 90�-scattering
geometry was employed.

Raman shifts (cm21): 1405, 1396, 1385, 1376s, 1367.
Source: Stoilova and Koleva (2000).
Comments: The sample was characterized by powder X-ray diffraction data.

Datolite CaB(SiO4)(OH)

Origin: Canossa, Réggionell’Emilia, Italy.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3498s, 2892w, 1355, 1243w, 1202w, 1172, 1154w, 1148, 1077s, 1002sh,
985, 956w, 917, 8872w, 864w, 828w, 765w, 730w, 708sh, 693s, 669, 654, 601sh, 593w, 559w,
491, 466w, 458w, 440w, 424w, 392, 378sh, 362, 332w.

Source: Frost et al. (2013ah).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of datolite see also Goryainov et al. (2015).

Daubréelite FeCr2S4

Origin: Bustee, Pesyanoe, and Aubresmeteorites.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

samples using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 365s, 290w, 255s, 160.
Source: Avril et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of daubréelite see also Lutz et al. (1989).

Davidite-(La) La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38

Origin: Billeroo Prospect, South Australia and Radium Hill Mine, Mingary, Olary, South Australia.
Experimental details: Raman scattering measurements have been performed on amorphous,

metamict samples using a 633 nm He-Ne laser. The laser radiation power is not indicated. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 1597w, 1424sh, 1322, 1250w, 1074w, 698sh, 641, 514, 412sh, 394, 293,
206, 169sh, 151s (for the sample from the Billeroo Prospect);

1357sh, 1308, 1255sh, 1065w, 812w, 651s, 609s, 497, 450sh, 408, 380, 297sh, 291s, 223s, 150 (for
the sample from the Radium Hill Mine).

Source: Frost and Reddy (2011b).
Comments: No independent analytical data are provided for the sample used.

Davidlloydite Zn3(AsO4)2∙4H2O

Origin: Tsumeb mine, Tsumeb, Otjikoto (Oshikoto) region, Namibia (type locality).
Experimental details: No data.
Raman shifts (cm21): 3360, 3295, 3170, 3110, 2950, 865s, 841sh, 550, 504, 454s, 420sh, 394w,

353, 305, 294, 258, 211, 200sh, 182w, 170, 163w, 121w.
Source: Hawthorne et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.

Davisite CaScAlSiO6

Origin: Allende meteorite, Chihuahua, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on a grain in polished

section using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm�1): ~855, ~815, ~660, ~540, ~405, ~385, ~330.
Source: Ma and Rossman (2009b), Ma et al. (2012c).

Dawsonite NaAl(CO3)(OH)2

Origin: Poudrette Quarry, Mont Saint-Hilaire, Québéc, Canada.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3467w, (3341w), (3295), 3283, 3250, (3218w), 1760w, 1731w, 1691w, 1506s,
1484, 1366w, 1099, 1091s, 1068, 936w, 898, 824, (820w), 747, 731, 590s, 519, 443, 389, (374w),
361, 261, 219, 191s, (188), 152, (141w), 134.

Source: Frost et al. (2015h).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectra of dawsonite see also Serna et al. (1985), Vard and Williams-Jones (1993), Sirbescu and
Nabelek (2003), and Frost and Bouzaid (2007).

Decrespignyite-(Y) Y4Cu(CO3)4Cl(OH)5∙2H2O

Origin: Paratoo copper mine, near Yunta, Olary district, South Australia (type locality).
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation output
power was 0.3 mW.

Raman shifts (cm21): 3463, 3419, 1094s, 1075s, 1062s, 822, 751, 478, 415, 344, 201s.
Source: Wallwork et al. (2002).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of decrespignyite-(Y) see also Frost and Palmer (2011g).

Delafossite Cu1+Fe3+O2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 692, 351.
Source: Pavunny et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron

microprobe analysis. For the Raman spectra of delafossite see also Aktas et al. (2011) and Kučerová
et al. (2013).

Delhayelite K7Na3Ca5Al2Si14O38F4Cl2

Origin: Yukspor Mt., Khibiny massif, Kola Peninsula, Russia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 50 mW. A 180�-scattering geometry was employed.
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Raman shifts (cm21): 3147, 3098, 2980, 2824, 1144, 1081, 998w, 757w, 606s, 581, 495,
407, 353, 307w.

Source: Sharygin et al. (2013b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Deliensite Fe2+(UO2)2(SO4)2(OH)2∙7H2O

Origin: Schweitzer dump, Jáchymov ore district, Western Bohemia, Czech Republic.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation.
The nominal laser radiation power was 3 mW.

Raman shifts (cm21): ~6300, ~3510, 1637sh, 1625w, 1157w, 1068sh, 1050s, 1024s, 1010sh,
980, 932, 900, 853sh, 838s, 824sh, 747w, 725w, 710w,653w, 627w, 610w, 573w, 545w,
478, 453, 364, 235, 200, 152sh, 105sh, 90.

Source: Plášil et al. (2012a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.

Dellaite Ca6(Si2O7)(SiO4)(OH)2

Origin: Birkhin complex, Eastern Siberia, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was in the range from
30 to 50 mW.

Raman shifts (cm21): 3592, 3573, 998, 963, 956sh, 930s, 892, 867s, 821w, 666, 652sh, 551sh,
528, 411, 397, 382sh, 354, 278, 248w, 127w.

Source: Armbruster et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Delvauxite CaFe3+4(PO4)2(OH)8∙4-5H2O

Origin: Berneau, near Vise, Liège, Belgium (type locality).
Experimental details: Raman scattering measurements have been performed on an amorphous SO4-

rich sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3317w, 3193sh, 3029w, 2900w, 1607, 1385sh, 1345, 1085sh, 1006s,
630, 583sh, 485sh, 464s, 439sh, 276, 208, 148sh, 128, 108.

Source: Frost et al. (2012d).
Comments: No independent analytical data are provided for the sample used. The Raman spectrum of

delvauxite is given also by Frost and Palmer (2011d), but bands at 1167, 1095, 799, 780 and
692 cm�1in the IR spectrum of this sample correspond to quartz.
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Demartinite K2SiF6

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser
radiation was in the range 80–200 mW.

Raman shifts (cm21): 655, 478w, 408.
Source: Rissom et al. (2008).
Comments: No independent analytical data are given for the sample used.

Demesmaekerite Pb2Cu5(UO2)2(Se
4+O3)6(OH)6∙2H2O

Origin: Musonoi mine, Shaba, Democratic Republic of Congo (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3382, 3319, 1493, 1458sh, 1366, 1095, 1062, 822, 756, 719, 597w, 535, 510,
450sh, 432sh, 351, 295, 269, 215, 178s, 151s, 114sh.

Source: Frost et al. (2008d).
Comments: No independent analytical data are given for the sample used.

Demicheleite-(Br) BiSBr

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 676.4 or 632.8 nm Kr+ laser radiations with the laser radiation power of 150 mW, as
well as a He-Ne laser with the laser radiation power of 40 mW.

Raman shifts (cm21): 287s, 250, 121, 92, 54, 42sh [x(yx)y, Ag modes]; 234, 46s [x(zx)y, Bg modes].
Source: Furman et al. (1976).
Comments: No independent analytical data are given for the sample used.

Demicheleite-(Cl) BiSCl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 676.4 or 632.8 nm Kr+ laser radiations with the laser radiation power of 150 mW, as
well as a He-Ne laser with the laser radiation power of 40 mW.

Raman shifts (cm21): 287, 260, 107, 95, 54, 44[x(yx)y, Ag modes]; 240, 138, 47[x(zx)y,Bg modes].
Source: Furman et al. (1976).
Comments: No independent analytical data are given for the sample used.

Demicheleite-(I) BiSI

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal in

the -y(xy)x geometry using 1064 nm Nd-YAG laser radiation. The laser radiation power is not
indicated.
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Raman shifts (cm21): 290, 227, 119sh, 108, 85s, 55s, 50, 37s, 30.
Source: Teng et al. (1978).
Comments: No independent analytical data are given for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Denningite CaMn2+Te4+4O10

Origin: Bambolla mine, Moctezuma, Sonora, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
Raman shifts (cm21): 766sh, 734s, 674, 479w, 450w, 381, 349s, 237, 155.
Source: Frost et al. (2008h).
Comments: No independent analytical data are provided for the sample used.

Derriksite Cu4(UO2)(Se
4+O3)2(OH)6

Origin: Musonoimine, Katanga, Democratic Republic of Congo (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3530, 3407, 3247sh, 2917, 1623w, 1433w, 971s, 943sh, 881, 788s, 282, 257sh,
206, 162w, 137, 117sh.

Source: Frost et al. (2014a).
Comments: No independent analytical data are provided for the sample used.

Desautelsite Mg6Mn3+2(CO3)(OH)16∙4H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was below 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3646, 3608, 3509, 3409, 3325, 2882, 2836w, 2776, 1676w, 1638w, 1610w,
1579w, 1440w, 1407w, 1393, 1372w, 1349, 1342, 1303w, 1110w, 1086, 1062w, 1055, 1016w,
883w, 878w, 873, 560, 535, 506, 455, 436w, 422w, 313w, 281, 254.

Source: Frost and Erickson (2005).
Comments: No independent analytical data are provided for the sample used.

Dessauite-(Y) Sr(Y,U,Mn)Fe2(Ti,Fe,Cr,V)18(O,OH)38

Origin: Provence-Alpes-Côte d’Azur, France.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm21): 812, 638s, 604sh, 520, (485w), 430, 360w, 329w, 293, 240.
Source: Bittarello et al. (2014).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analysis.

Destinezite Fe3+2(PO4)(SO4)(OH)∙6H2O

Origin: Żdanów, Bardzkie Mts. (West Sudetes), Poland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

thin section of a crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 3472, 3224w, 1357w, 1111w, 1048s, 980s, 626, 605sh, 540sh, 460, 268, 200.
Source: Koszowska et al. (2005).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. Raman shifts are given for a sample with the highest content of poorly ordered phase. The
empirical formula of the sample used is Fe2.09Al0.1(PO4)1.08(SO4)0.89(SiO4)0.13(OH)�4.01H2O. For
the Raman spectrum of destinezite see also Frost and Palmer (2011f).

Devilline CaCu4(SO4)2(OH)6∙3H2O

Origin: Ozernyi district, Salla-Kuolayarvi, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power at the sample was
50 mW.

Raman shifts (cm21): 3594w, 3563w, 3493w, 1121s, 1041, 992s, 819, 599, 412, 241, 210.
Source: Voloshin et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of devilline see also Majzlan et al. (2015).

Devitoite [Ba6(PO4)2(CO3)][Fe
2+

7(OH)4Fe
3+

2O2(SiO3)8]

Origin: Esquire #8 claim, Big Creek, Fresno Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 2.5 mW.
Raman shifts (cm21): 1072, 1053, 914s, 700sh, 660s, 463w, 243w.
Source: Kampf et al. (2010b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Devitrite Na2Ca3Si6O16

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal at an

angle of 45� between the electric field vector of the exciting laser and the [100] direction. A 633 nm
He-Ne laser was used. The laser radiation power at the sample was 1 mW.

Raman shifts (cm21): 1126, 1110, 1094, 1079, 1059, 1051, 1010, 1003, 977, 966, 955, 948,
915, 908w, 890w, 836w, 805w, 791, 715, 698, 673s, 659s, 607s, 548, 520, 509, 499, 486, 472,
455, 444, 432, 416, 408, 397, 387, 342, 327, 306, 294, 286, 274, 253, 245, 226, 208, 193, 170, 151,
143, 126, 117, 105.
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Source: Kahlenberg et al. (2010).
Comments: Devitrite is a crystalline impurity phase in industrial soda-lime glasses. The sample was

characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Dewindtite H2Pb3(UO2)6O4(PO4)4∙12H2O

Origin: Ranger U mine, Northern Territory, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3524, 3456, 3299, 3297, 1659, 1623, 1117, 1069, 1033, 1021, 994, 978, 8687,
857, 831, 818, 808, 795, 783, 617, 576, 536, 485, 445, 415, 390, 369, 274, 260, 251, 204, 170, 143,
115.

Source: Frost et al. (2006c).
Comments: The sample was characterized by chemical analysis.

Diaboleite CuPb2Cl2(OH)4

Origin: Mannoth mine, Tiger, Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3525sh, 3465sh, 3452s, 3436sh, 3405sh, 3340, 978w, 781, 672, 538, 468w,
437w, 365, 294w, 227, 175, 149w, 130w.

Source: Frost et al. (2003j).
Comments: No independent analytical data are provided for the sample used. In the cited paper, there

are differences between Raman shifts given in Fig. 2b and in Table 1. Only Raman shifts from
Fig. 2b are listed above. For the Raman spectrum of diaboleite see also Frost and Williams (2004).

Diadochite Fe3+2(PO4)(SO4)(OH)∙6H2O

Origin: Alum Cave Bluff, Great Smoky Mts., Sevier Co., Tennessee, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3533sh, 3428, 3226sh, 2998, 1202sh, 1085, 1045sh, 1005s, 615, 565sh,
487, 448sh, 297sh, 263sh, 220, 142, 109.

Source: Frost and Palmer (2011f).
Comments: No independent analytical data are provided for the sample used.

Diamond C

Origin: Kangjinla mining district, Luobusa ophiolite, Southern Tibet.
Experimental details: No data.
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Raman shifts (cm21): 1332.6s.
Source: Xu et al. (2015b).
Comments: For the Raman spectra of diamond see also Knight and White (1989), Hänni et al. (1997),

Yang et al. (2007b), Jasinevicius (2009), and Frezzotti et al. (2012).

Diaspore AlO(OH)

Origin: Nevada, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 200 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3445, 3363sh, 3226sh, 3119sh, 2936sh, 1186, 1067, 1045, 1018, 956, 918,
837, 812, 790, 705s, 564, 609, 580, 552, 495, 466, 446s, 436, 394, 381, 364, 329, 287, 260s,
216, 207.

Source: Ruan et al. (2001).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. No independent analytical data are provided for the sample used. For the
Raman spectrum of diaspore see also Shoval et al. (2003).

Dickinsonite-(KMnNa) K(NaMn)CaNa3AlMn13(PO4)12(OH)2

Origin: Branchville, Fairfield Co., Connecticut, USA (type locality).
Experimental details: Raman scattering measurements have been performed in the region of O–H-

stretching vibrations, on an arbitrarily oriented crystal, using 514.5 nm Ar+ laser radiation. The laser
radiation power at the sample was in the range from 2 to 5 mW.

Raman shifts (cm21): 3557, 3520.
Source: Cámara et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe

analysis, and LA-ICP-MS. The Raman shifts were determined by us based on spectral curve
analysis of the published spectrum.

Dickite Al2Si2O5(OH)4

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1190, 1160, 1080, 1025s, 910, 790, 750, 710, 665s, 560, 515, 480, 380,
340, 275, 235s.

Source: Frost et al. (1993).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

dickite see also Frost (1995), Johnston et al. (1998), and Shoval et al. (2001).

Digenite Cu1.8S

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed at 160 �C using 496.5 nm Ar+ laser radiation. The nominal
laser radiation power was 2000 mW.
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Raman shifts (cm21): 469.
Source: Liu et al. (2002).
Comments: The sample was characterized by powder X-ray diffraction data.

Dimorphite As4S3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 676.4 nm Kr+ laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 374sh, 369, 365, 357, 349, 341, 274s, 224, 213, 206, 199, 186, 179, 175, 120w,

54, 51, 44w, 41, 38, 34, 29s, 17.
Source: Chattopadhyay et al. (1982).
Comments: The sample was characterized by powder X-ray diffraction data.

Diomignite Li2B4O7

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1352w, 1097w, 1028s, 554w, 446w, 390w.
Source: Thomas and Davidson (2010).
Comments: No independent analytical data are given for the sample used.

Diopside CaMgSi2O6

Origin: Zillerthel, Tirol, Austria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1045, 1010s, 853, 665s, 558w, 531w, 507w, 389, 358, 323, 296sh,

248w, 230w.
Source: Buzatu and Buzgar (2010).
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

diopside see also Richet et al. (1998), Jasinevicius (2009), Frezzotti et al. (2012), and Andò and
Garzanti (2014).

Dioptase CuSiO3∙H2O

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The output laser
radiation power was 30 mW.

Raman shifts (cm21): 3371w, 1025, 1006s, 960, 916, 743, 660s, 525, 452, 431, 400, 357s, 325, 294,
265, 240w, 225, 161, 140, 133.

Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of dioptase see also McKeown et al. (1995).
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Dissakisite-(La) CaLa(Al2Mg)[Si2O7][SiO4]O(OH)

Origin: Hochwartperidotite, Ultenzone, Alps, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 514 nm laser radiation.
The laser radiation power is not indicated.

Raman shifts (cm21): 3068, 1184, 1063s, 959s, 871s, 684, 566, 455s, 426s, 311, 226, 119.
Source: Tumiati et al. (2005).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Dixenite Cu1+Fe3+Mn2+14(As
5+O4)(As

3+O3)5(SiO4)2(OH)6

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): See comments below.
Source: Bahfenne and Frost (2010d).
Comments: No independent analytical data are given for the sample used. The Raman shifts 3644sh,

3582sh, 3449, 3247sh, 1389sh, 1386, 1347s, 1338sh, 1214, 1057s, 1026, 988sh, 944, 861,
751, 688w, 526s, 505sh, 428, 385, 312, 300sh, 282, 212sh, 170sh, and 143 do not correspond to
an arsenite. The strongest IR bands of this sample are observed at 1565 and 1361 cm�1. This
indicates that the investigated sample is not dixenite, but may be a carbonate or an organic
compound. The assignment of the band at 1361 cm�1 to “SiO4

2� antisymmetric stretching
vibrations” (obviously, the authors meant SiO4

4�) is erroneous. Bands of stretching vibrations of
SiO4

4� groups (in the range from 850 to 930 cm�1) are not observed in the IR spectrum of
presumed “dixenite.”

Djerfisherite K6(Fe,Cu,Ni)25S26Cl

Origin: Guli dunite complex, Polar Siberia, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 300.
Source: Zaccarini et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Dmisokolovite K3Cu5AlO2(AsO4)4

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm diode laser radiation. The laser radiation power is not indicated. A 180�-scat-
tering geometry was employed.
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Raman shifts (cm21): 900sh, 852s, 839s, 819sh, 640, 552sh, 525sh, 500s, 440, 400, 345, 223,
198, 121s, 96.

Source: Pekov et al. (2015d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved.

Dmisteinbergite Ca(Al2Si2O8)

Origin: Carbonaceous chondrite Northwest Africa 2086.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in polished thin section using 532.2 nm Nd-YAG laser radiation. The nominal laser radiation
power was 10 mW.

Raman shifts (cm21): 912s, 893, 801, 504, 442s, 327, 219.
Source: Fintor et al. (2013, 2014).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

dmisteinbergite see also Nestola et al. (2010).

Dolomite CaMg(CO3)2

Origin: Azcáratequarry, Eugui, Esteríbar, Spain.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented polished sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm�1): 1758w, 1443w, 1098s, 882w, 340w, 301, 177.
Source: Perrin et al. (2016).
Comments: For the Raman spectra of dolomite see also Edwards et al. (2005), Ciobotă et al. (2012),

and Frezzotti et al. (2012).

Domerockite Cu4(AsO4)(AsO3OH)(OH)3∙H2O

Origin: Dome Rock mine, South Australia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3420, 3235w, 875sh, 850s, 822s, 808s, 650, 478, 445, 390, 360.
Source: Elliott et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Donnayite-(Y) NaSr3CaY(CO3)6∙3H2O

Origin: Poudrette quarry, Mont Sainte-Hilaire, Québec, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3760w, 3657sh, 3507sh, 3414, 3297, 3277, 3204sh, 1735w, 1694sh, 1583w,
1520sh, 1382w, 1093sh, 1077s, 1070sh, 1059sh, 728, 716, 694, 669sh, 549, 387, 427, 422,
387, 373, 363sh, 357, 338, 325sh, 287, 239sh, 225, 156s, 143sh.

Source: Frost et al. (2016a).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Dorallcharite TlFe3+3(SO4)2(OH)6

Origin: Crven Dol, Allchar, Macedonia (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the range 100–1200 cm�1 using 632.8 nm He-Ne laser
radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): 1165, 1089, 1004s, 621s, 564, 451, 420s, 339w, 300s, 218s, 206, 136s.
Source: Makreski et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Dorfmanite Na2(PO3OH)∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 65�C on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 30 mW.
Raman shifts (cm21): 3391w, 3320w, 3080w, 3028w, 1149, 1072, 950s, 867, 567w, 541w, 513w,

446, 411, 395.
Source: Ghule et al. (2003).
Comments: The sample was characterized by TG data. For the Raman spectra of dorfmanite see also

Ramakrishnan and Aruldhas (1987) and Frost et al. (2011l).

Dovyrenite Ca6Zr(Si2O7)2(OH)4

Origin: Ioko-Dovyren massif, Northern Baikal region, Russia (type locality).
Experimental details: Raman scattering measurements have been performed from the natural face

(100) of a crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
20 mW. A 0�-scattering geometry was employed.

Raman shifts (cm21): 3638s, 3632s, 3593sh, 3585s, 3567sh, 1051s, 1002, 948s, 933sh, 836, 814sh,
759, 662s, 595s, 557sh, 518, 463, 437, 416sh, 393w, 372sh, 358, 333, 314, 296, 277, 260, 232.

Source: Galuskin et al. (2007b).
Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of

the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and
electron microprobe analyses. The crystal structure is solved.

Downeyite SeO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 435.8 nm radiation (mercury arc). The radiation power is not indicated.
Raman shifts (cm21): 940w, 909, 889s, 862w, 706, 597s, 524, 364w, 299, 287, 254s, 199, 124.
Source: Venkateswaran (1936).
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Comments: No independent analytical data are provided for the sample used. For the Raman spectra
of downeyite see also Gerding (1941) and Stanila et al. (2000).

Doyleite Al(OH)3

Origin: Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada (type
locality).

Experimental details: Raman scattering measurements have been performed on a powdered
sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 25 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3615sh, 3545, 1080(?), 936, 840(?), 806(?), 580, 392, 305, 279, 229, 208(?),
187(?), 158(?), 124, 117, 107(?).

Source: Rodgers (1993).
Comments: The sample was characterized by powder X-ray diffraction data. Doubtful bands are

marked with a question mark.

Dravite NaMg3Al6(Si6O18)(BO3)3(OH)3(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

(in the scattering geometry with the electrical field vector of the linearly polarized laser light parallel
to the crystallographic c-axis) using 488 and 473 nm laser radiations. The nominal laser radiation
power was 30 and 12 mW, respectively.

Raman shifts (cm21): 3776w, 3740, 3641sh, 3622, 3577, 3549sh, 3513sh, 1060 (broad), 1036, 980sh,
700, 676, 661sh, 635, 550, 493, 400sh, 370s, 313, 215s, 132.

Source: Berryman et al. (2016).
Comments: In the O–H stretching vibration range Raman shifts are indicated for the maxima of

individual peaks obtained as a result of the spectral curve analysis. The sample was characterized
by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts were partly
determined by us based on spectral curve analysis of the published spectrum. For theRaman spectra of
dravite see also Gasharova et al. (1997), Andò and Garzanti (2014), and Watenphul et al. (2016a, b).

Dreyerite Bi(VO4)

Origin: Hirschhorn, near Kaiserlautern, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
Raman shifts (cm21): 1164, 1137, 1104, 1082, 987, 836s, 790, 646, 617, 452s, 462sh, 408w,

365, 321sh, 301.
Source: Frost et al. (2006i).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Drysdallite MoSe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 286 (E1
2g), 242 (A1g), 168 (E1g), 25 (E2

2g).
Source: Sekine et al. (1980).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of drysdallite see also Agnihotri and Sehgal (1972).

Dufrénoysite Pb2As2S5

Origin: Lengenbach, Binntal, Switzerland (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.81 nm He-Ne laser radiation. The laser radiation is not indicated.
Raman shifts (cm�1): 376, 364s, 327s, 292s, 260s, 221s, 172, 144, 122, 102s, (74w).
Source: Kharbish (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The Raman shifts have been determined for the maxima of individual peaks obtained as a
result of the spectral curve analysis.

Duftite PbCu(AsO4)(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3280sh, 3240, 3192sh, 834s, 813, 792, 769sh, 549, 512, 454, 429, 403, 359,
340, 325, 301, 270, 229.

Source: Martens et al. (2003c).
Comments: No independent analytical data are provided for the sample used.

Dumontite Pb2(UO2)3O2(PO4)2∙5H2O

Origin: Shinkolowbe, Congo (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3552sh, 3475, 3352, 3189sh, 1054, 1024, 982, 974sh, 815sh, 800, 780,
571, 551sh, 445sh, 440sh, 293, 271, 246, 175, 149.

Source: Frost and Čejka (2009a).
Comments: No independent analytical data are provided for the sample used.

Dumortierite AlAl6BSi3O18

Origin: Dehesa, California, USA.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal (with the incident laser light perpendicular to the c-axis of the crystal) using 514.5 nm Ar+

laser radiation. The nominal laser radiation power was 205 mW.
Raman shifts (cm21): 1174, 1126w, 1113w, 1099w, 1002, 950s, 905sh, 843w, 808w, 793w, 780w,

750, 705sh, 660sh, 633, 548sh, 510s, 411s, 374, 283s, 228sh, 208s, 163, 147.
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Source: Goreva et al. (2001).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The Raman shifts were determined by us based on spectral curve analysis of the published
spectrum. For the Raman spectrum of dumortierite see also Pieczka et al. (2013).

Dundasite PbAl2(CO3)2(OH)4∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation output power was 50 mW.
Raman shifts (cm21): 1090s, 234, 193w, 170, 152w.
Source: Goienaga et al. (2011).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Durangite NaAl(AsO4)F

Origin: Barranca Sn mine, Coneto de Comonfort, Durango, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 923sh, 912s, 827s, 718w, 610w, 539, 496s, 464, 430, 306w, 267s, 250, 202,

179sh, 160w, 130w.
Source: Downs et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The Raman shifts were determined by us based on spectral
curve analysis of the published spectrum.

Dussertite BaFe3+3(AsO4)(AsO3OH)(OH)6

Origin: Horní Slavkov, Slavkovský les Mts., Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3452s, 3439w, 3371s, 3242s, 3015w, 1250, 1220, 1176, 1115w, 902s, 870s,
859, 825w, 754w, 724w, 567, 561, 474s, 429s, 409, 372w, 306w, 275s, 247s, 188.

Source: Frost et al. (2011a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Dwornikite Ni(SO4)∙H2O

Origin: Artificial (product of Ni corrosion in concentrated sulfuric acid).
Experimental details: Raman scattering measurements have been performed on anodic corrosion film

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 90 mW.
Raman shifts (cm�1): 3300 (broad), 1600w, 1190, 1080, 1016s, 890, 596, 418.
Source: Melendres and Tani (1986).
Comments: The sample was characterized by powder X-ray diffraction data.
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Dypingite Mg5(CO3)4(OH)2∙5H2O

Origin: Shinshiro Shi, Aichi Prefecture, Japan.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3648s, 3644, 3519, 3427, 3399sh, 2934w, 2880w, 1767w, 1751w, 1713w,
1601, 1447, 1452, 1366sh, 1122s, 1119s, 1092, 761, 727, 559w, 434w, 311, 249, 227, 203.

Source: Frost et al. (2009a).
Comments: Questionable data: no independent analytical data are given for the samples used. The IR

spectra of the presumed dypingite sample from Shinshiro Shi correspond to the mixture of
serpentine and a carbonate mineral. The IR spectra of presumed dypingite from Clear Creek
given in the cited paper are wrong. Actually, they are IR spectra of serpentine with minor admixture
of a carbonate other than dypingite. IR bands of serpentine are erroneously assigned to vibrations of
dypingite. For Raman spectra of carbonate mixtures containing dypingite see Kristova et al. (2014).

Dzhalindite In(OH)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using Nd-YAG laser radiation. The wavelengths of laser
excitation line and laser radiation power are not indicated.

Raman shifts (cm21): 302, 207.
Source: Yan et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data.

Dzhuluite Ca3(SbSn)(Fe
3+O4)3

Origin: Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was in the range from
30 to 50 mW.

Raman shifts (cm21): 812sh, 783sh, 756, 726sh, 612sh, 581, 487s, 326sh, 209sh, 285, 264sh,
235, 183, 161, 140, 112w.

Source: Galuskina et al. (2013b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts have been determined for the maxima of individual peaks obtained as a
result of the spectral curve analysis.

Dzierżanowskite CaCu2S2

Origin: Jabel Harmun, Judean Desert, Palestine Autonomy, Israel (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented grain using 488 nm solid-state laser radiation. The laser radiation power at the sample was
120 mW.

Raman shifts (cm�1): 300s, 103w, 86w.
Source: Galuskina et al. (2016a).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses.

Eakerite Ca2Sn
4+Al2Si6O18(OH)2∙2H2O

Origin: Foote Mineral Company mine, Kings Mt., North Carolina, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532.0 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3528, 3405, 3317, 1664, 1085, 1055, 1025, 996w, 974, 948w, 923w, 795, 747,

569s, 548s, 477, 441s, 418s, 393, 350, 337, 276, 234.
Source: Uchida et al. (2007).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis
of the published spectrum.

Eastonite KAlMg2(Si2Al2)O10(OH)2

Origin: Hessdalen, Norway.
Experimental details: Raman scattering measurements have been performed on an oriented sample,

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. The spectra were
recorded with the electric field polarized perpendicular to the cleavage plane.

Raman shifts (cm21): 3700s, 3663s, 1014, 670s, 652s, 400, 361, 274w, 194s, 100.
Source: Tlili et al. (1989).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of

eastonite see also Tlili and Smith (2007) and Wang et al. (2015).

Eastonite KAlMg2(Si2Al2)O10(OH)2

Origin: Easton, Pennsylvania, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample (on either loose grains without preparation or on a pressed pellet of sample powder) using
532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 13 mW.

Raman shifts (cm21): 3718s, 3693, 3678, 1082, 1038, 681s, 456, 427, 391, 351, 279, 192s.
Source: Wang et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum. For the Raman spectra of eastonite see also Tlili and Smith (2007).

Ecandrewsite ZnTiO3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

compressed into pellet. The wavelengths of laser excitation line and the laser radiation power are
not indicated.

Raman shifts (cm21): 716s, 624, 490, 474, 395, 350s, 270, 234, 181, 141w.
Source: Bernert et al. (2015).
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Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum
of ecandrewsite see also Beigi et al. (2011).

Ecdemite Pb6As
3+

2O7Cl4

Origin: Harstigen mine, Pajsberg, near Filipstad, Värmland, Sweden.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 514.5 nm Ar+ laser radiation. The laser radiation power was in the range from 20 to
50 mW.

Raman shifts (cm21): 1122s, ~694, 340–310, 154s, 129s.
Source: Jonsson (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Eckhardite (Ca,Pb)Cu2+Te6+O5(H2O)

Origin: Otto Mt., near Baker, California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished grain using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
2.5 mW.

Raman shifts (cm�1): 3440, 729s, 692s, 562w, 312w, 274, 260.
Source: Kampf et al. (2013b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The empirical formula of the sample used is
Ca0.962Pb0.073Cu

2+
0.971Mg0.005Fe

3+
0.002Te

6+
0.986O6H2.052.

Edgrewite Ca9(SiO4)4F2

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The output laser radiation power was in the range
30–50 mW. A 180�-scattering geometry was employed. The Raman shifts have been determined for
the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3554, 3547, 3540, 921, 889, 839, 815s, 667w, 556, 527w, 423sh, 406, 394sh,
309, 269, 195w, 172sh, 163, 108w.

Source: Galuskin et al. (2012d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The Raman shifts are given for the member of the
edgrewite Ca9(SiO4)4F2–hydroxyledgrewite Ca9(SiO4)4(OH)2 series with the content of the
edgrewite end-member minal more than 50%.

Edingtonite Ba(Si3Al2)O10∙4H2O

Origin: Ice River, near Golden, British Columbia, Canada.
Experimental details: Raman scattering measurements have been performed on an oriented sample

with the long axis of crystal normal to the polarization direction of the laser beam, using 514.5 nm
Ar+ laser radiation. A 180�-scattering geometry was employed. The laser radiation power at the
sample was 10 mW.
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Raman shifts (cm21): 3480s, 1644, 1096s, 1085s, 1077s, 1061s, 1049, 1021, 986s, 722s, 662, 531s,
480, 454s, 447s, 433, 427, 409, 395, 358s, 343s, 337, 330, 323, 311, 302, 284, 272s, 256, 167,
153, 141s.

Source: Wopenka et al. (1998).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of edingtonite see also Mozgawa (2001).

Edoylerite Hg2+3(Cr
6+O4)S2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 840s, 382, 368, 363, 340, 325, 269s.
Source: Frost (2004c).
Comments: No independent analytical data are provided for the sample used.

Effenbergerite BaCuSi4O10

Origin: Artificial.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 514 nm Ar+ laser radiation. The laser radiation power at the sample was 1 mW.
Raman shifts (cm21): 1097s, 986s, 788, 588, 573w, 558w, 517,454sh, 423s, 380, 339w, 276w.
Source: Xia et al. (2014).
Comments: No independent analytical data are provided for the sample used.

Eitelite Na2Mg(CO3)2

Origin: Synthetic.
Experimental details: Kind of sample preparation is not indicated. Micro-Raman scattering

measurements have been performed in Ar atmosphere using 514.5 nm Ar+ laser radiation. The
nominal laser radiation power was 1 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 1105s, 721w, 263, 208, 91s.
Source: Shatskiy et al. (2013).
Comments: The sample was characterized by single crystal X-ray diffraction data and energy-

dispersive X-ray scan data. For the Raman spectrum of eitelite see also Sharygin et al. (2013c).

Ekanite Ca2ThSi8O20

Origin: Moneragala, Okkampitiya area, Eastern Sri Lanka.
Experimental details: Raman scattering measurements have been performed on an annealed metamict

sample using 473 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1113s, 1009, 992, 747w, 657, 575, 433s, 395, 368, 350, 274, 189, 157,

133, 113.
Source: Nasdala et al. (2016).
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Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were
determined by us based on spectral curve analysis of the published spectrum.

Ekplexite (Nb,Mo)S2∙(Mg1-xAlx)(OH)2+x

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 532 nm diode laser radiation. The laser radiation power at the sample was 3 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3530, 3326, 707, 526s, 438, 387sh, 364s, 232sh, 198sh, 161, 120sh.
Source: Pekov et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is (Nb0.45Mo0.38W0.10V0.04)
S2(Mg0.60Al0.37Fe0.02)(OH)2.36.

Elbaite Na(Al1.5Li1.5)Al6(Si6O18)(BO3)3(OH)3(OH)

Origin: Granite pegmatite in an unknown locality in Southern California, USA.
Experimental details: Raman scattering measurements have been performed on an oriented sample,

using 488 and 514.5 nm Ar+ laser radiations in the range 150–1550 cm�1. The laser radiation power
is not indicated. A 180�-scattering geometry was employed. Polarized spectra were collected in the
z(xx)z, x(yy)x, x(zz)x, z(xy)z and x(zy)x scattering geometries.

Raman shifts (cm21): z(xx)z: 1412, 1190, 1077, 760, 731, 693, 641, 407, 373, 222(A1), 340(E); x(yy)
x: 1412, 1105, 1059, 989, 850, 760, 717, 632, 508, 407, 373, 244, 222(A1), 340 (E); x(zz)x: 1442,
1412, 1105, 1059, 989, 860, 760, 717, 637, 508, 407, 373, 244, 222 (A1); z(xy)z: 1190, 1077,
731, 373 (E); x(zy)x: 717, 700, 373, 350, 286 (E).

Source: Gasharova et al. (1997).
Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe

analysis, wet chemical analysis for most elements, atom absorption spectroscopy for Li, flame
photometry for Na and K, and thermal analysis for OH content. The empirical formula of the sample
used is (Na0.86K0.09Ca0.05)(Li0.99Mg0.27Mn0.23Fe

2+
0.01Al1.41)Al6B2.93Si6O27.26(OH)3.64F0.10. For

the Raman spectra of elbaite see also Natkaniec-Nowak et al. (2009), Hoang et al. (2011), and
Fantini et al. (2014).

Elbaite Na(Al1.5Li1.5)Al6(Si6O18)(BO3)3(OH)3(OH)

Origin: Lucyen mines, Vietnam.
Experimental details: Raman scattering measurements have been performed on a powdered sample,

using 457 nm solid-state laser radiation. The laser radiation power at the sample was 1 mW.
Raman shifts (cm21): 3655, 3585, 3560, 3490, 1407w, 1070s, 1033sh, 981, 880w, 836, 808, 733s,

673, 587sh, 551, 517, 476, 447, 404sh, 377s, 335sh.
Source: Hoang et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and energy-dispersive

X-ray scan data. The Raman shifts were partly determined by us based on spectral curve analysis of
the published spectrum. For the Raman spectra of elbaite see also Gasharova et al. (1997),
Natkaniec-Nowak et al. (2009), and Fantini et al. (2014).
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Elbrusite Ca3(U
6+

0.5Zr1.5)(Fe
3+O4)3

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal. A 0�-scattering geometry was employed. The wavelength of laser excitation line and
the laser radiation power are not indicated. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 805sh, 730, 478, 273, 222s.
Source: Galuskina et al. (2010b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Eleonorite Fe2+Fe3+5(PO4)4(OH)5∙6H2O

Origin: Boca Rica pegmatite, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the
sample is not indicated.

Raman shifts (cm21): 1174, 1155, 1133, 1116, 1098, 1084sh, 1069, 1058, 1051, 1034, 1011s, 990sh,
969sh, 703sh, 687s, 673, 661, 644, 601, 582, 567s, 546, 503, 491, 478, 468, 455, 437, 403,
398, 336, 322, 309sh, 300, 289, 280, 254, 238, 230, 225, 200, 191sh, 153, 1432, 118, 107.

Source: Frost et al. (2014al).
Comments: No independent analytical data are given for the sample used. In the cited paper the

mineral is described with the name beraunite, but an incorrect formula of beraunite is given. Brown
color of the sample indicates that it is not beraunite, but its oxydation product eleonorite, a mineral
isostructural with beraunite (Chukanov et al. 2017a).

Elpasolite K2NaAlF6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 561, 330, 138.
Source: Morss (1974).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of elpasolite see also Frezzotti et al. (2012).

Eltyubyuite Ca12Fe
3+

10Si4O32Cl6

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal, using 514.5 nm Ar+ laser radiation. The laser radiation output power was in the range
from 30 to 50 mW. A 180�-scattering geometry was employed. The Raman shifts have been
determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3395w, 936w, 927w, 861, 846, 816s, 784, 699, 558w, 532w, 472sh, 468, 412,
327sh, 309, 260.

Source: Galuskin et al. (2013a).
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Comments: The sample was characterized by single-crystal electron backscatter diffraction data and
electron microprobe analyses. The wavenumbers were partly determined by us based on spectral
curve analysis of the published spectrum. The empirical formula of the sample used is
Ca12.12Mg0.04Ti0.11Fe

3+
9.41Al1.26Si2.98O31.89Cl5.04. The band positions denoted by Galuskin et al.

(2013a) as 448 cm�1 (twice) were determined by us at 468 and 412 cm�1. For the Raman spectrum
of eltyubuyite see also Gfeller et al. (2015).

Emmonsite Fe3+2(Te
4+O3)3∙2H2O

Origin: Moctezuma mine, New Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 788, 764, 688sh, 658s, 440s, 400s, 326, 275s, 227w, 187s.
Source: Frost et al. (2008i).
Comments: No independent analytical data are provided for the sample used.

Enargite Cu3AsS4

Origin: Butte, Montana, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was in the range
1–10 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 382s, 337s, 298, 269, 170, 151, 133.
Source: Mernagh and Trudu (1993).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum

of enargite see also Gow (2015).

Enargite Cu3AsS4

Origin: Quirivilca region, Peru.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The maximum output laser radiation power was
100 mW.

Raman shifts (cm21): 724w, 679, 384, 338s, 265.
Source: Gow (2015).
Comments: The sample was characterized with scanning electron microscopy. For the Raman

spectrum of enargite see also Mernagh and Trudu (1993).

Enstatite Mg2Si2O6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal, using 488 nm Ar+ laser radiation. The laser radiation power is not indicated. Polarized
spectra were collected in the E || (100), E || (010) and E || (001) scattering geometries.

Raman shifts (cm21): 1035s, 1013s, 937, 938, 853, 687s, 665s, 581, 554, 541, 527, 446, 423s, 403s,
385, 344s, 303, 239s, 206, 198s, 134s.
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Source: Stalder et al. (2009).
Comments: The sample was characterized by electron microprobe analysis. Raman peak positions do

not exhibit a significant dependence on scattering geometry. For the Raman spectra of enstatite see
also Lin (2004), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Eosphorite Mn2+Al(PO4)(OH)2∙H2O

Origin: Roberto mine, Divino das Laranjeiras, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals, using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3477sh, 3460s, 3313, 3191sh, 3063, 1747, 1651, 1193w, 1142w, 1091w,
1011w, 978sh, 969s, 864sh, 816w, 634sh, 618, 595, 580sh, 560, 473, 462sh, 399, 386sh, 338w,
307, 291, 254, 232, 208, 200, 175, 171, 152, 118.

Source: Frost et al. (2013am).
Comments: The sample was characterized by electron microprobe analysis. The empirical formula of

the sample used is (Mn0.72Fe0.13Ca0.01)Al1.04(PO4,HPO4)1.07(OH1.89F0.02)�0.94H2O.

Epidote Ca2(Al2Fe
3+)[Si2O7][SiO4]O(OH)

Origin: Dunje, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample,

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1084, 1040w, 980w, 914s, 885, 864sh, 832w, 599s, 565s, 522w, 508, 452s,

430, 390w, 350, 328w, 314w, 292w, 276, 243, 230, 168, 134.
Source: Jovanovski et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectra of epidote see also Jovanovski et al. (2009) and Andò and
Garzanti (2014).

Epistilbite Ca3[Si18Al6O48]∙16H2O

Origin: Berufjord, Iceland.
Experimental details: Kind of sample preparation is not indicated. The measurements have been

performed using 1064 nm Nd-YAG laser radiation with the radiation power at the sample of
300 mW.

Raman shifts (cm21): 1631sh, 1620, 1117, 801w, 434s, 409s, 255, 179.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Epsomite Mg(SO4)∙7H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 15 mW.
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Raman shifts (cm21): 3425, 3303, 1672, 1134, 1095, 1061, 984s, 612, 447, 369, 245, 154.
Source: Wang et al. (2006a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

epsomite see also Genceli et al. (2007), Buzgar et al. (2009), Apopei et al. (2012, 2014a), and
Jentzsch et al. (2013).

Epsomite Mg(SO4)∙7H2O

Origin: Coranda-Hondol ore deposit, Certej, Romania.
Experimental details: Kind of sample preparation is not indicated. The measurements have been

performed using 532 nm Nd-YAG laser radiation with the power at the sample of 53.6 mW.
Raman shifts (cm21): 3285, 3219sh, 1668w, 1136w, 1097w, 1062w, 985s, 615, 449, 371w, 246w.
Source: Apopei et al. (2014a).
Comments: The sample was characterized by single-crystal X-ray diffraction data and scanning

electron microscopy. For the Raman spectra of epsomite see also Wang et al. (2006a), Genceli
et al. (2007), Buzgar et al. (2009), Apopei et al. (2012), and Jentzsch et al. (2013).

Ericlaxmanite Cu4O(AsO4)2

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 532 nm laser radiation. The laser radiation power at the sample was about 1 mW.
Raman shifts (cm21): 889sh, 863sh, 845s, 753, 664, 608, 531sh, 493, 440, 401, 329, 292, 229s,

181, 112.
Source: Pekov et al. (2014c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Cu3.97Zn0.06Fe0.02)(As1.94P0.02V0.01S0.01)O9.

Erikapohlite Cu2+3(Zn,Cu,Mg)4Ca2(AsO4)6∙2H2O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 894, 854s, 797s, 582w, 500, 408, 355, 306, 280, 234, 191, 122.
Source: Schlüter et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is Cu3(Zn2.48Cu0.93Mg0.77Fe0.01)
Ca2.04As6.20O24.71�1.29H2O. The Raman shifts were determined by us based on spectral curve
analysis of the published spectrum.

Eringaite Ca3Sc2(SiO4)3

Origin: Wiluy River, Sakha-Yakutia Republic, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power was in the range from 20 to
40 mW.
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Raman shifts (cm21): 936s, 877s, 815sh, 742, 638, 602, 540sh, 511s, 484sh, 440w, 408, 359s,
336, 309, 255, 220w.

Source: Galuskina et al. (2010d).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The empirical formula of the sample used is (Ca3.00Y0.01)(Sc0.63Ti
4+

0.66

Fe3+0.25Zr0.30Mg0.08Cr
3+

0.06Fe
2+

0.01)(Si2.13Al0.26Fe
3+

0.61)O12. The Raman shifts were determined
by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of
eringaite see also Yun-Fang et al. (2013).

Eriochalcite CuCl2∙2H2O

Origin: Main Lode, Great Australia mine, Cloncurry, Queensland, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3462sh, 3367, 3176w, 1620, 690, 672sh, 405, 390sh, 234, 215s, 117.
Source: Frost et al. (2003i).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of eriochalcite see also Christy et al. (2004).

Erionite-Ca Ca5[Si26Al10O72]∙30H2O

Origin: Oregon, USA.
Experimental details: Micro-Raman scattering measurements have been performed on an oriented

fiber using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW. Spectra
were recorded by placing fiber elongation axis at 0�, 45�, 90�, and 135� with respect to the cross hair
of the microscope ocular lens.

Raman shifts (cm21): 816w, 790w, 569, 486s, 469sh, 346.
Source: Croce et al. (2013).
Comments: The Raman shifts are indicated for the fiber orientation with respect to the direction of the

laser beam. No independent analytical data are provided for the sample used.

Erlichmanite OsS2

Origin: Santa Elena Nappe, Costa Rica.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.6 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 396w, 342s.
Source: Zaccarini et al. (2010).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of erlichmanite see also Bakker (2014).

Ernstburkeite Mg(CH3SO3)2∙12H2O

Origin: Synthetic.
Experimental details: No data.
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Raman shifts (cm21): 3021, 2939, 1421, 1055s, 974, 776, 545, 348.
Source: Güner et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data.

Erythrite Co3(AsO4)2∙8H2O

Origin: Mt. Cobalt, Queensland, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3337sh, 3200, 3052, 902, 852, 792, 727w, 652w, 467, 457s, 439s, 391, 378,
301, 263, 249s, 234, 223, 209s, 188, 162, 147w, 126.

Source: Frost et al. (2003g).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of erythrite see also Frost et al. (2004i) and Kloprogge et al. (2006).

Erythrosiderite K2Fe
3+Cl5∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented sample.

The laser beam was allowed to fall on a crystal face at an angle of 45�. The measurements have been
performed using He-Ne laser radiation. The laser radiation power was 50 mW.

Raman shifts (cm21): 384, 299s, 224, 174, 129.
Source: Sharma and Pandya (1974).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of erythrosiderite see also Piszczek et al. (2003).

Erythrosiderite K2Fe
3+Cl5�H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The maximum output laser radiation power was
about 100 mW.

Raman shifts (cm21): 1807, 1591, 371, 298, 221, 180, 173, 128.
Source: Piszczek et al. (2003).
Comments: The water content in the sample used was established by thermogravimetric analysis. For

the Raman spectrum of erythrosiderite see also Sharma and Pandya (1974).

Eskebornite CuFeSe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a nanocrystalline

sample, using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 471, 348w, 288s.
Source: Wang et al. (2009a).
Comments: No independent analytical data are provided for the sample used.
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Eskolaite Cr2O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 647.1 nm laser radiation. A 180�-scattering geometry was employed.
Raman shifts (cm21): 613, 552s, 527, 397w, 350, 300.
Source: Maslar et al. (2001).
Comments:No independent analytical data are provided for the reference sample used. For the Raman

spectra of eskolaite see also Bouchard and Smith (2003), Hosterman (2011), and Adar (2014).

Esperite PbCa2(ZnSiO4)3

Origin: Franklin, New Jersey, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 780 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 958w, 931w, 900, 846s, 589, 538w, 504, 447s, 409, 368, 335, 297w, 278w,

250, 224, 215w, 200w, 181s, 160, 153.
Source: Tait et al. (2010).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
Pb1.00(Ca1.86Fe

2+
0.07Mn0.04Cr

3+
0.02)(Zn1.00Si1.00O4)3. The Raman shifts were partly determined by

us based on spectral curve analysis of the published spectrum.

Ettringite Ca6Al2(SO4)3(OH)12∙26H2O

Origin: Synthetic.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed in the spectral regions from 200 to 1300 cm�1 and from 2800 to 4000 cm�1

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 15 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3638, 3440s, 1118w, 1087w, 990s, 615w, 549w, 451, 416w 346w.
Source: Renaudin et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectra of ettringite see also Deb et al. (2003) and Frost et al. (2013i).

Euchroite Cu2(AsO4)(OH)∙3H2O

Origin: L’ubietová-Svätoduška, Banská Bystrica Co., Banská Bystrica region, Slovakia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3537, 3470, 3278sh, 3116, 2924sh, 1634, 1032w, 976w, 848sh, 836s, 821sh,
768w, 474, 441, 385, 358, 294sh, 246s, 233s, 227sh, 210, 203sh, 171sh, 161s, 144s, 134sh, 112s.

Source: Frost et al. (2010e).
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Comments: The sample was characterized by powder X-ray diffraction data and electron
microprobe analyses. The empirical formula of the sample used is Cu2.06[(AsO4)0.96(PO4)0.04]
(OH)1.13�3H2O. For the Raman spectrum of euchroite see also Frost and Bahfenne (2010b).

Euclase BeAlSiO4(OH)

Origin: An unknown locality in Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3587, 3575, 1120, 1059s, 1023, 975, 908s, 880, 806w, 790w, 756w, 747w,

667w, 642w, 602w, 583, 574, 545, 518w, 461sh, 452, 444, 423w, 411w, 397s, 384, 355w, 341sh,
334, 309w, 290s, 276w, 259s, 237, 201, 180, 145.

Source: Hofmeister et al. (1987).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of euclase see also Jehlička et al. (2012) and Jehlička and Vandenabeele (2015).

Eucryptite-β Li(AlSiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal at

various crystal orientations using 1064 nm Nd-YAG laser radiation. The obtained data were
averaged to produce a final spectrum. The nominal laser radiation power was 100 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1099, 1086, 1067(?), 1049, 1032s, 987w, 762w, 711w, 636w, 483s, 466sh,
352, 282, 233w, 187, 157, 142, 108.

Source: Zhang et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data.

Kentbrooksite (Na,REE)15(Ca,REE)6Mn2+3Zr3Nb(Si25O73)OF2�2H2O

Origin: Sushina Hill Region, Purulia district, West Bengal, India.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 4 mW.
Raman shifts (cm21): 1007s, 991, 975, 727s, 438, 433s, 429w, 354s, 333, 220, 209w, 199, 191s.
Source: Chakrabarty et al. (2011).
Comments: The sample was characterized by electron microprobe data which correspond to Ca-rich

kentbrooksite. In the cited paper the mineral is erroneously described under the name “eudialyte.”
The Raman shifts were determined by us based on spectral curve analysis of the published
spectrum.

Eugsterite Na4Ca(SO4)3∙2H2O

Origin: Efflorescence on the walls of the Manasija Monastery, Serbia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 532 and 780 nm laser radiations.
Raman shifts (cm21): 1125, 1084.
Source: Matović et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and EDS analysis.
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Eulytine Bi4(SiO4)3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal, using 488 and 514.5 nm Ar+ laser radiations. The laser radiation power is not
indicated.

Raman shifts (cm21): 991w, 930, 896, 888, 868s, 623w, 547w, 533w, 503w, 491w, 437, 393,
333, 314w, 283w, 276w, 249w, 202, 149, 131, 106, 100sh, 94s, 67.

Source: Beneventi et al. (1995).
Comments: No independent analytical data are provided for the sample used.

Euxenite-(Y) (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6

Origin: Billeroo Prospect, South Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1624sh, 1520w, 1300w, 842, 805sh, 658sh, 624, 493sh, 410, 197sh,
161sh, 152s.

Source: Frost et al. (2011h).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of euxenite-(Y) see also Gong et al. (1995).

Evansite Al3(PO4)(OH)6∙8H2O

Origin: Porto, Northwest Portugal.
Experimental details: Kind of sample preparation is not indicated. Micro-Raman scattering

measurements have been performed with 532 nm laser radiation. The nominal laser radiation
power was 6 mW.

Raman shifts (cm21): 1645, 1364, 1048s, 1008s, 830w, 634, 564, 486, 367.
Source: Sanchez-Moral et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe

analyses, and inductively coupled plasma mass spectrometry.

Eveite Mn2+2(AsO4)(OH)

Origin: Långban, Filipstad, Värmland, Sweden.
Experimental details: No data.
Raman shifts (cm21): 3564, 870, 827s, 809s, 510, 474w, 439, 222w.
Source: Yang et al. (2001).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis
of the published spectrum.
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Evenkite C23H48

Origin: Mernek, Slovakia.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed using 514.5 nm Ar+ laser radiation with the nominal radiation power of
10 mW and/or 1064 nm Nd-YAG laser radiation with the power of 350 mW. The spectrum was
obtained with a beam perpendicular to the (111) crystal face.

Raman shifts (cm21): 2883s, 2848, 2735, 1464, 1441s, 1420, 1383w, 1370w, 1295, 1265w, 1171,
1133, 1123, 1103w, 1062, 890w, 103w.

Source: Jehlička et al. (2007a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of evenkite see also Jehlička et al. (2009a).

Ezcurrite Na2B5O7(OH)3∙2H2O

Origin: Tincalayu Mine, Salardel Hombre Muerto, Salta, Argentina (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3652sh, 3596sh, 3576, 3547, 3509sh, 3431s, 3329sh, 3247sh, 3186, 3098sh,
1691sh, 1641w, 1591sh, 1343, 1333sh, 1318sh, 1193, 1163, 1129sh, 1060, 1048sh, 1037, 1025sh,
1015, 1000, 968, 957sh, 947, 857sh, 842, 803sh, 782sh, 761, 746sh, 726sh, 693w, 590sh, 575s,
550sh, 529, 488, 473sh, 460, 445sh, 385, 350, 317, 286, 273sh, 209sh, 190, 162, 141, 128sh,
115, 108.

Source: Frost et al. (2014j).
Comments: The sample was characterized by qualitative electron microprobe analysis which shows

Al impurity.

Fabriesite Na3Al3Si3O12∙2H2O

Origin: Tawmaw, Myanmar.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power at the sample was 5 mW.
Raman shifts (cm21): 3500, 3200, 1011, 946, 903, 731, 682, 524, 490, 451s, 406, 372, 332, 314,

258w, 228w, 209.
Source: Ferraris et al. (2014).
Comments: The sample was characterized by electron microprobe analysis and electron backscatter

diffraction. The empirical formula of the sample used is (Na2.937Ca0.030K0.008Mg0.007Fe0.004
Ba0.002Mn0.001)Al2.996Si2.999O12�2H1.993O. The Raman shifts were partly determined by us based
on spectral curve analysis of the published spectrum.

Fairfieldite Ca2Mn2+(PO4)2∙2H2O

Origin: Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
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have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3271sh, 3139sh, 3040, 2961sh, 1663w, 1632w, 1577w, 1491w, 1466w, 1099s,
1027, 955s, 945sh, 925s, 906, 768, 604s, 584, 552, 442sh, 422s, 369sh, 312, 287, 251, 235,
214, 203sh, 185, 176sh, 136w.

Source: Frost et al. (2013ad).
Comments: The sample was characterized by electron microprobe data. The empirical formula of the

sample used is Ca2(Mn0.56Mg0.33Fe0.11)(PO4)2�2H2O.

Falcondoite Ni4Si6O15(OH)2∙6H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 823, 705sh, 673s, 640, 386s, 196s.
Source: Villanova-de-Benavent et al. (2012).
Comments: No independent analytical data are provided for the sample used.

Falottaite MnC2O4�3H2O

Origin: Synthetic.
Experimental details: Kind of sample preparation is not indicated. The measurements have been

performed with using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1614w, 1478s, 1427, 913, 885, 575, 515, 480w.
Source: Mancilla et al. (2009a).
Comments: The sample was characterized by powder X-ray diffraction data.

Fangite Tl3AsS4

Origin: Allchar deposit, Macedonia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was
1.9 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 397, 379s, 367sh, 323, 308, 289sh, 275, 209, 191w, 170, 137, 105.
Source: Makreski et al. (2014).
Comments: The sample was characterized by energy-dispersive X-ray scan data.

Farringtonite Mg3(PO4)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1151, 1112, 1093w, 1074, 1027s, 981s, 654, 638, 621, 576, 502, 475, 422, 355,

320, 271, 245w, 225w, 189, 177.
Source: O’Neill et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.
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Fassinaite Pb2(CO3)(S2O3)

Origin: Trentini mine, Mt. Naro, Vicenza province, Veneto, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 0.8 mW.
Raman shifts (cm21): 1690w, 1444w, 1322w, 1137w, 1082w, 1061s, 983, 845w, 722w, 661, 637s,

629sh, 602, 549, 520s, 438s, 358, 342, 250w, 203w, 180, 75s.
Source: Bindi et al. (2011b).
Comments: The sample was characterized by single-crystal X-ray diffraction data, electron micro-

probe data, and electron microprobe analyses. The crystal structure is solved. The empirical formula
of the sample used is Pb2.01(CO3)(S1.82O3).

Faujasite-Na (Na,Ca,Mg)2(Si,Al)12O24∙15H2O

Origin: Sasbach, Keiserstuhl, Germany (type locality).
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation power at the
sample was 300 mW.

Raman shifts (cm21): 1096, 477s, 308, 177.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Favreauite PbBiCu6O4(SeO3)4(OH)∙H2O

Origin: El Dragón mine, Bolivia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 2.3 mW.
Raman shifts (cm21): 3525, 1341w, 1240w, 1065w, 989w, 847s, 795sh, 764w, 542, 493, 392, 320w,

261w, 182.
Source: Mills et al. (2014c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Pb0.95Ca0.17Bi0.90Cu5.81Se4.10O15.96(OH)1.04�H2O.

Fayalite Fe2+2(SiO4)

Origin: Synthetic.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 940, 838sh, 817s, 724, 643, 588, 508, 384, 315, 293, 197, 173w, 157s, 122.
Source: Mouri and Enami (2008).
Comments: The Raman shifts were determined by us based on spectral curve analysis of the published

spectrum. For the Raman spectrum of fayalite see also Andò and Garzanti (2014).
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Feitknechtite Mn3+O(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed in the spectral region

from 100 to 1200 cm�1, on an arbitrarily oriented sample on the surface of catalyst, using 514.5 nm
Ar+ laser radiation. The laser radiation power at the sample was 0.235 mW.

Raman shifts (cm21): 635–633, 554–553, 495–492.
Source: Wang et al. (2014).
Comments: The sample was characterized by X-ray diffraction and X-ray photoelectron spectroscopy.

Felsőbányaite Al4(SO4)(OH)10∙4H2O

Origin: RecoaroTerme, Vicenza, Italy.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3590, 3560w, 1024w, 979s, 883w, 690w, 604, 510w, 451, 388w, 371w, 340w,

313w, 288w, 266w, 254w.
Source: Boscardin et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum.

Ferberite Fe2+(WO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 933, 868, 811, 702, 615, 379, 281, 215.
Source: Frost et al. (2004d).
Comments: No independent analytical data are provided for the sample used.

Fergusonite-(Ce)-β CeNbO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A
180�-scattering geometry was employed. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 801s, 687w, 677w, (654w), 455sh, 397, 390, 347sh, 328sh, 311s, 269, 207,
(200), 168, (157), 120sh, 103sh, 96s.

Source: Siqueira et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts of

103 and 96 cm�1 were determined by us based on spectral curve analysis of the published spectrum.
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Fergusonite-(La)-β LaNbO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A
180�-scattering geometry was employed. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 807s, 667, (658), 628, 427, 400, (393), 347sh, 332sh, 327s, 287, 224, 201, 179,
170sh, (137), 126, 115, 110s, 89.

Source: Siqueira et al. (2010).
Comments: The sample was characterized by X-ray diffraction data. The Raman shifts of 110 and

89 cm�1 were determined by us based on spectral curve analysis of the published spectrum.

Fergusonite-(Nd)-β NdNbO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A
180�-scattering geometry was employed. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 808s, 673, 657, 633, 445, 419, 409, 359sh, 335sh, 331s, 303, 230, 212w,
186sh, 182, 130, 123sh, 120.

Source: Siqueira et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data.

Fergusonite-(Y)-β YNbO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polycrystalline sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample
was 200 mW.

Raman shifts (cm21): 810s, 677, 660, 627sh, 556, 464, 440w, 420w, 400sh, 344, 330s, 288sh,
237, 200sh, 182sh, 168, 130sh, 117sh, 136, 76, 70w, 55w.

Source: Pradhan and Choudhary (1987).
Comments: The sample was characterized by powder X-ray diffraction data.

Fergusonite-(Y) YNbO4

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 779, 685w, 401w, 310, 208.
Source: Tomašić et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of fergusonite-(Y) see also Gieré et al. (2009).
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Fergusonite-(Y) YNbO4

Origin: A granitic pegmatite situated in the Adamello massif, Italy.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed using 488 nm Ar+ laser radiation. The laser radiation power behind the
objective was 8 mW.

Raman shifts (cm21): 817s, 698, 665, 444, 423, 379sh, 329s, 289, 230sh, 205sh, 143s.
Source: Gieré et al. (2009).
Comments: The sample was characterized by electron microprobe analyses. According to powder

X-ray diffraction data, the mineral is metamict. It was identified as fergusonite-(Y) on the basis of its
Raman spectrum. For the Raman spectrum of fergusonite-(Y) see also Tomašić et al. (2008).

Fermiite Na4(UO2)(SO4)3�3H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3540, 3465, 3285, 1606, 1228, 1180, 1120, 1104, 1080, 1013s, 996sh, 992w,

860sh, 830s, 816sh, 638w, 616w, 583w, 506, 443, 384, 188, 163, 153, 132, 110, 55.
Source: Kampf et al. (2015c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Na3.88(U1.05O2)(S0.99O4)3�3H2O.

Feroxyhyte Fe3+O(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was
0.04 mW. A 180�-scattering geometry was employed. The Raman shifts have been determined
for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1442sh, 1330, 713sh, 663, 485sh, 401s, 292s, 222s.
Source: Müller et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of feroxyhyte see also Nieuwoudt et al. (2011) and Chen et al. (2014c).

Ferriallanite-(Ce) CaCe(Fe3+AlFe2+)[Si2O7][SiO4]O(OH).

Origin: Paleokerasia ophiolitic mélange formation, South Othris, Greece.
Experimental details: No data.
Raman shifts (cm21): 952w, 887w, 654s, 508s, 478s, 417w, ~377s, 212w, ~188w.
Source: Koutsovitis et al. (2013).
Comments: No independent analytical data are provided for the sample used.
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Ferricopiapite Fe3+0.67Fe
3+

4(SO4)6(OH)2∙20H2O

Origin: Baia Sprie mining area, Romania.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The
nominal laser radiation power was 100 mW.

Raman shifts (cm21): 3135w, 1643, 1226, 1108, 1021s, 992s, 762w, 611, 480, 454sh, 304, 270s.
Source: Buzatu et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

ferricopiapite see also Ling and Wang (2010), Frost (2011c), Kong et al. (2011b), Apopei et al.
(2012, 2014a), Sobron and Alpers (2013), Rull et al. (2014), and Wang and Zhou (2014).

Ferri-eckermannite NaNa2Mg4Fe
3+Si8O22(OH)2

Experimental details: Raman scattering measurements have been performed in the spectral region
2600–3800 cm�1 on an oriented crystal with the polarization of incident light Ei parallel to the
polarization of scattered light Es and with the direction of crystal elongation perpendicular to Ei and
parallel to Es. 514.5 nm Ar+ laser radiation was used. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3722sh, 3698.
Source: Leissner et al. (2015).
Comments: The sample was characterized by electron microprobe analysis and laser ablation induc-

tively coupled-plasma mass spectrometry. The empirical formula of the sample used is
Na0.51K0.49Na2.00(Mg0.45Fe

3+
0.20Fe

2+
0.14Mn0.10Li0.07Al0.02Ti0.02)5Si8.00(OH0.58F0.34O0.08)2. The

Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Ferrierite-K (K,Na)5(Si31Al5)O72∙18H2O

Origin: Synthetic.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed in the spectral region from 200 to 1400 cm�1 using 532 nm laser radiation.
The laser radiation power is not indicated.

Raman shifts (cm21): 1163w, 1056, 1029, 833, 797, 576sh, 566, 455s, 432s, 389sh, 370w, 360w,
340, 319, 291sh, 228.

Source: Suzuki et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Ferrierite-Na (Na,K)5(Si31Al5)O72∙18H2O

Origin: Synthetic.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed in the spectral region from 200 to 1400 cm�1 using 532 nm laser radiation.
The laser radiation power is not indicated.

Raman shifts (cm21): 1157, 1058, 823, 801, 572, 552, 494sh, 452s, 432s, 342, 316, 220.
Source: Suzuki et al. (2009).
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Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were
determined by us based on spectral curve analysis of the published spectrum.

Ferrihydrite Fe3+10O14(OH)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power was 0.04 mW.
Raman shifts (cm21): 1377w, 722, 676sh, 513, 358s.
Source: Müller et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

ferrihydrite see also Mazzetti and Thistlethwaite (2002) and Das and Hendry (2011).

Ferrihydrite Fe3+10O14(OH)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm diode laser radiation. The laser radiation power at the sample was 0.3 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1045s, 707, 508w, 361w.
Source: Das and Hendry (2011).
Comments: The sample was characterized by X-ray diffraction data. For the Raman spectra of

ferrihydrite see also Mazzetti and Thistlethwaite (2002) and Müller et al. (2010).

Ferri-kaersutite NaCa2(Mg3Fe
3+Ti)(Si6Al2)O22O2

Experimental details: Raman scattering measurements have been performed on an oriented crystal
with the polarization of incident light Ei parallel to the polarization of scattered light Es and with the
direction of crystal elongation perpendicular to Ei and parallel to Es. 514.5 nm Ar+ laser radiation
was used. The laser radiation power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3699, 3670sh, 1072sh, 1013, 895, 780sh, 755s, 666, 527, 422, 378, 350sh,
294, 238, 184, 166, 134sh.

Source: Leissner et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

data. The empirical formula of the sample used is Na0.51K0.36□0.13(Ca0.89Na0.07Mg0.04)2(Mg0.60
Fe3+0.21Ti0.13Al0.06)5(Al0.27Si0.73)8(O0.65OH0.32F0.03)2. The Raman shifts were determined by us
based on spectral curve analysis of the published spectrum.

Ferrilotharmeyerite CaZnFe3+(AsO4)2(OH)∙H2O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: No data in the cited paper.
Raman shifts (cm21): 3440w, 2973sh, 2636sh, 919, 880s, 830s, 814s, 765s, 730, 510, 487sh,

421, 370, 325sh, 230.
Source: Frost and Weier (2004e).
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Comments: No independent analytical data are provided for the sample used. The Raman shifts have
been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Ferrimolybdite Fe3+2(Mo6+O4)3∙7H2O

Origin: Vrchoslav, Krušné Hory (Ore Mts.), northern Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 1882w, 1611w, 991, 968s, 951sh, 935, 836sh, 822, 804sh, 784s, 771sh, 357s,
347, 327sh, 299, 258, 232, 206, 180, 156, 139sh, 115.

Source: Sejkora et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The empirical formula of the sample used is Fe1.98[(MoO4)2.91(SO4)0.08(PO4)0.03]�8H2O.

Ferrinatrite Na3Fe
3+(SO4)3∙3H2O

Origin: Lignitized wood from La Plaine-Chevrière, Oise, France.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 2.5 mW. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 1614, 1250, 1235, 1220sh, 1202, 1123, 1011, 1002sh, 995s, 965s, 613, 603sh,
533sh, 502sh, 492, 460w, 438w, 267, 247s, 217, 197, 161, 138.

Source: Rouchon et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Ferristrunzite Fe3+Fe3+2(PO4)2(OH)3∙5H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample, using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3465, 3367s, 3226, 3042, 1105sh, 1078s, 1022s, 1008sh, 985s, 634sh,
576, 533sh, 503, 454, 394, 354, 321, 302sh, 283s, 259s, 235, 203s, 184, 167s, 147sh.

Source: Frost et al. (2002c).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of ferristrunzite see also Frost et al. (2004m).

Ferro-actinolite □Ca2(Mg2.5-0.0Fe
2+

2.5-5.0)Si8O22(OH)2

Origin: No data.
Experimental details: No data.

4 Raman Spectra of Minerals 905



Raman shifts (cm21): ~1065w, ~740w, ~670s, ~560, ~530, ~380, ~365, ~295w, ~215, ~175.
Source: Bersani et al. (2014).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Ferro-glaucophane Na2(Fe
2+

3Al2)Si8O22(OH)2

Origin: Vernè, Val Varaita, Sampeyre, Cuneo, Piemonte, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1101, 1043, 984, 892, 831w, 909, 773, 733w, 667s, 606, 551, 537sh, 486, 765,
444w, 400sh, 385s, 334, 302w, 290w, 253, 207s, 175s, 157, 137w, 118s.

Source: Andò and Garzanti (2014).
Comments: In the cited paper the mineral is named Fe-glaucophane. No independent analytical data

are provided for the sample used. The Raman shifts were partly determined by us based on spectral
curve analysis of the published spectrum.

Ferro-hornblende (Na,K)0-1Ca2(Mg,Fe2+,Fe3+,Al)5(Si,Al)8O22(OH)2

Origin: Pelagon, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1054w, 1018, 914, 863, 788w, 767w, 665s, 611s, 547, 517sh, 466, 426, 386sh,

330, 319sh, 251s, 226s, 177sh, 159, 115.
Source: Makreski et al. (2006a) and Jovanovski et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of hornblende see also Andò and Garzanti (2014).

Ferrocarpholite Fe2+Al2Si2O6(OH)4

Origin: Cole d’Esischie, Cuneo, Piemonte, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1096, 1037, 1017w, 995w, 961, 928, 880, 866, 742s, 711, 664, 610s, 580sh,
562s, 530w, 517w, 498w, 488w, 475, 444, 406s, 350, 310, 282, 261, 238, 211s, 168.

Source: Andò and Garzanti (2014).
Comments: In the cited paper the mineral is named Fe-carpholite. No independent analytical data are

provided for the sample used. The Raman shifts were partly determined by us based on spectral
curve analysis of the published spectrum.

Ferroceladonite KFe2+Fe3+Si4O10(OH)2

Origin: Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada.
Experimental details: Kind of sample preparation is not indicated. 514.5 nm Ar+ laser radiation was

used. The laser radiation power was below 5 mW.
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Raman shifts (cm21): 958, 696, 535, 453, 440, 395, 281, 234sh, 199s, 169sh.
Source: Ospitali et al. (2008).
Comments: The sample was characterized by electron microprobe analyses.

Ferrohögbomite (Fe,Mg,Zn,Al)3(Al,Ti,Fe)8O15(OH) (for the 2N2S polysome)

Origin: Aktyuz area, Northern Tien Shan, Kyrgyzstan.
Experimental details: Kind of sample preparation is not indicated. 514.5 nm Ar+ laser radiation was

used. The laser radiation power is not indicated.
Raman shifts (cm21): 830, 776, 711, 525, 412, 257.
Source: Orozbaev et al. (2011).
Comments: Intensities of the Raman bands are not indicated. The sample was characterized by

electron microprobe analysis. The empirical formula of the sample used is Mg1.47
Fe2+3.02Zn0.04Fe

3+
1.76Al15.13Ti0.56O30(OH)2. For the Raman spectrum of ferrohögbomite see also

Tsunogae and Santosh (2005).

Ferrokësterite Cu2(Fe,Zn)SnS4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline thin

film using 532 nm laser radiation. The laser radiation power was less than 1 mW.
Raman shifts (cm21): 378sh, 319s, 284, 256w.
Source: Khadka and Kim (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The empirical formula of the sample used is Cu2(Fe77Zn23)SnS4. The Raman shifts were
determined by us based on spectral curve analysis of the published spectrum.

Ferroselite FeSe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. Polarized
spectra were collected in different scattering geometries.

Raman shifts (cm21): 221, 183s.
Source: Lutz and Müller (1991).
Comments The Raman shifts are given for the scattering geometry x(yy)-x, in which the Raman

intensities are most strong. No independent analytical data are provided for the sample used. For the
Raman spectrum of ferroselite see also Wei et al. (2016).

Ferrosilite Fe2+2Si2O6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 488 nm Ar+ laser radiation. The laser radiation power is not indicated. Spectra were
recorded with the polarization of the laser radiation parallel to the (100) and (001) directions.

Raman shifts (cm21): 994s, 951, 888, 660s, 634, 532, 525s, 503, 396s, 349s, 319s, 301s, 247, 168s,
152, 129s.
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Source: Stalder et al. (2009).
Comments: The sample was characterized by electron microprobe analysis. The average Raman shifts

are given because the peak positions do not exhibit a significant dependence on orientation.

Ferrostrunzite Fe2+Fe3+2(PO4)2(OH)2∙6H2O

Origin: Arnsberg, Sauerland, Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3492sh, 3405s, 3134, 2943, 1113, 1058s, 1038sh, 1010s, 987sh, 967sh,
634, 568, 531sh, 509sh, 471, 434sh, 408, 396, 328, 297, 249s, 226, 202, 184s, 163s.

Source: Frost et al. (2002c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of ferrostrunzite see also Frost et al. (2004m).

Ferruccite NaBF4

Origin: Synthetic.
Experimental details: Raman spectrum was obtained in the spectral region from 150 to 3000 cm�1 for

a sample closed in quartz cell. 514 nm laser radiation was used. The laser radiation power is not
indicated.

Raman shifts (cm21): 1279w, 1122w, 1060, 1040sh, 784s, 554, 532, 369w, 344.
Source: Zavorotynska et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectra of ferruccite see also Bonadeo and Silberman (1970) and Bates et al. (1971).

Fersmite (Ca,Ce,Na)(Nb,Ta,Ti)2(O,OH,F)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single-

crystal fiber using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was
8 mW. A 180�-scattering geometry was employed. Polarized spectra were collected in the (xx), (xy),
(zx), and (zy) scattering geometries.

Source: Moreira et al. (2010b).
Raman shifts (cm21): (xx): 906, 664, 540, 486, 379, 294s, 289, 242s, 227, 197, 140s, 64; (xy): 850s,

708, 598, 498, 431, 379s, 346, 293s, 262s, 208, 189, 164; (zx): 852, 637, 498s, 457, 380, 315, 2167,
249, 227, 198s, 130s, 111; (zy): 857, 736, 629, 462, 433, 365, 340, 270, 215s, 167, 139s, 65.

Comments: The sample was characterized by X-ray diffraction data.

Feruvite CaFe2+3(Al5Mg)(Si6O18)(BO3)3(OH)3(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a powdered sample in

the spectral regions from 150 to 1600 cm�1 and from 3000 to 4000 cm�1 using 457 nm solid-state
laser radiation. The laser radiation power at the sample was about 1 mW.
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Raman shifts (cm21): 3624w, 3550, ~3500sh, 1324, 1095sh, 1054, 1003sh, 808sh, 768, 675sh,
573, 495, 420, 380, 356.

Source: Hoang et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Fichtelite C19H34

Origin: Třeboň basin, Southern Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG and 514.5 nm Ar+ laser radiations. The nominal laser radiation
power was 350 and 10 mW, respectively.

Raman shifts (cm21): 2997w, 2987, 2972, 2962w, 2947sh, 2937, 2923s, 2910, 2888, 2864s, 2846sh,
2842sh, 2834sh, 2757w, 2662sh, 1470sh, 1457sh, 1442s, 1381, 1361s, 1335, 1321, 1302, 1293w,
1275, 1264w, 1247s, 1227w, 1213, 1200, 1175, 1155, 1143, 1119w, 1104, 1091w, 1073, 1061sh,
1025, 997, 977, 950sh, 936, 913, 886w, 870, 852, 836, 815, 796, 770, 717s, 579w, 553, 490,
479, 450w, 438w, 399w, 380, 344.

Source: Jehlička and Edwards (2008).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

fichtelite see also Jehlička et al. (2005, 2009a).

Fiedlerite Pb3Cl4F(OH)∙H2O

Origin: No data.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed on an arbitrarily oriented sample using 632.8 and 514.5 nm laser radiations.
The laser radiation power at the source was 30 mW and less than 30 mW, respectively.

Raman shifts (cm21): ~737, 600, 331s, 272s, 133s.
Source: Bouchard and Smith (2003).
Comments: No independent analytical data are provided for the sample used.

Finnemanite Pb5(As
3+O3)3Cl

Origin: Långban deposit, Filipstad district, Värmland province, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 808w, 733s, 726sh, 640, 575, 450w, 372, 354sh, 244, 196sh, 174s, 128s, 113s.
Source: Bahfenne et al. (2011c).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of finnemanite see also Bahfenne (2011).

Flamite Ca8-x(Na,K)x(SiO4)4-x(PO4)x

Origin: Hatrurim Basin, Negev Desert, Israel (type locality).
Experimental details: Raman scattering measurements have been performed in backscattered geom-

etry, on an arbitrarily oriented sample, using 514.5 nm Ar+ laser radiation. The laser radiation power
at the sample was up to 17 mW.
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Raman shifts (cm21): 1003w, 952s, (885sh), 863s, 850s, 714w, 666w, 589sh, 575w, 558sh, 538, 520,
500sh, 439sh, 430w, 396, 294sh, 260, 199sh, 188, 170, 125w, 106w.

Source: Sokol et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of flamite see also Gfeller et al. (2015).

Flinteite K2ZnCl4

Origin: Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 50 to 4000 cm�1 using 532 nm diode laser radiation. The laser
radiation power at the sample was 13 mW.

Raman shifts (cm21): 294s, 192w, 140s, 113sh.
Source: Pekov et al. (2015e).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(K1.91Tl0.09)Σ2.00Zn1.04Cl3.96.

Florencite-(La) LaAl3(PO4)2(OH)6

Origin: Igarapé Bahia mine, Serra dos Carajás, Pará, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3649, 3440sh, 3158s, 2988sh, 2906sh, 1914s, 1713sh, 1655s, 1479s, 1221w,
1112s, 1064sh, 1021s, 987s, 846w, 783, 766w, 716, 699, 647sh, 614, 680sh, 536s, 524sh, 464, 404,
310, 270s, 255, 202, 194sh, 158w, 130w.

Source: Frost et al. (2013an).
Comments: The sample was characterized qualitative electron microprobe analysis.

Fluellite Al2(PO4)F2(OH)∙7H2O

Origin: Krásno, near Horní Slavkov, western Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal, using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman spectrum was obtained in the spectral region from 200 to 4000 cm�1. The Raman shifts have
been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3667, 3396s, 3314, 3124s, 1670w, 1583w, 1122, 1096sh, 1036s, 897w, 835sh,
646, 588, 557, 525s, 513, 459, 410, 342, 311, 295, 279, 251, 220, 208, 199, 191, 173, 151,
139, 123,116, 108.

Source: Čejka et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

data. The empirical formula of the sample used is Al1.98(PO4)1.07F1.99(OH)0.75�7H2O.
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Fluocerite-(Ce) CeF3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. Polarized spectra
were collected in x(zx)y and x(yz)y scattering geometries.

Raman shifts (cm21): 293s, 290sh, 204, 141.
Source: Gerlinger and Schaack (1986).
Comments: The Raman shifts are given for the scattering geometry x(zx)y, in which the Raman

intensities are most strong. The z axis is taken as the symmetry axis of the crystal and the x and
y axes are equivalent. No independent analytical data are provided for the sample used. The Raman
shifts were determined by us based on spectral curve analysis of the published spectrum. For the
Raman spectrum of fluocerite-(Ce) see also Bauman and Porto (1967).

Fluocerite-(La) LaF3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

1% praseodymium-doped LaF3 rod using 435.8 nm Hg line as excitation.
Raman shifts (cm21): 392, 365, 310, 292, 75.
Source: Caspers et al. (1964).
Comments: No independent analytical data are provided. For the Raman spectrum of fluocerite-(La)

see also Bauman and Porto (1967).

Fluorapatite Ca5(PO4)3F

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a microcrystalline

sample in the spectral region from 140 to 1200 cm�1 using He-Ne laser radiation. The laser
radiation power is not indicated.

Raman shifts (cm21): 1084w, 1053w, 1041w, 966s, 609, 598, 595, 451w, 434, 268w, 184.
Source: Griffith (1970).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of fluorapatite see also Adams and Gardner (1974), Harlov et al. (2003), and Frezzotti et al. (2012).

Fluorapatite As-rich Ca5(PO4,AsO4)3F

Origin: Calvario Mt., Etna, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 633 and 532 nm laser radiations. The nominal laser radiation power was 20 and
10 mW, respectively.

Raman shifts (cm21): 1062sh, 1057sh, 1046, 1034sh, 964s, 877sh, 857s, 827w, 590, 580, 477sh,
430, 392, 372.

Source: Gianfagna et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts are indicated for the maxima of individual peaks obtained as a result of
the spectral curve analysis.
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Fluorapophyllite-(K) KCa4Si8O20F∙8H2O

Origin: Międzyrzecze Górne, near Bielsko-Biała, Poland.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was less than 30 mW.
Raman measurements were performed in different scattering geometries.

Raman shifts (cm21): -z(y0y0)z: 3627w, 3559, 3357sh, 3104sh, 3010, 1117w, 1062, 856w, 794w,
665, 584, 542w, 522w, 486w, 433, 401w, 374w, 337w, 298, 231, 209, 166, 133, 123w; -z(x0y0)z—
3559w, 3357sh, 3104sh, 3010, 1117w, 1010w, 973w, 840w, 768w, 630w, 463w, 371w, 267w,
226w, 217w, 185, 161, 131; -y0(zz)y0: 1063s, 794w, 584, 542, 486, 433, 401, 231, 195, 166; -y0(x0z)
y0: 1091w, 1011w, 601w, 503w, 487w, 460w, 431w, 342w, 320w, 270w, 216w, 202w, 174w,
139w, 127w.

Source: Włodyka and Wrzalik (2004).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is (K0.96Na0.03)Ca3.96(Si7.95Al0.04P0.03)
O19.98(F0.83OH0.17)�8.02H2O. For the Raman spectra of fluorapophyllite-(K) see also Frost and
Xi (2012o) and Goryainov et al. (2012).

Fluor-buergerite NaFe3+3Al6(Si6O18)(BO3)3O3F

Origin: Mexiquitic, San Luis Potosi, Mexico.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 514.5 and 457.9 nm Ar+ laser radiations. The laser radiation power at the sample was about
25 mW. Polarized spectra were collected in (zz) and (xy,z) scattering geometries.

Raman shifts (cm21): A1 (zz): 3530, 1289, 1110w, 1060, 1010, 811w, 753, 706, 638s, 605sh, 541sh,
523, 475w, 406sh, 373s, 300, 260sh, 232s, 154; E (xy,z): 1290, 1260, 1107,1063, 1012, 982, 957,
757, 733, 707, 656s, 636, 586sh, 550sh, 522w, 475sh, 458, 400s, 375, 328, 300, 275, 265, 233,
212, 154.

Source: McKeown (2008).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is
NaFe3+3Al6(Si6O18)(BO3)3(O0.92OH0.08)Σ3F. For the Raman spectra of fluor-buergerite see also
Gasharova et al. (1997) and Watenphul et al. (2016a, b).

Fluorcalciobritholite (Ca,REE)5(SiO4,PO4)3F

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample. Experimental details are not described.
Raman shifts (cm21): 1026sh, 1049w, 958s, 856, 603sh, 580, 557sh, 447sh, 428.
Source: Dacheux et al. (2010).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis.

The empirical formula of the sample used is Ca9Nd0.5Th0.5(PO4)4.5(SiO4)1.5F2.

Fluorcalciomicrolite (Ca,Na,□)2Ta2O6F

Origin: Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample 532 nm solid-state laser radiation. The laser radiation power is not indicated.

912 4 Raman Spectra of Minerals



Raman shifts (cm21): 891, 792, 664, 530sh, 505s, 417, 331, 292, 239w, 187, 168.
Source: Andrade et al. (2013a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ca1.07Na0.12Vac 0.12)(Ta1.84Nb0.14Sn0.02)[O5.93(OH)0.07][F0.79(OH)0.21].

Fluorcalcioroméite (Ca,Na)2Sb
5+

2O6F

Origin: Starlera mine, Ferrera, Grischun, Switzerland (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3686, 3630, 827, 790sh, 518s, 468sh, 302w.
Source: Atencio et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ca1.16Na0.56□0.22Fe

2+
0.03Mn2+0.03)(Sb

5+
1.98Al0.01W0.01)O6[F0.62(OH)0.28O0.06□0.04].

Fluorcaphite SrCaCa3(PO4)3F

Origin: Lovozero alkaline complex, Kola Peninsula, Russia.
Raman shifts (cm21): See comment below.
Source: Chakhmouradian et al. (2005).
Comments: Raman microspectroscopy cannot be used to distinguish between fluorcaphite and

fluorapatite because their nonpolarized spectra are virtually identical. Polarized spectra in the
range 50–350 cm�1 are sensitive to the local structural environment of A-site cations and can
potentially be used for that purpose.

Fluor-elbaite Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F

Origin: Paprok mine, Nuristan, Afghanistan.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

cross-section of a single crystal using Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3658, 3594, 3489, 1421, 1064s, 731s, 550, 381, 344, 223.
Source: Natkaniec-Nowak et al. (2009).
Comments: The sample was characterized by electron microprobe analyses. Raman shifts are given

for the central sample zone (zone I) which was identified as fluor-elbaite. The band positions
denoted by Natkaniec-Nowak et al. (2009) as 3549 and 224 cm�1 were determined by us at 3594
and 344 cm�1, respectively.

Fluor-schorl NaFe2+3Al6(Si6O18)(BO3)3(OH)3F

Origin: Steinberg, Zschorlau, Erzgebirge (Saxonian Ore Mountains), Saxony, Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 3563, 1084sh, 1048, 1025sh, 969w, 767s, 694, 665, 632, 537w, 483, 400sh,

364s, 313, 237s, 199.
Source: Ertl et al. (2015).
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Comments: The sample was characterized by X-ray diffraction data and electron microprobe analyses.
The crystal structure is solved. The empirical formula of the sample used is (Na0.82K0.01Ca0.01□0.16)
(Fe2+2.30Al0.38Mg0.23Li0.03Mn2+0.02Zn0.01)(Al5.80Fe

3+
0.10Ti0.10)(Si5.81Al0.19O18)

(BO3)3(OH)3[F0.66(OH)0.34]. The Raman shifts were partly determined by us based on spectral
curve analysis of the published spectrum.

Fluorite CaF2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser
radiation power was 40 mW.

Raman shifts (cm21): 322.
Source: Gee et al. (1966).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of fluorite see also Tsuda et al. (1993), Dill and Weber (2010), Frezzotti et al. (2012), and Andò and
Garzanti (2014).

Fluorkyuygenite Ca12Al14O32[(H2O)4F2]

Origin: Hatrurim Basin, Negev Desert, Israel (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3210sh, 3065, 1610w, 940sh, 876sh, 862, 772s, 695, 575, 517s, 392, 344,

320, 234.
Source: Galuskin et al. (2015c).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
Ca12.034(Al13.344Fe

3+
0.398Si0.224)O32[(H2O)3.810F1.894(OH)0.296]. The Raman shifts were partly

determined by us based on spectral curve analysis of the published spectrum.

Fluorlamprophyllite Na3(SrNa)Ti3(Si2O7)2O2F2

Origin: Poços de Caldas alkaline massif, Morro doSerrote, Minas Gerais, Brazil (type locality)
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3675w, 1070, 940sh, 893s, 862sh, 825sh, 690, 635w, 590, 462w, 419w, 375w,

346w, 280sh, 230sh, 174w.
Source: Andrade et al. (2017).
Comments: The Raman shifts were partly determined by us based on spectral curve analysis of the

published spectrum.

Fluormayenite-related garnet

Origin: Afrikanda complex, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm21): 3630, 1100w, 955w, 863s, 815, 633w, 519, 385sh, 352, 240w.
Source: Chakhmouradian et al. (2008).
Comments: In the cited paper the mineral is described under the name hibscite. It contains from 4.2 to

6.0 wt% F. The sample was characterized by micro-X-ray diffraction data, electron microprobe
analyses, and single-crystal X-ray diffraction. The crystal structure is solved. The compositional
range of the sample used may be described as Grs57–63Kt21–27Fgr8–11Adr0–13, where Grs, Kt, and
Adr are the designations for the grossular, katoite, and andradite, respectively, and Fgr is the
hypothetical Ca3Al2F12 end-member. The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.

Fluormayenite Ca12Al14O32[□4F2]

Origin: Jabel Harmun, Judean Mts., Palestinian Autonomy, Israel (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3674w, 3572, 918sh, 890, 844, 776s, 709, 619w, 583, 524s, 390, 318s,

276, 250sh, 186.
Source: Galuskin et al. (2015c).
Comments:The samplewas characterized by single-crystalX-ray diffraction data and electronmicroprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is (Ca11.951Na0.037)
(Al13.675Fe

3+
0.270Mg0.040Si0.009P0.005S

6+
0.013)O31.503(HO)1.492[□4.581F1.375Cl0.044]. The Raman shifts

were partly determined by us based on spectral curve analysis of the published spectrum.

Fluorocronite PbF2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation output power was 300 mW.
Raman shifts (cm21): 257.
Source: Krishnamurthy and Soots (1970).
Comments: No independent analytical data are provided for the sample used.

Fluoro-edenite NaCa2Mg5(Si7Al)O22F2

Origin: Biancavilla area, Mount Etna, Sicily, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an oriented sample

with the elongation axis at 45� with respect to N-S direction of the cross-hair of the ocular lens using
632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (for the sample no. 3 in Table 1 of the cited paper, cm21): 1042, 1018, 926, 768,
747, 678s, 586w, 557, 520, 494w, 474w, 436, 408, 381, 365sh, 313, 300sh, 236s, 213w.

Source: Fornero et al. (2008).
Comments: The sample was characterized by electron microprobe analyses. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.
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Fluorowardite NaAl3(PO4)2(OH)2F2∙2H2O

Origin: Silver Coin mine, Valmy, Nevada, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was about
5 mW.

Raman shifts (cm21): 3614w, 3542, 1049s, 1005s, 604s, 489, 431, 384w, 315, 272, 257, 216, 182s,
143.

Source: Kampf et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Na0.87Ca0.13Mg0.04)(Al2.96Fe

3+
0.04)(P1.96As0.03)O8.12(OH)2.35F1.53�2H2O. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Fluor-uvite CaMg3(Al5Mg)(Si6O18)(BO3)3(OH)3F

Origin: No data in the cited paper.
Experimental details: Raman scattering measurements have been performed on an oriented crystal in

the -y(zz)y scattering geometry using 514.5 or 488.0 nm Ar+ laser radiations. The laser radiation
power at the sample was 14 mW.

Raman shifts (cm21): 3770, 3740, 3665, 3642, 3572, 3554sh, 3522sh, 3488sh, 1040, 960w, 798w,
759w, 702, 670, 650, 630, 496, 459, 411, 372s, 316, 243s, 213s, 149w.

Source: Watenphul et al. (2016a).
Coments: The sample was characterized by electron microprobe analyses and LA-ICP-MS data. The

empirical formula of the sample used is (Ca0.63Na0.26□0.09)(Mg2.92Ti0.07)(Al5.51Mg0.49)(Si6O18)
(BO3)3(OH)3[F0.55(OH)0.36O0.09].

Fluorwavellite Al3(PO4)2(OH)2F�5H2O

Origin: Silver Coin mine, Valmy, Iron Point district, Humboldt Co., Nevada, USA (type locality).
Experimental details: Methods of sample preparation are not described. A 785 nm diode laser

radiation was used. The laser radiation power is not indicated.
Raman shifts (cm21): 1147w, 1065sh, 1022s, 636, 589sh, 568sh, 550sh, 544s, 410s, 315, 286sh,

277, 224sh, 211.
Source: Kampf et al. (2017a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Al2.96(PO4)2(OH)1.98F1.02�5H2O (+0.12H for charge balance). The Raman shifts were partly deter-
mined by us based on spectral curve analysis of the published spectrum.

Foitite □(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

with the crystallographic c axis parallel to the z axis using 514.5 and 488.0 nm Ar+ laser radiations.
The laser radiation power at the sample was 14 mW. Raman spectrum was obtained in the spectral
region from 15 to 4000 cm�1. Polarized spectra were collected in the -y(zz)y, y(zx)y, and y(xx)y
scattering geometries.
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Raman shifts (cm21): 3726w, 3670w, 3644, 3631, 3570sh, 3551s, 3517, 3484s, 3641, 3630, 3479,
3351, 1054, 1020, 967, 777w, 743w, 696, 677, 630, 493, 459, 401, 367s, 313, 253sh, 236s, 205sh,
192sh, 158w.

Source: Watenphul et al. (2016a).
Comments: The sample was characterized by electron microprobe and LA-ICP-MS analyses. The

Raman shifts are given for the scattering geometry -y(zz)y, in which the Raman intensities are most
strong. The empirical formula of the sample used is (□0.61Na0.35Ca0.03)(Fe1.28Al1.03
Mn0.41Li0.18Mg0.11)Al6(Si6O18)(BO3)3(OH)3[(OH)0.93F0.07]. The Raman shifts were partly deter-
mined by us based on spectral curve analysis of the published spectrum.

Foordite Sn2+Nb2O6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 532 nm solid-state laser radiation. The laser radiation power is not indicated. Polarized spectra
were collected in the z(xx)-z scattering geometry.

Raman shifts (cm21): 794, 665, 575, 432, 372, 348, 303, 257, 249, 224, 201, 185, 161, 135.
Source: Noureldine et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of foordite see also Lee et al. (2015).

Forêtite Cu2Al2(AsO4)(OH,O,H2O)6

Origin: Cap Garonne mine, France (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 50 to 4000 cm�1 using 532 nm laser radiation. The laser radiation
power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3534sh, 3469sh, 3428s, 3343s, 2924, 2889, 2848, 1585, 1458, 848s, 816sh,
495, 446w, 371, 269, 218, 171, 140sh, 114s, 93s.

Source: Mills et al. (2012a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is Cu1.94(Al1.96Fe0.04)(As0.84S0.09Si0.04)
O10H5.19.

Formanite-(Y) YTaO4

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 825s, 720w, 705, 670, 655w, 480w, 450w, 375w, 345s, 320s, 215s, 120.
Source: Blasse (1973).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of formanite-(Y) see also Nazarov (2010).

Formicaite Ca(CHOO)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 488.0 nm Ar+ and 632.8 nm He-Ne laser radiations. The laser radiation power is not indicated.
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Polarized spectra were collected in x(zz)y, x(yx)y, x(yx)z, x(yz)y, x(zy)z, x(zx)y, x(xz)z scattering
geometries with 488.8 nm laser excitation, and in y(xx)z, y(xy)z, y(zy)z, y(zx)z scattering geometries
with 632.8 nm laser excitation.

Raman shifts (cm21): 2185w, 2180w, 1406s, 1393s, 801w, 783, 169w, 118, 106, 72s.
Source: Krishnan and Ramanujam (1973).
Comments: The Raman shifts are given for the scattering geometry x(yy)z with 488.0 nm Ar+ laser

radiation, in which the Raman intensities are most strong.

Fornacite CuPb2(CrO4)(AsO4)(OH)

Origin: Whim Creek Copper mine, Pilbara, Western Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW.
Raman shifts (cm21): 916sh, 890sh, 872sh, 867, 847s, 830s, 790sh, 778sh, 400, 388, 381, 369,

354, 343, 332, 305, 159, 139, 122.
Source: Frost (2004c).
Comments: No independent analytical data are provided for the sample used.

Forsterite Mg2(SiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample in

the spectral region from 100 to 1200 cm�1 using 488 nm Ar+ laser radiation. The laser radiation
power at the sample was 20 mW. A 135�-scattering geometry was employed.

Raman shifts (cm21): 964, 919, 880sh, 855s, 824s, 608, 589, 544, 434, 374, 337, 329, 314w,
303, 225.

Source: Mohanan et al. (1993).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

forsterite see also Piriou and McMillan (1983), Mouri and Enami (2008), Frezzotti et al. (2012),
Andò and Garzanti (2014), and Culka et al. (2016a, b).

Fougèrite Fe2+4Fe
3+

2(OH)12(CO3)∙3H2O

Origin: Fougères Forest, Fougères, Ille-et-Vilaine, Brittany, France (type locality).
Experimental details: Raman scattering measurements have been performed on a fine-crystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was less than
1 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 518, 427.
Source: Trolard et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data, Mössbauer spectros-

copy, and X-ray absorption spectroscopy at the FeK edge. For the Raman spectrum of fougèrite see
also Bourrié and Trolard (2010).

Fraipontite (Zn,Al)3(Si,Al)2O5(OH)4

Origin: Blue Bell mine, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
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have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3825w, 3810w, 3781w, 3769w, 3747w, 3737w, 3669w, 3384w, 3367w,
(1734), (1408), 1392sh, (1094s), 1089sh, (731), 675, (305), 290sh, (197), 186sh, 157sh, 144s,
115sh, 108.

Source: Theiss et al. (2015b).
Comments: The sample was characterized by qualitative energy-dispersive X-ray scan data. No

independent quantitative analytical data are provided for the sample used. The bands at 1734,
1408, 1094, 731, 305, and 197 cm�1 correspond to admixed smithsonite.

Francevillite Ba(UO2)2(VO4)2∙5H2O

Origin: Mounana Mine, Haut Ogoue, Gabon (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 977, 965sh, 861, 829, 747s, 609, 526, 485, 470, 405, 370s, 304, 240s,
186, 163sh.

Source: Frost et al. (2005c).
Comments: No independent analytical data are provided for the sample used.

Francisite Cu3Bi(Se
4+O3)2O2Cl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal with laser light polarized in the xy plane of the crystal. The laser radiation power and the
wavelength of laser radiation are not indicated.

Raman shifts (cm21): 583, 538, 484, 324, 173.
Source: Miller et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data.

Franckeite Pb21.7Sn9.3Fe4.0Sb8.1S56.9

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a pressed powdered

sample using 532 nm laser radiation. The nominal laser radiation power was 0.2 mW.
Raman shifts (cm21): 650–400sh, 318, 253, 194, 145w, 66s.
Source: Molina-Mendoza et al. (2016).
Comments: The sample was characterized by selected area electron diffraction data, micro-X-ray

photoemission, and scanning tunneling spectroscopy.

Françoisite-(Nd) Nd(UO2)3O(OH)(PO4)2∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample in

the spectral region from 150 to 2000 cm�1 using 632.8 nm He-Ne laser radiation. The laser
radiation power is not indicated.
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Raman shifts (cm21): 998, 934w, 830s, 440–417, 202, 151.
Source: Armstrong et al. (2011).
Comments: The sample was characterized by elemental and thermal analyses, X-ray diffraction data,

and inductively coupled optical emission spectroscopy. The empirical formula of the sample used is
Nd0.92[(UO2)3.11O(OH)(PO4)2.00]�5.98H2O.

Franconite NaNb2O5(OH)∙3H2O

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie,
Québec, Canada (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample in the spectral region from 50 to 4000 cm�1 using 638 nm laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 3416, 924, 879s, 661s, 583, 461, 391, 297, 212.
Source: Haring and McDonald (2014b).
Comments: It may be that the wavelength of 638 nm is a misprint, and the authors meant 632.8 nm.

The sample was characterized by powder X-ray diffraction data, by energy-dispersive X–ray scan
data, and by single crystal X-ray diffraction data. The crystal structure is solved. The empirical
formula of the sample used is (Na0.73Ca0.13□0.14)Σ1.00(Nb1.96Ti0.02Si0.02Al0.01)O5(OH)�3H2O.

Frankdicksonite BaF2

Origin: Synthetic.
Experimental details: The Raman spectrum was obtained at 15 K. Other experimental details are not

indicated.
Raman shifts (cm21): 259sh, 244.
Source: Harrington et al. (1971).
Comments: No independent analytical data are provided for the sample used. The Raman shift of

259 cm�1 was determined by us based on spectral curve analysis of the published spectrum.

Franklinite ZnFe3+2O4

Origin: Franklin or Sterling Hill mine, New Jersey, USA.
Experimental details: No data.
Raman shifts (cm21): 1206, 661sh, 597s, 493w, 347.
Source: Welsh (2008).
Comments: No independent analytical data are provided for the sample used.

Freboldite CoSe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

nucleated after about 50 h milling time using 514.5 nm Ar+ laser radiation. The nominal laser
radiation power was less than 5 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 174.
Source: Campos et al. (2004a).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis.
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Fredrikssonite Mg2Mn3+O2(BO3)

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): See comment below.
Source: Frost (2011b).
Comments: All Raman shifts (1750, 1530, 1435, 1086, 712, 282, and 155 cm�1) ascribed by Frost

(2011b) to fredrikssonite correspond to calcite. The correct Raman shifts of fredrikssonite are
(RRUFF ID: R130112; cm�1): 933w, 752, 701w, 666, 591s, 520w, 341sh, 317s.

Fresnoite Ba2TiO(Si2O7)

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 994w, 960w, 928w, 904, 876, 860s, 666, 600, 542w, 477w, 377, 343, 318w,

272, 226, 207w.
Source: Gabelica-Robert and Tarte (1981).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

fresnoite see also Mayerhöfer and Dunken (2001) and Ma and Rossman (2008).

Friedrichbeckeite K(□Na)Mg2(Be2Mg)Si12O30

Origin: Bellerberg volcano, Eifel paleovolcanic area, Rhineland-Palatinate (Rheinland-Pfalz),
Germany (type locality).

Experimental details: Raman scattering measurements have been performed on an oriented crystal
with direction of the laser beam along [0001] using 633 nm He-Ne laser radiation. The nominal
laser radiation power was 17 mW.

Raman shifts (cm21): 1132s, 947, 837, ~770, 650, 577, 544, 488s, 461sh, 385, 292s, 162, 128, 69.
Source: Lengauer et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe

analyses, and laser-ablation inductively coupled plasma mass spectroscopy data. The crystal
structure is solved. The empirical formula of the sample used is K0.87Na0.86(Mg1.57Mn0.28Fe0.24)
(Be1.83Mg1.17)[Si12O30]. The Raman shifts were determined by us based on spectral curve analysis
of the published spectrum.

Frohbergite FeTe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 90 K on an oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A 180-
�-scattering geometry was employed. Polarized spectra were collected in y(xx)-y, y(xz)-y, z(xy)-z, x
(zy)-x, and y(x,xz)-y scattering geometries.

Raman shifts (cm21): 155, 138s, 125.
Source: Lutz and Müller (1991).
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Comments: The Raman shifts are given in the scattering geometry y(x,xz)-y. The authors note that the
origin of the band at 138 cm�1 is not quite clear. No independent analytical data are provided for the
sample used.

Frolovite Ca[B(OH)4]2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 300 to 1800 cm�1 using
514.5 nm Ar+ laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm21): 854w, 758s, 547, 390w.
Source: Jun et al. (1995).
Comments: No independent analytical data are provided for the sample used.

Frondelite Mn2+Fe3+4(PO4)3(OH)5

Origin: Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3581, 3315, 3144sh, 3029sh, 2886, 2747sh, 1597, 1532, 1416, 1352, 1164sh,
1112, 1071sh, 1027s, 1000, 966sh, 748, 635sh, 612s, 589sh, 572, 481sh, 455, 436sh, 379sh, 329sh,
291, 226s, 207sh, 189, 172sh, 151s, 137sh, 126sh.

Source: Frost et al. (2013y).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis.

The empirical formula of the sample used is (Mn0.68Fe0.32)Fe
3+

3.72(PO4)3.17(OH)4.99. For the
Raman spectrum of frondelite see also Faulstich et al. (2013).

Fulgurite (a high-silicon glass) ~(Si,O,Fe)O2-x

Origin: Greensboro, North Carolina, USA.
Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar+

laser radiation. The laser radiation power at the sample was 1 to 2 mW.
Raman shifts (cm21): 1188w, 1057, 930w, 796, 603, 488s, 440s.
Source: Carter et al. (2010).
Comments: The sample was characterized by inductively coupled plasma optical emission spectrom-

etry data. It contains 81.3 wt% SiO2, 8.32 wt% Al2O3, 8.48 wt% Fe2O3, and minor amounts of other
components.

Gadolinite-(Nd) Nd2Fe
2+Be2O2(SiO4)2

Origin: Malmkärra mine, ~3.5 km WSW of Norberg, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on a polished section

using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 10 mW.
Raman shifts (cm21): 3525w, 970, 897s, 707w, 677sh, 615w, 550w, 501w, 483w, 428, 411,

383, 363, 339, 306, 292, 279, 265, 225w, 203w, 143w, 104w.
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Source: Škoda et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Gahnite ZnAl2O4

Origin: Jemaa, Kaduna State, Nigeria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 473.1 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 661s, 510w, 420.
Source: D’Ippolito et al. (2013).
Comments: The sample was characterized by single crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
(Zn0.94Fe

2+
0.03Al0.03)(Al1.96Fe

2+
0.03Fe

3+
0.01)O4. For the Raman spectrum of gahnite see also

Faulstich et al. (2016).

Gaidonnayite Na2ZrSi3O9∙2H2O

Origin: Toongi rare metal deposit, New South Wales, Australia
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1093sh, 1053, 963s, 926, 704w, 663w, 548s, 526sh, 404, 337sh, 316, 255sh,

199s, 152s.
Source: Spandler and Morris (2016).
Comments: The sample was characterized by X-ray fluorescence data and laser-ablation inductively

coupled plasma mass spectroscopy. The Raman shifts were determined by us based on spectral
curve analysis of the published spectrum.

Galaxite Mn2+Al2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal in the spectral region from 100 to 900 cm�1 using 473.1 nm Nd-YAG laser radiation.
The laser radiation power at the sample was less than 1 mW. A nearly 180�-scattering geometry was
employed.

Raman shifts (cm21): 775, 700w, 644w, 510, 395s, 374sh, 202s.
Source: D’Ippolito et al. (2015).
Comments: The sample was characterized by electron microprobe analysis.

Galena PbS

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~450, 205.
Source: Sherwin et al. (2005).
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Comments: No independent analytical data are provided for the sample used. The first-order Raman
scattering is forbidden in minerals with the halite structure. However, the peak at 205 cm21

attributed to forbidden first order spectrum has been registered for galena. For the Raman spectrum
of galena see also Frezzotti et al. (2012).

Galileiite NaFe2+4(PO4)3

Origin: Yanzhuang H6 chondrite, Yanzhuang village, Wenyuan Co., Guangdong province, China.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 26.8 mW.
Raman shifts (cm21): 1129–1124, 982–980s, 599–596, 558–554w, 417–416, 305–304w, 154–151.
Source: Xie et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. The empirical formula of

the sample used is (Na0.89K0.01Ca0.03Cr0.05)(Fe3.61Mn0.29Mg0.02Si0.03)P2.99O12.

Gallite CuGaS2

Origin: Synthetic.
Description: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

green-colored crystal with formula closest to pure CuGaS2 using 514.5 nm Ar+ laser radiation. The
laser radiation output power was 30 mW.

Raman shifts (cm21): 384, 347w, 309s, 274w, 162w, 112w, 91w, 72w, 32w.
Source: Julien et al. (1999).
Comments: The sample was characterized by X-ray diffraction data. For the Raman spectrum of

gallite see also Cha and Jung (2014).

Gallium sulfide Ga2S3

Origin: Synthetic.
Description: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation output power was 30 mW.
Raman shifts (cm21): 422, 386w, 329, 307, 233s, 147, 140, 114, 86, 72.
Source: Julien et al. (1999).
Comments: The sample was characterized by X-ray diffraction data.

Galloplumbogummite Pb(Ga,Al,Ge)3(PO4)2(OH)6

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on an oriented sample

with three-fold crystallographic axis close to the direction of the polarization of the incident light
using 514.5 and 488.0 nm Ar+ laser radiations. The nominal laser radiation power is not indicated.
A 180�-scattering geometry was employed.

Raman shifts (cm21): 3252, 1087s, 1007s, 979, 899, 619, 602, 573w, 566w, 559w, 538w, 492s,
356, 317, 272, 181, 83, 55.

Source: Schlüter et al. (2014).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses. The crystal structure is solved. The empirical formula of the sample used is (Pb1.04Ca0.05)
(Ga1.41Al1.35Ge0.38Fe0.02)(P1.91S0.14)O8.44(OH)5.56. The Raman shifts were determined by us based
on spectral curve analysis of the published spectrum.

Galuskinite Ca7(SiO4)3(CO3)

Origin: Birkhin gabbro massif, Eastern Siberia, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal in the spectral region from 100 to 4000 cm�1 using 514.5 nm Ar+ laser radiation. The
laser radiation output power was in the range 30–50 mW. A 180�-scattering geometry was
employed.

Raman shifts (cm21): 1077s, 1007, 972w, 950, 928, 917, 898w, 889w, 882, 863s, 851s, 843, 704,
661, 570, 555, 525, 439, 404, 392, 367, 315w, 292w, 276, 257, 238, 220, 205, 184, 163, 140w,
124w, 114w.

Source: Lazic et al. (2011).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ca6.936Na0.086)(Si2.983P0.018S0.004)O12(CO3). The Raman shifts were partly determined by us
based on spectral curve analysis of the published spectrum.

Gamagarite Ba2Fe
3+(VO4)2OH

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 90 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 953, 944sh, 918, 904, 874, 853, 846, 827, 799, 728w, 629, ~480sh, ~455sh,
442s, 411sh, 361, 346, 311, 268, 247sh, 229.

Source: Sanjeewa et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The Raman shifts were determined by us based on spectral
curve analysis of the published spectrum.

Gananite BiF3

Origin: Synthetic
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488.0 and 514.5 nm Ar+ laser radiations. The nominal laser radiation power was 200 mW. A
90�-scattering geometry was employed.

Raman shifts (cm21): 334sh, 312s, 278sh, 271s, 265sh, 248s, 213, 203, 192, 177sh, 155, 142sh, 127s,
115s, 84, 70sh.

Source: Kavun et al. (2010).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.
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Ganomalite Pb9Ca6(Si2O7)4(SiO4)O

Origin: Jakobsberg, Bergslagen, Sweden.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 6 mW.
Raman shifts (cm21): 1068, 1042, 1000, 902, 886, 848s, 810, 727w, 673w, 564s, 551sh, 520, 486w,

455, 427w, 401w, 373, 354, 291, 242, 208.
Source: Kampf et al. (2016c).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Ganterite Ba0.5(Na,K)0.5Al2(Si2.5Al1.5)O10(OH)2

Origin: Berisal Complex, Simplon Region, Switzerland (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished thin section of a single crystal using 514.5 nm Ar+ laser radiation. The nominal laser
radiation power was 25 mW.

Raman shifts (cm21): 1092, 1025, 948, 699s, 595s, 488s, 405sh, 266s.
Source: Graeser et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is (Ba0.44K0.28Na0.27)(Al1.84Mg0.09Fe0.04Ti0.04)
[Si2.72Al1.28O10](OH)1.89.

Garavellite FeSbBiS4

Origin: Malé Karpaty Mts., Western Carpathians, Slovakia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished section using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was
210 mW. A 180�-scattering geometry was employed. The Raman shifts have been determined for
the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 364w, 338, 322, 302, 271sh, 249sh, 233sh, 214s, 197sh, 182, 167, 151, 137sh,
120, 99sh, 78s, 61.

Source: Kharbish and Andráš (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Garnet Mg3(MgSi)Si3O12

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using Ar+ laser radiation. The laser radiation power at the sample was in the range
5–50 mW.

Raman shifts (cm21): 1065, 1034w, 989w, 964sh, 931s, 889, 873sh, 852sh, 802, 724w, 648w, 602s,
559w, 535w, 507w, 498w, 481w, 458, 429w, 398w, 367, 354sh, 336w, 311, 293w, 275w, 261w,
238sh, 226, 205sh, 197, 181, 159, 138w.

Source: McMillan et al. (1989).
Comments: No independent analytical data are provided for the sample used.
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Gartrellite PbCuFe3+(AsO4)2(OH)∙H2O

Origin: Anticline deposit, Ashburton Downs, Western Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3404, 3229, 2999, 1161, 1099, 995, 869s, 842s, 812, 785, 618, 560, 499, 474s,
438s, 357, 331, 304, 238, 201, 164, 140.

Source: Frost and Weier (2004e).
Comments: No independent analytical data are provided for the sample used. Raman shifts are given

for gartrellite with partly isomorphic substitution of arsenate by sulfate. For the Raman spectrum of
gartrellite see also López et al. (2014c).

Garutiite (Ni,Fe,Ir)

Origin: Loma Peguera, Dominican Republic (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532.6 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): The obtained Raman spectrum shows no discernible absorption bands over the
range of 150–2000 cm�1.

Source: McDonald et al. (2010).

Gaspéite Ni(CO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488.0 and 514.5 nm Ar+ laser radiations. The nominal
laser radiation power was about 100 mW.

Raman shifts (cm21): 1731, 1428, 1089, 736, 343, 235.
Source: Rutt and Nicola (1974).
Comments: The sample was characterized by powder X-ray diffraction data.

Gaudefroyite Ca4Mn3+3(BO3)3(CO3)O3

Origin: N’Chwaning II mine, Kalahari manganese fields, South Africa.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. Raman
spectrum was obtained in the spectral region from 200 to 4000 cm�1. The Raman shifts have been
determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3385, 3249, 3206, 1595w, 1508w, 1491w, 1358sh, 1306sh, 1283, 1263sh,
1227sh, 1210sh, 1194, 1182sh, 1153sh, 1130w, 1112w, 1076, 1070sh, 950sh, 939, 928s, 914sh,
768w, 764w, 748w, 743w, 671s, 649s, 635sh, 584sh, 573, 534, 405w, 389w, 342s, 334sh, 297sh,
287s, 255sh, 244s, 228sh, 211w.

Source: Frost et al. (2014ae).
Comments: No independent analytical data are provided for the sample used.
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Gaylussite Na2Ca(CO3)2∙5H2O

Origin: Teels Marsh, Esmeralda Co., Nevada, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3344, 3250sh, 2948sh, 1070s, 719, 698sh, 663w, 518, 258, 222, 158.
Source: Frost and Dickfos (2007b).
Comments: No independent analytical data are provided for the sample used.

Gazeevite BaCa6(SiO4)2(SO4)2O

Origin: Jabel Harmun, Judean Mts., Palestinian Autonomy, Israel.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 50 mW.
Raman shifts (cm21): 1135, 1099, 997s, 963, 865, 638, 555w, 529w, 464, 409, 315w, 266sh,

213, 160w.
Source: Galuskin et al. (2016a).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ba0.85K0.12Sr0.02)(Ca5.99Na0.02)[(SiO4)1.82(PO4)0.14(AlO4)0.04(TiO4)0.01][(SO4)1.85(PO4)0.15]
O0.84 F0.11. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum.

Gearksutite CaAlF4(OH)∙H2O

Origin: Valedo Ribeira, south of São Paulo and northeast of Paraná, Brazil.
Experimental details: No data.
Raman shifts (cm21): 463, 407, 381, 298w, 226, 209, 169, 147s, 93, 84, 63, 54, 11.
Source: Ronchi (2003).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Geffroyite (Cu,Fe,Ag)9Se8

Origin:Moroshkovoe lake, Southern Sopchinskoe deposit, Monchegorsk ore district, Kola Peninsula,
Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 514.5 nm Ar+ laser radiation or 785 nm diode laser radiation. The nominal laser
radiation power was 50 mW and 500 mW, respectively.

Raman shifts (cm21): 445, 365, 264s, 186, 90w, 76.
Source: Voloshin et al. (2015a).
Comments: The sample was characterized by electron microprobe analysis. The empirical formula of

the sample used is (Cu9.20Ag0.44)(Se4.95S3.05Te0.10).

928 4 Raman Spectra of Minerals



Gehlenite Ca2Al(SiAl)O7

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488.0 nm Ar+ laser radiation. The laser radiation power at the sample was 500 mW. A
90�-scattering geometry was employed.

Raman shifts (cm21): 1005w, 998, 977, 914, 841sh, 796, 655sh, 626s, 528, 459, 425w, 303, 254sh,
240, 218, 180, 150w, 89.

Source: Sharma et al. (1983).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

gehlenite see also Burshtein et al. (1993) and Bouhifd et al. (2002).

Geikielite MgTiO3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 80 mW.

Raman shifts (cm21): 714s, 641, 487sh, 485s, 397, 352s, 327s, 306, 281s, 224.
Source: Okada et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of geikielite see also Reynard and Guyot (1994).

Geminite Cu2+(AsO3OH)∙H2O

Origin: Jáchymov ore district, Krušné Hory (Czech Ore Mts.), western Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. Raman
spectrum was obtained in the spectral region from 200 to 4000 cm�1. The Raman shifts have been
determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3521w, 3448, 3314, 3152sh, 2814, 2438, 2288, 1299w, 885s, 871sh, 853s,
843sh, 813, 743w, 496, 481sh, 451sh, 421, 345, 333, 310, 284w, 244w, 213, 182sh, 178s, 161s,
136.

Source: Sejkora et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is Cu1.00[AsO3(OH)0.96F0.04]�H2O.

Gerhardtite Cu2(NO3)(OH)3

Origin: Great Australia mine, Cloncurry, Queensland, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3556sh, 3546, 3477, 3417, 3391sh, 1438s, 1417s, 1339, 1324s, 1052, 1048s,
1031, 1024, 887w, 805w, 720w, 711, 668w, 503, 474sh, 458, 437sh, 423sh, 410, 336w, 279, 258,
213, 189s, 165s, 149sh, 132w.
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Source: Frost et al. (2004h).
Comments: No independent quantitative analytical data are provided for the sample used.

Gerstleyite Na2(Sb,As)8S13∙2H2O

Origin: Baker mine, Kramer district, Kern Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 449, 308s, 286s, 251s, 224sh, 188, 144s.
Source: Frost et al. (2010c).
Comments: No independent analytical data are provided for the sample used.

Geschieberite K2(UO2)(SO4)2∙2H2O

Origin: Svornost mine, Jáchymov, Western Bohemia, Czech Republic (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm diode laser radiation. The laser radiation
power at the sample was 3 mW.

Raman shifts (cm21): 3595, 3506, 3280w, 1216, 1126, 1008s, 992, 984, 832s, 822sh, 652, 606w,
584w, 471, 454w, 386w, 270, 246, 230, 180, 154, 132sh, 100, 80.

Source: Plášil et al. (2015c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(K1.72Mg0.29Na0.04Ca0.01)(U0.98O2)(S0.98O4)2�2H2O.

Ghiaraite CaCl2∙4H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 3511, 3460sh, 3435, 3400, 3364sh, 3242sh, 1657, 1645sh, 1625, 801, 763,
713, 698, 679, 657, 595, 573, 551, 523s, 435s, 405s, 374, 335, 309, 283, 261w, 253w, 232, 212,
204, 184, 173, 163w, 154, 134, 127, 118, 108.

Source: Uriarte et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Gibbsite Al(OH)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser
radiation power was 200 mW. The Raman shifts have been determined for the maxima of individual
peaks obtained as a result of the spectral curve analysis.
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Raman shifts (cm21): 3617s, 3522s, 3433s, 3364s, 1051, 1018, 979, 924, 892, 844, 816, 788,
751, 710, 617w, 602w, 569, 538s, 506, 444, 428, 412, 396s, 380, 371, 322s, 306, 290, 264, 255,
242.

Source: Ruan et al. (2001).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of gibbsite see also Rodgers (1992, 1993).

Gilalite Cu5Si6O17∙7H2O

Origin: São José da Batalha, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. Raman spectrum
was obtained in the spectral region from 1200 to 4000 cm�1. The Raman shifts have been
determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3706, 3669s, 3631sh, 3609, 3529, 3478, 3423sh, 3386s, 3347, 3313sh, 3259sh,
3207sh, 3154sh, 3075w, 2999, 2946, 2905sh, 2859sh, 1131sh, 1096sh, 1057sh, 1008, 964sh,
931sh, 898sh, 831, 779, 755sh, 675, 621s, 561, 509sh, 484sh, 443s, 400, 338, 314sh, 250sh,
214s, 150s, 123sh.

Source: López et al. (2014b).
Comments: The sample was characterized by semiquantitative electron microprobe analysis.

Gillardite Cu3NiCl2(OH)6

Origin: Artificial (a product of Brass corrosion in NaCl solution).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 80 to 2000 cm�1 using 514 nm
Ar+-Kr+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 941, 900, 566sh, 511s, 458, 418, 371, 145, 127s.
Source: Babouri et al. (2015).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Gillespite BaFe2+Si4O10

Origin: Minade Las Pozos, Tecate, Baja California, Mexico.
Experimental details: Raman scattering measurements have been performed on an oriented sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 170 mW. A 135-
�-scattering geometry was employed.

Raman shifts (cm21): x–z(yy)z(A1g): 1018w, 963, 758, 527w, 450, 401, 346, 306, 246, 100s, 41s; x–z
(yx)z(B2g): 992, 971w, 761w, 588w, 491, 379, 307w, 218w, 123s, 64; x–z(yy)z (B1g): 1092s,
1025w, 856w, 789w, 558, 427s, 380, 306, 144, 123, 65w; x–z(x+z,y)z (Eg): 1145w, 1018sh,
1017w, 927w, 885, 758, 663w, 558w, 524, 522, 427sh, 378, 341, 331w, 307, 283s, 250, 136sh,
102, 90, 70, 39.

Source: McKeown and Bell (1998).
Comments: The sample was characterized by powder X-ray diffraction data.
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Giniite Fe2+Fe3+4(PO4)4(OH)2∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 198 K on arbitrarily

oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3387, 3206, 2918w, 1184sh, 1148sh, 1128, 1040sh, 1023s, 999sh, 948, 766,
627, 618, 584, 487, 461, 446, 396, 346, 327, 234, 202.

Source: Frost et al. (2007n).
Comments: The sample was characterized by X-ray diffraction data and qualitative electron micro-

probe analysis.

Gismondine Ca2(Si4Al4)O16∙8H2O

Origin: Capo di Bove, Italy.
Raman shifts (cm�1): See comment below.
Source: Mozgawa (2001).
Comments: Raman spectrum of presumed gismondine given in the cited paper corresponds to calcite

with minor admixture of a silicate.

Glauberite Na2Ca(SO4)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 1167w, 1154, 1138, 1104, 998s, 647, 642, 6321, 621sh, 616, 484w, 469, 452.
Source: Jentzsch et al. (2012a).
Comments:: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of glauberite see also López et al. (2014f).

Glaucocerinite (Zn1-xAlx)(SO4)x/2(OH)2�nH2O (x < 0.5, n > 3x/2)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3609s, 3520s, 3435sh, 3353s, 3304sh, 1083w, 982, 903, 831w, 712w, 605sh,
559s, 512sh, 437, 384, 319s, 310sh, 243w, 147s, 111.

Source: Frost et al. (2014ah).
Comments: No independent analytical data are provided for the sample used.

Glauconite (K,Na)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+, 632.8 He-Ne, and 780.0 diode laser radiations. The laser radiation
output power of the He-Ne laser was less than 5 mW.
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Raman shifts (cm21): ~1100w, ~955w, 697s, 591s, 451sh, 389, 264s, 194s.
Source: Ospitali et al. (2008).
Comments: The sample was characterized by energy-dispersive X–ray scan data. The Raman shifts

are given for Ar+ laser excitation.

Glaucophane □Na2(Mg3Al2)(Si8O22)(OH)2

Origin: Sesia-Lanzo zone, Western Alps.
Experimental details: Raman scattering measurements have been performed on the oriented samples

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employed. Spectra were collected in the scattering geometries with the laser beam
perpendicular to (100), (010), and (110) faces of several crystals.

Raman shifts (cm�1): 3658, 3645, 3630w, 1108w, 1063sh, 1045, 1016, 1010, 1000, 988s, 960sh,
895, 886, 790, 779, 742, 700, 684s, 670s, 611, 560, 525, 490w, 445, 411, 385s, 338, 310w,
256, 231, 210s, 181s, 160, 120.

Source: Gillet et al. (1989).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. Raman shifts are given as a sum of spectra in all scattering geometries. For the Raman
spectra of glaucophane see also Makreski et al. (2006a), Jovanovski et al. (2009), Apopei and
Buzgar (2010), Andò and Garzanti (2014), and Leissner et al. (2015).

Glaukosphaerite CuNi(CO3)(OH)2

Origin: Carr Boyd Ni mine, Carr Boyd Rocks, Western Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3481sh, 3382w, 3307w, 1639w, 1522sh, 1496, 1460sh, 1367, 1097, 1087sh,
1065, 751w, 719w, 532w, 432, 352, 272, 222, 189, 157.

Source: Frost (2006).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis.

The empirical formula of the sample used is (Cu1.1Ni0.7Mg0.06)(CO)3(OH)2.

Glushinskite Mg(C2O4)∙2H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3391, 3367, 3254, 1720w, 1660, 1636, 1612, 1471s, 1454, 915, 861, 657, 585,
527sh, 521s, 310s, 265s, 237s, 226s, 221.

Source: Frost (2004d).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of glushinskite see also Frost and Weier (2003), Frost et al. (2004a), and Baran (2014).
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Gmelinite-Na Na4(Si8Al4)O24∙11H2O

Origin: Nova Scotia, Canada.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 300 mW.

Raman shifts (cm21): 1642w, 1118, 464s, 330, 181, 137s.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Goethite FeO(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was less than 0.7 mW.
Raman shifts (cm�1): 993w, 685w, 550, 479s, 385s, 299, 243w.
Source: De Faria et al. (1997).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of goethite see also Kustova et al. (1992), Bouchard and Smith (2003), Lepot et al. (2006), Müller
et al. (2010), Nieuwoudt et al. (2011), Roqué-Rosell et al. (2010), Das and Hendry (2011), and
Ciobotă et al. (2012).

Goldfieldite Cu10Te4S13

Origin: Guinaoang, NW Luzon, Philippines.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 10 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 354s, 324sh.
Source: Mernagh and Trudu (1993).
Comments: The sample was characterized by electron microprobe analyses.

Goldmanite Ca3V
3+

2(SiO4)3

Origin: Pyrrhotite Gorge, Khibiny massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 80 to 4000 cm�1 using 633 nm He-Ne laser radiation. The
nominal laser radiation power was 2 or 20 mW.

Raman shifts (cm21): 989, 932, 880s, 817s, 557s, 527, 495, 374s, 268, 241, 166.
Source: Voloshin et al. (2014).
Comments: The sample was characterized by electron microprobe analysis.

Gonnardite (Na,Ca)2(Si,Al)5O10∙3H2O

Origin: Blackhead Quarry, Dunedin, New Zealand.
Experimental details: Raman scattering measurements have been performed on an oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 120 mW.
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A 180�-scattering geometry was employed. Crystal fibers were oriented E–W in a horizontal plane,
and perpendicular to the laser beam.

Raman shifts (cm21): 3587s, 3455s, 3253s, 1615, 1434, 1328, 1293, 1043w, 1003, 916, 890w,
839, 759w, 742w, 595w, 530s, 496, 441, 362w, 333, 314w, 266w, 232w, 159s.

Source: Graham et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The compositional ranges of the sample used correspond to the formula Na4.78–6.27-
Ca1.31–2.12(Al8.41–8.79Si11.03–11.84O40). For the Raman spectrum of gonnardite see also Wopenka
et al. (1998).

Goosecreekite Ca(Si6Al2)O16∙5H2O

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 558w, 550w, 537, 513sh, 497s, 475sh, 450, 419, 414sh, 396sh, 376w.
Source: Lewis et al. (2006).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Gorceixite BaAl3(PO4)(PO3OH)(OH)6

Origin: Ilmeny (Il’menskie) Mts., South Urals, Russia.
Experimental details: No data.
Raman shifts (cm21): 1086, 1019, 979s, 906, 816, 601, 496, 456, 341, 243s, 161.
Source: Dubinina and Valizer (2011).
Comments: The sample was characterized by electron microprobe analyses. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum

Görgeyite K2Ca5(SO4)6∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 200 to 4000 cm�1 using 633 nm He-Ne laser radiation. The laser
radiation power is not indicated.

Raman shifts (cm21): 3579, 3525s, 1215, 1187, 1175, 1164, 1161, 1137, 1115, 1108, 1085, 1078,
1067, 1013s, 1005s, 711, 661, 654, 631, 602, 595, 480, 457, 440, 433, 281.

Source: Kloprogge et al. (2004a).
Comments: The sample was characterized by powder X-ray diffraction and qualitative electron

microprobe analysis.

Gormanite Fe2+3Al4(PO4)4(OH)6∙2H2O

Origin: Yukon, Canada.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3615w, 3419w, 3404w, 3296w, 2893w, 1478w, 1466w, 1414w, 1382,
1365w,1342, 1291w, 1247, 1150sh, 1123, 1095s, 1053sh, 996, 969w, 899, 505, 459, 436,
405, 380sh, 364sh, 349, 330w, 314, 195sh, 172w, 151sh.

Source: Frost et al. (2003c).
Comments: No independent analytical data are provided for the sample used.

Goryainovite Ca2(PO4)Cl

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 80 to 1400 cm�1 using 457.9 nm
Ar+ laser radiation. The laser radiation power at the sample was 250 mW. A 90�-scattering
geometry was employed.

Raman shifts (cm21): 1120, 1052, 950s, 606, 388.
Source: Capobianco et al. (1992).
Comments: No independent analytical data are provided for the sample used. Raman shifts are given

for a sample doped with MnO4
3� (with Mn5+ concentration of 0.047 wt%). For the Raman

spectrum of goryainovite see also Ivanyuk et al. (2017).

Goslarite Zn(SO4)∙7H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1492w, 1192, 1084, 1024s, 913w, 671w, 626, 511, 423, 281, 223.
Source: Buzgar et al. (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of goslarite see also Coleyshaw et al. (1994) and Buzatu et al. (2012).

Götzenite NaCa6Ti(Si2O7)2OF3

Origin: Pian di Celle volcano, Umbria, Italy.
Experimental details: No data.
Raman shifts (cm21): 1031, 942, 902, 822s, 774, 664s, 587s, 560sh, 416, 371, 321, 278, 252, 218,

176sh.
Source: Sharygin et al. (1996b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum.

Goudeyite Cu6Al(AsO4)3(OH)6∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.
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Raman shifts (cm21): 3480s, 3393sh, 3361s, 3046, 2921, 2863, 1695w, 1605w, 1434, 13280, 1001,
938, 930, 894sh, 873s, 835s, 814sh, 800, 740, 700, 560, 540, 516sh, 495s, 486sh, 470, 449,
435, 403, 395, 350, 346, 327, 293, 269, 257, 240, 226, 201, 196.

Source: Frost et al. (2006n).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative EDX

analysis.

Gowerite Ca[B5O8(OH)][B(OH)3]∙3H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 300 mW.

Raman shifts (cm21): 952w, 895s, 862s, 813w, 764s, 482, 391w.
Source: Jun et al. (1995).
Comments: The sample was characterized by powder X-ray diffraction data.

Goyazite SrAl3(PO4)(PO3OH)(OH)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was ~50 mW.
Raman shifts (cm21): 3360w, 3150w, 3066, 2910w, 2830w, 1698, 1300w, 1213, 1183w, 1127w,

1102, 1068w, 1046w, 1032s, 986s, 930, ~895sh, 833w, 757, 710, 653, 609, 579, 553, 511, 464,
421, 374s, 321w, ~280sh, 256s, 230sh, 186s.

Source: Breitinger et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of goyazite see also López et al. (2013c).

Graemite Cu2+(Te4+O3)∙H2O

Origin: Cole Shaft, Arizona, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3450sh, 3268, 2937, 793s, 768sh, 708, 676sh, 648sh, 527sh, 508sh, 507s,
471sh, 438s, 411sh, 380sh, 358sh, 314sh, 291, 257, 184, 146s.

Source: Frost and Keeffe (2009b).
Comments: No independent analytical data are provided for the sample used.

Graeserite Fe3+4Ti3As
3+O13(OH)

Origin: Monte Leone nappe, Binntal region, Western Alps, Switzerland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using Ar+ laser radiation. The nominal laser radiation power was 25 mW.
Raman shifts (cm21): 1451.8, 743.3, 591.5, 421.6, 297.5, 163.4.
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Source: Krzemnicki and Reusser (1998).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is (Fe3+2.91Fe
2+

0.38Ti0.54Pb0.15)Ti3(As
3+

0.94

Sb3+0.07)O13(OH).

Graftonite (Fe2+,Mn2+,Ca)3(PO4)2

Origin: Sowie Góry Mts, SW Poland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal in the spectral region from 250 to 1300 cm�1 using 514.5 nm Ar+ laser radiation. The
laser radiation power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 1111w, 1018, 966s, 651, 593, 480w, 417, 317w, 285.
Source: Łodziński and Sitarz (2009).
Comments: The sample was characterized by electron microprobe data. For the Raman spectrum of

graftonite see also Schneider et al. (2013).

Gramaccioliite-(Y) (Pb,Sr)(Y,Mn)Fe3+2(Ti,Fe
3+)18O38

Origin: Sambuco, Stura valley, Cuneo province, Italy.
Experimental details: No data.
Raman shifts (cm21): 812, ~710w, 638, 430, 360w, 330w, 293, ~240w.
Source: Bittarello et al. (2014).
Comments: No independent analytical data are provided for the sample used.

Grandaite Sr2Al(AsO4)2(OH)

Origin: Valletta mine, Maira Valley, Piedmont, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 100 to 2500 cm�1 using 632.8 nm He-Ne laser radiation. The
laser radiation power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 899, 857, 833sh, 790, 547, 526, 512, 499, 425, 418, 386sh, 382, 347, 308, 213,
162, 120.

Source: Cámara et al. (2014a).
Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and by

electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample
used is (Sr1.41Ca0.64Ba0.05Pb0.01)(Al0.68Fe

3+
0.14Mn0.12Mg0.13)[(As0.96V0.01)Σ0.97O4]2(OH).

Grandidierite MgAl3O2(BO3)(SiO4)

Origin: Kolonne area, Sri Lanka.
Experimental details: No data.
Raman shifts (cm21): 1047s, 993s, 982s, 952s, 868s, 717s, 687, 659s, 615w, 551, 492s, 427, 362,

343, 269, 244, 228.
Source: Schmetzer et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
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Graphite C

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal and on a microcrystalline sample using 488.0 and 514.5 nm Ar+ laser radiations. The laser
radiation power is not indicated. A 90�-scattering geometry was employed.

Raman shifts (cm21): 1575s, 1355.
Source: Tuinstra and Koenig (1970).
Comments: No independent analytical data are provided for the sample used. Different orientations of

the graphite single crystal with respect to the incident beam were used, but no changes in the
spectrum were detected, and the only Raman line observed occurs at 1575 cm21. Polycrystalline
graphite exhibits another band at 1355 cm21, which is attributed to a particle size effect. For the
Raman spectra of graphite see also Mishra and Bernhardt (2009), Kaliwoda et al. (2011), and
Ogawara and Akai (2014).

Gratonite Pb9As4S15

Origin: Binntal, Switzerland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 50 to 600 cm�1 using 632.8 nm
He-Ne laser radiation. The laser radiation power is not indicated. A 180�-scattering geometry was
employed. The Raman shifts have been determined for the maxima of individual peaks obtained as
a result of the spectral curve analysis.

Raman shifts (cm21): 370sh, 357s, 333, 312, 237, 186s, 169, 155s, 89sh, 75s.
Source: Kharbish (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is (Pb8.94Zn0.04Cu0.02)(As3.99Sb0.01)S15.

Greenockite CdS

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The nominal laser radiation
power was in the range from 0.6 to 1 mW.

Raman shifts (cm21): 598, 560, 425w, 366sh, 345, 305, 252, 232, 210s.
Source: Rosi et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectra of greenockite see also Wang et al. (1993) and Chi et al. (2011).

Gregoryite Na2(CO3)

Origin: Oldoinyo Lengai volcano, northern Tanzania (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-Gd laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1077–1078s, 1003–1005w, 952–954w, 704–710w, 630–635w.
Source: Golovin et al. (2017).
Comments: For the Raman spectrum of gregoryite see also Zaitsev et al. (2009).
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Greigite Fe2+Fe3+2S4

Origin: Artificial (from an archaeological artifact).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 0.1 mW.
Raman shifts (cm21): 365s, 350s, 250w, 188w, 138w.
Source: Rémazeilles et al. (2010).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis.

For the Raman spectra of greigite see also Bourdoiseau et al. (2011), Li et al. (2014), and Eder
et al. (2014).

Griceite LiF

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 6 mW.
Raman shifts (cm21): 191sh, 168s, 142s, 111w, 92.
Source: Alharbi et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Grimaldiite CrO(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 1634sh, 1593s, 1537sh, 1504sh, 1179sh, 1153, 981, 889sh, 823s, 630s, 558sh,
452.

Source: Yang et al. (2011c).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of grimaldiite see also Maslar et al. (2001).

Grimaldiite CrO(OH).

Origin: Artificial (a product of Cr corrosion).
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 647.1 nm Kr+ laser radiation. The laser radiation power at the sample was less than
64 mW. A nearly 180�-scattering geometry was employed.

Raman shifts (cm21): 665sh, 535s, 475, 345w.
Source: Maslar et al. (2001).
Comments: The sample was characterized by X-ray diffraction data and EDS analysis. For the Raman

spectrum of grimaldiite see also Yang et al. (2011c).
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Grimselite K3Na(UO2)(CO3)3∙H2O

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1063, 812s, 727, 723sh, 692, 686.
Source: Biswas et al. (2016).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Grossite CaAl4O7

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The maximum output
laser radiation power was 100 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 942, 909s, 837, 807, 793, 756, 714, 686, 660, 630, 568, 457, 412s, 398, 356,
331, 322, 282, 268, 252, 220, 210, 203, 185, 134.

Source: Hofmeister et al. (2004).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.

Grossular Ca3Al2(SiO4)3

Origin: Mengyin, Shandong Province or Gejiu, Yunnan Province, China.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal in the spectral region from 50 to 1200 cm�1 using 488 nm Ar+ laser radiation. The
nominal laser radiation power was in the range from 100 to 150 mW.

Raman shifts (cm21): 1000w, 876s, 821, 777w, 623w, 540, 502w, 405w, 364s, 268, 232, 194w,
172, 135, 108s.

Source: Mingsheng et al. (1994).
Comments: The sample was characterized by electron microprobe data. For the Raman spectra of

grossular see also Kolesov and Geiger (1998), Bersani et al. (2009), Makreski et al. (2011), and
Andò and Garzanti (2014).

Groutite Mn3+O(OH)

Origin: Cuyana Range, Minnesota, USA.
Experimental details: Raman scattering measurements have been performed on a powdered and

pelletised sample in the spectral region from 10 to 1000 cm�1 using 514.5 nm Ar+ laser radiation.
The nominal laser radiation power was 10 mW. A ~180�-scattering geometry was employed.

Raman shifts (cm21): 648w, 615, 552s, 528s, 384s, 352, 278w, 253, 213, 142.
Source: Julien et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of groutite see also Bernard et al. (1993a).
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Grumiplucite HgBi2S4

Origin: Rudňany deposit, Slovakia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 30 to 3500 cm�1 using 532 nm diode laser radiation. The
nominal laser radiation power was 0.5 mW.

Raman shifts (cm21): 310, 275s, 258, 221s, 162, 144w, 127w, 106w, 92s, 82.
Source: Števko et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is Hg0.99Bi1.94S4.08. The Raman shifts were
partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of grumiplucite see also Lecker (2013).

Grunerite □Fe2+2Fe
2+

5Si8O22(OH)2

Origin: Schneeberg, Tirol, Austria.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 210 to 3400 cm�1 using 532 nm
Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm21): 1098, 1027, 999w, 971, 909w, 785w, 761, 747sh, 665s, 566w, 533, 415,
363, 315w, 289, 242w.

Source: Apopei and Buzgar (2010).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of grunerite see also Apopei et al. (2011) and Leissner et al. (2015).

Grunerite □Fe2+2Fe
2+

5Si8O22(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an oriented crystal in

the spectral regions from 2600 to 3800 cm�1 using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated. Polarized spectra were collected in the parallel-polarized scattering
geometries (the polarization of incident light Ei was parallel to the polarization of scattered light
Es) with the crystal-elongation direction parrallel to Ei||Es and crystal-elongation direction perpen-
dicular to Ei||E s.

Raman shifts (cm21): 3651, 3635, 3617.
Source: Leissner et al. (2015).
Commebts: The sample was characterized by electron microprobe data. The Raman shifts are given

for the scattering geometry with the crystal-elongation direction pendicular to Ei||Es, in which the
Raman intensities are most strong. The empirical formula of the sample used is (□0.97Na0.01Ca0.02)
(Fe0.89Mn0.10Ca0.01)2(Fe0.61Mg0.39)5Si8.00OH2.00. For the Raman spectra of grunerite see also
Apopei and Buzgar (2010) and Apopei et al. (2011).

Guanacoite Cu2Mg3(OH)4(AsO4)2∙4H2O

Origin: El Guanaco Mine, near Taltal, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm laser radiation. The laser radiation power is not indicated.

942 4 Raman Spectra of Minerals



Raman shifts (cm21): 3561s, 3510w, ~2996sh, 1619w, ~1069w, ~996w, 865s, 837s, 738, ~740sh,
~685sh, 490, 439, 411sh, 390s, ~367sh, 352sh, 315s, ~295sh, 271, 221, 212, 188, 171, 149, 131.

Source: Witzke et al. (2006).
Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and

electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample
used is Cu2.32Mg2.64(OH)4.13(AsO4)1.93�4.15H2O.

Guanine C5H3(NH2)N4O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 40 mW.
A 180�-scattering geometry was employed.

Raman shifts (cm21): 1675, 1602w, 1551, 1479sh, 1468, 1421, 1390, 1361, 1265, 1234, 1186,
1159w, 937, 879w, 848, 775w, 710w, 693w, 649s, 603w, 562, 547, 495, 397, 357w, 340.

Source: Giese and McNaughton (2002).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of guanine see also Mathlouthi et al. (1986).

Gudmundite FeSbS

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was about
21 mW. A 180�-scattering geometry was employed. The Raman shifts have been determined for
the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 462w, 362, 352s, 316sh, 305s, 288s, 279sh, 253w, 241, 230sh, 217sh,
210, 201sh, 161sh, 152s, 145sh, 136sh.

Source: Kharbish and Andráš (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The empirical formula of the sample used is Fe1.01As0.91S1.08.

Guilleminite Ba(UO2)3(Se
4+O3)2O2∙3H2O

Origin: Musonoi mine, Kolwezi, Katanga (Shaba), Democratic Republic of Congo.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals in the spectral region from 100 to 1700 cm�1 using a 633 nm He-Ne laser. The laser
radiation power is not indicated. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1585w, 1514w, 831sh, 747s, 675sh, 544sh, 478, 419sh, 345sh, 245, 150.
Source: Frost et al. (2009c).
Comments: No independent analytical data are provided for the sample used.

Gunningite Zn(SO4)∙H2O

Origin: Coranda-Hondolopen pit, Certej Gold-Silver deposit, Certej, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 7.37 mW.
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Raman shifts (cm21): 3230w, 1492w, 1192, 1087, 1024s, 884w, 665w, 626, 503, 423, 307sh,
277w, 219w.

Source: Apopei et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of gunningite see also Buzatu et al. (2016).

Gurimite Ba3(VO4)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample.

The laser radiation power and wavelength are not indicated. A 180�-scattering geometry was
employed.

Raman shifts (cm21): 835s, 777, 414w, 378w, 326s, 169w, 132w, 104w.
Source: Azdouz et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is

solved. For the Raman spectra of gurimite see also Baran et al. (1972), Grzechnik and McMillan
(1997), and Galuskina et al. (2016b).

Gwihabaite (NH4)(NO3)

Origin: Synthetic
Experimental details: No data.
Raman shifts (cm21): 1458w, 1410w, 1283w, 1040s, 711, 190.
Source: Morillas et al. (2016).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of gwihabaite see also Martínez-Arkarazo et al. (2007).

Gypsum Ca(SO4)∙2H2O

Origin: Coranda-Hondol open pit, Certej Au-Agdeposit, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 14.3 mW.

Raman shifts (cm21): 3398, 1136, 1106sh, 1010s, 671w, 623w, 576w, 495w, 416, 312w, 215w.
Source: Apopei et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

gypsum see also Anbalagan et al. (2009), Buzgar et al. (2009), Jehlička et al. (2009b), White (2009),
Ciobotă et al. (2012), Capitani et al. (2014), and Wang and Zhou (2014).

Gyrolite NaCa16(Si23Al)O60(OH)8∙14H2O

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1057, 1035, 774w, 703w, 628, 598s, 572s, 456, 400, 351, 280s, 207, 169w,

145.
Source: De Ferri et al. (2012).
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Comments: No independent analytical data are provided for the sample used. The Raman shifts were
determined by us based on spectral curve analysis of the published spectrum.

Hafnon Hf(SiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1021s, 985s, 935, 637w, 548w, 497w, 448, 402, 350, 268w, 213, 166w,

155, 147w.
Source: Grüneberger et al. (2016).
Comments: The sample was characterized by electron microprobe analysis. The empirical formula of

the sample used is Hf0.99Zr0.01SiO4. For the Raman spectra of hafnon see also Nicola and Rutt
(1974) and Manoun et al. (2006).

Haidingerite Ca(AsO3OH)∙H2O

Origin: Jáchymov, Bohemia, Krušné Hory (Czech Ore Mts.), Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3574w, 3455sh, 3412, 2842w, 886sh, 855s, 838sh, 823sh, 745, 739sh, 660w,
433sh, 420, 376sh, 369, 338sh, 323, 299sh, 268w, 220, 180, 145, 123, 115sh.

Source: Frost et al. (2010h).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Haiweeite Ca(UO2)2(Si5O12)(OH)2∙6H2O

Origin: Teófilo Otoni, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3606sh, 3498, 3375sh, 3273sh, 2923, 2875, 2851, 1170, 1115, 1108, 1087,
1019, 1015sh, 936, 919sh, 887w, 808s, 799s, 756w, 724w, 589, 473, 418w, 375, 317sh, 307, 283w,
264, 260, 236sh, 192s, 148sh, 108.

Source: Frost et al. (2006d).
Comments: No independent analytical data are provided for the sample used.

Hakite Cu6[Cu4Hg2]Sb4Se13

Origin: Příbram uranium and base-metal district, Central Bohemia, Czech Republic.
Experimental details: Micro-Raman scattering measurements have been performed on a polished

section using 532 nm diode laser radiation. The nominal laser radiation power was 0.5 mW.
Raman shifts (cm21): 261, 228s, 211sh, 185, 166, 82, 69.
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Source: Škácha et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Halite NaCl

Origin: Kłodawa salt mine, Central Poland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 335.
Source: Wesełucha-Birczyńska et al. (2008).
Comments: No independent analytical data are provided for the sample used. Possibly, the band at

335 cm�1 is a combination band of acoustical and optical modes of NaCl.

Halloysite-10Å Al2Si2O5(OH)4∙2H2O

Origin: A Neogene cryptokarst, southern Belgium.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3703, 3688, 3642, 3625s, 3598, 3556, 944sh, 910, 826sh, 794, 748,
710, 548sh, 503sh, 465s, 430s, 359sh, 332, 275, 245.

Source: Kloprogge and Frost (1999e).
Comments: The sample was characterized by powder X-ray diffraction data. Raman shifts are given

for an unspecified scattering geometry.

Halotrichite Fe2+Al2(SO4)4∙22H2O

Origin: Corral Hollow, California, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 100 to 4000 cm�1 using 633 nm He-Ne laser radiation. The laser
radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3548sh, 3426w, 3270sh, 1147, 1086, 1031w, 985s, 608, 467, 444, 365w,
276sh, 247, 215sh.

Source: Locke et al. (2007).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis.

For the Raman spectrum of halotrichite see also Buzatu et al. (2016).

Hambergite Be2(BO3)(OH)

Origin: Ehrenfriedersdorf, complex, Erzgebirge (Ore Mts.), Germany.
Experimental details: Raman scattering measurements have been performed on a microscopic

inclusions in beryl using 488.0 and 514.5 nm Ar+ laser radiations. The laser radiation power at
the sample was about 10 mW.

Raman shifts (cm21): 3469, 3403s, 988s, 270, 154s, 147, 123.
Source: Thomas et al. (2011b).
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Comments:No independent analytical data are provided for the sample used. For the Raman spectrum
of hambergite see also Thomas and Davidson (2010).

Hanjiangite Ba2Ca(V
3+Al)(AlSi3O10)(OH)2F(CO3)2

Origin: Shiti Ba deposit, Dabashan region, China (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single-crystal thin chip using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 3581s, 3540s, 2945, 2250, 1092s, 855w, 699, 405, 265, 193.
Source: Liu et al. (2012).
Comments: The sample was characterized by powder and single crystal X-ray diffraction data and by

electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample
used is (Ba1.98Na0.06K0.01)(Ca0.76Mg0.12Y0.06Sr0.03La0.01Nd0.01)(V1.15Al0.75Cr0.20Ti0.12)[(Si2.84
Al1.16)Σ4.00O10][(OH)1.25O0.77](F0.82Cl0.01)(CO3)2.05.

Hanksite KNa22(SO4)9(CO3)2Cl

Origin: Searles Lake, California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an oriented sample

using 488.0 nm Ar+ laser radiation. The laser radiation power is not indicated. Polarized spectra
were collected in the scattering geometries with the laser radiation polarized approximately parallel
to the c axis, and approximately parallel to the a axis.

Raman shifts (cm21): 1190w, 1166w, 1156, 1142, 1135, 1124, 1117, 1096w, 1083s, 993s, 979sh,
712w, 634, 625, 620, 474, 470, 459.

Source: Palaich et al. (2013).
Comments: The Raman shifts were partly determined by us based on spectral curve analysis of the

published spectrum. The sample was characterized by powder X-ray diffraction data. For the
Raman spectrum of hanksite see also Morillas et al. (2016).

Hannayite (NH4)2Mg3(PO3OH)4∙8H2O

Origin: Lava Cave, near Skipton, Victoria, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3496, 3460, 3384, 3314, 3219, 3185, 3125, 3090sh, 2983sh, 2872, 2649, 2466,
2228, 1947, 1756, 1708, 1661w, 1457w, 1429w, 1227w, 1172w, 1119w, 1070, 1011, 974s, 971s,
882, 802w, 757w, 596w, 556, 522, 513, 436, 415sh,379, 375, 356, 269, 250, 247, 205, 193w.

Source: Frost et al. (2005j).
Comments: No independent analytical data are provided for the sample used.

Hannebachite Ca(SO3)∙0.5H2O

Origin: Hannebacher Ley Volcano, Eifel, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
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Raman shifts (cm21): 1092–1094, 1005s, 969, 655w, 520, 492, 444, 174.
Source: Frost and Keeffe (2009d).
Comments: No independent analytical data are provided for the sample used.

Hansesmarkite Ca2Mn2Nb6O19�20H2O

Origin: Tvedalen, Larvik Plutonic Complex, Vestfold, southern Norway (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 913s, 865, 841sh, 734w, 520w, 473sh, 302, 217.
Source: Friis et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ca1.93Na0.02K0.01)(Mn1.79Fe0.11)Nb6.00O18.84�20H2O.

Hardystonite Ca2ZnSi2O7

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. Polarized
spectrum was collected in the ~y(zz)~y scattering geometry.

Raman shifts (cm21): 1060, 1020w, 906s, 663s, 614s, 550w, 480, 445, 265, 240sh, 220, 145w, 115w,
100, 60w.

Source: Kaminskii et al. (2011).
Comments: No independent analytical data are provided for the sample used.

Harmotome Ba2(Si12Al4)O32∙12H2O

Origin: Mannbühl (Giro) quarry, Dannenfels, Kirchheimbolanden, Rhineland-Palatinate, Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 He-Ne laser radiation. The laser radiation power is not indicated. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3615sh, 3526w, (3418w), 3287sh, 1707w, 1648w, 1102, 1020sh, 768w, 728w,
699w, 561w, 546sh, 534w, (515), 491s, 470sh, 428, 358w, 350sh, 335, 319, 289, 199, 183sh,
169sh.

Source: Frost et al. (2015q).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectrum of harmotome see also Mozgawa (2001).

Harmunite CaFe2O4

Origin: Jabel Harmun, West Bank, Palestinian Autonomy, Israel (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm solid-state laser radiation. The laser radiation power at the sample was
44 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as
a result of the spectral curve analysis.
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Raman shifts (cm21): 1228, 648s, 585s, 519, 453sh, 4354, 379sh, 364s, 298, 270, 206, 182, 161, 117.
Source: Galuskina et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is Ca1.013
(Fe3+1.957Al0.015Cr0.011Ti0.004Mg0.003)O4.

Harmunite Mn4+-bearing Ca1–x(Fe
3+,Mn4+)2O4

Origin: Bellerberg volcano, Eifel, Rhineland-Palatinate, Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm solid-state laser radiation. The laser radiation power at the sample was
44 mW.

Raman shifts (cm21): 1225, 617sh, 590s, 526, 468, 391w, 327w, 289w, 205w, 161, 115w.
Source: Galuskin et al. (2016b).
Comments: The sample was characterized electron microprobe data. The empirical formula of the

sample used is Ca0.862(Fe
3+

1.719Mn4+0.265Ti
4+

0.012Mg0.008)O4.

Hartite C20H34

Origin: Castelnuovo di Valdarno, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 100 to 3500 cm�1 using 1064 nm
Nd-YAG laser radiation. The nominal laser radiation power was 350 mW.

Raman shifts (cm21): 3000, 2978, 2962, 2942s, 2921s, 2907sh, 2886sh, 2866, 2851, 2768w, 2733w,
1480, 1468sh, 1440s, 1387, 1370w, 1356, 1341, 1320w, 1310, 1287, 1264, 1249w, 1230, 1217sh,
1208s, 1180, 1154sh, 1144, 1114(?), 1096s, 1085w, 1075w, 1063, 1041, 1027w, 1013, 996, 976,
963sh, 946, 936, 926(?), 916w, 892, 879, 845, 814, 792s, 770, 745w, 729s, 693, 639, 598w,
558, 543, 526, 489, 452, 403, 389w, 345, 326w, 305.

Source: Jehlička and Edwards (2008).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of hartite see also Jehlička et al. (2005).

Hashemite Ba(CrO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

prepared as a pellet using 488 nm Ar+ laser radiation. The nominal laser radiation power was
200 mW.

Raman shifts (cm21): 907, 900, 885w, 873, 864s, 429w, 412w, 404w, 396w, 361, 351, 135w, 112w,
66w.

Source: Scheuermann and Schutte (1973a).
Comments: The sample was characterized by powder X-ray diffraction data.

Hatchetine A paraffin wax related to evenkite.

Origin: Zastávka, near Brno, Bohemian Massif, Czech republic.
Experimental details: Raman scattering measurements have been performed on a compacted powder

of amorphous sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was
10 mW.
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Raman shifts (cm21): 2883s, 2847, 2725, 1463s, 1440s, 1418, 1389w, 1371w, 1347, 1295s, 1171.
Source: Jehlička et al. (2007a).
Comments: No independent analytical data are provided for the sample used.

Hatrurite Ca3SiO5

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 363.8 nm laser radiation. The nominal laser radiation power was 150 mW.
Raman shifts (cm21): 953sh, 929sh, 914, 893, 880, 847s, 812, 741, 540, 521sh, 392, 352, 326, 317sh,

267, 240, 224, 180, 126, 103, 80, 56.
Source: Fujimori et al. (2005).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Hauerite MnS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal using

514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A 180�-scattering geometry
was employed. Raman spectrum was collected in the scattering geometry with the laser radiation
direction normal to the (111) plane of the crystal.

Raman shifts (cm21): 743w, 655, 486s, 246, 223.
Source: Verble and Humphrey (1974).
Comments: No independent analytical data are provided for the sample used.

Hausmannite Mn2+Mn3+2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

prepared as a pellet using 514.5 nm Ar+ and 647.1 nm Kr+ laser radiations. The laser radiation
power is not indicated.

Raman shifts (cm21): 668s, 479w, 371, 328, 298.
Source: Lutz et al. (1991).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of hausmannite see also Bernard et al. (1993a), Julien et al. (2004), and Mironova-Ulmane
et al. (2009).

Hausmannite Mn2+Mn3+2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar+

laser radiation. The nominal laser radiation power was 10 mW. A nearly 180�-scattering geometry
was employed. Raman spectrum was obtained in the spectral region from 10 to 1200 cm�1.

Raman shifts (cm21): 653s, 579w, 485w, 357, 310.
Source: Julien et al. (2004).
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Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of
hausmannite see also Lutz et al. (1991), Bernard et al. (1993a), and Mironova-Ulmane et al. (2009).

Haüyne Na3Ca(Si3Al3)O12(SO)4

Origin: Sacrofano, Latium, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 300 mW.
Raman shifts (cm21): 1152, 1090, 1027sh, 998sh, 986s, 977s, 643, 610, 545w, 433s.
Source: Ballirano (2012).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is
(Na4.4K1.1Ca2.1)[Si6Al6O24](SO4)1.6(S3)0.3(CO2)0.1. The Raman shifts were partly determined by us
based on spectral curve analysis of the published spectrum. For the Raman spectrum of haüyne see
also Caggiani et al. (2014).

Hawleyite CdS

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was in the range 0.3–5 mW.
Raman shifts (cm21): 902, 633sh, 598, 295, 254sh.
Source: Rosi et al. (2016).
Comments: The Raman shifts were determined by us based on spectral curve analysis of the published

spectrum. For the Raman spectrum of hawleyite see also Wang et al. (1993).

Hawthorneite BaMgTi3Cr4Fe
2+

2Fe
3+

2O19

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632 nm He-Ne laser radiation. The nominal laser
radiation power was in the range 4–8 mW.

Raman shifts (cm21): 680s, 516, 459sh, 352, 285w.
Source: Konzett et al. (2005).
Comments: The sample was characterized by electron microprobe analysis.

Haynesite (UO2)3(Se
4+O3)2(OH)2∙5H2O

Origin: Repete Mine, Blanding, San Juan Co., Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3476w, 862w, 812s, 800s, 741, 582w, 472, 437sh, 419s, 367, 342, 278, 257sh,
219, 157sh, 142.

Source: Frost et al. (2006q).
Comments: No independent analytical data are provided for the sample used.
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Hazenite KNaMg2(PO4)2∙14H2O

Origin: Mono Lake, California, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3900–2500, 2380, 1620w, 1100–988sh, 932s, 685w, 559, 430, 290, 234.
Source: Yang et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The empirical formula of the sample used is
K0.97(Na0.96Ca0.02)Mg2.07[(P0.98S0.02)O4]2�13.90H2O. The Raman shifts were partly determined
by us based on spectral curve analysis of the published spectrum.

Heazlewoodite Ni3S2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a sample prepared as

a pellet using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 40 mW.
Raman shifts (cm21): 351s, 324w, 305, 223, 201, 190.
Source: Cheng and Liu (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of heazlewoodite see also Lanteigne et al. (2012).

Hectorite Na0.3(Mg,Li)3Si4O10(F,OH)2∙nH2O

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1082, 944w, 892, 783, 683s, 560, 516w, 461, 379sh, 333, 282, 206sh, 184s.
Source: Wang et al. (1998a).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Hedenbergite CaFe2+Si2O6

Origin: Sasa, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1030sh, 1010s, 904w, 850w, 655s, 549, 523, 494w, 370, 330, 300, 230w,

182, 145, 121, 115.
Source: Jovanovski et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum. For the Raman spectra of hedenbergite see also Huang et al. (2000), Buzatu
and Buzgar (2010), and Andò and Garzanti (2014).

Hedenbergite CaFe2+Si2O6

Origin: Nordmarken, Sweden.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal. Experimental details are not described.
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Raman shifts (cm21): 1012s, 894w, 852, 663s, 553w, 524, 499sh, 381, 346w, 315, 231w.
Source: Buzatu and Buzgar (2010).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of hedenbergite see also Huang et al. (2000), Jovanovski et al. (2009), and Andò and
Garzanti (2014).

Hedyphane Ca2Pb3(AsO4)3Cl

Origin: Puttapa mine, Beltana, Flinders Ranges, South Australia, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3659sh, 3563sh, 3458sh, 3409, 3389, 3352sh, 3304sh, 3258, 3235, 848sh,
834sh, 819s, 811sh, 787s, 770, 452, 432sh, 394, 372sh, 349, 334sh, 319s, 201sh, 192sh, 177sh,
162, 151sh, 141sh.

Source: Frost et al. (2007c).
Comments: No independent analytical data are provided for the sample used. Raman shifts in the OH

stretching region indicate that there is isomorphic replacement of Cl for OH.

Heisenbergite (UO2)(OH)2∙H2O

Origin: Menzenschwand, Schwarzwald (Black Forest), Germany (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 150 to 4000 cm�1 using 638 nm laser radiation. The laser
radiation power is not indicated. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1005w, 923w, 829s, 799sh, 742s, 538, 438, 389sh, 338w, 247w, 190w.
Source: Walenta and Theye (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is U1.044Pb0.020Ba0.004Ca0.008H3.672O5.

Heliophyllite Pb6As2O7Cl4

Origin: Karrantza valley, Basque Co., Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ and 785 nm diode laser radiations. The laser radiation power at the
sample was 20 mW with Ar+ excitation, and the nominal laser radiation power was 150 mW with
diode excitation.

Raman shifts (cm21): 808, 746, 718, 160s.
Source: Goienaga et al. (2011).
Comments: No independent analytical data are provided for the sample used.

Hellyerite Ni(CO3)∙6H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.
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Raman shifts (cm21): 1397, 1092s, 721w, 409w, 293, 257, 224sh, 157s.
Source: Bette et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is

solved.

Hematite Fe2O3

Origin: No data.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was below 0.7 mW.
Raman shifts (cm21): 1320, 612, 497w, 411s, 299sh, 293, 246w, 227.
Source: De Faria et al. (1997).
Comments: The sample was characterized by X-ray diffraction data. For the Raman spectra of

hematite see also Bouchard and Smith (2003), Lepot et al. (2006), Müller et al. (2010), Sagatowska
(2010), Das and Hendry (2011), Hosterman (2011), Nieuwoudt et al. (2011), Ciobotă et al. (2012),
Andò and Garzanti (2014), and Apopei et al. (2014a).

Hematite Fe2O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was below 0.4 mW.
Raman shifts (cm21): 1300, 1046, 824w, 657, 610, 494, 408, 292s, 243w, 223s.
Source: Müller et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

hematite see also De Faria et al. (1997), Bouchard and Smith (2003), Lepot et al. (2006),
Sagatowska (2010), Das and Hendry (2011), Hosterman (2011), Nieuwoudt et al. (2011), Ciobotă
et al. (2012), Andò and Garzanti (2014), and Apopei et al. (2014a).

Hemihedrite ZnPb10(CrO4)6(SiO4)2F2

Origin: Florence Pb-Ag mine, Pinal Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3389w, 858s, 841s, 825, 784, 370sh, 340.
Source: Lafuente et al. (2016).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
Pb10.21(Cu0.65Zn0.34)(Cr5.93P0.07S0.04)(Si1.83As0.10)O34H1.62. The Raman shifts were partly deter-
mined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of
hemihedrite see also Frost (2004c).

Hemimorphite Zn4(Si2O7)(OH)2∙H2O

Origin: Sasa, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample in

the spectral region from 100 to 1300 cm�1 using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.
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Raman shifts (cm21): 980w, 930s, 678, 559w, 516w, 452, 402, 332, 304w, 282w, 218w, 169, 132s.
Source: Makreski et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of hemimorphite see also Jovanovski et al. (2009).

Hemleyite FeSiO3

Origin: Suizhou L6 chondrite (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample. Experimental details are not described.
Raman shifts (cm21): 795s, 673, 611, 476, 403, 342.
Source: Bindi et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Fe2+0.48Mg0.37Ca0.04Na0.04Mn2+0.03Al0.03Cr

3+
0.01)Si1.00O3.

Hemusite Cu1+4Cu
2+

2SnMoS8

Origin: Zijin Cu-Au mine, China.
Experimental details: No data.
Raman shifts (cm21): 826, 658, 413, 348, 294, 262.
Source: Liu et al. (2012).
Comments: The empirical formula of the sample used is Cu6.03Sn0.95Fe0.14Mo0.97S8.0.

Hendricksite KZn3(Si3Al)O10(OH)2

Origin: Franklin Furnace, New Jersey, USA.
Experimental details: Raman scattering measurements have been performed on an oriented sample

using 514.5 and 488 nm Ar+ laser radiations. The laser radiation power is not indicated. Spectra
were collected in scattering geometries with incident laser polarization parallel and perpendicular to
the cleavage plane.

Source: Tlili et al. (1989).
Raman shifts (cm21): 1028, 677s, 644, 321w, 317w, 278w, 189s, 94w.
Comments: The sample was characterized by electron microprobe analyses. The Raman shifts are

given as the sum of the both scattering geometries.

Henmilite Ca2Cu[B(OH)4]2(OH)4

Origin: Fuka mine, Okayama prefecture, Honshu Island, Japan (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3609s, 3593sh, 3559s, 3501, 3457sh, 3424s, 3396sh, 3328s, 3269s, 3195sh,
3101sh, 1270w, 1208w, 984w, 969sh, 951w, 922w, 902sh, 834w, 823w, 758s, 752sh, 745sh,
697sh, 598w, 562w, 547w, 534sh, 479sh, 469, 415w, 403w,m 365, 353sh, 335w, 290, 267sh,
255, 240, 225, 217sh, 197, 181sh, 172, 162, 148, 128.
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Source: Frost and Xi (2013e).
Comments: No independent analytical data are provided for the sample used.

Henritermierite Ca3Mn3+2(SiO4)2(OH)4

Origin: N’Chwaning II mine, Kalahari Manganese Fields, South Africa.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was
200 mW.

Raman shifts (cm21): 3428, 989w, 921, 882, 834w, 567s, 547w, 500s, 469w, 435, 373, 337, 322sh,
278, 257sh, 248, 168, 151.

Source: Friedrich et al. (2015).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ca2.98Na0.01Mg0.01)(Mn1.95Fe0.01Al0.04)[SiO4]2.07[O4H4]0.93. The Raman shifts were partly deter-
mined by us based on spectral curve analysis of the published spectrum.

Henryite Cu4Ag3Te4

Origin: Pyrrhotite gorge, Lovchorr Mt., Khibinymassif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ or 785 nm diode laser radiation. The nominal laser radiation power was
50 mW or 500 mW, respectively.

Raman shifts (cm21): 148s, 118s, 91w.
Source: Voloshin et al. (2015a).
Comments: The sample was characterized by electron microprobe analyses. The empirical formula of

the sample used is Cu3.89(Ag2.75Au0.03)Te4.00.

Herbertsmithite Cu3Zn(OH)6Cl2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an oriented sample

with the laser beam direction normal to the xy plane of a crystal using 532 nm laser radiation. The
nominal laser radiation power was 1 mW. A nearly 180�-scattering geometry was employed.
Polarized spectra were collected during rotation of the sample within the crystallographic xy
plane with the axis of rotation along of the incident light.

Raman shifts (cm21): 943, 702, 501s, 402, 365, 230w, 148, 123s [for the (xx) scattering geometry].
Source: Wulferding et al. (2010).
Comments: The empirical formula of the sample used is Zn0.8Cu3.2(OH)6Cl2. For the Raman

spectrum of herbertsmithite see also Chu et al. (2011).

Hercynite Fe2+Al2O4

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power was less than 1 mW.
A 180�-scattering geometry was employed.
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Raman shifts (cm21): 748s, 699w, 617, 504, 400, 366sh, 189s.
Source: D’Ippolito et al. (2015).
Comments: The sample was characterized by electron microprobe analysis.

Herderite CaBe(PO4)F

Origin: Ehrenfriedersdorf complex, Erzgebirge (Ore Mts.), Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

microscopic inclusion in quartz using 488 nm Ar+ laser radiation. The nominal laser radiation
power was 450 mW.

Raman shifts (cm21): 1005, 983s, 595, 584.
Source: Rickers et al. (2006).
Comments: No independent analytical data are provided for the sample used.

Herzenbergite SnS

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power at
the sample was less than 0.4 mW.

Raman shifts (cm21): 220, 192s, 165, 95, 67w, 48, 39s.
Source: Fontané et al. (2013).
Comments: The sample was characterized by X-ray diffraction data. For the Raman spectrum of

herzenbergite see also Chandrasekhar et al. (1977).

Hessite Ag2Te

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 488, 515, and 633 nm laser radiations. The nominal laser radiation power was
0.3 mW.

Raman shifts (cm21): 138, 110, 80.
Source: Milenov et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Hetaerolite ZnMn3+2O4

Origin: Madjarovo deposit, Eastern Rhodopes, Bulgaria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 38 mW.
Raman shifts (cm21): 684s, 637, 595sh, 574, 515w, 487w, 388s, 374sh, 329, 309sh.
Source: Vassileva et al. (2005).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analyses.

For the Raman spectrum of hetaerolite see also Javed et al. (2013).
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Heterogenite Co3+O(OH)

Origin: Mindigi mine, Katanga copperbelt, Katanga province, Democratic Republic of Congo.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation.
The nominal laser radiation power was 2 mW. The Raman shifts have been determined for the
maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1202w, 1133w, 670, 626, 572, 495s.
Source: Burlet et al. (2011).
Comments: The sample was characterized electron microprobe analyses. For the Raman spectrum of

heterogenite see also Burlet et al. (2014).

Heterosite Fe3+(PO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm laser radiation. The nominal laser radiation power was 3 mW. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 1123s, 1078s, 1064s, 962, 912, 660, 602, 587, 575w, 516w, 492, 400w,
339, 308, 246, 199w, 175s, 107.

Source: Burba and Frech (2004).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum.

Heulandite (Ca,Na,K)5(Si27Al9)O72∙26H2O(?)

Origin: Paterson, Passaic Co., New Jersey, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using Nd-YAG laser radiation. The laser radiation power at
the sample was 300 mW.

Raman shifts (cm21): 1138w, 799w, 611w, 483s, 404s, 147.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Hexacelsian Ba(Al2Si2O8)

Origin: Hatrurim complex, Negev Desert, Israel.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm solid-state laser radiation. The laser radiation power at the sample was
44 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as
a result of the spectral curve analysis.

Raman shifts (cm21): 1119, 1087w, 961, 924, 890, 809w, 678, 594, 480w, 461w, 406s, 296w, 107s.
Source: Galuskina et al. (2016b).
Comments: The sample was characterized by electron microprobe analyses. The empirical formula of

the sample used is (Ba0.911K0.059Ca0.042Na0.010)Al1.891Fe
3+

0.072Si2.034O8. For the Raman spectra of
hexacelsian see also Colomban et al. (2000), Kremenović et al. (2003), and Dondur et al. (2005).
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Hexaferrum (Fe,Os,Ru,Ir)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a high-purity poly-

crystalline Fe sample at pressures from 15 to 152 GPa. A 35� incidence angle for the exciting
radiation was employed. No characteristics of the laser radiation are indicated.

Raman shifts (cm�1): 245sh, 210 (at 22 GPa); 260 (at 82 GPa); 300 (at 152 GPa).
Source: Merkel et al. (2000).
Comments: No independent analytical data are provided for the sample used.

Hexahydrite Mg(SO4)∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample in

the spectral region from 50 to 4300 cm�1 using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 15 mW.

Raman shifts (cm21): 3540sh, 3428, 3258sh, 1655, 1146w, 1085w, 984s, 610w, 466w, 445w,
364, 245, 223.

Source: Wang et al. (2006a).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of hexahydrite see also Apopei et al. (2015).

Hexahydroborite Ca[B(OH)4]2∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar+

laser radiation. The nominal laser radiation power was 300 mW.
Raman shifts (cm21): 859s, 755s, 389w.
Source: Jun et al. (1995).
Comments: The sample was characterized by powder X-ray diffraction data.

Hiärneite (Ca,Mn2+,Na)2(Zr,Mn3+)5(Sb,Ti,Fe)2O16

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm�1): 672, 602, 515, 453, 426s, 398s, 388s, 378, 305, 268, 215sh, 195, 167, (159),

141.
Source: Holtstam (1997).
Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and

electron microprobe analyses. The empirical formula of the sample used is Na0.17Ca1.57
Mn2+0.62Zr4.19Hf0.02Sb

5+
1.37Ti0.59Mn3+0.36Mg0.02Fe0.09O16. The Raman shifts were determined

by us based on spectral curve analysis of the published spectrum.

4 Raman Spectra of Minerals 959



Hibonite-(Fe) (Fe,Mg)Al12O19

Origin: Allende meteorite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1067s, 1014, 748, 728, 490, 432.
Source: Ma (2010).
Comments: The sample was characterized by electron microprobe data and electron microprobe

analyses. The empirical formula of the sample used is (Fe2+0.34Mg0.27Na0.12Al0.11Ca0.03)
(Al11.77Si0.23)O19.

Hibonite (Ca,Ce)(Al,Ti,Mg)12O19

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 nm Nd-YAG laser radiation. The laser radiation output power was
100 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 910s, 873, 837, 796, 774, 741, 684, 640, 625, 565, 530, 489, 458, 450, 399,
332s, 274, 251, 209, 194sh.

Source: Hofmeister et al. (2004).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The crystal structure is solved.

Hidalgoite PbAl3(SO4)(AsO4)(OH)6

Origin: Gold Hill mine, Tooele Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3477, 3351sh, 3185sh, 1730, 1093, 1014s, 998sh, 879s, 853sh, 649, 631sh,
595, 528s, 513sh, 480, 433, 351sh, 334, 265, 234sh, 210s, 157, 142sh, 107.

Source: Frost et al. (2011o).
Comments: No independent analytical data are provided for the sample used.

Hieratite K2SiF6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was between
80 and 200 mW.

Raman shifts (cm21): 655s, 478w, 408.
Source: Rissom et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data.
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Hilarionite Fe3+2(SO4)(AsO4)(OH)6H2O

Origin: Hilarion Mine, Lavrion, Greece (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514 nm diode laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 1015s, 877sh, 843sh, 807, 585w, 495, 448sh, 390w, 365, 292, 191, 143sh, 123.
Source: Liu et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Hingganite-(Y) BeY(SiO4)(OH)

Origin: Oppach, Lusatian Mts., Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power at the sample was 45 mW.
Raman shifts (cm21): 3540, 922, 724, 332w.
Source: Thomas and Davidson (2017).
Comments: The sample was characterized by electron microprobe analyses. Fluorescence lines are

excluded.

Hinsdalite PbAl3(SO4)(PO4)(OH)6

Origin: Sylvester mine, Zeehan, Tasmania, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3603sh, 3472w, 3247w, 1021s, 1007s, 997sh, 982s, 930w, 614, 581sh,
506, 463, 374, 279sh, 250s, 187, 143, 108.

Source: Frost et al. (2011k).
Comments: No independent analytical data are provided for the sample used.

Hiortdahlite (Na,Ca)2Ca4Zr(Mn,Ti,Fe)(Si2O7)2(F,O)4

Origin: Langezundfiord, Norway.
Experimental details: No data.
Raman shifts (cm21): 1047, 947s, 796, 661s, 258.
Source: Sharygin et al. (1996a, b).
Comments: No independent analytical data are provided for the sample used.

Hisingerite Fe2Si2O5(OH)4∙2H2O

Origin: McMurdo Dry Valleys, Antarctica.
Experimental details: No data.
Raman shifts (cm21): 1055, 1031, 983, 899w, 863w, 782, 736, 666s, 546s, 504, 450, 388, 288,

236, 189, 145w, 121w.
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Source: Edwards et al. (2004).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Hochelagaite CaNb4O11�8H2O

Origin: Mont Saint-Hilaire, Québec, Canada (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 925, 878s, 663s, 587, 477, 387, 325w, 300w, 234, 196sh.
Source: Haring and McDonald (2017).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Hoelite C14H8O2

Origin: Kladno, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 3076w, 1665s, 1597, 1583, 1439w, 1387w, 1317, 1306w, 1239w, 1214, 1176s,

1146, 1080w, 1030s, 976w, 818w, 790w, 767, 682, 520w, 495w, 475, 437, 362, 238s.
Source: Jehlička et al. (2007b).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of hoelite see also Jehlička et al. (2009a).

Hoganite Cu(CH3COO)2∙H2O

Origin: Potosi Pit, Broken Hill, Yancowinna Co., New South Wales, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3478, 3024s, 2989, 2941s, 2922s, 2862, 2788, 1449, 1440, 1418, 1360, 948s,
938, 703, 684, 322s, 297s, 266, 252, 230, 212, 184.

Source: Musumeci and Frost (2007).
Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis.

The empirical formula of the sample used is C4H7.89O5.07Cu1.00Fe0.01.

Hogarthite (Na,K)2CaTi2Si10O26∙8H2O

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie,
Québec, Canada (type locality).

Experimental details: Raman scattering measurements have been performed with a laser beam
perpendicular to the {010} cleavage of a single using 532 nm laser radiation. The laser radiation
power is not indicated.
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Raman shifts (cm21): 3607, 3411sh, 3239sh, 1608w, 1190, 1052, 942s, 902sh, 794w, 714w,
679, 548s, 448s, 295s, 258w, 225, 173, 135, 105.

Source: McDonald et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Na0.78K0.62□0.51Ca0.09)Ca(Ti1.85Zr0.09Nb0.06)Si10.09O26�8H2O.

Hohmannite Fe3+2O(SO4)2∙8H2O

Origin: Sierra Gorda District, Antofagasta Province, Antofagasta Region, Chile.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was less
than 1 mW.

Raman shifts (cm21): 3495sh, 3438w, 3292sh, 3204w, 1204w, 1166w, 1125, 1098s, 1075w, 1058,
1031s, 1018, 659w, 628w, 605w, 580w, 496w, 470w, 400s, 334s, 258s, 245sh, 227sh, 198, 163,
144w, 129w, 73, 49.

Source: Ventruti et al. (2015).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.

Holdawayite Mn2+6(CO3)2(OH)7(Cl,OH)

Origin: Udachnaya-East kimberlite, Yakutia, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 5 mW.
Raman shifts (cm21): 1087s, ~700.
Source: Mernagh et al. (2011).
Comments: No independent analytical data are provided for the sample used. The Raman shifts have

been determined for a polymineral aggregate. The Raman shifts of holdawayite from the RRUFF
Project database (sample R090029) are: 1087s, 900, 701, 222, 164, 151.

Holfertite (UO2)1.75Ca0.25TiO4∙3H2O

Origin: Starvation Canyon, Thomas Range, Juab Co., Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3500w, 3406sh, 2925w, 2866sh, 1628w, 1555sh, 1128w, 828s, 749s, 641sh,
474, 389s, 328, 257, 201sh, 144.

Source: Frost (2011a).
Comments: No independent analytical data are provided for the sample used.

Hollandite Ba(Mn4+6Mn3+2)O16

Origin: Jhabua district, Madhya Pradesh, India.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 10 to 1200 cm�1 using 514.5 nm
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Ar+ laser radiation. The nominal laser radiation power was 10 mW. A nearly 180�-scattering
geometry was employed.

Raman shifts (cm21): 705w, 628, 586, 558w, 507, 395w.
Source: Julien et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data.

Hollingworthite RhAsS

Origin: No data.
Experimental details: Experimental details are not indicated. Raman scattering measurements have

been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was
100 mW.

Raman shifts (cm21): 1093w, 986w, 557w, 381sh, 360s, 347sh, 283, 272sh, 256s, 214, 146, 77sh.
Source: Bakker (2014).
Comments: The sample was characterized by electron microprobe data. The Raman shifts were partly

determined by us based on spectral curve analysis of the published spectrum.

Holmquistite □Li2(Mg3Al2)Si8O22(OH)2

Origin: Martin Marietta quarry, Bessemer, North Carolina, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3661s, 3646s, 3631s, 3614, 1127, 1102sh, 1085s, 1045sh, 1022s, 791, 753,
694sh, 679s, 613, 582sh, 565sh, 551, 530sh, 502, 471, 456, 423, 408sh, 390s, 343, 309w, 297.

Source: Kloprogge et al. (2001a).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron-

microprobe analysis. The analytical data are insufficient for the mineral identification. For the
Raman spectrum of holmquistite see also Kloprogge et al. (2001c).

Honessite (Ni1–xFe
3+

x)(SO4)x/2(OH)2�nH2O (x < 0.5, n < 3x/2)

Origin: Linden, Upper Mississippi Valley district, Iowa Co., Wisconsin, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. A 180�-scattering geometry was employed.
Raman shifts (cm21): 3614w, 2988sh, 2956, 2244, 1061w, 973, 852w, 527s, 460, 167w.
Source: Bindi et al. (2015a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is [(Ni2+0.902
Ca2+0.002)(Co

3+
0.072Fe

3+
0.024)](OH)1.884Cl0.012(H2O)0.004(SO4)0.100�0.900H2O.

Hopeite Zn3(PO4)2∙4H2O

Origin: Kabwe (Broken Hill)mine, Kabwe district, Central province, Zambia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 1 mW. The
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Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3456w, 3247sh, 1150, 1059w, 1000sh, 995s, 940.
Source: Frost (2004a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of hopeite see also O’Neill et al. (2006).

Hopeite Zn3(PO4)2∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1149, 1059, 998s, 942, 598, 368sh, 315.
Source: O’Neill et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data, but no independent

analytical data are provided for the sample used. For the Raman spectrum of hopeite see also Frost
(2004a).

Hörnesite Mg3(AsO4)2∙8H2O

Origin: Allchar (Alšar) deposit, Rožde, Kavadarci, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 875w, 808s, 468w, 430, 403, 365, 301w, 271, 262sh, 242, 205, 180w,

158, 138.
Source: Makreski et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of hörnesite see also Frost et al. (2003g).

Hsianghualite Li2Ca3Be3(SiO4)3F2

Origin: Xianghualing (Hsianghualing) mine, Linwu Co., Hunan province, China (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser
radiation power was in the range from 300 to 380 mW.

Raman shifts (cm21): 930, 894.
Source: Yuran and Li (1998).
Comments: No independent analytical data are provided for the sample used.

Huanghoite-(Ce) BaCe(CO3)2F

Origin: Bayan Obo deposit, Baotou prefecture, Inner Mongolia Autonomous Region, China (type
locality).

Experimental details: Raman scattering measurements have been performed using 488 nm laser
radiation. The nominal laser radiation power was 300 mW. Raman spectrum was obtained in the
spectral regions from 200 to 1200 cm�1 and from 1300 to 3200 cm�1.
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Raman shifts (cm21): 2746, 2718sh, 2183, 1840w, 1596, 1525, 1374sh, 1089s, 720, 695, 649, 354,
273, 224, 106.

Source: Hong et al. (1999).
Comments: No independent analytical data are provided for the sample used. Raman bands in the

range from 1300 to 2800 cm�1 are mainly due to luminescence.

Huanzalaite Mg(WO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 2 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 917s, 809, 713, 684w, 552, 518, 420, 405w, 385w, 352, 314w, 294, 277,
267sh, 215w, 185, 156, 97s.

Source: Ruiz-Fuertes et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data.

Hubeite Ca2Mn2+Fe3+Si4O12(OH)∙2H2O

Origin: Fengjiashan Mine, Daye Co., Huangshi prefecture, Hubei province, China (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The nominal laser radiation
power was 0.23 mW.

Raman shifts (cm21): 1083w, 1033, 966s, 912w, 899, 892, 864, 740, 664s, 575, 498, 489s,
468, 406sh, 400s, 366s, 292, 254, 195, 176, 145, 125, 117.

Source: Ferras et al. (2016).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Hübnerite Mn2+(WO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 685 nm Nd-YAG laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 885, 775, 697, 672, 543, 509, 445, 395, 353, 325, 290, 255, 202, 174, 161, 126.
Source: Frost et al. (2004b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of hübnerite see also Kloprogge et al. (2004b) and Almeida et al. (2012).

Hughesite Na3AlV10O28∙22H2O

Origin: Sunday mine, Gypsum valley, San Miguel Co., Colorado, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal with the laser beam perpendicular to the (001) cleavage surface (orientation 1) and with the
laser beam parallel to the cleavage surface (orientation 2) in the spectral region from 100 to
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1500 cm�1 using 632 nm He-Ne laser radiation. The nominal laser radiation power was 1 mW and
0.5 mW, respectively.

Raman shifts (cm21): 1007s, 994sh, 972, 959sh, 945sh, 877w, 596, 471w, 363, 319, 270sh, 247, 235,
218w, 201sh, 192 (orientation 1); 999s, 972s, 854, 591, 469w, 362sh, 318, 260, 231w, 214w,
182 (orientation 2).

Source: Rakovan et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Na2.99Al1.05(V10O28)�22H2O.

Humberstonite K3Na7Mg2(SO4)6(NO3)2∙6H2O

Origin: Artificial (a component of gypsum-based plaster).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm diode laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1067, 1048, 1013, 723, 632, 183.
Source: Morillas et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data.

Humboldtine Fe2+(C2O4)∙2H2O

Origin: Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3315, 1708w, 1555w, 1468s, 1450sh, 913, 856w, 582, 518, 293w, 246s, 203s.
Source: Frost (2004d).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of humboldtine see also Frost and Weier (2003), Echigo and Kimata (2008), and D’Antonio
et al. (2009).

Humite Mg7(SiO4)3(F,OH)2

Origin: Monte Somma, Somma-Vesuvius complex, Naples, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3576, 3572, 3560, 966, 930, 876, 859, 844, 831, 784, 757, 747, 606, 587, 570,
549, 547, 539, 442, 428, 391.

Source: Frost et al. (2007k).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The empirical formula of the sample used is Mg6.33Fe
2+

0.50(SiO4)3(OH)1.66, which
corresponds to the OH-analogue of humite.
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Humite Mg7(SiO4)3(F,OH)2

Origin: Monte Somma, Somma-Vesuvius complex, Naples, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3576, 3572, 3560, 966, 930, 876, 859, 844, 831, 784, 757, 747, 606, 587, 570,
549, 547, 539, 442, 428, 391.

Source: Frost et al. (2007k).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The empirical formula of the sample used is Mg6.33Fe
2+

0.50(SiO4)3(OH)1.66, which
corresponds to the OH-analogue of humite.

Hummerite KMgV5+
5O14∙8H2O

Origin: Hummer mine, Paradox valley, Montrose Co., Colorado, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3599, 3526, 3416, 3404, 3296, 3230, 3223, 2929, 2902, 1621, 1600, 999s,
962s, 833w, 817sh, 590, 532, 442w, 360sh, 326s, 314sh, 254sh, 241, 227sh, 208, 183s, 146.

Source: Frost et al. (2004e, 2005a).
Comments: No independent analytical data are provided for the sample used.

Hungchaoite MgB4O5(OH)4∙7H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 300 to 1800 cm�1 using 514.5 nm Ar+ laser radiation. The
nominal laser radiation power was 300 mW.

Raman shifts (cm21): 1628w, 1352, 1045, 949s, 897w, 855s, 816, 787s, 716w, 583s, 556w,
519, 491s, 450, 408s, 371, 345, 316s.

Source: Li et al. (1995) and Jia et al. (2001).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Huntite CaMg3(CO3)4

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 50 to 1200 cm�1 using 1064 nm
Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm21): 2905w, 1761w, 1459w, 1123s, 878, 742w, 723, 705w, 386w, 364w, 316, 272,
253, 231w, 155, 118.

Source: Edwards et al. (2005).
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Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum
of huntite see also Scheetz and White (1977).

Hureaulite Mn2+5(PO3OH)2(PO4)2∙4H2O

Origin: Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm Nd-YAG laser radiation. The laser radiation power is not indicated. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3424, 3322, 3185, 2973sh, 2818, 1648, 1571, 1109sh, 1083, 1047, 1024,
1007sh, 989, 950, 941sh, 778w, 726, 598sh, 582, 564sh, 543sh, 531, 455, 414, 398sh, 381, 304w,
267w, 237sh, 221w, 194w, 155w, 137w, 120w, 104w.

Source: Frost et al. (2013aj).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. Powder X-ray diffraction data are not provided in the cited paper. The empirical formula
of the sample used is (Mn3.23Fe1.04Ca0.19Mg0.13)(PO4,HPO4)4.13(OH,H2O)x, which indicates a
significant deficit of (Mn,Fe,Ca,Mg)-cations.

Hurlbutite CaBe2(PO4)2

Origin: Nanping no. 31 granitic pegmatite dyke, Fujian province, southeastern China.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample. No other details are indicated.
Raman shifts (cm21): 1021, 587, 575, 550, 404, 132.
Source: Rao et al. (2011).
Comments: The sample was characterized by electron microprobe analyses.

Hydroboracite CaMg[B3O4(OH)3]2∙3H2O

Origin: Kohnstein quarry, Thuringia, Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3632s, 3563s, 3551sh, 3507s, 3384sh, 3371, 3255, 3138sh, 3076, 1685w,
1433w, 1394, 1379, 1318, 1268w, 1229, 1157, 1144sh, 1063sh, 1039s, 955w, 925, 910sh, 869w,
846, 825, 753, 730, 721sh, 696sh, 647, 612w, 582, 560s, 556sh, 526w, 491, 478sh, 459, 437,
421sh, 355sh, 342, 330sh, 304, 243, 229, 212, 168, 159sh, 135.

Source: Frost et al. (2014af).
Comments: No independent analytical data are provided for the sample used.

Hydrocalumite Ca4Al2(OH)12(Cl,CO3,OH)2∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 200 mW. The
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Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 1086, 1078sh, 712, 704sh, 531, 397, 359, 296sh, 281, 271sh.
Source: Frost et al. (2011j).
Comments: Questionable data: Raman spectra of samples with different Ca:Al ratios (from 2:1 to 4:1)

are almost identical. According to powder X-ray diffraction data, the samples used may contain
admixed calcite.

Hydrocerussite Pb3(CO3)2(OH)2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 50 to 3600 cm�1 using 1064 nm
Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 1731w, 1467sh, 1365, 1050s, 862w, 837w, 707sh, 693sh, 679, 411, 321, 267w,
150sh, 113.

Source: Ciomartan et al. (1996).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

hydrocerussite see also Frost et al. (2003e) and Bouchard and Smith (2003).

Hydrocerussite Pb3(CO3)2(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3576, 3536w, 1736, 1705, 1679, 1479w, 1420w, 1378w, 1375w, 1365sh,
1053s, 1031sh, 887w, 866w, 837w, 737, 694w, 681, 671w, 417, 391, 376, 318, 221, 177w, 152.

Source: Frost et al. (2003e).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of hydrocerussite see also Ciomartan et al. (1996) and Bouchard and Smith (2003).

Hydrodelhayelite-related compound KCa2Na(Si8O19)∙5H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using He-Ne laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 3500 (broad), 3300sh, 1636w, 1174, 1125sh, 1103, 848w, 783, 697, 610s,
496sh, 469, 437, 376, 351w, 317, 286, 240w, 190, 156, 127, 113, 98sh, 80sh.

Source: Cadoni and Ferraris (2009).
Comments: The sample was characterized by single-crystal X-ray diffraction data and semiquantita-

tive electron microprobe analyses. The crystal structure is solved. The Raman shifts were partly
determined by us based on spectral curve analysis of the published spectrum
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Hydrohalite NaCl∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample at –190�C, in the spectral region from 2800 to 4000 cm�1, using 532 nm Nd-YAG laser
radiation. The laser radiation power at the sample was between 1 and 1.5 mW.

Raman shifts (cm21): 3536, 3432, 3418, 3402, 3321w, 3300w.
Source: Baumgartner and Bakker (2010).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of hydrohalite see also Bakker (2004), Sakurai et al. (2010), and Okotrub and Surovtsev (2013).

Hydrohonessite (Ni1-xFe
3+

x)(SO4)x/2(OH)2�nH2O (x < 0.5, n > 3x/2)

Origin: Kambalda, Western Australia, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was less than 1 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 3493s, 3405, 1638w, 1135, 1115sh, 1008s, 671, 619, 579, 493, 414, 318w,
209w, 182, 164.

Source: Frost et al. (2003h).
Comments: No independent analytical data are provided for the sample used.

Hydromagnesite Mg5(CO3)4(OH)2∙4H2O

Origin: Salda Golulake, Turkey.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 2904w, 1871w, 1521w, 1487w, 1451w, 1119s, 757, 727, 706, 669w, 653sh,
329, 247, 232, 202, 184, 147.

Source: Edwards et al. (2005).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of hydromagnesite see also Frost (2011d) and Kristova et al. (2014).

Hydroniumjarosite (H3O)Fe
3+

3(SO4)2(OH)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was in the range from
0.22 to 1 mW.

Raman shifts (cm21): 3431, 3365, 2522, 2420, 1167, 1101s, 1019, 1013, 769, 633, 619, 565,
458, 420, 359, 281, 227.

Source: Murphy et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and inductively coupled

plasma–optical emission spectrometry. The empirical formula of the sample used is (H3O)
Fe3+2.93(SO4)2(OH)6.79(H2O)0.2. For the Raman spectra of hydroniumjarosite see also Frost et al.
(2006r), Plášil et al. (2014b), and Apopei et al. (2014a).
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Hydroniumjarosite (H3O)Fe
3+

3(SO4)2(OH)6

Origin: Cerros Pintados, Pampa del Tamarugal, Iquique Province, Tarapacá Region, Chile.
Experimental details: Raman scattering measurements have been performed on an arbitrary oriented

single crystal using 532 nm laser radiation. The nominal laser radiation power was 3 mW. Raman
spectrum was obtained in the spectral region from 50 to 4000 cm�1.

Raman shifts (cm21): 2989w, 2941w, 2878, 2328w, 2248, 2002w, 1742w, 1678w, 1622w, 1477w,
1449w, 1329w, 1164, 1103s, 1012s, 859w, 812w, 722w, 643sh, 620s, 569, 497w, 454sh, 424s,
367sh, 227s, 172w, 135, 62w.

Source: Plášil et al. (2014b).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
(H3O)

+
0.77Na0.20K0.02(Fe2.95Al0.03)(OH)6.12[(SO4)1.97(SiO4)0.03]. The Raman shifts were partly

determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectra of hydroniumjarosite see also Frost et al. (2006r), Murphy et al. (2009), and Apopei et al.
(2014a).

Hydroromarchite Sn2+3O2(OH)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The nominal laser radiation power was 400 mW. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 264w, 226s, 184w, 53s.
Source: Chen and Grandbois (2013).
Comments: The sample was characterized by powder X-ray diffraction data.

Hydrotalcite-2H Mg6Al2(CO3)(OH)16∙4H2O

Origin: Kovdor massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. Raman spectrum
was obtained in the spectral region from 200 to 4000 cm�1. The Raman shifts have been determined
for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3573sh, 3487, 3371sh, 1237sh, 1223w, 1200w, 1101sh, 1064s, 1059sh,
1045sh, 973, 696w, 595sh, 558s, 484w, 408w, 151s, 111s.

Source: Frost et al. (2014y).
Comments: No independent analytical data are provided for the sample used. Based on the origin of

the sample and its morphological features, one cannot exclude that it is quintinite.

Hydrotalcite Mg6Al2(CO3)(OH)16∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

pressed as pellet using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
A 180�-scattering geometry was employed.
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Raman shifts (cm21): 1403, 1355, 1134(?), 1110, 1053, 1044s, 982, 936, 712, 694, 626, 611,
461, 453.

Source: Kloprogge et al. (2002).
Comments: The sample was characterized by powder X-ray diffraction data. The empirical formula of

the sample used is Mg5.8Al2.2(OH)16(CO3)0.92(NO3)0.26�nH2O. For the Raman spectrum of
hydrotalcite see also Palmer et al. (2011).

Hydrotungstite WO2(OH)2∙H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on oriented and arbi-

trarily oriented samples in the spectral region from 150 to 1050 cm�1 using 488 nm Ar+ laser
radiation. The laser radiation power was in the range from 0.06 to 0.15 mW. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 956s, 677s, 661s, 580sh, 275w, 225w.
Source: Tarassov et al. (2002).
Comments: The Raman shifts were determined by us based on spectral curve analysis of the published

spectrum.

Hydroxyapophyllite-(K) KCa4Si8O20(OH,F)∙8H2O

Origin: Pune (Poonah) district, Maharashtra State, India.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3626w, 3614sh, 3557s, 3365sh, 3085sh, 3007s, 2893sh, 2813sh, 1705w,
1683sh, 1626w, 1523w, 1114sh, 1086sh, 1059s, 1043sh, 1007w, 970w, 846w, 791, 765, 663s,
633sh, 583s, 538, 511, 485w, 462w, 431s, 409sh, 373, 337, 325sh, 297, 266w, 228, 209s, 185, 161,
132, 123, 106.

Source: Frost and Xi (2012o).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of hydroxyapophyllite-(K) see also Goryainov et al. (2012).

Hydroxycalciobetafite (?) (Ca,U)2(Ti,Nb)2O6(OH)

Origin: Antanifotsy, Betafo district, Madagascar.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using a 633 nm He-Ne laser. The Raman shifts have been
determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
The laser radiation power is not indicated.

Raman shifts (cm21): 2184, 2075, 1956, 1584, 1456sh, 1327, 1161, 893, 810, 657, 601sh,
391, 325sh, 283, 218, 162, 149.

Source: Frost and Reddy (2010).
Comments: A metamict sample was used. For the Raman spectra of minerals and compounds related

to the betafite group see also McMaster et al. (2013, 2014, 2015).
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Hydroxycalciomicrolite Ca1.5Ta2O6(OH)

Origin: Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3614, 3586, 1028w, 892w, 803, 665, 638sh, 564sh, 519s, 440sh, 419, 398sh,

342, 311s, 285, 243, 230, 211, 195.
Source: Andrade et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ca1.48Na0.06Mn0.01)(Ta1.88Nb0.11Sn0.01)O6.00[(OH)0.76F0.20O0.04]. The Raman shifts were partly
determined by us based on spectral curve analysis of the published spectrum.

Hydroxycalciopyrochlore (Ca,Na,U,□)2(Nb,Ti)2O6(OH)

Origin: Bližná, Southwestern Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 70 to 6300 cm�1 using 532.17 nm laser radiation. The
nominallaser radiation power was 100 mW.

Raman shifts (cm21): 3850, 3670sh, 2065s, 770, 635sh, 240, 95.
Source: Drábek et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

data. The empirical formula of the sample used is (Ca0.48Na0.02Mg0.06Mn0.01Y0.06

REE0.27Th0.27U0.01)(Nb1.06Ti0.79Fe0.14W0.01)(O4.96OH1.04)(OH)0.81�H2O. The Raman shifts were
determined by us based on spectral curve analysis of the published spectrum. The band at
2065 cm�1 may be due to fluorescence.

Hydroxycalcioroméite (Ca,Sb3+)2(Sb
5+,Ti)2O6(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using laser radiation. The laser radiation power is not indicated. The Raman shifts have been
determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3542sh, 3471w, 3328sh, 3200sh, 2920w, 2860w, 1965w, 1599w, 1447w,
1353w, 984, 806, 725, 611, 565, 517s, 507sh, 487sh, 400sh, 356, 300, 179sh, 150sh, 129s.

Source: Bahfenne and Frost (2010b).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Hydroxyferroroméite (Fe2+1.5□0.5)Sb
5+

2O6(OH)

Origin: Correc d’en Llinassos, Oms, Pyrénées-Orientales Department, France (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 nm laser radiation. The nominal laser radiation power was 80 mW.
Raman shifts (cm21): 3634w, 3074w, 2936w, 1773w, 1706w, 1608, 709sh, 650s, 568sh, 466sh,

436, 358w, 271sh, 180.
Source: Mills et al. (2017b).
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Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe
analyses, and X-ray photoelectron spectroscopy. The empirical formula of the sample used is
(Fe2+1.07Cu

2+
0.50Zn0.03Sr0.03Ca0.01□0.36)(Sb

5+
1.88Si0.09Al0.02As0.01)O6[(OH)0.86O0.14].

Hydroxykenoelsmoreite (□,Pb)2(W,Fe3+,Al)2(O,OH)6(OH)

Origin: Masaka gold mine, Burundi (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 782 nm diode laser radiation. The nominal laser radiation
power was 1.15 mW.

Raman shifts (cm21): 3443, 2932w, 1610w, 929s, 853sh, 691, 476, 402, 298w, 225, 157.
Source: Mills et al. (2017a).
Comments: The sample was characterized by powder and single crystal X-ray diffraction data and

electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample
used is (□1.668Pb0.315Ca0.009Na0.005K0.003Ba0.001)(W

6+
1.487Fe

3+
0.357Al0.156)[O4.119(OH)1.881](OH).

Hydroxylapatite Ca5(PO4)3OH

Origin: Tadano, Fukushima prefecture, Japan.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal thin section cut nearly perpendicular to the c axis using 532 nm laser radiation. The laser
radiation utput power was 11.8 mW.

Raman shifts (cm21): 3561, 3537, 1080w, 1059, 1035, 968s, 612, 586, 449, 433.
Source: Banno et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is Ca5.022(P2.943Si0.024S0.011)
O11.960(OH0.546F0.406Cl0.048). The Raman shifts were partly determined by us based on spectral
curve analysis of the published spectrum. For the Raman spectra of hydroxylapatite see also Penel
et al. (1998), Koutsopoulos (2002), O’Neill et al. (2006), and Pasteris et al. (2012).

Hydroxylbastnäsite-(Ce) Ce(CO3)OH

Origin: Trimouns, Luzenac, France.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3637, 3567, 3492, 3257, 1475, 1431sh, 1415, 1100s, 1088s, 1082s, 1007,

872, 851, 786, 728w, 694, 665w, 582, 342, 257, 239sh, 195, 177, 156, 137, 118, 70w.
Source: Yang et al. (2008a).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ce0.50Nd0.24La0.23Y0.03)(CO3)[(OH)0.65F0.35]. The Raman shifts were determined by us based on
spectral curve analysis of the published spectrum. For the Raman spectra of hydroxylbastnäsite-
(Ce) see also Frost and Dickfos (2007a) and Michiba et al. (2013).
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Hydroxylchondrodite Mg5(SiO4)2(OH)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was about
60 mW.

Raman shifts (cm21): 3571sh, 3554s, 3515s, 3226, 2930, 955, 921, 848sh, 835s, 754w, 723w,
597, 570, 535w, 473w, 420w, 368w, 327w, 282w, 222w.

Source: Lin et al. (1999).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of hydroxylchondrodite see also Mernagh et al. (1999).

Hydroxylclinohumite Mg9(SiO4)4(OH)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal in the spectral regions from 100 to 1600 cm�1 and from 2700 to 4000 cm�1 using 514.5 nm
Ar+ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm21): 3612w, 3580sh, 3564s, 3527s, 964, 856s, 847s, 838s, 826s, 765w, 737w,
716sh, 603, 583, 576w, 566w, 545w, 533sh, 499w, 468w, 456w, 430, 398w, 388sh, 378w, 364w,
342sh, 331w, 301w, 265w, 250w, 230w, 210w, 181w, 154w, 140w.

Source: Lin et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of hydroxylclinohumite see also Hurai et al. (2014).

Hydroxylclinohumite Mg9(SiO4)4F2

Origin: Namibwuste, Namibia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3579, 3570, 3560, 3412, 3390, 967, 877sh, 862s, 846, 831, 808w, 785, 760,
744, 607, 587.

Source: Frost et al. (2007k).
Comments: The sample described as “clinohumite” was characterized by powder X-ray diffraction

data and electron microprobe analysis. Actually, the empirical formula Mg7.35
Fe2+0.13Ti0.08Ca0.50Al0.46(SiO4)4Cl0.05(OH)1.61 corresponds to cation-deficient hydroxylclinohumite.

Hydroxyledgrewite Ca9(SiO4)4(OH)2

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm laser radiation. The nominal laser radiation power was in the range
from 30 to 50 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3550, 3475w, 923, 890w, 840w, 821sh, 814, 559, 527w, 419sh, 404, 394sh,
324w, 295, 256, 166, 160sh.

Source: Galuskin et al. (2012d).
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Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and
electron microprobe analyses. The crystal structure is solved. The sample used is a member of the
solid-solution series Ca9(SiO4)4(F,OH)2 with F:OH ¼ 63:37.

Hydroxylellestadite Ca5(SiO4)1.5(SO4)1.5OH

Origin: Cioclovina Cave, Şureanu Mts., Romania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 100 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3564, 3517sh, 1144, 1122, 1066w, 1002s, 954s, 853s, 642sh, 625, 579,
530, 462, 431sh, 397sh, 312w.

Source: Onac et al. (2006).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
Ca10.27[(SiO4)2.53(SO4)2.17(PO4)1.27][(OH)1.66F0.21Cl0.16]. For the Raman spectrum of hydroxylel-
lestadite see also Comodi et al. (1999).

Hydroxylherderite CaBe(PO4)(OH)

Origin: Bennett pegmatite, Buckfield, Oxford Co., Maine, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal with polarizers and without polarizers using 458 nm laser radiation. The laser
radiation power at the sample was 18 mW. Polarized spectra were collected in scattering geometries
with three different polarized angles, 0, 45 and 90� from an arbitrary reference plane.

Raman shifts (cm21): 3620s, 3610sh, 3575sh, 3565s, 1142s, 1130sh, 1087w, 1005s, 985sh, 915, 910,
875sh, 770, 705sh, 680, 615sh, 598s, 590sh, 580, 532, 519, 448, 428w, 353w, 340w, 328w, 305w,
272w, 257w, 228w, 197w, 185w, 170w, 145w, 125w.

Source: Gatta et al. (2014).
Comments: The sample was characterized by single-crystal X-ray and neutron diffraction data,

electron microprobe analyses and inductively coupled plasma-atomic emission spectroscopy. The
crystal structure is solved. The empirical formula of the sample used is (Ca1.01Na0.01)(Be0.98Li0.01)
(P0.98Si0.03)O4[(OH)0.67F0.33]. For the Raman spectrum of hydroxylherderite see also Frost et al.
(2014a).

Hydrozincite Zn5(CO3)2(OH)6

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne or 514.5 nm Ar+ laser radiation. The nominal laser radiation power
was 30 mW or less than 30 mW, respectively.

Raman shifts (cm21): 1544, 1371, 1061s, 732, 704, 389, 340w, 230, 152s, 139, 121, 81.
Source: Bouchard and Smith (2003).
Comments: No independent analytical data are provided for the sample used.
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Hypersthene (Mg,Fe)SiO3

Origin: Pietra Nera, Agrigento, Sicilia, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated. A nearly
180�-scattering geometry was employed.

Raman shifts (cm21): 1006s, 681s, 661, 339, 233, 129.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used.

Ianbruceite Zn2O[AsO3(OH)](H2O)3.53

Origin: Tsumeb mine, Otjikoto (Oshikoto) region, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 12.5 mW. A 180-
�-scattering geometry was employed.

Raman shifts (cm21): 3600w, 3441sh, 3224w, 2740sh, 840s, 773sh, 534, 448, 420, 192.
Source: Cooper et al. (2012a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The crystal-chemical formula of the sample used is
K0.02(Zn1.93Fe

2+
0.03Al0.02Mn2+0.01)(OH)0.96(H2O)(As

5+O4)[As
3+(OH)2O]0.04(H2O)1.96. The

Raman shifts were partly determined by us based on spectral curve analysis of the published
spectrum.

Iangreyite Ca2Al7(PO4)2(PO3OH)2(OH,F)15∙8H2O

Origin: Silver Coin mine, Nevada, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1345, 1200, 1095, 1078w, 1033, 1009s, 979, 923, 707, 622s, 510, 485w,

455, (377), 362, 338, 332, 271, 189s, 107, 114.
Source: Mills et al. (2011a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Ca1.42K0.22Na0.09Ba0.03Sr0.01Al6.51Mg0.09Fe0.02Cu0.01Zn0.01P3.81F5.24H30.21O33.76.In the cited
paper an erroneous figure of the Raman spectrum with displaced scale of Raman shifts is given.
The Raman shifts listed above have been determined based on the analysis the correct spectral curve
from the manuscript submitted to the Mineralogical Magazine, which was kindly provided by the
authors.

Ice H2O

Origin: Artificial.
Experimental details: Raman scattering measurements have been performed at �190 �C on an

arbitrarily oriented sample in the spectral region from 2800 to 4000 cm�1 using 532.2 nm
Nd-YAG laser radiation. The laser radiation power at the sample was in the range from 1 to 1.5 mW.

Raman shifts (cm21): 3370sh, 3321w, 3218, 3090s.
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Source: Baumgartner and Bakker (2010).
Comments: For the Raman spectra of ice see also Giguére and Harvey (1956) and Garcia et al. (2006).

The Raman shifts were partly determined by us based on spectral curve analysis of the published
spectrum.

Idaite Cu3FeS4

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 466s, 403w, 356w, 265w, 209.
Source: Parker et al. (2008).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.

Idrialite C22H14

Origin: Idrija mercury ore field, External Dinarides, Slovenia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG and 785 nm diode laser radiations. The laser radiation power is not
indicated.

Raman shifts (cm21): 3049, 2905sh, 2891, 1617s, 1579s, 1445w, 1437sh, 1428sh, 1393s, 1375,
1367, 1352w, 1301, 1268, 1209, 1183, 1151, 1017s, 1009w, 911w, 960w, 825, 752s, 728sh, 710s,
679sh, 663, 642, 611, 599, 590sh, 579, 563sh, 552, 522, 498, 130 (?).

Source: Jehlička et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data.

Ikaite Ca(CO3)∙6H2O

Origin: Ika fjord, Ivigtut, southern Greenland (type locality).
Experimental details: Raman scattering measurements have been performed at �80 �C on an

arbitrarily oriented samplein the spectral region from 400 to 4000 cm�1 using 532 nm Nd-YAG
laser radiation. The nominal laser radiation power was 8 mW.

Raman shifts (cm21): 3421, 3240, 3182, 1483w, 1072s, 873w, 722.
Source: Coleyshaw et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

ikaite see also Mikkelsen et al. (1999), Shahar et al. (2005), and Sánchez-Pastor et al. (2016).

Ikaite Ca(CO3)∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 4�C on an arbitrarily

oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was
10 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a
result of the spectral curve analysis.

Raman shifts (cm21): 3432, 3336, 3257sh, 3165sh, 1066s, 715, 263, 214sh, 199s, 183, 156sh,
137, 116sh.

Source: Sánchez-Pastor et al. (2016).
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Comments: The sample was characterized by powder X-ray diffraction analysis. For the Raman
spectra of ikaite see also Mikkelsen et al. (1999), Coleyshaw et al. (2003), and Shahar et al. (2005).

Ilesite Mn2+(SO4)∙4H2O

Origin: Artificial (degradation product from black slag).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 200 to 2000 cm�1 using 514.5 nm laser radiation. The laser
radiation power is not indicated.

Raman shifts (cm21): 1024s, 622, 488, 427, 263, 207.
Source: Gómez-Nubla et al. (2013).
Comments: No independent analytical data are provided for the sample used.

Ilmenite Fe2+Ti4+O3

Origin: Lunar basalt from Taurus–Littrow floor, 15 m northeast of a 10 m diameter crater with blocky
ejecta.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 679s, 449, 370, 330, 254, 227, 200w, 190w, 162w.
Source: Ling et al. (2011).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of ilmenite see also Andò and Garzanti (2014).

Ilvaite CaFe3+Fe2+2O(Si2O7)(OH)

Origin: Sasa, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample in

the spectral region from 100 to 1300 cm�1 using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1084s, 614s, 563w, 530w, 492w, 440w, 370w, 223s, 153w, 140.
Source: Makreski et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of ilvaite see also Jovanovski et al. (2009).

Imogolite Al2SiO3(OH)4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1024 nm laser radiation. The nominal laser radiation power was 800 mW. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 959, 925, 866, 698w, 550sh, 514s, 400sh, 367s, 251, 118s, 107.
Source: Creton et al. (2008).
Comments: The sample was characterized by inductive coupled plasma atomic emission spectroscopy

analysis. The wavelength of 1024 nm indicated by the authors may be a misprint. The Raman shifts
were determined by us based on spectral curve analysis of the published spectrum.
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Inderite MgB3O3(OH)5∙5H2O

Origin: Boron, Kern Co.,California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3616s, 3479sh, 3429, 3365shg, 3292w, 3254, 3127, 3067, 2988w, 2931,
2843w, 2750w, 1397w, 1349, 1282sh, 1249, 1195, 1167sh, 1138sh, 1058w, 1006, 948s,
879, 811w, 743, 664, 637, 580, 551, 492s, 440, 420, 379, 347w, 313, 248w, 193, 166.

Source: Kloprogge and Frost (1999a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of inderite see also Frost et al. (2013f).

Indite FeIn2S4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The laser radiation
power is not indicated. The Raman shifts have been determined for the maxima of individual
peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 370s, 334sh, 329sh, 313, 271sh, 253s, 231sh, 182, 167w, 96, 82.
Source: Guc et al. (2012).
Comments: The sample was characterized by electron microprobe analysis.

Inesite Ca2Mn2+7Si10O28(OH)2∙5H2O

Origin: N’chwaning mine, Kalahari Manganese Fields, South Africa.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3661sh, 3642, 3612sh, 3496sh, 3420, 3362sh, 3300sh, 3246sh, 1856sh, 1825,
1775, 1730sh, 1671sh, 1653, 1608, 1546sh, 1383sh, 1365w, 1207sh, 1090sh, 1067sh, 1051sh,
1031s, 997sh, 958w, 933, 907sh, 764sh, 736sh, 716sh, 684sh, 653s, 631sh, 608sh, 467sh, 448sh,
428sh, 410, 374sh, 354, 301sh, 283, 248, 218, 156sh, 140s, 114s.

Source: Frost et al. (2014r).
Comments: No independent analytical data are provided for the sample used.

Innsbruckite Mn33(Si2O5)14(OH)38

Origin: Staffelsee (Geier), Navis valley, Tyrol, Austria (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample in the spectral regions from
100 to 1250 cm�1 and from 3520 to 3700 cm�1 using 532 nm Nd-YAG laser radiation. The
nominal laser radiation power was 30 mW. Raman spectra were collected inscattering geometries
with a 90� sample rotation between the data collections.
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Raman shifts (cm21): 1190w, 1032s, 1016w, 1010w, 998w, 792w, 777w, 717w, 693w, 671w,
649, 629, 609, 477w, 455w, 417, 405, 394, 360w, 352w, 336sh, 327w, 322w, 315, 312w, 305sh,
288, 277, 259, 252, 231, 221, 199sh, 193, 185, 178sh, 169, 160, 137, 131sh, 118w, 114w, 108w.

Source: Krüger et al. (2014).
Comments: The sample was characterized by single-crystal synchrotron radiation diffraction analysis

and electron microprobe analyses. The crystal structure is solved. The empirical formula of the
sample used is Mn31.58Fe0.19Mg1.29Si27.82Al0.20O108H37.97.

Insizwaite PtBi2

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532.1 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 126, 114s, 96.
Source: Bakker (2014).
Comments: No independent analytical data are provided for the sample used.

Inyoite CaB3O3(OH)5∙4H2O

Origin: Mount Blanco mine, Black Mountains, Death Valley, Inyo Co., California, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3444w, 3389sh, 3153w, 2828w, 1689sh, 1656w, 1430w, 1376w, 1336sh,
1322w, 1254w, 1204w, 1177sh, 1062w, 1048sh, 1013w, 971sh, 957, 925sh, 910, 808w, 731, 615s,
596sh, 535, 521sh, 503, 474sh, 465, 408, 388, 352, 326w, 268sh, 258w, 206sh, 192sh, 182sh,
1721, 160sh.

Source: Frost et al. (2015i).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Iodargyrite AgI

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal with the c axis normal to the scattered plane using 457.9, 488.0, 546.1 nm Ar+ and 568.2,
647.1 nm Kr+ laser radiations. The laser radiation power is not indicated. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 104w, 85w, 37w, 17s.
Source: Hanson et al. (1975).
Comments: No independent analytical data are provided for the sample used. The Raman shifts are

given for the z(yy)–z scattering geometry.
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Iowaite Mg6Fe
3+

2(OH)16Cl2∙4H2O

Origin: Australia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3720w, 3707, 3700w, 3691sh, 3685, 3674sh.
Source: Reddy et al. (2010).
Comments: The sample was characterized by electron paramagnetic resonance. Raman shifts are

given for region from 3600 to 3740 cm�1.

Iowaite Mg6Fe
3+

2(OH)16Cl2∙4H2O

Origin: Mount Keith, Western Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 708sh, 690, 620, 527s, 495sh, 456, 430w, 386, 348w, 312, 298w, 282, 231,
188, 153, 146w, 140w, 132w.

Source: Frost et al. (2010d).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of iowaite see also Reddy et al. (2010).

Iranite CuPb10(CrO4)6(SiO4)2(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Nd-YAG laser radiation. The laser radiation power is not indicated. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 916sh, 891sh, 865s, 846s, 818s, 790, 535sh, 404, 389, 380sh, 369s, 354sh,
343, 333, 307, 240, 222, 196, 163, 139.

Source: Frost (2004c).
Comments: No independent analytical data are provided for the sample used.

Irarsite IrAsS

Origin: Santa Elena Nappe, Costa Rica.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 399, 375s, 353s, 289, 263s, 219, 211sh, 177, 145.
Source: Zaccarini et al. (2010).
Comments: The sample was characterized by electron microprobe analyses. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum.
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Iriginite (UO2)Mo6+2O7∙3H2O

Origin: Hervey’s Range deposit, 55 km W of Townsville, Queensland, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 965sh, 950s, 888, 826sh, 818, 693sh, 668, 487s, 457, 413, 373, 337, 301, 246s,
198, 164s.

Source: Frost et al. (2004c).
Comments: No independent quantitative analytical data are provided for the sample used.

Irinarassite Ca3Sn2(SiAl2)O12

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in the spectral region from 100 to 4000 cm�1 using 514.5 nm Ar+ laser radiation. The laser
radiation output power was in the range from 30 to 50 mW. A 0�-scattering geometry was
employed. The Raman shifts have been determined for the maxima of individual peaks obtained
as a result of the spectral curve analysis.

Raman shifts (cm21): 915w, 818, 787, 739, 578, 503s, 420, 316, 269sh, 250, 197, 156, 112w.
Source: Galuskina et al. (2013a).
Comments: The sample was characterized by single-crystal electron backscatter diffraction and

electron microprobe analyses. The empirical formula of the sample used is (Ca2.965Fe
2+

0.035)
(Sn1.016Zr0.410Ti0.262Sb

5+
0.237Fe

2+
0.035U

6+
0.017Sc0.014Hf0.006Nb0.004)(Al1.386Fe

3+
0.804Si0.446Ti

4+
0.364)

O12. The Raman shifts were partly determined by us based on spectral curve analysis of the published
spectrum.

Iron Fe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation output power was 4–5 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): (187), 139w.
Source: Campos et al. (2004b).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Iseite Mn2Mo3O8

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 400 K on a powdered

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 920s, 870, 815, 425w, 360, 325, 260w.
Source: Das et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data.
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Isocubanite CuFe2S3

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

thin section of a sample using 532 nm laser radiation. The laser radiation power at the sample was
about 20 mW.

Raman shifts (cm21): 440w, 386s, 350.
Source: White (2009).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of isocubanite see also Chandra et al. (2011a, b).

Isokite CaMg(PO4)F

Origin: Ehrenfriedersdorf, Erzgebirge (Ore Mts.), Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 150 mW.
Raman shifts (cm21): 1021, 955s, 607, 457, 425, 273.
Source: Thomas et al. (1998).

Isomertieite Pd11Sb2As2

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 136.
Source: Bakker (2014).
Comments: No independent analytical data are provided for the sample used.

Ivsite Na3H(SO4)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample in the spectral region from 30 to 4000 cm�1 using 488 nm Ar+ laser radiation. The laser
radiation power is not indicated.

Raman shifts (cm21): 1198, 1162, 1112, 1004s, 973sh, 636s, 613s, 605s, 525w, 493w, 437s,
115, 80s.

Source: Damak et al. (1985).
Comments: The sample was characterized by powder X-ray diffraction data.

Iwateite Na2BaMn(PO4)2

Origin: Tanohata mine, Iwate Prefecture, Japan (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm21): 1004w, 990w, 973s, 808w, 584w, 577w, 428w.
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Source: Nishio-Hamane et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is Na2.026(Ba0.993Sr0.101)(Mn0.801Mg0.164)
P1.971O8. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum.

Iyoite MnCuCl(OH)3

Origin: Sadamisaki Peninsula, Ehime Prefecture, Japan (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 50 mW.

Raman shifts (cm21): 3558w, 3521s, 3513sh, 458, 438.
Source: Nishio-Hamane et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Mn1.085Cu0.915Cl1.058(OH)2.942.

Jáchymovite (UO2)8(SO4)(OH)14∙13H2O

Origin: Jáchymov, Krušné Hory (Czech Ore Mts.), Bohemia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3504w, 3180w, 2257w, 1688w, 1614w, 1348w, 1125sh, 1094, 1068sh, 1015,
1010sh, 1003sh, 839sh, 828s, 807sh, 800sh, 667, 562, 542, 474sh, 454, 434, 405, 357sh,
337, 322sh, 276sh, 261, 252sh, 242sh, 208sh, 195, 172, 147, 114.

Source: Čejka et al. (2009a).
Comments: The sample was characterized by powder X-ray diffraction data and wet chemical

analyses. The empirical formula of the sample used is (UO2)8.01(SO4)0.95(OH)14.12�13.06H2O.

Jacobsite Mn2+Fe3+2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 646s, 563sh, 456w, 340.
Source: Rafique et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of jacobsitesee also Clark et al. (2007).

Jadeite NaAlSi2O6

Origin: Uru River area (?), north-central Myanmar.
Experimental details: Raman scattering measurements have been performed on an oriented thin

section of a sample with the b axis parallel to the laser beam using 532 nm laser radiation. The
nominal laser radiation power was 20 mW.
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Raman shifts (cm21): 1309, 991, 700s, 575, 524, 434, 374, 292, 223, 203s, 144, 80.
Source: Leander et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of jadeite see also Többens et al. (2005).

Jakobssonite α-CaAlF5

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a pressed-disk

sample in the spectral region from 280 to 800 cm�1 using 488 nm Ar+ laser radiation. The laser
radiation power is not indicated. A 90�-scattering geometry was employed.

Raman shifts (cm21): 588, 440.
Source: Kawamoto and Kono (1986) and Inoue et al. (1988).
Comments: The sample was characterized by powder X-ray diffraction data.

Jalpaite Ag3CuS2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was not higher than
0.3 mW.

Raman shifts (cm21): 258.
Source: De Caro et al. (2016).
Comments: The sample was characterized by electron microprobe analysis.

Jamborite Ni2+1–xCo
3+

x(OH)2x(SO4)x∙nH2O [x � 1/3, n � (1–x)]

Origin: Rio Vesale, Sestola, Val Panaro, Modena province, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3614w, 2988sh, 2956, 2244, 1061w, 973, 852w, 527s, 460, 167w.
Source: Bindi et al. (2015a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is (Ni2+0.902
Co3+0.072Fe

3+
0.024Ca0.002)(OH)1.884Cl0.012(SO4)0.100�0.904H2O.

Jamesonite Pb4FeSb6S14

Origin: Zlatá Baňa, Slanské Vrchy Mts., central Slovakia.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample in the spectral region from 10 to 600 cm�1 using 532 nm Nd-YAG laser radiation. The laser
radiation power is not indicated. A 180�-scattering geometry was employed. The Raman shifts have
been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 344sh, 326s, 298, 277, 269sh, 251, 236, 225, 215sh, 199, 173, 163sh, 147, 128,
110, 92, 75, 59sh.

Source: Kharbish and Jeleň (2016).
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Comments: The sample was characterized by electron microprobe analyses. The empirical formula of
the sample used is Pb4.01Fe0.99Sb6.01S14.00.

Jarosite KFe3+3(SO4)2(OH)6

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

thin section of a sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample
was about 1 mW.

Raman shifts (cm21): 3415, 3395sh, 1156, 1102s, 1008s, 643sh, 626, 573, 551sh, 454sh, 434s,
354, 301, 223s, 140.

Source: Maubec et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The empirical formula of the sample used is (K0.8Na0.1)(Fe2.7Al0.3)(SO4)2.0(OH)5.9. For
the Raman spectra of jarosite see also Sasaki et al. (1998), Makreski et al. (2005a), Frost et al.
(2006a), Murphy et al. (2009), Chio et al. (2010), Ciobotă et al. (2012), and Spratt et al. (2013).

Jeffbenite Mg3Al2Si3O12

Origin: An inclusion in an alluvial diamond, São Luizriver, Juina district, Mato Grosso, Brazil (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
single crystal using 532 nm laser radiation. The nominal laser radiation power was in the range from
3 to 5 mW.

Raman shifts (cm21): 1056sh, 995, 926s, 865s, 635, 610sh, 542w, 499, 393w, 318s, 284, 233, 204.
Source: Nestola et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is (Mg0.82
Fe3+0.12)(Al1.86Cr0.16)(Mg1.80Fe

2+
0.15Mn0.05Ca0.01Na0.01)(Si2.82Al0.18)O12.

Jennite Ca9(Si3O9)2(OH)6∙8H2O

Origin: Maroldsweisach, Bavaria, Germany.
Experimental details: Raman scattering measurements have been performed on an oriented sample

with longest axis corresponding to the [010] direction parallel and perpendicular with respect to
laser polarization using 532 nm laser radiation. The nominal laser radiation power was 9 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3631, 3590sh, 3580s, 3534, 3489, 3464, ~3149, ~1640w, 1048, 1015sh, 1000s,
986s, 969s, 950sh, 906, 677sh, 658s, 632sh, 507sh, 492s, 479sh, 361sh, 335s, 312, 287, 270, 251,
204sh, 185s, 165sh, 142, 127, 113.

Source: Müller et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is Ca8.57–9.43Si5.56–7.28Al0.02–0.07-
O18(OH)6�nH2O. The Raman shifts are given for total spectrum including all scattering geometries.
For the Raman spectrum of jennite see also Kirkpatrick et al. (1997).
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Ježekite Na8[(UO2)(CO3)3](SO4)2∙3H2O

Origin: Jáchymov, Krušné Hory (Czech Ore Mts.), Bohemia, Czech Republic (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm solid-state laser radiation. The nominal laser
radiation power was 2.5 mW.

Raman shifts (cm21): 3680, 3380sh, 2740w, 1710w, 1656w, 1600w, 1550w, 1375w, 1355w, 1195w,
1130w, 1110sh, 1060s, 1050w, 996s, 896w, 825s, 731, 715, 688w, 629, 622, 458, 379sh, 277, 248,
188s, 161s, 85.

Source: Plášil et al. (2015a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is Na7.88(UO2)
(CO3)3(S1.01O4)2�3H2O.

Jixianite (Pb,□)2(W,Fe3+)2(O,OH)7

Origin: Yanhe Mine, Ji Co., Tianjin Municipality, China (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation
output power was in the range 300–380 mW.

Raman shifts (cm21): 907, 709, 433w, 371sh, 288, 174.
Source: Yuran and Li (1998).
Comments: No independent analytical data are provided for the sample used.

Joaquinite-(Ce) NaBa2Fe
2+Ti2Ce2(Si4O12)2O2(OH)∙H2O

Origin: Benitoite Gem Mine, Southern San Benito Co., California (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3584sh, 3572sh, 3559sh, 3548w, 3509w, 3494sh, 3384sh, 3340sh, 3316w,
3242w, 1111, 1038, 1022, 991, 925, 902s, 891sh, 864w, 732s, 720sh, 686sh, 664s, 636s, 601s,
542, 492, 469, 440, 432, 377s, 358, 313, 299, 276, 250, 200, 180sh, 150.

Source: Frost and Pinto (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis, however barium content is not indicated.

Joegoldsteinite MnCr2S4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample hot-pressed as a pellet using 488.0 nm and 514.5 nm Ar+ and 647.1 nm and 676.4 nm Kr+

laser radiations. The laser radiation power is not indicated. A 180�-scattering geometry was
employed.

Raman shifts (cm21): 378s, 282w, 251.
Source: Lutz et al. (1989).
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Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts are
given for the 647.1 nm radiation.

Joëlbruggerite Pb3Zn3Sb
5+As2O13(OH)

Origin: Black Pine mine, Montana, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 150 to 3500 cm�1 using 785 nm
diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 3030w, 3015w, 818, 680, 506, 475, 427, 383, 235, 200, 183, 168, 150.
Source: Mills et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Pb3.112(Zn2.689Fe

2+
0.185)(Sb

5+
0.650Te

6+
0.451)(As1.551P0.203Si0.160)O13.335(OH)0.665.

Johachidolite CaAlB3O7

Origin: An unknown locality in Myanmar.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 1191, 1112, 684sh.
Source: Chadwick and Breeding (2008).
Comments: The sample was characterized by laser-ablation inductively coupled plasma mass spec-

troscopy analysis and by energy-dispersive X–ray fluorescence analysis.

Johannite Cu(UO2)2(SO4)2(OH)2∙8H2O

Origin: Saint Agnes, Cornwall, England.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3593, 3523w, 3387sh, 3234w, 1147, 1100, 1090, 1042, 975, 948sh, 812s,
788sh, 756sh, 539, 481, 384, 302s, 277s, 205s, 184sh.

Source: Frost et al. (2005e).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of johannite see also Driscoll et al. (2014).

Johannite Cu(UO2)2(SO4)2(OH)2∙8H2O

Origin: Geevor mine, Pendeen, Cornwall, UK.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 325 nm He-Cd, as well as 532 and 785 nm diode laser
radiations. The laser radiation output power was 270, 380, and 370 mW, respectively.

Raman shifts (cm21): 1095, 1045, 836s, 448w, 352w, 244w, 203w.
Source: Driscoll et al. (2014).
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Comments: The Raman shifts are given for 785 nm laser excitation. The sample was characterized by
electron microprobe analysis. The proposed empirical formula of the sample used is
Cu1.4(UO2)2(SO4)1.8�nH2O. For the Raman spectrum of johannite see also Frost et al. (2005e).

Johnbaumite Ca5(AsO4)3(OH)

Origin: Franklin or Sterling Hill, New Jersey, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation.
The laser radiation power is not indicated.

Raman shifts (cm21): 960w, 888w, 865s, 840, 830.
Source: Crimmins (2012).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The empirical formula of the sample used is (Ca4.87Pb0.07Mn0.05Sr0.01)
[(As0.94P0.06)O4]3[(OH)0.94Cl0.06]. The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.

Johninnesite Na2Mn2+9Mg7(AsO4)2(Si6O17)2(OH)8

Origin: Schmorrasgrat deposit, Schams nappes, Val Ferrera, Graubünden, Switzerland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1662w, 1616w, 1424w, 1322w, 1084w, 1055w, 1029, 1015, 939, 886w, 836s,
799s, 785s, 705, 667, 401, 347.

Source: Brugger and Berlepsch (1997).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is Na2.01Mn2+9.00(Mg3.74Mn2.66Fe0.01)
(As1.74V0.03)Si12.58O42(OH)8. The Raman shifts were partly determined by us based on spectral
curve analysis of the published spectrum.

Jordisite MoS2

Origin: Zunyi Formation, southern China.
Experimental details: Experimental details are not indicated. Raman scattering measurements have

been performed on an arbitrarily oriented sample. Raman spectrum was obtained in the spectral
region from 150 to 1800 cm�1.

Raman shifts (cm21): 600w, 438sh, 403 (h-MoS2), 370 (h-MoS2), 339w, 303w, 258sh, 216, 184sh,
148sh.

Source: Orberger et al. (2007).
Comments: The sample was characterized by a combination of methods including electron micro-

probe analysis, inductively coupled plasma mass spectroscopy, inductively coupled plasma atomic
emission spectroscopy analysis, and proton-induced X-ray emission analysis.
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Joteite Ca2CuAl(AsO4)[AsO3(OH)]2(OH)2∙5H2O

Origin: Jotemine, Tierra Amarilla, Copiapó Province, Atacama, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was about
5 mW.

Raman shifts (cm21): 3429w, 3260w, 3068sh, 2930sh, 900sh, 861s, 849s, 822sh, 725, 521sh, 506s,
461s, 451sh, 414, 384, 349, 334, 317, 300, 283, 270, 259, 201, 162, 140, 119, 112sh.

Source: Kampf et al. (2013c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The empirical formula of the sample used is
Ca1.98Cu1.00Al1.15As2.87H14.24O19. The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.

Kaersutite NaCa2(Mg3AlTi
4+)(Si6Al2)O22O2

Origin: An unknown locality in Czech Republic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 1183w, 1063sh, 1013w, 975w, 893w, 788sh, 764s, 666, 590s, 544sh, 514sh,
423sh, 363, 347sh, 331sh, 306sh, 292w, 249, 189w, 157, 144sh, 125w.

Source: Apopei et al. (2011).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of kaersutite see also Andò and Garzanti (2014) and Leissner et al. (2015).

Kainite KMg(SO4)Cl∙3H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm or 785 nm laser radiation. The laser radiation
power at the sample was no more than 1 mW.

Raman shifts (cm21): 1196w, 1040s, 1023s, 630w, 450w.
Source: Morillas et al. (2016).
Comments: The sample was characterized by electron microprobe analysis.

Kalgoorlieite As2Te3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The laser radiation output power was below 0.3 mW.
Raman shifts (cm21): 193, 171s, 142, 137sh, 128s, 123sh, 119sh, 99s, 91w, 67w, 49.
Source: Cuenca-Gotor et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data.
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Kaliborite KHMg2B12O16(OH)10∙4H2O

Origin: Inder boron deposit, Atyrau region, Kazakhstan.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3603sh, 3597s, 3590sh, 3517sh, 3398sh, 3360sh, 3336, 3245sh, 3202, 3172sh,
3133, 3041sh, 2929, 1595w, 1448sh, 1444, 1309w, 1229w, 1144, 1084sh, 1065, 967sh, 944, 881,
847w, 793w, 775sh, 756, 670, 639, 630sh, 609, 567, 551, 526, 519sh, 485, 476sh, 454w, 426sh,
414sh, 402, 394sh, 387, 337, 327sh, 320, 310sh, 286w, 259, 252sh, 242, 218, 197, 184, 177sh,
1709sh, 151, 121.

Source: López et al. (2015a).
Comments: No independent analytical data are provided for the sample used.

Kalicinite KH(CO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on a powder sample using Ar+ laser radiation. The laser
radiation power at the sample was about 5 mW.

Raman shifts (cm21): 1037s, 678, 637.
Source: Kagi et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is

solved by the Rietveld method. For the Raman spectrum of kalicinite see also Frezzotti et al. (2012).

Kalininite ZnCr2S4

Origin: Synthetic
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 647.1 nm Kr+ laser radiation. The laser radiation power is not indicated. A 180-
�-scattering geometry was employed.

Raman shifts (cm21): 392s, 293, 260s.
Source: Lutz et al. (1989).
Comments: The sample was characterized by powder X-ray diffraction analysis. For the Raman

spectrum of kalininite see also Kushwaha (2008).

Kalinite KAl(SO4)2∙11H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3528sh, 3379, 1678, 1630, 1132, 1104sh, 990s, 975, 618, 536sh, 501sh,
454, 440sh, 327w.

Source: Frost and Kloprogge (2001).
Comments: No independent analytical data are provided for the sample used.
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Kaliophilite KAlSiO4

Origin: Artificial.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Kr+-Ar+ laser radiation. The laser radiation power at the sample was no
more than 2 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 402, 357.
Source: Jay and Cashion (2013).
Comments: The sample was characterized by electron microprobe analysis.

Kalsilite KAlSiO4

Origin: San Venanzo, Terni province, Umbria, Italy.
Experimental details: No data.
Raman shifts (cm21): ~350s.
Source: Uchida et al. (2006).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved. The empirical formula of the sample used is (K0.92Na0.07)(Al0.93Fe
3+

0.04Si1.03)O4.

Kamacite (Fe,Ni)

Origin: Almahata Sitta meteorite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 22.5 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 275, 214, 175sh, 153sh.
Source: Kaliwoda et al. (2013).
Comments: The sample was characterized by electron microprobe analyses. It contains about 4 wt%

Ni and 0.2 wt% Co. The Raman shifts were determined by us based on spectral curve analysis of the
published spectrum.

Kamotoite-(Y) Y2O4(UO2)4(CO3)3∙14H2O

Origin: Kamoto East open cut, Kolwezi, Shaba Cu belt, Democratic Republic of Congo (type
locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3516w, 3361w, 1634sh, 1551w, 1338w, 1131, 1125sh, 815s, 810sh, 745, 584,
547sh, 418, 336.

Source: Frost et al. (2006k).
Comments: No independent analytical data are provided for the sample used.

Kampelite Ba6Mg3Sc8(PO4)12(OH)6�7H2O
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Origin: Kovdor phoscorite-carbonatite complex, Kola Peninsula, Russia (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1604w, 1092, 975s, 932sh, 848, 715, 591, 456, (402), 297w, 172, 77s.
Source: Yakovenchuk et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Kamphaugite-(Y) CaY(CO3)2(OH)∙H2O

Origin: Goudini carbonatite, South Africa.
Experimental details: No data.
Raman shifts (cm21): 3473sh, 3383s, 3298s, 3208s, 3140s, 2953w, 2668, 2500, 2357w, 2206w,

1087s, 1041sh, 953w, 761w, 523w, 433w, 250.
Source: Verwoerd (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is (Ca1.84REEx)(Y1.46REE0.54–x)
(CO3)4(OH)1.65�2H2O. For the Raman spectrum of kamphaugite-(Y) see also Frost et al. (2015a).

Kangite (Sc,Ti,Al,Zr,Mg,Ca,□)2O3

Origin: Allende meteorite. (2015a)
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished section of a sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the
sample was 5 mW.

Raman shifts (cm21): No Raman shifts for kangite can be distinguished because of strong fluores-
cence features due to high concentrations of REEs in the sample.

Source: Ma et al. (2013).
Comments: The empirical formula of the sample used is (Sc0.54Al0.16Y0.07V0.03Gd0.01Dy0.01Er0.01)

(Ti0.66Zr0.13)0.79(Mg0.11Ca0.06Fe0.02)0.19O3. In the cited paper a figure of the Raman spectrum of
synthetic Sc2O3 is given.

Kaňkite Fe3+(AsO4)∙3.5H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was less than
0.1 mW in the hydroxyl stretching region. The laser radiation power in the other spectral regions
was not indicated. The Raman shifts have been determined for the maxima of individual peaks
obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3408w, 3221, 3112sh, 1629, 1469, 1065, 881s, 832sh, 808sh, 790, 733w,
564,492s, 398w, 373w, 290w, 240, 228, 198, 179w.

Source: Frost and Kloprogge (2003).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of kaňkite see also Frost et al. (2015w) and Culka et al. (2016b).
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Kanoite MnMgSi2O6

Origin: Artificial.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The laser radiation power at the sample was in the range
0.2–1 mW.

Raman shifts (cm21): 1010, 930w, 666, 563, 531, 393, 325, (231w).
Source: Tomasini et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Kaolinite Al2Si2O5(OH)4

Origin: Washington County, Georgia, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 3683s, 3657w, 3644w, 3616s, 912, 789, 745, 462, 430, 334, 274.
Source: Wang et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and by electron micro-

probe analyses. For the Raman spectra of kaolinite see also Frost et al. (1993) and Frost (1995).

Kapellasite Cu3Zn(OH)6Cl2

Origin: Sounion No. 19 mine, Kamariza, Lavrion, Greece (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm laser radiation. The laser radiation power is not indicated. A 180-
�-scattering geometry was employed.

Raman shifts (cm21): 3457, ~908w, 481, 409, 326, ~279sh, ~266sh, 247, ~232.
Source: Krause et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is (Cu3.24Zn0.75)
(OH)5.94Cl2.0.

Kapundaite CaNaFe3+4(PO4)4(OH)3∙5H2O

Origin: Tom’s quarry, Kapunda, Mt. Lofty Ranges, South Australia, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 633 nm He-Ne and 785 nm laser radiations. The laser radiation powers are not
indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a
result of the spectral curve analysis.

Raman shifts (cm21): 3530w, 3449sh, 3311w, 3151sh, 2905w, 1687w, 1616w, 1549sh, 1443w,
1391w, 1203w, 1159sh, 1128sh, 1114s, 1089s, 1077sh, 1062sh, 1040sh, 1024, 1009sh, 988sh,
972, 963sh, 940, 912w, 675sh, 667sh, 658sh, 646, 633sh, 609, 588sh, 562sh, 547sh, 491sh, 475sh,
460sh, 448sh, 435, 412sh, 395s, 381sh, 361s, 295sh, 275s, 257s,244sh, 221sh, 186sh, 162s, 137sh,
113sh.

Source: Frost et al. (2014q).
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Comments: The sample was characterized by qualitative electron microprobe analysis.

Karelianite V2O3

Origin: Merelani Hills gem zoisite deposit, Tanzania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 1 mW.
Raman shifts (cm21): 506, 354, 219.
Source: Giuliani et al. (2008).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of karelianite see also Voloshin et al. (2014).

Karelianite V2O3

Origin: Pyrrhotite gorge, Khibiny Mts., Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The nominal laser radiation power was 2 mW.
Raman shifts (cm21): 972w, 712w, 644w, 576w, 503s, 305s, 227.
Source: Voloshin et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of karelianite see also Giuliani et al. (2008).

Karrooite MgTi2O5

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal with the b axis oriented parallel to the laser beam and the c-axis vertical using 785 nm
Ti-sapphire laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm21): 1446, 1366, 1253, 1165, 1112, 913w, 790s, 632w, 522w, 499w, 422, 370,
329, 270s, 207, 165, 140, 124, 105, 88.

Source: Liermann et al. (2006).
Comments: No independent analytical data are provided for the sample used.

Karpenkoite Co3(V2O7)(OH)2∙2H2O

Origin: Little Eva mine, Grand Co., Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 532 nm diode laser radiation. The laser radiation output power was 4 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): ~3500, 1670w, 823s, 474, 443, 312, 253.
Source: Kasatkin et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is (Co2.06Zn0.72Ni0.13Mn0.09
Ca0.02Cu0.02Mg0.01)V1.98O7(OH)2�2H2O.

Kashinite Ir2As3
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Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was in the range from 1 to 2 mW.

Raman shifts (cm21): 389, 367, 311, 290s, 200, 169, 152.
Source: Bakker (2014).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman
spectrum of kashinite see also Zaccarini et al. (2016).

Kasolite Pb(UO2)(SiO4)∙H2O

Origin: Sierra Albarrana, Córdoba, Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 972w, 949w, 912w, ~800sh, 768s, 553, 424, 237, 217, 107.
Source: Bonales et al. (2015).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

kasolite see also Frost et al. (2006e) and Driscoll et al. (2014).

Kassite CaTi2O4(OH)2

Origin: Prairie Lake carbonatite, Ontario, Canada.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm21): 3440sh, 3200–3194sh, 3161–3157, 3088sh, 2662w, 2596w, 2501w, 696–693s,

614sh, 472–463, 450–446, 398, 368, 336–332, 300–299s, 248sh, 193, 190sh, 165w, 147–146w,
124–123.

Source: Martins et al. (2014).
Comments: The sample was characterized by X-ray diffraction data and by electron microprobe

analyses. The empirical formula of the sample used is (Ca0.90Ce0.03Nd0.02La0.01Mn0.01)
(Ti1.94Fe0.04Si0.01Al0.01Nb0.01)O4(OH)2.

Katayamalite KLi3Ca7Ti2(SiO3)12(OH)2

Origin: Iwagi Island, Inland Sea, Ehime prefecture, Japan (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm solid-state laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): ~3678, 1141, 1115w, 1019w, 982s, 960s, 915w, 904w, 700w, 668w, 570s,
514w, 495sh, 488, 454, 412, 376s, 297, 278, 257, 230w, 218, 195w.

Source: Andrade et al. (2013b).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
(K0.89Na0.12)Li3.21(Ca6.87Mn0.04Ba0.02)(Ti1.79Zr0.14Fe0.04Sn0.02)(SiO3)12(OH1.55F0.45). The Raman
shifts were determined by us based on spectral curve analysis of the published spectrum.

Katoite Ca3Al2(OH)12
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Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal from the (110) face of the crystal with parallel (A1g and Eg) and cross (F2g) polarizations of
the incident and scattered light using 488 and 514.5 nm Ar+ laser radiations. The laser radiation
power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3648s, 534, 327 (A1g + Eg); 3653, 780w, 688sh, 535w, 388w, 331w, 231w,
163 (F2g).

Source: Kolesov and Geiger (2005).
Comments: The sample was characterized by powder X-ray diffraction data.

Kawazulite Bi2Te2Se

Origin: Ozernyi district, Salla-Kuolayarvi, Kola Peninsula, Russia.
Experimental details: Methods of samples preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ and 785 nm diode laser radiations. The
nominal laser radiation power was 50 and 500 mW, respectively.

Raman shifts (cm21): 141–140, 103s, 61s.
Source: Voloshin et al. (2015a).
Comments: The samples were characterized by electron microprobe analyses. The empirical formulae

of the samples used are Bi2.052Te1.797Se1.151 and (Bi1.986Ni0.068)Te2.011Se0.936. For the Raman
spectra of kawazulite see also Akrap et al. (2012) and Gehring et al. (2013).

Kazanskyite BaNa3Ti2Nb(Si2O7)2O2(OH)2(H2O)4

Origin: Kukisvumchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was in the range from 5 to
12.5 mW.

Raman shifts (cm21): 3628w, 3545, 3462sh, 1071w, 1001w, 935, 885s, 822, 722w, 680, 580, 521w,
455, 411, 317, 214w, 151.

Source: Cámara et al. (2012b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Na2.55Mn0.31Ca0.11Fe

2+
0.03)(Ba0.70Sr0.28K0.21Ca0.03)(Ti2.09Nb0.63Mn0.26Al0.02)

Si4.05O21.42H9.45F0.59. The Raman shifts were partly determined by us based on spectral curve
analysis of the published spectrum.

Keilite FeS

Origin: Zakłodzie meteorite.
Experimental details: Raman scattering measurements have been performed in the spectral region

from 100 to 4000 cm�1 on an arbitrarily oriented sample using 514.5 nm laser radiation. The laser
radiation power at the sample was 1.2 mW.

Raman shifts (cm21): ~335w, ~280.
Source: Ma et al. (2012a).
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Comments: The sample was characterized by electron backscatter diffraction and electron microprobe
analysis. The empirical formula of the sample used is (Fe0.43Mn0.35Mg0.16Cr0.02Ca0.02)S. The
Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Keiviite-(Yb) Yb2Si2O7

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal and on a powdered sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 4 W.

Raman shifts (cm21): 952s, 923s, 663, 521, 484w, 424, 413, 370, 362, 277, 203w, 145s, 88w.
Source: Bretheau-Raynal et al. (1979).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts are

given for a powdered sample.

Kemmlitzite SrAl3(AsO4)(SO4)(OH)6

Origin: Oschatz, Saxony, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3566sh, 3441s, 3374sh, 3269sh, 3047w, 1591w, 1524sh, 1356sh, 984s, 957sh,
825, 772sh, 690, 631sh, 564w, 482sh, 427, 388sh, 342s, 218, 208, 199, 149, 108w.

Source: Frost et al. (2012a).
Comments: No independent analytical data are provided for the sample used.

Kempite Mn2+2Cl(OH)3

Origin: Artificial.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 785 nm laser. The laser radiation power at the sample was less than 5 mW.
Raman shifts (cm21): 506, 478, 413w, 293s.
Source: Vallette Campos and Alvarado Aguayo (2015).
Comments: No independent analytical data are provided for the sample used.

Kentrolite Pb2Mn3+2O2(Si2O7)

Origin: Artificial.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 nm laser radiation. The nominal laser radiation power was 300 mW.
Raman shifts (cm21): 950, 893, 593s, 540, 344, 305.
Source: Vieira Ferreira et al. (2014).
Comments: No independent analytical data are provided for the sample used.
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Kenyaite Na2Si22O41(OH)8∙6H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation
power at the sample was 90 mW.

Raman shifts (cm21): 3200w, 1179, 1061, 1049, 819, 801w, 780w, 622, 493sh, 465s, 431sh, 398w,
376, 349, 316, 258, 242w, 204, 166, 162, 155w, 148w, 139w, 129w, 123w, 115w, 106.

Source: Huang et al. (1999a).
Comments: The sample was characterized by powder X-ray diffraction data.

Kerimasite Ca3Zr2(SiFe
3+

2)O12

Origin: Kerimasi volcano, northern Tanzania (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3537w, 3420sh, 3400w, 3380sh, 3240w, 875w, 830sh, 785sh, 732, 573w,

500s, 414w, 298s, 243, 152.
Source: Zaitsev et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Ca3.00Mn0.01Ce0.01Nd0.01)(Zr1.72Nb0.14Ti0.08Mg0.02Y0.02)(Fe

3+
1.23Si0.86Al0.82Ti0.09)O12. For the

Raman spectra of kerimasite see also Galuskina et al. (2013a) and Uher et al. (2015).

Kermesite Sb2OS2

Origin: Pernek, Slovak Republic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

with the laser polarization parallel and perpendicular to the cleavage and elongation of kermesite.
632.8 nm He-Ne and 785 nm solid-state laser radiations were used. The nominal laser radiation
power was 1.7 and 8.5 mW, respectively. A 180�-scattering geometry was employed.

Raman shifts (cm21): 334, 317s, 303w, 289w, 276w, 245, 237w, 231, 206w, 175w, 162w, 148, 130,
111w, 105, 97w, 84w, 72w, 64, 59, 48s.

Source: Kharbish et al. (2009).
Comments: The sample was characterized by electron microprobe analysis. The empirical formula of

the sample used is Sb1.9S2.1O. The Raman shifts are given as the sum of the spectra of all scattering
geometries with He-Ne laser excitation.

Keyite Cu2+3Zn4Cd2(AsO4)6∙2H2O

Origin: Tsumeb, Namibia (?).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 856, 803, 735, 590, 505, 411, 355, 307sh, 288, 239, 195, 134, 65.
Source: Schlüter et al. (2013).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.
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Khademite Al(SO4)F∙5H2O

Origin: Kladno mine, Central Bohemia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. Raman spectrum
was obtained in the spectral region from 200 to 4000 cm�1. The Raman shifts have been determined
for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3380, 3146sh, 2991sh, 1763sh, 1609w, 1449sh, 1132, 1104sh, 991s, 975sh,
618, 534sh, 505sh, 455, 324sh, 253sh, 226sh, 192, 150, 113sh.

Source: Frost et al. (2013m).
Comments: No independent analytical data are provided for the sample used.

Khatyrkite CuAl2

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 260, 103.
Source: Bahrami et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Khesinite Ca4(Mg3Fe
3+

9)O4(Fe
3+

9Si3)O36

Origin: Gurim anticline, near Arad city, Hatrurim Complex, Negev Desert, Israel (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power at the sample was in the
range from 10 to 20 mW. The Raman shifts have been determined for the maxima of individual
peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1638, 1495sh, 1403, 1132w, 947, 814sh, 749sh, 696, 610, 522, 481sh, 336sh,
310s, 256sh, 208sh, 159, 121.

Source: Galuskina et al. (2017).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is
Ca4(Fe

3+
8.528Mg1.635Ca0.898Ti

4+
0.336Ni

2+
0.217Mn2+0.155Cr

3+
0.132Fe

2+
0.098)[(Fe

3+
6.827Al2.506Si2.667)

O40].

Khvorovite Pb4Ca2[Si8B2(Si,B)2O28]F

Origin: Dara-I Pioz glacier, Dara-I Pioz alkaline massif, Tien Shan Mts., Tajikistan (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1100w, 1017s, 937, 783, 713, 642, 531s, 485, 425s, 296, 256s, 221w, 203w,

170, 162.
Source: Pautov et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Pb2+2.76Ba0.62K0.56Na0.16)(Ca1.86Sr0.06Y0.04Na0.04)[Si8B2(Si1.46B0.65)O28](F0.71O0.29).
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Kiddcreekite Cu6SnWS8

Origin: Zijin Cu-Au mine, China.
Experimental details: No data.
Raman shifts (cm21): 860, 654, 430, 345, 291, 256.
Source: Liu et al. (2012).
Comments: No independent analytical data are provided for the sample used.

Kidwellite NaFe3+9+x(PO4)6(OH)11�3H2O (x » 0.33)

Origin: Savannah River, Girard Barke Co., Georgia, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. Raman spectrum
was obtained in the spectral region from 200 to 4000 cm�1. The Raman shifts have been determined
for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3580, 3466, 3356, 3231, 3122, 1188, 1144w, 1129, 1082, 1063, 1050w, 1034,
1014s, 978s, 931w, 919, 875w, 653w, 644w, 631w, 588, 570, 557, 539, 500, 490, 467, 453,
444, 418w, 405, 333, 322, 285, 271, 253w, 223, 189, 181, 169, 144, 139, 118, 111.

Source: Frost et al. (2014k).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Kieftite CoSb3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polished plate cut

perpendicular to the [101] direction of a single crystal using 476.5, 488, and 514.5 nm Ar+ laser
radiations. The laser radiation power is not indicated. A 135�-scattering geometry was employed.

Raman shifts (cm21): 188, 180, 171w, 154s.
Source: Nolas et al. (1996).
Comments: The sample was characterized by X-ray diffraction data. The Raman shifts are given for

514.5 nm laser radiation.

Kieserite Mg(SO4)∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 15 mW.
Raman shifts (cm21): 3297, 1509, 1215w, 1117, 1046s, 629, 481, 436, 272, 218.
Source: Wang et al. (2006a).
Comments: The sample was characterized by powder X-ray diffraction analysis. For the Raman

spectrum of kieserite see also Wang et al. (2008).

Kilchoanite Ca6(SiO4)(Si3O10)

Origin: Birkhin massif, Baikal Lake area, Siberia, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was in the range from
30 to 50 mW.
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Raman shifts (cm21): 1012, 988, 967, 927, 911w, 871sh, 864s, 828s, 782w, 671s, 596w, 571w,
552w, 485w, 401, 358w, 333w, 306w, 259w, 246w, 208w, 195w, 188w, 163, 133, 121w, 112sh.

Source: Galuskin et al. (2012b).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Killalaite Ca6.4[H0.6Si2O7]2(OH)2

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia.
Experimental details: Raman scattering measurements have been performed on an approximately

oriented crystal using 514.5 nm Ar+ laser radiation. The laser radiation output power was in the
range from 30 to 50 mW. A 180�-scattering geometry was employed. Spectra were collected on a
cross-section approximately perpendicular to z-axis (I scattering geometry) and on a cross-section
approximately parallel to z-axis (II scattering geometry).

Raman shifts (cm21): 3562, 3523, 994, 943, 912, 677, 551, 433, 371, 302, 284, 266, 185, 129
(I scattering geometry); 3567, 3530, 1077, 999, 945, 912, 883, 678, 552, 435, 367, 284, 266,
185, 148, 107 (II scattering geometry).

Source: Armbruster et al. (2012).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The Raman shifts were determined by us
based on spectral curve analysis of the published spectrum.

Kimzeyite Ca3Zr2(SiAl2)O12

Origin: Wiluy River basin, Sakha-Yakutia, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 937w, 879w, 785, 728, 499s, 303s, 248sh, 153.
Source: Galuskina et al. (2005).
Comments: The sample was characterized by electron microprobe analyses.

Kinoite Ca2Cu2Si3O10∙2H2O

Origin: Christmas mine, Gila Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3572sh, 3519, 3441sh, 3237w, 3022w, 1585w, 1186, 1052, 1000, 994sh,
975sh, 951s, 859sh, 847s, 765, 742, 642, 543sh, 531s, 486s, 456s, 422s, 400s, 352sh, 339, 324sh,
309, 301, 286, 266sh, 251, 233sh, 225, 194, 183, 163sh, 153s, 138s, 118sh, 110.

Source: Frost and Xi (2012c).
Comments: No independent analytical data are provided for the sample used.

1004 4 Raman Spectra of Minerals



Kinoshitalite BaMg3(Si2Al2O10)(OH)2

Origin: Hokkejino, Kyoto prefecture, Kinki region, Honshu Island, Japan.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 780 nm laser radiation. The nominal laser radiation power was 600 mW.
Raman shifts (cm21): 653s, 210, 150, 140.
Source: Manuella et al. (2012).
Comments: The sample was characterized by X-ray diffraction data.

Kintoreite PbFe3+3(PO4)(PO3OH)(OH)6

Origin: Broken Hill, New South Wales, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3435sh, 3391sh, 3225, 2968sh, 1413, 1229, 1140, 1110, 1075, 1021, 1003,
975, 851, 814, 625, 573sh, 562, 551, 477sh, 459sh, 440s, 422sh, 420sh, 372, 336, 307, 253,
219, 204.

Source: Frost et al. (2006p).
Comments: No independent analytical data are provided for the sample used.

Kipushite Cu6(PO4)2(OH)6∙H2O

Origin: Miedzianka (former Kupferberg), Sudety Mts., SW Poland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 40 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3549, 3482, 3444sh, 3251sh, 1078sh, 1045w, 1021w, 975s, 942w, 875sh,
869s, 843sh, 814, 796sh, 639w, 617w, 552sh, 521w, 493sh, 464, 438w, 396, 369sh, 317w, 297w,
256w, 221w.

Source: Ciesielczuk et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts are given for As-bearing kipushite with 1.21 apfu P and 0.67 apfu As.

Kirschsteinite CaFe2+(SiO4)

Origin: Artificial.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished sample cross-section using 785 nm laser radiation. The laser radiation power at the sample
was 6.6 mW.

Raman shifts (cm21): 932, 901w, 849sh, 815s, 635w, 566w, 522w, 391, 291, 249.
Source: Kramar et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum.
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Kladnoite C6H4(CO)2NH

Origin: Kladno (Schöller) mine, Libušin, Kladno, Bohemia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 3085, 3071w, 3068sh, 3046, 1755s, 1726, 1606, 1468w, 1386, 1373, 1305,

1165, 1142, 1091w, 1047w, 1012s, 901w, 809w, 805w, 795w, 743s, 666w, 641, 550, 531w,
350, 260, 200, 163s, 72.

Source: Jehlička et al. (2007b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of kladnoite see also Moroz et al. (2004) and Jehlička et al. (2009a).

Klaprothite Na6(UO2)(SO4)4�4H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 3620, 3440, 1640, 1248, 1216w, 1175, 1161, 1070, 1036, 997s, 974, 944, 830s,
658, 624, 540w, 495w, 456, 430, 335w, 287w, 230sh, 215, 146w, 130w, 98w, 78w.

Source: Kampf et al. (2016g).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Na6.01(U1.03O2)(S0.993O4)4(H2O)4. The Raman shifts were determined by us based on spectral
curve analysis of the published spectrum. For the Raman spectrum of klaprothite see also Plášil
et al. (2015d).

Klebelsbergite Sb3+4O4(SO4)(OH)2

Origin: Pereta mine, Grosseto province, Tuscany, Italy.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3457sh, 3435w, 3357w, 1142, 1139sh, 1089sh, 1074, 1029, 971s, 936sh,
723, 662, 627sh, 611sh, 604s, 581s, 489s, 481sh, 446, 435, 410, 326, 303, 266w, 238s, 225s, 205s,
194sh, 170s, 160sh, 142, 130, 116.

Source: Frost and Bahfenne (2011c).
Comments: No independent analytical data are provided for the sample used.

Klockmannite Cu5.2Se6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 263s, 206w, 192w, 45sh, 43s, 17.
Source: Ishii et al. (1993).
Comments: The sample was characterized by powder X-ray diffraction data.
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Knorringite Mg3Cr2(SiO4)3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polished surface of

an arbitrarily oriented single crystal using 632 nm He-Ne laser radiation. The laser radiation power
is not indicated.

Raman shifts (cm21): 936, 908, 866, 718, 551s, 368.
Source: Bykova et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Mg3.21Cr1.58Si3.21O12.

Kobokoboite Al6(PO4)4(OH)6∙11H2O

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1630, 1463, 1170sh, 1095, 1046, 980sh, 916, 764, 600, 514, 490sh.
Source: Sanchez-Moral et al. (2011).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Koechlinite Bi2MoO6

Origin: Pittong, Victoria, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 843, 797, 773sh, 715, 401, 349, 321, 293sh, 281, 268sh, 228, 195, 154sh, 141.
Source: Frost et al. (2004c).
Comments: No independent analytical data are provided for the sample used.

Kojonenite Pd7-xSnTe2 (0.3 � x � 0.8)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polished surface of

an arbitrarily oriented crystal using 532 nm Nd-YAG laser radiation. The laser radiation power at
the sample was in the range from 1 to 2 mW.

Raman shifts (cm21): 197w.
Source: Vymazalová et al. (2014).
Comments: The sample was characterized by electron microprobe analysis.

Kokchetavite K(AlSi3O8)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The nominal laser radiation power was 60 mW. A
180�-scattering geometry was employed.
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Raman shifts (cm21): 835, 390s, 109s.
Source: Kanzaki et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

kokchetavite see also Hwang et al. (2004) and Ferrero et al. (2016).

Koktaite (NH4)2Ca(SO4)2∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 3353sh, 3149, 2852w, 1723w, 1677w, 1453, 1419, 1153, 1132, 1104w, 1087,

996s, 980s, 656, 642, 625, 616, 603, 487, 474, 437, 423.
Source: Jentzsch et al. (2012a).
Comments: The sample was characterized by powder X-ray diffraction data.

Kolskyite CaNa2Ti4(Si2O7)2O4(H2O)7

Origin: Kirovskii mine, Kukisvumchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 532 nm laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 1072w, 997w, 925s, 800w, 685s, 586, 505w, 435, 420, 397, 297, 214w, 151.
Source: Cámara et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Na1.93Mn0.04Ca0.03)(Ca0.67Sr0.45Ba0.19K0.15)(Ti2.93Nb0.46Mn0.33Mg0.17Fe

2+
0.10Zr0.01)Si4.00O24.67

H13.60F0.33. The Raman shifts were partly determined by us based on spectral curve analysis of the
published spectrum.

Kolwezite (Cu,Co)2(CO3)(OH)2

Origin: Mupine, Shaba province, Zaire.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3439sh, 3389, 3310sh, 3284sh, 1515sh, 1495, 1456sh, 1363, 1093s, 1059s,
757w, 718w, 530, 431, 346, 264, 176, 159.

Source: Frost (2006).
Comments: No independent analytical data are provided for the sample used.

Konyaite Na2Mg(SO4)2∙5H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
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Raman shifts (cm21): 3295, 3185sh, 1179w, 1144w, 1091, 1003s, 981s, 648w, 619sh, 610, 602sh,
471sh, 455sh, 448.

Source: Jentzsch et al. (2011).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of konyaite see also Jentzsch et al. (2013). The Raman shifts were partly determined by us based on
spectral curve analysis of the published spectrum.

Koritnigite Zn(AsO3OH)∙H2O

Origin: Jáchymov ore district, Krušné Hory Mts., Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3474w, 3297sh, 3182w, 3005w, 2770w, 2434sh, 2285w, 1755sh, 1597w,
1303w, 877s, 842s, 813s, 766, 330, 261, 284, 237, 219, 187, 172s, 154, 140, 120, 110.

Source: Frost et al. (2011q).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The empirical formula of the sample used is (Zn0.79Co0.14Ni0.02)
[AsO3(OH)0.99F0.01]1.00�H2O. The Raman shifts were partly determined by us based on spectral
curve analysis of the published spectrum. For the Raman spectrum of koritnigite see also Frost et al.
(2014a).

Kornelite Fe3+2(SO4)3∙7H2O(?)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3587w, 3352sh, 3123, 1696sh, 1658w, 1613sh, 1182, 1151sh, 1124w, 1078w,
1033s, 1021sh, 993w, 838w, 672w, 636, 597, 476, 452, 439, 269, 248, 209, 187.

Source: Ling and Wang (2010).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

kornelite see also Ling et al. (2009) and Kong et al. (2011a).

Kornerupine (Mg,Fe2+,Al,□))10(Si,Al,B)5O21(OH,F)2(?)

Origin: Mautia Hill, Tanzania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3619sh, 3612s, 3599sh, 3556sh, 3547s, 3538sh, 3521w, 3275w, 1084w, 1051,
1035sh, 995, 947sh, 923, 668, 648sh, 620, 586sh, 554w, 507sh, 487, 477sh, 459sh, 403, 394sh,
364w, 355w, 336, 324, 316sh, 298w, 261, 254sh, 236w, 224, 219sh, 191sh, 180, 150, 138sh, 123.

Source: Frost et al. (2015t).

4 Raman Spectra of Minerals 1009



Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman
spectrum of kornerupine see also Wopenka et al. (1999).

Kosmochlor NaCr3+Si2O6

Origin: Morasko iron meteorite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 10 mW.
Raman shifts (cm21): 1055, 1033s, 991, 952w, 863, 680, 565sh, 552s, 520, 413, 380w, 339s, 320w,

294, 252, 202, 142w.
Source: Karwowski et al. (2013).
Comments: The sample was characterized by electron microprobe analyses. The empirical formula of

the sample used is Na0.91Ca0.07Mg0.09Fe0.02Cr0.82Al0.01V0.01Ti0.07Si2.00O6.00. The Raman shifts
were partly determined by us based on spectral curve analysis of the published spectrum. For the
Raman spectrum of kosmochlor see also Leander et al. (2014).

Kosnarite KZr2(PO4)3

Origin: Jenipapo district, Itinga, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1149w, 1116w, 1088, 1079sh, 1063, 1060, 1031sh, 1026s, 1022sh, 1017sh,
979sh, 638, 595, 561w, 437s, 421, 405, 387w, 318, 290s, 263, 188sh, 175, 156, 141sh, 122.

Source: Frost et al. (2012i).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Kotoite Mg3(BO3)2

Origin: Snezhnoye deposit, East Verkhoyan’ye, Sakha Yakutia, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
less than 20 mW. A 0�-scattering geometry was employed.

Raman shifts (cm21): 1255w, 1088w, 920s, 866w, 847, 708, 796, 691, 553, 357s, 327, 310.
Source: Galuskina et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of kotoite see also Frost and Xi (2013c) and Kipcak et al. (2013).

Köttigite Zn3(AsO4)2∙8H2O

Origin: Ojuela Mine, Mapini, Durango, Mexico.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.
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Raman shifts (cm21): 3458sh, 3215w, 868sh, 835s, 810sh, 790s, 547, 479sh, 451s, 432s, 371w,
332w, 286sh, 249s, 220s, 194sh, 142w.

Source: Frost et al. (2003g).
Comments: No independent analytical data are provided for the sample used.

Kotulskite Pd(Te,Bi)2-x (x � 0.4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was in the
range from 1 to 2 mW.

Raman shifts (cm21): 97.
Source: Vymazalová et al. (2014).
Comments: The sample was characterized by electron microprobe analysis.

Kovdorskite Mg2(PO4)(OH)∙3H2O

Origin: Kovdor massif, Kola Peninsula, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3681, 3395, 3219, 2967, 1550, 1089w, 1056, 964s, 870w, 566sh, 536, 453,

410w, 375, 345, 320w, 303, 255w, 228, 201, 158s, 135.
Source: Morrison et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Mg2.00PO4.00(OH)�2.67H2O. The Raman shifts were partly determined by us based on spectral
curve analysis of the published spectrum. For the Raman spectrum of kovdorskite see also Frost
et al. (2013a).

Kozyrevskite Cu4O(AsO4)2

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm diode laser radiation. The laser radiation power at the sample was about
3 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 875s, 840sh, 826s, 757sh, 497w, 445, 394, 340, 216, 170sh, 137sh, 112.
Source: Pekov et al. (2014c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Cu3.95Zn0.07Fe0.01)(As1.83P0.09S0.03V0.02Si0.01)O9.

Kremersite (NH4)2Fe
3+Cl5∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using He-Ne laser radiation. The nominal laser radiation power was 50 mW. A
135�-scattering geometry was employed.
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Raman shifts (cm21): 359w, 296s, 211, 194, 130sh, 115w.
Source: Sharma and Pandya (1974).
Comments: No independent analytical data are provided for the sample used.

Krieselite Al2(GeO4)F2

Origin: Tsumeb mine, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632 nm He-Ne laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm21): 862, ~802sh, 718w, 294s, 224.
Source: Schlüter et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The empirical formula of the sample used is (Al1.860Ga0.102As
3+

0.036Zn0.020Mg0.016
Fe3+0.012Na0.009Sb

3+
0.005Ti0.003Cu0.001)(Ge0.844Al0.143Si0.013)O4(F1.103OH0.897).

Kröhnkite Na2Cu(SO4)2∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 488 and 514.5 nm Ar+ laser radiations. The laser radiation power is not indicated.
Raman shifts (cm21): 3280w, 3200w, 3140w, 3100w, 1660w, 1610w, 1590w, 1182w, 1175w, 1162,

1150, 1128w, 1090w, 1045s, 989s, 840w, 740, 715w, 655, 645, 615, 585w, 560, 464s, 444s, 430sh,
300s, 280w, 260, 210w, 175w, 145w, 100s, 80, 70, 55.

Source: Pillai et al. (1997).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of kröhnkite see also Frost et al. (2013v) and Majzlan et al. (2015).

Krotite CaAl2O4

Origin: Northwest Africa 1934 meteorite (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 789, 686w, 647w, 543s, 520s, 456w, 404w, 312w, 174, 150, 141.
Source: Ma et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Ca1.02Al1.99O4. For the Raman spectrum of krotite see also Janáková et al. (2007).

Krut’aite CuSe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ and 632.8 nm He-Ne lasers radiations. The nominal laser radiation
power was 70 and 50 mW, respectively. A 180�-scattering geometry was employed.

Raman shifts (cm21): 270sh, 260, 115w.
Source: Anastassakis (1973).
Comments: No independent analytical data are provided for the sample used.
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Kryzhanovskite (Fe3+,Mn2+)3(PO4)2(OH,H2O)3

Origin: Hagendorf South pegmatite, Waidhaus, Upper Palatinate, Bavaria, Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3562, 3531, 3432w, 1596w, 1530sh, 1379w, 1114sh, 1081sh, 1046s, 1020sh,
1001sh, 970s, 907sh, 829w, 622sh, 601s, 581sh, 547, 512sh, 477, 414, 363sh, 329, 283s, 251sh,
199s, 179sh, 147sh, 113.

Source: Frost et al. (2016d).
Comment The sample was characterized by qualitative electron microprobe analysis.

Ktenasite (Cu,Zn)5(SO4)2(OH)6∙6H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 994, 981, 973, 604, 475, 449.
Source: Frost et al. (2013a).
Comments: No independent analytical data are provided for the sample used.

Kuksite Pb3Zn3TeO6(PO4)2

Origin: Blue Bellclaims, California, USA, and Black Pine mine, Montana, USA.
Experimental details: Methods of samples preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The laser radiation
power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3036w, 1006, 734, 529, 493, 416 (for a sample from Blue Bell claims); 1017,
731, 497, 476, 424 (for a sample from Black Pine mine).

Source: Mills et al. (2010).
Comments: The samples were characterized by powder X-ray data and electron microprobe analyses.

The crystal structure is solved. The empirical formulae of the samples used are (Pb2.89Bi0.10)
(Zn2.84Cu0.20Fe0.02)Te1.05(P1.52Si0.44As0.02)O14 and Pb2.93(Zn2.74Cu0.06Fe0.01)(Te0.58Sb0.33)(P1.44
As0.74Si0.11)O14, respectively.

Kulanite BaFe2+2Al2(PO4)3(OH)3

Origin: Rapid Creek, Dawson Mining District, Yukon, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3533, 3513w, 3339sh, 3211, 3095w, 2960sh, 2754sh, 1303w, 1235w, 1182sh,
1146, 1110, 1076sh, 1039sh, 1022s, 1012sh, 1006sh, 967, 928w, 665w, 624sh, 616, 585, 569, 553,
525, 492, 456, 438, 418, 358w, 343, 317w, 279, 213, 196sh, 186sh, 161sh, 137, 122.

Source: Frost et al. (2013k).
Comments: No independent analytical data are provided for the sample used.

Kullerudite NiSe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline thin

film using 514.5 nm Ar+ laser radiation. The laser radiation power density on the surface was of the
order of 100 kW cm�2. A 180�-scattering geometry was employed.

Raman shifts (cm21): 243, 214s, 170, 152.
Source: De las Heras and Agulló-Rueda (2000).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of kullerudite see also Zhuo et al. (2015).

Kumdykolite Na(AlSi3O8)

Origin: Village of Staré, České Středohoří Mts., Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 492s, 464, 407w, 284sh, 265, 222, 155s.
Source: Kotková et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

kumdykolite see also Hwang et al. (2009) and Ferrero et al. (2016).

Kumtyubeite Ca5(SiO4)2F2

Origin: Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
single crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was in the
range from 20 to 40 mW. A 0�-scattering geometry was employed.

Raman shifts (cm21): 3561, 3553s, 3544, 925w, 901, 849, 822s, 547, 525w, 420, 397, 323, 299w,
281.

Source: Galuskina et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Ca5(Si1.99Ti0.01)O8(F1.39OH0.61).

Kuramite Cu3SnS4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 346s, 333s, 316s, 289.
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Source: Gusain et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Kuranakhite PbMn4+Te6+O6

Origin: Moctezuma, Sonora, Mexico.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 677, 619s, 508, 380, 320, 310.
Source: Grundler et al. (2008).
Comments: The sample was characterized by electron microprobe analyses. Raman spectrum of

presumed kuranakhite published by Frost and Keeffe (2009e) without accompanying analytical data
is questionable.

Kuratite Ca2(Fe
2+

5Ti)O2[Si4Al2O18]

Origin: D’Orbigny angrite meteorite (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 996, 856, 699s, 563, 500sh, 351.
Source: Hwang et al. (2016).
Comments: The sample was characterized by selected area electron diffraction and electron micro-

probe analysis. The empirical formula of the sample used is (Ca3.88Na0.02
REE3+

0.03Mn0.03Mg0.01Ni0.02Zn0.01Sr0.01)(Fe
2+

9.98Ti2.00)(Si7.80Al3.52Fe
3+

0.64P0.05S0.02)
O39.98F0.01Cl0.01.

Kurnakovite MgB3O3(OH)5∙5H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 300 mW.
Raman shifts (cm21): 944, 850s, 627, 466w, 422, 391.
Source: Jun et al. (1995).
Comments: The sample was characterized by powder X-ray diffraction data.

Kusachiite Cu2+Bi3+2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powder sample

using 1064 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 914, 879, 625, 599, 560, 497, 482s, 451s, 415.
Source: Anandan et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
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Kushiroite CaAlAlSiO6

Origin: ALH 85085 CH chondrite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 and 514.5 nm Ar+ laser radiations. The nominal laser radiations power was in the
range from 12 to 20 mW.

Raman shifts (cm21): 959, 675, 520w, 410sh, 369, 334.
Source: Kimura et al. (2009).
Comments: The sample was characterized by electron backscatter diffraction and electron microprobe

analyses. The empirical formula of the sample used is Ca1.008(Mg0.094Fe0.034Al0.878)(Al0.921Si1.079)
O6. For the Raman spectrum of kushiroite see also Ma et al. (2009).

Kutnohorite CaMn2+(CO3)2

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation output
power was in the range from 200 to 300 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 1740w, 1420w, 1086s, 716, 284.
Source: Herman et al. (1987).
Comments: The sample was characterized by powder X-ray diffraction data and by quantitative

chemical analysis.

Kuzminite HgBr

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 514.5 nm Ar+ and 632.8 nm He-Ne laser radiations. The nominal laser radiation power
was in the range from tens to hundreds mW. Spectra were collected in the (zz), (xz), and (yz)
scattering geometries.

Raman shifts (cm21): 208, 128, 85, 35.
Source: Markov and Roginskii (2011).
Comments: No independent analytical data are provided for the sample used. The Raman shifts are

given as the sum of the Raman shifts for different scattering geometries. For the Raman spectrum of
kuzminite see also Ōsaka (1971).

Kyanite Al2OSiO4

Origin: Harts Range, Northern Territory, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
60 mW.

Raman shifts (cm21): 998w, 952s, 900w, 669sh, 654, 632, 606, 562, 486s, 437, 419, 405, 386,
360, 325, 302.

Source: Mernagh and Liu (1991).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were

partly determined by us based on spectral curve analysis of the published spectrum. For the Raman

1016 4 Raman Spectra of Minerals



spectra of kyanite see also Makreski et al. (2005b), Yang et al. (2007b), Andò and Garzanti (2014),
and Culka et al. (2016a).

Kyawthuite Bi3+Sb5+O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The nominal laser radiation power was less than 10 mW.
A 180�-scattering geometry was employed. The Raman shifts for asymmetric peaks have been
determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 783w, 730w, 636w, 603w, 452, 420w, 394, 387sh, 319w, 252, 158s, 137s,
133sh, 56s.

Source: Errandonea et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of kyawthuite see also Loubbidi et al. (2014).

Laachite (Ca,Mn)2Zr2Nb2TiFeO14

Origin: Dellen (Zieglowski) pumice quarry, 1.5 km NE of Mendig, Laacher See volcano, Eifel region,
Rhineland-Palatinate, Germany (typa locality).

Experimental details: Raman scattering measurements have been performed on an oriented single
crystal using 532 nm diode laser radiation. The laser radiation power about 6 mW. Raman spectra
were collected with the polarization of the laser beam parallel to the a axis of the crystal (A) and
with the polarization of the laser beam lying in the plane (010), perpendicular to the a axis of the
crystal (B) scattering geometries. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm�1): 1568w, 1190w, 821sh, 752, 584s, 468sh, 300s, 183w (A); 1175w, 832sh,
757, 588s, 485, 371sh, 330, 213sh, 192 (B).

Source: Chukanov et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The empirical formula of the sample used is
(Ca0.66Mn0.37Th0.25Y0.20La0.11Ce0.34Nd0.11)(Zr1.36Mn0.64)(Nb1.81Ti1.19)(Fe0.69Al0.17Mn0.14)O14.00.

Lacroixite NaAl(PO4)F

Origin: Ehrenfriedersdorf, Germany.
Experimental details: No data.
Raman shifts (cm�1): 1001s, 623, 609.
Source: Frezzotti et al. (2012).
Comments: No independent analytical data are provided for the sample used.

Lafossaite TlCl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished crystals using 457.9 nm, 476.5 nm, and 514.5 nm Ar+ laser radiations. The sample was
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immersed in pumped liquid helium or in liquid nitrogen. The laser radiation power at the sample
was below 200 mW.

Raman shifts (cm�1): 340s, 237, 190, 172s, 147, 111, 98, 85sh, 70sh, 36, 26sh.
Source: Nanba et al. (1987).
Comments: No independent analytical data are provided for the sample used. In lafossaaite, the first

order Raman scattering process is forbidden by the inversion symmetry (the alternative prohibition
rule). However, the second order Raman scattering spectrum is allowed. Raman shifts are given for
a sample at 77 K.

Laihunite (Fe3+,Fe2+,□)2(SiO4)

Origin: Lau-Hi, China.
Experimental details: Experimental details are not indicated. Raman scattering measurements have

been performed on an arbitrarily oriented polished sample.
Raman shifts (cm�1): 896s, 785w, 592sh, 568s, 506w, 428w, 355sh, 312s.
Source: Kuebler et al. (2011).
Comments: The sample was characterized by electron microprobe analyses.

Lakargiite CaZrO3

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was in the
range from 40 to 60 mW. A 0�-scattering geometry was employed. Raman spectrum was obtained
in the spectral region from 50 to 4000 cm�1.

Raman shifts (cm�1): ~800w, ~715w, ~525w, ~470, ~442s, ~355s, ~285s, ~262s, ~240w, ~215w,
~182w, ~152w.

Source: Galuskin et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction analysis and by electron

microprobe analyses. Raman shifts are given for lakargiite with the following chemical composi-
tion: lakargiite CaZrO3 67%, megawite CaSnO3 27%, perovskite CaTiO3 2%, and others 4%.

Lamprophyllite Na3(SrNa)Ti3(Si2O7)2O2(OH)2

Origin: Rasvumchorr Mt., Khibiny massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 1113w, 1072w, 1049w, 1028w, 1001w, 972w, 940s, 918s, 888sh, 861w,
852sh, 801w, 782sh, 707, 671, 595sh, 576, 538w, 516w, 459w, 445sh, 411w, 349, 319w, 294sh,
282sh, 270, 257sh, 227w, 208sh, 201, 177sh, 168sh, 151, 137sh, 114w.

Source: Frost et al. (2015ab).
Comments: The sample was characterized by qualitative electron microprobe analysis.
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Lanarkite Pb2O(SO4)

Origin: Leadhills, Scotland, UK.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished cross-section of the sample using 632.8 nm He-Ne laser radiation. The laser radiation
power at the sample was in the range from 0.02 to 2 mW.

Raman shifts (cm21): 1070, 1055, 976s, 619w, 601w, 439w, 426w, 334, 284, 147s.
Source: Correia et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Långbanite Mn2+4Mn3+9Sb
5+O16(SiO4)2

Origin: Långban mine, Bergslagen ore district, Filipstad, Värmland, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals. Other experimental details are not indicated. The Raman shifts have been determined for
the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3699sh, 3680w, 3476sh, 3076sh, 2636w, 2488w, 2240w, 1947w, 1718w,
1432w, 1200sh, 1130, 1094sh, 1034sh, 1012sh, 986s, 964s, 897sh, 872, 671, 646sh, 558sh,
542, 463w, 415sh, 386, 351, 330sh, 258w, 202.

Source: Bahfenne and Frost (2010a).
Comments: No independent analytical data are provided for the sample used.

Langbeinite K2Mg2(SO4)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 514 nm and 785 nm
lasers radiations. The laser radiation power at the sample was less than 1 mW.

Raman shifts (cm21): 1245w, 1134w, 1123w, 1053s, 626w, 466w, 457w.
Source: Morillas et al. (2016).
Comments: The sample was characterized by electron microprobe analysis.

Langite Cu4(SO4)(OH)6∙2H2O

Origin: Cornwall, UK.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 780 nm Nd-YAG laser radiation. The nominal laser radiation power was less than
1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a
result of the spectral curve analysis.

Raman shifts (cm21): 3587, 3564, 3405, 3372, 3260w, 1911, 1906, 1266, 1172, 1149, 1128, 1102,
1076, 982sh, 974s, 911w, 773w, 732, 621, 609, 596s, 507, 481, 449, 420, 391, 317, 273sh, 258sh,
241, 226sh, 1912, 183sh, 175, 167, 155, 147, 139, 130sh, 118sh.

Source: Martens et al. (2003a).
Comments: No independent analytical data are provided for the sample used.
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Lanmuchangite TlAl(SO4)2∙12H2O

Origin: Synthetic.
Experimental details: The stimulated Raman scattering measurements have been performed on an

oriented sample using 532 nm and 1064 nm Nd-YAG laser radiations. The laser radiation power is
not indicated. Raman spectra were collected in the scattering geometries with pumping and
registration along [110] direction and polarization both emissions perpendicular to the [110]
direction.

Raman shifts (cm21): 991s.
Source: Kaminskii et al. (2004).
Comments: No independent analytical data are provided for the sample used.

Lansfordite Mg(CO3)∙5H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed below 0�C on an

arbitrarily oriented microcrystalline sample using 532 nm Nd-YAG laser radiation. The nominal
laser radiation power was about 8 mW.

Raman shifts (cm21): 3264s, 1705w, 1514w, 1424w, 1098s, 774w, 698w, 225s.
Source: Coleyshaw et al. (2003).
Comments: No independent analytical data are provided for the sample used.

Lanthanite-(Nd) Nd2(CO3)3∙8H2O

Origin: Whitianga quarry, Coromandel Peninsula, New Zealand.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystal blades using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 25 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3471s, 3280s, 3072s, 2865s, 1702w, 1636w, 1615w, 1612w, 1581, 1576w,
1559w, 1557w, 1513w, 1505w, 1487w, 1459w, 1454w, 1418w, 1394w, 1365, 1294w, 1292w,
1286w, 1173w, 1093s, 968w, 762w, 732w, 686w, 372w, 356w, 277w, 233.

Source: Graham et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe

analysis and laser-ablation inductively coupled plasma mass spectrometry. The empirical formula
of the sample used is (Nd0.63La0.59Ce0.35Pr0.15Sm0.10Gd0.069Y0.06Eu0.03Dy0.02Ga0.01)(CO3)3�8H2O.

Lapeyreite Cu3O[AsO3(OH)]2∙H2O

Origin: Alpes-Maritimes Region, Nice, France (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

fragment of the holotype sample using 532 nm He-Ne laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 1047, 627, 405, 214s, 198sh, 188sh, 141, 100.
Source: Hatipoglu and Babalik (2012).
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Larnite Ca2(SiO4)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 17 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1577w, 1112w, 1085w, 976, 949, 914, 897w, 871sh, 858s, 845sh, 669w,
564w, 554w, 536, 524sh, 516sh, 443, 368w, 300, 274sh, 252w, 241, 222w, 201w, 165, 146, 101w,
76w.

Source: Sokol et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of larnite see also Piriou and McMillan (1983).

Laueite Mn2+Fe3+2(PO4)2(OH)2∙8H2O

Origin: Cigana mine, Conselheiro Pena, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 0.1 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 3515sh, 3478sh, 3430, 3379, 3297sh, 3080sh, 1692sh, 1613w, 1504sh,
1096sh, 1069, 1045s, 1021, 997sh, 980s, 864w, 731, 551, 542, 525, 472, 456, 404, 357,
335, 279, 265, 253s, 240, 226sh, 186, 172, 161s, 138, 115, 110.

Source: Frost et al. (2016b).
Comments: The empirical formula based on the semiquantitative chemical analyses of the sample

used is (Mn2+0.85Fe
2+

0.10Mg0.05)(Fe
3+

1.90Al0.10)(PO4)2(OH)2�8H2O.

Laumontite CaAl2Si4O12∙4H2O

Origin: Grodziszcze, Poland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using Nd-YAG laser radiation. The laser radiation power at
the sample was 300 mW.

Raman shifts (cm21): 1023, 948, 817, 674, 593, 517s, 493s, 385, 327s, 201, 164.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Laurentianite [NbO(H2O)]3(Si2O7)2[Na(H2O)2]3

Origin: Poudrette quarry, Mont Saint-Hilaire, Quebec, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 3421, 33267, 3024, 1103w, 1054w, 920s, 841s, 771w, 700, 628w, 597, 560w,
486w, 467w, 405, 344w, 309, 292, 241, 218sh, 193sh, 176, 138sh, 122, 90.

Source: Haring et al. (2012).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses. The crystal structure is solved. The empirical formula of the sample used is [(Nb0.99Ti0.01)
O(H2O)]3(Si2.00O7)2[(Na0.86□0.10K0.02Ca0.01)(H2O)2]3.

Laurionite PbCl(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline and

on an oriented single crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated. 90� and 180�-scattering geometries were employed in single-crystal experiments. Raman
spectra were obtained in the spectral region from 50 to 4000 cm�1. Polarized spectra were collected
in the c(xx)–c, c(yy)–c, a(zz)–a, a(yx)c, a(zx)c, and a(zy)c scattering geometries.

Raman shifts (cm21): 3517s, 665sh, 595, 505w, 446w, 327, 272, 175w, 123sh, 111s, 105s, 87sh, 51s.
Source: Lutz et al. (1995).
Comments: The sample was characterized by powder X-ray diffraction analysis. The Raman shifts are

given for a polycrystalline sample.

Laurite RuS2

Origin: Santa Elena Nappe, Costa Rica.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.6 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~395w, 330s.
Source: Zaccarini et al. (2010).
Comments: The sample was characterized by electron microprobe analyses.

Laurite RuS2

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532.1 nm Nd-YAG laser radiation. The laser radiation
power at the sample was in the range from 1 to 2 mW.

Raman shifts (cm21): ~395sh, 364–351s.
Source: Bakker (2014).
Comments: No independent analytical data are provided for the sample used.

Lausenite Fe3+2(SO4)3∙5H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 3425sh, 3323sh, 3195, 3057sh, 1653w, 1605w, 1189, 1119w, 1087w, 1052sh,
1036s, 1017, 799w, 652w, 631w, 614w, 599w, 494, 468, 457, 441sh, 416sh, 281, 253.

Source: Ling and Wang (2010).
Comments: The sample was characterized by powder X-ray diffraction data.
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Lautarite Ca(IO3)2

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 830s, 808w, 794s, 775, 759s, 737s, 427, 394, 362sh, 351, ~333sh,

326, ~315sh, 266w, 235.
Source: Alici et al. (1992).
Comments: The sample was characterized by powder X-ray diffraction data.

Lavendulan NaCaCu5(AsO4)4Cl∙5H2O

Origin: Alice Mary Mine, Kundip, Western Australia, Australia.
Experimental details: Experimental details are not indicated. Raman scattering measurements have

been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 1053w, 981w, 893sh, 878sh, 856s, 783, 614w, 543s, 406, 342w, 278w,
226, 176.

Source: Frost et al. (2007m).
Comments: No independent analytical data are provided for the sample used.

Lavinskyite K(LiCu)Cu6(Si4O11)2(OH)4

Origin: Wessels mine, Kalahari Manganese Fields, South Africa (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state
laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 3694, 3662s, 3630sh, 3390, 1090, 1043, 991, 919, 891, 685s, 580w, 562, 503,
445+424s, 401.

Source: Yang et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is (K0.99Ba0.01)
(Li1.04Cu0.93Na0.10)(Cu5.57Mg0.43Mn0.01)(Si4.00O11)2(OH)4.

Lawrencite FeCl2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 277 K using 647.1 nm

Kr+ laser radiation. The laser light was directed along the c face of the crystal with polarization in
the plane of incidence. In this configuration the scattered light is largely depolarised and there were
no polarization effects. The nominal laser radiation power was about 100 mW. A 90�-scattering
geometry was employed.

Raman shifts (cm21): 246, 144s.
Source: Johnstone et al. (1978).
Comments: No independent analytical data are provided for the sample used.
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Lawsonite CaAl2(Si2O7)(OH)2∙H2O

Origin: Tiburon Peninsula, California, USA (type locality).
Experimental details: Raman scattering measurements have been performed at different pressures, on

an arbitrarily oriented single-crystal slice oriented parallel to (001), using 514.5 nm Ar+ laser
radiation. The laser radiation power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3541, 961sh, 940s, 918sh, 800, 696, 565s, 462w, 434w, 364w, 330, 282, 280.
Source: Daniel et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction data. Raman shifts are given

for sample at ambient conditions (pressure 0.1 MPa).

Lazaridisite Cd3(SO4)3∙8H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

microcrystal using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1117, 1004s, 625w, 460, 330w.
Source: Falgayrac et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data.

Lazulite MgAl2(PO4)2(OH)2

Origin: Gentil mine, Mendes Pimentel, east of Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3478w, 3402s, 3385sh, 3373sh, 3146w, 1684w, 1528sh, 1509w, 1271w,
1214w, 1139sh, 1137s, 1102, 1089sh, 1060s, 1019, 1004sh, 865w, 790w, 742, 714w, 669sh,
648, 633sh, 623, 613sh, 605sh, 580w, 568w, 527w, 479, 460w, 425, 414, 394sh, 378, 365sh,
347, 333sh, 322, 282, 254, 225, 197sh, 195sh, 190s, 173, 137.

Source: Frost et al. (2013p).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of lazulite see also Frezzotti et al. (2012).

Lazurite Na3Ca(Si3Al3)O12S

Origin: Badakhshan, Afghanistan.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 1090, 970w, 801w, 636w, 582sh, 545s, 413w, 258.
Source: Caggiani et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction analysis and by energy-

dispersive X-ray scan analysis. For the Raman spectra of lazurite see also Ostroumov et al. (2002).
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Lead Pb

Origin: Karrantza Valley, the westerner area of the Basque Co., Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 20 mW.
Raman shifts (cm21): 153s.
Source: Goienaga et al. (2011).
Comments: No independent analytical data are provided for the sample used.

Leadhillite Pb4(SO4)(CO3)2(OH)2

Origin: Hard Luck Claim, near Baker, San Bernardino Co., California, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3481, 3386sh, 1719, 1704, 1674, 1375, 1097sh, 1054s, 1016sh, 964s,
856, 703w, 677w, 626w, 599w, 458sh, 428s, 360w, 307w, 262w, 220sh, 195sh, 173s.

Source: Frost et al. (2003e).
Comments: No independent analytical data are provided for the sample used.

Lechatelierite SiO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 3 mW.
Raman shifts (cm21): 1110w, 802, 603, 493, 441, ~300sh.
Source: Kowitz et al. (2013).
Comments: The sample was characterized by energy-dispersive X-ray scan analysis. Raman shifts are

given for a sample subjected to a shock more than 36 GPa.

Leguernite Bi12.67O14(SO4)5

Origin: La Fossa crater, Vulcano, Aeolian Islands, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 nm laser radiation. The nominal laser radiation power was 1.4 mW.
Raman shifts (cm21): 2430, 1145sh, 1019, 970s, 603sh, 473, 429, 279s, 243, 183, 150.
Source: Garavelli et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The crystal structure is solved. The empirical formula of the sample used is (Bi12.40Pb0.15)
S5.08O34.

Leightonite K2Ca2Cu(SO4)4∙2H2O

Origin: Chuquicamata mine, Antofagasta region, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The
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Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3457sh, 3435, 3386sh, 3364sh, 3350s, 3329s, 3310sh, 3206w, 3088w, 2911w,
2856w, 1803w, 1748w, 1700sh, 1670w, 1446w, 1177w, 1163w, 1137w, 1120w, 1047, 990sh,
975sh, 912, 864w, 846sh, 823, 753w, 654, 640sh, 612, 601, 589sh, 513, 463, 446, 425sh, 413, 394,
361, 298, 266, 238w, 217, 155sh, 149, 137, 126sh, 120, 106.

Source: Frost et al. (2013j).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Leiteite ZnAs3+2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample and oriented crystal using 633 nm He-Ne laser radiation. The laser radiation power is not
indicated. Polarized spectra were collected in the c(bb)c, c(ba)c, c(aa)c, b(ac)b, b(aa)b, a(bb)a, a
(bc)a, and a(cc)a scattering geometries. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 804, 763, 647w, 600, 566sh, 548, 457s, 3768w, 366w, 304w, 265sh, 254s,
217, 199w.

Source: Bahfenne et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction analysis and electron micro-

probe analysis. For the Raman spectra of leiteite see also Origlieri et al. (2009) and Frost and
Bahfenne (2010d).

Lemanskiite NaCaCu5(AsO4)4Cl∙5H2O

Origin: El Guanqco mine, Antofagsta, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1369, 1264, 1165w, 910w, 878s, 853s, 800w, 775w, 545, 479w, 440w, 400w,
345, 280sh, 262w, 243w, 220, 172.

Source: Frost et al. (2007m).
Comments: No independent analytical data are provided for the sample used.

Lemoynite Na2CaZr2Si10O26∙5-6H2O

Origin: Poudrette quarry, Mont Saint-Hilaire, Montérégie, Quebec, Canada (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 952–961, ~600–605s, 533–540s, 426–429s, (~360w), (~325w), (~280),
(~250w).

Source: McDonald et al. (2015).
Comments: No independent analytical data are provided for the sample used.
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Leogangite Cu10(AsO4)4(SO4)(OH)6∙8H2O

Origin: Monte Avanza Mine, Formi Avoltri, Udine Province, Fruili Venezia Giulia, Italy.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3619sh, 3496, 3316, 3181sh, 2929, 2884sh, 2854w, 1627w, 1576w, 1461sh,
1441w, 1070w, 996w, 904sh, 868s, 827sh, 628w, 606sh, 519, 498sh, 431, 416sh, 336sh,
324, 312sh, 263, 228sh, 205, 153, 139sh, 106.

Source: Frost et al. (2011t).
Comments: No independent analytical data are provided for the sample used.

Leószilárdite Na6Mg(UO2)2(CO3)6∙6H2O

Origin: Markey Mine, San Juan County, Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm diode laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm21): 1535w, 1396w, 1328w, 1078, 1062, 1052, 824s, 742, 728, 705w, 695w,

345, 290, 254, 193sh, 172sh, 161s, 144s, 125s.
Source: Olds et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Na5.60Mg0.90U2O28C6H12.60.

Lepidocrocite Fe3+O(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm diode laser radiation. The output laser radiation power was more than
300 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 647w, 524s, 374s, 345s, ~315w, 284s, 249sh, 214, 140.
Source: Das and Hendry (2011).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

lepidocrocite see also De Faria et al. (1997) and Bouchard and Smith (2003).

Letovicite (NH4)3H(SO4)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at different temperatures

on an oriented crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was
4 W. A 90�-scattering geometry was employed. Spectra were collected in (yy) scattering geometry.

Raman shifts (cm21): ~670sh, ~655, ~480s, ~275w, ~200w, ~90.
Source: Schwalowsky et al. (1996).
Comments: The sample was characterized by powder X-ray diffraction data and synchrotron diffrac-

tion analysis. The Raman shifts are given for a sample at 298 K.
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Leucite K(AlSi2O6)

Origin: Swan City, Colorado, USA.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488 nm Ar+ laser radiation. The nominal laser radiation power was 600 mW. A 90�-scattering
geometry was employed.

Raman shifts (cm21): 1066, 984sh, 786w, 678w, 618w, 528sh, 498s, 432w, 394w, 338, 304, 272w,
266w, 216, 180, 152, 112, 76.

Source: Matson et al. (1986).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of leucite see also Castriota et al. (2008).

Leucophosphite KFe3+2(PO4)2(OH)∙2H2O

Origin: Sapucaia mine, Conselheiro Pena pegmatite district, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3535sh, 3456, 3355sh, 3225, 3171sh, 2892sh, 1632w, 1255w, 1177, 1135,
1104, 1087sh, 1058s, 1028sh, 1014sh, 994s, 973sh, 850w, 789w, 630s, 611s, 589sh, 550w, 497sh,
481, 436, 420, 407sh, 380sh, 336sh, 310sh, 303s, 282sh, 262sh, 226sh, 215, 204sh, 190sh,
164, 152, 142, 129sh, 117.

Source: Frost et al. (2013ac).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron

microprobe analysis.

Lévyne-Ca Ca3(Si12Al6)O36∙18H2O

Origin: Stolpen, Germany.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using Nd-YAG laser radiation. The laser radiation power at
the sample was 300 mW.

Raman shifts (cm21): 917w, 709s, 430s, 290, 264w, 202s.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Leydetite Fe(UO2)(SO4)2∙11H2O

Origin: Mas d’Alary, Lodève, France (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 2.5 mW.
Raman shifts (cm21): 3492, 3404, 3237, 3130, 1679, 1649, 1203, 1180, 1150, 1139, 1135, 1113,

1099, 1038s, 1030, 1023, 1015, 937, 930, 858, 851, 846, 843, 836, 828, 686s, 675, 666, 608, 538,
522, 504, 485, 464, 443, 420, 394, 373, 290, 260, 236, 223, 196, 182, 165, 138, 123, 116,
102, 89, 77, 65.

Source: Plášil et al. (2013a).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses. The crystal structure is solved. The empirical formula of the sample used is
(Fe0.93Mg0.07Al0.04Cu0.01)(U1.01O2)(S1.96Si0.02)O8(H2O)11.

Libethenite Cu2(PO4)(OH)

Origin: Banská Bystrica, central Slovakia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW. A
180�-scattering geometry was employed. Polarized spectra were collected in parallel and perpen-
dicular to the c-axis scattering geometries. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3485–3475, 1130w, 1102w, 1075sh, 1052, 1022s, 1008sh, 979s, 944sh, 864w,
818w, 650w, 625, 590, 561, 461, 430sh, 392, 371sh, 319sh, 301s, 270w, 250w, 227s, 195s, 160s,
140sh, 113w, 92sh, 74s.

Source: Kharbish et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. Raman shifts are given as sum of spectra at parallel and perpendicular to the c-axis
scattering geometries. For the Raman spectra of libethenite see also Frost et al. (2002g), Bouchard
and Smith (2003), Belik et al. (2007, 2011), and Majzlan et al. (2015).

Liebenbergite Ni2(SiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at different pressures on

an arbitrarily oriented sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the
sample was about 60 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 952, 889, 868sh, 831s, 819s, 593sh, 560, 521, 414, 344w, 298, 272w, 252w,
221w, 191w, 181w.

Source: Lin (2001).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts are

given for a sample at ambient condirions.

Liebigite Ca2(UO2)(CO3)3∙11H2O

Origin: Kroderen, Snarum, Norway.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3468s, 3258s, 1566, 1409, 1381, 1087s, 1073sh, 1007w, 838sh, 822s, 816sh,
758w, 747sh, 248.

Source: Frost et al. (2005g).
Comments: No independent quantitative analytical data are provided for the sample used.
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Likasite Cu3(NO3)(OH)5∙2H2O

Origin: Great Australian Mine, Queensland, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3567sh, 3522s, 3452sh, 3338sh, 3281, 3040w, 1628w, 1394w, 1319w, 1050,
1049, 980w, 831, 763, 715w, 706w, 529, 514, 493, 459w, 377w, 341w, 233w, 210w, 190w, 175w,
165w, 140w.

Source: Frost et al. (2005h).
Comments: No independent analytical data are provided for the sample used.

Lime CaO

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 10 mW.
Raman shifts (cm21): ~680w.
Source: Schmid and Dariz (2015).
Comments: No independent analytical data are provided for the sample used. The CaO phase has

halite structure with cubic unit cell (Fm3m) and does not have the first-order Raman scattering. The
given Raman shift belongs to the second-order Raman scattering.

Linarite CuPb(SO4)(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632 nm He-Ne laser radiation with output radiation power 30 mW, and 514.5 nm Ar+

laser radiation with a low radiation power.
Raman shifts (cm21): 3471sh, 3448, 3220w, 1141, 1019, 968s, 818w, 632, 610, 594w, 513, 461,

436, 365, 345sh, 326w, 230w, 163.
Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction analysis. For the Raman

spectra of linarite see also Buzgar et al. (2009) and Hrazdil et al. (2016).

Lindbergite Mn(C2O4)∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 3326s, 1469s, 908, 579, 517, 240, 199.
Source: Echigo and Kimata (2008).
Comments: The sample was characterized by powder X-ray diffraction data.
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Lindbergite Mn(C2O4)∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1625w, 1465s, 1410w, 909, 855w, 579, 517.
Source: Mancilla et al. (2009a).
Comments: No independent analytical data are provided for the sample used.

Lindgrenite Cu3(Mo6+O4)2(OH)2

Origin: Broken Hill, NSW, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Nd-YAG laser radiation. The laser radiation power is not indicated. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 932s, 887w, 839w, 798w, 775w, 496w, 399, 349, 325, 313, 302s, 287w,
251, 217sh, 190w, 171, 158, 123w.

Source: Frost et al. (2004c).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Lindsleyite (Ba,Sr)(Zr,Ca)(Fe,Mg)2(Ti,Cr,Fe)18O38

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632 nm He-Ne laser radiation. The nominal laser radiation power was in the range
from 2 to 4 mW.

Raman shifts (cm21): 1702s, 661s, 560, 433, 327.
Source: Konzett et al. (2005).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The formula of the sample used is Ba(Ti12Cr4Fe2ZrMg2)O38.

Lingunite NaAlSi3O8

Origin: Shocked Sixiangkou L6 chondrite.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was about 16 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 975, 844, 798sh, 767s, 717w, 625, 595w, 531w, 494, 430sh, 277, 213.
Source: Liu and El Gorsey (2007).
Comments: No independent analytical data are provided for the sample used.

Lingunite K-analogue KAlSi3O8

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystals using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
about 10 mW. A 180�-scattering geometry was employed.
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Raman shifts (cm21): 1726w, 1601w, 1580w, 1452w, 1043, 952w, 866sh, 838w, 761s, 721sh, 655w,
621, 539, 521sh, 405w, 380sh, 283, 214s.

Source: Liu et al. (2009).
Comments: The sample was characterized by X-ray diffraction data.

Linnaeite Co2+Co3+2S4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a bulk sample and on

an ultrathin sheet. Other experimental details are not described.
Raman shifts (cm21): ~400, ~340, ~235w.
Source: Liu et al. (2015d).
Comments: The samples were characterized by X-ray diffraction and SAED data.

Linzhiite FeSi2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on the oriented single

crystals in the forms as thin crystalline needles and plaquets in different scattering geometries, using
514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 100 mW. A
90�-scattering geometry was employed.

Raman shifts (cm21): ~340w, ~298w, ~270–275w, ~245s, and a series of peaks below 200 cm�1.
Source: Guizzetti et al. (1997).

Liroconite Cu2Al(AsO4)(OH)4∙4H2O

Origin: Cornwall deposit, UK.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The nominallaser
radiation power was 0.97 mW.

Raman shifts (cm21): 3580w, 3550w, 865s, 846sh, 567w, 418w, 376w, 316sh, 299, 182, 165, 109.
Source: Makreski et al. (2015a).
Comments: The sample was characterized by powder X-ray diffraction data and thermal analysis.

Liskeardite (Al,Fe)32(AsO4)18(OH)42(H2O)22∙52H2O

Origin: Penberthy Croft Mine, St. Hilary, Cornwall, England UK.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3618sh, 3577, 3504, 3446sh, 3289sh, 3077sh, 2930, 2762sh, 1687sh, 1611w,
1554w, 1532w, 1453w, 1138w, 1124w, 1111sh, 1007w, 987w, 931sh, 914sh, 893s, 867s, 843s,
813sh, 769sh, 750w, 723w, 651w, 624w, 579, 554sh, 528sh, 514s, 499sh, 485sh, 477s, 454, 431w,
406w, 386sh, 373, 343w, 336sh, 305, 285, 263sh, 245sh, 230sh, 217sh, 196sh, 182sh, 162s,
143, 126sh, 110w.

Source: Frost et al. (2015w).
Comments: The sample was characterized by qualitative electron microprobe analysis.
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Litharge PbO

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 381w, 339, 288w, 146s, 82w.
Source: Ciomartan et al. (1996).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of litharge see also Bouchard and Smith (2003).

Lithiophilite LiMn2+(PO4)

Origin: Cigana pegmatite, Conselheiro Pena, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1081w, 1068, 1018w, 1000, 955sh, 950s, 944sh, 627w, 591w, 575w, 443w,
424sh, 403sh, 317w, 288w, 247w, 235w, 199w, 154sh, 146w, 135sh, 105w.

Source: Frost et al. (2013ak).
Comments: The sample was characterized by electron microprobe analysis. The empirical formula of

the sample used is Li1.01(Mn0.60Fe0.41Mg0.01Ca0.01)(PO4)0.99.

Lithiophorite (Al,Li)(Mn4+,Mn3+)2O2(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation output power was 0.2 mW. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3458–3465w, 1600w, (1183), (1058), (938), 621–629s, 575–579s, 541sh,
482–487, 460sh, 378–383w.

Source: Burlet et al. (2014), Burlet and Vanbrabant (2015).
Comments: The sample was characterized by powder X-ray diffraction data, energy-dispersive X-ray

scan analysis, and flame emission analysis.

Lithiophosphate Li3(PO4)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed at different temperatures using 514.5 nm Ar+ laser radiation.
The laser radiation output power was 120 mW.

Raman shifts (cm21): 1061w, 1022, 942s, ~630s, 586s, 474, 442, 376, 352.
Source: Popović et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts are

given for a sample at room temperature.

4 Raman Spectra of Minerals 1033



Lithiotantite LiTa3O8

Origin: Eastern Brazilian Pegmatite Province, Minas Gerais, Brazil.
Experimental details: Experimental details are not indicated. Raman scattering measurements have

been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 902, 826, 682s, 630w, 565s, 463w, 426sh, 416w, 370w, 342, 283, 259w,
229, 180.

Source: Menezes Filho et al. (2016).
Comments: The sample was characterized by electron microprobe analysis.
The empirical formula of the sample used is (Li0.96Mn0.02Fe0.01Na0.01)(Ta2.18Nb0.79Sn0.03)O8.00.

Liversidgeite Zn6(PO4)4∙7H2O

Origin: Broken Hill, New South Wales, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW.
Raman shifts (cm21): 3220, 2895, 1645w, 1142w, 1050w, 1004, 986, 958s, 610, 584, 476, 464,

430, 244, 210.
Source: Elliott et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
Pb0.01(Zn5.86Mn0.06)(P4.01As0.05S0.04)O16.20�6.8H2O.

Livingstonite HgSb4S6(S)2

Origin: Huitzuco, Mexico.
Experimental details: Methods of sample preparation are not described. The Raman signal was

excited by a 532 nm solid-state laser. The nominal laser radiation power was 0.5 mW.
Raman shifts (cm21): 308s, 284s, 238, 191, 157w, 125w, 106w, 75w.
Source: Števko et al. (2015).
Comments: The empirical formula of the sample used is Hg1.01(Sb3.89As0.08)S8.01.

Lizardite Mg3Si2O5(OH)4

Origin: Monte Fico, Elba Island, Italy
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 120 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1096w, 690s, 630w, 510w, 388s, 350w, 233s.
Source: Rinaudo et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of lizardite see also Auzende et al. (2004) and Frezzotti
et al. (2012).
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Löllingite FeAs2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal, using 676.4 nm Kr+ laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed. Polarized spectra were collected in the z(xxy)z-, y(xx)y-,
x(xy)x-, y(xz)y-, and z(xy)z- scattering geometries.

Source: Lutz and Müller (1991).
Raman shifts (cm21): 271s, 269sh, 241sh, 236s.
Comments: The Raman shifts are given for the scattering geometry z(xxy)z-. The notation z(xxy)z-

means that the incident laser light is polarized parallel to x, scattered light is of all polarizations (x,
y). No independent analytical data are provided for the sample used.

Lomonosovite Na5Ti2(Si2O7)(PO4)O2

Origin: Kirovskii apatite mine, Kukisvumchorr Mt., Khibiny Massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed in the spectral regions

from 100 to 550 and from 750 to ~3800 cm�1 on an arbitrarily oriented sample using 633 nm He-Ne
laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined
for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1084w, 1080w, 1070w, 999, 975, 939sh, 925sh, 909s, 882sh, 853, 838sh,
803, 789sh, . . ., 534, 509sh, 499w, 457, 440sh, 427sh, 408s, 393sh, 368sh, 351, 319w, 302w,
284sh, 272, 223sh, 204, 173sh, 150sh, 145s, 112.

Source: Frost et al. (2015m).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Lonecreekite (NH4)Fe
3+(SO4)2∙12H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 1131, 1108w, 1099w, 991s, 701, 636, 615, 525, 463, 435, 307.
Source: Frost and Kloprogge (2001).
Comments: The sample was analyzed for chemical composition, and some substitution with Al3+ for

Fe3+ was detected. Raman shifts are given for sample at 77 K because of the fluorescence at 298 K.
For the Raman spectrum of lonecreekite see also Jentzsch et al. (2013).

Lonsdaleite C

Origin: Popigai crater, Siberia, Russia.
Experimental details: Raman scattering measurements have been performed on the arbitrarily

oriented carbon platelets with the lonsdaleite fraction in in the range from 0.29 to 0.565 using
325 nm He-Cd laser radiation. The laser radiation power at the sample was 0.5 mW. A
180�-scattering geometry was employed. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis.
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Raman shifts (cm21): 1303–1292, 1244–1219w.
Source: Goryainov et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data. The lonsdaleite/diamond

molar ratio was estimated using the Rietveld method.

Lópezite K2Cr2O7

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 6 mW.
Raman shifts (cm21): 950w, 938w, 935, 913w, 910w, 893, 744, 564, 553sh, 527, 385, 370sh, 357sh,

230, 220sh, 130w.
Source: Mathur et al. (1968).
Comments: No independent analytical data are provided for the sample used.

Lorándite TlAsS2

Origin: Allchar, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on an oriented sample

using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW. A
180�-scattering geometry was employed. Polarized spectra were collected with the laser polariza-
tion parallel to the b- and c-axes scattering geometries.

Raman shifts (cm21): 398, 380s, 366sh, 325, 317sh, 311sh, 275, 263sh, 211, 203sh, 193, 172,
157sh, 135w.

Source: Kharbish (2011).
Comments: The sample was characterized by single-crystal X-ray diffraction and electron microprobe

analyses. The Raman shifts are given for the scattering geometry with the laser polarization parallel
to the b-axes. For the Raman spectra of lorándite see also Minceva-Sukarova et al. (2003) and
Makreski et al. (2014).

Lorenzenite Na2Ti2O3(Si2O6)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a pellet of pressed

powdered sample using 488 nm Ar+ laser radiation. The laser radiation power at the sample was
about 300 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 1049w, 984, 963, 899w, 856w, 834w, 704, 637s, 579w, 538, 486, 451, 349,
305s, 274, 258sh, 233w, 215.

Source: Su et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction data.

Löweite Na12Mg7(SO4)13∙15H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 1210, 1142w, 1117w, 1079, 1039s, 1001s, 980, 971sh, 641sh, 622, 606sh,

471sh, 462, 453sh.

1036 4 Raman Spectra of Minerals



Source: Jentzsch et al. (2011).
Comments: No independent analytical data are provided for the sample used.

Luddenite Cu2Pb2Si5O14∙14H2O

Origin: Artillery Peak, Mohave Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3329sh, 3317, 3284sh, 1658sh, 1603, 1557sh, 1482, 1455sh, 1368sh, 1346,
1301, 1276sh, 1160, 1148sh, 1122sh, 986sh, 978, 970sh, 831sh, 808, 801sh, 696sh, 676, 648sh,
501sh, 473sh, 464s, 449sh, 413w, 403, 394sh, 356, 344sh, 263, 213sh, 201, 174sh, 167.

Source: Frost et al. (2015u).
Comments: No independent analytical data are provided for the sample used.

Ludjibaite Cu3(PO4)(OH)3

Origin: Banská Bystrica, central Slovakia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW. A
180�-scattering geometry was employed. Polarized spectra were collected in parallel and perpen-
dicular to the c-axis scattering geometries.

Raman shifts (cm21): 3470, 1115, 1072sh, 1046sh, 1019, 981s, 925sh, 855w, 815w, 784w, 736sh,
633, 586, 557sh, 449, 402sh, 387, 368sh, 301s, 263sh, 226, 190sh, 160s.

Source: Kharbish et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction analysis and by electron

microprobe analyses. For the Raman spectrum of ludjibaite see also Frost et al. (2002g).

Ludlamite Fe2+3(PO4)2∙4H2O

Origin: Boa Vista mine, Galiléia, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3190sh, 3137, 3013sh, 2896, 2730, 2605, 1160w, 1080, 1044, 992sh, 973sh,
950s, 916sh, 774w, 665sh, 634, 599, 564sh, 548, 494, 465, 371sh, 369, 345w, 302, 286, 266, 249,
244sh, 207sh, 199, 182sh, 172, 164sh, 145, 140sh, 103.

Source: Frost et al. (2013w).
Comments: The empirical formula of the sample used is (Fe2.35Mn0.25Mg0.22)(PO4)2.08�4.0H2O.

Ludlockite PbFe3+4As
3+

10O22

Origin: Tsumeb mine, Tsumeb, Namibia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
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have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 798s, 756s, 743sh, 674sh, 666, 639, 611w, 579sh, 549s, 536sh, 524sh, 501sh,
486s, 470sh, 436w, 420, 408sh, 381sh, 368, 348, 332, 287, 266sh, 246s, 221, 204, 193sh.

Source: Bahfenne and Frost (2009).
Comments: No independent analytical data are provided for the sample used.

Ludwigite Mg2Fe
3+O2(BO3)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an oriented sample

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 20 mW. A nearly
180�-scattering geometry was employed. Polarized spectra were collected in the (zz) scattering
geometry.

Raman shifts (cm21): 640s, 568, 480sh, 456w, 399s, 367sh, 298, 269, 233, 191, 160, 132w, 109.
Source: Leite et al. (2002).
Comments: No independent analytical data are provided for the sample used.

Lueshite NaNbO3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 868w, 599s, 428w, 238s.
Source: Wu et al. (2010b).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of lueshite see also Fresno et al. (2016).

Lulzacite Sr2Fe
2+

3Al4(PO4)4(OH)10

Origin: Saint-Aubindes-Châteauax, Loire-Atlantigue, France.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 989s, 918, 842, 568, 505, 420, 290, 142.
Source: Moëlo et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction analysis and by electron

microprobe analyses. The empirical formula of the sample used is (Sr0.96Ba0.04)2Fe
2+

(Fe2+0.63Mg0.37)2Al4[(P0.98V0.02)O4]4(OH)10.

Lüneburgite Mg3[B2(OH)6(PO4)2]∙6H2O

Origin: Mejillones Peninsula, Antofagasta Province, Chile.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 325 nm laser radiation. The laser radiation power at the sample was about 8 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.
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Raman shifts (cm21): 3504sh, 3438sh, 3392s, 3272, 3207, 1087, 1032, 999sh, 877, 734, 590, 465.
Source: Korybska-Sadło et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Luogufengite Fe2O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The output laser radiation power was in the range from 0.2
to 30 mW.

Raman shifts (cm21): 1641, 1474, 1435, 1378, 1329, 1276, 1188, 829, 731, 704, 669, 643, 597,
579, 559, 488, 461, 439, 419, 397, 378, 362, 346, 330, 299, 267, 214, 195, 165, 146, 116.

Source: López-Sánchez et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data.

Lusernaite-(Y) Y4Al(CO3)2(OH,F)11�6H2O

Origin: Luserna valley, Piedmont, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 473.1 nm Nd-YAG and 632.8 nm He-Ne lasers radiations. The laser radiations powers
are not indicated.

Raman shifts (cm21): 1096.
Source: Biagioni et al. (2013a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. The empirical formula of the sample used is
(Y3.41Dy0.16Er0.15Yb0.09Gd0.07Ca0.05Pb0.02Sm0.01)Al1.06(CO3)2.00(OH10.35F0.65)�6H2O. Due to the
strong luminescence only one Raman band was registered in the spectrum, confirming the presence
of CO2

3� groups in the structure.

Macedonite PbTiO3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on PbTiO3 single

crystals with the tetragonal c axisnormal to the scattered plane, using a 633 nm He-Ne laser.
Polarized spectra were collected in x(zz)y, x(zx)y, and x(yx)y scattering geometry.

Raman shifts (cm21): 508s, 440, 290s, 220, 130, 89.
Source: Fontana et al. (1991).
Comments: The sample was identified by electron microprobe analysis; boron was determined by

LA-ICP-MS. The Raman shifts are given for the scattering geometry x(zx)y.

Mackayite Fe3+Te4+2O5(OH)

Origin: An unknown locality in Nevada, USA (?).
Experimental details: Raman spectra of unoriented samples were obtained using a He-Ne laser with

the wavelengths of laser excitation line of 633 nm. The Raman shifts have been determined for the
maxima of individual peaks obtained as a result of the spectral curve analysis.
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Raman shifts (cm21): 907w, 872w, 782w, 732, (644), 635s, (602w), 579, 513, (502w), 436, 424s,
379s, 349, 306, 177s, 150, 124.

Source: Frost and Dickfos (2009).
Comments: The IR spectra of presumed mackayitegiven in the cited paper are wrong: the strongest IR

bands correspond to a sulfate. Possibly, the correct locality is Bambolla mine, Moctezuma, Sonora,
Mexico.

Mackinawite (Fe,Ni)1+xS (x ¼ 0–0.07)

Origin: Synthetic (corrosion film formed after exposure of iron to saline H2S saturated aceticsolution).
Experimental details: Raman spectrum of an unoriented sample was obtained at the wavelength of

laser excitation line of 532.1 nm.
Raman shifts (cm21): (587), 474w, 385, 274s, 208.
Source: Genchev and Erbe (2016).

Macquartite Cu2Pb7(CrO4)4(SiO4)2(OH)2

Origin: No data.
Experimental details: Raman spectra of crystals oriented to provide maximum intensity were

obtained using a He-Ne laser with the wavelengths of laser excitation line of 785 nm. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 968w, 936w, 857, 840, 814s, 463, 439, 374, 349s, 340, 194, 152.
Source: Frost (2004c).
Comments: The sample was identified by electron microprobe analysis; boron was determined by

LA-ICP-MS. The Raman shifts are given for the scattering geometry y(zz)y, in which the Raman
intensities are most strong.

Magadiite Na2Si14O29∙11H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an unoriented sample

using a 1064.1 nm Nd3+:YAG laser. The laser radiation power at the sample was about 90 mW.
Raman shifts (cm21): 3266w, 1151w, 1131w, 1101w, 1085w, 1064, 1049w, 992s, 823w, 792w,

705w, 645w, 632w, 620, 587w, 488sh, 464s, 442sh, 398w, 373w, 338w.
Source: Huang et al. (1999b).
Comments: The sample was characterized by powder X-ray diffraction data.

Magbasite KBaFe3+Mg7Si8O22(OH)2F6

Origin: Eldor carbonatite complex, Quebec, Canada.
Experimental details: Polarized single-crystal Raman spectra were collected in the range from 3200

to 3800 cm�1 with the polarizer parallel and perpendicular to the length of the crystal using 460 and
532 nm laser radiations with a nominal output power of 50 mW.

Raman shifts (cm21): 3735w, 3719w, 3636s.
Source: Welch et al. (2014)
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses. The Raman shifts are given for the radiation polarization parallel to the length of the
crystal.

Maghemite Fe2O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using a 636.4 nm tuneable dye laser. The laser radiation power at the sample was 0.34 mW.
Raman shifts (cm21): 648s, 527, 377, 350, 309, 250w, 220w.
Source: Nieuwoudt et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data.

Magnesio-arfvedsonite NaNa2(Mg4Fe
3+)Si8O22(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed in the region of O–H-

stretching vibrations, in backscattering geometry using a 514.5 nm Ar+ laser.
Raman shifts (cm21): 3666.
Source: Leissner et al. (2015).
Comments: The sample was characterized by EMPA and ICP-MS. The empirical formula of the

sample used is (Na0.25K0.13)(Na0.89Ca0.11)2(Mg0.70Fe
3+

0.26Al0.01Mn0.01)5(Si0.99Al0.01)8O22(OH)1.7
F0.3.

Magnesiocarpholite MgAl2Si2O6(OH)4

Origin: Monte Leoni, Monticiano-Roccastrada Unit, Northern Apennine, southern Tuscany, Italy.
Experimental details: Raman scattering measurements have been performed on single crystals in four

different orientations, using a 514.5 nm Ar+ laser. The laser emission power was 300 mW.
Raman shifts (cm21): 3633w, 3594s, 3571sh, 1098w, 1037w, 936, 879, 783s, 747, 688, 560, 445,

351, 278w, 263, 207w, 161w, 117w.
Source: Fuchs et al. (2001).
Comments: The sample was characterized electron microprobe analyses and Mössbauer spectros-

copy. The Raman shifts are given for the scattering geometry with c axis vertical and most
developed crystal face normal to the polarization direction.

Magnesiochloritoid MgAl2(SiO4)O(OH)2

Origin: Synthetic
Experimental details: Raman scattering measurements have been performed on single crystals with

different orientations using a 514.5 nm Ar+ laser.
Raman shifts (cm21): 3455, 3076, 1096, 985, 909, 881, 847, 805, 738, 594, 551, 531, 513, 411–412.
Source: Koch-Müller et al. (2002).
Comments: Band intensities are not indicated in the cited paper.
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Magnesiochromite MgCr2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an unoriented sample

using a 514.5 nm Ar+ laser.
Raman shifts (cm21): 684s, 613, 543s, 447.
Source: Yong et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

magnesiochromite see also Hosterman (2011), Lenaz and Lughi (2013), Andò and Garzanti (2014),
and D’Ippolito et al. (2015).

Magnesiocopiapite MgFe3+4(SO4)6(OH)2∙20H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an unoriented sample

using a 532 nm Nd-YAG laser.
Raman shifts (cm21): 3499, 3331, 3314, 3167, 1645, 1225, 1218, 1129, 1102, 1019, 1004, 995, 639,

613, 597, 557, 305, 270, 252, 227.
Source: Kong et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction data. Band intensities are not

indicated in the cited paper. For the Raman spectra of magnesiocopiapite see also Frost (2011c) and
Rull et al. (2014).

Magnesioferrite MgFe3+2O4

Origin: Synthetic.
Experimental details: The spectrum of an unoriented sample was recorded using 632.8 nm line of a

He-Ne laser.
Raman shifts (cm211): 707	s, 661sh, 596	w, 550w, 479	, 377w, 332	, 214	.
Source: D’Ippolito et al. (2015).
Comments: The modes marked with an asterisk are provoked by the inversion. For the Raman spectra

of magnesioferrite see also Lenaz and Lughi (2013) and Aramendia et al. (2014).

Magnesio-foitite (Mg2Al)Al6(Si6O18)(BO3)3(OH)3(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on single crystals with

the electrical field vector of the linearly polarized laser light parallel to the crystallographic c axis
using a 488 or 473 nm laser. The laser radiation power at the sample was 30 or 12 mW. The Raman
shifts in the region of O–H-stretching vibrations have been determined for the maxima of individual
peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3657w, 3619w, 3551, 3511, 3459, 688, ~370s, 311, 267, 228.
Source: Berryman et al. (2016).
Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and

electron microprobe analysis. For the Raman spectrum of magnesio-foitite see also Fantini
et al. (2014).
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Magnesiohögbomite-2N4S (Mg,Fe2+)10Al22Ti
4+

2O46(OH)2

Origin: Central Sør Rondane Mts., Queen Maud Land, East Antarctica (type locality).
Experimental details: Raman scattering measurements have been performed on an unoriented single

crystal using a 532.1 nm Ar+ laser.
Raman shifts (cm21): ~3400, 872s, 780, 709, 659, 536, 498, 479, 419, 342w, 302, 263w,

217, 142, 104w.
Source: Shimura et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Magnesio-hornblende Ca2(Mg4Al)(Si7Al)O22(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed in backscattering geom-

etry using a 514.5 nm Ar+ laser.
Raman shifts (cm21): 3672–3673. Only a figure of the Raman spectrum of magnesio-hornblende is

given in the spectral range from 10 to 1200 cm�1.
Source: Leissner et al. (2015).
Comments: The sample was characterized by electron microprobe analyses and ICP-MS. The

empirical formula of the sample used is (Na0.45K0.04)(Ca0.87Fe0.10Mn0.02Na0.01)2(Mg0.52
Fe0.36Al0.12)5(Si0.86Al0.14)8O22(OH)2.00.

Magnesiotaaffeite-2N02S Mg3BeAl8O16

Origin: Ratnapura district, Sri Lanka (type locality).
Experimental details: No data
Raman shifts (cm21): 809w, 758, 703, 662w, 489, 447, 435, 415s, 305s.
Source: Kiefert and Schmetzer (1998).
Comments: The sample was characterized by chemical and X-ray diffraction data.

Magnesiotaaffeite-6N03S Mg2BeAl6O12

Origin: Casey Bay, Antarctica.
Experimental details: No data
Raman shifts (cm21): 803, 713s, 660, 564w, 489, 443, 412s, 326s.
Source: Kiefert and Schmetzer (1998).
Comments: The sample was characterized by chemical and X-ray diffraction data.

Magnesite Mg(CO3)

Origin: Brumado, Bahia, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polished sample using 514.5 and 532 nm Ar+ lasers.
Raman shifts (cm21): 1763w, 1446w, 1095s, 738w, 331s, 214.
Source: Perrin et al. (2016).
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Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of
magnesite see also Rutt and Nicola (1974), Edwards et al. (2005), Frezzotti et al. (2012), and
Bernardino et al. (2016).

Magnetite Fe2+Fe3+2O4

Origin: Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed using a 632.8 nm He-Ne

laser. Laser beam was focused on the sample to give a spot size of ca. 1 μm. The laser radiation
power at the sample was 0.7 mW.

Raman shifts (cm21): 663s, 534, 513, 302.
Source: De Faria et al. (1997).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

magnetite see also Castriota et al. (2008), Nieuwoudt et al. (2011), Hosterman (2011), Saheb et al.
(2011), Das and Hendry (2011), Andò and Garzanti (2014), and D’Ippolito et al. (2015).

Magnetoplumbite PbFe3+12O19

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

nanoparticles using a 514.5 nm Ar+ laser. The laser radiation powerat the sample was 20 mW.
Raman shifts (cm21): 1320 (broad), 680s, 608, 519, 403, (328w), 325s, (290), 206w, 176.
Source: Yang et al. (2007c).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

magnetoplumbite see also Kreisel et al. (1999), Konzett et al. (2005), and Zhukova et al. (2016).

Majorite Mg3(MgSi)(SiO4)3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

aggregate using a micro-Raman system with an argon ion laser. The laser radiation power at the
sample was in the range from 5 to 50 mW.

Raman shifts (cm21): 1065, 989, 931s, 889, 802, 602s, 458, 367, 311, 226s, 159.
Source: De La Pierre and Belmonte (2016).

Makatite Na2Si4O8(OH)2∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an aggregate of

arbitrarily oriented particles using a 1064.1 nm Nd-YAG laser.
Raman shifts (cm21): 3368sh, 3122w (broad), 1244w, 1060w, 1025s, 986w, 945w, 919w, 793w,

567s, 482, 460, 414, 381w, 339w, 324, 292s, 266w, 226w, 219w, 194w, 167w, 151w, 122, 100.
Source: Huang et al. (1999a).
Comments: The sample was characterized by powder X-ray diffraction data.
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Malachite Cu2(CO3)(OH)2

Origin: Eisenzeche, Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

aggregate using a 532 nm Nd-YAG laser. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 3383, 3311w, 1639w, 1495s, 1462, 1369, 1098, 1059, 821w, 755, 722, 597w,

537, 435s, 355, 270s, 215s.
Source: Buzgar and Apopei (2009).
Comments: For the Raman spectra of malachite see also Frost et al. (2002g), Bouchard and Smith

(2003), Frezzotti et al. (2012), Capitani et al. (2014), and Coccato et al. (2016).

Malayaite CaSnO(SiO4)

Origin: Skarn approximately 4 km north of AshMountain, near Mc-Dame, northern British Columbia,
Canada.

Experimental details: Raman scattering measurements have been performed on a sample with
continuously variable polarization directions using a 488 nm Ar+ laser.

Raman shifts (cm21): 895w, 837s, 802w, 595s, 520s, 510w, 450w, 412w, 340s, 328w, 305s, 295w,
280s, 250s, 227w, 197w, 176s, 142s, 109s, 75w.

Source: Groat et al. (1996).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. For the Raman spectrum of malayaite see
also Heyns and Harden (1999).

Malladrite Na2SiF6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 4358 Å laser.
Source: Begun and Rutenberg (1967).
Raman shifts (cm21): 592, 559s, 477, 300, 252.

Mallardite Mn(SO4)∙7H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using a 4358 Å laser.
Raman shifts (cm21): 3467, 3399, 1148, 1085, 1084, 993–994, 693, 603, 457, 330.
Source: Rao (1941).
Comments: Krishnamurti (1958) notes that actually this study does not reveal the existence of lines at

330 and 693 cm�1 and, based on the crystallization conditions, it is probable that the results refer to
MnSO4∙5H2O.

Mallestigite Pb3Sb(SO4)(AsO4)(OH)6∙3H2O

Origin: A waste dump from a Cu-Pb-Zn mine, 1 km NW of Mallestiger, Carinthia, Austria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.
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Raman shifts (cm21): 1261w, 1234w, 1158, 1151, 1062w, 978s, 865w, 827, 803, 641, 631w, 619w,
606, 460, 449s, 437s, 416w, 374, 340w.

Source: Frost et al. (2011p).
Comments: The IR spectrum of presumed mallestigite published in the cited paper corresponds to

quartz.

Mandarinoite Fe3+2(Se
4+O3)3∙6H2O

Origin: El Dragon Mine, Potosi, Bolivia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3507, 3189s, (3046), 2926, (2796w), 1666w, 1563, 814s, 744, 723, 695w,
553, 474, 398w, 355w, 262, 212, 186, 129.

Source: Frost and Keeffe (2009a).
Comments: No independent analytical data are provided for the sample used.

Manganite Mn3+O(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 632.8 nm He-Ne laser. In spite of the strong opacity of the mineral, it was possible to
record a Raman spectrum by using a very weak laser beam intensity of 1 mW and a long duration of
500 s.

Raman shifts (cm21): 622, 558s, 530, 490w, 387, 357.
Source: Bouchard and Smith (2003).
Comments: For the Raman spectrum of manganite see also Bernard et al. (1993a).

Manganlotharmeyerite CaMn3+2(AsO4)2(OH)2

Origin: Starlera Fe-Mn deposit, Middle Penninic domain, Eastern Swiss Alps.
Experimental details: Unpolarized Raman spectrum was obtained on an arbitrarily oriented single

crystal using a 488 nm Ar+ laser.
Raman shifts (cm21): 3000 (broad), 880, 830 (broad), 765, 475, 426, 365, 344.
Source: Brugger et al. (2002).
Comments: The sample was characterized by optical and structural data and electron microprobe

analysis. The band at 475 cm�1 is absent in the figure of manganlotharmeyerite given in the cited
paper. The strongest band in this figure has a maximum at ~520 cm�1.

Manganochromite Mn2+Cr2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

consisting of octahedral nanocrystals using a Raman microscope.
Raman shifts (cm21): 652, 555s.
Source: Tong et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of manganochromite see also Chen et al. (2007c).
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Manganolangbeinite K2Mn2+2(SO4)3

Origin: Synthetic.
Experimental details: Unpolarized and polarized (with different scattering geometries) Raman

scattering measurements have been performed on single crystals using a 488 nm Ar+ laser at the
power of 5 mW.

Raman shifts (cm21): 1224w, 1153w, 1138w, 1113w, 1107w, 1031, 1022sh, 651w, 645w, 628, 620,
604, 597sh, 590w, 473sh, 447, 436w, 426w.

Source: Kreske and Devarajan (1982).
Comments: The Raman shifts are given for the scattering geometry z(yz)x.

Manganosite MnO

Origin: Synthetic (Alfa Aesar).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 514.5 nm Ar+ laser.
Raman shifts (cm21): 654, (591), 531s, 250w.
Source: Julien et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of manganosite see also Mironova-Ulmane et al. (2009).

Manjiroite Na(Mn4+7Mn3+)O16

Origin: Bahariya depression, Western Desert, Egypt.
Experimental details: Raman scattering measurements have been performed on an arbitrarily sample

using a 532 nm Nd-YAG laser. The laser radiation power at the sample was between 20 and
200 μW.

Raman shifts (cm21): ~1300, 643, ~395, ~292.
Source: Ciobotă et al. (2012).
Comments: No independent analytical data are given for the sample used.

Marcasite FeS2

Origin: A seafloor hydrothermal vent field.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using a 532 nm laser. The maximum laser radiation power was 20 mW.
Raman shifts (cm21): 386, 323s.
Source: White (2009).
Comments: For the Raman spectra of marcasite see also Lutz and Müller (1991), Mernagh and Trudu

(1993), and Frezzotti et al. (2012).

Margarite CaAl2Si2Al2O10(OH)2

Origin: Rekwika, Troms, Norway.
Experimental details: Micro-Raman scattering measurements have been performed on a single

crystal using a 514.5 nm Ar+ laser. Sample orientation is not indicated.
Raman shifts (cm21): 3635s, 917s, 711s, 676, 648, (553), 489, 393s, (348), 315, 271s, 248s, (225),

115s, 84.
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Source: Tlili et al. (1989).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

margarite see also Graeser et al. (2003) and Wang et al. (2015).

Margarosanite Ca2PbSi3O9

Origin: Franklin, New Jersey, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 437 nm laser radiation.
Raman shifts (cm21): 1014s, 966, 907, 659s, 581, 498, 443, 389, 262, 128.
Source: Gaft et al. (2013).
Comments: Weak peaks are not indicated.

Marićite NaFe2+(PO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

powder using 532 nm Ar+ laser radiation. The power at the laser beam was 10 mW.
Raman shifts (cm21): 1125w, 1080w, 1052w, 972s, 943sh.
Source: Burba and Frech (2006).
Comments: For the Raman spectrum of marićite see also Burba (2006).

Markascherite Cu3(MoO4)(OH)4

Origin: Copper Creek, Pinal Co., Arizona, USA (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on a randomly

oriented crystal using 532 nm laser radiation. The laser radiation power at the sample was 200 mW.
Raman shifts (cm21): 3560sh, 3541sh, 3527s, 3510, 911s, 886sh, 864sh, 489w, 449w,

425, 402w, 329s.
Source: Yang et al. (2012).
Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and

electron microprobe analyses.

Marokite CaMn3+2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The laser radiation power at the sample was 3 mW.
Raman shifts (cm21): 720, 679, 633s, 614s, 577, 536, 517w, 475, 397s, 376s, 350, 299s, 284sh,

272, 241, 221w, 206, 192w, 177s, 123.
Source: Wang et al. (2003).
Comments: For the Raman spectrum of marokite see also Ivanov et al. (2014).

Marthozite Cu2+(UO2)3(Se
4+O3)2O2∙8H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.
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Raman shifts (cm21): 3180, 3271s, 3381, 3524, 1672, 1616, 1414w, 1358w, 1283w, 869, 812s, 797s,
739, 571w, 449, 424s, 360, 257, 199, 139.

Source: Frost et al. (2008e).
Comments: No independent analytical data are provided for the sample used. The Raman shifts have

been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis. The IR spectrum of presumed marthozite given in the cited paper is wrong and
corresponds to malachite.

Martyite Zn3(V2O7)(OH)2∙2H2O

Origin: Little Eva mine, Grand Co., Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polycrystalline aggregate using 532 nm laser radiation. The output power of the laser beam was
about 4 mW.

Raman shifts (cm21): 3475, 1600w, 943sh, 864sh, 844s, 800sh, 483, 440, 319, 258, 111.
Source: Kasatkin et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Maruyamaite K(MgAl2)(Al5Mg)(BO3)3(Si6O18)(OH)3O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar+

laser radiation with laser beam perpendicular and parallel to the c-axis.
Raman shifts (cm21): 3572, 1106sh, 1091, 977, 789s, 703s, 669, 538w, 500w, 367s,

242, 212s, 155w.
Source: Lussier et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The Raman shifts are given for the spectrum obtained with laser beam perpendicular to the
c-axis.

Mascagnite (NH4)2(SO4)

Origin: Synthetic (commercial reactant).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the objective lens was about
100 mW.

Raman shifts (cm21): 975s, ~615w, ~610w, ~450w.
Source: Sakurai et al. (2010).
Comments: For the Raman spectrum of maskagnite see also Morillas et al. (2016).

Maskelynite A feldspar glass

Origin: Sixiangkou meteorite (L6 chondrite).
Experimental details: No data.
Raman shifts (cm21): 1090 (broad), 575sh, 487s (broad).
Source: Gillet et al. (2000).
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Comments: The Raman spectrum contains numerous narrow peaks of admixed lingunite, the high-
pressure hollandite-type phase KAlSi3O8.

Massicot PbO

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single sample using 1064 nm Nd-YAG laser radiation.
Raman shifts (cm21): 423w, 384, 341w, 289s, 248sh, 217w, 174sh, 143s, 88w, 73w.
Source: Ciomartan et al. (1996).
Comments: For the Raman spectra of massicot see also Madsen and Weaver (1998), Bouchard-

Abouchacra (2001), Bouchard and Smith (2003), and Lepot et al. (2006).

Mathesiusite K5(UO2)4(SO4)4(VO5)(H2O)4

Origin: Jáchymov, Krušné Hory Mts. (Ore Mts.), Bohemia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on the {110} face of a

single crystal using depolarized 780 nm radiation of a frequency-stabilized single mode diode laser.
The laser radiation power at the sample was between 4 and 8 mW.

Raman shifts (cm21): 1329w, 1210w, 1114w, 1007s, 982, 896, 888sh, 844sh, 830s, 742, 644,
619, 598, 557w, 480, 460s, 447sh, 370w, 276, 248.

Source: Plášil et al. (2014c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Mathiasite (K,Ba,Sr)(Zr,Fe)(Mg,Fe)2(Ti,Cr,Fe)18O38

Origin: Synthetic.
Experimental details: Unpolarized micro-Raman spectrum was obtained on an arbitrarily oriented

sample using 632 nm He-Ne laser radiation. The laser radiation power at the sample was between
4 and 8 mW.

Raman shifts (cm21): 649s, 550, 450, 337, 243w.
Source: Konzett et al. (2005).
Comments: The sample was characterized by electron microprobe analysis.

Matildite AgBiS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample consisting of nanocrystals using 514 nm laser radiation.
Raman shifts (cm21): ~140, ~120.
Source: Guin et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data.
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Matioliite NaMgAl5(PO4)4(OH)6∙2H2O

Origin: Gentil mine, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3643w, 3630s, 3399w, 3281s, (3253), 3232s, (3231), 3072, 2920w, 1751w,
1714w, 1610w, 1562w, 1230w, 1211, 1181, 1155w, 1104, 1068s, 1048s, 1025s, (1007), (994),
985, 965, 892w, 811,

Source: Scholz et al. (2013b).
Comments: The sample was characterized by electron microprobe analysis.

Matlockite PbClF

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 632.8 nm He-Ne laser. In spite of the strong opacity of the mineral, it was possible to
record a Raman spectrum by using a very weak intensitylaser (1 mW) and a long duration of 500 s.

Raman shifts (cm21): 238, 227, 163s, 155, 132, 105, 84.
Source: Bouchard and Smith (2003).
Comments: For the Raman spectrum of matlockite see also Bouchard-Abouchacra (2001).

Mattagamite CoTe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation.
Raman shifts (cm21): 121s.
Source: McKendry et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Matteuccite NaH(SO4)∙H2O

Origin: Synthetic.
Experimental details: No data
Raman shifts (cm21): 2940w, 1656, 1549w, 1308, 1268w, 1241w, 1191, 1060s, 874s, 655, 612,

577, 435, 411, 278w, 224w, 188w, 140w, 87.
Source: Baran et al. (1999a).

Maxwellite NaFe3+(AsO4)F

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 954w, 814sh, 894sh, 871s, (849), 812, 753, 542, (523), (487), 455w, (373),
360sh, (346), 327, 309sh, (291), (274w), 259w, (164w), 151, (140w), 111w.

Source: Frost et al. (2014aa).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectrum of maxwellite see also Downs et al. (2012).

Mbobomkulite (Ni,Cu)Al4(NO3,SO4)2(OH)12∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements of SO4-free analogue of mbobomkulite have

been performed on arbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have
been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3647, 3576, 3544w, 3468s, 3447w, 3422w, 3250s, 2900, 1645w, 1413, 1342w,
1058, 1050, 1045, 713w, 676, 614, 570, 545w, 541, 494, 447w, 350, 340, 337w, 324w, 297w,
217w, 184w, 181w, 160w, 142w.

Source: Frost et al. (2005f).
Comments: No independent analytical data are provided for the sample used.

Mcallisterite Mg2[B6O7(OH)6]2∙9H2O

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 951, 637s, 526w, 488w, 410s, 321.
Source: Kipcak et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and may contain

admixture of admontite. For the Raman spectrum of mcallisterite see also Derun and Tugce (2014).

Mcalpineite Cu3Te
6+O6

Origin: Gambatesa mine, eastern Liguria, Italy.
Experimental details: Micro-Raman scattering measurements have been performed on earthy

mcalpineite aggregate using 633 nm laser radiation.
Raman shifts (cm21): 740s, 690s.
Source: Carbone et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Mcconnellite Cu1+CrO2

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on a single

crystal using 632 nm He-Ne laser radiation. The laser radiation power at the sample was 0.3 mW.
Incident beam power with a 3 μm spot size (4000 W/cm2) was used. Polarized spectra were
collected in the z(yy)z and z(yx)z scattering geometries.

Raman shifts (cm21): 692s, 351w.
Source: Aktas et al. (2011).
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Comments: The Raman shifts are given for the scattering geometry z(yy)z. For the Raman spectra of
mcconnellite see also Shu et al. (2009) and Elkhouni et al. (2013).

Mcguinnessite CuMg(CO3)(OH)2

Origin: Red Mountain, Mendocino Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3594, 3522s, 3381, 3309, 1567w, 1540, 1494s, 1359, 1090s, 1060, 914w,
741w, 707w, 516, 433, 269, 166, 147.

Source: Frost (2006).

Megawite CaSnO3

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The laser radiation power was in the range from
40 to 60 mW.

Raman shifts (cm21): 705w, 557 (broad), 474w, 443, 355s, 283, 262, 183, 159.
Source: Galuskin et al. (2011b).
Comments: The sample was characterized by electron data and electron microprobe analyses. The

empirical formula of the sample used is CaSn0.6Zr0.3O3. For the Raman spectrum of megawite see
also Zheng et al. (2012).

Meisserite Na5(UO2)(SO4)3(SO3OH)(H2O)

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm frequency-stabilized single mode diode laser radiation. The laser radiation
power at the sample was 3 mW.

Raman shifts (cm21): 3497w, 3366w, 1239, 1213, 1186, 1153, 1139, 1102, 1068, 1045,1031s,
1019s, 990, 975, 847s, 633, 606, 589, 464, 448, 414, 241, 199, 171, 123, 96, 61.

Source: Plášil et al. (2013c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Meixnerite Mg6Al2(OH)16(OH)2∙4H2O

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 632.8 nm Ar+ laser radiation. The output power of the laser was set to
50 mW.

Raman shifts (cm21): 3492w (broad), 2392w, 1808, 1512, 1368w, 1165w, 936s, 827s, 748s, 686s,
629, 572, 555, 491, 416, 394w, 342, 313w, 238s, 207w, 180, 157, 128, 101, 76w, 60w.

Source: Kagunya et al. (1998).
Comments: The sample was characterized by powder X-ray diffraction data.
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Melanarsite K3Cu7Fe
3+O4(AsO4)4

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka Peninsula, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 nm laser radiation. The laser output power was 4 mW.
Raman shifts (cm21): 854s, 789, 632w, 550w, 464, 403, 352s, 331, 241, 187, 164, 142.
Source: Pekov et al. (2016d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Melanophlogite C2H17O5∙Si46O92

Origin: Mt. Hamilton, California, USA.
Experimental details: Polarized (XX and XY) Raman spectra have been obtained on a single crystal

using 514.5 or 488 nm Ar+ laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 3050w, 2909, 2900, 2321, 1380, 1277w, 803, 590, 364w, 268s, 165.
Source: Kolesov and Geiger (2003).
Comments: The Raman shifts are given with the XX polarization. For the Raman spectrum of

melanophlogite see also Tribaudino et al. (2008).

Melanterite Fe(SO4)∙7H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 3385, 1147, 1074, 992s, 612, 480, 457, 284, 241w, 214w.
Source: Buzgar et al. (2009).
Comments: For the Raman spectra of melanterite see also Chio et al. (2007), Sobron and Alpers

(2013), Jentzsch et al. (2013), Wang and Zhou (2014), Apopei et al. (2015), Buzatu et al. (2016),
and Kompanchenko et al. (2016).

Meliphanite Ca4(Na,Ca)4Be4AlSi7O24(F,O)4

Origin: Østskogen larvikittbrudd, Tvedalen, Larvik kommune, Vestfold fylke, Norway.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3805w, 3693w, 3595w, 3503, 3412, 3330, 3304w, 3207w, 3155w, 1095w,
1050w, 1016s, 991, 968, 932, 893w, 870w, 774, 745w, 721, 666s, 636w, 625s, 611w, 555w, 534w,
510w, 472, 421w, 382, 285w, 258, 207, 180, 147s, 113.

Source: Frost et al. (2015o).

Mellite Al2C6(COO)6∙16H2O

Origin: Bílina, near Most, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 350 mW.
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Raman shifts (cm21): 3250w (broad), 1552, 1467s, 1386w, 1343, 1224, 805 (broad), 772, 538w,
376sh, 353w, 325, 242, 202sh, 178s, 162w, 151w, 134, 117w.

Source: Jehlička and Edwards (2008).

Mellizinkalite K3Zn2Cl7

Origin: Glavnaya Tenoritovaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polycrystalline sample using 532 nm laser radiation. The laser radiation power at the sample was
about 3–3.5 mW.

Raman shifts (cm21): 310, 274s, 264s, 188, 128s.
Source: Pekov et al. (2015f).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Mendipite Pb3O2Cl2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 632.8 nm He-Ne laser.
Raman shifts (cm21): 3504, 732, 601w, 474w, 435, 330s, 273s, 134s.
Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of mendipite see also Frost and Williams (2004).

Mercallite KH(SO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
20 mW.

Raman shifts (cm21): 1174, 1126w, 1027s, 1001s, 872sh, 855, 581, 572, 448, 412.
Source: Ayta et al. (2010).
Comments: A Mn-doped crystal characterized by ESR was used.

Merelaniite Mo4Pb4VSbS15

Origin: Merelani Tanzanite deposit, Lelatema Mts., Manyara Region, Tanzania (type locality).
Experimental details: Raman scattering measurements have been performed on a curved surface of a

cylindrical whisker using 633 nm laser radiation. The laser radiation power at the sample was less
than 3 mW.

Raman shifts (cm21): 780w, 570w, 450, 401s, 390, 379, 324, 245, 133.
Source: Jaszczak et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
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Merenskyite PdTe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. Neutral filter was used to decrease the laser radiation power to
prevent sample damage.

Raman shifts (cm21): 132s, (105).
Source: Bakker (2014).
Comments: For the Raman spectrum of merenskyite see also Vymazalová et al. (2014).

Meridianiite Mg(SO4)∙11H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 513 nm Ar+ laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 3520sh, 3395s, 1116, 1071, 990s, 620, 155sh, 444, 233w, 190.
Source: Genceli et al. (2007).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved. For the Raman spectra of meridianiite see also Genceli et al. (2009) and Sakurai
et al. (2010).

Merrillite Na-free analogue Ca9.5Mg(PO4)7

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 1071, 1010, 966s, 951s, 761, 656w, 618, 601, 548, 437, 406.
Source: Jolliff et al. (2006).
Comments: The empirical formula of the sample used is Ca18.70REE0.05(Mg,Fe)2.00

Na0.17P13.90Si0.16O56.

Merrillite Ca9NaMg(PO4)7

Origin: Suizhou meteorite, Dayanpo, Hubei, China.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514 nm Ar+ laser radiation.
Raman shifts (cm21): 1080, 1026w, 972s, 956s, 604, 550w, 445, 408, 178.
Source: Xie et al. (2002).
Comments: The empirical formula of the sample used is Ca8.82Na0.88Mg0.91Fe0.07P7.14O28. For the

Raman spectra of merrillite see also Cooney et al. (1999) and Xie et al. (2015).

Merwinite Ca3Mg(SiO4)2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polycrystalline sample using 5145 or 4880 Å laser radiation.
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Raman shifts (cm21): 1011, 991w, 980w, 939, 921, 911, 887s, 872s, 860, 845, 667w, 640w,
579, 540, 529, 424, 394, 374w, 330, 270, 227w, 203w, 194w, 156s, 143s, 126, 119, 78, 42.

Source: Piriou and McMillan (1983).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum

of merwinite see also Zedgenizov et al. (2014).

Mesolite Na2Ca2(Si9Al6)O30∙8H2O

Origin: Talisker, Isle of Skye, Scotland.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
10 mW.

Raman shifts (cm21): 3583s, 3510s, 3412s, 3329, 3242s, 1666, 1652, 1099s, 1073, 1049s, 1023,
1007, 990s, 955, 951, 762, 757s, 753, 735, 727, 717, 710, 708s, 673s, 668, 538s, 496, 441s, 409s,
381s, 374, 368, 346, 330s, 283s, 273, 255s, 225s, 204, 183s, 158s, 143.

Source: Wopenka et al. (1998).
Comments: Bands whose intensities are definitely dependent upon polarization are indicated in the

cited paper. For the Raman spectra of mesolite see also Pechar (1983) and Mozgawa (2001).

Meta-ankoleite K(UO2)(PO4)∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was
1–4 mW.

Raman shifts (cm21): 3805, 3498, 3375, 3237, 3110, 2786, 1004s, 994s, 831s, 826s, 400, 291,
195, 173, 113, 108.

Source: Clavier et al. (2016).
Comments: For the Raman spectrum of meta-ankoleite see also Pham-Thi et al. (1985).

Meta-autunite Ca(UO2)2(PO4)2∙6H2O

Origin: Autun, France (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using a 633 nm He-Ne laser. Power at the sample was measured as 1 mW. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3508, 3456, 3244, 1093, 1033, 1018, 1007s, 989, 915, 890, 850, 833s,
818, 643, 507, 453, 387s, 263, 222, 190.

Source: Frost and Weier (2004d).
Comments: For the Raman spectra of meta-autunite see also Frost (2004b) and Stefaniak et al. (2009).

Metacinnabar β-HgS

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 339, 280w, 253s.
Source: Radepont (2013).
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Metahewettite CaV5+
6O16∙3H2O

Origin: The Fish, Eureka Co., Nevada, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1013, 994s, 954s, 878, 692, 530, 470, 425, 404, 290, 280s, 240, 188, 154, 140s.
Source: Frost et al. (2005d).

Metakirchheimerite Co(UO2)2(AsO4)2∙8H2O

Origin: Jáchymov, Krušné Hory Mts. (Ore Mts.), Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 730 nm laser radiation. The laser radiation power at the sample was 10 mW.
Raman shifts (cm21): 908, 896sh, 883sh, 816s, 801sh, 449, 320w, 206sh, 191.
Source: Plášil et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Metalodèvite Zn(UO2)2(AsO4)2∙10H2O

Origin: Jánská vein, Březové Hory deposit, Příbram ore district, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.2 nm laser radiation. The laser radiation power was 5 mW.
Raman shifts (cm21): 3418, 994, 977, 892, 866, 819s, 522s, 469, 447, 399, 319, 303, 280w, 191.
Source: Plášil et al. (2010d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Metamunirite NaV5+O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed using 4880 Å Ar+ laser

radiation on the (110) cleavage plate, with incident light perpendicular to the plane, and polarized
perpendicular to the scattering plane. The laser radiation power at the sample was 100 mW. No
analyser was in the path of the scattered radiation but a polarization scrambler was used.

Raman shifts (cm21): 948s, 911, 887s, 737, 557, 431, 288, 257, 203, 168, 135, 124, 81w, 53w.
Source: Seetharaman et al. (1983).

Metarauchite Ni(UO2)2(AsO4)2∙8H2O

Origin: Jáchymov, Krušné Hory Mts. (Ore Mts.), Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nmAr+ laser radiation. The laser radiation power was 10 mW. The Raman shifts
have been partly determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.
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Raman shifts (cm21): 3265w (broad), 3079, 1124w, 911sh, 898s, 893w, 883w, 878w, 817s, 804sh,
785sh, 771sh, 682w, 534w, 445, 395, 361w, 330, 319, 248, 211, 204w.

Source: Plášil et al. (2010c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Metarossite CaV5+
2O6∙2H2O

Origin: Blue Cap mine, San Juan Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 nm laser radiation. The laser radiation power was 150 mW.
Raman shifts (cm21): 3398, 3240, 3189, 2954, 2904.
Source: Kobsch et al. (2016).
Comments: The sample was characterized by the crystal structure refinement based on single-crystal

X-ray diffraction data. For the Raman spectrum of metarossite see also Frost et al. (2005d).

Metastibnite Sb2S3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The nominal laser radiation power was 25 mW.
Raman shifts (cm21): 290s, 170.
Source: Watanabe et al. (1983).
Comments: The sample used was prepared as amorphous film by thermal evaporation of bulk Sb-S

alloy with corresponding composition.

Metastudtite UO4∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was
6 mW.

Raman shifts (cm21): 3446s, 3245w, 1716sh, 1621, 1111w, 927s, 909s, 791w, 558w, 474.
Source: Bastians et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data.

Metathénardite Na2(SO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 523 K on a single

crystal, in different scattering geometries, using 457.9 nm Ar+ laser radiation. The laser radiation
power at the sample was 150 mW.

Source: Choi and Lockwood (1989).
Raman shifts (cm21): 1175, 1100, 993.5s, 628–626s, 467sh, 464s.
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of metathénardite see also Murugan et al. (2000).
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Metatorbernite Cu(UO2)2(PO4)2∙8H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 1630w, 1514w, 1414w, 1014w, 997s, 986w, 905w, 831w, 827s, 806w, 627w,

602w, 560w, 541w, 464w, 443w, 429w, 412w, 406, 399w, 291w, 253w, 221w, 196, 145w, 125w,
113w, 99, 81w.

Source: Sánchez-Pastor et al. (2013).
Comments: The sample was characterized electron microprobe analysis. For the Raman spectra of

metatorbernite see also Čejka Jr (1984), Frost (2004b), Frost and Weier (2004a), and Faulques et al.
(2015a, b).

Metatyuyamunite Ca(UO2)2(VO4)2∙3H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation.
Raman shifts (cm21): 962, 829, 747s, 646w, 582, 570, 532, 467, 411w, 369s, 310.
Source: Botto et al. (1989).
Comments: The sample was characterized by powder X-ray diffraction data and analysis of H2O.

Metauranocircite-I Ba(UO2)2(PO4)2∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 1635, 1543, 1420, 1039, 1023, 1003, 989s, 960, 821, 815s, 809, 627, 566, 502,

425, 409, 398, 376, 222.
Source: Sánchez-Pastor et al. (2013).
Comments: The sample was characterized electron microprobe analysis.

Metauranospinite Ca(UO2)2(AsO4)2∙8H2O

Origin: Přibram, Central Bohemia region, Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3549w, 3428, 3238w, 2106w, 1891w, 1787w, 1617w, 1518w, 1366w, 907w,
896, 815s, 806, 458, 397, 321, 275, 196, 187s, 150, 111.

Source: Čejka et al. (2009b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.
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Metavariscite Al(PO4)∙2H2O

Origin: Mt Lucia, Utah, USA.
Experimental details: Raman scattering measurements have been performed at 77 K on anarbitrarily

oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the
maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1889, 1628, 1362, 1249, 1150, 1081s, 1063, 1033, 1018s, 643, 585, 574, 553,
499, 460, 446, 427s, 400, 387, 380, 374, 367, 360, 353s, 347, 340, 329s, 302, 297, 290, 280,
273, 258, 253, 244, 239, 230s, 211, 201, 187s, 171, 152, 147, 133, 124.

Source: Frost et al. (2004l).

Metavivianite Fe2+Fe3+2(PO4)2(OH)2∙6H2O

Origin: Boa Vista pegmatite, near Galiléia, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 10 mW.
Raman shifts (cm21): 3431, 3378w, 3299w, 3257sh, 3194sh, 1089w, 1022, 972s, 579, 506s,

461, 374w, 322sh, 289, 256, 236, 197, 166, 143.
Source: Chukanov et al. (2012b).
Comments: The sample was characterized by powder X-ray diffraction data, Mössbauer spectros-

copy, electron microprobe analysis and gas-chromatographic determination of H2O. The empirical
formula of the sample used is (Fe3+1.64Fe

2+
1.23Mg0.085Mn0.06)Σ3.015(PO4)1.98

(OH)1.72�6.36H2O. The crystal structure is solved. For the Raman spectrum of metavivianite see
also Frost et al. (2004m).

Metazeunerite Cu(UO2)2(AsO4)2∙8H2O

Origin: Gilgai, New England, New South Wales, Australia, or Wheal Edward Bottalock, Cornwell,
England (not specified in the cited paper).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3371, 3238, 3136, 910, 888, 819s, 809, 793, 449, 398, 320, 276, 240, 218.
Source: Frost (2004b).
Comments: For the Raman spectra of metazeunerite see also Frost and Weier (2004c) and Frost et al.

(2004k).

Meurigite-Na [Na(H2O)2.5][Fe
3+

8(PO4)6(OH)7(H2O)4]

Origin: Silver Coin mine, Valmy, Iron Point district, Nevada, USA (type locality).
Experimental details: No data.
Raman shifts (cm21): 3270, 1125, ~1005s, ~960s, ~925, 876, 568, 490, 441s, 401, 281, 222, 170.
Source: Kampf et al. (2009a).
Comments:Maybe, an erroneous spectrum: wavenumbers of the strongest bands of phosphate groups

in the range from 900 to 1100 cm�1 are anomalously high. The sample was characterized by powder
X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.
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Meyerhofferite CaB3O3(OH)5∙H2O

Origin: Bigadic deposits, Turkey.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3608s, (3505w), 3483s, (3421w), 3400s, 3344w, 3287, 3232, (3092), 3031s,
(2908w), 1621w, (1592w), 1551w, 1367w, 1201, 1135, 1110, 1046, 1002, 958, 944, 935, 880,
728, 698w, (627w), 609s, 592, 493, 474, 435, 398w, 381w, 366w, 336, 235w, 227, 204, 189, 164,
124, 118.

Source: Frost et al. (2013h).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron

microprobe analysis.

Meymacite monoclinic analogue WO3∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using Ar+ laser radiation.
Raman shifts (cm21): 3530, 3370sh, 3160s, ~1600, 960s, 685s, 662s, 380, 268, 235, 210, 110.
Source: Daniel et al. (1987).

Miargyrite AgSbS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation.
Raman shifts (cm21): 447, 370w, 322w, 250s, 185s, 134w, 115.
Source: Minceva-Sukarova et al. (2003).
Comments: For the Raman spectrum of miargyrite see also Makreski et al. (2013b).

Microcline K(AlSi3O8)

Origin: Čanište, Macedonia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm21): 1139sh, 1124, 1099, 1051w, 994, 814w, 750, 651, 585w, 513s, 475s, 454, 402,

372, 331w, 285, 266, 258, 199, 179, 155, 127, 108.
Source: Makreski et al. (2009).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of

microcline see also Ciobotă et al. (2012) and Frezzotti et al. (2012).

Miersite AgI

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 573 K on a single

crystal using 6328 Å He-Ne laser radiation. The laser radiation power at the sample was 10 mW.
Polarized spectra were collected in the y[z(x/y)]z and y(zx)z scattering geometries.
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Raman shifts (cm21): ~100 (broad), ~30s (broad).
Source: Delaney and Ushioda (1976).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. The Raman shifts are given for the scattering geometry y[z(x/y)]z. In the scattering
geometry y(zx)z only a peak at ~30 cm�1 is observed.

Mikasaite Fe3+2(SO4)3

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 nm laser radiation.
Raman shifts (cm21): 1123s, 1098s, 1078s, 1069, 1040, 677, 657, 628, 613, 600, 468, 461, 448,

295, 234, 178.
Source: Ling and Wang (2010).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of mikasaite see also Apopei et al. (2015).

Milarite KCa2(Be2AlSi12)O30∙H2O

Origin: Giuv Tavetsch, CH.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 785 nm laser radiation.
Raman shifts (cm21): 1126, 834, 538, 479s, 436w, 382w, 288w, 161w.
Source: Jehlička and Vandenabeele (2015).
Comments: For the Raman spectra of milarite see also Lengauer et al. (2009) and Jehlička

et al. (2012).

Millerite β-NiS

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm laser radiation. The laser radiation power was 15 mW.
Raman shifts (cm21): 372, 350, 301, 283, 246s, 222, 181, 174s, 142.
Source: Bishop et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction.

Millosevichite Al2(SO4)3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 1053, 1009, 990s, 979, 726, 630, 614, 572, 496, 459, 446.
Source: Kloprogge and Frost (1999c).

4 Raman Spectra of Minerals 1063



Mimetite Pb5(AsO4)3Cl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.
Raman shifts (cm21): 1043, 1000w, 982w, 949, 920s, 812s, 791sh, 744sh, 553w, 546sh, 426sh,

411sh, 409, 391, 372, 338s, 314s.
Source: Bajda et al. (2011).
Comments: The empirical formula of the sample used is Pb5[(AsO4)2.4(PO4)0.6]Cl. The bands in the

ranges 900–1050 and 540–560 cm�1 correspond to phosphate groups. For the Raman spectra of
mimetite see also Levitt and Condrate, Sr (1970), Adams and Gardner (1974), Bartholomäi and
Klee (1978), Frost et al. (2007c), and Bajda (2010).

Minguzzite K3Fe
3+(C2O4)3∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 514.5 nm laser radiation.
Raman shifts (cm21): 1720, 1451s, 1252, 898, 782, 558s, 370, 257s, 136s.
Source: Narsimhulu et al. (2015).

Minium Pb2+2Pb
4+O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 632.8 nm He-Ne laser. In spite of the strong opacity of the mineral, it was possible to
record a Raman spectrum by using a very weak intensity laser (1 mW) and a long duration of 500 s.

Raman shifts (cm21): 549s, 480, 391, 313, 223, 150, 120s, 84, 70, 60, 51.
Source: Bouchard and Smith (2003).
Comments: For the Raman spectra of minium see also Bouchard-Abouchacra (2001), Burgio and

Clark (2001), and Lepot et al. (2006).

Minnesotaite Fe2+3Si4O10(OH)2

Origin: No data in the cited paper.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power at the sample was about 13 mW.
Raman shifts (cm21): 3654s, 3639s, 3625s, 660s, 545, 440, 407, 350, 251, 188.
Source: Wang et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Minyulite KAl2(PO4)2F∙4H2O

Origin: Minyulo Well, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.
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Raman shifts (cm21): 3692w, 3669, 3661w, 3324 (broad), 3225 (broad), 1584w, (1190w), 1176w,
1155w, (1136w), (1105w), 1091, 1077, (1047), 1012s, (991w), 657, (628w), (606w), 592s,
575, (551w), (535w), (522w), (506), 494s, (481), 448, (420w), 407.

Source: Frost et al. (2014l).
Comments: The empirical formula of the sample used is (K0.82Ca0.05Na0.03)Al2.04Fe0.08

(PO4)2[F0.55(OH)0.45]�4H2O.

Mirabilite Na2(SO4)∙10H2O

Origin: No data in the cited paper.
Experimental details: No data.
Raman shifts (cm21): 3506s, 3340, 1129w, 989s, 627, 458.
Source: Frezzotti et al. (2012).
Comments: For the Raman spectrum of mirabilite see also Sakurai et al. (2010).

Misakiite Cu3Mn(OH)6Cl2

Origin: Sadamisaki Peninsula, Ehime prefecture, Japan (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
50 mW.

Raman shifts (cm21): 3552w, 3505, 3460s, 470, 397s, 321, 265.
Source: Nishio-Hamane et al. (2016b).
Comments: The sample was characterized by powder and single-crystal X-ray diffraction data, and

electron microprobe analyses.

Mitscherlichite K2CuCl4∙2H2O

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 3340, 3275, 3250, 3235, 3170, 1630–1628, 685, 633, 550, 404, 395.
Source: Thomas et al. (1974).

Mixite Cu6Bi(AsO4)3(OH)6∙3H2O

Origin: Smrkovec ore occurrence, the Slavkovský Les Mts., western Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3470, 3392, 1588w, 1513w, 995w, (855), 850s, 805, 553, 529, (494), 472s,
(460), 421, 390, 311, 284, 252, 232, 192, 169, 138, (112), 105s.

Source: Frost et al. (2009f).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analyses.

For the Raman spectrum of mixite see also Frost et al. (2006m).
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Moctezumite Pb(UO2)(Te
4+O3)2

Origin: Moctezuma (Bambolla) mine, Sonora, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 826, 758, 723s, 656s, 623, 511w, 455, 356, 308w, 252, 212, 142.
Source: Frost et al. (2009b).
Comments: IR spectrum of presumed moctezumite given in the cited paper corresponds to quartz.

Mogánite SiO2∙nH2O

Origin: Mogán, Gran Canaria (Grand Canary), Las Palmas Province, Canary Islands, Spain (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 514.5 nm Ar+ laser radiation.

Raman shifts (cm21): 1177w, 1171w, 1084w, 1058w, (978w), (950w), 833w, 792w, 693w, 501s,
463, 449, 432w, 398w, 377w, 370w, 317w, 265w, 220s, 141, 129s.

Source: Kingma and Hemley (1994).
Comments: No independent analytical data are provided for the sample used.

Mohite Cu2SnS3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 or 785 nm laser radiation. The laser radiation power at the sample was below
0.4 mW.

Raman shifts (cm21): 374w, 352s, 314, 290s, 263sh, 248sh, 224w.
Source: Fontané et al. (2013).
Comments: No independent analytical data are provided for the sample used.

Mohrite (NH4)2Fe
2+(SO4)2∙6H2O

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on arbitrarily

oriented individual particles using 532 nm Ar+ laser radiation. The laser radiation power at the
sample was 2 mW.

Raman shifts (cm21): 3355, 3290, 3101sh, (2913w), (2852w), 1705w, 1678w, 1430w, 1148sh, 1129,
1091, 1067, 980s, 622, 610, 457sh, 450.

Source: Jentzsch et al. (2013).
Comments: No independent analytical data are provided for the sample used.

Moissanite SiC

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 or 488 nm laser radiation.
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Raman shifts (cm21): 963, 783s, 762, 150.
Source: Andò and Garzanti (2014).
Comments: For the Raman spectra of moissanite see also Xu et al. (2008, 2015b) and Kompanchenko

et al. (2016).

Mojaveite Cu6[Te
6+O4(OH)2](OH)7Cl

Origin: Blue Bell claims, near Baker, San Bernardino Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on a single crystal

(probably on the (001) face) using 514.3 nm laser radiation. The laser radiation power at the sample
was 2 mW.

Raman shifts (cm21): ~3500w, 1112w, 967w, 694s, 654, 624, 555, 510, 475sh, 414w, 286, 254,
233w, 203, 172.

Source: Mills et al. (2014b).
Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and

electron microprobe analyses.

Molybdenite MoS2

Origin: Wolfram Camp, Qld., Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was between
1 and 10 mW.

Raman shifts (cm21): 451, 408s, 382s, 285.
Source: Mernagh and Trudu (1993).
Comments: For the Raman spectra of molybdenite see also Windom et al. (2011) and Štengl and

Henych (2013).

Molybdite MoO3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 15 mW.
Raman shifts (cm21): 995s, 820s, 666, 285s, 158.
Source: Windom et al. (2011).
Comments: For the Raman spectra of molybdite see also Seguin et al. (1995), Nitta et al. (2006), and

Camacho-López et al. (2011).

Molybdofornacite CuPb2(MoO4)(AsO4)(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW.
Raman shifts (cm21): 1089, 1048, 1014, 855, 713, 666, 558, 387, 355, 320, 278, 226, 196, 159, 152.
Source: Frost (2004c).
Comments: The data are questionable: no information on the sample origin and no independent

analytical data on the sample used are given. Band intensities are not indicated.
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Molybdophyllite Pb8Mg9[Si10O28(OH)8O2(CO3)3]∙H2O

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on an single crystal

using unpolarized 633 nm laser radiation.
Raman shifts (cm21): 3696s, ~3600, ~1050, ~998.
Source: Kolitsch et al. (2012).
Comments: The sample was characterized by single crystal X-ray diffraction data.

Molysite FeCl3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 632.8 nm He-Ne laser. Laser radiation power of 30 mW at the source was reduced
considerably by various filters.

Raman shifts (cm21): 667, 598, 373,293s, 259.
Source: Bouchard and Smith (2003).
Comments: For the Raman spectrum of molysite see also Bouchard-Abouchacra (2001).

Monazite-(Ce) Ce(PO4)

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 632.8 He-Ne laser radiation. The laser radiation power behind the micro-
scope objective was 8 mW.

Raman shifts (cm21): 1073, 1056, 992, 970s, 620, 572w, 467, 397, 220, 102, 88.
Source: Ruschel et al. (2012).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of

monazite-(Ce) see also Begun et al. (1981), O’Neill et al. (2006), Silva et al. (2006), Andò and
Garzanti (2014), and Heuser et al. (2014).

Monazite-(La) La(PO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm laser radiation.
Raman shifts (cm21): 1073, 1065w, 1055s, 1025w, 991, 967s, 619, 589w, 572, 537w, 465, 414,

394, 271, 255w, 227, 220, 183w, 170, 151, 131w, 120w, 100, 90.
Source: Begun et al. (1981).
Comments: For the Raman spectra of monazite-(La) see also Silva et al. (2006), Frezzotti et al. (2012),

and Heuser et al. (2014).

Monazite-(Nd) Nd(PO4)

Origin: Synthetic.
Experimental details: Polarized Raman scattering measurements have been performed on a single

crystal using 488 nm laser radiation. Scattering geometry is not indicated.
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Raman shifts (cm21): 1079, 1061, 1033, 998, 977s, 625s, 601, 575, 539, 471s, 419, 398, 291, 264,
236, 228, 183, 175, 160, 154, 106, 89.

Source: Silva et al. (2006).
Comments: For the Raman spectra of monazite-(Nd) see also Begun et al. (1981) and Heuser

et al. (2014).

Monazite-(Sm) Sm(PO4)

Origin: Synthetic.
Experimental details: Polarized Raman scattering measurements have been performed on a single

crystal using 514.5 nm Ar+laser radiation. Scattering geometry is not indicated.
Raman shifts (cm21): 1084, 1065, 1035, 999, 983s, 629s, 603, 577, 542, 474s, 424, 404, 293, 265,

243, 231, 185, 177, 159, 155, 107, 88.
Source: Silva et al. (2006).
Comments: For the Raman spectra of monazite-(Sm) see also Begun et al. (1981) and Heuser

et al. (2014).

Moncheite Pt(Te,Bi)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.068 nm laser radiation. The laser radiation power at the sample was in the range
from 1 to 2 mW.

Raman shifts (cm21): 155, 115s.
Source: Bakker (2014).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of moncheite see also Mernagh and Hoatson (1995).

Monetite Ca(PO3OH)

Origin: Synthetic (commercial reactant).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064.1 nm Nd-YAG laser radiation. The laser radiation power at the sample was
below 320 mW.

Raman shifts (cm21): 2814w, 2421w, 1617w, 1133, 1095, 988s, 901s, 779, 693, 591, 574,
562, 474w, 420, 395, 274w, 182w, 143w.

Source: Xu et al. (1999).
Comments: For the Raman spectrum of monetite see also Frost et al. (2013r).

Monipite MoNiP

Origin: Allende meteorite.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitratily

oriented grain in a polished section using 514.5 nm laser radiation.
Raman shifts (cm21): 430, 350s, 280.
Source: Ma et al. (2014a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
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Monohydrocalcite Ca(CO3)∙H2O

Origin: Sainte Guillaume vein, St.-Marie-aux-Mines, Haut Rhin, France.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser adiation. The laser emitted power was about 8 mW.
Raman shifts (cm21): 3425w, 3326, 3224, 1069s, 876w, 723w, 699w, 208.
Source: Coleyshaw et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data.

Montebrasite LiAl(PO4)OH

Origin: Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm21): 3329s, 1189w, 1108, 1057s, 1046s, 1012s, 799, 645, 627, 601w, 483w,

429, 298s, 278, and a series of weak bands below 270 cm�1.
Source: Rondeau et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectrum of montebrasite see also Dias et al. (2011).

Monteponite CdO

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power was 2.48 mW.
Raman shifts (cm21): 938w, 390s, 330sh, 259.
Source: Thema et al. (2015).
Comments: For the Raman spectrum of monteponite see also Falgayrac et al. (2013).

Montgomeryite Ca4MgAl4(PO4)6(OH)4∙12H2O

Origin: Katies Bower, Chifley Cave, Jenolan Caves, New South Wales, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 1709, 1669w, 1606, (1582w), 1339, (1286), 1260, 1214, 1143, 1088, 1011s,
979s, 655w, (609), 591, 511s, 475, 457s, 391, 318, 292s, 268, (251), 202, 176, 161s, 146.

Source: Frost et al. (2012e).
Comments: Powder X-ray diffraction data indicate that the sample used contains minor admixture of

variscite.

Monticellite CaMg(SiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 or 488.0 nm laser radiation.
Raman shifts (cm21): 950, 900, 852s, 818s.
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Source: Piriou and McMillan (1983).
Comments: For the Raman spectrum of monticellite see also Mouri and Enami (2008).

Montmorillonite (Na,Ca)0.3(Al,Mg)2Si4O10(OH)2∙nH2O

Origin: Bidahochi formation, Cheto district, Apache Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm laser radiation. The nominal laser radiation power was 0.2 mW.
Raman shifts (cm21): 1112, 1029, 917, 885, 840, 792, 709s, 705sh, 571w, 505sh, 433s, 330, 290,

262, 200s, 176, 81.
Source: Bishop and Murad (2004).
Comments: The sample was characterized by chemical analyses. For the Raman spectrum of

montmorillonite see also Frost and Rintoul (1996).

Montroseite (V3+,Fe2+,V4+)O(OH)

Origin: Akouta mine, Niger.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented single crystal using 514.5 nm Ar+ laser radiation.
Source: Forbes and Dubessy (1988).
Raman shifts (cm21): 990s, 960, 925, 905w, 845, 780, 750w, 690, 560w, 515, 470, 400, 340w,

295sh, 280s, 144.
Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis.

Montroydite HgO

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation.
Raman shifts (cm21): 568, 327s, 120w.
Source: Zhou et al. (1998).
Comments: The sample was characterized by powder X-ray diffraction data.

Moolooite Cu(C2O4)∙nH2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation.
Raman shifts (cm21): 1620, 1513s, 1486s, 922, 845, 608, 584s, 558s, 300, 209s.
Source: D’Antonio et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and TG analysis. For the

Raman spectra of moolooite see also Frost and Weier (2003), Frost (2004d), Castro et al. (2008),
and Romann et al. (2009).
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Mopungite NaSb5+(OH)6

Origin: Pereta mine, Tuscany, Italy.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was
20 mW. The Raman shifts have been partly determined for the maxima of individual peaks obtained
as a result of the spectral curve analysis.

Raman shifts (cm21): 3423s, 3353, 3331, 3239, 3178s, 3134, (671), (648), 626s, (605), 362, 350,
204, 189.

Source: Bittarello et al. (2015).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. For the Raman spectra of mopungite see also Bahfenne (2011) and Rintoul
et al. (2011).

Moraskoite Na2Mg(PO4)F

Origin: Morasko IAB-MG iron meteorite, Poland (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was between
30 and 50 mW.

Raman shifts (cm21): 1114s, 1027s, 962s, 589, 438w, 336w, 308w, 279w, 262w, 244w, 193w, 184w,
147w, 131w.

Source: Karwowski et al. (2015).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses.

Mordenite (Na2,Ca,K2)4(Al8Si40)O96∙28H2O

Origin: Faröes Islands.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using Nd-YAG laser radiation. The nominal laser radiation power was 300 mW.
Raman shifts (cm21): 1087w, 1046, 977w, 713w, 534s, 448, 427, 297w, 229w, 160.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Morenosite Ni(SO4)∙7H2O

Origin: Synthetic.
Experimental details: Micro-Raman spectrum was recorded with a medium Hilger quartz spectro-

graph using the λ ¼ 2536.5 Å resonance radiation of mercury.
Raman shifts (cm21): 3532w, 3437s, 3266, 1158w, 1139, 1095, 1057s, 985s, 642, 622w, 612s, 463s,

442s, 419w, 402, 251s, 233w, 207s, 152s, 131w, 111s, 88, 75s, 60.
Source: Krishnamurti (1958).
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Moschelite HgI

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 194, 113, 65, 31.
Source: Ōsaka (1971).
Comments: For the Raman spectrum of moschelite see also Cooney et al. (1968).

Mosesite (Hg2N)Cl

Origin: No data.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

sample using 785 nm laser radiation.
Raman shifts (cm21): ~547, ~538.
Source: Cooper et al. (2013a).

Mottramite PbCu(VO4)(OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3162w, (2927)w, (891w), (849), (841), 829s, (821), 802, (796), (747w), 716w,
612w, 500w, 451w, 411, 366, (354), 333, (307), (301), 293, 247w, 227, 202w, 172w, 151, (136),
(129), 118.

Source: Frost et al. (2014ai).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectrum of mottramite see also Frost et al. (2001).

Mountkeithite (Mg1-xFe
3+

x)(SO4)x/2(OH)2�nH2O (x < 0.5, n > 3x/2)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm21): 3698, 3688, 3654, 2240w, 1937, 1679s, 1613s, 1525s, 1439, 1273s, 1122,
1109, 920, 691, 621w, 528, 468w, 390, 348w, 233, 202w.

Source: Frost et al. (2003h).
Comments: No independent analytical data are provided for the sample used.

Moydite-(Y) YB(OH)4(CO3)

Origin: Evans-Lougranitic pegmatite, near Wakefield, Quebec, Canada (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
between 20 and 50 mW.

Raman shifts (cm21): 1610s, 1410, 1124s, 1106, 765, 700w.
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Source: Grice et al. (1986).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. There are discrepancies between Raman shifts and figure of the Raman spectrum given in
the cited paper.

Mukhinite Ca2(Al2V
3+)[Si2O7][SiO4]O(OH)

Origin: Pyrrhotite gorge, Khibiny Mts., Kola Peninsula, Russia.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented polished surface using 633 nm He-Ne laser radiation. The laser radiation power at the
sample was betweem 2 and 20 mW.

Raman shifts (cm21): 1235w, 1213w, 1087w, 1052w, 965, 910, 849, 805, 741, 693, 623, 596s,
547, 518s, 485, 322, 284, 235, 155, 125, 85s.

Source: Voloshin et al. (2014).
Comments: The sample was characterized by electron microprobe analyses.

Mukhinite V-rich analogue Ca2(AlV
3+

2)[Si2O7][SiO4]O(OH)

Origin: Pyrrhotite gorge, Khibiny Mts., Kola Peninsula, Russia.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented polished surface using 633 nm He-Ne laser radiation. The laser radiation power at the
sample was betweem 2 and 20 mW.

Raman shifts (cm21): 1089s, 1012s, 929, 891, 816, 700, 668, 607, 552, 499, 389s, 357, 328,
229w, 136w.

Source: Voloshin et al. (2014).
Comments: The sample was characterized by electron microprobe analyses.

Mullite Al4+2xSi2-2xO10-x (x � 0.4)

Origin: NW of Ormsaig, Ross of Mull, Scotland, UK (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 457 nm Ar+ laser radiation.
Raman shifts (cm21): 1130, 1035, 960s, 870s, 720, 600s, 415, 340, 305.
Source: Bost et al. (2016).
Comments: For the Raman spectrum of mullite see also Shoval et al. (2001).

Muscovite KAl2(Si3Al)O10(OH)2

Origin: Rebra Valley, Rodnei (Rodna) Mts., Romania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single sample using 532 nm laser radiation. The laser radiation power at the sample was 35 mW.
Raman shifts (cm21): 119, 957, 914, 755, 704s, 641, 412s, 266s, 219.
Source: Buzgar (2008).
Comments: According to the Raman Spectra Database, Siena (http://www.dst.unisi.it/geofluids/

raman/spectrum_frame.htm), Raman spectrum of muscovite contains also a band of O–H-stretching
vibrations at 3627 cm�1. For the Raman spectra of muscovite see also Haley et al. (1982), Tlili et al.
(1989), Wada and Kamitakahara (1991), Graeser et al. (2003), and Frezzotti et al. (2012).
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Nabiasite BaMn9(VO4)6(OH)2

Origin: Nabias hamlet, Central Pyrenees, France (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): 880sh, 867, 807s, 768.
Source: Brugger et al. (1999).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analysis. The crystal structure is solved.

Nabimusaite KCa12(SiO4)4(SO4)2O2F

Origin: Jabel Harmun, Palestinian Autonomy, Israel (type locality).
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed using 488 nm solid-state laser radiation. The laser radiation
power at the sample was 44 mW. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm�1): 1121, 993s, 948, 930sh, 885, 849sh, 831, 637, 563, 524, 463, 403, 129.
Source: Galuskin et al. (2015d).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Nacrite Al2Si2O5(OH)4

Origin: Commonwealth Scientific and Industrial Research Organization, Division of Soils, Glen
Osmond, South Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 1064 nm Nd-YAG laser. The nominal laser radiation power was 100 mW.

Raman shifts (cm21): 1175, 1160, 1085, 1020, 920s, 810, 720, 710, 660, 550, 520, 480s, 400, 340s,
275s, 250s.

Source: Frost et al. (1993).
Comments: No independent analytical data are provided for the sample used.

Nadorite PbSb3+O2Cl

Origin: Harstigen mine, Pajsberg, near Filipstad, Värmland, Sweden.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was in the
range from 20 to 50 mW.

Raman shifts (cm21): 214, 165–117.
Source: Jonsson (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
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Nafertisite Na3Fe
2+

10Ti2(Si6O17)2O2(OH)6F(H2O)2

Origin: Kukisvumchorr, Khibiny alkaline massif, Kola peninsula, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 633 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1030, 922, 688s, 658s, 569, 530, 490, 420w, 345, 297, 240, 212w, 184, 145.
Source: Cámara et al. (2014b).
Comments: The sample was characterized by single-crystal X-ray diffraction data, electron micro-

probe analyses, and Mössbauer spectroscopy. The crystal structure is solved.

Nagelschmidtite Ca7(SiO4)2(PO4)2

Origin: Artificial (compoinent of slags produced from a solid radioactive waste).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): 1176, 1075, 1008s, 916, 843w, 702, 535w, 352, 217.
Source: Malinina and Stefanovsky (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Nahcolite NaH(CO3)

Origin: Ryoke metamorphic rocks, Kasado Island, Yamaguchi prefecture, Japan.
Experimental details: Raman scattering measurements have been performed on a microscopic

inclusion using 532 nm laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm�1): 1268, 1046s, 687.
Source: Hoshino et al. (2006).
Comments: No independent analytical data are provided for the sample used.

Nahcolite NaH(CO3)

Origin:No data in the cited paper.
Experimental details: No data in the cited paper.
Raman shifts (cm�1): 1432w, 1271, 1048s, 688.
Source: Frezzotti et al. (2012).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of nahcolite see also Edwards et al. (2007), Kaminsky et al. (2009), and Frezzotti et al. (2012).

Nahpoite Na2(PO3OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 84�C on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 30 mW.
Raman shifts (cm21): 1139, 1072, 1001w, 939s, 855, 583w, 571w, 556, 501w, 461, 397.
Source: Ghule et al. (2003).
Comments: The sample was characterized by TG data.
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Namibite Cu(BiO)2(VO4)(OH)

Origin: Lodi No. 4 mine, Plumas Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
Raman shifts (cm21): 899w, 846s, (842), (769w), 736, 677w, 563s, 410w, 370s, 328s, 288, 247, 212.
Source: Frost et al. (2006i)
Comments: No independent analytical data are provided for the sample used.

Nantokite CuCl

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): ~197, ~155, ~117s, ~58, ~40sh.
Source: Vardeny and Brafman (1979).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of nantokite see also Bouchard-Abouchacra (2001) and Frost et al. (2003i).

Naquite FeSi

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal at

340 K. The laser wavelength and the laser radiation power are not indicated.
Raman shifts (cm21): 436, (333w), 315s, (260), 219, (193), 180s.
Source: Nyhus et al. (1995).
Comments: No independent analytical data are provided for the sample used.

Narsarsukite Na2(Ti,Fe
3+)Si4(O,F)11

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on pellets of pressed

powder using 488 nm Ar+ laser radiation. The laser radiation power at the sample was about
300 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 1009, 907, 764s, 518w, 480w, 422w, 362.
Source: Su et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction data.

Natalyite NaV3+Si2O6

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed in the backscattering configuration, using 514.5 nm Ar+ laser
radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 1042, 1025w, 972s, 954s, ~910w, ~865, ~830, ~680, ~640w, ~550s, ~505,
~390, ~360, ~345sh, ~340s, and a series of bands below 340 cm�1.

Source: Konstantinović et al. (2002).
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Comments: No independent analytical data are provided for the sample used. For the Raman spectra
of natalyite see also Popović et al. (2006) and Ullrich et al. (2009).

Natisite Na2TiO(SiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on pellets of pressed

powder using 488 nm Ar+ laser radiation. The laser radiation power at the sample was about
300 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 926w, 898, 869, 851s, 830s, 677w, 533w, 497w, 379sh, 360.
Source: Su et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction data.

Natrite Na2(CO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-Yag laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 1429w, 1080s, 702, 290.
Source: Buzgar and Apopei (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of natrite see also Edwards et al. (2007), Frezzotti et al. (2012), and Shatskiy et al. (2013).

Natroalunite NaAl3(SO4)2(OH)6

Origin: No data.
Experimental details: Micro-Raman scattering measurements have been performed on a thin section

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power at the sample was 20 or
50 mW.

Raman shifts (cm�1): 1183, 1163w, 1024s, 652s, 572, 519, 482, 395, 345, 234s, 163.
Source: Maubec et al. (2012).
Comments: The sample was characterized by electron microprobe analysis. Its empirical formula is

Na0.6K0.4Al2.9(SO4)2.1(OH)5.5.

Natrochalcite NaCu2(SO4)2(OH)∙H2O

Origin: Chuquicamata, Chile.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3196, 3156, 1046, 1023, 997s, 930, 709, 636s, 607, 466, 445, 429, 402, 212.
Source: Frost and Weier (2004e).
Comments: No independent analytical data are provided for the sample used.
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Natrodufrénite NaFe2+Fe3+5(PO4)4(OH)6∙2H2O

Origin: Divino das Laranjeiras, eastern Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3573, 3187, (3119), 1634, 1335w, 1188, 1059, 1003, 961, 914, 814, 668,
619w, 582, 560, 507, 477s, (444), 425, 376, 356, 298, 217, 194, 163, 142, 120.

Source: López et al. (2013b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Natrojarosite NaFe3+3(SO4)2(OH)6

Origin: The sample was obtained from the Dogan Paktunc of Mineral Resources Laboratories,
CANMET, Ottawa, ON, Canada. The locality is not indicated.

Experimental details: Methods of sample preparation are not described. Raman scattering
measurements have been performed using 785 nm solid-state laser radiation. The laser radiation
output power was above 300 mW.

Raman shifts (cm�1): 1105, 1008s, 618, 555, 356, 288, 221, 134.
Source: Das and Hendry (2011).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

natrojarosite see also Sasaki et al. (1998), Frost et al. (2006r), Murphy et al. (2009), and Chio
et al. (2010).

Natrolemoynite Na4Zr2Si10O26∙9H2O

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie,
Québec, Canada (type locality) (?).

Experimental details: Raman scattering measurements have been performed with laser radiation
perpendicular to the {010} cleavage of a single crystal using 532 nm laser radiation. The laser
radiation power is not indicated.

Raman shifts (cm�1): 968s, ~610, 538, 428, ~290w.
Source: McDonald et al. (2015).
Comments: No independent analytical data are provided for the sample used.

Natrolite Na2(Si3Al2)O10∙2H2O

Origin: Chimney Rock Quarry, Bound Brook, New Jersey, USA (?).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar+ laser
radiation. The laser radiation power at the sample was 10 mW.

Raman shifts (cm�1): 3543s, 3476, 3329s, 3231, 1637, 1093, 1085, 1071, 1064, 1042s, 1019, 1009,
987, 977, 966, 727s, 718, 707s, 534s, 443s, 417, 393, 360s, 333s, 308s, 290, 276, 259, 241, 218s,
207, 186, 163s, 145s.

Source: Wopenka et al. (1998).
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Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of
natrolite see also Belitsky et al. (1992), Goryainov and Smirnov (2001), Mozgawa (2001), Jehlička
et al. (2012), and Jehlička and Vandenabeele (2015).

Natron Na2(CO3)∙10H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 785 or 514.5 nm
laser radiation. The nominal laser radiation power was in the range from 5 to 100 mW.

Raman shifts (cm�1): 1061–1070s, 335w, 224w, 185w.
Source: Edwards et al. (2007).
Comments: No independent analytical data are provided for the sample used.

Natroniobite NaNbO3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed at 560 K in backscattering geometry using 514.5 nm Ar+

laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): ~570s, ~240, ~205, ~160, ~120, ~50.
Source: Yuzyuk et al. (2005).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts are

given for a sample at 560 K.

Natropalermoite Na2SrAl4(PO4)4(OH)4

Origin: Palermo No. 1 mine, Groton, New Hampshire, USA (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): ~3215, ~1145s, ~1079, ~1008s, ~935, ~640, ~622, ~595, ~524, ~431s, ~413,

~318, and a series of bands below 300 cm�1.
Source: Schumer et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Natrophilite NaMn2+(PO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an aggregate of

microtubes using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1054, 1010, 948, 614, 579, 454, 410.
Source: Shi et al. (2005).
Comments: The sample was characterized by powder X-ray diffraction data and energy dispersive

X-ray spectral analysis.
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Natrosilite Na2Si2O5

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 510.5 nm, 10 kHz pulsed copper vapor laser radiation
with the laser radiation power at the sample of about 30 kW within a pulse.

Raman shifts (cm�1): 1072s, ~1010w, ~955w, ~760w, 517s, ~470w, 384, 337, 270, 223, 149.
Source: You et al. (2001).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of natrosilite see also Fleet and Henderson (1997).

Natrouranospinite Na2(UO2)2(AsO4)2∙5H2O

Origin: Mĕdĕnec deposit, the Krušné Hory (Ore Mts.), northern Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3493, (3450), 3404, 3260sh, 1136, 1008s, (904w), 893, 816s, (810), 671, 621,
579w, 494, 461, 415s, 400sh, 322, 267, (245), 209sh, (199), 188s, 156sh, 148, (140), 110.

Source: Čejka et al. (2009c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Natroxalate Na2(C2O4)

Origin: Alluaiv Mt., Lovozero massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 1750, 1643, 1614, 1456s, 1358s, 884, 875, 567, 481, 221, 156, 117.
Source: Frost (2004d).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of natroxalate see also Frost and Weier (2003) and Frost et al. (2003k).

Natrozippeite Na5(UO2)8(SO4)4O5(OH)3∙12H2O

Origin: Mecsek Mountains, Hungary.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1239, 1137, 1099w, 1009, 825s, 665w, 461, 409, 273.
Source: Stefaniak et al. (2009).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of

natrozippeite see also Frost et al. (2007f) and Driscoll et al. (2014).
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Naumannite Ag2Se

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm�1): 141.
Source: Ge and Li (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Nealite Pb4Fe(AsO3)2Cl4∙2H2O

Origin: Lavrion, Greece.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3451, 3431, 3387w, 3357sh, 3215m 2892w, 2849w, 1015w, 831w, 732, 808s,
632, 604sh, 548, 471, 418sh, 393, 371sh, 342sh, 320, 299sh, 245, 212, 194sh, 183sh, 160sh, 149s,
137, 129sh, 119.

Source: Frost and Bahfenne (2011a).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of nealite see also Bahfenne (2011).

Negevite NiP2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on nanoparticles using

532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 454, 586s.
Source: Zhuo et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Neighborite NaMgF3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed in the geometry y(zz)-y.

Characteristics of laser radiation are not indicated.
Raman shifts (cm�1): ~230s, ~212w, ~187s, ~140, ~130sh, ~105.
Source: Oçafrain et al. (1996).
Comments: The sample was characterized by optical methods.

Nekoite Ca3Si6O15∙7H2O

Origin: Iron Cap Mine, near Klondyke, Cochise Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
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have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (3567), 3502, 3380sh, 3071sh, 2810sh, (1647), 1623, 1567sh, 1132sh, 1092s,
1061s, 1023, 994sh, 974, 774, 661s, (560), 588s, 525, 437, 416sh, 398, 362sh, 345, 303, 287, (259),
240, 198, 180, 156, 136, 106w.

Source: Frost and Xi (2012n).
Comments: No independent analytical data are provided for the sample used.

Nenadkevichite (Na,□)8Nb4(Si4O12)2(O,OH)4∙8H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The output laser radiation power was 25 mW.
Raman shifts (cm�1): 940w, 878w, 668s, ~500w, ~480w, 226s.
Source: Rocha et al. (1996).
Comments: A sample with the Ti:Nb molar ratio of 0.8 was used. The sample was characterized by

powder X-ray diffraction data. For the Raman spectrum of nenadkevichite see also Rocha
et al. (1996).

Nepheline NaAlSiO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488 nm Ar+ laser radiation. The nominal laser radiation power was 600 mW. A 90�-scattering
geometry was employed.

Raman shifts (cm�1): 1081, 984, 973, 690w, 616w, 497, 469, 427s, 399s, 331, 264, 214, 151, 138w,
123.

Source: Matson et al. (1986).
Comments: No independent analytical data are provided for the sample used.

Nesquehonite Mg(CO3)∙3H2O

Origin: A natural sample. The locality is not indicated.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm�1): 2905w, 1890w, 1708w, 1515w, 1428w, 1100s, 772w, 703w, 344w, 311w,

273w, 228, 199, 187, 119.
Source: Edwards et al. (2005).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

nesquehonite see also Coleyshaw et al. (2003), Kloprogge et al. (2003), and Kristova et al. (2014).

Nestolaite CaSeO3∙H2O

Origin: Little Eva mine, Grand County, Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm diode laser radiation. The laser radiation power at the sample was 5 mW.
Raman shifts (cm�1): 1680w, 825s, 750s, 470w, 405w, 360w.
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Source: Kasatkin et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Newberyite Mg(PO3OH)∙3H2O

Origin: Lava Cave, Skipton, Victoria, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3514, 3479, 3456, 3381, 3265, 3181, 2880, 1648, 1620, 1272, 1195, 1154,
984s, 967, 893, 555, 498, 400, 369, 327, 283, 266, 244, 219, 199, 180, 158, 139.

Source: Frost et al. (2005j).
Comments: No independent analytical data are provided for the sample used.

Nežilovite PbZn2Mn4+2Fe
3+

8O19

Origin: “Mixed series” metamorphic complex, near the Nežilovo village, 40 km SW of Veles,
Pelagonian massif, Macedonia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): Raman shifts of presumed nežilovite given in the cited paper (i. e. 1099s, 725w,
483w, 340w, 300, 176) correspond to associated dolomite.

Source: Stamatovska et al. (2011).

Nickelaustinite CaNi(AsO4)(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3344, 3320, 917, 828s, 811, 799, 777, 495, 475s, 430s, 398, 369, 348s,
332, 216, 164, 147.

Source: Martens et al. (2003c).
Comments: No independent analytical data are provided for the sample used.

Nickelbischofite NiCl2∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 80 K on oriented

single crystal using Kr+ laser radiation. The laser radiation power is not indicated. Polarized spectra
were collected in different scattering geometries.

Raman shifts (cm�1): 3503, 3424, 3411, 3371, 3160, 1671, 1623, 869, 699, 685, 571, 543, 372, 362.
Source: Agulló-Rueda et al. (1987).
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Comments:No independent analytical data are provided for the sample used. For the Raman spectrum
of nickelbischofite see also Cariati et al. (1989).

Nickelboussingaultite (NH4)2Ni(SO4)2∙6H2O

Origin: Cameron, Coconino Co., Arizona, USA.
Experimental details:Micro-Raman scattering measurements have been performed on a fine-grained

sample using 785 nm diode laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 3280w, 2940w, 1660w, 1460w, 1149w, 1093w, 1063w, 1027, 990s, 652w,

624w, 602w, 482w, 457, 440w, 341w, 312w, <240.
Source: Culka et al. (2009).
Comments: No independent analytical data are provided for the sample used. The Raman shifts have

been partly determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Nickelhexahydrite Ni(SO4)∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 253.65 nm radiation of mercury. The radiation power is not indicated.
Raman shifts (cm�1): 3441s, 3403s, 3302, 3250, 1131, 1088, 1050w, 987s, 971w, 639, 620, 596.
Source: Krishnamurti (1958).
Comments: The sample was characterized by optical methods.

Nickeline NiAs

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation at a power below 2 mW.
Raman shifts (cm�1): 218, 154
Source: Watté et al. (1994).
Comments: The sample was characterized by powder X-ray diffraction data.

Nickelpicromerite K2Ni(SO4)2∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 253.65 nm radiation of mercury. The incident light was normal to the (110) face and
the scattered light was taken parallel to the (110) face and roughly perpendicular to the (001) face.
The radiation power is not indicated.

Raman shifts (cm�1): 3310s, 3234, 3148, 3050–3540, 1230w, 1155, 1127, 1113, 1085s, 990s, 910w,
845w, 800w, 634, 611, 462, 448, (374), 320sh, 305w, 269w, 225, (184), 132sh, 115, (93w), 74sh,
62, 46.

Source: Ananthanarayanan (1961).
Comments: The sample was characterized by morphological features.
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Nierite hexagonal polyborph β-Si3N4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

polycrystalline sample using 488 nm laser radiation. The laser radiation power at the sample was
50 mW.

Raman shifts (cm�1): 1045, 937, 927, 863, 730w, 618w, 525s, 449w, 227, 206, 183.
Source: Muraki et al. (1997).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of β-Si3N4 see also Honda et al. (1999).

Nifontovite Ca3[BO(OH)2]6∙2H2O

Origin: Fuka Mine, Okayama Prefecture, Japan.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using Ar+ laser radiation. The laser radiation power at the sample was about 20 mW.
Raman shifts (cm�1): 3650w, 3611s, 3575s, 3434s, 3393, 3311, 3217sh, 3177s, 1607w, 1235w,

1208w, 1186w, 1154w, 1122w, 1030w, 991w, 932w, 918w, 896w, 831w, 806w, 749sh, 720, 653s,
633sh, 574w, 558w, 543w, 441w, 420, 391w, 371w, 348w, 322w, 306, 275w, 262sh, 225w, 213w,
190w, 171w, 140w, 123.

Source: Bermanec et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction and thermal data.

Nimite (Ni,Mg,Al)6(Si,Al)4O10(OH)8

Origin: Bon Accord, Barberton, South Africa.
Experimental details: No data.
Raman shifts (cm�1): 3645, 678, 547, 279, 196.
Source: Villanova-de-Benavent et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Niningerite MgS

Origin: Meteorite Sahara 97158.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 2 mW.
Raman shifts (cm�1): ~280s, ~220.
Source: Avril et al. (2013).
Comments: Fe,Mn-bearing sample with the formula (Mg0.73Fe0.16Mn0.11)S was used.

Nioboholtite (Nb0.6□0.4)Al6BSi3O18

Origin: Szklary pegmatite, Lower Silesia, Poland (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was
about 5.5 mW.
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Raman shifts (cm�1): ~1110, ~1045, ~965sh, ~945s, ~895sh, ~710w, ~612, ~555s, ~507s, ~460,
~420, ~380, ~270w, ~205w.

Source: Pieczka et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Niter K(NO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser
radiation power was between 80 and 200 mW.

Raman shifts (cm�1): 1359, 1345, 1050s.
Source: Rissom et al. (2008).
Comments: No independent analytical data are provided for the sample used.

Nitratine Na(NO3)

Origin: Dolomite Cave of Pozalagua, Karrantza, Basque Co., northern Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm diode laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): See comment below.
Source: Martínez-Arkarazo et al. (2007).
Comments: In the cited paper Raman spectra of nitratine-bearing polymineral samples are given.

Raman shifts of pure nitratine are: 1066s, 725, 185s (see RRUFF ID R050394, for an unoriented
sample).

Nitrobarite Ba(NO3)2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): 1631w, 1402w, 1045s, 1025w, 729.
Source: Maguregui et al. (2008).
Comments: No independent analytical data are provided for the sample used.

Nitrocalcite Ca(NO3)2∙4H2O

Origin: Dolomite Cave of Pozalagua, Karrantza, Basque Co., northern Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm diode laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): See comment below.
Source: Martínez-Arkarazo et al. (2007).
Comments: In the cited paper Raman spectra of nitrocalcite-bearing polymineral samples are given.

Raman shifts of pure nitratine are: 1067s, 740, 282w, ~195 (RRUFF ID R120047, for an unoriented
sample, with 780 nm radiation).
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Nitromagnesite Mg(NO3)2∙6H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 or 514 nm laser radiation. The nominal laser
radiation power was 350 or 50 mW.

Raman shifts (cm�1): 1059s.
Source: Morillas et al. (2016).
Comments: No independent analytical data are provided for the sample used.

Nobleite CaB6O9(OH)2∙3H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a sample held in a

pyrex tube using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 300 mW.
Raman shifts (cm�1): 996w, 956w, 855s, 745, 636, 572w, 460, 383.
Source: Jun et al. (1995).
Comments: The sample was characterized by chemical analyses.

Noelbensonite BaMn3+2Si2O7(OH)2∙H2O

Origin: Postmasburg manganese field, Northern Cape Province, South Africa.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): 925s, 904, 650, 572, 523s, 436, 386, 331w, 304w, 245, 185, 160.
Source: Costin et al. (2015).
Comments: The sample was characterized by electron backscatter diffraction and electron microprobe

analyses.

Nolanite (V3+,Fe3+,Fe2+)10O14(OH)2

Origin: Vihanti, Northern Ostrobothnia region, Finland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser
radiation power was 2 or 20 mW.

Raman shifts (cm�1): 587, 504, 478, 323w, 293w, 221s, 85s.
Source: Voloshin et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Nontronite Na0.3Fe
3+

2(Si,Al)4O10(OH)2∙nH2O

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm laser radiation. The laser radiation power is
not indicated.
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Raman shifts (cm�1): ~3575s, ~3410, ~890, ~810w, ~760w, ~680, ~570w, ~520, ~420, ~360,
~290s, ~240s.

Source: Wang et al. (1998a).
Comments: No independent analytical data are provided for the sample used.

Norbergite Mg3(SiO4)F2

Origin: Franklin Limestone quarry, Franklin, Sussex Co., New Jersey, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3583, 3488, 979, 955, 900, (884w), 855s, 614, 572, 555s, 435s, 382.
Source: Frost et al. (2007k).
Comments: The sample was characterized by electron microprobe analysis. The empirical formula

shows deficit of Mg+Fe.

Nordenskiöldine CaSn(BO3)2

Origin: Gejiu tin deposit, Yunnan, China.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 458 nm Ar+ laser radiation. The nominal laser radiation
power was 120 mW.

Raman shifts (cm�1): 1453w, 1205s, 944w, 847w, 764, 743, 449s, 389, 277, 214w.
Source: Li et al. (1994).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Nordstrandite Al(OH)3

Origin: Gunong Kapor, Bau mining district, West Sarawak, Borneo.
Experimental details: Raman scattering measurements have been performed on grains placed on

glass slide using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 25 mW.
Raman shifts (cm�1): 3623, 3567s, 3523w, 3490, 3349, 1093, 985, 959w, 898, 657, (633w),

596, 542s, 507, 492, 464w, 437w, 412, 390, 378, (355w), (344w), 305s, 286, (267w),
252, 228w, 177, 119s.

Source: Rodgers (1993).
Comments: The sample was identified by Raman spectrum only. No independent analytical data are

provided for the sample used.

Normandite Na2Ca2(Mn,Fe)2(Ti,Nb,Zr)2(Si2O7)2O2F2

Origin: Partomchorr Mt., Khibiny Massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm�1): 813s, 803, 782, 748s, 724, 667sh, 656, (649), 641sh, 520sh, 513s, (505),
477, 454, 412w, 404sh, 382w, 371w, 361w, (352w), 285, 267s, (259), 198, 179, 151s, 141, 125,
109.

Source: Frost et al. (2015p).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Norsethite BaMg(CO3)2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 or 514.5 nm Ar+ laser radiation. The nominal
laser radiation power was 200 mW.

Raman shifts (cm�1): 1115s, 695, 260, 130.
Source: Scheetz and White (1977).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

norsethite see also Schmidt et al. (2013) and Effenberger et al. (2014).

Northupite Na3Mg(CO3)2Cl

Origin: Searles Lake, California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 1554, 1115s, 1107sh, 714w, 250, 213, 180, 148.
Source: Frost and Dickfos (2007a).
Comments: No independent analytical data are provided for the sample used.

Nosean Na8(Si6Al6)O24(SO4)∙H2O

Origin: Laacher See (Laach Lake) volcano, Eifel, Germany.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): ~1060, ~980s, ~630, ~605w, ~530, ~435.
Source: Hettmann et al. (2012).
Comments: No independent analytical data are provided for the sample used.

Nováčekite-II Mg(UO2)2(AsO4)2∙10H2O

Origin: Wheal Edward, St. Just, Cornwall, UK.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 785 nm laser radiation. The nominal laser radiation
power at the source was ~370 mW.

Raman shifts (cm21): The strongest band is observed at 817 cm�1. Other Raman shifts are not
indicated.

Source: Driscoll et al. (2014).
Comments: The sample was characterized by electron microprobe analysis.
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Novgorodovaite Ca2(C2O4)Cl2∙2H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm solid-state laser radiation. The nominal laser
radiation power was 10 mW.

Raman shifts (cm21): 3350sh, 3330s, 1717w, 1630w, 1477s, 1402w, 904s, 859s, 730w, 673w, 600w,
503s, 472s.

Source: Piro et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data.

Nsutite Mn2+xMn4+1-xO2-2x(OH)2x

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 10 mW.

Raman shifts (cm�1): 732, 634, 572, 515, 458, 382, 280.
Source: Julien et al. (2004).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of nsutite see also Julien et al. (2003).

Nullaginite Ni2(CO3)(OH)2

Origin: Otway Prospect, Nullagine district, Western Australia, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3506w, 1734w, (1441w), 1426, (1092), 1089s, 742, 528, 342s, 232
Source: Frost (2006).
Comments: Raman spectrum of presumed nullaginite was published also by Frost et al. (2008l).

However IR spectra of presumed nullaginite published in this paper are wrong: the strongest bands
correspond to a serpentine-type silicate.

Nyerereite Na2Ca(CO3)2

Origin: Oldoinyo Lengai volcano, Tanzania (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 20 mW.

Raman shifts (cm�1): 1086s, 1078sh, 1001w, 723–725sh, 709, 682–684sh.
Source: Golovin et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of nyerereite see also Kaminsky et al. (2009), Zaitsev et al. (2009),
Golovin et al. (2014), and Shatskiy et al. (2015).
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Offretite KCaMg(Si13Al5)O36∙15H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm�1): 788w, 480s, 330.
Source: Croce et al. (2013).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of offretite see also Mozgawa (2001).

Okenite Ca10Si18O46∙18H2O

Origin: Pune (Poonah) district, Maharashtra, India.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (3607), 3531, 3417, (3284), 3029w, 1631w, 1180, 1125sh, 1090s, (1075),
1048w, 1024, (1014), 973, 943, 801, 668, 651, 617, (603), (581), 569, 515, 496sh, 445, 423,
403, 385, 352, 302, 254, 228, 211sh, 190, 155sh, 133.

Source: Frost and Xi (2012n).
Comments: No independent analytical data are provided for the sample used.

Oldhamite CaS

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 20 mW.
Raman shifts (cm�1): ~485, ~350s, ~285s, ~215, 185, 160.
Source: Avril et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Olgite (Ba,Sr)(Na,Sr,REE)2Na(PO4)2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser
radiation power was 50 mW.

Raman shifts (cm�1): 1100w, 1001w, 952s, 608, 570, 423, 86.
Source: Huang et al. (2007).
Comments: The Raman spectrum was obtained for a Ce3+-doped sample. The sample was

characterized by powder X-ray diffraction data.
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Olivenite Cu2(AsO4)(OH)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Ar+ laser radiation. The laser radiation power
at the sample was 20 mW. A 180�-scattering geometry was employed.

Raman shifts (cm�1): 854s, 818, 514, 498, 424w, 345w, 311, 284, 220, 184w, 157, 116, 95, 82, 67.
Source: Majzlan et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

olivenite see also Yang et al. (2001), Frost et al. (2002e, 2009i), and Martens et al. (2003b).

Olivine P-rich variety (Fe,Mg)2-x(SiO4,PO4)

Origin: Prehistoric slag from Goldbichl, Igls, Tyrol, Austria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm He-Ne laser radiation. The nominal laser radiation power was 170 mW.
Raman shifts (cm�1): 1096, 1049, 975, 936s, 832+822s (unresolved doublet?), 725, 680, 631, 582,

561, 510, 457, 405, 368, 331, 291, 228, 163, 113.
Source: Schneider et al. (2013).
Comments: The sample was characterized by electron microprobe analyses. The contents of P and Fe

are from 0.36 to 0.54 and from 0.77 to 1.08 atoms per formula unit, respectively.

Olmiite CaMn[SiO3(OH)](OH)

Origin: N’Chwaning II mine, Kalaharimanganese fields, South Africa (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (3550), 3543, 3511, 3467sh, 2807, (064w), 953, 914w, 853s, 811, 799sh,
782sh, 726w, 513, 484, 436, 420, 400, 378w, 335.

Source: Frost et al. (2013o).
Comments: The sample was characterized by electron microprobe analysis.

Olshanskyite Ca2[B3O3(OH)6]OH∙3H2O

Origin: Fuka mine, Okayama prefecture, Japan.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3621, 3536, 3482s, (3440), 3373, 3240, 3100sh, 2919, 1365w, 1206w, 1141w,
1069, 1025sh, (1014), 1003, 989, (976), 961, (919), 850sh, (696), 679s, (658), 579w, 516w,
463, 448w, 388w, 345, (335), 330, 322, 315, (303).

Source: Frost et al. (2014ak).
Comments: No independent analytical data are provided for the sample used.
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Omongwaite Na2Ca5(SO4)6∙3H2O

Origin: A recent salt lake deposit at Omongwa pan, Namibia (type locality).
Experimental details: No data.
Raman shifts (cm�1): 3527w, 1143, 1013s, 665w, 637, 608w, 476, 436w,
Source: Mees et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of omongwaite see also Tong et al. (2011).

Omphacite (Ca,Na)(Mg,Fe,Al)Si2O6

Origin: Uru River area (?), north-central Myanmar.
Experimental details: Raman scattering measurements have been performed on an oriented grain in a

polished sample using 532 nm laser radiation, with laser beam parallel to the b axis. The nominal
laser radiation power was 20 mW.

Raman shifts (cm�1): 1016, 684s, 567, 382, 144, 76.
Source: Leander et al. (2014).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of

omphacite see also Buzatu and Buzgar (2010), and Andò and Garzanti (2014).

Onoratoite Sb8O11Cl2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 20 mW.

Raman shifts (cm�1): ~477s, ~456s, ~430, ~372, ~325, ~225sh, ~205, ~195, and a series of weak
bands below 190 cm�1.

Source: Orman et al. (2008), Orman (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Opal-A SiO2∙nH2O

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): ~3460, 410s.
Source: Kiefert and Karampelas (2011).
Comments: No independent analytical data are provided for the sample used.

Opal-CT SiO2∙nH2O
Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm laser radiation. The laser radiation power is not
indicated.
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Raman shifts (cm�1): ~3450, 335s.
Source: Kiefert and Karampelas (2011).
Comments: No independent analytical data are provided for the sample used. For the Raman

spectra of opal-CT see also Ilieva et al. (2007) and Wilson (2014).

Ophirite Ca2Mg4[Zn2Mn3+2(H2O)2(Fe
3+W9O34)2]∙46H2O

Origin: Ophir Hill Consolidated mine, Ophir district, Oquirrh Mts., Tooele Co., Utah, USA (type
locality).

Experimental details: Methods of sample preparation are not described. Raman scattering
measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power at the sample was between 0.5 and 5 mW.

Raman shifts (cm�1): ~955s, ~920sh, ~850, ~335w, ~220w.
Source: Kampf et al. (2014b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Oppenheimerite Na4(UO2)(SO4)3�3H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): 3526, 3400, 3218, ~1600w, 1215w, 1156w, 1060w, 1013, 1002, 986, 970s,
841s, 825sh, 651w, 603w, 459, 378sh, 345sh, 207, 188, 163, 153, 132, 110, 55.

Source: Kampf et al. (2015c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Ordoñezite ZnSb5+2O6

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm�1): 830w, 798w, 748s, 730, 670s, 615, 570sh, 538s, 480w, 364w, 331sh,

323, 300sh, 292, 248sh, 261, 220w.
Source: Husson et al. (1979).
Comments: No independent analytical data are provided for the sample used.

Orpiment As2S3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): 379w, 364sh, 352s, 308s, 291, 200w, 178w, 153, 143w, 135w.
Source: Minceva-Sukarova et al. (2003).
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Comments: No independent analytical data are provided for the sample used. For the Raman spectra
of orpiment see also Forneris (1969), Trentelman et al. (1996), Burgio and Clark (2001), Frost et al.
(2010c), and Kampf et al. (2011a).

Orschallite Ca3(S
4+O3)2(SO4)∙12H2O

Origin: Hannebacher Ley volcano, Eifel, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3383, 1215w, 1096, (1011), 1005s, 984, 971sh, (657), 651, 532sh, 521, 492,
441, 244, 194, 173, 145, 119.

Source: Frost and Keeffe (2009d).
Comments: No independent analytical data are provided for the sample used.

Orthoclase K(AlSi3O8)

Origin: Bahariya depression, Western Desert, Egypt.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was between 20 and 200 mW.

Raman shifts (cm�1): ~1125, ~750w, ~650, ~640, ~590, 515s, 475s, 453, ~403, 282.
Source: Ciobotă et al. (2012).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of orthoclase see also Frezzotti et al. (2012) and Culka et al. (2016a).

Orthojoaquinite-(Ce) NaBa2Fe
2+Ce2Ti2(SiO3)8O2(O,OH)∙H2O

Origin: Benitoite Gem Mine, San Benito Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3574sh, 3558, (3515), 3506, 3444sh, 3397, 3344+3317 (unresolved doublet?),
3230w, 3192w, 1112, 1033, 982, 956, 933, 896s, 732, 687sh, 668, 636, 600, 526, 494, 511,
375, 358, 304, 267, (202), 191, (165), 145, 112.

Source: Frost and Pinto (2007).
Comments: No independent analytical data are provided for the sample used.

Osakaite Zn4(SO4)(OH)6∙5H2O

Origin: Block 14 Opencut, Broken Hill, New South Wales, Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 He-Ne laser radiation. The nominal laser radiation power was 17 mW. A
180�-scattering geometry was employed.
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Raman shifts (cm�1): 3633, 3550, 3510, 3455, 3330, 3257sh, 3243, 3175, ~1670w, ~1620w, 1160,
1112, 1051, 1024, 1011, 964s, 636, 604, 508, 456, 430, 398.

Source: Elliott (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Osbornite TiN

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a coating deposited

on silicon (111) substrate using He-Ne laser radiation. The nominal laser radiation power was
20 mW.

Raman shifts (cm�1): 563, 242.
Source: Barshilia and Rajam (2004).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

osbornite see also Spengler et al. (1978).

Oskarssonite AlF3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powder sample

using 1064 nm Nd-YAG or 514.5 nm Ar+ laser radiation. The nominal laser radiation power was up
to 400 mW or 10–25 mW, respectively.

Raman shifts (cm�1): 478w, 382w, 157s, 96.
Source: Groß et al. (2007).
Comments: For the Raman spectrum of oskarssonite see also Daniel et al. (1990).

Osumilite KFe2(Al5Si10)O30

Origin: Rundvågshetta, Lützow-Holm Complex, East Antarctica.
Experimental details: Raman scattering measurements have been performed on a grain included

within a garnet porphyroblast using 532 nm laser radiation. The nominal laser radiation power was
10 mW.

Raman shifts (cm�1): 1103, 920, 549, 477s, 383w, 350w, 281.
Source: Kawasaki et al. (2011).
Comments: The sample was characterized by electron microprobe analyses.

Otavite Cd(CO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 and 514.5 nm Ar+ laser radiations. The nominal
laser radiation power was in the range from 100 to 500 mW.

Raman shifts (cm�1): 1718, 1388, 1084s, 712, 271, 158.
Source: Rutt and Nicola (1974).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

otavite see also Minch et al. (2010) and Falgayrac et al. (2013).
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Ottemannite Sn2S3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was below 0.4 mW.

Raman shifts (cm�1): 310s, 303sh, 247w, 231w, 67w, 56, 48.
Source: Fontané et al. (2013)
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of ottemannite see also Price et al. (1999).

Ottensite Na3(Sb2O3)3(SbS3)∙3H2O

Origin: Pereta mine, Tuscany, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm�1): 766w, 615w, 538, 479w, 355s, 344sh, 299, 254w, 225w, 153.
Source: Bittarello et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Ottohahnite Na6(UO2)2(SO4)5(H2O)7�1.5H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): ~3595, ~3490w, ~1630w, ~1220, ~1200, ~1155, ~1050, ~1010, ~980, ~930,
~840s, ~655, ~203s, and a series of weak bands in the range from 300 to 640 cm�1.

Source: Kampf et al. (2016g).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Otwayite Ni2(CO3)(OH)2∙H2O

Origin: Mt. Grey, Tasmania, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3612, (3610), 3579, 3538, 3470sh, (3288), (2989), 2935, 2879sh, 1690, 1600,
1353w, 1073s, (1068), 981s, 937, (835), 708, 703, 617, (545), 529, (469), 445, 395, 308sh,
232, 216, 194sh, 177sh.

Source: Frost et al. (2006o).
Comments: No independent analytical data are provided for the sample used.
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Oxammite (NH4)2(C2O4)∙H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3235, 3030, 2995, 2900, 2879, 2161, 1902, 1737, 1695s, 1605, 1473, 1451,
1447, 1430, 1417, 1312, 892s, 866, 815, 642, 489s, 438, 278, 224, 210, 198, 181, 160.

Source: Frost and Weier (2003).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of oxammite see also Frost et al. (2003k), Frost (2004d), and Frost and Weier (2004a).

Oxycalcioroméite Ca2Sb
5+

2O7

Origin: Bucadella Vena mine, Apuan Alps, Tuscany, Italy (type locality).
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm�1): 913w, 777, 666, 540sh, 509s, 426, 295, 199w.
Source: Biagioni et al. (2013c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Oxy-dravite Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O

Origin: No data available.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

with the crystallographic c axis parallel to the Cartesian coordinate z axis using 514.5 and 488.0 nm
Ar+ laser radiations. The laser radiation power at the sample was 14 mW. Raman spectrum was
obtained in the spectral region from 15 to 4000 cm�1. Polarized spectrum was collected in the -y(zz)
y scattering geometry.

Raman shifts (cm�1): 3776w, 3738w, 3674w, 3642w, 3567+3529 (unresolved doublet?), (3480w),
~700, 368s, 312, 242, 217, and a series of relatively weak bands in the range from 400 to 700 cm�1.

Source: Watenphul et al. (2016a, b).
Comments: The sample was characterized by electron microprobe and LA-ICP-MS analyses.

Oxykinoshitalite BaMg2Ti
4+O2(Si2Al2)O10

Origin: S. Demetrio High, Hyblean plateau, Sicily, Italy.
Experimental details:Micro-Raman scattering measurements have been performed on a grain in thin

section using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW.
Raman shifts (cm�1): 996, 880, 725s, 135, 122.
Source: Manuella et al. (2012).
Comments: The sample was characterized by electron microprobe analyses.
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Oxynatromicrolite (Na,Ca,U)2(Ta,Nb)2O6(O,F)

Origin: Guanpo, Henan province, China (type locality).
Experimental details: No data.
Raman shifts (cm�1): ~3450sh, ~770, ~650s.
Source: Guang et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses, and differential thermal analysis.

Oxyplumboroméite Pb2Sb
5+

2O7

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532.0 nm Nd-YAG laser radiation. The laser radiation power at the sample
was between 0.8 and 4 mW.

Raman shifts (cm�1): 807w, 513s, 423, 355, 298, 230s, 190, 107s.
Source: Rosi et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of oxyplumboroméite see also Kendix et al. (2008).

Oyelite Ca10B2Si8O29∙12H2O

Origin: N’Chwaning II mine, Manganese Fields, Kalahari desert, Republic of South Africa.
Experimental details:Methods of sample preparation are not described. Non-polarized micro-Raman

spectrum has been obtained in a nearly backscattered geometry using 632.8 nm He-Ne laser
radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): ~1025, ~1005, ~990, ~910, ~860, ~715s, ~685s, ~460, ~350, ~320.
Source: Biagioni et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data.

Ozokerite

Origin: Boryslav, Poland.
Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements

have been performed using 514.5 nm Ar+ laser radiation with the nominal radiation power of
10 mW (micro-Raman measurements) and/or 1064 nm Nd-YAG laser radiation with the power of
350 mW.

Raman shifts (cm�1): 2977, 2961w, 2930w, 2923s, 2917s, 2901w, 2880s, 2855, 2848w, 2836,
2733w, 2724, 1498w, 1486w, 1466, 1442, 1420w, 1416w, 1387w, 1369w, 1349w, 1321w,
1297w, 1169w, 1154w, 1133s.

Source: Jehlička et al. (2007a).
Comments: No independent analytical data are provided for the sample used.

Pabstite BaSnSi3O9

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm�1): 994w, ~876w, ~817w, 574s.
Source: Takahashi et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data.

Padmaite PdBiSe

Origin: Southern Sopchinskoe deposit, Monchegorsk district, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm�1): 235s, 177w, 154, 115, 91, 82, 61s, 52sh.
Source: Voloshin et al. (2015a).
Comments: The sample was characterized electron microprobe analyses.

Pakhomovskyite Co3(PO4)2∙8H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): 1043, 1023, 956s, 894, 560, 462, 370w, 260, 249, 202, 171.
Source: Shao et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data.

Palermoite Li2SrAl4(PO4)4(OH)4

Origin: Palermo No. 1 mine, Groton, New Hampshire, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1077, 1026s, 1005s, 982sh, 657, 637, 603s, 534, 512, 345, 417, 367w,

328, 282, 253, 238.
Source: Schumer et al. (2016).
Comments: No independent analytical data are provided for the sample used.

Palladinite PdO

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 18794.59 cm�1 laser radiation. The laser radiation
power at the sample was between 1 and 2 mW.

Raman shifts (cm�1): 723w, 650s, 445.
Source: Bakker (2014).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of palladinite see also McBride et al. (1991).
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Palladosilicide Pd2Si

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film using

514.5 nm Ar+ laser radiation. The nominal laser radiation power was � 10 mW.
Raman shifts (cm�1): 115s, 90.
Source: Nemanich (1986).

Palygorskite (Mg,Al)2Si4O10(OH)∙4H2O

Origin: Glasgow, Virginia, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on randomlyoriented crystals in back-scattering geometry,
using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 900 mW.

Raman shifts (cm�1): 1109, 988, 971, 809, 774, 680, 638, 556, 512, 488, 473, 437, 406, 354, 327,
268, 205, 183, 167, 130 (Ag modes); 1211, 1160, 1077, 986, 904, 800, 704, 658, 597, 540, 512,
456, 435, 410, 397, 353, 327, 243, 216, 205, 157, 139 (Bg modes). The strongest peaks are observed
in the ranges 250–300 and 650–720 cm�1.

Source: McKeown et al. (2002).
Comments: The empirical formula of the sample used is (Mg2.00Al1.96Fe0.06)Si7.94O21∙nH2O.

Panguite (Ti,Al,Sc,Mg,Zr,Ca)1.8O3

Origin: Allende meteorite (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in a polished section using 514.5 nm Ar+ laser radiation. The laser radiation power at the
sample was ~5 mW.

Raman shifts (cm�1): 405, 380s.
Source: Ma et al. (2012c).
Comments: The sample was characterized by electron backscatter diffraction data and electron

microprobe analyses.

Panichiite (NH4)2SnCl6

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm�1): ~430s, ~330s, ~290, ~265, ~210, ~193, ~148, ~122.
Source: Podsiadlo et al. (2015).
Comments: The sample was characterized by X-ray diffraction data. The crystal structure is solved.

Papagoite CaCuAlSi2O6(OH)3

Origin: Cornelia mine, Ajo, Pima Co., Arizona, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

1102 4 Raman Spectra of Minerals



Raman shifts (cm�1): 3614sh, 3573s, (3567), 3545s, (3533), (3490), 3453, (3368), (1079), 1053,
986, 942w, 867, 830sh, 812, 755, (644w), 630, 573, 536, 472sh, 460s, 438sh, 419s, 382, 298,
279, 264, 251, 243sh, 236sh, 205, (199), 185sh, 178, 170sh, 163, 156w, 150w, 147sh, 136, 131sh,
119, 113sh, 107.

Source: Frost and Xi (2013d).
Comments: No independent analytical data are provided for the sample used.

Parabutlerite Fe3+(SO4)(OH)∙2H2O

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa province, Antofagasta, Chile (type
locality).

Experimental details: Methods of sample preparation are not described. Polarized Raman spectra
have been obtained using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm�1): 3504sh, 3316, 3200sh, (3133), 1202, 1164, 1109s, (1095), 1044, 1026s, 1014,
990sh, 655sh, 614, 550, 468s, 406, 368, 263sh, 237, 214, 186, 155sh.

Source: Čejka et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Paracoquimbite Fe3+2(SO4)3∙9H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): 3577, 3412, 3245, 3046, 1682, 1620, 1200, 1170, 1112, 1093, 1037, 1025s,
1012, 877, 675, 628, 602, 514, 502, 478, 286, 211.

Source: Ling and Wang (2010).
Comments: The sample was characterized by powder X-ray diffraction data.

Paragonite NaAl2(Si3Al)O10(OH)2

Origin: Rebra II Formation, Rodnei Mts., Eastern Carpathians, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power at
the sample was 35 mW.

Raman shifts (cm�1): 911, 704, 612, 442s, 266, 217w.
Source: Buzgar (2008).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of paragonite see also Tlili et al. (1989), Graeser et al. (2003), and Frezzotti et al. (2012).

Paraguanajuatite Bi2Se3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a crystal with the

trigonal c axis parallel to the laser beam direction using 514.5 nm Ar+ laser and 647.1 nm Kr+ laser
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radiations. The laser radiation power is not indicated. A 180�-scattering geometry was employed.
Polarized spectra were collected in z(xx)–z and z(xy)–z scattering geometries.

Raman shifts (cm�1): z(xx)–z (A1g): 175, 72; z(xy)–z (Eg): 132.
Source: Richter et al. (1977).

Parahopeite Zn3(PO4)2∙4H2O

Origin: Reaphook Hill, Martins Well, Flinders Ranges, South Australia, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals in the spectral range from 700 to 4000 cm�1 using a 633 nm He-Ne laser. The laser
radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima
of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm�1): 3439sh, 3293, 3163, 3027, 1053, 1033, 1003s, 959.
Source: Frost (2004a).
Comments: No independent analytical data are provided for the sample used.

Paramontroseite VO2

Origin: Product of heating of karelianite from Pyrrhotite gorge, Khibiny massif by the laser beam.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser
radiation power was 2 or 20 mW.

Raman shifts (cm�1): 991, 897w, 688, 405, 281, 222, 190, 139s, 98.
Source: Voloshin et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Paranatrolite Na2(Si3Al2)O10∙3H2O

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie,
Québec, Canada.

Experimental details: No data.
Raman shifts (cm�1): ~3465w, ~1095w, ~527s, ~430, ~330, ~135s.
Source: Belitsky et al. (1992).
Comments: No independent analytical data are provided for the sample used.

Paraotwayite Ni(OH)2-x(SO4,CO3)0.5x

Origin: Otway deposit, Western Australia, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3606sh, 3590, 3568, (3566), 3532, 2909w, 2852w, 1115, 987s, (977), 642w,
606, 487, 473, 451, 416, 297w, (260), (238), (218), (196), (176).

Source: Frost et al. (2006o).
Comments: No independent analytical data are provided for the sample used.
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Parapierrotite TlSb5S8

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal with

the laser polarization parallel to the b- and c-axes using 632.8 nm He-Ne laser radiation. The laser
radiation power at the sample was 1.7 mW.

Raman shifts (cm�1): 334, 321, 310 (very strong for E||b), 293, 275w, 260w, 242, 227(very weak for
E||b), 204w, 178w, 162w, 145w, 127, 115w, 106w, 94w, 94, 81, 62, 51 (strong for E||c), 41.

Source: Kharbish (2011).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

parapierrotite see also Makreski et al. (2013b, 2014).

Pararealgar As4S4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 647.1 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 383w, 370w, 364, 346, 334, 340sh, 322w, 316w, 275, 236s, 230s, 204, 198,

191w, 175, 172, 167sh, 158, 152, 142, 135w, 118, 52sh, 45, 32.
Source: Muniz-Miranda et al. (1996).
Comments: For the Raman spectra of pararealgar see also Trentelman et al. (1996) and Burgio and

Clark (2001).

Pararobertsite Ca2Mn3+3(PO4)3O2∙3H2O

Origin: Tip Top mine, Custer, South Dakota, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 780 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): ~1197w, ~1112w, ~1042, ~1035, ~983, ~965, ~953sh, ~896w, ~623s, ~547w,

~498w, ~461, ~403, ~365w, ~309, ~277, ~258.
Source: Andrade et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data.

Parascholzite CaZn2(PO4)2∙2H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW.
Raman shifts (cm�1): 1170, 1115, 1086, 999, 925s, 553s, 409, 302, 286, 271, 236.
Source: Scholz et al. (2013a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of parascholzite see also Frost (2004a).

Parascorodite Fe3+(AsO4)∙2H2O

Origin: Kaňk (near Kutná Hora) or Lehnschafter gallery in Mikulov (near Teplice), both Czech
Republic.
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Experimental details: Methods of sample preparation are not described. Micro-Raman scattering
measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was between 1 and 2 mW.

Raman shifts (cm�1): 892, 859, 815s, 800sh, 782s, 492, 458sh, 437s, 413sh, 382w, 349sh,
337, 292sh, 280, 269sh, 245, 231w, 181s, 164sh.

Source: Culka et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data. Additionally, in the cited

paper Raman spectra of parascorodite obtained with 785 and 532 nm lasers are given.

Parasibirskite Ca2B2O5∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powder sample was

first pressed into a tablet using 532 nm Nd-YAG laser radiation. The nominal laser radiation power
was 40 mW. Backscattered spectra were collected from focal spot of diameter of 2 μm.

Raman shifts (cm�1): 3354, 3309, 1278, 1250, 1153, 1086, 908, 712, 489, 295, 281, 263, 252, 216,
175, 147, 135.

Source: Goryainov et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data.

Parasymplesite Fe2+3(AsO4)2∙8H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3460, 3215, 860, 835, 810, 780, 545, 480, 450, 432, 371, 332, 286, 249,
220, 194, 142.

Source: Frost et al. (2003g).
Comments: In the cited paper the mineral is named “parasymplesite/symplesite.” Band intensities are

not indicated. No independent analytical data are provided for the sample used.

Paratacamite Cu2+3(Cu,Zn)(OH)6Cl2

Origin: Widgiemooltha, Western Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3508, 3446, 3395, 3364, 3341, 3232, 942, 890, 732, 513, 501, 474, 404, 367,
277, 243, 148, 124.

Source: Frost et al. (2002b).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of paratacamite see also Chu et al. (2011).
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Paratellurite α-TeO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed in a back-scattering

geometry on an arbitrarily oriented sample using 514.5 nm Ar+ laser radiation. The nominal laser
radiation power was 150 mW.

Raman shifts (cm�1): 786, 769, 649s, 642, 592, 575, 415, 392, 379, 330, 315, 297, 281, 259, 235,
218, 210, 179, 174, 157, 152s, 121s, 82, 62.

Source: Mirgorodsky et al. (2000).
Comments: For the Raman spectra of paratellurite see also Bürger et al. (1992), Berthereau (1995),

and Noguera et al. (2003).

Paratooite-(La) (La,Ca,Na,Sr)6Cu(CO3)8

Origin: Paratoo Cu mine, Olary district, South Australia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): ~1440w, 1095s, 1075s, ~220s, and a series of weak bands in the range from

300 to 900 cm�1.
Source: Pring et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Paravauxite Fe2+Al2(PO4)2(OH)2∙8H2O

Origin: Siglo XX mine, Bustillo province, Potosí department, Bolivia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3648w, 3505s, 3421, 3315, (3215), 3086, 1639w, 1582sh, 1490sh, 1148,
1115sh, 1058sh, 1020s, 643, 609, 570, 537sh, 420sh, 393s, 253, 319, 299, 227sh, 214, 196w,
164, 148, 110.

Source: Frost et al. (2013n).
Comments: The sample was characterized by electron microprobe analysis.

Pargasite NaCa2(Mg4Al)(Si6Al2)O22(OH)2

Origin: Edenville, New York, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm�1): 1095w, 1045, 1009, 971w, 956w, 924, 910, 885, 758s, 663s, 581sh, 547, 526,
514, 475w, 415w, 322, 292s, 226s.

Source: Apopei and Buzgar (2010).
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Comments: No independent analytical data are provided for the sample used. For the Raman spectra
of pargasite see also Apopei et al. (2011), Frezzotti et al. (2012), Andò and Garzanti (2014), and
Leissner et al. (2015).

Parisite-(Ce) CaCe2(CO3)3F2

Origin: Snowbird mine, Fish Creek, Alberton, Mineral Co., Montana, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3661sh, 3517sh, 3316, 3180, 1420w, 1088s, 742, 682w, 601, 263, 152.
Source: Frost and Dickfos (2007a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of parisite-(Ce) see also Hong et al. (1999).

Parisite-(La) CaLa2(CO3)3F2

Origin: Mula mine, Tapera village, Novo Horizonte Co., Bahia, Brazil (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm solid-state laser radiation. The nominal laser radiation power was 150 mW.
Raman shifts (cm�1): 1428, 1331w, 1098s, 1091s, 1081s, 970, 871, 737, 600, 453, 394, 350, 331,

262s, 162.
Source: Menezes Filho et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. All peaks above 1500 cm�1 are due to fluorescence.

Parnauite Cu9(AsO4)2(SO4)(OH)10∙7H2O

Origin: Cap Garonne, Var, France.
Experimental details: Raman scattering measurements have been performed on a surfaces nearly

perpendicular to the {010} cleavage of a single crystal using 532 nm laser radiation. The laser
radiation power is not indicated.

Raman shifts (cm�1): 3544sh, 3457, 3365sh, 2926, 2880, 2848, 1608w, 1442, 1320w, 1118sh, 1039,
975, 849s, 814sh, 688sh, 604sh, 493s, 447sh, 378, 295, 268, 218sh, 168sh, 110s.

Source: Mills et al. (2013).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. For the Raman spectra of parnauite see also
Frost et al. (2009j) and Frost and Keeffe (2011).

Parsonsite Pb2(UO2)(PO4)2

Origin: Ranger U Mine, Northern Territory, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm�1): 3404w, 3329, 1590, 1078, (1074), 1024, (998), (987), 967, (943), (872), (831),
807s, 796sh, 609, 595, (591), 582, 560, 540, 465, 439, 406, 394, 281, 255, 227sh, 206, 188sh,
171, 155, 136sh, 111sh.

Source: Frost et al. (2006f).
Comments: The sample was characterized by chemical analyses.

Parthéite Ca2(Si4Al4)O15(OH)2∙4H2O

Origin: Denezhkin Kamen’ Mt., Middle Urals, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 and 633 nm laser radiations. The nominal laser radiation power was
100 and 17 mW, respectively.

Raman shifts (cm�1): 3574w, 3476sh, 3417, 3384, 3308w, 3256, ~1100w, ~1048, ~978, ~955, ~930,
~770, ~740, ~714, ~640, ~550, ~500s, ~450, ~420, ~400, ~360, ~310s, ~260w, ~250w, ~235w,
~220, ~200, ~180, ~160s, ~150, ~140, ~113.

Source: Lazic et al. (2012).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.

Partzite Cu2Sb
5+

2O7

Origin: Blind Spring Hill district, near Benton, Mono Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3622w, 3586, 3563, 3485w, 3407, 3376, 3266, 2947sh, (1455w), (1396w),
1126, 1096, 1074, 982sh, 971s, (938), 907w, 837w, 777w, 730w, 675w, 620, 607, 594, 520s,
479, 449, 418, 387, 362, 316, 258sh, 241, 195.

Source: Bahfenne and Frost (2010c).
Comments: Questionable data. In particular, the strongest band at 971 cm�1 may correspond to an

impurity. No independent analytical data are provided for the sample used.

Pašavaite Pd3Pb2Te2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm�1): 159s, 119.
Source: Bakker (2014).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of pašavaite see also Vymazalová et al. (2014).
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Pascoite Ca3V
5+

10O28∙17H2O

Origin: Vanadium Queen mine, San Juan Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3570w, 3466, 3405, 3254, 3125, (1668), 1644, 1514w, 993s, 961s, 841, 621s,
588s, 540, 459, 360sh, 337, 320sh, 292, 238, 193, 159.

Source: Frost and Palmer (2011c).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of pascoite see also Frost et al. (2004e, 2005d).

Patrónite VS4

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm�1): ~990, ~690, ~400, ~280, ~190, ~140s, ~100.
Source: Kozlova et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron

microprobe analysis.

Pattersonite PbFe3(PO4)2(OH)5∙H2O

Origin: Grube Vereinigung, near Eisenbach, Taunus, Hesse, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employed.

Raman shifts (cm�1): 3547, 3526s, 3291 (broad), ~1610 (broad), 1084s, 1046s, 996, 973s, 927, 636,
571s, 523, 504, 460s, 407, ~377, 360, 325s, ~296, ~273, 259.

Source: Kolitsch et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Pauflerite VO(SO4)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 and 514.5 nm Ar+ laser radiations. The laser
radiation power is not indicated. A 90�-scattering geometry was employed.

Raman shifts (cm�1): 1125, 1112, 1095, 1075, 1002, 925s, 654, 596w, 488w, 425w, 395, 361w,
335w, 311w, 285, 269, 253w, 231, 184w, 167w, 136w, 96.

Source: Boghosian et al. (1995).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.
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Paulingite-K K,Ca,Na,Ba,□)10(Si,Al)42O84∙34H2O

Origin: Vinařická Hora Hill, near Kladno, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 3554s (broad), 3433sh, 3265sh, 2945w, 2330w, 1640w, 1110, 993, 937,

774, 557sh, 496s, 474, 422w.
Source: Gatta et al. (2015b).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Paulmooreite Pb2As
3+

2O5

Origin: Långban, Filipstad district, Värmland province, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed from the a and c faces an

oriented single crystal the using 633 nm He-Ne laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm�1): 751, 732, 658w, 562w, 501, 433, 410, 367, 344w, 312, 270, 210, 186s, 138s,
106w (for the spectrum collected from the aface of the crystal).

Source: Bahfenne et al. (2012).
Comments: For the Raman spectrum of paulmooreite see also Bahfenne (2011).

Pauloabibite NaNbO3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 647.1 nm Kr+ laser radiation. The nominal laser radiation
power is not indicated.

Raman shifts (cm�1): 790, 630sh, 590s, 505sh, 387, 295 (broad), 255w, 733s, 673w, 487, 476sh,
287, 257, 212, 202, 165.

Source: Baran et al. (1986).
Comments: No independent analytical data are provided for the sample used.

Paulscherrerite (UO2)(OH)2

Origin: No. 2 Workings, Radium Ridge, Northern Flinders Ranges, South Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm�1): 3340, ~3290, 864sh, (850), 843s, 831s, 557w, 505w, 460w, 360w.
Source: Brugger et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of paulscherrerite see also Hoekstra and Siegel (1973), and
Walenta and Theye (2012).
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Pavlovskyite Ca8(SiO4)2(Si3O10)

Origin: Lakargi Mt., Upper Chegem caldera, North Caucasus (cotype locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power at the sample was
from 30 to 50 mW. A 180�-scattering geometrywas employed.

Raman shifts (cm�1): 1088w, 993s, 974, 925w, 908, 892, 858s, 847s, 821s, 669s, 569w, 546, 484w,
428w, 400, 358, 329, 305, 262w, 215w, 176w, 118s.

Source: Galuskin et al. (2012b).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Peatite-(Y) Li4Na12(Y,Na,Ca,REE)12(PO4)12(CO3)4(F,OH)8

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie,
Québec, Canada (type locality).

Experimental details: Raman scattering measurements have been performed from a face of single
crystal using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): 3659w, 1117sh, 1088s, 1042sh, 1000s, 623, 568, 494, 405sh, 370s,
260, 183, 139w.

Source: McDonald et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Pecoraite Ni3Si2O5(OH)4

Origin: Nullagine region, Western Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (3638), (3613), 3586, 3535, 3460sh, 3271sh, 2934w, 2896w, 2854w, 1593,
1384, 1075s, 979s, 930w, 821, 761, 616, 451, 397, 235, 194, 151.

Source: Frost et al. (2008j).
Comments: No independent analytical data are provided for the sample used.

Pectolite NaCa2Si3O8(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (2896), 2879w, 2851w, 2809sh, 1615, 1444w, 1413sh, 1388, (1047), 1026s,
998, 974s, (953), 936sh, 911, 706w, 687, 667sh, 653s, (642), (532w), 518sh, 508+500w (unre-
solved doublet?), 463w, (432), 415, 378, (370), 358, 325sh, 317, 276, 259sh, 225, (217), 203, 186,
152, 143, 134sh, 111.
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Source: Frost et al. (2015n).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectra of pectolite see also Mitchell et al. (2015) and Origlieri et al. (2017).

Peisleyite Na3Al16(PO4)10(SO4)2(OH)17∙20H2O

Origin: Tom’s phosphate quarry, near the town of Kapunda, South Australia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3505s, 3429, 3272, 2888, 1358w, 1289w, 1247w, 1144, 1023s, 989w,
634, 547, 412s, 314w, 276, 207, 188w, 159w.

Source: Frost et al. (2004j).
Comments: The sample was characterized TG/DTG data.

Péligotite Na6(UO2)(SO4)4�4H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): ~3460, ~1210, ~1165, ~1080, ~1045, ~1000s, ~980, ~960, ~945, ~830s, ~655,
~620.

Source: Kampf et al. (2016g).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Penkvilksite-2O Na2TiSi4O11�2H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 562 nm He-Ne laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): 3527w, 3471sh, 3410, 3354sh. In the spectral range below 3200 cm�1, only a
figure of the Raman spectrum of Penkvilksite-2O is given by Cadoni and Ferraris (2008).

Source: Cadoni and Ferraris (2008).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved. For the Raman spectrum of penkvilksite see also Frost and Xi (2013b).

Penroseite (Ni,Co,Cu)Se2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed by means of back scattering technique. Characteristics of the
laser radiation are not indicated.

Raman shifts (cm�1): 216.5.
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Source: Yang et al. (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Pentagonite CaV4+OSi4O10∙4H2O

Origin: Pune (Poonah) district, Maharashtra, India.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3640sh, (3580), 3532, (3499), 1634w, 1612w, 1191w, 1153w, 1089, 1047w,
971s, 765w, 651, 559, 524, 494w, 479w, 398, 344sh, 324, 305, 288, 261w, 230, 206, 158sh,
140, 123sh.

Source: Frost and Xi (2012h).
Comments: No independent analytical data are provided for the sample used.

Pentahydrite Mg(SO4)∙5H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on randomly oriented

fine grains using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 15 mW.
Raman shifts (cm�1): 3553sh, 3494, 3391, 3343, 3289, 1650w, 1159, 1106w, 1005s, 602, 447w,

371, 241, 206, 165, 119.
Source: Wang et al. (2006a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

pentahydrite see also Ling et al. (2009) and Frezzotti et al. (2012).

Pentahydroborite CaB2O(OH)6∙2H2O

Origin: Fuka mine, Okayama prefecture, Japan.
Experimental details: No data.
Raman shifts (cm�1): 3595w, 3499, 3445s, 3399, 3371sh, 3324s, 3196s, 3041s (broad), 2938w,

1610w, 1446w (broad), 1305, 1249, 1223, 1157, 1032, 981, 957, 918, 842, 781w, 725s, 678w,
611s, 584, 562, 508, 492, 472, 416sh, 401, 355, 330, 313sh, 272, 251, 243sh, 214.

Source: Bermanec et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and thermal analysis.

Pentlandite (Ni,Fe)9S8

Origin: Kambalda, Western Australia, Australia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar+ laser
radiation. The laser radiation power at the sample was between 1 and 10 mW. A 180�-scattering
geometry was employed.

Raman shifts (cm�1): 370.
Source: Mernagh and Trudu (1993).
Comments: No independent analytical data are provided for the sample used.
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Peretaite CaSb3+4O4(SO4)2(OH)2∙2H2O

Origin: Pereta mine, Scansano, Grosseto province, Tuscany, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3334, 1152, 1142, 1115w, 1092w, 1060, 980s, 710wm, 650w, 610sh, 595s,
589sh, 482w, 434, 417, 373w, 337, 229s, (219), 215sh, 196, 175w, 156, 137sh.

Source: Frost et al. (2010f).
Comments: No independent analytical data are provided for the sample used.

Perhamite Ca3Al77Si3P4O23.5(OH)14.1�8H2O

Origin: Dunton Gem Quarry, Newry, Oxford Co., Maine, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 1884, 1354, 1245, 1153, 1131, 1096, 1059w, 1032, 1005s, 996s, 929w,
708, 636, 615, 586w, 554, 520s, 506s, 468, 442w, 385, 375, 363w, 334, 276, 267, 207,
191, 170w, 148w, 129w.

Source: Frost et al. (2007l).
Comments: No independent analytical data are provided for the sample used.

Perite PbBiO2Cl

Origin: Homeward Bound mine, Mannahill, South Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 506, 484, 389, 367, 295, 253, 180, 157.
Source: Frost and Williams (2004).
Comments: The sample was characterized by X-ray diffraction and chemical analysis using ICP-AES

techniques, but no analytical data are provided in the cited paper.

Permingeatite Cu3SbSe4

Origin: Přibram, Central Bohemia region, Czech Republic.
Experimental details: Raman scattering measurements have been performed on grains mounted in a

polished section in backscattering geometry using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was ~1 mW.

Raman shifts (cm�1): 374w, 366w, 357w, 318w, 276w, 251w, 137, 229s, 214, 205, 193, 184s,
176, 167, 159w, 140w, 127, 78, 75, 63, 59, 51w, 45, 40, 26s, 21s, 17, 14.

Source: Škácha et al. (2014a).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses.

Perovskite CaTiO3

Origin: Rocca Castellaccio, Ciappanico, Malenco Valley, Sondrio province, Lombardy, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or
488 nm Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): 638 (broad), 471, 248s, 227s, 182s.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of perovskite see also Ma et al. (2013), Zajzon et al. (2013), and Martins et al. (2014).

Pertsevite-(OH) Mg2(BO3)(OH)

Origin: Snezhnoe boron deposit, Dogdo River basin, Saha Republic (Yakutia), Russia (type locality).
Experimental details: Raman scattering measurements have been performed on a polished section

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 20 mW. A
0�-scattering geometry was employed.

Raman shifts (cm�1): 3560 (broad), 919s, 862s, 738, 681, 602, 545.
Source: Galuskina et al. (2008).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Petalite LiAlSi4O10

Origin: Laghman province, Nuristan, Afghanistan.
Experimental details: Unpolarized Raman scattering measurements have been performed on an

arbitrarily oriented sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm�1): 1138, 1060w, 790w, 490s, 467w, 383s, 357s, 280, 143, 113, 85, 60w.
Source: Kaminskii et al. (2015).
Comments: The sample was characterized by X-ray diffraction data.

Petersite-(Ce) Cu6Ce(PO4)3(OH)6∙3H2O

Origin: Yavapai County, Arizona, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm solid-state laser radiation. The nominal laser radiation power was 60 mW.
Raman shifts (cm�1): 3499, 3411, 3292, 3072, 2934, 2873, 2862, 1095, 1084, 1043s, 945, 580s,

528, 472s, 393.
Source: Morrison et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Petitjeanite Bi3O(PO4)2(OH)

Origin: Cetoraz, near Pacov, Czech Republic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): 1038, 952, 584w, 548w, 405, 298, 260, 222s, 177s, 102s.
Source: Losertová et al. (2014).
Comments: The sample was characterized by electron microprobe analyses.

Petrukite (Cu,Fe,Zn,Ag)3(Sn,In)S4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 644 nm laser radiation. The laser radiation power at the sample was 0.02 mW.
Raman shifts (cm�1): 990w, 940w, 637, 597sh, 346, 337, 317s, 292, 280, 261sh, 150, 130w, 99, 93.
Source: Dzhagan et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of petrukite see also Fernandes et al. (2010).

Petterdite PbCr2(CO3)2(OH)4∙H2O

Origin: Red Lead mine, Zeehan–Dundas mining field, Tasmania, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on a powder sample

using 514.5 nm Ar+ laser radiation. The laser radiation output power was 0.3 mW.
Raman shifts (cm�1): 3540, 3470, 3282w, 2948w, 2924, 2854w, 2072w, 1641w, 1516s, 1493sh,

1394sh, 1343s, 1122w, 1089w, 956w, 881sh, 852w, 830w, 812w, 744w, 650sh, 626w, 592w,
541, 504s, 433.

Source: Birch et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction data, as well as by electron

microprobe and HCN analyses.

Petzite Ag3AuTe2

Origin: Coranda-Hondol open pit, Certej Au-Ag deposit, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 He-Ne laser radiation. The laser radiation power
is not indicated.

Raman shifts (cm�1): ~320, 174, 163s.
Source: Apopei et al. (2014b).
Comments: The sample was characterized by electron microprobe analyses.

Pezzottaite CsLiBe2Al2Si6O18

Origin: Piława Górna, Lower Silesia, SW Poland.
Experimental details: Raman scattering measurements have been performed on a powder sample

using 532 nm laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm�1): 1106s, 1067s, 1024, 1007, 689s, 542, 461, 406s, 329, 250, 118s.
Source: Pieczka et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. Pezzottaite differs from beryl by intensive Raman bands at 118 and 1106 cm�1. For the
Raman spectrum of pezzottaite see also Lambruschi et al. (2014).

Pharmacolite Ca(AsO3OH)∙2H2O

Origin: Jáchymov, Krušné Hory (Ore Mts.), Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3525, 3435, 3266sh, (3239), 3186, 1652w, 1179w, 885w, 865s, (858),
844, 706s, 676sh, 545w, 448, 397, 371, 357, 337sh, (309), 305, 286s, 195, (187), 176sh,
155, 133sh, 124.

Source: Frost et al. (2010b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Pharmacosiderite KFe3+4(AsO4)3(OH)4∙6-7H2O

Origin: Mokrsko-west Au deposit, Příbram district, Central Bohemia region, Czech Republic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532.2 nm diode laser radiation. The laser radiation
power at the sample was 0.5 mW.

Raman shifts (cm�1): 886, 830sh, 803s, 475s, 383, 336, 290w, 279, 244w, 179, 137w.
Source: Filippi et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of pharmacosiderite see also Frost and Kloprogge (2003) and
Bossy et al. (2010).

Pharmazincite KZn(AsO4)

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The laser radiation output power was 30 mW.
Raman shifts (cm�1): 853s, 513sh, 453w, 430w, 406w, 343, 323, 291.
Source: Pekov et al. (2016a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Phenakite Be2(SiO4)

Origin: San Miguel de Piracicaba, Minas Gerais, Brazil.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The maximum output
powder of 300 mW was filtered to diminish the power at the sample.
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Raman shifts (cm�1): 1021w, 952, 938, 918, 879s, 786, 775w, 761w, 728w, 702w, 686w, 666w,
616w, 601w, 527, 463w, 446, 384, 347w, 283w, 233w, 223.

Source: Jehlička et al. (2012).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of phenakite see also Hofmeister et al. (1987), Annen and Davis (1993), Pilati et al. (1998), and
Jehlička and Vandenabeele (2015).

Philipsbornite PbAl3(AsO4)(AsO3OH)(OH)6

Origin: Red Lead Mine, Dundas mineral field, Zeehan district, West Coast municipality, Tasmania,
Australia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (865), (857), 846+831s (unresolved doublet?), (820), 399, 376, 357s, 347, 336,
325, 189w, 180w, 134, 115w.

Source: Frost et al. (2013s).
Comments: No independent analytical data are provided for the sample used.

Philipsburgite (Cu,Zn)6(AsO4,PO4)2(OH)6∙H2O

Origin: Miedzianka (former Kupferberg), Sudety Mts., SW Poland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 40 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm�1): 3550w, 3489, 3429w, 3215sh, 1060w, (994w), 970, (946w), 865s, 847sh, 809s,
791sh, 667w, 564sh, (491w), 474, 396, 368sh, 347sh, 317, 307sh, 249w, 218w.

Source: Ciesielczuk et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Phillipsite-K K6(Si10Al6)O32∙12H2O

Origin: Capo di Bove, Rome province, Latium, Italy (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using Nd-YAG laser radiation. The laser radiation power at
the sample was 300 mW.

Raman shifts (cm�1): 815, 743, 472s, 424sh, 187w.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Philolithite Pb12O6Mn7(SO4)(CO3)4Cl4(OH)12

Origin: Långban, Värmland, Sweden (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 20 mW.
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Raman shifts (cm�1): A group of bands around 3400 cm�1, 1122, 1111, 1073, 1011, 420.
Source: Kampf et al. (1998).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Phlogopite KMg3(AlSi3O10)(OH)2

Origin: Arendal Fe Mines, Aust-Agder, Norway.
Experimental details: Micro-Raman scattering measurements have been performed on a single

crystal using a 514.5 nm Ar+ laser. Sample orientation is not indicated.
Raman shifts (cm�1): (1024), (1000), 675s, 650, 273, 190s, 97.
Source: Tlili et al. (1989).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of phlogopite see also McKeown et al. (1999), Tlili and Smith
(2007), and Frezzotti et al. (2012).

Phoenicochroite Pb2(CrO4)O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 647.1 nm Kr+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): 849, 838, 826s, 382, 356w, 343, 333w, 324.
Source: Roncaglia et al. (1985).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of phoenicochroite see also Frost (2004c).

Phosgenite Pb2(CO3)Cl2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne or 514.5 nm Ar+ laser radiation. The nominal laser radiation power
was �30 mW.

Raman shifts (cm21): 1063s, 668, 281, 252, 181w, 154, 129, 87s, 81, 53, 47s.
Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

phosgenite see also Frost et al. (2003j) and Frost and Williams (2004).

Phosphammite (NH4)2(PO3OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 260 K on crystals in a

sealed glass cell using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was between
0.1 and 0.2 mW.

Raman shifts (cm21): 3200sh, 3048s, 2805s, 2203, 1948, 1743, 1720, 1696, 1441w, 1404, 1094w,
1062w, 1052w, 997w, 949s, 900, 856w, 565, 557, 522, 510w, 400, 380.

Source: Hadrich et al. (2000).
Comments: No independent analytical data are provided for the sample used.
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Phosphohedyphane Ca2Pb3(PO4)3Cl

Origin: Root (Bonanza Hill) mine, Goodsprings district, Spring Mts., Clark Co., Nevada, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): (3421), 3395, 3344, 1226w, 1188w, (1084), 1073, (1030), (980), 975s, (966),
933s, 835, 812w, 595, 577sh, 557, 437s, (421), 400, 208, 148, 113sh, 106.

Source: Frost et al. (2014w).
Comments: No independent analytical data are provided for the sample used.

Phosphophyllite Zn2Fe
2+(PO4)2∙4H2O

Origin: Hagendorf South pegmatite, Bavaria, Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3567s, (3561), 3362sh, 3258, 3146, (3034), 1603, (1571), 1135, 1073, 995s,
939, 744w, 633, 592, 571sh, 505, 415, 322, (297), 269, 199, 181sh, 142, 130sh, 119.

Source: Scholz et al. (2013a).
Comments: The sample was characterized by qualitative electron microprobe analyses. No indepen-

dent quantitative analytical data are provided.

Phosphosiderite Fe3+(PO4)∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1032sh, 1000sh, 988s, 570w, 485sh, 447, 330sh, 302, 258, 200, 126w, 70.
Source: Zaghib and Julien (2005).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of phosphosiderite see also Frost et al. (2004l).

Phosphuranylite KCa(H3O)3(UO2)7(PO4)4O4∙8H2O

Origin: Bedford, Westchester Co., New York, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 647.1 nm Kr+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1034, 981, 827s, 398, 264, 237.
Source: Faulques et al. (2015a, b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of phosphuranylite see also Frost et al. (2008a) and Driscoll et al. (2014).
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Phurcalite Ca2(UO2)3O2(PO4)2∙7H2O

Origin: Posey mine, Red Canyon, White Canyon district, San Juan Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. Thel aser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3613w, 3538w, 3421, (3238), 1769w, 1615w, 1155w, 1118sh, 1108, 1059,
(1009), 1004s, 995sh, 969, 960, 950sh, 864w, (819), 810, (800), 546, (434), 431, 408, 391sh.

Source: Čejka et al. (2014b).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron

microprobe analysis.

Pickeringite MgAl2(SO4)4∙22H2O

Origin: San Bernadino Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3449, 3279, 3082sh, 1145w, 1114w, 1071w, (990), 986s, 975, 621, 530, 468,
424, 344w, 315, 221.

Source: Locke et al. (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Picromerite K2Mg(SO4)2∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 253.65 nm radiation of mercury. The incident light was normal to the (110) face and
the scattered light was taken parallel to the (110) face and roughly perpendicular to the (001) face.
The radiation power is not indicated.

Raman shifts (cm21): 3344, 3308s, 3250, 3150, 1234w, 1156, 1129s, 1111, 1082s, 990s, 835w,
792w, 767w, 632, 614, 462s, 448s, 372, 320w, 305w, 269w, 225, 177, 136, 115, 93w, 74, 62, 46.

Source: Ananthanarayanan (1961).
Comments: The sample was characterized by morphological features. For the Raman spectrum of

picromerite see also Bouchard and Smith (2003).

Picropharmacolite Ca4Mg(AsO3OH)2(AsO4)2∙11H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power was below 0.1 mW. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 3448, 3212, (2922), 980, 866s, 750, 530, 460, 397, 325, 230.
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Source: Frost and Kloprogge (2003).
Comments: No independent analytical data are provided for the sample used.

Pieczkaite Mn5(PO4)3Cl

Origin: Cross Lake pegmatite field, Manitoba, Canada (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The nominal laser radiation
power was between 5 and 12.5 mW.

Raman shifts (cm21): 1095s, 1000sh, 960sh, 795w, 560s, 480sh.
Source: Tait et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Piemontite Ca2(Al2Mn3+)[Si2O7][SiO4]O(OH)

Origin: Prabornaz (Praborna) mine, Saint-Marcel, Aosta Valley, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or
488 nm Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 916s, 886s, 601, 565, 453s, 350s, 244, 172.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used.

Pigeonite (Mg,Fe,Ca)2Si2O6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal in a polished thin section using 632.8 nm He-Ne laser radiation. The laser radiation power at
the sample was �1 mW.

Raman shifts (cm21): ~1035, ~1010, 685s, ~665, ~415, ~400, ~385w, 341s, ~300w, ~240.
Source: Tribaudino et al. (2011).
Comments: The Raman shifts are given for a Fe-free sample with the diopside to enstatite ratio of

15:85. In the cited paper Raman spectra of natural pigeonite samples with different Fe:Mg ratios are
given.

Pilsenite Bi4Te3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film grown on

Si (111) substrate using 532 nm Nd-YAG laser radiation. The material grew along its c-axis. The
nominal laser radiation power was 2 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 204, 183w, 115, 101sh, 88s, 57, 37.
Source: Xu et al. (2015a).
Comments: The sample was characterized by X-ray diffraction data.
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Pilsenite Bi4Te3

Origin: Panarechensk volcanic-tectonic formation, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm21): 204w, 171–174, 131sh–133, 97–106s, 81.
Source: Voloshin et al. (2015a).
Comments: The samples used were characterized by electron microprobe analyses.

“Pimelite” Ni3Si4O10(OH)2∙4H2O

Origin: Falcondo mine, Bonao, La Vega province, Dominican Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 822, 735w, 675s, 640, 386, 362, 188s.
Source: Villanova-de-Benavent et al. (2012).
Comments: No independent analytical data are provided for the sample used.

Pinakiolite (Mg,Mn)2(Mn3+,Sb5+)O2(BO3)

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): See comment below.
Source: Frost (2011b).
Comments: All Raman spectra of presumed orthoborates (azoproite, fredrikssonite, pinakiolite and

takéuchiite) given in the cited paper are almost identical and correspond to calcite. In particular, for
“pinakiolite” the following Raman shifts have been determined: 1748w, 1435w, 1086s, 712, 283,
154. The correct Raman shifts of pinakiolite are (RRUFF (2007), sample R050636; cm�1): 686s,
644s, 550sh, 445, 391w, 352w, 322, 280, 200w, 153.

Pinnoite MgB2O(OH)6

Origin: Inder boron deposit, Atyrau region, Kazakhstan.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3579s, (3569), 3554s, (3415w), 3399s, 3290, 3179, (3085w), 1320, 1299,
1260, 1186, 1157, 1140sh, 1049, 1020, 945, 900s, 875, (799w), 745, 630, 605, (594w), 578, 538sh,
524, 508, 491w, 480, 468sh, 403sh, 388, 375, 357, (338), 288, 273, 260w, 230, 209sh, 193, 180,
172w, 143, 126.

Source: Frost and Xi (2014).
Comments: No independent analytical data are provided for the sample used.
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Pirssonite Na2Ca(CO3)2∙2H2O

Origin: Green River formation, Sweetwater Co., Wyoming, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3502, 3065, 1070s, 717, 659, 298, 253, (199), 126.
Source: Frost and Dickfos (2007b).
Comments: No independent analytical data are provided for the sample used.

Pitticite [Fe,AsO4,SO4,H2O] (?)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3490, 3327, 3186, (3060), (2723), (1182w), 1096, 916sh, 845+837s (unre-
solved doublet?), 617w, (504), 457, 428, 401sh, 372w, 349sh, 335, 322, 309, 297sh, 278, 260,
236, 221sh, 207w, 194w, 181w, 166w, 131sh, 118+111 (unresolved doublet?).

Source: Frost et al. (2012l).
Comments: No independent analytical data are provided for the sample used.

Plancheite Cu8(Si4O11)2(OH)4∙H2O

Origin: Tsumeb mine, Tsumeb, Namibia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): See comment below.
Source: Frost and Xi (2012d).
Comments: No independent analytical data are provided for the sample used. The Raman and IR

spectra of presumed plancheite given in the cited paper are wrong and correspond to a carbonate.
The correct Raman shifts of plancheite are (RRUFF (2007), sample R070233; cm�1): 780, 674s,
553, 499, 441s, 400, 336, 328sh, 316, 262, (248), (239).

Plášilite Na(UO2)(SO4)(OH)∙2H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm diode-pumped solid-state laser radiation. The nominal laser radiation power
was 3 mW.

Raman shifts (cm21): 3600, 3520, 3385w, 1180, 1069w, 1035, 997, 986.5, 905w, 838s, 824, 645w,
603, 480, 445, 349, 243, 210, 186, 170.

Source: Kampf et al. (2015a).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses. The crystal structure is solved.

Platarsite PtAsS

Origin: Munni complex, west Pilbara block, Westem Australia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in a polished section using 514.5 nm Ar+ laser radiation. The nominal laser radiation power
was between 1 and 10 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 427, 350s, 291, 283, 253, 214.
Source: Mernagh and Hoatson (1995).
Comments: The sample was characterized by electron microprobe analyses.

Platinum Pt

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm21): ~220, ~185, ~170, ~155.
Source: Vermaak (2005).

Plattnerite PbO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a pressed disc using

632.8 nm laser radiation. The laser radiation power at the sample was 0.27 mW.
Raman shifts (cm21): 424w, 515s, 653w.
Source: Burgio et al. (2001).
Comments: Plattnerite slowly decomposes under the laser beam. For the Raman spectrum of

plattnerite see also Inguanta et al. (2008).

Plavnoite K0.8Mn0.6[(UO2)2O2(SO4)]∙3.5H2O

Origin: Jáchymov, Krušné Hory (Ore Mts.), Bohemia, Czech Republic (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm diode laser radiation. The laser radiation
power at the sample was about 2 mW.

Raman shifts (cm21): 3533, 3385w, 1630w, 1106, 1027, 817s, 502, 475, 435, 377w, 348w, 292, 267,
229, 164s, 129w, 106w.

Source: Plášil et al. (2017).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Plimerite ZnFe3+4(PO4)3(OH)5

Origin: Huber open pit, Huber stock, Krásno, Horní Slavkov, Karlovy Vary region, Bohemia, Czech
Republic (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering
measurements have been performed using 532.2 nm laser radiation. The nominal laser radiation
power was 5 mW.

Source: Sejkora et al. (2011).
Raman shifts (cm21): ~3590, 3228 (broad), 1600w, (1164), 1118s, (1098w), (1079), 1051s, 1014s,

993, 964, 930sh, 774w.

Plombièrite Ca4Si6O16(OH)2(H2O)2∙(Ca∙5H2O)

Origin: Crestmore quarry, north of Riverside, Riverside Co., California, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in nearly backscattered geometry using 632.8 nm He-Ne
laser radiation. The laser radiation power at the sample was 1.5 mW.

Raman shifts (cm21): 1057sh, 1025, 996, 680sh, 664s.
Source: Biagioni et al. (2013b).
Comments: The sample was characterized by powder X-ray diffraction data.

Plumbogummite PbAl3(PO4)(PO3OH)(OH)6

Origin: Guochengmine, Yangshuo, Guangxi province, China.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3602sh, 3479, (3372), 3249, (3121), (1182w), 1106s, (1057), 1023s, (1002),
980s, (971w), (826w), (634w), 613, 579sh, 507, (494), 464, 388sh, 368, 281sh, 251s, 187, (163w),
145.

Source: Frost et al. (2013l).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Plumbojarosite Pb0.5Fe
3+

3(SO4)2(OH)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a sample diluted with

KBr powder and compressed to form a disk. A 514.5 nm Ar+ laser was used. The laser radiation
power at the sample was 38 mW.

Raman shifts (cm21): 1169w, 1120sh, 1108, 1015sh, 1002, 623, 583w, 452sh, 440s, 341w, 221.
Source: Sasaki et al. (1998).
Comments: The sample was characterized by powder X-ray diffraction data and chemical analyses.

For the Raman spectra of plumbojarosite see also Frost et al. (2006r) and Spratt et al. (2013).
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Plumbophyllite Pb2Si4O10∙H2O

Origin: Blue Bell mine, Soda Mts, Silver Lake District, San Bernardino Co., California, USA (type
locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3567sh, 3494+3470 (unresolved doublet?), (3443), 3215w, 1153w, 1137w,
1095w, (1039), 1027s, 972, 956, 926, (657), 643s, (634), 506w, (500w), 485w, 438w, 409w,
(398w), 381, (368w), 349sh, 332, 309, 253, 203sh, 182, (155), 147s, 112.

Source: Frost et al. (2014t).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Plumbotsumite Pb13(CO3)6(Si10O27)�3H2O

Origin: St. Anthony deposit, Mammoth district, Pinal Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 4620w, 3546, 3510w, 2950w, 2720w, 2674sh, 1744w, 1732sh, 1716w, (1709),
1685w, 1479, 1424, 1379, 1333sh, 1084w, 1060sh, 1055s, 1047, 844sh, 839, 772w, 729w,
697, 683, 673sh, 636w, 609, 581sh, 481, 458, 432w, 396, 346w, 288sh, 280w, 246, 227,
179, 154+143s (unresolved doublet?), 107+103 (unresolved doublet?).

Source: López et al. (2013a).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Poitevinite Cu(SO4)∙H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1204, 1097, 1043.5s, 1014s, 669, 620.5, 607, 515, 419, 345, 268, 244, 207.5,
130w, 105w.

Source: Fu et al. (2012).

Pokrovskite Mg2(CO3)(OH)2

Origin: Lytton, Sonoma Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3556w, 3444, 1582, 1452, 1386, 1088s, 929, 734, 703w, 521w, 446w,
402, 282, 172, 143.
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Source: Frost (2006).
Comments: No independent analytical data are provided for the sample used.

Poldervaartite Ca(Ca,Mn)(SiO3OH)(OH)

Origin: N’Chwaning IImine, Kalahari manganese fields, South Africa (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3547, 3521sh, 3509, (3502w), 3487, 952, (943w), 917, (907), 900, (865), 852s,
807, 792sh, 528sh, 513, (498w), 485, 473sh, 245w, 239w, 213, 203, 163sh, 153s, (148), (145),
(116), 109, 104.

Source: Frost et al. (2015g).
Comments: The sample was characterized by qualitative electron microprobe analysis which may

correspond to olmiite.

Pollucite Cs(Si2Al)O6∙nH2O

Origin: Auburn, Androscoggin Co., Maine, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using Nd-YAG laser radiation. The laser radiation power at
the sample was 300 mW.

Raman shifts (cm21): 1109, 478s, 393, 299.
Source: Mozgawa (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Polycrase-(Y) Y(Ti,Nb)2(O,OH)6

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm�1): ~1480w, ~1420w, ~1130w, ~1080w, ~845, ~695, ~530w, ~400s, ~280s,
~225s.

Source: Tomašić et al. (2004).
Comments: The Raman shifts are given for an initially metamict sample heated at 1000�C to regain its

crystal structure. The sample was characterized by powder X-ray diffraction data and chemical
analyses.

Polydymite Ni2+Ni3+2S4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on grains in a Ni-based

composite after exposure to an H2S-containing fue l514 nm laser radiation was used. The nominal
laser radiation power was 40 mW.

Raman shifts (cm�1): 379, 337, 287s, 223.
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Source: Cheng and Liu (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Polyhalite K2Ca2Mg(SO4)4∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm�1): 3437, 3288w, 1181w, 1165, 1144w, 1130, 1094w, 1069, 1014s, 987s, 652w,

641w, 626, 620sh, 477sh, 464, 448, 436.
Source: Jentzsch et al. (2012a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of polyhalite see also Jentzsch et al. (2013).

Popovite Cu5O2(AsO4)2

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The laser radiation power at the sample was ~9 mW.
Raman shifts (cm�1): 846s, 810s, 642, 547, 489, 478w, 427, 377w, 344, 281, 258w, 212, 128, 97s.
Source: Pekov et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Portlandite Ca(OH)2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser
radiation power was 10 mW.

Raman shifts (cm�1): 3620s, ~680 (broad), 356s, 252.
Source: Schmid and Dariz (2015).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of portlandite see also Lutz et al. (1994).

Posnjakite Cu4(SO4)(OH)6∙H2O

Origin: Ozernyi district, Sallo-Kuolajarvi, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm�1): 3587s, 3566s, 3400, 971s, 620sh, 607, 594, 508, 479, 449w, 418w, 387, 316w,

241w, 194w, 136, 88s.
Source: Voloshin et al. (2015b).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

posnjakite see also Martens et al. (2003a), Frost et al. (2004n), and Lepot et al. (2006).
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Potarite PdHg

Origin: Munni Munni layered intrusion, West Pilbara Block, Western Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

grains in a polished section using 514.5 nm Ar+ laser radiation. The laser radiation power at the
sample was between 1 and 10 mW. A 180�-scattering geometry was employed.

Raman shifts (cm�1): 362, 340s, 285, 254.
Source: Mernagh and Hoatson (1995).
Comments: The sample was characterized by electron microprobe analyses.

Pottsite (Pb3Bi)Bi(VO4)4�H2O

Origin: Las Tapias, Cordoba province, Argentina.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 2912w, 885, 874, 707, 643, 465, 413s, 404, 370, 348, 331, 264w, 204, 185.
Source: Frost et al. (2006i).
Comments: No independent analytical data are provided for the sample used.

Poubaite PbBi2(Se,Te,S)4

Origin: Ozernyi district, Salla-Kuolajarvi, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm�1): 139, 102s, 59.
Source: Voloshin et al. (2015a).
Comments: The samples used were characterized by electron microprobe analyses.

Poudretteite KNa2(B3Si12)O30

Origin: Mogok valley, Shan State, Myanmar.
Experimental details: Raman scattering measurements have been performed on a fragment of a single

crystal with the beamdirection parallel to the c-axis using 325 nm laser excitation. The laser
radiation power is not indicated.

Raman shifts (cm�1): 1799w, 1660w, 1556w, 1176s, 1147, 1045w, 1011, 928, 908w, 849w,
788, 696, 662, 594w, 552s, 490s, 429w.

Source: Smith et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Poughite Fe3+2(Te
4+O3)2(SO4)∙3H2O

Origin: Wendy Pit, El Indio gold mine, Coquimbo, Chile.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
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have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3509, 3481, (3477w), 2330, 2231, 2155, 1926w, 1793, 1706, 1582, 1335,
1187w, 1152w, 1078, 1026s, (1022), (655), 653s, 561, 509, 485, 382, 347, 236s, (234), 163, (161).

Source: Frost and Keeffe (2008c).
Comments: No independent analytical data are provided for the sample used.

Povondraite NaFe3+3(Fe
3+

4Mg2)(Si6O18)(BO3)3(OH)3O

Origin: No data.
Experimental details: Raman scattering measurements have been performed using 488 or 514.5 nm

Ar+ laser radiation. The laser radiation power at the sample was 14 mW. Polarized Raman spectra
were collected from raw crystal surfaces in the spectral range 15–4000 cm�1 in -y(zz)y, -y(zx)y, and
-y(xx)y scattering geometries.

Raman shifts (cm�1): ~3555, ~990, ~800w, ~670w, ~625w, ~545, ~460, ~430, ~400w, ~315, ~280s,
~230s, ~165, ~140w.

Source: Watenphul et al. (2016a, b).
Comments: The Raman shifts are given for the scattering geometry -y(zz)y.

Powellite Ca(MoO4)

Origin: Dundas, Tasmania, Australia.
Experimental details: Raman scattering measurements have been performed on crystals oriented to

provide maximum intensity using a 785 nm Nd-YAG laser. The laser radiation power at the sample
was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as
a result of the spectral curve analysis.

Raman shifts (cm�1): 879, 847, 794, 513, 456, 403, 392, 324, 267.
Source: Frost et al. (2004c).
Comments: No independent analytical data are provided for the sample used.

Prehnite Ca2Al(Si3Al)O10(OH)2

Origin: Valtournanche, Aosta valley, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or
488 nm Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): ~1110w, ~1080w, 991, ~950, 931, ~640, ~600, 541, 520s, 388s, 318.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used.

Preiswerkite KFe2+3(AlSi3O10)(OH)2

Origin: Liset, Selje, Sognog Fjordane, Norway.
Experimental details: Raman scattering measurements have been performed on oriented samples

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. The spectra were
recorded with the electric field polarized perpendicular to the cleavage plane.
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Raman shifts (cm�1): 3628s, 3620, 916, 648s, 292s, 216s (Sample 8); 916, 679, 648s, 488, (400),
(379), 330, 292s, (280), 216s, 156, 108 (Sample 9).

Source: Tlili et al. (1989).
Comments: The samples were characterized by electron microprobe analyses. For the Raman spectra

of preiswerkite see also Tlili and Smith (2007) and Orozbaev et al. (2011).

Pretulite Sc(PO4)

Origin: Saint-Aubin-des-Châteaux, Armorican Massif, France.
Experimental details:Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 3 mW.
Raman shifts (cm�1): 1079s, 1043, 1024s, 595w, 475, 326, 234, 186w.
Source: Moëlo et al. (2002).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. For the Raman spectrum of pretulite see
also Giarola et al. (2011).

Příbramite CuSbSe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline film

using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 226s, 200, 153, 114.
Source: Xue et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data.

Priceite Ca2B5O7(OH)5∙H2O

Origin: 20-Mule-Team Canyon, Furnace Creek district, California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3669, 3579sh, 3555s, 3510sh, 3496, 3468sh, 3404, 3385sh, 3221w, 1211,
1169w, 1127, 1100w, 1071, 1019, 991, 974sh, 956, 927w, 894, 842, 826, 736, (697), 689s, 674s,
(660), 634, 602, 563sh, 545s, 511w, 481sh, 471, 450w, 433w, 409w, 387w, 368, 353sh,
306, 287sh, 266sh, 253, 231, 217w, 195, (183), 173, 148sh, 138, 129sh, 109.

Source: Frost et al. (2015l).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Priderite Mg-analogue K2(Ti7Mg)O16

Priderite Al-analogue K2(Ti6Al2)O16

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on oriented single

crystals using 488 and 514.5 nm Ar+ laser radiations. The laser radiation power is not indicated.
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Raman shifts (cm�1): 840, 702, 690, 635, 610, 550, 505, 497, 460, 455, 370, 350, 344, 331, 260, 193,
144, 123 (for the priderite Al analogue); 840, 710, 700, 640, 623, 580, 511, 463, 461, 380, 375, 360,
350, 285, 210, 152, 131 (for the priderite Mg analogue).

Source: Ohsaka and Fujiki (1982).
Comments: The empirical formulae of the samples used are K1.6(Ti7.2Mg0.8)O16 and K1.6(Ti6.4Al1.6)

O16. The intensities are given for the αzz polarization.

Priderite Cr-analogue (K,Ba)2-x(Ti6Cr2)O16

Origin: Gföhl granulite, Bohemian massif, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain using 532 nm laser radiation. The laser radiation power at the sample was 1.4 mW.
Raman shifts (cm�1): 800sh, 685s, 620, 545w, 350, 277, 195w, 150.
Source: Naemura et al. (2015).
Comments: The sample was characterized by electron microprobe analyses.

Prismatine (Mg,Al,Fe)6Al4(Si,Al)4(B,Si,Al)(O,OH,F)22

Origin: Madagascar.
Experimental details: Methods of sample preparation are not described. Micro-Raman scattering

measurements have been performed on a single crystal using 514.5 nm Ar+ laser radiation with the
polarizationdirection parallel to the crystal elongation. The laser radiation power at the sample was
5 W. A 180�-scattering geometry was employed.

Raman shifts (cm�1): 3615w, 3556, 1120w, 1028s, 973s, 864, 803, 760w, 610, 537, 459, 384,
286, 260s.

Source: Wopenka et al. (1999).
Comments: The sample contains 0.86 boron atoms per formula unit.

Proustite Ag3AsS3

Origin: Jáchymov, Krušné Hory (Ore Mts.), Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on a polished crystal

using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 1.7 mW. A
180�-scattering geometry was employed.

Raman shifts (cm�1): 364s, 337, 315sh, 274w.
Source: Kharbish et al. (2009).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

proustite see also Byer et al. (1973) and Makreski et al. (2004).

Pseudoboleite Pb31Cu24Cl62(OH)48

Origin: Siklverton Barrier Range, New South Wales, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm�1): 3467, 3434, 3350, 3330, 973w, 908w, 817w, ~680s, 584, 512, 449, (388),
(236), (179), 148s, 137s.

Source: Frost and Williams (2004).
Comments: No independent analytical data are provided for the sample used.

Pseudobrookite (Fe3+2Ti)O5

Origin: Marion Island, Hawaiian archipelago.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was between 2.5 and 40 mW.

Raman shifts (cm�1): 1334, 660s, 507w, 411w, 340, 226s, 200s.
Source: Prinsloo et al. (2011).
Comments: For the Raman spectra of pseudobrookite see also Bersani et al. (2000) and Wang

et al. (2016).

Pseudocotunnite K2PbCl4 (?)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 nm Ar+ laser radiation. The laser radiation power
is not indicated.

Raman shifts (cm�1): ~230.
Source: Oyamada (1974).

Pseudojohannite Cu3(OH)2[(UO2)4O4(SO4)2]∙12H2O

Origin: Rovnost shaft, Jáchymov uranium deposit, Krušné Hory (Ore Mts.), Western Bohemia, Czech
Republic (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3483w, (3353), (3226), 1625w, 1554w, 1333w, 1100, 1017, 810+805s
(unresolved doublet?), 755sh, 539sh, 496, 465, 423s, 279, 210, 162+151 (unresolved doublet?).

Source: Frost et al. (2009h).
Comments: The sample was characterized by electron microprobe analyses.

Pseudolaueite Mn2+Fe3+2(PO4)2(OH)2∙7-8H2O

Origin: Hagendorf South pegmatite, Bavaria, Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm�1): 3593sh, 3485, 3376, 3209w, 3110sh, 1123s, 1066w, 1046, (1034), 1000+993s
(unresolved doublet?), 976, 843, 643, 626sh, (565), 501, (485), 471s, 456sh, 435, 408, 373w,
332, 303, 286, 271, 249, 223, 215, 201s, 189, 183, 164.

Source: Frost et al. (2015ac).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Pseudomalachite Cu5(PO4)2(OH)4

Origin: Banská Bystrica, central Slovakia.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 17 mW. A
180�-scattering geometry was employed. Polarized spectra were collected with E||b and E⊥b.

Raman shifts (cm�1): 3414, 1137w, 1112w, 1083, 1055, 996sh, 971, 945sh, 861w, 801w,
750, (703w), (664w), 750, 703w, (664w), (639w), 606, 539sh, 515, 477s, 446s, 412, 297, 254w,
241, 214, 209, 174s, 131s, 109s, 86s (for E⊥b).

Source: Kharbish et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of pseudomalachite see also Frost et al. (2002a, g), Bouchard and
Smith (2003), Majzlan et al. (2015), and Ciesielczuk et al. (2016).

Pseudowollastonite CaSiO3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been using 488 or 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 500 mW.

Raman shifts (cm�1): 1075, 989s, 932, 714w, 580s, 558, 511, 428w, 373s, 341, 327, 315, 301, 217w,
193, 167.

Source: Richet et al. (1998).
Comments: The sample was characterized by powder X-ray diffraction data.

Pucherite Bi(VO4)

Origin: Pucher shaft, Schneeberg, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 1002, (881), 872s, 710w, 693w, 647w, 415, 372s, 346, 333s, 256, 224,
196, 188.

Source: Frost et al. (2006i).
Comments: No independent analytical data are provided for the sample used.

Pumpellyite-(Al) Ca2Al3(Si2O7)(SiO4)O(OH)∙H2O

Origin: New Caledonia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm He-Ne or 325 nm He-Cd laser radiation. The
laser radiation power at the sample was 5 mW.
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Raman shifts (cm�1): 1092w, 1015, 1002, 984, 957w, 922, 865, 816, 764w, 696s, 646w, 610, 589,
535, 508s, 480, 459, 429s, 361, 322, 293, 227, 208, 187, 172, 154, 135.

Source: Krenn et al. (2004).
Comments: The sample was characterized by electron microprobe analyses.

Pyrargyrite Ag3SbS3

Origin: Jáchymov, Krušné Hory (Ore Mts.), Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on a polished crystal

using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 1.7 mW. A
180�-scattering geometry was employed.

Raman shifts (cm�1): 323s, 300, 274sh, 252sh.
Source: Kharbish et al. (2009).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

pyrargyrite see also Byer et al. (1973), Nilges et al. (2002), and Makreski et al. (2004).

Pyrite FeS2

Origin: Guinaoang, NW Luzon, Philippines (isotropic variety) and Pine Creek, Northern Territory,
Australia (anisotropic variety).

Experimental details: Methods of sample preparation are not described. Raman scattering
measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was between 1 and 10 mW. A 180�-scattering geometry was employed.

Raman shifts (cm�1): 446, 387s, 353s (for the isotropic variety); 428, 377s, 342s (for the anisotropic
variety).

Source: Mernagh and Trudu (1993).
Comments: The samples were characterized by electron microprobe analyses. For the Raman spectra

of pyrite see also Kleppe and Jephcoat (2004), White (2009), Frezzotti et al. (2012), and Andò and
Garzanti (2014).

Pyroaurite Mg6Fe
3+

2(CO3)(OH)16∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.12 nm Nd-YAG laser radiation. The laser radiation power at the sample was
about 40 mW.

Raman shifts (cm�1): See comments below.
Source: Rozov et al. (2010).
Comments: Raman spectra of the members of the hydrotalcite-pyroaurite series containing less than

1 Fe atom per formula unit contain bands at ~3500, ~1380, ~1060 and ~545s cm�1. In the spectrum
of the sample with the approximate formula Mg6(AlFe

3+)(CO3)(OH)16∙4H2O, the only band at
~545 cm�1 is observed. Measurements with greater Fe contents were precluded by fluorescence.

Pyrochroite Mn2+(OH)2

Origin: A sediment-hosted Mn deposit, Mesoarchean Mozaan Group, Pongola Supergroup,
South Africa.
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Experimental details: Methods of sample preparation are not described. Raman scattering
measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): 635, 330.
Source: Ossa et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Pyrolusite MnO2

Origin: Kisenge Mine, Zaire.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 244 nm laser radiation. The laser radiation power is
not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm�1): 666w, 610, ~550s, ~525s, 482, 384.
Source: Kim and Stair (2004).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of pyrolusite see also Julien et al. (2004).

Pyromorphite Pb5(PO4)3Cl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.
Source: Bajda et al. (2011).
Raman shifts (cm�1): 1047w, 1012w, 984w, 945s, 920s, 813s, 781w, 764sh, 577w, 553, (548),

(434w), 411, 392, 334, 324sh.
Comments: The empirical formula of the sample used is Pb5[(PO4)2.4(AsO4)0.6]Cl. The bands in the

ranges 750–820 and 320–350 cm�1 correspond to arsenate groups. For the Raman spectra of
pyromorphite see also Levitt and Condrate Sr (1970), Bartholomäi and Klee (1978), Botto et al.
(1997), Bouchard and Smith (2003), and Coccato et al. (2016).

Pyromorphite As-rich Pb5(PO4,AsO4)3Cl

Origin: Bunker Hill Mine, Kellogg, Idaho, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of
individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not
indicated.

Raman shifts (cm�1): 3444, 3378, 3325, 3291, 3256, 1014, 979, 944, 943, 920, 917, 825, 818, 815s,
776, 768, 573, 549, 433, 414, 409, 391, 388, 377, 344, 339, 318, 206, 186, 177, 152, 111, 105.

Source: Frost et al. (2007c).
Comments: No independent analytical data are provided for the sample used.
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Pyrope Mg3Al2(SiO4)3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

grain using Ar+ laser radiation. The laser radiation power at the sample was between 5 and 50 mW.
Raman shifts (cm�1): 1064, 928s, 910sh, 868, ~690w, 648, 562, 512w, 492w, 382sh, 364, 340w,

320w, 218w, 210.
Source: McMillan et al. (1989).
Comments: The sample was characterized by 27A1 MAS NMR spectroscopy. For the Raman spectra

of pyrope see also Mingsheng et al. (1994), Kolesov and Geiger (1998), Bersani et al. (2009),
Frezzotti et al. (2012), Andò and Garzanti (2014), Gilg and Gast (2015), and Du et al. (2017).

Pyrophanite Mn2+TiO3

Origin: Perkupa evaporite mine, Bódva valley, inner Western Carpathians, Hungary.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 12 mW.
Raman shifts (cm�1): 684s, ~600w, 466, 360, 334, 263, 235w, 202, 164.
Source: Zajzon et al. (2013).
Comments: The sample was characterized by electron microprobe analyses.

Pyrophyllite Al2Si4O10(OH)2

Origin: York Spring, Pennsylvania, USA.
Experimental details: No data.
Raman shifts (cm�1): 3670s, 707s, 360, 261s, 193s.
Source: Wang et al. (2015)
Comments: Only the strongest Raman bands are indicated in the cited paper. The sample was

characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman
spectrum of pyrophyllite see also Wada and Kamitakahara (1991).

Pyrosmalite-(Fe) Fe2+8Si6O15(OH)10

Origin: Cannington mine, McKinlay Shire, Queensland, Australia.
Experimental details: No data.
Raman shifts (cm�1): 1023s, 820, 767w, 740w, 663w, 614s, 468, 365w, 325, 193.
Source: Dong and Pollard (1997).
Comments: The sample was characterized by quqlitative electron microprobe analysis.

Pyrosmalite-(Mn) Mn2+8Si6O15(OH,Cl)10

Origin: A Zn-Pb-Ag sulfide deposit art Dugald River, NW Queensland, Australia.
Experimental details:Micro-Raman scattering measurements have been performed on an inclusion in

quartz using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 615s, 696w, 803, 1020.
Source: Xu (1998).
Comments: No independent analytical data are provided for the sample used.
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Pyroxmangite Mn2+SiO3

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532.2 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): ~995s, ~915w, ~810w, ~660s, ~535, ~390, ~307.
Source: Wang et al. (2001a).
Comments:No independent analytical data are provided for the sample used. Another sample shows a

doublet 965+995 cm�1.

Pyrrhotite Fe7S8

Origin: A dolerite sill, Siberian Precambrian platform, eastern Siberia, Russia.
Experimental details: Micro-Raman scattering measurements have been performed on arbitrarily

oriented inclusions in halite using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm�1): 372–378s, 339–342.
Source: Grishina et al. (1992).
Comments: The samples were characterized by electron microprobe analyses. For the Raman

spectrum of pyrrhotite see also Lanteigne et al. (2012).

Qandilite (Mg,Fe3+)2(Ti,Fe
3+,Al)O4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 20 mW.

Raman shifts (cm�1): 730s, 605w, 517, 387, 325, 272sh, 235sh, 141w.
Source: De Lima (2016).
Comments: A Fe-free sample was used. The sample was characterized by powder X-ray

diffraction data.

Qingheiite Na2MnMgAl(PO4)3

Origin: Santa Ana Pegmatite, Totoral pegmatitic field, Coronel Pringles department, San Luis,
Argentina.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 1136+1140w (unresolved doublet?), 1130w, 1106w, 1083, 1068w, 1058w,
1047w, 1021, 980s, 964sh, 945sh, 690w, 644w, 606, 572, 504w, 472w, 453w, 420w, 369w, 308w,
280w, 229w, 217w, 167sh, 152w, 143sh.

Source: Frost et al. (2013d).
Comments: The sample was characterized by electron microprobe analyses.
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Qingsongite BN

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 244 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1304, 1055s.
Source: Reich et al. (2005).
Comments: The sample was produced from commercial hexagonal BN by nucleation under high

pressure (4.2 GPa) and temperature (1800–1900 K) using a MgBN catalyst system.

Quadridavyne [(Na,K)6Cl2][Ca2Cl2][(Si6Al6O24)]

Origin: Monte Somma caldera, Somma-Vesuvius complex, Napoli, Campania, Italy (type locality).
Experimental details: No data.
Raman shifts (cm�1): See comments below.
Source: Binon et al. (2004).
Comments: In the cited paper only ranges of Raman bands are indicated (2400–3700, 1050–1100, and

980–990 cm�1). The precise Raman shifts of quadridavyne are (RRUFF R141084, cm�1): 1047s,
985w, 966w, ~757w, 657, 471s, 425, 286 (λ ¼ 532 nm).

Quartz SiO2

Origin: Spruce Claim, King Co., Washington, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 150 mW.
Raman shifts (cm�1): 1231w, 1160w, 1083w, 808w, 697w, 463s, 401w, 354, 263w, 205, 128.
Source: Jasinevicius (2009).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

quartz see also Hemley (1987a, b), Lepot et al. (2006), Ling et al. (2011), Ciobotă et al. (2012),
Frezzotti et al. (2012), and Karwowski et al. (2013).

Quenstedtite Fe3+2(SO4)3∙11H2O

Origin: Allan Hills 77005 martian meteorite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.3 nm Nd-YAG laser radiation. The nominal laser radiation power was �6 mW.
Raman shifts (cm�1): 1130, 1107, 1024s, 985, 614w, 600, 479s, 308, 275s, 247, 157.
Source: Kuebler (2013b).
Comments: No independent analytical data are provided for the sample used.

Quetzalcoatlite Cu2+3Zn6Te
6+

2O12(OH)6(Ag,Pb,□)Cl

Origin: Vlue Bell mine, Soda Mts., Calofornia, USA (?).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm�1): 754sh, 719+693s (unresolved doublet?), 606, 602sh, 477, 403sh, (364w),
319, (248), 197, 141s, 108s.

Source: Frost and Dickfos (2009).
Comments: No independent analytical data are provided for the sample used.

Quintinite Mg4Al2(OH)12(CO3)∙3H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3545sh, 3465, 1586w, 1406sh, 1346s, 1061s, 1045sh, 974, 950, 859sh, 722s,
696w, 669, 627sh, 558, 483w, 179sh, 156s.

Source Frost and Dickfos (2007b).
Comments: Questionable data: in Figure 2 of the cited paper the band at 1061 cm�1 (a band of

symmetric C–O-stretching vibrations that should be strong for a carbonate) is absent. No indepen-
dent analytical data are provided for the sample used.

Quintinite Mg4Al2(OH)12(CO3)∙3H2O

Origin: Jacupiranga mine, Cajati, São Paulo, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3485, 3334sh, 3078sh, 1698w, 1440w, 1346sh, 1062s, 1046sh, 973, 833w,
698, (684), 559s, 484w, 401w, 367w, 308w, 183sh, 155.

Source: Theiss et al. (2015a).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Rabejacite Ca2[(UO2)4O4(SO4)2](H2O)8

Origin: Ranger No. 1deposit, Jabiru, Northern Territory, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3547+3465 (unresolved doublet), 1175w, 1123sh, 1086s, 1010s, 848, 832,
~672, ~620, ~492, ~415, ~245w, ~198, ~181.

Source: Frost et al. (2004g).
Comments: No independent analytical data are provided for the sample used.

Raguinite TlFeS2

Origin: Crven Dol, Allchar, Roszdan, Republic of Macedonia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was
1.9 mW. A 180�-scattering geometry was employed.
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Raman shifts (cm�1): 395, 377s, 367, 321, 306, 275, 206w, 190, 166w, 137, 126w, 102w.
Source: Makreski et al. (2014).
Comments: The sample was characterized by electron microprobe analyses.

Rajite CuTe4+2O5

Origin: Lone Pine mine, Catron Co., New Mexico, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (775), 754s, 731s, 661sh, 652s, 603, 540, 459w, 430, 393w, 318, 299, 267w,
237, 204, 187s, 162, 146s, 127, or 740, 676, 592, 438s, 370, 347, 212.

Source: Frost et al. (2008h).
Comments: Questionable data. No independent analytical data are provided for the sample used. Two

widely different Raman spectra are provided for rajite from New Mexico in the cited paper.

Ramanite-(Cs) CsB5O6(OH)4∙2H2O

Origin: Island of Elba, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

inclusion in quartz using 488 nm Ar+ laser radiation. The laser radiation power at the sample was
about 30 mW.

Raman shifts (cm�1): 907, 768, 548s, 462, 293, 98.
Source: Thomas et al. (2008).
Comments: The sample was characterized by electron microprobe analyses. The peak at 462 cm�1 is

influenced by a strong Raman band of the quartz matrix. For the Raman spectrum of ramanite-(Cs)
see also Frezzotti et al. (2012).

Ramanite-(Rb) RbB5O6(OH)4∙2H2O

Origin: Island of Elba, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

inclusion in quartz using 488 nm Ar+ laser radiation. The laser radiation power at the sample was
about 30 mW.

Raman shifts (cm�1): 914, 765, 554s, 508, 101.
Source: Thomas et al. (2008).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of ramanite-(Rb) see also Frezzotti et al. (2012).

Rambergite MnS

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 nm Ar+ laser radiation. The laser radiation output
power was 50 mW.

Raman shifts (cm�1): 473s, 288w, 221.
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Source: Fernandez et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data.

Rameauite K2CaO8(UO2)6∙9H2O

Origin: Margnac mine, Compreignac, Haute-Vienne, Limousin, France.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm He-Ne laser radiation. The laser radiation
power at the sample was about 4.5 mW.

Raman shifts (cm�1): 3450w (broad), 1635w, 813s, 791, 732sh, 578, 453, 363sh, 331, 298,
274, 260sh, 215w, 188, 139, 115w, 78.

Source: Plášil et al. (2016b).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.

Ramikite-(Y) Li4(Na,Ca)12(Y,Ca,REE)6Zr6(PO4)12(CO3)4O4[(OH),F]4

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie,
Québec, Canada (type locality).

Experimental details: Raman scattering measurements have been performed from a face of single
crystal using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): 3659w, 1117sh, 1088s, 1042sh, 1000s, 623, 568, 494, 405sh, 370s,
260, 183, 139w.

Source: McDonald et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Ramsdellite MnO2

Origin: An unknown locality in New Mexico, USA.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar+ laser
radiation. The nominal laser radiation power was 12.5 mW. 180�-scattering geometry was
employed.

Raman shifts (cm�1): 775, 650s, 576s, 523s, 490, 392.
Source: Bernard et al. (1993a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

ramsdellite see also Julien et al. (2004) and Kim and Stair (2004).

Ranciéite (Ca,Mn2+)0.2(Mn4+,Mn3+)O2∙0.6H2O

Origin: Xiangguang Mn-Ag deposit, northern China.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): 645s, 370w, 304w.
Source: Fan et al. (2015).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses.

Rankamaite (Na,K)3(Ta,Nb,Al)11(O,OH)31

Origin: Urubu pegmatite, Itinga, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm�1): 948w, 876w, 805w, 633s, 328, 275, 239.
Source: Atencio et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Rankinite Ca3Si2O7

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation output
power was between 30 and 50 mW. A 180�-scattering geometry was employed.

Raman shifts (cm�1): 1048w, 1007, 971, 960, 947w, 891s, 671, 552, 507w, 472w, 450w, 347, 319w,
275w, 245w, 212w, 187, 140w.

Source: Galuskin et al. (2011c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Rapidcreekite Ca2(SO4)(CO3)∙4H2O

Origin: Bahariya depression, Western Desert, Egypt.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was between
20 and 200 mW.

Raman shifts (cm�1): 1129, 1080s, 1003s, 664, 482, 411.
Source: Ciobotă et al. (2012).
Comments: No independent analytical data are provided for the sample used.

Raspite Pb(WO4)

Origin: Broken Hill, Yancowinna Co., New South Wales, Australia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A
180�-scattering geometry was employed.

Raman shifts (cm�1): 870s, 747, 667w, 645w, 523w, 494w, 395, 300, 282w, 205w, 196sh, 184w.
Source: Bastians et al. (2004).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of raspite see also Frost et al. (2004d) and Andrade et al. (2014).
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Rasvumite KFe2S3

Origin: Miller Range 03346 nakhlite meteorite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in a thin section using 532 nm Nd-YAG laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm�1): 474, 221, 154.
Source: Ling and Wang (2015).
Comments: The sample was characterized by optical reflectance.

Ravatite C14H10

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal. No

other data are provided.
Raman shifts (cm�1): 3088, 3082, 3071, 3055, 3047, 3033, 3024, 3015, 3003, 1684w, 1660w, 1622,

1613, 1600, 1591, 1570, 1523, 1500w, 1491w, 1481w, 1456w, 1440s, 1429, 1418, 1404, 1377,
1363, 1348s, 1336, 1318, 1303, 1295, 1280, 1244, 1224, 1200, 1170, 1164, 1153, 1140, 1092,
1072w, 1035s, 1000, 972, 968, 950, 944, 875, 860, 829, 817, 791, 760, 753, 734, 713, 710s,
616, 547, 536, 498, 442, 428, 410s, 397, 282, 248s, 234.

Source: Godec and Colombo (1976).
Comments: For the Raman spectra of ravatite see also Witt and Mecke (1967), and Nasdala and

Pekov (1993).

Raygrantite Pb10Zn(SO4)6(SiO4)2(OH)2

Origin: Big Horn Mts., Maricopa Co., Arizona, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 3515, 1075, 1011, 971s, 964s, 907, 876, 838, 832, 613, 597, 463, 452,

437, 325, 250, 231.
Source: Yang et al. (2016a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Realgar AsS

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 647.1 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 376w, 370w, 355s, 345, 341sh, 330w, 222s, 214w, 210w, 196s, 184s, 173w,

167w, 144, 67w, 61, 57, 52, 48, 41w, 28.
Source: Muniz-Miranda et al. (1996). For the Raman spectra of realgar see also Forneris (1969),

Trentelman et al. (1996), Burgio and Clark (2001), and Frost et al. (2010c).
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Rebulite Tl5Sb5As8S22

Origin: Crven Dol, Allchar, Roszdan, Republic of Macedonia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was
1.9 mW. A 180�-scattering geometry was employed.

Raman shifts (cm�1): 395, 377s, 321, 306, 275, 206w, 190, 166w, 137, 126w, 102w.
Source: Makreski et al. (2014).
Comments: The sample was characterized by electron microprobe analyses.

Reedmergnerite NaBSi3O8

Origin: No data.
Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar+

laser radiation. The nominal laser radiation power was 10 W.
Raman shifts (cm�1): 584s, 540, 517, 505, 464, 314, 261, 237, 224, 162, 142, 129.
Source: Kimata (1993).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of Reedmergnerite see also Manara et al. (2009).

Reevesite Ni6Fe
3+

2(CO3)(OH)16∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3598, 3451sh, (3250), 1382, 1163w, 1074s, 832w, 676+621 (broad, unresolved
doublet), 550sh, 526, 423, 308, 162sh, 145,

Source: Frost et al. (2010d).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of reevesite see also Frost et al. (2003h).

Reichenbachite Cu5(PO4)2(OH)4

Origin: Banská Bystrica, central Slovakia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 17 mW.
A 180�-scattering geometry was employed.

Raman shifts (cm�1): 3428, 3380, 1120sh, 1083, 1055, 1027w, 998, 971, (951sh), 863, 804,
752, 700w, (636sh), 607, (572sh), 540, 515, 480s, 453, 412sh, 365, 298, 255, 214, 188sh, 175s,
135, 110s, 89.

Source: Kharbish et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of reichenbachite see also Frost et al. (2002a, 2003a).
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Reinerite Zn3(AsO3)2

Origin: Tsumeb mine, Tsumeb, Otavi district, Oshikoto, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
Raman shifts (cm�1): 804, 772, 752s, 722, 658, 297w, 279w, 240w, 219w, 188w, 176w, 152w,

141, 135s.
Source: Frost and Bahfenne (2010d).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of reinerite see also Bahfenne (2011).

Reinhardbraunsite Ca5(SiO4)2(OH)2

Origin: Upper Chegem volcanic structure, Northern Caucasus, Kabardino-Balkaria, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was below
20 mW.

Raman shifts (cm�1): 3562, 3532w, 3480, 924, (834sh), 821s, 554, 421, 409sh, 310w, 280w, 253w.
Source: Galuskin et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Rengeite Sr4Ti4ZrO8(Si2O7)2

Origin: Itoigawa region, central Japan.
Experimental details: Raman scattering measurements have been performed using 532 nm laser

radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 660, 265, 239.
Source: Ogawara et al. (2010).

Retgersite Ni(SO4)∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): (1090w), 983s, 616.
Source: Petrova et al. (2012).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of retgersite see also Krishnamurti (1958), Jain et al. (1974), Cancela et al. (1983), and Aramendia
et al. (2014)

Reyerite Na2Ca14Al2Si22O58(OH)8∙6H2O

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 nm Ar+ laser radiation. The nominal laser radiation
power was about 25 mW.
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Raman shifts (cm�1): 1172, 1095w, 1078w, 1050, 1021, 907w, 752, 613s, 569s, 352, 300sh, 280s,
202, 169w.

Source: De Ferri et al. (2012).
Comments: No independent analytical data are provided for the sample used. The Raman shifts were

determined by us based on spectral curve analysis of the published spectrum.

Rhabdophane-(Ce) Ce(PO4)∙H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was between 5 and 100 mW.

Raman shifts (cm�1): 1088, 1057, 977s, 642, 624, 571, 469s, 417.
Source: Assaaoudi et al. (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Rhabdophane-(Nd) Nd(PO4)∙H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was between 5 and 100 mW.

Raman shifts (cm�1): 1094, 1057, 1033, 983s, 630, 582. 546, 470s, 419.
Source: Assaaoudi et al. (2001).
Comments: The sample was characterized by powder X-ray diffraction data.

Rheniite ReS2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm laser radiation. The laser radiation power at
the sample was 1 mW.

Raman shifts (cm�1): 438w, 419w, 407, 378w, 369, 349w, 325, 321, 311w, 308w, 284w, 278w,
237, 217s, 164, 153s, 146, 140w.

Source: Feng et al. (2015c).
Comments: For the Raman spectrum of rheniite see also Tongay et al. (2014).

Rhodizite KBe4Al4(B11Be)O28

Origin: Antsongombato pegmatite, Central Madagascar.
Experimental details: Raman spectra were obtained on the dodecahedral and tetrahedral faces.

Characteristics of the laser radiation are not indicated.
Raman shifts (cm�1): 857, 803, 651, 544, 470s, 430s, 294.
Source: Laurs et al. (2002).
Comments: The sample was characterized by electron microprobe analyses. It contains zones

corresponding to rhodizite and londonite. For the Raman spectrum of rhodizite see also Frost
et al. (2014a).
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Rhodochrosite Mn(CO3)

Origin: Kohlenbachvalley, Eiserfeld, Siegerland, North Rhine-Westphalia, Germany.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm�1): 1752w, 1439w, 1094s, 726, 293.
Source: Buzgar and Apopei (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of rhodochrosite see also Rutt and Nicola (1974), Frezzotti et al. (2012), and Capitani et al. (2014).

Rhodonite Mn2+SiO3

Origin: Sverdlovsk region, Urals, Russia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm�1): 1038, 996s, 973s, 939w, 910w, 878, 714w, 667s, 557w, 510, 417, 385w,
347sh, 327, 265, 250.

Source: Buzatu and Buzgar (2010).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of rhodonite see also Mills et al. (2005), Makreski et al. (2006b), and Can et al. (2011).

Rhomboclase (H5O2)Fe
3+(SO4)2∙2H2O

Origin: Coranda-Hondol open pit, Certej Au-Ag deposit, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm�1): 2775w, 2661w, 1456w, 1181, 1081sh, 1028sh, 1014s, 763w, 650sh, 622sh,
603, 472sh, 454, 381, 265sh, 242.

Source: Apopei et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of rhomboclase see also Ling and Wang (2010).

Rhönite Ca4[Mg8Fe
3+

2Ti2]O4[Si6Al6O36]

Origin: Eifel, Germany.
Experimental details: Raman scattering measurements have been performed on a arbitrarily oriented

grains using 785 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 980, 840, 705, 655s, 535s, 470.
Source: Treiman (2008).
Comments: No independent analytical data are provided for the sample used.
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Richelsdorfite Ca2Cu5Sb
5+(AsO4)4(OH)6Cl∙6H2O

Origin: Wilhelm mine, Bauhaus, Richelsdorf District, Hesse, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 1564w, 1376w, 1082w, 988w, 910sh, 849s, (835), (792), 546, 498sh, 415w,
344, 268sh, 185sh, 144s.

Source: Frost et al. (2011c).
Comments: No independent analytical data are provided for the sample used.

Richterite Na(NaCa)Mg5Si8O22(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed in the range from 3500

to 3800 cm�1 in backscattering geometry, using a 514.5 nm Ar+ laser. The laser radiation power is
not indicated.

Source: Leissner et al. (2015).
Raman shifts (cm�1): 3730, 3712sh.
Comments: The sample was characterized by EMPA and ICP-MS.

Riebeckite □Na2(Fe
2+

3Fe
3+

2)Si8O22(OH)2

Origin: Iacobdeal, Dobrogea, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm�1): 1084, 980sh, 966s, 885, 666s, 576, 537s, 431w, 363, 325, 244w, 222sh, 198s,
171s, 140.

Source: Apopei et al. (2011).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of riebeckite see also Apopei and Buzgar (2010).

Riebeckite (Crocidolite) □Na2(Fe
2+

3Fe
3+

2)Si8O22(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an unoriented fibrous

aggregate using 632.8 nm He-Ne laser radiation. The laser radiation power was 20 mW.
Raman shifts (cm�1): 1082s, 1030, 967s, 889, 771w, 733w, 664s, 577s, 537, 506sh, 470sh, 428, 374,

360sh, 331, 300, 272, 246, 211, 195, 162s.
Source: Rinaudo et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of crocidolite see also Petry et al. (2006) and Croce et al. (2013).
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Rimkorolgite BaMg5(PO4)4∙8H2O

Origin: Zheleznyi (Iron) mine, Kovdor massif, Kola Peninsula, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (3444), 3272 (broad), (2991), 2913, 2859, 1492sh, 1480, 1467, 1455, 1436,
1236, 1135, 1105, 1073sh, 1052, (1035), 1016, (992), 975+964s (unresolved doublet?), (951),
930, 653sh, 622sh, 599, 570, 511, (485), 472, 439, 426, 373, 279, 262+252 (unresolved doublet?),
222, 195w, 159+146 (unresolved doublet?), 109.

Source: Frost et al. (2014h).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Ringwoodite Mg2(SiO4)

Origin: Grove Mountains 052049 meteorite.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

grains in polished sections using 514.5 nm Ar+ laser radiation. The nominal laser radiation power
was 20 mW.

Raman shifts (cm�1): 841–849, 783–796, 285–296.
Source: Feng et al. (2011).
Comments: The samples were characterized by electron microprobe analyses. As the fayalite content

increases from 27.8 to 81.6 mol %, the bands at 783–796 and 285–296 cm�1 shift towards lower
frequencies, whereas the band at 841–849 cm�1 does not show significant correlation with the
fayalite content. For the Raman spectrum of ringwoodite see also Akaogi et al. (1984).

Rinkite TiNa2Ca4REE(Si2O7)2OF3

Origin: Khibiny massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an annealed metamict

sample using 632.8 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): ~960, ~460.
Source: Zubko et al. (2013).

Riomarinaite Bi(SO4)(OH)∙H2O

Origin: No data.
Experimental details: No data.
Raman shifts (cm�1): ~1190w, ~1160w, ~1095w, ~1002, ~960s, ~630, ~525, ~402w, ~198s.
Source: Capitani et al. (2014).
Comments: No independent analytical data are provided for the sample used.

Robertsite Ca2Mn3+3O2(PO4)3∙3H2O

Origin: Tip Top mine, Custer Co., South Dakota, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The laser radiation power is not indicated.
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Raman shifts (cm�1): ~1187s, 1036, 947, 625s, 552, 497, 385, 289s.
Source: Andrade et al. (2012).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.

Robinsonite Pb4Sb6S13

Origin: Zlatá Baňa, Slanské Vrchy Mts., central Slovakia.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample in the spectral region from 10 to 600 cm�1 using 532 nm Nd-YAG laser radiation. The laser
radiation power is not indicated. A 180�-scattering geometry was employed. The Raman shifts have
been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 337sh, 328, 314, 308, 249sh, 228sh, 209s, 188sh, 168, 149, 133, 111sh,
101, 91sh, 75w.

Source: Kharbish and Jeleň (2016).
Comments: The sample was characterized by electron microprobe analyses. The empirical formula of

the sample used is Pb4.01Sb5.99S13.00.

Rockbridgeite Fe2+Fe3+4(PO4)3(OH)5

Origin: Galileia region, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on a radiated aggregate

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 1 mW.
Raman shifts (cm�1): 1186, 1137, 1061s, 981, 937, 638, 616, 576, 463, 382, 333s, 299, 241.
Source: Faulstich et al. (2013).
Comments: The sample was characterized by electron microprobe analyses.

Rodalquilarite H3Fe
3+

2(Te
4+O3)4Cl

Origin: Grand Central Mines, Tombstone, Cochise Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (2998), 2870+2796 (unresolved doublet?), 2341, 781, 756sh, 725, 660sh, 641s,
612s, (599), 473, 449, 412, 400sh, 345s, 321s, (312), 233, 191, 179, 142, 110.

Source: Frost and Keeffe (2009i).
Comments: No independent analytical data are provided for the sample used.

Rodolicoite Fe3+(PO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 150 mW. A
180�-scattering geometry was employed.

Raman shifts (cm�1): 1018s, 436, 415, 390, 336, 280, 199, 161.
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Source: Murli et al. (1997).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of rodolicoite see also Bhalerao et al. (2012).

Rokühnite FeCl2∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 10 K on a single

crystal using 514.5 nm Ar+ laser radiation, with the incident beam parallel to the c-axis. The laser
radiation power is not indicated.

Raman shifts (cm�1): 747w, 717w, 661sh, 640.5s, 594s, 552w, 501, 375, 202s, 196s, 146, 141w,
33.7, 30.6s.

Source: Graf and Schaack (1976).
Comments: For the Raman spectrum of rokühnite see also Graf (1978).

Romanèchite (Ba,H2O)2(Mn4+,Mn3+)5O10

Origin: Bahariya depression, Western Desert, Egypt.
Experimental details: Raman scattering measurements have been performed on an arbitrarily sample

using a 532 nm Nd-YAG laser. The laser radiation power at the sample was 20 to 200 μW.
Source: Ciobotă et al. (2012).
Raman shifts (cm�1): ~1300, ~1100w, 644sh, 583s, ~500sh, ~390.
Comments: No independent analytical data are given for the sample used. For the Raman spectra of

romanèchite see also Julien et al. (2003, 2004).

Romanorlovite K8Cu6Cl17(OH)3

Origin: Second scoria cone, Northern Breakthrough of the Great Tolbachik Fissure Eruption,
Tolbachik, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on a polycrystalline
sample using 532 nm laser radiation. The laser radiation output was 3 mW. A 180�-scattering
geometry was employed.

Raman shifts (cm�1): 3512w, 3440w, 931w, 879w, 548, 477, 264s, 178s.
Source: Pekov et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Romarchite SnO

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a arbitrarily oriented

particles using 785 nm laser radiation. The laser radiation power at the sample was ~200 mW. A
180�-scattering geometry was employed.

Raman shifts (cm�1): 210, 240.
Source: Chen and Grandbois (2013).
Comments: The sample was characterized by powder X-ray diffraction data.
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Römerite Fe2+Fe3+2(SO4)4∙14H2O

Origin: Medvedza lens, Košice-Bankov magnesite deposit, Slovak Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3465sh, 3340, 3235, 3029, 1642w, 1164, 1117, 1058, 1035s, 1012s,
999, 733w, 650, 608, 472, 447, 399, 278+264 (unresolved doublet?), 231, 173, 145.

Source: Frost et al. (2011f).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Rondorfite Ca8Mg(SiO4)4Cl2

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation output
power was between 30 and 50 mW. A 180�-scattering geometry was employed.

Raman shifts (cm�1): ~1000w, ~975, ~950w, ~920w, ~862s, ~820, ~570, ~520, ~415w, ~385,
~330w, ~263.

Source: Galuskin et al. (2013a).
Comments: The sample was characterized by electron microprobe analyses.

Rongibbsite Pb2(Si4Al)O11(OH)

Origin: Big Horn Mts., Maricopa Co., Arizona, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitratily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 3525s, 3430s, 962, 630sh, 602, 488, 453, 422, 372, 283, 258, 196s.
Source: Yang et al. (2013a).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Ronneburgite K2MnV4O12

Origin: Ronneburg, Thuringia, Germany (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 676 nm Kr+ laser radiation. The laser radiation power was 1.5 mW.
Raman shifts (cm�1): 952s, 911, 878, 830, 658w, 461, 350, 336, 261.
Source: Witzke et al. (2001).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Rooseveltite Bi(AsO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation.
Raman shifts (cm�1): 841s, 795, 768, 425, 413, 386, 346s, 333sh, 276, 221.
Source: Roncaglia et al. (1993).
Comments: The sample was btained by slow addition of diluted arsenic acid to a diluted stoichiomet-

ric Bi(NO3)3�5H2O solution and subsequent heating of the precipitated material at 600 �C during
12 h. The purity was checked by chemical analysis and powder X-ray diffractometry.

Roquesite CuInS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm�1): 340sh, 298, 240sh.
Source: Dutková et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of roquesite see also Ho et al. (2012).

Rosasite CuZn(CO3)(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 632.8 nm He-Ne laser 30 mW. The laser radiation power at source reduced
considerably by various filters.

Raman shifts (cm�1): 3470, 3422w, 3232, 1540, 1514, 1453, 1086s, 1060, 843, 833w, 702, 508,
482w, 409, 390w, 332, 308w, 231, 208w, 193s, 146s, 126.

Source: Bouchard and Smith (2003).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of rosasite see also Frost (2006) and Rotondo et al. (2012).

Roselite Ca2Co(AsO4)2∙2H2O

Origin: Bou Azzer, Morocco.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3450, 3208, (3121), 3042, 1688, 1611, 1118, 976, 909, 864, (800), 798, 719,
659, 653, 540, 463, 440, 399, 373, 338, 307, 264, 243, 211, 197, 179, 155, 117.

Source: Frost (2009a).
Comments: No independent analytical data are provided for the sample used. Intensities of the bands

are not indicated.
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Rosiaite PbSb2O6

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Diffusion Raman scattering

measurements have been performed using 488 nm Ar+ laser radiation. The nominal laser radiation
power was 600 mW.

Raman shifts (cm�1): 670s, 510, 498w, 318, 278w, 211.
Source: Vandenborre et al. (1980).
Comments: The sample was characterized by powder X-ray diffraction data.

Rostite Al(SO4)(OH)∙5H2O

Origin: Le Cetine mine, Rosia, Chiusdino, Siena, Italy.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3295sh, (3222), 3155, 3082, (2948), (2764), 1692, 1605w, 1390w, 1312, 1227,
(1145w), 1131, (1093w), 1083, (1070w), (998), 991s, (986), 939w, 874w, 854sh, 632, 620,
590, 570, 530w, 504, 434sh, 420, 340w, 319sh, 307sh, 295, 281sh, 216, 203sh, 169.

Source: Frost et al. (2015x).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Rouaite Cu2(NO3)(OH)3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm laser radiation. The laser radiation was 3 mW.
Raman shifts (cm�1): 1423, 1321, 1047s, 714, 500.5, 456, 408, 331, 255.
Source: Nytko et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of rouaite see also Nytko (2008).

Roumaite (Nb,Ti)(Ca,Na,□)3(Ca,REE)4(Si2O7)2(OH)F3

Origin: Rouma Island, Los Archipelago, Guinea (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A nearly
180�-scattering geometry was employed.

Raman shifts (cm�1): 1582w (broad).
Source: Biagioni et al. (2010).
Comments: The Raman spectrum shows important contributions of fluorescence effects related to the

presence of REE, which does not allow an accurate study of the region above 3000 cm�1. No data
on the Raman spectrum below 1582 cm�1 are provided.
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Rowleyite [Na(NH4,K)9Cl4][(V
5+,V4+)2(P,As)O8]6�n[H2O,Na,NH4,K,Cl]

Origin: Rowley mine, about 100 km SW of Phoenix, Arizona, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The nominal laser radiation
power was 5 mW.

Raman shifts (cm�1): ~1340, 1065w, 1002, 980, 825s, 683w, 565w, 460w, 325s, 280s, 180.
Source: Kampf et al. (2017b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Roxbyite Cu9S5

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm�1): 466s, 259w.
Source: Kumar and Nagarajan (2011).
Comments: The sample was characterized by powder X-ray diffraction data.

Rozenite Fe2+(SO4)∙4H2O

Origin: Coranda-Hondol open pit, Certej Au-Ag deposit, Romania.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm�1): 3388, 3329sh, 3261sh, 1594w, 1176sh, 1149w, 1098sh, 1073w, 992s, 658sh,
612w, 480, 461sh, 383w, 284w, 239sh.

Source: Apopei et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of rozenite see also Chio et al. (2007), Buzatu et al. (2012, 2016),
Jentzsch et al. (2013), Aramendia et al. (2014), and Kompanchenko et al. (2016).

Rruffite Ca2Cu(AsO4)2∙2H2O

Origin: Maria Catalina mine, Tierra Amarilla, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 3335w (broad), 3147w (broad), 866w, 839s, 803w, 715w, 485w, 451w, 426w,

335, 294.
Source: Yang et al. (2011a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Rucklidgeite PbBi2Te4

Origin: Ozernyi district, Salla-Kuolajarvi, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 50 mW.
Raman shifts (cm�1): 127, 102s, 57.
Source: Voloshin et al. (2015a).
Comments: The sample was characterized by electron microprobe analyses.

Rudashevskyite (Fe,Zn)S

Origin: Indarch meteorite (an EH4 enstatite chondrite).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

grains using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 1.2 mW.
Raman shifts (cm�1): ~460w, ~317s.
Source: Ma et al. (2012a).
Comments: No independent analytical data are provided for the sample used.

Ruizite Ca2Mn3+2Si4O11(OH)4∙2H2O

Origin: Wessels mine, Hotazel, Kalahari Manganese Field, Northern Cape Province, South Africa.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 150 mW.
Raman shifts (cm�1): ~3578, ~3355w, ~3235w, ~2942, 924s, 727w, 639, 571s, 506w, 477, 433,

411, 364, 288, 256, 220, 180.
Source: Fendrich et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Rusinovite Ca10(Si2O7)3Cl2

Origin: Upper Chegem caldera, Kabardino-Balkaria, northern Caucasus, Russia (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation output
power was between 30 and 50 mW. A 180�-scattering geometry was employed.

Raman shifts (cm�1): 1074w, 1036, 994w, 968w, 900s, 869, 830w, 652, 635, 568w, 549w, 528w,
430w, 409w, 365, 325w, 295w, 282w, 232w, 125w.

Source: Galuskin et al. (2011c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Russellite Bi2WO6

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 785 nm Nd-YAG laser. The laser radiation power at the sample was 1 mW.
Raman shifts (cm�1): 844, 795, 716, 667, 405, 349, 324, 284, 263
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Source: Frost et al. (2004d).
Comments: No independent analytical data are provided for the sample used.

Rustumite Ca10(Si2O7)2(SiO4)(OH)2Cl2

Origin: Upper Chegem Caldera, Northern Caucasus, Russia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation output
power was between 30 and 50 mW.

Raman shifts (cm�1): 3632w, 3585, 1056w, 1004, 914s, 868w, 812, 648, 556w, 538w, 381, 335w.
Source: Gfeller et al. (2013).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Rutherfordine (UO2)(CO3)

Origin: Sierra Albarrana, Córdoba, Spain.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation
output power was 20 mW.

Raman shifts (cm�1): 1120, 889s, 833, 789w, 220w, 162, 142.
Source: Bonales et al. (2015).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

rutherfordine see also Frost and Čejka (2009b) and Bonales et al. (2016).

Rutile TiO2

Origin: Santa Benedetta, Canavese, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or
488 nm Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): 611s, 441s, 242, 142w.
Source: Andò and Garzanti (2014).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of rutile see also Balachandran and Eror (1982).

Rynersonite CaTa2O6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal fiber

using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A
180�-scattering geometry was employed.

Raman shifts (cm�1): 690s, 654, 632w, 556w, 475, 342, 285, 243, 236, 175, 167, 151, 88s (with laser
beam parallel to the fiber).

Source: Almeida et al. (2014).
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Sabugalite HAl(UO2)4(PO4)4∙16H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed at different temperatures

on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not
indicated. The Raman shifts have been determined for the maxima of individual peaks obtained
as a result of the spectral curve analysis.

Raman shifts (cm�1): 1008, 984, 970, 848, 826s, 806 (for the spectrum obtained at 40�C).
Source: Frost et al. (2005k).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

sabugalite see also Frost and Weier (2004c).

Sahlinite Pb14O9(AsO4)2Cl4

Origin: Långban, near Pajsberg and Filipstad, Värmland, Sweden (type locality).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm�1): 3526w, 819s, 806s.
Source: Jonsson (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Sailaufite (Ca,Na,□)2Mn3+3O2(AsO4)2(CO3)∙3H2O

Origin: Hartkoppe hill, Ober–Sailauf, Spessart Mts., Germany (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): See comment below.
Source: Wildner et al. (2003).
Comments: The authors of the cited paper write: “Bands or band components observedin the IR- or

Raman spectra around 730, 880, 1120, and 1420 cm�1 can be assigned to . . . vibrational modes of
the two different CO3 groups.” However these bands could be assigned only to a single CO3 group.
Moreover, Raman spectrum of sailaufite is not given by Wildner et al. (2003). The bands at
730, 880, and 1420 cm�1 can correspond to admixed Mn-bearing dolomite that is present in
association with sailaufite.

Sakhaite Ca48Mg16Al(SiO3OH)4(CO3)16(BO3)28∙(H2O)3(HCl)3

Origin: Titovskoe, Sakha (Yakutia) Republic, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3546, 3391, 2897, 1727, 1703w, 1560w, 1524w, 1479, 1349w, 1312w, 1218,
1167sh, 1134+1123s (unresolved doublet?), 968s, 950sh, 855w, 737sh, 725, 651, 627, 396w,
310, 211, 156, (132).

Source: Frost and Xi (2012j).
Comments: No independent analytical data are provided for the sample used.

4 Raman Spectra of Minerals 1161



Salammoniac NH4Cl

Origin: Burning coal wastepile materials, Douro coalfield, Portugal.
Experimental details: No data.
Raman shifts (cm�1): ~3120s, ~3050s, ~2807, (~2500 broad), (~2020 broad), ~1760, ~1705, ~1500,

~1400.
Source: Ribeiro et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction dataю

Saléeite Mg(UO2)2(PO4)2∙10H2O

Origin: East Alligator River, Northern Territory, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 647.1 nm Kr+ and 785 diode laser radiations. The laser radiation power is not
indicated.

Raman shifts (cm�1): 999s, 837s, 405, 284w, 194.
Source: Faulques et al. (2015a, b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of saléeite see also Frost (2004b) and Frost and Weier (2004c).

Samarskite-(Y) (Y,Ce,U,Fe,Nb)(Nb,Ta,Ti)O4

Origin: Beinmyr pegmatite, Landås, Iveland, Aust-Agder, Norway.
Experimental details: Raman scattering measurements have been performed on a metamictsample

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 20 mW.
Raman shifts (cm�1): ~785s (broad), ~620 (broad), ~230sh (for a metamict sample); ~795, ~670s,

~535, ~417, ~360s, ~335s, ~230s, ~190s, ~115 (for a sample recrystallised in air at 1000�C.)
Source: Tomašić et al. (2010).
Comments: The sample was characterized by electron microprobe analyses.

Sampleite NaCaCu5(PO4)4Cl∙5H2O

Origin: Northparkes mine, Goonumbla, New South Wales, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 1269, 1152, 1088, (1016), 997s, 962s, 924sh, 643s, 604, 591, 557, 455s,
356, 282, 224, 190, 172.

Source: Frost et al. (2007m).
Comments: No independent analytical data are provided for the sample used.

Sanderite Mg(SO4)∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 15 mW.
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Raman shifts (cm�1): 3539, 3446s, 1647, 1164, 1034s, 630w, 597w, 492w, 447, 266.
Source: Wang et al. (2006a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

sanderite see also Frezzotti et al. (2012) and Brotton and Kaiser (2013).

Sanguite KCuCl3

Origin: Glavnaya Tenoritovaya fumarole, Second scoria cone, Tolbachik volcano, Kamchatka, Russia
(type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 532 nm laser radiation. The laser radiation power at the sample was 3 mW.

Raman shifts (cm�1): 547, 296sh, 272, 192s, 137, 117.
Source: Pekov et al. (2015a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. For the Raman spectrum of sanguite see also Choi
et al. (2005).

Sanidine K(AlSi3O8)

Origin: Zvegor, Republic of Macedonia.
Experimental details: No data.
Raman shifts (cm�1): 1117w, 1040w, 515s, 473, 450w, 406w, 379w, 338w, 283, 264w, 225w, 198w,

160, 122w, 108w.
Source: Makreski et al. (2009).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis. For the Raman spectra of sanidine see also Matson et al. (1986), Edwards et al. (2004), and
Frezzotti et al. (2012).

Sanjuanite Al2(PO4)(SO4)(OH)∙9H2O

Origin: Chica de Zonda, San Juan province, Argentina (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3575, 3509, 3406, (3330), 3152+3090 (unresolved doublet?), 1457w, 1438,
1305w, 1148w, 1102, 1037, 984s, 609, 523w, 466, 430, 400w, 365sh, 351, 337sh, 218w, 197+184
(unresolved doublet?), (152), 142, 108.

Source: Frost and Palmer (2011h).
Comments: No independent analytical data are provided for the sample used.

Sanmartinite Zn(WO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
Raman shifts (cm�1): 904s, ~180, 705, 675, ~540, ~510w, ~340, 273, ~180.
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Source: Kloprogge et al. (2004b).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of sanmartinite see also Errandonea et al. (2008).

Santabarbaraite Fe3+3(PO4)2(OH)3∙5H2O

Origin: Santa Barbara mine, Tuscany, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (3541), 3435, 3266sh, 1634, (1549), 1095sh, 1007s, 630sh, 592, 561sh,
478, 431sh, (318), 272, 221sh, (197), (159), 145, 111.

Source: Frost et al. (2016c).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Santarosaite CuB2O4

Origin: Santa Rosa mine, Atacama desert, Chile (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): ~1110, ~1010, ~872s, ~775, ~745w, ~702, ~472, ~320, ~170w, (~70), (~60),
(~30).

Source: Schlüter et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe

analyses andelectron energy loss spectroscopy.

Santite KB5O6(OH)4∙2H2O

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm�1): 918s, 780–785w, 765–766, 556–557s, 510, 457, 369w, 296–299.
Source: Asensio et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data.

Saponite (Ca,Na)0.3(Mg,Fe)3(Si,Al)4O10(OH)2∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1082, 1051w, 998, 918w, 778, 683s, (660), 464-550, 432, 360s, 340sh,

288, 265w, 229w, 202.
Source: Kloprogge and Frost (2000c).
Comments: The Raman shifts are given for a Na-saturated sample. For the Raman spectrum of

saponite see also Wang et al. (1999).
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Sarcopside Fe2+3(PO4)2

Origin: Sowie Góry Mts., Lower Silesia, southwestern Poland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1109w, 1078, 1039, 1021w, 974s, 930s, 624, 606w, 553, 478, 400, 284w.
Source: Łodziński and Sitarz (2009).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of sarcopside see also Schneider et al. (2013).

Sarkinite Mn2+2(AsO4)(OH)

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 3550, 3535, 3528, 3519, 888, 839s, 826sh, 475, 380, 325.
Source: Makreski et al. (2013a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of sarkinite see also Hålenius and Westlund (1998).

Sarmientite Fe3+2(AsO4)(SO4)(OH)∙5H2O

Origin: Santa Elena mine, San Juan province, Argentina (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm�1): 3482w, 3336sh, 3184w, 1614w, 1130sh, 1118w, 1081, 998s, 889, 868, 818s,
638w, (590), 570, 477, 444, 405, 370, 322, 294, 259, 202, 191.

Source: Colombo et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Sartorite PbAs2S4

Origin: Binntal, Switzerland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 50 to 600 cm�1 using 632.8 nm
He-Ne laser radiation. The laser radiation power is not indicated. A 180�-scattering geometry was
employed. The Raman shifts have been determined for the maxima of individual peaks obtained as
a result of the spectral curve analysis.

Raman shifts (cm�1): 375sh, 363s, 352sh, 336, 318sh, 300s, 281sh, 259sh, 229, 204w, 178, 167sh,
123w, 101w, 91, 85w, 75sh.

Source: Kharbish (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
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Sassolite B(OH)3

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm�1): ~1160w, 880s, 499, ~205.
Source: Peretyazhko et al. (2000).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of sassolite see also Thomas (2002), Michel et al. (2007), Thomas and Davidson (2010), and
Frezzotti et al. (2012).

Scacchite MnCl2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal with

laser beam directed along the c axis of the crystal and the scattered light at approximately 90� with
respect to the incident beam. 488 and 514.5 nm Ar+/Kr+ laser radiations were used. The laser
radiation power is not indicated.

Raman shifts (cm�1): 234s, 144.
Source: Piseri and Pollini (1984).
Comments: No independent analytical data are provided for the sample used.

Schafarzikite Fe2+(Sb3+)2O4

Origin: Pernek, Malé Karpaty Mts., Slovak Republic (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): (709w), 668s, 617sh, 558w, 526, (479w), 465, 403w, 353, (345w), 295, 249w,

219, 186w, 159, 132w, 119, 107.
Source: Bahfenne (2011).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of schafarzikite see also Sejkora et al. (2007) and Kharbish (2012).

Scheelite Ca(WO4)

Origin: Lodrino, Riviera, Ticino (Tessin), Switzerland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or
488 nm Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm�1): 913s, 841w, 799w, 399, 332, 210.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of scheelite see also Frost et al. (2004d) and Kloprogge et al. (2004b).

Schiavinatoite Nb(BO4)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 and 514.5 nm Ar+ laser radiations. The laser
radiation power is not indicated.
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Raman shifts (cm�1): 986, 956s, 880, 815, 710w, 544s, 433, ~310w, 252, 235s.
Source: Heyns et al. (1990).
Comments: No independent analytical data are provided for the sample used.

Schlossmacherite (H3O)Al3(SO4)2(OH)6

Origin: Emma Luisa Au, Guanaco district, Antofagasta, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 0.1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm�1): 3537, 3449w, 3410, (3382), (3363), 2918, 1868, (2850), 1651sh, 1590w, 1458
+1442 (unresolved doublet?), 1304w, 1139w, 1082w, 1031w, 1000w, 938sh, 915, 864s, 819+809s
(unresolved doublet?), 601w, 513, 459sh, 437s, 392, 358, 338sh, 312, 297, 263, 224, 203, 184sh,
147.

Source: Frost et al. (2012c).
Comments: No independent analytical data are provided for the sample used.

Schmiederite Cu2Pb2(Se
4+O3)(Se

6+O4)(OH)4

Origin: El Dragon mine, Potosi, Bolivia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3428, (1919w), 1852w, 1604, 1576, 1457w, 1418, 1349w, 1095s, 934, 834,
764, 739w, 538w, 398s, 281, 247s, 178, 153, 139s.

Source: Frost and Keeffe (2008a).
Comments: No independent analytical data are provided for the sample used.

Schmitterite (UO2)(Te
4+O3)

Origin: Ozernyi district, Salla-Kuolajarvi, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser power was 50 mW.
Raman shifts (cm�1): 1102, 1091, 882s, 849, 796, 406sh, 391, 323, 304w, 204w, 176w, 141, 122w,

111.
Source: Voloshin et al. (2015b).
Comments: The sample was characterized electron microprobe analyses. For the Raman spectrum of

schmitterite see also Frost et al. (2006b).

Schneiderhöhnite Fe2+Fe3+3As
3+

5O13

Origin: Urucum mine, Doce River, Galileia, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
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have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 382w, 370w, 353sh, 345, 318, 295s, 279, 259sh, 247s, 219sh, 214w,
198, (193), 184s, 164, 148, 141, 122w, 117.

Source: Bahfenne and Frost (2009).
Comments: No independent analytical data are provided for the sample used.

Schoenfliesite MgSn(OH)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a poedered sample

using 632.8 nm He-Ne laser radiation. The laserpower was varied between 1.94 and 0.07 mW.
Raman shifts (cm�1): 980, 602s, ~460w, ~365w, 289.
Source: Barchiche et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data.

Schoepite (UO2)8O2(OH)12∙12H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm diode laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 829s, 805sh, 746w, 551, 454, 438, 337, 260, 208.
Source: Stefaniak et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

schoepite see also Amme et al. (2002) and Frost et al. (2007h).

Scholzite CaZn2(PO4)2∙2H2O

Origin: Reaphook Hill, Martins Well, South Flinders Ranges, South Australia, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm�1): 3437, 3343, 3283, 3185sh, 1171, 1115, 1088w, 1053w, 1026w, 1000s, (935),
923.

Source: Frost (2004a).
Comments: No independent analytical data are provided for the sample used. Raman shifts below

900 cm�1 are not indicated.

Schorl NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)

Origin: Bonče, Prilep municipality, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1066s, 980, 806, 784, 770, 705, 672, 536w, 369s, 314w, 239s, 217.
Source: Makreski and Jovanovski (2009).
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Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe
analyses. For the Raman spectra of schorl see also Ertl et al. (2015) and Watenphul et al. (2016a, b).

Schorlomite Ca3Ti2(SiFe
3+

2)O12

Origin: Wiluy River, Sakha-Yakutia, Russia.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm�1): 946–952, 785–786, 728–739, 639–641w, 508–510s, 431–435, 340–350s,
295sh, 253–256, 212–219w, 157w.

Source: Galuskina et al. (2005).
Comments: A schorlomite variety enriched in Zr and Sc was used. The sample was characterized by

electron microprobe analyses.

Schreibersite (Fe,Ni)3P

Origin: Almahatta Sitta meteorite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 22.5 mW. A
180�-scattering geometry was employed.

Raman shifts (cm�1): ~650s, ~510, ~410s, ~395s, ~300s, ~220.
Source: Kaliwoda et al. (2013).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of schreibersite see also La Cruz (2015).

Schreyerite V3+
2Ti

4+
3O9

Origin: Vihanti, Northern Ostrobothnia region, Finland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser
radiation power was 2 or 20 mW.

Raman shifts (cm�1): 810s, 705s, 653s, 593, 532w, 468, 426, 358w, 308, 175s, 90.
Source: Voloshin et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Schröckingerite NaCa3(UO2)(SO4)(CO3)3F∙10H2O

Origin: Wheal Edward, St. Just, Cornwall, UK.
Experimental details: Methods of sample preparation are not indicated. Raman scattering

measurements have been performed using 785 nm laser radiation. The nominal laser power at the
source was ~370 mW.

Raman shifts(cm�1): 1093, 1009, ~980, 815s, ~745, ~620w, ~470w, ~305w, ~250w.
Source: Driscoll et al. (2014).
Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum

of schröckingerite see also Frost et al. (2007d).
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Schuetteite Hg3O2(SO4)

Origin: Synthetic.
Experimental details: No data.
Ramanshifts (cm�1): ~1090, ~1060, ~975s, ~620w, ~600w, ~520w, ~455, ~425, ~220s.
Source: Schofield (2004).
Comments: The sample was characterized by powder X-ray diffraction data.

Schultenite Pb(AsO3OH)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A 180�-scattering
geometry was employed.

Raman shifts (cm�1): 827s, 799sh, 467, 357, 149, 93s, (73).
Source: Petzelt (1977).
Comments: No independent analytical data are provided for the sample used. The Raman shifts are

given for the scattering geometry y( p1–)–y. For the Raman spectrum of schultenite see also
Młynarska et al. (2014).

Schumacherite Bi3O(VO4)2(OH)

Origin: Wombat Hole Prospect, Morass Creek gorge, near Benambra, Victoria, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): 3616w, 3589w, 1557, 1041, 943, 809, 672s, 641, 498w, 410s, 341, 248, 197.
Source: Frost et al. (2006i).
Comments: No independent analytical data are provided for the sample used.

Schwertmannite Fe3+16O16(OH,SO4)12–13 ∙10H2O (?)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using He-Ne laser. The laser radiation power is not indicated.
Raman shifts (cm�1): 1120w, 981, 715, 580sh, 544, 421s, 350, 318, 294sh.
Source: Mazzetti and Thistlethwaite (2002).
Comments: The sample was characterized by powder X-ray diffraction data.

Scolecite Ca(Si3Al2O10)∙3H2O

Origin: Nasik, Maharashtra, India.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 514.5 nm Ar+ laser radiation. The laser power at the sample was 10 mW.
Raman shifts (cm�1): 3536, 3472, 3405, 3212, 3182, 3087+3080, 1105, 1088, 1049+1044, 941, 718,

535s, 496, 480+472, 447s, 437, 426s, 354, 328+318, (301), 295s, 283+276+255, 245+241+224,
179, 171, 158, 146.
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Source: Wopenka et al. (1998).
Comments: Bands whose intensities are significantly dependent upon polarization are indicated in the

cited paper. For the Raman spectra of scolecite see also Pechar (1984) and Mozgawa (2001).

Scorodite Fe3+(AsO4)∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 785 nm solid-state laser radiation. The laser radiation power at the sample was about 0.3 mW
or some what more.

Raman shifts (cm�1): 886s, 796s, 444, 416, 376, 333, 287, 254, 176s, 128.
Source: Das and Hendry (2011).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

scorodite see also Gomez et al. (2010a, 2011), Frost et al. (2015w), Culka et al. (2016b), and
Kloprogge and Wood (2017).

Scotlandite Pb(S4+O3)

Origin: Leadhills, Scotland (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. Th elaser radiation power is not indicated.
Raman shifts (cm�1): 975sh, 935s, 880sh, 622, 474s, 190, 144.
Source: Frost and Keeffe (2009d).
Comments: No independent analytical data are provided for the sample used.

Scottyite BaCu2Si2O7

Origin: Wessels mine, Kalahari Manganese Fields, South Africa (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1019w, 958w, 896s, 866w, 675s, 612, 578, 560, 459s.
Source: Yang et al. (2013b).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. For the Raman spectrum of scottyite see
also Xia et al. (2014).

Scrutinyite PbO2

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm�1): 534w, 366w, 269, 133s, 80w,
Source: Inguanta et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.
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Sederholmite NiSe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on hollow nanospheres

using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): 1075s, 539, 389, 207w.
Source: Shi et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts of a

bulk sample are (cm�1): 1060s, 524, 374, 192w.

Segnitite PbFe3+3(AsO4)(AsO3OH)(OH)6

Origin: Broken Hill, New South Wales, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm�1): (3467w), 3440sh, 3217, 2982sh, 1417w, 1231w, 1128w, 998w, 931sh, 860
+848s (unresolved doublet?), 811sh, 746sh, 689w, 572, 481s, (465), 441, 419sh, 370, (342),
318, 300, 250, 202, (195).

Source: Frost et al. (2005l).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Seinäjokite FeSb2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm�1): ~1060, ~700sh, ~660s, ~525.
Source: Xie et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data.

Sejkoraite-(Y) Y2[(UO2)8O6(SO4)4(OH)2]∙26H2O

Origin: Červená vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 732 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm�1): 1537w, 1222w, 1157w, 1095w, 1014, 896w, 829s, 798sh, 670w, 546sh, 477sh,
461, 438sh, 404s, 369sh, 326w, 274, 262, 237sh, 211.

Source: Plášil et al. (2011a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Sekaninaite Fe2+2Al4Si5O18

Origin: A miarolitic pegmatite at Zimnik, Strzegom-Sobótka massif, Sudetes, Poland.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 30 mW.
Raman shifts (cm�1): 3630sh, 3597, 3579, 1158w, 1049w, 1004w, 989, 917w, 667, 599, 569s, 552s,

477w, 420, 296, 253, 152.
Source: Gadas et al. (2016).
Comments: The sample was characterized by electron microprobe analyses and LA-ICP-MS. For the

Raman spectrum of sekaninaite see also Radica et al. (2013).

Selenium Se

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 237 + 234s (unresolved doublet?), 140.
Source: Campos et al. (2004a).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

selenium see also Campos et al. (2004b).

Seligmannite CuPbAsS3

Origin: Binntal, Switzerland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed in the spectral region from 50 to 600 cm�1 using 632.8 nm
He-Ne laser radiation. The laser radiation power is not indicated. A 180�-scattering geometry was
employed. The Raman shifts have been determined for the maxima of individual peaks obtained as
a result of the spectral curve analysis.

Raman shifts (cm21): (363), 354s, 344sh, 334, 324, 311sh, 288, 231, 215sh, 202, 189sh, 172h, 155w,
121w, 106sh, 97s, 90s, 70s.

Source: Kharbish (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analysis.

Sellaite MgF2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal in

different scattering geometries, using 488 nm Ar+ laser radiation. The nominal laser radiation power
was ~75 mW. A 90�-scattering geometry was employed.

Raman shifts (cm21): 515w, 410s, 295, 92.
Source: Porto et al. (1967).
Comments: The band intensities are indicated for the sum of spectra obtained in different scattering

geometries. For the Raman spectrum of sellaite see also Krishnan and Katiyar (1965).
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Sénarmontite Sb2O3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power was below 1 mW.

Raman shifts (cm21): 451, 373w, 253s, 189, 115w.
Source: Makreski et al. (2013b).
Comments: The sample was characterized by thermal analysis. For the Raman spectra of

Sénarmontite see also Cody et al. (1979), Voit et al. (2009), and Orman (2010).

Senegalite Al2(PO4)(OH)3∙H2O

Origin: Jangada mine, Quadrilátero Ferrífero, municipality of Brumadinho, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3614sh, 3610s, 3606sh, 3507–3505s, 3429sh, 3374sh, 3339, 3270w, 3206sh,
3099w, 2975w, 1753w, 1679w, (1587w), (1425w), 1377w, 1206w, 1179w, 1154, 1110w, 1071,
1029, (1026), 892w, 829w, 708, 677w, 635, 616sh, 581w, 559sh, 545, 501sh, 480, 462sh, 444, 417,
375, 364sh, 329sh, 318sh, (312w), 303, 237, 202sh, 193, 178, 166, (154w), 136 + 133 (unresolved
doublet?), 102.

Source: Frost et al. (2013g).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Sepiolite Mg4Si6O15(OH)2∙6H2O

Origin: Durango, Mexico.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on randomly oriented crystals in back-scattering geometry,
using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 900 mW.

Raman shifts (cm21): ~1080, ~780, ~675s, ~380, ~335, ~290, ~265, ~230w, ~200s, ~170.
Source: McKeown et al. (2002).
Comments: The sample was characterized by powder X-ray diffraction data.

Sérandite NaMn2+2Si3O8(OH)

Origin: Poudrette quarry, Saint-Hilaire Mt., Montérégie (Rouville) Co., Québec, Canada (type
locality).

Experimental details: Methods of sample preparation are not described. Raman scattering
measurements have been performed using 638 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 1026s, 903, 666s, 422, 304, 168.
Source: Haring and McDonald (2014a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of sérandite see also Origlieri et al. (2017).
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Serendibite Ca4[Mg6Al6]O4[Si6B3Al3O36]

Origin: Ratnapura area, Sri Lanka.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 325 or 514.5 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 997, 895, 756, 681, 635, 572, 530, 470, 405, 364, 310.
Source: Schmetzer et al. (2002).
Comments: The sample was characterized by electron microprobe analyses.

Serpierite Ca(Cu,Zn)4(SO4)2(OH)6∙3H2O

Origin: Corchia, NW Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation.
The laser radiation power at the sample was 4 mW.

Raman shifts (cm21): 3616w, 3570w, 1168w, 1132, 1115sh, 1085w, 991s, 651w, 605w, 474sh,
445, 426, 415, 338w, 244w, 218w.

Source: Coccato et al. (2016).
Comments: No independent analytical data are provided for the sample used.

Shattuckite Cu5(SiO3)4(OH)2

Origin: Navojoa, Sonora, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3602, (3567w), 3424sh, 3367w, (3153w), 1564w, 1107w, 1054, (1000w),
981, 953sh, 887, 865w, 832w, 781, 739w, 667s, 549, 498, 439, 394, 349sh, 340, 326, 306sh,
255, 238, 211s, 191sh, (160w), 152, 135–139 sh, (117w), 113, (107w).

Source: Frost and Xi (2012b).
Comments: No independent analytical data are provided for the sample used.

Shcherbinaite V2O5

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a sample in rotated

tube using 488 and 514.5 nm Ar+, as well as 647.1 nm Kr+ laser radiations. The laser radiation
power is not indicated.

Raman shifts (cm21): 993, 703, 528.5, 483, 476, 405, 305, 285s, 198, 147s, 105.
Source: Sanchez et al. (1982).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of shcherbinaite see also Menezes et al. (2009).
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Shchurovskyite K2CaCu6O2(AsO4)4

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 840s, 630, 486, 304, 135, 100.
Source: Pekov et al. (2015d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Shortite Na2Ca2(CO3)3

Origin: No data.
Experimental details: No data.
Raman shifts (cm21): 1523, 1470, 1440, 1407, 1387, 1091s, 1071s, 730, 719, 715, 695, 265s,

201, 171, 141.
Source: Shatskiy et al. (2015).
Comments: For the Raman spectra of shortite see also Frost and Dickfos (2007b, 2008).

Shuangfengite IrTe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed in a nearly back-

scattering (xx) geometry on an oriented crystal, from the surface parallel to the (ab) plane using
532 nm solid-state laser radiation. The nominal laser radiation power was 5 mW.

Raman shifts (cm21): 166, 126.
Source: Glamazda et al. (2014).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of shuangfengite see also Lazarević et al. (2014).

Shulamitite Ca3TiFe
3+AlO8

Origin: Central part of the Hatrurim Basin, Israel (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample in a polished section using 514.5 nm Ar+ laser radiation. The laser radiation output power
was between 30 and 50 mW.

Raman shifts (cm21): 1501 (broad), 802sh, 742s, 561, 498sh, 388, 290, 238, 145w, 110w.
Source: Sharygin et al. (2013a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Siderite Fe(CO3)

Origin: Minas Gerais, Brazil.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 and 514.5 nm Ar+ laser radiations. The nominal
laser radiation power was in the range from 100 to 500 mW.

1176 4 Raman Spectra of Minerals



Raman shifts (cm21): 1738, 1088s, 731, 299, 194w.
Source: Rutt and Nicola (1974).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

siderite see also Buzgar and Apopei (2009), Das and Hendry (2011), Saheb et al. (2011), Frezzotti
et al. (2012), Zhao and Guo (2014), and Andò and Garzanti (2014).

Sideronatrite Na2Fe
3+(SO4)2(OH)∙3H2O

Origin: Sierra Gorda, Chile.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 2.5 mW. The Raman
shifts have been determined for the maxima of individual peaks obtained as a result of the spectral
curve analysis.

Raman shifts (cm21): 1646, 1223, 1189, 1159, 1117sh, 1106, 1024, 1013s, 996s, 624, 614sh, 600w,
536, 469, 458sh, 391, 259sh, 246s, 216sh, 203, 170, 115.

Source: Rouchon et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Sidorenkite Na3Mn(PO4)(CO3)

Origin: Alluaiv Mt., Lovozero massif, Kola Peninsula, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1074, 1044s, 1035sh, 1012s, 1004sh, 966sh, 959s, (953), 625w, 579, 469w,
414w, 297w, 252w, 202, 179w, 159, 129w.

Source: Frost et al. (2015c).
Comments: The sample was characterized by quqlitative electron microprobe analyses.

Sidwillite MoO3∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 488 and 514.5 nm Ar+ laser radiations. The laser radiation power at the sample was
10–50 mW.

Raman shifts (cm21): 934, 771sh, 729s, 627, 418w, 386w, 353w, 331, 272s, 247, 216, 184, 168,
119, 95, 65.

Source: Seguin et al. (1995).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of sidwillite see also Philip et al. (1988).

Siegenite CoNi2S4

Origin: Synthetic.
Experimental details: Raman spectrum was measured in argon atmosphere. Characteristics of laser

radiation are not indicated.
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Raman shifts (cm21): 373s, 342s, 301, 239, 150.
Source: Xia et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data.

Sigloite Fe3+Al2(PO4)2(OH)3∙7H2O

Origin: Siglo XX (Llallagua) mine, Andes Mts., Bustillo province, Potosi, Bolivia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3615, 3552, 3493s, 3449s, 3422sh, 3356sh, 3118s, (2988), 1631w, (1532w),
1235–1231sh, 1228, 1167, 1099 + 1086 (unresolved doublet?), 1009s, 993sh, 888, 816, 693w,
659sh, 619sh, 596, 571, 550sh, 528, (506), (489), 453, 427, 401, 338sh, 308, 277, (267), 253, 241,
191, 177, 169sh, 140sh, 129, 112.

Source: Frost et al. (2013aa).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Siidraite Pb2Cu(OH)2I3

Origin: Broken Hill Cu-Zn-Pb ore deposit, Yancowinna Co., New South Wales, Australia (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
crystal using 532 nm laser radiation. The laser radiation power at the sample was 1.8 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3455, 3443, 743w, 370, 332, 313sh, 277, ~248sh, ~217w, ~140sh, 128s,
116, 97.

Source: Welch et al. (2016).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Silicocarnotite Ca5[(PO4)(SiO4)](PO4)

Origin: Hatrurim basin, Negev Desert, Israel (type locality).
Experimental details: The laser radiation wavelength is not indicated. The laser radiation power at the

sample was 44 mW.
Raman shifts (cm21): 1085, 1056, 1014 + 1004 (unresolved doublet?), 967s, (939w), 904sh,

893, 878, 850s, 788w, 734w, 711w, 693w, 671w, 640, 626, 584, 557, 474, 448, (418),
397, 318sh, 302, 275, 258, 234, 190sh, 153w.

Source: Galuskin et al. (2015a).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The Raman shifts have been determined for
the maxima of individual peaks obtained as a result of the spectral curve analysis. For the Raman
spectra of silicocarnotite see also Serena et al. (2014, 2015).
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Silicon Si

Origin: Dhofar 280 lunar highland meteorite.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

samples using 532 nm laser radiation. The laser radiation power at the samples was no more than 5 mW.
Raman shifts (cm21): ~950w, 504–515s, ~280w.
Source: Nazarov et al. (2012).
Comments: The samples were characterized by electron microprobe analyses. The strongest band of

synthetic crystalline Si is observed at 520 cm–1.

Sillénite Bi12SiO20

Origin: Synthetic.
Description: Synthesized from the stoichiometric mixture of oxides at 700 �C for 48 h. Cubic, space

group I23.
Source: Betsch and White (1978).
Raman shifts (cm21): 621w, 538s, 458w, 328, 276s, 249sh, 205, 165, 143, 129s, 95sh, 87s, 66, 57s,

43w.

Sillimanite Al2SiO5

Origin: Premosello Chiovenda, Ossola valley, Verbano-Cusio-Ossola province, Piedmont, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation.
The laser radiation power is not indicated.

Raman shifts (cm21): ~1125, ~970, ~955, 870, ~707, ~596, ~480, 456, ~412, ~395, 309s, 235s, 142.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of sillimanite see also Mernagh and Liu (1991) and Frezzotti et al. (2012).

Simonkolleite Zn5(OH)8Cl2∙H2O

Origin: Artificial (a product of Zn corrosion in NaCl solution).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 40 mW.
Raman shifts (cm21): 3580, 3480s, 3450, 1030, 910, 730, 390s, 260s, 210.
Source: Bernard et al. (1993b).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of simonkolleite see also Khamlich et al. (2013).

Sinhalite MgAl(BO4)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 864, 554w, 488, 376.
Source: Ross (1972).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of sinhalite see also Hayward et al. (1994).
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Sinjarite CaCl2∙2H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 3486, 3452s, 3216w, 1638s, 1620w (at 21 �C); 3545w, 3491, 3475, 3437s,
3388, 3215w, 3211w, 1635s, 1630, 1616 (at �172 �C).

Source: Uriarte et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of sinjarite see also Baumgartner and Bakker (2010).

Sinoite Si2N2O

Origin: Zakłodzie meteorite.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 1.2 mW.
Raman shifts (cm21): 1142w, 983w, 941w, 891w, 730w, 544, 496w, 455w, 373w, 328w,

217w, 185s.
Source: Ma et al. (2012a).
Comments: The mineral was identified by electron back-scatter diffraction. For the Raman spectrum

of sinoite see also Sekine et al. (2006).

Skinnerite Cu3SbS3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on nanocrystals using

514 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 354.
Source: Qiu et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Skippenite Bi2Se2Te

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film.

Characteristics of laser radiation are not indicated.
Raman shifts (cm21): 165, 147, 117s.
Source: Gopal et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of skippenite see also Voloshin et al. (2015a).
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Sklodowskite Mg(UO2)2(SiO3OH)2∙6H2O

Origin: Eva mine, NorthernTerritory, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3506, 3420sh, 3316w, 1640w, 1528w, 1413w, 1312w, 1244w, 1150w, (986),
970, (957), 934w, 897w, 853w, 827w, 801, 777s, (756w), 549, 474, 414, 393sh, 318sh, 305, 282,
264, 217sh, 200 + 197s (unresolved doublet?), 156, 137, (127), 113.

Source: Frost et al. (2006e).
Comments: No independent analytical data are provided for the sample used.

Skorpionite Ca3Zn2(PO4)2(CO3)(OH)2∙H2O

Origin: Skorpion Zn mine, Lüderitz district, Karas region, Namibia (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488, 514.5 or 632.8 nm laser radiation. The nominal
laser radiation power was 20 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3566s, 1633w, 1505, 1398, 1102, 1075s, 1054, 1016, 972s, 702, 639, 575, 468,
423, 384, 322, 276, 237.

Source: Krause et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Smirnite Bi3+2Te
4+O5

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an oriented single

crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 50 mW. A
90�-scattering geometry was employed.

Raman shifts (for the y(xx)z scattering geometry, cm21): 768s, 740, 721sh, 625, 382w, 347, 282w,
254w, 239, 206w, 193w, 164w, 153w, 114, 102s, 89s, 64, 57s, 44w.

Source: Domoratskii et al. (2000).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of smirnite see also Klein et al. (1998).

Smithite AgAsS2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 362s, 324s, 301, 279w, 239, 207w, 176, 141, 120w.
Source: Minceva-Sukarova et al. (2003).
Comments: No independent analytical data are provided for the sample used.
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Smithsonite Zn(CO3)

Origin: Lavrion, Greece.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 488 and 514.5 nm Ar+ laser radiations. The nominal
laser radiation power was in the range from 100 to 500 mW.

Raman shifts (cm21): 1735, 1406, 1090s, 726, 302, 194.
Source: Rutt and Nicola (1974).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

smithsonite see also Bouchard and Smith (2003) and Frezzotti et al. (2012).

Smythite (Fe,Ni)3+xS4 (x � 0–0.3)

Origin: Harrodsburg, Bloomington, Indiana, USA.
Experimental details: No data.
Raman shifts (cm21): 394, 358, 329, 326, 267, 262.
Source: Bon and Rakovan (2012).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved.

Sobolevskite PdBi

Origin: Southern Sopchinskoe deposit, Monchegorsk district, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser power was 50 mW.
Raman shifts (cm21): 236w, 106w, 82, 63s.
Source: Voloshin et al. (2015a).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of sobolevskite see also Bakker (2014).

Sodalite Na4(Si3Al3)O12Cl

Origin: Mogok, Myanmar.
Experimental details: No data.
Raman shifts (cm21): 1057–1062, 986–987, 973, 914, 463–464s, 451s, 263s.
Source: Culka et al. (2016a).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of sodalite see also Balassone et al. (2012), Hettmann et al. (2012), and Zahoransky et al. (2016).

Soddyite (UO2)2(SiO4)∙2H2O

Origin: Sierra Albarrana, Córdoba, Spain.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation
output power was 20 mW.

Raman shifts (cm21): 832s, 463, 404, 312, 293, 225, 195, 107.
Source: Bonales et al. (2015).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

soddyite see also Biwer et al. (1990), Giammar and Hering (2002), Frost et al. (2006d, h), and Amme
et al. (2002).
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Söhngeite Ga(OH)3

Origin: Tsumeb mine, Namibia (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 473 nm laser radiation. The nominal laser radiation
power was 50 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3334, 3240, 3189sh, 3100, 3000, 923, 455w, 327s, 273w, 256, 185w.
Source: Welch and Kleppe (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Sonolite Mn2+9(SiO4)4(OH)2

Origin: Franklin, Sussex Co., New Jersey, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3555sh, 3544w, 3532sh, 948, 906, 848s, (838), 832sh, 814, 668, 638.
Source: Frost et al. (2007k).
Comments: The sample was characterized by electron microprobe analysis.

Sonoraite Fe3+(Te4+O3)(OH)∙H2O

Origin: Tombstone, Tombstone district, Cochise Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3450 + 3423 (unresolved doublet?), 3350sh, 3223sh, 3000sh, 994w, 911w,
(804w), 779s, (714), 666s, 638sh, 521sh, 468, 425, 387, (374), 312, 267s, 253s, 234, 209, 159.

Source: Frost and Keeffe (2009c).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of sonoraite see also Frost et al. (2015b).

Spangolite Cu6Al(SO4)(OH)12Cl∙3H2O

Origin: Monte Fucinaia, central Western Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation.
The laser radiation power at the sample was 4 mW.

Raman shifts (cm21): 968s, 615w, 520s, 410, 168.
Source: Coccato et al. (2016).
Comments: No independent analytical data are provided for the sample used.
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Spencerite Zn4(PO4)2(OH)2∙3H2O

Origin: Salmo, British Columbia, Canada.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3516, 1095w, 1019w, 999s, 989w, 952w.
Source: Frost (2004a).
Comments: No independent analytical data are provided for the sample used.

Sperrylite PtAs2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 18794.59 cm�1 laser radiation. The laser radiation
power at the sample was between 1 and 2 mW.

Raman shifts (cm21): 293w, 279, 226, 216s.
Source: Bakker (2014).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of sperrylite see also Müller and Lutz (1991) and Mernagh and Hoatson (1995).

Spertiniite Cu(OH)2

Origin: Artificial (a product of brass corrosion).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 nm laser radiation. The laser radiation power at the sample was 74 μW.
Raman shifts (cm21): ~3555s, ~3305, ~950w, ~840w, ~495s, ~450, ~293.
Source: Schmutzler et al. (2016).
Comments: No independent analytical data are provided for the sample used.

Spessartine Mn2+3Al2(SiO4)3

Origin: Lojane, municipality of Lipkovo, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1025sh, 976, 901s, 838, 632w, 607w, 557, 496, 454w, 413w, 377sh, 354, 293,

228, 183.
Source: Makreski et al. (2005b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of spessartine see also Mingsheng et al. (1994), Kolesov and Geiger (1998), Bersani et al. (2009),
Jovanovski et al. (2009), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Sphalerite ZnS

Origin: Rio Tinto, Spain.
Experimental details:Methods of sample preparation are not described. Raman scattering measurements

have been performed on an arbitrarily oriented sample using 514.5 nm Ar+ laser radiation. The laser
radiation power at the sample was between 1 and 10 mW. A 180�-scattering geometry was employed.
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Raman shifts (cm21): 447, 420, 407, 397, 350s, 336, 287, 275s, 237, 219, 208, 178, 156, 144, 117.
Source: Mernagh and Trudu (1993).
Comments: The Raman shifts are given for Fe-bearing sphalerite. No independent quantitative

analytical data are provided for the sample used. For the Raman spectra of sphalerite see also
White (2009), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Spherocobaltite Co(CO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1090s, 725w, 302, ~194.
Source: Chariton et al. (2017).
Comments: The sample was characterized by single-crystal X-ray diffraction data. For the Raman

spectrum of spherocobaltite see also Rutt and Nicola (1974).

Spinel MgAl2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 632.8 nm He-Ne and 473.1 nm Nd-YAG laser radiations. The laser radiation power at
the sample was <1 mW.

Raman shifts (cm21): 768, 720w, 670, 562w, 493w, 408s, 375sh, 308.
Source: D’Ippolito et al. (2015).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

spinel see also Shoval et al. (2001), Jasinevicius (2009), Kojitani et al. (2013), Culka et al. (2016a,
b), and Dongre et al. (2016).

Spionkopite Cu39S28

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 474s.
Source: Parker et al. (2008).
Comments: The sharp band at 474 cm�1 corresponds to S–S pairs.

Spiroffite Mn2+2Te
4+

3O8

Origin: Moctezuma mine, Sonora, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): (773w), 743s, 721, 650sh, 466s, 394, 346s, 226, 148.
Source: Frost et al. (2009g).
Comments: No independent analytical data are provided for the sample used. The IR spectrum of

presumed spiroffite given in the cited paper corresponds to quartz.
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Spodumene LiAlSi2O6

Origin: Conţu-Negovanu pegmatite field, Lotru-Cibin Mts., Sibiu Co., Romania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal. Experimental details are not described.
Raman shifts (cm21): 1098, 1070s, 1017, 783, 705s, 582, 522, 438, 393, 355s, 296, 249.
Source: Buzatu and Buzgar (2010).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of spodumene see also Anderson et al. (2001) and Jasinevicius (2009).

Spurrite Ca5(SiO4)2(CO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser
radiation power was 20 mW.

Raman shifts (cm21): 1080s, 948w, 932w, 864, 852, 704, 547w, 520w, 404w, 389w.
Source: Gastaldi et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data.

Šreinite Pb(UO2)4(BiO)3(PO4)2(OH)7∙4H2O

Origin: Horní Halže, Krušné Hory (Ore Mts.), Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The laser radiation power at the sample was 4 mW.
Raman shifts (cm21): 1361w, 1060w, 1023w, 975w, 871sh, 839sh, 797s, 678w, 595w, 507w, 457w,

449w, 334.
Source: Sejkora and Čejka (2007).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Srilankite (Ti,Zr)O2

Origin: Xiuyan meteorite crater, Xiuyan Co., Liaoning province, NE China.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

Zr-free sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 825w, 610, 572, 533, 442sh, 428s, 412sh, 357, 340w, 315, 287, 175s, 151.
Source: Chen et al. (2013a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of srilankite see also Mammone et al. (1981).

Stanfieldite Ca4Mg5(PO4)6

Origin: Artificial (a product of pyrometamorphic substitution of apatite in slag).
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 nm laser radiation. The laser radiation power at the sample was between
1 and 5 mW.
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Raman shifts (cm21): 1293w, 1228w, 1158w, 1124w, 1075, 983sh, 974s, 968s, 753, 620, 611sh,
533, 514, 468, 402, 348, 293w, 176w.

Source: Schneider et al. (2013).
Comments: The sample was characterized by electron microprobe analyses.

Stanleyite V4+O(SO4)∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was between
10 and 40 mW.

Raman shifts (cm21): 1078, 1028, 1006, 630, 450, 310.
Source: Hardcastle and Wachs (1991).
Comments: No independent analytical data are provided for the sample used. Band intensities are not

indicated.

Stannite Cu2FeSnS4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A nearly
180�-scattering geometry was employed.

Raman shifts (cm21): 350w, 318s, 286.
Source: Himmrich and Haeuseler (1991).
Comments: For the Raman spectra of stannite see also Fontané et al. (2012) and Evrard et al. (2015).

Starkeyite Mg(SO4)∙4H2O

Origin: Calingasta, San Juan province, Argentina.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~1156, ~1120, ~1102s, ~1085w, ~615, ~560w, ~475.
Source: Peterson (2011).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

starkeyite see also Wang et al. (2006a) and Frezzotti et al. (2012).

Starovaite KCu5O(VO4)3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 250 K in a quasi-

back-scattering geometry, from the surface parallel to the a-axis of a microtwinned crystal using
514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 10 mW.

Raman shifts (cm21): ~953s, ~908, ~860, ~834w.
Source: Choi et al. (2004).
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Staurolite Fe2+2Al9Si4O23(OH)

Origin: Štavica, municipality of Prilep, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3675, 3622w, 3571w, 3520sh, 3451sh, 3426s, 1022, 970s, 938sh, 898sh,

847sh, 684w, 640sh, 593, 543, 525sh, 487, 432, 399w.
Source: Makreski et al. (2005b).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of staurolite see also Andò and Garzanti (2014).

Steedeite NaMn2[Si3BO9](OH)2

Origin: Poudrette quarry, Montérégie (Rouville) Co., Québec, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3443, 3317w, 1700, 1368, 1030, 1000s, 874, 836, 696, 636s, 431, 330,

264, 197w, 120.
Source: Haring and McDonald (2014a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Steenstrupine-(Ce) Na14Ce6Mn2+2Fe
3+

2Zr(PO4)7Si12O36(OH)2∙3H2O

Origin: Karnasurt Mt., Lovozero alkaline massif, Kola Peninsula, Russia.
Experimental details: Raman scattering measurements have been performed on a partly metamict

sample annealed at 500 �C using 632.8 nm laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): ~957s, ~880sh, ~756, ~600 (broad).
Source: Kusz et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Stephanite Ag5SbS4

Origin: Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

with the laser polarization parallel to the a-, b- and c-axes. 785 nm solid-state laser radiation was
used. The nominal laser radiation power was 1.7 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 335s, 317w, 306w, 301, 233, 204w, 178w.
Source: Kharbish et al. (2009).
Comments: The sample was characterized by electron microprobe analyses. The Raman shifts are

given as the sum of the spectra of all scattering geometries.
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Štěpite U(AsO3OH)2∙4H2O

Origin: Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality).
Experimental details: No data.
Raman shifts (cm21): 3552, 3484, 1641w (broad), 896s, 844s, 811s, 760s, 420, 401, 377, 368,

351, 322, 312, 287, 262, 235, 180, 160, 139,115, 107.
Source: Plášil et al. (2013b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Stercorite (NH4)Na(PO3OH)∙4H2O

Origin: Petrogale Cave, Madura, Western Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3158, 3024sh, 2900sh, 920s, 577, 476, 450sh, 396w, 345, 326sh, 216sh,
197 + 185 (unresolved doublet), (155), 143s, 110.

Source: Frost et al. (2011u).
Comments: The sample was characterized by powder X-ray diffraction data.

Steropesite Tl3BiCl6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1036 nm Nd-YAG laser radiation. The nominal laser radiation power was between 30 and
300 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 261s, 218, 117s.
Source: Beck and Benz (2010).
Comments: The sample was characterized by single-crystal X-ray diffraction data and X-ray absorp-

tion spectrum.

Stetindite Ce(SiO4)

Origin: Stetind pegmatite, Tysfjord, Nordland, Norway (type locality).
Experimental details: No data.
Raman shifts (cm21): See comment below.
Source: Schlüter et al. (2009).
Comments: Raman micro-spectroscopy shows weak OH bands in the frequency range between 3200

and 3700 cm�1 corresponding to vibrations of OH groups. No other data on the Raman spectrum of
stetindite are given in the cited paper.

Stibarsen SbAs

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 216 (calculated).
Source: Zhang et al. (2016a).
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Stibiconite Sb3+Sb5+2O6(OH)

Origin: Yucunani Mine, Tejocotes, Oaxaca, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3603sh, 3424 + 3225 (unresolved doublet?), 3018sh, 2755w, 855sh, 827w,
736w, 609, 564w, (537w), 522, (508), 461, 409 + 400 (unresolved doublet?), 261, (250), 220sh,
199s, 146, 109w.

Source: Bahfenne and Frost (2010e).
Comments: No independent analytical data are provided for the sample used.

Stibioclaudetite AsSbO3

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 100 mW.

Raman shifts (cm21): 817w, 766w, 726w, 631w, 620w, 517w, 477, 468, 430sh, 414s, 342, 323w,
298w, 273, 232, 210, 202, 183, 171s, 155s, 125w, 115w.

Source: Origlieri et al. (2009).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. For the Raman spectrum of Stibioclaudetite see also Origlieri (2005).

Stibiocolumbite SbNbO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm21): 913, 740w, 718, 620s (broad), 542, 448, 397, 377s, 350, 292, 269s,

239, 232, 192s, 168s, 128s, 87s, 75s, 54w, 37.
Source: Ayyub et al. (1986).
Comments: No independent analytical data are provided for the sample used. For the Raman

spectrum of stibiocolumbite see also Ayyub et al. (1987).

Stibiopalladinite Pd5Sb2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 18794.59 cm�1 laser radiation. The laser radiation
power at the sample was between 1 and 2 mW.

Raman shifts (cm21): 187w, 169, 108s.
Source: Bakker (2014).
Comments: No independent analytical data are provided for the sample used.
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Stibnite Sb2S3

Origin: Schlaining, Oberwart, Burgenland, Austria.
Experimental details: Raman scattering measurements have been performed on an oriented crystal

with the laser polarization parallel and perpendicular to the cleavage and elongation of kermesite.
632.8 nm He-Ne laser radiations were used. The nominal laser radiation power was 1.7 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 310, 300, 281s, (254w), 237s, (225w), 207, 189, (180w), 156w, 125, 99, 71,
59s, 50, 39.

Source: Kharbish et al. (2009).
Comments: The sample was characterized by electron microprobe analysis. The Raman shifts are

given as the sum of the spectra of all scattering geometries. For the Raman spectra of stibnite see
also Mernagh and Trudu (1993), Minceva-Sukarova et al. (2003), Roy et al. (2008), Frost et al.
(2010c), and Makreski et al. (2013b).

Stichtite Mg6Cr2(CO3)(OH)16∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1087s, 1067sh, 539s, (531), 458, (446), 366w, 328w, 317w, 292w, 248w,
215w, 153.

Source: Frost and Erickson (2004).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of stichtite see also Mills et al. (2011b).

Stilbite-Ca NaCa4(Si27Al9)O72∙28H2O

Origin: Berufjördur, Sudur-Múlasýsla, Eastern Region, Iceland.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The maximum output
powder of 300 mW could be filtered to diminish the power at the sample.

Raman shifts (cm21): 794, 644w, 497s, 459w, 410s, 320w.
Source: Jehlička et al. (2012).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of stilbite-Ca see also Mozgawa (2001), Makreski et al. (2009), Jehlička and Vandenabeele (2015),
and Ma et al. (2016b).

Stilbite-Na Na9(Si27Al9)O72∙28H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 1.5 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 1133, 801, 618, 499s, 458, 411s, 152.
Source: Ma et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is

solved by the Rietveld method.
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Stilleite ZnSe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film using

532 Nd-YAG laser radiation. The laser radiation power at the sample was 0.1 mW.
Raman shifts (cm21): 500, 252s, 202w.
Source: Perna et al. (2006).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of stilleite see also Yang et al. (1999).

Stilpnomelane (K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36∙nH2O

Origin: Martian meteorite MIL 03346.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532.3 nm Nd-YAG laser radiation. The nominal laser radiation power was 14.5 mW.
Raman shifts (cm21): 3579w, 3568w, 1156, 897, 820w, 588s, 501, 379, 291.
Source: Kuebler (2013a).
Comments: The sample was characterized by electron microprobe analyses.

Stishovite SiO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 16 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 960, 750s, 584, 228.
Source: Liu and El Gorsey (2007). For the Raman spectra of stishovite see also Hemley (1987a, b),

Von Czarnowski and Hübner (1987), Holtstam et al. (2003), Miyahara et al. (2013), and Spektor
et al. (2016).

Stoiberite Cu5O2(VO4)2

Origin: Synthetic.
Experimental details:Methods of sample preparation are not described. Raman scattering measurements

have been performed using 532.1 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): ~950, ~900s, ~800s, ~560w, ~505w, ~410, ~330w.
Source: Kawada et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of stoiberite see also Newhouse et al. (2016).

Stolzite Pb(WO4)

Origin: Vysoká hill, near Havlíčkův Brod, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation output power was 4 mW.
Raman shifts (cm21): 905s, 766, 752, 357, 328, 324s, 192w, 178, 90, 77w, 71w, 64, 56.
Source: Pauliš et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

stolzite see also Frost et al. (2004d), Kloprogge et al. (2004b), and Andrade et al. (2014).
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Stoppaniite Fe3+2Be3Si6O18∙H2O

Origin: Capranica, Vico volcanic complex, Latium, Italy (type locality).
Experimental details: No data in the cited paper.
Raman shifts (cm21): 3595–3588.
Source: Della Ventura et al. (2000).

Stottite Fe2+Ge(OH)6

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was below
80 mW. A 135�-scattering geometry was employed.

Raman shifts (cm21): 3352, 3240, 3159, 3064, 636s, 418, 297, 266.
Source: Kleppe et al. (2012).
Comments: The sample was characterized by single-crystal X-ray diffraction data.

Strashimirite Cu4(AsO4)2(OH)2∙2.5H2O

Origin: Zálesí deposit, Rychlebské Hory Mts., northern Moravia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3585w, 3488w, 3450w, 852s, 831sh, 554sh, 526sh, 497, 467sh, 393w,
337, 294s, 239sh, 220, 172sh, 152s.

Source: Frost et al. (2009i).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Strengite Fe3+(PO4)∙2H2O

Origin: Iron Monarch, Middleback Ranges, South Australia, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1357, 1250, 1158, 1137, 1005, 985s, 744, 694, 560, 487, 447, 434, 398, 317,
303, 249, 204, 172s, 153, 135.

Source: Frost et al. (2004l).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of strengite see also Kloprogge and Wood (2017).
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Stringhamite CaCu(SiO4)∙H2O

Origin: Christmas mine, Gila Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 0.1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3239sh, 3193, 1371w, 1147w, 1061, (1027w), (997w), 980sh, 956s, 908, 848s,
825, 799, 764w, 693w, 626w, 570s, 519, 505, 431w, 396, 369, 341w, 326w, 303.

Source: Frost and Xi (2012f).
Comments: No independent analytical data are provided for the sample used.

Stromeyerite CuAgS

Origin: Artificial (a product of Ag-Cu alloy corrosion).
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 266–280 (broad).
Source: De Caro et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Stronadelphite Sr5(PO4)3F

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powder sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1055, 1042, 1029, 952s, 606sh, 595, 582, 575, 445, 423, 305w, 241, 208w,

196w, 186w, 174w.
Source: Zhai et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data.

Strontianite Sr(CO3)

Origin: Drensteinfurt, Münsterland, North Rhine-Westphalia, Germany.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 1543w, 1445, 1069s, 700, 242.
Source: Buzgar and Apopei (2009).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of strontianite see also Frezzotti et al. (2012).

Strontiofluorite SrF2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal using

253.65 nm Hg radiation.
Raman shifts (cm21): 285.
Source: Warrier and Krishnan (1964).
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Strontiohurlbutite SrBe2(PO4)2

Origin: Nanping No. 31 pegmatite, Fujian province, SE China (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single-crystal sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample
was 5 mW.

Raman shifts (cm21): 1178, 1135, 1022s, 587, 575, 550, 494, 442, 421, 343, 204, 176.
Source: Rao et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Strontiojoaquinite (Na,Fe)2Ba2Sr2Ti2(SiO3)8(O,OH)2∙H2O

Origin: Junilla Claim, San Benito Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3599w, 3587sh, 3519 + 3511 (unresolved doublet?), 3485sh, 1123s, 1062,
1031, 971s, 912, 892, 738w, 682 + 679 (unresolved doublet?), 621s, 602sh, 511, 468+437
(unresolved doublet?), 387–386, 357sh, 339, 284, 267, 193sh, 173, 159, 145.

Source: Frost and Pinto (2007).
Comments: The sample was characterized by electron microprobe analysis.

Strunzite Mn2+Fe3+2(PO4)2(OH)2∙6H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3483, 3410, 3340, 3120, 1120, 1048, 1000s, 975, 639, 567, 513, 469s,
433, 406, 329, 301, 281sh, 248, 199, 183, 168.

Source: Frost et al. (2002c).
Comments: The sample was characterized by powder X-ray diffraction data and quqlitative electron

microprobe analysis.

Struvite-(K) KMg(PO4)∙6H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1075w, 1015w, 1005w, 985w, 946s, 569s, 470w, 430, and a series of bands in
the range from 250 to 400 cm�1.

Source: Stefov et al. (2004).
Comments: No independent analytical data are provided for the sample used.
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Struvite (NH4)Mg(PO4)∙6H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3239sh, 3115, 2921sh, (2903sh), 2368w, 1077, 1013w, 950s, (942), 890, 564,
463w, 428, 300, 242, 229, 206.

Source: Frost et al. (2005j).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of struvite see also García et al. (2013).

Studtite (UO2)(O2)(H2O)2∙2H2O

Origin: Menzenschwand, Schwarzwald (Black Forest Mts.), Germany.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm
He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A 180�-scattering
geometry was employed.

Raman shifts (cm21): 3473w, 3145, 1712w, 1685, 865s, 838sh, 819s, 810sh, 408w, 352w, 294w,
266w, 230w.

Source: Bastians et al. (2004).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of studtite see also Amme et al. (2002) and Colmenero et al. (2017).

Sturmanite Ca6Fe
3+

2(SO4)2[B(OH)4](OH)11O∙25H2O

Origin: Black Rock mine, Kuruman Manganese Fields, Kalahari, South Africa (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3677sh, 3622 + 3600 (unresolved doublet?), 3479, (3401), 3276sh, 1776w,
1697, 1636sh, 1117w, 1069, 995sh, 990s, 981sh, 959w, 760w, 623w, 579s, 530, 501, 455, 383sh,
355, 268sh, (232), 205.

Source: Frost et al. (2014ag).
Comments: The sample was characterized by electron microprobe analysis.

Stützite Ag5�xTe3 (x ¼ 0.24–0.36)

Origin: Coranda-Hondol open pit, Certej Au-Ag deposit, South Apuseni Mts., Romania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in a polished section using 632.8 nm He-Ne laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 147s, 80sh, 64.
Source: Apopei et al. (2014b).
Comments: The sample was characterized by electron microprobe analyses.
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Sudoite Mg2Al3(Si3Al)O10(OH)8

Origin: Semail ophiolite, Oman.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ or 532 nm solid-state laser radiation.
The laser radiation power is not indicated.

Raman shifts (cm21): 3696, 3692, 3666, 3646, 1109, 1080, 1045, 1005, 733, 702, 665, 616, 559s,
549, 477, 403, 388, 365, 259s, 211, 190, 94.

Source: Reynard et al. (2015).
Comments: The empirical formula of the sample used is (Mg1.7Fe0.3Al4)(Si3Al)O10(OH)8.

Sudovikovite PtSe2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The nominal laser radiation
power was 10 mW.

Raman shifts (cm21): 206, 177.
Source: Altamura et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data.

Sulphohalite Na6(SO4)2ClF

Origin: Searles Lake, San Bernardino Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): (1132sh), 1128, (1120sh), 1021w, (1010sh), 1003s, (997sh), 986sh,
635, 624sh, (481sh), 472, 467sh, 159 + 146 (unresolved doublet?), 117 + 109 (unresolved
doublet?).

Source: Frost et al. (2014z).
Comments: No independent analytical data are provided for the sample used. The sample was

characterized by qualitative electron microprobe analysis.

Sulfur S

Origin: Mariana Arc.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation output power was 100 mW.
Raman shifts (cm21): 472s, 437, 246, 219s, 186w, 153.
Source: White (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of sulfur see also Venkateswarlu (1940), Mycroft et al. (1990), Turcotte and Benner (1993), Munce
et al. (2007), and Frezzotti et al. (2012).
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Sulvanite Cu3VS4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using Ar+ or Kr+ laser radiation. The laser radiation power at the sample was below 50 mW.
Raman shifts (cm21): 448sh, 440s, 376s, 301w, 201s, 147.
Source: Petritis et al. (1981).
Comments: The sample was characterized by powder X-ray diffraction data.

Suredaite PbSnS3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on nanorods using

514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 625, 442, 309s, 201, (143s).
Source: Wang et al. (2001b).
Comments: The sample was characterized by powder X-ray diffraction data.

Sursassite Mn2+2Al3(SiO4)(Si2O7)(OH)3

Origin: Strategic Manganese Mine, near Woodstock, New Brunswick, Canada.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3452, 3335, 3230, 2998sh, 1086w, 1026w, 925s, 866, 822, 705, 618, 554s,

491sh, 353, 283, (213), 151.
Source: Reddy and Frost (2007).
Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts have

been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Susannite Pb4(SO4)(CO3)2(OH)2

Origin: Herzog Julius Shaft, Astfeld, Schlackental, Harz Mts., Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3630, 3550, 3513, 3447, 3377, 3307, 3241, 3179, 1154, 1105, 1048, 1026,
1011, 964s, 628, 602, 497, 470, 450, 427, 393, 363, 239, 203.

Source: Frost et al. (2003e).
Comments: Questionable data: bands of symmetric stretching vibrations of carbonate groups are

unusually weak. No independent analytical data are provided for the sample used.
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Suseinargiuite (Na0.5Bi0.5)(MoO4)

Origin: Su Seinargiu, Sardinia, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 1.5 mW.
Raman shifts (cm21): 876s, 772, 376, 319s, 188, 131w.
Source: Orlandi et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Svanbergite SrAl3(SO4)(PO4)(OH)6

Origin: Mt. Brussilof mine, Radium, British Columbia, Canada.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3518sh, 3467, 3415sh, 3319sh, (3215sh), 3151w, 3064sh, 1098, 1034sh,
1022s, 998, 981sh, 896, 654, 633, 616s, 602sh, 588sh, 572sh, 522, 486, 474sh, 392, 369sh,
280w, 246, 179.

Source: Frost and Palmer (2011b).
Comments: No independent analytical data are provided for the sample used.

Švenekite Ca[AsO2(OH)2]2

Origin: Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 3 mW.
Raman shifts (cm21): 3368, 2917w, 2385w, 929, 901, 871s, 840, 753s, 726, 541w, 498w, 417, 393,

358, 330, 289, 268, 223, 172w.
Source: Ondruš et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Svornostite K2Mg[(UO2)(SO4)2]2�8H2O

Origin: Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The nominal laser radiation power was 2.5 mW.
Raman shifts (cm21): 3622w, 3545, 3496, 1220w, 1200, 1155, 1110w, 1028, 989, 951w, 854s,

725w, 643, 610w, 458, 438, 322w, 268w, 207sh, 186, 132, 75.
Source: Plášil et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Swedenborgite NaBe4Sb
5+O7

Origin: Långban, near Pajsberg and Filipstad, Värmland, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 633 nm laser radiation.
Raman shifts (cm21): 906w, 797s, 767, ~740, 575, 427s.
Source: Gaft et al. (2013).
Comments: The Raman spectrum agrees well to that from the RRUFF database.

Symplesite Fe2+3(AsO4)2∙8H2O

Origin: Laubach mine, Laufdorf, Wetzlar, Hesse, Germany.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3448w, 892, 841s, 803, 768s, 520sh, 498s, 442, 373, 319w, 281, 249, 225sh,

207, 189w, 172w, 137w, 113w.
Source: Makreski et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data.

Synchysite-(Ce) CaCe(CO3)2F

Origin: Soultz-sous-Forêts, Rhine Graben, France.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power at the sample was about 14 mW.
Raman shifts (cm21): 1101s, 1083s, 758w, 742, 515, 477, 454w, 276.
Source: Middleton et al. (2013).
Comments: The sample was characterized by electron microprobe analyses.

Syngenite K2Ca(SO4)2∙H2O

Origin: Kalush mine, western Ukraine.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 3306, 1167, 1143, 1120w, 1084w, 1007s, 982s, 663w, 641, 495, 472sh,

442, 240w.
Source: Buzgar et al. (2009).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of syngenite see also Frezzotti et al. (2012) and Jentzsch et al. (2012a, 2013).

Szaibélyite MgBO2(OH)

Origin: Vysoká-Zlatno Cu-Au porphyry-skarn deposit, Štiavnica Neogene strato volcano, Western
Carpathians, Slovakia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.
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Raman shifts (cm21): 3567, 3559s, 1516w, 1463, 1284, 1186, 988, 915w, 836s, 661, 627, 611, 529,
493, 345, 321, 296, 184, 161.

Source: Bilohuščin et al. (2017).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

szaibélyite see also Frost et al. (2015aa) and Galuskina et al. (2008).

Szenicsite Cu3(MoO4)(OH)4

Origin: Jardinera No 1 Mine, Inca de Oro, Chile (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 785 nm Nd-YAG laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3559, 3518, 3506w, 3503w, 3500w, 928, (903sh), 898s, (895sh), 827, 801w,
687w, 476, 408s, 349, 308, 280, 211, 147, 105.

Source: Frost et al. (2007a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of szenicsite see also Yang et al. (2012).

Szmikite Mn(SO4)∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1188, 1089, 1021s, 654w, 623, 493, 426, 263w.
Source: Buzgar et al. (2009).
Comments: No independent analytical data are provided for the sample used.

Szomolnokite Fe(SO4)∙H2O

Origin: Baia Sprie mining area, Romania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 1191, 1091, 1020s, 667w, 623, 492, 427.
Source: Buzatu et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

szomolnokite see also Chio et al. (2007), Jentzsch et al. (2013), Rull et al. (2014), and Apopei
et al. (2015).

Takedaite Ca3B2O6

Origin: Fuka mine, Okayama prefecture, Japan (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): (1087s) (with shoulders), 929w, 911w, (715 + 712) (unresolved doublet?),
585w, 330w, (~282), 217w, (159 + 154) (unresolved doublet?).

Source: Frost et al. (2014n).
Comments: Questionable data. The sample was characterized by qualitative electron microprobe

analysis (only Ca, O, and C have been found). The bands at 1087, 715 + 712, ~282, and
159 + 154 cm�1 correspond to calcite that is the main component in the sample used.

Takovite Ni6Al2(CO3)(OH)16∙4H2O

Origin: Kambalda, Western Australia, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3461, 2855, 2615, 1543, 1060s, 1042, 992, 697, 558s, 533, 492, 403, 324,
253, 225, 218.

Source: Frost et al. (2003h).
Comments: No independent analytical data are provided for the sample used.

Talc Mg3Si4O10(OH)2

Origin: Greiner, Zillertal, Austria.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 257 nm Ar+ laser radiation. The laser radiation power at the sample was below 3 mW.
Raman shifts (cm21): 3675s, 3660, 1051w, 793, 707, 676s, 469, 434, 363, 333w.
Source: Petry et al. (2006).
Comments: The sample was characterized by electron microprobe analyses. For Raman spectra of talc

see also Blaha and Rosasco (1978), Rosasco and Blaha (1980), Wada and Kamitakahara (1991),
and Frezzotti et al. (2012).

Talmessite Ca2Mg(AsO4)2∙2H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 2882, 2376, 931, 905, 877, 836s, 814, 783, 455s, 445, 388, 363, 357, 305, 276,
212, 196, 173.

Source: Frost and Kloprogge (2003).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of talmessite see also Frost (2009a).
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Tangdanite Ca2Cu9(AsO4)4(SO4)0.5(OH)9∙9H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3489, 3403, 1136, 1007, 883, 841s, 802, 669, 618, 505, 493, 462, 414, 385,
359, 314, 260, 210, 179.

Source: Frost and Kloprogge (2003).
Comments: No independent analytical data are provided for the sample used. In the cited paper

tangdanite was described with the old name clinotyrolite. For the Raman spectrum of tangdanite see
also Frost et al. (2012n, 2015z).

Tangeite CaCu(AsO4)(OH)

Origin: Tange gorge, Tyuya-Mayun, Kyrgyzstan (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): (3242), 3118, (868w), 842s, 823, 798, 768w, (715w), 507w, 482, 463, 392w,
367, 321s, 284, 264, 208, 184, 165, 145, 135.

Source: Martens et al. (2003c).
Comments: No independent analytical data are provided for the sample used.

Tantalite-(Fe) Fe2+Ta2O6

Origin: Suzhou granite, Suzhou City, southern Jiangsu, China.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 700 mW.

Raman shifts (cm21): 880.
Source: Wang et al. (1997).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Tantalite-(Mg) MgTa2O6

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 740sh, 712s, 662, 568w, 540w, 473, 425, 356w, 334, 253s, 185s.
Source: Husson et al. (1979).
Comments: No independent analytical data are provided for the sample used.
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Tantalite-(Mn) Mn2+Ta2O6

Origin: Alto do Giz pegmatite, Borborema pegmatite province, northeastern Brazil.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power at the sample was 14 mW.
Raman shifts (cm21): 887s, 621, 547, 526, 324, 282, 238, 202, 121.
Source: Thomas et al. (2011a).
Comments: The sample was characterized by qualitative electron microprobe analyses.

Tantite orthorhombic polymorph Ta2O5

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 981, 948, 903, 844, 762, 711, 642, 612s, 562, 494, 458, 377, 338, 269, 245s,

196, 139, 106s, 78.
Source: Joseph et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

Ta2O5 see also Dobal et al. (2000) and Meng et al. (1997).

Taranakite K3Al5(PO3OH)6(PO4)2∙18H2O

Origin: Jenolan Caves, New South Wales, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1149, 1126s, 1116sh, 1100sh, 1064w, 1026, 1010sh, (991), 962s, (946sh),
(922sh), 811, 656, 648, 636, 615sh, 595, (580), 572sh, 560s, 547, (537sh), 529sh, 505sh, 489, 464,
444, 416s, (404), 396s, (388sh), 348w, 328, 304, 271, 260sh, 248, (237sh), 223, 202, 188s,
165, 155.

Source: Frost et al. (2011v).
Comments: The sample was characterized by powder X-ray diffraction data.

Tarapacáite K2(CrO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 457.9 nm Ar+ laser radiation. The nominal laser radiation power was between 5 and
30 mW.

Raman shifts (cm21): 906, 886, 883, 873, 859s, 395, 390, 388, 354s, 351s.
Source: Serghiou and Guillaume (2004).
Comments: For the Raman spectra of tarapacáite see also Kiefer and Bernstein (1972) and Huang and

Butler (1990).
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Tarbuttite Zn2(PO4)(OH)

Origin: Broken Hill, Zambia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3446, 1069, 1051, 1011, 965s.
Source: Frost (2004a).
Comments: No independent analytical data are provided for the sample used.

Tausonite SrTiO3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using the conventiona l4358-Å mercury e line. The radiation power is not indicated.
Raman shifts (cm21): 1030, 720, 675, 620. . ., 360s, 310s, 250, 80.
Source: Perry et al. (1967).
Comments: No independent analytical data are provided for the sample used.

Tazheranite (Zr,Ti,Ca)(O,□)2

Origin: Synthetic (stabilized cubic ZrO2).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne. The laser radiation power is not indicated.
Raman shifts (cm21): 625s, 480, 360, 250, 150.
Source: Phillippi and Mazdiyasni (1971).
Comments: For the Raman spectrum of tazheranite see also Galuskina et al. (2013a).

Tazzoliite Ba2CaSr0.5Na0.5Ti2Nb3SiO17[PO2(OH)2]0.5

Origin: Euganei Hills, Padova, Italy (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was between 10 and 50 mW.

Raman shifts (cm21): 3516w, 1062w, 981w, 961w, 869w, 754s, 563s, 540, 328, 261s, 229s.
Source: Cámara et al. (2012a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Teepleite Na2B(OH)4Cl

Origin: No data.
Experimental details: Polarized Raman scattering measurements have been performed on a single

crystal using Ar+ laser radiation.
Raman shifts (cm21): 3555, 3535, 3525, 1195, 1185, 946, 854, 770, 743, 660, 505, 499, 429,

373, 185, 143, 135, 113.
Source: Devarajan et al. (1974).
Comments: No independent analytical data are provided for the sample used.
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Teineite Cu2+(Te4+O3)∙2H2O

Origin: Moctezuma Mine, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3495, (3139), 3040, 2854sh, (2641w), 2286w, 778sh, 739s, 701, 667, 509s,
458sh, 384sh, 347, 319, 250sh, 235, 175, 131.

Source: Frost and Keeffe (2009b).
Comments: No independent analytical data are provided for the sample used.

Tellurantimony Sb2Te3

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was below 3 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 164.5, 111, 68s.
Source: Chis et al. (2012).
Comments: No independent analytical data are provided for the sample used.

Tellurium Te

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film using

532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 136, 116s.
Source: Russo et al. (2008).
Comments: For the Raman spectrum of tellurium see also Pine and Dresselhaus (1971).

Tellurobismuthite Bi2Te3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film using

532 nm Nd-YAG laser radiation. The laser radiation power at the sample was <<2 mW.
Raman shifts (cm21): 133, 101s, 60, 38.
Source: Xu et al. (2015a).
Comments: For the Raman spectra of tellurobismuthite see also Richter et al. (1977) and Chis

et al. (2012).

Tengerite-(Y) Y2(CO3)3∙2–3H2O

Origin: Paratoo copper mine, Yunta, Olary Province, South Australia, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3621w, 3367sh, 3281, 3241sh, 3047, 2920, 2789sh, 2657, 1689w, (1637),
1618, 1592sh, 1392w, 1334, 1114sh, 1100s, 1091sh, 1067, (1062), 1038w, 1006w, 775 + 765
(unresolved doublet?), 689 + 674 (unresolved doublet?), 611sh, 589, 553+544 (unresolved dou-
blet?), 508, 479, 474, 417w, 408, 398, 355w.

Source: Frost et al. (2015s).
Comments: No independent analytical data are provided for the sample used. IR spectra of presumed

tengerite presented in Figs. 1b, 2b, and 4b of the cited paper are wrong. Actually, they are IR spectra
of a silicate with minor admixture of quartz. IR bands of the silicate and quartz are erroneously
assigned to vibrations of carbonate groups.

Tennantite Cu6[Cu4(Fe,Zn)2]As4S13

Origin: Tsumeb mine, Tsumeb, Namibia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was between
1 and 10 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 377s, 344.
Source: Mernagh and Trudu (1993).
Comments: The sample was characterized by electron microprobe analyses. For the IR spectrum of

tennantite see also Kharbish et al. (2009).

Tenorite CuO

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film using

514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 631, 346, 296s.
Source: Debbichi et al. (2012).
Comments: The sample was characterized by X-ray diffraction data.

Tephroite Mn2+2(SiO4)

Origin: Franklin, New Jersey, USA.
Experimental details: No data.
Raman shifts (cm21): 933, 892, 840s, 806s, 516w, 387, 306w, 278w, 243.
Source: Welsh (2008).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

tephroite see also Stidham et al. (1976), Piriou and McMillan (1983), and Mouri and Enami (2008).

Tetrahedrite Cu6[Cu4(Fe,Zn)2]Sb4S13

Origin: Kremnice, Slovakia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was
4.25 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 379sh, 366s, 356s, 331, 298, 258w.
Source: Kharbish et al. (2009).
Comments: The sample was characterized by electron microprobe analyses. The atomic ratio Sb:As is

3:1. For the Raman spectra of tetrahedrite see also Mernagh and Trudu (1993) and Rath et al. (2015).
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Tetrawickmanite Mn2+Sn4+(OH)6

Origin: Långban, near Pajsberg and Filipstad, Värmland, Sweden.
Experimental details: No data.
Raman shifts (cm21): 3374w, 3253, 3145, 3062sh.
Source: Lafuente et al. (2015).
Comments: The Raman spectrum was obtained only in the range of O–H-stretching vibrations.

Thaumasite Ca3Si(OH)6(CO3)(SO4)∙12H2O

Origin: Black Rock mine, Kuruman, Kalahari, Northen Cape Province, South Africa.
Experimental details: Raman scattering measurements have been performed on a single crystal using

458 nm solid-state diode source laser radiation, with the laser beam parallel to [100] and at the 180�

polarization counterclockwise from [001]. The laser radiation power at the sample was 40 mW.
Raman shifts (cm21): ~3500, ~3440, ~3370, ~3100sh, 1685, 1112, 1066s, 983s, 887w, 658, 588w,

455w, 418w, 250w, 193w, 143w, 120w, 92.
Source: Gatta et al. (2012b).
Comments: In the cited paper, Raman spectra of thaumasite have been obtained in different scattering

geometries. For the Raman spectrum of thaumasite see also Goryainov (2016).

Thecotrichite Ca3(CH3COO)3Cl(NO3)2∙6H2O

Origin: Artificial (efflorescent salt occurringon surfaces of porous calcareous objects stored in wooden
cabinets).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 0.9 mW.

Raman shifts (cm21): 3470w, 3372w, 3011w, 2986w, 2956w, 2928, 1472s, 1431, 1349, 1058s,
1046s, 968s, 961s, 749, 710w, 667.

Source: Wahlberg et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is

solved.

Theophrastite Ni(OH)2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was 5 mW.

Raman shifts (cm21): 3601w, 3571, 450, 315.
Source: Gourrier et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data.

Thermonatrite Na2(CO3)∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

particle using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 3404w, 3278w, 2977w, 1535w, 1433w, 1394w, 1067s, 700w, 683w, 652w.
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Source: Bouchard and Smith (2003).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of thermonatrite see also Frezzotti et al. (2012).

Thometzekite PbCu2+2(AsO4)2∙2H2O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3519w, 3282w, 2821w, 2345sh, 984w, 841s, 790sh, 728w, 499s, 428, 401,
356s, 322, 239w.

Source: Frost and Weier (2004e).
Comments: No independent analytical data are provided for the sample used.

Thomsonite-Ca NaCa2(Al5Si5)O20∙6H2O

Origin: Dobrna, Děčín, Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 Nd-YAG or 785 nm diode laser radiation.
Raman shifts (cm21): 1071, 990, 968, 930w, 608, 536s, 494w, 474w, 443, 391w, 341w, 310w, 268w,

258w, 220w, 197w, 180, 167w, 156w, 120w.
Source: Jehlička et al. (2012).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of thomsonite-Ca see also Wopenka et al. (1998), Mozgawa (2001), and Jehlička and
Vandenabeele (2015).

Thorianite ThO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The nominal laser radiation power was between 30 and
150 mW.

Raman shifts (cm21): 1033w, 885w, 467s.
Source: Jayaraman et al. (1988).
Comments: The spectrum was obtained at 0.8 GPa.

Thorikosite Pb3O3Sb
3+(OH)Cl2

Origin: Lavrion, Greece (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3602w, 3541sh, 3508+3504s (unresolved doublet?), (3488sh), 1085w,
730, (657), 596, 325s, 275 + 269s (unresolved doublet?), (155), 133s, 112, 105w.

Source: Frost and Bahfenne (2011b).
Comments: No independent analytical data are provided for the sample used.

Thorite Th(SiO4)

Origin: Synthetic.
Experimental details: Polarized Raman scattering measurements have been performed on a single

crystal, using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 250 mW. A
90�-scattering geometry was employed.

Raman shifts (cm21): 920, 894, 855, 596, 517, 439, 312, 293, 264, 194, 129, 126.
Source: Syme et al. (1977).
Comments: For Raman spectra of thorite see also Lahalle et al. (1986) and Costin et al. (2012).

Thorneite Pb6(Te2O10)(CO3)Cl2(H2O)

Origin: Otto Mt., near Baker, San Bernardino Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar+

laser radiation, with the light propagating parallel to the c axis of a single crystal. The nominal laser
radiation power was 5 mW.

Raman shifts (cm21): ~3300 (broad), 1630w, 1056 (sharp), and a series of strong peaks below
900 cm�1.

Source: Kampf et al. (2010a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Thortveitite Sc2Si2O7

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a pulverized crystal

using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 4 W.
Raman shifts (cm21): 949, 932s, 688w, 543, 510, 445, 435s, 392s, 347, 280w, 253, 205, 194.
Source: Bretheau-Raynal et al. (1979).
Comments: The sample was characterized by electron microprobe analyses.

Thorutite (Th,U,Ca)Ti2(O,OH)6

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powder sample

using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): The strongest Raman peaks are observed at 760, 620, and 195 cm�1.
Source: Zhang et al. (2011).
Comments: The sample was characterized by powder X-ray diffraction data.
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Threadgoldite Al(UO2)2(PO4)2(OH)∙8H2O

Origin: South Alligator River, West Arnhem region, Northern Territory, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3576w, 3411w, 3158w, 1655w, 1107w, 1057w, 1026 + 1019s (unresolved
doublet?), 999, 974s, 953w, (840w), 827s, (817), 612, 533, 451, 419, 398s, 391, 329, 292, 201s,
188, 146, 114.

Source: Frost et al. (2006a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Tiemannite HgSe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 90 K on a clreavaged

(111) plane, in a—z(x,x)z polarization using 514.5 nm Ar+ laser radiation.
Raman shifts (cm21): 133, 43.
Source: Szuszkiewicz et al. (1999).

Tilasite CaMg(AsO4)F

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1518w, 1318w, 1107w, 1056w, 820, 659w, 611, 493, 410s, 297, 245.
Source: Frost and Kloprogge (2003).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of tilasite see also Downs et al. (2012).

Tilleyite Ca5Si2O7(CO3)2

Origin: Kushiro, Hiba-gun, Hiroshima prefecture, Honshu Island, Japan.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): (3638sh), 3635w, (3629sh), 3594w, (3578w), 3574w, 1748w, 1738w, 1501w,
1436w, 1412w, 1093, 1086s, 1080sh, 1067w, 1047, (1018w), 1010, (999w), 986, 966w, 572, 546,
528, 505sh, 493, 483sh, 456, 450sh, 424sh, 413, 396, 380sh, 366, 353, 329, 321sh, 302sh, 282s,
(273), 260sh, 242sh, 234, 204sh, 197, 176, 155, 143.

Source: Frost et al. (2015e).
Comments: The sample was characterized by qualitative electron microprobe analysis. Bands

between 600 and 900 cm�1 are not indicated. The bands in the range from 3500 to 3700 cm�1

may correspond to an impurity.
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Tiragalloite Mn2+4As
5+Si3O12(OH)

Origin: Valletta mine, Maira Valley, Cuneo province, Piedmont, Italy.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation output power of 80 mW was
attenuated by means of a series of density filters.

Raman shifts (cm21): 1004, 975, 960s, 902s, 869s, 863, 803, 785, 661s, 647s, 549, 508, 481, 398,
364, 320, 286w, 218w, 181w, 153w.

Source: Cámara et al. (2015).
Comments: The sample was characterized by electron microprobe analyses.

Tissintite (Ca,Na,□)AlSi2O6

Origin: Tissint Martian meteorite (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in a polished section using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 997 (broad), 693s, 573, 523, 417sh, 377s, 203.
Source: Ma et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Tistarite Ti2O3

Origin: Allende meteorite (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in a polished section using 514.5 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): Only a figure of the Raman spectrum of tistarite is given in the cited paper. The
strongest peak is observed at ~250 cm�1.

Source: Ma and Rossman (2009a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Titanite CaTi(SiO4)O

Origin: Village of Dunje, Municipality of Prilep, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ or 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 912, 872, 856, 608s, 548, 467s, 425, 333w, 316, 286sh, 253, 233w, 208sh,

164, 146w.
Source: Makreski et al. (2005b).
Comments: For the Raman spectra of titanite see also Meyer et al. (1996), Jasinevicius (2009), Andò

and Garzanti (2014), and Gaft et al. (2015).
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Titanoholtite (Ti0.75□0.25)Al6BSi3O18

Origin: Szklary pegmatite, Lower Silesia, Poland (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was ~5.5 mW.
Raman shifts (cm21): 1055, 935s, 885, 624, 561s, 507s, 466s, 407s, 362s, 286, 211.
Source: Pieczka et al. (2013).
Comments: The sample was characterized by electron diffraction data and electron microprobe

analyses.

Tlapallite H6(Ca,Pb)2(Cu,Zn)3O2(SO4)(Te
4+O3)4(Te

6+O4)

Origin: Mina Bambollita, Moctezuma, Sonora, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 2926w, 2867w, 2754w, 2594w, 2320w, 2206w, 1957w, 1571w, 1474sh, 1104,
1062w, 973s, 796 + 788s (unresolved doublet?), 744sh, 708, 691sh, 610sh, (523), 509, 474, 438s,
419sh, 383sh, 353sh, 314, 291, 258, 229, 189, 168, 146, 121s.

Source: Frost (2009b).
Comments: No independent analytical data are provided for the sample used.

Tobermorite Ca4Si6O17(H2O)2∙(Ca∙3H2O)

Origin: N’Chwaning II mine, Kalahari Manganese Fields, Republic of South Africa.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed innearly back-scattered geometry using 632.8 nm He-Ne
laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 3525, 1145w, 1013, 682s, 619, 530w, 475w, 447w, 425w, 366w, 321w.
Source: Biagioni et al. (2012).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved. For the Raman spectrum of tobermorite see also Biagioni et al. (2013b).

Todorokite (Na,Ca,K,Ba,Sr)1�x(Mn,Mg,Al)6O12∙3–4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample (pressed as a pellet) using 514.5 nm Ar+ laser radiation. The laser radiation power at the
sample was 2.5 mW.

Raman shifts (cm21): 643s, 359, 295.
Source: Feng et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of todorokite see also Julien et al. (2004).
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Tokyoite Ba2Mn3+(VO4)2(OH)

Origin: Postmasburg Manganese Field, South Africa.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 935, 906s, 846, 830s, 720, 464, 420, 406, 390, 340, 305, 241.
Source: Costin et al. (2014).
Comments: As-rich variety. The sample was characterized by electron microprobe analyses.

Tolbachite CuCl2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 or 785.5 nm laser radiation.
Raman shifts (cm21): 562, 290s, 234.
Source: Aceto et al. (2006).
Comments: For the Raman spectrum of tolbachite see also Burgio and Clark (2001).

Tondiite Cu3MgCl2(OH)6

Origin: Vesuvius volcano, Italy (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 647 nm Kr+ laser radiation. The laser radiation power
at the sample was 6 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 942, 695, 503s, 395, 363s.
Source: Malcherek et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. The crystal structure is

solved.

Tooeleite Fe3+6(AsO3)4(SO4)(OH)4∙4H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 514 nm diode laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1597sh, 1554, 1522, 1422, 1287s, 1085, 983, 870sh, 803, (758), 661sh, 604s,
508, 438sh, 464, 284.

Source: Liu et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data. The assignment of the

strong band at 1287 cm�1 to asymmetric stretching vibrations of SO4
2� given in the cited paper is

questionable.
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Topaz Al2SiO4F2

Origin: Topaz Mountain, Thomas Range, Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1167, 1079, 1008, 985, 927s, 854, 643, 559, 545, 454, 400, 370, 325,
314, 284s, 265s, 237s.

Source: Kloprogge and Frost (2000a).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra of

topaz see also Bradbury and Williams (2003), Jasinevicius (2009), and Andò and Garzanti (2014).

Torbernite Cu(UO2)2(PO4)2∙12H2O

Origin: Mount Painter, 9 km N of Arkaroola, South Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3359, 3197, 3032sh, 1004sh, (995), 988, 957, 900w, 826s, 808sh, 629, 464,
439, 406, 399, 290, 222.

Source: Frost (2004b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of torbernite see also Frost and Weier (2004c, d) and Driscoll et al. (2014).

Toturite Ca3Sn2(SiFe
3+

2)O12

Origin: Upper Chegem structure, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in polished section using 514.5 nm Ar+ laser radiation. The laser radiation output power was
40–60 mW. A 0�-scattering geometry was employed.

Raman shifts (cm21): 930w, 879w, 810w, 784w, 734, 678sh, 575, 527sh, 497 + 494s (unresolved
doublet?), 413w, 345sh, 301s, (266), 244, 185w, 156w, 148.

Source: Galuskina et al. (2010c).
Comments: The Raman shifts have been determined for the maxima of individual peaks obtained as a

result of the spectral curve analysis. The sample was characterized by backscatter electron diffrac-
tion data and electron microprobe analyses.

Trabzonite Ca4[Si3O9(OH)]OH

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in polished section using 514.5 nm Ar+ laser radiation. The laser radiation output power was
30–50 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3602, 3576, 1020sh, 1006, 957s, 902, 872, 660s.
Source: Armbruster et al. (2012).
Comments: The sample was characterized by electron microprobe analyses. The crystal structure is

solved.
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Tremolite □Ca2(Mg5.0–4.5Fe
2+

0.0–0.5)Si8O22(OH)2

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 1062, 1031, 950w, 932, 751w, 676s, 531w, 516w, 438w, 418, 396, 373, 355,

254, 234s, 225, 180, 162.
Source: Rinaudo et al. (2004).
Comments: The sample was characterized by selected areaelectron diffraction and electron micro-

probe analyses. For the Raman spectra of tremolite see also Blaha and Rosasco (1978), Petry et al.
(2006), Makreski et al. (2006a), Apopei and Buzgar (2010), Apopei et al. (2011), Weber et al.
(2012), Andò and Garzanti (2014), Bersani et al. (2014), and Leissner et al. (2015).

Trevorite NiFe3+2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 647 nm Kr+ laser radiation. The laser radiation output power was 5 mW (0.5 mW at
the sample).

Raman shifts (cm21): 704s, 663sh, 590, 568, 487s, 456sh, 333, 211, 189w.
Source: Hosterman (2011).
Comments: The sample was characterized by powder X-ray diffraction data.

Tridymite SiO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a poedered sample

using 476.5 nm laser radiation. The nominal laser radiation power was 400 mW.
Raman shifts (cm21): 1086w, 786, 456, 426s, 407s, 468s, 336w, 293, 205, 152, 100w.
Source: Etchepare et al. (1978).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

tridymite see also Ilieva et al. (2007), Knyazev et al. (2012), and Wilson (2014).

Trilithionite KLi1.5Al1.5(Si3Al)O10F2

Origin: Erajanir, Finland.
Experimental details: Raman scattering measurements have been performed with the electric field

polarized perpendicular to the cleavage plane using 514.5 or 488 nm Ar+ laser radiation. The laser
radiation power is not indicated.

Raman shifts (cm21): 3691w, 1128, 1094, (750), 707s, (650), 561, (405), (300), 260, 244, 182s, 94s.
Source: Tlili et al. (1989).
Comments: A Fe- and Mn-rich variety. The sample was characterized by electron microprobe

analyses.
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Trinepheline NaAlSiO4

Origin: Jadeite deposit of Tawmaw-Hpakant, Myanmar (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The nominal laser radiation
power was 50 mW.

Raman shifts (cm21): 1031w, 676, 572w, 518w, 494s, 487sh, 453s, 406, 375w, 359w, 347w,
311, 304w, 264w, 223, 203, 153w.

Source: Ferraris et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. The crystal structure is

solved.

Triplite (Mn2+,Fe2+)2(PO4)F

Origin: Codera valley, Sondrio province, Central Alps, Italy.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 3498w, 1120w, 1072w, 1036, 980.5s, 808w, 680w, 610.5, 605, 598, 573w,
468.5w, 450w, 429.5sh, 421, 398.5sh, 277.5w, 242.5w, 218.5w, 192.5w, 179.5w, 161w, 137.5w.

Source: Vignola et al. (2014).
Comments: The sample was characterized by electron microprobe analyses. The crystal structure is

solved. For the Raman spectra of triplite see also Frezzotti et al. (2012) and Frost et al. (2014aj).

Trippkeite Cu2+As3+2O4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm He-Ne laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 810sh, 780s, 657, 539, 496, (463sh), 446, 421w, 371s, 306w, 285, 235,
203, 193, 182, 141sh, 134s.

Source: Bahfenne (2011).
Comments: The sample was characterized by powder X-ray diffraction data. For Raman spectra of

trippkeite see also Bahfenne et al. (2011a) and Kharbish (2012).

Tripuhyite Fe3+Sb5+O4

Origin: Synthetic.
Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily

oriented sample using 532 nm Ar+ laser radiation. The laser radiation power at the sample was
20 μW.

Raman shifts (cm21): 740, 652s, 500, 420 (Sample 1); 767w, 652s, 465 (Sample 2).
Source: Bolanz (2014).
Comments: The samples were characterized by powder X-ray diffraction data.
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Trogtalite CoSe2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powder sample

using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was below 0.5 mW.
Raman shifts (cm21): 188.
Source: Zhu et al. (2010).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of trogtalite see also Zhang et al. (2014).

Troilite FeS

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 360, 310s, 160.
Source: Avril et al. (2013).
Comments: For the Raman spectra of troilite see also Ma et al. (2012a) and Kaliwoda et al. (2013).

Trona Na3(HCO3)(CO3)∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

individual particles using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample
was 2 mW.

Raman shifts (cm21): 3440, 3059w, 2436w, 1720w, 1561w, 1430, 1058s, 846w, 697w, 639w.
Source: Jentzsch et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of trona see also Frezzotti et al. (2012).

Tschermigite (NH4)Al(SO4)2∙12H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3364w, 3114w, 2982w, 2892w, 1680w, 1630w, 1132, 1102w, 991 + 983s
(unresolved doublet?), 619s, 542sh, 507 + 499 (unresolved doublet?), 456s, 387, 330.

Source: Frost and Kloprogge (2001).
Comments: No independent analytical data are provided for the sample used.

Tsumcorite PbZn2(AsO4)2∙2H2O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

1218 4 Raman Spectra of Minerals



Raman shifts (cm21): 3503w, 3245w, 2925sh, 927, (868sh), 834s, 746, 521sh, 493s, 439, 400,
361, (340sh), 293, 242w, 197.

Source: Frost and Xi (2012a).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of tsumcorite see also Frost and Weier (2004e).

Tsumebite Pb2Cu(PO4)(SO4)(OH)

Origin: Blue Bell mine, near Baker, San Bernardino Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3648w, (3446sh), 3397, 3335, 3239sh, 1097w, 1061w, 971s, 935, (923sh),
(852sh), 827, 606, 598sh, 554, 540w, 482sh, 468, 442s, 389, 358sh, 339, 321.

Source: Frost and Palmer (2011e).
Comments: No independent analytical data are provided for the sample used.

Tsumoite BiTe

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a thin film using

532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 117, (91), 88s, ~56.
Source: Russo et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data.

Tugarinovite MoO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was between 0.7
and 7 mW.

Raman shifts (cm21): 744s, 571, 496s, 464w, 363s, 230, 204s.
Source: Solferino and Anderson (2012).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of tugarinovite see also Srivastava and Chase (1972).

Tuite Ca3(PO4)2

Origin: Suizhou chondrite, China (type locality).
Experimental details: No data.
Raman shifts (cm21): 1095w, 997, 975s, 640w, 578, 411, 192.
Source: Xie et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of tuite see also Zhai et al. (2010, 2014) and Xie et al. (2016).
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Tululite Ca14(Fe
3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36

Origin: Tulul Al Hammam area, Siwaqa complex, Mottled Zone Formation, Dead Sea region, Jordan
(type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
grain using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 17 mW. A
180�-scattering geometry was employed.

Raman shifts (cm21): 934w, 831w, 817w, 754sh, 636s, 550sh, 522, 456, 295sh, 260, 199w.
Source: Khoury et al. (2016a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Tunellite SrB6O9(OH)2∙3H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3614s, 3567s, (3526sh), 3430sh, 3383 + 3369s (unresolved doublet?), (3324),
3282, 3243sh, 1113sh, 1082, (1063), 1043, 994s, (979sh), 954sh, 901, 879w, 861w, 819, 790w,
737, 715sh, 677sh, 664sh, 639s, 601w, 568, 523, 480sh, 464s, 445sh, 426sh, 371, (350), 332s,
317sh, 297w, 289w, 270sh, 256, 243sh, 210sh, 192, (159), 150s, (141), 114 + 109 (unresolved
doublet?).

Source: Frost et al. (2014e).
Comments: No independent analytical data are provided for the sample used.

Tungstenite WS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powder sample

using 532 laser radiation. The nominal laser radiation power was 5 mW.
Raman shifts (cm21): 419, 350.
Source: Nuvoli et al. (2014).
Comments: For the Raman spectrum of tungstenite see also Štengl et al. (2015).

Tungstite WO3∙H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power at the sample was between 0.06
and 0.15 mW.

Raman shifts (cm21): ~949s, ~650s, ~377w, ~237.
Source: Tarassov et al. (2002).
Comments: No independent analytical data are provided for the sample used.
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Tunisite NaCa2Al4(CO3)4(OH)8Cl

Origin: Condorcet, Nyons, Drôme, Rhône-Alpes, France.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was about 0.1 mW.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Raman shifts (cm21): 3561sh, 3482s, 3419, 1945w, 1703w, 1683w, 1542sh, 1522, 1499sh, 1127s,
854, 842 + 838w (unresolved doublet?), 731, 676w, 534, 441sh, (425), 417, (408), 387sh, 350w,
325w, 293, 279w, 234sh, 221, 200sh, 188sh, 177, 164, 151sh, 132w, 115.

Source: Frost et al. (2015d).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectrum of tunisite see also Frost and Dickfos (2007b).

Turquoise CuAl6(PO4)4(OH)8∙4H2O

Origin: Kouroudaiko mine, Falemeriver, Senegal.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3506, 3471s, 3453sh, 3290, 3092sh, 1614w, 1184sh, 1161, 1104, 1064sh,
1041s, (1031), 991sh, 935w, (836sh), 815, 642, 592, 571, 548, 511, 483, 469, 437sh, 423, (417sh),
385, 335, (320sh), 301sh, 277sh, 259w, 244sh, 231, (218sh), 210, 196sh, 175, 152w.

Source: Čejka et al. (2015).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of

turquoise see also Guo et al. (2010) and Bernardino et al. (2016).

Tuzlaite NaCaB5O8(OH)2∙3H2O

Origin: Tuzla evaporite deposit, Bosnia and Herzegovina (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 100 mW. A
90�-scattering geometry was employed.

Raman shifts (cm21): 3615, 3475s, 3434s, 3328w, 3228w, 3165w, 1247w, 1072w, 1027sh, 866, 827,
761, 704w, 663, 589, 546, 468, 447w, 366w, 340, 323w, 282w.

Source: Bermanec et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data.

Tychite Na6Mg2(CO3)4(SO4)

Origin: Searles Lake, San Bernardino Co., California, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1137s, 1103s, 1049, 995s, 970.
Source: Palaich et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of tychite see also Schmidt et al. (2006).
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Tyrolite Ca2Cu9(AsO4)4(CO3)(OH)8∙11H2O

Origin: Brixlegg, Tyrol, Austria.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3545, 3438, 3379, 3303, 3204, 1667, 1635, 1498, 1463, 1431, 1370, 1088,
1058, 855, 830 (broad), 795, 755s, 717s, 598, 570, 534, 524, 503, 480, 433s, 355, 301, 262, 217,
202, 179.

Source: Kloprogge and Frost (2000b).
Comments: No independent analytical data are provided for the sample used.

Tyuyamunite Ca(UO2)2(VO4)2∙5–8H2O

Origin: Chihuahua, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 975, 827, 747s, 644, 608, 582, 525, 470, 404, 369s, 345, 304, 239, 186, 155.
Source: Frost et al. (2005c).
Comments: No independent analytical data are provided for the sample used.

Ulexite NaCaB5O6(OH)6∙5H2O

Origin: An unknown locality in Morocco.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3490, (3433w), 3401, 1133, 1111sh, 1005s, 745w, 668w, 639w, 617w, 602w,
551w, 491, (475), 421sh, 412, 367, 305, 250, 200, 166.

Source: Kloprogge and Frost (1999a).
Comments: Questionable data: the strong band at 1005 cm21 may correspond to a sulfate. No

independent analytical data are provided for the sample used.

Ulrichite CaCu(UO2)(PO4)2∙4H2O

Origin: Lake Boga granite quarry, Northwest Victoria, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using 785 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): (1077), 1028, (1009), 975, 812s, (458w).
Source: Faulques et al. (2015a, b).
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Ulvöspinel Fe2+2TiO4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed at 1 GPa on an arbi-

trarily oriented sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was
10 mW.

Raman shifts (cm21): 681s, 493.
Source: Kyono et al. (2011).
Comments: The sample was characterized by electron microprobe analyses.

Umangite Cu3Se2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was 10 mW.

Raman shifts (cm21): 58sh, 49.
Source: Izquierdo-Roca et al. (2009).
Comments: No independent analytical data are provided for the sample used.

Umbite K2ZrSi3O9∙H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed using 1064 nm Nd-YAG

laser radiation with a resolution of 1 cm�1. No other data are provided.
Raman shifts (cm21): ~970, ~930, ~910.
Source: Lin and Rocha (2005).
Comments: In the cited paper, Raman spectrum of umbite below 900 cm�1 is given as a figure,

without indication of Raman shifts. The sample was characterized by powder X-ray diffraction data.

Umbrianite K7Na2Ca2[Al3Si10O29]F2Cl2

Origin: Pian di Celle volcano, Umbria, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in a polished section using 514.5 nm Ar+ laser radiation. The nominal laser radiation power
was 50 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 3120, 2970, 2810, 1142, 1036s, 735s, 646, 593s, 525s, 491, 400, 324, 256.
Source: Sharygin et al. (2013b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Ungemachite K3Na8Fe
3+(SO4)6(NO3)2∙6H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
Raman shifts (cm21): 3420, 3370sh, 1711w, 1663w, 1383, 1192, 1163, 1144, 1047s, 1035, 1011,

952, 721, 655, 645sh, 619, 600w, 534w, 472, 464w, 446.
Source: Jentzsch et al. (2012b).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of ungemachite see also Jentzsch et al. (2013).

Uraninite UO2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powder sample

using 514.5 nm Ar+ laser and 785 nm diode laser radiations. The laser radiation power is not
indicated.

Raman shifts (cm21): 1149s, 598 (broad), 445 (514.5 nm); 1343w, 1149w, 618w, 445s, 230w
(785 nm).

Source: Stefaniak et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data.

Uranophane-α Ca(UO2)2(SiO3OH)2∙5H2O

Origin: Dieresis uranium mine, Sierra Albarrana, Córdoba, Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 967, 798s, ~548w, ~400w, ~292w, ~210.
Source: Bonales et al. (2015).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectra of uranophane see also Biwer et al. (1990), Amme et al. (2002), Frost et al. (2006e), and
Driscoll et al. (2014).

Uranopilite (UO2)6(SO4)O2(OH)6∙14H2O

Origin: South Alligator River, Northern Territory, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3547, 3470, 1143w, 1117w, 1098w, 1011, 842s, (832sh), 547, 406, 320, 294,
253.

Source: Frost et al. (2005b).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of uranopilite see also Frost et al. (2007i).
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Uranosphaerite Bi(UO2)O2(OH)

Origin: Horní Halže, Krušné Hory (Czech Ore Mts.), Czech Republic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm laser radiation. The laser radiation power is not indicated. A 180-
�-scattering geometry was employed.

Raman shifts (cm21): 3404, 884w, 794s, 600s, 524, 475, 387, 378, 348, 305, 278, 263, 245, 227,
184, 138.

Source: Sejkora et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Urea solution CO(NH2)2�aq

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3435, 3357, 3323, 3242, 1649, 1581, 1047, 1012, ~548, ~379w.
Source: Frost et al. (2000).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of urea in aqueous solution see also Spinner (1959).

Ushkovite MgFe3+2(PO4)2(OH)2∙8H2O

Origin: Linópolis, Divino das Laranjeiras, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3517, 3495, (3449), 3343, 3286, (3225), 1611w, 1140sh, 1121, 1097, 1068,
1041, 1012sh, 991 + 984s (unresolved doublet?), 959sh, 835sh, 810w, 780w, (650),
637, 610 + 606w (unresolved doublet?), 583, 563, 548sh, 506, 492w, 469w, 442, (421sh),
410, 386, 321 + 313w (unresolved doublet?), 283sh, 274w, 261, 239sh, 216, 206, 183, 173sh,
156sh, 144, 132sh, 115sh, 109w.

Source: López et al. (2015b).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Usturite Ca3(SbZr)(FeO4)3

Origin: Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia (type
locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented
grain in a polished section using 514.5 nm Ar+ laser radiation. The laser radiation output power was
between 40 and 60 mW. A 0�-scattering geometry was employed.

4 Raman Spectra of Minerals 1225



Raman shifts (cm21): 815, 789, 751, 733sh, (615), 591, 565sh, 498s, 411w, 303 + 294s (unresolved
doublet?), 262 + 244 (unresolved doublet?), 218sh, 187w, 161w, 149.

Source: Galuskina et al. (2010a).
Comments: The sample was characterized by single-crystal electron back-scatter diffraction, powder

X-ray diffraction data and electron microprobe analyses.

Uvarovite Ca3Cr2(SiO4)3

Origin: Sweden (?).
Experimental details: Polarized Raman scattering measurements have been performed on a single

crystal in different scattering geometries using 488 nm Ar+ laser radiation. The nominal laser
radiation power was 100 mW.

Raman shifts (cm21): 894, 828, ~618w, ~590w, 526, ~510w, 370s, ~272, ~242, 176.
Source: Kolesov and Geiger (1998).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of uvarovite see also Mingsheng et al. (1994), Bersani et al. (2009), Makreski et al. (2011), Frezzotti
et al. (2012), and Andò and Garzanti (2014).

Uvite CaMg3(Al5Mg)(Si6O18)(BO3)3(OH)3(OH)

Origin: Brumado district, Bahia, Brazil.
Experimental details: Polarized micro-Raman scattering measurements have been performed using

488 and 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3636w, 3592, (3554w), (3518w), ~705, ~670, ~372s, ~244, ~215.
Source: Fantini et al. (2014).
Comments: The sample was characterized electron microprobe analyses. For the Raman spectrum of

uvite see also Hoang et al. (2011).

Vaesite NiS2

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was 15 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 515w, 468s, 414w, 274, 263, 235w.
Source: Bishop et al. (2000).
Comments: The sample was characterized by powder X-ray diffraction data.

Vajdakite (Mo6+O2)2As
3+

2O5∙3H2O

Origin: Jáchymov uranium deposit, Krušné Hory (Ore Mts.), Western Bohemia, Czech Republic (type
locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented
crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3481, 3417, (3144sh), 3112w, 953-951s, 910sh, 898, (876w), 804, (799),
760, 720w, 604w, 560, 549, 521, 480, (473), 386s, 369, 333, 282w, 238sh, 227 + 224 (unresolved
doublet?), 179, 157, 138w, 128.

Source: Čejka et al. (2010a).
Comments: Holotype sample was used.

Valentinite Sb2O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power at the sample was 300 mW. A
90�-scattering geometry was employed.

Raman shifts (cm21): 690w, 602w, 502, 449w, 294s, 269sh, 223s, 194, 100s, 103w, 71.
Source: Cody et al. (1979).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of valentinite see also Orman (2010).

Vanackerite Pb4Cd(AsO4)3(Cl,OH)

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).
Experimental details: No data.
Raman shifts (cm21): ~830s, ~792, ~770, ~457, ~353.
Source: Schlüter et al. (2016).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Vanadinite Pb5(VO4)3Cl

Origin: Mibladen, Morocco.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 827s, 811, 365, 323, 291.
Source: Frost et al. (2003a).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of vanadinite see also Levitt and Condrate, Sr (1970), Adams and Gardner (1974), and Bartholomäi
and Klee (1978).

Vandendriesscheite Pb1.6(UO2)10O6(OH)11�11H2O

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3530sh, 3475, 3262sh, (2904w), (2853w), 1624w, 1395, 854 + 852 (unre-
solved doublet?), 841s, (832), 819sh, 779, 703, 548, (503), 456, (425w), 404, (355), 332, 303,
273sh, 248, 218, 193.

Source: Frost et al. (2007h).
Comments: No independent analytical data are provided for the sample used.

Vanmeersscheite U(UO2)3(PO4)2(OH)6∙4H2O

Origin: Kobokobo, Kivu, Democratic Republic of Congo (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): ~3390, 1208sh, 1153, 1110s, (1086sh), 1017 + 1013s (unresolved doublet?),
939sh, 860w, 650w, 624, 571, 453sh, 442s, 363, 290, 226s.

Source: Frost et al. (2009d).
Comments: No independent analytical data are provided for the sample used.

Vantasselite Al4(PO4)3(OH)3∙9H2O

Origin: Bihain, Vielsalm, Stavelot massif, Luxembourg province, Belgium (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3608sh, 3570sh, 3502s, (3436), 3399s, 3369sh, 3327sh, 3211sh, 2943sh,
1703sh, 1656sh, 1622sh, 1595, 1456w, 1299w, 1232w, 1200w, 1146, 1128sh, 1106sh, 1090s,
(1076), 1051s, 1027sh, 1013s, 949, 930, 833sh, 813w, 715w, 649, 593, 557, 522 + 515,
494, 451 + 437 + 423 (unresolved triplet?), 374, 334sh, 317s.

Source: Frost et al. (2015v).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Vanthoffite Na6Mg(SO4)4

Origin: Synthetic (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed 532 nm Nd-YAG laser radiation. The laser radiation power
at the sample was about 2 mW.

Raman shifts (cm21): 1195w, 1178w, 1154w, 1129w, 1096w, 1076w, 1012s, 1002s, 643, 637,
629, 622, 613w, 603w, 473, 458, 452.

Source: Jentzsch et al. (2011).
Comments: No independent analytical data are provided for the sample used.
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Vapnikite Ca3UO6

Origin: Jabel Harmun, Palestinian Autonomy, Israel (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain in a polished section using 488 nm Ar+ laser radiation. The laser radiation power at the sample
was below 5 mW.

Raman shifts (cm21): 1446w, 725s, 474w, 391, 248w.
Source: Galuskin et al. (2014).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Variscite Al(PO4)∙2H2O

Origin: Cioclovina cave, 40 km SE of Hunedoara, Şureanu Mts., Romania.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 1064 nm Nd-YAG laser radiation. The laser radiation output power was 350 mW.
Raman shifts (cm21): 3400–3100 (broad), 1634, 1079sh, 1055, 1026, 605w, 562w, 434s, 225, 168,

144.
Source: Onac et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of variscite see also Frost et al. (2004l) and Litvinenko et al. (2016).

Västmanlandite-(Ce) Ce3CaMg2Al2Si5O19(OH)2F

Origin: Västmanl and Co., Bergslagen region, Sweden (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 633 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3671sh, ~3586, 3517s, ~3446, ~3317s, ~3201, ~2545w, ~2142w, ~1058,

1034, 1004, 968, ~944, 920, 900s, ~690, ~675, ~633, 574, 555, 501, 464, ~436, 412, 387, 361, 341,
329, 287, 234, 224, ~200.

Source: Holtstam et al. (2005).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Vaterite Ca(CO3)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 1555w, 1542w, 1480w, 1460w, 1441w, 1421w, 1091s, 1085.5sh, 1081, 1075s,
881 + 878 + 874w, 751w, 743.5w, 738w, 685, 674, 667, 333sh, 302s, 268, 210, 175, 151,
120s, 106s.

Source: Wehrmeister et al. (2010).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of vaterite see also Behrens et al. (1995), Frezzotti et al. (2012), Kristova et al. (2014), and Sánchez-
Pastor et al. (2016).
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Vauquelinite CuPb2(CrO4)(PO4)(OH)

Origin: Kintore Open Cut, Broken Hill, New South Wales, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 785 nm Nd-YAG laser. The laser radiation power at the sample was 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): (843), 827s, 375, 348s, 332sh.
Source: Frost (2004c).
Comments: No independent analytical data are provided for the sample used.

Vauxite Fe2+Al2(PO4)2(OH)2∙6H2O

Origin: Siglo XX mine (Llallagua), Bustillo province, Potosí department, Bolivia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3648s, 3555, 3402, 3328 (broad), 3103s, 2918sh, 1696sh, 1633w, 1601w,
1567sh, 1370w, 1309sh, 1150sh, 1134 + 1122, 1105sh, 1075sh, 1059sh, 1046sh, 1027s, 1009s,
1000sh, 978s, (954sh), 918sh, 910w, 900sh, 535, 502 + 498w (unresolved doublet?), 478sh,
470, 461sh, 451sh, 418, 412sh, 399sh, 393, 370 + 364 (unresolved doublet?), (341sh),
332, 320sh, 284, 273sh, 267sh, 238, 230sh, 208, 181, 154 + 148 (unresolved doublet?),
132 + 127 (unresolved doublet?), 112 + 109 (unresolved doublet?).

Source: Scholz et al. (2015).
Comments: The sample was characterized by electron microprobe analysis.

Väyrynenite BeMn2+(PO4)(OH)

Origin: Viitaniemi pegmatite, Eräjärvi area, Orivesi, Finland (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3473sh, 3388sh, 3315w, (3249sh), 3219s, 3154sh, 1802sh, 1768w, 1660w,
1186sh, 1139sh, 1126, 1074, 1044, 1009 + 1004s (unresolved doublet?), 986, 936w, 898w,
800, 769w, 741, 707w, 642w, 619, 599, 573w, 538w, 518 + 506 (unresolved doublet?),
463, 404, 381, 353, 334, 287w, 266w, 238sh, 232, 220, 189 + 184 (unresolved doublet?), (171),
163, 129 + 123 (unresolved doublet?), 114sh.

Source: Frost et al. (2014m).
Comments: The sample was characterized by electron microprobe analyses.
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Velikite Cu2HgSnS4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated. A 180�-scattering geometry was employed.

Raman shifts (cm21): 318s, 283.
Source: Himmrich and Haeuseler (1991).
Comments: The sample was characterized by powder X-ray diffraction data.

Versiliaite (Fe2+2Fe
3+

2)(Fe
3+

2Sb
3+

6)O16S

Origin: An abandoned mine in the Karrantza valley, westerner area of the Basque Co., Spain.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 20 mW.
Raman shifts (cm21): 612, 505, 410s, 293s, 246, 226s.
Source: Goienaga et al. (2011).
Comments: The sample was characterized by X-ray fluorescence spectroscopy.

Vésigniéite Cu3Ba(VO4)2(OH)2

Origin: Vrančice deposit, central Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3463sh, 2896w, 2609sh, 1960w, 1636sh, 1559w, 1052w, 856s, 821s,
750, 511w, 466, (371sh), 355sh, 332, 307s, 185sh, 175, 162sh, 112w.

Source: Frost et al. (2011e).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of Vésigniéite see also Wulferding et al. (2012).

Vesuvianite (Ca,Na)19(Al,Mg,Fe)13(SiO4)10(Si2O7)4(OH,F,O)10

Origin: Dosso degli Areti, Italy.
Experimental details: No data.
Raman shifts (cm21): 930s, 868, 696, 640, 410, 226.
Source: Andò and Garzanti (2014).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of vesuvianitein the OH region see Galuskin et al. (2007a).

Veszelyite (Cu,Zn)2Zn(PO4)(OH)3∙2H2O

Origin: Zdravo Vrelo, near Kreševo, Bosnia and Herzegovina.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was 5 mW.
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Raman shifts (cm21): 3566 (sharp), 3555sh, (3497sh), 3425, 2290sh, (3302sh), 3286, (3184sh),
2852w, 2662sh (weak), 2233, 2042, 1970, 1805, 1632, 1587, 1379, 1108w, 1045w, 1025w,
967, 951, 929, 882, 833, 624, 607, 556, 539, 486, 470, 439.

Source: Danisi et al. (2013).
Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal

structure is solved. No data on band intensities below 2662 cm�1 are provided in the cited paper.
The Raman shifts have been determined for the maxima of individual peaks obtained as a result of
the spectral curve analysis.

Villamanínite CuS2

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

aggregate using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 100 mW.
Raman shifts (cm21): 512s, 264, 207.
Source: Anastassakis and Perry (1976).
Comments: No independent analytical data are provided for the sample used.

Vivianite Fe2+3(PO4)2∙8H2O

Origin: Catavi Mine, Llallagua, Bolivia.
Experimental details: Raman scattering measurements have been performed on a cleavage plain

using 514.5 nm Ar+ laser radiation. The laser radiation power at the sampling objective was 50 mW.
Raman shifts (cm21): 1050, 986, 947s, 867m, 828w, 568, 532, 453, 422, 342w, 303w, 270w,

235, 227, 196, 162w, 126.
Source: Rodgers et al. (1993).
Comments: The sample was characterized Mössbauer spectroscopy and electron microprobe

analyses. For the Raman spectra of vivianite see also Piriou and Poullen (1984), Frost et al.
(2002f), and Hsu et al. (2014).

Vladimirivanovite Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2∙H2O

Origin: Tultuilazurite deposit, Baikal Lake region, Russia (type locality).
Experimental details: No data.
Raman shifts (cm21): 3124 (broad), 1189, (1183), 992, 799s, 726sh, 544 (sharp), 428, 353.
Source: Sapozhnikov et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction, thermal data, and electron

microprobe analyses. The crystal structure is solved.

Vladykinite Na3Sr4(Fe
2+Fe3+)Si8O24

Origin: Murun complex, eastern Siberia, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1039w, 991, 968, 915, 681w, 465s, 401 (very strong), 348, 264w, 203s,

167w, 129w.
Source: Chakhmouradian et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data, Mössbauer spectroscopy

and electron microprobe analyses. The crystal structure is solved.
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Voglite Ca2Cu(UO2)(CO3)4∙6H2O

Origin: White Canyon No. 1 mine, Frey Point, San Juan Co., Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3535 + 3391w (broad; unresolved doublet?), 2939w, 1369, 1094, 836s, 749w,
(261), 223, 148.

Source: Frost et al. (2008b).
Comments: No independent analytical data are provided for the sample used.

Volaschioite Fe4(SO4)O2(OH)6∙2H2O

Origin: Fornovolasco, Apuan Alps, Tuscany, Italy (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A nearly
180�-scattering geometry was employed.

Raman shifts (cm21): 1530w, 1178, 1055, 1005, 941w, 527, 453s, 408s, 319s, 250.
Source: Biagioni et al. (2011b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Volborthite Cu3V2O7(OH)2∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 532 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 894s, 820, 758, 476, 438w, 342, 236, 164w.
Source: Ni et al. (2010a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of volborthite see also Frost et al. (2011e) and Wulferding
et al. (2012).

Vonsenite Fe2+2Fe
3+O2(BO3)

Origin: Brosso mine, Torino, Italy.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1605w, 1462 + 1443 (unresolved doublet?), 1347sh, 1304, 1284sh, 1059,
997, 728sh, (687), 642, 529, 381s, 315, 324s, (315), 249s, (232), 158+145 (unresolved doublet?),
114.

Source: Frost et al. (2014ac).
Comments: The sample was characterized by electron microprobe analysis.
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Vorlanite CaUO4

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).
Experimental details: Raman scattering measurements have been performed from crystal cross-

section approximately perpendicular to basal pinacoid in thin section using 514.5 nm Ar+ laser
radiation. The laser radiation output power was between 40 and 60 mW. A 0�-scattering geometry
was employed.

Raman shifts (cm21): 1370, 683s, 524, 450w, 371w, 226.
Source: Galuskin et al. (2011a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. For the Raman spectra of vorlanite see also Galuskin et al.
(2012a, 2013b, 2014).

Vrbaite Hg3Tl4As8Sb2S20

Origin: Allchar, Republic of Macedonia.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation output power was 0.46 mW.
Raman shifts (cm21): 397, 383sh, 378, 370, 357, 346w, 322s, 306s, 244, 236, 195, 187w, 171w,

162w, 151, 130, 122w, 111, 103.
Source: Makreski et al. (2014).
Comments: The sample was characterized by electron microprobe analyses.

Vuorelainenite Mn2+V3+
2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a single crystal in

different scattering geometries using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was about 10 mW.

Raman shifts (cm21): 585s, 479s, ~300, 178.
Source: Takubo et al. (2011).
Comments: No independent analytical data are provided for the sample used.

Vysokýite U4+[AsO2(OH)2]4∙4H2O

Origin: Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using a 780 nm diode-pumped solid-state laser. The nominal
laser radiation power was 5 mW.

Raman shifts (cm21): 2750w, 2230w (broad), 1545, 1425, 902s, 816s, 769sh, 595, 559, 427, 368,
324, 200 + 184 (unresolved doublet?), 99w, 61w.

Source: Plášil et al. (2013d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Vysotskite (Pd,Ni)S

Origin: Synthetic (Ni-free).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

grains in a polished section using 514.5 nm Ar+ laser radiation. The laser radiation output power
was 500 mW.

Raman shifts (cm21): 392, 368, 353w, 348, 326s.
Source: Pikl et al. (1999).
Comments: No independent analytical data are provided for the sample used.

Wadeite K2ZrSi3O9

Origin: Saima alkaline complex, Liaodong Peninsula, northeastern China.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1057w, 990s, 930s, 734w, 629, 561s, 490s, 433, 370, 342, 191s, 153.
Source: Wu et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectrum of wadeite see also Geisinger et al. (1987).

Wadsleyite Mg2(SiO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 488 or 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was between
100 and 200 mW.

Raman shifts (cm21): 940, 919, 898, 850s, 836s, 588, 570, 528, 460, 408, 307, 280, 213.
Source: Akaogi et al. (1984).
Comments: The sample was characterized by powder X-ray diffraction and optical data. For Raman

spectra of wadsleyite see also Kleppe et al. (2001, 2006) and Mao et al. (2011).

Wagnerite-Ma5bc Mg2(PO4)F

Origin: Larsemann Hills, Prydz Bay, East Antarctica.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 5 mW.

Raman shifts (cm21): 3570 (other values are not indicated: only a figure is given in the cited paper).
Source: Ren et al. (2003).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Waimirite-(Y) YF3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated. A
90�-scattering geometry was employed.

Raman shifts (cm21): 533 (broad), 444, 389, 366s, 349s, 342sh, 293, 262, 244, 220w, 189s,
171, 147w, 111, 75.

Source: Wilmarth et al. (1988).
Comments: For the Raman spectrum of waimirite-(Y) see also Lage et al. (2004).

Wakabayashilite (As,Sb)6As4S14

Origin: Jas Roux, Hautes-Alpes, France.
Experimental details: Raman scattering measurements have been performed on a single crystal with

the laser beam perpendicular to the fiber axis (c axis) using 632.8 nm He-Ne laser radiation. The
laser radiation power at the sample was 2 mW.

Raman shifts (cm21): 398s, 382, 356s, 337s, 328, 315, 304, 227–229, 205s, 191, 167, 137, 131sh,
108, 87, 67sh, 60s.

Source: Bindi et al. (2014).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses.

Wakefieldite-(Ce) CeVO4

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 1012w, 482, 244, 202, 148s, 120s.
Source: Au et al. (1996).
Comments: The sample was characterized by powder X-ray diffraction data.

Wakefieldite-(La) LaVO4

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 1000, 862s, 705w, 528w, 410w, 290w, 150s, 122.
Source: Au et al. (1996).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

wakefieldite-(La) see also Sun et al. (2010b) and Xie et al. (2012).

Wakefieldite-(Nd) NdVO4

Origin: Synthetic.
Experimental details: No data.
Ramanshifts (cm21): 1000, 874s, 812, 700, 528, 482, 412w, 310, 290, 150s, 122s.
Source: Au et al. (1996).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

wakefieldite-(Nd) see also Au and Zhang (1997) and Moriyama et al. (2011).
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Wakefieldite-(Y) YVO4

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 1090, 896, 842w, 820w, 662w, 494, 422, 398s, 320s, 280s, 150w, 122.
Source: Au et al. (1996).
Comments: The sample was characterized by powder X-ray diffraction data.

Walpurgite Bi4O4(UO2)(AsO4)2∙2H2O

Origin: Weisser Hirsch Mine, Schneeberg, Saxony, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3515w, 3375w, 1597w, 1323w, 1003w, 948w, 892w, 836s, (823), (795), 790s,
771sh, 615, 546, 513s, 491sh, 432, 398, 365, 331, 296, (278), 242, 208, (199), 154.

Source: Frost et al. (2006l).
Comments: No independent analytical data are provided for the sample used.

Walstromite BaCa2Si3O9

Origin: Big Creek deposit, Fresno Co., California, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 633 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): 1071, 1037, 988s, 650s, 501, 473w, 378, 291, 153, 124.
Source: Gaft et al. (2013).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of walstromite see also Zedgenizov et al. (2014).

Wardite NaAl3(PO4)2(OH)4∙2H2O

Origin: Lavrada Ilha, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 785 nm laser. The laser radiation power is not indicated. The Raman shifts have
been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3607s, 3588, 3542s, 3383, 3282w, 1579w, 1319w, 1178w, 1133, (1103), 1079,
1047s, 1029sh, 1013sh, 992s, 681, 609, 580sh, 486, 403sh, 392, 340w, 334, 323sh.

Source: Frost et al. (2014l).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectrum of wardite see also Kampf et al. (2014a).
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Waterhouseite Mn7(PO4)2(OH)8

Origin: Iron Monarch deposit, Middleback Ranges, South Australia, Australia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single crystal using 518 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3555sh, 3510, 3439s, 3411sh, 1612w, 1076s, ~1050, ~1018, 984, 929s, 809s,

667, ~595sh, 571s, ~540sh, ~513s, 433, ~342, ~321, ~267, 174, ~137.
Source: Pring et al. (2005).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Wavellite Al3(PO4)2(OH)3∙5H2O

Origin: Zbirow, Bohemia, Czech Republic.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 632.8 nm He-Ne laser radiation. The laser radiation output power was 18 mW.
Raman shifts (cm21): 3490, 3406w, 3198sh, 3078, 1145w, 1061sh, 1017s, 950w, 920w, 633, 559sh,

540, 408s, 311, 274, 213w.
Source: Capitelli et al. (2014).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Waylandite BiAl3(PO4)2(OH)6

Origin: Leucamp, Montsalvy, Cantal, Auvergne-Rhône-Alpes, France.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 25 mW.
Raman shifts (cm21): 3170w, 1112w, 1021sh, 1012 (broad), 791s, 725, 612s, 706, 602w, 523, 470w,

450w, 415, 400sh, 306s, 280, 257, 226, 191w, 156, 139, 119, 95sh.
Source: Gama (2000).
Comments: The sample was characterized by electron microprobe analyses.

Weddellite Ca(C2O4)∙2H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was between 50 and 100 mW.

Raman shifts (cm21): 3500–3200 (broad), 2941, 2855w, 1640, 1476s, 911s, 870w, 597w (broad),
506s, 188.

Source: Conti et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

weddellite see also Frost and Weier (2003) and Frost (2004d).
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Weeksite K2(UO2)2(Si5O13)∙4H2O

Origin: Anderson’s Mine, Yavapai Co., Arizona, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3610sh, 3548, 3497sh, 3356sh, 1637, 1154, 1008, 962, 939, 814 + 810s
(unresolved doublet?), 800, 765, 744, 574, 521, 480, 349, 333, 301, 266, 210s, 167.5, 113.

Source: Frost et al. (2006d, h).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of weeksite see also Biwer et al. (1990).

Wegscheiderite Na5H3(CO3)4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3120w (broad), 2930w (broad), 2500w (broad), 1910w (broad), 1700w,

1675sh, 1560w, 1450sh, 1429, 1391, 1355w (broad), 1270w (broad), 1057s, 1038s, 1022s,
841w, 699, 686, 654, 240, 224, 186, 153s, 118, 105s, 96w, 89, 72s, 55.

Source: Bertoluzza et al. (1981).
Comments: No independent analytical data are provided for the sample used.

Weissbergite TlSbS2

Origin: Synthetic.
Experimental details: Polarized Raman scattering measurements have been performed on a single

crystal in different configurations using 632.8 nm He-Ne laser radiation. The nominal laser
radiation power was 17 mW.

Raman shifts (cm21): 334sh, 321s, 310s, 293sh, 275sh, ~250w, 178w, 162w, 145w, 127, 106, 94, 81,
62, 51, 41 (for E parallel to the a–c plane).

Source: Kharbish (2011).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. For the Raman spectra of weissbergite see also Minceva-Sukarova et al.
(2003) and Makreski et al. (2013b, 2014).

Weloganite Na2Sr3Zr(CO3)6∙3H2O

Origin: Francon quarry, Québec province, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): (3444), 3403, 3376sh, 3329, (3325), 1740w, 1732sh, 1712w, 1700w, 1681,
1622, 1563w, 1548w, 1526w, 1417, 1385w, 1371w, 1350, 1082s, 1073sh, 1061sh, 870w, 762, 749,
736, 728, 696w, 682sh, 679, (657w), 550w, 424w, 372sh, 354, 326w, 312sh

Source: Frost et al. (2013ab).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of weloganite see also Vard and Williams-Jones (1993).

Wendwilsonite Ca2Mg(AsO4)2∙2H2O

Origin: Bou Azzer district, Morocco.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3332w, 3119w, (3001), 1724w, 1624sh, 1098w, 970w, 871, 832s, 800, 714w,
669w, (626w), 478sh, 454, 425, 361, 341, 306, 286w, 244w, 212sh, 191, 164, (140w), 127w.

Source: Frost et al. (2014v).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Wernerkrauseite Ca(Fe3+,Mn3+)2Mn4+O6

Origin: Bellerberg volcano, Eifel, Germany (type locality).
Experimental details: Raman scattering measurements have been performed on a grain in a polished

section using 488 nm Ar+ laser radiation. The laser radiation power at the sample was between
10 and 20 mW.

Raman shifts (cm21): 1239w, 670sh, 622s, (558), 495, 408sh, (332w), 294, 169, 117sh.
Source: Galuskin et al. (2016b).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved. The Raman shifts have been determined for
the maxima of individual peaks obtained as a result of the spectral curve analysis.

Wetherillite Na2Mg(UO2)2(SO4)4∙18H2O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm laser radiation. The laser radiation power is
not indicated.

Raman shifts (cm21): ~3600–3000, 1610, 1230, 1180, 1120, 1105, 1080, 1010s, 995, 922w, 890sh,
~830s, 815sh, 700w, 640, 615sh, 580sh, 506, 445, 385, ~240.

Source: Kampf et al. (2015b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Wheatleyite Na2Cu(C2O4)2∙2H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3519, 3448, 3359w, 1733s, 1714w, 1674, 1651sh, 1470, 1434s, 1262, 1066,
904, 860, 798, 585, 565+560s (ubresolved doublet?), 387, 277, 243, 210, 173s, 139sh, 127.

Source: Frost et al. (2008k).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of wheatleyite see also Palacios et al. (2011).

Whelanite Cu2Ca6[Si6O17(OH)](CO3)(OH)3(H2O)2

Origin: Bawanamine, Milford, Utah, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

single crystals using 532 nm laser radiation. The laser radiation power is not indicated. A
180�-scattering geometry was employed.

Raman shifts (cm21): 3599sh, 3558s, 3222w, 2954, 2917sh, 1600w, 1542w, 1471, 1085, 1012,
850, 715sh, 671s, 530w, 481, 458, 400+381 (unresolved doublet?), 254w, 217 + 201 (unresolved
doublet?), 165 + 151 (unresolved doublet?), 106.

Source: Kampf et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved. For the Raman spectrum of whelanite see also Frost and Xi
(2012e).

Whewellite Ca(C2O4)∙H2O

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation
power at the sample was between 50 and 100 mW.

Raman shifts (cm21): 3486, 3426, 3340, 3256, 3056, 2972w, 2919w, 1629, 1490s, 1463s, 896, 503,
140, and several bands between 160 and 250 cm�1.

Source: Conti et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

whewellite see also Frost and Weier (2003), Frost et al. (2003k), Frost (2004d), Jehlička and
Edwards (2008), and Conti et al. (2014).

Whitecapsite H16Fe
2+

5Fe
3+

14Sb
3+

6(AsO4)18O16∙120H2O

Origin: White Caps mine, Manhattan district, Nye Co., Nevada, USA (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

grain using 632.8 nm laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 3400 (broad), 3250, 2930sh, 2350w, 1655w, 1380w, 1165w, 1095w, 870s,

790sh, 585, 531s, 466, 318, 268, 202s, 175s, 120s.
Source: Pekov et al. (2014b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.
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Whiteite [possibly, whiteite-(CaMnMg)] CaMn2+Mg2Al2(PO4)4(OH)2∙8H2O (?)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3552sh, 3496s, 3426, 3220, 2939, 1692w, 1607 + 1586 (unresolved doublet?),
1368 + 1334 (unresolved doublet?), 1266sh, 1173, 1076, 978 + 972 + 960s (unresolved triplet?),
630, 586 + 571 (unresolved doublet?), 553sh, 500sh, 479, (457), 432, 363, 303sh, 282, 238, 176sh,
150, 109.

Source: Frost et al. (2014ab).
Comments: No independent analytical data are provided for the sample used.

Whitlockite Ca9Mg(PO3OH)(PO4)6

Origin: Sixiangkot chondrite.
Experimental details: No data.
Raman shifts (cm21): 1107w, 1084, 1030, 1015w, 976s, 959s, 855w, 820w, 668, 622, 605, 595,

553, 480, 450, 410, 328, 236, 179.
Source: Chen et al. (1995).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of whitlockite see also Jolliff et al. (2006) and Tait et al. (2011).

Whitmoreite Fe2+Fe3+2(PO4)2(OH)2∙4H2O

Origin: Hagendorf-South (Hagendorf-Süd) pegmatite, Bavaria, Germany.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1910w, 1157sh, 1144, 1032, 973s, 937s, 915, (617), 593, 565, 546sh, 474sh,
433, 305, 276, 243s, 190, 152 + 150 (unresolved doublet?).

Source: Frost et al. (2003b).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Widenmannite Pb2(OH)2[(UO2)(CO3)2]

Origin: Synthetic (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The nominal laser radiation
power was 10 mW.

Raman shifts (cm21): 3592sh, 3568, 3078, 1509w, 1470w, 1381, 1348w, 1122, 1068, 1058w, 849s,
736w, 725, 355, 268, 246, 225, 211w, 191, 128w, 115w.

Source: Plášil et al. (2010b).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.
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Willemite Zn2SiO4

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 951w, 911, 875s.
Source: Lin and Shen (1994).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of willemite see also Annen and Davis (1993).

Willemseite Ni3Si4O10(OH)2

Origin: Scotia talc mine, Bon Accord area, Barberton district, South Africa.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was 0.5 mW.
Raman shifts (cm21): 3660s, 3645s, 3622s, 1043, 789, 671s, 410, 383s, 296s, 185s, 109.
Source: Villanova-de-Benavent et al. (2014).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Winstanleyite TiTe4+3O8

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 859w, 650, 475s, 385.
Source: Ghribi et al. (2015).
Comments: The sample was characterized by powder X-ray diffraction data.

Witherite Ba(CO3)2

Origin: Alston Moor, England (type locality).
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 488 or 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 200 mW.
Raman shifts (cm21): 1423w, 1060s, 700w, 690, 222, 178w, 151s, 133s, 99w, 90, 78.
Source: Scheetz and White (1977).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of witherite see also Buzgar and Apopei (2009) and Frezzotti et al. (2012).

Wittichenite Cu3BiS3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on nanocrystals using

Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 459, 355w, 153s, 116s.
Source: Zhong et al. (2012).
Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron

microprobe analysis. For the Raman spectrum of wittichenite see also Yan et al. (2013).
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Wollastonite CaSiO3

Origin: Willsboro mine, Willsboro, Essex Co., New York, USA.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 or 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 500 mW.
Raman shifts (cm21): 1153w, 1063sh, 1046, 1023w, 999w, 972s, 852, 668sh, 637, 622sh, 583w,

469w, 414, 339, 323, 306w, 282w, 251, 239, 229, 217w, 193, 163.
Source: Richet et al. (1998).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of wollastonite see also Buzatu and Buzgar (2010).

Woodhouseite CaAl3(SO4)(PO4)(OH)6

Origin: Champion mine, White Mountains, Mono Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3460, 3401sh, 3122, 3001sh, 1778w, 1168w, 1151w, 1096, 1032 + 1028s
(unresolved doublet?), 1004, 988, 974sh, 666sh, 653, 618, 590, 534, 485+475 (unresolved dou-
blet?), 408s, 364w, (258), 249, 230sh, 181, 142, 118.

Source: Frost et al. (2011s).
Comments:No independent analytical data are provided for the sample used. For the Raman spectrum

of woodhouseite see also Maubec et al. (2012).

Wopmayite Ca6Na3□Mn(PO4)3(PO3OH)4

Origin: Tanco Mine, Bernic Lake, Manitoba, Canada (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal laser radiation power was between 5 and
12.5 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): No data: only a figure of the Raman spectrum of wopmanite is presented in the
cited paper. The strongest band is observed at ~960 cm�1.

Source: Cooper et al. (2013b).

Wulfenite PbMoO4

Origin: Synthetic (commercial reactant).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The laser radiation power at the sample was 0.3 mW.
Raman shifts (cm21): 868s, 765, 742, 347w, 315s, 189w, 168w.
Source: Bayne and Butler (2014).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of wulfenite see also Frost et al. (2004c), Nitta et al. (2006), and Rotondo et al. (2012).
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Wupatkiite CoAl2(SO4)4∙22H2O

Origin: Cloncurry, Queensland, Australia.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The
Raman shifts have been determined for the maxima of individual peaks obtained as a result of the
spectral curve analysis.

Raman shifts (cm21): 3479sh, 3296, 2987sh, 1134, 1069, 1009, 995s, 976, 882, 779, 622, 601, 517,
468, 426, 390w, 287sh, 213.

Source: Locke et al. (2007).
Comments: The sample was characterized by electron microprobe analysis which corresponds to an

intermediate member of the wupatkiite–halotrichite solid-solution series.

Wurtzite ZnS

Origin: Manus Spreading Centre, Bismarck Sea.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was between
1 and 10 mW. A 180�-scattering geometry was employed.

Raman shifts (cm21): 402 (broad), 350s, 327sh, 297s, 245w, 233w, 222, 173, 158.
Source: Mernagh and Trudu (1993).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

wurtzite see also White (2009) and Ma et al. (2012a).

Wüstite FeO

Origin: Synthetic (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 0.7 mW.
Raman shifts (cm21): 652.
Source: De Faria et al. (1997).
Comments: The sample was characterized by powder X-ray diffraction data.

Xenotime-(Y) Y(PO4)

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

acicular crystals using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was
25 mW.

Raman shifts (cm21): 1056s, 1023, 997s, 578w, 481, 330, 292.
Source: Richman (1966).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of xenotime-(Y) see also Liu et al. (2008), Qiong et al. (2008), Bracco et al. (2012), Frezzotti et al.
(2012), Andò and Garzanti (2014), and Švecová et al. (2016).
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Xieite FeCr2O4

Origin: Suizhou meteorite (type locality).
Experimental details: No data.
Raman shifts (cm21): 665sh, 605.
Source: Chen et al. (2008a).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Xocolatlite Ca2Mn4+2Te
6+

2O12∙H2O

Origin: Moctezuma deposit, Sonora, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 699, 630s, 520, 390, 246w.
Source: Grundler et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Xocomecatlite Cu3(Te
6+O4)(OH)4

Origin: Mina Bambollita, Moctezuma, Sonora, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 2926s, 2867, 2754, 2594, 2326, 2206, 1957, 1602, (1544), 1368w, 1314w,
1121w, 974, 796, 763, 710s, 680sh, 600sh, 509, 470, 438, 407sh, 291, 259, 231, 189, 161, 149.

Source: Frost and Keeffe (2009g).
Comments: The sample was characterized by chemical data.

Xonotlite Ca6Si6O17(OH)2

Origin: Point Sal, near Vandenberg Air Force Base, Santa Barbara Co., California, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): (3665), 3627, 3611w, (3578), (3528), 3303sh, 2909w, (1660w), (1603w),
(1488 + 1423w) (unresolved doublet?), 1070, 1042s, 1015w, 980, 961s, (953), 862s, 816sh,
777, 695s, 626, 593s, 524, 505, 445, 421, 393, 369, 335, 304, 271w, 259w, 234, 205, 158, 135, 105.

Source: Frost et al. (2012b).
Comments: No independent analytical data are provided for the sample used.
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Yarrowite Cu9S8

Origin: Synthetic.
Experimental details: No data.
Raman shifts (cm21): 470s, 263.
Source: Kumar and Nagarajan (2011).
Comments: The sample was characterized by powder X-ray diffraction data.

Ye’elimite Ca4Al6O12(SO4)

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser
radiation power was 20 mW.

Raman shifts (cm21): 991s, 616w, 521.
Source: Gastaldi et al. (2008).
Comments: The sample was characterized by powder X-ray diffraction data.

Yecoraite Fe3+3Bi5O9(Te
4+O3)(Te

6+O4)2∙9H2O

Origin: Marie Elena mine, Yecora, Sonora, Mexico (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3400sh, 3180w, 2936w, 2878sh, 979w, 808, 796w, 699 + 690 (unresolved
doublet?), 640sh, 578, 470 + 465s (unresolved doublet?), (396), 390, 355, 301, 265, 206, 145, 128.

Source: Frost and Keeffe (2009h).
Comments: No independent analytical data are provided for the sample used.

Yimengite K(Cr,Ti,Fe,Mg)12O19

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser
radiation power was between 4 and 8 mW.

Raman shifts (cm21): 695s, 629s, 545, 471, 285w.
Source: Konzett et al. (2005).
Comments: The sample was characterized by X-ray diffraction data and electron microprobe analyses.

Yingjiangite K2Ca(UO2)7(PO4)4(OH)6∙6H2O

Origin: Xiazhuang U deposit, China.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.
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Raman shifts (cm21): 3510w, 3375sh, 3180w, 1047, 1004, 841 + 836s (unresolved doublet?), 817sh,
567, 531, 437, 393, 269sh, 204s, 147s.

Source: Frost et al. (2008a).
Comments: No independent analytical data are provided for the sample used.

Yttriaite-(Y) Y2O3

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 514.5 nm Ar+ laser radiation. The laser radiation power at the sample was 2.5 mW.
Raman shifts (cm21): The strongest peak is observed at 378 cm21. Raman shifts of other bands are

not indicated.
Source: Mills et al. (2011c).
Comments: Raman spectrum of natural yttrialite-(Y) given in the cited paper as a figure differs

significantly from that of synthetic Y2O3.

Yukonite Ca2Fe
3+

3(AsO4)3(OH)4∙4H2O

Origin: No data.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 785 nm diode laser radiation. The laser radiation
power at the sample was >0.3 mW.

Raman shifts (cm21): 1059s, 992s, 929, 854s, 633, 527, 449, 387s, 237, 137.
Source: Das and Hendry (2011).
Comments: The sample was characterized by powder X-ray diffraction data. The stromg bands at

1059 and 992 cm�1 may correspond to impurities (a carbonate and a sulfate). For the Raman spectra
of yukonite see also Gomez et al. (2010a, b) and Gómez and Lee (2012).

Yuksporite K4(Ca,Na)14(Sr,Ba)2(□,Mn,Fe)(Ti,Nb)4(O,OH)4(Si6O17)2(Si2O7)3(H2O,OH)3

Origin: Hackman valley, Yukspor Mt., Khibiny massif, Kola Peninsula, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3668w (sharp), 3628sh, 3562w, 3460w, 3298sh, 2908w, 1103sh, 1078s,
1074sh, 1045, 1008w, 979, 954, 929sh, 891sh, 870s, 845sh, 815 + 803 (unresolved doublet?),
764, 723, 670s, 656sh, 641s, 588, 542, 525, 473+463 (unresolved doublet?), 437sh, 426, 395,
370, 348sh, 307, 288, 262sh, 241, 211, 141.

Source: Frost et al. (2015j).
Comments: The sample was characterized by qualitative electron microprobe analysis.

Yurmarinite Na7(Fe
3+,Mg,Cu)4(AsO4)6

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm laser radiation. The nominal radiation power at the sample was about 30 mW.
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Raman shifts (cm21): 931sh, 859s, 831, 794s, 481, 409s, 331, 288, 187, 162, 111sh.
Source: Pekov et al. (2014d).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. The crystal structure is solved.

Yushkinite (Mg,Al)(OH)2VS2

Origin: Silova-Yakha River, Pai-Khoi Anticlinorium (type locality).
Experimental details: No data.
Raman shifts (cm21): 762, 570, 373s, 345, 301w.
Source: Koval’chuk, and Makeev (2007).
Comments: The sample was characterized by electron microprobe analyses.

Yvonite Cu(AsO3OH)∙2H2O

Origin: Salsigne mine, north of Carcassonne, Aude, France (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3485, 3314, 3061, 2831, 953, 897, 863, 842, 824, 795, 756, 637, 559, 546,
490, 473, 360, 342.

Source: Frost et al. (2015w).
Comments: No independent analytical data are provided for the sample used. Band intensities are not

indicated.

Żabińskiite Ca[Al0.5(Ta,Nb)0.5)](SiO4)O

Origin: Piława Górna pegmatite, Góry Sowie Block, Poland (type locality).
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power at the sample was 5 mW.

Raman shifts (cm21): 997, 835, 642w, 581, 487, 431w, 341s.
Source: Pieczka et al. (2016a).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.

Zadovite BaCa6[(SiO4)(PO4)](PO4)2F

Origin: Hatrurim Basin, Negev Desert, Israel (type locality).
Experimental details: No data.
Raman shifts (cm21): 1031, 992w, 969s, 881s, 839sh, 627w, 589, 520w, 430, 389, 342sh, 299w, 222.
Source: Galuskin et al. (2015e).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. The crystal structure is solved.
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Zálesíite CaCu6(AsO4)2(AsO3OH)(OH)6∙3H2O

Origin: Zálesí U deposit, Rychlebské Hory Mts., northern Moravia, Czech Republic (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3457sh, 3361w, 3124w, (3106w), 1102, 912sh, 873s, 839s, (806), 623 + 520
(unresolved doublet?), 534s, 489, 433, 378sh, 354, 278, 239, 214sh, 170sh, 155 + 143s (unresolved
doublet?).

Source: Čejka et al. (2011c).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Zanazziite Ca2Be4Mg5(PO4)6(OH)4∙6H2O

Origin: Ponte do Piauimine, Piaui valley, municipality of Itinga, Minas Gerais, Brazil.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3447 + 3437s (unresolved doublet?), 3256sh, (3098), 1644w, 1569w, 1466w,
1096, 1064, 1047, 1007, 970 + 964s (unresolved doublet?), 756, 589, 568, 559, 487, 457,
419, (404), 371, 294sh, 264, 236, 182, 166, 145, 132sh, 117.

Source: Frost et al. (2013ae).
Comments: The sample was characterized by electron microprobe analyses.

Zaratite Ni3(CO3)(OH)4∙4H2O

Origin: Cape Ortegal, Galicia, Spain (type locality).
Experimental details: Raman scattering measurements have been performed on a massive sample

using 532 nm laser radiation. The nominal laser radiation power was 10 mW.
Raman shifts (cm21): 3604, 3428w, 3328w, 3217sh, 3110w, 2983w, 2935, 2867w, 2753w, 1609,

1366s, 1073s, 972, 941, 788w, 685w, 536w, 458.
Source: Garcia-Guinea et al. (2013).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses. For the Raman spectra of zaratite see also Frost et al. (2008l) and LaIglesia et al. (2014).

Zdenĕkite NaPbCu5(AsO4)4Cl∙5H2O

Origin: Cap Garonne Mine, near le Pradet, France.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): (1109w), (936w), 850s, 795s, 537s, 486s, 445, 339s, 278, 247.
Source: Frost et al. (2007m).
Comments: No independent analytical data are provided for the sample used.
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Zellerite Ca(UO2)(CO3)2∙5H2O

Origin: White Canyon No. 1 Mine, Frey Point, Utah, USA.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3514w, 3375sh, 2945w, 1374w, 1091, 854s, 758, 363w, 233, 147.
Source: Frost et al. (2008f).
Comments: Questionable data. No independent analytical data are provided for the sample used. In

the figures given in the cited paper the mineral is named “Zellerite/Liebegite.” The IR spectrum of
the sample used corresponds to a sulfate.

Zemannite Mg0.5ZnFe
3+(TeO3)3∙4.5H2O

Origin: Mina Bambollita, Moctezuma, Sonora, Mexico.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
Raman shifts (cm21): 740s, 650, 460s, 375, 213, 136.
Source: Frost et al. (2008i).
Comments: No independent analytical data are provided for the sample used.

Zemkorite Na2Ca(CO3)2

Origin: Product of heating of natural nyerereite to 400 �C.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 1078s, 993w, 710.
Source: Golovin et al. (2014).
Comments: The sample was characterized by electron microprobe analyses.

Zhangpeishanite BaFCl

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 488 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 255, 215s, 165, 145.
Source: Sundarakannan et al. (2002).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of zhangpeishanite see also Scott (1968) and Sundarakkannan and Kesavamoorthy (1998).
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Ziesite Cu2V
5+

2O7

Origin: Synthetic.
Experimental details: Methods of sample preparation are not described. Raman scattering

measurements have been performed using 514.5 nm Ar+ laser radiation. The laser radiation
power is not indicated.

Raman shifts (cm21): 950sh, 912s, 855, 786w, 389, 259, 192w.
Source: De Waal and Hutter (1994).
Comments: No independent analytical data are provided for the sample used.

Zincite ZnO

Origin: Franklin or Sterling Hill, New Jersey, USA
Experimental details: No data.
Raman shifts (cm21): 1603 (broad), 1080, 1004sh, 569, 522s, 486, 478, 438, 378w, 331w, 252w.
Source: Welsh (2008).
Comments: The sample was characterized by EDS analyses. For the Raman spectra of zincite see also

Bouchard and Smith (2003) and Kunert et al. (2006).

Zincochromite ZnCr2O4

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed from the (100) face of a

single crystal using unpolarized 488 nm Ar+ laser radiation. The laser radiation power is not
indicated.

Raman shifts (cm21): 692s, 610, 515, 457w, 166.
Source: Lutz et al. (1991).
Comments: In the cited paper also polarized Raman spectra of zincochromite are given. For the

Raman spectrum of zincochromite see also D’Ippolito et al. (2015).

Zincocopiapite ZnFe3+4(SO4)6(OH)2∙20H2O

Origin: Les Valettes, Wallis, Switzerland.
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 1231, 1162, 1159sh, 1099, 1021s, 1005s, 987sh, 893w, 860w, 738w,
624, (613sh), 565, 485, 450, 424, 302, 267s, 218.

Source: Frost (2011c).
Comments: No independent analytical data are provided for the sample used.

1252 4 Raman Spectra of Minerals



Zincospiroffite Zn2Te3O8

Origin: Zhongshangou Au deposit, Chongli Co., Hebei Province, China (type locality).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar+ laser radiation. The nominal laser radiation power was 20 mW.
Raman shifts (cm21): 748, 725s, 646, 578w, 536w, 407w, 344, 304w, 233w, 181, 123.
Source: Zhang et al. (2004).
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe

analyses.

Zinkenite Pb9Sb22S42

Origin: Zlatá Baňa, Slanské Vrchy Mts., central Slovakia.
Experimental details: Raman scattering measurements have been performed on a polycrystalline

sample using 532 nm Nd-YAG laser radiation. Exciting radiation with the power densitiy of
8.5 � 10–3 Å mW mm�2 was used. A 180�-scattering geometry was employed.

Raman shifts (cm21): (335sh), 312s, (302sh), 282s, (271sh), 238, 204sh, 192, 156, 130w, 119w,
103, 75sh, 69, 58.

Source: Kharbish and Jeleň (2016).
Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum

of zinkenite see also Goienaga et al. (2011).

Zippeite K3(UO2)4(SO4)2O3(OH)∙3H2O

Origin: Abandoned uranium mine at Pecs, Hungary.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm Ar+ laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1233w, 1091, 1012, 842s, 740, 398, 192.
Source: Stefaniak et al. (2009).
Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman

spectra of zippeite see also Frost et al. (2005i) and Plášil et al. (2010a).

Zircon ZrSiO4

Origin: Kozjak Mt., Kozjačija, Macedonia.
Experimental details: Raman scattering measurements have been performed on a powdered sample

using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1008s, 973, 769, 438, 394w, 356s, 224, 200w, 180w.
Source: Makreski et al. (2005b).
Comments: No independent analytical data are provided for the sample used. For the Raman spectra

of zircon see also Nicola and Rutt (1974), Syme et al. (1977), Geisler et al. (2003), Gucsik et al.
(2004), Jasinevicius (2009), Frezzotti et al. (2012), Nhlabathi (2012), Andò and Garzanti (2014),
and Grüneberger et al. (2016).
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Zoisite Ca2Al3[Si2O7][SiO4]O(OH)

Origin: No data.
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

single-crystal platelet using 532 nm laser radiation. The nominal laser radiation power was
150 mW.

Raman shifts (cm21): 3150w, 1092s, 1018s, 983, 946w, 928, 909, 889, 872, 860, 778w, 727w,
678, 623, 597, 574, 530, 493s, 456, 435, 420, 395, 337, 312w, 287, 280, 261, 215, 192.

Source: Mao et al. (2007).
Comments: The sample was characterized by single-crystal X-ray diffraction data and electron

microprobe analyses. For the Raman spectra of zoisite see also Jasinevicius (2009), Andò and
Garzanti (2014), and Weis et al. (2016).

Zorite Na6Ti5Si12O34(O,OH)5∙11H2O

Origin: Synthetic.
Experimental details: Raman scattering measurements have been performed on a powdery sample

using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
Raman shifts (cm21): 1050w, 940, 905, 870sh, 755s, and a series of bands between 200 and

550 cm�1.
Source: Craveiro and Lin (2012).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of zorite see also Ferdov et al. (2008).

Zuktamrurite FeP2

Origin: Synthetic.
Experimental details: Polarized Raman scattering measurements have been performed on a cluster of

needle-like crystals by the back-scattering technique, in different scattering geometries, using
514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm21): 448, 386–388, 323–326s.
Source: Lutz and Müller (1991).
Comments: No independent analytical data are provided for the sample used.

Zunyite Al13Si5O20(OH,F)18Cl

Origin: Zuni mine, San Juan Co., Colorado, USA (type locality).
Experimental details: Raman scattering measurements have been performed on arbitrarily oriented

crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve
analysis.

Raman shifts (cm21): 3635, 3431, 3369, 3352, 3335, 3317, 3304, 1295, 1239, 1207, 1176, 1141,
1126, 1101, 1067, 994, 950s, 930s, 701, 612, 467, 444, 397s, 374sh, 360s, 334, 313, 271, 250,
213, 202s.

Source: Kloprogge and Frost (1999d).
Comments: No independent analytical data are provided for the sample used.
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Zýkaite Fe3+4(AsO4)3(SO4)(OH)∙15H2O

Origin: Kaňk, near Kutná Hora, Czech Republic (?).
Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 785 nm laser radiation. The nominal laser radiation power was berween 60 and
120 mW.

Raman shifts (cm21): 1113w, 1063w, 998, 895, 883, 835–815 (broad), 472sh, 442, 412sh, 306sh,
285s, 217.

Source: Culka et al. (2016b).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum

of zýkaite see also Frost et al. (2011m).
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Arthurite, 772
Artinite, 772
Arzakite, 772
Asbolane, 772, 773
Aspedamite, 773
Asselbornite, 773
Atacamite, 773
Atelestite, 774
Atelisite (Y), 774
Athabascaite, 774
Atokite, 774
Augelite, 775
Augite, 775
Aurichalcite, 775
Aurostibite, 776
Austinite, 776
Autunite, 776
Avicennite, 776
Avogadrite, 776
Awaruite, 777
Axinite-(Fe), 777
Azurite, 777

B
Bacalite, 104
Backite, 777
Badalovite, 632
Baddeleyite, 778
Bafertisite, 778
Baghdadite, 778
Bahianite, 778
Bairdite, 779
Balestraite, 779
Balkanite, 779
Bambollaite Te analogue, 779
Baotite, 780
Barahonaite-(Al), 780
Barahonaite-(Fe), 780
Bararite, 780
Barberiite, 781
Barbosalite, 781
Barentsite, 84
Bariandite Al-free analogue, 781
Barićite, 781
Barioferrite, 782
Barioperovskite, 782
Barium borate, 42
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Barium bromide dihydrate, 664
Barium calcium diborate, 43
Barium calcium tellurate, 680
Barium cerium tantalite, 126
Barium chromium pyrophosphate, 361
Barium cobalt antimonate, 127
Barium cobaltate, 127
Barium cobalt selenite hydrate, 640
Barium cobalt tellurate, 680
Barium copper tellurate tellurite, 681
Barium formate, 98
Barium lanthanum thorium orthovanadate, 558
Barium magnesium fluoride, 227
Barium manganese fluoride, 227
Barium nickel oxide BaNiO2, 128
Barium nickel oxide BaNiO3, 129
Barium nickel tellurate, 682
Barium niobate, 129
Barium sodium cyclotriphosphate hydrate, 361
Barium strontium orthoborate fluoride, 21
Barium titanate, 130
Barium titanium sulfide, 481
Barium vanadyl phosphate, 362
Barium vanadyl vanadate, 558
Barium zinc tellurate, 682
Barium zirconium orthoborate, 22
Barnesite, 782
Barringtonite, 782
Barrydawsonite-(Y), 782
Bartelkeite, 783
Barylite, 783
Barysilite, 246
Baryte, 783
Baryte selenate analogue, 641
Barytocalcite, 784
Bassanite, 784
Bassoite, 784
Bastnäsite-(Ce), 784
Batievaite-(Y), 340
Batiferrite co-bearing, 785
Baumhauerite, 785
Bavenite, 785
Bayerite, 785
Bayldonite, 786
Bayleyite, 90, 786
Baylissite NH4-analogue, 786
Bazhenovite, 786
Bazirite, 341, 787
Bazzite, 787
Mereheadite, 77
Beaverite-(Cu), 787
Beaverite-(Zn), 529
Becquerelite, 787
Behierite, 788
Behoite, 788
Bĕhounekite, 788
Belakovskiite, 788
Bellidoite, 789
Bendadaite, 789

Benitoite, 789
Benstonite, 789
Beraunite, 351, 353, 789
Berborite, 40
Berdesinskiite, 790
Bergenite, 790
Berlinite, 790
Berlinite tetragonal polymorph, 791
Bermanite, 791
Bernalite, 791
Berndtite, 791
Berthierite, 791
Bertrandite, 792
Beryl, 792
Beryl Cs-bearing, 792
Beryllonite, 793
Berzeliite, 793
Berzeliite polymorph alluaudite-type, 793
Betalomonosovite, 344, 345, 793
Bettertonite, 618
Beudantite, 794
Beusite, 794
Beyerite, 794
Bianchite/Goslarite, 794
Bikitaite, 795
Billietite, 795
Biotite, 795
Biphosphammite, 795
Birnessite, 795, 796
Bischofite, 796
Bismite, 174, 796
Bismoclite, 796
Bismuth, 796
Bismuth(III) aluminate Bi2Al4O9, 131
Bismuth(III) aluminoferrite Bi2Fe3AlO9, 132
Bismuth(III) calcium oxophosphate, 363
Bismuth copper sulfate tellurite, 482
Bismuth ferrite, 135
Bismuth(III) ferrite dimolybdate, 667
Bismuthinite, 797
Bismuth(III) magnesium oxovanadate, 560
Bismuth(III) magnesium oxovanadate BiMg(VO4)O, 559
Bismuth molybdate, 668
Bismuth(III) nickel oxophosphate BiNi(PO4)O, 364
Bismuth(III) stannate pyrochlore-type, 133
Bismuth sulfate, 483
Bismuth(III) tantalate Bi7Ta3O18, 133
Bismuth(III) tellurite selenate, 642
Bismuth(III) titanate Bi4Ti3O12, 134
Bismuth tungstate, 708
Bismuthyl sulfate, 483
Bismutite, 797
Bismutocolumbite, 175, 797
Bismutoferrite, 797
Bismutotantalite, 798
Bismutotantalite triclinic dimorph, 176
Bitikleite, 798
Bityite, 327
Bixbyite, 798
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Blatterite, 798
Blödite, 799
Bluebellite, 799
Bluelizardite, 799
Bobcookite, 471, 799
Bobdownsite, 800
Bobierrite, 800
Bobshannonite, 800
Bohdanowiczite, 800
Böhmite, 801
Boleite, 801
Boltwoodite, 801
Bonaccordite, 801
Bonattite, 802
Bonazziite, 802
Boracite, 802
Borax, 803
Bornite, 803
Boron arsenate, 599
Boron phosphate, 365
Bosiite, 803
Botallackite, 803
Botryogen, 803
Bottinoite, 804
Boulangerite, 804
Bournonite, 804
Boussingaultite, 804, 805
Bowieite, 805
Braccoite, 805
Bracewellite, 805
Brackebuschite, 806
Bradaczekite, 626
Bradleyite, 806
Braggite, 806
Brandholzite, 806
Brannerite, 807
Brannockite, 807
Brassite, 807
Braunite, 176, 807
Brazilianite, 808
Bredigite, 808
Breithauptite, 808
Brewsterite-Sr, 808
Brianyoungite, 809
Briartite, 809
Bridgmanite, 321
Bridgmanite trigonal polymorph, 322
Britvinite, 15, 16, 809
Brizziite, 809
Brizzite polymorph, 177
Brochantite, 810
Bromargyrite, 810
Bromellite, 178, 810
Brookite, 178, 811
Browneite, 811
Brownleeite, 811
Brownmillerite, 811
Brucite, 2, 12, 812
Brucite Co-analogue, 179

Brüggenite, 812
Brugnatellite, 812
Brunogeierite, 597
Brushite, 812
Buchwaldite, 813
Buchwaldite dimorph, 450
Bukovskýite, 813
Bulgakite, 345
Bunnoite, 813
Bunsenite, 813
Burangaite, 814
Burbankite, 814
Burckhardtite, 814
Burgessite, 815
Burkeite, 815
Buseckite, 815
Bustamite, 815
Butlerite, 816
Buttgenbachite, 816
Byströmite, 816

C
Cabalzarite, 816
Cabvinite, 817
Cacoxenite, 817
Cadmium formatedihydrate, 98
Cadmium molybdate, 668
Cadmium oxalate trihydrate, 99
Cadmium stannate, 136
Cadmium tungstate, 708
Cadmoindite, 817
Cadmoselite, 817
Cafarsite, 818
Cafetite, 818
Cahnite, 818
Cairncrossite, 818
Calamaite, 476
Calaverite, 819
Calciborite, 819
Calcioaravaipaite, 819
Calciojohillerite, 634
Calciolangbeinite, 820
Calcio-olivine, 819
Calciopetersite, 820
Calcite, 8, 731, 820
Calcium antimonite, 138
Calcium arsenate CaAs2O6, 602
Calcium borate, 45
Calcium chlorarsenate, 601
Calcium chlorophosphate (“chlor-spodiosite”), 368
Calcium copper titanate CaCu3Ti4O12, 139
Calcium dihydrophosphate monohydrate, 369
Calcium hydroxychloride, 540
Calcium indium oxide Ca2InO4, 135
Calcium iron(III) tin orthophosphate, 432
Calcium magnesium lanthanum phosphate, 370
Calcium magnesium yttrium phosphate, 370
Calcium niobate columbite-type, 139
Calcium orthoarsenate trigonal polymorph, 603
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Calcium orthoborate fluoride, 23
Calcium orthophosphate orthosilicate, 347
Calcium orthovanadate trigonal polymorph, 560
Calcium plumbate, 140
Calcium samarium thorium arsenate, 603
Calcium strontium orthophosphate whitlockite-type, 422
Calcium tellurite monohydrate, 683
Calcium tetraborate, 45
Calcurmolite, 821
Calderite, 821
Calderónite, 821
Caledonite, 821
Callaghanite, 822
Calomel, 822
Calumetite, 822
Camaronesite, 822
Camerolaite, 823
Campostriniite, 503
Canavesite, 823
Cancrinite, 727, 823
Cancrinite Ca-free analogue, 306
Cancrinite CO3-deficient, 301
Cancrinite NO3-analogue, 304
Cancrinite NO3-analogue low-hydrous, 305
Cancrinite SO4-rich, 823
Canfieldite, 824
Cannonite, 824
Canosioite, 619
Canutite, 637
Caoxite, 104, 105
Carbocernaite, 824
Carbonatecyanotrichite, 824
Carletonite, 825
Carlfrancisite, 825
Carlfriesite, 825
Carlhintzeite, 226
Carlinite, 825
Carlosturanite, 826
Carlsbergite, 826
Carlsonite, 515
Carminite, 826
Carnallite, 826
Carnegieite, 826
Carnegieite (high), 306
Carnegieite (low), 307
Carnotite, 827
Carpathite, 827
Carpholite, 827
Carrboydite, 827
Carrollite, 828
Caryopilite, 828
Cassiterite, 828
Castellaroite, 597, 828
Caswellsilverite, 829
Catalanoite, 829
Catapleiite, 829
Catapleiite heating product, 346
Cattierite, 829
Cavansite, 829

Cebaite (Ce), 830
Čejkaite, 830
Celadonite, 830
Celestine, 830
Celsian, 831
Centennialite, 545
Cerianite-(Ce), 831
Cerium metaphosphate trihydrate, 372
Cerium(III) polyphosphate, 372
Cerium(IV) pyrophosphate, 371
Černýite, 831
Ceruleite, 831
Cerussite, 16, 832
Cervantite, 832
Cesanite, 832
Cesàrolite, 118
Cesium acid (pentahydrogen) arsenate, 600
Cesium acid arsenate selenate, 642
Cesium acid (pentahydrogen) phosphate, 366
Cesium antimony chloride, 539
Cesium beryllium orthoborate, 22
Cesium borosilicate pollucite-type, 330
Cesium calcium borate, 44
Cesium copper chloride, 537
Cesium fluormolybdate CsMoO2F3, 669
Cesium hexafluorphosphate, 228, 229
Cesium iron arsenate Cs7Fe7O2(AsO4)8, 601
Cesium iron sulfate, 484
Cesium magnesium chloride, 538
Cesium manganese(II) pyrophosphate, 367
Cesium sodium stibiochloride, 539
Cesium stibiofluoride, 229
Cesium thorium molybdate, 670
Cesium uranyl niobate Cs2(UO2)2(Nb2O8), 137
Cesium uranyl niobate

Cs9[(UO2)8O4(NbO5)(Nb2O8)2], 137
Cesium uranyl oxophosphate, 368
Cesium uranyl tungstate

Cs4[(UO2)4(WO5)(W2O8)O2], 709
Cesium uranyl tungstate Cs4[(UO2)7(WO5)3O3], 710
Cesium uranyl tungstate Cs8(UO2)4(WO4)4(WO5)2, 710
Chabazite-Ca, 832
Chalcanthite, 832
Chalcoalumite, 833
Chalcocite, 833
Chalcocyanite, 833
Chalcomenite, 833
Chalconatronite, 834
Chalcophanite, 834
Chalcophyllite, 834
Chalcopyrite, 834
Chalcosiderite, 835
Chalcostibite, 835
Challacolloite, 835
Chambersite, 835
Chamosite, 836
Changbaiite, 836
Changoite, 522, 836
Changoite (slightly deuterated), 503
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Chapmanite, 836
Charlesite, 521
Charoite, 836
Chegemite, 837
Chekhovichite, 837
Chenevixite, 837
Cheralite, 837
Cheralite La-bearing, 620
Cheremnykhite trigonal dimorph, 585
Chernikovite, 838
Chernovite-(Y), 838
Chervetite, 838
Chiavennite, 327, 838
Chibaite, 207, 839
Childrenite, 839
Chiolite, 839
Chloraluminite, 839
Chlorapatite, 840
Chlorargyrite, 840
Chlorellestadite, 335
Chloritoid, 840
Chlorkyuygenite, 840
Chlormayenite, 180, 840
Chlorocalcite, 841
Chloromagnesite, 841
Chlorophoenicite, 630
Chloroxiphite, 841
Chondrodite, 841
Chromatite, 842
Chromite, 842
Chromium disilicide, 320
Chromium iron(III) orthovanadate, 561
Chromium uranium oxide Cr2UO6, 141
Chromium vanadate Cr2V4O13, 562
Chrysoberyl, 181, 842
Chrysocolla, 843
Chrysothallite, 843
Chrysotile, 9, 843
Chudobaite, 599
Chukanovite, 85, 843
Chukhrovite (Ca), 843
Churchite-(Nd), 844
Churchite-(Y), 844
Cinnabar, 844
Claringbullite, 844
Clarkeite, 210
Claudetite, 845
Clausthalite, 845
Clinoatacamite, 845
Clinobisvanite, 579, 846
Clinocervantite, 224, 846
Clinochalcomenite, 846
Clinochlore, 846
Clinoclase, 847
Clinoenstatite, 847
Clinohedrite, 847
Clinometaborite, 847
Clinoptilolite (Na), 848
Clinotobermorite-like mineral, 848

Clinozoisite, 848
Clintonite, 848
Coahuilite, 106
Coalingite, 94, 849
Cobaltarthurite, 849
Cobaltaustinite, 849
Cobalt dinickel orthoborate, 39
Cobalt ferrite spinel-type, 142
Cobaltkoritnigite, 849
Cobaltomenite, 661, 850
Cobaltpentlandite, 850
Cobalt selenite, 662
Cobalt selenite hydrate, 663
Cobalt zinc tellurium oxide, 141
Coccinite, 850
Cochromite, 850
Cochromite Ni-bearing, 182
Coconinoite, 851
Coesite, 851
Coffinite, 851
Colemanite, 851
Colimaite, 852
Colinowensite, 279, 852
Coloradoite, 852
Columbite-(Mg), 852
Columbite-(Mn), 183, 853
Comancheite, 545, 853
Combeite, 853
Compreignacite, 853
Conichalcite, 853
Connellite, 854
Cookeite, 292, 297
Cooperite, 854
Copiapite, 504, 854
Copper acid diperiodate hydrate, 702
Copper(II) carbonate, 81
Copper chromate, 590
Copper divanadate hydroxide hydrate, 562
Copper(II) hydroxide, 142
Copper iodate, 699, 700
Copper molybdate selenite, 644
Copper oxychloride hydrate, 541
Copper strontium formate, 100
Copper tinanium oxyphosphate, 373
Coquandite, 855
Coquimbite, 855
Corderoite, 855
Cordierite, 855
Cordylite (Ce), 856
Corkite, 856
Cornetite, 856
Cornubite, 856
Cornwallite, 857
Coronadite, 857
Correianevesite, 857
Corundum, 183, 858
Cosalite, 858
Cotunnite, 858
Coulsonite, 858
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Covellite, 858
Crandallite, 859
Cranswickite, 859
Creaseyite, 859
Crednerite, 859
Creedite, 860
Cristobalite, 860
Crocoite, 860
Cryptohalite, 861
Cryptomelane, 861
Cu,Al-hydroxyphosphate, 459
Cubanite, 861
Cuboargyrite, 861
Cumengeite, 549, 861
Cummingtonite, 862
Cuprite, 862
Cuprocopiapite, 862
Cuproiridsite, 862
Cupromolybdite, 863
Cuprorhodsite, 863
Cuprorivaite, 863
Cuprosklodowskite, 863
Cuprospinel, 864
Cuprotungstite, 864
Curienite, 864
Curite, 864
Cuspidine, 244, 865
Cyanochroite, 865
Cyanotrichite, 865
Cymrite, 865
Cyprine, 250
Cyrilovite, 866
Czochralskiite, 866

D
Dachiardite (Na), 866
Dalnegorskite, 269
Danalite, 329
Danburite, 866
Daqingshanite-(Ce), 456
Darapskite, 867
Darrellhenryite, 332, 333, 867
Dashkovaite, 867
Datolite, 867
Daubréelite, 868
Davidite-(La), 868
Davidlloydite, 868
Davinciite, 282
Davisite, 868
Dawsonite, 869
Decrespignyite-(Y), 869
Delafossite Al analogue, 184
Delafossite, 869
Delhayelite, 869
Deliensite, 870
Dellaite, 870
Deltalumite, 122
Delvauxite, 870
Demartinite, 871

Demesmaekerite, 871
Demicheleite-(Br), 871
Demicheleite-(Cl), 871
Demicheleite-(I), 871
Denningite, 696, 872
Depmeierite, 302
Derriksite, 872
Desautelsite, 872
Dessauite-(Y), 872
Destinezite, 873
Deveroite-(Ce), 106, 110
Devilline, 873
Devitoite, 873
Devitrite, 873
Dewindtite, 874
Diaboleite, 874
Diadochite, 874
Diamond, 874
Diaoyudaoite, 220
Diaspore, 875
Dicalcium hexaborate monohydrate, 46
Dickinsonite-(KMnNa), 875
Dickite, 875
Digenite, 875
Dimorphite, 876
Diomignite, 876
Diopside, 876
Dioptase, 876
Dipotassium sodium zinc pentaborate, 47
Dissakisite-(La), 877
Dixenite, 877
Djerfisherite, 877
Dmisokolovite, 877
Dmisteinbergite, 313, 878
Dolomite, 878
Domerockite, 878
Donnayite-(Y), 878
Dorallcharite, 879
Dorfmanite, 879
Dorrite, 267
Double perovskite KBa(XeNaO6), 704
Double perovskite KCa(XeNaO6), 704
Double perovskite KSr(XeNaO6), 705
Double-ring borate (Na,K)3Sr(B5O10), 47
Dovyrenite, 879
Downeyite, 879
Doyleite, 880
Dravite, 880
Dreyerite, 880
Drugmanite, 467
Drysdallite, 880
Dualite, 283
Dufrénoysite, 881
Duftite, 881
Dumontite, 881
Dumortierite, 881
Dundasite, 882
Durangite, 882
Dussertite, 882
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Duttonite, 211
Dwornikite, 882
Dypingite, 883
Dysprosium copper hydroxysulfate

Dy2Cu(SO4)2(OH)4, 485
Dysprosium decavanadate hydrate, 563
Dzhalindite, 883
Dzhuluite, 883
Dzierżanowskite, 883

E
Eakerite, 884
Eastonite, 884
Ecandrewsite, 884
Ecdemite, 885
Eckhardite, 885
Edgrewite, 885
Edingtonite, 885
Edoylerite, 886
Effenbergerite, 886
Eitelite, 886
Ekanite, 886
Ekplexite, 887
Elbaite, 887
Elbrusite, 888
Eleomelanite, 470
Eleonorite, 888
Elpasolite, 888
Eltyubyuite, 888
Embreyite, 595
Emmonsite, 889
Enargite, 889
Enstatite, 889
Eosphorite, 890
Epidote, 890
Epidote-(Sr), 257
Epistilbite, 890
Epsomite, 890, 891
Ericlaxmanite, 891
Erikapohlite, 891
Eringaite, 891
Eriochalcite, 892
Erionite-Ca, 892
Erionite-K, 313
Erlichmanite, 892
Ernstburkeite, 892
Erythrite, 893
Erythrosiderite, 893
Eskebornite, 893
Eskolaite, 894
Esperite, 894
Ettringite, 731, 894
Euchroite, 894
Euclase, 895
Eucryptite-β, 895
Eugsterite, 895
Eulytine, 896
Euxenite-(Y), 896
Evansite, 896

Eveite, 896
Evenkite, 897
Ezcurrite, 897

F
Fabriesite, 897
Fairfieldite, 897
Falcondoite, 286, 898
Falottaite, 898
Fangite, 898
Farringtonite, 898
Fassinaite, 899
Faujasite-Ca, 316
Faujasite-Na, 899
Favreauite, 899
Fayalite, 899
Feitknechtite, 900
Felsőbányaite, 900
Ferberite, 900
Fergusonite-(Ce)-β, 900
Fergusonite-(La)-β, 901
Fergusonite-(Nd)-β, 901
Fergusonite-(Y), 901, 902
Fergusonite-(Y)-β, 901
Fermiite, 902
Feroxyhyte, 902
Ferriakasakaite-(La), 258
Ferriallanite-(Ce), 902
Ferricopiapite, 505, 903
Ferricoronadite, 117
Ferri-eckermannite, 903
Ferrierite-K, 903
Ferrierite-Na, 903
Ferrierite-NH4, 319
Ferri-fluoro-katophorite, 277
Ferri-fluoro-leakeite, 274
Ferrihollandite, 118
Ferrihydrite, 904
Ferri-kaersutite, 904
Ferri-leakeite, 274
Ferrilotharmeyerite, 904
Ferrimolybdite, 905
Ferrinatrite, 473, 905
Ferrisaponite, 300
Ferrisepiolite, 297
Ferristrunzite, 905
Ferrivauxite, 434
Ferro-actinolite, 905
Ferrocarpholite, 906
Ferroceladonite, 906
Ferro-ferri-fluoro-leakeite, 273
Ferro-ferri-katophorite, 271
Ferro-ferri-nybøite, 272
Ferro-glaucophane, 906
Ferrohögbomite, 907
Ferro-hornblende, 906
Ferrokësterite, 907
Ferronigerite-2N1S, 215
Ferro-pargasite, 271
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Ferrorhodonite, 265
Ferroselite, 907
Ferrosilite, 907
Ferrostrunzite, 908
Ferrovesuvianite, 251, 256
Ferruccite, 908
Fersmite, 908
Feruvite, 908
Fervanite (?), 586
Fetiasite, 620
Fibroferrite, 519
Fichtelite, 909
Fiedlerite, 909
Fiedlerite-1A, 550
Finnemanite, 909
Flamite, 909
Flinteite, 910
Florencite-(La), 910
Florencite-(Nd), 452
Fluellite, 910
Fluocerite-(Ce), 911
Fluocerite-(La), 911
Fluorapatite As-rich, 911
Fluorapatite, 911
Fluorapophyllite-(K), 735, 736, 912
Fluorbarytolamprophyllite, 336
Fluor-buergerite, 912
Fluorcalciobritholite, 912
Fluorcalciomicrolite, 185, 912
Fluorcalciopyrochlore, 215
Fluorcalcioroméite, 913
Fluorcaphite, 913
Fluorcarmoite-(BaNa), 451
Fluorchegemite, 238
Fluor-dravite, 334
Fluor-elbaite, 913
Fluorite, 914
Fluorkyuygenite, 914
Fluorlamprophyllite, 914
Fluormayenite, 915
Fluormayenite-related garnet, 914
Fluornatropyrochlore, 185
Fluorocronite, 915
Fluoro-edenite, 915
Fluoro-pargasite, 278
Fluorowardite, 916
Fluor-schorl, 913
Fluor-uvite, 916
Fluorvesuvianite, 257
Fluorwavellite, 439, 916
Fogoite-(Y), 341
Foitite, 916
Fontarnauite, 71
Foordite, 917
Forêtite, 917
Formanite-(Y), 917
Formicaite, 917
Fornacite, 918
Forsterite, 918

Fougèrite, 918
Fowlerite, 264
Fraipontite, 918
Francevillite, 919
Francisite, 919
Franckeite, 919
Françoisite-(Nd), 919
Franconite, 920
Frankdicksonite, 920
Franklinite, 173, 920
Freboldite, 920
Fredrikssonite, 921
Fresnoite, 921
Friedrichbeckeite, 921
Frohbergite, 921
Frolovite, 922
Frondelite, 922
Fulgurite (a high-silicon glass), 922
Fupingqiuite, 465

G
Gadolinite-(Nd), 922
Gadolinite-(Y), 326
Gahnite, 923
Gaidonnayite, 923
Galaxite, 923
Galeite, 523
Galena, 923
Galileiite, 924
Gallite, 924
Gallium hydroxyde hydrate Ga(OH)3∙nH2O, 186
Gallium(III) oxide, 124
β-Gallium(III)-oxide, 131
Gallium sulfide, 924
Gallium(III) oxyhydroxide, 124
Galloplumbogummite, 924
Galuskinite, 925
Gamagarite, 925
Gamma-alumina, 180
Gananite, 235, 925
Ganomalite, 253, 926
Ganterite, 926
Garavellite, 926
Garnet, 926
Gartrellite, 927
Garutiite, 927
Gaspéite, 927
Gaudefroyite, 927
Gauthierite, 209
Gaylussite, 928
Gazeevite, 928
Gearksutite, 928
Geffroyite, 928
Gehlenite, 929
Geikielite, 929
Geminite, 929
Gerdtremmelite, 631
Gerenite-(Y), 279
Gerhardtite, 929
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Gerstleyite, 930
Geschieberite (?), 505
Geschieberite, 930
Ghiaraite, 930
Gianellaite, 506
Gibbsite, 930
Gilalite, 931
Gillardite, 931
Gillespite, 931
Giniite, 932
Gismondine, 932
Glass, 300
Glauberite, 932
Glaucocerinite, 932
Glauconite, 932
Glaucophane, 933
Glaukosphaerite, 933
Glushinskite, 933
Gmelinite-Na, 934
Goethite, 934
Goldfieldite, 934
Goldmanite, 934
Gonnardite, 934
Goosecreekite, 935
Gorceixite, 935
Gordaite, 507
Görgeyite, 935
Gormanite, 935
Goryainovite, 441, 936
Goslarite, 936
Götzenite, 936
Goudeyite, 936
Gowerite, 937
Goyazite, 937
Graemite, 937
Graeserite, 937
Graftonite, 938
Gramaccioliite-(Y), 938
Grandaite, 938
Grandidierite, 938
Graphite, 729, 939
Gratonite, 939
Greenockite, 939
Gregoryite, 939
Greigite, 940
Griceite, 940
Grimaldiite, 940
Grimselite, 941
Grossite, 941
Grossular, 941
Groutite, 941
Grumiplucite, 942
Grunerite, 757, 942
Guanacoite, 942
Guanine, 943
Gudmundite, 943
Gugiaite, 328
Guilleminite, 943
Guimarãesite, 466

Gunningite, 943
Gurimite, 944
Gwihabaite, 944
Gypsum, 944
Gyrolite, 944

H
Hafnon, 945
Häggite, 212
Haidingerite, 945
Haiweeite, 945
Hakite, 945
Halite, 732, 946
Halloysite-10Å, 946
Halotrichite, 946
Hambergite, 946
Hanjiangite, 947
Hanksite, 947
Hannayite, 947
Hannebachite, 947
Hansesmarkite, 948
Haradaite, 269
Hardystonite, 246, 948
Harmotome, 948
Harmunite, 948
Harmunite cubic polymorph, 187
Harmunite Mn4+-bearing, 949
Hartite, 949
Hashemite, 949
Hatchetine, 949
Hatrurite triclinic polymorph, 239
Hatrurite, 950
Hauerite, 950
Hausmannite, 187, 950
Haüyne, 951
Hawleyite, 951
Hawthorneite, 951
Haynesite, 951
Hazenite, 952
Heazlewoodite, 952
Hectorite, 952
Hedenbergite, 952
Hedyphane, 953
Heisenbergite, 953
Heklaite, 236
Heliophyllite, 953
Hellyerite, 953
Hematite, 954
Hemihedrite, 954
Hemimorphite, 954
Hemleyite, 955
Hemusite, 955
Hendricksite, 955
Henmilite, 955
Henritermierite, 956
Henryite, 956
Herbertsmithite, 956
Hercynite, 956
Herderite, 957
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Herzenbergite, 957
Hessite, 957
Hetaerolite, 957
Heterogenite, 958
Heterosite, 958
Heulandite, 958
Hexaamminenickel(II) nitrate, 111
Hexacelsian, 308, 958
Hexaferrum, 959
Hexahydrite, 959
Hexahydroborite, 959
Hiärneite, 959
Hibonite, 960
Hibonite-(Fe), 960
Hidalgoite, 960
Hieratite, 960
Hilarionite, 961
Hingganite-(Y), 326, 961
Hinsdalite, 961
Hiortdahlite, 961
Hisingerite, 961
Hochelagaite, 962
Hoelite, 962
Hoganite, 962
Hogarthite, 962
Hohmannite, 963
Holdawayite, 963
Holfertite, 963
Hollandite, 963
Hollingworthite, 964
Holmquistite, 964
Honessite, 964
Hopeite, 964, 965
Hörnesite, 965
Hsianghualite, 965
Huanghoite-(Ce), 965
Huanzalaite, 717, 966
Hubeite, 966
Hübnerite, 966
Hughesite, 966
Huizingite-(Al), 516
Humberstonite, 967
Humboldtine, 967
Humite, 967, 968
Hummerite, 968
Hungchaoite, 968
Huntite, 968
Hureaulite, 969
Hurlbutite, 969
Hyalite, 223
Hydrobiotite, 296
Hydroboracite, 969
Hydrocalumite, 222, 546, 969
Hydrocerussite, 15–17, 970
Hydrochamosite-1M, 299
Hydrodelhayelite-related compound, 970
Hydrogarnet Sr3Al2(OH)12, 164
Hydrohalite, 553, 971
Hydrohonessite, 971

Hydrokenomicrolite, 188
Hydromagnesite, 971
Hydronaujakasite, 298
Hydroniumjarosite, 971, 972
Hydronium jarosite Pb,As-bearing, 512
Hydronium jarosite Pb,Cu-bearing, 513
Hydronium jarosite Pb,Zn-bearing, 514
Hydroromarchite, 216, 972
Hydrotalcite, 972
Hydrotalcite-2H, 972
Hydroterskite, 343
Hydrotungstite, 706, 973
Hydrovesuvianite, 261
Hydroxyapophyllite-(K), 973
Hydroxycalciobetafite, 973
Hydroxycalciomicrolite, 974
Hydroxycalciopyrochlore, 974
Hydroxycalcioroméite, 974
Hydroxycancrinite (?), 301
Hydroxyferroroméite, 974
Hydroxykenoelsmoreite, 975
Hydroxylapatite, 975
Hydroxylbastnäsite-(Ce), 975
Hydroxylchondrodite, 976
Hydroxylclinohumite, 976
Hydroxyledgrewite, 976
Hydroxylellestadite, 977
Hydroxylgadolinite-(Y), 325
Hydroxylgugiaite, 324
Hydroxylherderite, 977
Hydrozincite, 977
Hydrucerussite-like mineral 9-40, 87
Hypersthene, 978

I
Ianbruceite, 978
Iangreyite, 978
Ice, 978
Idaite, 979
Idrialite, 979
Ikaite, 95, 979
Ilesite, 980
Ilmenite, 980
Ilsemannite, 189
Ilvaite, 980
Imogolite, 287, 980
Inderite, 981
Indite, 981
Indium oxide, 143
Indium vanadate selenite In(VSe2O8), 644
Indium vanadate tellurite In(VTe2O8), 684
Indium zinc selenite In2Zn(SeO3)4, 645
Inesite, 981
Innsbruckite, 981
Insizwaite, 982
Inyoite, 982
Iodargyrite, 982
Iowaite, 983
Iranite, 596, 983
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Irarsite, 983
Iriginite, 984
Irinarassite, 984
Iron, 984
Iron(II) acid phosphate hydrate, 376
Iron(III) basic sulfate, 485, 486
Iron dimolybdate selenite hydrate

Fe2(Mo2O7)(SeO3)2∙H2O, 646
Iseite, 984
Ishikawaite, 224
Isocubanite, 985
Isokite, 985
Isomertieite, 985
Ivanyukite-Cs, 342
Ivsite, 507, 985
Iwakiite-hausmannite intermediate member, 189
Iwateite, 985
Iyoite, 986

J
Jáchymovite, 986
Jacobsite, 986
Jadeite, 986
Jakobssonite, 987
Jalpaite, 987
Jamborite, 987
Jamesonite, 987
Janchevite, 589
Jarosite, 988
Jeffbenite, 988
Jennite, 988
Ježekite, 989
Jianshuiite, 212
Jixianite, 989
Joaquinite-(Ce), 989
Joegoldsteinite, 508, 989
Joëlbruggerite, 990
Johachidolite, 990
Johannite, 990
Johnbaumite, 991
Johnbaumite Sr-analogue, 621
Johninnesite, 991
Jordisite, 991
Jörgkellerite, 433
Joteite, 992
Jouravskite, 530
Juansilvaite, 638
Junitoite, 249
Jurbanite, 529

K
Kaatialaite, 622
Kaersutite, 992
Kainite, 992
Kalgoorlieite, 992
Kaliborite, 993
Kalicinite, 993
Kalininite, 508, 993
Kalinite, 993

Kaliophilite, 994
Kalsilite, 312, 994
Kamacite, 994
Kamarizaite, 628
Kamiokite, 679
Kamotoite-(Y), 994
Kampelite, 994
Kamphaugite-(Y), 995
Kanemite, 288
Kangite, 995
Kaňkite, 995
Kanoite, 996
Kaolinite, 2, 996
Kapellasite, 996
Kapundaite, 996
Karelianite, 997
Karpenkoite, 997
Karrooite, 997
Kashinite, 997
Kasolite, 998
Kassite, 998
Katayamalite, 998
Katerinopoulosite, 520
Katiarsite, 622
Katoite, 998
Kawazulite, 999
Kazanskyite, 999
Keilite, 999
Keiviite-(Yb), 247, 1000
Kemmlitzite, 1000
Kempite, 1000
Kentbrooksite, 895
Kentrolite, 1000
Kenyaite, 1001
Kerimasite, 1001
Kermesite, 1001
Keyite, 1001
Khademite, 1002
Khatyrkite, 1002
Khesinite, 263, 1002
Khvorovite, 1002
Kiddcreekite, 1003
Kidwellite, 1003
Kieftite, 1003
Kieserite, 1003
Kilchoanite, 1003
Killalaite, 1004
Kimzeyite, 1004
Kinoite, 1004
Kinoshitalite, 1005
Kintoreite, 1005
Kipushite, 1005
Kirschsteinite, 241, 1005
Kladnoite, 1006
Klaprothite, 1006
Klebelsbergite, 1006
Klockmannite, 1006
Knorringite, 1007
Kobokoboite, 1007
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Koechlinite, 1007
Kojonenite, 1007
Kokchetavite, 1007
Koktaite, 1008
Kolskyite, 1008
Kolwezite, 1008
Konyaite, 1008
Koritnigite, 1009
Kornelite, 1009
Kornerupine, 1009
Kosmochlor, 1010
Kosnarite NH4-analogue, 435
Kosnarite NH4-analogue cubic polymorph, 435
Kosnarite, 1010
Kotoite, 1010
Kottenheimite dimorph, 471
Köttigite, 1010
Kotulskite, 1011
Kovdorskite, 1011
Kozyrevskite, 1011
Krásnoite, 437
Kremersite, 1011
Krieselite, 1012
Kröhnkite, 1012
KröhnkiteMn analogue, 508
Krotite, 1012
Krut’aite, 1012
Kryzhanovskite, 1013
Ktenasite, 523, 1013
Kuksite, 1013
Kuksite trigonal dimorph, 459
Kuksite trigonal Mg analogue, 460
Kulanite, 1013
Kuliginite, 551
Kullerudite, 1014
Kumdykolite, 1014
Kummerite, 436
Kumtyubeite, 1014
Kuramite, 1014
Kuranakhite, 1015
Kuratite, 1015
Kurnakovite, 1015
Kusachiite, 217, 1015
Kushiroite, 1016
Kutnohorite, 1016
Kuzminite, 1016
Kyanite, 1016
Kyawthuite, 190, 1017

L
Laachite, 733, 1017
Lacroixite, 1017
Lafossaite, 1017
Laihunite, 242, 1018
Lakargiite, 1018
Lamprophyllite, 1018
Lanarkite, 1019
Långbanite, 1019
Langbeinite, 1019

Langite, 1019
Lanmuchangite, 1020
Lansfordite, 1020
Lantanum nitrate hexahydrate, 112
Lanthanite-(Nd), 1020
Lanthanum aluminum oxide, 144
Lanthanum calcium oxophosphate, 374
Lanthanum iron(III) oxide, 144
Lanthanum molybdate, 670
Lanthanum orthoborate, 24
Lanthanum orthosilicate, 238
Lanthanum oxosulfate, 487
Lanthanum selenite, 646, 647
Lanthanum strontium oxophosphate, 375
Lanthanum uranyl orthovanadate divanadate, 564
Lapeyreite, 1020
Larnite, 1021
Laueite, 1021
Laumontite, 1021
Laurentianite, 1021
Laurionite, 1022
Laurionite Ba-analogue, 547
Laurionite I-analogue, 703
Laurite, 1022
Lausenite, 1022
Lautarite, 1023
Lavendulan, 1023
Lavenite Fe-analogue, 338
Lavinskyite, 1023
Lawrencite, 1023
Lawsonite, 247, 1024
Layered perovskite BaBi2Ta2O9, 191
Layered perovskite CaBi2Ta2O9, 191
Layered perovskite K4Xe3O12, 706
Layered perovskite SrBi2Ta2O9, 192
Lazaridisite, 524, 1024
Lazulite, 1024
Lazurite, 1024
Lead, 1025
Lead aluminium orthoborate fluoride Pb6Al(BO3)2OF7, 24
Lead beryllium phosphate hurlbutite-type, 376
Lead bismuth orthoborate, 25
Lead borate Pb6B11O18(OH)9, 48
Lead borate PbB4O7, 49
Lead cadmium orthoborate, 26
Lead copper orthoborate, 26
Lead copper tellurate tellurite, 684
Lead iron(III) phosphate, 377
Lead iron(III) trivanadate, 564
Lead orthoborate chromate, 591
Lead orthoborate molybdate, 671
Lead orthoborate tungstate, 27, 29
Lead(II) oxalate, 100
Lead(II) oxysulfate, 487
Lead phosphate nitrate hydrate, 378
Lead phosphate sulfate, 378
Lead selenate, 643
Lead silver phosphate apatite-type, 379
Lead sodium calcium phosphate apatite-type, 380
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Lead(II) stannate Pb2SnO4, 145
Lead tin oxide Pb2+4Pb

4+Sn4+O8, 146
Lead uranyl divanadate, 565
Leadhillite, 533, 534, 1025
Lechatelierite, 1025
Lecoqite-(Y), 85
Leguernite, 1025
Leifite, 329
Leightonite, 1025
Leiteite, 1026
Lemanskiite, 623, 624, 1026
Lemoynite, 1026
Leogangite, 1027
Leószilárdite, 1027
Lepidocrocite, 200, 1027
Lesukite Cu-bearing variety, 121
Letovicite, 1027
Leucite, 1028
Leucophosphite, 1028
Lévyne-Ca, 1028
Leydetite, 1028
Libethenite, 1029
Liebenbergite, 1029
Liebigite, 1029
Likasite, 1030
Lime, 1030
Linarite, 1030
Lindbergite, 1030, 1031
Lindgrenite, 1031
Lindsleyite, 1031
Línekite, 90
Lingunite, 1031
Lingunite K-analogue, 1031
Linnaeite, 1032
Linzhiite, 1032
Liroconite, 1032
Lishizhenite, 509
Liskeardite, 1032
Litharge, 1033
Lithiophilite, 1033
Lithiophorite, 1033
Lithiophosphate, 1033
Lithiotantite, 1034
Lithium aluminate LiAl5O8, 146
Lithium aluminate LiAlO2-beta, 147
Lithium aluminate LiAlO2-gamma, 148
Lithium aluminium orthoborate, 28
Lithium aluminium oxide-alpha, 148
Lithium aluminium oxide-gamma, 149
Lithium aluminoborate, 49
Lithium cesium borate Li4Cs3B7O14, 50
Lithium chromium pyrophosphate, 380
Lithium cobalt(III) iron(III) oxide delafossite-type, 149
Lithium copper tungstate, 712
Lithium cyclo-hexaphosphate trihydrate, 383
Lithium dimolybdate selenite, 672
Lithium ferrite LiFe3+5O8, 150
Lithium hexafluorosilicate, 230
Lithium iron(III) oxide, 151

Lithiumiron(III) pyrophosphate, 381
Lithium iron(II) sulfate fluoride tavorite-type, 488
Lithium iron(III) tungstate wolframite-type, 711
Lithium magnesium manganese(IV)

oxide spinel-type, 151
Lithium magnesium phosphate olivine-type, 382
Lithium manganese oxide spinel-type, 152
Lithium metasilicate, 265
Lithium molybdate tellurite, 672
Lithium nickel phosphate triphylite-type, 382
Lithium nickel tungstate, 713
Lithium nickel vanadate, 566
Lithium niobateilmenite-type, 153
Lithium sodium borate LiNaB4O7, 51
Lithium strontium borate Li2Sr4B12O23, 52
Lithium strontium orthoborate, 29
Lithium strontium orthophosphate, 384
Lithium tetraborate, 53
Lithium trivanadate, 566
Lithium tungstate tellurite, 685
Lithium tungstate vanadate brannerite-type, 567
Lithium vanadyl phosphate, 384–386
Lithium zinc niobium oxide spinel-type, 153
Lithium zinc phosphate monohydrate, 386
Lithium zinc selenite Li2Zn3(SeO3)4∙2H2O, 648
Lithium zirconium arsenate, 604, 605
Liversidgeite, 1034
Livingstonite, 1034
Lizardite, 1034
Löllingite, 1035
Lomonosovite, 1035
Lonecreekite, 1035
Lonsdaleite, 1035
Lópezite, 1036
Lorándite, 1036
Lorenzenite, 1036
Löweite, 1036
Luanshiweiite, 284
Luddenite, 1037
Ludjibaite, 1037
Ludlamite, 1037
Ludlockite, 627, 1037
Ludwigite, 1038
Lueshite, 193, 1038
Luinaite-(OH), 334
Lulzacite, 453, 1038
Lüneburgite, 41, 1038
Luobusaite, 322
Luogufengite, 1039
Lusernaite-(Y), 1039

M
Macedonite, 1039
Mackayite, 1039
Mackinawite, 1040
Macquartite, 1040
Magadiite, 1040
Magbasite, 1040
Maghemite, 1041
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Magnesio-arfvedsonite, 1041
Magnesioaubertite, 474
Magnesiocanutite, 636
Magnesiocarpholite, 734, 1041
Magnesiochloritoid, 236, 1041
Magnesiochromite, 1042
Magnesiocopiapite, 509, 1042
Magnesio-ferri-hornblende, 270
Magnesioferrite, 1042
Magnesio-foitite, 1042
Magnesiohögbomite-2N3S, 122, 219
Magnesiohögbomite-2N4S, 222, 1043
Magnesio-hornblende, 1043
Magnesiokoritnigite, 598
Magnesiopascoite, 580
Magnesiotaaffeite-2N02S, 1043
Magnesiotaaffeite-6N03S, 1043
Magnesiovesuvianite, 253
Magnesiovoltaite, 480
Magnesite, 1043
Magnesium acid phosphate hydrate, 387
Magnesium borophosphate, 365
Magnesium chromate, 592
Magnesium hydroxychlorite atacamite-type, 551
Magnesium hydroxysulfate hydrate, 489
Magnesium orthoborate fluoride, 30
Magnesium oxychloride hydrate Mg3Cl2(OH)4∙4H2O, 541
Magnesium strontium diorthoborate, 54
Magnesium sulfate hydroxide

Mg6(SO4)(OH)10∙7H2O, 490
Magnesium tellurite MgTe2O5, 686
Magnesium vanadate Mg7V4O16(OH)2∙H2O, 568
Magnetite, 1044
Magnetoplumbite, 1044
Majorite, 1044
Makatite, 1044
Malachite, 1045
Malayaite, 1045
Malladrite, 1045
Mallardite, 1045
Mallestigite, 1045
Mandarinoite, 1046
Manganese acid phosphate hydrate, 388
Manganese(II) antimony(III) oxide, 154
Manganese hydroxysulfate Mn5(SO4)(OH)8, 489
Manganese(II) titanium orthophosphate, 388
Manganese(II) titanium phosphate MnTi4(PO4)6, 389
Mangangordonite, 457
Manganite, 1046
Manganlotharmeyerite, 1046
Manganochromite, 1046
Manganolangbeinite, 1047
Manganosite, 1047
Manitobaite, 354
Manjiroite, 1047
Marcasite, 1047
Margarite, 289, 1047
Margarosanite, 1048
Marićite, 1048

Markascherite, 1048
Marokite, 1048
Marthozite, 1048
Martinandresite, 318
Martyite, 735, 1049
Maruyamaite, 1049
Mascagnite, 1049
Maskelynite, 1049
Massicot, 1050
Masuyite, 206
Mathesiusite, 1050
Mathiasite, 1050
Matildite, 1050
Matioliite, 1051
Matlockite, 1051
Mattagamite, 1051
Matteuccite, 1051
Maxwellite, 1051
Mazzite-Na, 317
Mbobomkulite, 1052
Mcallisterite, 1052
Mcalpineite, 1052
Mcconnellite, 1052
Mcguinnessite, 1053
Megawite, 1053
Meisserite, 1053
Meixnerite, 1053
Melanarsite, 738, 739, 1054
Melanophlogite, 5–11, 1054
Melanterite, 1054
Meliphanite, 1054
Mellite, 1054
Mellizinkalite, 1055
Mendeleevite-(Nd), 322
Mendipite, 1055
Mercallite, 510, 1055
Mercury(I) acid phosphate, 390
Mercury(I) orthoarsenate, 605
Mercury(II) orthoarsenate, 606
Merelaniite, 1055
Merenskyite, 1056
Meridianiite, 1056
Merlinoite, 314
Merrillite, 1056
Merrillite Na-free analogue, 1056
Merwinite, 1056
Mesolite, 1057
Meta-ankoleite, 1057
Meta-autunite, 1057
Metacinnabar, 1057
Metahewettite, 1058
Metakirchheimerite, 1058
Metalodèvite, 1058
Metamunirite, 1058
Metarauchite, 1058
Metarossite, 1059
Metasideronatrite, 476
Metastibnite, 1059
Metastudtite, 193, 1059
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Metathénardite, 479, 1059
Metatorbernite, 1060
Metatyuyamunite, 1060
Metauranocircite-I, 1060
Metauranospinite, 1060
Metavariscite, 1061
Metavivianite, 1061
Metazeunerite, 1061
Meurigite-Na, 1061
Meyerhofferite, 1062
Meymacite monoclinic analogue, 1062
Miargyrite, 1062
Microcline, 724, 1062
Miersite, 1062
Mikasaite, 1063
Milarite, 1063
Millerite, 1063
Millosevichite, 1063
Mimetite, 1064
Minguzzite, 1064
Minium, 194, 1064
Minjiangite, 360, 438, 469
Minnesotaite, 1064
Minyulite, 352, 1064
Mirabilite, 1065
Misakiite, 1065
Mitscherlichite, 1065
Mixite, 1065
Moctezumite, 1066
Mogánite, 1066
Mohite, 1066
Mohrite, 1066
Moissanite, 1066
Mojaveite, 1067
Molybdenite, 1067
Molybdite, 1067
Molybdofornacite, 1067
Molybdophyllite, 14, 15, 1068
Molybdyl phosphate, 390
Molysite, 1068
Monazite-(Ce), 1068
Monazite-(La), 1068
Monazite-(Nd), 1068
Monazite-(Sm), 1069
Moncheite, 1069
Monetite, 1069
Monipite, 1069
Monohydrocalcite, 1070
Montebrasite, 1070
Monteponite, 1070
Montgomeryite, 1070
Monticellite, 1070
Montmorillonite, 296, 1071
Montroseite, 1071
Montroydite, 217, 1071
Moolooite, 1071
Mopungite, 195, 1072
Moraskoite, 1072
Mordenite, 1072

Morenosite, 1072
Morimotoite, 237
Moschelite, 1073
Mosesite, 1073
Mottramite, 1073
Motukoreaite-related mineral, 533
Mountkeithite, 1073
Moydite-(Y), 1073
Mukhinite, 1074
Mukhinite V-rich analogue, 1074
Mullite, 1074
Muscovite, 734, 1074
Mushistonite, 213

N
Nabiasite, 1075
Nabimusaite, 1075
Nacrite, 1075
Nadorite, 1075
Nafertisite, 1076
Nagelschmidtite, 1076
Nahcolite, 1076
Nahpoite, 1076
Nakauriite, 92, 93
Nalipoite, 451
Namibite, 1077
Nantokite, 1077
Naquite, 1077
Narsarsukite, 1077
Nasonite, 245
Natalyite, 1077
Natisite, 1078
Natrite, 1078
Natroalunite, 1078
Natrochalcite, 1078
Natrodufrénite, 351, 1079
Natrojarosite, 1079
Natrolemoynite, 1079
Natrolite, 1079
Natron, 1080
Natroniobite, 1080
Natropalermoite, 1080
Natrophilite, 461, 1080
Natrosilite, 1081
Natrouranospinite, 1081
Natroxalate, 1081
Natrozippeite, 1081
Naumannite, 1082
Nealite, 1082
Negevite, 1082
Neighborite, 1082
Nekoite, 1082
Nenadkevichite, 1083
Nepheline, 1083
Neptunium(IV) oxalate hexahydrate, 101
Nesquehonite, 1083
Nestolaite, 1083
Newberyite, 1084
Nežilovite, 1084
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Nichromite, 195
Nickel antimonate fluoride, 231
Nickelaustinite, 1084
Nickelbischofite, 1084
Nickelboussingaultite, 1085
Nickelhexahydrite, 1085
Nickel hydroxychlorite atacamite-type, 552
Nickel hydroxysulfate hydrate

Ni3(SO4)2(OH)2∙2H2O, 491
Nickeline, 1085
Nickel manganese(IV) oxide, 155
Nickel oxychloride hydrate Ni3Cl2.1(OH)3.9∙4H2O, 542
Nickelpicromerite, 1085
Nickel vanadyl phosphate hydrate, 391
Nickenichite, 635
Nierite hexagonal polyborph, 1086
Nierite, 113
Nifontovite, 1086
Nimite, 1086
Niningerite, 1086
Niobium sulfide NbS3, 491
Nioboholtite, 1086
Niobylphosphate, 392
Niter, 1087
Nitratine, 114, 1087
Nitrobarite, 1087
Nitrocalcite, 1087
Nitromagnesite, 1088
Nobleite, 1088
Noelbensonite, 1088
Nolanite, 1088
Nolzeite, 331
Nontronite, 1088
Norbergite, 1089
Nordenskiöldine, 1089
Nordstrandite, 1089
Normandite, 1089
Norsethite, 1090
Northupite, 1090
Nosean, 1090
Nováčekite-II, 1090
Novgorodovaite, 1091
Nsutite, 1091
Nullaginite, 1091
Nyerereite, 1091

O
Offretite, 1092
Okenite, 1092
Okhotskite, 254
Oldhamite, 1092
Olgite, 1092
Olivenite, 1093
Olivine P-rich variety, 1093
Olmiite, 1093
Olshanskyite, 1093
Omongwaite, 1094
Omphacite, 1094
Onoratoite, 1094

Opal-A, 1094
Opal-CT, 1094
Ophirite, 1095
Oppenheimerite, 1095
Ordoñezite, 1095
Orlandiite, 663
Orpiment, 1095
Orschallite, 1096
Orthobrannerite, 214
Orthoclase, 1096
Orthojoaquinite-(Ce), 1096
Osakaite, 521, 1096
Osbornite, 114, 1097
Oskarssonite, 1097
Osumilite, 1097
Otavite, 1097
Ottemannite, 1098
Ottensite, 1098
Ottohahnite, 1098
Otwayite, 1098
Oxammite, 1099
Oxo-magnesio-hastingsite, 276
Oxybetafite-(Gd), 196
Oxybetafite-(Sm), 196
Oxybismuthobetafite, 197
Oxybritholite thorium analogue, 243
Oxycalcioroméite, 1099
Oxy-dravite, 1099
Oxykinoshitalite, 1099
Oxynatromicrolite, 1100
Oxyplumboroméite, 1100
Oxypyromorphite, 439
Oyelite, 1100
Ozokerite, 1100

P
Pabstite, 280, 1100
Padmaite, 1101
Paganoite phosphate analogue, 461
Pakhomovskyite, 1101
Palermoite, 1101
Palladinite, 1101
Palladosilicide, 1102
Palygorskite, 1102
Panguite, 1102
Panichiite, 1102
Papagoite, 1102
Parabutlerite, 477, 1103
Paracoquimbite, 1103
Paragonite, 1103
Paraguanajuatite, 1103
Parahopeite, 1104
Paramelaconite, 197
Paramontroseite, 1104
Paranatrolite, 1104
Paraotwayite, 1104
Parapierrotite, 1105
Pararealgar, 1105
Pararobertsite, 1105
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Parascholzite, 1105
Parascorodite, 1105
Parasibirskite, 1106
Parasymplesite, 1106
Paratacamite, 1106
Paratellurite, 1107
Paratooite-(La), 94, 1107
Paravauxite, 1107
Pargasite, 1107
Parisite-(Ce), 79, 1108
Parisite-(La), 78, 1108
Parnauite, 1108
Parsonsite, 1108
Parthéite, 1109
Partzite, 1109
Pašavaite, 1109
Pascoite, 1110
Patrónite, 1110
Pattersonite, 1110
Pauflerite, 1110
Pauflerite tetragonal dimorph, 517
Pauladamsite, 519
Paulingite-K, 1111
Paulmooreite, 1111
Pauloabibite, 1111
Paulscherrerite, 1111
Pavlovskyite, 1112
Pearlite, 323
Peatite-(Y), 1112
Pecoraite, 1112
Pectolite, 1112
Peisleyite, 1113
Péligotite, 1113
Penberthycroftite, 624
Penikisite, 453
Penkvilksite-2O, 1113
Penroseite, 1113
Pentagonite, 1114
Pentahydrite, 1114
Pentahydroborite, 1114
Pentlandite, 1114
Peretaite, 1115
Perhamite, 1115
Perite, 1115
Permingeatite, 1115
Perovskite, 1116
Pertsevite-(OH), 1116
Petalite, 1116
Petersite-(Ce), 1116
Petewilliamsite-related Cd diarsenate, 625
Petitjeanite, 455, 1117
Petrukite, 1117
Petterdite, 1117
Petzite, 1117
Pezzottaite, 1117
Pharmacolite, 1118
Pharmacosiderite, 1118
Pharmazincite, 1118
Phenakite, 1118

Philipsbornite, 1119
Philipsburgite, 1119
Phillipsite-K, 1119
Phillipsite-NH4, 315
Philolithite, 1119
Phlogopite, 734, 1120
Phoenicochroite, 1120
Phosgenite, 1120
Phosphammite, 1120
Phosphohedyphane, 1121
Phosphophyllite, 1121
Phosphorrösslerite, 462
Phosphosiderite, 1121
Phosphuranylite, 1121
Phurcalite, 1122
Pickeringite, 1122
Picromerite, 1122
Picromerite dimorph (?), 512
Picropharmacolite, 1122
Pieczkaite, 1123
Piemontite, 1123
Pigeonite, 1123
Pilawite-(Y), 240
Pilsenite, 1123, 1124
Pimelite, 1124
Pinakiolite, 1124
Pingguite, 696
Pinnoite, 1124
Pirssonite, 1125
Pitticite, 1125
Plancheite, 1125
Plášilite, 511, 1125
Platarsite, 1126
Platinum, 1126
Plattnerite, 1126
Plavnoite, 1126
Plimerite, 1127
Plombièrite, 1127
Plumbogummite, 1127
Plumbojarosite, 1127
Plumbophyllite, 289, 1128
Plumbotellurite, 698
Plumbotsumite, 1128
Poitevinite, 1128
Pokrovskite, 1128
Poldervaartite, 1129
Pollucite, 1129
Polyakovite-(Ce), 336
Polycrase-(Y), 1129
Polydymite, 1129
Polyhalite, 1130
Popovite, 1130
Portlandite, 1130
Posnjakite, 1130
Potarite, 1131
Potassic-ferri-leakeite, 275
Potassic-ferro-pargasite, 276
Potassic-magnesio-fluoro-arfvedsonite, 273
Potassium acid phosphate, 394
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Potassium acid pyrophosphate hydrate, 394
Potassium acid selenite, 648
Potassium acid tellurate hydrate

K2[TeO2(OH)4]∙3H2O, 686
Potassium aluminium molybdate, 673
Potassium antimonate tungstate, 713
Potassium antimony fluoride, 231
Potassium antimony oxoarsenate, 607
Potassium antimony oxophosphate, 396
Potassium antimony(V) oxophosphate, 395
Potassium arsenate tungstate K(AsW2O9), 714
Potassium barium borate KBaB5O9, 54
Potassium bismuth(III) phosphate, 396
Potassium bismuth(III) tungstate, 715
Potassium borate KB3O3(OH)4∙H2O, 73
Potassium borate KB3O5∙H2O, 55
Potassium borosilicate pollucite-type, 330
Potassium borosulfate K5[B(SO4)4], 492
Potassium calcium orthoborate, 31
Potassium chloride borate perovskite-related

K3B6O10Cl, 56
Potassium chromium divanadate, 568, 569
Potassium decavanadate decahydrate, 570
Potassium difluorphosphate, 397
Potassium diuranate, 155
Potassium hexavanadate hydrate, 570
Potassium hydronium uranyl selenate hydrate, 649
Potassium iron diarsenate (pyroarsenate), 608
Potassium iron pyrophosphate, 398
Potassium lead borophosphate, 398
Potassium lead carbonate fluoride, 81
Potassium lead phosphate, 399
Potassium magnesium acid phosphate hydrate, 400
Potassium magnesium acid pyrophosphate hydrate, 400
Potassium magnesium arsenate hexahydrate, 608
Potassium magnesium chromate hydrate, 592
Potassium magnesium orthoborate, 31
Potassium magnesium orthophosphate KMg4(PO4)3, 401
Potassium magnesium yttrium phosphate

(xenotime-type), 402
Potassium manganese arsenate, 609
Potassium manganese(III) fluoride, 232
Potassium mercury chloride hydrate, 543
Potassium monofluorphosphate, 402
Potassium nickel chromate hydrate, 593
Potassium niobate, 156
Potassium niobate KNb7O18, 157
Potassium niobate perovskite-type, 157
Potassium niobate tungstate, 158
Potassium niobium oxophosphate, 403
Potassium pentaborate, 56
Potassium peroxochromate, 593
Potassium sodium iron arsenate

Na2.77K1.52Fe2.57(AsO4)4, 610
Potassium sodium selenate, 650
Potassium sodium vanadyl sulfate, 493
Potassium sodium zinc borate K2NaZnB5O10, 57
Potassium strontium orthoborate, 32
Potassium tantalate tungstate, 159

Potassium tantalite perovskite-type, 159
Potassium tin orthophosphate, 404
Potassium titanium iodate, 701
Potassium titanium oxophosphate, 404
Potassium titanium silicate K2TiSi3O9∙H2O, 338
Potassium triborate, 58
Potassium uranium(V) sorosilicate, 349
Potassium uranyl fluoride, 232
Potassium urinate, 160
Potassiumvanadyl phosphate, 405
Potassium ytterbium acid orthoborate acid

orthophosphate, 406
Potassium ytterbium tungstate, 715
Potassium yttrium selenite, 650
Potassium zinc acid pyrophosphate hydrate, 406
Potassium zinc cyclotriphosphate benitoite-type, 407
Potassium zinc hydrogen phosphate, 463
Potassium zinc selenite K2Zn3(SeO3)4, 651
Potassium zinc sulfate chloride trihydrate, 493
Potassium zinc sulfate hexahydrate, 494
Potassium zirconium arsenate, 610
Pottsite, 1131
Poubaite, 1131
Poudretteite, 1131
Poughite, 697, 1131
Povondraite, 1132
Powellite, 1132
Praseodymium chromate(V), 594
Praseodymium cyclotriphosphatetrihydrate, 408
Prehnite, 1132
Preiswerkite, 1132
Pretulite, 1133
Příbramite, 1133
Priceite, 76, 1133
Priderite Al-analogue, 1133
Priderite Cr-analogue, 1134
Priderite Mg-analogue, 1133
Prismatine, 1134
Probertite, 76
Proshchenkoite-(Y), 332
Protoimogolite, 290
Proustite, 1134
Pseudoboleite, 1134
Pseudobrookite, 1135
Pseudocotunnite, 1135
Pseudojohannite, 1135
Pseudolaueite, 1135
Pseudomalachite, 1136
Pseudowollastonite, 1136
Pucherite, 585, 1136
Pumpellyite-(Al), 1136
Pyracmonite, 525
Pyrargyrite, 1137
Pyrite, 1137
Pyroaurite, 1137
Pyrochroite, 214, 1137
Pyrolusite, 1138
Pyromorphite As-rich, 1138
Pyromorphite, 1138
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Pyrope, 1139
Pyrophanite, 198, 1139
Pyrophyllite, 291, 1139
Pyrosmalite-(Fe), 1139
Pyrosmalite-(Mn), 1139
Pyroxmangite, 1140
Pyrrhotite, 1140

Q
Qandilite, 1140
Qingheiite, 1140
Qingsongite, 1141
Qingsongite (C-bearing), 115, 116
Quadridavyne, 1141
Quartz, 1141
Quenstedtite, 1141
Quetzalcoatlite, 1141
Quintinite, 1142
Quintinite-related hydroxyde carbonate

Mg4Cr2(OH)12(CO3)∙nH2O, 87
Quintinite-related hydroxyde carbonate

Ni4Cr2(OH)12(CO3)∙nH2O, 88

R
Raadeite, 463
Rabejacite, 1142
Raguinite, 1142
Rajite, 1143
Ramanite-(Cs), 1143
Ramanite-(Rb), 1143
Rambergite, 1143
Rameauite, 1144
Ramikite-(Y), 1144
Ramsdellite, 1144
Ranciéite, 1144
Rankamaite, 1145
Rankinite, 1145
Rapidcreekite, 1145
Raspite, 1145
Rasvumite, 1146
Ravatite, 1146
Raygrantite, 1146
Realgar, 1146
Rebulite, 1147
Reedmergnerite, 1147
Reevesite, 1147
Refikite, 107
Reichenbachite, 1147
Reinerite, 1148
Reinhardbraunsite, 1148
Rengeite, 1148
Reppiaite, 582
Retgersite, 1148
Reyerite, 1148
Rhabdophane-(Ce), 1149
Rhabdophane-(Nd), 1149
Rheniite, 1149
Rhodium sulfate, 525

Rhodium sulfate hydrate, 526
Rhodizite, 1149
Rhodochrosite, 1150
Rhodonite, 1150
Rhomboclase, 473, 1150
Rhönite, 1150
Richelsdorfite, 1151
Richterite, 1151
Riebeckite, 1151
Riebeckite (Crocidolite), 1151
Rimkorolgite, 1152
Ringwoodite, 1152
Rinkite, 1152
Riomarinaite, 1152
Riotintoite, 472
Rippite, 282
Robertsite, 1152
Robinsonite, 1153
Rockbridgeite, 444, 1153
Rodalquilarite, 1153
Rodolicoite, 1153
Roedderite Na-free analogue, 284
Rokühnite, 1154
Romanèchite, 1154
Romanorlovite, 737, 1154
Romarchite, 218, 1154
Römerite, 475, 1155
Rondorfite, 1155
Rongibbsite, 319, 1155
Ronneburgite, 587, 1155
Rooseveltite, 1156
Roquesite, 1156
Rosasite, 1156
Roscherite, 467
Roselite, 1156
Rosiaite, 1157
Rostite, 1157
Rouaite, 1157
Roumaite, 1157
Rowlandite-like mineral, 249
Rowleyite, 1158
Roxbyite, 1158
Roymillerite, 97
Rozenite, 1158
Rruffite, 1158
Rubicline, 308
Rubidium beryllium sulfate hydrate, 495
Rubidium iron(III) pyrophosphate, 408
Rubidium vanadyl phosphate, 409
Rucklidgeite, 1159
Rudashevskyite, 1159
Ruizite, 1159
Rusinovite, 1159
Russellite, 1159
Rustumite, 1160
Rutherfordine, 1160
Rutile, 198, 1160
Rynersonite, 1160
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S
Sabugalite, 1161
Sahlinite, 1161
Sailaufite, 1161
Sakhaite, 1161
Salammoniac, 1162
Saléeite, 1162
Samarium metaphosphate, 410
Samarium orthoborate, 33
Samarium oxalate decahydrate, 102
Samarskite-(Y), 208, 225, 1162
Samarskite-(Yb), 208
Sampleite, 1162
Sanderite Fe2+ analogue, 526
Sanderite, 1162
Sanguite, 553, 1163
Sanidine, 1163
Sanjuanite, 1163
Sanmartinite, 718, 1163
Santabarbaraite, 1164
Santarosaite, 1164
Santite, 1164
Saponite, 1164
Sapphirine, 323
Sarcopside, 1165
Sarkinite, 1165
Sarmientite, 1165
Sartorite, 1165
Sassolite, 1166
Satimolite, 75
Sborgite, 73
Scacchite, 1166
Scandium arsenate monohydrate, 611
Scandium lanthanum orthoborate, 33
Scandium vanadate tellurite, 687
Scandium vanadyl selenite, 652
Scarbroite, 89
Schafarzikite, 1166
Schäferite, 555
Schäferite Ni analogue, 584
Schairerite, 527
Scheelite, 1166
Schiavinatoite, 1166
Schlossmacherite, 1167
Schmiederite, 1167
Schmitterite, 1167
Schneiderhöhnite, 1167
Schoenfliesite, 199, 1168
Schoepite, 1168
Scholzite, 1168
Schorl, 1168
Schorlomite, 1169
Schreibersite, 1169
Schreyerite, 1169
Schröckingerite, 1169
Schuetteite, 1170
Schülerite-type mineral, 343
Schultenite, 1170
Schumacherite, 1170

Schwartzembergite, 537
Schwertmannite, 1170
Scolecite, 1170
Scorodite, 1171
Scotlandite, 1171
Scottyite, 248, 1171
Scrutinyite, 1171
Sederholmite, 1172
Segnitite, 1172
Seinäjokite, 1172
Sejkoraite-(Y), 1172
Sekaninaite, 1173
Selenium, 1173
Seligmannite, 1173
Sellaite, 1173
Sénarmontite, 1174
Senegalite, 1174
Sepiolite, 1174
Sérandite, 1174
Serendibite, 1175
Serpierite, 1175
Shannonite, 96
Shattuckite, 1175
Shcherbinaite, 1175
Shchurovskyite, 1176
Shortite, 1176
Shuangfengite, 1176
Shulamitite, 1176
Shumwayite, 514
Siderite, 1176
Sideronatrite, 1177
Sidorenkite, 1177
Sidwillite, 1177
Siegenite, 1177
Sigloite, 1178
Siidraite, 1178
Silicocarnotite, 1178
Silicon, 8, 1179
Silinaite, 291
Sillénite, 1179
Sillimanite, 1179
Silver indium sulfide AgIn5S8, 495
Silver iron(III) pyrophosphate, 410
Silver tantalum sulfide, 496
Simojovelite, 108
Simonkolleite, 547, 548, 1179
Sinhalite, 72, 1179
Sinjarite, 1180
Sinoite, 116, 1180
Skinnerite, 1180
Skippenite, 1180
Sklodowskite, 1181
Skorpionite, 1181
Smirnite, 1181
Smirnovskite, 440
Smithite, 1181
Smithsonite, 1182
Smythite, 1182
Sobolevskite, 1182
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Sodalite, 1182
Sodalite Ca-Al-Mo-analogue, 120
Sodalite Ca-Al-Mo-W-analogue, 119
Sodalite Ca-Al-Mo-W-analogue, 120
Sodalite nitrite analogue, 309
Soddyite, 1182
Sodium acid diarsenite tellurite, 688
Sodium acid pyrophosphate hydrate, 411
Sodium acid selenite, 653
Sodium acid tellurate Na2[TeO2(OH)4], 688
Sodium aluminium molybdate, 674
Sodium aluminum borate Na2Al2B2O7, 58
Sodium barium borate NaBaB5O9, 59
Sodium bismuth molybdate scheelite-type, 674
Sodium borate Na2B5O8(OH)∙2H2O, 60
Sodium borophosphate Na5(B2P3O13), 60
Sodium borosulfate Na5[B(SO4)4], 61
Sodium cadmium selenate hydrate, 654
Sodium cadmium sulfate hydrate, 497
Sodium calcium orthoborate, 34, 35
Sodium calcium pentaborate Na3Ca(B5O10), 62
Sodium calcium silicophosphate Na2Ca4(PO4)2SiO4

(apatite-type), 457
Sodium diuranate, 161
Sodium gadolinium oxophosphate, 412
Sodium indium arsenate (alluaudite-type), 612
Sodium iron(II) iron(III) phosphate alluaudite-type, 412
Sodium iron(II) pyrophosphate, 413
Sodium iron(III) pyrophosphate, 414
Sodium iron(III) tin orthophosphate, 441
Sodium lanthanum orthoborate, 35
Sodium lanthanum pyrophosphate, 414
Sodium lead neodymium arsenate chloride

(apatite-type), 613
Sodium lithium aluminosilicate Na3Li2(AlSi2O8), 285
Sodium lithium gadolinium carbonate Na2LiGd(CO3)3, 82
Sodium lithium selenate hydrate, 654
Sodium magnesium orthophosphate pyrophosphate

Na4Mg3(PO4)2(P2O7), 415
Sodium magnesium pentaborate Na3MgB5O10, 63
Sodium manganese(II) iron(III) phosphate

alluaudite-type, 416
Sodium manganese(II) sulfate alluadite-type, 497
Sodium molybdenum(VI) tellurite, 689
Sodium nickel iron(III) arsenate, 613
Sodium niobium oxophosphate, 416
Sodium samarium orthoborate, 36
Sodium scandium carbonate Na5Sc(CO3)3∙2H2O, 83
Sodium stannate, 161
Sodium strontium aluminum borate NaSr7AlB18O36, 64
Sodium strontium orthoborate, 37
Sodium tantalite perovskite-type, 162
Sodium tellurate tellurite hydrate Na2Te2O6∙1.5H2O, 690
Sodium tellurite β-Na2Te4O9, 690
Sodium thioborate Na3B3S6, 498
Sodium thioborate Na3BS3, 499
Sodium tin orthophosphate, 417
Sodium tin phosphate, 442
Sodium titanate Na2Ti3O7, 200

Sodium titanate Na2Ti6O13, 207
Sodium titanium iodate, 702
Sodium titanium phosphate, 445
Sodium titanium silicate Na2TiSi2O7∙2H2O, 339
Sodium tungsten tellurite, 691
Sodium uranate, 163
Sodium vanadyl borate Na3(VO2)B6O11, 64
Sodium vanadyl phosphate Na(VO)PO4, 418
Sodium vanadyl phosphate Na2(VO2)(PO4), 418
Sodium yttrium selenite, 655
Sodium yttrium tellurate borate Na2Y2(Te

6+B2O10), 65
Sodium yttrium titanate, 163
Sodium zinc orthophosphate, 419
Sodium zinc pentaborate Na3ZnB5O10, 66
Sodium zinc pyrophosphate, 420
Sodium zinc selenite Na2Zn3(SeO3)4∙2H2O, 656
Sodium zirconium arsenate, 614, 615
Söhngeite, 1183
Somersetite, 86
Sonolite, 1183
Sonoraite, 1183
Spangolite, 1183
Spencerite, 1184
Sperrylite, 1184
Spertiniite, 201, 1184
Spessartine, 1184
Spessartine Ca-rich, 241
Sphaerobertrandite, 324
Sphaerobismoite, 202
Sphalerite, 1184
Spherocobaltite, 1185
Spinel, 1185
Spionkopite, 1185
Spiroffite, 1185
Spodumene, 1186
Spurrite, 1186
Šreinite, 1186
Srilankite, 1186
Stanfieldite, 1186
Stanleyite, 1187
Stannite, 1187
Starkeyite, 1187
Starovaite, 1187
Staurolite, 1188
Steedeite, 1188
Steenstrupine-(Ce), 1188
Stepanovite, 108
Stephanite, 522, 1188
Štěpite, 1189
Stercorite, 1189
Steropesite, 1189
Stetindite, 1189
Stevensite, 293
Stibarsen, 1189
Stibiconite, 1190
Stibioclaudetite, 1190
Stibiocolumbite, 1190
Stibiopalladinite, 1190
Stibnite, 1191
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Stichtite, 79, 1191
Stilbite-Ca, 1191
Stilbite-Na, 1191
Stilleite, 1192
Stilpnomelane, 1192
Stishovite, 1192
Stoiberite, 1192
Stolzite, 1192
Stoppaniite, 1193
Stottite, 1193
Strashimirite, 1193
Strengite, 1193
Stringhamite, 1194
Stromeyerite, 1194
Stronadelphite, 1194
Strontianite, 1194
Strontiofluorite, 1194
Strontiohurlbutite, 445, 1195
Strontiojoaquinite, 1195
Strontium aluminum hydroxide, 164
Strontium bismuth(III) selenite hydrate, 656
Strontium borate chloride Sr2B5O9Cl, 67
Strontium borate SrB2O4, 67
Strontium borate SrB8O13, 68
Strontium boroarsenate Sr(BAsO5), 69
Strontium cerium antimonate perovskite-type, 164
Strontium copper tellurate tellurite, 692
Strontium iron(III) oxycarbonate, 83
Strontium iron phosphate whitlockite-related, 420
Strontium magnesium niobate, 165
Strontium magnesium pyrophosphate, 421
Strontium selenate, 657
Strontium tungstate, 716
Strontium vanadyl vanadate, 571
Strunzite, 1195
Struvite, 1196
Struvite Cd analogue, 356
Struvite-(K), 1195
Studtite, 1196
Sturmanite, 1196
Stützite, 1196
Sudoite, 294, 1197
Sudovikovite, 1197
Sulfhydrylbystrite, 310
Sulfur, 1197
Sulphohalite, 1197
Sulvanite, 1198
Suredaite, 1198
Sursassite, 1198
Susannite, 1198
Suseinargiuite, 1199
Svabite, 633
Svanbergite, 1199
Švenekite, 1199
Svornostite, 1199
Swamboite-(Nd), 349
Swedenborgite, 1200
Symplesite, 628, 1200
Synchysite-(Ce), 1200

Syngenite, 1200
Szaibélyite, 1200
Szenicsite, 1201
Szmikite, 1201
Szomolnokite, 478, 1201

T
Takedaite, 1201
Takovite, 1202
Talc, 1202
Talmessite, 1202
Tangdanite, 1203
Tangeite, 1203
Tantalite-(Fe), 1203
Tantalite-(Mg), 1203
Tantalite-(Mn), 1204
Tantalum oxyarsenate, 615
Tantalum oxyphosphate, 422
Tantalum oxyvanadate, 572
Tantite, 202
Tantite orthorhombic polymorph, 1204
Taranakite, 1204
Tarapacáite, 1204
Tarbuttite, 1205
Tausonite, 1205
Tazheranite, 1205
Tazzoliite, 1205
Teepleite, 1205
Teineite, 1206
Tellurantimony, 1206
Tellurite rhombohedral polymorph, 166
Tellurium, 694, 1206
Tellurium(IV) oxosulfate, 499
Tellurium(IV) oxovanadate, 572
Tellurium oxumolybdate, 675
Tellurium(IV) oxyphosphate, 423
Tellurium(IV) oxyselenate, 658
Tellurium oxyselenite, 658
Tellurium(IV) tin oxide Te3SnO8, 166
Tellurium(IV) titanium oxide Te3TiO8, 167
Tellurium(IV) zirconium oxide Te3ZrO8, 168
Tellurobismuthite, 1206
Telluroperite, 555
Tengerite-(Y), 1206
Tennantite, 1207
Tenorite, 1207
Tephroite, 1207
Terlinguacreekite, 549
Tetraferrinontronite, 295
Tetrahedrite, 1207
Tetrammine zinc borofluoride, 233
Tetrawickmanite, 1208
Thadeuite, 468
Thallium feldspar, 311
Thallium sodalite, 311
Thallium tellurite, 692
Thallium(I) selenite vanadate TlSeVO5, 573
Thallium(I) tellurite vanadate TlTeVO5, 574
Thaumasite, 732, 734, 1208
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Thecotrichite, 1208
Theophrastite, 1208
Thermonatrite, 1208
Thometzekite, 1209
Thomsonite-Ca, 1209
Thorianite, 1209
Thorikosite, 1209
Thorite, 1210
Thorium divanadate cubic polymorph, 574
Thorium divanadate orthorhombic polymorph, 575
Thorium hydrogenphosphate, 424
Thorium tellurite, 693
Thorneite, 1210
Thortveitite, 1210
Thorutite, 1210
Threadgoldite, 1211
Tiemannite, 1211
Tilasite, 1211
Tilleyite, 1211
Tin(IV) hydroxide, 168
Tin tetraborate, 69
Tiragalloite, 1212
Tissintite, 1212
Tistarite, 203, 1212
Titanite, 1212
Titanium acid phosphate monohydrate, 425
Titanium(III) orthophosphate, 424
Titanium oxophosphate hydrate, 426
Titanoholtite, 1213
Tlapallite, 1213
Tobelite hydrated variety, 286
Tobermorite, 278, 1213
Todorokite, 1213
Tokyoite, 1214
Tolbachite, 554, 1214
Tondiite, 1214
Tooeleite, 1214
Topaz, 723, 725, 1215
Torbernite, 1215
Toturite, 1215
Trabzonite, 1215
Tremolite, 1216
Trevorite, 1216
Trevorite Co-analogue, 203
Triammoniun hydrogen disulfate, 500
Triazolite, 110
Tridymite, 1216
Trilithionite, 1216
Trinepheline, 1217
Triphylite Mg-analogue, 446
Triplite, 1217
Trippkeite, 1217
Tripuhyite, 1217
Trogtalite, 1218
Troilite, 1218
Trolleite, 454
Trona, 1218
Tschermigite, 1218
Tschernichite, 317

Tsumcorite, 1218
Tsumebite, 1219
Tsumoite, 1219
Tugarinovite, 1219
Tuite, 1219
Tululite, 1220
Tunellite, 1220
Tungstenite, 1220
Tungsten(VI) oxyphosphate, 427
Tungsten trioxide monoclinic, 169
Tungsten trioxide orthorhombic, 170
Tungsten trioxide triclinic, 170
Tungstite, 1220
Tunisite, 1221
Turquoise, 1221
Tuzlaite, 1221
Tvrdýite, 352, 447
Tychite, 1221
Tyretskite (monoclinic polytype), 74
Tyrolite, 1222
Tyuyamunite, 1222

U
Uedaite-(Ce), 254
Ulexite, 1222
Ulfanderssonite-(Ce), 243
Ulrichite, 1222
Ulvospinel Zn-analogue, 204
Ulvöspinel, 1223
Umangite, 1223
Umbite, 1223
Umbrianite, 1223
Ungemachite, 1224
Uraninite, 1224
Uranium(IV) oxalate fluoride hydrate, 102
Uranophane-α, 1224
Uranopilite, 1224
Uranosphaerite, 1225
Uranospinite, 638
Uranyl fluoride, 234
Uranyl nitrate hexahydrate, 113
Uranyl oxy-hydroxyphosphate, 427
Uranyl perrhenate hydrate, 719
Urea solution, 1225
Ushkovite, 1225
Usturite, 1225
Uvarovite, 1226
Uvite, 1226

V
Vaesite, 1226
Vajdakite, 1226
Valentinite, 1227
Vanackerite, 1227
Vanadinite Sr,OH-analogue, 580
Vanadinite, 1227
Vanadium(III) antimony(V) selenite, 659
Vanadium oxide bariandite-type, 171
Vanadyl molybdate, 678
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β-Vanadyl pyrophosphate, 363
γ-Vanadyl pyrophosphate, 374
Vanadyl selenite, 660
Vanadyl sulfate, 517
Vandenbrandeite, 204
Vandenbrandeite hydrogen-free analogue, 205
Vandendriesscheite, 1227
Vanmeersscheite, 1228
Vantasselite, 1228
Vanthoffite, 1228
Vapnikite, 1229
Variscite, 1229
Variscite-4O, 353
Varulite, 455
Västmanlandite-(Ce), 1229
Vaterite, 1229
Vauquelinite, 1230
Vauxite, 1230
Väyrynenite, 443, 1230
Velikite, 1231
Versiliaite, 1231
Vésigniéite, 1231
Vesuvianite, 2, 5, 259, 1231
Vesuvianite B-bearing, 262, 263
Vesuvianite Cr-bearing, 260
Vesuvianite S-bearing, 260
Veszelyite, 1231
Villamanínite, 1232
Vishnevite, 303
Vishnevite CO3-bearing, 304
Vishnevite potassium analogue, 302
Vittingeite, 268
Vivianite, 731, 1232
Vladimirivanovite, 1232
Vladykinite, 1232
Voglite, 1233
Volaschioite, 1233
Volborthite, 1233
Vonsenite, 1233
Vorlanite, 1234
Vrbaite, 1234
Vuorelainenite, 1234
Vyacheslavite, 464
Vyacheslavite anhydrous Th analogue, 464
Vysokýite, 626, 1234
Vysotskite, 1235

W
Wadalite, 237
Wadeite, 1235
Wadeite dimorph, 280
Wadeite Rb analogue, 281
Wadsleyite, 1235
Wagnerite-Ma5bc, 1235
Waimirite-(Y), 1236
Waimirite-(Yb), 235
Wakabayashilite, 1236
Wakefieldite-(Ce), 1236
Wakefieldite-(La), 1236
Wakefieldite-(Nd), 1236
Wakefieldite-(Pr), 581

Wakefieldite-(Y), 588, 1237
Walpurgite, 1237
Walstromite, 1237
Wardite, 1237
Waterhouseite, 1238
Wavellite, 1238
Wavellite-(OH), 443
Waylandite, 1238
Weddellite, 1238
Weeksite, 1239
Wegscheiderite, 1239
Weissbergite, 1239
Weloganite, 1239
Wendwilsonite, 1240
Wermlandite carbonate analogue, 91
Wernerbaurite, 584
Wernerkrauseite, 1240
Wesselsite, 298
Wetherillite, 1240
Wheatleyite, 1241
Whelanite, 1241
Whewellite, 1241
Whitecapsite, 1241
Whiteite [possibly, whiteite-(CaMnMg)], 1242
Whitlockite, 1242
Whitmoreite, 1242
Widenmannite, 1242
Wiklundite, 348
Wilhelmgümbelite, 448
Willemite, 1243
Willemseite, 1243
Wiluite, 252, 255
Windhoekite Na-bearing variety, 293
Winstanleyite, 1243
Witherite, 1243
Wittichenite, 1243
Wollastonite, 1244
Wölsendorfite, 221
Woodallite, 123
Woodhouseite, 1244
Wopmayite, 1244
Wulfenite, 1244
Wupatkiite, 1245
Wurtzite, 1245
Wüstite, 1245

X
Xanthoxenite, 438
Xenotime-(Y), 1245
Xieite, 1246
Ximengite polymorph, 448, 449
Xocolatlite, 1246
Xocomecatlite, 1246
Xonotlite, 1246

Y
Yafsoanite, 695
Yangzhumingite, 295
Yarrowite, 1247
Yavapaiite, 478
Yecoraite, 1247
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Ye’elimite, 1247
Yimengite, 1247
Yingjiangite, 1247
Yoshimuraite, 337
Yttriaite-(Y), 1248
Yttrium barium borate YBa3B9O18, 70
Yttrium hydroxychloride hydrate, 543
Yttrium iron antimony(V) oxide pyrochlore-type, 172
Yttrium metaphosphate, 428
Yttrium oxide, 172
Yttrium tungstate, 717
Yttrium vanadyl oxyselenite, 660
Yttrium vanadyl oxytellurite, 694
Yukonite, 1248
Yuksporite, 1248
Yurmarinite, 1248
Yushkinite, 1249
Yvonite, 1249

Z
Żabińskiite, 1249
Zadovite, 1249
Zaherite, 518
Zálesíite, 1250
Zanazziite, 1250
Zaratite, 1250
Zdenĕkite, 1250
Zellerite, 1251
Zemannite, 698, 1251
Zemkorite, 1251
Zhangpeishanite, 1251
Zhemchuzhnikovite, 109
Ziesite, 1252
Ziesite and blossite polymorph, 582
Ziminaite, 588

Ziminaite monoclinic polymorph, 583
Zinc basic pyrovanadate hydrate, 577
Zinc hydroxychloride, 544
Zinc hydroxyfluoride, 234
Zinc iron(III) orthovanadate, 576
Zincite, 206, 1252
Zinc molybdate, 676
Zincoberaunite, 350
Zincobotryogen, 528
Zincochromite, 1252
Zincocopiapite, 1252
Zinc orthoborate hydroxide, 38
Zinc orthoborate orthophosphate, 39
Zinc orthovanadate, 576
Zincospiroffite, 1253
Zincovelesite-6N6S, 220
Zincovoltaite, 531
Zinc stannate, 174
Zinc telluromolybdate, 676
Zinc vanadyl oxide Zn(VO2)2O2, 578
Zinc vanadyl phosphate, 429
Zinkenite, 1253
Zippeite, 1253
Zircon, 1253
Zirconium acid arsenate monohydrate, 616
Zirconium acid phosphate monohydrate, 429, 430
Zirconium basic oxalate, 103
Zirconium molybdenum oxide (monoclinic), 677
Zirconium molybdenum oxide (trigonal), 678
Zirconolite-2M, 218
Zoisite, 1254
Zorite, 1254
Zuktamrurite, 1254
Zunyite, 1254
Zýkaite, 1255
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