Springer Mineralogy

Nikita V. Chukanov Marina F. Vigasina

Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds

EXTRAS ONLINE

Springer Mineralogy

More information about this series at <http://www.springer.com/series/13488>

Nikita V. Chukanov • Marina F. Vigasina

Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds

Nikita V. Chukanov Institute of Problems of Chemical Physics Russian Academy of Sciences Chernogolovka, Russia

Marina F. Vigasina Geological Faculty Moscow State University Moscow, Russia

Additional material to this book can be downloaded from [http://extras.springer.com.](http://extras.springer.com)

ISSN 2366-1585 ISSN 2366-1593 (electronic) Springer Mineralogy
ISBN 978-3-030-26802-2 ISBN 978-3-030-26803-9 (eBook) <https://doi.org/10.1007/978-3-030-26803-9>

 \circ Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Alexandr Dmitrievich Chervonnyi 1948–2017

This book is dedicated to the memory of the outstanding scientist, a specialist in the field of inorganic materials and chemistry of rare-earth elements Dr. Alexandr Dmitrievich Chervonnyi. Him belongs the idea to publish this book.

Preface

This volume is the third and final part of the series of reference books on vibrational spectra of minerals. Unlike the two previous parts (Chukanov 2014; Chukanov and Chervonnyi 2016), this book contains not only infrared (IR) spectra of minerals but also data on their Raman spectra.

In Chap. [1](#page-10-0), numerous examples of the application of IR spectroscopy to the analysis of crystal-chemical features of minerals are considered. In particular, spectral bands that characterize different local situations around OH^- and $BO₃³⁻$ groups in vesuvianite-group minerals are revealed. The effect of symmetry on the parameters of IR spectra of vesuvianite-group minerals is discussed. By means of IR and Raman spectroscopic methods, it is shown that the clathrate mineral melanophlogite is not a single species but a mineral group including minerals with different combinations of small molecules $(CO_2, CH_4, H_2S, N_2, H_2O, C_2H_6)$ entrapped in structural cages. Based on numerous IR spectra of nakauriite samples from different localities, it is demonstrated that this mineral does not contain sulfate groups, and its tentative simplified formula $(Mg_3Cu^{2+})(OH)_6(CO_3)$ ⁻⁴H₂O is suggested. A close crystal chemical relationship between nepskoeite and shabynite is demonstrated based on their IR spectra, compositional, and X-ray diffraction data. Contrary to the formula $Mg_4Cl(OH)_7·6H_2O$ accepted for nepskoeite, this mineral is a borate with the tentative simplified formula $Mg_5(BO_3)(Cl,$ OH ₂(OH)₅ nH_2O ($n > 4$). Consequently, shabynite may be a product of nepskoeite dehydration. Based on IR spectroscopic data, it is also shown that some nominally boron-free lead carbonate minerals (molybdophyllite, hydrocerussite, plumbonacrite, somersetite) often contain minor BO_3^3 admixture which is overlooked in structural and chemical analyses.

Chapter [2](#page-27-0) contains IR spectra of 1024 minerals and related compounds which were not included in the preceding reference books of this series (Chukanov 2014; Chukanov and Chervonnyi 2016). Most spectra are accompanied by the information about the origin of reference samples, methods of their identification, and analytical data.

In Chap. [3](#page-728-0), possibilities, advantages, and shortcomings of Raman spectroscopy as a method of investigation and identification of minerals are discussed. Numerous examples illustrate capabilities of Raman spectroscopy in identification of minerals and analysis of their crystal chemical features, orientation, and polarization effects, selection rules, as well as difficulties encountered in

the study of microscopic inclusions in minerals and minerals that are unstable under laser beam.

Chapter [4](#page-747-0) contains data on 2104 Raman spectra of more than 2000 mineral species taken from various periodicals. The data are accompanied by some experimental details and information on the reference samples used.

A supplementary chapter provides comments on published IR spectra which are erroneous, dubious, or of poor quality. This chapter is provided by a separate list of references.

This work was carried out with assistance of numerous colleagues. The working partnership with Prof. I.V. Pekov, Dr. A.D. Chervonnyi, and Dr. S.A. Vozchikova was the most important.

Reference samples and valuable analytical data were kindly granted by A.V. Kasatkin, S. Jančev, E. Jonssen, R. Hochleitner, E.V. Galuskin, S. Weiss, N.V. Sorokhtina, Ł. Kruszewski, and many other mineralogists, as well as mineral collectors, of which the contribution of R. Kristiansen, G. Möhn, W. Schüller, B. Ternes, G. Blass, B. Dünkel, S. Möckel, and C. Schäfer was the most important. Collaboration with the crystallographers N.V. Zubkova, R.K. Rastsvetaeva, S.M. Aksenov, D.I. Pushcharovsky, T.L. Panikorovskii, O.I. Siidra, S.N. Britvin, M.G. Krzhizhanovskaya, D.A. Ksenofontov, S.V. Krivovichev, and I. Grey, as well as with specialists in different areas of geosciences and analytical methods (J. Göttlicher, K.V. Van, D.A. Varlamov, V.N. Ermolaeva, D.I. Belakovskiy, Yu.S. Polekhovsky, P. Voudouris, A. Magganas, A. Katerinopoulos, N.V. Shchipalkina, V.O. Yapaskurt, L.A. Pautov, V.S. Rusakov, R. Scholz, A.R. Kampf, S. Encheva, P. Petrov, Ya.V. Bychkova, N.N. Koshlyakova, P. Yu. Plechov, C.L.A. de Oliveira, I.S. Lykova, and T.S. Larikova) was especially fruitful. All of them are kindly appreciated.

This work was partly supported by the Russian Foundation for Basic Research, grant no. 18-29-12007. A part of analytical data on reference samples was obtained in accordance with the Russian Government task, registration no. 0089-2016-0001.

Reference

Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer, Cham. (1109 pp)

Spectroscopy in Mineralogical Studies 1

Some Examples of the Use of IR

1.1 Characteristic Bands in IR Spectra of Vesuvianite-Group Minerals

Vesuvianite-group minerals (VGM) are widespread and occur in different geological formations including regional metamorphic rocks, skarns, rodingites, etc. Specific crystal-chemical features of these minerals reflect conditions of their crystallization. As a rule, high-temperature VGM have high-symmetry structures (space group P4/ nnc), whereas low-temperature samples are characterized by the symmetry P4/n or P4nc (Allen and Burnham 1992). The simplified crystal-chemical formula of VGM is $X_{18}(X'Y1)$ $Y2_4Y3_8T_{0-5}(SiO_4)_{10}(Si_2O_7)_4O_{1-2}W_9$ where X, $X' =$ Ca, Na, K, Fe²⁺, and REE (cations with coordination numbers from 7 to 9); $Y1-Y3 = A1$, Mg, Fe²⁺, Fe³⁺, Mn²⁺, Mn³⁺, Ti, Cr, Cu, Zn; $T = B$, Al, \Box ; $W = OH$, F, O. The Y1 cations have tetragonal-pyramidal coordination, whereas the Y2 and Y3 cations occur in octahedra.

IR spectra of VGM are discussed in numerous publications (Paluszkiewicz and Żabiński 1992; Groat et al. 1995; Kurazhkovskaya and Borovikova 2003; Kurazhkovskaya et al. 2005; Borovikova and Kurazhkovskaya 2006); however, in most cases their interpretation is ambiguous. We have obtained IR spectra of 33 VGM

samples from different kinds of localities which have been preliminarily investigated in detail using electron microprobe (including determination of boron), single-crystal X-ray structural analysis, DSC, 27 Al NMR, ICP-MS, and Mössbauer spectroscopy. As a result, characteristic IR bands corresponding to different local situations in the structures of VGM have been revealed. Data on crystal structures, crystal chemistry, and IR spectra of these samples are published by Britvin et al. (2003), Panikorovskii et al. (2016a–d, 2017a–d), and Aksenov et al. (2016). The most important results of this investigation are listed below in comparison with data published elsewhere.

1.1.1 O–H-Stretching Vibrations

The following empirical correlations between O– H stretching frequencies in IR spectra of minerals and $O \cdots O$ and $H \cdots O$ distances (from structural data) were established by E. Libowitzky (1999):

$$
\nu \left(\text{cm}^{-1} \right) = 3592 - 304 \cdot 10^9
$$

$$
\cdot \exp \left[-d(\text{O} \cdot \cdot \text{O})/0.1321 \right] \tag{1.1}
$$

$$
\nu \left(\text{cm}^{-1} \right) = 3632 - 1.79 \cdot 10^6
$$

$$
\cdot \exp \left[-d(\text{H} \cdot \cdot \text{O})/0.2146 \right] \tag{1.2}
$$

 \circ Springer Nature Switzerland AG 2020

N. V. Chukanov, M. F. Vigasina, Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds, Springer Mineralogy, https://doi.org/10.1007/978-3-030-26803-9_1

Two decades ago this publication was of a great importance because it emphasized the existence of such correlations as a general trend. However, over time it became obvious that the Eqs. (1.1) (1.1) (1.1) and (1.2) (1.2) (1.2) are a very rough approximation and have a restricted applicability. First, it is to be noted that at high frequencies (above 3500 cm^{-1}) substantial deviations from the correlations (1.1) (1.1) (1.1) and (1.2) are common because O–H stretching frequencies depend not only on $O \cdots O$ and $H \cdots O$ distances, but also on the nature of cations coordinating $O-H$ groups and H_2O molecules, as well as on the angle $O-H\cdots O$, and the influence of these factors becomes most evident in case of weak hydrogen bonds. The Eqs. (1.1) and (1.2) (1.2) (1.2) predict that maximum possible values of O–H stretching frequencies for minerals are 3592 and 3632 cm^{-1} respectively. However, in many minerals including magnesium serpentines, brucite, kaolinite, amphiboles, etc. observed frequencies are much higher and even can exceed 3700 cm^{-1} .

In the IR spectra of VGM some absorption bands of O–H stretching vibrations are poorly resolved. In such cases, band component analysis is the most important source of errors and artifacts during data processing because of low correctness of inverse mathematical problems: small errors in experimental data lead to strong uncertainty of the final result. Additional uncertainty is connected with arbitrary choice of the band shape (Gauss, Lorentz, Voigt, or Lorentz-Gauss cross-product function), the number of components, and the acceptable values of the correlation coefficient R (e.g., 0.99, 0.995, or 0.999). This matter is discussed in detail by Chukanov and Chervonnyi (2016) (the section 1.1 "Sources of Errors and Artifacts in IR Spectroscopy of Minerals") where it is shown that different variants of band shape analysis may give a good and almost identical approximation accuracy (say, $R^2 \approx 0.9995$), but lead to totally different results.

For most VGM investigated by Chukanov et al. (2018) there are significant discrepancies between wavenumbers of observed O–H stretching bands and ν values calculated using correlations suggested by Libowitzky (1999). The above considerations explain why the attempts to apply Eqs. (1.1) (1.1) and (1.2) (1.2) to VGM failed.

Groat et al. (1995) distinguished 13 bands of O–H stretching vibrations in IR spectra of VGM, which have absorption maxima at the following wavenumbers (cm^{-1}) : 3670 (A), 3635 (B), 3596 (C), 3567 (D), 3524 (E), 3487 (F), 3430 (G), 3383 (H), 3240 (I), 3210 (J), 3156 (K), 3120 (L), and 3054 (M). The polarization of these bands with respect to the fourfold c axis is as follows: $E \wedge c < 35^{\circ}$ for the A–H bands, $E \perp c$ for the I band, and Ellc for the J-M bands (Groat et al. 1995; Bellatreccia et al. 2005). Consequently, the bands A–H and J–M can be assigned to the vibrations of differently coordinated O11–H1 and O10–H2 groups, respectively. The I band was tentatively assigned to O–H stretching vibrations of silanol group (Chukanov et al. 2018).

Our data show that actually significant deviations of the A–M band positions from the "ideal" values indicated by Groat et al. (1995) take place. In particular, IR spectra of many VGM samples contain a band in the range 3440–3470 cm⁻¹, i.e., between F and G bands. Taking into account that in the group of 33 chemically and structurally investigated samples the intensity of this band shows distinct positive correlation with Ti content, it was assigned to vibrations of the O11–H1 group coordinated by Ti (Chukanov et al. 2018). Most Ti-rich samples are characterized by the space group P4/nnc. The only exception is a sample from the Ahkmatovskaya open pit, South Urals with 1.54 $apfu$ Ti, space group $P4/n$ showing bands at 3488 cm^{-1} (with a shoulder at 3460 cm^{-1}) and 3424 cm⁻¹ instead of a single band in the range 3440–3470 cm⁻¹ (Fig. [1.1](#page-12-0)).

Vesuvianite from the Ahkmatovskaya open pit is the only Ti-bearing VGM having space group $P4/n$ among 33 samples investigated by Chukanov et al. (2018). The observed splitting of the band of TiO–H stretching vibrations is the result of distribution of Ti between the sites Y3A and Y3B, whereas in high-temperature VGM having the space group P4/nnc Ti is accumulated in the single Y3 site.

IR band in the range $3375-3380$ cm⁻¹ which is close to the H band by Groat et al. (1995) was observed by us only for two samples with the symmetry $P4/n$ and high contents of Cu and

Fig. 1.1 IR spectra of vesuvianite-group minerals with different contents of Ti in the region of O–H-stretching vibrations: a sample from Alchuri, Shigar Valley, Pakistan (Aksenov et al. 2016) with $Ti_{2,21}$ (*a*); a sample from Hazlov, Karlovy Vary Region, Czech Republic with $Ti_{0.48}$ (b); a sample from Myrseter area, Drammen,

 Mn^{3+} . This band is more intense in the IR spectrum of the sample from the N'Chwaning III mine, Kuruman, South Africa with a relatively higher content of Mn^{3+} (1.83 *apfu*). Based on these data, the band in the range $3375-3380$ cm⁻¹ can be assigned to the ${}^{Y3}Mn^{3+} \cdots$ O11–H1 group.

The nominal position of the D band is 3567 cm⁻¹ (Groat et al. 1995), but in IR spectra of some samples this band is shifted towards lower wavenumbers (up to 3560 cm^{-1}). The D band is not observed in IR spectra of F-poor VGM and has the highest intensities in IR spectra of samples with most high contents of F (Britvin et al. 2003; Galuskin et al. 2003; Chukanov et al. 2018; see Fig. [1.2\)](#page-13-0). Taking into account polarization $E \wedge c < 35^{\circ}$ (Groat et al. 1995), the D band is to be assigned to the group O11–H1 in the situation when F occupies neighboring O11 site.

Galuskin et al. (2003) supposed that the J band corresponds to OH groups in the O10 site coordinating Fe in Y1 and forming hydrogen bond with F in the neighboring O10 site. However, this assumption was not confirmed by our investigations: IR spectra of most VGM,

Buskerud, Norway with $Ti_{0.00}$ (c); VGM from the Ahkmatovskaya open pit, South Urals, Russia with $Ti_{1.54}$ (anomalous Ti-rich sample, space group $P4/n$) (d). Two vertical lines outline the region of the band corresponding to the Ti \cdots O11–H1 group in *P4/nnc* VGM

including F- and Fe-poor ones, contain distinct J band whose wavenumber varies from 3190 to 3225 cm⁻¹. These values correspond to strong hydrogen bonds, which is hardly possible in cases when F is the H-bond acceptor.

The weak B band (in the range from 3628 to 3632 cm^{-1}) is often observed in IR spectra of low-symmetry VGM. This band corresponds to very weak H-bonds formed by the groups O11– H1 with low values of the angle between O11–H1 and $H1 \cdots O7$ (see Lager et al. 1999).

1.1.2 B–O-Stretching Vibrations

In VGM boron can occupy sites with coordination numbers 3 or 4. IR spectra of most VGM samples contain shoulders in the range $1070-1170$ cm⁻¹ corresponding to stretching vibrations of [BO₄] tetrahedra.

 $BO₃$ groups are connected with $Y1O6₄O10$ polyhedra via O10 oxygen atom to form the cluster $T2Y1O₇$ (Fig. [1.3\)](#page-13-0) where $T2 = B$ and $Y1 = Fe³⁺$, $Fe²⁺, Mn³⁺, Cu²⁺, Al, or Mg. As a result, four$

degrees of freedom corresponding to the bond lengths $T2-O12$ (\times 2), $T2-O10$, and $Y1-O10$ are involved in stretching vibrations of $BO₃³⁻$. This results in four nondegenerate modes and, consequently, the expected number of absorption bands in the region of stretching vibrations of BO₃ groups (i.e., 1200–1570 cm^{-1}) is equal to 4. However, in the IR spectrum of wiluite only three bands are observed in this region: the peaks at 1267 and 1373 cm^{-1} and the shoulder at

Fig. 1.3 Local environment of the T2 and Y1 sites in vesuvianite-group minerals

1415 cm^{-1} (Panikorovskii et al. 2017b; see Fig. [1.4\)](#page-14-0). The fourth band corresponding to symmetric vibrations of BO_3^3 ⁻ is forbidden for a regular BO_3 triangle and is weak in case of weakdistorted $BO₃$ triangle. The latter case takes place in wiluite: the bond lengths T2–O10 and T2–O12 are $1.39-1.40$ and 1.32 Å, respectively (Panikorovskii et al. 2017b). Weak absorption between 1267 and 1373 cm^{-1} may correspond to the symmetric stretching mode of BO_3^3 ⁻ groups (Fig. [1.4](#page-14-0)).

Unlike wiluite, most boron-rich VGM contain significantly distorted $BO₃$ triangle. For example, in a sample from Gulshad, Kazakhstan the bond lengths T2–O10 and T2–O12 are equal to 1.384 and 1.20 Å, respectively. As a result, four distinct IR bands (at 1557, 1467, 1419, and 1365 cm^{-1}) are observed in the range $1200-1570$ cm⁻¹ (curve b in Fig. [1.4\)](#page-14-0). As compared to wiluite, these bands are substantially shifted towards high frequencies because of shorter B–O bonds and shortened Y1– O bond (2.044 Å for the mineral from Gulshad and 2.15 Å for wiluite: Chukanov et al. 2018; Panikorovskii et al. 2017b). These differences may be due to different predominant cations in the $Y1$ site: Mg in wiluite and Fe^{3+} in the sample from Gulshad.

An anomalous IR spectrum with six absorption bands in the range $1200-1570$ cm⁻¹ shows boron-rich VGM from Titivskoe boron deposit, Yakutia, Russia (curve d in Fig. 1.4). Structural investigation of this sample (Panikorovskii et al. 2016a) showed the presence of domains with different symmetry (P4/nnc and P4/n).

1.1.3 Stretching and Bending Vibrations of SiO_4^4 ⁻ and ${\rm Si_2O_7}^{6-}$ Groups

Based on the available data on IR spectra of a restricted set of VGM Kurazhkovskaya and Borovikova (2003) concluded that for lowsymmetry samples the band of Si–O-stretching vibrations in the range from 960 to 990 cm^{-1} is shifted on $10-15$ cm⁻¹ towards lower frequencies as compared to high-symmetry VGM. Our data confirm this conclusion only partly. Indeed, among nine samples with the space group $P4/n$, eight samples show strong IR bands in the range 962–968 cm^{-1} , and in the IR spectrum of one more sample a band at 973 cm^{-1} is observed. Among 21 boron-poor samples with the space group P4/nnc, for 16 samples bands in the range 976–986 cm^{-1} are observed, but 5 samples show bands between 962 and 968 cm^{-1} .

Another specific feature of low-symmetry VGM indicated by Kurazhkovskaya and Borovikova (2003), as well as by Borovikova and Kurazhkovskaya (2006) is the doublet \sim 575 +615 cm⁻¹ corresponding to O-Si-O bending vibrations. This regularity was confirmed by us as a general trend; however, among 21 boronpoor samples with the space group P4/nnc, 3 samples show doublets in the range \sim 575–615 cm⁻¹ with components of approximately equal intensity.

1.2 Problem of Melanophlogite

Melanophlogite is a clathrate compound which contains guest molecules N_2 , CO₂, and CH₄ entrapped within the cages of the 3D framework built by SiO₄ tetrahedra (Gies 1983; Nakagawa et al. 2001; Kolesov and Geiger 2003). The cubic unit cell of the structure of melanophlogite includes two $[5^{12}]$ cages and six $[5^{12}6^2]$ cages (Fig. [1.5\)](#page-15-0). The former are considered to be occupied mainly by CH4 molecules and the latter by N_2 and CO_2 (Gies et al. 1982; Gies 1983). In

melanophlogite from Mt. Hamilton, California, USA, the occupancy factor of the $CH₄$ site in the $[5^{12}]$ cage is about 90% (Gies 1983). The molecules of carbon dioxide located in the $[5^{12}6^2]$ cages can rotate and are statistically distributed between 12 possible equivalent orientations. Most part of N_2 and CO_2 occurs in the $[5^{12}6^2]$ cage, but minor part of these molecules can be present in the $[5^{12}]$ cage (Gies 1983; Kolesov and Geiger 2003). Based on the

available structural data, the general formula of melanophlogite can be written as follows: $(CH₄,$ N_2 , CO_2)_{2–x} $(N_2$, $CO_2)$ _{6–y} $(Si_{46}O_{92})$.

The IR spectrum of melanophlogite from Fortullino, Livorno province, Tuscany, Italy (cubic, with $a = 13.4051(13)$ Å, according to single-crystal X-ray diffraction data) contains a strong band at 2330–2336 cm^{-1} corresponding to antisymmetric vibrations of $CO₂$ molecules (Chukanov and Chervonnyi 2016; see Fig. 1.6).

A weaker peak at \sim 2375 cm⁻¹ present it IR spectra of some melanophlogite samples from this locality (Chukanov 2014) may be due to rotational splitting or correspond to a minor amount of CO_2 molecules in the $[5^{12}]$ cages, which are predominantly occupied by CH4. Weak bands at 3700 and 3596 cm^{-1} (Fig. 1.7) are, respectively, due to asymmetric and symmetric stretching vibrations of H_2O molecules that do not form hydrogen bonds. The band at 3316 cm^{-1} can be tentatively assigned to silanol groups or H -bonded H_2O molecules.

Two $CO₂$ modes at 1277 and 1378 $cm⁻¹$ observed in the Raman spectrum of melanophlogite from Mt. Hamilton, California, USA correspond to the first overtone of the ν_2 bending mode and the symmetric ν_1 -stretching mode, respectively, both bands being components of a vibrational system coupled via Fermi resonance (Kolesov and Geiger 2003).

Raman spectrum of melanophlogite from Mt. Hamilton has been investigated previously at 4 K (Kolesov and Geiger 2003). The bands at 2900 and 2909 cm^{-1} in the single-crystal Raman spectrum of melanophlogite from this locality have been assigned to asymmetric stretching modes of CH₄ located in the $[5^{12}]$ and $[5^{12}6^2]$ cages, respectively. Along with the main band at

1378.5 cm⁻¹ assigned to $CO₂$ molecules in the $[5^{12}6^2]$ cages, the shoulder at 1376 cm⁻¹ was registered and was attributed to CO_2 in the [5¹²] cages. Kolesov and Geiger (2003) also reported the presence of the band of symmetric $N \equiv N$ stretching vibrations located at 2321 cm^{-1} which corresponds to N_2 molecules. The IR forbidden band of N_2 in binary mixtures with other molecules has been observed at about 2328 cm^{-1} (Bernstein and Sandford 1999). It is to be noted that this value is close to the wavenumber of antisymmetric vibrations of $CO₂$ molecules, which is forbidden in Raman spectra. However, this band is not observed by us in Raman spectra of melanophlogite from different Italian localities (Figs. [1.8,](#page-17-0) [1.9](#page-17-0) and [1.10](#page-18-0)).

Raman spectrum of the sample from Fortullino (Fig. [1.8\)](#page-17-0) exhibits strong bands of $CO₂$ at 1277 and 1383 cm^{-1} . Two weak bands at 1257 and 1398 cm^{-1} accompanying the components of the Fermi-doublet are the so-called hot bands arising from the transitions from an excited vibrational level to the ground vibrational level (Wang et al. 2011). In accordance with Frezzotti et al. (2012) and Wang et al. (2011), carbon dioxide in this mineral is in the high density fluid state with $D \approx 1$ g/cm³. This is confirmed by the down shift of the Fermi doublet frequencies from 1388

Fig. 1.9 Raman spectrum of melanophlogite from Racalmuto

and 1285 cm⁻¹ (Δ = 103 cm⁻¹) for CO₂ at normal conditions to the values 1383 and 1277 cm⁻¹ ($\Delta = 106$ cm⁻¹); the increased value of Δ in the spectrum of melanoflogite from Fortullino (Fig. 1.8) also corresponds to a highdensity $CO₂$ fluid. The very weak band at 2908 cm^{-1} which is attributed to CH₄ and the band at 3611 cm^{-1} attributed to OH-groups are in a good agreement with the IR spectrum of this sample (Chukanov and Chervonnyi 2016). Thus, nitrogen, which is a substantial component in

the sample from Rio Fortullino.

Melanophlogite from Racalmuto, Sicily (Fig. 1.9) is characterized by a higher content of CH4 detected by the bands at 2901 and 3055 cm⁻¹ and by a trace amount of C_2H_6 detected by the very weak bands at 998 and 2945 cm^{-1} (Kohlrausch 1943; Momma et al. 2011). The presence of H_2S molecules is detected by the presence in the Raman spectrum of the band at 2595 cm^{-1} . This sample does not contain N_2 and CO_2 molecules in detectable amounts. The sample of melanophlogite from Racalmuto contains a small amount of mineral impurities of calcite or aragonite (the band at 1087 cm^{-1} : Edwards et al. 2005) and celestine (998 cm^{-1} : Frezzotti et al. 2012). The weak band at 802 cm^{-1} and the bands at 363 and 276 cm^{-1} relate to the spectrum of the melanophlogite-type silicon-oxygen framework.

Melanophlogite from Miniera Giona, Sicily (Fig. 1.10) contains H_2S molecules (the band of H-S-stretching vibrations at 2593 cm^{-1}) and a low amount of CH₄ molecules (2904 cm^{-1}) whereas bands of N_2 and CO_2 are not observed in its Raman spectrum. This sample contains anhydrite admixture detected by the Raman bands at 1132 and 1004 cm^{-1} (Frezzotti et al.

2012). Broad peaks in Figs. [1.9](#page-17-0) and 1.10 are due to fluorescence.

Powder IR spectra of melanophlogite from some other localities do not show any presence of methane molecules. In the frequency range from 2800 to 3000 cm^{-1} , a sample from Chvaletice, Bohemia shows the presence of three overlapping, relatively broad bands indicative of the contamination by a polyatomic aliphatic hydrocarbon, most probably grease. Similar but much weaker bands are present in the IR spectrum of melanophlogite from Fortullino, Italy (Fig. [1.7](#page-16-0)), but no characteristic bands of methane are observed in this spectrum too.

The IR spectra of melanophlogite samples from Racalmuto and Miniera Giona (Fig. [1.11](#page-19-0)) show much lower contents of $CO₂$ (the bands at $2337-2338$ cm⁻¹) and substantially higher contents of CH₄ (the bands at 3005–3008 cm^{-1}) as compared with the sample from Fortullino. Moreover, the bands in the range from 2850 to 2950 cm⁻¹ in the IR spectrum of melanophlogite samples from Miniera Giona indicate the presence of hydrocarbons heavier than methane. IR spectrum of the sample from Racalmuto confirms the presence of H_2S (Fig. [1.12\)](#page-19-0).

The band assignment and the distribution of different components between $[5^{12}]$ and $[5^{12}6^2]$ cages in melanophlogite samples from different localities are given in Table [1.1](#page-20-0). These examples show that, in all probability, melanophlogite is not a single mineral species, but a mineral group including minerals with different combinations of small molecules $(CO_2, CH_4, H_2S, N_2, H_2O,$ C_2H_6) entrapped in the [5¹²] and [5¹²6²] cages. In particular, the mineral from Fortullino may be the $CO₂$ -dominant analogue of melanophlogite, and in the samples from Racalmuto and Miniera Giona H_2S may be a species-defining component.

1.3 Problem of Nakauriite

Nakauriite was initially described as a new mineral with the general formula (Mn,Ni, $Cu)_{8}(SO_{4})_{4}(CO_{3})(OH)_{6}.48H_{2}O$ (Suzuki et al. 1976). The mineral occurs in fissure-fillings in brucite-bearing serpentine at Nakauri, Aichi Prefecture, Japan, and is intimately intergrown with chrysotile. Most analytical data for nakauriite, including powder X-ray diffraction pattern, chemical composition and IR spectrum, have been obtained for a polymineral mixture, in

which chrysotile is the main phase. The above formula does not conform to analytical data of Suzuki et al. (1976). Taking into account strong predominance of Cu over Mn and Ni, the simplified formula $Cu_8(SO_4)_4(CO_3)(OH)_6$ ^{∙48H₂O} is given for nakauriite in the IMA list of minerals. Published IR spectrum of nakauriite from its type locality contains strong bands of admixed chrysotile at 1075, 950 and 613 cm^{-1} (Suzuki et al. 1976; see curve a in Fig. [1.13\)](#page-21-0), but characteristic bands of sulfate anions are not observed.

Later nakauriite was reported from several localities in Great Britain, USA, Austria, Italy, and Russia (Braithwaite and Pritchard 1983;

	Wavenumber				
Locality	(cm^{-1})	Assignment			
Mt.	3050w(R)	CH ₄ (first overtone of the doubly degenerate ν_2 -bending mode?)			
Hamilton ^a	2909w (R)	CH ₄ in $[5^{12}6^2]$ (symmetric stretching mode)			
	2900(R)	CH_4 in $[5^{12}]$ (symmetric stretching mode)			
	2321(R)	N_2 in $[5^{12}6^2]$			
	1378.5(R)	$CO2$ in [5 ¹² 6 ²] (symmetric stretching mode)			
	1376(R)	$CO2$ in [5 ¹²] (symmetric stretching mode)			
	1277(R)	CO ₂ : Fermi resonance between symmetric stretching mode and first overtone of the bending mode			
Fortullino	3700 (IR)	$H2O$ (antisymmetric stretching mode)			
	3611 (R)	$H2O$ (?) O-H-stretching mode			
	3596 (IR)	H ₂ O (symmetric stretching mode)			
	3316 (IR)	$H2O$ (?) O-H-stretching mode (H-bonded OH)			
	2908w(R)	CH ₄ in $[5^{12}6^2]$			
	2344 (IR)	${}^{12}CO_2$ in [5 ¹²] (antisymmetric stretching mode)			
	2336 (IR)	¹² CO ₂ in [5 ¹² 6 ²] (antisymmetric stretching mode)			
	$2273w$ (IR)	${}^{13}CO_2$ (antisymmetric stretching mode)			
	1398w(R)	$CO2$ ("hot band")			
	1383(R)	$CO2$ in [5 ¹² 6 ²] (symmetric stretching mode)			
	1377(R)	$CO2$ in [5 ¹²] (symmetric stretching mode)			
	1277(R)	CO ₂ : Fermi resonance between symmetric stretching mode and first overtone of the bending mode			
	1257w(R)	$CO2$ ("hot band")			
Racalmuto	3055w(R)	Hydrocarbon other than methane			
	3005w (IR)	CH_4 in $[5^{12}]$ (asymmetric stretching mode)			
	2945w(R)	C_2H_6 ?			
	2901 (R)	CH_4 in $[5^{12}]$ (symmetric stretching mode)			
	2595(R)	$H2S$ (symmetric stretching mode)			
	2512 (IR)	$H2S$ (antisymmetric stretching mode)			
	2338w (IR)	$^{12}CO_2$ in [5 ¹² 6 ²] (antisymmetric stretching mode)			
Miniera	3008w (IR)	CH_4 in $[5^{12}]$ (asymmetric stretching mode)			
Giona	2945w (IR)	Hydrocarbon other than methane			
	2920w (IR)	Hydrocarbon other than methane			
	2904w(R)	CH_4 in $[5^{12}]$ (symmetric stretching mode)			
	2894w (IR)	Hydrocarbon other than methane			
	2851w (IR)	Hydrocarbon other than methane			
	2593(R)	$H2S$ (symmetric stretching mode)			
	2337 (IR)	$^{12}CO_2$ in [5 ¹² 6 ²] (antisymmetric stretching mode)			

Table 1.1 The assignment of IR and Raman bands and the distribution of different enclathrated components between $[5^{12}]$ and $[5^{12}6^2]$ cages for melanophlogite samples from different localities

 R Raman spectrum, IR infrared spectrum, w weak band

Data from Kolesov and Geiger (2003)

Barnes 1986; Postl and Moser 1988; Palenzona and Martinelli 2007; Popov et al. 2016), as well as a secondary product in metallurgic slags. All available data indicate that nakauriite (1) does not contain sulfate anion and (2) usually forms fine intergrowths with magnesium serpentinegroup minerals (see curve b in Fig. [1.13\)](#page-21-0). In particular, electron microprobe analyses of nakauriite from Japan and from Nevada (Peacor et al. 1982) do not show substantial amounts of sulfur. Microchemical tests show only traces of SO_4^2 ⁻ (Braithwaite and Pritchard 1983).

We managed to obtain an almost pure fraction of nakauriite from its type locality. Its IR

spectrum is given in Fig. 1.13 (curve c). Specific features of the mineral are unusually low frequency of the non-split band of C–O-stretching vibrations (1361 cm⁻¹), as well as relatively low intensity and high width of the band of out-ofplane bending vibrations of $CO₃²⁻$ groups at 864 cm⁻¹. The bands at 1600 and 1650 cm⁻¹ indicate the presence of $H₂O$ molecules. The same features are inherent in carbonate members of the hydrotalcite group (Chukanov 2014) whose structures contain brucite-like layers and interlayer CO_3^2 anions and water molecules. Weak bands at 1066 and 1143 cm^{-1} may be due to the presence of trace amounts of SO_4^2 ⁻ anions.

Our electron microprobe analyses of nakauriite samples from Nakauri (Japan), Karkodin, (Russia) and Monte Ramazzo mine (Italy) show that this mineral is Mg-dominant. Only three metal cations have been found, namely Mg, Cu^{2+} , and Ni²⁺. The atomic ratio Mg:Cu:Ni in a sample from Nakauri is 0.75:0.23:0.02. In another sample from Nakauri $Mg:Cu:Ni = 0.80:0.19:0.01$. In the sample from Karkodin Mg:Cu:Ni = $0.75:0.23:0.02$. Nakauriite from Monte Ramazzo does not contain Ni in detectable amounts; $Mg:Cu = 0.80:0.20$. In all

analyzed samples the content of sulfur is below its detection limit. The predominance of Mg over Cu in nakauriite from Karkodin was noted also by Popov et al. (2016).

Thermal data for nakauriite from Suzuki et al. (1976) are nearly consistent with the general simplified formula $(Mg_3Cu^{2+})(OH)_6(CO_3)$ 4H2O. Hypothetically, nakauriite can be an interstratification of brucite and copper carbonate modules. Powder X-ray diffraction data of nakauriite from South Urals kindly provided by I.V. Pekov are given in Table [1.2.](#page-22-0)

Suzuki et al. (1976) reported the absence of the reflection near 7.8 Å in some samples from Nakauri. It was supposed that this reflection may be due to an impurity (Peacor et al. 1982; Braithwaite and Pritchard 1983). However, nakauriite from Karkodin shows a relatively strong reflection at 7.88 Å (Table [1.2](#page-22-0)). In our opinion, the reflections at 7.32 and 7.88 Å may correspond to nakauriite-type phases with different contents of interlayer water.

A further detailed investigation of nakauriite and revision of its chemical formula are required.

d, \mathring{A}	I, $%$	d, \AA	$I, \%$	d, \AA	I, $\%$
7.88	19	2.845	4	1.5947	1
7.32	100	2.677	4	1.5762	1
5.11	12	2.612	8	1.5447	12
4.835	17	2.536	$\overline{4}$	1.5185	5
4.629	12	2.365	43	1.5107	4
4.485	14	2.258	7	1.4569	5
4.217	4	2.221	4	1.4210	3
3.928	12	2.096	1	1.4035	3
3.642	13	2.037	2	1.3523	1
3.539	15	1.956	3	1.2985	4
3.335	6	1.910	24	1.2910	4
3.305	8	1.820	2	1.2404	1
3.105	4	1.782	3	1.2281	2
3.065	4	1.7206	4	1.2170	2
2.976	3	1.6951	2	1.2021	2
2.939	3	1.6657	2	1.1973	2
2.874	4	1.6439	5	1.1082	1

Table 1.2 Powder X-ray diffraction data of nakauriite from Karkodin, South Urals, Russia (MoKa radiation)

1.4 Relationship Between Nepskoeite and Shabynite

Nepskoeite was initially described as a new chloride-hydroxide mineral with the formula Mg4Cl(OH)7-6H2O (Apollonov 1998). However, IR spectrum of nepskoeite published by Apollonov (1998) contains very strong band at 1297 cm^{-1} corresponding to stretching vibrations of orthoborate groups, as well as distinct band at $cm⁻¹$ that may correspond to bending vibrations of orthoborate groups (Fig. 1.14).

Fig. 1.14 IR spectrum of nepskoeite drawn using data from Apollonov (1998)

with that of shabynite $Mg_5(BO_3)(Cl,OH)_2$ $(OH)_5 \cdot 4H_2O$ (Fig. [1.16\)](#page-23-0). In particular, the IR spectrum of shabynite contains strong bands at 1302 and 732 cm^{-1} . However, substantial differences between these spectra are observed in the region of vibrations of H_2O molecules above 1500 cm^{-1} .

There is also close similarity between powder X-ray diffraction (PXRD) patterns of nepskoeite and shabynite (Table [1.3](#page-24-0)). However, nepskoeite shows strong reflections at 10.64 and 3.498 cm^{-1} that are absent in the PXRD pattern of shebynite. On the other hand, strongest reflections of different shabynite samples are observed at 9.62 and 3.191 cm^{-1} . Refraction indices of nepskoeite $(\alpha = 1.532, \beta \approx \gamma = 1.562)$ are somewhat lower than those of shabynite ($\alpha = 1.543$, $\beta = 1.571$, $\gamma = 1.577$).

Based on these data, nepskoeite can be tentatively considered as a hydrous orthoborate chloride, a high-hydrated analogue of shabynite. Both minerals need further investigations, first of all, determination of unit-cell dimensions and H_2O content by means of direct methods.

Fig. 1.15 IR spectrum of nepskoeite drawn using data from Chukanov (2014)

Fig. 1.16 IR spectrum of shabynite drawn using data from Chukanov (2014)

1.5 Orthoborate Groups in Lead Carbonate Minerals

The CO_3^2 ⁻ and BO_3^3 ⁻ anions have the same trigonal planar configuration, but in most orthoborate and carbonate minerals these groups do not show appreciable isomorphous substitutions. The main causes of the absence of isomorphous substitutions between these groups are differences in their charges and sizes. In addition, BO_3^3 ⁻ groups are often significantly distorted (see, e.g., Kolitsch et al. 2012, as well as Sect. [1.1\)](#page-10-0). However, some lead carbonate minerals are exceptions from this regularity. For example, IR spectra of some samples of molybdophyllite $Pb_8Mg_9(Si_{10}O_{28})$ $(CO_3)_3(OH)_8O_2H_2O$, which is nominally a boron-free mineral, show weak IR bands of B–Ostretching vibrations at 1170 and 1240 cm^{-1}) (Fig. [1.17](#page-24-0)), whereas Raman spectrum of the structurally investigated molybdophyllite sample does not show bands of borate groups (Kolitsch et al. 2012).

The crystal structure of molybdophyllite (Kolitsch et al. 2012) does not contain boron-

Nepskoeite		Shabynite, sample No. 3		
(Apollonov 1998)		(Pertsev et al. 1980)		
d, \AA	$I, \%$	d, \mathring{A}	$I, \%$	
11.41	29	11.33	10	
10.64	18	\mathbf{a}	a	
9.78	46	9.72	17	
9.60	38		$\overline{}$	
5.57	17	-	$\overline{}$	
5.48	16	5.48	16	
		5.41	16	
		4.86	19	
4.78	15	4.77	19	
4.25	20	4.266	16	
		4.230	17	
		4.133	29	
3.726	15	3.726	17	
3.624	14	3.648	10	
3.498	100			
		3.191	100	
3.184	10			
2.977	10	$\overline{}$	-	
2.739	16	$\overline{}$	$\overline{}$	
2.448	18	2.447	19	
2.395	17	2.390	11	
2.284	11			
1.749	10	$\overline{}$	$\overline{}$	

Table 1.3 Strongest lines (with $I > 10\%$) of the PXRD patterns of nepskoeite and shabynite

^aThe strongest reflection of the powder X-ray diffraction pattern of shabynite sample No. 2 (Pertsev et al. 1980) is observed at 9.62 Å

dominant sites and, consequently, BO_3^3 ⁻ anions occur in CO_3^2 -dominant positions, unlike roymillerite $Pb_{24}Mg_9(Si_9AlO_{28})(SiO_4)(BO_3)$ $(CO₃)₁₀(OH)₁₄O₄$ and britvinite Pb₁₅Mg₉ $(Si_{10}O_{28})(CO_3)_2(BO_3)_4(OH)_{12}O_2$, in which orthoborate and carbonate groups are ordered in different sites (Yakubovich et al. 2008; Chukanov et al. 2017b; see Fig. [1.18\)](#page-25-0).

The IR spectrum of hydrocerussite $Pb_3(OH)_2(CO_3)_2$ from Långban (curve b in Fig. [1.19\)](#page-25-0) contains weak bands at 1230 (shoulder), 742, and 470 cm^{-1} . These bands may be assigned to stretching and bending vibrations of orthoborate anions partly substituting regular $CO₃$ triangles in the hydrocerussite structure. Indeed, in the IR spectrum of fluoborite containing regular $BO₃$ triangle strong bands of B–O-stretching and O–B–O bending vibrations are observed at 1241, 743, and 468 cm^{-1} (Chukanov 2014). It is important to note that bands of orthoborate groups are absent in the IR spectra of hydrocerussite from Merehead quarry, England (curve a in Fig. [1.19\)](#page-25-0), some related minerals (curves c and d in Fig. [1.19](#page-25-0)), as well as synthetic analogues of hydrocerussite and plumbonacrite (Brooker et al. 1983). In all probability, the presence of borate groups in hydrocerussite from Långban is the result of high activity of boron that accompanied formation of this deposit where different borate minerals are common.

Fig. 1.17 IR spectrum of molybdophyllite from the Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (Chukanov 2014, sample Sil247). The wavenumbers of BO_3^{3-} groups are indicated

Fig. 1.18 IR spectra of (a) roymillerite and (b) britvinite from Långban, Värmland, Sweden. Bands of stretching vibrations of BO_3^3 groups are indicated

Fig. 1.19 IR spectra of (*a*) hydrocerussite from Merehead quarry, (b) hydrocerussite from Långban, (c) hydrocerussite-related phase $NaPb_5(CO_3)_4(OH)_3$ from Lavrion, and (d) cerussite from Merehead quarry. Bands of BO_3^3 ⁻ groups are indicated

Fig. 1.20 IR spectra of (a) plumbonacrite from Merehead quarry, (b) plumbonacrite from Långban, (c) somersetite, and (d) mereheadite. Bands of stretching vibrations of BO_3^3 ⁻ groups are indicated

The IR spectra of plumbonacrite Pb_5O $(OH)_{2}(CO_{3})_{3}$ from Merehaad and Långban (Fig. 1.20) are similar and differ from the IR spectra of synthetic plumbonacrite analogue (Brooker et al. 1983) by additional bands of $BO₃³⁻$ groups at 1270, 1221, 742, and 464–465 cm^{-1} . Unlike hydrocerussite, a mineral with the only site of CO_3^{2-} ² groups, in the crystal structure, plumbonacrite is characterized by five positions of carbonate groups (Krivovichev and Burns 2000). The IR spectrum of plumbonacrite contains two bands of asymmetric B–O-stretching vibrations (at 1270 and 1221 cm^{-1}), which indicates the presence of BO_3^3 ⁻ groups in different sites.

The IR spectrum of somersetite (curve c in Fig. 1.20) is similar to those of plumbonacrite and hydrocerussite and contains bands of BO_3^3 ⁻ groups at 1217 and 738 cm^{-1} . The crystal structure of somersetite consists of electroneutral $[Pb₃(OH)₂(CO₃)₂]$ hydrocerussite block and electroneutral $[Pb_5O_2(CO_3)_3]$ block with the structure derivative from plumbonacrite. The

Fig. 1.21 IR spectra of (a) grootfonteinite holotype, (b) synthetic compound $KPb₂(CO₃)₂(OH)$ (Brooker et al. 1983), (c) synthetic compound $NaPb_2(CO_3)_2(OH)$ (Brooker et al. 1983), and (d) abellaite holotype (Ibáñez-Insa et al. 2017). Band of stretching vibrations of BO_3^3 ⁻ groups is indicated

only band of B–O-stretching vibrations observed in the IR spectrum of somersetite indicates that all admixed BO_3^3 ⁻ ³ groups belong to the hydrocerussite block.

The relatively weak bands at 480 and 1200 cm^{-1} in the IR spectrum of grootfonteinite $Pb_3O(CO_3)$ ₂ indicate the presence of minor amounts of undistorted orthoborate groups, but these groups are absent in most samples of structurally related minerals and compounds (see Fig. 1.21).

In hydrocerussite, plumbonacrite, somersetite, and grootfonteinite $CO₃/BO₃$ are undistorted. As a result, bands of admixed B–O-stretching vibrations of BO_3^3 ⁻ anions are observed in the narrow wavenumber range from 1200 to 1270 cm^{-1} . In contrast to these minerals, in mereheadite $Pb_{47}O_{24}(OH)_{13}Cl_{25}(BO_3)_2(CO_3)$ BO₃ triangles are significantly distorted with B–O distances varying from 1.23 to 1.32 Å (Krivovichev et al. 2009). This results in splitting of the band of B–Ostretching vibrations into several components (at 1141, 1183, and 1261 cm^{-1}); in addition, broad band at 1324 cm^{-1} corresponding to a mixed mode involving B–O- and C–O-stretching vibrations appears (curve d in Fig. [1.20](#page-25-0)).

IR Spectra of Minerals and Related IR Spectra of Minerals and Related
Compounds, and Reference Samples Data

This chapter contains IR spectra of mineral species and varieties, most of which was not included in the preceding reference books (Chukanov 2014; Chukanov and Chervonnyi 2016). Along with spectra obtained by us, we provide most reliable new data on infrared spectra of 791 minerals and related synthetic compounds published elsewhere. Each spectrum is accompanied with analytical data on the reference sample, its occurrence and general appearance, associated minerals, as well as kind of sample preparation and/or method of registration of the spectrum.

The Sects. [2.1](#page-29-0), [2.2](#page-86-0), [2.3](#page-106-0), etc. are arranged in ascending order of the atomic number Z_a of the main species-defining element for a given class of minerals: first for borate minerals (with $Z_a = 5$ for boron), then for carbon, carbides, carbonates, and organic substances (with $Z_a = 6$ for carbon), for nitrates (with $Z_a = 7$ for nitrogen), for oxides and hydroxides (with $Z_a = 8$ for oxygen), and so on.

A total of 174 spectra presented in this chapter have been obtained by one of the authors (NVC). In order to obtain absorption infrared spectra, powdered mineral samples have been mixed with anhydrous KBr, pelletized, and analyzed using an ALPHA FT IR spectrometer (Bruker Optics, Ettlingen, Germany) with a resolution of 4 cm^{-1} and 16 scans. IR spectrum of an analogous disc of pure KBr was used as a reference. It is important to note that reflectance mode IR spectra, IR spectra obtained without immersion medium (e.g., KBr), as well as IR spectra of single crystals, coarse-grained, or textured aggregates cannot be considered as stable and reliable diagnostic characteristics of mineral species due to specific effects induced by orientation, polarization, scattering, and reflection conditions. For example, in case of a single crystal, bands corresponding to normal vibrations with polarization vector parallel to the direction of propagation of IR radiation are absent in the spectrum. However these bands can be observed at another orientation of the crystal. In more detail these aspects were considered above (see Chukanov and Chervonnyi 2016, the section "Sources of Errors and Artifacts in IR Spectroscopy of Minerals"). For the above reasons, only transmittance or absorbance IR spectrum of a pulverized sample dispersed in an immersion medium is a stable characteristic of a mineral and can be used as a diagnostic tool.

Additional information includes general appearance, associated minerals, methods of the mineral species identification, and the list of wavenumbers of absorption bands with the indication of strong bands, weak bands, and shoulders. IR spectroscopy itself can be considered as an adequate identification method if IR spectrum is unique for a given mineral and coincides with IR spectrum of a well-investigated sample. For most synthetic samples the method of synthesis is shortly characterized.

For more than 100 samples (mainly holotypes of mineral species), a more detailed information is given including unit-cell dimensions, symmetry,

 \circ Springer Nature Switzerland AG 2020

N. V. Chukanov, M. F. Vigasina, Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds, Springer Mineralogy, https://doi.org/10.1007/978-3-030-26803-9_2

strongest reflections of the powder X-ray diffraction pattern, empirical formula, optical data, density, etc.

The following *abbreviations* are used in this chapter:

In most cases, the terms "strong band" and "weak band" mean band having transmittance minimum below and above any conventional values, respectively. As a rule, "shoulder" means inflection point of the spectral curve. For the convenience of visual perception, the positions of all peaks and shoulders in most figures are indicated by arrows.

For the numeration of samples, double letterfigure symbols are used. This numbering is a continuation of the numbering used in the previous books of this series (Chukanov 2014; Chukanov and Chervonnyi 2016). The meaning of letter parts of the symbols is explained in Table 2.1. It is to be noted that these designations are conventional and not unambiguous. For example, zirsilite-(Ce), $Na_{12-x}(Ce)$ $Na_3Ca_6Mn_3Zr_3NbSi_{25}O_{73}(OH)_3(CO_3)·H_2O$, can be classified as cyclosilicate, as zirconosilicate or as carbonatosilicate.

Symbol	Meaning of the symbol		Meaning of the symbol	
Bo	Borates with isolated orthogroups $BO3$		Phosphato-silicates	
B	Other borates		Sulfato-silicates	
BC	Carbonatoborates	TiSi	Titanosilicates and related zircono- , niobo-, and stannosilicates	
BAs	Arsenatoborates		Arsenato-silicates	
C	Carbon and carbonates	USi	Silicates with uranyl groups UO_2^{2+} (except nesosilicates)	
Org	Organic compounds and salts of organic acids	P	Phosphides and phosphates	
N	Nitrides and nitrates	S	Sulfates	
Ω	Oxides and hydroxides	SC	Carbonato-sulfates	
F	Fluorides	SP.	Phosphato-sulfates	
Sio	Nesosilicates (i.e., silicates with orthogroups $SiO4$)	SMo	Sulfatomolybdates	
Sid	Sorosilicates (i.e., silicates with diorthogroups $Si2O7$ or SiAlO ₇	Cl	Chlorides and hydroxychlorides	
Siod	Silicates containing both orthogroups $SiO4$ and diorthogroups $Si2O7$	V	Vanadates, V oxides, and hydroxides	
Sit	Triorthosilicates with groups $Si3O10$	Cr	Chromates	
Siot	Ortho-triorthosilicates	Ge	Germanates	
Sir	Cyclosilicates ("r" means "ring")	As	Arsenic, arsenides, arsenites, arsenates, and sulfato-arsenates	
Sic	Inosilicates with chains formed by $SiO4$ and $AlO4$ tetrahedra	UAs	Uranyl arsenates	

Table 2.1 The meaning of letter symbols used in the numbering of reference samples

Table 2.1 (continued)

2.1 Borates, Including Arsenatoborates and Carbonatoborates

Bo36 Barium strontium orthoborate fluoride $Ba₃Sr₄(BO₃)₃F₅$

Origin: Synthetic.

- **Description**: Prepared from BaF_2 , $BaCO_3$, $SrCO_3$, and H_3BO_3 by using a high-temperature solid-state technique. The crystal structure is solved. Hexagonal, space group $P6_3mc$, $a = 10.8953(16)$, $c = 6.9381(15)$ Å, $V = 713.3(2)$ Å³, $Z = 2$. $D_{\text{calc}} = 4.814$ g/cm³. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zhang et al. (2009a).

Wavenumbers (cm⁻¹): 1312sh, 1255s, 1221s, 1177s, 921w, 810, 779, 771sh, 753, 604, 585.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Origin: Synthetic.

Description: Powder obtained by means of standard solid-state reaction from the stoichiometric mixture of BaCO₃, ZrO₂, and B₂O₃ pressed into a pellet and heated first at 550 °C for 48 h and thereafter heated twice at 910 °C for 20 h. Trigonal, $a = 5.167$, $c = 33.913$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc (in the 1500–400 cm⁻¹ region) and Nujol suspension (in the 500–50 cm⁻¹ region). Transmission.

- Source: Mączka et al. (2015).
- Wavenumbers (IR, cm⁻¹): 1270s, 1230s, 998w, 761, 736, 613, 380sh, 369sh, 334s, 214, 195w, 137w, 109, 87sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1272w, 1258w, 1250w, 1228s, 739w, 622w, 380s, 369s, 348w, 137, 112w, 59.

Bo38 Cesium beryllium orthoborate $CsBe_4(BO_3)$ 3

Origin: Synthetic.

- **Description:** Prepared from Cs₂CO₃, BeO, and B₂O₃ by solid-state reaction at 800 °C for 48 h in air. The crystal structure is solved. Orthorhombic, space group $Pnma$, $a = 8.3914(5)$, $b = 13.3674(7)$, $c = 6.4391(3)$ Å, $V = 722.28(7)$ Å³, $Z = 4$. $D_{\text{calc}} = 3.176$ g/cm³. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Huang et al. (2013a).

- Wavenumbers (cm⁻¹): (3430), (1625sh), 1430, 1360sh, 1339s, 1220sh, 1197s, 1020, 881, 840, 785s, 760, 722, 669, 595, 545, 501, 448.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands at 3430 and 1625 cm^{-1} may correspond to adsorbed water. Weak bands in the range from 2300 to 2400 cm^{-1} correspond to atmospheric CO₂.

Bo39 Calcium orthoborate fluoride $Ca₅(BO₃)₃F$

Origin: Synthetic.

- **Description:** Synthesized by high-temperature solid-state reaction from the mixture of $CaCO₃$, H_3BO_3 , and CaF₂ with the molar ratio 9:6:1. After heating at 500 °C for 1 day, the mixture was cooled down to room temperature, ground again, then pressed and sintered at 1000 $^{\circ}$ C for 2 days. Monoclinic, space group $a = 8.125(3)$, $b = 16.051(5)$, $c = 3.538(2)$ Å, $\beta = 100.90(4)$ °, $Z = 2$. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Chen et al. (2006a).

Wavenumbers $(cm⁻¹)$: 1117s, 990, 852, 755w, 536, 420w.

Note: The IR spectrum contains additional bands in the range from 1500 to 4000 cm^{-1} that correspond to adsorbed (?) water molecules.

Bo40 Lanthanum orthoborate $La(BO₃)$

Origin: Synthetic.

Description: Prepared hydrothermally from La₂O₃ and B₂O₃ at 200 °C for 24 h. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 5.0960(8)$, $b = 8.2514(4)$, $c = 5.8726(6)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Ma et al. (2007).

Wavenumbers $(cm⁻¹)$: 1347, 1310s, 1288s, 940, 705s, 613, 596w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo41 Lead aluminium orthoborate fluoride $Pb_6Al(BO_3)_2OF_7$ $Pb_6Al(BO_3)_2OF_7$

Origin: Synthetic.

- **Description:** Prepared from a stoichiometric mixture of PbF₂, Al₂O₃, and H₃BO₃ at 430 °C with several intermediate grindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group *Cmca*, $a = 11.649(7)$, $b = 18.300(11)$, $c = 6.394(4)$ Å, $V = 1363.1(15)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 7.488$ g/cm³. In the structure, Al atoms coordinated by F (to form slightly distorted AlF₆ octahedra) are situated between the $[Pb_6BO_{11}F_{10}]$ layers.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Dong et al. (2012) .

Wavenumbers (cm⁻¹): 1648w, 1520w, 1219s, 912w, 761w, 702s, 665sh, 612sh, 561s, 533s, 423.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo42 Lead bismuth orthoborate $PbBi(BO_3)O$

Origin: Synthetic.

- **Description:** Synthesized by solid-state reaction of a stoichiometric mixture of PbO, $Bi₂O₃$, and H_3BO_3 powders. The crystal structure is solved. Orthorhombic, space group Cmca, $a = 10.782$ (3), $b = 10.502(3)$, $c = 7.477(2)$ Å, $V = 846.7(4)$ Å³, $Z = 8$. $D_{calc} = 7.704$ g/cm³. Each Bi atom is coordinated to six O atoms. The $BiO₆$ octahedra are connected via common vertices and edges to form infinite $[BiO_4]$ layer.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zhao et al. (2011).

Wavenumbers (cm⁻¹): 1480w, 1219s, 1189s, 897, 744, 711s, 603, 579, 526, 452sh, 437s, 422s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Bo43 Lead cadmium orthoborate $Pb_8Cd(BO_3)_6$

Origin: Synthetic.

Description: Synthesized via solid-state reaction. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group R-3, $a = 9.5584(16)$, $c = 18.670(3)$ Å, $V = 1477.2$ (4) \AA^3 , Z = 3. D_{calc} = 7.159 g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Huang et al. (2013c).

Wavenumbers $(cm⁻¹): 1411, 917, 752, 736, 724, 621, 581, 454.$

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Bo44 Lead copper orthoborate $Pb_2Cu(BO_3)_2$

Origin: Synthetic.

- **Description:** Prepared by a solid-state reaction method using PbO, CuO, and B_2O_3 as the starting components in the molar ratio 2:1:1. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 5.6311(6)$, $b = 8.7628(9)$, $c = 6.2025(6)$ Å, $\beta = 115.7060(10)^\circ$, $V = 275.77(5) \text{ Å}^3$, $Z = 2$. $D_{\text{calc}} = 7.172 \text{ g/cm}^3$. Cu atoms have rectangular planar coordination.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Pan et al. (2006).

Wavenumbers $(cm⁻¹)$: 1368sh, 1300sh, 1232s, 1195s, 1156s, 1024, 900, 694, 608, 575.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Bo45 Lead orthoborate tungstate $Pb_6(BO_3)_2(WO_4)O_2$

Origin: Synthetic.

- **Description:** Crystals obtained from the melt of $Bi₂O₃$, PbO, WO₃, and $H₃BO₃$ with the molar ratio of 3:12:2:2. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group *Cmcm*, $a = 18.4904(5)$, $b = 6.35980(10)$, $c = 11.6789(2)$ Å, $V = 1373.38$ (5) \AA^3 , Z = 4. D_{calc} = 7.935 g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Li et al. (2011b).

Wavenumbers $(cm⁻¹)$: 1215s, 1190, 902w, 790s, 690s, 606, 560, 498.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo46 Lithium aluminium orthoborate $Li₃Al(BO₃)₂$

Origin: Synthetic.

- **Description:** Prepared from the mixture of Li_2CO_3 , Al_2O_3 , and H_3BO_3 in stoichiometric proportion, at 690 °C for 1–2 days, with one intermediate grinding. Characterized by powder X-ray diffraction data. The crystal structure is solved. Triclinic, space group P-1, $a = 4.876(8)$, $b = 6.191(16)$, $c = 7.910(20)$ Å, $\alpha = 74.46(18)^\circ$, $\beta = 89.44(17)^\circ$, $\gamma = 89.52(18)^\circ$, $V = 230.0(9)$ Å³, $Z = 2$. $D_{\text{calc}} = 2.388 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: He et al. (2002).

Wavenumbers (cm⁻¹): 1415, 1366, 1191s, 992, 946, 810, 770, 734, 618, 595, 531s, 475s, 410, 384.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo47 Lead orthoborate tungstate $Pb_6(BO_3)_2(WO_4)O_2$

Origin: Synthetic.

Description: Obtained by a solid-state reaction method. The crystal structure is solved. Orthorhombic, space group Cmcm, $a = 18.480(4)$, $b = 6.3567(13)$, $c = 11.672(2)$ Å, $V = 1371.1(5)$ Å³, $Z = 4$. $D_{\text{calc}} = 7.948 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Reshak et al. (2012b).

Wavenumbers $(cm⁻¹)$: 1216s, 790s, 694, 606.5, 561, 500.5, 441, 409.

Bo48 Lithium strontium orthoborate $Lisr_4(BO_3)_3$

Description: Obtained in the solid-state reaction from the stoichiometric mixture of Li_2CO_3 , SrCO₃, and H_3BO_3 at 750 °C, with several grindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Cubic, space group $Ia-3d$, $a = 14.95066(5)$ Å, $V = 3341.80(3)$ Å³, $Z = 16$. $D_{\text{calc}} = 4.243$ g/cm³. In the structure, isolated BO₃ groups are perpendicular to each other. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. **Source:** Wu et al. (2005).

Wavenumbers $(cm⁻¹)$: 1284s, 1182s, 788, 758s, 607, 565w, 362.

Bo49 Magnesium orthoborate fluoride $Mg_5(BO_3)_3F$

Origin: Synthetic.

Description: Crystals grown from the flux prepared from MgF_2 , LiF, Na_2CO_3 , and H_3BO_3 . Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group Pnma, $a = 10.068(5)$, $b = 14.858(7)$, $c = 4.540(2)$ Å, $V = 679.2(6)$ Å³, $Z = 4$. $D_{\text{calc}} = 3.100 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bai et al. (2014).

Wavenumbers (cm⁻¹): 1308s, 1262s, 1243s, 1168s, 900sh, 790sh, 739s, 680, 606, 510, 478, 433.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band designed by the authors as 1275 cm^{-1} is a doublet $1262+1243 \text{ cm}^{-1}$.

Bo50 Potassium calcium orthoborate $KCa_4(BO_3)_3$

Origin: Synthetic.

Description: Obtained by heating stoichiometric mixture of K_2CO_3 , CaCO₃, and H_3BO_3 first at 600 °C to decompose carbonates, and thereafter at 900 °C for 72 h. The crystal structure is solved. Orthorhombic, space group Ama2, $a = 10.63455(10)$, $b = 11.51705(11)$, $c = 6.51942(6)$ Å, $V = 798.49(2) \text{ Å}^3, Z = 4. D_{\text{calc}} = 3.161 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wu et al. (2006a).

Wavenumbers (cm⁻¹): 1266s, 1226s, 1207s, 1150, 902, 804w, 772, 731, 636, 599, 362s, 301s, 232. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo51 Potassium magnesium orthoborate $KMg(BO_3)$

Description: Prepared through solid-state reaction from the stoichiometric mixture of metal carbonates and H_3BO_3 . Characterized by powder X-ray diffraction data. The crystal structure is solved. Cubic, space group $P2_13$, $a = 6.83443(4)$, $V = 319.23(1)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 2.543$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Wu et al. (2010a).

Wavenumbers (cm⁻¹): 1567sh, 1381sh, 1331s, 1314s, 1040sh, 920w, 882w, 774, 747s, 641s, 547. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. The band designed by the authors as 1318 cm^{-1} is a doublet $1331+1314 \text{ cm}^{-1}$.

Bo52 Potassium strontium orthoborate $KSr_4(BO_3)$

Origin: Synthetic.

Description: Synthesized by solid-state reaction of a stoichiometric mixture of K_2CO_3 , SrCO₃, and H_3BO_3 , heated first at 400 °C for 5 h and thereafter at 900 °C for 48 h with several intermediate grindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $Ama2$, $a = 11.025(10)$, $b = 11.977(10)$, $c = 6.872(6)$ Å, $V = 907.4(14)$ Å³, $Z = 4$. $D_{\text{calc}} = 4.143 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Zhao et al. (2012).

- Wavenumbers (cm⁻¹): 1458, 1408s, 1357, 1321, 1284s, 1135w, 1067, 997s, 931s, 862s, 930, 862, 809, 756, 726, 705, 679, 629, 615, 596, 586sh, 566w, 431w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo53 Samarium orthoborate Sm(BO₃)

Origin: Synthetic.

- **Description**: Synthesized by a solid-state method from stoichiometric amounts of H_3BO_3 and Sm_2O_3 first at 500 °C for 5 h, thereafter at 700 °C for 5 h, and finally at 900 °C for 5 h with intermediate grindings. Characterized by powder X-ray diffraction data. Triclinic (see JCPDS card No. 13-0489). Contains minor admixture of the vaterite-type polymorph.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Velchuri et al. (2011a).

Wavenumbers $(cm⁻¹)$: 1384sh, 1315s, 1215, 1166s, 939, 759, 725, 669, 576w, 559w.

Bo54 Scandium lanthanum orthoborate $\text{Lasc}_3(BO_3)_4$

- Description: Bi-doped single crystals obtained by means of spontaneous crystallization from flux at starting molar composition of the melt $La_2O_3:Sc_2O_3:B_2O_3:B_2O_3 = 1:1.5:13:13$. The crystal structure is solved. Trigonal, space group R32, $a = 9.8370(14)$, $c = 7.9860(14)$ Å, $Z = 3$. The empirical formula is (electron microprobe): $Bi_{0.21}La_{0.91}Sc_{2.88}(BO_3)_4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Absorption.

Source: Mączka et al. (2010).

Wavenumbers (IR, cm⁻¹): 1322sh, 1292s, 1224sh, 1208s, 964w, 774w, 749, 720, 662, 628w, 467sh, 412s, 362w, 339w, 300, 285sh, 253, 226w, 208w, 173w, 85, 67w.

Note: In the cited paper, polarized Raman spectra of an oriented single crystal are given.

Wavenumbers (Raman, for the $x(yy)x$ polarization, cm^{-1}): 1406, 1278, 1248sh, 1232, 1223, 983, 968w, 738, 712w, 663, 626, 607, 590, 457, 430s, 393sh, 384, 339s, 307sh, 298, 293, 248, 230, 227, 222sh, 207w, 176, 155, 90.

Bo55 Sodium calcium orthoborate $NaCa(BO₃)$

Origin: Synthetic.

Description: Orthorhombic. In the crystal structure, Na and Ca atoms are disordered.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Wu et al. (2006b).

Wavenumbers (cm⁻¹): 1267s, 1254sh, 1245s, 1223s, 1196s, 1177s, 1148sh, 933w, 909w, 876w, 798, 747w, 647w, 603, 385sh, 375.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Description: Polycrystalline sample prepared by sintering a stoichiometric mixture of $Na₂CO₃$, CaCO₃, and H₃BO₃, first at 600 °C and thereafter at 880 °C for 72 h with intermediate grinding. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group Ama2, $a = 10,68004(11)$, $b = 11.28574(11)$, $c = 6.48521(6)$ Å, $V = 781.68(2)$ Å³, $Z = 4. D_{\text{calc}} = 3.056 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Wu et al. (2006a).

Wavenumbers (cm⁻¹): 1261s, 1213s, 1146, 901w, 784w, 752, 726, 638w, 605w, 356s, 316s, 296s, 263sh, 229w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo57 Sodium lanthanum orthoborate $Na₃La₉(BO₃)₈O₃$

- **Description:** Synthesized from La₂O₃, Na₂CO₃, and H₃BO₃ by using high-temperature solid-state techniques, first at 600 °C for 10 h and thereafter at 1100 °C for 36 h with intermediate grinding. Characterized by powder X-ray diffraction data and elemental analysis. Hexagonal, $a = 78.9214$, $c = 8.7267$ Å. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, \mathcal{R}) (hkl)] are: 4.3378 (46) (002), 3.1032 (100) (112), 2.9038 (60) (210), 2.2140 (56) (302), 2.1724 (34) (004), 2.1682 (38) (221), 2.0724 (32) (311), 1.5661 (53) (412).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zhang et al. (2005) .

- Wavenumbers (cm⁻¹): 1583w, 1574w, 1497w, 1356s, 1335s, 1307sh, 1287s, 1274sh, 1245s, 1212s, 1188s, 1143s, 959, 904, 798, 778, 739, 694, 620, 596, 568, 463, 437.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Bo58 Sodium samarium orthoborate $\text{Na}_3\text{Sm}_2(\text{BO}_3)_3$

Origin: Synthetic.

Description: Synthesized by heating a mixture of Sm_2O_3 , Na_2CO_3 , and H_3BO_3 first at 500 °C for 10 h, and thereafter (after intermediate grinding) at 800 °C for 24 h. Orthorhombic, $a = 5.0585$, $b = 11.0421$, $c = 7.0316$ Å. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.5210 (58) (020), 5.0521 (80) (100), 3.7232 (69) (120), 2.9685 (65) (022), 2.8851 (81) (102), 2.5602 (100) (122).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zhang et al. (2002b).

- **Wavenumbers (cm⁻¹):** 1268s, 1208s, 980, 939, 923sh, 890sh, 781, 749, 735s, 676, 647w, 627, 600, 568sh, 509w, 473sh.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Bo59 Sodium strontium orthoborate $NaSr_4(BO_3)_3$

Origin: Synthetic.

Description: Obtained in the solid-state reaction from the stoichiometric mixture of Na₂CO₃, SrCO₃, and H_3BO_3 at 800 °C, with several grindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Cubic, space group *Ia-3d*, $a = 15.14629(6)$, $V = 3474.71(4)$ \AA^3 , $Z = 16$. $D_{\text{calc}} = 4.203$ g/cm³. In the structure, isolated BO₃ groups are perpendicular to each other.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. **Source:** Wu et al. (2005).

Wavenumbers $(cm⁻¹)$: 1283s, 1182s, 785, 753s, 605, 578w, 307s.

Bo60 Sodium strontium orthoborate $NaSr(BO₃)$

Description: Prepared by heating a mixture of Na₂CO₃, SrCO₃, and H₃BO₃ first at 650 °C and thereafter at 850 °C for 72 h with intermediate grinding. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 5.32446(7)$, $b = 9.2684(1)$, $c = 6.06683(8)$ Å, $\beta = 100.589(1)^\circ$, $V = 294.30(8)$ Å³, $Z = 4$. $D_{\text{calc}} = 3.824$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Wu et al. (2006b).

Wavenumbers (cm⁻¹): 1331, 1305sh, 1280s, 1257s, 1243sh, 815, 780, 605, 583, 323sh, 287s, 270sh. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo61 Zinc orthoborate hydroxide $Zn_8(BO_3)_3O_2(OH)_3$

Origin: Synthetic.

- **Description:** Prepared hydrothermally from a mixture of 0.637 mmol of $Zn_3B_2O_6$, 0.2 ml of CH₃COOH, 0.2 ml of NH₂CH₂CH₂NH₂, and 1 ml of H₂O, at 170 °C for 1 week. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group R32, $a = 8.006(2), c = 17.751(2)$ Å, $V = 985.3(4)$ Å³, $Z = 3$. $D_{\text{calc}} = 3.956$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2006b).

- Wavenumbers (cm^{-1}) : 3570, 3550sh, (3497), (3471), (3435), (3405), (3368), 2660w, 2546w, 2505sh, 2230w, 2197w, 1605sh, 1334sh, 1285sh, 1249s, 1032w, 927w, 861, 758, 730s, 705sh, 653, 530sh, 513s, 481sh, 465.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

- **Description:** Prepared by heating a mixture of $ZnCO_3$, H_3BO_3 , and $(NH_4)_2(HPO_4)$, taken in stoichiometric amounts, at 870 °C. Characterized by powder X-ray diffraction data. Hexagonal, $a = 8.435$ (4), $c = 13.032(6)$ Å. The strongest reflections are observed at 4.2113 and 2.5761 Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wang et al. (2002).

- Wavenumbers (cm⁻¹): 1458w, 1392w, 1342w, 1306sh, 1268, 1230s, 1098, 1071, 1013s, 975sh, 819sh, 751sh, 728, 685sh, 645, 592, 552, 464, 438.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Bo63 Cobalt dinickel orthoborate $CoNi₂(BO₃)₂$

- Description: Synthesized by heating a stoichiometric mixture of cobalt nitrate, nickel nitrate, and boric acid, first at 450 °C for 4 h, thereafter (after cooling to room temperature and grinding) at 600 °C for 3 h, and finally at 900 \degree C for 48 h. Characterized by powder X-ray diffraction data. Isostructural with kotoite. Orthorhombic, space group *Pnmn*, $a = 5.419(9)$, $b = 8.352(0)$, $c = 4.478(8)$ Å, $Z = 2$. $D_{\text{meas}} = 4.48 \text{ g/cm}^3$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.9420 (38) (011), 2.6591 (100) (121), 2.4755 (36) (130), 2.2339 (55) (211), 1.7258 (30) (202), 1.6610 (33) (132).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Güler and Tekin (2009).

Wavenumbers (cm⁻¹): 3564, 3490, 3426, 2360, 2340sh, 1613, 1382, 1285sh, 1253, 1180, 712, 688, 622, 476, 422sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The sample is strongly contaminated with a hydrous phase (the bands at 3564, 3490, 3426, and 1613 cm⁻¹). The bands at 2360 and 2340 cm⁻¹ may correspond to atmospheric $CO₂$.

Bo64 Berborite $Be_2(BO_3)(OH,F) \cdot H_2O$

Origin: Vevja quarry, Tvedalen, Larvik, Vestfold, Norway.

Description: Colorless crystals from the association with natrolite. Holotype sample. Characterized by single-crystal X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3508, 3370sh, 3275sh, 3060sh, 2865, 2745sh, 2630sh, 2483, 2080sh, 1862,

1676, 1420, 1307s, 1065w, 1015sh, 895, 807s, 741s, 676, 648, 586, 520sh, (445w), (419w), 384w. Note: The spectrum was obtained by N.V. Chukanov.

B160 Lüneburgite Mg₃[B₂(OH)₆(PO₄)₂]⋅6H₂O

Origin: Morro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile. Description: Yellow nodule from clay. Investigated by I.V. Pekov. Identified by IR spectrum and qualitative electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3505, 3431s, 3397s, 3258, 3225s, 3113, 2974, 2639w, 2450w, 2295w, 1665, (1560w), 1326, 1283, 1185, 1122s, 1075s, 1020s, 974, 895, 834, 785, 709, 665, 636, 600sh, 576, 538, 522, 465w, 393, 383.

Note: The spectrum was obtained by N.V. Chukanov.

B161 Ammonium pentaborate $(NH_4)B_5O_8$

- **Description:** Crystals of commercially available ammonium pentaborate grown from aqueous solution. Characterized by powder X-ray diffraction data. Monoclinic, $a = 7.189(5)$, $b = 11.308(5)$, $c = 7.217(6)$ Å, $\beta = 100.12(7)$ °, $V = 578(2)$ Å³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Balakrishnan et al. (2008).

Wavenumbers (cm⁻¹): 3436s, 3327sh, 1642, 1433s, 1397s, 1355s, 1245, 1102, 1024, 924, 782, 695, 591w, 504w.

Note: In the cited paper, the wavenumber 1245 cm⁻¹ is erroneously indicated as 1345 cm⁻¹.

B162 Barium borate $BaB_8O_{11}(OH)_4$

Origin: Synthetic.

- **Description:** Synthesized from $Ba(NO₃)₂$ and $H₃BO₃$ by using a low-temperature molten salt technique at 458 K. The crystal structure is solved at 173 K. It is built from borate layers consisting of $[B_6O_9(OH)]$ clusters. Monoclinic, pseudo-orthorhombic, space group $P2_1/n$, $a = 7.9080(16)$, $b = 13.939(3), c = 10.047(2)$ Å, $\beta = 90.00(3)^\circ$, $V = 1107.6(4)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.806$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Sun et al. (2010a).

- Wavenumbers (IR, cm⁻¹): 3416, 3377s, 2443w, 1630, 1456sh, 1404s, 1361s, 1317s, 1225, 1185, 1131, 1038s, 1003s, 962, 933, 890, 804, 771w, 734, 686sh, 668, 635, 599w, 539w, 486w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1305, 1170w, 1112w, 1011s, 1050w, 987s, 886w, 858, 822, 761s, 736s, 658, 638, 540, 472s, 453s, 434, 424, 410, 367s, 243, 202w, 166w, 135w, 116s.

B163 Barium calcium diborate $BaCa(B_2O_5)$

Origin: Synthetic.

- Description: Crystals grown from the mixture of barium nitrate, calcium oxide, and boric acid first preheated at 500 °C for 7 h, then gradually heated to 900 °C, and kept at this temperature for 72 h with several intermediate grindings and mixing. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 6.568(2)$, $b = 20.545(7)$, $c = 8.201(2)$ Å, $\beta = 117.00(2)^\circ$, $Z = 4$. $D_{calc} = 3.759$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Liu et al. (2015b).

Wavenumbers (cm⁻¹): 1615sh, 1405sh, 1383s, 1214, 1117s, 954, 881sh, 819, 735, 637sh, 600.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B164 Ammonium calcium borate $(NH_4)_2Ca[B_4O_5(OH)_4]_2.8H_2O$

- **Description:** Synthesized through slow evaporation of a solution containing CaCl₂, H₃BO₃ and NH₃. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $P2_12_12_1$, $a = 11.556(7)$, $b = 12.583(8)$, $c = 16.679(8)$ Å, $V = 2425.2(2)$ Å³, $Z = 4$. $D_{\text{calc}} = 1.651 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Li et al. (2011a).

- Wavenumbers (cm⁻¹): 3392s, 3210s, 3055, 2927, 2427, 2090, 1592s, 1482sh, 1429s, 1399s, 1322, 1238w, 1131, 1078s, 1057sh, 1018, 980, 957, 928, 825, 802, 784, 743, 710, 673, 572, 529, 507, 428.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B165 Cesium calcium borate $Cs_2Ca[B_4O_5(OH)_4]_2·8H_2O$

Origin: Synthetic.

Description: Crystals grown by slow evaporation from the 2:1 (vol.) aqueous acetone solution of $Cs₂CO₃$, CaCl₂, and H₃BO₃ with a molar ratio of 2:1:8. The crystal structure is solved. Orthorhombic, space group $P2_12_12_1$, $a = 11.5158(7)$, $b = 12.8558(7)$, $c = 16.7976(10)$ Å, $V = 2486.8(3)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.224$ g/cm³. Characterized by DSC and TG data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Huang et al. (2013b).

Wavenumbers (cm^{-1}) : 3620, 3440s, 3313s, 3205s, 2602w, 2440w, 1668, 1626, 1450s, 1345s, 1229w, 1147, 1121, 1060s, 1003s, 946s, 904sh, 831s, 814sh, 705, 663, 588, 532, 466, 434sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B166 Calcium borate $CaB₆O₁₀$

Origin: Synthetic.

- Description: Colorless crystals prepared from corresponding oxides by solid-state reaction at 735 °C for 2 weeks. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 9.799(1)$, $b = 8.705(1)$, $c = 9.067(1)$ Å, $\beta = 116.65(1)$ °, $V = 691.23(13) \text{ Å}^3$, $Z = 4$. $D_{\text{calc}} = 2.546 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2008b).

- Wavenumbers (cm⁻¹): 2369w, 2264w, 1406s, 1342sh, 1150s, 1191s, 1088s, 1008sh, 942, 916, 815w, 769sh, 705w, 672w, 635w, 533, 504sh, 418w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B167 Calcium tetraborate $β$ -CaB₄O₇

Description: High-pressure β -modification isotypic with orthorhombic SnB_4O_7 .

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Knyrim et al. (2007).

- Wavenumbers (cm⁻¹): 1623sh, 1353, 1285sh, 1193, 1142, 1067s, 982s, 896, 884sh, 826, 814, 788sh, 765, 736, 712, 650, 623s, 604, 558, 509, 446w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

B168 Dicalcium hexaborate monohydrate $Ca₂B₆O₁₁·H₂O$

Origin: Synthetic.

- **Description:** Synthesized hydrothermally from H_3BO_3 and CaO mixed with the mole ratio ranging from 1.5:1 to 2:1, at 234–300 °C for 48–96 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pbn2_1$.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Guo et al. (2000).

- Wavenumbers (cm⁻¹): 3530, 3458s, 2908w, 2842w, 1623w, 1438, 1403, 1282s, 1171, 1121, 1066s, 1019s, 966s, 953s, 905, 871, 842, 767, 701, 686, 643, 623, 559, 524, 482, 422w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B169 Dipotassium sodium zinc pentaborate $K_2NaZnB_5O_{10}$

Origin: Synthetic.

- Description: Synthesized by employing a high-temperature solution reaction method. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 7.9244(16)$, $b = 12.805(3)$, $c = 18.962(4)$ Å, $\beta = 99.39(3)$ °, $V = 1898.4(7)$ Å³, $Z = 8$. $D_{\text{calc}} = 2.663$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2010).

- Wavenumbers (cm⁻¹): 1447s, 1436sh, 1394s, 1358s, 1272s, 1199s, 1132, 1060sh, 1032, 1006, 949, 928, 883sh, 827, 777, 752, 726, 702sh, 673sh, 635w, 606sh, 557w, 527w, 498sh, 477w, 462w, 440w, 417w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B170 Double-ring borate $(Na,K)_{3}Sr(B_5O_{10})$ $(Na,K)_{3}Sr(B_5O_{10})$

- **Description:** Synthesized from the melt prepared from Na_2CO_3 , $SrCO_3$, H_3BO_3 , and $K_2Ba_2T_1$ in the molar ratio 3:2:10:2 at 800 °C for 10 days. Triclinic, space group P-1, $a = 7.3900(15)$, $b = 7.6490$ (15), $c = 9.773(2)$ $\rm \AA$, $\alpha = 79.31(2)$ °, $\beta = 70.85(2)$ °, $\gamma = 62.09(1)$ °, $V = 460.82(17)$ $\rm \AA$ ³, $Z = 2$. $D_{\text{calc}} = 2.766 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2011).

- Wavenumbers (cm⁻¹): 1449s, 1400sh, 1386s, 1322sh, 1225sh, 1183s, 1085, 1061, 1051, 1029, 1011, 934, 910, 834sh, 776, 760, 748, 728, 702, 628w, 620w, 573w, 560w, 508w, 465w, 450sh, 430w, 416w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B171 Lead borate $Pb_6B_{11}O_{18}(OH)$, $Pb_6B_{11}O_{18}(OH)$ ₉

Origin: Synthetic.

- **Description:** Synthesized hydrothermally from $Pb(CH_3COO)_2$ and H_3BO_3 in the presence of $H_2NCH_2CH_2NH_2$ and CH₃COOH, at 180° for 2 days. The crystal structure is solved. Trigonal, space group $P3_2$, $a = 11.7691(7)$, $c = 13.3361(12)$ Å, $V = 1599.7(2)$ Å³, $Z = 3$. $D_{calc} = 5.615$ g/cm³. The structure is based on infinite and finite chains built up from BO_4 and BO_3 units.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yu et al. (2002).

- Wavenumbers (cm⁻¹): 3600sh, 3550sh, 3440s, 1858w, 1823w, 1768sh, 1755sh, 1715sh, 1668sh, 1628, 1532w, 1495w, 1430sh, 1357, 1300s, 1270sh, 1162sh, 1080s, 1051sh, 936, 877sh, 867sh, 856, 814, 723, 685sh, 554, 490sh, 459.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B172 Lead borate PbB_4O_7 PbB_4O_7

Origin: Synthetic.

- **Description:** Obtained from stoichiometric melt of PbO and B_2O_3 heated to 1060 K. Orthorhombic P21nm, space group, $a = 4.251$, $b = 4.463$, $c = 10.86$ Å, $Z = 2$. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc (for the 1500–400 cm^{-1} region) and Nujol mull (for the 500–50 cm^{-1} region). Transmission.

Source: Hanuza et al. (2008b).

Wavenumbers (cm⁻¹): 1215sh, 1152s, 1083s, 1009s, 959s, 881, 808, 761, 715, 652, 629, 612, 545, 505w, 486sh, 432w, 350w, 291w, 258w, 245w, 145sh, 116, 65sh.

Note: In the cited paper, Raman spectra are given for different polarization and crystal orientation.

B173 Lithium aluminoborate $Li₂AIBO₄$

- **Description:** Prepared from a stoichiometric mixture of Li_2CO_3 , B_2O_3 , and Al_2O_3 (corundum) by solid-state reaction at 600 °C for ca. 2 months. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group P_1/c , $a = 6.2720(3)$, $b = 5.0701(3)$, $c = 10.2989(6)$ Å, $\beta = 95.882(2)^\circ$, $V = 325.78$ Å³, $Z = 4$. $D_{\text{calc}} = 2.63$ g/cm³. The structure is based on the sheets consisting of metaboroaluminate rings, $B_2AI_2O_8$, which are formed of alternating corner-sharing $AIO₄$ tetrahedra and $BO₃$ triangles.
- Kind of sample preparation and/or method of registration of the spectrum: Reflectance data for a pelletized sample have been transformed by Kramers-Kronig analysis and presented in the absorption coefficient formalism.
- Source: Psycharis et al. (1999).
- Wavenumbers (cm⁻¹): 1441, 1404, 1396sh, 1360sh, 1248, 1215sh, 1176, 1199s, 956, 907s, 786sh, 776, 751, 705, 632, 593, 569, 523, 493s, 438sh, 426, 384, 330, 315, 278, 245w, 229w, 195w, 182w, 159w, 105w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B174 Lithium cesium borate $Li_4Cs_3B_7O_{14}$ $Li_4Cs_3B_7O_{14}$

Origin: Synthetic.

Description: Synthesized via solid-state reaction from the mixture of Li_2CO_3 , Cs_2CO_3 , and H_3BO_3 in a molar ratio of 4:3:14, at 560 \degree C, for 48 h, with several intermediate grindings and mixings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group $P3_121$, $a = 6.9313(6)$, $c = 26.799(3)$ Å, $V = 1115.01(19)$ Å³, $Z = 3$. $D_{\text{calc}} = 3.244$ g/cm³. The crystal structure contains isolated tricyclic B_7O_{14} units in which five trigonal BO₃ units and two tetrahedral $BO₄$ units are linked by vertical oxygen atoms.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yang et al. (2011e).

- Wavenumbers (cm⁻¹): (3428w), 1512sh, 1458s, 1421s, 1288, 1201sh, 1165s, 1090, 934, 905, 828, 766, 728, 707sh, 679, 635, 579.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The wavenumber at 1129 cm^{-1} given by the authors is erroneous.

B175 Lithium sodium borate LiNaB₄O₇ LiNaB₄O₇

Origin: Synthetic.

- **Description:** Synthesized from the mixture of Na₂CO₃, Ga₂O₃, H₃BO₃, and Li₂B₄O₇ in the molar ratio 2:1:8:1 by employing high temperature solution reaction method. Ga_2O_3 acted as a flux for the crystal growth. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $Fdd2$, $a = 13.326(3)$, $b = 14.072(3)$, $c = 10.238(2)$ Å, $V = 1919.9$ (7) \AA^3 , Z = 16. $D_{\text{calc}} = 2.563$ g/cm³. The basic structural unit is a bicyclic B₄O₉ group that consists of two vertex-sharing BO_4 tetrahedra and two bridging BO_3 triangles.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Reshak et al. (2012a).

- Wavenumbers (cm⁻¹): 1440sh, 1369s, 1339sh, 1283sh, 1126, 968s, 900, 885sh, 848, 786, 759, 722, 678, 648, 637sh, 605sh, 543, 505, 479w, 453w, 423w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B176 Lithium strontium borate $Li_2Sr_4B_{12}O_{23}$ $Li_2Sr_4B_{12}O_{23}$

Origin: Synthetic.

- **Description:** Synthesized from stoichiometric mixture of Li_2CO_3 , SrCO₃, and H_3BO_3 by solid-state reaction method at 710 \degree C for 60 h, with several intermediate grindings and mixings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 6.4664(4), b = 8.4878(4), c = 15.3337(8)$ Å, $\beta = 102.024(3)^\circ$, $V = 823.13(8)$ Å³, $Z = 2$. $D_{\text{calc}} = 3.478$ g/cm³. The structure is based on the B₁₀O₁₈ network, consisting of BO₄ tetrahedra and BO_3 triangles, and isolated B_2O_5 unit.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zhang et al. (2012a).

- Wavenumbers (cm⁻¹): 1488sh, 1442, 1345, 1264, 1129s, 1081s, 989s, 942s, 913s, 865, 791, 767, 708, 681, 627, 606, and a series of weak bands below 600 cm⁻¹.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B177 Lithium tetraborate $Li_2B_4O_7$

Origin: Synthetic.

- Description: Single crystals grown by the Czochralski method from a stoichiometric melt. Characterized by powder X-ray diffraction data. The crystal structure is solved. Tetragonal, space group $I4_1cd$, $a = 9.477$, $c = 10.286$ Å, $Z = 8$. The structure contains pairs of BO₄ tetrahedra linked by a common O atom to form a B_2O_7 group. BO₃ triangles join these groups to yield a B_4O_7 network.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc (for the region 500–1600 cm⁻¹), CsI disc (200–700 cm⁻¹), and polyethylene disc (50–300 cm⁻¹). Absorption.

Source: Zhigadlo et al. (2001).

- Wavenumbers (cm⁻¹): 1458, 1378s, 1358s, 1330, 1142, 1021sh, 980s, 904s, 888sh, 809w, 780, 763sh, 719, 710, 691, 683, 666, 656, 600w, 549, 516, 509, 491w, 461w, 419, 348, 315, 297sh, 262, 226sh, 201, 191sh, 167, 156, 125, 94w, 77w, 61w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

B178 Magnesium strontium diorthoborate $MgSr(B_2O_5)$

Origin: Synthetic.

- **Description:** Synthesized by solid-state reaction from the stoichiometric mixture of MgO, $Sr(NO₃)₂$, and H₃BO₃ heated first at 500 °C for 24 h and then at 900 °C for 72 h with several intermediate grindings and mixings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 6.478(4)$, $b = 5.327(4)$, $c = 12.048(8)$ Å, $\beta = 102.805$ $(8)^\circ$, $V = 405.4(5)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 3.499$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Guo et al. (2014b).

- Wavenumbers (cm⁻¹): 1415s, 1372s, 1333s, 1293s, 1260s, 1197s, 1157s, 1006, 849w, 780sh, 729, 685, 643, 492, 440.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B179 Potassium barium borate $KBaB₅O₉$ KBaB₅O₉

- **Description:** Prepared by the solid-state reaction of a stoichiometric mixture containing $KNO₃$, Ba $(NO₃)₂$, and H₃BO₃, first at 500 °C for 4 h, and thereafter (after regrinding) at 650 °C and for 48 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 6.7168(11)$, $b = 8.2724(13)$, $c = 14.262(2)$ Å, $\beta = 92.724(2)$ °, $V = 791.5(2)$ Å³, $Z = 4. D_{\text{calc}} = 5.572 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Yu et al. (2014).

- Wavenumbers (cm⁻¹): 1428s, 1325s, 1251sh, 1221, 1100, 1065, 1002sh, 955s, 898s, 858s, 811, 784, 735, 697, 646, 620, 598sh, 560, 491w, 464w, 424w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B180 Potassium borate KB₃O₅⋅H₂O KB₃O₅⋅H₂O

Origin: Synthetic.

- **Description:** Prepared in the reaction between fine powders of $K_2B_4O_7$ -4H₂O and KB_5O_8 -4H₂O under exposure of water vapor, with subsequent heating to 110 °C. X-ray amorphous. Characterized by DTA.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Salentine (1987).

- Wavenumbers (cm⁻¹): 1645sh, 1450sh, 1360s, 1270sh, 1165sh, 1048s, 1033sh, 923, 870, 816sh, 753, 701, 455w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B181 Potassium chloride borate perovskite-related $K_3B_6O_{10}Cl$

Origin: Synthetic.

- **Description:** Prepared by heating stoichiometric mixture of K_2CO_3 , KCl, and H_3BO_3 , first at 500 °C for 10 h and thereafter (after intermediate grinding) at 720 $^{\circ}$ C for 2 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group $R3m$, $a = 10.0624(14)$, $c = 8.8361(18)$ Å, $V = 774.8(2)$ Å³, $Z = 3$. $D_{\text{calc}} = 2.428$ g/cm³. The structure is based on a 3D framework containing $[B_6O_{10}]$ units in which three BO_4 tetrahedra are shared by the oxygen vertex and are connected with three $BO₃$ triangles.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wu et al. (2011).

Wavenumbers (cm⁻¹): 1446, 1411sh, 1340sh, 1315s, 1176, 1006s, 996sh, 877s, 825, 755, 734, 686, 634, 597, 568, 491, 444sh.

B182 Potassium pentaborate $KB₅O₈$

Description: Crystals obtained by slow evaporation of aqueous solution containing potassium carbonate and boric acid in the stoichiometric ratio. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Aba2$, $a = 11.065$, $b = 11.171$, $c = 9.054$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. The procedure of baseline correction has been applied.

Source: Mary et al. (2008).

Wavenumbers (IR, cm⁻¹): 3443s, 3377s, 3042, 2650w, 2590sh, 2472w, 2360w, 2263sh, 2166w, 1854w, 1654, 1433s, 1358s, 1250, 1103s, 1025s, 925s, 782, 766, 735, 696, 591, 552w, 508, 459w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 917s, 786, 730, 559s, 456s, 373 (weak bands are not indicated).

B183 Potassium sodium zinc borate $K_2NaZnB_5O_{10}$ $K_2NaZnB_5O_{10}$

Origin: Synthetic.

- **Description**: Colorless prismatic crystals obtained from K_2CO_3 , ZnO, H_3BO_3 , and $Na_2BaO_710H_2O$ in the molar ratio of 3:2:10:2 by employing a high-temperature solution reaction method. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 7.9244(16)$, $b = 12.805(3)$, $c = 18.962(4)$ Å, $\beta = 99.39(3)^\circ$, $V = 1898.4(7)$ Å³, $Z = 8$. $D_{\text{calc}} = 2.663$ g/cm³. The structure is based on the $[B_5O_{10}]^{5-}$ group that consists of one BO₄ tetrahedron and four BO₃ triangles condensed to a double ring via the common tetrahedron.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2010).

- Wavenumbers (cm⁻¹): 1447s, 1436sh, 1394s, 1358s, 1272s, 1199s, 1133, 1080sh, 1059sh, 1032s, 1006, 969sh, 949, 928, 900sh, 880sh, 830, 777, 752, 726, 698sh, 672sh, 636w, 607w, 583sh, 556w, 527w, 503w, 477w, 463w, 442w, 417w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B184 Potassium triborate $KB₃O₅$

Origin: Synthetic.

- Description: A high-pressure monoclinic polymorph. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group C2/c, $a = 9.608(2)$, $b = 8.770(2)$, $c = 9.099(2)$ Å, $\beta = 104.4(1)$ °, $V = 742.8(3)$ Å³, $Z = 8$.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection (?).

Source: Sohr et al. (2014).

- Wavenumbers (cm⁻¹): 1362sh, 1317s, 1178, 1113, 1066, 1028, 956s, 902, 836s, 783, 757s, 698, 651, 609w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

B185 Sodium aluminum borate $\text{Na}_2\text{Al}_2\text{B}_2\text{O}_7$ $\text{Na}_2\text{Al}_2\text{B}_2\text{O}_7$

Description: Prepared by heating stoichiometric mixture of NaHCO₃, Al₂O₃, and H₃BO₃, first at 400 °C for 10 h and thereafter at 950 °C for 2 days. The crystal structure is solved by the Rietveld technique. Trigonal, space group P-31c, $a = 4.8113(1)$, $c = 15.2781(3)$ Å, $V = 306.29(2)$ Å³, $Z = 2$. $D_{\text{calc}} = 2.532$ g/cm³. The structure contains infinite [Al₂B₂O₇] sheets. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 4.02 (59) (101), 3.820 (55) (004), 2.815 (100) (104), 2.406 (33) (110), 2.295 (36) (112).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. **Source:** He et al. (2001).

Wavenumbers $(cm⁻¹)$: 1263s, 1015, 992, 765s, 525s, 495sh, 331, 325sh, 244w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B186 Sodium barium borate $NABaB_5O_9$ NaBaB₅O₉

Origin: Synthetic.

- **Description**: Prepared by solid-state reaction techniques from a stoichiometric ratio of NaNO₃, Ba (NO_3) ₂, and H₃BO₃ preheated at 500 °C for 4 h and thereafter (after intermediate grinding) heated at 650 °C for 48 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 6.5773(19)$, $b = 13.872(4)$, $c = 8.371(2)$ Å, $\beta = 105.393(3)$ °, $V = 736.4(4)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 3.232$ g/cm³. The structure is based on infinite corrugated layers containing $B_5O_9^{3-}$ double rings.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Yu et al. (2014).

- Wavenumbers (cm⁻¹): 1301s, 1225s, 1132sh, 1110, 1055, 1008s, 964s, 940sh, 885sh, 870s, 854sh, 824s, 773, 742, 726, 707s, 646, 570, 552, 498w, 486sh, 424w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B187 Sodium borate Na₂B₅O₈(OH)∙2H₂O Na₂B₅O₈(OH)⋅2H₂O

Origin: Synthetic.

- **Description:** Synthesized hydrothermally from $Na_2B_4O_7$ 10H₂O and H₃BO₃ at 180 °C for 3 days, with subsequent cooling to room temperature for 9 days. Characterized by powder X-ray diffraction data and elemental analysis. The crystal structure is solved. Orthorhombic, space group $Pna2₁$, $a = 11.967(2), b = 6.5320(13), c = 11.126(2)$ Å, $V = 869.7(3)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.146$ g/cm³. The structure is based on the double hexagonal ring $B_5O_8(OH)^{2-}$ containing three BO₃ triangles and two BO₄ tetrahedra.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Wang et al. (2009b).

Wavenumbers (cm⁻¹): 3367s, 1646, 1362s, 1149s, 1067s, 970sh, 936sh, 860, 806, 750, 688.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B188 Sodium borophosphate $\text{Na}_5(\text{B}_2\text{P}_3\text{O}_{13})$ $\text{Na}_5(\text{B}_2\text{P}_3\text{O}_{13})$

Description: Prepared by solid-state reaction techniques, by heating the mixture of Na₂CO₃, H₃BO₃, and $(NH_4)(H_2PO_4)$ in the molar ratio 2.5:2:(3.01–3.05) first at 500 °C for 10 h and thereafter at 700 °C for 24 h with intermediate grinding. Monoclinic, space group $C2$. Characterized by powder X-ray diffraction data. $D_{\text{meas}} = 2.68 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Li et al. (2003).

- Wavenumbers (cm⁻¹): 1197s, 1166, 1150sh, 1130, 1097s, 1036, 1002s, 983, 950sh, 926s, 869, 834, 825, 751, 688w, 671, 615w, 585, 566, 539, 517, 473, 455.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

B189 Sodium borosulfate $\text{Na}_5[\text{B}(\text{SO}_4)_4]$ $\text{Na}_5[\text{B}(\text{SO}_4)_4]$

Origin: Synthetic.

- Description: Colorless crystals prepared by solid-state reaction techniques, by heating the mixture of NaHSO₄.H₂O and B(OH)₃ at 673 K for 12 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $Pca2_1$, $a = 10.730(2)$, $b = 13.891(3)$, $c = 18.197(4)$ Å, $Z = 8$. $D_{\text{calc}} = 2.498$ g/cm³. The structure contains open-branched pentameric anion $[B(SO_4)_4]^{5-}$ with the borate tetrahedron in the center.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection.

Source: Daub et al. (2013).

- Wavenumbers (IR, cm⁻¹): 1290sh, 1278sh, 1246s, 1229s, 1212s, 1111w, 1095, 1073, 1045, 975, 955sh, 941, 926, 892, 864, 821, 746sh, 729sh, 718w, 710sh, 661, 627, 604sh, 585, 580sh, 568, 477sh, 451w, 424w, 416w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a figure of the Raman spectrum is given.

- **Description**: Colorless prismatic crystals obtained by heating a powder mixture of CaCO₃, Bi₂O₃, H_3BO_3 , and $Na_2B_4O_7$ 10H₂O with the molar ratio 1:1:2:4.63 at 750 °C for 1 day, with subsequent cooling down to 730 °C at a rate of 1 °C/h. Characterized by energy-dispersive X-ray analyses. The crystal structure is solved. Triclinic, space group $P-1$, $a = 7.4403(6)$, $b = 9.7530(10)$, $c = 12.9289$ (9) Å, $\alpha = 90.972(7)^\circ$, $\beta = 90.073(7)^\circ$, $\gamma = 109.656(6)^\circ$, $V = 883.37(13)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.429$ g/cm³. The basic structural unit is a $[B_5O_{10}]^{5-}$ group that consists of one BO₄ tetrahedron and four $BO₃$ triangles condensed to a double ring via the common tetrahedron.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2007b).

Wavenumbers (cm⁻¹): 1617sh, 1530sh, 1468s, 1434sh, 1393, 1335, 1316sh, 1204s, 1078, 1050, 1012, 947, 918, 783, 754, 716, 625, 580w, 513w, 480w, 430w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B191 Sodium magnesium pentaborate $\text{Na}_3\text{MgB}_5\text{O}_{10}$ $\text{Na}_3\text{MgB}_5\text{O}_{10}$

Origin: Synthetic.

- **Description:** Colorless prismatic crystals obtained by heating a powder mixture of Na₂CO₃, Mg $(NO_3)_2$, H₃BO₃, and Na₂B₄O₇·10H₂O with the molar ratio 3:2:5:2 at 750 °C for 4 days, with subsequent cooling down to 700 °C at a rate of 1 °C/h and to 600 °C at a rate of 5 °C/h. Characterized by energy-dispersive X-ray analyses. The crystal structure is solved. Orthorhombic, space group *Pbca*, $a = 7.838(1)$, $b = 12.288(1)$, $c = 18.180(2)$ Å, $V = 1751.0(3)$ Å³, $Z = 8$. $D_{\text{calc}} = 2.332$ g/cm³. The basic structural unit is a $[B_5O_{10}]^{5-}$ group that consists of one BO₄ tetrahedron and four BO_3 triangles condensed to a double ring *via* the common tetrahedron.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2007b).

Wavenumbers (cm⁻¹): 1620sh, 1522sh, 1458s, 1407s, 1260s, 1192s, 1079w, 1050, 1027s, 950, 932, 779, 760, 725, 651w, 626, 572, 506, 436.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Description: Crystals grown from the melt prepared from $SrCO_3$, $Al(OH)_3$, and $Na_2Ba_2O_710H_2O$ (with the ratio 1:4:3) at 860 °C by cooling down to 700 °C at a rate of 2.0 °C/h, to 500 °C at 5.0 °C/h, and finally to room temperature at 20 °C/h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group $R-3c$, $a = 11.356(2)$, $c = 36.655(7)$ Å, $V = 4093.7(12)$ \AA^3 , $Z = 6$. $D_{\text{calc}} = 3.490$ g/cm³. The crystal structure contains a polycyclic B₁₈O₃₆ building unit consisting of 12 BO_3 triangles and 6 BO_4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Chen et al. (2014a).

Wavenumbers (cm⁻¹): 1456, 1400s, 1232, 990s, 946s, 847, 765w, 721s, 700s, 663, 632s, 550, 479, 450, 437.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B193 Sodium vanadyl borate $\text{Na}_3(\text{VO}_2)\text{B}_6\text{O}_{11}$ $\text{Na}_3(\text{VO}_2)\text{B}_6\text{O}_{11}$

- **Description:** Synthesized by solid-state reaction between Na_2CO_3 , V_2O_5 , and H_3BO_3 . A stoichiometric mixture of these reactants was heated first at 300 °C for 5 h, thereafter at 500 °C for 5 h, and finally at $600\degree$ C for 2 days with several intermediate grindings. Orthorhombic, space group $P2_12_12_1$, $a = 7.7359(9)$, $b = 10.1884(12)$, $c = 12.5697(15)$ Å, $V = 990.7(2)$ Å³, $Z = 4$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 4.1325 (39) (121), 3.6679 (57) (103), 3.1309 (100) (004), 3.0821 (38) (220), 2.9814 (39) (032).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Fan et al. (2010).

- Wavenumbers (cm⁻¹): 1615sh, 1555sh, 1469s, 1427s, 1340s, 1241, 1158, 1130, 1094, 1062, 1008s, 941, 921sh, 827s, 775sh, 716, 683w, 656sh, 628w, 581w, 531w, 510w, 465, 446.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B194 Sodium yttrium tellurate borate $\text{Na}_2\text{Y}_2(\text{Te}^{6+}\text{B}_2\text{O}_{10})$ $\text{Na}_2\text{Y}_2(\text{Te}^{6+}\text{B}_2\text{O}_{10})$

Origin: Synthetic.

- **Description**: Synthesized by heating a mixture of NaCO₃, TeO₂, H₃BO₃, and Y₂O₃ at 830 °C for 10 h with subsequent cooling down to 600 °C at 3–5 °C/h rate. Characterized by powder X-ray diffraction data and EDS elemental analyses. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 6.3073(7)$, $b = 9.9279(8)$, $c = 6.7219(6)$ Å, $\beta = 104.260(10)$ °, $V = 407.94(7)$ Å³, $Z = 2$. $D_{\text{calc}} = 4.339$ g/cm³. The structure is based on a 3D framework composed of linear $[TeO_4(BO_3)_2]^{8-}$ anions interconnected by Y^{3+} cations.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission? Kind of sample preparation is not indicated.

Source: Feng et al. (2015a).

- Wavenumbers (cm⁻¹): 1418sh, 1366s, 1350s, 1220, 1183sh, 1165s, 1014sh, 941, 885sh, 825w, 775, 766sh, 720s, 708s, 674s, 650s, 610, 552, 488, 432s, 409s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

- **Description**: Prepared by a solid-state reaction method, by heating the mixture of Na_2CO_3 , ZnO, H_3BO_3 , and $Na_2BaO_7·10H_2O$ (with the molar ratio 1:2:2:1) at 750 °C for 1 day with subsequent cooling down to 730 °C at a rate of 1 °C/h, then to 720 °C at 0.5 °C/h, and finally to room temperature at 20 °C/h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 6.6725(7)$, $b = 18.1730(10)$, $c = 7.8656(9)$ Å, $\beta = 114.604(6)^\circ$, $V = 867.18(14) \text{ Å}^3$, $Z = 4$. $D_{\text{calc}} = 2.668 \text{ g/cm}^3$. The structure contains double rings $[B_5O_{10}]^{5-}$ bridged by ZnO_4 tetrahedra through common O atoms to form a 2D layer.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2007a).

Wavenumbers (cm⁻¹): 1441s, 1383s, 1268s, 1201s, 1081, 1045sh, 1027s, 939s, 777, 722s, 653, 627, 615sh, 561, 479, 439w, 430sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B196 Strontium borate chloride $Sr_2B_5O_9Cl$ $Sr_2B_5O_9Cl$

Origin: Synthetic.

Description: Obtained by stepwise heating a precipitate formed by adding SrCl₂ aqueous solution to Na₂B₄O₇ aqueous solution at 600, 700, and 800 °C for 8 h at each temperature. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 11.381$, $b = 11.319$, and $c = 6.498$ Å (see JCPDS Card No. 27-0835).

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Zhu et al. (2013).

- Wavenumbers (cm⁻¹): 1630w, 1489w, 1435, 1396, 1355, 1306s, 1101, 1024s, 978s, 920s, 878, 824, 773, 721w, 746w, 692w, 650w, 632w, 609w, 582w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B197 Strontium borate $SrB₂O₄$ $SrB₂O₄$

- **Description:** Synthesized by heating a mixture of appropriate amounts of $SrCO₃$ and $H₃BO₃$ at 1000 °C for 2 h in air. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, $a \approx 12.01$, $b \approx 4.34$, and $c \approx 6.59$ Å (see JCPDS card No. 84-2175).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Onodera et al. (1999).

Wavenumbers (cm⁻¹): 1483s, 1433s, 1183s, 1070w, 853w, 765w, 737, 704, 690, 638.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

B198 Strontium borate SrB_8O_{13} SrB_8O_{13}

Origin: Synthetic.

- **Description:** Synthesized by heating a powder mixture of Bi_2O_3 , $SrCO_3$, and H_3BO_3 (with a molar ratio 3:3:26) at 735 °C for 2 weeks. The product was then cooled down to 500 °C at a rate of 5 °C/h and thereafter cooled to room temperature at a rate of 20 $^{\circ}$ C/h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group P_1/c , $a = 8.408(1)$, $b = 16.672(2), c = 13.901(2)$ $\text{\AA}, \beta = 106.33(1)^\circ, V = 1870.0(4)$ $\text{\AA}^3, Z = 4$. $D_{\text{calc}} = 2.714$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Tang et al. (2008).

- Wavenumbers (cm⁻¹): 1438s, 1419s, 1392sh, 1340, 1286, 1250sh, 1235s, 1221sh, 1206s, 1147, 1101s, 1058s, 1023s, 979, 951sh, 932, 915s, 889sh, 867, 823w, 806w, 783w, 759sh, 724sh, 702, 681, 662sh, 647w, 622w, 600w, 572sh, 564sh, 554, 541, 523, 511, 477sh, 452sh, 420w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B199 Strontium boroarsenate $Sr(BAsO₅)$ $Sr(BAsO₅)$

Origin: Synthetic.

Description: Synthesized by heating a mixture of $SrCO₃$, As₂O₅, and H₃BO₃ in a 2:1:2 molar ratio at 900 °C for 15 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Hexagonal, space group $P2_121$, $a = 7.056(3)$, $c = 6.898(1)$ Å, $V = 571.6(3)$ Å³, $Z = 3$. In the infinite loop-branched [BAsO₅] chain, both B and As have fourfold coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Birsöz and Baykal (2008).

Wavenumbers (IR, cm⁻¹): 1179w, 1141w, 1125w, 978s, 908s, 892sh, 834s, 792s, 785sh, 743s, 720s, 700sh, 675, 642w, 622sh, 607w, 585, 568sh, 545w, 523, 507w, 489, 463, 421sh, 409.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a figure of the Raman spectrum is given.

B200 Tin tetraborate β -SnB₄O₇

- **Description:** Prepared by compressing a mixture of $SnO₂$ and $B₂O₃$, taken in stoichiometric amounts, to 7.5 GPa for 3 h with subsequent heating first at 1100 °C for 5 min and thereafter at 750 °C for 15 min. The crystal structure is solved. Orthorhombic, space group $Pmn2_1$, $a = 10.864(2)$, $b = 4.4480(9)$, $c = 4.2396(8)$ Å, $V = 204.9(1)$ Å³, $Z = 2$. $D_{calc} = 4.44$ g/cm³. The structure is based on a network of corner-sharing BO_4 tetrahedra with channels built from four- and six-membered rings.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Knyrim et al. (2007).

- Wavenumbers (cm⁻¹): 1213sh, 1154s, 1090, 1020s, 952s, 876, 813s, 777s, 758s, 719s, 655, 635, 611, 543, 523sh, 496, 467sh, 453sh, 426.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

B201 Yttrium barium borate $YBa_3B_9O_{18}$ $YBa_3B_9O_{18}$

Origin: Synthetic.

- **Description:** Crystals prepared by stepwise heating a mixture of BaCO₃, Y_2O_3 , and H_3BO_3 (with the molar ratios Y:Ba:B = 1:1:9) to 1050 °C for 12 h followed by cooling down to 800 °C at a rate of 1 °C/h and from 800 to 600 °C at a rate of 2 °C/h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Hexagonal, space group $P6_3/m$, $a = 7.1761(6)$, $c = 16.9657(6)$ Å, $V = 756.1(1) \text{ Å}^3$, $Z = 2$. $D_{\text{calc}} = 3.89 \text{ g/cm}^3$. The fundamental building unit of the crystal structure is the planar B_3O_6 group.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Li et al. (2004a).

- Wavenumbers (cm⁻¹): 1411s, 1398s, 1385s, 1375sh, 1363sh, 1262s, 1249s, 1238sh, 1200, 969, 954, 777w, 766w, 712, 697, 684sh, 671sh, 499w, 410, 338, 262.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B202 Admontite MgB₆O₁₀∙7H₂O

Origin: Synthetic.

- **Description**: Prepared hydrothermally from MgO and H_3BO_3 , taken in the molar ratio 1:6, at 100 °C for 120 min. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Derun et al. (2015).

- Wavenumbers (cm⁻¹): 1660w, 1636sh, 1468sh, 1419, 1365sh, 1348, 1236, 1178, 1137, 1095s, 1024s, 1007, 988sh, 956s, 911sh, 898, 861s, 809s, 703sh, 674.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B203 Fontarnauite $(Na,K)_{2}(Sr,Ca)(SO_{4})[B_{5}O_{8}(OH)]$ ∙2H₂O

Origin: Village of Doğanlar, Kütahya Province, Western Anatolia, Turkey (type locality).

- Description: Colorless to light-brown prismatic crystals from the association with probertite, glauberite, and celestine. Holotype sample. The crystal structure is solved. Monoclinic, space group P_1/c , $a = 6.458(2)$, $b = 22.299(7)$, $c = 8.571(2)$ Å, $\beta = 103.047(13)$ °, $V = 1202.5$ (10) Å³, Z = 4. $D_{calc} = 2.533g/cm^3$. Optically biaxial (-), $\alpha = 1.517(2)$, $\beta = 1.517(2)$, $\gamma = 1.543(2), 2V = 46(1)^\circ$. The empirical formula is $(Na_{1.84}K_{0.16})(Sr_{0.82}Ca_{0.18})S_{1.00}B_5H_5O_{15}$. The strongest lines of the powder X-ray diffraction pattern [d, \AA (I, %) (hkl)] are: 11.1498 (100) (020), 3.3948 (8) (061), 3.3389 (20) (042), 3.1993+3.1990 (10) (160, –142), 3.0458 (10) (052), 3.0250 (7) (220), 2.7500 (10) (-222, 142), 2.3999 (8) (260), 2.2284 (7) (0.10.0, 222), 1.9237 +1.9237 (7) (311, –224).
- Kind of sample preparation and/or method of registration of the spectrum: The spectrum was obtained from a small cleavage sheet crushed in a diamond-cell holder.
- Source: Cooper et al. (2016b).
- Wavenumbers (IR, cm⁻¹): 3587, 3531, 3404, 3288, 2359w, 1657, 1502sh, 1449sh, 1365s, 1315s, 1217sh, 1136s, 1085, 1046, 989s, 920, 879, 842w, 812sh, 773w, 756w, 729w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band position denoted by Cooper et al. (2016b) as 862 cm^{-1} was determined by us at 842 cm^{-1} . In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 975s, 470, 430, 160, 129.

B204 Sinhalite $MgAl(BO₄)$

Origin: Synthetic.

- **Description:** Synthesized hydrothermally from a gel of suitable composition at 700 °C for 500 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group Pnma.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Tarte et al. (1985).

Wavenumbers (cm^{-1}) : 1100s, 960s, 930s, 800, 780, 700s, 605sh, 586s, 551, 510s, 490s, 452w, 425, 406, 330, 283w.

B205 Sborgite NaB₅O₆(OH)₄⋅3H₂O

Origin: Synthetic.

Description: Synthesized from aqueous solutions of boric acid and borax. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen and Pei (2016).

Wavenumbers (IR, cm⁻¹): 3450s, 3392s, 3210, 2375w, 2211w, 1681, 1518sh, 1413s, 1330s, 1205, 1166, 1084, 1038sh, 1021, 950sh, 933, 917, 875sh, 786, 775sh, 696, 643, 592, 559, 488, 471.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 922, 856s, 774, 529s, 494, 468w, 386w.

B206 Potassium borate KB₃O₃(OH)₄⋅H₂O KB₃O₃(OH)₄⋅H₂O

- **Description:** Prepared in the reaction between fine powders of $K_2B_4O_74H_2O$ and $KB_5O_84H_2O$ under exposure of water vapor. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 15.540$ (5), $b = 6.821(2)$, $c = 14.273(4)$ Å, $\beta = 104.44(2)^\circ$, $V = 1465.1$ Å³, $Z = 8$. The structure contains an isolated $B_3O_3(OH)_4$ ⁻ anion formed from a B_3O_3 ring consisting of one $BO_2(OH)_2$ tetrahedron and two $BO₂(OH)$ triangles.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Salentine (1987).

- Wavenumbers (IR, cm⁻¹): 1634sh, 1492, 1450s, 1428, 1404, 1310s, 1270sh, 1198s, 1181sh, 1145, 1041sh, 1006s, 992s, 934, 870s, 862sh, 795sh, 763w, 709, 691sh, 656sh, 638, 617, 567, 533, 494, 461, 413w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given. The band position denoted by Salentine (1987) as 1000 cm^{-1} was determined by us as doublet (1006+992 cm^{-1}).
- Wavenumbers (Raman, cm⁻¹): 1194w, 966, 753s, 624s, 488, 453, 407, 212w, 176, 137, 116.

B207 Tyretskite (monoclinic polytype) $Ca_2B_5O_9(OH)·H_2O$

Origin: Synthetic.

- Description: Synthesized under solvothermal conditions. The crystal structure is solved. Monoclinic, space group Cc , $a = 10.790(5)$, $b = 6.5174(18)$, $c = 12.359(6)$ Å, $\beta = 114.975(19)$ °, $V = 787.8$ (6) \AA^3 , Z = 4. $D_{\text{calc}} = 2.641 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wei et al. (2014).

Wavenumbers (cm^{-1}) : 3549, 3415s, 1645, ~1371s, 1335s, 1108s, 1021s, 855, 767w, 657w, 622, 550, 514.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

B208 Satimolite $KNa_2(Al_5Mg_2)[B_{12}O_{18}(OH)_{12}](OH)_6Cl_4.4H_2O$

Origin: Chelkar salt dome, Aksai Valley, Aktobe (Aqtöbe) region, Kazakhstan.

Description: Isolated colorless crystals from the association with sylvite, halite, anhydrite, and boracite. Characterized by powder and single-crystal X-ray diffraction data. The crystal structure is solved. Trigonal, space group R-3m, $a = 15.1406(4)$, $c = 14.3794(9)$ Å, $V = 2854.7(2)$ Å³. The structural formula is $(\Box_{0.68}Na_{0.32})_6(Cl_{0.68}K_{0.22} \Box h_{0.10})_6(Al_{0.66}Mg_{0.31}Fe^{3+}{}_{0.03})_7[B_{12}O_{18}(OH)_{12}]$ $(OH)_6.4H_2O$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3430, 3272s, 2518w, 1651, 1435sh, 1376, 1304s, 1166, 1150sh, 979s, 840, 797, 745w, 696s, 639, 568, 528, 455, 429.

Note: The spectrum was obtained by N.V. Chukanov.

Origin: Inder boron deposit, Atyrau region, Kazakhstan.

Description: White powdery aggregate. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3584, 3555, 3461, 3390sh, 3094, 2960sh, 2580w, 2540w, 1663, 1424, 1373,

1352, 1311, 1293, 1195sh, 1095sh, 1065s, 1016, 903s, 825, 795, 716, 670, 599w, 587w, 572, 520, 474. Note: The spectrum was obtained by N.V. Chukanov.

B210 Probertite $NaCaB₅O₇(OH)₄·3H₂O$

Origin: Banderma (Pandirma), Balikesir province, Turkey.

Description: Grey radial aggregate. Confirmed by the IR spectrum and qualitative electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3634, 3564, 3506, 3372s, 3289, 3250sh, 3092, 1678, 1474, 1435, 1380s, 1351s, 1323, 1216, 1186, 1150sh, 1133, 1085s, 1041s, 994s, 959s, 934s, 906s, 850sh, 835, 805sh, 755, 737w, 726w, 686, 649w, 615, 600sh, 557, 517, 478, 456w, 447w, 424w, 400w.

Note: The spectrum was obtained by N.V. Chukanov.

BC10 Mereheadite $Pb_{47}Cl_{25}(OH)_{13}O_{24}(CO_3)(BO_3)_2$

Origin: Merehead Quarry, Cranmore, Somerset, England, UK (type locality).

Description: Reddish-orange grains. The crystal structure is solved. Monoclinic, space group Cm, $a = 17.372(1), b = 27.9419(19), c = 10.6661(6)$ Å, $\beta = 93.152(5)$ °, $V = 5169.6(5)$ Å³, $Z = 2$. $D_{\text{calc}} = 7.236 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3331, 1373s, 1324s, 1261s, 1183, 1141s, 1071, 1050, 1000sh, 902w, 841, 813w, 734, 709, 615, 542w, 457s, 398s.

Note: The spectrum was obtained by N.V. Chukanov.

2.2 Carbonates

C342 Parisite-(La) $\text{Cala}_2(\text{CO}_3)_3\text{F}_2$

- Origin: Rio dos Remédios Group, Mula mine, near Tapera village, Novo Horizonte Co., Bahia, Brazil (type locality).
- Description: Greenish-yellow inner zone of a pseudohexagonal crystal from the association with hematite, rutile, almeidaite, fluocerite-(Ce), brockite, monazite-(La), rhabdophane-(La), and bastnäsite-(La). Holotype sample. Monoclinic, space group: C2, Cm, or C2/m, $a = 12.356(1)$, $b = 7.1368(7)$, $c = 28.299(3)$ Å, $\beta = 98.342(4)^\circ$, $V = 2469.1(4)$ Å³, $Z = 12$. $D_{\text{calc}} = 4.273$ g/cm³. Optically pseudo-uniaxial (+), $\omega = 1.670(2)$, $\varepsilon = 1.782(5)$. The empirical formula is $Ca_{0.98}(La_{0.83}Nd_{0.51}Ce_{0.37}Pr_{0.16}Sm_{0.04}Y_{0.03})C_{3.03}O_{8.91}F_{2.09}$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 13.95 (55) (002), 4.655 (37) (006), 3.555 (88) (020, –311), 2.827 (100) (026, 315, –317), 2.055 (58) (-331, –602), 1.950 (38) (0.2.12, 3.1.11, –3.1.13), 1.880 (36) (335, –337, 604, –608).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 2918w, 2870w, 2497w, 1843w, 1823w, 1750w, 1454sm 1430sh, 1089, 1081, 871s, 850sh, 746w, 734, 679w, 670w, 602w, 368.

Note: The spectrum was obtained by N.V. Chukanov.

C343 Parisite-(Ce) $CaCe₂(CO₃)₃F₂$

Origin: White Cloud Mine, Pyrites, Ravalli Co., Montana, USA.

Description: Beige crystal. The empirical formula is (electron microprobe): $Ca_{1.08}(Ce_{0.93}La_{0.47}Nd_{0.32}Pr_{0.06}Y_{0.08}Th_{0.06})(CO_3)_{3.00}F_{1.88}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 2920w, 2500w, 1820w, 1746w, 1459s, 1411s, 1077, 869s, 850sh, 736, 685sh, 609w.

Note: The spectrum was obtained by N.V. Chukanov.

C344 Stichtite $Mg_6Cr_2(OH)_{16}(CO_3)\cdot 4H_2O$

Origin: Kara-Uyuk stream, Terektinskiy ridge, Altai Mts., Siberia, Russia.

- Description: Lilac scaly aggregate from the association with serpentine. An Al-rich variety. The empirical formula is (electron microprobe): $Mg_{5.98}(Cr_{1.13}Al_{0.73}Fe_{0.16})(OH)_{16}(CO_3)$ 4H2O. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3580sh, 3482s, 3050sh, (1735sh), 1653, 1365s, 1080sh, 1050w, 940sh, 845sh, 710sh, 686s, 633s, 525, 413s.

Note: The spectrum was obtained by N.V. Chukanov.

C345 Ammonium bicarbonate $NH₄HCO₃$

Origin: Synthetic.

Description: Commercial reactant purchased from Aldrich. Characterized by elemental analysis and PXRD. The strongest lines of the powder X-ray diffraction pattern $[d, \mathring{A}(I, \mathcal{U})]$ are: 5.36 (26.5), 4.04 (19), 3.00 (100).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Meng et al. (2005).

- Wavenumbers (cm^{-1}) : 3205s, 3098s, 2923, 2856, 2572, 2243w, 2138w, 1685w, 1600s, 1494s, 1441s, 1370s, 1275s, 1041, 1022, 952, 831, 702, 649.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

C346 Copper(II) carbonate $CuCO₃$

Origin: Synthetic.

Description: CuCO₃ can be prepared from azurite, malachite or CuO by reaction with $CO₂$ at a pressure of 20 kb and a temperature of 500 °C. Monoclinic, space group Pa, $a = 6.092$, $b = 4.493$, $c = 7.030 \text{ Å}, \beta = 101.34^{\circ}, V = 188.7 \text{ Å}^3, Z = 4.$ In the structure, Cu has the fivefold (square pyramid) coordination. $D_{\text{meas}} = 4.18 \text{ g/cm}^3$, $D_{\text{calc}} = 4.35 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc (above 190 cm^{-1}) and polyethylene mull (below 190 cm^{-1}). Transmission.

Source: Seidel et al. (1974).

Wavenumbers (cm⁻¹): 1460sh, 1420s, 1090w, 860s, 760, 743, 425, 383sh, 305, 268, 250, 212, 194, 166, 158, 151, 130, 113, 103, 97, 90, 83, 61, 55, 49, 44, 38, 31.

C347 Potassium lead carbonate fluoride $KPb_2(CO_3)_2F$

- Description: Synthesized by a conventional solid-state technique from the stoichiometric mixture of KF and PbCO₃, at 250 °C, in flowing CO₂ gas, for 2 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Hexagonal, space group $P6_3/mmc$, $a = 5.3000$ (2), $c = 13.9302(8)$ Å, $V = 338.88(3)$ Å³, $Z = 2$. $D_{\text{calc}} = 5.807$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: Reflection of a powdered sample.

Source: Tran and Halasyamani (2013).

- Wavenumbers $(cm⁻¹)$: 1741w, 1398s, 1350sh, 1107w, 1045, 995w, 855w, 833, 815sh, 743w, 680s, 541w, 515w, 491w, 466w, 425w, 382.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

C348 Sodium lithium gadolinium carbonate $Na₂LiGd(CO₃)₃ Na₂LiGd(CO₃)₃$

Origin: Synthetic.

Description: Obtained hydrothermally from GdF₃, Na₂CO₃, and Li₂CO₃ with molar ratio 1:6:2 at 230 °C for 48 h. Characterized by powder X-ray diffraction data. Cubic, space group $Fd-3m$, $a \approx 14.4$ Å, $Z = 8$.

Kind of sample preparation and/or method of registration of the spectrum: A diamond-anvil cell as a micro-sampling device was used.

Source: Ali et al. (2004b).

Wavenumbers (cm⁻¹): 1498s, 1381+1375, 1083, 861s, 796w, 730, 718, (707), (696), 680w, 668.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a figure of the Raman spectrum is given.

C349 Sodium scandium carbonate Na₅Sc(CO₃)₃⋅2H₂O Na₅Sc(CO₃)₃⋅2H₂O

Origin: Synthetic.

- Description: Obtained from aqueous solutions of scandium chloride and sodium carbonate. The crystal structure is solved. Tetragonal, space group $P-42_1c$, $a = 7.4637(4)$, $c = 11.570(2)$ Å, $V = 644.55(13) \text{ Å}^3$, $Z = 2$. $D_{\text{meas}} = 2.23 \text{ g/cm}^3$, $D_{\text{calc}} = 2.246 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Transmission.

Source: Dahm and Adam (2001).

Wavenumbers (IR, cm⁻¹): 3528sh, 3369sh, 3311s, 3108w, 2955sh, 2924, 2854w, 2662w, 2631sh, 2604, 2458w, 2399, 2330, 2114, 1804, 1708, 1556s, 1414s, 1354s, 1259sh, 1122sh, 1059s, 868s, 841w, 743s, 712s, 699sh, 680sh, 644, 359s, 261s, 230, 215, 195sh, 180, 165, 145, 122w, 101w, 93, 63w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1739, 1702, 1601, 1575s, 1439, 1355, 1061s, 1039, 867, 764, 744s, 682, 668, 644, 354, 300, 277s, 245s, 231s, 216s, 187s, 165s, 132s.

C350 Strontium iron(III) oxycarbonate $Sr_4Fe_2O_6(CO_3)$

- **Description:** Prepared by heating an appropriate mixture of SrO, SrCO₃, and Fe₂O₃ at 1200 °C for 12 h under vacuum with subsequent cooling down to room temperature, annealing at 500 \degree C for 30 min in air and quenching. Characterized by EDS analysis, Mössbauer spectroscopy, powder X-ray diffraction, neutron powder diffraction, and single-crystal electron diffraction data. Orthorhombic, space group *I4/mmm*, $a = 3.88965(3)$, $c = 27.9906(1)$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Bréard et al. (2004).

Wavenumbers $(cm⁻¹)$: 1771w, 1506s, 1437s, 1098sh, 869, 640, 569s.

Note: The band at 569 cm⁻¹ may correspond to polymerized $Fe^{3+}O_6$ and/or $Fe^{3+}O_5$ polyhedra.

C351 Barentsite $Na₇Al(HCO₃)₂(CO₃)₂F₄$

Origin: Restin'yun Mt., Khibiny massif, Kola Peninsula (type locality).

- Description: Colorless anhedral grains from the association with shortite, albite, natrolite, trona, natrite, villiaumite, etc. Holotype sample. Triclinic, $a = 6.472(2)$, $b = 6.735(2)$, $c = 8.806(2)$ Å, $\alpha = 92.50(2)^\circ, \beta = 97.33(2)^\circ, \gamma = 119.32(2)^\circ, V = 329.41 \text{ Å}^3, Z = 1. D_{\text{meas}} = 2.56(2) \text{ g/cm}^3,$ $D_{\text{calc}} = 2.55 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.358(2)$, $\beta = 1.479(2)$, $\gamma = 1.530(2)$, $2V = 62^{\circ}$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A} (I, \%) (hkl)]$ are: 2.887 (84) (003, 2-11), 2.778 (100) (200, –103), 2.658 (100) (2-21), 2.316 (50) (2-22), 2.169 (70) 120, 004), 1.870 (42) (-331, –204).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Khomyakov et al. (1983).

- Wavenumbers (cm⁻¹): 3430, 2885, 2550, 2322, 1649s, 1484, 1424sh, 1370s, 1328s, 1063, 1021, 984, 856w, 823, 723w, 692sh, 677, 645, 584s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

C352 Chukanovite $Fe₂(CO₃)(OH)₂$

Origin: Synthetic.

- Description: Obtained by heating a mixture of powdered claystone (a rock containing clay minerals, Ca-Mg-Fe carbonates and quartz as the main components) and iron powder, in the presence of iron plates and an aqueous solution containing NaCl and CaCl₂ at 90 °C for 6 months. The synthetic analogue of chukanovite was formed as randomly oriented powder on the iron plates. Characterized by powder X-ray diffraction and electron diffraction data. Monoclinic, space group $P2_1/a$, $a = 12.5$ (3), $b = 9.5(2)$, $c = 3.2(1)$ Å, $\beta = 97.6(5)$ °, $V = 377(17)$ Å³.
- Kind of sample preparation and/or method of registration of the spectrum: Reflection from an iron plate covered by the synthetic analogue of chukanovite.

Source: Pignatelli et al. (2014).

- Wavenumbers (cm⁻¹): 3485s, 3327s, 1992 (broad), 1748w, 1552s, 1525sh, 1408, 1368sh, 1340, 1116sh, 1069, 955, 837, 779, 757sh, 713sh, 690, 642.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

C353 Lecoqite-(Y) Na₃Y(CO₃)₃⋅6H₂O

- **Description:** Prepared hydrothermally from Na_2CO_3 , YF_3 , and H_2O in the molar ratio 25:1:55 at 220° C for 48 h. Characterized by thermoanalytical data. The crystal structure is solved. Hexagonal, space group $P6_3$, $a = 11.347(5)$, $c = 5.935(5)$ Å, $V = 661.8(5)$ Å³, $Z = 2$. $D_{\text{meas}} = 2.25(5)$ g/cm³, $D_{\text{calc}} = 2.24 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. A diamond-anvil cell as a microsampling device was used.

Source: Ali et al. (2004a).

- Wavenumbers (IR, cm⁻¹): 3593w, 3320sh, 3115, 2778, 2305w, 2112w, 1634w, 1485s, 1375s, 1065, 1045sh, 890sh, 875, 760sh, 755, 715, 680s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 1635, 715s, 680.

C354 Somersetite $[Pb_3(OH)_2(CO_3)_2][Pb_3(Pb_2O_2)(CO_3)_3]$

Origin: Torr Works ("Merehead Quarry"), Somerset, England, UK (type locality).

Description: Greenish grains from the association with calcite, aragonite, and quartz. Holotype sample. The crystal structure is solved. Hexagonal, space group $P6_3/mmc$, $a = 5.2427(7)$, $c = 40.624(6)$ Å, $V = 967.0(3)$ Å³, $Z = 2$. $D_{calc} = 7.11$ g/cm³. The empirical formula is $Pb_{8.004}C_{4.998}H_{1.998}O_{19}$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.308 (33) (103), 3.581 (40) (107), 3.390 (100) (108), 3.206 (55) (109), 2.625 (78) (110), 2.544 (98) (0.0.16).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3539, (3280w), 2524w, 1734w, 1403s, 1217, 1046w, 849w, 738w, 690sh, 683s, 615w, 507w, 391.

Note: The spectrum was obtained by N.V. Chukanov. The bands at 1217 and 738 cm^{-1} correspond to a minor admixture of BO_3^3 ⁻ groups substituting CO_3^3 ⁻ groups.

C355 "Hydrucerussite-like mineral 9-40" Lead hydroxycarbonate

Origin: Torr Works ("Merehead Quarry"), Somerset, England, UK.

- Description: Investigated by O.I. Siidra. Characterized by single-crystal X-ray diffraction data. Trigonal, $a = 9.0929(5)$, $c = 40.660(6)$ Å, $V = 2911.42(9)$ Å³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3531, (3422), 1733, (1619w), 1404s, 1220, 1046w, 984w, 848w, 741w, 683s, 595w, 575w, 391.
- Note: The spectrum was obtained by N.V. Chukanov. The bands at 1220 and 741 cm^{-1} correspond to a minor admixture of BO_3^3 groups substituting CO_3^3 groups.

C356 Quintinite-related hydroxyde carbonate Mg₄Cr₂(OH)₁₂(CO₃)⋅nH₂O Mg₄Cr₂(OH)₁₂(CO₃) ∙nH2O

- **Description**: Synthesized by the coprecipitation method from $Mg(NO_3)_2$, Cr(NO₃)₃, and Na₂(CO₃) in the presence of NaOH. Characterized by thermoanalytical and powder X-ray diffraction data, and by atomic absorption spectrometry. The empirical formula is $Mg_{0.68}Cr_{0.32}(OH)_{2}(CO₃)_{0.16}$ 0.86H₂O. The strongest line of the powder X-ray diffraction pattern is observed at 22.92 Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Labajos and Rives (1996).

Wavenumbers (cm⁻¹): 3410s, 3020sh, 1625w, 1360s, 1077sh, 845sh, 762, 608, 517.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Origin: Synthetic.

Description: Synthesized by the coprecipitation method from $Ni(NO₃)₂$, $Cr(NO₃)₃$, and $Na₂(CO₃)$ in the presence of NaOH. Characterized by thermoanalytical and powder X-ray diffraction data, and by atomic absorption spectrometry. The empirical formula is $\rm Ni_{0.65}Cr_{0.35}(OH)_{2}(CO_{3})_{0.15}$.0.99H₂O. The strongest line of the powder X-ray diffraction pattern is observed at 22.50 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Labajos and Rives (1996).

Wavenumbers (cm⁻¹): 3382s, 3020sh, 1624w, 1354s, 1060sh, 806s, 687sh, 580, 521.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

C358 Scarbroite $\text{Al}_5(\text{CO}_3)(\text{OH})_{13} \cdot 5\text{H}_2\text{O}$

Origin: The former Fonte Civillina, the town of RecoaroTerme, Vicenza, NE Italy.

- Description: Nests of microcrystalline aggregates from the association with quartz, baryte, galena, cerussite, etc. Characterized by powder X-ray diffraction data and semiquantitative electron microprobe analyses. Triclinic, $a = 9.892(1)$, $b = 14.934(2)$, $c = 26.321(4)$ Å, $\alpha = 98.89(1)^\circ$, $\beta = 97.49(1)^\circ$, $\gamma = 89.04(1)$ °.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Boscardin et al. (2009).

- Wavenumbers (IR, cm⁻¹): 3614w, 3583w, 3370 (broad), 2102w, (1773w), 1651w, 1622sh, (1573w), 1474sh, 1459sh, 1419s, 1288sh, 1096sh, 1084sh, 1052sh, 1020s, 963sh, 886, 868sh, 720, 622s, 540s, 497s, 451s.
- Note: In the cited paper, the wavenumber 720 cm⁻¹ is erroneously indicated as 750 cm⁻¹. The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3668, 3614s, 3593, 2994s, 1421, 1342, 1107s, 983, 889, 696, 600s, 449, 376, 267.

C359 Bayleyite $Mg_2(UO_2)_2(CO_3)_3.18H_2O$

Origin: Hideout #1 mine, San Juan Co., Utah, USA.

Description: Yellow crystals from the association with gypsum. The sample was kindly provided by A.V. Kasatkin.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3570sh, 3425, 3346s, 3260sh, 2579w, 2290sh, 1655sh, 1635, 1539s, 1373s,

1120sh, 1088w, 1059w, 1031w, 1009w, 898, 876, 744, 695sh, 649, 630sh, 575sh, 542, 471, 430. Note: The spectrum was obtained by N.V. Chukanov.

C360 Línekite $K_2Ca_3[(UO_2)(CO_3)_3]_2.8H_2O$

Origin: Geschieber vein, Svornost Mine, Jáchymov, Jáchymov District, Krušné Hory Mts, Karlovy Vary Region, Bohemia, Czech Republic (type locality).

Description: Greenish-yellow tabular crystals from the association with braunerite. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $K_{1.94}Ca_{3.03}(UO_2)_{2.00}(CO_3)_6\cdot nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3496s, 3420s, 3270sh, 2612w, 1604s, 1555s, 1372s, 1168w, 1148w, 1071,

1025sh, 893s, 850, 741, 691, 538, 474.

Note: The spectrum was obtained by N.V. Chukanov.

C361 Wermlandite carbonate analogue Mg₇Al₂(OH)₁₈[Ca(H₂O)₆](CO₃,SO₄)₂⋅6H₂O

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality). Description: Pale greenish-gray hexagonal platelets on calcite crystals. The crystal structure is solved. Trigonal, space group P-3c1, $a = 9.303(3)$, $c = 22.57(1)$ Å, $V = 1692$ Å³. $Z = 2$. $D_{\text{meas}} = 1.93$ g/cm³,

 $D_{\text{calc}} = 1.96 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Rius and Allmann (1984).

Wavenumbers $(cm⁻¹)$: 1365s, 1264, 1105w, 1024sh, 650s, 564sh, 416s, 317w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, the mineral is described as wermlandite s.s., $Mg_7Al_2(OH)_{18}$ [Ca(H₂O)₆](SO₄)₂⋅6H₂O. However the intensities of the bands of asymmetric vibrations of carbonate and sulfate anions (at 1365 and 1105 cm^{-1} , respectively) indicate that it is a $CO₃$ -dominant mineral. The value of measured density confirms this conclusion.

C362 Nakauriite Cu₈(SO₄)₄(CO₃)(OH)₆⋅48H₂O

- Origin: Nakauri mine, near Shinshiro city, Aichi pref., Chubu Region, Honshu Island, Japan (type locality).
- Description: Light blue crust consisting of radial aggregates. The associated minerals are chrysotile and brucite. Confirmed by the IR spectrum.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Wavenumbers (cm^{-1}) : 3686w, 3650, 3495, 3275sh, 2996, 2435w, 1650sh, 1600, 1361s, 1143w, 1066w, 959w, 864w, 760sh, 689s, 672s, 514, 423, 376s.
- Note: The spectrum was obtained by N.V. Chukanov. The formula accepted for nakauriite is wrong and is to be revised: actually, nakauriite does not contain sulfate groups. The weak bands at 959 and 3686 cm^{-1} correspond to chrysotile impurity.

C363 Nakauriite Cu₈(SO₄)₄(CO₃)(OH)₆⋅48H₂O

Origin: Nakauri mine, near Shinshiro city, Aichi pref., Chubu Region, Honshu Island, Japan (type locality).

Description: Holotype sample with impurities (see [Sect. 1.3](#page-10-0) in this book).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Suzuki et al. (1976).

Wavenumbers (cm^{-1}) : 3700s, 3650s, 3500, 2990, 2430, 1660sh, 1404 (plateau), 1355s, 1075s, 1020sh, 983sh, 950s, 613s (broad), 454s.

Note: The strong bands at 3700, 1075, 950, 613, and 454 cm^{-1} correspond to chrysotile impurity.

C364 Nakauriite Cu₈(SO₄)₄(CO₃)(OH)₆⋅48H₂O

Origin: Chromite quarry near Karkodin railway station, Chelyabinsk region, South Urals.

Description: Blue crystalline crust on serpentine. Investigated by I.V. Pekov and N.V. Chukanov. For the description see [Sect. 1.3](#page-10-0) in this book.

- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Wavenumbers (cm⁻¹): 3688s, 3651s, 3504, 3000s, 2490sh, 1678, 1500sh, 1361s, 1139w, 1074, 1025, 954s, 866w, 784w, 690sh, 669s, 614, 509, 440s, 426s, 398, 376s.
- Note: The spectrum was obtained by N.V. Chukanov. The formula accepted for nakauriite is wrong and is to be revised: actually, nakauriite does not contain sulfate groups. The bands at 3688, 1074, 1025, 954, 614, and 376 cm^{-1} correspond to serpentine.

C365 Paratooite-(La) $(La, Ca, Na, Sr)_{12}Cu_2(CO_3)_{16}$

Origin: Paratoo copper mine, Yunta, Olary Province, South Australia, Australia (type locality). Description: Light blue clusters. The sample was kindly provided by A. Pring, the author of the first description of paratooite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3561w, 3142w, 2944w, 1760sh, 1502s, 1455sh, 1387, 1076, 1034, 1015sh, 917w, 859, 798w, 764w, 727, 697, 674w, 536w, 472, 397.

Note: The spectrum was obtained by N.V. Chukanov.

C366 Coalingite $Mg_{10}Fe^{3+}{}_{2}(OH)_{24}(CO_{3}) \cdot 2H_{2}O$

Origin: Union Carbide Asbestos pit, New Idria district, Diablo Range, Fresno Co., California, USA (type locality).

Description: Brown crust on serpentine. Identified by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers (cm⁻¹): 3693s, 3647, 3445, 1632, 1601, 1395sh, 1384, 1349w, 1285w, 1235w, 1077, 1021w, 958, 825sh, 755sh, 558s, 443s, 399s, 371s.

Note: The spectrum was obtained by N.V. Chukanov.

C369 Ikaite Ca(CO₃)⋅6H₂O

Origin: Artificial river bed in an alpine valley situated in the eastern part of Austria.

Description: Beige precipitate collected in February, 2014. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: Boch et al. (2015).

Wavenumbers (cm⁻¹): 3350s, 2000w, 1650, 1455sh, 1400s, 1080, 873s, 743, 700w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

C370 Abellaite $\text{NaPb}_2(\text{CO}_3)_2(\text{OH})$

Origin: Eureka mine, southern Pyrenees, Lleida province, Catalonia, Spain (type locality).

Description: White coating on the surface of the aggregate of primary minerals (roscoelite, pyrite, uraninite, sulfides, etc.). Holotype sample. Trigonal, space group $P63mc$, $a = 5.254(2)$, $c = 13.450$ (5) Å, $V = 321.5(2)$ \AA^3 , $Z = 2$. $D_{calc} = 5.93$ g/cm³. The empirical formula is $Na_{0.96}Ca_{0.04}Pb_{1.98}(CO₃)₂(OH)$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.193 (100) (013), 2.627 (84) (110), 2.275 (29) (020), 2.242 (65) (021, 006), 2.029 (95) (023).

Source: Ibáñez-Insa et al. (2017).

- Wavenumbers (IR, cm^{-1}) : 3500, (3400), 1750w, (1600sh), 1425s, 1098w, 1053w, 998w, 878w, 844, 688s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3504w, 1391, 1058s, 1038w, 868w, 683, 280, 202.

C371 Shannonite $Pb_2O(CO_3)$

Origin: Tonopah-Belmont mine, Belmont Mt., Tonopah, Osborn district, Big Horn Mts., Maricopa Co., Arizona, USA.

Description: White massives from the association with plumbojarosite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): (3532w), 2470w, 2396w, 1745sh, 1735w, 1433s, 1392s, 1374s, 1102w, 1050, 1009w, 841, 682, 473, 425, 376.

Note: The spectrum was obtained by N.V. Chukanov.

CSi30 Roymillerite $Pb_{24}Mg_9(Si_9AlO_{28})(SiO_4)(BO_3)(CO_3)_{10}(OH)_{14}O_4$

Origin: Kombat Mine, Grootfontein district, Otjozondjupa region, Namibia (type locality).

Description: Colorless platy single-crystal grains from the association with jacobsite, cerussite, hausmannite, sahlinite, rhodochrosite, baryte, grootfonteinite, Mn-Fe-oxides, and melanotekite. Holotype sample. The crystal structure is solved. Triclinic, space group $P-1$, $a = 9.315(1)$, $b = 9.316(1)$, $c = 26.463(4)$ Å, $\alpha = 83.295(3)$ °, $\beta = 83.308(3)$ °, $\gamma = 60.023(2)$ °, $V = 1971.2$ (6) Å³, Z = 1. $D_{\text{calc}} = 5.973 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.86(1)$, $\beta \approx \gamma = 1.94(1)$, $2V = 5(5)^\circ$. The empirical formula is $Pb_{24.12}Mg_{8.74}Mn_{1.25}Fe_{0.94}B_{1.03}Al_{1.04}C_{9.46}Si_{9.39}H_{14.27}O_{83}$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 25.9 (100) (001), 13.1 (11) (002), 3.480 (12) (017, 107, –115, 1-15), 3.378 (14) (126, 216), 3.282 (16) (-2–15, – 1-25), 3.185 (12) (-116, 1-16), 2.684 (16) (031, 301, 030, 300, 332, –109, 0–19, 1-18), 2.382 (11) (0.0.–11).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3700, 3583, 3513, 3352, 1726w, 1385s, 1231, 1204, 1083, 1050sh, 1042, 999s, 915, 898, 875sh, 842w, 806w, 780w, 725w, 688, 679, 635w, 605w, 580w, 548w, 467s, 420sh, 400sh.

Note: The spectrum was obtained by N.V. Chukanov.

2.3 Organic Compounds and Salts of Organic Acids

Org70 Barium formate $Ba(HCO₂)₂$

Origin: Synthetic.

Description: Prepared from formic acid and barium carbonate. Orthorhombic, space group $P2_12_12_1$, $a = 6.81, b = 8.91, c = 7.67 \text{ Å}, Z = 4.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Harvey et al. (1963).

Wavenumbers (cm⁻¹): 2975w, 2920sh, 2912, 2865, 2822, 2765sh, 2745, 2700w, 1600s, 1570s, 1398, 1385, 1355, 1345, 1069w, 1060sh, 765, 756.

Note: For the IR spectrum of barium formate see also Liu et al. (2001).

Org71 Cadmium formatedihydrate Cd(HCOO)₂∙2H₂O

Description: Monolinic, space group $P2_1/c$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Abraham and Aruldhas (1994).

Wavenumbers (cm⁻¹): 3432sh, 3382, 3257sh, 3112sh, 2962w, 2896, 2862s, 2774, 2740w, 2690w, (2352w), (2314w), 1588s, 1405s, 1358s, 1348s, 1059w, 901w, 826w, 788w, 764s, 662w, 600w, 525w, 361, 299, 264, 231, 195, 154, 138, 121, 113, 103, 84, 68.

Note: Weak bands in the range from 2300 to 2400 cm^{-1} may correspond to atmospheric CO₂.

Org72 Cadmium oxalate trihydrate Cd(C₂O₄)⋅3H₂O

Origin: Synthetic.

Description: Colorless crystals grown at room temperature in silica gel, in the presence of Cd^{2+} ions impregnated with oxalic acid. Triclinic, $a = 6.0059$, $b = 6.66$, $c = 8.49$ Å, $\alpha = 105.71^{\circ}$, $\beta = 98.99^{\circ}$, $\gamma = 74.66^{\circ}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Raj et al. (2008).

Wavenumbers $(cm⁻¹)$: 3542s, 3496s, 2919w, 1613s, 1461, 1381, 1314s, 778s, 599, 519.
Org73 Copper strontium formate CuSr(HCOO)4

Origin: Synthetic.

Description: Prepared by neutralization of the corresponding carbonates with dilute formic acid solution at 60–70 °C. Monoclinic, space group $P2/c$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stoilova and Vassileva (1999).

Wavenumbers (cm⁻¹): 1608s, 1571s, 1411w, 1401, 1375, 1354, 1337, 1312, 1063.

Note: In the cited paper, the wavenumber 1401 cm⁻¹ is erroneously indicated as 1407 cm⁻¹.

Org74 Lead(II) oxalate $Pb(C_2O_4)$

- Description: Prepared by reacting equimolecular amounts of 0.2 M solutions of lead nitrate and (NH4) $(HC₂O₄)$. Characterized by powder X-ray diffraction data. Triclinic, space group P-1, $Z = 2$ (see JCPDF 14–0803).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Mancilla et al. (2009b).

Wavenumbers (IR, cm⁻¹): 1630sh, 1587s, 1365w, 1312, 1289s, 782, 773, 524, 504.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1707w, 1589s, 1476s, 1436s, 1400w, 1366w, 911w, 891, 854, 572w, 497s, 484s.

Org75 Neptunium(IV) oxalate hexahydrate Np(C2O4)2∙6H2O

Origin: Synthetic.

- Description: Obtained by precipitation from aqueous solution. The strongest lines of the powder X-ray diffraction pattern $[d, \check{A}(I, \mathcal{C}_0)]$ are: 7.88 (70), 6.36 (100), 5.04 (15), 4.91 (20), 3.93 (90), 3.18 (15).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lindsay et al. (1970).

Wavenumbers (cm⁻¹): 3542, 3480s, 3170sh, 2974w, 2332w, 1638s, 1495w, 1477w, 1461sh, 1360s, 1316, 1172w, 1098w, 1039w, 934w, 818s, 805sh, 694, 499, 456, 407, 309sh, 279sh, 245sh, 212sh.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Org76 Samarium oxalate decahydrate Sm₂(C₂O₄)₃⋅10H₂O

Origin: Synthetic.

- Description: Single crystals grown using diffusion gel technique from samarium nitrate hexahydrate and oxalic acid dihydrate in the presence of sodium silicate (meta)nonahydrate. Characterized by powder X-ray diffraction data and thermal analysis. Monoclinic, space group P21/c.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Vimal et al. (2014).

Wavenumbers $(cm⁻¹)$: 3360s, 1628s, 1495sh, 1357, 1317s, 807, 761w, 595, 490.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Org77 Uranium(IV) oxalate fluoride hydrate $U_2(C_2O_4)F_6·2H_2O$

- **Description:** Prepared hydrothermally from $UO₂$, HF, and oxalic acid dihydrate at 120 °C for 3 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 17.246(3)$, $b = 6.088(1)$ Å, $c = 8.589(2)$ Å, $\beta = 95.43(3)^\circ$, $Z = 8$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wang et al. (2006b).

- Wavenumbers (cm⁻¹): 3370 (broad), 1691s, 1680sh, 1638s, 1350, 1310, 804s, 638sh, 582s, 491, 405s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Org78 Zirconium basic oxalate $Zr(C_2O_4)(OH)_2 \cdot 0.5H_2O$

Origin: Synthetic.

Description: Obtained by interdiffusion of oxalic acid and $ZrO(NO₃)₂$ in silicate gel. Characterized by TG analysis. The crystal structure is solved. Tetragonal, space group $I4/m$, $a = 12.799(5)$, $c = 7.527$ (5) Å, $V = 1233.0(1)$ Å³, $Z = 8$. $D_{\text{calc}} = 2.35$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Hamdouni et al. (2013).

Wavenumbers $(cm⁻¹)$: 3350, 1600s, 1300s, 920w, 798.

Org79 Bacalite

- Origin: El Gallo, near El Rosario, Late Cretaceous El Gallo Formation, Baja California, northwestern Mexico.
- Description: Reddish to brownish yellow fossil resin forming lumps up to 5 cm in size from yellowishbrown mud and fine-grained sandstones.
- Kind of sample preparation and/or method of registration of the spectrum: Synchrotron-based FTIR microspectroscopy.

Source: Riquelme et al. (2014).

Wavenumbers (cm⁻¹): 3420, 2910s, 2868s, 2845s, 1693s, 1444, 1375, 1255, 1110, 1002, 845, 755. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. For IR spectra of some other fossil resins (succinite, gedanite, gedanosuccinite, rumanite, and retinite) see Golubev and Martirosyan (2012).

Org80 Caoxite Ca(C₂O₄)∙3H₂O

Description: Obtained by the reaction between an aqueous solution of diethyl oxalate and calcite crystals. Characterized by powder X-ray diffraction data. Triclinic, space group $P-1$, $a = 6.1097$ (13), $b = 7.1642(10)$, $c = 8.4422(17)$ Å, $\alpha = 76.43(1)$ °, $\beta = 70.19(2)$ °, $\gamma = 70.91(2)$ °, $V = 325.3$ (1) \mathring{A}^3 , Z = 2.

Kind of sample preparation and/or method of registration of the spectrum: A single crystal pressed in a diamond anvil cell. Transmission.

Source: Conti et al. (2015).

Wavenumbers (IR, cm⁻¹): 3528s, 3427s, 3222, 1668s, 1624s, 1377w, 1327, 783.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given. Raman bands at 2941 and 2882 cm^{-1} may correspond to a compound with C–H bonds. Raman shifts above 3000 cm $^{-1}$ are not given in the cited paper.

Wavenumbers (Raman, cm⁻¹): 2941, 2882, 1472s, 912s, 507, 156.

Org81 Caoxite Ca(C₂O₄)∙3H₂O

Origin: Synthetic.

- Description: Crystals synthesized at room temperature by reaction of aqueous solution of dimethyl oxalate with an aqueous solution of anhydrous calcium chloride in a stoichiometric proportion. Characterized by TG and DTA data.
- Kind of sample preparation and/or method of registration of the spectrum: Single crystal placed on a KBr plate. Transmission.

Source: Echigo et al. (2005).

- Wavenumbers (cm⁻¹): 3615sh, 3429s, 3265sh, 2955, 2815sh, 2105, 1915, 1640sh, 1610s, 1386, 1323, 1254sh, 1173sh, 1114sh, 1080, 1041, 908sh, 887sh, 867sh, 783, 714.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance with C–H bonds.

Org82 Coahuilite

- Origin: El Gallo, near El Rosario, Late Cretaceous El Gallo Formation, Baja California, northwestern Mexico.
- Description: Yellow to orange-brown fossil resin insoluble in alcohol and acetone, with a relatively high content of aromatic groups.
- Kind of sample preparation and/or method of registration of the spectrum: Synchrotron-based FTIR microspectroscopy.

Source: Riquelme et al. (2014).

- Wavenumbers (cm⁻¹): 3287, 2975, 2921, 2895, 2865, 1707, 1600, 1513s, 1451, 1411, 1375, 1308w, 1220s, 1070s, 1038s, 1012, 812, 753.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. For IR spectra of some other fossil resins (succinite, gedanite, gedanosuccinite, rumanite, and retinite) see Golubev and Martirosyan (2012).

Org83 Deveroite-(Ce) $Ce_2(C_2O_4)_3$ ∙10H₂O

- **Description:** Synthesized by mixing aqueous solutions of stoichiometric amounts of $CeCl₃·7H₂O$ and oxalic acid. Characterized by powder X-ray diffraction data, DTA–TG–DTG, and elemental analyses.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Gabal et al. (2012).

Wavenumbers (cm⁻¹): 3375, 2910w, 1615s, 1361, 1316, 1118w, 999, 797s, 749, 591s, 495, 371.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Org84 Refikite $C_{20}H_{32}O_2$

Origin: Krásno, Slavkovský Les Mts., western Bohemia, Czech Republic.

- Description: Polycrystalline crusts on pinetree bark and wood. The crystal structure is solved. Orthorhombic, space group $P2_12_12$, $a = 22.6520(7)$, $b = 10.3328(3)$, $c = 7.6711(2)$ Å, $V = 1795.49(9)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 1.1334$ g/cm³. The empirical formula is $C_{19}H_{33}$ COOH.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection.

Source: Pažout et al. (2015).

- Wavenumbers (IR, cm⁻¹): 2919s, 2865s, 2847s, 2651, 2545, 2456, 1737w, 1689s, 1472, 1442, 1410, 1383, 1363, 1334, 1279, 1254, 1248, 1225w, 1185, 1139, 1101w, 1092w, 1046w, 1032w, 1015w, 960, 940, 904w, 885w, 875w, 856w, 836w, 823w, 794w, 770w, 747w, 703, 633w, 586w, 535w, 507w, 461w, 420w, 412w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3013, 2952s, 2935s, 2890s, 2844s, 1474s, 1452s, 1383, 1362, 1249, 1202, 739, 725s.

Org85 Simojovelite

Origin: La Pimienta, near Simojovel, Chiapas Highlands, Mexico.

Description: Fossil resin.

Kind of sample preparation and/or method of registration of the spectrum: Synchrotron-based FTIR microspectroscopy.

Source: Riquelme et al. (2014).

Wavenumbers (cm⁻¹): 3400 (broad), 2923s, 2860s, 1700s, 1440, 1378, 1235, 1098, 970, 846.

Note: For IR spectra of some other fossil resins (succinite, gedanite, gedano-succinite, rumanite, and retinite) see Golubev and Martirosyan (2012).

Org86 Stepanovite NaMgFe³⁺(C₂O₄)₃⋅8–9H₂O

- **Description**: Obtained by the reaction of an aqueous solution of $\text{Na}_3[\text{Fe}(C_2O_4)_3]\cdot \text{SH}_2\text{O}$ (prepared by reaction of a suspension of freshly precipitated Fe(OH)₃ with an aqueous solution of NaHC₂O₄) with a great excess of $MgCl₂$. The crystal structure is solved. Trigonal, space group P3c1, $a = 17.0483(4), c = 12.4218(4)$ Å, $V = 3126.7(1)$ Å³, $Z = 6$. $D_{\text{calc}} = 1.687$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Piro et al. (2016).

Wavenumbers (IR, cm⁻¹): 3518s, 3450s, 3371s, 3233, 1674s, 1400s, 1324w, 1265, 900, 798, 696, 627, 536, 483, 423.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3450w, 3350w, 3275w, 1728s, 1666, 1478, 1460, 1523, 1398, 1267, 903, 599, 537, 480s.

Org87 Zhemchuzhnikovite NaMgAl(C₂O₄)₃∙8H₂O

Origin: Synthetic.

- **Description**: Fe-rich variety, NaMg($Al_{0.55}Fe^{3+}_{0.45}$)(C_2O_4)₃⋅nH₂O, obtained by the mixing aqueous solutions of $NaMg[Fe(C₂O₄)₃]\cdot 9H₂O$ and $NaMg[A(C₂O₄)₃]\cdot 9H₂O$. The crystal structure is solved. Trigonal, space group P3c1, $a = 16.8852(5)$, $c = 12.5368(5)$ Å, $V = 3095.5(2)$ Å³, $Z = 6$. $D_{\text{calc}} = 1.652 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Piro et al. (2016).

Wavenumbers (IR, cm⁻¹): 3458s, 3355s, 3219s, 1684s, 1404s, 1298, 1276, 1146w, 916, 901, 811, 765sh, 729, 581, 534, 490, 475, 419w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3467, 3222, 1788s, 1688, 1520w, 1479, 1440s, 1266, 991, 923, 856, 565, 533, 479s.

Org88 Deveroite-(Ce) $Ce_2(C_2O_4)_3$ ∙10H₂O

Origin: Synthetic.

- **Description:** Sm³⁺ doped crystal synthesized using single diffusion gel technique. Characterized by powder X-ray diffraction data and EDS analysis. Monoclinic, $a = 11.34$, $b = 9.630$, $c = 10.392$ Å, $β = 114.5°$.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Unnikrishnan and Ittyachen (2016).

Wavenumbers $(cm⁻¹)$: 3257, 1615s, 1364, 1316s, 915w, 860w, 796, 582, 495.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Org89 Triazolite $\text{NaCu}_2(\text{N}_3\text{C}_2\text{H}_2)_2(\text{NH}_3)_2\text{Cl}_3.4\text{H}_2\text{O}$ where $\text{N}_3\text{C}_2\text{H}_2$ ⁻ is 1,2,4-triazolate anion

Origin: Pabellón de Pica Mountain, 1.5 km south of Chanabaya village, Iquique Province, Tarapacá Region, Chile (type locality).

Description: Clusters and radiated aggregates of prismatic crystals from the association with salammoniac, halite, ammineite, joanneumite, chanabayaite, nitratine, natroxalate, and möhnite. Holotype sample. The crystal structure is solved. Orthorhombic, space group $P2_12_12_1$, $a = 19.3575$ (5) , $b = 7.15718(19)$, $c = 12.5020(4)$ Å, $V = 1732.09(8)$ Å³, $Z = 4$. $D_{calc} = 2.028$ g/cm³. Optically biaxial (-), $\alpha = 1.582(4)$, $\beta = 1.625(3)$, $\gamma = 1.625(3)$, $2V = 5(3)$ °. The empirical formula is $Na_{1.14}(Cu_{1.86}Fe_{0.14})(Cl_{2.99}S_{0.23})N_{9.23}C_{3.43}H_{23.34}O_{4.29}$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 10.22 (97) (101), 6.135 (40) (011), 5.696 (17) (301), 5.182 (59) (202), 5.119 (100) (211), 4.854 (19) (400), 3.752 (16) (312, 501), 3.294 (18) (221), 2.644 (17) (404), 2.202 (18) (324, 713).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3500sh, 3431s, 3371s, 3302s, 3215s, 3173s, 3145sh, 3047s, 2935sh, 2855, 2812, 2050w, 1751, 1653, 1635, 1621, 1510, 1414, 1300, 1267, 1198w, 1172, 1095, 1062, 1036w, 1002, 990sh, 887, 778w, 669, 638w, 575, 513w, 440w.

Note: The spectrum was obtained by N.V. Chukanov.

2.4 Nitrides and Nitrates

Transmittance 2200 600 1000 1400 1800 2600 3000 3400 3800 Wavenumber $(cm⁻¹)$

N20 Hexaamminenickel(II) nitrate $[Ni(NH_3)_6](NO_3)_2$

Origin: Synthetic.

Description: Prepared in the reaction between nickel nitrate hexahydrate and gaseous ammonia in the presence of silica gel. The crystal structure is solved. Cubic, space group $Fm-3m$, $a = 10.8738(6)$ Å, $V = 1285.73(7) \text{ Å}^3$, $Z = 4$. $D_{\text{calc}} = 1.471(1) \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Breternitz et al. (2015).

Wavenumbers $(cm⁻¹)$: 3364, 3282w, 1616w, 1329, 1202s, 832, 648s. Note: In the cited paper, the wavenumber 832 cm⁻¹ is erroneously indicated as 823 cm⁻¹.

N21 Lantanum nitrate hexahydrate La(NO₃)₃⋅6H₂O

Origin: Synthetic.

- **Description:** Commercial reactant. Triclinic, space group $P2_1/c$, $a = 7.386(3)$, $b = 7.716(3)$, $c = 11.345(4)$ Å, $\alpha = 99.773(5)$ °, $\beta = 91.141(6)$ °, $\gamma = 115.58(5)$ °, $V = 571.6(3)$ Å³, $Z = 2$. $D_{\text{meas}} = 2.39(3) \text{ g/cm}^3$, $D_{\text{calc}} = 2.391 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.554(2)$, $\beta = 1.558(2)$, $\gamma = 1.566(2), 2V = 70(5)^\circ$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 11.089 (100) (001), 3.540 (81) (0-13, -1-12), 5.484 (79) (002, 101), 2.918 (60) (-122), 3.089 (33) (-113, 201), 4.022 (30) (102, –112), 6.826 (23) (010).
- Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflection of powdered sample mixed with KBr. The transformation into absorbance spectra was carried out by using background spectra collected under identical conditions with KBr powder in the holder. Source: Klingenberg and Vannice (1996).
- Wavenumbers $\text{(cm}^{-1})$: 3525s, 3246sh, 2804w, 2495, 2366, 2108w, 2069w, 1772, 1643s, 1554s, 1415sh, 1379, 1276, 1042, 815, 752.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, the wavenumber 2178 cm^{-1} is erroneously indicated as 2108 cm⁻¹.

N22 Uranyl nitrate hexahydrate UO₂(NO₃)₂∙6H₂O

Origin: Synthetic.

Description: Commercial reactant.

Kind of sample preparation and/or method of registration of the spectrum: A mixture with KBr. Transmission.

Source: Caldow et al. (1960).

Wavenumbers $(cm⁻¹)$: 1531s, 1515s, 1392s, 1300, 1032, 933s, 804, 752, 745sh.

Note: The band at 1392 cm⁻¹ may correspond to KNO₃ formed in the reaction between UO₂(NO₃)₂∙6H₂O and KBr. Consequently, the presence of uranyl bromide in the sample is not excluded.

N23 Nierite β -Si₃N₄

Origin: Synthetic.

Description: Prepared by reacting silicon powder with nitrogen at 1350 °C for 2 h followed by heating at 1500 °C for 16 h. Hexagonal, space group $P6_3/m$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Wild et al. (1978).

Wavenumbers $(cm⁻¹)$: 1035, 938s, 915s, 579, 441, 380.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

N24 Nitratine $Na(NO₃)$

Origin: Synthetic.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission. Source: Miller and Wilkins (1952).

Wavenumbers $(cm⁻¹)$: 2428w, 1790w, 1358s, 836. Note: A shoulder near 1447 cm^{-1} corresponds to Nujol.

N25 Osbornite TiN

Description: A layer deposited using sequential additions of $TiCl₄$ and $NH₃$ on fumed silica powder. Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflection of a

mixture with KBr powder.

Source: Snyder et al. (2006).

Wavenumbers $(cm⁻¹)$: 765, 670s, 530sh.

N26 Qingsongite BN

Origin: Synthetic.

- Description: Produced from hexagonal BN by spontaneous high pressure (5.5 GPa) and high temperature (1800–1900 K) nucleation using Mg as a solvent-catalyst.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Kutsay et al. (2010).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 1398, 1223, 1100, 1022.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The weak band at 1398 cm^{-1} corresponds to the admixture of hexagonal BN. In the cited paper, a figure of qingsongite Raman spectrum is given.

N27 Qingsongite (C-bearing) $C_{0.3}(BN)_{0.7}$

Origin: Synthetic.

Description: Obtained from a mixture of hexagonal BN and graphite powders at 30 GPa and temperature between 2000 and 2500 K. Cubic, $a = 3.613(3)$. The observed lines of the powder X-ray diffraction pattern [d,Å(hkl)] are: 2.086 (111), 1.806 (200) (very weak), 1.276 (220).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Knittle et al. (1995).

Wavenumbers (IR, cm^{-1}) : ~1045.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 1323.

N28 Sinoite $Si₂N₂O$

Origin: Synthetic.

Description: Orthorhombic, space group $Cmc2_1$.

Kind of sample preparation and/or method of registration of the spectrum: No data.

Source: Mirgorodsky et al. (1989).

Wavenumbers (cm⁻¹): 1130, 1070sh, 1030sh, 990, 953s, 906s, 730sh, 679, 648w, 542, 496, 448, 327, 252.

2.5 Oxides and Hydroxides

O495 Ferricoronadite $Pb(Mn^{4+}{}_{6}Fe^{3+}{}_{2})O_{16}$

- Origin: "Mixed Series" metamorphic complex near the Nežilovo village, Pelagonian massif, Republic of Macedonia (type locality).
- Description: Veinlets in granular aggregate consisting of franklinite, gahnite, hetaerolite, roméite, almeidaite, Mn-analogue of plumboferrite, högbomite-group minerals, Zn-bearing talc, baryte, quartz, etc. Holotype sample. The crystal structure is solved. Tetragonal, space group I4/m, $a = 9.9043(7)$, $c = 2.8986(9)$ Å, $V = 284.34(9)$ Å³, $Z = 1$. $D_{\text{calc}} = 5.538$ g/cm³. The empirical formula is (electron microprobe): $Pb_{1,03}Ba_{0,32}(Mn^{4+}_{4,85}Fe^{3+}_{1,35}Mn^{3+}_{1,18}Ti_{0,49}Al_{0,09}Zn_{0,04})O_{16}$ According to the Mössbauer spectrum, all iron is trivalent. The Mn K-edge XANES spectroscopy shows that Mn is predominantly tetravalent, with subordinate $Mn³⁺$. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 3.497 (33) (220), 3.128 (100) (-130, 130), 2.424 (27) (-121, 121), 2.214 (23) (240, –240), 2.178 (17) (031), 1.850 (15) (141, –141), 1.651 (16) (060) , 1.554 (18) $(-251, 251)$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1078w, 795sh, 700, 665, 560s, 510s, 475sh, 400sh. Note: The spectrum was obtained by N.V. Chukanov.

O496 Ferrihollandite $Ba(Mn^{4+}{}_{6}Fe^{3+}{}_{2})O_{16}$

Origin: Sörhårås, Ultevis, Lappland, Sweden.

Description: Black prismatic crystals. The empirical formula is (electron microprobe): $(Ba_{0.79}K_{0.17}Pb_{0.11}Sr_{0.07}Na_{0.07})$ (Mn_{6.22}Fe_{0.93}Al_{0.43}Ti_{0.32}Mg_{0.10}Zn_{0.02})O₈.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 1095w, 708, 572s, 525s, 485sh. Note: The spectrum was obtained by N.V. Chukanov.

O497 Cesàrolite $PbMn^{4+}{}_{3}O_6(OH)_2$

Origin: Belorechenskoe deposit, Adygea (Adygeya) Republic, Northern Caucasus, Russia.

Description: Black massive, with brown streak, from the association with baryte, dolomite, fluorite, galena, and gypsum. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $Pb_{0.75}Cu_{0.2}Zn_{0.1}Mn_{3.0}(O,OH)_{8}$. The strongest lines of the powder X-ray diffraction pattern are observed at 3.42, 3.13, 2.39, 2.21, 2.11, 1.88, 1.77, 1.69, 1.57, 1.48, and 1.41 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3381, 3158s, 1630, 1570, 1420w, 1165sh, 1080, 480, (420sh).

Note: The band at 1630 cm⁻¹ may correspond to adsorbed water; the weak band at 1420 cm⁻¹ may be due to dolomite impurity.

Note: The spectrum was obtained by N.V. Chukanov.

O498 Sodalite Ca-Al-Mo-W-analogue $Ca_8(Al_12O_{24})[(MoO_4)_1,(WO_4)_0.5]$

Origin: Synthetic.

- **Description:** Synthesized in a solid-state reaction from the stoichiometric mixture of γ -Al₂O₃, CaCO₃, MoO₃, and WO₃. The sample was provided by Prof. W. Depmeier. Cubic or pseudocubic. MoO₄^{2–} and WO_4^2 are extra-framework anions. The composition is confirmed by electron microprobe analyses.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1080sh, 1009, 982, 885s, 868s, 846s, 832s, 679, 668, 640, 630sh, 606, 570sh, 491w, 470w, 403s.
- Note: The spectrum was obtained by N.V. Chukanov. The anions $MoO₄^{2–}$ and $WO₄^{2–}$ are almost indistinguishable by means of IR spectroscopy (compare powellite and scheelite).

- **Description:** Synthesized in a solid-state reaction from the stoichiometric mixture of γ -Al₂O₃, CaCO₃, MoO₃, and WO₃. The sample was provided by Prof. W. Depmeier. Cubic or pseudocubic. MoO₄^{2–} and WO_4^2 are extra-framework anions. The composition is confirmed by electron microprobe analyses.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1080sh, 1009, 981, 885s, 869s, 846s, 833s, 679, 668, 640, 630sh, 606, 568w, 490w, 470w, 406s.
- **Note**: The spectrum was obtained by N.V. Chukanov. The anions $MoO₄^{2–}$ and $WO₄^{2–}$ are almost indistinguishable by means of IR spectroscopy (compare powellite and scheelite).

O500 Sodalite Ca-Al-Mo-analogue $Ca_8(Al_{12}O_{24})[(MoO_4)(WO_4)]$

Description: Synthesized in a solid-state reaction from the stoichiometric mixture of γ -Al₂O₃, CaCO₃, and MoO₃. The sample was provided by Prof. W. Depmeier. Cubic or pseudocubic. MoO₄²⁻ is extra-framework anion. The composition is confirmed by electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1080, 1008, 981, 885s, 868s, 846s, 833s, 679, 667, 641, 635sh, 606, 568w, 491w, 470w, 404s.

Note: The spectrum was obtained by N.V. Chukanov.

O501 Lesukite Cu-bearing variety $(AI, Cu)₂(OH)_{5-x}Cl·nH₂O (n \approx 2)$

Origin: Cerro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile.

Description: Lemon-yellow powdery aggregate consisting of microscopic cubic crystals from the association with gypsum, atacamite, and goethite. Investigated by I.V. Pekov. Characterized by powder X-ray diffraction data. The empirical formula is (electron microprobe): $(AI_{1.85}Cu_{0.15})$ $(OH)_{4.85}Cl_{1.00}nH_{2}O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3445sh, 3418s, 3310s, 2271w, 1933w, 1670sh, 1602, 1170sh, 1148, 1111, 1030sh, 986, 720sh, 700sh, 647s, 598s, 546, 535sh, 440w, 395w.

Note: The spectrum was obtained by N.V. Chukanov.

O502 Deltalumite $δ$ -Al₂O₃

Origin: Western lava flow of the 2012–2013 Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Far-Eastern Region, Russia (type locality).

Description: Pale beige spherical clusters from the association with corundum and moissanite. Holotype sample. Tetragonal, space group *P*-4*m*2, $a = 5.608(1)$, $c = 23.513(7)$ Å, $V = 739.4$ (4) Å³, Z = 16. $D_{\text{calc}} = 3.663 \text{ g/cm}^3$. Optically uniaxial (-), $\omega = 1.654(2)$, $\varepsilon = 1.653(2)$. The empirical formula is (electron microprobe): $Al_{2.00}O_3$. The strongest lines of the powder X-ray diffraction pattern $[d, \check{A}(I, \%) (hkl)]$ are: 2.728 (61) (202), 2.424 (51) (212), 2.408 (49) (213), 2.281 (42) (206), 1.993 (81) (1.0.11, 220, 221), 1.954 (48) (0.0.12), 1.396 (100) (327, 3.0.11, 400, 401, 2.1.14, 2.2.12).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1157w, 1100w, 1063w, 1024w, 865sh, 820s, 755s, 703s, 628, 571s, 391. Note: The spectrum was obtained by N.V. Chukanov.

O503 Magnesiohögbomite-2N3S (Mg,Fe,Zn,Ti)₄(Al,Fe)₁₀O₁₉(OH)

Origin: Sadok Lake, Chelyabinsk region, South Urals.

- Description: Dark brown platy grains from clinopyroxenite. Characterized by powder X-ray diffraction data and Mössbauer spectroscopy. Hexagonal, $a = 5.715(5)$, $c = 23.931(2)$ Å, $V = 677.01(4)$ Å³. The empirical formula is $(Mg_{5.4-5.7}Fe^{3+}_{1.4-1.7}Fe^{2+}_{0.8-0.9})(Al_{18.0-18.6}Ti_{1.0-1.1}$ Fe^{3+} _{0.4–0.9}Cr_{0–0.1})O₃₈(OH)₂.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Korinevsky et al. (2016) .

Wavenumbers $(cm⁻¹)$: 3355, 675s, 630s, 536s, 511sh, 440.

O504 Woodallite Mg₆Cr₂(OH)₁₆Cl₂⋅4H₂O

Origin: Kyzyl-Uyuk stream, Terektin ridge, Altai Mts., Siberia, Russia.

Description: Lilac crust on serpentine. Investigated by I.V. Pekov. The empirical formula is (electron microprobe): $(Mg_{5.90}Fe_{0.10})(Cr_{0.94}Fe_{0.89}Al_{0.17})Cl_{1.92}(SO_4)_{0.02}(CO_3)_x(OH)_{16}AH_2O$ ($x \ll 1$). The sample contains zones with Fe:Cr \approx 1:1 in atomic units.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3640sh, 3520s, 3370sh, 1635, 1390w, 1076w, 940sh, 600s, 392s. Note: The spectrum was obtained by N.V. Chukanov.

O505 Gallium(III) oxide α -Ga₂O₃

Origin: Synthetic.

- Description: Prepared by the precipitation from GaCl₃ aqueous solution, by adding aqueous solution of tetramethyl ammonium hydroxide up to pH 7.82. After 2 h of aging at room temperature the precipitate was dried and heated at 500 \degree C for 4 h in air. Confirmed by powder X-ray diffraction data. Trigonal, space group $R-3c$, $a = 4.982$, $c = 13.433$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ristić et al. (2005).

Wavenumbers $(cm⁻¹)$: 680sh, 577, 520s, 418, 360s.

O506 Gallium(III) oxyhydroxide α-GaOOH

- **Description:** Prepared by the precipitation from $GaCl₃$ aqueous solution, by adding aqueous solution of tetramethyl ammonium hydroxide up to pH 7.82. Confirmed by powder X-ray diffraction data. Isostructural with goethite. Orthorhombic, space group *Pbnm*, $a = 4.58$, $b = 9.80$, $c = 2.97$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ristić et al. (2005).

Wavenumbers (cm⁻¹): 3403, 3243s, 2990, 2000, 1950, 1642w, 1221w, 1015s, 958s, 688, 640, 500s, 388s, 295.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O507 Aluminium niobate $AlNbO₄$

Origin: Synthetic.

- **Description:** Prepared by firing intimate mixture of Al(OH)₃ and Nb₂O₅ in air at 1350 °C. Monoclinic. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Blasse and 'T Lam (1978).

Wavenumbers (IR, cm^{-1}) : 965, 840, 710, 620sh, 570.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 940sh, 800, 730, 690, 600, 400.

O508 Barium cerium tantalite Ba_2CeTaO_6

Origin: Synthetic.

- **Description:** Obtained in the solid-state reaction between BaCO₃, Ce₂(CO₃)₃, and Ta₂O₅. The reactant mixture taken in stoichiometric ratio was calcined at 1350 °C for 15 h. The calcined sample was palletized into a disk with polyvinyl alcohol as binder and sintered at 1370 °C for 5 h. Characterized by powder X-ray diffraction data. Monoclinic, $a = 9.78$, $b = 9.02$, $c = 4.27$ Å, $\beta = 93.8^\circ$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bharti and Sinha (2011).

Wavenumbers $(cm⁻¹)$: 645, 573sh, 512s, 404.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The bands at 1747, 1415, 1058, 857, 796(sh), and 691 cm^{-1} correspond to the admixture of a carbonate. In the cited paper, the absorptions in the ranges $1700-1800$ and $1400-1500$ cm⁻¹ have been erroneously assigned to the presence of adsorbed moisture in KBr and symmetric stretching vibrations of TaO_6 octahedra, respectively.

O509 Barium cobalt antimonate Ba₃CoSb₂O₉

Origin: Synthetic.

Description: A compound with ordered hexagonal perovskite-type structure.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Liegeois-Duyckaerts (1985).

Wavenumbers (cm⁻¹): 723, 678s, 551, 493, 408s, 361, 298, 222, 139, 112.

O510 Barium cobaltate Ba_2CoO_4

- Description: Synthesized from the mixture of barium and cobalt carbonates at 950 °C. Confirmed by chemical analyses and powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran (1973).

Wavenumbers $(cm⁻¹)$: 670s, 645s, 620s, 340, 305, 299.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O511 Barium nickel oxide BaNiO₂ BaNiO₂

Origin: Synthetic.

- **Description:** Prepared by the conventional sintering process from NiO and BaCO₃. Characterized by Mössbauer spectrum and powder X-ray diffraction data. Orthorhombic, $a = 5.737$, $b = 9.190$, $c = 4.760$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Gottschall et al. (1998).

Wavenumbers $(cm⁻¹)$: 570, 560sh, 487s, 444s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O512 Barium nickel oxide BaNiO₃ BaNiO₃

Origin: Synthetic.

- **Description**: Prepared by the conventional sintering process from NiO and BaCO₃. Characterized by Mössbauer spectrum and powder X-ray diffraction data. Hexagonal, $a = 5.635$, $c = 4.8041$ Å. Hypothetically, Ni is trivalent and the formula is $Ba^{2+}Ni^{3+}O^{2-}(O^-)$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Gottschall et al. (1998).

Wavenumbers $(cm⁻¹)$: 611sh, 595, 490s, 406.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O513 Barium niobate $BaNb₂O₆$

Description: Prepared by heating stoichiometric mixture of $Nb₂O₅$ and BaCO₃ pressed in a pellet at 1200 °C for 60 h. Orthorhombic, space group *Pbmm*, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Repelin et al. (1979).

Wavenumbers (IR, cm⁻¹): 830w, 760, 700sh, 635s, 560s, 470sh, 450, 410w, 375sh, 355, 310s, 295sh, 238, 170, 151, 87.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 847, 712s, 633, 557s, 496, 379, 366, 306, 280, 230, 200, 190, 141, 120, 112, 100.

O514 Barium titanate $Ba₂TiO₄$

Origin: Synthetic.

Description: Obtained by heating a mixture of TiO₂ and BaCO₃ at 1200–1300 °C for 1–3 days.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wijzen et al. (1994).

Wavenumbers $(cm⁻¹): 774, 753, 719s, 695s, 370, 340, 319w.$

O515 β-Gallium(III)-oxide β-Ga₂O₃

Origin: Synthetic.

Description: Monoclinic, space group $C2/m$, $a = 12.21$, $b = 3.037$, $c = 5.798$ Å, $\beta = 103.838^{\circ}$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.

Source: Ristić et al. (2005).

Wavenumbers $(cm⁻¹)$: 680, 644, 482s, 374, 325, 289.

O516 Bismuth(III) aluminate $Bi₂Al₄O₉ Bi₂Al₄O₉$

- **Description:** Synthesized from a stoichiometric mixture of $Bi(NO_3)$ ₃.5H₂O and $Al(NO_3)$ ₃.9H₂O together with 10 wt.% of glycerine. The mixture was heated first at 353 K, then at 473 K for 2 h, and finally (after homogenization the powder) at 1210 K for 48 h. Structurally related to mullite.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Absorption.

Source: Murshed et al. (2015).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: (943sh), 920, 846sh, 772sh, 728s, 691sh, 649, 601sh, 572s, 536sh, 522s, 497s, 470sh, 421w, 399, 378sh, 373, 353, 297w, 289sh, 286w, 251w, 204w, 185, 172, 166, 159, 97w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 840, 763, 691, 633, 615, 571, 509, 491, 478, 441, 406, 385, 373, 345, 322, 312, 281, 274s, 251, 184, 138, 120s, 103.

O517 Bismuth(III) aluminoferrite $Bi_2Fe_3AlO_9$ $Bi_2Fe_3AlO_9$

Origin: Synthetic.

Description: Produced by thermal decomposition of a mixture of corresponding metal nitrates using a glycerine method. Structurally related to mullite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Voll et al. (2006).

Wavenumbers (cm⁻¹): 1144w, 1100sh, 887w, 852, 819, 650sh, 624s, 512sh, 464s, 448sh.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O518 Bismuth(III) stannate pyrochlore-type $Bi_2Sn_2O_7$

Origin: Synthetic.

- Description: Obtained by sintering at 1173 K of pelletized precipitate formed after adding ammonia solution to the 0.01 M solution containing bismuth chloride and stannous oxy chloride in stoichiometric ratio. Tetragonal, $a = 21.328$, $c = 21.4$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.
- Source: Ravi et al. (1999).
- Wavenumbers (cm⁻¹): 731s, 694s, 686sh, 636sh, 627sh, 588sh, 576sh, 563, 556sh, 496sh, 487, 480, 469sh.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O519 Bismuth(III) tantalate $Bi_7Ta_3O_{18}$ $Bi_7Ta_3O_{18}$

Description: Obtained from Bi_2O_3 and Ta_2O_5 by solid-state method at 950 °C for 18 h. Monoclinic, space group $C2/m$, $a = 34.060(3)$, $b = 7.618(9)$, $c = 6.647(6)$ Å, $\beta = 109.210(7)$ °, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Chon et al. (2014).

Wavenumbers $(cm⁻¹): 874, 687sh, 590s, 502s, 308w.$

O520 Bismuth(III) titanate $Bi_4Ti_3O_{12}$ $Bi_4Ti_3O_{12}$

Origin: Synthetic.

Description: Prepared hydrothermally. Structurally related to perovskite. The strongest lines of the powder X-ray diffraction pattern are observed at 3.81, 2.95, 2.72, 2.26, 1.92, and 1.61 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen and Jiao (2001).

Wavenumbers $(cm⁻¹): 822, 680sh, 582s, 447sh, 374s.$

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O521 Bismuth ferrite $BiFeO₃$

Origin: Synthetic.

- **Description**: Obtained by two-stage solid phase synthesis from $Bi₂O₃$ and Fe₂O₃, first at 923 K for 1 h and thereafter (after re-grounding and pressing) at 1123 K for 2 h. The compound has rhombohedrally distorted perovskite structure, space group R3c.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bujakiewicz-Korońska et al. (2011).

Wavenumbers $(cm⁻¹)$: 832sh, 814w, 543s, 440s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, also FIR spectrum for a sample suspended in Apiezon N grease is given.

O522 Calcium indium oxide Ca_2InO_4 Ca_2InO_4

- Description: Prepared from indium and calcium nitrates, in solid-state reaction at 1173 K for 2 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pca2_1$ or $Pbcm$, $Z = 4$ (see JCPDS 017-0643).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Zheng et al. (2012) .

Wavenumbers (IR, cm⁻¹): 1639w, 1412w, 1378w, 872w, 639, 602, 556sh, 485sh, 470s, 417sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The weak bands at 1639, $1412+872$, and 1378 cm⁻¹ may correspond to H_2O , CO_3^2 , and NO_3^- impurities, respectively. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 648w, 543s, 495, 455, 403, 370w, 336, 284w, 258, 199, 113s.

O523 Cadmium stannate $CdSnO₃$

Origin: Synthetic.

Description: Obtained by thermal decomposition of $CdSn(OH)_{6}$ at 540 °C during 15 min. Characterized by powder X-ray diffraction data. Isostructural with ilmenite.

Kind of sample preparation and/or method of registration of the spectrum: CsIr disc. Transmission.

Source: Botto and Baran (1980).

Wavenumbers $(cm⁻¹)$: 605, 565sh, 521s, 472s, 400sh, 348w, 315.

Note: The sample contains minor admixture of a spinel-type stannate.

O524 Cesium uranyl niobate $Cs_2(UO_2)_2(Nb_2O_8)$ $Cs_2(UO_2)_2(Nb_2O_8)$, or CsUNbO₆

Origin: Synthetic.

Description: Carnotite-type niobate with $UNbO₆$ layers.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Saad et al. (2008).

Wavenumbers $(cm⁻¹): 910, 881, 865, 809w, 776sh, 735, 646, 617sh, 572s, 497, 439s.$

O525 Cesium uranyl niobate $Cs_9[(UO_2)_8O_4(NbO_5)(Nb_2O_8)_2]$ $Cs_9[(UO_2)_8O_4(NbO_5)(Nb_2O_8)_2]$

- **Description:** Prepared from CsNO₃, U₃O₈, and Nb₂O₅ by solid-state reaction at 1000 °C in air. Monoclinic, space group $P2_1/c$, $a = 16.729(2)$, $b = 14.933(2)$, $c = 20.155(2)$ Å, $\beta = 110.59(1)$ °, $V = 4713.5(1)$ \AA^3 , $Z = 4$. $D_{\text{meas}} = 5.94(2)$ g/cm³, $D_{\text{calc}} = 5.95(3)$ g/cm³. The crystal structure is based on the uranyl niobate layer containing $UO₇$ pentagonal bipyramids and Nb $O₅$ square pyramids.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Saad et al. (2008).

Wavenumbers (cm⁻¹): 905, 884, 866, 833sh, 809w, 778w, 733, 668sh, 644, 615, 570s, 495, 436s.

O526 Calcium antimonite $CaSb₂O₆$

Origin: Synthetic.

Description: Obtained in a solid-state reaction between $CaCO₃$ and $Sb₂O₃$. In the crystal structure, SbO_6 octahedra are present. Trigonal, space group *P*-31/*m*, $a = 5.22$, $c = 5.01$ Å.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Husson et al. (1984).

Wavenumbers (IR, cm⁻¹): 620sh, 580s, 542s, 335s, 305sh, 220, 202.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 678s, 530, 498w, 345, 332, 243s.

Note: The wavenumbers of Sb–O stretching bands (at 580 and 542 cm^{-1}) are anomalously low as compared with most other Sb(V) oxides.

O527 Calcium copper titanate $CaCu₃Ti₄O₁₂ CaCu₃Ti₄O₁₂$

Origin: Synthetic.

- Description: Nano-sized powder synthesized by a polymerization-based complex method and calcined at 800 \degree C in air for 8 h. A perovskite-type compound. Characterized by powder X-ray diffraction data. Cubic, $a = 7.398(2)$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Masingboon et al. (2008).

Wavenumbers $(cm⁻¹)$: 561s, 516, 437.

Note: The sample exhibits a giant dielectric constant (Masingboon et al. 2009)

O528 Calcium niobate columbite-type CaNb_2O_6

- **Description:** White solid prepared from the mixture of $Nb₂O₅$ and CaCO₃ powders at 1300 °C for 48 h. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Powder spread on polyethylene film and on CsI plate. Transmission.

Source: Husson et al. (1977a).

Wavenumbers (IR, cm⁻¹): 895, 870, 855, 745s, 653, 590s, 492s, 456, 438, 400, 390, 364, 337, 311sh, 290, 275sh, 262, 237, 232, 219sh, 207w, 194w, 180w, 165w, 155w, 145w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 904s, 849, 664, 627, 600, 540s, 495, 487, 462, 430, 385s, 379, 369, 344, 340, 314, 293s, 286, 264, 259, 239s, 223, 213w, 194s, 186, 162, 136s, 127, 108, 84, 63.

O529 Calcium plumbate $Ca₂PbO₄$

Origin: Synthetic.

Description: Obtained by standard solid-state reaction, starting with stoichiometric mixture of $PbO₂/$ CaCO₃, heated between 850 and 900 $^{\circ}$ C, in the presence of a continuous air stream. Orthorhombic, space group *Pbam*, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Diez et al. (1995).

Wavenumbers $(cm⁻¹)$: 540, 499, 420s, 387s, 351sh, 326w, 294.

O530 Chromium uranium oxide Cr_2UO_6 Cr_2UO_6

Origin: Synthetic.

Description: Synthesized hydrothermally from Cr(NO₃)₃.9H₂O and γ -UO₃ at 325–425 °C. Characterized by powder X-ray diffraction data.

Hexagonal, $a = 4.988(1)$, $c = 4.620(1)$ Å. $D_{calc} = 7.31$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Absorption.

Source: Hoekstra and Siegel (1971).

Wavenumbers $(cm⁻¹): 670sh, 570s, 487s, 455sh, 326, 234, 205w.$

O531 Cobalt zinc tellurium oxide $Co₃Zn₂TeO₈$

Origin: Synthetic.

Description: Spinel-type compound obtained in the solid-state reaction between TeO_2 , CoCO₃, and ZnCO₃ at 1050 °C.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran and Botto (1980).

Wavenumbers $(cm⁻¹)$: 678, 630s, 512s, 460, 438, 406s, 360w.

O532 Copper(II) hydroxide $Cu(OH)₂$

Locality: Synthetic.

Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group Cmcm, $a = 2.936(5), b = 10.54(1), c = 5.238(8)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Schönenberger et al. (1971).

Wavenumbers $(cm⁻¹)$: 3574s, 3304s, 940, 695s, 640, 517, 485, 420.

O533 Cobalt ferrite spinel-type CoFe_2O_4

Description: Prepared using a conventional ceramic technique. The powder X-ray diffraction showed a single phase and a spinel structure.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Srinivasan et al. (1984).

Wavenumbers $(cm⁻¹)$: 650, 570, 390, 340.

O534 Indium oxide $In₂O₃$

Origin: Synthetic.

Description: Commercial reactant.

Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflection of a powdery sample pressed into pellet with KBr. The absorption spectrum was calculated from reflection spectrum by using the Kubelka-Munk function.

Source: Jiang et al. (2011).

Wavenumbers $(cm⁻¹)$: 602, 566, 538, 471s, 441sh.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O535 Lanthanum aluminum oxide LaAlO₃

Origin: Synthetic.

Description: Cubic, with the perovskite-type structure (see JCPDS 85-848). Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Zhou et al. (2004).

Wavenumbers $(cm⁻¹)$: 656, 440s.

O536 Lanthanum iron(III) oxide LaFeO₃

- **Description:** Prepared from stoichiometric mixture of La_2O_3 and Fe_2O_3 in the presence of excess of the euthectic mixture of NaCl and KCl at 900 \degree C for 6 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group *Pnma*, $a = 5.5676(2)$, $b = 7.8608(3)$, $c = 5.5596(2)$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Romero et al. (2014).

Wavenumbers (IR, cm⁻¹): 581sh, 531s, 508sh, 475w, 461sh, 455w, 434w, 424w, 416w.

- Note: In the cited paper, Raman spectrum is given. The Raman bands at 1310 and 1143 cm^{-1} have been assigned to second-order excitations.
- Wavenumbers (Raman, cm⁻¹): 1310s, 1143, 650s, 500, 486, 433s, 431, 411, 288, 264, 173, 151, 101.

O537 Lead(II) stannate Pb_2SnO_4 Pb_2SnO_4

Origin: Synthetic.

Description: Prepared from the stoichiometric mixture of PbO and SnO₂ at 700 °C for 25 h in air. Tetragonal, $a = 8.74$, $c = 6.30$ Å (see JCPDS No. 24-0589).

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Vigouroux et al. (1982).

Wavenumbers (IR, cm⁻¹): 573, 495s, 451, 421, 364, 320w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 613w, 540, 457s, 379, 292s, 275, 196, 129s, 80, 35.

O538 Lead tin oxide Pb²⁺₄Pb⁴⁺Sn⁴⁺O₈ Pb²⁺₄Pb⁴⁺Sn⁴⁺O₈

Origin: Synthetic.

Description: Prepared from a mixture of $SnPb₂O₄$ and $Pb₃O₄$ powders at 580 °C for several months. The crystal structure is solved. Tetragonal, space group $P4₂/m$, $a = 8.77$, $c = 6.43$ Å.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Absorption. Source: Vigouroux et al. (1982).

Wavenumbers (IR, cm⁻¹): 545, 465s, 415, 345, 300w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 550s, 260, 195, 152w, 125s.

O539 Lithium aluminate $LiAl₅O₈$ LiAl₅O₈

Description: Prepared by sintering a mixture of $Li₂CO₃$ and Al₂O₃ at 1300 °C. A compound with ordered spinel-type structure. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Brabers (1976).

Wavenumbers $(cm⁻¹)$: 680s, 646s, 611s, 558s, 531s, 486s, 442s, 417w, 396, 385, 357w, 334.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O540 Lithium aluminate LiAlO₂-beta β-LiAlO₂

Origin: Synthetic.

Description: Prepared from lithium ethoxide and aluminu methoxide with subsequent hydrolysis and heating to 600° C. Characterized by powder X-ray diffraction data. Monoclinic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Hirano et al. (1987).

Wavenumbers $(cm⁻¹)$: 820sh, 787s, 655, 614w, 575sh, 518, 462, 415w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O541 Lithium aluminate LiAlO₂-gamma γ-LiAlO₂

Origin: Synthetic.

Description: Prepared from lithium ethoxide and aluminum ethoxide with subsequent hydrolysis and heating to 1000 °C. Characterized by powder X-ray diffraction data. Tetragonal.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Hirano et al. (1987).

Wavenumbers (cm⁻¹): 834sh, 800s, 787sh, 745sh, 655, 550s, 520, 482, 450.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O542 Lithium aluminium oxide-alpha α -LiAlO₂

Origin: Synthetic.

Description: The polymorph with trigonally distorted NaCl-type structure synthesized in a solid-state reaction from Al oxide and Li carbonate.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Moore and White (1970).

Wavenumbers $(cm⁻¹)$: 590s, 500s, 365sh, 290, 277, 253, 233w, 187w

O543 Lithium aluminium oxide-gamma γ-LiAlO₂

Origin: Synthetic.

Description: Synthesized in a solid-state reaction from Al oxide and Li carbonate. The structure consists of corner-linked tetrahedra in which both Li and Al are four-coordinated. The space group is $P4_12_12$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Moore and White (1970).

Wavenumbers (cm⁻¹): 850sh, 807, 649, 540, 516, 473w, 442, 361, 322, 282s, 192w.

O544 Lithium cobalt(III) iron(III) oxide delafossite-type $LiCo_{0.5}Fe_{0.5}O₂$

Description: Prepared by heating up to 600 $^{\circ}$ C a gel obtained from the stoichiometric mixture of Li, Co, and Fe nitrates and aqueous solution of maleic acid. Characterized by powder X-ray diffraction data. Trigonal, space group R3m.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Khosravi et al. (2013).

Wavenumbers $(cm⁻¹)$: 590s, 532s, 450, 240w.

O545 Lithium ferrite LiFe³⁺₅O₈ LiFe³⁺₅O₈

Origin: Synthetic.

Description: Prepared by sintering a mixture of $Li₂CO₃$ and Fe₂O₃ at 1300 °C. A compound with ordered spinel-type structure. Characterized by powder X-ray diffraction data.

- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Brabers (1976).

Wavenumbers $(cm⁻¹): 672w, 590s, 550s, 471, 442, 400, 376, 365sh, 336, 315sh.$

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O546 Lithium iron(III) oxide γ -LiFeO₂

Origin: Synthetic.

- Description: Synthesized in a solid-state reaction from Al oxide and Li carbonate. The structure consists of corner-linked tetrahedra in which both Li and Al are four-coordinated. The space group is $P4_12_12$, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Moore and White (1970).

Wavenumbers $(cm⁻¹)$: 550sh, 490s, 450s, 400sh, 355s, 330sh, 290s, 250.

O547 Lithium magnesium manganese(IV) oxide spinel-type $Li₂MgMn₃O₈$

Description: Prepared by solid-state reaction using $Li₂CO₃$, MnO₂, and MgO. Characterized by powder X-ray diffraction data. Cubic, space group $Fd3m$, $a = 8.2794(2)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: TlBr disc. Absorption. Source: Strobel et al. (2003).

Wavenumbers $(cm⁻¹)$: 633s, 489s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O548 Lithium manganese oxide spinel-type $Lim^{3+}Mn^{4+}O_4$

Origin: Synthetic.

Description: Prepared by solid-state reaction. Cubic, space group $Fd3m$, $a = 8.1967$ Å. A normal spinel containing Li at tetrahedral site and Mn at octahedral site.

Kind of sample preparation and/or method of registration of the spectrum: TlBr disc. Absorption. Source: Strobel et al. (2003).

Wavenumbers (IR, cm^{-1}) : 610, 500s, 435sh.

Note: For the vibrational spectra of $\text{LiMn}^{3+}\text{Mn}^{4+}\text{O}_4$ see also Helan and Berchmans (2011) and Julien et al. (1998). In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 627s, 588s, 486, 421, 368w.

O549 Lithium niobateilmenite-type $LiNbO₃$

Origin: Synthetic.

Description: Obtained by hydrothermal synthesis. Metastable modification isostructural with ilmenite. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (1986).

Wavenumbers (IR, cm⁻¹): 783, 630sh, 595s, 500sh, 398, 318s, 245s.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 735s, 677w, 470, 381w, 291, 275, 214, 173w.

O550 Lithium zinc niobium oxide spinel-type $LiZnNbO₄$

- **Description:** Synthesized in the solid-state reaction between Li_2CO_3 , ZnO, and Nb₂O₅ at 1000 °C for 10 h. Tetragonal, space group $P_{1,22}$, $a = 6.079$, $c = 8.401$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc. Transmission.

Source: Keramidas et al. (1975).

Wavenumbers (IR, cm⁻¹): 798, 725, 662s, 590s, 572, 488s, 454, 437w, 405, 370s, 308s, 270, 240, 208, 196sh, 171, 158sh, 122w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 868w, 819s, 762w, 718, 684w, 616s, 589s, 582, 496, 460, 435, 366w, 335, 323, 300w, 266, 250s, 237s, 222s, 193, 155, 152, 134s, 120, 94s.

O551 Manganese(II) antimony(III) oxide $MnSb₂O₄$

Origin: Synthetic.

- **Description:** Synthesized hydrothermally from the stoichiometric mixture of MnO and $Sb₂O₃$ in the presence of 5% HF, at 500 °C. Tetragonal, space group $P4_2/mbc$, $a = 8.7145$, $c = 6.0011 \text{ Å}$, $Z = 4$. Sb has tetrahedral SbO_3E coordination where E is a lone pair.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and CsI discs. Transmission.

Source: Chater et al. (1986).

Wavenumbers (IR, cm⁻¹): 680, 647s, 569s, 495s, 385w, 340s, 250sh, 198, 170, 134, 96.5, 79.

- **Note:** In the cited paper, Raman spectrum is given. For the vibrational spectra of $MnSb₂O₄$ see also Gavarri et al. (1988).
- Wavenumbers (Raman, cm⁻¹): 670s, 620, 547w, 527, 473.5sh, 465, 398.5w, 350, 345sh, 292s, 254.5, 221, 215, 189, 155.5, 124s, 118w, 112w, 105s, 52, 47.

O552 Nickel manganese(IV) oxide $Ni₆MnO₈$

Origin: Synthetic.

- Description: Prepared by addition an excess of oxalic acid to boiled solution of Ni(II) and Mn (II) acetates in acetic acid (25%) with subsequent drying and calcination at 873 K for 3 h. Characterized by powder X-ray diffraction data. Cubic, space group $Fm3m$, $a = 8.306(3)$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Porta et al. (1991).

Wavenumbers $(cm⁻¹)$: 582sh, 562s, 482, 443s, 406sh, 331.

O553 Potassium diuranate $K_2U_2O_7$

Description: Prepared by heating stoichiometric mixture of U_3O_8 and K_2CO_3 in air. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 6.95(2)$, $b = 7.97(2)$, $c = 22.16(2)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Volkovich et al. (1998).

Wavenumbers (IR, cm⁻¹): 816s, 778sh, 588, 554sh, 497sh, 452s, 401sh, 361sh, 292.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 778s, 562w, 491w, 434, 336, 287, 267w, 245w, 150sh, 133, 100w.

O554 Potassium niobate $KNbO₃$

Origin: Synthetic.

- **Description**: Synthesized hydrothermally from Nb_2O_5 and KOH at 200 °C. Characterized by powder X-ray diffraction data and electron microprobe analysis. Orthorhombic, $a = 5.697$, $b = 3.971$, $c = 5.721$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wang et al. (2007).

Wavenumbers $(cm⁻¹)$: 875, 846, 782sh, 656s, 526s, 477sh, 412s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O555 Potassium niobate KNb_7O_{18} KNb₇O₁₈

Origin: Synthetic.

Description: Structurally related to TlNb₇O₁₈ (tetragonal, space group *P4/mbm*, $a = 27.50$, $c = 3.94 \text{ Å}, Z = 8$).

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Bhide et al. (1980).

Wavenumbers (cm⁻¹): 845sh, 725s, 640s, 590s, 480, 435, 360, 270.

O556 Potassium niobate perovskite-type KNbO3

- Description: Prepared in a solid-state reaction, by double-ply heating the stoichiometric mixture of $Nb₂O₅$ and KNO₃ at 1000 °C for 1 h with intermediate grinding. Structurally related to perovskite. Orthorhombic, space group *Bmm2*, $a = 5.697$, $b = 3.971$, $c = 5.721$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc and polyethylene matrix. Transmission.

Source: Rocchiccioli-Deltcheff (1973).

Wavenumbers $(cm⁻¹)$: 750sh, 625s, 550sh, 370, 180.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O557 Potassium niobate tungstate $KNbWO₆$

Origin: Synthetic.

- **Description:** Prepared by the solid-state reaction between WO_3 , Nb_2O_5 , and KNO_3 at 973 K. The crystal structure solved by the Rietveld method is related to that of pyrochlore. Cubic, space group $Fd3m$, $a = 10.5001(7)$, $V = 1057.67(2)$ \AA^3 , $Z = 8$. $D_{calc} = 4.7529$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol suspension. Absorption.

Source: Knyazev et al. (2010).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 935sh, 719s, 618s, 408sh, 385s, 329sh, 255, 212, 142.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 934w, 861w, 664s, 576, 473w, 438w, 360w, 246sh, 196s, 152s.

O558 Potassium tantalite perovskite-type $KTaO₃$

Origin: Synthetic.

- Description: Prepared in a solid-state reaction, by double-ply heating the stoichiometric mixture of $Nb₂O₅$ and KNO₃ at 1230 °C for 4 h with intermediate grinding. Structurally related to perovskite. Cubic, $a = 3.989$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc and polyethylene matrix. Transmission.

Source: Rocchiccioli-Deltcheff (1973).

Wavenumbers $(cm⁻¹)$: 755sh, 605s, 340.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O559 Potassium tantalate tungstate $KTaWO₆$

- **Description**: Prepared by the solid-state reaction between WO_3 , Nb_2O_5 , and KNO_3 at 973 K. The crystal structure solved by the Rietveld method is related to that of pyrochlore. Cubic, space group *Fd3m, a* = 10.4695(1), *V* = 1147.57(3) \AA^3 , *Z* = 8. D_{calc} = 5.8197 g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol suspension. Absorption.
- Source: Knyazev et al. (2010).

Wavenumbers (IR, cm⁻¹): (933sh), 719s, 629s, 412s, 382sh, 340, 263sh, 203, 133.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 937, 870, 664s, 580sh, 481w, 452w, 359w, 248s, 191s, 145s.

O560 Potassium urinate K_2UO_4

Origin: Synthetic.

- **Description:** Prepared by heating stoichiometric mixture of U_3O_8 with K_2CO_3 at 800 °C for several hours, with several intermediate grindings. Characterized by powder X-ray diffraction data. Tetragonal, $a = 4.31(2)$, $c = 13.09(2)$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Volkovich et al. (1998).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 833w, 728s, 648sh, 611sh, 571s, 540s, 472sh, 395sh, 327sh, 261sh. Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 694s, 492, 439, 344w, 293w, 221, 168.

O561 Sodium diuranate $Na₂U₂O₇$

Origin: Synthetic.

Description: Prepared by heating stoichiometric mixture of U_3O_8 and Na_2CO_3 in air. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 6.77(1)$, $b = 7.97(1)$, $c = 18.32(1)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Volkovich et al. (1998).

Wavenumbers (IR, cm⁻¹): 827s, 793, 767, 634sh, 602sh, 568s, 537sh, 486sh, 449s, 418sh, 347w, 278.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 826w, 788s, 779s, 752, 599sh, 584, 536w, 420s, 357w, 313s, 274, 233, 202, 146, 117s, 100w.

O562 Sodium stannate Na4SnO4

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Kessler et al. (1979).

Wavenumbers (IR, cm⁻¹): 680, 650s, 360, 290s, 260, 230.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 679, 664s, 638, 612w, 310, 235, 212w, 180, 160, 145, 100.

O563 Sodium tantalite perovskite-type $NaTaO₃$

Origin: Synthetic.

Description: Prepared in a solid-state reaction, by double-ply heating the stoichiometric mixture of Ta₂O₅ and NaNO₃ at 1200 °C for 6 h and for 12 h with intermediate grinding. Structurally related to perovskite. Orthorhombic, space group $Pc2_1n$, $a \approx 5.51-5.52$, $b \approx 7.75-7.79$, $c \approx 5.48-5.50$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc and polyethylene matrix. Transmission.

Source: Rocchiccioli-Deltcheff (1973).

Wavenumbers $(cm⁻¹)$: 750sh, 680s, 590s, 365sh, 340, 310sh, 217sh, 173, 127.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O564 Sodium uranate $Na₂UO₄$

Origin: Synthetic.

Description: Prepared by heating stoichiometric mixture of U_3O_8 and Na_2CO_3 at 800 °C for several hours, with several intermediate grindings. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 6.77(1)$, $b = 7.97(1)$, $c = 18.32(1)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Volkovich et al. (1998).

Wavenumbers (IR, cm⁻¹): 809w, 774s, 732s, 706w, 518s, 488, 453s, 310, 257s.

Note: The IR data are taken from Volkovich et al. (1998). There are strong discrepancies between these data and the figure of the IR spectrum of $Na₂UO₄$ given in this paper. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 736w, 712s, 547w, 506w, 442w, 362w, 329w, 238s, 177w, 140w.

O565 Sodium yttrium titanate NaYTiO4

Origin: Synthetic.

- **Description:** Tetragonal, structurally related to perovskite. The structure based on double layers of Y^{3+} ions and double layers of $Na⁺$ ions perpendicular to the c axis.
- Kind of sample preparation and/or method of registration of the spectrum: No data in the cited paper.

Source: Blasse and van den Heuvel (1974).

Wavenumbers $(cm⁻¹): 878, 760w, 624s, 594s, 518w, 459, 377s, 288, 259sh.$

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The band at 878 cm^{-1} is ascribed by the authors to stretching vibrations of the Ti–O bond directed towards the Na-layers. In the cited paper, a figure of the Raman spectrum is given.

O566 Strontium aluminum hydroxide $Sr₃Al₂(OH)₁₂$

Hydrogarnet $Sr₃Al₂(OH)₁₂ Sr₃Al₂(OH)₁₂$

Origin: Synthetic.

Description: Prepared hydrothermally. Characterized by powder X-ray diffraction data. Cubic, structurally related to garnet-group minerals.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Li et al. (1997).

- Wavenumbers (cm^{-1}) : 3643s, 3430, 1715w, 1624, 1445, 1369, 1095w, 1048w, 1002w, 839, 776, 505s.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O567 Strontium cerium antimonate perovskite-type $Sr₂CeSbO₆$

- Description: A compound with ordered perovskite-type structure prepared by heating a mixture of $SrCO₃, Ce₂(CO₃)₃$, and $Sb₂O₅$, taken in stoichiometric ratio, at 1350 °C for 15 h. Characterized by powder X-ray diffraction data and energy dispersive X-ray spectrum. Orthorhombic, $a = 8.84$, $b = 6.22, c = 5.83$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bharti, and Sinha (2010).

Wavenumbers $(cm⁻¹)$: 1443w, 670s, 550.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The weak band at 1443 cm^{-1} may correspond to the admixture of a carbonate.

O568 Strontium magnesium niobate $Sr₃MgNb₂O₉$

Origin: Synthetic.

- Description: A compound with ordered perovskite-type structure prepared by a solid-state reaction technique. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: CsI disc (?). Transmission.

Source: Blasse, and Corsmit (1974).

Wavenumbers (IR, cm⁻¹): 660s, 540, 450sh, 395s, 370s, 340s, 315, 285w, 250w, 225w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 830s, 535w, 455, 400, 310w, 240w.

O569 Tellurite rhombohedral polymorph TeO₃

Origin: Synthetic.

- **Description:** Prepared by stepwise heating a mixture of α -TeO₂ and I₂O₅ (with the molar ratio 1:2) at 250, 280, and 310 °C (for 2 h at each temperature) and 340 °C for 24 h. Characterized by powder X-ray diffraction data. Rhombohedral, $a = 5.00383$, $c = 13.22429$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Cornette et al. (2011).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 855sh, 794s, 780sh, 490sh, 439s, 331, 270s, 239.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 844, 663w, 487, 333s, 261.

O570 Tellurium(IV) tin oxide Te_3SnO_8 Te₃SnO₈

Description: Prepared by heating a mixture of $TeO₂$ and $SnO₂$ taken in stoichiometric amounts, at 700–750 °C for 12–15 h with several intermediate grindings. Cubic, space group $Ia3$, $Z = 8$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto and Baran (1981).

Wavenumbers $(cm⁻¹): 788, 743, 708s, 482, 403sh, 375s, 290w.$

O571 Tellurium(IV) titanium oxide Te_3TiO_8 Te₃TiO₈

Origin: Synthetic.

Description: Prepared by heating a mixture of $TeO₂$ and $TiO₂$ taken in stoichiometric amounts, at 700–750 °C for 12–15 h with several intermediate grindings. Cubic, space group $Ia3$, $Z = 8$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto and Baran (1981).

Wavenumbers $(cm⁻¹)$: 758, 665s, 610s, 484, 430sh, 382sh, 358s.

O572 Tellurium(IV) zirconium oxide Te₃ZrO₈ Te₃ZrO₈

Origin: Synthetic.

Description: Prepared by heating a mixture of $TeO₂$ and $ZrO₂$ taken in stoichiometric amounts, at 700–750 °C for 12–15 h with several intermediate grindings. Cubic, space group $Ia3$, $Z = 8$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Botto and Baran (1981).

Wavenumbers $(cm⁻¹)$: 778, 698, 650s, 472w, 410sh, 355, 290.

O573 Tin(IV) hydroxide Sn(OH)4

Description: Synthesized by dissolving tin metal in concentrated HCl followed by addition of concentrated NH₄OH.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Prodjosantoso et al. (2015).

Wavenumbers $(cm⁻¹)$: 3436s, 1625, 1402w, 580s.

O574 Tungsten trioxide monoclinic $WO₃$

Origin: Synthetic.

Description: Obtained as a result of thermal decomposition of $(NH_4)_{10}W_{12}O_{41}nH_2O$ at 1223 K for 5 h. Characterized by powder X-ray diffraction data. Monoclinic, space group P_1/n , $a = 7.319$, $b = 7.556$, $c = 7.722$ Å, $\beta = 90.48^{\circ}$ (see JCPDS card 43-1035).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Kustova et al. (2011).

Wavenumbers (cm⁻¹): 943sh, 900sh, 873s, 815s, 777s, 766sh, 730sh, 631sh, 415sh, 390, 377, 362sh, 341, 325, 287, 273w, 228w.

O575 Tungsten trioxide orthorhombic $WO₃$

Origin: Synthetic.

Description: Obtained as a result of thermal decomposition of $(NH_4)_{10}W_{12}O_{41} \cdot nH_2O$ at 873 K for 6 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pcnb$, $a = 7.339$, $b = 7.574$, $c = 7.742$ Å (see JCPDS card 20-1324).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Kustova et al. (2011).

Wavenumbers (cm⁻¹): 930sh, 867sh, 815s, 768s, 705sh, 644sh, 374, 360sh, 325, 285, 230w.

O576 Tungsten trioxide triclinic $WO₃$

Description: Obtained by mechanical treatment (grinding and pressing) of monoclinic WO_3 . Characterized by powder X-ray diffraction data. Orthorhombic, space group $P-1$, $a = 7.309$, $b = 7.522$, $c = 7.671 \text{ Å}$, $\alpha = 88.8^{\circ}$, $\beta = 90.93^{\circ}$, $\gamma = 90.93^{\circ}$ (see JCPDS card 32-1395).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Kustova et al. (2011).

Wavenumbers (cm⁻¹): 908sh, 866sh, 823s, 765s, 719sh, 627sh, 389sh, 378sh, 358, 325, 309, 299, 282w, 257, 229w.

O577 Vanadium oxide bariandite-type $V_{10}O_{24}$ ∙9H₂O

Origin: Synthetic.

- **Description**: Mixed valence vanadium $(V)/(V)$ nanostructured oxide with a bariandite-like structure prepared by sol-gel processing of themolecular vanadium(IV) alkoxide $[V_2(OPr^i)_8]$ $(OPrⁱ = isopropoxide).$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Menezes et al. (2009).

Wavenumbers (IR, cm⁻¹): 1632, 1396, 1261w, 1158w, 1104w, 1062w, 1001, 758, 669, 544s.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1022, 908s, 518s, 429w, 409w, 270s.
O578 Yttrium iron antimony(V) oxide pyrochlore-type Y_2FeSbO_7

Origin: Synthetic.

- **Description**: Prepared by heating a mixture of Y_2O_3 , Fe₂O₃, and Sb₂O₃, taken in stoichiometric amounts, at 1150 °C for 4.5 h. Characterized by powder X-ray diffraction data. Cubic, $a = 10.223$ Å. $D_{\text{calc}} = 5.811$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Jana et al. (2016).

Wavenumbers $(cm⁻¹)$: 642s, 564w, 535sh, 512sh, 495, 490, 478sh, 465, 455, 447, 432s, 429sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O579 Yttrium oxide Y_2O_3

Description: Commercial reactant. Characterized by powder X-ray diffraction data. Cubic, space group Ia3.

Kind of sample preparation and/or method of registration of the spectrum: Thin powdery film on polyethylene sheet. Transmission.

Source: White and Keramidas (1972).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 562s, 465s, 408s, 346, 311, 243.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 603, 576w, 480s, 440, 389s, 337, 325, 236w, 162.

O580 Franklinite ZnFe_2O_4

Origin: Synthetic.

Description: Prepared using a conventional ceramic technique. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Srinivasan et al. (1984).

Wavenumbers $(cm⁻¹)$: 660sh, 550s, 415s, 338.

O581 Zinc stannate ZnSnO₃

Origin: Synthetic.

- **Description:** Prepared in the reaction between solid Li_2SnO_3 and $ZnCl_2$ melt. Characterized by powder X-ray diffraction data and electron probe microanalysis. Isostructural with ilmenite. Trigonal, space group R-3, $a = 5.2835$, $c = 14.0913$ Å, $Z = 6$. The strongest lines of the powder X-ray diffraction pattern $[d, Å (I, %) (hkl)]$ are: 3.84 (20) (102), 2.79 (100) (104), 2.64 (88) (110), 1.918 (26) (204), 1.755 (45) (116), 1.553 (32) (214), 1.526 (25) (300).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Kovacheva and Petrov (1998).

Wavenumbers $(cm⁻¹)$: 610, 552s, 501.

O583 Bismite α -Bi₂O₃

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Cahen et al. (1980).

Wavenumbers $(cm⁻¹)$: 544w, 509, 460sh, 426, 374, 337, 269sh, 216s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O584 Bismutocolumbite BiNbO4

Origin: Synthetic.

Description: Prepared by stepwise heating of stoichiometric mixture of $Bi₂O₃$ and Nb₂O₅ at 700, 800, and 900 \degree C for 6 h at each temperature. Characterized by powder X-ray diffraction data. Orthorhombic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Rao and Buddhudu (2010).

Wavenumbers (IR, cm⁻¹): 1534w, 952w, 809, 680sh, 620s, 610sh, 538sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 984w, 840s, 746w, 621, 540, 474w, 422, 242s, 196s.

O585 Bismutotantalite triclinic dimorph BiTaO4

Origin: Synthetic.

Description: Prepared from a mixture of oxides at 1373 K for 2 days. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zhang et al. (2009b).

Wavenumbers $(cm⁻¹)$: 874, 661s, 616s, 563sh, 497w, 432.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O586 Braunite $Mn^{2+}Mn^{3+}{}_{6}O_8(SiO_4)$

- **Description:** Prepared from MnO_2 , $MnCl_2$, and SiO_2 above 615 °C (i.e. above the $MnCl_2$ melting point). Characterized by powder X-ray diffraction data. The crystal structure is solved. Tetragonal, space group $I4_1/acd$, $a = 9.371(2)$, $c = 18.847(8)$ Å, $V = 571.6(3)$ Å³, $Z = 8$.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull between polyethylene plates. Absorption.

Source: Palvadeau et al. (1991).

- Wavenumbers (cm⁻¹): 951s, 945sh, 710, 666sh, 619sh, 613s, 551, 519s, 479, 450, 419sh, 378, 373sh, 335sh, 317, 283w, 270w, 255w, 233, 218sh, 192w, 166w, 151w, 134w, 120w, 103w, 91w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O587 Brizzite polymorph $Na₂Sb₂O₆$

Origin: Synthetic.

Description: Structurally related to pyrochlore.

Source: Vandenborre et al. (1982).

Wavenumbers $(cm⁻¹)$: 725s, 455s, 355, 250, 120w.

Note: A weak band between 500 and 600 cm^{-1} corresponds to H₂O impurity.

O588 Bromellite BeO

Origin: Synthetic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Hofmeister et al. (1987).

Wavenumbers $(cm⁻¹):$ (1160sh), (1100sh), 1000, 780s, 751s, 710s, (680sh), (585sh).

O589 Brookite TiO₂

Description: Nanocrystals prepared hydrothermally. Characterized by powder X-ray diffraction data. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yanqing et al. (2000).

Wavenumbers (cm⁻¹): 545s, 486, 437sh, 401s, 339s, 284sh, 264sh, 251s, 222sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O590 Brucite Co-analogue $β$ -Co(OH)₂

Origin: Synthetic.

Description: Nanoplates prepared hydrothermally from CoCl₂ and NaOH at 120 $^{\circ}$ C for 3 h. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Zhan (2009).

Wavenumbers (cm^{-1}) : 3633s, 1566w, 1394w, 675, 490s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands in the range of $600-1600$ cm⁻¹ may correspond to impurities.

O591 Gamma-alumina γ-Al₂O₃

Origin: Synthetic.

Description: Obtained by calcining commercial boehmite at 550 \degree C for 5 h. Characterized by powder X-ray diffraction data. $γ$ -Al₂O₃ has tetragonally deformed defect spinel-type structure.

Kind of sample preparation and/or method of registration of the spectrum: Thin powdery layer between two KBr windows. Absorption.

Source: Saniger (1995).

Wavenumbers (cm⁻¹): 1403w, 1184w, 1085w, 826s, 764sh, 634s, 506, 393.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O592 Chlormayenite $Ca_{12}Al_{14}O_{32}(\square_4Cl_2)$

- **Description**: Synthesized by heating of a stoichiometric mixture of $CaCO₃$, $Al₂O₃$, and $CaCl₂$ first at 1323 K for 16 h and thereafter at 1473 K for 24 h with intermediate grinding. Characterized by powder X-ray diffraction data, neutron powder diffraction, and EDX analysis. The crystal structure is solved. Cubic.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Schmidt et al. (2014).

- Wavenumbers (cm^{-1}) : 842s, 817s, 812sh, 783s, 614, 598, 571, 458s, 440, 405, 344s, 325sh, 312sh, 304sh, 278, 253sh, 246, 229, 209sh, 203w, 195sh, 171w, 150.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, the wavenumber 783 cm^{-1} is erroneously indicated as 738 cm $^{-1}$.

Origin: Colatine, Espirito, Santo, Brazil.

Description: The sample contains 3.1 wt% Fe₂O₃, which corresponds to 2.5 mol% BeFe₂O₄.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and powder dispersed in petroleum jelley. Absorption.

Source: Hofmeister et al. (1987).

Wavenumbers (cm⁻¹): 1161sh, 1090, 1032sh, 1009sh, 967, 904, 774, 751sh, 736sh, 719sh, 673, 663, 642, 606, 584, 570s, 556s, 531s, 510s, 500sh, 490sh, 481sh, 470sh, 439, 415 (for a sample pressed in a disc with KBr); 531s, 512s, 490sh, 480sh, 473, 440, 420sh, 400sh, 373sh, 367, 359sh, 322, 309w, 289w.

Note: In the cited paper, the wavenumber 531 cm⁻¹ is erroneously indicated as 538 cm⁻¹.

O594 Cochromite Ni-bearing $Co_{0.9}Ni_{0.1}Cr₂O₄$

Origin: Synthetic.

- **Description:** Spinel-type compound obtained by annealing a mixture of $Co(NO₃)₂·6H₂O$, Ni $(NO_3)_2$ 6H₂O, and Cr(NO₃)₃.9H₂O (taken in stoichiometric amounts and preheated at 400 °C) at 1000 °C for 24 h. Characterized by powder X-ray diffraction data. Cubic, $a = 8.3323$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Transmission.

Source: Ptak et al. (2014).

Wavenumbers (IR, cm⁻¹): 664sh, 632s, 528s, 378, 198.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. For the vibration spectra of synthetic cochromite analogue see also Mączka et al. (2013). In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 683, 601w, 514, 450, 195s.

O595 Columbite-(Mn) $Mn^{2+}Nb₂O₆$

Origin: Synthetic.

Description: Prepared using conventional solid-state reaction techniques. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 14.413(17)$, $b = 5.759(5)$, $c = 5.083(7)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc (above 340 cm^{-1}) and polyethylene film (below 340 cm^{-1}). Transmission.

Source: Husson et al. (1977a, b).

Wavenumbers (IR, cm⁻¹): 865, 840sh, 822, 707s, 625s, 560s, 488s, 445sh, 368sh, 342s, 315, 302, 280s, 260, 245, 223, 208w, 188, 165, 152w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 877s, 823, 707w, 634w, 624w, 606, 531s, 487, 440w, 399, 386, 361, 315s, 298w, 288, 275, 264w, 245s, 215, 207, 179, 160w, 140s, 127, 113, 89s.

O596 Corundum α -Al₂O₃

Description: Irregular grains from 1 to 3 μm across.

Kind of sample preparation and/or method of registration of the spectrum: Free particles dispersed in air. Absorption.

Source: Mutschke et al. (2013).

Wavenumbers (cm^{-1}) : 833sh, 670s, 618s, 493, 466, 386w, 354w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O597 Delafossite Al analogue $Cu^{1+}AlO₂$

Origin: Synthetic.

Description: Synthesized from CuO and $A(NO_3)$ ³. $9H_2O$ by a sol-gel method using ethylene glycol as solvent. Characterized by powder X-ray diffraction data. Trigonal, space group $R-3m$, $a = 2.852$, $c = 16.830 \text{ Å}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Benreguia et al. (2015).

Wavenumbers (IR, cm⁻¹): (3460), 1637sh, 1385w, 949w, 772, 554s, 526s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands above 1600 cm^{-1} may correspond to adsorbed water. In the cited paper, Raman spectrum is given. The band at 1385 cm^{-1} may correspond to the admixture of potassium nitrate in KBr.

Wavenumbers (Raman, cm^{-1}): 773s, 417s, 255, 214.

O598 Fluorcalciomicrolite $(Ca,Na,\Box)_2Ta_2O_6F$

Origin: No data.

Description: The empirical formula is (electron microprobe): $(Ca_{1,23}Na_{0,745}REE_{0,01}Sr_{0,01})$ $(Ta_{1.78}Nb_{0.08}Ti_{0.08}Si_{0.06}O_6[F_{0.57}(OH, O, \Box)_{0.43}].$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Geisler et al. (2004).

Wavenumbers (IR, cm⁻¹): (1480w), 1105w, 1031, 1010, 912w, 876w, 740sh, 580s, 396s.

Note: Weak bands in the range from 2300 to 2400 cm^{-1} correspond to atmospheric CO₂. The weak band at 1480 cm^{-1} may correspond to the admixture of a carbonate. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 835, 690s, 504s, 341, 295, 155.

O599 Fluornatropyrochlore $(Na, Pb, Ca, REE, U)₂Nb₂O₆F$

Origin: Boziguoer REE deposit, Baicheng County, Akesu, Xinjiang, China (type locality). Description: A grain from the holotype specimen.

Kind of sample preparation and/or method of registration of the spectrum: Reflection.

Source: Yin et al. (2015).

Wavenumbers $(cm⁻¹)$: 932.

Note: The spectrum is wrong. The main broad band at 932 cm^{-1} may correspond to an anhydrous metamict silicate [possibly, thorite or chevkinite-(Ce)] that are present in the association with fluornatropyrochlore.

O601 Gallium hydroxyde hydrate Ga(OH)3∙nH2O Ga(OH)3∙nH2O

Origin: Synthetic.

- Description: Obtained by addition of hot water and tetramethylammonium hydroxide solution to the solution of gallium(III)-isopropoxide dissolved in 2-propanol. X-ray amorphous.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ristić et al. (2005).

Wavenumbers (cm⁻¹): 3443s, 2000w, 1634, 1542w, 1383sh, 1362, 1040sh, 912, 650s, 482s, 345s, 278sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O602 Harmunite cubic polymorph $CaFe₂O₄$

Origin: Synthetic.

- Description: Nanoparticles synthesized from a stoichiometric mixture of calcium chloride and iron (III) nitrate by a sol-gel technique with subsequent annealing. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: An et al. (2015).

Wavenumbers $(cm⁻¹)$: 3431, 1625w, 1445, 869w, 690, 624s, 557s, 466sh, 447.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The bands at 3431 and 1625 cm^{-1} may correspond to water molecules adsorbed on the surface of the nanoparticles. The bands at 1445 and 869 cm^{-1} may correspond to the admixture of a carbonate. The assignment of the band at 1445 cm^{-1} given in the cited paper is erroneous.

O603 Hausmannite $Mn^{2+}Mn^{3+}Q_4$

- **Description**: Prepared by heating $MnCO₃$ at 1185 °C for 5 h. Characterized by powder X-ray diffraction data. Tetragonal.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Brabers (1969).

Wavenumbers $(cm⁻¹)$: 674sh, 617s, 600sh, 513s, 417, 380sh, 351, 242w

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O604 Hydrokenomicrolite $(\Box, H_2O)_2Ta_2(O, OH)_6(H_2O)$

Origin: Artificial.

- **Description**: Prepared by treating natural fluorcalciomicrolite at 175 °C in a 1 M HCl-CaCl₂ solution for 14 days. The grains are heterogeneous, with fluorcalciomicrolite core and hydrokenomicrolite outer zones.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Geisler et al. (2004).

Wavenumbers (IR, cm⁻¹): 3440, 3230w, 1630w, 1086, 1061, 676s, 402s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2300 to 2400 cm^{-1} correspond to atmospheric $CO₂$. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): $1115w$, 800, 637, 549, 515, 338s, 302, 248sh, 159, 138, 120.

O605 Ilsemannite Mo₃O₈⋅ nH_2O (?)

Origin: Synthetic.

Description: Blue amorphous product of ultrasound irradiation of a slurry of molybdenum hexacarbonyl. Characterized by DSC and TG data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Dhas and Gedanken (1997).

Wavenumbers $(cm⁻¹)$: 3415, 3180, 1621, 1412, 986, 765s, 712sh, 587, 535sh.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The assignment of the band at 1412 cm^{-1} made by the authors of the cited paper is questionable. Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance.

O606 Iwakiite-hausmannite intermediate member $Mn^{2+}(Mn^{3+}Fe^{3+})O_4$

- **Description**: Prepared by heating MnCO₃ at 1360 °C for 5 h in air. Characterized by powder X-ray diffraction data. Tetragonal.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Brabers (1969).

Wavenumbers $(cm⁻¹)$: 660sh, 580s, 439s, 344sh.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O607 Kyawthuite $Bi^{3+}Sb^{5+}O_4$

- Origin: Chaung-gyi-ah-le-ywa, Chaung-gyi valley, 5 km north-northeast of the town of Mogok, Pyin-Oo-Lwin district, Myanmar (type locality).
- Description: Reddish orange faceted waterworn crystal of gem quality from alluvium. Holotype (and the only known) sample. The crystal structure is solved. Monoclinic, space group $I2/c$, $a = 5.4624$ (4), $b = 4.88519(17)$, $c = 11.8520(8)$ Å, $\beta = 101.195(7)^\circ$, $V = 310.25(3)$ Å³, $Z = 4$. $D_{\text{meas}} = 8.256$ (5) g/cm³, $D_{\text{calc}} = 8.127$ g/cm³. The empirical formula is $(Bi^{3+}{}_{0.83}Sb^{3+}{}_{0.18})(Sb^{5+}{}_{0.99}Ta^{5+}{}_{0.01})O_4$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, \mathcal{R}) (hkl)] are: 3.266 (100) (-112), 2.900 (66) (112), 2.678 (24) (200), 2.437 (22) (020, –114), 1.8663 (21) (024), 1.8026 (43) (-116, 220, 204), 1.6264 (23) (-224, 116), 1.5288 (28) (312, –132).

Kind of sample preparation and/or method of registration of the spectrum: Specular reflection. Source: Kampf et al. (2016i).

- Wavenumbers (IR, cm^{-1}) : 760sh, 722s, 685s, 641sh, 527sh, 510–430 (broad, with an extremum at 488 cm⁻¹).
- Note: Natural origin of kyawthuite is questionable and is to be confirmed by independent finds. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 793, 736, 453s, 396s, 322, 258, 173s.

O608 Layered perovskite BaBi₂Ta₂O₉ BaBi₂Ta₂O₉

Origin: Synthetic.

Description: Prepared by solid-state reaction of BaCO₃, Bi₂O₃, and Ta₂O₅ at 1000 °C for 72 h with intermediate grindings. Characterized by powder X-ray diffraction data. Tetragonal, space group I4/ mmm, $a = 3.954$, $c = 25.487$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Li et al. (2008).

Wavenumbers $(cm⁻¹)$: 809.5, 631s, 512.

O609 Layered perovskite CaBi₂Ta₂O₉ CaBi₂Ta₂O₉

- **Description:** Prepared by stepwise heating of a stoichiometric mixture of CaCO₃, Bi₂O₃, and Ta₂O₅, first at 900 °C for 15 h, thereafter at 1000 °C for 15 h, and finally at 1200 °C for 24 h with intermediate grindings. Characterized by powder X-ray diffraction data. Orthorhombic, space group $A2_1$ am, $a = 5.467$, $b = 5.427$, $c = 24.931$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Li et al. (2008).

Wavenumbers $(cm⁻¹)$: 782, 622s, 551.

O610 Layered perovskite $SrBi₂Ta₂O₉$ $SrBi₂Ta₂O₉$

Origin: Synthetic.

- **Description:** Prepared by stepwise heating of a stoichiometric mixture of $SrCO₃$, $Bi₂O₃$, and Ta₂O₅, first at 900 °C for 15 h, thereafter at 1000 °C for 15 h, and finally at 1200 °C for 24 h with intermediate grindings. Characterized by powder X-ray diffraction data. Orthorhombic, space group $A2_1$ am, $a = 5.473$, $b = 5.527$, $c = 25.031$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Li et al. (2008).

Wavenumbers $(cm⁻¹)$: 786, 629s, 558.

O611 Lueshite NaNbO₃

Origin: Synthetic.

- **Description**: Prepared by heating a stoichiometric mixture of NaNO₃ and Nb₂O₅ at 1000 °C for 1 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pbma$, $a = 5.666$, $b = 15.520, c = 5.506$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Rocchiccioli-Deltcheff (1973).

Wavenumbers $(cm⁻¹)$: 680sh, 625s, 550sh, 375, 335, 290, 260.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O612 Metastudtite UO₃⋅2H₂O

- **Description:** Obtained by dehydrating synthetic studtite at 90 \degree C for 48 h. Characterized by powder X-ray diffraction and thermoanalytical data. Orthorhombic, space group *Pnma*, $a = 8.4184(4)$, $b = 8.7671(4), c = 6.4943(3)$ Å, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Guo et al. (2014a).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 3153.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1725, 1652, 869s, 829s. 478w, 356, 280, 190, 156.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O613 Minium $Pb^{2+}Pb^{4+}O_4$

Origin: Synthetic.

Description: Commercial reactant. Tetragonal, space group $P4₂/m$.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Vigouroux et al. (1982).

Wavenumbers (IR, cm^{-1}) : 526, 512sh, 448s, 379s, 322s, 281.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 549s, 477, 391s, 313, 232, 152w, 121s, 76, 34w.

O614 Mopungite NaSb(OH)6

Origin: Synthetic.

Description: Obtained by boiling aqueous solution of NaCl with potassium antimonate.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Siebert (1959).

Wavenumbers (cm⁻¹): 3400, 3280sh, 3220s, 2145, 1635w, 1120sh, 1105s, 1075sh, 1030, 775, 735, 695, 628s, 600sh, 586s, 528.

O615 Nichromite $Ni₂CrO₄$

Origin: Synthetic.

Description: Synthesized by heating a mixture of corresponding nitrates. Characterized by powder X-ray diffraction data. Cubic. Contains ~25% admixture of tetragonal (pseudocubic), phase, space group $I4_1$ /*amd*. For the main phase, $a = 8.3186(2)$.

Kind of sample preparation and/or method of registration of the spectrum: A spectrometer fitted with a photoacoustic detector was used.

Source: Hosterman et al. (2013).

Wavenumbers (IR, cm⁻¹): No quantitative data (only a figure of the IR spectrum is given). Note: In the cited paper, Raman spectrum is given. Wavenumbers (Raman, cm^{-1}): 678, 508, 427, 190.

O616 Oxybetafite-(Gd) $Gd_2Ti_2O_7$

Origin: Synthetic.

Description: Obtained using a solid-state reaction technique. Characterized by powder X-ray diffraction data. Cubic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Knop et al. (1969).

Wavenumbers $(cm⁻¹)$: 555s, 460s, 411, 390sh, 295.

O617 Oxybetafite-(Sm) $Sm_2Ti_2O_7$

Description: Obtained using a solid-state reaction technique. Characterized by powder X-ray diffraction data. Cubic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Knop et al. (1969).

Wavenumbers $(cm⁻¹)$: 539, 445s, 390s, 290.

O618 Oxybismuthobetafite $Bi_2Ti_2O_7$

Origin: Synthetic.

Description: Obtained using a solid-state reaction technique. Characterized by powder X-ray diffraction data. The symmetry is not cubic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Knop et al. (1969).

Wavenumbers $(cm⁻¹)$ **: 500s, 437s.**

O619 Paramelaconite $Cu^{1+} {}_{2}Cu^{2+} {}_{2}O_3$

Description: Prepared by oxidation of Cu₂O or reduction of CuO. Trtragonal, $a \approx 5.84$, $c \approx 9.93$ Å. Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.

Source: Djurek et al. (2015).

Wavenumbers $(cm⁻¹)$: 590sh, 538s, 512sh, 450, 322w.

O620 Pyrophanite MnTiO₃

Origin: Synthetic.

Description: Prepared using solid-state reaction techniques. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission. Source: Baran and Botto (1978).

Wavenumbers $(cm⁻¹)$: 690, 600sh, 547s, 440s, 405, 333, 270, 215w.

O621 Rutile $TiO₂$

Origin: Unknown.

Description: Natural fibrous crystals included in quartz.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Peng et al. (1995).

Wavenumbers $(cm⁻¹)$: 745sh, 610s, 535sh, 395.

O622 Schoenfliesite MgSn(OH)6

Origin: Pitkäranta, Karelia, Russia.

Description: Fibrous affregate from the association with serpentine, chlorite, chondrodite, diopside, luorite, calcite, dolomite, magnetite, and cassiterite. Cubic, $a = 7.77(1)$. $D_{\text{meas}} = 3.32 \text{ g/cm}^3$, $D_{\text{calc}} = 3.49 \text{ g/cm}^3$. The empirical formula is $(Mg_{0.94}Mn_{0.13})Sn_{0.97}(OH)_{6.00}$. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 4.495 (60) (111), 3.898 (100) (200), 2.758 (60) (220), 2.349 (40) (311), 1.741 (50) (420).

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.

Source: Nefedov et al. (1977).

Wavenumbers (cm⁻¹): 3230sh, 3160s, 2260w, 1165s, 1089, 1025sh, 960sh, 835, 760s, 647sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O623 Sodium titanate $\text{Na}_2\text{Ti}_3\text{O}_7$ $\text{Na}_2\text{Ti}_3\text{O}_7$

Origin: Synthetic.

Description: Prepared by using a stoichiometric molar ratio of Na₂CO₃ and TiO₂ (rutile) at 1250 °C for 4 h. Characterized by powder X-ray diffraction data. Monoclinic. The crystal structure contains distorted $TiO₅$ pyramid.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Peng et al. (1995).

Wavenumbers (cm⁻¹): 918, 881, 730sh, 684s, 593sh, 550s, 493s, 475s, 425, 380w.

O624 Lepidocrocite Fe³⁺O(OH)

- Origin: Hilarion mine, Agios Konstantinos, Lavrion mining District, Attikí (Attika, Attica) Prefecture, Greece.
- **Description**: Yellowish-brown columnar aggregate from the association with goethote and hematite. Pseudomorph after rail. The sample was kindly granted by I.V. Pekov. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): (3500sh), 3105s, 2880sh, 1976w, 1894w, 1155, 1020s, 892, 788, 748, 570sh, 528s, 483s.

Note: The spectrum was obtained by N.V. Chukanov.

O625 Spertiniite Cu(OH)₂

Origin: Synthetic.

- Description: Acicular crystals. Confirmed by powder X-ray diffraction data and electron microdiffraction pattern.
- Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.
- Source: Rodríguez-Clemente et al. (1994).
- Wavenumbers (cm⁻¹): 3560s, 3292s, 1725, 1620w, 1465w, 1380w, 917, 689s, 636, 514, 484, 448, 412s, 284sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 1620 cm^{-1} corresponds to adsorbed water. Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance.

O626 Sphaerobismoite β -Bi₂O₃

Origin: Synthetic.

- **Description**: Orange crystals obtained by rapid pouring an aqueous solution of $Bi_2(NO_3)_3$ into a boiling solution of NaOH, followed by immediate filtration of the precipitate. Characterized by powder X-ray diffraction data. Tetragonal, $a = 7.72$, $c = 5.63$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Cahen et al. (1980).

Wavenumbers $(cm⁻¹)$: 639, 580, 527, 489sh, 347, 222s, 211s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O627 Tantite Ta_2O_5

Description: A crystalline film deposited on Si substrate by using CVD at 430° C and annealed at 800 °C for 10 min. Surface $SiO₂$ was removed by using a diluted HF solution.

Kind of sample preparation and/or method of registration of the spectrum: A film 100 nm thick. Absorption.

Source: Ono et al. (2001). **Wavenumbers** $(cm⁻¹)$ **:** 570sh, 510, 210s.

 $O628$ Tistarite $Ti₂O₃$

Origin: Synthetic.

Kind of sample preparation and/or method of registration of the spectrum: Reflectance of a single crystal.

Source: Lucovsky et al. (1977). **Wavenumbers (cm⁻¹):** 448s, 343 (for E $|| c$); 511, 451s, 376s, 280w (for E $\perp c$).

O629 Trevorite Co-analogue CoFe_2O_4

Transmittance \uparrow \uparrow \uparrow 100 200 300 400 500 400 600 700 800 Wavenumber $(cm⁻¹)$

Origin: Synthetic.

Description: Synthesized from corresponding nitrates by a solid-state reaction technique at 1000° C for 24 h. Characterized by powder X-ray diffraction data. Cubic, space group $Fd-3m$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Absorption.

Source: Ptak et al. (2014).

Wavenumbers (IR, cm^{-1}) : 591, 460w, 384, 186w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 470.

O630 Ulvospinel Zn-analogue $TiZn_2O_4$

Origin: Synthetic.

Description: Synthesized from corresponding oxides by a solid-state reaction technique at $1000 \degree C$ for 25 h. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Powder spread uniformly over the surface of a polyethylene plate. Transmission.

Source: Keramidas et al. (1975).

Wavenumbers (IR, cm^{-1}): 674sh, 640sh, 590s, 50sh, 396s, 350.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 780, 722s, 567w, 541w, 478, 441w, 351, 344, 313s, 256, 156, 136, 117, 101.

O631 Vandenbrandeite $Cu(UO₂)(OH)₄$

Origin: Kalongwe deposit, Shaba, province, Zaire (type locality).

Description: Green tabular crystals from the association with kasolite. Characterized by powder X-ray diffraction data and electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto et al. (2002).

Wavenumbers (IR, cm⁻¹): 3508s, 3423s, 3262, 2845, 3100sh, 2247, 2035, 1943, 1643w, 1139, 1024, 978s, 897s, 859s, 842s, 803s,694, 655, 548s, 508s, 460s, 400s, 377s, 354s, 340s, 252s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 2233, 2018, 1946, 862, 805s, 474, 186.

O632 Vandenbrandeite hydrogen-free analogue CuUO4

Origin: Synthetic.

- **Description:** Prepared in a solid-state reaction between CuO and $UO₃$. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %)] are: 5.08 (50), 4.15 (90), 3.76 (50), 3.44 (100), 3.26 (50), 2.71 (90).
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.

Source: Jakeš et al. (1968).

Wavenumbers (cm⁻¹): 877, 755s, ~700, 635sh, ~605, 583, ~544sh, ~510s, ~450s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, also IR spectra of MnU_{4} , $MnU_{3}O_{10}$, CoU_{4} , $CoU_{3}O_{10}$, $NiUO₄, NiU₃O₁₀, CuU₃O₁₀, AgUO₄, and HgUO₄ are given.$

O633 Zincite ZnO

Origin: Synthetic. Description: Commercial reactant.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Musić et al. (2003).

Wavenumbers $(cm⁻¹)$: 529, 494s, 443s.

O634 Masuyite Pb(UO₂)₃O₃(OH)₂⋅3H₂O

Origin: Rum Jungle (?), northern Australia.

Description: Specimen No. 26494 from the collections of the Department of Geology and Mineralogy, University of Queensland. Confirmed by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Wilkins (1971).

Wavenumbers (cm⁻¹): 1622, 1522w, 1391w, 1089, 1024, 900s, 796w, 778sh, 692sh, 503sh, 462s, 364s.

O635 Sodium titanate $Na₂Ti₆O₁₃ Na₂Ti₆O₁₃$

Origin: Synthetic.

Description: Prepared by using a stoichiometric mixture of Na₂CO₃ and TiO₂ (rutile) at 1250 °C for 4 h. Characterized by powder X-ray diffraction data. Monoclinic, with distorted $TiO₆$ octahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Peng et al. (1995).

Wavenumbers (cm^{-1}) : 964s, 916sh, 816sh, 745, 702s, 560sh, 507s, 473, 447, 390w.

O640 Chibaite SiO₂· n (CH₄,C₂H₆,C₃H₈,C₄H₁₀) ($n_{\text{max}} = 3/17$)

Origin: Arakawa, Minamiboso city, Chiba prefecture, Kanto region, Honshu Island, Japan (type locality).

Description: White semitransparent crystals. Intergrowths with quartz.
Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3014w, 2970w, 2928w, 2880w, 2854w, 2003w, 1882w, 1165sh, 1113s, 1093s, 797, 780, 745sh, 695, 609w, 519, 464s, 398, 374.

Note: The bands at 1165, 797, 780, 695, 464s 398, and 374 cm^{-1} are partly due to quartz. Note: The spectrum was obtained by N.V. Chukanov.

O641 Samarskite-(Y) (Y,Ce,U,Fe,Nb)(Nb,Ta,Ti)O4

Origin: Herrebøkasa, Aspedammen, Idd, Halden, Østfold, Norway.

Description: Black grains. X-ray amorphous, metamict. The empirical formula is (electron microprobe): $(Y_{0.25}U_{0.2}Ca_{0.2}Fe_{0.2}Ln_{0.1})(Nb_{0.85}Ti_{0.1}Ta_{0.05})O_9·nH_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3300sh, 3192s (broad), 1626, 1520, 1403w, 965sh, 851, 593s, 390sh. Note: The spectrum was obtained by N.V. Chukanov.

O642 Samarskite-(Yb) YbNbO4

- Origin: Little Patsy pegmatite (Patsy pegmatite), South Platte Pegmatite District, Jefferson Co., Colorado, USA (type locality).
- Description: Black grains in pegmatite. X-ray amorphous, metamict. The empirical formula is (electron microprobe): $(Yb_{0.13}Dy_{0.07}Er_{0.04}Y_{0.01}La_{0.01}Ca_{0.24}U_{0.12}Th_{0.08}Fe_{0.18}Mn_{0.02}(Nb_{0.93}Ta_{0.11}Ti_{0.01})nH_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3160s (broad), 1623, 1530sh, 1412w, 838, 607s, (390sh). Note: The spectrum was obtained by N.V. Chukanov.

O643 Gauthierite KPb[(UO2)7O5(OH)7]∙8H2O

- Origin: Shinkolobwe mine, Shinkolobwe, Katanga province, Democratic Republic of Congo (type locality).
- Description: Yellowish orange crystals from the association with soddyite and a metazeunerite– metatorbernite series mineral. Holotype sample. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 29.844(2)$, $b = 14.5368(8)$ Å, $c = 14.0406(7)$ Å, $\beta = 103.708(6)^\circ$, $V = 5917.8(6)$ Å³, $Z = 8$. $D_{\text{calc}} = 5.437$ g/cm³. Optically biaxial (-), $\alpha = 1.780(5)$, $\beta = 1.815$ (5), $\gamma = 1.825(5)$, $2V = 70(5)$ °. The empirical formula is K_{0.67}Pb_{0.78}U₇O₃₄H_{23.77}. The strongest lines of the powder X-ray diffraction pattern $[d, \dot{A}(I, \%) (hkl)]$ are: 7.28 (49) (020, 400), 3.566 (67) (040, –802, –204), 3.192 (100) (622, –224), 2.541 (18) (-842, –244), 2.043 (14) (406), 2.001 (23) (662,–264, 14.2.0), 1.962 (14) (426, –146), 1.783 (17) (12.0.4, –10.4.6).
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a polycrystalline sample.

Source: Olds et al. (2016a).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 3350sh, 3154 (broad), 2919, 2852, 1980w, 1607, 915s, 764w.

- Note: The bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 833s, 821s, 696, 558, 539, 464, 454, 403, 355, 328, 260, 204, 160, 128.

Description: Mg-free, partly deuterated sample. The empirical formula is $Fe^{2+}(OH)_{1.7}(OD)_{0.3}$. Characterized by powder X-ray and neutron diffraction data. Trigonal, space group P-3m1, $a = 3.2628(1), c = 4.604(1)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Lutz et al. (1994).

Wavenumbers (IR, cm⁻¹): 3624s, 2656, 1020w, 782sh, 488s, 395, 305s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 2656 cm^{-1} corresponds to D–O-stretching vibrations. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 3573s, 407, 260.

O646 Clarkeite Na(UO2)O(OH)∙nH2O

- Description: Obtained by precipitation generated in a uranyl peroxycarbonato complex solution at pH 14 controlled by NaOH, with subsequent drying in vacuum at 100° C for 3 h.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Kim et al. (2009).

- Wavenumbers (cm^{-1}) : 3450s (broad), 2738w, 2090w (broad), 1845, 1636s, 1537, 1378, 1347, 1126w, 1048sh, 888s, 786w, 720w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O647 Duttonite $V^{4+}O(OH)_{2}$

Origin: Synthetic.

- **Description:** Nanorods obtained by aqueous precipitation at pH 4.0 in the presence of hydrazine at 95 °C during 4.5 days. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Besnardiere et al. (2016).

- Wavenumbers (cm^{-1}) : 1600, 1145w, 982, 905, 738, 536s, and broad bands near 2800 and 1900 cm^{-1}).
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

- Description: Nanorods obtained by aqueous precipitation at pH 3.6–3.8 in the presence of hydrazine at 95 °C during 4.5 days. Characterized by powder X-ray diffraction data. Monoclinic, $a = 12.208$, $b = 2.997, c = 4.840 \text{ Å}, \beta = 98.29^{\circ}$
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered sample.

Source: Besnardiere et al. (2016).

Wavenumbers $(cm⁻¹)$: 1618w, 991, 860, 604sh, 536s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O649 Jianshuiite MgMn⁴⁺₃O₇⋅3H₂O Transmittance ₩Ĥ 1000 1800 2200 2600 3000 200 600 1400 3400 Wavenumber $(cm⁻¹)$

3800

Origin: Luzhai Mn deposit, Jianshui Co., Honghe Autonomous Prefecture, Yunnan, China (type locality).

Description: Aggregate of dark brown microcrystals. Holotype sample. Characterized by powder X-ray diffraction data. Triclinic, space group P-1, $a = 7.534(4)$, $b = 7.525(6)$, $c = 8.204(8)$ Å, $\alpha = 89.753(8)^\circ$, $\beta = 117.375(6)^\circ$, $\gamma = 120.000(6)^\circ$. $D_{\text{meas}} = 3.50-3.60$ g/cm³. The empirical formula is $(Mg_{0.85}Mn^{2+}_{0.05})Mn^{4+}_{3.15}O_{7.20}$ 2.80H₂O.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Yan et al. (1992).

Wavenumbers (cm⁻¹): 3396, 3352, 1635, 1096w, 1020w, 645sh, 620, 530s, 496s, 475s, 442s, 312sh. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance.

Transmittance \uparrow \uparrow 800 1600 2000 400 1200 2400 2800 3200 Wavenumber $(cm⁻¹)$

O650 Mushistonite $Cu^{2+}Sn^{4+}(OH)_{6}$

Origin: Mushiston Sn deposit, Kaznok valley, Penjikent, Zeravshan range, Tajikistan (type locality). **Description:** Pseudomorphs after stannite. Holotype sample. Cubic, $a = 7.735$ Å. The strongest lines

of the powder X-ray diffraction pattern $[d, \dot{A}(I, \%) (hkl)]$ are: 3.88 (100) (111), 2,740 (50) (220), 2.230 (20) (222), 1.932 (16) (400), 1.729 (35) (420), 1.578 (23) (422).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Marshukova et al. (1984).

- Wavenumbers (cm⁻¹): 3211s, 3093s, 1603, 1471, 1424, 1178s, 1117sh, 1087sh, 800, 745sh, 597sh, 540s, 495sh.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O651 Orthobrannerite $U^{4+}U^{6+}Ti_4O_{12}(OH)_2$

Origin: Dengzhong Co., Baoshan prefecture, Yunnan, China (type locality).

- Description: Black crystals. Holotype sample. Metamict, X-ray amorphous. The strongest lines of the powder X-ray diffraction pattern of a heated sample $[d, \hat{A}(I, \%)]$ are: 4.87 (70), 3.89 (80), 3.17 (100), 2.45 (90), 1.659 (90).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission.
- Source: X-ray Laboratory, Peking Institute of Uranium Geology, Wuhan Geological College (1978). Wavenumbers (cm⁻¹): 3480, 1669w, 1620w, 1451, 1405sh, 1157w, 1078w, 1036w, 880, 581sh, 546s, 461sh, 391sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

O652 Pyrochroite $Mn^{2+}(OH)_{2}$

Origin: Synthetic.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission. Source: Lutz et al. (1994).

Wavenumbers (IR, cm^{-1}) : 3631s, 1075w, 1029w, 950w, 606, 450s, 388sh, 290s. Note: In the cited paper, Raman spectrum is given. Wavenumbers (Raman, cm^{-1}): 3578s, 401, 234.

O653 Fluorcalciopyrochlore $(Ca,Na)_2(Nb,Ti)_2O_6F$

Origin: Tatarka River, Krasnoyarskiy Kray, Siberia, Russia.

Description: Yellow-brown octahedral crystal. The empirical formula is (electron microprobe): $(Ca_{0.85}Na_{0.19}REE_{0.02})(Nb_{1.91}Ti_{0.04}Fe_{0.03}Re_{0.02})(O,OH)_{6.36}F_{0.64}nH_2O (n \ll 1).$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3426w, 1643w, 1145w, 1075sh, 955sh, 870sh, 725sh, 565s, 416s. Note: The spectrum was obtained by N.V. Chukanov.

O654 Ferronigerite- $2N1S$ (Al,Fe,Zn)₂(Al,Sn)₆O₁₁(OH)

Origin: Three Aloes Mine, Uis, Damaraland District, Kunene Region, Namibia.

- Description: Orange-brown tabular crystal. The empirical formula is (electron microprobe): $\text{Al}_{5.97}\text{Fe}_{0.79}\text{Zn}_{0.15}\text{Mg}_{0.07}\text{Cr}_{0.02}(\text{Sn}_{0.93}\text{Ti}_{0.07})\text{O}_{11}(\text{OH}).$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3627w, 3473, 3352w, 1165sh, 1083, 975, 832, 765sh, 746, 712, 616s, 561s, 534s, 470s, 417, 399, 380sh.

Note: The spectrum was obtained by N.V. Chukanov.

O655 Hydroromarchite $Sn^{2+}{}_{3}O_{2}(OH)_{2}$

Origin: Synthetic.

- **Description**: Yellow precipitate obtained by addition of water to diethylether solution of $Sn(NMe₂)₂$. Characterized by TG and powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.
- Source: Khanderi et al. (2015).

Wavenumbers (IR, cm⁻¹): 3300s, (1623), 724, 544s.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the ranges $1000-1500$ and $2800-3000$ cm⁻¹ correspond to the admixture of an organic substance. The band at 1623 cm^{-1} may correspond to adsorbed water molecules. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm^{-1}): 264, 229s, 186, 132s.

O656 Kusachiite Cu²⁺Bi³⁺₂O₄

Origin: Synthetic.

- Description: Prepared hydrothermally from bismuth acetate and copper nitrate in the presence of NaOH at 140 °C for 12 h. Characterized by powder X-ray diffraction data. Tetragonal, space group P4/ncc, $a = 8.567$, $c = 5.791$ Å, $V = 425.17$ Å³.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Yuvaraj et al. (2016).

Wavenumbers (IR, cm⁻¹): 890w, 648, 547s, 522s, 410.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Bands above 1000 cm^{-1} correspond to impurities. In the cited paper, Raman spectrum is given. Wavenumbers (Raman, cm⁻¹): 575w, 399, 257s, 187w, 123s, 84w.

Transmittance 2000 400 800 1200 1600 2400 2800 3200 3600 4000 Wavenumber $(cm⁻¹)$

O657 Montroydite HgO

Origin: Synthetic.

Description: Commercial reactant. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: No data.

Source: Xhaxhiu et al. (2013).

Wavenumbers $(cm⁻¹)$: 1122w, 600, 484.

Note: Bands above 1400 cm^{-1} correspond to impurities. For the IR spectrum of montroydite see also Godelitsas et al. (2003).

O658 Romarchite SnO

Origin: Synthetic.

Description: Nanoparticles. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Krishnakumar et al. (2008).

Wavenumbers (cm⁻¹): 651s, 613sh, 535sh.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

O659 Zirconolite-2M $(Ca, Y)Zr(Ti, Mg, Al)_2O_7$

- **Description:** Synthesized by a solid-state reaction method at $1400\degree$ C for 16 h. Characterized by powder X-ray diffraction data. Monoclinic, $a = 12.441$, $b = 7.239$, $c = 11.341$ Å, $β = 100.694$ °. The empirical formula is $Ca_{0.83}Ce_{0.17}ZrTi_{1.66}Al_{0.34}O₇$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Souag et al. (2015).

Wavenumbers $(cm⁻¹)$: 685, 646, 517s, 473s, 413sh.

Note: The band position denoted by Souag et al. (2015) as 685 cm^{-1} was determined by us at 675 cm⁻¹.

O660 Magnesiohögbomite- $2N3S$ (Mg,Fe,Zn,Ti)₄(Al,Fe)₁₀O₁₉(OH)

Origin: Zelentsovskaya pit, near Zlatoust, Chelyabinsk region, Southern Urals, Russia.

Description: Crystals from the association with clinochlore, magnetite, and spinel. Investigated by I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Hexagonal, $a = 5.743(3)$, $c = 23.10(2)$ Å, $V = 659.7(8)$ Å³. The empirical formula is (electron microprobe): $(Mg_{2.04}Fe_{1.89}Zn_{0.06}Mn_{0.02})(Al_{9.52}Ti_{0.77})O_{19}(OH).$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3435sh, 3332, 835sh, 705sh, 674s, 626s, 540s, 507s, 437. Note: The spectrum was obtained by N.V. Chukanov.

O661 Diaoyudaoite $NaAl₁₁O₁₇$

Origin: Technogenetic, from the slag of the Klyuchevskoi ferroalloy factory, Sverdlovsk region, Russia. Description: Brown platy crystals from the association with corundum. Investigated by I.V. Pekov.

Characterized by single-crystal X-ray diffraction data. Hexagonal, $a = 5.618(10)$, $c = 22.62(3)$ Å, $V = 618(2)$ Å³. The composition is close to that of diaoyudaoite end-member.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1120sh, 1069w, 819, 768s, 709s, 668, 624s, 599s, 553, 445, 380. Note: The spectrum was obtained by N.V. Chukanov.

O662 Zincovelesite-6N6S $Zn_3(Fe^{3+}, Mn^{3+}, Al, Ti)_{8}O_{15}(OH)$

Origin: "Mixed Series" metamorphic complex near the Nežilovo village, Jacupica Mountains, Pelagonia mountain range, Macedonia (type locality).

Description: Black lenticular aggregates from the association with franklinite, gahnite, hetaerolite, zincochromite, ferricoronadite, baryte, As-rich fluorapatite, dolomite, Zn-bearing talc, almeidaite, etc. Holotype sample. The crystal structure is refined by the Rietveld technique. Trigonal, probable space group $P-3m1$, $a = 5.902(2)$ Å, $c = 55.86(1)$ Å, $V = 1684.8(9)$ Å³, $Z = 6$. $D_{calc} = 5.158$ g/cm³. The empirical formula is $H_{1.05}Zn_{3.26}Mg_{0.21}Cu_{0.05}Fe^{3+}{}_{3.18}Mn^{3+}{}_{2.32}Al_{1.38}Ti_{0.57}Sb_{0.20}O_{16}$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 2.952 (62) (110), 2.881 (61) (1.0.16), 2.515 (100) (204), 2.493 (88) (1.1.12), 2.451 (39) (1.0.20), 1.690 (19) (304, 2.1.16), 1.572 (19) (2.0.28), 1.475 (29) (221).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3407w, 817sh, 647, 605, 563s, 550sh, 484s, 400sh.

Note: The spectrum was obtained by N.V. Chukanov.

O663 Wölsendorfite $Pb_7(UO_2)_{14}O_{19}(OH)_4.12H_2O$

Origin: Shinkolobwe, Katanga (Shaba), Democratic Republic of Congo.

Description: Orange-red grains. Investigated by A.V. Kasatkin. The empirical formula based on semiquantitative electron microprobe analysis is $Pb_{5,3}Ca_{1,0}As_{0,4}(UO_2)_{14,35}(O,OH)_xnH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3470s, 3344s, 1645, 1515, 1423, 992, 808s, 739, 707, 542w, 437s, 402. Note: The spectrum was obtained by N.V. Chukanov.

O664 Hydrocalumite $Ca₂Al(OH)₆(Cl,OH)·3H₂O$

Origin: Bellerberg, near Ettringen, Eifel Mts., Rhineland-Palatinate (Rheinland-Pfalz), Germany. Description: Colorless platy crystal from the association with ettringite. Confirmed by qualitative electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3670, 3645s, 3629, 3598, 3500sh, 3475s, 3368, 3207, 3108, 2700sh, 2149w,

1973w, 1795w, 1641, 1404s, 990sh, 874, 804s, 713, 531s, 422s.

Note: The spectrum was obtained by N.V. Chukanov.

O665 Magnesiohögbomite-2N4S (Mg, Fe^{2+})₁₀Al₂₂Ti⁴⁺₂O₄₆(OH)₂

Origin: Kastor, Kirkkjokk, Sweden.

Description: Black grains. The empirical formula is (electron microprobe): $(Mg_{5.64}Fe_{4.26}Mn_{0.12})$ $(Al_{23.2}Fe_{0.80})(Ti_{1.87}Fe_{0.13})O_{44}(OH)_{2}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3490sh, 3475, 1185sh, 1100sh, 667, 530s, 442, 370sh. Note: The spectrum was obtained by N.V. Chukanov.

Origin: Tarcal, Borsod-Abaúj-Zemplén Hungary.

Description: Colorless sinter aggregate.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3652w, 3471sh, 3324w, 2000w, 1879w, 1625w, 1185sh, 1104s, 797, 540sh, 470s.

Note: The spectrum was obtained by N.V. Chukanov. The spectrum is very close to that of quartz glass but contains weak bands of H_2O molecules.

O668 Clinocervantite $Sb^{3+}Sb^{5+}O_4$

Origin: Le Cetine di Cotorniano Mine, Chiusdino, Siena Province, Tuscany, Italy. Description: Colorless acicular crystals.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1105sh, 1025sh, 745sh, 731, 654s, 470sh, 425s, 364s. Note: The spectrum was obtained by N.V. Chukanov.

O669 Ishikawaite U_{1-x} FeNb₂O₈

Origin: Pit No. 298, Ilmenskiy Natural Reserve, Ilmeny Mts., Chelyabinsk region, Southern Urals, Russia.

Description: Black prismatic crystal from the association with corundum. X-ray amorphous, metamict. The empirical formula is (electron microprobe): $U_{0.42}Th_{0.18}REE_{0.11}Fe_{0.88}Nb_{1.91}Ti_{0.09}O_8\cdot nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3364 (broad), 1645w, 1088w, 825sh, 583s (broad), 463s, 400s. Note: The spectrum was obtained by N.V. Chukanov.

O670 Samarskite-(Y) $YFe^{3+}Nb_2O_8$

Origin: Blyumovskaya Pit (Pit No. 50), Ilmenskiy Natural Reserve, Ilmeny Mts., Chelyabinsk region, Southern Urals, Russia (type locality).

Description: Black prismatic crystal. X-ray amorphous, metamict. Confirmed by qualitative electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3418 (broad), 1655w, 1088w, 850sh, 599s, 530sh, 475sh. Note: The spectrum was obtained by N.V. Chukanov.

2.6 Fluorides and Fluorochlorides

F76 Carlhintzeite Ca₂AlF₇·H₂O

Origin: Synthetic.

Description: Aggregate of colorless crystals from the association with pachnolite, strengite, and tobermorite. Confirmed by qualitative electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3577, 3528, 1655, 1387w, 718, 638s, 575sh, 552s, 450, 405sh, 390, 380. Note: The spectrum was obtained by N.V. Chukanov.

F77 Ammonium zirconofluoride $(NH_4)_2ZrF_6$

Origin: Synthetic.

Description: Prepared by dissolving stoichiometric quantities of zirconium chloride and ammonium fluoride in concentrated hydrofluoric acid. Orthorhombic, space group $Pca2_1$, $Z = 8$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Kruger and Heyns (1997).

Wavenumbers (IR, cm⁻¹): 3190, 3080, 2864w, 1690w, 1417s, 500s.

Note: The band at 1690 cm⁻¹ indicates the presence of H_2O . In the cited paper, Raman spectrum is given. Wavenumbers (Raman, cm⁻¹): 3146s, 1698, 1412w, 536s, 475w, 377w.

F78 Barium magnesium fluoride BaMgF₄

Origin: Synthetic.

Description: Synthesized hydrothermally from BaF_2 and MgF_2 in the presence of CF_3COOH , at 230 °C for 24 h. Orthorhombic, space group $Cmc2₁$. Characterized by DSC and powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Kim et al. (2010b).

Wavenumbers $(cm⁻¹)$: 511s, 483, 434.

F79 Barium manganese fluoride BaMnF₄

- **Description:** Synthesized hydrothermally from BaF_2 and MnF_2 in the presence of CF_3COOH , at 230 °C for 24 h. Orthorhombic, space group $Cmc2₁$. Characterized by DSC and powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.
- Source: Kim et al. (2010b).

Wavenumbers $(cm⁻¹)$: 624, 462, 425, 414s.

F80 Cesium hexafluorphosphate $CsPF_6$

Origin: Synthetic.

Description: Prepared by crystallization from aqueous solution containing equimolar quantities of HPF₆ and Cs₂CO₃. Cubic, $a = 8.218$ Å. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 4.113 (100) (200), 2.9051 (29) (220), 2.4787 (29) (311), 2.3726 (8) (222), 1.8381 (9) (420).

Kind of sample preparation and/or method of registration of the spectrum: No data in the cited paper.

Source: Heyns et al. (1981).

Wavenumbers (IR, cm⁻¹): 1410w, (1260w), 890sh, 850s, 790sh, 773sh, 743w, 665w, 559s, 76s. Note: In the cited paper, Raman spectra with different polarization are given. Wavenumbers (Raman, cm⁻¹): 744, 575-577, 472-475.

F81 Cesium hexafluorphosphate CsPF₆

Origin: Synthetic.

Description: Cubic, space group $Fm3m$, $a = 8.228(5)$ Å, $V = 557(1)$ Å³, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: English and Heyns (1984).

Wavenumbers (IR, cm⁻¹): 1405w, 890sh, 846s, 790w, 743w, 559s, 470s, 310w, 230w, 215w, 79. Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 744, 578. 476.

F82 Cesium stibiofluoride $CsSbF₆$

- **Description**: Prepared from Cs_2CO_3 , Sb_2O_5 , and an excess of hydrofluoric acid. Characterized by powder X-ray diffraction data. Trigonal, space group $R-3m$, $a = 7.9037$, $c = 8.2543$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr pellet and Nujol mull. Transmission.

Source: De Beer et al. (1980).

Wavenumbers (cm⁻¹): 1300w, 1260w, 950w, 845w, 668sh, 655s, 635sh, 560w, 450w, 288sh, 280s, 180–195sh, 66s.

F83 Lithium hexafluorosilicate Li_2SiF_6

Origin: Synthetic.

- Description: Crystals grown by pressure-induced crystallization at 5.5 GPa and 750 °C. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group P321, $a = 8.219(2), c = 4.5580(9)$ Å, $V = 266.65(8)$ Å³, $Z = 3$. $D_{calc} = 2.914$ g/cm³. Both Li and Si have octahedral coordination.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Hinteregger et al. (2014) .

Wavenumbers (IR, cm⁻¹): 705s, 675sh, 540w, 510, 460.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a single-crystal Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 1100, 660s, 500, 420.

F84 Nickel antimonate fluoride $Ni₃Sb₄O₆F₆$

Origin: Synthetic.

Description: Green crystals obtained hydrothermally from NiF₂ and Sb₂O₃ at 230 °C for 4 days. The crystal structure is solved. Cubic, space group *I*-43*m*, $a = 8.0778(1)$, $V = 527.08(1)$ \AA^3 , $Z = 2$. $D_{\text{calc}} = 5.501 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Reflection. **Source:** Hu et al. (2014).

Wavenumbers $(cm⁻¹)$: 790sh, 726s, 530s, 487sh, 476w, 440s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

F85 Potassium antimony fluoride $KSBF_6$

Origin: Synthetic. **Description:** Tetragonal, space group $P-42m$, $a = 5.16(1)$, $c = 10.07(2)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Heyns and van den Berg (1995).

Wavenumbers (IR, cm⁻¹): 690sh, 661s, 635sh, 279s, 123, 70w, 49w, 32.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 661s, 575, 292s [with the $z(y)yx$ polarization].

F86 Potassium manganese(III) fluoride K_3MnF_6

Origin: Synthetic.

Description: The crystal structure contains distorted MnF_6^{3-} octahedron.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Wieghardt and Siebert (1971).

Wavenumbers (cm^{-1}) : 565s, 394, 293, ~200.

F87 Potassium uranyl fluoride $K_3(UO_2)F_5$

Description: Yellow crystals obtained by heating an aqueous solution containing stoichiometric amounts of uranyl and potassium fluorides to 80 $^{\circ}$ C with subsequent cooling and adding ethanol. Tetragonal, $a = 9.160$, $c = 18.167$ Å, $Z = 8$. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.

Source: Ohwada et al. (1972).

Wavenumbers $(cm⁻¹)$: 1655w, 860s, 376s, 289, 220, 195, 131, 118, 81w.

F88 Tetrammine zinc borofluoride $[Zn(NH_3)_4](BF_4)_2$

Origin: Synthetic.

Description: Orthorhombic, space group *Pnma*, $a = 10.523$, $b = 7.892$, $c = 13.354$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Absorption.

Source: Mikuli et al. (2007).

Wavenumbers (IR, cm⁻¹): 3385s, 3310, 3240w, 3211w, 1628, 1383sh, 1277s, 1080sh, 1057s, 1039s, 769w, 702s, 523, 423, 354w, 175s, 83.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3381, 3314s, 3210, 1624, 1085w, 1045sh, 770s, 704w, 525, 436s, 355, 172s.

F89 Uranyl fluoride UO_2F_2

Origin: Synthetic.

Description: Trigonal, space group $R-3m$.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission. Source: Ohwada (1972).

Wavenumbers $(cm⁻¹)$: 260s, 234s, 146.

F90 Zinc hydroxyfluoride Zn(OH)F

Origin: Synthetic.

Description: Obtained by boiling an aqueous solution of ZnF_2 . Orthorhombic, space group $Pna2_1$, $Z = 4$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Transmission.

Source: Lutz et al. (1993). Wavenumbers (cm⁻¹): 3562s, 3401s, 1028s, 898, 792s, 530w, 375s.

F91 Gananite BiF₃

Origin: Synthetic.

Description: Characterized by powder X-ray diffraction data. The crystal structure is solved.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull or polyethylene disc.

Source: Ignat'eva et al. (2006).

Wavenumbers $(cm⁻¹)$: 455w, 381w, 264s, 228s, 161s, 143sh, 109w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

F92 Waimirite-(Yb) YbF_3

Description: Reagent grade commercial product. Orthorhombic.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Taylor et al. (1972).

Wavenumbers $(cm⁻¹)$: 425, 345s, 275, 215.

F93 Heklaite

Origin: Synthetic.

Description: Colorless hexagonal dipyramid. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 9.3375(5)$, $b = 5.5009(3)$, $c = 9.7912(7)$ Å, $V = 502.92(4)$ Å³, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: RRUFF (2007).

Wavenumbers $(cm⁻¹)$: 712s, 663w, 479.

Note: The wavenumbers were determined by us based on spectral curve analysis.

2.7 Silicates

Sio160 Magnesiochloritoid $MgAl₂O(SiO₄)(OH)₂$

Origin: Allalin glacier, Allalin area, Saas-Almagell, Saas Valley, Zermatt – Saas Fee area, Wallis (Valais), Switzerland (type locality).

Description: Greenish-gray platy grains from the association with chlorite, paragonite, and amphibole. The empirical formula is (electron microprobe): $(Mg_{1.22}Fe^{2+_{0.77}}Mn_{0.01})(Al_{3.96}Fe^{3+_{0.04}})Si_{2.00}O_{10}(OH)_{4}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3627w, 3486, 3467, 3450sh, 3190sh, 3045, 3010sh, 2158, 1910w, 1845, 1495w, 1095, 960sh, 935sh, 906s, 866, 809, 753s, 685, 611, 595sh, 565sh, 553, 520, 448s, 400sh,

383.

Note: The spectrum was obtained by N.V. Chukanov.

Sio161 Morimotoite $Ca_3(TiFe^{2+})(SiO_4)_3$

Origin: Odihkincha alkaline massif, Taimyr district, Krasnoyarsk Krai, Siberia, Russia.

Description: Black grains from the association with diopside. Investigated by I.V. Pekov. The empirical formula is (electron microprobe): $(Ca_{2.75}Mg_{0.17}Na_{0.05}Mn_{0.03})(Ti_{0.89}Fe^{2+}{}_{0.79}Fe^{3+}{}_{0.38}Zr_{0.02})(Si_{2.69}$ Fe^{3+} _{0.22}Al_{0.09})O₁₂.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm^{-1}) : 1190sh, 1075sh, 950sh, 910s, 816s, 670sh, 645, 584, 513, 424s, 385s. Note: The spectrum was obtained by N.V. Chukanov.

Sio162 Wadalite $Ca₆Al₅Si₂O₁₆Cl₃$

Origin: Bellerberg, near Ettringen, Eifel Mts., Rhineland-Palatinate (Rheinland-Pfalz), Germany. **Description:** Yellow crystals from the association with calcite and gypsum. The empirical formula is (electron microprobe): $(Ca_{5.30}Mg_{0.70})(Al_{2.62}Fe_{0.35}Ti_{0.03})(Si_{2.04}Al_{1.96})Cl_{3.25}O_x$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1003s, 941s, 898s, 860sh, 830s, 720sh, 590sh, 576, 467s, 425sh. Note: The spectrum was obtained by N.V. Chukanov.

Sio163 Lanthanum orthosilicate $La_{9.33}(SiO₄)₆O₂$

Origin: Synthetic.

Description: Apatite-type compound.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Smirnov et al. (2010).

Wavenumbers (cm⁻¹): 988s, 916s, 887sh, 844sh, 813sh, 745w, 633w, 543s, 503s, 458, 403, 358sh, 283sh, 266s, 239sh, 213sh, 191sh, 165w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Sio164 Fluorchegemite $Ca_7(SiO₄)₃F₂$

- Origin: Lakargi Mt., Upper Chegem caldera, Kabardino-Balkarian Republic, Northern Caucasus, Russia (type locality).
- Description: Lens-shaped aggregate. The associated minerals arelarnite, edgrewite, wadalite, eltyubyuite, rondorfite, lakargiite, Th-rich kerimasite, as well as their alteration products. Holotype sample. Orthorhombic, space group *Pbnm*, $a = 5.0620(1)$, $b = 11.3917(2)$, $c = 23.5180(3)$ Å, $V = 1356.16(4) \text{ Å}^3$, $Z = 4$. $D_{\text{calc}} = 2.91 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.610(2)$, $\beta = 1.615(2)$, $\gamma = 1.619(2), 2V = 80(8)^\circ$. The empirical formula is (electron microprobe, OH calculated): $Ca_{7.01}Mg_{0.01}Ti_{0.01}Si_{2.98}O_{12}F_{1.40}(OH)_{0.60}$. The experimental powder X-ray diffraction pattern was not obtained.
- Kind of sample preparation and/or method of registration of the spectrum: Reflection from a polished grain.

Source: Galuskina et al. (2015).

Wavenumbers (IR, cm⁻¹): 3552w, 1102sh, 1031sh, 991sh, 962s, 934, 914s, 889s, 866sh, 844sh, 821w, 805w, 795sh, 756sh.

Note: The wavenumbers are indicated only for the maxima of individual bands obtained by Galuskina et al. (2015) as a result of the spectral curve analysis. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3552, 3548s, 3539, 992s, 843, 817s, 560, 442, 410, 297, 258w.

Sio165 Hatrurite triclinic polymorph $Ca₃(SiO₄)O$

Origin: Synthetic.

Description: Prepared by heating a mixture of calcium carbonate and silica gel (with the CaO: $SiO₂$ molar ratio of 3:1) pressed into a pellet, at 1450 °C. Characterized by powder X-ray diffraction data. Triclinic, $a = 11.630$, $b = 14.216$, $c = 13.690$ Å, $\alpha = 105.345^{\circ}$, $\beta = 94.558^{\circ}$, $\gamma = 89.845^{\circ}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Source: Del Bosque et al. (2014).

Wavenumbers (cm⁻¹): 996, 977, 949, 938s, 909, 875s, 848, 837sh, 810, (666), 525, 511, 462sh, 450. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 666 cm⁻¹ corresponds to atmospheric CO_2 . In the cited paper, the wavenumber 949 cm⁻¹ is erroneously indicated as 959 cm⁻¹.

Sio166 Pilawite-(Y) $Ca₂Y₂Al₄(SiO₄)₄O₂(OH)₂$

Origin: Piława Górna granitic pegmatite, Lower Silesia, Poland (type locality).

Description: White grains from the association with keiviite- (Y) , gadolinite- (Y) , hingganite- (Y) , xenotime-(Y), etc. Holotype sample. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 8.558(3)$ Å, $b = 7.260(3)$ Å, $c = 11.182(6)$ Å, $\beta = 90.61(4)^\circ$, $V = 694.7(4)$ Å³, $Z = 2$. $D_{\text{calc}} = 4.007$ g/cm³. Optically biaxial (+), $\alpha = 1.743(5)$, $\beta = 1.754(5)$, $\gamma = 1.779(5)$, $2V = 65(2)$ °. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.044 (100) (022), 2.791 (43) (004), 2.651 (46) (310), 2.583 (54) (-311), 2.485 (62) (-222, 114, 123), 2.408 (45) (-312).

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Pieczka et al. (2015).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 2990sh, 2965s, 2309, 2050sh, 1995.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The narrow band at 2309 cm⁻¹ may correspond to CO_2 molecules present in cavities of the heteropolyhedral framework. In the cited paper, a figure of the Raman spectrum is given.

Sio167 Spessartine Ca-rich $(Mn_{1.31}Ca_{1.02}Fe^{2+}{}_{0.52}Mg_{0.10})(Al_{1.59}Fe^{3+}{}_{0.46}Ti_{0.06})Si_{2.90}O_{12}$

Origin: Pit no. 287, Ilmeny Mts., Chelyabinsk region, South Urals, Russia.

Description: Brown-red grains from the association with diopside, quartz, and scapolite. Cubic, $a = 11.736$ Å. Mössbauer spectroscopy indicates that 46% of iron is trivalent. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %)] are: 2.935 (38), 2.624 (100), 2.396 (26), 1.904 (24), 1.627 (23), 1.569 (33).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Korinevsky (2015).

Wavenumbers (IR, cm⁻¹): 1724w, 1087sh, 972sh, 941s, 876s, 863sh, 623, 553, 469s, 447s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1009, 891s, 834, 623w, 536, 354s, 218, 154.

Sio168 Kirschsteinite $CaFe^{2+}(SiO₄)$

Origin: Dolores mine, Pastrana, Mazarrón, Murcia, Spain.

Description: Orthorhombic, $a = 4.8613(3)$, $b = 11.0995(5)$, $c = 6.3989(8)$ Å, $V = 345.28(4)$ Å³. $D_{\text{meas}} = 2.39(3)$ g/cm³, $D_{\text{calc}} = 2.391$ g/cm³. The empirical formula is (electron microprobe): $(Ca_{0.95}Mn_{0.02}Mg_{0.02}Na_{0.01})(Fe^{2+}_{0.83}Mg_{0.16}Fe^{3+}_{0.01})Si_{1.00}O_4.$

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: RRUFF (2007).

- Wavenumbers (cm⁻¹): 1456, 1049, 964sh, 939, 912sh, 876s, 823, 567, 504s, 496sh, 432, 420, 405, 384.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Sio169 Laihunite $(Fe^{3+},Fe^{2+},\Box)_{2}(SiO_{4})$

Origin: Laihe Fe deposit, Qianshan District, Liaoning Province, China (type locality).

Description: Black tabular crystals. Holotype sample. Characterized by Mössbauer spectroscopy and powder X-ray diffraction data. Orthorhombic, space group $Pb2_1m$, $a = 4.800(5)$, $b = 10.238(5)$, $c = 5.857(5)$ Å. $D_{\text{meas}} = 3.92$ g/cm³. The empirical formula is $\text{Fe}^{3+}{}_{1.50}\text{Fe}^{2+}{}_{0.58}\text{Mg}_{0.03}\text{Si}_{0.96}\text{O}_4$. Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Laihunite Resh Group (1976).

Wavenumbers (cm⁻¹): 1110sh, 1040sh, 955s, 885s, 830s, 640, 580, 535sh, 510s, 460sh, 410sh.

Sio170 Oxybritholite thorium analogue $Th_2Ca_3(SiO_4)_3O$

Origin: Synthetic.

Description: Synthesized by solid-state reaction between thorium nitrate, calcium nitrate, and silicon oxide at 1553 K for 30 h with intermediate grindings every 2 h. The crystal structure is solved. Hexagonal, space group $P6_3/m$, $a = 9.50172(9)$, $c = 6.98302(8)$ Å, $V = 545.98(1)$ Å³, $Z = 2$. $D_{\text{calc}} = 4.966 \text{ g/cm}^3$. The crystal-chemical formula is $(Ca_{3.84}Th_{0.16})(Th_{3.21}Ca_{2.79})(SiO_4)_6O_2$.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Bulanov et al. (2015).

Wavenumbers $(cm⁻¹)$: 1095w, 981, 908s, 845, 810, 718, 550, 485s, 420s.

Sio171 Ulfanderssonite-(Ce) $(Ce_{15}Ca)Mg_2(SiO_4)_{10}(SiO_3OH)(OH,F)_5Cl_3$

Origin: Malmkärra Mine, Norberg, Västmanland, Sweden (type locality).

- Description: Grey grains from the association with cerite-(Ce) and bastnäsite-(Ce). Confirmed by semiquantitative electron microprobe analyses.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
- Wavenumbers (cm⁻¹): 475w, 3160w, 2135w, (1448), 1025, 950, 915sh, 881s, (875sh), 682w, 616w, 565sh, 528, 500, 485sh, 395w.
- Note: The spectrum was obtained by N.V. Chukanov. The bands at 1448 and 857 cm^{-1} correspond to admixed bastnäsite-(Ce).

Sid47 Cuspidine $Ca_8(Si_2O_7)_2F_4$

Origin: Bellerberg, near Ettringen, Eifel Mts., Rhineland-Palatinate (Rheinland-Pfalz), Germany. Description: Colorless crystals from the association with dorrite, clinopyroxene, spinel, and gypsum. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3547w, 1061, 1032s, 980sh, 966s, 915sh, 856s, 653, 550sh, 540, 515, 491, 480sh, 442, 395sh.

Sid48 Nasonite $Ca_4Pb_6(Si_2O_7)_3Cl_2$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden. Description: Lemon yellow grains from the association with barysilite and jacobsite. The empirical

formula is (electron microprobe): $(Pb_{5.78}Ca_{0.22})(Ca_{3.98}Mn_x)Si_{6.00}O_{21}[Cl_{1.75}(OH)_{0.25}]$ ($x \ll 1$). Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3446w, 1015s, 913s, 869, 820s, 668, 537, 515s, 481, 446, 415. Note: The spectrum was obtained by N.V. Chukanov.

Sid49 Åkermanite $Ca₂Mg(Si₂O₇)$

Origin: Synthetic.

Description: Single crystal grown by Czochralski method. Characterized by X-ray diffraction data. Tetragonal, space group $P-42₁m, Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Hanuza et al. (2012).

Wavenumbers (IR, cm⁻¹): 1038s, 1009s, 991, 972s, 934s, 906sh, 852s, 683w, 644w, 625sh, 586w, 510sh, 491sh, 475s, 457sh, 400, 371sh, 340w, 288sh, 276w, 253sh, 218w, 197, 181, 158, 128.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 992w, 941w, 910s, 666, 605w, 450w, 318w, 227w, 211w, 107w.

Sid50 Barysilite $Pb_8Mn(Si_2O_7)$ 3

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden.

Description: The crystal structure is solved. Trigonal, space group $R-3c$, $a = 9.821(5)$, $c = 38.38(6)$ Å, $Z = 6.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Laizérowicz (1966).

Wavenumbers (cm⁻¹): 970sh, 934s, 914s, 892s, 872sh, 832s, (780), 702, 553, 528, 479, 464, 446–444, 423–418, 393, 258.

Sid51 Hardystonite $Ca₂Zn(Si₂O₇)$

Origin: Synthetic.

Description: Single crystal grown by Czochralski method. Characterized by powder X-ray diffraction data. Characterized by X-ray diffraction data. Tetragonal, space group $P-42_1m$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Hanuza et al. (2012).

Wavenumbers (IR, cm⁻¹): 1042s, 1010, 970s, 915s, 839s, 682w, 621, 592sh, 545sh, 531sh, 501, 475sh, 455, 373w, 344w, 330w, 277, 223w, 197w, 183w, 157w, 122w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1019w, 1004w, 994w, 939w, 908s, 664s, 615w, 551w, 480w, 445w, 315w, 280w, 204w, 147w, 100w.

Sid52 Keiviite-(Yb) β -Yb₂Si₂O₇

Origin: Synthetic.

- **Description:** Synthesized from $Yb(NO₃)₃$ and $Si(OC₂H₅)₄$ by a sol-gel method with subsequent calcination at 1200 °C for 2 h. Characterized by powder X-ray diffraction data. Monoclinic, space group $C2/m$, $a = 6.80053$, $b = 8.87508$, $c = 4.70740$ Å, $\beta = 101.984$.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Zhao et al. (2013a).

Wavenumbers $(cm⁻¹)$: 1133sh, 1108, 983sh, 912s, 853s, 567, 502, 474.

Sid53 Lawsonite CaAl₂(Si₂O₇)(OH)₂⋅H₂O

Origin: Tiburon Peninsula, California, USA.

- Description: Equant to tabular crystals. Characterized by electron microprobe analyses and powder X-ray diffraction data. Orthorhombic, space group Ccmm, $a = 8.795 \text{ Å}, b = 5.847 \text{ Å}, c = 13.142 \text{ Å}.$
- Kind of sample preparation and/or method of registration of the spectrum: Powder dispersed in KBr disc and in polyethylene substrate. Absorption.

Source: Le Cléac'h and Gillet (1990).

Wavenumbers (IR, cm⁻¹): 3560, 3225, 1600w, 1125sh, 1000sh, 980sh, 953s, 915sh, 885s, 680sh, 614sh, 605sh, 578, 536, 500sh, 486s, 460, 420, 407 (in KBr); 614sh, 605sh, 578s, 536, 500sh, 486, 460, 420, 407, 368, 212, 171w, 95w (in polyethylene).

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3540, 1578, 1047, 955sh, 935s, 915sh, 810, 694s, 455w, 400w, 372w, 328, 280s.

Sid54 Scottyite BaCu₂Si₂O₇

Origin: Synthetic.

- Description: Dark blue polycrystalline sample synthesized by a mild hydrothermal method from $BaCl₂·4H₂O$, $Na₂SiO₃·9H₂O$, and CuO. Characterized by energy dispersive spectroscopy and powder X-ray diffraction data. Orthorhombic, space group *Pnma*, $a = 6.86317(15)$, $b = 13.1773$ (3), $c = 6.86317(15)$ Å, $V = 623.68(2)$ Å³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2014b).

Wavenumbers $(cm⁻¹)$: 988s, 967s, 919s, 899s, 850s, 676, 617, 564, 537, 468, 444w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sid57 Junitoite CaZn₂Si₂O₇·H₂O

Origin: Christmas Mine, Christmas area, Banner District, Dripping Spring Mts, Gila Co., Arizona, USA (type locality).

Description: Aggregate of colorless platelets. The empirical formula is (electron microprobe): $Ca_{1.05}Zn_{2.07}Si_{1.85}Al_{0.02}Fe_{0.01}O_7 \cdot H_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3430sh, 3336, 3305sh, 1838w, 1677, 1055sh, 980sh, 935s, 915s, 857s, 715, 640sh, 620sh, 578, 520, 484, 475sh, 445sh, 399w.

Note: The spectrum was obtained by N.V. Chukanov.

Sid58 Rowlandite-like mineral $REE_4FeSi_4(O,F,OH)_{16}nH_2O$

Origin: Heftetjern pegmatite, Tørdal, Telemark, Norway.

Description: Anhedral grains from the association with fluorite. Amorphous, metamict. The empirical formula is (electron microprobe): $Y_{2.5}$ Ln_{1.6}Fe_{0.8}Si_{4.05}O₁₄(F,OH)₂·nH₂O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3500sh, 3483. 3380sh, 1649w, 965sh, 931s, 807sh, 765sh, 699, 511, 457. Note: The spectrum was obtained by N.V. Chukanov.

Siod66 Cyprine $Ca_{19}Cu^{2+}(Al_{10}Mg_2)Si_{18}O_{68}(OH)_{10}$

Origin: Wessels mine, near Hotazel, Kalahari Manganese Field, North Cape province, South Africa (type locality).

Description: Dark red prismatic crystals from the association with calcite, apatite, andradite, henritermierite, and rhodochrosite. Holotype sample. The crystal structure is solved. Tetragonal, space group $P4/n$, $a = 15.569(1)$, $c = 11.804(1)$ Å, $V = 2861.6(2)$ Å³, $Z = 4$. $D_{calc} = 2.65$ g/cm³. Optically uniaxial (-), $\omega = 1.744(2)$, $\varepsilon = 1.732(2)$. The empirical formula is (electron microprobe): $Ca_{19}(Cu_{0.91}Mg_{0.09})_{\Sigma1.00}(Al_{8.38}Mg_{1.64}Mn^{3+}_{1.87}Fe^{3+}_{0.29}Cr_{0.10})_{\Sigma12.28}Si_{17.86}O_{67.86}(OH_{9.28}O_{0.72})$. The strongest lines of the powder X-ray diffraction pattern $[d, \mathring{A}(I, \mathcal{C}_0)(h\&l)$ are: 5.89 (12) (002), 2.950 (47) (004), 2.752 (100) (432), 2.594 (76) (522), 2.459 (35) (620), 1.622 (28) (672).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm^{-1}) : 3630, 3563, 3380sh, 3335, 1280w, 1234w, 1140sh, 1110sh, 1015s, 969s, 900s, 855sh, 815sh, 665sh, 602, 574, 505sh, 486s, 434, 418, (380sh).

Note: The weak bands at 1280, 1234, 1140, and 1110 cm^{-1} correspond to stretching vibrations of admixed borate groups.

Origin: Jeffrey mine, Asbestos, Estrie Region, Québec, Canada (type locality).

Description: Pink prismatic tetragonal crystals from the association with diopside and prehnite. Holotype sample. Characterized by powder MAS NMR data. The crystal structure is solved. Tetragonal, space group P4/n, unit-cell parameters refined from the powder data are $a = 15.5603(5)$ Å, $c = 11.8467(4)$ Å, $V = 2868.3(4)$ Å³, $Z = 2$. $D_{\text{meas}} = 3.31(1)$ g/cm³, $D_{\text{calc}} = 3.36$ g/cm³. Optically uniaxial (-), $\omega = 1.725(2)$, $\varepsilon = 1.722(2)$. The empirical formula is Ca_{19.00}(Al_{0.92}) $\text{Fe}^{3+}_{0.08}$ $_{\Sigma1.00}$ (Al_{9.83}Mg_{1.80}Mn³⁺_{0.25})_{$_{\Sigma11.88}$ Si_{17.98}O_{69.16}(OH)_{8.44}. The strongest lines of the powder} X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 2.96 (22) (004), 2.761 (100) (432), 2.612 (61) (224), 2.593 (25) (600), 1.7658 (20) (831), 1.6672 (20) (734), 1.6247 (21) (912), 1.3443 (22) (880).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3671w, 3632, 3527, 3407, 3212, 3051, 1890w, 1070sh, 1024s, 962s, 919s, 897s, 863, 804, 713w, 695w, 660sh, 630sh, 609, 577, 491s, 442s, 412, 386.

Note: The spectrum was obtained by N.V. Chukanov.

Siod68 "Ferrovesuvianite" $Ca_{19}Fe^{2+}(Al, Mg)_{12}Si_{18}O_{69}(OH)_{9}$

Origin: Valle d'Aosta (Aosta valley), Italy.

Description: Dark brownish-green crystals. The empirical formula is (electron microprobe): $Ca_{19.0}(Al_{9.3}Mg_{1.9}Fe_{1.2}Ti_{0.4}Mn_{0.1}Cr_{0.1})Si_{18}(O,OH)_{78}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3673w, 3645sh, 3630, 3527w, 3487w, 3143, 1795w, 1165sh, 1070sh, 1018s, 969s, 944, 917s, 888s, 865sh, 802, 711w, 655, 615sh, 603, 573, 520sh, 484s, 432s, 409, 379.

Note: The spectrum was obtained by N.V. Chukanov.

Siod69 Wiluite $Ca_{19}(A1,Mg)_{13}(B,\Box,A1)_{5}(SiO_4)_{10}(Si_2O_7)_{4}(O,OH)_{10}$

Origin: Siki-Yadunskiy fault, Siki River basin, Evenki Autonomous Area, Siberia, Russia.

Description: Greenish-gray short-prismatic crystals from the association with grossular. The empirical formula is (electron microprobe): $(Ca_{18.78}Na_{0.17})(Al_{5.77}Mg_{5.16}Fe_{1.37}Ti_{0.58}Mn_{0.06}Cr_{0.06})(B_xAl_{1.03}U_y)$ $Si_{18}O_{68}(O,OH)_{10}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3626w, 3566, 3495sh, 3340, 1667w, 1535w, 1420sh, 1376, 1269, 1110sh,

1075sh, 998s, 960sh, 913s, 871, 801, 780sh, 750sh, 679w, 615sh, 550sh, 514, 463, 427s, 377sh. Note: The spectrum was obtained by N.V. Chukanov.

Siod70 Magnesiovesuvianite $Ca₁₉Mg(A₁₀Mg₂)Si₁₈O₆₈(OH)₁₀$

Origin: Tuydo combe, near Lojane, Republic of Macedonia (type locality).

Description: Light pink acicular tetragonal crystals from the association with calcite, garnet of the grossular-andradite series, and clinochlore. Holotype sample. The crystal structure is solved. Tetragonal, space group $P4/n$, $a = 15.5026(3)$, $c = 11.7858(5)$ Å, $V = 2832.4(2)$ Å³, $Z = 2$. $D_{\text{meas}} = 3.30(3)$ g/cm³, $D_{\text{calc}} = 3.35$ g/cm³. Optically uniaxial (-), $\omega = 1.725(2)$, $\varepsilon = 1.721(2)$. The empirical formula is (electron microprobe): $(Ca_{18.99}Na_{0.01})_{\Sigma19.00}(Mg_{0.60}Al_{0.40})_{\Sigma1.00}(Al_{11.05}Mg_{0.70}Mn_{0.07}Fe_{0.02})_{\Sigma11.84}Si_{17.84}$ $O_{68.72}(OH)$ ₉. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.96 (23) (110), 3.46 (22) (240), 3.038 (33) (510), 2.740 (100) (432), 2.583 (21) (522), 2.365 (94) (620), 2.192 (19) (710), 1.6165 (25) (672).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3668w, 3627, 3508, (3445), 3398, 3183, 3050sh, 1890w, (1085sh), 1024s,

971s, 915s, 905s, 862, 803, 713w, 689w, 655sh, 625sh, 607, 579, 491s, 445s, 416, 400sh. Note: The spectrum was obtained by N.V. Chukanov.

Siod71 Ganomalite $Pb_9Ca_6(Si_2O_7)_4(SiO_4)O$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality). Description: Colorless anhedral grains from the association with native lead, baryte, calcite, and pyrochroite.

The empirical formula is (electron microprobe): $(Pb_{8.58}Ca_{0.42})Ca_{5.00}(Mn_{0.68}Ca_{0.32})(Si_2O_7)_4(SiO_4)O$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 1009, 915s, 875sh, 866s, 819, 672, 565, 520, 478, 457, 416, 405. Note: The spectrum was obtained by N.V. Chukanov.

Siod72 Uedaite-(Ce) $Mn^{2+}CeAl_2Fe^{2+}(Si_2O_7)(SiO_4)O(OH)$

Origin: Heftetjern amazonite pegmatite, Tørdal, Telemark, Norway.

Description: Black zone in an allanite-(Ce) crystal. The empirical formula is (electron microprobe): $(Ce_{0.59}La_{0.27}Nd_{0.12})(Mn_{0.61}Ca_{0.39})(Al_{1.54}Fe_{1.35}Ti_{0.04}Mg_{0.04}Mn_{0.04})(Si_{2.94}Al_{0.06})(O,OH)_{13}$ Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3285, 3230sh, 1033s, 921s, 630, 573, 502s, 465sh, 400, 372.

Note: The spectrum was obtained by N.V. Chukanov.

Siod73 Okhotskite Ca₂(Mn,Mg)(Mn³⁺,Al,Fe³⁺)₂(Si₂O₇)(SiO₄)(OH)₂⋅H₂O

Origin: South Minusa Intermontane Trough, Siberia, Russia.

- Description: Main component of the okhotskite-braunite ore. Characterized by powder X-ray diffraction data and electron microprobe analyses. Contains Al-enriched zones corresponding to pumpellyite- (Mn^{2+}) .
- Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Kassandrov and Mazurov (2009).

- Wavenumbers (cm⁻¹): 3414, 3250, 1115sh, 1042sh, 1002sh, 960sh, 933s, 888s, 864sh, 741, 687, 613, 568, 525, 480s, 435, 390, 371, 350.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Siod74 Wiluite $Ca_{19}(A, Mg)_{13}(B, \Box, Al)_{5}(SiO_4)_{10}(Si_2O_7)_{4}(O,OH)_{10}$

Origin: Wiluy River, Yakutia, Russia (type locality).

Description: Dark green crystal from the association with a chlorite-group mineral, Al-bearing diopside, fluorapatite, goethite, pyrite, grossular, apatite, wollastonite, and perovskite. Characterized by Mösbauer spectroscopy. The crystal structure is solved. Tetragonal, space group P4/nnc, $a = 15.7027(3)$, $c = 11.7008(3)$ Å, $V = 2885.1(1)$ Å³. The crystal-chemical formula is $X^1(Ca)_{2.00}X^2(Ca)_{8.00}X^3(Ca)_{8.00}X^4(Ca)_{1.00}Y^1(Mg_{0.56}Fe^{2+}{}_{0.27}Fe^{3+}{}_{0.17})_{\Sigma1.00}Y^2(Mg_{0.56}Fe^{2+}{}_{0.27}Fe^{3+}{}_{0.27}O_{0.27}V^2(Mg_{0.56}Fe^{2+}{}_{0.27}Fe^{3+}{}_{0.27}O_{0.27}V^2(Mg_{0.56}Fe^{2+}{}_{0.27}Fe^{3+}{}_{0.27$ $\text{Fe}^{2+}{}_{0.10}$) $_{\Sigma4.00}$ ¹³(Al_{3.82}Mg_{3.14}Ti_{0.63}Fe³⁺_{0.21}Fe²⁺_{0.16}Mn_{0.04}) $_{\Sigma8.00}$ ^{Z1}(Si)_{2.00}^{Z2}(Si)_{8.00}^{Z3}(Si)_{8.00}(O)_{68.00}^{T1+T2} $(B_{3.04}Al_{0.72}\square_{1.24})_{\Sigma 5.00}$ ^W $(O_{8.32}OH_{0.96})_{\Sigma 9.28}^{12}O_{1.52}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3634w, 3566w, 3481w, 3338w, 1415sh, 1373, 1267, 1165sh, 1110sh, 1080sh, 1002s, 965sh, 914s, 870sh, 803, 782, 755sh, 679w, 615sh, 560sh, 510sh, 466s, 430s, 376.

Note: The spectrum was obtained by N.V. Chukanov.

Siod75 Ferrovesuvianite $Ca_{19}Fe^{2+}(Al,Fe,Ti)_{12}(SiO₄)_{10}(Si₂O₇)_{4}(OH,O)_{10}$

Origin: Alchuri, Shigar Valley, Northern Areas, Pakistan.

Description: Reddish-brown blocky prismatic crystals from the association with quartz, clinochlore, albite, potassium feldspar, aegirine-augite, andradite, zoisite, calcite, titanite, fluorapatite, and zircon. Characterized by 27 Al NMR and Mössbauer spectroscopy. The crystal structure is solved. Tetragonal, space group $P4/nc$, $a = 15.5326(2)$, $c = 11.8040(2)$ \AA , $V = 2847.87(8)$ \AA^3 , $Z = 2$. $D_{\text{calc}} = 3.460$ g/cm³. Optically uniaxial (-), $\varepsilon = 1.740(4)$, $\omega = 1.749(2)$. The empirical formula is (electron microprobe): $(Ca_{18.11}Na_{0.885})(Mg_{0.63}Fe^{2+}_{0.79}Fe^{3+}_{1.765}Al_{7.99}Ti_{2.21})Si_{17.62}O_{69.92}(OH)_{7.37}F_{1.33}$ The crystal-chemical formula is ${}^{[8-9]}(Ca_{17.1}Na_{0.9})$ ${}^{[8]}Ca_{1.0}$ ${}^{[5]}(Fe^{2+}{}_{0.44}Fe^{3+}{}_{0.34}Mg_{0.22})$ $^{[6]}$ (Al_{3.59}Mg_{0.41})^[6](Al_{4.03}Ti_{2.20}Fe³⁺_{1.37}Fe²⁺_{0.40}) Si₁₈O₆₈)[(OH)_{5,84}O_{2.83}F_{1.33}].

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3563w, 3453, 3220w, 1070sh, 1021s, 993s, 906s, 836s, 806, 750, 677w, 626, 578, 530sh, 485s, 439s, 420sh.

Siod76 Fluorvesuvianite $A_3O_4H_2O_3P_4O_3(H) \cdot H_2O$

Origin: Abandoned Lupikko iron mine, Pitkäranta, Karelia, Russia (type locality).

Description: Colorless acicular crystals from the association with sphalerite and clinochlore. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3645sh, 3630w, 3560, 3431, 3183w, 1160sh, 1075sh, 1020s, 982s, 903s,

875sh, 799, 710w, 638, 605, 578, 560sh, 491s, 445s, 416, 376.

Note: The spectrum was obtained by N.V. Chukanov.

Siod77 Epidote-(Sr) $CaSr(Al_2Fe^{3+})(Si_2O_7)(SiO_4)O(OH)$

- Origin: N'Chwaning Mine, Kuruman, Kalahari manganese fields, Northern Cape province, South Africa.
- Description: Clusters of dark red crystals with thin zones of manganipiemontite-(Sr) . The typical composition corresponds to the formula $Ca_{1.0}Sr_{1.0}(Al_{1.8}Fe_{0.9}Mn_{0.3}(Si₂O₇)(SiO₄)O(OH).$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
- Wavenumbers (cm⁻¹): 3420, 1114, 1083, 1012, 940s, 878s, 827, 669w, 650sh, 620, 589, 543, 503s, 449, 394s, 376s.

Note: The spectrum was obtained by N.V. Chukanov.

Siod78 Ferriakasakaite-(La) CaLaFe³⁺AlMn²⁺(Si₂O₇)(SiO₄)O(OH)

- Origin: In den Dellen pumice quarry, Niedermendig, Mendig, Laach Lake volcanic complex, Eifel, Rhineland-Palatinate, Germany.
- Description: Black thick-tabular crystals from sanidinite, from the association with nosean and/or haüyne, Mn-bearing biotite, magnetite, ilmenite-pyrophanite series members, Mn-bearing zirconolite, and secondary jarosite. The crystal structure is solved. Monoclinic, space group $P2_1/m$, $a = 8.90540$ (13), $b = 5.75454(7)$, $c = 10.10367(15)$ Å, $\beta = 114.1030(18)^\circ$, $V = 472.634(11)$ Å³. The empirical formula is $(Ca_{0.68}Mn^{2+}_{0.32})_{\Sigma1.00}(La_{0.49}Ce_{0.39}Pr_{0.02}Nd_{0.02}Sm_{0.01}Eu_{0.01}Gd_{0.01}Th_{0.01}Ca_{0.04})$ $(Fe^{3+}_{0.52})_{\Sigma1.00}(Ca_{0.49}Ce_{0.39}Pr_{0.02}Nd_{0.02}Sm_{0.01}Eu_{0.01}Gd_{0.01}Th_{0.01}Ca_{0.04})$ $Fe^{2+}_{0.04}Al_{0.34}Ti^{4+}_{0.10}\right)_{\Sigma1.00}Al_{1.00}(Mn^{2+}_{0.53}Fe^{2+}_{0.34}Mg_{0.13})_{\Sigma1.00}(Si_{2.98}Al_{0.02})_{\Sigma3.00}O_{12.00}(OH).$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): (3300sh), 3164, 1045s, 928s, 885sh, 675sh, 626, 573, 499s, 455, 394, 366. Note: The spectrum was obtained by N.V. Chukanov.

Siod79 Vesuvianite $Ca_{19}Fe^{3+}[Al_{10}(Fe^{2+},Mn^{2+},Mg)_2](Si_2O_7)_4(SiO_4)_{10}O(OH)_9$,

Origin: Somma-Vesuvius volcanic complex, Campania region, Italy (type locality).

Description: Greenish brown crystals from skarn xenolith. Neotype sample used for vesuvianite formula revision. Characterized by Mössbauer spectroscopy, ²⁷Al MAS NMR, powder X-tay diffraction and thermal analysis. The crystal structure is solved. Tetragonal, space group P4/nnc; $a = 15.5720(3)$, $c = 11.8158(5)$. The crystal-chemical formula is $(Ca)_{2.00}^{X2} (Ca)_{8.00}^{X3} (Ca)_{8.00}^{X4} (Ca_{0.97}Na_{0.03})_{1.00}^{Y1} (Fe^{3+}{}_{0.50}Mg_{0.28}Fe^{2+}{}_{0.22})^{Y2} (Al_{3.85}Fe^{2+}{}_{0.15})^{Y3}$ $(AI_{5.26}Mg_{1.83}Fe^{3+}{}_{0.54}Fe^{2+}{}_{0.26}Mn_{0.11})^{Z1}(Si)_{2.00}{}^{Z2}(Si)_{8.00}{}^{Z3}(Si)_{8.00}(O)_{68.00}{}^{T1+T2}(Al_{0.44}B_{0.25}\square_{4.31})^{W1}$ $(OH_{5.65}F_{2.00}O_{1.30}Cl_{0.05}).$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3565, 3450w, 3629w, 3210w, 1568w, 1478w, 1170sh, 1075 sh, 1018s, 976s, 914s, 900sh, 870sh, 799, 629, 599, 572, 486s, 436s, 415, 384.

Siod80 Vesuvianite Cr-bearing $Ca_{19}Fe^{3+}[(Al, Cr)_{10}(Fe^{2+},Mn^{2+},Mg)_2](Si_2O_7)_4(SiO_4)_{10}O(OH)_9$

Origin: Lekhoilinskoe Cr deposit, Voikaro-Syn'inskiy ultrabasite massif, Polar Urals. Description: Emerald-green crystals on chromite. Investigated by T.L. Panikorovskiy. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3672w, 3633, 3520sh, 3483, 3416, 3146, 1880w, 1796w, 1661w, 1577w, 1465sh, 1424w, 1160sh, 1075sh, 1018s, 964s, 918s, 895sh, 865sh, 803, 710w, 690w, 615sh, 605, 573, 520sh, 485s, 434s, 412, 380.

Note: The spectrum was obtained by N.V. Chukanov. The band at 3416 cm^{-1} is characteristic for Cr-bearing vesuvianite.

Siod81 Vesuvianite S-bearing $Ca_{19}Fe^{3+}[Al_{10}(Fe^{2+},Mn^{2+},Mg)_2](Si_2O_7)_4(SiO_4)_{10}S_x(OH,O)_{10}$ (?)

Origin: Monzoni Mts., Fassa valley, Trento Province, Trentino-Alto Adige (Trentino-Südtirol), Italy. Description: Yellow crystal. Investigated by T.L. Panikorovskiy.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3665w, 3634, 3535, 3146, 1588sh, 1560w, 1463w, 1412sh, 1355sh, 1165sh, 1075sh, 1017s, 963s, 918s, 894, 870sh, 803, 705sh, 683w, 606, 573, 485s, 440s, 415, 384.

Note: The spectrum was obtained by N.V. Chukanov.

Siod82 "Hydrovesuvianite" $Ca_{19}Fe^{3+}[Al_{10}(Fe^{2+},Mn^{2+},Mg)_2](Si_2O_7)_4[SiO_4,(OH)_4]_{10}O(OH)_9$

Origin: Vilyui River Basin (Wilui River Basin), Sakha Republic (Yakutia), Eastern-Siberian Region, Russia.

Description: Epitaxy on wiluite crystals from the association with grossular. Investigated by T.L. Panikorovskiy.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3631, 3546, 3160, 1547w, 1465sh, 1435w, 1363sh, 1323w, 1275w, 1165sh,

1013s, 963s, 914s, 880sh, 655sh, 595, 566, 520sh, 477s, 433s, 376.

Note: The spectrum was obtained by N.V. Chukanov. The band at 3546 cm^{-1} may correspond to (OH)4 tetrahedra.

Siod83 Vesuvianite B-bearing

Origin: Gulshad, Northern Balkhash Lake Area, Kazakhstan.

- Description: Investigated by T.L. Panikorovskiy. The crystal structure is solved. The crystal-chemical formula is $Ca_{19.00}$ ^{Y1}(Fe_{0.62}Mg_{0.38})^{Y2}Al_{4.00}^{Y3}[(Al,Mg)_{7.34}(Fe,Ti)_{0.66}]^{T1}[B_{0.45}Al_{0.80}]_{1.25}^{T2}B_{0.50}Si₁₈O₆₈(OH, O ₁₀.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3669sh, 3636, 3563, 3463, 3210, 1562, 1464, 1160sh, 1075sh, 1012s, 962s, 915s, 875sh, 800, 680w, 625sh, 601, 568, 479s, 434s, 415sh, 380.
- Note: The spectrum was obtained by N.V. Chukanov. The bands at 1562 and 1464 cm^{-1} correspond to $BO₃$ triangles with shortened (as compared to wiluite) B–O bonds.

Origin: Gulshad, Northern Balkhash Lake Area, Kazakhstan.

Description: Investigated by T.L. Panikorovskiy. The crystal structure is solved. The crystal-chemical formula is $\text{Ca}_{19.00}{}^{Y_1}(\text{Fe}_{0.87}\text{Mg}_{0.13})^{Y_2}\text{Al}_{4.00}{}^{Y_3}[(\text{Al},\text{Mg})_{6.45}(\text{Fe},\text{Mn})_{1.55}]^{T_1}\text{B}_{2.06}{}^{T_2}\text{B}_{1.00}\text{Si}_{18}\text{O}_{68}(\text{OH},\text{O})_{12}$ Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3623w, 3565, 3450sh, 1800w, 1543w, 1469, 1417, 1388, 1300sh, 1269, 1130sh, 1070sh, 1000s, 913s, 882, 855sh, 802, 782, 670w, 620sh, 552, 520sh, 460s, 434s, 376.

Note: The spectrum was obtained by N.V. Chukanov. The bands at 1543 and 1469 cm^{-1} correspond to BO₃ triangles with shortened (as compared to wiluite) B–O bonds.

Sic27 Khesinite $Ca_4(Mg_3Fe^{3+}_9)O_4(Fe^{3+}_9Si_3)O_{36}$

Origin: Burned dump of the Korkinskiy quarry, Chelyabinsk coal basin, Kopeisk, South Urals, Russia. Description: Black tabular crystals from the association with melilite, pyroxene, amphibole, wollastonite, anorthite, and calcium ferrites. Technogenetic. Investigated by B.V. Chesnokov. Related to aenigmatite-group minerals. Triclinic, $a = 10.58(3)$, $b = 10.90(3)$, $c = 9.10(4)$ Å, $\alpha = 107.08(2)$ °, $\beta = 95.02(2)^\circ$, $\gamma = 124.45(2)^\circ$. The empirical formula is Ca_{1.16}Fe³⁺_{4.16}Mg_{0.32}Ti_{0.02}Al_{0.64}Si_{0.65}O₁₀. $D_{\text{calc}} = 4.09 \text{ g/cm}^3$. The strongest lines of powder X-ray diffraction pattern [d, Å (I, %)] are 2.993 (70), 2.721 (80), 2.587 (100), 2.526 (90), 2.473 (40), 2.132 (55), 1.626 (52), 1.517 (70), 1.506 (50). Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm^{-1}) : 953s, 902s, 838, 824, 801, 750, 690sh, 640s, 596s, 500s, 463s. Note: The spectrum was obtained by N.V. Chukanov.

Transmittance N 400 800 1200 1600 2000 2400 2800 3200 3600 Wavenumber $(cm⁻¹)$

Sic105 Fowlerite $CaMn₃Zn(Si₅O₁₅)$

Origin: Franklin, Ogdensburg, Sussex Co., New Jersey, USA.

Description: Pinkish-brown grains. The empirical formula is $Ca_{0.75}Mn_{3.16}Zn_{0.56}Fe_{0.31}Mg_{0.25}(Si_5O_{15})$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1089s, 1061s, 1032s, 1003, 945s, 910sh, 899s, 875sh, 724, 693w, 669, 650sh, 579, 562, 535sh, 515sh, 505sh, 493, 454s, 415, 390, 365.

Sic106 Ferrorhodonite $CaMn_3Fe(Si_5O_{15})$

Origin: Broken Hill Pb-Zn deposit, Yancowinna Co., New South Wales, Australia (type locality). Description: Brownish red coarse crystalline aggregates in the association with galena, chalcopyrite,

spessartine, and quartz. Holotype sample. The crystal structure is solved. Triclinic, space group P-1, $a = 6.6766(5)$, $b = 7.6754(6)$, $c = 11.803(1)$ Å, $\alpha = 105.501(1)$ °, $\beta = 92.275(1)$ °, $\gamma = 93.919(1)$ °, $V = 580.44(1)$ Å³, $Z = 2$. $D_{\text{meas}} = 3.71(2)$ g/cm³, $D_{\text{calc}} = 3.701$ g/cm³. Optically biaxial (+), $\alpha = 1.731(4)$, $\beta = 1.736(4)$, $\gamma = 1.745(5)$, $2V = 80(10)$ °. The crystal-chemical formula is $(Ca_{0.81}Mn_{0.19})(Mn_{2.52}Fe_{0.48})(Fe^{2+}_{0.81}Mn_{0.12}Mg_{0.04}Zn_{0.03})(Si_5O_{15})$. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 3.337 (32) (-1-13), 3.132 (54) (-210), 3.091 (41) $(0-23)$, 2.968 (100) $(-2-11)$, 2.770 (91) (022) , 2.223 (34) (-204) , 2.173 (30) (-310) .

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1092s, 1053s, 1025, 1000sh, 946, 897, 875sh, 721, 694, 667, 650sh, 577, 563sh, 530sh, 510sh, 492, 453s, 416sh, 388, 368.

Note: The spectrum was obtained by N.V. Chukanov.

Sic107 Lithium metasilicate $Li₂SiO₃$

Origin: Synthetic.

Description: Commercial reactant. Orthorhombic, space group $Cmc2_1$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Devarajan and Shurvell (1977).

Wavenumbers (IR, cm⁻¹): 1080s, 1034sh, 980, 950s, 850s, 801w, 781w, 735, 697w, 604, 580w, 520s, 505sh, 450, 410, 398, 370, 345w, 305, 280sh, 248w, 230w, 214w, 204w, 196w.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1087, 1034, 1001sh, 983s, 945, 852, 731, 645, 610s, 587sh, 567, 520, 496, 465, 450w, 410, 398sh, 345w, 325w, 291sh, 297, 273w, 258w, 234, 210, 186, 141.

Sic108 Alamosite polymorph $PbSiO₃$

Origin: Synthetic.

- **Description:** Prepared by crystallization at 650 °C from the undercooled melt. Characterized by powder X-ray diffraction data. Hexagonal.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Furukawa et al. (1979).

Wavenumbers (IR, cm⁻¹): 1054, 999s, 961s, 938sh, 910s, 885s, 850, 720, 687w, 658, 629w, 604w, 530, 511, 480, 445, 384.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1070, 1012, 936, 915s, 871, 850, 731w, 685w, 669w, 628w, 615w, 545, 513, 503, 484, 438, 406, 358s, 316, 294, 263s, 243, 231, 144, 106, 91, 52.

Sic109 Dorrite $Ca_4[Mg_3Fe^{3+}g]O_4[Si_3Al_8Fe^{3+}O_{36}]$

Origin: Bellerberg, near Ettringen, Eifel Mts., Rhineland-Palatinate (Rheinland-Pfalz), Germany. Description: Brown equant crystals from the association with cuspidine, clinopyroxene, spinel, and

gypsum. The empirical formula is (electron microprobe): $Ca_{4.1}(Mg_{3.6}Mn_{0.2}Fe_{7.4}Al_{0.4}Ti_{0.3})$ $(Si_{3.8}Al_{8.2})O_{40}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm^{-1}) : (3412w), 1000sh, 979, 902, 846, 750sh, 677s, 510s, 463s, 420sh. Note: The spectrum was obtained by N.V. Chukanov.

Sic110 Aegirine-augite $(Ca,Na)(Fe^{3+},Mg,Fe^{2+})Si₂O₆$

Origin: Harstigen Mine, Pajsberg, Persberg district, Filipstad, Värmland, Sweden.

- **Description:** Olive-green anhedral grains from the association with julgoldite- $(Fe³⁺)$ and calcite. The empirical formula is (electron microprobe): $(Ca_{0.49}Na_{0.42}Mn_{0.09})(Fe_{0.52}Mg_{0.44}Mn_{0.04})$ $(Si_{1.96}Al_{0.03}Fe_{0.01}O_6).$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1066s, 997s, 945sh, 905s, 880sh, 698w, 636, 530sh, 509, 461s, 395, 387sh, 377sh.

Note: The spectrum was obtained by N.V. Chukanov.

Sic111 Vittingeite $Mn_5(Si_5O_{15})$

Origin: Vittinge iron mines, Isokyrö, Western and Inner Finland Region, Finland (type locality). Description: Anhedral grains from the association with quartz and pyroxmangite. Holotype sample.

The crystal structure is solved. Triclinic, space group P-1, $a = 6.6980(3)$, $b = 7.6203(3)$, $c = 11.8473(5)$ Å, $\alpha = 105.663(3)^\circ$, $\beta = 92.400(3)^\circ$, $\gamma = 94.309(3)^\circ$, $V = 579.38(7)$ Å³, $Z = 2$. $D_{\text{meas}} = 3/62(2) \text{ g/cm}^3$, $D_{\text{calc}} = 3.737 \text{ g/cm}^3$. Optically biaxial (+),(+), $\alpha = 1.725(4)$, $\beta = 1.733(4)$, $=$ 1.745(5), 2V $=$ 75(10)°. The empirical formula is (electron microprobe): $Ca_{0.11}Mn_{4.71}Fe_{0.11}Mg_{0.08}Zn_{0.01}Si_{4.99}O_{15}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1112, 1053s, 1020s, 950s, 930sh, 915sh, 891s, 824, 718, 693, 664, 578, 559, 515, 492, 458s, 391.

Origin: Yamato mine, Amami-Oshima Island, Kagoshima Prefecture, Nansei Archipelago, Kyushu region, Japan (type locality).

Description: Bright green grains.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1254, 1177, 1115, 1076s, 1020s, 1010s, 971s, 904s, 663, 635w, 610, 576, 507, 434s, 394, 380s.

Note: The spectrum was obtained by N.V. Chukanov.

Sic113 Dalnegorskite $Ca₅Mn(Si₃O₉)₂$

- Origin: Dalnegorskoe boron deposit, town of Dalnegorsk, Primorskiy Kray, Russian Far East, Russia (type locality).
- Description: Tight aggregate consisting of split thin fiber-like individuals from the association with Mn-bearing hedenbergite and datolite. Holotype sample. Triclinic, Space group: $P-1$, $a = 7.2588$ (11), $b = 7.8574(15)$, $c = 7.8765(6)$ Å, $\alpha = 88.550(15)$ °, $\beta = 62.582(15)$ °, $\gamma = 76.621(6)$ °, $V = 386.23(11) \text{ Å}^3$, $Z = 1$. $D_{\text{meas}} = 3.02(2) \text{ g/cm}^3$, $D_{\text{calc}} = 3.062 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.640(3), \beta = 1.647(3), \gamma = 1.650(3), 2V = 75(10)^\circ$. The empirical formula is (electron microprobe): $Ca_{5.03}Mn_{0.50}Fe_{0.36}Mg_{0.04}Si_{6.03}O_{18}$. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %)] are: 3.80 (57), 3.48 (57), 3.28 (42), 2.952 (100), 2.951 (66), 1.815 (34), 1.708 (34), 1.703 (34).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 1892w, 1077s, 1025s, 937s, 905s, 693, 653, 563, 513, 505, 470sh, 458s, 445sh, 407.

Note: The spectrum was obtained by N.V. Chukanov.

Sib152 Magnesio-ferri-hornblende

Origin: Otamo dolomite quarry, Siikainen, Finland.

Description: Dark green grains from the association with plagioclase, dolomite, and calcite. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 9.855(1)$, $b = 18.084(1)$, $c = 5.289$ (1) Å, $\beta = 91.141(6)$ °, $V = 104.853(2)$ Å³, $Z = 2$. $D_{\text{calc}} = 3.057$ g/cm³. The empirical formula is $K_{0.03}(Ca_{1.92}Na_{0.07})[(Mg_{4.01}Fe^{2+_{6.33}Mn^{2+_{6.03})(Fe^{3+_{6.48}Al_{0.15})}][(Si_{7.43}Al_{0.57}O_{22}](OH)_{2}}$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3673, 3660w, 3650sh, 3627w, 1099s, 1049s, 993s, 951s, 919s, 755, 725sh,

686, 660, 645sh, 535sh, 507s, 461s, 445sh, 425sh.

Sib153 Ferro-ferri-katophorite Na(NaCa)($Fe^{2+}_4Fe^{3+}$)(Si₇Al)O₂₂(OH)₂

Origin: In den Dellen (Zieglowski) pumice quarry, 1.5 km NE of Mendig, Laacher See volcano, Eifel region, Rhineland-Palatinate (Rheinland-Pfalz), Germany.

Description: Black crystals on sanidinite. Characterized by Mössbauer spectrum. The empirical formula is (electron microprobe): $(Na_{0.68}K_{0.32})(Ca_{1.31}Na_{0.69})(Mg_{1.17}Fe^{2+}_{1.79}Mn_{0.66}Fe^{3+}_{1.19}Ti_{0.19})$ $(Si_{6.20}Al_{1.80}O_{22})(OH)_{1.92}O_{0.08}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3667w, 3655sh, 3647w, 1050s, 953s, 795sh, 738, 667, 613, 490sh, 452s. Note: The spectrum was obtained by N.V. Chukanov.

Sib154 Ferro-pargasite $NaCa₂(Fe²⁺₄Al)(Si₆Al₂)O₂₂(OH)₂$

Origin: Ilmeny (Il'menskie) Mts., South Urals, Russia.

- Description: Black grains with blue streak from fenite. The empirical formula is (electron microprobe): $K_{0.4}Na_{1.5}Ca_{1.1}(Fe_{3.2}Mg_{0.8}Mn_{0.3}Al_{0.6}Ti_{0.1})(Si_{6.3}Al_{1.7}O_{22})(OH)_{2}$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3670w, 3647w, 3627w, 1041s, 960s, 885sh, 794, 747w, 669, 605, 526, 480sh, 450s, 405sh.

Note: The spectrum was obtained by N.V. Chukanov.

Sib155 Ferro-ferri-nybøite NaNa₂(Fe²⁺₃Fe³⁺₂)(Si₇Al)O₂₂(OH)₂

- Origin: Poudrette quarry, Mont Saint-Hilaire, La Vallée-du-Richelieu RCM, Montérégie (Rouville) Co., Québec, Canada (type locality).
- **Description:** Black crystals from the association with a eudialyte-group mineral, an astrophyllitegroup mineral, albite, and nepheline. Fragment of the holotype sample kindly granted by A.V. Kasatkin. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 9.9190(5)$, $b = 18.0885(8), c = 5.3440(3)$ $\text{\AA}, \beta = 103.813(1)^\circ, V = 931.09(13)$ $\text{\AA}^3, Z = 2$. $D_{\text{calc}} = 3.424$ g/cm³. The empirical formula is $(Na_{0.68}K_{0.27})(Na_{1.83}Ca_{0.17})(Mg_{0.06}Fe^{2+}{}_{3.17}Mn_{0.31}Zn_{0.01}Fe^{3+}{}_{1.36}Ti_{0.06})$ $(Si_{7.41}Al_{0.59}O_{22})(OH)_{1.58}F_{0.42}$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 8.520 (100) (110), 3.162 (55) (310), 2.834 (24) (330), 1.671 (19) (461), 2.732 (10) (151), 2.552 (10) (-202), 2.344 (9) (-351), 3.298 (7) (240), 2.606 (6) (061), 1.446 (6) (-661, 4.10.0).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3683sh, 3670w, 3655w, 3647w, 1124, 1064s, 990sh, 959s, 744, 655sh, 637, 607w, 525sh, 483, 446s, 376.

Sib156 Potassic-magnesio-fluoro-arfvedsonite $KNa_2(Mg_4Fe^{3+})Si_8O_{22}F_2$

Origin: Highway 366 road cut, Val-des-Monts, Québec, Canada (type locality).

Description: Fragment of the holotype sample kindly granted by A.V. Kasatkin.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3704w, 3667w, 3651w, (3636w), (3619w), 1144, 1088s, 1020s, 972s, 905sh, 890, 785w, 752, 711w, 673, 546, 518s, 461s, 440sh.

Note: The spectrum was obtained by N.V. Chukanov.

Sib157 Ferro-ferri-fluoro-leakeite NaNa₂(Fe²⁺₂Fe³⁺₂Li)Si₈O₂₂F₂

Origin: Aryskan REE deposit, Tyva Republic, Russia.

Description: Black prismatic crystals from the association with aegirine, polylithionite, quartz, and albite. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe, Li calculated): $(Na_{0.46}K_{0.32})Na_{2.00}(Mg_{0.09}Fe^{2+}{}_{1.99}Li_{0.80}Mn_{0.10}Zn_{0.06}Fe^{3+}{}_{1.73}Al_{0.16}Ti_{0.06})(Si_{8.00}O_{22})F_{1.42}(OH)_{0.58}$ Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers (cm⁻¹): 3674w, 3646w, 3620w, 1120sh, 1084s, 1030sh, 977s, 910sh, 875sh, (801w), (779w), 758, 710w, 646, 540, 485sh, 454s, 397.

Note: The spectrum was obtained by N.V. Chukanov.

Sib160 Ferri-fluoro-leakeite NaNa₂(Mg₂Fe³⁺₂Li)Si₈O₂₂F₂

Origin: Norra Kärr, Gränna, Jönköping, Småland, Sweden.

Description: Dark green prismatic crystals from the association with aegirine and albite. The empirical formula is (electron microprobe; ICP MS analysis for Li): $(Na_{0.55}K_{0.44})(Na_{1.97}Ca_{0.02}Mn_{0.01})$ $(Mg_{1.78}Mn_{0.09}Zn_{0.06})Li_{1.05}(Fe_{1.44}Al_{0.51}Ti_{0.08})(Si_{7.83}Al_{0.17}O_{22})F_{1.18}(OH)_{0.82}$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): (3727w), 3681w, 3622w, 1143, 1085s, 971s, 915sh, 760, 710w, 679w, 661, 551, 485sh, 462s, 439sh, 374.

Note: The spectrum was obtained by N.V. Chukanov.

Sib161 Ferri-leakeite $NaNa_2(Mg_2Fe^{3+}2Li)Si_8O_{22}(OH)_2$

Origin: Norra Kärr, Gränna, Jönköping, Småland, Sweden.

Description: Dark green prismatic crystals from the association with aegirine and albite. Characterized by Mössbauer spectroscopy. The empirical formula is (electron microprobe; ICP MS analysis for Li): $(Na_{0.56}K_{0.44})(Na_{1.90}Mn_{0.08}Ca_{0.02})(Mg_{1.88}Fe^{2+}_{0.10}Mn_{0.02})Li_{1.12}(Fe^{3+}_{1.08}Al_{0.50}Fe^{2+}_{0.24}Ti_{0.06})$ $(Si_{7.97}Al_{0.03}O_{22})(OH)_{1.11}F_{0.89}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): (3742w), 3680w, 3648w, 3620w, 1143, 1086s, 985sh, 971s, 915sh, 761, 710w, 679w, 661, 551, 485sh, 464s, 440sh, 374.

Note: The spectrum was obtained by N.V. Chukanov.

Sib162 Potassic-ferri-leakeite $KNa_2(Mg_2Fe^{3+2}Li)Si_8O_{22}(OH)_{22}$

Origin: Kedykverpakhk Mt., Lovozero alkaline complex, Kola peninsula, Murmansk region, Russia. Description: Greenish-gray fibrous aggregate from the association with natrolite and ussingite. Investigated by I.V. Pekov.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3727w, 3701w, 3683w, 3622w, 1141, 1089s, 1035sh, 1007s, 961s, 920, 757, 707w, 675w, 661, 549, 508, 457s, 430sh, 400sh, 375.

Note: Actually, this sample may be the F-dominant analogue of potassic-ferri-leakeite. The spectrum was obtained by N.V. Chukanov.

Sib163 Potassic-ferro-pargasite $KCa_2(Fe^{2+}_4Al)(Si_6Al_2)O_{22}(OH)_2$

Origin: Sal'nye Tundry Mts., Kola Peninsula, Russia.

- Description: Black grains from the association with chlorapatite, almandine, diopside, enstatite, Cl-rich biotite, potassic-chloropargasite, marialite, and plagioclase. The empirical formula is (electron microprobe): $(K_{0.55}Na_{0.42})(Ca_{1.98}Na_{0.02})(Mg_{1.98}Fe^{2+}{}_{2.11}Al_{0.65}Ti_{0.26})(Si_{6.03}Al_{1.97}O_{22})(OH)_{1.62}Cl_{0.38}$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3667w, 3645w, 3627w, 1044s, 973s, 934s, 798, 727, 715, 674, 611w, 507, 493, 455s, 401sh, 385sh, 370.

Note: The spectrum was obtained by N.V. Chukanov.

Sib164 Oxo-magnesio-hastingsite $NaCa_2(Mg_2Fe^{3+}_{3})(Si_6Al_2)O_{22}O_2$

Origin: Deeti volcanic cone, Gregory rift, northern Tanzania (type locality).

Description: Brown megacryst from volcanic tuff. Holotype sample. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 9.8837(3)$, $b = 18.0662(6)$, $c = 5.3107(2)$ Å, $\beta = 105.278(1)$ °, $V = 914.77(5)$ \AA^3 , $Z = 2$. $D_{\text{meas}} = 3.19(1)$ g/cm³. Optically biaxial (-), $\alpha = 1.706(2)$, $\beta = 1.715(2)$, γ = 1.720(2). The empirical formula is $(Na_{0.67}K_{0.33})(Ca_{1.87}Ma_{0.14}Mn_{0.01})(Mg_{3.27})$ $Fe³$ $t_{1.25}$ Ti_{0.44}Al_{0.08})(Si_{6.20}Al_{1.80}O₂₂)[O_{1.40}(OH)_{0.60}]. The strongest lines of the powder X-ray diffraction pattern [*d*, Å (*I*, %) (*hkl*)] are: 3.383 (62) (131), 2.708 (97) (151), 2.555 (100) (-202), 2.349 (29) (-351), 2.162 (36) (261).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zaitsev et al. (2013).

Wavenumbers (cm⁻¹): 3682w, 3660w, 3642w, 1055s, 975sh, 940s, 737w, 681, 664, 633, 508s, 460s. Note: The band positions denoted by Zaitsev et al. (2013) as 3662, 3652, and 3645 cm^{-1} were determined by us at 3682, 3660, and 3642 cm^{-1} , respectively.

Sib165 Ferri-fluoro-katophorite Na(CaNa)(Mg_4Fe^{3+})(AlSi₇O₂₂)F₂

Origin: Bear Lake diggings, Monmouth township, Haliburton Co., Ontario, Canada (type locality). Description: Black crystal. Fragment of holotype.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3671w, 3652w, 1115sh, 1065s, 971s, 922s, 805sh, 745, 664, 510s, 460s. Note: The spectrum was obtained by N.V. Chukanov.

Sib166 Fluoro-pargasite $NaCa₂Mg₄Al(Al₂Si₆O₂₂)(F,OH)₂$

Origin: Pargas (Parainen), Southwestern Finland Region, Finland.

Description: Dark green crystals from the association with fluorphlogopite and calcite. The empirical formula is (electron microprobe): $(Na_{0.7}K_{0.3})Ca_{2.0}(Mg_{3.6}Fe_{0.7}Al_{0.6}Ti_{0.1})(Si_{6.4}Al_{1.6}O_{22})F_{1.7}(OH)_{0.3}$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3688w, 3674w, 3653w, 3630w, 1056s, 984s, 935s, 925sh, 808, 734, 695sh, 681, 667, 650sh, 510s, 462s.

Note: The spectrum was obtained by N.V. Chukanov.

Sib167 Tobermorite $[Ca_4Si_6O_{17}$ $2H_2O$](Ca \cdot 3H₂O)

Origin: Pervomaiskiy quarry, Crimea, Russia.

Description: White fibrous aggregate from the association with prehnite and laumontite. Investigated by I.S. Lykova. The empirical formula is (electron microprobe): $Ca_{4.68}Si_6O_{15}(O,OH)_2 \cdot nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3594, 3525sh, 3355sh, 3240sh, 1624, 1420w, 1211, 1061, 983s, 910, 798w, 764w, 732w, 665, 527, 480, 444s, 402.

Note: The spectrum was obtained by N.V. Chukanov.

Sir199 Colinowensite BaCuSi₂O₆

Origin: Synthetic.

- **Description:** Prepared hydrothermally from BaCl₂.4H₂O, Na₂SiO₃.9H₂O, and CuO at 250 °C for 48 h. Characterized by powder X-ray diffraction data. Tetragonal, space group $I4_1/acd$, $a = 9.97511$ (17), $c = 22.2887(5)$ Å, $V = 2217.79(7)$ Å³, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2014b).

Wavenumbers (cm⁻¹): 1125sh, 1057s, 972, 920s, 891sh, 724, 644, 564, 498, 432.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sir200 Gerenite-(Y) $(Ca,Na)_2Y_3Si_6O_{18}$ °2H₂O

Origin: Strange Lake peralkaline complex, Quebec-Labrador boundary, Canada (type locality).

Description: Creamy aggregate. Holotype sample. Triclinic, $a = 9.245(5)$, $b = 9.684(6)$, $c = 5.510$ (3) Å, $\alpha = 97.44(6)^\circ$, $\beta = 100.40(6)^\circ$, $\gamma = 116.70(6)^\circ$. $D_{\text{calc}} = 3.46$ g/cm³. Optically biaxial (-), $\alpha = 1.602(1), \beta = 1.607(1), \gamma = 1.611(1), 2V = 73(3)^\circ.$
Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Jambor et al. (1998).

Wavenumbers (cm⁻¹): 3480, 1655, 943, 668, 430, 340, 328, 306. Note: Some other bands overlap with strong bands of admixed quartz.

$Sir201$ Pabstite $BasnSi₃O₉$

Origin: Synthetic.

Description: Synthesized using a solid-state reaction technique.

Kind of sample preparation and/or method of registration of the spectrum: KI disc. Transmission. Source: Choisnet et al. (1975).

Wavenumbers (cm⁻¹): 1060sh, 1030s, 965s, 923s, 762s, 561, 476sh, 455s, 397, 327, 275, 231.

 $Sir202$ Wadeite dimorph $K₂ZrSi₃O₉$

- Description: Synthesized from a glass having wadeite composition by repeatedly crushing and heating at 973–993 K. Characterized by powder X-ray diffraction data. The structure contains fourmembered rings of SiO₄ tetrahedra.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Geisinger et al. (1987).

- Wavenumbers (IR, cm⁻¹): 1135, 1022sh, 1010s, 758, 747, 692, 685, 591, 477, 461, 446s, 420, 405, 351.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1154, 1074, 1014w, 800, 744w, 539, 524, 511s, 419s, 400, 339, 311, 304, 215, 179, 149, 111, 90, 67, 52.

 $Sir203$ Wadeite Rb analogue $Rb_2TiSi_3O_9$

Origin: Synthetic.

Description: Prepared from Rb_2CO_3 , TiO₂, and SiO₂ using a solid-state reaction technique.

Kind of sample preparation and/or method of registration of the spectrum: KI disc. Transmission. Source: Choisnet et al. (1975).

Wavenumbers (cm⁻¹): 1033sh, 1010s, 950sh. 926s, 760sh, 724s, 639w, 576, 458, 372s, 342s, 245. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Origin: Rasvumchorr Mt., Khibiny alkaline complex, Kola peninsula, Murmansk region, Russia (type locality). Description: Dark lavender grains from the association with nepheline, sodalite, potassium feldspar, delhayelite, aegirine, shcherbakovite, villiaumite, natrite, nacaphite, rasvumite, and djerfisherite. Holotype sample. The crystal structure is solved. Trigonal, space group $R3m$, $a = 14.2956(2)$, $c = 30.0228(5)$ Å, $V = 5313.6(2)$ Å³, $Z = 3$. $D_{\text{meas}} = 2.82(2)$ g/cm³, $D_{\text{calc}} = 2.848$ g/cm³. Optically uniaxial (+), $\omega = 1.603(2)$, $\varepsilon = 1.605(2)$. The empirical formula is (electron microprobe, H_2O calculated): $(Na_{11.75}Sr_{0.29}Ba_{0.03})(K_{2.28}Na_{0.72})Ca_{5.99}(Fe_{2.26}Mn_{0.16})(Zr_{2.80}Ti_{0.15}Hf_{0.03}Nb_{0.02})$ $(Si_{1.96}Al_{0.04})(Si_3O_9)_2(Si_9O_{27})_2[(OH)_{1.42}O_{0.58}]Cl_{1.62}.0.48H_2O$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 2.981 (100) (315), 2.860 (96) (404), 4.309 (66) (205), 3.207 (63) (208), 6.415 (54) (104), 3.162 (43) (217).

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Khomyakov et al. (2013).

Wavenumbers (cm^{-1}) : 3520w, 3450w, 3350w, 1650w, 1046sh, 1021s, 989s, 967s, 930s, 738s, 699, 657, 544, 480s, 450s.

Note: The band position denoted by Khomyakov et al. (2013) as 3590 cm⁻¹ was determined by us at 3520 cm^{-1} .

Sir205 Rippite $K_2(Nb, Ti)_2(Si_4O_{12})O(O,F)$

- Origin: Chuktukon carbonatite massif, Chadobets upland, southern Siberian craton, Krasnoyarsky Kray, Russia (type locality).
- Description: Prismatic crystals from the association with pyrochlore-supergroup minerals, quartz, goethite, baryte, monazite-(Ce), K-feldspar, fluorite, fluorapatite, Ca-REE-fluorcarbonates, Nb-rich rutile, olekminskite, aegirine, etc. Holotype sample. The crystal structure is solved. Tetragonal, space group P4bm, $a = 8.7388(2)$, $c = 8.1277(2)$ Å, $V = 620.69(2)$ Å³, $Z = 2$. $D_{\text{meas}} = 3.17(2)$ g/cm³, $D_{\text{calc}} = 3.198$ g/cm³. Optically uniaxial (+), $\omega = 1.738(2)$, $\varepsilon = 1.747(2)$. The empirical formula is (electron microprobe): $K_{2.00}(Nb_{1.88}Ti_{0.10}Zr_{0.02})(Si_{4.00}O_{12})O(O_{0.88}F_{0.12})$. The strongest lines of the powder X-ray diffraction pattern $[d, \overline{A}(I, \%) (hkl)]$ are: 6.205 (100) (001), 4.383 (83) (020), 4.082 (90) (002), 3.530 (87) (121), 2.985 (81) (022), 2.822 (70) (122), 2.768 (99) (130). Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers $(cm⁻¹)$: 1999w, 1878w, 1660w, 1415sh, 1238s, 1073s, 954s, 910s, 813s, 740sh, 707, 683, 577, 552, 489s, 396s.

Note: The spectrum was obtained by N.V. Chukanov.

Sir206 Dualite $\text{Na}_{30}(\text{Ca},\text{Na},\text{Ce},\text{Sr})_{12}(\text{Na},\text{Mn},\text{Fe},\text{Ti})_{6}Zr_{3}\text{Ti}_{3}\text{Mn}\text{Si}_{51}\text{O}_{144}(\text{OH},\text{H}_{2}\text{O},\text{Cl})_{9}$

Origin: Alluaiv Mt., Lovozero alkaline complex, Kola peninsula, Murmansk region, Russia (type locality). Description: Yellow anhedral grains from the association with K-Na feldspar, nepheline, sodalite, cancrinite, aegirine, alkaline amphibole, eudialyte, lovozerite, lomonosovite, vuonnemite, lamprophyllite, sphalerite, and villiaumite. Holotype sample. The crystal structure is solved. Trigonal, space group $R3m$, $a = 14.153(9)$, $c = 60.72(5)$ Å, $V = 10,533(22)$ Å³, $Z = 3$. $D_{\text{meas}} = 2.84$ (3) g/cm³, $D_{\text{calc}} = 2.814$ g/cm³. Optically uniaxial (+), $\omega = 1.610(1)$, $\varepsilon = 1.613(1)$. The crystalchemical formula is $(Na_{29.79}Ba_{0.1}K_{0.10})_{230}(Ca_{8.55}Na_{1.39}REE_{1.27}Sr_{0.79})(Na_{3.01}Mn_{1.35}Fe^{2+}{}_{0.87}Ti_{0.77})$ $(Zr_{2.61}Nb_{0.39})(Ti_{2.52}Nb_{0.48})(Mn_{0.82}Si_{0.18})(Si_{50.77}Al_{0.23})O_{144}[(OH)_{6.54}(H_2O)_{1.34} \cdot Cl_{0.98}]$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 7.11 (40) (110), 4.31 (50) (0.2.10), 2.964 (100) (1.3.10), 2.839 (90) (048), 2.159 (60) (2.4.10, 0.4.20), 1.770 (60) (2.4.22, 4.0.28, 440), 1362 (50) (5.5.12, 3.0.42).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. **Wavenumbers (cm⁻¹):** 3485w, 3314w, 1650w, 1063s, 1015s, 995s, 931s, 780w, 740, 694, 652, 525, 485, 450, 395sh, 375.

Description: Prepared in a solid-state reaction. The crystal structure is solved. Hexagonal, space group P6/mcc, $a = 10.211$, $c = 14.152 \text{ Å}$, $V = 1277.8 \text{ Å}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Nguyen et al. (1980).

Wavenumbers (cm⁻¹): 1203sh, 1170sh, 1140sh, 1110s, 1060sh, 1020s, 900sh, 785, 755sh, 648, 606, 567, 534s, 476sh, 460s, 437s, 398sh, 385s.

Sil308 Luanshiweiite $KLiAl_{1.5}(Si_{3.5}Al_{0.5})O₁₀(OH)₂$

Origin: Ognyovskoe Ta deposit, Ognyovka-Bakennoe pegmatite field, Kalba ridge, Kazakhstan.

Description: Lilac grains from the association with albite, microcline, and quartz. Investigated by A.V. Kasatkin. The empirical formula is $(K_{0.86}Na_{0.05}Cs_{0.02})(Li_{1.10}Al_{1.51}Mn_{0.09})(Si_{3.26}Al_{0.74}O_{10})$ $(OH)_{1.53}F_{0.47}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3634, 1087s, 1015sh, 1002s, 801, 753, 700sh, 555sh, 531s, 479s, 438. Note: The spectrum was obtained by N.V. Chukanov.

Sil309 Sodium lithium aluminosilicate Na₃Li₂(AlSi₂O₈) Na₃Li₂(AlSi₂O₈)

Origin: Synthetic.

- **Description:** Synthesized by heating a stoichiometric mixture of Li_2CO_3 , Na₂CO₃, Al₂O₃, and SiO₂ at 630 °C for 48 h with several intermediate grindings and mixings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group Cmca, $a = 14.1045$ (19) Å, $b = 14.7054(19)$ Å, $c = 7.0635(9)$ Å, $V = 1465.1(3)$ Å³, $Z = 8$. $D_{calc} = 2.666$ g/cm³. The structure is based on a 2D layer, which is composed of $[Al_2Si_2O_{12}]$ rings and SiO_4 tetrahedra.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Han et al. (2013).

- Wavenumbers (cm⁻¹): 1640sh, 1505, 1458s, 1051s, 1012s, 990sh, 951s, 872sh, 858s, 720sh, 680, 607w, 491.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 1458 cm^{-1} (erroneously assigned by the authors to the Si-O-Al bridges) indicates that the sample is contaminated by a carbonate.

Sil310 Tobelite hydrated variety $(NH_4,H_2O)Al_2[(Si,Al)_4O_{10}](OH)_2. nH_2O$ (?) "Ammonium illite"

Origin: Synthetic.

- **Description**: Prepared hydrothermally from metakaolin powder and 25% NH₃ solution at 300 °C for 1 h. Characterized by powder X-ray diffraction data. The basal spacing of the product is 10.74 Å.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Wang et al. (2013).

- Wavenumbers (cm⁻¹): 3634, 3446, 3340sh, 3075sh, 2850sh, 1635, 1432, 1278w, 1182sh, 1014s, 982sh, 940sh, 825w, 801w, 741sh, 723, 538s, 481s, 421sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sil311 Falcondoite Ni₄Si₆O₁₅(OH)₂⋅6H₂O

Origin: Falcondo Mine, Bonao, La Vega Province, Dominican Republic (type locality).

Description: Green sample confirmed by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission. Source: Reddy et al. (1987).

Wavenumbers (cm⁻¹): 3400, 3200, 1630, 1195, 1048, 1000s, 775sh, 674, 651sh, 465s, 440sh, 365sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sil312 Imogolite $Al_2SiO_3(OH)_4$

Origin: Natural sample; the locality is not indicated.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Farmer et al. (1979).

Wavenumbers $(cm⁻¹)$: 989s, 941s, 691, 593s, 504, 423, 346.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Sil313 Imogolite $\text{Al}_2\text{SiO}_3(\text{OH})_4$

- Description: Amorphous product of interaction between hydroxyaluminium and orthosilicic acid in dilute aqueous solutions of $pH < 5$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Farmer et al. (1979).

Wavenumbers $(cm⁻¹)$: 985s, 938s, 691, 579s, 505, 423, 346.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Sil314 Kanemite HNaSi₂O₅⋅3H₂O

Origin: Synthetic.

- Description: Synthesized according to known methods. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Huang et al. (1998).

Wavenumbers (IR, cm⁻¹): 3582, 3463s, 1692sh, 1642, 1433, 1167s, 1087sh, 1049s, 1012sh, 899, 777, 687w, 661w, 619sh, 571, 508sh, 457s, 393sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3150w, 1060s, 1015s, 788w, 699w, 646w, 503w, 489w, 465s, 419, 372, 285, 261, 237, 185w, 173w, 154w, 137w, 129, 122, 107w, 100w.

Sil315 Margarite $CaAl₂Si₂Al₂O₁₀(OH)₂$

Origin: Enontekiö, northern Finland.

Description:A Li- and Be-poor variety.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lahti and Saikkonen (1985).

- Wavenumbers (cm⁻¹): 3634, 3461w, 1825w, 1634w, 1400w, 987sh, 925s, 910sh, 828sh, 734sh, 698s, 609, 541s, 490s, 442, 392, 273.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance.

Sil316 Plumbophyllite Pb₂Si₄O₁₀⋅H₂O

Origin: Blue Bell claims, near Baker, San Bernardino Co., California, USA (type locality).

- Description: Pale blue prismatic crystals from the association with cerussite, chrysocolla, fluorite, goethite, gypsum, mimetite, opal, plumbotsumite, quartz, sepiolite, and wulfenite. Holotype sample. The crystal structure is solved. Orthorhombic, space group *Pbcn*, $a = 13.2083(4)$, $b = 9.7832$ (3), $c = 8.6545(2)$ Å, $V = 1118.33(5)$ Å³, $Z = 4$. $D_{\text{meas}} = 3.96(5)$ g/cm³, $D_{\text{calc}} = 3.940$ g/cm³. Optically biaxial (+), $\alpha = 1.674(2)$, $\beta = 1.684(2)$, $\gamma = 1.708(2)$, $2V = 66(2)°$. The empirical formula is Pb_{1.79}Cu_{0.02}Si_{4.00}O_{9.62}(OH)_{0.38}·1.02H₂O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.88 (97) (110), 6.63 (35) (200), 4.90 (38) (020), 3.623 (100) (202), 3.166 (45) (130), 2.938 (57) (312, 411, 222), 2.555 (51) (132, 213), 2.243 (50) (521, 332).
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: Kampf et al. (2009b).

Wavenumbers (IR, cm^{-1}) : 3452, 3200w, 1636w, 1067, 1019sh, 958s, 915sh, 771, 711, 640w, 499, 465s, 439s.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3561, 3468, 3338, 3209, 1062, 1024s, 980, 923s, 641, 506, 480, 347, 329, 251, 209, 146, 94s.

Sil317 Protoimogolite

Origin: Synthetic.

- Description: Amorphous product of interaction between hydroxyaluminium species and orthosilicic acid in dilute aqueous solutions of $pH < 5$ at 20 °C.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Farmer et al. (1979).

Wavenumbers $(cm⁻¹)$: 968s, 691sh, 588s, 504sh, 423, 344.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Sil318 Pyrophyllite $Al_2Si_4O_{10}(OH)_2$

Origin: Nakamuraguchi, Yano-Shokozan area, Hiroshima Prefecture, Japan.

Description: Fine-grained aggregate. Characterized by powder X-ray diffraction data and electron microprobe analyses. Triclinic, $a = 5.16(1)$, $b = 8.96(1)$, $c = 9.37(2)$ Å, $\alpha = 90.8(2)^\circ$, $\beta = 101.0$ $(2)^\circ$, $\gamma = 89.8(2)^\circ$. The empirical formula is close to that of the end-member.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wiewióra and Hida (1996).

- Wavenumbers (cm⁻¹): 3676, 3646, 1121s, 1070s, 1052s, 950s, 853, 835, 813, 737w, 625w, 576, 541s, 520, 484s, 462, 418, 396w, 359, 334w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sil319 Silinaite NaLiSi₂O₅∙2H₂O

Description: Characterized by powder X-ray diffraction data. Monoclinic, space group $A2/n$, $Z = 4$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Huang et al. (1999a).

- Wavenumbers (IR, cm⁻¹): 3558sh, 3490s, 3396, 3265, 1667, 1639, 1376w, 1189, 1159, 1111, 1042sh, 1026s, 955s, 757, 677w, 627, 535, 456s, 430sh, 375, 339w.
- Note: The weak band at 1376 cm^{-1} corresponds to the admixture of a nitrate in KBr. The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3472, 3389, 3259, 1652, 1068s, 1000w, 956, 773w, 734w, 635, 609s, 501, 490w, 466, 423, 408, 371, 342, 327, 279, 259, 250, 227, 196, 163, 148, 126, 107.

Sil320 Cookeite $(AI, Li)_{3}Al_{2}(Si, Al)_{4}O_{10}(OH)_{8}$

Origin: Nagol'nyi Kryazh, Lugansk region, Ukraine (type locality).

Description: White scales with pearly lustre from the association with quartz. Investigated by A.V. Kasatkin and Y.V. Bychkova. The empirical formula is $Li_{0.92}Al_{3.97}(Si_{3.29}Al_{0.71}O_{10})(OH,O)_{8}$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm^{-1}) : 3694, 3650, 3620, 3528, 3327, 1165sh, 1110sh, 1045sh, 1025sh, 1008s, 950sh, 925sh, 835sh, 795sh, 749, 707w, 639w, 565sh, 536s, 518s, 475s, 432w, 415w.

Sil321 Windhoekite Na-bearing variety $(Ca,Na)_2Fe^{3+}$ _{3+x}[(Si,Al)₈O₂₀](OH)₄·*n*H₂O

Origin: Ariskop Quarry, Aris, near Windhoek, Windhoek district, Khomas Region, Namibia (type locality). Description: Clusters of brown acicular crystals from the association with fluorapofillite, aegirine, and microcline. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 14.0626(3)$, $b = 17.9007(8), c = 5.2527(2)$ $\text{\AA}, \beta = 104.4(6)^\circ, V = 1280.3(2)$ $\text{\AA}^3, Z = 2$. A specific feature of Na-rich windhoekite is the presence of the fivefold coordination $M(4)$ -site occupied by Ca and Na in the atomic ratio 1:1, which is attached to a ribbon consisting of Fe³⁺- and Ca-centered octahedra and sandwiched between two opposing tetrahedral ribbons. The empirical formula is (electron microprobe): $K_{0.08}Na_{0.42}Ca_{1.15}Fe^{3+}{}_{3.52}Mn_{0.41}Cr_{0.04}Ti_{0.10}(Si_{7.44}Al_{0.56})O_{20}(OH)_{x}nH_{2}O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3558, 3434, 3245w, 1636, 1175, 1012s, 810w, 678w, 490sh, 452s. Note: The spectrum was obtained by N.V. Chukanov.

Transmittance 400 800 1600 2000 2400 1200 2800 3200 3600 4000 Wavenumber $(cm⁻¹)$

Sil322 Stevensite $(Ca,Na)_xMg_{3-y}Si_4O_{10}(OH)_2$

Origin: Ghassoul locality, Atlas Mts., Morocco.

- Description: Characterized by powder X-ray diffraction data, thermal and chemical analyses. Basal spacing value is equal to 13.5 Å. Weight loss on ignition at 1000 \degree C is 7.19%.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Benhammou et al. (2011).

Wavenumbers (cm⁻¹): 3678, 3630, 3447, 1650, 1022s, 787sh, 692sh, 675, 527sh, 471s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. Weak bands in the ranges from 2800 to 3000 cm^{-1} and from 2300 to 2400 cm^{-1} correspond to the admixture of an organic substance and to atmospheric $CO₂$, respectively.

Sil323 Sudoite $Mg_2Al_3(Si_3Al)O_{10}(OH)_8$

Origin: Kamikita, Aomori prefecture, Japan.

- **Description**: The empirical formula is $(K_{0.01}Na_{0.115}Ca_{0.005}Mg_{1.385}Fe^{3+}{}_{0.035}Al_{3.29})(Si_{3.125}Al_{0.875})$ $O_{10}(OH)_{8}.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Shirozu and Ishida (1982).
- Wavenumbers (cm⁻¹): 3610, 3530, 3340w, 1049sh, 993s, 940sh, 918sh, 835w, 700, 557, 527, 472s, 455s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sil324 "Tetraferrinontronite" $Na_{0.75}Fe_2(Si_{3.25}Fe_{0.75}O_{10})(OH)_2$

Origin: Synthetic.

Description: Synthesized hydrothermally. Characterized by powder X-ray diffraction data; $b \approx$ 9.25 Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorpion. Source: Petit et al. (2015).

Wavenumbers $(cm⁻¹)$: 989, 859sh, 813, 710, 671, 597, 490, 450, 425.

- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, the following wavenumbers are given: 3562, 993s, 851sh, 812, 710w, 669w, 598w, 490s, 449, 420.
- Note: The compound is described as a smectite, but compositional and PXRD data correspond to a dioctahedral mica.

Sil325 Yangzhumingite $KMg_{2.5}Si_4O_{10}F_2$

Origin: A lamproitic dyke at the Kvaløya Island, North Norway.

- **Description**: Grains from the association with low-Al phlogopite, apatite, Fe-bearing potassium feldspar, quartz, and alkali amphibole. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 5.2677(3)$, $b = 9.1208(5)$, $c = 10.1652(6)$ Å, $\beta = 100.010(4)$ °. The empirical formula is $(K_{0.98}Na_{0.03})(Mg_{2.35}Fe_{0.23}Cr_{0.01}Ti_{0.02}Ni_{0.01}\Box_{0.38})(Si_{3.66}Al_{0.34}O_{10})F_{1.16}(OH)_{0.84}$
- Kind of sample preparation and/or method of registration of the spectrum: Micro-FTIR measurement on a crystal mounted on glass capillary.

Source: Schingaro et al. (2014).

Wavenumbers $(cm⁻¹)$: 3605w, 3586, 3550, 3537, 1638w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sil326 Montmorillonite $(Na,Ca)_{0,3}(A1,Mg)_{2}(Si_{4}O_{10})(OH)_{2}nH_{2}O$

Origin: Voudia bentonite quarry, Milos Island, Greece.

Description: Gray nodule from the association with natroalunite. The empirical formula is (electron microprobe): $(Ca_{0.12}K_{0.06}Na_{0.04})(Al_{1.40}Mg_{0.35}Fe_{0.20}Ti_{0.04}Cr_{0.01})(Si_{3.83}Al_{0.17}O_{10})nH_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3630, 3420, 3250sh, 1638, 1405sh, 1110sh, 1041s, 917, 890sh, 842w, 800sh, 695sh, 619, 525s, 467s, 424.

Note: The spectrum was obtained by N.V. Chukanov.

Sil328 Hydrobiotite K(Mg,Fe²⁺)₆(Si,Al)₈O₂₀(OH)₄⋅nH₂O

Origin: Tsigrado perlite quarry, Milos Island, Greece.

Description: Dark brown platy crystals from perlite. The empirical formula is (electron microprobe): $(K_{0.35}Na_{0.10}Ca_{0.04})(Mg_{1.67}Fe_{1.08}Ti_{0.23}Mn_{0.02})(Si_{2.76}Al_{1.21}Fe_{0.03}O_{10})(OH)_2.7hH_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3525sh, 3406, 3250sh, 1638, 1075sh, 1010s, 715sh, 677, 448s. Note: The spectrum was obtained by N.V. Chukanov.

Sil329 Cookeite $(AI,Li)_{3}Al_{2}(Si,Al)_{4}O_{10}(OH)_{8}$

Origin: Coronel Murta, Minas Gerais, Brazil.

Description: Yellow split platelets from the association with F-rich muscovite and elbaite. A hydrated sample. The empirical formula is $(L_{1.07}Al_{3.82}Fe_{0.11})(Si_{3.14}Al_{0.86}O_{10})(OH)_{7.8}F_{0.2}nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3640sh, 3610sh, 3588, 3535sh, 3355, 1644w, 1085sh, 1040sh, 1008s, 749, 635w, 521s, 476s, 430sh, 420sh, (363).

Note: The spectrum was obtained by N.V. Chukanov.

Sil330 Ferrisepiolite $(Fe^{3+},Fe^{2+},Mg)_{4}[(Si,Fe^{3+})_{6}O_{15}](O,OH)_{2}·6H_{2}O$

Origin: Flora (Selsurt) Mt., Lovozero alkaline complex, Kola Peninsula, Murmansk region, Russia. Description: Beige fibrous aggregate from the association with yofortierite and narsarsukite. Characterized by semiquantitative electron microprobe analyses. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1653, 1193, 1108, 1034s, 995sh, 822w, 789w, 732w, 680, 652, 475s, 451s. Note: The spectrum was obtained by N.V. Chukanov.

Sil331 Wesselsite $SrCuSi₄O₁₀$

Origin: Synthetic.

- Description: Synthesized via sol-gel method and calcined at 900 °C. Characterized by powder X-ray diffraction data and EDS analyses. Tetragonal, $a = 7.366$, $c = 15.574$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Zhang et al. (2016b).

- Wavenumbers (cm⁻¹): 1226s, 1161s, 1082sh, 1054s, 1009s, 793w, 753, 661s, 596, 562, 521, 479s, 425s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Bands above 1400 cm^{-1} are due to impurities.

Sil332 Hydronaujakasite Na₂(H₂O,H₃O)₄Fe[Al₄Si₈O₂₂(OH,O)₄]

Origin: Tuperssuatsiait bay, southern part of the Ilímaussaq alkaline complex, Narsaq, Kujalleq, South Greenland (type locality).

Description: Peripheral zones (replacement rims) up to 1 mm thick of naujakasite crystals. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 14.983(8)$, $b = 7.998(4)$, $c = 10.403(6)$ Å, $\beta = 113.874(8)^\circ$, $V = 1140.0(11)$ \AA^3 , $Z = 2$. $D_{\text{meas}} = 2.66(1)$ g/cm³, $D_{\text{calc}} = 2.673$ g/cm³. Optically biaxial (+), $\alpha = 1.525(2)$, $\beta = 1.530(2)$, $\gamma = 1.545$. The empirical formula is $H_{10.78}Na_{1.83}Ca_{0.09}$ Fe^{2+} _{0.90}Mn_{0.20}Al_{3.95}Si_{8.05}O_{29.52}.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3540sh, 3420, 3260sh, 1646w, 1103s, 1065sh, 1018s, 994s, 985s, 928s, 875sh, 742, 708, 700sh, 625w, 593, 550sh, 533, 502, 460s, 399, 385sh.

Note: The spectrum was obtained by N.V. Chukanov.

Sil333 "Hydrochamosite-1M" $(Fe, Al, Mg)_6(Si, Al)_4O_{10}(OH)_8nH_2O$

Origin: Karagach ridge, Karadag Mts., Crimea Peninsula, Russia.

Description: Olive-green, powdery. Investigated by A.V. Kasatkin. The observed lines of the powder X-ray diffraction pattern [d, Å] are: 14.50s, 7.18s, 4.80w, 4.61, 3.57, 2.85, 2.65, 2.49s, 2.09s,

1.55w, 1.52, 1.47w, 1.42w, 1.34w, 1.30, 1.23w, 1.18w.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3579s, 3380sh, 1652, 1075sh, 991s, 947s, 770sh, 730sh, 671, 634, 545sh, 445sh, 433s.

Sil334 "Ferrisaponite" $Ca_x(Fe^{3+}, Mg)_{3-y}[(Si, Al)_4O_{10}](O,OH)_2. nH_2O$

Origin: Pervomaiskiy quarry, Crimea Peninsula, Russia.

Description: Brownish-black grains with submetallic lustre. A product of ferrosaponite oxidation. The empirical formula is (electron microprobe): $Ca_{0.32}Na_{0.10}(Fe_{1.7}Mg_{1.1})(Si_{3.2}Al_{0.8}O_{10})(O,$ OH)₂.nH₂O. The observed lines of the powder X-ray diffraction pattern [d, Å] are: 14.82w, 4.58s, 2.64s, 2.58, 2.42, 2.30, 1.54s.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3510sh, 3440sh, 3406, 3250sh, 1635, (1420), 1090sh, 1014s, 830sh, 727, 673, 628, 437s.

Sif148 Glass (K, Cs) AlSi_{5–6}O_x

Origin: Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka peninsula, Russia.

Description: Greenish with conchoidal fracture. Investigated by I.V. Pekov. Characterized by qualitative electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3565, (3340w), 1140sh, 1110sh, 1087s, 885sh, 793, 735sh, 673, 619w, 606w, 463s.

Note: The spectrum was obtained by N.V. Chukanov.

Sif149 Hydroxycancrinite (?) $\text{Na}_{8-x}(\text{Si}_6\text{Al}_6\text{O}_{24})(\text{CO}_3)_{\leq 1} \cdot n\text{H}_2\text{O}$ Cancrinite $CO₃$ -deficient

Origin: Synthetic.

Description: Synthesized hydrothermally at 200 °C from a charge containing 0.7 g of kaolinite, 0.425 g of $Na₂CO₃$, and 17 ml of 0.8 M NaOH solution during 22 h, see Chukanov et al. (2012a). Characterized by powder X-ray diffraction and semiquantitative electron microprobe analyses. Hexagonal, $a = 12.703(1)$, $c = 5.181(1)$ Å, $V = 723.9(3)$ Å³. The empirical formula is Na₆. $7(Si_{6.1}Al_{5.9}O_{24})(CO_3)_x nH_2O (x \approx 0.45).$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3600, 3540w, 1636, 1477, 1409w, 1385sh, 1262w, 1110, 1130sh, 1007s, 758w, 686, 626, 572, 495sh, 461s, 433s, 394.

Sif150 Depmeierite $\text{Na}_{8}[\text{Al}_{6}\text{Si}_{6}\text{O}_{24}](\text{PO}_{4},\text{CO}_{3})_{1-x}$: 3H₂O ($x < 0.5$)

Origin: Synthetic.

Description: Synthesized hydrothermally at 200 °C from a charge containing 0.7 g of kaolinite, 1.7 g of Na₃PO₄, and 17 ml of 0.8 M NaOH solution during 10 h, see Chukanov et al. (2012a). Characterized by powder X-ray diffraction and electron microprobe analyses. Hexagonal, $a = 12.703(4)$, $c = 5.166$ (2) Å, $V = 722.0(5)$ Å³. The empirical formula is $H_xNa_{7.15}(Si_{6.22}Al_{5.78}O_{24})(PO_{4})_{0.59}mH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. **Wavenumbers (cm⁻¹):** 3607, 3533w, 1635, 1150sh, 1095, 1006s, 850w, 758w, 685, 624, 562, 550sh, 505, 460s, 433s, 391.

Description: Synthesized hydrothermally at 200 °C from a charge containing 0.7 g of kaolinite, 1.7 g of K2SO4, and 17 ml of 0.8 M NaOH solution during 10 h, see Chukanov et al. (2012a). Characterized by powder X-ray diffraction and electron microprobe analyses. Hexagonal, $a = 12.800(1)$, $c = 5.246$ (1) Å, $V = 744.3(2)$ Å³. The empirical formula is $K_{2.02}Na_{6.17}(Si_{6.01}Al_{5.99}O_{24})(SO_4)_{0.94}(OH)_x nH_2O$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3617, 3555sh, 1635, (1552w), 1156, 1103s, 1014s, 981s, 756w, 679, 625, 564, 497, 454s, 429s, 391.

Note: The spectrum was obtained by N.V. Chukanov.

Sif152 Vishnevite $\text{Na}_8(\text{Si}_6\text{Al}_6\text{O}_{24}) (\text{SO}_4) \cdot 2\text{H}_2\text{O}$

Origin: Synthetic.

Description: Synthesized hydrothermally at 200 °C from a charge containing 0.7 g of kaolinite, 1.7 g of Na₂SO₄, and 17 ml of 0.8 M NaOH solution during 10 h, see Chukanov et al. (2012a). Characterized by powder X-ray diffraction and electron microprobe analyses. Hexagonal, $a = 12.689(1)$, $c = 5.180$ (1) Å, $V = 722.2(2)$ Å³. The empirical formula is Na_{8.03}(Si_{6.01}Al_{5.99}O₂₄)(SO₄)_{0.96}(CO₃,OH)_x·nH₂O. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3603, 3526w, 3430, 1635, 1164, 1152, 1101s, 1035s, 1007s, 980sh, 876w,

762w, 684, 622, 572, 503, 461, 430, 391.

Sif153 Vishnevite CO_3 -bearing $Na_8(Si_6Al_6O_{24})(SO_4, CO_3)$. $2H_2O$

Description: Synthesized hydrothermally at 200 °C from a charge containing 0.7 g of kaolinite, 0.43 g of Na2CO3, 0.43 g of Na3PO4, 0.43 g of Na3SO4, 0.43 g of Na2C2O4, and 17 ml of 0.8 M NaOH solution during 67 h, see Chukanov et al. (2012a). Characterized by powder X-ray diffraction and electron microprobe analyses. Hexagonal, $a = 12.674(1)$, $c = 5.1667(2)$ Å, $V = 718.7(4)$ Å³. The empirical formula is $Na_{7.52}(Si_{6.18}Al_{5.82}O₂₄)(SO₄)_{0.62}(CO₃)_{0.19}(PO₄)_{0.03}·nH₂O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3608, 3536w, 1631w, 1425w, 1151, 1107s, 1036s, 1008s, 963s, 762w, 684, 623, 573, 500, 463s, 425s, 391.

Note: The spectrum was obtained by N.V. Chukanov.

Sif154 Cancrinite NO₃-analogue $Na_8(Si_6Al_6O_{24})$ (NO₃,CO₃)_{2-x}·3H₂O

Description: Synthesized hydrothermally at 160 °C from a charge containing 1 g of kaolinite, 4 g of NaNO₃, and 45 ml of 8 M NaOH solution during 120 h (see Chukanov et al. 2011, 2012a). Characterized by powder X-ray diffraction and electron microprobe analyses and gas chromatography of annealing products. The crystal structure is solved. Hexagonal, space group $P6₃$, $a = 12.6743(2), c = 5.18289(13)$ Å, $V = 721.02(2)$ Å³. The empirical formula is $Na_{7.8}(Si_{6.05}Al_{5.95}O_{24})(NO_3)_{1.32}(CO_3)_{0.27}$.3.3H₂O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3611, 3535, 3449, 1629, 1438sh, 1423s, 1384w, 1117, 1036s, 998s, 823w, 763w, 730w, 684, 675sh, 622, 575, 504, 464s, 433s, 389.

Note: The spectrum was obtained by N.V. Chukanov.

Sif155 Cancrinite NO₃-analogue low-hydrous $\text{Na}_{8}(\text{Si}_{6}\text{Al}_{6}\text{O}_{24}) (\text{NO}_{3}, \text{CO}_{3})_{2-x} \cdot \text{H}_{2}\text{O}$

Origin: Synthetic.

Description: Product of partial dehydration of the NO_3 -analogue of cancrinite Sif154 at 300 °C (see Chukanov et al. 2011, 2012a). The empirical formula is $Na_{7.8}(Si_{6.05}Al_{5.95}O_{24})$ $(NO_3)_{1.32}$ $(CO_3)_{0.27}$ nH_2O $(n \approx 1)$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3604w, 1628w, 1438sh, 1422s, 1384w, 1108, 1036s, 997s, 823w, 762w,

730w, 684, 675sh, 624, 575, 507, 464s, 434s, 387.

Sif156 Cancrinite Ca-free analogue Na₈[Al₆Si₆O₂₄](CO₃)⋅4H₂O

Origin: Synthetic.

Description: Synthesized hydrothermally from kaolinite, NaOH, and NaHCO₃ at 473 K for 48 h. Characterized by thermal data and powder X-ray diffraction. Hexagonal, space group $P6₃$, $a = 12.663(2), c = 5.1738(9)$ Å. The empirical formula is $N_{8,28}[Al_{5,93}Si_{6,07}O_{24}]$ $(CO_3)_{0.93}$ (OH)_{0.49}⋅3.64H₂O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Kurdakova et al. (2014).

- Wavenumbers (cm⁻¹): 3601s, 3530s, 2520w, 2425w, 2060w, 1950w, 1630, 1474, 1370, 1114, 1044s, 1010s, 960s, 875sh, 761w, 683, 625, 573.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sif157 Carnegieite (high) $Na(AlSiO₄)$

Origin: Synthetic phase polymorphous with nepheline.

Description: Prepared from hydrated alumina gel, NaOH, and highly reactive aerosol silica at 800° with subsequent annealing at 1300 °C. Characterized by powder X-ray diffraction data. Cubic, space group $P2_13$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Nayak and Kutty (1998).

Wavenumbers $(cm⁻¹)$: 1100sh, 996s, 925sh, 700s, 640, 583, 517, 474s.

Sif158 Carnegieite (low) Na(AlSiO₄)

Origin: Synthetic phase polymorphous with nepheline.

Description: Prepared from hydrated alumina gel, NaOH, and highly reactive aerosol silica at 800°. Characterized by powder X-ray diffraction data. Orthorombic, space group $Pb2_1a$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Nayak and Kutty (1998).

Wavenumbers $(cm⁻¹)$: 1100sh, 1016s, 950sh, 687, 620sh, 586sh, 468, 439sh.

Sif159 Hexacelsian $Ba(Al_2Si_2O_8)$

Origin: Synthetic.

Description: Prepared by heating Ba-exchanged synthetic zeolite $4A (Na_{12}Al_{12}Si_{12}O_{48} \cdot 27H_2O)$ up to 1300 °C at a rate of 10 °C/min. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Aronne et al. (2002).

Wavenumbers $(cm⁻¹)$: 1223s, 934s, 878sh, 662, 630, 570, 481s, 460s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. For the IR spectra of hexacelsian and its polymorphs see also Dondur et al. (2005) and Colomban et al. (2000).

 $Sif160$ Rubicline Rb(AlSi₃O₈)

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Roy (1987).

- Wavenumbers (cm⁻¹): 1134s, 1093s, 1053s, 1004s, 770, 725, 645, 607, 578, 537, 465, 419s, 372, 325, 297sh, 274w, 210.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sif161 Sodalite nitrite analogue $\text{Na}_8[\text{AlSiO}_4]_6(\text{NO}_2)_2 \cdot n\text{H}_2\text{O}$

Origin: Synthetic.

Description: Prepared hydrothermally from kaolinite, in the presence of NaNO₂. Characterized by powder X-ray diffraction data. Cubic, $a = 8.931(1)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Buhl (1991).

- Wavenumbers (cm⁻¹): 3645w, 3445w, 1620sh, 1435, 1372sh, 1264, 1005sh, 972s, 722s, 699, 654s, 455s, 424s, 400sh, 350sh, 326sh, 282.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The bands at 1264 and 1372 cm^{-1} correspond to stretching vibrations of NO₂⁻ and NO_3^- , respectively. The band at 1435 cm⁻¹ indicates the presence of CO_3^2 ⁻.

Sif162 Sulfhydrylbystrite $\text{Na}_5\text{K}_2\text{Ca}[\text{Al}_6\text{Si}_6\text{O}_{24}](\text{S}_5)^{2-}(\text{SH})^{-}$

- Origin: Malobystrinskoye lazurite deposit, Malaya Bystraya River basin, Lake Baikal area, Eastern Siberian Region, Russia (type locality).
- Description: Anhedral grains from the association with lazurite, calcite, diopside, phlogopite, and pyrite. Holotype sample. The crystal structure is solved. Hexagonal, space group $P31c$, $a = 12.9567(6)$, $c = 10.7711(5)$ Å, $V = 1566.0(1)$ Å³, $Z = 2$. $D_{\text{meas}} = 2.391(1)$ g/cm³, $D_{\text{calc}} = 2.368$ g/cm³. Optically uniaxial (+), $\omega = 1.661(2)$, $\varepsilon = 1.584(2)$. The empirical formula is Na_{5.17}K_{1.87}Ca_{0.99}(Al_{6.01}Si_{5.99}O₂₄) $(S_5)^{2-}$ _{0.86}(SH)_{0.86}Cl_{0.07}. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.857 (48) (102), 3.948 (38) (211), 3.739 (94) (300), 3.331 (100) (212), 2.715 (32) (401), 2.692 (56) (004).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Sapozhnikov et al. (2016).

- Wavenumbers (cm⁻¹): 3436, 2926, 2855, 2514, 1798, 1634, 1071, 1000, 926, 876, 712, 673, 631sh, 619, 583, 534, 501, 462.
- **Note**: The bands at 3436 and 1634 cm^{-1} correspond to H_2O molecules that are not indicated in the chemical formula of sulfhydrylbystrite. Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance. The assignment of the very weak band at 2514 cm^{-1} to S-H-stretching vibrations made by the authors is ambiguous and questionable.

Sif163 Thallium feldspar $TIAISi₃O₈$

Origin: Synthetic.

Description: Synthesized from a powdered sample of natural low albite and $TINO_3$ in a 1:1 weight ratio under hydrothermal conditions, at 550 \degree C for 5 days. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 8.882(3)$, $b = 13.048(2)$, $c = 7.202(2)$ Å, $\beta = 116.88(1)$ °, $V = 744.5(4)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 3.958$ g/cm³. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 3.94 (64) (200, 111), 3.63 (70) (13-1), 3.62 (80) (22-1), 3.45 (92) (11-2), 3.372 (100) (220), 3.197 (54) (002), 2.992 (78) (131).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Kyono and Kimata (2001).

Wavenumbers $(cm⁻¹)$: 1116s, 1027s, 1014sh, 776, 751, 718, 620sh, 581, 542, 463sh, 423s.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Sif164 Thallium sodalite $Tl_6(Al_6Si_6O_{24})$

- **Description:** Obtained in the ion-exchange reaction between hydroxysodalite $\text{Na}_{8}(\text{Al}_{6}\text{Si}_{6}\text{O}_{24})$ (OH)₂.2H₂O and 1 M aqueous solution of TlNO₃ at 100 °C. The product was dried at 425 °C for 5 h under a vacuum of 10^{-5} Torr. Characterized by powder X-ray diffraction data. The structure was refined by Rietveld analysis. Cubic, $a = 8.9653(1)$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Latturner et al. (1999).

Wavenumbers (cm^{-1}) : 1075, 1013sh, 980s, 960s, 725, 690, 640, 610w, 580w, 535w, 460s, 425s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sif165 Kalsilite KAlSiO₄

Origin: Koashva Mt., Khibiny alkaline complex, Kola peninsula, Murnansk region, Russia.

Description: Crystals from the association with carbobystrite. Investigated by I.V. Pekov. Characterized by powder and single-crystal X-ray diffraction data, as well as electron microprobe analyses. Hexagonal, space group $P6₃$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 2063w, 1992w, 1953w, 1055sh, 1030s, 983s, 689s, 650sh, 480sh, 462s, 383. Note: The spectrum was obtained by N.V. Chukanov.

Sif166 Dmisteinbergite $Ca(Al_2Si_2O_8)$

Origin: Burned dump of the Chelyabinsk coal basin, Kopeisk, South Urals, Russia (type locality). Description: Hexagonal platelets from the association with anorthite, svyatoslavite, troilite, and

cohenite. The empirical formula is (electron microprobe): $Ca_{1.00}Al_{2.01}Si_{2.03}O_{8.07}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Simakin et al. (2010).

- Wavenumbers (IR, cm⁻¹): (1463), (1392), 1231, 1190sh, 1128, 1094, 1049, 1007sh, 935sh, 905s, 650s, 584sh, 510sh, 490s, 443sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range $1300-1500$ cm^{-1} correspond to the admixture of a carbonate. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 903s, 809, 651, 485s, 432s.

Sif_Z127 Erionite-K K₁₀[Si₂₆Al₁₀O₇₂]∙30H₂O

Origin: Karadag Mts., Crimea Peninsula, Russia.

- Description: Light green crystals of erionite-K with zones of erionite-Na. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $K_{1.82}Ca_{1.78}Na_{1.70}Mg_{0.57}(Si_{27.42}Al_{8.27}Fe_{0.30}O_{72})$ $nH₂O$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3575sh, 3455s, 3275sh, 1645, 1135sh, 1058s, 1040sh, 775, 720, 623, 579, 545, 470s, 435, 415.

Note: The spectrum was obtained by N.V. Chukanov.

Sif_Z128 Merlinoite K₅Ca₂(Si₂₃Al₉)O₆₄⋅24H₂O

Origin: Fosso Attici, Sacrofano, Italy.

- Description: Yellowish prismatic crystals from the association with phillipsite. The crystal structure is solved. Orthorhombic, space group *Immm*, $a = 14.066(5)$, $b = 14.111(5)$, $c = 9.943(3)$ Å (at 100 K). $D_{\text{calc}} = 2.177 \text{ g/cm}^3$. The empirical formula is $(K_{5.69}Na_{0.37})(Ca_{1.93}Ba_{0.40}Mg_{0.01})$ $(Si_{21.38}Al_{10.55}Fe³⁺_{0.02})O₆₄·19.6H₂O.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Gatta et al. (2015a).
- Wavenumbers (IR, cm⁻¹): 3589sh, 3539, 1649, 1375, 1156sh, 1015s, 789sh, 764, 698, 647, 592, 440sh, 425s.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm^{-1}): 3470, 1637, (with a 473.1 nm laser); 1087, 496, 422, 320, 125 (with a 632.8 nm laser).

Sif_Z129 Phillipsite-NH₄ (NH₄,Na)₉(Al₉Si₂₇O₇₂]∙24H₂O

Origin: Artificial.

Description: NH₄⁺-exchanged Si-poor phillipsite from Vallerano, Rome, Italy. The crystal structure is solved. Monoclinic, $a = 10.0507(5)$, $b = 14.2016(8)$, $c = 8.7281(8)$ Å, $\beta = 125.123(5)$ °, $V = 1019.0(9)$ \AA^3 , $Z = 4$. The empirical formula is $(NH_4)_{11.41}Na_{1.36}(Al_{13.36}Si_{22.64}O_{72.45})$ 20.6H₂O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Gualtieri (2000).

Wavenumbers (cm⁻¹): 3580, 3402sh, 3131s, 3022sh, 1640, 1465sh, 1406s, 1092sh, 996s, 775sh, 739, 689, 607, 446sh, 438s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sif_Z130 Phillipsite-NH₄ (NH₄,Na)₉(Al₉Si₂₇O₇₂]∙24H₂O

Origin: Artificial.

- Description: NH₄⁺-exchanged phillipsite from Perrier, Puy du D^ome, France. The crystal structure is solved. Monoclinic, $a = 10.0122(8)$, $b = 14.1943(12)$, $c = 8.7284(17)$ Å, $\beta = 125.024(11)$ °, $V = 1015.81(2) \text{ Å}^3$, $Z = 4$. The empirical formula is $(NH_4)_{9.89}Na_{0.45}(Al_{9.92}Si_{26.08}O_{71.96}) \cdot 18.2H_2O$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Gualtieri (2000).

- Wavenumbers (cm⁻¹): 3400-3600 (broad), 3141s, 1645, 1460sh, 1407s, 980-1180 (broad), 786sh, 729, 700, 622, 463s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sif_Z131 Faujasite-Ca $(Ca, Na, Mg)_2(Si, Al)_{12}O_{24}$ 15H₂O

Origin: Quarry No. 1, Limberg, Sasbach, Germany.

Description: Colorless octahedral crystals from cavities in basalt. The empirical formula is (electron microprobe): $(Ca_{11.5}Mg_{10.5}Na_7)(Si_{141}Al_{51}O_{384})\cdot nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3575sh, 3442, 3250sh, 1645, 1140sh, 1021s, 791, 706, 573, 503, 456s, 381. Note: The spectrum was obtained by N.V. Chukanov.

Sif_Z132 Tschernichite CaAl₂Si₆O₁₆⋅8H₂O

Origin: Markaz, Lis-Kas-Kő, Hungary.

Description: Colorless crystals. Identified by morphological features and qualitative electron microprobe analyses. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3577, 3430, 3260sh, 1648, 1210s, 1145, 1035s, 765sh, 711, 620sh, 591, 549sh, 520sh, 508, 460s, 418.

Note: The spectrum was obtained by N.V. Chukanov.

Sif_Z133 Mazzite-Na Na₈(Si₂₈Al₈)O₇₂⋅30H₂O

Origin: Synthetic.

- Description: Prepared hydrothermally in the reaction between magadiite, sodium aluminate, and NaOH in the presence of glycerol, at 120 \degree C with subsequent crystallization for several days under autogenous pressure. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Cui et al. (2014).

- Wavenumbers (cm^{-1}) : 3610sh, 3447s, 2927w, 1641, 1454w, 1107sh, 1046s, 825, 764, 731, 620, 445s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Sif_Z134 Martinandresite $Ba_2(Al_4Si_{12}O_{32})\cdot 10H_2O$

Origin: Wasenalp, near the Isenwegg peak, Ganter valley, Simplon region, Switzerland (type locality). Description: Tan-colored blocky crystal from the association with armenite, quartz, dickite, and chlorite. Holotype sample. The crystal structure is solved. Orthorhombic, space group *Pmmn*, $a = 9.4640(5)$, $b = 14.2288(6)$, $c = 6.9940(4)$ Å, $V = 941.82(8)$ Å³, $Z = 1$. $D_{\text{meas}} = 2.482(5)$ g/ cm³, $D_{\text{calc}} = 2.495 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.500(2)$, $\beta = 1.512(2)$, $\gamma = 1.515(2)$, $2V = 55$ (10)°. The empirical formula is $Na_{0.17}K_{0.04}Ba_{2.00}(Al_{4.19}Si_{11.81}O_{32})H_{19.85}O_{9.93}$. The strongest lines of the powder X-ray diffraction pattern $[d, \dot{A}(I, \mathcal{C}) (hkl)]$ are: 6.98 (74) (001), 6.26 (83) (011), 5.61 (100) (101), 3.933 (60) (220, 031), 3.191 (50) (112), 3.170 (62) (041), 3.005 (79) (231, 141).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm^{-1}) : 3625, 3570sh, 3260sh, 1638, 1167, 1028s, 774w, 728w, 700w, 616, 551, 432s.

Note: The spectrum was obtained by N.V. Chukanov.

Sif_Z135 Rongibbsite $Pb_2(Si_4Al)O_{11}(OH)$

Origin: Big Horn Mts, Maricopa Co., Arizona, USA (type locality).

Description: Colorless prismatic crystals. The empirical formula is (electron microprobe): $Pb_{2.0}Si_{3.75}Al_{1.1}Mg_{0.05}(O,OH)_{12}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3524, 3436, (3347), (1425w), 1103s, 1065s, 1004s, 946s, 794, 724, 656, 600, 569, 549, 485sh, 444s, 425sh, 400, 373.

Note: The spectrum was obtained by N.V. Chukanov.

Sif_Z136 Ferrierite-NH₄ (NH₄,Mg_{0.5})₅(Al₅Si₃₁O₇₂)·22H₂O

Origin: Libous lignite quarry, near Chomutov, Ústí Region, Bohemia, Czech Republic (type locality). Description: Radiated aggregates consisting of fibrous crystals from the association with siderite, opal,

kaolinite, goethite, and organic matter. Holotype sample. Orthorhombic, space group Immm, $a = 19.10(1), b = 14.15(1), c = 7.489(3)$ Å, $V = 2024(3)$ Å³, $Z = 1$. $D_{calc} = 2.154$ g/cm³. Optically biaxial (+), $\alpha = 1.518(2)$, $\beta = 1.520(2)$, $\gamma = 1.522(2)$. The empirical formula is $H_{0.35}[(NH_4)_{2.74}Mg_{1.07}Na_{0.21}](Al_{5.44}Si_{30.56}O_{72})\cdot21.55H_2O$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 6.95 (28) (101), 6.60 (19) (011), 3.988 (61) (321, 031, 420), 3.784 (19) (330), 3.547 (73) (112, 040), 3.482 (100) (202), 3.143 (37) (141, 312).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3610, 3565sh, 3360w, 3250, 3220sh, 1646, 1474, 1216s, 1076s, 1060sh,

791, 730, 707, 681, 647w, 564s, 530sh, 474s, 435s. Note: The spectrum was obtained by N.V. Chukanov.

Si49 Chromium disilicide CrSi₂

Origin: Synthetic.

Description: Thin film prepared by laser ablation of a cast stoichiometric CrSi target under vacuum. The temperature of the substrate was 773 K. Hexagonal, space group P_6222 . Characterized by

powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Transmission of a polycrystalline film.

Source: Chaix-Pluchery and Lucazeau (1998).

Wavenumbers (IR, cm⁻¹): 382, 355s, 297, 290, 252s, 229.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, single crystal, polarization $Y(XX)$ -Y + $\varepsilon Y(XZ)$ -Y, cm⁻¹): 412s, 397, 354, 305s, 300sh, 290w.

Si50 Bridgmanite $MgSiO₃$

Magnesium silicon oxide perovskite-type

Origin: Synthetic.

Description: Obtained from the MgSiO₃ glass in a laser heated diamond anvil cell at 500 kbar. Kind of sample preparation and/or method of registration of the spectrum: CsI or KBr disc. Absorption. Source: Madon and Price (1989).

Wavenumbers (cm⁻¹): 789s, 694, 612s, 550s, 522s, 390w, 347, 320, 282.

Si51 Akimotoite MgSiO₃

Origin: Synthetic.

Description: Synthesized from $MgSiO₃$ glass in a laser heated diamond anvil cell at 500 kbar. Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc. Absorption. Source: Madon and Price (1989).

Wavenumbers $(cm⁻¹)$: 825s, 677s, 631s, 528, 457, 388, 347, 320w, 282.

Si52 Luobusaite β -FeSi₂

Origin: Synthetic.

Kind of sample preparation and/or method of registration of the spectrum: Thin film on single crystal Si substrate. Absorption.

Source: Fenske et al. (1996).

Wavenumbers (cm⁻¹): 456sh, 423, 385w, 363sh, 348s, 312s, 297s, 284sh, 275w, 263, 255sh, 246sh, 229w, 211sh, 199w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Si53 Mendeleevite-(Nd) $Cs_6[(Nd,REE)_{23}Ca_7)(Si_{70}O_{175})(OH,F)_{19}\cdot 16H_2O$

Origin: Dara-i Pioz glacier, Dara-i Pioz alkaline massif, Tien Shan Mts., Tajikistan (type locality).

Description: Anhedral grains from the association with pectolite grains, quartz, aegirine, fluorite, etc. Holotype sample. Cubic, space group $Pm-3$, $a = 21.9106(4)$ Å, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Agakhanov et al. (2016a).

Wavenumbers $(cm⁻¹)$: 3408, 1612, 1011s, 980s, 695sh, 547sh.

Si54 Bridgmanite trigonal polymorph $MgSiO₃$

Origin: Synthetic.

Description: Isostructural with ilmenite. Single crystal.

Kind of sample preparation and/or method of registration of the spectrum: Unpolarized reflection.

Source: Hofmeister and Ito (1992).

Wavenumbers $(cm⁻¹)$: 951, 665, 619, 536w, 448, 377.

Si55 Sapphirine $Mg_4(Mg_3Al_9)O_4[Si_3Al_9O_{36}]$

Origin: Betroka, Anosy Region, Tuléar (Toliara) province, Madagascar.

Description: Metacrystal from metamorphic schist.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Povarennykh (1970).

Wavenumbers (cm⁻¹): 1092s, 1060sh, 1018sh, 913w, 850w, 801, 785, 730, 700, 635w, 590, 564, 515, 472s, 432, 408w.

Sia24 Pearlite $(Na,K)_x(Si_{1-x}Al_xO_2) \cdot nH_2O(x \ll 1)$

Origin: Tsigrado quarry, Milos Island, Greece.

Description: Light gray, semitransparent, massive, from the association with hydrobiotite. The sample contains quartz inclusions.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3442, 1634w, 1160sh, 1078s, 796, 783, 695w, 461s, 400, 375. Note: The spectrum was obtained by N.V. Chukanov.

Origin: Sagåsen, Tvedalen, Larvik, S. Norway.

Description: Yellow spherulites from the association with diaspor. Identified by the IR spectrum. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3618s, 3551s, 1155, 1108, 1035sh, 965s, 933s, 897s, 836s, 770s, 721s, 685sh,

643, 576w, 554w, 493, 419.

Note: The spectrum was obtained by N.V. Chukanov.

BeSi75 Hydroxylgugiaite $(Ca_3\Box)(Si_{3.5}Be_{2.5})O_{11}(OH)_3$

Origin: Larvik plutonic complex, Porsgrunn, Telemark, Norway (type locality).

Description: Pale grey crystals from the association with chlorite and calcite. Holotype sample. The crystal structure is solved. Tetragonal, space group $P-42/$ m, $a = 7.4151(2)$, $c = 4.9652(1)$ Å, $V = 272.9(1) \text{ Å}^3$, $Z = 12$. Optically uniaxial (+), $\omega = 1.622(2)$, $\varepsilon = 1.632(2)$. The empirical formula is $(Ca_{2.76}Na_{0.31}Mn_{0.05}Fe_{0.01})(Si_{3.45}Be_{2.53}Al_{0.07})O_{11}[(OH)_{2.57}F_{0.43}].$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3574, 3500sh, 1105sh, 950s, 925sh, 875sh, 710sh, 676, 539, 487, 447. Note: The spectrum was obtained by N.V. Chukanov.

BeSi76 "Hydroxylgadolinite-(Y)" $(Y,Ca)_2$ (Fe, \Box)Be₂Si₂O₈(OH,O)₂

Origin: Heftetjern granitic pegmatite, Southern Norway.

Description: Bottle-green grains and short-prismatic crystals from the association with feldspar, quartz, and intermediate members of the gadolinite-(Y)–hingganite-(Y) solid-solution series. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 4.7514(10)$, $b = 7.5719(16)$, $c = 9.9414(2)$ Å, $\beta = 90.015(4)^\circ$, $V = 357.663(3)$ Å³, $Z = 2$. $D_{calc} = 3.967$ g/cm³. Optically biaxial (+), $\alpha = 1.760(4)$, $\beta = 1.770(4)$, $\gamma = 1.785(4)$, $2V = 80(10)^\circ$. The empirical formula is $(Y_{1.285}Ca_{0.55}Ce_{0.07}La_{0.04}Nd_{0.01})Fe^{2+}$ _{0.57}Be_{2.02}Si_{1.995}O_{8.48}(OH)_{1.52}. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 4.761 (48) (100), 3.554 (30) (021), 3.452 (30) (10–2, 102), 3.138 (81) (11–2, 112), 2.972 (39) (120), 2.849 (100) (12–1, 121), 2.570 (59) (11–3, 113, 12-2), and 2.215 (27) (211, 12–3, 123).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3517, 3485sh, 970sh, 936s, 809, 752, 704, 585sh, 514, 455, 395sh. Note: The spectrum was obtained by N.V. Chukanov.

BeSi77 Gadolinite-(Y) $Y_2Fe^{2+}Be_2Si_2O_{10}$

Origin: Row Lake, Keivy Mts., Kola Peninsula, Russia.

Description: Black grains from pegmatite. X-ray amorphous, metamict. Confirmed by semiquantitative electron microprobe analysis.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 3518w, 1070sh, 942s, 805sh, 785sh, 715sh, 508, 470. Note: The spectrum was obtained by N.V. Chukanov.

BeSi78 Hingganite-(Y) $Y_2 \Box Be_2Si_2O_8(OH)_2$

Origin: Heftetjern pegmatite, Tørdal, Telemark, Norway.

Description: Olive-green crystals from the association with REE-bearing epidote. A Ca- and Fe-rich variety. The empirical formula is (electron microprobe): $\sim (Y_{1.1}Ca_{0.8}Ln_{0.1})(Fe_{0.35}Al_{0.05})Be_2Si_2O_{8.05}(OH)_{1.95}$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers (cm⁻¹): 3510, 3490sh, 1145sh, 1015sh, 973s, 927s, 800, 725sh, 585sh, 511, 460, 398w. Note: The spectrum was obtained by N.V. Chukanov.

BeSi79 Bityite $\text{CaliAl}_2(\text{Si}_2\text{BeAl})\text{O}_{10}(\text{OH})_2$

Origin: Maantienvarsi pegmatite, Eräjärvi area, Orivesi, southern Finland.

Description: Fine-scaled white to yellowish mass with a pearly lustre from the association with beryl, bertrandite, fluorite, and fluorapatite. Characterized by powder X-ray diffraction data. Monoclinic, space group C2/c or Cc, $a = 4.99$, $b = 8.68$, $c = 19.04$ Å, $\beta = 95.17^{\circ}$, $V = 821.33$ Å³. $D_{\text{meas}} = 3.05 \text{ g/cm}^3$, $D_{\text{calc}} = 3.12 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.650$, $\beta = 1.658$, $\gamma = 1.660$, $2V = 52.9^{\circ}$. The empirical formula is (wet chemical analysis, $Z = 2$): (Ca_{1.93}K_{0.03}Na_{0.02}) $(Li_{1.19}Al_{3.68}Mg_{0.35}Fe_{0.13})(Si_{4.26}Be_{2.21}Al_{1.53})O_{19.30}(OH)_{4.54}F_{0.16}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Lahti and Saikkonen (1985).

- Wavenumbers (cm⁻¹): 3620, 3451, (2924), (2853sh), 1634w, 1453sh, 1400w, 949s, 707s, 568sh, 537s, 431.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

BeSi80 Chiavennite CaMn²⁺(BeOH)₂Si₅O₁₃∙2H₂O

Origin: Chiavenna, Valchiavenna, Sondrio Province, Lombardy, Italy (type locality).

- Description: Euhedral orange grains and crusts from the association with beryl and bavenite. Holotype sample. Orthorhombic, space group $P2_1ab$, $a = 8.729(5)$, $b = 31.326(11)$, $c = 4.903(2)$ Å, $Z = 4$. $D_{\text{meas}} = 2.64(1) \text{ g/cm}^3$, $D_{\text{calc}} = 2.657 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.581(1)$, $\gamma = 1.600(1)$, $2V = 70(5)$ °. The empirical formula is $(Ca_{0.97}Na_{0.05})Mn_{0.97}(Be_{1.98}Al_{0.03})(Si_{4.65}Al_{0.35})$ $O_{12,63}(OH)_{2,37}$ 2.16H₂O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 15.7 (100) (020), 4.15 (30) (041), 3.93 (30) (080), 3.82 (30) (240), 3.28 (75) (201), 2.903 (100) (251, 181), 1.944 (30) (3.12.0).
- Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Bondi et al. (1983).

- Wavenumbers (cm⁻¹): 3590, 3490, 3410, (2910), (2850), (2360), (2330), 1735, 1640, 1625sh, 1458, 1420, 1372sh, 1190sh, 1170, 1035, 995sh, 965sh, 900, 845, 790, 745sh, 680, 650, 585, 515sh, 485, 465sh, 440, 375, 345, 285sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the ranges from 2300 to 2400 cm^{-1} and from 2800 to 3000 cm^{-1} correspond to atmospheric CO₂ and the admixture of an organic substance.

BeSi81 Gugiaite $Ca₂BeSi₂O₇$

Origin: Dugdu alkaline massif, Tuva Republic, Eastern Siberia, Russia.

Description: Rosette-like aggregates of white semitransparent crystals from the association with meliphanite. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1025sh, 1015s, 975s, 915s, 841, 729, 697, 610sh, 564, 470, 419, 404. Note: The spectrum was obtained by N.V. Chukanov.

BeSi82 Leifite $NaNa₆Be₂Al₃Si₁₅O₃₉F₂$

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada.

Description: White radiated aggregate of prismatic crystals. Investigated by A.V. Voloshin. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1175s, 1094s, 1058s, 1023s, 1000s, 935sh, 795sh, 764s, 712, 610sh, 545sh, 515sh, 502, 481, 457, 440s, 419.

Note: The spectrum was obtained by N.V. Chukanov.

BeSi83 Danalite $Fe^{2+}_4Be_3(SiO_4)_3S$

Origin: Lupikko deposit, near Pitkäranta, Ladoga lake, Karelia, Russia.

Description: Dark red grain in skarn, in the association with clinochlore, calcite, and fluorite. The empirical formula is (electron microprobe): $H_xFe_{2.6}Mn_{0.8}Zn_{0.6}Be_3Si_3O_{12}S_{0.9}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 2922 (broad), 1907w, 1830w, 1667w, 1473w, 975sh, 948s, 924s, 910s, 771, 747, 710, 538, 416.

Note: The spectrum was obtained by N.V. Chukanov. The broad band at 2922 cm^{-1} indicates the presence of OH groups forming strong hydrogen bonds.

Origin: Synthetic.

Description: Synthesized from the stoichiometric mixture of Cs_2CO_3 , H_3BO_3 , and SiO_2 by a conventional solid-state reaction technique at 800 $^{\circ}$ C. Structurally related to pollucite.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Rulmont and Tarte (1987).

Wavenumbers (cm^{-1}) : 1037s, 886, 765w, 487, 350w, 88.

BSi100 Potassium borosilicate pollucite-type $K(BSi₂O₆)$

Origin: Synthetic.

Description: Obtained by heating the stoichiometric mixture of K_2CO_3 , H_3BO_3 , and SiO_2 to 800 °C. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Rulmont and Tarte (1987).

Wavenumbers $(cm⁻¹)$: 1120s, 1010s, 900s, 788w, 575w, 495, 427, 340w, 117s.

BSi101 Nolzeite NaMn₂(Si₃BO₉)(OH)₂⋅2H₂O

Origin: Poudrette quarry, La Vallée-du-Richelieu, Montérégie (formerly Rouville County), Québec, Canada (type locality).

- Description: Pale green acicular crystals from the association with aegirine, nepheline, sodalite, eudialyte-group minerals, analcime, natron, pyrrhotite, catapleiite, and steedeite. Holotype sample. The crystal structure is solved. Boron has fourfold coordination. Triclinic, space group $P-1$, $a = 6.894$ (1), $b = 7.632(2)$, $c = 11.017(2)$ Å, $\alpha = 108.39(3)^\circ$, $\beta = 99.03(3)^\circ$, $\gamma = 103.05(3)^\circ$, $V = 519.27$ Å³, $Z = 2$. $D_{\text{calc}} = 2.79$ g/cm³. Optically biaxial, $n_{\text{min}} = 1.616(2)$, $n_{\text{max}} = 1.636(2)$. The empirical formula is $Na_{1.04}(Mn_{1.69}\square_{0.24}Fe_{0.05}Ca_{0.02})(Si_{2.96}S_{0.04})(B_{0.70}Si_{0.30})O_9(OH)_2.2H_2O$. The strongest lines of the powder X-ray diffraction pattern $[d, \mathring{A}(I, \%) (hkl)]$ are: 10.113 (100) (00–1), 6.911 (16) (0–10), $3.593(13)(0-13), 3.026(15)(0-23), 2.808(50)(211, 2-20), 2.675(12)(0-1-3).$
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Haring and McDonald (2016).

- Wavenumbers (IR, cm⁻¹): 3583, 3434s, 3395sh, 3254sh, 3083w, 3062w, 3028w, 2922, 2852w, 1631, 1607sh, 1493w, 1453w, 1385w, 1320w, 1247, 1192sh, 1143s, 1117sh, 1086s, 1044sh, 1030, 993s, 951, 926, 840, 752sh, 717, 697, 685sh, 653w, 618w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2800 to 3100 cm^{-1} may correspond to the admixture of an organic substance. Weak bands in the range from 1240 to 1500 cm^{-1} may correspond to the admixture of an organic substance and/or (partly) carbonate groups. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3548, 3399, 1588, 1290, 1009, 842, 626, 553, 390, 341, 268, 223, 167.

Origin: Tommot REE-Nb deposit, Yakutia, Russia (type locality).

Description: Reddish-brown grains. Trigonal, space group $R3m$, $a = 10.7527(7)$, $c = 27.4002(18)$ Å, $V = 2743.6(6)$ Å³, $Z = 3$. Uniaxial (-), $\omega = 1.734(2)$, $\varepsilon = 1.728(2)$. The empirical formula is $(Y_{3.70}REE_{7.54}Ca_{1.55}Na_{1.16}Mn_{0.77}Th_{0.10}Pb_{0.01})(Fe^{2+}_{0.83}Mn_{0.15}Ti_{0.02})Ca_{1.00}(P_{0.70}Si_{0.26}As_{0.04})$ $\rm Si_{6.05}B_{3.20}(O_{34.55}F_{13.45})$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.441 (36) (202), 3.144 (77) (214), 3.028 (45) (009), 2.968 (100) (027), 1.782 (32) (330), 1.713 (32) (1.2.14).

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission. Source: Kristiansen (2016); for the sample description see Raade et al. (2008).

Wavenumbers $(cm⁻¹)$: 972s, 871sh.

Note: Strong bands above 1200 cm^{-1} correspond to Nujol.

BSi103 Darrellhenryite $Na(LiAl₂)Al₆(BO₃)₃Si₆O₁₈(OH)₃O$

Origin: Nová Ves, Český Krumlov, South Bohemia Region, Czech Republic (type locality).

Description: Pink grains. Fragments of the cotype sample. Characterized by electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3650w, 3584, 3463, 1509w, 1467w, 1385sh, 1359, 1304, 1190sh, 1105sh, 1079s, 1032s, 996s, 880sh, 786, 750sh, 720, 625sh, 565sh, 511s, 495sh, 465sh, 400w, 376w.

Note: The spectrum was obtained by N.V. Chukanov.

BSi104 Darrellhenryite $Na(LiAl₂)Al₆(BO₃)₃Si₆O₁₈(OH)₃O$

Origin: Aleksandrovskoe Ta deposit, Irkutsk region, Siberia, Russia.

Description: Colorless grains from pegmatite. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe, Li calculated): $Na_{0.59}LiAl_{7.98}Ti_{0.02}(BO₃)₃(Si₆O₁₈)(OH)₃(O,OH).$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3649w, 3585, 3469, 3320w, 1507w, 1465w, 1415sh, 1385sh, 1360, 1280, 1185sh,

1080s, 1029s, 990s, 885sh, 830w, 785, 745sh, 719, 635sh, 580sh, 530sh, 510s, 483s, 405sh, 375. Note: The spectrum was obtained by N.V. Chukanov.

Origin: Crabtree Emerald mine, Mitchell Co., North Carolina, USA (type locality).

Description: Olive-green grains from the association with quartz. The empirical formula is (electron microprobe): $(Na_{0.78}Ca_{0.05})(Mg_{1.75}Fe_{1.14}Mn_{0.11})(Al_{5.78}Fe_{0.17}Ti_{0.05})(Si_{5.91}Al_{0.09})(BO_3)_3(OH)_3F_{0.68}(O,$ OH) $_{0.32}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3566, 3490sh, 1347, 1253, 1095s, 1052s, 992s, 780, 760, 715, 681, 649, 611, 579, 508s, 488s, 421, 402w, 381w.

Note: The spectrum was obtained by N.V. Chukanov.

BSi106 Luinaite-(OH) NaFe²⁺₃Al₆(Si₆O₁₈)(BO₃)₃(OH)₃(OH)

Origin: Cleavland Tin mine, Luina, Waratah, Tasmania, Australia (type locality). Description: Aggregate of light green acicular crystals.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers (cm⁻¹): 3550sh, 3521, 1346, 1268, 1093sh, 1033s, 986s, 854w, 775, 753, 704, 652, 600sh, 575sh, 550sh, 509s, 435sh, 374w.

Note: The spectrum was obtained by N.V. Chukanov.

SSi14 Chlorellestadite $Ca_{10}[(SiO₄)₃(SO₄)₃]Cl₂$

Origin: Synthetic.

Description: Synthesized by heating of an appropriate mixture of CaO, CaSO₄, SiO₂, CaCl₂, and CaF₂ first at 900 °C for 5 h and then at 950 °C for 9 h with intermediate grinding. Characterized by powder X-ray diffraction data. The crystal structure is solved. Hexagonal, space group $P6_3/m$, $a = 9.6239(3), c = 6.87749(3)$ Å, $V = 551.64(2)$ Å³. The formula is Ca₁₀(SiO₄)₃(SO₄)₃Cl_{1.6}F_{0.4}. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Source: Fang et al. (2011).

Wavenumbers $(cm⁻¹)$: 1138s, 938s, 910sh, 865sh, 670sh, 644, 615, 561, 508.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, the wavenumber 670 cm^{-1} is erroneously indicated as 660 cm^{-1} .

TiSi318 Fluorbarytolamprophyllite $(Ba, Sr)_2[(Na, Fe^{2+})_3(Ti, Mg)F_2][Ti_2(Si_2O_7)_2O_2]$

Origin: Niva alkaline intrusion, Kola Alkaline Province, Murmansk Region, Russia (type locality). Description: Brown prismatic crystals from the association with orthoclase, titanian aegirine-augite, arfvedsonite, aenigmatite, lamprophyllite, fluorlamprophyllite, barytolamprophyllite, shcherbakovite, and natrolite. Holotype sample. The crystal structure is solved. Monoclinic, space group: $C2/m$, $a = 19.538(1)$, $b = 7.092(1)$, $c = 5.391(2)$ Å, $\beta = 96.704(8)$ °, $V = 741.8$ (3) Å³, Z = 2. $D_{\text{calc}} = 3.662 \text{ g/cm}^3$. Optically biaxial (+), $\alpha = 1.738$ (3), $\beta = 1.745(4)$, $\gamma = 1.777$ (4), $2V = 55(5)$ °. The empirical formula is $(Ba_{0.865}Sr_{0.44}K_{0.46}Na_{0.26})(Na_{2.38}Ca_{0.09}Fe_{0.47}Mn_{0.06})$ $(Ti_{2.79}Mg_{0.09}Fe_{0.035}Nb_{0.06}Zr_{0.015}Ta_{0.01})(Si_{3.99}Al_{0.01})O_{16}[F_{1.04}O_{0.72}(OH)_{0.24}].$ The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 9.692 (40) (200), 3.726 $(59) (-311), 3.414 (67) (311, 510, 401), 3.230 (96) (600), 3.013 (53) (-5-11), 2.780 (100) (221).$ Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: (3610w), 1031, 950s, 866s, 701w, 556, 510sh, 461, 402s. Note: The spectrum was obtained by N.V. Chukanov.

TiSi319 Polyakovite-(Ce) $(Ce, Ca)_{4}MgCr_{2}(Ti, Nb)_{2}Si_{4}O_{22}$

- Origin: Pit No. 97, Ilmen (Il'menskie) Mts, Chelyabinsk region, Southern Urals, Russia (type locality).
- Description: Black grain from the association with calcite, dolomite, fluororichterite, phlogopite, forsterite, monazite-(Ce), clinohumite, chromite, and davidite-(Ce). X-ray amorphous, metamict. The empirical formula is (electron microprobe): $(Ce_{1.8}La_{1.2}Nd_{0.4}Pr_{0.2}Ca_{0.3}Th_{1.15})(Cr_{1.3}Fe_{0.8})$ $Mg_{0.7}Ti_{1.6}Nb_{0.4}Si_4O_{22}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1070sh, 975sh, 952s, 935sh, 675sh, 500sh, 483s, 390sh.

Note: The spectrum was obtained by N.V. Chukanov.

TiSi320 Yoshimuraite $Ba_2Mn^{2+}{}_{2}Ti(Si_2O_7)(PO_4)O(OH)$

Origin: Tanohata mine, Tanohata-mura, Shimohei-gun, Iwate Prefecture, Tohoku Region, Honshu Island, Japan.

Description: Brown platelets. The empirical formula is (electron microprobe): $(Ba_{3.6}Sr_{0.3}Na_{0.1})$ $(Mn_{3.5}Fe_{0.3}Mg_{0.1})(Ti_{1.8}Fe_{0.2})(Si_2O_7)_{2.05}[(PO_4)_{1.1}(SO_4)_{0.7}(CO_3)_x]O_2(OH)_{1.1}F_{0.9}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3665w, 3546w, 1438, 1413, 1177, 1130sh, 1120, 1060sh, 1011s, 922s, 904s, 856s, 805sh, 641w, 617w, 594, 580sh, 562, 526, 448, 374s.

Note: The spectrum was obtained by N.V. Chukanov.

Origin: Ankisuai valley, Suoluaiv Mt., southeastern part of Lovozero alkaline complex, Kola peninsula, Murnansk region, Russia.

Description: Brown crystals from the association with seidozerite, aegirine and K-feldspar. The empirical formula is (electron microprobe): $(Na_{1.66}Ca_{0.34})(Fe_{0.27}Mn_{0.24}Ti_{0.24}Ca_{0.18}Al_{0.05})$ $(Zr_{0.84}Nb_{0.15}Ti_{0.01})(Si_{1.99}Al_{0.01})O_7(OH,F)_2.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1084s, 928s, 875s, 720sh, 595sh, 562, 522, 450s, 411. Note: The spectrum was obtained by N.V. Chukanov.

TiSi322 Potassium titanium silicate K₂TiSi₃O₉⋅H₂O K₂TiSi₃O₉⋅H₂O

Origin: Synthetic.

- **Description:** Prepared hydrothermally from a solution containing TiCl₄, H_2O_2 , SiO₂, KOH, and NaOH, at 180 \degree C for 7 days. Characterized by powder X-ray diffraction data and elemental analysis. The crystal structure is solved. Orthorhombic, space group $P2_12_12_1$, $a = 9.9081(4)$, $b = 12.9445(5)$, $c = 7.1384(3)$ Å, $V = 915.5$ Å³, $Z = 4$. $D_{calc} = 2.701$ g/cm³. The microporous structure is based on a heteropolyhedral framework containing $Si₃O₉$ chains.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bortun et al. (2000).

Wavenumbers (cm⁻¹): 3270, 3110, 1635, 1103, 1026s, 952s, 893s, 752, 711, 626w, 575, 547, 487, 461.

TiSi323 Sodium titanium silicate Na₂TiSi₂O₇∙2H₂O Na₂TiSi₂O₇⋅2H₂O

Origin: Synthetic.

Description: White powder. A compound with layered structure synthesized hydrothermally from TiCl₄, silicic acid, NaOH, and H₂O₂ at 200 °C for 7 days. Characterized by powder X-ray diffraction, TG analysis, MAS²⁹Si, and ²³Na NMR. The strongest reflection is observed at 14.97 Å. Kind of sample preparation and/or method of registration of the spectrum: KBr disc.

Transmission.

Source: Clearfield et al. (1997).

- Wavenumbers (cm⁻¹): 3436s, (3250), (3100), 1632, 1385w, 1115sh, 1073sh, 1011sh, 973s, 902s, 779, 768sh, 698sh, 568, 536sh, 435sh, 412s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

TiSi324 Batievaite-(Y) $Y_2Ca_2Ti(Si_2O_7)_2(OH)_2.4H_2O$

Origin: Sakharjok alkaline massif, Kola Peninsula, Russia (type locality).

Description: Brownish euhedral crystals from the association with hainite, nepheline, albite, calcite, and zeolite-group minerals. Holotype sample. The crystal structure is solved. Triclinic, space group $P-1$, $a = 9.4024(8)$, $b = 5.5623(5)$, $c = 7.3784(6)$ Å, $\alpha = 89.919(2)^\circ$, $\beta = 101.408(2)^\circ$, $\gamma = 96.621$ (2)°, $V = 375.65(6)$ \AA^3 , $Z = 1$. $D_{\text{meas}} = 3.45(5)$ g/cm³, $D_{\text{calc}} = 3.357$ g/cm³. Optically biaxial (+), $\alpha = 1.745(5)$, $\beta = 1.745(7)$, $\gamma = 1.752(5)$, $2V = 60(5)$ °. The empirical formula is (electron microprobe; grouping of the components is based on structural data): $(Y_{0.81}Ca_{0.65}Ln_{0.23}$ $Mn_{0.15}Zr_{0.12}Fe_{0.04})[(H_2O)_{0.75}Ca_{0.70}\Box_{0.55}]Ca_{2.00}[\Box_{0.61}Na_{0.25}(H_2O)_{0.14}](Ti_{0.76}Nb_{0.15}Zr_{0.09})[Si_{3.91}$ $\text{Al}_{0.09}\text{O}_{14}$ [(OH)_{1.56}F_{0.44}][(H₂O)_{1.27}F_{0.73}]. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 9.145 (17) (100), 7.238 (36) (00-1), 4.350 (23) (0-1-1), 4.042 (16) $(11-1)$, 3.745 (13) $(2-10)$, 3.061 (30) (300) , 2.991 (100) $(11-2)$, 2.819 (16) $(3-10)$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lyalina et al. (2016).

- Wavenumbers (cm⁻¹): 3426, 1732w, 1646, 1630, 1258sh, 1172sh, 1077sh, 985s, 877, 800w, 780sh, 664sh, 649, 584, 493s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 1732 cm⁻¹ indicates possible presence of H_3O^+ or $H_5O_2^+$ groups.

TiSi325 Bazirite $BaZr(Si₃O₉)$

Origin: Synthetic.

Description: Synthesized using solid-state reaction thchniques from the stoichiometric mixture of $BaCO₃$, $ZrO₂$, and $SiO₂$.

Kind of sample preparation and/or method of registration of the spectrum: KI disc. Transmission. Source: Choisnet et al. (1975).

Wavenumbers (cm⁻¹): 1055sh, 1038s, 979sh, 930s, 760s, 465sh, 454s, 382, 361, 320, 291, 240.

TiSi326 Fogoite-(Y) $\text{Na}_3\text{Ca}_2\text{Y}_2\text{Ti}(\text{Si}_2\text{O}_7)_2\text{OF}_3$

Origin: Lagoa do Fogo, the São Miguel Island, the Azores, Portugal (type locality).

- Description: Colorless long-prismatic crystals from the association with sanidine, astrophyllite, fluornatropyrochlore, ferrokentbrooksite, quartz, and ferro-katophorite. Holotype sample. The crystal structure is solved. Triclinic, space group P-1, $a = 9.575(6)$, $b = 5.685(4)$, $c = 7.279$ (5) Å, $\alpha = 89.985(6)^\circ$, $\beta = 100.933(4)^\circ$, $\gamma = 101.300(5)^\circ$, $V = 381.2(7)$ Å³, $Z = 1$. $D_{\text{calc}} = 3.523$ g/cm³. Optically biaxial (+), $\alpha = 1.686(2)$, $\beta = 1.690(2)$, $\gamma = 1.702(5)$, $2V = 57(1)$ °. The empirical formula is (electron microprobe): $(Na_{2.74}Mn_{0.15})Ca_2(Y_{1.21}Ln_{0.35}Mn_{0.16}Zr_{0.11}Nb_{0.09}Fe_{0.07}Ca_{0.01})$ $(Ti_{0.76}Nb_{0.23}Ta_{0.01})(Si_{4.03}O_{14})O_{1.12}F_{2.88}$. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 2.954 (100) $(-1-12, -310)$, 3.069 (42) (300, 0-12), 2.486 (24) $(310, 2-12)$, 3.960 (23) $(-1-11, -210)$, 2.626 (21) (-220) , 1.820 (20) (-104) .
- Kind of sample preparation and/or method of registration of the spectrum: Absorption of a crystal fragment using an IR microscope. A procedure of baseline correction was applied. Source: Cámara et al. (2016b).
- Wavenumbers (cm⁻¹): 1367sh, 1250, 1122sh, 1088s, 1072s, 1061s, 1046s, 1036s, 1000s, 963sh, 946s, 930s, 862s, 803, 743w, 677.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Transmittance 2000 400 800 1200 1600 2400 2800 3200 3600 4000 Wavenumber $(cm⁻¹)$

TiSi327 Ivanyukite-Cs $Cs_3HTi_4O_4(SiO_4)_3·4H_2O$

Origin: Synthetic.

Description: Prepared using a gel technique at 200 $^{\circ}$ C for 48 h. Characterized by TG and powder X-ray diffraction data. Cubic, space group $P-43m$, $a = 7.7644(3)$, $Z = 1$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Behrens et al. (1996).

Wavenumbers $(cm⁻¹)$: 3208, 1645w, (1347w), 866s, 546s, 460s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

TiSi328 Schülerite-type mineral $Ba_2Na_2Mg_2Ti_2(Si_2O_7)_2O_2F_2$

Origin: Eifel volcanic region, Germany.

Description: Pale yellow zones of the two grains obtained from an American mineral collector. Erroneously described as "schülerite." The crystal structure is solved. Triclinic, space group $P-1$, $a = 5.396(1), b = 7.071(1), c = 10.226(2)$ Å, $\alpha = 99.73(3)^\circ, \beta = 99.55(3)^\circ, \gamma = 90.09(3)^\circ$, $V = 379.1(2)$ \AA^3 , $Z = 1$. $D_{\text{calc}} = 3.879$ g/cm³. Structurally related to schülerite. The empirical formula is $(Ba_{1.57}Sr_{0.14}K_{0.14})(Na_{1.10}Ca_{0.43}Mn_{0.30}Fe_{0.17})(Fe_{0.88}Mg_{0.79}Na_{0.33})$ $(Ti_{1.67}Fe_{0.21}Nb_{0.09}Zr_{0.02}Al_{0.01})Si_{3.95}O_{15.93}F_{2.07}$. The Mössbauer spectrum given by Sokolova et al. (2013) cannot be used for precise determination of the $Fe^{2+} : Fe^{3+}$ ratio because of a strong scatter of experimental points. Consequently, the existence of a Mg-dominant site is questionable. Kind of sample preparation and/or method of registration of the spectrum: Transmission using an

IR microscope and a diamond micro compression cell. Source: Sokolova et al. (2013).

Wavenumbers $(cm⁻¹)$: 995sh, 967s, 860s, 675w.

TiSi329 Hydroterskite $Na₂ZrSi₆O₁₂(OH)₆$

Origin: Saint-Amable sill, Demix-Varennes quarry, near Varennes, Québec, Canada (type locality).

- Description: Short prismatic crystals from the association with aegirine, analcime, an astrophyllitegroup mineral, catapleiite, a eudialyte-group mineral, fluorite, monazite, natrolite, and a rinkitegroup species. Holotype sample. The crystal structure is solved. Orthorhombic, space group Pnca, $a = 13.956(6)$, $b = 14.894(7)$, $c = 7.441(4)$ Å, $V = 1546.8(20)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.57$ g/cm³. Optically biaxial (-), $\alpha = 1.562(2)$, $\beta = 1.567(2)$, $\gamma = 1.571(2)$, $2V = 86(3)^\circ$. The empirical formula (after excluding of trace components) is $(Na_{1.54}K_{0.01}Ca_{0.07}Ce_{0.01}La_{0.05})$ $(Zr_{0.74}Ti_{0.09}Nb_{0.05}Th_{0.005}Fe_{0.08}Mn_{0.06}Al_{0.01})Si_{6.09}O_{12}(OH)_{5.96}F_{0.035}$. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 7.427 (56) (020), 6.638 (48) (011), 6.327 (47) (210), 5.093 (49) (220), 4.123 (55) (031), 3.716 (53) (002, 040), 3.482 (51) (321), 3.322 (100) (022), 3.283 (80) (202, 240), 3.158 (54) (420), 3.091 (50) (411), 2.625 (48) (042), 2.544 (57) (402).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission using adiamond-anvil cell microsampling device.

Source: Grice et al. (2015).

- Wavenumbers (cm⁻¹): 3569, 3393, 3138sh, 1644, 1139sh, 1040s, 1005s, 917sh, 843sh, 740, 695, 665w, 610w, 587w, 521.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

TiSi330 Betalomonosovite $\text{Na}_2\text{Cl}_4\text{Na}_2\text{Ti}_2\text{Na}_2\text{Ti}_2(\text{Si}_2\text{O}_7)_2[\text{PO}_3(\text{OH})][\text{PO}_2(\text{OH})_2]\text{O}_2(\text{OF})$

Origin: Vostochnyi (Eastern) apatite mine, Khibiny alkaline complex, Kola Peninsula, Russia.

Description: Yellow tabular crystals from the association with lamprophyllite, pectolite, aegirine, and eudialyte. The crystal structure is solved. Triclinic, space group $P-1$, $a = 5.3185(3)$, $b = 14.1333(9), c = 14.4147(8)$ Å, $\alpha = 101.934(3)$ °, $\beta = 96.040(3)$ °, $\gamma = 90.120(3)$ °, $V = 1053.89(10)$ \AA^3 , $Z = 1$. The empirical formula is (electron microprobe): (Na_{5.40}Ca_{0.50}) $(Ti_{3.22}Fe^{3+}{}_{0.43}Mg_{0.10}Mn_{0.09}Nb_{0.07})Si_{4.00}P_{1.97}O_{21.15}(OH)_{4.85}$. The crystal-chemical formula is $\{Na_{1.49}(Ti_{1.45}Fe^{3+}{}_{0.55})O_{2.47}(OH)_{1.63}\}\{Na_{0.81}Ca_{0.27}Mn_{0.06}(Ti_{1.84}Mg_{0.10}Nb_{0.06})[Si_2O_7]_2\}\{Na_{3.22}Ca_{0.22}O_7S_4O_8O_8S_5O_9S_6O_8S_6S_7S_7S_8S_8S_7S_6S_7S_7S_7S_8S_7S_7S_8S_7S_7S_7S_7S_7S_7S_7S_7S_7S_7S_7S_7S_$ $Mn_{0.03}[P_{2.00}O_{5.62}(OH)_{2.38}]\}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3490, 3300sh, 3126, 3020, 2427w, 1736w, 1517w, 1200sh, 1140, 1090sh, 1040s, 921s, 790sh, 718w, 565sh, 543s, 460sh, 420sh, 380s, (367).

Note: The spectrum was obtained by N.V. Chukanov.

TiSi331 Betalomonosovite $\text{Na}_2\text{Cl}_4\text{Na}_2\text{Ti}_2\text{Na}_2\text{Ti}_2\text{(Si}_2\text{O}_7)_2[\text{PO}_3(\text{OH})][\text{PO}_2(\text{OH})_2]\text{O}_2(\text{OF})$

Origin: Olenii Ruchei (Reindeer Creek) open pit of the Olenii Ruchei apatite mine, Niorkpakhk Mt., Khibiny alkaline complex, Kola Peninsula, Russia.

Description: Beige lamellae crystals from the association with microcline, aegirine, and lamprophyllite. The crystal structure is solved. Triclinic, space group P-1, $a = 5.30090(18)$, $b = 14.1460(4)$, $c = 14.4435(4)$ Å, $\alpha = 103.3862(15)^\circ$, $\beta = 90.4128(17)^\circ$, $\gamma = 90.4128(17)^\circ$, $V = 1046.21(6)$ Å³, $Z = 1$. The empirical formula is (electron microprobe): $(Na_{4.40}Ca_{0.52}K_{0.01})(Ti_{3.14}Fe^{3+}{}_{0.41})$ $M_{90,12}Nb_{0,11}M_{10,10}$ $(Si_{3.98}Al_{0.02})P_{1.94}O_{19.91}$ $(OH)_{6.06}$. The crystal-chemical formula is {Na1.04(Ti1.42Fe3+ 0.46Mn0.12)O1.60(OH)2.40}{Na1.03Ca0.22(Ti1.74Mg0.16Nb0.10)[Si2O7]2}{Na2.33Ca0.24 $[P_{2.00}O_{4.80}(OH)_{3.20}]\}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3480sh, 3373, 3230sh, 2950sh, 2420w, 1636w, 1250sh, 1200sh, 1156, 1090sh, 1033s, 940sh, 921s, 798, 714w, 690sh, 560sh, 538s, 525sh, 400sh, 367s.

Note: The spectrum was obtained by N.V. Chukanov.

Origin: Dara-i Pioz glacier, Dara-i Pioz alkaline massif, Tien Shan Mts., Tajikistan (type locality).

- Description: Brownish orange grains from the association with amphibole, quartz, feldspar, brannockite, sogdianite, bafertisite, albite, and titanite. Holotype sample. A member of the astrophyllite supergroup. The crystal structure is solved. Triclinic, space group $P-1$, $a = 5.374$ (1), $b = 11.965(2)$, $c = 11.65(3)$ Å, $\alpha = 113.457(8)$ °, $\beta = 94.533(8)$ °, $\gamma = 103.08(1)$ °, $V = 657.5$ (8) Å³, Z = 1. $D_{\text{meas}} = 3.30(2)$ g/cm³, $D_{\text{calc}} = 3.326$ g/cm³. Optically biaxial (+), $\alpha = 1.695(3)$, $\beta = 1.711(2)$, $\gamma = 1.750(3)$, $2V = 70(5)$ °. The empirical formula is $(L_{0.94}K_{0.91}Rb_{0.12}Cs_{0.03})$ $(Ca_{0.60}Na_{0.40})(Fe_{5.34}Mn_{1.32}Li_{0.25}Mg_{0.05}Na_{0.04}Zn_{0.02})(Ti_{1.82}Sn_{0.10}Nb_{0.05}Zr_{0.04})[(Si_{7.78}Al_{0.24})O_{24}]$ $O_{2.30}(OH)_4O_{0.30}$ $0.94H_2O$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.54 (100) (001), 3.50 (100) (003), 2.578 (100) (130), 2.783 (90) (1-42), 1.576 (68) $(3-51, -3-22)$, 2.647 (55) (-211) .
- Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.
- Source: Agakhanov et al. (2016b).
- Wavenumbers (IR, cm⁻¹): 3655sh, 3639w, 3600sh, 3589, 1622, 1122sh, 1041s, 965s, 915sh, 844sh, 768sh, 695.
- Note: Based on chemical data, the simplified formula of bulgakite should be LiK(Ca,Na) Fe^{2+} ₇Ti₂(Si₄O₁₂)₂O₂(OH)₄(F,O)(\Box ,H₂O)₂. The wavenumbers were partly determined by us based on spectral curve analysis of the published IR spectrum. The band position denoted by Agakhanov et al. (2016b) as 940 cm^{-1} actually corresponds to a strong peak with absorption maximum at 965 cm⁻¹ and a shoulder at 915 cm⁻¹. The IR band at 695 cm⁻¹ is erroneously assigned to Si-Ostretching vibrations. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1041, 910s, 785sh, 733s, 660s, 569s, 420, 395, 367, 258, 233, 170, 133.

TiSi333 Catapleiite heating product $\text{Na}_6\text{Zr}_3[\text{Si}_9\text{O}_{27}]$

Origin: Artificial.

- **Description**: Product of heating (from room temperature to 950 °C at a rate of 5 °C/min) of a catapleiite crystal from Aikuaivenchorr Mt., Khibiny alkaline complex, Kola peninsula, Murmansk region, Russia. The crystal structure is solved. Hexagonal, space group $P6_3/mcm$, $a = 11.5901(9)$, $c = 9.9546(9)$ Å, $V = 1158.05(16)$ Å³. The structure is based on the heteropolyhedral framework which principally differs from that of catapleiite and is built by isolated $[ZrO₆]$ octahedra connected with each other by nine-membered rings $[Si_9O_{27}]$ formed by SiO_4 tetrahedra.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3446w, 3356w, 3345sh, 1181, 1070sh, 1051s, 1019, 942s, 912s, 760w, 707, 660w, 599w, 483, 424, 400, 390.
- Note: The spectrum was obtained by N.V. Chukanov. The mands in the range from 3300 to 3600 cm^{-1} may correspond to adsorbed water.

PSi11 Calcium orthophosphate orthosilicate $Ca_5(PO_4)_2(SiO_4)$

Origin: Synthetic.

Description: Obtained by sintering of compacted mixture of calcium hydrogen phosphate, calciumcarbonate, and silicon oxide. Characterized by powder X-ray diffraction data. Hexagonal.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lugo et al. (2015).

Wavenumbers (IR, cm⁻¹): 1110sh, 1040s, 935s, 880s, 601, 570, 510.

Note: The wavenumber 935 cm⁻¹ is erroneously indicated by Lugo et al. (2015) as 960 cm⁻¹. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1084, 1058, 963s, 857s, 642, 587, 439, 435, 402, 297w, 218.

AsSi14 Wiklundite $Pb_2(Mn^{2+},Zn)_3(Fe^{3+},Mn^{2+})_2(Mn^{2+},Mg)_{19}(As^{3+}O_3)_2[(Si,As^{5+})O_4]_6(OH)_{18}Cl_6$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality). Description: Brown radiating aggregates from the association with tephroite, mimetite, turneaurite, johnbaumite, jacobsite, barite, native lead, filipstadite, and parwelite. Holotype sample. The crystal structure is solved. Rhombohedral, space group R-3c, $a = 8.257(2)$, $c = 126.59(4)$ Å, $V = 7474$ (6) Å³, Z = 6. $D_{\text{calc}} = 4.072 \text{ g/cm}^3$. Optically uniaxial (-). The Mössbauer spectrum contains only one quadrupole doublet corresponding to Fe^{3+} . The empirical formula is $Pb_{2.04}Mn_{21.23}$ $\text{Fe}^{3+}{}_{1.76}\text{Zn}_{0.30}\text{Mg}_{0.23}\text{Ca}_{0.05}\text{Al}_{0.04}\text{Si}_{5.85}\text{As}_{2.37}\text{O}_{30}(\text{OH})_{18.10}\text{Cl}_{5.90}$. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %)] are: 4.740 (40), 4.128 (83), 4.062 (58), 3.561 (40), 3.098 (81), 2.882 (100), 2.806 (90).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a single crystal.

Source: Cooper et al. (2016c).

- Wavenumbers (cm⁻¹): 3536w, 3496, 3441, 3404sh, 3316w, 3128w, 1020w, 959, 938, 875s, 861sh, 848sh, 813s, 795sh, 712w, 681.
- Note: The presence of Mn^{2+} in the Fe³⁺-dominant site $M(1)$ with the mean $M(1)$ –O distance of 2.06 Å is questionable.

USi11 Potassium uranium(V) sorosilicate $K_3(U_3O_6)(Si_2O_7)$

Origin: Synthetic.

Description: Dark red needle crystals synthesized hydrothermally KOH, KF, $UO₃$, and $SiO₂$ (in the molar ratio K:U:Si:F = 15:1:2:10) at 600 °C for 5 days. Characterized by powder X-ray diffraction data. The crystal structure contains an uranate column formed by corner-sharing $UO₆$ octahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. **Source:** Lin et al. (2008).

- Wavenumbers (IR, cm⁻¹): 1068sh, 1057, 1005s, 991sh, 909s, 891s, 651s, 598sh, 579, 567, 550, 541, 527, 512sh, 487, 457sh, 441sh, 425sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (for Raman bands indicated by the authors, cm^{-1}): 972, 924, 888, 770, 570, 361, 232.

USi12 Swamboite-(Nd) $Nd_{0.333}[(UO_2)(SiO_3OH)] \cdot 2.5H_2O$

- Origin: Swambo Hill (Swambo Mine), Kambove District, Katanga (Shaba), Democratic Republic of Congo (type locality).
- Description: Yellow acicular crystals. Investigated by A.V. Kasatkin. Characterized by single-crystal X-ray diffraction data and qualitative electron microprobe analyses. Monoclinic, $a = 6.70(4)$, $b = 7.010(7), c = 8.86(2) \text{ Å}, \beta = 102.2(3)^\circ, V = 407(3) \text{ Å}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3433s, 3250sh, 1638, (1427w), 1150sh, 1075sh, 1000s, 936s, 859s, 785sh, 610sh, 556, 471.

Note: The spectrum was obtained by N.V. Chukanov. The spectrum is very close to that of uranophane.

2.8 Phosphides and Phosphates

Origin: Hagendorf South granitic pegmatite, Hagendorf, Bavaria, Germany (type locality).

Description: Greenish-gray radial aggregates from the association with feldspar, quartz, jungite, phosphophyllite, and mitridatite . Holotype sample. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 20.837(2)$, $b = 5.1624(4)$, $c = 19.250(1)$ Å, $\beta = 93.252(5)$ °, $V = 2067.3(3)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.92 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.745(5)$, $\beta = 1.760(5)$, $\gamma = 1.770(5)$, $2V = 80(5)^\circ$. The empirical formula is $(Zn_{0.83}Ca_{0.08}Mg_{0.06})_{\Sigma 0.97}$ $(Fe^{3+}{}_{4.88}Al_{0.16})_{\Sigma 5.04}$ $(PO_4)_{4.09}$ $(OH)_{4.78}$ $.5.86H_2O$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA(l, \%)$ (hkl)] are: 10.37 (100) (200), 9.58 (32) (002), 7.24 (26) (20-2), 4.817 (22) (111), 4.409 (13) (112), 3.483 (14) (11–4, 600), 3.431 (14) (404), 3.194 (15) (006, 31-4), 3.079 (33) (314).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3562, 3515w, 3276, 2990sh, 1645sh, 1625, 1140sh, 1070s, 1032s, 990s, 970sh, 940sh, 885sh, 798w, 782w, 665sh, 603, 580, 466, 440sh, 405sh, 368.

Note: The spectrum was obtained by N.V. Chukanov.

P653 Beraunite $\text{Fe}^{2+}\text{Fe}^{3+}{}_{5}(\text{PO}_4)_{4}(\text{OH})_{5}$ ⁻6H₂O

Origin: Levaäniemi mine, Svappavaara, Kiruna district, Lappland, Sweden.

Description: Black spherulites from the association with cacoxenite. Al-bearing variety. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): Fe $_{5,26}$ Al_{0.74}(PO₄)_{4.00}(OH)₅∙6H₂O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3572, 3500sh, 3360sh, 3286, 3192, 1626, 1135sh, 1060sh, 1031s, 1015sh, 991s, 866, (733w), 604, 690sh, 456.

Note: The spectrum was obtained by N.V. Chukanov.

P654 Natrodufrénite NaFe²⁺Fe³⁺₅(PO₄)₄(OH)₆⋅2H₂O

Origin: Chino open pit, near Santa Rita, New Mexico, USA.

Description: Black spherulites with greenish-blue streak. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $Na_{0.93}Ca_{0.15}Fe_{5.50}Al_{0.42}(PO₄)_{4.00}(OH)₆·2H₂O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3567w, 3355sh, 3215, 3140, 1625w, 1580sh, 1167s, 1060sh, 1031s, 970s, 890sh, 786w, 620, 586, 561, 471s, 401s.

Note: The spectrum was obtained by N.V. Chukanov.

P655 Tvrdýite Fe²⁺Fe³⁺₂Al₃(PO₄)₄(OH)₅(H₂O)₄⋅2H₂O

Origin: Hagendorf South pegmatite, Cornelia mine, Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany.

Description: Greenish-gray radial-fibrous aggregates. Al-deficient variety. The empirical formula is (electron microprobe): Ca_{0.05-0.08}Zn_{0.34-0.50}Mn_{0.04-0.07}Mg_{0-0.05}Fe_{3.85-3.99}Al_{1.44-1.66}Cr_{0.06}(PO₄)₄(OH)₅(H₂O)₄·2H₂O. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers (cm⁻¹): 3569, 3394, 3280, 3210sh, 3100sh, 1627, 1140sh, 1054s, 1018s, 990s, 945sh, 874, 802w, 610, 585sh, 480sh, 460, 425sh.

Note: The spectrum was obtained by N.V. Chukanov.

P656 Minyulite KAl₂(PO₄)₂(F,OH)∙4H₂O

Origin: Cerro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile. Description: A F-rich sample. Investigated by I.V. Pekov.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3656w, 3229 (broad), 3150sh, 2110w (broad), 1615, 1105sh, 1080s, 1013s, 917, 886, 840sh, 800sh, 656s, 597s, 564, 530sh, 507, 480sh, 451s, 408s, 381.

Note: The spectrum was obtained by N.V. Chukanov.

P657 Variscite-4O Al(PO₄)∙2H₂O

Origin: Cerro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile.

Description: Colorless crystals from the association with gypsum and minyulite. Investigated by I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Orthorhombic, $a = 9.675(4)$, $b = 9.893(4)$, $c = 17.203(9)$ Å, $V = 1647(1)$ Å³. The empirical formula is (electron microprobe): $\text{Al}_{1.00}(\text{PO}_4)_{1.00}$ ∙2H₂O

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3585, 3344s, 3228s, 3100sh, 2950sh, 1670, 1639, 1135sh, 1049s, 905, 846, 804, 745sh, 637, 590s, 547, 500sh, 465sh, 448s, 416s, 405sh.

Note: The spectrum was obtained by N.V. Chukanov.

P658 Beraunite $\text{Fe}^{2+}\text{Fe}^{3+}(PO_4)_4(OH)_5·6H_2O$

- Origin: Hagendorf South pegmatite, Cornelia mine, Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany.
- Description: Black radial aggregates. A Mn-bearing variety. The empirical formula is (electron microprobe): Fe_{5.44}Mn_{0.49}Zn_{0.07}(PO₄)_{4.00}(OH)₅∙6H₂O.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3554, 3510, 3265, 3213, 1625, 1145sh, 1069s, 1032s, 989s, 965sh, 940s, 810sh, 677, 584s, 465, 430, 400sh.

Note: The spectrum was obtained by N.V. Chukanov.

P659 Manitobaite $\text{Na}_{16}\text{Mn}^{2+}$ ₂₅Al₈(PO₄)₃₀

Origin: Cross Lake, Manitoba, Canada (type locality).

Description: Green grain. A fragment of holotype kindly granted by A.V. Kasatkin. The crystal structure is solved. Monoclinic, space group Pc, $a = 13.4516(15)$, $b = 12.5153(16)$, $c = 26.661$ (3) Å, $\beta = 101.579(10)$ °, $V = 4397.1(6)$ Å³, $Z = 2$. $D_{\text{meas}} = 3.621(6)$ g/cm³, $D_{\text{calc}} = 3.628$ g/cm³. Optically biaxial (-), $\alpha = 1.682(1)$, $\beta = 1.692(1)$, $\gamma = 1.697(1)$, $2V = 78.1(6)$ °. The empirical formula is Na_{15.55}Ca_{1.47}Mg_{0.88}Fe²⁺_{4.19}Mn²⁺_{18.78}Zn_{0.32}Al_{6.54}Fe³⁺_{1.05}P_{30.08}O₁₂₀.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1120sh, 1084s, 1036s, 993s, 957, 594, 574, 560, 511w, 450, 416, 400. Note: The spectrum was obtained by N.V. Chukanov.

P660 Ammonium vanadyl pyrophosphate α -(NH₄)₂(VO)₃(P₂O₇)₂

Origin: Synthetic.

Description: Prepared from the mixture of V_2O_5 and $(NH_4)_2(HPO_4)$ which was firstly heated up to 200 °C, homogenized and further heated at 325 °C for 2 h in air. Orthorhombic, space group *Pnma*, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran and Rabe (1999).

- Wavenumbers (cm⁻¹): 3262 (broad), 1635w, 1427, 1189sh, 1175s, 1180s, 1085sh, 1054w, 1114s, 1004, 978s, 938s, 915w, 744, 643, 622sh, 601, 568s, 548sh, 527sh, 485, 411w, 385, 326.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P661 Aluminium phosphate hydrate $Al(PO₄)_{nH₂O}$

- Description: Ce-doped mesoporous material synthesized by the hydrothermal method, starting from aluminium hydroxide, 85% phosphoric acid, hydrated ceriumchloride and di-isopropylamine as an organic template agent. The empirical formula is $Ce_{0.04}Al_{0.97}P_{1.01}O_{4.04}nH_2O$. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Souza de Araujo et al. (1997).

Wavenumbers (cm^{-1}) : 1250–1000 (broad), 835, 820–650, 750–650, 600–560, 464, 420–300.

Note: The material was described as an anhydrous phosphate, but bands above 1550 cm^{-1} indicate the presence of H_2O molecules.

Origin: Synthetic.

Description: Obtained by slow evaporation at ordinary temperatures from the aqueous equimolar solutions of ammonium dihydrogen phosphate and cadmium sulfate. Structurally related to struvite. Orthorhombic, $a = 13.882$, $b = 12.249$, $c = 11.395$ Å. Characterized by thermal and powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Ravikumar et al. (2002).

Wavenumbers (cm⁻¹): 3440s, 3220s, 2360, 1680s, 1450s, 1110s, 1070s, 1040s, 985, 760, 620s, 605, 580sh.

P663 Ammonium iron(II) phosphate hydrate (NH₄)Fe(PO₄)∙H₂O

Origin: Synthetic.

Description: White crystals obtained from the equimolar mixture of $(NH_4)_3(PO_4) \cdot 3H_2O$ and FeSO₄.7H₂O ground in the presence of the surfactant PEG-400 and heated at 40 °C for 48 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pmm2_1$, $a = 5.660$, $b = 8.825, c = 4.826 \text{ Å}, V = 241 \text{ Å}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Yuan et al. (2008).

- Wavenumbers (cm⁻¹): 3347, 3325sh, 3130, (3085), (3052), (3014), (3000), (2970), (2886), (2850sh), (2773), 2740, 1634, 1620sh, 1545, 1528, 1460, 1431, 1400, 1081sh, 1058s, 970s, 775, 646, 584, 500sh, 488, 457, 442.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

- **Description:** Obtained by adding 0.5 M solution of MgCl₂ \cdot 6H₂O to an excess of saturated (NH₄)₂H (PO4) solution. Characterized by thermal analysis and powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Sronsri et al. (2014).

- Wavenumbers (cm⁻¹): 3424s, 3218, 3040, 2924, 2775, 2327w, 2118, 1948, 1882, 1657, 1470s, 1430, 1319sh, 1102s, 1055s, 974s, 949sh, 772, 627s, 568s, 472w, 419.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P665 Ammonium titanophosphate $(NH_4)_{2}Ti_{2}O(HPO_4)(PO_4)_{2}$?

Origin: Synthetic.

Description: Synthesized hydrothermally from Ti(SO₄)₂, H₃(PO₄)₃, and ammonia solution at 200 °C for several hours. Characterized by powder X-ray diffraction data and thermal analysis.

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Li et al. (2004b).

Wavenumbers (cm⁻¹): 3407, 3187, 3081w, 2894w, 2826w, 1630, 1436, 1417, 1181, 1145s, 1067s, 1044s, 1006s, 947, 760, 624, 578, 471.

Note: The formula is questionable and is to be checked.

P666 Antimony(III) phosphate SbPO₄

Origin: Synthetic.

Description: Prepared in the reaction of antimony with freshly prepared metaphosphoric acid at high temperatures. Characterized by powder X-ray diffraction data. Monoclinic, space group $P2_1/m$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Brockner, and Hoyer (2002).

Wavenumbers (IR, cm⁻¹): 1152s, 1054s, 993s, 957s, 651, 586, 500, 472, 378, 337w, 239. Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1054, 977, 937w, 623, 584, 548w, 478, 356s.

P667 Antimony(V) oxophosphate SbO(PO₄)

- **Description:** Monoclinic, space group $C2c$, $a = 6.791(1)$, $b = 8.033(1)$, $c = 7.046(1)$ Å, $\beta = 115.90$ $(1)^\circ$, $Z = 4$. The crystal structure consists of chains of corner shared distorted octahedra linked together by PO₄ tetrahedra.
- Kind of sample preparation and/or method of registration of the spectrum: See Husson et al. (1988b).

Source: Husson et al. (1988a).

- Wavenumbers (IR, cm⁻¹): 1080s, 1040s, 872s, 658, 600w, 564, 504, 390, 364, 332s, 297, 280, 231s, 212.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1122, 1060w, 1050, 1010, 788, 585s, 528s, 460w, 417, 375, 312s, 278, 197, 152, 135, 117w.

P668 Minjiangite $BaBe_2(PO_4)_2$

Barium beryllium phosphate $BaBe_2(PO_4)_2$

Origin: Synthetic.

- **Description:** Colorless crystals synthesized hydrothermally from BeO, Ba(OH)₂.8H₂O, and H₃PO₄ (85%) at 200 °C for 7 days. The crystal structure is based on of double layers of tetrahedra, which contain both Be and P in a 1:1 ratio. The Ba atoms are located in regular 12-coordinated polyhedra and connect two successive double layers. Hexagonal, space group $P6/mmm$, $a = 5.028(1)$, $c = 7.466(1)$ Å, $V = 162.51(1)$ Å³, $Z = 1$. $D_{\text{calc}} = 3.507$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Dal Bo et al. (2014).

Wavenumbers (cm⁻¹): 1305, 1022s, 745sh, 694, 670s, 541s, 475.

P669 Barium chromium pyrophosphate $BaCr_2(P_2O_7)_2$

Origin: Synthetic.

Description: Green solid synthesized by the conventional solid-state reaction technique, by heating stoichiometric mixture of BaCO₃, Cr₂O₃, and (NH₄)(H₂PO₄) up to 1200 °C. Characterized by powder X-ray diffraction data. Triclinic, space group P-1, $a = 6.1408(5)$, $b = 6.1898(4)$, $c = 7.8027(6)$ Å, $\alpha = 96.692(5)^\circ$, $\beta = 101.686(5)^\circ$, $\gamma = 105.542(4)^\circ$, $V = 275.19(4)$ Å³, $Z = 1$. $D_{\text{meas}} = 2.39(3) \text{ g/cm}^3, D_{\text{calc}} = 2.391 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. **Source:** Tao et al. (2014).

Wavenumbers (cm⁻¹): 1245, 1160s, 1087s, 1047, 1024, 960s, 780, 638w, 610, 575, 525, 500, 440, 405.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P670 Barium sodium cyclotriphosphate hydrate BaNa(P₃O₉)∙3H₂O

- Description: Pink crystals obtained by adding barium nitrate to a saturated aqueous solution of sodium cyclotriphosphate in the stoichiometric ratio. The resulting mixture was left to stand at room temperature for 2 weeks. The crystal structure is solved. Triclinic, space group $P-1$, $a = 7.0350$ (3), $b = 9.0470(3)$, $c = 9.8800(2)$ Å, $\alpha = 116.551(3)$ °, $\beta = 95.932(2)$ °, $\gamma = 74.088(3)$ °, $V = 540.81$ (3) \AA^3 , Z = 2. $D_{\text{calc}} = 2.771 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ezzaafrani et al. (2014).

- Wavenumbers (cm⁻¹): 3522, 3465w, 3269w, 2959, 2829, 2387, 1659w, 1606, 1385, 1298s, 1157, 1126s, 1101s, 1055, 976s, 926sh, 772, 750, 687, 638w, 509s, 405w.
- Note: The bands in the range from 2300 to 2900 cm^{-1} indicate the presence of acid P–OH groups. Possibly, the correct formula is BaNa(HP₃O₉)(OH)⋅2H₂O. This assumption could explain discrepancies between observed wavenumbers and those calculated according to the Libowitzky formula.

P671 Barium vanadyl phosphate α -Ba(VO₂)(PO₄)

Origin: Synthetic.

Description: Synthesized hydrothermally from V_2O_5 , H_3PO_4 , and BaCO₃. Monoclinic, space group $P2₁/c$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Borel et al. (2000).

Wavenumbers (cm⁻¹): 1109, 1102, 1024, 994, 973sh, 952sh, 944s, 924s, 834s, 635, 577, 547, 518sh, 506, 467w, 421.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P672 β-Vanadyl pyrophosphate $β$ -(VO)₂(P₂O₇)

Origin: Synthetic.

Description: Orthorhombic, space group Pca2.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bordes et al. (1984).

Wavenumbers (cm⁻¹): 1650w, 1280s, 1227, 1158s, 1145, 1070, 1024, 990, 953s, 937s, 910sh, 836sh, 906, 754, 643, 568, 523, 456sh, 438, 409, 376, 319w, 304w, 293w, 281w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P673 Bismuth(III) calcium oxophosphate $BiCa_4(PO_4)_3O$

Description: Prepared by high temperature solid-state method, by stepwise heating stoichiometric mixture of Bi_2O_3 , Ca(CO₃), and (NH₄)(H₂PO₄) up to 1050 °C. Characterized by powder X-ray diffraction data. Structurally related to apatite, space group $P6_3/m$.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Sumathi and Gopal (2015).

Wavenumbers $(cm⁻¹)$: 1041s, 995sh, 935s, 628sh, 602s, 557s, 464w, 445w, 409sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P674 Bismuth(III) nickel oxophosphate BiNi $(PO_4)O$ BiNi $(PO_4)O$

Origin: Synthetic.

- **Description:** Prepared by solid-state reaction. Monoclinic, $a = 7.1664(8)$, $b = 11.206(1)$, $c = 5.1732$ (6) Å, $\beta = 107.281(6)$ °. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, \mathcal{R}) (hkl)] are: 4.727 (44) (-101), 4.338 (69) (120), 3.372 (70) (111), 2.850 (100) (-221), 2.568 (43) (131), 2.516 (41) (230).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ketatni et al. (1999).

Wavenumbers (cm⁻¹): 1046s, 1009s, 979s, 609sh, 590, 561s, 520, 468, 440.

P675 Boron phosphate BPO4

Origin: Synthetic.

Description: Structurally related to cristobalite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Osaka et al. (1984).

Wavenumbers (cm⁻¹): 1386w, 1168sh, 1090s, 1070sh, 935s, 739sh, 630, 600, 560.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P676 Magnesium borophosphate (H₃O)Mg(BP₂O₈)∙3H₂O

- **Description**: Synthesized from MgCl₂, B_2O_3 , and H_3PO_4 in the presence of pyridine and HCl, under mild hydrothermal conditions (at 170 \degree C for 3 days). The crystal structure is solved. Hexagonal, space group $P6(1)22$, $a = 9.4462(7)$, $c = 15.759(2)$ Å, $V = 1217.8(2)$ Å³, $Z = 6$. $D_{calc} = 2.439(3)$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yang et al. (2011f).

- Wavenumbers (cm⁻¹): 3494, 3348s, 1643, 1198s, 1159, 1105, 1016s, 959s, 940sh, 851, 812sh, 678w, 645, 576, 523, 491, 411.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P677 Cesium acid (pentahydrogen) phosphate $\text{CsH}_5(\text{PO}_4)_2$

Origin: Synthetic.

Description: Crystals grown from an aqueous solution of Cs_2CO_3 and H_3PO_4 (at the mole ratio 1:2) by evaporation at room temperature. Monoclinic, space group $P2_1/c$, $a = 10.879$, $b = 7.768$, $c = 9.526$ Å, $\beta = 96.60^{\circ}$, $Z = 4$. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Lavrova et al. (2006).

Wavenumbers (cm⁻¹): 3414w (broad), 2770 (broad), 2350 (broad), 1630 (broad), 1293, 1212, 1127s, 1105sh, 1001sh, 980s, 907, 878, 571w, 536sh, 523w, 497, 468, 425, 377, 300w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a figure of the Raman spectrum is given.

P678 Cesium manganese(II) pyrophosphate $Cs₂MnP₂O₇$

Origin: Synthetic.

- **Description:** Pink solid prepared from aqueous solutions of $Mn(NO₃)₂·4H₂O$, CsCl, and $NH₄(H₂PO₄)$ as starting materials by heating resulting powder progressively from 200 to 700 \degree C with intermediate regrindings. The crystal structure is solved. Orthorhombic, space group $Pnma$, $a = 16.3398(3)$, $b = 5.3872(1), c = 9.8872(2)$ Å, $V = 870.33(3)$ Å³, Z = 4. $D_{\text{calc}} = 3.775$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflection of a mixture with KBr.

Source: Kaoua et al. (2013).

- Wavenumbers (IR, cm⁻¹): 1186s, 1151s, 1125s, 1097s, 1041s, 995, 900sh, 891s, 740, 697sh, 674w, 661sh, 649sh, 623, 580sh, 568s, 525sh, 514sh, 506w, 485, 465sh, 457sh, 441w, 429w, 421w, 406w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The strong band at 891 cm⁻¹ and shoulder at 900 cm⁻¹ are indicated by Kaoua et al. (2013) as strong band at 896 cm^{-1}. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1197w, 1165w, 1154w, 1142w, 1129, 1128w, 1107w, 1098w, 1081w, 1060w, 1041w, 1021s, 954w, 934w, 898w, 700s, 635w, 598w, 576w, 562, 536w, 521w, 498w, 466w, 428, 364, 327, 269w, 245w, 205, 202, 166w, 140w, 129w, 124w.

P679 Cesium uranyl oxophosphate $Cs_3(UO_2)_2(PO_4)O_2$

Origin: Synthetic.

Description: Yellow crystals obtained in the reaction of triuranyl diphosphate tetrahydrate with a CsI flux at 750 °C. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 13.6261(13)$, $b = 8.1081$ (8), $c = 12.3983(12)$ Å, $\beta = 114.61(12)^\circ$, $V = 1245.41(20)$ Å³, $Z = 4$. $D_{calc} = 2.684$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Yagoubi et al. (2013).

Wavenumbers (cm⁻¹): 1056sh, 1033s, 984s, 949sh, 885s, 855sh, 838, 805, 795, 769w, 723, 694w, 595, 574, 545, 504sh, 473, 451sh, 435w, 418w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P680 Calcium chlorophosphate ("chlor-spodiosite") $Ca_2(PO_4)Cl$

Description: Crystals grown from melt by means of a reaction flux technique using $Ca₃(PO₄)₂$ and $CaCl₂$ as starting materials. Orthorhombic, space group *Pbcm*.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Kowalczyk and Condrate Sr (1974).

Wavenumbers (IR, cm⁻¹): 1099s, 1080sh, 1046s, 999s, 959, 596, 536, 529sh, 471w, 425w. Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1077, 1063, 1048w, 1026w, 995, 958s, 627, 611, 551, 463, 397.

P681 Calcium dihydrophosphate monohydrate Ca(H₂PO₄)₂⋅H₂O

Origin: Synthetic.

Description: Commercial reactant. Triclinic, space group $P-1$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Xu et al. (1998).

- Wavenumbers (IR, cm⁻¹): 3461, 3220, 2967, 2934, 2868sh, 2423w, 2330, 1700sh, 1635w, 1239s, 1225sh, 1158, 1120sh, 1092s, 975sh, 962s, 914w, 888w, 864w, 675w, 570w, 545w, 504s, 500sh, 444w, 355, 250sh, 230.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 2810, 2386, 1217, 1159, 1112s, 1016, 988s, 956, 916s, 906, 580, 523, 499, 421, 366, 337, 251, 210, 170, 141, 124, 103, 85.

Description: Eu-doped sample synthesized in a solid-state reaction from the mixture of magnesium carbonate basic pentahydrate, $CaCO₃$, $(NH₄)₂HPO₄$, $La₂O₃$, and Eu₂O₃. Structurally related to whitlockite. Hexagonal, space group R3c , $a = 10.38848$, $c = 37.23035$ Å, $V = 4017.89$ Å³. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Huang et al. (2009).

Wavenumbers $(cm⁻¹)$: 1121s, 1065s, 1047sh, 969, 939, 598, 552, 473w, 419w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P683 Calcium magnesium yttrium phosphate $Ca_8MgY(PO_4)_7$

- **Description**: Eu-doped sample synthesized in a solid-state reaction from a mixture of magnesium carbonate basic pentahydrate, CaCO₃, $(NH_4)_2HPO_4$, Y₂O₃, and Eu₂O₃. Structurally related to whitlockite. Hexagonal, space group R3c, $a = 10.32966$, $c = 36.94593$ Å, $V = 3942.20$ Å³. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Huang et al. (2009).

- Wavenumbers (cm⁻¹): 1151sh, 1130s, 1039s, 1000sh, 969s, 938s, 910sh, 608, 590, 551, 450sh, 415sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Transmittance 400 600 800 1000 1200 1400 Wavenumber $(cm⁻¹)$

P684 Cerium(IV) pyrophosphate $CeP₂O₇$

Origin: Synthetic.

Description: Obtained by adding aqueous solution of cerium(IV) sulfate to the solution of sodium pyrophosphate. Cubic, $a = 8.607(4)$ Å. The strongest lines of the powder X-ray diffraction pattern $[d, \check{A}(I, \%) (hkl)]$ are: 4.97 (30) (111), 4.31 (100) (200), 3.85 (15) (210), 3.51 (15) (211), 3.057 (28) (220), 2.599 (41) (311), 1.925 (17) (420).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto and Baran (1977).

Wavenumbers (cm^{-1}) : 1140sh, 1067s, 942s, 738w, 615w, 548sh, 530, 330.

P685 Cerium(III) polyphosphate $Ce(PO₃)₃$

Origin: Synthetic.

- Description: Prepared from aqueous solutions of cerium(III) chloride and sodium cyclotriphosphate with subsequent annealing of the precipitate formed up to 1123 K. Orthorhombic, space group $C222₁$. The structure is based on infinite chains of PO₄ tetrahedra.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Ternane et al. (2008).

- Wavenumbers (cm⁻¹): 1270s, 1152s, 1124s, 1055s, 1009s, 951s, 806, 770, 682w, 568, 532, 496, 476, 456.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P686 Cerium metaphosphate trihydrate Ce(P₃O₉)∙3H₂O

- Description: Prepared from aqueous solutions of cerium(III) chloride and sodium cyclotriphosphate. Hexagonal, space group P-6. The cyclotriphosphate anion $P_3O_9^{3-}$ has a benitoite-type planar configuration.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Ternane et al. (2008).

- Wavenumbers (cm⁻¹): 3618, 3510, 3225sh, 1627, 1284s, 1105s, 1039s, 1029sh, 909sh, 761, (667w), 497s, 430sh, 417sh.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2300 to 2400 cm^{-1} and at 667 cm^{-1} correspond to atmospheric $CO₂$.

P687 Copper tinanium oxyphosphate α -CuTi₂(PO₄)₂O₂

Origin: Synthetic.

- **Description:** Prepared by coprecipitation from aqueous solutions of Cu(NO₃) \cdot 3H₂O and NH₄(H₂PO₄) taken in of stoichiometric quantities and ethanol solution of TiCl4. After evaporation of the solvent, the solid was stepwise heated up to 950 $^{\circ}$ C. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 7.5612(4)$, $b = 7.0919(4)$, $c = 7.4874(4)$ Å, $\beta = 122.25(1)$ °, $V = 339.55(6)$ Å³, $Z = 4$. $D_{\text{meas}} = 3.71(2)$ g/cm³, $D_{\text{calc}} = 3.729$ g/cm³. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 6.393 (30) (100), 4.746 (23) (110), 3.334 (27) (21-1), 3.307 (100) $(11-2), 3.233 (49) (111), 3.198 (36) (200), 3.093 (40) (02-1), 2.585 (23) (22-1).$
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.
- Source: Benmokhtar et al. (2007a).
- Wavenumbers (IR, cm⁻¹): 1146, 1085sh, 1054s, 1025s, 1003s, 972s, 835, 778, 641, 602, 562, 531sh, 490, 447sh, 433s, 405, 386s, 352, 325, 304, 264, 225, 213.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1119, 1069, 1057, 1036, 1026, 1007s, 986, 835, 732s, 571, 470, 445, 417, 392, 371, 353.

P688 γ-Vanadyl pyrophosphate γ- $(VO)₂(P₂O₇)$

Origin: Synthetic.

- **Description**: Prepared by thermal decomposition of γ -VOHPO₄⋅0.5H₂O at 750 °C for 3 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pbc2_1$, $a = 9.571$, $b = 7.728$, $c = 16.568$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bordes et al. (1984).

- Wavenumbers (cm⁻¹): 1585w, 1471w, 1381sh, 1331sh, 1231s, 1213, 1130s, 1073, 964s, 824w, 797w, 740, 624, 565, 504, 419, 398sh, 373sh, 311, 282sh.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P689 Lanthanum calcium oxophosphate $LaCa_4(PO_4)_{3}O$

- Description: Apatite-type compound synthesized by high-temperature solid-state reaction from a stoichiometric mixture of preheated La_2O_3 , CaCO₃, and (NH₄)(H₂PO₄). Characterized by powder X-ray diffraction data. Hexagonal, space group $P6_3$, $a = 9.463(8)$, $c = 6.92(1)$ Å, $V = 536.64$ Å³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Buvaneswari and Varadaraju (2000).

Wavenumbers $(cm⁻¹)$: 1097sh, 1051s, 602, 572, 513, 459.

P690 Lanthanum strontium oxophosphate $\text{LaSr}_4(\text{PO}_4)_3\text{O}$

Origin: Synthetic.

- Description: Apatite-type compound synthesized by high-temperature solid-state reaction from a stoichiometric mixture of preheated La_2O_3 , SrCO₃, and (NH₄)(H₂PO₄). Characterized by powder X-ray diffraction data. Hexagonal, space group $P6_3$, $a = 9.71(1)$, $c = 7.30(1)$ Å, $V = 596.05$ Å³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Buvaneswari and Varadaraju (2000).

Wavenumbers $(cm⁻¹)$: 1085s, 1041s, 948sh, 591, 566, 513w, 460w.

P691 Iron(II) acid phosphate hydrate Fe(H₂PO₄)₂⋅2H₂O

Origin: Synthetic.

Description: Synthesized from acidic phosphate solution containing $5-9$ wt% FeO and 65 wt% H_3PO_4 by a salting out procedure with ethyl alcohol. Monoclinic, space group $P2_1/n$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Koleva and Effenberger (2007).

Wavenumbers (cm⁻¹): 3340s, 3150sh, 2420w, 2350w, 1700sh, 1630, 1568w, 1262, 1140s, 1090, 1055s, 1030sh, 968s, 905, 820, 790, 625w, 590w, 550, 520, 500, 470.

P692 Lead beryllium phosphate hurlbutite-type $PbBe_2(PO_4)_2$

- **Description**: Synthesized hydrothermally from BeO, H_3PO_4 (85%), (NH₄)(H₂PO₄), and Pb(NO₃)₂ at 200 °C for 7 days. The crystal structure is solved. Monoclinic, space group P_1/c , $a = 8.088(1)$, $b = 9.019(1), c = 8.391(1)$ Å, $\beta = 90.12(1)$ °, $V = 612.22(1)$ Å³, $Z = 4$. $D_{calc} = 4.504$ g/cm³. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Dal Bo et al. (2014).

- **Wavenumbers (cm⁻¹):** 1187, 1137, 1106, 1065, 1033, 997s, 816, 753, 738, 674s, 649, 598, 566s, 531, 489, 481, 465, 441.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P693 Lead iron(III) phosphate $Pb_3Fe_2(PO_4)_4$

Origin: Synthetic.

- **Description**: Prepared from a stoichiometric mixture of Fe₂O₃, PbCO₃, and (NH₄)(H₂PO₄) by a ceramic technique. Characterized by elemental analysis, powder X-ray diffraction data, and Mössbauer spectrum. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 9.0065(6)$, $b = 9.0574(6), c = 9.3057(6)$ $\text{\AA}, \beta = 116.880(4)^\circ, V = 677.10(8)$ $\text{\AA}^3, Z = 2$. $D_{\text{calc}} = 5.412$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Malakho et al. (2005).

- Wavenumbers $(cm⁻¹)$: 1139, 1067sh, 1052s, 1025s, 1002s, 978s, 965sh, 624, 598, 573, 544, 477sh, 449w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P694 Lead phosphate nitrate hydrate Pb₂(NO₃)(PO₄)∙H₂O

Origin: Synthetic.

Description: Crystals grown by a sol-gel method in the presence of sodium metasilicate. Monoclinic, space group $P2_1/c$, $a = 19.511$, $b = 7.37$, $c = 10.994$ Å, $\beta = 113^\circ$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Vivekanandan et al. (1995).

- Wavenumbers (IR, cm⁻¹): 3544, 3415, 2940sh, 1748w, 1603, 1453sh, 1419sh, 1384s, 1359sh, 1348s, 1037sh, 1004s, 955s, 923s, 823, 725w, 718w, 673, 608, 556sh, 542, 518.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3500, 1653w, 1620w, 1370w, 1353, 1062s, 1044w, 1016s, 967, 947, 733, 722w, 617, 574w, 535w, 444w, 415, 392w, 239, 205w, 144, 125s, 96s, 75, 66.

P695 Lead phosphate sulfate $Pb_4(PO_4)_2(SO_4)$

- **Description**: Prepared by a solid-state reaction from a stoichiometric mixture of $Pb_3(CO_3)_2(OH)_2$, $(NH_4)_2(SO_4)$, and $(NH_4)_2(HPO_4)$ in air at 700 °C for several days. Cubic, space group I43d, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Massaferro et al. (1999).

Wavenumbers (IR, cm⁻¹): 1118sh, 1080s, 989s, 936sh, 613sh, 606, 565sh, 551, 460sh, 430sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1120, 1085, 987s, 963sh, 944s, 609, 551, 459, 440, 430, 262.

P696 Lead silver phosphate apatite-type $Pb_4A_8(PO_4)$

Origin: Synthetic.

- **Description:** Prepared hydrothermally from a stoichiometric mixture of $Pb_3(PO_4)$ ₂ and Ag₃(PO₄) at 215 °C for 1 day. Hexagonal, space group $P6₃/m$, $a = 9.772(4)$, $c = 7.210(3)$ Å. In the apatite-type structure, $Ag⁺$ ions concentrate in the column positions. The strongest lines of the powder X-ray diffraction pattern $[d, \AA(t, \%) (hkl)]$ are: 4.238 (53) (200), 4.051 (53) (111), 3.202 (52) (210), 2.926 (100) (211), 2.904 (71) (112), 2.823 (72) (300).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Ternane et al. (2000).

Wavenumbers (IR, cm⁻¹): 1178sh, 1121sh, 1037s, 988s, 907sh, 574, 548, 535, 444w, 385w, 377w. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the

published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1017, 963s, 933s, 577s, 558, 421, 388.

P697 Lead sodium calcium phosphate apatite-type $Pb_3CaNa(PO_4)_3$

Origin: Synthetic.

- **Description**: Prepared by a solid-state reaction from a mixture of Na_2CO_3 , $(NH_4)_2(HPO_4)$, CaCO₃, and PbO powders heated at 1073 K in air for 12 h and at 1173 K for 12 h. Characterized by powder X-ray diffraction data and chemical analysis. Hexagonal, space group $P6_3/m$, $a = 9.658(8)$, $c = 7.081(6)$ Å, $V = 572.01(8)$ Å³, $Z = 2$. $D_{\text{calc}} = 5.63$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Naddari et al. (2003).

Wavenumbers $(cm⁻¹)$: 1113, 1024s, 604, 559, 459w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P698 Lithium chromium pyrophosphate $LiCrP₂O₇$

- **Description**: Prepared by solid-state reaction from a stoichiometric mixture of $Li(H_2PO_4)$, $NH_4(H_2PO_4)$, and CrCl₃.6H₂O, first at 200 °C for 5 h, then at 700 °C for 20 h, and finally at 950 C for 20 h with intermediate grindings and pelletizing. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group P_1 , $a = 4.7867(7)$, $b = 8.0049(11), c = 6.9093(10) \text{ Å}, \beta = 109.003(2)^\circ, V = 250.32(6) \text{ Å}^3, Z = 2. D_{\text{calc}} = 3.090 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: The spectrum was recorded using a Pike MIRacle micrometer pressure clamp.

Source: Pachoud et al. (2013).

- Wavenumbers (cm^{-1}) : 1238w, 1144sh, 1138s, 1102sh, 1096s, 1074s, 1042w, 1034w, 968, 953, 772, 655, 646, 634sh, 628s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P699 Lithiumiron(III) pyrophosphate LiFe³⁺(P₂O₇)

Origin: Synthetic.

- **Description:** Obtained from Li and Fe nitrates, and $(NH_4)_2(HPO_4)$ by the co-precipitation method with subsequent heating of the obtained precipitate up to 750 $^{\circ}$ C with several intermediate grindings. Monoclinic space group $P2_1$, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Parajón-Costa et al. (2013).

Wavenumbers (IR, cm⁻¹): 1227, 1170sh, 1125s, 1098s, 1075s, 1032, 970sh, 945s, 761, 618, 577, 533, 510, 442.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1122s, 1105s, 1073s, 1037, 975, 941, 767, 761, 618, 559, 537, 520, 512, 448, 427, 415.

Description: White solid synthesized by solid-state reaction between Li_2CO_3 , MgO, and $(NH_4)_2(HPO_4)$ at 800 °C for 4 days. Orthorhombic, space group *Pnma*.

Kind of sample preparation and/or method of registration of the spectrum: KI and polyethylene discs. Transmission.

Source: Paques-Ledent and Tarte (1974).

Wavenumbers (cm⁻¹): 1157s, 1113s, 1070s, 1000s, 958, 669, 655, 593, 558s, 535, 517, 479, 407s, 372, 335, 322, 294, 280, 242, 229w, 158w.

P701 Lithium nickel phosphate triphylite-type $LiNi(PO₄)$

- **Description:** Synthesized by a solid-state reaction technique from the stoichiometric mixture of $Li₂CO₃$, (NH₄)₂(HPO₄), and NiO at 773 K for 48 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group *Pnma*, $a = 10.0252(7)$, $b = 5.8569(5)$, $c = 4.6758(4)$ Å, $V = 274.546 \text{ Å}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.
- Source: Bechir et al. (2014).

Wavenumbers (IR, cm⁻¹): 1150, 1100s, 1057s, 975, 940sh, 653, 580, 547, 525sh, 477.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1085, 1070, 1009s, 946s, 637, 597w, 590, 575w, 460w, 320w, 300, 280, 252w, 233w, 170, 165, 116w.

P702 Lithium cyclo-hexaphosphate trihydrate Li₆P₆O₁₈⋅3H₂O

Origin: Synthetic.

Description: Acicular crystals grown by a hydrothermal method from the solution of Li₆P₆O₁₈⋅6H₂O in the methanol-water (2:1 vol.) mixture. Trigonal, space group $R-3m$, $a = 15.7442(2)$, $c = 12.5486$

(2) Å, $V = 2693.8 \text{ Å}^3$, $Z = 6$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Houlbert et al. (2004), Toumi et al. (1998).

- Wavenumbers (cm⁻¹): 3501, 1637, 1309, 1267sh, 1257s, 1173, 1146, 1096, 1047, 987s, 794, 755, 716w, 617, 558sh, 530sh, 514, 440.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Description: Synthetized by a solid-state reaction between Li_2CO_3 , SrCO₃, and $(NH_4)_2(HPO_4)$ at 950 °C for 1 week, with several intermediate mixings and grindings. Characterized by powder X-ray diffraction data. Monoclinic (?). Structurally related to RbLi(SO4).

Kind of sample preparation and/or method of registration of the spectrum: Pressed discs. Transmission. Source: Paques-Ledent (1978).

Wavenumbers (cm⁻¹): 1038s, 948, 623, 593s, 576s, 520, 469sh, 431, 405, 346, 273w, 234, 215sh, 188s, 174sh, 154, 127, 107, 89w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P704 Lithium vanadyl phosphate α -Li(VO)(PO₄)

- **Description:** Synthesized from V_2O_5 , LiOH, and H_3PO_4 in the ratio Li:V:P = 5:1:5 *via* intermediate vanadyl oxalate by a microwave-assisted solvothermal method. Characterized by powder X-ray diffraction data. Triclinic, $a = 6.7872(3)$, $b = 7.2152(2)$, $c = 7.8861(3)$ Å, $\alpha = 89.904(2)$ °, $\beta = 88.578(2)^\circ, \gamma = 62.835(3)^\circ, V = 343.46(2) \text{ Å}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Harrison and Manthiram (2013).

Wavenumbers $(cm⁻¹)$: 1160sh, 1045s, 995sh, 950sh, 887s, 634w, 576w, 497, 423.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P705 Lithium vanadyl phosphate $Li(VO)(PO₄)$

Origin: Synthetic.

- **Description**: Synthesized using LiAc-2H₂O, V₂O₅, (NH₄)(H₂PO₄), and citric acid as the starting reagents. After evaporation the solvent, the product was sintered at 600 $^{\circ}$ C. Characterized by powder X-ray diffraction data. Triclinic, $a = 6.731(5)$, $b = 7.202(4)$, $c = 7.923(2)$ Å, $\alpha = 89.859(8)^\circ, \beta = 91.261(5)^\circ, \gamma = 116.891(10)^\circ, V = 342.507 \text{ Å}^3, Z = 4.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yang et al. (2008b).

- Wavenumbers (cm⁻¹): 1633w, 1458w, 1385w, 1161, 1047s, 991s, 950, 907s, 666, 637, 617, 579, 546, 516sh, 500, 461sh, 423s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 1385 cm⁻¹ may correspond to $NO₃⁻$ admixture in KBr. The band at 1633 cm^{-1} corresponds to adsorbed (?) water.

P706 Lithium vanadyl phosphate β -LiVOPO₄

Origin: Synthetic.

Description: Prepared by a hydrothermal method. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pnma$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (1994).

Wavenumbers (IR, cm⁻¹): 1160s, 1151sh, 1055s, 1038sh, 995s, 966s, 896s, 637, 619sh, 614, 476s, 453s, 368s, 335, 310sh, 294w, 256w.

Note: In the cited paper, Raman spectrum is given.

```
Wavenumbers (Raman, cm<sup>-1</sup>): 1104, 1077, 1062, 1025, 1005, 979, 936, 884s, 629, 468, 429, 363,
332, 322, 310, 266, 250.
```
P707 Lithium zinc phosphate monohydrate α -LiZn(PO₄)⋅H₂O

- **Description:** Prepared from $LiH_2(PO_4)H_2O$ and $ZnSO_4.7H_2O$ in the presence of $(NH_4)(HCO_3)$ and polyethylene glycol. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 10.51848$ (8) , $b = 8.12715(6)$, $c = 5.02215(5)$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Liao et al. (2009).

- Wavenumbers (cm⁻¹): 3447, 3417, 3182, 3045, 2932sh, 2854w, 1612, 1436, 1272w, 1079s, 1018, 630s, 580, 455.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, the wavenumber 455 cm^{-1} is erroneously indicated as 415 cm⁻¹. The bands in the range from 2800 to 3000 cm⁻¹ correspond to the admixture of an organic substance. The band at 1436 cm^{-1} may correspond to a carbonate.

P708 Magnesium acid phosphate hydrate Mg(H₂PO₄)₂∙2H₂O

Origin: Synthetic.

- Description: Obtained by salting out with acetone from MgO solution in 65 wt% H₃PO₄. Monoclinic, space group $P2_1/n$, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Koleva and Effenberger (2007).

- Wavenumbers (cm⁻¹): 3435sh, 3360, (3180sh), 2450w, 2300w, 2130w, 1740sh, 1618, 1256s, 1180s, 1138s, 1063s, 946sh, 906s, 820, 765, 623, 548, 533sh, 458.
- Note: Unlike structurally investigated Ni, Zn, and Cd analogues (Koleva and Effenberger 2007), bands of acid OH groups in the range $2200-2500$ cm⁻¹ are anomalously weak.

P709 Manganese acid phosphate hydrate Mn(H₂PO₄)₂⋅2H₂O

Origin: Synthetic.

Description: Obtained by salting out with acetone from MnO solution in 65 wt% H_3PO_4 . Monoclinic, space group $P2_1/n$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Koleva and Effenberger (2007).

Wavenumbers (cm⁻¹): 3400sh, 3300s, 3130sh, 2435sh, 2300sh, 2170w, 2050w, 1700sh, 1652, 1562sh, 1250, 1150s, 1095sh, 1046s, 960s, 900, 795, 637w, 547, 523, 480, 420.

P710 Manganese(II) titanium orthophosphate MnTi₄(PO₄)₆

- **Description:** Orange crystals obtained hydrothermally from $TiCl₄$, Mn, and H_3PO_4 in the presence of H_2O_2 , at 250 °C for 20 days. The crystal structure is solved. Hexagonal, space group R-3, $a = 8.51300(10), c = 21.0083(3)$ Å, $V = 1318.52(3)$ Å³, $Z = 6$. $D_{\text{meas}} = 2.39(3)$ g/cm³, $D_{\text{calc}} = 3.083 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Essehli et al. (2009).

Wavenumbers (cm⁻¹): 1267, 1180, 1089s, 1049s, 980s, 944s, 642, 596, 539w, 482, 447w, 419.

P711 Manganese(II) titanium phosphate MnTi₄(PO₄)₆ MnTi₄(PO₄)₆

Origin: Synthetic.

- **Description**: Prepared from the stoichiometric mixture of MnCO₃, TiO₂, and (NH₄)(H₂PO₄) using a solid-state reaction technique. Characterized by powder X-ray diffraction data. Hexagonal, space group $R-3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Pikl et al. (1998).

- Wavenumbers (IR, cm⁻¹): 1267, 1185, 1090sh, 1083s, 1057sh, 1046s, 988s, 944s, 643, 594, 571w, 542, 441, 382, 360, 319s, 283w, 264w, 255w, 186w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1221w, 1091, 1083, 1050, 1034s, 1005, 976s, 939s, 696, 654, 604, 537, 454, 445, 438, 358, 350, 313, 285, 271, 259, 241, 199w.

P712 Mercury(I) acid phosphate $(Hg_2)_2(H_2PO_4)(PO_4)$

Origin: Synthetic.

Description: White precipitate obtained by adding a solution of $Hg_2(NO_3)_2$ 2H₂O with minor HNO_3 to excess of diluted orthophosphoric acid. The crystal structure is solved. Monoclinic, space group C2/c, $a = 9.597(2)$, $b = 12.673(2)$, $c = 7.976(1)$ Å, $\beta = 110.91(1)$ °, $V = 906.2(2)$ Å³, $Z = 4$. $D_{\text{calc}} = 7.296 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Weil (2000).

Wavenumbers (cm⁻¹): 1585w, 1218, 1069s, 1005s, 940s, 886, 829, 592s, 523s.

P713 Molybdyl phosphate α -(MoO)(PO₄)

- **Description**: Obtained from the melt prepared from ammonium paramolybdate and H_3PO_4 at 950 °C. Tetragonal, space group $P4/n$, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stranford and Condrate Sr (1984b).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 1193, 998s, 631w, 585.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1079, 1013s, 947s, 621, 607, 447, 361, 292.

P714 Nickel vanadyl phosphate hydrate $Ni(VO)(PO₄)₂·4H₂O$

Origin: Synthetic.

Description: Tetragonal. The structure is based on $VPO₅$ 1ayers linked by $NiO₆$ octahedra. V has fivefold coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (1995).

Wavenumbers (cm⁻¹): 3505sh, 3347, 3302s, 3070sh, 1687, 1558w, 1119, 1026s, 1005sh, 854w, 681, 550, 467s, 455s, 436sh, 391s, 370, 306, 289, 255, 227, 190.

P715 Niobylphosphate β -(NbO)(PO₄)

Origin: Synthetic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stranford and Condrate Sr (1984b).

Wavenumbers (IR, cm⁻¹): 1179, 1096, 1017s, 833, 779, 616, 585.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1120, 1097, 1022, 990, 969, 834, 785, 632, 609, 599, 583, 530, 442, 416, 383, 363, 347, 311, 288, 276, 241, 212, 177, 140, 115, 95, 80.

P716 Niobyl phosphate α -NbPO₅

Description: Tetragonal, space group $P4/n$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stranford and Condrate Sr (1984b).

Wavenumbers (IR, cm⁻¹): 1211, 1040s, 891s, 629, 583.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1113, 1014s, 984s, 800, 612, 467, 458, 376, 288, 200, 177, 160, 111.

P717 Ammonium manganese(II) borophosphate $[NH_4]_4[Mn_9B_2(OH)_2(HPO_4)_4(PO_4)_6]$

Origin: Synthetic.

- **Description**: Pink stick-like crystals prepared hydrothermally from $Mn(OAc)_2 \cdot 4H_2O$, H_3BO_3 , and $(NH_4)_2(HPO_4)$ at 200 °C for 5 days. Monoclinic, space group C2/c, $a = 32.603(7)$, $b = 10.617(2)$, $c = 10.718(2)$ Å, $\beta = 108.26(3)^\circ$, $V = 3523.2(12)$ Å³, $Z = 4$. $D_{calc} = 2.971$ g/cm³. In the crystal structure, layers $[Mn_9(OH)_2(HPO_4)_4(PO_4)_6]$ are connected by B atoms having tetrahedral coordination to form 3D framework. Mn^{2+} has five- and sixfold coordination.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yang et al. (2006).

- Wavenumbers (cm⁻¹): 3498, 3226s, 3084, 2848, 1684w, 1437, 1096s, 1044s, 1021s, 960, 930s, 875, 837sh, 685, 626, 583, 557, 521, 482sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P718 Potassium acid phosphate $K_2(HPO_4)$

Origin: Synthetic.

Description: Prepared by slow evaporation of aqueous solution of a commercial sample at 60 °C. Orthorhombic, space group $Pna2_1$, $Z = 12$.

Kind of sample preparation and/or method of registration of the spectrum: Nujol and Fluorolube mulls. Transmission.

Source: Hadrich et al. (2001).

- Wavenumbers (IR, cm⁻¹): 2860s, 2480s, 2370s, 1870, 1650sh, 1310, 1280, 1124s, 1085s, 1065sh, 972s, 950sh, 847s, 832s, 622, 535, 515sh, 425, 407, 385sh.
- Note: The band at \sim 720 cm⁻¹ corresponds to Nujol. The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1129w, 1119w, 1111w, 1100w, 1081w, 1066w, 1000, 969s, 946s, 856, 839sh, 828w, 587w, 571w, 559, 547, 534, 511w, 427w, 405w, 389, 382sh.

P719 Potassium acid pyrophosphate hydrate K₃(HP₂O₇)∙3H₂O

- **Description**: Prepared in the reaction between a concentrated aqueous solution of potassium pyrophosphate and equimolar quality of acetic acid at 0–5 °C. Monoclinic, space group P_1/c , $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol and hexachlorobutadiene mulls. Transmission.

Source: Sarr and Diop (1984).

- Wavenumbers (IR, cm⁻¹): 3414, 3316s, 3210s, 2720w, 2360 (broad), 1714, 1660, 1366, 1304, 1246, 1210sh, 1190s, 1160, 1125s, 1110sh, 1060s, 1015, 1005, 966s, 932–870s (broad), 720, 700sh, 686sh, 648w, 630w, 620w, 610w, 590sh, 562sh, 536sh, 531, 502, 480sh, 454, 444sh, 418, 407sh, 334, 306sh, 264sh, 247.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P720 Potassium antimony(V) oxophosphate $K_5Sb_5P_2O_{20}$

Origin: Synthetic.

Source: Husson et al. (1984).

- Wavenumbers (IR, cm⁻¹): 1288w, 1244sh, 1216s, 1074s, 960s, 905, 860, 755s, 670, 640, 622s, 601w, 558s, 490s, 450, 405, 376, 304, 285, 252, 235s, 208s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1240, 1180, 1070, 975, 821w, 775w, 647s, 599s, 566w, 543, 507, 489, 472, 440w, 380w, 339s, 322, 267, 215w, 161, 108sh, 74.

P721 Potassium antimony oxophosphate $K_2Sb(PO_4)O_2$

Origin: Synthetic.

Description: Obtained by a solid-state reaction technique. The crystal structure is solved. Orthorhombic, space group *Pnma*, $a = 9.429(4)$, $b = 5.891(3)$, $c = 11.030(5)$ Å, $V = 612.72$ Å³, $Z = 4$. $D_{\text{meas}} = 3.50(5) \text{ g/cm}^3$, $D_{\text{calc}} = 3.53 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Botto and Garcia (1989).

Wavenumbers (IR, cm⁻¹): 1212s, 1070s, 1060sh, 925sh, 895s, 850s, 758w, 670, 662sh, 640, 620, 585, 540s, 480, 390, 370, 300w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1190, 1071s, 653s, 620w, 600, 545s, 537sh, 508w, 496w, 487w, 473w, 434w, 326, 308, 266s.

P722 Potassium bismuth(III) phosphate $K_3Bi_2(PO_4)_3$

- Description: Prepared by crystallization from the melt obtained by heating stoichiometric mixture of K_2CO_3 , Bi_2O_3 , and $(NH_4)(H_2PO_4)$ to 1223 K. Characterized by powder X-ray diffraction data. Orthorhombic, possibly isostructural with $Na₃Bi₂(PO₄)₃$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Mariappan et al. (2005).

Wavenumbers (cm⁻¹): 1132, 1095s, 990s, 964s, 952s, 938s, 933sh, 901s, (667w), (658w), 592, 585, 555s, 548s, (517), (482w), (470w), (455w), (440w), (434w), (425w), (417w).

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P723 Potassium difluorphosphate $K(PO₂F₂)$

Origin: Synthetic.

Description: Obtained from a melt prepared from KPF_6 and KPO_3 . Orthorhombic (?). Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Bühler and Bues (1961).

Wavenumbers $(cm⁻¹)$: 1330sh, 1311s, 1145s, 857s, 834, 535w, 512sh, 481, 286w.

Description: Obtained by evaporation of an aqueous solution containing a stoichiometric mixture of KNO₃, Fe(NO₃)₃, and (NH₄)₂(HPO₄) followed by stepwise heating up to 750 °C with intermediate grindings. Monoclinic, space group $P2_1/c$, $a = 7.3523$, $b = 9.9875$, $c = 8.1872 \text{ Å}$, $\beta = 106.499^{\circ}$, $V = 576.45 \text{ Å}^3$, $Z = 4$. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Belkouch et al. (1995).

Wavenumbers (cm⁻¹): 1240s, 1175s, 1115s, 1100sh, 1075s, 1060sh, 1030, 945s, 780sh, 770, 645w, 600sh, 590, 560, 500, 480, 440, 412, 371, 339s, 289, 265sh, 252sh, 245, 226.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P725 Potassium lead borophosphate $KPb(BP_2O_8)$

- **Description**: Colorless crystals grown by the top seed growth method from a $K_2O-PbO-B_2O_3-P_2O_5$ system. The melt was kept at 880 °C for 24 h and then cooled first to 865 °C at a rate of 0.5 °C/min and thereafter to 861 °C within 20 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Tetragonal, space group *I-42d*, $a = 7.1464(7)$, $c = 13.8917(16)$ Å, $V = 709.46$ (13) \AA^3 , Z = 4. $D_{\text{calc}} = 4.185$ g/cm³. The structure contains 12-membered rings, in which 6 PO₄ tetrahedra and 6 BO₄ tetrahedra are linked by O atoms.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Li et al. (2013).

Wavenumbers $(cm⁻¹)$: 1139s, 1036s, 932s, 610, 538.

P726 Potassium lead phosphate $KPb_4(PO_4)_3$

Origin: Synthetic.

Description: Prepared in a solid-state reaction, by heating a mixture of PbO, K_2CO_3 , and $(NH_4)_2(HPO_4)$ first to 500 °C, and thereafter (after intermediate grinding) at 700 °C for 48 h. Characterized by powder X-ray diffraction data. Hexagonal, space group $P6₃/m$, $a = 9.8276(3)$, $c = 7.3010(4)$ Å, $V = 610.67(2)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Azrour et al. (2011).

Wavenumbers (IR, cm⁻¹): 1055s, 988s, 928sh, 576, 554, 534, 447w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1025, 976, 959s, 933s, 583s, 558, 418, 389, 235sh, 204, 159w, 130s.

P727 Potassium magnesium acid phosphate hydrate KMg₂H(PO₄)₂⋅15H₂O

Origin: Synthetic.

- **Description:** Prepared by the precipitation reaction between $MgSO_4$ and $K_2(HPO_4)$ solutions. Characterized by powder X-ray diffraction data. Triclinic, $a = 6.2908, b = 12.2451,$ $c = 6.5551 \text{ Å}, \alpha = 93.64^{\circ}, \beta = 89.14^{\circ}, \gamma = 94.73^{\circ}.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Transmission.

Source: Koleva et al. (2015).

Wavenumbers (cm^{-1}) : 3200s, 2390, 1704, 1633, 1390w, 1031s, 905, 790s, 720s, 530, 429w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P728 Potassium magnesium acid pyrophosphate hydrate KMg_{0.5}(H₂P₂O₇)∙H₂O

- **Description:** Prepared in the reaction of aqueous solutions of MgCl₂ and $K_4P_2O_7$ in the presence of HCl. The crystal structure is solved. Triclinic, space group $P-1$, $a = 6.8565(2)$, $b = 7.3621(3)$, $c = 7.6202(3)$ Å, $\alpha = 81.044(2)^\circ$, $\beta = 72.248(2)^\circ$, $\gamma = 83.314(3)^\circ$, $V = 360.90(2)$ Å³, $Z = 2$. $D_{\text{calc}} = 2.257 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Harcharras et al. (2003).
- Wavenumbers (IR, cm⁻¹): 3498sh, 3389sh, 3299, 2858, 2383 (broad), 2201, 1687, 1669sh, 1385w, 1333, 1290, 1262, 1200s, 1179sh, 1097s, 1033s, 1002sh, 994s, 978sh, 946s, 931sh, 802, 751, 717, 622w, 577, 544, 520, 491, 431w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3484w, 3387, 3318, 3281s, 2787w, 2405w, 2176w, 1705w, 1605w, 1332w, 1278w, 1217s, 1165, 1121, 1115w, 1081, 1048s, 1023, 992, 955w, 900w, 763s, 729, 589s, 555, 534, 512, 472, 452, 409s, 381, 373s, 365, 339, 311, 300s, 245.

P729 Potassium magnesium orthophosphate $KMg_4(PO_4)_3$, $KMg_4(PO_4)_3$

Origin: Synthetic.

- **Description:** Obtained from $K_2WO_4-WO_3$ flux containing $K(H_2PO_4)$ and MgO in the molar ratio 2:1. The crystal structure is solved. Orthorhombic, space group *Pnnm*, $a = 16.361(3)$, $b = 9.562(19)$, $c = 6.171(12)$ Å, $V = 965.4(3)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.898$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc $(400-1500 \text{ cm}^{-1})$ and Nujol mull $(30-500 \text{ cm}^{-1})$. Absorption.
- Source: Tomaszewski et al. (2005).
- Wavenumbers (IR, cm⁻¹): 1209w, 1189, 1155sh, 1149s, 1108s, 1087s, 1049s, 1035s, 1000s, 978, 961, 907, 638, 619, 591, 570, 562, 532, 473, 452, 428, 411, 385sh, 374, 335, 323, 295, 276, 266, 258, 236w, 215w, 202w, 170w, 159w, 144w, 119w, 77w, 71sh, 50w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, polarized Raman spectra are given.
- Wavenumbers (Raman, [$z(xx)$ - z] polarization, cm⁻¹): 1152w, 1141w, 1103w, 1086, 1079, 1016s, 982s, 956, 636, 624w, 604w, 589w, 565, 550w, 509w, 471w, 415, 298w, 283, 275w, 253w, 156, 132.

Description: Obtained from stoichiometric amounts of $(NH_4)_2(HPO_4)$, K_2CO_3 , MgO, and Y_2O_3 , with $NH₄Cl$ as a flux, first at 850 °C for several hours, and thereafter (after adding KCl and grinding) at 650–850 °C for 2 days, with subsequent washing with cold water. Characterized by powder X-ray diffraction data and elemental analysis. Tetragonal, space group $I4_1$ /amd, $a = 6.886$, $c = 6.025$ Å, $Z = 2. D_{\text{meas}} = 3.940 \text{ g/cm}^3, D_{\text{calc}} = 3.983 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Shao-Long et al. (1996).

Wavenumbers (IR, cm⁻¹): 1072s, 1036s, 643, 528, 338.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1061s, 1030, 1004s, 669, 659w, 590, 569w, 553w, 533w, 488, 338, 305s, 225w, 205, 195, 165, 92w, 85w.

P731 Potassium monofluorphosphate $K_2(PO_3F)$

Description: Obtained from the melt containing KF and KPO₃. Orthorhombic, $a = 7.554$, $b = 5.954$, $c = 10.171 \text{ Å}, V = 457 \text{ Å}^3, Z = 4 \text{ (Payen et al. 1979)}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Bühler and Bues (1961).

Wavenumbers $(cm⁻¹): 1170s, 1008s, 705s, 530.$

P732 Potassium niobium oxophosphate $K_3Nb_5O_{11}(PO_4)_2$

Origin: Synthetic.

- **Description:** Prepared in the cation exchange reaction between $T_{3}Nb_{5}O_{11}(PO_{4})_{2}$ and excess of KCl at 460° C for 24 h. Characterized by powder X-ray diffraction data and electron microprobe analysis. Trigonal, space group *R*-3*c*, $a = 13.002(7)$, $c = 53.742(3)$ Å, $V = 7868(13)$ Å³, $Z = 18$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Fakhfakh et al. (2003).

Wavenumbers (cm⁻¹): 1136sh, 1099s, 1036s, 1013sh, 874, 806, 663sh, 603, 579s, 563s, 471, 460, 424w.

P733 Potassium tin orthophosphate $KSn_4(PO_4)_3$

Origin: Synthetic.

Description: Synthesized hydrothermally from $SnCl₂$ and $K(H₂PO₄)$ at 170 °C for 3 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group R3c, $a = 9.7124(11)$, $c = 24.363(3)$ Å, $V = 1990.3(4)$ Å³, $Z = 6$. $D_{calc} = 3.999$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bontchev and Moore (2004).

Wavenumbers $(cm⁻¹)$: 1073s, 1012s, 604, 579, 529.

Note: Bands above 1400 cm^{-1} indicate that the sample was contaminated with a compound containing acid OH groups and H_2O molecules.

P734 Potassium titanium oxophosphate $KTi(PO₄)O$

- **Description:** Orthorhombic, space group $Pn2_1a$. The structure contains distorted TiO₆ octahedra whereas PO_4 tetrahedra are stated as being undistorted. However the strong band at 964 cm⁻¹ indicates that $PO₄$ tetrahedra are actually distorted.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.

Source: Jacco (1986).

- Wavenumbers (cm⁻¹): 1124, 1100, 1048s, 1023s, 1000s, 964s, 820, 785, 712s, 635, 594w, 560, 503sh, 492, 469, 430, 402, 381s, 324sh, 315, 287, 270.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P735 Potassiumvanadyl phosphate $K_2(VO_2)(PO_4)$

Origin: Synthetic.

- **Description**: Yellow crystals prepared from the powders of $NH₄VO₃$, $(NH₄)₂(HPO₄)$, and $KNO₃$ mixed in the molar ratio 1:1:2 and heated first at 350 °C for 2 h and thereafter for 440 °C for 1 h. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 6.863(2)$, $b = 13.479(5)$, $c = 7.505$ (1) Å, $\beta = 111.02$ (10)°, $V = 648.0(3)$ Å³, Z = 4. Vanadium has fivefold coordination with two short V–O distances.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Korthuis et al. (1993).

Wavenumbers $(cm⁻¹)$: 1191s, 1167s, 1057, 1005s, 974s, 939s, 899s, 892sh, 655s, 648, 575, 560, 546, 518, 436, 420, 400.

P736 Potassium ytterbium acid orthoborate acid orthophosphate $K_3Yb[BO(OH)_2]_2(HPO_4)_2$

Origin: Synthetic.

- **Description:** Prepared hydrothermally from Yb_2O_3 preliminarily dissolved in concentrated HCl, $K_2B_4O_7$ -4H₂O, and K_2HPO_4 (with the molar ratio K:Yb:B:P = 18:1:8:7) at 453 K for 5 days. Characterized by electron microprobe analyses. The crystal structure is solved. Trigonal, space group R-3, $a = 5.6809(2)$, $c = 36.594(5)$ Å, $V = 1022.8(2)$ Å³, $Z = 3$. $D_{calc} = 2.942$ g/cm³. In B-centered triangles, O atoms and OH groups are disordered.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Zhou et al. (2011).

- Wavenumbers (cm^{-1}) : 2859, 2805, 2635sh, 2600w, 2441w, 2380, 1456sh, 1409, 1204, 1031s, 994s, 875, 706, 680, 585s, 538, 520s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P737 Potassium zinc acid pyrophosphate hydrate K₂Zn(H₂P₂O₇)₂⋅2H₂O

- **Description:** The crystal structure is solved. Orthorhombic, space group *Pnma*, $a = 9.901(17)$, $b = 11.071(14), c = 13.65(4)$ Å, $V = 1496$ Å³, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Khaoulaf et al. (2012).

- Wavenumbers (IR, cm⁻¹): 3864, 3612, 3466, 2829, 2421, 1891w, 1764w, 1676, 1545sh, 1453, 1363, 1222s, 1129, 1036, 990s, 951s, 850sh, 785, 715w, 637, 589s, 534s, 444.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3544, 3401s, 3300, 2750, 2316w, 1787w, 1665w, 1312, 1190s, 1136, 1070s, 1006, 918, 755s, 823w, 609s, 609s, 572, 524w, 464s, 416s, 389, 341s, 314w, 267s.

P738 Potassium zinc cyclotriphosphate benitoite-type $KZn(P_3O_9)$

Origin: Synthetic.

Description: Synthesized by solid-state reaction techniques from a stoichiometric mixture of (NH4) (H_2PO_4) , KHCO₃, and ZnO (or ZnCO₃) at 600 °C with several intermediate grindings. Characterized by powder X-ray diffraction data. Hexagonal, isostructural with benitoite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Tarte et al. (1987).

Wavenumbers (cm⁻¹): 1287s, 1113s, 1102s, 1046s, 1027s, 769s, 540, 495s, 487sh, 385, 347w, 317.

P739 Praseodymium cyclotriphosphatetrihydrate Pr(P₃O₉)∙3H₂O

Origin: Synthetic.

Description: Prepared by mixing PrCl₃.6H₂O and Na₃P₃O₉ 0.1 M aqueous solutions in a 1:1 ratio. The crystal structure is solved. Hexagonal, space group P-6, $a = 6.7677(4)$, $c = 6.0501(4)$ Å, $V = 239.98(3) \text{ Å}^3$, $Z = 1$. $D_{\text{calc}} = 2.988 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Jouini et al. (2006).

- Wavenumbers (IR, cm⁻¹): 3620, 3512, 3230sh, (2928), 1626, 1289s, 1108s, 1036s, 915sh, 764s, (672), (653), (514), 501s, 394.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The wavenumber 1289 cm^{-1} is erroneously indicated by Jouini et al. (2006) as 1298 cm^{-1} . In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1248s, 1176s, 1103, 900, 656s, 662, 481, 357s, 306s, 269, 202w, 169, 131, 78.

P740 Rubidium iron(III) pyrophosphate RbFe³⁺(P₂O₇)

- **Description**: Prepared from aqueous solutions of corresponding nitrates and $(NH_4)_{2}(HPO_4)$ using a co-precipitation method, with subsequently heating precipitate at $750\degree C$ at $15-20$ h. Characterized by powder X-ray diffraction data. Triclinic, space group $P2_1/c$, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Parajón-Costa et al. (2013).

Wavenumbers (IR, cm⁻¹): 1233, 1170sh, 1091s, 1067s, 1057s, 1022, 927s, 766sh, 757, 634, 586, 548, 490, 470, 427, 402.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1156s, 1119s, 1094s, 1066s, 908, 765, 640, 598, 574, 548, 473, 431, 406.

Transmittance 11111 m¹ 600 800 1000 400 1200 Wavenumber $(cm⁻¹)$

P741 Rubidium vanadyl phosphate $Rb(VO)(PO₄)$

Origin: Synthetic.

- **Description**: Obtained by heating pelletized mixture of $Rb_4V_2O_7$, V_2O_3 , and P_2O_5 in a molar ratio of 1:1:2 at 785 C. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $P_2 \quad 2_1 \quad 2_1 \quad Z = 4$. The structure contains square pyramidal VO₅ groups (with one short V–O bond of 1.579 Å) and tetrahedral PO_4 units.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (1996).

- Wavenumbers (IR, cm⁻¹): 1128s, 1093s, 1047s, 1035sh, 1010sh, 990s, 962s, 657sh, 650, 632, 592, 574, 563, 534s, 529sh, 449w, 415, 389, 373, 362sh, 348, 337, 306, 284w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1149, 1125, 1094, 1077, 1045, 1005s, 964, 664, 630, 593, 560, 523, 450, 405, 351, 320, 285s.

P742 Samarium metaphosphate $Sm(PO₃)₃$

Origin: Synthetic.

Description: Synthesized from the mixture of Sm_2O_3 and $(NH_4)(H_2PO_4)$ heated successively at 170, 240, 350, 440, and 550 °C for 24 h. Characterized by powder X-ray diffraction data. Orthorhombic, space group $C222₁$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Ilieva et al. (2001).

Wavenumbers (IR, cm⁻¹): 1345sh, 1295sh, 1280s, 1157s, 1129, 1070, 1040sh, 1017s, 960s, 816w, 776, 718w, 688w, 574, 538, 500, 477, 460.

Note: In the cited paper, IR and Raman spectra of Ga, In, Y, Sm, Gd, and Dy metaphosphates are given. Wavenumbers (Raman, cm⁻¹): 1305, 1270s, 1200s, 1170, 1131, 1093, 1064, 983, 753, 720, 692s, 580, 565, 538, 501, 469, 405, 366, 350, 326, 294, 276, 250, 230, 145.

P743 Silver iron(III) pyrophosphate AgFe³⁺(P₂O₇)

- **Description:** Obtained by heating precipitate obtained in the reaction between aqueous solutions of Ag and Fe nitrates and $(NH_4)_2(HPO_4)$ at 750 °C for 15–20 h with several grindings. Monoclinic, $a = 9.566(4), b = 8.001(2), c = 7.325(2)$ Å, $\beta = 111.86(1)^\circ$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Parajón-Costa et al. (2013).

Wavenumbers (IR, cm⁻¹): 1244, 1198, 1126s, 1094s, 1074s, 1034s, 939s, 725, 613, 588, 547, 513, 484, 438w, 421w, 409w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1225, 1136, 1105s, 1084s, 1050, 1038, 1020, 933, 741, 625, 569, 535w, 511, 490, 443, 415w, 400w.

P744 Sodium acid pyrophosphate hydrate Na₃(HP₂O₇)⋅9H₂O

Origin: Synthetic.

- **Description**: Needle-like crystals obtained at 0° C by crystallization from an aqueous solution containing stoichiometric amounts of $H_4P_2O_7$ and NaOH. Monoclinic, space group P_2C_1C , $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol or hexachlorobutadiene mull. Transmission.

Source: Sarr and Diop (1987).

- Wavenumbers (IR, cm⁻¹): 3500s, 3450s, 3380s, 3320sh, 3140sh, 2800, 2430, 1700, 1680, 1660, 1392sh, 1356sh, 1340, 1185s, 1115s, 1080, 1000sh, 960s, 895, 820sh, 735, 720, 620, 590, 545s, 515s, 480s, 450sh, 410sh, 400sh, 370sh, 325, (211).
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3507, 3436, 3376, 3325, 2807w, 2360w, 1713w, 1670w, 1426w, 1351w, 1328w, 1189, 1102s, 1088, 1070, 976, 963, 945w, 940w, 732sh, 726, 552w, 529w, 488, 451w, 426w.

P745 Sodium gadolinium oxophosphate $Na₂GdO(PO₄)$

Origin: Synthetic.

Description: Obtained in the solid-state reaction between Gd_2O_3 and $Na_4P_2O_7$. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pmm2$ (?), $a = 14.709(6)$, $b = 10.661$ (4), $c = 13.081(6)$ Å. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \mathcal{H})(hk)$] are: 14.6929 (30) (100), 6.4964 (60) (002), 3.1178 (43) (231), 2.9417 (45) (500), 2.7821 (100) (323), 2.6547 (50) (040).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Gönen et al. (2000), Uztetik-Amour and Kizilyalli (1995).

Wavenumbers (cm⁻¹): 1136sh, 1099s, 1034s, 982s, 965sh, 945sh, 926s, 909sh, 604, 579, 560sh, 548, 523sh, 470, 406w, 381, 367.

P746 Sodium iron(II) iron(III) phosphate alluaudite-type $\text{Na}_2\text{Fe}^{2+}{}_2\text{Fe}^{3+}(\text{PO}_4)_{3}$

Description: Synthesized hydrothermally from stoichiometric quantities of NaH₂PO₄.H₂O, FePO₄, and FeO at $400\degree$ C for 7 days. Characterized by powder X-ray diffraction data. Monoclinic, space group $C2/c$, $a = 11.849(2)$, $b = 12.539(1)$, $c = 6.486(1)$ Å, $\beta = 114.51(1)$ °, $V = 876.8(1)$ Å³, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Hatert et al. (2005).

Wavenumbers (cm⁻¹): 1094s, 1001s, 936s, 909sh, 653sh, 638sh, 595sh, 580s, 545, 520sh, 463sh, 433.

Note: A weak band between 1370 and 1380 cm^{-1} may correspond to the NO₃⁻ impurity.

P747 Sodium iron(II) pyrophosphate $\text{Na}_2\text{Fe}(\text{P}_2\text{O}_7)$

Origin: Synthetic.

- **Description:** Synthesized by a solid-state route from a mixture containing stoichiometric molar amounts of Na(HCO₃), Fe(C₂O₄)·2H₂O, and (NH₄)₂(HPO₄) at 600 °C for 12 h in a reducing atmosphere. Characterized by powder X-ray diffraction data and Mössbauer spectrum. Triclinic, space group P-1, $a = 6.4415(3)$, $b = 9.4576(4)$, $c = 11.0076(5)$ Å, $\alpha = 64.685(2)$ °, $\beta = 85.989(3)$ °, $\gamma = 73.033(3)^\circ$, $V = 578.64(4)$ Å³. Fe²⁺ occupies two independent sites.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Barpanda et al. (2014).

- Wavenumbers (cm⁻¹): 1452w, 1196sh, 1150s, 1038s, 1014, 999, 956s, 903s, 881, 736, 616sh, 595sh, 566s, 531s, 489, 462.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The band at 1452 cm^{-1} may correspond to the admixture of a carbonate.

Description: Synthesized by stepwise heating of a solid obtained by evaporation of an aqueous solution containing a stoichiometric mixture of NaNO₃, Fe(NO₃)₃.nH₂O, and (NH₄)₂(HPO₄) first at 120 °C for 24 h, thereafter at 320 °C (to decompose NH_4NO_3 and finally, after grinding, at 750 °C for 16 h. Monoclinic, space group P_1/c , $a = 7.3244$, $b = 7.9045$, $c = 9.5745 \text{ Å}$, $\beta = 111.858^{\circ}$, $V = 514.5 \text{ Å}^3, Z = 4.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Belkouch et al. (1995).

- Wavenumbers (cm⁻¹): 1260, 1225, 1140s, 1115sh, 1090s, 1060s, 1040s, 940s, 740, 625, 600, 560, 520, 493w, 442sh, 428, 382, 336sh, 327, 285, 277sh, 254.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P749 Sodium lanthanum pyrophosphate $NaLaP₂O₇$

- **Description:** Crystals obtained by heating a mixture containing 3 g of Na₃P₃O₉ and 0.5 g of La₂O₃, first at 1000 °C for 20 days and thereafter at 600 °C for 10 h. The crystal structure is solved. Orthorhombic, space group *Pnma*, $a = 8.645(2)$, $b = 5.317(1)$, $c = 12.737(2)$ Å, $V = 585.5(2)$ Å³, $Z = 4. D_{\text{calc}} = 3.810 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Férid and Horchani-Naifer (2004).

- Wavenumbers (IR, cm⁻¹): 1182sh, 1163s, 1108s, 1066s, 1050sh, 1010, 970s, 763, 623, 580, 557s, 530, 492, 476, 451sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1152, 1132, 1086, 1072s, 1005, 939, 778s, 618, 580, 535, 523w, 486, 463, 367w, 324, 305w, 251, 221.

P750 Sodium magnesium orthophosphate pyrophosphate $Na_4Mg_3(PO_4)_2(PO_7)$ $Na₄Mg₃(PO₄)₂(P₂O₇)$

Origin: Synthetic.

- **Description:** Crystals grown from the melt of a mixture of Na₂CO₃, MgO, and (NH₄)(H₂PO₄) in the molar ratio Na:Mg:P = 4:3:4, by stepwise heating the mixture at 200, 500, and 900 °C followed by cooling down to 400 °C at the rate of 10 °C/h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $Pn2_1a$, $a = 17.985(2)$, $b = 6.525(9)$, $c = 10.511(1)$ Å, $V = 1233.58(18)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.847$ g/cm³. The structure is based on a 3D framework $[Mg_3P_2O_{13}]$ formed by PO_4^{3-} and $P_2O_7^{4-}$ groups and MgO_6 octahedra.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Essehli et al. (2010).

Wavenumbers (cm⁻¹): 1205sh, 1180sh, 1173s, 1126s, 1113sh, 1095s, 1068, 1053, 1009sh, 999s, 968, 953, 914s, 730, 631, 590, 575s, 561s, 542sh, 494, 471sh, 457w.

Description: Synthesized hydrothermally from stoichiometric quantities of $NaH_2PO_4·H_2O$, FePO₄, and MnO at 400° C for 7 days. Characterized by powder X-ray diffraction data. Monoclinic, space group $C2/c$, $a = 12.024(4)$, $b = 12.629(6)$, $c = 6.515(3)$ Å, $\beta = 114.58(4)$ °, $V = 899.6(5)$ Å³, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Hatert et al. (2005).

Wavenumbers (cm⁻¹): 1082s, 990s, 930s, 634sh, 602s, 583, 545, 516sh, 466w, 415.

Note: A weak band between 1370 and 1380 cm^{-1} may correspond to the NO₃⁻ impurity.

P752 Sodium niobium oxophosphate $Na₃Nb₅O₁₁(PO₄)₂$

- **Description:** Prepared in the cation exchange reaction between $T_{3}Nb_{5}O_{11}(PO_{4})_{2}$ and excess of KCl at 460° C for 24 h. Characterized by powder X-ray diffraction data and electron microprobe analysis. Trigonal, space group *R*-3*c*, $a = 12.979(3)$, $c = 53.613(2)$ Å, $V = 7822(7)$ Å³, $Z = 18$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Fakhfakh et al. (2003).

Wavenumbers (cm⁻¹): 1142, 1097sh, 1050s, 999sh, 879, 797, 622s, 545, (454w), (424w).

P753 Sodium tin orthophosphate $NaSn_4(PO_4)_3$

Origin: Synthetic.

Description: Prepared hydrothermally from SnCl₂, NaOH, and H₃PO₄ at 170 °C for 3 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group R3c, $a = 9.5508(13)$, $c = 24.083(3)$ Å, $V = 1902.4(4)$ Å³, $Z = 6$. $D_{calc} = 4.099$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bontchev and Moore (2004).

Wavenumbers $(cm⁻¹)$: 1059s, 1002s, 601, 581, 543sh.

P754 Sodium vanadyl phosphate $Na_2(VO_2)(PO_4)$ $Na_2(VO_2)(PO_4)$

Origin: Synthetic.

Description: Prepared by heating a mixture of $NH₄VO₃$, $NH₄2(HPO₄)$, and $KNO₃$ in the molar ratio 1:1:2, first at 350 °C for 2 h and thereafter at 440 °C for 1 h. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 6.1805(7)$, $b = 12.436(1)$, $c = 7.386(1)$ Å, $\beta = 107.00(1)$ °, $V = 542.9(1)$ \AA^3 , $Z = 4$. Vanadium has fivefold coordination with two short V–O bonds.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Korthuis et al. (1993).

- Wavenumbers (cm⁻¹): 1195, 1166, 1067, 1014s, 975s, 947s, 934s, 916s, 660, 647, 578, 565sh, 549, 524, 439, 427, 404.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P755 Sodium vanadyl phosphate Na(VO)PO₄ Na(VO)PO₄

Description: Prepared hydrothermally. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group P_1/c , $Z = 4$. Vanadium has octahedral coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (1994).

Wavenumbers (IR, cm⁻¹): 1134, 1055sh, 1030sh, 1019s, 1002sh, 975s, 952s, 896s, 621, 597w, 554, 527sh, 509, 413, 366, 348, 339sh, 310w, 281w, 265sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1025, 1012sh, 1000, 970, 930, 878s, 620, 600, 388, 340, 319, 268.

P756 Sodium zinc orthophosphate NaZn(PO_A)

Origin: Synthetic.

- **Description:** Single crystals obtained from a Na_2MoO_4 flux, decreasing the temperature. Monoclinic, space group $P2_1/n$, $Z = 12$. Structurally related to beryllonite.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto and Vassallo (1989).

Wavenumbers (IR, cm⁻¹): 1108sh, 1080sh, 1065sh, 1050s, 1028s, 978, 970, 635s, 622sh, 560, 515, 480, 454w, 440w, 390, 296, 242.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1096, 1066w, 1036, 1029, 1023, 975s, 969s, 634w, 564w, 505w, 384, 378, 222w.

P757 Sodium zinc pyrophosphate $\text{Na}_2\text{ZnP}_2\text{O}_7$

Origin: Synthetic.

- **Description**: Synthesized by heating stoichiometric quantities of Na₂CO₃, ZnO, and $(NH₄)₂(HPO₄)$ first at 523 K and then at 623 K. Characterized by powder X-ray diffraction data. The crystal structure is solved. Tetragonal, space group $P4_2/n$, $a = 21.771$, $c = 10.285$ Å. The structure is based on $[ZnP_2O_7]$ layers.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Chouaib et al. (2011).
- Wavenumbers (cm⁻¹): 1220s, 1176s, 1086s, 1028sh, 1005, 916s, 777w, 759w, 722, 626, 602, 550s, 498s, 485sh, 453sh, 420sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P758 Strontium iron phosphate whitlockite-related $Sr₉Fe(PO₄)₇$

Description: Prepared by heating a mixture of $SrCO_3$, Fe₂O₃, and $(NH_4)(H_2PO_4)$ with a weight ratio of 9:0.5:7, first at 900 K, and thereafter at 1370 K for 120 h with several intermediate grindings. Characterized by Mössbauer spectroscopy and powder X-ray diffraction data. The crystal structure is solved from powder neutron diffraction data. Monoclinic, space group $C2/c$, $a = 14.4971(2)$, $b = 10.6005(13), c = 17.9632(3)$ Å, $\beta = 112.5053(9)^\circ$, $V = 2550.28(7)$ Å³, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Belik et al. (2005).

- Wavenumbers (IR, cm⁻¹): 1130s, 1111sh, 1090s, 1072sh, 1060s, 1033, 1008, 983s, 931w, 901s, 881, 619, 601, 590, 577, 545s, 424w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a figure of the Raman spectrum is given.

P759 Strontium magnesium pyrophosphate $\rm SrMgP_2O_7$

Origin: Synthetic.

- **Description:** Prepared by stepwise heating a mixture of $SrCO_3$, $MgCO_3$, and $(NH_4)(H_2PO_4)$, taken in stoichiometric amounts, at 500, 700, and 900 $^{\circ}$ C, for 5 h at each temperature, with intermediate grindings. Monoclinic, $a = 5.309$, $b = 8.299$, $c = 12.68 \text{ Å}, \beta = 90.6^{\circ}$, $V = 558.64 \text{ Å}^3$ (see JCPDS) card No. 49-1027).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Velchuri et al. (2011b).

- Wavenumbers (cm⁻¹): 1232sh, 1192, 1164s, 1132s, 1098s, 1050, 1022, 975sh, 960s, 744, 647w, 589, 562, 538, 506, 486sh, 439, 409.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P760 Calcium strontium orthophosphate whitlockite-type $Ca_2Sr(PO_4)_2$

Origin: Synthetic.

Description: Prepared by heating a mixture of CaCO₃, Ce₂P₂O₇, and Sr₃(PO₄)₂ at 1000 °C for 120 h with grinding every 30 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group R3c, $a = 10.5612(2)$, $c = 38.0588(5)$ Å, $V = 3676.32(9)$ Å³, $Z = 21$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Belik et al. (2002).

Wavenumbers (cm⁻¹): 1117s, 1039s, 1019s, 981sh, 946sh, 607sh, 600s, 589, 575w, 566w, 556sh, 551s, 544s.

P761 Tantalum oxyphosphate $β$ -Ta(PO₄)O

Description: Prepared by dehydration of a Ta(PO_4) O_4 H_2O precursor at 900 °C. For details of synthesis techniques see Hahn (1951). Monoclinic, space group $P2₁$ (?).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stranford and Condrate Sr (1984c, 1990).

Wavenumbers (IR, cm⁻¹): 1202, 1108, 1048s, 883, 828, 666, 589w.

Note: In the cited papers, Raman spectra are given.

Wavenumbers (Raman, cm⁻¹): 1135, 1107, 1041, 1019, 997, 882w, 810w, 671w, 636w, 616w, 606w, 593w, 558w, 471w, 425w, 412w, 384w, 366, 334, 287, 269, 236, 214, 176, 118.

P763 Tellurium(IV) oxyphosphate $Te_2(PO_4)_2O$

Origin: Synthetic.

- **Description:** Colorless crystals prepared by heating a mixture of TeO₂ and P₄O₁₀ at 550 °C for 24 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group Cc , $a = 5.3819(7)$, $b = 13.6990(19)$, $c = 9.5866(12)$ Å, $\beta = 103.682(2)$ °, $V = 686.73(16)$ Å³, $Z = 4$. Te has fivefold coordination.
- Kind of sample preparation and/or method of registration of the spectrum: A sample pressed between two KBr pellets (Authors' wording, maybe erroneous). Transmission.

Source: Kim et al. (2010a).

- **Wavenumbers (cm⁻¹):** 1121, 1047sh, 1004s, 975s, 961, 773, 628, 606, 577, 543w, 524, 498, 476sh, 451, (416).
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P764 Thorium hydrogenphosphate Th₂(PO₄)₂(HPO₄)⋅H₂O

Origin: Synthetic.

Description: Prepared hydrothermally from thorium nitrate and phosphorous acid at 190 °C for 7 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Triclinic, space group $P2_1$, $a = 6.7023(8)$, $b = 7.0150(8)$ Å, $c = 11.184(1)$ Å, $\beta = 107.242(4)^\circ$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Salvadó et al. (2005).

- Wavenumbers (cm⁻¹): 3410, 1636w, 1250, 1144sh, 1111s, 1075s, 1030, 1010sh, 947s, 940s, 635sh, 629, 580, 563w, 534, 500.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Typical bands of P–OH groups (in the range $1800-3000 \text{ cm}^{-1}$) are absent in the IR spectrum. However, in the IR spectrum of Th₂(PO₄)₂(HPO₄)⋅H₂O given by Brandel et al. (2001) a weak band at 2400 cm⁻¹ is observed.

P765 Titanium(III) orthophosphate Ti(PO₄)

Description: Prepared by heating a mixture of $TiO₂$ and $(NH₄)₂(HPO₄)$ (in a molar ratio of 1.0:1.1) at 950 \degree C under reducing conditions (in argon gas, in the presence of iron wires and porous titanium metal). Orthorhombic, isostructural with β -Cr(PO₄).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (1989).

Wavenumbers (cm⁻¹): 1078s, 1015s, 949s, 677, 574sh, 559sh, 530, 467, 420, 397, 350, 285.

P766 Titanium acid phosphate monohydrate α -Ti(HPO₄)₂⋅H₂O

Origin: Synthetic.

Description: Prepared in the reaction of a solution of TiCl₄ in HCl(aq) with an aqueous solution of phosphoric acid. Characterized by powder X-ray diffraction data. Monoclinic, $a = 8.85(6)$, $b = 5.21(3), c = 15.2(1)$ Å, $\beta = 115.8^{\circ}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Slade et al. (1997).

Wavenumbers (IR, cm⁻¹): 3561, 3484, 3175 (broad), 1617w, 1242, 1108s, 1029s, 932, 702w, 615.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3559w, 3552, 3528, 3484, 3209, 3012, 1204, 1048sh, 1034sh, 1024s, 1016s, 975w, 588, 492w, 428, 329s, 233, 198, 181, 154w, 108w, 79w.

- Description: Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1$, $a = 7.3735(12)$, $b = 7.0405(10)$, $c = 7.6609(10)$ Å, $\beta = 121.48(2)$ °, $V = 339.2(1) \text{ Å}^3$, $Z = 4$. $D_{\text{meas}} = 3.10 \text{ g/cm}^3$, $D_{\text{calc}} = 3.13 \text{ g/cm}^3$. The strongest lines of the powder X -ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.795 (64) (-111), 4.688 (37) (110), 3.364 (33) (-112), 2.396 (56) (-222), 2.392 (56) (022), 2.344 (100) (220), 2.300 (39) (-312), 2.293 (38) (112) , 1.682 (37) (-224) .
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Benmokhtar et al. (2007b).

Wavenumbers (IR, cm⁻¹): 3256, 1651w, 1514w, 1192, 1110s, 1064s, 1028sh, 1010s, 962sh, 896s, 816w, 727s, 628, 608, 594, 559w, 536w, 492, 461, 442sh, 383, 338, 323, 287, 242, 228, 196, 130. Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1087, 1050w, 1015sh, 1006s, 972sh, 904w, 681s, 642, 614, 601, 585, 536, 498, 451, 410, 376, 348, 323, 287, 268, 245s, 213.

P768 Tungsten(VI) oxyphosphate $W_2O_3(PO_4)_2$

Wavenumbers (IR, cm⁻¹): 1225, 1162, 1125, 1100, 1070, 990, 960, 918, 869, 785, 725sh, 659, 629, 595, 575, 545, 450, 431, 400, 388, 341, 320.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1210, 1170, 1110, 1090, 1020, 999, 995, 980, 950, 912, 857, 810, 715, 660, 640, 613, 580, 448, 432, 421, 407, 393, 380, 350, 320, 300, 278, 257, 242, 222, 205, 172.

P769 Uranyl oxy-hydroxyphosphate (UO2)3(PO4)O(OH)∙3H2O

Origin: Synthetic.

Description: Crystals prepared by hydrothermal treatment of crystals of natural albite with inclusions of natural phosphates with 0.1 M solution of uranyl nitrate. Characterized by electron microprobe analysis. The crystal structure is solved. Tetragonal, space group $P4₂/mbc$, $a = 14.015(1)$, $c = 13.083(2)$ Å, $V = 2575.6(4)$ Å³, $Z = 8$. $D_{\text{calc}} = 5.092$ g/cm³. The structure contains chains

composed of uranyl pentagonal and hexagonal bipyramids and phosphate tetrahedra linked via common edges.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Burns et al. (2004).

Wavenumbers (cm⁻¹): 3439, 3237sh, 2040, 1614, 1547sh, 1093, 1008s, 931, 887s, 818.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P770 Yttrium metaphosphate $Y(PO₃)₃$

Origin: Synthetic.

- **Description:** Prepared by stepwise heating a mixture of Y_2O_3 and $(NH_4)(H_2PO_4)$ at 170, 240, 350, 440, and 550 \degree C. Monoclinic. Powder X-ray diffraction pattern corresponds to JCPDS card no. 42-0501.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ilieva et al. (2001).

Wavenumbers (IR, cm⁻¹): 1277sh, 1256s, 1235sh, 1179sh, 1171w, 1096s, 1023s, 944s, 789sh, 772w, 748w, 716w, 685w, 593w, 579sh, 541sh, 522s, 483s, 416w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1237s, 1205s, 1171, 1123, 1095, 1055, 1000w, 726, 681s, 568w, 510, 493, 416, 374, 350, 302w, 273w, 250w, 188w.

P771 Zinc vanadyl phosphate $Zn_2(VO)(PO_4)_2$

Origin: Synthetic.

Description: Prepared by heating a mixture of ZnO, VO_2 , and P_2O_5 , taken in stoichiometric amounts, at 850 °C for 2 days. Characterized by powder X-ray diffraction data. Tetragonal, space group $14cm$, $a = 8.9227(13), c = 9.039(3)$ Å, $Z = 4$. The Zn^{2+} ions exhibit a square pyramidal coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Baran and Lii (1992).

- Wavenumbers (IR, cm⁻¹): 1235s, 1058s, 1007s, 976sh, 956s, 921sh, 681, 668, 598, 565, 556sh, 465sh, 426s, 320, 288.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1125, 1067, 1010, 976s, 915, 662, 595, 570, 470sh, 430, 413, 325, 285, 248.

P772 Zirconium acid phosphate monohydrate α -Zr(HPO₄)₂⋅H₂O

- **Description:** Characterized by DSC and powder X-ray diffraction data. Monoclinic, $a \approx 9.06{\text -}9.07$, $b \approx 5.26 - 5.31$, $c \approx 16.0 - 16.3$ Å, $\beta \approx 111^{\circ}$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Slade et al. (1997).

Wavenumbers (IR, cm⁻¹): 3598, 3515, 3159, 1617, 1401w, 1250, 1046s, 963.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3914w, 3592w, 3515w, 3142w, 2751w, 1613w, 1145w, 1081, 1055s, 990, 964, 591, 540, 517w, 432, 418, 399, 294, 214, 186w, 157, 118w, 107, 79, 63, 55w.

Note: Bands of acid phosphate groups (in the range of $2000-2400$ cm⁻¹) are anomalously weak. However, distinct and stronger bands in this range are observed in the IR spectrum of α -Zr (HPO₄)₂⋅H₂O given by Casciola et al. (2007).

P773 Zirconium acid phosphate monohydrate α -Zr(HPO₄)₂⋅H₂O

Origin: Synthetic.

Description: Prepared by the direct precipitation method in the presence of HF. Characterized by powder X-ray diffraction data. Monoclinic (see Slade et al. 1997).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Photoacoustic method of registration.

Source: Casciola et al. (2007).

Wavenumbers (cm⁻¹): 3593, 3511, 3144 (broad), 2295w, 2094w, 1618, 1249, 1095s, (1062, 1024 artifacts), 960s, 793sh, 651, 592s, 527s.

P774 Alforsite $Ba_5(PO_4)_3Cl$

Origin: Synthetic.

Description: Hexagonal, space group $P6_3/m$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran and Aymonino (1972).

Wavenumbers $(cm⁻¹)$: 1045s, 1008s, 933, 576, 557, 440w.

P775 Alforsite F-analogue $Ba₅(PO₄)₃F$

- **Description:** Mn-doped sample obtained by repeated heating a mixture of $BaCO_3$, Mn_2O_3 , NH_4F , and $(NH₄)(H₂PO₄)$, taken in appropriate amounts, at 1250 °C for 12 h. Characterized by powder X-ray diffraction data. The empirical formula is $(Z = 1)$: $Ba_{10}[P_{0.95}Mn_{0.05}]O_4]_6F_2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Dardenne et al. (1998).

Wavenumbers (cm⁻¹): 1057s, 1033sh, 1012s, 935.5w, 796w, 783.5, 777, 769sh, 580, 561, 556sh, 290, (213).

Note: The bands in the range from 760 to 800 cm⁻¹ may correspond to $[MnO₄]³$ vibrational modes.

P776 Ankoleite K(UO2)(PO4)∙nH2O

Origin: Synthetic.

- Description: Obtained from uranyl nitrate, potassium nitrate, and phosphoric acid mixed in stoichiometric proportions by a wet chemistry method at 60 \degree C for 4 days. Characterized by TG and powder X-ray diffraction data. Tetragonal, space group P4/ncc.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Clavier et al. (2016).

- Wavenumbers (IR, cm⁻¹): 3589, 3468, 3350, 3201, 2990, 1658, 1622, 1109, 1059, 985, 904, 866, 813, 666, 541, 529.
- Note: The wavenumbers are taken from the table given in the cited paper. There are strong discrepancies between these values and the figure of the IR spectrum of ankoleite from this paper. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3805w, 3498w, 3375w, 3237w, 3110w, 2786w, 1004s, 994s, 831s, 826s, 400, 291, 195, 173, 113, 108.

P777 Calcium iron(III) tin orthophosphate $CaFeSn(PO₄)₃$

- **Description**: Synthesized by a solid-state reaction technique from a mixture of $CaCO₃$, SnO₂, Fe₂O₃, and $(NH_4)(H_2PO_4)$ taken in stoichiometric proportion. Trigonal, space group $R-3c$, $Z = 6$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Antony et al. (2011).

Wavenumbers (IR, cm⁻¹): 1248s, 1189sh, 1140sh, 1092sh, 1083s, 1041sh, 1035s, 954s, 641, 561, 532.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1213, 1106s, 1046sh, 999sh, 977sh, 784, 657, 600, 576, 486sh, 436s, 380w, 348, 309, 254sh, 226, 201, 145.

P778 Jörgkellerite (Na,□)₃Mn³⁺₃(PO₄)₂(CO₃)(O,OH)₂·5H₂O

Origin: Oldoinyo Lengai volcano, Gregory Rift, northern Tanzania (type locality).

- Description: Brown spherulites from the association with shortite, calcite, fluorite, magnetite, and khanneshite. Holotype sample. The crystal structure is solved. Trigonal, space group $P-3$, $a = 11.201(2), c = 10.969(2)$ Å, $V = 1191.9(7)$ Å³, $Z = 3$. $D_{calc} = 2.56$ g/cm³. Optically uniaxial (-), $\omega = 1.700(2)$, $\varepsilon = 1.625(2)$. The empirical formula is (electron microprobe, H₂O and CO₂ calculated): $(Na_{2.46}K_{0.28}Ca_{0.08}Sr_{0.04}Ba_{0.02})(Mn^{3+}_{2.39}Fe^{3+}_{0.56})(PO_4)_{1.95}(SO_4)_{0.05}(CO_3)$ $[O_{1.84}(OH)_{0.16}]\cdot SH_2O$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, \emptyset) (hkl)] are: 10.970 (100) (001), 5.597 (15) (002), 4.993 (8) (111), 2.796 (14) (220), 2.724 (20) (004). Kind of sample preparation and/or method of registration of the spectrum: Attenuated total
- reflection using IR microscope.

Source: Zaitsev et al. (2017).

Wavenumbers (cm^{-1}) : 1629, 1483sh, 1459sh, 1443s, 1404s, 1091sh, 1075, 1035, 939s, 861, 821, 733w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The tentative assignment of the strongest band at 939 cm^{-1} to phosphate groups made in the cited paper is questionable.

P779 Ferrivauxite Fe³⁺Al₂(PO₄)₂(OH)₃⋅5H₂O

Origin: Llallagua tin deposit, Rafael Bustillo province, Potosí department, Bolivia (type locality).

Description: Golden brown pseudomorphs after vauxite from the association with sigloite and crandallite. Holotype sample. The crystal structure is solved. Triclinic, space group $P-1$, $a = 9.198(2), b = 11.607(3), c = 6.112(2)$ Å, $\alpha = 98.237(9)^\circ, \beta = 91.900(13)^\circ, \gamma = 108.658$ (9)°, $V = 609.7(5)$ Å³, $Z = 2$. $D_{\text{calc}} = 2.39$ g/cm³. Optically biaxial (-), $\alpha = 1.589(1)$, $\beta = 1.593$ (1), $\gamma = 1.596(1)$, $2V = 60(4)^\circ$. The empirical formula is (electron microprobe): Fe^{3+} _{0.94}Mn_{0.01}Al_{1.98}P_{2.05}O₈(OH)₃.5H₂O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.834 (100) (010), 8.682 (24) (100), 8.242 (65) (-110), 6.018 (28) (001), 5.918 (23) (110), 5.491 (30) (-120), 4.338 (26) (200), 2.898 (32) (300).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. A diamond anvil microsample cell was used.

Source: Raade et al. (2016).

Wavenumbers (cm⁻¹): 3640, 3490sh, 3348s, 1638, 1447sh, 1142sh, 1087s, 1007s, 932sh, 645sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P780 Kosnarite NH₄-analogue $(NH_4)Zr_2(PO_4)_3$

Origin: Synthetic.

- **Description:** Prepared hydrothermally. Rhombohedral, $a = 8.676(1)$, $c = 24.288(5)$ Å. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 6.394 (67) (102), 4.721 (72) (104), 4.340 (80) (110), 3.825 (92) (113), 3.194 (57) (204), 2.960 (100) (116).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Clearfield et al. (1984).

- Wavenumbers (cm⁻¹): 3290, 3185sh, 3090sh, 2226w, 2037w, 1665, 1458, 1232s, 1069s, 672, 601, 541sh, 457, 416s, 356s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 1665 cm⁻¹ indicates the presence of H_2O molecules.

P781 Kosnarite NH₄-analogue cubic polymorph $(NH_4)Zr_2(PO_4)_3$

- **Description**: Prepared by heating a mixture of $ZrO₂$ and $(NH₄)(H₂PO₄)$ at 608 K for 72 h. Cubic, $a = 1.0186(3)$ Å. Contains minor admixture of rhombohedral (NH₄)Zr₂(PO₄)₃. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 5.893 (75) (111), 4.562 (100) (210), 4.164 (33) (211), 3.222 (86) (310), 3.072 (40) (311), 2.723 (75) (321), 1.895 (35) (520).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ono (1985).

- Wavenumbers (cm^{-1}) : (1630w), 1424s, 1260w, 1203sh, 1107sh, 1044s, 1021s, 828sh, 752w, 640, 566, 536, 436s.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P782 Kummerite Mn²⁺Fe³⁺Al(PO₄)₂(OH)₂⋅8H₂O

- Origin: Hagendorf South pegmatite, Cornelia mine, Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany (type locality).
- **Description:** Sprays or rounded aggregates of thin amber yellow laths from the association with Zn-and Al-bearing beraunite. Holotype sample. The crystal structure is solved. Triclinic, space group P-1, $a = 5.316(1)$ Å, $b = 10.620(3)$ Å, $c = 7.118(1)$ Å, $\alpha = 107.33$ (3)°, $\beta = 111.22$ (3)°, $\gamma = 72.22 \text{ (2)}^{\circ}, V = 348.4 \text{ (2) } \text{\AA}^3, Z = 1. D_{\text{calc}} = 2.34 \text{ g/cm}^3.$ Optically biaxial (-), $\alpha = 1.565(5)$, $\beta = 1.600(5)$, $\gamma = 1.630(5)$, $2V = 70(5)$ °. The empirical formula is $(Mn_{0.37}Mg_{0.27}Zn_{0.03}Fe^{2+}{}_{0.33})$ $(Fe^{3+}{}_{1.06}Al_{0.94})(PO_4)_{1.91}(OH)_{2.27}$.7.73H₂O. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 9.885 (100) (010), 6.47 (20) (001), 4.942 (30) (020), 3.988 $(9) (-110), 3.116 (18) (1-20), 2.873 (11) (-121).$

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of an individual crystal.

Source: Grey et al. (2016a).

Wavenumbers (cm⁻¹): 3530, 3375sh, 3235s, 2955sh, 2655, 1640, 1145sh, 985s, 783w, 674.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P783 Krásnoite Ca₃Al_{7.7}Si₃P₄O_{22.9}(OH)_{13.3}F₂⋅8H₂O

Origin: Huber open pit, Krásno ore district, Czech Republic (type locality).

Description: Aggregates of colorless platy crystals. Holotype sample. Trigonal, space group $P-3m1$, $a = 6.9956(4)$, $c = 20.200(2)$ \AA , $V = 856.09(9)$ \AA ³, $Z = 3$. $D_{\text{meas}} = 2.48(4)$ g/cm³, $D_{\text{calc}} = 2.476$ g/cm³. Optically uniaxial (+), $\omega = 1.548(2)$, $\varepsilon = 1.549(2)$. The empirical formula is $Ca_3Al_77Si_3P_4O_{22.9}(OH)_{12.1}F_2·8H_2O$. The strongest lines of the powder X-ray diffraction pattern [d, \check{A} (I, %) (hkl)] are: 20.186 (97) (001), 6.736 (100) (003), 5.800 (67) (101, 011), 3.496 (60) (110), 2.8730 (87) (114, 11-4), 2.7633 (73) (203), 2.1042 (75) (109).

Kind of sample preparation and/or method of registration of the spectrum: Micro-diffuse reflectance of a mixture with KBr recalculated in Kubelka-Munk units.

Source: Mills et al. (2012b).

Wavenumbers (IR, cm⁻¹): 3463s, 3017, 174w1, 1645, 1465w, 1453w, 1429w, 1223, 1175, 1098, 1048s, 963, 865w, 820w, 647sh, 608s, 580, 542, 467.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers [Raman, cm⁻¹, for the wavelengths 532 nm (785 nm)]: 1425 (1422), (1289), 1190 (1196), 1091 (1091), 1032 (1032), 1009 (1007), 960 (962), 920 (920), 705 (706), 634 (638), 620 (621), 512 (508), 477 (460), 424 (430), 364 (363), 271, 190, 143.

P784 Minjiangite $BaBe₂(PO₄)₂$

Origin: Nanping No. 31 pegmatite, Fujian Province, southeastern China (type locality).

Description: White crystals from the association with montebrasite, quartz, muscovite, hydroxylapatite, and palermoite. Holotype sample. The crystal structure is solved. Hexagonal, space group P6/ mmm, $a = 5.029(1)$, $c = 7.466(1)$ Å, $V = 163.52(1)$ Å³, $Z = 1$. $D_{calc} = 3.49$ g/cm³. Optically biaxial (+), $\omega = 1.587(3)$, $\varepsilon = 1.602(2)$. The empirical formula is $(Ba_{0.99}Ca_{0.01})Be_{1.98}(P_{1.99}Si_{0.01})O_8$. Kind of sample preparation and/or method of registration of the spectrum: Reflection.

Source: Rao et al. (2015).

Wavenumbers (IR, cm⁻¹): 1375s, 1363s, 1339s, 1101sh, 1068s, 1027sh, 781, 730, 683w, 660w.

Note: Possibly, an erroneous spectrum. In particular, assignment of the strong bands at 1375, 1363, and 1339 cm⁻¹ to Be-O-stretching vibrations (Rao et al. 2015) is questionable. Dal Bo et al. (2014) give another IR spectrum for the synthetic analogue of minjiangite. The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1233s, 1050s, 491, 478, 328w, 189w.

P785 Xanthoxenite Ca₄Fe³⁺₂(PO₄)₄(OH)₂⋅3H₂O

Origin: Palermo No. 1 mine, Groton, Grafton Co., New Hampshire, USA.

Description: Beige crust. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $(Ca_{3,49}Mn_{0,49})Fe_{2,10}(PO_4)_{3,92}(OH)_x nH_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3605w, 3334, 3103s, 1674w, 1518w, 1115s, 1080sh, 1030sh, 1001s, 977sh, 921s, 767, 658w, 585, 559s, 448w.

Note: The spectrum was obtained by N.V. Chukanov.

P786 Oxypyromorphite $Pb_{10}(PO_4)_6O$

Origin: Synthetic.

Description: Hexagonal, space group $P6_3/m$ or P-6, $a = 9.826$, $c = 7.431$ Å. Kind of sample preparation and/or method of registration of the spectrum: RbI disc. Transmission. Source: Engel (1973).

Wavenumbers (cm⁻¹): 3560w, 1028s, 979s, 921sh, 572s, 549sh, 538s, 428, 393, 241.

P787 Fluorwavellite $\text{Al}_3(\text{PO}_4)_2(\text{OH})_2\text{F}\cdot\text{5H}_2\text{O}$

Origin: Baturovskiy stone quarry, Chelyabinsk region, South Urals, Russia.

- Description: Pale green radiated aggregate from the association with quartz and crandallite. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $\text{Al}_{2.96}(\text{PO}_4)_{2.04}\text{F}_{0.95}(\text{OH})_x \cdot n\text{H}_2\text{O}.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3519s, 3422, 3320, 3210, 3100sh, 1647, 1595sh, 1145, 1085sh, 1055s, 1022s, 934w, 863w, 665sh, 644s, 595, 552, 493, 479, 448, 430sh.
- Note: Many samples regarded earlier as wavellite are actually fluorwavellite. The spectrum was obtained by N.V. Chukanov.

Transmittance 400 800 1200 2000 2400 1600 2800 3200 3600 Wavenumber $(cm⁻¹)$

P788 Smirnovskite (Th,Ca)(PO₄)∙nH₂O

Origin: Etyka (Etykinskoe) Ta deposit, Baley district, Transbaikal area, Siberia, Russia. Description: Dark red-brown grain. Investigated by A.V. Kasatkin. X-ray amorphous, metamict. The

empirical formula is (electron microprobe): $(Th_{0.84}Ca_{0.22}Pb_{0.02})(PO_{4})_{0.93}(H_{2}O,OH)_{x}$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3480sh, 3280s, 3217s, 1645, 1543, 1398w, 1049s, 710sh, 608, 554s. Note: The spectrum was obtained by N.V. Chukanov.

P789 Goryainovite $Ca_2(PO_4)Cl$

Origin: Synthetic.

Description: Crystals grown from the melt using excess $CaCl₂$ as flux ("chlorospodiosite").

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Banks et al. (1967).

Wavenumbers $(cm⁻¹)$: 1100, 1050s, 1000s, 955, 600, 538, 530sh, 404w, 309s, 287s, 260s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P790 Sodium iron(III) tin orthophosphate $Na₂FeSn(PO₄)₃$

- **Description**: Powdery sample synthesized from Na_2CO_3 , SnO_2 , Fe_2O_3 , and $(NH_4)(H_2PO_4)$ by a solidstate reaction technique. Hexagonal, space group $R-3C$, $Z = 6$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Antony et al. (2011).

Wavenumbers (IR, cm^{-1}): 1230sh, 1088s, 735w, 633, 568, 536w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): (1250), 1042s, 571, 530, 449s, 416, 250, 220, 168.

P791 Sodium tin phosphate $NaSn_{2}(PO_{4})_{3}$

Origin: Synthetic.

Description: Synthesized from Na_2CO_3 , SnO_2 , and $(\text{NH}_4)_2(\text{HPO}_4)$ by a solid-state reaction technique. Trigonal, space group $R-3c$, $Z = 6$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Tarte et al. (1986).

- Wavenumbers $(cm⁻¹)$: 1230, 1207, 1119sh, 1102s, 1087s, 1052s, 663, 636, 574, 541, 455w, 435, 395s, 385sh, 348s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P792 Väyrynenite $BeMn^{2+}(PO₄)(OH)$

Origin: Chalot (Chalotuy) Be-Ta pegmatite deposit, Onon district, Transbaikal area, Siberia, Russia. Description: Pink grains from the association with moraesite, eosphorite, and fluorapatite. Investigated by I.S. Lykova. Characterized by single-crystal X-ray diffraction data. Monoclinic, $a = 4.726(6)$, $b = 14.525(16)$, $c = 5.416(3)$, $\beta = 102.81(8)$ °, $V = 362.6(7)$ Å³. The empirical formula is (electron microprobe): $Be_{1.00}(Mn_{0.69}Fe_{0.22}Mg_{0.03}Ca_{0.03})_{\Sigma 0.97}P_{1.01}O_4(OH)$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3360sh, 3315sh, 3213s, 3100sh, 2306w, 2199w, 2096w, 2050w, 1769w, 1177, 1136s, 1095sh, 1078s, 1051s, 989s, 922, 900sh, 799, 748s, 654, 609, 587, 544, 515, 471, 417, 393.

Note: The spectrum was obtained by N.V. Chukanov.

P793 Wavellite-(OH) $\text{Al}_3(\text{PO}_4)_2(\text{OH})_2(\text{OH}, \text{F}) \cdot 5\text{H}_2\text{O}$

Origin: Mauldin Mt. quarries, Arkansas, USA.

- Description: White radiated aggregate from the association with quartz. OH-dominant sample. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $\text{Al}_{2.95}(\text{PO}_4)_{2.08}(\text{OH},\text{H}_2\text{O})_2[(\text{OH})_{0.53}\text{F}_{0.47}]\cdot5\text{H}_2\text{O}.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3223s, 3419, 3315, 3223, 3100, 1647, 1595sh, 1145, 1090sh, 1054s, 1021s, 940sh, 861w, 730sh, 645s, 593s, 552, 540sh, 486, 448, 425sh, 380sh.

Note: The spectrum was obtained by N.V. Chukanov.

P794 Rockbridgeite $Fe^{2+}Fe^{3+}(P_4)_{3}$ (OH)₅

Origin: Kyz-Aul deposit, Naberezhnoe, Kerch Peninsula, Kerch iron-ore basin, Russia.

- Description: Black crystalline crust from the association with leucophosphite. The empirical formula is (electron microprobe): $(Fe_{0.93}Mn_{0.03}Mg_{0.02}Ca_{0.02})Fe_4(PO_4)_{2.98}(SiO_4)_{0.02}(OH)_{5}$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A} (I, \%)]$ are: 6.97 (29), 4.847 (28), 4.659 (21), 3.603 (31), 3.460 (34), 3.405 (43), 3.198 (43), 3.198 (100), 2.428 (33).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3585, 3569, 3241, 2360w, 2020w, 1620sh, 1566w, 1170, 1054s, 1022s, 1003s, 963s, 752, 610sh, 595, 563, 465sh, 430sh, 412.

Note: The spectrum was obtained by N.V. Chukanov.

P795 Sodium titanium phosphate $NaTi₂(PO₄)₃$

Origin: Synthetic.

- **Description**: Synthesized from stoichiometric quantities of Na₂CO₃, TiO₂, and (NH₄)₂(HPO₄) by conventional solid-state reaction techniques. Characterized by powder X-ray diffraction data. Hexagonal, space group $R-3c$, $Z = 6$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Tarte et al. (1986).

Wavenumbers $(cm⁻¹)$: 1227, 1033s, 1000, 638, 568, 434, 382s, 295, 279.

P796 Strontiohurlbutite $SrBe₂(PO₄)₂$

- **Description:** Synthesized hydrothermally from BeO, H_3PO_4 , and $Sr(NO_3)_2$ at 200 °C for 7 days with subsequent rapid cooling. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 8.000$ (1), $b = 8.986(1)$, $c = 8.418(1)$ Å, $\beta = 90.22(1)$ °, $V = 605.10(6)$ Å³, $Z = 4$. $D_{calc} = 3.244$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Dal Bo et al. (2014).

Wavenumbers (cm⁻¹): 1189, 1153s, 1118s, 1068s, 1046s, 1001s, 853sh, 827, 770s, 754s, 686s, 609, 572s, 531s, 507, 491s, 440.

P798 Triphylite Mg-analogue $LiMg(PO₄)$

Origin: Synthetic.

Description: Obtained in a solid-state reaction between $(NH_4)Mg(PO_4)H_2O$ and $Li_2(CO_3)$. Characterized by powder X-ray diffraction data. Orthorhombic, space group Pmn21 (?), $a = 10.114(4), b = 5.928(9), c = 4.666(1)$ Å, $V = 279.813(3)$ Å³, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Sronsri et al. (2014).

Wavenumbers (cm⁻¹): 1157, 1112s, 1081s, 1009s, 655, 594, 559, 517, 480w, 425.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. Bands above 3200 cm^{-1} may be due to adsorbed water.

P799 Tvrdýite Fe²⁺Fe³⁺₂Al₃(PO₄)₄(OH)₅(H₂O)₄⋅2H₂O

Origin: Krásno, near Horní Slavkov, Czech Republic (type locality).

Description: Aggregates of olive-greyish-green acicular crystals from the association with quartz, Al-rich beraunite, fluorapatite, and pharmacosiderite. Holotype sample. The crystal structure is solved. Triclinic, space group C2/c, $a = 20.564$, $b = 5.101(1)$, $c = 18.883(4)$ Å, $\beta = 93.68(3)$ °, $V = 1976.7(7)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 2.834$ g/cm³. Optically biaxial (-), $\alpha = 1.650(2)$, $\beta = 1.671(1)$, $\gamma = 1.677(1)$, $2V = 56(1)^\circ$. The empirical formula based on electron microprobe analyses is $\rm Zn_{0.52}Fe^{2+}$ _{0.50}Fe³⁺_{2.21}Al_{2.75}(PO₄)_{3.86}(AsO₄)_{0.19}(OH)_{4.60}F_{0.23}.nH₂O. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 10.227 (100) (200), 9.400 (6) (002), 7.156 (14) (20-2), 5.120 (7) (400), 3.416 (11) (600), 3.278 (6) (60-2), 2.562 (5) (800), 2.0511 (3) (10.0.0).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: Sejkora et al. (2016).

Wavenumbers (IR, cm⁻¹): 3610sh, 3394, 3255, 1631, 1191sh, 1058s, 1017sh, 994s, 936sh, 843sh, 613, 485.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1623, 1194, 1102, 1023s, 860s, 698,637, 586, 496, 415, 303, 281, 233, 143.

P800 Wilhelmgümbelite $ZnFe^{2+}Fe^{3+}(PO_4)_3(OH)_4.7H_2O$

- Origin: Hagendorf South pegmatite, Cornelia mine, Hagendorf, Waidhaus, Upper Palatinate, Bavaria, Germany (type locality).
- Description: Radiating sprays of needle-like rectangular laths from the association with steinmetzite, chalcophanite, jahnsite, mitridatite, albite, apatite, muscovite, and quartz. Holotype sample. The crystal structure is solved. Orthorhombic, space group *Pmab*, $a = 10.987(7)$, $b = 25.378(13)$, $c = 6.387(6)$ Å, $V = 1781(2) \text{ Å}^3, Z = 4. D_{\text{calc}} = 2.82 \text{ g/cm}^3.$ Optically biaxial (+), $\alpha = 1.560(2), \beta = 1.669(2), \gamma = 1.718$ (2), $2V = 63(1)^\circ$. The empirical formula is $Zn_{1.50}Mn^{2+}_{0.27}Fe^{2+}_{0.60}Fe^{3+}_{2.33}(PO_4)_3(OH)_{2.73}8.27H_2O$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA(l, \%)$ (hkl)] are: 12.65 (100) (020), 8.339 (5) (120), 6.421 (14) (001), 6.228 (8) (011), 4.223 (30) (120) and 2.111 (7) (0.12.0).
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: Grey et al. (2016c).

Wavenumbers $(cm⁻¹)$: 3200s, 1635, 970s.

P801 Ximengite polymorph Bi(PO₄)

Description: Obtained by heating trigonal $Bi(PO₄)$ (ximengite) at 673 K for 5 h. Characterized by powder X-ray and neutron diffraction. Monoclinic, space group $P2_1/n$, $a = 6.7552(1)$, $b = 6.9417$ (2), $c = 6.4772(2)$ Å, $\beta = 103.691(2)^\circ$, $V = 295.10(1)$ Å³, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Achary et al. (2013).

Wavenumbers (IR, cm⁻¹): 1076s, 1031sh, 1011s, 958s, 930s, 876sh, 604s, 564, 554, 529, 473w. Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1050, 1039, 1021, 981, 970, 948, 926, 604, 598, 573, 557, 523, 496, 464, 457, 407, 388, 284, 273, 237, 230, 207, 183, 177, 170, 136, 131, 109, 97, 90, 70, 60, 51.

P802 Ximengite polymorph $Bi(PO₄)$

Origin: Synthetic.

- **Description:** Obtained by heating trigonal $Bi(PO₄)$ (ximengite) at 973 K for 5 h. Characterized by powder X-ray and neutron diffraction data. Monoclinic, space group $P2_1/m$, $a = 4.8804(1)$, $b = 7.0684(2), c = 4.7033(1)$ Å, $\beta = 96.285(3)$ °, $V = 161.27(1)$ Å³, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Achary et al. (2013).

Wavenumbers (IR, cm⁻¹): 1105s, 1029sh, 1005s, 963, 928sh, 630s, 554, 527sh, 513, 494, 472w, 457w, 451sh, 434sh, 421w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1046, 1038, 983, 966, 610, 557, 548, 486, 354, 244, 214, 171, 144, 136, 92, 69, 56.

P803 Buchwaldite dimorph NaCa(PO₄)

Origin: Synthetic.

- **Description:** A sample doped with 1 mol% $Sm³⁺$ prepared by heating a stoichiometric mixture of $(NH_4)(H_2PQ_4)$, Na₂CO₃, CaCO₃, and Sm₂O₃ firstly at 185 °C for 2 h, then 714 °C for 1 h and finally at 950 °C for 3 h in air. Characterized by powder X-ray diffraction data. Orthorhombic, space group $Pn2_1a$, $a = 20.39$, $b = 5.412$, $c = 9.161$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Ratnam et al. (2014).

- Wavenumbers (IR, cm^{-1}) : 3430, 2050w, 2000w, 1975w, 1616w, 1082s, 1049sh, 1038s, 1022sh, 957s, 602, 578s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands at 3430 and 1616 cm⁻¹ correspond to the admixture of water molecules. For the IR spectrum of Eu-doped buchwaldite dimorph see also Grandhe et al. (2012). In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm^{-1}): 1158, 965s, 898.

P804 Nalipoite Na $Li_2(PO_4)$

Origin: Synthetic.

Description: Obtained by mixing aqueous solutions containing stoichiometric amounts of NaOH, H_3PO_4 , and LiOH, followed by drying at 100 °C in air. Characterized by powder X-ray diffraction data. Orthorhombic, space group *Pmnb*, $a = 6.8751(1)$, $b = 9.9888(3)$, $c = 4.9315(6)$ Å, $V = 338.66(8)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: López et al. (2014a).

Wavenumbers (cm⁻¹): 1085sh, 1052s, 1022s, 944, 733sh, 588s, 447, 422s, 367sh, 293.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P806 Fluorcarmoite-(BaNa) Ba \Box Na₂Na₂ \Box CaMg₁₃Al(PO₄)₁₁(PO₃OH)F₂

Origin: Costa Balzi Rossi, Magliolo, Savona, Liguria, Italy (type locality).

Description: Yellow grain.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1097s, 1050s, 1017s, 930sh, 799w, 780w, 675sh, 630sh, 602, 574, 520w, 475, 430, 363.

Note: The spectrum was obtained by N.V. Chukanov.

P807 Florencite-(Nd) $NdAl₃(PO₄)₂(OH)₆$

Origin: Svodovy area, Maldynyrd Ridge, Subpolar Urals, Russia.

Description: Pink crystals from the association with xenotime-(Y) and quartz. The empirical formula is (electron microprobe): $(Nd_{0.36}Sm_{0.23}Ce_{0.23}La_{0.05}Pr_{0.05}Sr_{0.05}Ca_{0.01})Al_{1.99}Fe_{0.02}(PO_4)_{2.00}(OH,$ H_2O ₆.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3527w, 3460sh, 3415sh, 3370, 3090sh, 2951s, 2600sh, 2389, 2320, 2085w, 1991w, 1853w, 1792w, 1224, 1092s, 1036s, 923, 850sh, 806w, 660, 619s, 605sh, 581, 510, 475sh, 466, 368s.

Note: The bands in the range from 1700 to 2400 cm^{-1} indicate the presence of acid phosphate groups. Note: The spectrum was obtained by N.V. Chukanov.

P808 Lulzacite $Sr_2Fe^{2+}{}_{3}Al_4(PO_4)_{4}(OH)_{10}$

Origin: Bois-de-la-Roche quarry, Saint-Aubin-des-Châteaux, Loire-Atlantique, Pays de la Loire, France (type locality).

Description: Light greenish-gray columnar aggregate. The empirical formula is (electron microprobe): $(Sr_{1.9}Ca_{0.1})(Fe_{1.9}Mg_{0.9}Zn_{0.1}Mn_{0.1})(Al_{3.7}Fe_{0.3})(PO_4)_{4.0}(OH)_{10}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3607, 3422s, 3209, 3074, 2270w, 2170w, 1814w, 1683w, 1145sh, 1120s,

1099s, 1035sh, 1015s, 968, 939s, 869, 803, 760sh, 648, 613, 560, 516, 493, 438s, 404, 395sh. Note: The spectrum was obtained by N.V. Chukanov.

P809 Penikisite BaMg₂Al₂(PO₄)₃(OH)₃

Origin: Blow River, Yukon, Canada.

Description: Blue crystals. The empirical formula is (electron microprobe): $Ba_{1.01}(Mg_{0.99}Fe_{0.92}Mn_{0.08})(Al_{1.84}Fe_{0.13}Ti_{0.03})(PO_4)_{3.00}(OH)_{3}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3525, 3368w, 3203, 2200sh, 2130w, 2025w, 1953w, 1805w, 1202, 1146s, 1090s, 1065sh, 1019s, 963s, 899, 662, 616, 573, 548s, 519, 489, 480, 454s, 435sh, 395w.

Note: The spectrum was obtained by N.V. Chukanov.

P810 Trolleite $\text{Al}_4(\text{PO}_4)_3(\text{OH})_3$

Origin: Hålsjöberg (Horrsjöberg), Torsby, Värmland, Sweden.

Description: Pale bluish-green grains from the association with scorzalite, kyanite, and rutil. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3519, 3430, 2970w, 2213w, 2030w, 1247, 1190s, 1150, 1133, 1118, 1081s, 984, 847, 815, 706, 671, 650w, 624, 580, 516s, 471s, 444, 417, 400sh, 369.

Note: The spectrum was obtained by N.V. Chukanov.

P811 Petitjeanite Bi₃O(PO₄)₂(OH)

Origin: Schneeberg District, Erzgebirge (Ore Mts.), Saxony, Germany.

Description: Spherulitic crust. The empirical formula is (electron microprobe): $(Bi_{2.85}Pb_{0.1}Ca_{0.1})$ $[(PO₄)_{0.9}(AsO₄)_{0.4}(VO₄)_{0.3}](OH).$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1076s, 1049s, 992, 955sh, 795s, 777s, 570, 556, 523, 504, 477sh, 457s, 430, 421.

Note: The spectrum was obtained by N.V. Chukanov.

P812 Varulite NaCaMn²⁺₃(PO₄)₃

Origin: Solleftea, Ångermanland, Sweden.

Description: Anhedral grains. Ca-deficient variety or analogue of varulite. The empirical formula is (electron microprobe): $\text{Na}_{1.5}\text{Ca}_{0.3}\text{Mn}_{2.4}\text{Fe}_{0.8}(\text{PO}_4)_{3.0}$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%)]$ are: 6.12 (90), 5.47 (40), 3.50 (70), 3.146 (100), 2.736 (100), 2.560 (30).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm^{-1}) : (1382), 1082s, 1044s, 983s, 887, 630w, 580, 552s, 530, 465.

Note: The spectrum was obtained by N.V. Chukanov. The band at 1382 cm^{-1} may correspond to an impurity.

Transmittance 400 800 1200 1600 2000 2400 2800 3200 3600 4000 Wavenumber $(cm⁻¹)$

P813 Daqingshanite-(Ce) $Sr_3Ce(PO_4)(CO_3)$ ₃

- Origin: Bayan Obo deposit, Bayan Obo Mining District, Baotou Prefecture, Inner Mongolia, China (type locality).
- Description: Pale yellow crystalsand grains from the association with benstonite, huntite, strontianite, pyrite, phlogopite, and monazite. Holotype sample. Trigonal, $a = 10.058$, $c = 9.225$ Å. $D_{\text{meas}} = 3.81 \text{ g/cm}^3$, $D_{\text{calc}} = 3.71 \text{ g/cm}^3$. Optically uniaxial (-), $\varepsilon = 1.609$, $\omega = 1.708$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \mathcal{C})]$ are: 3.95 (60), 3.16 (100), 2.52 (70), 2.110 (50), 2.040 (60), 1.941 (60).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Ren et al. (1983).

- Wavenumbers $(cm⁻¹)$: 2930, 2840, 2495w, 1617, 1438s, 1178sh, 1094sh, 1078sh, 1040s, 872, 724sh, 694, 604, 570, 450.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Bands in the ranges 3000–4000 and $1600-1700$ cm⁻¹ may be due to absorbed water.

P814 Sodium calcium silicophosphate Na₂Ca₄(PO₄)₂SiO₄ (apatite-type) Na₂Ca₄(PO₄)₂SiO₄

Origin: Synthetic.

Description: Fine powder. Characterized by thermal and powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Pirayesh and Nychka (2013).

Wavenumbers $(cm⁻¹)$: 1033s, 935s, 879, 692w, 619, 580w, 523, 462.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

P815 Mangangordonite Mn²⁺Al₂(PO₄)₂(OH)₂⋅8H₂O

Origin: Foote Mine, Kings Mountain, Cleveland Co., North Carolina, USA (type locality).

- Description: Pale yellow prismatic crystals from the association with whiteite-(MnFeMg) and birnessite. The empirical formula is (electron microprobe): $(Mn_{0.7}Fe_{0.2}Mg_{0.1})(Al_{0.8}Fe_{0.2})$ $(PO_4)_{2.0}$ $(OH)_2.8H_2O.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3607, 3545, 3420, 3253s, 2960sh, 1657, 1560sh, 1442w, 1157, 1045s, 975sh,

720sh, 679, 650s, 587, 536, 456, 386.

Note: The spectrum was obtained by N.V. Chukanov.

P817 Althausite $Mg_4(PO_4)_2(OH,O)(F,\Box)$

Origin: Tingelstadtjern quarry, Modum, Buskerud, Norway (type locality).

Description: Brownish single-crystal grain. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3682w, 3505, 3359w, 2022w, 1695sh, 1520sh, 1142s, 1105sh, 1087s, 1075sh, 1037s, 990sh, 946, 885sh, 866, 759w, 639, 600s, 510sh, 480sh, 452s, 417s, 381s.

Note: The spectrum was obtained by N.V. Chukanov.

Origin: West Caradon Adit, Cornwall, GB.

- Description: Blue collophorm crust from the association with fluorite. X-ray amorphous. The empirical formula is $(Cu_{0.89}Mg_{0.03}Zn_{0.02}Cu_{0.02})Al_{5.03}[(PO_4)_{0.39}(SiO_{34})_{0.33}(AsO_4)_{0.18}(SO_4)_{0.12}]$ $(OH)_{12.74}F_{1.00}nH_2O.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3500s, 3360s, 2090w, 1653, 1520w, 1455w, 1059s, 995sh, 870sh, 571s, (385sh).

Note: The spectrum was obtained by N.V. Chukanov.

P819 Kuksite trigonal dimorph $Pb_3Zn_3TeO_6(PO_4)_2$

- Description: Synthesized by conventional solid-state methods from stoichiometric amounts of PbO, ZnO, $H_2TeO_4.2H_2O$, and KH_2PO_4 first at 400 °C for 20 h to decompose $H_2TeO_4.2H_2O$ and $KH₂PO₄$, and thereafter at 700 °C for 5 days, with intermediate grindings. Characterized by powder and single-crystal X-ray diffraction data. Trigonal, space group P321, $a = 8.3831(3)$, $c = 5.1930$ (4) Å, $V = 316.05(3)$ Å³, $Z = 1$. $D_{calc} = 6.469$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yu et al. (2016).

- Wavenumbers (cm⁻¹): 1075sh, 1050, 1034, 1007s, 961w, 717, 669sh, 642s, 615, 604sh, 587sh, 567s, 544s, 519s, 486sh, 443.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P820 Kuksite trigonal Mg analogue $Pb_3Mg_3TeO_6(PO_4)_2$

Origin: Synthetic.

- Description: Synthesized by conventional solid-state methods from stoichiometric amounts of PbO, MgO, H₂TeO₄.2H₂O, and KH₂PO₄ first at 400 °C for 20 h to decompose H₂TeO₄.2H₂O and $KH₂PO₄$, and thereafter at 850 °C for 5 days, with intermediate grindings. Characterized by powder and single-crystal X-ray diffraction data. Trigonal, space group $P321$, $a = 8.4072(4)$, $c = 5.2158$ (5) Å, $V = 319.27(4)$ Å³, $Z = 1$. $D_{calc} = 5.763$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yu et al. (2016).

- Wavenumbers (cm⁻¹): 1183w, 1024sh, 1006, 968sh, 920sh, 722, 671, 641, 603s, 557, 522s, 477sh, 447sh, 436s, 425sh, 405.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

P821 Natrophilite $NaMn^{2+}(PO_4)$

Origin: Synthetic.

Description: Prepared hydrothermally from $KMDPQ_4 \cdot H_2O$ and $NaCH_3COO \cdot 3H_2O$ at a ratio of 1:10 at 200 °C for 15 h. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 10.5177(3)$,

 $b = 6.3144(2), c = 4.9873(2)$ Å, $V = 331.227(22)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Boyadzhieva et al. (2015).

Wavenumbers (IR, cm⁻¹): 1129, 1078s, 1060s, 969s, 943w, 630sh, 618, 580, 545.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 1048w, 1006w, 946s, 650s, 577.

P822 Paganoite phosphate analogue $NiBi³⁺O(PO₄)$

- **Description**: Prepared by solid-state reaction from Bi_2O_3 , CoO, and $(NH_4)_2(HPO_4)$. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 7.2470(1)$, $b = 11.2851(2)$, $c = 5.2260$ (l) Å, $\beta = 107.843(1)^\circ$, $V = 406.91 \text{ Å}^3$, $Z = 4$. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 4.727 (44) (-101), 4.338 (69) (120), 3.372 (70) (111), 2.850 (100) (-221), 2.568 (43) (131), 2.516 (41) (230).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ketani et al. (1999).

Wavenumbers (cm^{-1}) : 1046s, 1009s, 979s, 609sh, 590, 561s, 520, 468, 440.

P823 Phosphorrösslerite Mg(HPO4)∙7H₂O

Origin: Synthetic.

Description: Commercial reactant (?).

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Pucka et al. (2000).

Wavenumbers (cm⁻¹): 1272, 1219, 1210, 1145, 1137, 1118sh, 1074w, 1044, 1007, 982w, 909, 887, 871, (796).

Description: The sample may contain $KZn(PO_4)$ impurity.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Alibakhshi et al. (2012).

Wavenumbers (IR, cm⁻¹): 3424, 3316, 3247, 3160, 3081, 2938, 2426, 2304w, 2204w, 2161w, 2136w, 2103w, 2055w, 1894w, 1838w, 1618, 1559, 1488, 1383, 1212, 1140s, 1108s, 1056s, 1031s, 963s, 920s, 782, 712, 634, 604s, 574sh, 528, 493w, 474sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3429s (broad), 3315, 3093, 2451, 2399, 2162w, 1979w, 1874w, 1813w, 1322w, 1240w, 1137, 1074, 1013s, 910s, 766w, 590, 490, 303s.

P825 Raadeite $Mg_7(PO_4)_2(OH)_8$

Origin: Tingelstadtjern quarry, Modum, Buskerud, Norway (type locality).

- Description: Anhedral inclusion in holtedahlite. Holotype sample. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 5.250(1)$, $b = 11.647(2)$, $c = 9.655(2)$ Å, $\beta = 95.94(1)$ °, $Z = 2$. Optically biaxial (-), $\alpha = 1.5945(5)$, $\beta = 1.6069(5)$, $\gamma = 1.6088(5)$, $2V = 45.6(1)^\circ$.
- Kind of sample preparation and/or method of registration of the spectrum: Reflection of a singlecrystal grain.

Source: Chopin et al. (2001).

Wavenumbers $(cm⁻¹)$: 3580, 3540, 3475, 3375.

P826 Vyacheslavite U⁴⁺(PO₄)(OH)∙2.5H₂O

Origin: Synthetic.

Description: Prepared hydrothermally using hydrolyzed uranium bromide phosphate. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Brandel et al. (2001).

Wavenumbers (cm⁻¹): 3544, 1636w, 1144s, 1058s, 978, 932s, 814, 636s, 558, 540, 490, 420.

- Description: Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group *Cmca*, $a = 7.1393(2)$, $b = 9.2641(2)$, $c = 12.5262(4)$ Å, $V = 828.46(4)$ Å³, $Z = 8$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Brandel et al. (2001), Dacheux et al. (2007).

Wavenumbers (IR, cm⁻¹): 3560, 1130s, 1052s, 964, 908s, 787, 626, 550, 536, 512, 474, 414.

Note: Raman spectrum is given by Dacheux et al. (2007).

Wavenumbers (Raman, cm⁻¹): 3568s, 1195w, 1078s, 1060s, 989s, 799w, 789w, 618, 568, 556, 449, 416, 368, 282, 236.

P828 Fupingqiuite $(Na, Mn^{2+}, \Box)_{2}Mn^{2+}_{2}Fe^{3+} (PO_{4})_{3}$

Origin: Nancy pegmatite, Chacabuco department, San Luis, Argentina (type locality).

Description: Dark brownish-gray grains with perfect cleavage. Partly altered and contaminated by a hydrous phosphate.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): (3563w), (3384), (3250), 1636w, 1587w, 1040sh, 1023s, 1015sh, 965sh, 594s, 578, 549, 474w, 390sh.

Note: The spectrum was obtained by N.V. Chukanov.

P829 Guimarãesite $Ca₂Be₄Zn₅(PO₄)₆(OH)₄·6H₂O$

Origin: Piauí River, Itinga County, Minas Gerais, Brazil (type locality).

Description: Peripheral zones of zanazziite crystals from the association with albite, microcline, quartz, elbaite, lepidolite, schorl, eosphorite, moraesite, and saleeite. Monoclinic, $a = 15.98$ (1) Å, $b = 11.84(2)$ Å, $c = 6.63(1)$ Å, $\beta = 95.15(15)^\circ$, $V = 1249.4(34)$ Å³, $Z = 2$. $D_{\text{calc}} = 2.963 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.562(2)$, $\beta = 1.600(2)$, $\gamma = 1.602(2)$, $2V = 55-75^{\circ}$. The empirical formula is $Ca_{1,93}(Zn_{2,61}Mg_{1,11}Fe^{2+}_{0,91}Al_{0,37}Mn_{0,34})$ $Be_{4.00}(PO_4)_{6.00}(OH)_{3.90}$ 6.41H₂O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.98 (90) (110), 5.98 (100) (020), 4.82 (80) (310), 3.152 (90) (-202), 3.052 (70) (-421), 2.961 (70) (040, 202), 2.841 (70) (-312), 2.708 (80) (041).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3610sh, 3485, 3336s, 3295sh, 1667, 1594w, 1537w, 1416w, 1110sh, 1087s, 1030sh, 1016s, 827, 770sh, 723s, 616, 567s, 523, 502, 452, 380.

Note: The spectrum was obtained by N.V. Chukanov.

P830 Drugmanite $Pb_2Fe^{3+}(PO_4)(PO_3OH)(OH)_2$

Origin: Bleialf, Prüm, Eifel, Germany.

Description: Spherulitic crust on galena. The empirical formula is (electron microprobe): $H_xPb_{2.18}(Fe_{0.99}Al_{0.01)}(PO_4)_{2.00}(OH)_2.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3491w, 3445, 1387, 1025s, 942, 915sh, 790, 766, 590, 537, 498, 459, 392. Note: The spectrum was obtained by N.V. Chukanov. The band at 1387 cm^{-1} corresponds to isolated

H+ cation. Weak bands between 1400 and 3000 cm^{-1} are due to an organic impurity.

P831 Roscherite $Ca_2(Mn,Fe^{2+},Fe^{3+},Mg,A1,Zn)$ ₅Be₄(PO₄)₆(OH)₄·6H₂O

Origin: Taquaral, Itinga, Minas Gerais, Brazil.

- Description: Olive-green spherulite from the association with eosphorite, feldspar, and metaautunite. The empirical formula is (electron microprobe): $Ca_{2.0}(Mn_{1.5}Fe_{1.3}Zn_{1.1}Mg_{0.5}Al_{0.1})$ $Be_4(PO_4)_{6.0}(OH)_4.6H_2O.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3605sh, 3439, 3336s, 3290sh, 2950sh, 2217w, 1667, 1538w, 1450sh, 1084s,

1033s, 1020sh, 820, 771, 722s, 615, 563s, 523, 497, 451, 374.

Note: The spectrum was obtained by N.V. Chukanov.

P832 Thadeuite Ca(Mg, Fe^{2+})₃(PO₄)₂(OH, F)₂

Origin: Panasqueira Mines, Covilhã, Castelo Branco district, Portugal (type locality).

Description: Yellow anhedral grains. Investigated by A.V. Kasatkin. Characterized by single-crystal X-ray diffraction data and qualitative electron microprobe analyses. Orthorhombic, $a = 6.465(14)$, $b = 13.525(7), c = 8.539(5)$ Å, $V = 727(2)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 2120sh, 2060w, 1141s, 1083s, 1066s, 1038s, 978, 629, 599, 584s, 440, 407s. Note: The spectrum was obtained by N.V. Chukanov.

P833 Minjiangite $BaBe_2(PO_4)_2$

Origin: Nanping No. 31 pegmatite, Fujian Province, southeastern China (type locality).

Description: White crystals from the association with montebrasite, quartz, muscovite, hydroxylapatite, and palermoite. Holotype sample. The crystal structure is solved. Hexagonal, space group P6/ mmm, $a = 5.029(1)$, $c = 7.466(1)$ Å, $V = 163.52(1)$ Å³, $Z = 1$. $D_{calc} = 3.49$ g/cm³. Optically biaxial (+), $\omega = 1.587(3)$, $\varepsilon = 1.602(2)$. The empirical formula is $(Ba_{0.99}Ca_{0.01})Be_{1.98}(P_{1.99}Si_{0.01})O_8$. Kind of sample preparation and/or method of registration of the spectrum: Reflection.

Source: Rao et al. (2015).

Wavenumbers (IR, cm⁻¹): 1375s, 1363s, 1339s, 1101sh, 1068s, 1027sh, 781, 730, 683w, 660w.

Note: Possibly, an erroneous spectrum. In particular, assignment of the strong bands at 1375, 1363, and 1339 cm⁻¹ to Be-O-stretching vibrations (Rao et al. 2015) is questionable. Dal Bo et al. (2014) give another IR spectrum for the synthetic analogue of minjiangite. The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1233s, 1050s, 491, 478, 328w, 189w.

2.9 Sulfides, Sulfites, Sulfates, Carbonato-Sulfates, Phosphato-Sulfates, and Tellurato-Sulfates

S554 Eleomelanite $(K_2Pb)Cu₄O₂(SO₄)₄$

- Origin: Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Far-Eastern Region, Russia (type locality).
- Description: Dark green crystalline crust from the association with euchlorine, wulffite, klyuchevskite, alumoklyuchevskite, fedotovite, anglesite, cryptochalcite, langbeinite, aphthitalite, chalcocyanite, dolerophanite, piypite, anhydrite, steklite, etc. Holotype sample. The crystal structure is solved. Monoclinic, space group P_1/n , $a = 9.3986(3)$, $b = 4.9811(1)$, $c = 18.2293(5)$ Å, $\beta = 104.409(3)^\circ$, $V = 811.63(4) \text{ Å}^3$, $Z = 2$. $D_{\text{calc}} = 3.790 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.646$ (3), $\beta = 1.715(6)$, $\gamma = 1.734(6)$, $2V = 60(15)$ °. The empirical formula is (electron microprobe): $(K_{1.88}Pb_{0.79}Ca_{0.20}Rb_{0.05}Cs_{0.02})_{\Sigma2.94}Cu_{4.07}S_{3.99}O_{18}$. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 9.07 (63) (-101), 7.38 (44) (101), 3.699 (78) (112, 202), 3.658 (100) (-204), 3.173 (40) (211, –213), 2.576 (51) (310, –116).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1235sh, 1202s, 1145s, 1108s, 1080sh, 1025s, 975sh, 662, 615, 601s, 547, 508, 500sh.

Note: The spectrum was obtained by N.V. Chukanov.

S555 Kottenheimite dimorph Ca₃Si(SO₄)₂(OH)₆⋅12H₂O

Origin: Bellerberg, near Mayen, Eifel, Rheinland-Pfalz (Rhineland-Palatinate), Germany. Description: White random aggregate of acicular crystals. Isostructural with thaumasite. The empirical formula is (electron microprobe): $Ca_{3.05}(Si_{0.9}Al_{0.1})(SO_4)[(SO_4)_{0.6}(CO_3)_{0.4}](OH)_6\cdot nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3505s, 3460sh, 3417s, 1688, 1650, 1396s, 1100s, 990w, 880, 750s, 673, 632, 596, 499.

Note: The spectrum was obtained by N.V. Chukanov.

S556 Bobcookite NaAl(UO2)2(SO4)4∙18H2O

Origin: Blue Lizard Mine, Red Canyon, White Canyon District, San Juan Co., Utah, USA (type locality).

Description: Green-yellow crystals. Investigated by A.V. Kasatkin, the coauthor of bobcookite first description.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3610sh, 3578, 3502, 3370, 3200sh, 3100sh, 2960sh, 2523w, 2400sh, 1630, 1210, 1169s, 1130sh, 1114s, 1100sh, 1024s, 1004s, 933, 843w, 740sh, 708w, 628, 594, 583, 471, 445sh.

Note: The spectrum was obtained by N.V. Chukanov.

S557 Riotintoite $AI(SO₄)(OH)·3H₂O$

Origin: La Vendida copper mine (Mina La Vendida), about 5 km WNW of Sierra Gorda, Antofagasta Region, Atacama desert, Chile (type locality).

Description: Colorless platy crystals from cavities in massive aggregates of eriochalcite, Mg-rich aubertite, magnesioaubertite, belloite, and clay minerals. Holotype sample. Triclinic, space group P-1, $a = 5.6000$, $b = 7.4496(8)$, $c = 7.6709(9)$ Å, $\alpha = 74.7847^{\circ}$, $\beta = 86.0419^{\circ}$, $\gamma = 75.8103^{\circ}$, $V = 299.37 \text{ Å}^3$, $Z = 2$. $D_{\text{meas}} = 2.11(2) \text{ g/cm}^3$, $D_{\text{calc}} = 2.129 \text{ g/cm}^3$. Optically biaxial (-), α = 1.513(2), β = 1.522(2), γ = 1.526(2), 2V = 70(5)°. The empirical formula is $\text{Al}_{0.93}(\text{SO}_4)_{0.99}(\text{OH})_{0.81}$ 3.25H₂O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)] are: 6.975 (100), 4.466 (18), 4.379 (19), 3.698 (18), 3.487 (20), 2.882 (17), 2.669 (54), 2.397 (40).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3540, 3335sh, 3145s, 3110sh, 3010sh, 2900sh, 2480, 2110w, 1933w, 1690, 1647, 1186s, 1117s, 1095s, 1021, 968, 880sh, 850sh, 814, 745sh, 683, 607s, 549, 485, 465, 455sh, 435sh, 382.

Note: The spectrum was obtained by N.V. Chukanov.

S558 Rhomboclase $(H_5O_2)Fe^{3+}(SO_4)_2$ ∙2H₂O

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province, Antofagasta, Chile. Description: Light gray grains. Investigated by I.V. Pekov. Characterized by single-crystal X-ray

diffraction data. Orthorhombic, $a = 5.426(3)$, $b = 9.470(7)$, $c = 18.333(17)$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3640sh, 3255s (broad), 2185w, 2045w, 1690sh, 1653, 1625sh, 1185sh, 1168s, 1150sh, 1034s, 1025s, 888w, 857w, 747w, 665, 630, 588, 471, 460, 421w.

Note: The sample has altered as a result of a reaction with KBr. The spectrum was obtained by N.V. Chukanov.

S559 Ferrinatrite $Na₃Fe³⁺(SO₄)₃·3H₂O$

Origin: Coronel Manuel Rodríguez mine, Mejillones peninsula, Mejillones, Antofagasta Province, Antofagasta Region, Chile.

Description: White aggregate of acicular crystals. Investigated by I.V. Pekov. Characterized by powder X-ray diffraction data and electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3594, 3517, 2215w, 2128w, 2005w, 1939w, 1637, 1614, 1232s, 1133s, 1014s, 994s, 966s, 680, 606, 563, 491, 450, 416, 373.

Note: The spectrum was obtained by N.V. Chukanov.

S560 Magnesioaubertite MgAl(SO₄)₂Cl⋅14H₂O

- Origin: La Vendida copper mine, about 5 km WNW of Sierra Gorda, Antofagasta Region, Atacama desert, Chile.
- Description: Turquoise-blue granular aggregate from the association with vendidaite and eriochalcite. Investigated by I.V. Pekov. Characterized by powder X-ray diffraction data. The empirical formula is (electron microprobe): $Mg_{0.56}Cu_{0.39}Al_{1.09}(SO_4)_{2.00}Cl_{0.65}(OH)_x \cdot nH_2O$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3376s, 3330s, 3241s, 3005s, 2519, 2060w, 1675sh, 1656, 1112s, 1070s, 990, 950, 802, 706s, 626, 600, 518, 468, 450sh.

Note: The spectrum was obtained by N.V. Chukanov.

S561 Antofagastaite $Na_2Ca(SO_4)_2 \cdot 1.5H_2O$

- Origin: Coronel Manuel Rodríguez mine, Mejillones peninsula, Mejillones, Antofagasta region, Chile (type locality).
- Description: Colorless prismatic crystals from the association with sideronatrite, metasideronatrite, aubertite, gypsum, ferrinatrite, glauberite, and amarillite. Holotype sample. The crystal structure is solved. Monoclinic, space group $P2_1/m$, $a = 6.4596(4)$, $b = 6.8703(5)$, $c = 9.4685(7)$ Å, $\beta = 104.580(4)^\circ$, $V = 406.67(5) \text{ Å}^3$, $Z = 2$. $D_{\text{meas}} = 2.42(1) \text{ g/cm}^3$, $D_{\text{calc}} = 2.465 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.489$ (2), $\beta = 1.508$ (2), $\gamma = 1.510$ (2), $2V = 40(10)^\circ$. The empirical formula is $\text{Na}_{2.06}\text{Ca}_{0.95}\text{S}_{2.01}\text{O}_8$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.17 (100) (001), 5.501 (57) (011), 4.595 (32) (002), 3.437 (59) (020), 3.058 (43) (-103, 003), 2.918 (50) (-211), 2.795 (35) (-113, 013).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3598, 3373, 3300sh, 1685w, 1629w, 1220, 1153s, 1128s, 1090s, 1060sh, 1015sh, 982, 758, 656, 613, 480, 458.
- Note: The spectrum was obtained by N.V. Chukanov. Very weak absorptions in the range $2100-2250$ cm⁻¹ correspond to overtones and combination modes.

S562 Römerite Fe²⁺Fe³⁺₂(SO₄)₄⋅14H₂O

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province, Antofagasta, Chile.

Description: Reddish-brown crystals from the association with coquimbite, metavoltine, and voltaite. Investigated by I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Triclinic, $a = 6.317(4)$, $b = 6.453(4)$, $c = 15.318(10)$ Å, $\alpha = 85.61(5)$ °, $\beta = 89.78(5)$ °, $\gamma = 79.06(5)$ °, $V = 611.2(7)$ Å³. Only Fe and S have been found by means of electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3580sh, 3515sh, 3334s, 3200s, 3100sh, 2495w, 2320sh, 1670sh, 1645, 1129s, 1072s, 1034s, 995s, 905sh, 785sh, 715sh, 660sh, 646, 599s, 484, 460sh, 414, 405sh.

Note: The spectrum was obtained by N.V. Chukanov.

S563 Calamaite $Na₂TiO(SO₄)₂·2H₂O$

Origin: Alcaparrosa mine, Cerro Alcaparrosa, Calama commune, El Loa province, Antofagasta region, Chile (type locality).

Description: Colorless acicular crystals from the association with römerite, coquimbite, metavoltine, rhomboclase, tamarugite, halotrichite, and szomolnokite. Holotype sample. The crystal structure is solved. Orthorhombic, space group *Ibam, a* = 16.0989(11), *b* = 16.2399(9), *c* = 7.0135(4) Å, $V = 1833.6(2)$ Å³, Z = 8. $D_{\text{calc}} = 2.45$ g/cm³. Optically biaxial (+), $\alpha = 1.557(2)$, $\beta = 1.562(2)$, $\gamma = 1.671(3)$, $2V = 30(10)^\circ$. The empirical formula is (electron microprobe): Na_{1.97}(Ti_{0.92}Fe³ $_{0.07}^{\dagger}$ _{2.09}S_{2.02}O₉·2H₂O. The strongest lines of the powder X-ray diffraction pattern [d, Å(I, %) (hkl)] are: 8.10 (100) (020, 200), 5.04 (55) (121, 211), 3.787 (26) (231), 3.619 (18) (240, 420), 3.417 (27) (141, 411), 2.943 (20) (341, 431), 2.895 (20) (132, 312).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3598, 3470sh, 3320s, 3240sh, 2324w, 1655s, 1250sh, 1231s, 1133s, 1085sh, 987s, 906w, 767s, 603, 489, 395sh, 373.

Note: The spectrum was obtained by N.V. Chukanov.

S564 Metasideronatrite Na₂Fe³⁺(SO₄)₂(OH)∙H₂O

Origin: Coronel Manuel Rodríguez mine, Mejillones peninsula, Mejillones, Antofagasta Province, Antofagasta Region, Chile.

Description: Orange-beige pseudomorphs after prismatic sideronatrite crystals. Investigated by I.V. Pekov. Characterized by powder X-ray diffraction data and electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3603, 3383, 3362, 3310sh, 3225sh, 2135w, 2004w, 1632, 1260, 1206s,

1135s, 1117s, 1056, 1032, 996s, 979s, 665sh, 650, 634, 618, 610, 595w, 514s, 470sh, 407.

Note: The spectrum was obtained by N.V. Chukanov.

S565 Parabutlerite $Fe^{3+}(SO_4)(OH)·2H_2O$

Origin: Coronel Manuel Rodríguez mine, Mejillones peninsula, Mejillones, Antofagasta Province, Antofagasta Region, Chile.

Description: Orange-brown crystals from the association with gypsum. Investigated by I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Orthorhombic, $a = 7.386(3)$, $b = 7.405(4)$, $c = 20.091(10)$ Å, $V = 1072(1)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers (cm⁻¹): 3500sh, 3276s, 3223s, 3285w, (2200sh), 1670, 1660sh, 1222s, 1170sh, 1126s, 1012s, 997s, 658, 601, 505s.

Note: The spectrum was obtained by N.V. Chukanov.

S566 Yavapaiite $KFe^{3+}(SO_4)_2$

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province, Antofagasta, Chile.

Description: Pink platy crystals from the association with coquimbite and rhomboclase. Investigated by I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Monoclinic, $a = 8.186(8)$, $b = 5.156(6)$, $c = 7.893(8)$ Å, $\beta = 94.69(10)^\circ$, $V = 332.0(6)$ Å³. The empirical formula is (electron microprobe): $K_{0.98}Fe_{1.01}(SO_4)_{2.00}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 2470w, 2262w, 2212w, 2117w, 2049w, 2032w, 1240s, 1110sh, 1087s, 1027s, 680, 660sh, 621, 591, 470, 446, 377.

Note: The spectrum was obtained by N.V. Chukanov.

S567 Szomolnokite Fe(SO₄)∙H₂O

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa Province, Antofagasta, Chile.

Description: Pale greenish-yellow crystals from the association with metavoltine, coquimbite, and römerite. Investigated by I.V. Pekov. Characterized by single-crystal X-ray diffraction data. Monoclinic, $a = 7.66$, $b = 7.53$, $c = 7.09$ Å, $\beta = 116.66^{\circ}$, $V = 365.7$ Å³. The empirical formula is (electron microprobe): $(Fe_{0.89}Zn_{0.05}Mg_{0.03})S_{1.01}O_4·H_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3410sh, 3320sh, 3243s, 2076w, 2020w, 1637, 1497, 1160sh, 1133s, 1105s, 1016s, 837s, 667, 624, 604, 530s.

Note: The spectrum was obtained by N.V. Chukanov.

$S568$ Metathénardite Na₂(SO₄)

Origin: Yadovitaya (Poisonous) fumarole, Second scoria cone, Tolbachik volcano, Kamchatka peninsula, Far-Eastern Region, Russia.

Description: Pale blue crystals. Investigated by I.V. Pekov, the author of the first description of metathénardite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 2125w, 1150sh, 1136s, 1115sh, 993, 970sh, 630sh, 618s. Note: The spectrum was obtained by N.V. Chukanov.

S569 Magnesiovoltaite $K_2Mg_5Fe^{3+}{}_{3}Al(SO_4)_{12}.18H_2O$

Origin: Alcaparrosa mine, Cerro Alcaparrosa, El Loa province, Antofagasta region, Chile (type locality).

Description: Yellow crystals from the association with coquimbite, tamarugite, alum-(Na), rhomboclase, yavapaiite, voltaite, and opal. Holotype sample. The crystal structure is solved. Cubic, space group $Fd-3c$, $a = 27.161(1)$ Å, $V = 20038(2)$ Å³, $Z = 16$. $D_{\text{meas}} = 2.51(2)$ g/cm³, $D_{\text{calc}} = 2.506$ g/cm³. Optically anomalously anisotropic, uniaxial with $\varepsilon = 1.584$ (2) and $\omega = 1.588$ (2), or biaxial (-) with $\alpha = 1.584$ (2), $\beta = 1.587$ (2), and $\gamma = 1.588$ (2). The empirical formula is $(K_{1.85}Na_{0.08})(Mg_{4.25}Mn_{0.46}Zn_{0.14})Fe^{3+}{}_{3.14}Al_{0.91}(SO_4)_{11.91}(H_2O)_{18.325}O_{0.035}$. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 9.56 (29) (022), 6.77 (37) (004), 5.53 (61) (224), 3.532 (68) (137), 3.392 (100) (008), 3.034 (45) (048), 2.845 (30) (139).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3565sh, 3480sh, 3441, 3134, (3070sh), 2496w, 1684w, 1640sh, 1624, 1168s, 1133s, 1067s, 1011s, 995sh, 876w, 718sh, 660sh, 629, 596, 440.

Note: The spectrum was obtained by N.V. Chukanov.

S570 Barium titanium sulfide $Ba₂TiS₄$

Origin: Synthetic.

Description: Orthorhombic, space group *Pnma*. The crystal structure contains TiS₄ tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: Transmission of a polycrystalline powder sample.

Source: Ishii and Saeki (1992).

Wavenumbers (IR, cm⁻¹): 491sh, 462s, 405, 218w, 192w, 144, 129, 90, 60w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 477, 457w, 441w, 445sh, 403s.

S571 Barium titanium sulfide $Ba₃TiS₅$

Description: Tetrahedral, space group $I4/mcm$. The crystal structure contains $TiS₄$ tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: Transmission of a polycrystalline powder sample.

Source: Ishii and Saeki (1992).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 463s, 439sh, 195, 152, 121, 63w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 478, 462, 416s.

S572 Bismuth copper sulfate tellurite $BiCu_{2}(TeO_{3})(SO_{4})(OH)_{3}$

Origin: Synthetic.

- **Description:** Synthesized hydrothermally from Bi_2O_3 , CuSO₄:5H₂O, TeO₂, and H₂SO₄ at 230 °C for 3 days. Monoclinic, space group $P2_1/n$, $a = 9.5513(15)$, $b = 6.3022(10)$, $c = 13.955(2)$ Å, $\beta = 102.845(3)$ °, $V = 819.0(2) \text{ Å}^3$, $Z = 4$. $D_{\text{calc}} = 5.318 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2015a).

- Wavenumbers (IR, cm⁻¹): 1127, 1089s, 1071s, 976, 858w, 767, 742sh, 675s, 607, 542, 494sh, 468, 441.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1110w, 1092w, 1071w, 977, 760, 690w, 630, 563w, 438, 412, 354s, 273, 228, 211, 155, 134s, 120s.

S573 Bismuth sulfate $Bi_2(SO_4)_3$

Origin: Synthetic.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto et al. (1995).

Wavenumbers $(cm⁻¹): 1131s, 1056s, 968, 652s, 613, 597, 444w, 422w, 290sh.$

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

S574 Bismuthyl sulfate $(BiO)_2(SO_4)$

- **Description:** Product of heating of tetradymite at 500 $^{\circ}$ C in air. The sample contains admixture of tellurium oxide.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto et al. (1995).

- Wavenumbers (cm^{-1}) : 1110sh, 1074s, 1033sh, 971sh, 745, 689, 628s, 599, 475, 421w, 396, 350, 316w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The bands located at 745 and 689 cm^{-1} can be tentatively assigned to a tellurium oxide.

S575 Cesium iron sulfate $Cs₃Fe(SO₄)₃$

Origin: Synthetic.

Description: Trigonal, space group R3c.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Bremard et al. (1986).

Wavenumbers (IR, cm⁻¹): 1220, 1200s, 1110s, 1030, 1000s, 875sh, 665w, 645w, 610, 595, 510w, 485w, 445w, 450w, 314, 264w, 244w, 200w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹, at 77 K): 1237sh, 1225sh, 1205, 1115w, 1035sh, 1030w, 1010, 990s, 650w, 620, 615sh, 603, 597, 463, 447, 263, 258, 246sh, 204, 178sh, 168w, 155w, 138w, 57w, 37.5w.

S576 Dysprosium copper hydroxysulfate $Dy_2Cu(SO_4)_2(OH)_4$ $Dy_2Cu(SO_4)_2(OH)_4$

Origin: Synthetic.

Description: Synthesized by a hydrothermal method. Monoclinic, space group $P2_1/c$, $a = 6.304(4)$, $b = 6.663(4), c = 10.724(6)$ \AA , $\beta = 98.527(1)$ °, $V = 445.5(5)$ \AA ³, $Z = 2$. $D_{calc} = 4.806$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Tang et al. (2015).

- Wavenumbers (cm⁻¹): 3573, 3435, 3320sh, 1635w, 1232s, 1168s, 1023s, 970, 870, 744, 739sh, 661, 634s, 612s, 589, 512w, 491w, 454, 409w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S577 Iron(III) basic sulfate $Fe(SO₄)(OH)$

Description: Prepared hydrothermally from $Fe₂(SO₄)₃·nH₂O$. Monoclinic, space group $P2₁/c$.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Gomez et al. (2013).

Wavenumbers (IR, cm⁻¹): 3452, 1168, 1095s, 1058, 999s, 651sh, 636, 584w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3077, 3453s, 3587w, 1183, 1122, 1100s, 1062, 1026, 914w, 645, 556, 480, 418w, 370, 231.

S578 Iron(III) basic sulfate $Fe(SO₄)(OH)$

Origin: Synthetic.

Description: Orthorhombic, space group *Pnma*, $a = 7.33$, $b = 6.42$, $c = 7.14$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr and TIBr discs. Transmission.

Source: Powers et al. (1975).

Wavenumbers (cm⁻¹): 3458s, 1172s, 1138s, 1112s, 1058, 1020s, 650, 638, 585, 538, 505, 468, 410w, 380, 331s, 270w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S579 Lanthanum oxosulfate $La(SO₄)O₂$

Origin: Synthetic.

Description: Synthesized by a template-assisted route described elsewhere. Characterized by powder X-ray diffraction data. Monoclinic, $a = 14.354(3)$, $b = 4.2862(6)$, $c = 8.388(2)$ Å, $\beta = 107.16(2)$. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Source: Zhang et al. (2008).

Wavenumbers (cm⁻¹): 1185s, 1106s, 1067s, 992w, 655, 618, 595, 487.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

S580 Lead(II) oxysulfate $Pb_5(SO_4)O_4$

- **Description:** Microcrystalline powder obtained by the reaction of PbO with diluted H₂SO₄ at 80 °C during 4–6 h and subsequent heating of the product at 550 °C. Monoclinic, space group $P2₁/c$, $Z = 4.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Grasselli and Baran (1984).

- Wavenumbers (cm⁻¹): 1135s, 1105s, 1077sh, 1051s, 965, 614sh, 609, 600, 483, 445, 430sh, 408sh, 372s, 341sh, 290, 278w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S581 Lithium iron(II) sulfate fluoride tavorite-type $Life(SO₄)F$

Origin: Synthetic.

- **Description:** Prepared from $Fe(SO₄)\cdot H₂O$ and LiF by a low-temperature solvothermal approach. Characterized by powder X-ray diffraction data. Triclinic, space group $P-1$, $a = 5.1760(4)$, $b = 5.4909(4), c = 7.2214(5)$ \AA , $\alpha = 106.511^{\circ}$, $\beta = 107.187(3)^{\circ}$, $\gamma = 97.847(2)^{\circ}$, $V = 182.46$ (2) \AA^3 .
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Sobkowiak et al. (2013).

Wavenumbers $(cm⁻¹)$: 2156, 1110sh, 1094s, 1000, 646, 617s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S582 Magnesium hydroxysulfate hydrate Mg₃(SO₄)₂(OH)₂⋅2H₂O

Origin: Synthetic.

- **Description**: Crystals grown hydrothermally from NaOH and $MgSO₄$ at 160 °C for 21 days. The crystal structure is solved. Orthorhombic, space group *Pbcm*, $a = 7.177(1)$, $b = 9.804(2)$, $c = 12.775(2)$ Å, $V = 898.9(2)$ Å³, $Z = 4$. $D_{\text{calc}} = 2.476$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Tao et al. (2002).

Wavenumbers (IR, cm⁻¹): 3607, 3567, 3483, 3200w, 2964w, 2207w, 2148w, 2081w, 1633, 1606, 1534w, 1261sh, 1224s, 1187s, 1126s, 1066s, 1012, 943, 813, 725w, 652, 616, 516, 416s.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3604s, 3565s, 3484s, 1215, 1103, 1027s, 653, 634, 494, 459, 270.

S583 Manganese hydroxysulfate $Mn_5(SO_4)(OH)_8$ $Mn_5(SO_4)(OH)_8$

- Description: Prepared under mild hydrothermal conditions. Characterized by powder X-ray diffraction data. The crystal structure is solved. Triclinic, space group $P-1$, $a = 7.5501(5)$, $b = 8.5558(6)$, $c = 8.6059(5)$ Å, $\alpha = 98.122(4)^\circ$, $\beta = 102.370(4)^\circ$, $\gamma = 99.646(4)^\circ$, $V = 526.19(6)$ Å³, $Z = 2$. $D_{\text{calc}} = 3.199 \text{ g/cm}^3$. Mn atoms have five- and sixfold coordination.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Fan et al. (2005).

- Wavenumbers (cm⁻¹): 3626, 3560, 3487, 3424s, 1310sh, 1148s, 1106, 1049, 954, 916, 857sh, 841, 809, 753sh, 716, 670, 637, 601s, 569sh, 505, 470, 425.
- Note: The wavenumbers were partly determined by us based on spectsral curve analysis of the published spectrum.

S584 Magnesium sulfate hydroxide Mg6(SO4)(OH)10∙7H2O Mg6(SO4)(OH)10∙7H2O

Origin: Synthetic.

- **Description:** Synthesized in the reaction between MgO and $MgSO₄$ aqueous solutions in the presence of citric acid, at 20 $^{\circ}$ C for 168 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $I121$, $a = 10.260(3)$, $b = 6.307(1)$, $c = 15.138(3)$ Å, $\beta = 103.98(2)^\circ, V = 950.6(4) \text{ Å}^3, Z = 4.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Runčevski et al. (2013).

- Wavenumbers (cm⁻¹): 3720, 3640, 3400s, 1646, 1450, 1152sh, 1105s, 1086sh, 987w, 640, 546s, 517sh, 450w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S585 Nickel hydroxysulfate hydrate Ni₃(SO₄)₂(OH)₂∙2H₂O Ni₃(SO₄)₂(OH)₂⋅2H₂O

Origin: Synthetic.

- Description: Green crystals prepared hydrothermally from Ni(SO₄).7H₂O and NaOH with the ratio Ni:Na:H₂O = 1:0.25:250 at 215–240 °C for 1–4 days. Orthorhombic, space group *Pbcm*, $a = 7.1485(3), b = 9.6844(4), c = 12.6643(3)$ Å, $V = 876.74(6)$ Å³, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Vilminot et al. (2003).

- Wavenumbers (cm⁻¹): 3570sh, 3541, 3477, 3442, 1619, 1202s, 1159s, 1109s, 1035s, 995, 881, 862, 780w, 760w, 727sh, 709w, 648, 627, 600, 499.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S586 Niobium sulfide $NbS₃$ NbS₃

- **Description**: Obtained by a chemical vapor transport method. Triclinic, space group $P1$, $a = 4.963(2)$, $b = 6.730(2), c = 9.144(4)$ Å, $\alpha = 90^{\circ}, \beta = 97.17(1)^{\circ}, \gamma = 90^{\circ}.$
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Sourisseau et al. (1990).

Wavenumbers (IR, cm⁻¹): 576, 564w, 405w, 385sh, 345s, 336s, 320sh, 300w, 276, 261, 246, 236sh, 197, 193sh, 175, 150w, 108w, 101, 66.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 602w, 573, 559w, 522w, 462w, 400sh, 392, 388sh, 380, 352, 341, 323, 303, 300, 288w, 281, 263, 257, 241w, 203sh, 195s, 172sh, 160, 152s, 133w, 108, 94, 85, 68.

S587 Potassium borosulfate $K_5[B(SO_4)_4]$ $K_5[B(SO_4)_4]$

Origin: Synthetic.

- **Description:** Single crystals obtained by thermal decomposition of $K_3[B(SO_4)_3]$ at 673 K for 12 h. The crystal structure is solved. Tetragonal, space group $P4_1$, $a = 9.9044(14)$, $c = 16.215(3)$ Å, $Z = 4$. $D_{\text{calc}} = 2.466$ g/cm³. The structure contains isolated $[B(SO_4)_4]^{5-}$ anions.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection.

Source: Daub et al. (2013).

- Wavenumbers (IR, cm⁻¹): 1302, 1271, 1249, 1226s, 1204s, 1135w, 1113w, 1080w, 1023, 1004, 926, 857, 807, 696, 648, 603, 585, 549, 526, 484, 470, 417w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a figure of the Raman spectrum is given.

S588 Potassium sodium vanadyl sulfate $K_6Na_2(VO)_2(SO_4)_7$

Origin: Synthetic.

Description: Prepared from the mixture of $\text{Na}_2\text{S}_2\text{O}_7$, $\text{K}_2\text{S}_2\text{O}_7$, and V_2O_5 at 325 °C. The crystal structure is solved. Tetragonal, space group $P4_32_12$, $a = 9.540(3)$, $c = 29.551(5)$ Å, $V = 2689.5$ (13) \AA^3 , Z = 4. $D_{\text{calc}} = 2.684$ g/cm³. The shortest V–O bond length is equal to 1.552(6) \AA .

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Karydis et al. (2002).

Wavenumbers (IR, cm⁻¹): 1320sh, 1290sh, 1220s, 1185sh, 1126s, 1065sh, 1028s, 980s, 962s, 880, 875sh, 850, 792, 725, 700sh, 670w, 655, 630, 610, 594sh, 580, 510sh, 460w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1310w, 1230w, 1165w, 1028, 1005, 968, 895w, 860w, 790, 685w, 630s, 605s, 570w, 490w, 445w, 396s, 302, 260w, 174s, 140s.

S589 Potassium zinc sulfate chloride trihydrate KZn(SO₄)Cl∙3H₂O

Kainite Zn-analogue

Description: Single crystals doped by Cu^{2+} ions. Monoclinic, space group $C2/m$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Narasimhulu et al. (2000).

Wavenumbers (cm⁻¹): 3230s, 2236, 1700, 1559, 1146s, 1096s, 984, 756, 631s, 608sh, 575, 459, 436w, 420sh.

S590 Potassium zinc sulfate hexahydrate K₂Zn(SO₄)₂∙6H₂O Picromerite Zn-analogue

Origin: Synthetic.

Description: Crystals grown from aqueous solution by slow evaporation. Characterized by powder X-ray diffraction data. Monoclinic, space group $P2₁/c$. Isostructural with picromerite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Manonmoni et al. (2014).

- Wavenumbers (cm^{-1}) : 3233s, 3140sh, 2360, 2328w, 2238, 2070w, 1699, 1559, 1142s, 1098s, 983, 862sh, 760, 631s, 572, 451, 441.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S591 Rubidium beryllium sulfate hydrate Rb₂Be(SO₄)₂∙2H₂O

Origin: Synthetic.

- **Description**: Obtained from the three-component system $Rb_2SO_4-BeSO_4+H_2O$ by the method of isothermal decrease of supersaturation. The crystal structure is solved. Monoclinic, space group $P2₁$ / c, $a = 11.371(2)$, $b = 11.858(2)$, $c = 7.431(1)$ \AA , $\beta = 96.33(1)$ °, $V = 996.0$ \AA ³, $Z = 4$. $D_{\text{calc}} = 2.722$ g/ cm³. In the structure, the $[Be(SO_4)_2(H_2O)_2]^2$ units are arranged to form double layers.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Georgiev et al. (2007).

- Wavenumbers (IR, cm⁻¹): 3226s, 3090sh, 2413, 2320sh, 1688w, 1639, 1203s, 1188s, 1178sh, 1151s, 1127sh, 1081sh, 1060s, 993s, 928, 852w, 776, 736, 620s, 613sh, 599, 565s, 460, 452, 442sh.
- Note: The bands indicated by Georgiev et al. (2007) at 3054 and 2294 cm⁻¹ are observed as shoulders at 3090 and 2320 cm^{-1} . In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1212, 1185, 1156, 1120w, 1078s, 1007s, 993sh, 924w, 757, 633, 606, 589, 557w, 497, 461, 436, 387, 311w, 266.

S592 Silver indium sulfide $AgIn₅S₈$ AgIn₅S₈

- **Description:** A compound with cubic spinel-type structure. Space group $Fd3m$, $Z = 2$. One indium atom has tetrahedral coordination, and four indium atoms have octahedral coordination.
- Kind of sample preparation and/or method of registration of the spectrum: Reflection of a single crystal.

Source: Gasanly et al. (1993).

Wavenumbers (IR, cm^{-1}) : 359w, 327s, 282, 222s, 87.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 354, 328s, 292, 181, 69.

S593 Silver tantalum sulfide $AgTaS₃$

Origin: Synthetic.

Description: Prepared by heating a mixture of Ta, S, and Ag₂S powders at 500 °C for 4 days. Orthorhombic, with a layered structure; $a = 3.3755(2)$, $b = 14.0608(11)$, $c = 7.7486(7)$ Å, $Z = 4$. $D_{\text{meas}} = 6.82(3) \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Ishii and Wada (2000).

Wavenumbers (IR, cm⁻¹): 350, 314, 281s, 216s, 192sh, 158sh, 48w, 31sh, 24w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 384s, 355, 322, 307, 260, 209, 166, 124s, 111s, 30.

S594 Sodium cadmium sulfate hydrate NaCd(SO₄)₂∙2H₂O

Origin: Synthetic.

Description: Monoclinic, space group $P2_1/c$.

Kind of sample preparation and/or method of registration of the spectrum: CsI and/or KBr disc. Transmission.

Source: Peytavin et al. (1972a).

Wavenumbers (IR, cm⁻¹): 1185s, 1165s, 1140s, 1100s, 1060s, 985, 834w, 800sh, 750, 654, 630, 610, 587, 470, 453, 390sh, 385w, 280sh, 263s, 250sh, 220.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1174, 1165sh, 1132s, 1120sh, 1047s, 991s, 800w, 750w, 652, 633, 619, 590, 467s, 446s, 358w, 310sh, 270, 260, 220sh, ~150sh.

S595 Sodium manganese(II) sulfate alluadite-type $Na_{2+x}Mn_{2-x/2}(SO_4)$ ₃

- **Description:** Prepared by dehydratation of the compound $Na_2Mn(SO_4)$ ³ 2H₂O with a kröhnkite-type structure. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 11.541(1)$, $b = 12.944(1)$, $c = 6.5875(6)$ Å, $\beta = 95.149(3)$ °, $V = 980.13(26)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 3.078$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Marinova et al. (2015).

- Wavenumbers (IR, cm⁻¹): 1627w, 1178, 1123s, 1111s, 1083s, 1067s, 999, 991, 647sh, 629, 611, 599, ~450w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The weak band at 1627 cm^{-1} corresponds to the admixture of H₂O. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1220w, 1117w, 1051w, 1012s, 993sh, 664, 635, 616, 602, 466.

S596 Sodium thioborate $\text{Na}_3\text{B}_3\text{S}_6$ $\text{Na}_3\text{B}_3\text{S}_6$

Origin: Synthetic.

- **Description:** Obtained from melt prepared from $Na₂S$ and $B₂S₃$. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Martin and Bloyer (1991).

Wavenumbers $(cm⁻¹)$: 1239w, 1221, 1104w, 957sh, 934, 914s, 872s, 828, 525w, 513w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands above 1100 cm^{-1} may correspond to the admixture of a borate.

S597 Sodium thioborate $Na₃BS₃ Na₃BS₃$

Origin: Synthetic.

Description: Obtained from melt prepared from Na_2S and B_2S_3 .

- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Martin and Bloyer (1991).
- Wavenumbers (cm⁻¹): 1242, 1155, 1027w, 914w, 843, 818s, 800s, 770s, 749sh, 710sh, 527sh, 486w, 465, 425w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands above 1100 cm^{-1} may correspond to the admixture of a borate.

S598 Tellurium(IV) oxosulfate $Te_2(SO_4)O_3$

- **Description:** Orthorhombic, space group $P2_1mn$, $a = 4.676(2)$, $b = 8.911(3)$, $c = 6.879(4)$ Å, $V = 286.63 \text{ Å}^3, Z = 2. D_{\text{calc}} = 4.61 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Gaitán et al. (1985).

- Wavenumbers (cm^{-1}) : 1195, 1055s, 1000s, 965, 855sh, 848w, 780, 687sh, 650s, 620, 505, 460w, 430, 310.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S599 Triammoniun hydrogen disulfate $(NH_4)_3H(SO_4)_2$

Origin: Synthetic.

Description: Monoclinic, space group $C2/c$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: Nujol and Fluorolube mulls. Transmission.

Source: Kamoun et al. (1988).

Wavenumbers (IR, cm⁻¹): 3223s, 3043s, 2855, 1733w, 1680w, 1414s, 1180s, 1125s, 1080, 960sh, 910, 597s, (570), 444.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3145, 2870sh, 1674w, 1415w, 1078s, 966s, 619, 606, 590, 467, 442.

S600 Alpersite (Mg,Cu)(SO4)∙7H2O

Origin: Malanjkhand porphyry copper mine, near Balaghet, Madhya Pradesh, India.

Description: Light blue crusts associated with epsomite, hexahydrite, and gypsum. Characterized by powder X-ray diffraction data and semiquantitative electron microprobe analysis.

- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Equeenuddin (2015).

Wavenumbers (cm⁻¹): 3600, 3054s, 2312, 2121sh, 2077sh, 1679s, 1184s, (1152sh), (1111), (1092), (1074sh), 984w, 859, (809sh), 790, (765sh), 460sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands of H_2O (at 3054 and 1679 cm⁻¹) are anomalously strong and may be due to adsorbed water.

S601 Aluminocopiapite $(AI, Mg)Fe^{3+}_{4}(SO_4)_6(OH,O)_2.2OH_2O$

Description: Prepared from Fe₂(SO₄)₃.6.25H₂O and Al₂(SO₄)₃.17H₂O at 25°, in the presence of excess of water. Characterized by powder X-ray diffraction data. Triclinic, $a = 7.3853(7)$, $b = 18.249(2), c = 7.3280(6)$ Å, $\alpha = 93.873(7)$ °, $\beta = 102.221(6)$ °, $\gamma = 99.163(6)$ °, $V = 947.7$ (2) \AA^3 .

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Absorption. Source: Majzlan and Michallik (2007).

Wavenumbers (cm⁻¹): 3528sh, 3348, 3150 (broad), 1630, 1127s, 1075, 1030, 988s, 657sh, 595, 551. Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Transmittance 1400 1800 2200 2600 3000 3400 3800 600 1000 Wavenumber (cm^{-1})

S602 Amarillite NaFe³⁺(SO₄)₂⋅6H₂O

Origin: Xitieshan Pb-Zn deposit, Qaidam basin, Qinghai province, China.

- Description: Pale yellow or white, fibrous and tabular aggregates, from the association with copiapite, römerite, coquimbite, and melanterite. The crystal structure is solved. Monoclinic, space group $P12/c1, a = 8.4219(17), b = 10.844(2), c = 12.461(3) \text{ Å}, \beta = 95.59(3)^\circ, V = 1132.6(4) \text{ Å}^3, Z = 4.4219(17)$ D_{calc} = 2.223 g/cm³. The empirical formula is $(Na_{0.97}Ca_{0.01}Pb_{0.01})$ $Fe_{1.04}Al_{0.07}(SO_4)_{1.05}(OH)_{0.42}\cdot5.78H_2O.$
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Yang and Giester (2016).

- Wavenumbers (cm⁻¹): 3522sh, 3478, 3350sh, 3110, 1631, 1213w, 1092s, 989s, 708, 675, 634, 595, 549s, 446.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band position denoted by Yang and Giester (2016) as 3442 cm^{-1} was determined by us at 3478 cm^{-1} .

S603 Campostriniite (Bi_{2.5}Na_{0.5})(NH₄)₂Na₂(SO₄)₆⋅H₂O

Origin: La Fossa crater, Vulcanoisland, Lipari, Eolie (Aeolian) islands, Messina province, Sicily, Italy (type locality).

Description: White prismatic crystals from the association with adranosite, demicheleite-(Br), demicheleite-(I), argesite, and sassolite. Holotype sample. The crystal structure is solved. Monoclinic, space group C_2/c , $a = 17.748(3)$, $b = 6.982(1)$, $c = 18.221(3)$ Å, $\beta = 113.97(1)$ °, $V = 2063$ (1) Å³, Z = 4. $D_{\text{calc}} = 3.87$ g/cm³. The empirical formula is $B_{2.43}N_{1.52}Na_{2.41}K_{0.48}S_{6.07}H_{8.08}O_{25}$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \mathcal{H})$ (hkl)] are: 6.396 (100) (110), 7.507 (75) (-202), 2.766 (60) (-316), 3.380 (57) (312), 5.677 (55) (111), 3.166 (50) (402).

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Demartin et al. (2015).

Wavenumbers $(cm⁻¹)$: 3470, 3265s, 3071, 1654, 1588, 1553sh, 1418s, 1198s, 1043s, 1036s, 1021sh, 932s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance. Weak bands in the range from 2300 to 2400 cm⁻¹ correspond to atmospheric CO₂.

S604 Changoite (slightly deuterated) Na₂Zn(SO₄)₂⋅4H₂O

Description: Prepared by crystallization from aqueous solurion. Monoclinic, space group $P2_1/a$, $a = 5.536, b = 8.249, c = 11.078$ Å, $\beta = 100.25^{\circ}$.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Peytavin et al. (1972b).

- Wavenumbers (cm⁻¹): 3400s, 3340s, 3230, 3140s, 2520w, 2480w, 2380w, 2340w, 1820w, 1720sh, 1675, 1600, 1165s, 1105s, 1084sh, 1080s, 990, 910, 855, 730, 670, 632, 622, 608, 590, 465, 443sh, 435.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The weak bands in the range from 2000 to 2600 cm^{-1} correspond to D–Ostretching vibrations.

Transmittance 1000 1400 1800 2200 2600 3000 3400 600 3800 Wavenumber $(cm⁻¹)$

S605 Copiapite Fe²⁺Fe³⁺₄(SO₄)₆(OH)₂⋅20H₂O

Origin: Synthetic.

Description: Prepared from Fe₂(SO₄)₃.6.25H₂O and Fe(SO₄). 7H₂O at 25°, in the presence of excess of water. Characterized by powder X-ray diffraction data. Triclinic, $a = 7.3858(9)$, $b = 18.592(3)$, $c = 7.3543(8)$ Å, $\alpha = 92.273(9)^\circ$, $\beta = 102.274(8)^\circ$, $\gamma = 98.290(9)^\circ$, $V = 973.9(2)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Absorption. Source: Majzlan and Michallik (2007).

Wavenumbers (cm⁻¹): 3523sh, 3344, 3234sh, 1630, 1216s, 1130s, 1075s, 1035s, 991s, 657, 597, 551.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

S606 Ferricopiapite $\text{Fe}^{3+}_{0.67}\text{Fe}^{3+}_{4}(\text{SO}_4)_6(\text{OH})_2$ ∙20H₂O

Origin: Synthetic.

Description: Prepared from $Fe_2(SO_4)_3.6.25H_2O$ in the presence of excess of water at 25 °C. Characterized by powder X-ray diffraction data. Triclinic, $a = 7.3871(5)$, $b = 18.362(1)$, $c = 7.3286(4)$ Å, $\alpha = 93.938(5)^\circ$, $\beta = 102.208(4)^\circ$, $\gamma = 98.920(4)^\circ$, $V = 954.5(1)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Absorption. Source: Majzlan and Michallik (2007).

Wavenumbers (cm⁻¹): 3532sh, 3343, 3170, 1628, 1215s, 1127s, 1071s, 1030s, 988s, 656w, 551sh. Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

S607 Geschieberite (?) K₂(UO₂)(SO₄)₂⋅2H₂O

- Description: Prepared by cooling a hot saturated solution of potassium sulfate and uranyl sulfate mixed in equimolar proportions. Characterized by chemical analyses.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.

Source: Narasimham and Girija (1967).

- Wavenumbers (cm⁻¹): 3717sh, 3658, 3623sh, 3334sh, 3284s, 3226sh, 3106, 2970sh, 2950s, 2920sh, 2247w, 2008w, 1850w, 1704sh, 1638sh, 1600, 1543w, 1444s, 1395, 1370, 1220sh, 1207sh, 1173s, 1141s, 1114s, 1070, 1027s, 996s, 924s, 837w, 785w, 771w, 717w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S608 Gianellaite $(Hg_2N)_2(SO_4) nH_2O$

- Origin: Perry Pit of the Mariposa mine, Terlingua District, Brewster Co., Texas, USA (type locality). Description: Type material deposited in the Natural History Museum of Los Angeles Co., Museum No. 44159. The crystal structure is solved. Cubic, space group $F-43m$, $a = 863.1(16)$ Å, $Z = 4$. The (NHg4) tetrahedra sharing corners form a framework of the cuprite-type structure.
- Kind of sample preparation and/or method of registration of the spectrum: Thin film, prepared by a diamond micro-compression cell. Absorption.

Source: Cooper et al. (2016a).

- Wavenumbers (cm⁻¹): 3390sh, 3342, 3310, 1640sh, 1610, 1600sh, 1315w, 1265w, 1088sh, 1064s, 953, 872w, 803, 688s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S609 Gordaite NaZn₄(SO₄)(OH)₆Cl⋅6H₂O

Origin: Juan de Fuca Ridge, northeastern Pacific Ocean (130° 22' 34" W, 44° 38' 53" N).

Description: Tabular crystals from the association with sphalerite, baryte, with minor pyrite, pyrrhotite, sulfur, and Fe-hydroxides. Characterized by electron microprobe analysis. Trigonal, $a = 8.353$ (2), $c = 13.087(8)$ Å. The strongest lines of the powder X-ray diffraction pattern [d, Å(I, %) (hkl)] are: 13.19 (100) (001), 3.737 (24) (103), 2.967 (30) (104), 2.737 (24) (120), 2.675 (34) (121), 2.523 (30) (122), 2.098 (24) (124).

Kind of sample preparation and/or method of registration of the spectrum: Thin-tabular chip. Transmission.

Source: Nasdala et al. (1998).

Wavenumbers (IR, cm⁻¹): 3577w, 3508s, 3454, 3401s, 3342s, 3235sh, 1687, 1649, 1530, 1460w, 1400w, 1144sh, 1116s, 1074sh, 1033w, 988s, 913w, 837, 784s, 756sh, 678w, 651sh, 603s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3508, 3422, 1099, 973s, 598, 394.

S610 Ivsite $Na₃H(SO₄)₂$

Origin: Synthetic.

Description: Monoclinic, space group $P2_1/c$, $Z = 4$.

- Kind of sample preparation and/or method of registration of the spectrum: Nujol and Fluorolube mulls at 20 K. Transmission.
- Source: Fillaux et al. (1991).
- Wavenumbers (IR, cm⁻¹): 1635, 1535, 1400, 1236, 1197, 1170, 1095, 972, 940, 850sh, 772, 658, 610, 580, 530, 500, 458, 438, 310.
- Note: These wavenumbers given by Fillaux et al. (1991) in a table don't conform to the figure from this paper. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1242, 1198, 1162, 1154, 1115, 973, 639, 613, 604, 522, 479, 445, 437, 308, 182, 155, 126, 95, 76, 51.

S611 Joegoldsteinite $MnCr₂S₄$

Origin: Synthetic. **Description**: Characterized by powder X-ray diffraction data. Cubic, space group *Fd3m*. Kind of sample preparation and/or method of registration of the spectrum: Reflection. Source: Lutz et al. (1983). Wavenumbers $(cm⁻¹)$: 385s, 321s, 257w, 118w.

 $S612$ Kalininite $ZnCr₂S₄$

Origin: Synthetic.

Description: Characterized by powder X-ray diffraction data. Cubic, space group *Fd3m*. Kind of sample preparation and/or method of registration of the spectrum: Reflection. Source: Lutz et al. (1983).

Wavenumbers $(cm⁻¹)$: 390s, 342s, 245w, 112w.

S613 KröhnkiteMn analogue Na₂Mn(SO₄)₂∙2H₂O

Origin: Synthetic.

Description: Prepared by crystallization from the $Na_2SO_4-MnSO_4-H_2O$ system at 25 °C using the method of isothermal decrease in super-saturation. Characterized by DTA, TG, and powder X-ray diffraction data. Monoclinic, space group P_1/c , $a = 5.8206(2)$, $b = 12.9958(21)$, $c = 5.4920$ (18) Å, $\beta = 106.10(4)^\circ$, $V = 399.1 \text{ Å}^3$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Marinova et al. (2015).

- Wavenumbers (IR, cm⁻¹): 1708w, 1192s, 1146s, 1097s, 1079s, 1063s, 985, 825w, 750, 646, 630, 607, 582, 472w, 456w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1170w, 1128, 1045, 1020, 988s, 646w, 632w, 619, 463, 446w.

S614 Lishizhenite ZnFe³⁺₂(SO₄)₄⋅14H₂O

Origin: Xitieshan, Qinghai Province, China (type locality).

Description: Pale violet tabular crystals from the association with römerite, copiapite, sulfur, gypsum, pyrite, and quartz. Holotype sample. Triclinic, space group P, $a = 6.477(1)$, $b = 15.298(3)$, $c = 6.309(1), \alpha = 90.20(1)^\circ, \beta = 101.11(1)^\circ, \gamma = 93.97(1)^\circ, V = 611.9(1) \text{ Å}^3, Z = 1. D_{\text{meas}} = 2.206$ (4) g/cm³, $D_{\text{calc}} = 2.201$ g/cm³. Optically biaxial (-), $\alpha = 1.522(2)$, $\beta = 1.568(1)$, $\gamma = 1.578(4)$, $2V = 70(5)$ °.

Source: Li and Chen (1990).

Wavenumbers (cm^{-1} , for absorption intervals): 3351-3035s, 1658-1651, 1131-997s, 667-537, 481.

S615 Magnesiocopiapite MgFe³⁺₄(SO₄)₆(OH)₂⋅20H₂O

Origin: Synthetic.

Description: Prepared from Fe₂(SO₄)₃.6.25H₂O and Mg(SO₄).7H₂O at 25°, in the presence of excess of water. Characterized by powder X-ray diffraction data. Triclinic, $a = 7.3451(4)$, $b = 18.794(1)$, $c = 7.3891(4)$ Å, $\alpha = 91.369(5)^\circ$, $\beta = 102.169(4)^\circ$, $\gamma = 98.831(4)^\circ$, $V = 983.6(1)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Absorption. Source: Majzlan and Michallik (2007).

Wavenumbers (cm⁻¹): 3523sh, 3308s, 3278s, 3242sh, 3125sh, 1634, 1215s, 1188sh, 1127s, 1078, 1030, 991s, 721sh, 657sh, 633sh, 595s, 552.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

S616 Mercallite KHSO4

Origin: Synthetic.

Description: Crystals grown from aqueous solution of H_2SO_4 and K_2SO_4 by slow evaporation.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Transmission.

Source: Dey et al. (1982).

- Wavenumbers (IR, cm⁻¹): 3100s, 2930, 2510, 1328s, 1295sh, 1284s, 1255s, 1228s, 1170s, 1084sh, 1068s, 1005s, 884s, 872s, 849s, 660, 632, 616s, 589s, 576s, 454, 435, 405w, 265, 220, 183, 160, 153, 141sh, 132sh, 112, 103, 94, 80, 54, 36.
- Note: The intensities of the IR bands are indicated in accordance with authors' tabular data. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 2700, 1337, 1265, 1242, 1170, 1026, 1001, 872, 855, 598, 589, 581, 572, 452, 445, 182, 139, 126, 102, 82, 50, 46.

S617 Mercallite KHSO4

- **Description**: Pyramidal crystals grown from aqueous solution of H_2SO_4 and K_2SO_4 . Orthorhombic, space group *Pbca*.
- Kind of sample preparation and/or method of registration of the spectrum: Absorption of a polycrystalline sample at 90 K. Kind of sample preparation is not indicated.

Source: Goypiron et al. (1980).

- Wavenumbers (IR, cm⁻¹): 2984sh, 2873, 2587, 2460, 2405, 2210sh, 1916w, 1730w, 1687w, 1608w, 1555w, 1342s, 1303sh, 1290s, 1259, 1230, 1200sh, 1175s, 1089, 1073s, 1000s, 889s, 855s, 835, 665, 640, 615s, 597s, 591sh, 576s, 456s, 435, 431sh, 416w, 404
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, for a polycrystalline sample at 300 K, cm^{-1}): 2860w, 1257sh, 1244w, 1219w, 1171w, 1026s, 1001s, 883w, 870w, 855, 837w, 625w, 600sh, 596, 589, 581, 573sh, 455sh, 444, 419sh, 411, 192, 182, 139, 128, 126, 124, 116, 108, 102, 96, 84, 83, 82, 76, 75, 60, 50, 47, 45, 37.

S618 Plášilite Na(UO2)(SO4)(OH)∙2H₂O

Origin: Blue Lizard mine, White Canyon District, San Juan County, Utah, USA (type locality). Description: Yellow platelets. Investigated by A.V. Kasatkin. Characterized by single-crystal X-ray diffraction data. Monoclinic, $a = 8.702$, $b = 13.822$, $c = 7.042 \text{ Å}, \beta = 112.08^{\circ}, V = 384.9 \text{ Å}^3$. The empirical formula is (electron microprobe): $\text{Na}_{0.88}(\text{UO}_2)_{1.06}(\text{SO}_4)_{1.06}(\text{OH})_x \cdot n\text{H}_2\text{O}.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3614s, 3535, 3430sh, 3405, 3360, 3250sh, 2060w, 1624, 1426w, 1191s, 1127s, 1073s, 1006, 927s, 898, 833, 797w, 693w, 671, 611, 601, 536, 472, 431, 384.

Note: The spectrum was obtained by N.V. Chukanov.

Description: Crystals obtained from saturated aqueous solution by slow evaporation at room temperature. Characterized by thermoanalytical data.

- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Dhandapani et al. (2006).
- Wavenumbers (cm⁻¹): 3243s, 2265, 2226, 2208, 2146, 2115, 2083, 1955, 1698, 1600, 1555, 1115s, 983s, 882, 749, 618s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands at 2265, 2226, 2208, 2146, 2115, 2083, and 1955 cm^{-1} may correspond to acid groups.

S620 Hydronium jarosite Pb,As-bearing $(H_3O,Pb)Fe^{3+}_{3}(SO_4,AsO_4)_2(OH,H_2O)_6$

- **Description:** Prepared from an aqueous solution containing $Pb(NO_3)$, $Fe_2(SO_4)$ ₃ \cdot 5H₂O, and H₃AsO₄ at 95 °C. Characterized by elemental analysis and powder X-ray diffraction data. Trigonal, $a = 7.3417(8)$, $c = 16.9213(6)$ Å. The empirical formula is $(H_3O)_{0.68}Pb_{0.32}Fe_{2.86}(SO_4)_{1.69}(AsO_4)_{0.31}(OH)_{5.59}(H_2O)_{0.41}$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Forray et al. (2014) .

- Wavenumbers (cm⁻¹): 3343s, 2930sh, 1634, 1189, 1090s, 1083sh, 1005sh, 999s, 855, 814, 625, 507s, 472s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S621 Hydronium jarosite Pb,Cu-bearing $(H_3O, Pb)(Fe^{3+}, Cu^{2+})_3(SO_4)_2(OH)_6$

Origin: Synthetic.

- **Description:** Prepared from an aqueous solution containing $Pb(NO_3)$, $Fe_2(SO_4)$ ₃.5H₂O, and H₂SO₄, and $Cu(SO₄)$ -5H₂O at 95 °C. Characterized by elemental analysis and powder X-ray diffraction data. Trigonal, $a = 7.3208(8)$, $c = 17.0336(7)$ Å. The empirical formula is $(H_3O)_{0.67}Pb_{0.33}Fe_{2.71}Cu_{0.25}(SO_4)_{2.00}(OH)_{5.96}(H_2O)_{0.04}.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Forray et al. (2014).

Wavenumbers (cm⁻¹): 3362s, 1642, 1195, 1092s, 1083sh, 1016s, 1005sh, 628, 513s, 475.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S622 Hydronium jarosite Pb,Zn-bearing $(H_3O, Pb)(Fe^{3+}, Zn)_{3}(SO_4)_{2}(OH)_{6}$

Origin: Synthetic.

- **Description**: Prepared from an aqueous solution containing $Pb(NO_3)_2$, $Fe_2(SO_4)_3$: SH_2O , and H_2SO_4 , and $Zn(SO₄)·7H₂O$ at 95 °C. Characterized by elemental analysis and powder X-ray diffraction data. Trigonal, $a = 7.3208(8)$, $c = 17.0336(7)$ Å. The empirical formula is $(H_3O)_{0.57}Pb_{0.43}Fe_{2.70}Zn_{0.21}(SO_4)_{2.00}(OH)_{5.95}(H_2O)_{0.05}.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Forray et al. (2014).

Wavenumbers (cm⁻¹): 3357s, 1634, 1199, 1089s, 1083sh, 1015s, 1005sh, 631, 587, 505s, 475.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S623 Shumwayite (UO₂)₂(SO₄)₂∙5H₂O

Origin: White Canyon district, San Juan Co., Utah, USA (type locality).

Description: Greenish-yellow prisms from the association with other secondary sulfates. Holotype sample. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 6.74747(15)$, $b = 12.5026(3), c = 16.9032(12) \text{ \AA}, \beta = 90.919(6)^\circ, \text{ V} = 1425.79(11) \text{ \AA}^3, \text{ Z} = 4.$ $D_{\text{calc}} = 3.831 \text{ g/cm}^3$. Optically biaxial (+/-), $\alpha = 1.581(1)$, $\beta = 1.588(1)$, $\gamma = 1.595(1)$, $2V = 89.8(8)^\circ$. The empirical formula is (electron microprobe): $U_{2.01}S_{1.99}O_{12.00}$: 5H₂O. The strongest lines of the powder X-ray diffraction pattern $[d, \mathring{A}(I, \mathcal{U}) (hkl)]$ are: 5.58 (48) (-111, 111), 5.11 (100) (013), 4.86 (44) (-112, 112), 4.04 (47) (031), 3.459 (42) (-131, –114, 114), 3.373 (50) (200, 033, –132).

Kind of sample preparation and/or method of registration of the spectrum: Reflection of powdered mineral mixed with KBr.

Source: Kampf et al. (2016f).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 3500, 3425, 3230sh, 1635, 1615w, 1435w, 1400w, 1365w, 1295w, 1202, 1143s, 1110s, 1055s, 1015, 951, 937, 868, 854, 810, 795, 730, 670, 655.

- Note: The band position denoted by Kampf et al. (2016f) as 927 cm^{-1} was determined by us at 937 cm $^{-1}$. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1185, 1155, 1100, 1073s, 1050, 1035, 1015, 930, 865s, 850s, 645, 615, 470, 430, 273sh, 255, 210, 200s, 160, 150.

S624 Carlsonite $(NH_4)_5Fe^{3+}{}_{3}(SO_4)_6O·7H_2O$

Origin: Near Huron River, 6.1 km WSW of Milan, USA (type locality).

Description: Yellow to orange-brown crystals from the association with anhydrite, boussingaultite, gypsum, and lonecreekite. Holotype sample. The crystal structure is solved. Triclinic, space group P-1, $a = 9.5927(2)$, $b = 9.7679(3)$, $c = 18.3995(13)$ Å, $\alpha = 93.250(7)$ °, $\beta = 95.258(7)$ °, $\gamma = 117.993(8)^\circ, V = 1506.15(16) \text{ Å}^3, Z = 2. D_{\text{calc}} = 2.167 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.576(1), \beta = 1.585(1), \gamma = 1.591(1), 2V = 80(1)^\circ$. The empirical formula is $[(NH_4)_{4.64}Na_{0.24}K_{0.12}]Fe^{3+}{}_{3.05}O(SO_4)_6.6.93H_2O$. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 9.23 (100) (002), 8.26 (40) (100, 011), 7.57 (43) (-111, 1-11, 011), 4.93 (23) $(-1-11, -120)$, and 3.144 (41) (multiple).

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: Kampf et al. (2016h).

- Wavenumbers (IR, cm⁻¹): 3176, 3044, 2858, 1768w, 1644sh, 1624, 1416, 1179s, 1127, 1107, 1054s, 983s, 788sh, 660, 610, 588.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1219, 1188, 1160, 1140, 1104, 1066, 1015s, 670w, 629w, 617w, 576, 552, 514, 487, 436, 275s, 245s.

S625 Huizingite-(Al) $(NH_4)_{9}(Al,Fe^{3+})_{3}(SO_4)_{8}(OH)_2.4H_2O$

Origin: Near Huron River, 6.1 km WSW of Milan, USA (type locality).

- Description: Yellow drusy aggregates from the association with adranosite-(Al), anhydrite, boussingaultite, mascagnite, and salammoniac. Holotype sample. The crystal structure is solved. Triclinic, space group P-1, $a = 9.7093(3)$, $b = 10.4341(3)$, $c = 10.7027(8)$ Å, $\alpha = 77.231(5)$ °, $β = 74.860(5)°$, $γ = 66.104(5)°$, $V = 948.73(9)$ Å³, $Z = 1$. $D_{calc} = 2.026$ g/cm³. Optically biaxial (+), $\alpha = 1.543(1)$, $\beta = 1.545(1)$, $\gamma = 1.563(1)$, $2V = 40(3)$ °. The empirical formula is $[(NH_4)_{8.76}Na_{0.22}K_{0.02}](Al_{1.65}Fe^{3+}{}_{3.05})(SO_4)_{8.00} \cdot 4.02H_2O$. The strongest lines of the powder X-ray diffraction pattern $[d, \mathring{A}(I, \%) (hkl)]$ are:
- 8.82 (60) (100), 5.04 (69) (121), 3.427 (100) (-2-21), 3.204 (68) (-211), 3.043 (94) (2–12, 312).
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.
- Source: Kampf et al. (2016h).
- Wavenumbers (IR, cm⁻¹): 3192, 3022, 1667w, 1413, 1215w, 1183w, 1117, 1083sh, 1040s, 1023s, 980s, 831w, 798w, 776w, 751w, 694w, 664w, 640, 605.
- Note: Bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance. The IR bands at 1083, 798, 776, and 694 cm^{-1} are close to those of quartz. The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1205, 1151, 1123, 1064, 1027s, 1010s, 1003s, 980s, 673, 641, 618, 478, 468, 448, 263, 223.

S626 Alunogen Al2(SO4)3(H2O)12∙5H2O

Origin: Kalamos fumarole field, Milos Island, Greece.

Description: White sugar-like aggregate. Characterized by powder X-ray diffraction data. The empirical formula is (electron microprobe): $(Al_{1.97}Fe_{0.03})(SO_4)_3 \cdot nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3500sh, 3353s, 3030s, 2505, 2085w, 1670, 1635sh, 1104s, 983, 933, 895sh, 699, 600, 578, 485sh.

Note: The spectrum was obtained by N.V. Chukanov.

S627 Vanadyl sulfate $(VO)(SO₄)$

Pauflerite tetragonal dimorph

- **Description:** Obtained by heating commercial VSO₅ xH₂O first at 165 °C for 12 h, then at 260 °C for 4 h, and finally at 330 °C for 1 h. Tetragonal, space group $P4/n$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stranford and Condrate Sr (1984a).

Wavenumbers $(cm⁻¹)$: 1183, 1091s, 969, 687w, 588.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a figure of the Raman spectrum is given.

S628 Zaherite $\text{Al}_{12}(\text{SO}_4)_5(\text{OH})_{26}$ ^{20H₂O}

Origin: Pofadder, Bushmanland, South Africa.

- Description: White to light bluish-green cryptocrystalline aggregate in narrow veins, in close association with natro-alunite and hotsonite. Triclinic, $a = 5.55$, $b = 9.74$, $c = 18.43$ Å, $\alpha = 99.71^{\circ}$, $β = 89.13°$, $γ = 94.97°$.
- Characterized by chemical analyses and thermal data. The ratio Al:S is close to 12:5. The strongest lines of the powder X-ray diffraction pattern [d, \AA (I, %) (hkl)] are: 18.12 (100) (001), 9.56 (5) (010), 9.08 (4) (002), 4.82 (6) (0-21), 4.61 (8) (110), 4.56 (4) (0-22), 4.44 (4) (021), 3.61 (4) $(1-2-1)$, 3.33 (8) (015) .
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Beukes et al. (1984).

Wavenumbers $(cm⁻¹)$: 3600, 1700, 1150s, 985, 960, 905.

Note: The intensity of the band of O–H-stretching vibrations (at 3600 cm^{-1}) is anomalously low.

S629 Fibroferrite $Fe^{3+}(SO_4)(OH)\cdot 5H_2O$

Origin: Ancient Pb-Zn mine of Saint Felix de Paillères, Anduze, Gard, Languedoc-Roussillon, France. **Description:** Hand-picked crystals. The crystal structure is solved. Trigonal, space group $R-3$, $a = 24.199(3), c = 7.6476(9)$ Å, $V = 3878.4(8)$ Å³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ventruti et al. (2016).

Wavenumbers (IR, cm⁻¹): 5180w, 4487w, 4234w, 3590sh, 3561sh, 3526, 3400s, 3192sh, 2427w, 2175w, 1662, 1612, 1426w, 1221s, 1134s, 1081s, 1038s, 998s, 659sh, 625sh, 600, 508, 475sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3590, 3522, 3140, 3411, 1175, 1135, 1097, 1073, 1031, 998s, 613, 590, 523, 488, 427, 390, 297, 287, 272, 256, 219, 187, 173, 133, 114.

S630 Pauladamsite Cu₄(SeO₃)(SO₄)(OH)₄⋅2H₂O

Origin: Santa Rosa mine, Darwin district, Inyo Co., California, USA (type locality).

- Description: Green crystals from the association with brochantite, chalcanthite, gypsum, ktenasite, mimetite, schulenbergite, and smithsonite. Holotype sample. The crystal structure is solved. Triclinic, space group P-1, $a = 6.0742(7)$, $b = 8.4147(11)$, $c = 10.7798$ (15) Å, $\alpha = 103.665$ (7)°, $\beta = 95.224(7)$ °, $\gamma = 90.004(6)$ °, $V = 533.03(12)$ \AA^3 , $Z = 2$. $D_{\text{calc}} = 3.535$ g/cm³. Optically biaxial (-), $\alpha = 1.667$ (calc.), $\beta = 1.723(2)$, $\gamma = 1.743(2)$, $2V = 60(2)^\circ$. The empirical formula is (electron microprobe, H_2O calculated): $H_{8.50}Cu_{3.55}Zn_{0.25}Se_{0.98}S_{1.00}O_{13}$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%)(hkl)]$ are: 10.5 (46) (011), 3.245 (100) (001), 5.81 (50) (011), 2.743 (49) (112), 3.994 (67) (012), 3.431 (23) (-112, –1–21, –120), 2.692 (57) (0–32, – 122, –2-12), 2.485 (39) (2–12, –1–32, 0-24).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission, with a micro diamond compression cell.

Source: Kampf et al. (2016d).

Wavenumbers (IR, cm⁻¹): 3560, 3450s, 3341s, 1633, 1167, 1125s, 1086s, 980w, 873w, 836, 784, 690.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1166, 1076, 989s, 839s, 745, 679, 638w, 610w, 487, 412, 396, 299, 270, 222, 166, 153.

S631 Katerinopoulosite $(NH_4)_2Zn(SO_4)_2.6H_2O$

Description: Greenish antholite crust from the association with chalcanthite, nickelboussingaultite, ammoniojarosite, aurichalcite, and goethite. Holotype sample. Monoclinic, space group: $P2₁/a$, $a = 9.230(6)$, $b = 12.476(4)$, $c = 6.249(4)$ Å, $\beta = 106.79(5)$ °, $V = 688.9(9)$ Å³, $Z = 2$. $D_{\text{meas}} = 1.97$ (2) g/cm³, $D_{\text{calc}} = 1.986$ g/cm³. Optically biaxial (+), $\alpha = 1.492(2)$, $\beta = 1.496(2)$, $\gamma = 1.502(2)$, $2V = 80(5)$ °. The empirical formula is $(H_3O)_{0.13}(NH_4)_{1.91}(Zn_{0.86}Ni_{0.10}Cu_{0.02})$ $(SO₄)_{2.00}$.6.62H₂O. The strongest lines of the powder X-ray diffraction pattern [d, Å(I, %) (hkl)] are: 5.400 (37) (011), 4.411 (19) (200), 4.314 (19) (021), 4.229 (24) (12-1), 4.161 (100) (20–1, 210, 111), 3.749 (53) (130), 3.034 (29) (211, 11-2).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers (cm⁻¹): 3565sh, 3475sh, 3278s, 3070sh, 2920sh, 2850, 2215w, 2130w, 2050w, 1685, 1640sh, 1468, 1433, 1144s, 1086s, 981, 835sh, 743, 710sh, 627, 615, 552w, 519w, 500sh, 459w, 368w. Note: The spectrum was obtained by N.V. Chukanov.

S632 Charlesite Ca₆Al₂(SO₄)₂B(OH)₄(OH,O)₁₂⋅26H₂O

Origin: Wessels mine, Hotazel, Kalahari manganese fields, Northern Cape province, South Africa.

Description: Yellow. Intermediate zone of a mixed ettringite-charlesite-sturmanite crystal. The empirical formula is (electron microprobe): $Ca_{6.00}(Al_{0.7}Fe_{0.6}Si_{0.5}Mn_{0.2})(SO_4)_{2.27}(CO_3)_x[B(OH)_4]_{-1}(OH,$ O)₁₂⋅ $nH_2O(x \ll 1)$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3620, 3440s, 3250sh, 1678, 1641sh, 1420, 1112s, 986, 935, 876, 615s, 565sh, 475, 324.

Note: The spectrum was obtained by N.V. Chukanov.

S633 Osakaite Zn₄(SO₄)(OH)₆⋅5H₂O

- **Description**: Obtained by mixing of 1 g ZnO powder with 30 ml 0.5 M solution of ZnSO₄ for 72 h. Characterized by thermal and powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Stanimirova et al. (2016).
- Wavenumbers (cm⁻¹): 1636, 1149s, 1130s, 1074, 1031, 961, 807, 768, 694, 661sh, 606s, 519, 442w.

 $S634$ Stephanite $Ag₅SbS₄$

Origin: Proano mine, Fresnillo, Zacatecas, Mexico.

- **Description:** Black pseudohexagonal crystals. Orthorhombic, $a = 7.8396(7)$, $b = 12.4684(9)$, $c = 8.536(1)$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: RRUFF (2007).

Wavenumbers $(cm⁻¹)$: 343s, 322s, 262, 235.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

S635 Changoite Na₂Zn(SO₄)₂⋅4H₂O

Origin: Synthetic.

Description: Obtained by crystallization from aqueous solution.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Georgiev et al. (2016).

Wavenumbers (IR, cm⁻¹): 1672w, 1620w, 1153s, 1107s, 987, 898sh, 848w, 721, 652sh, 620s, 605s, 460, 430.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1190, 1160w, 1101w, 1067, 989s, 615, 473, 451.

S636 Galeite Na₁₅(SO₄)₅ClF₄

Origin: Synthetic.

- Description: Ce³⁺-doped sample prepared using a wet chemical method. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group $P31m$, $a = 12.19$, $c = 13.95$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Bhake et al. (2016).

Wavenumbers $(cm⁻¹)$: 1132, 1106s, 760w, 624s, 580, 555.

S637 Ktenasite (Cu,Zn)₅(SO₄)₂(OH)₆⋅6H₂O

Origin: Hirao mine, Minoo, Osaka, Japan.

- Description: Aggregates of flattened prismatic crystals from the association with primary sulfides, gypsum, smithsonite, hydrozincite, aurichalcite, schulenbergite, brianyoungite, serpierite, brochantite, etc. Characterized by powder X-ray diffraction data. Monoclinic, $a = 5.590(1)$, $b = 6.161(1), c = 23.741(3)$ Å, $\beta = 95.628(3)^\circ$. $D_{\text{meas}} = 2.93$ g/cm³. The empirical formula is $(Cu_{3.446}Zn_{1.451}Co_{0.080}Pb_{0.018}Ni_{0.007})(SO_4)_{2.003}(OH)_{5.998}S.5.99H_2O.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ohnishi et al. (2002).

- Wavenumbers (cm⁻¹): 3580sh, 3420s, 1630, 1408w, 1118s, 1095s, 983w, 798sh, 710, 615s, 605sh, 480, 420, 387sh, 364w, 340w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S638 Lazaridisite Cd₃(SO₄)₃⋅8H₂O

Origin: Synthetic.

- Description: Crystals grown from aqueous solution by slow evaporation. Monoclinic, space group $C2/c$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Murthy et al. (1992).

Wavenumbers $(cm⁻¹)$: 1103s, 980, 610, 453.

S639 Pyracmonite $(NH_4)_3Fe(SO_4)_3$

Origin: La Fossa crater, Vulcano Island, Lipari, Eolie (Aeolian) islands, Messina province, Sicily, Italy (type locality).

Description: Holotype sample. Trigonal, space group R3c, $a = 15.2171(14)$, $c = 8.9323(8)$ Å, $V = 1791.3(3)$ \AA^3 , $Z = 6$. The empirical formula is $[(NH_{4})_{2.74}K_{0.23}](Fe_{0.94}Al_{0.04})S_{3.02}O_{12}$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%)$ (hkl)] are: 7.596 (100) (110), 3.320 (30) (122), 3.371 (26) (131), 4.358 (23) (12-1), 2.829 (14) (312), 2.863 (8) (321).

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Demartin et al. (2010).

Wavenumbers $(cm⁻¹)$: 3203s, 3064s, 1430s.

S640 Rhodium sulfate $Rh_2(SO_4)$ ₃

Origin: Synthetic.

Description: The crystal structure is solved. Trigonal, space group $R-3$, $a = 8.068(1)$, $c = 22.048(4)$ Å, $V = 1242.8(4)$ Å³ (at 153 K), $Z = 6$.

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Wickleder et al. (2016).

- Wavenumbers (cm⁻¹): 1214w, 1138w, 1152sh, 1104, 1038sh, 1004s, 956s, 738w, 705, 687, 670sh, 630, 602, 592, 575s, 554.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S641 Rhodium sulfate hydrate $Rh_2(SO_4)_3$ ∙2H₂O

Origin: Synthetic.

Description: The crystal structure is solved. Orthorhombic, space group *Pnma*, $a = 9.2046(2)$, $b = 12.4447(3), c = 8.3337(2)$ Å, $V = 954.61(4)$ Å³ (at 153 K), $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Wickleder et al. (2016).

Wavenumbers (cm⁻¹): 3146, 1614w, 1211, 1157, 1108, 1037sh, 1007s, 957s, 737, 704s, 602s, 575s, 555.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S642 Sanderite Fe²⁺ analogue Fe²⁺(SO₄)⋅2H₂O

- Description: Synthesized by the hydro/solvothermal method. The crystal structure is solved. Orthorhombic, space group *Pccn*, $a = 6.3160$, $b = 7.7550$, $c = 8.9880$ Å, $V = 440.2$ Å³, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Zhao et al. (2015).

- Wavenumbers $(cm⁻¹)$: 3328s, 3273s, 3190, 2132w, 2081w, 1640, 1578s, 1498w, 1292sh, 1108s, 630s, 592s, 553, 514s, 477, 448.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S643 Schairerite $Na₂₁(SO₄)₇ClF₆$

Origin: Synthetic.

- Description: Ce-doped sample synthesized by a wet method. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Shinde and Dhoble (2015), Shinde et al. (2015).

- Wavenumbers (cm⁻¹): 3183, 3026, 1405, 1313s, 1125sh, 1090s, 1064, 833, 820sh, 755, 710, 667w, 622s, 557, 517.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands in the range from 2800 to 3200 cm^{-1} indicate the presence of covalent O–H-bonds. The band at 833 cm⁻¹ may correspond to Na \cdots O–H bending vibrations. The band at 1313 cm^{-1} may be due to an impurity.

S644 Zincobotryogen $\text{ZnFe}^{3+}(\text{SO}_4)_2(\text{OH})$.7H₂O

Origin: Xitieshan Pb-Zn deposit, Qinghai, China (type locality).

Description: Orange-red prismatic crystals from the association with jarosite, copiapite, zincocopiapite, and quartz. Holotype sample. The crystal structure is solved. Monoclinic, space group P12₁/n1, $a = 10.504(2)$, $b = 17.801(4)$, $c = 7.1263(14)$ Å, $\beta = 100.08(3)$ °, $V = 1311.9$ (5) \AA^3 , Z = 4. $D_{\text{meas}} = 2.20(1)$ g/cm³, $D_{\text{calc}} = 2.266$ g/cm³. Optically biaxial (+), $\alpha = 1.542(5)$, $\beta = 1.551(5)$, $\gamma = 1.587(5)$. The empirical formula is (electron microprobe): (Zn_{0.73}Mg_{0.16}Mn_{0.08}) $Fe_{0.99}(SO_4)_{2.04}(OH)_{0.82}$ ⁻⁷H₂O. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 8.92 (100) (110), 6.32 (77) (-101), 5.56 (23) (021), 4.08 (22) (-221), 3.21 (31) (231), 3.03 (34) (032), 2.77 (22) (042).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Yang et al. (2016b).

- Wavenumbers (cm⁻¹): 3550s, 3420s, 1635, 1213s, 1147s, 1090s, 1032s, 1022sh, 732, 668, 618s, 553, 499, 352w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

S645 Jurbanite $\text{Al(SO}_4)(\text{OH}) \cdot 5\text{H}_2\text{O}$

Origin: Le Cetine di Cotorniano mine, Chiusdino, Siena province, Tuscany, Italy.

Description: White aggregate. Investigated by A.V. Kasatkin. Characterized by powder X-ray diffraction data and electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3432s, 3252s, 3104s, 3025sh, 2519, 2061w, 1685, 1114s, 1057s, 987, 949w, 891, 885sh, 709, 605s, 560sh, 447w, 381.

Note: The spectrum was obtained by N.V. Chukanov.

S646 Beaverite-(Zn) Pb(Fe³⁺₂Zn)(SO₄)₂(OH)₆

Origin: San Francisco mine, Sierra Gorda, Chile.

- Description: Brown crystalline crusts from the association with atacamite and paratacamite. Characterized by powder X-ray diffraction data and qualitative electron microprobe analyses.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3350sh, 3296s, 2032w, 1947w, 1888w, 1130sh, 1111s, 1067s, 1015, 995s, 965sh, 697w, 655w, 625, 500, 468, 440sh, 346w.

Note: The spectrum was obtained by N.V. Chukanov.

S647 Jouravskite $Ca₃Mn⁴⁺(SO₄)(CO₃)(OH)₆·12H₂O$

Origin: N'Chwaning 3 mine, Kuruman, Kalahari manganese field, Northern Cape province, South Africa.

Description: Yellow crystals. A boron-bearing variety. The empirical formula is (electron microprobe): $Ca_{3.0}(Mn_{0.95}Fe_{0.04})(SO_4)_{1.00}[CO_3, B(OH)_4](OH, O)_6\cdot nH_2O$. The content of B_2O_3 determined by ICP-OES is 0.39 wt%.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3485sh, 3421s, 3385sh, 3245sh, 3085sh, 2880sh, 2455w, 2257w, 1696, 1645, 1392s, 1104s, 1004w, 962, 887, 719, 639, 600sh, 578s, 550sh, 485sh, 460sh, 374.

Note: The spectrum was obtained by N.V. Chukanov.

S648 Zincovoltaite $K_2 Zn_5 Fe^{3+}{}_{3}Al(SO_4)_{12}.18H_2O$

Origin: Muzhievskoe deposit, Transcarpathian Region, Ukraine.

Description: Black crystals from the association with zincocopiapite, bianchite, and boyleite. A NH4 bearing variety. Investigated by A.V. Kasatkin. Characterized by single-crystal X-ray diffraction data and electron microprobe analyses. Cubic, $a = 27.2450(14)$ Å. The empirical formula is $K_{1.57}(NH_4)_x(Zn_{3.54}Mg_{0.49}Cu_{0.44}Fe^{2+}_{0.36}Mn_{0.08})Fe^{3+}_{2.82}Al_{1.30}S_{11.97}O_{48}.18H_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3520sh, 3406 (broad), 3134 (broad), 2493w, 1677, 1635, 1429w, 1134s, 1121s, 1051s, 1003, 890sh, 718w, 655sh, 626, 593, 468w, 441w.

Note: The spectrum was obtained by N.V. Chukanov. The band at 1429 cm^{-1} corresponds to NH_4^+ cations.
S649 Ammoniozippeite $(NH_4)_2[(UO_2)_2(SO_4)O_2]\cdot H_2O$

- Origin: Blue Lizard Mine, Red Canyon, White Canyon District, San Juan Co., Utah, USA (cotype locality).
- Description: Yellow acicular crystals. Investigated by A.V. Kasatkin. Characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula is: $(NH_4)_x[(UO_2)_{2.06}(SO_4)_{0.94}O_2]$ nH₂O. The observed lines of the powder X-ray diffraction pattern (d, Å) are: 8.42, 8.10s, 5.46w, 4.24, 3.65, 3.48s, 3.12s, 2.85, 2.65w, 2.37w, 2.20w, 2.11w, 2.04w, 1.96w, 1.87w, 1.74w, 1.70w.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3592, 3526, 3397, 3217s, 1635, 1551w, 1402, 1162s, 1145s, 1100s, 1081s, 901, 825w, 801w, 668, 625, 605w, 583, 462, 440sh, 380.

Note: The spectrum was obtained by N.V. Chukanov. The bands at 1402 cm^{-1} correspond to NH₄⁺.

S650 Motukoreaite-related mineral $[(Mg,Al)_9(OH)_{18}][Na_x(SO_4,CO_3)_2(H_2O)_{12}]$ (?)

Origin: Verkhnekamskoe salt deposit, western Urals, Russia.

Description: Colorless grains from the association with halite. Investigated by I.V. Pekov. Characterized by X-ray diffraction.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3520sh, 3449s, 3412s, 3320sh, 2104w, 1918w, 1662, 1565sh, 1363, 1162, 1110s, 1010w, 972, 830sh, 784, 670, 620, 548, 444s, 387s.

Note: The spectrum was obtained by N.V. Chukanov.

SC18 Leadhillite $Pb_4(SO_4)(CO_3)_2(OH)_2$

Origin: Leadhills, South Lanarkshire, Strathclyde, Scotland, UK (type locality).

- Description: Characterized by chemical analyses and powder X-ray diffraction data. The chemical composition is very close to that calculated from the ideal formula.
- Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Russell et al. (1983).

- Wavenumbers (cm⁻¹): 3475, 3360sh, 2890w, 2805w, 2425w, 2368w, 1751sh, 1738w, 1399s, 1170sh, 1140sh, 1085s, 1055s, 1049s, 1043sh, 962, 857, 838, 705, 679s, 626, 602, 419, 392, 370, 342w, 304w, 215.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

SC19 Leadhillite $Pb_4(SO_4)(CO_3)_2(OH)_2$

Origin: Leadhills, South Lanarkshire, Strathclyde, Scotland, UK (type locality).

Description: Monoclinic, space group $P2_1/a$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Moenke (1962). The spectrum was reproduced by Russell et al. (1983).

- Wavenumbers (cm⁻¹): 3508, 3392sh, 1638w, 1618w, 1430sh, 1410, 1193, 1115s, 1082s, 995, 852sh, 841, 705sh, 682, 623s, 602, 435.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

SP25 Arangasite Al₂(SO₄)(PO₄)F⋅9H₂O

Origin: Alyaskitovoye Sn-W deposit, Ust'-Nera, Indigirka River Basin, Sakha Republic (Yakutia), Russia (type locality).

Description: White granular aggregate. Investigated by I.V. Pekov. The empirical formula is (electron microprobe): $\text{Al}_{2.09}(\text{SO}_4)_{1.00}(\text{PO}_4)_{0.89}(\text{AsO}_4)_{0.105}(\text{SiO}_4)_{0.005}$ F_{1.41}.nH₂O. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %)] are: 10.68 (55), 9.66 (100), 5.33 (26), 4.21 (41), 3.491 (22), 3.145 (22).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3550sh, 3400sh, 3143s (broad), 2511, 2068w, 1669, 1630sh, 1098s, 1060sh, 990sh, 901, 835sh, 806, 655, 605s, 491, 396.

Note: The spectrum was obtained by N.V. Chukanov.

SP26 Ardealite Ca₂(PO₃OH)(SO₄)∙4H₂O

Origin: Cerro Mejillones, Mejillones Peninsula, Mejillones, Antofagasta, II Region, Chile.

Description: White soft fine-granular aggregate. Investigated by I.V. Pekov. Characterized by qualitative electron microprobe analyses. Confirmed by the IR spectrum.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3415sh, 3355s, 3265sh, 3030sh, 2265w, 2092w, 1673, 1155sh, 1139s, 1101s, 999s, 861, 765, 671, 593, 522s, 460sh, 425sh.

Note: The spectrum was obtained by N.V. Chukanov.

STe1 Ammonium sulfate tellurate $(NH_4)_2(SO_4)$. Te(OH)₆

Origin: Synthetic.

Description: As-doped sample produced from an aqueous stoichiometric solution of telluric acid, ammonium sulfate, ammonium carbonate, and arsenic acid. The empirical formula $(NH_4)_2(SO_4)_{0.92}H(AsO_4)_{0.08}Te(OH)_6$ given in the original paper isn't charge-balanced. The correct formula should be $(NH_4)_2[(SO_4)_{0.92}(HASO_4)_{0.08}]$. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 11.382(5)$, $b = 6.615(5)$, $c = 13.707(5)$ Å, $\beta = 106.731(5)$ °, $V = 988.3(9) \text{ Å}^3, Z = 4. D_{\text{calc}} = 2.41 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ghorbel et al. (2015) .

Wavenumbers (IR, cm⁻¹): 3122s, 3017sh, 2407, 2241, 2041w, 1426sh, 1401s, 1227, 1156sh, 1079s, 1070s, 983sh, 708sh, 669s, 622, 599, 585, 441w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3156, 1687, 1428, 1175, 1086, 977, 652, 622, 600, 475, 443, 363, 339, 323, 135, 96.

2.10 Chlorides and Hydroxychlorides

Cl71 Schwartzembergite $Pb_5H_2(IO_2)O_4Cl_3$

Origin: San Francisco (Beatrix) mine, Caracoles, Sierra Gorda district, Antofagasta Region, Chile. Description: Orange lenticular crystals from the association with paralaurionite. Investigated by

I.V. Pekov. Characterized by powder X-ray diffraction data and electron microprobe analyses. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 1120sh, 800sh, 665, 575sh, 555, 395sh.

Note: The spectrum was obtained by N.V. Chukanov. No bands corresponding to covalent O–H bonds are observed. The shoulder at 1120 cm⁻¹ may correspond to the essentially ionic bond $Cl^{-} \cdots H^{+}$.

Cl72 Cesium copper chloride $CsCuCl₃$

- Description: Crystallized by slow evaporation from hot concentrated aqueous solutions of CsCl and CuCl₂ in a 1:1 mole ratio. Hexagonal, space group $P6_122$, $a = 7.2157$, $c = 18.1777$ Å, $Z = 6$.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull between polyethylene plates. Transmission.

Source: McPherson and Chang (1973).

Wavenumbers $(cm⁻¹)$: 288s, 260s, 188sh, 180sh, 172, 158, 145, 111sh, 95, 80, 72, 50w.

Note: In the cited paper, IR spectra of other compounds $CSMCl₃$ ($M = Mg$, V, Cr, Mn, Fe, Co, Ni) are given.

Cl73 Cesium magnesium chloride $CsMgCl₃$

Origin: Synthetic.

Description: Prepared by fusing equimolar mixture of CsCl and $MgCl₂$ in evacuated quartz ampoule. Hexagonal, $a = 7.269$, $c = 6.187 \text{ Å}, Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull between polyethylene plates. Transmission.

Source: McPherson and Chang (1973).

Wavenumbers $(cm⁻¹)$: 317s, 250s, 174, 82, 49.

Note: In the cited paper, IR spectra of other compounds $CsMCl₃$ ($M = Cu, V, Cr, Mn, Fe, Co, Ni$) are given.

Cl74 Cesium sodium stibiochloride $Cs_2NaSbCl_6$

Origin: Synthetic.

Description: Prepared by heating a mixture of stoichiometric quantities of SbCl₃, CsCl, and NaCl at 800 °C. Characterized by powder X-ray diffraction data. Cubic, $a = 10.770$.

Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc. Absorption.

Source: Smit et al. (1990).

Wavenumbers (IR, cm^{-1}) : 192.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 314, 284, 228, 117, 68, 47, 34.

Cl75 Cesium antimony chloride $Cs_3Sb_2Cl_9$

- **Description:** Trigonal α -modification prepared by evaporating to dryness a hot aqueous HCI solution containing appropriate cations.
- Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc. Transmission.

Source: Smit et al. (1990).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 292, 266s, 232, 170s.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 305s, 257s, 127, 102, 88, 55, 48, 42.

Cl76 Calcium hydroxychloride Ca(OH)Cl

Origin: Synthetic.

Description: Prepared by heating stoichiometric amounts of anhydrous CaCl₂ and Ca(OH)₂ in a carbon glass crucible at 610 K for 3 weeks. Hexagonal, space group $P6_3mc$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc and Nujol mull. Transmission.

Source: Lutz et al. (1993).

Wavenumbers $(cm⁻¹)$: 3573, 680s, 659sh, 369sh, 346s.

Cl77 Copper oxychloride hydrate Cu₂OCl₂∙2H₂O.

Origin: Synthetic.

- Description: Precipitate prepared by mixing equal volumes of aqueous solutions of 0.1 M CuCl₂.2H₂O and 0.5 M of urea. The mixture was heated to ~75 °C for 4–6 h. Characterized by the elemental analysis.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: El-Metwally and Al Thani (1989).

Wavenumbers (cm⁻¹): 3440s, 3347s, 3298s, 1620, 970, 925, 855s, 815s, 572, 505, 440s, 395sh, 375, 305.

Cl78 Magnesium oxychloride hydrate Mg₃Cl₂(OH)₄⋅4H₂O Mg₃Cl₂(OH)₄⋅4H₂O

- **Description:** Monoclinic, space group $C2/m$, $a = 15.1263(3)$, $b = 3.1707(1)$, $c = 10.5236(2)$ Å, $\beta = 101.546(2)$. The crystal structure contains strongly distorted MgO₆ octahedra.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bette et al. (2014).

- Wavenumbers (cm⁻¹): 3671, 3654, 3644, 3568s, 3430s, 3330s, 3196, 3080sh, 1160w, 952sh, 896w, 807, 763, 658s, 587, 561s, 513, 466sh, 444sh, 432.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Cl79 Nickel oxychloride hydrate Ni₃Cl_{2.1}(OH)_{3.9}⋅4H₂O Ni₃Cl_{2.1}(OH)_{3.9}⋅4H₂O

Origin: Synthetic.

- **Description:** Obtained in the reaction between NaOH and nickel chloride solution at 40 °C for 3 months. Characterized by powder X-ray diffraction data and chemical analyses. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 14.9575(4)$, $b = 3.1413(1)$, $c = 10.4818$ (5) Å, $\beta = 101.482(1)^\circ$, $V = 482.49(3)$ Å³, $Z = 2$. $D_{\text{calc}} = 2.67$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bette et al. (2014).

- Wavenumbers (cm⁻¹): 3622, 3611, 3582s, 3515s, 3419s, 3280s, 3185s, 3065sh, 1116w, 1041sh, 921w, 815sh, 776, 727, 684, 607s, 454, 410.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Cl80 Potassium mercury chloride hydrate K2HgCl4∙H2O

Origin: Synthetic.

Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group Pbam, $a = 5.258, b = 11.662, c = 8.925 \text{ Å}, Z = 4.$

Kind of sample preparation and/or method of registration of the spectrum: KCl disc. Transmission.

Source: Falk and Knop (1977).

Wavenumbers (cm^{-1}) : 3505, 3404s, 3191w, 1610s, 1108, 865sh, 560, 436.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Cl81 Yttrium hydroxychloride hydrate Y₂(OH)₅Cl∙1.5H₂O

- **Description:** Prepared hydrothermally from YCl₃ in the presence of NaOH and NaCl at 150 °C for 12 h. Characterized by powder X-ray diffraction data. Orthorhombic. Space group $Pca2_1$ (?).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Poudret et al. (2008).

Wavenumbers $(cm⁻¹)$: 3652s, 3570s, 3539s, 3380s, 3327s, 2433, 2177, 1644.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Cl82 Zinc hydroxychloride Zn(OH)Cl

Origin: Synthetic.

- **Description:** Prepared by heating of an aqueous solution of $ZnCl₂$ at 80 °C, in the presence of ZnO. Orthorhombic, space group Pcab, $a \approx 5.86$, $b \approx 6.58$, $c \approx 11.33$ Å, $Z = 8$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Transmission.
- Source: Lutz et al. (1993).

Wavenumbers (IR, cm⁻¹): 3476s, 853s, 798s, 761s, 439, 407, 340, 246.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3456s, 850w, 837w, 789w, 756w, 455w, 386, 349w, 293w, 216, 188s, 171, 114, 87, 57.

- **Description**: Synthesized from CuCl₂.2H₂O, CaCl₂, LiCl H₂O, and LiOH H₂O through a solid-state reaction method. Characterized by electron microprobe analyses. The crystal structure is solved. Trigonal, space group P-3m1, $a = 6.6475(9)$, $c = 5.7600(12)$ Å, $V = 220.43(8)$ Å³, $Z = 1$. $D_{\text{calc}} = 3.108 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Sun et al. (2015).

- Wavenumbers (cm⁻¹): 3505s, 3447s, 3402s, (2925), (2855), 1623, 964, 916, 848sh, 703s, 685sh, 621sh, 490sh, 452s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance.

Cl84 Comancheite $Hg^{2+}{}_{55}N^{3-}{}_{24}(Cl,Br)_{34}(OH,NH_2)_4$

Origin: Mariposa mine, Terlingua district, Brewster Co., Texas, USA (type locality).

- Description: Orange aggregate on calcite. Specimen No. 26686 from the collections of the Natural History Museum of Los Angeles Co. Characterized by electron microprobe analyses. The crystal structure is solved. Orthorhombic, space group *Pnnm*, $a = 18.414(5)$, $b = 21.328(6)$, $c = 6.6976$ (19) Å, $V = 2630(2)$ Å³, $Z = 1$. $D_{\text{calc}} = 8.25$ g/cm³. The crystal-chemical formula is $Hg_{55}(Cl_{24.5}Br_{9.5})N_{24}(OH, O, NH_2)_4$. The N^{3-} anion shows a strong preference for tetrahedral coordination by Hg^{2+} , which results in a strongly bonded three-dimensional Hg-N framework.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission of a single crystal.

Source: Cooper et al. (2013a).

Wavenumbers $(cm⁻¹)$: 3475s, 3426, 3288, 1610.

Note: N was not determined chemically. Despite $NH₂$ group is considered as a subordinate component, the intensity of the band of H–N–H bending vibrations at 1610 cm^{-1} is rather high. This band could be assigned to H–O–H bending vibrations. In the cited paper, Raman spectrum is given.

Cl85 Hydrocalumite $Ca₂Al(OH)₆(Cl,CO₃,OH)_{1-x}·2H₂O$

Origin: Synthetic.

- **Description:** Obtained by adding tricalcium aluminate to an aqueous solution of $CaCl₂$ and keeping the mixture at 320 K for 3 days. Characterized by powder X-ray diffraction data, as well as chemical, TG, and DSC analyses. The formula of the sample obtained is $Ca₂Al$ $(OH)_6Cl_{0.90}(CO_3)_{0.05}.2H_2O.$
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Grishchenko et al. (2013).

Wavenumbers $(cm⁻¹)$: 3639s, 3484s, 1620, 1390w, 1356w, 787, 575s, 532s, 424s.

Cl86 Laurionite Ba-analogue Ba(OH)Cl

Origin: Synthetic.

Description: Characterized by powder X-ray diffraction data and thermoanalytical methods. Isostructural with laurionite.

Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc, and Nujol or poly(chlortrifluorethen) mull. Transmission.

Source: Lutz et al. (1995).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 3566, 695s, 550, 505sh, 309s, 250s.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3594s, 480s, 265s, 249, 195, 142, 130sh, 93w, 78, 64.

Cl87 Simonkolleite Zn₅(OH)₈Cl₂⋅H₂O

- **Description**: Prepared by precipitation method at about 80–90 °C. Characterized by DTA and powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stoilova and Vassileva (2002).

- Wavenumbers (cm⁻¹): 3583, 3566, 3491s, 3457s, 3440sh, 904, 886sh, 821w, 721s, 627, 571, 558sh, 533, 513w, 467, 437.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Cl88 Simonkolleite Zn₅(OH)₈Cl₂⋅H₂O

Origin: Synthetic.

- **Description**: Micro-platelets prepared hydrothermally from $Zn(NO₃)₂·6H₂O$ and NaCl in the presence of hexamethylenetetramine, at 85 \degree C. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection.

Source: Sithole et al. (2012).

- Wavenumbers (cm⁻¹): 3495sh, 3455sh, 3441, 1607w, 1202w, 1040w, 906, 717s, 569, 532, 468s, 427sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Cl89 Terlinguacreekite $Hg_3O_2Cl_2$

Origin: McDermitt mine, Opalite district, Humboldt Co., Nevada, USA.

Description: Orange powdery from the association with quartz and kleinite. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $Hg_{3,00}O_{2,2}Cl_{1,6}$. The observed lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%)]$ are: 12.8 (2), 6.42 (8), 5.41 (5), 5.27 (6), 4.64 (3), 4.26 (16), 4.06 (6), 3.75 (5), 3.45 (10), 3.34 (63), 3.25 (14), 3.21 (100), 3.02 (12), 2.97 (10).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 647, 561w.

Note: The spectrum was obtained by N.V. Chukanov.

Cl90 Cumengeite $Pb_{21}Cu_{20}Cl_{42}(OH)_{40}·6H_2O$

Origin: Boleo district, Santa Rosalía, Baja California, Mexico (type locality).

Description: Blue crystals.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3553, 3506w, 3464, 3405s, 3445s, 3322s, 1948w, 1616w, 1028w, 982, 898s, 831w, 782, 690s, 609w, 527, 499, 479, 461s, 448s, (372).

Note: The spectrum was obtained by N.V. Chukanov.

Cl91 Fiedlerite-1A $Pb_3Cl_4F(OH)·H_2O$

Origin: Pacha Limani (Passa Limani), Lavrion mining district, Attiki Prefecture, Greece.

Description: Colorless platy crystals from the association with phosgenite in ancient metallurgical slag. The crystal structure is solved. Triclinic, space group P-1, $a = 8.5741(7)$, $b = 8.0480(5)$, $c = 7.2695(4)$ Å, $\alpha = 90.087(5)$, $\beta = 102.126(6)$, $\gamma = 103.424(6)$ °, $V = 476.37(6)$ Å³, $Z = 2$. The empirical formula is (electron microprobe): $Pb_{3.00}Cl_{3.98}F_{0.96}(OH)_{1.06}H_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3545w, 3515s, 3482, 1592, 700sh, 673s, 654, 592, 447. Note: The spectrum was obtained by N.V. Chukanov.

Cl92 Kuliginite $Fe₃Mg(OH)₆Cl₂$

Origin: Udachnaya kimberlite pipe, Yakutia, Russia (type locality).

Description: Green crystals from the association with iowaite, gypsum, calcite, halite, baryte, celestine, etc. Holotype sample. The crystal structure is solved. Trigonal, space group $R-3$, $a = 6.9512(1), c = 14.5713(3)$ Å, $V = 609.74(2)$ Å³, $Z = 3$. $D_{\text{meas}} = 3.1(1)$ g/cm³, $D_{\text{calc}} = 3.01 \text{ g/cm}^3$. Optically biaxial (+), $\alpha = 1.709(3)$, $\beta = 1.709(3)$, $\gamma = 1.718$, $2V = 10(5)^\circ$. The empirical formula is $(F_{2,99}M_{0,01})(M_{80,90}M_{0,10})(OH_{5,94}F_{0,03}Cl_{0,03})Cl_2$. The strongest lines of the powder X-ray diffraction pattern $[d, \mathring{A}(I, \mathcal{U})(hk)]$ are: 5.569 (54) (01–1), 2.949 (16) (021), 2.831 (35) (113), 2.324 (100) (024), 2.098 (18) (02-5), 1.856 (13) (033), 1.739 (36) (220).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3567s, 3548s, 1620w, 1550 (broad), 1450sh, 1278w, 1018w, 801s, 760sh, 675sh, 663s, 464, 402s.

Note: The spectrum was obtained by N.V. Chukanov.

Cl93 Magnesium hydroxychlorite atacamite-type $Mg_2(OH)_3Cl$

Description: Prepared hydrothermally. Characterized by thermal and powder X-ray diffraction data. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bette et al. (2015).

Wavenumbers (IR, cm⁻¹): 812s, 780sh, 768, 718, 688s, 674s, 650s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 804, 786, 750s, 712, 635.

Cl94 Nickel hydroxychlorite atacamite-type $Ni₂(OH)₃Cl$

Origin: Synthetic.

Description: Prepared hydrothermally. Characterized by thermal and powder X-ray diffraction data. Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bette et al. (2015).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 825s, 801, 727s, 693, 672.

Note: The band positions denoted by Bette et al. (2015) as 627 cm^{-1} were determined by us at 672 cm^{-1} . In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 823, 799, 757s, 694, 675, 624.

Cl95 Hydrohalite NaCl∙2H₂O

Origin: Synthetic.

Description: A film obtained by slow condensation of H_2O vapor is on a cold NaCl plate with subsequent heating up to -20 °C.

Kind of sample preparation and/or method of registration of the spectrum: Transmission of a thin film.

Source: Schiffer and Hornig (1961).

Wavenumbers (cm⁻¹): 3540, 3472s, 3405s, 3266w, 3242w, 1615s, 1645s, 1315, 1241, 1122, 1009w, 989w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

> Transmittance 200 300 400 500 Wavenumber $(cm⁻¹)$

Cl96 Sanguite KCuCl₃

Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc. Absorption.

Source: Stepakova et al. (2008).

Wavenumbers (IR, cm^{-1}) : 284s, 208, 205sh, 129w, 94w [indicated by Stepakova et al. (2008)]; 298s, 280s, 201s, 164w (determined by us based on spectral curve analysis of the published spectrum).

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 274s, 236sh, 146w, 130w, 97w [indicated by Stepakova et al. (2008)]; 310sh, 274s, 205w (determined by us based on spectral curve analysis of the published spectrum).

Cl97 Tolbachite $CuCl₂$

Origin: Synthetic.

Description: Obtained by heating copper chloride hydrate to 150 $^{\circ}$ C.

Kind of sample preparation and/or method of registration of the spectrum: Polyethylene disc. Absorption.

Source: Stepakova et al. (2008).

Wavenumbers (IR, cm^{-1}) : 284s, 189s, 100w, 92w [indicated by Stepakova et al. (2008)]; 300s, 281, 244, 233sh, 177s (determined by us based on spectral curve analysis of the published spectrum).

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 287s, 276sh, 166s, 119w, 107w [indicated by Stepakova et al. (2008)]; 287s, 276sh (?), 171s (determined by us based on spectral curve analysis of the published spectrum).

Cl98 Telluroperite $Pb(Te_{0.5}Pb_{0.5})O_2Cl$

Origin: Synthetic.

- **Description:** Crystals grown by heating a mixture of $Pb_3O_2Cl_2$ and TeO₂ at 550 °C for 1 day. The crystal structure is solved. Orthorhombic, space group *Bmmb*, $a = 5.576(1)$, $b = 5.559(1)$, $c = 12.4929(6)$ Å, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Porter and Halasyamani (2003). Wavenumbers $(cm⁻¹)$: 661, 628, 509, 439.

2.11 Vanadates and Vanadium Oxides

V116 Schäferite $(NaCa₂)Mg₂(VO₄)₃$

Origin: Slag dump near the Kamariza mine, Lavrion, mining district, Attikí (Attika, Attica) Prefecture, Greece.

Description: Brown crystals from the association with minerals of the forsterite–liebenbergite series, trevorite, albite, nosean, haüyne, bannermanite, a Ni-Mg-analogue of lyonsite, etc. The crystal structure is solved. Cubic, space group *Ia3d*, $a = 12.388(3)$ Å, $V = 1901.1(14)$ Å³, $Z = 8$. The crystal-chemical formula is $(Na_{1.5}Ca_{1.5})(Mg_{1.1}Fe_{0.5}Ni_{0.4})(V_{2.8}P_{0.2})(O,OH)_{12}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3580w, 3350w, 1152w, 1049w, 1000w, 977w, 846s, 803s, 735sh, 570sh, 451w, 383s.

Note: The spectrum was obtained by N.V. Chukanov.

- Description: Synthesized in the reaction between decavanadic acid and basic aluminium acetate. Confirmeded by chemical analysis, TG, and powder X-ray diffraction data. Orthorhombic, space group Acmm, $a = 10.618(5)$, $b = 18.296(8)$, $c = 21.560(10)$ Å, $Z = 2$. $D_{\text{meas}} = 2.35$ g/cm³, $D_{\text{calc}} = 2.23$ g/cm³. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 10.83 (52) (002), 10.62 (100) (100), 6.94 (52) (120), 5.81 (42) (122), 2.914 (35) (244).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Rigotti et al. (1983).

Wavenumbers (cm⁻¹): 3440, 2930, 1630, 973s, 958sh, 831s, 715s, 590s, 540s, 462sh, 450, 418sh, 409, 398, 385sh, 373w, 351, 320w, 301w.

V118 Ammonium uranyl vanadate hydrate (NH₄)(UO₂)(VO₄)⋅2.5H₂O

- **Description:** Synthesized from $(NH_4)(VO_3)$ and $(UO_2)(NO_3)$ ₂ with subsequent heating of the precipitate at 60 °C for 3 h. Orthorhombic, $a = 13.29(1)$, $b = 16.21(2)$, $c = 12.05(1)$ Å. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %)] are: 6.78 (90), 4.23 (40), 3.51 (40), 3.15 (100), 2.15 (20).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto and Baran (1976).

Wavenumbers (IR, cm⁻¹): 973, 885, 850, 805w, 735, 625s, 575s, 470s, 403, 360sh, 348, 310, 280. Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 975, 822, 738, 645, 580, 540, 482, 410, 375, 360sh, 255, 230.

V119 Ammonium vanadyl compound (NH₄)_{0.5}V₂O₅⋅nH₂O (NH₄)_{0.5}V₂O₅⋅nH₂O

Origin: Synthetic.

- Description: Synthesized using a surfactant-free hydrothermal method. Characterized by powder X-ray diffraction, TG, and EDX spectroscopy.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chandrappa et al. (2011) .

Wavenumbers $(cm⁻¹)$: 3495, 3180, 1628, 1400, 996, 981, 965, 841, 736, 539s. Note: The formula is questionable and is to be checked.

V120 Barium lanthanum thorium orthovanadate BaLaTh(VO₄)₃

Origin: Synthetic.

- **Description:** Obtained by treating stoichiometric mixture of corresponding metal nitrates with ammonium metavanadate in aqueous medium for 1 h followed by evaporation and calcination. Isostructural with monazite. Monoclinic, $a = 7.070(5)$, $b = 7.323(8)$, $c = 6.810(6)$ Å, $\beta = 104.96(7)$ °, $V = 340.8 \text{ Å}^3$. $D_{\text{meas}} = 5.52 \text{ g/cm}^3$, $D_{\text{calc}} = 5.54 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample. KBr disc. Transmission.

Source: Nabar and Mhatre (2001).

Wavenumbers (cm⁻¹): 839sh, 810s, 780sh, 770sh, 750sh, 735sh, 478sh, 421, 412sh, 382w, 372sh, 350sh.

V121 Barium vanadyl vanadate $Ba_2(VO)(V_2O_8)$

Origin: Synthetic.

- **Description**: Prepared by the solid-state reaction of an intimate 4:1:1 mixture of $Ba_2V_2O_7$, V_2O_3 , and V_2O_5 at 950 °C. Monoclinic, space group P_1 , $Z = 2$. The crystal structure is built up of infinite chains of strongly distorted edge-sharing $V^{IV}O_6$ octahedra, connected with $V^{V}O_4$ tetrahedra.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Baran (1997).

- Wavenumbers (IR, cm^{-1}) : 945, 903sh, 891s, 864s, 835s, (800sh), 766s, 698s, 578sh, 482, 436, 411, 399, 378, 345sh, 293, 271w, 255, 235, 214, 172s, 129s, 116, 98s, 81sh, 57w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 902s, 872, 860sh, 830w, 802s, 762w, 737w, 696w, 676sh, 563w, 499w, 453w, 435sh, 397sh, 371, 345, 294, 268, 243, 212w, 163, 121, 85s.

V122 Bismuth(III) magnesium oxovanadate BiMg(VO₄)O BiMg(VO₄)O

Origin: Synthetic.

- **Description**: Prepared by solid-state reaction from a stoichiometric mixture of $Bi₂O₃$, MgO, and $NH₄VO₃$ gradually heated at 200, 500, and finally 850 °C for 18 h with intermediate grindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 7.542(6)$, $b = 11.615(5)$, $c = 5.305(3)$ Å, $\beta = 107.38(5)$ °, $V = 443.5(5)$ Å³, $Z = 4$. $D_{\text{calc}} = 5.455 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.
- Source: Benmokhtar et al. (2004).
- Wavenumbers (IR, cm⁻¹): 1040w, 1019w, 978w, 864s, 837s, 819s, 768s, 581, 523, 507, 442, 423, 384, 359, 311, 285, 219, 188.
- Note: Weak bands in the range from 900 to 1100 cm^{-1} may correspond to the admixture of PO₄^{3–} groups. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 852s, 805s, 748sh, 570, 389w, 340, 303, 250w, 179, 133, 108.

- **Description**: Synthesized by heating a mixture of Bi_2O_3 , MgO, and NH_4VO_3 in the molar ratio Bi:Mg: $V = 2:2:1$ first at 700 °C for 12 h, then at 800 °C for 6 h, and finally at 1000 °C for 5 min. The product was structurally characterized from single crystal X-ray diffraction data. Orthorhombic, space group Cmcm, $a = 7.9136(6)$, $b = 12.246(2)$, $c = 5.444(2)$ Å, $V = 527.6(2)$ Å³, $Z = 4$. $D_{\text{calc}} = 5.093 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Huang and Sleight (1992).

Wavenumbers $(cm⁻¹)$: 932s, 895s, 853s, 749s, 579w, 505, 440s.

V124 Calcium orthovanadate trigonal polymorph $Ca_3(VO_4)_2$

- **Description:** Prepared in a solid-state reaction, from the mixture of CaCO₃ and As₂O₅ at 700 °C for 4 h. Trigonal, space group $R3c$, $Z = 7$.
- Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Baran (1976).

Wavenumbers (IR, cm⁻¹): 872, 910sh, 841sh, 810, 760sh, 424, 369, 325sh, 297s, 278sh, 236, 190sh. Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 930, 912w, 865s, 850s, 825, 790sh, 770, 410w, 360s, 337s, 285, 225, 195, 163sh, 150.

V125 Chromium iron(III) orthovanadate $CrFe(VO₄)₂$

Origin: Synthetic.

Description: Prepared by a solid-state reaction. Characterized by powder X-ray diffraction data. Monoclinic, space group $C2/m$. Isostructural with α -MnMoO₄.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lavat et al. (1989).

Wavenumbers (cm⁻¹): 956s, 924s, 865, 830, 720s, 650, 642sh, 518s, 400sh, 388, 350w, 320w.

V126 Chromium vanadate $Cr_2V_4O_{13}$ $Cr_2V_4O_{13}$

Origin: Synthetic.

- **Description:** Monoclinic, with a P-cell, $a = 8.2663(17)$, $b = 9.3033(26)$, $c = 7.5373(16)$ Å, $\beta = 109.638(37)$ °, $V = 545.932 \text{ Å}^3$. Confirmed by chemical analyses. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 7.0928 (100) (001), 3.8938 (60) (200), 3.7026 (30) (-211), 3.5920 (50) (210), 3.3151 (75) (012), 2.8210 (30) (022).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Filipek et al. (1998).

- Wavenumbers (cm⁻¹): 980s, 960s, 950s, 920s, 885s, 812sh, 800, 770, 730s, 705, 650, 596w, 580w, 567sh, 540, 525, 508sh, 475w, 445, 425, 390w, 375, 350, 335, 313w, 303w, 291w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, the wavenumber 650 cm⁻¹ is erroneously indicated as 605 cm⁻¹.

V127 Copper divanadate hydroxide hydrate Cu₃(V₂O₇)(OH)₂⋅nH₂O

- **Description:** Nanoparticles obtained by heating (at $140\degree$ C for 24 h) of a precipitate formed in the reaction between V_2O_5 and $CuSO_4.7H_2O$ in the presence of hexamethylenetetramine, Na₂SO₄, and H₂O. Characterized by EDS analysis and powder X-ray diffraction data. Monoclinic, $a = 10.61$, $b = 5.86$, $c = 7.205$ Å, $\beta = 94.86^{\circ}$ (see JCPDS, No. 46-1443).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Ni et al. (2010a).

- Wavenumbers (IR, cm⁻¹): 3531, 3470, 3044, 1974w, 1620, 1437w, 1409w, 1012, 900s, 847s, 804s, 763s, 562, 531, 505, 419w.
- Note: The wavenumber 1620 cm⁻¹ is erroneously indicated by Ni et al. (2010a) as 1920 cm⁻¹. The weak bands at 1437 and 1409 cm^{-1} may correspond to the admixture of a carbonate. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 894s, 820s, 758, 476, 438, 342, 236, 164w.

V128 Dysprosium decavanadate hydrate $Dy_2V_{10}O_{28}$ °24H₂O

Origin: Synthetic.

- **Description:** Obtained by slow evaporation of an aqueous solution containing decavanadic acid and dysprosium acetate. Triclinic, space group $P-1$, $a = 9.22(2)$, $b = 9.99(7)$, $c = 13.98(6)$ Å, $\alpha = 108.2$ (7)°, $\beta = 62.3(5)$ °, $\gamma = 89.1(3)$ °, $V = 1063 \text{ Å}^3$, $Z = 1$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Rigotti et al. (1981).

Wavenumbers (IR, cm⁻¹): 980sh, 948s, 840sh, 815, 731s, 712s, 600, 520, 450, 400.

Note: The band at 725 cm⁻¹ indicated by Rigotti et al. (1981) is a doublet (731+712 cm⁻¹). In the cited paper, Raman spectrum is given as a figure, without indication of positions of the bands.

Description: Prepared by conventional solid-state reaction, using LaCl₃.7H₂O, U₃O₈, and V₂O₅ as initial materials. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $P2_12_12_1$, $a = 6.9470(2)$, $b = 7.0934(2)$, $c = 25.7464(6)$ Å, $V = 1268.73$ (5) \AA^3 , Z = 4. $D_{\text{calc}} = 5.276$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. **Source:** Mer et al. (2012).

Wavenumbers (IR, cm⁻¹): 963sh, 946s, 909s, 900sh, 879, 843s, 820, 783, 767s, 758sh, 736s, 713w, 696, 686, 639s, 549w, 472w, 453w, 418w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 951s, 943, 918, 909s, 898, 868, 860, 787s, 766s, 753, 739s, 711w, 592w, 562w, 516w, 450sh, 431, 413, 360, 345, 334, 328.

V130 Lead iron(III) trivanadate $Pb_2FeV_3O_{11}$

- **Description:** Yellow solid formed in the solid-state reaction between $FeVO₄$ and $Pb₂V₂O₇$. Monoclinic, $a = 11.385(13)$, $b = 5.6414(7)$, $c = 7.4970(9)$ Å, $\beta = 81.72(1)^\circ$. $D_{\text{meas}} = 5.52(5)$ g/cm³. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 11.277 (27) (100), 3.372 (27) (-211), 3.126 (100) (310), 3.086 (52) (112), 2.821 (38) (020), 2.767 (26) (401).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Blonska-Tabero (2009).

Wavenumbers $(cm⁻¹)$: 1010, 943sh, 905s, 865sh, 795s, 751s, 730s, 623w, 391w, 373w, 346w, 330. Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

V131 Lead uranyl divanadate $Pb(UO_2)(V_2O_7)$

Origin: Synthetic.

- **Description:** Synthesized by solid-state reaction of PbO, V_2O_5 , and U_3O_8 in the metallic ratio Pb:V: $U = 1:6:2$ in air, at 680 °C, for 2 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 6.9212(9)$, $b = 9.6523(13)$, $c = 11.7881$ (16) Å, $\beta = 91.74(1)^\circ$, $V = 787.2(2)$ Å³, $Z = 4$. $D_{\text{meas}} = 5.82(3)$ g/cm³, $D_{\text{calc}} = 5.81(1)$ g/cm³. The structure is based on a three-dimensional framework composed by edge- and corner-sharing U- and V-centered polyhedra forming elliptic tunnels occupied by Pb^{2+} ions.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Obbade et al. (2004).

- Wavenumbers (cm⁻¹): 980w, 920sh, 888s, 875, 832sh, 810s, 770, 747s, 727s, 635sh, 580w, 515, 485sh, 445w, 409w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

V132 Lithium nickel vanadate LiNi(VO4)

Origin: Synthetic.

Description: Synthesized by a solid-state reaction technique. Characterized by powder X-ray diffraction data. Cubic, space group $Fd-3m$, $a = 8.221(1)$, which corresponds to the inverse spinel structure.

Kind of sample preparation and/or method of registration of the spectrum: Fine powder painted onto polyethylene slab. Absorption.

Source: Chitra et al. (2000).

Wavenumbers (IR, cm⁻¹): 905sh, 852, 810s, 680s, 648s, 435, 400sh, 340s, 275sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 902sh, 823s, 790s, 660, 481, 420, 337, 190w.

V133 Lithium trivanadate LiV_3O_8

- **Description:** Prepared by stepwise heating a mixture of Li_2CO_3 and V_2O_5 powders up to 700 °C. Characterized by powder X-ray diffraction data. Monoclinic, space group $P2_1/m$, $a = 6.68$, $b = 3.60$, $c = 12.03$ Å, $\beta = 107^{\circ}$, which corresponds to the JCPDS card No. 72-1193.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ramaraghavulu et al. (2012).

Wavenumbers (IR, cm⁻¹): 1723w, 1700w, 1646w, 1392sh, 1224w, 1120sh, 994s, 960s, 750s, 602, 535, 488w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 999w, 782s, 555, 491, 395w, 295.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

V134 Lithium tungstate vanadate brannerite-type $LiWVO₆$

Origin: Synthetic.

Description: Synthesized by heating to 400 °C of a precursor formed in the reaction between Li(NO₃), $(NH₄)(VO₃)$, and tungstic acid in aqueous solution, in the presence of glycine, with subsequent calcination of the product at 550 °C. Characterized by powder X-ray diffraction data. Monoclinic, space group C2, $a = 9.347$, $b = 3.670$, $c = 6.593$ Å, $\beta = 111.83^{\circ}$.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Absorption. Source: Amdouni et al. (2003).

- Wavenumbers (IR, cm⁻¹): 972, 956, 936w, 877, 807, 754, 624s, 581s, (463), 443w, 379w, 365w, 316s, 295, 252, (215), 195.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 970s, 860sh, 826, 743, 524w, 449, 324, 268, 238, 207, 146s, 117.

V135 Magnesium vanadate Mg₇V₄O₁₆(OH)₂⋅H₂O Mg₇V₄O₁₆(OH)₂⋅H₂O

Origin: Synthetic.

- **Description:** Prepared hydrothermally from V_2O_5 and $Mg(BO_2)_2 \cdot H_2O$ at 200 °C for 5 days. A compound with non-centrosymmetric tunnel structure. See supplementary data at doi: [https://doi.](https://doi.org/10.1016/j.inoche.2008.05.019) [org/10.1016/j.inoche.2008.05.019](https://doi.org/10.1016/j.inoche.2008.05.019).
- Kind of sample preparation and/or method of registration of the spectrum: No data in the cited paper.

Source: Hu et al. (2008).

- Wavenumbers (cm⁻¹): 3614, 3538, 3445, (2920w), (2856w), 1635w, 1475w, 1430, 1379w, 1302w, 1258, 1197w, 1013sh, 910s, 867s, 756s, 678, 468.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance.

V136 Potassium chromium divanadate $KCrV₂O₇$

- **Description**: Prepared by solid-state reaction in air, by stepwise heating a stoichiometric mixture of $K_2Cr_2O_7$ and V_2O_5 up to 600 °C with intermediate regrindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2/c$, $a = 7.9526(1)$, $b = 4.87543(5), c = 6.8910(1) \text{ Å}, \beta = 101.162(1)^\circ, V = 262.1(1) \text{ Å}^3, Z = 2.$ Vanadium has sixfold coordination with one long and two short V–O bonds.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.
- Source: Tyutyunnik et al. (2006).
- Wavenumbers (IR, cm⁻¹): 982, 963s, 786s, 760, 724sh, 655sh, 642, 591sh, 551s, 508sh, 484s, 424, 395sh.
- Note: For another treatment of the crystal structure see Wang et al. (2012). In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 985s, 960w, 890, 868, 836, 768s, 712, 685, 663, 567w, 562, 542s, 483, 397, 342, 316, 283, 257, 218, 201, 173, 142.

V137 Potassium chromium divanadate $KCrV₂O₇$

Origin: Synthetic.

- Description: Prepared by a solid-state reaction. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2/c$, $a = 7.9529(6)$, $b = 4.87548(5)$, $c = 6.8917(2)$ Å, $\beta = 101.15(4)^\circ$, $V = 262.14 \text{ Å}^3$, $Z = 2$. Vanadium has fivefold coordination with two short V–O bonds.
- Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.
- Source: Wang et al. (2012).

Wavenumbers $(cm⁻¹)$: 986, 964s, 787s, 764, 654.

Note: For another treatment of the crystal structure see Tyutyunnik et al. (2006). The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

V138 Potassium decavanadate decahydrate K₆(V₁₀O₂₈)∙10H₂O

Origin: Synthetic.

Description: Brown-orange crystals obtained in the reaction of V_2O_5 with potassium malate solution. The crystal structure is solved. Triclinic, space group P-1, $a = 10.5334(4)$, $b = 10.6600(4)$, $c = 17.7351(5)$ Å, $\alpha = 76.940(2)$ °, $\beta = 75.836(2)$ °, $\gamma = 64.776(2)$ °, $V = 1729.86(10)$ Å³, $Z = 2$. $D_{\text{calc}} = 2.634 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Guilherme et al. (2010).

Wavenumbers (cm⁻¹): 3507s, 3400s, 3245sh, 966s, 942s, 821s, 755, 594, 523, 458, 411.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

V139 Potassium hexavanadate hydrate K₂(V₆O₁₆)∙1.5H₂O

- Description: Nanobelts prepared by a low-temperature hydrothermal method. Monoclinic, space group $P2_1/c$, $a = 12.29 \text{ Å}, b = 3.60 \text{ Å}, c = 16.01 \text{ Å}, \beta = 93.89^{\circ}$. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bai et al. (2013).

Wavenumbers (IR, cm⁻¹): 3542, 1620, 1445, 999, 962s, 880w, 741s, 617sh, 537s, 500sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1011w, 774, 686, 507, 270, 154s.

V140 Strontium vanadyl vanadate $Sr_2(VO)(VO_4)_2$

Origin: Synthetic.

- **Description:** Prepared from a mixture of SrCO₃, V₂O₅, and VO₂ pressed into pellet and heated with a $CO₂$ laser in a nitrogen atmosphere. Monoclinic, space group $I2/a$, $a = 6.929$, $b = 16.246$, $c = 7.260$ Å, $\beta = 115.82^{\circ}$, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran (1996).

- Wavenumbers (IR, cm⁻¹): 965sh, 914sh, 901s, 872, 860, 831s, 802s, 769, 745sh, 721s, 672sh, 588w, 465.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 912, 893, 870sh, 860s, 831s, 791w, 772, 720w, 468w, 430s, 400w, 370sh, 358w.

V141 Tantalum oxyvanadate $Ta(VO₄)O$

Origin: Synthetic.

- **Description:** Prepared by heating a mixture of V_2O_5 and defect pyrochlore $H_2Ta_6O_6·H_2O$, first at 873 K for 24 h, and thereafter at 1073 K for 12 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, $a = 11.860(3)$, $b = 5.516(1)$, $c = 6.928(1)$ Å. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 5.96 (94) (101, 200), 4.491 (84) (201), 4.310 (100) (011), 4.050 (92) (111, 210), 3.487 (71) (211, 002), 2.845 (71) (112), 2.609 (68) (212, 410, 302).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Chahboun et al. (1988). Wavenumbers $(cm⁻¹)$: 816s, 684, 418, 351w.

V142 Tellurium(IV) oxovanadate $Te_2V_2O_9$

- **Description:** Polycrystalline sample prepared by heating a mixture of TeO₂ and V₂O₅ at 450 °C for 24 h with several intermediate grindings and mixings. Characterized by powder X-ray diffraction data. Orthorhombic. V is in tetrahedral coordination environment with V–O bond lengths ranging from 1.633 to 1.946 Å. Te has threefold coordination.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zhang et al. (2012b).

Wavenumbers $(cm⁻¹)$: 953, 942, 818, 792sh, 719sh, 696s, 667s, 525, 493, 446, 421w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

V143 Thallium(I) selenite vanadate $T \sim V143$ Tl S e $VO₅$

Origin: Synthetic.

- **Description:** Yellow crystals prepared hydrothermally from $T_{2}CO_{3}$ and SeO₂ at 230 °C for 3 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $Pna2_{1}$, $a = 7.1639(15)$, $b = 8.6630(19)$, $c = 7.8946(17)$ Å, $V = 489.95(18)$ Å³, $Z = 4$. $D_{\text{calc}} = 5.616$ g/cm³. Se and V have three- and sixfold coordination, respectively.
- Kind of sample preparation and/or method of registration of the spectrum: A sample pressed between two KBr pellets. Transmission.

Source: Sivakumar et al. (2007).

- Wavenumbers (IR, cm⁻¹): 903s, 885s, 808s, 799sh, 767sh, 730, 708, 649s, 606, 581w, 565w, 537, 522, 492, 464, 427w, 419w.
- Note: The wavenumber 649 cm⁻¹ is erroneously indicated by Sivakumar et al. (2007) as 657 cm⁻¹. The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

V144 Thallium(I) tellurite vanadate $TITeVO₅ TITeVO₅$

Origin: Synthetic.

- **Description:** Yellow crystals prepared hydrothermally from Tl_2CO_3 and TeO_2 at 230 °C for 3 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $Pna2_1$, $a = 7.1639(15)$, $b = 8.6630(19)$, $c = 7.8946(17)$ Å, $V = 489.95(18)$ Å³, $Z = 4$. $D_{\text{calc}} = 6.103$ g/cm³. Te and V have three- and sixfold coordination, respectively.
- Kind of sample preparation and/or method of registration of the spectrum: A sample pressed between two KBr pellets. Transmission.

Source: Sivakumar et al. (2007).

- Wavenumbers (IR, cm⁻¹): 902, 850s, 829s, 807s, 802s, 784s, 747, 731, 715, 671, 663, 647, 637, 620, 614, 513, 468, 446.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

V145 Thorium divanadate cubic polymorph α -Th(V₂O₇)

- **Description**: Prepared by short-time heating a mixture of ThO₂ and P₂O₅ between 600 and 1000 °C. Characterized by powder X-ray diffraction data. Cubic, $a = 8.72$, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (1974).

Wavenumbers (cm⁻¹): 958, 923sh, 885s, 858, 830, 799, 774s, 663, 500w, 486w, 350, 323, 310, 290.

V146 Thorium divanadate orthorhombic polymorph β -Th(V₂O₇)

Origin: Synthetic.

Description: Prepared by long-time heating a mixture of ThO₂ and V₂O₅ at 600 °C. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 7.216$, $b = 6.964$, $c = 22.800$ Å.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (1974).

Wavenumbers (cm⁻¹): 1015w, 1005w, 965sh, 960, 922sh, 908s, 880, 853s, 832sh, 823, 810s, 790, 773s, 754, 734, 700, 638, 505, 482, 440, 390w, 375w, 360w, 335w, 313w.

V147 Zinc iron(III) orthovanadate $Zn_3Fe_4(VO_4)_6$

Origin: Synthetic.

Description: Prepared by stepwise heating a mixture of $FeVO₄$ and $Zn₃(VO₄)₂$, taken in stoichiometric amounts, at 700, 750, and 800 °C, for 24 h at each temperature. Characterized by powder X-ray diffraction data. Triclinic, $a = 6.681(1)$, $b = 8.021(2)$, $c = 9.778(4)$ Å, $\alpha = 105.25(4)$ °, $β = 105.00°4, γ = 102.20(4)°$, $V = 465.8 \text{ Å}^3$, $Z = 1$. $D_{\text{calc}} = 3.95 \text{ g/cm}^3$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A} (I, %) (hkl)]$ are: 3.2713 (34) (-201), 3.1997 (45) $(2-10)$, 3.1368 (56) $(0-13)$, 3.0747 (100) (021) , 3.0442 (36) (-202) .

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Kurzawa and Blonska-Tabero (2002).

Wavenumbers $(cm⁻¹)$: 945s, 915s, 895sh, 830sh, 750s, 716s, 676, 511, 486, 408w, (394w).

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

V148 Zinc orthovanadate $Zn_3(VO_4)$

Description: Prepared hydrothermally from $Zn(NO₃)₂$ and $V₂O₅$ in the presence of hexamethylenetetramine at 120 °C for 24 h with subsequent annealing of the $\text{Zn}_3(\text{OH})_2\text{V}_2\text{O}_7$ nH₂O precursor at 600 °C for 10 h. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 8.299$, $b = 11.52$, $c = 6.111$ Å (see JCPDS card no. 34-0378).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Ni et al. (2010b).

Wavenumbers (IR, cm⁻¹): 901, 848s, 791s, 658s, 624, 442w, 414.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 961s, 816, 797, 692w, 633w, 457w, 394, 374, 318s, 261, 224, 200w, 179w, 156.

V149 Zinc basic pyrovanadate hydrate $Zn_3(V_2O_7)(OH)_2$ ∙2.5H₂O

Origin: Synthetic.

- **Description**: Precipitate obtained by adding 10% aqueous (NH₄)(OH) to the solution prepared from 30% aqueous H_2O_2 , V_2O_5 , and of $Zn(NO_3)$. 6H₂O. Characterized by powder X-ray diffraction data and TG analysis. Hexagonal.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Melghit et al. (2007).

Wavenumbers $(cm⁻¹)$: 3510s, 3190, 1622, 930s, 800s, 484.

V150 Zinc vanadyl oxide $\text{Zn}(VO_2)_2O_2$ $\text{Zn}(VO_2)_2O_2$

Origin: Synthetic.

Description: Obtained by the thermal decomposition at 550 \degree C for 8 h of a precursor prepared from Zn $(CH_3COO)_2.2H_2O$ and $(NH_4)(VO_3)$ by a rheological phase reaction method. Characterized by powder X-ray diffraction data. Monoclinic, $a = 9.223$, $b = 3.511$, $c = 6.552$ Å, $\beta = 111.23^{\circ}$, $V = 197.7 \text{ Å}^3.$

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Liu and Tang (2009).

Wavenumbers $(cm⁻¹)$: 870s, 670s, 550.

V151 Alforsite vanadate analogue $Ba₅(VO₄)₃Cl$

Description: Obtained by double-ply heating a mixture of $Ba_3(VO_4)_2$ and $BaCl_2$, taken in stoichiometric molar ratio, at $950-1000$ °C for 1–2 h with intermediate grinding. Characterized by powder X-ray diffraction data. Hexagonal, space group $P6_3/m$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran and Aymonino (1972).

Wavenumbers $(cm⁻¹)$: 848s, 828w, 794s, 393, 378, 357.

V152 Clinobisvanite BiVO₄

Origin: Synthetic.

Description: Prepared from ammonium vanadate and bismuth nitrate using a complex sol-gel procedure followed by calcination at 600 $^{\circ}$ C for 2 h. Monoclinic. Characterized by powder X-ray diffraction data and EDX spectroscopy.

Kind of sample preparation and/or method of registration of the spectrum: No data.

- Source: Pookmanee et al. (2013).
- Wavenumbers (cm⁻¹): 1629w, 1382w, 1158w, 826s, 737s, 474w, 412w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands with wavenumbers above 1000 cm^{-1} may correspond to impurities.

V153 Magnesiopascoite $Ca₂MgV⁵⁺₁₀O₂₈·16H₂O$

Origin: Packrat Mine, Gateway, Gateway District, Mesa Co., Colorado, USA.

Description: Orange crust from the association with U,V-oxides. Investigated by A.V. Kasatkin. The empirical formula is (electron microprobe): $Ca_{2.07}Mg_{1.03}V_{9.90}O_{28}nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3567, 3455s, 3240sh, 3105s, 2184w, 1638, 989, 955s, 842, 819, 746, 619, 569, 522, 458, 407.

Note: The spectrum was obtained by N.V. Chukanov.

V154 Vanadinite Sr, OH-analogue $Sr_{10}(PO₄)(VO₄)₅(OH)₂$

- **Description:** Obtained in the reaction between aqueous solution of $Sr(NO₃)₂$, containing NH₄OH, and a solution containing $(NH_4)_2(HPO_4)$ and $(NH_4)(VO_3)$ with subsequently heating a precipitate formed first at 100 °C for 2 h and thereafter at 850 °C for 2 h. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Galera-Gomez et al. (1982).

- Wavenumbers (cm⁻¹): 3575, 1042s, 858sh, 815s, 592, 572, 550, 443, 405, 390sh, 370sh, 305, 283, 222s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Bands in the range from 1400 to 1700 cm^{-1} correspond to impurities.

V155 Wakefieldite-(Pr) PrVO4

Origin: Synthetic.

- **Description:** Obtained by heating a stoichiometric mixture of Pr_2O_3 and V_2O_5 powders in air for several hours, first at 750 °C and thereafter at 1000 °C with intermediate grinding. Tetragonal, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran and Aymonino (1971).

Wavenumbers $(cm⁻¹)$: 870sh, 808s, 441.

V156 Ziesite and blossite polymorph $Cu₂V₂O₇$

Origin: Synthetic.

Description: Dark brown powder obtained in a solid-state reaction of CuO and V₂O₅ at 600 °C for 16 h with intermediate grinding. Characterized by powder X-ray diffraction data. Monoclinic, $a = 6.87, b = 8.11, c = 9.16 \text{ Å}, \beta = 109.5^{\circ}, Z = 4.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Pedregosa et al. (1974).

Wavenumbers (cm⁻¹): 905s, 840s, 775s, 690s, 518, 500, 435sh, 360, 330sh.

V157 Reppiaite $Mn^{2+}{}_{5}({\rm VO}_{4})_{2}({\rm OH})_{4}$

- **Description:** Dark red columnar crystals hydrothermally grown from Mn_2O_3 and V_2O_5 in 3 M CsOH at 580 °C and 1.5 kbar. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 9.6568$ (9) Å, $b = 9.5627(9)$, $c = 5.4139(6)$ Å, $\beta = 98.529(8)^\circ$, $V = 494.42(9)$ Å³, $Z = 2$. $D_{calc} = 3.846$ g/ cm³ .
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Sanjeewa et al. (2016).

- Wavenumbers (IR, cm⁻¹): 3743w, 1743w, 1698w, 1651w, 1549w, 1513w, 1452sh, 1048s, 995s, 886sh, 785sh, 750w, 663sh, 582, 550sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The intensity of the band of O–H-stretching vibrations at 3743 cm⁻¹ is anomalously low, and the wavenumber is anomalously high. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm^{-1}): 789s, 749w, 402w, 315w.

V158 Ziminaite monoclinic polymorph $Fe^{3+}(\text{VO}_4)$

Origin: Synthetic.

Description: Obtained using a sol-gel technique with subsequently heating the sol at 500 °C. Characterized by electron diffraction. Monoclinic.

Kind of sample preparation and/or method of registration of the spectrum: Film on a Si wafer. Absorption.

Source: Vuk et al. (2001).

Wavenumbers $(cm⁻¹): 990w, 965w, 896, 882s, 830s, 766sh, 730sh, 652s, 502.$

V159 Wernerbaurite $\{(\text{NH}_4)_2[\text{Ca}_2(\text{H}_2\text{O})_{14}](\text{H}_2\text{O})_2\}\{V_{10}\text{O}_{28}\}\$

Origin: St Jude Mine, Gypsum Valley, Slick Rock District, San Miguel Co., Colorado, USA (type locality).

Description: Orange granular aggregate from the association with U,V-oxides. Investigated by A.V. Kasatkin. Characterized by single-crystal X-ray diffraction data. Triclinic, $a = 9.709(10)$, $b = 10.272(11), c = 10.599(7)$ Å, $\alpha = 90.05(7)^\circ$, $\beta = 77.09(7)^\circ$, $\gamma = 69.90(9)^\circ$, $V = 964(1)$ Å³. The empirical formula is (electron microprobe): $(NH₄)_xCa_{1.96}V_{10.00}O₂₈·nH₂O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3441s, 3190s, 2800, 2170w, 1670w, 1635, 1410, 956s, 814, 744, 593, 526, 456, 408.

Note: The spectrum was obtained by N.V. Chukanov.

V160 Schäferite Ni analogue $(Ca_2Na)Ni_2(VO_4)_3$

Origin: Slag dump near the Kamariza mine, Lavrion, mining district, Attikí (Attika, Attica) Prefecture, Greece.

Description: Dark olive-green crust from the association with trevorite and liebenbergite. The empirical formula is (electron microprobe): $(Ca_{1,93}Na_{1,04})$ (Ni_{1.32}Mg_{0.44}Fe_{0.25})(V_{2.93}P_{0.06}Cr_{0.03}Si_{0.01})O₁₂.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1040sh, 1005sh, 975sh, 840sh, 801s, 570sh, 519w, 454w, 387. Note: The spectrum was obtained by N.V. Chukanov.

V161 Pucherite $Bi(VO₄)$

Origin: Neustädtel, Erzgebirge (Ore Mts.), Saxony, Germany.

Description: Yellowish-brown crystals.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹): 1184w, 1083w, 824s, 693, 606s, 507, 470sh, 421, 400.$ Note: The spectrum was obtained by N.V. Chukanov.

V162 Cheremnykhite trigonal dimorph $Pb_3Zn_3(TeO_6)(VO_4)_2$

- Description: Synthesized by conventional solid-state methods from stoichiometric amounts of PbO, ZnO, $H_2TeO_4.2H_2O$, and V_2O_5 first at 400 °C for 20 h to decompose $H_2TeO_4.2H_2O$ and thereafter at 700 °C for 5 days, with intermediate grindings. Characterized by powder and single-crystal X-ray diffraction data. Trigonal, space group $P321$, $a = 8.608(2)$, $c = 5.186(3)$ Å, $V = 332.8(2)$ Å³, $Z = 1$. $D_{\text{calc}} = 6.343 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yu et al. (2016).

Wavenumbers $(cm⁻¹)$: 785, 759s, 691, 640, 604s, 525, 485s, 459s.

V163 Fervanite (?) $Fe^{3+}_{4}N^{5+}_{4}O_{16}$ •5H₂O

Origin: Synthetic.

- Description: Poor-crystallized yellow powder prepared in the reaction between boiling aqueous solutions of ferric iron nitrate and V_2O_5 . The empirical formula is FeVO₄⋅1.1H₂O.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Melghit and Al-Mungi (2007).

- Wavenumbers $(cm⁻¹)$: 1624, 953, 870sh, 850sh, 839s, 763sh, 757s, 663s, 537w, 511sh, (500), 486, (458), (437), (420).
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

V164 Ronneburgite $K_2MnV_4O_{12}$

Origin: Ronneburg, Thuringia, Germany (type locality).

- Description: Reddish-brown crystals from the association with hummerite, gypsum, epsomite, picromerite and hematite. Holotype sample. The crystal structure contains infinite metavanadate chains of corner-sharing VO₄ tetrahedra. Monoclinic, space group $P2_1/n$, $a = 8.183(3)$, $b = 9.247$ (3), $c = 8.651(2)$ Å, $\beta = 109.74(2)^\circ$, $Z = 2$. $D_{\text{meas}} = 2.84$ g/cm³, $D_{\text{calc}} = 2.85$ g/cm³. Optically biaxial (-), $\alpha = 1.925(5)$, $\beta = 1.960(10)$, $\gamma = 1.988(4)$, $2V = 82^{\circ}$. The empirical formula is $K_{1.91}Mn_{0.93}Mg_{0.08}V_{4.00}O_{11.96}$. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.701 (55) (-211), 3.336 (100) (121), 3.118 (50) (-122), 3.000 (36) (112), 2.878 (64) (-103, 031), 2.752 (68) (-222).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission of a small plate-like chip using an IR microscope.
- Source: Witzke et al. (2001).
- Wavenumbers $(\text{IR}, \text{cm}^{-1})$: (1417), (1335), (1256), (1191), (1149), 1102, 1029s, 978w, 961sh, 923w, 866w, 845w, 816, 749, 622, 529, 494, (464).
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Peaks above 1102 cm^{-1} may be due to interference. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 952s, 942sh, 911, 878s, 830w, 658w, 461, 350, 336, 261.

V165 Wakefieldite-(Y) YVO4

Origin: Synthetic.

Description: Eu-doped sample prepared hydrothermally from sodium orthovanadate and corresponding nitrates at Y: Eu = 9:1. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Tran et al. (2012).

- Wavenumbers (cm⁻¹): 3449, 2926w, 1624w, 1526w, 1384, 1061w, 1003sh, 905sh, 880, 841s, 808s, 785sh, 755sh, 451w, 426, 411.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 2926 cm^{-1} corresponds to the admixture of an organic substance. The band at 1384 cm^{-1} indicates possible admixture of nitrate anions. The bands at 3449 and 1624 cm⁻¹ correspond to adsorbed water molecules.

V166 Ziminaite Fe^{3+} ₆(VO₄)₆

Description: Nanorods obtained by dehydration of synthetic fervanite at 500 $^{\circ}$ C. Characterized by powder X-ray diffraction data and Mössbauer spectroscopy. Triclinic.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Lehnen et al. (2014) .

Wavenumbers (IR, cm⁻¹): 990sh, 970, 904s, 890s, 849sh, 833s, 730, 692, 648s, 502s, 440, 413w.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 965, 931s, 907, 895s, 845s, 832s, 770, 736s, 660w, 633w, 502w, 450, 408, 391, 371, 329, 317.

V167 Janchevite $Pb_7V^{5+}(O_{8.5}\square_{0.5})Cl_2$

Origin: Kombat mine, Grootfontein district, Otjozondjupa region, Namibia (type locality).

Description: Orange-red, thick tabular anhedral grains from the association with baryte, hausmannite, calcite, magnesite, and kombatite. Holotype sample. Tetragonal, space group $I4/mmm$, $a = 3.9591$ (5) Å, $c = 22.6897(3)$ Å, $V = 355.65(1)$ Å³; $Z = 1$. $D_{calc} = 8.18$ g/cm³. The empirical formula is (electron microprobe): $Pb_{7.20}V^{5+}{}_{0.38}Mo^{6+}{}_{0.29}Si_{0.13}Cl_{2.06}O_{8.25}$. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 3.889 (24) (011), 3.501 (31) (013), 2.979 (86) (015), 2.833 (25) (008), 2.794 (100) (110), 1.992 (26) (118), 1.988 (49) (020), 1.649 (46) (215).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 870w, 850, 802, 736, 595, 462, 405sh, 366s. Note: The spectrum was obtained by N.V. Chukanov.

2.12 Chromates

Cr21 Ammonium dichromate $(NH_4)_2Cr_2O_7$

Origin: Synthetic.

Description: Analytical grade reactant.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: De Waal and Heyns (1992).

Wavenumbers $(cm⁻¹)$: 3128s, 1633w, 1402s, 949s, 898s, 724s.

Note: The band at 1633 cm^{-1} may be due to adsorbed water.

Cr22 Copper chromate CuCrO4

- **Description:** Prepared hydrothermally from CuCO₃, Cu(OH)₂, and CrO₃ at 220 °C for 24 h. Orthorhombic, space group Cmcm, $Z = 4$. In the crystal structure, strongly distorted CuO₆ octahedra are present.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran (1994).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 956s, 805sh, 785s, 475s, 406w, 370, 320, 290, 237.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 966, 944s, 928, 806s, 412, 386, 342, 254.

 $Cr23$ Lead orthoborate chromate $Pb_6(BO_3)_2(CrO_4)O_2$

Origin: Synthetic.

- **Description:** Prepared in a solid-state reaction from the powder mixture of PbO, CrO₃, and B₂O₃ with the molar ratio 15:2:3. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group *Pnma*, $a = 6.4160(13)$, $b = 11.635(2)$, $c = 18.164(4)$ Å, $V = 1356.0(5)$ Å³, Z = 4. $D_{\text{calc}} = 7.391$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2009).

Wavenumbers $(cm⁻¹)$: 1225s, 841s, 806s, 694s, 608, 567, 500, 449, 426.

Cr24 Magnesium chromate α -Mg(CrO₄)

Origin: Synthetic.

Description: Orthorhombic, space group $Cmcm$, $Z = 4$ (see Muller et al. 1969b).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Muller et al. (1969a).

Wavenumbers $(cm⁻¹)$: 950s, 830s, 430sh, 410, 385sh, 365sh, 315s.

Cr25 Potassium magnesium chromate hydrate K₂Mg(CrO₄)₂⋅2H₂O

Origin: Synthetic.

Description: Prepared by precipitation from aqueous solution of magnesium acetate and potassium chromate. Triclinic, space group $P-1$, $Z = 1$. Structurally related to kröhnkite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Stoilova et al. (2009).

Wavenumbers (cm⁻¹): 3251s, 3180sh, 1640, 953s, 887sh, 867s, 852sh, 682, 556, 458w.

Cr26 Potassium nickel chromate hydrate K₂Ni(CrO₄)₂∙2H₂O

Origin: Synthetic.

Description: Prepared by precipitation from aqueous solution of nickel acetate and potassium chromate. Triclinic, space group $P-1$, $Z = 1$. Structurally related to kröhnkite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Stoilova et al. (2009).

Wavenumbers (cm^{-1}) : 3278 (broad), 1640w, 934s, 897s, 855s, 840, 793, 688 (broad).

Cr27 Potassium peroxochromate $K_3[Cr(O_2)_4]$

Description: Tetragonal, space group *I*-42*m*.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Haeuseler and Haxhillazi (2003).

Wavenumbers (IR, cm⁻¹): 988w, 883s, 676s, 558s, 426s, 330w, 293w, 185, 166w, 134.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 919s, 879, 838w, 682w, 564s, 526, 464s, 430s, 336, 286, 217w, 183w.

Cr28 Praseodymium chromate(V) PrCrO4

Origin: Synthetic.

- **Description:** Prepared by heating PrCr(C_2O_4)₃.8H₂O at 500 °C for 10 min. Characterized by powder X-ray diffraction data. Triclinic, space group $P_2/|n, a = 6.98(2), b = 7.16(1), c = 6.63(1)$ Å, $\beta = 105.22(10)^\circ$, $V = 319.72 \text{ Å}^3$, $Z = 4$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 3.58 (30) (020, 111), 3.36 (59) (200), 3.162 (100) (120), 2.925 (74) (012), 1.989 (30) (212), 1.921 (34) (-132).
- Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Manca and Baran (1981).

Wavenumbers $(cm⁻¹)$: 840sh, 800s, 722s, 420, 379, 358, 294.

Cr29 Embreyite $(Pb, Cu, \Box)_{2}Pb[(Cr, P)O_{4}]_{2}nH_{2}O$

Origin: Krokoitovyi Shurf (Crocoite Pit), Uspenskaya Mt., Berezovskoe ore field, Middle Urals. Description: Brownish-orange flattened crystals from the association with crocoite, vauquelinite pyromorphite, and goethite. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 9.802(16), b = 5.603(9), c = 7.649(12)$ Å, $\beta = 114.85(3)$ ^o, $V = 381.2(11)$ Å³. The empirical formula is (electron microprobe, $Z = 2$): $Pb_{1.29}Cu_{0.07}Cr_{0.52}P_{0.43}O_4 \cdot nH_2O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3329, 1680w, 1418w, 1356w, 1030sh, 959, 900sh, 855s, 830sh, 560sh, 538, 418w, 383.

Note: The spectrum was obtained by N.V. Chukanov.

Cr30 Embreyite $(Pb, Cu, \Box)_{2}Pb[(Cr, P)O_{4}]_{2}nH_{2}O$

Origin: Krokoitovyi Shurf (Crocoite Pit), Uspenskaya Mt., Berezovskoe ore field, Middle Urals.

Description: Reddish-brown crystals from the association with vauquelinite. A Cu-rich variety. The empirical formula is (electron microprobe, $Z = 1$): Pb_{2.5}Cu_{0.3}Cr_{1.05}P_{0.95}O₈.nH₂O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3301, 1433, 1328w, 1059, 980sh, 966s, 891s, 819s, 572, 543, 465sh, 386. Note: The spectrum was obtained by N.V. Chukanov.

Cr31 Iranite $Pb_{10}Cu(CrO_4)_6(SiO_4)_2(OH)_2$

Origin: Santa Ana mine, Caracoles, Sierra Gorda district, Antofagasta Region, Chile.

Description: Brownish-orange lenticular crystals from the association with wulfenite. Confirmed by the IR spectrum and qualitative electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3359, 1099w, 1037w, 905sh, 879s, 858s, 807, 785s, 620w, 528, 495, 473, 417w, 389, 379.

Note: The spectrum was obtained by N.V. Chukanov. The weak bands at 1099, 1037, and 620 cm^{-1} correspond to trace amounts of SO_4^2 ⁻ anions.

2.13 Germanates

Ge4 Brunogeierite $Fe^{2+}{}_{2}Ge^{4+}O_4$

Origin: Synthetic.

Description: Prepared in the solid-state reaction between $GeO₂$ and FeO at 1000 °C. Kind of sample preparation and/or method of registration of the spectrum: No data. **Source:** Tarte (1963).

Wavenumbers $(cm⁻¹)$: 688s, 402s, 319.

2.14 Arsenides, Arsenites, Arsenates, and Sulfato-Arsenates

Transmittance 1600 2000 400 800 1200 2400 2800 3200 3600 Wavenumber $(cm⁻¹)$

As316 Castellaroite $Mn^{2+}{}_{3}(AsO_4)_2.4H_2O$

Origin: Monte Nero Mine, Rocchetta Vara, La Spezia Province, Liguria, Italy (type locality).

Description: White radiated aggregates from the association with rhodochrosite. The sample was received from L. Chiappino, a coauthor of the first description of castellaroite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3421s (broad), 3280sh, 2940sh, 2500sh, 1624, 1061, 1027, 1001, 948w, 855sh, 836s, 801s, 669w, 610sh, 589, 565sh, 468s, 421.

Note: The spectrum was obtained by N.V. Chukanov.

As317 Magnesiokoritnigite $Mg(AsO₃OH)·H₂O$

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type locality).

Description: Pink crystals from the association with magnesiocanutite. Investigated by I.V. Pekov. The empirical formula is (electron microprobe): $(Mg_{0.99}Mn_{0.01})$ (HAsO₄)·H₂O.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3519, 3310sh, 3220s, 3090sh, 2830, 2385, 2301, 1670, 1576, 1386w, 1307,

1185sh, 1158, 1120w, 850s, 772s, 750sh, 670, 650, 620sh, 599w, 504, 470sh, 439s, 395.

Note: The spectrum was obtained by N.V. Chukanov.

As318 Chudobaite $(Mg,Zn)_{5}(AsO₄)_{2}(HAsO₄)_{2}\cdot 10H₂O$

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile.

Description: White granular aggregate from the association with hörnesite, gypsum, arsenic, pyrite, dolomite, and quartz. Investigated by I.V. Pekov. Identified by qualitative electron microprobe analyses and powder X-ray diffraction data. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)] are: 10.26 (100), 7.70 (11), 4.79 (15), 3.423 (15), 2.973 (22), 2.735 (11).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3520sh, 3447, 3346s, 3252, 3160, 2990sh, 2295w, 1662, 1560sh, 1404w, 879s, 847s, 789, 734s, 507, 467s, 301s.

Note: The spectrum was obtained by N.V. Chukanov.

As 319 Boron arsenate $B(AsO₄)$

Description: Structurally related to cristobalite.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Rulmont et al. (1987).

Wavenumbers $(cm⁻¹)$: 965s, 857, 809w, 580w, 488s, 408, 217.

As320 Cesium acid (pentahydrogen) arsenate $CsH_5(AsO_4)_2$

Origin: Synthetic.

Description: Produced from an aqueous stoichiometric solution of cesium carbonate and orthoarsenic acid. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 10.983(1)$, $b = 7.943(1)$, $c = 9.844(1)$ Å, $\beta = 96.15(1)$ °, $V = 853.82(6)$ Å³, $Z = 4$. $D_{\text{calc}} = 3.235$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Nat^{*Ili*} et al. (2001).

Wavenumbers (IR, cm^{-1}) : 3402s (broad), 2760s (broad), 2360s (broad), 1631 (broad), 1399, 1299, 1212, 887s, 782s, 760sh, 434, 398sh, 384, 306.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 830s, 767s, 415s, 370, 335, 290, 265, 235, 200sh, 170w, 125w, 100w, 75, 65, 42, 39, 25.

As321 Cesium iron arsenate $Cs_7Fe_7O_2(AsO_4)_8$ $Cs_7Fe_7O_2(AsO_4)_8$

Origin: Synthetic.

Description: Prepared from the mixture of Cs_2CO_3 , Fe₂O₃, and $(NH_4)(H_2AsO_4)$ in the molar ratio 3:3:4 heated first at 450 °C for 12 h and then at 800 °C for 10 days. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 8.464(2)$, $b = 23.146(5)$, $c = 10.214(3)$ Å, $\beta = 107.87(2)$ °, $V = 1904.5 \text{ Å}^3$, $Z = 2$. $D_{\text{calc}} = 4.298 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Fitouri et al. (2015).

Wavenumbers (cm⁻¹): 980sh, 933, 870, 841s, 806s, 750sh, 590w, 526, 492, 465, 424, 407.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

As322 Calcium chlorarsenate $Ca₂(AsO₄)Cl$

- **Description:** Crystals grown from melt by means of a reaction flux technique using As_2O_3 , CaCl₂, and $CaCO₃$ as starting materials. Related to chlor-spodiosite. Orthorhombic, space group *Pbcm*.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Kowalczyk and Condrate Sr (1974).

Wavenumbers (IR, cm⁻¹): 885s, 845sh, 837s, 807s, 460, 434s, 383, 359.

Note: In the paper by Kowalczyk and Condrate Sr (1974) the wavenumber 460 cm^{-1} is erroneously indicated as 470 cm^{-1} . In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 878s, 870, 838s, 813, 497w, 466w, 390, 314.

As323 Calcium arsenate $CaAs₂O₆ CaAs₂O₆$

Origin: Synthetic.

Description: Obtained in a solid-state reaction between $CaCO₃$ and $As₂O₃$. In the crystal structure, AsO₆ octahedra are present. Trigonal, space group *P*-31/*m*, $a = 4.82$, $c = 5.07$ Å.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Husson et al. (1984).

Wavenumbers (IR, cm⁻¹): 783sh, 715, 620s, 585s, 385s, 370s, 330sh, 245, 205.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman, spectrum is given.

Wavenumbers (Raman, cm^{-1}): 762s, 590w, 570, 426, 397, 286s.

As324 Calcium orthoarsenate trigonal polymorph $Ca₃(AsO₄)₂$

Description: Prepared in a solid-state reaction, from a mixture of CaCO₃ and As₂O₅, first at 700 °C for 7 h and thereafter (after trituration of the product) at 800 °C for 3 h. Trigonal, space group $R3c$, $Z = 7$.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Baran (1976).

Wavenumbers (cm⁻¹): 902, 875s, 844s, 812sh, 799sh, 786, 467sh, 453, 426, 404, 385, 294, 281sh, 238, 195w.

As325 Calcium samarium thorium arsenate $CaSmTh(AsO₄)₃$

Description: Prepared by a standard solid-state method. Structurally related to xenotime-group minerals. Tetragonal, space group $I4_1$ /*amd*, $a = 7.175(2)$, $c = 6.409(3)$ Å, $V = 330.0$ Å³. $D_{\text{meas}} = 5.61 \text{ g/cm}^3, D_{\text{calc}} = 5.63 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: CsBr disc. Absorption. Source: Nabar and Sakhardande (1985).

Wavenumbers (cm⁻¹): 911sh, 886sh, 840s, 803s, 455, 408sh, 380sh, 358sh, 338, 319sh.

As326 Lithium zirconium arsenate $LiZr_2(AsO₄)_3$

Origin: Synthetic.

- **Description**: Synthesized from stoichiometric amounts of LiNO₃, ZrOCl₂, and arsenic acid using a precipitation method. In the structure which has a $P112₁/n$ space group, the arsenic atoms occupy three independent positions.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Absorption.

Source: Borovikova et al. (2014).

Wavenumbers (IR, cm⁻¹): 1107w, 1027w, 1006w, 954, 935sh, 883s, 848s, 827, 807sh, 506w, 496sh, 476sh, 455w, 437w, 400w, 378sh, 354, 344sh, 297s, 286s, 241, 126w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 976s, 953, 938w, 876, 869s, 854s, 848, 820, 805w, 474, 430, 388, 364, 354, 336, 269w, 256, 230, 194, 178w.

As327 Lithium zirconium arsenate $LiZr_2(AsO₄)_3$

Origin: Synthetic.

Description: Synthesized from stoichiometric amounts of LiNO₃, ZrOCl₂, and arsenic acid using a precipitation method. Hexagonal, space group R3c.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Absorption.

Source: Borovikova et al. (2014).

Wavenumbers (IR, cm^{-1}) : 1084w, 1018, 956, 870s, 849s, 494sh, 467, 377sh, 359sh, 310s, 241, 187sh, 129w, 93w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 979s, 951, 864s, 857, 473, 445w, 380, 359, 346, 333, 253, 189, 176.

As328 Mercury(I) orthoarsenate $(Hg_2)_3(AsO_4)_2$

- Description: Obtained as precipitate formed in the reaction of aqueous solutions of orthoarsenic acid and $Hg_2(NO_3)_2.2H_2O$. The crystal structure is solved. Monoclinic, space group P_21/c , $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.
- Source: Baran et al. (1999b).
- Wavenumbers (IR, cm⁻¹): 834, 823, 811, 757s, 438, 392sh, 345, 302sh, 258sh, 242w, 185s, 134s, 112sh, 100s.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): ~845sh, 789, 770sh, 814s, 432s, 390sh, 368w, 312w, 253w, 225w, 148s, 129s, 110w, 98s.

As 329 Mercury(II) orthoarsenate $Hg_3(AsO_4)_2$

Origin: Synthetic.

- Description: Obtained as precipitate formed in the reaction of aqueous solutions of orthoarsenic acid and Hg(NO₃)₂·H₂O. The crystal structure is solved. Monoclinic, space group $P2_1/c$, Z = 4.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Baran et al. (1999b).

Wavenumbers (IR, cm⁻¹): 893sh, 869s, 851s, 826s, 775s, 763sh, 487, 440, 411sh, 367, 342, 320w, 289, 250w, 230w, 190, 173w, 150w, 126s, 94s, 85sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 876w, 825, 784w, 759, 851s, 501, 415s, 362, 327, 278, 227, 195sh, 170sh, 140s, 110w, 86.

As330 Potassium antimony oxoarsenate $K_2Sb(AsO_4)O_2$

Origin: Synthetic.

- **Description**: Obtained in the solid-state reaction between Sb_2O_3 , As_2O_5 , and K_2CO_3 at 900 °C for 1 day. Characterized by chemical analyses. The crystal structure is solved. Orthorhombic, space group Pnma, $a = 9.603(6)$, $b = 5.972(5)$, $c = 11.304(8)$ Å, $V = 648.27$ Å³, $Z = 4$. $D_{\text{meas}} = 3.76$ (5) g/cm³, $D_{\text{calc}} = 3.79 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Botto and Garcia (1989).
- Wavenumbers (IR, cm⁻¹): 960sh, 932s, 876s, 856w, 790s, 732s, 662, 612, 540s, 526s, 468, 430w, 420, 392, 370, 345, 336.
- Note: The wavenumber 516 cm⁻¹ is erroneously indicated by Botto and Garcia (1989) as 526 cm⁻¹. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 984w, 961, 915, 892w, 872s, 644s, 603w, 533s, 508sh, 475, 419w, 404w, 373, 340, 297, 279, 251.

Description: Beige single crystals grown from aqueous solution of KNO_3 , Fe(NO₃)₃.9H₂O, and H_3ASO_4 with the molar ratio of 10:1:20, with subsequent heating up to 700 °C in order to avoid volatile products. Characterized by qualitative EDX analysis. The crystal structure is solved. Triclinic, space group P-1, $a = 7.662(1)$, $b = 8.402(2)$, $c = 10.100(3)$ Å, $\alpha = 90.42(3)$ °, $\beta = 89.74(2)^\circ, \gamma = 106.39(2)^\circ, V = 623.8(3) \text{ Å}^3, Z = 4. D_{\text{calc}} = 3.799 \text{ g/cm}^3.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Ouerfelli et al. (2007).

Wavenumbers (cm⁻¹): 1163w, 1097w, 970sh, 930s, 902s, 882s, 845sh, 786s, 764s, 601, 530sh, 484sh, 468, 420.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

As332 Potassium magnesium arsenate hexahydrate KMg(AsO₄)∙6H₂O

- **Description**: Prepared by a simple precipitation procedure of mixing $MgSO_4$. $7H_2O$ and $K(H_2ASO_4)$ solutions at room temperature. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $Pmn2_1$, $a = 6.99(3)$, $b = 6.22(2)$, $c = 11.26$ (4) Å, $V = 490.63(3)$ Å³, $Z = 2$. Isostructural with struvite.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc (?). Absorption.

Source: Abdija et al. (2014).

Wavenumbers (IR, cm⁻¹): 3470sh, 3205sh, 2945s, 2348, 1825sh, 1667sh, 1616, 980sh, 930s, 800s, 690, 675sh, 470, 440, 417, 409s, 402s.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3500-2200s, 1760-1500w, 819s, 458w, 414w, 382, 350w.

As333 Potassium manganese arsenate $K_2Mn^{2+}Mn^{3+}(AsO_4)$

Origin: Synthetic.

- Description: Obtained by heating a stoichiometric mixture of manganese oxide, ammonium dihydrogen arsenate, and potassium carbonate first at 400 \degree C for 4 h and thereafter at 800 \degree C for 48 h. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 12.490(1)$, $b = 13.013(1)$, $c = 6.888(1)$ Å, $\beta = 114.46(2)^\circ$, $V = 1019.2(8)$ Å 3 , $Z = 4$. $D_{\text{meas}} = 4.28(4)$ g/cm³, $D_{\text{calc}} = 4.30$ g/ cm³ .
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chaalia et al. (2012).

- Wavenumbers (cm⁻¹): 888, 828s, 803s, 766sh, 730, 670sh, 621sh, 572w, 520sh, 471, 449, 415, 397, 367, 357, 342, 317s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

As334 Potassium sodium iron arsenate $Na_{2.77}K_{1.52}Fe_{2.57}(AsO_4)_{4}$ $Na_{2.77}K_{1.52}Fe_{2.57}(AsO_4)_{4}$

Origin: Synthetic.

- **Description**: Green crystals obtained by solid-state reaction from a mixture of Na₂CO₃, K₂CO₃, Fe $(NO₃)₃·9H₂O$, and $(NH₄)(H₂AsO₄)$ with a Na:K:Fe:As molar ratio of 1:1:1:5, first at 400 °C for 24 h and thereafter (after intermediate grinding) at 850 °C for 72 h. Characterized by powder X-ray diffraction data and EDS analysis. The crystal structure is solved. Orthorhombic, space group Cmce, $a = 10.854(4)$, $b = 20.985(8)$, $c = 6.536(2)$ Å, $V = 1488.7(9)$ Å³, $Z = 4$. $D_{calc} = 3.669$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ouerfelli et al. (2015).

Wavenumbers $(cm⁻¹)$: 1081sh, 1017sh, 870s, 796s, 718, 570sh, 518sh, 447, 362s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

As335 Potassium zirconium arsenate $KZr_2(AsO₄)_3$

- **Description:** Colorless polycrystalline powder obtained by evaporation of aqueous solution containing stoichiometric amounts of KNO₃, ZrOCl₂.8H₂O, and H₃AsO₄ at 90 °C, drying at 270 °C and sintering at 600 and 850–950 °C with intermediate grindings. Characterized by powder X-ray diffraction data. Trigonal, space group $R-3c$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Absorption.

Source: Borovikova et al. (2014).

Wavenumbers (IR, cm⁻¹): 1080w, 1017, 954sh, 868s, 847sh, 493w, 468, 396, 371, 348sh, 308s, 288sh, 223, 189w, 173w, 133w, 119w, 84w, 71w, 60w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 982s, 949, 862s, 857s, 842, 468w, 437, 381w, 358, 255, 237.

As336 Scandium arsenate monohydrate Sc(AsO₄)∙H₂O

Origin: Synthetic.

- **Description:** Colorless platy crystals prepared from Sc_2O_3 , hydrated arsenic acid, and Li₂CO₃ by hydrothermal synthesis at 493 K for 7 days. Triclinic, space group $P-1$, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran et al. (2006).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 3300s, 3203s, 1641, 978s, 899s, 849s, 793s, 746, 540, 486.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 1638, 935s, 866s, 832s, 805, 744w, 484, 385, 347, 323w, 287, 244w, 188w, 167, 138.

- **Description**: $\text{Na}_3\text{In}_2(\text{AsO}_4)$ ₃ was synthesized by a solid-state reaction between NaHCO₃, In₂O₃, and $(NH_4)(H_2AsO_4)$, as well as by a chemical attack of the reagents $(NaHCO_3, In_2O_3, As_2O_3)$ by nitric acid. Characterized by powder X-ray diffraction data. The crystal structure is solved by the Rietveld method. Monoclinic, space group $C2/c$, $a = 12.6025(1)$, $b = 13.1699(1)$, $c = 6.8335(1)$ Å, $\beta = 113.7422(5)$ °, Z = 4.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Khorari et al. (1997).

Wavenumbers (IR, cm⁻¹): 917s, 842sh, 820s, 802sh, 772s, 505s, 497sh, 477s, 447, 432, 407s, 379, 349, 340, 312, 298, 257w, 230w, 214s, 186s, 167sh, 125w, 110w, 90w, 80w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 934s, 907w, 990, 866s, 855, 837, 832sh, 806sh, 796, 773, 480s, 472sh, 419, 397, 378w, 369w, 354w, 328, 284, 271, 231w, 168, 149, 133, 122, 96w, 90w, 86w, 78.

Description: Prepared by stepwise heating of the mixture of NaCl, PbO, $Nd₂O₃$, and As₂O₅, first at 350 °C and thereafter (after intermediate grindings) at 650, 800, and 850 °C for 2 h at each temperature. Characterized by powder X-ray diffraction data. Hexagonal, space group $P6_3/m$, $a = 10.08(1)$, $c = 7.21(1)$ Å, $V = 634.4$ Å³, $Z = 1$. $D_{\text{meas}} = 6.3$ g/cm³, $D_{\text{calc}} = 6.49$ g/cm³. The strongest lines of the powder X-ray diffraction pattern $[d, Å (I, %) (hkl)]$ are: 4.12 (18) (111), 3.60 (19) (002), 3.294 (27) (210), 2.999 (100) (211), 2.929 (44) (112), 2.906 (53) (300), 1.943 (19) (213), 1.928 (18) (321). Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Escobar and Baran (1982).

Wavenumbers (IR, cm⁻¹): 858s, 822sh, 803s, 773sh, 441, 412, 385, 335sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 850, 822s, 800, 772, 410, 330.

As339 Sodium nickel iron(III) arsenate NaNiFe₂(AsO₄)₃

- **Description:** Crystals obtained from a stoichiometric mixture of Na₂CO₃, NiO, Fe₂O₃, and As₂O₅ by solid-state reaction at 800 \degree C for 15 h with intermediate grindings. Characterized by chemical analyses and powder X-ray diffraction data. Monoclinic, space group $P2_1/c$, $a = 7.06(1)$, $b = 9.38$ (1) , $c = 19.63(1)$ Å, $\beta = 114.2(1)$ °, $V = 1186(2)$ Å³, $Z = 4$. $D_{\text{meas}} = 3.40(1)$ g/cm³, $D_{\text{calc}} = 3.42$ g/ cm³. The strongest lines of the powder X-ray diffraction pattern [d, \AA (I, %) (hkl)] are: 5.63 (56) (-111), 2.847 (98) (-204), 2.815 (100) (-222), 2.654 (56) (220), 2.263 (57) (-227).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Augsburger et al. (1992).

- Wavenumbers (cm⁻¹): 901s, 860s, 820sh, 789s, 700sh, 592w, 584sh, 515sh, 496, 474, 447sh, 390, 334.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

As340 Sodium zirconium arsenate $NaZr_2(AsO₄)_3$

Origin: Synthetic.

- Description: Obtained by precipitation from aqueous solutions containing stoichiometric amounts of NaNO₃ + ZrOCl₂.8H₂O and H₃AsO₄ with subsequent stepwise heating the precipitate at 90, 270, 600, and 850–950 °C with intermediate grindings. Characterized by powder X-ray diffraction data. Trigonal, space group $R-3c$, $Z = 6$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Absorption.

Source: Borovikova et al. (2014).

Wavenumbers (IR, cm⁻¹): 1017, 955, 872s, 852s, 483, 406w, 369sh, 313s, 290, 217w, 206w, 182w, 129w, 93w, 75w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 979s, 948, 863s, 856s, 837, 472w, 446, 389, 363, 340, 256.

As341 Sodium zirconium arsenate $NaZr_2(AsO₄)_3$

Origin: Synthetic.

Description: Obtained by evaporation of an aqueous solutions containing stoichiometric amounts of NaNO₃, ZrOCl₂.8H₂O, and (NH₄)(H₂AsO₄) and subsequent stepwise heating the resulting powder up to 800 \degree C with intermediate grindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group R-3c, $a = 9.1518(2)$, $c = 23.1097(4)$ Å, $V = 1676.26(1)$ \mathring{A}^3 , $Z = 6$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Chakir et al. (2003).

Wavenumbers (IR, cm⁻¹): 1017, 953, 870s, 855s, 478.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 978.5s, 949, 863s, 837, 470w, 446, 390w, 362w, 339, 300w, 255, 236w, 179w, 153w, 115, 63.

As342 Tantalum oxyarsenate $Ta(AsO₄)O$

Description: Orthorhombic, $a = 11.57$, $b = 5.31$, $c = 6.66$ Å.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Chahboun et al. (1988).

Wavenumbers $(cm⁻¹)$: 1082, 927sh, 868s, 800, 770, 698, 672sh, 416, 398.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

As343 Zirconium acid arsenate monohydrate α -Zr(HAsO₄)₂⋅H₂O

Origin: Synthetic.

- Description: Prepared in the reaction of zirconyl chloride with a mixture of arsenic and hydrochloric acids with subsequent refluxing and drying at 110 °C. Characterized by DSC and powder X-ray diffraction data. Monoclinic, $a = 9.146(1)$, $b = 5.381(5)$, $c = 16.61(2)$ Å, $\beta = 111.5^{\circ}$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Slade et al. (1997).

Wavenumbers (IR, cm⁻¹): 3573, 3508, 3160s, 1615, 1192, 1004, 926sh, 868s, 784.

- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2320 to 2380 cm^{-1} correspond to atmospheric CO2. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 983, 882s, 869s, 808, 785, 775, 423sh, 410, 363w, 326, 287, 165w, 136, 107w, 78w, 65w, 51w.

As344 Allactite Mn^{2+} ₇(AsO₄)₂(OH)₈

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden.

Description: Red crystals from the association with native lead, calcite, dolomite, domeykite, and pyrochroite. The crystal structure is solved for two prismatic crystals. Monoclinic, space group $P2₁$ / $n, a = 5.482 - 5.5225, b = 12.153 - 12.276, c = 10.014 - 10.123$ Å, $\beta = 95.55 - 95.63^{\circ}, Z = 2.$ $D_{\text{calc}} = 3.856 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.554(2)$, $\beta = 1.558(2)$, $\gamma = 1.566(2)$, $2V = 70(5)^\circ$. The empirical formula is (electron microprobe): $Mn^{2+}{}_{6.73}Ca_{0.13}Mg_{0.12}Zn_{0.02})As^{5+}{}_{2.00}O_{16}H_8$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Gatta et al. (2016).

Wavenumbers (cm⁻¹): 3570sh, 3562, 3484s, 3446sh, 3387sh, 3288, 3236sh.

As345 Arhbarite $Cu₂Mg(AsO₄)(OH)₃$

- Origin: Aghbar Mine (Arhbar Mine), Aghbar, Bou Azzer District, Tazenakht, Ouarzazate Province, Morocco (type locality).
- Description: Blue aggregates from the association with dolomite, hematite, löllingite, pharmacolite, erythrite, talc, and mcguinessite (the type material). Characterized by powder X-ray diffraction data. Triclinic, space group P1, $a = 5.315(4)$, $b = 5.978(6)$, $c = 5.030(6)$ Å, $\alpha = 113.58(6)$ °, $\beta = 97.14$ (7)°, $\gamma = 89.30(8)$ °, $V = 145.2(1)$ Å³, $Z = 1$. The empirical formula is (electron microprobe): $Cu_{1.98}(Mg_{0.88}Cu_{0.09}Ni_{0.01}Co_{0.01})(AsO₄)_{1.02}(OH)_{2.92}.$
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.
- Source: Krause et al. (2003).
- Wavenumbers (IR, cm⁻¹): 3520, 3345, 1676sh, 1647, 1547, 1512, 1456, 1371, 1081, 1036, 958, 820s, 690, 504s, 453s, as well as bands in the ranges 3600–3800, 2800–3200, and 1800–2200 cm^{-1} .
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The bands in the ranges $1800-3000$ and $1300-1500$ cm⁻¹ indicate possible presence of acid arsenate groups. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3525, 3355w, 956w, 840s, 820, 681w, 512sh, 489, 464s, 409w, 331, 318, 141.

As346 Bettertonite Al₆(AsO₄)₃(OH)₉⋅16H₂O

Origin: Penberthy Croft Mine, St Hilary, Mount's Bay District, Cornwall, England, UK (type locality). Description: No data. Possibly, type material.

Kind of sample preparation and/or method of registration of the spectrum: Powdered sample. Absorption.

Source: Grey et al. (2016b).

- Wavenumbers (cm⁻¹): 3250s, 3060sh, (2960), (2930), (2855), 2645w, 1630, 1162w, 1078s, 1064sh, 884sh, 855, 795, 775, 690w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band denoted by Grey et al. (2016b) as 1070 cm^{-1} was identified as a doublet $(1078+1064 \text{ cm}^{-1})$.

As347 Canosioite $Ba_2Fe^{3+}(AsO_4)_2(OH)$

Origin: Valletta mine, Maira Valley, Cuneo Province, Piedmont, Italy (type locality).

- Description: Reddish-brown granules from the association with aegirine, baryte, calcite, hematite, Mn-bearing muscovite, as well as unidentified Mn oxides and arsenates. Holotype sample. The crystal structure is solved. Monoclinic, space group $P2_1/m$, $a = 7.8642(4)$, $b = 6.1083(3)$, $c = 9.1670(5)$ Å, $\beta = 112.874(6)^\circ$, $V = 405.73(4)$ Å³, $Z = 2$. $D_{calc} = 4.943$ g/cm³. Optically biaxial (+), $2V = 84(2)^\circ$. The empirical formula is (electron microprobe): $(Ba_{1.92}Pb_{0.05}Sr_{0.02}Na_{0.01})$ $(Fe^{3+}$ _{0.52}Mn³⁺_{0.29}Al_{0.16}Mg_{0.06})[(As_{0.64}V_{0.36})O₄]₂(OH)_{0.92}F_{0.01}·0.07H₂O. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 3.713 (18) (111), 3.304 (100) (21-1), 3.058 (31) (020), 3.047 (59) (10-3), 2.801 (73) (112), 2.337 (24) (220), 2.158 (24) (12-3).
- Kind of sample preparation and/or method of registration of the spectrum: Reflection using IR microscope. Kind of sample preparation is not indicated.

Source: Cámara et al. (2016a).

- Wavenumbers (IR, cm⁻¹): 3405sh, 3278sh, 3175, 3139sh, (2366), (2326), 1061sh, 1035, 849s, 787s, 762, 692sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Weak bands in the range from 2300 to 2400 cm^{-1} correspond to atmospheric $CO₂$. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 896s, 862s, 838s, 820sh, 779w, 719sh, 686, 595w, 507, 478, 457, 368s, 326, 282, 234, 187, 163, 147, 133.

As348 Cheralite La-bearing CaLaTh $(AsO₄)₃$

Origin: Synthetic.

Description: Prepared using a solid-state reaction technique. Characterized by powder X-ray diffraction data. Monoclinic, isostructural with monazite, space group $P2_1/m$, $a = 6.883(5)$, $b = 7.070(6)$, $c = 6.674(7)$ Å, $\beta = 104.74(8)^\circ$, $V = 314.1$ Å³, $Z = 4$. $D_{\text{meas}} = 5.80$ g/cm³, $D_{\text{calc}} = 5.83$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: CsBr disc. Transmission.

Source: Nabar and Sakhardande (1985).

Wavenumbers (cm⁻¹): 880sh, 874sh, 864sh, 851s, 823sh, 801sh, 790sh, 772sh, 454sh, 440s, 410sh, 350, 320sh.

As349 Fetiasite $(Fe^{2+},Fe^{3+},Ti^{4+})_3(As^{3+}{}_2O_5)O_2$

- Origin: Cervandone Mt., Val Devero, Baceno, Verbano-Cusio-Ossola province, Piedmont, Italy (type locality).
- Description: Brown to black aggregates from the association with asbecasite, cafarsite, cervandonite, etc. Holotype sample. The crystal structure is solved. Monoclinic, space group $P2_1/m$, $a = 10.614(2)$, $b = 3.252(1)$, $c = 8.945(1)$ Å, $\beta = 108.95(2)$ °, $V = 291.9(2)$ Å³, $Z = 2$. $D_{\text{meas}} = 4.6 \text{ g/cm}^3$, $D_{\text{calc}} = 4.76 \div 4.80 \text{ g/cm}^3$. The empirical formula is (electron microprobe): $(Fe^{2+}{}_{1.38}Fe^{3+}{}_{0.92}Ti_{0.54}Mn_{0.08})(As^{3+}{}_{2}O_5)O_2$. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 2.985 (67) (-103), 2.811 (94) (202, 301), 2.749 (100) (-211, 210), 2.391 (85) (112), 1.779 (48) (-504, –511), 1.709 (35) (510, –603).
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Graeser et al. (1994).

Wavenumbers (cm⁻¹): 1142w, 1090sh, 1007w, 929sh, 856sh, 774s, 659s, 599sh, 519w, 459sh, 410, 322w, (286).

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. No data on absorptions above 2000 cm^{-1} are given. Consequently, the presence of OH groups in fetiasite cannot be excluded.

As350 Johnbaumite Sr-analogue $Sr_5[(AsO₄)₂(PO₄)](OH)$

Origin: Synthetic.

- **Description**: Apatite-type compound prepared from aqueous solutions of $Sr(NO₃)₂$, $(NH₄)₂(HPO₄)$, and $\text{Na}_3(\text{AsO}_4)\cdot\text{H}_2\text{O}$ and $(\text{NH}_4)(\text{OH})$ with subsequently heating a precipitate first at 100 °C for 2 h and thereafter at 850 \degree C for 2 h. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Galera-Gomez et al. (1982).

- Wavenumbers (cm⁻¹): 3593w, 1061sh, 1030s, 946, 848s, 832sh, 593s, 565s, 548sh, 452, 413, 380, 320, 307, (240), (207s), and bands in the range of $1400-1500$ cm⁻¹.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. Bands in the range of $1400-1500$ cm⁻¹ correspond to carbonate groups.

As351 Kaatialaite Fe³⁺(H₂AsO₄)₃∙5H₂O

Origin: Synthetic.

Description: Greenish blue aggregates. Monoclinic, space group P₂₁ or P₂₁/m, $a = 15.363(5)$, $b = 19.844(5)$, $c = 4.736(2)$ \mathring{A} , $\beta = 91.77(3)$ °, $Z = 4$. $D_{meas} = 2.62(3)$ g/cm³, $D_{calc} = 2.62$ g/cm³. Optically biaxial (+), $\alpha = 1.581(2)$, $\beta = 1.582$ (calculated), $\gamma = 1.625(2)$, $2V = 15(2)^\circ$. The strongest lines of the powder X-ray diffraction pattern $[d, \dot{A}(I, \mathcal{C}_0)(h\dot{k}l)]$ are: 9.94 (50) (020), 8.33 (100) (120), 7.68 (70) (200), 6.08 (40) (130), 3.410 (40) (231), 3.153 (45) (24-1).

Kind of sample preparation and/or method of registration of the spectrum: KI disc. Transmission. Source: Raade et al. (1984).

Wavenumbers (cm⁻¹): 2380, 1670sh, 1620, 1390w, 1225w, 1125sh, 865sh, 845s, 770sh, 755, 635sh, 585, 465, 403sh, 358w, 330, 315sh, 285sh, 265sh, 250.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

As352 Katiarsite KTi $(AsO₄)O$

- **Description**: Prepared by heating a mixture of K_2CO_3/KNO_3 , TiO₂, and $(NH_4)(H_2ASO_4)$ powders taken in stoichiometric amounts first at 500 °C for 12 h and thereafter at 900 °C for 24 h with intermediate grinding. Characterized by powder X-ray diffraction data. Orthorhombic, space group *Pna*2₁, $a = 12.815(8)$, $b = 6.402(4)$, $c = 10.589(6)$ Å, $V = 868.7$ Å³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Rangan et al. (1993).

Wavenumbers (cm⁻¹): 965w, 864s, 847s, 815s, 777s, 687s, 520, 473w, 440, 419, 381s, 357, 313.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

As353 Lemanskiite NaCaCu₅(AsO₄)₄Cl∙5H₂O

- Origin: Abundancia mine, El Guanaco miningdistrict, Region II, Antofagasta province, Chile (type locality).
- Description: Dark sky blue massive nodule from the association with lammerite, olivenite, mansfieldite, sénarmontite, a mineral of the crandallite group, rutile, anatase, and talc. Holotype sample. Described as tetragonal (P4₁22 or P4₃22) mineral with $a = 9.9758(4)$, $c = 36.714(1)$ Å, $V = 653.6(2)$ Å³, $Z = 8$. $D_{\text{meas}} = 3.78(1) \text{ g/cm}^3$, $D_{\text{calc}} = 3.863(5) \text{ g/cm}^3$. Optically uniaxial (-), $\varepsilon = 1.647(2)$, $\omega = 1.749(2)$. The empirical formula is $Na_{1.04}Ca_{1.00}Cu_{5.01}(AsO_{4})_{4.00}Cl_{0.96}(OH)_{0.11}$.4.93H₂O. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 9.60 (9) (101), 9.177 (100) (004), 4.588 (32) (008), 4.167 (10) (108), 3.059 (15) (0.0.12).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ondruš et al. (2006).

- Wavenumbers (cm⁻¹): 3559sh, 3521sh, 3437s, 3229sh, 1630sh, 1618, 927, 902sh, 880sh, 839s, 815s, 789s, 541, 485, 440.
- Note: Weak bands in the range from 2800 to 3000 cm^{-1} correspond to the admixture of an organic substance.

As354 Lemanskiite NaCaCu₅(AsO₄)₄Cl·3H2O

Origin: Perseverancia deposit, Guanaco, Antofagasta, Chile.

Description: Blue crystals. A sample used for the revision of the lemanskiite chemical formula. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/m$, $a = 9.250(2)$, $b = 10.0058(10)$, $c = 10.0412(17)$ Å, $\beta = 97.37(3)$ °, $V = 921.7(3)$ Å³, $Z = 2$. The empirical formula is Na_{0.98}(Ca_{0.98}Sr_{0.03}) 921.7(3) \mathring{A}^3 , $Z = 2$. $Na_{0.98}(Ca_{0.98}Sr_{0.03})$ $Cu_{5.07}As_{3.97}O_{15.97}Cl_{1.03}33H_2O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3551s, 3535sh, 3441, 3419, 3303s, 3224, 1734w, 1621, 1580sh, 1225w,

1102w, 928, 875sh, 838s, 813s, 791s, 629w, 539s, 483s, 439.

Note: The spectrum was obtained by N.V. Chukanov.

As355 Penberthycroftite Al₆(AsO₄)₃(OH)₉⋅13H₂O

Origin: Penberthy Croft mine, St. Hilary, Cornwall, England, UK (type locality).

- Description: White rectangular laths from the association with arsenopyrite, bettertonite, bulachite, cassiterite, chalcopyrite, chamosite, goethite, liskeardite, pharmacoalumite–pharmacosiderite, and quartz. Holotype sample. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 7.753$ (2) \AA , $b = 24.679(5)$ \AA , $c = 15.679(3)$ \AA , $\beta = 94.19(3)$ °, $V = 2991.9(12)$ \AA ³, $Z = 4$. $D_{\text{calc}} = 2.18$ g/ cm³. The empirical formula is Al_{5.96}Fe_{0.04}[(As_{0.97}Al_{0.03})O₄]₃(SO₄)_{0.26}(OH)_{8.30}·13.24H₂O. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \mathcal{D})$ (hkl)] are: 13.264 (46) (011), 12.402 (16) (020), 9.732 (100) (021), 7.420 (28) (110), 5.670 (8) (130), 5.423 (6) (-131).
- Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of powdered mineral.

Source: Grey et al. (2016a).

- Wavenumbers (cm⁻¹): 3275s, 3025sh, 2930sh, 2645w, 1630, 1160sh, 1105sh, 1082, 1057sh, 885sh, 858, 796, 774, 690w, 650w, 617w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

As356 Petewilliamsite-related Cd diarsenate $Cd_2As_2O_7$

Origin: Synthetic.

Description: Prepared by solid-state reaction of CdO and As_2O_5 at 873 K for 10–12 days. Monoclinic, space group $C2/m$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Baran and Weil (2004).

Wavenumbers (IR, cm⁻¹): 953, 890sh, 854s, 812s, 472, 393, 341, 310.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 880s, 810w, 489w, 358, 423, 323, 294, 216w.

As357 Bradaczekite $NaCu₄(AsO₄)₃$

Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka peninsula, Russia.

Description: Deep blue coarse crystals. Investigated by I.V. Pekov.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Baseline correction has been applied.

Wavenumbers (cm⁻¹): 1176w, 1135w, 890sh, 870sh, 837s, 805, 781s, 724, 648, 563, 513w, 459, 442w, 404, 375.

Note: The spectrum was obtained by N.V. Chukanov.

As358 Vysokýite $U^{4+}(H_2AsO_4)_4.4H_2O$

Origin: Geschieber vein, Svornost shaft, Jáchymov, Krušné Hory Mts. (Ore Mts.), Czech Republic (type locality).

Description: Aggregates of green acicular crystals from the association with štěpite. The sample was received from the authors of the first description of vysokýite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3452, 3350, 3273, 3132, 3022, 2368w, 1662, 1463w, 1401, 1231, 1200sh,

1135sh, 1108, 1053w, 936, 869, 853s, 831s, 815s, 757, 651, 621, 591, 575sh, 490sh, 424, 373. Note: The spectrum was obtained by N.V. Chukanov.

As359 Ludlockite $PbFe^{3+}_{4}As^{3+}_{10}O_{22}$

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Description: Brownish-red acicular crystals from a sulfide aggregate. Investigated by A.V. Kasatkin. Holotype sample. The empirical formula is (electron microprobe): $Pb_{1,00}Fe_{3,65}As_{10,35}O_{22}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1090w, 1025w, 770, 731, 697w, 632s, 606s, 552, 519, 508, 460, 441, 403w, 365.

As360 Kamarizaite $Fe^{3+}{}_{3}(AsO_4)_2(OH)_3.3H_2O$

Origin: Hilarion mine, Agios Konstantinos, Lavrion mining District, Attikí (Attika, Attica) Prefecture, Greece.

Description: Fine-grained, porcelain-like yellow pseudomorphs after grains of an unknown ore mineral from the association with goethite, scorodite, and jarosite. Investigated by I.V. Pekov.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3556, 3380sh, 3321s, 3230sh, 3140sh, 2156w, 1635, 1550w, 1150sh, 1089, 1040, 1013, 911s, 886, 870sh, 834s, 805s, 675sh, 614, 540, 505, 477, 431, 387.

Note: The spectrum was obtained by N.V. Chukanov.

As361 Symplesite $Fe^{2+}(AsO_4)_2$ ∙8H₂O

Origin: Saubach, near Mildenberg, Vogtland, Saxony, Germany.

Description: Black acicular crystals. Characterized by powder X-ray diffraction data. Triclinic, space group P-1, $a = 7.785$, $b = 9.259$, $c = 4.751$ Å, $\alpha = 93.053^{\circ}$, $\beta = 98.139^{\circ}$, $\gamma = 106.379^{\circ}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Makreski et al. (2015b).

Wavenumbers $(cm⁻¹)$: 3377, 3000s, 1630, 848, 779s, 736, 578w, 433.

Origin: Clara Mine, Schwarzwald, Germany (type locality).

Description: Random aggregates of olive green acicular hexagonal crystals growing on fluorite. The crystal structure is solved. Hexagonal, space group $P6_3/m$, $a = 13.598(6)$ Å, $c = 5.954(3)$ Å, $V = 953.5(2)$ \AA^3 , $Z = 2$. The empirical formula is (electron microprobe): $[(Ce_{0.32}La_{0.19}Nd_{0.15}Pr_{0.06}Gd_{0.04}Y_{0.04}Sm_{0.03}Eu_{0.02})Ca_{0.20}Sr_{0.06}](Cu_{5.74}Fe^{3+}{}_{0.16}Mn^{2+}{}_{0.02})$ $[(AsO₄)_{2.89}(PO₄)_{0.04}(SiO₄)_{0.04}(SbO₄)_{0.03}](OH)_{5.97}O_{0.03}·3H₂O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3492, 3340, 1965w, 1720sh, 1641, 1560w, 1460w, 1397w, 1243w, 1154w, 1092w, 993, 876s, 846s, 807s, 695, 530s, 499, 464, 429, 385.

Note: The spectrum was obtained by N.V. Chukanov. The weak bands in the range from 1092 to 1560 cm^{-1} correspond to isolated H⁺ cations that do not form strong covalent bonds with coordinating O atoms.

As363 Agardite-(Nd) $NdCu^{2+6}(AsO₄)₃(OH)₆·3H₂O$

Origin: Hilarion Mine, Agios Konstantinos (Kamariza), Lavrion District, Attikí Prefecture.

Description: Bluish green acicular crystals growing [with zones of agardite-(La)] from the association with zincolivenite, azurite, malachite, and calcite. Holotype sample. Hexagonal, space group $P6_3/m$, $a = 13.548(8)$ Å, $c = 5.894(6)$ Å, $V = 937(2)$ Å³, $Z = 2$. The empirical formula is $[(Nd_{0.19}La_{0.14}Y_{0.12}Pr_{0.05}Gd_{0.02}Ce_{0.02}Sm_{0.02}Dy_{0.02})Ca_{0.39}](Cu_{5.49}Zn_{0.44})$ $(AsO₄)₃(OH)_{5.38}·2.64H₂O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3491, 3340, 3220sh, 1968w, 1660, 1547w, 1460w, 1420w, 1250w, 1160w, 1098w, 1057w, 991, 874s, 843s, 804s, 695, 529s, 496, 469, 432, 393.

Note: The spectrum was obtained by N.V. Chukanov. The weak bands in the range from 1057 to 1547 cm^{-1} correspond to isolated H⁺ cations that do not form strong covalent bonds with coordinating O atoms.

As364 Chlorophoenicite $Mn_3Zn_2(HAsO_4)(OH)_8$

Origin: Sterling Hill, New Jersey, USA.

Description: White fibrous aggregate on rhodochrosite. The empirical formula is (electron microprobe): $(Mn_{2.68}Mg_{0.24}Fe_{0.02})Zn_{2.06} [H(As_{0.98}S_{0.02})O_4] (OH)_8.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3651, 3575, 3322s, 3180sh, 2930sh, 2487w, 2186w, 1700sh, 1577, 1235w, 1092, 998, 933w, 894, 793s, 688, 580, 503, 435, 419, 385w.

Note: The spectrum was obtained by N.V. Chukanov. Additional bands at 1424, 866, and 724 cm^{-1} correspond to admixed rhodochrosite.

As365 Gerdtremmelite $ZnAl₂(AsO₄)(OH)₅$

Origin: Tsumeb Mine, Tsumeb, Oshikoto Region, Namibia (type locality).

Description: Brown crust. Cotype sample received from Gerd Tremmel.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3586, 3535, 3389s, 3318, 999, 953, 857s, 825sh, 620sh, 570sh, 550s, 523, 459, (360).

As367 Badalovite $\text{Na}_2\text{Mg}_2\text{Fe}^{3+}(\text{AsO}_4)_3$

- Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka peninsula, Russia (type locality).
- Description: Yellow prismatic crystals from the association with calciojohillerite, hematite, fluorphlogopite, aphthitalite, and cassiterite. Investigated by I.V. Pekov. Characterized by singlecrystal X-ray diffraction data. Monoclinic, space group $C2/c$, $a = 11.90$, $b = 12.78$, $c = 6.66$ Å, β = 112.52°, V = 936.6 Å³, Z = 4. The empirical formula is (electron microprobe): $(Na_{1.61}Ca_{0.33}K_{0.03})(Mg_{1.78}Zn_{0.05}Mn_{0.03}Cu_{0.01})(Fe_{0.85}Al_{0.13})$ $[(AsO₄)_{2.94}(PO₄)_{0.04}(VO₄)_{0.01}(SO₄)_{0.01}].$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1695w, 1160sh, 1125sh, 1063w, 1033w, 850s, 832s, 805sh, 769s, 551, 490sh, 455s, 431s, 390sh, 375.

As368 Svabite $Ca₅(AsO₄)₃F$

- Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka peninsula, Russia.
- Description: White radiated aggregates from the association with calciojohillerite, anhydrite, berzeliite, diopside, and hematite. Investigated by I.V. Pekov. A V-bearing variety (As: $V \approx 94:6$). Characterized by single-crystal X-ray diffraction data. Hexagonal, space group $P6_3/m$, $a = 9.785, c = 6.946 \text{ Å}, V = 576.1 \text{ Å}^3, Z = 2.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers $(cm⁻¹)$: 877, 835s, 643w, 456, 418.

As369 Calciojohillerite NaCaMg₃(AsO₄)₃

- Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka peninsula, Russia (type locality).
- Description: Greenish-brown prismatic crystals from the association with hematite, tenorite, cassiterite, johillerite, bradaczekite, hatertite, nickenichite, badalovite (IMA2016-053), aphthitalite, langbeinite, calciolangbeinite, etc. Investigated by I.V. Pekov.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm^{-1}) : 848s, 830s, 549w, 495sh, 455, 429, 393, 373.

As370 Nickenichite $Na(\Box,Ca)(\Box,Cu)(Mg,Fe^{3+})_3(AsO_4)_3$

- Origin: Arsenatnaya fumarole, North Breach of the Great Fissure Tolbachik volcano, Kamchatka peninsula, Russia (type locality).
- Description: Violet prismatic crystals from the association with hematite, tenorite, johillerite, aphthitalite, etc. Investigated by I.V. Pekov. The empirical formula is (electron microprobe): $Na_{1.41}K_{0.03}Ca_{0.38}Cu_{0.17}Mg_{2.89}Fe_{0.31}Al_{0.09}[(As_{2.86}P_{0.03}V_{0.01}Si_{0.01})O_{12}].$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1175sh, 1109w, 852s, 835s, 772, 619w, 554, 489, 463, 432, 390, 374.

Note: The spectrum was obtained by N.V. Chukanov. The bands at 1175, 1109, and 619 cm^{-1} correspond to trace amounts of SO_4^2 ⁻ groups.

As371 Magnesiocanutite $NaMnMg_2[AsO_4]_2[AsO_2(OH)_2]$

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type locality). Description: Brown crystals from the association with magnesiokoritnigite and lavendulan. The empirical formula is (electron microprobe): $H_2Na_{1.0}Mn_{1.0}(Mg_{1.8}Mn_{0.15}Cu_{0.05})As_{3.0}O_{12}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3290sh, 3180, 2820, 2309, 1577, 1380, 1254, 863s, 837s, 738, 470, 411, 375. Note: The spectrum was obtained by N.V. Chukanov.

As372 Magnesiocanutite $NaMnMg_2[AsO_4]_2[AsO_2(OH)_2]$

- Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type locality).
- Description: Light brown crystals from the association with magnesiokoritnigite. A Mn-rich variety. The empirical formula is (electron microprobe): $H_2Na_{1,0}Mn_{1,0}(Mg_{1,2}Mn_{0,8})As_{3,0}O_{12}$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3290sh, 3110sh, 2825, 2338, 1577, 1372, 1263, 1120sh, 864s, 837s,
- 740, 472, 414, 374. Note: The spectrum was obtained by N.V. Chukanov.

As373 Canutite $NaMnMn_2[AsO_4]_2[AsO_2(OH)_2]$

- Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type locality).
- **Description:** Brown crystals. The empirical formula is (electron microprobe): $H_2Na_{1.0}Mn_{1.0}(Mn_{1.2}Mg_{0.7}Cu_{0.2})As_{3.0}O_{12}.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.
- Wavenumbers (cm⁻¹): 3290sh, 3110sh, 2825, 2338, 1577, 1372, 1263, 1120sh, 864s, 837s, 740, 472, 414, 374.

AsS27 Juansilvaite $Na₅Al₃(HAsO₄)₂(H₂AsO₄)₂(SO₄)₂·4H₂O$

Origin: Torrecillas mine, Salar Grande, El Tamarugal Province, Tarapacá Region, Chile (type locality).

Description: Pink crystals. Investigated by I.V. Pekov.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3578, 3527, 3444, 3105, 2900sh, 2385, 2350w, 2140w, 2098w, 2049w, 1627, 1215sh, 1185sh, 1146s, 1117s, 1068s, 985w, 945sh, 900sh, 883s, 851s, 807, 781, 761, 675, 630sh, 611, 593, 519, 459, 372.

Note: The spectrum was obtained by N.V. Chukanov.

UAs23 Uranospinite Ca(UO₂)₂(AsO₄)₂⋅10H₂O

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wilkins (1971).

Wavenumbers (cm⁻¹): 1654, 1400w, 948s, 901, 820s, 623, 602, 487, 405sh, 379s.

2.15 Selenides, Selenites, and Selenates

Se51 Aluminium acid selenite hydrate AlH(SeO₃)₂∙2H₂O

Origin: Synthetic.

Description: Prepared hydrothermally from a mixture of $Al(NO₃)₃·9H₂O$ and $H₂SeO₃$ at 70 °C. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 7.3853(5)$, $b = 6.4895(6)$, $c = 7.3958(7)$ Å, $\beta = 106.28(9)$ °, $V = 340.24$ Å³, $Z = 2$. $D_{\text{calc}} = 3.054$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Morris et al. (1991).

Wavenumbers $(cm⁻¹)$: 3376s, 1654, 1360, 1051, 870sh, 845sh, 790s, 730sh, 569s, 499, and a series of bands in the range from 2000 to 2800 cm^{-1} .

Se52 Aluminium selenite hydrate Al₂(SeO₃)₃⋅6H₂O

Origin: Synthetic.

Description: Prepared hydrothermally from a mixture of $AI(NO₃)₃·9H₂O$ and $H₂SeO₃$ at 70 °C. The crystal structure is solved. Trigonal, space group P31c, $a = 8.8020(6)$, $c = 10.7070(8)$ Å, $V = 718.39 \text{ Å}^3$, $Z = 2$. $D_{\text{calc}} = 2.468 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: No data. Source: Morris et al. (1991).

Wavenumbers $(cm⁻¹)$: 3320s, 1652, 1362, 860sh, 775s, 560, 475w. Note: The band at 1362 cm^{-1} may correspond to an impurity.

Se53 Barium cobalt selenite hydrate BaCo₂(SeO₃)₃∙3H₂O

Origin: Synthetic.

Description: Purple hexagonal prismatic crystals. Structurally related to zemannite. Hexagonal, space group $P6_3$, $a = 18.0430(6)$, $c = 7.6120(2)$ Å, $V = 2146.08(12)$ Å³, $Z = 8$. $D_{calc} = 4.272$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Johnston and Harrison (2011).

- Wavenumbers (cm^{-1}) : 3510, 3175, 3005, 1764w, 1630, (1381), 859, 795, 743s, 667s, 555w, 486s, 442s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 1381 cm^{-1} may be due to the admixture of potassium nitrate in the KBr disc.

Se54 Baryte selenate analogue $Ba(SeO₄)$

Origin: Synthetic.

- Description: Prepared by precipitation from aqueous solutions of sodium selenate and strontium chloride. The precipitate was dried at 150 °C. Isostructural with baryte. Orthorhombic, space group *Pnma*, $a = 9.006$, $b = 5.690$, $c = 7.353$ Å, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: Thin film on a CsBr plate. Transmission.
- Source: Scheuermann and Schutte (1973b).
- Wavenumbers (IR, cm^{-1}) : 1148w, 1112w, 1089w, 933, 880sh, 855s, 840s, 459, 405s, 390s, 358, 343.

Note: In the cited paper, Raman spectrum is given.

- Wavenumbers (Raman, cm⁻¹): 915, 905sh, 901, 898, 874, 866, 846s, 465, 437w, 423, 421, 418sh, 352s, 338s, 333.
- Note: The authors of the cited paper write: "There appears to be no combination of observed bands which would explain the three bands at 1089, 1112, and 1148 cm^{-1} satisfactorily." However, these bands may correspond to a sulfate impurity, which is typical for selenate reactants.

Se55 Bismuth(III) tellurite selenate $Bi_2(TeO_3)_2(SeO_4)$

Origin: Synthetic.

Description: Prepared hydrothermally from $Bi(NO_3)_3:5H_2O$, TeO_2 , and H_2SeO_4 at 230 °C for 4 days. Monoclinic, space group $I2/a$, $a = 8.0995(2)$, $b = 7.4835(2)$, $c = 14.8219(5)$ Å, $\beta = 97.824(3)$ °, $V = 890.03(4)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 6.807$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lee et al. (2013).

Wavenumbers $(cm⁻¹)$: 883sh, 856, 802w, 721s, 634s, 497, 449, 412.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se56 Cesium acid arsenate selenate $Cs₄(SeO₄)(HSeO₄)₂(H₃AsO₄)$

- **Description:** Synthesized by evaporation of aqueous solution of CsHSeO₄, Cs₃H(SeO₄)₂, and H₃AsO₄ at room temperature. Monoclinic, space group P_1 , $a = 5.973(1)$, $b = 13.691(3)$, $c = 11.910(3)$ Å, $\beta = 94.867(1)^\circ$, $V = 970.39(4) \text{ Å}^3$, $Z = 2$. $D_{\text{meas}} = 3.782 \text{ g/cm}^3$, $D_{\text{calc}} = 3.780 \text{ g/cm}^3$. Characterized by DSC and TG data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Amri et al. (2009).

Wavenumbers (cm⁻¹): 3434s (broad), 2920, 2854, 2798, 2400, 2338 (broad), 1640, 1492sh, 1414w, 1290, 1228sh, 1054w, 926s, 872s, 800s, 720, 465sh, 442w, 410w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se58 Lead selenate $PbSeO₄$

Origin: Synthetic.

Description: Prepared by precipitation from aqueous solutions of sodium selenate and lead acetate. Monoclinic, space group $P2_1/n$, $a = 7.153$, $b = 7.403$, $c = 6.957$ Å, $\beta = 103.27^{\circ}$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.

Source: Scheuermann and Schutte (1973b).

Wavenumbers (IR, cm⁻¹): 1114w, 1073w, 1044w, 876s, 857s, 820s, 427, 415, 394, 372, 366.

Note: The weak bands between 700 and 730 cm^{-1} may correspond to Nujol. The weak bands at 1114, 1073, and 1044 cm^{-1} assigned by Scheuermann and Schutte (1973b) to combination modes may actually correspond to the admixture of SO_4^2 anions. In the cited paper, Raman spectrum is given. Wavenumbers (Raman, cm⁻¹): 861, 844, 829, 818, 435, 428, 422, 411, 402, 385, 357, 326, 314.

Se59 Copper molybdate selenite $Cu_2(M_0O_4)(SeO_3)$

Origin: Synthetic.

Description: Synthesized hydrothermally from $MoO₃$, CuO, and SeO₂ at 210 °C for 4 days. Monoclinic, space group $P2_1/c$, $a = 8.148(5)$, $b = 9.023(5)$, $c = 8.392(5)$ Å, $\beta = 91.141(6)^\circ$, $V = 104.675(12) \text{ Å}^3$, $Z = 4$. $D_{\text{calc}} = 4.607 \text{ g/cm}^3$. In the crystal structure, Cu occupies two sites, each five-coordinated by three selenite oxygens and molybdate oxygens in a square pyramidal geometry.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Zhang et al. (2009c).

Wavenumbers (cm⁻¹): 942, 919s, 884sh, 869s, 806, 789, 711s, 679sh, 561, 512, 470.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se60 Indium vanadate selenite $In(VSe₂O₈)$ In(VSe₂O₈)

- **Description:** Prepared from In_2O_3 , V_2O_5 , and SeO_2 by a standard solid-state reaction technique. The crystal structure is silved. Monoclinic, space group Pm, $a = 4.6348(9)$, $b = 6.9111(14)$, $c = 10.507(2)$ Å, $\beta = 97.77(3)$ °, $V = 333.48(11)$ Å³, $Z = 2$. $D_{\text{calc}} = 4.498$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lee et al. (2011).

- Wavenumbers (cm⁻¹): 974, 940, 876sh, 854, 847, 822, 796, 709s, 701s, 695sh, 687s, 681sh, 674sh, 663, 543, 511, 501sh, 491sh, 458, 427.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Se61 Indium zinc selenite $In_2Zn(SeO_3)_4$ $In_2Zn(SeO_3)_4$

Origin: Synthetic.

- **Description:** Obtained by a standard solid-state reaction from ZnO, In_2O_3 , and SeO₂. Monoclinic, space group $P2_1/n$, $a = 8.4331(7)$, $b = 4.7819(4)$, $c = 14.6583(13)$ Å, $\beta = 101.684(6)$ °, $V = 578.87$ (9) \AA^3 , Z = 2. D_{calc} = 4.606 g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lee et al. (2012).

- Wavenumbers (cm⁻¹): 878sh, 864sh, 844, 832, 777sh, 747s, 715s, 696sh, 690s, 650sh, 589, 561sh, 535, 465sh, 430.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

4000

Se62 Iron dimolybdate selenite hydrate Fe₂(Mo₂O₇)(SeO₃)₂⋅H₂O Fe₂(Mo₂O₇)(SeO₃)₂⋅H₂O

Origin: Synthetic.

Description: Prepared hydrothermally from $MoO₃$, Fe₂O₃, and SeO₂ at 230 °C for 4 days. Characterized by TG and powder X-ray diffraction data. Monoclinic, space group C2/c, $a = 19.898(12), b = 5.469(3), c = 13.400(9)$ Å, $\beta = 132.140(13)^\circ$, $V = 1081.3(12)$ Å³, $Z = 4$. $D_{\text{calc}} = 4.223$ g/cm³. The crystal structure features a pillared-layered architecture composed of iron (III) selenite layers interconnected by $Mo₂O₁₀$ dimers.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Zhang et al. (2009c).

- Wavenumbers (cm⁻¹): 3305w, 1643, 1456w, 962s, 910s, 854s, 812, 781, 750sh, 744s, 685sh, 663s, 601s, 507, 460, 446sh, 415.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se63 Lanthanum selenite $La_2(SeO_3)_3$

- **Description**: Obtained by thermal decomposition of $La_2(Se_2O₅)(SeO₃)₂$. Monoclinic, space group $P2_1/m$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc (above 400 cm⁻¹) and polyethylene disc (below 400 cm⁻¹). Transmission.
- Source: Gopinath et al. (1998).
- Wavenumbers (IR, cm⁻¹): 856s, 800sh, 767s, 740sh, 688s, 486, 460s, 442, 412, 382, 368, 241, 201, 157, 96w, 79w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 852s, 812s, 790w, 744s, 480, 450s, 430sh, 408, 389, 365w, 250, 219sh, 203, 176, 167, 137w, 89w.

Se64 Lanthanum selenite $La₂Se₃O₉$

Origin: Synthetic.

Description: Monoclinic, space group $P2_1/m$, $a = 14.47(8)$, $b = 6.98(4)$, $c = 8.21(5)$ Å, $\beta = 91.0(7)^\circ$, $Z = 4$. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of sample preparation is not indicated.

Source: Pedro et al. (1995).

- Wavenumbers $(cm⁻¹)$: 854s, 838, 809sh, 800, 767s, 745s, 701s, 691sh, 503sh, 484, 460, 443, 415, 383w, 369, 360.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Se65 Lithium zinc selenite Li₂Zn₃(SeO₃)₄⋅2H₂O Li₂Zn₃(SeO₃)₄⋅2H₂O

Origin: Synthetic.

Description: Prepared hydrothermally from corresponding metal carbonates and SeO₂ at 230 °C for 6 days. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 8.123(4)$, $b = 9.139(4)$, $c = 7.938(3)$ Å, $\beta = 12.838(9)$ °, $V = 543.1(4)$ Å³, $Z = 4$. $D_{\text{calc}} = 4.501$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Liu et al. (2015c).

Wavenumbers $(cm⁻¹)$: 3440, 1630, 1490, 1395, 830, 730s, 670s, 515s.

Se66 Potassium acid selenite $K(HSeO₃)$

- **Description:** Crystals grown by slow evaporation of an aqueous solution formed by dissolving 2 moles of SeO and 1 mole of K_2CO_3 .
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Cody et al. (1978).

- Wavenumbers (IR, cm⁻¹): 3408w, 2784s, 2385s, 1750w, 1621, 1584sh, 1517sh, 1292sh, 1240, 1024, 835s, 728sh, 650s, 512sh, 408.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 826s, 665, 423, 403, 351, 341.

Se67 Potassium hydronium uranyl selenate hydrate K₃(H₃O)(UO₂)₄(SeO₄)₆⋅9H₂O

Origin: Synthetic.

Description: Yellow-green crystals prepared by evaporation of the mixture of an aqueous solution containing uranyl nitrate, selenic acid, potassium carbonate, and carbamide. The crystal structure is solved. Triclinic, space group $P2_1/m$, $a = 12.001(3)$, $b = 13.613(3)$, $c = 13.753(3)$ Å, $\beta = 109.187(4)$ °, $V = 2122.0(8)$ \AA^3 , $Z = 2$. $D_{calc} = 3.467$ g/cm³. The structure contains two kinds of uranyl cations which are coordinated by five and three O atoms.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Gurzhiy et al. (2014).

- Wavenumbers $(cm⁻¹)$: 3600sh, 3520, 3430s, 3260sh, 1698sh, 1635, 1561w, 1399w, 943s, 851s, 816s, ~680sh, 459, 392.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The weak band 1399 cm⁻¹ indicates that H_3O^+ groups are partly dissociated into H_2O and H^+ .

Se68 Potassium sodium selenate $K_3Na(SeO_4)_2$

Origin: Synthetic.

Description: Colorless crystals obtained at 300 K from a stoichiometric solution of sodium and potassium hydroxides and selenium acid with subsequent recrystallization from an aqueous solution. Trigonal, space group P-3m1.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Kaczmarski et al. (2000).

Wavenumbers $(cm⁻¹)$: 930, 877, 869sh, 848, 426sh, 415sh, 413.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se69 Potassium yttrium selenite $KY(SeO₃)₂$

- **Description:** Synthesized hydrothermally from K_2CO_3 , $Y(NO_3)_3·6H_2O$, and SeO₂ at 230 °C for 4 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group *Pnma*, $a = 13.3838(2)$, $b = 5.70270(10)$, $c = 8.6759(2)$ Å, $V = 662.18(2)$ Å³, $Z = 4. D_{\text{calc}} = 3.831 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Bang et al. (2014).

Wavenumbers (cm^{-1}) : 1425, 865, 850, 825, 797, 747s, 725sh, 670, 482sh, 468, 420sh, 409w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Transmittance 800 1200 1600 2000 2400 2800 3200 3600 400 4000 Wavenumber $(cm¹)$

Se70 Potassium zinc selenite $K_2Zn_3(SeO_3)_4$ $K_2Zn_3(SeO_3)_4$

Origin: Synthetic.

Description: Prepared hydrothermally from K_2CO_3 , ZnCO₃, and SeO₂ at 230 °C for 6 days. The crystal structure is solved. Monoclinic, space group C_2/c , $a = 11.3584(12)$, $b = 8.6091(9)$, $c = 13.6816(14)$ Å, $\beta = 93.456(2)^\circ$, $V = 1335.4(2)$ Å³, $Z = 4$. $D_{\text{calc}} = 3.890$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Liu et al. (2015c).

Wavenumbers $(cm⁻¹)$: 1080, 825s, 740s, 690s, 609, 525s, 474.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The band at 1080 cm^{-1} was assigned by the authors to Se–O vibrations. However this band as well as weak bands above 1080 cm^{-1} should be assigned to impurities.

Se71 Scandium vanadyl selenite α -ScVSe₂O₈

Origin: Synthetic.

Description: Prepared hydrothermally from Sc₂O₃, V₂O₅, and SeO₂ at 230 °C for 4 days. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 8.96460(10)$, $b = 5.12600(10)$, $c = 14.4802(2)$ Å, $\beta = 104.5740(10)^\circ$, $V = 570.09(10)$ Å³, $Z = 4$. $D_{\text{calc}} = 3.938$ g/cm³. The $Sc³⁺$ cations are in distorted octahedral coordination.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. **Source:** Kim et al. (2013).

Wavenumbers $(cm⁻¹)$: 941, 911w, 873s, 751s, 657s, 545, 487, 433w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Se72 Scandium vanadyl selenite β -ScVSe₂O₈

- **Description:** Prepared by a solid-state reaction from Sc_2O_3 , V_2O_5 , and SeO_2 , first at 350 °C for 5 h, and thereafter at 450 °C for 48 h. The crystal structure is solved. Monoclinic, space group $P2₁/c$, $a = 6.59040(10), b = 15.9098(3), c = 6.63740(10)$ Å, $\beta = 92.2790(10)$ °, $V = 695.39(2)$ Å³, $Z = 4$. $D_{\text{calc}} = 3.647$ g/cm³. The structure is composed of ScO₇, VO₅, and SeO₃ coordination polyhedra.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Kim et al. (2013).

- Wavenumbers (cm⁻¹): 991, 905, 883sh, 872, 860sh, 818s, 802s, 775s, 740s, 698sh, 594s, 566, 523, 480w, 455w.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Se73 Sodium acid selenite $Na(HSeO₃)$

Origin: Synthetic.

- **Description:** Crystals grown by slow evaporation of an aqueous solution containing 2 moles of $SeO₂$ and 1 mole of Na_2CO_3 .
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Cody et al. (1978).

Wavenumbers (IR, cm⁻¹): 3423, 2942sh, 2865, 2827sh, 2430, 2070sh, 1783w, 1630, 1450sh, 1412w, 1375sh, 1252sh, 1231, 912sh, 870sh, 842s, 825sh, 788s, 738sh, 650sh, 615s, 600sh, 420.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 871s, 845s, 813s, 785, 601, 583, 449, 439, 378, 353, 337, 319.

Se74 Sodium cadmium selenate hydrate NaCd(SeO₄)₂∙2H₂O

Origin: Synthetic.

Description: Monoclinic, space group $P2_1/c$.

Kind of sample preparation and/or method of registration of the spectrum: CsI or KBr disc. Transmission.

Source: Peytavin et al. (1972a).

Wavenumbers (IR, cm⁻¹): 920s, 900s, 870sh, 863s, 835s, 800sh, 722s, 618, 455, 425, 410s, 387, 372s, 348, 338, 263, 248s, 225, 204s.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 909, 889s, 882, 843s, 831s, 600w, 460, 433, 411, 357, 337, 308sh, 255w, 241sh, 168s.

Se75 Sodium lithium selenate hydrate Na₃Li(SeO₄)₂∙6H₂O

- **Description:** Colorless crystals grown by evaporation of an aqueous solution of Na₂SeO₄ and Li₂SeO₄ with a 1:1 ratio at 300 K. Trigonal, space group $R3c$, $Z = 2$. Confirmed by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Absorption.

Source: Hanuza et al. (2008a).

Wavenumbers (IR, cm⁻¹): 3505sh, 3443, 3370s, 3327, 3190, 2964sh, 1696, 1686, 1522w, 950, 892sh, 875s, 864sh, 852sh, 836sh, 796w, 770w, 677, 583sh, 553, 459w, 420, 398, 347sh, 295w, 242sh, 229, 209, 151, 140, 128, 100, 64w, 56w.

Note: In the cited paper, polarized Raman spectra are given.

Wavenumbers (Raman, with the $z(xx)z$ polarization, cm^{-1}): 3440, 3372, 3215, 1690w, 903w, 866sh, 853s, 835s, 807, 454, 419sh, 398, 354, 346sh, 283, 205, 190, 167, 153, 144, 114.

Se76 Sodium yttrium selenite $NaY(SeO₃)₂$

Origin: Synthetic.

- **Description:** Colorless crystals prepared hydrothermally from Na_2CO_3 , $Y(NO_3)$ ₃.6H₂O, and SeO₂ at $230 \degree$ C for 4 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group P_{21}^2 cn, $a = 5.397(2)$, $b = 8.525(2)$, $c = 12.765(2)$ Å, $V = 587.3(3)$ Å³, $Z = 4$. $D_{\text{calc}} = 4.132 \text{ g/cm}^3$. The structure is based on a 3D framework consisting of YO₇ monocapped trigonal prisms and $SeO₃$ trigonal pyramids.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Bang et al. (2014).
- Wavenumbers (cm⁻¹): (1420sh), 854, 835, 808sh, 777s, 749s, 728s, 708s, 516w, 500sh, 483, 471, 422.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

- **Description:** Prepared hydrothermally from Na_2CO_3 , $ZnCO_3$, and SeO_2 (with the molar ratio 1:1:2) at 230 °C for 6 days. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 15.7940(18)$, $b = 6.5744(8), c = 14.6787(17) \text{ Å}, \beta = 107.396(3)^\circ, V = 1454.5(3) \text{ Å}^3, Z = 4. D_{\text{calc}} = 3.589 \text{ g/cm}^3.$ The structure contains 2D $[Zn_3(SeO_3)_4]^2$ sheets.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Liu et al. (2015c).

Wavenumbers (cm⁻¹): 3560, 1635w, 1545w, 1410w, 800s, 780s, 715s, 496sh, 485s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se78 Strontium bismuth(III) selenite hydrate $Sr_3Bi_2(SeO_3)_6·H_2O$

- **Description**: Crystals grown hydrothermally using $SrCO₃$, $Bi₂O₃$, and $SeO₂$ as starting reactants, at 230 °C for 4 days. Characterized by powder X-ray diffraction and TG data. The crystal structure is solved. Monoclinic, space group $P2_1/m$, $a = 7.0054(10)$, $b = 17.5092(3)$, $c = 7.3053(10)$ Å, $\beta = 92.299(10)^\circ$, $V = 895.34(2)$ \AA^3 , $Z = 2$. $D_{\text{calc}} = 5.418$ g/cm³. Bi³⁺ has sevenfold coordination.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ahn et al. (2015).

Wavenumbers $(cm⁻¹)$: 3440, 1633w, 1114w, 807, 740s, 654sh, 469, 414.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se79 Strontium selenate SrSeO4

Origin: Synthetic.

- Description: Prepared by precipitation from hot aqueous solutions of sodium selenate and lead acetate. Monoclinic, space group $P2_1/n$, $a = 7.087$, $b = 7.317$, $c = 6.862$ Å, $\beta = 103.55^{\circ}$.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.

Source: Scheuermann and Schutte (1973b).

- Wavenumbers (IR, cm⁻¹): 1148, 1121w, 1091w, 919s, 904s, 884sh, 867s, 844s, 447s, 425, 414, 396, 381.
- Note: The bands in the range from 1000 to 1200 cm^{-1} may correspond to the admixture of a sulfate. Bands near 720 cm^{-1} may correspond to Nujol. In the cited paper, powder Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 913, 905, 898, 887, 882, 852, 464, 465, 445, 424, 396, 376, 340, 326.

Se80 Tellurium(IV) oxyselenate Te_2 (SeO₄)O₃

Origin: Synthetic.

Description: Prepared by heating a mixture of Te or Na₂(TeO₃) with 80% selenic acid at 160 °C. Characterized by chemical analyses and powder X-ray diffraction data. Orthorhombic, space group $P2_1$ mn, $a = 4.807$, $b = 8.628$, $c = 7.346$ Å, $V = 304.67$ Å³, $Z = 2$. $D_{\text{meas}} = 4.82$ g/cm³, $D_{\text{calc}} = 4.85$ g/ cm³. The strongest lines of the powder X-ray diffraction pattern [d, \AA (I, %) (hkl)] are: 4.028 (100) (101), 3.724 (80) (021), 3.649 (70) (111), 2.943 (70) (121), 2.921 (75) (102), 2.450 (75) (003).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Gaitán et al. (1985).

Wavenumbers (cm⁻¹): 1160w, 1130w, 915, 875s, 840s, 795s, 775sh, 645s, 505, 465, 430, 370, 350. Note: The bands above 1100 cm^{-1} may correspond to the admixture of a sulfate.

Se81 Tellurium oxyselenite $Te(SeO₃)O$

- **Description:** Prepared by heating a mixture of TeO₂ and SeO₂ (with the 1:1.15 molar ratio) at 370 °C for 3 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group Ia, $a = 4.3568(8)$, $b = 12.465(3)$, $c = 6.7176(15)$ Å, $\beta = 90.825(4)$ °, $V = 364.77(14) \text{ Å}^3$, $Z = 4$. $D_{\text{calc}} = 4.927 \text{ g/cm}^3$. Te has fivefold coordination.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Porter et al. (2001).

Wavenumbers $(cm⁻¹): 833, 715s, 650s, ~510, 488s.$

Se82 Vanadium(III) antimony(V) selenite $V\text{Sb}(SeO₃)₄$

Origin: Synthetic.

- **Description:** Prepared by heating a mixture of appropriate amounts of V_2O_5 , Sb_2O_3 , and SeO_2 , first at 380 °C for 5 h and thereafter at 600 °C for 48 h. After cooling the product to 400 °C at a rate of 6 °C/ h it was quenched to room temperature. Characterized by powder X-ray diffraction data. The crystal structure is solved. Cubic, space group Pa-3, $a = 8.0301(7)$ Å, $V = 517.80(8)$ Å³, $Z = 4$. $D_{\text{calc}} = 4.365$ g/cm³. The structure is based on a 3D framework consisting of (V,Sb)O₆ octahedra and $SeO₃$ groups.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Shin et al. (2013).

Wavenumbers $(cm⁻¹): 875w, 764s, 738sh, 700s, 557s, 466, 412w.$

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se83 Vanadyl selenite (VO)(SeO₃)

Origin: Synthetic.

- **Description**: Prepared by heating a mixture of $SeO₂$ and $VO₂$, taken in stoichiometric amounts, at 400 °C for 24 h. Characterized by powder X-ray diffraction data. The crystal structure contains dimers $[V_2O_8]^8$ ⁻ consisting of two square pyramids linked via common edge.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Rocha and Baran (1988).
- Wavenumbers (cm^{-1}) : 950, 865s, 775s, 625s, 560s, 535s, 505, 460, 440s, 400, 350, 335, 290w, 270w.

Se84 Yttrium vanadyl oxyselenite $Y(VO)(SeO₃)₂O$

- **Description:** Crystals grown hydrothermally from Y_2O_3 , V_2O_5 , and SeO₂ at 450 °C for 48 h with three intermediate regrindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group $Amb2$, $a = 10.4036(4)$, $b = 7.5904(3)$, $c = 7.8341(3)$ Å, $V = 618.64(4)$ Å³, $Z = 4$. $D_{\text{calc}} = 4.571$ g/cm³. V⁵⁺ has sixfold coordination with one short V-O bond.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- **Source:** Kim et al. (2014).
- Wavenumbers (cm^{-1}) : 926w, 862s, 845sh, 821s, 779s, 735s, 684s, 663s, 555, 538sh, 487, 477sh, 406s.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Se85 Alfredopetrovite $\text{Al}_2(\text{Se}^{4+}\text{O}_3)_3$ ∙6H₂O

Origin: Synthetic.

- **Description:** Hexagonal, space group $P62c$, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Ratheesh et al. (1997).

- Wavenumbers (IR, cm^{-1}) : 3286-2900s (broad), 1638 (broad), 1372w, 857sh, 770s, 570, 546 (broad), 492w (broad), 460, 421w, 372sh, 360, 310, 295sh, 241w, 221w.
- **Note**: The band at 1372 cm⁻¹ may correspond to the admixture of $NO₃⁻$ in KBr. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 3165s, 3024s, 1640w, 1329w, 874s, 831s, 750w, 722w, 704, 566w, 542, 532, 478w, 439w, 412, 347, 329w, 310w, 232, 191w, 174w, 123, 110, 92w, 74w.

Se86 Cobaltomenite Co(SeO₃)∙2H₂O

- Description: Prepared by precipitating an aqueous solution of cobalt(II) nitrate with aqueous solution of sodium selenite at 298 K. Characterized by powder X-ray diffraction data and chemical analyses. Monoclinic, space group $P2_1/n$, $a = 6.5322$, $b = 8.8251$, $c = 7.6455$ Å, $\beta = 80.478^{\circ}$, $V = 434.67 \text{ Å}^3$, $Z = 4$. $D_{\text{calc}} = 3.392 \text{g/cm}^3$. The strongest lines of the powder X-ray diffraction pattern $[d, \hat{A}(I, \%) (hkl)]$ are: 5.7388 (100) (011), 4.4125 (29) (020), 3.7770 (50) (002), 3.2488 (39) (112), 2.7393 (55) (122), 2.6546 (26) (202), 2.5421 (30) (212), 2.4740 (27) (103), 2.3731 (41) $(22-1)$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Vlaev et al. (2005).

Wavenumbers (cm⁻¹): 3430s, 3224s, 3129sh, 2924s, 1613, 1500, 815s, 790s, 700s, 576, 492s.

Se87 Cobalt selenite $Co(SeO₃)$

Origin: Synthetic.

- Description: Prepared by dehydration of Co(SeO₃)∙2H₂O. Characterized by powder X-ray diffraction data and chemical analyses. Monoclinic, space group $C2/c$, $a = 14.5378$, $b = 9.9880$, $c = 14.0460 \text{ Å}, \beta = 107.369^{\circ}, V = 1946.53 \text{ Å}^3$. $D_{\text{calc}} = 4.525 \text{ g/cm}^3$. The strongest lines of the powder X-ray diffraction pattern [d,Å(I, %) (hkl)] are: 7.3205 (40) (200), 4.1775 (26) (22-1), 3.7518 (24) (221), 3.6602 (32) (400), 2.8914 (100) (42-3), 2.8751 (87) (51-3), 2.8090 (77) (510), 2.7865 (31) (313), 2.4868 (29) (040).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Vlaev et al. (2005).

Wavenumbers (cm^{-1}) : (3426), (1624w), 845, 826, 742s, 700s, 600, 540, 513, 480, 426w.

Note: The bands at 3426 and 1624 cm^{-1} may correspond to adsorbed water.

Se88 Cobalt selenite hydrate Co(SeO3)∙1/3H₂O

Origin: Synthetic.

Description: Prepared by partial dehydration of Co(SeO₃)∙2H₂O. Characterized by powder X-ray diffraction data and chemical analyses. Triclinic, space group P-1, $a = 8.1197$, $b = 8.4383$, $c = 8.5345 \text{ \AA}, \ \alpha = 123.816^{\circ}, \ \beta = 90.538^{\circ}, \ \gamma = 111.591^{\circ}, \ \ V = 434.02 \text{ \AA}^3, \ Z = 4.5345 \text{ \AA}.$ $D_{\text{calc}} = 3.392 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Vlaev et al. (2005).

Wavenumbers (cm^{-1}) : 3390, 2988, 1626w, 858, 802, 726s, 700s, 526, 491, 460.

Se90 Orlandiite Pb₃Cl₄(Se⁴⁺O₃)⋅H₂O

Origin: Baccu Locci mine, near Villaputzu, Sardinia, Italy (type locality).

Description: White aggregates from the association with chalcomenite, pseudoboléite, anglesite, etc. Holotype sample. Triclinic, $a = 8.290(8)$, $b = 10.588(13)$, $c = 13.587(15)$ Å, $\alpha = 124.47(8)$ °, $β = 110.60(9)°$, $γ = 63.26(9)°$, $Z = 2$. $D_{calc} = 5.55$ g/cm³. The empirical formula is $Pb_3[Cl_{3.68}(OH)_{0.32}](SeO_3) \cdot H_2O$. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 4.000 (100) (002), 3.258 (75) (-121), 3.188 (75) (-201), 3.818 (55) (201), 3.731 (44) (122), 2.103 (40) (142).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Campostrini et al. (1999).

Wavenumbers $(cm⁻¹)$: 3410-3160 (broad), 1586, 788, 724.

2.16 Bromides

Br3 Barium bromide dihydrate BaBr₂∙2H₂O

Origin: Synthetic.

Description: Obtained by crystallization from aqueous solution at room temperature. Monoclinic, space group $C2/c$, $a = 10.449$, $b = 7.204$, $c = 8.385 \text{ Å}$, $\beta = 113.48^{\circ}$, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lutz et al. (1978).

Wavenumbers (IR, cm⁻¹): 3453sh, 3387s, 3200sh, 2775sh, 1613s, 1600s, 1417-1419, 1178-1186, 616sh, 561–566, (452), 420s.

Note: In the cited paper, Raman spectrum is given.

2.17 Molybdates

Mo40 Ammonium cuprooxopolymolybdate (NH₄)₄[H₆CuMo₆O₂₄]∙4H₂O (NH₄)₄[H₆CuMo₆O₂₄] $·4H₂O$

Origin: Synthetic.

- Description: Obtained by precipitation in aqueous solution. Characterized by powder X-ray diffraction data. The crystal structure has been published elsewhere. In the cluster $[H_6CuMo_6O_{24}]$, both Cu and Mo have octahedral coordination. Six protons are bonded to the O atoms of the $CuO₆$ central polyhedron.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto et al. (1994).

Wavenumbers (IR, cm⁻¹): 3388s, 3144s, 2768sh, 2070w, 1631w, 1399s, 927s, 906, 895sh, 876s, 692sh, 637s, 581, 562, 478w, 403, 352w, 321, 255.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3120w (broad), 936s, 916, 873, 690w, 574w, 495w, 344, 252.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectra.

Mo41 Ammonium heptamolybdate (NH₄)₆Mo₇O₂₄⋅4H₂O

Origin: Synthetic.

Description: Commercial reactant characterized by powder and single-crystal X-ray diffraction data. Monoclinic, $a = 8.395(7)$, $b = 36.204(3)$, $c = 10.4765$ Å, $\beta = 115.884^{\circ}$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Wienold et al. (2003).

Wavenumbers (cm⁻¹): 3420sh, 3173s, 3017sh, 2817sh, 1642, 1406s, 925sh, 915sh, 887s, 840, 792w, 667, 636s, 578, 479, 406.

Mo42 Ammonium nickel molybdate $(NH_4)Ni_2(HMoO_4)(MoO_4)(OH)_2$ $(NH_4)Ni_2(HMoO_4)$ $(MoO₄)(OH)₂$

- Description: Prepared as a green precipitate by adding concentrated ammonium hydroxide to the solution of $(NH_4)_{6}M_2O_{24}$ 4H₂O and nickel nitrate containing 0.10 mol of Mo and 0.10 mol of Ni. The crystal structure is solved. Trigonal, space group $R-3m$, $a = 6.0147(4)$, $c = 21.8812(13)$ Å, $V = 685.53(7)$ Å³, Z = 3. $D_{\text{calc}} = 3.446$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: Photoacoustic Fouriertransform IR spectroscopy.
- Source: Levin et al. (1996).
- Wavenumbers (IR, cm⁻¹): 3508sh, 3326, 3180, 3028, 2933, 2823, 1842, 1651, 1608, 1410, 1277, 913, 793, 746, 655, 512.
- Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 904, 321.

Mo43 Bismuth(III) ferrite dimolybdate $Bi_3(FeO_4)(MoO_4)_2$

Origin: Synthetic.

- **Description:** Synthesized from aqueous solution of ferric nitrate, bismuth nitrate, and ammonium molybdate heated first at 250 °C and then from 600 to 920 °C for 10 h. Characterized by powder X-ray diffraction data and Mössbauer spectrum. Monoclinic, $a = 16.904(1)$, $b = 11.653(1)$, $c = 5.2544(6)$ Å, $\beta = 107.15(1)^\circ$, $V = 989.0(1)$ Å³. $D_{\text{calc}} = 7.16$ g/cm³. In the crystal structure, Fe and Mo are ordered.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission.

Source: Jeitschko et al. (1976).

- **Wavenumbers (cm⁻¹):** 1178w, 977s, 951sh, (936s), 925s, 868w, 827w, 769w, 603s, 557w, 461, 428, 386sh, 364sh, 337s, 316sh, 270s, 232, 206.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Mo44 Bismuth molybdate $Bi₂MoO₆$

Origin: Synthetic.

Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group B2cb. Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Bode et al. (1973).

Wavenumbers (IR, cm⁻¹): 880sh, 870, 825sh, 810s, 790sh, 710s, 645, 565, 550, 525, 490sh, 460, 380, 335, 295, 250.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 905, 885, 870, 830, 795, 730, 400, 380, 320, 265, 230, 210, 180.

Mo45 Cadmium molybdate CdMoO4

- Description: Prepared hydrothermally from corresponding oxides at 473 K for 48 h. Characterized by powder X-ray diffraction data and Ritveld crystal structure refinement. Isostructural with scheelite. Tetragonal, space group $I4_1/a$, $a = 5.156(1)$, $c = 11.196(1)$ Å.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Daturi et al. (1997).

Wavenumbers (IR, cm^{-1}): 752s, 435w, 400w, 300, 250, 152, 125.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 863s, 822, 759, 403, 392, 323s, 268, 205, 191, 144, 112, 83.

Mo46 Cesium fluormolybdate CsMo O_2F_3 CsMo O_2F_3

Origin: Synthetic.

- **Description:** Produced from Cs_2CO_3 , Mo_3 , H_2O , and HF. Characterized by powder X-ray diffraction data. Orthorhombic, $a = 5.492(1)$, $b = 6.457(1)$, $c = 14.124(2)$ Å, $Z = 4$. $D_{\text{meas}} = 4.19$ g/cm³, $D_{\text{calc}} = 4.21 \text{ g/cm}^3$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Mattes et al. (1972).

Wavenumbers (IR, cm⁻¹): 970, 919s, 600sh, 581s, 449, 418, 411, 393, 380sh, 293, 279sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 974s, 912s, 580w, 403, 308, 282, 268, 242.

Mo47 Cesium thorium molybdate $Cs_2Th(MoO₄)_3$

Origin: Synthetic.

Description: Colorless crystals prepared by cooling down the melt of a mixture of Th(NO_3)₄.5H₂O, CsNO₃, and MoO₃ from 1050 to 400 °C at a rate of 5 °C/h in air. The crystal structure is solved. Orthorhombic, space group *Pnnm*, $a = 5.2569(3)$, $b = 9.7336(8)$, $c = 26.8467(16)$ Å, $V = 1373.71$ (16) \AA^3 , Z = 4. D_{calc} = 4.727 g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Xiao et al. (2014).

Wavenumbers (IR, cm⁻¹): 941sh, 933, 915, 890s, 837s, 764s, 688sh, 672s, 582sh, 557sh, 472w, 450w, 411w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 959s, 954, 948s, 942, 930, 924, 918, 911, 885, 866s, 828, 775, 751, 693, 465, 421, 405, 373, 360, 344, 334, 300, 292, 276, 187, 168, 144, 136, 124, 110, 98.

Mo48 Lanthanum molybdate $La₂MoO₆$

- **Description:** Tetragonal, space group *I-42m*. The crystal structure can be described as a succession of La_2O_2 and MoO₄ layers. The MoO₄ layer consists of MoO₄ tetrahedra.
- Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Bode et al. (1973).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 865s, 775s, 490, 380s, 315w, 298w, 287w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 875s, 860sh, 800, 765, 695, 490, 455, 435, 375w, 325, 295, 275s, 240, 220.

Mo49 Lead orthoborate molybdate $Pb_6(BO_3)_2(M_0O_4)O_2$

Origin: Synthetic.

- **Description:** Prepared in a solid-state reaction from the powder mixture of PbO, MO_3 , and H_3BO_3 with the molar ratio 15:2:3. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group Cncm, $a = 18.446(4)$, $b = 6.3557(13)$, $c = 11.657(2)$ Å, $V = 1366.6(5)$ Å³, Z = 4. $D_{\text{calc}} = 7.546$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Chen et al. (2009).

Wavenumbers $(cm⁻¹)$: 1215s, 788s, 693, 608, 564, 500, 441, 414.

Mo50 Lithium molybdate tellurite $Li_2(MoTeO_6)$

Origin: Synthetic.

Description: Prepared from Li_2CO_3 , TeO₂, and MoO₃ by a solid-state technique. Monoclinic, space group $P2_1/n$, $a = 5.3830(5)$, $b = 13.0027(11)$, $c = 6.9814(6)$ Å, $\beta = 94.7420(10)$ °, $V = 486.97$ (7) \AA^3 , Z = 4. $D_{\text{calc}} = 4.548$ g/cm³. In the crystal structure, each MoO₆ octahedron is connected to three TeO₃ groups, and each TeO₃ group is connected to three $MoO₆$ octahedra to form a layer.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Nguyen and Halasyamani (2012).

Wavenumbers (cm⁻¹): 904s, 874s, 831s, 739, 684s, 627s, 503, 464w, 414.

Mo51 Lithium dimolybdate selenite $Li_6(Mo_2O_5)_3(SeO_3)_6$

- **Description**: Crystals prepared from a mixture of $Li₂MoO₄$ and SeO₂ by a solid-state technique. Orthorhombic, space group $Pmn2_1$, $a = 8.2687(4)$, $b = 16.6546(7)$, $c = 19.2321(8)$ Å, $V = 2648.5(2)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 4.060$ g/cm³. In the crystal structure, the Mo₂O₁₀ dimers are connected by $SeO₃$ groups to form a layer.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Nguyen and Halasyamani (2012).

- Wavenumbers (cm⁻¹): 977w, 963, 952, 933, 909s, 886, 813, 775s, 759sh, 722, 709sh, 586s, 539sh, 494, 461, 452sh, 421sh, 415w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Mo52 Potassium aluminium molybdate KAl $(M_0O_4)_2$

Origin: Synthetic.

Description: Trigonal, space group $P-3m1$, $Z = 1$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Maczka et al. (1999).

Wavenumbers $(cm⁻¹)$: 976, 932s, 880s, 500, 423s, 358s, 301, 165, 99.

Mo53 Sodium aluminium molybdate $NaAl(MoO₄)₂$

Origin: Synthetic.

Description: Monoclinic, pseudo-orthorhombic, space group $C2/c$ or $C2/m$. Structurally related to yavapaiite.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Transmission.

Source: Maczka et al. (1999).

Wavenumbers (cm⁻¹): 988, 976, 934sh, 931s, 889sh, 876s, 816s, 503, 456s, 392s, 366s, 331s, 306, 282, 224w, 198w, 164, 156sh, 115w, 53w.

Mo54 Sodium bismuth molybdate scheelite-type $Nabi(MoO₄)₂$

Description: Colorless crystals grown at ca. 1100 K from the melt prepared from a stoichiometric mixture of Na_2CO_3 , Bi_2O_3 , and MoO_3 . The crystal structure is solved. Tetragonal, space group I-4, $a = 5.267$, $c = 11.565$ Å, $V = 320.83$ (10) Å³, $Z = 2$. $D_{calc} = 5.713$ g/cm³. Structurally related to scheelite.

Source: Hanuza et al. (1997).

- Wavenumbers (IR, cm⁻¹): 906, 820, 733s, 669, 650sh, 520sh, 390, 303, 250, 219sh, 185sh, 147, 86, 69, 53w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, polarized Raman spectra are given.
- Wavenumbers (Raman, for the $x(zz)$ -x polarization, cm⁻¹): 924sh, 909sh, 878s, 857sh, 760w, 409, 320, 192w, 130w, 88w, 54w.

Mo55 Tellurium oxumolybdate α -Te₂MoO₇

Origin: Synthetic.

- **Description:** Prepared by heating a mixture of TeO₂ and MoO₃, taken in stoichiometric amounts, at 550–600 °C for 10 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 4.286(2)$, $b = 8.618(3)$, $c = 15.945(5)$ Å, $\beta = 95.68(1)^\circ$, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Baran et al. (1981).

Wavenumbers (IR, cm^{-1}) : 906, 870sh, 862s, 829, 767, 730w, 690, [629](http://629sst.br)s, 549, 511w, 456sh, 440, 371, 340, 331, 305, 296, 244, 230sh, 218.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 911s, 867s, 818s, 737, 619, 548w, 513w, 460sh, 439, 365, 335w, 312w, 290sh, 283, 261w, 218s, 199w, 183w, 183sh, 173s.
Mo56 Zinc molybdate β -Zn(MoO₄)

Origin: Synthetic.

Description: Light gray powder prepared hydrothermally from sodium molybdate and zinc nitrate at 140 °C for 8 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2/c$, $a = 4.6987(3)$, $b = 5.7487(2)$, $c = 4.9044(2)$ Å, $\beta = 90.3312^{\circ}$, $V = 132.47 \text{ Å}^3, Z = 2.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Cavalcante et al. (2013).

Wavenumbers (cm⁻¹): 829s, 712sh, 665s, 516, 453, 410w, 359, 326, 257. Note: For the IR spectrum of $β$ -Zn(MoO₄) see also Jiang et al. (2014).

Mo57 Zinc telluromolybdate $ZnTeMoO₆$

Description: Orthorhombic, space group $P2_12_12_1$, $a = 5.255$, $b = 5.044$, $c = 8.909$ Å.

Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Baran et al. (1981).

Wavenumbers $(cm⁻¹)$: 948, 899s, 782w, 685s, 609, 430, 356, 342sh, 324sh.

Mo58 Zirconium molybdenum oxide (monoclinic) $ZrMo₂O₈$

Origin: Synthetic.

Description: Prepared by heating a mixture of $ZrO₂$ and Mo $O₃$ taken in the molar ratio of 1:2, at 600 C for 64 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 11.4243(19)$, $b = 7.9297(6)$, $c = 7.4610(14)$ Å, $\beta = 122.15(2)^\circ$, $V = 572.3(2)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 4.771$ g/cm³. Mo has fivefold coordination. Two MoO₅ polyhedra share edges with each other forming $Mo₂O₈$ moieties.

Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflectance of a powdered sample.

Source: Sahoo et al. (2009).

Wavenumbers $(cm⁻¹)$: 388s, 324sh, 237.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Description: The crystal structure is solved. Trigonal, space group P-31c, $a = 10.1391(6)$, $c = 11.7084(8)$ Å, $Z = 6$. Mo has fourfold coordination.

Kind of sample preparation and/or method of registration of the spectrum: Diffuse reflectance of a powdered sample.

Source: Sahoo et al. (2009).

Wavenumbers $(cm⁻¹)$: 313, 254sh.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. The wavenumber of the main band (313 cm^{-1}) is anomalously low for the MoO₄ tetrahedra.

Mo60 Vanadyl molybdate (VO)(MoO4)

- **Description:** Obtained by heating a stoichiometric mixture of $VO₂$ and $MO₃$ at 700 °C for 48 h. Tetragonal, space group P4/n.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stranford and Condrate Sr (1984a).

Wavenumbers (IR, cm^{-1}) : 963, 834s, 586w, 528w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, a figure of Raman spectrum is given.

Mo61 Kamiokite Fe^{2+} ₂Mo⁴⁺₃O₈

Origin: Kamioka mine, Hida City, Chubu Region, Honshu Island, Japan (type locality). Description: Black crystals with submetallic lustre. Investigated by A.V. Kasatkin. Confirmed by electron microprobe analyses.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 1147, 1055, 1020sh, 855sh, 778, 723, 645sh, 560, 517, 475s, 461s. Note: The spectrum was obtained by N.V. Chukanov.

2.18 Tellurides, Tellurites, and Tellurates

Te52 Barium calcium tellurate $Ba₂CaTeO₆$

Origin: Synthetic.

Description: Perovskite-type compound. $D_{\text{calc}} = 6.04 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Corsmit and Blasse (1974).

Wavenumbers (IR, cm^{-1}) : 685, 400.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 752, 618, 412.

Te53 Barium cobalt tellurate Ba_2CoTeO_6

Description: A compound with ordered hexagonal perovskite-type structure.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Liegeois-Duyckaerts (1985).

Wavenumbers (cm⁻¹): 750, 695, 645s, 567, 479, 407s, 385s, 363s, 284, 220, 167w, 150, (133), (127), 112w.

Te54 Barium copper tellurate tellurite BaCuTe₂O₇

Origin: Synthetic.

Description: Prepared by solid-state method from the stoichiometric mixture of BaCO₃, CuO, TeO₂, and H₂TeO₄.2H₂O at 650 °C. Orthorhombic, space group $Ama2$, $a = 5.4869(8)$, $b = 15.4120(8)$, $c = 7.2066(4)$ Å, $V = 609.42(10)$ Å³, $Z = 4$. $D_{\text{meas}} = 2.39(3)$ g/cm³, $D_{\text{calc}} = 2.391$ g/cm³. Characterized by powder X-ray diffraction, piezoelectric, and polarization measurements.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Yeon et al. (2011).

Wavenumbers $(cm⁻¹)$: 798, 700s, 649s, 629s, 564w, 527, 485, 437.

Te55 Barium nickel tellurate $Ba₂NiTeO₆$

Origin: Synthetic.

Description: Perovskite-type compound. Hexagonal, space group $R-3m$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Corsmit and Blasse (1974).

Wavenumbers $(cm⁻¹)$: 746, 690sh, 670s, 622s, 462, 423sh, 405s, 365s.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Te56 Barium zinc tellurate $Ba₂ZnTeO₆$

Description: Synthesized by solid-state reaction. The stoichiometric mixture of the necessary oxides and carbonates was heated at 600 °C for about 1 night, then reground and heated up to 1100 °C for 1 day. A compound with perovskite-type cubic structure.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Liegeois-Duyckaerts (1975).

Wavenumbers $(\text{IR}, \text{cm}^{-1})$: 758, 670s, 665s, 623s, 478, 402s, 367, 315w, 269, 206sh, 150, 127w, 115w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 769s, 691s, 620, 575, 473w, 406, 399, 385, 122, 105.

Te57 Calcium tellurite monohydrate Ca(TeO3)∙H₂O

Origin: Synthetic.

- **Description:** Obtained from $Ca(NO₃)₂$ and $TeO₂$, in the presence of NaOH, by microwave-assisted hydrothermal synthesis at 185 \degree C for 1 h. The crystal structure is solved. Orthorhombic, space group $P2_1cn$, $a = 14.78549(4)$, $b = 6.79194(3)$, $c = 8.06261(3)$ Å, $V = 809.665(6)$ Å³, $Z = 8$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Poupon et al. (2015).

- Wavenumbers (cm⁻¹): 3590, 3330sh, 3130, 2830, 1641w, 882, 783, 765, 737s, 700s, 680s, 545w, 411sh.
- Note: The strong band centered at 698 cm^{-1} and the shoulders at 740 and 770 cm^{-1} indicated by the authors of the cited paper were determined by us as bands at 680, 700, 737, 765, and 783 cm⁻¹.

Te58 Indium vanadate tellurite $In(VTe₂O₈)$ In(VTe₂O₈)

Origin: Synthetic.

Description: Prepared from In_2O_3 , V_2O_5 , and TeO_2 by a standard solid-state reaction. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 7.8967(16)$, $b = 5.1388(10)$, $c = 16.711(3)$ Å, $\beta = 94.22(3)$ °, $V = 676.3(2)$ Å³, $Z = 4$. $D_{\text{calc}} = 5.391$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. **Source:** Lee et al. (2011).

- Wavenumbers (cm⁻¹): 955, 948s, 867sh, 861, 789s, 781sh, 732s, 700s, 662s, 613, 547, 511, 433sh, 407.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Te59 Lead copper tellurate tellurite $PbCuTe₂O₇$

Description: Prepared by a conventional solid-state method from stoichiometric amounts of PbO, CuO, TeO₂, and H₂TeO₄.2H₂O. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group *Pbcm*, $a = 7.2033(5)$, $b = 15.0468(10)$, $c = 5.4691(4)$ Å, $V = 592.78(7)$ Å³, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Yeon et al. (2011).

Wavenumbers $(cm⁻¹)$: 795, 703s, 663, 627s, 517, 493, 438, 429sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Te60 Lithium tungstate tellurite $Li_2(WTeO_6)$

Origin: Synthetic.

Description: Prepared from Li_2CO_3 , TeO₂, and WO₃ by a solid-state technique. Monoclinic, space group $P2_1/n$, $a = 5.3950(5)$, $b = 12.9440(12)$, $c = 7.0149(7)$ Å, $\beta = 94.2510(10)$ °, $V = 488.52$ (8) \AA^3 , Z = 4. $D_{\text{calc}} = 5.729$ g/cm³. In the crystal structure, each WO₆ octahedron is connected to three TeO₃ groups, and each TeO₃ group is connected to three WO_6 octahedra to form a layer.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Nguyen and Halasyamani (2012). Wavenumbers (cm⁻¹): 936, 894s, 875s, 818, 727s, 666s, 629, 517, 430w.

Te61 Magnesium tellurite MgTe₂O₅ MgTe₂O₅

Origin: Synthetic.

- **Description**: Obtained in the solid-state reaction between MgO and TeO₂ at 680 °C. Characterized by powder X-ray diffraction data. Orthorhombic, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: CsI disc. Transmission.

Source: Baran (1978).

Wavenumbers (IR, cm⁻¹): 785, 752, 712s, 700sh, 611, 542, 450sh, 432s, 389, 367s, 326, 312, 261, 242w, 227sh, 205w, 185sh, 174w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 810s, 725, 698s, 540, 437s, 405, 385, 345sh, 330, 267s, 253, 237w, 222s, 200, 185w, 115.

Te62 Potassium acid tellurate hydrate K₂[TeO₂(OH)₄]∙3H₂O K₂[TeO₂(OH)₄]∙3H₂O

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Siebert (1959).

Wavenumbers (cm⁻¹): 3250s, 3120sh, 2250, 1630, 1490w, 1095, 820, 740s, 720sh, 610s, 595s, 554, 518, 426.

Te63 Scandium vanadate tellurite $ScVTe₂O₈$

Origin: Synthetic.

- **Description**: Prepared by a solid-state reaction from Sc_2O_3 , V_2O_5 , and TeO₂, first at 350 °C for 5 h, and thereafter at 450 °C for 48 h. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 7.9774(2), b = 5.08710(10), c = 16.5654(4)$ Å, $\beta = 93.400(2)^\circ$, $V = 671.07(3)$ Å³, $Z = 4$. $D_{\text{calc}} = 4.742 \text{ g/cm}^3$. The structure is composed of ScO₆ octahedra, VO₄ tetrahedra, and asymmetric TeO4 polyhedra that are connected via common O atoms.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Kim et al. (2013).

- Wavenumbers (cm^{-1}) : 955s, 947, 866s, 811sh, 788s, 740, 726, 691s, 655s, 622s, 605s, 538w, 511, 483, 432s.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Te64 Sodium acid diarsenite tellurite $\text{Na}_2(\text{H}_4\text{As}_2\text{O}_5)(\text{H}_2\text{TeO}_4)$

Origin: Synthetic.

- Description: Prepared by slow evaporation of an aqueous solution containing stoichiometric amounts of Te(OH)₆, Na₂CO₃, and H₃AsO₄. Characterized by EDS and thermal analysis. The crystal structure is solved. Tetragonal, space group *I*-4, $a = 5.576(2)$, $c = 7.773(5)$ Å, $V = 241.8(2)$ Å³, $Z = 2. D_{\text{calc}} = 5.72 \text{ g/cm}^3.$
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.
- Source: Bechibani et al. (2014).
- Wavenumbers (IR, cm⁻¹): 3649w, 3578w, 3289s, 3127s, 2885s, 2830sh, 2358s, 2285sh, 1811, 1669w, 1592, 1478w, 1440w, 1350w, 1236s, 1158, 1106, 985, 860s, 790, 750, 720, 667s, 620sh, 560sh, 427w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 1327w, 1237w, 835, 718, 664sh, 650s, 623, 429, 423, 415, 372, 327, 321, 295w, 244w.

Te65 Sodium acid tellurate $\text{Na}_2[\text{TeO}_2(\text{OH})_4]$ $\text{Na}_2[\text{TeO}_2(\text{OH})_4]$

Description: Obtained in the reaction of $Te(OH)_{6}$ with excess of NaOH in aqueous solution. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Siebert (1959).

Wavenumbers (cm⁻¹): 3110s, 2475, 2270, 1650w, 1200sh, 1141s, 780s, 675s, 587s, 536, 429.

Te66 Sodium molybdenum(VI) tellurite $Na₂MoTe₄O₁₂$

Origin: Synthetic.

Description: Synthesized hydrothermally from $\text{Na}_2\text{MoO}_4 \cdot 2\text{H}_2\text{O}$ and TeO_2 (with the ratio Na:Mo: Te = 6:3:1) at 225 °C for 4 days with subsequent cooling to room temperature over a period of 36 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 17.341(4)$, $b = 5.8262(11)$, $c = 11.268(2)$ Å, $\beta = 104.38(2)$ °, $V = 1102.7(4)$ Å³, $Z = 4$. $D_{\text{calc}} = 5.086$ g/cm³. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.500 (28) (110), 4.194 (29) (400), 4.028 (77) (31–1), 2.976 (49) (51–1), 2.911 (100) (020), 2.618 (29) (221), 2.085 (29) (422).

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Balraj and Vidyasagar (1999).

Wavenumbers (cm⁻¹): 899, 833s, 792s, 757s, 696s, 593s, 496, 467.

- **Description:** Prepared hydrothermally from Na_2CO_3 and TeO_2 at 230 °C for 4 days. The crystal structure is solved. Orthorhombic, space group *Pccn*, $a = 16.317(2)$, $b = 10.4544(10)$, $c = 10.8874$ (10) Å, $V = 1857.2(3)$ Å³, $Z = 8$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lee and Ok (2014).

Wavenumbers $(cm⁻¹)$: 908sh, 853sh, 814s, 787, 718s, 689s, 632s, 573, 512sh, 460, 419w.

Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

Te68 Sodium tellurate tellurite hydrate Na₂Te₂O₆⋅1.5H₂O Na₂Te₂O₆⋅1.5H₂O

- **Description:** Prepared hydrothermally from Na_2CO_3 and TeO_2 at 230 °C for 4 days. The crystal structure is solved. Monoclinic, space group C_2/c , $a = 8.9884(19)$, $b = 14.3739(19)$, $c = 10.387$ (3) Å, $\beta = 99.429(11)$ °, $V = 1323.9(5)$ Å³, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Lee and Ok (2014).

- Wavenumbers (cm⁻¹): 3602w, 3498, 3327, 1651, 1635sh, 1221sh, 760s, 692sh, 659sh, 632s, 539, 505, 449, 430, 415sh.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Te69 Sodium tungsten tellurite $Na₂WTe₄O₁₂$

Origin: Synthetic.

- **Description**: Tiny pale yellow crystals. Synthesized hydrothermally from Na_2WO_4 : $2\text{H}_2\text{O}$ and TeO_2 (with the ratio Na:W:Te = 6:3:1) at 225 °C for 4 days with subsequent cooling to room temperature over a period of 36 h. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $C2/c$, $a = 17.348(3)$, $b = 5.7755(10)$, $c = 11.269(3)$ Å, $\beta = 104.33(2)^\circ$, $V = 1094.0(4)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 5.660$ g/cm³. The strongest lines of the powder X-ray diffraction pattern [d, Å $(I, \%)$ (hkl)] are: 4.007 (100) (31–1), 3.144 (49) (11–3), 2.966 (72) (51-1), 2.883 (48) (020), 2.597 (59) (221).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Balraj and Vidyasagar (1999).

Wavenumbers $(cm⁻¹)$: 917w, 807s, 756, 694, 593s, 495, 467.

Te70 Strontium copper tellurate tellurite $SrCuTe₂O₇$

Origin: Synthetic.

Description: Prepared by heating a mixture of $SrCO₃$, CuO, TeO₂, and H₂TeO₄, taken in stoichiometric amounts. Characterized by powder X-ray diffraction data. The crystal structure is solved. Orthorhombic, space group *Pbcm*, $a = 7.1464(7)$ Å, $b = 15.0609(15)$ Å, $c = 5.4380(5)$ Å, $V = 585.30(10)$ \AA^3 , $Z = 4$. The structure is based on 2D layers consisting of corner-shared CuO₅ square pyramids, $TeO₆$ octahedra, and $TeO₄$ dispheniods.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Yeon et al. (2011).

Wavenumbers (cm^{-1}) : 801, 763sh, 707s, 656s, 571w, 553w, 529, 488, 426, 421sh.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Te71 Thallium tellurite β -Tl₂TeO₃

- **Description:** Light yellow to brown aggregates of crystals prepared by heating a mixture of T_2CO_3 and TeO₂, taken in stoichiometric amounts, at 160 °C for 3 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 8.9752(18)$, $b=$ 4.8534(6), $c = 11.884(2)$ Å, $\beta = 109.67(2)$ °, $V = 487.47(15)$ Å³, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Rieger and Mudring (2007).

Wavenumbers (IR, cm⁻¹): 833w, 775w, 753w, 704, 654s, 623s, 343, 308, 286, 203, 185, 163, 111w, 101, 93, 85, 74, 56w, 46w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 708s, 646, 346w, 296, 172sh, 150, 117, 93s, 66w.

Te72 Thorium tellurite $ThTe₂O₆$

Origin: Synthetic.

- **Description:** Prepared by heating a mixture of TeO₂ and ThO₂ (with the molar ratio 1:2) at 600 °C for 48 h. Characterized by powder X-ray diffraction data. Cubic, $a = 21.838(8)$, $V = 10414.5 \text{ Å}^3$, $Z = 64$. $D_{\text{meas}} = 5.7$ g/cm³, $D_{\text{calc}} = 5.95$ g/cm³. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%) (hkl)]$ are: 3.53 (53) (611), 3.432 (72) (540), 3.167 (100) (444), 2.977 (41) (721), 2.849 (53) (731), 2.028 (35) (864).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Botto and Baran (1982).

Wavenumbers $(cm⁻¹)$: 762, 738, 705sh, 662s, 630s, 491, 402sh, 385sh, 358, 326, 307, 260w.

Te73 Yttrium vanadyl oxytellurite $Y(VO)(TeO₃)₂O$

Origin: Synthetic.

Description: Crystals grown hydrothermally from Y_2O_3 , V_2O_5 , and TeO₂ at 550 °C for 48 h with three intermediate regrindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $C2/m$, $a = 7.9396(10)$, $b = 7.5625(10)$, $c = 21.282(2)$ Å, $\beta = 90.010(10)^\circ$, $V = 1277.85(3) \text{ Å}^3$, $Z = 8$. $D_{\text{calc}} = 5.438 \text{ g/cm}^3$. V^{5+} has sixfold coordination with one short V–O bond.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Kim et al. (2014).

- Wavenumbers (cm⁻¹): 920sh, 857, 821sh, 792sh, 759s, 692s, 640sh, 625sh, 603s, 555sh, 540sh, 507w, 487sh, 423.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Te74 Tellurium Te

Description: A sample prepared by deposition of evaporated Te on crystalline quartz.

Kind of sample preparation and/or method of registration of the spectrum: Polycrystalline film 1500 Å thick. Transmission.

Source: Grosse and Richter (1970).

Wavenumbers $(cm⁻¹)$: 140.8, 91.2, 87.5.

Te75 Yafsoanite $Ca₃Zn₃Te⁶⁺₂O₁₂$

Origin: Synthetic.

Description: Synthesized by solid-state reaction, starting from $CaCO₃$, ZnO, and TeO₂. Confirmed by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.

Source: Rulmont et al. (1992).

Wavenumbers $(cm⁻¹)$: 725, 684s, 647, 475s, 415s, 379, 268, 245, 225w, 171, 155, 101w.

Te76 Pingguite $Bi₆Te⁴⁺₂O₁₃$

Origin: Yangjiava, Pinggu Co., Beijing Municipality, China (type locality).

Description: Yellowish green aggregate from the association with malachite, pyromorphite, bismutite, etc. Holotype sample. Orthorhombic, $a = 5.689(1)$, $b = 10.791(1)$, $c = 5.308(1)$ Å, $Z = 1$. $D_{\text{meas}} = 8.44 \text{ g/cm}^3$, $D_{\text{calc}} = 8.64 \text{ g/cm}^3$. Optically biaxial (-), $\alpha = 1.554(2)$, $\beta = 1.558(2)$, $\gamma = 1.566(2)$, $2V = 70(5)^\circ$. The empirical formula is $Bi_{5.80}Te_{2.15}O_{13}$. The strongest lines of the powder X-ray diffraction pattern $[d, \AA (I, \%)(hkl)]$ are: 3.146 (100) (121), 2.841 (80) (200), 2.694 (20) (040), 1.695 (20) (321), 1.956 (10) (240), 1.631 (10) (161).

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Sun et al. (1994).

Wavenumbers $(cm⁻¹)$: 715sh, 660s, 620, 540, 500, 380s, 325, 250.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

Te77 Denningite $\text{CaMn}^{2+}\text{Te}^{4+} \text{4O}_{10}$

Origin: Moctezuma (La Bambolla) mine, Moctezuma, Sonora, Mexico (type locality).

Description: Pale yellowish-green granular aggregate from the association with muscovite. The empirical formula is (electron microprobe): $Ca_{0.79}Mn_{1.15}Mg_{0.05}Te_{4.00}O_5$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers $(cm⁻¹): 767, 692s, 609s, 555sh, 481, 454w, 401, 372.$

Note: The spectrum was obtained by N.V. Chukanov.

Te78 Poughite $Fe^{3+}{}_{2}$ (Te⁴⁺O₃)₂(SO₄)⋅3H₂O

Origin: Moctezuma (La Bambolla) mine, Moctezuma, Sonora, Mexico (type locality).

Description: Yellow spherulites on quartz. The empirical formula is (electron microprobe): $(Fe_{0.92}Al_{0.08})(TeO₃)_{1.99}(SO₄)_{1.02}·nH₂O.$

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption.

Wavenumbers (cm⁻¹): 3606, 3508, 3260sh, 3144, 2134w, 2028w, 1633, 1608, 1160sh, 1144s, 1086s, 1048s, 979, 930sh, 800, 785sh, 728s, 693sh, 659, 619s, 522, 484s, 443s, 375.

Note: The spectrum was obtained by N.V. Chukanov.

Te79 Zemannite $Mg_{0.5}ZnFe^{3+}(Te^{4+}O_3)_3.4.5H_2O$

Origin: Moctezuma (La Bambolla) mine, Moctezuma, Sonora, Mexico (type locality). Description: Brown acicular crystals from the association with dickite and quartz. The empirical formula is (electron microprobe): $Mg_{0.63}Zn_{0.84}Fe_{0.98}Al_{0.02}Ti_{0.02}(TeO₃)₃·nH₂O$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3430s, 3180, 3125sh, 1654, 1152w, 1075sh, 996, 704s, 645sh, 627s, 464s. Note: The spectrum was obtained by N.V. Chukanov.

Te80 Plumbotellurite $Pb(Te^{4+}O_3)$

Origin: Synthetic.

Description: Synthesized by crystallization above the solidus temperature of the PbO–TeO₂ system. Characterized by powder X-ray diffraction data and electron microprobe analysis.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Stavrakieva et al. (1988).

Wavenumbers $(cm⁻¹)$: 725, 681sh, 650s, 585sh, 480w, 415.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

2.19 Iodides, Iodites, and Iodates

I15 Copper iodate α -Cu(IO₃)₂

Origin: Synthetic.

- Description: Light yellow green crystal clusters and spherulites obtained by heating bellingerite Cu $(IO₃)₂·2H₂O$ to 110 °C. Characterized by powder X-ray diffraction data. Point group 2. Optically biaxial (+) or (-), $\alpha = 1.88$, $\beta = 1.94$, $\gamma = 2.00$, 2V is medium. Decomposes at 460 °C.
- Kind of sample preparation and/or method of registration of the spectrum: Fluorolube mull (above 1500 cm⁻¹), KBr disc (from 550 to 1500 cm⁻¹), and Nujol mull (below 550 cm⁻¹). Transmission.

Source: Nassau et al. (1973).

Wavenumbers (cm⁻¹): 799, 762sh, 746s, 736sh, 697, 472s, 458s, 388, 377sh, 366s, 343s, 288, 270s, 228, 210w, 178, 159, 142, 126sh, 118, 108, 89w, 73w.

I16 Copper iodate $β$ -Cu(IO₃)₂

Origin: Synthetic.

- Description: Light green crystal clusters and dendrites obtained by a gel growth technique. Characterized by powder X-ray diffraction data. Point group -1. Optically biaxial $(-)$, $\alpha = 1.90$, $\beta = 1.94$, $\gamma = 1.96$, 2V is large. Decomposes at 250 °C to form α -Cu(IO₃)₂.
- Kind of sample preparation and/or method of registration of the spectrum: Fluorolube mull (above 1500 cm⁻¹), KBr disc (from 550 to 1500 cm⁻¹), and Nujol mull (below 550 cm⁻¹). Transmission.

Source: Nassau et al. (1973).

Wavenumbers (cm⁻¹): 838, 797, 785sh, 774sh, 745s, 717s, 698sh, 495, 479, 450, 395s, 356sh, 346s, 331sh, 311, 280, 260w, 246w, 224w, 200w, 179w, 167, 140w, 126w, 106w, 89w, 72w.

I17 Copper iodate γ-Cu(IO₃)₂

- Description: Dark yellow crystals and crystal clusters obtained by a gel growth technique. Characterized by powder X-ray diffraction data. Point group $2/m$. Optically biaxial $(-)$, $\alpha = 1.89$, $\beta = 1.96$, $\gamma = 1.99$, 2V is medium. Decomposes at 460 °C to form CuO.
- Kind of sample preparation and/or method of registration of the spectrum: Fluorolube mull (above 1500 cm⁻¹), KBr disc (from 550 to 1500 cm⁻¹), and Nujol mull (below 550 cm⁻¹). Transmission.

Source: Nassau et al. (1973).

Wavenumbers $(cm⁻¹)$: 827, 804, 758s, 732, 665, 497, 483sh, 473s, 460sh, 418, 394, 352, 325s, 282, 267s, 235, 195, 180s, 167, 156, 109, 102, 78.

Note: In the cited paper, the wavenumber 180 cm⁻¹ is erroneously indicated as 170 cm⁻¹.

I18 Potassium titanium iodate $K_2Ti(IO_3)_6$

Origin: Synthetic.

Description: Synthesized hydrothermally from K_2CO_3 , TiO₂, and HIO₃ at 230 °C for 4 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Trigonal, space group R-3, $a = 11.2703(6)$, $c = 11.3514(11)$ Å, $V = 1248.68(15)$ Å³, $Z = 3$. $D_{\text{calc}} = 4.690$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Chang et al. (2009).

Wavenumbers $(cm⁻¹)$: 808sh, 792s, 760s, 664s, 448.

I19 Copper acid diperiodate hydrate Cu(H₄I₂O₁₀)⋅6H₂O

Origin: Synthetic.

Description: Monoclinic, space group P_1/c , $Z = 2$. In the crystal structure, the centrosymmetric $H_4I_2O_{10}^2$ anions are formed by two edge-sharing crystallographically equivalent IO₆ octahedra.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection (above 500 cm⁻¹). Nujol mull, transmission (below 500 cm⁻¹).

Source: Jaquet and Haeuseler (2008).

- Wavenumbers (IR, cm⁻¹): 3526, 3427, 2924s (broad), 2397, 2326, 1626, 1223, 1097, 908, 746s, 623s, 608s, 576s, 553s, 492, 424, 380, 353, 320s, 277, 226, 214, 171, 145sh, 108, 99, 42w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 805s, 756, 746s, 704, 671, 630s, 620s, 443, 413, 396, 356w, 345w, 329, 311.

I20 Sodium titanium iodate $Na₂Ti(IO₃)₆$

Description: Colorless acicular crystals synthesized hydrothermally from Na_2CO_3 , TiO₂, and HIO₃ at 230 °C for 4 days. Characterized by powder X-ray diffraction data. The crystal structure is solved. Hexagonal, space group $P6_3$, $a = 9.649(3)$, $c = 5.198(3)$ Å, $V = 419.1(3)$ Å³, $Z = 1$. $D_{\text{calc}} =$ 4.530 g/cm³. The Ti^{4+} cation is disordered over two half-occupied sites

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated. Possibly, a procedure of baseline correction has been applied. Source: Chang et al. (2009).

Wavenumbers $(cm⁻¹)$: 830, 803s, 682sh, 663sh, 630, 481.

I21 Laurionite I-analogue Pb(OH)I

Origin: Synthetic.

Description: Characterized by powder X-ray diffraction data and thermoanalytical methods. Isostructural with laurionite.

Kind of sample preparation and/or method of registration of the spectrum: KBr or CsI disc, and Nujol or poly(chlortrifluorethene) mull. Transmission.

Source: Lutz et al. (1995).

Wavenumbers (IR, cm⁻¹): 3629, 3592, 3550, 523s, 505sh, 295, 265s, 253.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 3496s, 318w, 244w, 172w, 104, 72, 55s, 50s

2.20 Xenates

Xe1 Double perovskite $KBa(XeNaO₆)$ $KBa(XeNaO₆)$

Origin: Synthetic.

Description: Synthesized hydrothermally from KOH, NaOH, Ba(NO₃)₂, and Na₄XeO₆ at 170 °C for 24 h. Characterized by TGA-DSC data, powder X-ray diffraction, and EDX analyses. The crystal structure is solved and refined by the Rietveld method. Cubic, space group $Fm-3m$, $a = 8.3188(2)$ Å, $V = 575.67(3)$ Å³, $Z = 4$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Britvin et al. (2015).

Wavenumbers $(cm⁻¹)$: 1626w, 1434w, 1383w, 1392w, 879w, 689s, 451s.

Xe2 Double perovskite $KCa(XeNaO₆)$ $KCa(XeNaO₆)$

- **Description:** Synthesized hydrothermally from KOH, NaOH, Ca(NO_3)₂.4H₂O, and Na₄XeO₆ at 170 °C for 24 h. Characterized by TGA-DSC data, powder X-ray diffraction, and EDX analyses. The crystal structure is solved and refined by the Rietveld method. Tetragonal, space group I4/m, $a = 5.7500(1), c = 8.1558(2)$ Å, $V = 269.66(1)$ Å³, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Britvin et al. (2015).

Wavenumbers $(cm⁻¹)$ **:** 715s, 474s.

Xe3 Double perovskite $\text{KSr(XeNaO}_6)$ $\text{KSr(XeNaO}_6)$

Origin: Synthetic.

- **Description:** Synthesized hydrothermally from KOH, NaOH, $Sr(NO₃)₂$, and Na₄XeO₆ at 170 °C for 24 h. Characterized by TGA-DSC data, powder X-ray diffraction, and EDX analyses. The crystal structure is solved and refined by the Rietveld method. Cubic, space group $Fm-3m$, $a = 8.1920(1)$ Å, $V = 549.76(2)$ Å³, $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Britvin et al. (2015).

Wavenumbers (cm^{-1}) : 1634w, 1444w, 1396w, 883w, 707s, 454s.

Xe4 Layered perovskite $K_4Xe_3O_{12}$ $K_4Xe_3O_{12}$

Origin: Synthetic.

Description: Aggregate of yellow platelets. Hexagonal. The crystal structure contains three-layer perovskite slabs composed of inner layers of $[XeO₆]⁴⁻$ (perxenate) octahedra, which are sandwiched between the layers of neutral $XeO₃$ molecules.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Transmission. Source: Britvin et al. (2016).

Wavenumbers $(cm⁻¹)$: 794s, 768w, 721, 615s, 445w, 419s. Note: The band at 721 cm^{-1} is due to absorption of Nujol.

2.21 Tungstates and W-Bearing Oxides

W18 Hydrotungstite WO₂(OH)₂⋅H₂O

Origin: Alyaskitovoe Sn-W deposit, eastern Sakha Republic (Yakutia), Siberia, Russia.

- **Description**: Yellow, massive. Investigated by I.V. Pekov. Characterized by qualitative electron microprobe analyses. The strongest lines of the powder X-ray diffraction pattern $[d, \overline{A}(I, \mathcal{C})]$ are: 6.93 (100), 3.70 (60), 3.44 (30), 3.25 (40), 2.62 (70), 2.54 (50), 1.95 (70).
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Wavenumbers (cm⁻¹): 3518, 3359, 3147, 2100sh, 1615sh, 1599, 1002, 916, 800sh, 702s, 650sh, 426w, (375w).

Note: The spectrum was obtained by N.V. Chukanov.

W19 Ammonium paratungstate tetrahydrate (NH₄)₁₀[H₂W₁₂O₄₂]⋅4H₂O

Origin: Synthetic.

Description: Reactant produced by H.C. Starck. Confirmed by elemental analysis. Characterized by powder X-ray diffraction data.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Szilágyi et al. (2004).

- Wavenumbers (cm⁻¹): 3337sh, 3110, 2992, 2805sh, 1661w, 1624w, 1442sh, 1391s, 929, 859s, 805s, 741s, 687s, 601, 522, 486, 426, 406.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum.

W20 Bismuth tungstate $Bi₂WO₆$

Origin: Synthetic.

Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group B2cb. Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Bode et al. (1973).

Wavenumbers (IR, cm⁻¹): 820, 725s, 650sh, 595w, 550s, 520sh, 450sh, 415, 345s, 290, 265, 245, 225.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 820, 800s, 720, 605w, 525w, 460w, 420w, 335, 420w, 310s, 285s, 265, 225, 210.

W21 Cadmium tungstate CdWO₄

- Description: Prepared hydrothermally from corresponding oxides at 473 K for 48 h. Characterized by powder X-ray diffraction data and Ritveld crystal structure refinement. Isostructural with wolframite. Monoclinic, space group $P2/c$, $a = 5.026(1)$, $b = 5.078(1)$, $c = 5.867(1)$ Å, $\beta = 91.47(1)$ °, $Z = 2$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr and polyethylene discs. Transmission.
- Source: Daturi et al. (1997).
- Wavenumbers (IR, cm⁻¹): 884, 835s, 693, 667, 595s, 510, 455, 408, 354sh, 294, 287, 276, 263, 230, 161w, 131w, 107w.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 896s, 771, 706, 687, 547, 514, 387, 351, 307s, 269, 248w, 229, 177, 148, 133, 117, 99, 77.

W22 Cesium uranyl tungstate $Cs_4[(UO_2)_4(WO_5)(W_2O_8)O_2]$ $Cs_4[(UO_2)_4(WO_5)(W_2O_8)O_2]$

Origin: Synthetic.

- **Description**: Obtained via the high-temperature solid-state method by reacting $UO_2(NO_3)_2$ with WO_3 and CsNO₃ (at the molar ratio U:Cs:W = 1:2:3) at 1050 °C for 5 h. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 8.1990(4)$, $b = 32.8343(10)$, $c = 10.7529(6)$ Å, $\beta = 117.594$ (4)°, $V = 2565.5(2)$ Å³, $Z = 4$. $D_{calc} = 6.243$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Xiao et al. (2015).

- Wavenumbers (IR, cm⁻¹): 949, 936, 904, 887, 875s, 863s, 852, 842sh, 804, 789, 766w, 740sh, 722s, 705, 678, 651, 634, 618, 585, 530, 484sh, 467s.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 952, 934, 782s, 765s, 548.

W23 Cesium uranyl tungstate $Cs₄[(UO₂)₇(WO₅)₃O₃]$ $Cs₄[(UO₂)₇(WO₅)₃O₃]$

Origin: Synthetic.

Description: Obtained via the high-temperature solid-state method by reacting $UO_2(NO_3)$ ₂ with WO₃ and CsNO₃ (at the molar ratio U:Cs:W = 4:4:3) at 950 °C for 15 h. The crystal structure is solved. Monoclinic, space group $P2_1/c$, $a = 8.6864(4)$, $b = 41.8958(15)$, $c = 10.8213(7)$ Å, $\beta = 116.467$ $(4)^\circ$, $V = 3525.4(3)$ \AA^3 , $Z = 1$. $D_{\text{calc}} = 6.173$ g/cm³.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Source: Xiao et al. (2015).

- Wavenumbers (IR, cm⁻¹): 955sh, 930s, 888s, 873sh, 842, 807, 769, 728, 699, 669, 619, 584, 538, 486, 453, 435sh.
- Note: The wavenumbers were determined by us based on spectral curve analysis of the published spectrum. In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm^{-1}): 935, 871, 828, 786s, 766s.

W24 Cesium uranyl tungstate $\text{Cs}_8(\text{UO}_2)_4(\text{WO}_4)_4(\text{WO}_5)_2$ $\text{Cs}_8(\text{UO}_2)_4(\text{WO}_4)_4(\text{WO}_5)_2$

- **Description:** Synthesized from a mixture of CsNO₃, WO₃, and U₃O₈ taken in the ratio Cs:U: $W = 4:2:3$ by solid-state reaction in air at 650 °C for 1 week with intermediate grindings. Characterized by powder X-ray diffraction data. The crystal structure is solved. Monoclinic, space group $P2_1/n$, $a = 11.2460(3)$, $b = 13.8113(3)$, $c = 25.7287(6)$ Å, $\beta = 90.00^{\circ}$, $V = 3996.23(17) \text{ Å}^3$, $Z = 4$. $D_{\text{meas}} = 6.079(2) \text{ g/cm}^3$, $D_{\text{calc}} = 6.087(2) \text{ g/cm}^3$. In the structure, the U atoms are in pentagonal bipyramid coordination, while W atoms are in two different environments, with tetrahedral and square pyramidal coordinations.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Yagoubi et al. (2007).

Wavenumbers (cm⁻¹): 950w, 932, 913sh, 886s, 875sh, 861, 858, 849, 821sh, 784s, 761s, 746s, 694, 587, 491w, 448w, 418.

W25 Lithium iron(III) tungstate wolframite-type $Life(WO₄)₂$

Origin: Synthetic.

Description: Synthesized from lithium carbonate, iron, and tungsten oxides using a ceramic technique. Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol

mull. Transmission.

Source: Fomichev and Kondratov (1994).

Wavenumbers (IR, cm⁻¹): 905s, 880, 827, 795, 734, 687, 655, 613s, 592s, 524s, 497, 463, 437, 418, 375sh, 355, 323, 300, 268, 258, 240, 220, 187, 155.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 920s, 875, 786s, 772, 710, 655, 617, 539, 497, 463, 416, 381, 354, 321, 290, 268, 239, 211, 150, 103, 87.

Origin: Synthetic.

- **Description:** Prepared by solid-state reaction from the stoichiometric mixture of Li_2CO_3 , WO₃, and CuO at 650–700 °C for 146–160 h. Triclinic, space group $P-1$, $Z = 1$.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Absorption.

Source: Mączka et al. (2002).

- Wavenumbers (IR, cm⁻¹): 952sh, 905, 824sh, 765, 615s, 492s, 456, 418, 378s, 340, 295, 284, 248, 190, 169w, 119.
- Note: A weak band near 720 cm^{-1} may correspond to Nujol. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 902s, 769, 726, 636, 553, 470, 398, 363, 307, 256, 211, 174, 127, 112.

W27 Lithium nickel tungstate $Li_2Ni(WO_4)_2$

Origin: Synthetic.

Description: Prepared by solid-state reaction from the stoichiometric mixture of Li_2CO_3 , WO₃, and CuO at 650–700 °C for 146–160 h. Triclinic, space group P-1, $Z = 1$. Structurally related to wolframite.

Kind of sample preparation and/or method of registration of the spectrum: Nujol mull. Absorption. Source: Mączka et al. (2002).

Wavenumbers (IR, cm⁻¹): 953sh, 916, 834s, 764s, 602s, 497, 463, 400, 378s, 331, 312, 288sh, 281, 257, 215, 187w, 174w.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 913s, 792, 754, 617w, 553w, 476w, 447w, 418, 387, 353, 311, 282, 266, 222w, 194, 143, 112.

W28 Potassium antimonate tungstate $KSDWO₆$

Origin: Synthetic.

- **Description**: Prepared by the solid-state reaction between WO_3 , Sb_2O_3 , and KNO_3 at 973 K. The crystal structure solved by the Rietveld method is related to that of pyrochlore. Cubic, space group $Fd3m$, $a = 10.23671(7)$, $V = 1072.71(1)$ \AA^3 . $D_{\text{calc}} = 5.4886$ g/cm³.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc and Nujol mull. Absorption.
- Source: Knyazev et al. (2010).

Wavenumbers (IR, cm⁻¹): 874sh, 748s, 635sh, 449, 395, 340w, 267sh, 208w, 163sh.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 960, 909, 864, 721s, 654, 506s, 453, 382, 343, 239, 169s.

W29 Potassium arsenate tungstate $K(AsW_2O_9)$ $K(AsW_2O_9)$

Origin: Synthetic.

Description: Prepared by the solid-state reaction from KNO_3 , WO_3 , and $(NH_4)(H_2ASO_4)$ in the molar ratio of 1:2:1, first at 773 K for 24 h, and thereafter (after regrinding) at 1033 K for 24 h. Characterized by powder X-ray diffraction data and EDX analysis. The crystal structure is solved. Orthorhombic, space group $P2_12_12_1$, $a = 4.9747(3)$, $b = 9.1780(8)$, $c = 16.6817(19)$ Å, $V = 761.65(12)$ \AA^3 , $Z = 4$. $D_{\text{calc}} = 5.457$ g/cm³. The structure is based on a 3D framework consisting of corner-sharing WO_6 octahedra and AsO_4 tetrahedra.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Absorption. Source: Alekseev et al. (2013).

- Wavenumbers (IR, cm⁻¹): 1075sh, 1011sh, 987w, 943, 918sh, 900s, 856sh, 836s, 783s, 722s, 672s, 530, 457, 425w, 409, 384w, 370.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The wavenumber 722 cm^{-1} is erroneously indicated by Alekseev et al. (2013) as 772 cm⁻¹. In the cited paper, Raman spectrum is given.
- Wavenumbers (Raman, cm⁻¹): 972s, 893, 805, 710, 654, 273, 246s, 215, 186w, 145s, 134w, 115s, 102w, 83, 69s, 51s, 35s.

W30 Potassium bismuth(III) tungstate KBi $(WO_4)_2$

Origin: Synthetic.

Description: Crystals grown from the solution in $K_2W_2O_7$ melt. Monoclinic. $D_{\text{meas}} = 7.57 \text{ g/cm}^3$, $D_{\text{calc}} = 7.51 \text{ g/cm}^3$.

Kind of sample preparation and/or method of registration of the spectrum: Transmission. Kind of sample preparation is not indicated.

Source: Xie et al. (2007).

Wavenumbers (IR, cm⁻¹): 916, 864, 803s, 751s, 719s, 588s, (443), 410.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 922w, 868s, 774, 753s, 709, 693, 637, 517, 430, 395sh, 389w, 363, 330, 302w, 287, 251w, 230w, 218.

W31 Potassium ytterbium tungstate $KYb(WO₄)₂$

Origin: Synthetic.

- **Description:** Crystal grown from the solution of K_2CO_3 , WO_3 , and Yb_2O_3 by the top-seeded solution growth method using $K_2W_2O_7$ as the solvent. Characterized by powder X-ray diffraction data. Monoclinic, space group C2/c, $a = 10.590(4)$, $b = 10.290(6)$, $c = 7.478(2)$ Å, $\beta = 130.70(2)$ °, $V = 617.8(5)$ \mathring{A}^3 , $Z = 4$.
- Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission. Conditions of far IR spectrum registration are not characterized.

Source: Zhao et al. (2008a).

- Wavenumbers (cm⁻¹): 925, 891, 841, 779, 751, 633, 571, 555, 481s, 450sh, 393s, 356s, 314s, 285s, 204s, 183, 159s, 151s, 123, 108, 96w, 79sh, 72.
- Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, figures of Raman spectra with different scattering configurations are given.

W32 Strontium tungstate SrWO_4

Origin: Synthetic.

Description: Single crystal grown by the Czochralski method. Tetragonal, space group $I4_1/a$, $Z = 2$. Kind of sample preparation and/or method of registration of the spectrum: Absorption. Kind of

sample preparation is not indicated.

Source: Ling et al. (2006).

Wavenumbers (IR, cm⁻¹): 1017w, 921sh, 863sh, 818, 732sh, 552w, 471w, 413, 312s, 274s, 193s, 162s, 135s, 73w.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. In the cited paper, figures of polarized Raman spectra are given.

W33 Huanzalaite MgWO₄

Origin: Synthetic.

Description: Prepared hydrothermally from sodium tungstate and magnesium nitrate at a temperature above 250 \degree C for 4 days. Characterized by powder X-ray diffraction data. Monoclinic, space group P2/c, $a = 4.687$, $b = 5.675$, $c = 4.928$ Å, $\beta = 90.71^{\circ}$, $Z = 2$.

Kind of sample preparation and/or method of registration of the spectrum: KBr disc. Transmission.

Source: Günter and Amberg (1989).

Wavenumbers (cm⁻¹): 885, 825, 710, 625s, 605sh, 530, 480, 450w, 385s, 330s, 290.

W34 Yttrium tungstate Y_2WO_6

Origin: Synthetic.

Description: Characterized by powder X-ray diffraction data. Orthorhombic, space group B2cb. Kind of sample preparation and/or method of registration of the spectrum: Transmission. Source: Bode et al. (1973).

Wavenumbers (IR, cm⁻¹): 840w, 740, 690, 660, 630, 600s, 560, 530, 495, 440s, 390, 350, 335, 310, 290, 270, 255, 240, 230, 215.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 935, 835, 710, 695, 675, 625, 600, 555, 525, 505, 450, 430, 400, 370, 345, 315, 290, 275, 260, 240, 225, 200, 185, 145.

W35 Sanmartinite ZnWO₄

Origin: Synthetic.

- Description: Synthesized using the ceramic technique. Characterized by powder X-ray diffraction data.
- Kind of sample preparation and/or method of registration of the spectrum: Nujol mull (?). Transmission.

Source: Fomichev and Kondratov (1994).

Wavenumbers (IR, cm⁻¹): 877s, 825s, 701s, 610s, 542, 470, 435, 348, 325, 314, 267sh, 240, 197, 187, 166, 143, 130.

Note: In the cited paper, Raman spectrum is given.

Wavenumbers (Raman, cm⁻¹): 910s, 788, 710, 676, 548, 518, 411, 356, 345, 316, 276, 199, 168, 150, 127, 94s, 59.

Re1 Uranyl perrhenate hydrate $(UO_2)_2(ReO_4)_4.3H_2O$

Origin: Synthetic.

Description: Crystals obtained by evaporation of a solution of equimolar amounts of $UO₃$ and $Re₂O₇$. Characterized by qualitative energy dispersive analysis. The crystal structure is solved. Triclinic, space group P-1, $a = 5.2771(7)$, $b = 13.100(2)$, $c = 15.476(2)$ Å, $\alpha = 107.180(2)^\circ$, $\beta = 99.131(3)^\circ$, $\gamma = 94.114(2)^\circ$, $V = 1001.12 \text{ Å}^3$, $Z = 2$. $D_{\text{calc}} = 5.291 \text{ g/cm}^3$. The structure contains complex chains of uranyl pentagonal bipyramids bridging perrhenate groups via common vertices.

Kind of sample preparation and/or method of registration of the spectrum: Attenuated total reflection of a powdered sample.

Source: Karimova and Burns (2007).

Wavenumbers $(cm⁻¹)$: 3446w, 3267, 3159, 1590, 941w, 897, 807s, 590.

Note: The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum.

\circ Springer Nature Switzerland AG 2020 N. V. Chukanov, M. F. Vigasina, Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds, Springer Mineralogy, https://doi.org/10.1007/978-3-030-26803-9_3

Some Aspects of the Use of Raman **Spectroscopy in Mineralogical Studies**

3.1 General Principles of Raman Spectroscopy

Raman scattering is the process of inelastic light scattering that occurs on fluctuations in the polarizability of molecules which are excited to higher vibrational or rotational energy levels. This phenomenon was discovered in 1928 by C.V. Raman and K.S. Krishnan (for liquids) and L.I. Mandelshtam and G.S. Landsberg (for crystals).

In Raman scattering, a monochromatic line of exciting laser radiation after interaction with a substance is accompanied by an additional set of spectral components. The newly appeared lines are located on the scale of electromagnetic waves symmetrically with respect to the line of exciting radiation and are separated from it by the frequencies of atomic vibrations. The totality of newly emerging spectral components is the Raman spectrum of a substance, which is its diagnostic feature. The phenomenon of Raman scattering is characteristic of substances that are in a gaseous, liquid, or solid state consisting of molecules or molecular complexes with an internal structure, or atoms combined into crystalline structures. Monatomic gas particles that do not interact with each other (for example, inert gases) do not have Raman spectra.

The source of secondary radiation (Raman scattering) is a variable in time electric dipole moment that occurs in the medium as a result of the interaction of particles of a substance with the electric component of external electromagnetic radiation of the visible or close to visible range. The magnitude of the dipole moment depends on the magnitude of the external field and on the polarizability of the substance:

$p = \hat{a}E$

where \boldsymbol{p} is the induced electric dipole moment vector, E is the vector of external electric field strength, and \hat{a} is the polarizability.

The polarizability of the substance depends on the structure of the molecules or crystals forming it, on the types of bonds in the substance, as well as on the nature of the motions of the atoms in the molecules or in the crystals. Polarizability is a variable in time characteristic of the substance, which is modulated by the movements of the particles of the substance itself and the electrical component of the external electromagnetic field, causing the appearance of a variable electric dipole moment in the substance. In accordance with the basic rule of electrodynamics, a system with a variable electric dipole moment in time can

be a source of electromagnetic radiation with a frequency of change in the dipole moment.

In experiments on Raman scattering using monochromatic radiation with a frequency of Ω , spectral components with frequencies Ω , $(\Omega + \omega_i)$ and $(Q - \omega_i)$ are recorded in the spectrum of scattered radiation, where ω_i are the frequencies of vibrational and rotational motions of particles of a substance. The spectral region in which the components are located with frequencies greater than the frequency of laser radiation $(Q + \omega_i)$ is commonly called the anti-Stokes region, and the region with lower frequencies $(Q - \omega_i)$ is called the Stokes region.

Under normal conditions, the intensity of the strongest lines in the Stokes region of the Raman spectra is usually 10^{-6} – 10^{-8} of the intensity of the exciting line (Reshetnyak and Bukanov 1991). The intensity of the anti-Stokes component is even less by several decimal exponents of magnitude and decreases rapidly with increasing magnitude of the detuning from the laser line. For this reason, the bulk of the experiments are carried out in the Stokes spectral region. As a source of spectral information, mainly vibrational spectra are used.

Polarizability is anisotropic and is described by a second rank tensor, which can be written as a symmetric matrix:

$$
\hat{a} = \begin{vmatrix} a_{xx} & a_{xy} & a_{xz} \\ a_{yx} & a_{yy} & a_{yz} \\ a_{zx} & a_{zy} & a_{zz} \end{vmatrix}
$$

The component of the polarizability tensor a_{ij} determines the magnitude of the dipole moment arising in the medium along the i axis under the action of an electromagnetic field with the direction of the polarization vector of the electric field along the j axis. This means that for different orientations of the polarization vector of the laser radiation and the polarization vector of the detected scattered radiation in the Raman spectrum, scattering will be recorded on different components of the polarizability tensor. In a general case, Raman scattering occurs at different vibrations, and the recorded scattering lines in the Raman spectra have different frequencies

and intensities. The intensity of the scattering line in the case of nonpolar normal vibrations is determined by the following formula: T of
 $\ln \frac{1}{\sqrt{2}}$ The intensity

incompolar no

following fo

 \mathcal{L}

$$
I \sim \left[\sum f_i \,\mathbf{\alpha}_{ij} \,e_j\right]^2,
$$

$$
i, j = x, y, z
$$

where f_i and e_j are components of the unit vectors of the dipole moment polarization and laser radiation, respectively, and α_{ij} is the change of the polarizability tensor component at a given kind of normal vibrations. Not all types of vibrations can be detected as lines in the Raman spectra. For molecules and crystals with an inversion center, there is an alternative prohibition rule which is very important for experimental practice. According to this rule, for compounds with an inversion center, bands of antisymmetric (with respect to the inversion center) vibrations are forbidden in the Raman spectra, and symmetrical ones are forbidden in the IR spectra. The alternative prohibition rule relates simultaneously to Raman spectroscopy and IR absorption spectroscopy and indicates the complementary nature of these methods of molecular spectroscopy.

The theory of Raman spectroscopy is described in more detail in numerous publications (Brandmüller and Moser 1962; Anderson 1973; Sushchinsky 1981; Banwell 1983; Zhizhin et al. 1984; Nakamoto 2009).

3.2 Specific Features and Possibilities of Raman Spectroscopy: Practical Recommendations

3.2.1 Advantages and Disadvantages of the Method

The most important properties of Raman spectroscopy are that this method is nondestructive and local. The ability of laser radiation to penetrate inside transparent minerals makes Raman spectroscopy indispensable for diagnosing mineral phases in inclusions (see, e.g., Figs. [3.1](#page-730-0) and [3.2\)](#page-730-0). In this case, the minimum dimensions of the

Fig. 3.1 A three-phase inclusion in aquamarine. The transverse size of the inclusion is about 4–5 μm

investigated phases are limited by the diameter of the focal spot of laser radiation. When using highquality optical elements, laser radiation can be focused into a spot with a diameter of up to several microns. In this case, phase diagnostics can be carried out in situ, without damage the inclusions and disbalance the phase equilibrium. The highest quality Raman spectra are obtained for solid-state phases because of their high density (Fig. [3.3](#page-731-0)).

Figure 3.2 illustrates both the large diagnostic capabilities of Raman spectroscopy and the difficulties encountered in the study of inclusions. Laser radiation, before it reaches an inclusion, goes some distance in the host mineral causing Raman scattering in the latter. As a result, the resulting spectrum contains the scattering lines

Fig. 3.2 A multiphase inclusion in topaz

of both the studied inclusion and the host mineral. In the cases when the host mineral spectrum is rich in its own scattering lines, the diagnosis of the substances of microscopic inclusions can be significantly complicated. It should be taken into account that in the spectra of microscopic inclusions usually only most intense scattering lines can be observed, which may have low intensities against the background of the more powerful spectrum of the host mineral. Obtaining spectra of inclusions located as close as possible to the surface of the host mineral reduces the laser beam path through the latter. The depth at which diagnostics of inclusions is possible is limited by the focal length of the lens used.

In some cases, in multiphase inclusions, it is possible to diagnose not only solid, but also liquid (Fig. [3.4\)](#page-731-0) and gaseous (Figs. [3.5](#page-732-0) and [3.6\)](#page-732-0) phases.

In the region of stretching vibrations of water, a strong and narrow scattering line with a frequency of 3610 cm^{-1} is recorded, which refers to $H₂O$ molecules located in the channels of the aquamarine structure. Due to the small diameter of the channels (about 0.5 nm), water molecules exist in a constrained state with hydrogen atoms attached to the channel walls and do not form strong hydrogen bonds. This is reflected in the small half-width of the scattering line of about 4 cm^{-1} . The broad band at 3420 cm^{-1} with a shoulder at 3250 cm^{-1} corresponds to O-Hstretching vibrations of water molecules forming rather strong hydrogen bonds and belonging to the liquid phase of the inclusion.

Fig. 3.3 Raman spectrum of a microscopic inclusion of microcline in aquamarine. Bands marked with an asterisk belong to the aquamarine matrix. The laser emission

wavelength is 532 nm, the spectral resolution is about 6 cm^{-1} , and the laser power is 30 mW

Fig. 3.4 Raman spectrum of the liquid phase of the inclusion in aquamarine

Fig. 3.6 Raman spectrum showing bands of gaseous $CO₂$ in a multiphase inclusion in topaz (see

Fig. [3.2](#page-730-0))

To obtain the maximum possible intensity of the Raman signal, the focal volume of the laser beam must be immersed in the substance of the host mineral and pointed at the object under investigation. In this case, a defocused luminous spot forms on the surface of the host mineral at the entry point of the laser beam, which can cover the working field. In such a situation, it is not possible to determine not only the diameter of the focal spot on the phase being diagnosed, but it is also

generally difficult to understand whether the laser beam is focused on the inclusion. In this case, one can judge the success of the experiment only from the results of a comparison of the Raman spectra obtained in the pure region of the host mineral and the spectra obtained from inclusions. Reliable confirmation of the result in this situation is the reproducibility of spectral data.

Another difficulty in working with inclusions is a significant loss of laser power when passing

Fig. 3.7 Sword-like microcrystals of the rare mineral katiarsite KTiO $(AsO₄)$ on arsmirandite crystal crust. SEM image (in secondary electrons)

Fig. 3.8 Raman spectrum of catiarsite. A weak band near 1000 cm^{-1}

corresponds to an admixed sulfate. The laser emission wavelength is 532 nm, the spectral resolution is about 6 cm^{-1} and the laser power is 30 mW, and the focal spot diameter is 3 μm

through the boundary of the inclusion. Uneven boundary can cause strong scattering of the laser beam, reducing the effective exciting power. Moreover, the total internal reflection conditions for a laser beam can be realized on the surface of the inclusion capsule. In this case, the laser beam will not penetrate into the inclusion, and obtaining a Raman spectrum will not be possible.

The "nondestructiveness" and locality of the Raman spectroscopy method were the reason for its widespread use in the study of unique minerals represented by single finds or microscopic monomineral aggregates. If the studied mineral is represented by individual prismatic crystals or thin needles (Fig. 3.7), then to obtain the Raman spectrum (Fig. 3.8), the sample area was chosen whose linear dimensions are larger than the diameter of the laser beam focal spot. Otherwise, there will be a loss of power of the exciting radiation and the Raman scattering signal.

The intensity of the scattered radiation depends on the number of scattering centers in the focal volume of the laser beam. Therefore, ceteris paribus, the best quality of the Raman spectrum will be obtained in the area of the sample where the mineral aggregate has the highest concentration of the substance. For example, with needle-like or finely prismatic microcrystal forms, the Raman spectrum should be recorded at the common base of needle growth. The interpretation of the Raman spectra obtained on the microaggregates of minerals and the identification of the scattering lines related to the mineral of interest require special attention and analysis. When working with microscopic aggregates of minerals, one should take into account the possible presence of mineral impurities, the removal of which is impossible due to the small size.

3.2.2 Spectral Band Assignment

Raman spectra primarily reflect the features of the anionic part of the mineral, as well as some polyatomic cations like NH_4^+ or UO_2^{2-} . The

frequencies of symmetric stretching vibrations of some complex anions occurring in the structures of minerals change mainly in the following ranges $\text{(cm}^{-1})$:

Raman shifts of the stretching vibration bands increase with increasing of polymerization of coordination polyhedra; e.g., for Al-poor framework silicates they are typically in the range $1040 - 1130$ cm⁻¹.

Thus, scattering lines observed in these ranges can be used for a preliminary assignment of a mineral to one or more class of compounds as a step preceding a more precise specification. When conducting diagnostic studies, it is necessary to take into account that the approximate proportion of the intensities of the Raman lines in the spectra of complex anions is as follows: $MoO₄²$ $(\approx \text{WO}_4^2)$: SO_4^2 ²⁻ : PO_4^2 ²⁻ : CO_3^2 ²⁻ : SiO_4^4 ⁴⁻ $10: 6: 3: 1.5: 1$ (for excitation radiation with a wavelength between 488 and 515 nm). This feature can be illustrated by the spectra of cancrinite $Na_6Ca_2[AlSiO_4]_6(CO_3)_2.2H_2O$ (Fig. 3.9) and vishnevite $Na_8[A1SiO_4]_6(SO_4)$ 2H₂O (Fig. [3.10\)](#page-735-0), structurally related tectosilicates with additional

anions. The additional anions CO_3^2 and SiO_4^4 play subordinate role in the chemical composition of these minerals. However, the strongest lines in the Raman spectra are the scattering lines corresponding to the internal fully symmetric stretching vibrations of just additional anions. This feature may cause difficulty in determining chemical class of a mineral.

3.2.3 Effect of Structural Disorder on Raman Spectra of Minerals

It should be noted that Raman spectroscopy is sensitive to the degree of crystallinity of the substance. This is reflected primarily in the halfwidths of the scattering lines. Raman spectra of minerals with perfect crystal structures are distinguished by narrow well-resolved bands (Fig. 3.11). Disturbance or absence of longrange order in the structure of matter, cation disordering and local defects cause broadening and even the disappearance of some scattering lines. This effect is most pronounced in the Raman spectra of metamict minerals, minerals with a colloid-dispersed structure, and glasses (Fig. [3.12](#page-736-0)).

In the spectrum of quartz, narrow clearly defined scattering lines are recorded that belong to different types of vibrations: "rocking of

tetrahedra" (210 cm^{-1}) , "twisting of tetrahedra" (353 cm^{-1}) , O-Si-O bending (467 cm^{-1}) , and $Si-O$ stretching (1086 cm^{-1}) (Ranieri et al. 2009). The absence of a long-range order in obsidian, which is a $SiO₂$ -rich glass, results in the absence of specific lines corresponding to any symmetry elements. The broad bands at

Fig. 3.11 Raman spectrum of quartz powder. The laser emission wavelength is 532 nm, the spectral resolution is 6 cm-l , and the laser power is 30 mW. The letters L and T denote components of longitudinal-transverse splitting (see below)

Fig. 3.12 Raman spectrum of obsidian (volcanic glass). The laser emission wavelength is 532 nm, the spectral resolution is 6 cm^{-1} , and the laser power is 30 mW

480 and 805 cm^{-1} correspond to the totality of vibrations in areas with different local structures.

The sensitivity of Raman scattering to the disordered distribution of atoms between crystallographic positions is clearly reflected in the spectra of feldspars. For example, in the structure of the disordered oligoclase $(Na,Ca)[A]Si₃O₈]$, Al atoms are statistically distributed between different

tetrahedral sites, whereas in an ordered variety they are concentrated mainly in only one of independent crystallographic positions. Raman spectra of the two oligoclase varieties differ markedly from each other: in the spectrum of an ordered oligoclase variety, a greater number of scattering lines (Fig. 3.13, upper curve) are recorded, which have a smaller half-width than in the spectrum of a disordered oligoclase (Fig. 3.13, lower curve).

In the study of black microscopic inclusions (Fig. [3.14\)](#page-737-0) in aquamarine, it was found [based on the assignment by Sharma et al. (2001)] that they consist of crystalline graphite, which was diagnosed by the relatively narrow line at 1574 cm-1 , and X-ray amorphous carbon showing a broad band at 1336 cm^{-1} (Fig. [3.15\)](#page-737-0). The Raman spectrum made it possible to suppose that the substance in the inclusion is compressed, since the frequencies of the recorded scattering lines differ from the values of the frequencies characteristic of the same substances under normal conditions (i.e., 1360 and 1582 cm^{-1} for amorphous carbon and graphite, respectively).

3.2.4 Selection Rules

The Raman activity of normal modes is determined by changes of polarizability tensor components in corresponding vibrations. The magnitudes of the derivatives of the polarizability tensor components by normal coordinates determine the intensities of these vibrational modes and also form a second-rank symmetric tensor (so-called the Raman tensor) which is defined for all point symmetry groups (see, e.g., Zhizhin et al. 1984; Kolesov 2018). Nonzero elements of the Raman tensor determine at which relative orientation of the crystallographic axes and the polarizations of the laser and scattered radiation vibrations of a given type of symmetry will be recorded in the Raman spectrum. Based on the Raman tensors, selection rules in Raman scattering for crystals, molecules, molecular groups, and ions are formulated.

For objects with C_{2v} symmetry, to which H₂O and H2S molecules belong, vibrations of the symmetry types A_1 (symmetric stretching and bending vibrations) and B_1 (antisymmetric stretching vibrations) are permitted by the selection rules. Corresponding Raman bands of water molecules in the gas phase are observed at 3657, 1595, and 3756 cm⁻¹, respectively (Halonen and Carrington Jr 1988).

For isolated undistorted planar trigonal AB_3 ions (symmetry group D_{3h}) like CO_3^2 , NO_3^- , and BO₃³⁻, symmetric stretching vibrations ν_1 with the symmetry A_1' as well as stretching (ν_3) and in-plane bending (ν_4) doubly degenerate vibrations of type E' are permitted in Raman spectra by the selection rules. Out-of-plane bending ν_2 vibrations with the symmetry $A_2^{\prime\prime}$ are prohibited.

For isolated tetrahedral AB_4 ions with the T_d symmetry $(MoO₄²⁻, AsO₄³⁻, PO₄³⁻, VO₄³⁻,$ SO_4^2 , SiO_4^4 , etc.) in the Raman spectra the stretching ν_1 mode (with the A₁ symmetry), bending doubly degenerate ν_2 mode (with the E symmetry), and triply degenerate ν_3 stretching and ν_4 bending modes (with the F_2 symmetry) are allowed by the selection rules.

In real structures of minerals, the symmetry of tetrahedral ions decreases, sometimes to D_{2h} (flattened tetrahedron) or even to C_s , which leads to the removal of degeneracy and splitting of degenerate vibrations into separate components. To identify the scattering lines, one can use the known regularity established by different authors in numerous experimental studies: in most cases, the scattering lines corresponding to fully symmetric stretching vibrations have a smaller width and higher peak intensity than the scattering lines corresponding to degenerate vibrations. This empirical regularity is explained by the greater polarizability of bonds with fully symmetric stretching vibrations (Kolesov 2018).

Symmetry types of the vibrations of isolated complex ions may differ from that in crystals. For example, in calcite CaCO₃ having D_{3d} symmetry, CO_3^2 ions are located in positions on the thirdorder axis $(D_3$ positional symmetry) and do not change their symmetry compared to the free state. In this case, the same selection rules are valid as for an isolated CO_3^2 ion. On the other hand, in aragonite (orthorhombic CaCO₃ polymorph with the D_{2h} symmetry), the crystal structure of which does not have axes of the third order, the positional symmetry of the CO₃²⁻ ion decreases to C_s , and according to the selection rules for the D_{2h} group, the out-of-plane bending mode (ν_2) , which is classified as A_g , is active in the Raman spectrum of aragonite: corresponding band is observed at 853 cm^{-1} (Frech et al. 1980).

In vivianite Fe_3^2 ⁺[PO₄]₂·8H₂O, which is monoclinic with the symmetry C_{2h} , there are no axes of the third order, and the symmetry of the phosphate ion also decreases as compared with isolated PO_4^{3-} . As a result, all vibrations are nondegenerate and are classified according to symmetry types as A_g , A_u , B_g , and B_u . In the Raman spectrum of vivianite, only A_{φ} and B_{φ} bands appear in accordance with the "alternative prohibition" rule applied to symmetry groups with an inversion center:

For isolated regular octahedral AB_6 groups, ν_1 symmetric stretching mode with the symmetry A_{1g} , doubly degenerate ν_2 stretching mode with the symmetry E_g and triply degenerate $\nu₅$ bending mode with the symmetry F_{2g} are permitted in the Raman spectra by the selection rules.

In accordance with the "alternative prohibition rule," in IR spectra of isolated regular octahedral AB_6 groups, only the ν_3 stretching band and the ν_4 bending band (both having the F_{1u} symmetry) are observed. Anionic groups of this type $[Si(OH)₆,$ Al(OH)₆, Fe³⁺(OH)₆, Mn⁴⁺(OH)₆, etc.] occur in the structures of ettringite-group minerals. In ettringite $Ca_6[AI(OH)_6]_2(SO_4)_3.26H_2O$, the symmetry of which is C_{3v} , with triad axes and reflection planes being the only symmetry elements. As a result, the symmetry of the $[A(OH)₆]³⁻$ group

is also lowered. The ν_5 modes which were forbidden in the Raman spectrum according to the "alternative prohibition rule" for the free anion become nondegenerate and active. Vibrational modes of ettringite are classified according to the symmetry types A_1 , A_2 , and E. In accordance with the selection rules, only bands of A_1 and E vibrations appear in the Raman spectra (presumably, the bands at \sim 550 and \sim 345 cm⁻¹: see Deb et al. 2003; Renaudin et al. 2007). Vibrations of type A_1 can be separately recorded under the conditions when polarizations of laser and scattered radiation and the C_3 crystallographic axis of a single crystal are parallel to each other.

The C_6 symmetry group of thaumasite Ca₃[Si $(OH)_{6}$](SO₄)(CO₃)·12H₂O contains axes of the second, third, and sixth orders. In accordance with this set of symmetry elements, the "alternative prohibition rule" becomes inapplicable, and the degeneration is removed from the triple degenerate modes. This leads to an increase in the number of possible scattering lines in the spectrum. In accordance with the table of group characters, in the spectra of structures with such symmetry, the existence of vibrational modes of the A, B, E_1 , and E_2 types is possible. In accordance with the selection rules and Raman scattering tensor, vibrations of symmetry types A, E_1 , and E_2 are active in the Raman spectra. The study of the polarized Raman spectra of a thaumasite single crystal showed that the fully symmetric vibrations of the $[Si(OH)₆]$ ²⁻ anion have a frequency of about 660 cm^{-1} (Kononov et al. 1990).

An example of the manifestation of the "alternative prohibition rule" is the absence of first-order Raman spectra in some minerals with inversion centers. Such minerals, for example, are halite NaCl and sylvite KCl having a cubic (O_h) symmetry. All atoms forming the structures of these minerals are located at the centers of inversion, and any displacements from their equilibrium positions violate the symmetry. As a result, the bands corresponding to all kinds of vibrations are forbidden in the first-order Raman spectra. However, with a large signal accumulation time, it is possible to record weak bands of the second order Raman spectra (Fig. 3.16). The selection rules for two-phonon spectra are determined using the tables

Fig. 3.16 Second-order Raman spectra of halite (a) and sylvite (b). The laser emission wavelength is 532 nm, the spectral resolution is 6 cm^{-1} , the laser power is 30 mW, and signal accumulation time is 200 and 25 s, respectively

of the characters of irreducible representations of the point group of the mineral under investigation. Thus, an analysis of the types of symmetry of two-phonon vibrations in crystals with a point group O_h shows that among the possible combination modes in this point group there are vibrations with symmetry types A_{1g} , E_{g} and F_{2g} , which are allowed in the Raman spectra. Consequently, second order Raman spectra can also be used for diagnostic purposes.

3.2.5 The Longitudinal-Transverse Splitting

The special feature of the Raman scattering method, which makes it difficult to interpret the spectra, includes the appearance of the longitudinal-transverse (*LO-TO*) splitting of lines in the spectra in crystals without an inversion center. In such crystals, some vibrations that are active in the Raman spectra are accompanied by changes in the dipole moment. As a result, vibrations of atoms lead to changes in the

macroscopic electric dipole moment in the crystal. The resulting additional electromagnetic field in turn affects the atoms. In the Raman spectra, such an interaction can result in the appearance of additional scattering lines. The LO-TO splitting theoretically exists in all cases when scattering occurs on dipole-active vibrations. A weak splitting results in changes of the shapes of some lines and appearance of additional shoulders. However, in crystals with the ionic character of bonds the magnitude of the LO-TO splitting can reach considerable values. For example, in the Raman spectrum of LiH, it is almost 500 cm^{-1} . In Raman spectra of molecular crystals, the splitting value only in some cases reaches 15 cm^{-1} (Zhizhin et al. 1984), but in most molecular crystals, the LO-TO splitting is not observed. The prediction of the LO-TO splitting in the spectra of the Raman spectra goes beyond the framework of factor group analysis.

In the case when a mineral without an inversion center has several dipole-active vibrations, several additional scattering lines may appear in the spectrum owing to splitting into LO-TO components (see, e.g., Raman spectrum of quartz in Fig. [3.11](#page-735-0)). As a result, the total number of lines in the spectrum may exceed the number of normal vibrations expected according to group theory. It should be noted that in the infrared absorption spectra, the frequencies of the longitudinal vibrations are not recorded, since only transverse vibrations are excited.

3.2.6 Orientation and Polarization Effects; Analysis of Water and OH Groups

A specific feature of Raman scattering is its tensor character. As a result, Raman spectra of single crystals depend on their orientation and the direction of polarization of the vector of the electrical component of the electromagnetic wave of laser radiation. Spectra obtained in different experimental geometries may differ from each other by the number of recorded scattering lines and their intensity (Fig. 3.17).

Fig. 3.17 Raman spectra of laachite $(Ca, Mn)₂Zr₂Nb₂$ TiFeO₁₄ (monoclinic, point group C_{2h}) obtained with the polarization of the laser beam parallel (upper curve) and perpendicular (lower curve) to the a axis of the crystal. The laser emission wavelength is 532 nm, the spectral resolution is 2 cm⁻¹, the laser power is 6 mW, and the focal spot diameter is about 15 μm

With a random orientation of the single crystal, the scattering line intensities are also random. This uncertainty does not apply to spectra of powdery samples with chaotic orientation of microcrystals. A reproducible total spectrum averaged over all possible spatial orientations of the microcrystals can be obtained only if the size of the microcrystals in the powder is much less

 1190 568 a 588 400 485 300 200 100 b $\mathbf{0}$ 500 1000 1500 2000 Wavenumber (cm⁻¹)

than the diameter of the focal spot of the laser radiation. This mode of spectrum registration is most suitable for diagnostic purposes. In cases where it is impossible to prepare the powder, it is recommended to obtain several spectra at different orientations of the sample in order to select the most representative version of the spectrum.

Raman spectrum of a single crystal, obtained using polarized radiation, makes it possible to draw conclusions regarding the directions of chemical bonds relative to the crystallographic axes. This is especially important for determining the orientation of hydroxyl groups (e.g., in amphiboles, micas, tourmalines). Raman scattering is only possible if the electric field vector of an incident beam is not perpendicular to the O–H bond direction.

To study structural features of minerals, spectra of Raman spectra of single-crystal samples are taken. In such experiments, intensities of scattering lines depend on the mutual orientation of the crystallographic axes and on the directions of the polarization vectors of the incident and scattered radiation. In crystals with a tetragonal, hexagonal/ trigonal, and cubic symmetry, it is possible to determine the type of symmetry of the vibrational mode of a group of equivalent coordinates based on polarized Raman spectra. In crystals having lower symmetry, polarization measurements make it possible to obtain information on the orientations of chemical bonds, since in some cases (especially in molecular crystals) polarization of some scattering lines depends on vibrations of single bonds (Kolesov 2018).

The polarizability of a bond in the longitudinal direction is much greater than in the transverse directions. Therefore, the scattering line corresponding to stretching vibrations of this bond is most intense when the polarization of the exciting laser radiation (and in the ideal case of the scattered light) coincides with the direction of this bond. This regularity can be illustrated by the example of micas. In phlogopite $K(Mg,Fe^{2+})₃[AISi₃O₁₀](OH,F)₂$ having monoclinic symmetry, OH groups coordinated by divalent octahedral cations are oriented almost parallel to the crystallographic c axis, perpendicular to the cleavage plane. The Raman scattering line at

 3709 cm^{-1} corresponding to stretching vibrations of hydroxyl groups has a maximum intensity when the polarization of laser radiation is perpendicular to the cleavage plane of the mineral sample, i.e., parallel to the c axis. A weak additional line at about 3666 cm $^{-1}$ is observed in Raman spectra of phlogopite samples containing trivalent impurity ions, $Fe³⁺$ or Al^{3+} . Since the orientation of hydroxyl groups coordinated by trivalent cations deviates from the direction perpendicular to the cleavage plane, a weak scattering line can be recorded in the Raman spectra with polarization of laser radiation parallel to the cleavage plane. In muscovite $KAI₂[AISi₃O₁₀]$ $(OH)_2$, which is a dioctahedral mica, hydroxyl groups are almost parallel to the cleavage plane, and the band of stretching vibrations of OH groups $(at 3628 cm⁻¹)$ has a maximum intensity in spectra excited by laser radiation with polarization parallel to the cleavage plane (Tlili et al. 1989).

Based on polarized spectra of tourmaline group minerals, it was found that the OH groups are mainly oriented along the threefold c crystallographic axis (Gasharova et al. 1997; Berryman et al. 2016). Polarized Raman spectra of the orthorhombic mineral magnesiocarpholite $MgAl₂Si₂O₆(OH)₄ revealed the presence of three$ OH groups, one of which is oriented almost perpendicular to the c axis (Fuchs et al. 2001).

In some cases, the orientation of complex anionic groups can be determined from polarized Raman spectra. Based on the data obtained for a columnar thaumasite crystal, Kononov et al. (1990) have confirmed that almost flat CO_3^2 ⁻ group (Edge and Taylor 1971) is oriented perpendicular to the C_6 axis of the crystal.

Raman spectroscopy has a low sensitivity in determination of water in minerals. The H_2O molecule has a weak polarizability and, as a result, a weak response to excitation radiation. Bands of O–H-stretching vibrations are usually observed in the range from 3000 to 3800 cm^{-1} , but bands of acidic OH groups and very strong hydrogen bonds may have Raman shifts below 3000 cm-l . In most cases, bands of H–O–H bending vibrations of H_2O molecules are observed in the range $1600-1700$ cm⁻¹, but with a low water content, these bands are recorded with difficulty and only with a successful selection of Fig. 3.18 Raman spectra of martyite $Zn_3(V_2O_7)$ $(OH)_2·2H_2O$ obtained at the laser emission wavelength of 532 nm, the spectral resolution of 2 cm^{-1} , the laser power of 4 and 13 mW, and the signal accumulation time of 200 and 50 s (for the upper and lower curves, respectively)

experimental conditions. An increase in the accumulation time at a given laser power or an increase in the laser power may lead to local overheating and dehydration of the sample (see Fig. 3.18).

In the structure of fluorapophyllite- (K) , water molecules occupying a single crystallographic position are asymmetric: the positional symmetry of H_2O decreases to $C1$, and the hydrogen atoms belonging to the same molecule are nonequivalent. A significant difference in the interactions of the two hydrogen atoms with their nearest environment leads to the fact that stretching vibrations of OH bonds in the water molecule are practically independent (Ryskin and Stavitskaya 1990). The broad band with a maximum of about 3013 cm^{-1} and the narrow band at 3564 cm^{-1} refer to the stretching vibrations of OH bonds, which form strong and very weak hydrogen bonds, respectively (Fig. [3.19](#page-743-0)).

In the structure of hydroxylapophyllite- (K) , both asymmetric H_2O molecules and OH groups are present. The broad band at about 2990 cm^{-1} and the narrow band at 3569 cm^{-1} correspond to a strong and a weak hydrogen bonds formed by $H₂O$, respectively. Another narrow band (with a

Fig. 3.19 Raman spectra of fluorapophyllite-(K) $KCa_4[Si_8O_{20}]F·8H_2O$ (upper curve) and hydroxylapophyllite-(K) KCa₄[Si₈O₂₀])OH)·8H₂O (lower curve) obtained using 532 nm laser radiation

half-width of about 3 cm^{-1}) is observed at 3631 cm⁻¹ and corresponds to stretching vibrations of the OH group.

In some cases when the number of hydrogencontaining groups in the mineral is insignificant, the Raman spectroscopy method does not allow one to unambiguously distinguish between water and hydroxyl groups. In such cases, it is more appropriate to use infrared absorption spectroscopy.

3.2.7 Effect of Luminescence

Emission of photoluminescence excited by the laser beam is a serious problem of Raman spectroscopy of minerals. Usually, minescence is observed as broad bands superimposed on the Raman scattering spectrum (Fig. [3.20](#page-744-0), upper curve). The intensity of luminescence can be many times (up to $10^3 - 10^4$) greater than the intensity of the Raman signal, which prevents the registration of a high-quality spectrum or even makes it impossible to obtain Raman spectrum at all.

The main cause of luminescence is the coincidence of the frequency of the exciting laser radiation with the frequencies of electronic transitions of the luminescent center in the mineral. The most effective way to eliminate luminescence is the use of laser radiation with a longer wavelength λ_{exc} , the photon energy of which is insufficient to excite electronic energy levels. Unfortunately, with increasing wavelength of laser radiation, the intensity of the useful Raman signal I_R decreases significantly according to the law $I_R \sim$ $\lambda_{\text{exc}}^{-4}$. In such situations, long-time accumulation of the useful signal leads to an improvement in the signal-to-noise ratio (Fig. [3.20](#page-744-0), lower curve).

In cases when it is not possible to eliminate the luminescence, one can resort to recording several spectra using lasers with different wavelengths. For each type of radiation, the spectral luminescence lines appear in a specific spectral range. The bands that will be present with a constant frequency in the spectra obtained at different wavelengths of the exciting radiation should be referred to the lines of Raman scattering.

3.2.8 Destructive Effect of Laser Radiation

Local temperature increase due to strong absorption of laser radiation may result in alteration or decomposition of the sample. In the Raman microprobe analysis this problem is especially Fig. 3.20 Raman spectra of an unoriented sample of romanorlovite $K_8Cu_6Cl_{17}(OH)$ ₃ obtained at the laser emission wavelength of 532 nm, the spectral resolution of 6 cm^{-1} , the laser power of 3 and 1.5 mW, and the signal accumulation time of 4 and 17 min (for the upper and lower curves, respectively)

significant. Therefore, the selection of conditions for a nondestructive experiment plays an extremely important role in experiments on Raman scattering.

Special attention should be paid to proper selection of laser power when working with highly colored or opaque minerals, which include most sulfides and sulfosalts. Dark coloring of minerals causes a strong absorption of exciting radiation, which results in attenuation of scattered signal. To enhance the intensity of the Raman signal, an increase in the laser pump power is required. However, it should be borne in mind

that increasing the power of laser radiation leads to an increase in the energy absorbed by the mineral. Since most minerals have relatively low thermal conductivity, the absorbed energy causes a local increase in temperature in the focal volume of the laser beam. Too high laser power can result in local thermal destruction of the mineral structure, leading to the formation of cavities on the sample surface (Figs. [3.21](#page-745-0) and [3.22\)](#page-745-0) or cavities with a destroyed structure inside the sample. However, in most cases optimizing the experimental conditions (reducing the laser excitation power and increasing the signal accumulation

Fig. 3.22 The thermal destruction zone formed on the surface of a crystal of vorontsovite (Hg₅Cu) TlAs₄S₁₂ at a laser power of 1.5 mW and laser wavelength of 532 nm, focal spot diameter of \sim 15 μ m, and signal accumulation time of 1 h. Field width 100 μm. It was not possible to obtain Raman spectrum of the mineral due to its thermal instability

Fig. 3.21 Caverns formed on the surface of melanarsite at a laser power of 13 mW and laser wavelength of 532 nm, focal spot diameter of \sim 15 μ m, and signal accumulation time of 10 s

Fig. 3.23 Raman spectrum of melanarsite $K_3Cu_7Fe^{3+}$ $O_4(AsO_4)_4$ obtained at the laser emission wavelength of 532 nm, spectral resolution of 6 cm⁻¹, laser power of 4 mW, focal spot diameter of \sim 15 μ m, and signal accumulation time of 100 s

time) makes it possible to obtain scattering spectra even on thermally unstable samples (Fig. 3.23).

In some cases, it is possible to reduce the degree of overheating by placing microscopic mineral samples on a metal substrate, which leads to acceleration of the heat sink. The correct sequence of actions when working with an unknown colored opaque or especially valuable sample is the use of low-power laser source at the initial stage of research. A gradual increase in power with constant monitoring of the state of the sample will prevent its damage or destruction. To improve the quality of the Raman spectra at low power of the exciting radiation, an increase in the time of accumulation of the Raman signal may play a positive role.

Additional information on the practical application of Raman spectroscopy can be obtained from numerous books and review articles (Reshetnyak and Bukanov 1991; Nasdala et al. 2004; Larkin 2011; Vandenabeele 2013; Kolesov 2018).

Raman Spectra of Minerals 4

This chapter provides data on 2104 Raman spectra of minerals and their synthetic counterparts taken from various periodicals. The overwhelming majority of these spectra were obtained on arbitrarily oriented samples. As a result, absolute values band intensities are not very informative. For this reason, we do not show the spectra figures, but only give lists of Raman shifts with indication of the strongest and weakest bands.

Data on the Raman spectra are listed in alphabetical order of mineral names and are accompanied by brief descriptions of the conditions under which the spectra were taken. In most cases, comments are made regarding the quality of the spectrum and/or methods of identification of the reference sample.

Abellaite $\text{NaPb}_2(\text{CO}_3)_2(\text{OH})$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 488 and 568.2 nm laser radiations. The laser radiation power at the sample was 200 and 100 mW, respectively.
- **Raman shifts (cm⁻¹):** 3500w, 1750w, 1730w, 1392s, 1350sh, 1068, 1057s, 1052sh, 1036w, 868, 695sh, 681s, 285 (broad), 202, 125w, 98 (broad), 86 (broad), 52s, 37.
- Source: Brooker et al. (1983).
- **Comments:** The band 1036w is a satellite band arising from the isotopic moieties $(C^{18}O^{16}O_2^{2-})$. The sample identification was done and the purity of the substance was proved by powder X-ray diffraction data.

Abelsonite $NiC_{31}H_{32}N_4$

Origin: Green River Formation, Utah, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 90 mW.

Raman shifts (cm⁻¹): \sim 1230, \sim 1170, \sim 1150, \sim 1120, \sim 760.

Source: Liu et al. (2015e).

Comments: The wave numbers were estimated by us based on spectral curve analysis of the published spectrum. The sample was characterized by powder X-ray diffraction data and chemical analysis.

Abhurite $Sn^{2+}_{21}O_6(OH)_{14}Cl_{16}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on suspension in water using 785.0 nm laser radiation. The laser radiation power at the sample was 200 mW.

Raman shifts (cm⁻¹): 256, 206s, 170, 156, 147.

Source: Chen and Grandbois (2013).

Comments: Spectral analysis and Raman shifts calculation were based on semi-quantitative indirect hard modeling (IHM) analysis.

Acanthite $Ag₂S$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an unoriented crystal using 488.0 nm laser radiation. The laser radiation power is not indicated. The spectrum was measured at 30 K.

Raman shifts $(cm⁻¹)$ **:** 222s, 200.

Source: Milekhin et al. (2011).

Comments: For the Raman spectrum of acanthite see also Martina et al. (2012).

Acetamide solution $CH₃CONH₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on 0.1 M and 0.4 M aqueous solutions of acetamide. The wavelengths of laser excitation lines were 220, 240, 250, 365, and 560 nm. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1662, 1616, 1457, 1404, 1360, 1131, 1005, 871.

Source: Dudik et al. (1985).

Comments: The line at 871 cm⁻¹ is strong in experiments with the laser radiation wave lengths of 365 and 560 nm. The lines at 1457, 1616, and 1662 cm⁻¹ are strong in experiments with the laser radiation wave length of 220 nm. For the Raman spectrum of acetamide solution see also Spinner (1959).

Actinolite $Ca_2(Mg_{4.5-2.5}Fe^{2+}_{0.5-2.5})Si_8O_{22}(OH)_{2}$

Origin: Košino, Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 and 532.0 nm laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1056s, 1026, 954, 926, 899, 744w, 672s, 527, 517w, 477w, 433w, 413w, 391, 368, 346.

Source: Jovanovski et al. (2009).

Comments: The identification of the sample was done by results of electron microprobe analysis; the purity of the substance was proved by powder X-ray diffraction data. For the Raman spectra of actinolite see also Gopal et al. (2004), Makreski et al. (2006a), Petry et al. (2006), Apopei and Buzgar (2010), Apopei et al. (2011), Andò and Garzanti (2014), and Leissner et al. (2015).

Actinolite $Ca_2(Mg_{4.5-2.5}Fe^{2+}_{0.5-2.5})Si_8O_{22}(OH)_{2}$

Origin: Tyrol, Austria.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts $(cm⁻¹)$: 3675, 3661, 1059, 1027s, 949, 929, 892w, 744, 670s, 577w, 522, 482w, 415, 392s, 369s, 294, 247w, 226s.

Source: Apopei et al. (2011).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of actinolite see also Gopal et al. (2004), Makreski et al. (2006a), Petry et al. (2006), Jovanovski et al. (2009), Apopei and Buzgar (2010), Andò and Garzanti (2014), and Leissner et al. (2015).

Adachiite $CaFe^{2+}$ ₃Al₆(Si₅AlO₁₈)(BO₃)₃(OH)₃(OH)

Origin: No data.

Experimental details: A single crystal was used. The wavelengths of laser excitation lines were 488.0 and 514.5 nm. Laser radiation power at the sample was 14 mW. Polarized spectra were collected in $y(zz)y, y(zx)y$, and $y(xx)y$ scattering geometries.

Raman shifts (cm⁻¹): 3679, 3625, 3570, 3565s, 3486.

Source: Watenphul et al. (2016a).

Comments: The sample was identified by electron microprobe analysis, and boron was determined by LA-ICP-MS measurement. The Raman shifts are given for the scattering geometry $y(zz)y$, in which the Raman intensities are most strong.

Adamite $Zn_2(AsO_4)(OH)$

Origin: Lavrion mining District, Attikí (Attika, Attica) Prefecture, Greece.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3552s, 890s, 846s, 820, 539, 496, 458, 422, 380, 325.

Source: Makreski et al. (2013a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of adamite see also Yang et al. (2001).

Adelite $CaMg(AsO₄)(OH)$

Origin: No data

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3550, 890, 846, 821, 803, 540, 497, 479, 421, 376, 322, 277, 253, 232, 211, 172, 134.

Source: Martens et al. (2003c).

Comments: No independent analytical data are given for the sample used. Intensities of Raman bands are not indicated.

Admontite MgB₆O₁₀∙7H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample. The wavelengths of the laser excitation line and laser radiation power are not indicated.

Raman shifts (cm^{-1}) : 1092w, 963, 881, 637s, 523w, 500w, 428s, 412, 394, 320.

Source: Derun et al. (2015)

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of admontite see also Kipcak et al. (2014).

Adolfpateraite $K(UO₂)(SO₄)(OH)(H₂O)$

Origin: Svornost mine, Jáchymov, Krušné Hory (Ore Mts.), Bohemia, Czech Republic (type locality). Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

crystal using 780 nm laser radiation. The laser radiation power at the sample was from 4 to 8 mW.

Raman shifts (cm⁻¹): 1169w, 1149w, 1116w, 1063w, 1029w, 993s, 935s, 900s, 843w, 638w, 597w, 456, 442, 399w, 350w, 320, 270, 264, 219, 1198, 169w, 130w, 109w.

Source: Plášil et al. (2012b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Aegirine $NaFe³⁺Si₂O₆$

Origin: Kangerdlnarsuk, Greenland (sample 1) and Brewig, Norway (sample 2).

- Experimental details: Raman scattering measurements have been performed on unoriented crystals. The wavelength of the laser excitation line was 532 nm. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 1130w, 1044s, 953s, 866, 758, 678, 544s, 499, 465w, 385, 342s, 309, 294, 273 (sample 1); 1132w, 1041s, 971s, 952, 866, 757, 678, 558, 544s, 496, 466w, 385, 343s, 295, 267 (sample 2).

Source: Buzatu and Buzgar (2010).

Comments: No independent analytical data are provided for the samples used. For the Raman spectra of aegirite; see also Andò and Garzanti (2014) and Zhou et al. (2014).

Aegirine Li analogue LiFe³⁺(Si₂O₆)

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm laser radiation. The nominal laser radiation power was 120 mW.
- Raman shifts $(cm⁻¹)$: 1084s, 1038s, 1012s, 976, 932, 857, 776w, 684, 575, 553, 519, 493, 387, 363, 347, 325, 313, 294, 284, 263w, 237, 214, 196, 175, 133w, 97.

Source: Zhang et al. (2002a).

Comments: The sample used was prepared from a stoichiometric mixture of finely ground Li_2CO_3 , $Fe₂O₃$ and SiO₂ by solid-state ceramic sintering techniques at 1223 K and ambient pressure and characterized by neutron powder diffraction and Mössbauer measurements. Monoclinic, space group $C2/c$, $a = 9.6641(2)$, $b = 8.6612(3)$, $c = 5.2924(2)$ Å, $\beta = 110.12(1)$ °.

Aerinite $(Ca,Na)_{6}(Fe^{3+},Fe^{2+},Mg,Al)_{4}(Al,Mg)_{6}Si_{12}O_{36}(OH)_{12}(CO_{3})$ 12H₂O

Origin: Estopiñán dam, Estopiñándel Castillo, Huesca, Aragón, Spain.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1236, 1072, 1049, 1013, 974, 933, 909, 885w, 546, 512, 465w, 392, 365s, 331s, 300, 281, 245, 222.
- Source: Frost et al. (2015y).
- Comments: The identification of the sample used was done only by means of scanning electron microscopy. In the cited paper, the band at 1236 cm⁻¹ is assigned to CO_3^2 ⁻ asymmetric stretching mode or to a Si–O vibrations. In both cases the position of this band would be anomalous.

Aeschynite-(Y) $(Y, Ln, Ca, Th)(Ti, Nb)₂(O, OH)₆$

Origin: A granitic pegmatite situated in the Aust-Agder province, southern Norway.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 830, 665, 609, 396, 355, 256, 232, 159, 99.

- Source: Tomašić et al. (2004).
- Comments: The identification of the sample was done by powder X-ray diffraction. The chemical composition of the sample was determined by ICP measurement. The Raman spectrum was obtained on a sample which was regained crystal structure after heating up to 1000 C. The spectrum is of poor quality because the crystallization was not completed.

Afmite Al₃(OH)₄(H₂O)₃(PO₄)(PO₃OH)⋅H₂O

Origin: Fumade, Tarn, France (type locality).

- Experimental details: Raman scattering measurements have been performed on an oriented crystal using 514 nm laser radiation. The laser beam was incident on the (001) crystal face. The radiation power on the sample was 5 mW.
- **Raman shifts** (cm^{-1}) **:** No data: only a figure of the Raman spectrum of afmite is given in the cited paper.

Source: Kampf et al. (2011b).

Comments: The sample was characterized by electron microprobe analysis and powder X-ray diffraction. The crystal structure is solved. For the Raman spectrum of afmite see also Sanchez-Moral et al. (2011).

Afwillite $Ca_3[SiO_4][SiO_2(OH)_2]·2H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm laser radiation. The radiation power on the sample was 150 mW.

Raman shifts $(cm⁻¹)$: 3973, 856s, 819, 785, 550, 410.

Source: Stodolski et al. (1985).

Comments: The sample was characterized by powder X-ray diffraction.

Agakhanovite-(Y) $YCa \Box_2 KBe_3 Si_{12}O_{30}$

Origin: Heftetjern pegmatite, Tørdal, Southern Norway (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 3730w, 3670w, ~3560-3400 (broad), 1120, 1000w, 480s, 360w, 290w, 140. Source: Hawthorne et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Agardite-(Ce) $CeCu^{2+}{}_{6}(AsO₄)₃(OH)₆·3H₂O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample was 1 mW.
- **Raman shifts (cm⁻¹):** 885, 868s, 834, 809, 527w, 493w, 475, 461w, 427w, 393w, 319w, 283w, 235, 197w, 170w, 158w, 136w.

Source: Frost et al. (2004f).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis, but no analytical data are given in the cited paper.

Agardite-(La) LaCu²⁺₆(AsO₄)₃(OH)₆⋅3H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample was 1 mW.
- **Raman shifts (cm⁻¹):** 888, 867s, 832, 803, 524w, 491w, 473, 470, 425w, 391, 317w, 274w, 234, 196w, 165, 136w.

Source: Frost et al. (2004f).

Comments: No independent analytical data are given in the cited paper.

Agardite-(Y) $YCu^{2+}{}_{6}(AsO_4)_3(OH)_6·3H_2O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample was 1 mW.
- **Raman shifts (cm⁻¹):** 915, 870s, 833, 798w, 557w, 539w, 514w, 486, 468w, 434w, 294w, 267w, 239, 192, 176w, 167w, 142.

Source: Frost et al. (2004f).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis, but no independent analytical data are given in the cited paper. For the Raman spectrum of agardite-(Y) see also Morrison et al. (2013).

Agricolaite $K_4(UO_2)(CO_3)_3$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polycrystalline sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1569w, 1543w, 1354w, 1320, 1065sh, 1055, 1046sh, 879w, 863w, 806s, 785w, 725, 719w, 693w, 307, 288, 262s, 251w, 249w, 241, 191w, 176sh, 165, 154sh, 132, 123, 119sh, 106, 96w, 91w, 82, 74w, 63, 48w.

Source: Anderson et al. (1980).

Comments: The compound was synthesized hydrothermally and characterized by powder X-ray diffraction data.

Ahlfeldite Ni(SeO₃)⋅2H₂O

Origin: Pacajake Mine, Bolivia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3466, 3385s, 3329, 3251, 2185, 2130, 861, 832s, 803s, 751, 719, 595, 532, 508, 430s, 421, 348, 267, 218, 177s, 149s.
- Source: Frost and Keeffe (2009f).

Comments: No independent analytical data are provided for the sample used.

Ahrensite γ-Fe₂(SiO₄)

Origin: Tissint Martian meteorite (type locality).

Experimental detail: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.3 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 843, 795, 672, 213.

Source: Ma et al. (2016a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Aikinite CuPbBiS₃

Origin: Karrantza Valley, westerner area of the Basque Co., Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm laser radiation with the laser radiation power at the sample of 50 mW and 785 nm laser radiation with the nominal laser radiation power of 150 mW, using filters of 1% and 10%.

Raman shifts (cm⁻¹): 326s, 227s.

Source: Goienaga et al. (2011).

Comments: The sample identification was done by means of electron fluorescence analysis.

Ajoite $K_3Cu^{2+}_{20}Al_3Si_{29}O_{76}(OH)_{16}·8H_2O$

Origin: New Cornelia Mine in the Ajo District of Pima County, Arizona, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample is not indicated.

Raman shifts (cm⁻¹): 3619, 3589, 3574, 3553, 3394, 1155, 1139, 1069, 1048, 1015, 962, 796, 672, 630, 516, 484, 437, 411, 343, 325, 304.

Source: Frost and Xi (2012m).

Comments: No independent analytical data are given for the sample used.

Akaganeite $(Fe^{3+},Ni^{2+})_8(OH,O)_{16}Cl_{1.25}nH_2O$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented powdery sample using 636.4 nm laser radiation. The laser radiation power on the sample was 0.34 mW.

Raman shifts (cm⁻¹): 717, 614w, 537, 415sh, 390s, 311s.

Source: Nieuwoudt et al. (2011).

Comments: The identification of the sample was done by powder X-ray diffraction data. For the Raman spectra of akaganeite see also Das and Hendry (2011) and Aramendia et al. (2014).

Åkermanite $Ca₂MgSi₂O₇$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented powdered sample in a 90°-scattering geometry using 488 nm laser radiation. The laser radiation power on the sample was from 300 up to 500 mW.
- **Raman shifts (cm⁻¹):** 1067w, 1012w, 990sh, 948w, 927sh, 906s, 664s, 603, 515, 484, 448, 361sh, 317, 269w, 220, 210, 97.

Source: Sharma et al. (1988).

Comments: The identification of the sample synthesized from glass was performed by comparison with published Raman data.

Åkermanite Sr analogue $Sr₂Mg(Si₂O₇)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed using 632.8 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 984sh, 975w, 901s, 838w, 653, 590w, 568w, 475w, 450w, 315. Source: Gabelica-Robert and Tarte (1979).

Comments: The sample synthesized by solid-state reaction was characterized by powder X-ray diffraction.

Akimotoite $MgSiO₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented powdered sample using 514.5 nm laser radiation. The nominal laser radiation power was 200 mW. **Raman shifts (cm⁻¹):** 802s, 687, 622, 481, 412, 352, 291.

Source: Okada et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis. For the Raman spectra of akimotoite see also Ferroir et al. (2008) and Chen and Xie (2015).

Aklimaite $Ca_4[Si_2O_5(OH)_2]$ (OH)₄⋅5H₂O

- Origin: Lakargi Mt., Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power on the sample was 44 mW.

Raman shifts (cm⁻¹): 3611, 3593, 3549, 3535, 3261, 1666, 1575, 1490, 1380, 1344, 1087w, 999s, 960sh, 924sh, 908s, 838, 680s, 569, 543, 488, 444, 406w, 340s, 254s, 191s, 142.

Source: Zadov et al. (2013).

Comments: The wavenumbers are indicated for the maxima of individual bands obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and chemical analysis. The crystal structure is solved.

Alabandite MnS

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.4 nm laser radiation. The laser radiation power on the sample was 2 mW.

Raman shifts (cm⁻¹): 580w, 285, 230, 160.

Source: Avril et al. (2013).

Comments: The cubic monosulfide alabandite does not have a first-order Raman spectrum due to its ideal rock salt structure. Through local symmetry breaking, the inactive or infrared-active vibrational modes become Raman active. As a result, the Raman peaks are broad and have a very weak intensity. For the Raman spectrum of alabandite see also Ma et al. (2012b).

Alacránite $\mathrm{As}_{8}\mathrm{S}_{9}$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 785 nm laser radiation. The nominal laser radiation power was 3 mW. A non-oriented crystal.

Raman shifts (cm^{-1}) : 384, 361, 350sh, 340s, 329, 307, 240sh, 230s. Source: Pagliai et al. (2011).

Alamosite $PbSiO₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 488 nm laser radiation. A 90°-scattering geometry was employed. The nominal laser radiation power was in the range from 50 to 200 mW.
Raman shifts (cm⁻¹): 1047w, 1002sh, 987, 955, 946, 924w, 897w, 870w, 780w, 735w, 683w, 647w, 590, 534w, 495w, 469w, 448, 388w, 371w, 355, 324w, 306sh, 272w, 218w, 171w, 146w, 109s, 90, 82, 70, 59s.

Source: Furukawa et al. (1979).

Comments: The hydrothermally synthesized sample was characterized by powder X-ray diffraction.

Alarsite $Al(AsO₄)$

Origin: Synthetic.

- Experimental detail: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm laser radiation. The laser radiation power at the sample was 400 mW.
- **Raman shifts (cm⁻¹):** 1031w, 1000w, 985s, 939, 930sh, 630w, 613w, 573w, 450sh, 420s, 390, 371w, 347, 319, 311, 260w, 226, 198, 136, 123, 98.

Source: Dultz et al. (1975).

Comments: No independent analytical data are provided for the sample used.

Albertiniite Fe²⁺(SO₃)⋅3H₂O

- Origin: Monte Falò Pb-Zn mine, Coiromonte, Armeno municipality, Verbano Cusio Ossola province, Piedmont, Italy (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 473.1 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3350s, 3215s, 1660w, 970s, 950s, 910, 860w, 825w, 660w, 600w, 495sh, 482, 457, 438sh, 324w, 279w, 241w, 197w, 172, 123.

Source: Vignola et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Albite $Na(AlSi₃O₈)$

Origin: Alinci, Macedonia.

- Experimental detail: Raman scattering measurements have been performed on a powdered sample using 532 nm laser radiation. The laser radiation power at the sample was 7 mW.
- **Raman shifts (cm⁻¹):** 1115w, 100w, 1034w, 1006w, 976w, 816w, 764w, 726w, 646w, 579w, 508s, 479, 458w, 408w, 329w, 291s, 270sh, 251w, 209w, 185w, 171w, 162w, 148w, 113w.

Source: Makreski et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction. The assignment of Raman bands given in the cited paper is incorrect. For the correct assignment see Többens et al. (2005). For the Raman spectra of albite see also Frezzotti et al. (2012), Karwowski et al. (2013), and McKeown (2005).

Aleksite $PbBi₂Te₂S₂$

Origin: Panarechensk volcanic-tectonic formation, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm^{-1}) : 232-235w, 143-147s, 99-103s, (75-79w).

Source: Voloshin et al. (2015a).

Comments: The samples used were characterized by electron microprobe analyses. For the Raman spectrum of aleksite see also Gehring et al. (2015).

Alforsite OH-analogue $Ba₅(PO₄)₃(OH)$

Origin: Synthetic.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power at the sample was 10 mW.

Raman shifts (cm⁻¹): 3608, 3583w, 1057w, 1029, 1007w, 934s.

Source: Yoder et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis. It contains 2.95 wt% of a carbonate.

Allactite Mn^{2+} ₇(AsO₄)₂(OH)₈

Origin: Nordmark, Sweden (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample is not indicated.
- **Raman shifts (cm⁻¹):** 3561s, 3523, 3489s, 3446, 3395, 3292, 1011, 909, 883s, 859s, 834s, 827s, 808s, 779s, 743, 633, 470, 452, 422, 393, 377, 360s, 350, 331, 323, 298, 288, 271, 241, 197, 158. Source: Frost and Weier (2006).

Comments: The sample was characterized by electron microprobe analysis.

Allanite (Ce) $CaCe(Al_2Fe^{2+})[Si_2O_7][SiO_4]O(OH)$

Origin: Brahmaputra River, Bangladesh.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. A nearly 180° -scattering geometry was employed. The laser radiation power on the sample is not indicated.
- **Raman shifts (cm⁻¹):** 1062, 972s, ~900-920sh, 689, ~630, ~550, 457s, 421s, ~380, ~270,~220, $~180.$

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are given for the sample used.

Allanite-(Nd) $CaNd(Al_2Fe^{2+})[Si_2O_7][SiO_4]O(OH)$

Origin: Kracovice pegmatite, Moldanubian Zone, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 and 633 nm laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1052, 995, 964, 926, 897, 873, 841, 691, 632, 595, 573, 571, 493, 457, 442, 428, 385, 354, 321, 294, 279, 256, 221, 199, 160, 126, 107.

Source: Čopjaková et al. (2015).

Comments: The sample was characterized by ICP and electron microprobe analyses. The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Allanpringite $\text{Fe}^{3+}{}_{3}(\text{PO}_4)_2(\text{OH})_3 \cdot 5\text{H}_2\text{O}$

- Origin: Grube Mark, near Essershausen, ca. 5 km SE of Weilburg/Lahn, Taunus, Hesse, Germany (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm laser radiation. A 180°-scattering geometry was employed. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** ~3567, 3412, ~3197, ~3060, ~3052, ~1652, ~1100sh, 1060, 1023, 1009, 987, 590, 555, 516, 491, 470, 424, 355, ~309, 292.
- Source: Kolitsch et al. (2006).
- Comments: The sample was characterized by powder X-ray diffraction data and chemical analyses. The crystal structure is solved.

Allendeite $Sc_4Zr_3O_{12}$

Origin: Allende meteorite (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm laser radiation. The laser radiation power on the sample was 5 mW. **Raman shifts (cm⁻¹):** No data: only a figure of the Raman spectrum is given in the cited paper. Source: Ma et al. (2014b).

Comments: The sample was characterized by powder X-ray diffraction data and chemical analyses. The strong Raman peaks in the 1300–1000 cm^{-1} region may be caused by *REE* luminescence.

Allophane $Al_2O_3(SiO_2)_{1.3-2.0}$ ^{2.5–3.0H₂O}

Origin: Reppia, NW Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 and 785 nm laser radiations. The nominal laser radiation power on the sample was 1.4 and 4 mW, respectively.

Raman shifts (cm⁻¹): 3420s (broad), 2942w, 1638w, 1357w, 1103, 982w, 858-859s.

Almandine Fe^{2+} ₃Al₂(SiO₄)₃

Origin: An unknown locality in Mongolia.

Experimental details: Micro-Raman scattering measurements have been performed on a single crystal using 488 nm Ar⁺ laser radiation. The nominal laser radiation power was 100 mW.

- **Raman shifts (cm⁻¹):** 1038s, 930, 916s, 897, 863, 630, 596, 556, 581, 500s, 475, 370s, 342s, 323, 314, 256, 216s, 171s, 166s.
- Source: Kolesov and Geiger (1998).
- Comments: Measurements were made perpendicular to the {100} and {110} faces of a single crystal. The sample identification was done by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of almandine see also Mingsheng et al. (1994), Makreski et al.

(2005b), Bersani et al. (2009), Ferrari et al. (2009), Jovanovski et al. (2009), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Almarudite $K(\square, Na)_2(Mn, Fe, Mg)_2[(Be, Al)_3Si_{12}]O_{30}$

Origin: Bellerberg volcano, Eifel area, Germany (type locality).

- Experimental details: Micro-Raman scattering measurements have been performed on a single crystal along [0001], using 633 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW.
- **Raman shifts (cm⁻¹):** 1134s, 1053, 991, 931, 847, 778, 698w, 653, 640, 608, 563, 554, 493s, 460, 382, 346w, 311sh, 290s, 276sh, 236w, 160, 135s, 108sh, 84.
- Source: Lengauer et al. (2009).
- Comments: The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Alstonite Ba $Ca(CO₃)₂$

Origin: Moore Hill, England.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polycrystalline sample using 488 and 514.5 nm laser radiations. The nominal laser radiation power at the sample was 200 mW.
- **Raman shifts (cm⁻¹):** 1489, 1092s, 1067s, 709sh, 693, 284, 252w, 211w, 196, 170, 145s, 130, 102, 79s.

Source: Scheetz and White (1977).

Comments: No independent analytical data are provided for the sample used.

Altaite PbTe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 laser radiation. The laser radiation power at the sample was from 1 to 2 mW. **Raman shifts (cm⁻¹):** Altaite is inactive in Raman due to halite-type structure. Source: Vymazalová et al. (2014).

Althausite $Mg_4(PO_4)_2(OH,O)(F,\Box)$

Origin: Sapucaia pegmatite mine, Minas Gerais, Brazil (?).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3688w, 3653w, 3535, 3523sh, 3511sh, 3500s, 3488, 3472sh, 3455w, 1320br, 1154, 1130s, 1114, 1078w, 1062w, 1049w, 1033s, 993s, 986sh, 964s, 950sh, 917w, 902w, 860w, 668, 638sh, 628sh, 612, 594, 580, 537, 510sh, 499, 488sh, 466, 458, 436sh, 426, 412.

Source: Frost et al. (2014p).

Comments: The sample identification was made only by SEM. The broad band at 1320 cm⁻¹ may be due to impurities.

Alum-(K) KAl $(SO₄)₂$ ∙12H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily sample using 488 nm laser radiation. The nominal laser radiation power at the sample was 220 mW. A 90°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3396s, 3072, 1130, 1104w, 989s, 974s, 614, 455, 442w. Source: Barashkov et al. (2004).

Comments: For the Raman spectra of alum-(K) see also Makreski et al. (2005a), Brooker and Eysel (1990), and Rao (1941).

Alum-(K) KAl $(SO_4)_2$ ∙12H₂O

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1086w, 991s, 872w, 841w, 818w, 804w, 757w, 714w, 684w, 603, 517w, 416w, 386w.

Source: Makreski et al. (2005a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of alum-(K) see also Rao (1941), Brooker and Eysel (1990), Barashkov et al. (2004), and Frezzotti et al. (2012).

Aluminite $\text{Al}_2(\text{SO}_4)(\text{OH})_4$ ∙7H₂O

Origin: Newhaven, East Sussex, England, UK.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not identified
- **Raman shifts (cm⁻¹):** 3588, 3569, 3439, 3378, 3294, 3157, 2930, 2875, 1136w, 1094, 1069w, 999, 93s, 990, 793w, 680, 642, 631, 607, 575, 490, 440, 333, 317, 285.

Source: Frost et al. (2015k).

Comments: The sample was characterized only by qualitative EDS analysis.

Aluminocerite-(Ce) $(Ce,REE, Ca)_{9}(A1, Fe^{3+})(SiO₄)_{3}[SiO₃(OH)]_{4}(OH)_{3}$

Origin: Ratti quarry, near Baveno, Italy (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power at the sample was from 10 to 50 mW.
- **Raman shifts (cm⁻¹):** 3646w, 1098, 1083, 1010w, 977w, 869, 816, 763, 647w, 579, 507s, 478s, 455, 412, 327, 288, 266, 250w, 205, 181, 168, 147w.
- Sourse: Nestola et al. (2009).
- Comments: The sample was identified by electron microprobe analyses and single-crystal X-ray diffraction.

Aluminocopiapite $(AI,Mg)Fe^{3+}(SO_4)_6(OH,O)_2$ ∙20H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.0 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3566, 3384, 3164, 2428, 1638, 1220, 1123, 1019, 989, 636, 614, 598, 555, 476, 452, 300, 270, 247.

Source: Kong et al. (2011b).

Comments: The sample was identified by powder X-ray diffraction data.

Alumohydrocalcite CaAl₂(CO₃)₂(OH)₄⋅3H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1091sh, 729, 590.

Source: Jay et al. (2015).

Comments: Alumohydrocalcite was identified by the Raman spectrum using data from the RRUFF database as a reference.

Alunite $\text{KAl}_3(\text{SO}_4)_2(\text{OH})_6$

Origin: Argillic zone hosted by volcanic rocks in Bulgaria.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 1 mW.

Raman shifts (cm⁻¹): 3508s, 3480s, 3068w, 1186, 1151, 1077, 1024s, 653, 560, 508, 484, 381, 345, 234, 161.

Source: Maubec et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of alunite see also Toumi and Tlili (2008) and Frezzotti et al. (2012).

Alunogen $\text{Al}_2(\text{SO}_4)_3(\text{H}_2\text{O})_{12}$ ∙5 H_2O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm laser radiation. The nominal laser radiation power was 9 mW.

Raman shifts (cm⁻¹): 3246br, 3078sh, 1126w, 1086w, 992s, 612, 528w, 470, 339w, 309w. Source: Wang and Zhou (2014).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of alunogen see also Buzatu et al. (2016).

Alwilkinsite-(Y) Y(UO₂)₃(SO₄)₂O(OH)₃(H₂O)₇·7H₂O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single sample using 780 nm laser radiation. The laser radiation power is not indicated.

- **Raman shifts (cm⁻¹):** 1325, 1265s, 1135w, 1080w, 1035, 1015, 990, 900w, 840s, 605, 555, 530, 465w, 455, 380, 320, 288, 268, 240, 200, 170, 145w, 135w, 108w, 90w, 72w, 60.
- **Comments:** The broad bands at around 1600 cm^{-1} are the result of the fluorescence. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Amarantite Fe³⁺₂O(SO₄)₂∙7H₂O

Origin: Caracoles, Sierra Gorda district, Chile (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3529s, 3480, 3401, 3340, 3227, 3089, 3025, 1648, 1577, 1441, 1233, 1195, 1131, 1098s, 1054, 1039, 1017s, 1006sh, 650w, 622w, 602w, 543w, 491, 451sh, 409, 399sh, 346, 309, 290, 255, 247, 229, 212, 205, 195s, 183sh, 176, 162, 149, 139, 129, 113, 107.

Source: Frost et al. (2013a, d).

Comments: The sample identification was done only by SEM.

```
Amblygonite LiAl(PO<sub>4</sub>)F
```
Origin: Penig, Saxony, Germany.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488.0 nm laser radiation. The nominal laser radiation power at the sample was 200 mW.
- **Raman shifts (cm⁻¹):** 3348 (broad), 1066, 1043s, 1008s, 645s, 604s, 423, 154.

Source: Rondeau et al. (2006).

Comments: The sample identification was done by powder X-ray diffraction data and by electron microprobe analysis. For the Raman spectra of amblygonite see also Dias et al. (2011) and Frezzotti et al. (2012).

Ambrinoite $[K,(NH_4)]_2(As,Sb)_6(ShAs)_2S_{13}·H_2O$

Origin: Oulx, Susa Valley, Torino, Piedmont, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 628 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3475w, 3150w, 1595w, 1423w, 393s, 371, 364, 352, 341, 324, 294, 216, 207. Source: Biagioni et al. (2011a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Ameghinite $NaB₃O₃(OH)₄$

Origin: Tincalayu deposit, Salta province, Argentina (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3385, 3343, 3275, 3249, 3230, 3203s, 3191, 1724, 1604, 1531, 1403, 1371, 1320, 1281, 1245, 1213, 1087, 1061, 1027s, 1014, 887, 861, 786, 769, 755, 730, 711, 701, 656, 624, 620s, 615, 574, 530, 503, 464, 405, 367, 352, 224, 197, 145, 135s, 119. Source: Frost and Xi (2012i).

Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis.

Amesite $Mg_2Al(AlSiO_5)(OH)_4$

Origin: Artificial (a product of hydrothermal alteration of olivine in the presence of AlCl₃).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1080w, ~1000w, ~845w, ~700s, ~540s, ~495, ~480, ~405s, ~345w, ~273, $~190.$

Source: Andreani et al. (2013).

Comments: The sample was identified as amesite by comparison to the reference spectrum from RUFF database.

Ammoniojarosite $(NH_4)Fe^{3+}{}_{3}(SO_4)_2(OH)_6$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm laser radiation. The nominal laser radiation power was less than 5 mW.

Raman shifts (cm⁻¹): 3485sh, 3434, 3360sh, 3210, 1164, 1092, 1006s, 637sh, 623s, 565, 451, 423s, 342w, 301, 218s, 136.

Source: Chio et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of ammoniojarosite see also Sasaki et al. (1998).

Grunerite $\square \text{Fe}^{2+}{}_{2} \text{Fe}^{2+}{}_{5} \text{Si}_8\text{O}_{22}(\text{OH})_{2}$

Origin: South Africa.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented fibrous aggregate ("amosite") using 632 nm laser radiation. The nominal laser radiation power was 20 mW.
- **Raman shifts (cm⁻¹):** 1093w, 1020s, 968, 904w, 659s, 528, 507w, 423w, 400w, 368w, 348, 307w, 289w, 252w, 216, 182s, 155s.
- Source: Rinaudo et al. (2004).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Analcime Na(AlSi₂O₆)⋅H₂O

Origin: Aussig, Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1104, 591w, 483s, 390, 298.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of analcime see also Frost et al. (2014i).

Anapaite Ca₂Fe²⁺(PO₄)₂⋅4H₂O

Origin: Bellver de la Cerdanya, Lérida, Spain.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3248, 3176, 3101, 3022, 2882, 2777, 1658w, 1373w, 1071, 1039, 992w, 965sh, 943s, 808w, 777, 654, 622, 582, 546, 445, 432, 352, 335, 287, 266, 231sh, 281, 202, 186, 170, 155, 149, 136.

Source: Frost et al. (2013t).

Comments: The sample identification was done only by SEM.

Anatase $TiO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using 488 nm laser radiation. The laser radiation power is not indicated. A 90^o-scattering geometry was employed. The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 640s, 515, 398, 198w, 147s.

Source: Balachandran and Eror (1982).

Comments: The sample was characterized by ICP method and electron microprobe analysis. For the Raman spectra of anatase see also Zajzon et al. (2013), Andò and Garzanti (2014), and Martins et al. (2014).

Anatase $TiO₂$

Origin: Perkupa, Hungary.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The nominal laser radiation power at the sample was 13 mW. **Raman shifts (cm⁻¹):** 470, 248s, 226, 182s, 155.

Source: Zajzon et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of anatase see also Balachandran and Eror (1982), Andò and Garzanti (2014), and Martins et al. (2014).

Ancylite-(Ce) $CeSr(CO_3)_2(OH)·H_2O$

Origin: Bear Lodge, Wyoming, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1106, 1086s, 1077s, 861w, 744w, 725, 705w, 466, 299, 252s, 223s, 193, 130w, 123w.

Source: Chakhmouradian et al. (2017).

Comments: The sample was characterized by electron microprobe analyses.

Andalusite Al_2SiO_5

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 1111, 1065, 952, 920s, 834, 719, 606, 553, 453, 361, 323, 293s, 278. Source: Frezzotti et al. (2012).

Comments: The data are from the database [www.ens-lyon.fr/LST/Raman.](http://www.ens-lyon.fr/LST/Raman) For the Raman spectra of andalusite see also Mernagh and Liu (1991) and Andò and Garzanti (2014).

Andersonite $Na₂Ca(UO₂)(CO₃)₃·6H₂O$

Origin: Grants, New Mexico, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3558, 3510, 2415, 1406, 1370, 1092, 1080, 928, 833, 831, 742, 696, 299, 284, 272, 242, 224, 182, 164.

Source: Frost et al. (2004b).

Comments: For the Raman spectra of andersonite see also Stefaniak et al. (2009) and Driscoll et al. (2014).

Andradite $Ca₃Fe³⁺₂(SiO₄)₃$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 4480 Å laser radiation. The nominal laser radiation power was 100–150 mW.

Raman shifts (cm⁻¹): 1000w, 870s, 840w, 816w, 726, 576, 573s, 444, 363s, 366w, 228, 168. Source: Mingsheng et al. (1994).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of andradite see also Kolesov and Geiger (1998), Bersani et al. (2009), Katerinopoulou et al. (2009), and Andò and Garzanti (2014).

Andradite $Ca₃Fe³⁺₂(SiO₄)₃$

Origin: Maronia area, western Thrace, Greece.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm laser radiation. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): 750, 520, 350.

Source: Katerinopoulou et al. (2009).

Comments: A Cr-, Ti-, and Zr-rich variety was investigated. The empirical formula is $(Ca_{2.99}Mn_{0.03})$ $(Fe^{3+}$ _{0.67}Cr_{0.54}Al_{0.33}Ti_{0.29}Zr_{0.15})(Si_{2.42}Ti_{0.24}Fe_{0.18}Al_{0.14})O₁₂(OH)_{0.11}. The Mössbauer analysis

showed that the total Fe is ferric, preferentially located at the octahedral site. For the Raman spectra of andradite see also Mingsheng et al. (1994), Kolesov and Geiger (1998), Bersani et al. (2009), and Andò and Garzanti (2014).

Andychristyite $PbCu^{2+}Te^{6+}O_5(H_2O)$

Origin: Otto Mt., near Baker, California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 780 nm laser radiation. The laser radiation power at the sample was from 4 to 8 mW. Raman shifts (cm^{-1}) : 3306w, 870, 708s, 665s, 625s, 552, 461, 402, 316, 291, 242, 214, 181.

- Source: Kampf et al. (2016b).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Angastonite CaMgAl₂(PO₄)₂(OH)₄⋅7H₂O

Origin: Angaston, South Australia (type locality).

Experimental details: Raman scattering measurements have been performed using 785 nm laser radiation. The method of sample preparation and the laser radiation power are not indicated.

Raman shifts (cm⁻¹): 1159, 988, 630, 539, 502, 415.

```
Source: Mills et al. (2008).
```
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Anglesite $Pb(SO₄)$

Origin: Monte Poni, Sardinia, Italy.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power at the sample was 100 mW.
- **Raman shifts (cm⁻¹):** 1157, 1055w, 978s, 646w, 612, 553w, 450s.

Source: Buzgar et al. (2009).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. Methods of the identification of the sample are not indicated. For the Raman spectra of anglesite see also Bouchard and Smith (2003), Jehlička et al. (2009b), and Petrov (2014).

Anhydrite $Ca(SO₄)$

- Origin: Bleiberg, Carinthia, Austria.
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm Nd-YAG laser radiation. The nominal laser radiation power at the sample was 100 mW.
- **Raman shifts (cm⁻¹):** 1160, 1129s, 1017s, 678, 630, 503s, 420w, 235w.

Source: Buzgar et al. (2009).

Comments: For the Raman spectra of anhydrite see also Sarma et al. (1998), Makreski et al. (2005a), White (2009), and Ciobotă et al. (2012).

Anilite Cu_7S_4

Origin: Synthetic. Experimental details: No data. Raman shift $(cm⁻¹)$: 470s. Source: Palve et al. (2016). Comments: The sample was characterized by powder X-ray diffraction data.

Ankerite $Ca(Fe^{2+}, Mg)(CO₃)₂$

Origin: Brusson, Val d'Ayas, Valle d'Aosta, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 1091, 716, 283.

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used.

Annabergite $Ni₃(AsO₄)₂·8H₂O$

Origin: 132 North Deposit, Widgiemooltha District, Western Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3419, 3209, 3185, 3010, 941, 854, 800, 676, 466, 442, 401, 350, 321, 286, 260, 242, 225, 203, 175, 160, 155, 119.

Source: Frost et al. (2003g).

Comments: No independent analytical data are provided for the sample used.

Annite $KFe^{2+3}(AISi_3O_{10})(OH)_2$

Origin: Sierra los Filahres, Spain.

Experimental details: Raman scattering measurements have been performed on a partially oriented sample using 488 or 514.5 nm laser radiations. The spectrum was recorded with the electric field polarized either parallel or perpendicular to the cleavage plane. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3654, 1045w, 676s, 272w, 182s.

Source: Thili et al. (1989).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of annite see also Rancourt et al. (2001).

Annite Cl-analogue $KFe^{2+}(AlSi₃O₁₀)(Cl,OH)₂$

Origin: Khlebodarovka, Azov Sea region, Ukraine.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal. The wavelength of laser excitation line and the laser radiation power are not indicated.

Raman shifts (cm⁻¹): 3647s, 989s, 811, 660s, 553w, 403, 353.

Source: Sharygin et al. (2014). Comments: The Cl-analogue of annite from Khlebodarovka contains up to 7.3 wt% Cl.

Anorpiment $As₂S₃$

Origin: Palomo mine, Castrovirreyna province, Huancavelica department, Peru (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 643w, 387sh, 375, 348sh, 334s, 324sh, 234w, 192, 187, 176, 168sh. Source: Kampf et al. (2011a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Anorthite $Ca(Al_2Si_2O_8)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 488.0 nm laser radiation. The nominal laser radiation power was 600 mW . A 90° -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1124w, 1072s, 1044sh, 998sh, 974, 949sh, 908sh, 756w, 741sh, 681, 620w, 590w, 553, 503s, 484sh, 427w, 400w, 369w, 316w, 281, 273, 253, 200sh, 182, 139, 88, 63.

Source: Matson et al. (1986).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of anorthite see also Ling et al. (2011).

Antarcticite CaCl₂⋅6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 532.2 nm laser radiation. The nominal laser radiation power was 120 mW.

Raman shifts (cm⁻¹): 3431/3430s, 3410, 3404/3405sh, 3386, 3242.

Source: Baumgartner and Bakker (2010).

Comments: The Raman spectrum of antarcticite was recorded at -190 °C.

Antarcticite CaCl₂∙6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at -190 °C on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3430s, 3384sh, 3245, 1664, 1647.

Source: Uriarte et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data.

Anthophyllite $\square Mg_2Mg_5Si_8O_{22}(OH)_2$

Origin: Bresimo Mine, near Trento, Trentino Alto Adige, Italy.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented fibers using 632 nm laser radiation. The nominal laser radiation power was 20 mW.
- **Raman shifts (cm⁻¹):** 1044, 928, 699w, 674s, 539, 503w, 433, 410, 387, 342w, 304, 265, 254, 222w, 188.

Source: Rinaudo et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of anthophyllite see also Petry et al. (2006), Kloprogge et al. (2001a), and Leissner et al. (2015).

Anthophyllite \Box Mg₂Mg₅Si₈O₂₂(OH)₂

Origin: Origätri, Finland.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented fibers, using 244 nm laser radiation. The laser radiation power at the sample was less than 5 mW. Raman shifts (cm^{-1}) : 3691s, 3666s, 1052s, 1003sh, 669s, 530s.

Source: Petry et al. (2006).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum of anthophyllite see also Rinaudo et al. (2004), Kloprogge et al. (2001a), and Leissner et al. (2015).

Anthraxolite

Origin: Perya, Novaya Zemlya Islands, Russia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 1.2 mW.
- **Raman shifts (cm⁻¹):** The first-order spectrum: $1180-1200$, $1330-1350$, \sim 1500, 1580-1600, 1610–1620sh. The second-order spectrum: 2500, 2700, 2850, 2950, 3230.

Source: Golubev et al. (2016).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Antigorite $Mg_3Si_2O_5(OH)_4$

Origin: Piedmont Alps, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 1044, 683s, 635w, 520w, 375s, 230s.

Source: Rinaudo et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Antigorite $Mg_3Si_2O_5(OH)_4$

Origin: Escambray Massif, Central Cuba.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser output power was from 200 to 600 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3774, 3760w, 3729s, 3709, 3687, 3658, 3606w, 685s, 377s, 233s. Source: Auzende et al. (2004).

Comments: The Raman shifts are partly indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Antimonselite Sb_2Se_3

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a μm thick layer using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$ **:** 252, 189.

Source: Zhou et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and X-ray photoelectron spectroscopy.

Antimony Sb

Origin: Artificial.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm laser radiation. The laser radiation power at the sample was 0.97 mW.

Raman shifts (cm^{-1}) **:** 145s, 105.

Source: Makreski et al. (2013b).

Comments: Antimony was obtained as a product of photo-induced decomposition of stibnite Sb_2S_3 and identified due to the resemblance to the spectrum of Sb from Degtyareva et al. (2007). According to Degtyareva et al. (2007) Sb-I (99.999% purity) at ambient pressure is characterized by the Raman shifts of 151s and 114 cm^{-1} .

Antlerite $Cu^{2+}{}_{3}(SO_4)(OH)_4$

Origin: Chuquicamata, Chile.

- Experimental details: The method of the sample preparation is not indicated. Raman scattering measurements have been performed using 780 nm laser radiation. The laser radiation power was less than 1 mW.
- **Raman shifts (cm⁻¹):** 3580, 3488, 1905, 1266, 1173, 1148, 1135, 1079s, 990, 985, 902, 786, 759, 651, 629, 606, 600, 485, 469, 440, 415s, 335, 330, 295, 265, 259, 169, 151, 146, 141, 131. Source: Martens et al. (2003a).
- Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The band at 1905 cm^{-1} is attributed to the first overtone of symmetric stretching vibrations of $[SO_4]^{2-}$. For the Raman spectra of antlerite see also Bouchard and Smith (2003), Frost et al. (2004n), Apopei et al. (2014a), and Coccato et al. (2016).

Apachite Cu^{2+} ₉Si₁₀O₂₉⋅11H₂O

- Origin: Christmas mine, Christmas area, Banner District, Dripping Spring Mts., Gila Co., Arizona, USA (type locality).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3651sh, 3614s, 3579, 3491, 3374, 3215, 2997, 2938, 2894, 2746, 1668, 1610, 1536sh, 1364, 1336, 1287, 1264, 1096, 997, 967s, 939, 898, 837, 777, 673s, 663sh, 529, 512, 479, 449sh, 435s, 402, 349, 335, 314, 305, 289, 253, 238, 221, 207, 195sh, 186, 180sh, 151s, 139sh, 113, 106.
- Source: Frost and Xi (2012k).
- Comments: No independent analytical data are provided for the sample used. The very intense sharp Raman band at 3614 cm^{-1} is assigned by the authors of the cited article to stretching vibrations of OH groups. The authors suppose that the correct formula of apachite could be $Cu_9Si_{10}O_{23}(OH)_{12}.5H_2O.$

Aphthitalite $K_3Na(SO_4)_2$

Origin: Vesuvius volcano, Somma-Vesuvius complex, Naples province, Campania, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation in a 180 $^{\circ}$ -scattering geometry. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1206-1201, 1084, 996-985s, 626-627, 618-617, 452-451s.

Source: Hansteen and Burke (1994).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of aphthitalite see also Jentzsch et al. (2013).

Apjohnite $Mn^{2+}Al_2(SO_4)_4$ ∙22H₂O

Origin: Coranda-Hondol ore deposit, Certej, Romania.

- Experimental details: Method of sample preparation is not indicated. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power at the sample was 22.9 mW.
- **Raman shifts (cm⁻¹):** 3379, 3299, 3237sh, 3007sh, 1630w, 1227sh, 1141w, 1116w, 1108w, 1086w, 1073sh, 996s, 978sh, 619w, 529w, 469w, 432sh, 311w.

Source: Apopei et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. For the Raman spectra of apjohnite see also Reddy et al. (2006) and Locke et al. (2007).

Apuanite $(Fe^{2+}Fe^{3+}{}_{2})(Fe^{3+}{}_{2}Sb^{3+}{}_{4})O_{12}S$

Origin: Bucadella Vena, Apuan Alps, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 713sh, 669s, 632sh, 574w, 548, 491, 437sh, 435, 396, 332, 292sh, 274sh, 242sh, 230s, 196, 174, 162sh, 143sh, 121, 106.

Source: Bahfenne (2011).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. For the Raman spectrum of apuanite see also Bahfenne et al. (2011a).

Aradite $BaCa_6[(SiO₄)(VO₄)](VO₄)₂F$

Origin: Hatrurim Complex, Negev desert, Israel (type locality).

Experimental details: Experimental details are not identified. The methods used for the investigations are analogous to those reported by Galuskin et al. (2015b).

Raman shifts (cm^{-1}) : 989, 968, 942, 874sh, 859s, 835sh, 449w, 386sh, 366, 293w, 222w. Source: Galuskin et al. (2015e).

Comments: The investigated sample has the crystal-chemical formula $\text{BaCa}_6(\text{SiO}_4)_{1,2}$ $(VO₄)_{0.5}(PO₄)_{0.1}(SO₄)_{0.2}][(VO₄)_{1.51}(PO₄)_{0.59}]F and is a not an end-member of a complex solid$ solution. For the Raman spectrum of aradite see also Galuskin et al. (2015b).

Aragonite $Ca(CO₃)$

Origin: No data.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 1064 nm laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 2905w, 2835w, 1904w, 1574w, 1462w, 1086s, 854w, 717sh, 704w. Source: Edwards et al. (2005).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of aragonite see also Buzgar and Apopei (2009), Behrens et al. (1995), White (2009), Wehrmeister et al. (2010), Frezzotti et al. (2012), Kristova et al. (2014), Shatskiy et al. (2015), and Sánchez-Pastor et al. (2016).

Aragonite $Ca(CO₃)$

Origin: Spania Dolina, Slovakia.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 1050 mW.

Raman shifts (cm⁻¹): 1573, 1461, 1083s, 701, 250.

Source: Buzgar and Apopei (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of aragonite see also Edwards et al. (2005), Behrens et al. (1995), White (2009), Wehrmeister et al. (2010), Frezzotti et al. (2012), Kristova et al. (2014), Shatskiy et al. (2015), and Sánchez-Pastor et al. (2016).

Arapovite-related silicate $(Ca_{0.5}Na_{0.5})_2NaUSi_8O_{20}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented single crystals using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1139s, 1081, 655, 468, 303, 202w.

Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is solved.

Aravaipaite Pb₃AlF₉⋅H₂O

Origin: Grand Reef mine, Aravaipa mining district, Arizona, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** ~3370s, ~3250w, ~2935w, ~1640w, ~620, ~550, ~530, ~400, ~385, ~370, \sim 330w, \sim 317w, \sim 260sh, \sim 233s, \sim 175, \sim 170sh.
- Source: Kampf et al. (2011c).
- Comments: The sample identification was done by single-crystal X-ray diffraction. The crystal structure is solved.

Arcanite $K_2(SO_4)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 532 nm laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts $(cm⁻¹)$: 1147, 1108, 1094, 985s, 623, 458.

Source: Buzgar et al. (2009).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. No independent analytical data are provided for the sample used. For the Raman spectrum of arcanite see also Martínez-Arkarazo et al. (2007).

Archerite $H_2K(PO_4)$

Origin: Petrogale cave, Madura, Western Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3235, 3191, 3151, 3089, 3018, 1724sh, 1704, 1660, 1421, 983sh, 917s, 562sh, 533, 477sh, 461sh, 393s, 347, 328sh, 270w, 180, 144.

Source: Frost et al. (2012f).

Comments: No independent analytical data are provided for the sample used.

Ardealite $Ca₂(PO₃OH)(SO₄)·4H₂O$

Origin: Moorba cave, Jurien Bay, Western Australia, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1141, 1102, 1001s, 998sh, 862, 670, 613, 598, 528sh, 505, 448, 421, 363, 230, 198sh, 188, 155, 143.

Source: Frost et al. (2011g).

Comments: No independent analytical data are provided for the sample used.

Ardennite-(As) $Mn^{2+}_{A}Al_{4}(AlMg)(AsO₄)(SiO₄)₂(Si₃O₁₀)(OH)₆$

Origin: Salm-Château, Vielsalm, Stavelot massif, Luxembourg province, Belgium (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3298, 3211sh, 3149, 3041, 1605s, 1394sh, 1287sh, 1255s, 1218s, 1197s, 947sh, 935, 920sh, 890sh, 877, 865sh, 785sh, 779, 721, 713, 625, 601, 561, 544sh, 519, 471sh, 460, 445, 430, 414, 396, 365sh, 352, 314, 301, 228, 183, 167, 144.
- Source: Frost et al. (2014s).
- Comments: No independent analytical data are provided for the sample used. The strong band at 1605 cm^{-1} corresponds to an impurity. The spectrum contains broad bands of unknown origin near 2100 cm^{-1} .

Arfvedsonite $NaNa_2(Fe^{2+}_4Fe^{3+})Si_8O_{22}(OH)_2$

Origin: Vodno, Macedonia.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was from 50 to 100 mW.
- **Raman shifts (cm⁻¹):** 1055, 1020w, 974s, 921, 892, 815, 793, 772, 749, 725, 676s, 640w, 610w, 583, 539, 478, 435, 370, 335, 317w, 255sh, 215, 172, 149, 112.

Source: Makreski et al. (2006a).

Comments: The sample used is an intermediate member between arfvedsonite and magnesioarfvedsonite. The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of arfvedsonite see also Jovanovski et al. (2009) and Leissner et al. (2015).

Argentojarosite $AgFe^{3+}{}_{3}(SO_4)_2(OH)_6$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample prepared as a disk 10 mm in diameter with KBr powder. The wavelength of laser excitation line was 514.5 nm. The laser radiation power at the sample was 38 mW.

Raman shifts (cm⁻¹): 1161w, 1107, 1012, 623, 574w, 449sh, 442s, 363w, 306, 228. Source: Sasaki et al. (1998).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of argentojarosite see also Frost et al. (2006r).

Argutite $GeO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in a 180° -scattering geometry using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 873, 700s, 170w.

Source: Madon et al. (1991).

Comments: The procedure of verification of the structure of the rutile form GeO_2 has been described by Richet (1990).

Arisite (Ce) NaCe₂(CO₃)₂[F_{2x}(CO₃)_{1-x}]F

Origin: Aris phonolite, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3449, 3255s, 2642, 2458s, 2068, 1799, 1596, 1455, 1072s, 704s, 396, 187s, 152s.

Source: Piilonen et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data, LA-ICP-MS, and electron microprobe analyses. The band at 1596 cm^{-1} indicates possible presence of H₂O molecules.

Armalcolite (Mg, Fe^{2+})Ti₂O₅

Origin: Skallevikshalsen, Lützow-Holm Complex, East Antarctica.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented thin section using 533 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 759, 633s, 393, 201s, 169sh.

Source: Kawasaki et al. (2013).

Comments: The sample was characterized by electron microprobe analyses.

Arrojadite-(KFe) $(KNa)Fe^{2+}(CaNa₂)Fe^{2+}_{13}Al(PO₄)₁₁(PO₃OH)(OH)₂$

Origin: Rapid Creek, Richardson Mts., Yukon Territory, Canada.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3574, 3564s, 3553, 3530, 3515, 1714, 1580, 1444, 1187w, 1148w, 1123w, 1092w, 1066, 1024sh, 1005s, 991s, 975s, 951sh, 903, 852, 638, 615, 604sh, 583s, 580, 557s, 548, 540, 513, 479, 463, 449, 424s, 403, 349, 306, 275, 251, 239, 202, 185, 162, 140.

Source: Frost et al. (2013ag).

Comments: There are discrepancies between some frequencies given in the text and figures. The sample identification was done by XRD and qualitative EDS analysis.

Arsenbrackebuschite $Pb_2(Fe^{3+}, Zn)(AsO_4)_2(OH,H_2O)$

Origin: No data. Experimental details: No data. **Raman shifts (cm⁻¹):** 972w, 846sh, ~820s, 730, 620, ~464sh, 420, 405sh, ~345, 308, ~240w, $~102–170.$ Source: Costin et al. (2014).

Comments: No independent analytical data are provided for the sample used.

Arsendescloisite Sr-analogue $SrZn(AsO₄)(OH)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 or 473 nm laser radiation. The nominal laser radiation power was 10 or 3 mW. **Raman shifts (cm⁻¹):** ~3400sh, 3300, ~3240w, 818s, 804, 790, ~780w, ~450-300w.

Source: Đorđević et al. (2016).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Arsenolamprite As

Origin: Muiane pegmatite, Mozambique.

Experimental details: Raman scattering measurements have been performed on a melt inclusion in a morganite crystal using 514 or 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was 14 mW.

Raman shifts (cm⁻¹): 253s, 225w, 220.

Source: Thomas and Davidson (2010).

Arseniosiderite $Ca_2Fe^{3+}{}_{3}O_2(AsO_4)_3.3H_2O$

Origin: Romanêche, near Maĉon, Saoneet-Loirse, France.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 927s, 852s, 828, 772sh, 621, 535, 479w, 441w, 389s, 331w, 298sh, 250s, 227, 197.

Source: Gomez et al. (2010b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of arseniosiderite see also Filippi et al. (2007).

Arsenogorceixite $BaAl₃(AsO₄)(AsO₃OH)(OH)₆$

Origin: Michael mine, Weiler, near Lahr, Schwarzwald (Black Forest), Germany.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 0.01 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm^{-1}) : 3691, 3621, 3473sh, 3301, 2973sh, 2961sh, 2930, 2891, 2863, 2849, 2725, 1597, 1447, 1332, 1307, 1208, 1160, 1148, 1057, 1014, 972s, 873, 818, 814s, 805, 776, 764, 617, 600, 556, 510, 462, 441s, 407, 388, 340s, 318, 264, 244, 189, 167, 137.

Source: Frost et al. (2012g).

Comments: No independent analytical data are provided for the sample used. There are discrepancies between the spectrum and its description in the cited paper.

Arsenolite $As₂O₃$

Origin: Cobalt City, Ontario, Canada.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 781, 560, 469, 413w, 368s, 265s, 180.

Source: Kloprogge et al. (2006).

Comments: The sample was characterized by SEM/EDS. Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. For the Raman spectrum of arsenolite see also Guńka et al. (2012).

Arsenopyrite FeAsS

Origin: Nistru mine, Maramures, Romania.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in a 180° -scattering geometry using 532 nm laser radiation. The nominal laser radiation power was 210 mW.
- Raman shifts (cm⁻¹): 478, 453, 427, 392, 362, 333, 303, 280s, 253, 231, 217s, 200sh, 187, 180sh, 170, 127, 108sh, 94, 84, 73.

Source: Kharbish and Andráš (2014).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of arsenopyrite see also Mernagh and Trudu (1993).

Arsentsumebite $Pb_2Cu(AsO_4)(SO_4)(OH)$

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3458, 3324, 2925, 2876, 2857, 1446, 1161, 1121w, 1070w, 972s, 906, 853, 814s, 620, 604, 464, 442, 412, 390, 340, 324, 308, 248, 241, 197, 188, 171, 145, 102.

Source: Frost et al. (2011n).

Comments: No independent analytical data are provided for the sample used. There are discrepancies between the spectrum and its description in the cited paper. Spectroscopic data show possible presence of impurities in the investigated material. For the Raman spectrum of arsentsumebite see also Costin et al. (2014).

Arsenuranylite Ca(UO₂)₄(AsO₄)₂(OH)₄⋅6H₂O

Origin: Cherkasar deposit, Uzbekistan.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3489, 2929, 2872, 926, 883, 795s, 787s, 561, 558, 494, 493, 462, 422, 388, 344, 298, 259, 213, 170, 150.

Source: Frost et al. (2009d).

Comments: No independent analytical data are provided for the sample used.

Arthurite $CuFe³⁺₂(AsO₄)₂(OH)₂·4H₂O$

Origin: Majuba Hill, Pershing Co., Nevada, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished sample. The wavelength of laser excitation line and the laser radiation power are not indicated.

Raman shifts (cm⁻¹): 3496, 3307, 3232, 3162, 1050, 907, 850, 812, 784, 551w, 508s, 450, 426, 368, 343, 288, 259, 245s, 221, 186, 153, 138, 101, 70.

Source: Jambor et al. (2002).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of arthurite see also Frost et al. (2003b) and Palmer and Frost (2011).

Artinite $Mg_2(CO_3)(OH)_2·3H_2O$

Origin: Aichi prefecture, Japan.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3593s, 3589sh, 3573sh, 3229, 3030, 2291, 1673, 1453, 1092s, 1060sh, 913w, 698, 469, 432, 376, 324, 273, 244, 209, 188.
- Source: Frost et al. (2009a).
- Comments: No independent analytical data are provided for the sample used. There are discrepancies between the pattern of the spectrum and its description. For the Raman spectrum of artinite see also Edwards et al. (2005).

Arzakite $Hg^{2+}{}_{3}S_2(Br,Cl)_2$

Origin: No data.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 or 785 nm laser radiation. The laser radiation power is not indicated. **Raman shifts (cm⁻¹):** \sim 585, \sim 480w, \sim 390, \sim 270s, \sim 215s.

Source: Potgieter-Vermaak et al. (2012).

Asbolane $Mn^{4+}(O,OH)_2(Co,Ni,Mg,Ca)_x(OH)_{2x}nH_2O$

Origin: Democratic Republic of Congo.

Experimental details: No data.

Raman shifts (cm⁻¹): 3484w, 1206w, 1084w, 950w, 592s, 539s, 489, 376.

Source: Burlet et al. (2014).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of asbolane see also Burlet and Vanbrabant (2015) and Roqué-Rosell et al. (2010).

Asbolane $Mn^{4+}(O,OH)_{2}(Co,Ni, Mg, Ca)_{x}(OH)_{2x}nH_{2}O$

Origin: Democratic Republic of Congo. Experimental details: No data.

Raman shifts (cm⁻¹): 3484w, 1206w, 1084w, 950w, 592s, 539s, 489, 376. Source: Burlet et al. (2014).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of asbolane see also Burlet and Vanbrabant (2015) and Roqué-Rosell et al. (2010).

Asbolane $Mn^{4+}(O,OH)_{2}(Co,Ni,Mg,Ca)_{x}(OH)_{2x}nH_{2}O$

Origin: A Cu-Co supergene deposit, Ruashi, Katanga, Democratic Republic of Congo.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished sample using 532 nm laser radiation. The laser radiation power was 0.2 mW.
- **Raman shifts (cm⁻¹):** 3455-3475w, 1580-1600w, 1300-900w (a triplet), 627sh, 596s, 553s, 497, 456sh, 374w.

Source: Burlet and Vanbrabant (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. For the Raman spectra of asbolane see also Burlet et al. (2014) and Roqué-Rosell et al. (2010).

Aspedamite \Box \Box ₁₂(Fe³⁺,Fe²⁺)₃Nb₄[Th(Nb,Fe³⁺)₁₂O₄₂][(H₂O),(OH)]₁₂

Origin: Herrebøkasa quarry, Aspedammen, Østfold, southern Norway (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 3465w, 3556sh, 1610w, 933, 865sh, 812, 666s, 448w, 359, 234s, 169s, 117. Source: Cooper et al. (2012b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Asselbornite Pb(UO₂)₄(BiO)₃(AsO₄)₂(OH)₇⋅4H₂O

Origin: Horní Halže, the Krušnéhory Mountains, Czech Republic (type locality).

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 785 nm laser radiation. The laser radiation power at the sample was 4 mW.
- **Raman shifts (cm⁻¹):** 1039w, 999w, 962w, 874sh, 842sh, 797s, 673w, 599w, 503, 450w, 395w, 321, 266.

Source: Sejkora and Čejka (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Atacamite $Cu₂Cl(OH)₃$

Origin: Atacama, Chile.

Experimental details: Raman scattering measurements have been performed on an oriented crystal using 532.8 nm laser radiation. The laser radiation power at the sample was from 0.05 to 1 mW. The spectrum was obtained in the scattering geometry with polarization of the laser beam oriented at 45° with respect to the c axis.

Raman shifts (cm⁻¹): 3433, 3348, 975s, 909s, 846, 819s, 587, 513s, 353w, 177s, 148s, 135, 117, 105s.

Source: Bertolotti et al. (2012).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of atacamite see also Frost et al. (2002b), Bouchard and Smith (2003), and Christy et al. (2004).

Atelestite $Bi₂O(AsO₄)(OH)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3095w, 1082w, 887sh, 834s, 802, 782, 767, 623w, 480, 450, 395sh, 370sh, 352, 324, 310, 278s, 219, 200, 173, 118.

Source: Frost et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Atelisite (Y) $Y_4Si_3O_8(OH)_8$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented crystal using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 8 mW. The spectra obtained in the scattering geometries $X(ZZ)X$, $X(YY)X$, and $Y(YZ)X$ are similar.

Raman shifts (cm⁻¹): 3225w, 2964w, 2905w, 885s, 755sh, 709w, 490w.

Source: Malcherek et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Athabascaite $Cu₅Se₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a nanocrystallione aggregate. The wavelengths of laser radiation and laser radiation power are not indicated.

Raman shifts $(cm⁻¹)$: 128.

Source: Ge and Li (2003).

Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron microprobe analysis.

Atokite Pd₃Sn

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.068 nm Nd-YAG laser radiation. The laser radiation power at the sample was between 1 and 2 mW.

Raman shifts (cm⁻¹): The obtained spectrum does not show characteristic bands.

Source: Vymazalová et al. (2014).

Augelite $\text{Al}_2(\text{PO}_4)(\text{OH})_3$

Origin: Ehrenfriedersdorf, Saxony, Germany.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented inclusion in quartz using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power at the sample was between 100 and 500 mW.

Raman shifts (cm⁻¹): 3537s, 3469s, 3428, 1107, 635s, 367, 252, 227.

Source: Thomas et al. (1998).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum of augelite see also Frost and Weier (2004b).

Augite $(Ca, Mg, Fe)_2Si_2O_6$

Origin: Sasa, Macedonia.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power at the sample was 50 or 100 mW.
- **Raman shifts (cm⁻¹):** 1025sh, 1009s, 907w, 851w, 654s, 549, 523, 510sh, 492w, 372, 336, 301, 229, 186, 178, 146, 122, 116w.

Source: Makreski et al. (2006b).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and neutron activation analysis. For the Raman spectra of augite see also Buzatu and Buzgar (2010) and Andò and Garzanti (2014).

Augite $(Ca, Mg, Fe)_2Si_2O_6$

Origin: Techereu area, Apuseni Mts., Romania.

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 532 nm laser radiation. The nominal laser radiation power was 100 mW.
- Raman shifts (cm^{-1}) : 1102sh, 1043sh, 1006s, 928w, 863, 769, 707w, 667s, 555, 533, 392, 355, 327, 299sh, 226w.

Source: Buzatu and Buzgar (2010).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of augite see also Makreski et al. (2006b) and Andò and Garzanti (2014).

Aurichalcite $(Zn,Cu)_{5}(CO₃)_{2}(OH)_{6}$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm laser radiation. The nominal laser radiation power was 30 mW.
- **Raman shifts (cm⁻¹):** 3331, 1511, 1479, 1074s, 843, 750, 734, 709, 503, 463, 437w, 389, 354w, 234, 211, 175, 141.

Source: Bouchard and Smith (2003).

Comments: For the Raman spectra of aurichalcite see also Frost et al. (2007j), Buzgar and Apopei (2009), and Rotondo et al. (2012).

Aurostibite AuSb₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 380 K on an arbitrarily oriented crystal using 514.5, 501.5, 476.5, and 457.9 nm laser radiation. The nominal laser radiation power at the sample was \sim 200, \sim 190, \sim 200, and \sim 150 mW, respectively. The incident laser light was scattered off a [100] natural cleavage.

Raman shifts (cm⁻¹): 158w, 151s, 122sh, 114s.

Source: Freund et al. (1977).

Comments: No independent analytical data are provided for the sample used.

Austinite $CaZn(AsO₄)(OH)$

Origin: Gold Hill Mine, Tooele Co., Utah, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3270, 828s, 814, 802, 779, 418, 403.

Source: Liu et al. (2015a).

Comments: The sample used was characterized by powder and single-crystal X-ray diffraction data. IR spectrum shows that the sample contains minor SO_4^2 substituting arsenate anions. For the Raman spectrum of austinite see also Martens et al. (2003c).

Autunite Ca($UO₂$)₂(PO₄)₂⋅10–12H₂O

Origin: Merrivale Quarry, Tavistock, Cornwall, UK.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 785 nm laser radiation. The nominal laser radiation power at the source was ~370 mW.

Raman shifts (cm⁻¹): 1008s, 990, 900sh, \sim 400, \sim 270, 210.

Source: Driscoll et al. (2014).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of autunite see also Frost (2004d), Frost and Weier (2004c, d).

Avicennite Tl_2O_3

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on finely ground powder pressed into pellets using 488 and 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** A spectrum of Tl₂O₃, shows no distinct features above 400 cm⁻¹ except an absorption edge near 400 cm^{-1} .

Source: White and Keramidas (1972).

Avogadrite $KBF₄$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in N_2 atmosphere using 514 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1097, 1043, 775s, 534, 360.

Source: Zavorotynska et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of avogadrite see also Bonadeo and Silberman (1970) and Bates and Quist (1974).

Awaruite $Ni₃Fe$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power at the sample was 3 mW.

Raman shifts $(cm⁻¹)$ **:** 701, 566s.

Source: Abelló et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data.

Axinite-(Fe) Ca_4Fe^{2+} ₂Al₄[B₂Si₈O₃₀](OH)₂

Origin: Drum valley, Tulare Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3368, 1084, 1057, 1005sh, 993sh, 979s, 964s, 959sh, 931, 909, 898, 869, 813, 768, 714s, 678, 645, 619, 590, 574, 562, 547, 512, 485, 445, 422, 418, 390, 344, 319, 275s, 256, 212, 170, 140, 110.

Source: Frost et al. (2007b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of axinite (Fe) see also Andò and Garzanti (2014).

Azurite $Cu₃(CO₃)₂(OH)₂$

Origin: Namibia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm^{-1}) : 1579w, 1459w, 1425w, 1098s, 939, 835s, 766, 544, 404s, 339w, 285, 250s. Source: Buzgar and Apopei (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of azurite see also Frost et al. (2002d), Bouchard and Smith (2003), and Frezzotti et al. (2012).

Backite Pb_2 AlTeO₆Cl

Origin: Grand Central mine, Tombstone Hills, Cochise Co., Arizona, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain using 785 nm laser radiation. The laser radiation power at the sample was \sim 1 mW.

Raman shifts (cm⁻¹): 967, 733s, 625, 425, 350, 120s.

Source: Tait et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The Raman band at 967 cm^{-1} is assigned to the combination mode \sim (350+625) cm⁻¹.

Baddeleyite ZrO₂

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal in a thin section using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power at the sample was from 30 to 50 mW. A 90°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 757w, 643, 622, 559, 538, 503, 476, 384s, 350s, 308, 264w, 225, 190s, 182sh, 105.

Source: Galuskina et al. (2013a).

Comments: The sample was characterized by SEM/EBSD and electron microprobe analysis. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of baddeleyite see also Zhang et al. (2010a).

Bafertisite BaFe²⁺₂Ti(Si₂O₇)O(OH,F)₂

Origin: Gremyakha-Vyrmes alkaline complex, Kola Peninsula, Russia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1184w, 1116, 1027, 988, 966, 917s, 812s, 688s (broad), 593s, 478, 418, 355, 336, 264, 230w, 178, 163, 135.

Source: Cámara et al. (2016c).

Comments: The sample was characterized by single-crystal X-ray diffraction data, electron microprobe analyses, IR, and Mössbauer spectra.

Baghdadite $Ca₆Zr₂(Si₂O₇)₂O₄$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power at the sample was 10 mW.
- Raman shifts (cm^{-1}) : 1034w, 1011, 975, 958, 944, 921s, 855, 669s, 624s, 568, 542, 521, 476w, 452, 433, 409, 398, 376, 357s, 321, 295, 280w, 262, 245, 214, 198, 171, 148, 127, 122, 106s, 97, 86.

Source: Dul et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is solved by the Rietveld method.

Bahianite $\text{Al}_5\text{Sb}^{5+}{}_{3}\text{O}_{14}(\text{OH})_2$

Origin: Paramirim region, Bahia Province, Brazil (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3495, 3462, 3190, 2955, 2718, 2531, 2389, 2273, 2079, 1929, 1808, 1756s, 1489, 1438, 998, 975w, 956w, 952w, 883sh, 856sh, 843sh, 818s, 770, 682, 669sh, 589, 567, 534s, 498, 478s, 471sh, 412s, 405sh, 386, 376, 352, 319, 294, 258s, 220, 199, 165, 158sh, 146sh. Source: Frost and Bahfenne (2010c).

Bairdite $Pb_2Cu^{2+}{}_4Te^{6+}{}_2O_{10}(OH)_2(SO_4)·H_2O$

Origin: Otto Mt., near Baker, California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on a partly oriented platelet (from the [100] face of a crystal) using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm⁻¹): 977, 721s, 634, 558, 518, 378, 336, 238, 208.

Source: Kampf et al. (2013a).

Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is solved. Chemical data are questionable (total sum is 92.97%).

Balestraite $KLi_2V^{5+}Si_4O_{12}$

Origin: Cerchiara mine, Eastern Liguria, Italy.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal in a 180-scattering geometry using 632.8 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1136, 973, 888, 868s, 707, 539, 437, 309, 261.

Source: Lepore et al. (2015) .

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Balkanite $Ag_5Cu_9HgS_8$

Origin: Röhrerbühel, near Kitzbühel, Tyrol, Eastern Alps, Austria.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 515 nm laser radiation. The laser radiation power at the sample was 6 mW.

Raman shifts $(cm⁻¹)$ **:** 325, 306.

Source: Steiner et al. (2010).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of balkanite see also Biagioni and Bindi (2016).

Bambollaite Te analogue $Cu(Te,Se)_2$

Origin: Ozernyi district, Salla-Kuolayarvi, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts $(cm⁻¹)$ **:** 157, 134s.

Source: Voloshin et al. (2015b).

Comments: The sample was characterized by electron microprobe analyses.

Baotite Ba₄(Ti,Nb,W)₈O₁₆(SiO₃)₄Cl

Origin: Bayan Obo REE–Fe–Nb deposit, Inner Mongolia, China (type locality).

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 1064 nm laser radiation. The nominal laser radiation power was from 300 to 380 mW.

Raman shifts (cm⁻¹): 982, 777, 550, 450, 392, 344, 295, 241, 172.

Source: Yuran and Li (1998).

Comments: No independent analytical data are provided for the sample used.

Barahonaite-(Al) $(Ca,Cu,Na,Fe^{3+},Al)_{12}Al_2(AsO_4)_8(OH,Cl)_x nH_2O$

Origin: Sapucaia pegmatite mine, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3549sh, 3413, 3217, 2993sh, 2702w, 1657w, 1605w, 1450, 1351w, 1304w, 1228w, 1154w, 1072w, 998w, 890sh, 863s, 828s, 802sh, 723w, 529, 506sh, 449, 399, 360, 325, 300, 233, 159.

Source: López et al. (2014e).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. No independent analytical data are provided for the sample used. For the Raman spectrum of barahonaite-(Al) see also Viñals et al. (2008).

Barahonaite-(Fe) $(Ca, Cu, Na, Fe^{3+}, Al)_{12}Fe^{3+}(AsO_4)_8(OH, Cl)_xnH_2O$

- Origin: Dolores prospect, near the village of Pastrana, Murcia Province, southeastern Spain (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 908sh, 860s, 828s, 799sh, 517, 508sh, 427, 360w, 325w, 219w, 162, 138, 87w, 65w, 40w.

Source: Viñals et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Bararite $(NH_4)_2SiF_6$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed in 90°-scattering geometry using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was \sim 1 W.
- **Raman shifts (cm⁻¹):** (XX)–3236, 1706, 1428, 1406, 650s, 466, 406s, 180; (YY)–1706, 1430, 650, 466, 406s, 180; (ZZ)—3235, 1428, 1406, 650s, 406s.

Source: Trefler and Wilkinson (1969).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of bararite see also Jenkins (1986).

Barberiite $(NH_4)BF_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using Ar^+ laser radiation. The wavelengths of laser excitation line and the laser radiation power are not indicated.

Raman shifts (cm⁻¹): 3400–3300w (broad), 3250s, 767s, 529, 523, 355.

Source: Schutte and Van Rensburg (1971).

Comments: No independent analytical data are provided for the sample used.

Barbosalite $Fe^{2+}Fe^{3+}(PO_4)_2(OH)_2$

Origin: Sapucaia mine, Galileia, Minas Gerais (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 2261, 2216, 2090, 1138, 1083sh, 1067, 1044, 1033sh, 1020s, 988w, 968w, 831w, 702, 606, 589, 575sh, 503, 475, 461, 439, 398sh, 381, 361sh, 346s, 312s, 291, 275, 256, 241, 198sh, 187, 179, 166, 151, 145, 133s, 125, 113.

Source: Frost et al. (2013q).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Bariandite Al-free analogue $V_{10}O_{24}$ ∙9H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample with crystalline nanoparticles using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 0.2 mW.

Raman shifts (cm⁻¹): 1022, 908s, 518s, 429w, 409w, 270s.

Source: Menezes et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data.

Barićite (Mg,Fe)3(PO4)2∙8H2O

Origin: Big Fish River, Rapid creek, Richardson Mts., Yukon, Canada (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3480, 3300, 3231, 3121, 3025, 1057, 953s, 859w, 632, 576, 545, 527, 461, 428, 390, 340, 314, 281, 243, 212, 201, 170, 140.

Source: Frost et al. (2002f).

Comments: No independent analytical data are provided for the sample used.

Barioferrite BaFe³⁺₁₂O₁₉

Origin: Synthetic.

Experimental details: Polarized Raman spectra were collected at temperatures from 10 to 200 K on a single crystal in $z(xx)$ –z and $z(yx)$ –z scattering geometries using 610 nm laser radiation. The laser radiation power at the sample was ~1 mW.

Raman shifts (cm⁻¹): ~730sh, ~695, ~627, ~538, ~346 [for the $z(xx)$ - z configuration at 200 K]. Source: Chen et al. (2013b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of barioferrite see also Kreisel et al. (1998a, b, 1999), and Zhao et al. (2008b).

Barioperovskite BaTiO₃

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using 785 nm laser radiation. The nominal laser radiation power was 500 mW.

Raman shifts (cm⁻¹): 719, 517, 292s.

Source: Cernea (2005).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of barioperovskite see also Ma and Rossman (2008).

Barnesite $\text{Na}_2\text{V}^{5+}{}_{6}\text{O}_{16}$ ∙3H₂O

Origin: Cactus Rat Mine, Thompson district, Grand Co., Utah, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3494, 3435, 3403, 3330, 3253.

Source: Frost et al. (2004e).

Raman shifts (cm⁻¹): 1010s, 761, 728, 683, 670, 620, 534, 492, 433, 413, 341, 287, 284, 260, 248, 217, 192, 153.

Source: Frost et al. (2005d).

Comments: No independent analytical data are provided in the cited papers.

Barringtonite Mg($CO₃$)∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample containing other carbonates using 785 nm laser radiation. The nominal laser radiation power was 70 mW.

Raman shifts $(cm⁻¹): ~1095.$

Source: Kristova et al. (2014).

Comments: The sample identification was done by powder X-ray diffraction data.

Barrydawsonite-(Y) $Na_{1.5}Y_{0.5}CaSi₃O₉H$

Origin: Merlot Claim, North Red Wine Pluton, Labrador, Canada (type locality).

Experimental details: Raman scattering measurements have been performed on a powdered sample using 633 nm laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 1037s, 1004s, 968, 907, 686, 655s, 524, 506, 463, 445, 416, 362, 312, 272, 244, 207, 148, 107.

Source: Mitchell et al. (2015).

Comments: Unpolarized and polarized single-crystal spectra showed only minor differences in relative band intensities. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Bartelkeite PbFe²⁺Ge⁶⁺(Ge⁴⁺₂O₇)(OH)₂⋅H₂O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The nominal laser radiation power was 200 mW.

Raman shifts $(cm⁻¹)$: 3490, 3293, 1558, 812, 758s, 549, 492, 393.

Source: Origlieri et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Barylite $BaBe₂Si₂O₇$

Origin: Zomba, Malawi.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 150 mW.

Experimental details: Experimental details are not indicated.

Raman shifts (cm⁻¹): 1014w, 996w, 982w, 958s, 937, 888, 685s, 627, 573w, 542w, 464, 447, 423, 410, 384, 337s, 262w, 234, 202, 191.

Source: Yang et al. (2013b).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Baryte Ba(SO₄)

Origin: Dufton, England.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts $(cm⁻¹)$: 1167, 1143, 1085, 989s, 648, 619, 461.

Source: Buzgar et al. (2009).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of baryte see also Jehlička et al. (2009b), White (2009), Ciobotă et al. (2012), and Andò and Garzanti (2014).

Baryte Ba(SO₄)

Origin: No data.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 785 nm laser radiation. The laser radiation power at source was 320 mW.

Raman shifts (cm⁻¹): 1166w, 1138w, 1104w, 1084w, 988s, 647w, 617w, 453.

Source: Jehlička et al. (2009b).

Comments: For the Raman spectra of baryte see also Buzgar et al. (2009), White (2009), Ciobotă et al. (2012), and Andò and Garzanti (2014).

Barytocalcite BaCa($CO₃$)₂

Origin: Alston Moor, England, UK (type locality).

- Experimental details: Raman scattering measurements have been performed on a powdered sample. The wavelengths of laser radiation and laser radiation power are not indicated.
- **Raman shifts (cm⁻¹):** 1510w, 1085s, 715, 700, 688, 314w, 261, 225, 209, 164, 154sh, 127w, 107s, 86w, 70.
- Source: Scheetz and White (1977).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of barytocalcite see also Frost and Dickfos (2008).

Bassanite Ca(SO₄)⋅0.5H₂O

- **Origin:** Artificial (obtained by dehydration at ~338 K of gypsum from an unknown salt core location in India).
- Experimental details: Raman scattering measurements have been performed in 90°-scattering geometry using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power at the sample was 80 mW.
- **Raman shifts (cm⁻¹):** 3552, ~1621, 1026w.
- Source: Sarma et al. (1998).
- **Comments:** The new line at 1026 cm⁻¹ appears in the spectrum of partially dehydrated gypsum. For the Raman spectrum of bassanite see also Apopei et al. (2015).

Bassoite $SrV^{4+}{}_{3}O_7$ ∙4H₂O

Origin: Molinello mine, Val Graveglia, eastern Liguria, Italy (type locality).

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using unpolarized 785 nm laser radiation. The nominal laser radiation power at the sample was \sim 3 mW.
- **Raman shifts (cm⁻¹):** 3534, 3407, 1645.

Source: Bindi et al. (2011a).

Comments: Raman spectrum was obtained only in the regions $1250-2000$ and $3000-4000$ cm⁻¹. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Bastnäsite-(Ce) Ce(CO₃)F

Origin: No data.

- Experimental details: Raman scattering measurements have been performed using 488 nm laser radiation. The laser radiation power was 300 mW.
- **Raman shifts (cm⁻¹):** 2621s, 2059, 2009, 1899, 1476s, 1447s, 1345, 1279w, 1098s, 835w, 732w, 670w, 600w, 353, 259.

Source: Hong et al. (1999).

Comments: For the Raman spectra of bastnäsite-(Ce) see also Yang et al. (2008a) and Frost and Dickfos (2007a).

Batiferrite Co-bearing $BaFe_{9.4}Ti_{1.3}Co_{1.3}O₁₉$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a platy single crystal oriented perpendicular to the c -axis using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm⁻¹): 732sh, 694s, 626, 418, 362.

Source: Kreisel et al. (1999).

Comments: The spectrum was obtained only in the region from 200 to 900 cm^{-1} . The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Baumhauerite $Pb_{12}As_{16}S_{36}$

Origin: Lengenbach, Binntal, Switzerland (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using slightly defocused 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 380, 362, 331, 291s, 254, 222, 192, 161, 137, 114w, 93w, 82.

Source: Kharbish (2016).

Comments: The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Bavenite $Ca_4Be_{2+x}Al_{2-x}Si_9O_{26-x}(OH)_{2+x}$ ($x = 0$ to 1)

Origin: An unknown locality in Siberia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 and 785 nm laser radiation. The laser radiation power at the sample was up to 35 mW for the 785 nm laser.
- **Raman shifts (cm⁻¹):** 945, 674, 544, 505, 448, 401w, 395, 348, 330, 286, 259w, 232, 182w, 173, 140s, 108s.

Source: Jehlička et al. (2012).

Comments: No independent analytical data are provided for the sample used. The spectrum may correspond to bohseite, a mineral related to bavenite.

Comments: For the Raman spectrum of bavenite see also Jehlička and Vandenabeele (2015).

Bayerite $\text{Al}(\text{OH})_3$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 25 mW.

Raman shifts (cm⁻¹): 3425s, 3439, 3449sh, 3546s, 3552, 3654, 904, 868, 547s, 525, 447w, 438, 392, 362w, 325s, 299s, 250, 240, 204w, 147w, 141, 118, 108.

Source: Rodgers (1993).
Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of bayerite see also Rodgers et al. (1989) and Ruan et al. (2001).

Bayldonite $Cu_3PbO(AsO_3OH)_2(OH)_2$

Origin: Tsumeb mine, Tsumeb, Namibia.

Experimental details: Methods of sample preparation are not indicated. Micro-Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 0.97 mW.

Raman shifts (cm⁻¹): 838s, 804, 759w, 495, 428, 397w, 314, 230, 165, 110.

Source: Makreski et al. (2015a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. Raman spectrum of bayldonite was also published by Frost et al. (2014d) who neither presented nor assigned the IR bands below 700 cm^{-1} : see comment made by Makreski et al. (2015a). The bayldonite formula $(Cu,Zn)3Pb(AsO_3OH)_2(OH)_2$ given by Frost et al. (2014d) is not charge-balanced. The correct formula should be $(Cu,Zn)_{3}Pb(AsO_{3}OH)_{2}O_{2}$ or $(Cu,Zn)_{3}Pb$ $(AsO₃OH)₂O(OH)₂$.

Bayleyite Mg₂(UO₂)(CO₃)₃∙18H₂O

Origin: Barbora shaft, Jáchymov ore district, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 3 mW.
- **Raman shifts (cm⁻¹):** 3560sh, 3425s (broad), 3260, 3150sh, 1642w, 1627w, 1619w, 1608w, 1586w, 1380w, 1067s, 825–832s, 752s, 718sh, 665sh, 253, 234, 191, 166, 114, 59w.

Source: Škácha et al. (2014b).

Baylissite NH₄-analogue $(NH_4)_2Mg(CO_3)_2.4H_2O$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 3240, 3174, 2885, 1703w, 1440w, 1421w, 1098s, 686, 488.

Source: Fischer (2007).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis.

Bazhenovite Ca₈S₅(S₂O₃)(OH)₁₂⋅20H₂O

Origin: Chelyabinsk coal basin, South Urals, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 3.5 mW. Raman shifts $(cm⁻¹)$: 3473, 3227, 2500, 1620w, 940, 507s, 466s, 218.

Source: Bindi et al. (2005).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved. The Raman line at 2500 cm⁻¹ is attributed by authors to H_2S in a condensed form which may be present in the sample.

Bazirite BaZrSi₃O₉

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1148, 1092, 1078, 1067, 1046, 1005, 995, 957s, 948, 937, 639, 579s, 544, 529, 521sh, 507, 480, 464, 448w, 425w, 384s, 369, 356w, 348w, 342, 328, 259, 239, 201s, 184, 173w, 161, 152sh, 143, 133, 117, 109.

Source: Takahashi et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Bazzite Be₃(Sc,Fe³⁺,Mg)₂Si₆O₁₈Na_{0.32}⋅nH₂O

Origin: Furkabasistunnel, Switzerland.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 488 nm laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in 90 $^{\circ}$ -scattering geometry, and the polarization conditions were: (ZZ), (ZY), (XY), and $(ZZ+ZX)$.
- **Raman shifts (cm⁻¹):** (ZZ): 1093, 1060, 672, 570-610 (broad), 392, 315; (ZY): 970, 917, 902sh, 775, 672, 653sh, 603, 556w, 485w, 451, 375, 243, 224, 131; (XY): 1180, 1163, 970, 909, 777, 731, 672, 653sh, 554–601 (broad), 439, 377, 390, 315, 266w; (ZZ+ZX): 3594s, 3535w.

Source: Hagemann et al. (1990).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Beaverite-(Cu) $Pb(Fe^{3+2}Cu)(SO_4)_2(OH)_6$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3421, 3380, 3354, 1176, 1164, 1156, 1117, 1103s, 1081, 1076, 1018, 1010s, 999s, 645, 624, 619, 577, 560, 481, 456, 441, 433, 392, 356, 335, 328, 298, 278, 259, 242, 216, 202, 173.

Source: Frost et al. (2005m).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of beaverite-(Cu) see also Hudson-Edwards et al. (2008).

Becquerelite $Ca(UO₂)₆O₄(OH)₆·8H₂O$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3547, 3429, 3211, 879, 854, 838s, 831, 814, 546, 508, 455, 399, 353, 328, 303, 260, 238, 192, 156, 142, 111.

Source: Frost et al. (2007h).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of becquerelite see also Amme et al. (2002).

Behierite Ta(BO₄)

Origin: Synthetic.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 488 and 514.5 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1004, 978s, 900, 848, ~700w, 568s, 461s, 284, 204, 191.

Source: Heyns et al. (1990).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of behierite see also Ross (1972) and Blasse and van den Heuvel (1973).

Behoite $Be(OH)_2$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3501, (3489), 3449s, 1133w, 1056, 1031sh, 1000w, 845w, 769, 701, 682, 602, 549w, 459, 446, 400s, 364w, 349s, 280w, 134, 77.

Source: Lutz et al. (1998).

Comments: No independent analytical data are provided for the sample used.

Běhounekite $U(SO_4)_2(H_2O)_4$

Origin: Geschieber vein, Jáchymov (St Joachimsthal), Czech Republic (type locality).

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 480 (in the region of $4000-1900$ cm⁻¹) and 785 (in the region of 1900–200 cm^{-1}) nm laser radiations. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3370s, 3206, 1269, 1251, 1177, 1158, 1102, 1037, 1023s, 994, 638, 619, 598, 451, 438, 417, 268, 250, 198, 178, 125, 116, 98.

Source: Plášil et al. (2011b).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Belakovskiite $Na₇(UO₂)(SO₄)₄(SO₃OH)(H₂O)₃$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 780 nm laser radiation. The laser radiation power at the sample was from 2 mW to 6 mW.
- **Raman shifts (cm⁻¹):** 1185, 1070, 1040, 1000, 985w, 903w, 865sh, 840s, 820w, 660, 650, 605, 590sh, 480, 450.

Source: Pláśil et al. (2015c).

Comments: The sample was characterized by single-crystal X-ray diffraction data.

Bellidoite Cu₂Se

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.12 nm Ar^+ laser radiation. The laser radiation power at the sample was 10 mW. **Raman shifts (cm⁻¹):** No data: Cu₂Se exhibits very weak Raman features. Source: Izquierdo-Roca et al. (2009).

Bendadaite Fe²⁺Fe³⁺₂(AsO₄)₂(OH)₂⋅4H₂O

- Origin: Lavra do Almerindo (Almerindo mine), Linópolis, Divino das Laranjeiras Co., Minas Gerais, Brazil.
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 676 nm Kr^+ laser radiation. The nominal laser radiation power is unknown.

Raman shifts (cm⁻¹): 3385, 3275, 1690w, ~800s.

- Source: Kolitsch et al. (2010).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Benitoite BaTiSi₃O₉

Origin: Synthetic.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 632.8 nm laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 1080, 951, 939, 930s, 917, 577s, 539s, 505, 480, 398, 374s, 350, 267s. Source: Choisnet et al. (1975).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of benitoite see also Gaft et al. (2004), Ma and Rossman (2008), and Takahashi et al. (2008).

Benstonite $Ba_6Ca_6Mg(CO_3)_{13}$

Origin: Minerva mine, Cave-in-Rock, Hardin Co., Illinois, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 and 514.5 nm laser radiation. The nominal laser radiation power was 200 mW. **Raman shifts (cm⁻¹):** 1100s, 1096s, 1081s, 1074s, 714, 691, 251, 236, 206w, 171, 136, 96w.

Source: Scheetz and White (1977).

Comments: No independent analytical data are given for the sample used.

Beraunite $\text{Fe}^{2+}\text{Fe}^{3+}{}_{5}(\text{PO}_4)_{4}(\text{OH})_{5}$ ∙6H₂O

Origin: Boca Rica pegmatite, Minas Gerais, Brazil.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample is not indicated.

Raman shifts (cm⁻¹): 1174, 1155, 1133, 1116, 1098, 1084sh, 1069, 1058, 1051, 1034, 1011s, 990sh, 969sh, 703sh, 687s, 673, 661, 644, 601, 582, 567s, 546, 503, 491, 478, 468, 455, 437, 403, 398, 336, 322, 309sh, 300, 289, 280, 254, 238, 230, 225, 200, 191sh, 153, 1432, 118, 107.

Source: Frost et al. (2014al).

Comments: No independent analytical data are given for the sample used. In the cited paper incorrect formula of beraunite is given. Brown color of the sample indicates that it is not beraunite, but its oxydation product eleonorite, a mineral isostructural with beraunite.

Berdesinskiite $V^{3+}{}_{2}TiO_5$

Origin: Vihanti, Northern Finland Region, Finland.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The nominal laser radiation power was 2 or 20 mW.

Raman shifts (cm⁻¹): 978w, 898w. 768s, 720s, 647, 593, 512w, 485, 445, 411, 388, 341, 311, 257w, 210, 136w, 83.

Source: Voloshin et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Bergenite $Ca₂Ba₄(UO₂)₉O₆(PO₄)₆·16H₂O$

Origin: Mechelgrün, Vogtland, Saxony, Germany.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3607, 3459, 3295, 2944, 1602, 1330, 1152, 1107, 1059, 995s, 991w, 971w, 961, 948, 810, 798sh, 777, 592, 547, 515, 444, 432, 408, 396, 391, 270, 265, 256, 224, 205, 178, 145, 133, 111.

Source: Frost et al. (2007e).

Comments: The sample was characterized by electron microprobe analysis.

Berlinite $Al(PO₄)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample compacted as a pellet using 1064 nm laser radiation. The nominal laser radiation power was 350 mW.
- **Raman shifts (cm⁻¹):** 1230, 1111s, 1104sh, 1021, 725w, 650, 566, 524, 462s, 439, 418, 379, 335, 306, 258sh, 221, 196, 163, 149sh, 139w, 119, 107, 84.
- Source: Pînzaru and Onac (2009).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectra of berlinite see also Thomas and Webster (1999), O'Neill et al. (2006), and Frezzotti et al. (2012).

Berlinite tetragonal polymorph $\text{Al}(\text{PO}_4)$

Origin: Synthetic.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar^+ laser radiation. The laser radiation power is not indicated. **Raman shifts (cm⁻¹):** 1124s, 485, 391, 382, 279, 191.

Source: O'Neill et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data.

Bermanite $Mn^{2+}Mn^{3+}{}_{2}(PO_{4})_{2}(OH)_{2}$ ∙4H₂O

Origin: El Criolo granitic pegmatite, Cerro Blanco pegmatite group, Córdoba province, Argentina.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3515, 3470, 3425, 3355, 3285, 3202, 3110, 3038, 2961, 1142, 1117, 1071w, 1012sh, 999s, 991s, 978sh, 900, 586, 577, 552sh, 505sh, 489s, 473s, 455, 441, 419, 400, 341, 307, 270, 256, 249sh, 217s, 2009sh, 189, 171, 156sh, 147, 127.

Source: Frost et al. (2013x).

Comments: The sample was characterized only by qualitative electron microprobe analysis.

Bernalite Fe(OH)₃

Origin: Synthetic.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 752.6 nm laser radiation. The laser radiation power was from 0.01 to 10 mW.

Raman shifts $(cm⁻¹)$ **:** 398, 299.

Source: Lepot et al. (2006).

Comments: No independent analytical data are provided for the sample used.

Berndtite SnS₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power at the sample was 0.4 mW.

Raman shifts (cm⁻¹): 355, 315s, 205, 140w, 44, 25.

Source: Fontané et al. (2013).

Comments: For the Raman spectra of berndtite see also Smith et al. (1977), Jiang and Ozin (1997), and Utyuzh et al. (2010).

Berthierite $FeSb₂S₄$

Origin: Zlatá Baňa deposit, eastern Slovakia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in a 180°-scattering geometry using 632 nm laser radiation. The laser output radiation power was 210 mW.

Raman shifts (cm⁻¹): 347, 334, 318sh, 297, 277sh, 264s, 251sh, 226, 183, 150sh, 131, 90, 76s, 60. Source: Kharbish and Andráš (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Bertrandite $Be_4Si_2O_7(OH)_2$

Origin: Albany, Maine, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3587, 3551, 1073w, 990, 947w, 928, 821, 772, 753, 725sh, 711, 694, 579, 538, 487w, 427w, 386w, 358, 352, 330, 301, 241, 231s, 206s, 183s.

Source: Hofmeister et al. (1987).

Comments: Methods of the sample identification are not indicated. For the Raman spectrum of bertrandite see also Jehlička et al. (2012).

Beryl $Be_3Al_2Si_6O_{18}$

Origin: Čanište, Republic of Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3663w, 3595s, 1610w, 1128, 1111, 1070, 1005, 915, 770, 689s, 616, 587, 571, 516s, 400, 326, 286s, 248, 196s, 143.

Source: Makreski and Jovanovski (2009).

Comments: Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of beryl see also Hagemann et al. (1990), Kloprogge and Frost (2000a), Jasinevicius (2009), Jehlička et al. (2012), and Jehlička and Vandenabeele (2015).

Beryl $Be_3Al_2Si_6O_{18}$

Origin: Čanište, Republic of Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3663w, 3595s, 1610w, 1128, 1111, 1070, 1005, 915, 770, 689s, 616, 587, 571, 516s, 400, 326, 286s, 248, 196s, 143.

Source: Makreski and Jovanovski (2009).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of beryl see also Hagemann et al. (1990), Kloprogge and Frost (2000a), Jasinevicius (2009), Jehlička et al. (2012), and Jehlička and Vandenabeele (2015).

Beryl Cs-bearing $CsLiBe₂Al₂Si₆O₁₈$

Origin: Piława Górna, Lower Silesia, SW Poland.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1130w, 1100sh, 1069s, 1008, 686s, 531, 400, 323, 245w, 125. Source: Pieczka et al. (2016b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Beryllonite NaBe($PO₄$)

Origin: Ehrenfriedersdorf complex, Erzgebirge (Ore Mts.), Germany.

Experimental details: Micro-Raman scattering measurements have been performed on a microscopic inclusion in quartz using 514 and 488 nm laser radiations. The laser radiation power at the sample was 10 mW.

Raman shifts (cm⁻¹): 1056s, 1012s, 547, 432, 354.

Source: Thomas et al. (2011b).

Comments: The sample was characterized by ion microprobe analysis.

Comments: For the Raman spectra of beryllonite see also Tait et al. (2010) and Frost et al. (2012k).

Berzeliite (NaCa₂)Mg₂(AsO₄)₃

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was between 200 and 300 mW.

Raman shifts (cm⁻¹): 912sh, 891, 841s, 800sh, 506, 473, 461, 431sh, 332, 170, 127, 115. Source: Khorari et al. (1995).

Comments: The sample was characterized by powder X-ray diffraction data.

Berzeliite polymorph alluaudite-type $(NaCa₂)Mg₂(AsO₄)₃$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was between 200 and 300 mW.

Raman shifts (cm⁻¹): 891, 860s, 800sh, 540w, 469, 426, 402sh, 386, 348, 304w, 217sh, 200. Source: Khorari et al. (1995).

Comments: The sample was characterized by powder X-ray diffraction data.

Betalomonosovite $\text{Na}_6\Box_4\text{Ti}_4(\text{Si}_2\text{O}_7)_2[\text{PO}_3(\text{OH})][\text{PO}_2(\text{OH})_2]\text{O}_2(\text{OF})$

Origin: Lovozero alkaline massif, Kola Peninsula, Russia.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in a 180° -scattering geometry using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1100, 1030, 925s, 862sh, 804, 678, 587, 548, 493, 456, 414.

Source: Sokolova et al. (2015a).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Beudantite $PbFe^{3+}{}_{3}(AsO_4)(SO_4)(OH)_6$

Origin: Tsumeb mine, Tsumeb, Namibia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3449, 3391, 3202, 3123, 3005, 1674w, 1319, 1144, 1107, 1081, 998s, 874sh, 851s, 829sh, 807sh, 622, 616, 578w, 560, 476s, 443, 434s, 410sh, 371w, 328, 311, 301sh, 293, 259sh, 248, 216sh, 202s, 143, 137s.

Source: Frost et al. (2011i).

Comments: No independent analytical data are provided for the sample used.

Beusite $\text{Mn}^2 + \text{Fe}^{2+}(\text{PO}_4)_2$

Origin: Bull Moose Mine, Custer, South Dakota, USA.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation power at the sample was about 1–5 mW.

Raman shifts (cm⁻¹): 1080w, 1068, 1012sh, 999, 950s, 628, 589, 573, 442, 409sh, 322, 250w, 237, 200w, 155.

Source: Schneider et al. (2013).

Comments: The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Beyerite $CaBi₂O₂(CO₃)₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Source: Malik et al. (2016).

Raman shifts (cm⁻¹): 1302, 1069, 674w, 425, 207, 163s.

Comments: The sample was characterized by powder X-ray diffraction data.

Bianchite or Goslarite $Zn(SO_4)$ ∙6H₂O or $Zn(SO_4)$ ∙7H₂O

Origin: Minei Hill open pit, Baia Sprie deposit, Romania.

Experimental details: Raman scattering measurements have been performed on white fine deposition material using 632 nm laser radiation. The laser radiation power at the sample was 53.6 mW.

Raman shifts (cm⁻¹): 1191, 1080, 1024s, 914, 626, 506, 427, 280, 222.

Source: Buzatu et al. (2012).

Comments: No independent analytical data are provided for the sample used. The Raman spectrum may correspond to bianchite or goslarite. These two minerals have very similar Raman spectra, which makes the identification difficult.

Bikitaite LiAlSi₂O₆⋅H₂O

Origin: Bikita, Zimbabwe (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in 90° - and 180° -scattering geometries using 488 and 514.5 nm Ar⁺ laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3588, 3477, 3411, 1641, 964, 504, 396, 255, 155, 104—the spectrum obtained at 5 K.

Source: Kolesov and Geiger (2002).

Comments: Raman spectra in the region below 1900 cm⁻¹ were obtained at 5 K. No independent analytical data are provided for the sample used.

Billietite Ba($UO₂$)₆O₄(OH)₆⋅8H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3568, 3487, 3398, 3238, 1604, 963, 873, 831, 830, 810, 800, 795, 737, 556, 528, 460, 452, 416, 363, 337, 290, 259, 244, 208, 200, 167, 158, 117, 109.

Source: Frost et al. (2007h).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of billietite see also Qader (2011).

Biotite K(Mg,Fe)₃[(Si,Al)₄O₁₀](OH)₂

Origin: No data. Experimental details: No data. **Raman shifts (cm⁻¹):** 3680, 3658, 767, 717, 679s, 549, 178. Source: Frezzotti et al. (2012).

Biphosphammite $(NH_4,K)H_2(PO_4)$

Origin: Synthetic.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1024sh, 925s, 551w, 479, 340, 179.

Source: O'Neill et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of biphosphammite see also Frost et al. (2011r).

Birnessite (Na,Ca,K)_{0.6}(Mn⁴⁺,Mn³⁺)₂O₄⋅1.5H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power density was 100 W/cm². **Raman shifts (cm⁻¹):** 730, 656s, 575s, 506, 303, 296.

Source: Julien et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of birnessite see also Julien et al. (2003) and Roqué-Rosell et al. (2010).

Birnessite (Na,Ca,K)_{0.6}(Mn⁴⁺,Mn³⁺)₂O₄⋅1.5H₂O

Origin: Moa Bay lateritic deposits, eastern Cuba.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The nominal laser radiation power was 30 mW.

Raman shifts (cm⁻¹): 655s, 573, 491w, 281.

Source: Roqué-Rosell et al. (2010).

Comments: The spectrum in the region from 200 to 900 cm^{-1} was obtained. The sample was characterized by powder X-ray diffraction data and chemical analysis. For the Raman spectra of birnessite see also Julien et al. (2003, 2004).

Bischofite MgCl₂⋅6H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG pulsed laser with 45 mJ/pulse total energy, up to 20 Hz lasing frequency, and 8 ns pulse width. 90°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3507, 3350.

Source: Garcia et al. (2006).

Comments: No independent analytical data are given for the sample used.

Bismite $Bi₂O₃$

Origin: Synthetic.

Raman shifts (cm⁻¹): 446, 410w, 314, 282, 210, 184, 151, 139, 118s, 102, 93s, 83s, 67s, 59, 53s. Source: Betsch and White (1978).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of bismite see also Narang et al. (1994) and Prekajski et al. (2010).

Bismoclite BiOCl

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 568.2 nm laser radiation. The laser radiation power at the sample was 25 mW.

Raman shifts (cm⁻¹): 400, 202, 146s, 60.

Source: Davies (1973).

Comments: No independent analytical data are given for the sample used. For the Raman spectrum of bismoclite see also Rulmont (1972).

Bismuth Bi

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a film with thickness about 0.5–1 mμ using 532 nm laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 91, 65s.

Source: Russo et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Bismuthinite $Bi₂S₃$

Origin: Panarechensk volcanic-tectonic formation, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 261s, 236s, 185, 169, 100, 83w, 70, 53s.

Source: Voloshin et al. (2015a).

Comments: The samples used were characterized by electron microprobe analyses. For the Raman spectra of bismuthinite see also Kharbish et al. (2009) and Efthimiopoulos et al. (2014).

Bismutite $Bi₂O₂(CO₃)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 and 647.1 nm laser radiations. The laser radiation power is not indicated. A 90°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1690w, 1392, 1360, 1067s, 688w, 667, 519w, 445w, 410, 351, 312w, 277w, 203, 172, 162, 158s, 118w, 97w, 94w, 70s, 53s, 51s, 41s, 23.

Source: Taylor et al. (1984).

Comments: The sample was characterized by powder X-ray diffraction data.

Bismutocolumbite BiNbO₄

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 200 mW.

Raman shifts (cm⁻¹): 883, 730, 624s, 537, 424, 382, 368, 336, 272s, 255, 220, 199, 153s, 139s, 110, 108, 93, 84s, 60s.

Source: Ayyub et al. (1986).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of bismutocolumbite see also Ayyub et al. (1987), Yu et al. (1990), and Lee et al. (2003).

Bismutoferrite $Fe^{3+}{}_{2}Bi(SiO_{4})_{2}(OH)$

Origin: Jáchymov U deposit, Krušné Hory (Ore Mts.), Western Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3541, 1598, 1536, 1475, 1290, 1219, 1160, 1093, 1004, 695, 669, 501, 472, 440, 430s, 417, 386, 348, 333, 323, 306, 280, 273, 244, 223, 217, 196, 165s, 151s, 144s.

Source: Frost et al. (2010a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Bismutotantalite BiTaO4

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 1084 nm Ar⁺ laser radiation. The nominal laser radiation power was 130 mW.

Raman shifts (cm^{-1}) : 625s, 539, 371, 340, 274, 257s, 222, 201, 157s, 143s, 112, 87, 64.

Source: Lee et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data.

Bitikleite $Ca₃(SbSn)(AlO₄)₃$

- Origin: Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar^+ laser radiation. The laser radiation output power was 40–60 mW. A 0-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 832sh, 799, 760, 738sh, 624sh, 600, 500s, 440w, 409w, 356w, 299s, 252, 218w, 190, 161w, 151, 120.
- Source: Galuskina et al. (2010a).
- Comments: The sample was characterized by electron micro-diffraction, powder X-ray diffraction data, and electron microprobe analyses.

Bixbyite $Mn^{3+}{}_{2}O_3$

Origin: An unknown locality in Zaire.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 12.5 mW. A 180° -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 650sh, 630, 581s, 509.

Source: Bernard et al. (1993a).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman spectrum of natural bixbyite differs from that of synthetic α -Mn₂O₃: the Raman shifts of the latter are 698, 645, 592, 481, 404, 314, and 192 cm⁻¹ (Julien et al. 2004). Raman spectrum of presumed bixbyite published by Baioumy et al. (2013) is questionable.

Blatterite $Sb^{5+}{}_{3}Mn^{3+}{}_{9}Mn^{2+}{}_{35}(BO_3)_{16}O_{32}$

Origin: Bergslagen ore province, south central Sweden.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.4 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 573s, 214w.

Source: Enholm (2016).

Comments: The sample was characterized by electron microprobe analyses.

Blödite Na2Mg(SO4)2∙4H2O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on a powdered sample using 532 nm laser radiation. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): \sim 3300, 1184, 1104, 1058, 995s, 631, 463, 449.

Source: Jentzsch et al. (2011).

Comments: No independent analytical data are provided for the sample used.

Bluebellite $Cu₆(IO₃)(OH)₁₀Cl$

Origin: Shallow D shaft, Blue Bell claims, Central Mojave Desert, California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on the (001) face of a flat single crystal using 514.3 nm laser radiation. Laser beam was incident approximately perpendicular to the (001) face. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): ~3500, 1007, 680s, 641, 544, 502w, 254, 203, 172.

Source: Mills et al. (2014b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Bluelizardite $\text{Na}_{7}(\text{UO}_{2})(\text{SO}_{4})_{4}\text{Cl}(\text{H}_{2}\text{O})_{2}$

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The nominal laser radiation power was 3 mW.
- **Raman shifts (cm⁻¹):** 3606, 3576, 3475, 3422, 3343, 3219, 1216, 1189, 1156, 1143, 1090, 1061, 1050, 1012, 1003, 998, 986, 951, 854s, 848sh, 651, 641, 620, 619, 607, 592, 260, 252, 237, 208. Source: Plášil et al. (2014a).
- Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. Plášil et al. (2015d) indicate additional bands at 465 and 445 cm^{-1} .

Bobcookite NaAl $(UO₂)₂(SO₄)₄·18H₂O$

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 and 780 nm laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 3610, 3565, 3500, 3445, 3380, 3315sh, 3270sh, 3195sh, 1640, 1210, 1145, 1110, 1035, 1010s, 990sh, 845s, 630, 600w, 470, 450, 330w, ~210.
- Source: Kampf et al. (2015b).
- Comments: Raman shifts in the range of stretching vibrations of water molecules are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was

characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Bobdownsite $Ca₉Mg(PO₃F)(PO₄)₆$

Origin: Big Fish River, Yukon, Canada (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1088, 1028w, 989, 966s, 923, 626, 605w, 554, 483w, 433, 406, 282, 158w. Source: Tait et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Bobierrite Mg3(PO4)2∙8H2O

Origin: Zheleznyi mine (Iron mine), Kovdor massif, Kola Peninsula, Russia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3498, 3263, 3212, 3096, 2895, 1072, 998, 951, 909, 842, 787, 717, 693, 668, 631, 583, 557, 542, 468, 435, 420, 364, 318, 290, 282, 262, 233, 215, 182, 170, 149, 136. Source: Frost et al. (2002f).

Comments: No independent analytical data are provided for the sample used.

Bobshannonite Na₂KBa(Mn,Na)₈(Nb,Ti)₄(Si₂O₇)₄O₄(OH)₄(O,F)₂

Origin: Mont Saint-Hilaire, Québec, Canada (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** ~3655, ~3610, 1038, 970, 901, 716, 680, 608, 580, 510, 410, 341, 310, 240, 207, 143.

Source: Sokolova et al. (2015b).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Bohdanowiczite $AgBiSe₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shift $(cm⁻¹)$ **:** 171, 161. Source: Rajaji et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. Trigonal, $a = 8.412$ (6) A, $c = 19.63(3)$ A.

Böhmite γ-AlO(OH)

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power at the sample was 200 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3371, 3220, 3085, 2989, 1072, 732, 674s, 495s, 451, 360s, 228.

```
Source: Ruan et al. (2001).
```
Comments: No independent analytical data are provided for the sample used. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Boleite KAg₉Pb₂₆Cu₂₄Cl₆₂(OH)₄₈

Origin: Amelia Mine, Santa Rosalia, Baja, California, Mexico (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3448, 3408, 3371sh, 921, 817, 757, 731, 696, 478, 455, 386, 361, 300, 234, 161s, 146sh, 128sh.

Source: Frost et al. (2003j).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of boleite see also Frost and Williams (2004).

Boltwoodite $(K,Na)(UO₂)(SiO₃OH)·1.5H₂O$

Origin: Kladská U deposit, Slavkovský les Mountains, western Bohemia, Czech Republic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 780 nm laser radiation. The laser radiation output power was 10 mW.
- Raman shifts (cm⁻¹): 3387w, 3351w, 3313w, 1606w, 1327w, 958, 938, 847sh, 833sh, 804s, 542, 496, 483, 435, 423, 398, 321, 280, 262, 220, 180, 152, 136, 110,93, 75, 60.

Source: Plášil et al. (2016a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of boltwoodite see also Frost et al. (2006e).

Bonaccordite $Ni₂Fe³⁺O₂(BO₃)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 20 mW. Polarized spectrum was collected in the (zz) geometry.

Raman shifts (cm⁻¹): 650s, 582s, 570sh, 544, 526, 495, 473sh, 423, 388w, 357w, 314, 285w, 257w.

Source: Leite et al. (2002).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Bonattite Cu(SO_4)∙3H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1126, 1009s, 620, 587, 481, 429, 386, 250, 160, 123.

- **Source:** Fu et al. (2012).
- Comments: Bands of H2O stretching vibrations are very weak and poor-resolved. No independent analytical data are provided for the sample used.

Bonazziite β-As₄S₄

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 647.1 nm Kr^+ laser radiation. The laser radiation power at the sample was 60 mW.
- **Raman shifts (cm⁻¹):** 388w, 376w, 362s, 352, 343, 332sh, 217, 211sh, 187s, 164, 144, 62, 56, 42w, 32w.
- Source: Muniz-Miranda et al. (1996).
- Comments: The photo-induced transformation from β -As₄S₄ to pararealgar takes place in the sample under the exposure to a more short-wave radiation.

Bonazziite β-As₄S₄

Origin: Khaidarkan deposit, Kyrgyzstan (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 875 nm diode laser radiation. The laser radiation power was 3 mW.

Raman shifts (cm⁻¹): 362s, 352, 343, 217s, 187s, 164.

Source: Bindi et al. (2015b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Boracite $Mg_3B_7O_{13}Cl$

Origin: Lüneburg, Lower Saxony, Germany (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3581sh, 3494, 3431sh, 3405s, 3334sh, 3277, 3254w, 2903, 2727sh, 1617, 1583, 1348, 1143, 1136, 1121, 1009s, 671, 660sh, 621, 611sh, 582sh, 536w, 515sh, 494, 473sh, 415, 317, 211s, 182s, 163s, 147, 134s.

Source: Frost et al. (2012m).

Comments: No independent analytical data are provided for the sample used. The spectrum shows the presence of OH groups.

Borax $Na₂B₄O₅(OH)₄·8H₂O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was about 100 mW.

Raman shifts (cm⁻¹): 3575s, 3495s, 3447s, 3400s, 3357s, 3140s, 1640w, 957, 860, 776, 590w, 530, 474, 390, 361, 160, 120, 90, 78.

Source: Devi et al. (1994).

Comments: No independent analytical data are provided for the sample used. Polarized spectra of borax single crystals were collected in $x(yy)z$, $x(yx)z$, $x(zy)z$, and $x(zx)z$ scattering geometries too. For the Raman spectra of borax see also Krishnamurti (1955) and Kipcak et al. (2014).

Bornite $Cu₅FeS₄$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 638 nm laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 784w, 579, 464w, 377, 266s, 201s. Source: Lanteigne et al. (2012).

Bosiite $NaFe^{3+}{}_{3}(Al_{4}Mg_{2})(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}O$

Origin: No data.

Experimental details: Polarized $-y(zz)y$ Raman scattering measurements have been performed on a single crystal using 488.0 or 514.5 nm $Ar⁺$ laser radiations. The laser radiation power at the sample was about 14 mW.

Raman shifts (cm⁻¹): No data: only a figure of the Raman spectrum is given in the cited paper. Source: Watenphul et al. (2016b).

Comments: The sample was characterized by electron microprobe analysis.

Botallackite $Cu₂Cl(OH)₃$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 and 514.5 nm $Ar⁺$ laser radiation. The laser radiation output power was 30 mW at 632.8 nm and is not indicated at 514.5 nm.

Raman shifts (cm⁻¹): 3504, 3420, 897, 857, 678w, 503, 450s, 401s, 324, 279, 251, 175, 155, 115. Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Botryogen MgFe³⁺(SO₄)₂(OH)∙7H₂O

Origin: Alcaparrosa mine, Antofagasta Province, Chile.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3576, 3441, 3330, 3256, 3107sh, 3186, 1626, 1221, 1202, 1178, 1076, 1041, 1017, 1002s, 607, 563, 499s, 464, 384, 353, 271, 241s, 208, 180, 146.

```
Source: Frost et al. (2011f).
```
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Bottinoite NiSb⁵⁺2(OH)12∙6H₂O

Origin: Bottino Mine, Italy (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3510sh, 3458, 3368, 3291, 3228sh, 3223sh, 1648, 1163w, 1111w, 1080w, 1045w, 735w, 630sh, 618, 599sh, 575sh, 516sh, 501, 316sh, 336, 317, 302, 254, 235, 207, 169, 146, 125, 114.

Source: Frost and Bahfenne (2010e).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of bottinoite see also Rintoul et al. (2011) and Bahfenne (2011).

Boulangerite $Pb_5Sb_4S_{11}$

Origin: Zlatá Baňa, Slanské Vrchy Mts., central Slovakia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 632 nm Nd-YAG laser radiation. The laser radiation power radiation density at the sample was $8.5 \cdot 10^{-3}$ mW/ μ m². A 180°-scattering geometry was employed.

Raman shifts (cm^{-1}) : 355s, 335, 315, 236, 220, 206, 189, 146, 129sh, 100, 85, 74sh, 62. Source: Kharbish and Jeleň (2016).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by electron microprobe analysis.

Bournonite CuPbSbS₃

```
Origin: Felsöbanya, Romania.
```
Experimental details: Raman scattering measurements have been performed on an oriented single crystal with the laser polarization parallel to the $a₁$, $b₁$, and c-axes using 785 nm laser radiation. The laser radiation power at the sample was 1.7 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 339, 324s, 192, 275, 227w, 197, 181, 166.

Source: Kharbish et al. (2009).

Comments: Slightly varying band positions among polarized spectra are averaged. The sample was characterized by electron microprobe analysis.

Boussingaultite $(NH_4)_2Mg(SO_4)_2$ ∙6H₂O

Origin: Larderello, Tuscany, Italy.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3380w, 3290w, 3080, 3040, 2918w, 2845w, 1705, 1678, 1460, 1436, 1133w, 1096w, 1063, 983s, 626, 616, 454, 360w, 310w, <222w.

Source: Culka et al. (2009).

Comments: No independent analytical data are provided for the sample used. Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. For the Raman spectrum of boussingaultite see also Jentzsch et al. (2013).

Boussingaultite $(NH_4)_2Mg_2(SO_4)_3·6H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 253.7 nm of mercury radiation and exposition of the order of 16 h.

Raman shifts (cm⁻¹): 3396, 3331, 3281, 3060, 2830, 1469w, 1433, 1141, 1121, 1102, 1091, 1072, 1061, 979s, 622, 455, 265w, 220w, 198, 147, 130, 89w, 54.

Source: Shantakumari (1953).

Comments: No independent analytical data are provided for the sample used.

Bowieite $Rh₂S₃$

Origin: Svetly Bor complex, Urals, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 374, 308s, 287.

Source: Zaccarini et al. (2016).

Comments: For the Raman spectrum of bowieite see also Singh et al. (2014).

Braccoite $\text{NaMn}^{2+}{}_{5}[\text{Si}_5\text{O}_{14}(\text{OH})](\text{AsO}_3)(\text{OH})$

Origin: Valletta mine, Maira Valley, Piedmont, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 632.8 and 532 nm He-Ne and Nd-YAG laser radiations. The nominal laser radiation power was 20 and 80 mW, respectively. A 180^o-scattering geometry was employed.

Raman shifts (cm⁻¹): 1040sh, 1017s, 932sh, 907s, 829s, 748, 706, 665s, 618, 563w, 525w, 451, 390, 360w, 291, 261w, 226.

Source: Cámara et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Bracewellite CrO(OH)

Origin: Artificial.

Experimental details: Raman scattering measurements have been performed on a chromium coupon using 647 nm Kr^+ laser radiation. The nominal laser radiation power was 8 mW. A nearly 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): ~825w, ~780w, ~620, ~565s, ~310s.

Source: Maslar et al. (2001).

Comments: The sample was characterized by X-ray emission spectrum.

Brackebuschite $Pb_2Mn^{3+}(VO_4)_2(OH)$

Origin: Sierra de Cordoba, Argentina (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 3145w, 859s, 687w, 450w, 334, 158.

Source: Lafuente and Downs (2016).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Bradleyite $\text{Na}_3\text{Mg}(\text{PO}_4)(\text{CO}_3)$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been using 532 nm laser radiation. The nominal laser radiation power was 240 mW.
- **Raman shifts (cm⁻¹):** 1079s, 1067w, 1051, 1033, 971s, 733w, 694w, 627w, 591, 484w, 430, 262, 218, 198, 161.

Source: Gao et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Braggite PtS

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 18,794.59 cm⁻¹ Ar⁺ laser radiation. The laser radiation power at the sample was between 1 and 2 mW.

Raman shifts (cm⁻¹): 378, 360s, 330s, 111.

Source: Bakker (2014).

Comments: For the Raman spectra of braggite see also Mernagh and Hoatson (1995), Pikl et al. (1999), and Merkle et al. (1999).

Brandholzite MgSb₂(OH)₁₂⋅6H₂O

Origin: Krížnica mine, Pernek deposit, Malé Karpaty Mts., Slovak Republic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3552, 3483sh, 3466, 3383sh, 3240, 3205sh, 1648w, 1597sh, 1189sh, 1160w, 1093, 1043, 730, 630, 618s, 604, 578sh, 526, 503, 340s, 318s, 303sh, 252w, 232w, 191w, 147w, 115w.

Source: Frost et al. (2009e).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of brandholzite see also Rintoul et al. (2011) and Bahfenne (2011).

Brannerite $UTi₂O₆$

Origin: El Cabril mine, near Cordoba, Sierra Albarrana region, southern Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 759s, 615, 523, 435, 375, 327, 265, 194, 161.

Source: Zhang et al. (2013).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was preliminarily annealed and characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of brannerite see also Frost and Reddy (2011a) and Charalambous et al. (2012).

Brannockite $KSn_2(Li_3Si_{12})O_{30}$

Origin: Golden Horn Batholith, Washington, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 632 nm He-Ne laser radiation. The laser radiation power was 1 mW.
- **Raman shifts (cm⁻¹):** 1160, 1141, 1042, 992, 947w, 841, 774, 616, 485, 462s, 382, 365w, 343, 282s, 257w, 248w, 204w, 156s, 128, 103s, 93sh, 63.
- Source: Raschke et al. (2016).
- Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Brassite Mg(AsO₃OH)∙4H₂O

- Origin: Jáchymov U deposit, KrušnéHory (Ore Mts.), Western Bohemia, Czech Republic (type locality).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3511, 3450, 3387, 3314, 3035, 878sh, 876sh, 862, 809, 739sh, 699, 609, 448, 404, 387sh, 358sh, 298, 274sh, 242, 199, 181, 158sh, 149, 121, 108.

Source: Frost et al. (2010h).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Braunite $Mn^{2+}Mn^{3+}{}_{6}O_8(SiO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on microscopic inclusions in in-glaze pigment of the nineteenth-century relief tiles using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW.

Raman shifts (cm⁻¹): 958, 686, 617, 513s, 471, 330w, 217, 121.

Source: Coutinho et al. (2016).

Comments: The sample was characterized by electron microprobe analysis.

Brazilianite $\text{NaAl}_3(\text{PO}_4)_2(\text{OH})_4$

- Origin: Córrego Frio mine, Linópolis, Divino das Laranjeiras, Doce valley, Minas Gerais, Brazil (type locality).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3543, 3519, 3472s, 3447, 3417s, 3355, 3291, 3249, 3157, 1579w, 1395, 1150w, 1117, 1074, 1037sh, 1019s, 988s, 973, 953, 723, 660, 636, 615, 599s, 563s, 534, 508sh, 466, 441, 414, 358, 319, 287, 276, 253, 244, 231, 220, 208, 172, 162w, 149, 113, 105. Source: Frost and Xi (2012l).

Comments: No independent analytical data are provided for the sample used.

Bredigite $(Ca, Ba)Ca₁₃Mg₂(SiO₄)₈$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹): 991, 977, 950w, 927w, 907sh, 895sh, 884s, 872s, 857s, 847, 575, 554w, 543w,** 526w, 514w, 502w, 424w, 406w, 384w, 375w, 298w, 257w, 240w, 211w, 194w, 149w, 125, 109sh, 68w.

Source: Xiong et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Breithauptite NiSb

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 650.

Source: Xie et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data.

Brewsterite-Sr $Sr(Al₂Si₆)O₁₆·5H₂O$

Origin: Strontian, Agryll, Scotland, UK (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 1.06 μm Nd-YAG laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm⁻¹): 1136w, 495s, 387, 236, 171.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Brianyoungite $Zn_3(CO_3, SO_4)(OH)_4$

Origin: Esperanza Mine, Laurion district, Greece.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3669, 3631, 3615, 3564, 3571, 3554, 3531, 3518, 3400, 3297, 3193, 3076, 2973, 2938, 2910, 2880, 2851, 1550, 1457, 1440, 1388, 1367, 1298, 1163, 1127, 1086, 1056s, 1038sh, 984, 973s, 958sh, 736, 704, 638, 609, 528, 507sh, 475, 451, 433, 423, 378, 367, 347, 306, 271, 257w, 277, 216, 160sh, 153sh, 151s, 143s, 132sh, 125, 113, 108.

Source: Frost et al. (2015r).

Comments: The sample was characterized only by qualitative electron microprobe analysis.

Briartite $Cu₂FeGeS₄$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488.0 or 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 2 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 437, 412w, 396, 378, 342s, 329sh, 304w, 294, 272, 250, 224, 162w, 141, 109. Source: Rincón et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of briartite see also Himmrich and Haeuseler (1991).

Britvinite $Pb_{14}Mg_9(Si_{10}O_{28})(BO_3)_4(CO_3)_2(OH)_{12}F_2$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 633 nm laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employeded.

Raman shifts (cm⁻¹): 3697s, 3543, 1718, 1696w, 1420, 1335, 1230, 1193, 1093, 1041s, 992, 960, 905, 873w, 842, 817, 802, 775, 740w, 717, 690, 667, 593, 489, 412, 303s, 277, 258, 217, 154.

Source: Kolitsch et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Brizziite $NaSbO₃$

Origin: Le Cetine mine, Chiusdino, Siena province, Tuscany, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 830w, 749w, 660s, 617, 508, 315, 307, 230, 204, 158. Source: Frost and Bahfenne (2010a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of brizziite see also Bittarello et al. (2015).

Brochantite $Cu₄(SO₄)(OH)₆$

Origin: Chuquicamata, Chile.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 780 nm Nd-YAG laser radiation. The laser radiation power at the sample was <1 mW.
- **Raman shifts (cm⁻¹):** 3580s, 3501sh, 3489s, 1906, 1265w, 1173w, 1135w, 1078, 990s, 786, 770, 749, 629, 608, 600, 517, 501, 482, 467, 442, 415, 340, 330, 295, 265, 247, 238, 228, 213, 172, 149, 141, 124.

Source: Martens et al. (2003a).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by XRD and EDX, but these data are not provided in the cited paper. For the Raman spectra of brochantite see also Makreski et al. (2005a), Schmidt and Lutz (1993), Bouchard and Smith (2003), Frost et al. (2004a), Apopei et al. (2014a), and Coccato et al. (2016).

Brochantite $Cu₄(SO₄)(OH)₆$

Origin: Bučim, Macedonia.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3587sh, 3565s, 3536sh, 3508w, 3475, 3388s, 3358, 1160sh, 1134w, 1121sh, 1099sh, 1076, 973s, 904, 871w, 840w, 765w, 710w, 660w, 619, 609sh, 590w, 551w, 510, 480w, 431w, 415w, 394, 363sh, 323w, 292w, 237w, 190, 163w, 141w, 137w, 126w, 116w, 83.

Source: Makreski et al. (2005a).

Comments: No independent analytical data are provided for the sample used.

Bromargyrite AgBr

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a partly oriented crystal, in the $x(zz)y + x(zx)y$ scattering geometry, using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 262, 176, 82s.

Source: Bottger and Damsgard (1971).

Comments: The sample was characterized by means of flame emission spectroscopy and massspectrometry.

Bromellite BeO

Origin: Muiane pegmatite, Mozambique.

Experimental details: Raman scattering measurements have been performed on inclusions in morganite using 488 and 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 14 mW.

Raman shifts (cm⁻¹): 1097, 1081, 722, 684s, 678, 388.

Source: Thomas and Davidson (2010).

Comments: For the Raman spectrum of bromellite see also Devanarayanan et al. (1991).

Brookite TiO₂

Origin: Magnet Cove, Arkansas.

- Experimental details: Raman scattering measurements have been performed on oriented crystals using 458, 515 and 633 nm laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in the following scattering geometries: (xx) , (yy) , and (zz) for the A_{1g} Raman mode, (xy) for B_{1g} , (xz) for B_{2g} , and (yz) for B_{3g} .
- **Raman shifts (cm⁻¹):** A_{1g}: 640, 545, 492w, 412w, 324w, 246, 194w, 152s, 125; B_{1g}: 622, 449, 381w, 327, 283s, 212, 169; B_{2g}: 584, 460s, 391w, 366s, 325, 254w, 160s; B_{3g}: 500, 416w, 318s, 212w, 132.

Source: Iliev et al. (2013).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of brookite see also Yanqing et al. (2000), Zajzon et al. (2013), and Andò and Garzanti (2014).

Browneite MnS

Origin: Zakłodzie meteorite, Poland (type locality).

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented grain using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 1.5 mW.
- **Raman shifts (cm⁻¹):** \sim 620, \sim 460, \sim 400sh, \sim 220w.

Source: Ma et al. (2012b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Brownleeite MnSi

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 532 nm Nd-YAG laser radiation. The laser radiation power density was 2×10^5 W/ cm². A 180°-scattering geometry was employed. Polarized spectra were collected in the $z(yy)$ -z, z (xx) -z, $z(xy)$ -z, and $z(yx)$ -z scattering geometries. At different scattering geometries the shifts of the Raman lines do not exceed 2 cm^{-1} .

Raman shifts (cm⁻¹): \sim 310, \sim 190.

Source: Tite et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Brownmillerite $Ca_2Fe^{3+}AlO_5$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 707s, ~550, ~420, ~380, ~310, ~290, 256s. Source: Dhankhar et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of brownmillerite see also Martínez-Ramírez and Fernández-Carrasco (2011).

Brucite $Mg(OH)₂$

Origin: Mariana convergent plate margin, western Pacific Ocean.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal in a polished thin section using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 722, 442s, 276.

Source: Sagatowska (2010).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of brucite see also Lutz et al. (1994).

Brüggenite Ca($IO₃$)₂⋅H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3470, 3376, 832sh, 811, 767, 754sh, 746sh, 382, 343, 333sh, 322sh, 251sh, 229.

Source: Alici et al. (1992).

Comments: The sample was characterized by powder X-ray diffraction data.

Brugnatellite $Mg_6Fe^{3+}(CO_3)(OH)_{13}$ ∙4H₂O

Origin: Monte Ramazzo, Genoa, Liguria, Italy.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 5 mW. Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3922, 3696s, 3685s, 3656sh, 2933, 1591w, 1323w, 1102, 1087, 959w, 765w, 698sh, 690s, 664w, 644w, 621.

Source: Frost and Bahfenne (2009).

Comments: No independent analytical data are given for the sample used. Raman spectrum from Monte Ramazzo given as Supplementary Information does not coincide with the spectrum given in the cited paper.

Brushite Ca(PO₃OH)∙2H₂O

Origin: Moorba Cave, Jurien Bay, Dandaragan Shire, Western Australia, Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm He-Ne laser radiation. The laser radiation power is not detected. Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3533, 3472, 1055, 1000, 985s, 872, 858sh, 576w, 519s, 498, 411s, 276, 209, 140, 109.

Source: Frost et al. (2012h).

Comments: No independent analytical data are given for the sample used. For the Raman spectrum of brushite see also Xu et al. (1999).

Buchwaldite NaCa(PO₄)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1048, ~1026, ~1015, ~966s, ~588s, ~450, ~427.

Source: Suchanek et al. (1998).

Comments: The sample was characterized by powder X-ray diffraction data.

Bukovskýite Fe^{3+} ₂(AsO₄)(SO₄)(OH)∙7H₂O

Origin: Kaňk, near Kutná Hora, central Bohemia, Czech Republic (type locality).

- Experimental details: Raman scattering measurements have been performed on microcrystalline aggregates using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3420w, 3219w, 3102sh, 1652w, 1179, 1131, 1090, 1054, 1010, 984s, 911, 886, 847s, 816s, 613, 552, 511, 464, 428s, 315, 263s, 196, 147.

Source: Loun et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of bukovskýite see also Culka et al. (2016).

Bunnoite Mn^{2+} ₆AlSi₆O₁₈(OH)₃

Origin: Kamo Mt., Kochi prefecture, Japan (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 3546sh, 3472, 835, 718, 663, 651, 578, 553, 515s, 490s, 464, 451, 438, 385, 319s, 309s, 267w, 235.

Source: Nishio-Hamane et al. (2016a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Bunsenite NiO

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on nano-scaled and slightly agglomerated particles using 532 nm laser radiation. The laser radiation power at the sample was 2.48 mW.

Raman shifts (cm⁻¹): 1525s, 1093, 497.

Source: Thema et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and TEM/EDX. The strong band at 1525 cm⁻¹ is attributed to the double magnon scattering, but this assignment is questionable.

Burangaite NaFe²⁺Al₅(PO₄)₄(OH)₆⋅2H₂O

Origin: Hålsjöberg, Sweden.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 150 mW.

Raman shifts (cm⁻¹): 3618s, 3251s, 1141, 1045s, 1023, 988, 618, 601, 587, 400, 369, 354. Source: Thomas et al. (1998).

Comments: No independent analytical data are provided for the sample used.

Burbankite $(Na,Ca)_{3}(Sr,Ba,Ce)_{3}(CO₃)_{5}$

Origin: Kalkfeld carbonatite complex, Namibia.

Experimental details: Raman scattering measurements have been performed on microscopic particles in fluid inclusions using a He-Ne laser with the laser radiation power of 1.8 mW or an $Ar⁺$ laser with the power of 2 mW.

Raman shifts (cm⁻¹): 1078s, ~700w.

Source: Bühn et al. (1999).

Comments: The sample was characterized by synchrotron powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of burbankite see also Bühn et al. (2002) and Chakhmouradian et al. (2017).

Burbankite $(Na,Ca)_{3}(Sr,Ba,Ce)_{3}(CO₃)_{5}$

Origin: Bear Lodge carbonatite, Wyoming, USA.

- Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1085s, 1069w, (970) (broad), 881w, 872w, 738sh, 728sh, 717w, 703w, 286w, 233, 209w, 160, 143.

Source: Chakhmouradian et al. (2017).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of burbankite see also Bühn et al. (1999, 2002).

Burckhardtite $Pb_2(Fe^{3+}Te^{6+})(AISi_3O_8)O_6$

Origin: Moctezuma, Sonora, Mexico (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.3 nm cobalt solid-state laser radiation. The laser radiation power at the sample was 0.6 mW.

Raman shifts (cm⁻¹): 897w, 833w, 690s, 661w, 646s, 619s, 554, 477, ~463sh, 505sh, 391, 322, 295, 202.

Source: Christy et al. (2014) .

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Burgessite $Co_2(H_2O)_4[AsO_3(OH)]_2(H_2O)$

Origin: Keeley mine, South Larrain Township, Timiskaming District, Ontario, Canada (type locality). Experimental details: Raman scattering measurements have been performed on a powdered sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3591w, 3395, 3328, 3204sh, 3185sh, 852s, 830s, 806s, 740s, 447, 383, 353sh, 322sh, 215, 162.

Source: Čejka et al. (2011a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Burkeite $Na_4(SO_4)(CO_3)$

Origin: Searles Lake, San Bernardino Co., California, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3465w, 3331w, 1244w, 1132, 1102, 1065s, 1008sh, 994s, 981sh, 704, 645, 635sh, 622, 475, 453, 352, 149s, 112.

Source: López et al. (2014d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of burkeite see also Korsakov et al. (2009) and Jentzsch et al. (2013).

Buseckite (Fe,Zn,Mn)S

Origin: Zakłodzie meteorite, Poland (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 1.2 mW. **Raman shifts** (cm^{-1}) **:** 322sh, 296.

Source: Ma et al. (2012a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Bustamite $(Ca, Mg, Fe)_2Si_2O_6$

Origin: Sasa, Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 50 or 100 mW.

Raman shifts (cm⁻¹): 1034, 1007, 972s, 869s, 839, 812, 735w, 714w, 644s, 574w, 548w, 511, 489, 446w, 428w, 404, 364s, 350sh, 310, 285sh, 260w, 232, 172, 154w, 138w, 125w, 116.

Source: Makreski et al. (2006b).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and neutron activation analysis.

Butlerite $Fe^{3+}(SO_4)(OH)·2H_2O$

Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa province, Antofagasta, Chile.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3469sh, 3310w, 3155sh, 3012sh, 1225sh, 1198, 1145sh, 1109s, 1088sh, 1024s, 617sh, 600, 543, 469, 450sh, 408, 374sh, 294sh, 247, 221, 181, 154sh.

Source: Čejka et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Buttgenbachite Cu₃₆(NO₃)₂Cl₈(OH)₆₂⋅nH₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was <30 mW.
- **Raman shifts (cm⁻¹):** 1054, 1041, 985, 843, 622, 595, 489, 451, 409s, 349, 314, 259, 236, 193, 184, 164, 145s, 128s.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data.

Byströmite $MgSb^{5+}{}_{2}O_{6}$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 810w, 749s, 676, 625, 592w, 560w, 570s, 480w, 357, 331, 300, 248w, 231w. Source: Husson et al. (1979).

Comments: The sample was characterized by powder X-ray diffraction data.

Cabalzarite CaMg₂(AsO₄)₂∙2H₂O

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : ~800, ~750s, ~700sh, ~445. Source: Carey et al. (2015).

Cabvinite $Th_2F_7(OH) \cdot 3H_2O$

Origin: Su Seinargiu, Sarroch, Cagliari, Sardinia, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): (3407), 3257s, 461, 342, 209s, 113s.

Source: Orlandi et al. (2017).

Comments: The Raman shifts have been partly determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Cacoxenite Fe³⁺₂₄AlO₆(PO₄)₁₇(OH)₁₂⋅75H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3599, 3504, 3429, 3251s, 3085, 2947, 2667, 2309, 1231w, 1213w, 1153, 1118, 1081, 1041, 1026, 979, 961, 926w, 619, 606w, 573, 526w, 495w, 433w, 411w, 371w, 307w, 273, 262, 245, 217, 199w, 169w, 155.

Source: Frost et al. (2003c).

Comments: No independent analytical data are given for the sample used.

Cadmoindite $CdIn₂S₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 647.1 nm Kr^+ laser radiation. The nominal laser radiation power was $<$ 5 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 367s, 360, 315, 301w, 249, 232, 207, 188, 93, 70.

Source: Ursaki et al. (2002).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of cadmoindite see also Unger et al. (1978), Kulikova et al. (1988), and Syrbu et al. (1996a, b).

Cadmoselite CdSe

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated. A 180 \degree -scattering geometry was employed.
- **Raman shifts** (cm^{-1}) **:** 201 for CdSe particles with 2.26 nm in diameter and 205 for CdSe particles with 3.52 nm in diameter.

Source: Nien et al. (2008).

Comments: The samples were characterized by TEM. Bulk CdSe exhibits a Raman peak at 209 cm^{-1} (Widulle et al. 1999).

Cafarsite Ca_{5.9}Mn_{1.7}Fe₃Ti₃(AsO₃)₁₂⋅4-5H₂O

Origin: Cervandone Mt., Val Devero, Piedmont, Italy.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample was 1 mW.

Raman shifts (cm⁻¹): 869, 757, 725, 328, 286, 196s.

Source: Frost and Bahfenne (2010d).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of cafarsite see also Kloprogge and Frost (1999b) and Bahfenne (2011).

Cafetite CaTi₂O₅⋅H₂O

Origin: Khibiny massif, Kola Peninsula, Russia.

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been using 532 nm solid-state laser radiation. The laser radiation output power was 50 mW.
- **Raman shifts (cm⁻¹):** 825, 798, 732w, 602, 482, 449, 419s, 358w, 329, 302, 292, 251s, 203, 190, 177, 152, 126, 110.

Source: Martins et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Cahnite $Ca₂B(AsO₄)(OH)₄$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 844, 791, 759, 548, 538, 448, 428, 378, 395, 324, 290.

Source: Ross (1972).

Comments: No independent analytical data are given for the sample used.

Cairncrossite Sr₂Ca₇(Si₄O₁₀)₄(OH)₂⋅15H₂O

Origin: Wesselsmine, Kalahari Manganese Field, South Africa (type locality).

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 488 nm Ar^+ laser radiation. The nominal laser radiation power was 8 mW.
- **Raman shifts (cm⁻¹):** 3670, 3650, 3550s, 1145, 1060, 1030w, 1000sh, 777, 700, 610s, 456, 438, 346w, 280, 183w, 130.

Source: Giester et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Calaverite $AuTe₂$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed at 50 K on an oriented crystal using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was $\langle 10 \text{ mW} \rangle$. Polarized spectra were collected from the (20-12) face, which is parallel to the b-axis and makes an angle of $7^{\circ}05'$ with the a-axis. A 180°-scattering geometry with laser beam polarizations (xx) and (yy) for A_g , and (xy) for B_g was employed.
- **Raman shifts (cm⁻¹):** A_g(xx): 172, 162, 152, 143w, 128, 119, 101s, 92, 88, 73w, 57w, 47, 42w; $A_g(y)$: 163, 155w, 151, 144w, 134, 127, 119, 109w, 106w, 101w, 97, 72, 57, 47; $B_g(xy)$: 162, 154s, 142s, 133, 125s, 118, 108s, 101, 91, 61, 54, 48.

Source: van Loosdrecht et al. (1992).

Comments: The sample was characterized by powder X-ray diffraction data.

Calciborite $CaB₂O₄$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1632, 1525s, ~1450, 1428, 1295, 1231, 1172, 1080, 1002, 811, 788, 738s, 683, 653, 549, 504, 389, 328, 230, 209, 179, 171.

Source: Rulmont and Almou (1989).

Comments: Raman frequencies are given for a sample with the isotopic composition ${}^{40}Ca¹¹B₂O₄$. The sample was characterized by powder X-ray diffraction data.

Calcio-olivine $Ca_2(SiO_4)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was 0.4 mW.
- **Raman shifts (cm⁻¹):** 924, 885, 857, 838s, 813s, 570w, 558w, 525w, 410, 400, 306, 269, 261, 251, 242, 193, 183, 177, 151, 134w, 125w, 118w.

Source: Remy et al. (1997).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of calico-olivine see also Piriou and McMillan (1983).

Calcioaravaipaite $PbCa₂AlF₉$

Origin: Grand Reef mine, Arizona, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3580s, 3296, 2925w, 2425, 2344, 2203, 2073, 1939w, 1822, 1441w, ~652, 560s, 538s, 417w, 390w, 366w, 323, 277sh, 263, 234, 203, 191, 177, 167.

Source: Kampf et al. (2011c).

Comments: The sample identification was done by single-crystal X-ray diffraction data. The crystal structure is solved. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Calciolangbeinite $K_2Ca_2(SO_4)_3$

Origin: Artificial (component of clinker).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514 nm laser radiation. The nominal laser radiation power was 5 mW.
- Raman shifts $(cm⁻¹)$: 1203, 1147, 1107, 993, 630.
- Source: Black and Brooker (2007).
- Comments: Identification of this phase is tentative and, probably, erroneous. For the Raman spectrum of calciolangbeinite see also Gastaldi et al. (2008).

Calciolangbeinite $K_2Ca_2(SO_4)_3$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 632.8 nm laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 1144w, 1118w, 1025s, 1019s, 1006s, 645, 618, 466, 454.

Source: Gastaldi et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of calciolangbeinite see also Black and Brooker (2007).

Calciopetersite CaCu₆(PO₄)₂(PO₃OH)(OH)₆∙3H₂O

Origin: Domaš, near Olomouc, northern Moravia, Czech Republic (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3494, 3351w, 3301w, 3243w, 2931w, 2882sh, 1606, 1457sh, 1110, 1079, 1042, 947, 873, 577s, 475s, 394, 341, 208, 174, 144, 118.

Source: Čejka et al. (2011c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Calcite $Ca(CO₃)$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 2906w, 2835w, 2707w, 1903w, 1749w, 1436w, 1086s, 713w, 283, 156. Source: Edwards et al. (2005).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of calcite see also Rutt and Nicola (1974), Behrens et al. (1995), Buzgar and Apopei (2009), Wehrmeister et al. (2010), Ciobotă et al. (2012), Frezzotti et al. (2012), Schmid and Dariz (2015), Sánchez-Pastor et al. (2016), and Perrin et al. (2016).

Calcurmolite $(Ca_{1-x}Na_x)_2(UO_2)_3(MoO_4)_2(OH)_{6-x}nH_2O$

Origin: Sokh-Karasu area, Kadzharan Mo Deposit, Kafan District, Armenia (type locality).

Experimental details: Raman scattering measurements have been performed on a powdered sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated. **Raman shifts (cm⁻¹):** 930, 900sh, 868, 823, 794s, 700, 644, 495, 378, 354sh, 271, 206sh, 144w. Source: Frost et al. (2008c).

Comments: No independent analytical data are provided for the sample used. Strong bands in the range from 970 to 1150 cm⁻¹ in the IR spectrum of calcurmolite given in the cited paper are mainly due to an impurity. The assignment of these bands to MOH bending modes is erroneous. The IR band at 3694 cm^{-1} may correspond to the admixture of a clay mineral.

Calderite $Mn^{2+}{}_{3}Fe^{3+}{}_{2}(SiO_4)$ ₃

Experimental details: Only a calculated Raman spectrum of calderite is given in the cited paper.

Raman shifts (cm⁻¹): 1017, 897, 887, 884, 871, 840, 597, 580, 552, 493, 486, 450, 373, 355, 349, 344, 300, 293, 284, 217, 211, 186, 169, 158.

Source: Arlt et al. (1998).

Calderónite $Pb_2Fe^{3+}(VO_4)_2(OH)$

Origin: Karrantza Valley, western area of the Basque Co., Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser (with the laser radiation power at the sample of 20 mW) and 785 nm diode laser radiation (with the radiation output power of 150 mW).

Raman shifts (cm⁻¹): 977s, 684w, 336, 210w, 159w.

Source: Goienaga et al. (2011).

Comments: No independent analytical data are given for the sample used.

Caledonite $Cu_2Pb_5(SO_4)_3(CO_3)(OH)_6$

Origin: Hard Luck Claim, near Baker, San Bernardino Co., California, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample was 1 mW.

Raman shifts (cm⁻¹): 3439, 3417, 3379, 1674, 1392, 1358, 1124, 1109, 1083, 1053, 977s, 950, 848, 825, 791, 722, 628, 605, 475, 456, 427, 344, 316, 278, 251, 229, 152.

Source: Frost et al. (2003e).

Comments: No independent analytical data are provided for the sample used.
Callaghanite Cu₂Mg₂(CO₃)(OH)₆⋅2H₂O

Origin: Gabbs occurrence, Nye Co., Nevada, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample was 1 mW.
- **Raman shifts (cm⁻¹):** 3620, 3575, 3564s, 3511, 3502, 3375, 3350, 3040, 2906, 1398s, 1087s, 1013, 961, 944, 871, 840, 749, 707, 688, 517, 499s, 481, 459, 445, 395, 380, 350, 336, 283, 277, 252, 218, 211, 195, 160, 147, 141, 127, 121, 100.
- Source: Čejka et al. (2013).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Calomel HgCl

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a single crystal in the (zz) polarization using 514.5 and 632.8 nm He-Ne laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 272, 164s, 36s.

Source: Radepont (2013).

Comments: For the Raman spectrum of calomel see also Markov and Roginskii (2011).

Calumetite Cu(OH) $_2$ ∙2H₂O

Origin: No data.

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The output laser radiation power was 30 mW.
- **Raman shifts (cm⁻¹):** 3550, 3450, 1054, 1041s, 985, 843, 622, 595, 489, 451, 409, 347, 314, 259, 236, 193, 184, 164, 145, 139, 128.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of calumetite see also Bouchard-Abouchacra (2001).

Camaronesite Fe³⁺₂(PO₃OH)₂(SO₄)(H₂O)₄⋅1-2H₂O

Origin: Camarones valley, Arica province, Chile (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm⁻¹): 3463, 3363, 3140, ~1610, 1080s, 1014s, 937, 526, 305, 254, 227.

Source: Kampf et al. (2013d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Camerolaite $Cu₆Al₃(OH)₁₈(H₂O)₂[Sb(OH)₆](SO₄)$

Origin: Cap Garonne, France (type locality).

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal with the laser beamorthogonal to the elongation direction of the crystal (b axis) using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was from 5 to 30 mW.
- **Raman shifts (cm⁻¹):** 3596, 3558, 3495, 3200-3120, 2330w, 1064, 1050w, 968, 614s, 526s, 447, 347w, 325, 272, 237.

Source: Mills et al. (2014a).

Comments: The Raman shifts are given for the holotype sample no. 477.067. The sample was characterized by powder X-ray diffraction data.

Canavesite $Mg_2(HBO_3)(CO_3)·5H_2O$

Origin: No data.

- Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 514.5 nm Ar-Kr laser radiation. The laser radiation power was from 2 to 5 mW.
- **Raman shifts (cm⁻¹):** 3657s, 3484sh, 3392, 3293, 2910, 1458w, 1284, 1105s, 982, 768s, 635w, 548, 174s.

Source: Grice et al. (1986).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Cancrinite (Na,Ca,□)₈(Al₆Si₆)O₂₄(CO₃,SO₄)₂⋅2H₂O

Origin: Cava Satom, Cameroon.

- Experimental details: Raman scattering measurements have been performed on a single crystal using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 5 mW.
- **Raman shifts (cm⁻¹):** 3647w, 3536w, 1057s, 1042, 1002, 981, 976, 960, 937, 816, 768, 685, 631, 499, 469, 460, 440, 418, 401, 364, 350, 338, 293s, 277, 231, 161, 115, 108.
- Source: Gatta et al. (2012a).
- Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. Raman shifts are given for the crystal in two different orientations (crystal rotated by 90°). For the Raman spectra of cancrinite see also Mozgawa (2001) and Lotti (2014).

Cancrinite SO₄-rich (Na,Ca,□)₈(Al₆Si₆)O₂₄(CO₃,SO₄)₂⋅2H₂O

Origin: Cinder Lake, Manitoba, Canada.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3591w, 3544, 1060s, 992s, 774w, 720w, 687w, 633w, 515, 465, 441s, 340, 298, 275s, 230, 198, 89s.

Source: Martins et al. (2016).

Comments: The sample was characterized by X-ray microdiffraction data and electron microprobe analysis.

Canfieldite Ag_8SnS_6

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514 nm YAG laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 310, 221w, 76s.

Source: Cheng et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and Hall measurements.

Cannonite $Bi_2O(SO_4)(OH)_{2}$

Origin: Alfenza, Crodo, Italy.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal with the polarization of the incident laser beam parallel to Y using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3439, 3376, 3190w 1114, 1059, 984s, 621w, 605w, 562, 467, 452s, 438s, 400w, 337, 318s, 279, 222s, 189, 147s, 121s, 101s, 80w, 62.

Source: Capitani et al. (2013).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of cannonite see also Gama (2000) and Capitani et al. (2014).

Carbocernaite $(Sr, Ce, La)(Ca, Na)(CO₃)₂$

Origin: Bear Lodge carbonatite, Wyoming, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** Ca-Sr-rich variety: 1099s, 1077s, 979s (broad), 864w, 744w, 728sh, 716, 693, 269s, 215, 181, 127. Na-REE-rich variety: 1104s, 1097s, 1079s, 983 (broad) 874w, 860w, 749, 732sh, 724, 716sh, 704w, 677w, 257s, 188, 122.
- Source: Chakhmouradian et al. (2017).
- Comments: The samples were characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The broad bands at \sim 980 cm⁻¹ may be due to fluorescence.

Carbonatecyanotrichite Cu₄Al₂(CO₃)(OH)₁₂⋅2H₂O

Origin: Grandview mine, Coconino Co., Arizona, USA.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal with the laser beam orthogonal to the elongation direction of the crystal (b axis) using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was from 5 to 30 mW.

Raman shifts (cm⁻¹): 3657, 3583, 3400-3300, 2329, 1141w, 977s, 591, 524s, 441, 273w, 233w. Source: Mills et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data.

Carletonite KNa₄Ca₄Si₈O₁₈(CO₃)₄(F,OH)∙H₂O

Origin: Poudrette Quarry, Saint Hilaire Mt., Quebec, Canada (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3595, 3584, 3572, 3570, 3235w, 2905, 2630, 1753w, 1732w, 1662w, 1617w, 1548w, 1481, 1426, 1217, 1086s, 1075s, 1066s, 840, 782, 756w, 735w, 726, 706, 698, 685, 663w, 547, 513, 495, 430, 401, 356, 342, 325w, 316, 289, 235, 217, 194, 174, 157, 142.

Source: Frost et al. (2013ai).

Comments: No independent analytical data are provided for the sample used.

Carlfrancisite $Mn^{2+3}(Mn^{2+},Mg,Fe^{3+},A)_{42}(As^{3+}O_3)_{2}(As^{5+}O_4)_{4}[(Si,As^{5+})O_4]_{6}[(As^{5+},Si)O_4]_{2}[(OH)_{42}$

Origin: Kombat mine, Otavi valley, Namibia (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power at the sample was in the range $5-12.5$ mW. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 3660w, 3600, 3532. 3463, 1600, 897, 836sh, 819sh, 791s, 732, 616, 514, 400. Source: Hawthorne et al. (2013).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data, and electron microprobe analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Carlfriesite $\text{CaTe}^{6+}(\text{Te}^{4+})_2\text{O}_8$

Origin: Moctezuma mine, New Mexico, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** The IR and Raman spectra of presumed carlfriesite presented in the cited paper are wrong. Actually, spectra of calcite are given. The bands of calcite are erroneously assigned to Te–O-stretching vibrations.

Source: Frost et al. (2009g).

Comments: No independent analytical data are provided for the sample used.

Carlinite Tl_2S

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2.5 mW.
- **Raman shifts (cm⁻¹):** \sim 280, \sim 160 (at room temperature); 280, 192, 171s, 143 (at 12 K). Source: Chia et al. (2015).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Carlosturanite $(Mg,Fe^{2+},Ti)_{21}(Si,Al)_{12}O_{28}(OH)_{34}·H_2O$

Origin: Val Varaita, Piedmont, northern Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm^{-1}) : 788sh, 776s, 765sh, 706, 692, 671, 451, 363, 329.

Source: Belluso et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Carlsbergite CrN

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on a powdered single-layer coating on silicon substrate using 633 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 619w, 238w.

Source: Barshilia and Rajam (2004).

Comments: The sample was characterized by powder X-ray diffraction data.

Carminite $PbFe³⁺₂(AsO₄)₂(OH)₂$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power was $<$ 1 mW.

Raman shifts (cm⁻¹): 3254, 3217, 849, 835, 822, 738, 543, 497, 467, 350, 324, 259, 210. Source: Frost and Kloprogge (2003).

Comments: No independent analytical data are provided for the sample used.

Carnallite KMgCl₃⋅6H₂O

Origin: A dolerite sill in eastern Siberia, Russia.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3472sh, 3444s, 3425s, 3401, 1641s, 401, 321w, 217, 202, 126, 97, 71, 59. Source: Grishina et al. (1992).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of carnallite see also Weber et al. (2012).

Carnegieite NaAlSiO₄

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 488 nm Ar⁺ laser radiation. The output laser radiation power was 600 mW . A 90° -scattering geometry was employed.

- **Raman shifts (cm⁻¹):** 1072, 982, 964, 949, 803w, 721w, 685, 637w, 487, 444, 433, 404, 379s, 347sh, 340sh, 313sh, 262w, 217, 154, 114.
- Source: Matson et al. (1986).

Comments: The sample was characterized by powder X-ray diffraction data.

Carnotite K₂(UO₂)₂(VO₄)₂⋅3H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 6471 Å Kr laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 975, 825w, 737s, (645w), 585w, 540w, (475w), 410w, 380, 360w, (310w), 275w, 250w, 230w.

Source: Baran and Botto (1976).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of carnotite see also Biwer et al. (1990) and Frost et al. (2005c).

Carpathite $C_{24}H_{12}$

Origin: Picacho Peak Area, San Benito Co., California, USA.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 1627, 1615, 1594, 1449, 1437, 1393w, 1366s, 1350s, 1337, 1289w, 1220, 1044w, 1026, 994w, 949w, 660w, 483s, 450, 369, 304w, 238w.

Source: Echigo et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of carpathite see also Zhao et al. (2013b).

Carpholite $Mn^{2+}Al_2Si_2O_6(OH)_4$

Origin: Vrpsko, Macedonia.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power at the sample was from 50 to 100 mW.
- **Raman shifts (cm⁻¹):** 1087, 1029, 987sh, 958, 919s, 883, 828, 777, 735s, 709, 678, 658, 634, 609, 583sh, 559, 503, 469, 441, 404, 371, 345s, 315, 292, 281, 260, 238, 209, 162sh.

Source: Makreski et al. (2006b).

Comments: The sample was characterized by powder X-ray diffraction data and neutron activation analysis. For the Raman spectrum of carpholite see also Jovanovski et al. (2009).

Carrboydite $(Ni_{1-x}Al_x)(SO_4)_{x/2}(OH)_2 \cdot nH_2O$ ($x < 0.5$, $n > 3x/2$)

Origin: Widgiemooltha, Western Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample was <1 mW.

Raman shifts (cm⁻¹): 3614, 3445 (broad), 1125, 981s, 631, 613, 563, 552, 499, 457, 403, 318, 248, 227, 205.

Source: Frost et al. (2003h).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of carrboydite see also Lin et al. (2006).

Carrollite $CuCo₂S₄$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 660s, 509, 474.

Source: Nie et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Caryopilite $Mn^{2+}{}_{3}Si_2O_5(OH)_4$

Origin: Santa Cruz Formation, Brazil.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): No data: only a figure of the Raman spectrum is given in the cited book. Source: Johnson (2015).

Comments: The sample was characterized by electron microprobe analyses.

Cassiterite $SnO₂$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser radiation power was 30 mW.

Raman shifts (cm⁻¹): 842, 776, 635s, 475.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of cassiterite see also Andò and Garzanti (2014) and Evrard et al. (2015).

Castellaroite $Mn^{2+}{}_{3}(AsO_4)_2.4H_2O$

Origin: Monte Nero mine, Rocchetta Vara, La Spezia, Liguria, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm Nd-YAG laser radiation. The laser radiation output power was 500 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3942w, 3758w, 3491w, 3241w, 3116w, 2925w, 1663w, 934w, 911sh, 863s, 847sh, 822s, 801s, 578w, 509w, 459sh, 426, 372, 341sh, 275w, 215w, 182w, 150, 143sh, 109. Source: Kampf et al. (2016a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Caswellsilverite NaCrS₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 50 mW. Polarized spectra were collected in the $y(xy)z$ and $y(xx)z$ scattering geometries.

Raman shifts $(cm⁻¹)$ **:** 317, 252.

Source: Unger et al. (1979).

Comments: No independent analytical data are provided for the sample used. In the $y(xy)z$ scattering geometry only a band at 252 cm^{-1} is observed.

Catalanoite Na₂(HPO₄)⋅8H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 40° C on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 30 mW. **Raman shifts (cm⁻¹):** 3412s, 3238w, 1089, 987s, 869s, 518, 407w, 388.

Source: Ghule et al. (2003).

Comments: The sample was characterized by thermogravimetric data.

Catapleiite Na₂Zr(Si₃O₉)∙2H₂O

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 1005s, 928, 622, 563.

Source: Gaft et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis, but no independent analytical data are provided for the sample used.

Cattierite $CoS₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a \cos_2 film using 632.8 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 392s, 316w, 290.

Source: Kinner et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data.

Cavansite Ca(V⁴⁺O)(Si₄O₁₀)⋅4H₂O

Origin: Wagholi Quarry, Maharashtra, India.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3654, 3604, 3577w, 3546, 3504, 3429sh, 1109w, 1088w, 1072w, 1043w, 981s, 973sh, 954sh, 935w, 842w, 823w, 713w, 672, 587sh, 574, 542, 477, 437, 388w, 350, 307sh, 291, 251, 230, 194, 131, 113.

Source: Frost and Xi (2012h).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of cavansite see also Prasad and Prasad (2007).

Cebaite (Ce) $Ba_3Ce_2(CO_3)_5F_2$

Origin: No data.

Experimental details: Raman scattering measurements have been performed using 488 nm laser radiation. The nominal laser radiation power was 300 mW.

Source: Hong et al. (1999).

Raman shifts $(cm⁻¹)$: 1088, 911, 1516, 718, 625.

Čejkaite $Na_4(UO_2)(CO_3)_3$

Origin: Svornost mine, Jáchymov, Krušné Hory (Ore Mts.), Czech Republic (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1630, 1371sh, 1342, 1327sh, 1074s, 807, 805s, 734, 730, 703, 693, 419, 412, 347, 311s, 291, 281, 262, 194, 165, 143, 122.

Source: Čejka et al. (2010b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Celadonite $KMgFe³⁺Si₄O₁₀(OH)₂$

Origin: Akaky River, Cyprus.

- Experimental details: Raman scattering measurements have been performed on a powdery sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 0.9 mW.
- **Raman shifts (cm⁻¹):** 3604w, 3583w, 3566s, 3538w, 1597, 1132, 1086, 1056w, 1017sh, 961, 797w, 769w, 701, 551s, 460w, 445w, 393, 318w, 273, 174s.

Source: Correia et al. (2007).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of celadonite see also Ospitali et al. (2008).

Celestine $Sr(SO₄)$

Origin: Dufton, England.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 1160, 1112w, 1003s, 641sh, 623, 461.

Source: Buzgar et al. (2009).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by EMPA. No independent analytical data are provided for the sample used. For the Raman spectra of celestine see also Kloprogge et al. (2001b), Andò and Garzanti (2014), and Culka et al. (2016a).

Celsian $Ba(Al_2Si_2O_8)$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1050w, ~990, ~940, ~920sh, ~750w, ~715w, ~695w, ~550w, ~505s, ~470, \sim 405w, \sim 365w, \sim 305, \sim 250, \sim 195, \sim 165.

Source: Galuskina et al. (2016b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of celsian see also Graham et al. (1992) and Colomban et al. (2000).

Cerianite-(Ce) $CeO₂$

Origin: Kerimasi volcano, Gregory Rift, northern Tanzania.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 825-820w, 571, 449s, 184.
- Source: Zaitsev et al. (2011) .
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of cerianite-(Ce) see also Nakajima et al. (1994), Wang et al. (1998b), and Hao (2008).

Černýite $Cu_2CdSnS₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film. Other experimental details are not described.

Raman shifts $(cm⁻¹)$ **:** 333, 304, 284.

Source: Guo et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the IR spectrum of černýite see also Rincón et al. (2015).

Ceruleite Cu₂Al₇(AsO₄)₄(OH)₁₃⋅11.5H₂O

Origin: Emma Louisa gold mine, Guanaco district, Antofagasta, Chile.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3611sh, 3608s, 3597s, 3384, 3222, 3198sh, 3056, 1654w, 1042, 1003w, 951, 932, 903s, 870, 845, 827, 747w, 700w, 662w, 597s, 579sh, 515, 500sh, 464, 451sh, 430sh, 417, 400, 373, 335, 316, 299, 280, 262, 239, 231sh, 208, 195sh, 184sh, 176, 152, 132, 118, 111. Source: Frost et al. (2013b).

Comments: No independent analytical data are provided for the sample used.

Cerussite $Pb(CO_3)$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser radiation power was 30 mW.

Raman shifts (cm⁻¹): 1477, 1370, 1052s, 246, 225, 176, 152. Source: Bouchard and Smith (2003).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of cerussite see also Ciomartan et al. (1996), Frost et al. (2003e, f), and Frezzotti et al. (2012).

Cervantite $Sb^{3+}Sb^{5+}O_4$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): $402w$, 199, 96s.

Source: Jamal et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of cervantite see also Cody et al. (1979) and Makreski et al. (2013b).

Cesanite $Ca₂Na₃(SO₄)₃OH$

Origin: No data. Experimental details: No data. **Raman shifts (cm⁻¹):** 1104sh, 1004s, 647, 626s, 474, 448s. Source: Frezzotti et al. (2012). Comments: No independent analytical data are provided for the sample used.

Chabazite-Ca $Ca₂[Al₄Si₈O₂₄]\cdot 13H₂O$

Origin: Nidda, Germany.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1161w, 1082w, 808w, 697w, 465s, 402w, 357, 264, 204, 128. Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of chabazite-Ca see also Pechar and Rykl (1983).

Chalcanthite Cu(SO₄)⋅5H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the source was 30 mW. Raman shifts (cm⁻¹): 3482, 3345, 3206, 1143, 1096, 986s, 612, 465, 426, 332w, 281, 202, 135, 124. Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of chalcanthite see also Berger (1976), Christy et al. (2004), Fu et al. (2012), and Bissengaliyeva et al. (2016).

Chalcoalumite CuAl₄(SO₄)(OH)₁₂⋅3H₂O

Origin: Červená vein, Jáchymov, Czech Republic.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The output laser radiation power was 2 mW.
- Raman shifts (cm^{-1}) : 3670, 3610, 3450s, 3270sh, 2940w, 2780w, 2650w, 1610w, 1455, 1135, 1110sh, 1005, 981s, 803w, (642sh), 594s, 494, 455, 415w, 220w, 175.

Source: Plášil et al. (2014d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Chalcocite $Cu₂S$

Origin: Synthetic. Experimental details: No data. **Raman shifts (cm⁻¹):** 465s, 257w. Source: Kumar and Nagarajan (2011). Comments: The sample was characterized by powder X-ray diffraction data and ICP analysis.

Chalcocyanite $Cu(SO₄)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- Raman shifts (cm^{-1}) : 1205, 1101, 1045s, 1014s, 671w, 623, 514, 480sh, 448sh, 423, 347, 270, 250sh.

Source: Buzgar et al. (2009).

Comments: No independent analytical data are provided for the sample used. For the IR spectrum of chalcocyanite see also Fu et al. (2012).

Chalcomenite Cu(Se⁴⁺O₃)⋅2H₂O

Origin: El Dragon Mine, Potosi, Bolivia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3506w, 3184w, 2953w, 813s, 720, 690sh, 552, 472, 400w, 367w, 260, 218, 141, 128.

Source: Frost and Keeffe (2008b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis, but no analytical data are provided in the cited paper.

Chalconatronite Na₂Cu(CO₃)₂⋅3H₂O

Origin: Product of surface alterations of bronze.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 1600, 1329, 1073, 1053, 764, 698w, 327s, 261-268.

Source: Chiavari et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Chalcophanite $ZnMn^{4+3}O_7·3H_2O$

Origin: Xiangguang Mn-Ag deposit, northern China.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 651, 606, 502sh, 384w, 273w, 163.

Source: Fan et al. (2015).

Comments: The sample was characterized by LA-ICP-MS method and electron microprobe analysis. For the Raman spectrum of chalcophanite see also Kim and Stair (2004).

Chalcophyllite Cu₁₈Al₂(AsO₄)₄(SO₄)₃(OH)₂₄⋅36H₂O

Origin: Burrus Mine, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3555w, 3390sh, 3129sh, 1636w, 981, 968sh, 867sh, 841s, 814sh, 499, 386, 221sh, 202, 142.

Source: Frost et al. (2010g).

Comments: No independent analytical data are provided for the sample used. The IR spectrum of presumed chalcophyllite from Burrus Mine given in the cited paper differs substantially from IR spectra of chalcophyllite published elsewhere (Moenke 1962; Chukanov 2014).

Chalcopyrite $CuFeS₂$

Origin: Mt. Morgan, Queensland, Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was in the range 1–10 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 378, 352, 322, 293s.

Source: Mernagh and Trudu (1993).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of chalcopyrite see also Sasaki et al. (2009) and White (2009).

Chalcosiderite $CuFe^{3+}{}_{6}(PO_4)_4(OH)_8.4H_2O$

Origin: Siglo XX mine, Andes Mts., Bustillo province, Bolivia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3543sh, 3514s, 3501sh, 3482sh, 3480sh, 3384sh, 3306, 3200sh, 1194, 1168sh, 1159, 1102, 1062sh, 1042s, 1027sh, 990, 826w, 794sh, 768, 741sh, 636, 598sh, 580, 536, 484, 475sh, 420s, 415sh, 388, 351sh, 333, 293, 272, 264sh, 243sh, 235, 203, 182sh, 176, 153sh, 136s, 125s, 107.

Source: Frost et al. (2013af).

Comments: The sample was characterized by powder X-ray diffraction data and SEM/EDS, which may correspond to turquoise.

Chalcostibite $CuSbS₂$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 329s, 251, 152.

Source: Zhang et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of chalcostibite see also Rath et al. (2015).

Challacolloite KPD_2Cl_5

Origin: Artificial (a phase in a fifteenth-century polychrome terracotta relief).

Experimental details: Raman scattering measurements have been performed on a powdered sample using 785 nm laser radiation. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): 202, 169, 158, 119s, 96, 85, 73.

Source: Bezur et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of oriented challacolloite crystals see Vtyurin et al. (2004).

Chambersite $Mn_3B_7O_{13}Cl$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1684, 1660, 1634sh, 1596m 1548sh, 1426sh, 1412sh, 1399, 1368sh, 1346, 1326sh, 1209, 1169sh, 1146sh, 1129, 1091sh, 1075, 1056, 1045, 1027sh, 989w, 963, 942, 920, 902sh, 871, 853, 836, 797w,7766, 755w, 721, 705w, 679sh, 660s, 642sh, 617w, 597, 559, 544sh, 523, 508, 402, 393sh, 371sh, 357s, 339sh, 302, 273, 259, 241, 229, 209, 185sh, 177sh, 161s, 143s, 116.

Source: Frost et al. (2014f).

Comments: No independent analytical data are provided for the sample used.

Chamosite $(Fe^{2+}, Mg, Al, Fe^{3+})_6(Si, Al)_4O_{10}(OH, O)_8$

Origin: Turamdih, India.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished section using 514.5 nm Ar⁺ laser radiation. The laser radiation power behind the objective was in the range 0.03–0.8 mW. A nearly 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3644s, 3625s, 3560s, 3434, ~1030, 665s, 615sh, 545s, 518sh, 428w, 361, 198, 127.

Source: Nasdala et al. (2006).

Comments: The sample was characterized by electron microprobe analysis.

Changbaiite $PbNb₂O₆$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 700sh, 676s, 550sh, 529w, 477, 453sh, 423w, 379sh, 361, 323, 3009w, 277, 247, 230w, 202s, 179s, 141s, 119, 89s, 61.

Source: Repelin et al. (1980).

Comments: No independent analytical data are provided for the sample used.

Changoite Na₂Zn(SO₄)₂⋅4H₂O

Origin: Synthetic.

Experimental details:

Raman shifts (cm⁻¹): 3409, 3118, 1189, 1160, 1099, 1064, 985s, 628sh, 612, 473sh, 451. Source: Jentzsch et al. (2013).

Chapmanite $Fe³⁺₂ Sb³⁺ (SiO₄)₂(OH)$

Origin: Boňenov, near Mariánské Láznĕ, western Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3563, 3555, 1590, 1317w, 1120, 1077, 1013, 903, 808, 773, 709, 553, 473w, 436sh, 422, 408, 391, 361sh, 350, 334sh, 313, 293w, 256, 219, 208, 186, 177, 147, 114, 107.

Source: Frost et al. (2010a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Charoite $(K, Sr, Ba, Mn)_{15-16}(Ca, Na)_{32}[Si_{70}(O,OH)_{180}] (OH, F)_{4}⋅nH_2O$

- Origin: Murun massif (Murunskii alkaline complex), Aldan Shield, southwest Yakutia, Siberia, Russia (type locality).
- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 2403, 2367, 1135, 1116sh, 1054, 675s, 638, 434w, 242w. Source: Buzatu and Buzgar (2010).

Comments: No independent analytical data are provided for the sample used.

Chegemite $Ca₇(SiO₄)₃(OH)₂$

- Origin: Upper Chegem volcanic structure, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 20 mW. A 0° -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3563s, 3551sh, 3532, 3478s, 924s, 893, 845, 818s, 774, 766, 549, 526s, 403, 389s, 311, 293, 273, 226.
- Source: Galuskin et al. (2009).
- Comments: The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Chekhovichite $Bi^{3+}{}_{2}Te^{4+}{}_{4}O_{11}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power at the sample was 87 mW.

Raman shifts (cm⁻¹): 761w, 726s, 674sh, 642s, 551w, 419w, 380, 298, 270, 224, 180. Source: Durand (2006).

Comments: The sample was characterized by powder X-ray diffraction data.

Chenevixite $Cu(Fe³⁺, Al)(AsO₄)(OH)₂$

Origin: Manto Cuba Mine, San Pedro de Cachiyuyo district, Chañara lprovince, Atacama, Chile.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3501sh, 3405w, 3315sh, 2931w, 2870w, 1688, 1613, 1536, 1238, 1211, 1151, 1130, 883sh, 855s, 836sh, 807s, 495, 450sh, 435s, 408sh, 359, 350, 300.

Source: Frost et al. (2015f).

Comments: The sample was characterized by qualitative electron microprobe analysis that shows admixture of a silicate. The bands at 1688 and 1613 cm⁻¹ indicate the presence of H₂O molecules.

Cheralite CaTh($PO₄$)₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline pellet using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 10 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1088w, 982s, 623w, 597w, 573, 537w, 54, 425, 399sh, 289w, 235w. Source: Raison et al. (2008).

Comments: The sample was characterized by XRD. For the IR spectrum of cheralite see also Terra et al. (2008).

Chernikovite $(H_3O)(UO_2)(PO_4)·3H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was about 1–4 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3425w, 3215sh, 3078w, 999s, 986, 842s, 458w, 402, 287, 193s, 110. Source: Clavier et al. (2016).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and ICP-AES.

Chernovite-(Y) $Y(AsO₄)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 888s, 880s, 835s, 395, 255w, 234w, 177w.

Source: Pradhan et al. (1987).

Comments: The sample was characterized by powder X-ray diffraction data.

Chervetite $Pb_2V^{5+}{}_{2}O_7$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 876s, 817s, 751w, 673w, 582, 371, 351s, 324, 258w, 232, 196w, 181w, 140w, 124, 112w, 89, 74.

Source: Schwendt and Joniaková (1975).

Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis.

Chiavennite CaMn²⁺(BeOH)₂Si₅O₁₃⋅2H₂O

Origin: Prata, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1068w, 996w, 960w, 919w, 682w, 559, 508, 460s, 428w, 360w, 356w, 352w, 347w, 342w, 299w, 257w, 234w, 324w, 204w, 195w, 148w, 115w, 95w.

Source: Jehlička et al. (2012).

Comments: No independent analytical data are provided for the sample used.

Chibaite $SiO_2 \cdot n(CH_4, C_2H_6, C_3H_8, C_4H_{10})$ ($n_{max} = 3/17$)

Origin: Arakawa, Chiba prefecture, Honshu Island, Japan (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3050w, 2960w, 2936, 2908s, 2900, 2866, 989, 873, 805, and a series of bands below 400 cm^{-1} .

Source: Likhacheva et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of chibaite see also Momma et al. (2011).

Childrenite Fe²⁺Al(PO₄)(OH)₂⋅H₂O

Origin: Ponte do Piauí mine, Piauí valley, Itinga, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3471, 3420sh, 3333, 3199sh, 3043, 1724, 1673, 1573, 1183w, 1142, 1091w, 1011s, 978sh, 969s, 864w, 816w, 608sh, 595s, 562, 466s, 427sh, 405, 347sh, 310, 251, 228, 208, 188sh, 147sh, 138.

Source: Frost et al. (2013am).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Chiolite $Na₅Al₃F₁₄$

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was between 0.5 and 1 W.
- **Raman shifts (cm⁻¹):** A_{1g} (xx +yy): 530s, 356, 203, 110s; A_{1g} (zz): 530s, 414, 356, ~312w, 203w, 110; B_{1g} (xx –yy): 441w, 320w, ~250w (?); B_{2g} (xy): 390w, ~250w (?), 223w, 208w; $E_{g}(xz, yz)$: 426w, 408, 360w, 248s, 28.

Source: Rocquet et al. (1985).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of chiolite see also Carey et al. (2015).

Chloraluminite $AICl_3·6H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1150, 835, 710w, 615, 572, 530, 430, 315s, 180, 115s, 82w, 57s.

Source: Stefov et al. (1992).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Chlorapatite $Ca₅(PO₄)₃Cl$

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 1127w, 1039, 963s, 581w, 430w.

Source: Frezzotti et al. (2012).

Comments: The methods of the identification of the sample are not indicated. For the Raman spectrum of chlorapatite see also Chen et al. (1995).

Chlorargyrite AgCl

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 568 nm laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 386, 240, 149.

Source: Bottger and Damsgard (1971).

Comments: Second order Raman spectrum at 300 K is given.

Chloritoid $Fe^{2+}Al_2O(SiO_4)(OH)_2$

Origin: Tipam Formation, Bangladesh.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystalin Canada Balsam using 532 nm diode laser radiation. The laser radiation power is not indicated. A nearly 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 880w, 596s, 160.

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used.

Chlorkyuygenite $Ca_{12}Al_{14}O_{32}[(H_2O)_4Cl_2]$

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 652 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~3400 (broad), ~3200 (broad), 907sh, 881, 776s, 705s, 511s, 321, 208, 161. Source: Galuskin et al. (2015b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. No Raman bands of H_2O molecules are observed in the range from 1500 to 1700 cm^{-1} .

Chlormayenite $Ca_{12}Al_{14}O_{32}[\Box_4Cl_2]$

Origin: Ettringer Bellerberg volcano, near Mayen, Eifel Mts., Germany (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was in the range 30–50 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3669, 3644sh, 3570sh, 3400, 1094w, 991, 881, 816sh, 772s, 703, 512s, 323.

Source: Galuskin et al. (2012c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. For the Raman spectrum of chlormayenite see also Ma et al. (2011a).

Chlorocalcite $KCaCl₃$

Origin: A dolerite sill in eastern Siberia, Russia.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 195, 140s, 128sh, 82, 67, 57.

Source: Grishina et al. (1992).

Comments: No independent analytical data are provided for the sample used.

Chloromagnesite $MgCl₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm^{-1}) **:** 243s, 157w.

Source: Brambilla et al. (2004).

Comments: No independent analytical data are provided for the sample used.

Chloroxiphite $Pb_3CuO_2Cl_2(OH)_2$

Origin: Merehead Quarry, Shepton Mallet, Somerset, UK (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power was 0.1 mW.

Raman shifts (cm⁻¹): 3466, 3437, 3400, 3338, 875, 782, 692, 482, 469, 406, 350, 312, 286, 250, 226, 190, 179, 166, 145, 139s.

Source: Frost and Williams (2004).

Comments: No independent analytical data are provided for the sample used.

Chondrodite $Mg_5(SiO_4)_2F_2$

Origin: Sparta, Sussex Co., New Jersey, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3576, 3570, 3561, 967, 931, 878w, 860s, 845s, 832s, (818w), 786w, 755, 607, 587s, 572, 547s, 430, 390.

Source: Frost et al. (2007k).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. Raman shifts are given for chondrodite with the empirical formula $Mg_{5.04}Fe^{2+}$ _{0.09}Ti_{0.02}Na_{0.10}(SiO₄)₂F_{1.38}(OH)_x. For the Raman spectra of chondrodite see also Mernagh et al. (1999) and Lin et al. (1999).

Chromatite $CaCr^{6+}O_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal. Other experimental details are not described.

Raman shifts (cm⁻¹): ~900, ~875s.

Source: Sánchez-Pastor et al. (2010).

Comments: The sample was characterized by electron microprobe analysis.

Chromite $Fe^{2+}Cr_2O_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 647.1 nm Kr⁺ laser radiation. The nominal laser radiation power was 0.1 mW.

Raman shifts (cm⁻¹): 678s, 635sh, 531.

Source: Hosterman (2011).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of chromite see also Reddy and Frost (2005), Karwowski et al. (2013), Chen et al. (2008a), Sagatowska (2010), Lenaz and Lughi (2013), Andò and Garzanti (2014), and D'Ippolito et al. (2015).

Chromite $Fe^{2+}Cr_2O_4$

Origin: Morasko iron meteorite.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 10 mW. **Raman shifts (cm⁻¹):** 683s, 642sh, 604w, 513w, 446w.

Source: Karwowski et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. Its empirical formula is $(Mg_{0.34}Mn_{0.04}Zn_{0.07}Al_{0.01}Fe^{2+}_{0.55}Fe_{0.01}Cr_{1.96})O_4$. For the Raman spectra of chromite see also Hosterman (2011), Reddy and Frost (2005), Chen et al. (2008a), Sagatowska (2010), Lenaz and Lughi (2013), Andò and Garzanti (2014), and D'Ippolito et al. (2015).

Chrysoberyl $BeAl₂O₄$

Origin: Colatine, Esperito Santo, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 488 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1040w(?), 1020w, 931s, 816, 776, 747, 711, 679, 658, 639s, 567, 546, 518s, 501, 477s, 459, 447, 422, 397, 371w, 242w, 218w.

Source: Hofmeister et al. (1987).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of chrysoberyl see also Jehlička et al. (2012), Beurlen et al. (2013), and Culka et al. (2016a).

Chrysocolla $(Cu_{2-x}Al_x)H_{2-x}Si_2O_5(OH)_4⋅nH_2O$

Origin: An unknown locality in Peru.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The laser radiation power at the sample was below 0.5 mW.

Raman shifts (cm⁻¹): \sim 1045w, \sim 945w, \sim 798w, 676s, \sim 490sh, 413s, 341, \sim 210. Source: Bernardino et al. (2016).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of chrysocolla see also Frost and Xi (2013a) and Coccato et al. (2016).

Chrysothallite $K_6Cu_6Tl^3+Cl_{17}(OH)_4\cdot H_2O$

- Origin: Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm diode laser radiation. The laser radiation power at the sample was ~ 0.1 mW. Raman shifts (cm^{-1}) : 3443s, 1580w, 949, 902sh, 465, 320, 295, 275s, 250sh, 206s.

Source: Pekov et al. (2015c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Chrysotile $Mg_3Si_2O_5(OH)_4$

Origin: Salem, Tamil Nadu, India.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1105, 692s, 622, 464, 438w, 390s, 348, 325, 304w, 232s, 180.

Source: Anbalagan et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of chrysotile see also Rinaudo et al. (2003), Auzende et al. (2004), and Petry et al. (2006).

Chukanovite $Fe₂(CO₃)(OH)₂$

Origin: Synthetic.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 0.1 mW.

Raman shifts (cm⁻¹): 3454, 3321, 1510, 1434w, 1070s, 926w, 730, 389, 238w.

Source: Saheb et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of chukanovite see also Rémazeilles and Refait (2009).

Chukhrovite (Ca) $Ca₃Ca_{1.5}Al₂(SO₄)F₁₃·12H₂O$

Origin: Val Cavallizza Pb-Zn-(Ag) mine, Cuasso al Monte, Varese province, Italy (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3560, 3470, 3440, 3270, 1632, 1112, 977s, 553, 449, 395w, 345, 281, 211, 181, 140w.

Source: Vignola et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Churchite-(Nd) (?) Nd(PO₄)∙2H₂O

Origin: Costa Balzi Rossi, Magliolo, Liguria, Italy.

Experimental details: No data.

Raman shifts (cm⁻¹): 1316, 1181s, 974, 872w, 805, 742, 677, 633, 532s, 475, 424w, 249, 170w. Source: Bracco et al. (2012).

Comments: The sample of presumed churchite-(Nd) was characterized only by electron microprobe analyses. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Churchite-(Y) Y(PO₄)⋅2H₂O

Origin: Grube Leonie, Auerbach, Oberphalz, Germany.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3327sh, 3205w, 3127w, 3065sh, 1067s, 1029w, 995sh, 984s, 981sh, 707w, 681, 662sh, 649, 565,497, 369sh, 362, 344sh, 307, 287, 269, 249, 210, 199, 188, 180, 162w, 145, 116sh, 109.

Source: Frost et al. (2014g).

Comments: No independent analytical data are provided for the sample used.

Cinnabar α-HgS

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm laser radiation. The laser radiation power at the sample was from 50 to 520 μ W. **Raman shifts (cm⁻¹):** 343w, 282w, 251s, 40s.

Source: Radepont (2013).

Comments: For the Raman spectra of cinnabar see also Lepot et al. (2006) and Frost et al. (2010c).

Claringbullite Cu^{2+} ₄Cl(OH)(OH)₆

Origin: Nchanga Open Pit, Chingola, Zambia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3458sh, 3433s, 3351s, 3331sh, 3211, 970, 906, 815, 579, 511s, 447, 389, 356, 260, 231, 163, 147, 136, 119.

Source: Frost et al. (2003i).

Comments: No independent analytical data are provided for the sample used.

Claudetite As_2O_3

Origin: Jáchymov U deposit, KrušnéHory (Ore Mts.), Western Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 100 mW. **Raman shifts (cm⁻¹):** 814, 632, 626s, 541s, 459s, 356, 354, 284, 284, 259s, 248s, 218, 193, 175. Source: Origlieri et al. (2009).

Comments: For the Raman spectrum of claudetite see also Guńka et al. (2012).

Clausthalite PbSe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a nanocrystalline aggregate. No other experimental details are described.

Raman shifts $(cm⁻¹)$ **:** 791, 136s.

Source: Ge and Li (2003).

Comments: The sample was characterized by powder X-ray diffraction data. The band at 791 cm⁻¹ may correspond to an impurity.

Clinoatacamite $Cu_2Cl(OH)_3$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The output laser radiation power was 30 mW.

Raman shifts (cm⁻¹): 3442, 3355, 3310, 930, 911, 896, 842s, 820s, 804, 590, 511s, 450, 420, 364. Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of clinoatacamite see also Chu et al. (2011), Bertolotti et al. (2012), and Coccato et al. (2016).

Clinoatacamite $Cu_2Cl(OH)_3$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was in the range 0.05–1 mW.

Raman shifts (cm⁻¹): 3434, 3348, 3326, 3308, 971, 927, 893, 818, 581, 511s, 446, 361, 139. Source: Bertolotti et al. (2012).

Comments: The sample was characterized by electron microprobe analysis, X-ray photoelectron spectroscopy, and IR spectroscopy. The band at 3326 cm^{-1} may be due to an impurity. For the Raman spectra of clinoatacamite see also Bouchard and Smith (2003), Chu et al. (2011), and Coccato et al. (2016).

Clinobisvanite $Bi(VO₄)$

Origin: Londonderry feldspar quarry, Coolgardie area, Western Australia.

Experimental details: Micro-Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 828s, 756, 712, 368, 329, 245, 211, 185, 167.

Source: Frost et al. (2006i).

Comments: No independent analytical data are given for the sample used.

Clinocervantite $Sb^{3+}Sb^{5+}O_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on packed powder using 488 nm Ar^+ laser radiation. The laser radiation power at the sample was \sim 300 mW. A 90 \degree -scattering geometry was employed.

Raman shifts (cm⁻¹): 754w, 635w, 466, 439w, 405s, 283w, 212s, 195sh, 142, 94, 79s. Source: Cody et al. (1979).

Comments: The sample was characterized by powder X-ray diffraction data.

Clinochalcomenite Cu(Se⁴⁺O₃)⋅2H₂O

Origin: El Dragon Mine, Potosi, Bolivia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3507w, 3193w, 2909w, 967w, 817sh, 811s, 792sh, 749, 700, 552, 489, 378sh, 361, 349sh, 219, 180, 129.

Source: Frost and Keeffe (2008b).

Comments: Questionable data: the Raman spectrum of presumed clinochalcomenite is very close to that of chalcomenite. No independent analytical data are given for the sample used.

Clinochlore $Mg_5Al(AlSi_3O_{10})(OH)_8$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. A 135° -scattering geometry was employed.

Raman shifts (cm⁻¹): 3679, 3647, 3605, 3477, 679s, 548, 358, 198, 104.

Source: Kleppe et al. (2003).

Comments: End-member clinochlore, $(Mg_5Al)(Si_3Al)O_{10}(OH)_8$, has been studied. Raman shifts for the range of the OH-stretching vibrations are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Clinoclase $Cu₃(AsO₄)(OH)₃$

Origin: Tin Stope, Majuba Hill mine, Utah, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3559, 3339, 983, 850, 832s, 783, 607, 539, 508, 482, 460, 438, 348, 318, 308, 306, 295, 247, 231, 185, 171, 160, 136.

Source: Frost et al. (2002e).

Comments: The sample identification was done by PXRD, by SEM and by EMPA, but corresponding analytical data are not given in the cited paper. For the Raman spectrum of clinoclase see also Martens et al. (2003b).

Clinoenstatite $Mg_2Si_2O_6$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was \sim 50 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1034s, 1012s, 927w, 848w, 755w, 689s, 666s, 583w, 577w, 523, 480w, 453w, 432, 418, 405, 388w, 371, 344s, 324w, 304w, 279w, 245, 233w, 206, 195, 158, 143.

Source: Lin (2004).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Clinohedrite CaZn(SiO4)∙H2O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 985sh, 951, 857s, 844s, 568sh, 550, 501, 465, 387s, 340, 308, 280w, 235s, 208s.

Source: Annen and Davis (1993).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Clinometaborite $HBO₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3130, 2930, 2725w, 1430w, 1400w, 1341w, 1330w, 1264w, 1227w, 1173w, 1135w, 1080w, 980w, 918w, 785s, 765sh, 710w, 680sh, 655, 628, 536, 522, 477, 432, 397, 379, 346sh, 338, 307sh, 293, 277, 226w, 198, 185sh, 178, 147, 131, 119, 108, 94, 77.

Source: Bertoluzza et al. (1980).

Comments: The sample was characterized by IR spectrum.

Clinoptilolite Na $Na₆(Si₃₀Al₆)O₇₂·20H₂O$

Origin: Dylagówka, Poland.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1129w, 799w, 514s, 471s, 410s, 182.

Source: Mozgawa (2001).

Comments: The idealized formula $(Na,K)_{6}(A1_{6}Si_{30}O_{72})$ 20H₂O is given for the sample described in the cited paper, but no chemical data are presented. The sample was characterized only by powder X-ray diffraction data.

Clinotobermorite-like mineral $Ca₄Si₆O₁₇(H₂O)₂(Ca·3H₂O)(?)$

- **Origin:** Artificial (an intermediate clinotobermorite-like phase formed during the thermal conversion of tobermorite 11 Å to tobermorite 10 Å).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1077, 1011s, 996, 682s, 619, 523, 484, 445, 410, 360, 302.

Source: Biagioni et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data.

Clinozoisite $Ca₂Al₃[Si₂O₇][SiO₄]O(OH)$

Origin: Beura, Verbania, Piemonte, Italy.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1092, 1050w, 985, 963, 919, 875, 832, 692, 605, 570s, 527, 513, 468sh, 452, 428s, 396, 353w, 328w, 305w, 276, 252, 233, 166w, 138.

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Clintonite $CaAlMg_2(SiAl_3O_{10})(OH)_2$

Origin: Ilmeno-Vishnevogorsky Complex, South Urals, Russia.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 894, 828, 800, 550, 656s, 397, 346, 233, 184, 123.

Source: Korinevsky (2015).

Comments: The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of clintonite see also Neuville et al. (2002).

Coalingite $Mg_{10}Fe^{3+2}(CO_3)(OH)_{24} \cdot 2H_2O$

Origin: Union Carbide mine, San Benito Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The laser radiation power at the sample was below 5 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3632, 3596, 3585, 3228, 3030, 2807sh, 2261w, 1768sh, 1655s, 1555sh, 1420, 1093s, 1065sh, 928w, 797w, 702.
- Source: Frost and Bahfenne (2009).
- Comments: The spectrum is questionable. No independent analytical data are provided for the sample used. Data in the paper do not coincide with data in supplementary information. IR spectrum of the sample used shows significant admixture of serpentine.

Cobaltarthurite $\text{CoFe}^{3+}_{2}(\text{AsO}_4)_{2}(\text{OH})_{2}$ ∙4H₂O

- Origin: Dolores showing, Pastrana, about 10 km east of Mazarrón, the province of Murcia, Spain (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3557, 3250, 3186, 1750-1550w (broad), 1042, 907, 846s, 816, 779, 555w, 509, 458w, 405, 348, 277, 260w, 240s, 231sh, 187, 151, 136, 98, 79, 35.

Source: Jambor et al. (2002).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Cobaltaustinite $CaCo(AsO₄)(OH)$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3289, 3284, 918sh, 825s, 808, 795, 765, 469, 430, 387, 339, 327, 226, 214, 213, 168.

Source: Martens et al. (2003c).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of cobaltaustinite see also Yang et al. (2007a).

Cobaltkoritnigite Co(AsO₃OH)∙H₂O

Origin: Richelsdorf District, Hessen, Germany.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3438w, 3165w, 2922, 2862sh, 1687sh, 1611, 1435, 1347, 1291, 1071sh, 1058sh, 1050, 1013sh, 1001s, 985sh, 973sh, 927, 907sh, 838s, 828s, 812sh, 726sh, 681, 637sh, 570w, 554w, 513w, 482, 461w, 430sh, 416sh, 401sh, 386, 367sh, 352sh, 301, 248w, 237sh, 205w, 190w, 166w, 152w, 140sh, 117w, 110w.

```
Source: Frost et al. (2014o).
```
Comments: No independent analytical data are provided for the sample used.

Cobaltomenite $Co(Se^{4+}O_3)$ ∙2H₂O

Origin: El Dragon Mine, Potosi, Bolivia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3450sh, 3209, 2962sh, 815sh, 813s, 716, 512, 443, 368w, 280w, 196w. Source: Frost and Keeffe (2008b).

Comments: No independent analytical data are provided for the sample used. The Raman spectrum may correspond to Co-rich ahlfeldite.

Cobaltpentlandite $Co₉S₈$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on nanoparticles using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts $(cm⁻¹)$: ~650.

Source: Feng et al. (2015b).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of cobaltpentlandite see also Yin et al. (2008).

Coccinite $Hgl₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented crystal using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 90° -scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 116, 32, 21.

Source: Nakashima et al. (1973).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of coccinite see also Durig et al. (1969).

Cochromite $CoCr₂O₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an anosized (about 20–25 nm) sample using 632 or 780 nm He-Ne or diode laser radiation. The laser radiation powers are not indicated.

Raman shifts (cm⁻¹): 684, 603, 514, 449, 195.

Source: Zákutná et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Coconinoite Fe³⁺₂Al₂(UO₂)₂(PO₄)₄(SO₄)(OH)₂⋅20H₂O

Origin: Jomac mine, White Canyon, San Juan Co., Utah, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1103w, 1085w, 1044sh, 1020s, 998s, 985s, 974sh, 847s, 837s, 826sh,

637w, 620w, 551w, 502sh, 492w, 447w, 409w, 377w, 320w, 229sh, 210sh, 199s, 181s, 147s, 110sh. Source: Frost et al. (2011d).

Comments: No independent analytical data are provided for the sample used.

Coesite $SiO₂$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 457.8 , 488.0 , and 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated. A 135°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1164w, 1144w, 1065w, 1036w, 815w, 795w, 661w, 521s, 466, 427, 355, 326, 269s, 204, 176s, 151, 116s, 77s.

Source: Hemley (1987a, b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of coesite see also Yang et al. (2007b), Palmeri et al. (2009), Miyahara et al. (2013), and Perraki and Faryad (2014).

Coffinite $U(SiO_4) \cdot nH_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample. Kind of laser radiation is not indicated.

Raman shifts (cm⁻¹): 919s, 906sh, 591, 424.

Source: Mesbah et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of coffinite see also Clavier et al. (2014).

Colemanite $CaB_3O_4(OH)_3·H_2O$

Origin: Death Valley, Inyo Co., California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3605s, 3534, 3389sh, 3300, 3182, 3069sh, 1603w, 1527sh, 1323, 1301sh, 1257, 1154, 1084, 1065, 1000sh, 988, 970, 907sh, 892, 876s, 846sh, 813, 788, 745, 709w, 684, 669, 611s, 565, 534, 505, 498, 479w, 455, 436w, 388, 350w, 325sh, 309, 267, 241, 223, 178, 167sh, 149, 129.

Source: Frost et al. (2013z).

Comments: No quantitative analytical data are provided for the sample used. For the Raman spectrum of colemanite see also Krishnamurti (1955).

Colimaite K_3VS_4

Origin: Colima volcano, State of Colima, Mexico (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 990, 968, 879, 848, 689, 517, 482, 454, 401s, 387, 367w, 347, 338, 318, 297, 277s, 264s, 245s, 227, 203s, 192s, 180, 168.

Source: Ostrooumov et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Colinowensite $BaCuSi₂O₆$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 1060w, 976, 579s, 506s, 454, 372w, 347w, 268, 231w, 173.

Source: Finger et al. (1989).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Coloradoite HgTe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 90 K on a thin oriented sample with a (111) face using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was $\langle 100 \text{ mW}$. A 180 \degree -scattering geometry was employed.

Raman shifts (cm⁻¹): 137s, 117, ~106sh.

Source: Ingale et al. (1989).

Comments: No independent analytical data are provided for the sample used.

Columbite-(Mg) $MgNb₂O₆$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 647.1 nm Kr^+ laser radiation. The nominal laser radiation power was 400 mW.
- **Raman shifts (cm⁻¹):** 997, 906s, 850, 721w, 658, 616, 568, 533s, 497, 489, 460w, 451, 411s, 403sh, 389, 379w, 344, 324, 222, 205, 190, 170, 151, 140w, 125sh, 112, 88.

Source: Husson et al. (1977a).

Comments: The sample was characterized by powder X-ray diffraction data.

Columbite-(Mn) $Mn^{2+}Nb_2O_6$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 647.1 nm Kr⁺ laser radiation. The nominal laser radiation power was 400 mW.

Raman shifts (cm⁻¹): 877s, 823, 707w, 634, 624, 606, 531s, 485, 438w, 399, 386w, 361, ~ 340sh, 314s, 297sh, 287, 274, 263, 248sh, 244s, 214, 206sh, 189sh, 179, 160w, 140s, 127, 113, 89.

Source: Husson et al. (1977a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of columbite-(Mn) see also Moreira et al. (2010a).

Comancheite $Hg^{2+}{}_{55}N^{3-}{}_{24}(NH_2,OH)_4(Cl,Br)_{34}$

Origin: Mariposa mine, Terlingua district, Brewster Co., Texas, USA (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 633sh, 577s, 545s, 470w, 440w, 315s, 268, 228s, 188s, 174s, ~140s.

Source: Cooper et al. (2013a).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Combeite $\text{Na}_{4.5}\text{Ca}_{3.5}\text{Si}_{6}\text{O}_{17.5}(\text{OH})_{0.5}$

Origin: Synthetic.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 22 mW.

Raman shifts (cm⁻¹): 1039w, 986s, 903, 620, 588s, 532, 453w, 423, 346w, 279.

Source: Lin et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data.

Compreignacite K2(UO2)6O4(OH)6∙7H2O

Origin: West Wheal Owles, St. Just, Cornwall, UK.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The output laser radiation power was 380 mW.

Raman shifts (cm⁻¹): 834s, 785sh, 549, 460, 402, 329, 204.

Source: Driscoll et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of compreignacite see also Frost et al. (2008g).

Conichalcite CaCu $(AsO₄)(OH)$

Origin: Lorena mine, Cloncurry, Queensland, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample was 1 mW.

Raman shifts (cm⁻¹): 3233, 3158, 3086, 962w, 907, 832s, 821sh, 811sh, 781m 750, 534, 463, 446m 430, 389, 358, 335, 328, 303, 286, 274, 206, 180, 161, 121.

Source: Martens et al. (2003c).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of conichalcite see also Reddy et al. (2005) and Đorđević et al. (2016).

Connellite Cu36(SO4)(OH)62Cl8∙6H2O

Origin: Monte Fucinaia, central Western Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 and 785 nm laser radiations. The laser radiation power at the sample was 4 and 1.4 mW, respectively.

Raman shifts (cm⁻¹): 3550w, 984s, 585, 524, 446, 404s, 350, 262w, 236w, 192, 184, 132m.

Source: Coccato et al. (2016).

Comments: The sample identification was done by powder X-ray diffraction. For the Raman spectrum of connellite see also Bouchard and Smith (2003).

Cooperite PtS

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was 500 mW.
- **Raman shifts (cm⁻¹):** 328, 325sh (for pure PtS); 454sh, 430, 405sh, 382s, 358, 335, 317 (for a Pd-bearing sample).

Source: Pikl et al. (1999).

Comments: The samples were characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of cooperite see also Mernagh and Hoatson (1995).

Copiapite $Fe^{2+}Fe^{3+}(SO_4)_6(OH)_2$ ∙20H₂O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3527, 3179, 1644, 1224, 1138sh, 1115, 1026, 1005s, 996, 637, 614, 594, 554, 304, 270, 243.

Source: Kong et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction data and laser-induced breakdown spectroscopy. For the Raman spectra of copiapite see also Frost (2011c), Sobron and Alpers (2013), Rull et al. (2014), and Apopei et al. (2014a).

Copiapite $Fe^{2+}Fe^{3+}(SO_4)_6(OH)_2$ ^{20H₂O}

Origin: Coranda-Hondol ore deposit, Certej, Romania.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 7.4 mW.

Raman shifts (cm⁻¹): 3147, 1651w, 1247, 1143sh, 1113, 1031s, 999s, 748w, 637sh, 609, 558, 477s, 304sh, 274s, 246sh.

Source: Apopei et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of copiapite see also Frost (2011c), Kong et al. (2011b), Sobron and Alpers (2013), and Rull et al. (2014).

Coquandite $Sb^{3+}_{6+x}O_{8+x}(SO_4)(OH)_x \cdot H_2O_{(1-x)} (x = 0.3)$

Origin: Pereta Mine, Italy (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3449w, 3318w, 3193w, 3122w, 2961w, 2900w, 2764w, 1588w, 1217sh, 1168w, 1151, 1100, 1072sh, 1020sh, 1007, 990s, 980, 970, 949sh, 787, 751, 600w, 638, 629sh, 610, 600, 508, 459, 429, 417, 375, 359, 317w, 291w, 270sh, 253, 229, 218sh, 216s, 203s, 178, 167s, 149, 129.

Source: Frost and Bahfenne (2010f).

Comments: No independent analytical data are provided for the sample used.

Coquimbite $Fe^{3+}{}_{2}(SO_4)_{3}$ ∙9H₂O

Origin: Baia Spriemining area, Romania.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 3388w, 1681w, 1202, 1167w, 1098, 1024, 882w, 604, 503, 457w, 285. Source: Buzatu et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of coquimbite see also Apopei et al. (2012, 2014a), Sobron and Alpers (2013), Rull et al. (2014), and Frost et al. (2014b).

Corderoite $Hg_3S_2Cl_2$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 288sh, 280s, 132, 115, 63, 50s, 36, 24s.

Source: Radepont (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Cordierite $Mg_2Al_4Si_5O_{18}$

Origin: Northern part of the Strangways Metamorphic Complex, central Australia.

Experimental details: Raman scattering measurements have been performed on a polished section \parallel (010) of a single crystal using 632.8 nm He-Ne laser radiation. The output laser radiation power was <0.8 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1184, 971, 669, 577, 555, 366, 260s, 127 (for *E*lla); 1010s, 971, 669, 577, 554s, 260 (for $Ellc$).

Source: Nasdala et al. (2006).

Comments: The sample was characterized by electron microprobe analysis. The empirical formula is $Mg_{1.6}Fe^{2+}$ _{0.4}Al₄Si₅O₁₈. For the Raman spectrum of cordierite see also Majumdar and Mathew (2015). For the Raman spectrum of cordierite ("iolite") see also Culka et al. (2016a).

Cordylite (Ce) $(Na,Ca,\Box)BaCe₂(CO₃)₄(F,O)$

Origin: No data.

Experimental details: Raman scattering measurements have been performed using 488 nm laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm⁻¹): 1538, 1088, 967, 720, 628. Source: Hong et al. (1999).

Corkite $PbFe^{3+}{}_{3}(SO_4)(PO_4)(OH)_6$

Origin: Horn Silver mine, near Frisco, Beacer Co., Utah, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3436, 3347, 3163sh, 1184sh, 1162, 1104s, 1050, 1003s, 996s, 983sh, 857, 821sh, 629sh, 620, 608sh, 572sh, 554, 466sh, 446, 430sh, 381, 274w, 217sh, 201, 144, 131sh, 104.

Source: Frost and Palmer (2011a).

Comments: No independent analytical data are provided for the sample used.

Cornetite $Cu₃(PO₄)(OH)₃$

Origin: Banská Bystrica, central Slovakia.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal, at E||b and $E \perp b$, using 632 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW. A 180°-scattering geometry was employed.
- **Raman shifts** $(cm⁻¹)$ **:** 3414, 1137w, 1112w, 1083, 1055, 1016, 971, 945sh, 861, 818, 801w, 750, 703w, 664w, 639w, 606, 539, 515, 477s, 446s, 412, 363, 297, 254w, 241, 214, 209, 174s, 131s, 109s, 86s (for $E \perp b$).

Source: Kharbish et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of cornetite see also Frost et al. (2002g).

Cornubite $Cu₅(AsO₄)₂(OH)₄$

Origin: Daly mine, Flinders Ranges, South Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

- **Raman shifts (cm⁻¹):** 3324, 3042sh, 962w, 815s, 780w, 525w, 496w, 440s, 398, 365w, 327w, 301, 259, 249, 211, 168, 151.
- Source: Frost et al. (2002e).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of cornubite see also Janeczek et al. (2016).

Cornwallite $Cu₅(AsO₄)₂(OH)₄$

Origin: Penberthy Croft mine, St Hilary, Cornwall, UK.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3411w, 3350sh, 962w, 877sh, 859s, 806w, 763w, 606, 542, 512w, 454, 449s, 436s, 422, 363sh, 347s, 330sh, 311sh, 275, 279, 246, 203, 169s, 160, 137.

Source: Frost et al. (2002e).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of cornwallite see also Ciesielczuk et al. (2016) and Janeczek et al. (2016).

Coronadite $Pb(Mn^{4+}_{6}Mn^{3+}_{2})O_{16}$

Origin: Imini, Morocco.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 10 mW. A nearly 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 626s, 585s, 495, 388, 332.

Source: Julien et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts given by Julien et al. (2004) in Table 5 do not correspond to band positions in Fig. 5 of the cited paper. For the Raman spectrum of coronadite see also Fan et al. (2015).

Correianevesite $Fe^{2+}Mn^{2+}{}_{2}(PO_{4})_{2}\cdot3H_{2}O$

Origin: Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3462), 3445s, (3400), 3265sh, 1641w, 1587sh, 1572w, 1553sh, 1193w, 1104w, (1093), 1064w, 1007s, 970+963s (unresolved doublet?), (951), 753, 588s, 569sh, (549), 531, 504sh, 482, 458sh, 420, (405), 373, 330w, 286sh, 260, 241w, 223w, 179, 164, 144.

Source: Frost et al. (2012j).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. In the cited paper the mineral is described under the name "reddingite." Our investigations showed that it is correianevesite, a new mineral species of the reddingite group with ordered $Fe²⁺$ and Mn^{2+} .
Corundum $Al₂O₃$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 780 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 751, 645, 578, 451w, 432, 418s, 378s.

Source: Jasinevicius (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of corundum see also Shoval et al. (2001) and Andò and Garzanti (2014).

Cosalite $Pb_2Bi_2S_5$

Origin: An abandoned mine in the Karrantza valley, Basque Co., Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 or 785 nm Ar⁺ and diode laser radiation. The laser radiation power at the sample was 20 mW.

Raman shifts (cm⁻¹): 439, 251s, 140s.

Source: Goienaga et al. (2011).

Comments: The sample was characterized by energy dispersive X-ray fluorescence. For the Raman spectrum of cosalite see also Fermo and Padeletti (2012).

Cotunnite $PbCl₂$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632 nm He-Ne laser radiation. The laser radiation output power was 30 mW.

Raman shifts (cm⁻¹): 202, 169, 158.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data.

Coulsonite $Fe^{2+}V^{3+}{}_{2}O_4$

Origin: Vihanti deposit, Northern Finland Region, Finland.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The nominal laser radiation power was 2 or 20 mW.

Raman shifts (cm⁻¹): 1188w, 1144w, 1119w, 1062, 1020w, 994w, 962w, 937w, 908, 873w, 840w, 813w, 772w, 670s, 576, 526, 498, 469, 398w, 351w, 296w, 268w, 236w, 212w, 167, 131, 116.

Source: Voloshin et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Covellite CuS

Origin: Guinaoang, NW Luzon, Philippines.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was $\langle 10 \text{ mW} \rangle$. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 471s, 263, 139, 116.

Source: Mernagh and Trudu (1993).

- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.
- Comments: For the Raman spectra of covellite see also Bouchard and Smith (2003) and Kumar and Nagarajan (2011).

Crandallite $CaAl₃(PO₄)(PO₃OH)(OH)₆$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 10 mW.
- **Raman shifts (cm⁻¹):** 3546sh, 3471, 3305, ~3150, ~1330w, 1228w, 1160, 1108s, 1035s, 982s, 858, 828, 720w, 693, 634, 615, 580, 555sh, 528, 462, 396s, 365, 258s, 223sh, 184s.

Source: Breitinger et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of crandallite see also Frost et al. (2011w) and Grey et al. (2011).

Cranswickite Mg(SO4)∙4H2O

Origin: Calingasta, San Juan province, Argentina (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed. **Raman shifts (cm⁻¹):** \sim 3430, \sim 3300, 1156, 1120, 1090w, 1002s, 617, 466.

Source: Peterson (2011).

Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe analysis, and ICP-MS.

Creaseyite Cu₂Pb₂Fe³⁺₂Si₅O₁₇⋅6H₂O

Origin: St. Anthony Mine, Tiger, Pinal Co., Arizona, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3626s, 3525s, 3470sh, 3162, 2902, 2750sh, 1603, 1543, 1348w, 1071, 998s, 958sh, 920sh, 869s, 802, 712s, 672sh, 603, 511, 481sh, 443, 371, 351, 318, 295, 258sh, 237s, 211sh, 196s, 152sh, 139s, 126.

Source: Frost and Xi (2012g).

Comments: No independent analytical data are given for the sample used.

Crednerite $CuMnO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film on quartz substrate using 532 nm diode laser radiation. The nominal laser radiation power was 13 mW.

Raman shifts (cm⁻¹): 688s, 381w, 314w. Source: Chen et al. (2015b). Comments: The sample was characterized by powder X-ray diffraction data.

Creedite $Ca₃Al₂(SO₄)(OH)₂F₈·2H₂O$

Origin: Santa Eulalia mining district, Chihuahua province, Mexico.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3584, 3524s, 3458, 3382sh, 3349, 3248, 1673w, 1575w, 1503, 1499, 1234w, 1184, 1135, 1084w, 1033w, 1026w, 989sh, 986s, 983sh, 922w, 891, 819w, 765, 663, 629, 601, 596sh, 568w, 548, 483, 457sh, 440, 394, 371w, 348w, 322w, 311w, 286w, 278, 353w, 225, 217sh, 203, 190, 173, 149, 126.

Source: Frost et al. (2013al).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Cristobalite $SiO₂$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 476.5 nm laser radiation. The nominal laser radiation power was 400 mW.

Raman shifts (cm⁻¹): 1195, 1089, 1079, 795, 785, 485, 416, 380, 368, 287, 275, 230, 110. Source: Etchepare et al. (1978).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of cristobalite see also Ling et al. (2011), Shoval et al. (2001), Ilieva et al. (2007), Wilson (2014), and Ferrero et al. (2016).

Cristobalite $SiO₂$

Origin: Lunar soil.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was in the range from 3 to 5 mW.

Raman shifts (cm⁻¹): 1075w, 781w, 411s, 229s.

Source: Ling et al. (2011).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of cristobalite see also Etchepare et al. (1978), Shoval et al. (2001), Ilieva et al. (2007), Wilson (2014), and Ferrero et al. (2016).

Crocoite $Pb(CrO_4)$

Origin: Dundas, Tasmania, Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sampling lens was 100 mW.

Raman shifts (cm⁻¹): 853sh, 840s, 825sh, 400, 377, 358s, 348, 338, 326, 179w, 135, 118w.

Source: Rodgers (1992).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample identification was done by XRD, by SEM, and by electron probe analysis. For the Raman spectra of crocoite see also Frost (2004c) and Nasdala et al. (2004).

Cryptohalite $(NH_4)_2SiF_6$

Origin: Synthetic.

Experimental details: Raman scattering measurements in the region of N–H-stretching vibrations have been performed using 488 and 514.5 nm $Ar⁺$ laser radiations. The laser radiation power at the sample was about 100 mW.

Raman shifts $(cm⁻¹)$: 3235. Source: Jenkins (1986).

Cryptomelane $K(Mn^{4+7}Mn^{3+})O_{16}$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 743w, 626s, 574s, 508, 470, 386, 257w, 183.

Source: Santos et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and ICP analysis. For the IR spectrum of cryptomelane see also Kim and Stair (2004).

Cubanite $CuFe₂S₃$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm $Ar⁺$ laser radiation. The nominal laser radiation power was below 10 mW.

Raman shifts (cm⁻¹): 469s, 374, 328w, 286s.

Source: Chandra et al. (2011a, b).

Comments: The sample was characterized by powder X-ray diffraction data and Mössbauer spectroscopy. For the Raman spectrum of cubanite see also Petrov (2014).

Cuboargyrite $AgSbS₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a bulk polycrystalline sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 50 mW. **Raman shifts (cm⁻¹):** 324s, ~311w, 292, 282w, 240sh, 140, 125sh.

Source: Gutwirth et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Cumengeite $Pb_{21}Cu_{20}Cl_{42}(OH)_{40}·6H_2O$

Origin: Beleo, Baja California, Mexico.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3588sh, 3482s, 3413s, 3366sh, 3180, 1023sh, 984, 891w, 830sh, 797, 715sh, 676s, 500, 465, 376, 347, 307, 271, 243, 192, 154s.

Source: Frost et al. (2003j).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of cumengeite see also Bouchard and Smith (2003) and Frost and Williams (2004).

Cummingtonite $\square Mg_2Mg_5Si_8O_{22}(OH)_2$

Origin: Ca'Mondey, Montescheno, Piemonte, Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514 and 785 nm laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3668, 3653, 1038, 671s, 384, 200, 186.

Source: Andò and Garzanti (2014).

Comments: The methods of the identification of the sample are not indicated. Raman spectrum of presumed cummingtonite was published by Mohanan (1993) and Kloprogge et al. (2001a), but chemical composition of this sample (Mohanan 1993) does not correspond to cummingtonite. For the Raman spectrum of cummingtonite see also Leissner et al. (2015).

Cuprite $Cu₂O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a crushed sample and a single crystal using 647.1 nm Kr^+ laser radiation. The nominal laser radiation power was 20 mW. A 90°-scattering geometry was employed.
- **Raman shifts (cm⁻¹): 640w, 485w, 420w, 300w, 220s, 204, 192, 190, 160w, 150, 125w, 106 (crushed)** sample); 640, 220, 204, 192, 150 (single crystal).

Source: Taylor and Weichman (1971).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of cuprite see also Bouchard and Smith (2003).

Cuprocopiapite $Cu^{2+}Fe^{3+}(SO_4)_6(OH)_2$ ²20H₂O

Origin: Rio Tinto Valley near Nerva, Spain.

Experimental details: No data.

Raman shifts (cm⁻¹): 997s, 978s, ~620, ~450.

Source: Chemtob et al. (2006).

Comments: The Raman spectrum is questionable: blue color is very unusual for cuprocopiapite. No independent analytical data are provided for the sample used.

Cuproiridsite CuIr₂S₄

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed in a back-scattering geometry using 514.5 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 402, \sim 375, \sim 327, \sim 300s.

Source: Zhang et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of cuproiridsite see also Zhang et al. (2010b).

Cupromolybdite $Cu^{2+}{}_{3}O(Mo^{6+}O_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a single crystal in different scattering geometries using laser radiation with different wavelengths. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~961, ~934, ~864w, ~842, ~813 [for the 532 nm laser radiation, in the x(y, y $+z$)-x scattering geometry].

Source: Sato et al. (2014).

Comments: The sample was characterized by X-ray diffraction.

Cuprorhodsite CuRh₂S₄

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 388, \sim 358, \sim 318, \sim 277s.

Source: Ito et al. (2003).

Comments: No independent analytical data are provided for the sample used.

Cuprorivaite $CaCuSi₄O₁₀$

Origin: No data in the cited paper. Experimental details: No data in the cited paper. **Raman shifts (cm⁻¹):** 1086s, 1013, 991, 788, 572, 473, 431s. Source: Boschetti et al. (2008).

Comments: Methods of the sample identification are not indicated. For the Raman spectrum of cuprorivaite see also Pagès-Camagna et al. (1999).

Cuprosklodowskite Cu(UO2)2(SiO3OH)2∙6H2O

Origin: Shinkolobwe mine, Shaba province, Democratic Republic of Congo (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3694w, 3571w, 3499, 3435s, 3282s, 2920, 1504, 1297, 1246, 1156, 974, 919w, 917, 901w, 847w, 812sh, 787s, 774w, 759w, 747, 535, 507w, 477w, 411w, 387, 301, 277, 267, 218, 206, 185, 165w, 134w, 114.

Source: Frost et al. (2006e).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of cuprosklodowskite see also Driscoll et al. (2014).

Cuprospinel $Cu^{2+}Fe^{3+}{}_{2}O_4$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation output power was 3 mW.

Raman shifts (cm⁻¹): 632, 656, 549, 462s, 346, 271, 211, 168s (for a sample annealed at 1200°C). Source: Silva et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of cuprospinel see also Li et al. (2015).

Cuprotungstite $Cu^{2+}{}_{3}(WO_4)_2(OH)_2$

Origin: Cordillera Mine, Peelwood, Australia (?).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 785 nm Nd-YAG laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 926s, 769w, 566, 498w, 415, 353sh, 329, 253, 212, 173w.

Source: Frost et al. (2004d).

Comments: Questionable data: qualitative electron microprobe analysis given in the cited paper shows a high content of Ca.

Curienite Pb(UO₂)₂′VO₄)₂∙5H₂O

Origin: Mounana Mine, Haut Ogoue, Gabon (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 976sh, 959, 860w, 825, 741s, 655w, 569, 534, 465, 410, 374s, 362, 312, 288, 264, 234, 193sh.

Source: Frost et al. (2005c).

Comments: No independent analytical data are given for the sample used.

Curite $Pb_{3+x}[(UO_2)_4O_{4+x}(OH)_{3-x}]_2$ ∙2H₂O

Origin: Ranger U Mine, Northern Territory, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3437, 3297, 1530, 886w, 807w, 791, 772, 742w, 650, 561, 503, 415sh, 455, 393, 367, 340, 301sh, 273, 250, 225w, 212, 184, 163sh, 154sh, 144.

Source: Frost et al. (2007g).

Comments: No independent analytical data are given for the sample used. For the Raman spectrum of curite see also Frost et al. (2007h).

Cuspidine $Ca_8(Si_2O_7)_{2}F_4$

Origin: Anakitskii massif, Siberia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal. No other experimental details are described.

Raman shifts (cm⁻¹): 910s, 654, 361, 300.

Source: Sharygin et al. (1996a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of cuspidine see also Sharygin et al. (1996b).

Cyanochroite K2Cu(SO4)2∙6H2O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power at the sample was 20 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1159w, 1133w, 1081, 983s, 629, 609, 457, 438, 256, 187, 112, 66.

Source: Majzlan et al. (2015)

Comments: For the Raman spectrum of cyanochroite see also Jentzsch et al. (2013).

Cyanotrichite $Cu₄Al₂(SO₄)(OH)₁₂(H₂O)₂$

Origin: Cap Garonne mine, near La Pradet, Var, France.

Experimental details: Raman scattering measurements have been performed on a single crystal with the laser beam orthogonal to the elongation direction $(b \text{ axis})$ using 532 nm Nd-YAG laser radiation. The laser radiation power was below 30 mW.

Raman shifts (cm⁻¹): 3590, 3300-3400, 2330w, 1142w, 377s, 609w, 592, 525s, 448, 274, 230. Source: Mills et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data.

Cymrite Ba $(Si, Al)₄(O,OH)₈·H₂O$

Origin: Synthetic.

- Experimental details: Unpolarized micro-Raman scattering measurements have been performed on a microcrystalline aggregate using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3567sh, 3500, 1626w, (1555w), 1091w, 953w, 800w, 673w, 470w, 396, 297w, 104s.

Source: Graham et al. (1992).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Cyrilovite $\text{NaFe}^{3+}{}_{3}(\text{PO}_4)_2(\text{OH})_4$ ·2H₂O

Origin: Sapucaia (Proberil) mine, Conselheiro Pena pegmatitedistrict, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3452, 3328, 3244sh, 3194sh, 1184sh, 1177, 1136, 1105, 1087sh, 1065sh, 1055s, 1038sh, 1013sh, 992s, 974sh, 852, 811, 7762sh, 631s, 612s, 588sh, 541, 498sh, 482, 437, 411, 3065s, 279sh, 261, 216, 197sh, 165, 156, 148, 131sh, 117.

Source: Frost et al. (2013u).

Comments: No independent analytical data are given for the sample used.

Czochralskiite $Na_4Ca_3Mg(PO_4)_4$

Origin: Morasko IAB-MG iron meteorite, Poland (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1119, 1067w, 1053, 1039, 1022, 1011, 986s, 974s, 966s, 606, 585, 578, 441. Source: Karwowski et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Dachiardite Na $Na₄(Si₂₀Al₄)O₄₈·13H₂O$

Origin: Elba Island, Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1060 nm Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1090w, 714s, 558, 479, 409, 248, 182.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Danburite $CaB₂Si₂O₈$

Origin: No data.

- Experimental details: Polarized Raman scattering measurements have been performed on an oriented crystal in different scattering configurations using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** $z(xx)y$ —1115, 1018, 983, 957, 925, 917, 783, 635, 619s, 572, 489, 450, 434, 357, 321, 255, 220, 190, 176, 139; z(xy)x—1185w, 1087w, 1037w, 963w, 885w, 760w, 645w, 619w, 592w, 556w, 472w, 465w, 450w, 344w, 288, 268w, 216w, 201, 150, 136w; z(xz)x—1160w, 1050w, 1006w, 983, 908, 880w, 783w, 684w, 637, 619, 581w, 471, 450w, 434w, 339, 305, 255, 236, 204, 193, 135, 126; z(yz)x—1185w, 1037w, 1013w, 980w, 932w, 786w, 725w, 634w, 619w, 562w, 418w, 404w, 315w, 278w, 213, 190w, 162, 148w.

Source: Best et al. (1994).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of danburite see also Kimata (1993) and Manara et al. (2009).

Darapskite Na₃(SO₄)(NO₃)∙H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power at the sample was 2 mW.
- Raman shifts (cm⁻¹): 3479sh, 3451w, 1424, 1353, 1171, 1124, 1085, 1060s, 993s, 729, 706, 639, 618, 472w, 455.

Source: Jentzsch et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of darapskite see also Jentzsch et al. (2012b) and Linnow et al. (2013).

Darrellhenryite $Na(Al_2Li)Al_6(Si_6O_{18})(BO_3)_{3}(OH)_{3}O$

Origin: No data in the cited paper.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal in the -y(zz)y scattering geometry using 514.5 or 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was 14 mW.
- **Raman shifts (cm⁻¹):** 3593 \pm 4, 3562 \pm 4, 3494 \pm 8, 3465 \pm 11, 1085, 975, 750, 707s, 643, 534sh, 515, 407, 374s, 335w, 315, 268, 249, 223s.

Source: Watenphul et al. (2016b).

Comments: The sample was characterized by electron microprobe analysis and LA-ICP-MS. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Dashkovaite Mg(HCOO)₂∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. 90 $^{\circ}$ -scattering geometry was employed.

Raman shifts (cm⁻¹): 1405, 1396, 1385, 1376s, 1367.

Source: Stoilova and Koleva (2000).

Comments: The sample was characterized by powder X-ray diffraction data.

Datolite $CaB(SiO₄)(OH)$

Origin: Canossa, Réggionell'Emilia, Italy.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3498s, 2892w, 1355, 1243w, 1202w, 1172, 1154w, 1148, 1077s, 1002sh, 985, 956w, 917, 8872w, 864w, 828w, 765w, 730w, 708sh, 693s, 669, 654, 601sh, 593w, 559w, 491, 466w, 458w, 440w, 424w, 392, 378sh, 362, 332w.

```
Source: Frost et al. (2013ah).
```
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of datolite see also Goryainov et al. (2015).

Daubréelite Fe Cr_2S_4

Origin: Bustee, Pesyanoe, and Aubresmeteorites.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented samples using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 2 mW .

Raman shifts $(cm⁻¹)$: 365s, 290w, 255s, 160.

Source: Avril et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of daubréelite see also Lutz et al. (1989).

Davidite-(La) La(Y,U)Fe₂(Ti,Fe,Cr,V)₁₈(O,OH,F)₃₈

Origin: Billeroo Prospect, South Australia and Radium Hill Mine, Mingary, Olary, South Australia. Experimental details: Raman scattering measurements have been performed on amorphous, metamict samples using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

- **Raman shifts (cm⁻¹):** 1597w, 1424sh, 1322, 1250w, 1074w, 698sh, 641, 514, 412sh, 394, 293, 206, 169sh, 151s (for the sample from the Billeroo Prospect);
- 1357sh, 1308, 1255sh, 1065w, 812w, 651s, 609s, 497, 450sh, 408, 380, 297sh, 291s, 223s, 150 (for the sample from the Radium Hill Mine).

Source: Frost and Reddy (2011b).

Comments: No independent analytical data are provided for the sample used.

Davidlloydite $Zn_3(AsO_4)_2$ ∙4H₂O

Origin: Tsumeb mine, Tsumeb, Otjikoto (Oshikoto) region, Namibia (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 3360, 3295, 3170, 3110, 2950, 865s, 841sh, 550, 504, 454s, 420sh, 394w, 353, 305, 294, 258, 211, 200sh, 182w, 170, 163w, 121w.

Source: Hawthorne et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

```
Davisite CaScAlSiO<sub>6</sub>
```
Origin: Allende meteorite, Chihuahua, Mexico (type locality).

Experimental details: Raman scattering measurements have been performed on a grain in polished section using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 855, \sim 815, \sim 660, \sim 540, \sim 405, \sim 385, \sim 330. Source: Ma and Rossman (2009b), Ma et al. (2012c).

Dawsonite $NaAl(CO₃)(OH)₂$

Origin: Poudrette Quarry, Mont Saint-Hilaire, Québéc, Canada.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3467w, (3341w), (3295), 3283, 3250, (3218w), 1760w, 1731w, 1691w, 1506s, 1484, 1366w, 1099, 1091s, 1068, 936w, 898, 824, (820w), 747, 731, 590s, 519, 443, 389, (374w), 361, 261, 219, 191s, (188), 152, (141w), 134.
- Source: Frost et al. (2015h).
- Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectra of dawsonite see also Serna et al. (1985), Vard and Williams-Jones (1993), Sirbescu and Nabelek (2003), and Frost and Bouzaid (2007).

Decrespignyite-(Y) Y₄Cu(CO₃)₄Cl(OH)₅∙2H₂O

Origin: Paratoo copper mine, near Yunta, Olary district, South Australia (type locality).

Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation output power was 0.3 mW.

```
Raman shifts (cm<sup>-1</sup>): 3463, 3419, 1094s, 1075s, 1062s, 822, 751, 478, 415, 344, 201s.
Source: Wallwork et al. (2002).
```
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of decrespignyite-(Y) see also Frost and Palmer (2011g).

Delafossite $Cu^{1+}Fe^{3+}O_2$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$ **:** 692, 351.

Source: Pavunny et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron microprobe analysis. For the Raman spectra of delafossite see also Aktas et al. (2011) and Kučerová et al. (2013).

Delhayelite $K_7Na_3Ca_5Al_2Si_{14}O_{38}F_4Cl_2$

Origin: Yukspor Mt., Khibiny massif, Kola Peninsula, Russia.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 50 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3147, 3098, 2980, 2824, 1144, 1081, 998w, 757w, 606s, 581, 495, 407, 353, 307w.

Source: Sharygin et al. (2013b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Deliensite Fe²⁺(UO₂)₂(SO₄)₂(OH)₂∙7H₂O

Origin: Schweitzer dump, Jáchymov ore district, Western Bohemia, Czech Republic.

- Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 3 mW.
- **Raman shifts (cm⁻¹):** ~6300, ~3510, 1637sh, 1625w, 1157w, 1068sh, 1050s, 1024s, 1010sh, 980, 932, 900, 853sh, 838s, 824sh, 747w, 725w, 710w,653w, 627w, 610w, 573w, 545w, 478, 453, 364, 235, 200, 152sh, 105sh, 90.

Source: Plášil et al. (2012a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Dellaite $Ca_6(Si_2O_7)(SiO_4)(OH)_2$

Origin: Birkhin complex, Eastern Siberia, Russia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was in the range from 30 to 50 mW.
- **Raman shifts (cm⁻¹):** 3592, 3573, 998, 963, 956sh, 930s, 892, 867s, 821w, 666, 652sh, 551sh, 528, 411, 397, 382sh, 354, 278, 248w, 127w.

Source: Armbruster et al. (2011) .

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Delvauxite CaFe³⁺₄(PO₄)₂(OH)₈⋅4-5H₂O

Origin: Berneau, near Vise, Liège, Belgium (type locality).

- Experimental details: Raman scattering measurements have been performed on an amorphous SO4 rich sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3317w, 3193sh, 3029w, 2900w, 1607, 1385sh, 1345, 1085sh, 1006s, 630, 583sh, 485sh, 464s, 439sh, 276, 208, 148sh, 128, 108.

Source: Frost et al. (2012d).

Comments: No independent analytical data are provided for the sample used. The Raman spectrum of delvauxite is given also by Frost and Palmer (2011d), but bands at 1167, 1095, 799, 780 and 692 cm^{-1} in the IR spectrum of this sample correspond to quartz.

Demartinite K_2SiF_6

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser radiation was in the range 80–200 mW.

Raman shifts (cm⁻¹): 655, 478w, 408.

Source: Rissom et al. (2008).

Comments: No independent analytical data are given for the sample used.

Demesmaekerite Pb₂Cu₅(UO₂)₂(Se⁴⁺O₃)₆(OH)₆⋅2H₂O

Origin: Musonoi mine, Shaba, Democratic Republic of Congo (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3382, 3319, 1493, 1458sh, 1366, 1095, 1062, 822, 756, 719, 597w, 535, 510, 450sh, 432sh, 351, 295, 269, 215, 178s, 151s, 114sh.

Source: Frost et al. (2008d).

Comments: No independent analytical data are given for the sample used.

Demicheleite-(Br) BiSBr

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 676.4 or 632.8 nm Kr^+ laser radiations with the laser radiation power of 150 mW, as well as a He-Ne laser with the laser radiation power of 40 mW.

Raman shifts (cm⁻¹): 287s, 250, 121, 92, 54, 42sh [x(yx)y, A_g modes]; 234, 46s [x(zx)y, B_g modes]. Source: Furman et al. (1976).

Comments: No independent analytical data are given for the sample used.

Demicheleite-(Cl) BiSCl

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 676.4 or 632.8 nm Kr^+ laser radiations with the laser radiation power of 150 mW, as well as a He-Ne laser with the laser radiation power of 40 mW.

Raman shifts (cm⁻¹): 287, 260, 107, 95, 54, 44[$x(yx)y$, A_g modes]; 240, 138, 47[$x(zx)y$,B_g modes]. Source: Furman et al. (1976).

Comments: No independent analytical data are given for the sample used.

Demicheleite-(I) BiSI

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented crystal in the $-y(xy)x$ geometry using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 290, 227, 119sh, 108, 85s, 55s, 50, 37s, 30.

Source: Teng et al. (1978).

Comments: No independent analytical data are given for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Denningite CaMn²⁺Te⁴⁺₄O₁₀

Origin: Bambolla mine, Moctezuma, Sonora, Mexico (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 766sh, 734s, 674, 479w, 450w, 381, 349s, 237, 155.

Source: Frost et al. (2008h).

Comments: No independent analytical data are provided for the sample used.

Derriksite $Cu_4(UO_2)(Se^{4+}O_3)_2(OH)_6$

Origin: Musonoimine, Katanga, Democratic Republic of Congo (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3530, 3407, 3247sh, 2917, 1623w, 1433w, 971s, 943sh, 881, 788s, 282, 257sh, 206, 162w, 137, 117sh.

Source: Frost et al. (2014a).

Comments: No independent analytical data are provided for the sample used.

Desautelsite $Mg_6Mn^{3+}{}_{2}(CO_3)(OH)_{16}$ ⁴H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was below 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3646, 3608, 3509, 3409, 3325, 2882, 2836w, 2776, 1676w, 1638w, 1610w, 1579w, 1440w, 1407w, 1393, 1372w, 1349, 1342, 1303w, 1110w, 1086, 1062w, 1055, 1016w, 883w, 878w, 873, 560, 535, 506, 455, 436w, 422w, 313w, 281, 254.

Source: Frost and Erickson (2005).

Comments: No independent analytical data are provided for the sample used.

Dessauite-(Y) Sr(Y,U,Mn)Fe₂(Ti,Fe,Cr,V)₁₈(O,OH)₃₈

Origin: Provence-Alpes-Côte d'Azur, France.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 812, 638s, 604sh, 520, (485w), 430, 360w, 329w, 293, 240. Source: Bittarello et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Destinezite $Fe³⁺₂(PO₄)(SO₄)(OH)₃·6H₂O$

Origin: Żdanów, Bardzkie Mts. (West Sudetes), Poland.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented thin section of a crystal using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3472, 3224w, 1357w, 1111w, 1048s, 980s, 626, 605sh, 540sh, 460, 268, 200. Source: Koszowska et al. (2005).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. Raman shifts are given for a sample with the highest content of poorly ordered phase. The empirical formula of the sample used is $Fe_{2.09}Al_{0.1}(PO_4)_{1.08}(SO_4)_{0.89}(SiO_4)_{0.13}(OH)$ -4.01H₂O. For the Raman spectrum of destinezite see also Frost and Palmer (2011f).

Devilline CaCu₄(SO₄)₂(OH)₆⋅3H₂O

Origin: Ozernyi district, Salla-Kuolayarvi, Kola Peninsula, Russia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power at the sample was 50 mW.
- **Raman shifts (cm⁻¹):** 3594w, 3563w, 3493w, 1121s, 1041, 992s, 819, 599, 412, 241, 210. Source: Voloshin et al. (2015b).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of devilline see also Majzlan et al. (2015).

Devitoite $[Ba_6(PO_4)_2(CO_3)][Fe^{2+}7(OH)_4Fe^{3+}7O_2(SiO_3)_8]$

Origin: Esquire #8 claim, Big Creek, Fresno Co., California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 2.5 mW. **Raman shifts (cm⁻¹):** 1072, 1053, 914s, 700sh, 660s, 463w, 243w.

- Source: Kampf et al. (2010b).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Devitrite $Na₂Ca₃Si₆O₁₆$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a single crystal at an angle of 45° between the electric field vector of the exciting laser and the [100] direction. A 633 nm He-Ne laser was used. The laser radiation power at the sample was 1 mW.
- **Raman shifts (cm⁻¹):** 1126, 1110, 1094, 1079, 1059, 1051, 1010, 1003, 977, 966, 955, 948, 915, 908w, 890w, 836w, 805w, 791, 715, 698, 673s, 659s, 607s, 548, 520, 509, 499, 486, 472, 455, 444, 432, 416, 408, 397, 387, 342, 327, 306, 294, 286, 274, 253, 245, 226, 208, 193, 170, 151, 143, 126, 117, 105.

Source: Kahlenberg et al. (2010).

Comments: Devitrite is a crystalline impurity phase in industrial soda-lime glasses. The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Dewindtite $H_2Pb_3(UO_2)_6O_4(PO_4)_4.12H_2O$

Origin: Ranger U mine, Northern Territory, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3524, 3456, 3299, 3297, 1659, 1623, 1117, 1069, 1033, 1021, 994, 978, 8687, 857, 831, 818, 808, 795, 783, 617, 576, 536, 485, 445, 415, 390, 369, 274, 260, 251, 204, 170, 143, 115.

Source: Frost et al. (2006c).

Comments: The sample was characterized by chemical analysis.

Diaboleite $CuPb₂Cl₂(OH)₄$

Origin: Mannoth mine, Tiger, Arizona, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3525sh, 3465sh, 3452s, 3436sh, 3405sh, 3340, 978w, 781, 672, 538, 468w, 437w, 365, 294w, 227, 175, 149w, 130w.

Source: Frost et al. (2003j).

Comments: No independent analytical data are provided for the sample used. In the cited paper, there are differences between Raman shifts given in Fig. 2b and in Table 1. Only Raman shifts from Fig. 2b are listed above. For the Raman spectrum of diaboleite see also Frost and Williams (2004).

Diadochite $Fe^{3+}{}_{2} (PO_4) (SO_4) (OH)·6H_2 O$

Origin: Alum Cave Bluff, Great Smoky Mts., Sevier Co., Tennessee, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3533sh, 3428, 3226sh, 2998, 1202sh, 1085, 1045sh, 1005s, 615, 565sh, 487, 448sh, 297sh, 263sh, 220, 142, 109.

Source: Frost and Palmer (2011f).

Comments: No independent analytical data are provided for the sample used.

Diamond C

Origin: Kangjinla mining district, Luobusa ophiolite, Southern Tibet. Experimental details: No data.

Raman shifts $(cm⁻¹)$ **:** 1332.6s.

Source: Xu et al. (2015b).

Comments: For the Raman spectra of diamond see also Knight and White (1989), Hänni et al. (1997), Yang et al. (2007b), Jasinevicius (2009), and Frezzotti et al. (2012).

Diaspore AlO(OH)

Origin: Nevada, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 200 mW. A 180°-scattering geometry was employed.
- Raman shifts (cm^{-1}) : 3445, 3363sh, 3226sh, 3119sh, 2936sh, 1186, 1067, 1045, 1018, 956, 918, 837, 812, 790, 705s, 564, 609, 580, 552, 495, 466, 446s, 436, 394, 381, 364, 329, 287, 260s, 216, 207.

Source: Ruan et al. (2001).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. No independent analytical data are provided for the sample used. For the Raman spectrum of diaspore see also Shoval et al. (2003).

Dickinsonite-(KMnNa) K(NaMn)CaNa₃AlMn₁₃(PO₄)₁₂(OH)₂

Origin: Branchville, Fairfield Co., Connecticut, USA (type locality).

Experimental details: Raman scattering measurements have been performed in the region of O–Hstretching vibrations, on an arbitrarily oriented crystal, using 514.5 nm Ar^{+} laser radiation. The laser radiation power at the sample was in the range from 2 to 5 mW.

Raman shifts (cm⁻¹): 3557, 3520.

Source: Cámara et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe analysis, and LA-ICP-MS. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Dickite $\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1190, 1160, 1080, 1025s, 910, 790, 750, 710, 665s, 560, 515, 480, 380, 340, 275, 235s.

Source: Frost et al. (1993).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of dickite see also Frost (1995), Johnston et al. (1998), and Shoval et al. (2001).

Digenite $Cu_{1.8}S$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed at 160 $^{\circ}$ C using 496.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 2000 mW.

Raman shifts $(cm⁻¹)$: 469. **Source:** Liu et al. (2002). Comments: The sample was characterized by powder X-ray diffraction data.

Dimorphite $\text{As}_{4}\text{S}_{3}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 676.4 nm Kr⁺ laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 374sh, 369, 365, 357, 349, 341, 274s, 224, 213, 206, 199, 186, 179, 175, 120w, 54, 51, 44w, 41, 38, 34, 29s, 17.

Source: Chattopadhyay et al. (1982).

Comments: The sample was characterized by powder X-ray diffraction data.

Diomignite $Li₂B₄O₇$

Origin: No data. Experimental details: No data. **Raman shifts (cm⁻¹):** 1352w, 1097w, 1028s, 554w, 446w, 390w. Source: Thomas and Davidson (2010). Comments: No independent analytical data are given for the sample used.

Diopside $CaMgSi₂O₆$

Origin: Zillerthel, Tirol, Austria.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 1045, 1010s, 853, 665s, 558w, 531w, 507w, 389, 358, 323, 296sh, 248w, 230w.

Source: Buzatu and Buzgar (2010).

Comments: No independent analytical data are given for the sample used. For the Raman spectra of diopside see also Richet et al. (1998), Jasinevicius (2009), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Dioptase CuSiO₃⋅H₂O

Origin: No data.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The output laser radiation power was 30 mW.
- **Raman shifts (cm⁻¹):** 3371w, 1025, 1006s, 960, 916, 743, 660s, 525, 452, 431, 400, 357s, 325, 294, 265, 240w, 225, 161, 140, 133.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of dioptase see also McKeown et al. (1995).

Dissakisite-(La) CaLa(Al₂Mg)[Si₂O₇][SiO₄]O(OH)

Origin: Hochwartperidotite, Ultenzone, Alps, Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 514 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3068, 1184, 1063s, 959s, 871s, 684, 566, 455s, 426s, 311, 226, 119. Source: Tumiati et al. (2005).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Dixenite $Cu^{1+}Fe^{3+}Mn^{2+}_{14}(As^{5+}O_4)(As^{3+}O_3)_{5}(SiO_4)_{2}(OH)_{6}$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality). Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts

have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts $(cm⁻¹)$ **:** See comments below.

Source: Bahfenne and Frost (2010d).

Comments: No independent analytical data are given for the sample used. The Raman shifts 3644sh, 3582sh, 3449, 3247sh, 1389sh, 1386, 1347s, 1338sh, 1214, 1057s, 1026, 988sh, 944, 861, 751, 688w, 526s, 505sh, 428, 385, 312, 300sh, 282, 212sh, 170sh, and 143 do not correspond to an arsenite. The strongest IR bands of this sample are observed at 1565 and 1361 cm^{-1} . This indicates that the investigated sample is not dixenite, but may be a carbonate or an organic compound. The assignment of the band at 1361 cm⁻¹ to "SiO₄²⁻ antisymmetric stretching vibrations" (obviously, the authors meant $SiO₄^{4–}$) is erroneous. Bands of stretching vibrations of $SiO₄⁴⁻$ groups (in the range from 850 to 930 cm⁻¹) are not observed in the IR spectrum of presumed "dixenite."

Djerfisherite K_6 (Fe,Cu,Ni)₂₅S₂₆Cl

Origin: Guli dunite complex, Polar Siberia, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 300.

Source: Zaccarini et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Dmisokolovite K₃Cu₅AlO₂(AsO₄)₄

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm diode laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed.

- Raman shifts (cm⁻¹): 900sh, 852s, 839s, 819sh, 640, 552sh, 525sh, 500s, 440, 400, 345, 223, 198, 121s, 96.
- Source: Pekov et al. (2015d).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Dmisteinbergite $Ca(Al_2Si_2O_8)$

Origin: Carbonaceous chondrite Northwest Africa 2086.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in polished thin section using 532.2 nm Nd-YAG laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 912s, 893, 801, 504, 442s, 327, 219.

Source: Fintor et al. (2013, 2014).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of dmisteinbergite see also Nestola et al. (2010).

Dolomite CaMg $(CO₃)₂$

Origin: Azcáratequarry, Eugui, Esteríbar, Spain.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented polished sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1758w, 1443w, 1098s, 882w, 340w, 301, 177.

Source: Perrin et al. (2016).

Comments: For the Raman spectra of dolomite see also Edwards et al. (2005), Ciobotă et al. (2012), and Frezzotti et al. (2012).

Domerockite $Cu_4(AsO_4)(AsO_3OH)(OH)_3·H_2O$

Origin: Dome Rock mine, South Australia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3420, 3235w, 875sh, 850s, 822s, 808s, 650, 478, 445, 390, 360. Source: Elliott et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Donnayite-(Y) NaSr₃CaY(CO₃)₆⋅3H₂O

Origin: Poudrette quarry, Mont Sainte-Hilaire, Québec, Canada (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3760w, 3657sh, 3507sh, 3414, 3297, 3277, 3204sh, 1735w, 1694sh, 1583w, 1520sh, 1382w, 1093sh, 1077s, 1070sh, 1059sh, 728, 716, 694, 669sh, 549, 387, 427, 422, 387, 373, 363sh, 357, 338, 325sh, 287, 239sh, 225, 156s, 143sh.

Source: Frost et al. (2016a).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Dorallcharite $TIFe^{3+3}(SO_4)_2(OH)_6$

Origin: Crven Dol, Allchar, Macedonia (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the range $100-1200 \text{ cm}^{-1}$ using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1165, 1089, 1004s, 621s, 564, 451, 420s, 339w, 300s, 218s, 206, 136s. Source: Makreski et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Dorfmanite $\text{Na}_2(\text{PO}_3\text{OH})$ ∙2H₂O

Origin: Synthetic.

- **Experimental details:** Raman scattering measurements have been performed at 65° C on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 30 mW.
- **Raman shifts (cm⁻¹):** 3391w, 3320w, 3080w, 3028w, 1149, 1072, 950s, 867, 567w, 541w, 513w, 446, 411, 395.

Source: Ghule et al. (2003).

Comments: The sample was characterized by TG data. For the Raman spectra of dorfmanite see also Ramakrishnan and Aruldhas (1987) and Frost et al. (2011l).

Dovyrenite $Ca₆Zr(Si₂O₇)₂(OH)₄$

Origin: Ioko-Dovyren massif, Northern Baikal region, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed from the natural face (100) of a crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 20 mW. A 0°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3638s, 3632s, 3593sh, 3585s, 3567sh, 1051s, 1002, 948s, 933sh, 836, 814sh, 759, 662s, 595s, 557sh, 518, 463, 437, 416sh, 393w, 372sh, 358, 333, 314, 296, 277, 260, 232.

Source: Galuskin et al. (2007b).

Comments: The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Downeyite $SeO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 435.8 nm radiation (mercury arc). The radiation power is not indicated.

Raman shifts (cm^{-1}) : 940w, 909, 889s, 862w, 706, 597s, 524, 364w, 299, 287, 254s, 199, 124. Source: Venkateswaran (1936).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of downeyite see also Gerding (1941) and Stanila et al. (2000).

Doyleite $Al(OH)_3$

- Origin: Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada (type locality).
- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 25 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3615sh, 3545, 1080(?), 936, 840(?), 806(?), 580, 392, 305, 279, 229, 208(?), 187(?), 158(?), 124, 117, 107(?).

Source: Rodgers (1993).

Comments: The sample was characterized by powder X-ray diffraction data. Doubtful bands are marked with a question mark.

Dravite $NaMg_3Al_6(Si_6O_{18})(BO_3)_3(OH)_3(OH)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal (in the scattering geometry with the electrical field vector of the linearly polarized laser light parallel to the crystallographic c -axis) using 488 and 473 nm laser radiations. The nominal laser radiation power was 30 and 12 mW, respectively.
- **Raman shifts (cm⁻¹):** 3776w, 3740, 3641sh, 3622, 3577, 3549sh, 3513sh, 1060 (broad), 1036, 980sh, 700, 676, 661sh, 635, 550, 493, 400sh, 370s, 313, 215s, 132.

Source: Berryman et al. (2016).

Comments: In the O–H stretching vibration range Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of dravite see also Gasharova et al. (1997), Andò and Garzanti (2014), and Watenphul et al. (2016a, b).

Dreyerite $Bi(VO₄)$

Origin: Hirschhorn, near Kaiserlautern, Germany (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1164, 1137, 1104, 1082, 987, 836s, 790, 646, 617, 452s, 462sh, 408w, 365, 321sh, 301.

Source: Frost et al. (2006i).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Drysdallite $MoSe₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented crystal using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 286 (E¹_{2g}), 242 (A_{1g}), 168 (E_{1g}), 25 (E²_{2g}). Source: Sekine et al. (1980).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of drysdallite see also Agnihotri and Sehgal (1972).

Dufrénoysite $Pb_2As_2S_5$

Origin: Lengenbach, Binntal, Switzerland (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.81 nm He-Ne laser radiation. The laser radiation is not indicated.

Raman shifts (cm⁻¹): 376, 364s, 327s, 292s, 260s, 221s, 172, 144, 122, 102s, (74w).

```
Source: Kharbish (2016).
```
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Duftite $PbCu(AsO₄)(OH)$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3280sh, 3240, 3192sh, 834s, 813, 792, 769sh, 549, 512, 454, 429, 403, 359, 340, 325, 301, 270, 229.

Source: Martens et al. (2003c).

Comments: No independent analytical data are provided for the sample used.

Dumontite $Pb_2(UO_2)_3O_2(PO_4)_2$ ∙5H₂O

Origin: Shinkolowbe, Congo (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3552sh, 3475, 3352, 3189sh, 1054, 1024, 982, 974sh, 815sh, 800, 780, 571, 551sh, 445sh, 440sh, 293, 271, 246, 175, 149.

Source: Frost and Čejka (2009a).

Comments: No independent analytical data are provided for the sample used.

Dumortierite $AlAl₆BSi₃O₁₈$

Origin: Dehesa, California, USA.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal (with the incident laser light perpendicular to the c-axis of the crystal) using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 205 mW.
- **Raman shifts (cm⁻¹):** 1174, 1126w, 1113w, 1099w, 1002, 950s, 905sh, 843w, 808w, 793w, 780w, 750, 705sh, 660sh, 633, 548sh, 510s, 411s, 374, 283s, 228sh, 208s, 163, 147.

Source: Goreva et al. (2001).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of dumortierite see also Pieczka et al. (2013).

Dundasite PbAl₂(CO₃)₂(OH)₄⋅H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was 50 mW.

Raman shifts (cm⁻¹): 1090s, 234, 193w, 170, 152w.

Source: Goienaga et al. (2011).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Durangite NaAl $(AsO₄)F$

Origin: Barranca Sn mine, Coneto de Comonfort, Durango, Mexico (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 923sh, 912s, 827s, 718w, 610w, 539, 496s, 464, 430, 306w, 267s, 250, 202, 179sh, 160w, 130w.
- Source: Downs et al. (2012).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Dussertite $BaFe³⁺₃(AsO₄)(AsO₃OH)(OH)₆$

Origin: Horní Slavkov, Slavkovský les Mts., Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3452s, 3439w, 3371s, 3242s, 3015w, 1250, 1220, 1176, 1115w, 902s, 870s, 859, 825w, 754w, 724w, 567, 561, 474s, 429s, 409, 372w, 306w, 275s, 247s, 188. Source: Frost et al. (2011a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Dwornikite Ni(SO₄)∙H₂O

Origin: Artificial (product of Ni corrosion in concentrated sulfuric acid).

Experimental details: Raman scattering measurements have been performed on anodic corrosion film using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 90 mW.

Raman shifts (cm⁻¹): 3300 (broad), 1600w, 1190, 1080, 1016s, 890, 596, 418.

Source: Melendres and Tani (1986).

Comments: The sample was characterized by powder X-ray diffraction data.

Dypingite $Mg_5(CO_3)_4(OH)_2·5H_2O$

Origin: Shinshiro Shi, Aichi Prefecture, Japan.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3648s, 3644, 3519, 3427, 3399sh, 2934w, 2880w, 1767w, 1751w, 1713w, 1601, 1447, 1452, 1366sh, 1122s, 1119s, 1092, 761, 727, 559w, 434w, 311, 249, 227, 203. Source: Frost et al. (2009a).
- Comments: Questionable data: no independent analytical data are given for the samples used. The IR spectra of the presumed dypingite sample from Shinshiro Shi correspond to the mixture of serpentine and a carbonate mineral. The IR spectra of presumed dypingite from Clear Creek given in the cited paper are wrong. Actually, they are IR spectra of serpentine with minor admixture of a carbonate other than dypingite. IR bands of serpentine are erroneously assigned to vibrations of dypingite. For Raman spectra of carbonate mixtures containing dypingite see Kristova et al. (2014).

Dzhalindite $In(OH)_3$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using Nd-YAG laser radiation. The wavelengths of laser excitation line and laser radiation power are not indicated.

Raman shifts $(cm⁻¹)$ **:** 302, 207.

Source: Yan et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data.

Dzhuluite $Ca_3(SbSn)(Fe^{3+}O_4)_3$

Origin: Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was in the range from 30 to 50 mW.
- Raman shifts (cm⁻¹): 812sh, 783sh, 756, 726sh, 612sh, 581, 487s, 326sh, 209sh, 285, 264sh, 235, 183, 161, 140, 112w.

Source: Galuskina et al. (2013b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Dzierżanowskite $CaCu₂S₂$

Origin: Jabel Harmun, Judean Desert, Palestine Autonomy, Israel (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented grain using 488 nm solid-state laser radiation. The laser radiation power at the sample was 120 mW.

Raman shifts (cm⁻¹): 300s, 103w, 86w.

Source: Galuskina et al. (2016a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Eakerite $Ca_2Sn^{4+}Al_2Si_6O_{18}(OH)_2$ ∙2H₂O

Origin: Foote Mineral Company mine, Kings Mt., North Carolina, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532.0 nm solid-state laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3528, 3405, 3317, 1664, 1085, 1055, 1025, 996w, 974, 948w, 923w, 795, 747, 569s, 548s, 477, 441s, 418s, 393, 350, 337, 276, 234.
- Source: Uchida et al. (2007).
- Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Eastonite $KAlMg_2(Si_2Al_2)O_{10}(OH)_2$

Origin: Hessdalen, Norway.

Experimental details: Raman scattering measurements have been performed on an oriented sample, using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated. The spectra were recorded with the electric field polarized perpendicular to the cleavage plane.

Raman shifts (cm⁻¹): 3700s, 3663s, 1014, 670s, 652s, 400, 361, 274w, 194s, 100.

Source: Thili et al. (1989).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of eastonite see also Tlili and Smith (2007) and Wang et al. (2015).

Eastonite $KAlMg_2(Si_2Al_2)O_{10}(OH)_2$

Origin: Easton, Pennsylvania, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample (on either loose grains without preparation or on a pressed pellet of sample powder) using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 13 mW.

Raman shifts (cm⁻¹): 3718s, 3693, 3678, 1082, 1038, 681s, 456, 427, 391, 351, 279, 192s.

Source: Wang et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of eastonite see also Tlili and Smith (2007).

Ecandrewsite $ZnTiO₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample compressed into pellet. The wavelengths of laser excitation line and the laser radiation power are not indicated.

Raman shifts (cm⁻¹): 716s, 624, 490, 474, 395, 350s, 270, 234, 181, 141w.

Source: Bernert et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of ecandrewsite see also Beigi et al. (2011).

Ecdemite Pb_6As^{3+} ₂O₇Cl₄

Origin: Harstigen mine, Pajsberg, near Filipstad, Värmland, Sweden.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 514.5 nm Ar⁺ laser radiation. The laser radiation power was in the range from 20 to 50 mW.

Raman shifts (cm⁻¹): 1122s, ~694, 340-310, 154s, 129s.

- Source: Jonsson (2003).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Eckhardite $(Ca,Pb)Cu^{2+}Te^{6+}O₅(H₂O)$

Origin: Otto Mt., near Baker, California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished grain using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 2.5 mW.

Raman shifts (cm⁻¹): 3440, 729s, 692s, 562w, 312w, 274, 260.

- Source: Kampf et al. (2013b).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is $Ca_{0.962}Pb_{0.073}Cu^{2+}$ _{0.971}Mg_{0.005}Fe³⁺_{0.002}Te⁶⁺_{0.986}O₆H_{2.052}.

Edgrewite $Ca_9(SiO_4)_4F_2$

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm Ar⁺ laser radiation. The output laser radiation power was in the range 30–50 mW. A 180-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3554, 3547, 3540, 921, 889, 839, 815s, 667w, 556, 527w, 423sh, 406, 394sh, 309, 269, 195w, 172sh, 163, 108w.

Source: Galuskin et al. (2012d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The Raman shifts are given for the member of the edgrewite $Ca_9(SiO_4)_4F_2$ -hydroxyledgrewite $Ca_9(SiO_4)_4(OH)_2$ series with the content of the edgrewite end-member minal more than 50%.

Edingtonite Ba $(Si₃Al₂)O₁₀$ ∙4H₂O

Origin: Ice River, near Golden, British Columbia, Canada.

Experimental details: Raman scattering measurements have been performed on an oriented sample with the long axis of crystal normal to the polarization direction of the laser beam, using 514.5 nm Ar⁺ laser radiation. A 180°-scattering geometry was employed. The laser radiation power at the sample was 10 mW.

Raman shifts (cm⁻¹): 3480s, 1644, 1096s, 1085s, 1077s, 1061s, 1049, 1021, 986s, 722s, 662, 531s, 480, 454s, 447s, 433, 427, 409, 395, 358s, 343s, 337, 330, 323, 311, 302, 284, 272s, 256, 167, 153, 141s.

Source: Wopenka et al. (1998).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of edingtonite see also Mozgawa (2001).

Edoylerite $Hg^{2+}{}_{3}(Cr^{6+}O_4)S_2$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 840s, 382, 368, 363, 340, 325, 269s.

Source: Frost (2004c).

Comments: No independent analytical data are provided for the sample used.

Effenbergerite BaCuSi₄O₁₀

Origin: Artificial.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 514 nm Ar^+ laser radiation. The laser radiation power at the sample was 1 mW. **Raman shifts (cm⁻¹):** 1097s, 986s, 788, 588, 573w, 558w, 517,454sh, 423s, 380, 339w, 276w. **Source:** Xia et al. (2014).

Comments: No independent analytical data are provided for the sample used.

Eitelite $Na₂Mg(CO₃)₂$

Origin: Synthetic.

Experimental details: Kind of sample preparation is not indicated. Micro-Raman scattering measurements have been performed in Ar atmosphere using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 1 mW . A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 1105s, 721w, 263, 208, 91s.

Source: Shatskiy et al. (2013).

Comments: The sample was characterized by single crystal X-ray diffraction data and energydispersive X-ray scan data. For the Raman spectrum of eitelite see also Sharygin et al. (2013c).

Ekanite $Ca₂ThSi₈O₂₀$

Origin: Moneragala, Okkampitiya area, Eastern Sri Lanka.

- Experimental details: Raman scattering measurements have been performed on an annealed metamict sample using 473 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1113s, 1009, 992, 747w, 657, 575, 433s, 395, 368, 350, 274, 189, 157, 133, 113.

Source: Nasdala et al. (2016).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Ekplexite $(Nb, Mo)S_2·(Mg_{1-x}Al_x)(OH)_{2+x}$

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm diode laser radiation. The laser radiation power at the sample was 3 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3530, 3326, 707, 526s, 438, 387sh, 364s, 232sh, 198sh, 161, 120sh.

- Source: Pekov et al. (2014a).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(Nb_{0.45}Mo_{0.38}W_{0.10}V_{0.04})$ $S_2(Mg_{0.60}Al_{0.37}Fe_{0.02})(OH)_{2.36}.$

Elbaite $Na(Al_{1.5}Li_{1.5})Al_6(Si_6O_{18})(BO_3)_3(OH)_3(OH)$

Origin: Granite pegmatite in an unknown locality in Southern California, USA.

- Experimental details: Raman scattering measurements have been performed on an oriented sample, using 488 and 514.5 nm Ar⁺ laser radiations in the range 150–1550 cm⁻¹. The laser radiation power is not indicated. A 180°-scattering geometry was employed. Polarized spectra were collected in the $z(xx)z$, $x(yy)x$, $x(zz)x$, $z(xy)z$ and $x(zy)x$ scattering geometries.
- **Raman shifts (cm⁻¹):** $z(xx)z$: 1412, 1190, 1077, 760, 731, 693, 641, 407, 373, 222(A₁), 340(E); $x(yy)$ $x: 1412, 1105, 1059, 989, 850, 760, 717, 632, 508, 407, 373, 244, 222(A₁), 340 (E); $x(zz)x: 1442$,$ 1412, 1105, 1059, 989, 860, 760, 717, 637, 508, 407, 373, 244, 222 (A1); z(xy)z: 1190, 1077, 731, 373 (E); x(zy)x: 717, 700, 373, 350, 286 (E).

Source: Gasharova et al. (1997).

Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe analysis, wet chemical analysis for most elements, atom absorption spectroscopy for Li, flame photometry for Na and K, and thermal analysis for OH content. The empirical formula of the sample used is $(Na_{0.86}K_{0.09}Ca_{0.05})$ $(Li_{0.99}Mg_{0.27}Mn_{0.23}Fe^{2+}_{0.01}Al_{1.41})Al_{6}B_{2.93}Si_{6}O_{27.26}(OH)_{3.64}F_{0.10}$. For the Raman spectra of elbaite see also Natkaniec-Nowak et al. (2009), Hoang et al. (2011), and Fantini et al. (2014).

Elbaite $Na(Al_{1.5}Li_{1.5})Al_6(Si_6O_{18})(BO_3)_3(OH)_3(OH)$

Origin: Lucyen mines, Vietnam.

Experimental details: Raman scattering measurements have been performed on a powdered sample, using 457 nm solid-state laser radiation. The laser radiation power at the sample was 1 mW.

Raman shifts (cm⁻¹): 3655, 3585, 3560, 3490, 1407w, 1070s, 1033sh, 981, 880w, 836, 808, 733s, 673, 587sh, 551, 517, 476, 447, 404sh, 377s, 335sh.

Source: Hoang et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data and energy-dispersive X-ray scan data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of elbaite see also Gasharova et al. (1997), Natkaniec-Nowak et al. (2009), and Fantini et al. (2014).

Elbrusite $\text{Ca}_3(\text{U}^{6+}_{0.5}\text{Zr}_{1.5})(\text{Fe}^{3+}\text{O}_4)_{3}$

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal. A 0° -scattering geometry was employed. The wavelength of laser excitation line and the laser radiation power are not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 805sh, 730, 478, 273, 222s.

Source: Galuskina et al. (2010b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Eleonorite $Fe^{2+}Fe^{3+}{}_{5} (PO_4)_4 (OH)_5 \cdot 6H_2 O$

Origin: Boca Rica pegmatite, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power at the sample is not indicated.
- **Raman shifts (cm⁻¹):** 1174, 1155, 1133, 1116, 1098, 1084sh, 1069, 1058, 1051, 1034, 1011s, 990sh, 969sh, 703sh, 687s, 673, 661, 644, 601, 582, 567s, 546, 503, 491, 478, 468, 455, 437, 403, 398, 336, 322, 309sh, 300, 289, 280, 254, 238, 230, 225, 200, 191sh, 153, 1432, 118, 107.
- Source: Frost et al. (2014al).
- Comments: No independent analytical data are given for the sample used. In the cited paper the mineral is described with the name beraunite, but an incorrect formula of beraunite is given. Brown color of the sample indicates that it is not beraunite, but its oxydation product eleonorite, a mineral isostructural with beraunite (Chukanov et al. 2017a).

Elpasolite $K_2NA\Lambda F_6$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 561, 330, 138.

Source: Morss (1974).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of elpasolite see also Frezzotti et al. (2012).

Eltyubyuite $Ca_{12}Fe^{3+}{}_{10}Si_4O_{32}Cl_6$

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal, using 514.5 nm Ar^+ laser radiation. The laser radiation output power was in the range from 30 to 50 mW. A 180°-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3395w, 936w, 927w, 861, 846, 816s, 784, 699, 558w, 532w, 472sh, 468, 412, 327sh, 309, 260.

Source: Galuskin et al. (2013a).

Comments: The sample was characterized by single-crystal electron backscatter diffraction data and electron microprobe analyses. The wavenumbers were partly determined by us based on spectral curve analysis of the published spectrum. The empirical formula of the sample used is $Ca_{12.12}Mg_{0.04}Ti_{0.11}Fe^{3+}_{9.41}Al_{1.26}Si_{2.98}O_{31.89}Cl_{5.04}$. The band positions denoted by Galuskin et al. (2013a) as 448 cm⁻¹ (twice) were determined by us at 468 and 412 cm⁻¹. For the Raman spectrum of eltyubuyite see also Gfeller et al. (2015).

Emmonsite $Fe^{3+}(Te^{4+}O_3)_3$ •2H₂O

Origin: Moctezuma mine, New Mexico.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 788, 764, 688sh, 658s, 440s, 400s, 326, 275s, 227w, 187s.

Source: Frost et al. (2008i).

Comments: No independent analytical data are provided for the sample used.

Enargite $Cu₃AsS₄$

Origin: Butte, Montana, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was in the range 1–10 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 382s, 337s, 298, 269, 170, 151, 133.

Source: Mernagh and Trudu (1993).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum of enargite see also Gow (2015).

Enargite $Cu₃AsS₄$

Origin: Quirivilca region, Peru.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The maximum output laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 724w, 679, 384, 338s, 265.

Source: Gow (2015).

Comments: The sample was characterized with scanning electron microscopy. For the Raman spectrum of enargite see also Mernagh and Trudu (1993).

Enstatite $Mg_2Si_2O_6$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal, using 488 nm Ar^+ laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in the $E \parallel (100)$, $E \parallel (010)$ and $E \parallel (001)$ scattering geometries.
- **Raman shifts (cm⁻¹):** 1035s, 1013s, 937, 938, 853, 687s, 665s, 581, 554, 541, 527, 446, 423s, 403s, 385, 344s, 303, 239s, 206, 198s, 134s.

Source: Stalder et al. (2009).

Comments: The sample was characterized by electron microprobe analysis. Raman peak positions do not exhibit a significant dependence on scattering geometry. For the Raman spectra of enstatite see also Lin (2004), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Eosphorite $Mn^{2+}Al(PO₄)(OH)₂·H₂O$

Origin: Roberto mine, Divino das Laranjeiras, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals, using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3477sh, 3460s, 3313, 3191sh, 3063, 1747, 1651, 1193w, 1142w, 1091w, 1011w, 978sh, 969s, 864sh, 816w, 634sh, 618, 595, 580sh, 560, 473, 462sh, 399, 386sh, 338w, 307, 291, 254, 232, 208, 200, 175, 171, 152, 118.

Source: Frost et al. (2013am).

Comments: The sample was characterized by electron microprobe analysis. The empirical formula of the sample used is $(Mn_{0.72}Fe_{0.13}Ca_{0.01})Al_{1.04}(PO_4,HPO_4)_{1.07}(OH_{1.89}F_{0.02})\cdot 0.94H_2O.$

Epidote $Ca_2(Al_2Fe^{3+})[Si_2O_7][SiO_4]O(OH)$

Origin: Dunje, Macedonia.

- Experimental details: Raman scattering measurements have been performed on a powdered sample, using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1084, 1040w, 980w, 914s, 885, 864sh, 832w, 599s, 565s, 522w, 508, 452s, 430, 390w, 350, 328w, 314w, 292w, 276, 243, 230, 168, 134.

Source: Jovanovski et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of epidote see also Jovanovski et al. (2009) and Andò and Garzanti (2014).

Epistilbite $Ca_3[Si_{18}Al_6O_{48}]·16H_2O$

Origin: Berufjord, Iceland.

Experimental details: Kind of sample preparation is not indicated. The measurements have been performed using 1064 nm Nd-YAG laser radiation with the radiation power at the sample of 300 mW.

Raman shifts (cm⁻¹): 1631sh, 1620, 1117, 801w, 434s, 409s, 255, 179.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Epsomite $Mg(SO₄)·7H₂O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 15 mW.

Raman shifts (cm⁻¹): 3425, 3303, 1672, 1134, 1095, 1061, 984s, 612, 447, 369, 245, 154. Source: Wang et al. (2006a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of epsomite see also Genceli et al. (2007), Buzgar et al. (2009), Apopei et al. (2012, 2014a), and Jentzsch et al. (2013).

Epsomite Mg(SO4)∙7H2O

Origin: Coranda-Hondol ore deposit, Certej, Romania.

Experimental details: Kind of sample preparation is not indicated. The measurements have been performed using 532 nm Nd-YAG laser radiation with the power at the sample of 53.6 mW.

Raman shifts (cm⁻¹): 3285, 3219sh, 1668w, 1136w, 1097w, 1062w, 985s, 615, 449, 371w, 246w. Source: Apopei et al. (2014a).

Comments: The sample was characterized by single-crystal X-ray diffraction data and scanning electron microscopy. For the Raman spectra of epsomite see also Wang et al. (2006a), Genceli et al. (2007), Buzgar et al. (2009), Apopei et al. (2012), and Jentzsch et al. (2013).

Ericlaxmanite $Cu₄O(AsO₄)₂$

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 532 nm laser radiation. The laser radiation power at the sample was about 1 mW.

Raman shifts (cm⁻¹): 889sh, 863sh, 845s, 753, 664, 608, 531sh, 493, 440, 401, 329, 292, 229s, 181, 112.

Source: Pekov et al. (2014c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Cu_{3.97}Zn_{0.06}Fe_{0.02})(As_{1.94}P_{0.02}V_{0.01}S_{0.01})O_9.$

Erikapohlite Cu²⁺₃(Zn,Cu,Mg)₄Ca₂(AsO₄)₆⋅2H₂O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 894, 854s, 797s, 582w, 500, 408, 355, 306, 280, 234, 191, 122.

Source: Schlüter et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Cu_3(Zn_{2.48}Cu_{0.93}Mg_{0.77}Fe_{0.01})$ $Ca_{2.04}As_{6.20}O_{24.71}\cdot1.29H_2O$. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Eringaite $Ca₃Sc₂(SiO₄)₃$

Origin: Wiluy River, Sakha-Yakutia Republic, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power was in the range from 20 to 40 mW.

Raman shifts (cm⁻¹): 936s, 877s, 815sh, 742, 638, 602, 540sh, 511s, 484sh, 440w, 408, 359s, 336, 309, 255, 220w.

Source: Galuskina et al. (2010d).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(Ca_{3.00}Y_{0.01})(Sc_{0.63}Ti^{4+}_{0.66}$ Fe^{3+} _{0.25} $\text{Zr}_{0.30}$ Mg_{0.08}Cr³⁺_{0.00}Fe²⁺_{0.01})(Si_{2.13}Al_{0.26}Fe³⁺_{0.61})O₁₂. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of eringaite see also Yun-Fang et al. (2013).

Eriochalcite CuCl₂⋅2H₂O

Origin: Main Lode, Great Australia mine, Cloncurry, Queensland, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3462sh, 3367, 3176w, 1620, 690, 672sh, 405, 390sh, 234, 215s, 117. Source: Frost et al. (2003i).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of eriochalcite see also Christy et al. (2004).

Erionite-Ca $Ca₅[Si₂₆Al₁₀O₇₂]_·30H₂O$

Origin: Oregon, USA.

Experimental details: Micro-Raman scattering measurements have been performed on an oriented fiber using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW. Spectra were recorded by placing fiber elongation axis at 0° , 45° , 90° , and 135° with respect to the cross hair of the microscope ocular lens.

Raman shifts (cm⁻¹): 816w, 790w, 569, 486s, 469sh, 346.

Source: Croce et al. (2013).

Comments: The Raman shifts are indicated for the fiber orientation with respect to the direction of the laser beam. No independent analytical data are provided for the sample used.

Erlichmanite OsS_2

Origin: Santa Elena Nappe, Costa Rica.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.6 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW. **Raman shifts** (cm^{-1}) **:** 396w, 342s.

Source: Zaccarini et al. (2010).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of erlichmanite see also Bakker (2014).

Ernstburkeite Mg(CH₃SO₃)₂⋅12H₂O

Origin: Synthetic. Experimental details: No data. **Raman shifts (cm⁻¹):** 3021, 2939, 1421, 1055s, 974, 776, 545, 348.

Source: Güner et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data.

Erythrite $Co₃(AsO₄)₂·8H₂O$

Origin: Mt. Cobalt, Queensland, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3337sh, 3200, 3052, 902, 852, 792, 727w, 652w, 467, 457s, 439s, 391, 378, 301, 263, 249s, 234, 223, 209s, 188, 162, 147w, 126.

Source: Frost et al. (2003g).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of erythrite see also Frost et al. (2004i) and Kloprogge et al. (2006).

Erythrosiderite K₂Fe³⁺Cl₅⋅H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented sample. The laser beam was allowed to fall on a crystal face at an angle of 45° . The measurements have been performed using He-Ne laser radiation. The laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 384, 299s, 224, 174, 129.

Source: Sharma and Pandya (1974).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of erythrosiderite see also Piszczek et al. (2003).

Erythrosiderite $K_2Fe^{3+}Cl_5·H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The maximum output laser radiation power was about 100 mW.

Raman shifts (cm⁻¹): 1807, 1591, 371, 298, 221, 180, 173, 128.

Source: Piszczek et al. (2003).

Comments: The water content in the sample used was established by thermogravimetric analysis. For the Raman spectrum of erythrosiderite see also Sharma and Pandya (1974).

Eskebornite CuFeSe $_2$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a nanocrystalline sample, using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 471, 348w, 288s.

Source: Wang et al. (2009a).

Comments: No independent analytical data are provided for the sample used.
Eskolaite $Cr₂O₃$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 647.1 nm laser radiation. A 180°-scattering geometry was employed.
- Raman shifts $(cm⁻¹)$: 613, 552s, 527, 397w, 350, 300.

Source: Maslar et al. (2001).

Comments: No independent analytical data are provided for the reference sample used. For the Raman spectra of eskolaite see also Bouchard and Smith (2003), Hosterman (2011), and Adar (2014).

Esperite PbCa₂(ZnSiO₄)₃

Origin: Franklin, New Jersey, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 780 nm solid-state laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 958w, 931w, 900, 846s, 589, 538w, 504, 447s, 409, 368, 335, 297w, 278w, 250, 224, 215w, 200w, 181s, 160, 153.

Source: Tait et al. (2010).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Pb_{1.00}(Ca_{1.86}Fe^{2+}{}_{0.07}Mn_{0.04}Cr^{3+}{}_{0.02})(Zn_{1.00}Si_{1.00}O_4)_3$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Ettringite $Ca₆Al₂(SO₄)₃(OH)₁₂·26H₂O$

Origin: Synthetic.

Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed in the spectral regions from 200 to 1300 cm⁻¹ and from 2800 to 4000 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 15 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3638, 3440s, 1118w, 1087w, 990s, 615w, 549w, 451, 416w 346w.

Source: Renaudin et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of ettringite see also Deb et al. (2003) and Frost et al. (2013i).

Euchroite $Cu_2(AsO_4)(OH)·3H_2O$

Origin: L'ubietová-Svätoduška, Banská Bystrica Co., Banská Bystrica region, Slovakia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3537, 3470, 3278sh, 3116, 2924sh, 1634, 1032w, 976w, 848sh, 836s, 821sh, 768w, 474, 441, 385, 358, 294sh, 246s, 233s, 227sh, 210, 203sh, 171sh, 161s, 144s, 134sh, 112s. Source: Frost et al. (2010e).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Cu_{2.06}[(AsO₄)_{0.96}(PO₄)_{0.04}]$ $(OH)_{1,13}$: 3H₂O. For the Raman spectrum of euchroite see also Frost and Bahfenne (2010b).

Euclase BeAlSiO₄(OH)

Origin: An unknown locality in Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3587, 3575, 1120, 1059s, 1023, 975, 908s, 880, 806w, 790w, 756w, 747w, 667w, 642w, 602w, 583, 574, 545, 518w, 461sh, 452, 444, 423w, 411w, 397s, 384, 355w, 341sh, 334, 309w, 290s, 276w, 259s, 237, 201, 180, 145.
- Source: Hofmeister et al. (1987).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectra of euclase see also Jehlička et al. (2012) and Jehlička and Vandenabeele (2015).

Eucryptite-β Li(AlSiO₄)

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a single crystal at various crystal orientations using 1064 nm Nd-YAG laser radiation. The obtained data were averaged to produce a final spectrum. The nominal laser radiation power was 100 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1099, 1086, 1067(?), 1049, 1032s, 987w, 762w, 711w, 636w, 483s, 466sh, 352, 282, 233w, 187, 157, 142, 108.

Source: Zhang et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data.

Kentbrooksite $(Na,REE)_{15}(Ca,REE)_{6}Mn^{2+3}Zr_{3}Nb(Si_{25}O_{73})OF_{2}\cdot2H_{2}O$

Origin: Sushina Hill Region, Purulia district, West Bengal, India.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 4 mW .

Raman shifts (cm⁻¹): 1007s, 991, 975, 727s, 438, 433s, 429w, 354s, 333, 220, 209w, 199, 191s. Source: Chakrabarty et al. (2011).

Comments: The sample was characterized by electron microprobe data which correspond to Ca-rich kentbrooksite. In the cited paper the mineral is erroneously described under the name "eudialyte." The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Eugsterite Na4Ca(SO4)3∙2H2O

Origin: Efflorescence on the walls of the Manasija Monastery, Serbia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 532 and 780 nm laser radiations.
- **Raman shifts** $(cm⁻¹)$ **:** 1125, 1084.

Source: Matović et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and EDS analysis.

Eulytine $Bi_4(SiO_4)_3$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal, using 488 and 514.5 nm $Ar⁺$ laser radiations. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 991w, 930, 896, 888, 868s, 623w, 547w, 533w, 503w, 491w, 437, 393, 333, 314w, 283w, 276w, 249w, 202, 149, 131, 106, 100sh, 94s, 67.

Source: Beneventi et al. (1995).

Comments: No independent analytical data are provided for the sample used.

Euxenite-(Y) (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)₂O₆

Origin: Billeroo Prospect, South Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 1624sh, 1520w, 1300w, 842, 805sh, 658sh, 624, 493sh, 410, 197sh, 161sh, 152s.

Source: Frost et al. (2011h).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of euxenite-(Y) see also Gong et al. (1995).

Evansite $\text{Al}_3(\text{PO}_4)(\text{OH})_6$ ∙8H₂O

Origin: Porto, Northwest Portugal.

Experimental details: Kind of sample preparation is not indicated. Micro-Raman scattering measurements have been performed with 532 nm laser radiation. The nominal laser radiation power was 6 mW.

Raman shifts (cm⁻¹): 1645, 1364, 1048s, 1008s, 830w, 634, 564, 486, 367.

Source: Sanchez-Moral et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe analyses, and inductively coupled plasma mass spectrometry.

Eveite $Mn^{2+}(AsO₄)(OH)$

Origin: Långban, Filipstad, Värmland, Sweden.

Experimental details: No data.

Raman shifts $(cm⁻¹)$: 3564, 870, 827s, 809s, 510, 474w, 439, 222w.

Source: Yang et al. (2001).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Evenkite $C_{23}H_{48}$

Origin: Mernek, Slovakia.

- Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation with the nominal radiation power of 10 mW and/or 1064 nm Nd-YAG laser radiation with the power of 350 mW. The spectrum was obtained with a beam perpendicular to the (111) crystal face.
- **Raman shifts (cm⁻¹):** 2883s, 2848, 2735, 1464, 1441s, 1420, 1383w, 1370w, 1295, 1265w, 1171, 1133, 1123, 1103w, 1062, 890w, 103w.
- Source: Jehlička et al. (2007a).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of evenkite see also Jehlička et al. (2009a).

Ezcurrite Na₂B₅O₇(OH)₃∙2H₂O

Origin: Tincalayu Mine, Salardel Hombre Muerto, Salta, Argentina (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3652sh, 3596sh, 3576, 3547, 3509sh, 3431s, 3329sh, 3247sh, 3186, 3098sh, 1691sh, 1641w, 1591sh, 1343, 1333sh, 1318sh, 1193, 1163, 1129sh, 1060, 1048sh, 1037, 1025sh, 1015, 1000, 968, 957sh, 947, 857sh, 842, 803sh, 782sh, 761, 746sh, 726sh, 693w, 590sh, 575s, 550sh, 529, 488, 473sh, 460, 445sh, 385, 350, 317, 286, 273sh, 209sh, 190, 162, 141, 128sh, 115, 108.

Source: Frost et al. (2014j).

Comments: The sample was characterized by qualitative electron microprobe analysis which shows Al impurity.

Fabriesite Na3Al3Si3O12∙2H2O

Origin: Tawmaw, Myanmar.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power at the sample was 5 mW.
- **Raman shifts (cm⁻¹):** 3500, 3200, 1011, 946, 903, 731, 682, 524, 490, 451s, 406, 372, 332, 314, 258w, 228w, 209.

Source: Ferraris et al. (2014).

Comments: The sample was characterized by electron microprobe analysis and electron backscatter diffraction. The empirical formula of the sample used is $(Na_{2.937}Ca_{0.030}K_{0.008}Mg_{0.007}Fe_{0.004}$ $Ba_{0.002}Mn_{0.001}Al_{2.996}Si_{2.999}O_{12}.2H_{1.993}O$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Fairfieldite Ca₂Mn²⁺(PO₄)₂⋅2H₂O

Origin: Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3271sh, 3139sh, 3040, 2961sh, 1663w, 1632w, 1577w, 1491w, 1466w, 1099s, 1027, 955s, 945sh, 925s, 906, 768, 604s, 584, 552, 442sh, 422s, 369sh, 312, 287, 251, 235, 214, 203sh, 185, 176sh, 136w.

Source: Frost et al. (2013ad).

Comments: The sample was characterized by electron microprobe data. The empirical formula of the sample used is $Ca_2(Mn_{0.56}Mg_{0.33}Fe_{0.11})(PO_4)_2.2H_2O.$

Falcondoite $Ni₄Si₆O₁₅(OH)₂·6H₂O$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 823, 705sh, 673s, 640, 386s, 196s.

Source: Villanova-de-Benavent et al. (2012).

Comments: No independent analytical data are provided for the sample used.

Falottaite $MnC_2O_4 \cdot 3H_2O$

Origin: Synthetic.

Experimental details: Kind of sample preparation is not indicated. The measurements have been performed with using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated. **Raman shifts (cm⁻¹):** 1614w, 1478s, 1427, 913, 885, 575, 515, 480w.

Source: Mancilla et al. (2009a).

Comments: The sample was characterized by powder X-ray diffraction data.

Fangite Tl_3AsS_4

Origin: Allchar deposit, Macedonia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 1.9 mW. A 180°-scattering geometry was employed.

Raman shifts (cm^{-1}) : 397, 379s, 367sh, 323, 308, 289sh, 275, 209, 191w, 170, 137, 105. Source: Makreski et al. (2014).

Comments: The sample was characterized by energy-dispersive X-ray scan data.

Farringtonite $Mg_3(PO_4)_2$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1151, 1112, 1093w, 1074, 1027s, 981s, 654, 638, 621, 576, 502, 475, 422, 355, 320, 271, 245w, 225w, 189, 177.

Source: O'Neill et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Fassinaite $Pb_2(CO_3)(S_2O_3)$

Origin: Trentini mine, Mt. Naro, Vicenza province, Veneto, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 0.8 mW.

Raman shifts (cm⁻¹): 1690w, 1444w, 1322w, 1137w, 1082w, 1061s, 983, 845w, 722w, 661, 637s,

629sh, 602, 549, 520s, 438s, 358, 342, 250w, 203w, 180, 75s.

Source: Bindi et al. (2011b).

Comments: The sample was characterized by single-crystal X-ray diffraction data, electron microprobe data, and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Pb_{2.01}(CO₃)(S_{1.82}O₃).$

Faujasite-Na (Na,Ca,Mg)₂(Si,Al)₁₂O₂₄⋅15H₂O

Origin: Sasbach, Keiserstuhl, Germany (type locality).

Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1096, 477s, 308, 177.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Favreauite PbBiCu₆O₄(SeO₃)₄(OH)∙H₂O

Origin: El Dragón mine, Bolivia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 2.3 mW.

Raman shifts (cm⁻¹): 3525, 1341w, 1240w, 1065w, 989w, 847s, 795sh, 764w, 542, 493, 392, 320w, 261w, 182.

Source: Mills et al. (2014c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Pb_{0.95}Ca_{0.17}Bi_{0.90}Cu_{5.81}Se_{4.10}O_{15.96}(OH)_{1.04}H_2O.$

Fayalite $Fe^{2+}{}_{2}(SiO_4)$

Origin: Synthetic.

Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 940, 838sh, 817s, 724, 643, 588, 508, 384, 315, 293, 197, 173w, 157s, 122. Source: Mouri and Enami (2008).

Comments: The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of fayalite see also Andò and Garzanti (2014).

Feitknechtite $Mn^{3+}O(OH)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed in the spectral region from 100 to 1200 cm⁻¹, on an arbitrarily oriented sample on the surface of catalyst, using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 0.235 mW.

Raman shifts (cm⁻¹): 635–633, 554–553, 495–492.

Source: Wang et al. (2014).

Comments: The sample was characterized by X-ray diffraction and X-ray photoelectron spectroscopy.

Felsőbányaite $\text{Al}_4(\text{SO}_4)(\text{OH})_{10}$ ∙4H₂O

Origin: RecoaroTerme, Vicenza, Italy.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3590, 3560w, 1024w, 979s, 883w, 690w, 604, 510w, 451, 388w, 371w, 340w, 313w, 288w, 266w, 254w.

Source: Boscardin et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Ferberite $Fe^{2+}(WO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts $(cm⁻¹)$: 933, 868, 811, 702, 615, 379, 281, 215.

Source: Frost et al. (2004d).

Comments: No independent analytical data are provided for the sample used.

Fergusonite-(Ce)-β CeNbO₄

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A 180[°]-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 801s, 687w, 677w, (654w), 455sh, 397, 390, 347sh, 328sh, 311s, 269, 207, (200), 168, (157), 120sh, 103sh, 96s.

Source: Siqueira et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts of 103 and 96 cm⁻¹ were determined by us based on spectral curve analysis of the published spectrum.

Fergusonite-(La)-β LaNbO₄

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A 180[°]-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 807s, 667, (658), 628, 427, 400, (393), 347sh, 332sh, 327s, 287, 224, 201, 179, 170sh, (137), 126, 115, 110s, 89.
- Source: Siqueira et al. (2010).
- Comments: The sample was characterized by X-ray diffraction data. The Raman shifts of 110 and 89 cm^{-1} were determined by us based on spectral curve analysis of the published spectrum.

Fergusonite-(Nd)-β NdNbO₄

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A 180° -scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 808s, 673, 657, 633, 445, 419, 409, 359sh, 335sh, 331s, 303, 230, 212w, 186sh, 182, 130, 123sh, 120.

Source: Siqueira et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data.

Fergusonite-(Y)-β YNbO₄

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polycrystalline sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 200 mW.
- **Raman shifts (cm⁻¹):** 810s, 677, 660, 627sh, 556, 464, 440w, 420w, 400sh, 344, 330s, 288sh, 237, 200sh, 182sh, 168, 130sh, 117sh, 136, 76, 70w, 55w.

Source: Pradhan and Choudhary (1987).

Comments: The sample was characterized by powder X-ray diffraction data.

Fergusonite-(Y) YNbO₄

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 779, 685w, 401w, 310, 208.

Source: Tomašić et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of fergusonite-(Y) see also Gieré et al. (2009).

Fergusonite-(Y) YNbO₄

Origin: A granitic pegmatite situated in the Adamello massif, Italy.

Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed using 488 nm Ar^+ laser radiation. The laser radiation power behind the objective was 8 mW.

Raman shifts (cm⁻¹): 817s, 698, 665, 444, 423, 379sh, 329s, 289, 230sh, 205sh, 143s. Source: Gieré et al. (2009).

Comments: The sample was characterized by electron microprobe analyses. According to powder X-ray diffraction data, the mineral is metamict. It was identified as fergusonite- (Y) on the basis of its Raman spectrum. For the Raman spectrum of fergusonite-(Y) see also Tomašić et al. (2008).

Fermiite $Na_4(UO_2)(SO_4)_3.3H_2O$

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3540, 3465, 3285, 1606, 1228, 1180, 1120, 1104, 1080, 1013s, 996sh, 992w, 860sh, 830s, 816sh, 638w, 616w, 583w, 506, 443, 384, 188, 163, 153, 132, 110, 55.

Source: Kampf et al. (2015c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Na_{3.88}(U_{1.05}O₂)(S_{0.99}O₄)₃·3H₂O.$

Feroxyhyte $Fe³⁺O(OH)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 0.04 mW. A 180° -scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1442sh, 1330, 713sh, 663, 485sh, 401s, 292s, 222s.

Source: Müller et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of feroxyhyte see also Nieuwoudt et al. (2011) and Chen et al. (2014c).

Ferriallanite-(Ce) $CaCe(Fe^{3+}AlFe^{2+})[Si₂O₇][SiO₄]O(OH).$

Origin: Paleokerasia ophiolitic mélange formation, South Othris, Greece.

Experimental details: No data.

Raman shifts (cm⁻¹): 952w, 887w, 654s, 508s, 478s, 417w, ~377s, 212w, ~188w.

Source: Koutsovitis et al. (2013).

Comments: No independent analytical data are provided for the sample used.

Ferricopiapite $\text{Fe}^{3+}{}_{0.67}\text{Fe}^{3+}{}_{4}(\text{SO}_4)_6(\text{OH})_2.20\text{H}_2\text{O}$

Origin: Baia Sprie mining area, Romania.

Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 3135w, 1643, 1226, 1108, 1021s, 992s, 762w, 611, 480, 454sh, 304, 270s. Source: Buzatu et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of ferricopiapite see also Ling and Wang (2010), Frost (2011c), Kong et al. (2011b), Apopei et al. (2012, 2014a), Sobron and Alpers (2013), Rull et al. (2014), and Wang and Zhou (2014).

Ferri-eckermannite $NaNa₂Mg₄Fe³⁺Si₈O₂₂(OH)₂$

Experimental details: Raman scattering measurements have been performed in the spectral region 2600–3800 cm⁻¹ on an oriented crystal with the polarization of incident light E_i parallel to the polarization of scattered light E_s and with the direction of crystal elongation perpendicular to E_i and parallel to E_s . 514.5 nm Ar⁺ laser radiation was used. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3722sh, 3698.

Source: Leissner et al. (2015).

Comments: The sample was characterized by electron microprobe analysis and laser ablation inductively coupled-plasma mass spectrometry. The empirical formula of the sample used is $Na_{0.51}K_{0.49}Na_{2.00}(Mg_{0.45}Fe^{3+}_{0.20}Fe^{2+}_{0.14}Mn_{0.10}Li_{0.07}Al_{0.02}Ti_{0.02})_5Si_{8.00}(OH_{0.58}F_{0.34}O_{0.08})_2.$ The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Ferrierite-K $(K,Na)_{5}(Si₃₁Al₅)O₇₂·18H₂O$

Origin: Synthetic.

- Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed in the spectral region from 200 to 1400 cm^{-1} using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1163w, 1056, 1029, 833, 797, 576sh, 566, 455s, 432s, 389sh, 370w, 360w, 340, 319, 291sh, 228.

Source: Suzuki et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Ferrierite-Na $(Na,K)_{5}(Si_{31}Al_{5})O_{72}$ 18H₂O

Origin: Synthetic.

Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed in the spectral region from 200 to 1400 cm^{-1} using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1157, 1058, 823, 801, 572, 552, 494sh, 452s, 432s, 342, 316, 220. Source: Suzuki et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Ferrihydrite $Fe^{3+}{}_{10}O_{14}(OH)_{2}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power was 0.04 mW.

Raman shifts $(cm⁻¹)$: 1377w, 722, 676sh, 513, 358s.

- Source: Müller et al. (2010).
- Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of ferrihydrite see also Mazzetti and Thistlethwaite (2002) and Das and Hendry (2011).

Ferrihydrite $Fe^{3+}{}_{10}O_{14}(OH)_{2}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The laser radiation power at the sample was 0.3 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1045s, 707, 508w, 361w.

Source: Das and Hendry (2011).

Comments: The sample was characterized by X-ray diffraction data. For the Raman spectra of ferrihydrite see also Mazzetti and Thistlethwaite (2002) and Müller et al. (2010).

Ferri-kaersutite $NaCa₂(Mg₃Fe³⁺Ti)(Si₆Al₂)O₂₂O₂$

Experimental details: Raman scattering measurements have been performed on an oriented crystal with the polarization of incident light E_i parallel to the polarization of scattered light E_s and with the direction of crystal elongation perpendicular to E_i and parallel to E_s . 514.5 nm Ar⁺ laser radiation was used. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3699, 3670sh, 1072sh, 1013, 895, 780sh, 755s, 666, 527, 422, 378, 350sh, 294, 238, 184, 166, 134sh.

Source: Leissner et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe data. The empirical formula of the sample used is $Na_{0.51}K_{0.36}□_{0.13}(Ca_{0.89}Na_{0.07}Mg_{0.04})₂(Mg_{0.60})$ Fe^{3+} _{0.21}Ti_{0.13}Al_{0.06})₅(Al_{0.27}Si_{0.73})₈(O_{0.65}OH_{0.32}F_{0.03})₂. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Ferrilotharmeyerite CaZnFe³⁺(AsO₄)₂(OH)⋅H₂O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: No data in the cited paper.

Raman shifts (cm⁻¹): 3440w, 2973sh, 2636sh, 919, 880s, 830s, 814s, 765s, 730, 510, 487sh, 421, 370, 325sh, 230.

Source: Frost and Weier (2004e).

Comments: No independent analytical data are provided for the sample used. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Ferrimolybdite Fe³⁺₂(Mo⁶⁺O₄)₃∙7H₂O

Origin: Vrchoslav, Krušné Hory (Ore Mts.), northern Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1882w, 1611w, 991, 968s, 951sh, 935, 836sh, 822, 804sh, 784s, 771sh, 357s, 347, 327sh, 299, 258, 232, 206, 180, 156, 139sh, 115.
- Source: Sejkora et al. (2014).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $Fe_{1.98}[(MO_4)_{2.91}(SO_4)_{0.08}(PO_4)_{0.03}]\cdot 8H_2O$.

Ferrinatrite Na₃Fe³⁺(SO₄)₃⋅3H₂O

Origin: Lignitized wood from La Plaine-Chevrière, Oise, France.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 2.5 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1614, 1250, 1235, 1220sh, 1202, 1123, 1011, 1002sh, 995s, 965s, 613, 603sh, 533sh, 502sh, 492, 460w, 438w, 267, 247s, 217, 197, 161, 138.

Source: Rouchon et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Ferristrunzite $Fe^{3+}Fe^{3+}{}_{2}(PO_4)_{2}(OH)_{3}$ ∙5H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample, using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3465, 3367s, 3226, 3042, 1105sh, 1078s, 1022s, 1008sh, 985s, 634sh, 576, 533sh, 503, 454, 394, 354, 321, 302sh, 283s, 259s, 235, 203s, 184, 167s, 147sh.

Source: Frost et al. (2002c).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of ferristrunzite see also Frost et al. (2004m).

Ferro-actinolite $\Box Ca_2(Mg_{2.5-0.0}Fe^{2+}{}_{2.5-5.0})Si_8O_{22}(OH)_2$

Origin: No data. Experimental details: No data.

Raman shifts (cm⁻¹): ~1065w, ~740w, ~670s, ~560, ~530, ~380, ~365, ~295w, ~215, ~175. Source: Bersani et al. (2014).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Ferro-glaucophane $\text{Na}_2(\text{Fe}^{2+}_3\text{Al}_2)\text{Si}_8\text{O}_{22}(\text{OH})_2$

Origin: Vernè, Val Varaita, Sampeyre, Cuneo, Piemonte, Italy.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1101, 1043, 984, 892, 831w, 909, 773, 733w, 667s, 606, 551, 537sh, 486, 765, 444w, 400sh, 385s, 334, 302w, 290w, 253, 207s, 175s, 157, 137w, 118s.

Source: Andò and Garzanti (2014).

Comments: In the cited paper the mineral is named Fe-glaucophane. No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Ferro-hornblende $(Na,K)_{0,1}Ca_2(Mg,Fe^{2+},Fe^{3+},Al)_{5}(Si,Al)_{8}O_{22}(OH)_{2}$

Origin: Pelagon, Macedonia.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1054w, 1018, 914, 863, 788w, 767w, 665s, 611s, 547, 517sh, 466, 426, 386sh, 330, 319sh, 251s, 226s, 177sh, 159, 115.

Source: Makreski et al. (2006a) and Jovanovski et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of hornblende see also Andò and Garzanti (2014).

Ferrocarpholite $Fe^{2+}Al_2Si_2O_6(OH)_4$

Origin: Cole d'Esischie, Cuneo, Piemonte, Italy.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1096, 1037, 1017w, 995w, 961, 928, 880, 866, 742s, 711, 664, 610s, 580sh, 562s, 530w, 517w, 498w, 488w, 475, 444, 406s, 350, 310, 282, 261, 238, 211s, 168.

Source: Andò and Garzanti (2014).

Comments: In the cited paper the mineral is named Fe-carpholite. No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Ferroceladonite $KFe^{2+}Fe^{3+}Si_4O_{10}(OH)_2$

Origin: Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada.

Experimental details: Kind of sample preparation is not indicated. 514.5 nm Ar^+ laser radiation was used. The laser radiation power was below 5 mW.

Raman shifts (cm⁻¹): 958, 696, 535, 453, 440, 395, 281, 234sh, 199s, 169sh. Source: Ospitali et al. (2008).

Comments: The sample was characterized by electron microprobe analyses.

Ferrohögbomite (Fe,Mg,Zn,Al)₃(Al,Ti,Fe)₈O₁₅(OH) (for the 2N2S polysome)

Origin: Aktyuz area, Northern Tien Shan, Kyrgyzstan.

- **Experimental details:** Kind of sample preparation is not indicated. 514.5 nm $Ar⁺$ laser radiation was used. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 830, 776, 711, 525, 412, 257.
- Source: Orozbaev et al. (2011).
- Comments: Intensities of the Raman bands are not indicated. The sample was characterized by electron microprobe analysis. The empirical formula of the sample used is $Mg_{1.47}$ Fe^{2+} _{3.02}Zn_{0.04}Fe³⁺_{1.76}Al_{15.13}Ti_{0.56}O₃₀(OH)₂. For the Raman spectrum of ferrohögbomite see also Tsunogae and Santosh (2005).

Ferrokësterite $Cu₂(Fe,Zn)SnS₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline thin film using 532 nm laser radiation. The laser radiation power was less than 1 mW.

Raman shifts (cm⁻¹): 378sh, 319s, 284, 256w.

Source: Khadka and Kim (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $Cu_2(Fe_{77}Zn_{23})SnS_4$. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Ferroselite FeSe₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in different scattering geometries.

Raman shifts $(cm⁻¹)$ **:** 221, 183s.

Source: Lutz and Müller (1991).

Comments The Raman shifts are given for the scattering geometry $x(yy)$ -x, in which the Raman intensities are most strong. No independent analytical data are provided for the sample used. For the Raman spectrum of ferroselite see also Wei et al. (2016).

Ferrosilite $Fe^{2+}{}_{2}Si_2O_6$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 488 nm Ar^+ laser radiation. The laser radiation power is not indicated. Spectra were recorded with the polarization of the laser radiation parallel to the (100) and (001) directions.
- **Raman shifts (cm⁻¹):** 994s, 951, 888, 660s, 634, 532, 525s, 503, 396s, 349s, 319s, 301s, 247, 168s, 152, 129s.

Source: Stalder et al. (2009).

Comments: The sample was characterized by electron microprobe analysis. The average Raman shifts are given because the peak positions do not exhibit a significant dependence on orientation.

Ferrostrunzite Fe²⁺Fe³⁺₂(PO₄)₂(OH)₂⋅6H₂O

Origin: Arnsberg, Sauerland, Germany.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3492sh, 3405s, 3134, 2943, 1113, 1058s, 1038sh, 1010s, 987sh, 967sh, 634, 568, 531sh, 509sh, 471, 434sh, 408, 396, 328, 297, 249s, 226, 202, 184s, 163s.

Source: Frost et al. (2002c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of ferrostrunzite see also Frost et al. (2004m).

Ferruccite NaBF₄

Origin: Synthetic.

Experimental details: Raman spectrum was obtained in the spectral region from 150 to 3000 cm⁻¹ for a sample closed in quartz cell. 514 nm laser radiation was used. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1279w, 1122w, 1060, 1040sh, 784s, 554, 532, 369w, 344.

Source: Zavorotynska et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of ferruccite see also Bonadeo and Silberman (1970) and Bates et al. (1971).

Fersmite $(Ca, Ce, Na)(Nb, Ta, Ti)₂(O, OH, F)₆$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented singlecrystal fiber using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 8 mW. A 180 $^{\circ}$ -scattering geometry was employed. Polarized spectra were collected in the (xx), (xy), (zx) , and (zy) scattering geometries.

Source: Moreira et al. (2010b).

Raman shifts (cm⁻¹): (xx): 906, 664, 540, 486, 379, 294s, 289, 242s, 227, 197, 140s, 64; (xy): 850s, 708, 598, 498, 431, 379s, 346, 293s, 262s, 208, 189, 164; (zx): 852, 637, 498s, 457, 380, 315, 2167, 249, 227, 198s, 130s, 111; (zy): 857, 736, 629, 462, 433, 365, 340, 270, 215s, 167, 139s, 65. Comments: The sample was characterized by X-ray diffraction data.

Feruvite $CaFe^{2+}(Al_5Mg)(Si_6O_{18})(BO_3)_3(OH)_3(OH)$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on a powdered sample in the spectral regions from 150 to 1600 cm⁻¹ and from 3000 to 4000 cm⁻¹ using 457 nm solid-state laser radiation. The laser radiation power at the sample was about 1 mW.

- Raman shifts (cm^{-1}) : 3624w, 3550, ~3500sh, 1324, 1095sh, 1054, 1003sh, 808sh, 768, 675sh, 573, 495, 420, 380, 356.
- Source: Hoang et al. (2011) .
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Fichtelite $C_{19}H_{34}$

Origin: Třeboň basin, Southern Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG and 514.5 nm Ar⁺ laser radiations. The nominal laser radiation power was 350 and 10 mW, respectively.
- **Raman shifts (cm⁻¹):** 2997w, 2987, 2972, 2962w, 2947sh, 2937, 2923s, 2910, 2888, 2864s, 2846sh, 2842sh, 2834sh, 2757w, 2662sh, 1470sh, 1457sh, 1442s, 1381, 1361s, 1335, 1321, 1302, 1293w, 1275, 1264w, 1247s, 1227w, 1213, 1200, 1175, 1155, 1143, 1119w, 1104, 1091w, 1073, 1061sh, 1025, 997, 977, 950sh, 936, 913, 886w, 870, 852, 836, 815, 796, 770, 717s, 579w, 553, 490, 479, 450w, 438w, 399w, 380, 344.

Source: Jehlička and Edwards (2008).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of fichtelite see also Jehlička et al. (2005, 2009a).

Fiedlerite Pb₃Cl₄F(OH)∙H₂O

Origin: No data.

Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 and 514.5 nm laser radiations. The laser radiation power at the source was 30 mW and less than 30 mW, respectively.

Raman shifts (cm⁻¹): \sim 737, 600, 331s, 272s, 133s.

Source: Bouchard and Smith (2003).

Comments: No independent analytical data are provided for the sample used.

Finnemanite $Pb_5(As^{3+}O_3)_3Cl$

Origin: Långban deposit, Filipstad district, Värmland province, Sweden (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 808w, 733s, 726sh, 640, 575, 450w, 372, 354sh, 244, 196sh, 174s, 128s, 113s. Source: Bahfenne et al. (2011c).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of finnemanite see also Bahfenne (2011).

Flamite $\text{Ca}_{8-x}(\text{Na},\text{K})_x(\text{SiO}_4)_{4-x}(\text{PO}_4)_x$

Origin: Hatrurim Basin, Negev Desert, Israel (type locality).

Experimental details: Raman scattering measurements have been performed in backscattered geometry, on an arbitrarily oriented sample, using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was up to 17 mW.

Raman shifts (cm⁻¹): 1003w, 952s, (885sh), 863s, 850s, 714w, 666w, 589sh, 575w, 558sh, 538, 520, 500sh, 439sh, 430w, 396, 294sh, 260, 199sh, 188, 170, 125w, 106w.

Source: Sokol et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of flamite see also Gfeller et al. (2015).

Flinteite K_2ZnCl_4

Origin: Tolbachik volcano, Kamchatka, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 50 to 4000 cm^{-1} using 532 nm diode laser radiation. The laser radiation power at the sample was 13 mW.
- **Raman shifts (cm⁻¹):** 294s, 192w, 140s, 113sh.

Source: Pekov et al. (2015e).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(K_{1.91}Tl_{0.09})_{\Sigma2.00}Zn_{1.04}Cl_{3.96}$.

Florencite-(La) $LaAl₃(PO₄)₂(OH)₆$

Origin: Igarapé Bahia mine, Serra dos Carajás, Pará, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3649, 3440sh, 3158s, 2988sh, 2906sh, 1914s, 1713sh, 1655s, 1479s, 1221w, 1112s, 1064sh, 1021s, 987s, 846w, 783, 766w, 716, 699, 647sh, 614, 680sh, 536s, 524sh, 464, 404, 310, 270s, 255, 202, 194sh, 158w, 130w.

Source: Frost et al. (2013an).

Comments: The sample was characterized qualitative electron microprobe analysis.

Fluellite $\text{Al}_2(\text{PO}_4)\text{F}_2(\text{OH})·7\text{H}_2\text{O}$

Origin: Krásno, near Horní Slavkov, western Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal, using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. Raman spectrum was obtained in the spectral region from 200 to 4000 cm^{-1} . The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3667, 3396s, 3314, 3124s, 1670w, 1583w, 1122, 1096sh, 1036s, 897w, 835sh, 646, 588, 557, 525s, 513, 459, 410, 342, 311, 295, 279, 251, 220, 208, 199, 191, 173, 151, 139, 123,116, 108.

Source: Čejka et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe data. The empirical formula of the sample used is $Al_{1.98}(PO_4)_{1.07}F_{1.99}(OH)_{0.75}TH_2O$.

Fluocerite-(Ce) CeF_3

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in $x(zx)y$ and $x(yz)y$ scattering geometries.

Raman shifts (cm⁻¹): 293s, 290sh, 204, 141.

Source: Gerlinger and Schaack (1986).

Comments: The Raman shifts are given for the scattering geometry $x(x,y)$, in which the Raman intensities are most strong. The z axis is taken as the symmetry axis of the crystal and the x and y axes are equivalent. No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of fluocerite-(Ce) see also Bauman and Porto (1967).

Fluocerite-(La) $LaF₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented 1% praseodymium-doped LaF_3 rod using 435.8 nm Hg line as excitation.

Raman shifts (cm⁻¹): 392, 365, 310, 292, 75.

Source: Caspers et al. (1964).

Comments: No independent analytical data are provided. For the Raman spectrum of fluocerite-(La) see also Bauman and Porto (1967).

Fluorapatite $Ca₅(PO₄)₃F$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on a microcrystalline sample in the spectral region from 140 to 1200 cm^{-1} using He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1084w, 1053w, 1041w, 966s, 609, 598, 595, 451w, 434, 268w, 184. Source: Griffith (1970).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of fluorapatite see also Adams and Gardner (1974), Harlov et al. (2003), and Frezzotti et al. (2012).

Fluorapatite As-rich $Ca₅(PO₄, AsO₄)₃F$

Origin: Calvario Mt., Etna, Italy.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 633 and 532 nm laser radiations. The nominal laser radiation power was 20 and 10 mW, respectively.
- Raman shifts (cm^{-1}) : 1062sh, 1057sh, 1046, 1034sh, 964s, 877sh, 857s, 827w, 590, 580, 477sh, 430, 392, 372.

Source: Gianfagna et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts are indicated for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Fluorapophyllite-(K) KCa₄Si₈O₂₀F⋅8H₂O

Origin: Międzyrzecze Górne, near Bielsko-Biała, Poland.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was less than 30 mW. Raman measurements were performed in different scattering geometries.
- **Raman shifts (cm⁻¹):** $-z(y'y')z$: 3627w, 3559, 3357sh, 3104sh, 3010, 1117w, 1062, 856w, 794w, 665, 584, 542w, 522w, 486w, 433, 401w, 374w, 337w, 298, 231, 209, 166, 133, 123w; -z(x'y')z-3559w, 3357sh, 3104sh, 3010, 1117w, 1010w, 973w, 840w, 768w, 630w, 463w, 371w, 267w, $226w, 217w, 185, 161, 131; -y'(zz)y'$: 1063s, 794w, 584, 542, 486, 433, 401, 231, 195, 166; $-y'(x'z)$ y': 1091w, 1011w, 601w, 503w, 487w, 460w, 431w, 342w, 320w, 270w, 216w, 202w, 174w, 139w, 127w.

Source: Włodyka and Wrzalik (2004).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(K_{0.96}Na_{0.03}Ca_{3.96}(Si_{7.95}Al_{0.04}P_{0.03})$ $O_{19.98}(F_{0.83}OH_{0.17})$ 8.02H₂O. For the Raman spectra of fluorapophyllite-(K) see also Frost and Xi (2012o) and Goryainov et al. (2012).

Fluor-buergerite $\text{NaFe}^{3+}{}_{3}\text{Al}_{6}\text{(Si}_{6}\text{O}_{18})\text{(BO}_{3)}_{3}\text{O}_{3}\text{F}$

Origin: Mexiquitic, San Luis Potosi, Mexico.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal using 514.5 and 457.9 nm Ar^+ laser radiations. The laser radiation power at the sample was about 25 mW. Polarized spectra were collected in (zz) and (xy,z) scattering geometries.
- **Raman shifts (cm⁻¹):** A₁ (zz): 3530, 1289, 1110w, 1060, 1010, 811w, 753, 706, 638s, 605sh, 541sh, 523, 475w, 406sh, 373s, 300, 260sh, 232s, 154; E (xy,z): 1290, 1260, 1107,1063, 1012, 982, 957, 757, 733, 707, 656s, 636, 586sh, 550sh, 522w, 475sh, 458, 400s, 375, 328, 300, 275, 265, 233, 212, 154.

Source: McKeown (2008).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is $NaFe^{3+}{}_{3}Al_{6}(Si_{6}O_{18})(BO_{3})_{3}(O_{0.92}OH_{0.08})_{23}F$. For the Raman spectra of fluor-buergerite see also Gasharova et al. (1997) and Watenphul et al. (2016a, b).

Fluorcalciobritholite $(Ca,REE)_5(SiO_4, PO_4)_3F$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample. Experimental details are not described.

Raman shifts (cm^{-1}) : 1026sh, 1049w, 958s, 856, 603sh, 580, 557sh, 447sh, 428.

Source: Dacheux et al. (2010).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $Ca₉Nd_{0.5}Th_{0.5}(PO₄)_{4.5}(SiO₄)_{1.5}F₂.$

Fluorcalciomicrolite $(Ca,Na,\Box)_2Ta_2O_6F$

Origin: Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 891, 792, 664, 530sh, 505s, 417, 331, 292, 239w, 187, 168. Source: Andrade et al. (2013a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{1.07}Na_{0.12}Vac_{0.12})(Ta_{1.84}Nb_{0.14}Sn_{0.02})[O_{5.93}(OH)_{0.07}][F_{0.79}(OH)_{0.21}].$

Fluorcalcioroméite $(Ca,Na)_{2}Sb^{5+}{}_{2}O_{6}F$

Origin: Starlera mine, Ferrera, Grischun, Switzerland (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3686, 3630, 827, 790sh, 518s, 468sh, 302w.

Source: Atencio et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{1.16}Na_{0.56}\Box_{0.22}Fe^{2+}{}_{0.03}Mn^{2+}{}_{0.03})(Sb^{5+}{}_{1.98}Al_{0.01}W_{0.01})O_6[F_{0.62}(OH)_{0.28}O_{0.06}\Box_{0.04}].$

Fluorcaphite SrCaCa₃(PO₄)₃F

Origin: Lovozero alkaline complex, Kola Peninsula, Russia.

Raman shifts $(cm⁻¹)$ **:** See comment below.

Source: Chakhmouradian et al. (2005).

Comments: Raman microspectroscopy cannot be used to distinguish between fluorcaphite and fluorapatite because their nonpolarized spectra are virtually identical. Polarized spectra in the range 50–350 cm⁻¹ are sensitive to the local structural environment of A-site cations and can potentially be used for that purpose.

Fluor-elbaite $Na(Li_{1.5}Al_{1.5})Al_6(Si_6O_{18})(BO_3)_3(OH)_3F$

Origin: Paprok mine, Nuristan, Afghanistan.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented cross-section of a single crystal using Ar⁺ laser radiation. The laser radiation power is not indicated. **Raman shifts (cm⁻¹):** 3658, 3594, 3489, 1421, 1064s, 731s, 550, 381, 344, 223.

Source: Natkaniec-Nowak et al. (2009).

Comments: The sample was characterized by electron microprobe analyses. Raman shifts are given for the central sample zone (zone I) which was identified as fluor-elbaite. The band positions denoted by Natkaniec-Nowak et al. (2009) as 3549 and 224 cm^{-1} were determined by us at 3594 and 344 cm^{-1} , respectively.

Fluor-schorl $NaFe^{2+}_{3}Al_{6}(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}F$

Origin: Steinberg, Zschorlau, Erzgebirge (Saxonian Ore Mountains), Saxony, Germany.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 3563, 1084sh, 1048, 1025sh, 969w, 767s, 694, 665, 632, 537w, 483, 400sh, 364s, 313, 237s, 199.

Source: Ertl et al. (2015).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Na_{0.82}K_{0.01}Ca_{0.01}C_{0.16})$ $(Fe^{2+}_{2,30}Al_{0.38}Mg_{0.23}Li_{0.03}Mn^{2+}_{0.02}Zn_{0.01})(Al_{5.80}Fe^{3+}_{0.10}Ti_{0.10})(Si_{5.81}Al_{0.19}O_{18})$

 $(BO₃)₃(OH)₃[F_{0.66}(OH)_{0.34}]$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Fluorite CaF₂

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 40 mW.

Raman shifts $(cm⁻¹)$: 322.

Source: Gee et al. (1966).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of fluorite see also Tsuda et al. (1993), Dill and Weber (2010), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Fluorkyuygenite $Ca_{12}Al_{14}O_{32}[(H_2O)_4F_2]$

Origin: Hatrurim Basin, Negev Desert, Israel (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3210sh, 3065, 1610w, 940sh, 876sh, 862, 772s, 695, 575, 517s, 392, 344, 320, 234.

Source: Galuskin et al. (2015c).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Ca_{12.034}(Al_{13.344}Fe^{3+}{}_{0.398}Si_{0.224})O_{32}[(H_2O)_{3.810}F_{1.894}(OH)_{0.296}]$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Fluorlamprophyllite $\text{Na}_3(\text{SrNa})\text{Ti}_3(\text{Si}_2\text{O}_7)_2\text{O}_2\text{F}_2$

Origin: Poços de Caldas alkaline massif, Morro doSerrote, Minas Gerais, Brazil (type locality)

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3675w, 1070, 940sh, 893s, 862sh, 825sh, 690, 635w, 590, 462w, 419w, 375w, 346w, 280sh, 230sh, 174w.

- Source: Andrade et al. (2017) .
- Comments: The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Fluormayenite-related garnet

Origin: Afrikanda complex, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3630, 1100w, 955w, 863s, 815, 633w, 519, 385sh, 352, 240w. Source: Chakhmouradian et al. (2008).

Comments: In the cited paper the mineral is described under the name hibscite. It contains from 4.2 to 6.0 wt% F. The sample was characterized by micro-X-ray diffraction data, electron microprobe analyses, and single-crystal X-ray diffraction. The crystal structure is solved. The compositional range of the sample used may be described as $Grs_{57-63}Kt_{21-27}Fgr_{8-11}Adr_{0-13}$, where Grs, Kt, and Adr are the designations for the grossular, katoite, and andradite, respectively, and Fgr is the hypothetical $Ca₃Al₂F₁₂$ end-member. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Fluormayenite $Ca_{12}Al_{14}O_{32}[\Box_4F_2]$

Origin: Jabel Harmun, Judean Mts., Palestinian Autonomy, Israel (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3674w, 3572, 918sh, 890, 844, 776s, 709, 619w, 583, 524s, 390, 318s, 276, 250sh, 186.

Source: Galuskin et al. (2015c).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{11.951}Na_{0.037})$ $(Al_{13.675}Fe^{3+}{}_{0.270}Mg_{0.040}Si_{0.009}P_{0.005}S^{6+}{}_{0.013})O_{31.503}(HO)_{1.492}[\square_{4.581}F_{1.375}Cl_{0.044}]$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Fluorocronite PbF₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation output power was 300 mW. Raman shifts $(cm⁻¹)$: 257.

Source: Krishnamurthy and Soots (1970).

Comments: No independent analytical data are provided for the sample used.

Fluoro-edenite $NaCa₂Mg₅(Si₇Al)O₂₂F₂$

Origin: Biancavilla area, Mount Etna, Sicily, Italy (type locality).

- Experimental details: Raman scattering measurements have been performed on an oriented sample with the elongation axis at 45° with respect to N-S direction of the cross-hair of the ocular lens using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.
- Raman shifts (for the sample no. 3 in Table 1 of the cited paper, cm^{-1}): 1042, 1018, 926, 768, 747, 678s, 586w, 557, 520, 494w, 474w, 436, 408, 381, 365sh, 313, 300sh, 236s, 213w.

Source: Fornero et al. (2008).

Comments: The sample was characterized by electron microprobe analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Fluorowardite NaAl₃(PO₄)₂(OH)₂F₂⋅2H₂O

Origin: Silver Coin mine, Valmy, Nevada, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was about 5 mW.
- **Raman shifts (cm⁻¹):** 3614w, 3542, 1049s, 1005s, 604s, 489, 431, 384w, 315, 272, 257, 216, 182s, 143.

Source: Kampf et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Na_{0.87}Ca_{0.13}Mg_{0.04})(Al_{2.96}Fe^{3+}_{0.04})(P_{1.96}As_{0.03})O_{8.12}(OH)_{2.35}F_{1.53}$:2H₂O. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Fluor-uvite $CaMg_3(Al_5Mg)(Si_6O_{18})(BO_3)_3(OH)_3F$

Origin: No data in the cited paper.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal in the -y(zz)y scattering geometry using 514.5 or 488.0 nm Ar^+ laser radiations. The laser radiation power at the sample was 14 mW.
- **Raman shifts (cm⁻¹):** 3770, 3740, 3665, 3642, 3572, 3554sh, 3522sh, 3488sh, 1040, 960w, 798w, 759w, 702, 670, 650, 630, 496, 459, 411, 372s, 316, 243s, 213s, 149w.

Source: Watenphul et al. (2016a).

Coments: The sample was characterized by electron microprobe analyses and LA-ICP-MS data. The empirical formula of the sample used is $(Ca_{0.63}Na_{0.26}\Box_{0.09})(Mg_{2.92}Ti_{0.07})(Al_{5.51}Mg_{0.49})(Si_6O_{18})$ $(BO₃)₃(OH)₃[F_{0.55}(OH)_{0.36}O_{0.09}].$

Fluorwavellite $\text{Al}_3(\text{PO}_4)_2(\text{OH})_2\text{F}\cdot\text{5H}_2\text{O}$

Origin: Silver Coin mine, Valmy, Iron Point district, Humboldt Co., Nevada, USA (type locality).

- Experimental details: Methods of sample preparation are not described. A 785 nm diode laser radiation was used. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1147w, 1065sh, 1022s, 636, 589sh, 568sh, 550sh, 544s, 410s, 315, 286sh, 277, 224sh, 211.

Source: Kampf et al. (2017a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $\text{Al}_{2.96}(\text{PO}_4)_2(\text{OH})_{1.98}\text{F}_{1.02}\cdot\text{5H}_2\text{O}$ (+0.12H for charge balance). The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Foitite □(Fe²⁺₂Al)Al₆(Si₆O₁₈)(BO₃)₃(OH)₃(OH)

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an oriented crystal with the crystallographic c axis parallel to the z axis using 514.5 and 488.0 nm Ar⁺ laser radiations. The laser radiation power at the sample was 14 mW. Raman spectrum was obtained in the spectral region from 15 to 4000 cm⁻¹. Polarized spectra were collected in the -y(zz)y, y(zx)y, and y(xx)y scattering geometries.

Raman shifts (cm⁻¹): 3726w, 3670w, 3644, 3631, 3570sh, 3551s, 3517, 3484s, 3641, 3630, 3479, 3351, 1054, 1020, 967, 777w, 743w, 696, 677, 630, 493, 459, 401, 367s, 313, 253sh, 236s, 205sh, 192sh, 158w.

Source: Watenphul et al. (2016a).

Comments: The sample was characterized by electron microprobe and LA-ICP-MS analyses. The Raman shifts are given for the scattering geometry $-y(zz)y$, in which the Raman intensities are most strong. The empirical formula of the sample used is $(\square_{0.61} Na_{0.35} Ca_{0.03})(Fe_{1.28}Al_{1.03})$ $Mn_{0.41}Li_{0.18}Mg_{0.11}$)Al₆(Si₆O₁₈)(BO₃)₃(OH)₃[(OH)_{0.93}F_{0.07}]. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Foordite $Sn^{2+}Nb_2O_6$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in the $z(xx)$ -z scattering geometry.

Raman shifts (cm⁻¹): 794, 665, 575, 432, 372, 348, 303, 257, 249, 224, 201, 185, 161, 135. Source: Noureldine et al. (2014) .

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of foordite see also Lee et al. (2015).

Forêtite $Cu_2Al_2(AsO_4)(OH, O, H_2O)_6$

Origin: Cap Garonne mine, France (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 50 to 4000 cm⁻¹ using 532 nm laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- Raman shifts (cm⁻¹): 3534sh, 3469sh, 3428s, 3343s, 2924, 2889, 2848, 1585, 1458, 848s, 816sh, 495, 446w, 371, 269, 218, 171, 140sh, 114s, 93s.

Source: Mills et al. (2012a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Cu_{1.94}(Al_{1.96}Fe_{0.04})(As_{0.84}S_{0.09}Si_{0.04})$ $O_{10}H_{5.19}$.

Formanite-(Y) YTaO₄

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 825s, 720w, 705, 670, 655w, 480w, 450w, 375w, 345s, 320s, 215s, 120. Source: Blasse (1973).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of formanite-(Y) see also Nazarov (2010).

Formicaite $Ca(CHOO)_2$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented crystal using 488.0 nm Ar^+ and 632.8 nm He-Ne laser radiations. The laser radiation power is not indicated.

Polarized spectra were collected in $x(zz)y$, $x(yx)y$, $x(yz)z$, $x(yz)y$, $x(zy)z$, $x(zx)y$, $x(xz)z$ scattering geometries with 488.8 nm laser excitation, and in $y(xx)z$, $y(xy)z$, $y(zy)z$, $y(zx)z$ scattering geometries with 632.8 nm laser excitation.

Raman shifts (cm⁻¹): 2185w, 2180w, 1406s, 1393s, 801w, 783, 169w, 118, 106, 72s. Source: Krishnan and Ramanujam (1973).

Comments: The Raman shifts are given for the scattering geometry $x(yy)z$ with 488.0 nm Ar⁺ laser radiation, in which the Raman intensities are most strong.

Fornacite $CuPb₂(CrO₄)(AsO₄)(OH)$

Origin: Whim Creek Copper mine, Pilbara, Western Australia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW.
- Raman shifts (cm⁻¹): 916sh, 890sh, 872sh, 867, 847s, 830s, 790sh, 778sh, 400, 388, 381, 369, 354, 343, 332, 305, 159, 139, 122.

Source: Frost (2004c).

Comments: No independent analytical data are provided for the sample used.

Forsterite $Mg_2(SiO_4)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample in the spectral region from 100 to 1200 cm⁻¹ using 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was 20 mW. A 135°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 964, 919, 880sh, 855s, 824s, 608, 589, 544, 434, 374, 337, 329, 314w, 303, 225.

Source: Mohanan et al. (1993).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of forsterite see also Piriou and McMillan (1983), Mouri and Enami (2008), Frezzotti et al. (2012), Andò and Garzanti (2014), and Culka et al. (2016a, b).

Fougèrite $Fe^{2+}{}_{4}Fe^{3+}{}_{2}$ (OH)₁₂(CO₃)⋅3H₂O

- Origin: Fougères Forest, Fougères, Ille-et-Vilaine, Brittany, France (type locality).
- Experimental details: Raman scattering measurements have been performed on a fine-crystalline sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was less than 1 mW. A 180-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 518, 427.

- Source: Trolard et al. (2007).
- Comments: The sample was characterized by powder X-ray diffraction data, Mössbauer spectroscopy, and X-ray absorption spectroscopy at the FeK edge. For the Raman spectrum of fougèrite see also Bourrié and Trolard (2010).

Fraipontite $(Zn, Al)₃(Si, Al)₂O₅(OH)₄$

Origin: Blue Bell mine, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3825w, 3810w, 3781w, 3769w, 3747w, 3737w, 3669w, 3384w, 3367w, (1734), (1408), 1392sh, (1094s), 1089sh, (731), 675, (305), 290sh, (197), 186sh, 157sh, 144s, 115sh, 108.

Source: Theiss et al. (2015b).

Comments: The sample was characterized by qualitative energy-dispersive X-ray scan data. No independent quantitative analytical data are provided for the sample used. The bands at 1734, 1408, 1094, 731, 305, and 197 cm^{-1} correspond to admixed smithsonite.

Francevillite Ba($UO₂$)₂′VO₄)₂∙5H₂O

Origin: Mounana Mine, Haut Ogoue, Gabon (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 977, 965sh, 861, 829, 747s, 609, 526, 485, 470, 405, 370s, 304, 240s, 186, 163sh.

Source: Frost et al. (2005c).

Comments: No independent analytical data are provided for the sample used.

Francisite $Cu_3Bi(Se^{4+}O_3)_2O_2Cl$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal with laser light polarized in the xy plane of the crystal. The laser radiation power and the wavelength of laser radiation are not indicated.

Raman shifts (cm⁻¹): 583, 538, 484, 324, 173.

Source: Miller et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data.

Franckeite $Pb_{21.7}Sn_{9.3}Fe_{4.0}Sb_{8.1}S_{56.9}$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on a pressed powdered sample using 532 nm laser radiation. The nominal laser radiation power was 0.2 mW.

Raman shifts (cm⁻¹): 650-400sh, 318, 253, 194, 145w, 66s.

Source: Molina-Mendoza et al. (2016).

Comments: The sample was characterized by selected area electron diffraction data, micro-X-ray photoemission, and scanning tunneling spectroscopy.

Françoisite-(Nd) Nd(UO₂)₃O(OH)(PO₄)₂⋅6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample in the spectral region from 150 to 2000 cm^{-1} using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 998, 934w, 830s, 440-417, 202, 151.

Source: Armstrong et al. (2011) .

Comments: The sample was characterized by elemental and thermal analyses, X-ray diffraction data, and inductively coupled optical emission spectroscopy. The empirical formula of the sample used is $Nd_{0.92}[(UO₂)_{3.11}O(OH)(PO₄)_{2.00}]\cdot5.98H₂O.$

Franconite NaNb2O5(OH)∙3H2O

- Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 50 to 4000 cm⁻¹ using 638 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3416, 924, 879s, 661s, 583, 461, 391, 297, 212.

Source: Haring and McDonald (2014b).

Comments: It may be that the wavelength of 638 nm is a misprint, and the authors meant 632.8 nm. The sample was characterized by powder X-ray diffraction data, by energy-dispersive X–ray scan data, and by single crystal X-ray diffraction data. The crystal structure is solved. The empirical formula of the sample used is $(Na_{0.73}Ca_{0.13}\Box_{0.14})_{\Sigma1.00}(Nb_{1.96}Ti_{0.02}Si_{0.02}Al_{0.01})O_5(OH)\cdot 3H_2O.$

Frankdicksonite BaF2

Origin: Synthetic.

Experimental details: The Raman spectrum was obtained at 15 K. Other experimental details are not indicated.

Raman shifts (cm^{-1}) **:** 259sh, 244.

Source: Harrington et al. (1971).

Comments: No independent analytical data are provided for the sample used. The Raman shift of 259 cm^{-1} was determined by us based on spectral curve analysis of the published spectrum.

Franklinite $ZnFe^{3+}2O_4$

Origin: Franklin or Sterling Hill mine, New Jersey, USA.

Experimental details: No data.

Raman shifts (cm⁻¹): 1206, 661sh, 597s, 493w, 347.

Source: Welsh (2008).

Comments: No independent analytical data are provided for the sample used.

Freboldite CoSe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample nucleated after about 50 h milling time using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was less than 5 mW. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$: 174.

Source: Campos et al. (2004a).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis.

Fredrikssonite $Mg_2Mn^{3+}O_2(BO_3)$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts** $(cm⁻¹)$ **:** See comment below.

Source: Frost (2011b).

Comments: All Raman shifts (1750, 1530, 1435, 1086, 712, 282, and 155 cm⁻¹) ascribed by Frost (2011b) to fredrikssonite correspond to calcite. The correct Raman shifts of fredrikssonite are $(RRUFF ID: R130112; cm⁻¹): 933w, 752, 701w, 666, 591s, 520w, 341sh, 317s.$

Fresnoite $Ba_2TiO(Si_2O_7)$

Origin: No data.

- Experimental details: No data.
- **Raman shifts (cm⁻¹):** 994w, 960w, 928w, 904, 876, 860s, 666, 600, 542w, 477w, 377, 343, 318w, 272, 226, 207w.

Source: Gabelica-Robert and Tarte (1981).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of fresnoite see also Mayerhöfer and Dunken (2001) and Ma and Rossman (2008).

Friedrichbeckeite K(\Box Na) $Mg_2(Be_2Mg)Si_{12}O_{30}$

- Origin: Bellerberg volcano, Eifel paleovolcanic area, Rhineland-Palatinate (Rheinland-Pfalz), Germany (type locality).
- Experimental details: Raman scattering measurements have been performed on an oriented crystal with direction of the laser beam along $[0001]$ using 633 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW.

Raman shifts (cm⁻¹): 1132s, 947, 837, ~770, 650, 577, 544, 488s, 461sh, 385, 292s, 162, 128, 69. Source: Lengauer et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe analyses, and laser-ablation inductively coupled plasma mass spectroscopy data. The crystal structure is solved. The empirical formula of the sample used is $K_{0.87}Na_{0.86}(Mg_{1.57}Mn_{0.28}Fe_{0.24})$ $(Be_{1.83}Mg_{1.17})[Si₁₂O₃₀]$. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Frohbergite FeTe₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 90 K on an oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated. A 180- \degree -scattering geometry was employed. Polarized spectra were collected in $y(xx)$ -y, $y(xz)$ -y, $z(xy)$ -z, x (zy) -x, and $y(x,xz)$ -y scattering geometries.

Raman shifts (cm⁻¹): 155, 138s, 125.

Source: Lutz and Müller (1991).

Comments: The Raman shifts are given in the scattering geometry $y(x, xz)$ -y. The authors note that the origin of the band at 138 cm⁻¹ is not quite clear. No independent analytical data are provided for the sample used.

Frolovite Ca $[B(OH)₄]$ ₂

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 300 to 1800 cm^{-1} using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm⁻¹): 854w, 758s, 547, 390w.

Source: Jun et al. (1995).

Comments: No independent analytical data are provided for the sample used.

Frondelite $Mn^{2+}Fe^{3+}(PO_4)_{3}(OH)_{5}$

Origin: Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3581, 3315, 3144sh, 3029sh, 2886, 2747sh, 1597, 1532, 1416, 1352, 1164sh, 1112, 1071sh, 1027s, 1000, 966sh, 748, 635sh, 612s, 589sh, 572, 481sh, 455, 436sh, 379sh, 329sh, 291, 226s, 207sh, 189, 172sh, 151s, 137sh, 126sh.

Source: Frost et al. (2013y).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $(Mn_{0.68}Fe_{0.32})Fe^{3+}$ _{3.72} $(PO_4)_{3.17}(OH)_{4.99}$. For the Raman spectrum of frondelite see also Faulstich et al. (2013).

Fulgurite (a high-silicon glass) \sim (Si,O,Fe)O_{2-x}

Origin: Greensboro, North Carolina, USA.

Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 1 to 2 mW.

Raman shifts (cm⁻¹): 1188w, 1057, 930w, 796, 603, 488s, 440s.

Source: Carter et al. (2010).

Comments: The sample was characterized by inductively coupled plasma optical emission spectrometry data. It contains 81.3 wt% SiO_2 , 8.32 wt% Al_2O_3 , 8.48 wt% Fe₂O₃, and minor amounts of other components.

Gadolinite-(Nd) $Nd_2Fe^{2+}Be_2O_2(SiO_4)_2$

Origin: Malmkärra mine, ~3.5 km WSW of Norberg, Sweden (type locality).

Experimental details: Raman scattering measurements have been performed on a polished section using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 10 mW.

Raman shifts (cm⁻¹): 3525w, 970, 897s, 707w, 677sh, 615w, 550w, 501w, 483w, 428, 411, 383, 363, 339, 306, 292, 279, 265, 225w, 203w, 143w, 104w.

Source: Škoda et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Gahnite $ZnAl₂O₄$

Origin: Jemaa, Kaduna State, Nigeria.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 473.1 nm Nd-YAG laser radiation. The laser radiation power is not indicated. **Raman shifts (cm⁻¹):** 661s, 510w, 420.

Source: D'Ippolito et al. (2013).

Comments: The sample was characterized by single crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Zn_{0.94}Fe^{2+_{0.03}Al_{0.03})(Al_{1.96}Fe^{2+_{0.03}Fe^{3+_{0.01}O_{4}}.$ For the Raman spectrum of gahnite see also Faulstich et al. (2016).

Gaidonnayite Na₂ZrSi₃O₉⋅2H₂O

Origin: Toongi rare metal deposit, New South Wales, Australia

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 1093sh, 1053, 963s, 926, 704w, 663w, 548s, 526sh, 404, 337sh, 316, 255sh, 199s, 152s.

Source: Spandler and Morris (2016).

Comments: The sample was characterized by X-ray fluorescence data and laser-ablation inductively coupled plasma mass spectroscopy. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Galaxite $Mn^{2+}Al_2O_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal in the spectral region from 100 to 900 cm⁻¹ using 473.1 nm Nd-YAG laser radiation. The laser radiation power at the sample was less than 1 mW . A nearly 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 775, 700w, 644w, 510, 395s, 374sh, 202s.

Source: D'Ippolito et al. (2015).

Comments: The sample was characterized by electron microprobe analysis.

Galena PbS

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): $~\sim$ 450, 205.

Source: Sherwin et al. (2005).

Comments: No independent analytical data are provided for the sample used. The first-order Raman scattering is forbidden in minerals with the halite structure. However, the peak at 205 cm^{-1} attributed to forbidden first order spectrum has been registered for galena. For the Raman spectrum of galena see also Frezzotti et al. (2012).

Galileiite NaFe²⁺₄(PO₄)₃

Origin: Yanzhuang H6 chondrite, Yanzhuang village, Wenyuan Co., Guangdong province, China. Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 26.8 mW.

Raman shifts (cm⁻¹): 1129-1124, 982-980s, 599-596, 558-554w, 417-416, 305-304w, 154-151. Source: Xie et al. (2014).

Comments: The sample was characterized by electron microprobe analyses. The empirical formula of the sample used is $(Na_{0.89}K_{0.01}Ca_{0.03}Cr_{0.05})$ $(Fe_{3.61}Mn_{0.29}Mg_{0.02}Si_{0.03})P_{2.99}O_{12}$.

Gallite CuGaS₂

Origin: Synthetic.

Description: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented green-colored crystal with formula closest to pure $CuGaS₂$ using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was 30 mW.

Raman shifts (cm⁻¹): 384, 347w, 309s, 274w, 162w, 112w, 91w, 72w, 32w.

Source: Julien et al. (1999).

Comments: The sample was characterized by X-ray diffraction data. For the Raman spectrum of gallite see also Cha and Jung (2014).

Gallium sulfide Ga_2S_3

Origin: Synthetic.

Description: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation output power was 30 mW.

Raman shifts $(cm⁻¹)$: 422, 386w, 329, 307, 233s, 147, 140, 114, 86, 72.

Source: Julien et al. (1999).

Comments: The sample was characterized by X-ray diffraction data.

Galloplumbogummite $Pb(Ga, A1, Ge)_{3}(PO_{4})_{2}(OH)_{6}$

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on an oriented sample with three-fold crystallographic axis close to the direction of the polarization of the incident light using 514.5 and 488.0 nm $Ar⁺$ laser radiations. The nominal laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3252, 1087s, 1007s, 979, 899, 619, 602, 573w, 566w, 559w, 538w, 492s, 356, 317, 272, 181, 83, 55.

Source: Schlüter et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Pb_{1.04}Ca_{0.05})$ $(Ga_{1,41}A1_{1,35}Ge_{0,38}Fe_{0,02})(P_{1,91}S_{0,14})O_{8,44}(OH)_{5,56}$. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Galuskinite $Ca_7(SiO_4)_3(CO_3)$

Origin: Birkhin gabbro massif, Eastern Siberia, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal in the spectral region from 100 to 4000 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was in the range 30–50 mW. A 180°-scattering geometry was employed.
- Raman shifts (cm^{-1}) : 1077s, 1007, 972w, 950, 928, 917, 898w, 889w, 882, 863s, 851s, 843, 704, 661, 570, 555, 525, 439, 404, 392, 367, 315w, 292w, 276, 257, 238, 220, 205, 184, 163, 140w, 124w, 114w.

Source: Lazic et al. (2011).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{6.936}Na_{0.086})(Si_{2.983}P_{0.018}S_{0.004})O_{12}(CO_3)$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Gamagarite $Ba_2Fe^{3+}(VO_4)_2OH$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 90 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 953, 944sh, 918, 904, 874, 853, 846, 827, 799, 728w, 629, ~480sh, ~455sh, 442s, 411sh, 361, 346, 311, 268, 247sh, 229.

Source: Sanjeewa et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Gananite BiF_3

Origin: Synthetic

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 488.0 and 514.5 nm Ar⁺ laser radiations. The nominal laser radiation power was 200 mW. A 90°-scattering geometry was employed.
- Raman shifts (cm⁻¹): 334sh, 312s, 278sh, 271s, 265sh, 248s, 213, 203, 192, 177sh, 155, 142sh, 127s, 115s, 84, 70sh.

Source: Kavun et al. (2010).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Ganomalite $Pb_9Ca_6(Si_2O_7)_4(SiO_4)O$

Origin: Jakobsberg, Bergslagen, Sweden.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 6 mW.

Raman shifts (cm⁻¹): 1068, 1042, 1000, 902, 886, 848s, 810, 727w, 673w, 564s, 551sh, 520, 486w,

455, 427w, 401w, 373, 354, 291, 242, 208.

Source: Kampf et al. (2016c).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Ganterite $Ba_{0.5}(Na,K)_{0.5}Al_2(Si_{2.5}Al_{1.5})O_{10}(OH)_{2}$

Origin: Berisal Complex, Simplon Region, Switzerland (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished thin section of a single crystal using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 25 mW.

Raman shifts (cm⁻¹): 1092, 1025, 948, 699s, 595s, 488s, 405sh, 266s.

Source: Graeser et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(Ba_{0.44}K_{0.28}Na_{0.27})(Al_{1.84}Mg_{0.09}Fe_{0.04}Ti_{0.04})$ $[Si_{2.72}Al_{1.28}O_{10}](OH)_{1.89}.$

Garavellite FeSbBiS4

Origin: Malé Karpaty Mts., Western Carpathians, Slovakia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished section using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 210 mW. A 180°-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 364w, 338, 322, 302, 271sh, 249sh, 233sh, 214s, 197sh, 182, 167, 151, 137sh, 120, 99sh, 78s, 61.

Source: Kharbish and Andráš (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Garnet $Mg_3(MgSi)Si_3O_{12}$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using Ar⁺ laser radiation. The laser radiation power at the sample was in the range 5–50 mW.
- **Raman shifts (cm⁻¹):** 1065, 1034w, 989w, 964sh, 931s, 889, 873sh, 852sh, 802, 724w, 648w, 602s, 559w, 535w, 507w, 498w, 481w, 458, 429w, 398w, 367, 354sh, 336w, 311, 293w, 275w, 261w, 238sh, 226, 205sh, 197, 181, 159, 138w.

Source: McMillan et al. (1989).

Comments: No independent analytical data are provided for the sample used.

Gartrellite PbCuFe³⁺(AsO₄)₂(OH)∙H₂O

Origin: Anticline deposit, Ashburton Downs, Western Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3404, 3229, 2999, 1161, 1099, 995, 869s, 842s, 812, 785, 618, 560, 499, 474s, 438s, 357, 331, 304, 238, 201, 164, 140.

- Source: Frost and Weier (2004e).
- Comments: No independent analytical data are provided for the sample used. Raman shifts are given for gartrellite with partly isomorphic substitution of arsenate by sulfate. For the Raman spectrum of gartrellite see also López et al. (2014c).

Garutiite (Ni,Fe,Ir)

Origin: Loma Peguera, Dominican Republic (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532.6 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** The obtained Raman spectrum shows no discernible absorption bands over the range of $150 - 2000$ cm⁻¹.

Source: McDonald et al. (2010).

Gaspéite $Ni(CO₃)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488.0 and 514.5 nm $Ar⁺$ laser radiations. The nominal laser radiation power was about 100 mW.

Raman shifts (cm⁻¹): 1731, 1428, 1089, 736, 343, 235.

Source: Rutt and Nicola (1974).

Comments: The sample was characterized by powder X-ray diffraction data.

Gaudefroyite $Ca_4Mn^{3+}{}_{3}(BO_3)_3(CO_3)O_3$

Origin: N'Chwaning II mine, Kalahari manganese fields, South Africa.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. Raman spectrum was obtained in the spectral region from 200 to 4000 cm^{-1} . The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3385, 3249, 3206, 1595w, 1508w, 1491w, 1358sh, 1306sh, 1283, 1263sh, 1227sh, 1210sh, 1194, 1182sh, 1153sh, 1130w, 1112w, 1076, 1070sh, 950sh, 939, 928s, 914sh, 768w, 764w, 748w, 743w, 671s, 649s, 635sh, 584sh, 573, 534, 405w, 389w, 342s, 334sh, 297sh, 287s, 255sh, 244s, 228sh, 211w.

Source: Frost et al. (2014ae).

Comments: No independent analytical data are provided for the sample used.

Gaylussite Na₂Ca(CO₃)₂∙5H₂O

Origin: Teels Marsh, Esmeralda Co., Nevada, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3344, 3250sh, 2948sh, 1070s, 719, 698sh, 663w, 518, 258, 222, 158. Source: Frost and Dickfos (2007b).

Comments: No independent analytical data are provided for the sample used.

Gazeevite $BaCa_6(SiO_4)_2(SO_4)_2O$

Origin: Jabel Harmun, Judean Mts., Palestinian Autonomy, Israel.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 50 mW.
- **Raman shifts (cm⁻¹):** 1135, 1099, 997s, 963, 865, 638, 555w, 529w, 464, 409, 315w, 266sh, 213, 160w.

Source: Galuskin et al. (2016a).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ba_{0.85}K_{0.12}Sr_{0.02})(Ca_{5.99}Na_{0.02})[(SiO_4)_{1.82}(PO_4)_{0.14}(AlO_4)_{0.04}(TiO_4)_{0.01}][(SO_4)_{1.85}(PO_4)_{0.15}]$ $O_{0.84} F_{0.11}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Gearksutite CaAlF4(OH)∙H2O

Origin: Valedo Ribeira, south of São Paulo and northeast of Paraná, Brazil.

Experimental details: No data.

Raman shifts (cm⁻¹): 463, 407, 381, 298w, 226, 209, 169, 147s, 93, 84, 63, 54, 11.

Source: Ronchi (2003).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Geffroyite $(Cu, Fe, Ag)_9Se_8$

- Origin: Moroshkovoe lake, Southern Sopchinskoe deposit, Monchegorsk ore district, Kola Peninsula, Russia.
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation or 785 nm diode laser radiation. The nominal laser radiation power was 50 mW and 500 mW, respectively.

Raman shifts (cm⁻¹): 445, 365, 264s, 186, 90w, 76.

Source: Voloshin et al. (2015a).

Comments: The sample was characterized by electron microprobe analysis. The empirical formula of the sample used is $(Cu_{9,20}Ag_{0,44})(Se_{4,95}S_{3,05}Te_{0,10}).$

Gehlenite $Ca₂Al(SiAl)O₇$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 488.0 nm Ar^+ laser radiation. The laser radiation power at the sample was 500 mW. A 90°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1005w, 998, 977, 914, 841sh, 796, 655sh, 626s, 528, 459, 425w, 303, 254sh, 240, 218, 180, 150w, 89.

Source: Sharma et al. (1983).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of gehlenite see also Burshtein et al. (1993) and Bouhifd et al. (2002).

Geikielite $MgTiO₃$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 80 mW.

Raman shifts (cm⁻¹): 714s, 641, 487sh, 485s, 397, 352s, 327s, 306, 281s, 224.

Source: Okada et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of geikielite see also Reynard and Guyot (1994).

Geminite $Cu^{2+}(AsO_3OH)·H_2O$

Origin: Jáchymov ore district, Krušné Hory (Czech Ore Mts.), western Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. Raman spectrum was obtained in the spectral region from 200 to 4000 cm^{-1} . The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. **Raman shifts (cm⁻¹):** 3521w, 3448, 3314, 3152sh, 2814, 2438, 2288, 1299w, 885s, 871sh, 853s,
- 843sh, 813, 743w, 496, 481sh, 451sh, 421, 345, 333, 310, 284w, 244w, 213, 182sh, 178s, 161s, 136.

Source: Sejkora et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Cu_{1.00}[AsO₃(OH)_{0.96}F_{0.04}]+H₂O$.

Gerhardtite $Cu_2(NO_3)(OH)_3$

Origin: Great Australia mine, Cloncurry, Queensland, Australia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3556sh, 3546, 3477, 3417, 3391sh, 1438s, 1417s, 1339, 1324s, 1052, 1048s, 1031, 1024, 887w, 805w, 720w, 711, 668w, 503, 474sh, 458, 437sh, 423sh, 410, 336w, 279, 258, 213, 189s, 165s, 149sh, 132w.
Source: Frost et al. (2004h).

Comments: No independent quantitative analytical data are provided for the sample used.

Gerstleyite $Na₂(Sb, As)₈S₁₃·2H₂O$

Origin: Baker mine, Kramer district, Kern Co., California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 449, 308s, 286s, 251s, 224sh, 188, 144s.

Source: Frost et al. (2010c).

Comments: No independent analytical data are provided for the sample used.

Geschieberite K₂(UO₂)(SO₄)₂⋅2H₂O

Origin: Svornost mine, Jáchymov, Western Bohemia, Czech Republic (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm diode laser radiation. The laser radiation power at the sample was 3 mW.
- **Raman shifts (cm⁻¹):** 3595, 3506, 3280w, 1216, 1126, 1008s, 992, 984, 832s, 822sh, 652, 606w, 584w, 471, 454w, 386w, 270, 246, 230, 180, 154, 132sh, 100, 80.

Source: Plášil et al. (2015c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(K_{1.72}Mg_{0.29}Na_{0.04}Ca_{0.01})(U_{0.98}O_2)(S_{0.98}O_4)_2.2H_2O.$

Ghiaraite CaCl₂∙4H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 3511, 3460sh, 3435, 3400, 3364sh, 3242sh, 1657, 1645sh, 1625, 801, 763, 713, 698, 679, 657, 595, 573, 551, 523s, 435s, 405s, 374, 335, 309, 283, 261w, 253w, 232, 212, 204, 184, 173, 163w, 154, 134, 127, 118, 108.

Source: Uriarte et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Gibbsite $Al(OH)_3$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 200 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3617s, 3522s, 3433s, 3364s, 1051, 1018, 979, 924, 892, 844, 816, 788, 751, 710, 617w, 602w, 569, 538s, 506, 444, 428, 412, 396s, 380, 371, 322s, 306, 290, 264, 255, 242.

Source: Ruan et al. (2001).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of gibbsite see also Rodgers (1992, 1993).

Gilalite $Cu₅Si₆O₁₇·7H₂O$

Origin: São José da Batalha, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. Raman spectrum was obtained in the spectral region from 1200 to 4000 cm^{-1} . The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3706, 3669s, 3631sh, 3609, 3529, 3478, 3423sh, 3386s, 3347, 3313sh, 3259sh, 3207sh, 3154sh, 3075w, 2999, 2946, 2905sh, 2859sh, 1131sh, 1096sh, 1057sh, 1008, 964sh, 931sh, 898sh, 831, 779, 755sh, 675, 621s, 561, 509sh, 484sh, 443s, 400, 338, 314sh, 250sh, 214s, 150s, 123sh.

Source: López et al. (2014b).

Comments: The sample was characterized by semiquantitative electron microprobe analysis.

Gillardite $Cu_3NiCl_2(OH)_6$

Origin: Artificial (a product of Brass corrosion in NaCl solution).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 80 to 2000 cm⁻¹ using 514 nm Ar⁺-Kr⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 941, 900, 566sh, 511s, 458, 418, 371, 145, 127s.

Source: Babouri et al. (2015).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Gillespite $BaFe^{2+}Si₄O₁₀$

Origin: Minade Las Pozos, Tecate, Baja California, Mexico.

- Experimental details: Raman scattering measurements have been performed on an oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 170 mW. A 135 --scattering geometry was employed.
- **Raman shifts (cm⁻¹):** $x-z(yy)z(A_{1g})$: 1018w, 963, 758, 527w, 450, 401, 346, 306, 246, 100s, 41s; $x-z$ $(yx)z(B_{2g})$: 992, 971w, 761w, 588w, 491, 379, 307w, 218w, 123s, 64; $x-z(y)z(B_{1g})$: 1092s, 1025w, 856w, 789w, 558, 427s, 380, 306, 144, 123, 65w; x–z(x+z,y)z (Eg): 1145w, 1018sh, 1017w, 927w, 885, 758, 663w, 558w, 524, 522, 427sh, 378, 341, 331w, 307, 283s, 250, 136sh, 102, 90, 70, 39.

Source: McKeown and Bell (1998).

Comments: The sample was characterized by powder X-ray diffraction data.

Giniite $Fe^{2+}Fe^{3+}(PO_4)_4(OH)_2·2H_2O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed at 198 K on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3387, 3206, 2918w, 1184sh, 1148sh, 1128, 1040sh, 1023s, 999sh, 948, 766, 627, 618, 584, 487, 461, 446, 396, 346, 327, 234, 202.

Source: Frost et al. (2007n).

Comments: The sample was characterized by X-ray diffraction data and qualitative electron microprobe analysis.

Gismondine Ca₂(Si₄Al₄)O₁₆⋅8H₂O

Origin: Capo di Bove, Italy.

Raman shifts (cm^{-1}) **:** See comment below.

- Source: Mozgawa (2001).
- Comments: Raman spectrum of presumed gismondine given in the cited paper corresponds to calcite with minor admixture of a silicate.

Glauberite $Na₂Ca(SO₄)₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): 1167w, 1154, 1138, 1104, 998s, 647, 642, 6321, 621sh, 616, 484w, 469, 452. Source: Jentzsch et al. (2012a).

Comments:: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of glauberite see also López et al. (2014f).

Glaucocerinite $(Zn_{1-x}Al_x)(SO_4)_{x/2}(OH)_2nH_2O (x < 0.5, n > 3x/2)$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3609s, 3520s, 3435sh, 3353s, 3304sh, 1083w, 982, 903, 831w, 712w, 605sh, 559s, 512sh, 437, 384, 319s, 310sh, 243w, 147s, 111.

Source: Frost et al. (2014ah).

Comments: No independent analytical data are provided for the sample used.

Glauconite $(K,Na)(Fe^{3+},Al,Mg)_{2}(Si,Al)_{4}O_{10}(OH)_{2}$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺, 632.8 He-Ne, and 780.0 diode laser radiations. The laser radiation output power of the He-Ne laser was less than 5 mW.

Raman shifts (cm⁻¹): \sim 1100w, \sim 955w, 697s, 591s, 451sh, 389, 264s, 194s.

Source: Ospitali et al. (2008).

Comments: The sample was characterized by energy-dispersive X–ray scan data. The Raman shifts are given for Ar⁺ laser excitation.

Glaucophane \square Na₂(Mg₃Al₂)(Si₈O₂₂)(OH)₂

Origin: Sesia-Lanzo zone, Western Alps.

- Experimental details: Raman scattering measurements have been performed on the oriented samples using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated. A 180 \degree -scattering geometry was employed. Spectra were collected in the scattering geometries with the laser beam perpendicular to (100), (010), and (110) faces of several crystals.
- **Raman shifts (cm⁻¹):** 3658, 3645, 3630w, 1108w, 1063sh, 1045, 1016, 1010, 1000, 988s, 960sh, 895, 886, 790, 779, 742, 700, 684s, 670s, 611, 560, 525, 490w, 445, 411, 385s, 338, 310w, 256, 231, 210s, 181s, 160, 120.

Source: Gillet et al. (1989).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. Raman shifts are given as a sum of spectra in all scattering geometries. For the Raman spectra of glaucophane see also Makreski et al. (2006a), Jovanovski et al. (2009), Apopei and Buzgar (2010), Andò and Garzanti (2014), and Leissner et al. (2015).

Glaukosphaerite $CuNi(CO₃)(OH)₂$

Origin: Carr Boyd Ni mine, Carr Boyd Rocks, Western Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3481sh, 3382w, 3307w, 1639w, 1522sh, 1496, 1460sh, 1367, 1097, 1087sh, 1065, 751w, 719w, 532w, 432, 352, 272, 222, 189, 157.

Source: Frost (2006).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $(Cu_{1,1}Ni_{0,7}Mg_{0,06})(CO)_3(OH)_2$.

Glushinskite Mg(C₂O₄)⋅2H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3391, 3367, 3254, 1720w, 1660, 1636, 1612, 1471s, 1454, 915, 861, 657, 585, 527sh, 521s, 310s, 265s, 237s, 226s, 221.

Source: Frost (2004d).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of glushinskite see also Frost and Weier (2003), Frost et al. (2004a), and Baran (2014).

Gmelinite-Na $Na₄(Si₈Al₄)O₂₄·11H₂O$

Origin: Nova Scotia, Canada.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1642w, 1118, 464s, 330, 181, 137s.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Goethite FeO(OH)

Origin: No data.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was less than 0.7 mW. **Raman shifts (cm⁻¹):** 993w, 685w, 550, 479s, 385s, 299, 243w.

Source: De Faria et al. (1997).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of goethite see also Kustova et al. (1992), Bouchard and Smith (2003), Lepot et al. (2006), Müller et al. (2010), Nieuwoudt et al. (2011), Roqué-Rosell et al. (2010), Das and Hendry (2011), and Ciobotă et al. (2012).

Goldfieldite $Cu_{10}Te_{4}S_{13}$

Origin: Guinaoang, NW Luzon, Philippines.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 10 mW. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 354s, 324sh.

Source: Mernagh and Trudu (1993).

Comments: The sample was characterized by electron microprobe analyses.

Goldmanite $Ca₃V³⁺₂(SiO₄)₃$

Origin: Pyrrhotite Gorge, Khibiny massif, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 80 to 4000 cm^{-1} using 633 nm He-Ne laser radiation. The nominal laser radiation power was 2 or 20 mW.

Raman shifts (cm⁻¹): 989, 932, 880s, 817s, 557s, 527, 495, 374s, 268, 241, 166.

Source: Voloshin et al. (2014).

Comments: The sample was characterized by electron microprobe analysis.

Gonnardite $(Na,Ca)_{2}(Si,Al)_{5}O_{10}.3H_{2}O$

Origin: Blackhead Quarry, Dunedin, New Zealand.

Experimental details: Raman scattering measurements have been performed on an oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 120 mW.

A 180° -scattering geometry was employed. Crystal fibers were oriented E–W in a horizontal plane, and perpendicular to the laser beam.

Raman shifts (cm⁻¹): 3587s, 3455s, 3253s, 1615, 1434, 1328, 1293, 1043w, 1003, 916, 890w, 839, 759w, 742w, 595w, 530s, 496, 441, 362w, 333, 314w, 266w, 232w, 159s.

Source: Graham et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The compositional ranges of the sample used correspond to the formula $Na_{4.78–6.27}$ $Ca_{1,31-2,12}(Al_{8,41-8,79}Si_{11,03-11,84}O_{40})$. For the Raman spectrum of gonnardite see also Wopenka et al. (1998).

Goosecreekite $Ca(Si₆Al₂)O₁₆·5H₂O$

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 558w, 550w, 537, 513sh, 497s, 475sh, 450, 419, 414sh, 396sh, 376w.

Source: Lewis et al. (2006).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Gorceixite $BaAl₃(PO₄)(PO₃OH)(OH)₆$

Origin: Ilmeny (Il'menskie) Mts., South Urals, Russia.

Experimental details: No data.

Raman shifts (cm⁻¹): 1086, 1019, 979s, 906, 816, 601, 496, 456, 341, 243s, 161.

Source: Dubinina and Valizer (2011).

Comments: The sample was characterized by electron microprobe analyses. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum

Görgeyite K₂Ca₅(SO₄)₆⋅H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 200 to 4000 cm⁻¹ using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3579, 3525s, 1215, 1187, 1175, 1164, 1161, 1137, 1115, 1108, 1085, 1078, 1067, 1013s, 1005s, 711, 661, 654, 631, 602, 595, 480, 457, 440, 433, 281.

Source: Kloprogge et al. (2004a).

Comments: The sample was characterized by powder X-ray diffraction and qualitative electron microprobe analysis.

Gormanite $Fe^{2+}{}_{3}Al_{4}(PO_{4})_{4}(OH)_{6}$; 2H₂O

Origin: Yukon, Canada.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3615w, 3419w, 3404w, 3296w, 2893w, 1478w, 1466w, 1414w, 1382, 1365w,1342, 1291w, 1247, 1150sh, 1123, 1095s, 1053sh, 996, 969w, 899, 505, 459, 436, 405, 380sh, 364sh, 349, 330w, 314, 195sh, 172w, 151sh.

```
Source: Frost et al. (2003c).
```
Comments: No independent analytical data are provided for the sample used.

Goryainovite $Ca₂(PO₄)Cl$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 80 to 1400 cm^{-1} using 457.9 nm Ar^+ laser radiation. The laser radiation power at the sample was 250 mW. A 90 $^{\circ}$ -scattering geometry was employed.

Raman shifts (cm⁻¹): 1120, 1052, 950s, 606, 388.

Source: Capobianco et al. (1992).

Comments: No independent analytical data are provided for the sample used. Raman shifts are given for a sample doped with $MnO₄³⁻$ (with $Mn⁵⁺$ concentration of 0.047 wt%). For the Raman spectrum of goryainovite see also Ivanyuk et al. (2017).

Goslarite Zn(SO4)∙7H2O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 1492w, 1192, 1084, 1024s, 913w, 671w, 626, 511, 423, 281, 223. Source: Buzgar et al. (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of goslarite see also Coleyshaw et al. (1994) and Buzatu et al. (2012).

Götzenite $NaCa₆Ti(Si₂O₇)₂OF₃$

Origin: Pian di Celle volcano, Umbria, Italy.

Experimental details: No data.

Raman shifts (cm⁻¹): 1031, 942, 902, 822s, 774, 664s, 587s, 560sh, 416, 371, 321, 278, 252, 218, 176sh.

Source: Sharygin et al. (1996b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Goudeyite Cu₆Al(AsO₄)₃(OH)₆⋅3H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3480s, 3393sh, 3361s, 3046, 2921, 2863, 1695w, 1605w, 1434, 13280, 1001, 938, 930, 894sh, 873s, 835s, 814sh, 800, 740, 700, 560, 540, 516sh, 495s, 486sh, 470, 449, 435, 403, 395, 350, 346, 327, 293, 269, 257, 240, 226, 201, 196.

```
Source: Frost et al. (2006n).
```
Comments: The sample was characterized by powder X-ray diffraction data and qualitative EDX analysis.

Gowerite Ca[$B_5O_8(OH)$][B(OH)₃]⋅3H₂O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm⁻¹): 952w, 895s, 862s, 813w, 764s, 482, 391w.

Source: Jun et al. (1995).

Comments: The sample was characterized by powder X-ray diffraction data.

Goyazite $SrAl₃(PO₄)(PO₃OH)(OH)₆$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was \sim 50 mW.
- **Raman shifts (cm⁻¹):** 3360w, 3150w, 3066, 2910w, 2830w, 1698, 1300w, 1213, 1183w, 1127w, 1102, 1068w, 1046w, 1032s, 986s, 930, ~895sh, 833w, 757, 710, 653, 609, 579, 553, 511, 464, 421, 374s, 321w, ~280sh, 256s, 230sh, 186s.

Source: Breitinger et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of goyazite see also López et al. (2013c).

Graemite $Cu^{2+}(Te^{4+}O_3)·H_2O$

Origin: Cole Shaft, Arizona, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3450sh, 3268, 2937, 793s, 768sh, 708, 676sh, 648sh, 527sh, 508sh, 507s, 471sh, 438s, 411sh, 380sh, 358sh, 314sh, 291, 257, 184, 146s.

Source: Frost and Keeffe (2009b).

Comments: No independent analytical data are provided for the sample used.

Graeserite $Fe³⁺₄Ti₃As³⁺O₁₃(OH)$

Origin: Monte Leone nappe, Binntal region, Western Alps, Switzerland.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using Ar^+ laser radiation. The nominal laser radiation power was 25 mW.

Raman shifts $(cm⁻¹)$: 1451.8, 743.3, 591.5, 421.6, 297.5, 163.4.

Source: Krzemnicki and Reusser (1998).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(Fe^{3+}_{2.91}Fe^{2+}_{0.38}Ti_{0.54}Pb_{0.15})Ti_3(As^{3+}_{0.94}$ Sb^{3+} _{0.07}) $O_{13}(OH)$.

Graftonite $(Fe^{2+}, Mn^{2+}, Ca)_{3}(PO_4)_{2}$

Origin: Sowie Góry Mts, SW Poland.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal in the spectral region from 250 to 1300 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1111w, 1018, 966s, 651, 593, 480w, 417, 317w, 285.

Source: Łodziński and Sitarz (2009).

Comments: The sample was characterized by electron microprobe data. For the Raman spectrum of graftonite see also Schneider et al. (2013).

Gramaccioliite-(Y) (Pb,Sr)(Y,Mn)Fe³⁺₂(Ti,Fe³⁺)₁₈O₃₈

Origin: Sambuco, Stura valley, Cuneo province, Italy.

Experimental details: No data.

Raman shifts (cm⁻¹): 812, ~710w, 638, 430, 360w, 330w, 293, ~240w.

Source: Bittarello et al. (2014).

Comments: No independent analytical data are provided for the sample used.

Grandaite $Sr₂Al(AsO₄)₂(OH)$

Origin: Valletta mine, Maira Valley, Piedmont, Italy (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 100 to 2500 cm⁻¹ using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 899, 857, 833sh, 790, 547, 526, 512, 499, 425, 418, 386sh, 382, 347, 308, 213, 162, 120.

Source: Cámara et al. (2014a).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and by electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Sr_{1,4}Ca_{0.64}Ba_{0.05}Pb_{0.01})(Al_{0.68}Fe^{3+}{}_{0.14}Mn_{0.12}Mg_{0.13})[(As_{0.96}V_{0.01})_{\Sigma 0.97}O_4]_2(OH)$.

Grandidierite $MgAl₃O₂(BO₃)(SiO₄)$

Origin: Kolonne area, Sri Lanka.

Experimental details: No data.

Raman shifts (cm⁻¹): 1047s, 993s, 982s, 952s, 868s, 717s, 687, 659s, 615w, 551, 492s, 427, 362, 343, 269, 244, 228.

Source: Schmetzer et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Graphite C

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal and on a microcrystalline sample using 488.0 and 514.5 nm Ar^+ laser radiations. The laser radiation power is not indicated. A 90°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1575s, 1355.

Source: Tuinstra and Koenig (1970).

Comments: No independent analytical data are provided for the sample used. Different orientations of the graphite single crystal with respect to the incident beam were used, but no changes in the spectrum were detected, and the only Raman line observed occurs at 1575 cm^{-1} . Polycrystalline graphite exhibits another band at 1355 cm^{-1} , which is attributed to a particle size effect. For the Raman spectra of graphite see also Mishra and Bernhardt (2009), Kaliwoda et al. (2011), and Ogawara and Akai (2014).

Gratonite $Pb_9As_4S_{15}$

Origin: Binntal, Switzerland.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 50 to 600 cm⁻¹ using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 370sh, 357s, 333, 312, 237, 186s, 169, 155s, 89sh, 75s. Source: Kharbish (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(Pb_{8.94}Zn_{0.04}Cu_{0.02})(As_{3.99}Sb_{0.01})S_{15}$.

Greenockite CdS

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The nominal laser radiation power was in the range from 0.6 to 1 mW.

Raman shifts (cm⁻¹): 598, 560, 425w, 366sh, 345, 305, 252, 232, 210s.

Source: Rosi et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of greenockite see also Wang et al. (1993) and Chi et al. (2011).

Gregoryite $Na_2(CO_3)$

Origin: Oldoinyo Lengai volcano, northern Tanzania (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-Gd laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1077-1078s, 1003-1005w, 952-954w, 704-710w, 630-635w.

Source: Golovin et al. (2017).

Comments: For the Raman spectrum of gregoryite see also Zaitsev et al. (2009).

Greigite $\text{Fe}^{2+}\text{Fe}^{3+}{}_{2}S_4$

Origin: Artificial (from an archaeological artifact).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 0.1 mW.

Raman shifts (cm⁻¹): 365s, 350s, 250w, 188w, 138w.

Source: Rémazeilles et al. (2010).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis. For the Raman spectra of greigite see also Bourdoiseau et al. (2011), Li et al. (2014), and Eder et al. (2014).

Griceite LiF

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 6 mW.

Raman shifts (cm⁻¹): 191sh, 168s, 142s, 111w, 92.

Source: Alharbi et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Grimaldiite CrO(OH)

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 1634sh, 1593s, 1537sh, 1504sh, 1179sh, 1153, 981, 889sh, 823s, 630s, 558sh, 452.

Source: Yang et al. (2011c).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of grimaldiite see also Maslar et al. (2001).

Grimaldiite CrO(OH).

Origin: Artificial (a product of Cr corrosion).

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 647.1 nm Kr⁺ laser radiation. The laser radiation power at the sample was less than 64 mW. A nearly 180-scattering geometry was employed.

Raman shifts (cm⁻¹): 665sh, 535s, 475, 345w.

Source: Maslar et al. (2001).

Comments: The sample was characterized by X-ray diffraction data and EDS analysis. For the Raman spectrum of grimaldiite see also Yang et al. (2011c).

Grimselite $K_3Na(UO_2)(CO_3)_3·H_2O$

Origin: No data.

Experimental details: No data.

Raman shifts $(cm⁻¹)$: 1063, 812s, 727, 723sh, 692, 686.

Source: Biswas et al. (2016).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Grossite $CaAl₄O₇$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The maximum output laser radiation power was 100 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 942, 909s, 837, 807, 793, 756, 714, 686, 660, 630, 568, 457, 412s, 398, 356, 331, 322, 282, 268, 252, 220, 210, 203, 185, 134.

Source: Hofmeister et al. (2004).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Grossular $Ca₃Al₂(SiO₄)₃$

Origin: Mengyin, Shandong Province or Gejiu, Yunnan Province, China.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal in the spectral region from 50 to 1200 cm⁻¹ using 488 nm Ar⁺ laser radiation. The nominal laser radiation power was in the range from 100 to 150 mW.
- **Raman shifts (cm⁻¹):** 1000w, 876s, 821, 777w, 623w, 540, 502w, 405w, 364s, 268, 232, 194w, 172, 135, 108s.
- Source: Mingsheng et al. (1994).
- Comments: The sample was characterized by electron microprobe data. For the Raman spectra of grossular see also Kolesov and Geiger (1998), Bersani et al. (2009), Makreski et al. (2011), and Andò and Garzanti (2014).

Groutite $Mn^{3+}O(OH)$

Origin: Cuyana Range, Minnesota, USA.

Experimental details: Raman scattering measurements have been performed on a powdered and pelletised sample in the spectral region from 10 to 1000 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 10 mW . A $\sim 180^\circ$ -scattering geometry was employed.

Raman shifts (cm⁻¹): 648w, 615, 552s, 528s, 384s, 352, 278w, 253, 213, 142.

Source: Julien et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of groutite see also Bernard et al. (1993a).

Grumiplucite $HgBi₂S₄$

Origin: Rudňany deposit, Slovakia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 30 to 3500 cm^{-1} using 532 nm diode laser radiation. The nominal laser radiation power was 0.5 mW.

Raman shifts (cm⁻¹): 310, 275s, 258, 221s, 162, 144w, 127w, 106w, 92s, 82. Source: Števko et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Hg_{0.99}Bi_{1.94}S_{4.08}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of grumiplucite see also Lecker (2013).

Grunerite $\square \text{Fe}^{2+}{}_{2}\text{Fe}^{2+}{}_{5}\text{Si}_8\text{O}_{22}(\text{OH})_2$

Origin: Schneeberg, Tirol, Austria.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 210 to 3400 cm^{-1} using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 1098, 1027, 999w, 971, 909w, 785w, 761, 747sh, 665s, 566w, 533, 415, 363, 315w, 289, 242w.

Source: Apopei and Buzgar (2010).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of grunerite see also Apopei et al. (2011) and Leissner et al. (2015).

Grunerite $\square \text{Fe}^{2+}{}_{2}\text{Fe}^{2+}{}_{5}\text{Si}_8\text{O}_{22}(\text{OH})_{2}$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an oriented crystal in the spectral regions from 2600 to 3800 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in the parallel-polarized scattering geometries (the polarization of incident light E_i was parallel to the polarization of scattered light E_s) with the crystal-elongation direction parrallel to E_i ll E_s and crystal-elongation direction perpendicular to $E_i||E_s$.

Raman shifts (cm⁻¹): 3651, 3635, 3617.

Source: Leissner et al. (2015).

Commebts: The sample was characterized by electron microprobe data. The Raman shifts are given for the scattering geometry with the crystal-elongation direction pendicular to $E_i||E_s$, in which the Raman intensities are most strong. The empirical formula of the sample used is $(\Box_{0.97}Na_{0.01}Ca_{0.02})$ $(F_{0.89}Mn_{0.10}Ca_{0.01})_2(F_{0.61}Mg_{0.39})_5Si_{8.00}OH_{2.00}$. For the Raman spectra of grunerite see also Apopei and Buzgar (2010) and Apopei et al. (2011).

Guanacoite Cu2Mg3(OH)4(AsO4)2∙4H2O

Origin: El Guanaco Mine, near Taltal, Chile (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3561s, 3510w, ~2996sh, 1619w, ~1069w, ~996w, 865s, 837s, 738, ~740sh, ~685sh, 490, 439, 411sh, 390s, ~367sh, 352sh, 315s, ~295sh, 271, 221, 212, 188, 171, 149, 131. Source: Witzke et al. (2006).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Cu_{2,32}Mg_{2,64}(OH)_{4,13}(AsO_4)_{1,93}.4.15H_2O.$

Guanine $C_5H_3(NH_2)N_4O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 40 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1675, 1602w, 1551, 1479sh, 1468, 1421, 1390, 1361, 1265, 1234, 1186, 1159w, 937, 879w, 848, 775w, 710w, 693w, 649s, 603w, 562, 547, 495, 397, 357w, 340.

Source: Giese and McNaughton (2002).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of guanine see also Mathlouthi et al. (1986).

Gudmundite FeSbS

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was about 21 mW. A 180-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 462w, 362, 352s, 316sh, 305s, 288s, 279sh, 253w, 241, 230sh, 217sh, 210, 201sh, 161sh, 152s, 145sh, 136sh.

Source: Kharbish and Andráš (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $Fe_{1.01}As_{0.91}S_{1.08}$.

Guilleminite Ba(UO₂)₃(Se⁴⁺O₃)₂O₂⋅3H₂O

Origin: Musonoi mine, Kolwezi, Katanga (Shaba), Democratic Republic of Congo.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals in the spectral region from 100 to 1700 cm^{-1} using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1585w, 1514w, 831sh, 747s, 675sh, 544sh, 478, 419sh, 345sh, 245, 150. Source: Frost et al. (2009c).

Comments: No independent analytical data are provided for the sample used.

Gunningite $Zn(SO₄)·H₂O$

Origin: Coranda-Hondolopen pit, Certej Gold-Silver deposit, Certej, Romania.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 7.37 mW.

Raman shifts (cm⁻¹): 3230w, 1492w, 1192, 1087, 1024s, 884w, 665w, 626, 503, 423, 307sh, 277w, 219w.

Source: Apopei et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of gunningite see also Buzatu et al. (2016).

Gurimite $Ba_3(VO_4)_2$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample. The laser radiation power and wavelength are not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm^{-1}) : 835s, 777, 414w, 378w, 326s, 169w, 132w, 104w.

Source: Azdouz et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is solved. For the Raman spectra of gurimite see also Baran et al. (1972), Grzechnik and McMillan (1997), and Galuskina et al. (2016b).

Gwihabaite $(NH_4)(NO_3)$

Origin: Synthetic

Experimental details: No data.

Raman shifts (cm⁻¹): 1458w, 1410w, 1283w, 1040s, 711, 190.

Source: Morillas et al. (2016).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of gwihabaite see also Martínez-Arkarazo et al. (2007).

Gypsum $Ca(SO₄)·2H₂O$

Origin: Coranda-Hondol open pit, Certej Au-Agdeposit, Romania.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 14.3 mW.

Raman shifts (cm⁻¹): 3398, 1136, 1106sh, 1010s, 671w, 623w, 576w, 495w, 416, 312w, 215w. Source: Apopei et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of gypsum see also Anbalagan et al. (2009), Buzgar et al. (2009), Jehlička et al. (2009b), White (2009), Ciobotă et al. (2012), Capitani et al. (2014), and Wang and Zhou (2014).

Gyrolite NaCa₁₆(Si₂₃Al)O₆₀(OH)₈∙14H₂O

Origin: No data. Experimental details: No data. **Raman shifts (cm⁻¹):** 1057, 1035, 774w, 703w, 628, 598s, 572s, 456, 400, 351, 280s, 207, 169w, 145.

Source: De Ferri et al. (2012).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Hafnon Hf($SiO₄$)

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1021s, 985s, 935, 637w, 548w, 497w, 448, 402, 350, 268w, 213, 166w, 155, 147w.

Source: Grüneberger et al. (2016).

Comments: The sample was characterized by electron microprobe analysis. The empirical formula of the sample used is $Hf_{0.99}Zr_{0.01}SiO_4$. For the Raman spectra of hafnon see also Nicola and Rutt (1974) and Manoun et al. (2006).

Haidingerite $Ca(AsO₃OH)·H₂O$

Origin: Jáchymov, Bohemia, Krušné Hory (Czech Ore Mts.), Czech Republic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3574w, 3455sh, 3412, 2842w, 886sh, 855s, 838sh, 823sh, 745, 739sh, 660w, 433sh, 420, 376sh, 369, 338sh, 323, 299sh, 268w, 220, 180, 145, 123, 115sh.

Source: Frost et al. (2010h).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Haiweeite Ca(UO₂)₂(Si₅O₁₂)(OH)₂⋅6H₂O

Origin: Teófilo Otoni, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3606sh, 3498, 3375sh, 3273sh, 2923, 2875, 2851, 1170, 1115, 1108, 1087, 1019, 1015sh, 936, 919sh, 887w, 808s, 799s, 756w, 724w, 589, 473, 418w, 375, 317sh, 307, 283w, 264, 260, 236sh, 192s, 148sh, 108.

Source: Frost et al. (2006d).

Comments: No independent analytical data are provided for the sample used.

Hakite $Cu₆[Cu₄Hg₂]Sb₄Se₁₃$

Origin: Příbram uranium and base-metal district, Central Bohemia, Czech Republic.

Experimental details: Micro-Raman scattering measurements have been performed on a polished section using 532 nm diode laser radiation. The nominal laser radiation power was 0.5 mW.

Raman shifts (cm⁻¹): 261, 228s, 211sh, 185, 166, 82, 69.

Source: Škácha et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Halite NaCl

Origin: Kłodawa salt mine, Central Poland.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 335.

Source: Wesełucha-Birczyńska et al. (2008).

Comments: No independent analytical data are provided for the sample used. Possibly, the band at 335 cm^{-1} is a combination band of acoustical and optical modes of NaCl.

Halloysite-10Å $Al_2Si_2O_5(OH)_4·2H_2O$

Origin: A Neogene cryptokarst, southern Belgium.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm^{-1}) : 3703, 3688, 3642, 3625s, 3598, 3556, 944sh, 910, 826sh, 794, 748, 710, 548sh, 503sh, 465s, 430s, 359sh, 332, 275, 245.
- Source: Kloprogge and Frost (1999e).
- Comments: The sample was characterized by powder X-ray diffraction data. Raman shifts are given for an unspecified scattering geometry.

Halotrichite Fe²⁺Al₂(SO₄)₄⋅22H₂O

Origin: Corral Hollow, California, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 100 to 4000 cm⁻¹ using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3548sh, 3426w, 3270sh, 1147, 1086, 1031w, 985s, 608, 467, 444, 365w, 276sh, 247, 215sh.

Source: Locke et al. (2007).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of halotrichite see also Buzatu et al. (2016).

Hambergite $Be_2(BO_3)(OH)$

Origin: Ehrenfriedersdorf, complex, Erzgebirge (Ore Mts.), Germany.

Experimental details: Raman scattering measurements have been performed on a microscopic inclusions in beryl using 488.0 and 514.5 nm Ar⁺ laser radiations. The laser radiation power at the sample was about 10 mW.

Raman shifts $(cm⁻¹)$: 3469, 3403s, 988s, 270, 154s, 147, 123.

Source: Thomas et al. (2011b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of hambergite see also Thomas and Davidson (2010).

Hanjiangite $Ba_2Ca(V^{3+}Al)(AlSi_3O_{10})(OH)_2F(CO_3)$

Origin: Shiti Ba deposit, Dabashan region, China (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single-crystal thin chip using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3581s, 3540s, 2945, 2250, 1092s, 855w, 699, 405, 265, 193.

- **Source:** Liu et al. (2012).
- Comments: The sample was characterized by powder and single crystal X-ray diffraction data and by electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ba_{1.98}Na_{0.06}K_{0.01})(Ca_{0.76}Mg_{0.12}Y_{0.06}Sr_{0.03}La_{0.01}Nd_{0.01})(V_{1.15}Al_{0.75}Cr_{0.20}Ti_{0.12})[(Si_{2.84}$ $\text{Al}_{1.16}$)_{24.00}O₁₀][(OH)_{1.25}O_{0.77}](F_{0.82}Cl_{0.01})(CO₃)_{2.05}.

Hanksite $KNa_{22}(SO_4)_9(CO_3)_2Cl$

Origin: Searles Lake, California, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an oriented sample using 488.0 nm Ar⁺ laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in the scattering geometries with the laser radiation polarized approximately parallel to the c axis, and approximately parallel to the a axis.
- **Raman shifts (cm⁻¹):** 1190w, 1166w, 1156, 1142, 1135, 1124, 1117, 1096w, 1083s, 993s, 979sh, 712w, 634, 625, 620, 474, 470, 459.

Source: Palaich et al. (2013).

Comments: The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of hanksite see also Morillas et al. (2016).

Hannayite $(NH_4)_2Mg_3(PO_3OH)_4·8H_2O$

Origin: Lava Cave, near Skipton, Victoria, Australia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3496, 3460, 3384, 3314, 3219, 3185, 3125, 3090sh, 2983sh, 2872, 2649, 2466, 2228, 1947, 1756, 1708, 1661w, 1457w, 1429w, 1227w, 1172w, 1119w, 1070, 1011, 974s, 971s, 882, 802w, 757w, 596w, 556, 522, 513, 436, 415sh,379, 375, 356, 269, 250, 247, 205, 193w. Source: Frost et al. (2005j).

Comments: No independent analytical data are provided for the sample used.

Hannebachite Ca(SO_3)∙0.5H₂O

Origin: Hannebacher Ley Volcano, Eifel, Germany (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1092-1094, 1005s, 969, 655w, 520, 492, 444, 174. Source: Frost and Keeffe (2009d). Comments: No independent analytical data are provided for the sample used.

Hansesmarkite $Ca₂Mn₂Nb₆O₁₉·20H₂O$

Origin: Tvedalen, Larvik Plutonic Complex, Vestfold, southern Norway (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹): 913s, 865, 841sh, 734w, 520w, 473sh, 302, 217.$

```
Source: Friis et al. (2016).
```
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{1.93}Na_{0.02}K_{0.01})(Mn_{1.79}Fe_{0.11})Nb_{6.00}O_{18.84}\cdot 20H_2O.$

Hardystonite $Ca₂ZnSi₂O₇$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. Polarized spectrum was collected in the $\sim y(zz) \sim y$ scattering geometry.
- **Raman shifts (cm⁻¹):** 1060, 1020w, 906s, 663s, 614s, 550w, 480, 445, 265, 240sh, 220, 145w, 115w, 100, 60w.

Source: Kaminskii et al. (2011).

Comments: No independent analytical data are provided for the sample used.

Harmotome $Ba_2(Si_{12}Al_4)O_{32}$ ∙12H₂O

Origin: Mannbühl (Giro) quarry, Dannenfels, Kirchheimbolanden, Rhineland-Palatinate, Germany.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3615sh, 3526w, (3418w), 3287sh, 1707w, 1648w, 1102, 1020sh, 768w, 728w, 699w, 561w, 546sh, 534w, (515), 491s, 470sh, 428, 358w, 350sh, 335, 319, 289, 199, 183sh, 169sh.

Source: Frost et al. (2015q).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectrum of harmotome see also Mozgawa (2001).

Harmunite $CaFe₂O₄$

Origin: Jabel Harmun, West Bank, Palestinian Autonomy, Israel (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm solid-state laser radiation. The laser radiation power at the sample was 44 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1228, 648s, 585s, 519, 453sh, 4354, 379sh, 364s, 298, 270, 206, 182, 161, 117. Source: Galuskina et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Ca_{1.013}$ $(Fe^{3+}{}_{1.957}Al_{0.015}Cr_{0.011}Ti_{0.004}Mg_{0.003})O_4.$

Harmunite Mn⁴⁺-bearing $Ca_{1-x}(Fe^{3+},Mn^{4+})_2O_4$

Origin: Bellerberg volcano, Eifel, Rhineland-Palatinate, Germany.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm solid-state laser radiation. The laser radiation power at the sample was 44 mW.

Raman shifts (cm⁻¹): 1225, 617sh, 590s, 526, 468, 391w, 327w, 289w, 205w, 161, 115w. Source: Galuskin et al. (2016b).

Comments: The sample was characterized electron microprobe data. The empirical formula of the sample used is $Ca_{0.862}(Fe^{3+}{}_{1.719}Mn^{4+}{}_{0.265}Ti^{4+}{}_{0.012}Mg_{0.008})O_4$.

Hartite $C_{20}H_{34}$

Origin: Castelnuovo di Valdarno, Italy.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 100 to 3500 cm^{-1} using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 350 mW.
- **Raman shifts (cm⁻¹):** 3000, 2978, 2962, 2942s, 2921s, 2907sh, 2886sh, 2866, 2851, 2768w, 2733w, 1480, 1468sh, 1440s, 1387, 1370w, 1356, 1341, 1320w, 1310, 1287, 1264, 1249w, 1230, 1217sh, 1208s, 1180, 1154sh, 1144, 1114(?), 1096s, 1085w, 1075w, 1063, 1041, 1027w, 1013, 996, 976, 963sh, 946, 936, 926(?), 916w, 892, 879, 845, 814, 792s, 770, 745w, 729s, 693, 639, 598w, 558, 543, 526, 489, 452, 403, 389w, 345, 326w, 305.

Source: Jehlička and Edwards (2008).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of hartite see also Jehlička et al. (2005).

Hashemite $Ba(CrO₄)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample prepared as a pellet using 488 nm Ar⁺ laser radiation. The nominal laser radiation power was 200 mW.
- **Raman shifts (cm⁻¹):** 907, 900, 885w, 873, 864s, 429w, 412w, 404w, 396w, 361, 351, 135w, 112w, 66w.

Source: Scheuermann and Schutte (1973a).

Comments: The sample was characterized by powder X-ray diffraction data.

Hatchetine A paraffin wax related to evenkite.

Origin: Zastávka, near Brno, Bohemian Massif, Czech republic.

Experimental details: Raman scattering measurements have been performed on a compacted powder of amorphous sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 2883s, 2847, 2725, 1463s, 1440s, 1418, 1389w, 1371w, 1347, 1295s, 1171. Source: Jehlička et al. (2007a).

Comments: No independent analytical data are provided for the sample used.

Hatrurite $Ca₃SiO₅$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 363.8 nm laser radiation. The nominal laser radiation power was 150 mW.
- Raman shifts (cm⁻¹): 953sh, 929sh, 914, 893, 880, 847s, 812, 741, 540, 521sh, 392, 352, 326, 317sh, 267, 240, 224, 180, 126, 103, 80, 56.

Source: Fujimori et al. (2005).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Hauerite $MnS₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a single crystal using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated. A 180 \degree -scattering geometry was employed. Raman spectrum was collected in the scattering geometry with the laser radiation direction normal to the (111) plane of the crystal.

Raman shifts (cm⁻¹): 743w, 655, 486s, 246, 223.

Source: Verble and Humphrey (1974).

Comments: No independent analytical data are provided for the sample used.

Hausmannite $Mn^{2+}Mn^{3+}$ ₂O₄

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample prepared as a pellet using 514.5 nm Ar⁺ and 647.1 nm Kr⁺ laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 668s, 479w, 371, 328, 298.

Source: Lutz et al. (1991).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of hausmannite see also Bernard et al. (1993a), Julien et al. (2004), and Mironova-Ulmane et al. (2009).

Hausmannite $Mn^{2+}Mn^{3+}{}_{2}O_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 10 mW . A nearly 180° -scattering geometry was employed. Raman spectrum was obtained in the spectral region from 10 to 1200 cm^{-1} .

Raman shifts (cm⁻¹): 653s, 579w, 485w, 357, 310.

Source: Julien et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of hausmannite see also Lutz et al. (1991), Bernard et al. (1993a), and Mironova-Ulmane et al. (2009).

Haüyne $Na₃Ca(Si₃Al₃)O₁₂(SO)₄$

Origin: Sacrofano, Latium, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 300 mW. **Raman shifts (cm⁻¹):** 1152, 1090, 1027sh, 998sh, 986s, 977s, 643, 610, 545w, 433s.

Source: Ballirano (2012).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is $(Na_{4.4}K_{1.1}Ca_{2.1})[Si_6Al_6O_{24}](SO_4)_{1.6}(S_3)_{0.3}(CO_2)_{0.1}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of haüyne see also Caggiani et al. (2014).

Hawleyite CdS

Origin: No data.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was in the range 0.3–5 mW. Raman shifts $(cm⁻¹)$: 902, 633sh, 598, 295, 254sh.

Source: Rosi et al. (2016).

Comments: The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of hawleyite see also Wang et al. (1993).

Hawthorneite BaMgTi₃Cr₄Fe²⁺₂Fe³⁺₂O₁₉

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632 nm He-Ne laser radiation. The nominal laser radiation power was in the range 4–8 mW.

Raman shifts (cm⁻¹): 680s, 516, 459sh, 352, 285w.

Source: Konzett et al. (2005).

Comments: The sample was characterized by electron microprobe analysis.

Haynesite $(UO₂)₃(Se⁴⁺O₃)₂(OH)₂·5H₂O$

Origin: Repete Mine, Blanding, San Juan Co., Utah, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3476w, 862w, 812s, 800s, 741, 582w, 472, 437sh, 419s, 367, 342, 278, 257sh, 219, 157sh, 142.

Source: Frost et al. (2006q).

Comments: No independent analytical data are provided for the sample used.

Hazenite KNaMg₂(PO₄)₂⋅14H₂O

Origin: Mono Lake, California, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 3900-2500, 2380, 1620w, 1100-988sh, 932s, 685w, 559, 430, 290, 234. Source: Yang et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is $K_{0.97}(Na_{0.96}Ca_{0.02})Mg_{2.07}[(P_{0.98}S_{0.02})O_4]_2.13.90H_2O$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Heazlewoodite $Ni₃S₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a sample prepared as a pellet using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 40 mW.

Raman shifts $(cm⁻¹)$: 351s, 324w, 305, 223, 201, 190.

Source: Cheng and Liu (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of heazlewoodite see also Lanteigne et al. (2012).

Hectorite $Na_{0.3}(Mg,Li)₃Si₄O₁₀(F,OH)₂⋅nH₂O$

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 1082, 944w, 892, 783, 683s, 560, 516w, 461, 379sh, 333, 282, 206sh, 184s. Source: Wang et al. (1998a).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Hedenbergite $CaFe^{2+}Si₂O₆$

Origin: Sasa, Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1030sh, 1010s, 904w, 850w, 655s, 549, 523, 494w, 370, 330, 300, 230w, 182, 145, 121, 115.

Source: Jovanovski et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of hedenbergite see also Huang et al. (2000), Buzatu and Buzgar (2010), and Andò and Garzanti (2014).

Hedenbergite $CaFe^{2+}Si_2O_6$

Origin: Nordmarken, Sweden.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal. Experimental details are not described.

Raman shifts (cm⁻¹): 1012s, 894w, 852, 663s, 553w, 524, 499sh, 381, 346w, 315, 231w. Source: Buzatu and Buzgar (2010).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of hedenbergite see also Huang et al. (2000), Jovanovski et al. (2009), and Andò and Garzanti (2014).

Hedyphane $Ca₂Pb₃(AsO₄)₃Cl$

Origin: Puttapa mine, Beltana, Flinders Ranges, South Australia, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3659sh, 3563sh, 3458sh, 3409, 3389, 3352sh, 3304sh, 3258, 3235, 848sh, 834sh, 819s, 811sh, 787s, 770, 452, 432sh, 394, 372sh, 349, 334sh, 319s, 201sh, 192sh, 177sh, 162, 151sh, 141sh.

Source: Frost et al. (2007c).

Comments: No independent analytical data are provided for the sample used. Raman shifts in the OH stretching region indicate that there is isomorphic replacement of Cl for OH.

Heisenbergite (UO2)(OH)2⋅H2O

Origin: Menzenschwand, Schwarzwald (Black Forest), Germany (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 150 to 4000 cm^{-1} using 638 nm laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1005w, 923w, 829s, 799sh, 742s, 538, 438, 389sh, 338w, 247w, 190w. Source: Walenta and Theye (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $U_{1.044}Pb_{0.020}Ba_{0.004}Ca_{0.008}H_{3.672}O_5$.

Heliophyllite $Pb_6As_2O_7Cl_4$

Origin: Karrantza valley, Basque Co., Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ and 785 nm diode laser radiations. The laser radiation power at the sample was 20 mW with Ar^+ excitation, and the nominal laser radiation power was 150 mW with diode excitation.

Raman shifts (cm⁻¹): 808, 746, 718, 160s.

Source: Goienaga et al. (2011).

Comments: No independent analytical data are provided for the sample used.

Hellyerite Ni (CO_3) ∙6H₂O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1397, 1092s, 721w, 409w, 293, 257, 224sh, 157s.

Source: Bette et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is solved.

Hematite Fe₂O₃

Origin: No data.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was below 0.7 mW. **Raman shifts (cm⁻¹):** 1320, 612, 497w, 411s, 299sh, 293, 246w, 227.

Source: De Faria et al. (1997).

Comments: The sample was characterized by X-ray diffraction data. For the Raman spectra of hematite see also Bouchard and Smith (2003), Lepot et al. (2006), Müller et al. (2010), Sagatowska (2010), Das and Hendry (2011), Hosterman (2011), Nieuwoudt et al. (2011), Ciobotă et al. (2012), Andò and Garzanti (2014), and Apopei et al. (2014a).

Hematite $Fe₂O₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was below 0.4 mW. **Raman shifts (cm⁻¹):** 1300, 1046, 824w, 657, 610, 494, 408, 292s, 243w, 223s.

Source: Müller et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of hematite see also De Faria et al. (1997), Bouchard and Smith (2003), Lepot et al. (2006), Sagatowska (2010), Das and Hendry (2011), Hosterman (2011), Nieuwoudt et al. (2011), Ciobotă et al. (2012), Andò and Garzanti (2014), and Apopei et al. (2014a).

Hemihedrite $ZnPb_{10}(CrO_4)_6(SiO_4)_2F_2$

Origin: Florence Pb-Ag mine, Pinal Co., Arizona, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 3389w, 858s, 841s, 825, 784, 370sh, 340.

Source: Lafuente et al. (2016).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Pb_{10.21}(Cu_{0.65}Zn_{0.34})(Cr_{5.93}P_{0.07}S_{0.04})(Si_{1.83}As_{0.10})O_{34}H_{1.62}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of hemihedrite see also Frost (2004c).

Hemimorphite $Zn_4(Si_2O_7)(OH)_2·H_2O$

Origin: Sasa, Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample in the spectral region from 100 to 1300 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 980w, 930s, 678, 559w, 516w, 452, 402, 332, 304w, 282w, 218w, 169, 132s. Source: Makreski et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of hemimorphite see also Jovanovski et al. (2009).

Hemleyite FeSi O_3

Origin: Suizhou L6 chondrite (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample. Experimental details are not described.

Raman shifts (cm⁻¹): 795s, 673, 611, 476, 403, 342. Source: Bindi et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Fe^{2+}_{0.48}Mg_{0.37}Ca_{0.04}Na_{0.04}Mn^{2+}_{0.03}Al_{0.03}Cr^{3+}_{0.01})Si_{1.00}O_3.$

Hemusite $Cu^{1+}_{4}Cu^{2+}_{2}SnMoS_{8}$

Origin: Zijin Cu-Au mine, China. Experimental details: No data. **Raman shifts (cm⁻¹):** 826, 658, 413, 348, 294, 262. **Source:** Liu et al. (2012). **Comments:** The empirical formula of the sample used is $\text{Cu}_{6.03}\text{Sn}_{0.95}\text{Fe}_{0.14}\text{Mo}_{0.97}\text{S}_{8.0}$.

Hendricksite $KZn_3(Si_3Al)O_{10}(OH)_2$

Origin: Franklin Furnace, New Jersey, USA.

Experimental details: Raman scattering measurements have been performed on an oriented sample using 514.5 and 488 nm $Ar⁺$ laser radiations. The laser radiation power is not indicated. Spectra were collected in scattering geometries with incident laser polarization parallel and perpendicular to the cleavage plane.

Source: Thili et al. (1989).

Raman shifts (cm⁻¹): 1028, 677s, 644, 321w, 317w, 278w, 189s, 94w.

Comments: The sample was characterized by electron microprobe analyses. The Raman shifts are given as the sum of the both scattering geometries.

Henmilite $Ca_2Cu[B(OH)_4]_2(OH)_4$

Origin: Fuka mine, Okayama prefecture, Honshu Island, Japan (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3609s, 3593sh, 3559s, 3501, 3457sh, 3424s, 3396sh, 3328s, 3269s, 3195sh, 3101sh, 1270w, 1208w, 984w, 969sh, 951w, 922w, 902sh, 834w, 823w, 758s, 752sh, 745sh, 697sh, 598w, 562w, 547w, 534sh, 479sh, 469, 415w, 403w,m 365, 353sh, 335w, 290, 267sh, 255, 240, 225, 217sh, 197, 181sh, 172, 162, 148, 128.

Source: Frost and Xi (2013e).

Comments: No independent analytical data are provided for the sample used.

Henritermierite $Ca₃Mn³⁺₂(SiO₄)₂(OH)₄$

Origin: N'Chwaning II mine, Kalahari Manganese Fields, South Africa.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 200 mW.
- **Raman shifts (cm⁻¹):** 3428, 989w, 921, 882, 834w, 567s, 547w, 500s, 469w, 435, 373, 337, 322sh, 278, 257sh, 248, 168, 151.

Source: Friedrich et al. (2015).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{2.98}Na_{0.01}Mg_{0.01})(Mn_{1.95}Fe_{0.01}Al_{0.04})[SiO_4]_{2.07}[O_4H_4]_{0.93}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Henryite $Cu₄Ag₃Te₄$

Origin: Pyrrhotite gorge, Lovchorr Mt., Khibinymassif, Kola Peninsula, Russia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ or 785 nm diode laser radiation. The nominal laser radiation power was 50 mW or 500 mW, respectively.
- **Raman shifts (cm⁻¹):** 148s, 118s, 91w.

Source: Voloshin et al. (2015a).

Comments: The sample was characterized by electron microprobe analyses. The empirical formula of the sample used is $Cu_{3.89}(Ag_{2.75}Au_{0.03})Te_{4.00}$.

Herbertsmithite $Cu₃Zn(OH)₆Cl₂$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an oriented sample with the laser beam direction normal to the xy plane of a crystal using 532 nm laser radiation. The nominal laser radiation power was 1 mW. A nearly 180°-scattering geometry was employed. Polarized spectra were collected during rotation of the sample within the crystallographic xy plane with the axis of rotation along of the incident light.

Raman shifts (cm⁻¹): 943, 702, 501s, 402, 365, 230w, 148, 123s [for the (xx) scattering geometry]. Source: Wulferding et al. (2010) .

Comments: The empirical formula of the sample used is $Zn_{0.8}Cu_{3.2}(OH)_{6}Cl_2$. For the Raman spectrum of herbertsmithite see also Chu et al. (2011).

Hercynite $Fe^{2+}Al_2O_4$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power was less than 1 mW. A 180 $^{\circ}$ -scattering geometry was employed.

Raman shifts (cm⁻¹): 748s, 699w, 617, 504, 400, 366sh, 189s. Source: D'Ippolito et al. (2015). Comments: The sample was characterized by electron microprobe analysis.

Herderite $CaBe(PO₄)F$

Origin: Ehrenfriedersdorf complex, Erzgebirge (Ore Mts.), Germany.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented microscopic inclusion in quartz using 488 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 450 mW.

Raman shifts (cm⁻¹): 1005, 983s, 595, 584.

Source: Rickers et al. (2006).

Comments: No independent analytical data are provided for the sample used.

Herzenbergite SnS

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power at the sample was less than 0.4 mW.

Raman shifts (cm⁻¹): 220, 192s, 165, 95, 67w, 48, 39s.

Source: Fontané et al. (2013).

Comments: The sample was characterized by X-ray diffraction data. For the Raman spectrum of herzenbergite see also Chandrasekhar et al. (1977).

Hessite $Ag₂Te$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 488, 515, and 633 nm laser radiations. The nominal laser radiation power was 0.3 mW.
- **Raman shifts (cm⁻¹):** 138, 110, 80.

Source: Milenov et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Hetaerolite $\text{ZnMn}^{3+}{}_{2}\text{O}_4$

Origin: Madjarovo deposit, Eastern Rhodopes, Bulgaria.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 38 mW.

Raman shifts (cm^{-1}) : 684s, 637, 595sh, 574, 515w, 487w, 388s, 374sh, 329, 309sh.

Source: Vassileva et al. (2005).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of hetaerolite see also Javed et al. (2013).

Heterogenite $Co³⁺O(OH)$

Origin: Mindigi mine, Katanga copperbelt, Katanga province, Democratic Republic of Congo.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 2 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1202w, 1133w, 670, 626, 572, 495s.

Source: Burlet et al. (2011).

Comments: The sample was characterized electron microprobe analyses. For the Raman spectrum of heterogenite see also Burlet et al. (2014).

Heterosite $Fe^{3+}(PO_4)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm laser radiation. The nominal laser radiation power was 3 mW . A 180° -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1123s, 1078s, 1064s, 962, 912, 660, 602, 587, 575w, 516w, 492, 400w, 339, 308, 246, 199w, 175s, 107.

Source: Burba and Frech (2004).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Heulandite $(Ca, Na, K)_{5}(Si_{27}Al_{9})O_{72}$ ∙26H₂O(?)

Origin: Paterson, Passaic Co., New Jersey, USA.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1138w, 799w, 611w, 483s, 404s, 147.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Hexacelsian $Ba(Al₂Si₂O₈)$

Origin: Hatrurim complex, Negev Desert, Israel.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm solid-state laser radiation. The laser radiation power at the sample was 44 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1119, 1087w, 961, 924, 890, 809w, 678, 594, 480w, 461w, 406s, 296w, 107s. Source: Galuskina et al. (2016b).

Comments: The sample was characterized by electron microprobe analyses. The empirical formula of the sample used is $(Ba_{0.911}K_{0.059}Ca_{0.042}Na_{0.010})Al_{1.891}Fe^{3+}{}_{0.072}Si_{2.034}O_8$. For the Raman spectra of hexacelsian see also Colomban et al. (2000), Kremenović et al. (2003), and Dondur et al. (2005).

Hexaferrum (Fe,Os,Ru,Ir)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a high-purity polycrystalline Fe sample at pressures from 15 to 152 GPa. A 35° incidence angle for the exciting radiation was employed. No characteristics of the laser radiation are indicated.

Raman shifts (cm⁻¹): 245sh, 210 (at 22 GPa); 260 (at 82 GPa); 300 (at 152 GPa). Source: Merkel et al. (2000).

Comments: No independent analytical data are provided for the sample used.

Hexahydrite Mg $(SO₄)$ ∙6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample in the spectral region from 50 to 4300 cm^{-1} using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 15 mW.

Raman shifts (cm⁻¹): 3540sh, 3428, 3258sh, 1655, 1146w, 1085w, 984s, 610w, 466w, 445w, 364, 245, 223.

Source: Wang et al. (2006a).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of hexahydrite see also Apopei et al. (2015).

Hexahydroborite Ca $[B(OH)_4]_2$ ∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm⁻¹): 859s, 755s, 389w.

Source: Jun et al. (1995).

Comments: The sample was characterized by powder X-ray diffraction data.

Hiärneite $(Ca, Mn^{2+},Na)_2(Zr, Mn^{3+})_5(Sb, Ti, Fe)_2O_{16}$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality). Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 200 mW.

Raman shifts (cm⁻¹): 672, 602, 515, 453, 426s, 398s, 388s, 378, 305, 268, 215sh, 195, 167, (159), 141.

Source: Holtstam (1997).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Na_{0.17}Ca_{1.57}$ Mn^{2+} _{0.62} $Zr_{4.19}Hf_{0.02}Sb^{5+}$ _{1.37}Ti_{0.59} Mn^{3+} _{0.36} $Mg_{0.02}Fe_{0.09}O_{16}$. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Hibonite-(Fe) (Fe,Mg) $Al_{12}O_{19}$

Origin: Allende meteorite.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- Raman shifts $(cm⁻¹)$: 1067s, 1014, 748, 728, 490, 432.

Source: Ma (2010).

Comments: The sample was characterized by electron microprobe data and electron microprobe analyses. The empirical formula of the sample used is $(Fe^{2+}_{0.34}Mg_{0.27}Na_{0.12}Al_{0.11}Ca_{0.03})$ $(Al_{11.77}Si_{0.23})O_{19}.$

Hibonite $(Ca, Ce)(Al, Ti, Mg)₁₂O₁₉$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm Nd-YAG laser radiation. The laser radiation output power was 100 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 910s, 873, 837, 796, 774, 741, 684, 640, 625, 565, 530, 489, 458, 450, 399, 332s, 274, 251, 209, 194sh.

Source: Hofmeister et al. (2004).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Hidalgoite $PbAl₃(SO₄)(AsO₄)(OH)₆$

Origin: Gold Hill mine, Tooele Co., Utah, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3477, 3351sh, 3185sh, 1730, 1093, 1014s, 998sh, 879s, 853sh, 649, 631sh, 595, 528s, 513sh, 480, 433, 351sh, 334, 265, 234sh, 210s, 157, 142sh, 107.

Source: Frost et al. (2011o).

Comments: No independent analytical data are provided for the sample used.

Hieratite K_2SiF_6

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was between 80 and 200 mW.

Raman shifts (cm⁻¹): 655s, 478w, 408.

Source: Rissom et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data.

Hilarionite $Fe^{3+}{}_{2} (SO_4) (ASO_4) (OH) 6H_2 O$

Origin: Hilarion Mine, Lavrion, Greece (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514 nm diode laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1015s, 877sh, 843sh, 807, 585w, 495, 448sh, 390w, 365, 292, 191, 143sh, 123. **Source:** Liu et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Hingganite-(Y) $BeY(SiO₄)(OH)$

Origin: Oppach, Lusatian Mts., Germany.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was 45 mW.
- **Raman shifts (cm⁻¹):** 3540, 922, 724, 332w.
- Source: Thomas and Davidson (2017).
- Comments: The sample was characterized by electron microprobe analyses. Fluorescence lines are excluded.

Hinsdalite $PbAl₃(SO₄)(PO₄)(OH)₆$

Origin: Sylvester mine, Zeehan, Tasmania, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3603sh, 3472w, 3247w, 1021s, 1007s, 997sh, 982s, 930w, 614, 581sh, 506, 463, 374, 279sh, 250s, 187, 143, 108.

Source: Frost et al. (2011k).

Comments: No independent analytical data are provided for the sample used.

Hiortdahlite $(Na,Ca)_{2}Ca_{4}Zr(Mn,Ti,Fe)(Si_{2}O_{7})_{2}(F,O)_{4}$

Origin: Langezundfiord, Norway. Experimental details: No data. **Raman shifts (cm⁻¹):** 1047, 947s, 796, 661s, 258. Source: Sharygin et al. (1996a, b). Comments: No independent analytical data are provided for the sample used.

Hisingerite Fe₂Si₂O₅(OH)₄⋅2H₂O

Origin: McMurdo Dry Valleys, Antarctica. Experimental details: No data. **Raman shifts (cm⁻¹):** 1055, 1031, 983, 899w, 863w, 782, 736, 666s, 546s, 504, 450, 388, 288, 236, 189, 145w, 121w.

Source: Edwards et al. (2004).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Hochelagaite $CaNb₄O₁₁·8H₂O$

Origin: Mont Saint-Hilaire, Québec, Canada (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 925, 878s, 663s, 587, 477, 387, 325w, 300w, 234, 196sh.

Source: Haring and McDonald (2017).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Hoelite $C_{14}H_8O_2$

Origin: Kladno, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 10 mW.
- **Raman shifts (cm⁻¹):** 3076w, 1665s, 1597, 1583, 1439w, 1387w, 1317, 1306w, 1239w, 1214, 1176s, 1146, 1080w, 1030s, 976w, 818w, 790w, 767, 682, 520w, 495w, 475, 437, 362, 238s.

Source: Jehlička et al. (2007b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of hoelite see also Jehlička et al. (2009a).

Hoganite Cu(CH₃COO)₂⋅H₂O

Origin: Potosi Pit, Broken Hill, Yancowinna Co., New South Wales, Australia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3478, 3024s, 2989, 2941s, 2922s, 2862, 2788, 1449, 1440, 1418, 1360, 948s, 938, 703, 684, 322s, 297s, 266, 252, 230, 212, 184.

Source: Musumeci and Frost (2007).

Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis. The empirical formula of the sample used is $C_4H_{7.89}O_{5.07}Cu_{1.00}Fe_{0.01}$.

Hogarthite $(Na,K)_2$ CaTi₂Si₁₀O₂₆⋅8H₂O

- Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada (type locality).
- Experimental details: Raman scattering measurements have been performed with a laser beam perpendicular to the {010} cleavage of a single using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3607, 3411sh, 3239sh, 1608w, 1190, 1052, 942s, 902sh, 794w, 714w, 679, 548s, 448s, 295s, 258w, 225, 173, 135, 105.

Source: McDonald et al. (2015) .

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Na_{0.78}K_{0.62}\square_{0.51}Ca_{0.09})Ca(Ti_{1.85}Zr_{0.09}Nb_{0.06})Si_{10.09}O_{26}\cdot 8H_2O.$

Hohmannite $Fe^{3+}{}_{2}O(SO_{4}){}_{2}^{0}8H_{2}O$

Origin: Sierra Gorda District, Antofagasta Province, Antofagasta Region, Chile.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was less than 1 mW.
- **Raman shifts (cm⁻¹):** 3495sh, 3438w, 3292sh, 3204w, 1204w, 1166w, 1125, 1098s, 1075w, 1058, 1031s, 1018, 659w, 628w, 605w, 580w, 496w, 470w, 400s, 334s, 258s, 245sh, 227sh, 198, 163, 144w, 129w, 73, 49.

Source: Ventruti et al. (2015).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Holdawayite $Mn^{2+}{}_{6}(CO_3)_2(OH)_7(CI,OH)$

Origin: Udachnaya-East kimberlite, Yakutia, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm^{-1}) : 1087s, ~700.

Source: Mernagh et al. (2011).

Comments: No independent analytical data are provided for the sample used. The Raman shifts have been determined for a polymineral aggregate. The Raman shifts of holdawayite from the RRUFF Project database (sample R090029) are: 1087s, 900, 701, 222, 164, 151.

Holfertite $(UO₂)_{1.75}Ca_{0.25}TiO₄·3H₂O$

Origin: Starvation Canyon, Thomas Range, Juab Co., Utah, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3500w, 3406sh, 2925w, 2866sh, 1628w, 1555sh, 1128w, 828s, 749s, 641sh, 474, 389s, 328, 257, 201sh, 144.

Source: Frost (2011a).

Comments: No independent analytical data are provided for the sample used.

Hollandite $Ba(Mn^{4+}_{6}Mn^{3+}_{2})O_{16}$

Origin: Jhabua district, Madhya Pradesh, India.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 10 to 1200 cm^{-1} using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 10 mW. A nearly 180 $^{\circ}$ -scattering geometry was employed.

Raman shifts (cm⁻¹): 705w, 628, 586, 558w, 507, 395w.

Source: Julien et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data.

Hollingworthite RhAsS

Origin: No data.

Experimental details: Experimental details are not indicated. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 1093w, 986w, 557w, 381sh, 360s, 347sh, 283, 272sh, 256s, 214, 146, 77sh. Source: Bakker (2014).

Comments: The sample was characterized by electron microprobe data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Holmquistite \Box Li₂(Mg₃Al₂)Si₈O₂₂(OH)₂

Origin: Martin Marietta quarry, Bessemer, North Carolina, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3661s, 3646s, 3631s, 3614, 1127, 1102sh, 1085s, 1045sh, 1022s, 791, 753, 694sh, 679s, 613, 582sh, 565sh, 551, 530sh, 502, 471, 456, 423, 408sh, 390s, 343, 309w, 297.

Source: Kloprogge et al. (2001a).

Comments: The sample was characterized by powder X-ray diffraction data and qualitative electronmicroprobe analysis. The analytical data are insufficient for the mineral identification. For the Raman spectrum of holmquistite see also Kloprogge et al. (2001c).

Honessite $(Ni_{1-x}Fe^{3+}{}_{x})(SO_4)_{x/2}(OH)_2nH_2O (x < 0.5, n < 3x/2)$

Origin: Linden, Upper Mississippi Valley district, Iowa Co., Wisconsin, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 3614w, 2988sh, 2956, 2244, 1061w, 973, 852w, 527s, 460, 167w. Source: Bindi et al. (2015a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $[(Ni^{2+}_{0.902})$ Ca^{2+} _{0.002})(Co^{3+} _{0.072}Fe³⁺_{0.024})](OH)_{1.884}Cl_{0.012}(H₂O)_{0.004}(SO₄)_{0.100}·0.900H₂O.

Hopeite $Zn_3(PO_4)_2$ ∙4H₂O

Origin: Kabwe (Broken Hill)mine, Kabwe district, Central province, Zambia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts $(cm⁻¹)$: 3456w, 3247sh, 1150, 1059w, 1000sh, 995s, 940.

- Source: Frost (2004a).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of hopeite see also O'Neill et al. (2006).

Hopeite $Zn_3(PO_4)_2$ ∙4H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 1149, 1059, 998s, 942, 598, 368sh, 315.

Source: O'Neill et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data, but no independent analytical data are provided for the sample used. For the Raman spectrum of hopeite see also Frost (2004a).

Hörnesite Mg3(AsO4)2∙8H2O

Origin: Allchar (Alšar) deposit, Rožde, Kavadarci, Republic of Macedonia.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 875w, 808s, 468w, 430, 403, 365, 301w, 271, 262sh, 242, 205, 180w, 158, 138.

Source: Makreski et al. (2015b).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of hörnesite see also Frost et al. (2003g).

Hsianghualite $Li_2Ca_3Be_3(SiO_4)_{3}F_2$

Origin: Xianghualing (Hsianghualing) mine, Linwu Co., Hunan province, China (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was in the range from 300 to 380 mW.

Raman shifts $(cm⁻¹)$ **: 930, 894.**

Source: Yuran and Li (1998).

Comments: No independent analytical data are provided for the sample used.

Huanghoite-(Ce) $BaCe(CO₃)₂F$

Origin: Bayan Obo deposit, Baotou prefecture, Inner Mongolia Autonomous Region, China (type locality).

Experimental details: Raman scattering measurements have been performed using 488 nm laser radiation. The nominal laser radiation power was 300 mW. Raman spectrum was obtained in the spectral regions from 200 to 1200 cm⁻¹ and from 1300 to 3200 cm⁻¹.
Raman shifts (cm⁻¹): 2746, 2718sh, 2183, 1840w, 1596, 1525, 1374sh, 1089s, 720, 695, 649, 354, 273, 224, 106.

Source: Hong et al. (1999).

Comments: No independent analytical data are provided for the sample used. Raman bands in the range from 1300 to 2800 cm^{-1} are mainly due to luminescence.

Huanzalaite $Mg(WO_4)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 2 mW. A 180°-scattering geometry was employed.
- Raman shifts $(cm⁻¹)$: 917s, 809, 713, 684w, 552, 518, 420, 405w, 385w, 352, 314w, 294, 277, 267sh, 215w, 185, 156, 97s.

Source: Ruiz-Fuertes et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data.

Hubeite $Ca₂Mn²⁺Fe³⁺Si₄O₁₂(OH)²+O₁₂$

Origin: Fengjiashan Mine, Daye Co., Huangshi prefecture, Hubei province, China (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The nominal laser radiation power was 0.23 mW.
- **Raman shifts (cm⁻¹):** 1083w, 1033, 966s, 912w, 899, 892, 864, 740, 664s, 575, 498, 489s, 468, 406sh, 400s, 366s, 292, 254, 195, 176, 145, 125, 117.

Source: Ferras et al. (2016).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Hübnerite $Mn^{2+}(WO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 685 nm Nd-YAG laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 885, 775, 697, 672, 543, 509, 445, 395, 353, 325, 290, 255, 202, 174, 161, 126. Source: Frost et al. (2004b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of hübnerite see also Kloprogge et al. (2004b) and Almeida et al. (2012).

Hughesite Na₃AlV₁₀O₂₈⋅22H₂O

Origin: Sunday mine, Gypsum valley, San Miguel Co., Colorado, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an oriented single crystal with the laser beam perpendicular to the (001) cleavage surface (orientation 1) and with the laser beam parallel to the cleavage surface (orientation 2) in the spectral region from 100 to

 1500 cm^{-1} using 632 nm He-Ne laser radiation. The nominal laser radiation power was 1 mW and 0.5 mW, respectively.

Raman shifts (cm⁻¹): 1007s, 994sh, 972, 959sh, 945sh, 877w, 596, 471w, 363, 319, 270sh, 247, 235, 218w, 201sh, 192 (orientation 1); 999s, 972s, 854, 591, 469w, 362sh, 318, 260, 231w, 214w, 182 (orientation 2).

Source: Rakovan et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Na_{2.99}Al_{1.05}(V₁₀O₂₈)·22H₂O.$

Humberstonite K₃Na₇Mg₂(SO₄)₆(NO₃)₂⋅6H₂O

Origin: Artificial (a component of gypsum-based plaster).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1067, 1048, 1013, 723, 632, 183.

Source: Morillas et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data.

Humboldtine Fe²⁺(C₂O₄)⋅2H₂O

Origin: Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3315, 1708w, 1555w, 1468s, 1450sh, 913, 856w, 582, 518, 293w, 246s, 203s. Source: Frost (2004d).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of humboldtine see also Frost and Weier (2003), Echigo and Kimata (2008), and D'Antonio et al. (2009).

Humite $Mg_7(SiO_4)_3(F,OH)_2$

Origin: Monte Somma, Somma-Vesuvius complex, Naples, Italy.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3576, 3572, 3560, 966, 930, 876, 859, 844, 831, 784, 757, 747, 606, 587, 570, 549, 547, 539, 442, 428, 391.

Source: Frost et al. (2007k).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $Mg_{6,33}Fe^{2+}0.50(SiO_4)3(OH)_{1.66}$, which corresponds to the OH-analogue of humite.

Humite $Mg_7(SiO_4)_3(F,OH)_2$

Origin: Monte Somma, Somma-Vesuvius complex, Naples, Italy.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3576, 3572, 3560, 966, 930, 876, 859, 844, 831, 784, 757, 747, 606, 587, 570, 549, 547, 539, 442, 428, 391.
- Source: Frost et al. (2007k).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $Mg_{6.33}Fe^{2+}_{0.50}(SiO_4)_3(OH)_{1.66}$, which corresponds to the OH-analogue of humite.

Hummerite $\text{KMgV}^{5+}{}_{5}\text{O}_{14}$ ·8H₂O

Origin: Hummer mine, Paradox valley, Montrose Co., Colorado, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3599, 3526, 3416, 3404, 3296, 3230, 3223, 2929, 2902, 1621, 1600, 999s, 962s, 833w, 817sh, 590, 532, 442w, 360sh, 326s, 314sh, 254sh, 241, 227sh, 208, 183s, 146.

Source: Frost et al. (2004e, 2005a).

Comments: No independent analytical data are provided for the sample used.

Hungchaoite MgB₄O₅(OH)₄∙7H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 300 to 1800 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 300 mW.
- **Raman shifts (cm⁻¹):** 1628w, 1352, 1045, 949s, 897w, 855s, 816, 787s, 716w, 583s, 556w, 519, 491s, 450, 408s, 371, 345, 316s.

Source: Li et al. (1995) and Jia et al. (2001).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Huntite $CaMg_3(CO_3)_4$

Origin: No data.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 50 to 1200 cm^{-1} using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 2905w, 1761w, 1459w, 1123s, 878, 742w, 723, 705w, 386w, 364w, 316, 272, 253, 231w, 155, 118.

Source: Edwards et al. (2005).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of huntite see also Scheetz and White (1977).

Hureaulite Mn^{2+} ₅(PO₃OH)₂(PO₄)₂⋅4H₂O

Origin: Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm Nd-YAG laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3424, 3322, 3185, 2973sh, 2818, 1648, 1571, 1109sh, 1083, 1047, 1024, 1007sh, 989, 950, 941sh, 778w, 726, 598sh, 582, 564sh, 543sh, 531, 455, 414, 398sh, 381, 304w, 267w, 237sh, 221w, 194w, 155w, 137w, 120w, 104w.
- Source: Frost et al. (2013aj).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. Powder X-ray diffraction data are not provided in the cited paper. The empirical formula of the sample used is $(Mn_{3,23}Fe_{1,04}Ca_{0,19}Mg_{0,13})(PO_4,HPO_4)_{4,13}(OH,H_2O)_{x}$, which indicates a significant deficit of (Mn,Fe,Ca,Mg)-cations.

Hurlbutite $CaBe₂(PO₄)₂$

Origin: Nanping no. 31 granitic pegmatite dyke, Fujian province, southeastern China.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample. No other details are indicated.

Raman shifts (cm⁻¹): 1021, 587, 575, 550, 404, 132.

Source: Rao et al. (2011).

Comments: The sample was characterized by electron microprobe analyses.

Hydroboracite CaMg[B3O4(OH)3]2∙3H2O

Origin: Kohnstein quarry, Thuringia, Germany.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3632s, 3563s, 3551sh, 3507s, 3384sh, 3371, 3255, 3138sh, 3076, 1685w, 1433w, 1394, 1379, 1318, 1268w, 1229, 1157, 1144sh, 1063sh, 1039s, 955w, 925, 910sh, 869w, 846, 825, 753, 730, 721sh, 696sh, 647, 612w, 582, 560s, 556sh, 526w, 491, 478sh, 459, 437, 421sh, 355sh, 342, 330sh, 304, 243, 229, 212, 168, 159sh, 135.

Source: Frost et al. (2014af).

Comments: No independent analytical data are provided for the sample used.

Hydrocalumite $Ca₄Al₂(OH)₁₂(Cl,CO₃,OH)₂·4H₂O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 200 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1086, 1078sh, 712, 704sh, 531, 397, 359, 296sh, 281, 271sh.

```
Source: Frost et al. (2011j).
```
Comments: Questionable data: Raman spectra of samples with different Ca:Al ratios (from 2:1 to 4:1) are almost identical. According to powder X-ray diffraction data, the samples used may contain admixed calcite.

Hydrocerussite $Pb_3(CO_3)_2(OH)_2$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 50 to 3600 cm^{-1} using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1731w, 1467sh, 1365, 1050s, 862w, 837w, 707sh, 693sh, 679, 411, 321, 267w, 150sh, 113.

Source: Ciomartan et al. (1996).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of hydrocerussite see also Frost et al. (2003e) and Bouchard and Smith (2003).

Hydrocerussite $Pb_3(CO_3)_2(OH)_2$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3576, 3536w, 1736, 1705, 1679, 1479w, 1420w, 1378w, 1375w, 1365sh, 1053s, 1031sh, 887w, 866w, 837w, 737, 694w, 681, 671w, 417, 391, 376, 318, 221, 177w, 152. Source: Frost et al. (2003e).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of hydrocerussite see also Ciomartan et al. (1996) and Bouchard and Smith (2003).

Hydrodelhayelite-related compound KCa₂Na(Si₈O₁₉)∙5H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using He-Ne laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3500 (broad), 3300sh, 1636w, 1174, 1125sh, 1103, 848w, 783, 697, 610s, 496sh, 469, 437, 376, 351w, 317, 286, 240w, 190, 156, 127, 113, 98sh, 80sh.

Source: Cadoni and Ferraris (2009).

Comments: The sample was characterized by single-crystal X-ray diffraction data and semiquantitative electron microprobe analyses. The crystal structure is solved. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum

Hydrohalite NaCl∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample at -190° C, in the spectral region from 2800 to 4000 cm⁻¹, using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was between 1 and 1.5 mW.

Raman shifts (cm⁻¹): 3536, 3432, 3418, 3402, 3321w, 3300w.

Source: Baumgartner and Bakker (2010).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of hydrohalite see also Bakker (2004), Sakurai et al. (2010), and Okotrub and Surovtsev (2013).

Hydrohonessite $(Ni_{1x}Fe^{3+}x)(SO_4)_{x/2}(OH)_2nH_2O (x < 0.5, n > 3x/2)$

Origin: Kambalda, Western Australia, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was less than 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3493s, 3405, 1638w, 1135, 1115sh, 1008s, 671, 619, 579, 493, 414, 318w, 209w, 182, 164.

Source: Frost et al. (2003h).

Comments: No independent analytical data are provided for the sample used.

Hydromagnesite Mg₅(CO₃)₄(OH)₂⋅4H₂O

Origin: Salda Golulake, Turkey.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 2904w, 1871w, 1521w, 1487w, 1451w, 1119s, 757, 727, 706, 669w, 653sh, 329, 247, 232, 202, 184, 147.

Source: Edwards et al. (2005).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of hydromagnesite see also Frost (2011d) and Kristova et al. (2014).

Hydroniumjarosite $(H_3O)Fe^{3+}{}_{3}(SO_4)_2(OH)_6$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was in the range from 0.22 to 1 mW.
- **Raman shifts (cm⁻¹):** 3431, 3365, 2522, 2420, 1167, 1101s, 1019, 1013, 769, 633, 619, 565, 458, 420, 359, 281, 227.

Source: Murphy et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and inductively coupled plasma–optical emission spectrometry. The empirical formula of the sample used is (H_3O) Fe^{3+} _{2.93}(SO₄)₂(OH)_{6.79}(H₂O)_{0.2}. For the Raman spectra of hydroniumjarosite see also Frost et al. (2006r), Plášil et al. (2014b), and Apopei et al. (2014a).

Hydroniumjarosite $(H_3O)Fe^{3+}{}_{3}(SO_4)_2(OH)_6$

Origin: Cerros Pintados, Pampa del Tamarugal, Iquique Province, Tarapacá Region, Chile.

- Experimental details: Raman scattering measurements have been performed on an arbitrary oriented single crystal using 532 nm laser radiation. The nominal laser radiation power was 3 mW. Raman spectrum was obtained in the spectral region from 50 to 4000 cm^{-1} .
- **Raman shifts (cm⁻¹):** 2989w, 2941w, 2878, 2328w, 2248, 2002w, 1742w, 1678w, 1622w, 1477w, 1449w, 1329w, 1164, 1103s, 1012s, 859w, 812w, 722w, 643sh, 620s, 569, 497w, 454sh, 424s, 367sh, 227s, 172w, 135, 62w.
- Source: Plášil et al. (2014b).
- Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(H_3O)^+_{0.77}Na_{0.20}K_{0.02}(Fe_{2.95}Al_{0.03})(OH)_{6.12}[(SO_4)_{1.97}(SiO_4)_{0.03}]$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of hydroniumjarosite see also Frost et al. (2006r), Murphy et al. (2009), and Apopei et al. (2014a).

Hydroromarchite $Sn^{2+3}O_2(OH)_2$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The nominal laser radiation power was 400 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 264w, 226s, 184w, 53s.

Source: Chen and Grandbois (2013).

Comments: The sample was characterized by powder X-ray diffraction data.

Hydrotalcite-2H $Mg_6Al_2(CO_3)(OH)_{16}$ ∙4H₂O

Origin: Kovdor massif, Kola Peninsula, Russia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. Raman spectrum was obtained in the spectral region from 200 to 4000 cm^{-1} . The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3573sh, 3487, 3371sh, 1237sh, 1223w, 1200w, 1101sh, 1064s, 1059sh, 1045sh, 973, 696w, 595sh, 558s, 484w, 408w, 151s, 111s.

Source: Frost et al. (2014y).

Comments: No independent analytical data are provided for the sample used. Based on the origin of the sample and its morphological features, one cannot exclude that it is quintinite.

Hydrotalcite $Mg_6Al_2(CO_3)(OH)_{16}·4H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample pressed as pellet using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1403, 1355, 1134(?), 1110, 1053, 1044s, 982, 936, 712, 694, 626, 611, 461, 453.

Source: Kloprogge et al. (2002).

Comments: The sample was characterized by powder X-ray diffraction data. The empirical formula of the sample used is $Mg_{5.8}Al_{2.2}(OH)_{16}(CO_3)_{0.92}(NO_3)_{0.26}nH_2O$. For the Raman spectrum of hydrotalcite see also Palmer et al. (2011).

Hydrotungstite $WO_2(OH)_2·H_2O$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on oriented and arbitrarily oriented samples in the spectral region from 150 to 1050 cm⁻¹ using 488 nm Ar⁺ laser radiation. The laser radiation power was in the range from 0.06 to 0.15 mW. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 956s, 677s, 661s, 580sh, 275w, 225w.

Source: Tarassov et al. (2002).

Comments: The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Hydroxyapophyllite-(K) KCa₄Si₈O₂₀(OH,F)∙8H₂O

Origin: Pune (Poonah) district, Maharashtra State, India.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3626w, 3614sh, 3557s, 3365sh, 3085sh, 3007s, 2893sh, 2813sh, 1705w, 1683sh, 1626w, 1523w, 1114sh, 1086sh, 1059s, 1043sh, 1007w, 970w, 846w, 791, 765, 663s, 633sh, 583s, 538, 511, 485w, 462w, 431s, 409sh, 373, 337, 325sh, 297, 266w, 228, 209s, 185, 161, 132, 123, 106.

Source: Frost and Xi (2012o).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of hydroxyapophyllite-(K) see also Goryainov et al. (2012).

Hydroxycalciobetafite (?) $(Ca, U)_2(Ti, Nb)_2O_6(OH)$

Origin: Antanifotsy, Betafo district, Madagascar.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 2184, 2075, 1956, 1584, 1456sh, 1327, 1161, 893, 810, 657, 601sh, 391, 325sh, 283, 218, 162, 149.
- Source: Frost and Reddy (2010).
- Comments: A metamict sample was used. For the Raman spectra of minerals and compounds related to the betafite group see also McMaster et al. (2013, 2014, 2015).

Hydroxycalciomicrolite $Ca_{1.5}Ta₂O₆(OH)$

Origin: Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3614, 3586, 1028w, 892w, 803, 665, 638sh, 564sh, 519s, 440sh, 419, 398sh, 342, 311s, 285, 243, 230, 211, 195.

Source: Andrade et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{1.48}Na_{0.06}Mn_{0.01})(Ta_{1.88}Nb_{0.11}Sn_{0.01})O_{6.00}[(OH)_{0.76}F_{0.20}O_{0.04}]$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Hydroxycalciopyrochlore $(Ca,Na,U,\Box)_{2}(Nb,Ti)_{2}O_{6}(OH)$

Origin: Bližná, Southwestern Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 70 to 6300 cm^{-1} using 532.17 nm laser radiation. The nominallaser radiation power was 100 mW.

Raman shifts (cm⁻¹): 3850, 3670sh, 2065s, 770, 635sh, 240, 95.

Source: Drábek et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe data. The empirical formula of the sample used is $(Ca_{0.48}Na_{0.02}Mg_{0.06}Mn_{0.01}Y_{0.06}$ $REE_{0.27}Th_{0.27}U_{0.01})$ (Nb_{1.06}Ti_{0.79}Fe_{0.14}W_{0.01})(O_{4.96}OH_{1.04})(OH)_{0.81}·H₂O. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. The band at 2065 cm⁻¹ may be due to fluorescence.

Hydroxycalcioroméite $(Ca, Sb^{3+})_2(Sb^{5+}, Ti)_2O_6(OH)$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3542sh, 3471w, 3328sh, 3200sh, 2920w, 2860w, 1965w, 1599w, 1447w, 1353w, 984, 806, 725, 611, 565, 517s, 507sh, 487sh, 400sh, 356, 300, 179sh, 150sh, 129s.

Source: Bahfenne and Frost (2010b).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Hydroxyferroroméite $(Fe^{2+}_{1.5}\square_{0.5})Sb^{5+}_{2}O_6(OH)$

Origin: Correc d'en Llinassos, Oms, Pyrénées-Orientales Department, France (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm laser radiation. The nominal laser radiation power was 80 mW.

Raman shifts (cm⁻¹): 3634w, 3074w, 2936w, 1773w, 1706w, 1608, 709sh, 650s, 568sh, 466sh, 436, 358w, 271sh, 180.

Source: Mills et al. (2017b).

Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe analyses, and X-ray photoelectron spectroscopy. The empirical formula of the sample used is $(Fe^{2+}{}_{1.07}Cu^{2+}{}_{0.50}Zn_{0.03}Sr_{0.03}Ca_{0.01}\Box_{0.36})(Sb^{5+}{}_{1.88}Si_{0.09}Al_{0.02}As_{0.01})O_6[(OH)_{0.86}O_{0.14}].$

Hydroxykenoelsmoreite $(\Box, Pb)_2(W, Fe^{3+}, Al)_2(O, OH)_6(OH)$

Origin: Masaka gold mine, Burundi (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 782 nm diode laser radiation. The nominal laser radiation power was 1.15 mW.

Raman shifts (cm⁻¹): 3443, 2932w, 1610w, 929s, 853sh, 691, 476, 402, 298w, 225, 157. Source: Mills et al. (2017a).

Comments: The sample was characterized by powder and single crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(\Box_{1.668}Pb_{0.315}Ca_{0.009}Na_{0.005}K_{0.003}Ba_{0.001})(W^{6+}{}_{1.487}Fe^{3+}{}_{0.357}Al_{0.156})[O_{4.119}(OH)_{1.881}] (OH)$.

Hydroxylapatite $Ca₅(PO₄)₃OH$

Origin: Tadano, Fukushima prefecture, Japan.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal thin section cut nearly perpendicular to the c axis using 532 nm laser radiation. The laser radiation utput power was 11.8 mW.

Raman shifts (cm⁻¹): 3561, 3537, 1080w, 1059, 1035, 968s, 612, 586, 449, 433.

Source: Banno et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Ca_{5.022}(P_{2.943}Si_{0.024}S_{0.011})$ $O_{11.960}(OH_{0.546}F_{0.406}Cl_{0.048})$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of hydroxylapatite see also Penel et al. (1998), Koutsopoulos (2002), O'Neill et al. (2006), and Pasteris et al. (2012).

Hydroxylbastnäsite-(Ce) $Ce(CO_3)OH$

Origin: Trimouns, Luzenac, France.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3637, 3567, 3492, 3257, 1475, 1431sh, 1415, 1100s, 1088s, 1082s, 1007, 872, 851, 786, 728w, 694, 665w, 582, 342, 257, 239sh, 195, 177, 156, 137, 118, 70w.

Source: Yang et al. (2008a).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ce_{0.50}Nd_{0.24}La_{0.23}Y_{0.03})(CO_3)[(OH)_{0.65}F_{0.35}]$. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of hydroxylbastnäsite- (Ce) see also Frost and Dickfos (2007a) and Michiba et al. (2013).

Hydroxylchondrodite $Mg_5(SiO_4)_2(OH)_2$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was about 60 mW.
- **Raman shifts (cm⁻¹):** 3571sh, 3554s, 3515s, 3226, 2930, 955, 921, 848sh, 835s, 754w, 723w, 597, 570, 535w, 473w, 420w, 368w, 327w, 282w, 222w.

Source: Lin et al. (1999).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of hydroxylchondrodite see also Mernagh et al. (1999).

Hydroxylclinohumite $Mg_9(SiO_4)_4(OH)_2$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal in the spectral regions from 100 to 1600 cm⁻¹ and from 2700 to 4000 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 5 mW.
- **Raman shifts (cm⁻¹):** 3612w, 3580sh, 3564s, 3527s, 964, 856s, 847s, 838s, 826s, 765w, 737w, 716sh, 603, 583, 576w, 566w, 545w, 533sh, 499w, 468w, 456w, 430, 398w, 388sh, 378w, 364w, 342sh, 331w, 301w, 265w, 250w, 230w, 210w, 181w, 154w, 140w.

Source: Lin et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of hydroxylclinohumite see also Hurai et al. (2014).

Hydroxylclinohumite $Mg_9(SiO_4)_4F_2$

Origin: Namibwuste, Namibia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3579, 3570, 3560, 3412, 3390, 967, 877sh, 862s, 846, 831, 808w, 785, 760, 744, 607, 587.

Source: Frost et al. (2007k).

Comments: The sample described as "clinohumite" was characterized by powder X-ray diffraction data and electron microprobe analysis. Actually, the empirical formula $Mg_{7,35}$ Fe^{2+} _{0.13}Ti_{0.08}Ca_{0.50}Al_{0.46}(SiO₄)₄Cl_{0.05}(OH)_{1.61} corresponds to cation-deficient hydroxylclinohumite.

Hydroxyledgrewite $Ca_9(SiO_4)_4(OH)_2$

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm laser radiation. The nominal laser radiation power was in the range from 30 to 50 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3550, 3475w, 923, 890w, 840w, 821sh, 814, 559, 527w, 419sh, 404, 394sh, 324w, 295, 256, 166, 160sh.

Source: Galuskin et al. (2012d).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The sample used is a member of the solid-solution series $Ca_9(SiO_4)_4(F,OH)_2$ with $F:OH = 63:37$.

Hydroxylellestadite $Ca₅(SiO₄)_{1.5}(SO₄)_{1.5}OH$

Origin: Cioclovina Cave, Şureanu Mts., Romania.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 100 mW. A 180°-scattering geometry was employed.
- Raman shifts (cm⁻¹): 3564, 3517sh, 1144, 1122, 1066w, 1002s, 954s, 853s, 642sh, 625, 579, 530, 462, 431sh, 397sh, 312w.

Source: Onac et al. (2006).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Ca_{10.27}[(SiO_4)_{2.53}(SO_4)_{2.17}(PO_4)_{1.27}][(OH)_{1.66}F_{0.21}Cl_{0.16}]$. For the Raman spectrum of hydroxylellestadite see also Comodi et al. (1999).

Hydroxylherderite $CaBe(PO₄)(OH)$

Origin: Bennett pegmatite, Buckfield, Oxford Co., Maine, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal with polarizers and without polarizers using 458 nm laser radiation. The laser radiation power at the sample was 18 mW. Polarized spectra were collected in scattering geometries with three different polarized angles, $0, 45$ and 90° from an arbitrary reference plane.
- Raman shifts (cm⁻¹): 3620s, 3610sh, 3575sh, 3565s, 1142s, 1130sh, 1087w, 1005s, 985sh, 915, 910, 875sh, 770, 705sh, 680, 615sh, 598s, 590sh, 580, 532, 519, 448, 428w, 353w, 340w, 328w, 305w, 272w, 257w, 228w, 197w, 185w, 170w, 145w, 125w.

Source: Gatta et al. (2014).

Comments: The sample was characterized by single-crystal X-ray and neutron diffraction data, electron microprobe analyses and inductively coupled plasma-atomic emission spectroscopy. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{1,01}Na_{0,01})(Be_{0,98}Li_{0,01})$ $(P_{0.98}Si_{0.03})O_4[(OH)_{0.67}F_{0.33}]$. For the Raman spectrum of hydroxylherderite see also Frost et al. (2014a).

Hydrozincite $\text{Zn}_5(\text{CO}_3)_2(\text{OH})_6$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 30 mW or less than 30 mW, respectively.

Raman shifts (cm⁻¹): 1544, 1371, 1061s, 732, 704, 389, 340w, 230, 152s, 139, 121, 81. Source: Bouchard and Smith (2003).

Comments: No independent analytical data are provided for the sample used.

Hypersthene $(Mg,Fe)SiO₃$

Origin: Pietra Nera, Agrigento, Sicilia, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated. A nearly

180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1006s, 681s, 661, 339, 233, 129.

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used.

Ianbruceite $Zn_2O[AsO_3(OH)](H_2O)_{3.53}$

Origin: Tsumeb mine, Otjikoto (Oshikoto) region, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 12.5 mW. A 180- -scattering geometry was employed.

Raman shifts (cm⁻¹): 3600w, 3441sh, 3224w, 2740sh, 840s, 773sh, 534, 448, 420, 192.

Source: Cooper et al. (2012a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The crystal-chemical formula of the sample used is $K_{0.02}(Zn_{1.93}Fe^{2+_{0.03}Al_{0.02}Mn^{2+_{0.01}O}(OH)_{0.96}(H_2O)(As^{5+}O_4)[As^{3+}(OH)_2O]_{0.04}(H_2O)_{1.96}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Iangreyite Ca₂Al₇(PO₄)₂(PO₃OH)₂(OH,F)₁₅⋅8H₂O

Origin: Silver Coin mine, Nevada, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1345, 1200, 1095, 1078w, 1033, 1009s, 979, 923, 707, 622s, 510, 485w, 455, (377), 362, 338, 332, 271, 189s, 107, 114.

Source: Mills et al. (2011a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Ca_{1,42}K_{0,22}Na_{0,09}Ba_{0,03}Sr_{0,01}Al_{6,51}Mg_{0,09}Fe_{0,02}Cu_{0,01}Zn_{0,01}P_{3,81}F_{5,24}H_{30,21}O_{33,76}$.In the cited paper an erroneous figure of the Raman spectrum with displaced scale of Raman shifts is given. The Raman shifts listed above have been determined based on the analysis the correct spectral curve from the manuscript submitted to the Mineralogical Magazine, which was kindly provided by the authors.

Ice H_2O

Origin: Artificial.

Experimental details: Raman scattering measurements have been performed at -190 °C on an arbitrarily oriented sample in the spectral region from 2800 to 4000 cm^{-1} using 532.2 nm Nd-YAG laser radiation. The laser radiation power at the sample was in the range from 1 to 1.5 mW. **Raman shifts (cm⁻¹):** 3370sh, 3321w, 3218, 3090s.

Source: Baumgartner and Bakker (2010).

Comments: For the Raman spectra of ice see also Giguére and Harvey (1956) and Garcia et al. (2006). The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Idaite $Cu₃FeS₄$

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 466s, 403w, 356w, 265w, 209.

Source: Parker et al. (2008).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Idrialite $C_{22}H_{14}$

Origin: Idrija mercury ore field, External Dinarides, Slovenia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG and 785 nm diode laser radiations. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3049, 2905sh, 2891, 1617s, 1579s, 1445w, 1437sh, 1428sh, 1393s, 1375, 1367, 1352w, 1301, 1268, 1209, 1183, 1151, 1017s, 1009w, 911w, 960w, 825, 752s, 728sh, 710s, 679sh, 663, 642, 611, 599, 590sh, 579, 563sh, 552, 522, 498, 130 (?).

Source: Jehlička et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data.

Ikaite Ca($CO₃$)∙6H₂O

Origin: Ika fjord, Ivigtut, southern Greenland (type locality).

Experimental details: Raman scattering measurements have been performed at -80 °C on an arbitrarily oriented samplein the spectral region from 400 to 4000 cm^{-1} using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 8 mW.

Raman shifts (cm⁻¹): 3421, 3240, 3182, 1483w, 1072s, 873w, 722.

Source: Coleyshaw et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of ikaite see also Mikkelsen et al. (1999), Shahar et al. (2005), and Sánchez-Pastor et al. (2016).

Ikaite Ca($CO₃$)∙6H₂O

Origin: Synthetic.

- **Experimental details:** Raman scattering measurements have been performed at 4° C on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 10 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3432, 3336, 3257sh, 3165sh, 1066s, 715, 263, 214sh, 199s, 183, 156sh, 137, 116sh.

Source: Sánchez-Pastor et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction analysis. For the Raman spectra of ikaite see also Mikkelsen et al. (1999), Coleyshaw et al. (2003), and Shahar et al. (2005).

Ilesite Mn²⁺(SO₄)⋅4H₂O

Origin: Artificial (degradation product from black slag).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 200 to 2000 cm^{-1} using 514.5 nm laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 1024s, 622, 488, 427, 263, 207.

Source: Gómez-Nubla et al. (2013).

Comments: No independent analytical data are provided for the sample used.

Ilmenite $Fe^{2+}Ti^{4+}O_3$

- **Origin:** Lunar basalt from Taurus–Littrow floor, 15 m northeast of a 10 m diameter crater with blocky ejecta.
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 679s, 449, 370, 330, 254, 227, 200w, 190w, 162w.

- Source: Ling et al. (2011).
- Comments: No independent analytical data are provided for the sample used. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of ilmenite see also Andò and Garzanti (2014).

Ilvaite $\text{CaFe}^{3+}\text{Fe}^{2+}{}_{2}\text{O}(\text{Si}_2\text{O}_7)(\text{OH})$

Origin: Sasa, Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample in the spectral region from 100 to 1300 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1084s, 614s, 563w, 530w, 492w, 440w, 370w, 223s, 153w, 140.

Source: Makreski et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of ilvaite see also Jovanovski et al. (2009).

Imogolite $Al_2SiO_3(OH)_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 1024 nm laser radiation. The nominal laser radiation power was 800 mW . A 180 $^{\circ}$ -scattering geometry was employed.

Raman shifts (cm⁻¹): 959, 925, 866, 698w, 550sh, 514s, 400sh, 367s, 251, 118s, 107.

Source: Creton et al. (2008).

Comments: The sample was characterized by inductive coupled plasma atomic emission spectroscopy analysis. The wavelength of 1024 nm indicated by the authors may be a misprint. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Inderite MgB3O3(OH)5∙5H2O

Origin: Boron, Kern Co.,California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3616s, 3479sh, 3429, 3365shg, 3292w, 3254, 3127, 3067, 2988w, 2931, 2843w, 2750w, 1397w, 1349, 1282sh, 1249, 1195, 1167sh, 1138sh, 1058w, 1006, 948s, 879, 811w, 743, 664, 637, 580, 551, 492s, 440, 420, 379, 347w, 313, 248w, 193, 166.

Source: Kloprogge and Frost (1999a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of inderite see also Frost et al. (2013f).

Indite FeIn₂S₄

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 370s, 334sh, 329sh, 313, 271sh, 253s, 231sh, 182, 167w, 96, 82. **Source:** Guc et al. (2012).

Comments: The sample was characterized by electron microprobe analysis.

Inesite Ca₂Mn²⁺₇Si₁₀O₂₈(OH)₂∙5H₂O

Origin: N'chwaning mine, Kalahari Manganese Fields, South Africa.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3661sh, 3642, 3612sh, 3496sh, 3420, 3362sh, 3300sh, 3246sh, 1856sh, 1825, 1775, 1730sh, 1671sh, 1653, 1608, 1546sh, 1383sh, 1365w, 1207sh, 1090sh, 1067sh, 1051sh, 1031s, 997sh, 958w, 933, 907sh, 764sh, 736sh, 716sh, 684sh, 653s, 631sh, 608sh, 467sh, 448sh, 428sh, 410, 374sh, 354, 301sh, 283, 248, 218, 156sh, 140s, 114s.

Source: Frost et al. (2014r).

Comments: No independent analytical data are provided for the sample used.

Innsbruckite $Mn_{33}(Si₂O₅)₁₄(OH)₃₈$

Origin: Staffelsee (Geier), Navis valley, Tyrol, Austria (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral regions from 100 to 1250 cm^{-1} and from 3520 to 3700 cm^{-1} using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 30 mW. Raman spectra were collected inscattering geometries with a 90° sample rotation between the data collections.

Raman shifts (cm⁻¹): 1190w, 1032s, 1016w, 1010w, 998w, 792w, 777w, 717w, 693w, 671w, 649, 629, 609, 477w, 455w, 417, 405, 394, 360w, 352w, 336sh, 327w, 322w, 315, 312w, 305sh, 288, 277, 259, 252, 231, 221, 199sh, 193, 185, 178sh, 169, 160, 137, 131sh, 118w, 114w, 108w. Source: Krüger et al. (2014).

Comments: The sample was characterized by single-crystal synchrotron radiation diffraction analysis and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Mn_{31.58}Fe_{0.19}Mg_{1.29}Si_{27.82}Al_{0.20}O_{108}H_{37.97}$.

Insizwaite PtBi₂

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532.1 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 126, 114s, 96.

Source: Bakker (2014).

Comments: No independent analytical data are provided for the sample used.

Inyoite CaB₃O₃(OH)₅∙4H₂O

Origin: Mount Blanco mine, Black Mountains, Death Valley, Inyo Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3444w, 3389sh, 3153w, 2828w, 1689sh, 1656w, 1430w, 1376w, 1336sh, 1322w, 1254w, 1204w, 1177sh, 1062w, 1048sh, 1013w, 971sh, 957, 925sh, 910, 808w, 731, 615s, 596sh, 535, 521sh, 503, 474sh, 465, 408, 388, 352, 326w, 268sh, 258w, 206sh, 192sh, 182sh, 1721, 160sh.

Source: Frost et al. (2015i).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Iodargyrite AgI

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal with the c axis normal to the scattered plane using 457.9 , 488.0 , 546.1 nm Ar⁺ and 568.2 , 647.1 nm Kr^+ laser radiations. The laser radiation power is not indicated. A 180 \degree -scattering geometry was employed.

Raman shifts (cm⁻¹): 104w, 85w, 37w, 17s.

Source: Hanson et al. (1975).

Comments: No independent analytical data are provided for the sample used. The Raman shifts are given for the $z(yy)$ – z scattering geometry.

Iowaite Mg₆Fe³⁺₂(OH)₁₆Cl₂⋅4H₂O

Origin: Australia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3720w, 3707, 3700w, 3691sh, 3685, 3674sh.

Source: Reddy et al. (2010).

Comments: The sample was characterized by electron paramagnetic resonance. Raman shifts are given for region from 3600 to 3740 cm^{-1} .

Iowaite Mg_6Fe^{3+} ₂(OH)₁₆Cl₂⋅4H₂O

Origin: Mount Keith, Western Australia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 708sh, 690, 620, 527s, 495sh, 456, 430w, 386, 348w, 312, 298w, 282, 231, 188, 153, 146w, 140w, 132w.

Source: Frost et al. (2010d).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of iowaite see also Reddy et al. (2010).

Iranite CuPb₁₀(CrO₄)₆(SiO₄)₂(OH)₂

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Nd-YAG laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 916sh, 891sh, 865s, 846s, 818s, 790, 535sh, 404, 389, 380sh, 369s, 354sh, 343, 333, 307, 240, 222, 196, 163, 139.

Source: Frost (2004c).

Comments: No independent analytical data are provided for the sample used.

Irarsite IrAsS

Origin: Santa Elena Nappe, Costa Rica.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 399, 375s, 353s, 289, 263s, 219, 211sh, 177, 145.

Source: Zaccarini et al. (2010).

Comments: The sample was characterized by electron microprobe analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Iriginite $(UO_2)Mo^{6+2}O_7·3H_2O$

Origin: Hervey's Range deposit, 55 km W of Townsville, Queensland, Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 965sh, 950s, 888, 826sh, 818, 693sh, 668, 487s, 457, 413, 373, 337, 301, 246s, 198, 164s.

Source: Frost et al. (2004c).

Comments: No independent quantitative analytical data are provided for the sample used.

Irinarassite $Ca₃Sn₂(SiAl₂)O₁₂$

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in the spectral region from 100 to 4000 cm⁻¹ using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was in the range from 30 to 50 mW. A 0° -scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 915w, 818, 787, 739, 578, 503s, 420, 316, 269sh, 250, 197, 156, 112w. Source: Galuskina et al. (2013a).

Comments: The sample was characterized by single-crystal electron backscatter diffraction and electron microprobe analyses. The empirical formula of the sample used is $(Ca_{2.965}Fe^{2+}_{0.035})$ $(Sn_{1.016}Zr_{0.410}Ti_{0.262}Sb^{5+}{}_{0.237}Fe^{2+}{}_{0.035}U^{6+}{}_{0.017}Sc_{0.014}Hf_{0.006}Nb_{0.004})(Al_{1.386}Fe^{3+}{}_{0.804}Si_{0.446}Ti^{4+}{}_{0.364})$ $O₁₂$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Iron Fe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation output power was 4–5 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): (187), 139w.

Source: Campos et al. (2004b).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Iseite $Mn_2Mo_3O_8$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 400 K on a powdered sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 920s, 870, 815, 425w, 360, 325, 260w.

Source: Das et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data.

Isocubanite $CuFe₂S₃$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented thin section of a sample using 532 nm laser radiation. The laser radiation power at the sample was about 20 mW.

Raman shifts (cm⁻¹): 440w, 386s, 350.

Source: White (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of isocubanite see also Chandra et al. (2011a, b).

Isokite $CaMg(PO₄)F$

Origin: Ehrenfriedersdorf, Erzgebirge (Ore Mts.), Germany.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 150 mW.

Raman shifts (cm⁻¹): 1021, 955s, 607, 457, 425, 273.

Source: Thomas et al. (1998).

Isomertieite $Pd_{11}Sb_2As_2$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts $(cm⁻¹)$: 136.

Source: Bakker (2014).

Comments: No independent analytical data are provided for the sample used.

Ivsite $Na₃H(SO₄)₂$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample in the spectral region from 30 to 4000 cm⁻¹ using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1198, 1162, 1112, 1004s, 973sh, 636s, 613s, 605s, 525w, 493w, 437s, 115, 80s.

Source: Damak et al. (1985).

Comments: The sample was characterized by powder X-ray diffraction data.

Iwateite $\text{Na}_2\text{BaMn}(\text{PO}_4)_2$

Origin: Tanohata mine, Iwate Prefecture, Japan (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm^{-1}) : 1004w, 990w, 973s, 808w, 584w, 577w, 428w.

Source: Nishio-Hamane et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Na_{2,026}(Ba_{0.993}Sr_{0.101})(Mn_{0.801}Mg_{0.164})$ $P_{1.971}O_8$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Iyoite MnCuCl(OH)₃

Origin: Sadamisaki Peninsula, Ehime Prefecture, Japan (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 50 mW.
- **Raman shifts (cm⁻¹):** 3558w, 3521s, 3513sh, 458, 438.

Source: Nishio-Hamane et al. (2016b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Mn_{1.085}Cu_{0.915}Cl_{1.058}(OH)_{2.942}$

Jáchymovite $(UO₂)₈(SO₄)(OH)₁₄·13H₂O$

Origin: Jáchymov, Krušné Hory (Czech Ore Mts.), Bohemia, Czech Republic (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm^{-1}) : 3504w, 3180w, 2257w, 1688w, 1614w, 1348w, 1125sh, 1094, 1068sh, 1015, 1010sh, 1003sh, 839sh, 828s, 807sh, 800sh, 667, 562, 542, 474sh, 454, 434, 405, 357sh, 337, 322sh, 276sh, 261, 252sh, 242sh, 208sh, 195, 172, 147, 114.

Source: Čejka et al. (2009a).

Comments: The sample was characterized by powder X-ray diffraction data and wet chemical analyses. The empirical formula of the sample used is $(UO₂)_{8.01}(SO₄)_{0.95}(OH)_{14.12}·13.06H₂O.$

Jacobsite $Mn^{2+}Fe^{3+2}O_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 646s, 563sh, 456w, 340.

Source: Rafique et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of jacobsitesee also Clark et al. (2007).

Jadeite NaAlSi₂O₆

Origin: Uru River area (?), north-central Myanmar.

Experimental details: Raman scattering measurements have been performed on an oriented thin section of a sample with the b axis parallel to the laser beam using 532 nm laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 1309, 991, 700s, 575, 524, 434, 374, 292, 223, 203s, 144, 80. Source: Leander et al. (2014).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of jadeite see also Többens et al. (2005).

Jakobssonite α-CaAlF₅

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a pressed-disk sample in the spectral region from 280 to 800 cm⁻¹ using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated. A 90°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 588, 440.

Source: Kawamoto and Kono (1986) and Inoue et al. (1988).

Comments: The sample was characterized by powder X-ray diffraction data.

Jalpaite Ag_3CuS_2

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was not higher than 0.3 mW.

Raman shifts $(cm⁻¹)$: 258.

Source: De Caro et al. (2016).

Comments: The sample was characterized by electron microprobe analysis.

Jamborite Ni²⁺_{1–x}Co³⁺_x(OH)_{2x}(SO₄)_x⋅nH₂O [x < 1/3, n < (1–x)]

Origin: Rio Vesale, Sestola, Val Panaro, Modena province, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3614w, 2988sh, 2956, 2244, 1061w, 973, 852w, 527s, 460, 167w.

Source: Bindi et al. (2015a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ni^{2+}_{0.902})$ Co^{3+} _{0.072}Fe³⁺_{0.024}Ca_{0.002})(OH)_{1.884}Cl_{0.012}(SO₄)_{0.100}·0.904H₂O.

Jamesonite $Pb_4FeSb_6S_{14}$

Origin: Zlatá Baňa, Slanské Vrchy Mts., central Slovakia.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample in the spectral region from 10 to 600 cm⁻¹ using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 344sh, 326s, 298, 277, 269sh, 251, 236, 225, 215sh, 199, 173, 163sh, 147, 128, 110, 92, 75, 59sh.

Source: Kharbish and Jeleň (2016).

Comments: The sample was characterized by electron microprobe analyses. The empirical formula of the sample used is $Pb_{4.01}Fe_{0.99}Sb_{6.01}S_{14.00}$.

Jarosite $KFe^{3+}{}_{3}(SO_4)_2(OH)_6$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented thin section of a sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was about 1 mW.
- **Raman shifts (cm⁻¹):** 3415, 3395sh, 1156, 1102s, 1008s, 643sh, 626, 573, 551sh, 454sh, 434s, 354, 301, 223s, 140.

Source: Maubec et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $(K_{0.8}Na_{0.1})(Fe_{2.7}Al_{0.3})(SO_4)_{2.0}(OH)_{5.9}$. For the Raman spectra of jarosite see also Sasaki et al. (1998), Makreski et al. (2005a), Frost et al. (2006a), Murphy et al. (2009), Chio et al. (2010), Ciobotă et al. (2012), and Spratt et al. (2013).

Jeffbenite $Mg_3Al_2Si_3O_{12}$

- Origin: An inclusion in an alluvial diamond, São Luizriver, Juina district, Mato Grosso, Brazil (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm laser radiation. The nominal laser radiation power was in the range from 3 to 5 mW.

Raman shifts (cm⁻¹): 1056sh, 995, 926s, 865s, 635, 610sh, 542w, 499, 393w, 318s, 284, 233, 204. Source: Nestola et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Mg_{0.82})$ Fe^{3+} _{0.12})($\text{Al}_{1.86}\text{Cr}_{0.16}$)($\text{Mg}_{1.80}\text{Fe}^{2+}$ _{0.15} $\text{Mn}_{0.05}\text{Ca}_{0.01}\text{Na}_{0.01}$)($\text{Si}_{2.82}\text{Al}_{0.18}$)O₁₂.

Jennite Ca₉(Si₃O₉)₂(OH)₆⋅8H₂O

Origin: Maroldsweisach, Bavaria, Germany.

- Experimental details: Raman scattering measurements have been performed on an oriented sample with longest axis corresponding to the [010] direction parallel and perpendicular with respect to laser polarization using 532 nm laser radiation. The nominal laser radiation power was 9 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3631, 3590sh, 3580s, 3534, 3489, 3464, ~3149, ~1640w, 1048, 1015sh, 1000s, 986s, 969s, 950sh, 906, 677sh, 658s, 632sh, 507sh, 492s, 479sh, 361sh, 335s, 312, 287, 270, 251, 204sh, 185s, 165sh, 142, 127, 113.

Source: Müller et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $Ca_{8.57-9.43}Si_{5.56-7.28}Al_{0.02-0.07-}$ $O_{18}(OH)_6$ ⁿH₂O. The Raman shifts are given for total spectrum including all scattering geometries. For the Raman spectrum of jennite see also Kirkpatrick et al. (1997).

Ježekite Na8[(UO2)(CO3)3](SO4)2∙3H2O

Origin: Jáchymov, Krušné Hory (Czech Ore Mts.), Bohemia, Czech Republic (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm solid-state laser radiation. The nominal laser radiation power was 2.5 mW.
- **Raman shifts (cm⁻¹):** 3680, 3380sh, 2740w, 1710w, 1656w, 1600w, 1550w, 1375w, 1355w, 1195w, 1130w, 1110sh, 1060s, 1050w, 996s, 896w, 825s, 731, 715, 688w, 629, 622, 458, 379sh, 277, 248, 188s, 161s, 85.
- Source: Plášil et al. (2015a).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $\text{Na}_{7.88}(\text{UO}_2)$ $(CO_3)_{3}(S_{1.01}O_4)_{2}.3H_2O.$

Jixianite $(\text{Pb}, \Box)_{2}(\text{W}, \text{Fe}^{3+})_{2}(\text{O}, \text{OH})_{7}$

Origin: Yanhe Mine, Ji Co., Tianjin Municipality, China (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation output power was in the range 300–380 mW.

Raman shifts (cm⁻¹): 907, 709, 433w, 371sh, 288, 174.

Source: Yuran and Li (1998).

Comments: No independent analytical data are provided for the sample used.

Joaquinite-(Ce) NaBa₂Fe²⁺Ti₂Ce₂(Si₄O₁₂)₂O₂(OH)∙H₂O

Origin: Benitoite Gem Mine, Southern San Benito Co., California (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3584sh, 3572sh, 3559sh, 3548w, 3509w, 3494sh, 3384sh, 3340sh, 3316w, 3242w, 1111, 1038, 1022, 991, 925, 902s, 891sh, 864w, 732s, 720sh, 686sh, 664s, 636s, 601s, 542, 492, 469, 440, 432, 377s, 358, 313, 299, 276, 250, 200, 180sh, 150.

Source: Frost and Pinto (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis, however barium content is not indicated.

Joegoldsteinite MnCr₂S₄

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample hot-pressed as a pellet using 488.0 nm and 514.5 nm Ar⁺ and 647.1 nm and 676.4 nm Kr⁺ laser radiations. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 378s, 282w, 251. Source: Lutz et al. (1989).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts are given for the 647.1 nm radiation.

Joëlbruggerite $Pb_3Zn_3Sb^{5+}As_2O_{13}(OH)$

Origin: Black Pine mine, Montana, USA (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 150 to 3500 cm^{-1} using 785 nm diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3030w, 3015w, 818, 680, 506, 475, 427, 383, 235, 200, 183, 168, 150. Source: Mills et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Pb_{3.112}(Zn_{2.689}Fe^{2+}{}_{0.185})(Sb^{5+}{}_{0.650}Te^{6+}{}_{0.451})(As_{1.551}P_{0.203}Si_{0.160})O_{13.335}(OH)_{0.665}$

Johachidolite CaAlB₃O₇

Origin: An unknown locality in Myanmar.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514 nm laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$ **:** 1191, 1112, 684sh.

Source: Chadwick and Breeding (2008).

Comments: The sample was characterized by laser-ablation inductively coupled plasma mass spectroscopy analysis and by energy-dispersive X–ray fluorescence analysis.

Johannite Cu(UO₂)₂(SO₄)₂(OH)₂⋅8H₂O

Origin: Saint Agnes, Cornwall, England.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm^{-1}) : 3593, 3523w, 3387sh, 3234w, 1147, 1100, 1090, 1042, 975, 948sh, 812s, 788sh, 756sh, 539, 481, 384, 302s, 277s, 205s, 184sh.

Source: Frost et al. (2005e).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of johannite see also Driscoll et al. (2014).

Johannite Cu(UO₂)₂(SO₄)₂(OH)₂⋅8H₂O

Origin: Geevor mine, Pendeen, Cornwall, UK.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 325 nm He-Cd, as well as 532 and 785 nm diode laser radiations. The laser radiation output power was 270, 380, and 370 mW, respectively.

Raman shifts (cm⁻¹): 1095, 1045, 836s, 448w, 352w, 244w, 203w.

Source: Driscoll et al. (2014).

Comments: The Raman shifts are given for 785 nm laser excitation. The sample was characterized by electron microprobe analysis. The proposed empirical formula of the sample used is $Cu_{1.4}(UO_2)_2(SO_4)_{1.8}nH_2O$. For the Raman spectrum of johannite see also Frost et al. (2005e).

Johnbaumite $Ca₅(AsO₄)₃(OH)$

Origin: Franklin or Sterling Hill, New Jersey, USA.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) **:** 960w, 888w, 865s, 840, 830.

Source: Crimmins (2012).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(Ca_{4.87}Pb_{0.07}Mn_{0.05}Sr_{0.01})$ $[(As_{0.94}P_{0.06})O_4]_3[(OH)_{0.94}Cl_{0.06}]$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Johninnesite $\text{Na}_2\text{Mn}^{2+}\text{Mg}_7(\text{AsO}_4)_2(\text{Si}_6\text{O}_{17})_2(\text{OH})_8$

Origin: Schmorrasgrat deposit, Schams nappes, Val Ferrera, Graubünden, Switzerland.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1662w, 1616w, 1424w, 1322w, 1084w, 1055w, 1029, 1015, 939, 886w, 836s, 799s, 785s, 705, 667, 401, 347.
- Source: Brugger and Berlepsch (1997).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $\text{Na}_{2.01}\text{Mn}^{2+}_{2.00}\text{(Mg}_{3.74}\text{Mn}_{2.66}\text{Fe}_{0.01})$ $(As_{1.74}V_{0.03})Si_{12.58}O₄₂(OH)₈$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Jordisite $MoS₂$

Origin: Zunyi Formation, southern China.

Experimental details: Experimental details are not indicated. Raman scattering measurements have been performed on an arbitrarily oriented sample. Raman spectrum was obtained in the spectral region from 150 to 1800 cm^{-1} .

Raman shifts (cm⁻¹): 600w, 438sh, 403 (h-MoS₂), 370 (h-MoS₂), 339w, 303w, 258sh, 216, 184sh, 148sh.

Source: Orberger et al. (2007).

Comments: The sample was characterized by a combination of methods including electron microprobe analysis, inductively coupled plasma mass spectroscopy, inductively coupled plasma atomic emission spectroscopy analysis, and proton-induced X-ray emission analysis.

Joteite Ca₂CuAl(AsO₄)[AsO₃(OH)]₂(OH)₂⋅5H₂O

Origin: Jotemine, Tierra Amarilla, Copiapó Province, Atacama, Chile (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was about 5 mW.
- **Raman shifts (cm⁻¹):** 3429w, 3260w, 3068sh, 2930sh, 900sh, 861s, 849s, 822sh, 725, 521sh, 506s, 461s, 451sh, 414, 384, 349, 334, 317, 300, 283, 270, 259, 201, 162, 140, 119, 112sh.

Source: Kampf et al. (2013c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is $Ca_{1.98}Cu_{1.00}Al_{1.15}As_{2.87}H_{14.24}O₁₉$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Kaersutite $NaCa₂(Mg₃A1Ti⁴⁺)(Si₆Al₂)O₂₂O₂$

Origin: An unknown locality in Czech Republic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 1183w, 1063sh, 1013w, 975w, 893w, 788sh, 764s, 666, 590s, 544sh, 514sh, 423sh, 363, 347sh, 331sh, 306sh, 292w, 249, 189w, 157, 144sh, 125w.

Source: Apopei et al. (2011).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of kaersutite see also Andò and Garzanti (2014) and Leissner et al. (2015).

Kainite KMg $(SO₄)Cl·3H₂O$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm or 785 nm laser radiation. The laser radiation power at the sample was no more than 1 mW.

Raman shifts (cm⁻¹): 1196w, 1040s, 1023s, 630w, 450w.

Source: Morillas et al. (2016).

Comments: The sample was characterized by electron microprobe analysis.

Kalgoorlieite $As₂Te₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The laser radiation output power was below 0.3 mW. **Raman shifts (cm⁻¹):** 193, 171s, 142, 137sh, 128s, 123sh, 119sh, 99s, 91w, 67w, 49.

Source: Cuenca-Gotor et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data.

Kaliborite KHMg2B12O16(OH)10∙4H2O

Origin: Inder boron deposit, Atyrau region, Kazakhstan.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3603sh, 3597s, 3590sh, 3517sh, 3398sh, 3360sh, 3336, 3245sh, 3202, 3172sh, 3133, 3041sh, 2929, 1595w, 1448sh, 1444, 1309w, 1229w, 1144, 1084sh, 1065, 967sh, 944, 881, 847w, 793w, 775sh, 756, 670, 639, 630sh, 609, 567, 551, 526, 519sh, 485, 476sh, 454w, 426sh, 414sh, 402, 394sh, 387, 337, 327sh, 320, 310sh, 286w, 259, 252sh, 242, 218, 197, 184, 177sh, 1709sh, 151, 121.

Source: López et al. (2015a).

Comments: No independent analytical data are provided for the sample used.

Kalicinite $KH(CO_3)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on a powder sample using $Ar⁺$ laser radiation. The laser radiation power at the sample was about 5 mW.

Raman shifts (cm⁻¹): 1037s, 678, 637.

Source: Kagi et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is solved by the Rietveld method. For the Raman spectrum of kalicinite see also Frezzotti et al. (2012).

Kalininite $ZnCr₂S₄$

Origin: Synthetic

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 647.1 nm Kr⁺ laser radiation. The laser radiation power is not indicated. A 180--scattering geometry was employed.

Raman shifts (cm⁻¹): 392s, 293, 260s.

Source: Lutz et al. (1989).

Comments: The sample was characterized by powder X-ray diffraction analysis. For the Raman spectrum of kalininite see also Kushwaha (2008).

Kalinite KAl(SO₄)₂∙11H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3528sh, 3379, 1678, 1630, 1132, 1104sh, 990s, 975, 618, 536sh, 501sh, 454, 440sh, 327w.

Source: Frost and Kloprogge (2001).

Comments: No independent analytical data are provided for the sample used.

Kaliophilite KAlSiO4

Origin: Artificial.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Kr^+ -Ar⁺ laser radiation. The laser radiation power at the sample was no more than 2 mW. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 402, 357.

Source: Jay and Cashion (2013).

Comments: The sample was characterized by electron microprobe analysis.

Kalsilite KAlSiO₄

Origin: San Venanzo, Terni province, Umbria, Italy.

Experimental details: No data.

Raman shifts $(cm⁻¹): ~350s.$

Source: Uchida et al. (2006).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved. The empirical formula of the sample used is $(K_{0.92}Na_{0.07})(Al_{0.93}Fe^{3+}{}_{0.04}Si_{1.03})O_4$.

Kamacite (Fe,Ni)

Origin: Almahata Sitta meteorite.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 22.5 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 275, 214, 175sh, 153sh.

Source: Kaliwoda et al. (2013).

Comments: The sample was characterized by electron microprobe analyses. It contains about 4 wt% Ni and 0.2 wt% Co. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Kamotoite-(Y) Y₂O₄(UO₂)₄(CO₃)₃⋅14H₂O

- Origin: Kamoto East open cut, Kolwezi, Shaba Cu belt, Democratic Republic of Congo (type locality).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3516w, 3361w, 1634sh, 1551w, 1338w, 1131, 1125sh, 815s, 810sh, 745, 584, 547sh, 418, 336.

Source: Frost et al. (2006k).

Comments: No independent analytical data are provided for the sample used.

Kampelite $Ba_6Mg_3Sc_8(PO_4)_{12}(OH)_6.7H_2O$

Origin: Kovdor phoscorite-carbonatite complex, Kola Peninsula, Russia (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- Raman shifts $(cm⁻¹)$: 1604w, 1092, 975s, 932sh, 848, 715, 591, 456, (402), 297w, 172, 77s.

Source: Yakovenchuk et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Kamphaugite-(Y) CaY(CO₃)₂(OH)∙H₂O

Origin: Goudini carbonatite, South Africa.

Experimental details: No data.

- **Raman shifts (cm⁻¹):** 3473sh, 3383s, 3298s, 3208s, 3140s, 2953w, 2668, 2500, 2357w, 2206w, 1087s, 1041sh, 953w, 761w, 523w, 433w, 250.
- Source: Verwoerd (2008).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(Ca_{1.84}REE_x)(Y_{1.46}REE_{0.54-x})$ $(CO₃)₄(OH)_{1.65}·2H₂O$. For the Raman spectrum of kamphaugite-(Y) see also Frost et al. (2015a).

Kangite $(Sc, Ti, Al, Zr, Mg, Ca, \Box)_{2}O_{3}$

Origin: Allende meteorite. (2015a)

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished section of a sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 5 mW.
- **Raman shifts (cm⁻¹):** No Raman shifts for kangite can be distinguished because of strong fluorescence features due to high concentrations of REEs in the sample.

Source: Ma et al. (2013).

Comments: The empirical formula of the sample used is $(Sc_{0.54}Al_{0.16}Y_{0.07}V_{0.03}Gd_{0.01}Dy_{0.01}Er_{0.01})$ $(Ti_{0.66}Zr_{0.13})_{0.79}(Mg_{0.11}Ca_{0.06}Fe_{0.02})_{0.19}O_3$. In the cited paper a figure of the Raman spectrum of synthetic $Sc₂O₃$ is given.

Kaňkite Fe³⁺(AsO₄)⋅3.5H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was less than 0.1 mW in the hydroxyl stretching region. The laser radiation power in the other spectral regions was not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3408w, 3221, 3112sh, 1629, 1469, 1065, 881s, 832sh, 808sh, 790, 733w, 564,492s, 398w, 373w, 290w, 240, 228, 198, 179w.

Source: Frost and Kloprogge (2003).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of kaňkite see also Frost et al. (2015w) and Culka et al. (2016b).

Kanoite MnMgSi₂O₆

Origin: Artificial.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power at the sample was in the range 0.2–1 mW.

Raman shifts (cm⁻¹): 1010, 930w, 666, 563, 531, 393, 325, (231w).

Source: Tomasini et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Kaolinite $Al_2Si_2O_5(OH)_4$

Origin: Washington County, Georgia, USA.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3683s, 3657w, 3644w, 3616s, 912, 789, 745, 462, 430, 334, 274.

Source: Wang et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and by electron microprobe analyses. For the Raman spectra of kaolinite see also Frost et al. (1993) and Frost (1995).

Kapellasite $Cu_3Zn(OH)_6Cl_2$

Origin: Sounion No. 19 mine, Kamariza, Lavrion, Greece (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm laser radiation. The laser radiation power is not indicated. A 180- -scattering geometry was employed.

Raman shifts (cm⁻¹): 3457, ~908w, 481, 409, 326, ~279sh, ~266sh, 247, ~232.

Source: Krause et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $\text{Cu}_{3.24}\text{Zn}_{0.75}$) $(OH)_{5.94}Cl_{2.0}.$

Kapundaite CaNaFe³⁺₄(PO₄)₄(OH)₃∙5H₂O

Origin: Tom's quarry, Kapunda, Mt. Lofty Ranges, South Australia, Australia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 633 nm He-Ne and 785 nm laser radiations. The laser radiation powers are not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3530w, 3449sh, 3311w, 3151sh, 2905w, 1687w, 1616w, 1549sh, 1443w, 1391w, 1203w, 1159sh, 1128sh, 1114s, 1089s, 1077sh, 1062sh, 1040sh, 1024, 1009sh, 988sh, 972, 963sh, 940, 912w, 675sh, 667sh, 658sh, 646, 633sh, 609, 588sh, 562sh, 547sh, 491sh, 475sh, 460sh, 448sh, 435, 412sh, 395s, 381sh, 361s, 295sh, 275s, 257s,244sh, 221sh, 186sh, 162s, 137sh, 113sh.

Source: Frost et al. (2014q).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Karelianite V_2O_3

Origin: Merelani Hills gem zoisite deposit, Tanzania.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 1 mW.

Raman shifts $(cm⁻¹)$: 506, 354, 219.

Source: Giuliani et al. (2008).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of karelianite see also Voloshin et al. (2014).

Karelianite V_2O_3

Origin: Pyrrhotite gorge, Khibiny Mts., Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The nominal laser radiation power was 2 mW.

Raman shifts (cm⁻¹): 972w, 712w, 644w, 576w, 503s, 305s, 227.

- Source: Voloshin et al. (2014).
- Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of karelianite see also Giuliani et al. (2008).

Karrooite MgTi₂O₅

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal with the b axis oriented parallel to the laser beam and the c-axis vertical using 785 nm Ti-sapphire laser radiation. The nominal laser radiation power was 50 mW.
- **Raman shifts (cm⁻¹):** 1446, 1366, 1253, 1165, 1112, 913w, 790s, 632w, 522w, 499w, 422, 370, 329, 270s, 207, 165, 140, 124, 105, 88.

Source: Liermann et al. (2006).

Comments: No independent analytical data are provided for the sample used.

Karpenkoite $Co_3(V_2O_7)(OH)_2$ ∙2H₂O

Origin: Little Eva mine, Grand Co., Utah, USA (type locality).

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 532 nm diode laser radiation. The laser radiation output power was 4 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): \sim 3500, 1670w, 823s, 474, 443, 312, 253.

Source: Kasatkin et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(C_{0.06}Z_{0.72}Ni_{0.13}Mn_{0.09}$ $Ca_{0.02}Cu_{0.02}Mg_{0.01}$)V_{1.98}O₇(OH)₂·2H₂O.

Kashinite $Ir₂As₃$

Origin: No data.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was in the range from 1 to 2 mW.
- **Raman shifts (cm⁻¹):** 389, 367, 311, 290s, 200, 169, 152.

Source: Bakker (2014).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of kashinite see also Zaccarini et al. (2016).

Kasolite Pb(UO2)(SiO₄)⋅H₂O

Origin: Sierra Albarrana, Córdoba, Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 972w, 949w, 912w, ~800sh, 768s, 553, 424, 237, 217, 107.

Source: Bonales et al. (2015).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of kasolite see also Frost et al. (2006e) and Driscoll et al. (2014).

Kassite $CaTi₂O₄(OH)₂$

Origin: Prairie Lake carbonatite, Ontario, Canada.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The nominal laser radiation power was 50 mW.
- **Raman shifts (cm⁻¹):** 3440sh, 3200-3194sh, 3161-3157, 3088sh, 2662w, 2596w, 2501w, 696-693s, 614sh, 472–463, 450–446, 398, 368, 336–332, 300–299s, 248sh, 193, 190sh, 165w, 147–146w, 124–123.

Source: Martins et al. (2014).

Comments: The sample was characterized by X-ray diffraction data and by electron microprobe analyses. The empirical formula of the sample used is $(Ca_{0.90}Ce_{0.03}Nd_{0.02}La_{0.01}Mn_{0.01})$ $(Ti_{1.94}Fe_{0.04}Si_{0.01}Al_{0.01}Nb_{0.01}O_4(OH)_2.$

Katayamalite KLi₃Ca₇Ti₂(SiO₃)₁₂(OH)₂

Origin: Iwagi Island, Inland Sea, Ehime prefecture, Japan (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~3678, 1141, 1115w, 1019w, 982s, 960s, 915w, 904w, 700w, 668w, 570s, 514w, 495sh, 488, 454, 412, 376s, 297, 278, 257, 230w, 218, 195w.

Source: Andrade et al. (2013b).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(K_{0.89}Na_{0.12})Li_{3.21}(Ca_{6.87}Mn_{0.04}Ba_{0.02})(Ti_{1.79}Zr_{0.14}Fe_{0.04}Sn_{0.02})(SiO₃)₁₂(OH_{1.55}F_{0.45}).$ The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Katoite $Ca₃Al₂(OH)₁₂$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal from the (110) face of the crystal with parallel (A_{1g} and E_g) and cross (F_{2g}) polarizations of the incident and scattered light using 488 and 514.5 nm $Ar⁺$ laser radiations. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3648s, 534, 327 (A_{1g} + E_g); 3653, 780w, 688sh, 535w, 388w, 331w, 231w, 163 (F_{2g}) .

Source: Kolesov and Geiger (2005).

Comments: The sample was characterized by powder X-ray diffraction data.

Kawazulite $Bi₂Te₂Se$

Origin: Ozernyi district, Salla-Kuolayarvi, Kola Peninsula, Russia.

Experimental details: Methods of samples preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ and 785 nm diode laser radiations. The nominal laser radiation power was 50 and 500 mW, respectively.

Raman shifts (cm⁻¹): 141-140, 103s, 61s.

Source: Voloshin et al. (2015a).

Comments: The samples were characterized by electron microprobe analyses. The empirical formulae of the samples used are $Bi_{2.052}Te_{1.797}Se_{1.151}$ and $(Bi_{1.986}Ni_{0.068})Te_{2.011}Se_{0.936}$. For the Raman spectra of kawazulite see also Akrap et al. (2012) and Gehring et al. (2013).

Kazanskyite BaNa₃Ti₂Nb(Si₂O₇)₂O₂(OH)₂(H₂O)₄

Origin: Kukisvumchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was in the range from 5 to 12.5 mW.

Raman shifts (cm⁻¹): 3628w, 3545, 3462sh, 1071w, 1001w, 935, 885s, 822, 722w, 680, 580, 521w, 455, 411, 317, 214w, 151.

Source: Cámara et al. (2012b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Na_{2.55}Mn_{0.31}Ca_{0.11}Fe^{2+}_{0.03})(Ba_{0.70}Sr_{0.28}K_{0.21}Ca_{0.03})(Ti_{2.09}Nb_{0.63}Mn_{0.26}Al_{0.02})$

 $Si_{4.05}O_{21.42}H_{9.45}F_{0.59}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Keilite FeS

Origin: Zakłodzie meteorite.

- Experimental details: Raman scattering measurements have been performed in the spectral region from 100 to 4000 cm^{-1} on an arbitrarily oriented sample using 514.5 nm laser radiation. The laser radiation power at the sample was 1.2 mW.
- Raman shifts (cm^{-1}) : ~335w, ~280.

Source: Ma et al. (2012a).

Comments: The sample was characterized by electron backscatter diffraction and electron microprobe analysis. The empirical formula of the sample used is $(Fe_{0.43}Mn_{0.35}Mg_{0.16}Cr_{0.02}Ca_{0.02})S$. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Keiviite-(Yb) $Yb_2Si_2O_7$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal and on a powdered sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 4 W.

Raman shifts (cm⁻¹): 952s, 923s, 663, 521, 484w, 424, 413, 370, 362, 277, 203w, 145s, 88w. Source: Bretheau-Raynal et al. (1979).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts are given for a powdered sample.

Kemmlitzite SrAl₃(AsO₄)(SO₄)(OH)₆

Origin: Oschatz, Saxony, Germany (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3566sh, 3441s, 3374sh, 3269sh, 3047w, 1591w, 1524sh, 1356sh, 984s, 957sh, 825, 772sh, 690, 631sh, 564w, 482sh, 427, 388sh, 342s, 218, 208, 199, 149, 108w.

Source: Frost et al. (2012a).

Comments: No independent analytical data are provided for the sample used.

Kempite Mn^{2+} ₂Cl(OH)₃

Origin: Artificial.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 785 nm laser. The laser radiation power at the sample was less than 5 mW.

Raman shifts (cm⁻¹): 506, 478, 413w, 293s.

Source: Vallette Campos and Alvarado Aguayo (2015).

Comments: No independent analytical data are provided for the sample used.

Kentrolite $Pb_2Mn^{3+}2O_2(Si_2O_7)$

Origin: Artificial.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm⁻¹): 950, 893, 593s, 540, 344, 305.

Source: Vieira Ferreira et al. (2014).

Comments: No independent analytical data are provided for the sample used.

Kenyaite Na₂Si₂₂O₄₁(OH)₈⋅6H₂O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation power at the sample was 90 mW.

Raman shifts (cm⁻¹): 3200w, 1179, 1061, 1049, 819, 801w, 780w, 622, 493sh, 465s, 431sh, 398w, 376, 349, 316, 258, 242w, 204, 166, 162, 155w, 148w, 139w, 129w, 123w, 115w, 106.

Source: Huang et al. (1999a).

Comments: The sample was characterized by powder X-ray diffraction data.

Kerimasite $Ca₃Zr₂(SiFe³⁺₂)O₁₂$

Origin: Kerimasi volcano, northern Tanzania (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3537w, 3420sh, 3400w, 3380sh, 3240w, 875w, 830sh, 785sh, 732, 573w, 500s, 414w, 298s, 243, 152.

Source: Zaitsev et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{3.00}Mn_{0.01}Ce_{0.01}Nd_{0.01})(Zr_{1.72}Nb_{0.14}Ti_{0.08}Mg_{0.02}Y_{0.02})(Fe^{3+1}1.23}Si_{0.86}Al_{0.82}Ti_{0.09})O_{12}$. For the Raman spectra of kerimasite see also Galuskina et al. (2013a) and Uher et al. (2015).

Kermesite $Sb₂OS₂$

Origin: Pernek, Slovak Republic.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal with the laser polarization parallel and perpendicular to the cleavage and elongation of kermesite. 632.8 nm He-Ne and 785 nm solid-state laser radiations were used. The nominal laser radiation power was 1.7 and 8.5 mW, respectively. A 180°-scattering geometry was employed.
- Raman shifts (cm⁻¹): 334, 317s, 303w, 289w, 276w, 245, 237w, 231, 206w, 175w, 162w, 148, 130, 111w, 105, 97w, 84w, 72w, 64, 59, 48s.

Source: Kharbish et al. (2009).

Comments: The sample was characterized by electron microprobe analysis. The empirical formula of the sample used is $Sb_{1.9}S_{2.1}O$. The Raman shifts are given as the sum of the spectra of all scattering geometries with He-Ne laser excitation.

Keyite Cu^{2+} ₃Zn₄Cd₂(AsO₄)₆⋅2H₂O

Origin: Tsumeb, Namibia (?).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 856, 803, 735, 590, 505, 411, 355, 307sh, 288, 239, 195, 134, 65.

Source: Schlüter et al. (2013).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.
Khademite Al(SO₄)F⋅5H₂O

Origin: Kladno mine, Central Bohemia, Czech Republic (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. Raman spectrum was obtained in the spectral region from 200 to 4000 cm^{-1} . The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3380, 3146sh, 2991sh, 1763sh, 1609w, 1449sh, 1132, 1104sh, 991s, 975sh, 618, 534sh, 505sh, 455, 324sh, 253sh, 226sh, 192, 150, 113sh.

Source: Frost et al. (2013m).

Comments: No independent analytical data are provided for the sample used.

Khatyrkite CuAl₂

Origin: Synthetic.

Experimental details: No data.

Raman shifts $(cm⁻¹)$ **:** 260, 103.

- Source: Bahrami et al. (2014).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Khesinite $Ca_4(Mg_3Fe^{3+}_9)O_4(Fe^{3+}_9Si_3)O_{36}$

Origin: Gurim anticline, near Arad city, Hatrurim Complex, Negev Desert, Israel (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power at the sample was in the range from 10 to 20 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1638, 1495sh, 1403, 1132w, 947, 814sh, 749sh, 696, 610, 522, 481sh, 336sh, 310s, 256sh, 208sh, 159, 121.

Source: Galuskina et al. (2017).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Ca_4(Fe^{3+}{}_{8.528}Mg_{1.635}Ca_{0.898}Ti^{4+}{}_{0.336}Ni^{2+}{}_{0.217}Mn^{2+}{}_{0.155}Cr^{3+}{}_{0.132}Fe^{2+}{}_{0.098})[(Fe^{3+}{}_{6.827}Al_{2.506}Si_{2.667})$ O_{40}].

Khvorovite $Pb_4Ca_2[Si_8B_2(Si,B)_2O_{28}]F$

Origin: Dara-I Pioz glacier, Dara-I Pioz alkaline massif, Tien Shan Mts., Tajikistan (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1100w, 1017s, 937, 783, 713, 642, 531s, 485, 425s, 296, 256s, 221w, 203w, 170, 162.

Source: Pautov et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Pb^{2+}_{2,76}Ba_{0.62}K_{0.56}Na_{0.16})(Ca_{1.86}Sr_{0.06}Y_{0.04}Na_{0.04})[Si_8B_2(Si_{1.46}B_{0.65})O_{28}](F_{0.71}O_{0.29}).$

Kiddcreekite $Cu₆SnWS₈$

Origin: Zijin Cu-Au mine, China. Experimental details: No data. Raman shifts $(cm⁻¹)$: 860, 654, 430, 345, 291, 256. **Source:** Liu et al. (2012). Comments: No independent analytical data are provided for the sample used.

Kidwellite NaFe³⁺_{9+x}(PO₄)₆(OH)₁₁.3H₂O (x \gg 0.33)

Origin: Savannah River, Girard Barke Co., Georgia, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. Raman spectrum was obtained in the spectral region from 200 to 4000 cm^{-1} . The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3580, 3466, 3356, 3231, 3122, 1188, 1144w, 1129, 1082, 1063, 1050w, 1034, 1014s, 978s, 931w, 919, 875w, 653w, 644w, 631w, 588, 570, 557, 539, 500, 490, 467, 453, 444, 418w, 405, 333, 322, 285, 271, 253w, 223, 189, 181, 169, 144, 139, 118, 111.

Source: Frost et al. (2014k).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Kieftite $CoSb₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polished plate cut perpendicular to the $[101]$ direction of a single crystal using 476.5, 488, and 514.5 nm Ar⁺ laser radiations. The laser radiation power is not indicated. A 135°-scattering geometry was employed. **Raman shifts (cm⁻¹):** 188, 180, 171w, 154s.

Source: Nolas et al. (1996).

Comments: The sample was characterized by X-ray diffraction data. The Raman shifts are given for 514.5 nm laser radiation.

Kieserite Mg(SO4)∙H2O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 15 mW.

Raman shifts (cm⁻¹): 3297, 1509, 1215w, 1117, 1046s, 629, 481, 436, 272, 218.

Source: Wang et al. (2006a).

Comments: The sample was characterized by powder X-ray diffraction analysis. For the Raman spectrum of kieserite see also Wang et al. (2008).

Kilchoanite $Ca_6(SiO_4)(Si_3O_{10})$

Origin: Birkhin massif, Baikal Lake area, Siberia, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was in the range from 30 to 50 mW.

Raman shifts (cm⁻¹): 1012, 988, 967, 927, 911w, 871sh, 864s, 828s, 782w, 671s, 596w, 571w, 552w, 485w, 401, 358w, 333w, 306w, 259w, 246w, 208w, 195w, 188w, 163, 133, 121w, 112sh. Source: Galuskin et al. (2012b).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Killalaite Ca_{6.4}[H_{0.6}Si₂O₇]₂(OH)₂

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia.

- Experimental details: Raman scattering measurements have been performed on an approximately oriented crystal using 514.5 nm $Ar⁺$ laser radiation. The laser radiation output power was in the range from 30 to 50 mW. A 180°-scattering geometry was employed. Spectra were collected on a cross-section approximately perpendicular to z-axis (I scattering geometry) and on a cross-section approximately parallel to z-axis (II scattering geometry).
- **Raman shifts (cm⁻¹):** 3562, 3523, 994, 943, 912, 677, 551, 433, 371, 302, 284, 266, 185, 129 (I scattering geometry); 3567, 3530, 1077, 999, 945, 912, 883, 678, 552, 435, 367, 284, 266, 185, 148, 107 (II scattering geometry).

Source: Armbruster et al. (2012).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Kimzeyite $Ca₃Zr₂(SiAl₂)O₁₂$

Origin: Wiluy River basin, Sakha-Yakutia, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 937w, 879w, 785, 728, 499s, 303s, 248sh, 153.

Source: Galuskina et al. (2005).

Comments: The sample was characterized by electron microprobe analyses.

Kinoite Ca₂Cu₂Si₃O₁₀⋅2H₂O

Origin: Christmas mine, Gila Co., Arizona, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3572sh, 3519, 3441sh, 3237w, 3022w, 1585w, 1186, 1052, 1000, 994sh, 975sh, 951s, 859sh, 847s, 765, 742, 642, 543sh, 531s, 486s, 456s, 422s, 400s, 352sh, 339, 324sh, 309, 301, 286, 266sh, 251, 233sh, 225, 194, 183, 163sh, 153s, 138s, 118sh, 110. Source: Frost and Xi (2012c).

Comments: No independent analytical data are provided for the sample used.

Kinoshitalite $BaMg_3(Si_2Al_2O_{10})(OH)_2$

Origin: Hokkejino, Kyoto prefecture, Kinki region, Honshu Island, Japan.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 780 nm laser radiation. The nominal laser radiation power was 600 mW.

Raman shifts $(cm⁻¹)$: 653s, 210, 150, 140.

Source: Manuella et al. (2012).

Comments: The sample was characterized by X-ray diffraction data.

Kintoreite $PbFe^{3+}_{3}(PO_4)(PO_3OH)(OH)_6$

Origin: Broken Hill, New South Wales, Australia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3435sh, 3391sh, 3225, 2968sh, 1413, 1229, 1140, 1110, 1075, 1021, 1003, 975, 851, 814, 625, 573sh, 562, 551, 477sh, 459sh, 440s, 422sh, 420sh, 372, 336, 307, 253, 219, 204.

Source: Frost et al. (2006p).

Comments: No independent analytical data are provided for the sample used.

Kipushite $Cu₆(PO₄)₂(OH)₆·H₂O$

Origin: Miedzianka (former Kupferberg), Sudety Mts., SW Poland.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 40 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3549, 3482, 3444sh, 3251sh, 1078sh, 1045w, 1021w, 975s, 942w, 875sh, 869s, 843sh, 814, 796sh, 639w, 617w, 552sh, 521w, 493sh, 464, 438w, 396, 369sh, 317w, 297w, 256w, 221w.

Source: Ciesielczuk et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts are given for As-bearing kipushite with 1.21 apfu P and 0.67 apfu As.

Kirschsteinite $CaFe^{2+}(SiO₄)$

Origin: Artificial.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished sample cross-section using 785 nm laser radiation. The laser radiation power at the sample was 6.6 mW.

Raman shifts (cm⁻¹): 932, 901w, 849sh, 815s, 635w, 566w, 522w, 391, 291, 249.

Source: Kramar et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Kladnoite $C_6H_4(CO)_2NH$

Origin: Kladno (Schöller) mine, Libušin, Kladno, Bohemia, Czech Republic (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 10 mW.
- Raman shifts (cm^{-1}) : 3085, 3071w, 3068sh, 3046, 1755s, 1726, 1606, 1468w, 1386, 1373, 1305, 1165, 1142, 1091w, 1047w, 1012s, 901w, 809w, 805w, 795w, 743s, 666w, 641, 550, 531w, 350, 260, 200, 163s, 72.

Source: Jehlička et al. (2007b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of kladnoite see also Moroz et al. (2004) and Jehlička et al. (2009a).

Klaprothite $Na_6(UO_2)(SO_4)_4.4H_2O$

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3620, 3440, 1640, 1248, 1216w, 1175, 1161, 1070, 1036, 997s, 974, 944, 830s, 658, 624, 540w, 495w, 456, 430, 335w, 287w, 230sh, 215, 146w, 130w, 98w, 78w.

Source: Kampf et al. (2016g).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Na_{6.01}(U_{1.03}O₂)(S_{0.993}O₄)₄(H₂O)₄$. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of klaprothite see also Plášil et al. (2015d).

Klebelsbergite Sb^{3+} ₄O₄(SO₄)(OH)₂

Origin: Pereta mine, Grosseto province, Tuscany, Italy.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3457sh, 3435w, 3357w, 1142, 1139sh, 1089sh, 1074, 1029, 971s, 936sh, 723, 662, 627sh, 611sh, 604s, 581s, 489s, 481sh, 446, 435, 410, 326, 303, 266w, 238s, 225s, 205s, 194sh, 170s, 160sh, 142, 130, 116.

Source: Frost and Bahfenne (2011c).

Comments: No independent analytical data are provided for the sample used.

Klockmannite $Cu_{5,2}Se_6$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 263s, 206w, 192w, 45sh, 43s, 17.

Source: Ishii et al. (1993).

Comments: The sample was characterized by powder X-ray diffraction data.

Knorringite $Mg_3Cr_2(SiO_4)_3$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polished surface of an arbitrarily oriented single crystal using 632 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 936, 908, 866, 718, 551s, 368.

Source: Bykova et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Mg_3, {}_{21}Cr_1, {}_{58}Si_3, {}_{21}O_1,$

Kobokoboite Al₆(PO₄)₄(OH)₆⋅11H₂O

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 1630, 1463, 1170sh, 1095, 1046, 980sh, 916, 764, 600, 514, 490sh.

Source: Sanchez-Moral et al. (2011).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Koechlinite $Bi₂MoO₆$

Origin: Pittong, Victoria, Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts $(cm⁻¹)$: 843, 797, 773sh, 715, 401, 349, 321, 293sh, 281, 268sh, 228, 195, 154sh, 141. Source: Frost et al. (2004c).

Comments: No independent analytical data are provided for the sample used.

Kojonenite Pd_{7-x}SnTe₂ (0.3 \leq x \leq 0.8)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polished surface of an arbitrarily oriented crystal using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was in the range from 1 to 2 mW.

Raman shifts $(cm⁻¹)$: 197w.

Source: Vymazalová et al. (2014).

Comments: The sample was characterized by electron microprobe analysis.

Kokchetavite $K(AlSi₃O₈)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar^+ laser radiation. The nominal laser radiation power was 60 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 835, 390s, 109s.

Source: Kanzaki et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of kokchetavite see also Hwang et al. (2004) and Ferrero et al. (2016).

Koktaite $(NH_4)_2$ Ca(SO₄)₂⋅H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW. Raman shifts (cm⁻¹): 3353sh, 3149, 2852w, 1723w, 1677w, 1453, 1419, 1153, 1132, 1104w, 1087,

996s, 980s, 656, 642, 625, 616, 603, 487, 474, 437, 423.

Source: Jentzsch et al. (2012a).

Comments: The sample was characterized by powder X-ray diffraction data.

Kolskyite CaNa₂Ti₄(Si₂O₇)₂O₄(H₂O)₇

- Origin: Kirovskii mine, Kukisvumchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 1072w, 997w, 925s, 800w, 685s, 586, 505w, 435, 420, 397, 297, 214w, 151. Source: Cámara et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Na_{1.93}Mn_{0.04}Ca_{0.03})(Ca_{0.67}Sr_{0.45}Ba_{0.19}K_{0.15})(Ti_{2.93}Nb_{0.46}Mn_{0.33}Mg_{0.17}Fe^{2+}{}_{0.10}Zr_{0.01})Si_{4.00}O_{24.67}$ $H_{13.60}F_{0.33}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Kolwezite $(Cu,Co)_{2}(CO_{3})(OH)_{2}$

Origin: Mupine, Shaba province, Zaire.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3439sh, 3389, 3310sh, 3284sh, 1515sh, 1495, 1456sh, 1363, 1093s, 1059s, 757w, 718w, 530, 431, 346, 264, 176, 159.

Source: Frost (2006).

Comments: No independent analytical data are provided for the sample used.

Konyaite Na2Mg(SO4)2∙5H2O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): 3295, 3185sh, 1179w, 1144w, 1091, 1003s, 981s, 648w, 619sh, 610, 602sh, 471sh, 455sh, 448.

Source: Jentzsch et al. (2011).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of konyaite see also Jentzsch et al. (2013). The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum.

Koritnigite Zn $(AsO₃OH)·H₂O$

Origin: Jáchymov ore district, Krušné Hory Mts., Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3474w, 3297sh, 3182w, 3005w, 2770w, 2434sh, 2285w, 1755sh, 1597w, 1303w, 877s, 842s, 813s, 766, 330, 261, 284, 237, 219, 187, 172s, 154, 140, 120, 110.

Source: Frost et al. (2011q).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The empirical formula of the sample used is $(Zn_{0.79}Co_{0.14}Ni_{0.02})$ $[AsO₃(OH)_{0.99}F_{0.01}]_{1.00}$ H₂O. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of koritnigite see also Frost et al. (2014a).

Kornelite $Fe^{3+}{}_{2} (SO_4)_{3}$ ∙7H₂O(?)

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3587w, 3352sh, 3123, 1696sh, 1658w, 1613sh, 1182, 1151sh, 1124w, 1078w, 1033s, 1021sh, 993w, 838w, 672w, 636, 597, 476, 452, 439, 269, 248, 209, 187.

Source: Ling and Wang (2010).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of kornelite see also Ling et al. (2009) and Kong et al. (2011a).

Kornerupine $(Mg,Fe^{2+},Al,\Box)_{10}(Si,Al,B)_{5}O_{21}(OH,F)_{2}(?)$

Origin: Mautia Hill, Tanzania.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3619sh, 3612s, 3599sh, 3556sh, 3547s, 3538sh, 3521w, 3275w, 1084w, 1051, 1035sh, 995, 947sh, 923, 668, 648sh, 620, 586sh, 554w, 507sh, 487, 477sh, 459sh, 403, 394sh, 364w, 355w, 336, 324, 316sh, 298w, 261, 254sh, 236w, 224, 219sh, 191sh, 180, 150, 138sh, 123. Source: Frost et al. (2015t).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectrum of kornerupine see also Wopenka et al. (1999).

Kosmochlor NaCr³⁺Si₂O₆

Origin: Morasko iron meteorite.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 10 mW.
- **Raman shifts (cm⁻¹):** 1055, 1033s, 991, 952w, 863, 680, 565sh, 552s, 520, 413, 380w, 339s, 320w, 294, 252, 202, 142w.
- Source: Karwowski et al. (2013).
- Comments: The sample was characterized by electron microprobe analyses. The empirical formula of the sample used is $Na_{0.91}Ca_{0.07}Mg_{0.09}Fe_{0.02}Cr_{0.82}Al_{0.01}V_{0.01}Ti_{0.07}Si_{2.00}O_{6.00}$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of kosmochlor see also Leander et al. (2014).

Kosnarite $KZr_2(PO_4)_3$

Origin: Jenipapo district, Itinga, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1149w, 1116w, 1088, 1079sh, 1063, 1060, 1031sh, 1026s, 1022sh, 1017sh, 979sh, 638, 595, 561w, 437s, 421, 405, 387w, 318, 290s, 263, 188sh, 175, 156, 141sh, 122. Source: Frost et al. (2012i).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Kotoite $Mg_3(BO_3)_2$

Origin: Snezhnoye deposit, East Verkhoyan'ye, Sakha Yakutia, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was less than 20 mW. A 0° -scattering geometry was employed.

Raman shifts (cm⁻¹): 1255w, 1088w, 920s, 866w, 847, 708, 796, 691, 553, 357s, 327, 310. Source: Galuskina et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of kotoite see also Frost and Xi (2013c) and Kipcak et al. (2013).

Köttigite $Zn_3(AsO_4)_2$ ∙8H₂O

Origin: Ojuela Mine, Mapini, Durango, Mexico.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3458sh, 3215w, 868sh, 835s, 810sh, 790s, 547, 479sh, 451s, 432s, 371w, 332w, 286sh, 249s, 220s, 194sh, 142w.

Source: Frost et al. (2003g).

Comments: No independent analytical data are provided for the sample used.

Kotulskite Pd(Te,Bi)_{2-x} ($x \approx 0.4$)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was in the range from 1 to 2 mW.

Raman shifts $(cm⁻¹): 97.$

Source: Vymazalová et al. (2014).

Comments: The sample was characterized by electron microprobe analysis.

Kovdorskite Mg2(PO4)(OH)∙3H2O

Origin: Kovdor massif, Kola Peninsula, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 3681, 3395, 3219, 2967, 1550, 1089w, 1056, 964s, 870w, 566sh, 536, 453, 410w, 375, 345, 320w, 303, 255w, 228, 201, 158s, 135.

Source: Morrison et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Mg_{2.00}PO_{4.00}(OH) \cdot 2.67H_2O$. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectrum of kovdorskite see also Frost et al. (2013a).

Kozyrevskite $Cu₄O(AsO₄)₂$

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm diode laser radiation. The laser radiation power at the sample was about 3 mW. A 180-scattering geometry was employed.

Raman shifts (cm⁻¹): 875s, 840sh, 826s, 757sh, 497w, 445, 394, 340, 216, 170sh, 137sh, 112. Source: Pekov et al. (2014c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Cu_{3.95}Zn_{0.07}Fe_{0.01})(As_{1.83}P_{0.09}S_{0.03}V_{0.02}Si_{0.01})O_9.$

Kremersite $(NH_4)_2Fe^{3+}Cl_5·H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using He-Ne laser radiation. The nominal laser radiation power was 50 mW. A 135°-scattering geometry was employed.

Raman shifts (cm⁻¹): 359w, 296s, 211, 194, 130sh, 115w. Source: Sharma and Pandya (1974). Comments: No independent analytical data are provided for the sample used.

Krieselite $\text{Al}_2(\text{GeO}_4)\text{F}_2$

Origin: Tsumeb mine, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$: 862, ~802sh, 718w, 294s, 224.

Source: Schlüter et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The empirical formula of the sample used is $(Al_{1.860}Ga_{0.102}As^{3+}{}_{0.036}Zn_{0.020}Mg_{0.016}$ $\text{Fe}^{3+}{}_{0.012}\text{Na}_{0.009}\text{Sb}^{3+}{}_{0.005}\text{Ti}_{0.003}\text{Cu}_{0.001})(\text{Ge}_{0.844}\text{Al}_{0.143}\text{Si}_{0.013})\text{O}_4(\text{F}_{1.103}\text{OH}_{0.897}).$

Kröhnkite Na₂Cu(SO₄)₂∙2H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 488 and 514.5 nm Ar⁺ laser radiations. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3280w, 3200w, 3140w, 3100w, 1660w, 1610w, 1590w, 1182w, 1175w, 1162, 1150, 1128w, 1090w, 1045s, 989s, 840w, 740, 715w, 655, 645, 615, 585w, 560, 464s, 444s, 430sh, 300s, 280w, 260, 210w, 175w, 145w, 100s, 80, 70, 55.

Source: Pillai et al. (1997).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of kröhnkite see also Frost et al. (2013v) and Majzlan et al. (2015).

Krotite $CaAl₂O₄$

Origin: Northwest Africa 1934 meteorite (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 789, 686w, 647w, 543s, 520s, 456w, 404w, 312w, 174, 150, 141.

Source: Ma et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Ca_{1.02}Al_{1.99}O_4$. For the Raman spectrum of krotite see also Janáková et al. (2007).

Krut'aite $CuSe₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ and 632.8 nm He-Ne lasers radiations. The nominal laser radiation power was 70 and 50 mW, respectively. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 270sh, 260, 115w.

Source: Anastassakis (1973).

Comments: No independent analytical data are provided for the sample used.

Kryzhanovskite $(Fe^{3+}, Mn^{2+})_3(PO_4)_2(OH,H_2O)_3$

Origin: Hagendorf South pegmatite, Waidhaus, Upper Palatinate, Bavaria, Germany.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3562, 3531, 3432w, 1596w, 1530sh, 1379w, 1114sh, 1081sh, 1046s, 1020sh, 1001sh, 970s, 907sh, 829w, 622sh, 601s, 581sh, 547, 512sh, 477, 414, 363sh, 329, 283s, 251sh, 199s, 179sh, 147sh, 113.

Source: Frost et al. (2016d).

Comment The sample was characterized by qualitative electron microprobe analysis.

Ktenasite (Cu,Zn)₅(SO₄)₂(OH)₆⋅6H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 994, 981, 973, 604, 475, 449.

Source: Frost et al. (2013a).

Comments: No independent analytical data are provided for the sample used.

Kuksite $Pb_3Zn_3TeO_6(PO_4)_2$

Origin: Blue Bellclaims, California, USA, and Black Pine mine, Montana, USA.

- Experimental details: Methods of samples preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3036w, 1006, 734, 529, 493, 416 (for a sample from Blue Bell claims); 1017, 731, 497, 476, 424 (for a sample from Black Pine mine).

Source: Mills et al. (2010).

Comments: The samples were characterized by powder X-ray data and electron microprobe analyses. The crystal structure is solved. The empirical formulae of the samples used are $(Pb_{2.89}Bi_{0.10})$ $(Zn_{2.84}Cu_{0.20}Fe_{0.02})Te_{1.05}(P_{1.52}Si_{0.44}As_{0.02})O_{14}$ and $Pb_{2.93}(Zn_{2.74}Cu_{0.06}Fe_{0.01})(Te_{0.58}Sb_{0.33})(P_{1.44}S_{0.02})O_{14}$ $As_{0.74}Si_{0.11}$) O_{14} , respectively.

Kulanite $BaFe^{2+}{}_{2}Al_{2}(PO_{4})_{3}(OH)_{3}$

Origin: Rapid Creek, Dawson Mining District, Yukon, Canada (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3533, 3513w, 3339sh, 3211, 3095w, 2960sh, 2754sh, 1303w, 1235w, 1182sh, 1146, 1110, 1076sh, 1039sh, 1022s, 1012sh, 1006sh, 967, 928w, 665w, 624sh, 616, 585, 569, 553, 525, 492, 456, 438, 418, 358w, 343, 317w, 279, 213, 196sh, 186sh, 161sh, 137, 122.

Source: Frost et al. (2013k).

Comments: No independent analytical data are provided for the sample used.

Kullerudite NiSe₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline thin film using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power density on the surface was of the order of 100 kW cm^{-2} . A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 243, 214s, 170, 152.

Source: De las Heras and Agulló-Rueda (2000).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of kullerudite see also Zhuo et al. (2015).

Kumdykolite Na $(AISi₃O₈)$

Origin: Village of Staré, České Středohoří Mts., Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 492s, 464, 407w, 284sh, 265, 222, 155s.

Source: Kotková et al. (2014).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of kumdykolite see also Hwang et al. (2009) and Ferrero et al. (2016).

Kumtyubeite $Ca₅(SiO₄)₂F₂$

- Origin: Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was in the range from 20 to 40 mW. A 0° -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3561, 3553s, 3544, 925w, 901, 849, 822s, 547, 525w, 420, 397, 323, 299w, 281.

Source: Galuskina et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Ca₅(Si_{1.99}Ti_{0.01})O₈(F_{1.39}OH_{0.61}).$

Kuramite $Cu₃SnS₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Ar^+ laser radiation. The laser radiation power is not indicated. **Raman shifts (cm⁻¹):** 346s, 333s, 316s, 289.

Source: Gusain et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Kuranakhite PbMn⁴⁺Te⁶⁺O₆

Origin: Moctezuma, Sonora, Mexico.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 677, 619s, 508, 380, 320, 310.

Source: Grundler et al. (2008).

Comments: The sample was characterized by electron microprobe analyses. Raman spectrum of presumed kuranakhite published by Frost and Keeffe (2009e) without accompanying analytical data is questionable.

Kuratite $Ca_2(Fe^{2+}{}_{5}Ti)O_2[Si_4Al_2O_{18}]$

Origin: D'Orbigny angrite meteorite (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 996, 856, 699s, 563, 500sh, 351.

Source: Hwang et al. (2016).

Comments: The sample was characterized by selected area electron diffraction and electron microprobe analysis. The empirical formula of the sample used is $(Ca_{3.88}Na_{0.02})$ $REE^{3+}{}_{0.03}Mn_{0.03}Mg_{0.01}Ni_{0.02}Zn_{0.01}Sr_{0.01})(Fe^{2+}{}_{9.98}Ti_{2.00})(Si_{7.80}Al_{3.52}Fe^{3+}{}_{0.64}P_{0.05}S_{0.02})$ $O_{39.98}F_{0.01}Cl_{0.01}$.

Kurnakovite MgB3O3(OH)5∙5H2O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm⁻¹): 944, 850s, 627, 466w, 422, 391.

Source: Jun et al. (1995).

Comments: The sample was characterized by powder X-ray diffraction data.

Kusachiite $Cu^{2+}Bi^{3+}{}_{2}O_{4}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powder sample using 1064 nm laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 914, 879, 625, 599, 560, 497, 482s, 451s, 415.

Source: Anandan et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Kushiroite Ca $AlAlSiO₆$

- Origin: ALH 85085 CH chondrite.
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 and 514.5 nm $Ar⁺$ laser radiations. The nominal laser radiations power was in the range from 12 to 20 mW.

Raman shifts (cm⁻¹): 959, 675, 520w, 410sh, 369, 334.

Source: Kimura et al. (2009).

Comments: The sample was characterized by electron backscatter diffraction and electron microprobe analyses. The empirical formula of the sample used is $Ca_{1.008}(Mg_{0.094}Fe_{0.034}Al_{0.878})(Al_{0.921}Si_{1.079})$ O6. For the Raman spectrum of kushiroite see also Ma et al. (2009).

Kutnohorite Ca $Mn^{2+}(CO_3)_2$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation output power was in the range from 200 to 300 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1740w, 1420w, 1086s, 716, 284.

Source: Herman et al. (1987).

Comments: The sample was characterized by powder X-ray diffraction data and by quantitative chemical analysis.

Kuzminite HgBr

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 514.5 nm Ar⁺ and 632.8 nm He-Ne laser radiations. The nominal laser radiation power was in the range from tens to hundreds mW. Spectra were collected in the (zz) , (xz) , and (yz) scattering geometries.

Raman shifts $(cm⁻¹)$: 208, 128, 85, 35.

Source: Markov and Roginskii (2011).

Comments: No independent analytical data are provided for the sample used. The Raman shifts are given as the sum of the Raman shifts for different scattering geometries. For the Raman spectrum of kuzminite see also Ōsaka (1971).

Kyanite $Al₂OSiO₄$

Origin: Harts Range, Northern Territory, Australia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 60 mW.
- **Raman shifts (cm⁻¹):** 998w, 952s, 900w, 669sh, 654, 632, 606, 562, 486s, 437, 419, 405, 386, 360, 325, 302.

Source: Mernagh and Liu (1991).

Comments: The sample was characterized by electron microprobe analysis. The Raman shifts were partly determined by us based on spectral curve analysis of the published spectrum. For the Raman spectra of kyanite see also Makreski et al. (2005b), Yang et al. (2007b), Andò and Garzanti (2014), and Culka et al. (2016a).

Kyawthuite $Bi^{3+}Sb^{5+}O_4$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar^+ laser radiation. The nominal laser radiation power was less than 10 mW. A 180°-scattering geometry was employed. The Raman shifts for asymmetric peaks have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 783w, 730w, 636w, 603w, 452, 420w, 394, 387sh, 319w, 252, 158s, 137s, 133sh, 56s.

Source: Errandonea et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of kyawthuite see also Loubbidi et al. (2014).

Laachite $(Ca, Mn)₂Zr₂Nb₂TiFeO₁₄$

- Origin: Dellen (Zieglowski) pumice quarry, 1.5 km NE of Mendig, Laacher See volcano, Eifel region, Rhineland-Palatinate, Germany (typa locality).
- Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 532 nm diode laser radiation. The laser radiation power about 6 mW. Raman spectra were collected with the polarization of the laser beam parallel to the a axis of the crystal (A) and with the polarization of the laser beam lying in the plane (010) , perpendicular to the a axis of the crystal (B) scattering geometries. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1568w, 1190w, 821sh, 752, 584s, 468sh, 300s, 183w (A); 1175w, 832sh, 757, 588s, 485, 371sh, 330, 213sh, 192 (B).

Source: Chukanov et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is $(Ca_{0.66}Mn_{0.37}Th_{0.25}Y_{0.20}La_{0.11}Ce_{0.34}Nd_{0.11})(Zr_{1.36}Mn_{0.64})(Nb_{1.81}Ti_{1.19})(Fe_{0.69}Al_{0.17}Mn_{0.14})O_{14.00}.$

Lacroixite NaAl($PO₄$)F

Origin: Ehrenfriedersdorf, Germany. Experimental details: No data. **Raman shifts (cm⁻¹):** 1001s, 623, 609. Source: Frezzotti et al. (2012). Comments: No independent analytical data are provided for the sample used.

Lafossaite TlCl

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished crystals using 457.9 nm, 476.5 nm, and 514.5 nm Ar^+ laser radiations. The sample was immersed in pumped liquid helium or in liquid nitrogen. The laser radiation power at the sample was below 200 mW.

Raman shifts (cm⁻¹): 340s, 237, 190, 172s, 147, 111, 98, 85sh, 70sh, 36, 26sh.

Source: Nanba et al. (1987).

Comments: No independent analytical data are provided for the sample used. In lafossaaite, the first order Raman scattering process is forbidden by the inversion symmetry (the alternative prohibition rule). However, the second order Raman scattering spectrum is allowed. Raman shifts are given for a sample at 77 K.

Laihunite $(Fe^{3+},Fe^{2+},\Box)_{2}(SiO_{4})$

Origin: Lau-Hi, China.

Experimental details: Experimental details are not indicated. Raman scattering measurements have been performed on an arbitrarily oriented polished sample.

Raman shifts (cm⁻¹): 896s, 785w, 592sh, 568s, 506w, 428w, 355sh, 312s.

Source: Kuebler et al. (2011).

Comments: The sample was characterized by electron microprobe analyses.

Lakargiite $CaZrO₃$

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was in the range from 40 to 60 mW. A 0° -scattering geometry was employed. Raman spectrum was obtained in the spectral region from 50 to 4000 cm^{-1} .
- **Raman shifts (cm⁻¹):** ~800w, ~715w, ~525w, ~470, ~442s, ~355s, ~285s, ~262s, ~240w, ~215w, $~182w,~152w.$

Source: Galuskin et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction analysis and by electron microprobe analyses. Raman shifts are given for lakargiite with the following chemical composition: lakargiite CaZrO₃ 67%, megawite CaSnO₃ 27%, perovskite CaTiO₃ 2%, and others 4%.

Lamprophyllite $Na_3(SrNa)Ti_3(Si_2O_7)_2O_2(OH)_2$

Origin: Rasvumchorr Mt., Khibiny massif, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1113w, 1072w, 1049w, 1028w, 1001w, 972w, 940s, 918s, 888sh, 861w, 852sh, 801w, 782sh, 707, 671, 595sh, 576, 538w, 516w, 459w, 445sh, 411w, 349, 319w, 294sh, 282sh, 270, 257sh, 227w, 208sh, 201, 177sh, 168sh, 151, 137sh, 114w.

Source: Frost et al. (2015ab).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Lanarkite $Pb_2O(SO_4)$

Origin: Leadhills, Scotland, UK.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished cross-section of the sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was in the range from 0.02 to 2 mW.

Raman shifts (cm⁻¹): 1070, 1055, 976s, 619w, 601w, 439w, 426w, 334, 284, 147s. Source: Correia et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Långbanite Mn^{2+} ₄ Mn^{3+} ₉Sb⁵⁺O₁₆(SiO₄)₂

Origin: Långban mine, Bergslagen ore district, Filipstad, Värmland, Sweden (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals. Other experimental details are not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3699sh, 3680w, 3476sh, 3076sh, 2636w, 2488w, 2240w, 1947w, 1718w, 1432w, 1200sh, 1130, 1094sh, 1034sh, 1012sh, 986s, 964s, 897sh, 872, 671, 646sh, 558sh, 542, 463w, 415sh, 386, 351, 330sh, 258w, 202.

Source: Bahfenne and Frost (2010a).

Comments: No independent analytical data are provided for the sample used.

Langbeinite $K_2Mg_2(SO_4)_3$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 514 nm and 785 nm lasers radiations. The laser radiation power at the sample was less than 1 mW.

Raman shifts (cm⁻¹): 1245w, 1134w, 1123w, 1053s, 626w, 466w, 457w.

Source: Morillas et al. (2016).

Comments: The sample was characterized by electron microprobe analysis.

Langite $Cu₄(SO₄)(OH)₆·2H₂O$

Origin: Cornwall, UK.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 780 nm Nd-YAG laser radiation. The nominal laser radiation power was less than 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3587, 3564, 3405, 3372, 3260w, 1911, 1906, 1266, 1172, 1149, 1128, 1102, 1076, 982sh, 974s, 911w, 773w, 732, 621, 609, 596s, 507, 481, 449, 420, 391, 317, 273sh, 258sh, 241, 226sh, 1912, 183sh, 175, 167, 155, 147, 139, 130sh, 118sh.

Source: Martens et al. (2003a).

Comments: No independent analytical data are provided for the sample used.

Lanmuchangite TlAl(SO₄)₂⋅12H₂O

Origin: Synthetic.

Experimental details: The stimulated Raman scattering measurements have been performed on an oriented sample using 532 nm and 1064 nm Nd-YAG laser radiations. The laser radiation power is not indicated. Raman spectra were collected in the scattering geometries with pumping and registration along [110] direction and polarization both emissions perpendicular to the [110] direction.

Raman shifts $(cm⁻¹)$: 991s.

Source: Kaminskii et al. (2004).

Comments: No independent analytical data are provided for the sample used.

Lansfordite Mg($CO₃$)∙5H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed below 0° C on an arbitrarily oriented microcrystalline sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was about 8 mW.

Raman shifts (cm⁻¹): 3264s, 1705w, 1514w, 1424w, 1098s, 774w, 698w, 225s.

Source: Coleyshaw et al. (2003).

Comments: No independent analytical data are provided for the sample used.

Lanthanite-(Nd) $Nd_2(CO_3)_3·8H_2O$

Origin: Whitianga quarry, Coromandel Peninsula, New Zealand.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystal blades using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 25 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3471s, 3280s, 3072s, 2865s, 1702w, 1636w, 1615w, 1612w, 1581, 1576w, 1559w, 1557w, 1513w, 1505w, 1487w, 1459w, 1454w, 1418w, 1394w, 1365, 1294w, 1292w, 1286w, 1173w, 1093s, 968w, 762w, 732w, 686w, 372w, 356w, 277w, 233.

Source: Graham et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe analysis and laser-ablation inductively coupled plasma mass spectrometry. The empirical formula of the sample used is $(Nd_{0.63}La_{0.59}Ce_{0.35}Pr_{0.15}Sm_{0.10}Gd_{0.069}Y_{0.06}Eu_{0.03}Dy_{0.02}Ga_{0.01})(CO_3)_3.8H_2O.$

Lapeyreite Cu₃O[AsO₃(OH)]₂⋅H₂O

Origin: Alpes-Maritimes Region, Nice, France (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented fragment of the holotype sample using 532 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 1047, 627, 405, 214s, 198sh, 188sh, 141, 100.

Source: Hatipoglu and Babalik (2012).

Larnite $Ca_2(SiO_4)$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 17 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1577w, 1112w, 1085w, 976, 949, 914, 897w, 871sh, 858s, 845sh, 669w, 564w, 554w, 536, 524sh, 516sh, 443, 368w, 300, 274sh, 252w, 241, 222w, 201w, 165, 146, 101w, 76w.

Source: Sokol et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of larnite see also Piriou and McMillan (1983).

Laueite Mn²⁺Fe³⁺₂(PO₄)₂(OH)₂⋅8H₂O

Origin: Cigana mine, Conselheiro Pena, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 0.1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3515sh, 3478sh, 3430, 3379, 3297sh, 3080sh, 1692sh, 1613w, 1504sh, 1096sh, 1069, 1045s, 1021, 997sh, 980s, 864w, 731, 551, 542, 525, 472, 456, 404, 357, 335, 279, 265, 253s, 240, 226sh, 186, 172, 161s, 138, 115, 110.

Source: Frost et al. (2016b).

Comments: The empirical formula based on the semiquantitative chemical analyses of the sample used is $(Mn^{2+}_{0.85}Fe^{2+}_{0.10}Mg_{0.05})(Fe^{3+}_{1.90}Al_{0.10})(PO_4)_2(OH)_2.8H_2O.$

Laumontite CaAl₂Si₄O₁₂⋅4H₂O

Origin: Grodziszcze, Poland.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1023, 948, 817, 674, 593, 517s, 493s, 385, 327s, 201, 164.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Laurentianite $[NbO(H_2O)]_3(Si_2O_7)_2[Na(H_2O)_2]_3$

Origin: Poudrette quarry, Mont Saint-Hilaire, Quebec, Canada (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 laser radiation. The laser radiation power is not indicated. A 180^o-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3421, 33267, 3024, 1103w, 1054w, 920s, 841s, 771w, 700, 628w, 597, 560w, 486w, 467w, 405, 344w, 309, 292, 241, 218sh, 193sh, 176, 138sh, 122, 90.

Source: Haring et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $[(Nb_{0.99}Ti_{0.01})$ $O(H_2O)J_3(Si_{2.00}O_7)_2[(Na_{0.86}\square_{0.10}K_{0.02}Ca_{0.01})(H_2O)_2]_3.$

Laurionite PbCl(OH)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline and on an oriented single crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. 90° and 180°-scattering geometries were employed in single-crystal experiments. Raman spectra were obtained in the spectral region from 50 to 4000 cm^{-1} . Polarized spectra were collected in the $c(xx)-c$, $c(yy)-c$, $a(zz)-a$, $a(yx)c$, $a(zx)c$, and $a(zy)c$ scattering geometries.

Raman shifts (cm⁻¹): 3517s, 665sh, 595, 505w, 446w, 327, 272, 175w, 123sh, 111s, 105s, 87sh, 51s. Source: Lutz et al. (1995).

Comments: The sample was characterized by powder X-ray diffraction analysis. The Raman shifts are given for a polycrystalline sample.

Laurite RuS_2

Origin: Santa Elena Nappe, Costa Rica.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.6 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 395w, 330s.

Source: Zaccarini et al. (2010).

Comments: The sample was characterized by electron microprobe analyses.

Laurite RuS_2

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532.1 nm Nd-YAG laser radiation. The laser radiation power at the sample was in the range from 1 to 2 mW.

Raman shifts (cm⁻¹): \sim 395sh, 364–351s.

Source: Bakker (2014).

Comments: No independent analytical data are provided for the sample used.

Lausenite $Fe³⁺₂(SO₄)₃·5H₂O$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3425sh, 3323sh, 3195, 3057sh, 1653w, 1605w, 1189, 1119w, 1087w, 1052sh, 1036s, 1017, 799w, 652w, 631w, 614w, 599w, 494, 468, 457, 441sh, 416sh, 281, 253.

Source: Ling and Wang (2010).

Comments: The sample was characterized by powder X-ray diffraction data.

Lautarite $Ca(IO₃)₂$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 830s, 808w, 794s, 775, 759s, 737s, 427, 394, 362sh, 351, ~333sh, 326, ~315sh, 266w, 235.

Source: Alici et al. (1992).

Comments: The sample was characterized by powder X-ray diffraction data.

Lavendulan NaCaCu₅(AsO₄)₄Cl∙5H₂O

Origin: Alice Mary Mine, Kundip, Western Australia, Australia.

Experimental details: Experimental details are not indicated. Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1053w, 981w, 893sh, 878sh, 856s, 783, 614w, 543s, 406, 342w, 278w, 226, 176.

Source: Frost et al. (2007m).

Comments: No independent analytical data are provided for the sample used.

Lavinskyite K(LiCu)Cu₆(Si₄O₁₁)₂(OH)₄

Origin: Wessels mine, Kalahari Manganese Fields, South Africa (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3694, 3662s, 3630sh, 3390, 1090, 1043, 991, 919, 891, 685s, 580w, 562, 503, 445+424s, 401.

Source: Yang et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(K_{0.99}Ba_{0.01})$ $(Li_{1.04}Cu_{0.93}Na_{0.10})(Cu_{5.57}Mg_{0.43}Mn_{0.01})(Si_{4.00}O_{11})_2(OH)_4.$

Lawrencite $FeCl₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 277 K using 647.1 nm $Kr⁺$ laser radiation. The laser light was directed along the c face of the crystal with polarization in the plane of incidence. In this configuration the scattered light is largely depolarised and there were no polarization effects. The nominal laser radiation power was about 100 mW. A 90° -scattering geometry was employed.

Raman shifts (cm⁻¹): 246, 144s.

Source: Johnstone et al. (1978).

Comments: No independent analytical data are provided for the sample used.

Lawsonite CaAl₂(Si₂O₇)(OH)₂⋅H₂O

Origin: Tiburon Peninsula, California, USA (type locality).

Experimental details: Raman scattering measurements have been performed at different pressures, on an arbitrarily oriented single-crystal slice oriented parallel to (001) , using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 3541, 961sh, 940s, 918sh, 800, 696, 565s, 462w, 434w, 364w, 330, 282, 280. Source: Daniel et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction data. Raman shifts are given for sample at ambient conditions (pressure 0.1 MPa).

Lazaridisite $Cd_3(SO_4)_3$ ∙8H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented microcrystal using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1117, 1004s, 625w, 460, 330w.

Source: Falgayrac et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data.

Lazulite $MgAl₂(PO₄)₂(OH)₂$

Origin: Gentil mine, Mendes Pimentel, east of Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3478w, 3402s, 3385sh, 3373sh, 3146w, 1684w, 1528sh, 1509w, 1271w, 1214w, 1139sh, 1137s, 1102, 1089sh, 1060s, 1019, 1004sh, 865w, 790w, 742, 714w, 669sh, 648, 633sh, 623, 613sh, 605sh, 580w, 568w, 527w, 479, 460w, 425, 414, 394sh, 378, 365sh, 347, 333sh, 322, 282, 254, 225, 197sh, 195sh, 190s, 173, 137.

Source: Frost et al. (2013p).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of lazulite see also Frezzotti et al. (2012).

Lazurite $\text{Na}_3\text{Ca}(\text{Si}_3\text{Al}_3)\text{O}_{12}\text{S}$

Origin: Badakhshan, Afghanistan.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 1090, 970w, 801w, 636w, 582sh, 545s, 413w, 258.

Source: Caggiani et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction analysis and by energydispersive X-ray scan analysis. For the Raman spectra of lazurite see also Ostroumov et al. (2002).

Lead Pb

Origin: Karrantza Valley, the westerner area of the Basque Co., Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 20 mW.

Raman shifts $(cm⁻¹)$: 153s.

Source: Goienaga et al. (2011).

Comments: No independent analytical data are provided for the sample used.

Leadhillite $Pb_4(SO_4)(CO_3)_2(OH)_2$

Origin: Hard Luck Claim, near Baker, San Bernardino Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3481, 3386sh, 1719, 1704, 1674, 1375, 1097sh, 1054s, 1016sh, 964s, 856, 703w, 677w, 626w, 599w, 458sh, 428s, 360w, 307w, 262w, 220sh, 195sh, 173s.

Source: Frost et al. (2003e).

Comments: No independent analytical data are provided for the sample used.

Lechatelierite $SiO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 3 mW. Raman shifts $(cm⁻¹)$: 1110w, 802, 603, 493, 441, ~300sh.

Source: Kowitz et al. (2013).

Comments: The sample was characterized by energy-dispersive X-ray scan analysis. Raman shifts are given for a sample subjected to a shock more than 36 GPa.

Leguernite $\text{Bi}_{12.67}\text{O}_{14}(\text{SO}_4)_5$

Origin: La Fossa crater, Vulcano, Aeolian Islands, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm laser radiation. The nominal laser radiation power was 1.4 mW.

Raman shifts (cm⁻¹): 2430, 1145sh, 1019, 970s, 603sh, 473, 429, 279s, 243, 183, 150. Source: Garavelli et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The crystal structure is solved. The empirical formula of the sample used is $(Bi_{12,40}Pb_{0.15})$ $S_{5.08}O_{34}.$

Leightonite K₂Ca₂Cu(SO₄)₄⋅2H₂O

Origin: Chuquicamata mine, Antofagasta region, Chile (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The

Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3457sh, 3435, 3386sh, 3364sh, 3350s, 3329s, 3310sh, 3206w, 3088w, 2911w, 2856w, 1803w, 1748w, 1700sh, 1670w, 1446w, 1177w, 1163w, 1137w, 1120w, 1047, 990sh, 975sh, 912, 864w, 846sh, 823, 753w, 654, 640sh, 612, 601, 589sh, 513, 463, 446, 425sh, 413, 394, 361, 298, 266, 238w, 217, 155sh, 149, 137, 126sh, 120, 106.

Source: Frost et al. (2013j).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Leiteite $ZnAs^{3+}{}_{2}O_{4}$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample and oriented crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in the $c(bb)c$, $c(ba)c$, $c(aa)c$, $b(ac)b$, $b(aa)b$, $a(bb)a$, a $(bc)a$, and $a(cc)a$ scattering geometries. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 804, 763, 647w, 600, 566sh, 548, 457s, 3768w, 366w, 304w, 265sh, 254s, 217, 199w.

Source: Bahfenne et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction analysis and electron microprobe analysis. For the Raman spectra of leiteite see also Origlieri et al. (2009) and Frost and Bahfenne (2010d).

Lemanskiite NaCaCu₅(AsO₄)₄Cl∙5H₂O

Origin: El Guanqco mine, Antofagsta, Chile (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1369, 1264, 1165w, 910w, 878s, 853s, 800w, 775w, 545, 479w, 440w, 400w, 345, 280sh, 262w, 243w, 220, 172.

Source: Frost et al. (2007m).

Comments: No independent analytical data are provided for the sample used.

Lemoynite Na₂CaZr₂Si₁₀O₂₆⋅5-6H₂O

Origin: Poudrette quarry, Mont Saint-Hilaire, Montérégie, Quebec, Canada (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 952-961, ~600-605s, 533-540s, 426-429s, (~360w), (~325w), (~280), $(-250w)$.

Source: McDonald et al. (2015).

Comments: No independent analytical data are provided for the sample used.

Leogangite Cu₁₀(AsO₄)₄(SO₄)(OH)₆⋅8H₂O

Origin: Monte Avanza Mine, Formi Avoltri, Udine Province, Fruili Venezia Giulia, Italy.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3619sh, 3496, 3316, 3181sh, 2929, 2884sh, 2854w, 1627w, 1576w, 1461sh, 1441w, 1070w, 996w, 904sh, 868s, 827sh, 628w, 606sh, 519, 498sh, 431, 416sh, 336sh, 324, 312sh, 263, 228sh, 205, 153, 139sh, 106.

Source: Frost et al. (2011t).

Comments: No independent analytical data are provided for the sample used.

Leószilárdite Na₆Mg(UO₂)₂(CO₃)₆⋅6H₂O

Origin: Markey Mine, San Juan County, Utah, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The nominal laser radiation power was 200 mW.

Raman shifts (cm⁻¹): 1535w, 1396w, 1328w, 1078, 1062, 1052, 824s, 742, 728, 705w, 695w, 345, 290, 254, 193sh, 172sh, 161s, 144s, 125s.

Source: Olds et al. (2016b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Na_{5.60}Mg_{0.90}U₂O₂₈C₆H_{12.60}$

Lepidocrocite $Fe³⁺O(OH)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The output laser radiation power was more than 300 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 647w, 524s, 374s, 345s, ~315w, 284s, 249sh, 214, 140.

Source: Das and Hendry (2011).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of lepidocrocite see also De Faria et al. (1997) and Bouchard and Smith (2003).

Letovicite $(NH_4)_3H(SO_4)_2$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at different temperatures on an oriented crystal using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 4 W. A 90-scattering geometry was employed. Spectra were collected in (yy) scattering geometry.

Raman shifts (cm⁻¹): ~670sh, ~655, ~480s, ~275w, ~200w, ~90.

Source: Schwalowsky et al. (1996).

Comments: The sample was characterized by powder X-ray diffraction data and synchrotron diffraction analysis. The Raman shifts are given for a sample at 298 K.

Leucite $K(AlSi₂O₆)$

- Origin: Swan City, Colorado, USA.
- Experimental details: Raman scattering measurements have been performed on a powdered sample using 488 nm Ar^+ laser radiation. The nominal laser radiation power was 600 mW. A 90 $^{\circ}$ -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1066, 984sh, 786w, 678w, 618w, 528sh, 498s, 432w, 394w, 338, 304, 272w, 266w, 216, 180, 152, 112, 76.

Source: Matson et al. (1986).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of leucite see also Castriota et al. (2008).

Leucophosphite KFe³⁺₂(PO₄)₂(OH)⋅2H₂O

Origin: Sapucaia mine, Conselheiro Pena pegmatite district, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm^{-1}) : 3535sh, 3456, 3355sh, 3225, 3171sh, 2892sh, 1632w, 1255w, 1177, 1135, 1104, 1087sh, 1058s, 1028sh, 1014sh, 994s, 973sh, 850w, 789w, 630s, 611s, 589sh, 550w, 497sh, 481, 436, 420, 407sh, 380sh, 336sh, 310sh, 303s, 282sh, 262sh, 226sh, 215, 204sh, 190sh, 164, 152, 142, 129sh, 117.
- Source: Frost et al. (2013ac).
- Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron microprobe analysis.

Lévyne-Ca Ca₃(Si₁₂Al₆)O₃₆∙18H₂O

Origin: Stolpen, Germany.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 917w, 709s, 430s, 290, 264w, 202s.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Leydetite Fe($UO₂$)(SO₄)₂⋅11H₂O

Origin: Mas d'Alary, Lodève, France (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 2.5 mW.
- **Raman shifts (cm⁻¹):** 3492, 3404, 3237, 3130, 1679, 1649, 1203, 1180, 1150, 1139, 1135, 1113, 1099, 1038s, 1030, 1023, 1015, 937, 930, 858, 851, 846, 843, 836, 828, 686s, 675, 666, 608, 538, 522, 504, 485, 464, 443, 420, 394, 373, 290, 260, 236, 223, 196, 182, 165, 138, 123, 116, 102, 89, 77, 65.

Source: Plášil et al. (2013a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Fe_{0.93}Mg_{0.07}Al_{0.04}Cu_{0.01})(U_{1.01}O_2)(S_{1.96}Si_{0.02})O_8(H_2O)_{11}.$

Libethenite $Cu_2(PO_4)(OH)$

Origin: Banská Bystrica, central Slovakia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW. A 180°-scattering geometry was employed. Polarized spectra were collected in parallel and perpendicular to the c-axis scattering geometries. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹): 3485-3475, 1130w, 1102w, 1075sh, 1052, 1022s, 1008sh, 979s, 944sh, 864w,** 818w, 650w, 625, 590, 561, 461, 430sh, 392, 371sh, 319sh, 301s, 270w, 250w, 227s, 195s, 160s, 140sh, 113w, 92sh, 74s.

Source: Kharbish et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. Raman shifts are given as sum of spectra at parallel and perpendicular to the c -axis scattering geometries. For the Raman spectra of libethenite see also Frost et al. (2002g), Bouchard and Smith (2003), Belik et al. (2007, 2011), and Majzlan et al. (2015).

Liebenbergite $\text{Ni}_2(\text{SiO}_4)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed at different pressures on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was about 60 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 952, 889, 868sh, 831s, 819s, 593sh, 560, 521, 414, 344w, 298, 272w, 252w, 221w, 191w, 181w.

Source: Lin (2001).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts are given for a sample at ambient condirions.

Liebigite $Ca_2(UO_2)(CO_3)_3$ ∙11H₂O

Origin: Kroderen, Snarum, Norway.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3468s, 3258s, 1566, 1409, 1381, 1087s, 1073sh, 1007w, 838sh, 822s, 816sh, 758w, 747sh, 248.

Source: Frost et al. (2005g).

Comments: No independent quantitative analytical data are provided for the sample used.

Likasite Cu₃(NO₃)(OH)₅∙2H₂O

Origin: Great Australian Mine, Queensland, Australia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3567sh, 3522s, 3452sh, 3338sh, 3281, 3040w, 1628w, 1394w, 1319w, 1050, 1049, 980w, 831, 763, 715w, 706w, 529, 514, 493, 459w, 377w, 341w, 233w, 210w, 190w, 175w, 165w, 140w.

Source: Frost et al. (2005h).

Comments: No independent analytical data are provided for the sample used.

Lime CaO

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 10 mW.
- Raman shifts $(cm⁻¹)$: ~680w.

Source: Schmid and Dariz (2015).

Comments: No independent analytical data are provided for the sample used. The CaO phase has halite structure with cubic unit cell (Fm3m) and does not have the first-order Raman scattering. The given Raman shift belongs to the second-order Raman scattering.

Linarite CuPb $(SO₄)(OH)₂$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm He-Ne laser radiation with output radiation power 30 mW, and 514.5 nm $Ar⁺$ laser radiation with a low radiation power.
- **Raman shifts (cm⁻¹):** 3471sh, 3448, 3220w, 1141, 1019, 968s, 818w, 632, 610, 594w, 513, 461, 436, 365, 345sh, 326w, 230w, 163.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction analysis. For the Raman spectra of linarite see also Buzgar et al. (2009) and Hrazdil et al. (2016).

Lindbergite Mn(C_2O_4)∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 3326s, 1469s, 908, 579, 517, 240, 199.

Source: Echigo and Kimata (2008).

Comments: The sample was characterized by powder X-ray diffraction data.

Lindbergite Mn(C_2O_4)∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 1625w, 1465s, 1410w, 909, 855w, 579, 517.

Source: Mancilla et al. (2009a).

Comments: No independent analytical data are provided for the sample used.

Lindgrenite $Cu₃(Mo⁶⁺O₄)₂(OH)₂$

Origin: Broken Hill, NSW, Australia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Nd-YAG laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 932s, 887w, 839w, 798w, 775w, 496w, 399, 349, 325, 313, 302s, 287w, 251, 217sh, 190w, 171, 158, 123w.

Source: Frost et al. (2004c).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Lindsleyite $(Ba, Sr)(Zr, Ca)(Fe, Mg)_2(Ti, Cr, Fe)_{18}O_{38}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm He-Ne laser radiation. The nominal laser radiation power was in the range from 2 to 4 mW.

Raman shifts (cm⁻¹): 1702s, 661s, 560, 433, 327.

Source: Konzett et al. (2005).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The formula of the sample used is $Ba(Ti₁₂Cr₄Fe₂ZrMg₂)O₃₈$.

Lingunite $NaAlSi₃O₈$

Origin: Shocked Sixiangkou L6 chondrite.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was about 16 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 975, 844, 798sh, 767s, 717w, 625, 595w, 531w, 494, 430sh, 277, 213.

Source: Liu and El Gorsey (2007).

Comments: No independent analytical data are provided for the sample used.

Lingunite K-analogue $KAlSi₃O₈$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystals using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was about 10 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1726w, 1601w, 1580w, 1452w, 1043, 952w, 866sh, 838w, 761s, 721sh, 655w, 621, 539, 521sh, 405w, 380sh, 283, 214s.

Source: Liu et al. (2009).

Comments: The sample was characterized by X-ray diffraction data.

Linnaeite $Co^{2+}Co^{3+}S_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a bulk sample and on an ultrathin sheet. Other experimental details are not described.

Raman shifts (cm⁻¹): \sim 400, \sim 340, \sim 235w.

Source: Liu et al. (2015d).

Comments: The samples were characterized by X-ray diffraction and SAED data.

Linzhiite $Fesi₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on the oriented single crystals in the forms as thin crystalline needles and plaquets in different scattering geometries, using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 100 mW. A 90°-scattering geometry was employed.

Raman shifts (cm⁻¹): ~340w, ~298w, ~270–275w, ~245s, and a series of peaks below 200 cm⁻¹. Source: Guizzetti et al. (1997).

Liroconite Cu₂Al(AsO₄)(OH)₄⋅4H₂O

Origin: Cornwall deposit, UK.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The nominallaser radiation power was 0.97 mW.

Raman shifts (cm⁻¹): 3580w, 3550w, 865s, 846sh, 567w, 418w, 376w, 316sh, 299, 182, 165, 109. Source: Makreski et al. (2015a).

Comments: The sample was characterized by powder X-ray diffraction data and thermal analysis.

Liskeardite (Al,Fe)₃₂(AsO₄)₁₈(OH)₄₂(H₂O)₂₂⋅52H₂O

Origin: Penberthy Croft Mine, St. Hilary, Cornwall, England UK.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3618sh, 3577, 3504, 3446sh, 3289sh, 3077sh, 2930, 2762sh, 1687sh, 1611w, 1554w, 1532w, 1453w, 1138w, 1124w, 1111sh, 1007w, 987w, 931sh, 914sh, 893s, 867s, 843s, 813sh, 769sh, 750w, 723w, 651w, 624w, 579, 554sh, 528sh, 514s, 499sh, 485sh, 477s, 454, 431w, 406w, 386sh, 373, 343w, 336sh, 305, 285, 263sh, 245sh, 230sh, 217sh, 196sh, 182sh, 162s, 143, 126sh, 110w.

Source: Frost et al. (2015w).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Litharge PbO

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): $381w$, 339 , $288w$, $146s$, $82w$.

Source: Ciomartan et al. (1996).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of litharge see also Bouchard and Smith (2003).

Lithiophilite $Lim²⁺(PO₄)$

Origin: Cigana pegmatite, Conselheiro Pena, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1081w, 1068, 1018w, 1000, 955sh, 950s, 944sh, 627w, 591w, 575w, 443w, 424sh, 403sh, 317w, 288w, 247w, 235w, 199w, 154sh, 146w, 135sh, 105w.

Source: Frost et al. (2013ak).

Comments: The sample was characterized by electron microprobe analysis. The empirical formula of the sample used is $Li_{1.01}(Mn_{0.60}Fe_{0.41}Mg_{0.01}Ca_{0.01})(PO_4)_{0.99}$.

Lithiophorite $(AI,Li)(Mn^{4+},Mn^{3+})$ ₂O₂(OH)₂

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation output power was 0.2 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3458-3465w, 1600w, (1183), (1058), (938), 621-629s, 575-579s, 541sh, 482–487, 460sh, 378–383w.

Source: Burlet et al. (2014), Burlet and Vanbrabant (2015).

Comments: The sample was characterized by powder X-ray diffraction data, energy-dispersive X-ray scan analysis, and flame emission analysis.

Lithiophosphate $Li₃(PO₄)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed at different temperatures using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was 120 mW.

Raman shifts (cm⁻¹): 1061w, 1022, 942s, ~630s, 586s, 474, 442, 376, 352.

Source: Popović et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts are given for a sample at room temperature.

Lithiotantite $LiTa₃O₈$

Origin: Eastern Brazilian Pegmatite Province, Minas Gerais, Brazil.

- Experimental details: Experimental details are not indicated. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 902, 826, 682s, 630w, 565s, 463w, 426sh, 416w, 370w, 342, 283, 259w, 229, 180.

Source: Menezes Filho et al. (2016).

Comments: The sample was characterized by electron microprobe analysis.

The empirical formula of the sample used is $(L_{0.96}Mn_{0.02}Fe_{0.01}Na_{0.01})(Ta_{2.18}Nb_{0.79}Sn_{0.03})O_{8.00}$.

Liversidgeite $Zn_6(PO_4)_4$ ∙7H₂O

Origin: Broken Hill, New South Wales, Australia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW.

Raman shifts (cm⁻¹): 3220, 2895, 1645w, 1142w, 1050w, 1004, 986, 958s, 610, 584, 476, 464, 430, 244, 210.

Source: Elliott et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $Pb_{0.01}(Zn_{5.86}Mn_{0.06})(P_{4.01}As_{0.05}S_{0.04})O_{16.20}\cdot 6.8H_2O$.

Livingstonite $HgSb_4S_6(S)_2$

Origin: Huitzuco, Mexico.

Experimental details: Methods of sample preparation are not described. The Raman signal was excited by a 532 nm solid-state laser. The nominal laser radiation power was 0.5 mW.

Raman shifts (cm⁻¹): 308s, 284s, 238, 191, 157w, 125w, 106w, 75w.

Source: Števko et al. (2015).

Comments: The empirical formula of the sample used is $Hg_{1,01}(Sb_{3.89}As_{0.08})S_{8.01}$.

Lizardite $Mg_3Si_2O_5(OH)_4$

Origin: Monte Fico, Elba Island, Italy

Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 120 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1096w, 690s, 630w, 510w, 388s, 350w, 233s.

Source: Rinaudo et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of lizardite see also Auzende et al. (2004) and Frezzotti et al. (2012).

Löllingite Fe $As₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented single crystal, using 676.4 nm Kr^+ laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed. Polarized spectra were collected in the $z(xxy)z$ -, $y(xxy)$ -, $x(xy)x - y(xz)y -$, and $z(xy)z$ - scattering geometries.

Source: Lutz and Müller (1991).

Raman shifts (cm⁻¹): 271s, 269sh, 241sh, 236s.

Comments: The Raman shifts are given for the scattering geometry $z(xxy)z$. The notation $z(xxy)z$ means that the incident laser light is polarized parallel to x, scattered light is of all polarizations $(x,$ y). No independent analytical data are provided for the sample used.

Lomonosovite $Na₅Ti₂(Si₂O₇)(PO₄)O₂$

Origin: Kirovskii apatite mine, Kukisvumchorr Mt., Khibiny Massif, Kola Peninsula, Russia.

- Experimental details: Raman scattering measurements have been performed in the spectral regions from 100 to 550 and from 750 to \sim 3800 cm⁻¹ on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 1084w, 1080w, 1070w, 999, 975, 939sh, 925sh, 909s, 882sh, 853, 838sh, 803, 789sh, ..., 534, 509sh, 499w, 457, 440sh, 427sh, 408s, 393sh, 368sh, 351, 319w, 302w, 284sh, 272, 223sh, 204, 173sh, 150sh, 145s, 112.

Source: Frost et al. (2015m).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Lonecreekite $(NH_4)Fe^{3+}(SO_4)_2$ ∙12H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1131, 1108w, 1099w, 991s, 701, 636, 615, 525, 463, 435, 307.

Source: Frost and Kloprogge (2001).

Comments: The sample was analyzed for chemical composition, and some substitution with $Al³⁺$ for $Fe³⁺$ was detected. Raman shifts are given for sample at 77 K because of the fluorescence at 298 K. For the Raman spectrum of lonecreekite see also Jentzsch et al. (2013).

Lonsdaleite C

Origin: Popigai crater, Siberia, Russia.

Experimental details: Raman scattering measurements have been performed on the arbitrarily oriented carbon platelets with the lonsdaleite fraction in in the range from 0.29 to 0.565 using 325 nm He-Cd laser radiation. The laser radiation power at the sample was 0.5 mW. A 180°-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1303-1292, 1244-1219w.

Source: Goryainov et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data. The lonsdaleite/diamond molar ratio was estimated using the Rietveld method.

Lópezite $K_2Cr_2O_7$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 6 mW. **Raman shifts (cm⁻¹):** 950w, 938w, 935, 913w, 910w, 893, 744, 564, 553sh, 527, 385, 370sh, 357sh,

230, 220sh, 130w.

Source: Mathur et al. (1968).

Comments: No independent analytical data are provided for the sample used.

Lorándite $TIAsS₂$

Origin: Allchar, Republic of Macedonia.

- Experimental details: Raman scattering measurements have been performed on an oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW. A 180°-scattering geometry was employed. Polarized spectra were collected with the laser polarization parallel to the b - and c -axes scattering geometries.
- **Raman shifts (cm⁻¹):** 398, 380s, 366sh, 325, 317sh, 311sh, 275, 263sh, 211, 203sh, 193, 172, 157sh, 135w.

Source: Kharbish (2011).

Comments: The sample was characterized by single-crystal X-ray diffraction and electron microprobe analyses. The Raman shifts are given for the scattering geometry with the laser polarization parallel to the b-axes. For the Raman spectra of lorándite see also Minceva-Sukarova et al. (2003) and Makreski et al. (2014).

Lorenzenite $\text{Na}_2\text{Ti}_2\text{O}_3(\text{Si}_2\text{O}_6)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a pellet of pressed powdered sample using 488 nm Ar^+ laser radiation. The laser radiation power at the sample was about 300 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1049w, 984, 963, 899w, 856w, 834w, 704, 637s, 579w, 538, 486, 451, 349, 305s, 274, 258sh, 233w, 215.

Source: Su et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction data.

Löweite Na₁₂Mg₇(SO₄)₁₃⋅15H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW. Raman shifts (cm⁻¹): 1210, 1142w, 1117w, 1079, 1039s, 1001s, 980, 971sh, 641sh, 622, 606sh,

471sh, 462, 453sh.

Source: Jentzsch et al. (2011).

Comments: No independent analytical data are provided for the sample used.

Luddenite Cu₂Pb₂Si₅O₁₄⋅14H₂O

Origin: Artillery Peak, Mohave Co., Arizona, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm^{-1}) : 3329sh, 3317, 3284sh, 1658sh, 1603, 1557sh, 1482, 1455sh, 1368sh, 1346, 1301, 1276sh, 1160, 1148sh, 1122sh, 986sh, 978, 970sh, 831sh, 808, 801sh, 696sh, 676, 648sh, 501sh, 473sh, 464s, 449sh, 413w, 403, 394sh, 356, 344sh, 263, 213sh, 201, 174sh, 167. Source: Frost et al. (2015u).

Comments: No independent analytical data are provided for the sample used.

Ludjibaite $Cu₃(PO₄)(OH)₃$

Origin: Banská Bystrica, central Slovakia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW. A 180°-scattering geometry was employed. Polarized spectra were collected in parallel and perpendicular to the *c*-axis scattering geometries.
- **Raman shifts (cm⁻¹):** 3470, 1115, 1072sh, 1046sh, 1019, 981s, 925sh, 855w, 815w, 784w, 736sh, 633, 586, 557sh, 449, 402sh, 387, 368sh, 301s, 263sh, 226, 190sh, 160s.

Source: Kharbish et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction analysis and by electron microprobe analyses. For the Raman spectrum of ludjibaite see also Frost et al. (2002g).

Ludlamite Fe²⁺₃(PO₄)₂⋅4H₂O

Origin: Boa Vista mine, Galiléia, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3190sh, 3137, 3013sh, 2896, 2730, 2605, 1160w, 1080, 1044, 992sh, 973sh, 950s, 916sh, 774w, 665sh, 634, 599, 564sh, 548, 494, 465, 371sh, 369, 345w, 302, 286, 266, 249, 244sh, 207sh, 199, 182sh, 172, 164sh, 145, 140sh, 103.

Source: Frost et al. (2013w).

Comments: The empirical formula of the sample used is $(Fe_{2.35}Mn_{0.25}Mg_{0.22})(PO_4)_{2.08}4.0H_2O$.

Ludlockite PbFe³⁺₄As³⁺₁₀O₂₂

Origin: Tsumeb mine, Tsumeb, Namibia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts
have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 798s, 756s, 743sh, 674sh, 666, 639, 611w, 579sh, 549s, 536sh, 524sh, 501sh, 486s, 470sh, 436w, 420, 408sh, 381sh, 368, 348, 332, 287, 266sh, 246s, 221, 204, 193sh.

Source: Bahfenne and Frost (2009).

Comments: No independent analytical data are provided for the sample used.

Ludwigite $Mg_2Fe^{3+}O_2(BO_3)$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 20 mW. A nearly 180° -scattering geometry was employed. Polarized spectra were collected in the (zz) scattering geometry.

Raman shifts (cm⁻¹): 640s, 568, 480sh, 456w, 399s, 367sh, 298, 269, 233, 191, 160, 132w, 109. Source: Leite et al. (2002).

Comments: No independent analytical data are provided for the sample used.

Lueshite NaNb O_3

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 868w, 599s, 428w, 238s.

Source: Wu et al. (2010b).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of lueshite see also Fresno et al. (2016).

Lulzacite $Sr_2Fe^{2+}{}_{3}Al_4(PO_4)_4(OH)_{10}$

Origin: Saint-Aubindes-Châteauax, Loire-Atlantigue, France.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 989s, 918, 842, 568, 505, 420, 290, 142.

Source: Moëlo et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction analysis and by electron microprobe analyses. The empirical formula of the sample used is $(Sr_{0.96}Ba_{0.04})_2Fe^{2+}$ $(Fe^{2+}{}_{0.63}Mg_{0.37})_2Al_4[(P_{0.98}V_{0.02})O_4]_4(OH)_{10}.$

Lüneburgite Mg₃[B₂(OH)₆(PO₄)₂]⋅6H₂O

Origin: Mejillones Peninsula, Antofagasta Province, Chile.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 325 nm laser radiation. The laser radiation power at the sample was about 8 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3504sh, 3438sh, 3392s, 3272, 3207, 1087, 1032, 999sh, 877, 734, 590, 465. Source: Korybska-Sadło et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Luogufengite $Fe₂O₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The output laser radiation power was in the range from 0.2 to 30 mW.

Raman shifts (cm⁻¹): 1641, 1474, 1435, 1378, 1329, 1276, 1188, 829, 731, 704, 669, 643, 597, 579, 559, 488, 461, 439, 419, 397, 378, 362, 346, 330, 299, 267, 214, 195, 165, 146, 116.

Source: López-Sánchez et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data.

Lusernaite-(Y) Y₄Al(CO₃)₂(OH,F)₁₁.6H₂O

Origin: Luserna valley, Piedmont, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 473.1 nm Nd-YAG and 632.8 nm He-Ne lasers radiations. The laser radiations powers are not indicated.

Raman shifts $(cm⁻¹)$: 1096.

Source: Biagioni et al. (2013a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The empirical formula of the sample used is $(Y_{3,41}Dy_{0,16}Er_{0,15}Yb_{0,09}Gd_{0,07}Ca_{0,05}Pb_{0,02}Sm_{0,01})A1_{1,06}(CO_3)_{2,00}(OH_{10,35}F_{0,65})\cdot 6H_2O$. Due to the strong luminescence only one Raman band was registered in the spectrum, confirming the presence of $CO_2^{\,3-}$ groups in the structure.

Macedonite $PbTiO₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on $PbTiO₃$ single crystals with the tetragonal c axisnormal to the scattered plane, using a 633 nm He-Ne laser. Polarized spectra were collected in $x(zz)y$, $x(zx)y$, and $x(yx)y$ scattering geometry.

Raman shifts (cm⁻¹): 508s, 440, 290s, 220, 130, 89.

Source: Fontana et al. (1991).

Comments: The sample was identified by electron microprobe analysis; boron was determined by LA-ICP-MS. The Raman shifts are given for the scattering geometry $x(zx)y$.

Mackayite $Fe³⁺Te⁴⁺₂O₅(OH)$

Origin: An unknown locality in Nevada, USA (?).

Experimental details: Raman spectra of unoriented samples were obtained using a He-Ne laser with the wavelengths of laser excitation line of 633 nm. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 907w, 872w, 782w, 732, (644), 635s, (602w), 579, 513, (502w), 436, 424s, 379s, 349, 306, 177s, 150, 124.

Source: Frost and Dickfos (2009).

Comments: The IR spectra of presumed mackayitegiven in the cited paper are wrong: the strongest IR bands correspond to a sulfate. Possibly, the correct locality is Bambolla mine, Moctezuma, Sonora, Mexico.

Mackinawite (Fe,Ni)_{1+x}S ($x = 0-0.07$)

Origin: Synthetic (corrosion film formed after exposure of iron to saline H₂S saturated aceticsolution). Experimental details: Raman spectrum of an unoriented sample was obtained at the wavelength of

laser excitation line of 532.1 nm. **Raman shifts (cm⁻¹):** (587), 474w, 385, 274s, 208.

Source: Genchev and Erbe (2016).

Macquartite $Cu_2Pb_7(CrO_4)_4(SiO_4)_2(OH)_2$

Origin: No data.

Experimental details: Raman spectra of crystals oriented to provide maximum intensity were obtained using a He-Ne laser with the wavelengths of laser excitation line of 785 nm. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 968w, 936w, 857, 840, 814s, 463, 439, 374, 349s, 340, 194, 152. Source: Frost (2004c).

Comments: The sample was identified by electron microprobe analysis; boron was determined by LA-ICP-MS. The Raman shifts are given for the scattering geometry $y(zz)y$, in which the Raman intensities are most strong.

Magadiite Na₂Si₁₄O₂₉∙11H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an unoriented sample using a 1064.1 nm Nd^{3+} :YAG laser. The laser radiation power at the sample was about 90 mW.

Raman shifts (cm⁻¹): 3266w, 1151w, 1131w, 1101w, 1085w, 1064, 1049w, 992s, 823w, 792w, 705w, 645w, 632w, 620, 587w, 488sh, 464s, 442sh, 398w, 373w, 338w.

Source: Huang et al. (1999b).

Comments: The sample was characterized by powder X-ray diffraction data.

Magbasite $KBaFe^{3+}Mg_7Si_8O_{22}(OH)_2F_6$

Origin: Eldor carbonatite complex, Quebec, Canada.

Experimental details: Polarized single-crystal Raman spectra were collected in the range from 3200 to 3800 cm^{-1} with the polarizer parallel and perpendicular to the length of the crystal using 460 and

532 nm laser radiations with a nominal output power of 50 mW.

Raman shifts (cm⁻¹): $3735w$, $3719w$, $3636s$.

Source: Welch et al. (2014)

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The Raman shifts are given for the radiation polarization parallel to the length of the crystal.

Maghemite $Fe₂O₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using a 636.4 nm tuneable dye laser. The laser radiation power at the sample was 0.34 mW.

Raman shifts (cm^{-1}) : 648s, 527, 377, 350, 309, 250w, 220w.

Source: Nieuwoudt et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data.

Magnesio-arfvedsonite $NaNa_2(Mg_4Fe^{3+})Si_8O_{22}(OH)_2$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed in the region of O–Hstretching vibrations, in backscattering geometry using a 514.5 nm Ar⁺ laser.
- Raman shifts $(cm⁻¹)$: 3666.
- Source: Leissner et al. (2015).
- Comments: The sample was characterized by EMPA and ICP-MS. The empirical formula of the sample used is $(Na_{0.25}K_{0.13})(Na_{0.89}Ca_{0.11})_2(Mg_{0.70}Fe^{3+}{}_{0.26}Al_{0.01}Mn_{0.01})_5(Si_{0.99}Al_{0.01})_8O_{22}(OH)_{1.7}$ $F_{0.3}$.

Magnesiocarpholite $MgAl_2Si_2O_6(OH)_4$

Origin: Monte Leoni, Monticiano-Roccastrada Unit, Northern Apennine, southern Tuscany, Italy. Experimental details: Raman scattering measurements have been performed on single crystals in four

different orientations, using a 514.5 nm $Ar⁺$ laser. The laser emission power was 300 mW.

Raman shifts (cm⁻¹): 3633w, 3594s, 3571sh, 1098w, 1037w, 936, 879, 783s, 747, 688, 560, 445, 351, 278w, 263, 207w, 161w, 117w.

Source: Fuchs et al. (2001).

Comments: The sample was characterized electron microprobe analyses and Mössbauer spectroscopy. The Raman shifts are given for the scattering geometry with c axis vertical and most developed crystal face normal to the polarization direction.

Magnesiochloritoid $MgAl₂(SiO₄)O(OH)₂$

Origin: Synthetic

Experimental details: Raman scattering measurements have been performed on single crystals with different orientations using a 514.5 nm Ar^+ laser.

Raman shifts (cm⁻¹): 3455, 3076, 1096, 985, 909, 881, 847, 805, 738, 594, 551, 531, 513, 411-412. Source: Koch-Müller et al. (2002).

Comments: Band intensities are not indicated in the cited paper.

Magnesiochromite $MgCr₂O₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an unoriented sample using a 514.5 nm $Ar⁺$ laser.

Raman shifts $(cm⁻¹)$: 684s, 613, 543s, 447.

Source: Yong et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of magnesiochromite see also Hosterman (2011), Lenaz and Lughi (2013), Andò and Garzanti (2014), and D'Ippolito et al. (2015).

Magnesiocopiapite MgFe³⁺₄(SO₄)₆(OH)₂∙20H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an unoriented sample using a 532 nm Nd-YAG laser.
- **Raman shifts (cm⁻¹):** 3499, 3331, 3314, 3167, 1645, 1225, 1218, 1129, 1102, 1019, 1004, 995, 639, 613, 597, 557, 305, 270, 252, 227.

Source: Kong et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction data. Band intensities are not indicated in the cited paper. For the Raman spectra of magnesiocopiapite see also Frost (2011c) and Rull et al. (2014).

Magnesioferrite MgFe³⁺₂O₄

Origin: Synthetic.

Experimental details: The spectrum of an unoriented sample was recorded using 632.8 nm line of a He-Ne laser.

Raman shifts (cm⁻¹¹): 707*s, 661sh, 596*w, 550w, 479*, 377w, 332*, 214*.

Source: D'Ippolito et al. (2015).

Comments: The modes marked with an asterisk are provoked by the inversion. For the Raman spectra of magnesioferrite see also Lenaz and Lughi (2013) and Aramendia et al. (2014).

Magnesio-foitite $(Mg_2Al)Al_6(Si_6O_{18})(BO_3)_3(OH)_3(OH)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on single crystals with the electrical field vector of the linearly polarized laser light parallel to the crystallographic c axis using a 488 or 473 nm laser. The laser radiation power at the sample was 30 or 12 mW. The Raman shifts in the region of O–H-stretching vibrations have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3657w, 3619w, 3551, 3511, 3459, 688, ~370s, 311, 267, 228. Source: Berryman et al. (2016).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of magnesio-foitite see also Fantini et al. (2014).

Magnesiohögbomite-2N4S $(Mg,Fe^{2+})_{10}Al_{22}Ti^{4+}{}_{2}O_{46}(OH)_{2}$

Origin: Central Sør Rondane Mts., Queen Maud Land, East Antarctica (type locality).

Experimental details: Raman scattering measurements have been performed on an unoriented single crystal using a 532.1 nm $Ar⁺$ laser.

Raman shifts (cm⁻¹): ~3400, 872s, 780, 709, 659, 536, 498, 479, 419, 342w, 302, 263w, 217, 142, 104w.

Source: Shimura et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Magnesio-hornblende $Ca_2(Mg_4Al)(Si_7Al)O_{22}(OH)_2$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed in backscattering geometry using a 514.5 nm $Ar⁺$ laser.
- **Raman shifts (cm⁻¹):** 3672–3673. Only a figure of the Raman spectrum of magnesio-hornblende is given in the spectral range from 10 to 1200 cm^{-1} .

Source: Leissner et al. (2015).

Comments: The sample was characterized by electron microprobe analyses and ICP-MS. The empirical formula of the sample used is $(Na_{0.45}K_{0.04})(Ca_{0.87}Fe_{0.10}Mn_{0.02}Na_{0.01})_2(Mg_{0.52})$ $Fe_{0.36}Al_{0.12}$)₅(Si_{0.86}Al_{0.14})₈O₂₂(OH)_{2.00}.

Magnesiotaaffeite-2N'2S ${ {\rm Mg}_3{\rm BeAl}_8{\rm O}_{16}}$

Origin: Ratnapura district, Sri Lanka (type locality).

Experimental details: No data

Raman shifts (cm⁻¹): 809w, 758, 703, 662w, 489, 447, 435, 415s, 305s.

Source: Kiefert and Schmetzer (1998).

Comments: The sample was characterized by chemical and X-ray diffraction data.

Magnesiotaaffeite-6N'3S ${ {\rm Mg}_2{\rm BeAl}_6{\rm O}_{12}}$

Origin: Casey Bay, Antarctica. Experimental details: No data **Raman shifts (cm⁻¹):** 803, 713s, 660, 564w, 489, 443, 412s, 326s. Source: Kiefert and Schmetzer (1998). Comments: The sample was characterized by chemical and X-ray diffraction data.

Magnesite $Mg(CO_3)$

Origin: Brumado, Bahia, Brazil.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polished sample using 514.5 and 532 nm $Ar⁺$ lasers.

Raman shifts (cm⁻¹): 1763w, 1446w, 1095s, 738w, 331s, 214. Source: Perrin et al. (2016).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of magnesite see also Rutt and Nicola (1974), Edwards et al. (2005), Frezzotti et al. (2012), and Bernardino et al. (2016).

Magnetite $Fe^{2+}Fe^{3+}{}_{2}O_4$

Origin: Minas Gerais, Brazil.

Experimental details: Raman scattering measurements have been performed using a 632.8 nm He-Ne laser. Laser beam was focused on the sample to give a spot size of ca . 1 μ m. The laser radiation power at the sample was 0.7 mW.

Raman shifts (cm⁻¹): 663s, 534, 513, 302.

Source: De Faria et al. (1997).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of magnetite see also Castriota et al. (2008), Nieuwoudt et al. (2011), Hosterman (2011), Saheb et al. (2011), Das and Hendry (2011), Andò and Garzanti (2014), and D'Ippolito et al. (2015).

Magnetoplumbite PbFe³⁺₁₂O₁₉

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented nanoparticles using a 514.5 nm $Ar⁺$ laser. The laser radiation powerat the sample was 20 mW. **Raman shifts (cm⁻¹):** 1320 (broad), 680s, 608, 519, 403, (328w), 325s, (290), 206w, 176.

Source: Yang et al. (2007c).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of magnetoplumbite see also Kreisel et al. (1999), Konzett et al. (2005), and Zhukova et al. (2016).

Majorite $Mg_3(MgSi)(SiO₄)_3$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline aggregate using a micro-Raman system with an argon ion laser. The laser radiation power at the sample was in the range from 5 to 50 mW.

Raman shifts (cm⁻¹): 1065, 989, 931s, 889, 802, 602s, 458, 367, 311, 226s, 159. Source: De La Pierre and Belmonte (2016).

Makatite Na₂Si₄O₈(OH)₂⋅4H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an aggregate of arbitrarily oriented particles using a 1064.1 nm Nd-YAG laser.

Raman shifts (cm⁻¹): 3368sh, 3122w (broad), 1244w, 1060w, 1025s, 986w, 945w, 919w, 793w, 567s, 482, 460, 414, 381w, 339w, 324, 292s, 266w, 226w, 219w, 194w, 167w, 151w, 122, 100.

Source: Huang et al. (1999a).

Comments: The sample was characterized by powder X-ray diffraction data.

Malachite $Cu_2(CO_3)(OH)_2$

Origin: Eisenzeche, Germany.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented aggregate using a 532 nm Nd-YAG laser. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 3383, 3311w, 1639w, 1495s, 1462, 1369, 1098, 1059, 821w, 755, 722, 597w, 537, 435s, 355, 270s, 215s.

Source: Buzgar and Apopei (2009).

Comments: For the Raman spectra of malachite see also Frost et al. (2002g), Bouchard and Smith (2003), Frezzotti et al. (2012), Capitani et al. (2014), and Coccato et al. (2016).

Malayaite CaSnO(SiO₄)

- Origin: Skarn approximately 4 km north of Ash Mountain, near Mc-Dame, northern British Columbia, Canada.
- Experimental details: Raman scattering measurements have been performed on a sample with continuously variable polarization directions using a 488 nm $Ar⁺$ laser.
- **Raman shifts (cm⁻¹):** 895w, 837s, 802w, 595s, 520s, 510w, 450w, 412w, 340s, 328w, 305s, 295w, 280s, 250s, 227w, 197w, 176s, 142s, 109s, 75w.
- Source: Groat et al. (1996).
- Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. For the Raman spectrum of malayaite see also Heyns and Harden (1999).

Malladrite $Na₂SiF₆$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 4358 Å laser.

Source: Begun and Rutenberg (1967). Raman shifts $(cm⁻¹)$: 592, 559s, 477, 300, 252.

Mallardite Mn(SO4)∙7H2O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using a 4358 Å laser.

Raman shifts (cm⁻¹): 3467, 3399, 1148, 1085, 1084, 993-994, 693, 603, 457, 330.

Source: Rao (1941).

Comments: Krishnamurti (1958) notes that actually this study does not reveal the existence of lines at 330 and 693 cm^{-1} and, based on the crystallization conditions, it is probable that the results refer to Mn SO_4 ∙5H₂O.

Mallestigite $Pb_3Sb(SO_4)(AsO_4)(OH)_6·3H_2O$

Origin: A waste dump from a Cu-Pb-Zn mine, 1 km NW of Mallestiger, Carinthia, Austria.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

- **Raman shifts (cm⁻¹):** 1261w, 1234w, 1158, 1151, 1062w, 978s, 865w, 827, 803, 641, 631w, 619w, 606, 460, 449s, 437s, 416w, 374, 340w.
- Source: Frost et al. (2011p).
- Comments: The IR spectrum of presumed mallestigite published in the cited paper corresponds to quartz.

Mandarinoite $Fe^{3+}{}_{2} (Se^{4+}O_3)$ ₃∙6H₂O

Origin: El Dragon Mine, Potosi, Bolivia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3507, 3189s, (3046), 2926, (2796w), 1666w, 1563, 814s, 744, 723, 695w, 553, 474, 398w, 355w, 262, 212, 186, 129.

Source: Frost and Keeffe (2009a).

Comments: No independent analytical data are provided for the sample used.

Manganite $Mn^{3+}O(OH)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 632.8 nm He-Ne laser. In spite of the strong opacity of the mineral, it was possible to record a Raman spectrum by using a very weak laser beam intensity of 1 mW and a long duration of 500 s.

Raman shifts (cm⁻¹): 622, 558s, 530, 490w, 387, 357.

Source: Bouchard and Smith (2003).

Comments: For the Raman spectrum of manganite see also Bernard et al. (1993a).

Manganlotharmeyerite $CaMn^{3+}$ ₂(AsO₄)₂(OH)₂

Origin: Starlera Fe-Mn deposit, Middle Penninic domain, Eastern Swiss Alps.

Experimental details: Unpolarized Raman spectrum was obtained on an arbitrarily oriented single crystal using a 488 nm $Ar⁺$ laser.

Raman shifts (cm⁻¹): 3000 (broad), 880, 830 (broad), 765, 475, 426, 365, 344.

Source: Brugger et al. (2002).

Comments: The sample was characterized by optical and structural data and electron microprobe analysis. The band at 475 cm⁻¹ is absent in the figure of manganlotharmeyerite given in the cited paper. The strongest band in this figure has a maximum at \sim 520 cm⁻¹.

Manganochromite $Mn^{2+}Cr_2O_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample consisting of octahedral nanocrystals using a Raman microscope.

Raman shifts (cm⁻¹): 652, 555s.

Source: Tong et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of manganochromite see also Chen et al. (2007c).

Manganolangbeinite $K_2Mn^{2+2}(SO_4)$

Origin: Synthetic.

Experimental details: Unpolarized and polarized (with different scattering geometries) Raman scattering measurements have been performed on single crystals using a 488 nm $Ar⁺$ laser at the power of 5 mW.

Raman shifts (cm⁻¹): 1224w, 1153w, 1138w, 1113w, 1107w, 1031, 1022sh, 651w, 645w, 628, 620, 604, 597sh, 590w, 473sh, 447, 436w, 426w.

Source: Kreske and Devarajan (1982).

Comments: The Raman shifts are given for the scattering geometry $z(yz)x$.

Manganosite MnO

Origin: Synthetic (Alfa Aesar).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 514.5 nm Ar⁺ laser.

Raman shifts (cm⁻¹): 654, (591), 531s, 250w.

Source: Julien et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of manganosite see also Mironova-Ulmane et al. (2009).

Manjiroite Na(Mn^{4+} ₇ Mn^{3+}) O_{16}

Origin: Bahariya depression, Western Desert, Egypt.

Experimental details: Raman scattering measurements have been performed on an arbitrarily sample using a 532 nm Nd-YAG laser. The laser radiation power at the sample was between 20 and 200 μW.

Raman shifts (cm⁻¹): \sim 1300, 643, \sim 395, \sim 292.

Source: Ciobotă et al. (2012).

Comments: No independent analytical data are given for the sample used.

Marcasite $FeS₂$

Origin: A seafloor hydrothermal vent field.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using a 532 nm laser. The maximum laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 386, 323s.

Source: White (2009).

Comments: For the Raman spectra of marcasite see also Lutz and Müller (1991), Mernagh and Trudu (1993), and Frezzotti et al. (2012).

Margarite $CaAl₂Si₂Al₂O₁₀(OH)₂$

Origin: Rekwika, Troms, Norway.

Experimental details: Micro-Raman scattering measurements have been performed on a single crystal using a 514.5 nm Ar^+ laser. Sample orientation is not indicated.

Raman shifts (cm⁻¹): 3635s, 917s, 711s, 676, 648, (553), 489, 393s, (348), 315, 271s, 248s, (225), 115s, 84.

Source: Thili et al. (1989).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of margarite see also Graeser et al. (2003) and Wang et al. (2015).

Margarosanite $Ca_2PbSi_3O_9$

Origin: Franklin, New Jersey, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 437 nm laser radiation.

Raman shifts (cm^{-1}) : 1014s, 966, 907, 659s, 581, 498, 443, 389, 262, 128.

Source: Gaft et al. (2013).

Comments: Weak peaks are not indicated.

Marićite Na $Fe^{2+}(PO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented powder using 532 nm Ar⁺ laser radiation. The power at the laser beam was 10 mW.

Raman shifts (cm⁻¹): 1125w, 1080w, 1052w, 972s, 943sh.

Source: Burba and Frech (2006).

Comments: For the Raman spectrum of marićite see also Burba (2006).

Markascherite $Cu_3(M_0O_4)(OH)_4$

Origin: Copper Creek, Pinal Co., Arizona, USA (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on a randomly oriented crystal using 532 nm laser radiation. The laser radiation power at the sample was 200 mW.

Raman shifts (cm⁻¹): 3560sh, 3541sh, 3527s, 3510, 911s, 886sh, 864sh, 489w, 449w, 425, 402w, 329s.

Source: Yang et al. (2012).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and electron microprobe analyses.

Marokite CaMn³⁺₂O₄

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power at the sample was 3 mW.

Raman shifts (cm⁻¹): 720, 679, 633s, 614s, 577, 536, 517w, 475, 397s, 376s, 350, 299s, 284sh, 272, 241, 221w, 206, 192w, 177s, 123.

Source: Wang et al. (2003).

Comments: For the Raman spectrum of marokite see also Ivanov et al. (2014).

Marthozite Cu²⁺(UO₂)₃(Se⁴⁺O₃)₂O₂⋅8H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3180, 3271s, 3381, 3524, 1672, 1616, 1414w, 1358w, 1283w, 869, 812s, 797s, 739, 571w, 449, 424s, 360, 257, 199, 139.

Source: Frost et al. (2008e).

Comments: No independent analytical data are provided for the sample used. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The IR spectrum of presumed marthozite given in the cited paper is wrong and corresponds to malachite.

Martyite Zn₃(V₂O₇)(OH)₂⋅2H₂O

Origin: Little Eva mine, Grand Co., Utah, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polycrystalline aggregate using 532 nm laser radiation. The output power of the laser beam was about 4 mW.

Raman shifts (cm⁻¹): 3475, 1600w, 943sh, 864sh, 844s, 800sh, 483, 440, 319, 258, 111.

Source: Kasatkin et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Maruyamaite $K(MgAl₂)(Al₅Mg)(BO₃)₃(Si₆O₁₈)(OH)₃O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation with laser beam perpendicular and parallel to the *c*-axis.
- **Raman shifts** (cm^{-1}) **:** 3572, 1106sh, 1091, 977, 789s, 703s, 669, 538w, 500w, 367s, 242, 212s, 155w.

Source: Lussier et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts are given for the spectrum obtained with laser beam perpendicular to the c-axis.

Mascagnite $(NH_4)_2(SO_4)$

Origin: Synthetic (commercial reactant).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the objective lens was about 100 mW.

Raman shifts (cm⁻¹): 975s, ~615w, ~610w, ~450w.

Source: Sakurai et al. (2010).

Comments: For the Raman spectrum of maskagnite see also Morillas et al. (2016).

Maskelynite A feldspar glass

Origin: Sixiangkou meteorite (L6 chondrite). Experimental details: No data. **Raman shifts** (cm^{-1}) **:** 1090 (broad), 575sh, 487s (broad). Source: Gillet et al. (2000).

Comments: The Raman spectrum contains numerous narrow peaks of admixed lingunite, the highpressure hollandite-type phase $KAISi₃O₈$.

Massicot PbO

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single sample using 1064 nm Nd-YAG laser radiation.

Raman shifts (cm^{-1}) : 423w, 384, 341w, 289s, 248sh, 217w, 174sh, 143s, 88w, 73w.

Source: Ciomartan et al. (1996).

Comments: For the Raman spectra of massicot see also Madsen and Weaver (1998), Bouchard-Abouchacra (2001), Bouchard and Smith (2003), and Lepot et al. (2006).

Mathesiusite $K_5(UO_2)_4(SO_4)_4(VO_5)(H_2O)_4$

- Origin: Jáchymov, Krušné Hory Mts. (Ore Mts.), Bohemia, Czech Republic (type locality).
- Experimental details: Raman scattering measurements have been performed on the {110} face of a single crystal using depolarized 780 nm radiation of a frequency-stabilized single mode diode laser. The laser radiation power at the sample was between 4 and 8 mW.
- **Raman shifts (cm⁻¹):** 1329w, 1210w, 1114w, 1007s, 982, 896, 888sh, 844sh, 830s, 742, 644, 619, 598, 557w, 480, 460s, 447sh, 370w, 276, 248.
- Source: Plášil et al. (2014c).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Mathiasite $(K, Ba, Sr)(Zr, Fe)(Mg, Fe)_2(Ti, Cr, Fe)_{18}O_{38}$

Origin: Synthetic.

Experimental details: Unpolarized micro-Raman spectrum was obtained on an arbitrarily oriented sample using 632 nm He-Ne laser radiation. The laser radiation power at the sample was between 4 and 8 mW.

Raman shifts (cm⁻¹): 649s, 550, 450, 337, 243w.

Source: Konzett et al. (2005).

Comments: The sample was characterized by electron microprobe analysis.

Matildite $AgBiS₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample consisting of nanocrystals using 514 nm laser radiation.

Raman shifts (cm⁻¹): \sim 140, \sim 120.

Source: Guin et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data.

Matioliite NaMgAl₅(PO₄)₄(OH)₆⋅2H₂O

Origin: Gentil mine, Minas Gerais, Brazil.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3643w, 3630s, 3399w, 3281s, (3253), 3232s, (3231), 3072, 2920w, 1751w, 1714w, 1610w, 1562w, 1230w, 1211, 1181, 1155w, 1104, 1068s, 1048s, 1025s, (1007), (994), 985, 965, 892w, 811,

Source: Scholz et al. (2013b).

Comments: The sample was characterized by electron microprobe analysis.

Matlockite PbClF

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 632.8 nm He-Ne laser. In spite of the strong opacity of the mineral, it was possible to record a Raman spectrum by using a very weak intensitylaser (1 mW) and a long duration of 500 s. **Raman shifts (cm⁻¹):** 238, 227, 163s, 155, 132, 105, 84.

Source: Bouchard and Smith (2003).

Comments: For the Raman spectrum of matlockite see also Bouchard-Abouchacra (2001).

Mattagamite $CoTe₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation.

Raman shifts $(cm⁻¹)$: 121s.

Source: McKendry et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Matteuccite NaH(SO4)∙H2O

Origin: Synthetic.

Experimental details: No data

Raman shifts (cm⁻¹): 2940w, 1656, 1549w, 1308, 1268w, 1241w, 1191, 1060s, 874s, 655, 612, 577, 435, 411, 278w, 224w, 188w, 140w, 87.

Source: Baran et al. (1999a).

Maxwellite NaFe³⁺(AsO₄)F

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 954w, 814sh, 894sh, 871s, (849), 812, 753, 542, (523), (487), 455w, (373), 360sh, (346), 327, 309sh, (291), (274w), 259w, (164w), 151, (140w), 111w.

Source: Frost et al. (2014aa).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectrum of maxwellite see also Downs et al. (2012).

Mbobomkulite (Ni,Cu)Al₄(NO₃,SO₄)₂(OH)₁₂⋅3H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements of SO₄-free analogue of mbobomkulite have been performed on arbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3647, 3576, 3544w, 3468s, 3447w, 3422w, 3250s, 2900, 1645w, 1413, 1342w, 1058, 1050, 1045, 713w, 676, 614, 570, 545w, 541, 494, 447w, 350, 340, 337w, 324w, 297w, 217w, 184w, 181w, 160w, 142w.

Source: Frost et al. (2005f).

Comments: No independent analytical data are provided for the sample used.

Mcallisterite Mg₂[B₆O₇(OH)₆]₂⋅9H₂O

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 951, 637s, 526w, 488w, 410s, 321.

Source: Kipcak et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and may contain admixture of admontite. For the Raman spectrum of mcallisterite see also Derun and Tugce (2014).

Mcalpineite $Cu₃Te⁶⁺O₆$

Origin: Gambatesa mine, eastern Liguria, Italy.

Experimental details: Micro-Raman scattering measurements have been performed on earthy mcalpineite aggregate using 633 nm laser radiation.

Raman shifts (cm^{-1}) **:** 740s, 690s.

Source: Carbone et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Mcconnellite $Cu^{1+}CrO₂$

Origin: Synthetic.

- Experimental details: Micro-Raman scattering measurements have been performed on a single crystal using 632 nm He-Ne laser radiation. The laser radiation power at the sample was 0.3 mW. Incident beam power with a 3 μ m spot size (4000 W/cm²) was used. Polarized spectra were collected in the $z(yy)z$ and $z(yx)z$ scattering geometries.
- **Raman shifts (cm⁻¹):** 692s, 351w. Source: Aktas et al. (2011).

Comments: The Raman shifts are given for the scattering geometry $z(y)yz$. For the Raman spectra of mcconnellite see also Shu et al. (2009) and Elkhouni et al. (2013).

Mcguinnessite $CuMg(CO₃)(OH)₂$

Origin: Red Mountain, Mendocino Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3594, 3522s, 3381, 3309, 1567w, 1540, 1494s, 1359, 1090s, 1060, 914w, 741w, 707w, 516, 433, 269, 166, 147.
- **Source:** Frost (2006).

Megawite $CaSnO₃$

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power was in the range from 40 to 60 mW.
- **Raman shifts (cm⁻¹):** 705w, 557 (broad), 474w, 443, 355s, 283, 262, 183, 159.
- Source: Galuskin et al. (2011b).
- Comments: The sample was characterized by electron data and electron microprobe analyses. The empirical formula of the sample used is $CaSn_{0.6}Zr_{0.3}O₃$. For the Raman spectrum of megawite see also Zheng et al. (2012).

Meisserite $Na₅(UO₂)(SO₄)₃(SO₃OH)(H₂O)$

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm frequency-stabilized single mode diode laser radiation. The laser radiation power at the sample was 3 mW.
- **Raman shifts (cm⁻¹):** 3497w, 3366w, 1239, 1213, 1186, 1153, 1139, 1102, 1068, 1045,1031s, 1019s, 990, 975, 847s, 633, 606, 589, 464, 448, 414, 241, 199, 171, 123, 96, 61.

Source: Plášil et al. (2013c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Meixnerite Mg₆Al₂(OH)₁₆(OH)₂⋅4H₂O

Origin: Synthetic.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm $Ar⁺$ laser radiation. The output power of the laser was set to 50 mW.
- **Raman shifts (cm⁻¹):** 3492w (broad), 2392w, 1808, 1512, 1368w, 1165w, 936s, 827s, 748s, 686s, 629, 572, 555, 491, 416, 394w, 342, 313w, 238s, 207w, 180, 157, 128, 101, 76w, 60w.

Source: Kagunya et al. (1998).

Comments: The sample was characterized by powder X-ray diffraction data.

Melanarsite $K_3Cu_7Fe^{3+}O_4(AsO_4)_4$

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka Peninsula, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm laser radiation. The laser output power was 4 mW.

Raman shifts (cm⁻¹): 854s, 789, 632w, 550w, 464, 403, 352s, 331, 241, 187, 164, 142. Source: Pekov et al. (2016d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Melanophlogite C₂H₁₇O₅⋅Si₄₆O₉₂

Origin: Mt. Hamilton, California, USA.

Experimental details: Polarized (XX and XY) Raman spectra have been obtained on a single crystal using 514.5 or 488 nm Ar^+ laser radiation. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): 3050w, 2909, 2900, 2321, 1380, 1277w, 803, 590, 364w, 268s, 165. Source: Kolesov and Geiger (2003).

Comments: The Raman shifts are given with the XX polarization. For the Raman spectrum of melanophlogite see also Tribaudino et al. (2008).

Melanterite Fe(SO₄)∙7H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW. **Raman shifts (cm⁻¹):** 3385, 1147, 1074, 992s, 612, 480, 457, 284, 241w, 214w.

Source: Buzgar et al. (2009).

Comments: For the Raman spectra of melanterite see also Chio et al. (2007), Sobron and Alpers (2013), Jentzsch et al. (2013), Wang and Zhou (2014), Apopei et al. (2015), Buzatu et al. (2016), and Kompanchenko et al. (2016).

Meliphanite $Ca_4(Na, Ca)_4Be_4AlSi_7O_{24}(F, O)_4$

Origin: Østskogen larvikittbrudd, Tvedalen, Larvik kommune, Vestfold fylke, Norway.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3805w, 3693w, 3595w, 3503, 3412, 3330, 3304w, 3207w, 3155w, 1095w, 1050w, 1016s, 991, 968, 932, 893w, 870w, 774, 745w, 721, 666s, 636w, 625s, 611w, 555w, 534w, 510w, 472, 421w, 382, 285w, 258, 207, 180, 147s, 113.

Source: Frost et al. (2015o).

Mellite $\text{Al}_2\text{C}_6(\text{COO})_6$ ∙16H₂O

Origin: Bílina, near Most, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 350 mW.

Raman shifts (cm⁻¹): 3250w (broad), 1552, 1467s, 1386w, 1343, 1224, 805 (broad), 772, 538w, 376sh, 353w, 325, 242, 202sh, 178s, 162w, 151w, 134, 117w. Source: Jehlička and Edwards (2008).

Mellizinkalite $K_3Zn_2Cl_7$

Origin: Glavnaya Tenoritovaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polycrystalline sample using 532 nm laser radiation. The laser radiation power at the sample was about 3–3.5 mW.

Raman shifts (cm⁻¹): 310, 274s, 264s, 188, 128s.

Source: Pekov et al. (2015f).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Mendipite $Pb_3O_2Cl_2$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 632.8 nm He-Ne laser.

Raman shifts $(cm⁻¹)$: 3504, 732, 601w, 474w, 435, 330s, 273s, 134s.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of mendipite see also Frost and Williams (2004).

Mercallite $KH(SO₄)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 20 mW.

Raman shifts (cm⁻¹): 1174, 1126w, 1027s, 1001s, 872sh, 855, 581, 572, 448, 412.

Source: Ayta et al. (2010).

Comments: A Mn-doped crystal characterized by ESR was used.

Merelaniite $Mo₄Pb₄VSbS₁₅$

Origin: Merelani Tanzanite deposit, Lelatema Mts., Manyara Region, Tanzania (type locality).

Experimental details: Raman scattering measurements have been performed on a curved surface of a cylindrical whisker using 633 nm laser radiation. The laser radiation power at the sample was less than 3 mW.

Raman shifts (cm⁻¹): 780w, 570w, 450, 401s, 390, 379, 324, 245, 133.

Source: Jaszczak et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Merenskyite PdTe₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. Neutral filter was used to decrease the laser radiation power to prevent sample damage.

Raman shifts (cm⁻¹): 132s, (105).

Source: Bakker (2014).

Comments: For the Raman spectrum of merenskyite see also Vymazalová et al. (2014).

Meridianiite Mg(SO₄)∙11H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 513 nm Ar⁺ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 3520sh, 3395s, 1116, 1071, 990s, 620, 155sh, 444, 233w, 190. Source: Genceli et al. (2007).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved. For the Raman spectra of meridianiite see also Genceli et al. (2009) and Sakurai et al. (2010).

Merrillite Na-free analogue $Ca_{9.5}Mg(PO₄)₇$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm^{-1}) : 1071, 1010, 966s, 951s, 761, 656w, 618, 601, 548, 437, 406.

Source: Jolliff et al. (2006).

Comments: The empirical formula of the sample used is $C_{418.70}$ $REE_{0.05}$ $(Mg,Fe)_{2.00}$ $Na_{0.17}P_{13.90}Si_{0.16}O₅₆.$

Merrillite $Ca₉NaMg(PO₄)₇$

Origin: Suizhou meteorite, Dayanpo, Hubei, China.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514 nm Ar^+ laser radiation.

Raman shifts (cm⁻¹): 1080, 1026w, 972s, 956s, 604, 550w, 445, 408, 178. Source: Xie et al. (2002).

Comments: The empirical formula of the sample used is $Ca_{8.82}Na_{0.88}Mg_{0.91}Fe_{0.07}P_{7.14}O_{28}$. For the Raman spectra of merrillite see also Cooney et al. (1999) and Xie et al. (2015).

Merwinite $Ca₃Mg(SiO₄)₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polycrystalline sample using 5145 or 4880 Å laser radiation.

- **Raman shifts (cm⁻¹):** 1011, 991w, 980w, 939, 921, 911, 887s, 872s, 860, 845, 667w, 640w, 579, 540, 529, 424, 394, 374w, 330, 270, 227w, 203w, 194w, 156s, 143s, 126, 119, 78, 42. Source: Piriou and McMillan (1983).
- Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum of merwinite see also Zedgenizov et al. (2014).

Mesolite Na₂Ca₂(Si₉Al₆)O₃₀∙8H₂O

Origin: Talisker, Isle of Skye, Scotland.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 10 mW.
- **Raman shifts (cm⁻¹):** 3583s, 3510s, 3412s, 3329, 3242s, 1666, 1652, 1099s, 1073, 1049s, 1023, 1007, 990s, 955, 951, 762, 757s, 753, 735, 727, 717, 710, 708s, 673s, 668, 538s, 496, 441s, 409s, 381s, 374, 368, 346, 330s, 283s, 273, 255s, 225s, 204, 183s, 158s, 143.

Source: Wopenka et al. (1998).

Comments: Bands whose intensities are definitely dependent upon polarization are indicated in the cited paper. For the Raman spectra of mesolite see also Pechar (1983) and Mozgawa (2001).

Meta-ankoleite K(UO2)(PO4)∙3H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1–4 mW.
- **Raman shifts (cm⁻¹):** 3805, 3498, 3375, 3237, 3110, 2786, 1004s, 994s, 831s, 826s, 400, 291, 195, 173, 113, 108.

Source: Clavier et al. (2016).

Comments: For the Raman spectrum of meta-ankoleite see also Pham-Thi et al. (1985).

Meta-autunite $Ca(UO₂)₂(PO₄)₂·6H₂O$

Origin: Autun, France (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using a 633 nm He-Ne laser. Power at the sample was measured as 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3508, 3456, 3244, 1093, 1033, 1018, 1007s, 989, 915, 890, 850, 833s, 818, 643, 507, 453, 387s, 263, 222, 190.

Source: Frost and Weier (2004d).

Comments: For the Raman spectra of meta-autunite see also Frost (2004b) and Stefaniak et al. (2009).

Metacinnabar β-HgS

Origin: No data. Experimental details: No data. **Raman shifts (cm⁻¹):** 339, 280w, 253s. Source: Radepont (2013).

Metahewettite $CaV^{5+}{}_{6}O_{16}$ ·3H₂O

Origin: The Fish, Eureka Co., Nevada, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1013, 994s, 954s, 878, 692, 530, 470, 425, 404, 290, 280s, 240, 188, 154, 140s. Source: Frost et al. (2005d).

Metakirchheimerite Co(UO₂)₂(AsO₄)₂∙8H₂O

Origin: Jáchymov, Krušné Hory Mts. (Ore Mts.), Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 730 nm laser radiation. The laser radiation power at the sample was 10 mW.

Raman shifts (cm⁻¹): 908, 896sh, 883sh, 816s, 801sh, 449, 320w, 206sh, 191.

Source: Plášil et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Metalodèvite Zn(UO2)2(AsO4)2∙10H2O

Origin: Jánská vein, Březové Hory deposit, Příbram ore district, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.2 nm laser radiation. The laser radiation power was 5 mW.

Raman shifts (cm⁻¹): 3418, 994, 977, 892, 866, 819s, 522s, 469, 447, 399, 319, 303, 280w, 191. Source: Plášil et al. (2010d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Metamunirite $\text{NaV}^{5+}\text{O}_3$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed using $4880 \text{ Å } Ar^+$ laser radiation on the (110) cleavage plate, with incident light perpendicular to the plane, and polarized perpendicular to the scattering plane. The laser radiation power at the sample was 100 mW. No analyser was in the path of the scattered radiation but a polarization scrambler was used.

Raman shifts (cm⁻¹): 948s, 911, 887s, 737, 557, 431, 288, 257, 203, 168, 135, 124, 81w, 53w. Source: Seetharaman et al. (1983).

Metarauchite Ni(UO₂)₂(AsO₄)₂⋅8H₂O

Origin: Jáchymov, Krušné Hory Mts. (Ore Mts.), Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power was 10 mW. The Raman shifts have been partly determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3265w (broad), 3079, 1124w, 911sh, 898s, 893w, 883w, 878w, 817s, 804sh, 785sh, 771sh, 682w, 534w, 445, 395, 361w, 330, 319, 248, 211, 204w.

Source: Plášil et al. (2010c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Metarossite $CaV^{5+}{}_{2}O_{6}$ ∙2H₂O

Origin: Blue Cap mine, San Juan Co., Utah, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm laser radiation. The laser radiation power was 150 mW.

Raman shifts (cm⁻¹): 3398, 3240, 3189, 2954, 2904.

Source: Kobsch et al. (2016).

Comments: The sample was characterized by the crystal structure refinement based on single-crystal X-ray diffraction data. For the Raman spectrum of metarossite see also Frost et al. (2005d).

Metastibnite Sb_2S_3

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar^+ laser radiation. The nominal laser radiation power was 25 mW.

Raman shifts (cm^{-1}) **:** 290s, 170.

Source: Watanabe et al. (1983).

Comments: The sample used was prepared as amorphous film by thermal evaporation of bulk Sb-S alloy with corresponding composition.

Metastudtite UO_4 ∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW.

Raman shifts (cm⁻¹): 3446s, 3245w, 1716sh, 1621, 1111w, 927s, 909s, 791w, 558w, 474.

Source: Bastians et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data.

Metathénardite $Na₂(SO₄)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 523 K on a single crystal, in different scattering geometries, using 457.9 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 150 mW.

Source: Choi and Lockwood (1989).

Raman shifts (cm⁻¹): 1175, 1100, 993.5s, 628–626s, 467sh, 464s.

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of metathénardite see also Murugan et al. (2000).

Metatorbernite Cu(UO₂)₂(PO₄)₂⋅8H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 10 mW.
- **Raman shifts (cm⁻¹):** 1630w, 1514w, 1414w, 1014w, 997s, 986w, 905w, 831w, 827s, 806w, 627w, 602w, 560w, 541w, 464w, 443w, 429w, 412w, 406, 399w, 291w, 253w, 221w, 196, 145w, 125w, 113w, 99, 81w.

Source: Sánchez-Pastor et al. (2013).

Comments: The sample was characterized electron microprobe analysis. For the Raman spectra of metatorbernite see also Čejka Jr (1984), Frost (2004b), Frost and Weier (2004a), and Faulques et al. (2015a, b).

Metatyuyamunite Ca(UO2)2(VO4)2∙3H2O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation.

Raman shifts (cm^{-1}) : 962, 829, 747s, 646w, 582, 570, 532, 467, 411w, 369s, 310. Source: Botto et al. (1989).

Comments: The sample was characterized by powder X-ray diffraction data and analysis of H_2O .

Metauranocircite-I Ba(UO₂)₂(PO₄)₂·6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 1635, 1543, 1420, 1039, 1023, 1003, 989s, 960, 821, 815s, 809, 627, 566, 502, 425, 409, 398, 376, 222.

Source: Sánchez-Pastor et al. (2013).

Comments: The sample was characterized electron microprobe analysis.

Metauranospinite Ca(UO₂)₂(AsO₄)₂⋅8H₂O

Origin: Přibram, Central Bohemia region, Czech Republic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3549w, 3428, 3238w, 2106w, 1891w, 1787w, 1617w, 1518w, 1366w, 907w, 896, 815s, 806, 458, 397, 321, 275, 196, 187s, 150, 111.

Source: Čejka et al. (2009b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Metavariscite Al(PO4)∙2H2O

Origin: Mt Lucia, Utah, USA.

- Experimental details: Raman scattering measurements have been performed at 77 K on anarbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1889, 1628, 1362, 1249, 1150, 1081s, 1063, 1033, 1018s, 643, 585, 574, 553, 499, 460, 446, 427s, 400, 387, 380, 374, 367, 360, 353s, 347, 340, 329s, 302, 297, 290, 280, 273, 258, 253, 244, 239, 230s, 211, 201, 187s, 171, 152, 147, 133, 124.

Source: Frost et al. (2004l).

Metavivianite $Fe^{2+}Fe^{3+}(PO_4)_2(OH)_2·6H_2O$

Origin: Boa Vista pegmatite, near Galiléia, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 10 mW.
- **Raman shifts (cm⁻¹):** 3431, 3378w, 3299w, 3257sh, 3194sh, 1089w, 1022, 972s, 579, 506s, 461, 374w, 322sh, 289, 256, 236, 197, 166, 143.

Source: Chukanov et al. (2012b).

Comments: The sample was characterized by powder X-ray diffraction data, Mössbauer spectroscopy, electron microprobe analysis and gas-chromatographic determination of H_2O . The empirical formula of the sample used is (Fe^{3+}) $(Fe^{3+}{}_{1.64}Fe^{2+}{}_{1.23}Mg_{0.085}Mn_{0.06})_{23.015}(PO_4)_{1.98}$ $(OH)_{1.72}$ 6.36H₂O. The crystal structure is solved. For the Raman spectrum of metavivianite see also Frost et al. (2004m).

Metazeunerite Cu(UO₂)₂(AsO₄)₂⋅8H₂O

- Origin: Gilgai, New England, New South Wales, Australia, or Wheal Edward Bottalock, Cornwell, England (not specified in the cited paper).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3371, 3238, 3136, 910, 888, 819s, 809, 793, 449, 398, 320, 276, 240, 218. **Source:** Frost (2004b).

Comments: For the Raman spectra of metazeunerite see also Frost and Weier (2004c) and Frost et al. (2004k).

Meurigite-Na [Na(H₂O)_{2.5}][Fe³⁺₈(PO₄)₆(OH)₇(H₂O)₄]

Origin: Silver Coin mine, Valmy, Iron Point district, Nevada, USA (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 3270, 1125, ~1005s, ~960s, ~925, 876, 568, 490, 441s, 401, 281, 222, 170. Source: Kampf et al. (2009a).

Comments: Maybe, an erroneous spectrum: wavenumbers of the strongest bands of phosphate groups in the range from 900 to 1100 cm⁻¹ are anomalously high. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Meyerhofferite CaB₃O₃(OH)₅∙H₂O

Origin: Bigadic deposits, Turkey.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3608s, (3505w), 3483s, (3421w), 3400s, 3344w, 3287, 3232, (3092), 3031s, (2908w), 1621w, (1592w), 1551w, 1367w, 1201, 1135, 1110, 1046, 1002, 958, 944, 935, 880, 728, 698w, (627w), 609s, 592, 493, 474, 435, 398w, 381w, 366w, 336, 235w, 227, 204, 189, 164, 124, 118.

Source: Frost et al. (2013h).

Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron microprobe analysis.

Meymacite monoclinic analogue $WO_3·2H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using Ar^+ laser radiation.

Raman shifts (cm⁻¹): 3530, 3370sh, 3160s, ~1600, 960s, 685s, 662s, 380, 268, 235, 210, 110. Source: Daniel et al. (1987).

Miargyrite AgSbS_2

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation.

Raman shifts (cm⁻¹): 447, 370w, 322w, 250s, 185s, 134w, 115.

Source: Minceva-Sukarova et al. (2003).

Comments: For the Raman spectrum of miargyrite see also Makreski et al. (2013b).

Microcline $K(AlSi₃O₈)$

Origin: Čanište, Macedonia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 1139sh, 1124, 1099, 1051w, 994, 814w, 750, 651, 585w, 513s, 475s, 454, 402, 372, 331w, 285, 266, 258, 199, 179, 155, 127, 108.

Source: Makreski et al. (2009).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of microcline see also Ciobotă et al. (2012) and Frezzotti et al. (2012).

Miersite AgI

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 573 K on a single crystal using 6328 Å He-Ne laser radiation. The laser radiation power at the sample was 10 mW. Polarized spectra were collected in the $y[z(x/y)]z$ and $y(zx)z$ scattering geometries.

Raman shifts (cm⁻¹): \sim 100 (broad), \sim 30s (broad).

Source: Delaney and Ushioda (1976).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. The Raman shifts are given for the scattering geometry $y[z(x/y)]z$. In the scattering geometry $y(zx)z$ only a peak at ~ 30 cm⁻¹ is observed.

Mikasaite $Fe^{3+}{}_{2}(SO_4)_{3}$

Origin: Synthetic.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation.
- **Raman shifts (cm⁻¹):** 1123s, 1098s, 1078s, 1069, 1040, 677, 657, 628, 613, 600, 468, 461, 448, 295, 234, 178.

Source: Ling and Wang (2010).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of mikasaite see also Apopei et al. (2015).

Milarite $KCa₂(Be₂AlSi₁₂)O₃₀·H₂O$

Origin: Giuv Tavetsch, CH.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 785 nm laser radiation.

Raman shifts (cm⁻¹): 1126, 834, 538, 479s, 436w, 382w, 288w, 161w.

Source: Jehlička and Vandenabeele (2015).

Comments: For the Raman spectra of milarite see also Lengauer et al. (2009) and Jehlička et al. (2012).

Millerite β-NiS

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm laser radiation. The laser radiation power was 15 mW.

Raman shifts (cm⁻¹): 372, 350, 301, 283, 246s, 222, 181, 174s, 142.

Source: Bishop et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction.

Millosevichite $Al₂(SO₄)₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1053, 1009, 990s, 979, 726, 630, 614, 572, 496, 459, 446. Source: Kloprogge and Frost (1999c).

Mimetite $Pb_5(AsO_4)_3Cl$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.
- Raman shifts (cm⁻¹): 1043, 1000w, 982w, 949, 920s, 812s, 791sh, 744sh, 553w, 546sh, 426sh, 411sh, 409, 391, 372, 338s, 314s.

Source: Bajda et al. (2011).

Comments: The empirical formula of the sample used is $Pb_5[(AsO₄)_{2.4}(PO₄)_{0.6}]$ Cl. The bands in the ranges 900–1050 and 540–560 cm⁻¹ correspond to phosphate groups. For the Raman spectra of mimetite see also Levitt and Condrate, Sr (1970), Adams and Gardner (1974), Bartholomäi and Klee (1978), Frost et al. (2007c), and Bajda (2010).

Minguzzite K₃Fe³⁺(C₂O₄)₃⋅3H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 514.5 nm laser radiation.

Raman shifts (cm⁻¹): 1720, 1451s, 1252, 898, 782, 558s, 370, 257s, 136s. Source: Narsimhulu et al. (2015).

Minium $Pb^{2+}Pb^{4+}O_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 632.8 nm He-Ne laser. In spite of the strong opacity of the mineral, it was possible to record a Raman spectrum by using a very weak intensity laser (1 mW) and a long duration of 500 s. **Raman shifts (cm⁻¹):** 549s, 480, 391, 313, 223, 150, 120s, 84, 70, 60, 51.

Source: Bouchard and Smith (2003).

Comments: For the Raman spectra of minium see also Bouchard-Abouchacra (2001), Burgio and Clark (2001), and Lepot et al. (2006).

Minnesotaite Fe^{2+} ₃Si₄O₁₀(OH)₂

Origin: No data in the cited paper.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power at the sample was about 13 mW.

Raman shifts (cm⁻¹): 3654s, 3639s, 3625s, 660s, 545, 440, 407, 350, 251, 188.

Source: Wang et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Minyulite $\text{KAl}_2(\text{PO}_4)_2\text{F·4H}_2\text{O}$

Origin: Minyulo Well, Australia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3692w, 3669, 3661w, 3324 (broad), 3225 (broad), 1584w, (1190w), 1176w, 1155w, (1136w), (1105w), 1091, 1077, (1047), 1012s, (991w), 657, (628w), (606w), 592s, 575, (551w), (535w), (522w), (506), 494s, (481), 448, (420w), 407.

Source: Frost et al. (2014l).

Comments: The empirical formula of the sample used is $(K_{0.82}Ca_{0.05}Na_{0.03})Al_{2.04}Fe_{0.08}$ $(PO_4)_2[F_{0.55}(OH)_{0.45}]$.4H₂O.

Mirabilite $Na₂(SO₄)·10H₂O$

Origin: No data in the cited paper. Experimental details: No data. **Raman shifts (cm⁻¹):** 3506s, 3340, 1129w, 989s, 627, 458. Source: Frezzotti et al. (2012). Comments: For the Raman spectrum of mirabilite see also Sakurai et al. (2010).

Misakiite $Cu₃Mn(OH)₆Cl₂$

Origin: Sadamisaki Peninsula, Ehime prefecture, Japan (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 50 mW.

Raman shifts (cm⁻¹): 3552w, 3505, 3460s, 470, 397s, 321, 265.

Source: Nishio-Hamane et al. (2016b).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data, and electron microprobe analyses.

Mitscherlichite K₂CuCl₄⋅2H₂O

Origin: Synthetic. Experimental details: No data. **Raman shifts (cm⁻¹):** 3340, 3275, 3250, 3235, 3170, 1630-1628, 685, 633, 550, 404, 395. Source: Thomas et al. (1974).

Mixite $Cu₆Bi(AsO₄)₃(OH)₆·3H₂O$

Origin: Smrkovec ore occurrence, the Slavkovský Les Mts., western Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3470, 3392, 1588w, 1513w, 995w, (855), 850s, 805, 553, 529, (494), 472s, (460), 421, 390, 311, 284, 252, 232, 192, 169, 138, (112), 105s.

Source: Frost et al. (2009f).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of mixite see also Frost et al. (2006m).

Moctezumite $Pb(UO_2)(Te^{4+}O_3)_2$

Origin: Moctezuma (Bambolla) mine, Sonora, Mexico.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 826, 758, 723s, 656s, 623, 511w, 455, 356, 308w, 252, 212, 142. Source: Frost et al. (2009b).

Comments: IR spectrum of presumed moctezumite given in the cited paper corresponds to quartz.

Mogánite SiO₂∙nH₂O

- Origin: Mogán, Gran Canaria (Grand Canary), Las Palmas Province, Canary Islands, Spain (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation.
- **Raman shifts (cm⁻¹):** 1177w, 1171w, 1084w, 1058w, (978w), (950w), 833w, 792w, 693w, 501s, 463, 449, 432w, 398w, 377w, 370w, 317w, 265w, 220s, 141, 129s.

Source: Kingma and Hemley (1994).

Comments: No independent analytical data are provided for the sample used.

Mohite $Cu₂SnS₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 or 785 nm laser radiation. The laser radiation power at the sample was below 0.4 mW.

Raman shifts (cm⁻¹): 374w, 352s, 314, 290s, 263sh, 248sh, 224w.

Source: Fontané et al. (2013).

Comments: No independent analytical data are provided for the sample used.

Mohrite $(NH_4)_2Fe^{2+}(SO_4)_2$ ∙6H₂O

Origin: Synthetic.

- Experimental details: Micro-Raman scattering measurements have been performed on arbitrarily oriented individual particles using 532 nm Ar⁺ laser radiation. The laser radiation power at the sample was 2 mW.
- **Raman shifts (cm⁻¹):** 3355, 3290, 3101sh, (2913w), (2852w), 1705w, 1678w, 1430w, 1148sh, 1129, 1091, 1067, 980s, 622, 610, 457sh, 450.

Source: Jentzsch et al. (2013).

Comments: No independent analytical data are provided for the sample used.

Moissanite SiC

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 or 488 nm laser radiation.

Raman shifts (cm⁻¹): 963, 783s, 762, 150.

Source: Andò and Garzanti (2014).

Comments: For the Raman spectra of moissanite see also Xu et al. (2008, 2015b) and Kompanchenko et al. (2016).

Mojaveite $Cu₆[Te⁶⁺O₄(OH)₂](OH)₇Cl$

Origin: Blue Bell claims, near Baker, San Bernardino Co., California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on a single crystal (probably on the (001) face) using 514.3 nm laser radiation. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): ~3500w, 1112w, 967w, 694s, 654, 624, 555, 510, 475sh, 414w, 286, 254, 233w, 203, 172.

Source: Mills et al. (2014b).

Comments: The sample was characterized by powder and single-crystal X-ray diffraction data and electron microprobe analyses.

Molybdenite $MoS₂$

Origin: Wolfram Camp, Qld., Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was between 1 and 10 mW.

Raman shifts (cm⁻¹): 451, 408s, 382s, 285.

Source: Mernagh and Trudu (1993).

Comments: For the Raman spectra of molybdenite see also Windom et al. (2011) and Štengl and Henych (2013).

Molybdite $MoO₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 15 mW.

Raman shifts $(cm⁻¹)$: 995s, 820s, 666, 285s, 158.

Source: Windom et al. (2011).

Comments: For the Raman spectra of molybdite see also Seguin et al. (1995), Nitta et al. (2006), and Camacho-López et al. (2011).

Molybdofornacite $CuPb_2(MoO_4)(AsO_4)(OH)$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Nd-YAG laser radiation. The laser radiation power at the sample was 1 mW. **Raman shifts (cm⁻¹):** 1089, 1048, 1014, 855, 713, 666, 558, 387, 355, 320, 278, 226, 196, 159, 152. Source: Frost (2004c).

Comments: The data are questionable: no information on the sample origin and no independent analytical data on the sample used are given. Band intensities are not indicated.

Molybdophyllite Pb₈Mg₉[Si₁₀O₂₈(OH)₈O₂(CO₃)₃]∙H₂O

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).

Experimental details: Raman scattering measurements have been performed on an single crystal using unpolarized 633 nm laser radiation.

Raman shifts (cm^{-1}) : 3696s, ~3600, ~1050, ~998.

Source: Kolitsch et al. (2012).

Comments: The sample was characterized by single crystal X-ray diffraction data.

Molysite $FeCl₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 632.8 nm He-Ne laser. Laser radiation power of 30 mW at the source was reduced considerably by various filters.

Raman shifts (cm⁻¹): 667, 598, 373,293s, 259.

Source: Bouchard and Smith (2003).

Comments: For the Raman spectrum of molysite see also Bouchard-Abouchacra (2001).

Monazite-(Ce) $Ce(PO₄)$

Origin: Synthetic.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 He-Ne laser radiation. The laser radiation power behind the microscope objective was 8 mW.

Raman shifts (cm⁻¹): 1073, 1056, 992, 970s, 620, 572w, 467, 397, 220, 102, 88.

Source: Ruschel et al. (2012).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of monazite-(Ce) see also Begun et al. (1981), O'Neill et al. (2006), Silva et al. (2006), Andò and Garzanti (2014), and Heuser et al. (2014).

Monazite-(La) La($PO₄$)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm laser radiation.

Raman shifts (cm⁻¹): 1073, 1065w, 1055s, 1025w, 991, 967s, 619, 589w, 572, 537w, 465, 414, 394, 271, 255w, 227, 220, 183w, 170, 151, 131w, 120w, 100, 90.

Source: Begun et al. (1981).

Comments: For the Raman spectra of monazite-(La) see also Silva et al. (2006), Frezzotti et al. (2012), and Heuser et al. (2014).

Monazite-(Nd) Nd($PO₄$)

Origin: Synthetic.

Experimental details: Polarized Raman scattering measurements have been performed on a single crystal using 488 nm laser radiation. Scattering geometry is not indicated.

- **Raman shifts (cm⁻¹):** 1079, 1061, 1033, 998, 977s, 625s, 601, 575, 539, 471s, 419, 398, 291, 264, 236, 228, 183, 175, 160, 154, 106, 89.
- Source: Silva et al. (2006).
- Comments: For the Raman spectra of monazite-(Nd) see also Begun et al. (1981) and Heuser et al. (2014).

Monazite-(Sm) Sm($PO₄$)

Origin: Synthetic.

- Experimental details: Polarized Raman scattering measurements have been performed on a single crystal using 514.5 nm Ar⁺laser radiation. Scattering geometry is not indicated.
- **Raman shifts (cm⁻¹):** 1084, 1065, 1035, 999, 983s, 629s, 603, 577, 542, 474s, 424, 404, 293, 265, 243, 231, 185, 177, 159, 155, 107, 88.
- Source: Silva et al. (2006).
- Comments: For the Raman spectra of monazite-(Sm) see also Begun et al. (1981) and Heuser et al. (2014).

Moncheite $Pt(Te,Bi)₂$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.068 nm laser radiation. The laser radiation power at the sample was in the range from 1 to 2 mW.

Raman shifts $(cm⁻¹)$ **:** 155, 115s.

Source: Bakker (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of moncheite see also Mernagh and Hoatson (1995).

Monetite $Ca(PO₃OH)$

Origin: Synthetic (commercial reactant).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064.1 nm Nd-YAG laser radiation. The laser radiation power at the sample was below 320 mW.
- **Raman shifts (cm⁻¹):** 2814w, 2421w, 1617w, 1133, 1095, 988s, 901s, 779, 693, 591, 574, 562, 474w, 420, 395, 274w, 182w, 143w.

Source: Xu et al. (1999).

Comments: For the Raman spectrum of monetite see also Frost et al. (2013r).

Monipite MoNiP

Origin: Allende meteorite.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitratily oriented grain in a polished section using 514.5 nm laser radiation.

Raman shifts (cm⁻¹): 430, 350s, 280.

Source: Ma et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Monohydrocalcite Ca(CO3)∙H2O

Origin: Sainte Guillaume vein, St.-Marie-aux-Mines, Haut Rhin, France.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser adiation. The laser emitted power was about 8 mW.

Raman shifts (cm^{-1}) : 3425w, 3326, 3224, 1069s, 876w, 723w, 699w, 208.

Source: Coleyshaw et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data.

Montebrasite $LiAl(PO₄)OH$

Origin: Minas Gerais, Brazil.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar⁺ laser radiation. The nominal laser radiation power was 200 mW.

Raman shifts (cm⁻¹): 3329s, 1189w, 1108, 1057s, 1046s, 1012s, 799, 645, 627, 601w, 483w, 429, 298s, 278, and a series of weak bands below 270 cm^{-1} .

Source: Rondeau et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectrum of montebrasite see also Dias et al. (2011).

Monteponite CdO

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power was 2.48 mW.

Raman shifts (cm⁻¹): 938w, 390s, 330sh, 259.

Source: Thema et al. (2015).

Comments: For the Raman spectrum of monteponite see also Falgayrac et al. (2013).

Montgomeryite Ca₄MgAl₄(PO₄)₆(OH)₄⋅12H₂O

Origin: Katies Bower, Chifley Cave, Jenolan Caves, New South Wales, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1709, 1669w, 1606, (1582w), 1339, (1286), 1260, 1214, 1143, 1088, 1011s, 979s, 655w, (609), 591, 511s, 475, 457s, 391, 318, 292s, 268, (251), 202, 176, 161s, 146.

Source: Frost et al. (2012e).

Comments: Powder X-ray diffraction data indicate that the sample used contains minor admixture of variscite.

Monticellite $CaMg(SiO₄)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 or 488.0 nm laser radiation.

Raman shifts $(cm⁻¹)$: 950, 900, 852s, 818s.

Source: Piriou and McMillan (1983).

Comments: For the Raman spectrum of monticellite see also Mouri and Enami (2008).

Montmorillonite $(Na,Ca)_{0,3}(A1,Mg)_{2}Si_{4}O_{10}(OH)_{2}nH_{2}O$

Origin: Bidahochi formation, Cheto district, Apache Co., Arizona, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm laser radiation. The nominal laser radiation power was 0.2 mW.
- Raman shifts (cm⁻¹): 1112, 1029, 917, 885, 840, 792, 709s, 705sh, 571w, 505sh, 433s, 330, 290, 262, 200s, 176, 81.
- Source: Bishop and Murad (2004).
- Comments: The sample was characterized by chemical analyses. For the Raman spectrum of montmorillonite see also Frost and Rintoul (1996).

Montroseite $(V^{3+},Fe^{2+},V^{4+})O(OH)$

- Origin: Akouta mine, Niger.
- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm $Ar⁺$ laser radiation.

Source: Forbes and Dubessy (1988).

Raman shifts (cm⁻¹): 990s, 960, 925, 905w, 845, 780, 750w, 690, 560w, 515, 470, 400, 340w, 295sh, 280s, 144.

Comments: The sample was characterized by powder X-ray diffraction data and chemical analysis.

Montroydite HgO

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation.

Raman shifts $(cm⁻¹)$: 568, 327s, 120w.

Source: Zhou et al. (1998).

Comments: The sample was characterized by powder X-ray diffraction data.

Moolooite Cu(C₂O₄)∙ nH_2O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation.

Raman shifts (cm⁻¹): 1620, 1513s, 1486s, 922, 845, 608, 584s, 558s, 300, 209s.

Source: D'Antonio et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and TG analysis. For the Raman spectra of moolooite see also Frost and Weier (2003), Frost (2004d), Castro et al. (2008), and Romann et al. (2009).

Mopungite $NaSb^{5+}(\text{OH})_6$

Origin: Pereta mine, Tuscany, Italy.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW. The Raman shifts have been partly determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3423s, 3353, 3331, 3239, 3178s, 3134, (671), (648), 626s, (605), 362, 350, 204, 189.
- Source: Bittarello et al. (2015).
- Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. For the Raman spectra of mopungite see also Bahfenne (2011) and Rintoul et al. (2011).

Moraskoite $Na₂Mg(PO₄)F$

Origin: Morasko IAB-MG iron meteorite, Poland (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was between 30 and 50 mW.
- **Raman shifts (cm⁻¹):** 1114s, 1027s, 962s, 589, 438w, 336w, 308w, 279w, 262w, 244w, 193w, 184w, 147w, 131w.
- Source: Karwowski et al. (2015).
- Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses.

Mordenite $(Na_2, Ca, K_2)_4 (Al_8Si_{40})O_{96}$ ∙28H₂O

Origin: Faröes Islands.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using Nd-YAG laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm^{-1}) : 1087w, 1046, 977w, 713w, 534s, 448, 427, 297w, 229w, 160.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Morenosite Ni(SO₄)∙7H₂O

Origin: Synthetic.

Experimental details: Micro-Raman spectrum was recorded with a medium Hilger quartz spectrograph using the $\lambda = 2536.5$ Å resonance radiation of mercury.

Raman shifts (cm⁻¹): 3532w, 3437s, 3266, 1158w, 1139, 1095, 1057s, 985s, 642, 622w, 612s, 463s, 442s, 419w, 402, 251s, 233w, 207s, 152s, 131w, 111s, 88, 75s, 60.

Source: Krishnamurti (1958).

Moschelite HgI

Origin: Synthetic. Experimental details: No data. **Raman shifts (cm⁻¹):** 194, 113, 65, 31. Source: Ōsaka (1971). Comments: For the Raman spectrum of moschelite see also Cooney et al. (1968).

Mosesite $(Hg_2N)Cl$

Origin: No data.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily sample using 785 nm laser radiation.

Raman shifts (cm^{-1}) : ~547, ~538. Source: Cooper et al. (2013a).

Mottramite $PbCu(VO₄)(OH)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3162w, (2927)w, (891w), (849), (841), 829s, (821), 802, (796), (747w), 716w, 612w, 500w, 451w, 411, 366, (354), 333, (307), (301), 293, 247w, 227, 202w, 172w, 151, (136), (129), 118.

Source: Frost et al. (2014ai).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectrum of mottramite see also Frost et al. (2001).

Mountkeithite $(Mg_{1-x}Fe^{3+}x)(SO_4)_{x/2}(OH)_2nH_2O (x < 0.5, n > 3x/2)$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3698, 3688, 3654, 2240w, 1937, 1679s, 1613s, 1525s, 1439, 1273s, 1122, 1109, 920, 691, 621w, 528, 468w, 390, 348w, 233, 202w.

Source: Frost et al. (2003h).

Comments: No independent analytical data are provided for the sample used.

Moydite- (Y) YB(OH)₄(CO₃)

Origin: Evans-Lougranitic pegmatite, near Wakefield, Quebec, Canada (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was between 20 and 50 mW.

Raman shifts (cm⁻¹): 1610s, 1410, 1124s, 1106, 765, 700w.
Source: Grice et al. (1986).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. There are discrepancies between Raman shifts and figure of the Raman spectrum given in the cited paper.

Mukhinite $Ca_2(Al_2V^{3+})[Si_2O_7][SiO_4]O(OH)$

Origin: Pyrrhotite gorge, Khibiny Mts., Kola Peninsula, Russia.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented polished surface using 633 nm He-Ne laser radiation. The laser radiation power at the sample was betweem 2 and 20 mW.
- **Raman shifts (cm⁻¹):** 1235w, 1213w, 1087w, 1052w, 965, 910, 849, 805, 741, 693, 623, 596s, 547, 518s, 485, 322, 284, 235, 155, 125, 85s.

Source: Voloshin et al. (2014).

Comments: The sample was characterized by electron microprobe analyses.

Mukhinite V-rich analogue $Ca_2(AIV^{3+})[Si_2O_7][SiO_4]O(OH)$

Origin: Pyrrhotite gorge, Khibiny Mts., Kola Peninsula, Russia.

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented polished surface using 633 nm He-Ne laser radiation. The laser radiation power at the sample was betweem 2 and 20 mW.
- **Raman shifts (cm⁻¹):** 1089s, 1012s, 929, 891, 816, 700, 668, 607, 552, 499, 389s, 357, 328, 229w, 136w.

Source: Voloshin et al. (2014).

Comments: The sample was characterized by electron microprobe analyses.

Mullite $Al_{4+2x}Si_{2-2x}O_{10-x}$ (x ≈ 0.4)

Origin: NW of Ormsaig, Ross of Mull, Scotland, UK (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 457 nm Ar^+ laser radiation.

Raman shifts (cm⁻¹): 1130, 1035, 960s, 870s, 720, 600s, 415, 340, 305.

Source: Bost et al. (2016).

Comments: For the Raman spectrum of mullite see also Shoval et al. (2001).

Muscovite $\text{KAl}_2\text{(Si}_3\text{Al})\text{O}_{10}(\text{OH})_2$

Origin: Rebra Valley, Rodnei (Rodna) Mts., Romania.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single sample using 532 nm laser radiation. The laser radiation power at the sample was 35 mW. Raman shifts $(cm⁻¹)$: 119, 957, 914, 755, 704s, 641, 412s, 266s, 219.

Source: Buzgar (2008).

Comments: According to the Raman Spectra Database, Siena [\(http://www.dst.unisi.it/geo](http://www.dst.unisi.it/geofluids/raman/spectrum_frame.htm)fluids/ [raman/spectrum_frame.htm](http://www.dst.unisi.it/geofluids/raman/spectrum_frame.htm)), Raman spectrum of muscovite contains also a band of O–H-stretching vibrations at 3627 cm^{-1} . For the Raman spectra of muscovite see also Haley et al. (1982), Tlili et al. (1989), Wada and Kamitakahara (1991), Graeser et al. (2003), and Frezzotti et al. (2012).

Nabiasite Ba $Mn_9(VO_4)_6(OH)_2$

Origin: Nabias hamlet, Central Pyrenees, France (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 880sh, 867, 807s, 768.

Source: Brugger et al. (1999).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analysis. The crystal structure is solved.

Nabimusaite $KCa_{12}(SiO_4)_4(SO_4)_2O_2F$

Origin: Jabel Harmun, Palestinian Autonomy, Israel (type locality).

Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 488 nm solid-state laser radiation. The laser radiation power at the sample was 44 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1121, 993s, 948, 930sh, 885, 849sh, 831, 637, 563, 524, 463, 403, 129. Source: Galuskin et al. (2015d).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Nacrite $Al_2Si_2O_5(OH)_4$

- Origin: Commonwealth Scientific and Industrial Research Organization, Division of Soils, Glen Osmond, South Australia.
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 1064 nm Nd-YAG laser. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 1175, 1160, 1085, 1020, 920s, 810, 720, 710, 660, 550, 520, 480s, 400, 340s, 275s, 250s.

Source: Frost et al. (1993).

Comments: No independent analytical data are provided for the sample used.

Nadorite $PbSb³⁺O₂Cl$

Origin: Harstigen mine, Pajsberg, near Filipstad, Värmland, Sweden.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was in the range from 20 to 50 mW.

Raman shifts $(cm⁻¹)$: 214, 165–117.

Source: Jonsson (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Nafertisite $Na_3Fe^{2+}{}_{10}Ti_2(Si_6O_{17})_2O_2(OH)_6F(H_2O)_2$

Origin: Kukisvumchorr, Khibiny alkaline massif, Kola peninsula, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 633 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1030, 922, 688s, 658s, 569, 530, 490, 420w, 345, 297, 240, 212w, 184, 145. Source: Cámara et al. (2014b).

Comments: The sample was characterized by single-crystal X-ray diffraction data, electron microprobe analyses, and Mössbauer spectroscopy. The crystal structure is solved.

Nagelschmidtite $Ca_7(SiO_4)_2(PO_4)_2$

Origin: Artificial (compoinent of slags produced from a solid radioactive waste).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1176, 1075, 1008s, 916, 843w, 702, 535w, 352, 217.

Source: Malinina and Stefanovsky (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Nahcolite $NaH(CO₃)$

Origin: Ryoke metamorphic rocks, Kasado Island, Yamaguchi prefecture, Japan.

Experimental details: Raman scattering measurements have been performed on a microscopic inclusion using 532 nm laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 1268, 1046s, 687.

Source: Hoshino et al. (2006).

Comments: No independent analytical data are provided for the sample used.

Nahcolite $NAH(CO₃)$

Origin:No data in the cited paper.

Experimental details: No data in the cited paper.

Raman shifts (cm⁻¹): 1432w, 1271, 1048s, 688.

Source: Frezzotti et al. (2012).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of nahcolite see also Edwards et al. (2007), Kaminsky et al. (2009), and Frezzotti et al. (2012).

Nahpoite $Na₂(PO₃OH)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 84° C on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 30 mW.

Raman shifts (cm⁻¹): 1139, 1072, 1001w, 939s, 855, 583w, 571w, 556, 501w, 461, 397. Source: Ghule et al. (2003).

Comments: The sample was characterized by TG data.

Namibite $Cu(BiO)₂(VO₄)(OH)$

Origin: Lodi No. 4 mine, Plumas Co., California, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 899w, 846s, (842), (769w), 736, 677w, 563s, 410w, 370s, 328s, 288, 247, 212. Source: Frost et al. (2006i)

Comments: No independent analytical data are provided for the sample used.

Nantokite CuCl

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): ~197, ~155, ~117s, ~58, ~40sh.

Source: Vardeny and Brafman (1979).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of nantokite see also Bouchard-Abouchacra (2001) and Frost et al. (2003i).

Naquite FeSi

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented crystal at 340 K. The laser wavelength and the laser radiation power are not indicated.

Raman shifts (cm⁻¹): 436, (333w), 315s, (260), 219, (193), 180s.

Source: Nyhus et al. (1995).

Comments: No independent analytical data are provided for the sample used.

Narsarsukite $Na₂(Ti,Fe³⁺)Si₄(O,F)₁₁$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on pellets of pressed powder using 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was about 300 mW. A 180-scattering geometry was employed.

Raman shifts (cm^{-1}) : 1009, 907, 764s, 518w, 480w, 422w, 362.

Source: Su et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction data.

Natalyite $NaV³⁺Si₂O₆$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed in the backscattering configuration, using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1042, 1025w, 972s, 954s, ~910w, ~865, ~830, ~680, ~640w, ~550s, ~505, ~390, ~360, ~345sh, ~340s, and a series of bands below 340 cm⁻¹.

Source: Konstantinović et al. (2002).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of natalyite see also Popović et al. (2006) and Ullrich et al. (2009).

Natisite $Na₂TiO(SiO₄)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on pellets of pressed powder using 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was about 300 mW. A 180-scattering geometry was employed.

Raman shifts (cm⁻¹): 926w, 898, 869, 851s, 830s, 677w, 533w, 497w, 379sh, 360.

Source: Su et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction data.

Natrite $Na₂(CO₃)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-Yag laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 1429w, 1080s, 702, 290.

Source: Buzgar and Apopei (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of natrite see also Edwards et al. (2007), Frezzotti et al. (2012), and Shatskiy et al. (2013).

Natroalunite $\text{NaAl}_3(\text{SO}_4)_2(\text{OH})_6$

Origin: No data.

Experimental details: Micro-Raman scattering measurements have been performed on a thin section using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power at the sample was 20 or 50 mW.

Raman shifts (cm⁻¹): 1183, 1163w, 1024s, 652s, 572, 519, 482, 395, 345, 234s, 163.

Source: Maubec et al. (2012).

Comments: The sample was characterized by electron microprobe analysis. Its empirical formula is $Na_{0.6}K_{0.4}Al_{2.9}(SO₄)_{2.1}(OH)_{5.5}.$

Natrochalcite NaCu₂(SO₄)₂(OH)∙H₂O

Origin: Chuquicamata, Chile.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3196, 3156, 1046, 1023, 997s, 930, 709, 636s, 607, 466, 445, 429, 402, 212. Source: Frost and Weier (2004e).

Comments: No independent analytical data are provided for the sample used.

Natrodufrénite Na $Fe^{2+}Fe^{3+}{}_{5} (PO_4)_{4} (OH)_6 \cdot 2H_2 O$

Origin: Divino das Laranjeiras, eastern Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3573, 3187, (3119), 1634, 1335w, 1188, 1059, 1003, 961, 914, 814, 668, 619w, 582, 560, 507, 477s, (444), 425, 376, 356, 298, 217, 194, 163, 142, 120.
- Source: López et al. (2013b).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Natrojarosite $NaFe^{3+}_{3}(SO_4)_2(OH)_6$

- Origin: The sample was obtained from the Dogan Paktunc of Mineral Resources Laboratories, CANMET, Ottawa, ON, Canada. The locality is not indicated.
- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm solid-state laser radiation. The laser radiation output power was above 300 mW.

Raman shifts (cm⁻¹): 1105, 1008s, 618, 555, 356, 288, 221, 134.

Source: Das and Hendry (2011).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of natrojarosite see also Sasaki et al. (1998), Frost et al. (2006r), Murphy et al. (2009), and Chio et al. (2010).

Natrolemoynite Na₄Zr₂Si₁₀O₂₆⋅9H₂O

- Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada (type locality) (?).
- Experimental details: Raman scattering measurements have been performed with laser radiation perpendicular to the {010} cleavage of a single crystal using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 968s, ~610, 538, 428, ~290w.

Source: McDonald et al. (2015).

Comments: No independent analytical data are provided for the sample used.

Natrolite Na₂(Si₃Al₂)O₁₀⋅2H₂O

Origin: Chimney Rock Quarry, Bound Brook, New Jersey, USA (?).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 10 mW.
- **Raman shifts (cm⁻¹):** 3543s, 3476, 3329s, 3231, 1637, 1093, 1085, 1071, 1064, 1042s, 1019, 1009, 987, 977, 966, 727s, 718, 707s, 534s, 443s, 417, 393, 360s, 333s, 308s, 290, 276, 259, 241, 218s, 207, 186, 163s, 145s.

Source: Wopenka et al. (1998).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of natrolite see also Belitsky et al. (1992), Goryainov and Smirnov (2001), Mozgawa (2001), Jehlička et al. (2012), and Jehlička and Vandenabeele (2015).

Natron $Na₂(CO₃)·10H₂O$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 or 514.5 nm laser radiation. The nominal laser radiation power was in the range from 5 to 100 mW.

Raman shifts (cm⁻¹): 1061-1070s, 335w, 224w, 185w.

Source: Edwards et al. (2007).

Comments: No independent analytical data are provided for the sample used.

Natroniobite NaNbO₃

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed at 560 K in backscattering geometry using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 570s, \sim 240, \sim 205, \sim 160, \sim 120, \sim 50.

Source: Yuzyuk et al. (2005).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts are given for a sample at 560 K.

Natropalermoite $Na₂SrAl₄(PO₄)₄(OH)₄$

Origin: Palermo No. 1 mine, Groton, New Hampshire, USA (type locality).

- Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** ~3215, ~1145s, ~1079, ~1008s, ~935, ~640, ~622, ~595, ~524, ~431s, ~413, \sim 318, and a series of bands below 300 cm⁻¹.

Source: Schumer et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Natrophilite $NaMn^{2+}(PO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an aggregate of microtubes using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated. **Raman shifts (cm⁻¹):** 1054, 1010, 948, 614, 579, 454, 410.

Source: Shi et al. (2005).

Comments: The sample was characterized by powder X-ray diffraction data and energy dispersive X-ray spectral analysis.

Natrosilite $Na₂Si₂O₅$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 510.5 nm, 10 kHz pulsed copper vapor laser radiation with the laser radiation power at the sample of about 30 kW within a pulse.

Raman shifts (cm⁻¹): 1072s, ~1010w, ~955w, ~760w, 517s, ~470w, 384, 337, 270, 223, 149. Source: You et al. (2001).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of natrosilite see also Fleet and Henderson (1997).

Natrouranospinite Na₂(UO₂)₂(AsO₄)₂∙5H₂O

Origin: Mĕdĕnec deposit, the Krušné Hory (Ore Mts.), northern Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3493, (3450), 3404, 3260sh, 1136, 1008s, (904w), 893, 816s, (810), 671, 621, 579w, 494, 461, 415s, 400sh, 322, 267, (245), 209sh, (199), 188s, 156sh, 148, (140), 110.

Source: Čejka et al. (2009c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Natroxalate $Na_2(C_2O_4)$

Origin: Alluaiv Mt., Lovozero massif, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1750, 1643, 1614, 1456s, 1358s, 884, 875, 567, 481, 221, 156, 117. **Source:** Frost (2004d).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of natroxalate see also Frost and Weier (2003) and Frost et al. (2003k).

Natrozippeite $\text{Na}_5(\text{UO}_2)_8(\text{SO}_4)_4\text{O}_5(\text{OH})_3$ ∙12H₂O

Origin: Mecsek Mountains, Hungary.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1239, 1137, 1099w, 1009, 825s, 665w, 461, 409, 273.

Source: Stefaniak et al. (2009).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of natrozippeite see also Frost et al. (2007f) and Driscoll et al. (2014).

Naumannite Ag₂Se

Origin: Synthetic.

Experimental details: No data.

Raman shifts $(cm⁻¹)$: 141.

Source: Ge and Li (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Nealite $Pb_4Fe(AsO_3)_2Cl_4·2H_2O$

Origin: Lavrion, Greece.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3451, 3431, 3387w, 3357sh, 3215m 2892w, 2849w, 1015w, 831w, 732, 808s, 632, 604sh, 548, 471, 418sh, 393, 371sh, 342sh, 320, 299sh, 245, 212, 194sh, 183sh, 160sh, 149s, 137, 129sh, 119.

Source: Frost and Bahfenne (2011a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of nealite see also Bahfenne (2011).

Negevite $NiP₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on nanoparticles using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 454, 586s.

Source: Zhuo et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Neighborite NaMgF₃

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed in the geometry $y(zz)$ -y. Characteristics of laser radiation are not indicated.

Raman shifts (cm^{-1}) : ~230s, ~212w, ~187s, ~140, ~130sh, ~105.

Source: Oçafrain et al. (1996).

Comments: The sample was characterized by optical methods.

Nekoite Ca₃Si₆O₁₅∙7H₂O

Origin: Iron Cap Mine, near Klondyke, Cochise Co., Arizona, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): (3567), 3502, 3380sh, 3071sh, 2810sh, (1647), 1623, 1567sh, 1132sh, 1092s, 1061s, 1023, 994sh, 974, 774, 661s, (560), 588s, 525, 437, 416sh, 398, 362sh, 345, 303, 287, (259), 240, 198, 180, 156, 136, 106w.

Source: Frost and Xi (2012n).

Comments: No independent analytical data are provided for the sample used.

Nenadkevichite (Na,□)₈Nb₄(Si₄O₁₂)₂(O,OH)₄⋅8H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The output laser radiation power was 25 mW.

Raman shifts (cm^{-1}) : 940w, 878w, 668s, ~500w, ~480w, 226s.

Source: Rocha et al. (1996).

Comments: A sample with the Ti:Nb molar ratio of 0.8 was used. The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of nenadkevichite see also Rocha et al. (1996).

Nepheline NaAlSiO4

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 488 nm Ar⁺ laser radiation. The nominal laser radiation power was 600 mW. A 90 $^{\circ}$ -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1081, 984, 973, 690w, 616w, 497, 469, 427s, 399s, 331, 264, 214, 151, 138w, 123.

Source: Matson et al. (1986).

Comments: No independent analytical data are provided for the sample used.

Nesquehonite $Mg(CO_3)·3H_2O$

Origin: A natural sample. The locality is not indicated.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 2905w, 1890w, 1708w, 1515w, 1428w, 1100s, 772w, 703w, 344w, 311w, 273w, 228, 199, 187, 119.

Source: Edwards et al. (2005).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of nesquehonite see also Coleyshaw et al. (2003), Kloprogge et al. (2003), and Kristova et al. (2014).

Nestolaite CaSeO₃⋅H₂O

Origin: Little Eva mine, Grand County, Utah, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm diode laser radiation. The laser radiation power at the sample was 5 mW. Raman shifts (cm^{-1}) : 1680w, 825s, 750s, 470w, 405w, 360w.

Source: Kasatkin et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Newberyite Mg(PO₃OH)∙3H₂O

Origin: Lava Cave, Skipton, Victoria, Australia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3514, 3479, 3456, 3381, 3265, 3181, 2880, 1648, 1620, 1272, 1195, 1154, 984s, 967, 893, 555, 498, 400, 369, 327, 283, 266, 244, 219, 199, 180, 158, 139.

Source: Frost et al. (2005j).

Comments: No independent analytical data are provided for the sample used.

Nežilovite $PbZn_2Mn^{4+}_{2}Fe^{3+}_{8}O_{19}$

- Origin: "Mixed series" metamorphic complex, near the Nežilovo village, 40 km SW of Veles, Pelagonian massif, Macedonia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** Raman shifts of presumed nežilovite given in the cited paper (*i. e.* 1099s, 725w, 483w, 340w, 300, 176) correspond to associated dolomite.

Source: Stamatovska et al. (2011).

Nickelaustinite $CaNi(AsO₄)(OH)$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3344, 3320, 917, 828s, 811, 799, 777, 495, 475s, 430s, 398, 369, 348s, 332, 216, 164, 147.

Source: Martens et al. (2003c).

Comments: No independent analytical data are provided for the sample used.

Nickelbischofite NiCl₂∙6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 80 K on oriented single crystal using Kr⁺ laser radiation. The laser radiation power is not indicated. Polarized spectra were collected in different scattering geometries.

Raman shifts (cm⁻¹): 3503, 3424, 3411, 3371, 3160, 1671, 1623, 869, 699, 685, 571, 543, 372, 362. Source: Agulló-Rueda et al. (1987).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of nickelbischofite see also Cariati et al. (1989).

Nickelboussingaultite (NH₄)₂Ni(SO₄)₂⋅6H₂O

Origin: Cameron, Coconino Co., Arizona, USA.

Experimental details: Micro-Raman scattering measurements have been performed on a fine-grained sample using 785 nm diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3280w, 2940w, 1660w, 1460w, 1149w, 1093w, 1063w, 1027, 990s, 652w, 624w, 602w, 482w, 457, 440w, 341w, 312w, <240.

Source: Culka et al. (2009).

Comments: No independent analytical data are provided for the sample used. The Raman shifts have been partly determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Nickelhexahydrite Ni(SO₄)∙6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 253.65 nm radiation of mercury. The radiation power is not indicated.

Raman shifts (cm⁻¹): 3441s, 3403s, 3302, 3250, 1131, 1088, 1050w, 987s, 971w, 639, 620, 596. Source: Krishnamurti (1958).

Comments: The sample was characterized by optical methods.

Nickeline NiAs

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation at a power below 2 mW.

Raman shifts $(cm⁻¹)$: 218, 154

Source: Watté et al. (1994).

Comments: The sample was characterized by powder X-ray diffraction data.

Nickelpicromerite K₂Ni(SO₄)₂⋅6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 253.65 nm radiation of mercury. The incident light was normal to the (110) face and the scattered light was taken parallel to the (110) face and roughly perpendicular to the (001) face. The radiation power is not indicated.

Raman shifts (cm⁻¹): 3310s, 3234, 3148, 3050-3540, 1230w, 1155, 1127, 1113, 1085s, 990s, 910w, 845w, 800w, 634, 611, 462, 448, (374), 320sh, 305w, 269w, 225, (184), 132sh, 115, (93w), 74sh, 62, 46.

Source: Ananthanarayanan (1961).

Comments: The sample was characterized by morphological features.

Nierite hexagonal polyborph $β-Si₃N₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented polycrystalline sample using 488 nm laser radiation. The laser radiation power at the sample was 50 mW.

Raman shifts (cm⁻¹): 1045, 937, 927, 863, 730w, 618w, 525s, 449w, 227, 206, 183. Source: Muraki et al. (1997).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of β-Si₃N₄ see also Honda et al. (1999).

Nifontovite Ca₃[BO(OH)₂]₆⋅2H₂O

Origin: Fuka Mine, Okayama Prefecture, Japan.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using Ar^+ laser radiation. The laser radiation power at the sample was about 20 mW.

Raman shifts (cm⁻¹): 3650w, 3611s, 3575s, 3434s, 3393, 3311, 3217sh, 3177s, 1607w, 1235w, 1208w, 1186w, 1154w, 1122w, 1030w, 991w, 932w, 918w, 896w, 831w, 806w, 749sh, 720, 653s, 633sh, 574w, 558w, 543w, 441w, 420, 391w, 371w, 348w, 322w, 306, 275w, 262sh, 225w, 213w, 190w, 171w, 140w, 123.

Source: Bermanec et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction and thermal data.

Nimite $(Ni, Mg, Al)_6(Si, Al)_4O_{10}(OH)_8$

Origin: Bon Accord, Barberton, South Africa.

Experimental details: No data.

Raman shifts (cm⁻¹): 3645, 678, 547, 279, 196.

Source: Villanova-de-Benavent et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Niningerite MgS

Origin: Meteorite Sahara 97158.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 2 mW.

Raman shifts (cm⁻¹): \sim 280s, \sim 220.

Source: Avril et al. (2013).

Comments: Fe, Mn-bearing sample with the formula $(Mg_{0.73}Fe_{0.16}Mn_{0.11})S$ was used.

Nioboholtite $(Nb_{0.6}\square_{0.4})$ Al₆BSi₃O₁₈

Origin: Szklary pegmatite, Lower Silesia, Poland (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was about 5.5 mW.

- **Raman shifts (cm⁻¹):** ~1110, ~1045, ~965sh, ~945s, ~895sh, ~710w, ~612, ~555s, ~507s, ~460, \sim 420, \sim 380, \sim 270w, \sim 205w.
- Source: Pieczka et al. (2013).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Niter $K(NO₃)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was between 80 and 200 mW.

Raman shifts (cm⁻¹): 1359, 1345, 1050s.

Source: Rissom et al. (2008).

Comments: No independent analytical data are provided for the sample used.

Nitratine $Na(NO₃)$

Origin: Dolomite Cave of Pozalagua, Karrantza, Basque Co., northern Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : See comment below.

Source: Martínez-Arkarazo et al. (2007).

Comments: In the cited paper Raman spectra of nitratine-bearing polymineral samples are given. Raman shifts of pure nitratine are: 1066s, 725, 185s (see RRUFF ID R050394, for an unoriented sample).

Nitrobarite $Ba(NO₃)₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1631w, 1402w, 1045s, 1025w, 729.

Source: Maguregui et al. (2008).

Comments: No independent analytical data are provided for the sample used.

Nitrocalcite Ca(NO₃)₂⋅4H₂O

Origin: Dolomite Cave of Pozalagua, Karrantza, Basque Co., northern Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) **:** See comment below.

Source: Martínez-Arkarazo et al. (2007).

Comments: In the cited paper Raman spectra of nitrocalcite-bearing polymineral samples are given. Raman shifts of pure nitratine are: $1067s$, 740 , $282w$, \sim 195 (RRUFF ID R120047, for an unoriented sample, with 780 nm radiation).

Nitromagnesite Mg(NO₃)₂∙6H₂O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 or 514 nm laser radiation. The nominal laser radiation power was 350 or 50 mW.

Raman shifts $(cm⁻¹)$: 1059s.

Source: Morillas et al. (2016).

Comments: No independent analytical data are provided for the sample used.

Nobleite CaB₆O₉(OH)₂∙3H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a sample held in a pyrex tube using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 300 mW.

Raman shifts (cm⁻¹): 996w, 956w, 855s, 745, 636, 572w, 460, 383.

Source: Jun et al. (1995).

Comments: The sample was characterized by chemical analyses.

Noelbensonite BaMn³⁺₂Si₂O₇(OH)₂⋅H₂O

Origin: Postmasburg manganese field, Northern Cape Province, South Africa.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 925s, 904, 650, 572, 523s, 436, 386, 331w, 304w, 245, 185, 160. Source: Costin et al. (2015).

Comments: The sample was characterized by electron backscatter diffraction and electron microprobe analyses.

Nolanite $(V^{3+},Fe^{3+},Fe^{2+})_{10}O_{14}(OH)_{2}$

Origin: Vihanti, Northern Ostrobothnia region, Finland.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser radiation power was 2 or 20 mW.

Raman shifts (cm⁻¹): 587, 504, 478, 323w, 293w, 221s, 85s.

Source: Voloshin et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Nontronite $\text{Na}_{0,3}\text{Fe}^{3+}{}_{2}(\text{Si}, \text{Al}){}_{4}\text{O}_{10}(\text{OH}){}_{2}{}^{.}n\text{H}_{2}\text{O}$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~3575s, ~3410, ~890, ~810w, ~760w, ~680, ~570w, ~520, ~420, ~360, \sim 290s, \sim 240s.

Source: Wang et al. (1998a).

Comments: No independent analytical data are provided for the sample used.

Norbergite $Mg_3(SiO_4)F_2$

Origin: Franklin Limestone quarry, Franklin, Sussex Co., New Jersey, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3583, 3488, 979, 955, 900, (884w), 855s, 614, 572, 555s, 435s, 382. Source: Frost et al. (2007k).

Comments: The sample was characterized by electron microprobe analysis. The empirical formula shows deficit of Mg+Fe.

Nordenskiöldine $CaSn(BO₃)₂$

Origin: Gejiu tin deposit, Yunnan, China.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 458 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 120 mW.

Raman shifts (cm⁻¹): 1453w, 1205s, 944w, 847w, 764, 743, 449s, 389, 277, 214w.

Source: Li et al. (1994).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Nordstrandite $Al(OH)_3$

Origin: Gunong Kapor, Bau mining district, West Sarawak, Borneo.

- Experimental details: Raman scattering measurements have been performed on grains placed on glass slide using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 25 mW.
- Raman shifts (cm^{-1}) : 3623, 3567s, 3523w, 3490, 3349, 1093, 985, 959w, 898, 657, (633w), 596, 542s, 507, 492, 464w, 437w, 412, 390, 378, (355w), (344w), 305s, 286, (267w), 252, 228w, 177, 119s.

Source: Rodgers (1993).

Comments: The sample was identified by Raman spectrum only. No independent analytical data are provided for the sample used.

Normandite $Na_2Ca_2(Mn,Fe)_2(Ti,Nb,Zr)_2(Si_2O_7)_2O_2F_2$

Origin: Partomchorr Mt., Khibiny Massif, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 813s, 803, 782, 748s, 724, 667sh, 656, (649), 641sh, 520sh, 513s, (505), 477, 454, 412w, 404sh, 382w, 371w, 361w, (352w), 285, 267s, (259), 198, 179, 151s, 141, 125, 109.

Source: Frost et al. (2015p).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Norsethite $BaMg(CO₃)₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 or 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 200 mW.

Raman shifts (cm⁻¹): 1115s, 695, 260, 130.

Source: Scheetz and White (1977).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of norsethite see also Schmidt et al. (2013) and Effenberger et al. (2014).

Northupite $Na₃Mg(CO₃)₂Cl$

Origin: Searles Lake, California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1554, 1115s, 1107sh, 714w, 250, 213, 180, 148.

Source: Frost and Dickfos (2007a).

Comments: No independent analytical data are provided for the sample used.

Nosean $Na_8(Si_6Al_6)O_{24}(SO_4)·H_2O$

Origin: Laacher See (Laach Lake) volcano, Eifel, Germany.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : ~1060, ~980s, ~630, ~605w, ~530, ~435.

Source: Hettmann et al. (2012).

Comments: No independent analytical data are provided for the sample used.

Nováčekite-II Mg(UO₂)₂(AsO₄)₂∙10H₂O

Origin: Wheal Edward, St. Just, Cornwall, UK.

- Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 785 nm laser radiation. The nominal laser radiation power at the source was ~370 mW.
- **Raman shifts (cm⁻¹):** The strongest band is observed at 817 cm⁻¹. Other Raman shifts are not indicated.

Source: Driscoll et al. (2014).

Comments: The sample was characterized by electron microprobe analysis.

Novgorodovaite Ca₂(C₂O₄)Cl₂⋅2H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm solid-state laser radiation. The nominal laser radiation power was 10 mW.
- **Raman shifts (cm⁻¹):** 3350sh, 3330s, 1717w, 1630w, 1477s, 1402w, 904s, 859s, 730w, 673w, 600w, 503s, 472s.

Source: Piro et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data.

Nsutite $Mn^{2+}Mn^{4+}1-NO_{2,2}N(OH)_{2}N$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts $(cm⁻¹)$: 732, 634, 572, 515, 458, 382, 280.

Source: Julien et al. (2004).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of nsutite see also Julien et al. (2003).

Nullaginite $Ni₂(CO₃)(OH)₂$

Origin: Otway Prospect, Nullagine district, Western Australia, Australia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3506w, 1734w, (1441w), 1426, (1092), 1089s, 742, 528, 342s, 232 **Source: Frost (2006).**

Comments: Raman spectrum of presumed nullaginite was published also by Frost et al. (2008l). However IR spectra of presumed nullaginite published in this paper are wrong: the strongest bands correspond to a serpentine-type silicate.

Nyerereite $Na₂Ca(CO₃)₂$

Origin: Oldoinyo Lengai volcano, Tanzania (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 1086s, 1078sh, 1001w, 723-725sh, 709, 682-684sh.

Source: Golovin et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of nyerereite see also Kaminsky et al. (2009), Zaitsev et al. (2009), Golovin et al. (2014), and Shatskiy et al. (2015).

Offretite KCaMg $(Si₁₃Al₅)O₃₆·15H₂O$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW. Raman shifts (cm^{-1}) : 788w, 480s, 330.

Source: Croce et al. (2013).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of offretite see also Mozgawa (2001).

Okenite $Ca₁₀Si₁₈O₄₆·18H₂O$

Origin: Pune (Poonah) district, Maharashtra, India.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3607), 3531, 3417, (3284), 3029w, 1631w, 1180, 1125sh, 1090s, (1075), 1048w, 1024, (1014), 973, 943, 801, 668, 651, 617, (603), (581), 569, 515, 496sh, 445, 423, 403, 385, 352, 302, 254, 228, 211sh, 190, 155sh, 133.

```
Source: Frost and Xi (2012n).
```
Comments: No independent analytical data are provided for the sample used.

Oldhamite CaS

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 20 mW. **Raman shifts (cm⁻¹):** \sim 485, \sim 350s, \sim 285s, \sim 215, 185, 160.

Source: Avril et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Olgite $(Ba, Sr)(Na, Sr, REE)₂Na(PO₄)₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 1100w, 1001w, 952s, 608, 570, 423, 86.

Source: Huang et al. (2007).

Comments: The Raman spectrum was obtained for a Ce^{3+} -doped sample. The sample was characterized by powder X-ray diffraction data.

Olivenite $Cu_2(AsO_4)(OH)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Ar⁺ laser radiation. The laser radiation power at the sample was 20 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 854s, 818, 514, 498, 424w, 345w, 311, 284, 220, 184w, 157, 116, 95, 82, 67. Source: Majzlan et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of olivenite see also Yang et al. (2001), Frost et al. (2002e, 2009i), and Martens et al. (2003b).

Olivine P-rich variety $(Fe, Mg)_{2-x}(SiO_4, PO_4)$

Origin: Prehistoric slag from Goldbichl, Igls, Tyrol, Austria.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm He-Ne laser radiation. The nominal laser radiation power was 170 mW.
- **Raman shifts (cm⁻¹):** 1096, 1049, 975, 936s, 832+822s (unresolved doublet?), 725, 680, 631, 582, 561, 510, 457, 405, 368, 331, 291, 228, 163, 113.

Source: Schneider et al. (2013).

Comments: The sample was characterized by electron microprobe analyses. The contents of P and Fe are from 0.36 to 0.54 and from 0.77 to 1.08 atoms per formula unit, respectively.

Olmiite CaMn $[SiO_3(OH)](OH)$

Origin: N'Chwaning II mine, Kalaharimanganese fields, South Africa (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3550), 3543, 3511, 3467sh, 2807, (064w), 953, 914w, 853s, 811, 799sh, 782sh, 726w, 513, 484, 436, 420, 400, 378w, 335.

Source: Frost et al. (2013o).

Comments: The sample was characterized by electron microprobe analysis.

Olshanskyite Ca₂[B₃O₃(OH)₆]OH⋅3H₂O

Origin: Fuka mine, Okayama prefecture, Japan.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3621, 3536, 3482s, (3440), 3373, 3240, 3100sh, 2919, 1365w, 1206w, 1141w, 1069, 1025sh, (1014), 1003, 989, (976), 961, (919), 850sh, (696), 679s, (658), 579w, 516w, 463, 448w, 388w, 345, (335), 330, 322, 315, (303).

Source: Frost et al. (2014ak).

Comments: No independent analytical data are provided for the sample used.

Omongwaite Na₂Ca₅(SO₄)₆∙3H₂O

Origin: A recent salt lake deposit at Omongwa pan, Namibia (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 3527w, 1143, 1013s, 665w, 637, 608w, 476, 436w,

Source: Mees et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of omongwaite see also Tong et al. (2011).

Omphacite $(Ca,Na)(Mg,Fe,Al)Si₂O₆$

Origin: Uru River area (?), north-central Myanmar.

Experimental details: Raman scattering measurements have been performed on an oriented grain in a polished sample using 532 nm laser radiation, with laser beam parallel to the b axis. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 1016, 684s, 567, 382, 144, 76.

Source: Leander et al. (2014).

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectra of omphacite see also Buzatu and Buzgar (2010), and Andò and Garzanti (2014).

Onoratoite $Sb_8O_{11}Cl_2$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 20 mW.
- **Raman shifts (cm⁻¹):** ~477s, ~456s, ~430, ~372, ~325, ~225sh, ~205, ~195, and a series of weak bands below 190 cm^{-1} .

Source: Orman et al. (2008), Orman (2010).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Opal-A $SiO₂·nH₂O$

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 3460, 410s.

Source: Kiefert and Karampelas (2011).

Comments: No independent analytical data are provided for the sample used.

Opal-CT SiO₂⋅ nH_2O

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 3450, 335s.

Source: Kiefert and Karampelas (2011).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of opal-CT see also Ilieva et al. (2007) and Wilson (2014).

Ophirite Ca₂Mg₄[Zn₂Mn³⁺₂(H₂O)₂(Fe³⁺W₉O₃₄)₂]⋅46H₂O

- Origin: Ophir Hill Consolidated mine, Ophir district, Oquirrh Mts., Tooele Co., Utah, USA (type locality).
- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power at the sample was between 0.5 and 5 mW.

Raman shifts (cm⁻¹): ~955s, ~920sh, ~850, ~335w, ~220w.

Source: Kampf et al. (2014b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Oppenheimerite $\text{Na}_{4}(\text{UO}_{2})(\text{SO}_{4})_{3}\cdot3\text{H}_{2}\text{O}$

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3526, 3400, 3218, ~1600w, 1215w, 1156w, 1060w, 1013, 1002, 986, 970s, 841s, 825sh, 651w, 603w, 459, 378sh, 345sh, 207, 188, 163, 153, 132, 110, 55.

Source: Kampf et al. (2015c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Ordoñezite $ZnSb^{5+}2O_6$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 830w, 798w, 748s, 730, 670s, 615, 570sh, 538s, 480w, 364w, 331sh, 323, 300sh, 292, 248sh, 261, 220w.

Source: Husson et al. (1979).

Comments: No independent analytical data are provided for the sample used.

Orpiment $As₂S₃$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 379w, 364sh, 352s, 308s, 291, 200w, 178w, 153, 143w, 135w. Source: Minceva-Sukarova et al. (2003).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of orpiment see also Forneris (1969), Trentelman et al. (1996), Burgio and Clark (2001), Frost et al. (2010c), and Kampf et al. (2011a).

Orschallite Ca₃(S⁴⁺O₃)₂(SO₄)⋅12H₂O

Origin: Hannebacher Ley volcano, Eifel, Germany (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3383, 1215w, 1096, (1011), 1005s, 984, 971sh, (657), 651, 532sh, 521, 492, 441, 244, 194, 173, 145, 119.

Source: Frost and Keeffe (2009d).

Comments: No independent analytical data are provided for the sample used.

Orthoclase $K(AlSi₃O₈)$

Origin: Bahariya depression, Western Desert, Egypt.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was between 20 and 200 mW.
- **Raman shifts (cm⁻¹):** ~1125, ~750w, ~650, ~640, ~590, 515s, 475s, 453, ~403, 282.

Source: Ciobotă et al. (2012).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of orthoclase see also Frezzotti et al. (2012) and Culka et al. (2016a).

Orthojoaquinite-(Ce) NaBa₂Fe²⁺Ce₂Ti₂(SiO₃)₈O₂(O,OH)∙H₂O

Origin: Benitoite Gem Mine, San Benito Co., California, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3574sh, 3558, (3515), 3506, 3444sh, 3397, 3344+3317 (unresolved doublet?), 3230w, 3192w, 1112, 1033, 982, 956, 933, 896s, 732, 687sh, 668, 636, 600, 526, 494, 511, 375, 358, 304, 267, (202), 191, (165), 145, 112.

Source: Frost and Pinto (2007).

Comments: No independent analytical data are provided for the sample used.

Osakaite Zn₄(SO₄)(OH)₆⋅5H₂O

Origin: Block 14 Opencut, Broken Hill, New South Wales, Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 He-Ne laser radiation. The nominal laser radiation power was 17 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3633, 3550, 3510, 3455, 3330, 3257sh, 3243, 3175, ~1670w, ~1620w, 1160, 1112, 1051, 1024, 1011, 964s, 636, 604, 508, 456, 430, 398.

Source: Elliott (2010).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Osbornite TiN

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a coating deposited on silicon (111) substrate using He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 563, 242.

Source: Barshilia and Rajam (2004).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of osbornite see also Spengler et al. (1978).

Oskarssonite AIF_3

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powder sample using 1064 nm Nd-YAG or 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was up to 400 mW or 10–25 mW, respectively.

Raman shifts (cm⁻¹): 478w, 382w, 157s, 96.

Source: Groß et al. (2007).

Comments: For the Raman spectrum of oskarssonite see also Daniel et al. (1990).

Osumilite $KFe₂(Al₅Si₁₀)O₃₀$

Origin: Rundvågshetta, Lützow-Holm Complex, East Antarctica.

Experimental details: Raman scattering measurements have been performed on a grain included within a garnet porphyroblast using 532 nm laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 1103, 920, 549, 477s, 383w, 350w, 281.

Source: Kawasaki et al. (2011).

Comments: The sample was characterized by electron microprobe analyses.

Otavite $Cd(CO_3)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 and 514.5 nm Ar⁺ laser radiations. The nominal laser radiation power was in the range from 100 to 500 mW.

Raman shifts (cm⁻¹): 1718, 1388, 1084s, 712, 271, 158.

Source: Rutt and Nicola (1974).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of otavite see also Minch et al. (2010) and Falgayrac et al. (2013).

Ottemannite $Sn₂S₃$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was below 0.4 mW.

Raman shifts (cm⁻¹): 310s, 303sh, 247w, 231w, 67w, 56, 48.

Source: Fontané et al. (2013)

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of ottemannite see also Price et al. (1999).

Ottensite Na₃(Sb₂O₃)₃(SbS₃)⋅3H₂O

Origin: Pereta mine, Tuscany, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 766w, 615w, 538, 479w, 355s, 344sh, 299, 254w, 225w, 153.

Source: Bittarello et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Ottohahnite $\text{Na}_6(\text{UO}_2)_2(\text{SO}_4)_5(\text{H}_2\text{O})_7$.1.5H₂O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** ~3595, ~3490w, ~1630w, ~1220, ~1200, ~1155, ~1050, ~1010, ~980, ~930, \sim 840s, \sim 655, \sim 203s, and a series of weak bands in the range from 300 to 640 cm⁻¹.

Source: Kampf et al. (2016g).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Otwayite $Ni₂(CO₃)(OH)₂·H₂O$

Origin: Mt. Grey, Tasmania, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3612, (3610), 3579, 3538, 3470sh, (3288), (2989), 2935, 2879sh, 1690, 1600, 1353w, 1073s, (1068), 981s, 937, (835), 708, 703, 617, (545), 529, (469), 445, 395, 308sh, 232, 216, 194sh, 177sh.
- Source: Frost et al. (2006o).

Comments: No independent analytical data are provided for the sample used.

Oxammite $(NH_4)_2(C_2O_4)·H_2O$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3235, 3030, 2995, 2900, 2879, 2161, 1902, 1737, 1695s, 1605, 1473, 1451, 1447, 1430, 1417, 1312, 892s, 866, 815, 642, 489s, 438, 278, 224, 210, 198, 181, 160.
- Source: Frost and Weier (2003).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectra of oxammite see also Frost et al. (2003k), Frost (2004d), and Frost and Weier (2004a).

Oxycalcioroméite $Ca_2Sb^{5+}{}_{2}O_7$

Origin: Bucadella Vena mine, Apuan Alps, Tuscany, Italy (type locality).

Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 913w, 777, 666, 540sh, 509s, 426, 295, 199w.

Source: Biagioni et al. (2013c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Oxy-dravite $Na(Al_2Mg)(Al_5Mg)(Si_6O_{18})(BO_3)_3(OH)_3O$

Origin: No data available.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal with the crystallographic c axis parallel to the Cartesian coordinate z axis using 514.5 and 488.0 nm $Ar⁺$ laser radiations. The laser radiation power at the sample was 14 mW. Raman spectrum was obtained in the spectral region from 15 to 4000 cm⁻¹. Polarized spectrum was collected in the -y(zz) y scattering geometry.
- **Raman shifts (cm⁻¹):** 3776w, 3738w, 3674w, 3642w, 3567+3529 (unresolved doublet?), (3480w), \sim 700, 368s, 312, 242, 217, and a series of relatively weak bands in the range from 400 to 700 cm⁻¹. Source: Watenphul et al. (2016a, b).

Comments: The sample was characterized by electron microprobe and LA-ICP-MS analyses.

Oxykinoshitalite $BaMg_2Ti^{4+}O_2(Si_2Al_2)O_{10}$

Origin: S. Demetrio High, Hyblean plateau, Sicily, Italy.

Experimental details: Micro-Raman scattering measurements have been performed on a grain in thin section using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW.

Raman shifts (cm⁻¹): 996, 880, 725s, 135, 122.

Source: Manuella et al. (2012).

Comments: The sample was characterized by electron microprobe analyses.

Oxynatromicrolite $(Na, Ca, U)_2(Ta, Nb)_2O_6(O, F)$

Origin: Guanpo, Henan province, China (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): \sim 3450sh, \sim 770, \sim 650s.

Source: Guang et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses, and differential thermal analysis.

Oxyplumboroméite $Pb_2Sb_2^{5+}2O_7$

Origin: Synthetic.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.0 nm Nd-YAG laser radiation. The laser radiation power at the sample was between 0.8 and 4 mW.

Raman shifts (cm⁻¹): 807w, 513s, 423, 355, 298, 230s, 190, 107s.

Source: Rosi et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of oxyplumboroméite see also Kendix et al. (2008).

Oyelite Ca10B2Si8O29∙12H2O

Origin: N'Chwaning II mine, Manganese Fields, Kalahari desert, Republic of South Africa.

Experimental details: Methods of sample preparation are not described. Non-polarized micro-Raman spectrum has been obtained in a nearly backscattered geometry using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1025, ~1005, ~990, ~910, ~860, ~715s, ~685s, ~460, ~350, ~320. Source: Biagioni et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data.

Ozokerite

Origin: Boryslav, Poland.

- Experimental details: Kind of sample preparation is not indicated. Raman scattering measurements have been performed using 514.5 nm Ar^+ laser radiation with the nominal radiation power of 10 mW (micro-Raman measurements) and/or 1064 nm Nd-YAG laser radiation with the power of 350 mW.
- **Raman shifts (cm⁻¹):** 2977, 2961w, 2930w, 2923s, 2917s, 2901w, 2880s, 2855, 2848w, 2836, 2733w, 2724, 1498w, 1486w, 1466, 1442, 1420w, 1416w, 1387w, 1369w, 1349w, 1321w, 1297w, 1169w, 1154w, 1133s.

Source: Jehlička et al. (2007a).

Comments: No independent analytical data are provided for the sample used.

Pabstite $BaSnSi₃O₉$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 994w, ~876w, ~817w, 574s. Source: Takahashi et al. (2008). Comments: The sample was characterized by powder X-ray diffraction data.

Padmaite PdBiSe

Origin: Southern Sopchinskoe deposit, Monchegorsk district, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 235s, 177w, 154, 115, 91, 82, 61s, 52sh.

Source: Voloshin et al. (2015a).

Comments: The sample was characterized electron microprobe analyses.

Pakhomovskyite Co₃(PO₄)₂∙8H₂O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1043, 1023, 956s, 894, 560, 462, 370w, 260, 249, 202, 171.

Source: Shao et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data.

Palermoite $Li_2SrAl_4(PO_4)_4(OH)_4$

Origin: Palermo No. 1 mine, Groton, New Hampshire, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 1077, 1026s, 1005s, 982sh, 657, 637, 603s, 534, 512, 345, 417, 367w, 328, 282, 253, 238.

Source: Schumer et al. (2016).

Comments: No independent analytical data are provided for the sample used.

Palladinite PdO

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 18794.59 cm⁻¹ laser radiation. The laser radiation power at the sample was between 1 and 2 mW.

Raman shifts (cm⁻¹): 723w, 650s, 445.

Source: Bakker (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of palladinite see also McBride et al. (1991).

Palladosilicide Pd₂Si

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was ≤ 10 mW.

Raman shifts (cm^{-1}) **:** 115s, 90.

Source: Nemanich (1986).

Palygorskite (Mg,Al)₂Si₄O₁₀(OH)∙4H₂O

Origin: Glasgow, Virginia, USA.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on randomlyoriented crystals in back-scattering geometry, using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 900 mW.
- **Raman shifts (cm⁻¹):** 1109, 988, 971, 809, 774, 680, 638, 556, 512, 488, 473, 437, 406, 354, 327, 268, 205, 183, 167, 130 (Ag modes); 1211, 1160, 1077, 986, 904, 800, 704, 658, 597, 540, 512, 456, 435, 410, 397, 353, 327, 243, 216, 205, 157, 139 (Bg modes). The strongest peaks are observed in the ranges 250–300 and 650–720 cm^{-1} .

Source: McKeown et al. (2002).

Comments: The empirical formula of the sample used is $(Mg_{2.00}Al_{1.96}Fe_{0.06})Si_{7.94}O_{21}$ ∙nH₂O.

Panguite $(Ti, A1, Sc, Mg, Zr, Ca)_{1.8}O_3$

Origin: Allende meteorite (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in a polished section using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was \sim 5 mW.

Raman shifts (cm⁻¹): 405, 380s.

Source: Ma et al. (2012c).

Comments: The sample was characterized by electron backscatter diffraction data and electron microprobe analyses.

Panichiite $(NH_4)_2$ SnCl₆

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): \sim 430s, \sim 330s, \sim 290, \sim 265, \sim 210, \sim 193, \sim 148, \sim 122.

Source: Podsiadlo et al. (2015).

Comments: The sample was characterized by X-ray diffraction data. The crystal structure is solved.

Papagoite CaCuAlSi₂O₆(OH)₃

Origin: Cornelia mine, Ajo, Pima Co., Arizona, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3614sh, 3573s, (3567), 3545s, (3533), (3490), 3453, (3368), (1079), 1053, 986, 942w, 867, 830sh, 812, 755, (644w), 630, 573, 536, 472sh, 460s, 438sh, 419s, 382, 298, 279, 264, 251, 243sh, 236sh, 205, (199), 185sh, 178, 170sh, 163, 156w, 150w, 147sh, 136, 131sh, 119, 113sh, 107.

Source: Frost and Xi (2013d).

Comments: No independent analytical data are provided for the sample used.

Parabutlerite $Fe^{3+}(SO_4)(OH)·2H_2O$

- Origin: Alcaparrosa mine, Cerritos Bayos, Calama, El Loa province, Antofagasta, Chile (type locality).
- Experimental details: Methods of sample preparation are not described. Polarized Raman spectra have been obtained using 633 nm He-Ne laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3504sh, 3316, 3200sh, (3133), 1202, 1164, 1109s, (1095), 1044, 1026s, 1014, 990sh, 655sh, 614, 550, 468s, 406, 368, 263sh, 237, 214, 186, 155sh.

Source: Čejka et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Paracoquimbite $Fe³⁺₂(SO₄)₃·9H₂O$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3577, 3412, 3245, 3046, 1682, 1620, 1200, 1170, 1112, 1093, 1037, 1025s, 1012, 877, 675, 628, 602, 514, 502, 478, 286, 211.

Source: Ling and Wang (2010).

Comments: The sample was characterized by powder X-ray diffraction data.

Paragonite $NaAl₂(Si₃Al)O₁₀(OH)₂$

Origin: Rebra II Formation, Rodnei Mts., Eastern Carpathians, Romania.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power at the sample was 35 mW.

Raman shifts (cm⁻¹): 911, 704, 612, 442s, 266, 217w.

Source: Buzgar (2008).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of paragonite see also Tlili et al. (1989), Graeser et al. (2003), and Frezzotti et al. (2012).

Paraguanajuatite $Bi₂Se₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a crystal with the trigonal c axis parallel to the laser beam direction using 514.5 nm Ar⁺ laser and 647.1 nm Kr⁺ laser radiations. The laser radiation power is not indicated. A 180°-scattering geometry was employed. Polarized spectra were collected in $z(xx)$ –z and $z(xy)$ –z scattering geometries.

Raman shifts (cm⁻¹): $z(xx)$ -z (A_{1g}): 175, 72; $z(xy)$ -z (E_g): 132. Source: Richter et al. (1977).

Parahopeite $Zn_3(PO_4)_2$ ∙4H₂O

Origin: Reaphook Hill, Martins Well, Flinders Ranges, South Australia, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals in the spectral range from 700 to 4000 cm^{-1} using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3439sh, 3293, 3163, 3027, 1053, 1033, 1003s, 959. Source: Frost (2004a).

Comments: No independent analytical data are provided for the sample used.

Paramontroseite $VO₂$

Origin: Product of heating of karelianite from Pyrrhotite gorge, Khibiny massif by the laser beam.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser radiation power was 2 or 20 mW.

Raman shifts (cm⁻¹): 991, 897w, 688, 405, 281, 222, 190, 139s, 98.

Source: Voloshin et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Paranatrolite Na₂(Si₃Al₂)O₁₀⋅3H₂O

Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada.

Experimental details: No data.

Raman shifts (cm⁻¹): \sim 3465w, \sim 1095w, \sim 527s, \sim 430, \sim 330, \sim 135s.

Source: Belitsky et al. (1992).

Comments: No independent analytical data are provided for the sample used.

Paraotwayite $Ni(OH)_{2-x}(SO_4, CO_3)_{0.5x}$

Origin: Otway deposit, Western Australia, Australia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3606sh, 3590, 3568, (3566), 3532, 2909w, 2852w, 1115, 987s, (977), 642w, 606, 487, 473, 451, 416, 297w, (260), (238), (218), (196), (176).

Source: Frost et al. (2006o).

Comments: No independent analytical data are provided for the sample used.

Parapierrotite $TlSb_5S_8$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a single crystal with the laser polarization parallel to the b - and c -axes using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 1.7 mW.
- **Raman shifts (cm⁻¹):** 334, 321, 310 (very strong for *E*llb), 293, 275w, 260w, 242, 227(very weak for E||b), 204w, 178w, 162w, 145w, 127, 115w, 106w, 94w, 94, 81, 62, 51 (strong for E||c), 41.

Source: Kharbish (2011).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of parapierrotite see also Makreski et al. (2013b, 2014).

Pararealgar As₄S₄

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 647.1 nm laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 383w, 370w, 364, 346, 334, 340sh, 322w, 316w, 275, 236s, 230s, 204, 198, 191w, 175, 172, 167sh, 158, 152, 142, 135w, 118, 52sh, 45, 32.

Source: Muniz-Miranda et al. (1996).

Comments: For the Raman spectra of pararealgar see also Trentelman et al. (1996) and Burgio and Clark (2001).

Pararobertsite $Ca₂Mn³⁺₃(PO₄)₃O₂·3H₂O$

Origin: Tip Top mine, Custer, South Dakota, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 780 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1197w, ~1112w, ~1042, ~1035, ~983, ~965, ~953sh, ~896w, ~623s, ~547w, \sim 498w, \sim 461, \sim 403, \sim 365w, \sim 309, \sim 277, \sim 258.

Source: Andrade et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data.

Parascholzite CaZn₂(PO₄)₂∙2H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW.

Raman shifts (cm^{-1}) : 1170, 1115, 1086, 999, 925s, 553s, 409, 302, 286, 271, 236.

Source: Scholz et al. (2013a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of parascholzite see also Frost (2004a).

Parascorodite Fe³⁺(AsO₄)∙2H₂O

Origin: Kaňk (near Kutná Hora) or Lehnschafter gallery in Mikulov (near Teplice), both Czech Republic.

- Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was between 1 and 2 mW.
- **Raman shifts (cm⁻¹):** 892, 859, 815s, 800sh, 782s, 492, 458sh, 437s, 413sh, 382w, 349sh, 337, 292sh, 280, 269sh, 245, 231w, 181s, 164sh.

Source: Culka et al. (2016b).

Comments: The sample was characterized by powder X-ray diffraction data. Additionally, in the cited paper Raman spectra of parascorodite obtained with 785 and 532 nm lasers are given.

Parasibirskite $Ca₂B₂O₅·H₂O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powder sample was first pressed into a tablet using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 40 mW. Backscattered spectra were collected from focal spot of diameter of 2 μm.
- **Raman shifts (cm⁻¹):** 3354, 3309, 1278, 1250, 1153, 1086, 908, 712, 489, 295, 281, 263, 252, 216, 175, 147, 135.

Source: Goryainov et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data.

Parasymplesite Fe²⁺₃(AsO₄)₂⋅8H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3460, 3215, 860, 835, 810, 780, 545, 480, 450, 432, 371, 332, 286, 249, 220, 194, 142.

Source: Frost et al. (2003g).

Comments: In the cited paper the mineral is named "parasymplesite/symplesite." Band intensities are not indicated. No independent analytical data are provided for the sample used.

Paratacamite $Cu^{2+}{}_{3}(Cu,Zn)(OH)_{6}Cl_{2}$

Origin: Widgiemooltha, Western Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3508, 3446, 3395, 3364, 3341, 3232, 942, 890, 732, 513, 501, 474, 404, 367, 277, 243, 148, 124.

Source: Frost et al. (2002b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of paratacamite see also Chu et al. (2011).

Paratellurite α -TeO₂

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed in a back-scattering geometry on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 150 mW.
- **Raman shifts (cm⁻¹):** 786, 769, 649s, 642, 592, 575, 415, 392, 379, 330, 315, 297, 281, 259, 235, 218, 210, 179, 174, 157, 152s, 121s, 82, 62.

Source: Mirgorodsky et al. (2000).

Comments: For the Raman spectra of paratellurite see also Bürger et al. (1992), Berthereau (1995), and Noguera et al. (2003).

Paratooite-(La) $(La, Ca, Na, Sr)_6Cu(CO_3)_8$

Origin: Paratoo Cu mine, Olary district, South Australia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** ~1440w, 1095s, 1075s, ~220s, and a series of weak bands in the range from 300 to 900 cm^{-1} .

Source: Pring et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Paravauxite Fe²⁺Al₂(PO₄)₂(OH)₂⋅8H₂O

Origin: Siglo XX mine, Bustillo province, Potosí department, Bolivia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3648w, 3505s, 3421, 3315, (3215), 3086, 1639w, 1582sh, 1490sh, 1148, 1115sh, 1058sh, 1020s, 643, 609, 570, 537sh, 420sh, 393s, 253, 319, 299, 227sh, 214, 196w, 164, 148, 110.

Source: Frost et al. (2013n).

Comments: The sample was characterized by electron microprobe analysis.

Pargasite $\text{NaCa}_2(\text{Mg}_4\text{Al})(\text{Si}_6\text{Al}_2)\text{O}_{22}(\text{OH})_2$

Origin: Edenville, New York, USA.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 1095w, 1045, 1009, 971w, 956w, 924, 910, 885, 758s, 663s, 581sh, 547, 526, 514, 475w, 415w, 322, 292s, 226s.

Source: Apopei and Buzgar (2010).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of pargasite see also Apopei et al. (2011), Frezzotti et al. (2012), Andò and Garzanti (2014), and Leissner et al. (2015).

Parisite-(Ce) $CaCe₂(CO₃)₃F₂$

Origin: Snowbird mine, Fish Creek, Alberton, Mineral Co., Montana, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3661sh, 3517sh, 3316, 3180, 1420w, 1088s, 742, 682w, 601, 263, 152. Source: Frost and Dickfos (2007a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of parisite-(Ce) see also Hong et al. (1999).

Parisite-(La) CaLa₂(CO₃)₃F₂

Origin: Mula mine, Tapera village, Novo Horizonte Co., Bahia, Brazil (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm solid-state laser radiation. The nominal laser radiation power was 150 mW.
- **Raman shifts (cm⁻¹):** 1428, 1331w, 1098s, 1091s, 1081s, 970, 871, 737, 600, 453, 394, 350, 331, 262s, 162.
- Source: Menezes Filho et al. (2017).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. All peaks above 1500 cm^{-1} are due to fluorescence.

Parnauite $Cu₉(AsO₄)₂(SO₄)(OH)₁₀·7H₂O$

Origin: Cap Garonne, Var, France.

- Experimental details: Raman scattering measurements have been performed on a surfaces nearly perpendicular to the {010} cleavage of a single crystal using 532 nm laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3544sh, 3457, 3365sh, 2926, 2880, 2848, 1608w, 1442, 1320w, 1118sh, 1039, 975, 849s, 814sh, 688sh, 604sh, 493s, 447sh, 378, 295, 268, 218sh, 168sh, 110s.

Source: Mills et al. (2013).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. For the Raman spectra of parnauite see also Frost et al. (2009j) and Frost and Keeffe (2011).

Parsonsite $Pb_2(UO_2)(PO_4)_2$

Origin: Ranger U Mine, Northern Territory, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3404w, 3329, 1590, 1078, (1074), 1024, (998), (987), 967, (943), (872), (831), 807s, 796sh, 609, 595, (591), 582, 560, 540, 465, 439, 406, 394, 281, 255, 227sh, 206, 188sh, 171, 155, 136sh, 111sh.

Source: Frost et al. (2006f).

Comments: The sample was characterized by chemical analyses.

Parthéite Ca₂(Si₄Al₄)O₁₅(OH)₂⋅4H₂O

Origin: Denezhkin Kamen' Mt., Middle Urals, Russia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 and 633 nm laser radiations. The nominal laser radiation power was 100 and 17 mW, respectively.
- **Raman shifts (cm⁻¹):** 3574w, 3476sh, 3417, 3384, 3308w, 3256, ~1100w, ~1048, ~978, ~955, ~930, $-770, -740, -714, -640, -550, -500$ s, $-450, -420, -400, -360, -310$ s, -260 w, -250 w, -235 w, \sim 220, \sim 200, \sim 180, \sim 160s, \sim 150, \sim 140, \sim 113.

Source: Lazic et al. (2012).

- Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.
- Partzite $Cu_2Sb^{5+}2O_7$

Origin: Blind Spring Hill district, near Benton, Mono Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3622w, 3586, 3563, 3485w, 3407, 3376, 3266, 2947sh, (1455w), (1396w), 1126, 1096, 1074, 982sh, 971s, (938), 907w, 837w, 777w, 730w, 675w, 620, 607, 594, 520s, 479, 449, 418, 387, 362, 316, 258sh, 241, 195.

Source: Bahfenne and Frost (2010c).

Comments: Questionable data. In particular, the strongest band at 971 cm^{-1} may correspond to an impurity. No independent analytical data are provided for the sample used.

Pašavaite Pd₃Pb₂Te₂

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 159s, 119.

Source: Bakker (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of pašavaite see also Vymazalová et al. (2014).
Pascoite $Ca_3V^{5+}{}_{10}O_{28}\cdot17H_2O$

Origin: Vanadium Queen mine, San Juan Co., Utah, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3570w, 3466, 3405, 3254, 3125, (1668), 1644, 1514w, 993s, 961s, 841, 621s, 588s, 540, 459, 360sh, 337, 320sh, 292, 238, 193, 159.

- Source: Frost and Palmer (2011c).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectra of pascoite see also Frost et al. (2004e, 2005d).

Patrónite VS₄

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): ~990, ~690, ~400, ~280, ~190, ~140s, ~100.

Source: Kozlova et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron microprobe analysis.

Pattersonite PbFe₃(PO₄)₂(OH)₅⋅H₂O

Origin: Grube Vereinigung, near Eisenbach, Taunus, Hesse, Germany (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3547, 3526s, 3291 (broad), ~1610 (broad), 1084s, 1046s, 996, 973s, 927, 636, 571s, 523, 504, 460s, 407, ~377, 360, 325s, ~296, ~273, 259.

Source: Kolitsch et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Pauflerite $VO(SO₄)$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 and 514.5 nm $Ar⁺$ laser radiations. The laser radiation power is not indicated. A 90°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1125, 1112, 1095, 1075, 1002, 925s, 654, 596w, 488w, 425w, 395, 361w, 335w, 311w, 285, 269, 253w, 231, 184w, 167w, 136w, 96.

Source: Boghosian et al. (1995).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Paulingite-K K,Ca,Na,Ba,□)₁₀(Si,Al)₄₂O₈₄⋅34H₂O

Origin: Vinařická Hora Hill, near Kladno, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 3554s (broad), 3433sh, 3265sh, 2945w, 2330w, 1640w, 1110, 993, 937, 774, 557sh, 496s, 474, 422w.

Source: Gatta et al. (2015b).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Paulmooreite $Pb_2As^{3+}2O_5$

Origin: Långban, Filipstad district, Värmland province, Sweden (type locality).

- **Experimental details:** Raman scattering measurements have been performed from the a and c faces an oriented single crystal the using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 751, 732, 658w, 562w, 501, 433, 410, 367, 344w, 312, 270, 210, 186s, 138s, 106w (for the spectrum collected from the aface of the crystal).

Source: Bahfenne et al. (2012).

Comments: For the Raman spectrum of paulmooreite see also Bahfenne (2011).

Pauloabibite $NaNbO₃$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 647.1 nm Kr^+ laser radiation. The nominal laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 790, 630sh, 590s, 505sh, 387, 295 (broad), 255w, 733s, 673w, 487, 476sh, 287, 257, 212, 202, 165.

Source: Baran et al. (1986).

Comments: No independent analytical data are provided for the sample used.

Paulscherrerite $(UO₂)(OH)₂$

Origin: No. 2 Workings, Radium Ridge, Northern Flinders Ranges, South Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3340, ~3290, 864sh, (850), 843s, 831s, 557w, 505w, 460w, 360w.

Source: Brugger et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of paulscherrerite see also Hoekstra and Siegel (1973), and Walenta and Theye (2012).

Pavlovskyite $Ca_8(SiO_4)_2(Si_3O_{10})$

Origin: Lakargi Mt., Upper Chegem caldera, North Caucasus (cotype locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power at the sample was from 30 to 50 mW. A 180° -scattering geometrywas employed.
- **Raman shifts (cm⁻¹):** 1088w, 993s, 974, 925w, 908, 892, 858s, 847s, 821s, 669s, 569w, 546, 484w, 428w, 400, 358, 329, 305, 262w, 215w, 176w, 118s.

Source: Galuskin et al. (2012b).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Peatite-(Y) Li₄Na₁₂(Y,Na,Ca,REE)₁₂(PO₄)₁₂(CO₃)₄(F,OH)₈

- Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada (type locality).
- Experimental details: Raman scattering measurements have been performed from a face of single crystal using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3659w, 1117sh, 1088s, 1042sh, 1000s, 623, 568, 494, 405sh, 370s, 260, 183, 139w.
- Source: McDonald et al. (2013).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Pecoraite $Ni₃Si₂O₅(OH)₄$

Origin: Nullagine region, Western Australia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3638), (3613), 3586, 3535, 3460sh, 3271sh, 2934w, 2896w, 2854w, 1593, 1384, 1075s, 979s, 930w, 821, 761, 616, 451, 397, 235, 194, 151.

Source: Frost et al. (2008j).

Comments: No independent analytical data are provided for the sample used.

Pectolite $NaCa₂Si₃O₈(OH)$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (2896), 2879w, 2851w, 2809sh, 1615, 1444w, 1413sh, 1388, (1047), 1026s, 998, 974s, (953), 936sh, 911, 706w, 687, 667sh, 653s, (642), (532w), 518sh, 508+500w (unresolved doublet?), 463w, (432), 415, 378, (370), 358, 325sh, 317, 276, 259sh, 225, (217), 203, 186, 152, 143, 134sh, 111.

Source: Frost et al. (2015n).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectra of pectolite see also Mitchell et al. (2015) and Origlieri et al. (2017).

Peisleyite Na₃Al₁₆(PO₄)₁₀(SO₄)₂(OH)₁₇⋅20H₂O

Origin: Tom's phosphate quarry, near the town of Kapunda, South Australia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3505s, 3429, 3272, 2888, 1358w, 1289w, 1247w, 1144, 1023s, 989w, 634, 547, 412s, 314w, 276, 207, 188w, 159w.

Source: Frost et al. (2004j).

Comments: The sample was characterized TG/DTG data.

Péligotite $\text{Na}_6(\text{UO}_2)(\text{SO}_4)_4 \cdot 4\text{H}_2\text{O}$

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** ~3460, ~1210, ~1165, ~1080, ~1045, ~1000s, ~980, ~960, ~945, ~830s, ~655, $~100.620$.

Source: Kampf et al. (2016g).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Penkvilksite- 20 Na₂TiSi₄O₁₁·2H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 562 nm He-Ne laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3527w, 3471sh, 3410, 3354sh. In the spectral range below 3200 cm⁻¹, only a figure of the Raman spectrum of Penkvilksite- $2O$ is given by Cadoni and Ferraris (2008).

Source: Cadoni and Ferraris (2008).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved. For the Raman spectrum of penkvilksite see also Frost and Xi (2013b).

Penroseite $(Ni, Co, Cu)Se₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed by means of back scattering technique. Characteristics of the laser radiation are not indicated.

Raman shifts (cm^{-1}) **:** 216.5.

Source: Yang et al. (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Pentagonite CaV⁴⁺OSi₄O₁₀⋅4H₂O

Origin: Pune (Poonah) district, Maharashtra, India.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3640sh, (3580), 3532, (3499), 1634w, 1612w, 1191w, 1153w, 1089, 1047w, 971s, 765w, 651, 559, 524, 494w, 479w, 398, 344sh, 324, 305, 288, 261w, 230, 206, 158sh, 140, 123sh.

Source: Frost and Xi (2012h).

Comments: No independent analytical data are provided for the sample used.

Pentahydrite Mg(SO₄)⋅5H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on randomly oriented fine grains using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 15 mW.

Raman shifts (cm^{-1}) : 3553sh, 3494, 3391, 3343, 3289, 1650w, 1159, 1106w, 1005s, 602, 447w, 371, 241, 206, 165, 119.

Source: Wang et al. (2006a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of pentahydrite see also Ling et al. (2009) and Frezzotti et al. (2012).

Pentahydroborite CaB₂O(OH)₆⋅2H₂O

Origin: Fuka mine, Okayama prefecture, Japan.

Experimental details: No data.

Raman shifts (cm⁻¹): 3595w, 3499, 3445s, 3399, 3371sh, 3324s, 3196s, 3041s (broad), 2938w, 1610w, 1446w (broad), 1305, 1249, 1223, 1157, 1032, 981, 957, 918, 842, 781w, 725s, 678w, 611s, 584, 562, 508, 492, 472, 416sh, 401, 355, 330, 313sh, 272, 251, 243sh, 214.

Source: Bermanec et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data and thermal analysis.

Pentlandite $(Ni,Fe)_{9}S_{8}$

Origin: Kambalda, Western Australia, Australia.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was between 1 and 10 mW. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 370.

Source: Mernagh and Trudu (1993).

Comments: No independent analytical data are provided for the sample used.

Peretaite $CaSb³⁺₄O₄(SO₄)₂(OH)₂·2H₂O$

Origin: Pereta mine, Scansano, Grosseto province, Tuscany, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3334, 1152, 1142, 1115w, 1092w, 1060, 980s, 710wm, 650w, 610sh, 595s, 589sh, 482w, 434, 417, 373w, 337, 229s, (219), 215sh, 196, 175w, 156, 137sh.

Source: Frost et al. (2010f).

Comments: No independent analytical data are provided for the sample used.

Perhamite $Ca₃Al₇₇Si₃P₄O_{23.5}(OH)_{14.1}·8H₂O$

Origin: Dunton Gem Quarry, Newry, Oxford Co., Maine, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1884, 1354, 1245, 1153, 1131, 1096, 1059w, 1032, 1005s, 996s, 929w, 708, 636, 615, 586w, 554, 520s, 506s, 468, 442w, 385, 375, 363w, 334, 276, 267, 207, 191, 170w, 148w, 129w.

Source: Frost et al. (20071).

Comments: No independent analytical data are provided for the sample used.

Perite PbBiO₂Cl

Origin: Homeward Bound mine, Mannahill, South Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 506, 484, 389, 367, 295, 253, 180, 157.

Source: Frost and Williams (2004).

Comments: The sample was characterized by X-ray diffraction and chemical analysis using ICP-AES techniques, but no analytical data are provided in the cited paper.

Permingeatite Cu₃SbSe₄

Origin: Přibram, Central Bohemia region, Czech Republic.

Experimental details: Raman scattering measurements have been performed on grains mounted in a polished section in backscattering geometry using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was \sim 1 mW.

Raman shifts (cm⁻¹): 374w, 366w, 357w, 318w, 276w, 251w, 137, 229s, 214, 205, 193, 184s, 176, 167, 159w, 140w, 127, 78, 75, 63, 59, 51w, 45, 40, 26s, 21s, 17, 14.

Source: Škácha et al. (2014a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Perovskite CaTiO₃

Origin: Rocca Castellaccio, Ciappanico, Malenco Valley, Sondrio province, Lombardy, Italy.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or 488 nm Ar^+ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 638 (broad), 471, 248s, 227s, 182s.
- Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of perovskite see also Ma et al. (2013), Zajzon et al. (2013), and Martins et al. (2014).

Pertsevite-(OH) $Mg_2(BO_3)(OH)$

Origin: Snezhnoe boron deposit, Dogdo River basin, Saha Republic (Yakutia), Russia (type locality).

Experimental details: Raman scattering measurements have been performed on a polished section using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 20 mW. A 0-scattering geometry was employed.

Raman shifts (cm⁻¹): 3560 (broad), 919s, 862s, 738, 681, 602, 545.

Source: Galuskina et al. (2008).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Petalite $LiAlSi₄O₁₀$

Origin: Laghman province, Nuristan, Afghanistan.

Experimental details: Unpolarized Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1138, 1060w, 790w, 490s, 467w, 383s, 357s, 280, 143, 113, 85, 60w. Source: Kaminskii et al. (2015).

Comments: The sample was characterized by X-ray diffraction data.

Petersite-(Ce) $Cu₆Ce(PO₄)₃(OH)₆·3H₂O$

Origin: Yavapai County, Arizona, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm solid-state laser radiation. The nominal laser radiation power was 60 mW.

- **Raman shifts (cm⁻¹):** 3499, 3411, 3292, 3072, 2934, 2873, 2862, 1095, 1084, 1043s, 945, 580s, 528, 472s, 393.
- Source: Morrison et al. (2016).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Petitjeanite $Bi_3O(PO_4)_2(OH)$

Origin: Cetoraz, near Pacov, Czech Republic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1038, 952, 584w, 548w, 405, 298, 260, 222s, 177s, 102s. Source: Losertová et al. (2014).

Comments: The sample was characterized by electron microprobe analyses.

Petrukite (Cu,Fe,Zn,Ag)₃(Sn,In)S₄

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using 644 nm laser radiation. The laser radiation power at the sample was 0.02 mW.

Raman shifts (cm⁻¹): 990w, 940w, 637, 597sh, 346, 337, 317s, 292, 280, 261sh, 150, 130w, 99, 93. Source: Dzhagan et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of petrukite see also Fernandes et al. (2010).

Petterdite PbCr₂(CO₃)₂(OH)₄⋅H₂O

Origin: Red Lead mine, Zeehan–Dundas mining field, Tasmania, Australia (type locality).

- Experimental details: Raman scattering measurements have been performed on a powder sample using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was 0.3 mW.
- Raman shifts (cm^{-1}) : 3540, 3470, 3282w, 2948w, 2924, 2854w, 2072w, 1641w, 1516s, 1493sh, 1394sh, 1343s, 1122w, 1089w, 956w, 881sh, 852w, 830w, 812w, 744w, 650sh, 626w, 592w, 541, 504s, 433.

Source: Birch et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction data, as well as by electron microprobe and HCN analyses.

Petzite Ag₃AuTe₂

Origin: Coranda-Hondol open pit, Certej Au-Ag deposit, Romania.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 320, 174, 163s.

Source: Apopei et al. (2014b).

Comments: The sample was characterized by electron microprobe analyses.

Pezzottaite $CsLiBe₂Al₂Si₆O₁₈$

Origin: Piława Górna, Lower Silesia, SW Poland.

Experimental details: Raman scattering measurements have been performed on a powder sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1106s, 1067s, 1024, 1007, 689s, 542, 461, 406s, 329, 250, 118s. Source: Pieczka et al. (2016b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. Pezzottaite differs from beryl by intensive Raman bands at 118 and 1106 cm^{-1} . For the Raman spectrum of pezzottaite see also Lambruschi et al. (2014).

Pharmacolite Ca(AsO₃OH)∙2H₂O

Origin: Jáchymov, Krušné Hory (Ore Mts.), Czech Republic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3525, 3435, 3266sh, (3239), 3186, 1652w, 1179w, 885w, 865s, (858), 844, 706s, 676sh, 545w, 448, 397, 371, 357, 337sh, (309), 305, 286s, 195, (187), 176sh, 155, 133sh, 124.

Source: Frost et al. (2010b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Pharmacosiderite KFe³⁺₄(AsO₄)₃(OH)₄⋅6-7H₂O

Origin: Mokrsko-west Au deposit, Příbram district, Central Bohemia region, Czech Republic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532.2 nm diode laser radiation. The laser radiation power at the sample was 0.5 mW.

Raman shifts (cm⁻¹): 886, 830sh, 803s, 475s, 383, 336, 290w, 279, 244w, 179, 137w.

Source: Filippi et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of pharmacosiderite see also Frost and Kloprogge (2003) and Bossy et al. (2010).

Pharmazincite KZn(AsO₄)

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation output power was 30 mW.

Raman shifts (cm⁻¹): 853s, 513sh, 453w, 430w, 406w, 343, 323, 291.

Source: Pekov et al. (2016a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Phenakite $Be_2(SiO_4)$

Origin: San Miguel de Piracicaba, Minas Gerais, Brazil.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The maximum output powder of 300 mW was filtered to diminish the power at the sample.

Raman shifts (cm⁻¹): 1021w, 952, 938, 918, 879s, 786, 775w, 761w, 728w, 702w, 686w, 666w, 616w, 601w, 527, 463w, 446, 384, 347w, 283w, 233w, 223.

```
Source: Jehlička et al. (2012).
```
Comments: No independent analytical data are provided for the sample used. For the Raman spectra of phenakite see also Hofmeister et al. (1987), Annen and Davis (1993), Pilati et al. (1998), and Jehlička and Vandenabeele (2015).

Philipsbornite $PbAl₃(AsO₄)(AsO₃OH)(OH)₆$

- Origin: Red Lead Mine, Dundas mineral field, Zeehan district, West Coast municipality, Tasmania, Australia (type locality).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (865), (857), 846+831s (unresolved doublet?), (820), 399, 376, 357s, 347, 336, 325, 189w, 180w, 134, 115w.

Source: Frost et al. (2013s).

Comments: No independent analytical data are provided for the sample used.

Philipsburgite $(Cu,Zn)_{6}(AsO₄,PO₄)_{2}(OH)_{6}·H_{2}O$

Origin: Miedzianka (former Kupferberg), Sudety Mts., SW Poland.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 40 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3550w, 3489, 3429w, 3215sh, 1060w, (994w), 970, (946w), 865s, 847sh, 809s, 791sh, 667w, 564sh, (491w), 474, 396, 368sh, 347sh, 317, 307sh, 249w, 218w.
- Source: Ciesielczuk et al. (2016).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Phillipsite-K K $_6(Si_{10}Al_6)O_{32}$ ∙12H₂O

Origin: Capo di Bove, Rome province, Latium, Italy (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 815, 743, 472s, 424sh, 187w.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Philolithite $Pb_{12}O_6Mn_7(SO_4)(CO_3)_4Cl_4(OH)_{12}$

Origin: Långban, Värmland, Sweden (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): A group of bands around 3400 cm^{-1} , 1122 , 1111 , 1073 , 1011 , 420 . Source: Kampf et al. (1998).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Phlogopite $KMg_3(AlSi_3O_{10})(OH)_2$

Origin: Arendal Fe Mines, Aust-Agder, Norway.

Experimental details: Micro-Raman scattering measurements have been performed on a single crystal using a 514.5 nm Ar^+ laser. Sample orientation is not indicated.

Raman shifts (cm⁻¹): (1024), (1000), 675s, 650, 273, 190s, 97.

```
Source: Tlili et al. (1989).
```
Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of phlogopite see also McKeown et al. (1999), Tlili and Smith (2007), and Frezzotti et al. (2012).

Phoenicochroite $Pb_2(CrO_4)O$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 647.1 nm Kr^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 849, 838, 826s, 382, 356w, 343, 333w, 324.

Source: Roncaglia et al. (1985).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of phoenicochroite see also Frost (2004c).

Phosgenite $Pb_2(CO_3)Cl_2$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was ≤ 30 mW.

Raman shifts (cm⁻¹): 1063s, 668, 281, 252, 181w, 154, 129, 87s, 81, 53, 47s.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of phosgenite see also Frost et al. (2003j) and Frost and Williams (2004).

Phosphammite $(NH_4)_2(PO_3OH)$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed at 260 K on crystals in a sealed glass cell using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was between 0.1 and 0.2 mW.
- **Raman shifts (cm⁻¹):** 3200sh, 3048s, 2805s, 2203, 1948, 1743, 1720, 1696, 1441w, 1404, 1094w, 1062w, 1052w, 997w, 949s, 900, 856w, 565, 557, 522, 510w, 400, 380.

Source: Hadrich et al. (2000).

Comments: No independent analytical data are provided for the sample used.

Phosphohedyphane $Ca_2Pb_3(PO_4)_3Cl$

Origin: Root (Bonanza Hill) mine, Goodsprings district, Spring Mts., Clark Co., Nevada, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): (3421), 3395, 3344, 1226w, 1188w, (1084), 1073, (1030), (980), 975s, (966), 933s, 835, 812w, 595, 577sh, 557, 437s, (421), 400, 208, 148, 113sh, 106.

Source: Frost et al. (2014w).

Comments: No independent analytical data are provided for the sample used.

Phosphophyllite $Zn_2Fe^{2+}(PO_4)_2$ ∙4H₂O

Origin: Hagendorf South pegmatite, Bavaria, Germany.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3567s, (3561), 3362sh, 3258, 3146, (3034), 1603, (1571), 1135, 1073, 995s, 939, 744w, 633, 592, 571sh, 505, 415, 322, (297), 269, 199, 181sh, 142, 130sh, 119.
- Source: Scholz et al. (2013a).
- Comments: The sample was characterized by qualitative electron microprobe analyses. No independent quantitative analytical data are provided.

Phosphosiderite $Fe^{3+}(PO_4)$ ∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 1032sh, 1000sh, 988s, 570w, 485sh, 447, 330sh, 302, 258, 200, 126w, 70. Source: Zaghib and Julien (2005).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of phosphosiderite see also Frost et al. (2004l).

Phosphuranylite KCa $(H_3O)_3(UO_2)_7PO_4$ ₄.04⋅8H₂O

Origin: Bedford, Westchester Co., New York, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 647.1 nm Kr^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1034, 981, 827s, 398, 264, 237.

Source: Faulques et al. (2015a, b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of phosphuranylite see also Frost et al. (2008a) and Driscoll et al. (2014).

Phurcalite $Ca_2(UO_2)_3O_2(PO_4)_2·7H_2O$

Origin: Posey mine, Red Canyon, White Canyon district, San Juan Co., Utah, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. Thel aser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3613w, 3538w, 3421, (3238), 1769w, 1615w, 1155w, 1118sh, 1108, 1059, (1009), 1004s, 995sh, 969, 960, 950sh, 864w, (819), 810, (800), 546, (434), 431, 408, 391sh. Source: Čejka et al. (2014b).
- Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron microprobe analysis.

Pickeringite $MgAl₂(SO₄)₄·22H₂O$

Origin: San Bernadino Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3449, 3279, 3082sh, 1145w, 1114w, 1071w, (990), 986s, 975, 621, 530, 468, 424, 344w, 315, 221.

Source: Locke et al. (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Picromerite K₂Mg(SO₄)₂⋅6H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 253.65 nm radiation of mercury. The incident light was normal to the (110) face and the scattered light was taken parallel to the (110) face and roughly perpendicular to the (001) face. The radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3344, 3308s, 3250, 3150, 1234w, 1156, 1129s, 1111, 1082s, 990s, 835w, 792w, 767w, 632, 614, 462s, 448s, 372, 320w, 305w, 269w, 225, 177, 136, 115, 93w, 74, 62, 46. Source: Ananthanarayanan (1961).
- Comments: The sample was characterized by morphological features. For the Raman spectrum of picromerite see also Bouchard and Smith (2003).

Picropharmacolite Ca₄Mg(AsO₃OH)₂(AsO₄)₂∙11H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power was below 0.1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3448, 3212, (2922), 980, 866s, 750, 530, 460, 397, 325, 230.

Source: Frost and Kloprogge (2003).

Comments: No independent analytical data are provided for the sample used.

Pieczkaite $Mn_5(PO_4)_3Cl$

Origin: Cross Lake pegmatite field, Manitoba, Canada (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The nominal laser radiation power was between 5 and 12.5 mW.

Raman shifts (cm⁻¹): 1095s, 1000sh, 960sh, 795w, 560s, 480sh.

Source: Tait et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Piemontite $Ca_2(Al_2Mn^{3+})[Si_2O_7][SiO_4]O(OH)$

Origin: Prabornaz (Praborna) mine, Saint-Marcel, Aosta Valley, Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 916s, 886s, 601, 565, 453s, 350s, 244, 172.

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used.

Pigeonite (Mg,Fe,Ca)₂Si₂O₆

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal in a polished thin section using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was ≤ 1 mW.

Raman shifts (cm⁻¹): ~1035, ~1010, 685s, ~665, ~415, ~400, ~385w, 341s, ~300w, ~240. Source: Tribaudino et al. (2011).

Comments: The Raman shifts are given for a Fe-free sample with the diopside to enstatite ratio of 15:85. In the cited paper Raman spectra of natural pigeonite samples with different Fe:Mg ratios are given.

Pilsenite Bi₄Te₃

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film grown on Si (111) substrate using 532 nm Nd-YAG laser radiation. The material grew along its c-axis. The nominal laser radiation power was 2 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 204, 183w, 115, 101sh, 88s, 57, 37.

Source: Xu et al. (2015a).

Comments: The sample was characterized by X-ray diffraction data.

Pilsenite Bi_4Te_3

Origin: Panarechensk volcanic-tectonic formation, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm^{-1}) : 204w, 171-174, 131sh-133, 97-106s, 81.

Source: Voloshin et al. (2015a).

Comments: The samples used were characterized by electron microprobe analyses.

"Pimelite" Ni₃Si₄O₁₀(OH)₂⋅4H₂O

Origin: Falcondo mine, Bonao, La Vega province, Dominican Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 822, 735w, 675s, 640, 386, 362, 188s.

Source: Villanova-de-Benavent et al. (2012).

Comments: No independent analytical data are provided for the sample used.

Pinakiolite $(Mg, Mn)_2(Mn^{3+},Sb^{5+})O_2(BO_3)$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts $(cm⁻¹)$ **:** See comment below.

Source: Frost (2011b).

Comments: All Raman spectra of presumed orthoborates (azoproite, fredrikssonite, pinakiolite and takéuchiite) given in the cited paper are almost identical and correspond to calcite. In particular, for "pinakiolite" the following Raman shifts have been determined: 1748w, 1435w, 1086s, 712, 283, 154. The correct Raman shifts of pinakiolite are (RRUFF (2007), sample R050636; cm^{-1}): 686s, 644s, 550sh, 445, 391w, 352w, 322, 280, 200w, 153.

Pinnoite $MgB_2O(OH)_6$

Origin: Inder boron deposit, Atyrau region, Kazakhstan.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3579s, (3569), 3554s, (3415w), 3399s, 3290, 3179, (3085w), 1320, 1299, 1260, 1186, 1157, 1140sh, 1049, 1020, 945, 900s, 875, (799w), 745, 630, 605, (594w), 578, 538sh, 524, 508, 491w, 480, 468sh, 403sh, 388, 375, 357, (338), 288, 273, 260w, 230, 209sh, 193, 180, 172w, 143, 126.

Source: Frost and Xi (2014).

Comments: No independent analytical data are provided for the sample used.

Pirssonite Na₂Ca(CO₃)₂⋅2H₂O

Origin: Green River formation, Sweetwater Co., Wyoming, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3502, 3065, 1070s, 717, 659, 298, 253, (199), 126.

Source: Frost and Dickfos (2007b).

Comments: No independent analytical data are provided for the sample used.

Pitticite $[Fe, AsO₄, SO₄, H₂O]$ (?)

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3490, 3327, 3186, (3060), (2723), (1182w), 1096, 916sh, 845+837s (unresolved doublet?), 617w, (504), 457, 428, 401sh, 372w, 349sh, 335, 322, 309, 297sh, 278, 260, 236, 221sh, 207w, 194w, 181w, 166w, 131sh, 118+111 (unresolved doublet?).

Source: Frost et al. (2012l).

Comments: No independent analytical data are provided for the sample used.

Plancheite $Cu_8(Si_4O_{11})_2(OH)_4·H_2O$

Origin: Tsumeb mine, Tsumeb, Namibia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts** $(cm⁻¹)$ **:** See comment below.

Source: Frost and Xi (2012d).

Comments: No independent analytical data are provided for the sample used. The Raman and IR spectra of presumed plancheite given in the cited paper are wrong and correspond to a carbonate. The correct Raman shifts of plancheite are (RRUFF (2007), sample R070233; cm^{-1}): 780, 674s, 553, 499, 441s, 400, 336, 328sh, 316, 262, (248), (239).

Plášilite Na(UO2)(SO₄)(OH)∙2H₂O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm diode-pumped solid-state laser radiation. The nominal laser radiation power was 3 mW.
- **Raman shifts (cm⁻¹):** 3600, 3520, 3385w, 1180, 1069w, 1035, 997, 986.5, 905w, 838s, 824, 645w, 603, 480, 445, 349, 243, 210, 186, 170.

Source: Kampf et al. (2015a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Platarsite PtAsS

Origin: Munni complex, west Pilbara block, Westem Australia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in a polished section using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was between 1 and 10 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 427, 350s, 291, 283, 253, 214.

Source: Mernagh and Hoatson (1995).

Comments: The sample was characterized by electron microprobe analyses.

Platinum Pt

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): \sim 220, \sim 185, \sim 170, \sim 155. Source: Vermaak (2005).

Plattnerite $PbO₂$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a pressed disc using 632.8 nm laser radiation. The laser radiation power at the sample was 0.27 mW.
- **Raman shifts (cm⁻¹):** 424w, 515s, 653w.

Source: Burgio et al. (2001).

Comments: Plattnerite slowly decomposes under the laser beam. For the Raman spectrum of plattnerite see also Inguanta et al. (2008).

Plavnoite K_{0.8}Mn_{0.6}[(UO₂)₂O₂(SO₄)]∙3.5H₂O

Origin: Jáchymov, Krušné Hory (Ore Mts.), Bohemia, Czech Republic (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm diode laser radiation. The laser radiation power at the sample was about 2 mW.
- **Raman shifts (cm⁻¹):** 3533, 3385w, 1630w, 1106, 1027, 817s, 502, 475, 435, 377w, 348w, 292, 267, 229, 164s, 129w, 106w.

Source: Plášil et al. (2017).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Plimerite $\text{ZnFe}^{3+}(PO_4)_3(OH)_5$

- Origin: Huber open pit, Huber stock, Krásno, Horní Slavkov, Karlovy Vary region, Bohemia, Czech Republic (type locality).
- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532.2 nm laser radiation. The nominal laser radiation power was 5 mW.

Source: Sejkora et al. (2011).

Raman shifts (cm⁻¹): ~3590, 3228 (broad), 1600w, (1164), 1118s, (1098w), (1079), 1051s, 1014s, 993, 964, 930sh, 774w.

Plombièrite Ca₄Si₆O₁₆(OH)₂(H₂O)₂⋅(Ca⋅5H₂O)

Origin: Crestmore quarry, north of Riverside, Riverside Co., California, USA.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in nearly backscattered geometry using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 1.5 mW.

Raman shifts (cm⁻¹): 1057sh, 1025, 996, 680sh, 664s.

Source: Biagioni et al. (2013b).

Comments: The sample was characterized by powder X-ray diffraction data.

Plumbogummite $PbAl₃(PO₄)(PO₃OH)(OH)₆$

Origin: Guochengmine, Yangshuo, Guangxi province, China.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3602sh, 3479, (3372), 3249, (3121), (1182w), 1106s, (1057), 1023s, (1002), 980s, (971w), (826w), (634w), 613, 579sh, 507, (494), 464, 388sh, 368, 281sh, 251s, 187, (163w), 145.

Source: Frost et al. (2013l).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Plumbojarosite $Pb_{0.5}Fe^{3+}{}_{3}(SO_4)_{2}(OH)_{6}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a sample diluted with KBr powder and compressed to form a disk. A 514.5 nm $Ar⁺$ laser was used. The laser radiation power at the sample was 38 mW.

Raman shifts (cm⁻¹): 1169w, 1120sh, 1108, 1015sh, 1002, 623, 583w, 452sh, 440s, 341w, 221. Source: Sasaki et al. (1998).

Comments: The sample was characterized by powder X-ray diffraction data and chemical analyses. For the Raman spectra of plumbojarosite see also Frost et al. (2006r) and Spratt et al. (2013).

Plumbophyllite Pb₂Si₄O₁₀⋅H₂O

- Origin: Blue Bell mine, Soda Mts, Silver Lake District, San Bernardino Co., California, USA (type locality).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3567sh, 3494+3470 (unresolved doublet?), (3443), 3215w, 1153w, 1137w, 1095w, (1039), 1027s, 972, 956, 926, (657), 643s, (634), 506w, (500w), 485w, 438w, 409w, (398w), 381, (368w), 349sh, 332, 309, 253, 203sh, 182, (155), 147s, 112.

Source: Frost et al. (2014t).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Plumbotsumite $Pb_{13}(CO_3)_6(Si_{10}O_{27})$.3H₂O

Origin: St. Anthony deposit, Mammoth district, Pinal Co., Arizona, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 4620w, 3546, 3510w, 2950w, 2720w, 2674sh, 1744w, 1732sh, 1716w, (1709), 1685w, 1479, 1424, 1379, 1333sh, 1084w, 1060sh, 1055s, 1047, 844sh, 839, 772w, 729w, 697, 683, 673sh, 636w, 609, 581sh, 481, 458, 432w, 396, 346w, 288sh, 280w, 246, 227, 179, 154+143s (unresolved doublet?), 107+103 (unresolved doublet?).

Source: López et al. (2013a).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Poitevinite Cu(SO₄)⋅H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1204, 1097, 1043.5s, 1014s, 669, 620.5, 607, 515, 419, 345, 268, 244, 207.5, 130w, 105w.

Source: Fu et al. (2012).

Pokrovskite $Mg_2(CO_3)(OH)_2$

Origin: Lytton, Sonoma Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3556w, 3444, 1582, 1452, 1386, 1088s, 929, 734, 703w, 521w, 446w, 402, 282, 172, 143.

Source: Frost (2006).

Comments: No independent analytical data are provided for the sample used.

Poldervaartite $Ca(Ca, Mn)(SiO₃OH)(OH)$

Origin: N'Chwaning IImine, Kalahari manganese fields, South Africa (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3547, 3521sh, 3509, (3502w), 3487, 952, (943w), 917, (907), 900, (865), 852s, 807, 792sh, 528sh, 513, (498w), 485, 473sh, 245w, 239w, 213, 203, 163sh, 153s, (148), (145), (116), 109, 104.

Source: Frost et al. (2015g).

Comments: The sample was characterized by qualitative electron microprobe analysis which may correspond to olmiite.

Pollucite $Cs(Si₂Al)O₆·nH₂O$

Origin: Auburn, Androscoggin Co., Maine, USA.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW.

Raman shifts (cm⁻¹): 1109, 478s, 393, 299.

Source: Mozgawa (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Polycrase-(Y) $Y(Ti, Nb)_{2}(O, OH)_{6}$

Origin: No data.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** ~1480w, ~1420w, ~1130w, ~1080w, ~845, ~695, ~530w, ~400s, ~280s, \sim 225s.

Source: Tomašić et al. (2004).

Comments: The Raman shifts are given for an initially metamict sample heated at 1000° C to regain its crystal structure. The sample was characterized by powder X-ray diffraction data and chemical analyses.

Polydymite $Ni^{2+}Ni^{3+}{}_{2}S_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on grains in a Ni-based composite after exposure to an H_2S -containing fue 1514 nm laser radiation was used. The nominal laser radiation power was 40 mW.

Raman shifts (cm⁻¹): 379, 337, 287s, 223.

Source: Cheng and Liu (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Polyhalite K₂Ca₂Mg(SO₄)₄⋅2H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
- **Raman shifts (cm⁻¹):** 3437, 3288w, 1181w, 1165, 1144w, 1130, 1094w, 1069, 1014s, 987s, 652w, 641w, 626, 620sh, 477sh, 464, 448, 436.

Source: Jentzsch et al. (2012a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of polyhalite see also Jentzsch et al. (2013).

Popovite $Cu₅O₂(AsO₄)₂$

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation power at the sample was \sim 9 mW.

Raman shifts (cm⁻¹): 846s, 810s, 642, 547, 489, 478w, 427, 377w, 344, 281, 258w, 212, 128, 97s. Source: Pekov et al. (2015b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Portlandite $Ca(OH)_2$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 10 mW.
- **Raman shifts (cm⁻¹):** 3620s, ~680 (broad), 356s, 252.

Source: Schmid and Dariz (2015).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of portlandite see also Lutz et al. (1994).

Posnjakite $Cu₄(SO₄)(OH)₆·H₂O$

Origin: Ozernyi district, Sallo-Kuolajarvi, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 3587s, 3566s, 3400, 971s, 620sh, 607, 594, 508, 479, 449w, 418w, 387, 316w, 241w, 194w, 136, 88s.

Source: Voloshin et al. (2015b).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of posnjakite see also Martens et al. (2003a), Frost et al. (2004n), and Lepot et al. (2006).

Potarite PdHg

Origin: Munni Munni layered intrusion, West Pilbara Block, Western Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented grains in a polished section using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was between 1 and 10 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 362, 340s, 285, 254.

Source: Mernagh and Hoatson (1995).

Comments: The sample was characterized by electron microprobe analyses.

Pottsite $(Pb_3Bi)Bi(VO_4)_4·H_2O$

Origin: Las Tapias, Cordoba province, Argentina.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 2912w, 885, 874, 707, 643, 465, 413s, 404, 370, 348, 331, 264w, 204, 185. Source: Frost et al. (2006i).

Comments: No independent analytical data are provided for the sample used.

Poubaite $PbBi₂(Se,Te, S)₄$

Origin: Ozernyi district, Salla-Kuolajarvi, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts (cm⁻¹): 139, 102s, 59.

Source: Voloshin et al. (2015a).

Comments: The samples used were characterized by electron microprobe analyses.

Poudretteite $KNa_2(B_3Si_{12})O_{30}$

Origin: Mogok valley, Shan State, Myanmar.

- Experimental details: Raman scattering measurements have been performed on a fragment of a single crystal with the beamdirection parallel to the c -axis using 325 nm laser excitation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1799w, 1660w, 1556w, 1176s, 1147, 1045w, 1011, 928, 908w, 849w, 788, 696, 662, 594w, 552s, 490s, 429w.
- Source: Smith et al. (2003).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Poughite $Fe^{3+}(Te^{4+}O_3)_2(SO_4)·3H_2O$

Origin: Wendy Pit, El Indio gold mine, Coquimbo, Chile.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts

have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3509, 3481, (3477w), 2330, 2231, 2155, 1926w, 1793, 1706, 1582, 1335, 1187w, 1152w, 1078, 1026s, (1022), (655), 653s, 561, 509, 485, 382, 347, 236s, (234), 163, (161). Source: Frost and Keeffe (2008c).

Comments: No independent analytical data are provided for the sample used.

Povondraite $\text{NaFe}^{3+}{}_{3}(\text{Fe}^{3+}{}_{4}\text{Mg}_2)(\text{Si}_6\text{O}_{18})(\text{BO}_3)_{3}(\text{OH})_{3}\text{O}$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed using 488 or 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 14 mW. Polarized Raman spectra were collected from raw crystal surfaces in the spectral range 15–4000 cm⁻¹ in -y(zz)y, -y(zx)y, and $-y(xx)y$ scattering geometries.
- **Raman shifts (cm⁻¹):** ~3555, ~990, ~800w, ~670w, ~625w, ~545, ~460, ~430, ~400w, ~315, ~280s, \sim 230s, \sim 165, \sim 140w.

Source: Watenphul et al. (2016a, b).

Comments: The Raman shifts are given for the scattering geometry $-y(zz)y$.

Powellite $Ca(MoO₄)$

Origin: Dundas, Tasmania, Australia.

Experimental details: Raman scattering measurements have been performed on crystals oriented to provide maximum intensity using a 785 nm Nd-YAG laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 879, 847, 794, 513, 456, 403, 392, 324, 267.

Source: Frost et al. (2004c).

Comments: No independent analytical data are provided for the sample used.

Prehnite $Ca₂Al(Si₃Al)O₁₀(OH)₂$

Origin: Valtournanche, Aosta valley, Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1110w, ~1080w, 991, ~950, 931, ~640, ~600, 541, 520s, 388s, 318. Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used.

Preiswerkite $KFe^{2+3}(AISi_3O_{10})(OH)_2$

Origin: Liset, Selje, Sognog Fjordane, Norway.

Experimental details: Raman scattering measurements have been performed on oriented samples using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. The spectra were recorded with the electric field polarized perpendicular to the cleavage plane.

Raman shifts (cm⁻¹): 3628s, 3620, 916, 648s, 292s, 216s (Sample 8); 916, 679, 648s, 488, (400), (379), 330, 292s, (280), 216s, 156, 108 (Sample 9).

Source: Thili et al. (1989).

Comments: The samples were characterized by electron microprobe analyses. For the Raman spectra of preiswerkite see also Tlili and Smith (2007) and Orozbaev et al. (2011).

Pretulite $Sc(PO₄)$

Origin: Saint-Aubin-des-Châteaux, Armorican Massif, France.

Experimental details:Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 3 mW.

Raman shifts (cm⁻¹): 1079s, 1043, 1024s, 595w, 475, 326, 234, 186w.

Source: Moëlo et al. (2002).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. For the Raman spectrum of pretulite see also Giarola et al. (2011).

Příbramite $CuSbSe₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline film using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 226s, 200, 153, 114.

Source: Xue et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data.

Priceite $Ca₂B₅O₇(OH)₅·H₂O$

Origin: 20-Mule-Team Canyon, Furnace Creek district, California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm^{-1}) : 3669, 3579sh, 3555s, 3510sh, 3496, 3468sh, 3404, 3385sh, 3221w, 1211, 1169w, 1127, 1100w, 1071, 1019, 991, 974sh, 956, 927w, 894, 842, 826, 736, (697), 689s, 674s, (660), 634, 602, 563sh, 545s, 511w, 481sh, 471, 450w, 433w, 409w, 387w, 368, 353sh, 306, 287sh, 266sh, 253, 231, 217w, 195, (183), 173, 148sh, 138, 129sh, 109.

Source: Frost et al. (2015l).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Priderite Mg-analogue $K_2(T_i/Mg)O_{16}$

Priderite Al-analogue $K_2(Ti_6Al_2)O_{16}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on oriented single crystals using 488 and 514.5 nm Ar⁺ laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 840, 702, 690, 635, 610, 550, 505, 497, 460, 455, 370, 350, 344, 331, 260, 193, 144, 123 (for the priderite Al analogue); 840, 710, 700, 640, 623, 580, 511, 463, 461, 380, 375, 360, 350, 285, 210, 152, 131 (for the priderite Mg analogue).

```
Source: Ohsaka and Fujiki (1982).
```
Comments: The empirical formulae of the samples used are $K_{1.6}(Ti_{7.2}Mg_{0.8})O_{16}$ and $K_{1.6}(Ti_{6.4}Al_{1.6})$ O_{16} . The intensities are given for the α_{zz} polarization.

Priderite Cr-analogue $(K,Ba)_{2-x}$ $(Ti_6Cr_2)O_{16}$

Origin: Gföhl granulite, Bohemian massif, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain using 532 nm laser radiation. The laser radiation power at the sample was 1.4 mW.

Raman shifts (cm^{-1}) : 800sh, 685s, 620, 545w, 350, 277, 195w, 150.

Source: Naemura et al. (2015).

Comments: The sample was characterized by electron microprobe analyses.

Prismatine $(Mg, A1, Fe)_6A1_4(Si, Al)_4(B, Si, Al)(O, OH, F)_{22}$

Origin: Madagascar.

- Experimental details: Methods of sample preparation are not described. Micro-Raman scattering measurements have been performed on a single crystal using 514.5 nm Ar⁺ laser radiation with the polarizationdirection parallel to the crystal elongation. The laser radiation power at the sample was 5 W. A 180-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3615w, 3556, 1120w, 1028s, 973s, 864, 803, 760w, 610, 537, 459, 384, 286, 260s.

Source: Wopenka et al. (1999).

Comments: The sample contains 0.86 boron atoms per formula unit.

Proustite Ag_3AsS_3

Origin: Jáchymov, Krušné Hory (Ore Mts.), Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on a polished crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 1.7 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 364s, 337, 315sh, 274w.

Source: Kharbish et al. (2009).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of proustite see also Byer et al. (1973) and Makreski et al. (2004).

Pseudoboleite $Pb_{31}Cu_{24}Cl_{62}(OH)_{48}$

Origin: Siklverton Barrier Range, New South Wales, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3467, 3434, 3350, 3330, 973w, 908w, 817w, ~680s, 584, 512, 449, (388), (236), (179), 148s, 137s.

Source: Frost and Williams (2004).

Comments: No independent analytical data are provided for the sample used.

Pseudobrookite $(Fe^{3+}_2)TiO_5$

Origin: Marion Island, Hawaiian archipelago.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was between 2.5 and 40 mW.
- **Raman shifts (cm⁻¹):** 1334, 660s, 507w, 411w, 340, 226s, 200s.

Source: Prinsloo et al. (2011).

Comments: For the Raman spectra of pseudobrookite see also Bersani et al. (2000) and Wang et al. (2016).

Pseudocotunnite K_2PbCl_4 (?)

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹): ~230.$ Source: Oyamada (1974).

Pseudojohannite Cu₃(OH)₂[(UO₂)₄O₄(SO₄)₂]∙12H₂O

- Origin: Rovnost shaft, Jáchymov uranium deposit, Krušné Hory (Ore Mts.), Western Bohemia, Czech Republic (type locality).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3483w, (3353), (3226), 1625w, 1554w, 1333w, 1100, 1017, 810+805s (unresolved doublet?), 755sh, 539sh, 496, 465, 423s, 279, 210, 162+151 (unresolved doublet?). Source: Frost et al. (2009h).

Comments: The sample was characterized by electron microprobe analyses.

Pseudolaueite $Mn^{2+}Fe^{3+}{}_{2}(PO_4)_{2}(OH)_2·7-8H_2O$

Origin: Hagendorf South pegmatite, Bavaria, Germany.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3593sh, 3485, 3376, 3209w, 3110sh, 1123s, 1066w, 1046, (1034), 1000+993s (unresolved doublet?), 976, 843, 643, 626sh, (565), 501, (485), 471s, 456sh, 435, 408, 373w, 332, 303, 286, 271, 249, 223, 215, 201s, 189, 183, 164.

```
Source: Frost et al. (2015ac).
```
Comments: The sample was characterized by qualitative electron microprobe analysis.

Pseudomalachite $Cu₅(PO₄)₂(OH)₄$

Origin: Banská Bystrica, central Slovakia.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 17 mW. A 180°-scattering geometry was employed. Polarized spectra were collected with E||b and E⊥b.
- Raman shifts (cm^{-1}) : 3414, 1137w, 1112w, 1083, 1055, 996sh, 971, 945sh, 861w, 801w, 750, (703w), (664w), 750, 703w, (664w), (639w), 606, 539sh, 515, 477s, 446s, 412, 297, 254w, 241, 214, 209, 174s, 131s, 109s, 86s (for E⊥b).

Source: Kharbish et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of pseudomalachite see also Frost et al. (2002a, g), Bouchard and Smith (2003), Majzlan et al. (2015), and Ciesielczuk et al. (2016).

Pseudowollastonite CaSiO₃

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been using 488 or 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 500 mW.
- **Raman shifts (cm⁻¹):** 1075, 989s, 932, 714w, 580s, 558, 511, 428w, 373s, 341, 327, 315, 301, 217w, 193, 167.

Source: Richet et al. (1998).

Comments: The sample was characterized by powder X-ray diffraction data.

Pucherite $Bi(VO₄)$

Origin: Pucher shaft, Schneeberg, Germany (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1002, (881), 872s, 710w, 693w, 647w, 415, 372s, 346, 333s, 256, 224, 196, 188.

Source: Frost et al. (2006i).

Comments: No independent analytical data are provided for the sample used.

Pumpellyite-(Al) Ca₂Al₃(Si₂O₇)(SiO₄)O(OH)∙H₂O

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm He-Ne or 325 nm He-Cd laser radiation. The laser radiation power at the sample was 5 mW.

Origin: New Caledonia.

Raman shifts (cm⁻¹): 1092w, 1015, 1002, 984, 957w, 922, 865, 816, 764w, 696s, 646w, 610, 589, 535, 508s, 480, 459, 429s, 361, 322, 293, 227, 208, 187, 172, 154, 135.

Source: Krenn et al. (2004).

Comments: The sample was characterized by electron microprobe analyses.

Pyrargyrite Ag_3SbS_3

Origin: Jáchymov, Krušné Hory (Ore Mts.), Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on a polished crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 1.7 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 323s, 300, 274sh, 252sh.

Source: Kharbish et al. (2009).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of pyrargyrite see also Byer et al. (1973), Nilges et al. (2002), and Makreski et al. (2004).

Pyrite $FeS₂$

- Origin: Guinaoang, NW Luzon, Philippines (isotropic variety) and Pine Creek, Northern Territory, Australia (anisotropic variety).
- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was between 1 and 10 mW. A 180°-scattering geometry was employed.
- **Raman shifts** (cm^{-1}) **:** 446, 387s, 353s (for the isotropic variety); 428, 377s, 342s (for the anisotropic variety).

Source: Mernagh and Trudu (1993).

Comments: The samples were characterized by electron microprobe analyses. For the Raman spectra of pyrite see also Kleppe and Jephcoat (2004), White (2009), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Pyroaurite $Mg_6Fe^{3+}{}_{2}(CO_3)(OH)_{16}$ ∙4H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.12 nm Nd-YAG laser radiation. The laser radiation power at the sample was about 40 mW.

Raman shifts (cm⁻¹): See comments below.

Source: Rozov et al. (2010).

Comments: Raman spectra of the members of the hydrotalcite-pyroaurite series containing less than 1 Fe atom per formula unit contain bands at \sim 3500, \sim 1380, \sim 1060 and \sim 545s cm⁻¹. In the spectrum of the sample with the approximate formula $Mg_6(AIFe^{3+})(CO_3)(OH)_{16}$ ⁴H₂O, the only band at \sim 545 cm⁻¹ is observed. Measurements with greater Fe contents were precluded by fluorescence.

Pyrochroite $\text{Mn}^{2+}(\text{OH})_2$

Origin: A sediment-hosted Mn deposit, Mesoarchean Mozaan Group, Pongola Supergroup, South Africa.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 635, 330.

Source: Ossa et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Pyrolusite $MnO₂$

Origin: Kisenge Mine, Zaire.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 244 nm laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 666w, 610, ~550s, ~525s, 482, 384.

Source: Kim and Stair (2004).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of pyrolusite see also Julien et al. (2004).

Pyromorphite $Pb_5(PO_4)_3Cl$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using Nd-YAG laser radiation. The laser radiation power at the sample was 300 mW. Source: Bajda et al. (2011).

- **Raman shifts (cm⁻¹):** 1047w, 1012w, 984w, 945s, 920s, 813s, 781w, 764sh, 577w, 553, (548), (434w), 411, 392, 334, 324sh.
- **Comments:** The empirical formula of the sample used is $Pb_5[(PO_4)_{2,4}(AsO_4)_{0,6}]C1$. The bands in the ranges 750–820 and 320–350 cm^{-1} correspond to arsenate groups. For the Raman spectra of pyromorphite see also Levitt and Condrate Sr (1970), Bartholomäi and Klee (1978), Botto et al. (1997), Bouchard and Smith (2003), and Coccato et al. (2016).

Pyromorphite As-rich $Pb_5(PO_4, AsO_4)_3Cl$

Origin: Bunker Hill Mine, Kellogg, Idaho, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3444, 3378, 3325, 3291, 3256, 1014, 979, 944, 943, 920, 917, 825, 818, 815s, 776, 768, 573, 549, 433, 414, 409, 391, 388, 377, 344, 339, 318, 206, 186, 177, 152, 111, 105. Source: Frost et al. (2007c).

Comments: No independent analytical data are provided for the sample used.

Pyrope $Mg_3Al_2(SiO_4)_3$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline grain using Ar^+ laser radiation. The laser radiation power at the sample was between 5 and 50 mW.

Raman shifts (cm⁻¹): 1064, 928s, 910sh, 868, ~690w, 648, 562, 512w, 492w, 382sh, 364, 340w, 320w, 218w, 210.

Source: McMillan et al. (1989).

Comments: The sample was characterized by 27 A1 MAS NMR spectroscopy. For the Raman spectra of pyrope see also Mingsheng et al. (1994), Kolesov and Geiger (1998), Bersani et al. (2009), Frezzotti et al. (2012), Andò and Garzanti (2014), Gilg and Gast (2015), and Du et al. (2017).

Pyrophanite $Mn^{2+}TiO_3$

Origin: Perkupa evaporite mine, Bódva valley, inner Western Carpathians, Hungary.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 12 mW. Raman shifts (cm^{-1}) : 684s, ~600w, 466, 360, 334, 263, 235w, 202, 164.

Source: Zajzon et al. (2013).

Comments: The sample was characterized by electron microprobe analyses.

Pyrophyllite $\text{Al}_2\text{Si}_4\text{O}_{10}(\text{OH})_2$

Origin: York Spring, Pennsylvania, USA.

Experimental details: No data.

Raman shifts (cm⁻¹): 3670s, 707s, 360, 261s, 193s.

Source: Wang et al. (2015)

Comments: Only the strongest Raman bands are indicated in the cited paper. The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of pyrophyllite see also Wada and Kamitakahara (1991).

Pyrosmalite-(Fe) $Fe^{2+}{}_{8}Si_{6}O_{15}(OH)_{10}$

Origin: Cannington mine, McKinlay Shire, Queensland, Australia. Experimental details: No data. **Raman shifts (cm⁻¹):** 1023s, 820, 767w, 740w, 663w, 614s, 468, 365w, 325, 193. Source: Dong and Pollard (1997). Comments: The sample was characterized by quqlitative electron microprobe analysis.

Pyrosmalite-(Mn) $Mn^{2+}8Si_6O_{15}(OH,Cl)_{10}$

Origin: A Zn-Pb-Ag sulfide deposit art Dugald River, NW Queensland, Australia.

Experimental details: Micro-Raman scattering measurements have been performed on an inclusion in quartz using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 615s, 696w, 803, 1020.

Source: Xu (1998).

Comments: No independent analytical data are provided for the sample used.

Pyroxmangite $Mn^{2+}SiO₃$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532.2 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~995s, ~915w, ~810w, ~660s, ~535, ~390, ~307.

Source: Wang et al. (2001a).

Comments: No independent analytical data are provided for the sample used. Another sample shows a doublet $965+995$ cm⁻¹.

Pyrrhotite $Fe₇S₈$

Origin: A dolerite sill, Siberian Precambrian platform, eastern Siberia, Russia.

Experimental details: Micro-Raman scattering measurements have been performed on arbitrarily oriented inclusions in halite using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 372-378s, 339-342.

Source: Grishina et al. (1992).

Comments: The samples were characterized by electron microprobe analyses. For the Raman spectrum of pyrrhotite see also Lanteigne et al. (2012).

Qandilite $(Mg,Fe^{3+})_2(Ti,Fe^{3+},Al)O_4$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 730s, 605w, 517, 387, 325, 272sh, 235sh, 141w.

Source: De Lima (2016).

Comments: A Fe-free sample was used. The sample was characterized by powder X-ray diffraction data.

Qingheiite $Na₂MnMgAl(PO₄)₃$

- Origin: Santa Ana Pegmatite, Totoral pegmatitic field, Coronel Pringles department, San Luis, Argentina.
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1136+1140w (unresolved doublet?), 1130w, 1106w, 1083, 1068w, 1058w, 1047w, 1021, 980s, 964sh, 945sh, 690w, 644w, 606, 572, 504w, 472w, 453w, 420w, 369w, 308w, 280w, 229w, 217w, 167sh, 152w, 143sh.

Source: Frost et al. (2013d).

Comments: The sample was characterized by electron microprobe analyses.

Qingsongite BN

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using 244 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1304, 1055s.

Source: Reich et al. (2005).

Comments: The sample was produced from commercial hexagonal BN by nucleation under high pressure (4.2 GPa) and temperature (1800–1900 K) using a MgBN catalyst system.

Quadridavyne $[(Na,K)_6Cl_2][Ca_2Cl_2][(Si_6Al_6O_{24})]$

Origin: Monte Somma caldera, Somma-Vesuvius complex, Napoli, Campania, Italy (type locality). Experimental details: No data.

Raman shifts (cm⁻¹): See comments below.

Source: Binon et al. (2004).

Comments: In the cited paper only ranges of Raman bands are indicated (2400–3700, 1050–1100, and 980–990 cm⁻¹). The precise Raman shifts of quadridavyne are (RRUFF R141084, cm⁻¹): 1047s, 985w, 966w, \sim 757w, 657, 471s, 425, 286 (λ = 532 nm).

Quartz $SiO₂$

Origin: Spruce Claim, King Co., Washington, USA.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 150 mW.

Raman shifts (cm⁻¹): 1231w, 1160w, 1083w, 808w, 697w, 463s, 401w, 354, 263w, 205, 128. Source: Jasinevicius (2009).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of quartz see also Hemley (1987a, b), Lepot et al. (2006), Ling et al. (2011), Ciobotă et al. (2012), Frezzotti et al. (2012), and Karwowski et al. (2013).

Quenstedtite $Fe^{3+}{}_{2} (SO_4)_{3}$ ∙11H₂O

Origin: Allan Hills 77005 martian meteorite.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.3 nm Nd-YAG laser radiation. The nominal laser radiation power was ≤ 6 mW. **Raman shifts (cm⁻¹):** 1130, 1107, 1024s, 985, 614w, 600, 479s, 308, 275s, 247, 157. Source: Kuebler (2013b).

Comments: No independent analytical data are provided for the sample used.

Quetzalcoatlite $Cu^{2+}{}_{3}Zn_{6}Te^{6+}{}_{2}O_{12}(OH)_{6}(Ag, Pb, \Box)Cl$

Origin: Vlue Bell mine, Soda Mts., Calofornia, USA (?).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

- **Raman shifts (cm⁻¹):** 754sh, 719+693s (unresolved doublet?), 606, 602sh, 477, 403sh, (364w), 319, (248), 197, 141s, 108s.
- Source: Frost and Dickfos (2009).

Comments: No independent analytical data are provided for the sample used.

Quintinite $Mg_4Al_2(OH)_{12}(CO_3)·3H_2O$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3545sh, 3465, 1586w, 1406sh, 1346s, 1061s, 1045sh, 974, 950, 859sh, 722s, 696w, 669, 627sh, 558, 483w, 179sh, 156s.

Source Frost and Dickfos (2007b).

Comments: Questionable data: in Figure 2 of the cited paper the band at 1061 cm^{-1} (a band of symmetric C–O-stretching vibrations that should be strong for a carbonate) is absent. No independent analytical data are provided for the sample used.

Quintinite Mg₄Al₂(OH)₁₂(CO₃)⋅3H₂O

Origin: Jacupiranga mine, Cajati, São Paulo, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3485, 3334sh, 3078sh, 1698w, 1440w, 1346sh, 1062s, 1046sh, 973, 833w, 698, (684), 559s, 484w, 401w, 367w, 308w, 183sh, 155.

Source: Theiss et al. (2015a).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Rabejacite $Ca_2[(UO_2)_4O_4(SO_4)_2](H_2O)_8$

Origin: Ranger No. 1deposit, Jabiru, Northern Territory, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3547+3465 (unresolved doublet), 1175w, 1123sh, 1086s, 1010s, 848, 832, $~1672, -620, -492, -415, -245w, -198, -181.$

Source: Frost et al. (2004g).

Comments: No independent analytical data are provided for the sample used.

Raguinite $TIFes₂$

Origin: Crven Dol, Allchar, Roszdan, Republic of Macedonia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 1.9 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 395, 377s, 367, 321, 306, 275, 206w, 190, 166w, 137, 126w, 102w. Source: Makreski et al. (2014).

Comments: The sample was characterized by electron microprobe analyses.

Rajite CuTe⁴⁺₂O₅

Origin: Lone Pine mine, Catron Co., New Mexico, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (775), 754s, 731s, 661sh, 652s, 603, 540, 459w, 430, 393w, 318, 299, 267w, 237, 204, 187s, 162, 146s, 127, or 740, 676, 592, 438s, 370, 347, 212.

Source: Frost et al. (2008h).

Comments: Questionable data. No independent analytical data are provided for the sample used. Two widely different Raman spectra are provided for rajite from New Mexico in the cited paper.

Ramanite-(Cs) $CsB_5O_6(OH)_4·2H_2O$

Origin: Island of Elba, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented inclusion in quartz using 488 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was about 30 mW.

Raman shifts (cm⁻¹): 907, 768, 548s, 462, 293, 98.

Source: Thomas et al. (2008).

Comments: The sample was characterized by electron microprobe analyses. The peak at 462 cm^{-1} is influenced by a strong Raman band of the quartz matrix. For the Raman spectrum of ramanite-(Cs) see also Frezzotti et al. (2012).

Ramanite-(Rb) RbB₅O₆(OH)₄⋅2H₂O

Origin: Island of Elba, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented inclusion in quartz using 488 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was about 30 mW.

Raman shifts (cm⁻¹): 914, 765, 554s, 508, 101.

Source: Thomas et al. (2008).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of ramanite-(Rb) see also Frezzotti et al. (2012).

Rambergite MnS

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 nm Ar^+ laser radiation. The laser radiation output power was 50 mW.

Raman shifts (cm^{-1}) : 473s, 288w, 221.

Source: Fernandez et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data.

Rameauite $K_2CaO_8(UO_2)_6·9H_2O$

Origin: Margnac mine, Compreignac, Haute-Vienne, Limousin, France.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm He-Ne laser radiation. The laser radiation power at the sample was about 4.5 mW.
- **Raman shifts (cm⁻¹):** 3450w (broad), 1635w, 813s, 791, 732sh, 578, 453, 363sh, 331, 298, 274, 260sh, 215w, 188, 139, 115w, 78.
- Source: Plášil et al. (2016b).
- Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Ramikite-(Y) $Li_4(Na,Ca)_{12}(Y,Ca,REE)_6Zr_6(PO_4)_{12}(CO_3)_4O_4[(OH),F]_4$

- Origin: Poudrette (Demix) quarry, Mont Saint-Hilaire, Rouville RCM (Rouville Co.), Montérégie, Québec, Canada (type locality).
- Experimental details: Raman scattering measurements have been performed from a face of single crystal using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3659w, 1117sh, 1088s, 1042sh, 1000s, 623, 568, 494, 405sh, 370s, 260, 183, 139w.
- Source: McDonald et al. (2013).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Ramsdellite MnO₂

Origin: An unknown locality in New Mexico, USA.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 12.5 mW. 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 775, 650s, 576s, 523s, 490, 392.

Source: Bernard et al. (1993a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of ramsdellite see also Julien et al. (2004) and Kim and Stair (2004).

Ranciéite (Ca,Mn²⁺)_{0.2}(Mn⁴⁺,Mn³⁺)O₂⋅0.6H₂O

Origin: Xiangguang Mn-Ag deposit, northern China.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 645s, 370w, 304w. **Source:** Fan et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Rankamaite $(Na,K)_{3}(Ta,Nb,Al)_{11}(O,OH)_{31}$

Origin: Urubu pegmatite, Itinga, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 948w, 876w, 805w, 633s, 328, 275, 239.
- Source: Atencio et al. (2011).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Rankinite $Ca₃Si₂O₇$

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation output power was between 30 and 50 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1048w, 1007, 971, 960, 947w, 891s, 671, 552, 507w, 472w, 450w, 347, 319w, 275w, 245w, 212w, 187, 140w.

Source: Galuskin et al. (2011c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Rapidcreekite Ca₂(SO₄)(CO₃)⋅4H₂O

Origin: Bahariya depression, Western Desert, Egypt.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was between 20 and 200 mW.

Raman shifts (cm⁻¹): 1129, 1080s, 1003s, 664, 482, 411.

Source: Ciobotă et al. (2012).

Comments: No independent analytical data are provided for the sample used.

Raspite $Pb(WO_4)$

Origin: Broken Hill, Yancowinna Co., New South Wales, Australia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 870s, 747, 667w, 645w, 523w, 494w, 395, 300, 282w, 205w, 196sh, 184w. Source: Bastians et al. (2004).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of raspite see also Frost et al. (2004d) and Andrade et al. (2014).
Rasvumite $KFe₂S₃$

Origin: Miller Range 03346 nakhlite meteorite.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in a thin section using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 474, 221, 154.

Source: Ling and Wang (2015).

Comments: The sample was characterized by optical reflectance.

Ravatite $C_{14}H_{10}$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a single crystal. No other data are provided.

- **Raman shifts (cm⁻¹):** 3088, 3082, 3071, 3055, 3047, 3033, 3024, 3015, 3003, 1684w, 1660w, 1622, 1613, 1600, 1591, 1570, 1523, 1500w, 1491w, 1481w, 1456w, 1440s, 1429, 1418, 1404, 1377, 1363, 1348s, 1336, 1318, 1303, 1295, 1280, 1244, 1224, 1200, 1170, 1164, 1153, 1140, 1092, 1072w, 1035s, 1000, 972, 968, 950, 944, 875, 860, 829, 817, 791, 760, 753, 734, 713, 710s, 616, 547, 536, 498, 442, 428, 410s, 397, 282, 248s, 234.
- Source: Godec and Colombo (1976).
- Comments: For the Raman spectra of ravatite see also Witt and Mecke (1967), and Nasdala and Pekov (1993).

Raygrantite $Pb_{10}Zn(SO_4)_6(SiO_4)_2(OH)_2$

Origin: Big Horn Mts., Maricopa Co., Arizona, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3515, 1075, 1011, 971s, 964s, 907, 876, 838, 832, 613, 597, 463, 452, 437, 325, 250, 231.

Source: Yang et al. (2016a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Realgar AsS

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 647.1 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 376w, 370w, 355s, 345, 341sh, 330w, 222s, 214w, 210w, 196s, 184s, 173w, 167w, 144, 67w, 61, 57, 52, 48, 41w, 28.
- Source: Muniz-Miranda et al. (1996). For the Raman spectra of realgar see also Forneris (1969), Trentelman et al. (1996), Burgio and Clark (2001), and Frost et al. (2010c).

Rebulite $Tl_5Sb_5As_8S_{22}$

Origin: Crven Dol, Allchar, Roszdan, Republic of Macedonia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was

1.9 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 395, 377s, 321, 306, 275, 206w, 190, 166w, 137, 126w, 102w. Source: Makreski et al. (2014).

Comments: The sample was characterized by electron microprobe analyses.

Reedmergnerite NaBSi₃O₈

Origin: No data.

Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 10 W.

Raman shifts (cm⁻¹): 584s, 540, 517, 505, 464, 314, 261, 237, 224, 162, 142, 129. Source: Kimata (1993).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of Reedmergnerite see also Manara et al. (2009).

Reevesite $Ni_6Fe^{3+}{}_{2} (CO_3)(OH)_{16}$ ∙4H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3598, 3451sh, (3250), 1382, 1163w, 1074s, 832w, 676+621 (broad, unresolved doublet), 550sh, 526, 423, 308, 162sh, 145,

Source: Frost et al. (2010d).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of reevesite see also Frost et al. (2003h).

Reichenbachite $Cu₅(PO₄)₂(OH)₄$

Origin: Banská Bystrica, central Slovakia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 17 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3428, 3380, 1120sh, 1083, 1055, 1027w, 998, 971, (951sh), 863, 804, 752, 700w, (636sh), 607, (572sh), 540, 515, 480s, 453, 412sh, 365, 298, 255, 214, 188sh, 175s, 135, 110s, 89.
- Source: Kharbish et al. (2014).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of reichenbachite see also Frost et al. (2002a, 2003a).

Reinerite $Zn_3(AsO_3)_2$

Origin: Tsumeb mine, Tsumeb, Otavi district, Oshikoto, Namibia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 804, 772, 752s, 722, 658, 297w, 279w, 240w, 219w, 188w, 176w, 152w, 141, 135s.

Source: Frost and Bahfenne (2010d).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of reinerite see also Bahfenne (2011).

Reinhardbraunsite $Ca₅(SiO₄)₂(OH)₂$

Origin: Upper Chegem volcanic structure, Northern Caucasus, Kabardino-Balkaria, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was below 20 mW.

Raman shifts (cm⁻¹): 3562, 3532w, 3480, 924, (834sh), 821s, 554, 421, 409sh, 310w, 280w, 253w. Source: Galuskin et al. (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Rengeite $Sr_4Ti_4ZrO_8(Si_2O_7)$

Origin: Itoigawa region, central Japan.

- Experimental details: Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 660, 265, 239. Source: Ogawara et al. (2010).

Retgersite Ni(SO₄)⋅6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): (1090w), 983s, 616.

Source: Petrova et al. (2012).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of retgersite see also Krishnamurti (1958), Jain et al. (1974), Cancela et al. (1983), and Aramendia et al. (2014)

Reyerite Na₂Ca₁₄Al₂Si₂₂O₅₈(OH)₈⋅6H₂O

Origin: No data.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 nm Ar^+ laser radiation. The nominal laser radiation power was about 25 mW.

Raman shifts (cm⁻¹): 1172, 1095w, 1078w, 1050, 1021, 907w, 752, 613s, 569s, 352, 300sh, 280s, 202, 169w.

Source: De Ferri et al. (2012).

Comments: No independent analytical data are provided for the sample used. The Raman shifts were determined by us based on spectral curve analysis of the published spectrum.

Rhabdophane-(Ce) Ce(PO₄)∙H₂O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was between 5 and 100 mW.

Raman shifts $(cm⁻¹)$: 1088, 1057, 977s, 642, 624, 571, 469s, 417.

Source: Assaaoudi et al. (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Rhabdophane-(Nd) Nd(PO₄)⋅H₂O

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was between 5 and 100 mW.

Raman shifts (cm⁻¹): 1094, 1057, 1033, 983s, 630, 582. 546, 470s, 419.

Source: Assaaoudi et al. (2001).

Comments: The sample was characterized by powder X-ray diffraction data.

Rheniite Res_2

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm laser radiation. The laser radiation power at the sample was 1 mW.
- **Raman shifts (cm⁻¹):** 438w, 419w, 407, 378w, 369, 349w, 325, 321, 311w, 308w, 284w, 278w, 237, 217s, 164, 153s, 146, 140w.

Source: Feng et al. (2015c).

Comments: For the Raman spectrum of rheniite see also Tongay et al. (2014).

Rhodizite $KBe_4Al_4(B_{11}Be)O_{28}$

Origin: Antsongombato pegmatite, Central Madagascar.

Experimental details: Raman spectra were obtained on the dodecahedral and tetrahedral faces. Characteristics of the laser radiation are not indicated.

Raman shifts (cm⁻¹): 857, 803, 651, 544, 470s, 430s, 294.

Source: Laurs et al. (2002).

Comments: The sample was characterized by electron microprobe analyses. It contains zones corresponding to rhodizite and londonite. For the Raman spectrum of rhodizite see also Frost et al. (2014a).

Rhodochrosite $Mn(CO₃)$

Origin: Kohlenbachvalley, Eiserfeld, Siegerland, North Rhine-Westphalia, Germany.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 1752w, 1439w, 1094s, 726, 293.

Source: Buzgar and Apopei (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of rhodochrosite see also Rutt and Nicola (1974), Frezzotti et al. (2012), and Capitani et al. (2014).

Rhodonite $Mn^{2+}SiO_3$

Origin: Sverdlovsk region, Urals, Russia.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 1038, 996s, 973s, 939w, 910w, 878, 714w, 667s, 557w, 510, 417, 385w, 347sh, 327, 265, 250.

Source: Buzatu and Buzgar (2010).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of rhodonite see also Mills et al. (2005), Makreski et al. (2006b), and Can et al. (2011).

Rhomboclase $(H_5O_2)Fe^{3+}(SO_4)_2$ °2H₂O

Origin: Coranda-Hondol open pit, Certej Au-Ag deposit, Romania.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 2775w, 2661w, 1456w, 1181, 1081sh, 1028sh, 1014s, 763w, 650sh, 622sh, 603, 472sh, 454, 381, 265sh, 242.

Source: Apopei et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of rhomboclase see also Ling and Wang (2010).

Rhönite $Ca_4[Mg_8Fe^{3+}{}_2Ti_2]O_4[Si_6Al_6O_{36}]$

Origin: Eifel, Germany.

Experimental details: Raman scattering measurements have been performed on a arbitrarily oriented grains using 785 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 980, 840, 705, 655s, 535s, 470.

Source: Treiman (2008).

Comments: No independent analytical data are provided for the sample used.

Richelsdorfite $Ca_2Cu_5Sb^{5+}(AsO_4)_4(OH)_6Cl·6H_2O$

Origin: Wilhelm mine, Bauhaus, Richelsdorf District, Hesse, Germany (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1564w, 1376w, 1082w, 988w, 910sh, 849s, (835), (792), 546, 498sh, 415w, 344, 268sh, 185sh, 144s.

Source: Frost et al. (2011c).

Comments: No independent analytical data are provided for the sample used.

Richterite $Na(NaCa)Mg_5Si_8O_{22}(OH)_2$

Origin: No data.

Experimental details: Raman scattering measurements have been performed in the range from 3500 to 3800 cm⁻¹ in backscattering geometry, using a 514.5 nm Ar⁺ laser. The laser radiation power is not indicated.

Source: Leissner et al. (2015) .

Raman shifts (cm⁻¹): 3730, 3712sh.

Comments: The sample was characterized by EMPA and ICP-MS.

Riebeckite \square Na₂(Fe²⁺₃Fe³⁺₂)Si₈O₂₂(OH)₂

Origin: Iacobdeal, Dobrogea, Romania.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 1084, 980sh, 966s, 885, 666s, 576, 537s, 431w, 363, 325, 244w, 222sh, 198s, 171s, 140.

Source: Apopei et al. (2011).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of riebeckite see also Apopei and Buzgar (2010).

Riebeckite (Crocidolite) \square Na₂(Fe²⁺₃Fe³⁺₂)Si₈O₂₂(OH)₂

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an unoriented fibrous aggregate using 632.8 nm He-Ne laser radiation. The laser radiation power was 20 mW.
- **Raman shifts (cm⁻¹):** 1082s, 1030, 967s, 889, 771w, 733w, 664s, 577s, 537, 506sh, 470sh, 428, 374, 360sh, 331, 300, 272, 246, 211, 195, 162s.
- Source: Rinaudo et al. (2004).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of crocidolite see also Petry et al. (2006) and Croce et al. (2013).

Rimkorolgite BaMg5(PO4)4∙8H2O

Origin: Zheleznyi (Iron) mine, Kovdor massif, Kola Peninsula, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3444), 3272 (broad), (2991), 2913, 2859, 1492sh, 1480, 1467, 1455, 1436, 1236, 1135, 1105, 1073sh, 1052, (1035), 1016, (992), 975+964s (unresolved doublet?), (951), 930, 653sh, 622sh, 599, 570, 511, (485), 472, 439, 426, 373, 279, 262+252 (unresolved doublet?), 222, 195w, 159+146 (unresolved doublet?), 109.

Source: Frost et al. (2014h).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Ringwoodite $Mg_2(SiO_4)$

Origin: Grove Mountains 052049 meteorite.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented grains in polished sections using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 841-849, 783-796, 285-296.

Source: Feng et al. (2011).

Comments: The samples were characterized by electron microprobe analyses. As the fayalite content increases from 27.8 to 81.6 mol %, the bands at 783–796 and 285–296 cm⁻¹ shift towards lower frequencies, whereas the band at $841-849$ cm⁻¹ does not show significant correlation with the fayalite content. For the Raman spectrum of ringwoodite see also Akaogi et al. (1984).

Rinkite $TiNa₂Ca₄REE(Si₂O₇)₂OF₃$

Origin: Khibiny massif, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an annealed metamict sample using 632.8 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~960, ~460. Source: Zubko et al. (2013).

Riomarinaite Bi(SO₄)(OH)∙H₂O

Origin: No data.

Experimental details: No data. **Raman shifts (cm⁻¹):** ~1190w, ~1160w, ~1095w, ~1002, ~960s, ~630, ~525, ~402w, ~198s. Source: Capitani et al. (2014). Comments: No independent analytical data are provided for the sample used.

Robertsite $Ca₂Mn³⁺₃O₂(PO₄)₃·3H₂O$

Origin: Tip Top mine, Custer Co., South Dakota, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1187s, 1036, 947, 625s, 552, 497, 385, 289s.

Source: Andrade et al. (2012).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Robinsonite $Pb_4Sb_6S_{13}$

Origin: Zlatá Baňa, Slanské Vrchy Mts., central Slovakia.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample in the spectral region from 10 to 600 cm⁻¹ using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm^{-1}) : 337sh, 328, 314, 308, 249sh, 228sh, 209s, 188sh, 168, 149, 133, 111sh, 101, 91sh, 75w.

Source: Kharbish and Jeleň (2016).

Comments: The sample was characterized by electron microprobe analyses. The empirical formula of the sample used is $Pb_{4.01}Sb_{5.99}S_{13.00}$.

Rockbridgeite $Fe^{2+}Fe^{3+}(PO_4)_3(OH)_5$

Origin: Galileia region, Minas Gerais, Brazil.

Experimental details: Raman scattering measurements have been performed on a radiated aggregate using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 1 mW.

Raman shifts (cm⁻¹): 1186, 1137, 1061s, 981, 937, 638, 616, 576, 463, 382, 333s, 299, 241. Source: Faulstich et al. (2013).

Comments: The sample was characterized by electron microprobe analyses.

Rodalquilarite $H_3Fe^{3+}{}_{2}(Te^{4+}O_3)_{4}Cl$

Origin: Grand Central Mines, Tombstone, Cochise Co., Arizona, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): (2998), 2870+2796 (unresolved doublet?), 2341, 781, 756sh, 725, 660sh, 641s, 612s, (599), 473, 449, 412, 400sh, 345s, 321s, (312), 233, 191, 179, 142, 110.

Source: Frost and Keeffe (2009i).

Comments: No independent analytical data are provided for the sample used.

Rodolicoite $Fe^{3+}(PO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 150 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1018s, 436, 415, 390, 336, 280, 199, 161.

Source: Murli et al. (1997).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of rodolicoite see also Bhalerao et al. (2012).

Rokühnite FeCl₂∙2H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed at 10 K on a single crystal using 514.5 nm Ar^+ laser radiation, with the incident beam parallel to the c-axis. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 747w, 717w, 661sh, 640.5s, 594s, 552w, 501, 375, 202s, 196s, 146, 141w, 33.7, 30.6s.

Source: Graf and Schaack (1976).

Comments: For the Raman spectrum of rokühnite see also Graf (1978).

Romanèchite $(Ba,H_2O)_2(Mn^{4+},Mn^{3+})_5O_{10}$

Origin: Bahariya depression, Western Desert, Egypt.

Experimental details: Raman scattering measurements have been performed on an arbitrarily sample using a 532 nm Nd-YAG laser. The laser radiation power at the sample was 20 to 200 μ W. Source: Ciobotă et al. (2012).

Raman shifts (cm⁻¹): \sim 1300, \sim 1100w, 644sh, 583s, \sim 500sh, \sim 390.

Comments: No independent analytical data are given for the sample used. For the Raman spectra of romanèchite see also Julien et al. (2003, 2004).

Romanorlovite $K_8Cu_6Cl_{17}(OH)_3$

- Origin: Second scoria cone, Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik, Kamchatka, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 532 nm laser radiation. The laser radiation output was 3 mW . A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 3512w, 3440w, 931w, 879w, 548, 477, 264s, 178s.

Source: Pekov et al. (2016b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Romarchite SnO

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a arbitrarily oriented particles using 785 nm laser radiation. The laser radiation power at the sample was \sim 200 mW. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 210, 240.

Source: Chen and Grandbois (2013).

Comments: The sample was characterized by powder X-ray diffraction data.

Römerite Fe²⁺Fe³⁺₂(SO₄)₄⋅14H₂O

Origin: Medvedza lens, Košice-Bankov magnesite deposit, Slovak Republic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3465sh, 3340, 3235, 3029, 1642w, 1164, 1117, 1058, 1035s, 1012s, 999, 733w, 650, 608, 472, 447, 399, 278+264 (unresolved doublet?), 231, 173, 145.
- Source: Frost et al. (2011f).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Rondorfite $Ca₈Mg(SiO₄)₄Cl₂$

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was between 30 and 50 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** ~1000w, ~975, ~950w, ~920w, ~862s, ~820, ~570, ~520, ~415w, ~385, \sim 330w, \sim 263.

Source: Galuskin et al. (2013a).

Comments: The sample was characterized by electron microprobe analyses.

Rongibbsite $Pb_2(Si_4Al)O_{11}(OH)$

Origin: Big Horn Mts., Maricopa Co., Arizona, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitratily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3525s, 3430s, 962, 630sh, 602, 488, 453, 422, 372, 283, 258, 196s. Source: Yang et al. (2013a).
- Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Ronneburgite $K_2MnV_4O_{12}$

Origin: Ronneburg, Thuringia, Germany (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 676 nm Kr^+ laser radiation. The laser radiation power was 1.5 mW.

Raman shifts (cm⁻¹): 952s, 911, 878, 830, 658w, 461, 350, 336, 261.

Source: Witzke et al. (2001).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Rooseveltite Bi(AsO4)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar⁺ laser radiation.

Raman shifts (cm^{-1}) : 841s, 795, 768, 425, 413, 386, 346s, 333sh, 276, 221.

Source: Roncaglia et al. (1993).

Comments: The sample was btained by slow addition of diluted arsenic acid to a diluted stoichiometric Bi(NO₃)₃.5H₂O solution and subsequent heating of the precipitated material at 600 °C during 12 h. The purity was checked by chemical analysis and powder X-ray diffractometry.

Roquesite CuInS₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 340sh, 298, 240sh.

Source: Dutková et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of roquesite see also Ho et al. (2012).

Rosasite CuZn(CO₃)(OH)₂

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 632.8 nm He-Ne laser 30 mW. The laser radiation power at source reduced considerably by various filters.
- **Raman shifts (cm⁻¹):** 3470, 3422w, 3232, 1540, 1514, 1453, 1086s, 1060, 843, 833w, 702, 508, 482w, 409, 390w, 332, 308w, 231, 208w, 193s, 146s, 126.

Source: Bouchard and Smith (2003).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of rosasite see also Frost (2006) and Rotondo et al. (2012).

Roselite Ca₂Co(AsO₄)₂∙2H₂O

Origin: Bou Azzer, Morocco.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3450, 3208, (3121), 3042, 1688, 1611, 1118, 976, 909, 864, (800), 798, 719, 659, 653, 540, 463, 440, 399, 373, 338, 307, 264, 243, 211, 197, 179, 155, 117.

Source: Frost (2009a).

Comments: No independent analytical data are provided for the sample used. Intensities of the bands are not indicated.

Rosiaite $PbSb₂O₆$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Diffusion Raman scattering measurements have been performed using 488 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 600 mW.

Raman shifts (cm⁻¹): 670s, 510, 498w, 318, 278w, 211.

Source: Vandenborre et al. (1980).

Comments: The sample was characterized by powder X-ray diffraction data.

Rostite $\text{Al(SO}_4)(\text{OH})·5\text{H}_2\text{O}$

Origin: Le Cetine mine, Rosia, Chiusdino, Siena, Italy.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3295sh, (3222), 3155, 3082, (2948), (2764), 1692, 1605w, 1390w, 1312, 1227, (1145w), 1131, (1093w), 1083, (1070w), (998), 991s, (986), 939w, 874w, 854sh, 632, 620, 590, 570, 530w, 504, 434sh, 420, 340w, 319sh, 307sh, 295, 281sh, 216, 203sh, 169.

Source: Frost et al. (2015x).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Rouaite $Cu₂(NO₃)(OH)₃$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm laser radiation. The laser radiation was 3 mW. **Raman shifts (cm⁻¹):** 1423, 1321, 1047s, 714, 500.5, 456, 408, 331, 255.

Source: Nytko et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of rouaite see also Nytko (2008).

Roumaite (Nb,Ti)(Ca,Na, \Box)₃(Ca,REE)₄(Si₂O₇)₂(OH)F₃

Origin: Rouma Island, Los Archipelago, Guinea (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A nearly 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 1582w (broad).

Source: Biagioni et al. (2010).

Comments: The Raman spectrum shows important contributions of fluorescence effects related to the presence of REE, which does not allow an accurate study of the region above 3000 cm⁻¹. No data on the Raman spectrum below 1582 cm^{-1} are provided.

Rowleyite $[Na(NH_4,K)_9Cl_4][(V^{5+},V^{4+})_2(P,As)O_8]_6 \cdot n[H_2O,Na,NH_4,K,Cl]$

Origin: Rowley mine, about 100 km SW of Phoenix, Arizona, USA (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The nominal laser radiation power was 5 mW.

Raman shifts (cm⁻¹): ~1340, 1065w, 1002, 980, 825s, 683w, 565w, 460w, 325s, 280s, 180. Source: Kampf et al. (2017b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Roxbyite $Cu₉S₅$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 466s, 259w.

Source: Kumar and Nagarajan (2011).

Comments: The sample was characterized by powder X-ray diffraction data.

Rozenite $Fe^{2+}(SO_4)$ ∙4H₂O

Origin: Coranda-Hondol open pit, Certej Au-Ag deposit, Romania.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.
- **Raman shifts (cm⁻¹):** 3388, 3329sh, 3261sh, 1594w, 1176sh, 1149w, 1098sh, 1073w, 992s, 658sh, 612w, 480, 461sh, 383w, 284w, 239sh.

Source: Apopei et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of rozenite see also Chio et al. (2007), Buzatu et al. (2012, 2016), Jentzsch et al. (2013), Aramendia et al. (2014), and Kompanchenko et al. (2016).

Rruffite Ca2Cu(AsO4)2∙2H2O

Origin: Maria Catalina mine, Tierra Amarilla, Chile (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3335w (broad), 3147w (broad), 866w, 839s, 803w, 715w, 485w, 451w, 426w, 335, 294.

Source: Yang et al. (2011a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Rucklidgeite PbBi₂Te₄

Origin: Ozernyi district, Salla-Kuolajarvi, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 50 mW.

Raman shifts $(cm⁻¹)$: 127, 102s, 57.

Source: Voloshin et al. (2015a).

Comments: The sample was characterized by electron microprobe analyses.

Rudashevskyite (Fe,Zn)S

Origin: Indarch meteorite (an EH4 enstatite chondrite).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented grains using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 1.2 mW.

Raman shifts (cm⁻¹): \sim 460w, \sim 317s.

Source: Ma et al. (2012a).

Comments: No independent analytical data are provided for the sample used.

Ruizite Ca₂Mn³⁺₂Si₄O₁₁(OH)₄⋅2H₂O

Origin: Wessels mine, Hotazel, Kalahari Manganese Field, Northern Cape Province, South Africa.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 150 mW.
- **Raman shifts (cm⁻¹):** ~3578, ~3355w, ~3235w, ~2942, 924s, 727w, 639, 571s, 506w, 477, 433, 411, 364, 288, 256, 220, 180.

Source: Fendrich et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Rusinovite $Ca_{10}(Si_2O_7)_3Cl_2$

Origin: Upper Chegem caldera, Kabardino-Balkaria, northern Caucasus, Russia (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was between 30 and 50 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 1074w, 1036, 994w, 968w, 900s, 869, 830w, 652, 635, 568w, 549w, 528w, 430w, 409w, 365, 325w, 295w, 282w, 232w, 125w.

Source: Galuskin et al. (2011c).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Russellite $Bi₂WO₆$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 785 nm Nd-YAG laser. The laser radiation power at the sample was 1 mW. Raman shifts (cm^{-1}) : 844, 795, 716, 667, 405, 349, 324, 284, 263

Source: Frost et al. (2004d).

Comments: No independent analytical data are provided for the sample used.

Rustumite $Ca_{10}(Si_2O_7)_2(SiO_4)(OH)_2Cl_2$

Origin: Upper Chegem Caldera, Northern Caucasus, Russia.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation output power was between 30 and 50 mW.

Raman shifts (cm⁻¹): 3632w, 3585, 1056w, 1004, 914s, 868w, 812, 648, 556w, 538w, 381, 335w. Source: Gfeller et al. (2013).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Rutherfordine $(UO₂)(CO₃)$

Origin: Sierra Albarrana, Córdoba, Spain.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation output power was 20 mW.

Raman shifts (cm^{-1}) : 1120, 889s, 833, 789w, 220w, 162, 142.

Source: Bonales et al. (2015).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of rutherfordine see also Frost and Čejka (2009b) and Bonales et al. (2016).

Rutile $TiO₂$

Origin: Santa Benedetta, Canavese, Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 611s, 441s, 242, 142w.

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of rutile see also Balachandran and Eror (1982).

Rynersonite $CaTa₂O₆$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a single crystal fiber using 633 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 690s, 654, 632w, 556w, 475, 342, 285, 243, 236, 175, 167, 151, 88s (with laser beam parallel to the fiber).

Source: Almeida et al. (2014).

Sabugalite HAl(UO₂)₄(PO₄)₄⋅16H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed at different temperatures on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1008, 984, 970, 848, 826s, 806 (for the spectrum obtained at 40°C). Source: Frost et al. (2005k).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of sabugalite see also Frost and Weier (2004c).

Sahlinite $Pb_{14}O_9(AsO_4)_2Cl_4$

Origin: Långban, near Pajsberg and Filipstad, Värmland, Sweden (type locality).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): $3526w$, 819s, 806s.

Source: Jonsson (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Sailaufite (Ca,Na,□)₂Mn³⁺₃O₂(AsO₄)₂(CO₃)⋅3H₂O

Origin: Hartkoppe hill, Ober–Sailauf, Spessart Mts., Germany (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) **:** See comment below.

Source: Wildner et al. (2003).

Comments: The authors of the cited paper write: "Bands or band components observedin the IR- or Raman spectra around 730, 880, 1120, and 1420 cm⁻¹ can be assigned to ... vibrational modes of the two different CO_3 groups." However these bands could be assigned only to a single CO_3 group. Moreover, Raman spectrum of sailaufite is not given by Wildner et al. (2003). The bands at 730, 880, and 1420 cm^{-1} can correspond to admixed Mn-bearing dolomite that is present in association with sailaufite.

Sakhaite Ca₄₈Mg₁₆Al(SiO₃OH)₄(CO₃)₁₆(BO₃)₂₈⋅(H₂O)₃(HCl)₃

Origin: Titovskoe, Sakha (Yakutia) Republic, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3546, 3391, 2897, 1727, 1703w, 1560w, 1524w, 1479, 1349w, 1312w, 1218, 1167sh, 1134+1123s (unresolved doublet?), 968s, 950sh, 855w, 737sh, 725, 651, 627, 396w, 310, 211, 156, (132).

Source: Frost and Xi (2012j).

Comments: No independent analytical data are provided for the sample used.

Salammoniac NH₄Cl

Origin: Burning coal wastepile materials, Douro coalfield, Portugal.

Experimental details: No data.

Raman shifts (cm⁻¹): ~3120s, ~3050s, ~2807, (~2500 broad), (~2020 broad), ~1760, ~1705, ~1500, $~1400.$

Source: Ribeiro et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction dataю

Saléeite Mg(UO₂)₂(PO₄)₂⋅10H₂O

Origin: East Alligator River, Northern Territory, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 647.1 nm Kr^+ and 785 diode laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 999s, 837s, 405, 284w, 194.

Source: Faulques et al. (2015a, b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of saléeite see also Frost (2004b) and Frost and Weier (2004c).

Samarskite-(Y) (Y,Ce,U,Fe,Nb)(Nb,Ta,Ti)O4

Origin: Beinmyr pegmatite, Landås, Iveland, Aust-Agder, Norway.

Experimental details: Raman scattering measurements have been performed on a metamictsample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 20 mW.

Raman shifts (cm⁻¹): ~785s (broad), ~620 (broad), ~230sh (for a metamict sample); ~795, ~670s, ~535, ~417, ~360s, ~335s, ~230s, ~190s, ~115 (for a sample recrystallised in air at 1000 °C.)

Source: Tomašić et al. (2010).

Comments: The sample was characterized by electron microprobe analyses.

Sampleite NaCaCu₅(PO₄)₄Cl∙5H₂O

Origin: Northparkes mine, Goonumbla, New South Wales, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1269, 1152, 1088, (1016), 997s, 962s, 924sh, 643s, 604, 591, 557, 455s, 356, 282, 224, 190, 172.

Source: Frost et al. (2007m).

Comments: No independent analytical data are provided for the sample used.

Sanderite Mg(SO4)∙2H2O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 15 mW.

Raman shifts (cm⁻¹): 3539, 3446s, 1647, 1164, 1034s, 630w, 597w, 492w, 447, 266. Source: Wang et al. (2006a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of sanderite see also Frezzotti et al. (2012) and Brotton and Kaiser (2013).

Sanguite $KCuCl₃$

- Origin: Glavnaya Tenoritovaya fumarole, Second scoria cone, Tolbachik volcano, Kamchatka, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power at the sample was 3 mW.

Raman shifts (cm⁻¹): 547, 296sh, 272, 192s, 137, 117.

Source: Pekov et al. (2015a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. For the Raman spectrum of sanguite see also Choi et al. (2005).

Sanidine $K(AlSi₃O₈)$

Origin: Zvegor, Republic of Macedonia.

- Experimental details: No data.
- **Raman shifts (cm⁻¹):** 1117w, 1040w, 515s, 473, 450w, 406w, 379w, 338w, 283, 264w, 225w, 198w, 160, 122w, 108w.
- Source: Makreski et al. (2009).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis. For the Raman spectra of sanidine see also Matson et al. (1986), Edwards et al. (2004), and Frezzotti et al. (2012).

Sanjuanite $\text{Al}_2(\text{PO}_4)(\text{SO}_4)(\text{OH}) \cdot 9\text{H}_2\text{O}$

Origin: Chica de Zonda, San Juan province, Argentina (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3575, 3509, 3406, (3330), 3152+3090 (unresolved doublet?), 1457w, 1438, 1305w, 1148w, 1102, 1037, 984s, 609, 523w, 466, 430, 400w, 365sh, 351, 337sh, 218w, 197+184 (unresolved doublet?), (152), 142, 108.

Source: Frost and Palmer (2011h).

Comments: No independent analytical data are provided for the sample used.

Sanmartinite $Zn(WO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 904s, ~180, 705, 675, ~540, ~510w, ~340, 273, ~180.

Source: Kloprogge et al. (2004b).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of sanmartinite see also Errandonea et al. (2008).

Santabarbaraite $Fe^{3+}{}_{3} (PO_4)_2 (OH)_3 \cdot 5H_2 O$

Origin: Santa Barbara mine, Tuscany, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): (3541), 3435, 3266sh, 1634, (1549), 1095sh, 1007s, 630sh, 592, 561sh, 478, 431sh, (318), 272, 221sh, (197), (159), 145, 111.

Source: Frost et al. (2016c).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Santarosaite CuB_2O_4

Origin: Santa Rosa mine, Atacama desert, Chile (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** ~1110, ~1010, ~872s, ~775, ~745w, ~702, ~472, ~320, ~170w, (~70), (~60), (-30) .

Source: Schlüter et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data, electron microprobe analyses andelectron energy loss spectroscopy.

Santite $KB_5O_6(OH)_4$ ∙2H₂O

Origin: Synthetic. Experimental details: No data. **Raman shifts (cm⁻¹):** 918s, 780–785w, 765–766, 556–557s, 510, 457, 369w, 296–299. Source: Asensio et al. (2016). Comments: The sample was characterized by powder X-ray diffraction data.

Saponite $(Ca,Na)_{0.3}(Mg,Fe)_{3}(Si,Al)_{4}O_{10}(OH)_{2}$ ∙4H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1082, 1051w, 998, 918w, 778, 683s, (660), 464-550, 432, 360s, 340sh, 288, 265w, 229w, 202.

Source: Kloprogge and Frost (2000c).

Comments: The Raman shifts are given for a Na-saturated sample. For the Raman spectrum of saponite see also Wang et al. (1999).

Sarcopside $Fe^{2+}(PO_4)_2$

Origin: Sowie Góry Mts., Lower Silesia, southwestern Poland.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1109w, 1078, 1039, 1021w, 974s, 930s, 624, 606w, 553, 478, 400, 284w. Source: Łodziński and Sitarz (2009).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of sarcopside see also Schneider et al. (2013).

Sarkinite $Mn^{2+}(AsO_4)(OH)$

Origin: Långban deposit, Bergslagen ore region, Filipstad district, Värmland, Sweden.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3550, 3535, 3528, 3519, 888, 839s, 826sh, 475, 380, 325.

Source: Makreski et al. (2013a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of sarkinite see also Hålenius and Westlund (1998).

Sarmientite $Fe³⁺₂(AsO₄)(SO₄)(OH)[•]5H₂O$

Origin: Santa Elena mine, San Juan province, Argentina (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3482w, 3336sh, 3184w, 1614w, 1130sh, 1118w, 1081, 998s, 889, 868, 818s, 638w, (590), 570, 477, 444, 405, 370, 322, 294, 259, 202, 191.

Source: Colombo et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Sartorite PbAs₂S₄

Origin: Binntal, Switzerland.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 50 to 600 cm⁻¹ using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 375sh, 363s, 352sh, 336, 318sh, 300s, 281sh, 259sh, 229, 204w, 178, 167sh, 123w, 101w, 91, 85w, 75sh.

Source: Kharbish (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Sassolite $B(OH)_3$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm^{-1}) : ~1160w, 880s, 499, ~205.

Source: Peretyazhko et al. (2000).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of sassolite see also Thomas (2002), Michel et al. (2007), Thomas and Davidson (2010), and Frezzotti et al. (2012).

Scacchite $MnCl₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a single crystal with laser beam directed along the c axis of the crystal and the scattered light at approximately 90° with respect to the incident beam. 488 and 514.5 nm Ar⁺/Kr⁺ laser radiations were used. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 234s, 144.

Source: Piseri and Pollini (1984).

Comments: No independent analytical data are provided for the sample used.

Schafarzikite $Fe^{2+}(Sb^{3+})_2O_4$

Origin: Pernek, Malé Karpaty Mts., Slovak Republic (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** (709w), 668s, 617sh, 558w, 526, (479w), 465, 403w, 353, (345w), 295, 249w, 219, 186w, 159, 132w, 119, 107.

Source: Bahfenne (2011).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of schafarzikite see also Sejkora et al. (2007) and Kharbish (2012).

Scheelite $Ca(WO₄)$

Origin: Lodrino, Riviera, Ticino (Tessin), Switzerland.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne or 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 913s, 841w, 799w, 399, 332, 210.

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of scheelite see also Frost et al. (2004d) and Kloprogge et al. (2004b).

Schiavinatoite $Nb(BO_4)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 and 514.5 nm Ar⁺ laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 986, 956s, 880, 815, 710w, 544s, 433, ~310w, 252, 235s. Source: Heyns et al. (1990).

Comments: No independent analytical data are provided for the sample used.

Schlossmacherite $(H_3O)Al_3(SO_4)_2(OH)_6$

Origin: Emma Luisa Au, Guanaco district, Antofagasta, Chile (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 0.1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3537, 3449w, 3410, (3382), (3363), 2918, 1868, (2850), 1651sh, 1590w, 1458 +1442 (unresolved doublet?), 1304w, 1139w, 1082w, 1031w, 1000w, 938sh, 915, 864s, 819+809s (unresolved doublet?), 601w, 513, 459sh, 437s, 392, 358, 338sh, 312, 297, 263, 224, 203, 184sh, 147.

Source: Frost et al. (2012c).

Comments: No independent analytical data are provided for the sample used.

Schmiederite $Cu_2Pb_2(Se^{4+}O_3)(Se^{6+}O_4)(OH)_4$

Origin: El Dragon mine, Potosi, Bolivia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3428, (1919w), 1852w, 1604, 1576, 1457w, 1418, 1349w, 1095s, 934, 834, 764, 739w, 538w, 398s, 281, 247s, 178, 153, 139s.

Source: Frost and Keeffe (2008a).

Comments: No independent analytical data are provided for the sample used.

Schmitterite $(UO₂)(Te⁴⁺O₃)$

Origin: Ozernyi district, Salla-Kuolajarvi, Kola Peninsula, Russia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser power was 50 mW.
- **Raman shifts (cm⁻¹):** 1102, 1091, 882s, 849, 796, 406sh, 391, 323, 304w, 204w, 176w, 141, 122w, 111.

Source: Voloshin et al. (2015b).

Comments: The sample was characterized electron microprobe analyses. For the Raman spectrum of schmitterite see also Frost et al. (2006b).

Schneiderhöhnite $\text{Fe}^{2+}\text{Fe}^{3+}{}_{3}\text{As}^{3+}{}_{5}\text{O}_{13}$

Origin: Urucum mine, Doce River, Galileia, Minas Gerais, Brazil.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm^{-1}) : 382w, 370w, 353sh, 345, 318, 295s, 279, 259sh, 247s, 219sh, 214w, 198, (193), 184s, 164, 148, 141, 122w, 117.

Source: Bahfenne and Frost (2009).

Comments: No independent analytical data are provided for the sample used.

Schoenfliesite $MgSn(OH)₆$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a poedered sample using 632.8 nm He-Ne laser radiation. The laserpower was varied between 1.94 and 0.07 mW.

Raman shifts (cm^{-1}) : 980, 602s, ~460w, ~365w, 289.

Source: Barchiche et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data.

Schoepite $(UO₂)₈O₂(OH)₁₂·12H₂O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm diode laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 829s, 805sh, 746w, 551, 454, 438, 337, 260, 208.

Source: Stefaniak et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of schoepite see also Amme et al. (2002) and Frost et al. (2007h).

Scholzite CaZn₂(PO₄)₂⋅2H₂O

Origin: Reaphook Hill, Martins Well, South Flinders Ranges, South Australia, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3437, 3343, 3283, 3185sh, 1171, 1115, 1088w, 1053w, 1026w, 1000s, (935), 923.

Source: Frost (2004a).

Comments: No independent analytical data are provided for the sample used. Raman shifts below 900 cm^{-1} are not indicated.

Schorl NaFe²⁺₃Al₆(Si₆O₁₈)(BO₃)₃(OH)₃(OH)

Origin: Bonče, Prilep municipality, Republic of Macedonia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1066s, 980, 806, 784, 770, 705, 672, 536w, 369s, 314w, 239s, 217. Source: Makreski and Jovanovski (2009).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of schorl see also Ertl et al. (2015) and Watenphul et al. (2016a, b).

Schorlomite $Ca₃Ti₂(SiFe³⁺₂)O₁₂$

Origin: Wiluy River, Sakha-Yakutia, Russia.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 946-952, 785-786, 728-739, 639-641w, 508-510s, 431-435, 340-350s, 295sh, 253–256, 212–219w, 157w.
- Source: Galuskina et al. (2005).
- Comments: A schorlomite variety enriched in Zr and Sc was used. The sample was characterized by electron microprobe analyses.

Schreibersite (Fe,Ni)₃P

Origin: Almahatta Sitta meteorite.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 22.5 mW. A 180°-scattering geometry was employed.

Raman shifts (cm^{-1}) : ~650s, ~510, ~410s, ~395s, ~300s, ~220.

Source: Kaliwoda et al. (2013).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of schreibersite see also La Cruz (2015).

Schreyerite $V^{3+}{}_{2}\text{Ti}^{4+}{}_{3}\text{O}_9$

Origin: Vihanti, Northern Ostrobothnia region, Finland.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm He-Ne laser radiation. The nominal laser radiation power was 2 or 20 mW.
- **Raman shifts (cm⁻¹):** 810s, 705s, 653s, 593, 532w, 468, 426, 358w, 308, 175s, 90.

Source: Voloshin et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Schröckingerite NaCa₃(UO₂)(SO₄)(CO3)₃F⋅10H₂O

Origin: Wheal Edward, St. Just, Cornwall, UK.

Experimental details: Methods of sample preparation are not indicated. Raman scattering measurements have been performed using 785 nm laser radiation. The nominal laser power at the source was \sim 370 mW.

Raman shifts(cm⁻¹): 1093, 1009, ~980, 815s, ~745, ~620w, ~470w, ~305w, ~250w.

Source: Driscoll et al. (2014) .

Comments: The sample was characterized by electron microprobe analysis. For the Raman spectrum of schröckingerite see also Frost et al. (2007d).

Schuetteite $Hg_3O_2(SO_4)$

Origin: Synthetic.

Experimental details: No data.

Ramanshifts (cm⁻¹): ~1090, ~1060, ~975s, ~620w, ~600w, ~520w, ~455, ~425, ~220s.

Source: Schofield (2004).

Comments: The sample was characterized by powder X-ray diffraction data.

Schultenite Pb(AsO₃OH)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated. A 180° -scattering geometry was employed.

Raman shifts (cm⁻¹): 827s, 799sh, 467, 357, 149, 93s, (73).

Source: Petzelt (1977).

Comments: No independent analytical data are provided for the sample used. The Raman shifts are given for the scattering geometry $y(p_1)$ –)-y. For the Raman spectrum of schultenite see also Młynarska et al. (2014).

Schumacherite $Bi_3O(VO_4)_2(OH)$

Origin: Wombat Hole Prospect, Morass Creek gorge, near Benambra, Victoria, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3616w, 3589w, 1557, 1041, 943, 809, 672s, 641, 498w, 410s, 341, 248, 197. Source: Frost et al. (2006i).

Comments: No independent analytical data are provided for the sample used.

Schwertmannite $\text{Fe}^{3+}{}_{16}\text{O}_{16}(\text{OH},\text{SO}_4)_{12-13} \cdot 10\text{H}_2\text{O}$ (?)

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using He-Ne laser. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1120w, 981, 715, 580sh, 544, 421s, 350, 318, 294sh.

Source: Mazzetti and Thistlethwaite (2002).

Comments: The sample was characterized by powder X-ray diffraction data.

Scolecite Ca $(Si₃Al₂O₁₀)·3H₂O$

Origin: Nasik, Maharashtra, India.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser power at the sample was 10 mW.

Raman shifts (cm⁻¹): 3536, 3472, 3405, 3212, 3182, 3087+3080, 1105, 1088, 1049+1044, 941, 718, 535s, 496, 480+472, 447s, 437, 426s, 354, 328+318, (301), 295s, 283+276+255, 245+241+224, 179, 171, 158, 146.

Source: Wopenka et al. (1998).

Comments: Bands whose intensities are significantly dependent upon polarization are indicated in the cited paper. For the Raman spectra of scolecite see also Pechar (1984) and Mozgawa (2001).

Scorodite Fe³⁺(AsO₄)⋅2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 785 nm solid-state laser radiation. The laser radiation power at the sample was about 0.3 mW or some what more.

Raman shifts (cm⁻¹): 886s, 796s, 444, 416, 376, 333, 287, 254, 176s, 128.

Source: Das and Hendry (2011).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of scorodite see also Gomez et al. (2010a, 2011), Frost et al. (2015w), Culka et al. (2016b), and Kloprogge and Wood (2017).

Scotlandite $Pb(S^{4+}O_3)$

Origin: Leadhills, Scotland (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. Th elaser radiation power is not indicated.

Raman shifts (cm^{-1}) : 975sh, 935s, 880sh, 622, 474s, 190, 144.

Source: Frost and Keeffe (2009d).

Comments: No independent analytical data are provided for the sample used.

Scottyite $BaCu₂Si₂O₇$

Origin: Wessels mine, Kalahari Manganese Fields, South Africa (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1019w, 958w, 896s, 866w, 675s, 612, 578, 560, 459s.

Source: Yang et al. (2013b).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. For the Raman spectrum of scottyite see also Xia et al. (2014).

Scrutinyite $PbO₂$

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): 534w, 366w, 269, 133s, 80w,

Source: Inguanta et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Sederholmite NiSe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on hollow nanospheres using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 1075s, 539, 389, 207w.

Source: Shi et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts of a bulk sample are (cm^{-1}) : 1060s, 524, 374, 192w.

Segnitite $PbFe^{3+}{}_{3}(AsO₄)(AsO₃OH)(OH)₆$

Origin: Broken Hill, New South Wales, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3467w), 3440sh, 3217, 2982sh, 1417w, 1231w, 1128w, 998w, 931sh, 860 +848s (unresolved doublet?), 811sh, 746sh, 689w, 572, 481s, (465), 441, 419sh, 370, (342), 318, 300, 250, 202, (195).

Source: Frost et al. (2005l).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Seinäjokite FeSb₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : ~1060, ~700sh, ~660s, ~525.

Source: Xie et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data.

Sejkoraite-(Y) Y₂[(UO₂)₈O₆(SO₄)₄(OH)₂]∙26H₂O

Origin: Červená vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 732 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1537w, 1222w, 1157w, 1095w, 1014, 896w, 829s, 798sh, 670w, 546sh, 477sh, 461, 438sh, 404s, 369sh, 326w, 274, 262, 237sh, 211.

Source: Plášil et al. (2011a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Sekaninaite $Fe^{2+}_{2}Al_{4}Si_{5}O_{18}$

Origin: A miarolitic pegmatite at Zimnik, Strzegom-Sobótka massif, Sudetes, Poland.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 30 mW.

Raman shifts (cm⁻¹): 3630sh, 3597, 3579, 1158w, 1049w, 1004w, 989, 917w, 667, 599, 569s, 552s, 477w, 420, 296, 253, 152.

Source: Gadas et al. (2016).

Comments: The sample was characterized by electron microprobe analyses and LA-ICP-MS. For the Raman spectrum of sekaninaite see also Radica et al. (2013).

Selenium Se

Origin: Synthetic.

Experimental details: No data.

Raman shifts (cm⁻¹): $237 + 234s$ (unresolved doublet?), 140.

Source: Campos et al. (2004a).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of selenium see also Campos et al. (2004b).

Seligmannite CuPbAsS₃

Origin: Binntal, Switzerland.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed in the spectral region from 50 to 600 cm⁻¹ using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (363), 354s, 344sh, 334, 324, 311sh, 288, 231, 215sh, 202, 189sh, 172h, 155w, 121w, 106sh, 97s, 90s, 70s.

Source: Kharbish (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analysis.

Sellaite MgF₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a single crystal in different scattering geometries, using 488 nm Ar^+ laser radiation. The nominal laser radiation power was \sim 75 mW. A 90 \degree -scattering geometry was employed.

Raman shifts (cm⁻¹): 515w, 410s, 295, 92.

Source: Porto et al. (1967).

Comments: The band intensities are indicated for the sum of spectra obtained in different scattering geometries. For the Raman spectrum of sellaite see also Krishnan and Katiyar (1965).

Sénarmontite Sb_2O_3

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power was below 1 mW.

Raman shifts (cm^{-1}) **:** 451, 373w, 253s, 189, 115w.

Source: Makreski et al. (2013b).

Comments: The sample was characterized by thermal analysis. For the Raman spectra of Sénarmontite see also Cody et al. (1979), Voit et al. (2009), and Orman (2010).

Senegalite $\text{Al}_2(\text{PO}_4)(\text{OH})_3 \cdot \text{H}_2\text{O}$

Origin: Jangada mine, Quadrilátero Ferrífero, municipality of Brumadinho, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3614sh, 3610s, 3606sh, 3507-3505s, 3429sh, 3374sh, 3339, 3270w, 3206sh, 3099w, 2975w, 1753w, 1679w, (1587w), (1425w), 1377w, 1206w, 1179w, 1154, 1110w, 1071, 1029, (1026), 892w, 829w, 708, 677w, 635, 616sh, 581w, 559sh, 545, 501sh, 480, 462sh, 444, 417, 375, 364sh, 329sh, 318sh, (312w), 303, 237, 202sh, 193, 178, 166, (154w), 136 + 133 (unresolved doublet?), 102.

Source: Frost et al. (2013g).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Sepiolite Mg₄Si₆O₁₅(OH)₂∙6H₂O

Origin: Durango, Mexico.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on randomly oriented crystals in back-scattering geometry, using 1064 nm Nd-YAG laser radiation. The nominal laser radiation power was 900 mW.

Raman shifts (cm⁻¹): ~1080, ~780, ~675s, ~380, ~335, ~290, ~265, ~230w, ~200s, ~170.

Source: McKeown et al. (2002).

Comments: The sample was characterized by powder X-ray diffraction data.

Sérandite $NaMn^{2+}_{2}Si_3O_8(OH)$

- Origin: Poudrette quarry, Saint-Hilaire Mt., Montérégie (Rouville) Co., Québec, Canada (type locality).
- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 638 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1026s, 903, 666s, 422, 304, 168.
- Source: Haring and McDonald (2014a).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of sérandite see also Origlieri et al. (2017).

Serendibite $Ca_4[Mg_6Al_6]O_4[Si_6B_3Al_3O_{36}]$

Origin: Ratnapura area, Sri Lanka.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 325 or 514.5 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 997, 895, 756, 681, 635, 572, 530, 470, 405, 364, 310.

Source: Schmetzer et al. (2002).

Comments: The sample was characterized by electron microprobe analyses.

Serpierite Ca(Cu,Zn)₄(SO₄)₂(OH)₆⋅3H₂O

Origin: Corchia, NW Italy.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power at the sample was 4 mW.
- **Raman shifts (cm⁻¹):** 3616w, 3570w, 1168w, 1132, 1115sh, 1085w, 991s, 651w, 605w, 474sh, 445, 426, 415, 338w, 244w, 218w.

Source: Coccato et al. (2016).

Comments: No independent analytical data are provided for the sample used.

Shattuckite $Cu₅(SiO₃)₄(OH)₂$

Origin: Navojoa, Sonora, Mexico.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3602, (3567w), 3424sh, 3367w, (3153w), 1564w, 1107w, 1054, (1000w), 981, 953sh, 887, 865w, 832w, 781, 739w, 667s, 549, 498, 439, 394, 349sh, 340, 326, 306sh, 255, 238, 211s, 191sh, (160w), 152, 135–139 sh, (117w), 113, (107w).

Source: Frost and Xi (2012b).

Comments: No independent analytical data are provided for the sample used.

Shcherbinaite V_2O_5

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a sample in rotated tube using 488 and 514.5 nm Ar⁺, as well as 647.1 nm Kr⁺ laser radiations. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 993, 703, 528.5, 483, 476, 405, 305, 285s, 198, 147s, 105.

Source: Sanchez et al. (1982).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of shcherbinaite see also Menezes et al. (2009).

Shchurovskyite K_2 CaCu₆O₂(AsO₄)₄

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 840s, 630, 486, 304, 135, 100.

Source: Pekov et al. (2015d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Shortite Na₂Ca₂(CO₃)₃

Origin: No data.

Experimental details: No data.

Raman shifts (cm⁻¹): 1523, 1470, 1440, 1407, 1387, 1091s, 1071s, 730, 719, 715, 695, 265s, 201, 171, 141.

Source: Shatskiy et al. (2015).

Comments: For the Raman spectra of shortite see also Frost and Dickfos (2007b, 2008).

Shuangfengite $IrTe₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed in a nearly backscattering (xx) geometry on an oriented crystal, from the surface parallel to the (ab) plane using 532 nm solid-state laser radiation. The nominal laser radiation power was 5 mW.

Raman shifts $(cm⁻¹)$ **:** 166, 126.

Source: Glamazda et al. (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of shuangfengite see also Lazarević et al. (2014).

Shulamitite $Ca₃TiFe³⁺AIO₈$

Origin: Central part of the Hatrurim Basin, Israel (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample in a polished section using 514.5 nm Ar^+ laser radiation. The laser radiation output power was between 30 and 50 mW.

Raman shifts (cm⁻¹): 1501 (broad), 802sh, 742s, 561, 498sh, 388, 290, 238, 145w, 110w. Source: Sharygin et al. (2013a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Siderite $Fe(CO₃)$

Origin: Minas Gerais, Brazil.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 and 514.5 nm Ar⁺ laser radiations. The nominal laser radiation power was in the range from 100 to 500 mW.

Raman shifts (cm⁻¹): 1738, 1088s, 731, 299, 194w.

Source: Rutt and Nicola (1974).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of siderite see also Buzgar and Apopei (2009), Das and Hendry (2011), Saheb et al. (2011), Frezzotti et al. (2012), Zhao and Guo (2014), and Andò and Garzanti (2014).

Sideronatrite Na₂Fe³⁺(SO₄)₂(OH)⋅3H₂O

Origin: Sierra Gorda, Chile.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 2.5 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1646, 1223, 1189, 1159, 1117sh, 1106, 1024, 1013s, 996s, 624, 614sh, 600w, 536, 469, 458sh, 391, 259sh, 246s, 216sh, 203, 170, 115.

Source: Rouchon et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Sidorenkite $Na₃Mn(PO₄)(CO₃)$

Origin: Alluaiv Mt., Lovozero massif, Kola Peninsula, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1074, 1044s, 1035sh, 1012s, 1004sh, 966sh, 959s, (953), 625w, 579, 469w, 414w, 297w, 252w, 202, 179w, 159, 129w.

Source: Frost et al. (2015c).

Comments: The sample was characterized by quqlitative electron microprobe analyses.

Sidwillite MoO₃⋅2H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 488 and 514.5 nm $Ar⁺$ laser radiations. The laser radiation power at the sample was 10–50 mW.
- **Raman shifts (cm⁻¹):** 934, 771sh, 729s, 627, 418w, 386w, 353w, 331, 272s, 247, 216, 184, 168, 119, 95, 65.

Source: Seguin et al. (1995).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of sidwillite see also Philip et al. (1988).

Siegenite $CoNi₂S₄$

Origin: Synthetic.

Experimental details: Raman spectrum was measured in argon atmosphere. Characteristics of laser radiation are not indicated.

Raman shifts (cm⁻¹): 373s, 342s, 301, 239, 150. **Source:** Xia et al. (2015). Comments: The sample was characterized by powder X-ray diffraction data.

Sigloite $Fe^{3+}Al_2(PO_4)_2(OH)_3·7H_2O$

Origin: Siglo XX (Llallagua) mine, Andes Mts., Bustillo province, Potosi, Bolivia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3615, 3552, 3493s, 3449s, 3422sh, 3356sh, 3118s, (2988), 1631w, (1532w), 1235–1231sh, 1228, 1167, 1099 + 1086 (unresolved doublet?), 1009s, 993sh, 888, 816, 693w, 659sh, 619sh, 596, 571, 550sh, 528, (506), (489), 453, 427, 401, 338sh, 308, 277, (267), 253, 241, 191, 177, 169sh, 140sh, 129, 112.

Source: Frost et al. (2013aa).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Siidraite $Pb_2Cu(OH)₂I₃$

Origin: Broken Hill Cu-Zn-Pb ore deposit, Yancowinna Co., New South Wales, Australia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 532 nm laser radiation. The laser radiation power at the sample was 1.8 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3455, 3443, 743w, 370, 332, 313sh, 277, ~248sh, ~217w, ~140sh, 128s, 116, 97.

Source: Welch et al. (2016).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Silicocarnotite $Ca₅[(PO₄)(SiO₄)](PO₄)$

Origin: Hatrurim basin, Negev Desert, Israel (type locality).

- Experimental details: The laser radiation wavelength is not indicated. The laser radiation power at the sample was 44 mW.
- **Raman shifts (cm⁻¹):** 1085, 1056, 1014 + 1004 (unresolved doublet?), 967s, (939w), 904sh, 893, 878, 850s, 788w, 734w, 711w, 693w, 671w, 640, 626, 584, 557, 474, 448, (418), 397, 318sh, 302, 275, 258, 234, 190sh, 153w.

Source: Galuskin et al. (2015a).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. For the Raman spectra of silicocarnotite see also Serena et al. (2014, 2015).

Silicon Si

Origin: Dhofar 280 lunar highland meteorite.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented samples using 532 nm laser radiation. The laser radiation power at the samples was no more than 5 mW. Raman shifts (cm^{-1}) : ~950w, 504–515s, ~280w.

Source: Nazarov et al. (2012).

Comments: The samples were characterized by electron microprobe analyses. The strongest band of synthetic crystalline Si is observed at 520 cm^{-1} .

Sillénite $Bi_{12}SiO_{20}$

Origin: Synthetic.

Description: Synthesized from the stoichiometric mixture of oxides at 700 \degree C for 48 h. Cubic, space group I23.

Source: Betsch and White (1978).

Raman shifts (cm⁻¹): 621w, 538s, 458w, 328, 276s, 249sh, 205, 165, 143, 129s, 95sh, 87s, 66, 57s, 43w.

Sillimanite $Al₂SiO₅$

Origin: Premosello Chiovenda, Ossola valley, Verbano-Cusio-Ossola province, Piedmont, Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1125, ~970, ~955, 870, ~707, ~596, ~480, 456, ~412, ~395, 309s, 235s, 142. Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of sillimanite see also Mernagh and Liu (1991) and Frezzotti et al. (2012).

Simonkolleite Zn₅(OH)₈Cl₂⋅H₂O

Origin: Artificial (a product of Zn corrosion in NaCl solution).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 40 mW. **Raman shifts (cm⁻¹):** 3580, 3480s, 3450, 1030, 910, 730, 390s, 260s, 210.

Source: Bernard et al. (1993b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of simonkolleite see also Khamlich et al. (2013).

Sinhalite MgAl(BO₄)

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 864, 554w, 488, 376.

Source: Ross (1972).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of sinhalite see also Hayward et al. (1994).

Sinjarite CaCl₂∙2H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3486, 3452s, 3216w, 1638s, 1620w (at 21 °C); 3545w, 3491, 3475, 3437s, 3388, 3215w, 3211w, 1635s, 1630, 1616 (at -172 °C).

Source: Uriarte et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of sinjarite see also Baumgartner and Bakker (2010).

Sinoite $Si₂N₂O$

Origin: Zakłodzie meteorite.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 1.2 mW.
- Raman shifts (cm^{-1}) : 1142w, 983w, 941w, 891w, 730w, 544, 496w, 455w, 373w, 328w, 217w, 185s.

Source: Ma et al. (2012a).

Comments: The mineral was identified by electron back-scatter diffraction. For the Raman spectrum of sinoite see also Sekine et al. (2006).

Skinnerite $Cu₃SbS₃$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on nanocrystals using 514 nm laser radiation. The laser radiation power is not indicated.
- Raman shifts $(cm⁻¹)$: 354.

Source: Qiu et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Skippenite $Bi₂Se₂Te$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film. Characteristics of laser radiation are not indicated.

Raman shifts (cm⁻¹): 165, 147, 117s.

Source: Gopal et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of skippenite see also Voloshin et al. (2015a).

Sklodowskite Mg(UO2)2(SiO3OH)2∙6H2O

Origin: Eva mine, NorthernTerritory, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3506, 3420sh, 3316w, 1640w, 1528w, 1413w, 1312w, 1244w, 1150w, (986), 970, (957), 934w, 897w, 853w, 827w, 801, 777s, (756w), 549, 474, 414, 393sh, 318sh, 305, 282, 264, 217sh, 200 + 197s (unresolved doublet?), 156, 137, (127), 113.

Source: Frost et al. (2006e).

Comments: No independent analytical data are provided for the sample used.

Skorpionite Ca₃Zn₂(PO₄)₂(CO₃)(OH)₂⋅H₂O

Origin: Skorpion Zn mine, Lüderitz district, Karas region, Namibia (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488, 514.5 or 632.8 nm laser radiation. The nominal laser radiation power was 20 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3566s, 1633w, 1505, 1398, 1102, 1075s, 1054, 1016, 972s, 702, 639, 575, 468, 423, 384, 322, 276, 237.

Source: Krause et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Smirnite $Bi^{3+}{}_{2}Te^{4+}O_5$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an oriented single crystal using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 50 mW. A 90°-scattering geometry was employed.
- **Raman shifts (for the y(xx)z scattering geometry, cm⁻¹): 768s, 740, 721sh, 625, 382w, 347, 282w,** 254w, 239, 206w, 193w, 164w, 153w, 114, 102s, 89s, 64, 57s, 44w.

Source: Domoratskii et al. (2000).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of smirnite see also Klein et al. (1998).

Smithite AgAsS₂

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 362s, 324s, 301, 279w, 239, 207w, 176, 141, 120w.

Source: Minceva-Sukarova et al. (2003).

Comments: No independent analytical data are provided for the sample used.
Smithsonite $Zn(CO_3)$

Origin: Lavrion, Greece.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 488 and 514.5 nm $Ar⁺$ laser radiations. The nominal laser radiation power was in the range from 100 to 500 mW.

Raman shifts (cm⁻¹): 1735, 1406, 1090s, 726, 302, 194.

Source: Rutt and Nicola (1974).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of smithsonite see also Bouchard and Smith (2003) and Frezzotti et al. (2012).

Smythite (Fe,Ni)_{3+x}S₄ ($x \approx 0-0.3$)

Origin: Harrodsburg, Bloomington, Indiana, USA.

Experimental details: No data.

Raman shifts (cm⁻¹): 394, 358, 329, 326, 267, 262.

Source: Bon and Rakovan (2012).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved.

Sobolevskite PdBi

Origin: Southern Sopchinskoe deposit, Monchegorsk district, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser power was 50 mW.

Raman shifts (cm⁻¹): 236w, 106w, 82, 63s.

Source: Voloshin et al. (2015a).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of sobolevskite see also Bakker (2014).

Sodalite $Na_4(Si_3Al_3)O_{12}Cl$

Origin: Mogok, Myanmar.

Experimental details: No data.

Raman shifts $(cm⁻¹)$: 1057-1062, 986-987, 973, 914, 463-464s, 451s, 263s.

Source: Culka et al. (2016a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of sodalite see also Balassone et al. (2012), Hettmann et al. (2012), and Zahoransky et al. (2016).

Soddyite $(UO₂)₂(SiO₄)·2H₂O$

Origin: Sierra Albarrana, Córdoba, Spain.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The laser radiation output power was 20 mW.

Raman shifts (cm⁻¹): 832s, 463, 404, 312, 293, 225, 195, 107.

Source: Bonales et al. (2015).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of soddyite see also Biwer et al. (1990), Giammar and Hering (2002), Frost et al. (2006d, h), and Amme et al. (2002).

Söhngeite $Ga(OH)_3$

Origin: Tsumeb mine, Namibia (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 473 nm laser radiation. The nominal laser radiation power was 50 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3334, 3240, 3189sh, 3100, 3000, 923, 455w, 327s, 273w, 256, 185w. Source: Welch and Kleppe (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Sonolite $Mn^{2+9}(SiO_4)_4(OH)_2$

Origin: Franklin, Sussex Co., New Jersey, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3555sh, 3544w, 3532sh, 948, 906, 848s, (838), 832sh, 814, 668, 638. Source: Frost et al. (2007k).

Comments: The sample was characterized by electron microprobe analysis.

Sonoraite Fe³⁺(Te⁴⁺O₃)(OH)∙H₂O

Origin: Tombstone, Tombstone district, Cochise Co., Arizona, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3450 + 3423 (unresolved doublet?), 3350sh, 3223sh, 3000sh, 994w, 911w, (804w), 779s, (714), 666s, 638sh, 521sh, 468, 425, 387, (374), 312, 267s, 253s, 234, 209, 159. Source: Frost and Keeffe (2009c).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of sonoraite see also Frost et al. (2015b).

Spangolite $Cu₆Al(SO₄)(OH)₁₂Cl·3H₂O$

Origin: Monte Fucinaia, central Western Italy.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power at the sample was 4 mW.

Raman shifts (cm⁻¹): 968s, 615w, 520s, 410, 168.

Source: Coccato et al. (2016).

Comments: No independent analytical data are provided for the sample used.

Spencerite $Zn_4(PO_4)_2(OH)_2·3H_2O$

Origin: Salmo, British Columbia, Canada.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3516, 1095w, 1019w, 999s, 989w, 952w.

Source: Frost (2004a).

Comments: No independent analytical data are provided for the sample used.

Sperrylite PtAs₂

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 18794.59 cm⁻¹ laser radiation. The laser radiation power at the sample was between 1 and 2 mW.

Raman shifts (cm⁻¹): 293w, 279, 226, 216s.

Source: Bakker (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of sperrylite see also Müller and Lutz (1991) and Mernagh and Hoatson (1995).

Spertiniite $Cu(OH)_{2}$

Origin: Artificial (a product of brass corrosion).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power at the sample was 74 μ W. **Raman shifts (cm⁻¹):** ~3555s, ~3305, ~950w, ~840w, ~495s, ~450, ~293.

Source: Schmutzler et al. (2016).

Comments: No independent analytical data are provided for the sample used.

Spessartine $Mn^{2+}{}_{3}Al_{2}(SiO_{4})_{3}$

Origin: Lojane, municipality of Lipkovo, Republic of Macedonia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1025sh, 976, 901s, 838, 632w, 607w, 557, 496, 454w, 413w, 377sh, 354, 293, 228, 183.

Source: Makreski et al. (2005b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of spessartine see also Mingsheng et al. (1994), Kolesov and Geiger (1998), Bersani et al. (2009), Jovanovski et al. (2009), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Sphalerite ZnS

Origin: Rio Tinto, Spain.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was between 1 and 10 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 447, 420, 407, 397, 350s, 336, 287, 275s, 237, 219, 208, 178, 156, 144, 117. Source: Mernagh and Trudu (1993).

Comments: The Raman shifts are given for Fe-bearing sphalerite. No independent quantitative analytical data are provided for the sample used. For the Raman spectra of sphalerite see also White (2009), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Spherocobaltite $Co(CO₃)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1090s, 725w, 302, ~194.

Source: Chariton et al. (2017).

Comments: The sample was characterized by single-crystal X-ray diffraction data. For the Raman spectrum of spherocobaltite see also Rutt and Nicola (1974).

Spinel $MgAl₂O₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 632.8 nm He-Ne and 473.1 nm Nd-YAG laser radiations. The laser radiation power at the sample was $\langle 1 \text{ mW} \rangle$.

Raman shifts (cm⁻¹): 768, 720w, 670, 562w, 493w, 408s, 375sh, 308.

Source: D'Ippolito et al. (2015).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of spinel see also Shoval et al. (2001), Jasinevicius (2009), Kojitani et al. (2013), Culka et al. (2016a, b), and Dongre et al. (2016).

Spionkopite Cu₃₉S₂₈

Origin: Synthetic. Experimental details: No data. Raman shifts cm^{-1}): 474s. Source: Parker et al. (2008). **Comments:** The sharp band at 474 cm^{-1} corresponds to S–S pairs.

Spiroffite $Mn^{2+}{}_{2}Te^{4+}{}_{3}O_8$

Origin: Moctezuma mine, Sonora, Mexico (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): (773w), 743s, 721, 650sh, 466s, 394, 346s, 226, 148.

Source: Frost et al. (2009g).

Comments: No independent analytical data are provided for the sample used. The IR spectrum of presumed spiroffite given in the cited paper corresponds to quartz.

Spodumene $LiAlSi₂O₆$

Origin: Conţu-Negovanu pegmatite field, Lotru-Cibin Mts., Sibiu Co., Romania.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal. Experimental details are not described.

Raman shifts (cm⁻¹): 1098, 1070s, 1017, 783, 705s, 582, 522, 438, 393, 355s, 296, 249. Source: Buzatu and Buzgar (2010).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of spodumene see also Anderson et al. (2001) and Jasinevicius (2009).

Spurrite $Ca₅(SiO₄)₂(CO₃)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 1080s, 948w, 932w, 864, 852, 704, 547w, 520w, 404w, 389w. Source: Gastaldi et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data.

Šreinite Pb(UO₂)₄(BiO)₃(PO₄)₂(OH)₇⋅4H₂O

Origin: Horní Halže, Krušné Hory (Ore Mts.), Czech Republic (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power at the sample was 4 mW.

Raman shifts (cm⁻¹): 1361w, 1060w, 1023w, 975w, 871sh, 839sh, 797s, 678w, 595w, 507w, 457w, 449w, 334.

Source: Sejkora and Čejka (2007).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Srilankite $(Ti,Zr)O₂$

Origin: Xiuyan meteorite crater, Xiuyan Co., Liaoning province, NE China.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented Zr -free sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 825w, 610, 572, 533, 442sh, 428s, 412sh, 357, 340w, 315, 287, 175s, 151. Source: Chen et al. (2013a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of srilankite see also Mammone et al. (1981).

Stanfieldite $Ca₄Mg₅(PO₄)₆$

Origin: Artificial (a product of pyrometamorphic substitution of apatite in slag).

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power at the sample was between 1 and 5 mW.

Raman shifts (cm⁻¹): 1293w, 1228w, 1158w, 1124w, 1075, 983sh, 974s, 968s, 753, 620, 611sh, 533, 514, 468, 402, 348, 293w, 176w.

Source: Schneider et al. (2013).

Comments: The sample was characterized by electron microprobe analyses.

Stanleyite $V^{4+}O(SO_4)$ ∙6H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was between 10 and 40 mW.

Raman shifts (cm⁻¹): 1078, 1028, 1006, 630, 450, 310.

Source: Hardcastle and Wachs (1991).

Comments: No independent analytical data are provided for the sample used. Band intensities are not indicated.

Stannite $Cu₂FeSnS₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated. A nearly 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 350w, 318s, 286.

Source: Himmrich and Haeuseler (1991).

Comments: For the Raman spectra of stannite see also Fontané et al. (2012) and Evrard et al. (2015).

Starkeyite Mg(SO₄)⋅4H₂O

Origin: Calingasta, San Juan province, Argentina.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): ~1156, ~1120, ~1102s, ~1085w, ~615, ~560w, ~475.

Source: Peterson (2011).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of starkeyite see also Wang et al. (2006a) and Frezzotti et al. (2012).

Starovaite $KCu₅O(VO₄)₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 250 K in a quasiback-scattering geometry, from the surface parallel to the a -axis of a microtwinned crystal using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 10 mW.

Raman shifts (cm⁻¹): ~953s, ~908, ~860, ~834w.

Source: Choi et al. (2004).

Staurolite $Fe^{2+}{}_{2}Al_{9}Si_{4}O_{23}(OH)$

Origin: Štavica, municipality of Prilep, Republic of Macedonia.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm⁻¹): 3675, 3622w, 3571w, 3520sh, 3451sh, 3426s, 1022, 970s, 938sh, 898sh, 847sh, 684w, 640sh, 593, 543, 525sh, 487, 432, 399w.

Source: Makreski et al. (2005b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of staurolite see also Andò and Garzanti (2014).

Steedeite $NaMn_2[Si_3BO_9] (OH)_2$

Origin: Poudrette quarry, Montérégie (Rouville) Co., Québec, Canada (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3443, 3317w, 1700, 1368, 1030, 1000s, 874, 836, 696, 636s, 431, 330, 264, 197w, 120.

Source: Haring and McDonald (2014a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Steenstrupine-(Ce) Na₁₄Ce₆Mn²⁺₂Fe³⁺₂Zr(PO₄)₇Si₁₂O₃₆(OH)₂⋅3H₂O

Origin: Karnasurt Mt., Lovozero alkaline massif, Kola Peninsula, Russia.

Experimental details: Raman scattering measurements have been performed on a partly metamict sample annealed at 500 $^{\circ}$ C using 632.8 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): \sim 957s, \sim 880sh, \sim 756, \sim 600 (broad).

Source: Kusz et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Stephanite $Ag₅SbS₄$

Origin: Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an oriented crystal with the laser polarization parallel to the a -, b - and c -axes. 785 nm solid-state laser radiation was used. The nominal laser radiation power was 1.7 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 335s, 317w, 306w, 301, 233, 204w, 178w.

Source: Kharbish et al. (2009).

Comments: The sample was characterized by electron microprobe analyses. The Raman shifts are given as the sum of the spectra of all scattering geometries.

Štěpite U(AsO₃OH)₂∙4H₂O

Origin: Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality). Experimental details: No data.

Raman shifts (cm⁻¹): 3552, 3484, 1641w (broad), 896s, 844s, 811s, 760s, 420, 401, 377, 368, 351, 322, 312, 287, 262, 235, 180, 160, 139,115, 107.

Source: Plášil et al. (2013b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Stercorite $(NH_4)Na(PO_3OH)·4H_2O$

Origin: Petrogale Cave, Madura, Western Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 3158, 3024sh, 2900sh, 920s, 577, 476, 450sh, 396w, 345, 326sh, 216sh, 197 + 185 (unresolved doublet), (155), 143s, 110.

Source: Frost et al. (2011u).

Comments: The sample was characterized by powder X-ray diffraction data.

Steropesite Tl_3BiCl_6

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 1036 nm Nd-YAG laser radiation. The nominal laser radiation power was between 30 and 300 mW. A 180-scattering geometry was employed.

Raman shifts (cm⁻¹): 261s, 218, 117s.

Source: Beck and Benz (2010).

Comments: The sample was characterized by single-crystal X-ray diffraction data and X-ray absorption spectrum.

Stetindite Ce(SiO₄)

Origin: Stetind pegmatite, Tysfjord, Nordland, Norway (type locality).

Experimental details: No data.

Raman shifts $(cm⁻¹)$ **:** See comment below.

- Source: Schlüter et al. (2009).
- Comments: Raman micro-spectroscopy shows weak OH bands in the frequency range between 3200 and 3700 cm^{-1} corresponding to vibrations of OH groups. No other data on the Raman spectrum of stetindite are given in the cited paper.

Stibarsen SbAs

Origin: Synthetic. Experimental details: No data. **Raman shifts** $(cm⁻¹)$ **:** 216 (calculated). Source: Zhang et al. (2016a).

Stibiconite $Sb^{3+}Sb^{5+}2O_6(OH)$

Origin: Yucunani Mine, Tejocotes, Oaxaca, Mexico.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3603sh, 3424 + 3225 (unresolved doublet?), 3018sh, 2755w, 855sh, 827w, 736w, 609, 564w, (537w), 522, (508), 461, 409 + 400 (unresolved doublet?), 261, (250), 220sh, 199s, 146, 109w.

Source: Bahfenne and Frost (2010e).

Comments: No independent analytical data are provided for the sample used.

Stibioclaudetite AsSbO_3

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 817w, 766w, 726w, 631w, 620w, 517w, 477, 468, 430sh, 414s, 342, 323w, 298w, 273, 232, 210, 202, 183, 171s, 155s, 125w, 115w.

Source: Origlieri et al. (2009).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of Stibioclaudetite see also Origlieri (2005).

Stibiocolumbite SbNbO₄

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 200 mW.

Raman shifts (cm⁻¹): 913, 740w, 718, 620s (broad), 542, 448, 397, 377s, 350, 292, 269s, 239, 232, 192s, 168s, 128s, 87s, 75s, 54w, 37.

Source: Ayyub et al. (1986).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of stibiocolumbite see also Ayyub et al. (1987).

Stibiopalladinite Pd_5Sb_2

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 18794.59 cm⁻¹ laser radiation. The laser radiation power at the sample was between 1 and 2 mW.

Raman shifts (cm⁻¹): 187w, 169, 108s.

Source: Bakker (2014).

Comments: No independent analytical data are provided for the sample used.

Stibnite Sb_2S_3

Origin: Schlaining, Oberwart, Burgenland, Austria.

- Experimental details: Raman scattering measurements have been performed on an oriented crystal with the laser polarization parallel and perpendicular to the cleavage and elongation of kermesite. 632.8 nm He-Ne laser radiations were used. The nominal laser radiation power was 1.7 mW. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 310, 300, 281s, (254w), 237s, (225w), 207, 189, (180w), 156w, 125, 99, 71, 59s, 50, 39.
- Source: Kharbish et al. (2009).
- Comments: The sample was characterized by electron microprobe analysis. The Raman shifts are given as the sum of the spectra of all scattering geometries. For the Raman spectra of stibnite see also Mernagh and Trudu (1993), Minceva-Sukarova et al. (2003), Roy et al. (2008), Frost et al. (2010c), and Makreski et al. (2013b).

Stichtite $Mg_6Cr_2(CO_3)(OH)_{16}$ ∙4H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1087s, 1067sh, 539s, (531), 458, (446), 366w, 328w, 317w, 292w, 248w, 215w, 153.

Source: Frost and Erickson (2004).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of stichtite see also Mills et al. (2011b).

Stilbite-Ca NaCa₄(Si₂₇Al₉)O₇₂∙28H₂O

Origin: Berufjördur, Sudur-Múlasýsla, Eastern Region, Iceland.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The maximum output powder of 300 mW could be filtered to diminish the power at the sample.

Raman shifts (cm⁻¹): 794, 644w, 497s, 459w, 410s, 320w.

Source: Jehlička et al. (2012).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of stilbite-Ca see also Mozgawa (2001), Makreski et al. (2009), Jehlička and Vandenabeele (2015), and Ma et al. (2016b).

Stilbite-Na Na₉(Si₂₇Al₉)O₇₂∙28H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 1.5 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1133, 801, 618, 499s, 458, 411s, 152.

Source: Ma et al. (2016b).

Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is solved by the Rietveld method.

Stilleite ZnSe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film using 532 Nd-YAG laser radiation. The laser radiation power at the sample was 0.1 mW.

Raman shifts (cm⁻¹): 500, 252s, 202w.

Source: Perna et al. (2006).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of stilleite see also Yang et al. (1999).

Stilpnomelane $(K,Ca,Na)(Fe,Mg,Al)_8(Si,Al)_{12}(O,OH)_{36}Ri_1H_2O$

Origin: Martian meteorite MIL 03346.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532.3 nm Nd-YAG laser radiation. The nominal laser radiation power was 14.5 mW.

Raman shifts (cm⁻¹): 3579w, 3568w, 1156, 897, 820w, 588s, 501, 379, 291.

Source: Kuebler (2013a).

Comments: The sample was characterized by electron microprobe analyses.

Stishovite $SiO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 16 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 960, 750s, 584, 228.

Source: Liu and El Gorsey (2007). For the Raman spectra of stishovite see also Hemley (1987a, b), Von Czarnowski and Hübner (1987), Holtstam et al. (2003), Miyahara et al. (2013), and Spektor et al. (2016).

Stoiberite $Cu₅O₂(VO₄)₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532.1 nm laser radiation. The laser radiation power is not indicated.

```
Raman shifts (cm<sup>-1</sup>): ~950, ~900s, ~800s, ~560w, ~505w, ~410, ~330w.
```
Source: Kawada et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of stoiberite see also Newhouse et al. (2016).

Stolzite $Pb(WO_4)$

Origin: Vysoká hill, near Havlíčkův Brod, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation output power was 4 mW.

Raman shifts (cm⁻¹): 905s, 766, 752, 357, 328, 324s, 192w, 178, 90, 77w, 71w, 64, 56. Source: Pauliš et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of stolzite see also Frost et al. (2004d), Kloprogge et al. (2004b), and Andrade et al. (2014).

Stoppaniite Fe³⁺₂Be₃Si₆O₁₈⋅H₂O

Origin: Capranica, Vico volcanic complex, Latium, Italy (type locality). Experimental details: No data in the cited paper. Raman shifts $(cm⁻¹)$: 3595–3588. Source: Della Ventura et al. (2000).

Stottite $Fe^{2+}Ge(OH)_{6}$

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was below 80 mW. A 135-scattering geometry was employed.

Raman shifts (cm⁻¹): 3352, 3240, 3159, 3064, 636s, 418, 297, 266.

Source: Kleppe et al. (2012) .

Comments: The sample was characterized by single-crystal X-ray diffraction data.

Strashimirite Cu₄(AsO₄)₂(OH)₂⋅2.5H₂O

Origin: Zálesí deposit, Rychlebské Hory Mts., northern Moravia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3585w, 3488w, 3450w, 852s, 831sh, 554sh, 526sh, 497, 467sh, 393w, 337, 294s, 239sh, 220, 172sh, 152s.

Source: Frost et al. (2009i).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Strengite $Fe^{3+}(PO_4)$ ∙2H₂O

Origin: Iron Monarch, Middleback Ranges, South Australia, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1357, 1250, 1158, 1137, 1005, 985s, 744, 694, 560, 487, 447, 434, 398, 317, 303, 249, 204, 172s, 153, 135.

Source: Frost et al. (2004l).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of strengite see also Kloprogge and Wood (2017).

Stringhamite CaCu(SiO4)∙H2O

Origin: Christmas mine, Gila Co., Arizona, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 0.1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3239sh, 3193, 1371w, 1147w, 1061, (1027w), (997w), 980sh, 956s, 908, 848s, 825, 799, 764w, 693w, 626w, 570s, 519, 505, 431w, 396, 369, 341w, 326w, 303.

Source: Frost and Xi (2012f).

Comments: No independent analytical data are provided for the sample used.

Stromeyerite CuAgS

Origin: Artificial (a product of Ag-Cu alloy corrosion).

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 266-280 (broad).

Source: De Caro et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Stronadelphite $Sr₅(PO₄)₃F$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powder sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1055, 1042, 1029, 952s, 606sh, 595, 582, 575, 445, 423, 305w, 241, 208w, 196w, 186w, 174w.

Source: Zhai et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data.

Strontianite $Sr(CO₃)$

Origin: Drensteinfurt, Münsterland, North Rhine-Westphalia, Germany.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 1543w, 1445, 1069s, 700, 242.

Source: Buzgar and Apopei (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of strontianite see also Frezzotti et al. (2012).

Strontiofluorite SrF_2

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a single crystal using 253.65 nm Hg radiation.

Raman shifts $(cm⁻¹)$: 285.

Source: Warrier and Krishnan (1964).

Strontiohurlbutite $SrBe₂(PO₄)₂$

Origin: Nanping No. 31 pegmatite, Fujian province, SE China (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single-crystal sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm⁻¹): 1178, 1135, 1022s, 587, 575, 550, 494, 442, 421, 343, 204, 176. Source: Rao et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Strontiojoaquinite (Na,Fe)₂Ba₂Sr₂Ti₂(SiO₃)₈(O,OH)₂⋅H₂O

Origin: Junilla Claim, San Benito Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3599w, 3587sh, 3519 + 3511 (unresolved doublet?), 3485sh, 1123s, 1062, 1031, 971s, 912, 892, 738w, 682 + 679 (unresolved doublet?), 621s, 602sh, 511, 468+437 (unresolved doublet?), 387–386, 357sh, 339, 284, 267, 193sh, 173, 159, 145.

Source: Frost and Pinto (2007).

Comments: The sample was characterized by electron microprobe analysis.

Strunzite Mn²⁺Fe³⁺₂(PO₄)₂(OH)₂⋅6H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3483, 3410, 3340, 3120, 1120, 1048, 1000s, 975, 639, 567, 513, 469s, 433, 406, 329, 301, 281sh, 248, 199, 183, 168.

Source: Frost et al. (2002c).

Comments: The sample was characterized by powder X-ray diffraction data and quqlitative electron microprobe analysis.

Struvite-(K) KMg(PO₄)⋅6H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1075w, 1015w, 1005w, 985w, 946s, 569s, 470w, 430, and a series of bands in the range from 250 to 400 cm^{-1} .

Source: Stefov et al. (2004) .

Comments: No independent analytical data are provided for the sample used.

Struvite $(NH_4)Mg(PO_4)·6H_2O$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3239sh, 3115, 2921sh, (2903sh), 2368w, 1077, 1013w, 950s, (942), 890, 564, 463w, 428, 300, 242, 229, 206.
- Source: Frost et al. (2005j).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of struvite see also García et al. (2013).

Studtite $(UO₂)(O₂)(H₂O)₂·2H₂O$

Origin: Menzenschwand, Schwarzwald (Black Forest Mts.), Germany.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 6 mW . A 180° -scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3473w, 3145, 1712w, 1685, 865s, 838sh, 819s, 810sh, 408w, 352w, 294w, 266w, 230w.

Source: Bastians et al. (2004).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of studtite see also Amme et al. (2002) and Colmenero et al. (2017).

Sturmanite Ca₆Fe³⁺₂(SO₄)₂[B(OH)₄](OH)₁₁O⋅25H₂O

Origin: Black Rock mine, Kuruman Manganese Fields, Kalahari, South Africa (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3677sh, 3622 + 3600 (unresolved doublet?), 3479, (3401), 3276sh, 1776w, 1697, 1636sh, 1117w, 1069, 995sh, 990s, 981sh, 959w, 760w, 623w, 579s, 530, 501, 455, 383sh, 355, 268sh, (232), 205.

Source: Frost et al. (2014ag).

Comments: The sample was characterized by electron microprobe analysis.

Stützite Ag_{5-x}Te₃ ($x = 0.24{\text -}0.36$)

Origin: Coranda-Hondol open pit, Certej Au-Ag deposit, South Apuseni Mts., Romania.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in a polished section using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 147s, 80sh, 64.

Source: Apopei et al. (2014b).

Comments: The sample was characterized by electron microprobe analyses.

Sudoite $Mg_2Al_3(Si_3Al)O_{10}(OH)_8$

Origin: Semail ophiolite, Oman.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar^+ or 532 nm solid-state laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3696, 3692, 3666, 3646, 1109, 1080, 1045, 1005, 733, 702, 665, 616, 559s, 549, 477, 403, 388, 365, 259s, 211, 190, 94.

Source: Reynard et al. (2015) .

Comments: The empirical formula of the sample used is $(Mg_{1.7}Fe_{0.3}Al_4)(Si_3Al_0O_1OOH)_{8}$.

Sudovikovite PtSe₂

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts $(cm⁻¹)$ **:** 206, 177.

Source: Altamura et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data.

Sulphohalite $Na₆(SO₄)₂ClF$

Origin: Searles Lake, San Bernardino Co., California, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (1132sh), 1128, (1120sh), 1021w, (1010sh), 1003s, (997sh), 986sh, 635, 624sh, (481sh), 472, 467sh, 159 + 146 (unresolved doublet?), 117 + 109 (unresolved doublet?).

Source: Frost et al. (2014z).

Comments: No independent analytical data are provided for the sample used. The sample was characterized by qualitative electron microprobe analysis.

Sulfur S

Origin: Mariana Arc.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation output power was 100 mW. **Raman shifts (cm⁻¹):** 472s, 437, 246, 219s, 186w, 153.

Source: White (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of sulfur see also Venkateswarlu (1940), Mycroft et al. (1990), Turcotte and Benner (1993), Munce et al. (2007), and Frezzotti et al. (2012).

Sulvanite $Cu₃VS₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using Ar⁺ or Kr⁺ laser radiation. The laser radiation power at the sample was below 50 mW. Raman shifts (cm^{-1}) : 448sh, 440s, 376s, 301w, 201s, 147.

Source: Petritis et al. (1981).

Comments: The sample was characterized by powder X-ray diffraction data.

Suredaite $PbSnS₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on nanorods using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 625, 442, 309s, 201, (143s).

Source: Wang et al. (2001b).

Comments: The sample was characterized by powder X-ray diffraction data.

Sursassite Mn^{2+} ₂Al₃(SiO₄)(Si₂O₇)(OH)₃

Origin: Strategic Manganese Mine, near Woodstock, New Brunswick, Canada.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3452, 3335, 3230, 2998sh, 1086w, 1026w, 925s, 866, 822, 705, 618, 554s, 491sh, 353, 283, (213), 151.

Source: Reddy and Frost (2007).

Comments: The sample was characterized by powder X-ray diffraction data. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Susannite $Pb_4(SO_4)(CO_3)_2(OH)_2$

Origin: Herzog Julius Shaft, Astfeld, Schlackental, Harz Mts., Germany.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3630, 3550, 3513, 3447, 3377, 3307, 3241, 3179, 1154, 1105, 1048, 1026, 1011, 964s, 628, 602, 497, 470, 450, 427, 393, 363, 239, 203.

Source: Frost et al. (2003e).

Comments: Questionable data: bands of symmetric stretching vibrations of carbonate groups are unusually weak. No independent analytical data are provided for the sample used.

Suseinargiuite $(Na_{0.5}Bi_{0.5})(MoO₄)$

Origin: Su Seinargiu, Sardinia, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power at the sample was 1.5 mW.

Raman shifts $(cm⁻¹)$: 876s, 772, 376, 319s, 188, 131w.

Source: Orlandi et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Svanbergite $SrAl₃(SO₄)(PO₄)(OH)₆$

Origin: Mt. Brussilof mine, Radium, British Columbia, Canada.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3518sh, 3467, 3415sh, 3319sh, (3215sh), 3151w, 3064sh, 1098, 1034sh, 1022s, 998, 981sh, 896, 654, 633, 616s, 602sh, 588sh, 572sh, 522, 486, 474sh, 392, 369sh, 280w, 246, 179.

Source: Frost and Palmer (2011b).

Comments: No independent analytical data are provided for the sample used.

Švenekite Ca[AsO₂(OH)₂]₂

Origin: Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 3 mW.
- **Raman shifts (cm⁻¹):** 3368, 2917w, 2385w, 929, 901, 871s, 840, 753s, 726, 541w, 498w, 417, 393, 358, 330, 289, 268, 223, 172w.

Source: Ondruš et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Svornostite $K_2Mg[(UO_2)(SO_4)_2]_2.8H_2O$

Origin: Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality). Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented

sample using 532 nm solid-state laser radiation. The nominal laser radiation power was 2.5 mW.

Raman shifts $(cm⁻¹)$: 3622w, 3545, 3496, 1220w, 1200, 1155, 1110w, 1028, 989, 951w, 854s, 725w, 643, 610w, 458, 438, 322w, 268w, 207sh, 186, 132, 75.

Source: Plášil et al. (2015b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Swedenborgite $NaBe_4Sb^{5+}O_7$

Origin: Långban, near Pajsberg and Filipstad, Värmland, Sweden (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 633 nm laser radiation.

Raman shifts (cm⁻¹): 906w, 797s, 767, ~740, 575, 427s.

Source: Gaft et al. (2013).

Comments: The Raman spectrum agrees well to that from the RRUFF database.

Symplesite $Fe^{2+}(AsO_4)_2$ ∙8H₂O

Origin: Laubach mine, Laufdorf, Wetzlar, Hesse, Germany.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3448w, 892, 841s, 803, 768s, 520sh, 498s, 442, 373, 319w, 281, 249, 225sh, 207, 189w, 172w, 137w, 113w.

Source: Makreski et al. (2015b).

Comments: The sample was characterized by powder X-ray diffraction data.

Synchysite-(Ce) CaCe(CO₃)₂F

Origin: Soultz-sous-Forêts, Rhine Graben, France.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar^+ laser radiation. The laser radiation power at the sample was about 14 mW. **Raman shifts (cm⁻¹):** 1101s, 1083s, 758w, 742, 515, 477, 454w, 276.

Source: Middleton et al. (2013).

Comments: The sample was characterized by electron microprobe analyses.

Syngenite K₂Ca(SO₄)₂⋅H₂O

Origin: Kalush mine, western Ukraine.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 3306, 1167, 1143, 1120w, 1084w, 1007s, 982s, 663w, 641, 495, 472sh, 442, 240w.

Source: Buzgar et al. (2009).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of syngenite see also Frezzotti et al. (2012) and Jentzsch et al. (2012a, 2013).

Szaibélyite $MgBO₂(OH)$

- Origin: Vysoká-Zlatno Cu-Au porphyry-skarn deposit, Štiavnica Neogene strato volcano, Western Carpathians, Slovakia.
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3567, 3559s, 1516w, 1463, 1284, 1186, 988, 915w, 836s, 661, 627, 611, 529, 493, 345, 321, 296, 184, 161.

Source: Bilohuščin et al. (2017).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of szaibélyite see also Frost et al. (2015aa) and Galuskina et al. (2008).

Szenicsite $Cu_3(M_0O_4)(OH)_4$

Origin: Jardinera No 1 Mine, Inca de Oro, Chile (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 785 nm Nd-YAG laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3559, 3518, 3506w, 3503w, 3500w, 928, (903sh), 898s, (895sh), 827, 801w, 687w, 476, 408s, 349, 308, 280, 211, 147, 105.

Source: Frost et al. (2007a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of szenicsite see also Yang et al. (2012).

Szmikite Mn(SO4)∙H2O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW. **Raman shifts (cm⁻¹):** 1188, 1089, 1021s, 654w, 623, 493, 426, 263w. Source: Buzgar et al. (2009).

Comments: No independent analytical data are provided for the sample used.

Szomolnokite Fe(SO4)∙H2O

Origin: Baia Sprie mining area, Romania.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632 nm Nd-YAG laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts $(cm⁻¹)$: 1191, 1091, 1020s, 667w, 623, 492, 427.

Source: Buzatu et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of szomolnokite see also Chio et al. (2007), Jentzsch et al. (2013), Rull et al. (2014), and Apopei et al. (2015).

Takedaite $Ca₃B₂O₆$

Origin: Fuka mine, Okayama prefecture, Japan (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): (1087s) (with shoulders), 929w, 911w, (715 + 712) (unresolved doublet?), 585w, 330w, (~282), 217w, (159 + 154) (unresolved doublet?).

```
Source: Frost et al. (2014n).
```
Comments: Questionable data. The sample was characterized by qualitative electron microprobe analysis (only Ca, O, and C have been found). The bands at 1087 , $715 + 712$, ~ 282 , and $159 + 154$ cm⁻¹ correspond to calcite that is the main component in the sample used.

Takovite $Ni₆Al₂(CO₃)(OH)₁₆·4H₂O$

Origin: Kambalda, Western Australia, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3461, 2855, 2615, 1543, 1060s, 1042, 992, 697, 558s, 533, 492, 403, 324, 253, 225, 218.

Source: Frost et al. (2003h).

Comments: No independent analytical data are provided for the sample used.

Talc $Mg_3Si_4O_{10}(OH)_2$

Origin: Greiner, Zillertal, Austria.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 257 nm Ar^+ laser radiation. The laser radiation power at the sample was below 3 mW. **Raman shifts (cm⁻¹):** 3675s, 3660, 1051w, 793, 707, 676s, 469, 434, 363, 333w. Source: Petry et al. (2006).

Comments: The sample was characterized by electron microprobe analyses. For Raman spectra of talc see also Blaha and Rosasco (1978), Rosasco and Blaha (1980), Wada and Kamitakahara (1991), and Frezzotti et al. (2012).

Talmessite Ca₂Mg(AsO₄)₂∙2H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 2882, 2376, 931, 905, 877, 836s, 814, 783, 455s, 445, 388, 363, 357, 305, 276, 212, 196, 173.

Source: Frost and Kloprogge (2003).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of talmessite see also Frost (2009a).

Tangdanite Ca₂Cu₉(AsO₄)₄(SO₄)_{0.5}(OH)₉∙9H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3489, 3403, 1136, 1007, 883, 841s, 802, 669, 618, 505, 493, 462, 414, 385, 359, 314, 260, 210, 179.
- Source: Frost and Kloprogge (2003).
- Comments: No independent analytical data are provided for the sample used. In the cited paper tangdanite was described with the old name clinotyrolite. For the Raman spectrum of tangdanite see also Frost et al. (2012n, 2015z).

Tangeite $CaCu(AsO₄)(OH)$

Origin: Tange gorge, Tyuya-Mayun, Kyrgyzstan (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3242), 3118, (868w), 842s, 823, 798, 768w, (715w), 507w, 482, 463, 392w, 367, 321s, 284, 264, 208, 184, 165, 145, 135.
- Source: Martens et al. (2003c).

Comments: No independent analytical data are provided for the sample used.

Tantalite-(Fe) Fe²⁺Ta₂O₆

Origin: Suzhou granite, Suzhou City, southern Jiangsu, China.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 700 mW.
- Raman shifts $(cm⁻¹)$: 880.

Source: Wang et al. (1997).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Tantalite-(Mg) $MgTa_2O_6$

Origin: Synthetic. Experimental details: No data. **Raman shifts (cm⁻¹):** 740sh, 712s, 662, 568w, 540w, 473, 425, 356w, 334, 253s, 185s. Source: Husson et al. (1979). Comments: No independent analytical data are provided for the sample used.

Tantalite-(Mn) $Mn^{2+}Ta_2O_6$

Origin: Alto do Giz pegmatite, Borborema pegmatite province, northeastern Brazil.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was 14 mW.

Raman shifts $(cm⁻¹)$: 887s, 621, 547, 526, 324, 282, 238, 202, 121.

Source: Thomas et al. (2011a).

Comments: The sample was characterized by qualitative electron microprobe analyses.

Tantite orthorhombic polymorph Ta_2O_5

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 981, 948, 903, 844, 762, 711, 642, 612s, 562, 494, 458, 377, 338, 269, 245s, 196, 139, 106s, 78.

Source: Joseph et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of Ta_2O_5 see also Dobal et al. (2000) and Meng et al. (1997).

Taranakite K₃Al₅(PO₃OH)₆(PO₄)₂∙18H₂O

Origin: Jenolan Caves, New South Wales, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1149, 1126s, 1116sh, 1100sh, 1064w, 1026, 1010sh, (991), 962s, (946sh), (922sh), 811, 656, 648, 636, 615sh, 595, (580), 572sh, 560s, 547, (537sh), 529sh, 505sh, 489, 464, 444, 416s, (404), 396s, (388sh), 348w, 328, 304, 271, 260sh, 248, (237sh), 223, 202, 188s, 165, 155.

Source: Frost et al. (2011v).

Comments: The sample was characterized by powder X-ray diffraction data.

Tarapacáite $K_2(CrO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 457.9 nm $Ar⁺$ laser radiation. The nominal laser radiation power was between 5 and 30 mW.

Raman shifts (cm⁻¹): 906, 886, 883, 873, 859s, 395, 390, 388, 354s, 351s.

Source: Serghiou and Guillaume (2004).

Comments: For the Raman spectra of tarapacáite see also Kiefer and Bernstein (1972) and Huang and Butler (1990).

Tarbuttite $Zn_2(PO_4)(OH)$

Origin: Broken Hill, Zambia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3446, 1069, 1051, 1011, 965s.

Source: Frost (2004a).

Comments: No independent analytical data are provided for the sample used.

Tausonite SrTiO₃

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using the conventiona 14358-Å mercury e line. The radiation power is not indicated.

Raman shifts (cm⁻¹): 1030, 720, 675, 620..., 360s, 310s, 250, 80.

Source: Perry et al. (1967).

Comments: No independent analytical data are provided for the sample used.

Tazheranite $(Zr, Ti, Ca)(O, \Box)_2$

Origin: Synthetic (stabilized cubic $ZrO₂$).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 625s, 480, 360, 250, 150.

Source: Phillippi and Mazdiyasni (1971).

Comments: For the Raman spectrum of tazheranite see also Galuskina et al. (2013a).

Tazzoliite Ba₂CaSr_{0.5}Na_{0.5}Ti₂Nb₃SiO₁₇[PO₂(OH)₂]_{0.5}

Origin: Euganei Hills, Padova, Italy (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was between 10 and 50 mW.

Raman shifts (cm⁻¹): 3516w, 1062w, 981w, 961w, 869w, 754s, 563s, 540, 328, 261s, 229s. Source: Cámara et al. (2012a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Teepleite $Na₂B(OH)₄Cl$

Origin: No data.

Experimental details: Polarized Raman scattering measurements have been performed on a single crystal using Ar⁺ laser radiation.

Raman shifts (cm⁻¹): 3555, 3535, 3525, 1195, 1185, 946, 854, 770, 743, 660, 505, 499, 429, 373, 185, 143, 135, 113.

Source: Devarajan et al. (1974).

Comments: No independent analytical data are provided for the sample used.

Teineite $Cu^{2+}(Te^{4+}O_3)$ ∙2H₂O

Origin: Moctezuma Mine, Mexico.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3495, (3139), 3040, 2854sh, (2641w), 2286w, 778sh, 739s, 701, 667, 509s, 458sh, 384sh, 347, 319, 250sh, 235, 175, 131.

Source: Frost and Keeffe (2009b).

Comments: No independent analytical data are provided for the sample used.

Tellurantimony Sb_2Te_3

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was below 3 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 164.5, 111, 68s.

Source: Chis et al. (2012).

Comments: No independent analytical data are provided for the sample used.

Tellurium Te

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$ **:** 136, 116s.

Source: Russo et al. (2008).

Comments: For the Raman spectrum of tellurium see also Pine and Dresselhaus (1971).

Tellurobismuthite $Bi₂Te₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was $<<2$ mW.

Raman shifts (cm⁻¹): 133, 101s, 60, 38.

Source: Xu et al. (2015a).

Comments: For the Raman spectra of tellurobismuthite see also Richter et al. (1977) and Chis et al. (2012).

Tengerite-(Y) Y₂(CO₃)₃⋅2–3H₂O

Origin: Paratoo copper mine, Yunta, Olary Province, South Australia, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3621w, 3367sh, 3281, 3241sh, 3047, 2920, 2789sh, 2657, 1689w, (1637), 1618, 1592sh, 1392w, 1334, 1114sh, 1100s, 1091sh, 1067, (1062), 1038w, 1006w, 775 + 765 (unresolved doublet?), 689 + 674 (unresolved doublet?), 611sh, 589, 553+544 (unresolved doublet?), 508, 479, 474, 417w, 408, 398, 355w.

Source: Frost et al. (2015s).

Comments: No independent analytical data are provided for the sample used. IR spectra of presumed tengerite presented in Figs. 1b, 2b, and 4b of the cited paper are wrong. Actually, they are IR spectra of a silicate with minor admixture of quartz. IR bands of the silicate and quartz are erroneously assigned to vibrations of carbonate groups.

Tennantite $Cu₆[Cu₄(Fe,Zn)₂]As₄S₁₃$

Origin: Tsumeb mine, Tsumeb, Namibia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was between 1 and 10 mW. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 377s, 344.

Source: Mernagh and Trudu (1993).

Comments: The sample was characterized by electron microprobe analyses. For the IR spectrum of tennantite see also Kharbish et al. (2009).

Tenorite CuO

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 631, 346, 296s.

Source: Debbichi et al. (2012).

Comments: The sample was characterized by X-ray diffraction data.

Tephroite $Mn^{2+2}(SiO_4)$

Origin: Franklin, New Jersey, USA.

Experimental details: No data.

Raman shifts (cm⁻¹): 933, 892, 840s, 806s, 516w, 387, 306w, 278w, 243.

Source: Welsh (2008).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of tephroite see also Stidham et al. (1976), Piriou and McMillan (1983), and Mouri and Enami (2008).

Tetrahedrite $Cu₆[Cu₄(Fe,Zn)₂]Sb₄S₁₃$

Origin: Kremnice, Slovakia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 4.25 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 379sh, 366s, 356s, 331, 298, 258w.

Source: Kharbish et al. (2009).

Comments: The sample was characterized by electron microprobe analyses. The atomic ratio Sb:As is 3:1. For the Raman spectra of tetrahedrite see also Mernagh and Trudu (1993) and Rath et al. (2015).

Tetrawickmanite $Mn^{2+}Sn^{4+}(OH)_{6}$

Origin: Långban, near Pajsberg and Filipstad, Värmland, Sweden. Experimental details: No data. Raman shifts $(cm⁻¹)$: 3374w, 3253, 3145, 3062sh. Source: Lafuente et al. (2015). Comments: The Raman spectrum was obtained only in the range of O–H-stretching vibrations.

Thaumasite $Ca₃Si(OH)₆(CO₃)(SO₄)·12H₂O$

Origin: Black Rock mine, Kuruman, Kalahari, Northen Cape Province, South Africa.

Experimental details: Raman scattering measurements have been performed on a single crystal using 458 nm solid-state diode source laser radiation, with the laser beam parallel to [100] and at the 180° polarization counterclockwise from [001]. The laser radiation power at the sample was 40 mW.

Raman shifts (cm⁻¹): ~3500, ~3440, ~3370, ~3100sh, 1685, 1112, 1066s, 983s, 887w, 658, 588w, 455w, 418w, 250w, 193w, 143w, 120w, 92.

Source: Gatta et al. (2012b).

Comments: In the cited paper, Raman spectra of thaumasite have been obtained in different scattering geometries. For the Raman spectrum of thaumasite see also Goryainov (2016).

Thecotrichite $Ca_3(CH_3COO)_3Cl(NO_3)_2·6H_2O$

- Origin: Artificial (efflorescent salt occurringon surfaces of porous calcareous objects stored in wooden cabinets).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 0.9 mW.
- Raman shifts (cm^{-1}) : 3470w, 3372w, 3011w, 2986w, 2956w, 2928, 1472s, 1431, 1349, 1058s, 1046s, 968s, 961s, 749, 710w, 667.

Source: Wahlberg et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. The crystal structure is solved.

Theophrastite $Ni(OH)₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm⁻¹): 3601w, 3571, 450, 315.

Source: Gourrier et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data.

Thermonatrite $Na₂(CO₃)·H₂O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented particle using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW. Raman shifts (cm^{-1}) : 3404w, 3278w, 2977w, 1535w, 1433w, 1394w, 1067s, 700w, 683w, 652w.

Source: Bouchard and Smith (2003).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of thermonatrite see also Frezzotti et al. (2012).

Thometzekite PbCu²⁺₂(AsO₄)₂∙2H₂O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3519w, 3282w, 2821w, 2345sh, 984w, 841s, 790sh, 728w, 499s, 428, 401, 356s, 322, 239w.

Source: Frost and Weier (2004e).

Comments: No independent analytical data are provided for the sample used.

Thomsonite-Ca NaCa₂(Al₅Si₅)O₂₀⋅6H₂O

Origin: Dobrna, Děčín, Bohemia, Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 Nd-YAG or 785 nm diode laser radiation.

Raman shifts (cm⁻¹): 1071, 990, 968, 930w, 608, 536s, 494w, 474w, 443, 391w, 341w, 310w, 268w, 258w, 220w, 197w, 180, 167w, 156w, 120w.

Source: Jehlička et al. (2012).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of thomsonite-Ca see also Wopenka et al. (1998), Mozgawa (2001), and Jehlička and Vandenabeele (2015).

Thorianite $ThO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm $Ar⁺$ laser radiation. The nominal laser radiation power was between 30 and 150 mW.

Raman shifts (cm⁻¹): 1033w, 885w, 467s.

Source: Jayaraman et al. (1988).

Comments: The spectrum was obtained at 0.8 GPa.

Thorikosite $Pb_3O_3Sb^3$ ⁺(OH)Cl₂

Origin: Lavrion, Greece (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3602w, 3541sh, 3508+3504s (unresolved doublet?), (3488sh), 1085w, 730, (657), 596, 325s, 275 + 269s (unresolved doublet?), (155), 133s, 112, 105w.

Source: Frost and Bahfenne (2011b).

Comments: No independent analytical data are provided for the sample used.

Thorite $Th(SiO₄)$

Origin: Synthetic.

Experimental details: Polarized Raman scattering measurements have been performed on a single crystal, using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 250 mW. A 90°-scattering geometry was employed.

Raman shifts (cm⁻¹): 920, 894, 855, 596, 517, 439, 312, 293, 264, 194, 129, 126. Source: Syme et al. (1977).

Comments: For Raman spectra of thorite see also Lahalle et al. (1986) and Costin et al. (2012).

Thorneite $Pb_6(Te_2O_{10})(CO_3)Cl_2(H_2O)$

Origin: Otto Mt., near Baker, San Bernardino Co., California, USA (type locality).

Experimental details: Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation, with the light propagating parallel to the c axis of a single crystal. The nominal laser radiation power was 5 mW.

Raman shifts (cm⁻¹): ~3300 (broad), 1630w, 1056 (sharp), and a series of strong peaks below 900 cm^{-1} .

Source: Kampf et al. (2010a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Thortveitite $Sc_2Si_2O_7$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a pulverized crystal using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 4 W.

Raman shifts (cm⁻¹): 949, 932s, 688w, 543, 510, 445, 435s, 392s, 347, 280w, 253, 205, 194. Source: Bretheau-Raynal et al. (1979).

Comments: The sample was characterized by electron microprobe analyses.

Thorutite (Th, U, Ca) $Ti₂(O, OH)₆$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powder sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): The strongest Raman peaks are observed at 760, 620, and 195 cm⁻¹.

Source: Zhang et al. (2011).

Comments: The sample was characterized by powder X-ray diffraction data.

Threadgoldite $\text{Al}(\text{UO}_2)_2(\text{PO}_4)_2(\text{OH}) \cdot 8\text{H}_2\text{O}$

Origin: South Alligator River, West Arnhem region, Northern Territory, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3576w, 3411w, 3158w, 1655w, 1107w, 1057w, 1026 + 1019s (unresolved doublet?), 999, 974s, 953w, (840w), 827s, (817), 612, 533, 451, 419, 398s, 391, 329, 292, 201s, 188, 146, 114.
- Source: Frost et al. (2006a).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Tiemannite HgSe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 90 K on a clreavaged (111) plane, in a— $z(x,x)z$ polarization using 514.5 nm Ar⁺ laser radiation.

Raman shifts $(cm⁻¹)$ **:** 133, 43. Source: Szuszkiewicz et al. (1999).

Tilasite $CaMg(AsO₄)F$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 1518w, 1318w, 1107w, 1056w, 820, 659w, 611, 493, 410s, 297, 245. Source: Frost and Kloprogge (2003).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of tilasite see also Downs et al. (2012).

Tilleyite $Ca₅Si₂O₇(CO₃)₂$

Origin: Kushiro, Hiba-gun, Hiroshima prefecture, Honshu Island, Japan.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3638sh), 3635w, (3629sh), 3594w, (3578w), 3574w, 1748w, 1738w, 1501w, 1436w, 1412w, 1093, 1086s, 1080sh, 1067w, 1047, (1018w), 1010, (999w), 986, 966w, 572, 546, 528, 505sh, 493, 483sh, 456, 450sh, 424sh, 413, 396, 380sh, 366, 353, 329, 321sh, 302sh, 282s, (273), 260sh, 242sh, 234, 204sh, 197, 176, 155, 143.

```
Source: Frost et al. (2015e).
```
Comments: The sample was characterized by qualitative electron microprobe analysis. Bands between 600 and 900 cm⁻¹ are not indicated. The bands in the range from 3500 to 3700 cm⁻¹ may correspond to an impurity.

Tiragalloite Mn^{2+} ₄As⁵⁺Si₃O₁₂(OH)

Origin: Valletta mine, Maira Valley, Cuneo province, Piedmont, Italy.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation output power of 80 mW was attenuated by means of a series of density filters.

Raman shifts (cm⁻¹): 1004, 975, 960s, 902s, 869s, 863, 803, 785, 661s, 647s, 549, 508, 481, 398, 364, 320, 286w, 218w, 181w, 153w.

Source: Cámara et al. (2015).

Comments: The sample was characterized by electron microprobe analyses.

Tissintite $(Ca,Na,\Box)AISi_2O_6$

Origin: Tissint Martian meteorite (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in a polished section using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 997 (broad), 693s, 573, 523, 417sh, 377s, 203.

Source: Ma et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Tistarite $Ti₂O₃$

Origin: Allende meteorite (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in a polished section using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts** $(cm⁻¹)$ **:** Only a figure of the Raman spectrum of tistarite is given in the cited paper. The strongest peak is observed at \sim 250 cm⁻¹.

Source: Ma and Rossman (2009a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Titanite $\text{CaTi}(SiO_4)O$

Origin: Village of Dunje, Municipality of Prilep, Republic of Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar^+ or 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm^{-1}) : 912, 872, 856, 608s, 548, 467s, 425, 333w, 316, 286sh, 253, 233w, 208sh, 164, 146w.

- Source: Makreski et al. (2005b).
- Comments: For the Raman spectra of titanite see also Meyer et al. (1996), Jasinevicius (2009), Andò and Garzanti (2014), and Gaft et al. (2015).

Titanoholtite $(Ti_{0.75}\square_{0.25})Al₆BSi₃O₁₈$

Origin: Szklary pegmatite, Lower Silesia, Poland (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was \sim 5.5 mW. Raman shifts (cm^{-1}) : 1055, 935s, 885, 624, 561s, 507s, 466s, 407s, 362s, 286, 211.

Source: Pieczka et al. (2013).

Comments: The sample was characterized by electron diffraction data and electron microprobe analyses.

Tlapallite H₆(Ca,Pb)₂(Cu,Zn)₃O₂(SO₄)(Te⁴⁺O₃)₄(Te⁶⁺O₄)

Origin: Mina Bambollita, Moctezuma, Sonora, Mexico (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 2926w, 2867w, 2754w, 2594w, 2320w, 2206w, 1957w, 1571w, 1474sh, 1104, 1062w, 973s, 796 + 788s (unresolved doublet?), 744sh, 708, 691sh, 610sh, (523), 509, 474, 438s, 419sh, 383sh, 353sh, 314, 291, 258, 229, 189, 168, 146, 121s.

Source: Frost (2009b).

Comments: No independent analytical data are provided for the sample used.

Tobermorite Ca₄Si₆O₁₇(H₂O)₂⋅(Ca⋅3H₂O)

Origin: N'Chwaning II mine, Kalahari Manganese Fields, Republic of South Africa.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed innearly back-scattered geometry using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3525, 1145w, 1013, 682s, 619, 530w, 475w, 447w, 425w, 366w, 321w. Source: Biagioni et al. (2012).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved. For the Raman spectrum of tobermorite see also Biagioni et al. (2013b).

Todorokite (Na,Ca,K,Ba,Sr)_{1-x}(Mn,Mg,Al)₆O₁₂⋅3-4H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample (pressed as a pellet) using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 2.5 mW.

Raman shifts (cm⁻¹): 643s, 359, 295.

Source: Feng et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of todorokite see also Julien et al. (2004).

Tokyoite $Ba₂Mn³⁺(VO4)₂(OH)$

Origin: Postmasburg Manganese Field, South Africa.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 935, 906s, 846, 830s, 720, 464, 420, 406, 390, 340, 305, 241.

Source: Costin et al. (2014).

Comments: As-rich variety. The sample was characterized by electron microprobe analyses.

Tolbachite $CuCl₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 or 785.5 nm laser radiation.

Raman shifts (cm⁻¹): 562, 290s, 234.

Source: Aceto et al. (2006).

Comments: For the Raman spectrum of tolbachite see also Burgio and Clark (2001).

Tondiite $Cu₃MgCl₂(OH)₆$

Origin: Vesuvius volcano, Italy (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 647 nm Kr^+ laser radiation. The laser radiation power at the sample was 6 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 942, 695, 503s, 395, 363s.

Source: Malcherek et al. (2014).

Comments: The sample was characterized by electron microprobe analyses. The crystal structure is solved.

Tooeleite $Fe^{3+}{}_{6}(AsO₃)₄(SO₄)(OH)₄·4H₂O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 514 nm diode laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1597sh, 1554, 1522, 1422, 1287s, 1085, 983, 870sh, 803, (758), 661sh, 604s, 508, 438sh, 464, 284.

Source: Liu et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data. The assignment of the strong band at 1287 cm⁻¹ to asymmetric stretching vibrations of SO_4^2 given in the cited paper is questionable.

Topaz $\text{Al}_2\text{SiO}_4\text{F}_2$

Origin: Topaz Mountain, Thomas Range, Utah, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- Raman shifts (cm⁻¹): 1167, 1079, 1008, 985, 927s, 854, 643, 559, 545, 454, 400, 370, 325, 314, 284s, 265s, 237s.
- Source: Kloprogge and Frost (2000a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of topaz see also Bradbury and Williams (2003), Jasinevicius (2009), and Andò and Garzanti (2014).

Torbernite Cu(UO2)2(PO4)2∙12H2O

Origin: Mount Painter, 9 km N of Arkaroola, South Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3359, 3197, 3032sh, 1004sh, (995), 988, 957, 900w, 826s, 808sh, 629, 464, 439, 406, 399, 290, 222.

Source: Frost (2004b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of torbernite see also Frost and Weier (2004c, d) and Driscoll et al. (2014).

Toturite $\text{Ca}_3\text{Sn}_2(\text{SiFe}^{3+}_2)\text{O}_{12}$

Origin: Upper Chegem structure, Northern Caucasus, Kabardino-Balkaria, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in polished section using 514.5 nm Ar^+ laser radiation. The laser radiation output power was 40–60 mW. A 0° -scattering geometry was employed.

Raman shifts (cm⁻¹): 930w, 879w, 810w, 784w, 734, 678sh, 575, 527sh, 497 + 494s (unresolved doublet?), 413w, 345sh, 301s, (266), 244, 185w, 156w, 148.

Source: Galuskina et al. (2010c).

Comments: The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis. The sample was characterized by backscatter electron diffraction data and electron microprobe analyses.

Trabzonite $Ca_4[Si_3O_9(OH)]OH$

Origin: Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in polished section using 514.5 nm Ar^+ laser radiation. The laser radiation output power was 30–50 mW. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$: 3602, 3576, 1020sh, 1006, 957s, 902, 872, 660s.

Source: Armbruster et al. (2012).

Comments: The sample was characterized by electron microprobe analyses. The crystal structure is solved.

Tremolite □Ca₂(Mg_{5.0–4.5}Fe²⁺_{0.0–0.5})Si₈O₂₂(OH)₂

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.
- **Raman shifts (cm⁻¹):** 1062, 1031, 950w, 932, 751w, 676s, 531w, 516w, 438w, 418, 396, 373, 355, 254, 234s, 225, 180, 162.

Source: Rinaudo et al. (2004).

Comments: The sample was characterized by selected areaelectron diffraction and electron microprobe analyses. For the Raman spectra of tremolite see also Blaha and Rosasco (1978), Petry et al. (2006), Makreski et al. (2006a), Apopei and Buzgar (2010), Apopei et al. (2011), Weber et al. (2012), Andò and Garzanti (2014), Bersani et al. (2014), and Leissner et al. (2015).

Trevorite NiFe³⁺₂O₄

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 647 nm Kr⁺ laser radiation. The laser radiation output power was 5 mW (0.5 mW at the sample).

Raman shifts (cm⁻¹): 704s, 663sh, 590, 568, 487s, 456sh, 333, 211, 189w.

Source: Hosterman (2011).

Comments: The sample was characterized by powder X-ray diffraction data.

Tridymite $SiO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a poedered sample using 476.5 nm laser radiation. The nominal laser radiation power was 400 mW.

Raman shifts (cm⁻¹): 1086w, 786, 456, 426s, 407s, 468s, 336w, 293, 205, 152, 100w.

Source: Etchepare et al. (1978).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of tridymite see also Ilieva et al. (2007), Knyazev et al. (2012), and Wilson (2014).

Trilithionite $KLi_{1.5}Al_{1.5}(Si_3Al)O_{10}F_2$

Origin: Erajanir, Finland.

Experimental details: Raman scattering measurements have been performed with the electric field polarized perpendicular to the cleavage plane using 514.5 or 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3691w, 1128, 1094, (750), 707s, (650), 561, (405), (300), 260, 244, 182s, 94s. Source: Tlili et al. (1989).

Comments: A Fe- and Mn-rich variety. The sample was characterized by electron microprobe analyses.

Trinepheline NaAlSiO4

Origin: Jadeite deposit of Tawmaw-Hpakant, Myanmar (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The nominal laser radiation power was 50 mW.
- **Raman shifts (cm⁻¹):** 1031w, 676, 572w, 518w, 494s, 487sh, 453s, 406, 375w, 359w, 347w, 311, 304w, 264w, 223, 203, 153w.

Source: Ferraris et al. (2014).

Comments: The sample was characterized by electron microprobe analyses. The crystal structure is solved.

Triplite $(Mn^{2+},Fe^{2+})_2(PO_4)F$

Origin: Codera valley, Sondrio province, Central Alps, Italy.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3498w, 1120w, 1072w, 1036, 980.5s, 808w, 680w, 610.5, 605, 598, 573w, 468.5w, 450w, 429.5sh, 421, 398.5sh, 277.5w, 242.5w, 218.5w, 192.5w, 179.5w, 161w, 137.5w. Source: Vignola et al. (2014).
- Comments: The sample was characterized by electron microprobe analyses. The crystal structure is solved. For the Raman spectra of triplite see also Frezzotti et al. (2012) and Frost et al. (2014aj).

Trippkeite $Cu^{2+}As^{3+}2O_4$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm He-Ne laser radiation. The laser radiation power is not indicated.
- Raman shifts $(cm⁻¹)$: 810sh, 780s, 657, 539, 496, (463sh), 446, 421w, 371s, 306w, 285, 235, 203, 193, 182, 141sh, 134s.

Source: Bahfenne (2011).

Comments: The sample was characterized by powder X-ray diffraction data. For Raman spectra of trippkeite see also Bahfenne et al. (2011a) and Kharbish (2012).

Tripuhyite $Fe^{3+}Sb^{5+}O_4$

Origin: Synthetic.

Experimental details: Micro-Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Ar⁺ laser radiation. The laser radiation power at the sample was 20 μW.

Raman shifts (cm⁻¹): 740, 652s, 500, 420 (Sample 1); 767w, 652s, 465 (Sample 2). Source: Bolanz (2014).

Comments: The samples were characterized by powder X-ray diffraction data.
Trogtalite CoSe₂

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powder sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was below 0.5 mW. Raman shifts $(cm⁻¹)$: 188.

Source: Zhu et al. (2010).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of trogtalite see also Zhang et al. (2014).

Troilite FeS

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 2 mW .

Raman shifts (cm⁻¹): 360, 310s, 160.

Source: Avril et al. (2013).

Comments: For the Raman spectra of troilite see also Ma et al. (2012a) and Kaliwoda et al. (2013).

Trona $Na_3(HCO_3)(CO_3)·2H_2O$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented individual particles using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.

Raman shifts (cm⁻¹): 3440, 3059w, 2436w, 1720w, 1561w, 1430, 1058s, 846w, 697w, 639w. Source: Jentzsch et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of trona see also Frezzotti et al. (2012).

Tschermigite $(NH_4)Al(SO_4)_2$ ∙12H₂O

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3364w, 3114w, 2982w, 2892w, 1680w, 1630w, 1132, 1102w, 991 + 983s (unresolved doublet?), 619s, 542sh, 507 + 499 (unresolved doublet?), 456s, 387, 330.

Source: Frost and Kloprogge (2001).

Comments: No independent analytical data are provided for the sample used.

Tsumcorite PbZn₂(AsO₄)₂∙2H₂O

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3503w, 3245w, 2925sh, 927, (868sh), 834s, 746, 521sh, 493s, 439, 400, 361, (340sh), 293, 242w, 197.

Source: Frost and Xi (2012a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of tsumcorite see also Frost and Weier (2004e).

Tsumebite $Pb_2Cu(PO_4)(SO_4)(OH)$

Origin: Blue Bell mine, near Baker, San Bernardino Co., California, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3648w, (3446sh), 3397, 3335, 3239sh, 1097w, 1061w, 971s, 935, (923sh), (852sh), 827, 606, 598sh, 554, 540w, 482sh, 468, 442s, 389, 358sh, 339, 321.

Source: Frost and Palmer (2011e).

Comments: No independent analytical data are provided for the sample used.

Tsumoite BiTe

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a thin film using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 117, (91), 88s, \sim 56.

Source: Russo et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data.

Tugarinovite $MoO₂$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The nominal laser radiation power was between 0.7 and 7 mW.

Raman shifts (cm⁻¹): 744s, 571, 496s, 464w, 363s, 230, 204s.

Source: Solferino and Anderson (2012).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of tugarinovite see also Srivastava and Chase (1972).

Tuite $Ca₃(PO₄)₂$

Origin: Suizhou chondrite, China (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 1095w, 997, 975s, 640w, 578, 411, 192.

Source: Xie et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of tuite see also Zhai et al. (2010, 2014) and Xie et al. (2016).

Tululite $Ca_{14}(Fe^{3+}, Al)(Al,Zn,Fe^{3+},Si,P,Mn,Mg)_{15}O_{36}$

- Origin: Tulul Al Hammam area, Siwaqa complex, Mottled Zone Formation, Dead Sea region, Jordan (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 17 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 934w, 831w, 817w, 754sh, 636s, 550sh, 522, 456, 295sh, 260, 199w.

Source: Khoury et al. (2016a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Tunellite SrB₆O₉(OH)₂⋅3H₂O

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3614s, 3567s, (3526sh), 3430sh, 3383 + 3369s (unresolved doublet?), (3324), 3282, 3243sh, 1113sh, 1082, (1063), 1043, 994s, (979sh), 954sh, 901, 879w, 861w, 819, 790w, 737, 715sh, 677sh, 664sh, 639s, 601w, 568, 523, 480sh, 464s, 445sh, 426sh, 371, (350), 332s, 317sh, 297w, 289w, 270sh, 256, 243sh, 210sh, 192, (159), 150s, (141), 114 + 109 (unresolved doublet?).

Source: Frost et al. (2014e).

Comments: No independent analytical data are provided for the sample used.

Tungstenite WS_2

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powder sample using 532 laser radiation. The nominal laser radiation power was 5 mW.

Raman shifts $(cm⁻¹)$ **:** 419, 350.

Source: Nuvoli et al. (2014).

Comments: For the Raman spectrum of tungstenite see also Štengl et al. (2015).

Tungstite $WO_3·H_2O$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar^+ laser radiation. The laser radiation power at the sample was between 0.06 and 0.15 mW.

Raman shifts (cm⁻¹): ~949s, ~650s, ~377w, ~237.

Source: Tarassov et al. (2002).

Comments: No independent analytical data are provided for the sample used.

Tunisite NaCa₂Al₄(CO₃)₄(OH)₈Cl

Origin: Condorcet, Nyons, Drôme, Rhône-Alpes, France.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was about 0.1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3561sh, 3482s, 3419, 1945w, 1703w, 1683w, 1542sh, 1522, 1499sh, 1127s, 854, 842 + 838w (unresolved doublet?), 731, 676w, 534, 441sh, (425), 417, (408), 387sh, 350w, 325w, 293, 279w, 234sh, 221, 200sh, 188sh, 177, 164, 151sh, 132w, 115.

Source: Frost et al. (2015d).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectrum of tunisite see also Frost and Dickfos (2007b).

Turquoise CuAl₆(PO₄)₄(OH)₈⋅4H₂O

Origin: Kouroudaiko mine, Falemeriver, Senegal.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3506, 3471s, 3453sh, 3290, 3092sh, 1614w, 1184sh, 1161, 1104, 1064sh, 1041s, (1031), 991sh, 935w, (836sh), 815, 642, 592, 571, 548, 511, 483, 469, 437sh, 423, (417sh), 385, 335, (320sh), 301sh, 277sh, 259w, 244sh, 231, (218sh), 210, 196sh, 175, 152w. Source: Čejka et al. (2015).
- Comments: The sample was characterized by electron microprobe analyses. For the Raman spectra of turquoise see also Guo et al. (2010) and Bernardino et al. (2016).

Tuzlaite NaCaB₅O₈(OH)₂∙3H₂O

Origin: Tuzla evaporite deposit, Bosnia and Herzegovina (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 100 mW. A 90°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3615, 3475s, 3434s, 3328w, 3228w, 3165w, 1247w, 1072w, 1027sh, 866, 827, 761, 704w, 663, 589, 546, 468, 447w, 366w, 340, 323w, 282w.

Source: Bermanec et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data.

Tychite $\text{Na}_6\text{Mg}_2(\text{CO}_3)_4(\text{SO}_4)$

Origin: Searles Lake, San Bernardino Co., California, USA (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts $(cm⁻¹)$: 1137s, 1103s, 1049, 995s, 970.

Source: Palaich et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of tychite see also Schmidt et al. (2006).

Tyrolite $Ca_2Cu_9(AsO_4)_4(CO_3)(OH)_8·11H_2O$

Origin: Brixlegg, Tyrol, Austria.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3545, 3438, 3379, 3303, 3204, 1667, 1635, 1498, 1463, 1431, 1370, 1088, 1058, 855, 830 (broad), 795, 755s, 717s, 598, 570, 534, 524, 503, 480, 433s, 355, 301, 262, 217, 202, 179.

```
Source: Kloprogge and Frost (2000b).
```
Comments: No independent analytical data are provided for the sample used.

Tyuyamunite Ca(UO2)2(VO4)2∙5–8H2O

Origin: Chihuahua, Mexico.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 975, 827, 747s, 644, 608, 582, 525, 470, 404, 369s, 345, 304, 239, 186, 155. Source: Frost et al. (2005c).

Comments: No independent analytical data are provided for the sample used.

Ulexite NaCaB₅O₆(OH)₆∙5H₂O

Origin: An unknown locality in Morocco.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3490, (3433w), 3401, 1133, 1111sh, 1005s, 745w, 668w, 639w, 617w, 602w, 551w, 491, (475), 421sh, 412, 367, 305, 250, 200, 166.

Source: Kloprogge and Frost (1999a).

Comments: Questionable data: the strong band at 1005 cm^{-1} may correspond to a sulfate. No independent analytical data are provided for the sample used.

Ulrichite CaCu(UO2)(PO₄)₂⋅4H₂O

Origin: Lake Boga granite quarry, Northwest Victoria, Australia (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using 785 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): (1077), 1028, (1009), 975, 812s, (458w).

Source: Faulques et al. (2015a, b).

Ulvöspinel $Fe^{2+}{}_{2}TiO_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed at 1 GPa on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 10 mW.

Raman shifts (cm⁻¹): 681s, 493.

Source: Kyono et al. (2011).

Comments: The sample was characterized by electron microprobe analyses.

Umangite $Cu₃Se₂$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 10 mW.

Raman shifts $(cm⁻¹)$: 58sh, 49.

Source: Izquierdo-Roca et al. (2009).

Comments: No independent analytical data are provided for the sample used.

Umbite K2ZrSi₃O₉⋅H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed using 1064 nm Nd-YAG laser radiation with a resolution of 1 cm^{-1} . No other data are provided.

Raman shifts (cm⁻¹): \sim 970, \sim 930, \sim 910.

Source: Lin and Rocha (2005).

Comments: In the cited paper, Raman spectrum of umbite below 900 cm^{-1} is given as a figure, without indication of Raman shifts. The sample was characterized by powder X-ray diffraction data.

Umbrianite $K_7Na_2Ca_2[Al_3Si_{10}O_{29}]F_2Cl_2$

Origin: Pian di Celle volcano, Umbria, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in a polished section using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 50 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 3120, 2970, 2810, 1142, 1036s, 735s, 646, 593s, 525s, 491, 400, 324, 256. Source: Sharygin et al. (2013b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Ungemachite K₃Na₈Fe³⁺(SO₄)₆(NO₃)₂⋅6H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was 2 mW.
- Raman shifts (cm⁻¹): 3420, 3370sh, 1711w, 1663w, 1383, 1192, 1163, 1144, 1047s, 1035, 1011,
- 952, 721, 655, 645sh, 619, 600w, 534w, 472, 464w, 446.
- Source: Jentzsch et al. (2012b).
- Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of ungemachite see also Jentzsch et al. (2013).

Uraninite $UO₂$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powder sample using 514.5 nm Ar⁺ laser and 785 nm diode laser radiations. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1149s, 598 (broad), 445 (514.5 nm); 1343w, 1149w, 618w, 445s, 230w (785 nm).

Source: Stefaniak et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data.

Uranophane- α Ca(UO₂)₂(SiO₃OH)₂∙5H₂O

Origin: Dieresis uranium mine, Sierra Albarrana, Córdoba, Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 967, 798s, ~548w, ~400w, ~292w, ~210.

Source: Bonales et al. (2015).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectra of uranophane see also Biwer et al. (1990), Amme et al. (2002), Frost et al. (2006e), and Driscoll et al. (2014).

Uranopilite $(UO₂)₆(SO₄)O₂(OH)₆·14H₂O$

Origin: South Alligator River, Northern Territory, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3547, 3470, 1143w, 1117w, 1098w, 1011, 842s, (832sh), 547, 406, 320, 294, 253.

Source: Frost et al. (2005b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of uranopilite see also Frost et al. (2007i).

Uranosphaerite $Bi(UO₂)O₂(OH)$

Origin: Horní Halže, Krušné Hory (Czech Ore Mts.), Czech Republic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm laser radiation. The laser radiation power is not indicated. A 180- -scattering geometry was employed.

Raman shifts (cm⁻¹): 3404, 884w, 794s, 600s, 524, 475, 387, 378, 348, 305, 278, 263, 245, 227, 184, 138.

Source: Sejkora et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Urea solution $CO(NH_2)_2$ aq

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3435, 3357, 3323, 3242, 1649, 1581, 1047, 1012, ~548, ~379w.

Source: Frost et al. (2000).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of urea in aqueous solution see also Spinner (1959).

Ushkovite MgFe³⁺₂(PO₄)₂(OH)₂⋅8H₂O

Origin: Linópolis, Divino das Laranjeiras, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3517, 3495, (3449), 3343, 3286, (3225), 1611w, 1140sh, 1121, 1097, 1068, 1041, 1012sh, 991 + 984s (unresolved doublet?), 959sh, 835sh, 810w, 780w, (650), 637, 610 + 606w (unresolved doublet?), 583, 563, 548sh, 506, 492w, 469w, 442, (421sh), 410, 386, 321 + 313w (unresolved doublet?), 283sh, 274w, 261, 239sh, 216, 206, 183, 173sh, 156sh, 144, 132sh, 115sh, 109w.

Source: López et al. (2015b).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Usturite $Ca₃(SbZr)(FeO₄)₃$

- Origin: Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).
- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in a polished section using 514.5 nm $Ar⁺$ laser radiation. The laser radiation output power was between 40 and 60 mW. A 0° -scattering geometry was employed.

Raman shifts (cm⁻¹): 815, 789, 751, 733sh, (615), 591, 565sh, 498s, 411w, 303 + 294s (unresolved doublet?), 262 + 244 (unresolved doublet?), 218sh, 187w, 161w, 149.

Source: Galuskina et al. (2010a).

Comments: The sample was characterized by single-crystal electron back-scatter diffraction, powder X-ray diffraction data and electron microprobe analyses.

Uvarovite $Ca₃Cr₂(SiO₄)₃$

Origin: Sweden (?).

Experimental details: Polarized Raman scattering measurements have been performed on a single crystal in different scattering geometries using 488 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 894, 828, ~618w, ~590w, 526, ~510w, 370s, ~272, ~242, 176. Source: Kolesov and Geiger (1998).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of uvarovite see also Mingsheng et al. (1994), Bersani et al. (2009), Makreski et al. (2011), Frezzotti et al. (2012), and Andò and Garzanti (2014).

Uvite $CaMg_3(Al_5Mg)(Si_6O_{18})(BO_3)_3(OH)_3(OH)$

Origin: Brumado district, Bahia, Brazil.

Experimental details: Polarized micro-Raman scattering measurements have been performed using 488 and 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 3636w, 3592, (3554w), (3518w), ~705, ~670, ~372s, ~244, ~215. Source: Fantini et al. (2014).

Comments: The sample was characterized electron microprobe analyses. For the Raman spectrum of uvite see also Hoang et al. (2011).

Vaesite NiS_2

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 15 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 515w, 468s, 414w, 274, 263, 235w.

Source: Bishop et al. (2000).

Comments: The sample was characterized by powder X-ray diffraction data.

Vajdakite $(Mo^{6+}O_2)_2As^{3+}{}_2O_5$ ∙3H₂O

- Origin: Jáchymov uranium deposit, Krušné Hory (Ore Mts.), Western Bohemia, Czech Republic (type locality).
- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3481, 3417, (3144sh), 3112w, 953-951s, 910sh, 898, (876w), 804, (799), 760, 720w, 604w, 560, 549, 521, 480, (473), 386s, 369, 333, 282w, 238sh, 227 + 224 (unresolved doublet?), 179, 157, 138w, 128.

Source: Čejka et al. (2010a).

Comments: Holotype sample was used.

Valentinite Sb_2O_3

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was 300 mW. A 90°-scattering geometry was employed.

Raman shifts (cm⁻¹): 690w, 602w, 502, 449w, 294s, 269sh, 223s, 194, 100s, 103w, 71. Source: Cody et al. (1979).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of valentinite see also Orman (2010).

Vanackerite $Pb_4Cd(AsO_4)_3(Cl,OH)$

Origin: Tsumeb mine, Tsumeb, Namibia (type locality).

Experimental details: No data.

Raman shifts $\text{(cm}^{-1})$: ~830s, ~792, ~770, ~457, ~353.

Source: Schlüter et al. (2016).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Vanadinite $Pb_5(VO_4)_3Cl$

Origin: Mibladen, Morocco.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 827s, 811, 365, 323, 291.

Source: Frost et al. (2003a).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of vanadinite see also Levitt and Condrate, Sr (1970), Adams and Gardner (1974), and Bartholomäi and Klee (1978).

Vandendriesscheite $Pb_{1.6}(UO_2)_{10}O_6(OH)_{11}.11H_2O$

Origin: No data.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3530sh, 3475, 3262sh, (2904w), (2853w), 1624w, 1395, 854 + 852 (unresolved doublet?), 841s, (832), 819sh, 779, 703, 548, (503), 456, (425w), 404, (355), 332, 303, 273sh, 248, 218, 193.

Source: Frost et al. (2007h).

Comments: No independent analytical data are provided for the sample used.

Vanmeersscheite U(UO₂)₃(PO₄)₂(OH)₆⋅4H₂O

Origin: Kobokobo, Kivu, Democratic Republic of Congo (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** ~3390, 1208sh, 1153, 1110s, (1086sh), 1017 + 1013s (unresolved doublet?), 939sh, 860w, 650w, 624, 571, 453sh, 442s, 363, 290, 226s.

Source: Frost et al. (2009d).

Comments: No independent analytical data are provided for the sample used.

Vantasselite Al₄(PO₄)₃(OH)₃⋅9H₂O

Origin: Bihain, Vielsalm, Stavelot massif, Luxembourg province, Belgium (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3608sh, 3570sh, 3502s, (3436), 3399s, 3369sh, 3327sh, 3211sh, 2943sh, 1703sh, 1656sh, 1622sh, 1595, 1456w, 1299w, 1232w, 1200w, 1146, 1128sh, 1106sh, 1090s, (1076), 1051s, 1027sh, 1013s, 949, 930, 833sh, 813w, 715w, 649, 593, 557, 522 + 515, 494, 451 + 437 + 423 (unresolved triplet?), 374, 334sh, 317s.

Source: Frost et al. (2015v).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Vanthoffite $Na₆Mg(SO₄)₄$

Origin: Synthetic (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was about 2 mW.
- Raman shifts $(cm⁻¹)$: 1195w, 1178w, 1154w, 1129w, 1096w, 1076w, 1012s, 1002s, 643, 637, 629, 622, 613w, 603w, 473, 458, 452.

Source: Jentzsch et al. (2011).

Comments: No independent analytical data are provided for the sample used.

Vapnikite $Ca₃UO₆$

Origin: Jabel Harmun, Palestinian Autonomy, Israel (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain in a polished section using 488 nm Ar⁺ laser radiation. The laser radiation power at the sample was below 5 mW.

Raman shifts (cm⁻¹): 1446w, 725s, 474w, 391, 248w.

Source: Galuskin et al. (2014).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Variscite Al(PO4)∙2H2O

Origin: Cioclovina cave, 40 km SE of Hunedoara, Şureanu Mts., Romania.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 1064 nm Nd-YAG laser radiation. The laser radiation output power was 350 mW.
- **Raman shifts (cm⁻¹):** 3400-3100 (broad), 1634, 1079sh, 1055, 1026, 605w, 562w, 434s, 225, 168, 144.

Source: Onac et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of variscite see also Frost et al. (2004l) and Litvinenko et al. (2016).

Västmanlandite-(Ce) $Ce_3CaMg_2Al_2Si_5O_{19}(OH)_2F$

Origin: Västmanl and Co., Bergslagen region, Sweden (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 633 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3671sh, ~3586, 3517s, ~3446, ~3317s, ~3201, ~2545w, ~2142w, ~1058, 1034, 1004, 968, ~944, 920, 900s, ~690, ~675, ~633, 574, 555, 501, 464, ~436, 412, 387, 361, 341, 329, 287, 234, 224, ~200.
- Source: Holtstam et al. (2005).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Vaterite $Ca(CO₃)$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1555w, 1542w, 1480w, 1460w, 1441w, 1421w, 1091s, 1085.5sh, 1081, 1075s, 881 + 878 + 874w, 751w, 743.5w, 738w, 685, 674, 667, 333sh, 302s, 268, 210, 175, 151, 120s, 106s.
- Source: Wehrmeister et al. (2010).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectra of vaterite see also Behrens et al. (1995), Frezzotti et al. (2012), Kristova et al. (2014), and Sánchez-Pastor et al. (2016).

Vauquelinite $CuPb₂(CrO₄)(PO₄)(OH)$

Origin: Kintore Open Cut, Broken Hill, New South Wales, Australia.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 785 nm Nd-YAG laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): (843), 827s, 375, 348s, 332sh.

Source: Frost (2004c).

Comments: No independent analytical data are provided for the sample used.

Vauxite $Fe^{2+}Al_2(PO_4)_2(OH)_2·6H_2O$

Origin: Siglo XX mine (Llallagua), Bustillo province, Potosí department, Bolivia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3648s, 3555, 3402, 3328 (broad), 3103s, 2918sh, 1696sh, 1633w, 1601w, 1567sh, 1370w, 1309sh, 1150sh, 1134 + 1122, 1105sh, 1075sh, 1059sh, 1046sh, 1027s, 1009s, 1000sh, 978s, (954sh), 918sh, 910w, 900sh, 535, 502 + 498w (unresolved doublet?), 478sh, 470, 461sh, 451sh, 418, 412sh, 399sh, 393, 370 + 364 (unresolved doublet?), (341sh), 332, 320sh, 284, 273sh, 267sh, 238, 230sh, 208, 181, 154 + 148 (unresolved doublet?), 132 + 127 (unresolved doublet?), 112 + 109 (unresolved doublet?).

Source: Scholz et al. (2015).

Comments: The sample was characterized by electron microprobe analysis.

Väyrynenite $BeMn^{2+}(PO_4)(OH)$

Origin: Viitaniemi pegmatite, Eräjärvi area, Orivesi, Finland (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3473sh, 3388sh, 3315w, (3249sh), 3219s, 3154sh, 1802sh, 1768w, 1660w, 1186sh, 1139sh, 1126, 1074, 1044, 1009 + 1004s (unresolved doublet?), 986, 936w, 898w, 800, 769w, 741, 707w, 642w, 619, 599, 573w, 538w, 518 + 506 (unresolved doublet?), 463, 404, 381, 353, 334, 287w, 266w, 238sh, 232, 220, 189 + 184 (unresolved doublet?), (171), 163, 129 + 123 (unresolved doublet?), 114sh.

Source: Frost et al. (2014m).

Comments: The sample was characterized by electron microprobe analyses.

Velikite $Cu₂HgSnS₄$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.

Raman shifts $(cm⁻¹)$ **:** 318s, 283.

Source: Himmrich and Haeuseler (1991).

Comments: The sample was characterized by powder X-ray diffraction data.

Versiliaite $(Fe^{2+} {}_{2}Fe^{3+} {}_{2}) (Fe^{3+} {}_{2}Sb^{3+} {}_{6}) O_{16}S$

Origin: An abandoned mine in the Karrantza valley, westerner area of the Basque Co., Spain.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 20 mW.

Raman shifts (cm⁻¹): 612, 505, 410s, 293s, 246, 226s.

Source: Goienaga et al. (2011).

Comments: The sample was characterized by X-ray fluorescence spectroscopy.

Vésigniéite $Cu_3Ba(VO_4)_2(OH)_2$

Origin: Vrančice deposit, central Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3463sh, 2896w, 2609sh, 1960w, 1636sh, 1559w, 1052w, 856s, 821s, 750, 511w, 466, (371sh), 355sh, 332, 307s, 185sh, 175, 162sh, 112w.

Source: Frost et al. (2011e).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of Vésigniéite see also Wulferding et al. (2012).

Vesuvianite $(Ca,Na)_{19}(Al,Mg,Fe)_{13}(SiO_4)_{10}(Si_2O_7)_{4}(OH,F,O)_{10}$

Origin: Dosso degli Areti, Italy.

Experimental details: No data.

Raman shifts (cm⁻¹): 930s, 868, 696, 640, 410, 226.

Source: Andò and Garzanti (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of vesuvianitein the OH region see Galuskin et al. (2007a).

Veszelyite (Cu,Zn) ₂Zn(PO₄)(OH)₃⋅2H₂O

Origin: Zdravo Vrelo, near Kreševo, Bosnia and Herzegovina.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 5 mW.

Raman shifts (cm⁻¹): 3566 (sharp), 3555sh, (3497sh), 3425, 2290sh, (3302sh), 3286, (3184sh), 2852w, 2662sh (weak), 2233, 2042, 1970, 1805, 1632, 1587, 1379, 1108w, 1045w, 1025w, 967, 951, 929, 882, 833, 624, 607, 556, 539, 486, 470, 439.

Source: Danisi et al. (2013).

Comments: The sample was characterized by single-crystal X-ray diffraction data. The crystal structure is solved. No data on band intensities below 2662 cm^{-1} are provided in the cited paper. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Villamanínite CuS_2

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline aggregate using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 100 mW.

Raman shifts (cm⁻¹): 512s, 264, 207.

Source: Anastassakis and Perry (1976).

Comments: No independent analytical data are provided for the sample used.

Vivianite $Fe^{2+}(PO_4)_2$ ∙8H₂O

Origin: Catavi Mine, Llallagua, Bolivia.

- Experimental details: Raman scattering measurements have been performed on a cleavage plain using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sampling objective was 50 mW.
- **Raman shifts (cm⁻¹):** 1050, 986, 947s, 867m, 828w, 568, 532, 453, 422, 342w, 303w, 270w, 235, 227, 196, 162w, 126.

Source: Rodgers et al. (1993).

Comments: The sample was characterized Mössbauer spectroscopy and electron microprobe analyses. For the Raman spectra of vivianite see also Piriou and Poullen (1984), Frost et al. (2002f), and Hsu et al. (2014).

Vladimirivanovite Na₆Ca₂[Al₆Si₆O₂₄](SO₄,S₃,S₂,Cl)₂∙H₂O

Origin: Tultuilazurite deposit, Baikal Lake region, Russia (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 3124 (broad), 1189, (1183), 992, 799s, 726sh, 544 (sharp), 428, 353.

Source: Sapozhnikov et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction, thermal data, and electron microprobe analyses. The crystal structure is solved.

Vladykinite $Na₃Sr₄(Fe²⁺Fe³⁺)Si₈O₂₄$

Origin: Murun complex, eastern Siberia, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 1039w, 991, 968, 915, 681w, 465s, 401 (very strong), 348, 264w, 203s, 167w, 129w.

Source: Chakhmouradian et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data, Mössbauer spectroscopy and electron microprobe analyses. The crystal structure is solved.

Voglite $Ca₂Cu(UO₂)(CO₃)₄·6H₂O$

Origin: White Canyon No. 1 mine, Frey Point, San Juan Co., Utah, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): $3535 + 3391w$ (broad; unresolved doublet?), $2939w$, 1369 , 1094 , $836s$, $749w$, (261), 223, 148.

Source: Frost et al. (2008b).

Comments: No independent analytical data are provided for the sample used.

Volaschioite Fe₄(SO₄)O₂(OH)₆⋅2H₂O

Origin: Fornovolasco, Apuan Alps, Tuscany, Italy (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated. A nearly 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 1530w, 1178, 1055, 1005, 941w, 527, 453s, 408s, 319s, 250.

Source: Biagioni et al. (2011b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Volborthite Cu₃V₂O₇(OH)₂∙2H₂O

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 532 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 894s, 820, 758, 476, 438w, 342, 236, 164w.

Source: Ni et al. (2010a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of volborthite see also Frost et al. (2011e) and Wulferding et al. (2012).

Vonsenite $\text{Fe}^{2+}{}_{2}\text{Fe}^{3+}\text{O}_2(\text{BO}_3)$

Origin: Brosso mine, Torino, Italy.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1605w, 1462 + 1443 (unresolved doublet?), 1347sh, 1304, 1284sh, 1059, 997, 728sh, (687), 642, 529, 381s, 315, 324s, (315), 249s, (232), 158+145 (unresolved doublet?), 114.

Source: Frost et al. (2014ac).

Comments: The sample was characterized by electron microprobe analysis.

Vorlanite CaUO₄

Origin: Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia (type locality).

Experimental details: Raman scattering measurements have been performed from crystal crosssection approximately perpendicular to basal pinacoid in thin section using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was between 40 and 60 mW. A 0° -scattering geometry was employed.

Raman shifts (cm⁻¹): 1370, 683s, 524, 450w, 371w, 226.

Source: Galuskin et al. (2011a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. For the Raman spectra of vorlanite see also Galuskin et al. (2012a, 2013b, 2014).

Vrbaite $Hg_3Tl_4As_8Sb_2S_{20}$

Origin: Allchar, Republic of Macedonia.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation output power was 0.46 mW.

Raman shifts (cm⁻¹): 397, 383sh, 378, 370, 357, 346w, 322s, 306s, 244, 236, 195, 187w, 171w, 162w, 151, 130, 122w, 111, 103.

Source: Makreski et al. (2014).

Comments: The sample was characterized by electron microprobe analyses.

Vuorelainenite $Mn^{2+}V^{3+}{}_{2}\text{O}_4$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a single crystal in different scattering geometries using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was about 10 mW.

Raman shifts (cm⁻¹): 585s, 479s, ~300, 178.

Source: Takubo et al. (2011).

Comments: No independent analytical data are provided for the sample used.

Vysokýite U⁴⁺[AsO₂(OH)₂]₄⋅4H₂O

Origin: Geschieber vein, Jáchymov ore district, Western Bohemia, Czech Republic (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using a 780 nm diode-pumped solid-state laser. The nominal laser radiation power was 5 mW.
- **Raman shifts (cm⁻¹):** 2750w, 2230w (broad), 1545, 1425, 902s, 816s, 769sh, 595, 559, 427, 368, 324, 200 + 184 (unresolved doublet?), 99w, 61w.

Source: Plášil et al. (2013d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Vysotskite (Pd,Ni)S

Origin: Synthetic (Ni-free).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented grains in a polished section using 514.5 nm Ar⁺ laser radiation. The laser radiation output power was 500 mW.

Raman shifts (cm⁻¹): 392, 368, 353w, 348, 326s.

Source: Pikl et al. (1999).

Comments: No independent analytical data are provided for the sample used.

Wadeite $K_2ZrSi_3O_9$

Origin: Saima alkaline complex, Liaodong Peninsula, northeastern China.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1057w, 990s, 930s, 734w, 629, 561s, 490s, 433, 370, 342, 191s, 153. **Source:** Wu et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectrum of wadeite see also Geisinger et al. (1987).

Wadsleyite $Mg_2(SiO_4)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 488 or 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was between 100 and 200 mW.

Raman shifts (cm⁻¹): 940, 919, 898, 850s, 836s, 588, 570, 528, 460, 408, 307, 280, 213.

Source: Akaogi et al. (1984).

Comments: The sample was characterized by powder X-ray diffraction and optical data. For Raman spectra of wadsleyite see also Kleppe et al. (2001, 2006) and Mao et al. (2011).

Wagnerite-Ma5bc $Mg_2(PO_4)F$

Origin: Larsemann Hills, Prydz Bay, East Antarctica.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 5 mW.

Raman shifts $(cm⁻¹)$ **:** 3570 (other values are not indicated: only a figure is given in the cited paper). **Source:** Ren et al. (2003).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Waimirite-(Y) YF_3

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 514.5 nm Ar^+ laser radiation. The laser radiation power is not indicated. A 90°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 533 (broad), 444, 389, 366s, 349s, 342sh, 293, 262, 244, 220w, 189s, 171, 147w, 111, 75.

Source: Wilmarth et al. (1988).

Comments: For the Raman spectrum of waimirite-(Y) see also Lage et al. (2004).

Wakabayashilite $(As, Sb)_{6}As_{4}S_{14}$

Origin: Jas Roux, Hautes-Alpes, France.

- Experimental details: Raman scattering measurements have been performed on a single crystal with the laser beam perpendicular to the fiber axis (c axis) using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 2 mW.
- **Raman shifts (cm⁻¹):** 398s, 382, 356s, 337s, 328, 315, 304, 227-229, 205s, 191, 167, 137, 131sh, 108, 87, 67sh, 60s.

Source: Bindi et al. (2014).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses.

Wakefieldite-(Ce) $CeVO₄$

Origin: Synthetic.

Experimental details: No data. **Raman shifts (cm⁻¹):** 1012w, 482, 244, 202, 148s, 120s. **Source:** Au et al. (1996). Comments: The sample was characterized by powder X-ray diffraction data.

Wakefieldite-(La) LaVO₄

Origin: Synthetic. Experimental details: No data. **Raman shifts (cm⁻¹):** 1000, 862s, 705w, 528w, 410w, 290w, 150s, 122. **Source:** Au et al. (1996). Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of wakefieldite-(La) see also Sun et al. (2010b) and Xie et al. (2012).

Wakefieldite-(Nd) NdVO₄

Origin: Synthetic. Experimental details: No data. **Ramanshifts (cm⁻¹):** 1000, 874s, 812, 700, 528, 482, 412w, 310, 290, 150s, 122s. **Source:** Au et al. (1996). Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of

wakefieldite-(Nd) see also Au and Zhang (1997) and Moriyama et al. (2011).

Wakefieldite-(Y) YVO_4

Origin: Synthetic. Experimental details: No data. **Raman shifts (cm⁻¹):** 1090, 896, 842w, 820w, 662w, 494, 422, 398s, 320s, 280s, 150w, 122. **Source:** Au et al. (1996). Comments: The sample was characterized by powder X-ray diffraction data.

Walpurgite Bi₄O₄(UO₂)(AsO₄)₂⋅2H₂O

Origin: Weisser Hirsch Mine, Schneeberg, Saxony, Germany (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3515w, 3375w, 1597w, 1323w, 1003w, 948w, 892w, 836s, (823), (795), 790s, 771sh, 615, 546, 513s, 491sh, 432, 398, 365, 331, 296, (278), 242, 208, (199), 154.

Source: Frost et al. (2006l).

Comments: No independent analytical data are provided for the sample used.

Walstromite $BaCa₂Si₃O₉$

Origin: Big Creek deposit, Fresno Co., California, USA (type locality).

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 633 nm laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1071, 1037, 988s, 650s, 501, 473w, 378, 291, 153, 124.

Source: Gaft et al. (2013).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of walstromite see also Zedgenizov et al. (2014).

Wardite NaAl₃(PO₄)₂(OH)₄∙2H₂O

Origin: Lavrada Ilha, Minas Gerais, Brazil.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 785 nm laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3607s, 3588, 3542s, 3383, 3282w, 1579w, 1319w, 1178w, 1133, (1103), 1079, 1047s, 1029sh, 1013sh, 992s, 681, 609, 580sh, 486, 403sh, 392, 340w, 334, 323sh.

Source: Frost et al. (2014l).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectrum of wardite see also Kampf et al. (2014a).

Waterhouseite $Mn_7(PO_4)_2(OH)_8$

Origin: Iron Monarch deposit, Middleback Ranges, South Australia, Australia (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single crystal using 518 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3555sh, 3510, 3439s, 3411sh, 1612w, 1076s, ~1050, ~1018, 984, 929s, 809s, 667, ~595sh, 571s, ~540sh, ~513s, 433, ~342, ~321, ~267, 174, ~137.

Source: Pring et al. (2005).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Wavellite Al₃(PO₄)₂(OH)₃∙5H₂O

Origin: Zbirow, Bohemia, Czech Republic.

- Experimental details: Raman scattering measurements have been performed on a powdered sample using 632.8 nm He-Ne laser radiation. The laser radiation output power was 18 mW.
- **Raman shifts (cm⁻¹):** 3490, 3406w, 3198sh, 3078, 1145w, 1061sh, 1017s, 950w, 920w, 633, 559sh, 540, 408s, 311, 274, 213w.

Source: Capitelli et al. (2014).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Waylandite $BiAl₃(PO₄)₂(OH)₆$

Origin: Leucamp, Montsalvy, Cantal, Auvergne-Rhône-Alpes, France.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 25 mW.

Raman shifts (cm⁻¹): 3170w, 1112w, 1021sh, 1012 (broad), 791s, 725, 612s, 706, 602w, 523, 470w, 450w, 415, 400sh, 306s, 280, 257, 226, 191w, 156, 139, 119, 95sh.

Source: Gama (2000).

Comments: The sample was characterized by electron microprobe analyses.

Weddellite $Ca(C_2O_4)$ ∙2H₂O

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was between 50 and 100 mW.
- **Raman shifts (cm⁻¹):** 3500-3200 (broad), 2941, 2855w, 1640, 1476s, 911s, 870w, 597w (broad), 506s, 188.

Source: Conti et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of weddellite see also Frost and Weier (2003) and Frost (2004d).

Weeksite K₂(UO₂)₂(Si₅O₁₃)⋅4H₂O

Origin: Anderson's Mine, Yavapai Co., Arizona, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3610sh, 3548, 3497sh, 3356sh, 1637, 1154, 1008, 962, 939, 814 + 810s (unresolved doublet?), 800, 765, 744, 574, 521, 480, 349, 333, 301, 266, 210s, 167.5, 113.
- Source: Frost et al. (2006d, h).
- Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of weeksite see also Biwer et al. (1990).

Wegscheiderite $Na₅H₃(CO₃)₄$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.
- **Raman shifts** (cm^{-1}) **:** 3120w (broad), 2930w (broad), 2500w (broad), 1910w (broad), 1700w, 1675sh, 1560w, 1450sh, 1429, 1391, 1355w (broad), 1270w (broad), 1057s, 1038s, 1022s, 841w, 699, 686, 654, 240, 224, 186, 153s, 118, 105s, 96w, 89, 72s, 55.

Source: Bertoluzza et al. (1981).

Comments: No independent analytical data are provided for the sample used.

Weissbergite $TlSbS₂$

Origin: Synthetic.

- Experimental details: Polarized Raman scattering measurements have been performed on a single crystal in different configurations using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 17 mW.
- **Raman shifts (cm⁻¹):** 334sh, 321s, 310s, 293sh, 275sh, ~250w, 178w, 162w, 145w, 127, 106, 94, 81, 62, 51, 41 (for E parallel to the $a-c$ plane).

Source: Kharbish (2011).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. For the Raman spectra of weissbergite see also Minceva-Sukarova et al. (2003) and Makreski et al. (2013b, 2014).

Weloganite Na₂Sr₃Zr(CO₃)₆⋅3H₂O

Origin: Francon quarry, Québec province, Canada (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): (3444), 3403, 3376sh, 3329, (3325), 1740w, 1732sh, 1712w, 1700w, 1681, 1622, 1563w, 1548w, 1526w, 1417, 1385w, 1371w, 1350, 1082s, 1073sh, 1061sh, 870w, 762, 749, 736, 728, 696w, 682sh, 679, (657w), 550w, 424w, 372sh, 354, 326w, 312sh

```
Source: Frost et al. (2013ab).
```
Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of weloganite see also Vard and Williams-Jones (1993).

Wendwilsonite Ca₂Mg(AsO₄)₂∙2H₂O

Origin: Bou Azzer district, Morocco.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3332w, 3119w, (3001), 1724w, 1624sh, 1098w, 970w, 871, 832s, 800, 714w, 669w, (626w), 478sh, 454, 425, 361, 341, 306, 286w, 244w, 212sh, 191, 164, (140w), 127w. Source: Frost et al. (2014v).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Wernerkrauseite $Ca(Fe^{3+}, Mn^{3+})_2Mn^{4+}O_6$

Origin: Bellerberg volcano, Eifel, Germany (type locality).

Experimental details: Raman scattering measurements have been performed on a grain in a polished section using 488 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was between 10 and 20 mW.

Raman shifts (cm⁻¹): 1239w, 670sh, 622s, (558), 495, 408sh, (332w), 294, 169, 117sh.

Source: Galuskin et al. (2016b).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Wetherillite Na₂Mg(UO₂)₂(SO₄)₄⋅18H₂O

Origin: Blue Lizard mine, San Juan Co., Utah, USA (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** ~3600-3000, 1610, 1230, 1180, 1120, 1105, 1080, 1010s, 995, 922w, 890sh, ~830s, 815sh, 700w, 640, 615sh, 580sh, 506, 445, 385, ~240.
- Source: Kampf et al. (2015b).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Wheatleyite Na₂Cu(C₂O₄)₂∙2H₂O

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3519, 3448, 3359w, 1733s, 1714w, 1674, 1651sh, 1470, 1434s, 1262, 1066, 904, 860, 798, 585, 565+560s (ubresolved doublet?), 387, 277, 243, 210, 173s, 139sh, 127.
- Source: Frost et al. (2008k).
- Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of wheatleyite see also Palacios et al. (2011).

Whelanite $Cu_2Ca_6[Si_6O_{17}(OH)](CO_3)(OH)_3(H_2O)_2$

Origin: Bawanamine, Milford, Utah, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented single crystals using 532 nm laser radiation. The laser radiation power is not indicated. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** 3599sh, 3558s, 3222w, 2954, 2917sh, 1600w, 1542w, 1471, 1085, 1012, 850, 715sh, 671s, 530w, 481, 458, 400+381 (unresolved doublet?), 254w, 217 + 201 (unresolved doublet?), $165 + 151$ (unresolved doublet?), 106 .

Source: Kampf et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved. For the Raman spectrum of whelanite see also Frost and Xi (2012e).

Whewellite $Ca(C_2O_4)·H_2O$

Origin: Synthetic.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 532 nm Nd-YAG laser radiation. The laser radiation power at the sample was between 50 and 100 mW.
- **Raman shifts (cm⁻¹):** 3486, 3426, 3340, 3256, 3056, 2972w, 2919w, 1629, 1490s, 1463s, 896, 503, 140, and several bands between 160 and 250 cm^{-1} .

Source: Conti et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of whewellite see also Frost and Weier (2003), Frost et al. (2003k), Frost (2004d), Jehlička and Edwards (2008), and Conti et al. (2014).

Whitecapsite $H_{16}Fe^{2+}{}_{5}Fe^{3+}{}_{14}Sb^{3+}{}_{6}(AsO_4)_{18}O_{16}$ 120H₂O

Origin: White Caps mine, Manhattan district, Nye Co., Nevada, USA (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented grain using 632.8 nm laser radiation. The laser radiation power is not indicated.
- **Raman shifts (cm⁻¹):** 3400 (broad), 3250, 2930sh, 2350w, 1655w, 1380w, 1165w, 1095w, 870s, 790sh, 585, 531s, 466, 318, 268, 202s, 175s, 120s.

Source: Pekov et al. (2014b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Whiteite [possibly, whiteite-(CaMnMg)] CaMn²⁺Mg₂Al₂(PO₄)₄(OH)₂⋅8H₂O (?)

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3552sh, 3496s, 3426, 3220, 2939, 1692w, 1607 + 1586 (unresolved doublet?), 1368 + 1334 (unresolved doublet?), 1266sh, 1173, 1076, 978 + 972 + 960s (unresolved triplet?), 630, 586 + 571 (unresolved doublet?), 553sh, 500sh, 479, (457), 432, 363, 303sh, 282, 238, 176sh, 150, 109.

Source: Frost et al. (2014ab).

Comments: No independent analytical data are provided for the sample used.

Whitlockite $Ca₉Mg(PO₃OH)(PO₄)₆$

Origin: Sixiangkot chondrite.

- Experimental details: No data.
- **Raman shifts (cm⁻¹):** 1107w, 1084, 1030, 1015w, 976s, 959s, 855w, 820w, 668, 622, 605, 595, 553, 480, 450, 410, 328, 236, 179.

Source: Chen et al. (1995).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of whitlockite see also Jolliff et al. (2006) and Tait et al. (2011).

Whitmoreite Fe²⁺Fe³⁺₂(PO₄)₂(OH)₂⋅4H₂O

Origin: Hagendorf-South (Hagendorf-Süd) pegmatite, Bavaria, Germany.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1910w, 1157sh, 1144, 1032, 973s, 937s, 915, (617), 593, 565, 546sh, 474sh, 433, 305, 276, 243s, 190, 152 + 150 (unresolved doublet?).

Source: Frost et al. (2003b).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Widenmannite $Pb_2(OH)_2[(UO_2)(CO_3)_2]$

Origin: Synthetic (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The nominal laser radiation power was 10 mW.
- **Raman shifts (cm⁻¹):** 3592sh, 3568, 3078, 1509w, 1470w, 1381, 1348w, 1122, 1068, 1058w, 849s, 736w, 725, 355, 268, 246, 225, 211w, 191, 128w, 115w.

Source: Plášil et al. (2010b).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Willemite Zn_2SiO_4

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 951w, 911, 875s.

Source: Lin and Shen (1994).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of willemite see also Annen and Davis (1993).

Willemseite $Ni₃Si₄O₁₀(OH)₂$

Origin: Scotia talc mine, Bon Accord area, Barberton district, South Africa.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was 0.5 mW.

Raman shifts (cm⁻¹): 3660s, 3645s, 3622s, 1043, 789, 671s, 410, 383s, 296s, 185s, 109.

Source: Villanova-de-Benavent et al. (2014).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Winstanleyite $TiTe^{4+3}O_8$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on a powdery sample using 632.8 nm He-Ne laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 859w, 650, 475s, 385.

Source: Ghribi et al. (2015).

Comments: The sample was characterized by powder X-ray diffraction data.

Witherite $Ba(CO₃)₂$

Origin: Alston Moor, England (type locality).

Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 488 or 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 200 mW. **Raman shifts (cm⁻¹):** 1423w, 1060s, 700w, 690, 222, 178w, 151s, 133s, 99w, 90, 78.

Source: Scheetz and White (1977).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of witherite see also Buzgar and Apopei (2009) and Frezzotti et al. (2012).

Wittichenite $Cu₃BiS₃$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on nanocrystals using Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 459, 355w, 153s, 116s.

Source: Zhong et al. (2012).

Comments: The sample was characterized by powder X-ray diffraction data and qualitative electron microprobe analysis. For the Raman spectrum of wittichenite see also Yan et al. (2013).

Wollastonite CaSiO₃

Origin: Willsboro mine, Willsboro, Essex Co., New York, USA.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 or 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 500 mW.
- Raman shifts (cm⁻¹): 1153w, 1063sh, 1046, 1023w, 999w, 972s, 852, 668sh, 637, 622sh, 583w,
- 469w, 414, 339, 323, 306w, 282w, 251, 239, 229, 217w, 193, 163.

Source: Richet et al. (1998).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of wollastonite see also Buzatu and Buzgar (2010).

Woodhouseite $CaAl₃(SO₄)(PO₄)(OH)₆$

Origin: Champion mine, White Mountains, Mono Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3460, 3401sh, 3122, 3001sh, 1778w, 1168w, 1151w, 1096, 1032 + 1028s (unresolved doublet?), 1004, 988, 974sh, 666sh, 653, 618, 590, 534, 485+475 (unresolved doublet?), 408s, 364w, (258), 249, 230sh, 181, 142, 118.

Source: Frost et al. (2011s).

Comments: No independent analytical data are provided for the sample used. For the Raman spectrum of woodhouseite see also Maubec et al. (2012).

Wopmayite $Ca_6Na_3\Box Mn(PO_4)_3(PO_3OH)_4$

Origin: Tanco Mine, Bernic Lake, Manitoba, Canada (type locality).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal laser radiation power was between 5 and 12.5 mW. A 180°-scattering geometry was employed.
- **Raman shifts** $(cm⁻¹)$ **:** No data: only a figure of the Raman spectrum of wopmanite is presented in the cited paper. The strongest band is observed at $\sim 960 \text{ cm}^{-1}$.

Source: Cooper et al. (2013b).

Wulfenite PbMoO₄

Origin: Synthetic (commercial reactant).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The laser radiation power at the sample was 0.3 mW.

Raman shifts (cm⁻¹): 868s, 765, 742, 347w, 315s, 189w, 168w.

Source: Bayne and Butler (2014).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of wulfenite see also Frost et al. (2004c), Nitta et al. (2006), and Rotondo et al. (2012).

Wupatkiite CoAl₂(SO₄)₄∙22H₂O

Origin: Cloncurry, Queensland, Australia.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power at the sample was 1 mW. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3479sh, 3296, 2987sh, 1134, 1069, 1009, 995s, 976, 882, 779, 622, 601, 517, 468, 426, 390w, 287sh, 213.
- Source: Locke et al. (2007).
- Comments: The sample was characterized by electron microprobe analysis which corresponds to an intermediate member of the wupatkiite–halotrichite solid-solution series.

Wurtzite ZnS

Origin: Manus Spreading Centre, Bismarck Sea.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was between 1 and 10 mW. A 180°-scattering geometry was employed.

Raman shifts (cm⁻¹): 402 (broad), 350s, 327sh, 297s, 245w, 233w, 222, 173, 158.

Source: Mernagh and Trudu (1993).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectra of wurtzite see also White (2009) and Ma et al. (2012a).

Wüstite FeO

Origin: Synthetic (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 632.8 nm He-Ne laser radiation. The laser radiation power at the sample was 0.7 mW.

Raman shifts $(cm⁻¹)$: 652.

Source: De Faria et al. (1997).

Comments: The sample was characterized by powder X-ray diffraction data.

Xenotime-(Y) $Y(PO₄)$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented acicular crystals using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 25 mW.

Raman shifts (cm⁻¹): 1056s, 1023, 997s, 578w, 481, 330, 292.

Source: Richman (1966).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of xenotime-(Y) see also Liu et al. (2008), Qiong et al. (2008), Bracco et al. (2012), Frezzotti et al. (2012), Andò and Garzanti (2014), and Švecová et al. (2016).

Xieite $FeCr₂O₄$

Origin: Suizhou meteorite (type locality).

Experimental details: No data.

Raman shifts (cm^{-1}) **:** 665sh, 605.

Source: Chen et al. (2008a).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Xocolatlite Ca₂Mn⁴⁺₂Te⁶⁺₂O₁₂⋅H₂O

Origin: Moctezuma deposit, Sonora, Mexico (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 699, 630s, 520, 390, 246w.

Source: Grundler et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Xocomecatlite $Cu_3(Te^{6+}O_4)(OH)_4$

Origin: Mina Bambollita, Moctezuma, Sonora, Mexico.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 2926s, 2867, 2754, 2594, 2326, 2206, 1957, 1602, (1544), 1368w, 1314w, 1121w, 974, 796, 763, 710s, 680sh, 600sh, 509, 470, 438, 407sh, 291, 259, 231, 189, 161, 149. Source: Frost and Keeffe (2009g).

Comments: The sample was characterized by chemical data.

Xonotlite $Ca_6Si_6O_{17}(OH)_2$

Origin: Point Sal, near Vandenberg Air Force Base, Santa Barbara Co., California, USA.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (3665), 3627, 3611w, (3578), (3528), 3303sh, 2909w, (1660w), (1603w), (1488 + 1423w) (unresolved doublet?), 1070, 1042s, 1015w, 980, 961s, (953), 862s, 816sh, 777, 695s, 626, 593s, 524, 505, 445, 421, 393, 369, 335, 304, 271w, 259w, 234, 205, 158, 135, 105. Source: Frost et al. (2012b).

Comments: No independent analytical data are provided for the sample used.

Yarrowite $Cu₉S₈$

Origin: Synthetic. Experimental details: No data. **Raman shifts** $(cm⁻¹)$ **:** 470s, 263. Source: Kumar and Nagarajan (2011). Comments: The sample was characterized by powder X-ray diffraction data.

Ye'elimite $Ca₄Al₆O₁₂(SO₄)$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts $(cm⁻¹)$ **:** 991s, 616w, 521.

Source: Gastaldi et al. (2008).

Comments: The sample was characterized by powder X-ray diffraction data.

Yecoraite $Fe^{3+}{}_{3}Bi_{5}O_{9}(Te^{4+}O_{3})(Te^{6+}O_{4})_{2}\cdot 9H_{2}O$

Origin: Marie Elena mine, Yecora, Sonora, Mexico (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3400sh, 3180w, 2936w, 2878sh, 979w, 808, 796w, 699 + 690 (unresolved doublet?), 640sh, 578, 470 + 465s (unresolved doublet?), (396), 390, 355, 301, 265, 206, 145, 128. Source: Frost and Keeffe (2009h).

Comments: No independent analytical data are provided for the sample used.

Yimengite K(Cr,Ti,Fe,Mg)₁₂O₁₉

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 632.8 nm He-Ne laser radiation. The nominal laser radiation power was between 4 and 8 mW.

Raman shifts (cm⁻¹): 695s, 629s, 545, 471, 285w.

Source: Konzett et al. (2005).

Comments: The sample was characterized by X-ray diffraction data and electron microprobe analyses.

Yingjiangite K₂Ca(UO₂)₇(PO₄)₄(OH)₆⋅6H₂O

Origin: Xiazhuang U deposit, China.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3510w, 3375sh, 3180w, 1047, 1004, 841 + 836s (unresolved doublet?), 817sh, 567, 531, 437, 393, 269sh, 204s, 147s.

Source: Frost et al. (2008a).

Comments: No independent analytical data are provided for the sample used.

Yttriaite-(Y) Y_2O_3

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 514.5 nm Ar⁺ laser radiation. The laser radiation power at the sample was 2.5 mW.

Raman shifts (cm⁻¹): The strongest peak is observed at 378 cm⁻¹. Raman shifts of other bands are not indicated.

Source: Mills et al. (2011c).

Comments: Raman spectrum of natural yttrialite- (Y) given in the cited paper as a figure differs significantly from that of synthetic Y_2O_3 .

Yukonite $Ca_2Fe^{3+}{}_{3}(AsO_4)_3(OH)4·4H_2O$

Origin: No data.

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 785 nm diode laser radiation. The laser radiation power at the sample was >0.3 mW.
- **Raman shifts (cm⁻¹):** 1059s, 992s, 929, 854s, 633, 527, 449, 387s, 237, 137.

Source: Das and Hendry (2011).

Comments: The sample was characterized by powder X-ray diffraction data. The stromg bands at 1059 and 992 cm⁻¹ may correspond to impurities (a carbonate and a sulfate). For the Raman spectra of yukonite see also Gomez et al. (2010a, b) and Gómez and Lee (2012).

Yuksporite K₄(Ca,Na)₁₄(Sr,Ba)₂(□,Mn,Fe)(Ti,Nb)₄(O,OH)₄(Si₆O₁₇)₂(Si₂O₇)₃(H₂O,OH)₃

Origin: Hackman valley, Yukspor Mt., Khibiny massif, Kola Peninsula, Russia (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3668w (sharp), 3628sh, 3562w, 3460w, 3298sh, 2908w, 1103sh, 1078s, 1074sh, 1045, 1008w, 979, 954, 929sh, 891sh, 870s, 845sh, 815 + 803 (unresolved doublet?), 764, 723, 670s, 656sh, 641s, 588, 542, 525, 473+463 (unresolved doublet?), 437sh, 426, 395, 370, 348sh, 307, 288, 262sh, 241, 211, 141.

Source: Frost et al. (2015j).

Comments: The sample was characterized by qualitative electron microprobe analysis.

Yurmarinite $Na₇(Fe³⁺, Mg,Cu)₄(AsO₄)₆$

Origin: Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 532 nm laser radiation. The nominal radiation power at the sample was about 30 mW.

Raman shifts (cm⁻¹): 931sh, 859s, 831, 794s, 481, 409s, 331, 288, 187, 162, 111sh. Source: Pekov et al. (2014d).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Yushkinite $(Mg, Al)(OH)₂VS₂$

Origin: Silova-Yakha River, Pai-Khoi Anticlinorium (type locality). Experimental details: No data. **Raman shifts (cm⁻¹):** 762, 570, 373s, 345, 301w. Source: Koval'chuk, and Makeev (2007). Comments: The sample was characterized by electron microprobe analyses.

Yvonite Cu(AsO₃OH)∙2H₂O

Origin: Salsigne mine, north of Carcassonne, Aude, France (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3485, 3314, 3061, 2831, 953, 897, 863, 842, 824, 795, 756, 637, 559, 546, 490, 473, 360, 342.

Source: Frost et al. (2015w).

Comments: No independent analytical data are provided for the sample used. Band intensities are not indicated.

Żabińskiite Ca $[AI_{0.5}(Ta, Nb)_{0.5})](SiO_4)O$

Origin: Piława Górna pegmatite, Góry Sowie Block, Poland (type locality).

- Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power at the sample was 5 mW.
- **Raman shifts (cm⁻¹):** 997, 835, 642w, 581, 487, 431w, 341s.

Source: Pieczka et al. (2016a).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Zadovite $BaCa_6[(SiO₄)(PO₄)](PO₄)₂F$

Origin: Hatrurim Basin, Negev Desert, Israel (type locality).

Experimental details: No data.

Raman shifts (cm⁻¹): 1031, 992w, 969s, 881s, 839sh, 627w, 589, 520w, 430, 389, 342sh, 299w, 222. Source: Galuskin et al. (2015e).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. The crystal structure is solved.

Zálesíite CaCu₆(AsO₄)₂(AsO₃OH)(OH)₆∙3H₂O

Origin: Zálesí U deposit, Rychlebské Hory Mts., northern Moravia, Czech Republic (type locality).

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3457sh, 3361w, 3124w, (3106w), 1102, 912sh, 873s, 839s, (806), 623 + 520 (unresolved doublet?), 534s, 489, 433, 378sh, 354, 278, 239, 214sh, 170sh, 155 + 143s (unresolved doublet?).
- Source: Čejka et al. (2011c).
- Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Zanazziite Ca₂Be₄Mg₅(PO₄)₆(OH)₄⋅6H₂O

Origin: Ponte do Piauimine, Piaui valley, municipality of Itinga, Minas Gerais, Brazil.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 3447 + 3437s (unresolved doublet?), 3256sh, (3098), 1644w, 1569w, 1466w, 1096, 1064, 1047, 1007, 970 + 964s (unresolved doublet?), 756, 589, 568, 559, 487, 457, 419, (404), 371, 294sh, 264, 236, 182, 166, 145, 132sh, 117.

Source: Frost et al. (2013ae).

Comments: The sample was characterized by electron microprobe analyses.

Zaratite Ni₃(CO₃)(OH)₄⋅4H₂O

Origin: Cape Ortegal, Galicia, Spain (type locality).

- Experimental details: Raman scattering measurements have been performed on a massive sample using 532 nm laser radiation. The nominal laser radiation power was 10 mW.
- **Raman shifts (cm⁻¹):** 3604, 3428w, 3328w, 3217sh, 3110w, 2983w, 2935, 2867w, 2753w, 1609, 1366s, 1073s, 972, 941, 788w, 685w, 536w, 458.

Source: Garcia-Guinea et al. (2013).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses. For the Raman spectra of zaratite see also Frost et al. (2008l) and LaIglesia et al. (2014).

Zdenĕkite NaPbCu₅(AsO₄)₄Cl∙5H₂O

Origin: Cap Garonne Mine, near le Pradet, France.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** (1109w), (936w), 850s, 795s, 537s, 486s, 445, 339s, 278, 247. Source: Frost et al. (2007m).

Comments: No independent analytical data are provided for the sample used.

Zellerite Ca($UO₂$)(CO₃)₂⋅5H₂O

Origin: White Canyon No. 1 Mine, Frey Point, Utah, USA.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3514w, 3375sh, 2945w, 1374w, 1091, 854s, 758, 363w, 233, 147. Source: Frost et al. (2008f).

Comments: Questionable data. No independent analytical data are provided for the sample used. In the figures given in the cited paper the mineral is named "Zellerite/Liebegite." The IR spectrum of the sample used corresponds to a sulfate.

Zemannite Mg_{0.5}ZnFe³⁺(TeO₃)₃⋅4.5H₂O

Origin: Mina Bambollita, Moctezuma, Sonora, Mexico.

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 740s, 650, 460s, 375, 213, 136.

Source: Frost et al. (2008i).

Comments: No independent analytical data are provided for the sample used.

Zemkorite $\text{Na}_2\text{Ca}(\text{CO}_3)_2$

Origin: Product of heating of natural nyerereite to 400 °C.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar^+ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm⁻¹): 1078s, 993w, 710.

Source: Golovin et al. (2014).

Comments: The sample was characterized by electron microprobe analyses.

Zhangpeishanite BaFCl

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented crystal using 488 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 255, 215s, 165, 145.

Source: Sundarakannan et al. (2002).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of zhangpeishanite see also Scott (1968) and Sundarakkannan and Kesavamoorthy (1998).

Ziesite $Cu_2V^{5+}{}_{2}O_7$

Origin: Synthetic.

Experimental details: Methods of sample preparation are not described. Raman scattering measurements have been performed using 514.5 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 950sh, 912s, 855, 786w, 389, 259, 192w.

Source: De Waal and Hutter (1994).

Comments: No independent analytical data are provided for the sample used.

Zincite ZnO

Origin: Franklin or Sterling Hill, New Jersey, USA

Experimental details: No data.

Raman shifts (cm⁻¹): 1603 (broad), 1080, 1004sh, 569, 522s, 486, 478, 438, 378w, 331w, 252w. Source: Welsh (2008).

Comments: The sample was characterized by EDS analyses. For the Raman spectra of zincite see also Bouchard and Smith (2003) and Kunert et al. (2006).

Zincochromite $ZnCr₂O₄$

Origin: Synthetic.

Experimental details: Raman scattering measurements have been performed from the (100) face of a single crystal using unpolarized 488 nm $Ar⁺$ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 692s, 610, 515, 457w, 166.

Source: Lutz et al. (1991).

Comments: In the cited paper also polarized Raman spectra of zincochromite are given. For the Raman spectrum of zincochromite see also D'Ippolito et al. (2015).

Zincocopiapite ZnFe³⁺₄(SO₄)₆(OH)₂⋅20H₂O

Origin: Les Valettes, Wallis, Switzerland.

- Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.
- **Raman shifts (cm⁻¹):** 1231, 1162, 1159sh, 1099, 1021s, 1005s, 987sh, 893w, 860w, 738w, 624, (613sh), 565, 485, 450, 424, 302, 267s, 218.

Source: Frost (2011c).

Comments: No independent analytical data are provided for the sample used.

Zincospiroffite $Zn_2Te_3O_8$

Origin: Zhongshangou Au deposit, Chongli Co., Hebei Province, China (type locality).

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 514.5 nm Ar⁺ laser radiation. The nominal laser radiation power was 20 mW.

Raman shifts (cm^{-1}) : 748, 725s, 646, 578w, 536w, 407w, 344, 304w, 233w, 181, 123.

Source: Zhang et al. (2004).

Comments: The sample was characterized by powder X-ray diffraction data and electron microprobe analyses.

Zinkenite $Pb_9Sb_{22}S_{42}$

Origin: Zlatá Baňa, Slanské Vrchy Mts., central Slovakia.

- Experimental details: Raman scattering measurements have been performed on a polycrystalline sample using 532 nm Nd-YAG laser radiation. Exciting radiation with the power densitiy of 8.5×10^{-3} Å mW mm⁻² was used. A 180°-scattering geometry was employed.
- **Raman shifts (cm⁻¹):** (335sh), 312s, (302sh), 282s, (271sh), 238, 204sh, 192, 156, 130w, 119w, 103, 75sh, 69, 58.

Source: Kharbish and Jeleň (2016).

Comments: The sample was characterized by electron microprobe analyses. For the Raman spectrum of zinkenite see also Goienaga et al. (2011).

Zippeite K₃(UO₂)₄(SO₄)₂O₃(OH)∙3H₂O

Origin: Abandoned uranium mine at Pecs, Hungary.

Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1233w, 1091, 1012, 842s, 740, 398, 192.

Source: Stefaniak et al. (2009).

Comments: The sample was characterized by qualitative electron microprobe analysis. For the Raman spectra of zippeite see also Frost et al. (2005i) and Plášil et al. (2010a).

Zircon ZrSiO₄

Origin: Kozjak Mt., Kozjačija, Macedonia.

Experimental details: Raman scattering measurements have been performed on a powdered sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 1008s, 973, 769, 438, 394w, 356s, 224, 200w, 180w.

Source: Makreski et al. (2005b).

Comments: No independent analytical data are provided for the sample used. For the Raman spectra of zircon see also Nicola and Rutt (1974), Syme et al. (1977), Geisler et al. (2003), Gucsik et al. (2004), Jasinevicius (2009), Frezzotti et al. (2012), Nhlabathi (2012), Andò and Garzanti (2014), and Grüneberger et al. (2016).
Zoisite $Ca₂Al₃[Si₂O₇][SiO₄]O(OH)$

Origin: No data.

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented single-crystal platelet using 532 nm laser radiation. The nominal laser radiation power was 150 mW.
- **Raman shifts (cm⁻¹):** 3150w, 1092s, 1018s, 983, 946w, 928, 909, 889, 872, 860, 778w, 727w, 678, 623, 597, 574, 530, 493s, 456, 435, 420, 395, 337, 312w, 287, 280, 261, 215, 192.

Source: Mao et al. (2007).

Comments: The sample was characterized by single-crystal X-ray diffraction data and electron microprobe analyses. For the Raman spectra of zoisite see also Jasinevicius (2009), Andò and Garzanti (2014), and Weis et al. (2016).

Zorite $Na₆Ti₅Si₁₂O₃₄(O,OH)₅·11H₂O$

Origin: Synthetic.

- Experimental details: Raman scattering measurements have been performed on a powdery sample using 1064 nm Nd-YAG laser radiation. The laser radiation power is not indicated.
- Raman shifts (cm^{-1}) : 1050w, 940, 905, 870sh, 755s, and a series of bands between 200 and 550 cm^{-1} .

Source: Craveiro and Lin (2012).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of zorite see also Ferdov et al. (2008).

Zuktamrurite $FeP₂$

Origin: Synthetic.

Experimental details: Polarized Raman scattering measurements have been performed on a cluster of needle-like crystals by the back-scattering technique, in different scattering geometries, using 514.5 nm Ar⁺ laser radiation. The laser radiation power is not indicated.

Raman shifts (cm⁻¹): 448, 386-388, 323-326s.

Source: Lutz and Müller (1991).

Comments: No independent analytical data are provided for the sample used.

Zunyite $\text{Al}_{13}\text{Si}_5\text{O}_{20}(\text{OH},\text{F})_{18}\text{Cl}$

Origin: Zuni mine, San Juan Co., Colorado, USA (type locality).

Experimental details: Raman scattering measurements have been performed on arbitrarily oriented crystals using a 633 nm He-Ne laser. The laser radiation power is not indicated. The Raman shifts have been determined for the maxima of individual peaks obtained as a result of the spectral curve analysis.

Raman shifts (cm⁻¹): 3635, 3431, 3369, 3352, 3335, 3317, 3304, 1295, 1239, 1207, 1176, 1141, 1126, 1101, 1067, 994, 950s, 930s, 701, 612, 467, 444, 397s, 374sh, 360s, 334, 313, 271, 250, 213, 202s.

Source: Kloprogge and Frost (1999d).

Comments: No independent analytical data are provided for the sample used.

Zýkaite Fe³⁺₄(AsO₄)₃(SO₄)(OH)∙15H₂O

Origin: Kaňk, near Kutná Hora, Czech Republic (?).

- Experimental details: Raman scattering measurements have been performed on an arbitrarily oriented sample using 785 nm laser radiation. The nominal laser radiation power was berween 60 and 120 mW.
- **Raman shifts (cm⁻¹):** 1113w, 1063w, 998, 895, 883, 835-815 (broad), 472sh, 442, 412sh, 306sh, 285s, 217.

Source: Culka et al. (2016b).

Comments: The sample was characterized by powder X-ray diffraction data. For the Raman spectrum of zýkaite see also Frost et al. (2011m).

References

- Abdija Z, Najdoski M, Koleva V, Runčevski T, Dinnebier RE, Šoptrajanov B, Stefov V (2014) Preparation, structural, thermogravimetric and spectroscopic study of magnesium potassium arsenate hexahydrate. Z anorg allg Chem 640(15):3177–3183
- Abelló S, Bolshak E, Gispert-Guirado F, Farriol X, Montané D (2014) Ternary Ni–Al–Fe catalysts for ethanol steam reforming. Catal Sci Technol 4(4):1111–1122
- Abraham S, Aruldhas G (1994) Infrared and polarized Raman spectra of Cd(HCOO)₂⋅2H₂O. Phys Status Solidi A 144(2):485–491
- Aceto M, Agostino A, Boccaleri E, Crivello F, Garlanda AC (2006) Evidence for the degradation of an alloy pigment on an ancient Italian manuscript. J Raman Spectrosc 37(10):1160–1170
- Achary SN, Errandonea D, Muñoz A, Rodríguez-Hernández P, Manjón FJ, Krishna PSR, Patwe SJ, Grover V, Tyagi AK (2013) Experimental and theoretical investigations on the polymorphism and metastability of BiPO₄. Dalton Trans 42(42):14999-15015
- Adams DM, Gardner IR (1974) Single-crystal vibrational spectra of apatite, vanadinite, and mimetite. J Chem Soc Dalton Trans 14:1505–1509
- Adar F (2014) Molecular spectroscopy workbench. Raman spectra of metal oxides. Spectroscopy 29(10):14–19
- Agakhanov AA, Pautov LA, Sokolova E, Hawthorne FC, Karpenko VY, Siidra O, Garanin VK (2016a) Mendeleevite-(Nd), $(Cs, \Box)_6(\Box, Cs)_{6}(\Box, K)_6(REE,$ $Ca)_{30}(Si_{70}O_{175})(OH,H_2O,F)_{35}$, a new mineral from the Darai-Pioz alkaline massif, Tajikistan. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.076>
- Agakhanov AA, Pautov LA, Sokolova E, Abdu YA, Karpenko VY (2016b) Two astrophyllite-supergroup minerals: bulgakite, a new mineral from the Darai-Pioz alkaline massif, Tajikistan and revision of the crystal structure and chemical formula of nalivkinite. Can Mineral 54:33–48
- Agnihotri OP, Sehgal HK (1972) Fundamental infrared lattice vibration spectrum and the laser-excited Raman spectrum of MoSe₂. Philosophical Mag 26 (3):753–756
- Agulló-Rueda F, Calleja JM, Martini M, Spinolo G, Cariati F (1987) Raman and infrared spectra of

transition metal halide hexahydrates. J Raman Spectrosc 18(7):485–491

- Ahn HS, Lee EP, Chang HY, Lee DW, Ok KM (2015) $Sr_3Bi_2(SeO_3)_6·H_2O$: a novel anionic layer consisting of second-order Jahn–Teller (SOJT) distortive cations. J Solid State Chem 221:73–78
- Akaogi M, Ross NL, McMillan P, Navrotsky A (1984) The Mg_2SiO_4 polymorphs (olivine, modified spinel and spinel) – thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am Mineral 69:499–512
- Akrap A, Tran M, Ubaldini A, Teyssier J, Giannini E, Van Der Marel D, Lerch P, Homes CC (2012) Optical properties of Bi2Te2Se at ambient and high pressures. Phys Rev B 86(23):235207. (9 pp)
- Aksenov SM, Chukanov NV, Rusakov VS, Panikorovskii TL, Gainov RR, Vagizov FG, Rastsvetaeva RK, Lyssenko KA, Belakovskiy DI (2016) Towards a revisitation of vesuvianite-group nomenclature: the crystal structure of Ti-rich vesuvianite from Alchuri, Shigar Valley, Pakistan. Acta Cryst B72:744–752
- Aktas O, Truong KD, Otani T, Balakrishnan G, Clouter MJ, Kimura T, Quirion G (2011) Raman scattering study of delafossite magnetoelectric multiferroic compounds: $CuFeO₂$ and $CuCrO₂$. J Phys Condens Matter 24(3):036003. (11 pp)
- Alekseev EV, Felbinger O, Wu S, Malcherek T, Depmeier W, Modolo G, Gesing TM, Krivovichev SV, Suleimanov EV, Gavrilova TA, Pokrovsky LD, Pugachev AM, Surovtsev NV, Atuchin VV (2013) K $[AsW₂O₉]$, the first member of the arsenate–tungsten bronze family: synthesis, structure, spectroscopic and non-linear optical properties. J Solid State Chem 204:59–63
- Alharbi ND, Salah N, Habib SS, Alarfaj E (2012) Synthesis and characterization of nano-and microcrystalline cubes of pure and Ag-doped LiF. J Phys D 46 (3):035305. (6 pp)
- Ali AB, Awaleh MO, Leblanc M, Smiri LS, Maisonneuve V, Houlbert S (2004a) Hydrothermal synthesis, crystal structure, thermal behaviour, IR and Raman spectroscopy of Na₃Y(CO₃)₃⋅6H₂O. Compt Rend Chim 7(6):661–668

C Springer Nature Switzerland AG 2020

- Ali AB, Maisonneuve V, Houlbert S, Silly G, Buzaré JY, Leblanc M (2004b) Cation and anion disorder in new cubic rare earth carbonates Na₂LiLn(CO₃)₃ (Ln = Eu– Er, Yb, Lu, Y); synthesis, crystal structures, IR, Raman and NMR characterizations. Solid State Sci 6 (11):1237–1243
- Alibakhshi E, Ghasemi E, Mahdavian M (2012) A comparison study on corrosion behavior of zinc phosphate and potassium zinc phosphate anticorrosive pigments. Prog Color Colorants Coat 5:91–99
- Alici E, Schmidt T, Lutz HD (1992) Zur Kenntnis des Calciumbromats und -iodats, Kristallstruktur, röntgenographische, IR- und Raman-spektroskopische und thermoanalytische Untersuchungen. Z anorg allg Chem 608:135–144. (in German)
- Allen FM, Burnham CW (1992) A comprehensive structure-model for vesuvianite: symmetry variations and crystal growth. Can Miner 30:1–18
- Almeida MAP, Cavalcante LS, Li MS, Varela JA, Longo E (2012) Structural refinement and photoluminescence properties of MnWO4 nanorods obtained by microwave-hydrothermal synthesis. J Inorg Organometallic Polym Mater 22(1):264–271
- Almeida RM, Andreeta MRB, Hernandes AC, Dias A, Moreira RL (2014) Optical phonon characteristics of an orthorhombic-transformed polymorph of $CaTa_2O_6$ single crystal fibre. Mater Res Express 1(1):016304- 1–016304-13
- Altamura G, Grenet L, Roger C, Roux F, Reita V, Fillon R, Fournier H, Perraud S, Mariette H (2014) Alternative back contacts in kesterite $Cu₂ZnSn(S_{1-x}Se_x)₄$ thin film solar cells. J Renew Sustain Energy 6(1):011401. (7 pp)
- Amdouni N, Zarrouk H, Julien CM (2003) Synthesis, structure and intercalation of brannerite $LiWVO₆$ wet-chemical products. J Mater Sci 38(22):4573–4579
- Amme M, Renker B, Schmid B, Feth MP, Bertagnolli H, Döbelin W (2002) Raman microspectrometric identification of corrosion products formed on $UO₂$ nuclear fuel during leaching experiments. J Nucl Mater 306 (2):202–212
- Amri M, Zouari N, Mhiri T, Gravereau P (2009) Synthesis, structure determination and calorimetric study of new cesium hydrogen selenate arsenate $Cs₄(SeO₄)$ $(HSeO₄)₂(H₃AsO₄)$. J Alloys Compd 477(1):68–75
- An S, Liu X, Yang L, Zhang L (2015) Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: study in single-and binary-solute systems. Chem Eng Res Design 94:726–735
- Anandan S, Lee GJ, Yang CK, Ashokkumar M, Wu JJ (2012) Sonochemical synthesis of $Bi₂CuO₄$ nanoparticles for catalytic degradation of nonylphenolethoxylate. Chem Eng J 183:46–52
- Ananthanarayanan V (1961) Raman spectra of crystalline double sulphates. Z Phys 163(2):144–157
- Anastassakis E (1973) Light scattering in transition metal diselenides $\cos \theta_2$ and $\cos \theta_2$. Solid State Commun 13 (9):1297–1301
- Anastassakis E, Perry CH (1976) Light scattering and IR measurements in XS_2 pyrite-type compounds. J Chem Phys 64(9):3604–3609
- Anbalagan G, Mukundakumari S, Murugesan KS, Gunasekaran S (2009) Infrared, optical absorption, and EPR spectroscopic studies on natural gypsum. Vib Spectrosc 50(2):226–230
- Anbalagan G, Sivakumar G, Prabakaran AR, Gunasekaran S (2010) Spectroscopic characterization of natural chrysotile. Vib Spectrosc 52(2):122–127
- Anderson A (ed) (1973) The Raman Effect, Applications, vol 2. Marcel Dekker, New York
- Anderson A, Chieh C, Irish DE, Tong JPK (1980) An X-ray crystallographic, Raman, and infrared spectral study of crystalline potassium uranyl carbonate, $K_4UO_2(CO_3)$ ₃. Can J Chem 58(16):1651-1658
- Anderson AJ, Clark AH, Gray S (2001) The occurrence and origin of zabuyelite $(Li₂CO₃)$ in spodumenehosted fluid inclusions: implications for the internal evolution of rare-element granitic pegmatites. Can Mineral 39(6):1513–1527
- Andò S, Garzanti E (2014) Raman spectroscopy in heavymineral studies. Geol Soc, London, Spec Publ 386 (1):395–412
- Andrade MB, Morrison SM, Di Domizio AJ, Feinglos MN, Downs RT (2012) Robertsite,
Ca₂Mn^{III}₃O₂(PO₄)₃∙3H₂O. Acta Crystallogr E. [https://](https://doi.org/10.1107/S160053681203735X) doi.org/10.1107/S160053681203735X
- Andrade MB, Atencio D, Persiano AIC, Ellena J (2013a) Fluorcalciomicrolite, $(Ca, Na, \Box)_{2}Ta_{2}O_{6}F$, a new microlite-group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Mineral Mag 77 (7):2989–2996
- Andrade MB, Doell D, Downs RT, Yang H (2013b) Redetermination of katayamalite, $KLi_3Ca_7Ti_2(SiO_3)_{12}(OH)_2$. Acta Crystallogr E. <https://doi.org/10.1107/S1600536813016620>
- Andrade MB, Yang H, Downs RT, Jenkins RA, Fay I (2014) Te-rich raspite, $Pb(W_{0.56}Te_{0.44})_{O4}$, from Tombstone, Arizona, USA: the first natural example of Te^{6+} substitution for W^{6+} . Am Mineral 99(7):1507-1510
- Andrade MB, Yang H, Atencio D, Downs RT, Chukanov NV, Lemée-Cailleau MH, Persiano AIC, Goeta AE, Ellena J (2016) Hydroxycalciomicrolite, $Ca₁5Ta₂O₆(OH)$, a new member of the microlite group from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Mineral Mag. [https://doi.org/10.](https://doi.org/10.1180/minmag.2016.080.116) [1180/minmag.2016.080.116](https://doi.org/10.1180/minmag.2016.080.116)
- Andrade MB, Yang H, Downs RT, Färber G, ContreiraFilho RR, Evans SH, Loehn CW, Schumer BM (2017) Fluorlamprophyllite, Na₃(SrNa) $Ti₃(Si₂O₇)₂O₂F₂$, a new mineral from Poços de Caldas alkaline massif, Morro do Serrote, Minas Gerais, Brazil. Mineral Mag. [https://doi.org/10.1180/minmag.](https://doi.org/10.1180/minmag.2017.081.027) [2017.081.027](https://doi.org/10.1180/minmag.2017.081.027)
- Andreani M, Daniel I, Pollet-Villard M (2013) Aluminum speeds up the hydrothermal alteration of olivine. Am Mineral 98(10):1738–1744
- Annen MJ, Davis ME (1993) Raman and ²⁹Si MAS NMR spectroscopy of framework materials containing threemembered rings. Microporous Mater 1(1):57–65
- Antony CJ, Aatiq A, Panicker CY, Bushiri MJ, Varghese HT, Manojkumar TK (2011) FT-IR and FT-Raman study of Nasicon type phosphates, $ASnFe(PO₄)₃$ [A= Na2, Ca, Cd]. Spectrochim Acta A 78(1):415–419
- Apollonov VN (1998) Nepskoeite $Mg_4Cl(OH)_7·6H_2O$, a new mineral from the Nepskoe K salt deposit. Zapiski VMO (Proc Russ Miner Soc) 127(1):41–46. (in Russian)
- Apopei AI, Buzgar N (2010) The Raman study of amphiboles. Analele Stiintifice de Universitatii AI Cuza din Iasi. Sect 2 Geologie 56(1):57–83
- Apopei AI, Buzgar N, Buzatu A (2011) Raman and infrared spectroscopy of kaersutite and certain common amphiboles. Analele Stiintifice ale Universitatii "Al. I. Cuza" din Iasi Seria Geologie 57(2):35–58
- Apopei AI, Damian G, Buzgar N (2012) A preliminary Raman and FT-IR spectroscopic study of secondary hydrated sulfate minerals from the Hondol open pit (Metaliferi Mts., Romania). Rom J Mineral Depos 85 $(2):1-6$
- Apopei AI, Buzgar N, Damian G, Buzatu A (2014a) The Raman study of weathering minerals from the Coranda-Hondol Open Pit (Certej Gold-Silver Deposit) and their photochemical degradation products under laser irradiation. Can Mineral 52:1027–1038
- Apopei AI, Damian G, Buzgar N, Milovska S, Buzatu A (2014b) New occurrences of hessite, petzite and stützite at Coranda-Hondol open pit (Certej gold-silver deposit, Romania). Carpath J Earth Environ Sci 9 (2):71–78
- Apopei AI, Buzgar N, Damian G, Buzatu A (2015) The Raman study of weathering minerals from the Coranda-Hondol Open Pit (Certej Gold-Silver Deposit) and their photochemical degradation products under laser irradiation. Can Mineral 52:1027–1038
- Aramendia J, Gómez-Nubla L, Castro K, Madariaga JM (2014) Spectroscopic speciation and thermodynamic modeling to explain the degradation of weathering steel surfaces in SO_2 rich urban atmospheres. Microchem J 115:138–145
- Arlt T, Armbruster T, Miletich R, Ulmer P, Peters T (1998) High pressure single-crystal synthesis, structure and compressibility of the garnet $Mn^{2+}{}_{3}Mn^{3+}{}_{2}[SiO_4]_3$. Phys Chem Minerals 26(2):100–106
- Armbruster T, Lazic B, Gfeller F, Galuskin EV, Galuskina IO, Savelyeva VB, Zadov AE, Pertsev NN, Dzierżanowski P (2011) Chlorine content and crystal chemistry of dellaite from the Birkhin gabbro massif, Eastern Siberia, Russia. Mineral Mag 75(2):379–394
- Armbruster T, Lazic B, Galuskina IO, Galuskin EV, Gnos E, Marzec KM, Gazeev VM (2012) Trabzonite, $Ca_4[Si_3O_9(OH)]OH$: crystal structure, revised formula, new occurrence and relation to killalaite. Mineral Mag 76(3):455–472
- Armstrong CR, Nash KL, Griffiths PR, Clark SB (2011) Synthesis and characterization of françoisite-(Nd): Nd $[(UO₂)₃O(OH)(PO₄)₂]·6H₂O$. Am Mineral 96 (2–3):417–422
- Aronne A, Esposito S, Ferone C, Pansini M, Pernice P (2002) FTIR study of the thermal transformation of barium-exchanged zeolite A to celsian. J Mater Chem 12(10):3039–3045
- Asensio MO, Yildirim M, Senberber FT, Kipcak AS, Derun EM (2016) Thermal dehydration kinetics and characterization of synthesized potassium borates. Rese Chem Intermed 42(5):4859–4878
- Assaaoudi H, Ennaciri A, Rulmont A (2001) Vibrational spectra of hydrated rare earth orthophosphates. Vib Spectrosc 25(1):81–90
- Atencio D, ContreiraFilho RR, Mills SJ, Coutinho J, Honorato SB, Ayala AP, Ellena J, Andrade MBD (2011) Rankamaite from the Urubu pegmatite, Itinga, Minas Gerais, Brazil: crystal chemistry and Rietveld refinement. Am Mineral 96(10):1455–1460
- Atencio D, Ciriotti ME, Andrade MB (2013) Fluorcalcioroméite, $(Ca,Na)_2Sb^{5+}{}_{2}(O,OH)_6F$, a new roméitegroup mineral from Starlera mine, Ferrera, Grischun, Switzerland: description and crystal structure. Mineral Mag 77(4):467–473
- Au CT, Zhang WD (1997) Oxidative dehydrogenation of propane over rare-earth orthovanadates. J Chem Soc Faraday Trans 93:1195–1204
- Au CT, Zhang WD, Wan HL (1996) Preparation and characterization of rare earth orthovanadates for propane oxidative dehydrogenation. Catal Lett 37:241–246
- Augsburger MS, Juri MA, Pedregosa JC, Mercader RC (1992) Crystal data and spectroscopic studies of NaNiFe₂(AsO₄)₃. J Solid State Chem $101(1):66-70$
- Auzende AL, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Minerals 31(5):269–277
- Avril C, Malavergne V, Caracas R, Zanda B, Reynard B, Charon E, Bobocioiu E, Brunet F, Borensztajn S, Pont S, Tarrida M, Guyot F (2013) Raman spectroscopic properties and Raman identification of CaS– MgS–MnS–FeS– Cr_2FeS_4 sulfides in meteorites and reduced sulfur-rich systems. Meteor Planet Sci 48 (8):1415–1426
- Ayta WEF, Dantas NO, Silva ACA, Cano NF (2010) First evidence of crystalline KHSO4: Mn grown by an aqueous solution method and the investigation of the effect of ionizing radiation exposure. J Cryst Growth 312 (4):563–567
- Ayyub P, Multani MS, Palkar VR, Vijayaraghavan R (1986) Vibrational spectroscopic study of ferroelectric $SbNbO₄$, antiferroelectric $BiNbO₄$, and their solid solutions. Phys Rev B 34(11):8137–8140
- Ayyub P, Palkar VR, Multani MS, Vijayaraghavan R (1987) Structural, dielectric and vibrational properties of the stibiotantalite $(Sb_{1-x}Bi_x)NbO_4$ system for $0 \leq$ $x \le 1$. Ferroelectrics 76(1):93-106
- Azdouz M, Manoun B, Essehli R, Azrour M, Bih L, Benmokhtar S, Hou AA, Lazor P (2010) Crystal chemistry, Rietveld refinements and Raman spectroscopy studies of the new solid solution series: $Ba_{3-x}Sr_x(VO_4)_2$ $(0 \le x \le 3)$. J Alloys Compd 498(1):42–51
- Azrour M, Azdouz M, Manoun B, Essehli R, Benmokhtar S, Bih L, El Ammari L, Ezzahi A, Ider A, Hou AA (2011) Rietveld refinements and vibrational spectroscopic studies of $Na_{1-x}K_xPb_4(PO_4)$ 3 lacunar apatites ($0 \le x \le 1$). J Phys Chem Solids 72 (11):1199–1205
- Babouri L, Belmokre K, Kabir A, Abdelouas A, El Mendili Y (2015) Structural and electrochemical study of binary copper alloys corrosion in 3% NaCl solution. J Chem Pharm Res 7(4):1175–1186
- Bahfenne S (2011) Single crystal Raman spectroscopy of selected arsenite, antimonite and hydroxyantimonate minerals. Dissertation, Queensland University of Technology
- Bahfenne S, Frost RL (2009) Raman spectroscopic study of the arsenite minerals ludlockite $PbFe^{3+4}As_{10}O_{22}$ and schneiderhöhnite $\text{Fe}^{2+}\text{Fe}^{3+}{}_{3}\text{As}^{3+}{}_{5}\text{O}_6$. Spectrochim Acta A 74(3):625–628
- Bahfenne S, Frost RL (2010a) Raman spectroscopic study of the antimony bearing mineral langbanite. Spectrochim Acta A 75(2):710–712
- Bahfenne S, Frost RL (2010b) Raman spectroscopic study of the antimonate mineral lewisite $(Ca,Fe,Na)_{2}(Sb,$ $Ti)_2O_6(O,OH)_7$. Radiat Effects Defects Solids Incorp Plasma Sci Plasma Technol 165(1):46–53
- Bahfenne S, Frost RL (2010c) Raman spectroscopic study of the antimony containing mineral partzite $Cu₂Sb₂(O,$ OH)7. Spectrosc Lett 43(3):202–206
- Bahfenne S, Frost RL (2010d) Raman spectroscopic study of the multi-anion mineral dixenite $CuMn^{2+}{}_{14}Fe^{3+}$ $(AsO₃)₅(SiO₄)₂(AsO₄)(OH)₆$. J Raman Spectrosc 41 (4):465–468
- Bahfenne S, Frost RL (2010e) Vibrational spectroscopic study of the antimonate mineral stibiconite $Sb^{3+}Sb^{3+}$ ₂ O6(OH). Spectrosc Lett 43(6):486–490
- Bahfenne S, Rintoul L, Frost RL (2011a) Single-crystal Raman spectroscopy of natural schafarzikite $FeSb₂O₄$ from Pernek, Slovak Republic. Am Mineral 96 (5–6):888–894
- Bahfenne S, Rintoul L, Frost RL (2011b) Single-crystal Raman spectroscopy of natural leiteite $(ZnAs₂O₄)$ and comparison with the synthesised mineral. J Raman Spectrosc 42(4):659–666
- Bahfenne S, Rintoul L, Langhof J, Frost RL (2011c) Single-crystal Raman spectroscopy of natural finnemanite and comparison with its synthesised analogue. J Raman Spectrosc 42(12):2119–2125
- Bahfenne S, Rintoul L, Langhof J, Frost RL (2012) Singlecrystal Raman spectroscopy of natural paulmooreite $Pb_2As_2O_5$ in comparison with the synthesized analog. Am Mineral 97(1):143–149
- Bahrami M, Taton G, Conédéra V, Salvagnac L, Tenailleau C, Alphonse P, Rossi C (2014) Magnetron sputtered Al-CuO nanolaminates: effect of stoichiometry and layers thickness on energy release and burning rate. Propellants Explos Pyrotech 39(3):365–373
- Bai L, Xue Y, Zhang J, Pan B, Wu C (2013) Synthetic potassium vanadium oxide K₂V₆O₁₆⋅1.5H₂O superlong nanobelts: a 1D room-temperature ferromagnetic semiconductor. Eur J Inorg Chem 2013 (20):3497–3505
- Bai C, Han S, Pan S, Bian Q, Yang Z, Zhang X, Lin X, Jing Q (2014) Reinvestigation and characterization of the magnesium borate fluoride $Mg_5(BO_3)F$. Z anorg allg Chemie 640(10):2013–2018
- Baioumy HM, Khedr MZ, Ahmed AH (2013) Mineralogy, geochemistry and origin of Mn in the high-Mn iron ores, Bahariya oasis, Egypt. Ore Geol Rev 53:63–76
- Bajda T (2010) Solubility of mimetite $Pb_5(AsO_4)_3Cl$ at 5-55C. Environ Chem 7:268–278
- Bajda T, Mozgawa W, Manecki M, Flis J (2011) Vibrational spectroscopic study of mimetite–pyromorphite solid solutions. Polyhedron 30(15):2479–2485
- Bakker RJ (2004) Raman spectra of fluid and crystal mixtures in the systems H_2O , $H_2O-NaCl$ and $H_2O MgCl₂$ at low temperatures: applications to fluidinclusion research. Can Mineral 42(5):1283–1314
- Bakker RJ (2010) Raman spectroscopy: application to platinum-group minerals. In: Mogessie B et al (eds) Short Course: Mineralogy, geochemistry, and ore deposits of platinum group elements. 20th General Meeting of IMA, Budapest. http://fl[uids.unileoben.ac.](http://fluids.unileoben.ac.at/Publications.html) [at/Publications.html](http://fluids.unileoben.ac.at/Publications.html)
- Bakker RJ (2014) Application of combined Raman spectroscopy and Electron Probe Microanalysis to identify platinum group minerals. 11th EMAS regional workshop on electron probe microanalysis of materials today. Practical Aspects, pp 215–233
- Balachandran UGEN, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42(3):276–282
- Balakrishnan T, Bhagavannarayana G, Ramamurthi K (2008) Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal. Spectrochim Acta A 71(2):578–583
- Balassone G, Bellatreccia F, Mormone A, Biagioni C, Pasero M, Petti C, Mondillo M, Fameli G (2012) Sodalite-group minerals from the Somma–Vesuvius volcanic complex, Italy: a case study of K-feldsparrich xenoliths. Mineral Mag 76(1):191–212
- Ballirano P (2012) Haüyne: mutual cations/anionic groups arrangement and thermal expansion mechanism. Phys Chem Minerals 39(9):733–747
- Balraj V, Vidyasagar K (1999) Syntheses and characterization of novel three-dimensional tellurites, $Na₂MTe₄O₁₂$ (M = W, Mo), with intersecting tunnels. Inorg Chem 38(25):5809–5813
- Bang SE, Lee DW, Ok KM (2014) Variable framework structures and centricities in alkali metal yttrium selenites, $AY(SeO₃)₂$ (A = Na, K, Rb, and Cs). Inorg Chem 53(9):4756–4762
- Banks E, Greenblatt M, McGarvey BR (1967) ESR and optical spectroscopy of $CrO₄³⁻$ in chlorospodiosite, Ca₂PO₄Cl. J Chem Phys 47(10):3772-3780
- Banks E, Chianelli R, Korenstein R (1975) Crystal chemistry of struvite analogs of the type MgMPO₄⋅6H₂O $(M^+ = K^+, Rb^+, Cs^+, TI^+, NH_4^+)$. Inorg Chem 14 (7):1634–1639
- Banno Y, Miyawaki R, Momma K, Bunno M (2016) A CO3-bearing member of the hydroxylapatite– hydroxylellestadite series from Tadano, Fukushima Prefecture, Japan: $CO₃$ -SO₄ substitution in the apatite– ellestadite series. Mineral Mag 80(2):363–370
- Banwell CN (1983) Fundamentals of molecular spectroscopy. McGraw-Hill (UK), London
- Baran EJ (1973) Infrarotspektrum und Kraftkonstanten des $CoO₄^{4–}$ -Ions. Z anorg allg Chemie 399(1):57–64. (in German)
- Baran EJ (1976) Die Schwingungsspektren von $Ca₃(VO₄)₂$ und $Ca₃(AsO₄)₂$. Z anorg allg Chemie 427 (2):131–136. (in German)
- Baran EJ (1978) Das Schwingungsspektrum des Ditellurit-Ions. Z anorg allg Chemie 442(1):112–118. (in German)
- Baran EJ (1994) Vibrational and electronic spectra of copper(II) chromate. Spectrochim Acta A 50 (14):2385–2389
- Baran EJ (1996) Vibrational spectra of $Sr_2(VO)V_2O_8$. J Raman Spectrosc 27(7):555–557
- Baran EJ (1997) Vibrational spectra of $Ba_2(VO)V_2O_8$. J Raman Spectrosc 28:289–291
- Baran EJ (2014) Natural oxalates and their analogous synthetic complexes. J Coord Chem 67 (23–24):3734–3768
- Baran EJ (2016) Natural iron oxalates and their analogous synthetic counterparts: a review. Chemie Erde-Geochem 76(3):449–460
- Baran EJ, Aymonino PJ (1971) Die Infrarotspektren der Orthovanadate der leichteren Lanthanide. Z anorg allg Chemie 383(2):226–229. (in German)
- Baran EJ, Aymonino PJ (1972) Die Infrarotspektren einiger Orthovanadate mit Apatitstruktur. Z anorg allg Chemie 390(1):77–84. (in German)
- Baran EJ, Botto IL (1976) Das Schwingungsspektrum des synthetischen Carnotits. Mh Chem (Chemical Monthly) 107(3):633–639. (in German)
- Baran EJ, Botto IL (1978) Die IR-Spektren einiger Doppeloxide mit Ilmenit-Struktur. Z anorg allg Chemie 444(1):282–288. (in German)
- Baran EJ, Botto IL (1980) Die Schwingungsspektren einiger tellurhaltiger 2,6-Spinelle. Z anorg allg Chemie 463(1):185–192. (in German)
- Baran EJ, Lii KH (1992) Vibrational spectrum of Zn_2VO (PO4)2. J Raman Spectrosc 23(2):125–126
- Baran EJ, Rabe S (1999) The infrared spectrum of α -(NH₄)₂(VO)₃(P₂O₇)₂. J Mater Sci Lett 18:1779–1780
- Baran EJ, Weil M (2004) Vibrational spectra of $Cd₂As₂O₇$. J Raman Spectrosc 35(2):178-180
- Baran EJ, Aymonino PJ, Müller A (1972) Die Schwingungsspektren von Strontium- und Barium-Orthovanadat. J Molec Struct 11:453–457. (in German)
- Baran EJ, Gentil LA, Pedregosa JC, Aymonino PJ (1974) Die Divanadate des Thoriums. Z anorg allg Chemie 410(3):301–312. (in German)
- Baran EJ, Botto IL, Fournier LL (1981) Das Schwingungsspektrum von α -Te₂MoO₇ und ein Vorschlag zur Struktur der Telluromolybdate zwei wertiger Kationen. Z anorg allg Chemie 476(5):214–220. (in German)
- Baran EJ, Botto IL, Muto F, Kumada N, Kinomura N (1986) Vibrational spectra of the ilmenite

modifications of $LiNbO₃$ and NaNbO₃. J Mater Sci Lett 5(6):671–672

- Baran EJ, Muto F, Kumada N, Kinomura N (1989) The infrared spectra of $TiPO₄$ and $VPO₄$. J Mater Sci Lett 8 (11):1305–1306
- Baran EJ, Vassalo MB, Lii K-H (1994) Vibrational Spectra of β-LiVOPO₄ and NaVOPO₄. J Raman Spectrosc 25:199–202
- Baran EJ, Lii KH, Wu LS (1995) The infrared spectrum of $[Ni(H_2O)_4][VOPO_4]_2$. J Mater Sci Lett 14 (5):324326
- Baran EJ, Vassallo MB, Lii KH (1996) Vibrational spectrum of RbVOPO₄. Vibr Spectrosc 10(2):331-334
- Baran J, Ilczyszyn MM, Marchewka MK, Ratajczak H (1999a) Vibrational studies of different modifications of the sodium hydrogen sulphate crystals. Spectrosc Lett Int J Rapid Commun 32(1):83–102
- Baran EJ, Mormann T, Jeitschko W (1999b) Infrared and Raman spectra of $(Hg_2)_3(AsO_4)_2$ and $Hg_3(AsO_4)_2$. J Raman Spectrosc 30:1049–1051
- Baran EJ, Schwendtner K, Kolitsch U (2006) Vibrational spectra of ScAsO4∙H2O. J Raman Spectrosc 37 (12):1453–1455
- Barashkov MV, Komyak AI, Shashkov SN (2004) Vibrational spectra and structure of potassium alum KAl $(SO_4)_2 \cdot 12[(H_2O)_x \ (D_2O)_{1-x}]$. J Appl Spectrosc 71 (3):328–3330
- Barchiche CE, Rocca E, Hazan J (2008) Corrosion behaviour of Sn-containing oxide layer on AZ91D alloy formed by plasma electrolytic oxidation. Surf Coat Technol 202(17):4145–4152
- Barnes JH (1986) Nakauriite, a new blue mineral from Cedar Hill. Pennsylvania Geol 17(5):6–8
- Barpanda P, Liu G, Mohamed Z, Ling CD, Yamada A (2014) Structural, magnetic and electrochemical investigation of novel binary $Na_{2-x}(Fe_{1-y}Mn_y)P_2O_7$ ($0 \le y$ \leq 1) pyrophosphate compounds for rechargeable sodium-ion batteries. Solid State Ionics 268:305–311
- Barshilia HC, Rajam KS (2004) Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings. J Mater Res 19(11):3196–3205
- Bartholomäi G, Klee WE (1978) The vibrational spectra of pyromorphite, vanadinite and mimetite. Spectrochim Acta A 34(7):831–843
- Barton IF, Yang H, Barton MD (2014) The mineralogy, geochemistry, and metallurgy of cobalt in the rhombohedral carbonates. Can Mineral 52:653–669
- Bastians S, Crump G, Griffith WP, Withnall R (2004) Raspite and studtite: Raman spectra of two unique minerals. J Raman Spectrosc 35(8–9):726–731
- Bates JB, Quist AS (1974) Vibrational spectra of solid and molten phases of the alkali metal tetrafluoroborates. Spectrochim Acta 31A:1317–1327
- Bates JB, Quist AS, Boyd GE (1971) Infrared and Raman spectra of polycrystalline NaBF₄. J Chem Phys 54 (1):124–126
- Bauman RP, Porto SPS (1967) Lattice vibrations and structure of rare-earth fluorides. Phys Rev 161(3):842–847
- Baumgartner M, Bakker RJ (2010) Raman spectra of ice and salt hydrates in synthetic fluid inclusions. Chem Geol 275(1):58–66
- Bayne JM, Butler IS (2014) Variable-temperature and high-pressure micro-Raman spectra of inorganic artists' pigments: crystalline wulfenite, lead (II) molybdate (VI), PbMoO4. Spectrosc Lett 47 (8):616–620
- Bechibani I, Litaiem H, Ktari L, Zouari N, Garcia-Granda-S, Dammak M (2014) Structural, thermal behavior, dielectric and vibrational studies of the new compound, sodium hydrogen arsenate tellurate $Na₂H₄As₂O₅(H₂TeO₄)$. J Phys Chem Solids 75 (7):911–920
Bechir MB,
- Rhaiem AB, Guidara K (2014) A.c. conductivity and dielectric study of LiNiPO₄ synthesized by solid-state method. Bull Mater Sci 37 (3):473–480
- Beck J, Benz S (2010) Crystalline and glassy phases in the ternary system Tl/Bi/Cl: synthesis and crystal structures of the thallium (I) chloridobismutates (III) Tl_3BiCl_6 and $TlBi_2Cl_7$. Z anorg allg Chem. [https://doi.](https://doi.org/10.1002/zaac.200900567) [org/10.1002/zaac.200900567](https://doi.org/10.1002/zaac.200900567)
- Begun GM, Rutenberg AC (1967) Vibrational frequencies and force constants of some Group IVa and Group Va hexafluoride ions. Inorg Chem 6(12):2212–2216
- Begun GM, Beall GW, Boatner LA, Gregor WJ (1981) Raman spectra of the rare earth orthophosphates. J Raman Spectrosc 11(4):273–278
- Behrens G, Kuhn LT, Ubic R, Heuer AH (1995) Raman spectra of vateritic calcium carbonate. Spectrosc Lett 28(6):983–995
- Behrens EA, Poojary DM, Clearfield A (1996) Syntheses, crystal structures, and ion-exchange properties of porous titanosilicates, HM₃Ti₄O₄(SiO₄)₃⋅4H₂O (M = H^+ , K^+ , Cs^+), structural analogues of the mineral pharmacosiderite. Chem Mater 8(6):1236–1244
- Beigi H, Bindu VH, Hamoon HZR, Rao KV (2011) Low temperature synthesis and characterization of ZnTiO₃ by sol-gel method. J Nano-Electron Phys 3 $(1):47-52$
- Belik AA, Izumi F, Stefanovich SY, Malakho AP, Lazoryak BI, Leonidov IA, Leonidova IA, Davydov SA (2002) Polar and centrosymmetric phases in solid solutions $Ca_{3-x}Sr_x(PO_4)_2$ ($0 \le x \le 16/7$). Chem Mater 14(7):3197–3205
- Belik AA, Izumi F, Azuma M, Kamiyama T, Oikawa K, Pokholok KV, Lazoryak BI, Takano M (2005) Redox reactions in strontium iron phosphates: synthesis, structures, and characterization of $Sr₉Fe(PO₄)₇$ and Sr9FeD(PO4)7. Chem Mater 17(22):5455–5464
- Belik AA, Koo HJ, Whangbo MH, Tsujii N, Naumov P, Takayama-Muromachi E (2007) Magnetic properties of synthetic libethenite Cu₂PO₄OH: a new spin-gap system. Inorg Chem 46(21):8684–8689
- Belik AA, Naumov P, Kim J, Tsuda S (2011) Low-temperature structural phase transition in synthetic libethenite Cu₂(PO₄)(OH). J Solid State Chem 184(11):3128–3133
- Belitsky IA, Fursenko BA, Gabuda SP, Kholdeev OV, Seryotkin YV (1992) Structural transformations in natrolite and edingtonite. Phys Chem Minerals 18 (8):497–505
- Belkouch J, Monceaux L, Bordes E, Courtine P (1995) Comparative structural study of mixed metals pyrophosphates. Mater Res Bull 30(2):149–160
- Bellatreccia F, Cámara F, Ottolini L, Della Ventura G, Cibin G, Mottana A (2005) Wiluite from Ariccia, Latium, Italy: occurrence and crystal structure. Can Miner 43:1457–1468
- Belluso E, Fornero E, Cairo S, Albertazzi G, Rinaudo C (2007) The application of micro-Raman spectroscopy to distinguish carlosturanite from serpentine-group minerals. Can Mineral 45(6):1495–1500
- Beneventi P, Bersani D, Lottici PP, Kovacs L (1995) A Raman study of $Bi_4(Ge_xSi_{1-x})_3O_{12}$ crystals. Solid State Commun 93(2):143–146
- Benhammou A, Yaacoubi A, Nibou L, Bonnet JP, Tanouti B (2011) Synthesis and characterization of pillared stevensites: application to chromate adsorption. Environ Technol 32(4):363–372
- Benmokhtar S, El Jazouli A, Chaminade JP, Gravereau P, Guillen F, De Waal D (2004) Synthesis, crystal structure and optical properties of $BiMgVO₅$. J Solid State Chem 177(11):4175–4182
- Benmokhtar S, Belmal H, El Jazouli A, Chaminade JP, Gravereau P, Pechev S, Grenier JC, Villeneuve G, De Waal D (2007a) Synthesis, structure, and physicochemical investigations of the new $\alpha Cu_{0.50}TiO(PO_4)$ oxyphosphate. J Solid State Chem 180(2):772–779
- Benmokhtar S, Chaminade JP, Gravereau P, Menetrier M, Bouree F (2007b) New process of preparation, structure, and physicochemical investigations of the new titanyl phosphate $Ti₂O(H₂O)(PO₄)₂$. J Solid State Chem 180(10):2713–2722
- Benreguia N, Barnabé A, Trari M (2015) Sol-gel synthesis and characterization of the delafossite $CuAlO₂$. J Sol-Gel Sci Technol 75(3):670–679
- Berger J (1976) Infrared and Raman spectra of $CuSO_4·5H_2O$; $CuSO_4·5D_2O$; and $CuSeO_4·5H_2O$. J Raman Spectrosc 5(2):103–114
- Bermanec V, Furić K, Rajić M, Kniewald G (2003) Thermal stability and vibrational spectra of the sheet borate tuzlaite, NaCa[B₅O₈(OH)₂]∙3H₂O. Am Mineral 88 (2–3):271–276
- Bermanec V, Tomašić N, Žigovečki Ž, Linarić MR, Furić K (2010) Dehydration processes in borate minerals: pentahydroborite and nifontovite from Fuka Mine, Okayama Prefecture, Japan. Mineral Mag 74 (6):1013–1025
- Bernard M-C, Hugot-Le Goff A, Thi BV, Cordoba de Torresi S (1993a) Electrochromic reactions in manganese oxides. I. Raman analysis. J Electrochem Soc 140 (11):3065–3070
- Bernard MC, Hugot-Le Goff A, Massinon D, Phillips N (1993b) Underpaint corrosion of zinc-coated steel sheet studied by in situ Raman spectroscopy. Corros Sci 35(5):1339–1349
- Bernardino NDE, Izumi CM, de Faria DL (2016) Fake turquoises investigated by Raman microscopy. Forensic Sci Intern 262:196–200
- Bernert T, Ruiz-Fuertes J, Bayarjargal L, Winkler B (2015) Synthesis and high (pressure, temperature) stability of $ZnTiO₃$ polymorphs studied by Raman spectroscopy. Solid State Sci 43:53–58
- Bernstein MP, Sandford SA (1999) Variations in the strength of the infrared forbidden 2328.2 cm^{-1} fundamental of solid N_2 in binary mixtures. Spectrochim Acta A 55:2455–2466
- Berryman EJ, Wunder B, Ertl A, Koch-Müller M, Rhede D, Scheidl K, Giester G, Heinrich W (2016) Influence of the X-site composition on tourmaline's crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy. Phys Chem Minerals 43 (2):83–102
- Bersani D, Lottici PP, Montenero A (2000) A micro-Raman study of iron-titanium oxides obtained by sol-gel synthesis. J Mater Sci 35(17):4301–4305
- Bersani D, Andò S, Vignola P, Moltifiori G, Marino IG, Lottici PP, Diella V (2009) Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochim Acta A 73(3):484–491
- Bersani D, Andò S, Scrocco L, Gentile P, Salvioli-Mariani E, Lottici PP (2014) Study of the composition of amphiboles in the tremolite–ferro-actinolite series by micro-Raman and SEM-EDXS. LPI Contributions Abstr 11th Geo Raman Int Conf 1783:5063. (2 pp)
- Berthereau A (1995) Les matériaux vitreux pour l'optique non linéaire: – étude des verres à base d'oxyde de tellure a fort effet Kerr optique – le phénomène de génération de seconde harmonique dans un verre. Thése, Université Sciences et Technologies – Bordeaux I. (in French)
- Bertolotti G, Bersani D, Lottici PP, Alesiani M, Malcherek T, Schlüter J (2012) Micro-Raman study of copper hydroxychlorides and other corrosion products of bronze samples mimicking archaeological coins. Analyt Bioanalyt Chem 402(4):1451–1457
- Bertoluzza A, Monti P, Battaglia MA, Bonora S (1980) Infrared and Raman spectra of orthorhombic, monoclinic and cubic metaboric acid and their relation to the "strength" of the hydrogen bond present. J Molec Struct 64:123–136
- Bertoluzza A, Monti P, Morelli MA, Battaglia MA (1981) A Raman and infrared spectroscopic study of compounds characterized by strong hydrogen bonds. J Molec Struct 73(1):19–29
- Besnardiere J, Petrissans X, Ribot F, Briois V, Surcin C, Morcrette M, Buissette V, Le Mercier T, Cassaignon S, Portehault D (2016) Nanoparticles of low-valence vanadium oxyhydroxides: reaction mechanisms and polymorphism control by low-temperature aqueous chemistry. Inorg Chem 55:11502–11512
- Best SP, Clark RJ, Hayward CL, Withnall R (1994) Polarized single-crystal Raman spectroscopy of danburite, $CaB₂Si₂O₈$. J Raman Spectrosc 25(7–8):557–563
- Betsch RJ, White WB (1978) Vibrational spectra of bismuth oxide and the sillenite-structure bismuth oxide derivatives. Spectrochim Acta A 34:505–514
- Bette S, Dinnebier RE, Freyer D (2014) Ni3Cl2.1(OH)3.9∙4H2O, the Ni analogue to Mg3Cl2(OH)4∙4H2O. Inorg Chem 53(9):4316–4324
- Bette S, Dinnebier RE, Röder C, Freyer D (2015) A solid solution series of atacamite type $Ni_{2x}Mg_{2-2x}Cl(OH)_{3}$. J Solid State Chem 228:131–140
- Bette S, Rincke C, Dinnebier RE, Voigt W (2016) Crystal structure and hydrate water content of synthetic hellyerite, NiCO₃⋅5.5H₂O. Z anor gallg Chem 642 (9–10):652–659
- Beukes GJ, Schoch AE, De Bruiyn H, Van der Westhuizen WA, Bok LDC (1984) A new occurrence of the hydrated aluminum sulphate zaherite, from Pofadder, South Africa. Mineral Mag 48:131–135
- Beurlen H, Thomas R, Melgarejo JC, JMR DS, Rhede D, Soares DR, MRR DS (2013) Chrysoberyl-sillimanite association from the Roncadeira pegmatite, Borborema Province, Brazil: implications for gemstone exploration. J Geosci 58(2):79–90
- Bezur A, Kavich G, Stenger J, Torok E, Snow C (2015) Discovery of challacolloite, an uncommon chloride, on a fifteenth-century polychrome terracotta relief by Michele da Firenze. Appl Phys A 121(1):83–93
- Bhake AM, Nair GB, Zade GD, Dhoble SJ (2016) Synthesis and characterization of novel $Na₁₅(SO₄)₅ClF₄:Ce³⁺$ halosulfate phosphors. Luminescence. [https://doi.org/](https://doi.org/10.1002/bio.3131) [10.1002/bio.3131](https://doi.org/10.1002/bio.3131)
- Bhalerao GM, Hermet P, Haines J, Cambon O, Keen DA, Tucker MG, Buixaderas E, Simon P (2012) Dynamic disorder and the α - β phase transition in quartz-type $FePO₄$ at high temperature investigated by total neutron scattering, Raman spectroscopy, and density functional theory. Phys Rev B 86(13):134104-1–134104-12
- Bharti C, Sinha TP (2010) Dielectric properties of rare earth double perovskite oxide $Sr₂CeSbO₆$. Solid State Sci 12(4):498–502
- Bharti C, Sinha TP (2011) Synthesis, structure and dielectric properties of a rare earth double perovskite oxide Ba2CeTaO6. Mater Res Bull 46(9):1431–1436
- Bhide V, Husson E, Gasperin M (1980) Etude de niobates de structure GTB par absorption infra-rouge et diffusion Raman. Mater Res Bull 15(9):1339–1344. (in French)
- Biagioni C, Bindi L (2016) Ordered distribution of Cu and Ag in the crystal structure of balkanite, $Cu₉Ag₅HgS₈$. Eur J Mineral. [https://doi.org/10.1127/ejm/2017/0029-](https://doi.org/10.1127/ejm/2017/0029-2591) [2591](https://doi.org/10.1127/ejm/2017/0029-2591)
- Biagioni C, Bonaccorsi E, Merlino S, Parodi GC, Perchiazzi N, Chevrier V, Bersani D (2010) Roumaite, $(Ca,Na,\Box)_{3}(Ca,REE,Na)_{4}(Nb,Ti)[Si_{2}O_{7}]_{2}(OH)F_{3}$ from Rouma Island, Los Archipelago, Guinea: a new mineral species related to dovyrenite. Can Mineral 48 $(1):17–28$
- Biagioni C, Bonaccorsi E, Pasero M, Moëlo Y, Ciriotti ME, Bersani D, Callegari AM, Boiocchi M (2011a) Ambrinoite, $(K, NH₄)₂(As, Sb)₈S₁₃·H₂O$, a new mineral

from Upper Susa Valley, Piedmont, Italy: the first natural (K,NH4)-hydrated sulfosalt. Am Mineral 96 (5–6):878–887

- Biagioni C, Bonaccorsi E, Orlandi P (2011b) Volaschioite, $Fe³⁺₄(SO₄)O₂(OH)₆·2H₂O$, a new mineral species from Fornovolasco, Apuan Alps, Tuscany, Italy. Can Mineral 49(2):605–614
- Biagioni C, Bonaccorsi E, Merlino S, Bersani D, Forte C (2012) Thermal behaviour of tobermorite from N'Chwaning II mine (Kalahari Manganese Field, Republic of South Africa). II. Crystallographic and spectroscopic study of tobermorite 10 Å. Eur J Mineral 24(6):991–1004
- Biagioni C, Bonaccorsi E, Cámara F, Cadoni M, Ciriotti ME, Bersani D, Kolitsch U (2013a) Lusernaite-(Y), Y_4 Al(CO₃)₂(OH,F)₁₁.6H₂O, a new mineral species from Luserna Valley, Piedmont, Italy: description and crystal structure. Am Mineral 98(7):1322–1329
- Biagioni C, Bonaccorsi E, Merlino S, Bersani D (2013b) New data on the thermal behavior of 14 Å tobermorite. Cem Concr Res 49:48–54
- Biagioni C, Orlandi P, Nestola F, Bianchin S (2013c) Oxycalcioroméite, Ca₂Sb₂O₆O, from Bucadella Vena mine, Apuan Alps, Tuscany, Italy: a new member of the pyrochloresupergroup. Mineral Mag 77 (7):3027–3038
- Billhardt HW (1969) Synthesis of lead pyrosilicate and other barysilite-like compounds. Am Mineral 54:510–521
- Bilohuščin V, Uher P, Koděra P, Milovská S, Mikuš T, Bačík P (2017) Evolution of borate minerals from contact metamorphic to hydrothermal stages: Ludwigite-group minerals and szaibélyite from the Vysoká–Zlatnoskarn, Slovakia. Mineral Petrol. <https://doi.org/10.1007/s00710-017-0518-y>
- Bindi L, Bonazzi P, Dei L, Zoppi A (2005) Does the bazhenovite structure really contain a thiosulfate group? A structural and spectroscopic study of a sample from the type locality. Am Mineral 90 (10):1556–1562
- Bindi L, Carbone C, Cabella R, Lucchetti G (2011a) Bassoite, SrV3O7∙4H2O, a new mineral from Molinello mine, Val Graveglia, eastern Liguria, Italy. Mineral Mag 75(5):2677–2686
- Bindi L, Nestola F, Kolitsch U, Guastoni A, Zorzi F (2011b) Fassinaite, $Pb^{2+}(S_2O_3)(CO_3)$, the first mineral with coexisting thiosulphate and carbonate groups: description and crystal structure. Mineral Mag 75 (6):2721–2732
- Bindi L, Bonazzi P, Zoppi M, Spry PG (2014) Chemical variability in wakabayashilite: a real feature or an analytical artifact? Mineral Mag 78(3):693–702
- Bindi L, Christy AG, Mills SJ, Ciriotti ME, Bittarello E (2015a) New compositional and structural data validate the status of jamborite. Can Mineral. [https://doi.](https://doi.org/10.3749/canmin.1400050) [org/10.3749/canmin.1400050](https://doi.org/10.3749/canmin.1400050)
- Bindi L, Pratesi G, Muniz-Miranda M, Zoppi M, Chelazzi L, Lepore GO, Menchetti S (2015b) From ancient pigments to modern optoelectronic

applications of arsenic sulfides: bonazziite, the natural analogue of β -As₄S₄ from Khaidarkan deposit, Kyrgyzstan. Mineral Mag 79(1):121–131

- Bindi L, Chen M, Xie X (2017) Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Sci Rep 7:42674. (8 pp). [https://doi.org/10.](https://doi.org/10.1038/srep42674) [1038/srep42674](https://doi.org/10.1038/srep42674)
- Binon J, Bonaccorsi E, Bernhardt HJ, Fransolet A-M (2004) The mineralogical status of "cavolinite" from Vesuvius, Italy, and crystallochemical data on the davyne subgroup. Eur J Mineral 16(3):511–520
- Birch WD, Kolitsch U, Witzke T, Nasdala L, Bottrill RS (2000) Petterdite, the Cr-dominant analogue of dundasite, a new mineral species from Dundas, Tasmania, Australia and Callenberg, Saxony, Germany. Can Mineral 38(6):1467–1476
- Birsöz B, Baykal A (2008) X-ray powder diffraction, FTIR, and Raman study of strontium boroarsenate, SrBAsO5. Rus J Inorg Chem 53(7):1009–1012
- Bishop JL, Murad E (2004) Characterization of minerals and biogeochemical markers on Mars: a Raman and IR spectroscopic study of montmorillonite. J Raman Spectrosc 35(6):480–486
- Bishop DW, Thomas PS, Ray AS (2000) Micro Raman characterization of nickel sulfide inclusions in toughened glass. Mater Res Bull 35(7):1123–1128
- Bissengaliyeva M, Ogorodova L, Vigasina M, Mel'chakova L, Kosova D, Bryzgalov I, Ksenofontov D (2016) Enthalpy of formation of natural hydrous copper sulfate: chalcanthite. J Chem Thermodyn 95:142–148
- Biswas S, Steudtner R, Schmidt M, McKenna C, Vintró LL, Twamley B, Baker RJ (2016) An investigation of the interactions of Eu^{3+} and Am^{3+} with uranyl minerals: implications for the storage of spent nuclear fuel. Dalton Trans 45(15):6383–6393
- Bittarello E, Ciriotti ME, Costa E, Gallo LM (2014) "Mohsite" of Colomba: identification as dessauite-(Y). Int J Mineral. <https://doi.org/10.1155/2014/287069>
- Bittarello E, Cámara F, Ciriotti ME, Marengo A (2015) Ottensite, brizziite and mopungite from Pereta mine (Tuscany, Italy): new occurrences and crystal structure refinement of mopungite. Mineral Petrol 109 (4):431–442
- Biwer BM, Ebert WL, Bates JK (1990) The Raman spectra of several uranyl-containing minerals using a microprobe. J Nucl Mater 175(3):188–193
- Black L, Brooker A (2007) SEM–SCA: combined SEM– Raman spectrometer for analysis of OPC clinker. Adv Appl Ceram 106(6):327–334
- Blaha JJ, Rosasco GJ (1978) Raman microprobe spectra of individual microcrystals and fibers of talc, tremolite, and related silicate minerals. Anal Chem 50 (7):892–896
- Blasse G (1973) Vibrational spectra of yttrium niobate and tantalate. J Solid State Chem 7(2):169–171
- Blasse G, 'T Lam RUE (1978) Some optical properties of aluminum and gallium niobate. J Solid State Chem 25:11–83
- Blasse G, Corsmit AF (1974) Vibrational spectra of 1:2 ordered perovskites. J Solid State Chem 10(1):39–45
- Blasse G, van den Heuvel GPM (1973) Some optical properties of tantalum borate $(TaBO₄)$, a compound with unusual coordinations. Phys Status Solidi A 19:111–117
- Blasse G, Van Den Heuvel GPM (1974) Vibrational spectra and structural considerations of compounds NaLnTiO₄. J Solid State Chem 10(3):206-210
- Blonska-Tabero A (2009) A new iron lead vanadate $Pb_2FeV_3O_{11}$: synthesis and some properties. Mater Res Bull 44(8):1621–1625
- Boch R, Dietzel M, Reichl P, Leis A, Baldermann A, Mittermayr F, Pölt P (2015) Rapid ikaite (CaCO3∙6H2O) crystallization in a man-made river bed: hydrogeochemical monitoring of a rarely documented mineral formation. Appl Geochem 63:366–379
- Bode JHG, Kuijt HR, Lahey MT, Blasse G (1973) Vibrational spectra of compounds Ln_2MoO_6 and Ln_2WO_6 . J Solid State Chem 8(2):114–119
- Boghosian S, Eriksen KM, Fehrmann R, Nielsen K (1995) Synthesis, crystal structure redetermination and vibrational spectra of beta-VOSO4. Acta Chem Scand 49:703–708
- Bolanz RM (2014) Arsenic and antimony in the environment: release and possible immobilization mechanisms. Dissertation, Friedrich-Schiller-Universität Jena
- Bon CE, Rakovan J (2012) The morphology and structure of smythite, $(Fe,Ni)_{3}S_{4}$, from Bloomington, Indiana. Contributed Papers in Specimen Mineralogy: 38th Rochester Mineralogical Symposium: Part. Rocks Minerals 87(2):171–172
- Bonadeo HA, Silberman E (1970) The vibrational spectra of sodium, potassium and ammonium fluoroborates. Spectrochim Acta A 25:2337–2343
- Bonales LJ, Menor-Salván C, Cobos J (2015) Study of the alteration products of a natural uraninite by Raman spectroscopy. J Nucl Mater 462:296–303
- Bonales LJ, Colmenero F, Cobos J, Timón V (2016) Spectroscopic Raman characterization of rutherfordine: a combined DFT and experimental study. Phys Chem Chem Phys 18:16575–16584
- Bondi M, Griffin WL, Mattioli V, Mottana A (1983) Chiavennite, CaMnBe₂Si₅O₁₃(OH)₂∙2H₂O, a new mineral from Chiavenna (Italy). Am Mineral 68:623–627
- Bontchev RP, Moore RC (2004) A series of openframework tin (II) phosphates: $A[Sn_4(PO_4)_3]$ (A = Na, K, NH4). Solid State Sci 6(8):867–873
- Bordes E, Courtine P, Johnson JW (1984) On the topotactic dehydration of VOHPO₄⋅0.5H₂O into vanadyl pyrophosphate. J Solid State Chem 55 (3):270–279
- Borel MM, Leclaire A, Chardon J, Daturi M, Raveau B (2000) Dimorphism of the vanadium (V) monophosphate $PbVO₂PO₄$: α -layered and β-tunnel structures. J Solid State Chem 149(1):149–154
- Borovikova EY, Kurazhkovskaya VS (2006) Influence of fluorine on the formation of ordered and disordered vesuvianite modifications: IR spectroscopic investigation. Zapiski RMO (Proc Russ Miner Soc) 135 (2):89–95. (in Russian)
- Borovikova EY, Kurazhkovskaya VS, Boldyrev KN, Sukhanov MV, Pet'kov VI, Kokarev SA (2014) Vibrational spectra and factor-group analysis of double arsenates of zirconium and alkali metal $MZr_2(AsO₄)_3$ $(M = Li-Ss)$. Vibr Spectrosc 73:158–163
- Bortun AI, Bortun LN, Poojary DM, Xiang O, Clearfield A (2000) Synthesis, characterization, and ion exchange behavior of a framework potassium titanium trisilicate K2TiSi3O9∙H2O and its protonated phases. Chem Mater 12(2):294–305
- Boscardin M, Rocchetti I, Zordan A, Zorzi F (2009) Scarbroite e Felsöbányaite: primo ritrovamentonel-Vicentino. Studi e Ricerche – Associazione Amici del Museo – Museo Civico "G. Zannato", Montecchio Maggiore (Vicenza) 16:47–56. (in Italian)
- Boschetti C, Corradi A, Baraldi P (2008) Raman characterization of painted mortar in Republican Roman mosaics. J Raman Spectrosc 39(8):1085–1090
- Bossy A, Grosbois C, Beauchemin S, Courtin-Nomade A, Hendershot W, Bril H (2010) Alteration of As-bearing phases in a small watershed located on a high grade arsenic-geochemical anomaly (French Massif Central). Appl Geochem 25(12):1889–1901
- Bost N, Duraipandian S, Guimbretière G, Poirier J (2016) Raman spectra of synthetic and natural mullite. Vib Spectrosc 82:50–52
- Bottger GL, Damsgard CV (1971) Second order Raman spectra of AgCl and AgBr crystals. Solid State Commun 9(15):1277–1280
- Botto IL, Baran EJ (1976) Über Ammonium-Uranyl-Vanadat und die Produkte seiner thermischen Zersetzung. Z anorg allg Chemie 426(3):321–332. (in German)
- Botto IL, Baran EJ (1977) KristallographischeDaten, IR-Spektrum und thermisches Verhalten von Cer (IV)-Diphosphat. Z anorg allg Chemie 430 (1):283–288. (in German)
- Botto IL, Baran EJ (1980) Die IR-Spektren einiger Doppeloxide des Typs $M^HSnO₃$. Z anorg allg Chemie 465(1):186–192. (in German)
- Botto IL, Baran EJ (1981) IR-Spektren einiger Doppeloxide des Typs $Te₃M^{IV}O₈$. Z anorg allg Chemie 480(9):220–224. (in German)
- Botto IL, Baran EJ (1982) Darstellung und Eigenschaften von CeTe₂O₆ und ThTe₂O₆, Verbindungen mit einer neuen Überstruktur des Fluorit-Typs. Z anorg allg Chemie 484(1):215–220. (in German)
- Botto IL, Garcia AC (1989) Crystallographic data and vibrational spectrum of K_2SbAsO_6 . Mat Res Bull 24 (12):1431–1439
- Botto IL, Vassallo M (1989) The vibrational spectrum of the NaZnPO₄ ferroelectric phase. J Mater Sci Lett 8 (11):1336–1337
- Botto IL, Baran EJ, Deliens M (1989) Vibrational spectrum of natural and synthetic metatyuyamunite. N Jb Miner Mh 5:212–218
- Botto IL, Cabello CI, Minelli G, Occhiuzzi M (1994) Reductibility and spectroscopic behaviour of the (NH₄)₄[H₆CuMo₆O₂₄]⋅4H₂O Anderson phase. Mater Chem Phys 39(1):21–28
- Botto IL, Ramis AM, Schalamuk IB, Sánchez MA (1995) Thermal decomposition of $Bi₂STe₂$ tetradymite. Thermochim Acta 249:325–333
- Botto IL, Barone VL, Castiglioni JL, Schalamuk IB (1997) Characterization of a natural substituted pyromorphite. J Mater Sci 32(24):6549–6553
- Botto IL, Barone VL, Sanchez MA (2002) Spectroscopic and thermal contribution to the structural characterization of vandenbrandeite. J Mater Sci 37(1):177–183
- Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A 59 (10):2247–2266
- Bouchard-Abouchacra M (2001) Evaluation des capacités de la microscopie Raman dans la caractérisation minéralogique et physico-chimique de matériaux archéologiques: métaux, vitraux & pigments. Dissertation, Museum National D'Histoire Naturelle. (in French)
- Bouhifd MA, Gruener G, Mysen BO, Richet P (2002) Premelting and calcium mobility in gehlenite $(Ca₂Al₂SiO₇)$ and pseudowollastonite $(CaSiO₃)$. Phys Chem Minerals 29(10):655–662
- Bourdoiseau JA, Jeannin M, Sabot R, Rémazeilles C, Refait P (2008) Characterisation of mackinawite by Raman spectroscopy: effects of crystallisation, drying and oxidation. Corrosion Sci 50(11):3247–3255
- Bourdoiseau JA, Jeannin M, Rémazeilles C, Sabot R, Refait P (2011) The transformation of mackinawite into greigite studied by Raman spectroscopy. J Raman Spectrosc 42(3):496–504
- Bourrié G, Trolard F (2010) Identification criteria for fougerite and nature of the interlayered anion. 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010, pp 74–78
- Boyadzhieva T, Koleva V, Zhecheva E, Nihtianova D, Mihaylov L, Stoyanova R (2015) Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO₄ covered with carbon black. RSC Adv 5(106):87694–87705
- Brabers VAM (1969) Infrared spectra of cubic and tetragonal manganese ferrites. Phys Status Solidi B 33 (2):563–572
- Brabers VAM (1976) Infrared spectra and ionic ordering of the lithium ferrite – aluminate and chromite systems. Spectrochim. Acta A 32(11):1709–1711
- Bracco R, Balestra C, Castellaro F, Mills SJ, Ma C, Callegari AM, Boiocchi M, Bersani D, Ciriotti ME (2012) Nuovi minerali di Terre Rare da Costa Balzi Rossi, Magliolo (SV), Liguria. Micro 10:66–77. (in Italian)
- Bradbury SE, Williams Q (2003) Contrasting bonding behavior of two hydroxyl-bearing metamorphic minerals under pressure: clinozoisite and topaz. Am Mineral 88(10):1460–1470
- Braithwaite RSW, Pritchard R (1983) Nakauriite from Unst, Shetland. Mineral Mag 47:84–85
- Brambilla L, Zerbi G, Nascetti S, Piemontesi F, Morini G (2004) Experimenteal and calculated vibrational spectra and structure of Ziegler-Natta catalyst precursor: 50/1 comilled $MgCl₂-TiCl₄$. Macromol Symp 213:287–301
- Brandel V, Dacheux N, Genet M, Podor R (2001) Hydrothermal synthesis and characterization of the thorium phosphate hydrogenphosphate, thorium hydroxide phosphate, and dithorium oxide phosphate. J Solid State Chem 159(1):139–148
- Brandmüller J, Moser H (1962) Einführung in die Ramanspektroskopie. Steinkopff Verlag, Darmstadt. (in German)
- Bréard Y, Michel C, Hervieu M, Nguyen N, Ducouret A, Hardy V, Maignan A, Raveau B, Bourée F, André G (2004) Spin reorientation associated with a structural transition in the iron oxycarbonate $Sr_4Fe_2O_6CO_3$. Chem Mater 16(15):2895–2905
- Breitinger DK, Brehm G, Mohr J, Colognesi D, Parker SF, Stolle A, Pimpl TN, Schwab RG (2006) Vibrational spectra of synthetic crandallite-type minerals – optical and inelastic neutron scattering spectra. J Raman Spectrosc 37(1–3):208–216
- Bremard C, Laureyns J, Abraham F (1986) Vibrational spectra and phase transitions in columnar $M^I_{\;3}[M]$ $\overline{111}(SO_4)_{3}$] compounds. J Raman Spectrosc 17 (5):397–405
- Breternitz J, Farrugia LJ, Godula-Jopek A, Saremi-Yarahmadi S, Malka IE, Hoang TK, Gregory DH (2015) Reaction of $[Ni(H₂O)₆](NO₃)₂$ with gaseous NH3; crystal growth via in-situ solvation. J Cryst Growth 412:1–6
- Bretheau-Raynal F, Dalbiez JP, Drifford M, Blanzat B (1979) Raman spectroscopic study of thortveitite structure silicates. J Raman Spectrosc 8(1):39–42
- Britvin SN, Antonov AA, Krivovichev SV, Armbruster T, Burns PC, Chukanov NV (2003) Fluorvesuvianite, $Ca_{19}(Al, Mg, Fe^{2+})_{13}[SiO_4]_{10}[Si_2O_7]_{4}O(F,OH)_9$, a new mineral species from Pitkäranta, Karelia, Russia: description and crystal structure. Can Miner 41:1371–1380
- Britvin SN, Kashtanov SA, Krzhizhanovskaya MG, Gurinov AA, Glumov OV, Strekopytov S, Kretser YL, Zaitsev AN, Chukanov NV, Krivovichev SV (2015) Perovskites with the framework-forming xenon. Angew Chem Int Ed 54:14340–14344
- Britvin SN, Kashtanov SA, Krivovichev SV, Chukanov NV (2016) Xenon in rigid oxide frameworks: structure, bonding and explosive properties of layered perovskite $K_4Xe_3O_{12}$. J Am Chem Soc. [https://doi.org/10.1021/](https://doi.org/10.1021/jacs.6b09056) [jacs.6b09056](https://doi.org/10.1021/jacs.6b09056)
- Brockner W, Hoyer LP (2002) Synthesis and vibrational spectrum of antimony phosphate, SbPO₄. Spectrochim Acta A 58(9):1911–1914
- Brooker MH, Bates JB (1971) Raman and infrared spectral studies of anhydrous $Li₂CO₃$ and Na₂CO₃. J Chem Phys 54:4788–4796
- Brooker MH, Eysel HH (1990) Raman study of sulfate orientational dynamics in. alpha.-potassium alum and in the deuterated and oxygen-18 enriched forms. J Phys Chem 94(2):540–544
- Brooker MH, Sunder S, Taylor P, Lopata VJ (1983) Infrared and Raman spectra and X-ray diffraction studies of solid lead (II) carbonates. Can J Chem 61:494–502
- Brotton SJ, Kaiser RI (2013) In situ Raman spectroscopic study of gypsum (CaSO₄⋅2H₂O) and epsomite (MgSO4∙7H2O) dehydration utilizing an ultrasonic levitator. J Phys Chem Lett 4(4):669–673
- Brugger J, Berlepsch P (1997) Johninnesite, $\text{Na}_2(\text{Mn}^2)$ ₉ $(MgMn)_7(AsO_4)_2(Si_6O_{17})_2(OH)_8$: a new occurrence in Val Ferrera (Graubünden, Switzerland). Schweiz Mineral Petrogr Mitt 77:449–455
- Brugger J, Bonin M, Schenk KJ, Meisser N, Berlepsch P, Ragu A (1999) Description and crystal structure of nabiasite, BaMn₉[(V,As)O₄]₆(OH)₂, a new mineral from the Central Pyrénées (France). Eur J Mineral 11 (5):879–890
- Brugger J, Krivovichev SV, Kolitsch U, Meisser N, Andrut M, Ansermet S, Burns PC (2002) Description and crystal structure of manganlotharmeyerite, $Ca(Mn^{3+})$, \Box ,Mg)₂{AsO₄,[AsO₂(OH)₂]}₂(OH,H2O)₂, from the Starlera Mn deposit, Swiss Alps, and a redefinition of lotharmeyerite. Can Mineral 40(6):1597–1608
- Brugger J, Meisser N, Etschmann B, Ansermet S, Pring A (2011) Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia: "dehydrated schoepite" is a mineral after all. Am Mineral 96(2–3):229–240
- Buhl JC (1991) Synthesis and properties of nitrite-nitrate sodalite solid solutions $Na_8[AlSiO_4]_6(NO_2)_{2-x}(NO_3)_x;$ $0.4 \le x \le 1.8$. J Solid State Chem 91(1):16–24
- Bühler K, Bues W (1961) Schwingungsspektren von Fluorophosphatschmelzen und -kristallen. Z anor gallg Chemie 308(1–6):62–71. (in German)
- Bühn B, Rankin AH, Radtke M, Haller M, Knöchel A (1999) Burbankite a (Sr,REE,Na,Ca)-carbonate in fluid inclusions from carbonatite-derived fluids: identification and characterization using laser Raman spectroscopy, SEM-EDX, and synchrotron micro-XRF analysis. Am Mineral 84(7–8):1117–1125
- Bühn B, Rankin AH, Schneider J, Dulski P (2002) The nature of orthomagmatic, carbonatitic fluids precipitating REE, Sr-rich fluorite: fluid-inclusion evidence from the Okorusu fluorite deposit, Namibia. Chem Geol 186(1):75–98
- Bujakiewicz-Korońska R, Hetmańczyk Ł, Garbarz-Glos B, Budziak A, Koroński J, Hetmańczyk J, Antonova M, Kalvane A, Nałęcz D (2011) Investigations of low temperature phase transitions in $BiFeO₃$ ceramic by infrared spectroscopy. Ferroelectrics 417(1):63–69
- Bulanov EN, Wang J, Knyazev AV, White T, Manyakina ME, Baikie T, Lapshin AN, Dong Z (2015) Structure and thermal expansion of calcium–thorium apatite,

 $[Ca_4]^F[Ca_2Th_4]^T[(SiO_4)_6]O_2$. Inorg Chem 54 (23):11356–11361

- Burba CM (2006) Vibrational spectroscopy of phosphatebased electrodes for lithium rechargeable batteries. Dissertation, University of Oklahoma
- Burba CM, Frech R (2004) Raman and FTIR spectroscopic study of $Li_xFePO₄$ ($0 \le x \le 1$). J Electrochem Soc 151(7):A1032–A1038
- Burba CM, Frech R (2006) Vibrational spectroscopic investigation of structurally-related LiFePO₄, NaFePO₄, and FePO₄ compounds. Spectrochim Acta A 65(1):44–50
- Bürger H, Kneipp K, Hobert H, Vogel W, Kozhukharov V, Neov S (1992) Glass formation, properties and structure of glasses in the $TeO₂$ –ZnO system. J Non-Cryst Solids 151:134–142
- Burgio L, Clark RJ (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57(7):1491–1521
- Burgio L, Clark RJ, Firth S (2001) Raman spectroscopy as a means for the identification of plattnerite $(PbO₂)$, of lead pigments and of their degradation products. Analyst 126(2):222–227
- Burlet C, Vanbrabant Y (2015) Study of the spectrochemical signatures of cobalt–manganese layered oxides (asbolane–lithiophorite and their intermediates) by Raman spectroscopy. J Raman Spectrosc 46 (10):941–952
- Burlet C, Vanbrabant Y, Goethals H, Thys T, Dupin L (2011) Raman spectroscopy as a tool to characterize heterogenite (CoO∙OH) (Katanga Province, Democratic Republic of Congo). Spectrochim Acta A 80 (1):138–147
- Burlet C, Vanbrabant Y, Decree S (2014) Raman microspectroscopy as a tool to characterise cobaltmanganese layered oxides (heterogenite–asbolane– lithiophorite), study on crystalline and amorphous phases from the DRC (Democratic Republic of the Congo). 11th Geo Raman International Conference, St. Louis, Missouri, 15–19 June 2014, 1783:5080
- Burns PC, Alexopoulos CM, Hotchkiss PJ, Locock AJ (2004) An unprecedented uranyl phosphate framework in the structure of $[(UO₂)₃(PO₄)O(OH)(H₂O)₂](H2O).$ Inorg Chem 43(6):1816–1818
- Burshtein Z, Shimony Y, Morganau S, Henderson DO, Mu R, Silberman E (1993) Symmetry lowering due to site-occupation disorder in vibrational spectra of gehlenite, $Ca_2(AlSi)AlO_7$. J Phys Chem Solids 54 (9):1043–1049
- Buvaneswari G, Varadaraju UV (2000) Synthesis and characterization of new apatite-related phosphates. J Solid State Chem 149(1):133–136
- Buzatu A, Buzgar N (2010) The Raman study of singlechain silicates. Analele Stiintifice de Universitatii AI Cuza din Iasi. Sect 2 Geol 56(1):107–125
- Buzatu A, Damian G, Buzgar N (2012) Raman and Infrared studies of weathering products from BaiaSprie ore deposit (Romania). Rom J Mineral Depos 85(2):7–10
- Buzatu A, Dill HG, Buzgar N, Damian G, Maftei AE, Apopei AI (2016) Efflorescent sulfates from Baia Sprie mining area (Romania) – acid mine drainage and climatological approach. Sci Total Environ 542:629–641
- Buzgar N (2008) The Raman study of certain K-Na dioctahedral micas. Rom J Mineral Depos – Rom J Mineral 83:45–49
- Buzgar N, Apopei AI (2009) The Raman study of certain carbonates. Analele Stiintifice de Universitatii AI Cuza din Iasi. Sect 2 Geol 55(2):97–112
- Buzgar N, Buzatu A, Sanislav IV (2009) The Raman study on certain sulfates. Analele Stiintifice de Universitatii AI Cuza din Iasi. Sect 2 Geol 55(1):5–23
- Byer HH, Bobb LC, Lefkowitz I, Deaver BS Jr (1973) Raman and far-infrared spectra of proustite (Ag_3AsS_3) and pyrargyrite (Ag_3SbS_3) . Ferroelectrics 5 (1):207–217
- Bykova EA, Bobrov AV, Sirotkina EA, Bindi L, Ovsyannikov SV, Dubrovinsky LS, Litvin YA (2014) X-ray single-crystal and Raman study of knorringite, $Mg_3(Cr_{1.58}Mg_{0.21}Si_{0.21})Si_3O_{12}$, synthesized at 16 GPa and 1.600° C. Phys Chem Minerals $41(4):267-272$
- Cadoni M, Ferraris G (2008) Penkvilksite-2O: Na₂TiSi₄O₁₁·2H₂O. Acta Crystallogr C. [https://doi.](https://doi.org/10.1107/S0108270108031806) [org/10.1107/S0108270108031806](https://doi.org/10.1107/S0108270108031806)
- Cadoni M, Ferraris G (2009) Two new members of the rhodesitemero-plesiotype series close to delhayelite and hydrodelhayelite: synthesis and crystal structure. Eur J Mineral 21(2):485–493
- Cadoni M, Bloise A, Ferraris G, Merlino S (2008) Order– disorder character and twinning in the structure of a new synthetic titanosilicate: (Ba,Sr)₄Ti₆Si₄O₂₄⋅H₂O. Acta Crystallogr B 64(6):669–675
- Caggiani MC, Acquafredda P, Colomban P, Mangone A (2014) The source of blue colour of archaeological glass and glazes: the Raman spectroscopy /SEM-EDS answers. J Raman Spectrosc 45(11–12):1251–1259
- Cahen HT, de Wit JHW, Honders A, Broers GHJ, van den Dungen JPM (1980) Thermogalvanic power and fast ion conduction in δ -Bi₂O₃ and δ -(Bi₂O₃)_{1-x}(R₂O₃)_x with R = Y, Tb–Lu. Solid State Ionics 1(5):425–440
- Caldow GL, Van Cleave AB, Eager RL (1960) The infrared spectra of some uranyl compounds. Can J Chem 38 (6):772–782
- Camacho-López MA, Escobar-Alarcón L, Picquart M, Arroyo R, Córdoba G, Haro-Poniatowski E (2011) Micro-Raman study of the m-MoO₂ to α -MoO₃ transformation induced by cw-laser irradiation. Opt Mater 33(3):480–484
- Carey C, Boucher T, Mahadevan S, Bartholomew P, Dyar MD (2015) Machine learning tools for mineral recognition and classification from Raman spectroscopy. J Raman Spectrosc 46(10):894–903
- Cámara F, Oberti R, Chopin C, Medenbach O (2006) The arrojadite enigma: I. A new formula and a new model for the arrojadite structure. Am Mineral 91 (8–9):1249–1259
- Cámara F, Nestola F, Bindi L, Guastoni A, Zorzi F, Peruzzo L, Pedron D (2012a) Tazzoliite: a new mineral

with a pyrochlore-related structure from the Euganei Hills, Padova, Italy. Mineral Mag 76(4):827–838

- Cámara F, Sokolova E, Hawthorne FC (2012b) Kazanskyite, BaTiNbNa₃Ti(Si₂O₇)₂O₂(OH)₂(H₂O)₄, a Group-III Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. Mineral Mag 76(3):473–492
- Cámara F, Sokolova E, Abdu Y, Hawthorne FC, Khomyakov AP (2013) Kolskyite, (Ca□) $Na₂Ti₄(Si₂O₇)₂O₄(H₂O)₇$, a Group-IV Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. Can Mineral 51(6):921–936
- Cámara F, Ciriotti ME, Bittarello E, Nestola F, Massimi F, Radica F, Costa E, Benna P, Piccoli GC (2014a) Arsenic-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, $Sr₂Al(AsO₄)₂(OH)$, description and crystal structure. Mineral Mag 78(3):757–774
- Cámara F, Sokolova E, Abdu YA, Hawthorne FC (2014b) Nafertisite, $Na_3Fe^{2+}_{10}Ti_2(Si_6O_{17})_2O_2(OH)_6F(H_2O)_2$, from Mt. Kukisvumchorr, Khibiny alkaline massif, Kola peninsula, Russia: refinement of the crystal structure and revision of the chemical formula. Eur J Mineral 26:689–700
- Cámara F, Bittarello E, Ciriotti ME, Nestola F, Radica F, Marchesini M (2015) As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: II. Braccoite, $\text{NaMn}^{2+}{}_{5}[\text{Si}_5\text{AsO}_{17}(\text{OH})](\text{OH})$, description and crystal structure. Mineral Mag 79(1):171–189
- Cámara F, Bittarello E, Ciriotti ME, Nestola F, Radica F, Massimi F, Balestra C, Bracco R (2016a) As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: III. Canosioite, $Ba_2Fe^{3+}(AsO_4)_2(OH)$, description and crystal structure. Mineral Mag. [https://](https://doi.org/10.1180/minmag.2016.080.097) doi.org/10.1180/minmag.2016.080.097
- Cámara F, Sokolova E, Abdu YA, Hawthorne FC, Charrier T, Dorcet V, Carpentier J-F (2016b) Fogoite- (Y), $Na_3Ca_2Y_2Ti(Si_2O_7)_2OF_3$, a Group-I TS-block mineral from the Lagoa do Fogo, the Fogo volcano, the São Miguel Island, the Azores: description and crystal structure. Mineral Mag. [https://doi.org/10.](https://doi.org/10.1180/minmag.2016.080.103) [1180/minmag.2016.080.103](https://doi.org/10.1180/minmag.2016.080.103)
- Cámara F, Sokolova E, Abdu YA, Pautov LA (2016c) From structure topology to chemical composition. XIX. Titanium silicates: revision of the crystal structure and chemical formula of bafertisite, Ba_2Fe^{2+} ₄ $Ti_2(Si_2O_7)_2O_2(OH)_2F_2$, a group-II TS-block mineral. Can Mineral 54:49–63
- Campos CEM, de Lima JC, Grandi TA, Machado KD, Pizani PS (2002) Structural studies of cobalt selenides prepared by mechanical alloying. Phys B 324 (1):409–418
- Campos CEM, De Lima JC, Grandi TA, Machado KD, Drago V, Pizani PS (2004a) Hexagonal CoSe formation in mechanical alloyed $Co₇₅Se₂₅$ mixture. Solid State Commun 131(3):265–270
- Campos CEM, De Lima JC, Grandi TA, Machado KD, Drago V, Pizani PS (2004b) XRD, DSC, MS and RS studies of $Fe₇₅Se₂₅$ iron selenide prepared by mechanosynthesis. J Magnet Magnet Mater 270(1):89–98
- Campostrini I, Gramaccioli CM, Demartin F (1999) Orlandiite, $Pb_3Cl_4(SeO_3)H_2O$, a new mineral species, and an associated lead-copper selenite chloride from the Baccu Locci mine, Sardinia, Italy. Can Mineral 37:1493–1498
- Can N, Garcia Guinea JJ, Kibar R, Cetin A (2011) Luminescence behavior and Raman characterization of rhodonite from Turkey. Spectrosc Lett 44(7–8):566–569
- Cancela LSG, Ramos JG, Gualberto GM (1983) Raman scattering with multiphonon process in single crystal of α-Ni(SO4)∙6H2O. J Phys Soc Jpn 52(1):295–303
- Capitani GC, Catelani T, Gentile P, Lucotti A, Zema M (2013) Cannonite $[Bi₂O(SO₄)(OH)₂]$ from Alfenza (Crodo, Italy): crystal structure and morphology. Mineral Mag 77(8):3067–3080
- Capitani GC, Mugnaioli E, Rius J, Gentile P, Catelani T, Lucotti A, Kolb U (2014) The Bi sulfates from the Alfenza Mine, Crodo, Italy: an automatic electron diffraction tomography (ADT) study. Am Mineral 99 $(2-3):500-510$
- Capitelli F, Della Ventura G, Bellatreccia F, Sodo A, Saviano M, Ghiara MR, Rossi M (2014) Crystalchemical study of wavellite from Zbirov, Czech Republic. Mineral Mag 78(4):1057–1070
- Capobianco JA, Cormier G, Bettinelli M, Moncorgé R, Manaa H (1992) Near-infrared intraconfigurational luminescence spectroscopy of the Mn^{5+} (3d²) ion in Ca_2PO_4Cl , $Sr_5(PO_4)_3Cl$, Ca_2VO_4Cl and Sr_2VO_4Cl . J Lumin 54(1):1–11
- Carbone C, Basso R, Cabella R, Martinelli A, Grice JD, Lucchetti G (2013) Mcalpineite from the Gambatesa mine, Italy, and redefinition of the species. Am Mineral 98:1899–1905
- Cariati F, Masserano F, Martini M, Spinolo G (1989) Raman studies of NiX2∙6H2O and FeCl2∙4H2O. J Raman Spectrosc 20:773–777
- Carter EA, Hargreaves MD, Kee TP, Pasek MA, Edwards HG (2010) A Raman spectroscopic study of a fulgurite. Phil Trans R SocA 368(1922):3087–3097
- Casciola M, Donnadio A, Montanari F, Piaggio P, Valentini V (2007) Vibrational spectra and H-bondings in anhydrous and monohydrate α-Zr phosphates. J Solid State Chem 180(4):1198–1208
- Caspers HH, Buchanan RA, Marlin HR (1964) Lattice vibrations of LaF₃. J Chem Phys $41(1):94-99$
- Castriota M, Cosco V, Barone T, De Santo G, Carafa P, Cazzanelli E (2008) Micro-Raman characterizations of Pompei' smortars. J Raman Spectrosc 39 (2):295–301
- Castro K, Sarmiento A, Martínez-Arkarazo I, Madariaga JM, Fernández LA (2008) Green copper pigments biodegradation in cultural heritage: from malachite to moolooite, thermodynamic modeling, X-ray fluorescence, and Raman evidence. Anal Chem 80 (11):4103–4110
- Cavalcante LS, Moraes E, Almeida MAP, Dalmaschio CJ, Batista NC, Varela JA, Longo E, Li MS, Beltrán A (2013) A combined theoretical and experimental study

of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 54:13–25

- Čejka J Jr, Muck A, Čejka J (1984) To the infrared spectroscopy of natural uranyl phosphates. Phys Chem Minerals 11:172–177
- Čejka J, Frost RL, Sejkora J, Keeffe EC (2009a) Raman spectroscopic study of the uranyl sulphate mineral jáchymovite (UO₂)₈(SO₄)(OH)₁₄⋅13H₂O. J Raman Spectrosc 40(11):1464–1468
- Čejka J, Sejkora J, Frost RL, Keeffe EC (2009b) Raman spectroscopic study of the uranyl mineral metauranospinite Ca[(UO2)(AsO4)]2∙8H2O. J Raman Spectrosc 40(12):1786–1179
- Čejka J, Sejkora J, Frost RL, Keeffe EC (2009c) Raman spectroscopic study of the uranyl mineral natrouranospinite (Na₂,Ca)[(UO₂)(AsO₄)]₂⋅5H₂O. J Raman Spectrosc 40(11):1521–1526
- Čejka J, Bahfenne S, Frost RL, Sejkora J (2010a) Raman spectroscopic study of the arsenite mineral vajdakite $[(Mo^{6+}O_2)_2(H_2O)_2As^{3+}2O_5]$ ∙H₂O. J Raman Spectrosc 41(1):74–77
- Čejka J, Sejkora J, Plášil J, Bahfenne S, Palmer SJ, Frost RL (2010b) Raman spectroscopic study of the uranyl carbonate mineral čejkaite and its comparison with synthetic trigonal $Na₄[UO₂(CO₃)₃].$ J Raman Spectrosc 41(4):459–464
- Čejka J, Sejkora J, Bahfenne S, Palmer SJ, Plášil J, Frost RL (2011a) Raman spectroscopy of hydrogen-arsenate group $(AsO₃OH)$ in solid-state compounds: cobalt mineral phase burgessite $Co₂(H₂O)₄[AsO₃OH]₂·H₂O.$ J Raman Spectrosc 42 (2):214–218
- Čejka J, Sejkora J, Plášil J, Bahfenne S, Palmer SJ, Frost RL (2011b) A vibrational spectroscopic study of hydrated Fe^{3+} hydroxyl-sulfates; polymorphic hydrated $Fe³⁺$ hydroxyl-sulfates; polymorphic minerals butlerite and parabutlerite. Spectrochim Acta A 79(5):1356–1363
- Čejka J, Sejkora J, Plášil J, Keeffe EC, Bahfenne S, Palmer SJ, Frost RL (2011c) A Raman and infrared spectroscopic study of Ca^{2+} dominant members of the mixite group from the Czech Republic. J Raman Spectrosc 42 (5):1154–1159
- Čejka J, Sejkora J, Jebavá I, Xi Y, Couperthwaite SJ, Frost RL (2013) A Raman spectroscopic study of the basic carbonate mineral callaghanite $Cu_2Mg_2(CO_3)$ (OH)6∙2H2O. Spectrochim Acta A 108:171–176
- Čejka J, Sejkora J, Macek I, Frost RL, López A, Scholz R, Xi Y (2014a) A vibrational spectroscopic study of a hydrated hydroxy-phosphate mineral fluellite, Al2(PO4)F2(OH)∙7H2O. Spectrochim Acta A 126:157–163
- Čejka J, Sejkora J, Scholz R, López A, Xi Y, Frost RL (2014b) Raman and infrared spectroscopic studies of phurcalite from Red Canyon, Utah, USA – implications for the molecular structure. J Molec Struct 1068:14–19
- Čejka J, Sejkora J, Macek I, Malíková R, Wang L, Scholz R, Xi Y, Frost RL (2015) Raman and infrared

spectroscopic study of turquoise minerals. Spectrochim Acta A 149:173–182

- Cernea M (2005) Sol-gel synthesis and characterization of $BaTiO₃$ powder. J Optoelectron Adv Mater 7 (6):3015–3022
- Cha J-H, Jung D-Y (2014) CuGaS₂ hollow spheres from
Ga-CuS core-shell nanoparticles. Ultrasonics nanoparticles. Sonochem 21(3):1194–1199
- Chaalia S, Ayed B, Haddad A (2012) $K_2Mn_3(AsO₄)_3$: synthesis, crystalline structure and ionic conductivity. J Chem Crystallogr 42(9):941–946
- Chadwick KM, Breeding CM (2008) Color variations and properties of johachidolite from Myanmar. Gems Gemol 44(3):246–251
- Chahboun H, Groult D, Raveau B (1988) TaVO $_5$, a novel derivative of the series of monophosphate tungsten bronzes $(PO_2)_4(WO_3)_{2m}$. Mater Res Bulletin 23 (6):805–812
- Chaix-Pluchery O, Lucazeau G (1998) Vibrational study of transition metal disilicides, $MSi₂$ (M = Nb, Ta, V, Cr). J Raman Spectrosc 29(2):159–164
- Chakhmouradian AR, Hughes JM, Rakovan J (2005) Fluorcaphite, a second occurrence and detailed structural analysis: simultaneous accommodation of Ca, Sr, Na, and LREE in the apatite atomic arrangement. Can Mineral 43(2):735–746
- Chakhmouradian AR, Cooper MA, Medici L, Hawthorne FC, Adar F (2008) Fluorine-rich hibschite from silicocarbonatite, Afrikanda complex, Russia: crystal chemistry and conditions of crystallization. Can Mineral 46(4):1033–1042
- Chakhmouradian AR, Cooper MA, Ball N, Reguir EP, Medici L, Abdu YA, Antonov AA (2014) Vladykinite, $Na₃Sr₄(Fe²⁺Fe³⁺)Si₈O₂₄:$ a new complex sheet silicate from peralkaline rocks of the Murun complex, eastern Siberia, Russia. Am Mineral 99 (1):235–241
- Chakhmouradian AR, Cooper MA, Medici L, Abdu YA, Shelukhina YS (2015) Anzaite-(Ce), a new rare-earth mineral and structure type from the Afrikanda silicocarbonatite, Kola Peninsula, Russia. Mineral Mag 79:1231–1244
- Chakhmouradian AR, Cooper MA, Reguir EP, Moore MA (2017) Carbocernaite from the Bear Lodge carbonatite, Wyoming: revised structure, zoning and rare-earth fractionation on a microscale. Am Mineral. [https://](https://doi.org/10.2138/am-2017-6046) doi.org/10.2138/am-2017-6046
- Chakir M, Jazouli AE, De Waal D (2003) Structural and vibrational studies of $NaZr_2(AsO₄)_3$. Mater Res Bull 38(13):1773–1779
- Chakrabarty A, Pruseth KL, Sen AK (2011) First report of eudialyte occurrence from the Sushina hill region, Purulia district, West Bengal. J Geol Soc India 77 (1):12–16
- Chandra U, Sharma P, Parthasarathy G (2011a) Highpressure electrical resistivity, Mössbauer, thermal analysis, and micro-Raman spectroscopic investigations on microwave synthesized orthorhombic cubanite (CuFe2S3). Chem Geol 284(3):211–216
- Chandra U, Singh N, Sharma P, Parthasarathy G, Garg AB, Mittal R, Mukhopadhyay R (2011b) Highpressure studies on synthetic orthorhombic cubanite $(CuFe₂S₃)$. AIP Conf Proc 1349(1):143–144
- Chandrappa GT, Chithaiah P, Ashoka S, Livage J (2011) Morphological evolution of $(NH_4)_{0.5}V_2O_5$ ^{•m} H₂O fibers into belts, triangles, and rings. InorgChem 50 (16):7421–7428
- Chandrasekhar HR, Humphreys RG, Zwick U, Cardona M (1977) Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Phys Rev B 15 (4):2177–2183
- Chang HY, Kim SH, Ok KM, Halasyamani PS (2009) Polar or nonpolar? A⁺cation polarity control in A_2 Ti $(IO₃)₆$ (A = Li, Na, K, Rb, Cs, Tl). J Am Chem Soc 131(19):6865–6873
- Charalambous FA, Ram R, Pownceby MI, Tardio J, Bhargava SK (2012) Chemical and microstructural characterisation studies on natural and heat treated brannerite samples. Miner Eng 39:276–288
- Chariton S, Cerantola V, Ismailova L, Bykova E, Bykov M, Kupenko I, McCammon C, Dubrovinsky L (2017) The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study. Phys Chem Minerals. [https://doi.org/10.](https://doi.org/10.1007/s00269-017-0902-5) [1007/s00269-017-0902-5](https://doi.org/10.1007/s00269-017-0902-5)
- Chater R, Gavarri JR, Genet F (1986) Composes isomorphes $MeX_2O_4E_2$: I. Etude vibrationnelle de $MnSb₂O₄$ entre 4 et 300 K: champ de force et tenseurélastique. J Solid State Chem 63(2):295–307. (in French)
- Chattopadhyay T, Carlone C, Jayaraman A, Schnering H (1982) Effect of temperature and pressure on the Raman spectrum of $As₄S₃$. J Phys Chem Solids 43 (3):277–284
- Chemtob SM, Arvidson RE, Fernández-Remolar DC, Amils R, Morris RV, Ming DW, Prieto-Ballesteros O, Mustard JF, Hutchison L, Stein TC, Donovan CE, Fairchild GM, Friedlander LR, Karas NM, Klasen MN, Mendenhall MP, Robinson EM, Steinhardt SE, Weber LR (2006) Identification of hydrated sulfates collected in the northern Rio Tinto valley by reflectance and Raman spectroscopy. Lunar Planet Sci 37:1941. (2 pp)
- Chen X, Grandbois M (2013) In situ Raman spectroscopic observation of sequential hydrolysis of stannous chloride to abhurite, hydroromarchite, and romarchite. J Raman Spectrosc 44(3):501–506
- Chen D, Jiao X (2001) Hydrothermal synthesis and characterization of $Bi_4Ti_3O_{12}$ powders from different precursors. Mater Res Bull 36(1):355–363
- Chen M, Xie X (2015) Shock-produced akimotoite in the Suizhou L6 chondrite. Sci China Earth Sci 58(6):876– 880
- Chen X, Pei Y (2016) Effects of sodium pentaboratepentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities. Ecotoxicol Environ Safety 132:353–359
- Chen M, Wopenka B, Xie X, El Goresy A (1995) A new high-pressure polymorph of chlorapatite in the shocked

Sixiangkou (L6) chondrite. XXVI Lunar Planetary Sci Conf 26:237–238

- Chen G, Wu Y, Fu P (2006a) Growth and characterization of a new nonlinear optical crystal $Ca₅(BO₃)₃F$. J Crystal Growth 292(2):449–453
- Chen X, Zhao Y, Chang X, Zuo J, Zang H, Xiao W (2006b) Syntheses and crystal structures of two new hydrated borates, $Zn_8[(BO_3)_3O_2(OH)_3]$ and Pb [B5O8(OH)]∙1.5H2O. J Solid State Chem 179 (12):3911–3918
- Chen X, Li M, Chang X, Zang H, Xiao W (2007a) Synthesis and crystal structure of a novel pentaborate, $Na₃ZnB₅O₁₀$. J Solid State Chem 180(5):1658–1663
- Chen X, Li M, Zuo J, Chang X, Zang H, Xiao W (2007b) Syntheses and crystal structures of two pentaborates, $Na₃CaB₅O₁₀$ and $Na₃MgB₅O₁₀$. Solid State Sci 9 (8):678–685
- Chen Y, Liu Z, Ringer SP, Tong Z, Cui X, Chen Y (2007c) Selective oxidation synthesis of $MnCr₂O₄$ spinel nanowires from commercial stainless steel foil. Cryst Growth Design 7(11):2279–2281
- Chen M, Shu J, Mao H-K (2008a) Xieite, a new mineral of high-pressure $FeCr₂O₄$ polymorph. Chin Sci Bull 53 (21):3341–3345
- Chen X, Li M, Chang X, Zang H, Xiao W (2008b) Synthesis and crystal structure of a new calcium borate, CaB_6O_{10} . J Alloys Compd 464(1):332-336
- Chen X, Song F, Chang X, Zang H, Xiao W (2009) Syntheses and characterization of two oxoborates, $(Pb_3O)_2(BO_3)_2MO_4$ (M = Cr,Mo). J Solid State Chem 182:3091–3097
- Chen X, Yang C, Chang X, Zang H, Xiao W (2010) Synthesis, crystal structure, and optical properties of a novel pentaborate, K₂NaZnB₅O₁₀. J Alloys Compd 492(1):543–547
- Chen X, Yang C, Chu Z, Chang X, Zang H, Xiao W (2011) Synthesis, spectrum properties, and crystal structure of a new pentaborate, $Na_{2.18}K_{0.82}SrB_5O_{10}$. J ChemCrystallogr 41(6):816–822
- Chen M, Gu X, Xie X, Yin F (2013a) High-pressure polymorph of $TiO₂-II$ from the Xiuyan crater of China. Chin Sci Bull 58(36):4655–4662
- Chen XB, Hien NTM, Han K, Sur JC, Sung NH, Cho BK, Yang IS (2013b) Raman studies of spin-phonon coupling in hexagonal BaFe $_{12}O_{19}$. J Appl Phys 114 (1):013912-1–013912-6
- Chen X, Wu L, Chang X, Xiao W (2014a) Synthesis, crystal structure, and spectrum properties of a new quaternary borate $NaSr₇AlB₁₈O₃₆$ with the cyclic $\overline{B}_{18}O_{36}^{18-}$ group, notation of 6×(3 [2 Δ + 1T]). J Chem Crystallogr 44(11–12):572–579
- Chen Y, Zhang Y, Feng S (2014b) Hydrothermal synthesis and properties of pigments Chinese purple $BaCuSi₂O₆$ and dark blue $BaCu₂Si₂O₇$. Dyes Pigm 105:167-173
- Chen P, Xu K, Li X, Guo Y, Zhou D, Zhao J, Wu X, Wu C, Xie Y (2014c) Ultrathin nanosheets of feroxyhyte: a new two-dimensional material with robust ferromagnetic behavior. Chem Sci 5 (6):2251–2255
- Chen F, Zhao J, Xu J, Wu Y (2015a) Synthesis, structure, and optical properties of $BiCu_2(TeO_3)(SO_4)(OH)_3$. Z anorg allg Chemie 641(3–4):568–572
- Chen HY, Lin YC, Lee JS (2015b) Crednerite–CuMnO₂ thin films prepared using atmospheric pressure plasma annealing. Appl Surface Sci 338:113–119
- Cheng Z, Liu M (2007) Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ionics 178(13):925–935
- Cheng K-W, Tsai W-T, Wu Y-H (2016) Photo-enhanced salt-water splitting using orthorhombic Ag_8SnS_6 photoelectrodes in photoelectrochemical cells. J Power Sources 317:81–92
- Chi TTK, Gouadec G, Colomban P, Wang G, Mazerolles L, Liem NQ (2011) Off-resonance Raman analysis of wurtzite CdS ground to the nanoscale: structural and size-related effects. J Raman Spectrosc 42(5):1007–1015
- Chia X, Ambrosi A, Sofer Z, Luxa J, Sedmidubský D, Pumera M (2015) Anti-MoS₂ nanostructures: Tl_2S and its electrochemical and electronic properties. ACS Nano 10(1):112–123
- Chiavari C, Martini C, Montalbani S, Franzoni E, Bignozzi MC, Passeri MC (2016) The bronze panel (paliotto) of San Moisè in Venice: materials and causes of deterioration. Mater Corros 67(2):141–151
- Chio CH, Sharma SK, Muenow DW (2007) The hydrates and deuterates of ferrous sulfate ($FeSO₄$): a Raman spectroscopic study. J Raman Spectrosc 38(1):87–99
- Chio CH, Sharma SK, Ming LC, Muenow DW (2010) Raman spectroscopic investigation on jarosite– yavapaiite stability. Spectrochim Acta A 75 (1):162–171
- Chis V, Sklyadneva IY, Kokh KA, Volodin VA, Tereshchenko OE, Chulkov EV (2012) Vibrations in binary and ternary topological insulators: firstprinciples calculations and Raman spectroscopy measurements. Phys Rev B 86(17):174304. (12 pp)
- Chitra S, Kalyani P, Yebka B, Mohan T, Haro-Poniatowski E, Gangadharan R, Julien C (2000) Synthesis, characterization and electrochemical studies of LiNiVO4 cathode material in rechargeable lithium batteries. Mater Chem Phys 65(1):32–37
- Cho A, Ahn S, Yun JH, Gwak J, Ahn SK, Shin K, .Yoo J, Song H, Yoon K (2013) The growth of $Cu_{2-x}Se$ thin films using nanoparticles. Thin Solid Films 546:299–307
- Choi B-K, Lockwood DJ (1989) Raman spectrum of Na₂SO₄ (phases I and II). Solid State Commun 72 (6):863–866
- Choi KY, Lemmens P, Pommer J, Ionescu A, Güntherodt G, Hiroya S, Sakurai H, Yoshimura K, Matsuo A, Kindo K (2004) Random magnetism in the frustrated triangular spin ladder $KCu₅V₃O₁₃$. Phys Rev B 70(17):174417-1–174417-6
- Choi KY, Oosawa A, Tanaka H, Lemmens P (2005) Inelastic light scattering experiments on the coupled spin dimer system $Tl_{1-x}K_{x}CuCl_{3}$. Prog Theor Phys Suppl 159:195–199
- Choisnet J, Deschanvres A, Tarte P (1975) Spectres vibrationnels des silicates et germinates renfermant des anneaux, M_3O_9 (M = Si, Ge) – I. Attribution des frequencies caractéristiques de l'anneau M_3O_9 , dans les composés de type bénitoïte, wadéite et tétragermanate. Spectrochim Acta A 31(8):1023–1034. (in French)
- Chon MP, Tan KB, Khaw CC, Zainal Z, Yap YT, Chen SK, Tan PY (2014) Investigation of the phase formation and dielectric properties of $Bi₇Ta₃O₁₈$. J Alloys Compounds 590:479–485
- Chopelas A (1999) Estimates of mantle relevant Clapeyron slopes in the $MgSiO₃$ system from highpressure spectroscopic data. Am Mineral 84:233–244
- Chopin C, Ferraris G, Prencipe M, Brunet F, Medenbach O (2001) Raadeite, $Mg_7(PO_4)_2(OH)_8$: a new densepacked phosphate from Modum (Norway). Eur J Mineral 13(2):319–327
- Chouaib S, Rhaiem AB, Guidara K (2011) Dielectric relaxation and ionic conductivity studies of Na₂ZnP₂O₇. Bull Mater Sci 34(4):915–920
- Christy AG, Lowe A, Otieno-Alego V, Stoll M, Webster RD (2004) Voltammetric and Raman microspectroscopic studies on artificial copper pits grown in simulated potable water. J Appl Electrochem 34 (2):225–233
- Christy AG, Kampf AR, Mills SJ, Housley RM, Thorne B (2014) Crystal structure and revised chemical formula for burckhardtite, $Pb_2(Fe^{3+}Te^{6+})[A]Si_3O_8]O_6$: a double-sheet silicate with intercalated phyllotellurate layers. Mineral Mag 78(7):1763–1773
- Chu S, Müller P, Nocera DG, Lee YS (2011) Hydrothermal growth of single crystals of the quantum magnets: clinoatacamite, paratacamite, and herbertsmithite. Appl Phys Lett 98(9):092508-1–092508-3
- Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer-Verlag GmbH, Dordrecht. (1716 pp)
- Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer, Cham. (1109 pp)
- Chukanov NV, Zubkova NV, Buhl J-C, Pekov IV, Ksenofontov DA, Depmeier W, Pushcharovskii DY (2011) Crystal structure of nitrate cancrinite synthesized under low-temperature hydrothermal conditions. Doklady Earth Sci 438(1):669–672
- Chukanov NV, Nedelko VV, Blinova LN, Korshunova LA, Olysych LV, Lykova IS, Pekov IV, Buhl J-C, Depmeier W (2012a) The role of additional anions in microporous aluminosilicates with cancrinite-type framework. Russ J Phys Chem B 6(5):15–23
- Chukanov NV, Scholz R, Aksenov SM, Rastsvetaeva RK, Pekov IV, Belakovskiy DI, Krambrock K, Paniago RM, Righi A, Martins RF, Belotti F, Bermanec V (2012b) Metavivianite, Fe²⁺Fe³⁺₂(PO₄)₂(OH)₂⋅6H₂O: new data and formula revision. Mineral Mag 76 (3):725–741
- Chukanov NV, Krivovichev SV, Pakhomova AS, Pekov IV, Schäfer C, Vigasina MF, Van KV (2014a) Laachite, $(Ca, Mn)_2Zr_2Nb_2TiFeO_{14}$, a new zirconoliterelated mineral from the Eifel volcanic region, Germany. Eur J Mineral 26:103–111
- Chukanov NV, Scholz R, Zubkova NV, Pekov IV, Belakovskiy DI, Van KV, Lagoeiro L, Graça LM, Krambrock K, de Oliveira LCA, Menezes Filho LAD, Chaves MLCS, Pushcharovsky DY (2014b) Correianevesite, $\text{Fe}^{2+}\text{Mn}^{2+}{}_{2}(\text{PO}_4)_2.3\text{H}_2\text{O}$, a new reddingite-group mineral from the Cigana mine, Conselheiro Pena, Minas Gerais, Brazil. Am Mineral 99:811–816
- Chukanov NV, Aksenov SM, Rastsvetaeva RK, Schäfer C, Pekov IV, Belakovskiy DI, Scholz R, de Oliveira LCA, Britvin SN (2017a) Eleonorite, $Fe³⁺₆$ $(PO₄)₄O(OH)₄·6H₂O$: validation as a mineral species and new data. Mineral Mag 81:61–76
- Chukanov NV, Jonsson E, Aksenov SM, Britvin SN, Rastsvetaeva RK, Belakovskiy DI, Van KV (2017b) Roymillerite, $Pb_{24}Mg_9(Si_9AlO_{28})(SiO_4)$ $(BO₃)(CO₃)₁₀(OH)₁₄O₄$, a new mineral: mineralogical characterization and crystal chemistry. Phys Chem Minerals. [https://doi.org/10.1007/s00269-](https://doi.org/10.1007/s00269-017-0893-2) [017-0893-2](https://doi.org/10.1007/s00269-017-0893-2)
- Chukanov NV, Panikorovskii TL, Chervonnyi AD (2018) On the relationships between crystal-chemical characteristics of vesuvianite-group minerals and their IR spectra. Zapiski RMO (Proc Russ Miner Soc) 147 (1):112–128. (in Russian)
- Ciesielczuk J, Janeczek J, Dulski M, Krzykawski T (2016) Pseudomalachite–cornwallite and kipushite– philipsburgite solid solutions: chemical composition and Raman spectroscopy. Eur J Mineral. [https://doi.](https://doi.org/10.1127/ejm/2016/0028-2536) [org/10.1127/ejm/2016/0028-2536](https://doi.org/10.1127/ejm/2016/0028-2536)
- Ciobotă V, Salama W, Tarcea N, Rösch P, El Aref M, Gaupp R, Popp J (2012) Identification of minerals and organic materials in Middle Eocene iron stones from the Bahariya Depression in the Western Desert of Egypt by means of micro-Raman spectroscopy. J Raman Spectrosc 43(3):405–410
- Ciomartan DA, Clark RJH, McDonald LJ, Oldyha M (1996) Studies on the thermal decomposition of basic lead (II) carbonate by Fourier-transform Raman spectroscopy, X-ray diffraction and thermal analysis. J Chem Soc Dalton Trans 18:3639–3645
- Clark RJ, Wang Q, Correia A (2007) Can the Raman spectrum of anatase in artwork and archaeology be used for dating purposes? Identification by Raman microscopy of anatase in decorative coatings on Neolithic (Yangshao) pottery from Henan, China. J Archaeolog Sci 34(11):1787–1793
- Clavier N, Szenknect S, Costin DT, Mesbah A, Poinssot C, Dacheux N (2014) From thorite to coffinite: a spectroscopic study of $Th_{1-x}U_xSiO_4$ solid solutions. Spectrochim Acta A 118:302–307
- Clavier N, Crétaz F, Szenknect S, Mesbah A, Poinssot C, Descostes M, Dacheux N (2016) Vibrational spectroscopy of synthetic analogues of ankoleite, chernikovite and intermediate solid solution. Spectrochim Acta A 156:143–150
- Clearfield A, Roberts BD, Subramanian MA (1984) Preparation of $(NH_4)Zr_2(PO_4)$ ₃ and $HZr_2(PO_4)$ ₃. Mater Res Bull 19:219–226
- Clearfield A, Bortun AI, Bortun LN, Cahill RA (1997) Synthesis and characterization of a novel layered

sodium titanium silicate Na₂TiSi₂O₇⋅2H₂O. Solvent Extraction Ion Exchange 15(2):285–304

- Coccato A, Bersani D, Coudray A, Sanyova J, Moens L, Vandenabeele P (2016) Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. J Raman Spectrosc. [https://](https://doi.org/10.1002/jrs.4956) doi.org/10.1002/jrs.4956
- Cody CA, Levitt RC, Viswanath RS, Miller PJ (1978) Vibrational spectra of alkali hydrogen selenites, selenous acid, and their deuterated analogs. J Solid State Chem 26(3):281–291
- Cody CA, DiCarlo L, Darlington RK (1979) Vibrational and thermal study of antimony oxides. Inorg Chem 18 (6):1572–1576
- Coleyshaw EE, Griffith WP, Bowell RJ (1994) Fouriertransform Raman spectroscopy of minerals. Spectrochim Acta A 50(11):1909–1918
- Coleyshaw EE, Crump G, Griffith WP (2003) Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochim Acta A 59(10):2231–2239
- Colmenero F, Bonales LJ, Cobos J, Timón V (2017) Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations. Spectrochim Acta A 174:245–253
- Colomban P (1986) Orientational disorder, glass/crystal transition and superionic conductivity in nasicon. Solid State Ionics 21(2):97–115
- Colomban P, Courret H, Romain F, Gouadec G, Michel D (2000) Sol-gel-prepared pure and lithium-doped hexacelsian polymorphs: an infrared, Raman, and thermal expansion study of the β-phase stabilization by frozen short-range disorder. J Am Ceram Soc 83 (12):2974–2982
- Colombo F, Rius J, Vallcorba O, Pannunzio Miner EV (2014) The crystal structure of sarmientite, $(AsO₄)$ $(SO₄)(OH)$ - $SH₂O$, solved *ab initio* from laboratory powder diffraction data. Mineral Mag 78:347–360
- Comodi P, Liu Y, Stoppa F, Wooley AR (1999) A multimethod analysis of Si-, S- and REE-rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy). Mineral Mag 63(5):661–672
- Conti C, Casati M, Colombo C, Realini M, Brambilla L, Zerbi G (2014) Phase transformation of calcium oxalate dihydrate–monohydrate: effects of relative humidity and new spectroscopic data. Spectrochim Acta A 128:413–419
- Conti C, Casati M, Colombo C, Possenti E, Realini M, Gatta GD, Merlini M, Brambilla L, Zerbi G (2015) Synthesis of calcium oxalate trihydrate: new data by vibrational spectroscopy and synchrotron X-ray diffraction. Spectrochim Acta A 150:721–730
- Cooney RPJ, Hall JR, Hooper MA (1968) Raman spectra of mercury(I) and mercury(II) iodides in the solid state. Aust J Chem 21(9):2145–2152
- Cooney TF, Scott ER, Krot AN, Sharma SK, Yamaguchi A (1999) Vibrational spectroscopic study of minerals in the Martian meteorite ALH84001. Am Mineral 84 (10):1569–1576
- Cooper MA, Abdu YA, Ball NA, Hawthorne FC, Back ME, Tait KT, Schlüter J, Malcherek T, Pohl D, Gebhard G (2012a) Ianbruceite, ideally $[Zn_2(OH)]$ $(H_2O)(AsO_4)$] $(H_2O)_2$, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description and crystal structure. Mineral Mag 76(5):1119–1131
- Cooper MA, Abdu YA, Ball NA, Černý P, Hawthorne FC, Kristiansen R (2012b) Aspedamite, ideally \square_{12} (Fe³⁺, Fe^{2+})₃Nb₄[Th(Nb,Fe³⁺)₁₂O₄₂]{(H₂O),(OH)}₁₂, a new heteropolyniobate mineral species from the Herrebøkasa Quarry, Aspedammen, Østfold, Southern Norway: description and crystal structure. Can Mineral 50(4):793–894
- Cooper MA, Abdu YA, Hawthorne FC, Kampf AR (2013a) The crystal structure of comancheite, Hg^{2+} ₅₅ N^3 ⁻₂₄(OH,NH₂)₄(Cl,Br)₃₄, and crystal-chemical and spectroscopic discrimination of N^{3-} and O^{2-} anions in Hg²⁺ compounds. Min Mag $77(8):3217-3237$
- Cooper MA, Hawthorne FC, Abdu YA, Ball NA, Ramik RA, Tait KT (2013b) Wopmayite, ideally Ca₆Na₃□Mn $(PO₄)₃(PO₃OH)₄$, a new phosphate mineral from the Tanco Mine, Bernic Lake, Manitoba: description and crystal structure. Can Mineral 51(1):93–106
- Cooper MA, Abdu YA, Hawthorne FC, Kampf AR (2016a) The crystal structure of gianellaite, $[(NHg₂)₂]$ (SO_4) (H₂O)_x, a framework of (NHg₄) tetrahedra with ordered (SO4) groups in the interstices. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.028>
- Cooper MA, Hawthorne FC, Garcia-Veígas J, Alcobé X, Helvaci C, Grew ES, Ball NA (2016b) Fontarnauite, $(Na,K)_{2}(Sr,Ca)(SO_{4})[B_{5}O_{8}(OH)](H_{2}O)_{2}$, a new sulfate-borate mineral from Doğanlar (Emet), Kütahya Province, Western Anatolia, Turkey. Can Mineral 53 (3):1–20. <https://doi.org/10.3749/canmin.1400088>
- Cooper M, Hawthorne F, Langhof J, Hålenius U, Holtstam D (2016c) Wiklundite, ideally Pb_2 ^[4](Mn²⁺, Zn ₃(Fe³⁺,Mn²⁺)₂(Mn²⁺,Mg)₁₉(As³⁺O₃)₂[(Si,As⁵⁺) O_4 ₆(OH)₁₈Cl₆, a new mineral from Långban, Filipstad, Värmland, Sweden: description and crystal structure. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.136) [minmag.2016.080.136](https://doi.org/10.1180/minmag.2016.080.136)
- Čopjaková R, Škoda R, Galiová MV, Novák M, Cempírek J (2015) Sc-and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group mineral from the mixed (NYF+ LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic). Am Mineral 100(7):1434–1451
- Cornette J, Merle-Méjean T, Mirgorodsky A, Colas M, Smirnov M, Masson O, Thomas P (2011) Vibrational spectra of rhombohedral $TeO₃$ compared to those of ReO₃-like proto-phase and α -TeO₂ (paratellurite): lattice dynamic and crystal chemistry aspects. J Raman Spectrosc 42(4):758–764
- Correia AM, Clark RJ, Ribeiro MI, Duarte ML (2007) Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859–1884). J Raman Spectrosc 38(11):1390–1405
- Corsmit AF, Blasse G (1974) The infrared spectrum of $Ba₂NiTeO₆$. J Inorg Nucl Chem 36(5):1155–1156
- Costin DT, Mesbah A, Clavier N, Szenknect S, Dacheux N, Poinssot C, Ravaux J, Brau HP (2012) Preparation and characterization of synthetic $Th_{0.5}U_{0.5}SiO₄$ uranothorite. Prog Nucl Energy 57:155–160
- Costin G, Fairey B, Tsikos H (2014) Tokyoite and As-rich tokyoite: new occurrence in the manganese ore of the Postmasburg Manganese Field, South Africa. Conference: IMA 2014, Johannesburg. [https://doi.org/10.](https://doi.org/10.13140/2.1.2792.3202) [13140/2.1.2792.3202](https://doi.org/10.13140/2.1.2792.3202)
- Costin G, Fairey B, Tsikos H, Gucsik A (2015) Tokyoite, As-rich tokyoite, and noélbensonite: new occurrences from the Postmasburg manganese field, Northern Cape Province, South Africa. Can Mineral 53:981–990
- Coutinho ML, Veiga JP, Alves LC, Mirão J, Dias L, Lima AM, Muralha VS, Macedo MF (2016) Characterization of the glaze and in-glaze pigments of the nineteenth-century relief tiles from the Pena National Palace, Sintra, Portugal. Appl Phys A 122(7):1–10
- Craveiro R, Lin Z (2012) The influence of Fe on the formation of titanosilicate ETS-4. J Solid State Chem 190:162–168
- Creton B, Bougeard D, Smirnov KS, Guilment J, Poncelet O (2008) Molecular dynamics study of hydrated imogolite. 1. Vibrational dynamics of the nanotube. J Phys Chem C 112(27):10013–10020
- Crimmins LG (2012) Structure and chemistry of minerals in the Ca-(As,P)-(OH,F,Cl) apatite system: johnbaumite, svabite, and turneaureite from Franklin and Sterling Hill, New Jersey, USA. Dissertation, University of Miami
- Croce A, Musa M, Allegrina M, Rinaudo C, Baris YI, Dogan AU, Powers A, Rivera Z, Bertino P, Yang H, Gaudino G, Carbone M (2013) Micro-Raman spectroscopy identifies crocidolite and erionite fibers in tissue sections. J Raman Spectrosc 44(10):1440–1445
- Cuenca-Gotor VP, Sans JA, Ibañez J, Popescu C, Gomis O, Vilaplana R, Manjón FJ, Leonardo A, Sagasta E, Suárez-Alcubilla A, Gurtubay IG, Mollar M, Bergara A (2016) Structural, vibrational, and electronic study of α -As₂Te₃ under compression. J Phys Chem C 120(34):19340–19352
- Cui M, Wang Y, Liu X, Zhu J, Sun J, Lv N, Meng C (2014) Solvothermal conversion of magadiite into zeolite omega in a glycerol–water system. J Chem Technol Biotechnol 89(3):419–424
- Culka A, Jehlička J, Němec I (2009) Raman and infrared spectroscopic study of boussingaultite and nickelboussingaultite. Spectrochim Acta A 73(3):420–423
- Culka A, Hyršl J, Jehlička J (2016a) Gem and mineral identification using GL Gem Raman and comparison with other portable instruments. Appl Phys A 122:959. (9 pp). <https://doi.org/10.1007/s00339-016-0500-2>
- Culka A, Kindlová H, Drahota P, Jehlička J (2016b) Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments. Spectrochim Acta A 154:193–199
- D'Antonio MC, Palacios D, Coggiola L, Baran EJ (2007) Vibrational and electronic spectra of synthetic moolooite. Spectrochim Acta A 68(3):424–426
- D'Antonio MC, Wladimirsky A, Palacios D, Coggiola L, González-Baró AC, Baran EJ, Mercader RC (2009) Spectroscopic investigations of iron(II) and iron(III) oxalates. J Braz Chem Soc 20:445–450
- D'Antonio MC, Mancilla N, Wladimirsky A, Palacios D, González-Baró AC, Baran EJ (2010) Vibrational spectra of magnesium oxalates. Vib Spectrosc 53:218–221
- Dacheux N, Clavier N, Wallez G, Quarton M (2007) Crystal structures of Th(OH)PO₄, U(OH)PO₄ and $Th_2O(PO_4)_2$. Condensation mechanism of $M^IV(OH)$ PO_4 (M = Th, U) into $M_2O(PO_4)_2$. Solid State Sci 9 (7):619–627
- Dacheux N, De Kerdanie EDF, Clavier N, Podor R, Aupiais J, Szenknect S (2010) Kinetics of dissolution of thorium and uranium doped britholite ceramics. J Nucl Mater 404(1):33–43
- Dahm M, Adam A (2001) Ab-initio-Berechnung des Tetracarbonatoscandat-Ions in Na5Sc (CO3)3∙2H2O. Ein Kristallstruktur Bestimmung, Schwingungsspektren und thermischer Abbau. Z anorg allg Chemie 627(8):2023–2031. (in German)
- Dal Bo F, Hatert F, Baijot M (2014) Crystal chemistry of synthetic M^{2+} Be₂P₂O₈ (M^{2+} = Ca, Sr, Pb, Ba) beryllophosphates. Can Mineral 52(2):337–350
- Damak M, Kamoun M, Daoud A, Romain F, Lautie A, Novak A (1985) Vibrational study of hydrogen bonding and structural disorder in $Na₃H(SO₄)₂$, $K₃H(SO₄)₂$ and $(NH_4)_3H(SO_4)_2$ crystals. J Molec Struct 130 (3):245–254
- Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M (1987) Infrared and Raman study of $WO₃$ tungsten trioxides and WO_3 : xH_2O tungsten trioxide hydrates. J Solid State Chem 67:235–247
- Daniel P, Bulou A, Rousseau M, Nouet J, Fourquet JL, Leblanc M, Burriel R (1990) A study of the structural phase transitions in AlF_3 : X-ray powder diffraction, differential scanning calorimetry (DSC) and Raman scattering investigations of the lattice dynamics and phonon spectrum. J Phys Conden Matter 2 (26):5663–5677
- Daniel I, Fiquet G, Gillet P, Schmidt MW, Hanfland M (2000) High-pressure behaviour of lawsonite. Eur J Mineral 12(4):721–733
- Danisi RM, Armbruster T, Lazic B, Vulić P, Kaindl R, Dimitrijević R, Kahlenberg V (2013) In situ dehydration behavior of veszelyite $(Cu,Zn)_{2}Zn(PO_{4})$ (OH)3∙2H2O: a single-crystal X-ray study. Am Mineral 98(7):1261–1269
- Dardenne K, Vivien D, Ribot F, Chottard G, Huguenin D (1998) Mn (V) polyhedron size in $Ba_{10}((P,Mn)O_4)_6F_2$: vibrational spectroscopy and EXAFS study. Eur J Solid State Inorg Chem 35(6):419–431
- Das S, Hendry MJ (2011) Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem Geol 290(3):101–108
- Das B, Reddy MV, Krishnamoorthi C, Tripathy S, Mahendiran R, SubbaRao GV, Chowdari BVR

(2009) Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo₃O₈ and Mn₂Mo₃O₈. Electrochim Acta 54:3360–3373

- Daturi M, Busca G, Borel MM, Leclaire A, Piaggio P (1997) Vibrational and XRD study of the system CdWO4-CdMoO4. J Phys Chem B 101 (22):4358–4369
- Daub M, Kazmierczak K, Gross P, Höppe H, Hillebrecht H (2013) Exploring a new structure family: alkali borosulfates $Na₅[B(SO₄)₄], A₃[B(SO₄)₃]$ (A = K, Rb), Li[B(SO₄)₂], and Li[B(S₂O₇)₂]. Inorg Chem 52:6011–6020
- Davies JED (1973) Solid state vibrational spectroscopy– III[l]. The infrared and Raman spectra of the bismuth (III) oxide halides. J Inorg Nucl Chem 35:1531–1534
- De Beer WHJ, Heyns AM, Richter PW, Clark JB (1980) High-pressure/high-temperature phase relations and vibrational spectra of $CsSbF_6$. J Solid State Chem 33 (3):283–288
- De Caro T, Caschera D, Ingo GM, Calandra P (2016) Micro-Raman innovative methodology to identify Ag– Cu mixed sulphides as tarnishing corrosion products. J Raman Spectrosc. <https://doi.org/10.1002/jrs.4900>
- De Faria DLA, Venâncio Silva S, De Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28(11):873–878
- De Ferri L, Bersani D, Colomban P, Lottici PP, Simon G, Vezzalini G (2012) Raman study of model glass with medieval compositions: artificial weathering and comparison with ancient samples. J Raman Spectrosc 43 (11):1817–1823
- De La Pierre M, Belmonte D (2016) Ab initio investigation of majorite and pyrope garnets: lattice dynamics and vibrational spectra. Am Mineral 101(1):162–174
- De las Heras C, Agulló-Rueda F (2000) Raman spectroscopy of NiSe₂ and NiS_{2–x}Se_x (0<x< 2) thin films. J Phys Condens Matter 12(24):5317–5324
- De Lima LC (2016) Espinélios do sistema $Mg_2TiO₄$ -Mg2SnO4 obtidos pelo método Pechini-modificado: propriedades fotocatalíticas e antiadesão microbiana. Dissertação, Universidade Federalda Paraíba. (in Portuguese)
- De Waal D, Heyns AM (1992) A reinvestigation of the thermal decomposition products of (NH_4) ₂CrO₄ and (NH4)2Cr2O7. J Alloys Compd 187(1):171–180
- De Waal D, Hutter C (1994) Vibrational spectra of two phases of copper pyrovanadate and some solid solutions of copper and magnesium pyrovanadate. Mater Res Bull 29(8):843–849
- Deb SK, Manghnani MH, Ross K, Livingston RA, Monteiro PJM (2003) Raman scattering and X-ray diffraction study of the thermal decomposition of an ettringite-group crystal. Phys Chem Minerals 30 (1):31–38
- Debbichi L, Marco de Lucas MC, Pierson JF, Krüger P (2012) Vibrational properties of CuO and $Cu₄O₃$ from first-principles calculations, and Raman and infrared spectroscopy. J Phys Chem C 116(18):10232–10237
- Degtyareva O, Struzhkin VV, Hemley RJ (2007) Highpressure Raman spectroscopy of antimony: as-type,

incommensurate host-guest, and bcc phases. Solid State Commun 141:164–167

- Del Bosque IS, Martínez-Ramírez S, Blanco-Varela MT (2014) FTIR study of the effect of temperature and nanosilica on the nano structure of C–S–H gel formed by hydrating tricalcium silicate. Constr Build Mater 52:314–323
- Delaney MJ, Ushioda S (1976) Comparison of the Raman spectra of superionic conductors AgI and $RbAg_4I_5$. Solid State Commun 19(4):297–301
- Della Ventura G, Rossi P, Parodi GC, Mottana A, Raudsepp M, Prencipe M (2000) Stoppaniite, (Fe,Al, $Mg)_{4}(Be_{6}Si_{12}O_{36})$ ∙ $(H_{2}O)_{2}(Na,\square)$ a new mineral of the beryl group from Latium (Italy). Eur J Mineral 12 (1):121–127
- Demartin F, Gramaccioli CM, Campostrini I (2010) Pyracmonite, $(NH_4)_3Fe(SO_4)_3$, a new ammonium iron sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. Can Mineral 48:307–313
- Demartin F, Castellano C, Gramaccioli CM (2015) Campostriniite, $(Bi^{3+},Na)_{3}(NH_4,K)_2Na_2(SO_4)_6·H_2O$, a new sulfate isostructural with görgeyite, from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineral Mag 79(4):1007–1018
- Derun EM, Tugce SF (2014) Characterization and thermal dehydration kinetics of highly crystalline mcallisterite, synthesized at low temperatures. Sci World J. [https://](https://doi.org/10.1155/2014/985185) doi.org/10.1155/2014/985185
- Derun EM, Kipcak AS, Senberber FT, Yilmaz MS (2015) Characterization and thermal dehydration kinetics of admontite mineral hydrothermally synthesized from magnesium oxide and boric acid precursor. Res Chem Intermed 41(2):853–866
- Devanarayanan S, Morell G, Katiyar RS (1991) Raman spectroscopy of BeO at low temperatures. J Raman Spectrosc 22(6):311–314
- Devarajan V, Shurvell HF (1977) Vibrational spectra and normal coordinate analysis of crystalline lithium metasilicate. Can J Chem 55(13):2559–2563
- Devarajan V, Gräfe E, Funck E (1974) Vibrational spectra of complex borates – II. $B(OH)^{4-}$ -ion in teepleite, Raman spectrum and normal coordinate analysis. Spectrochim Acta A 30(6):1235–1242
- Devi SA, Philip D, Aruldhas G (1994) Infrared, polarized Raman, and SERS spectra of borax. J Solid State Chem 113(1):157–162
- Dey B, Jain YS, Verma AL (1982) Infrared and Raman spectroscopic studies of $KHSO₄$ crystals. J Raman Spectrosc 13(3):209–212
- Dhandapani M, Thyagu L, Prakash PA, Amirthaganesan G, Kandhaswamy MA, Srinivasan V (2006) Synthesis and characterization of potassium magnesium sulphatehexahydrate crystals. Cryst Res Technol 41(4):328–331
- Dhankhar S, Bhalerao G, Ganesamoorthy S, Baskar K, Singh S (2016) Growth and comparison of single crystals and polycrystalline brownmillerite $Ca₂Fe₂O₅$. J Crys Growth. [https://doi.org/10.1016/j.jcrysgro.](https://doi.org/10.1016/j.jcrysgro.2016.09.051) [2016.09.051](https://doi.org/10.1016/j.jcrysgro.2016.09.051)
- Dhas NA, Gedanken A (1997) Characterization of sonochemically prepared unsupported and silica-

supported nanostructured pentavalent molybdenum oxide. J Phys Chem B 101(46):9495–9503

- Dias LN, Pinheiro MVB, Moreira RL, Krambrock K, Guedes KJ, Menezes Filho LAD, Karfunkel J, Schnellrath J, Scholz R (2011) Spectroscopic characterization of transition metal impurities in natural montebrasite/amblygonite. Am Mineral 96(1):42–52
- Diez RP, Baran EJ, Lavat AE, Grasselli MC (1995) Vibrational and electronic spectra of some mixed oxides belonging to the $Sr₂PbO₄$ structural type. J Phys Chem Solids 56(1):135–139
- Dill HG, Weber B (2010) Accessory minerals of fluorite and their implication regarding the environment of formation (Nabburg–Wölsendorf fluorite district, SE Germany), with special reference to fetid fluorite ("Stinkspat"). Ore Geol Rev 37(2):65–86
- D'Ippolito V, Andreozzi GB, Bosi F, Hålenius U, Mantovani L, Bersani D, Fregola RA (2013) Crystallographic and spectroscopic characterization of a natural Zn-rich spinel approaching the endmember gahnite $(ZnAl₂O₄)$ composition. Mineral Mag 77 (7):2941–2953
- D'Ippolito V, Andreozzi GB, Bersani D, Lottici PP (2015) Raman fingerprint of chromate, aluminate and ferrite spinels. J Raman Spectrosc 46(12):1255–1264
- Djurek D, Prester M, Drobac DJ, Ivanda M, Vojta D (2015) Magnetic properties of nanoscaled paramelaconite $Cu₄O_{3-x}$ ($x = 0.0$ and 0.5). J Magnetism Magnetic Mater 373:183–187
- Dobal PS, Katiyar RS, Jiang Y, Guo R, Bhalla AS (2000) Micro-Raman scattering and X-ray diffraction studies of $(Ta_2O_5)_{1-x}$ (TiO₂)_x ceramics. J Appl Phys 87:8688–8694
- Domoratskii KV, Pastukhov VI, Kudzin AY, Sadovskaya LY, Rizak VM, Stefanovich VA (2000) Raman scattering in the $Bi₂TeO₅$ single crystal. Phys Solid State 42(8):1443–1446
- Dondur V, Dimitrijević R, Kremenović A, Damjanović L, Kićanović M, Cheong HM, Macura S (2005) Phase transformation of hexacelsians doped with Li, Na and Ca. Mater Sci Forum 494:107–112
- Dong G, Pollard PJ (1997) Identification of ferropyrosmalite by laser Raman microprobe in fluid inclusions from metalliferous deposits in the Cloncurry District, NW Queensland, Australia. Mineral Mag 61 (2):291–293
- Dong L, Pan S, Yang Z, Zhao W, Dong X, Wang Y, Huang Y (2012) Synthesis, crystal structure, and properties of a new lead aluminum fluoride borate, $Pb_6Al(BO_3)_2OF_7$. Z anorg allg Chemie 638 (14):2280–2285
- Dongre AN, Viljoen KS, Rao NC, Gucsik A (2016) Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy. Mineral Petrol 110(2– 3):295–307
- Đorđević T, Kolitsch U, Nasadala L (2016) A singlecrystal X-ray and Raman spectroscopic study of hydrothermally synthesized arsenates and vanadates with the

descloizite and adelite structure types. Am Mineral 101 (5):1135–1149

- Downs GW, Yang BN, Thompson RM, Wenz MD, Andrade MB (2012) Redetermination of durangite, NaAl(AsO₄)F. Acta Crystallogr E. [https://doi.org/10.](https://doi.org/10.1107/S160053681204384X) [1107/S160053681204384X](https://doi.org/10.1107/S160053681204384X)
- Drábek M, Frýda J, Šarbach M, Skála R (2017) Hydroxycalciopyrochlore from a regionally metamorphic marble at Bližná, Southwestern Czech Republic. N Jb Miner Abh 194(1):49–59
- Driscoll RJP, Wolverson D, Mitchels JM, Skelton JM, Parker SC, Molinari M, Khan I, Geeson D, Allen GC (2014) A Raman spectroscopic study of uranyl minerals from Cornwall, UK. RSC Adv 4 (103):59137–59149
- Du W, Han B, Clark SM, Wang Y, Liu X (2017) Raman spectroscopic study of synthetic pyrope–grossular garnets: structural implications. Phys Chem Minerals. <https://doi.org/10.1007/s00269-017-0908-z>
- Dubinina EV, Valizer PM (2011) Gorceixite: the first find in the Ilmenogorskii complex (Southern Urals). Doklady Earth Sci 439(1):961–963
- Dudik JM, Johnson CR, Asher SA (1985) UV Resonance Raman studies of acetone, acetamide, and Nmethylacetamide: models for the peptide bond. J Phys Chem 89(18):3805–3814
- Dul K, Koleżyński A, Sitarz M, Madej D (2015) Vibrational spectra of a baghdadite synthetic analogue. Vib Spectrosc 76:1–5
- Dultz W, Quilichini M, Scott JF, Lehmann G (1975) Phonon spectra of quartz isomorphs. Phys Rev B 11 (4):1648–1653
- Durand O (2006) Propriétés structurales et vibrationnelles des phases désordonnées dans le système $TeO_2-Bi_2O_3$. Dissertation, Université de Limoges. (in French)
- Durig JR, Lau KK, Nagarajan G, Walker M, Bragin J (1969) Vibrational spectra and molecular potential fields of mercurous chloride, bromide, and iodide. J Chem Phys 50(5):2130–2139
- Dutková E, Sayagués MJ, Briančin J, Zorkovská A, Bujňáková Z, Kováč J, Kováč J Jr, Baláž P, Ficeriová J (2016) Synthesis and characterization of $CuInS₂$ nanocrystalline semiconductor prepared by highenergy milling. J Mater Sci 51(4):1978–1984
- Dzhagan VM, Litvinchuk AP, Kruszynska M, Kolny-Olesiak J, Valakh MY, Zahn DR (2014) Raman scattering study of $Cu₃SnS₄$ colloidal nanocrystals. J Phys Chem C 118(47):27554–27558
- Echigo T, Kimata M (2008) Single-crystal X-ray diffraction and spectroscopic studies on humboldtine and lindbergite: weak Jahn–Teller effect of $Fe²⁺$ ion. Phys Chem Minerals 35(8):467–475
- Echigo T, Kimata M, Kyono A, Shimizu M, Hatta T (2005) Re-investigation of the crystal structure of whewellite $[Ca(C_2O_4)·H_2O]$ and the dehydration mechanism of caoxite [Ca(C₂O₄)⋅3H₂O]. Mineral Mag 69(1):77–88
- Echigo T, Kimata M, Maruoka T (2007) Crystal-chemical and carbon-isotopic characteristics of karpatite

 $(C_{24}H_{12})$ from the Picacho Peak Area, San Benito County, California: evidences for the hydrothermal formation. Am Mineral 92:1262–1269

- Eder SH, Gigler AM, Hanzlik M, Winklhofer M (2014) Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry. PLoS One 9(9): e107356. (12 pp)
- Edge A, Taylor HFW (1971) Crystal structure of thaumasite. Acta Cryst B27:594–601
- Edwards HG, Jorge Villar SE, Bishop JL, Bloomfield M (2004) Raman spectroscopy of sediments from the Antarctic dry valleys; an analogue study for exploration of potential paleolakes on Mars. J Raman Spectrosc 35(6):458–462
- Edwards HG, Villar SEJ, Jehlicka J, Munshi T (2005) FT– Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochim Acta A 61(10):2273–2280
- Edwards HG, Currie KJ, Ali HR, Villar SEJ, David AR, Denton J (2007) Raman spectroscopy of natron: shedding light on ancient Egyptian mummification. Anal Bioanal Chem 388(3):683–689
- Effenberger H, Pippinger T, Libowitzky E, Lengauer CL, Miletich R (2014) Synthetic norsethite, BaMg $(CO₃)₂$: revised crystal structure, thermal behaviour and displacive phase transition. Mineral Mag 78(7):1589–1612
- Efthimiopoulos I, Kemichick J, Zhou X, Khare SV, Ikuta D, Wang Y (2014) High-pressure studies of Bi2S3. J Phys Chem A 118(9):1713–1720
- El Mendili Y, Minisini B, Abdelouas A, Bardeau JF (2014) Assignment of Raman-active vibrational modes of tetragonal mackinawite: Raman investigations and ab initio calculations. RSC Adv 4 (49):25827–25834
- Elkhouni T, Colin CV, Strobel P, Salah AB, Amami M (2013) Effect of Ga substitution on the magnetic state of delafossite $CuCrO₂$ with antiferromagnetic triangular sublattice. J Superconduct Novel Magn 26 (6):2125–2134
- Elliott P (2010) Crystal chemistry of cadmium oxysalt and associated minerals from Broken Hill, New South Wales. Dissertation, University of Adelaide
- Elliott P, Kolitsch U, Giester G, Libowitzky E, McCammon C, Pring A, Burcj WD, Brugger J (2009) Description and crystal structure of a new mineral – plimerite, ZnFe^{3+} ₄(PO₄)₃(OH)₅ – the Zn-analogue of rockbridgeite and frondelite, from Broken Hill, New South Wales, Australia. Mineral Mag 73(1):131–148
- Elliott P, Giester G, Libowitzky E, Kolitsch U (2010) Description and crystal structure of liversidgeite, $Zn_6(PO_4)_4$ ⋅7H₂O, a new mineral from Broken Hill, New South Wales, Australia. Am Mineral 95 (2–3):397–404
- Elliott P, Kolitsch U, Willis AC, Libowitzky E (2013) Description and crystal structure of domerockite, $Cu₄(AsO₄)(AsO₃OH)(OH)₃·H₂O$, a new mineral from the Dome Rock Mine, South Australia. Mineral Mag 77(4):509–522
- El-Metwally N, Al Thani MJ (1989) Preparation and infrared spectra of $(Cu(O)(H_2O)_3)$ and $(Cu_2(O))$ $(C1)₂(H₂O)₂$ complexes formed in the reactions of Cu(II) salts with urea. J Phys Chem Solids 50 (2):183–186
- Engel G (1973) Infrarotspektroskopische und röntgenographische Untersuchungen von Bleihydroxylapatit, Bleioxyapatit und Bleialkaliapatiten. J Solid State Chem 6(2):286–292. (in German)
- English RB, Heyns AM (1984) An infrared, Raman, and single-crystal X-ray study of cesium hexafluorophosphate. J Crystallogr Spectrosc Res 14 (6):531–540
- Enholm Z (2016) Mineral chemistry and parageneses of oxyborates in metamorphosed Fe-Mn oxide deposits. Degree Project at the Department of Earth Sciences, Uppsala University
- Equeenuddin SM (2015) Occurrence of alpersite at Malanjkhand copper mine, India. Environ Earth Sci 73(7):3849–3853
- Errandonea D, Manjón FJ, Garro N, Rodríguez-Hernández P, Radescu S, Mujica A, Moñoz A, Tu CY (2008) Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4. Phys Rev B 78 (5):054116-1–054116-16
- Errandonea D, Muñoz A, Rodríguez-Hernández P, Gomis O, Achary SN, Popescu C, Patwe SJ, Tyagi AK (2016) High-pressure crystal structure, lattice vibrations, and band structure of BiSbO4. Inorg Chem 55:4958–4969
- Ertl A, Kolitsch U, Dyar MD, Meyer HP, Rossman GR, Henry DJ, Prem M, Ludwig T, Nasdala L, Lengauer CL, Tillmanns E, Niedermayr G (2015) Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities. Eur J Mineral. <https://doi.org/10.1127/ejm/2015/0027-2501>
- Escobar ME, Baran EJ (1982) Darstellung und Eigenschaften einiger neuer Arsenat-und Vanadat-Halogen-Apatite. Z anorg allg Chemie 489(1):139–146. (in German)
- Essehli R, El Bali B, Benmokhtar S, Fejfarová K, Dusek M (2009) Hydrothermal synthesis, structural and physico-chemical characterizations of two Nasicon phosphates: $M_{0.50}$ ^{II}Ti₂(PO₄)₃ (M = Mn, Co). Mater Res Bull 44(7):1502–1510
- Essehli R, El Bali B, Benmokhtar S, Fuess H, Svoboda I, Obbade S (2010) Synthesis, crystal structure and infrared spectroscopy of a new non-centrosymmetric mixed-anion phosphate $Na₄Mg₃(PO₄)₂(P₂O₇).$ Alloys Compd 493(1):654–660
- Etchepare J, Merían M, Kaplan P (1978) Vibrational normal modes of $SiO₂$. II. Cristobalite and tridymite. J Chem Phys 68(4):1531–1537
- Evrard C, Fouquet Y, Moëlo Y, Rinnert E, Etoubleau J, Langlade JA (2015) Tin concentration in hydrothermal sulphides related to ultramafic rocks along the Mid-Atlantic Ridge: a mineralogical study. Eur J Mineral 27(5):627–638
- Ezzaafrani M, Ennaciri A, Harcharras M, Capitelli F (2014) Spectroscopic and structural investigation of BaNaP3O9∙3H2O cyclotriphosphate. Phosphorus Sulfur Silicon Relat Elem 189(12):1841–1850. [https://doi.](https://doi.org/10.1080/10426507.2014.906419) [org/10.1080/10426507.2014.906419](https://doi.org/10.1080/10426507.2014.906419)
- Fakhfakh M, Madani A, Jouini N (2003) $A_3Nb_5O_{11}(PO_4)_2$ $(A = Tl, K, Na)$ compounds: synthesis, crystal and vibrational characterization, conductivity study. Mater Res Bull 38(7):1215–1226
- Falgayrac G, Sobanska S, Brémard C (2013) Heterogeneous microchemistry between $CdSO₄$ and $CaCO₃$ particles under humidity and liquid water. J Hazard Mater 248:415–423
- Falk M, Knop O (1977) Infrared studies of water in crystalline hydrates: K₂HgCl₄⋅H₂O. Can J Chem 55 (10):1736–1744
- Fan Y, Hua Li G, Yang L, Ming Zhang Z, Chen Y, You Song T, HuaFeng S (2005) Synthesis, crystal structure, and magnetic properties of a three-dimensional hydroxide sulfate: $Mn_5(SO_4)(OH)_8$. Eur J Inorg Chem 2005(16):3359–3364
- Fan X, Pan S, Hou X, Tian X, Han J (2010) Flux growth and morphology analysis of $\text{Na}_3\text{VO}_2\text{B}_6\text{O}_{11}$ crystals. J Cryst Growth 312(15):2263–2266
- Fan C, Wang L, Fan X, Zhang Y, Zhao L (2015) The mineralogical characterization of argentiancryptomelane from XiangguangMn-Ag deposit, North China. J Mineral Petrol Sci 110(5):214–223
- Fang Y, Ritter C, White T (2011) The crystal chemistry of $Ca_{10-y}(SiO_4)_3(SO_4)_3Cl_{2-x-2y}F_x$ ellestadite. Inorg Chem 50(24):12641–12650
- Fantini C, Tavares MC, Krambrock K, Moreira RL, Righi A (2014) Raman and infrared study of hydroxyl sites in natural uvite, fluor-uvite, magnesio-foitite, dravite and elbaite tourmalines. Phys Chem Minerals 41 (4):247–254
- Farmer VC, Fraser AR, Tait JM (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochim Cosmochim Acta 43(9):1417–1420
- Faulques E, Kalashnyk N, Massuyeau F, Perry DL (2015a) Spectroscopic markers for uranium (vi) phosphates: a vibronic study. RSC Adv 5(87):71219–71227
- Faulques E, Massuyeau F, Kalashnyk N, Perry DL (2015b) Application of Raman and photoluminescence spectroscopy for identification of uranium minerals in the environment. Spectrosc Eur 27(1):14–17
- Faulstich FR, Schnellrath J, De Oliveira LF, Scholz R (2013) Rockbridgeite inclusion in rock crystal from Galileia region, Minas Gerais, Brazil. Eur J Mineral 25(5):817–823
- Faulstich FRL, Ávila CA, Neumann R, Silveira VSL, Callegario LS (2016) Gahnite from the São João Del Reipegmatitic province, Minas Gerais, Brazil: chemical composition and genetic implications. Can Mineral 54(6):1385–1402
- Fendrich KV, Downs RT, Origlieri MJ (2016) Redetermination of ruizite, Ca_2Mn^{3+} ₂[Si₄O₁₁(OH)₂] (OH)2∙2H2O. Acta Crystallogr E72(7):959–963
- Feng XH, Tan WF, Liu F, Wang JB, Ruan HD (2004) Synthesis of todorokite at atmospheric pressure. Chem Mater 16(22):4330–4336
- Feng L, Lin Y, Hu S, Xu L, Miao B (2011) Estimating compositions of natural ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra. Am Mineral 96(10):1480–1489
- Feng J-H, Hu C-L, Xu X, Kong F, Mao J-G (2015a) $Na₂RE₂TeO₄(BO₃)₂$ (RE = Y, Dy–Lu): luminescent and structural studies on a series of mixed metal borotellurates. Inorg Chem 54(5):2447–2454
- Feng L-L, Li G-D, Liu Y, Wu Y, Chen H, Wang Y, Zou Y-C, Wang D, Zou X (2015b) Carbon-armored $Co₉S₈$ nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl Mater Interfaces 7(1):980–988
- Feng Y, Zhou W, Wang Y, Zhou J, Liu E, Fu Y, Ni Z, Wu X, Yuan H, Miao F, Wang B, Wan X, Xing D (2015c) Raman vibrational spectra of bulk to monolayer ReS_2 with lower symmetry. Phys Rev B 92 (5):054110-1–054110-6
- Fenske F, Lange H, Oertel G, Reinsperger GU, Schumann J, Selle B (1996) Characterization of semiconducting silicide films by infrared vibrational spectroscopy. Mater Chem Phys 43(3):238–242
- Ferdov S, Lin Z, Ferreira RAS, Correia MR (2008) Hydrothermal synthesis, structural, and spectroscopic studies of vanadium substituted ETS-4. Micropor Mesopor Mater 110(2):436–441
- Férid M, Horchani-Naifer K (2004) Synthesis, crystal structure and vibrational spectra of a new form of diphosphate $NaLaP₂O₇$. Mater Res Bull 39 (14):2209–2217
- Fermo P, Padeletti G (2012) The use of nano-particles to produce iridescent metallic effects on ancient ceramic objects. J Nanosci Nanotechnol 12(11):8764–8769
- Fernandes PA, Salomé PMP, Da Cunha AF (2010) Cu_xSnS_{x+1} ($x = 2, 3$) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering. Phys Status Solidi C 7(3–4):901–904
- Fernandez JRL, de Souza-Parise M, Morais PC (2015) Structural characterization and simulation of colloidal MnS. Mater Res Express 2(9):095019. (5 pp)
- Ferrari AM, Valenzano L, Meyer A, Orlando R, Dovesi R (2009) Quantum-mechanical ab initio simulation of the Raman and IR spectra of $Fe₃Al₂Si₃O₁₂$ almandine. J Phys Chem A 113(42):11289–11294
- Ferraris C, Parodi GC, Pont S, Rondeau B, Lorand JP (2014) Trinepheline and fabriesite: two new mineral species from the jadeite deposit of Tawmaw (Myanmar). Eur J Mineral 26(2):257–265
- Ferras Y, Robertson J, Swedlund PJ (2016) The application of Raman spectroscopy to probe the association of H4SiO4 with iron oxides. Aquat Geochem. [https://doi.](https://doi.org/10.1007/s10498-016-9294-2) [org/10.1007/s10498-016-9294-2](https://doi.org/10.1007/s10498-016-9294-2)
- Ferrero S, Ziemann MA, Angel RJ, O'Brien PJ, Wunder B (2016) Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not an

evidence for ultrahigh-pressure conditions. Contrib Mineral Petrol 171(1):1–12

- Ferroir T, Beck P, Van de Moortèle B, Bohn M, Reynard B, Simionovici A, El Goresy A, Gillet P (2008) Akimotoite in the Tenham meteorite: crystal chemistry and high-pressure transformation mechanisms. Earth Planet Sci Lett 275(1):26–31
- Filipek E, Walczak J, Tabero P (1998) Synthesis and some properties of the phase $Cr_2V_4O_{13}$. J Alloys Compd 265 (1):121–124
- Filippi M, Doušová B, Machovič V (2007) Mineralogical speciation of arsenic in soils above the Mokrsko-west gold deposit, Czech Republic. Geoderma 139 (1):154–170
- Fillaux F, Lautié A, Tomkinson J, Kearley GJ (1991) Proton transfer dynamics in the hydrogen bond. Inelastic neutron scattering, infrared and Raman spectra of $Na₃H(SO₄)₂$, $K₃H(SO₄)₂$ and $Rb₃H(SO₄)₂$. Chem Phys 154(1):135–144
- Finger LW, Hazen RM, Hemley RJ (1989) BaCuSi₂O₆: a new cyclosilicate with four-membered tetrahedral rings. Am Mineral 74:952–955
- Fintor K, Walter H, Nagy S (2013) Petrographic and micro-Raman analysis of chondrulesand (Ca,Al)-rich inclusions of NWA 2086 CV3 type carbonaceous chondrite. 44th Lunar Planetary Sci Conf 44:1152
- Fintor K, Park C, Nagy S, Pál-Molnár E, Krot AN (2014) Hydrothermal origin of hexagonal $CaAl₂Si₂O₈$ (dmisteinbergite) in a compact type A CAI from the Northwest Africa 2086 CV3 chondrite. Meteorit Planet Sci 49(5):812–823
- Fischer H-H (2007) Beitrage zur Kristallchemie der Carbonate und Isonicotinate. Dissertation, Universität zu Köln. (in German)
- Fitouri I, Falah C, Boughzala H (2015) Synthesis, infrared (IR) spectroscopy and single crystal structural study of a new arsenate $Cs_7Fe_7O_2(AsO_4)_8$. J Chem Crystallogr 45(5):231–237
- Fleet ME, Henderson GS (1997) Structure-composition relations and Raman spectroscopy of high-pressure sodium silicates. Phys Chem Minerals 24(5):345–355
- Fomichev VV, Kondratov OI (1994) Vibrational spectra of compounds with the wolframite structure. Spectrochim Acta A 50(6):1113–1120
- Fontana MD, Idrissi H, Kugel GE, Wojcik K (1991) Raman spectrum in $PbTiO₃$ re-examined: dynamics of the soft phonon and the central peak. J Phys Conden Matter 3(44):8695–8705
- Fontané X, Izquierdo-Roca V, Saucedo E, Schorr S, Yukhymchuk VO, Valakh MY, Pérez-Rodríguez A, Morante JR (2012) Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu₂(Fe,Zn)SnS₄. J Alloys Compd 539:190-194
- Fontané X, Izquierdo-Roca V, Fairbrother A, Espíndola-Rodríguez M, López-Marino S, Placidi M, Jawhari T, Saucedo E, Pérez-Rodríguez A (2013) Selective detection of secondary phases in $Cu₂ZnSn(S,Se)₄$ based absorbers by pre-resonant Raman spectroscopy. Proceedings of the IEEE 39th Photovoltaic Specialists

Conference. [https://doi.org/10.1109/PVSC.2013.](https://doi.org/10.1109/PVSC.2013.6745001) [6745001](https://doi.org/10.1109/PVSC.2013.6745001)

- Forbes P, Dubessy J (1988) Characterization of fresh and altered montroseite [V,Fe]OOH. A discussion of alteration processes. Phys Chem Minerals 15(5):438–445
- Forneris R (1969) Infrared and Raman spectra of realgar and orpiment. Am Mineral 54(7–8):1062–1074
- Fornero E, Allegrina M, Rinaudo C, Mazziotti-Tagliani S, Gianfagna A (2008) Micro-Raman spectroscopy applied on oriented crystals of fluoro-edenite amphibole. Per Mineral 77(2):5–14
- Forray FL, Smith AML, Navrotsky A, Wright K, Hudson-Edwards KA, Dubbin WE (2014) Synthesis, characterization and thermochemistry of synthetic Pb–As, Pb– Cu and Pb–Zn jarosites. Geochim Cosmochim Acta 127:107–119
- Fowler-Gerace N (2014) Textural and geochemical investigation of springwater pallasite olivine. Dissertation, University of Toronto
- Frech R, Wang EC, Bates JB (1980) The i.r. and Raman spectra of $CaCO₃$ (aragonite). Spectrochim Acta 36A:915–919
- Fresno F, Jana P, Reñones P, Coronado JM, Serrano DP, de la Peña O'Shea VA (2016) CO₂ reduction over $NaNbO₃$ and $NaTaO₃$ perovskite photocatalysts. Photochem Photobiol Sci. [https://doi.org/10.1039/](https://doi.org/10.1039/C6PP00235H) [C6PP00235H](https://doi.org/10.1039/C6PP00235H)
- Freund GA, Kirby RD, Sellmyer DJ (1977) Raman scattering from pyrite structure AuSb₂. Solid State Commun 22(1):5–7
- Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Exploration 112:1–20
- Friedrich A, Winkler B, Morgenroth W, Perlov A, Milman V (2015) Pressure-induced spin collapse of octahedrally coordinated Mn^{3+} in the tetragonal hydrogarnet henritermierite $Ca₃Mn₂[SiO₄]₂[O₄H₄].$ Phys Rev B 92 (1):014117-01–014117-11
- Friis H, Weller MT, Kampf AR (2016) Hansesmarkite, $Ca₂Mn₂Nb₆O₁₉$ (20H₂O, a new hexaniobate from a syenite pegmatite in the Larvik Plutonic Complex, southern Norway. Mineral Mag. [https://doi.org/10.](https://doi.org/10.1180/minmag.2016.080.109) [1180/minmag.2016.080.109](https://doi.org/10.1180/minmag.2016.080.109)
- Frost RL (1995) Fourier transform Raman spectroscopy of kaolinite, dickite and halloysite. Clays Clay Minerals 43(2):191–195
- Frost RL (2004a) An infrared and Raman spectroscopic study of natural zinc phosphates. Spectrochim Acta A 60(7):1439–1445
- Frost RL (2004b) An infrared and Raman spectroscopic study of the uranyl micas. Spectrochim Acta A 60 (7):1469–1480
- Frost RL (2004c) Raman microscopy of selected chromate minerals. J Raman Spectrosc 35(2):153–158
- Frost RL (2004d) Raman spectroscopy of natural oxalates. Analyt Chim Acta 517(1):207–214
- Frost RL (2006) A Raman spectroscopic study of selected minerals of the rosasite group. J Raman Spectrosc 37 (9):910–921
- Frost RL (2009a) Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups. Spectrochim Acta A 71(5):1788–1794
- Frost RL (2009b) Tlapallite $H_6(Ca,Pb)_2(Cu,$ $Zn)$ ₃SO₄(TeO₃)₄TeO₆, a multi-anion mineral: a Raman spectroscopic study. Spectrochim Acta A 72 (4):903–906
- Frost RL (2011a) Raman spectroscopic study of the uranyl titanate mineral holfertite $\text{CavU}_{2-x}\text{Ti}(\text{O}_{8-x}\text{OH}_{4x})$ ∙3H2O and the lack of metamictization. Radiat Effects Defects Solids 166(1):24–29
- Frost RL (2011b) Raman spectroscopy of selected borate minerals of the pinakiolite group. J Raman Spectrosc 42(3):540–543
- Frost RL (2011c) A Raman spectroscopic study of copiapites $Fe^{2+}Fe^{3+}{}_{4} (SO_4)_6 (OH)_2 \cdot 20H_2 O$: environmental implications. J Raman Spectrosc 42(5):1130–1134
- Frost RL (2011d) Raman spectroscopic study of the magnesium carbonate mineral hydromagnesite (Mg5[(CO3)4(OH)2]∙4H2O). J Raman Spectrosc 42 (8):1690–1694
- Frost RL, Bahfenne S (2009) Raman and mid-IR spectroscopic study of the magnesium carbonate minerals – brugnatellite and coalingite. J Raman Spectrosc 40 (4):360–365
- Frost RL, Bahfenne S (2010a) Raman spectroscopic study of the antimonate mineral brizziite NaSbO₃. Radiat Effects Defects Solids Incorp Plasma Sci Plasma Technol 165(3):206–210
- Frost RL, Bahfenne S (2010b) Thermal analysis and Hot-stage Raman spectroscopy of the basic copper arsenate mineral euchroite. J Therm Anal Calorim 100(1):89–94
- Frost RL, Bahfenne S (2010c) Raman spectroscopi study of the antimonate mineral bahianite Al_5Sb^{5+} ₃ O14(OH)2. J Raman Spectrosc 41(2):207–211
- Frost RL, Bahfenne S (2010d) Raman spectroscopic study of the arsenite minerals leiteite $ZnAs₂O₄$, reinerite $Zn_3(AsO_3)$ and cafarsite $Ca_5(Ti)$, Even, Mn)7(AsO3)12∙4H2O. J Raman Spectrosc 41(3):325–328
- Frost RL, Bahfenne S (2010e) Raman spectroscopic study of the antimonate mineral bottinoite $Ni[₂(OH)₁₂]$ \cdot 6H₂O and in comparison with brandholzite Mg[Sb³⁺₂ (OH)12]∙6H2O. J Raman Spectrosc 41(10):1353–1356
- Frost RL, Bahfenne S (2010f) A Raman spectroscopic study of the mineral coquandite $Sb_6O_8(SO_4)$ ⋅ (H_2O) . Spectrochim Acta A 75(2):852–854
- Frost RL, Bahfenne S (2011a) The Mineral Nealite Pb_4Fe^2 + (AsO3)2Cl4∙2H2O – a Raman spectroscopic study. Spectrosc Lett 44(1):22–26
- Frost RL, Bahfenne S (2011b) Raman spectroscopic study of the mineral thorikosite $Pb_3(OH)(SbO_3, AsO_3)Cl_2$: a mineral of archaeological significance. Spectrosc Lett 44:63–66
- Frost RL, Bahfenne S (2011c) A Raman spectroscopic study of the antimony mineral klebelsbergite $Sb_4O_4(OH)_2(SO_4)$. J Raman Spectrosc 42 (2):219–223
- Frost RL, Bouzaid JM (2007) Raman spectroscopy of dawsonite NaAl(CO3)(OH)2. J Raman Spectrosc 38:873–879
- Frost RL, Čejka J (2009a) Raman spectroscopic study of the uranyl phosphate mineral dumontite Pb₂[(UO₂)₃O₂(PO₄)₂]∙5H₂O. J Raman Spectrosc 40 (6):591–594
- Frost RL, Čejka J (2009b) A Raman spectroscopic study of the uranyl mineral rutherfordine – revisited. J Raman Spectrosc 40(9):1096–1103
- Frost RL, Dickfos MJ (2007a) Raman spectroscopy of halogen-containing carbonates. J Raman Spectrosc 38 (11):1516–1522
- Frost RL, Dickfos M (2007b) Hydrated double carbonates – a Raman and infrared spectroscopic study. Polyhedron 26(15):4503–4508
- Frost RL, Dickfos MJ (2008) Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite. Spectrochim Acta A 71 (1):143–146
- Frost RL, Dickfos MJ (2009) Raman spectroscopic study of the tellurite minerals: mackayite and quetzalcoatlite. Spectrochim Acta A 72(2):445–448
- Frost RL, Erickson KL (2004) Vibrational spectroscopy of stichtite. Spectrochim Acta A 60(13):3001–3005
- Frost RL, Erickson KL (2005) Raman spectroscopic study of the hydrotalcite desautelsite Mg6Mn2CO3(OH)16∙4H2O. Spectrochim Acta A 61 (11):2697–2701
- Frost RL, Keeffe EC (2008a) Raman spectroscopic study of the schmiederite Pb₂Cu₂[(OH)₄|SeO₃|SeO₄]. J Raman Spectrosc 39(10):1408–1412
- Frost RL, Keeffe EC (2008b) Raman spectroscopic study of the selenite minerals – chalcomenite $CuSeO₃·2H₂O$, clinochalcomenite and cobaltomenite. J Raman Spectrosc 39(12):1789–1793
- Frost RL, Keeffe EC (2008c) Raman spectroscopic study of the tellurite mineral: poughite Fe^3 ⁺₂SO₄(TeO₃)₂⋅3H₂O – a multi-anion mineral. J Raman Spectrosc 39(12):1794–1798
- Frost RL, Keeffe EC (2009a) Raman spectroscopic study of the selenite mineral mandarinoite Fe₂Se₃O₉⋅6H₂O. J Raman Spectrosc 40(1):42–45
- Frost RL, Keeffe EC (2009b) Raman spectroscopic study of the tellurite minerals: graemite CuTeO3∙H2O and teineite CuTeO3∙2H2O. J Raman Spectrosc 40 (2):128–132
- Frost RL, Keeffe EC (2009c) Raman spectroscopic study of the tellurite mineral: sonoraite $Fe^{3+}Te^{4+}O_3(OH)$ ∙H2O. J Raman Spectrosc 40(2):133–136
- Frost RL, Keeffe EC (2009d) Raman spectroscopic study of the sulfite-bearing minerals scotlandite, hannebachite and orschallite: implications for the desulfation of soils. J Raman Spectrosc 40 (3):244–248
- Frost RL, Keeffe EC (2009e) Raman spectroscopic study of kuranakhite PbMn⁴⁺Te⁶⁺O₆ – a rare tellurate mineral. J Raman Spectrosc 40(3):249–252
- Frost RL, Keeffe EC (2009f) Raman spectroscopic study of the selenite mineral: ahlfeldite, NiSeO₃⋅2H₂O. J Raman Spectrosc 40(5):509–512
- Frost RL, Keeffe EC (2009g) Raman spectroscopic study of the metatellurate mineral: xocomecatlite Cu3TeO4(OH)4. J Raman Spectrosc 40(8):866–869
- Frost RL, Keeffe EC (2009h) Raman spectroscopic study of the mixed anion mineral yecoraite $Bi_5Fe_3O_9(Te^4)$ ${}^{+}O_{3}$)(Te⁶⁺O₄)₂⋅9H₂O. J Raman Spectrosc 40 (9):1117–1120
- Frost RL, Keeffe EC (2009i) Raman spectroscopic study of the tellurite mineral: rodalquilarite $H_3Fe^{3+}{}_{2}(Te^{4})$ + O3)4Cl. Spectrochim Acta A 73(1):146–149
- Frost RL, Keeffe EC (2011) The mixed anion mineral parnauite Cu₉[(OH)₁₀|SO₄|(AsO₄)₂]∙7H₂O – a Raman spectroscopic study. Spectrochim Acta A 81 (1):111–116
- Frost RL, Kloprogge JT (2001) Raman microscopy study of kalinite, tschermigite and lonecreekite at 298 and 77 K. N Jb Miner Mh 1:27–40
- Frost RL, Kloprogge JT (2003) Raman spectroscopy of some complex arsenate minerals – implications for soil remediation. Spectrochim Acta A 59(12):2797–2804
- Frost RL, Palmer SJ (2011a) A vibrational spectroscopic study of the mineral corkite $PbFe^{3+}{}_{3}(PO_4, SO_4)_{2}(OH)_{6}$. J Molec Struct 988(1):47–51
- Frost RL, Palmer SJ (2011b) Molecular structure of the mineral svanbergite $SrAl₃(PO₄, SO₄)₂(OH)₆ - a vibra$ tional spectroscopic study. J Molec Struct 994 (1):232–237
- Frost RL, Palmer SJ (2011c) Raman spectroscopic study of pascoite Ca₃V⁵⁺₁₀O₂₈⋅17H₂O. Spectrochim Acta A 78(1):248–252
- Frost RL, Palmer SJ (2011d) A Raman and infrared spectroscopic study of the mineral delvauxite CaFe³⁺₄(PO₄, SO4)2(OH)8∙4-6H2O – a 'colloidal' mineral. Spectrochim Acta A 78(4):1250–1254
- Frost RL, Palmer SJ (2011e) Vibrational spectroscopic study of the mineral tsumebite $Pb_2Cu(PO_4, SO_4)(OH)$. Spectrochim Acta A 79(5):1794–1797
- Frost RL, Palmer SJ (2011f) Raman spectroscopic study of the minerals diadochite and destinezite $Fe³⁺₂(PO₄)$ SO4)2(OH)∙6H2O: implications for soil science. J Raman Spectrosc 42(7):1589–1595
- Frost RL, Palmer SJ (2011g) Raman spectrum of decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5∙2H2O] and its relation with those of other halogenated carbonates including bastnasite, hydroxybastnasite, parisite and northupite. J Raman Spectrosc 42 (11):2042–2048
- Frost RL, Palmer SJ (2011h) A vibrational spectroscopic study of the mixed anion mineral sanjuanite $Al_2(PO_4)$
(SO₄)(OH)·9H₂O. Spectrochim Acta A 79 (SO4)(OH)∙9H2O. Spectrochim Acta A 79 (5):1210–1214
- Frost RL, Pinto C (2007) Raman spectroscopy of the joaquinite minerals. J Raman Spectrosc 38(7):841–845
- Frost RL, Reddy BJ (2010) Raman spectroscopic study of the uranyl titanate mineral betafite $(Ca, U)_{2}(Ti,$ $Nb₂O₆(OH)$ (OH): effect of metamictization. Radiat Effects Defects Solids Incorp Plasma Sci Plasma Technol 165(11):868–875
- Frost RL, Reddy BJ (2011a) Raman spectroscopic study of the uranyl titanate mineral brannerite $(U,Ca,Y,Ce)_{2}(Ti,$ Fe)2O6: effect of metamictisation. J Raman Spectrosc 42(4):691–695
- Frost RL, Reddy BJ (2011b) The effect of metamictization on the Raman spectroscopy of the uranyl titanate mineral davidite $(La, Ce)(Y, U, Fe^{2+})(Ti, Fe^{3+})_{20}(O, OH)_{38}.$ Radiat Effects Defects Solids 166(2):131–136
- Frost RL, Rintoul L (1996) Lattice vibrations of montmorillonite: an FT Raman and X-ray diffraction study. Appl Clay Sci 11(2):171–183
- Frost RL, Weier ML (2003) Raman spectroscopy of natural oxalates at 298 and 77 K. J Raman Spectrosc 34 (10):776–785
- Frost RL, Weier ML (2004a) The 'cave' mineral oxammite – a high resolution thermogravimetry and Raman spectroscopic study. N Jb Miner Mh 1:27–48
- Frost RL, Weier ML (2004b) Vibrational spectroscopy of natural augelite. J Molec Struct 697(1–3):207–211
- Frost RL, Weier M (2004c) Raman microscopy of selected autunite minerals. N Jb Miner Mh 2004(12):575–594
- Frost RL, Weier M (2004d) Raman microscopy of autunite minerals at liquid nitrogen temperature. Spectrochim Acta A 60(10):2399–2409
- Frost RL, Weier M (2004e) Raman and infrared spectroscopy of tsumcorite mineral group. N Jb Miner Mh 2004(7):317–336
- Frost RL, Weier M (2006) Raman and infrared spectroscopy of the manganese arsenate mineral allactite. Spectrochim Acta A 65:623–627
- Frost RL, Williams PA (2004) Raman spectroscopy of some basic chloride containing minerals of lead and copper. Spectrochim Acta A 60(8):2071–2077
- Frost RL, Xi Y (2012a) Raman spectroscopy of selected tsumcorite $Pb(Zn,Fe^{3+})_2(AsO_4)_2(OH,H_2O)$ minerals – implications for arsenate accumulation. Spectrochim Acta A 86:224–230
- Frost RL, Xi Y (2012b) Raman spectroscopic study of the mineral shattuckite $Cu₅(SiO₃)₄(OH)₂$. Spectrochim Acta A 87:241–244
- Frost RL, Xi Y (2012c) Vibrational spectroscopic study of the copper silicate mineral kinoite $Ca_2Cu_2Si_3O_{10}(OH)_4$. Spectrochim Acta A 89:88–92
- Frost RL, Xi Y (2012d) A vibrational spectroscopic study of plancheite Cu₈Si₈O₂₂(OH)₄⋅H₂O. Spectrochim Acta A 91:314–318
- Frost RL, Xi Y (2012e) Whelanite $Ca_5Cu_2(OH)_2CO_3$, $Si₆O₁₇·4H₂O$ – a vibrational spectroscopic study. Spectrochim Acta A 91:319–323
- Frost RL, Xi Y (2012f) Vibrational spectroscopy and solubility study of the mineral stringhamite CaCuSiO4∙H2O. Spectrochim Acta A 91:324–328
- Frost RL, Xi Y (2012g) Vibrational spectroscopic study of the mineral creaseyite Cu₂Pb₂(Fe,Al)₂(Si₅O₁₇)∙6H₂O – a zeolite mineral. Spectrochim Acta A 94:6–11
- Frost RL, Xi Y (2012h) Vibrational spectroscopic study of the minerals cavansite and pentagonite $Ca(V^{4+}O)$ Si4O10∙4H2O. Spectrochim Acta A 95:263–269
- Frost RL, Xi Y (2012i) Raman spectroscopy of the borate mineral ameghinite $NaB_3O_3(OH)_4$. Spectrochim Acta A 96:89–94
- Frost RL, Xi Y (2012j) Assessment of the molecular structure of the borate mineral sakhaite

 $Ca_{12}Mg_4(BO_3)_7(CO_3)_4Cl(OH)_2·H_2O$ using vibrational spectroscopy. Spectrochim Acta A 96:611–616

- Frost RL, Xi Y (2012k) Raman spectroscopic study of the copper silicate mineral apachite Cu9Si10O29∙11H2O. Spectrosc Lett 45(8):575–580
- Frost RL, Xi Y (2012l) Molecular structure of the phosphate mineral brazilianite $NaAl₃(PO₄)₂(OH)₄ - a semi$ precious jewel. J Molec Struct 1010:179–183
- Frost RL, Xi Y (2012m) Vibrational spectroscopic study of the copper silicate mineral ajoite (K,Na) Cu7AlSi9O24(OH)6∙3H2O. J Molec Struct 1018:72–77
- Frost RL, Xi Y (2012n) Vibrational spectroscopic study of the minerals nekoite $Ca₃Si₆O₁₅·7H₂O$ and okenite $Ca₁₀Si₁₈O₄₆·18H₂O$ – implications for the molecular structure. J Molec Struct 1020:96–104
- Frost RL, Xi Y (2012o) Raman spectroscopic study of the minerals apophyllite-(KF) $KCa_4Si_8O_{20}F·8H_2O$ and
apophyllite-(KOH) $KCa_4Si_8O_{20}(F,OH)·8H_2O$. J $KCa₄Si₈O₂₀(F,OH)·8H₂O.$ J Molec Struct 1028:200–207
- Frost RL, Xi Y (2013a) Is chrysocolla (Cu, Al)2H2Si2O5(OH)4∙nH2O related to spertiniite Cu $(OH)₂$? – a vibrational spectroscopic study. Vib Spectrosc 64:33–38
- Frost RL, Xi Y (2013b) Vibrational spectroscopic study of the mineral penkvilksite $Na₂TiSi₄O₁₁·2H₂O - a min$ eral used for the uptake of radionuclides. Radiat Effects Defects Solids 168(1):72–79
- Frost RL, Xi Y (2013c) Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂. Spectrochim Acta A 103:151–155
- Frost RL, Xi Y (2013d) A vibrational spectroscopic study of the so-called healing mineral papagoite CaCuAlSi₂O₆(OH)₃. Spectrosc Lett $46(5):344-349$
- Frost RL, Xi Y (2013e) Vibrational spectroscopy of the borate mineral henmilite $Ca_2Cu[B(OH)_4]_2(OH)_4$. Spectrochim Acta A 103:356–360
- Frost RL, Xi Y (2014) Vibrational spectroscopy of the borate mineral pinnoite $MgB_2O(OH)_6$. Spectrochim Acta A 117:428–433
- Frost RL, Fredericks PM, Bartlett JR (1993) Fourier transform Raman spectroscopy of kandite clays. Spectrochim Acta A 49(5):667–674
- Frost RL, Kristof J, Rintoul L, Kloprogge JT (2000) Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K. Spectrochim Acta A 56 (9):1681–1691
- Frost RL, Williams PA, Kloprogge JT, Leverett P (2001) Raman spectroscopy of descloizite and mottramite at 298 and 77 K. J Raman Spectrosc 32 (11):906–911
- Frost RL, Kloprogge T, Williams PA, Martens W, Johnson TE, Leverett P (2002a) Vibrational spectroscopy of the basic copper phosphate minerals: pseudomalachite, ludjibaite and reichenbachite. Spectrochim Acta A 58 (13):2861–2868
- Frost RL, Martens W, Kloprogge JT, Williams PA (2002b) Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of

archaeological significance. J Raman Spectrosc 33 (10):801–806

- Frost RL, Martens WN, Kloprogge T, Williams PA (2002c) Vibrational spectroscopy of the basic manganese and ferric phosphate minerals: strunzite, ferrostrunzite and ferristrunzite. N Jb Miner Mh 2002 (11):481–496
- Frost RL, Martens WN, Rintoul L, Mahmutagic E, Kloprogge JT (2002d) Raman spectroscopic study of azurite and malachite at 298 and 77 K. J Raman Spectrosc 33(4):252–259
- Frost RL, Martens WN, Williams PA (2002e) Raman spectroscopy of the phase-related basic copper arsenate minerals olivenite, cornwallite, cornubite and clinoclase. J Raman Spectrosc 33(6):475–484
- Frost RL, Martens W, Williams PA, Kloprogge JT (2002f) Raman and infrared spectroscopic study of the vivianite-group phosphates vivianite, baricite and bobierrite. Mineral Mag 66(6):1063–1073
- Frost RL, Williams PA, Martens W, Kloprogge JT, Leverett P (2002g) Raman spectroscopy of the basic copper phosphate minerals cornetite, libethenite, pseudomalachite, reichenbachite and ludjibaite. J Raman Spectrosc 33(4):260–263
- Frost RL, Crane M, Williams PA, Kloprogge JT (2003a) Isomorphic substitution in vanadinite $[Pb₅(VO₄)₃Cl]$ – a Raman spectroscopic study. J Raman Spectrosc 34 (3):214–220
- Frost RL, Duong L, Martens W (2003b) Molecular assembly in secondary minerals – Raman spectroscopy of the arthurite group species arthurite and whitmoreite. N Jb Miner Mh 2003(5):223–240
- Frost RL, Erickson KL, Weier ML, Mills S (2003c) Raman spectroscopy of the phosphate minerals: cacoxenite and gormanite. Asian Chem Lett 7 (4):197–203
- Frost RL, Kloprogge JT, Williams PA (2003e) Raman spectroscopy of lead sulphate-carbonate minerals – implications for hydrogen bonding. N Jb Miner Mh 2003(12):529–542
- Frost RL, Martens W, Kloprogge JT, Ding Z (2003f) Raman spectroscopy of selected lead minerals of environmental significance. Spectrochim Acta A 59 (12):2705–2711
- Frost RL, Martens W, Williams PA, Kloprogge JT (2003g) Raman spectroscopic study of the vivianite arsenate minerals. J Raman Spectrosc 34(10): 751–759
- Frost RL, Weier ML, Kloprogge JT (2003h) Raman spectroscopy of some natural hydrotalcites with sulphate and carbonate in the interlayer. J Raman Spectrosc 34 (10):760–768
- Frost RL, Williams PA, Kloprogge JT, Martens W (2003i) Raman spectroscopy of the copper chloride minerals nantokite, eriochalcite and claringbullite – implications for copper corrosion. N Jb Miner Mh 2003 (10):433–445
- Frost RL, Williams PA, Martens W (2003j) Raman spectroscopy of the minerals boleite, cumengeite,

diaboleite and phosgenite – implications for the analysis of cosmetics of antiquity. Mineral Mag 67 (1):103–111

- Frost RL, Yang J, Ding Z (2003k) Raman and FTIR spectroscopy of natural oxalates: implications for the evidence of life on Mars. Chin Sci Bull 48 (17):1844–1852
- Frost RL, Adebajo M, Weier ML (2004a) A Raman spectroscopic study of thermally treated glushinskite – the natural magnesium oxalate dihydrate. Spectrochim Acta A 60(3):643–651
- Frost RL, Carmody O, Erickson KL, Weier ML, Čejka J (2004b) Molecular structure of the uranyl mineral andersonite – a Raman spectroscopic study. J Molec Struct 703(1):47–54
- Frost RL, Duong L, Weier M (2004c) Raman microscopy of the molybdate minerals koechlinite, iriginite and lindgrenite. N Jb Miner Abh 180(3):245–260
- Frost RL, Duong L, Weier M (2004d) Raman microscopy of selected tungstate minerals. Spectrochim Acta A 60 (8):1853–1859
- Frost RL, Erickson KL, Weier ML (2004e) Hydrogen bonding in selected vanadates: a Raman and infrared spectroscopy study. Spectrochim Acta A 60 (10):2419–2423
- Frost RL, Erickson KL, Weier ML, McKinnon AR, Williams PA, Leverett P (2004f) Effect of the lanthanide ionic radius on the Raman spectroscopy of lanthanide agardite minerals. J Raman Spectrosc 35 (11):961–966
- Frost RL, Henry DA, Erickson K (2004g) Raman spectroscopic detection of wyartite in the presence of rabejacite. J Raman Spectrosc 35(4):255–260
- Frost RL, Leverett P, Williams PA, Weier ML, Erickson KL (2004h) Raman spectroscopy of gerhardtite at 298 and 77 K. J Raman Spectrosc 35(11):991–996
- Frost RL, Martens W, Kloprogge JT (2004i) Synthetic deuterated erythrite – a vibrational spectroscopic study. Spectrochim Acta A 60(1):343–349
- Frost RL, Mills SJ, Erickson KL (2004j) Thermal decomposition of peisleyite: a thermogravimetry and hot stage Raman spectroscopic study. Thermochim Acta 419(1):109–114
- Frost RL, Weier ML, Adebajo MO (2004k) Thermal decomposition of metazeunerite – a high-resolution thermogravimetric and hot-stage Raman spectroscopic study. Thermochim Acta 419(1):119–129
- Frost RL, Weier ML, Erickson KL, Carmody O, Mills S (2004l) Raman spectroscopy of phosphates of the variscite mineral group. J Raman Spectrosc 35 (12):1047–1055
- Frost RL, Weier M, Lyon WG (2004m) Metavivianite an intermediate mineral phase between vivianite, and ferro/ferristrunzite – a Raman spectroscopic study. N Jb Miner Mh 2004(5):228–240
- Frost RL, Williams PA, Martens W, Leverett P, Kloprogge JT (2004n) Raman spectroscopy of basic copper (II) and some complex copper (II) sulfate minerals: implications for hydrogen bonding. Am Mineral 89 (7):1130–1137
- Frost RL, Adebajo MO, Erickson KL (2005a) Raman spectroscopy of synthetic and natural iowaite. Spectrochim Acta A 61(4):613–620
- Frost RL, Carmody O, Erickson KL, Weier ML, Henry DO, Čejka J (2005b) Molecular structure of the uranyl mineral uranopilite – a Raman spectroscopic study. J Molec Struct 733(1):203–210
- Frost RL, Čejka J, Weier ML, Martens W, Henry DA (2005c) Vibrational spectroscopy of selected natural uranyl vanadates. Vib Spectrosc 39(2):131–138
- Frost RL, Erickson KL, Weier ML, Carmody O (2005d) Raman and infrared spectroscopy of selected vanadates. Spectrochim Acta A 61(5):829–834
- Frost RL, Erickson KL, Čejka J, Reddy BJ (2005e) A Raman spectroscopic study of the uranyl sulphate mineral johannite. Spectrochim Acta A 61(11):2702–2707
- Frost R, Erickson K, Kloprogge T (2005f) Vibrational spectroscopic study of the nitrate containing hydrotalcite mbobomkulite. Spectrochim Acta A 61:2919–2925
- Frost RL, Erickson KL, Weier ML, Carmody O, Čejka J (2005g) Raman spectroscopic study of the uranyl tricarbonate mineral liebigite. J Molec Struct 737 (2):173–181
- Frost RL, Erickson KL, Weier ML, Leverett P, Williams PA (2005h) Raman spectroscopy of likasite at 298 and 77 K. Spectrochim Acta A 61(4):607–612
- Frost RL, Weier ML, Bostrom T, Čejka J, Martens W (2005i) Molecular structure of the uranyl mineral zippeite – an XRD, SEM and Raman spectroscopic study. N Jb Miner Abh 181(3):271–280
- Frost RL, Weier ML, Martens WN, Henry DA, Mills SJ (2005j) Raman spectroscopy of newberyite, hannayite and struvite. Spectrochim Acta A 62(1):181–188
- Frost RL, Weier ML, Martens WN, Kloprogge JT, Kristóf J (2005k) Thermo-Raman spectroscopic study of the uranium mineral sabugalite. J Raman Spectrosc 36 (8):797–805
- Frost RL, Weier ML, Martens W, Mills S (2005l) Molecular structure of segnitite: a Raman spectroscopic study. J Molec Struct 752(1):178–185
- Frost RL, Wills R-A, Martens WN (2005m) Raman spectroscopy of beaverite and plumbojarosite. J Raman Spectrosc 36(12):1106–1112
- Frost RL, Čejka J, Weier M (2006a) A Raman spectroscopic study of the uranyl phosphate mineral threadgoldite. Spectrochim Acta A 65(3):797–801
- Frost RL, Čejka J, Weier M, Ayoko GA (2006b) A Raman spectroscopic study of the uranyl tellurite mineral schmitterite. Spectrochim Acta A 65(3):571–574
- Frost RL, Čejka J, Weier M, Ayoko GA (2006c) Raman spectroscopic study of the uranyl phosphate mineral dewindtite. J Raman Spectrosc 37(12):1362–1367
- Frost RL, Čejka J, Weier ML, Martens W (2006d) A Raman and infrared spectroscopic study of the uranyl silicates – weeksite, soddyite and haiweeite: Part 2. Spectrochim Acta A 63(2):305–312
- Frost RL, Čejka J, Weier ML, Martens W (2006e) Molecular structure of the uranyl silicates – a Raman spectroscopic study. J Raman Spectrosc 37(4):538–551
- Frost RL, Čejka J, Weier M, Martens WN (2006f) A Raman spectroscopic study of the uranyl phosphate mineral parsonsite. J Raman Spectrosc 37(9):879–891
- Frost RL, Čejka J, Weier ML, Martens WN (2006g) Raman spectroscopy study of selected uranophanes. J Molec Struct 788(1):115–125
- Frost RL, Čejka J, Weier ML, Martens W, Kloprogge JT (2006h) A Raman and infrared spectroscopic study of the uranyl silicates – weeksite, soddyite and haiweeite. Spectrochim Acta A 64(2):308–315
- Frost RL, Henry DA, Weier ML, Martens W (2006i) Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to $(VO₄)³$ -bearing minerals: namibite, pottsite and schumacherite. J Raman Spectrosc 37 (7):722–732
- Frost RL, Reddy BJ, Martens WN, Weier M (2006j) The molecular structure of the phosphate mineral turquoise – a Raman spectroscopic study. J Molec Struct 788 (1):224–231
- Frost RL, Weier ML, Čejka J, Ayoko GA (2006k) Raman spectroscopy of uranyl rare earth carbonate kamotoite- (Y). Spectrochim Acta A 65(3):529–534
- Frost RL, Weier ML, Čejka J, Kloprogge JT (2006l) Raman spectroscopy of walpurgite. J Raman Spectrosc 37(5):585–590
- Frost RL, Weier M, Martens W (2006m) Using Raman spectroscopy to identify mixite minerals. Spectrochim Acta A 63(1):60–65
- Frost RL, Weier M, Martens WN (2006n) Raman microscopy of synthetic goudeyite $(YCu_6(AsO_4)_2(OH)_6.3H_2O)$. Spectrochim Acta A 63(3):685–689
- Frost RL, Weier ML, Martens WN, Mills SJ (2006o) The hydroxylated nickel carbonates otwayite and paraotwayite – a SEM, EDX and vibrational spectroscopic study. N Jb Miner Abh 183(1):107–116
- Frost RL, Weier ML, Martens WN, Mills SJ (2006p) Thermo Raman spectroscopic study of kintoreite. Spectrochim Acta A 63(2):282–288
- Frost RL, Weier ML, Reddy BJ, Čejka J (2006q) A Raman spectroscopic study of the uranyl selenite mineral haynesite. J Raman Spectrosc 37(8):816-821
- Frost RL, Wills RA, Weier ML, Martens W, Mills S (2006r) A Raman spectroscopic study of selected natural jarosites. Spectrochim Acta A 63(1):1–8
- Frost RL, Bouzaid J, Butler IS (2007a) Raman spectroscopic study of the molybdate mineral szenicsite and comparison with other paragenetically related molybdate minerals. Spectrosc Lett 40(4):603–614
- Frost RL, Bouzaid JM, Martens WN, Reddy BJ (2007b) Raman spectroscopy of the borosilicate mineral ferroaxinite. J Raman Spectrosc 38(2):135–141
- Frost RL, Bouzaid JM, Palmer S (2007c) The structure of mimetite, arsenian pyromorphite and hedyphane – a Raman spectroscopic study. Polyhedron 26 (13):2964–2970
- Frost RL, Čejka J, Ayoko GA, Dickfos MJ (2007d) Raman spectroscopic study of the multi-anion uranyl mineral

schroeckingerite. J Raman Spectrosc 38 (12):1609–1614

- Frost RL, Čejka J, Ayoko GA, Weier M (2007e) A Raman spectroscopic study of the uranyl phosphate mineral bergenite. Spectrochim Acta A 66(4):979–984
- Frost RL, Čejka J, Ayoko GA, Weier ML (2007f) Raman spectroscopic and SEM analysis of sodium zippeite. J Raman Spectrosc 38(10):1311–1319
- Frost RL, Čejka J, Ayoko GA, Weier ML (2007g) Vibrational spectroscopic study of hydrated uranyl oxide: curite. Polyhedron 26(14):3724–3730
- Frost RL, Čejka J, Weier ML (2007h) Raman spectroscopic study of the uranyl oxyhydroxide hydrates: becquerelite, billietite, curite, schoepite and vandendriesscheite. J Raman Spectrosc 38(4):460–466
- Frost RL, Čejka J, Weier ML, Martens WN, Ayoko GA (2007i) Raman spectroscopy of uranopilite of different origins – implications for molecular structure. J Raman Spectrosc 38(4):398–409
- Frost RL, Hales MC, Reddy BJ (2007j) Aurichalcite an SEM and Raman spectroscopic study. Polyhedron 26 (13):3291–3300
- Frost RL, Palmer SJ, Bouzaid JM, Reddy BJ (2007k) A Raman spectroscopic study of humite minerals. J Raman Spectrosc 38(1):68–77
- Frost RL, Weier ML, Mills SJ (2007l) A vibrational spectroscopic study of perhamite, an unusual silicophosphate. Spectrochim Acta A 67(3):604–610
- Frost RL, Weier ML, Williams PA, Leverett P, Kloprogge JT (2007m) Raman spectroscopy of the sampleite group of minerals. J Raman Spectrosc 38(5):574–583
- Frost RL, Wills RA, Martens WN (2007n) A Raman spectroscopic study of synthetic giniite. Spectrochim Acta A 66(1):42–47
- Frost RL, Čejka J, Ayoko G (2008a) Raman spectroscopic study of the uranyl phosphate minerals phosphuranylite and yingjiangite. J Raman Spectrosc 39(4):495–502
- Frost RL, Čejka J, Ayoko GA, Dickfos MJ (2008b) Raman spectroscopic study of the uranyl carbonate mineral voglite. J Raman Spectrosc 39(3):374–379
- Frost RL, Čejka J, Dickfos MJ (2008c) Raman and infrared spectroscopic study of the molybdate-containing uranyl mineral calcurmolite. J Raman Spectrosc 39 (7):779–785
- Frost RL, Čejka J, Dickfos MJ (2008d) Raman spectroscopic study of the uranyl selenite mineral demesmaekerite $Pb_2Cu_5(uo_2)_2(SeO_3)_6(OH)_6.2H_2O.$ J Raman Spectrosc 40:476–480
- Frost RL, Čejka J, Keeffe EC, Dickfos MJ (2008e) Raman spectroscopic study of the uranyl selenite mineral marthozite Cu[(UO₂)₃(SeO₃)₂O₂]⋅8H₂O. J Raman Spectrosc 39(10):1413–1418
- Frost RL, Dickfos MJ, Čejka J (2008f) Raman spectroscopic study of the uranyl carbonate mineral zellerite. J Raman Spectrosc 39(5):582–586
- Frost RL, Dickfos MJ, Čejka J (2008g) Raman spectroscopic study of the uranyl mineral, compreignacite,

 K_2 [(UO₂)₃O₂(OH)₃]₂⋅7H₂O. J Raman Spectrosc 39 (9):1158–1161

- Frost RL, Dickfos MJ, Keeffe EC (2008h) Raman spectroscopic study of the tellurite minerals: rajite and denningite. Spectrochim Acta A 71(4):1512–1515
- Frost RL, Dickfos MJ, Keeffe EC (2008i) Raman spectroscopic study of the tellurite minerals: emmonsite $Fe^{3+}{}_{2}Te^{4+}{}_{3}O_{9}$ ∙2H₂O and zemannite Mg_{0.5}[Zn²⁺Fe³⁺ $(TeO₃)₃]4.5H₂O.$ J Raman Spectrosc 39 (12):1784–1788
- Frost RL, Jagannadha Reddy B, Dickfos MJ (2008j) Raman spectroscopy of the nickel silicate mineral pecoraite – an analogue of chrysotile (asbestos). J Raman Spectrosc 39(7):909–913
- Frost RL, Locke A, Martens WN (2008k) Synthesis and Raman spectroscopic characterisation of the oxalate mineral wheatleyite Na₂Cu(C₂O₄)₂⋅2H₂O. J Raman Spectrosc 39(7):901–908
- Frost RL, Dickfos MJ, Jagannadha Reddy B (2008l) Raman spectroscopy of hydroxy nickel carbonate minerals nullaginite and zaratite. J Raman Spectrosc 39(9):1250–1256
- Frost RL, Bahfenne S, Graham J (2009a) Raman spectroscopic study of the magnesium carbonate minerals – artinite and dypingite. J Raman Spectrosc 40 (8):855–860
- Frost RL, Čejka J, Dickfos MJ (2009b) Raman spectroscopic study of the uranyl tellurite mineral moctezumite PbUO₂(TeO₃)₂. J Raman Spectrosc 40:38–41
- Frost RL, Čejka J, Dickfos MJ (2009c) Raman spectroscopic study of the mineral guilleminite Ba (UO2)3(SeO3)2(OH)4∙3H2O. J Raman Spectrosc 40 (4):355–359
- Frost RL, Čejka J, Dickfos MJ (2009d) Raman spectroscopic study of the uranyl minerals vanmeersscheite U (OH)4[(UO2)3(PO4)2(OH)2]∙4H2O and arsenouranylite $Ca(UO₂)[(UO₂)₃(AsO₄)₂(OH)₂][·]$
- (OH)2∙6H2O. Spectrochim Acta A 71(5):1799–1803
- Frost RL, Čejka J, Sejkora J, Ozdín D, Bahfenne S, Keeffe EC (2009e) Raman spectroscopic study of the antimonate mineral brandholzite $Mg[Sb_2(OH)_{12}]$ ∙6H2O. J Raman Spectrosc 40(12):1907–1910
- Frost RL, Čejka J, Sejkora J, Plášil J, Bahfenne S, Palmer SJ (2009f) Raman microscopy of the mixite mineral $BiCu_6(AsO₄)₃(OH)₆·3H₂O$ from the Czech Republic. J Raman Spectrosc 41(5):566–570
- Frost RL, Dickfos MJ, Keeffe EC (2009g) Raman spectroscopic study of the tellurite minerals: carlfriesite and spiroffite. Spectrochim Acta A 71(5):1663–1666
- Frost RL, Plášil J, Čejka J, Sejkora J, Keeffe EC, Bahfenne S (2009h) Raman spectroscopic study of the uranyl mineral pseudojohannite $Cu_{6.5}[(UO₂)₄O₄(SO₄)₂]₂(OH)₅·25H₂O.$ J Raman Spectrosc 40(12):1816–1821
- Frost RL, Sejkora J, Čejka J, Keeffe EC (2009i) Vibrational spectroscopic study of the arsenate mineral strashimirite Cu8(AsO4)4(OH)4∙5H2O – relationship

to other basic copper arsenates. Vibrational Spectroscopy 50(2):289–297

- Frost RL, Sejkora J, Čejka J, Keeffe EC (2009j) Raman spectroscopic study of the mixed anion sulphate–arsenate mineral parnauite $Cu_9[(OH)_{10}|SO_4|(ASO_4)_2]$ ∙7H2O. J Raman Spectrosc 40(11):1546–1550
- Frost RL, Bahfenne S, Čejka J, Sejkora J, Plášil J, Palmer SJ (2010a) Raman and infrared study of phyllosilicates containing heavy metals (Sb, Bi): bismutoferrite and chapmanite. J Raman Spectrosc 41(7):814–819
- Frost RL, Bahfenne S, Čejka J, Sejkora J, Plášil J, Palmer SJ (2010b) Raman spectroscopic study of the hydrogen-arsenate mineral pharmacolite Ca $(AsO₃OH)²H₂O - implications for aquifer and sedi$ ment remediation. J Raman Spectrosc 41 (10):1348–1352
- Frost RL, Bahfenne S, Keeffe EC (2010c) Raman spectroscopic study of the mineral gerstleyite $Na₂(Sb)$, As)₈S₁₃⋅2H₂O and comparison with some heavymetal sulfides. J Raman Spectrosc 41(12):1779–1783
- Frost RL, Bakon KH, Palmer SJ (2010d) Raman spectroscopic study of synthetic reevesite and cobalt substituted reevesite $(Ni,Co)_6Fe_2(OH)_{16}(CO3)$ ∙4H2O. J Raman Spectrosc 41(1):78–83
- Frost RL, Čejka J, Sejkora J, Plášil J, Bahfenne S, Palmer SJ (2010e) Raman spectroscopy of the basic copper arsenate mineral: euchroite. J Raman Spectrosc 41 (5):571–575
- Frost RL, Keeffe EC, Bahfenne S (2010f) A Raman spectroscopic study of the antimonite mineral peretaite Ca (SbO)4(OH)2(SO4)2∙2H2O. Spectrochim Acta A 75 (5):1476–1479
- Frost RL, Palmer SJ, Keeffe EC (2010g) Raman spectroscopic study of the hydroxyl-arsenate-sulfate mineral chalcophyllite Cu18Al2(AsO4)4(SO4)3(OH)24∙36H2O. J Raman Spectrosc 41(12):1769–1774
- Frost RL, Bahfenne S, Čejka J, Sejkora J, Palmer SJ, Škoda R (2010h) Raman microscopy of haidingerite Ca(AsO₃OH)∙H₂O and brassite Mg(AsO₃OH)∙4H₂O. J Raman Spectrosc 41(6):690–693
- Frost RL, Bahfenne S, Čejka J, Sejkora J, Plášil J, Palmer SJ, Keefe EC, Němec I (2011a) Dussertite BaFe³⁺₃ $(AsO₄)₂(OH)₅ - a Raman spectroscopic study of a$ hydroxyl-arsenate mineral. J Raman Spectrosc 42 (1):56–61
- Frost RL, Čejka J, Sejkora J, Plášil J, Reddy BJ, Keeffe EC (2011b) Raman spectroscopic study of a hydroxy-arsenate mineral containing bismuth – atelestite $Bi₂O(OH)(AsO₄)$. Spectrochim Acta A 78 (1):494–496
- Frost RL, Palmer SJ, Bahfenne S (2011c) A near-infrared and Raman spectroscopic study of the mineral richelsdorfite Ca₂Cu5Sb[Cl|(OH)₆|(AsO₄)₄]∙6H₂O. Spectrochim Acta A 78(4):1302–1304
- Frost RL, Palmer SJ, Čejka J (2011d) The application of Raman spectroscopy to the study of the uranyl mineral coconinoite $\text{Fe}^{3+}{}_{2}\text{Al}_{2}(\text{UO}_{2}){}_{2}(\text{PO}_{4}){}_{4}(\text{SO}_{4})$ (OH)2∙20H2O. Spectrosc Lett 44(6):381–387
- Frost RL, Palmer SJ, Čejka J, Sejkora J, Plášil J, Bahfenne S, Keeffe EC (2011e) A Raman spectroscopic study of the different vanadate groups in solidstate compounds – model case: mineral phases vésigniéite $[BaCu_3(VO_4)_2(OH)_2]$ and volborthite [Cu3V2O7(OH)2∙2H2O]. J Raman Spectrosc 42 (8):1701–1710
- Frost RL, Palmer SJ, Čejka J, Sejkora J, Plášil J, Jebavá I, Keeffe EC (2011f) A Raman spectroscopic study of $M^{2+}M^{3+}$ sulfate minerals, römerite Fe²⁺Fe³⁺₂ $(SO_4)_4$ ⋅14H₂O and botryogen Mg²⁺Fe³⁺(SO₄)₂(OH) ∙7H2O. J Raman Spectrosc 42(4):825–830
- Frost RL, Palmer SJ, Henry DA, Pogson R (2011g) A Raman spectroscopic study of the 'cave' mineral ardealite Ca2(HPO4)(SO4)∙4H2O. J Raman Spectrosc 42(6):1447–1454
- Frost RL, Palmer SJ, Reddy BJ (2011h) Raman spectroscopic study of the uranyl titanate mineral euxenite (Y, Ca,U,Ce,Th)(Nb,Ta,Ti)₂O₆. J Raman Spectrosc 42 (5):1160–1162
- Frost RL, Palmer SJ, Spratt HJ, Martens WN (2011i) The molecular structure of the mineral beudantite $PbFe₃(AsO₄, SO₄)₂(OH)₆ - implications for arsenic$ accumulation and removal. J Molec Struct 988 $(1):52-58$
- Frost RL, Palmer SJ, Theiss F (2011j) Synthesis and Raman spectroscopic characterisation of hydrotalcites based on the formula $Ca₆Al₂(CO₃)(OH)₁₆·4H₂O$. J Raman Spectrosc 42(5):1163–1167
- Frost RL, Palmer SJ, Xi Y (2011k) A vibrational spectroscopic study of the mineral hinsdalite $PbAl₃(SO₄)$ (PO4)(OH)6. J Molec Struct 1001(1):43–48
- Frost RL, Palmer SJ, Xi Y (2011l) A Raman spectroscopic study of the mono-hydrogen phosphate mineral dorfmanite Na2(PO3OH)∙2H2O and in comparison with brushite. Spectrochim Acta A 82(1):132–136
- Frost RL, Palmer SJ, Xi Y (2011m) Vibrational spectroscopy of the multi-anion mineral zykaite $Fe_4(AsO_4)_{3}(SO_4)(OH)·15H_2O -$ implications for arsenate removal. Spectrochim Acta A 83(1):444–448
- Frost RL, Palmer SJ, Xi Y (2011n) Raman spectroscopy of the multi anion mineral arsentsumebite $Pb_2Cu(AsO_4)$ $(SO₄)(OH)$ and in comparison with tsumebite Pb₂Cu (PO4)(SO4)(OH). Spectrochim Acta A 83(1):449–452
- Frost RL, Palmer SJ, Xi Y (2011o) The molecular structure of the multianion mineral hidalgoite $PbAl₃(SO₄)$ $(AsO₄)(OH)₆ - implications for arsenic removal from$ soils. J Molec Struct 1005(1):214–219
- Frost RL, Palmer SJ, Xi Y, Tan K (2011p) Raman spectroscopy of the multi-anion mineral mallestigite $Pb_3Sb^{3+}(SO_4)(ASO_4)(OH)_6·3H_2O$: a mineral of archaeological significance. Spectrochim Acta A 83 (1):432–436
- Frost RL, Sejkora J, Čejka J, Plášil J, Bahfenne S, Keeffe EC (2011q) Raman spectroscopy of hydrogen arsenate group $(AsO₃OH)^{2–}$ in solid-state compounds: cobaltcontaining zinc arsenate mineral, koritnigite (Zn,Co) (AsO3OH)∙H2O. J Raman Spectrosc 42(3):534–539
- Frost RL, Xi Y, Palmer SJ (2011r) Are the 'cave' minerals archerite $(K, NH₄)H₂PO₄$ and biphosphammite $(K,$ $NH₄)H₂PO₄ identical? A molecular structural study. J$ Molec Struct 1001(1):49–55
- Frost RL, Xi Y, Palmer SJ (2011s) Molecular structure of the mineral woodhouseite $CaAl₃(PO₄, SO₄)₂(OH)₆$. J Molec Struct 1001(1):56–61
- Frost RL, Xi Y, Palmer SJ (2011t) The structure of the mineral leogangite Cu₁₀(OH)₆(SO₄)(AsO₄)₄⋅8H₂O – implications for arsenic accumulation and removal. Spectrochim Acta A 82(1):221–227
- Frost RL, Xi Y, Palmer SJ, Millar GJ, Tan K, Pogson RE (2011u) Vibrational spectroscopy of synthetic stercorite H(NH₄)Na(PO₄)⋅4H₂O – a comparison with the natural cave mineral. Spectrochim Acta A 84 (1):269–274
- Frost RL, Xi Y, Palmer SJ, Pogson RE (2011v) Vibrational spectroscopic analysis of taranakite $(K,NH₄)$ Al3(PO4)3(OH)∙9(H2O) from the Jenolan Caves, Australia. Spectrochim Acta A 83(1):106–111
- Frost RL, Xi Y, Palmer SJ, Pogson R (2011w) Vibrational spectroscopic analysis of the mineral crandallite $CaAl₃(PO₄)₂(OH)₅(H₂O)$ from the Jenolan Caves, Australia. Spectrochim Acta A 82(1):461–466
- Frost RL, Couperthwaite SJ, Xi Y (2012a) Vibrational spectroscopy of the multianion mineral kemmlitzite $(Sr, Ce)Al₃(AsO₄)(SO₄)(OH)₆$. Spectrosc Lett 45 (7):482–486
- Frost RL, Mahendran M, Poologanathan K, Xi Y (2012b) Raman spectroscopic study of the mineral xonotlite $Ca_6Si_6O_{17}(OH)_2$ – a component of plaster boards. Mater Res Bull 47(11):3644–3649
- Frost RL, Palmer SJ, Xi Y (2012c) Raman spectroscopy of the multi-anion mineral schlossmacherite (H_3O,Ca) Al3(AsO4,PO4,SO4)2(OH)6. Spectrochim Acta A 87:209–213
- Frost RL, Palmer SJ, Xi Y (2012d) Is the mineral borickyite $(Ca, Mg)(Fe³⁺, Al)₄(PO₄, SO₄, CO₃)(OH)₈·3-$ 7.5H₂O the same as delvauxite CaFe³⁺₄(PO₄, SO4)2(OH)8∙4-6H2O. Spectrochim Acta A 92:377–381
- Frost RL, Xi Y, Palmer SJ, Pogson RE (2012e) Identification of montgomeryite mineral $[Ca₄MgAl₄(PO₄)₆$ (OH)4∙12H2O] found in the Jenolan Caves – Australia. Spectrochim Acta A 94:1–5
- Frost RL, Xi Y, Palmer SJ, Tan K, Millar GJ (2012f) Vibrational spectroscopy of synthetic archerite (K, $NH_4)H_2PO_4$ ⁻ and in comparison with the natural cave mineral. J Molec Struct 1011:128–133
- Frost RL, Xi Y, Pogson RE (2012g) Raman spectroscopic study of the mineral arsenogorceixite $BaAl₃AsO₃(OH)$ $(AsO₄, PO₄)(OH, F)₆$. Spectrochim Acta A 91:301–306
- Frost RL, Xi Y, Pogson RE, Millar GJ, Tan K, Palmer SJ (2012h) Raman spectroscopy of synthetic CaHPO₄⋅2H₂O – and in comparison with the cave mineral brushite. J Raman Spectrosc 43(4):571–576
- Frost RL, Xi Y, Scholz R, Belotti FM (2012i) Infrared and Raman spectroscopic characterization of the phosphate mineral kosnarite $KZr_2(PO_4)$ ₃ in comparison with

other pegmatitic phosphates. Transit Metal Chem 37 (8):777–782

- Frost RL, Xi Y, Scholz R, Belotti FM, Lagoeiro LE (2012j) Chemistry, Raman and infrared spectroscopic characterization of the phosphate mineral reddingite: $(MnFe)_{3}(PO_{4})_{2}(H_{2}O_{4}OH)_{3}$, a mineral found in lithiumbearing pegmatite. Phys Chem Minerals 39 (10):803–810
- Frost RL, Xi Y, Scholz R, Belotti FM, Menezes Filho LAD (2012k) Raman and infrared spectroscopic characterization of beryllonite, a sodium and beryllium phosphate mineral – implications for mineral collectors. Spectrochim Acta A 97:1058–1062
- Frost RL, Xi Y, Tan K, Millar GJ, Palmer SJ (2012l) Vibrational spectroscopic study of the mineral pitticite Fe, AsO₄, SO₄, H₂O. Spectrochim Acta A 85 (1):173–178
- Frost RL, Xi Y, Scholz R (2012m) Assessment of the molecular structure of the borate mineral boracite Mg3B7O13Cl using vibrational spectroscopy. Spectrochim Acta A 96:946–951
- Frost RL, Xi Y, Couperthwaite SJ (2012n) Vibrational spectroscopic study of multianion mineral clinotyrolite $Ca_2Cu_9[(As, S)O_4]_4(OH)_{10}·10(H_2O)$. Spectrochim Acta A 95:258–262
- Frost RL, López A, Scholz R, Xi Y, da Silveira AJ, Lima RMF (2013a) Characterization of the sulphate mineral amarantite using infrared, Raman spectroscopy and thermogravimetry. Spectrochim Acta A 114:85–91
- Frost RL, Lópes A, Scholz R, Xi Y (2013b) Infrared and Raman spectroscopic characterization of the arsenate mineral ceruleite Cu2Al7(AsO4)4(OH)13∙11.5H2O. Spectrochim Acta A 116:518–523
- Frost RL, López A, Scholz R, Xi Y, Belotti FM (2013c) Infrared and Raman spectroscopic characterization of the carbonate mineral huanghoite – and in comparison with selected rare earth carbonates. J Molec Struct 1051:221–225
- Frost RL et al (2013d) Xxx
- Frost RL, López A, Xi Y, Granja A, Scholz R, Lima RMF (2013e) Vibrational spectroscopy of the phosphate mineral kovdorskite – $Mg_2(PO_4)(OH)$ ∙3H2O. Spectrochim Acta A 114:309–315
- Frost RL, López A, Xi Y, Lima RMF, Scholz R, Granja A (2013f) The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH)∙5H2O – a vibrational spectroscopic study. Spectrochim Acta A 116:160–164
- Frost RL, López A, Xi Y, Murta N, Scholz R (2013g) The molecular structure of the phosphate mineral senegalite Al2(PO4)(OH)3∙3H2O – a vibrational spectroscopic study. J Molec Struct 1048:420–425
- Frost RL, López A, Xi Y, Scholz R, da Costa GM, Belotti FM, Lima RMF (2013h) Vibrational spectroscopy of the mineral meyerhofferite $CaB_3O_3(OH)_5·H_2O$ – an assessment of the molecular structure. Spectrochim Acta A 114:27–32
- Frost RL, López A, Xi Y, Scholz R, da Costa GM, Lima RMF, Granja A (2013i) The spectroscopic characterization of the sulphate mineral ettringite from Kuruman

manganese deposits, South Africa. Vib Spectrosc 68:266–271

- Frost RL, López A, Xi Y, Scholz R, Graça LM, Lagoeiro L (2013j) Vibrational spectroscopic characterization of the sulphate mineral leightonite K_2Ca_2Cu $(SO_4)_4$ ⋅2H₂O – implications for the molecular structure. Spectrochim Acta A 112:90–94
- Frost RL, López A, Xi Y, Granja A, Scholz R (2013k) Vibrational spectroscopic characterization of the phosphate mineral kulanite $Ba(Fe^{2+}, Mn^{2+}, Mg)_2(Al, Fe^{3+})_2$ $(PO₄)₃(OH)₃$. Spectrochim Acta A 115:22–25
- Frost RL, Palmer SJ, Xi Y, Čejka J, Sejkora J, Plášil J (2013l) Raman spectroscopic study of the hydroxyphosphate mineral plumbogummite $PbAl₃(PO₄)₂(OH,$ H2O)6. Spectrochim Acta A 103:431–434
- Frost RL, Scholz R, López A, Xi Y (2013m) Vibrational spectroscopic characterization of the sulphate mineral khademite Al(SO4)F∙5H2O. Spectrochim Acta A 116:165–169
- Frost RL, Scholz R, Lópes A, Xi Y, Gobac ŽŽ, Horta LFC (2013n) Raman and infrared spectroscopic characterization of the phosphate mineral paravauxite $Fe²⁺$ Al2(PO4)2(OH)2∙8H2O. Spectrochim Acta A 116:491–496
- Frost RL, Scholz R, López A, Xi Y, Granja A, Gobac ŽŽ, Lima RMF (2013o) Infrared and Raman spectroscopic characterization of the silicate mineral olmiite $CaMn^{2+}$ $[SiO₃(OH)](OH)$ – implications for the molecular structure. J Molec Struct 1053:22–26
- Frost RL, Xi Y, Beganovic M, Belotti FM, Scholz R (2013p) Vibrational spectroscopy of the phosphate mineral lazulite – $(Mg,Fe)Al₂(PO₄)₂(OH)₂found in$ the Minas Gerais, Brazil. Spectrochim Acta A 107:241–247
- Frost RL, Xi Y, López A, Scholz R, de Carvalho LC, e Souza FB (2013q) Vibrational spectroscopic characterization of the phosphate mineral barbosalite – implications for the molecular structure. J Molec Struct 1051:292–298
- Frost RL, Xi Y, Millar G, Tan K, Palmer SJ (2013r) Vibrational spectroscopy of natural cave mineral monetite CaHPO₄ and the synthetic analog. Spectrosc Lett 46(1):54–59
- Frost RL, Xi Y, Pogson RE, Scholz R (2013s) A vibrational spectroscopic study of philipsbornite PbAl3(AsO4)2(OH)5∙H2O – molecular structural implications and relationship to the crandallite subgroup arsenates. Spectrochim Acta A 104:257–261
- Frost RL, Xi Y, Scholz R (2013t) Vibrational spectroscopic characterization of the phosphate mineral anapaite Ca₂Fe²⁺(PO₄)₂⋅4(H₂O). Spectrosc Lett 46 (6):441–446
- Frost RL, Xi Y, Scholz R (2013u) A vibrational spectroscopic study of the phosphate mineral cyrilovite Na(Fe³⁺)₃(PO₄)₂(OH)₄⋅2(H₂O) and in comparison with wardite. Spectrochim Acta A 108:244–250
- Frost RL, Xi Y, Scholz R (2013v) Vibrational spectroscopy of the copper (II) disodium sulphatedihydrate mineral kröhnkite Na2Cu(SO4)2∙2H2O. Spectrosc Lett 46(6):447–452
- Frost RL, Xi Y, Scholz R, Belott FM (2013w) Vibrational spectroscopic characterization of the phosphate mineral ludlamite (Fe,Mn,Mg)₃(PO₄)₂⋅4H₂O – a mineral found in lithium bearing pegmatites. Spectrochim Acta A 103:143–150
- Frost RL, Xi Y, Scholz R, Belotti FM (2013x) Vibrational spectroscopic characterization of the phosphate mineral bermanite – $Mn^{2+}Mn^{3+}$ (PO4)2(OH)2∙4H2O. Spectrochim Acta A 105:359–364
- Frost RL, Xi Y, Scholz R, Belotti FM, Beganovic M (2013y) SEM–EDX, Raman and infrared spectroscopic characterization of the phosphate mineral frondelite $(Mn^{2+})(Fe^{3+})_4(PO_4)_3(OH)_5$. Spectrochim Acta A 110:7–13
- Frost RL, Xi Y, Scholz R, Belotti FM, Cândido Filho M (2013z) Infrared and Raman spectroscopic characterization of the borate mineral colemanite – $CaB_3O_4(OH)_3·H_2O$ – implications for the molecular structure. J Molec Struct 1037:23–28
- Frost RL, Xi Y, Scholz R, Belotti FM, Cândido Filho M (2013aa) The phosphate mineral sigloite $Fe³⁺$ $\text{Al}_2(\text{PO}_4)_2(\text{OH})_3$ [•]7(H₂O), an exception to the paragenesis rule – a vibrational spectroscopic study. J Molec Struct 1033:258–264
- Frost RL, Xi Y, Scholz R, Belotti FM, Cândido Filho M (2013ab) Infrared and Raman spectroscopic characterization of the carbonate mineral weloganite – $Sr₃Na₂Zr$ (CO3)6∙3H2O and in comparison with selected carbonates. J Molec Struct 1039:101–106
- Frost RL, Xi Y, Scholz R, Belotti FM, Filho MC (2013ac) Infrared and Raman spectroscopic characterization of the phosphate mineral leucophosphite $KFe^{3+}{}_{2}$ (PO4)2(OH)∙2H2O. Spectrosc Lett 46(6):415–420
- Frost RL, Xi Y, Scholz R, Belotti FM, Lopez A (2013ad) Infrared and Raman spectroscopic characterization of the phosphate mineral fairfieldite – $Ca_2(Mn^{2+},Fe^{2+})_2$ (PO4)2∙2(H2O). Spectrochim Acta A 106:216–223
- Frost RL, Xi Y, Scholz R, Belotti FM, Menezes Filho LAD (2013ae) A vibrational spectroscopic study of the phosphate mineral zanazziite – $Ca_2(MgFe^{2+})$ $(MgFe²⁺Al)₄Be₄(PO₄)₆·6(H₂O). Spectrochim Acta A$ 104:250–256
- Frost RL, Xi Y, Scholz R, de Brito Ribeiro CA (2013af) The molecular structure of the phosphate mineral chalcosiderite – a vibrational spectroscopic study. Spectrochim Acta A 111:24–30
- Frost RL, Xi Y, Scholz R, Horta LFC (2013ag) The phosphate mineral arrojadite-(KFe) and its spectroscopic characterization. Spectrochim Acta A 109:138–145
- Frost RL, Xi Y, Scholz R, Lima RMF, Horta LFC, Lopez A (2013ah) Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite – CaBSiO4(OH). Spectrochim Acta A 115:376–381
- Frost RL, Xi Y, Scholz R, López A, Belotti FM (2013ai) Infrared and Raman spectroscopic characterization of the silicate-carbonate mineral carletonite –

KNa₄Ca₄Si₈O₁₈(CO₃)₄(OH,F)∙H₂O. J Molec Struct 1042:1–7

- Frost RL, Xi Y, Scholz R, López A, Belotti FM (2013aj) Vibrational spectroscopic characterization of the phosphate mineral hureaulite – (Mn,Fe)₅(PO₄)₂(HPO₄)₂⋅4 $(H₂O)$. Vib Spectrosc 66:69–75
- Frost RL, Xi Y, Scholz R, López A, Belotti FM, Chaves ML (2013ak) Raman and infrared spectroscopic characterization of the phosphate mineral lithiophilite – LiMnPO4. Phosphorus Sulfur Silicon Related Elem 188(11):1526–1534
- Frost RL, Xi Y, Scholz R, López A, Granja A (2013al) Infrared and Raman spectroscopic characterisation of the sulphate mineral creedite – $Ca₃Al₂SO₄(F,OH)$ ∙2H2O – and in comparison with the alums. Spectrochim Acta A 109:201–205
- Frost RL, Xi Y, Scholz R, López A, Lima RMF, Ferreira CM (2013am) Vibrational spectroscopic characterization of the phosphate mineral series eosphorite– childrenite – $(Mn,Fe)Al(PO₄)(OH)₂(H₂O)$. Vib Spectrosc 67:14–21
- Frost RL, Xi Y, Scholz R, Tazava E (2013an) Spectroscopic characterization of the phosphate mineral florencite-La – LaAl₃(PO₄)₂(OH,H₂O)₆, a potential tool in the REE mineral prospection. J Molec Struct 1037:148–153
- Frost RL, Čejka J, Scholz R, López A, Theiss FL, Xi Y (2014a) Vibrational spectroscopic study of the uranyl selenite mineral derriksite $Cu_4UO_2(SeO_3)_2$ (OH)6∙H2O. Spectrochim Acta A 117:473–477
- Frost RL, Gobac ŽŽ, López A, Xi Y, Scholz R, Lana C, Lima RMF (2014b) Characterization of the sulphate mineral coquimbite, a secondary iron sulphate from Javier Ortega mine, Lucanas Province, Peru – using infrared, Raman spectroscopy and thermogravimetry. J Molec Struct 1063:251–258
- Frost RL, López A, Belotti FM, Xi Y, Scholz R (2014c) A vibrational spectroscopic study of the phosphate mineral lulzacite $Sr_2Fe^{2+}(Fe^{2+}, Mg)_2Al_4(PO_4)_4(OH)_{10}$. Spectrochim Acta A 127:243–247
- Frost RL, López A, de Oliveira Gonçalves G, Scholz R, Xi Y (2014d) A vibrational spectroscopic study of the arsenate mineral bayldonite $Cu_3PbO(AsO_3OH)_2(OH)_2$ – a comparison with other basic arsenates. J Molec Struct 1056:267–272
- Frost RL, López A, Scholz R, Xi Y (2014e) Vibrational spectroscopy of the borate mineral tunellite $SrB₆O₉(OH)₂(3H₂O)$ – implications for the molecular structure. J Molec Struct 1059:40–43
- Frost RL, López A, Scholz R, Xi Y (2014f) Vibrational spectroscopy of the borate mineral chambersite $Mn_3B_7O_{13}Cl$ – implications for the molecular structure. Spectrochim Acta A 120:270–273
- Frost RL, López A, Scholz R, Xi Y, CândidoFilho M (2014g) A vibrational spectroscopic study of the phosphate mineral churchite $(REE)(PO₄)$ ∙2H2O. Spectrochim Acta A 127:429–433
- Frost RL, López A, Theiss FL, Aarão GM, Scholz R (2014h) A vibrational spectroscopic study of the phosphate mineral rimkorolgite $(Mg, Mn^{2+})_5(Ba, Sr)$ (PO4)4∙8H2O from Kovdor massif, Kola Peninsula, Russia. Spectrochim Acta A 132:762–766
- Frost RL, López A, Theiss FL, Romano AW, Scholz R (2014i) A vibrational spectroscopic study of the silicate mineral analcime – Na₂(Al₄SiO₄O₁₂)∙2H₂O – a natural zeolite. Spectrochim Acta A 133:521–525
- Frost RL, López A, Theiss FL, Scholz R, Belotti FM (2014j) A vibrational spectroscopic study of the borate mineral ezcurrite Na₄B₁₀O₁₇⋅7H₂O – implications for the molecular structure. J Molec Struct 1070:45–51
- Frost RL, López A, Theiss FL, Scholz R, Souza L (2014k) The molecular structure of the phosphate mineral kidwellite NaFe³⁺₉(PO₄)₆(OH)₁₁⋅3H₂O – a vibrational spectroscopic study. J Molec Struct 1074:429–434
- Frost RL, López A, Xi Y, Cardoso LH, Scholz R (2014l) A vibrational spectroscopic study of the phosphate mineral minyulite KAl₂(OH,F)(PO₄)₂⋅4(H₂O) and in comparison with wardite. Spectrochim Acta A 124:34–39
- Frost RL, López A, Xi Y, Gobac ŽŽ, Scholz R (2014m) The molecular structure of the phosphate mineral vaeyrynenite: a vibrational spectroscopic study. Spectrosc Lett 47(4):253–260
- Frost RL, López A, Xi Y, Graça LM, Scholz R (2014n) A vibrational spectroscopic study of the borate mineral takedaite $Ca₃(BO₃)₂$. Spectrochim Acta A 132:833-837
- Frost RL, López A, Xi Y, Lana C, Souza L, Scholz R, Sejkora J, Čejka J (2014o) A vibrational spectroscopic study of the arsenate minerals cobaltkoritnigite and koritnigite. Spectrochim Acta A 125:313–318
- Frost RL, López A, Xi Y, Scholz R (2014p) Vibrational spectroscopic characterization of the phosphate mineral althausite $Mg_2(PO_4)(OH, F, O)$ – implications for the molecular structure. Spectrochim Acta A 120:252–256
- Frost RL, López A, Xi Y, Scholz R (2014q) A study of the phosphate mineral kapundaite NaCa(Fe³ $^{+}$)₄(PO₄)₄(OH)₃⋅5(H₂O) using SEM/EDX and vibrational spectroscopic methods. Spectrochim Acta A 122:400–404
- Frost RL, López A, Xi Y, Scholz R (2014r) A vibrational spectroscopic study of the silicate mineral inesite Ca₂(Mn,Fe)₇Si₁₀O₂₈(OH)∙5H₂O. Spectrochim Acta A 128:207–211
- Frost RL, López A, Xi Y, Scholz R, Gandini AL (2014s) A vibrational spectroscopic study of the silicate mineral ardennite-(As). Spectrochim Acta A 118:987–991
- Frost RL, López A, Xi Y, Scholz R, Lana C (2014t) A vibrational spectroscopic study of the silicate mineral plumbophyllite Pb₂Si₄O₁₀⋅H₂O. Spectrochim Acta A 128:665–670
- Frost RL, López A, Xi Y, Scholz R, Souza L, Lana C (2014u) The molecular structure of the borate mineral rhodizite $(K, Cs)Al_4Be_4(B, Be)_{12}O_{28}$ – a vibrational spectroscopic study. Spectrochim Acta A 128:291–294
- Frost RL, Scholz R, López A, Belotti FM, Xi Y (2014v) Structural characterization and vibrational spectroscopy of the arsenate mineral wendwilsonite. Spectrochim Acta A 118:737–743
- Frost RL, Scholz R, López A, Firmino BE, Lana C, Xi Y (2014w) A Raman and infrared spectroscopic characterisation of the phosphate mineral phosphohedyphane $Ca₂Pb₃(PO₄)₃Cl$ from the Roote mine, Nevada, USA. Spectrochim Acta A 127:237–242
- Frost RL, Scholz R, López A, Lana C, Xi Y (2014x) A Raman and infrared spectroscopic analysis of the phosphate mineral wardite $NaAl₃(PO₄)₂(OH)₄·2(H₂O)$ from Brazil. Spectrochim Acta A 126:164–169
- Frost RL, Scholz R, López A, Theiss FL (2014y) Vibrational spectroscopic study of the natural layered double hydroxide manasseite now defined as hydrotalcite-2H – $Mg_6Al_2(OH)_{16}[CO_3]$ 4H₂O. Spectrochim Acta A 118:187–191
- Frost RL, Scholz R, López A, Theiss FL (2014z) Vibrational spectroscopic characterization of the sulphatehalide mineral sulphohalite – implications for evaporites. Spectrochim Acta A 133:794–798
- Frost RL, Scholz R, López A, Xi Y (2014aa) Raman spectroscopy of the arsenate minerals maxwellite and in comparison with tilasite. Spectrochim Acta A 123:416–420
- Frost RL, Scholz R, López A, Xi Y (2014ab) A vibrational spectroscopic study of the phosphate mineral whiteite CaMn++Mg2Al2(PO4)4(OH)2∙8(H2O). Spectrochim Acta A 124:243–248
- Frost RL, Scholz R, López A, Xi Y, Belotti FM (2014ac) Infrared and Raman spectroscopic characterization of the borate mineral vonsenite $\text{Fe}^{2+}{}_{2}\text{Fe}^{3+} \text{BO}_{5}$. Spectrosc Lett 47(7):512–517
- Frost RL, Scholz R, López A, Xi Y, de Siqueira Queiroz C, Belotti FM, Cândido Filho M (2014ad) Raman, infrared and near-infrared spectroscopic characterization of the herderite – hydroxylherderite mineral series. Spectrochim Acta A 118:430–437
- Frost RL, Scholz R, Lópes A, Xi Y, Gobac ŽŽ, de Carvalho Lana C (2014ae) Vibrational spectroscopy of the borate mineral gaudefroyite from N'Chwaning II mine, Kalahari, Republic of South Africa. Spectrochim Acta A 120:265–269
- Frost RL, Scholz R, López A, Xi Y, Graça LM (2014af) Infrared and Raman spectroscopic characterization of the borate mineral hydroboracite CaMg $[B_3O_4(OH)_3]_2$ ∙3H₂O – implications for the molecular structure. J Molec Struct 1059:20–26
- Frost RL, Scholz R, López A, Xi Y, Lana C (2014ag) Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africa. Spectrochim Acta A 133:24–30
- Frost RL, Theiss FL, López A, Scholz R (2014ah) Vibrational spectroscopic study of the sulphate mineral glaucocerinite $(Zn,Cu)_{10}Al_6(SO_4)_3(OH)_{32}$ ∙18H₂O – a natural layered double hydroxide. Spectrochim Acta A 127:349–354
- Frost RL, Xi Y, López A, Corrêa L, Scholz R (2014ai) The molecular structure of the vanadate mineral mottramite $[PbCu(VO₄)(OH)]$ from Tsumeb, Namibia – a vibrational spectroscopic study. Spectrochim Acta A 122:252–256
- Frost RL, Xi Y, López A, Moreira VA, Scholz R, Lima RMF, Gandini AL (2014aj) Assessment of the

molecular structure of an intermediate member of the triplite-zwieselite mineral series: a Raman and infrared study. Spectrosc Lett 47(3):214–222

- Frost RL, Xi Y, Scholz R, da Costa Alves Pereira M (2014ak) Vibrational spectroscopy of the borate mineral olshanskyite $Ca_3[B(OH)_4]_4(OH)_2$. Carbonates Evaporites 29(1):33–39
- Frost RL, Lopez A, Scholz R, Xi Y, Lana C (2014al) The molecular structure of the phosphate mineral beraunite $Fe^{2+}Fe^{3+}{}_{5} (PO_4)_4 (OH)_5 \cdot 4H_2O - A$ vibrational spectroscopic study. Spectrochim Acta A 128:408–412
- Frost RL, López A, Scholz R (2015a) Raman and infrared spectroscopic study of kamphaugite-(Y). Spectrochim Acta A 143:67–71
- Frost RL, López A, Scholz R (2015b) A SEM, EDS and vibrational spectroscopic study of the tellurite mineral: sonoraite Fe³⁺Te⁴⁺O₃(OH)∙H₂O. Spectrochim Acta A 147:225–229
- Frost RL, López A, Scholz R, Belotti FM, Xi Y (2015c) A vibrational spectroscopic study of the anhydrous phosphate mineral sidorenkite $Na₃Mn(PO₄)(CO₃)$. Spectrochim Acta A 137:930–934
- Frost RL, López A, Scholz R, de Oliveira FA (2015d) SEM, EDX and vibrational spectroscopic study of the mineral tunisite $NaCa₂Al₄(CO₃)₄Cl(OH)₈.$ Spectrochim Acta A 136:911–917
- Frost RL, López A, Scholz R, de Oliveira FA (2015e) Scanning electron microscopy with energy dispersive spectroscopy and Raman and infrared spectroscopic study of tilleyite $Ca₅Si₂O₇(CO₃)₂$ -Y. Spectrochim Acta A 149:333–337
- Frost RL, López A, Scholz R, Lana C, Xi Y (2015f) A Raman spectroscopic study of the arsenate mineral chenevixite Cu₂Fe³⁺₂(AsO₄)₂(OH)₄⋅H₂O. Spectrochim Acta A 135:192–197
- Frost RL, López A, Scholz R, Lima RMF (2015g) Vibrational spectroscopic study of poldervaartite CaCa $[SIO₃(OH)(OH)]$. Spectrochim Acta A 137:827–831
- Frost RL, López A, Scholz R, Sampaio NP, de Oliveira FA (2015h) SEM, EDS and vibrational spectroscopic study of dawsonite $NaAl(CO₃)(OH)₂$. Spectrochim Acta A 136:918–923
- Frost RL, López A, Scholz R, Theiss F, da Costa GM (2015i) Structural characterization of the borate mineral inyoite – CaB₃O₃(OH)₅⋅4H₂O. J Molec Struct 1080:99–104
- Frost RL, López A, Scholz R, Theiss FL, Romano AW (2015j) SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite. Spectrochim Acta A 137:607–611
- Frost RL, López A, Scholz R, Wang L (2015k) A Raman and infrared spectroscopic study of the sulphate mineral aluminite Al2(SO4)(OH)4∙7H2O. Spectrochima Acta A 148:232–236
- Frost RL, López A, Scholz R, Xi Y (2015l) Vibrational spectroscopy of the borate mineral priceite – implications for the molecular structure. Spectrosc Lett 48(2):101–106
- Frost RL, López A, Theiss FL, Graça LM, Scholz R (2015m) A vibrational spectroscopic study of the silicate mineral lomonosovite $Na₅Ti₂(Si₂O₇)(PO₄)O₂$. Spectrochim Acta A 134:53–57
- Frost RL, López A, Theiss FL, Romano AW, Scholz R (2015n) A vibrational spectroscopic study of the silicate mineral pectolite – $NaCa₂Si₃O₈(OH)$. Spectrochim Acta A 134:58–62
- Frost RL, López A, Theiss FL, Romano AW, Scholz R (2015o) An SEM, EDS and vibrational spectroscopic study of the silicate mineral meliphanite $(Ca,Na)_{2}Be$ $[(Si, Al)_2O_6(F, OH)]$. Spectrochim Acta A 136:216–220
- Frost RL, López A, Theiss FL, Scholz R, Romano AW (2015p) A vibrational spectroscopic study of the silicate mineral normandite – $NaCa(Mn^{2+},Fe^{2+})(Ti,Nb,$ Zr)Si2O7(O,F)2. Spectrochim Acta A 135:801–804
- Frost RL, López A, Wang L, Romano AW, Scholz R (2015q) A vibrational spectroscopic study of the silicate mineral harmotome – $(Ba,Na,K)_{1-2}(Si,$ Al)₈O₁₆⋅6H₂O – a natural zeolite. Spectrochim Acta A 137:70–74
- Frost RL, López A, Wang L, Scholz R, Sampaio NP (2015r) SEM, EDX and Raman an infrared spectroscopic study of brianyoungite $Zn_3(CO_3, SO_4)(OH)_4$ from Esperanza Mine, Laurion District, Greece. Spectrochim Acta A 149:279–284
- Frost RL, López A, Wang L, Scholz R, Sampaio NP, de Oliveira FA (2015s) A vibrational spectroscopic study of tengerite-(Y) Y₂(CO₃)₃⋅2-3H₂O. Spectrochim Acta A 137:612–616
- Frost RL, Lópes A, Xi Y, Scholz R (2015t) A vibrational spectroscopic study of the silicate mineral kornerupine. Spectrosc Lett 48(7):487–491
- Frost RL, López A, Xi Y, Scholz R (2015u) A vibrational spectroscopic study of the copper bearing silicate mineral luddenite. Spectrochim Acta A 137:717–720
- Frost RL, Scholz R, Belotti FM, López A, Theiss FL (2015v) A vibrational spectroscopic study of the phosphate mineral vantasselite Al₄(PO₄)₃(OH)₃⋅9H₂O. Spectrochim Acta A 147:185–192
- Frost RL, Scholz R, Jirásek J, Belott FM (2015w) An SEM–EDX and Raman spectroscopic study of the fibrous arsenate mineral liskeardite and in comparison with other arsenates kaňkite, scorodite and yvonite. Spectrochim Acta A 151:566–575
- Frost RL, Scholz R, Lima RMF, López A (2015x) SEM, EDS and vibrational spectroscopic study of the sulphate mineral rostite Al(SO₄)(OH,F)∙5(H₂O). Spectrochim Acta A 151:616–620
- Frost RL, Scholz R, López A (2015y) Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite – implications for the molecular structure. J Molec Struct 1097:1–5
- Frost RL, Scholz R, López A (2015z) Raman and infrared spectroscopic characterization of the arsenate-bearing mineral tangdanite – and in comparison with the discredited mineral clinotyrolite. J Raman Spectrosc 46(10):920–926
- Frost RL, Scholz R, López A, Belotti FM (2015aa) The molecular structure of the borate mineral szaibelyite $MgBO₂(OH) - a vibrational spectroscopic study. J$ Molec Struct 1089:20–24
- Frost RL, Scholz R, López A, Xi Y (2015ab) Raman and infrared spectroscopic characterization of the silicate mineral lamprophyllite. Spectrosc Lett 48(10):701–704
- Frost RL, Scholz R, Wang L (2015ac) A Raman and infrared spectroscopic study of the phosphate mineral pseudolaueite and in comparison with strunzite and ferrostrunzite. J Chem Crystallogr 45(8–9):391–400
- Frost RL, López A, Scholz R, Firmino B (2016a) SEM, EDX and vibrational spectroscopic study of the carbonate mineral donnayite- (Y) NaCaSr₃Y (CO3)6∙3H2O. Carbonates Evaporites 31(1):1–8
- Frost RL, Scholz R, López A (2016b) A Raman and infrared spectroscopic study of the phosphate mineral laueite. Vib Spectrosc 82:31–36
- Frost RL, Scholz R, Ruan X, Lima RMF (2016c) Athermogravimetric, scanning electron microscope and vibrational spectroscopic study of the phosphate mineral santabarbaraite from Santa Barbara mine, Tuscany, Italy. J Therm Anal Calorim 124(2):639–644
- Frost RL, Scholz R, Wang L (2016d) Vibrational spectroscopic study of the phosphate mineral kryzhanovskite and in comparison with reddingite – implications for the molecular structure. J Molec Struct 1118:203–211
- Fu X, Yang G, Sun J, Zhou J (2012) Vibrational spectra of copper sulfate hydrates investigated with low-temperature Raman spectroscopy and terahertz time domain spectroscopy. J Phys Chem A 116 (27):7314–7318
- Fuchs Y, Mellini M, Memmi I (2001) Crystal-chemistry of magnesiocarpholite: controversial X-ray diffraction, Mössbauer, FTIR and Raman results. Eur J Mineral 13(3):533–543
- Fujimori H, Komatsu H, Ioku K, Goto S, Watanabe T (2005) Vibrational spectra of $Ca₃SiO₅$: ultraviolet laser Raman spectroscopy at high temperatures. J Am Ceram Soc 88(7):1995–1998
- Fujita J, Martell AE, Nakamoto K (1962) Infrared spectra of metal chelate compounds. VI. A normal coordinate treatment of oxalate metal complexes. J Chem Phys 36:324–331
- Furman E, Brafman O, Makovsky J (1976) Approximation to long-wavelength lattice dynamics of SbSI-type crystals. Phys Rev B 13(4):1703. (8 pp)
- Furukawa T, Brawer SA, White WB (1979) Raman and infrared spectroscopic studies of the crystalline phases in the system $Pb_2SiO_4-PbSiO_3$. J Am Ceram Soc 62 (7–8):351–356
- Gabal MA, Elroby SA, Obaid AY (2012) Synthesis and characterization of nano-sized ceria powder via oxalate decomposition route. Powder Technol 229:112–118
- Gabelica-Robert M, Tarte P (1979) Vibrational spectrum of akermanite-like silicates and germinates. Spectrochim Acta A 35:649–654
- Gabelica-Robert M, Tarte P (1981) Vibrational spectrum of fresnoite $(Ba_2TiOSi_2O_7)$ and isostructural compounds. Phys Chem Minerals 7(1):26–30
- Gadas P, Novák M, Szuszkiewicz A, Szełęg E, Vašinová Galiová M, Haifler J (2016) Magnesium-rich Na,Be, Li-rich sekaninaite from miarolitic pegmatite at Zimnik, Strzegom-Sobótka massif, Sudetes, Poland. Can Mineral 54(4):971–987
- Gaft M, Nagli L, Waychunas G, Weiss D (2004) The nature of blue luminescence from natural benitoite BaTiSi₃O₉. Phys Chem Minerals $31(6):365-373$
- Gaft M, Yeates H, Nagli L (2013) Laser-induced timeresolved luminescence of natural margarosanite Pb(Ca, $Mn_2Si_3O_9$, swedenborgite $NaBe_4SbO_7$ and walstromite BaCa₂Si₃O₉. Eur J Mineral 25:71–77
- Gaft M, Reisfeld R, Panczer G (2015) Identification of minerals. In: Modern luminescence spectroscopy of minerals and materials. Springer, pp 315–322
- Gaitán M, Jerez A, Pico C, Veiga ML (1985) Ditellurium (IV) trioxide selenate: a new solid phase in the system Te–Se–O2. Mater Res Bull 20(9):1069–1074
- Galera-Gomez PA, Sanz-Pinilla S, Otero-Aenlle E, Gonzáles-Díaz PF (1982) Infrared spectra of arsenate and vanadate strontium apatites. Spectrochim Acta A 38(2):253–259
- Galuskin EV, Armbruster T, Malsy A, Galuskina IO, Sitarz M (2003) Morphology, composition and structure of low-temperature P4/nnc high-fluorine vesuvianite whiskers from Polar Yakutia, Russia. Can Miner 41:843–856
- Galuskin E, Janeczek J, Kozanecki M, Sitarz M, Jastrzębski W, Wrzalik R, Stadnicka K (2007a) Single-crystal Raman investigation of vesuvianite in the OH region. Vib Spectrosc 44(1):36–41
- Galuskin EV, Pertsev NN, Armbruster T, Kadiyski M, Zadov AE, Galuskina IO, Dzierżanowski P, Wrzalik R, Kislov EV (2007b) Dovyrenite Ca₆Zr $[Si₂O₇]$ ₂(OH)₄ – a new mineral from skarned carbonate xenoliths in basic-ultrabasic rocks of the Ioko-Dovyrenmassif, Northern Baikal region, Russia. MineralogiaPolonica 38(1):15–28
- Galuskin EV, Gazeev VM, Lazic B, Armbruster T, Galuskina IO, Zadov AE, Pertsev NN, Wrzalik R, Dzierżanowski P, Gurbanov AG, Bzowska G (2009) Chegemite $Ca_7(SiO_4)_3(OH)_2$ – a new humite-group calcium mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. Eur J Mineral 21 (5):1045–1059
- Galuskin EV, Armbruster T, Galuskina IO, Lazic B, Winiarski A, Gazeev VM, Dzierżanowski P, Zadov AE, Pertsev NN, Wrzalik R, Gurbanov AG, Janeczek J (2011a) Vorlanite (CaU⁶⁺)O₄ – a new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. Am Mineral (1):188–196
- Galuskin EV, Galuskina IO, Gazeev VM, Dzierzanowski P, Prusik K, Pertsev NN, Zadov AE, Bailau R, Gurbanov AG (2011b) Megawite, CaSnO₃: a new perovskite-group mineral from skarns of the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. Mineral Mag 75(5):2563–2572
- Galuskin EV, Galuskina IO, Lazic B, Armbruster T, Zadov AE, Krzykawski T, Banasik K, Gazeev VM,
- Galuskin EV, Galuskina IO, Dubrovinsky LS, Janeczek J (2012a) Thermally induced transformation of vorlanite to "protovorlanite": restoration of cation ordering in self-irradiated CaUO₄. Am Mineral 97 (5–6):1002–1004
- Galuskin EV, Gfeller F, Savelyeva VB, Armbruster T, Lazic B, Galuskina IO, Többens DM, Zadov AE, Dzierżanowski P, Pertsev NN, Gazeev VM (2012b) Pavlovskyite $Ca_8(SiO_4)_2(Si_3O_{10})$: a new mineral of altered silicate-carbonate xenoliths from the two Russian type localities, Birkhin massif, Baikal Lake area and Upper Chegem caldera, North Caucasus. Am Mineral 97(4):503–512
- Galuskin EV, Kusz J, Armbruster T, Bailau R, Galuskina IO, Ternes B, Murashko M (2012c) A reinvestigation of mayenite from the type locality, the Ettringer-Bellerberg volcano near Mayen, Eifel district, Germany. Mineral Mag 76(3):707–716
- Galuskin EV, Lazic B, Armbruster T, Galuskina IO, Pertsev NN, Gazeev VM, Włodyka R, Dulski M, Dzierżanowski P, Zadov AE, Dubrovinsky LS (2012d) Edgrewite Ca9(SiO4)4F2–hydroxyledgrewite $Ca_9(SiO4)_4(OH)_2$, a new series of calcium humitegroup minerals from altered xenoliths in the ignimbrite of Upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia. Am Mineral 97 (11–12):1998–2006
- Galuskin EV, Galuskina IO, Bailau R, Prusik K, Gazeev VM, Zadov AE, Pertsev NN, Jeżak L, Gurbanov AG, Dubrovinsky L (2013a) Eltyubyuite, $Ca_{12}Fe^{3+}{}_{10}$ $Si_4O_{32}Cl_6$ – the Fe³⁺ analogue of wadalite: a new mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. Eur J Mineral 25(2):221–229
- Galuskin EV, Kusz J, Armbruster T, Galuskina IO, Marzec K, Vapnik Y, Murashko M (2013b) Vorlanite, $(CaU⁶⁺)O₄$, from Jabel Harmun, Palestinian Autonomy, Israel. Am Mineral 98(11–12):1938–1942
- Galuskin EV, Galuskina IO, Kusz J, Armbruster T, Marzec KM, Dzierżanowski P, Murashko M (2014) Vapnikite $Ca₃UO₆$ -a new double-perovskite mineral from pyrometamorphiclarnite rocks of the JabelHarmun, Palestinian Autonomy, Israel. Mineral Mag 78(3):571–582
- Galuskin EV, Galuskina IO, Gfeller F, Krüger B, Kusz J, Vapnik Y, Dulski M, Dzierżanowski P (2015a) Silicocarnotite, $Ca_5[(PO_4)(SiO_4)](PO_4)$, a new "old" mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. Eur J Mineral. <https://doi.org/10.1127/ejm/2015/0027-2494>
- Galuskin EV, Galuskina IO, Kusz J, Gfeller F, Armbruster T, Bailau R, Dulski M, Gazeev VM, Pertsev NN, Zadov AE, Dzierżanowski P (2015b) Mayenite supergroup, Part II: Chlorkyuygenite from Upper Chegem, Northern Caucasus, Kabardino-

Balkaria, Russia, a new microporous mineral with "zeolitic" H₂O. Eur J Mineral 27(1):113-122

- Galuskin EV, Gfeller F, Armbruster T, Galuskina IO, Vapnik Y, Dulski M, Murashko M, Dzierżanowski P, Sharygin VV, Krivovichev SV, Wirth R (2015c) Mayenite supergroup, Part III: Fluormayenite, $Ca_{12}Al_{14}O_{32}[\Box_4F_2],$ and fluorkyuygenite, $Ca_{12}Al_{14}O_{32}[(H_2O)_4F_2]$, two new minerals from pyrometamorphic rocks of the Hatrurim Complex, South Levant. Eur J Mineral 27(1):123–136
- Galuskin EV, Gfeller F, Armbruster T, Galuskina IO, Vapnik Y, Murashko M, Włodyka R, Dzierżanowski P (2015d) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part I. Nabimusaite, $KCa_{12}(SiO_4)_4(SO_4)_2O_2F$, from larnite rocks of Jabel Harmun, Palestinian Autonomy, Israel. Mineral Mag 79(5):1061–1072
- Galuskin EV, Gfeller F, Galuskina IO, Pakhomova A, Armbruster T, Vapnik Y, Włodyka R, Dzierżanowski P, Murashko M (2015e) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, $BaCa_6[(SiO_4)(PO_4)](PO_4)_2F$ and aradite, $BaCa_6[(SiO₄)(VO₄)](VO₄)₂F$, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineral Mag 79(5):1073–1087
- Galuskin EV, Gfeller F, Galuskina IO, Armbruster T, Krzatala A, Vapnik Y, Kusz J, Dulski M, Gardocki M, Gurbanov AG, Dzierzanowski P (2016a) New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks, Part III: Gazeevite, $BaCa_6(SiO_4)_2(SO_4)_2O$, from Israel and Palestine Autonomy, South Levant and from South Ossetia, Greater Caucasus. Mineral Mag. [https://doi.](https://doi.org/10.1180/minmag.2016.080.105) [org/10.1180/minmag.2016.080.105](https://doi.org/10.1180/minmag.2016.080.105)
- Galuskin EV, Krüger B, Krüger H, Blass G, Widmer R, Galuskina IO (2016b) Wernerkrauseite, $CaFe³⁺_{2}Mn⁴$ + O6: the first nonstoichiometric post-spinel mineral, from Bellerberg volcano, Eifel, Germany. Eur J Mineral 28(2):485–493
- Galuskina IO, Galuskin EV, Dzierżanowski P, Armbruster T, Kozanecki M (2005) A natural scandian garnet. Am Mineral 90(10):1688–1692
- Galuskina IO, Kadiyski M, Armbruster T, Galuskin EV, Pertsev NN, Dzierżanowski P, Wrzalik R (2008) A new natural phase in the system Mg_2SiO_4 - $Mg_2BO_3F-Mg_2BO_3(OH)$: composition, paragenesis and structure of OH-dominant pertsevite. Eur J Mineral 20(5):951–964
- Galuskina IO, Lazic B, Armbruster T, Galuskin EV, Gazeev VM, Zadov AE, Pertsev NN, Jeżak L, Wrzalik R, Gurbanov AG (2009) Kumtyubeite $Ca₅(SiO₄)₂F₂ - a new calcium mineral of the humite$ group from Northern Caucasus, Kabardino-Balkaria, Russia. Am Mineral 94(10):1361–1370
- Galuskina IO, Galuskin EV, Armbruster T, Lazic B, Dzierżanowski P, Gazeev VM, Prusi KK, Pertsev NN, Winiarski A, Zadov AE, Wrzali KR, Gurbanov AG (2010a) Bitikleite-(SnAl) and bitikleite-(ZrFe):

new garnets from xenoliths of the Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia. Am Mineral 95(7):959–967

- Galuskina IO, Galuskin EV, Armbruster T, Lazic B, Kusz J, Dzierżanowski P, Gazeev VM, Pertsev NN, Prusik J, Zadov AE, Winiarski A, Wrzalik R, Gurbanov AG (2010b) Elbrusite-(Zr) – a new uraniangarnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. Am Mineral 95(8–9):1172–1181
- Galuskina IO, Galuskin EV, Dzierżanowski P, Gazeev VM, Prusik K, Pertsev NN, Winiarski A, Zadov AE, Wrzalik R (2010c) Toturite $Ca_3Sn_2Fe_2SiO_12 - a$ new mineral species of the garnet group. Am Mineral 95 (8–9):1305–1311
- Galuskina IO, Galuskin EV, Lazic B, Armbruster T, Dzierżanowski P, Prusik K, Wrzalik R (2010d) Eringaite, $Ca_3Sc_2(SiO_4)$ ₃, a new mineral of the garnet group. Mineral Mag 74(2):365–373
- Galuskina IO, Galuskin EV, Prusik K, Gazeev VM, Pertsev NN, Dzierżanowski P (2013a) Irinarassite $Ca₃Sn₂SiAl₂O₁₂$ – new garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. Mineral Mag 77(6):2857–2866
- Galuskina IO, Galuskin EV, Kusz J, Dzierżanowski P, Prusik K, Gazeev VM, Pertsev NN, Dubrovinsky L (2013b) Dzhuluite, $Ca_3SbSnFe^{3+}{}_{3}O_{12}$, a new bitikleite-group garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. Eur J Mineral 25(2):231–239
- Galuskina IO, Vapnik Y, Lazic B, Armbruster T, Murashko M, Galuskin EV (2014) Harmunite $CaFe₂O₄$: a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. Am Mineral 99(5–6):965–975
- Galuskina IO, Krüger B, Galuskin EV, Armbruster T, Gazeev VM, Włodyka R, Dulski M, Dzierżanowski P (2015) Fluorchegemite, $Ca_7(SiO_4)_3F_2$, a new mineral from the edgrewite-bearing endoskarn zone of an altered xenolith in ignimbrites from upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia: occurrence, crystal structure, and new data on the mineral assemblages. Can Mineral 53(2):325–344
- Galuskina IO, Galuskin EV, Prusik K, Vapnik Y, Juroszek R, Jeżak L, Murashko M (2016a) Dzierżanowskite, $CaCu₂S₂ - a$ new natural thiocuprate from Jabel Harmun, Judean Desert, Palestine Autonomy, Israel. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.153) [minmag.2016.080.153](https://doi.org/10.1180/minmag.2016.080.153)
- Galuskina IO, Galuskin EV, Vapnik Y, Prusik K, Stasiak M, Dzierżanowski P, Murashko M (2016b) Gurimite, $Ba_3(VO4)_2$, and hexacelsian, $BaAl_2Si_2O_8$ – two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.147>
- Galuskina IO, Galuskin EV, Pakhomova AS, Widmer R, Armbruster T, Krüger B, Grew ES, Vapnik Y, Dzierażanowski P, Murashko M (2017) Khesinite, $Ca_4Mg_2Fe^{3+}{}_{10}O_4[(Fe^{3+}{}_{10}Si_2)O_{36}]$, a new rhönite-

group (sapphirine supergroup) mineral from the Negev Desert, Israel – natural analogue of the SFCA phase. Eur J Mineral. [https://doi.org/10.1127/ejm/](https://doi.org/10.1127/ejm/2017/0029-2589) [2017/0029-2589](https://doi.org/10.1127/ejm/2017/0029-2589)

- Gama S (2000) Evénements métallogéniques à W-Bi (Au) à 305 Ma en Châtaigneraie du Cantal: apport d'une analyse multi-spectrométrique (micro PIXE-PIGE et Raman) des minéraux et de sfluides occlus à l'identification des sources de fluids hydrothermaux. Minéralogie. Thése, Université d'Orléans. (in French)
- Gao J, Huang W, Wu X, Fan D, Wu Z, Xia D, Qin S (2015) Compressibility of carbonophosphate bradleyite $Na₃Mg(PO₄)(CO₃)$ by X-ray diffraction and Raman spectroscopy. Phys Chem Minerals 42 (3):191–201
- Garavelli A, Pinto D, Mitolo D, Bindi L (2014) Leguernite, $Bi_{12.67}O_{14}(SO_4)$ ₅, a new Bi oxysulfate from the fumarole deposit of La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineral Mag 78(7):1629–1646
- Garbout A, Taazayet-Belgacem IB, Férid M (2013) Structural, FT-IR, XRD and Raman scattering of new rareearth-titanatepyrochlore-type oxides $LnEuTi₂O₇$ (Ln = Gd, Dy). J Alloys Compd 573:43–52
- Garcia CS, Abedin MN, Sharma SK, Misra AK, Ismail S, Singh UN, Refaat TF, Elsayed-Ali HE, Sandford SP (2006) Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals. Proc SPIE. [https://doi.org/10.](https://doi.org/10.1117/12.680879) [1117/12.680879](https://doi.org/10.1117/12.680879)
- García FP, Hernandez JC, Cruz VER, Santillan YM, Marzo MAM, Moreno FP (2013) Recovery and characterization of struvite from sediment and sludge resulting from the process of acid whey electrocoagulation. Asian J Chem 25(14):8005–8009
- Garcia-Guinea J, La Iglesia A, Crespo-Feo E, Del Tánago JG, Correcher V (2013) The status of zaratite: investigation of the type specimen from Cape Ortegal, Galicia, Spain. Eur J Mineral 25(6):995–1004
- Gasanly NM, Magomedov AZ, Melnik NN, Salamov BG (1993) Raman and infrared studies of $AgIn₅S₈$ and $CuIn₅S₈$ single crystals. Phys Status Solidi (b) 177(1): K31–K35
- Gasharova B, Mihailova B, Konstantinov L (1997) Raman spectra of various types of tourmaline. Eur J Mineral 9:935–940
- Gastaldi D, Boccaleri E, Canonico F (2008) In situ Raman study of mineral phases formed as by-products in a rotary kiln for clinker production. J Raman Spectrosc 39(7):806–812
- Gatta G, Lotti P, Kahlenberg V, Haefeker U (2012a) The low-temperature behaviour of cancrinite: an in situ single-crystal X-ray diffraction study. Mineral Mag 76(4):933–948
- Gatta GD, McIntyre GJ, Swanson JG, Jacobsen SD (2012b) Minerals in cement chemistry: a single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca₃Si(OH)₆(CO₃)(SO₄)∙12H₂O. Am Mineral 97:1060–1069
- Gatta GD, Jacobsen SD, Vignola P, McIntyre GJ, Guastella G, Abate LF (2014) Single-crystal neutron diffraction and Raman spectroscopic study of hydroxylherderite, CaBePO₄(OH,F). Mineral Mag 78 (3):723–738
- Gatta GD, Rotiroti N, Bersani D, Bellatreccia F, Della Ventura G, Rizzato S (2015a) A multi-methodological study of the (K,Ca)-variety of the zeolite merlinoite. Mineral Mag 79(7):1755–1767
- Gatta GD, Scheidl KS, Pippinger T, Skála R, Lee Y, Miletich R (2015b) High-pressure behavior and crystal–fluid interaction under extreme conditions in paulingite [PAU-topology]. Micropor Mesopor Mater 206:34–41
- Gatta G, Bosi F, Fernandez Diaz MT, Hålenius U (2016) H-bonding scheme in allactite: a combined singlecrystal neutron/X-ray diffraction, EPMA-WDS, FTIR and OAS study. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.020) [minmag.2016.080.020](https://doi.org/10.1180/minmag.2016.080.020)
- Gavarri JR, Chater R, Ziółkowski J (1988) The chemical bonds in $MeSb₂O₄$ ($Me = Mn$, Ni, Fe, Zn) isomorphous compounds: thermal expansion, force constants, energies. J Solid State Chem 73(2):305–316
- Ge J-P, Li Y-D (2003) Ultrasonic synthesis of nanocrystals of metal selenides and tellurides. J Mater Chem 13 (4):911–915
- Gee AR, O'Shea DC, Cummins HZ (1966) Raman scattering and fluorescence in calcium fluoride. Solid State Commun 4(1):43–46
- Gehring P, Benia HM, Weng Y, Dinnebier R, Ast CR, Burghard M, Kern K (2013) A natural topological insulator. Nano Lett 13(3):1179–1184
- Gehring P, Vaklinova K, Hoyer A, Benia HM, Skakalova V, Argentero G, Eder F, Burghard M, Kern K (2015) Dimensional crossover in the quantum transport behaviour of the natural topological insulator Aleksite. Sci Rep. <https://doi.org/10.1038/srep11691>
- Geisinger KL, Ross NL, McMillan PF, Navrotsky A (1987) $K_2Si_4O_9$; energetics and vibrational spectra of glass, sheet silicate, and wadeite-type phases. Am Mineral 72(9–10):984–994
- Geisler T, Zhang M, Salje EK (2003) Recrystallization of almost fully amorphous zircon under hydrothermal conditions: an infrared spectroscopic study. J Nucl Mater 320(3):280–291
- Geisler T, Berndt J, Meyer HW, Pollok K, Putnis A (2004) Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between nature and experiment. Mineral Mag 68(6):905–922
- Genceli FE, Lutz M, Spek AL, Witkamp GJ (2007) Crystallization and characterization of a new magnesium sulfate hydrate MgSO₄⋅11H₂O. Cryst Growth Design 7 (12):2460–2466
- Genceli FE, Horikawa S, Iizuka Y, Sakurai T, Hondoh T, Kawamura T, Witkamp GJ (2009) Meridianiite detected in ice. J Glaciol 55(189):117–122
- Genchev G, Erbe A (2016) Raman spectroscopy of mackinawite FeS in anodic iron sulfide corrosion products. J Electrochem Soc 163(6):C333–C338
- Georgiev M, Wildner M, Stoilova D, Karadjova V (2007) Preparation, crystal structure and infrared spectroscopy of the new compound rubidium beryllium sulfate dihydrate, Rb2Be(SO4)2∙2H2O. Vibr Spectrosc 44 (2):266–272
- Georgiev M, Bancheva T, Marinova D, Stoyanova R, Stoilova D (2016) On the formation of solid solutions with blödite-and kröhnkite-type structures. I. Synthesis, vibrational and EPR spectroscopic investigations of Na₂Zn_{1-x}Cu_x(SO₄)₂⋅4H₂O (0<x< 0.14). IJSRST 2(5):279–292
- Gerding H (1941) Das Ramanspektrum des Festen Selendioxyds. Recueil Travaux Chim Pays-Bas 60 (10):728–731. (in German)
- Gerlinger H, Schaack G (1986) Crystal-field states of the Ce^{3+} ion in CeF_3 : a demonstration of vibronic interaction in ionic rare-earth compounds. Phys Rev B 33 (11):7438–7450
- Gfeller F, Armbruster T, Galuskin EV, Galuskina IO, Lazic B, Savelyeva VB, Zadov AE, Dzierżanowski P, Gazeev VM (2013) Crystal chemistry and hydrogen bonding of rustumite $Ca_{10}(Si_2O_7)_2(SiO_4)(OH)_2Cl_2$ with variable OH, Cl, F. Am Mineral 98(2–3):493–500
- Gfeller F, Widmer R, Krüger B, Galuskin EV, Galuskina IO, Armbruster T (2015) The crystal structure of flamite and its relation to $Ca₂SiO₄$ polymorphs and nagelschmidtite. Eur J Mineral 27(6):755–769
- Ghorbel K, Litaiem H, Ktari L, Garcia-Granda S, Dammak M (2015) X-ray single crystal, thermal analysis and vibrational study of $(NH_4)_2(SO_4)_{0.92}H(AsO_4)_{0.08}T$ e (OH)6. J Molec Struct 1079:225–231
- Ghribi N, Karray R, Laval JP, Kabadou A, Ben Salah A (2015) X-ray powder diffraction and Raman vibrational study of new doped compound $TiTe₃O₈:Ce⁴⁺.$ J Mater Environ Sci 6(4):989–996
- Ghule A, Bhongale C, Chang H (2003) Monitoring dehydration and condensation processes of Na₂HPO₄⋅12H₂O using thermo-Raman spectroscopy. Spectrochim Acta A 59(7):1529–1539
- Giammar DE, Hering JG (2002) Equilibrium and kinetic aspects of soddyite dissolution and secondary phase precipitation in aqueous suspension. Geochim Cosmochim Acta 66(18):3235–3245
- Gianfagna A, Mazziotti-Tagliani S, Croce A, Allegrina M, Rinaudo C (2014) As-rich apatite from Mt. Calvario: characterization by micro-Raman spectroscopy. Can Mineral 52(5):799–808
- Giarola M, Sanson A, Rahman A, Mariotto G (2011) Vibrational dynamics of $YPO₄$ and $ScPO₄$ single crystals: an integrated study by polarized Raman spectroscopy and first principles calculations. Phys Rev B 83:224302-1–224302-8
- Gieré R, Williams CT, Wirth R, Ruschel K (2009) Metamict fergusonite-(Y) in a spessartine-bearing granitic pegmatite from Adamello, Italy. Chem Geol 261 (3):333–345
- Gies H (1983) Studies on clathrasils. III. Crystal structure of melanophlogite, a natural clathrate compound of silica. Z Kristallogr 164:247–257
- Gies H, Gerke H, Liebau F (1982) Chemical composition and synthesis of melanophlogite, a clathrate compound of silica. N Jb Mineral Mh 3:119–124
- Giese B, McNaughton D (2002) Density functional theoretical (DFT) and surface-enhanced Raman spectroscopic study of guanine and its alkylated derivatives Part 1. DFT calculations on neutral, protonated and deprotonated guanine. Phys Chem Chem Phys 4 (20):5161–5170
- Giester G, Lengauer CL, Pristacz H, Rieck B, Topa D, Von Bezing KL (2016) Cairncrossite, a new Ca-Sr (-Na) phyllosilicate from the Wessels Mine, Kalahari Manganese Field, South Africa. Eur J Mineral. [https://](https://doi.org/10.1127/ejm/2016/0028-2519) doi.org/10.1127/ejm/2016/0028-2519
- Giguére PA, Harvey KB (1956) On the infrared absorption of water and heavy water in condensed states. Can J Chem 34:798–808
- Gilg HA, Gast N (2015) Determination of titanium content in pyrope by Raman spectroscopy. J Raman Spectrosc. <https://doi.org/10.1002/jrs.4838>
- Gillet P, Reynard B, Tequi C (1989) Thermodynamic properties of glaucophane new data from calorimetric and spectroscopic measurements. Phys Chem Minerals 16:659–667
- Gillet P, Chen M, Dubrovinsky L, El Goresy A (2000) Natural NaAl $Si₃O₈$ -hollandite in the shocked Sixiangkou meteorite. Science 287(5458):1633–1636
- Giuliani G, Ohnenstetter D, Palhol F, Feneyrol J, Boutroy E, De Boissezon H, Lhomme T (2008) Karelianite and vanadian phlogopite from the Merelani Hills gem zoisite deposits, Tanzania. Can Mineral 46 (5):1183–1194
- Glamazda A, Choi KY, Lemmens P, Yang JJ, Cheong SW (2014) Proximity to a commensurate charge modulation in IrTe_{2-x}Se_x (x= 0 and 0.45) revealed by Raman spectroscopy. New J Phys 16(9):093061. (12 pp)
- Godec J, Colombo L (1976) Interpretation of the vibrational spectrum of crystalline phenanthrene. J Chem Phys 65:4693–4700
- Godelitsas A, Astilleros JM, Hallam KR, Löns J, Putnis A (2003) Microscopic and spectrosopic investigation of the calcite surface interacted with Hg(II) in aqueous solutions. Mineral Mag 67(6):1193–1204
- Goienaga N, Arrieta N, Carrero JA, Olivares M, Sarmiento A, Martinez-Arkarazo I, Fernández LA, Madariaga JM (2011) Micro-Raman spectroscopic identification of natural mineral phases and their weathering products inside an abandoned zinc/lead mine. Spectrochim Acta A 80(1):66–74
- Golovin AV, Korsakov AV, Zaitsev AN (2014) In Situ high-temperature Raman spectroscopic study of zemkorite and $(Na,K)_2Ca(CO_3)_2$ γ-phase. 11th Int GeoRaman Conf 5046
- Golovin AV, Korsakov AV, Zaitsev AN (2015) In situ ambient and high-temperature Raman spectroscopic studies of nyerereite $(Na,K)_2Ca(CO_3)_2$: can hexagonal zemkorite be stable at earth-surface conditions. J Raman Spectrosc 46(10):904–912
- Golovin AV, Korsakov AV, Gavryushkin PN, Zaitsev AN, Thomas VG, Moine BN (2017) Raman spectra of nyerereite, gregoryite, and synthetic pure $Na₂Ca$ (CO_3) ₂: diversity and application for the study micro inclusions. J Raman Spectrosc. [https://doi.org/10.](https://doi.org/10.1002/jrs.5143) [1002/jrs.5143](https://doi.org/10.1002/jrs.5143)
- Golubev YA, Martirosyan OV (2012) The structure of the natural fossil resins of North Eurasia according to IRspectroscopy and microscopic data. Phys Chem Miner 39:247–258
- Golubev YA, Isaenko SI, Prikhodko AS, Borgardt NI, Suvorova EI (2016) Raman spectroscopic study of natural nanostructured carbon materials: shungite vs. anthraxolite. Eur J Mineral. [https://doi.org/10.](https://doi.org/10.1127/ejm/2016/0028-2537) [1127/ejm/2016/0028-2537](https://doi.org/10.1127/ejm/2016/0028-2537)
- Gómez MA, Lee K (2012) Vibrational spectroscopy of complex synthetic and industrial products. In: De Caro D (ed) Vibrational spectroscopy. INTECH. https://doi.org/10.5772/32982
- Gomez MA, Assaaoudi H, Becze L, Cutler JN, Demopoulos GP (2010a) Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4∙2H2O), ferric arsenate sub-hydrate (FAsH; Fe AsO4∙0.75H2O) and basic ferric arsenate sulfate (BFAS; Fe[(AsO_{4)1-x}(SO4)_x(OH)_x]⋅wH₂O). J Raman Spectrosc 41(2):212–221
- Gomez MA, Becze L, Blyth RIR, Cutler JN, Demopoulos GP (2010b) Molecular and structural investigation of yukonite (synthetic & natural) and its relation to arseniosiderite. Geochim Cosmochim Acta 74 (20):5835–5851
- Gomez MA, Le Berre JF, Assaaoudi H, Demopoulos GP (2011) Raman spectroscopic study of the hydrogen and arsenate bonding environment in isostructural synthetic arsenates of the variscite group – M^{3+} AsO₄⋅2H₂O (M^{3+} = Fe, Al, In and Ga): implications for arsenic release in water. J Raman Spectrosc 42 $(1):62-71$
- Gomez MA, Ventruti G, Celikin M, Assaaoudi H, Putz H, Becze L, Lee KE, Demopoulos GP (2013) The nature of synthetic basic ferric arsenate sulfate (Fe $(AsO₄)_{1-x}(SO₄)_x(OH)_x)$ and basic ferric sulfate (FeOHSO4): their crystallographic, molecular and electronic structure with applications in the environment and energy. RSC Adv 3(37):16840–16849
- Gómez-Nubla L, Aramendia J, Vallejuelo SFO, Castro K, Madariaga JM (2013) From portable to SCA Raman devices to characterize harmful compounds contained in used black slag produced in electric arc furnace of steel industry. J Raman Spectrosc 44(8):1163–1171
- Gönen ZS, Kizilyalli M, Pamuk HÖ (2000) Synthesis and characterization of Na₂GdOPO₄ and Na₂LaOPO₄. J Alloys Compd 303:416–420
- Gong WL, Ewing RC, Wang LM, Xie HS (1995) Aeschynite and euxenite structure-types as host phases for rare-earths and actinides from HLW. In: MRS Proceedings, vol 412. Cambridge University Press, p 377
- Gopal NO, Narasimhulu KV, Rao JL (2004) EPR, optical, infrared and Raman spectral studies of actinolite mineral. Spectrochim Acta A 60(11):2441–2448
- Gopal RK, Singh S, Chandra R, Mitra C (2015) Weakantilocalization and surface dominated transport in topological insulator $Bi₂Se₂Te$. AIP Adv 5 (4):047111-1–047111-10
- Gopinath AB, Devanarayanan S, Castro A (1998) Vibrational spectra of three anhydrous rare-earth selenites R_2 Se₃O₉ (R = La, Sm and Lu). Spectrochim Acta A 54 (6):785–791
- Goreva JS, Ma C, Rossman GR (2001) Fibrous nanoinclusions in massive rose quartz: the origin of rose coloration. Am Mineral 86(4):466–472
- Goryainov SV (2016) Raman study of thaumasite $Ca₃Si$ (OH)6(SO4)(CO3)∙12H2O at high pressure. J Raman Spectrosc. <https://doi.org/10.1002/jrs.4936>
- Goryainov SV, Smirnov MB (2001) Raman spectra and lattice-dynamical calculations of natrolite. Eur J Mineral 13(3):507–519
- Goryainov SV, Krylov AS, Pan Y, Madyukov IA, Smirnov MB, Vtyurin AN (2012) Raman investigation of hydrostatic and nonhydrostatic compressions of OH- and F-apophyllites up to 8 GPa. J Raman Spectrosc 43(3):439–447
- Goryainov SV, Likhacheva AY, Rashchenko SV, Shubin AS, Afanas'ev VP, Pokhilenko NP (2014) Raman identification of lonsdaleite in Popigai impactites. J Raman Spectrosc 45(4):305–313
- Goryainov SV, Krylov AS, Vtyurin AN, Pan Y (2015) Raman study of datolite $CaBSiO₄(OH)$ at simultaneously high pressure and high temperature. J Raman Spectrosc 46(1):177–181
- Goryainov SV, Pan Y, Smirnov MB, Sun W, Mi JX (2017) Raman investigation on the behavior of parasibirskite CaHBO₃ at high pressure. Spectrochim Acta A 173:45–52
- Gottschall R, Schöllhorn R, Muhler M, Jansen N, Walcher D, Gütlich P (1998) Electronic state of nickel in barium nickel oxide, BaNiO₃. Inorg Chem 37 (7):1513–1518
- Gourrier L, Deabate S, Michel T, Paillet M, Hermet P, Bantignies J-L, Henn F (2011) Characterization of unusually large "pseudo-single crystal" of β-nickel hydroxide. J Phys Chem C 115:15067–15074
- Gow RN (2015) Spectroelectrochemistry and modeling of enargite (Cu₃AsS₄) under atmospheric conditions. Dissertation, University of Montana
- Goypiron A, De Villepin J, Novak A (1980) Raman and infrared study of KHSO₄ crystal. J Raman Spectrosc 9 (5):297–303
- Graeser S, Schwander H, Demartin F, Gramaccioli CM, Pilati T, Reusser E (1994) Fetiasite $(Fe^{2+},Fe^{3+},$ $Ti)_{3}O_{2}[As_{2}O_{5}]$, a new arsenite mineral: its description and structure determination. Am Mineral 79:996–1002
- Graeser S, Hetherington CJ, Gieré R (2003) Ganterite, a new barium-dominant analogue of muscovite from the Berisal Complex, Simplon Region, Switzerland. Can Mineral 41(5):1271–1280
- Graf L (1978) Phonons and electronic transitions in the Raman spectra of FeCl2⋅2H₂O and isomorphic compounds. Solid State Commun 27(12):1361–1365
- Graf L, Schaack G (1976) Magnon-phonon coupling in antiferromagnetic FeCl₂⋅2H₂O. Z Phys B 24(1): 83–89
- Graham CM, Tareen JA, Mcmillan PF, Lowe BM (1992) An experimental and thermodynamic study of cymrite and celsian stability in the system $BaO-Al₂O₃-SiO₂$ -H2O. Eur J Mineral 4(2):251–269
- Graham IT, Pogson RE, Colchester DM, Baines A (2003) Zeolite crystal habits, compositions, and paragenesis; Blackhead Quarry, Dunedin, New Zealand. Mineral Mag 67(4):625–637
- Graham IT, Pogson RE, Colchester DM, Hergt J, Martin R, Williams PA (2007) Pink lanthanite-(Nd) from Whitianga Quarry, Coromandel Peninsula, New Zealand. Can Mineral 45(6):1389–1396
- Grandhe BK, Bandi VR, Jang K, Lee HS, Shin DS, Yi SS, Jeong JH (2012) Effect of sintering atmosphere and lithium ion co-doping on photoluminescence properties of NaCaPO₄: Eu²⁺ phosphor. Ceram Int 38 (8):6273–6279
- Grasselli MC, Baran EJ (1984) IR spectroscopic characterization of tetrabasic lead sulphate. J Mater Sci Lett 3 (11):949–950
- Grey IE, Shanks FL, Wilson NC, Mumme WG, Birch WD (2011) Carbon incorporation in plumbogummitegroup minerals. Mineralag 75(1):145–158
- Grey IE, Keck E, Mumme WG, Pring A, Macrae CM, Glenn AM, Davidson CJ, Shamks FL, Mills SJ (2016a) Kummerite, Mn²⁺Fe³⁺Al(PO₄)₂(OH)₂⋅8H₂O, a new laueite-group mineral from the HagendorfSüd pegmatite, Bavaria, with ordering of Al and $Fe³⁺$. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.061>
- Grey IE, Betterton J, Kampf AR, Macrae CM, Shanks FL, Price JR (2016b) Penberthycroftite, $[AI_6(AsO_4)_3(OH)_9(H_2O)_5]$ ∙8H₂O, a second new hydrated aluminium arsenate mineral from the Penberthy Croft mine, St. Hilary, Cornwall. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.069>
- Grey I, Keck E, Kampf AR, Macrae CM, Glenn AM, Price JR (2016c) Wilhelmgümbelite, $[ZnFe^{2+}Fe^{3+}3]$ (PO4)3(OH)4(H2O)5]∙2H2O, a new schoonerite-related mineral from the Hagendorf Süd pegmatite, Bavaria. Mineral Mag. [https://doi.org/10.1180/minmag.2016.](https://doi.org/10.1180/minmag.2016.080.098) [080.098](https://doi.org/10.1180/minmag.2016.080.098)
- Grice JD, Van Velthuizen J, Dunn PJ, Newbury DE, Etz ES, Nielsen CH (1986) Moydite (Y,REE)[B(OH)4] $(CO₃)$, a new mineral species from the Evans-Lou pegmatite, Quebec. Can Mineral 24:665–673
- Grice JD, Rowe R, Poirier G (2015) Hydroterskite: a new mineral species from the Saint-Amable Sill, Quebec, and acomparison with terskite and elpidite. Can Mineral 53(5):821–832
- Griffith WP (1970) Raman studies on rock-forming minerals. Part II. Minerals containing MO_3 , MO_4 , and MO_6 groups. J Chem Soc A Inorg Phys Theor 286–291
- Grishchenko RO, Emelina AL, Makarov PY (2013) Thermodynamic properties and thermal behavior of Friedel's salt. Thermochim Acta 570:74–79
- Grishina S, Dubessy J, Kontorovich A, Pironon J (1992) Inclusions in salt beds resulting from thermal metamorphism by dolerite sills (eastern Siberia, Russia). Eur J Mineral 4(5):1187–1202
- Groat LA, Hawthorne FC, Erict [®]S (1995) The chemistry of vesuvianite. Can Miner 33:19–48
- Groat LA, Kek S, Bismayer U, Schmidt C, Krane HG, Meyer H, Nestor L, Tendeloo GV (1996) A synchrotron radiation, HRTEM, X-ray powder diffraction, and Raman spectroscopic study of malayaite, $CaSnSiO₅$. Am Mineral 81(5–6):595–602
- Groß U, Rüdiger S, Kemnitz E, Brzezinka KW, Mukhopadhyay S, Bailey C, Wander A, Harrison N (2007) Vibrational analysis study of aluminum trifluoride phases. J Phys Chem A 111(26):5813–5819
- Grosse P, Richter W (1970) Absorption spectra of tellurium in the spectral range from 18 to 460 cm^{-1} . Phys Status Solidi B 41(1):239–246
- Grundler PV, Brugger J, Meisser N, Ansermet S, Borg S, Etschmann B, Testemale D, Bolin T (2008) Xocolatlite, $Ca₂Mn⁴⁺₂Te₂O₁₂·H₂O$, a new tellurate related to kuranakhite: description and measurement of Te oxidation state by XANES spectroscopy. Am Mineral 93(11–12):1911–1920
- Grüneberger AM, Schmidt C, Jahn S, Rhede D, Loges A, Wilke M (2016) Interpretation of Raman spectra of the zircon-hafnon solid solution. Eur J Mineral. [https://doi.](https://doi.org/10.1127/ejm/2016/0028-2551) [org/10.1127/ejm/2016/0028-2551](https://doi.org/10.1127/ejm/2016/0028-2551)
- Grzechnik A, McMillan PF (1997) In situ high pressure Raman spectra of $Ba_3(VO_4)_2$. Solid State Commun 102 (8):569–574
- Gualtieri AF (2000) Study of NH4⁺ in the zeolite phillipsite by combined synchrotron powder diffraction and IR spectroscopy. Acta Crystallogr B 56 (4):584–593
- Guang F, Xiangun G, Guowu L, Apeng Y, Ganfu S (2016) Oxynatromicrolite, $(Na,Ca,U)_2Ta_2O_6(O,F)$, a new member of the pyrochloresupergroup from Guanpo, Henan Province, China. Mineral Mag. [https://doi.org/](https://doi.org/10.1180/minmag.2016.080.121) [10.1180/minmag.2016.080.121](https://doi.org/10.1180/minmag.2016.080.121)
- Guc M, Ursaki VV, Bodnar IV, Lozhkin DV, Arushanov E, Izquierdo-Roca V, Rodríguez AP (2012) Raman scattering investigation of $Mn_xFe_{1-x}In_2S_4$ solid solutions. Mater Chem Phys 136(2):883–888
- Gucsik A, Zhang M, Koeberl C, Salje EKH, Redfern SAT, Pruneda JM (2004) Infrared and Raman spectra of ZrSiO₄ experimentally shocked at high pressures. Mineral Mag 68:801–811
- Guilherme LR, Massabni AC, Dametto AC, de Souza Corrêa R, de Araujo AS (2010) Synthesis, infrared spectroscopy and crystal structure determination of a new decavanadate. J Chem Crystallogr 40(11):897–901
- Guillaume F, Huang S, Harris KD, Couzi M, Talaga D (2008) Optical phonons in millerite (NiS) from singlecrystal polarized Raman spectroscopy. J Raman Spectrosc 39(10):1419–1422
- Guin SN, Banerjee S, Sanyal D, Pati SK, Biswas K (2016) Origin of the order–disorder transition and the associated anomalous change of thermopower in $AgBiS₂$ nanocrystals: a combined experimental and theoretical study. Inorg Chem. [https://doi.org/10.](https://doi.org/10.1021/acs.inorgchem.6b00997) [1021/acs.inorgchem.6b00997](https://doi.org/10.1021/acs.inorgchem.6b00997)
- Guizzetti G, Marabelli F, Patrini M, Pellegrino P, Pivac B, Miglio L, Meregalli V, Lange H, Henrion W, Tomm V (1997) Measurement and simulation of anisotropy in the infrared and Raman spectra of β -FeSi₂ single crystals. Phys Rev B 55(21): 14290–14297
- Güler H, Tekin B (2009) Synthesis and crystal structure $CoNi₂(BO₃)₂$. Inorg Mater 45(5):538–542
- Güner FEG, Sakurai T, Hondoh T (2013) Ernstburkeite, $MgCH_3SO_3)_2$ ∙12H₂O, a new mineral from Antarctica. Eur J Mineral 25(1):79–84
- Guńka PA, Dranka M, Piechota J, Żukowska GZ, Zalewska A, Zachara J (2012) As_2O_3 polymorphs: theoretical insight into their stability and ammonia template claudetite II crystallization. Cryst Growth Des 12(11):5663–5670
- Günter JR, Amberg M (1989) "High-temperature" magnesium tungstate, MgWO₄, prepared at moderate temperature. Solid State Ionics 32:141–146
- Guo F, Fu P, Wang J, Liu F, Yang Z, Wu Y (2000) Hydrothermal synthesis, characterization and nonlinear optical effect of orthorhombic phase Ca2B6O11∙H2O. Chinese Sci Bull 45(19):1756–1760
- Guo K, Lu B, Xia Y, Qi L (2010) Thermal phase transformation of turquoise. J Chin Ceramic Soc 38 (4):694–699. (in Chinese, English abstr)
- Guo X, Ushakov SV, Curtius H, Bosbach D, Navrotsky A (2014a) Energetics of metastudtite and implications for nuclear waste alteration. Proc Natl Acad Sci 111 (50):17737–17742
- Guo X, Wu H, Pan S, Yang Z, Yu H, Zhang B, Han J, Zhang F (2014b) Synthesis, crystal structure, and characterization of a congruent melting compound magnesium strontium diborate $MgSrB₂O₅$. Z anor gallg Chemie 640(8–9):1805–1809
- Guo H, Li Y, Fang X, Zhang K, Ding J, Yuan N (2016) Co-sputtering deposition and optical-electrical characteristic of $Cu₂CdSnS₄$ thin films for use in solar cells. Mater Lett 162:97–100
- Gurzhiy VV, Tyumentseva OV, Kornyakov IV, Krivovichev SV, Tananaev IG (2014) The role of potassium atoms in the formation of uranyl selenates: the crystal structure and synthesis of two novel compounds. J Geo Sci 59(2):123–133
- Gusain M, Rawat P, Nagarajan R (2015) Influence of reaction conditions for the fabrication of $Cu₂SnS₃$ and Cu3SnS4 in ethylene glycol. Mater Res Express 2 (5):055501. (5 pp)
- Gutwirth J, Wagner T, Vlcek M, Drasar C, Benes L, Hrdlicka M, Frumar M, Schwarz J, Ticha H (2006) Ag-Sb-S thin films prepared by RF magnetron sputtering and their properties. Mater Res Soc Symp Proc 918:0918-H07-01-G08-01. (10 pp)
- Hadrich A, Lautie A, Mhiri T (2000) Vibrational study of structural phase transitions in $(NH₄)₂HPO₄$ and (ND4)2DPO4. J Raman Spectrosc 31(7):587–593
- Hadrich A, Lautié A, Mhiri T, Romain F (2001) Vibrational behaviour of K₂HPO₄, K₂HPO₄⋅3H₂O and their deuterated derivatives with temperature. Vib Spectrosc 26(1):51–64
- Haeuseler H, Haxhillazi G (2003) Vibrational spectra of the peroxochromates $(NH_4)_3[Cr(O_2)_4]$, $K_3[Cr]$ $(O_2)_4$] and $Rb_3[Cr(O_2)_4]$. J Raman Spectrosc 34 (5):339–344
- Hagemann H, Lucken A, Bill H, Gysler-Sanz J, Stalder HA (1990) Polarized Raman spectra of beryl and bazzite. Phys Chem Minerals 17(5):395–401
- Hahn RB (1951) Phosphates of niobium and tantalum. J Amer Chem Soc 73:5091–5093
- Hålenius U, Westlund E (1998) Manganese valency and the colour of the $Mn₂AsO₄(OH)$ polymorphs eveite and sarkinite. Mineral Mag 62(1):113–119
- Haley LV, Wylie IW, Koningstein JA (1982) An investigation of the lattice and interlayer water vibrational spectral regions of muscovite and vermiculite using Raman microscopy. A Raman microscopic study of layer silicates. J Raman Spectrosc 13(2):203–205
- Halonen L, Carrington T Jr (1988) Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide. J Chem Phys 88:4171–4185
- Hamdouni M, Walha S, Kabadou A, Duhayon C, Sutter JP (2013) Synthesis and crystal structures of various phases of the microporous three-dimensional coordination polymer $[Zr(OH)_2(C_2O_4)]_n$. Crystal Growth Design 13(11):5100–5106
- Han S, Pan S, Yang Z, Wang Y, Zhang B, Zhang M, Huang Z, Dong L, Yu H (2013) Synthesis, structure characterization, and optical properties of the aluminosilicate $Li_2Na_3AlSi_2O_8$. Z anor gallg Chemie 639 (5):779–783
- Hänni HA, Kiefert L, Chalain JP (1997) A Raman microscope in the gemmological laboratory: first experiences of application. J Gemm 25:394–407
- Hanson RC, Fjeldly TA, Hochheimer HD (1975) Raman scattering from five phases of silver iodide. Phys Status Solidi B 70(2):567–576
- Hansteen TH, Burke EA (1994) Aphthitalite in hightemperature fluid illclusions in quartz from the Eikeren-Skrim granite complex, the Oslo paleorift. Norsk Geologisk Tidsskrift 74:238–240
- Hanuza J, Haznar A, Mączka M, Pietraszko A, Lemiec A, Van der Maas JH, Lutz ETG (1997) Structure and vibrational properties of tetragonal scheelite NaBi (MoO4)2. J Raman Spectrosc 28(12):953–963
- Hanuza J, Mączka M, Lorenc J, Kaminskii AA, Bohaty L, Becker P (2008a) Polarised IR and Raman spectra of non-centrosymmetric Na₃Li(SeO₄)₂∙6H₂O crystal – a new Raman laser material. Spectrochim Acta A 71 $(1):68-72$
- Hanuza J, Mączka M, Lorenc J, Kaminskii AA, Becker P, Bohatý L (2008b) Polarized Raman and IR spectra of

non-centrosymmetric PbB_4O_7 single crystal. J Raman Spectrosc 39(3):409–414

- Hanuza J, Ptak M, Mączka M, Hermanowicz K, Lorenc J, Kaminskii AA (2012) Polarized IR and Raman spectra of Ca₂MgSi₂O₇, Ca₂ZnSi₂O₇ and Sr₂MgSi₂O₇ single crystals: temperature-dependent studies of commensurate to incommensurate and incommensurate to normal phase transitions. J Solid State Chem 191:90–101
- Hao S-Y (2008) Ultrafine $CeO₂$: microwave-assisted heating prepartion and ploshing properties. Chin J Inorg Chem 24(6):1012–1016
- Harcharras M, Capitelli F, Ennaciri A, Brouzi K, Moliterni AGG, Mattei G, Bertolasi V (2003) Synthesis, X-ray crystal structure and vibrational spectroscopy of the acidic pyrophosphate KMg0.5H2P2O7∙H2O. J Solid State Chem 176(1):27–32
- Hardcastle FD, Wachs IE (1991) Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J Phys Chem 95(13):5031–5041
- Haring MM, McDonald AM (2014a) Steedeite, $\text{NaMn}_2[\text{Si}_3\text{BO}_9](\text{OH})_2$: characterization, crystalstructure determination, and origin. Can Mineral 52 $(1):47-60$
- Haring MMM, McDonald AM (2014b) Franconite, NaNb₂O₅(OH)⋅3H₂O: structure determination and the role of H bonding, with comments on the crystal chemistry of franconite-related minerals. Mineral Mag 78(3):591–608
- Haring MMM, McDonald AM (2016) Nolzeite, Na (Mn,□)2[Si3(B,Si)O9(OH)2]∙2H2O, a new pyroxenoid mineral. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.089) [minmag.2016.080.089](https://doi.org/10.1180/minmag.2016.080.089)
- Haring MMM, McDonald AM (2017) Charleshatchettite, $CaNb₄O₁₀(OH)₂·8H₂O$, a new mineral from Mont Saint-Hilaire, Québec, Canada: description, crystalstructure determination and origin. Am Mineral. <https://doi.org/10.2138/am-2017-5926>
- Haring MM, McDonald AM, Cooper MA, Poirier GA (2012) Laurentianite, $[NbO(H_2O)]_3(Si_2O_7)_2[Na]$ (H2O)2]3, a new mineral from Mont Saint-Hilaire, Québec: description, crystal-structure determination and paragenesis. Can Mineral 50(5):1265–1128
- Harlov DE, Förster HJ, Schmidt C (2003) High PT experimental metasomatism of a fluorapatite with significant britholite and fluorellestadite components: implications for LREE mobility during granulite-facies metamorphism. Mineral Mag 67(1):61–72
- Harrington JA, Harley RT, Walker CT (1971) Impurity induced vibrational spectra in BaF_2 : H. Solid State Comm 9(10):683–687
- Harrison KL, Manthiram A (2013) Microwave-assisted solvothermal synthesis and characterization of various polymorphs of LiVOPO4. Mech Eng 25 (9):1751–1760
- Harvey KB, Morrow BA, Shurvell HF (1963) The infrared absorption of some crystalline inorganic formates. Can J Chem 41(5):1181–1187
- Hatert F, Rebbouh L, Hermann RP, Fransolet A-M, Long GJ, Grandjean F (2005) Crystal chemistry of the hydrothermally synthesized $\text{Na}_2(\text{Mn}_{1-x}\text{Fe}^{2+})_2\text{Fe}^{3+}(\text{PO}_4)_3$ alluaudite-type solid solution. Am Mineral 90 (4):653–662
- Hatipoglu M, Babalik H (2012) Micro-Raman characterization of the lapeyreite mineral, the Alpes-Maritimes Region, Nice, France. Asian J Chem 24(5):1941–1944
- Hawthorne FC, Cooper MA, Abdu YA, Ball NA, Back ME, Tait KT (2012) Davidlloydite, ideally $Zn_3(AsO_4)_2(H_2O)_4$, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description and crystal structure. Mineral Mag 76 $(1):45-57$
- Hawthorne FC, Abdu YA, Ball NA, Pinch WW (2013) Carlfrancisite: $Mn^{2+}{}_{3}(Mn^{2+}{}_{1}Mg,Fe^{3+}{}_{1}Al)_{42}(As^{3+}O_3)_{2}$ $(As⁵⁺O₄)₄[(Si,As⁵⁺)O₄]₆[(As⁵⁺,Si)O₄]₂(OH)₄₂, a new$ arseno-silicate mineral from the Kombat mine, Otavi Valley, Namibia. Am Mineral 98(10):1693–1696
- Hawthorne FC, Abdu YA, Ball NA, Černý P, Kristiansen R (2014) Agakhanovite-(Y), ideally $(YCa)₂KBe₃Si₁₂O₃₀$, a new milarite-group mineral from the Heftetjern pegmatite, Tørdal, Southern Norway: description and crystal structure. Am Mineral 99(10):2084–2088
- Hayward CL, Best SP, Clark RJ, Ross NL, Withnall R (1994) Polarised single crystal Raman spectroscopy of sinhalite, MgAlBO4. Spectrochim Acta A 50 (7):1287–1294
- He M, Chen XL, Zhou T, Hu BQ, Xu YP, Xu T (2001) Crystal structure and infrared spectra of $\text{Na}_2\text{Al}_2\text{B}_2\text{O}_7$. J Alloys Compd 327(1):210–214
- He M, Chen XL, Gramlich V, Baerlocher C, Zhou T, Hu BQ (2002) Synthesis, structure, and thermal stability of $Li₃AlB₂O₆$. J Solid State Chem 163(2):369–376
- Helan M, Berchmans LJ (2011) Low-temperature synthesis of lithium manganese oxide using LiCl-Li₂CO₃ and manganese acetate eutectic mixture. Mater Manuf Process 26(11):1369–1373
- Hemley RJ (1987a) Pressure dependence of Raman spectra of $SiO₂$ polymorphs: α -quartz, coesite, and stishovite. In: Manghnani MH, Syono Y (eds) Highpressure research of mineral physics, vol 39. Terra Scientific Publishing Company (TERRAPUB)/American Geophysical Union, Tokyo/Washington, DC, pp 347–359
- Hemley RJ (1987b) Pressure dependence of Raman spectra of $SiO₂$ polymorphs: α -quartz, coesite, and stishovite. In: High-pressure research in mineral physics: a volume in honor of Syun-iti Akimoto. Terra Scientific Publishing Company (TERRAPUB), Tokyo, pp 347–359
- Herman RG, Bogdan CE, Sommer AJ, Simpson DR (1987) Discrimination among carbonate minerals by Raman spectroscopy using the laser microprobe. Appl Spectrosc 41(3):437–440
- Hettmann K, Wenzel T, Marks M, Markl G (2012) The sulfur speciation in S-bearing minerals: new constraints by a combination of electron microprobe

analysis and DFT calculations with special reference to sodalite-group minerals. Am Mineral 97 (10):1653–1661

- Heuser J, Bukaemskiy AA, Neumeier S, Neumann A, Bosbach D (2014) Raman and infrared spectroscopy of monazite-type ceramics used for nuclear waste conditioning. Prog Nucl Energy 72:149–155
- Heyns AM, Harden PM (1999) Evidence for the existence of $Cr(IV)$ in chromium-doped malayaite Cr^{4+} . $CaSnOSiO₄:$ a resonance Raman study. J Phys Chem Solids 60(2):277–284
- Heyns AM, van den Berg MM (1995) KSbF₆ revisited. I a Raman and infrared study of the tetragonal phase I. J Raman Spectrosc 26(8–9):847–854
- Heyns AM, Richter PW, Clark JB (1981) The vibrational spectra and crystallographic properties of $C_sPF₆$. J Solid State Chem 39(1):106–113
- Heyns AM, Range K-J, Wildenauer M (1990) The vibrational spectra of NbBO₄, TaBO₄, NaNb₃O₈ and NaTa₃O₈. Spectrochim Acta A $46(11):1621-1628$
- Himmrich M, Haeuseler H (1991) Far infrared studies on stannite and wurtzstannite type compounds. Spectrochim Acta A 47(7):933–942
- Hinteregger E, Wurst K, Niederwieser N, Heymann G, Huppertz H (2014) Pressure-supported crystal growth and single-crystal structure determination of $Li₂SiF₆$. Z Kristallogr 229(2):77–82
- Hirano S-I, Hayashi T, Kageyama T (1987) Synthesis of $LiAlO₂$ powder by hydrolysis of metal alkoxides. J Am Ceram Soc 70(3):171–174
- Ho JC, Batabyal SK, Pramana SS, Lum J, Pham VT, Li D, Xiong Q, Tok AIY, Wong LH (2012) Optical and electrical properties of wurtzite copper indium sulfide nanoflakes. Mater Express 2(4):344–350
- Hoang LH, Hien NTM, Chen XB, Minh NV, Yang IS (2011) Raman spectroscopic study of various types of tourmalines. J Raman Spectrosc 42(6):1442–1446
- Hoekstra HR, Siegel S (1971) Preparation and properties of Cr2UO6. J Inorg Nucl Chem 33(9):2867–2873
- Hoekstra HR, Siegel S (1973) The uranium trioxide-water system. J Inorg Nucl Chem 35:761–779
- Hofmeister AM, Ito E (1992) Thermodynamic properties of $MgSiO₃$ ilmenite from vibrational spectra. Phys Chem Minerals 18(7):423–432
- Hofmeister AM, Hoering TC, Virgo D (1987) Vibrational spectroscopy of beryllium aluminosilicates: heat capacity calculations from band assignments. Phys Chem Minerals 14(3):205–224
- Hofmeister AM, Wopenka B, Locock AJ (2004) Spectroscopy and structure of hibonite, grossite, and $CaAl₂O₄$: implications for astronomical environments. Geochim Cosmochim Acta 68(21):4485–4503
- Hölsä J, Piriou B, Räsänen M (1993) IR- and Ramanactive normal vibrations of rare earth oxyfluorides, REOF; $RE = Y$, La, and Gd. Spectrochim Acta A 49 (4):465–470
- Holtstam D (1997) Hiärneite, a new, Zr-Sb oxide mineral isostructural with calzirtite, from Långban, Sweden. Eur J Mineral 9:843–848
- Holtstam D, Broman C, Söderhielm J, Zetterqvist A (2003) First discovery of stishovite in an iron meteorite. Meteor Planet Sci 38(11):1579–1583
- Holtstam D, Kolitsch U, Andersson UB (2005) Västmanlandite-(Ce) – a new lanthanide-and F-bearing sorosilicate mineral from Västmanland, Sweden. Eur J Mineral 17(1):129–141
- Honda K, Yokoyama S, Tanaka SI (1999) Assignment of the Raman active vibration modes of beta- $Si₃N₄$ using micro-Raman scattering. J Appl Phys 85:7380–7384
- Hong W, He S, Huang S, Wang Y, Hou H, Zhu X (1999) A Raman spectral studies of rare-earth (REE) fluoro $carbonate$ minerals. Guangpuxueyu Guangpu fen $xi =$ Guangpu 19(4):546–549. (in Chinese, English Abstr)
- Hood WC, Steidl PF (1973) Synthesis of benstonite at room temperature. Am Mineral 58:341–342
- Hoshino K, Nagatomi A, Watanabe M, Okudaira T, Beppu Y (2006) Nahcolite in fluid inclusions from the Ryoke metamorphic rocks and its implication for fluid genesis. J Mineral Petrol Sci 101(5):254–259
- Hosterman BD (2011) Raman spectroscopic study of solid solution spinel oxides. Dissertation, University of Nevada
- Hosterman BD, Farley JW, Johnson AL (2013) Spectroscopic study of the vibrational modes of magnesium nickel chromite, $Mg_xNi_{1-x}Cr_2O_4$. J Phys Chem Solids 74(7):985–990
- Houlbert S, Chaabane TB, Bardeau JF, Bulou A, Smiri L (2004) Vibrational study of Li₆P₆O₁₈⋅3H₂O and ab *initio* calculations in P_6O_{18} and P₆O₁₈⋅3H₂O. Spectrochim Acta A 60(1):251–259
- Hrazdil V, Houzar S, Sejkora J, Koníčková Š, Jarošová L (2016) Linarite from the Ag-Pb ore deposit at Kletné near Suchdol nad Odrou (Jeseníky Culm, Vítkov Highlands). Acta Musei Silesiae Sci Natur 65 (1):88–96
- Hsu T-W, Jiang W-T, Wang Y (2014) Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan. J Asian Earth Sci 89:88–97
- Hu T, Lin JB, Kong F, Mao JG (2008) Mg7V4O16(OH)2∙H2O: a magnesium vanadate with a novel 3D magnesium oxide open framework. Inorg Chem Comm 11(9):1012–1014
- Hu S, Johnsson M, Lemmens P, Schmid D, Menzel D, Tapp J, Möller A (2014) Acentric pseudo-kagome structures: the solid solution $(Co_{1-x}Ni_x)_3Sb_4O_6F_6$. Chem Mater 26(12):3631–3636
- Huang Y, Butler IS (1990) High-pressure micro-Raman spectra of potassium chromate(VI) and potassium tungstate(VI). Appl Spectrosc 44(8):1326–1328
- Huang J, Sleight AW (1992) Synthesis, crystal structure, and optical properties of a new bismuth magnesium vanadate: BiMg₂VO₆. J Solid State Chem 100 (1):170–178
- Huang Y, Jiang Z, Schwieger W (1998) A vibrational spectroscopic study of kanemite. Micropor Mesopor Mater 26(1):215–219
- Huang Y, Jiang Z, Schwieger W (1999a) A structural investigation of the singly layered silicates, silinaite and makatite, by vibrational spectroscopy. Can J Chem 77(4):495–501
- Huang Y, Jiang Z, Schwieger W (1999b) Vibrational spectroscopic studies of layered silicates. Chem Mater 11(5):1210–1217
- Huang E, Chen CH, Huang T, Lin EH, Xu J-A (2000) Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. Am Mineral 85:473–479
- Huang Y, Wang X, Lee HS, Cho E, Jang K, Tao Y (2007) Synthesis, vacuum ultraviolet and ultraviolet spectroscopy of Ce^{3+} ion doped olgite Na(Sr,Ba)PO₄. J Phys D 40(24):7821–7825
- Huang Y, Jiang C, Cao Y, Shi L, Seo HJ (2009) Luminescence and microstructures of Eu^{3+} -doped in triple phosphate $Ca_8MgR(PO_4)_7$ (R = La, Gd, Y) with whitlockite structure. Mater Res Bull 44(4):793–798
- Huang P, Kong Y, Li Z, Gao F, Cui D (2010) Copper selenidenanosnakes: bovine serum albumin-assisted room temperature controllable synthesis and characterization. Nanoscale Res Lett 5(6):949–956
- Huang H, Yao W, He R, Chen C, Wang X, Zhang Y (2013a) Synthesis, crystal structure and optical properties of a new beryllium borate, $CsBe_4(BO_3)_3$. Solid State Sci 18:105–109
- Huang H, He R, Yao W, Lin Z, Chen C, Zhang Y (2013b) Noncentrosymmetric mixed-cation borate: crystal growth, structure and optical properties of $Cs₂Ca$ [B4O5(OH)4]2∙8H2O. J Crystal Growth 380:176–181
- Huang Z, Pan S, Yang Z, Yu H, Dong X, Zhao W, Dong L, Su X (2013c) $Pb_8M(BO_3)_6$ (M = Zn, Cd): two new
isostructural lead borates compounds with compounds two-dimensional ∞ [Pb₈B₆O₁₈]²⁻ layer structure. Solid State Sci 15:73–78
- Hudson-Edwards KA, Smith AM, Dubbin WE, Bennett AJ, Murphy PJ, Wright K (2008) Comparison of the structures of natural and synthetic Pb-Cu-jarosite-type compounds. Eur J Mineral 20(2):241–252
- Hurai V, Wierzbicka-Wieczorek M, Pentrák M, Huraiová M, Thomas R, Swierczewska A, Luptáková J (2014) X-Ray diffraction and vibrational spectroscopic characteristics of hydroxylclinohumite from Ruby-Bearing Marbles (Luc Yen district, Vietnam). Int J Mineral. <https://doi.org/10.1155/2014/648530>
- Husson E, Repelin Y, Dao NQ, Brusset H (1977a) Etude par spectrophotométries d'absorption infrarouge et de diffusion Raman des niobates de structure columbite. Spectrochim Acta A 33(11):995–1001. (in French)
- Husson E, Repelin Y, Dao NQ, Brusset H (1977b) Characterization of different bondings in some divalent metal niobates of columbite structure. Mater Res Bull 12(12):1199–1206
- Husson E, Repelin Y, Brusset H, Cerez A (1979) Spectres de vibration etcalcul du champ de force des antimoniates et des tantalates de structure trirutile. Spectrochim Acta A 35:1177–1187. (in French)
- Husson E, Repelin Y, Vandenborre MT (1984) Spectres de vibration et champ de force de l'antimoniate et de l'arseniate de calcium $CaSb₂O₆$ et $CaAs₂O₆$. Spectrochim Acta A 40(11):1017–1020. (in French)
- Husson E, Genet F, Lachgar A, Piffard Y (1988a) The vibrational spectra of some antimony phosphates. J Solid State Chem 75(2):305–312
- Husson E, Lachgar A, Piffard Y (1988b) The vibrational spectra of the layered compounds $K_3Sb_3M_2O_{14}xH_2O$ $(M = P, As)$: normal coordinate analysis of $K_3Sb_3P_2O_{14} \cdot xH_2O$. J Solid State Chem 74:138-146
- Hwang SL, Shen P, Chu HT, Yui TF, Liou JG, Sobolev NV, Zhang R-Y, Shatsky VS, Zayachkovsky AA (2004) Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contrib Mineral Petrol 148(3):380–389
- Hwang SL, Shen P, Chu HT, Yui TF, Liou JG, Sobolev NV (2009) Kumdykolite, an orthorhombic polymorph of albite, from the Kokchetav ultrahigh-pressure massif, Kazakhstan. Eur J Mineral 21(6):1325–1334
- Hwang SL, Shen P, Chu HT, Yui TF, Varela ME, Iizuka Y (2016) Kuratite, $Ca_4(Fe^{2+}_{10}T_{12})O_4[Si_8Al_4O_{36}]$, the Fe² + -analogue of rhönite, a new mineral from the D'Orbigny angrite meteorite. Mineral Mag. [https://](https://doi.org/10.1180/minmag.2016.080.043) doi.org/10.1180/minmag.2016.080.043
- Ibáñez-Insa J, Elvira JJ, Llovet X, Pérez-Cano J, Oriols N, Busquets-Masó M, Hernández S (2017) Abellaite, $NaPb₂(CO₃)₂(OH)$, a new supergene mineral from the Eureka mine, Lleida province, Catalonia, Spain. Eur J Mineral. [https://doi.org/10.1127/ejm/2017/](https://doi.org/10.1127/ejm/2017/0029-2630) [0029-2630](https://doi.org/10.1127/ejm/2017/0029-2630)
- Ignat'eva LN, Merkulov EB, Stremousova EA, Plotnichenko VG, Koltashev VV, Buznik VM (2006) Effect of bismuth trifluoride on the characteristics of fluoroindate glasses: the $InF_3-BiF_3-BaF_2$ system. Russ J Inorg Chem 51(10):1641–1645
- Iliev MN, Hadjiev VG, Litvinchuk AP (2013) Raman and infrared spectra of brookite $(TiO₂)$: experiment and theory. Vib Spectrosc 64:148–152
- Ilieva D, Kovacheva D, Petkov C, Bogachev G (2001) Vibrational spectra of $R(PO₃)₃$ metaphosphates ($R =$ Ga, In, Y, Sm, Gd, Dy). J Raman Spectrosc 32 (11):893–899
- Ilieva A, Mihailova B, Tsintsov Z, Petrov O (2007) Structural state of microcrystalline opals: a Raman spectroscopic study. Am Mineral 92(8–9):1325–1333
- Ingale A, Bansal ML, Roy AP (1989) Resonance Raman scattering in HgTe: TO-phonon and forbidden-LOphonon cross section near the E_1 gap. Phys Rev B 40 (18):12353. (6 pp)
- Inguanta R, Piazza S, Sunseri C (2008) Growth and characterization of ordered $PbO₂$ nanowire arrays. J Electrochem Soc 155(12):K205–K210
- Inoue H, Nanba T, Hagihara H, Kanazawa T, Yasui I (1988) Computer simulation of Raman spectra of fluoride glasses. Mater Sci Forum 32:403–408
- Ishii M, Saeki M (1992) Raman and infrared spectroscopic studies of $Ba₂TiS₅$ and $Ba₂TiS₄$. Phys Stat Solidi B 169:K53–K58
- Ishii M, Wada H (2000) Raman and infrared studies of a silver–tantalum sulfide with a layered structure. Mater Res Bull 35(8):1361–1368
- Ishii M, Shibata K, Nozaki H (1993) Anion distributions and phase transitions in $CuS_{1-x}Se_x$ ($x = 0-1$) studied by Raman spectroscopy. J Solid State Chem 105 (2):504–511
- Ito M, Hori J, Kurisaki H, Okada H, Kuroki AJP, Ogita N, Udagawa M, Fujii H, Nakamura F, Fujita T, Suzuki T (2003) Pressure-induced superconductor-insulator transition in the spinel compound $CuRh₂S₄$. Phys Rev Lett 91(7):077001. (4 pp)
- Ivanov VG, Hadjiev VG, Litvinchuk AP, Dimitrov DZ, Shivachev BL, Abrashev MV, Lorenz B, Iliev MN (2014) Lattice dynamics and spin-phonon coupling in CaMn2O4: a Raman study. Phys Rev B 89 (18):184307-1–184307-8
- Ivanyuk GY, Yakovenchuk VN, Pakhomovsky YA, Panikorovskii TL, Konoplyova NG, Bazai AV, Bocharov VN, Antonov AA, Selivanova EA (2017) Goryainovite, Ca2PO4Cl, a new mineral from the Stora Sahavaara iron ore deposit (Norrbotten, Sweden). GFF 139(1):75–82
- Izquierdo-Roca V, Saucedo E, Ruiz CM, Fontané X, Calvo-Barrio L, Álvarez-Garcia J, Grand P-P, Jaime-Ferrer JS, Pérez-Rodríguez A, Morantr JR, Bermudez V (2009) Raman scattering and structural analysis of electrodeposited CuInSe₂ and S-rich quaternary CuIn $(S,Se)_2$ semiconductors for solar cells. Phys Status Solidi A 206(5):1001–1004
- Jacco JC (1986) The infrared spectra of $KTiOPO₄$ and a $K_2O-P_2O_5-TiO_2$ glass. Mater Res Bull 21 (10):1189–1194
- Jain YS, Bist HD, Verma AL (1974) Optical phonons in α-Ni(SO4)∙6H2O single crystal. J Raman Spectrosc 2:327–339
- Jakeš D, Sedláková LN, Moravec J, Germanič J (1968) The manganese, cobalt, nickel, copper, silver and mercury uranates. J Inorg Nucl Chem 30(2):525–533
- Jamal A, Raahman MM, Khan SB, Abdullah MM, Faisaal M, Asiri AM, Khan AAP, Akhtar K (2013) Simple growth and characterization of α -Sb₂O₄: evaluation of their photo-catalytic and chemical sensing applications. J Chem Soc Pak 35(3):570–576
- Jambor JL, Roberts AC, Grice JD, Birkett TC, Groat LA, Zajac S (1998) Gerenite- (Y) , $(Ca,Na)_{2}(Y)$, REE)3Si6O18∙2H2O, a new mineral species, and an associated Y-bearing gadolinite-group mineral, from the Strange Lake Peralkaline Complex, Quebec-Labrador. Can Mineral 36:793–800
- Jambor JL, Viñals J, Groat LA, Raudsepp M (2002) Cobaltarthurite, $Co^{2+}Fe^{3+}(AsO_4)_2(OH)_2 \cdot 4H_2O$, a new member of the arthurite group. Can Mineral 40 (2):725–732
- Jana YM, Halder P, Biswas AA, Roychowdhury A, Das D, Dey S, Kumar S (2016) Synthesis, X-ray Rietveld analysis, infrared and Mössbauer spectroscopy of $R_2FeSbO₇$ ($R^{3+} = Y$, Dy, Gd, Bi) pyrochlore solid solution. J Alloys Compd 656:226–236
- 1302 References
- Janáková S, Salavcová L, Renaudin G, Filinchuk Y, Boyer D, Boutinaud P (2007) Preparation and structural investigations of sol–gel derived $Eu³⁺$ -doped CaAl₂O₄. J Phys Chem Solids $68(5)$:1147–1151
- Janeczek J, Ciesielczuk J, Dulski M, Krzykawski T (2016) Chemical composition and Raman spectroscopy of cornubite and its relation to cornwallite in Miedzianka, the Sudety Mts., Poland. N Jb Miner Abh 193 (3):265–274
- Jaquet R, Haeuseler H (2008) Vibrational analysis of the $H_4I_2O_{10}^2$ ion in CuH₄I₂O₁₀⋅6H₂O. J Raman Spectrosc 39(5):599–606
- Jasinevicius R (2009) Characterization of vibrational and electronic features in the Raman spectra of gem minerals. Dissertation, University of Arizona
- Jaszczak JA, Rumsey MS, Bindi L, Hackney SA, Wise MA, Stanley CJ, Spratt J (2016) Merelaniite, $Mo_4Pb_4VSbS_{15}$, a new molybdenum-essential member of the cylindrite group, from the Merelani Tanzanite Deposit, Lelatema Mountains, Manyara Region, Tanzania. Minerals 6(4):115. (19 pp)
- Javed QU, Wang F, Toufiq AM, Rafiq MY, Iqbal MZ, Kamran MA (2013) Preparation, characterizations and optical property of single crystalline ZnMn_2O_4 nanoflowers via template-free hydrothermal synthesis. J Nanosci Nanotechnol 13(4):2937–2942
- Jay WH, Cashion JD (2013) Raman spectroscopy of Limehouse porcelain sherds supported by Mössbauer spectroscopy and scanning electron microscopy. J Raman Spectrosc 44(12):1718–1732
- Jay WH, Cashion JD, Blenkinship B (2015) Lancaster delftware: a Raman spectroscopy, electron microscopy and Mössbauer spectroscopy compositional study. J Raman Spectrosc 46(12):1265–1282
- Jayaraman A, Kourouklis GA, Van Uitert LG (1988) A high pressure Raman study of $ThO₂$ to 40 GPa and pressure-induced phase transition from fluorite structure. J Phys 30(3):225–231
- Jehlička J, Edwards HGM (2008) Raman spectroscopy as a tool for the non-destructive identification of organic minerals in the geological record. Org Geochem 39 (4):371–386
- Jehlička J, Vandenabeele P (2015) Evaluation of portable Raman instruments with 532 and 785-nm excitation for identification of zeolites and beryllium containing silicates. J Raman Spectrosc 46(10):927–932
- Jehlička J, Edwards HG, Villar SE, Pokorný J (2005) Raman spectroscopic study of amorphous and crystalline hydrocarbons from soils, peats and lignite. Spectrochim Acta A 61(10):2390–2398
- Jehlička J, Edwards HGM, Villar SE, Frank O (2006) Raman spectroscopic study of the complex aromatic mineral idrialite. J Raman Spectrosc 37(7):771–776
- Jehlička J, Edwards HG, Villar SEJ (2007a) Raman spectroscopy of natural accumulated paraffins from rocks: evenkite, ozokerite and hatchetine. Spectrochim Acta A 68(4):1143–1148
- Jehlička J, Žáček V, Edwards HGM, Shcherbakova E, Moroz T (2007b) Raman spectra of organic compounds kladnoite $(C_6H_4(CO)_2NH)$ and hoelite

 $(C_{14}H_8O_2)$ – rare sublimation products crystallising on self-ignited coal heaps. Spectrochim Acta A 68 (4):1053–1057

- Jehlička J, Edwards HGM, Vítek P (2009a) Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies. Planet Space Sci 57(5):606–613
- Jehlička J, Vitek P, Edwards HGM, Hargreaves MD, Čapoun T (2009b) Fast detection of sulphate minerals (gypsum, anglesite, baryte) by a portable Raman spectrometer. J Raman Spectrosc 40(8):1082–1086
- Jehlička J, Vandenabeele P, Edwards HGM (2012) Discrimination of zeolites and beryllium containing silicates using portable Raman spectroscometric equipment with near-infrared excitation. Spectrochim Acta A 86:341–346
- Jeitschko W, Sleight AW, McClellan WR, Weiher JF (1976) A comprehensive study of disordered and ordered scheelite-related $Bi_3(FeO_4)(MoO_4)_2$. Acta Crystallographica B 32(4):1163–1170
- Jenkins TE (1986) Anharmonic interactions in solids: a Raman investigation of some vibrational states in ammonium fluorosilicate. J Phys C 19(7):1065–1070
- Jentzsch PV, Kampe B, Rösch P, Popp J (2011) Raman spectroscopic study of crystallization from solutions containing $MgSO_4$ and $Na₂SO₄$: Raman spectra of double salts. J Phys Chem A 115(22):5540–5546
- Jentzsch PV, Bolanz RM, Ciobotă V, Kampe B, Rösch P, Majzlan J, Popp J (2012a) Raman spectroscopic study of calcium mixed salts of atmospheric importance. Vib Spectrosc 61:206–213
- Jentzsch PV, Ciobotă V, Bolanz RM, Kampe B, Rösch P, Majzlan J, Popp J (2012b) Raman and infrared spectroscopic study of synthetic ungemachite, $K_3Na_8Fe(SO_4)_6(NO_3)_2.6H_2O.$ J Molec Struct 1022: 147–152
- Jentzsch PV, Ciobotă V, Kampe B, Rösch P, Popp J (2012c) Origin of salt mixtures and mixed salts in atmospheric particulate matter. J Raman Spectrosc 43 (4):514–519
- Jentzsch PV, Kampe B, Ciobotă V, Rösch P, Popp J (2013) Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochim Acta A 115:697–708
- Jia Y-Z, Gao S-Y, Xia S-P, Li J, Li W (2001) Raman spectroscopy of supersaturated aqueous solution of borate. Chem J Chin Univ 22(1):99–103. (in Chinese, English Abstr)
- Jia G, Wu Z, Wang P, Yao J, Chang K (2016) Morphological evolution of self-deposition Bi2Se3 nanosheets by oxygen plasma treatment. Sci Rep. [https://doi.org/10.](https://doi.org/10.1038/srep22191) [1038/srep22191](https://doi.org/10.1038/srep22191)
- Jiang T, Ozin GA (1997) Tin (IV) sulfide-alkylamine composite mesophase: a new class of thermotropic liquid crystals. J Mater Chem 7(11):2213–2222
- Jiang XM, Xu ZN, Zhao ZY, Guo SP, Guo GC, Huang JS (2011) Syntheses, crystal structures, and optical properties of indium arsenic (III) oxide halides: $In_2(As_2O_5)Cl_2$ and $In_4(As_2O_5)(As_3O_7)Br_3$. Eur J Inorg Chem 2011(26):4069–4076
- Jiang YR, Lee WW, Chen KT, Wang MC, Chang KH, Chen CC (2014) Hydrothermal synthesis of $β$ -ZnMoO₄ crystals and their photocatalytic degradation of Victoria Blue R and phenol. J Taiwan Inst Chem Eng 45(1):207–218
- Jin GB, Soderholm L (2015) Solid-state syntheses and single-crystal characterizations of three tetravalent thorium and uranium silicates. J Solid State Chem 221:405–410
- Johnson JE (2015) Manganese: minerals, microbes, and the evolution of oxygenic photosynthesis. Dissertation. California Institute of Technology
- Johnston MG, Harrison WT (2011) New BaM₂(SeO₃)₃⋅nH₂O (M= Co, Ni, Mn, Mg; n \approx 3) Zemannite-type frameworks: single-crystal structures of BaCo₂(SeO₃)₃⋅3H₂O, BaMn₂(SeO₃)₃⋅3H₂O and BaMg2(SeO3)3∙3H2O. Eur J Inorg Chem 2011 (19):2967–2974
- Johnston CT, Helsen J, Schoonheydt RA, Bish DL, Agnew SF (1998) Single-crystal Raman spectroscopic study of dickite. Am Mineral 83(1):75–84
- Johnstone IW, Fletcher JR, Bates CA, Lockwood DJ, Mischler G (1978) Temperature dependent electronphonon coupling in $FeCl₂$ observed by Raman scattering. J Phys C 11(21):4425–4438
- Jolliff BL, Hughes JM, Freeman JJ, Zeigler RA (2006) Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. Am Mineral 91: 1583–1595
- Jonsson E (2003) Mineralogy and parageneses of Pb oxychlorides in Långban-type deposits, Bergslagen, Sweden. GFF 125(2):87–98
- Joseph C, Bourson P, Fontana MD (2012) Amorphous to crystalline transformation in Ta₂O₅ studied by Raman spectroscopy. J Raman Spectrosc 43(8):1146–1150
- Jouini A, Férid M, Gâcon JC, Grosvalet L, Thozet A, Trabelsi-Ayadi M (2006) Crystal structure, vibrational spectra and optical properties of praseodymium cyclotriphosphate PrP3O9∙H2O. Mater Res Bull 41 (7):1370–1377
- Jovanovski G, Makreski P, Kaitner B, Boev B (2009) Silicate minerals from Macedonia. Complementary use of vibrational spectroscopy and X-ray powdered diffraction for identification and detection purposes. Croat Chem Acta 82(2):363–386
- Julien C, Rougier A, Haro-Poniatowski E, Nazri GA (1998) Vibrational spectroscopy of lithium manganese spinel oxides. Molec Cryst Liquid Cryst Sci Technol A 311(1):81–87. [https://doi.org/10.1080/](https://doi.org/10.1080/10587259808042370) [10587259808042370](https://doi.org/10.1080/10587259808042370)
- Julien C, Barnier S, Ivanov I, Guittard M, Pardo MP, Chilouet A (1999) Vibrational studies of copper thiogallate solid solutions. Mater Sci Eng B 57 (2):102–109
- Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP (2003) Raman spectra of

birnessite manganese dioxides. Solid State Ionics 159 (3):345–356

- Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides. Part I. Periodic structures. Spectrochim Acta A 60:689–700
- Jun L, Shuping X, Shiyang G (1995) FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim Acta A 51(4):519–532
- Kaczmarski M, Eichner A, Mielcarek S, Olejniczak I, Mróz B (2000) IR temperature study of internal vibrations in $K_3Na(SeO_4)_2$. Vib Spectrosc 23(1):77–81
- Kagi H, Nagai T, Loveday JS, Wada C, Parise JB (2003) Pressure-induced phase transformation of kalicinite $(KHCO₃)$ at 2.8 GPa and local structural changes around hydrogen atoms. Am Mineral 88(10):1446–1451
- Kagunya W, Baddor-Hadjean R, Kooli F, Jones W (1998) Vibrational modes in layered double hydroxides and their calcined derivatives. Chem Phys 236:225–234
- Kahlenberg V, Girtler D, Arroyabe E, Kaindl R, Többens DM (2010) Devitrite $(Na_2Ca_3Si_6O_{16})$ – structural, spectroscopic and computational investigations on a crystalline impurity phase in industrial soda-lime glasses. Mineral Petrol 100(1–2):1–9
- Kaliwoda M, Hochleitner R, Hoffmann VH, Mikouchi T, Gigler AM, Schmahl WW (2011) New Raman spectroscopic data of Almahata Sitta meteorite. In: Conference on Micro-Raman and Luminescence Studies in the Earth and Planetary Sciences (CORALS II). LPI Contribution No. 1616, Lunar and Planetary Institute, Houston, p XX
- Kaliwoda M, Hochleitner R, Hoffmann VH, Mikouchi T, Gigler AM, Schmahl WW (2013) New Raman spectroscopic data of the Almahata Sitta meteorite. Spectrosc Lett 46(2):141–146
- Kaminskii AA, Haussühl E, Haussühl S, Eichler HJ, Ueda K, Hanuza J, Takaichi K, Rhee H, Gad GMA (2004) α-Alums: K, Rb, Tl and NH₄Al(SO₄)₂⋅12H₂O – a new family of $\chi^{(3)}$ – active crystalline materials for Raman laser converters with large frequency shifts. Laser Phys Lett 1(4):205–211
- Kaminskii AA, Rhee H, Lux O, Eichler HJ, Bohatý L, Becker P, Liebertz J, Ueda K, Shirakawa A, Koltashev VV, Hanuza J, Dong J, Stavrovskii DB (2011) Manyphonon stimulated Raman scattering and related cascaded and cross-cascaded χ ⁽³⁾-nonlinear optical effects in melilite-type crystal $Ca₂ZnSi₂O₇$. Laser Phys Lett 8 (12):859–874
- Kaminskii AA, Haussühl E, Eichler HJ, Hanuza J, Mączka M, Yoneda H, Shirakawa A (2015) Lithium silicate, LiAl $Si₄O₁₀$ (petalite) – a novel monoclinic SRS-active crystal. Laser Phys Lett 12(8):085002. (8 pp)
- Kaminsky F, Wirth R, Matsyuk S, Schreiber A, Thomas R (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral Mag 73(5):797–816
- Kamoun LA, Remain F, Novak A (1988) Etude par spectrométrie infrarouge et Raman des phases cristallines basses temperatures de $(NH_4)_3H(SO_4)_2$. J Raman Spectrosc 19:329–335. (in French)
- Kampf AR, Moore PB, Jonsson EJ, Swihart GH (1998) Philolithite: a new mineral from Långban, Värmland, Sweden. Mineral Rec 29(3):201–206
- Kampf AR, Adams PM, Kolitsch U, Steele IM (2009a) Meurigite-Na, a new species, and the relationship between phosphofibrite and meurigite. Am Mineral 94(5–6):720–727
- Kampf AR, Rossman GR, Housley RM (2009b) Plumbophyllite, a new species from the Blue Bell claims near Baker, San Bernardino County, California. Am Mineral 94(8–9):1198–1204
- Kampf AR, Housley RM, Marty J (2010a) Lead-tellurium oxysalts from Otto Mountain near Baker, California: III. Thorneite, $Pb_6(Te^{6+2}O_{10})(CO_3)Cl_2(H_2O)$, the first mineral with edge-sharing octahedral tellurate dimers. Am Mineral 95(10):1548–1553
- Kampf AR, Rossman GR, Steele IM, Pluth JJ, Dunning GE, Walstrom RE (2010b) Devitoite, a new heterophyllosilicate mineral with astrophyllite-like layers from eastern Fresno County, California. Can Min 48(1):29–40
- Kampf AR, Downs RT, Housley RM, Jenkins RA, Hyršl J (2011a) Anorpiment, $As₂S₃$, the triclinic dimorph of orpiment. Mineral Mag 75(6):2857–2867
- Kampf AR, Mills SJ, Rossman GR, Steele IM, Pluth JJ, Favreau G (2011b) Afmite, $\text{Al}_3(\text{OH})_4(\text{H}_2\text{O})_3(\text{PO}_4)$ (PO3OH)∙H2O, a new mineral from Fumade, Tarn, France: description and crystal structure. Eur J Mineral 23(2):269–277
- Kampf AR, Yang H, Downs RT, Pinch WW (2011c) The crystal structures and Raman spectra of aravaipaite and calcioaravaipaite. Am Mineral 96(2–3):402–407
- Kampf AR, Mills SJ, Merlino S, Pasero M, McDonald AM, Wray WB, Hindman JR (2012) Whelanite, $Cu_2Ca_6[Si_6O_{17}(OH)](CO_3)(OH)_3(H_2O)_2$, an (old) new mineral from the Bawana mine, Milford, Utah. Am Mineral 97(11–12):2007–2015
- Kampf AR, Mills SJ, Housley RM, Rossman GR, Marty J, Thorne B (2013a) Lead-tellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, $Pb_2Cu^{2+}{}_4Te^{6+}{}_{2}O_{10}(OH)_{2}(SO_4)(H_2O)$, a new mineral with thick HCP layers. Am Mineral 98(7):1315–1321
- Kampf AR, Mills SJ, Housley RM, Rossman GR, Marty J, Thorne B (2013b) Lead-tellurium oxysalts from Otto Mountain near Baker, California: XI. Eckhardite, (Ca, Pb) $Cu^{2+}Te^{6+}O_5(H_2O)$, a new mineral with HCP stairstep layers. Am Mineral 98(8–9):1617–1623
- Kampf AR, Mills SJ, Housley RM, Rossman GR, Nash BP, Dini M, Jenkins RA (2013c) Joteite, $Ca₂CuAl$ [AsO₄][AsO₃(OH)]₂(OH)₂⋅5H₂O, a new arsenate with a sheet structure and unconnected acid arsenate groups. Mineral Mag 77(6):2811–2823
- Kampf AR, Mills SJ, Nash BP, Housley RM, Rossman GR, Dini M (2013d) Camaronesite, $[Fe³⁺(H₂O)₂]$ (PO3OH)]2(SO4)∙1-2H2O, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite. Mineral Mag 77(4):453–465
- Kampf AR, Adams PM, Housley RM, Rossman GR (2014a) Fluorowardite, NaAl₃(PO₄)₂(OH)₂F₂⋅2H₂O, the fluorine analog of wardite from the Silver Coin mine, Valmy, Nevada. Am Mineral 99(4):804–810
- Kampf AR, Hughes JM, Nash BP, Wright SE, Rossman GR, Marty J (2014b) Ophirite, $Ca₂Mg₄[Zn₂Mn³⁺₂$ $(H_2O)_2(Fe^{3+}W_9O_{34})_2$]∙46H₂O, a new mineral with a heteropolytungstate tri-lacunary Keggin anion. Am Mineral 99(5–6):1045–1051
- Kampf AR, Kasatkin AV, Cejka J, Marty J (2015a) Plášilite, Na(UO₂)(SO₄)(OH)∙2H₂O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. J Geosci 60(1):1–10
- Kampf AR, Plášil J, Kasatkin AV, Marty J (2015b) Bobcookite, NaAl(UO2)2(SO4)4∙18H2O and wetherillite, Na₂Mg(UO₂)₂(SO₄)₄⋅18H₂O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineral Mag 79 (3):695–714
- Kampf AR, Plášil J, Kasatkin AV, Marty J, Čejka J (2015c) Fermiite, $\text{Na}_{4}(\text{UO}_{2})(\text{SO}_{4})_{3}\cdot3\text{H}_{2}\text{O}$ and oppenheimerite, Na₂(UO₂)(SO₄)₂⋅3H₂O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineral Mag 79 (5):1123–1142
- Kampf AR, Cámara F, Ciriotti ME, Nash BP, Balestra C,
Chiappino L (2016a) Castellaroite, Mn^{2+} ₃ Chiappino L (2016a) Castellaroite, $(AsO₄)₂·4H₂O$, a new mineral from Italy related to metaswitzerite. Eur J Mineral. [https://doi.org/10.1127/](https://doi.org/10.1127/ejm/2016/0028-2535) [ejm/2016/0028-2535](https://doi.org/10.1127/ejm/2016/0028-2535)
- Kampf AR, Cooper MA, Mills SJ, Housley RM, Rossman GR (2016b) Lead-tellurium oxysalts from Otto Mountain near Baker, California: XII. Andychristyite, PbCu²⁺ $Te^{6+}O_5(H_2O)$, a new mineral with HCP stair-step layers. Mineral Mag. [https://doi.org/10.1180/minmag.2016.](https://doi.org/10.1180/minmag.2016.080.042) [080.042](https://doi.org/10.1180/minmag.2016.080.042)
- Kampf AR, Housley RM, Rossman GR (2016c) Wayneburnhamite, $Pb_9Ca_6(Si_2O_7)_3(SiO_4)_3$, an apatite polysome: the Mn-free analog of ganomalite from Crestmore, California. Am Mineral 101 (11):2423–2429
- Kampf AR, Mills SJ, Nash BP (2016d) Pauladamsite, $Cu₄(SeO₃)(SO₄)(OH)₄·2H₂O$, a new mineral from the Santa Rosa mine, Darwin district, California, USA. Mineral Mag 80(6):949–958
- Kampf AR, Plášil J, Čejka J, Marty J, Škoda R, Lapčák L (2016e) Alwilkinsite-(Y), a new rare-earth uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineral Mag. [https://doi.org/10.](https://doi.org/10.1180/minmag.2016.080.139) [1180/minmag.2016.080.139](https://doi.org/10.1180/minmag.2016.080.139)
- Kampf AR, Plášil J, Kasatkin AV, Marty J, Čejka J, Lapčák L (2016f) Shumwayite, $[(UO₂)(SO₄)$ (H2O)2]2∙H2O, a new uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.091>
- Kampf AR, Plášil J, Kasatkin AV, Marty J, Čejka J (2016g) Klaprothite, péligotite and ottohahnite, three new sodium uranyl sulfate minerals with bidentate $UO₇-SO₄$ linkages from the Blue Lizard mine, San Juan County, Utah, USA. Mineral Mag. [https://doi.](https://doi.org/10.1180/minmag.2016.080.120) [org/10.1180/minmag.2016.080.120](https://doi.org/10.1180/minmag.2016.080.120)
- Kampf AR, Richards RP, Nash BP, Murowchick JB, Rakovan JF (2016h) Carlsonite, $(NH_4)_5Fe^{3+}{}_{3}O$ $(SO₄)₆·7H₂O$, and huizingite-(Al), $(NH_4)_9Al_3(SO_4)_8(OH)_2.4H_2O$, two new minerals from a natural fire in an oil-bearing shale near Milan, Ohio. Am Mineral 101(9):2095–2107
- Kampf AR, Rossman GR, Ma C (2016i) Kyawthuite, Bi³⁺ $Sb^{3+}O_4$, a new gem mineral from Mogok, Burma (Myanmar). Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.102) [minmag.2016.080.102](https://doi.org/10.1180/minmag.2016.080.102)
- Kampf AR, Adams PM, Barwood H, Nash BP (2017a) Fluorwavellite, $Al_3(PO_4)_2(OH)_2F\cdot SH_2O$, the fluorine analogue of wavellite. Am Mineral. [https://doi.org/10.](https://doi.org/10.2138/am-2017-5948) [2138/am-2017-5948](https://doi.org/10.2138/am-2017-5948)
- Kampf AR, Cooper MA, Nash BP, Cerling TE, Marty J, Hummer DR, Celestian AJ, Rose TP, Trebisky TJ (2017b) Rowleyite, $[Na(NH_4,K)_9Cl_4][V^{5+,4+}{}_{2}(P,As)$ O_8 ¹₆ $n[H_2O, Na, NH_4, K, Cl]$, a new mineral with a microporous framework structure. Am Mineral. <https://doi.org/10.2138/am-2017-5977>
- Kanzaki M, Xue X, Amalberti J, Zhang Q (2012) Raman and NMR spectroscopic characterization of highpressure K-cymrite (KAl $Si₃O₈·H₂O$) and its anhydrous form (kokchetavite). J Mineral Petrol Sci 107 (2):114–119
- Kao LS, Peacor DR, Coveney RM Jr, Zhao G, Dungey KE, Curtis MD, Penner-Hahn JE (2001) AC/MoS₂ mixed-layer phase (MoSC) occurring in metalliferous black shales from southern China, and new data on jordisite. Am Mineral 86:852–861
- Kaoua S, Krimi S, Péchev S, Gravereau P, Chaminade JP, Couzi M, El Jazouli A (2013) Synthesis, crystal structure, and vibrational spectroscopic and UV–visible studies of Cs₂MnP₂O₇. J Solid State Chem 198:379-385
- Karimova OV, Burns PC (2007) Structural units in three uranyl perrhenates. Inorg Chem 46(24):10108–10113
- Karwowski Ł, Helios K, Kryza R, Muszyński A, Drożdżewsk P (2013) Raman spectra of selected mineral phases of the Morasko iron meteorite. J Raman Spectrosc 44(8):1181–1186
- Karwowski Ł, Kusz J, Muszyński A, Kryza R, Sitarz M, Galuskin EV (2015) Moraskoite, $Na₂Mg(PO₄)F$, a new mineral from the Morasko IAB-MG iron meteorite (Poland). Mineral Mag 79(2):387–398
- Karwowski Ł, Kryza R, Muszyński A, Kusz J, Helios K, Drożdżewski P, Galuskin EV (2016) Czochralskiite, $Na₄Ca₃Mg(PO₄)₄$, a second new mineral from the Morasko IAB-MG iron meteorite (Poland). Eur J Minerals. <https://doi.org/10.1127/ejm/2016/0028-2557>
- Karydis DA, Boghosian S, Nielsen K, Eriksen KM, Fehrmann R (2002) Crystal structure and spectroscopic properties of $Na_2K_6(VO)_2(SO_4)_7$. Inorg Chem 41 (9):2417–2421
- Kasatkin AV, Plášil J, Marty J, Agakhanov AA, Belakovskiy DI, Lykova IS (2014) Nestolaite, CaSeO3∙H2O, a new mineral from the Little Eva mine, Grand County, Utah, USA. Mineral Mag 78:497–505
- Kasatkin AV, Plášil J, Pekov IV, Belakovskiy DI, Nestola F, Čejka J, Vigasina MF, Zorzi F, Thorne B (2015) Karpenkoite, Co₃(V₂O₇)(OH)₂⋅2H₂O, a cobalt analogue of martyite from the Little Eva mine, Grand County, Utah, USA. J Geosci 60(4):251–257
- Kassandrov EG, Mazurov MP (2009) Magmatogenic manganese ores of the South MinusaIntermontane Trough. Geol Ore Depos 51(5):356–370
- Katerinopoulou A, Katerinopoulos A, Voudouris P, Bieniok A, Musso M, Amthauer G (2009) A multianalytical study of the crystal structure of unusual Ti– Zr–Cr–rich andradite from the Maroniaskarn, Rhodope massif, western Thrace, Greece. Mineral Petrol 95:113–124
- Kavun VY, Slobodyuk AB, Voit EI, Sinebryukhov SL, Merkulov EB, Goncharuk VK (2010) Ionic mobility and structure of glasses in $ZrF_4-BiF_3-MF_2$ $(M = Sr, Ba, Pb)$ systems according to NMR, IR, and Raman spectroscopic data. J Struct Chem 51(5): 862–868
- Kawada T, Hinokuma S, Machida M (2015) Structure and SO_3 decomposition activity of $nCuO-V_2O_5/SiO_2$ $(n = 0, 1, 2, 3, 3)$ catalysts for solar thermochemical water splitting cycles. Catal Today 242:268–273
- Kawamoto Y, Kono A (1986) Raman spectroscopic study of AlF3–CaF2–BaF2 glasses. J Non-crystal Solids 85 (3):335–345
- Kawasaki T, Nakano N, Osanai Y (2011) Osumilite and a spinel+quartz association in garnet–sillimanite gneiss from Rundvågshetta, Lützow-Holm Complex, East Antarctica. Gondwana Res 19(2):430–445
- Kawasaki T, Adachi T, Nakano N, Osanai Y (2013) Possible armalcolitepseudomorph-bearing garnet– sillimanite gneiss from Skallevikshalsen, Lützow-Holm Complex, East Antarctica: implications for ultrahigh-temperature metamorphism. Geol Soc, London, Special Publ 383(1):135–167
- Kendix E, Moscardi G, Mazzeo R, Baraldi P, Prati S, Joseph E, Capelli S (2008) Far infrared and Raman spectroscopy analysis of inorganic pigments. J Raman Spectrosc 39:1104–1112
- Keramidas VG, Deangelis BA, White WB (1975) Vibrational spectra of spinels with cation ordering on the octahedral sites. J Solid State Chem 15 (3):233–245
- Kessler H, Olazcuaga R, Hatterer A, Hagenmuller P (1979) Etude des phases Na₄XO₄ (X = Sn, Pb) et de K₄SnO₄ par spectrophotométrie d'absorption spectrophotométrie infrarouge et diffusion Raman. Z anorg allg Chemie 458(1):195–201. (in French)
- Ketani M, Abraham F, Mentré O (1999) Channel structure in the new $BiCoPO₅$. Comparison with $BiNiPO₅$. Crystal structure, lone pair localization and infrared characterization. Solid State Sci 1:449–460
- Ketatni M, Abraham F, Mentre O (1999) Channel structure in the new BiCoPO₅. Comparison with BiNiPO₅. Crystal structure, lone pair localisation and infrared characterisation. Solid State Sci 1(6):449–460
- Khadka DB, Kim J (2014) Structural transition and band gap tuning of $Cu₂(Zn,Fe)SnS₄$ chalcogenide for photovoltaic application. J Phys Chem C 118 (26):14227–14237
- Khamlich S, Bello A, Fabiane M, Ngom BD, Manyala N (2013) Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors. J Solid State Electrochem 17(11):2879–2886
- Khanderi J, Shi L, Rothenberger A (2015) Hydrolysis of bis (dimethylamido) tin to tin(II) oxyhydroxide and its selective transformation into tin(II) or tin(IV) oxide. Inorg Chim Acta 427:27–32
- Khaoulaf R, Ezzaafrani M, Ennaciri A, Harcharras M, Capitelli F (2012) Vibrational study of dipotassium zinc bis(dihydrogendiphosphate) dihydrate, $K₂Zn$ $(H_2P_2O_7)$ ² H_2O . Phosphorus, sulfur, and silicon and the related elements 187(11):1367–1376. [https://doi.](https://doi.org/10.1080/10426507.2012.685669) [org/10.1080/10426507.2012.685669](https://doi.org/10.1080/10426507.2012.685669)
- Kharbish S (2011) Raman spectroscopic investigations of some Tl-sulfosalt minerals containing pyramidal (As, Sb)S₃ groups. Am Mineral 96(4):609-616
- Kharbish S (2012) Raman spectra of minerals containing interconnected $As(Sb)O₃$ pyramids: trippkeite and schafarzikite. J Geosci 57(1):53–62
- Kharbish S (2016) Micro-Raman spectroscopic investigations of extremely scarce Pb–As sulfosalt minerals: baumhauerite, dufrénoysite, gratonite, sartorite, and seligmannite. J Raman Spectrosc. <https://doi.org/10.1002/jrs.4973>
- Kharbish S, Andráš P (2014) Investigations of the Fe sulfosaltsberthierite, garavellite, arsenopyrite and gudmundite by Raman spectroscopy. Mineral Mag 78 (5):1287–1299
- Kharbish S, Jeleň S (2016) Raman spectroscopy of the Pb-Sbsulfosalts minerals: boulangerite, jamesonite, robinsonite and zinkenite. Vib Spectrosc 85:157–166
- Kharbish S, Libowitzky E, Beran A (2007) The effect of As-Sb substitution in the Raman spectra of tetrahedrite-tennantite and pyrargyrite-proustite solid solutions. Eur J Mineral 19(4):567–574
- Kharbish S, Libowitzky E, Beran A (2009) Raman spectra of isolated and interconnected pyramidal $XS₃$ groups $(X = Sb, Bi)$ in stibnite, bismuthinite, kermesite, stephanite and bournonite. Eur J Mineral 21 (2):325–333
- Kharbish S, Andráš P, Luptáková J, Milovská S (2014) Raman spectra of oriented and non-oriented Cu hydroxyl-phosphate minerals: libethenite, cornetite, pseudomalachite, reichenbachite and ludjibaite. Spectrochim Acta A 130:152–163
- Khomyakov AP, Kurova TA, Nechelyustov GN, Piloyan GO (1983) Barentsite, $Na₇AIH₂(CO₃)₄F₄$, a new mineral. Zapiski RMO (Proc Russ Miner Soc) 112 (4):474–479. (in Russian)
- Khomyakov AP, Nechelyustov GN, Rastsvetaeva RK, Rozenberg KA (2013) Davinciite, $Na_{12}K_3Ca_6Fe^{2+}3$ $Zr_3(Si_{26}O_{73}OH)Cl_2$, a new K,Na-ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton,

Kola Peninsula, Russia. Geol Ore Depos 55 $(7):532 - 540$

- Khorari S, Rulmont A, Cahay R, Tarte P (1995) Structure of the complex arsenates $NaCa₂M²⁺₂ (AsO₄)₃ (M²⁺$ Mg, Ni, Co): first experimental evidence of a garnetalluaudite reversible polymorphism. J Solid State Chem 118:267–273
- Khorari S, Rulmont A, Tarte P (1997) Alluaudite-like structure of the arsenate $\text{Na}_3\text{In}_2(\text{AsO}_4)_{3}$. J Solid State Chem 134(1):31–37
- Khosravi I, Yazdanbakhsh M, Eftekhar M, Haddadi Z (2013) Fabrication of nanodelafossite LiCo_{0.5}Fe_{0.5}O₂ as the new adsorbent in efficient removal of reactive blue 5 from aqueous solutions. Mater Res Bull 48 (6):2213–2219
- Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Nigmatulina EN, Goryainov SV, Belogub EV, Clark ID (2016a) Tululite, $Ca_{14}(Fe^{3+}, Al)(Al,Zn,Fe^{3+},Si,P,$ Mn, Mg ₁₅O₃₆: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Mineral Petrol 110(1):125–140
- Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Kozmenko OA, Goryainov SV, Clark ID (2016b) Intermediate members of the lime-monteponite solid solutions ($Ca_{1-x}Cd_xO$, $x = 0.36-0.55$): discovery in natural occurrence. Am Mineral 101(1):146–161
- Kiefer W, Bernstein HJ (1972) The resonance Raman effect of the permanganate and chromate ions. Molec Phys 23(5):835–851
- Kiefert L, Karampelas S (2011) Use of the Raman spectrometer in gemmological laboratories: review. Spectrochim Acta A 80(1):119–124
- Kiefert L, Schmetzer K (1998) Distinction of taaffeite and musgravite. J Gemmol 26:65–16
- Kim CY, Condrate RA Sr (1984) The vibrational spectra of crystalline $W_2O_3(PO_4)_2$ and related tungsten phosphate glasses. J Phys Chem Solids 45(11):1213–1218
- Kim HS, Stair PC (2004) Bacterially produced manganese oxide and todorokite: UV Raman spectroscopic comparison. J Phys Chem B 108(44):17019–17026
- Kim K-W, Kim Y-H, Lee S-Y, Lee J-W, Joe K-S, Lee E-H, Kim J-S, Song K-C (2009) Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide. Environ Sci Technol 43 (7):2355–2361
- Kim MK, Kim SH, Chang HY, Halasyamani PS, Ok KM (2010a) New noncentrosymmetrictellurite phosphate material: synthesis, characterization, and calculations of Te₂O(PO₄)₂. Inorg Chem 49(15):7028–7034
- Kim SW, Chang HY, Halasyamani PS (2010b) Selective pure-phase synthesis of the multiferroic BaMF₄ (M $=$ Mg, Mn, Co, Ni, and Zn) family. J Am Chem Soc 132 (50):17684–17685
- Kim YH, Lee DW, Ok KM (2013) α -ScVSe₂O₈, $β$ -ScVSe₂O₈, and ScVTe₂O₈: new quaternary mixed metal oxides composed of only second-order Jahn– Teller distortive cations. Inorg Chem (19):11450–11456
- Kim YH, Lee DW, Ok KM (2014) Noncentrosymmetric $YVSe₂O₈$ and centrosymmetric $YVTe₂O₈$: macroscopic centricities influenced by the size of lone pair cation linkers. Inorg Chem 53(2):1250–1256
- Kimata M (1993) Crystal structure of $KBSi₃O₈$ isostructural with danburite. Mineral Mag 57:157–164
- Kimura M, Mikouchi T, Suzuki A, Miyahara M, Ohtani E, Goresy AE (2009) Kushiroite, CaAlAlSiO₆: a new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. Am Mineral 94(10):1479–1482
- Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Mineral 79 (3–4):269–273
- Kinner T, Bhandari KP, Bastola E, Monahan BM, Haugen NO, Roland PJ, Begioni TP, Ellingson RJ (2016) Majority carrier type control of cobalt iron sulfide $(Co_xFe_{1-x}S_2)$ pyrite nanocrystals. J Phys Chem C 120 (10):5706–5713
- Kipcak AS, Baysoy DY, Derun EM, Piskin S (2013) Characterization and neutron shielding behavior of dehydrated magnesium borate minerals synthesized via solid-state method. Adv Mater Sci Eng. [https://](https://doi.org/10.1155/2013/747383) doi.org/10.1155/2013/747383
- Kipcak AS, Derun EM, Pişkin S (2014) Synthesis and characterization of magnesium borate minerals of admontite and mcallisterite obtained via ultrasonic mixing of magnesium oxide and various sources of boron: a novel method. Turk J Chem 38(5):792–805
- Kirkpatrick RJ, Yarger JL, McMillan PF, Ping Y, Cong X (1997) Raman spectroscopy of CSH, tobermorite, and jennite. Adv Cem Based Mater 5(3):93–99
- Klein RS, Fortin W, Kugel GE (1998) Raman spectra in $Bi₂TeO₅$ as a function of the temperature and the polarization. J Phys Condens Matter 10(16):3659–3658
- Kleppe AK, Jephcoat AP (2004) High-pressure Raman spectroscopic studies of $FeS₂$ pyrite. Mineral Mag 68 (3):433–441
- Kleppe AK, Jephcoat AP, Olijnyk H, Slesinger AE, Kohn SC, Wood BJ (2001) Raman spectroscopic study of hydrous wadsleyite $(β$ -Mg₂SiO₄) to 50 GPa. Phys Chem Minerals 28(4):232–241
- Kleppe AK, Jephcoat AP, Welch MD (2003) The effect of pressure upon hydrogen bonding in chlorite: a Raman spectroscopic study of clinochlore to 26.5 GPa. Am Mineral 88(4):567–573
- Kleppe AK, Jephcoat AP, Smyth JR (2006) High-pressure Raman spectroscopic study of F_{090} hydrous wadsleyite. Phys Chem Minerals 32(10):700–709
- Kleppe AK, Welch MD, Crichton WA, Jephcoat AP (2012) Phase transitions in hydroxide perovskites: a Raman spectroscopic study of stottite, $FeGe(OH)₆$, to 21 GPa. Mineral Mag 76(4):949–962
- Klingenberg B, Vannice MA (1996) Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders. Chem Mater 8(12):2755–2768
- Kloprogge JT, Frost RL (1999a) Raman microscopic study of some borate minerals: ulexite, kernite, and inderite. Appl Spectrosc 53(3):356–364
- Kloprogge JT, Frost RL (1999b) Raman microscopy study of cafarsite. Appl Spectrosc 53(7):874–880
- Kloprogge JT, Frost RL (1999c) Raman microscopy study of basic aluminum sulfate. J Mater Sci 34 (17):4199–4202
- Kloprogge JT, Frost RL (1999d) Raman and infrared microscopy study of zunyite, a natural $Al₁₃$ silicate. Spectrochim Acta A 55(7):1505–1513
- Kloprogge JT, Frost RL (1999e) Raman microprobe spectroscopy of hydrated halloysite from a neogene cryptokarst from Southern Belgium. J Raman Spectrosc 30(12):1079–1108
- Kloprogge JT, Frost RL (2000a) Raman microscopic study at 300 and 77 K of some pegmatite minerals from the Iveland-Evje area, Aust-Agder, Southern Norway. Spectrochim Acta A 56(3):501–513
- Kloprogge JT, Frost RL (2000b) Raman microscopy study of tyrolite: a multi-anion arsenate mineral. Appl Spectrosc 54(4):517–521
- Kloprogge JT, Frost RL (2000c) The effect of synthesis temperature on the FT-Raman and FT-IR spectra of saponites. Vib Spectrosc 23(1):119–127
- Kloprogge JT, Wood BJ (2017) X-ray photoelectron Spectroscopic and Raman microscopic investigation of the variscite group minerals: variscite, strengite, scorodite and mansfieldite. Spectrochim Acta A 185: 163–172
- Kloprogge JT, Case MH, Frost RL (2001a) Raman microscopic study of the Li amphibole holmquistite, from the Martin Marietta Quarry, Bessemer City, NC, USA. Mineral Mag 65(6):775–785
- Kloprogge JT, Ruan H, Duong LV, Frost RL (2001b) FT-IR and Raman microscopic study at 293 K and 77 K of celestine, SrSO4, from the middle triassic limestone (Muschelkalk) in Winterswijk, Netherlands. Geologie en Mijnbouw (Netherlands J Geosci) 80 (2):41–48
- Kloprogge JT, Visser D, Ruan H, Frost RL (2001c) Infrared and Raman spectroscopy of holmquistite, $Li₂(Mg,$ Fe^{2+})₃(Al,Fe³⁺)₂(Si,Al)₈O₂₂(OH)₂. J Mater Sci Lett 20 (16):1497–1499
- Kloprogge JT, Wharton D, Hickey L, Frost RL (2002) Infrared and Raman study of interlayer anions CO_3^2 , NO³⁻, SO₄²⁻ and ClO₄⁻ in Mg/Al-hydrotalcite. Am Mineral 87(5–6):623–629
- Kloprogge JT, Martens WN, Nothdurft L, Duong LV, Webb GE (2003) Low temperature synthesis and characterization of nesquehonite. J Mater Sci Lett 22 (11):825–829
- Kloprogge JT, Hickey L, Duong LV, Martens WN, Frost RL (2004a) Synthesis and characterization of $K_2Ca_5(SO_4)_6·H_2O$, the equivalent of görgeyite, a rare evaporite mineral. Am Mineral 89(2–3):266–272
- Kloprogge JT, Weier ML, Duong LV, Frost RL (2004b) Microwave-assisted synthesis and characterisation of divalent metal tungstate nanocrystalline minerals: ferberite, hübnerite, sanmartinite, scheelite and stolzite. Mater Chem Phys 88(2):438–443
- Kloprogge JT, Duong LV, Weier M, Martens WN (2006) Nondestructive identification of arsenic and cobalt minerals from Cobalt City, Ontario, Canada: arsenolite, erythrite, and spherocobaltite on pararammelsbergite. Appl Spectrosc 60(11):1293–1296
- Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4 (02):385–393
- Knittle E, Kaner RB, Jeanloz R, Cohen ML (1995) Highpressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Phys Rev B 51 (18):12149–12155
- Knop O, Brisse F, Castelliz L (1969) Pyrochlores. V. Thermoanalytic, X-ray, neutron, infrared, and dielectric studies of $A_2T_{i2}O_7$ titanates. Can J Chem 47(6):971–990
- Knyazev AV, Mączka M, Kuznetsova NY (2010) Thermodynamic modeling, structural and spectroscopic studies of the $KNbWO_6-KSbWO_6-KTaWO_6$ system. Thermochim Acta 506(1):20–27
- Knyazev AV, Mączka M, Ladenkov IV, Bulanov EN, Ptak M (2012) Crystal structure, spectroscopy, and thermal expansion of compounds in M_2^I O-Al₂O₃-TiO₂ system. J Solid State Chem 196:110–118
- Knyrim JS, Schappacher FM, Pöttgen R, Schmedt auf der Guenne J, Johrendt D, Huppertz H (2007) Pressureinduced crystallization and characterization of the tin borate β-SnB4O7. Chem Mater 19(2):254–262
- Kobsch A, Downs RT, Domanik KJ (2016) Redetermination of metarossite, CaV⁵⁺₂O₆⋅2H₂O. Acta Crystallogr E 72(9):1280–1284
- Koch-Müller M, Hofmeister AM, Fei Y, Liu Z (2002) High-pressure IR-spectra and the thermodynamic properties of chloritoid. Am Miner 87:609–622
- Kohlrausch KWF (1943) Ramanspektren. Akademische Verlagsgesellschaft, Leipzig
- Kojitani H, Többens DM, Akaogi M (2013) High-pressure Raman spectroscopy, vibrational mode calculation, and heat capacity calculation of calcium ferrite-type $MgAl₂O₄$ and CaAl₂O₄. Am Mineral 98(1):197–206
- Kolesov BA (2018) Applied Raman spectroscopy. Publishing House of the Siberian Branch of the RAS, Novosibirsk. (in Russian)
- Kolesov BA, Geiger CA (1998) Raman spectra of silicate garnets. Phys Chem Minerals 25(2):142–151
- Kolesov BA, Geiger CA (2002) Raman spectroscopic study of H_2O in bikitaite: "One-dimensional ice". Am Mineral 87(10):1426–1431
- Kolesov BA, Geiger CA (2003) Molecules in the $SiO₂$ clathrate melanophlogite: a single-crystal Raman study. Am Miner 88(8–9):1364–1368
- Kolesov BA, Geiger CA (2005) The vibrational spectrum of synthetic hydrogrossular (katoite) $Ca₃Al₂(O₄H₄)₃$: a low-temperature IR and Raman spectroscopic study. Am Mineral 90(8–9):1335–1341
- Koleva V, Effenberger H (2007) Crystal chemistry of M $[PO₂(OH)₂]₂·2H₂O compounds (M = Mg, Mn, Fe, Co,$ Ni, Zn, Cd): structural investigation of the Ni, Zn and Cd salts. J Solid State Chem 180(3):956–967
- Koleva V, Stefov V, Najdoski M, Cahil A (2015) Thermal, spectral and microscopic studies of water-rich hydrate of the type Mg₂KH(PO₄)₂⋅15H₂O. Thermal transformations. Thermochim Acta 619:20–25
- Kolitsch U, Bernhardt H-J, Lengauer CL, Blass G, Tillmanns E (2006) Allanpringite, $Fe₃(PO₄)₂(OH)₃·5H₂O$, a new ferric iron phosphate from Germany, and its close relation to wavellite. Eur J Mineral 18(6):793–801
- Kolitsch U, Bernhardt HJ, Krause W, Blass G (2008) Pattersonite, $PbFe_3(PO_4)_2(OH)_4[(H_2O)_{0.5}(OH)_{0.5}]_2$, a new supergene phosphate mineral: description and crystal structure. Eur J Mineral 20(2):281–288
- Kolitsch U, Atencio D, Chukanov NV, Zubkova NV, Menezes Filho LAD, Coutinho JMV, Birch WD, Sghlütter J, Pohl D, Kampf AR, Steele IM, Favreau G, Nasdala L, Mocke S, Giester G, Pushcharovsky DY (2010) Bendadaite, a new iron arsenate mineral of the arthurite group. Mineral Mag 74(3):469–486
- Kolitsch U, Merlino S, Holtstam D (2012) Molybdophyllite: crystal chemistry, crystal structure, OD character and modular relationships with britvinite. Mineral Mag 76(3):493–516
- Kompanchenko AA, Sidorov MY, Voloshin AV (2016) Raman spectroscopy as a method of diagnostic of minerals forming microscopic segregations. In: Voytekhovsky YL (ed) Regional geology, mineralogy and mineral resources of Kola Peninsula. K & M, Apatity. (in Russian)
- Kong WG, Wang A, Chou I-M (2011a) Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1 MPa. Chem Geol 284(3):333–338
- Kong WG, Wang A, Freeman JJ, Sobron P (2011b) A comprehensive spectroscopic study of synthetic Fe^{2+} , $Fe³⁺$, Mg²⁺ and Al³⁺copiapite by Raman, XRD, LIBS, MIR and vis–NIR. J Raman Spectrosc 42 (5):1120–1129
- Kononov OV, Klyuchareva SV, Guseva EV, Kabalov YK, Topor ND, Orlov RY (1990) Thaumasite from hydrothermally altered skarns from the Tyrnyauzskoe deposit (Northern Caucasus). Bull Moscow Univ 4 (1):82–87. (in Russian)
- Konstantinović MJ, Brink J, Popović ZV, Moshchalkov VV, Isobe M, Ueda Y (2002) Orbital dimerization and dynamic Jahn-Teller effect in $\text{NaTiSi}_2\text{O}_6$. arXiv preprint cond-mat/0210191. (6 pp)
- Konzett J, Yang H, Frost DJ (2005) Phase relations and stability of magnetoplumbite-and crichtonite-series phases under upper-mantle PT conditions: an experimental study to 15 GPa with implications for LILE metasomatism in the lithospheric mantle. J Petrol 46 (4):749–781
- Korinevsky VG (2015) Spessartine-andradite in scapolite pegmatite, Ilmenymountains, Russia. Can Mineral 53 (4):623–632
- Korinevsky VG, Kotlyarov VA, Korinevsky EV, Mironov AB, Shtenberg MV (2016) Magnesiohögbomite (Mg, Fe^{2+} ,Zn)₈(Al,Ti,Fe³⁺)₂₀O₃₈(OH)₂ from Ilmenogorsky-Vishnevogorsky complex. Mineral 2:20–33. (in Russian)
- Korsakov AV, Golovin AV, De Gussem K, Sharygin IS, Vandenabeele P (2009) First finding of burkeite in melt inclusions in olivine from sheared lherzolite xenoliths. Spectrochim Acta A 73(3):424–427
- Korthuis VC, Hoffmann RD, Huang J, Sleight AW (1993) Synthesis and crystal structure of potassium and sodium vanadium phosphates. Chem Mater 5 (2):206–209
- Korybska-Sadło I, Sitarz M, Król M, Gunia P (2016) Vibrational spectroscopic characterization of the magnesium borate-phosphate mineral lüneburgite. Spectrosc Lett. [https://doi.org/10.1080/00387010.](https://doi.org/10.1080/00387010.2016.1236819) [2016.1236819](https://doi.org/10.1080/00387010.2016.1236819)
- Koszowska E, Wesełucha-Birczyńska A, Borzęcka-Prokop B, Porębska E (2005) Micro and FT-Raman characterisation of destinezite. J Molec Struct 744:845–854
- Kotková J, Škoda R, Machovič V (2014) Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif. Am Mineral 99(8–9):1798–1801
- Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62(4):600–612
- Koutsovitis P, Perraki M, Magganas A (2013) REE-rich allanites from a plagiogranite occurrence in South Othris, Greece. In: Anniversary Meeting of the Petrology Group of the Mineralogical Society of Poland, p 50
- Kovacheva D, Petrov K (1998) Preparation of crystalline $ZnSnO₃$ from $Li₂SnO₃$ by low-temperature ion exchange. Solid State Ionics 109(3):327–332
- Koval'chuk NS, Makeev AB (2007) Typomorphism and parasteresis of yushkinite (Pai-Khoi anticlinorium). Zapiski RMO (Proc Russ Miner Soc) 136(5):1–21. (in Russian)
- Kowalczyk LN, Condrate RA Sr (1974) Vibrational spectra of spodiosite analogs. J Am Ceram Soc 57 (2):102–105
- Kowitz A, Güldemeister N, Reimold WU, Schmitt RT, Wünnemann K (2013) Diaplectic quartz glass and $SiO₂$ melt experimentally generated at only 5 GPa shock pressure in porous sandstone: laboratory observations and meso-scale numerical modeling. Earth Planet Sci Lett 384:17–26
- Kozlova MN, Mironov YV, Grayfer ED, Smolentsev AI, Zaikovski VI, Nebogatikova NA, Podlipskaya TY, Fedorov VE (2015) Synthesis, crystal structure, and colloidal dispersions of vanadium tetrasulfide $(VS₄)$. Chemistry 21(12):4639–4645
- Kramar S, Tratnik V, Hrovatin IM, Mladenović A, Pristacz H, Rogan Šmuc N (2015) Mineralogical and chemical characterization of roman slag from the archaeological site of Castra (Ajdovščina, Slovenia). Archaeometry 57(4):704–719
- Krause W, Bernhardt H-J, Effenberger H, Kolitsch U, Lengauer C (2003) Redefinition of arhbarite, $Cu₂Mg$ (AsO4)(OH)3. Mineral Mag 67(5):1099–1107
- Krause W, Bernhardt HJ, Braithwaite RSW, Kolitsch U, Pritchard R (2006) Kapellasite, $Cu₃Zn(OH)₆Cl₂$, a new mineral from Lavrion, Greece, and its crystal structure. Mineral Mag 70(3):329–340
- Krause W, Effenberger H, Bernhardt HJ, Medenbach O (2008) Skorpionite, Ca₃Zn₂(PO₄)₂(CO₃)(OH)₂⋅H₂O, a new mineral from Namibia: description and crystal structure. Eur J Mineral 20(2):271–280
- Kreisel J, Lucazeau G, Vincent H (1998a) Raman spectra and vibrational analysis of $BaFe_{12}O_{19}$ hexagonal ferrite. J Solid State Chem 137(1):127–137
- Kreisel J, Pignard S, Vincent H, Senateur JP, Lucazeau G (1998b) Raman study of $BaFe_{12}O_{19}$ thin films. Appl Phys Lett 73:1194–1196
- Kreisel J, Lucazeau G, Vincent H (1999) Raman study of substituted barium ferrite single crystals, $BaFe_{12-2x}Me_{x}Co_{x}O_{19}$ (Me = Ir, Ti). J Raman Spectrosc 30(2):115–120
- Kremenović A, Colomban P, Piriou B, Massiot D, Florian P (2003) Structural and spectroscopic characterization of the quenched hexacelsian. J Phys Chem Solids 64 (11):2253–2268
- Krenn K, Kaindl R, Hoinkes G (2004) Pumpellyite in metapelites of the Schneeberg Complex (Eastern Alps, Austria). Eur J Mineral 16(4):661–669
- Kreske S, Devarajan V (1982) Vibrational spectra and phase transitions in ferroelectric-ferroelastic langbeinites: $K_2Mn_2(SO_4)_3$, $(NH_4)_2Cd_2(SO_4)_3$ and $Tl_2Cd_2(SO_4)$ ₃. J Phys C 15(36):7333-7350
- Krishnakumar T, Pinna N, Kumari KP, Perumal K, Jayaprakash R (2008) Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater Lett 62(19):3437–3440
- Krishnamurthy N, Soots V (1970) Raman spectra of CdF₂ and PbF₂. Can J Phys 48(9):1104-1107
- Krishnamurti D (1955) Raman spectra of borax, kernite and colemanite. Proceed Ind Acad Sci A 41(1):7–11
- Krishnamurti D (1958) The Raman spectra of crystalline sulphates of Ni and Mn. Proceed Ind Acad Sci A 48 (6):355–363
- Krishnan RS, Katiyar RS (1965) The Raman spectrum of magnesium fluoride. J Phys 26(11):627–629
- Krishnan RS, Ramanujam PS (1973) Raman spectrum of calcium formate. J Raman Spectrosc 1(6):533–538

- Kristova P, Hopkinson LJ, Rutt KJ, Hunter HM, Cressey G (2014) Carbonate mineral paragenesis and reaction kinetics in the system MgO –CaO–CO₂–H₂O in presence of chloride or nitrate ions at near surface ambient temperatures. Appl Geochem 50:6–24
- Krivovichev SV, Burns P (2000) Crystal chemistry of basic lead carbonates. II. Crystal structure of synthetic 'plumbonacrite'. Mineral Mag 64:1969–1975
- Krivovichev SV, Turner R, Rumsey M, Siidra OI, Kirk CA (2009) The crystal structure and chemistry of mereheadite. Mineral Mag 73:103–117

Kristiansen R (2016) Personal Commun

- Kruger A, Heyns AM (1997) A Raman and infrared study of $(NH_4)_2ZrF_6$. Vib Spectrosc 14(2):171–181
- Krüger H, Tropper P, Haefeker U, Kaindl R, Tribus M, Kahlenberg V, Wikete C, Fuchs MR, Olieric V (2014) Innsbruckite, $Mn_{33}(Si₂O₅)₁₄(OH)₃₈ - a new mineral$ from the Tyrol, Austria. Mineral Mag 78(7):1613–1628
- Krzemnicki MS, Reusser E (1998) Graeserite, $Fe₄Ti₃AsO₁₃(OH)$, a new mineral species of the derbylite group from the Monte Leone nappe, Binntal region, Western Alps, Switzerland. Can Mineral 36:1083–1088
- Kučerová G, Ozdín D, Lalinská-Voleková B (2013) Primárny nízkotermálny delafossit (CuFeO₂) z odkaliska Slovinky (Slovensko). Bull Mineralpetrolog Odd Nár Muz (Praha) 21(1):78–83. ISSN 1211-0329. (in Czech)
- Kuebler KE (2013a) A combined electron microprobe (EMP) and Raman spectroscopic study of the alteration products in Martian meteorite MIL 03346. J Geophys Res Planets 118(3):347–368
- Kuebler KE (2013b) A comparison of the iddingsite alteration products in two terrestrial basalts and the Allan Hills 77005 martian meteorite using Raman spectroscopy and electron microprobe analyses. J Geophys Res Planets 118(4):803–830
- Kuebler KE, Wang A, Jolliff BL (2011) Review of terrestrial laihunite and stilpnomelane analogs, identified as potential secondary alteration phases in MIL 03346. 42nd Lunar Planet Sci Conf 42:1022
- Kulikova OV, Kulyuk LL, Radautsan SI, Ratseev SA, Strumban EE, Tezlevan VE, Tsitsanu VI (1988) Influence of defect generation processes in $CdIn₂S₄$ single crystals on the photoluminescence and Raman scattering spectra. Phys Status Solidi A 107(1):373–377
- Kumar P, Nagarajan R (2011) An elegant room temperature procedure for the precise control of composition in the Cu-S system. Inorg Chem 50(19):9204–9206
- Kunert HW, Barnas J, Brink DJ, Malherbe J (2006) Raman active modes of one-, two-, and three-phonon processes in the most important compounds and semiconductors with the rhombic, tetragonal, regular, trigonal, and hexagonal structures. J Phys IV France 132:329–336
- Kurazhkovskaya VS, Borovikova EY (2003) IR spectra of high-symmetry and low-symmetry vesuvianites. Zapiski RMO (Proc Russ Miner Soc) 132 (1):109–121. (in Russian)
- Kurazhkovskaya VS, Borovikova EY, Alferova MS (2005) Infrared spectra, unit cell parameters and optical sign of boron-bearing vesuvianites and wiluites. Zapiski RMO (Proc Russ Miner Soc) 134:82–91. (in Russian)
- Kurdakova SV, Grishchenko RO, Druzhinina AI, Ogorodova LP (2014) Thermodynamic properties of synthetic calcium-free carbonate cancrinite. Phys Chem Minerals 41(1):75–83
- Kurzawa M, Blonska-Tabero A (2002) The synthesis and selected properties of new compounds: $Mg_3Fe_4(VO_4)6$ and $Zn_3Fe_4(VO_4)_6$. Mater Res Bull 37(5):849–858
- Kushwaha AK (2008) Lattice dynamics at zone-center of sulphide and selenide spinels. Commun Theor Phys 50 (6):1422–1426
- Kustova GN, Burgina EB, Sadykov VA, Poryvaev SG (1992) Vibrational spectroscopic investigation of the goethite thermal decomposition products. Phys Chem Minerals 18(6):379–382
- Kustova GN, Chesalov YA, Plyasova LM, Моlinа IY, Nizovskii AI (2011) Vibrational spectra of WO₃⋅nH₂O and WO₃ polymorphs. Vibr Spectrosc 55 (2):235–240
- Kusz J, Malczewski D, Zubko M, Häger T, Hofmeister W (2010) High temperature study of metamictsteenstrupine. Solid State Phenom 163:253–255
- Kutsay O, Yan C, Chong YM, Ye Q, Bello I, Zhang WJ, Zapien JA, Zhou ZF, Li YK, Garashchenko V, Gontar AG, Novikov NV, Lee ST (2010) Studying cubic boron nitride by Raman and infrared spectroscopies. Diamond Related Mater 19(7):968–971
- Kyono A, Kimata M (2001) The crystal structure of synthetic $TIAISi₃O₈$. Influence of the inert-pair effect of thallium on the feldspar structure. Eur J Mineral 13 (5):849–856
- Kyono A, Ahart M, Yamanaka T, Gramsch S, Mao HK, Hemley RJ (2011) High-pressure Raman spectroscopic studies of ulvöspinel Fe₂TiO₄. Am Mineral 96 (8–9):1193–1198
- La Cruz NL (2015) Schreibersite: synthesis, characterization and corrosion and possible implications for origin of life. Thesis. University of South Florida
- La Iglesia A, Garcia-Guinea J, González del Tánago J (2014) La zaratita de Cabo Ortegal (A Coruña): historia de su descubrimiento y caracterización con técnicas analíticas no destructivas. Estudios Geológicos. (in Spanish). <https://doi.org/10.3989/egeol.41353.275>
- Labajos FM, Rives V (1996) Thermal evolution of chromium (III) ions in hydrotalcite-like compounds. Inorg Chem 35(18):5313–5318
- Lafuente B, Downs RT (2016) Redetermination of brackebuschite, $Pb_2Mn^{3+}(VO_4)_2(OH)$. Acta Crystallogr E 72(3):293–296
- Lafuente B, Yang H, Downs RT (2015) Crystal structure of tetrawickmanite, $Mn^{2+}Sn^{4+}(OH)_{6}$. Acta Crystallogr E 71:234–237
- Lafuente B, Downs RT, Origlieri MJ, Domanik KJ, Gibbs RB, Rumsey MS (2016) New data on hemihedrite from Arizona. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.148) [minmag.2016.080.148](https://doi.org/10.1180/minmag.2016.080.148)
- Lage MM, Righi A, Matinaga FM, Gesland JY, Moreira RL (2004) Raman-spectroscopic study of lanthanide trifluorides with the β-YF₃ structure. J Phys Condens Matter 16(18):3207–3218
- Lager GA, Xie Q, Ross FK, Rossman GR, Armbruster T, Rotella FJ, Schultz AJ (1999) Hydrogen-atom position in P4/nnc vesuvianite. Can Miner 37:763–768
- Lahalle MP, Krupa JC, Lepostollec M, Forgerit JP (1986) Low-temperature Raman study on $ThSiO₄$ single crystal and related infrared spectra at room temperature. J Solid State Chem 64:181–187
- Lahti SI, Saikkonen R (1985) Bityite $2M_1$ from Eräjärvi compared with related Li-Be brittle micas. Bull Geol Soc Finland 57:207–215
- Laihunite Research Group, Guiyang Institute of Geochemistry, Academia Sinica and Geological Team 101 (1976) Laihunite – a new iron silicate mineral. Geochim 2:95–103. (in Chinese, English Abstr)
- Lajzérowicz J (1966) Étude par diffraction des rayons X et absorption infra-rouge de la barysilite, MnPb $_8$ ⋅3Si₂O₇, et de composes isomorphes. Acta Crystallogr 20 (3):357–363. (in French)
- Lambruschi E, Gatta G, Adamo I, Bersani D, Salvioli-Mariani E, Lottici PP (2014) Raman and structural comparison between the new gemstone pezzottaite Cs $(Be₂Li)Al₂Si₆O₁₈$ and Cs-beryl. J Raman Spectrosc 45 (11–12):993–999
- Lannin JS (1977) Raman scattering properties of amorphous As and Sb. Phys Rev B 15(8):3863. (15 pp)
- Lanteigne S, Schindler M, McDonald AM, Skeries K, Abdu Y, Mantha NM, Murayama M, Hawthorne FC, Hochella MF Jr (2012) Mineralogy and weathering of smelter-derived spherical particles in soils: implications for the mobility of Ni and Cu in the surficial environment. Water Air Soil Pollut 223(7): 3619–3641
- Larkin PJ (2011) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier
- Latturner SE, Sachleben J, Iversen BB, Hanson J, Stucky GD (1999) Covalent guest-framework interactions in heavy metal sodalites: structure and properties of thallium and silver sodalite. J Phys Chem B 103 (34):7135–7144
- Laurs BM, Pezzotta F, Simmons WB, Falster AU, Muhlmeister S (2002) Rhodizite-londonite from the Antsongombato pegmatite, Central Madagascar. Gems Gemol 38(4):326–339
- Lavat AE, Grasselli MC, Baran EJ (1989) The IR spectra of the $(Cr_xFe_{1-x})VO_4$ phases. J Solid State Chem 78 (2):206–208
- Lavrova GV, Burgina EB, Matvienko AA, Ponomareva VG (2006) Bulk and surface properties of ionic salt CsH5(PO4)2. Solid State Ionics 177(13):1117–1122
- Lazarević N, Bozin ES, Šćepanović M, Opačić M, Lei H, Petrovic C, Popović ZV (2014) Probing Ir Te₂ crystal symmetry by polarized Raman scattering. Phys Rev B 89(22):224301-1–224301-6
- Lazic B, Armbruster T, Savelyeva VB, Zadov AE, Pertsev NN, Dzierżanowski P (2011) Galuskinite, $Ca_7(SiO_4)_3(CO_3)$, a new skarn mineral from the Birkhin gabbro massif, Eastern Siberia, Russia. Mineral Mag 75(5):2631–2648
- Lazic B, Armbruster T, Liebich BW, Perfler L (2012) Hydrogen-bond system and dehydration behavior of the natural zeolite parthéite. Am Mineral 97 (11–12):1866–1873
- Le Cléac'h A, Gillet P (1990) IR and Raman spectroscopic study of natural lawsonite. Eur J Mineral 2(1): 43–53
- Leander F, de Capitani C, Sun TT, Hanni HA, Atichat W (2014) A comparative study of jadeite, omphacite and kosmochlor jades from Myanmar, and suggestions for a practical nomenclature. J Gemm 34(3):210–229
- Lecker A (2013) Synthese, Strukturchemie und physikalische Untersuchungen an Mangan-, Eisenund Quecksilber-Chalkogenometallatverbindungen. Dissertation, Universität Regensburg, Institut für Anorganische Chemie. (in German)
- Lee DW, Ok KM (2014) New polymorphs of ternary sodium tellurium oxides: hydrothermal synthesis, structure determination, and characterization of $β$ -Na₂Te₄O₉ and Na₂Te₂O₆⋅1.5H₂O. Inorg Chem 53 (19):10642–10648
- Lee CY, Macquart R, Zhou Q, Kennedy BJ (2003) Structural and spectroscopic studies of $BiTa_{1-r}Nb_{r}O_{4}$. J Solid State Chem 174(2):310–318
- Lee DW, Oh SJ, Halasyamani PS, Ok KM (2011) New quaternary tellurite and selenite: synthesis, structure, and characterization of centrosymmetric $InvTe₂O₈$ and noncentrosymmetric InVSe₂O₈. Inorg Chem 50 (10):4473–4480
- Lee DW, Bak DB, Kim SB, Kim J, Ok KM (2012) Effect of the framework flexibility on the centricities in centrosymmetric $In₂Zn(SeO₃)₄$ and noncentrosymmetric $Ga₂Zn(TeO₃)₄$. Inorg Chem 51(14):7844–7850
- Lee EP, Song SY, Lee DW, Ok KM (2013) New bismuth selenium oxides: syntheses, structures, and characterizations of centrosymmetric $Bi_2(SeO_3)_2(SeO_4)$ and $Bi_2(TeO_3)_2(SeO_4)$ and noncentrosymmetric $Bi(SeO_3)$ (HSeO₃). Inorg Chem 52(7):4097-4103
- Lee CW, Park HK, Park S, Han HS, Seo SW, Song HJ, Shin S, Kim D-W, Hong KS (2015) Ta-substituted $SnNb_{2-x}Ta_xO₆ photocatalysts for hydrogen evolution$ under visible light irradiation. J Mater Chem A. [https://](https://doi.org/10.1039/c4ta05885b) doi.org/10.1039/c4ta05885b
- Lehnen T, Valldor M, Nižňanský D, Mathur S (2014) Hydrothermally grown porous FeVO₄ nanorods and their integration as active material in gas-sensing devices. J Mater Chem A 2(6):1862–1868
- Leissner L, Schlüter J, Horn I, Mihailova B (2015) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles. Am Mineral 100(11–12):2682–2694
- Leite CAF, Guimaraes RB, Fernandes JC, Continentino MA, Paschoal CWA, Ayala AP, Guedes I (2002) Temperature-dependent Raman scattering study of Fe3O2BO3 ludwigite. J Raman Spectrosc 33(1):1–5
- Lenaz D, Lughi V (2013) Raman study of $MgCr_2O_4-Fe^{2+}$ Cr_2O_4 and $MgCr_2O_4-MgFe^{3+}{}_{2}O_4$ synthetic series: the effects of Fe^{2+} and Fe^{3+} on Raman shifts. Phys Chem Minerals 40(6):491–498
- Lengauer CL, Hrauda N, Kolitsch U, Krickl R, Tillmanns E (2009) Friedrichbeckeite, K $(\Box_{0.5}Na_{0.5})_2(Mg_{0.8}Mn_{0.1}Fe_{0.1})_2(Be_{0.6}Mg_{0.4})_3[Si_{12}O_{30}],$ a new milarite-type mineral from the Bellerberg volcano, Eifel area, Germany. Mineral Petrol 96 (3–4):221–232
- Lepore GO, Bindi L, Zanetti A, Ciriotti ME, Medenbach O, Bonazzi P (2015) Balestraite, $KLi₂VSi₄O₁₀O₂$, the first member of the mica group with octahedral V^{5+} . Am Mineral 100(2-3):608-614
- Lepot L, Denoël S, Gilbert B (2006) The technique of the mural paintings of the Tournai Cathedral. J Raman Spectrosc 37(10):1098–1103
- Levin D, Soled SL, Ying JY (1996) Crystal structure of an ammonium nickel molybdate prepared by chemical precipitation. Inorg Chem 35(14):4191–4197
- Levitt SR, Condrate RA Sr (1970) Vibrational spectra of lead apatites. Am Mineral 55(9–10):1562–1575
- Lewis DW, Salih D, Ruiz-Salvador AR, Emerich H, van Beek W, White CLIM, Green MA (2006) Computational and experimental studies of the structure and dynamics of water in natural zeolites. In: Zeolite '06–7th International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites, Socorro, New Mexico, USA, 16–21 July 2006, pp 161–162
- Li W, Chen G (1990) Lishizhenite a new zinc sulphate mineral. Acta Mineral Sinica 10(4):299–305. (in Chinese, English abstr)
- Li D, Peng N, Bancroft GM (1994) The vibrational spectra and structure of nordenskiöldine. Can Mineral 32:81–86
- Li J, Xia S-P, Gao S-Y (1995) FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim Acta A 51(4):519–532
- Li G, Feng S, Li L, Li X, Jin W (1997) Mild hydrothermal syntheses and thermal behaviors of hydrogarnets $Sr₃Al₂(OH)₁₂$ (M = Cr, Fe, and Al). Chem Mater 9 (12):2894–2901
- Li Z, Wu Y, Fu P, Pan S, Lin Z, Chen C (2003) Czochralski crystal growth and properties of Na₅[B₂P₃O₁₃]. J Cryst Growth 255(1):119–122
- Li XZ, Wang C, Chen XL, Li H, Jia LS, Wu L, Du YX, Xu YP (2004a) Syntheses, thermal stability, and structure determination of the novel isostructural $RBa_3B_9O_{18}$ $(R = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,$ Yb). Inorg Chem 43(26):8555–8560
- Li YH, Ling YH, Bai XD (2004b) Preparation and characterization of anisotropic ammonium titanium phosphate crystals via hydrothermal route. Key Eng Mater 280:597–600
- Li Y, Chen G, Zhang H, Li Z, Sun J (2008) Electronic structure and photocatalytic properties of $ABi_2Ta_2O_9$ (A = Ca, Sr, Ba). J Solid State Chem 181 (10):2653–2659
- Li H, Pan S, Wu H, Yang Z (2011a) Growth, structure and properties of the non-centrosymmetric hydrated borate (NH4)2CaB8O26H24. Mater Chem Phys 129 (1):176–179
- Li J, Pan S, Zhao W, Tian X, Han J, Fan X (2011b) Synthesis and crystal structure of a novel boratotungstate: $Pb_6B_2WO_{12}$. Solid State Sci 13(5):966-969
- Li H, Zhao Y, Pan S, Wu H, Yu H, Zhang F, Poeppelmeier KR (2013) Synthesis and Structure of $KPbBP₂O₈$ – a congruent melting borophosphate with nonlinear optical properties. Eur J Inorg Chem 2013(18): 3185–3190
- Li G, Zhang B, Yu F, Novakova AA, Krivenkov MS, Kiseleva TY, Chang L, Rao J, Polyakov AO, Blake GR, de Groot RA, Palstra TTM (2014) High-purity Fe₃S₄ greigite microcrystals for magnetic and electro-
chemical performance. Chem Mater 26 chemical performance. Chem Mater 26 (20):5821–5829
- Li Y, Shen J, Hu Y, Qiu S, Min G, Song Z, Sun Z, Li C (2015) General flame approach to chainlike $MFe₂O₄$ Spinel ($M = Cu$, Ni, Co, Zn) nanoaggregates for reduction of nitroaromatic compounds. Ind Eng Chem Res 54(40):9750–9757
- Liao S, Chen ZP, Tian XZ, Wu WW (2009) Synthesis and regulation of α-LiZnPO4∙H2O via a solid-state reaction at low-heating temperatures. Mater Res Bull 44 (6):1428–1431
- Libowitzky E (1999) Correlation of O–H stretching frequencies and O-H \cdots O hydrogen bond lengths in minerals. Monatshefte für Chemie 130:1047–1059
- Libowitzky E (2006) Crystal structure dynamics: evidence by diffraction and spectroscopy. Croat Chem Acta 79 (2):299–309
- Liegeois-Duyckaerts M (1975) Vibrational studies of molybdates, tungstates and related compounds – IV. Hexagonal perovskites: $Ba_2B^{\text{II}}TeO_6$ ($B^{\text{II}} = Ni$, Co, Zn). Spectrochim Acta A 31(11):1585–1588
- Liegeois-Duyckaerts M (1985) Spectroscopic and structural studies of the hexagonal perovskite $Ba₂CoTeO₆$. Spectrochim Acta A 41(4):523–529
- Liermann HP, Downs RT, Yang H (2006) Site disorder revealed through Raman spectra from oriented single crystals: a case study on karooite ($MgTi₂O₅$). Am Mineral 91(5–6):790–793
- Likhacheva AY, Goryainov SV, Seryotkin YV, Litasov KD, Momma K (2016) Raman spectroscopy of chibaite, natural MTN silica clathrate, at high pressure up to 8 GPa. Micropor Mesopor Mater 224:100–106
- Lin CC (2001) High-pressure Raman spectroscopic study of Co-and Ni-olivines. Phys Chem Minerals 28 (4):249–257
- Lin C-C (2004) Pressure-induced polymorphism in enstatite ($MgSiO₃$) at room temperature: clinoenstatite and orthoenstatite. J Phys Chem Solids 65(5):913–921
- Lin Z, Rocha J (2005) ²⁹Si MAS NMR and Raman spectroscopy studies of synthetic microporous (Zr, Hf) umbite. Stud Surf Sci Catal 158:861–868
- Lin C-C, Shen P (1994) Sol-gel synthesis of zinc orthosilicate. J Non-Cryst Solids 171(3):281–289
- Lin CC, Liu LG, Irifune T (1999) High-pressure Raman spectroscopic study of chondrodite. Phys Chem Minerals 26(3):226–233
- Lin CC, Liu LG, Mernagh TP, Irifune T (2000) Raman spectroscopic study of hydroxyl-clinohumite at various pressures and temperatures. Phys Chem Minerals 27 (5):320–331
- Lin YH, Adebajo MO, Kloprogge JT, Martens WN, Frost RL (2006) X-ray diffraction and Raman spectroscopic studies of Zn-substituted carrboydite-like compounds. Mater Chem Phys 100(1):174–186
- Lin CH, Chen CS, Shiryaev AA, Zubavichus YV, Lii KH (2008) $K_3(U_3O_6)(Si_2O_7)$ and $Rb_3(U_3O_6)(Ge_2O_7)$: a pentavalent-uranium silicate and germanate. Inorg Chem 47(11):4445–4447
- Lin C-C, Leung KS, Shen P, Chen S-F (2015) Elasticity and structure of the compounds in the wollastonite $(CaSiO₃)-Na₂SiO₃$ system: from amorphous to crystalline state. J Mater Sci Mater Med. [https://doi.org/10.](https://doi.org/10.1007/s10856-014-5361-7) [1007/s10856-014-5361-7](https://doi.org/10.1007/s10856-014-5361-7)
- Lindsay JW, Robinson HN, Bramlet HL, Johnson AJ (1970) The thermal decomposition of neptunium (IV) oxalate. J Inorg Nucl Chem 32(5):1559–1567
- Ling ZC, Wang A (2010) A systematic spectroscopic study of eight hydrous ferric sulfates relevant to Mars. Icarus 209(2):422–433
- Ling Z, Wang A (2015) Spatial distributions of secondary minerals in the Martian meteorite MIL 03346, 168 determined by Raman spectroscopic imaging. J Geophys Res Planets 120(6):1141–1159
- Ling ZC, Xia HR, Ran DG, Liu FQ, Sun SQ, Fan JD, Zang HJ, Wang JY, Yu LL (2006) Lattice vibration spectra and thermal properties of SrWO_4 single crystal. Chem Phys Lett 426(1):85–90
- Ling ZC, Wang A, Li C (2009) Comparative spectroscopic study of three ferric sulfates: kornelite, lausenite and pentahydrate. 40th Lunar Planetary Sci Conf 40:1867
- Ling ZC, Wang A, Jolliff BL (2011) Mineralogy and geochemistry of four lunar soils by laser-Raman study. Icarus 211(1):101–113
- Linnow K, Steiger M, Lemster C, De Clercq H, Jovanović M (2013) In situ Raman observation of the crystallization in $NaNO₃-Na₂SO₄-H₂O$ solution droplets. Environ Earth Sci 69(5):1609–1620
- Litvinenko AK, Sorokina ES, Karampelas S, Krivoschekov NN, Serov R (2016) Variscite from central Tajikistan: preliminary results. Gems Gemol 52 $(1):60-65$
- Liu LG, El Gorsey A (2007) High-pressure phase transitions of the feldspars, and further characterization of lingunite. Int Geol Rev 49(9):854–860
- Liu H, Tang D (2009) Synthesis of ZnV_2O_6 powder and its cathodic performance for lithium secondary battery. Mater Chem Phys 114(2):656–659
- Liu J, Wang Y, Lan G, Zheng J (2001) Vibrational spectra of barium formate crystal. J Raman Spectrosc 32 (12):1000–1003
- Liu Y, Cao J, Wang Y, Zeng J, Qian Y (2002) Aqueous ammonia route to $Cu_{1.8}S$ with triangular and rod-like shapes. Inorg Chem Commun 5(6):407–410
- Liu Q, Su Y, Yu H, Han W (2008) YPO₄ nanocrystals: preparation and size-induced lattice symmetry enhancement. J Rare Earths 26(4):495–500
- Liu L-G, Lin C-C, Yung YJ, Mernagh TP, Irifune T (2009) Raman spectroscopic study of K-lingunite at various pressures and temperatures. Phys Chem Minerals 36 (3):143–149
- Liu W, Liu Y, Qiu X (2012) The first discovery of hemusite in China and its mineralogical features. Acta Mineral Sinica 4:5. (in Chinese, English abstr)
- Liu J, Cheng H, Frost RL, Dong F (2013) The mineral tooeleite Fe₆(AsO₃)₄SO₄(OH)₄⋅4H₂O – an infrared and Raman spectroscopic study-environmental implications for arsenic remediation. Spectrochim Acta A 103:272–275
- Liu J, Ming D, Cheng H, Xu Z, Frost RL (2015a) Spectroscopic vibrations of austinite (CaZnAsO₄⋅OH) and its mineral structure: implications for identification of secondary arsenic-containing mineral. Spectrochim Acta A 135:351–355
- Liu L, Zhang F, Pan S, Lei C, Zhang F, Dong X, Wang Z, Yu H, Yang Z (2015b) Synthesis, crystal structure and properties of a new barium calcium borate, Ba2Ca2(B2O5)2. Solid State Sci 39:105–109
- Liu Y, Mei D, Xu J, Wu Y (2015c) Hydrothermal synthesis, structures and optical properties of $A_2Zn_3(SeO_3)_4$ ∙XH₂O (A = Li, Na, K; X = 2 or 0). J Solid State Chem 232:193–199
- Liu Y, Xiao C, Lyu M, Lin Y, Cai W, Huang P, Tong W, Zou Y, Xie Y (2015d) Ultrathin $Co₃S₄$ nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew Chem Int 127 (38):11383–11387
- Liu J, Sun J, Huang X, Li G, Liu B (2015e) Goldindec: a novel algorithm for Raman spectrum baseline correction. Appl Spectrosc 69(7):834–842
- Liu J, He L, Dong F, Frost RL (2017) Infrared and Raman spectroscopic characterizations on new Fe sulphoarsenatehilarionite $(Fe^{(III)}_2(SO_4)(AsO_4)(OH)$ $6H₂O$: implications for arsenic mineralogy in supergene environment of mine area. Spectrochim Acta A 170:9–13
- Locke AJ, Martens WN, Frost RL (2007) Natural halotrichites – an EDX and Raman spectroscopic study. J Raman Spectrosc 38(11):1429–1435
- Łodziński M, Sitarz M (2009) Chemical and spectroscopic characterization of some phosphate accessory minerals from pegmatites of the Sowie Góry Mts, SW Poland. J Molec Struct 924:442–447
- López A, Frost RL, Scholz R, Gobac ŽŽ, Xi Y (2013a) Vibrational spectroscopy of the silicate mineral plumbotsumite $Pb_5(OH)_{10}Si_4O_8$ – an assessment of the molecular structure. J Molec Struct 1054:228–233
- López A, Frost RL, Xi Y, Scholz R, Belotti FM, Ribeiro É (2013b) Assessment of the molecular structure of natrodufrénite – NaFe²⁺Fe³⁺₅(PO₄)₄(OH)₆⋅2(H₂O), a secondary pegmatite phosphate mineral from Minas Gerais, Brazil. J Molec Struct 1051:265–270
- López A, Xi Y, Frost RL (2013c) Raman and infrared spectroscopic study of the mineral goyazite $SrAl₃(PO₄)₂(OH)₅·H₂O$. Spectrochim Acta A 116:204–208
- López MC, Ortiz GF, Arroyo-de Dompablo EM, Tirado JL (2014a) An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure. Inorg Chem 53(4):2310–2316
- López A, Frost RL, Scholz R, Xi Y, Amaral A (2014b) Infrared and Ramans Spectroscopic characterization of the silicate mineral gilalite Cu₅Si₆O₁₇∙7H₂O. Spectrosc Lett 47(6):488–493
- López A, Frost RL, Xi Y (2014c) Vibrational spectroscopy of the multianion mineral gartrellite from the Anticline Deposit, Ashburton Downs, Western Australia. Spectrochim Acta A 123:54–58
- López A, Frost RL, Xi Y, Scholz R (2014d) Vibrational spectroscopic characterization of the sulphatecarbonate mineral burkeite: implications for evaporites. Spectrosc Lett 47(7):564–570
- López A, Frost RL, Xi Y, Scholz R (2014e) Vibrational spectroscopic characterization of the arsenate mineral barahonaite: implications for the molecular structure. Spectrosc Lett 47(7):571–578
- López A, Frost RL, Xi Y, Scholz R (2014f) A vibrational spectroscopic study of the sulphate mineral glauberite. Spectrosc Lett 47(10):740–745
- López A, Scholz R, Frost RL (2015a) Raman and infrared spectroscopic study of the borate mineral kaliborite. Spectrosc Lett 48(10):712–716
- López A, Scholz R, Frost RL, Belotti FM (2015b) SEM, EDX and vibrational spectroscopic study of the phosphate mineral ushkovite MgFe³⁺₂(PO₄)₂(OH)₂⋅8H₂O – implications of the molecular structure. J MolecStruct 1081:329–333
- López-Sánchez J, Serrano A, Del Campo A, Abuín M, Rodríguez de la Fuente O, Carmona N (2016) Sol–gel synthesis and micro-Raman characterization of ϵ -Fe₂O₃ micro- and nanoparticles. Chem Mater 28 (2):511–518
- Losertová L, Buřival Z, Losos Z (2014) Waylandite and petitjeanite, two new phosphates for locality Cetoraz near Pacov (Czech Republic). Bull Mineral-petrolog Odd Nár Muz (Praha) 22(2):269–274. ISSN 1211- 0329. (in Czech)
- Lotti P (2014) Cancrinite-group minerals at non-ambient conditions: a model of the elastic behavior and structure evolution. Dissertation, University of Milan
- Loubbidi L, Chagraoui A, Yakine I, Orayech B, Naji M, Igartua JM, Tairi A (2014) Crystal structural and Raman vibrational studies of $Bi_{1-x}Sb_{1-x}Te_{2x}O_4$ solid solution with $0 \le x \le 0.1$. Open Access Libr J 1 $(09):1-10$
- Loun J, Čejka J, Sejkora J, Plášil J, Novák M, Frost RL, Palmer SJ, Keeffe EC (2011) A Raman spectroscopic study of bukovskýite Fe₂(AsO₄)(SO₄)(OH)∙7H₂O, a mineral phase with a significant role in arsenic migration. J Raman Spectrosc 42(7):1596–1600
- Lucovsky G, Sladek RJ, Allen JW (1977) IR reflectance spectra of Ti₂O₃: infrared-active phonons and Ti $3d$ electronic effects. Phys Rev B 16(12):5452–5459
- Lugo GJ, Mazón P, Baudin C, De Aza PN (2015) Nurse's A-phase: synthesis and characterization in the binary

system $Ca_2SiO_4-Ca_3(PO_4)_2$. J Am Ceram Soc 98 (10):3042–3046

- Lussier A, Ball NA, Hawthorne FC, Henry DJ, Shimizu R, Ogasawara Y, Ota T (2016) Maruyamaite, $K(MgAl₂)$ $(Al_5Mg)(BO_3)_3(Si_6O_{18})(OH)_3O$, a potassiumdominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: description and crystal structure. Am Mineral 101(2):355–361
- Lutz HD, Müller B (1991) Lattice vibration spectra. LXVIII. Single-crystal Raman spectra of marcasitetype iron chalcogenides and pnictides, FeX_2 (X = S, Se, Te; P, As, Sb). Phys Chem Minerals 18(4):265–268
- Lutz HD, Pobitschka W, Frischemeier B, Becker RA (1978) Gitterschwingungsspektren. XIX – Infrarotund Ramanspektren von BaBr₂⋅2H₂O und BaBr2∙2D2O. J Raman Spectrosc 7(3):130–136. (in German)
- Lutz HD, Wa G, Kliche G, Haeuseler H (1983) Lattice vibration spectra, XXXIII: far-infrared reflection spectra, TO and LO phonon frequencies, optical and dielectric constants, and effective charges of the spinel-type compounds $MCr₂S₄$ (M = Mn, Fe, Co, Zn, Cd, Hg), MCr_2Se_4 (M = Zn, Cd, Hg), and MIn_2S_4 (M = Mn, Fe, Co, Ni, Cd, Hg). J Solid State Chem 48(2):196–208
- Lutz HD, Becker W, Müller B, Jung M (1989) Raman single crystal studies of spinel type MCr_2S_4 (M = Mn, Fe, Co, Zn, Cd), $MIn₂S₄$ (M = Mn, Fe, Co, Ni), $MnCr_{2-2x}In_{2x}S_4$ and $Co_{1-x}Cd_xCr_2S_4$. J Raman Spectrosc 20(2):99–103
- Lutz HD, Müller B, Steiner HJ (1991) Lattice vibration spectra. LIX. Single crystal infrared and Raman studies of spinel type oxides. J Solid State Chem 90(1):54–60
- Lutz HD, Schmidt M, Weckler B (1993) Infrared and Raman studies on calcium, zinc and cadmium hydroxide halides Ca{O(H,D)}Cl, Cd{O(H, D)}Cl, Zn{O(H, D)}F and β-Zn{O(H,D)}Cl. J Raman Spectrosc 24 (11):797–804
- Lutz HD, Möller H, Schmidt M (1994) Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M $(OH)_2$ (M = Ca, Mn, Co, Fe, Cd) – IR and Raman spectra, neutron diffraction of $Fe(OH)_2$. J Molec Struct 328:121–132
- Lutz HD, Beckenkamp K, Peter ST (1995) Laurionite-type $M(OH)X (M = Ba, Pb; X = Cl, Br, I)$ and Sr(OH)I. An IR and Raman spectroscopic study. Spectrochim Acta A 51(5):755–767
- Lutz HD, Jung C, Mörtel R, Jacobs H, Stahl R (1998) Hydrogen bonding in solid hydroxides with strongly polarising metal ions, $β$ -Be(OH)₂ and $ε$ -Zn(OH)₂. Spectrochim Acta A 54(7):893–901
- Lyalina L, Zolotarev A Jr, Selivanova E, Savchenko Y, Krivovichev S, Mikhailova Y, Kadyrova G, Zozulya D (2016) Batievaite-(Y) Y₂Ca₂Ti[Si₂O₇]₂(OH)₂(H₂O)₄, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola Peninsula, Russia. Mineral Petrol 110(6):895–904
- Ma C (2010) Hibonite-(Fe), (Fe,Mg) $Al_{12}O_{19}$, a new alteration mineral from the Allende meteorite. Am Mineral 95(1):188–191
- Ma C, Rossman GR (2008) Barioperovskite, BaTiO₃, a new mineral from the Benitoite Mine, California. Am Mineral 93(1):154–157
- Ma C, Rossman GR (2009a) Tistarite, $Ti₂O₃$, a new refractory mineral from the Allende meteorite. Am Mineral 94(5–6):841–844
- Ma C, Rossman GR (2009b) Davisite, CaScAlSiO $_6$, a new pyroxene from the Allende meteorite. Am Mineral 94 (5–6):845–848
- Ma J, Wu Q, Ding Y (2007) Assembly and deagglomeration of lanthanum orthoborate nanobundles. J Amer Ceram Soc 90(12):3890–3895
- Ma C, Simon SB, Rossman GR, Grossman L (2009) Calcium Tschermak's pyroxene, CaAlAlSiO₆, from the Allende and Murray meteorites: EBSD and micro-Raman characterizations. Am Mineral 94 (10):1483–1486
- Ma C, Connolly HC Jr, Beckett JR, Tschauner O, Rossman GR, Kampf AR, Zega TJ, Smith SAS, Schrader DL (2011a) Brearleyite, $Ca_{12}Al_{14}O_{32}Cl_2$, a new alteration mineral from the NWA 1934 meteorite. Am Mineral 96(8–9):1199–1206
- Ma C, Kampf AR, Connolly HC, Beckett JR, Rossman GR, Smith SAS, Schrader DL (2011b) Krotite, $CaAl₂O₄$, a new refractory mineral from the NWA 1934 meteorite. Am Mineral 96(5–6):709–715
- Ma C, Beckett JR, Rossman GR (2012a) Buseckite, (Fe, Zn,Mn)S, a new mineral from the Zakłodzie meteorite. Am Mineral 97(7):1226–1233
- Ma C, Beckett JR, Rossman GR (2012b) Browneite, MnS, a new sphalerite-group mineral from the Zakłodzie meteorite. Am Mineral 97(11–12):2056–2059
- Ma C, Tschauner O, Beckett JR, Rossman GR, Liu W (2012c) Panguite, $(Ti^{4+}$, Sc, Al, Mg, Zr, Ca_{1.8}O₃, a new ultra-refractory titania mineral from the Allende meteorite: synchrotron micro-diffraction and EBSD. Am Mineral 97(7):1219–1225
- Ma C, Tschauner O, Beckett JR, Rossman GR, Liu W (2013) Kangite, $(Sc, Ti, Al, Zr, Mg, Ca, \Box)_{2}O_{3}$, a new ultra-refractory scandia mineral from the Allende meteorite: synchrotron micro-Laue diffraction and electron backscatter diffraction. Am Mineral 98(5–6): 870–878
- Ma C, Beckett JR, Rossman GR (2014a) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. Am Mineral 99 (1):198–205
- Ma C, Beckett JR, Rossman GR (2014b) Allendeite $(Sc_4Zr_3O_{12})$ and hexamolybdenum (Mo, Ru, Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite. Am Mineral 99(4):654–666
- Ma C, Tschauner O, Beckett JR, Liu Y, Rossman GR, Zhuravlev K, Prakapenka V, Dera P, Taylor LA (2015) Tissintite, $(Ca, Na, \Box)AISi_2O_6$, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth Planet Sci Lett 422:194–205
- Ma C, Tschauner O, Beckett JR, Liu Y, Rossman GR, Sinogeikin SV, Smith JS, Taylor LA (2016a)

Ahrensite, $γ$ -Fe₂SiO₄, a new shock-metamorphic mineral from the Tissint meteorite: implications for the Tissint shock event on Mars. Geochim Cosmochim Acta 184:240–256

- Ma Y, Liu Z, Geng A, Vogt T, Lee Y (2016b) Structural and spectroscopic studies of alkali-metal exchanged stilbites. Micropor Mesopor Mater 224:339–348
- Maczka M, Hanuza J, Lutz ETG, Van der Maas JH (1999) Infrared activity of $KAI(MoO₄)₂$ and $NaAI(MoO₄)₂$. J Solid State Chem 145(2):751–756
- Mączka M, Hanuza J, Fuentes AF, Amador U (2002) Vibrational characteristics of new double tungstates $Li₂M^{II}(WO₄)$ ₂ (M = Co, Ni and Cu). J Raman Spectrosc 33(1):56–61
- Mączka M, Pietraszko A, Hanuza J, Majchrowski A (2010) Raman and IR spectra of noncentrosymmetric $\text{Bi}_{0.21}\text{La}_{0.91}\text{Sc}_{2.88}(\text{BO}_3)_4$ single crystal with the huntite-type structure. J Raman Spectrosc 41 (10):1297–1301
- Mączka M, Ptak M, Kurnatowska M, Hanuza J (2013) Synthesis, phonon and optical properties of nanosized CoCr2O4. Mater Chem Phys 138(2):682–688
- Mączka M, Szymborska-Małek K, Gągor A, Majchrowski A (2015) Growth and characterization of acentric BaHf $(BO_3)_2$ and $BaZr(BO_3)_2$. J Solid State Chem 225:330–334
- Madon M, Price GD (1989) Infrared spectroscopy of the polymorphic series (enstatite, ilmenite, and perovskite) of $MgSiO₃$, $MgGeO₃$, and $MnGeO₃$. J Geophys Res Solid Earth 94(B11):15687–15701
- Madon M, Gillet P, Julien C, Price GD (1991) A vibrational study of phase transitions among the $GeO₂$ polymorphs. Phys Chem Minerals 18:7–18
- Madsen LD, Weaver L (1998) Characterization of lead oxide thin films produced by chemical vapor deposition. J Am Ceram Soc 81(4):988–996
- Maguregui M, Martinez-Arkarazo I, Angulo M, Castro K, Fernández LA, Madariaga JM (2008) Portable spectroscopic analysis of nitrates affecting to cultural heritage materials. In: Castillejo M, Moreno P, Oujja M, Radvan R, Ruiz J (eds) Lasers in the conservation of artworks, pp 177–182
- Majumdar AS, Mathew G (2015) Raman-infrared (IR) spectroscopy study of natural cordierites from Kalahandi, Odisha. J Geol Soc India 86(1):80–92
- Majzlan J, Michallik R (2007) The crystal structures, solid solutions and infrared spectra of copiapite-group minerals. Miner Mag 71(5):553–569
- Majzlan J, Zittlau AH, Grevel K-D, Schliesser J, Woodfield BF, Dachs E, Števko M, Chovan M, Plášil J, Sejkora J, Milovská S (2015) Thermodynamic properties and phase equilibria of the secondary copper minerals libethenite, olivenite, pseudomalachite, kröhnkite, cyanochroite, and devilline. Can Mineral 53(5):937–960
- Makreski P, Jovanovski G (2009) Minerals from Macedonia: XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates. Spectrochim Acta A 73(3):460–467
- Makreski P, Jovanovski G, Minceva-Sukarova B, Soptrajanov B, Green A, Engelen B, Grzetic I (2004) Vibrational spectra of $M_{3}^{T}M_{3}^{III}S_{3}$ type synthetic minerals (M^I = Tl or Ag and M^{III} = As or Sb). Vib Spectrosc 35(1):59–65
- Makreski P, Jovanovski G, Dimitrovska S (2005a) Minerals from Macedonia: XIV. Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy. Vib Spectrosc 39(2):229–239
- Makreski P, Jovanovski G, Stojančeska S (2005b) Minerals from Macedonia: XIII. Vibrational spectra of some commonly appearing nesosilicate minerals. J Molec Struct 744:79–92
- Makreski P, Jovanovski G, Gajović A (2006a) Minerals from Macedonia: XVII. Vibrational spectra of some common appearing amphiboles. Vib Spectrosc 40 (1):98–109
- Makreski P, Jovanovski G, Gajović A, Biljan T, Angelovski D, Jaćimović R (2006b) Minerals from Macedonia: XVI. Vibrational spectra of some common appearing pyroxenes and pyroxenoids. J Molec Struct 788(1):102–114
- Makreski P, Jovanovski G, Kaitner B, Gajović A, Biljan T (2007) Minerals from Macedonia: XVIII. Vibrational spectra of some sorosilicates. Vib Spectrosc 44 (1):162–170
- Makreski P, Jovanovski G, Kaitner B (2009) Minerals from Macedonia: XXIV. Spectra-structure characterization of tectosilicates. J Molec Struct 924:413–419
- Makreski P, Runčevski T, Jovanovski G (2011) Minerals from Macedonia: XXVI. Characterization and spectra– structure correlations for grossular and uvarovite. Raman study supported by IR spectroscopy. J Raman Spectrosc 42(1):72–77
- Makreski P, Jovanovski S, Pejov L, Kloess G, Hoebler HJ, Jovanovski G (2013a) Theoretical and experimental study of the vibrational spectra of sarkinite $Mn_2(AsO_4)(OH)$ and adamite $Zn_2(AsO_4)(OH)$. Spectrochim Acta A 113:37–42
- Makreski P, Petruševski G, Ugarković S, Jovanovski G (2013b) Laser-induced transformation of stibnite $(Sb₂S₃)$ and other structurally related salts. Vib Spectrosc 68:177–182
- Makreski P, Jovanovski G, Boev B (2014) Micro-Raman spectra of extremely rare and endemic Tl-sulfosalts from Allchar deposit. J Raman Spectrosc 45 (7):610–617
- Makreski P, Jovanovski S, Pejov L, Petruševski G, Ugarković S, Jovanovski G (2015a) Theoretical and experimental study of the vibrational spectra of liroconite, Cu2Al(AsO4)(OH)4∙4H2O and bayldonite, $Cu₃Pb[O(AsO₃OH)₂(OH)₂]$. Vib Spectrosc 79:36–43
- Makreski P, Stefov S, Pejov L, Jovanovski G (2015b) Theoretical and experimental study of the vibrational spectra of (para)symplesite and hörnesite. Spectrochim Acta A 144:155–162
- Makreski P, Stefov S, Pejov L, Jovanovski G (2017) Minerals from Macedonia: XXIX. Experimental and

theoretical study of the vibrational spectra of extremely rare Tl-sulfate mineral from Allchar – dorallcharite. Vib Spectrosc 89:85–91

- Malakho AP, Morozov VA, Pokholok KV, Lazoryak BI, Van Tendeloo G (2005) Layered ordering of vacancies of lead iron phosphate Pb₃Fe₂(PO₄)₄. Solid State Sci 7 (4):397–404
- Malcherek T, Mihailova B, Schlüter J, Husdal T (2012) Atelisite-(Y), a new rare earth defect silicate of the KDP structure type. Eur J Mineral 24(6):1053–1060
- Malcherek T, Bindi L, Dini M, Ghiara MR, Molina Donoso A, Nestola F, Rossi M, Schlüter J (2014) Tondiite, $Cu_3Mg(OH)_6Cl_2$, the Mg-analogue of herbertsmithite. Mineral Mag 78:583–590
- Malik V, Pokhriyal M, Uma S (2016) Single step hydrothermal synthesis of beyerite, $CaBi₂O₂(CO₃)₂$ for the fabrication of UV-visible light photocatalyst BiOI/ CaBi₂O₂(CO₃)₂. RSC Adv 6(44):38252-38262
- Malinina GA, Stefanovsky SV (2014) Structure and vibrational spectra of slags produced from radioactive waste. J Appl Spectrosc 81(2):200–204
- Mammone JF, Nicol M, Sharma SK (1981) Raman spectra of TiO₂-II, TiO₂-III, SnO₂, and GeO₂ at high pressure. J Phys Chem Solids 42(5):379–384
- Manara D, Grandjean A, Neuville DR (2009) Advances in understanding the structure of borosilicate glasses: a Raman spectroscopy study. Am Mineral 94 (5–6):777–784
- Manca SG, Baran EJ (1981) Characterization of the monoclinic form of praseodymium chromate (V). J Phys Chem Solids 42(10):923–925
- Mancilla N, Caliva V, D'Antonio MC, González-Baró AC, Baran EJ (2009a) Vibrational spectroscopic investigation of the hydrates of manganese (II) oxalate. J Raman Spectrosc 40:915–920
- Mancilla N, D'Antonio MC, González-Baró AC, Baran EJ (2009b) Vibrational spectra of lead (II) oxalate. J Raman Spectrosc 40(12):2050–2052
- Manghnani MH, Vijayakumar V, Bass JD (1998) Highpressure Raman scattering study of majorite-garnet solid solutions in the system $Mg_4Si_4O_{12}$ Mg₃Al₂Si₃O₁₂. In: Manghnani MH, Yagi T (eds) Properties of earth and planetary materials at high pressure and temperature. Geophys Monogr 101:129–138
- Manonmoni JV, Bhagavannarayana G, Ramasamy G, Meenakshisundaram S, Amutha M (2014) Growth, structure and spectral studies of a novel mixed crystal potassium zinc manganese sulphate. Spectrochim Acta A 117:9–12
- Manoun B, Downs RT, Saxena SK (2006) A high-pressure Raman spectroscopic study of hafnon, HfSiO4. Am Mineral 91(11–12):1888–1892
- Manuella FC, Carbone S, Ottolini L, Gibilisco S (2012) Micro-Raman spectroscopy and SIMS characterization of oxykinoshitalite in an olivine nephelinite from the Hyblean Plateau (Sicily, Italy). Eur J Mineral 24 (3):527–533
- Mao Z, Jiang F, Duffy TS (2007) Single-crystal elasticity of zoisite $Ca₂Al₃Si₃O₁₂(OH)$ by Brillouin scattering. Am Mineral 92(4):570–576
- Mao Z, Jacobsen SD, Frost DJ, McCammon CA, Hauri EH, Duffy TS (2011) Effect of hydration on the singlecrystal elasticity of Fe-bearing wadsleyite to 12 GPa. Am Mineral 96(10):1606–1612
- Mariappan CR, Govindaraj G, Ramya L, Hariharan S (2005) Synthesis, characterization and electrical conductivity studies on $A_3B_2P_3O_{12}$ (A = Na, K) materials. Mater Res Bull 40(4):610–618
- Marinova D, Kostov V, Nikolova R, Kukeva R, Zhecheva E, Sendova-Vasileva M, Stoyanova R (2015) Fromkröhnkite – to alluaudite-type of structure: novel method of synthesis of sodium manganese sulfates with electrochemical properties in alkalimetal ion batteries. J Mater Chem A 3 (44):22287–22299
- Markov YF, Roginskii EM (2011) Nanoclusters in mixed crystals Hg2Hal2. Bull Russ Acad Sci (Phys) 75 (10):1317–1323
- Marshukova NK, Pavlovskii AB, Sidorenko GA (1984) Mushistonite, $(Cu, Zn, Fe)Sn(OH)_6$, a new tin mineral. Zapiski RMO (Proc Russ Miner Soc) 113(5):612–617. (in Russian)
- Martens W, Frost RL, Kloprogge JT, Williams PA (2003a) Raman spectroscopic study of the basic copper sulphates – implications for copper corrosion and 'bronze disease'. J Raman Spectrosc 34(2):145–151
- Martens WN, Frost RL, Kloprogge JT, Williams PA (2003b) The basic copper arsenate minerals olivenite, cornubite, cornwallite, and clinoclase: an infrared emission and Raman spectroscopic study. Am Mineral 88(4):501–508
- Martens W, Frost RL, Williams PA (2003c) Molecular structure of the adelite group of minerals – a Raman spectroscopic study. J Raman Spectrosc 34:104–111
- Martin SW, Bloyer DR (1991) Preparation and infrared characterization of thioborate compounds and polycrystals. J Am Ceram Soc 74(5):1003–1010
- Martina I, Wiesinger R, Jembrih-Simbürger D, Schreiner M (2012) Micro-Raman characterization of silver corrosion products: instrumental set up and reference database. Raman spectrosc e-Preserv Sci 9:1–8
- Martínez-Arkarazo I, Angulo M, Zuloaga O, Usobiaga A, Madariaga JM (2007) Spectroscopic characterisation of moonmilk deposits in Pozalagua tourist cave (Karrantza, Basque Country, north of Spain). Spectrochim Acta A 68(4):1058–1064
- Martínez-Ramírez S, Fernández-Carrasco L (2011) Raman spectroscopy: application to cementitious systems. In: Doyle SG (ed) Construction and building: design, materials, and techniques. Nova Science. ISBN: 978-1-61761-371-5
- Martins T, Chakhmouradian AR, Medici L (2014) Perovskite alteration in kimberlites and carbonatites: the role of kassite, $CaTi₂O₄(OH)₂$. Phys Chem Minerals 41 (6):473–484
- Martins T, Kressall R, Medici L, Chakhmouradian AR (2016) Cancrinite-vishnevite solid solution from Cinder Lake (Manitoba, Canada): crystal chemistry and implications for alkaline igneous rocks. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.165>
- Mary SS, Kirupavathy SS, Mythili P, Srinivasan P, Kanagasekaran T, Gopalakrishnan R (2008) Studies on the growth, optical, electrical and spectral properties of potassium pentaborate (KB5) single crystals. Spectrochim Acta A 71(1):10–16
- Masingboon C, Thongbai P, Maensiri S, Yamwong T, Seraphin S (2008) Synthesis and giant dielectric behavior of $CaCu₃Ti₄O₁₂$ ceramics prepared by polymerized complex method. Mater Chem Phys 109 (2):262–270
- Masingboon C, Thongbai P, Maensiri S, Yamwong T (2009) Nanocrystalline $CaCu₃Ti₄O₁₂$ powder by PVA sol-gel route: synthesis, characterization and its giant dielectric constant. Appl Phys A 96(3): 595–602
- Maslar JE, Hurst WS, Bowers WJ, Hendricks JH, Aquino MI, Levin I (2001) In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions. Appl Surf Sci 180(1):102–118
- Massaferro A, Kremer E, Wagner CC, Baran EJ (1999) Vibrational spectra of $Pb_4(PO_4)_2SO_4$. J Raman Spectrosc 30(3):225–226
- Mathlouthi M, Seuvre AM, Koenig JL (1986) FT-IR and laser-Raman spectra of guanine and guanosine. Carbohydrate Res 146(1):15–27
- Mathur MS, Frenzel CA, Bradley EB (1968) New measurements of the Raman and the IR spectrum of K₂Cr₂O₇. J Molec Struct 2(6):429–435
- Matović V, Erić S, Srećković-Batoćanin D, Colomban P, Kremenović A (2014) The influence of building materials on salt formation in rural environments. Environ Earth Sci 72(6):1939–1951
- Matson DW, Sharma SK, Philpotts JA (1986) Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. Am Mineral 71(5–6):694–704
- Mattes R, Müller G, Becher HJ (1972) Schwingungsspektren und Struktur von Dioxotrifluoromolybdaten und -wolframaten. Z anorg allg Chemie 389 (2):177–187. (in German)
- Maubec N, Lahfid A, Lerouge C, Wille G, Michel K (2012) Characterization of alunite supergroup minerals by Raman spectroscopy. Spectrochim Acta A 96:925–939
- Mayerhöfer TG, Dunken HH (2001) Single-crystal IR spectroscopic investigation on fresnoite, Sr-fresnoite and Ge-fresnoite. Vib Spectrosc 25(2):185–195
- Mazzetti L, Thistlethwaite PJ (2002) Raman spectra and thermal transformations of ferrihydrite and schwertmannite. J Raman Spectrosc 33(2):104–111
- McBride JR, Hass KC, Weber WH (1991) Resonance-Raman and lattice-dynamics studies of single-crystal PdO. Phys Rev B 44(10):5016–5028
- McDonald AM, Proenza JA, Zaccarini F, Rudashevsky NS, Cabri LJ, Stanley CJ, Rudashevsky VN, Melgarejo JC, Lewis JF, Longo F, Bakker RJ (2010) Garutiite, (Ni,Fe,Ir), a new hexagonal polymorph of native Ni from Loma Peguera, Dominican Republic. Eur J Mineral 22(2):293–304
- McDonald AM, Back ME, Gault RA, Horváth L (2013) Peatite-(Y) and ramikite-(Y), two new Na-Li-Y \pm Zr phosphate-carbonate minerals from the Poudrette Pegmatite, Mont Saint-Hilaire, Quebec. Can Mineral 51 (4):569–596
- McDonald AM, Tarassoff P, Chao GY (2015) Hogarthite, $(Na,K)_2$ CaTi₂Si₁₀O₂₆⋅8H₂O, a new member of the lemoynite group from Mont Saint-Hilaire, Quebec: characterization, crystal-structure determination, and origin. Can Mineral 53(1):13–30
- McKendry IG, Thenuwara AC, Sun J, Peng H, Perdew JP, Strongin DR, Zdilla MJ (2016) Water oxidation catalyzed by cobalt oxide supported on the mattagamite phase of CoTe₂. ACS Catal 6:7393–7397
- McKeown DA (2005) Raman spectroscopy and vibrational analyses of albite: from 25° C through the melting temperature. Am Mineral 90:1506–1517
- McKeown DA (2008) Raman spectroscopy, vibrational analysis, and heating of buergerite tourmaline. Phys Chem Minerals 35(5):259–270
- McKeown DA, Bell MI (1998) Linked four-membered silicate rings: vibrational analysis of gillespite. Phys Chem Minerals 25(4):273–281
- McKeown DA, Kim CC, Bell MI (1995) Vibrational analysis of dioptase $Cu₆Si₆O₁₈·6(H₂O)$ and its puckered six-membered ring. Phys Chem Minerals 22 (3):137–144
- McKeown DA, Bell MI, Etz ES (1999) Raman spectra and vibrational analysis of the trioctahedral mica phlogopite. Am Mineral 84(5–6):970–976
- McKeown DA, Post JE, Etz ES (2002) Vibrational analysis of palygorskite and sepiolite. Clays Clay Minerals 50(5):666–679
- McMaster S, Ram R, Charalambous F, Tardio J, Bhargava S (2013) Characterisation studies on natural and heat treated betafite. Chemeca 2013: Challenging Tomorrow, pp 529–534
- McMaster SA, Ram R, Charalambous F, Pownceby MI, Tardio J, Bhargava SK (2014) Synthesis and characterisation of the uranium pyrochlore betafite $[(Ca, U)₂(Ti, Nb, Ta)₂O₇]$. J Hazard Mater 280:478–486
- McMaster SA, Ram R, Pownceby MI, Tardio J, Bhargava S (2015) Characterisation and leaching studies on the uranium mineral betafite $[(U,Ca)₂(Nb,Ti,$ Ta 20 ₇]. Minerals Eng 81:58–70
- McMillan P, Akaogi M, Ohtani E, Williams Q, Nieman R, Sato R (1989) Cation disorder in garnets along the $Mg_3Al_2Si_3O_{12}$ - $Mg_4Si_4O_{12}$ join: an infrared, Raman and NMR study. Phys Chem Minerals 16:428–435
- McPherson GL, Chang JR (1973) Infrared and structural studies of $M^1M^{11}X_3$ type transition metal halides. Inorg Chem 12(5):1196–1198
- Mees F, Hatert F, Rowe R (2008) Omongwaite, Na₂Ca₅(SO₄)₆⋅3H₂O, a new mineral from recent salt lake deposits, Namibia. Mineral Mag 72 (6):1307–1318
- Melendres CA, Tani BS (1986) Evidence for the presence of sulfate in the passive film on nickel in concentrated sulfuric acid solution. J Electrochem Soc 133 (5):1059–1060
- Melghit K, Al-Mungi AS (2007) New form of iron orthovanadate FeVO4∙1.5H2O prepared at normal pressure and low temperature. Mater Sci Eng B 136 (2):177–181
- Melghit K, Al-Belushi AK, Al-Amri I (2007) Short reaction time preparation of zinc pyrovanadate at normal pressure. Ceram Int 33(2):285–288
- Menezes Filho LAD, Chaves MLDSC, Dias CH, Atencio D (2016) Recent mineral discoveries in the Coronel Murta, Taquaral, and Medina pegmatite fields, northeastern Minas Gerais, Brazil. REM-Int Eng J 69 (3):301–307
- Menezes Filho LAD, Chaves MLSC, Chukanov NV, Atencio D, Scholz R, Pekov I, da Costa GM, Morrison SM, Andrade MB, Freitas ETF, Downs RT, Belakovskiy DI (2017) Parisite-(La), CaLa₂(CO₃)₃F₂, a new mineral from Novo Horizonte, Bahia, Brazil. Mineral Mag 82(1):133–144
- Menezes WG, Reis DM, Benedetti TM, Oliveira MM, Soares JF, Torresi RM, Zarbin AJ (2009) V_2O_5 nanoparticles obtained from a synthetic barianditelike vanadium oxide: synthesis, characterization and electrochemical behavior in an ionic liquid. J Colloid Interface Scie 337(2):586–593
- Meng JF, Rai BK, Katiyar RS, Bhalla AS (1997) Raman investigation on $(Ta_2O_5)_{1-x}(TiO_2)_x$ system at different temperatures and pressures. J Phys Chem Solids 58 (10):1503–1506
- Meng L, Burris S, Bui H, Pan WP (2005) Development of an analytical method for distinguishing ammonium bicarbonate from the products of an aqueous ammonia CO2 scrubber. Anal Chem 77(18):5947–5952
- Mer A, Obbade S, Rivenet M, Renard C, Abraham F (2012) $[La(UO_2)V_2O_7][(UO_2)(VO_4)]$ the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane aniontopology. J Solid State Chem 185:180–186
- Merkel S, Goncharov AF, Mao HK, Gillet P, Hemley RJ (2000) Raman spectroscopy of iron to 152 gigapascals: implications for Earth's inner core. Science 288 (5471):1626–1629
- Merkle RKW, Pikl R, Verryn SMC, Waal DD (1999) Raman spectra of synthetic 'braggite', (Pd,Pt,Ni)S. Mineral Mag 63(3):363–363
- Mernagh TP, Hoatson DM (1995) A laser-Raman microprobe study of platinum-group minerals from the Munni Munni layered intrusion, West Pilbara Block, Western Australia. Can Mineral 33:409–417
- Mernagh TP, Liu LG (1991) Raman spectra from the Al_2SiO_5 polymorphs at high pressures and room temperature. Phys Chem Minerals 18(2):126–130
- Mernagh TP, Trudu AG (1993) A laser Raman microprobe study of some geologically important sulphide minerals. Chem Geol 103(1–4):113–127
- Mernagh TP, Liu LG, Lin CC (1999) Raman spectra of chondrodite at various temperatures. J Raman Spectrosc 30(10):963–969
- Mernagh TP, Kamenetsky VS, Kamenetsky MB (2011) A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochim Acta A 80(1):82–87
- Mesbah A, Szenknect S, Clavier N, Lozano-Rodriguez J, Poinssot C, Den Auwer C, Ewing RC, Dacheux N (2015) Coffinite, $USiO₄$, is abundant in nature: so why is it so difficult to synthesize? Inorg Chem 54 (14):6687–6696
- Meyer HW, Zhang M, Bismayer U, Salje EKH, Schmidt C, Kek S, Morgenroth W, Bleser T (1996) Phase transformation of natural titanite: an infrared, Raman spectroscopic, optical birefringence and X-ray diffraction study. Phase Transit 59(1–3):39–60
- Michel JP, Beauverger M, Museur L, Kanaev A, Petitet JP (2007) High-pressure cell for studies of ultra-short laser impulses action on materials. High Press Res 27 (3):353–359
- Michiba K, Miyawaki R, Minakawa T, Terada Y, Nakai I, Matsubara S (2013) Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan. J Mineral Petrol Sci 108(6):326–334
- Middleton AW, Förster H-J, Uysal IT, Golding SD, Rhede D (2013) Accessory phases from the Soultzmonzo granite, Soultz-sous-Forêts, France: implications for titanite destabilisation and differential REE, Y and Th mobility in hydrothermal systems. Chem Geol 335:105–117
- Mikkelsen A, Andersen AB, Engelsen SB, Hansen HCB, Larsen O, Skibsted LH (1999) Presence and dehydration of ikaite, calcium carbonate hexahydrate, in frozen shrimp shell. J Agric Food Chem 47(3):911–917
- Mikuli E, Hetmańczyk Ł, Medycki W, Kowalska A (2007) Phase transitions and molecular motions in $[Zn(NH₃)₄]$ $(BF_4)_2$ studied by nuclear magnetic resonance, infrared and Raman spectroscopy. J Phys Chem Solids 68 $(1):96-103$
- Milekhin A, Sveshnikova L, Duda T, Surovtsev N, Adichtchev S, Zahn DRT (2011) Optical phonons in nanoclusters formed by the Langmuir-Blodgett technique. Chin J Phys 49(1):63–70
- Milenov TI, Tenev T, Miloushev I, Avdeev GV, Luo CW, Chou WC (2014) Preliminary studies of the Raman spectra of Ag_2Te and Ag_5Te_3 . Opt Quant Electron 46:573–580
- Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions, their use in qualitative analysis. Analyt Chem 24(8):1253–1294
- Miller KH, Stephens PW, Martin C, Constable E, Lewis RA, Berger H, Carr GL, Tanner DB (2012) Infrared phonon anomaly and magnetic excitations in singlecrystal Cu3Bi(SeO3)2O2Cl. Phys Rev B 86 (17):174104. (12 pp)
- Mills SJ, Frost RL, Kloprogge JT, Weier ML (2005) Raman spectroscopy of the mineral rhodonite. Spectrochim Acta A 62(1):171–175
- Mills SJ, Groat LA, Wilson SA, Birch WD, Whitfield PS, Raudsepp M (2008) Angastonite, CaMgAl₂(PO₄)₂(OH)₄⋅7H₂O: a new phosphate mineral from Angaston, South Australia. Mineral Mag 72 (5):1011–1020
- Mills SJ, Kolitsch U, Miyawaki R, Groat LA, Poirier G (2009) Joëlbruggerite, $Pb_3Zn_3(Sb^{5+},Te^{6+})As_2O_{13}(OH,$ O), the Sb^{5+} analog of dugganite, from the Black Pine mine, Montana. Am Mineral 94(7):1012–1017
- Mills SJ, Kampf AR, Kolitsch U, Housley RM, Raudsepp M (2010) The crystal chemistry and crystal structure of kuksite, $Pb_3Zn_3Te^{6+}P_2O_{14}$, and a note on the crystal structure of yafsoanite, (Ca,Pb) ₃Zn(TeO₆)₂. Am Mineral 95(7):933–938
- Mills SJ, Kampf AR, Sejkora J, Adams PM, Birch WD, Plášil J (2011a) Iangreyite: a new secondary phosphate mineral closely related to perhamite. Mineral Mag 75 (2):327–336
- Mills SJ, Whitfield PS, Wilson SA, Woodhouse JN, Dipple GM, Raudsepp M, Francis CA (2011b) The crystal structure of stichtite, re-examination of barbertonite, and the nature of polytypism in MgCr hydrotalcites. Am Mineral 96(1):179–187
- Mills SJ, Kartashov PM, Ma C, Rossman GR, Novgorodova MI, Kampf AR, Raudsepp M (2011c) Yttriaite-(Y): the natural occurrence of Y_2O_3 from the Bol'shayaPol'yariver, Subpolar Urals, Russia. Am Mineral 96(7):1166–1170
- Mills SJ, Kampf AR, McDonald AM, Favreau G, Chiappero PJ (2012a) Forêtite, a new secondary arsenate mineral from the Cap Garonne mine, France. Mineral Mag 76(3):769–775
- Mills SJ, Sejkora J, Kampf AR, Grey IE, Bastow TJ, Ball NA, Adams PM, Raudsepp M, Cooper MA (2012b) Krásnoite, the fluorophosphate analogue of perhamite, from the Huber open pit, Czech Republic and the Silver Coin mine, Nevada, USA. Miner Mag 76 (3):625–634
- Mills SJ, Kampf AR, McDonald AM, Bindi L, Christy AG, Kolitsch U, Favreau G (2013) The crystal structure of parnauite: a copper arsenate–sulphate with translational disorder of structural rods. Eur J Mineral 25(4):693–704
- Mills SJ, Christy AG, Schnyder C, Favreau G, Price JR (2014a) The crystal structure of camerolaite and structural variation in the cyanotrichite family of merotypes. Mineral Mag 78(7):1527–1552
- Mills SJ, Kampf AR, Christy AG, Housley RM, Rossman GR, Reynolds RE, Marty J (2014b) Bluebellite and mojaveite, two new minerals from the central Mojave Desert, California, USA. Mineral Mag 78 (5):1325–1340
- Mills SJ, Kampf AR, Christy AG, Housley RM, Thorne B, Chen YS, Steele IM (2014c) Favreauite, a new selenite mineral from the El Dragón mine, Bolivia. Eur J Mineral 26(6):771–781
- Mills SJ, Christy AG, Kampf AR, Birch WD, Kasatkin A (2017a) Hydroxykenoelsmoreite, the first new mineral from the Republic of Burundi. Eur J Minerals. [https://](https://doi.org/10.1127/ejm/2017/0029-2618) doi.org/10.1127/ejm/2017/0029-2618
- Mills SJ, Christy AG, Rumsey MS, Spratt J, Bittarello E, Favreau G, Ciriotti ME, Berbain C (2017b) Hydroxyferroroméite, a new secondary weathering mineral from Oms, France. Eur J Mineral. [https://doi.](https://doi.org/10.1127/ejm/2017/0029-2594) [org/10.1127/ejm/2017/0029-2594](https://doi.org/10.1127/ejm/2017/0029-2594)
- Minceva-Sukarova B, Jovanovski G, Makreski P, Soptrajanov B, Griffith W, Willis R, Grzetic I (2003) Vibrational spectra of $M^{I}M^{III}S_2$ type synthetic minerals $(M^I = T^I$ or Ag and $M^{III} = As$ or Sb). J Molec Struct 651–653:181–189
- Minch R, Seoung DH, Ehm L, Winkler B, Knorr K, Peters L, Borkowski LA, Parise JB, Lee Y, Dubrovinsky L, Depmeier W (2010) High-pressure behavior of otavite $(CdCO₃)$. J Alloys Compd 508 (2):251–257
- Mingsheng P, Mao HK, Dien L, Chao ECT (1994) Raman spectroscopy of garnet-group minerals. Chin J Geochem 13(2):176–183
- Mirgorodsky AP, Baraton MI, Quintard P (1989) Lattice dynamics of silicon oxynitride, $Si₂N₂O$: vibrational spectrum, elastic and piezoelectric properties. J Phys Condens Matter 1(50):10053–10066
- Mirgorodsky AP, Merle-Méjean T, Champarnaud JC, Thomas P, Frit B (2000) Dynamics and structure of TeO₂ polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ-and δ-phases. J Phys Chem Solids 61(4):501–509
- Mironova-Ulmane N, Kuzmin A, Grube M (2009) Raman and infrared spectromicroscopy of manganese oxides. J Alloys Compd 480(1):97–99
- Mishra B, Bernhardt H-J (2009) Metamorphism, graphite crystallinity, and sulfide anatexis of the Rampura– Agucha massive sulfide deposit, northwestern India. Mineral Depos 44(2):183–204
- Mitchell RH, Welch MD, Kampf AR, Chakhmouradian AK, Spratt J (2015) Barrydawsonite-(Y), $Na_{1.5}Y_{0.5}CaSi₃O₉H$: a new pyroxenoid of the pectolite–serandite group. Mineral Mag 79(3):671–686
- Miyahara M, Kaneko S, Ohtani E, Sakai T, Nagase T, Kayama M, Nishido H, Hirao N (2013) Discovery of seifertite in a shocked lunar meteorite. Nat Commun 4:1737. (7 pp)
- Młynarska M, Manecki M, Bajda T (2014) Structural and Raman spectroscopy studies of schultenite – phosphoschultenite isomorphic series. Geol Geophys Environ 40(1):110–111
- Moëlo Y, Lasnier B, Palvadeau P, Léone P, Fontan F (2000) La lulzacite, $Sr_2Fe^{2+}(Fe^{2+},$ $Mg_2Al_4(PO_4)_4(OH)_{10}$, un nouveau phosphate de strontium (Saint-Aubin-des-Châteaux, Loire-Atlantique, France). Compt Rend l'Académie Sci IIA 330(5):317–324. (in French)
- Moëlo Y, Lulzac Y, Rouer O, Palvadeau P, Gloaguen É, Léone P (2002) Scandium mineralogy: pretulite with scandian zircon and xenotime-(Y) within an apatite-

rich oolitic ironstone from Saint-Aubin-Des-Châteaux, Armorican Massif, France. Can Mineral 40 (6):1657–1673

- Moenke H (1962) Mineralspektren I. Akademie Verlag, Berlin. (in German)
- Mohanan K (1993) Vibrational spectroscopic studies of olivines, pyroxenes, and amphiboles at hightemperature and pressures. Dissertation, University of Hawaii
- Mohanan K, Sharma SK, Bishop FC (1993) A Raman spectral study of forsterite-monticellite solid solutions. Am Mineral 78:42–48
- Molina-Mendoza AJ, Giovanelli E, Paz WS, Niño MA, Island JO, Evangeli C, Island JO, Evangeli C, Aballe L, Foerster M, van der Zant HSJ, Rubio-Bollinger G, Agraït N, Palacios JJ, Pérez EM, Castellanos-Gomez A (2016) Franckeite: a naturally occurring van der Waals heterostructure. arXiv preprint arXiv:1606.06651
- Momma K, Ikeda T, Nishikubo K, Takahashi N, Honma C, Takada M, Furukawa Y, Nagase T, Kudoh Y (2011) New silica clathrate minerals that are isostructural with natural gas hydrates. Nat Commun 2:196. (7 pp)
- Moore RK, White WB (1970) Study of order-disorder in rock-salt-related structures by infrared spectroscopy. J Amer Ceram Soc 53(12):679–682
- Moreira RL, Rubinger CPL, Krambrock K, Dias A (2010a) Polarized Raman scattering and infrared spectroscopy of a natural manganocolumbite single crystal. J Raman Spectrosc 41(9):1044–1049
- Moreira RL, Teixeira NG, Andreeta MRB, Hernandes AC, Dias A (2010b) Polarized micro-Raman scattering of $CaNb₂O₆$ single crystal fibers obtained by laser heated pedestal growth. Cryst Growth Des 10 (4):1569–1573
- Morillas H, Maguregui M, Paris C, Bellot-Gurlet L, Colomban P, Madariaga JM (2015) The role of marine aerosol in the formation of (double) sulfate/nitrate salts in plasters. Microchem J 123:148–157
- Morillas H, Maguregui M, García-Florentino C, Marcaida I, Madariaga JM (2016) Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci Total Environ 550:285–296
- Moriyama T, Miyawaki R, Yokoyama K, Matsubara S, Hirano H, Murakami H, Watanabe Y (2011) Wakefieldite-(Nd), a new neodymium vanadate mineral in the Arase stratiform ferromanganese deposit, Kochi Prefecture, Japan. Resour Geol 61(1):101–110
- Moroz T, Shcherbakova E, Kostrovsky V (2004) Vibrational spectra of kladnoite, natural analogue of phthalimide $C_6H_4(CO)_2NH$. Mitt Österr Miner Ges 149:73
- Morris RE, Harrison WT, Stucky GD, Cheetham AK (1991) The syntheses and crystal structures of two novel aluminum selenites, Al₂(SeO₃)₃⋅6H₂O and AlH (SeO3)2∙2H2O. J Solid State Chem 94(2):227–235
- Morrison SM, Downs RT, Yang H (2012) Redetermination of kovdorskite, Mg2(PO4)(OH)∙3H2O. Acta Crystallogr E. <https://doi.org/10.1107/S1600536812000256>
- Morrison SM, Domanik KJ, Origlieri MJ, Downs RT (2013) Agardite-(Y), $Cu^{2+}{}_{6}Y(AsO_4)_3(OH)_6·3H_2O.$ Acta Crystallogr E 69(9):i61–i62
- Morrison SM, Domanik KJ, Yang H, Downs RT (2016) Petersite-(Ce), $Cu^{2+}{}_{6}Ce(PO_{4})_{3}(OH)_{6} \cdot 3H_{2}O$, a new mixite group mineral from Yavapai County, Arizona, USA. Can Mineral 54(6):1505–1511
- Morss LR (1974) Crystal structure of dipotassium sodium fluoroaluminate (elpasolite). J Inorg Nucl Chem 36 (12):3876–3878
- Mouri T, Enami M (2008) Raman spectroscopic study of olivine-group minerals. J Mineral Petrol Sci 103 (2):100–104
- Mozgawa W (2001) The relation between structure and vibrational spectra of natural zeolites. J Molec Struct 596(1):129–137
- Müller B, Lutz HD (1991) Single crystal Raman studies of pyrite-type RuS₂, RuSe₂, OsS₂, OsSe₂, PtP₂, and PtAs₂. Phys Chem Minerals 17(8):716–719
- Muller O, White WB, Roy R (1969a) Infrared spectra of the chromates of magnesium, nickel and cadmium. Spectrochim Acta A 25(8):1491–1499
- Muller O, White WB, Roy R (1969b) X-ray diffraction study of the chromates of nickel, magnesium and cadmium. Z Krist 130:112–120
- Müller K, Ciminelli VS, Dantas MSS, Willscher S (2010) A comparative study of As (III) and As (V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res 44(19):5660–5672
- Müller D, Hochleitner R, Fehr KT (2015) Raman spectroscopic investigations of natural jennite from Maroldsweisach, Bavaria, Germany. J Raman Spectrosc. <https://doi.org/10.1002/jrs.4865>
- Munce CG, Parker GK, Holt SA, Hope GA (2007) A Raman spectroelectrochemical investigation of chemical bath deposited Cu_xS thin films and their modification. Colloids Surf A 295(1):152–158
- Muniz-Miranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectroscopic investigation and normal mode analysis of $As₄S₄$ polymorphs. Spectrochim Acta A 52(11):1391–1401
- Muraki N, Katagiri G, Sergo V, Pezzotti G, Nishida T (1997) Mapping of residual stresses around an indentation in $β-Si₃N₄$ using Raman spectroscopy. J Mater Sci 32(20):5419–5423
- Murli C, Sharma SM, Kulshreshtha SK, Sikka SK (1997) High pressure study of phase transitions in α -FePO₄. Pramana – J Phys 49(3):285–291
- Murphy PJ, Smith AM, Hudson-Edwards KA, Dubbin WE, Wright K (2009) Raman and IR spectroscopic studies of alunite-supergroup compounds containing Al, Cr^{3+} , Fe³⁺ and V³⁺ at the B site. Can Mineral 47 (3):663–681
- Murshed MM, Mendive CB, Curti M, Šehović M, Friedrich A, Fischer M, Gesing TM (2015) Thermal expansion of mullite-type $Bi₂Al₄O₉$: a study by X-ray

diffraction, vibrational spectroscopy and density functional theory. J Solid State Chem 229:87–96

- Murthy TSN, Srinivas V, Saibabu G, Salagram M (1992) Structural distortions in CrO₄²⁻ ion in 3CdSO₄⋅8H₂O crystals from IR studies. J Solid State Chem 97 (2):358–365
- Murugan R, Ghule A, Chang H (2000) Thermo-Raman spectroscopic studies on polymorphism in $Na₂SO₄$. J Phys Condens Matter 12(5):677–700
- Musić S, Dragčević Đ, Maljković M, Popović S (2003) Influence of chemical synthesis on the crystallization and properties of zinc oxide. Mater Chem Phys 77 (2):521–530
- Musumeci A, Frost RL (2007) A spectroscopic and thermoanalytical study of the mineral hoganite. Spectrochim Acta A 67(1):48–57
- Mutschke H, Min M, Tamanai A (2013) Laboratory-based grain-shape models for simulating dust infrared spectra. Astron Astrophys manuscr No. 12267, 8 pp
- Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem Interfacial Electrochem 292 (1–2):139–152
- Nabar MA, Mhatre BG (2001) Studies on triple orthovanadates: VIII. Synthesis and spectrostructural characterization of triple orthovanadates BaLnTh (VO_4) ₃ (Ln = La or Pr) and BaLnCe(VO₄)3 (Ln = La, Pr, Nd or Sm). J Alloys Compd 323:83–85
- Nabar MA, Sakhardande RR (1985) Synthesis and crystal chemistry of triple orthoarsenates, $CaLnTh(AsO₄)₃$. J Crystallographic Spectroscopic Res 15(3):263–269
- Naddari T, El Feki H, Savariault JM, Salles P, Salah AB (2003) Structure and ionic conductivity of the lacunary apatite $Pb_6Ca_2Na_2(PO_4)_6$. Solid State Ionics 158 (1):157–166
- Naemura K, Shimizu I, Svojtka M, Hirajima T (2015) Accessory priderite and burbankite in multiphase solid inclusions in the orogenic garnet peridotite from the Bohemian Massif, Czech Republic. J Mineral Petrol Sci 110:20–28
- Naïli H, Mhiri T, Jaud J (2001) Crystal structure and characterization of $\text{CsH}_5(\text{AsO}_4)_2$: a new cesium pentahydrogen arsenate, and comparison with $CsH₅(PO₄)₂$ and RbH₅(AsO₄)₂. J Solid State Chem 161(1):9–16
- Nakagawa T, Kihara K, Harada K (2001) The crystal structure of low melanophlogite. Am Miner 86:1506–1512
- Nakajima A, Yoshihara A, Ishigame M (1994) Defectinduced Raman spectra in doped $CeO₂$. Phys Rev B 50(18):13297–13307
- Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, 6th edn. Wiley, New York
- Nakashima S, Mishima H, Mitsuishi A (1973) Raman scattering in yellow and red mecury iodides. J Raman Spectrosc 1(4):325–340
- Nanba T, Kawashima I, Ikezawa M (1987) Far-infrared and Raman scattering spectra due to the two-photon processes in thallous halide crystals. J Phys Soc Jpn 50 (9):3063–3070
- Narang SN, Patel ND, Kartha VB (1994) Infrared and Raman spectral studies and normal modes of $a-B_2O_3$. J Molec Struct 327:221–235
- Narasimham KV, Girija M (1967) Absorption spectrum of potassium uranyl sulphate. Defence Sci J 17(2): 95–106
- Narasimhulu KV, Sunandana CS, LakshmanaRao J (2000) Spectroscopic studies of Cu^{2+} ions doped in KZnClSO4∙3H2O crystals. Phys Status Solidi B 217 (2):991–997
- Narsimhulu M, Saritha A, Raju B, Hussain KA (2015) Synthesis, structure, optical, thermal, dielectric and magnetic properties of cation deficient $K_{2.72}$ [Fe $(C_2O_4)_3$] \cdot 3.17H₂O crystals. Int J Innov Res Sci Eng Technol 4:7548–7555
- Nasdala L, Pekov IV (1993) Ravatite, $C_{14}H_{10}$, a new organic mineral species from Ravat, Tadzhikistan. Eur J Mineral 5:699–705
- Nasdala L, Witzke T, Ullrich B, Brett R (1998) Gordaite NaZn₄(SO₄)(OH)₆Cl⋅6H₂O: second occurrence in the Juan de Fuca Ridge, and new data. Am Mineral 83 (9–10):1111–1116
- Nasdala L, Smith DC, Kaindl R, Ziemann MA (2004) Raman spectroscopy: analytical perspectives in mineralogical research (Chapter 7). In: Beran A, Libowitsky E (eds) Spectroscopic methods in mineralogy, vol 6. EMU notes in mineralogy, pp 281–343
- Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006) Alpha particle haloes in chlorite and cordierite. Mineral Petrol 86(1–2):1–27
- Nasdala L, Blaimauer D, Chanmuang C, Corfu F, Lengauer CL, Ruschel K, Škoda R, Wirth R, Zeug M, Zoysa G (2016) Ekanite $(Ca_2ThSi_8O_{20})$ from Sri Lanka: concordant U–Th–Pb isotope system in spite of metamictization. In: Gadas P, Plášil J, Laufek F (eds) New minerals and mineralogy in the 21st century. International Scientific Symposium Jáchymov 2016, Book of abstracts and Fieldtrip guidebook, pp 59–62
- Nassau K, Cooper AS, Shiever JW, Prescott BE (1973) Transition metal iodates. III. Gel growth and characterization of six cupric iodates. J Solid State Chem 8 (3):260–273
- Natkaniec-Nowak L, Dumańska-Słowik M, Ertl A (2009) "Watermelon" tourmaline from the Paprok mine (Nuristan, Afghanistan). N Jb Miner Abh 186 (2):185–193
- Nayak M, Kutty TRN (1998) Luminescence of $Fe³⁺$ doped NaAlSiO₄ prepared by gel to crystallite conversion. Mater Chem Phys 57(2):138–146
- Nazarov M (2010) Raman spectroscopy of double activated YNbO₄:Eu³⁺, Tb³⁺ and YTaO4:Eu³⁺, Tb³⁺. Mold J Phys Sci 9(1):5–15
- Nazarov MA, Demidova SI, Anosova MO, Kostitsyn YA, Ntaflos T, Brandstaetter F (2012) Native silicon and

iron silicides in the Dhofar 280 lunar meteorite. Petrology 20(6):506–519

- Nefedov EI, Griffin WL, Kristiansen R (1977) Minerals of the schoenfliesite – wickmanite series from Pitkäranta, Karelia, U.S.S.R. Can Mineral 15:437–445
- Nemanich RJ (1986) Raman spectroscopy for semiconductor thin film analysis. Proc Mater Res Soc 69:23–37
- Nestola F, Guastoni A, Cámara F, Secco L, Dal Negro A, Pedron D, Beran A (2009) Aluminocerite-Ce: a new species from Baveno, Italy: description and crystalstructure determination. Am Mineral 94(4):487–493
- Nestola F, Mittempergher S, Di Toro G, Zorzi F, Pedron D (2010) Evidence of dmisteinbergite (hexagonal form of $CaAl₂Si₂O₈$) in pseudotachylyte: a tool to constrain the thermal history of a seismic event. Am Mineral 95 $(2-3):405-409$
- Nestola F, Burnham AD, Peruzzo L, Tauro L, Alvaro M, Walter MJ, Gunter M, Anzolini C, Kohn S (2016) Tetragonal Almandine-Pyrope Phase, TAPP: finally a name for it, the new mineral jeffbenite. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.059>
- Neuville DR, Cormier L, Flank AM, Massiot D (2002) XANES and Raman spectrometry on glasses and crystals in the CAS system. Rep EMPG IX, Zurich, Switzerland, 24–27 March 2002
- Newhouse P, Boyd DA, Shinde A, Guevarra D, Zhou L, Soedarmadji E, Li G, Neaton J, Gregoire J (2016) Solar fuel photoanodes prepared by inkjet printing of copper vanadates. J Mater Chem A. [https://doi.org/10.1039/](https://doi.org/10.1039/C6TA01252C) [C6TA01252C](https://doi.org/10.1039/C6TA01252C)
- Nguyen SD, Halasyamani PS (2012) Synthesis, structure, and characterization of new Li^{\dagger} -d⁰-lone-pair-oxides: noncentrosymmetric polar $Li_6(Mo_2O_5)_3(SeO_3)_6$ and centrosymmetric $Li_2(MO_3)(TeO_3)(M = Mo^{6+}$ or W^{6+}). Inorg Chem 51(17):9529–9538
- Nguyen N, Choisnet J, Raveau B (1980) Silicates synthétiques à structure milarite. J Solid State Chem 34:1–9
- Nhlabathi TN (2012) An investigation into the fluorination capabilities of ammonium acid fluoride under microwave radiation with respect to zircon. Dissertation, University of Pretoria
- Ni S, Wang X, Zhou G, Yang F, Wang J, He D (2010a) Hydrothermal synthesis and magnetic property of Cu₃(OH)₂V₂O₇⋅nH₂O. Mater Lett 64(4):516–519
- Ni S, Wang X, Zhou G, Yang F, Wang J, He D (2010b) Crystallized $Zn_3(VO_4)_2$: synthesis, characterization and optical property. J Alloys Compd 491(1):378–381
- Nicola JH, Rutt HN (1974) A comparative study of zircon $(ZrSiO₄)$ and hafnon $(HfSiO₄)$ Raman spectra. J Phys C 7(7):1381–1386
- Nie L, Wang H, Chai Y, Liu S, Yuan R (2016) In situ formation of flower-like $CuCo₂S₄$ nanosheets/ graphene composites with enhanced lithium storage properties. RSC Adv 6(44):38321–38327
- Nien YT, Zaman B, Ouyang J, Chen IG, Hwang CS, Yu K (2008) Raman scattering for the size of CdSe and CdSnanocrystals and comparison with other techniques. Mater Lett 62(30):4522–4524
- Nieuwoudt MK, Comins JD, Cukrowski I (2011) The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: Near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. J Raman Spectrosc 42 (6):1335–1339
- Nilges T, Reiser S, Hong JH, Gaudin E, Pfitzner A (2002) Preparation, structural, Raman and impedance spectroscopic characterisation of the silver ion conductor $(AgI)₂Ag₃SbS₃$. Phys Chem Chem Phys (23):5888–5894
- Nishio-Hamane D, Minakawa T, Okada H (2014) Iwateite, $Na₂BaMn(PO₄)₂$, a new mineral from the Tanohata mine, Iwate Prefecture, Japan. J Mineral Petrol Sci 109(1):34–37
- Nishio-Hamane D, Momma K, Miyawaki R, Minakawa T (2016a) Bunnoite, a new hydrous manganese aluminosilicate from Kamo Mountain, Kochi prefecture, Japan. Mineral Petrol. [https://doi.org/10.1007/s00710-016-](https://doi.org/10.1007/s00710-016-0454-2) [0454-2](https://doi.org/10.1007/s00710-016-0454-2)
- Nishio-Hamane D, Momma K, Ohnishi M, Shimobayashi N, Miyawaki R, Tomita N, Okuma R, Kampf AR, Minakawa T (2016b) Iyoite, MnCuCl $(OH)_3$, and misakiite, $Cu_3Mn(OH)_6Cl_2$: new members of the atacamite family from Sadamisaki Peninsula, Ehime Prefecture, Japan. Mineral Mag. [https://doi.](https://doi.org/10.1180/minmag.2016.080.104) [org/10.1180/minmag.2016.080.104](https://doi.org/10.1180/minmag.2016.080.104)
- Nitta E, Kimata M, Hoshino M, Echigo T, Hamasaki S, Shinohara H, Nishida N, Hatta T, Shimizu M (2006) High-temperature volcanic sublimates from Iwodake volcano, Satsuma-Iwojima, Kyushu, Southwestern Japan. Jpn Mag Mineral Petrol Sci 35(6):270–281. (in Japanese)
- Noguchi T, Nakamura T, Misawa K, Imae N, Aoki T, Toh S (2009) Laihunite and jarosite in the Yamato 00 nakhlites: alteration products on Mars? J Geophys Res 114:E10004. (13 pp)
- Noguera O, Merle-Méjean T, Mirgorodsky AP, Smirnov MB, Thomas P, Champarnaud-Mesjard J-C (2003) Vibrational and structural properties of glass and crystalline phases of $TeO₂$. J Non-Cryst Solids 330:50–60
- Nolas GS, Slack GA, Caillat T, Meisner GP (1996) Raman scattering study of antimony-based skutterudites. J Appl Phys 79(5):2622–2626
- Noureldine D, Anjum DH, Takanae K (2014) Fluxassisted synthesis of $SnNb₂O₆$ for tuning photocatalytic properties. Phys Chem Chem Phys 16 (22):10762–10769
- Nuvoli D, Rassu M, Alzari V, Sanna R, Malucelli G, Mariani A (2014) Preparation and characterization of polymeric nanocomposites containing exfoliated tungstenite at high concentrations. Compos Sci Technol 96:97–102
- Nyhus P, Cooper SL, Fisk Z (1995) Electronic Raman scattering across the unconventional charge gap in FeSi. Phys Rev B 51(21):15626–15629
- Nytko EA (2008) Synthesis, structure, and magnetic properties of spin-1/2 kagomé antiferromagnets. Dissertation, Massachusetts Institute of Technology
- O'Neill AE, Uy D, Jagner M (2006) Characterization of phosphates found in vehicle-aged exhaust gas catalysts: a Raman study. SAE Techn Paper No 2006-01-0410. (15 pp)
- Obbade S, Dion C, Saad M, Yagoubi S, Abraham F (2004) $Pb(UO₂)(V₂O₇)$, a novel lead uranyl divanadate. J Solid State Chem 177(11):3909–3917
- Oçafrain A, Chaminade JP, Viraphong O, Cavagnat R, Couzi M, Pouchard M (1996) Growth by the heat exchanger method and characterization of neighborite, NaMgF3. J Cryst Growth 166(1):414–418
- Ogawara T, Akai J (2014) Graphite-3R in a fault fracture zone associated with black jadeitite from Kanayamadani, Itoigawa, central Japan. J Mineral Petrol Sci 109(3):125–137
- Ogawara T, Mashima H, Akai J (2010) Raman analysis of rengeite and orthorhombic polymorph of rengeite from Itoigawa region, central Japan. Ann Meet Jpn Assoc Mineral Sci. (in Japanese). [https://doi.org/10.14824/](https://doi.org/10.14824/jakoka.2010.0.99.0) [jakoka.2010.0.99.0](https://doi.org/10.14824/jakoka.2010.0.99.0)
- Ohnishi M, Kobayashi S, Kusachi I (2002) Ktenasite from the Hirao mine at Minoo, Osaka, Japan. J Mineral Petrol Sci 97(4):185–189
- Ohsaka T, Fujiki Y (1982) Raman spectra in hollandite type compounds $K_{1.6}Mg_{0.8}Ti_{7.2}O_{16}$ and $K_{1.6}Al_{1.6}Ti_{6.4}O_{16}$. Solid State Commun 44 (8):1325–1327
- Ohwada K (1972) Far-infrared spectrum of uranyl fluoride. J Inorg Nucl Chem 34(7):2357–2358
- Ohwada K, Soga T, Iwasaki M (1972) The infrared spectrum of tripotassium uranyl fluoride. Spectrochim Acta A 28(5):933–938
- Okada T, Narita T, Nagai T, Yamanaka T (2008) Comparative Raman spectroscopic study on ilmenite-type $MgSiO₃$ (akimotoite), $MgGeO₃$, and $MgTiO₃$ (geikielite) at high temperatures and high pressures. Am Mineral 93(1):39–47
- Okotrub KA, Surovtsev NV (2013) Raman scattering evidence of hydrohalite formation on frozen yeast cells. Cryobiology 66(1):47–51
- Olds TA, Plášil J, Kampf AR, Škoda R, Burns PC, Čejka J, Bourgoin V, Boulliard J-C (2016a) Gauthierite, KPb $[(UO₂)₇O₅(OH)₇]$ -8H₂O, a new uranyl-oxide hydroxyhydrate mineral from Shinkolobwe with a novel uranyl-anion sheet-topology. Eur J Mineral. [https://](https://doi.org/10.1127/ejm/2017/0029-2586) doi.org/10.1127/ejm/2017/0029-2586
- Olds TA, Sadergaski LR, Plášil J, Kampf AR, Burns PC, Steele IM, Marty J, Carlson S, Mills OP (2016b) Leószilárdite, the first Na,Mg-containing uranyl carbonate from the Markey Mine, San Juan County, Utah, USA. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.149) [minmag.2016.080.149](https://doi.org/10.1180/minmag.2016.080.149)
- Onac BP, Effenberger H, Ettinger K, Cinta Panzaru S (2006) Hydroxylellestadite from Cioclovina Cave (Romania): microanalytical, structural, and vibrational spectroscopy data. Am Mineral 91(11–12):1927–1931
- Onac BP, Kearns J, Breban R, Cîntă Pậnzaru S (2012) Variscite (AlPO4∙2H2O) from Cioclovina Cave (Sureanu Mountains, Romania): a tale of a missing phosphate. Studia UBB Geologia 49(1):3–14
- Ondruš P, Veselovský F, Skála R, Sejkora J, Pažout R, Frýda J, Gabašová A, Vajdak J (2006) Lemanskiite, NaCaCu₅(AsO₄)₄Cl∙5H₂O, a new mineral species from the Abundancia mine, Chile. Can Mineral 44:523–531
- Ondruš P, Skála R, Plášil J, Sejkora J, Veselovský F, Čejka J, Kallistová A, Hloušek J, Fejfarová K, Škoda R, Dušek M, Gabasova A, Machovič V, Lapčák L (2013) Švenekite, Ca[AsO₂(OH)₂]₂, a new mineral from Jáchymov, Czech Republic. Mineral Mag 77 (6):2711–2724
- Ono A (1985) Phase relations in the system $NH₄Zr₂(PO₄)₃$ $-(NH_4)_3M_2(PO_4)_3$: M = Y, Al or In. J Mater Sci Lett 4 (8):936–939
- Ono H, Hosokawa Y, Shinoda K, Koyanagi K, Yamaguchi H (2001) Ta–O phonon peaks in tantalum oxide films on Si. Thin Solid Films 381(1):57–61
- Onodera A, Liu X, Kyokane D, Kura K, Machida K, Adachi GY, Su W (1999) Pressure-induced amorphization of $SrB₂O₄$. J Phys Chem Solids 60 (10):1737–1743
- Orberger B, Vymazalova A, Wagner C, Fialin M, Gallien JP, Wirth R, Pasava J, Montagnac G (2007) Biogenic origin of intergrown Mo-sulphide-and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, southern China). Chem Geol 238(3):213–231
- Origlieri MJ (2005) Crystal chemistry of selected Sb, As and P minerals. Dissertation, University of Arizona
- Origlieri MJ, Downs RT, Pinch WW, Zito GL (2009) Stibioclaudetite $AsSbO₃$ a new mineral from Tsumeb, Namibia. Mineral Rec 40(3):209–214
- Origlieri MJ, Yang H, Downs RT, Posner ES, Domanik KJ, Pinch WW (2012) The crystal structure of bartelkeite, with a revised chemical formula, PbFeGe^{VI}(Ge^{IV}₂O₇)(OH)₂⋅H₂O, isotypic with highpressure P21/m lawsonite. Am Mineral 97 (10):1812–1815
- Origlieri MJJ, Downs RT, Yang H, Hoffman DR, Ducea MN, Post JE (2017) Marshallsussmanite, $NaCaMnSi₃O₈(OH)$, a new pectolite group mineral providing insight into hydrogen bonding in pyroxenoids. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2017.081.049) [minmag.2017.081.049](https://doi.org/10.1180/minmag.2017.081.049)
- Orlandi P, Biagioni C, Moëlo Y, Langlade J, Faulques E (2015) Suseinargiuite, $(Na_{0.5}Bi_{0.5})(MoO₄)$, the Na-Bi analogue of wulfenite, from Su Seinargiu, Sardinia, Italy. Eur J Mineral 27(5):695–699
- Orlandi P, Biagioni C, Zaccarini F (2017) Cabvinite, $Th_2F_7(OH)\cdot 3H_2O$, the first natural actinide halide. Am Mineral. <https://doi.org/10.2138/am-2017-6013>
- Orman RG (2010) Characterisation of novel antimony (III) oxide-containing glasses. Dissertation, University of Warwick
- Orman RG, Holland D, Hannon AC (2008) Antimony oxychloride glass and its relation to crystalline onoratoite, $Sb_8O_{11}Cl_2$. Phys Chem Glasses – Eur J Glass Sci Technol B 49(1):15–18
- Orozbaev RT, Yoshida K, Bakirov AB, Hirajima T, Takasu A, Sakiev KS, Tagiri M (2011) Preiswerkite and högbomite within garnets of Aktyuzeclogite, Northern Tien Shan, Kyrgyzstan. J Mineral Petrol Sci 106(6):320–325
- Osaka T (1971) Far-infrared absorption spectra of mercurous halides. J Chem Phys 54(3):863–867
- Osaka A, Takahashi K, Ikeda M (1984) Infrared study of trivalent cations B and Fe in amorphous and crystalline phosphates. J Mater Sci Lett 3(1):36–38
- Ospitali F, Bersani D, Di Lonardo G, Lottici PP (2008) 'Green earths': vibrational and elemental characterization of glauconites, celadonites and historical pigments. J Raman Spectrosc 39(8):1066–1073
- Ossa FO, Hofmann A, Vidal O, Kramers JD, Belyanin G, Cavalazzi B (2016) Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. Precambrian Res 281:414–433
- Ostrooumov M, Taran Y, Arellano-Jiménez M, Ponce A, Reyes-Gasga J (2009) Colimaite, K_3VS_4 – a new potassium-vanadium sulfide mineral from the Colima volcano, State of Colima (Mexico). Rev Mex Cienc Geol 26:600–608
- Ostroumov M, Fritsch E, Faulques E, Chauvet O (2002) Etude spectrometrique de la lazurite du Pamir, Tajikistan. Can Mineral 40(3):885–893. (in French)
- Ouerfelli N, Guesmi A, Molinié P, Mazza D, Zid MF, Driss A (2007) The iron potassium diarsenate KFe $(As₂O₇)$ structural, electric and magnetic behaviors. J Solid State Chem 180(10):2942–2949
- Ouerfelli N, Smida YB, Zid MF (2015) Synthesis, crystal structure and electrical properties of a new iron arsenate $Na_{2.77}K_{1.52}Fe_{2.57}(AsO_4)_4$. J Alloys Compd 651:616–622
- Owen OS, Kung MC, Kung HH (1992) The effect of oxide structure and cation reduction potential of vanadates on the selective oxidative dehydrogenation of butane and propane. Catal Lett 12(1–3):45–50
- Oyamada R (1974) Raman spectra of the fused $PbCl₂$ -KCl system. J Phys Soc Jpn 36(3):903–905
- Pachoud E, Zhang W, Tapp J, Liang KC, Lorenz B, Chu PC, Halasyamani PS (2013) Top-seeded single-crystal growth, structure, and physical properties of polar LiCrP2O7. Cryst Growth Design 13(12):5473–5480
- Pagès-Camagna S, Colinart S, Coupry C (1999) Fabrication processes of archaeological Egyptian blue and green pigments enlightened by Raman microscopy and scanning electron microscopy. J Raman Spectrosc 30(4):313–317
- Pagliai M, Bonazzi P, Bindi L, Muniz-Miranda M, Cardini G (2011) Structural and vibrational properties of arsenic sulfides: alacránite (As_8S_9) . J Phys Chem A 115 (17):4558–4562
- Palacios D, Wladimirsky A, D'Antonio MC, González-Baró AC, Baran EJ (2011) Vibrational spectra of double oxalates of the type M_2^I Cu(C₂O₄)₂.2H₂O (M^I = Na⁺, K⁺, NH₄⁺). Spectrochim Acta A 79:1145-1148
- Palaich SE, Manning CE, Schauble E, Kavner A (2013) Spectroscopic and X-ray diffraction investigation of the behavior of hanksite and tychite at high pressures, and a model for the compressibility of sulfate minerals. Am Mineral 98(8–9):1543–1549
- Palenzona A, Martinelli A (2007) La nakauriite del Monte Ramazzo, Genova. Rivista Mineral Ital 31(1):48–51. (in Italian)
- Palmer SJ, Frost RL (2011) The structure of the mineral arthurite $(AsO_4, PO_4, SO_4)_2(O, OH)_2$ ∙4H₂O – a Raman spectroscopic study. J Mol Struct 994(1): 283–288
- Palmer SJ, Grand LM, Frost RL (2011) The synthesis and spectroscopic characterisation of hydrotalcite formed from aluminate solutions. Spectrochim Acta A 79 (1):156–160
- Palmeri R, Frezzotti ML, Godard G, Davies RJ (2009) Pressure-induced incipient amorphization of α -quartz and transition to coesite in an eclogite from Antarctica: a first record and some consequences. J Metamorphic Geol 27(9):685–705
- Paluszkiewicz C, Żabiński W (1992) Far infrared spectra of vesuvianite: preliminary report. Mineralogia Polonica 23(1):13–16
- Palvadeau P, Euzen P, Queignec M, Venien JP (1991) Characterization of Mn_7SiO_{12} , a synthetic equivalent of "braunite" a natural mineral with various manganese sites. Mater Res Bull 26(9):841–848
- Palve BM, Jadkar SR, Pathan HM (2016) A simple chemical route to synthesis the CuS nanocrystal powder at room temperature and phase transition. J Mater Sci Mater Electron. [https://doi.org/10.1007/s10854-016-](https://doi.org/10.1007/s10854-016-5318-3) [5318-3](https://doi.org/10.1007/s10854-016-5318-3)
- Pan S, Smit JP, Marvel MR, Stern CL, Watkins B, Poeppelmeier KR (2006) Synthesis, structure and properties of $Pb_2CuB_2O_6$. Mater Res Bull 41 (5):916–924
- Panikorovskii TL, Krivovichev SV, Galuskin EV, Shilovskikh VV, Mazur AS, Bazai AV (2016a) Si-deficient, OH-substituted, boron-bearing vesuvianite from Sakha-Yakutia, Russia: a combined singlecrystal, ¹ H MAS-NMR and IR spectroscopic study. Eur J Mineral 28:931–941
- Panikorovskii TL, Zolotarev AA Jr, Krivovichev SV, Shilovskikh VV, Bazay AV (2016b) Crystal chemistry of Cu-bearing vesuvianites ("cyprines") from Kleppan (Norway). Zapiski RMO 145(1):131–142. (in Russian)
- Panikorovskii TL, Krivovichev SV, Zolotarev AA, Antonov AA (2016c) Crystal chemistry of low-symmetry (P4nc) vesuvianite from the Kharmankul' Cordon (South Urals, Russia). Zapiski RMO 145(3):94–104. (in Russian)
- Panikorovskii TL, Krivovichev SV, Yakovenchuk VN, Shilovskikh VV, Mazur AS (2016d) Crystal chemistry of Na-bearing vesuvianite from fenitized gabbroid of the Western Keivy (Kola peninsula, Russia). Zapiski RMO 145(5):83–95. (in Russian)
- Panikorovskii TL, Chukanov NV, Aksenov SM, Mazur AS, Avdontseva EY, Shilovskikh VV, Krivovichev SV (2017a) Alumovesuvianite, $Ca₁₉Al(Al,$ $Mg)_{12}Si_{18}O_{69}(OH)_{9}$, a new vesuvianite-group member from the Jeffrey mine, Asbestos, Estrie Region, Québec, Canada. Miner Petrol 111(6):833–842
- Panikorovskii TL, Mazur AS, Bazai AV, Shilovskikh VV, Galuskin EV, Chukanov NV, Rusakov VS, Zhukov YM, Avdontseva EY, Aksenov SM, Krivovichev SV (2017b) X-ray diffraction and spectroscopic study of

wiluite: implications for the vesuvianite-group nomenclature. Phys Chem Mineral 44(8):577–593

- Panikorovskii TL, Shilovskikh VV, Avdontseva EY, Zolotarev AA, Pekov IV, Britvin SN, Hålenius U, Krivovichev SV (2017c) Cyprine, $Ca₁₉Cu²⁺(Al,$ $Mg)_{12}Si_{18}O_{69}(OH)_{9}$, a new vesuvianite-group mineral from the Wessels mine, South Africa. Eur J Mineral 29:295–306
- Panikorovskii TL, Shilovskikh VV, Avdontseva EY, Zolotarev AA, Karpenko VY, Mazur AS, Yakovenchuk VN, Krivovichev SV, Pekov IV $(2017d)$ Magnesiovesuvianite, $Ca₁₉Mg(Al,$ $Mg)_{12}Si_{18}O_{69}(OH)_{9}$, a new vesuvianite-group mineral. J Geosc (Czech Republic) 62:25–36
- Paques-Ledent MT (1978) Vibrational spectra and structure of $LiB^{2+}PO_4$ compounds with $B = Sr$, Ba, Pb. J Solid State Chem 23(1):147–154
- Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds – II orthophosphates, -arsenates and -vanadates $A^{I}B^{II}X^{V}O_{4}$. Spectrochim Acta A 30(3):673–689
- Parajón-Costa BS, Mercader RC, Baran EJ (2013) Spectroscopic characterization of mixed cation diphosphates of the type $M^I F e^{III} P_2 O_7$ (with $M^I = Li$, Na, K, Rb, Cs, Ag). J Phys Chem Solids 74(2):354–359
- Parker G, Hope GA, Woods R (2008) Raman spectroscopic identification of surface species in the leaching of chalcopyrite. Colloids Surf A 318:160–168
- Pasteris JD, Yoder CH, Sternlieb MP, Liu S (2012) Effect of carbonate incorporation on the hydroxyl content of hydroxylapatite. Mineral Mag 76(7):2741–2759
- Pauliš P, Kopecký S, Vrtiška L, Čejka J, Pour O, Laufek F (2016) Stolzit z Vysoké u Havlíčkova Brodu (Česká Republika). Bull Mineral-petrolog Odd Nár Muz (Praha) 24(1):95–99. ISSN 1211-0329. (in Czech)
- Pautov LA, Agakhanov AA, Sokolova E, Hawthorne FC, Karpenko VY, Siidra OI, Garanin VK, Abdu YA (2015) Khvorovite, $Pb^{2+}_{4}Ca_2[Si_8B_2(SiB)O_{28}]F$, a new hyalotekite-group mineral from the Darai-Pioz alkaline massif, Tajikistan: description and crystal structure. Mineral Mag 79(4):949–963
- Pavunny SP, Kumar A, Katiyar RS (2010) Raman spectroscopy and field emission characterization of delafossite CuFeO₂. J Appl Phys $107(1):013522$ -1–013522-7
- Payen J-L, Durand J, Cot L, Galigne J-L (1979) Etude structurale du monofluorophosphate de potassium K2PO3F. Can J Chem 57(8):886–889. (in French). <https://doi.org/10.1139/v79-146>
- Pažout R, Sejkora J, Maixner J, Dušek M, Tvrdý J (2015) Refikite from Krásno, Czech Republic: a crystal-and molecular-structure study. Mineral Mag 79(1):59–70
- Peacor DR, Simmons WB Jr, Essene EJ, Heinrich EW (1982) New data on and discreditation of "texasite", "albrittonite", "cuproartiniter", "cuprohydromagnesite"and "yttromicrolite" with corrected data on nickelbischofite, rowlandite, and yttrocrasite. Am Mineral 67:156–169
- Pechar F (1983) Study of the complex vibrational spectra of natural mesolite. Cryst Res Technol 18 (8):1045–1052
- Pechar F (1984) Study of the vibrational spectra of natural skolecite. Cryst Res Technol 19(4):541–548
- Pechar F, Rykl D (1983) Study of the complex vibrational spectra of natural zeolite chabazite. Zeolites 3 (4):333–336
- Pedregosa JC, Baran EJ, Aymonino PJ (1974) Kristallchemisches Verhalten und IR-Spektren einiger Divanadate des Thortveitit-Typs und verwandter Strukturen. Z anorg allg Chemie 404(3):308–320. (in German)
- Pedro M, Trombe JC, Castro A (1995) On the rare-earth selenites $Pr_2Se_4O_{11}$, $R_2Se_3O_9$ and R_2SeO_5 . J Mater Sci Lett 14(14):994–997
- Pekov IV (2016) Personal Commun
- Pekov IV, Yapaskurt VO, Polekhovsky YS, Vigasina MF, Siidra OI (2014a) Ekplexite (Nb,Mo)S2⋅(Mg_{1-x}Al_x) (OH)_{2+x}, kaskasite (Mo,Nb)S₂⋅(Mg_{1-x}Al_x)(OH)_{2+x} and manganokaskasite (Mo,Nb)S2⋅(Mn_{1-x}Al_x)(OH)_{2+x}, three new valleriite-group mineral species from the Khibiny alkaline complex, Kola Peninsula, Russia. Mineral Mag 78(3):663–680
- Pekov IV, Zubkova NV, Göttlicher J, Yapaskurt VO, Chukanov NV, Lykova IS, Belakovskiy DI, Jensen MC, Leising JF, Nikischer AJ, Pushcharovsky DY (2014b) Whitecapsite, a new hydrous iron and trivalent antimony arsenate mineral from the White Caps mine, Nevada, USA. Eur J Mineral 26(4): 577–587
- Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Vigasina MF, Sidorov EG, Pushcharovsky DY (2014c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of $Cu₄O(AsO₄)₂$. Mineral Mag 78 (7):1553–1569
- Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Lykova IS, Vigasina MF, Sidorov EG, Pushcharovsky DY (2014d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, $Na_7(Fe^{3+}, Mg)$, $Cu)_{4}(AsO₄)_{6}$. Mineral Mag 78(4):905–918
- Pekov IV, Zubkova NV, Belakovskiy DI, Lykova IS, Yapaskurt VO, Vigasina MF, Sidorov EG, Pushcharovsky DY (2015a) Sanguite, KCuCl₃, anewmineralfromthe Tolbachik volcano, Kamchatka, Russia. Can Mineral 53(4):633–641
- Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Vigasina MF, Pushcharovsky DY (2015b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, $Cu₅O₂(AsO₄)₂$. Mineral Mag 79(1):133–144
- Pekov IV, Zubkova NV, Belakovskiy DI, Yapaskurt VO, Vigasina MF, Lykova IS, Sidorov EG, Pushcharovsky DY (2015c) Chrysothallite $K_6Cu_6Tl^3+Cl_{17}(OH)_4 \cdot H_2O$, a new mineral species from the Tolbachik volcano, Kamchatka, Russia. Mineral Mag 79(2):365–376
- Pekov IV, Zubkova NV, Belakovskiy DI, Yapaskurt VO, Vigasina MF, Sidorov EG, Pushcharovsky DY (2015d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K_2 CaCu₆O₂(AsO₄)₄ and dmisokolovite, $K_3Cu_5AlO_2(AsO_4)_4$. Mineral Mag 79 (7):1737–1753
- Pekov IV, Zubkova NV, Yapaskurt VO, Britvin SN, Vigasina MF, Sidorov EG, Pushcharovsky DY (2015e) New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: mineral data and crystal chemistry. II. Flinteite, K₂ZnCl₄. Eur J Mineral. [https://doi.org/](https://doi.org/10.1127/ejm/2015/0027-2459) [10.1127/ejm/2015/0027-2459](https://doi.org/10.1127/ejm/2015/0027-2459)
- Pekov IV, Zubkova NV, Yapaskurt VO, Lykova IS, Belakovskiy DI, Vigasina MF, Sidorov EG, Britvin SN, Pushcharovsky DY (2015f) New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: mineral data and crystal chemistry. I. Mellizinkalite, $K_3Zn_2Cl_7$. Eur J Mineral 27(2):247–253
- Pekov IV, Yapaskurt VO, Belakovskiy DI, Vigasina MF, Zubkova NV, Sidorov EG (2016a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.146) [minmag.2016.080.146](https://doi.org/10.1180/minmag.2016.080.146)
- Pekov IV, Yapaskurt VO, Britvin SN, Vigasina MF, Lykova IS, Zubkova NV, Krivovichev SV, Sidorov EG (2016b) Romanorlovite, a new copper and potassium hydroxychloride from the Tolbachik volcano, Kamchatka, Russia. Zapiski RMO (Proc Russ Miner Soc) 145(4):36–46. (in Russian)
- Pekov IV, Yapaskurt VO, Britvin SN, Zubkova NV, Vigasina MF, Sidorov EG (2016c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO (AsO4). Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.007) [minmag.2016.080.007](https://doi.org/10.1180/minmag.2016.080.007)
- Pekov IV, Zubkova NV, Yapaskurt VO, Polekhovsky YS, Vigasina MF, Belakovskiy DI, Britvin SN, Sidorov EG, Pushcharovsky DY (2016d) New arsenateminerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, $K_3Cu_7Fe^{3+}O_4$ $(AsO₄)₄$. Mineral Mag 80(5):855–867
- Penel G, Leroy G, Rey C, Bres E (1998) Micro Raman spectral study of the PO_4 and CO_3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63 (6):475–481
- Peng GW, Chen SK, Liu HS (1995) Infrared absorption spectra and their correlation with the Ti-O bond length variations for $TiO₂$ (rutile), Na-titanates, and Na-titanosilicate (natisite, Na₂TiOSiO₄). Appl Na-titanosilicate (natisite, $Na₂TiOSiO₄$). Appl Spectrosc 49(11):1646–1651
- Peretyazhko IS, Prokofiev VY, Zagorskii VE, Smirnov SZ (2000) Role of boric acids in the formation of pegmatite and hydrothermal minerals: petrologic consequences of sassolite (H_3BO_3) discovery in fluid inclusions. Petrol 8(3):214–237
- Peretyazhko IS, Savina EA, Khromova EA (2016) Minerals of the rhönite-kuratite series in Paralavas from a new combustion metamorphic complex of Choir–Nyalga basin (Central Mongolia): chemistry, mineral assemblages, and formation conditions. <https://doi.org/10.1180/minmag.2016.080.143>
- Perna G, Lastella M, Ambrico M, Capozzi V (2006) Temperature dependence of the optical properties of ZnSe films deposited on quartz substrate. Appl Phys A 83 (1):127–130
- Perraki M, Faryad SW (2014) First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos 202:157–166
- Perrin J, Vielzeuf D, Laporte D, Ricolleau A, Rossman GR, Floquet N (2016) Raman characterization of synthetic magnesian calcites. Am Mineral 101 (11):2525–2538
- Perry CH, Fertel JH, McNelly TF (1967) Temperature dependence of the Raman spectrum of $SrTiO₃$ and $KTaO₃$. J Chem Phys $47(5)$:1619–1625
- Pertsev NN, Malinko SV, Vakhrushev VA, Fitsev BP, Sokolova EV, Nikitina IB (1980) Shabynite, a new hydrous magnesium borate chloride. Zapiski VMO (Proc Russ Miner Soc) 109(5):569–573. (in Russian)
- Peterson RC (2011) Cranswickite MgSO4∙4H2O, a new mineral from Calingasta, Argentina. Am Mineral 96 (5–6):869–877
- Petit S, Decarreau A, Gates W, Andrieux P, Grauby O (2015) Hydrothermal synthesis of dioctahedral smectites: the $AI-Fe^{3+}$ chemical series. Part II: Crystal-chemistry. App Clay Sci 104:96–105
- Petritis D, Martinez G, Levy-Clement C, Gorochov O (1981) Investigation of the vibronic properties of $Cu₃VS₄$, $Cu₃NbS₄$, and $Cu₃TaS₄$ compounds. Phys Rev B 23(12):6773–6786
- Petrov D (2014) Laser "Raman" spectroscopy of anglesite and cubanite from deposit "Chelopech". Annu Univ Mining Geol "St. Ivan Rilski", Geol Geophys 57 (I):77–82
- Petrova EV, Vorontsova MA, Manomenova VL, Rashkovich LN (2012) Some properties of aqueous solutions of α-Ni(SO₄)⋅6H₂O. Crystallogr Rep 57 (4):579–584
- Petry R, Mastalerz R, Zahn S, Mayerhöfer TG, Völksch G, Viereck-Götte L, Kreher-Hartman B, Holz L, Lankers M, Popp J (2006) Asbestos mineral nnalysis by UV Raman and energy-dispersive X-ray spectroscopy. Chem Phys Chem 7(2):414–420
- Petzelt J (1977) Raman study of the ferroelectric phase transition in $PbHPO_4$ and $PbHAsO_4$. J Chem Phys 67 (9):3890–3896
- Peytavin S, Brun G, Cot L, Maurin M (1972a) Etude vibrationnelle des sulfates et séléniates doubles dihydratés de sodium et de métal divalent: Na₂ $M^{\text{II}}(\text{SO}_4)_2$ ∙2H₂O (M^{II} = Cr, Cd, Mn, Cu)

Na₂M^{II}(SeO₄)₂⋅2H₂O (M^{II} = Cd, Mn). Spectrochim Acta A 28(10):1995–2003. (in French)

- Peytavin S, Brun G, Guillermet J, Cot L, Maurin M (1972b) Spectres de vibration des sulfates doubles de sodium et d'un métal divalent Na₂M^{II}(SO₄)₂∙4H₂O (M^{II} $=$ Mg, Fe, Co, Ni, Zn). Spectrochim Acta A 28 (10):2005–2011. (in French)
- Pham-Thi M, Colomban P, Novak A (1985) Vibrational study of H3OUO2PO4∙3H2O (HUP) and related compounds. Phase transitions and conductivity mechanisms: Part I, KUO₂PO₄⋅3H₂O (KUP). J Phys Chem Solids 46(4):493–504
- Philip D, Aruldhas G, Ramakrishnan V (1988) Infrared and Raman spectra of aquamolybdenum(VI) oxide hydrate (MoO₃.2H₂O). J Phys 30(2):129–133
- Phillippi CM, Mazdiyasni KS (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54 (5):254–258
- Pieczka A, Evans RJ, Grew ES, Groat LA, Ma C, Rossman GR (2013) The dumortierite supergroup. II. Three new minerals from the Szklary pegmatite, SW Poland: nioboholtite, $(Nb_{06}\square_{04})Al_6BSi_3O_{18}$, titanoholtite, $(Ti_{0.75}\square_{0.25})$ Al₆BSi₃O₁₈, and szklaryite, \square Al₆BAs³⁺₃O₁₅. Mineral Mag 77(6):2841–2856
- Pieczka A, Hawthorne FC, Cooper MA, Szełęg E, Szuszkiewicz A, Turniak K, Nejbert K, Ilnicki S (2015) Pilawite-(Y), $Ca_2(Y,Yb)_2[Al_4(SiO_4)_4O_2(OH)_2]$, a new mineral from the Piława Górna granitic pegmatite, southwestern Poland: mineralogical data, crystal structure and association. Mineral Mag 79 (5):1143–1157
- Pieczka A, Hawthorne FC, Ma C, Rossman GR, Szełęg E, Szuszkiewicz A, Turniak K, Nejbert K, Ilnicki SS, Buffat P, Rutkowski B (2016a) Żabińskiite, ideally $Ca(Al_{0.5}(Ta,Nb)_{0.5})(SiO₄)O$, a new mineral of the titanite group from the Piława Górna pegmatite, the Góry Sowie Block, southwestern Poland. Mineral Mag. <https://doi.org/10.1180/minmag.2016.080.110>
- Pieczka A, Szełęg E, Szuszkiewicz A, Gołębiowska B, Zelek S, Ilnicki S, Nejbert K, Turniak K (2016b) Cs-Bearing beryl evolving to pezzottaite from the Juliannapegmatitic system, SW Poland. Can Mineral 54:115–124
- Pignatelli I, Mugnaioli E, Mosser-Ruck R, Barres O, Kolb U, Michau N (2014) A multi-technique, micrometer- to atomic-scale description of a synthetic analogue of chukanovite, $Fe₂(CO₃)(OH)₂$. Eur J Mineral 26:221–229
- Piilonen PC, McDonald AM, Grice JD, Rowe R, Gault RA, Poirier G, Cooper MA, Kolitsch U, Roberts AC, Lechner W, Palfi AG (2010) Arisite-(Ce), a new rareearth fluorcarbonate from the Arisphonolite, Namibia, Mont Saint-Hilaire and the Saint-Amable sill, Quebec, Canada. Can Mineral 48(3):661–671
- Pikl R, De Waal D, Aatiq A, El Jazouli A (1998) Vibrational spectra and factor group analysis of $Li_{2x}Mn_{0.5-x}Ti_2(PO_4)$ { $x = 0, 0.25, 0.50$ }. Mater Res Bull 33(6):955–961
- Pikl R, De Waal D, Merkle RKW, Verryn SMC (1999) Raman spectroscopic identification of synthetic "braggite" (Pt, Pd, Ni)S samples in comparison with synthetic "cooperite". Appl Spectrosc 53(8):927–930
- Pilati T, Gramaccioli CM, Pezzotta F, Fermo P, Bruni S (1998) Single-crystal vibrational spectrum of phenakite, Be_2SiO_4 , and its interpretation using a transferable empirical force field. J Phys Chem A 102 (26):4990–4996
- Pillai VM, Nayar VU, Jordanovska VB (1997) Infrared and Raman spectra of Na₂Cu(SO₄)₂⋅2H₂O and $(CH_3NH_3)_2M(II)(SO_4)_2.6H_2O$ with $M(II) = Cu$, Zn, and Ni. J Solid State Chem 133(2):407–415
- Pine AS, Dresselhaus G (1971) Raman spectra and lattice dynamics of tellurium. Phys Rev B 4(2):356–371
- Pînzaru SC, Onac BP (2009) Raman study of natural berlinite from a geological phosphate deposit. Vib Spectrosc 49(2):97–100
- Pirayesh H, Nychka JA (2013) Sol-gel synthesis of bioactive glass-ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc 96 (5):1643–1650
- Piriou B, McMillan P (1983) The high-frequency vibrational spectra of vitreous and crystalline orthosilicates. Am Mineral 68:426–443
- Piriou B, Poullen JF (1984) Raman study of vivianite. J Raman Spectrosc 15(5):343–346
- Piro OE, Echeverría GA, González-Baró AC, Baran EJ (2016) Crystal and molecular structure and spectroscopic behavior of isotypic synthetic analogs of the oxalate minerals stepanovite and zhemchuzhnikovite. Phys Chem Minerals 43(4):287–300
- Piro OE, Echeverría GA, González-Baró AC, Baran EJ (2017) Crystal structure and spectroscopic behavior of synthetic novgorodovaite $Ca_2(C_2O_4)Cl_2 \cdot 2H_2O$ mineral and its perfect twin triclinic $Ca_2(C_2O_4)Cl_2.7H_2O$ analogue. Phys Chem Minerals. [https://doi.org/10.1007/](https://doi.org/10.1007/s00269-017-0907-0) [s00269-017-0907-0](https://doi.org/10.1007/s00269-017-0907-0)
- Piseri L, Pollini I (1984) Vibrational structure of d-excitons in layered manganese dihalides. J Phys C 17(25):4519–4527
- Piszczek P, Grodzicki A, Engelen B (2003) Infrared and Raman studies of water molecule normal vibrations in crystalline hydrates which form the chain structures. J Molec Struct 646(1):45–54
- Plášil J, Čejka J, Sejkora J, Hloušek J, Goliáš V (2009) New data for metakirchheimerite from Jáchymov (St. Joachimsthal), Czech Republic. J Geosci 54:373–384
- Plášil J, Buixaderas E, Čejka J, Sejkora J, Jehlička J, Novák M (2010a) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U–O stretching regions. Anal Bioanal Chem 397 (7):2703–2715
- Plášil J, Čejka J, Sejkora J, Škácha P, Goliáš V, Jarka P, Laufek F, Jehlička J, Nĕmec I, Strnad L (2010b) Widenmannite, a rare uranyl lead carbonate: occurrence, formation and characterization. Mineral Mag 74(1):97–110
- Plášil J, Sejkora J, Čejka J, Novák M, Viñals J, Ondruš P, Veselovský F, Škácha P, Jehlička J, Goliáš V, Hloušek J (2010c) Metarauchite, Ni $(UO₂)₂(AsO₄)₂·8H₂O$, from Jáchymov, Czech Republic, and Schneeberg, Germany: a new member of the autunite group. Can Mineral 48(2):335–350
- Plášil J, Sejkora J, Čejka J, Škácha P, Goliáš V, Ederová J (2010d) Characterization of phosphate-rich metalodèvite from Příbram, Czech Republic. Can Mineral 48(1):113–122
- Plášil J, Dušek M, Novák M, Čejka J, Císařová I, Škoda R (2011a) Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: description and crystal structure refinement. Am Mineral 96 (7):983–991
- Plášil J, Fejfarová K, Novák M, Dušek M, Škoda R, Hloušek J, Čejka J, Majzlan J, Sejkora J, Machovič V, Talla D (2011b) Běhounekite, U $(SO_4)_2(H_2O)_4$, from Jáchymov (St Joachimsthal), Czech Republic: the first natural U^{4+} sulphate. Miner Mag 75(6):2739–2753
- Plášil J, Hauser J, Petříček V, Meisser N, Mills SJ, Škoda R, Fejarova K, Čejka J, Sejkora J, Hloušek J, Johannet J-M, Machovič V, Lapčak L (2012a) Crystal structure and formula revision of deliensite, Fe $[(UO₂)₂(SO₄)₂(OH)₂](H2O)₇$. Mineral Mag 76 (7):2837–2860
- Plášil J, Hloušek J, Veselovský F, Fejfarová K, Dušek M, Škoda R, Novák M, Čejka J, Ondruš P (2012b) Adolfpateraite, $K(UO₂)(SO₄)(OH)(H₂O)$, a new uranyl sulphate mineral from Jáchymov, Czech Republic. Am Mineral 97(2–3):447–454
- Plášil J, Kasatkin AV, Škoda R, Novák M, Kallistová A, Dušek M, Skála R, Fejfarová K, Čejka J, Meisser N, Goethals H, Machovič V, Lapčák L (2013a) Leydetite, $Fe(UO₂)(SO₄)₂(H₂O)₁₁$, a new uranyl sulfate mineral from Mas d'Alary, Lodève, France. Mineral Mag 77 (4):429–441
- Plášil J, Fejfarová K, Hloušek J, Škoda R, Novák M, Sejkora J, Čejka J, Dušek M, Veselovský F, Ondruš P, Majzlan J, Mrázek Z (2013b) Štěpite, U (AsO3OH)2∙4H2O, from Jáchymov, Czech Republic: the first natural arsenate of tetravalent uranium. Mineral Mag 77(1):137–152
- Plášil J, Kampf AR, Kasatkin AV, Marty J, Škoda R, Silva S, Čejka J (2013c) Meisserite, $Na₅(UO₂)$ $(SO₄)₃(SO₃OH)(H₂O)$ a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineral Mag 77(7):2975–2988
- Plášil J, Hloušek J, Škoda R, Sejkora Čejka J, Veselovský F, Majzlan J (2013d) Vysokýite, U⁴⁺[AsO₂(OH)₂]₄⋅4H₂O, a new mineral from Jáchymov, Czech Republic. Mineral Mag 77(8):3055–3066
- Plášil J, Kampf AR, Kasatkin AV, Marty J (2014a) Bluelizardite, $Na₇(UO₂)(SO₄)₄Cl(H₂O)₂$, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. J Geosci 59(2):145–158
- Plášil J, Škoda R, Fejfarová K, Čejka J, Kasatkin AV, Dušek M, Talla D, Lapčák L, Machovič V, Dini M (2014b) Hydroniumjarosite, $(H_3O)^+Fe_3(SO_4)_2(OH)_6$, from Cerros Pintados, Chile: single-crystal X-ray diffraction and vibrational spectroscopic study. Mineral Mag 78(3):535–547
- Plášil J, Veselovský F, Hloušek J, Škoda R, Novák M, Sejkora J, Čejka J, Škácha P, Kasatkin AV (2014c) Mathesiusite, $K_5({UO_2})_4({SO_4})_4({VO_5})({H_2O})_4$, a new uranyl vanadate-sulfate from Jáchymov, Czech Republic. Am Mineral 99(4):625–632
- Plášil J, Čejka J, Škoda R (2014d) Chalcoalumite, CuAl₄(SO₄)(OH)₁₂⋅3H₂O, from the Červená vein, Jáchymov (Czech Republic). Bull Mineral-petrolog Odd Nár Muz (Praha) 22(2):227–232. ISSN 1211- 0329. (in Czech)
- Plášil J, Hloušek J, Kasatkin AV, Belakovskiy DI, Čejka J, Chernyshov D (2015a) Ježekite, $\text{Na}_8[(\text{UO}_2)(\text{CO}_3)_3]$ (SO4)2∙3H2O, a new uranyl mineral from Jáchymov, Czech Republic. J Geosci 60(4):259–267
- Plášil J, Hloušek J, Kasatkin AV, Novák M, Čejka J, Lapčák L (2015b) Svornostite, $K_2Mg[(UO_2)]$ $(SO_4)_2$]₂.8H₂O, a new uranyl sulfate mineral from Jáchymov, Czech Republic. J Geosci 60(2):113–121
- Plášil J, Hloušek J, Kasatkin AV, Škoda R, Novák M, Čejka J (2015c) Geschieberite, $K_2(UO_2)$ $(SO₄)₂(H₂O)₂$, a new uranyl sulfate mineral from Jáchymov. Mineral Mag 79(1):205–216
- Plášil J, Meisser N, Čejka J (2015d) The crystal structure of $Na_6[(UO_2)(SO_4)_4](H_2O)_4$: X-ray and Raman spectroscopy study. Can Mineral. [https://doi.org/10.3749/](https://doi.org/10.3749/canmin.1400095) [canmin.1400095](https://doi.org/10.3749/canmin.1400095)
- Plášil J, Sejkora J, Čejka J, Pavlíček R, Babka K, Škoda R (2016a) Výskyt boltwooditu na uranovém ložisku Kladská (Česká republika). Bull Mineral-petrolog Odd Nár Muz (Praha) 24(2):298–303. ISSN 1211- 0329. (in Czech)
- Plášil J, Škoda R, Čejka J, Bourgoin V, Boulliard JC (2016b) Crystal structure of the uranyl-oxide mineral rameauite. Eur J Mineral. [https://doi.org/10.1127/ejm/](https://doi.org/10.1127/ejm/2016/0028-2568) [2016/0028-2568](https://doi.org/10.1127/ejm/2016/0028-2568)
- Plášil J, Škácha P, Sejkora J, Kampf AR, Škoda R, Čejka J, Hloušek J, Kasatkin AV, Pavlíček R, Babka K (2017) Plavnoite, a new K–Mn member of the zippeite group from Jáchymov, Czech Republic. Eur J Mineral 29:117–128
- Podsiadlo S, Weisbrod G, Bialoglowski M, Jastrzebski D, Fadaghi M, Ostrowski A (2015) Synthesis and crystal growth of microcrystals of the cubic and new orthorhombic polymorphs of $(NH_4)_2$ SnCl₆. Cryst Res Technol 50(9–10):764–768
- Pookmanee P, Kojinok S, Puntharod R, Sangsrichan S, Phanichphant S (2013) Preparation and characterization of BiVO₄ powder by the sol-gel method. Ferroelectrics 456(1):45–54
- Popov VA, Kolisnichenko SV, Blinov IA (2016) Nickelean copper and nakauriite from the Blue vein in ultramafites of the Verkhniy Ufaley Region, Southern Urals. Preprint of the Institute of Mineralogy,

Uralian Branch of the Russian Academy of Sciences, Miass. (in Russian)

- Popović L, Manoun B, De Waal D, Nieuwoudt MK, Comins JD (2003) Raman spectroscopic study of phase transitions in Li3PO4. J Raman Spectrosc 34 (1):77–83
- Popović ZV, Konstantinović MJ, Dohčević-Mitrović Z, Isobe M, Ueda Y (2006) Orbital and lattice dynamics in pyroxenes. Phys B Condens Matter 378:1072–1074
- Porta P, Minelli G, Botto IL, Baran EJ (1991) Structural, magnetic, and optical investigation of $Ni₆MnO₈$. J Solid State Chem 92(1):202–207
- Porter Y, Halasyamani PS (2003) Syntheses, structures, and characterization of new lead (II)-tellurium (IV) oxide halides: $Pb_3Te_2O_6X_2$ and $Pb_3TeO_4X_2$ (X = Cl or Br). Inorg Chem 42(1):205–209
- Porter Y, Bhuvanesh NSP, Halasyamani PS (2001) Synthesis and characterization of non-centrosymmetric TeSeO4. Inorg Chem 40(6):1172–1175
- Porto SPS, Fleury PA, Damen TC (1967) Raman Spectra of TiO₂, MgF_2 , ZnF_2 , FeF_2 , and MnF_2 . Phys Rev 154 (2):522–526
- Postl W, Moser B (1988) Nakauriite from Lobminggraben. Mineralogische Notizen aus der Steiermark. Mitt Abt Miner Landesmuseum Joanneum 56:5–47. (in German)
- Potgieter-Vermaak S, Rotondo G, Novakovic V, Rollins S, Van Grieken R (2012) Component-specific toxic concerns of the inhalable fraction of urban road dust. Environ Geochem Health 34(6):689–696
- Poudret L, Prior TJ, McIntyre LJ, Fogg AM (2008) Synthesis and crystal structures of new lanthanide hydroxyhalide anion exchange materials, Ln₂(OH)₅X⋅1.5H₂O (X = Cl, Br; Ln = Y, Dy, Er, Yb). Chem Mater 20(24):7447–7453
- Poupon M, Barrier N, Petit S, Clevers S, Dupray V (2015) Hydrothermal synthesis and dehydration $CaTeO₃(H₂O)$: an original route to generate new $CaTeO₃$ polymorphs. Inorg Chem $54(12):5660-5670$
- Povarennykh AS (1970) Spectres infrarouges de certains minéraux de Madagascar. Bull Soc Fr Minéral Cristallogr 93:224–234. (in French)
- Powers DA, Rossman GR, Schugar HJ, Gray HB (1975) Magnetic behavior and infrared spectra of jarosite, basic iron sulfate, and their chromate analogs. J Solid State Chem 13(1–2):1–13
- Pradhan AK, Choudhary RNP (1987) Vibrational spectra of rare earth orthoniobates. Phys Status Solidi B 143: K161–K166
- Pradhan AK, Choudhary RNP, Wanklyn BM (1987) Raman and infrared spectra of YAsO4. Phys Status Solidi B 139:337–334
- Prasad PSR, Prasad KS (2007) Dehydration behavior of natural cavansite: an in-situ FTIR and Raman spectroscopic study. Mater Chem Phys 105(2):395–400
- Prekajski M, Kremenović A, Babić B, Rosić M, Matović B, Radosavljević-Mihajlović A, Radović M (2010) Room-temperature synthesis of nanometric α-Bi₂O₃. Mater Lett 64(20):2247–2250
- Price LS, Parkin IP, Hardy AM, Clark RJ, Hibbert TG, Molloy KC (1999) Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, $Sn₂S₃$, and SnS₂) on glass. Chem Mater 11(7):1792–1799
- Pring A, Kolitsch U, Birch WD (2005) Description and unique crystal-structure of waterhouseite, a new hydroxy manganese phosphate species from the Iron Monarch deposit, Middleback Ranges, South Australia. Can Mineral 43(4):1401–1410
- Pring A, Wallwork K, Brugger J, Kolitsch U (2006) Paratooite-(La), a new lanthanum-dominant rare-earth copper carbonate from Paratoo, South Australia. Mineral Mag 70(1):131–138
- Prinsloo LC, Colomban P, Brink JD, Meiklejohn I (2011) A Raman spectroscopic study of the igneous rocks on Marion Island: a possible terrestrial analogue for the geology on Mars. J Raman Spectrosc 42(4):626–632
- Prodjosantoso AK, Laksono EW, Utomo MP (2015) Sintesis dan karaterisasi SnO₂ sebagai upaya pengembangan produk hilir timah putih untuk meningkatkan devisa nasional. J Penelitian Saintek 16(2):99–110. (in Indonesian)
- Psycharis V, Kapoutsis IA, Chryssikos GD (1999) Crystal structure and vibrational spectra of $Li₂BAlO₄$. J Solid State Chem 142(1):214–219
- Ptak M, Mączka M, Pikul A, Tomaszewski PE, Hanuza J (2014) Magnetic and low temperature phonon studies of CoCr2O4 powders doped with Fe(III) and Ni (II) ions. J Solid State Chem 212:218–226
- Pucka G, Dobosz SM, Paluszkiewicz CZ (2000) Mechanizm wiązania mas fosforanowych w świetle badań spektroskopowych w podczerwieni. Krzepnięcie Metalii Stopów 2(44):521–526. (in Polish)
- Qader M (2011) Identification and dissolution behavior of the secondary uranium minerals in the corrosion products of Depleted Uranium (DU) ammunition formed in soils. Dissertation. Johannes Gutenberg-Universität Mainz
- Qiong LIU, Yiguo SU, Hongsheng YU, Wei HAN (2008) YPO4 nanocrystals: preparation and size-induced lattice symmetry enhancement. J Rare Earths 26 (4):495–500
- Qiu X, Ji S, Chen C, Liu G, Ye C (2013) Synthesis, characterization, and surface-enhanced Raman scattering of near infrared absorbing $Cu₃SbS₃$ nanocrystals. Cryst Eng Comm 15(48):10431–10434
- Raade G, Mladeck MH, Kristiansen R, Din VK (1984) Kaatialaite, a new ferric arsenate mineral from Finland. Amer Mineral 69:383–387
- Raade G, Grice JD, Erambert M, Kristiansson P, Witzke T (2008) Proshchenkoite-(Y) from Russia – a new mineral species in the vicanite group: descriptive data and crystal structure. Mineral Mag 72:1071–1082
- Raade G, Grice JD, Rowe R (2016) Ferrivauxite, a new phosphate mineral from Llallagua, Bolivia. Mineral Mag 80(2):311–324
- Radepont M (2013) Understanding of chemical reactions involved in pigment discoloration, inparticular in mercury sulfide (HgS) blackening. Analytical chemistry.

Dissertation, Université Pierre et Marie Curie, Universiteit Antwerpen. (in English)

- Radica F, Capitelli F, Bellatreccia F, Della Ventura G, Cavallo A, Piccinini M, Hawthorne FC (2013) Spectroscopy and X-ray structure refinement of sekaninaite from Dolní Bory (Czech Republic). Mineral Mag 77 (4):485–498
- Rafique MY, Li-Qing P, Iqbal MZ, Hong-Mei Q, Farooq MH, Zhen-Gang G, Tanveer M (2013) Growth of monodisperse nanospheres of MnFe₂O₄ with enhanced magnetic and optical properties. Chin Phys B 22 (10):107101-1–107101-7
- Raison PE, Jardin R, Bouëxière D, Konings RJM, Geisler T, Pavel CC, Rebizant J, Popa K (2008) Structural investigation of the synthetic CaAn(PO₄)₂ (An = Th and Np) cheralite-like phosphates. Phys Chem Minerals 35(10):603–609
- Raj AME, Jayanthi DD, Jothy VB (2008) Optimized growth and characterization of cadmium oxalate single crystals in silica gel. Solid State Sci 10(5):557–562
- Rajaji V, Malavi PS, Yamijala SSRKC, Sorb YA, Dutta U, Guin SN, Joseph B, Pati SK, Biswas K, Narayana C (2016) Pressure induced structural, electronic topological, and semiconductor to metal transition in AgBiSe₂. Appl Phys Lett 109(17):171903-1–171903-5
- Rakovan J, Schmidt GR, Gunter ME, Nash B, Marty J, Kampf AR, Wise WS (2011) Hughesite, Na₃AlV₁₀O₂₈⋅22H₂O, a new member of the pascoite family of minerals from the Sunday mine, San Miguel County, Colorado. Can Mineral 49(5):1253–1265
- Ramakrishnan V, Aruldhas G (1987) Raman and infrared studies of Na2HPO4∙2H2O. J Raman Spectrosc 18 (2):145–146
- Ramanaiah MV, Ravikumar RVSSN, Srinivasulu G, Reddy BJ, Rao PS (1996) Detailed spectroscopic studies on cornetite from Southern Shaba, Zaire. Ferroelectrics 175(1):175–182
- Ramaraghavulu R, Sivaiah K, Buddhudu S (2012) Structural and dielectric properties of $LiV₃O₈$ ceramic powders. Ferroelectrics 432(1):55–64
- Rancourt DG, Mercier PHJ, Cherniak DJ, Desgreniers S, Kodama H, Robert JL, Murad E (2001) Mechanisms and crystal chemistry of oxidation in annite: resolving the hydrogen-loss and vacancy reactions. Clays Clay Minerals 49(6):455–491
- Rangan KK, Prasad BR, Subramanian Gopalakrishnan J (1993) Coupled substitution of niobium and silicon in KTiOPO₄ and KTiOAsO₄. Synthesis and nonlinear optical properties of KTi_{1-} $xNb_xOX_{1-x}Si_xO4$ (X = P, As). Inorg Chem 32 (20):4291–4293
- Ranieri V, Bourgogne D, Darracq S, Cambon M, Haines J, Cambon O, Leparc R, Levelut C, Largeteau A, Demazeau G (2009) Raman scattering study of α -quartz and $\text{Si}_{1-x}\text{Ge}_x\text{O}_2$ solid solutions. Phys Rev B 79:1–9
- Rao BL (1941) Raman spectra of some crystalline nitrates and sulphates. Proc Indian Acad Sci 14:48–55. [https://](https://doi.org/10.1007/BF03049125) doi.org/10.1007/BF03049125
- Rao KS, Buddhudu S (2010) Structural, thermal and dielectric properties of BiNbO₄ ceramic powder. Ferroelectrics Lett 37(6):101–109
- Rao C, Wang RC, Hu H (2011) Paragenetic assemblages of beryllium silicates and phosphates from the Nanping no. 31 granitic pegmatite dyke, Fujian province, southeastern China. Can Mineral 49(5):1175–1187
- Rao C, Wang R, Hatert F, Gu X, Ottolini L, Hu H, Dong C, Dal Bo F, Baijot M (2014) Strontiohurlbutite, $SrBe₂(PO₄)₂$, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China. Am Mineral 99(2–3):494–499
- Rao C, Hatert F, Wang RC, Gu XP, Dal Bo F, Dong CW (2015) Minjiangite, $BaBe_2(PO_4)_2$, a new mineral from Nanping No. 31 pegmatite, Fujian Province, southeastern China. Mineral Mag 79(5):1195–1202
- Raschke MB, Anderson EJ, Allaz J, Friis H, Smyth JR, Tschernich R, Becker R (2016) Crystal chemistry of brannockite, $KLi_3Sn_2Si_{12}O_{30}$, from a new occurrence in the Golden Horn Batholith, Washington State, USA. Eur J Mineral 28(1):153–161
- Rath T, MacLachlan AJ, Brown MD, Haque SA (2015) Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates. J Mater Chem A 3(47):24155–24162
- Ratheesh R, Suresh G, Nayar VU, Morris RE (1997) Vibrational spectra of three aluminium selenities $\text{Al}_2(\text{SeO}_3)_3$ ∙3H₂O, $\text{Al}_2(\text{SeO}_3)_3$ ∙6H₂O and AlH (SeO3)2∙H2O. Spectrochim Acta A 53(12):1975–1979
- Ratnam BV, Jayasimhadri M, Jang K (2014) Luminescent properties of orange emissive Sm^{3+} –activated thermally stable phosphate phosphor for optical devices. Spectrochim Acta A 132:563–567
- Rauch M, Keppler H, Häfner W, Poe B, Wokaun A (1996) A pressure-induced phase transition in $MgSiO₃$ -rich garnet revealed by Raman spectroscopy. Am Mineral 81:1289–1292
- Ravi V, Adyanthaya S, Aslam M, Pethkar S, Choube VD (1999) Synthesis of bismuth tin pyrochlore. Mater Lett 40(1):11–13
- Ravikumar RVSSN, Chandrasekhar AV, Reddy BJ, Reddy YP, Ikeda K (2002) X-Ray powder diffraction, DTA and vibrational studies of CdNH₄PO₄⋅6H₂O crystals. Crystal Res Technol 37(10):1127–1132
- Ravindran TR, Arora AK, Parthasarathy G (2012) Raman spectroscopic study of pressure induced amorphization in cavansite. J Phys. [https://doi.org/10.1088/1742-](https://doi.org/10.1088/1742-6596/377/1/012004) [6596/377/1/012004](https://doi.org/10.1088/1742-6596/377/1/012004)
- Reddy BJ, Frost RL (2005) Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba. Spectrochim Acta A 61(8):1721–1728
- Reddy BJ, Frost RL (2007) Electronic and vibrational spectra of Mn rich sursassite. Spectrochim Acta A 66 (2):312–317
- Reddy KM, Moorthy LR, Reddy BJ (1987) Electronic and vibrational absorption spectra in falcondoite. Solid State Commun 64(7):1085–1088
- Reddy BJ, Frost RL, Martens WN (2005) Characterization of conichalcite by SEM, FTIR, Raman and electronic reflectance spectroscopy. Mineral Mag 69 (2):155–167
- Reddy SL, Reddy GS, Wain DL, Martens WN, Reddy BJ, Frost RL (2006) Electron paramagnetic resonance, optical absorption and IR spectroscopic studies of the sulphate mineral apjohnite. Spectrochim Acta A 65 (5):1227–1233
- Reddy SL, Maheswaramma KS, Reddy GS, Reddy BJ, Endo T, Frost RL (2010) Optical absorption, infrared, Raman, and EPR spectral studies on natural iowaite mineral. Transition Met Chem 35(3):331–336
- Reich S, Ferrari AC, Arenal R, Loiseau A, Bello I, Robertson J (2005) Resonant Raman scattering in cubic and hexagonal boron nitride. Phys Rev B 71 (20):205201-1–205201-12
- Rémazeilles C, Refait P (2009) Fe(II) hydroxycarbonate $Fe₂(OH)₂CO₃$ (chukanovite) as iron corrosion product: synthesis and study by Fourier Transform Infrared Spectroscopy. Polyhedron 28(4):749–756
- Rémazeilles C, Saheb M, Neff D, Guilminot E, Tran K, Bourdoiseau J-A, Sabot R, Jeannin M, Matthiesen H, Dillmann P, Refait P (2010) Microbiologically influenced corrosion of archaeological artefacts: characterisation of iron(II) sulfides by Raman spectroscopy. J Raman Spectrosc 41(11):1425–1433
- Remy C, Reynard B, Madon M (1997) Raman spectroscopic investigations of dicalcium silicate: polymorphs and high-temperature phase transformations. J Am Ceram Soc 80(2):413–423
- Ren Y, Ximen L, Peng Z (1983) Daqingshanite a new mineral recently discovered in China. Geochem 2:180–184
- Ren L, Grew ES, Xiong M, Ma Z (2003) Wagnerite-*Ma5bc*, a new polytype of $Mg_2(PO_4)(F,OH)$, from granulite-faciesparagneiss, Larsemann Hills, Prydz Bay, East Antarctica. Can Mineral 41:393–411
- Renaudin G, Segni R, Mentel D, Nedelec JM, Leroux F, Taviot-Gueho C (2007) A Raman study of the sulfated cement hydrates: ettringite and monosulfoaluminate. J Adv Concr Technol 5(3):299–312
- Repelin Y, Husson E, Brusset H (1979) Etude par spectroscopies d'absorptioni.r. et de diffusion Raman des composés $A^{II}B^{V}{}_{2}O_{6}$ de structure de type "blocs 1×2 " – I. Etude du niobate de Baryum BaNb2O6. Spectrochim Acta A 35:937–948. (in French)
- Repelin Y, Husson E, Dao NQ, Brusset H (1980) Etude par spectroscopies d'absorption i.r. et de diffusion Raman des composés $A^{II}B^{V}{}_{2}O_{6}$ de structure de type "blocs $1 \times 2"$ – III. Etude des niobate et tantalite de plomb rhomboèdriques $PbNb₂O₆$ et $PbTa₂O₆$. Spectrochim Acta A 36:253–258. (in French)
- Reshak AH, Chen X, Auluck S, Kamarudin H (2012a) Structural, electronic properties and charge density distribution of the $LiNaB₄O₇$: theory and experiment. Mater Chem Phys 137(1):346–352
- Reshak AH, Chen X, Auluck S, Kamarudin H (2012b) Single-crystal oxoborate $(Pb_3O)_2(BO_3)_2WO_4$: growth and characterization. Mater Res Bull 47:2552–2560
- Reshetnyak NB, Bukanov VV (1991) A method of non-destructive diagnosis of gems (laser spectroscopy of Raman scattering of light). Geoinformmark, Moscow. (in Russian)
- Reynard B, Guyot F (1994) High-temperature properties of geikielite ($MgTiO₃$ -ilmenite) from high-temperature high-pressure Raman spectroscopy – some implications for $MgSiO_3$ -ilmenite. Phys Chem Minerals 21(7):441–450
- Reynard B, Bezacier L, Caracas R (2015) Serpentines, talc, chlorites, and their high-pressure phase transitions: a Raman spectroscopic study. Phys Chem Miner 42(8):641–649
- Ribeiro J, Flores D, Ward CR, Silva LF (2010) Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Scie Total Environ 408 (23):6032–6041
- Richet P (1990) GeO_2 vs SiO_2 : glass transition and thermodynamic properties of polymorphs. Phys Chem Minerals 17:79–88
- Richet P, Mysen BO, Ingrin J (1998) High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys Chem Mineral 25 (6) :401–414
- Richman I (1966) Raman spectra of YPO₄ and YbPO₄. JOSA 56(11):1589–1590
- Richter W, Köhler H, Becker CR (1977) A Raman and far-infrared investigation of phonons in the rhombohedral V_2-VI_3 compounds Bi_2Te_3 , Bi_2Se_3 , Sb_2Te_3 and $Bi_2Te_{1-x}Se_x$)₃ (0 <x< 1), $Bi_{1-y}Sb_y$)₂Te₃ (0 <y< 1). Phys Status Solidi B 84(2):619–628
- Rickers K, Thomas R, Heinrich W (2006) The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: a SXRF study of melt and fluid inclusions. Mineral Deposita 41:229–245
- Rieger F, Mudring A-V (2007) Phase transition in Tl_2TeO_3 : influence and origin of the thallium lone pair distortion. Inorg Chem 46(2):446–452
- Rigotti G, Punte G, Rivero BE, Escobar ME, Baran EJ (1981) Crystal data and vibrational spectra of the rare earth decavanadates. J Inorg Nucl Chem 43 (11):2811–2814
- Rigotti G, Lavat AE, Escobar ME, Baran EJ (1983) KristallographischeDaten, IR-Spektrum und thermisches Verhalten von Aluminium-Dekavanadat. Z anorg allg Chemie 501(6):184–190. (in German)
- Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Mineral 41(4):883–890
- Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral Mag 68(3):455–465
- Rinaudo C, Cairo S, Gastaldi D, Gianfagna A, Mazziotti Tagliani S, Tosi G, Conti C (2006) Characterization of fluoro-edenite by μ-Raman and μ-FTIR spectroscopy. Mineral Mag 70(3):291–298
- Rincón C, Quintero M, Power C, Moreno E, Quintero E, Henao JA, Macías MA, Morocoima M (2015) Raman spectra of $Cu₂B^{II}C^{IV}X^{VI}₄$ magnetic quaternary semiconductor compounds with tetragonal stannite type structure. J Appl Phys 117(20):205701-1– 205701-6
- Rintoul L, Bahfenne S, Frost RL (2011) Single-crystal Raman spectroscopy of brandholzite Mg[Sb (OH)6]2∙6H2O and bottinoite Ni[Sb(OH)6]2∙6H2O and the polycrystalline Raman spectrum of mopungite Na[Sb(OH)₆]. J Raman Spectrosc 42(5):1147–1153
- Riquelme F, Ruvalcaba-Sil JL, Alvarado-Ortega J, Estrada-Ruiz E, Galicia-Chávez M, Porras-Múzquiz H, Stojanoff V, Siddons DP, Miller L (2014) Amber from México: coahuilite, simojovelite and bacalite. In: MRS Proceedings, vol 1618. Cambridge University Press, pp 169–180. [https://doi.](https://doi.org/10.1557/opl.2014.466) [org/10.1557/opl.2014.466](https://doi.org/10.1557/opl.2014.466)
- Rissom C, Schmidt H, Voigt W (2008) Crystal structure and thermal properties of a new double salt: K2SiF6∙KNO3. Cryst Res Technol 43(1):74–82
- Ristić M, Popović S, Musić S (2005) Application of sol– gel method in the synthesis of gallium (III)-oxide. Mater Lett 59(10):1227–1233
- Rius J, Allmann R (1984) The superstructure of the double layer mineral wermlandite $[Mg_7(Al_{0.57}Fe^{3+}{}_{0.43})$ $(OH)_{18}]^{2+}$: $[(Ca_{0.6}, Mg_{0.4})(SO_4)_2(H_2O)_{12}]^{2-}$. Z Kristallogr 168:133–144
- Rocchiccioli-Deltcheff C (1973) Comparaison des spectres d'absorption infrarouge de niobates et tantalates de mètaux monovalents. Spectrochim Acta A 29(1):93–106. (in French)
- Rocha AL, Baran EJ (1988) Spektroskopisches und thermisches Verhalten vom VOSeO3∙3H2O und VOSeO₃. Z anorg allg Chemie $564(1):141-147$. (in German)
- Rocha J, Brandāo P, Lin Z, Kharlamov A, Anderson MW (1996) Novel microporous titanium–niobium–silicates with the structure of nenadkevichite. Chem Commun 5:669–670
- Rocquet P, Couzi M, Tressaud A, Chaminade JP, Hauw C (1985) Structural phase transition in chiolite $Na₅Al₃F₁₄$. I. Raman scattering and X-ray diffraction study. J Phys C 18(36):6555–6569
- Rodgers KA (1992) The laser Raman identity of gibbsite pseudomorphous after crocoite from Dundas, Tasmania. Papers Proc Royal Soc Tasmania 126:95–99
- Rodgers KA (1993) Routine identification of aluminium hydroxide polymorphs with the laser Raman microprobe. Clay Minerals 28(1):85–99
- Rodgers K, Gregory MR, Cooney RP (1989) Bayerite, Al (OH) ₃ from Raoul Island, Kermadec Group, South Pacific. Clay Minerals 24(3):531–538
- Rodgers KA, Kobe HW, Childs CW (1993) Characterization of vivianite from Catavi, Llallagua, Bolivia. Mineral Petrol 47(2–4):193–208
- Rodríguez-Clemente R, Serna CJ, Ocaña M, Matijević E (1994) The relationship of particle morphology and structure of basic copper (II) compounds obtained by homogeneous precipitation. J Cryst Growth 143 (3):277–286
- Romann J, Chevallier V, Merlen A, Valmalette JC (2009) Self-assembly and Raman spectroscopy of additive coated nanocrystals. MRS Proc. [https://doi.org/10.](https://doi.org/10.1557/PROC-1176-Y06-20) [1557/PROC-1176-Y06-20](https://doi.org/10.1557/PROC-1176-Y06-20)
- Romero M, Gómez RW, Marquina V, Pérez-Mazariego JL, Escamilla R (2014) Synthesis by molten salt method of the AFeO₃ system $(A = La, Gd)$ and its structural, vibrational and internal hyperfine magnetic field characterization. Phys B 443
- Roncaglia DI, Botto IL, Baran EJ (1985) Vibrational spectrum of Pb_2CrO_5 . J Mater Sci Lett 4:1427-1428
- Roncaglia DI, Botto IL, Baran EJ (1993) Vibrational spectrum of synthetic rooseveltite. N Jb Miner Mh 6:249–253
- Ronchi L-H (2003) Contribution à la connaissance de la ceinture à fluorine du Vale do Ribeira (Parana-Sao Paulo), Brésil. Etude géologique, minéralogique et géochimique. Thèse, Université d'Orléans. (in French)
- Rondeau B, Fritsch E, Lefevre P, Guiraud M, Fransolet A-M, Lulzac Y (2006) A Raman investigation of the amblygonite–montebrasite series. Can Mineral 44 (5):1109–1117
- Roqué-Rosell J, Mosselmans JFW, Proenza JA, Labrador M, Galí S, Atkinson KD, Quinn PD (2010) Sorption of Ni by "lithiophorite-asbolane" intermediates in Moa Bay lateritic deposits, eastern Cuba. Chem Geol 275(1):9–18
- Rosasco GJ, Blaha JJ (1980) Raman microprobe spectra and vibrational mode assignments of talc. Appl Spectrosc 34(2):140–144
- Rosi F, Manuali V, Miliani C, Brunetti BG, Sgamellotti A, Grygar T, Hradil D (2009) Raman scattering features of lead pyroantimonate compounds. Part I: XRD and Raman characterization of $Pb_2Sb_2O_7$ doped with tin and zinc. J Raman Spectrosc 40(1):107–111
- Rosi F, Grazia C, Gabrieli F, Romani A, Paolantoni M, Vivani R, Brunetti BG, Colomban P, Miliani C (2016) UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of $Cd_{1-x}Zn_xS$ solid solutions in cadmium yellow pigments. Microchem J 124:856–867
- Ross SD (1972) The vibrational spectra of some minerals containing tetrahedrally co-ordinated boron. Spectrochim Acta A 28(8):1555–1561
- Rotondo GG, Darchuk L, Swaenen M, Van Grieken R (2012) Micro-Raman and SEM analysis of minerals from the Darhib mine, Egypt. J Anal Sci Methods Instrum 2:42–47
- Rouchon V, Badet H, Belhadj O, Bonnerot O, Lavédrine B, Michard JG, Miska S (2012) Raman and FTIR spectroscopy applied to the conservation report of paleontological collections: identification of Raman and FTIR signatures of several iron sulfate species such as ferrinatrite and sideronatrite. J Raman Spectrosc 43(9):1265–1274
- Roy BN (1987) Spectroscopic analysis of the structure of silicate glasses along the joint $xMAIO_2-(1-x)SiO_2$ $(M = Li, Na, K, Rb, Cs)$. J Amer Ceram Soc 70 (3):183–192
- Roy P, Srivastava SK, Nayak BB, Saxena AK (2008) Morphology evolution of $Sb₂S₃$ under hydrothermal conditions: flowerlike structure to nanorods. Cryst Growth Design 8(6):2019–2023
- Rozov K, Berner U, Taviot-Gueho C, Leroux F, Renaudin G, Kulik D, Diamond LW (2010) Synthesis and characterization of the LDH hydrotalcitepyroaurite solid solution series. Cem Concr Res 40:1248–1254
- Rozov KB, Berner U, Kulik DA, Diamond LW (2011) Solubility and thermodynamic properties of carbonatebearing hydrotalcite–pyroaurite solid solutions with a 3:1 Mg/(Al+ Fe) mole ratio. Clays Clay Minerals 59 (3):215–232
- RRUFF (2007) Infrared spectrum for heklaite. [http://rruff.](http://rruff.info/heklaite/display=default/) [info/heklaite/display](http://rruff.info/heklaite/display=default/)=[default/.](http://rruff.info/heklaite/display=default/) Accessed 5 Apr 2007
- Ruan HD, Frost RL, Kloprogge JT (2001) Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. J Raman Spectrosc 32 (9):745–750
- Ruiz-Fuertes J, López-Moreno S, Errandonea D, Pellicer-Porres J, Lacomba-Perales R, Segura A, Rodríguez-Hernández P, Muñoz A, Romero AH, González J (2010) High-pressure phase transitions and compressibility of wolframite-type tungstates. J Appl Phys 107 (8):083506-01–083506-10
- Rull F, Guerrero J, Venegas G, Gázquez F, Medina J (2014) Spectroscopic Raman study of sulphate precipitation sequence in Rio Tinto mining district (SW Spain). Environ Sci Pollut Res 21(11):6783–6792
- Rulmont A (1972) Spectre infra-rouge de quelques oxyhalogénures de bismuth et de terres rares. Spectrochim Acta A 28:1287–1296. (in French)
- Rulmont A, Almou M (1989) Vibrational spectra of metaborates with infinite chain structure: $LiBO₂$, $CaB₂O₄$, SrB₂O₄. Spectrochim Acta A 45(5):603–610
- Rulmont A, Tarte P (1987) Infrared spectrum of crystalline and glassy borosilicates $M^{I}BSi_{2}O_{6}$. J Mater Sci Lett 6 $(1):38-40$
- Rulmont A, Tarte P, Winand JM (1987) Vibrational spectrum of crystalline and glassy LiBGeO₄: structural analogies with BAsO4. J Mater Sci Lett 6(6):659–662
- Rulmont A, Tarte P, Choisnet J (1992) Vibrational spectra of tellurates with the garnet structure. Spectrochim Acta A 48(7):921–930
- Runčevski T, Wu C, Yu H, Yang B, Dinnebier RE (2013) Structural characterization of a new magnesium oxysulfate hydrate cement phase and its surface reactions with atmospheric carbon dioxide. J Am Ceram Soc 96(11):3609–3616
- Ruschel K, Nasdala L, Kronz A, Hanchar JM, Többens DM, Škoda R, Finger F, Möller A (2012) A Raman spectroscopic study on the structural disorder of monazite-(Ce). Mineral Petrol 105(1–2): 41–55
- Russell JD, Milodowski AE, Fraser AR, Clark DR (1983) New IR and XRD data for leadhillite of ideal composition. Mineral Mag 47:371–375
- Russo V, Bailini A, Zamboni M, Passoni M, Conti C, Casari CS, Li Bassi A, Bottani CE (2008) Raman spectroscopy of Bi-Te thin films. J Raman Spectrosc 39(2):205–210
- Rutt HN, Nicola JH (1974) Raman spectra of carbonates of calcite structure. J Phys C 7(24):4522–4528
- Ryskin YI, Stavitskaya GP (1990) Asymmetry of the water molecule in crystal hydrates: IR spectra of dioptase and apophyllite. Bull Acad Sci URRS Chem Sci 39:1610–1614
- Saad S, Obbade S, Yagoubi S, Renard C, Abraham F (2008) A new uranyl niobate sheet in the cesium uranyl niobate $Cs_9[(UO_2)_8O_4(NbO_5)(Nb_2O_8)_2]$. J Solid State Chem 181(4):741–750
- Sabadel JC, Armand P, Cachau-Herreillat D, Baldeck P, Doclot O, Ibanez A, Philippot E (1997) Structural and nonlinear optical characterizations of tellurium oxidebased glasses: $TeO₂-BaO-TiO₂$. J Solid State Chem 132(2):411–419
- Sagatowska I (2010) Chromite in serpentine mud volcanoes of the Mariana forearc: implications for abiotic organic reactions. Dissertation, Stockholm Unisersity
- Saheb M, Neff D, Bellot-Gurlet L, Dillmann P (2011) Raman study of a deuterated iron hydroxycarbonate to assess long-term corrosion mechanisms in anoxic soils. J Raman Spectrosc 42(5):1100–1108
- Sahoo PP, Sumithra S, Madras G, Row TG (2009) Synthesis, structure and photocatalytic properties of $β$ -ZrMo₂O₈. Bull Mater Sci 32(3):337–342
- Sakai A, Negishi M, Fujiwara E, Moriyoshi C, Itoh K (2001) Micro-Raman apectra of langbeinite-type $K_2Mn_2(SO_4)$ ₃ and $(NH_4)_2Cd_2(SO_4)$ ₃ near the phase transition temperature. J Phys Soc Jpn 70 (11):3452–3456
- Sakurai T, Ohno H, Horikawa S, Iizuka Y, Uchida T, Hondoh T (2010) A technique for measuring microparticles in polar ice using micro-Raman spectroscopy. Int J Spectrosc. [https://doi.org/10.1155/](https://doi.org/10.1155/2010/384956) [2010/384956](https://doi.org/10.1155/2010/384956)
- Salentine CG (1987) Synthesis, characterization, and crystal structure of a new potassium borate, KB3O5∙3H2O. Inorg Chem 26(1):128–132
- Salvadó MA, Pertierra P, Bortun AI, Trobajo C, García JR (2005) New hydrothermal synthesis and structure of $Th_2(PO_4)_2(HPO_4)·H_2O$: the first structurally characterized thorium hydrogen phosphate. Inorg Chem 44(10):3512–3517
- Sanchez C, Livage J, Lucazeau G (1982) Infrared and Raman study of amorphous V_2O_5 . J Raman Spectrosc 12(1):68–72
- Sanchez-Moral S, Fernandez-Cortes A, Cuezva S, Cañaveras JC, Correcher V, Miller AZ, Dionisio A, Marques JM, Saiz-Jimenez C, Afonso MJ, Chaminé HI, Furio M, Garcia-Guinea J (2011) Uranyl-evansites from Porto (Northwest Portugal) and Galicia (Northwest Spain): structure and assignment of spectra catholuminescence and Raman bands. Spectrosc Lett 44(7–8):511–515
- Sánchez-Pastor N, Cruz UA, Gigler AM, Park S, Jordan G, Schmahl W, Fernández-Díaz L (2010) Microprobe and Raman investigation of the zoning in synthetic Ca (CO3,CrO4) crystals. Revista Soc Esp Mineral 13:197–198
- Sánchez-Pastor N, Pinto AJ, Astilleros JM, Fernández-Díaz L, Gonçalves MA (2013) Raman spectroscopic characterization of a synthetic, non-stoichiometric Cu– Ba uranyl phosphate. Spectrochim Acta A 113:196–202
- Sánchez-Pastor N, Oehlerich M, Astilleros JM, Kaliwoda M, Mayr CC, Fernández-Díaz L, Schmahl WW (2016) Crystallization of ikaite and its pseudomorphic transformation into calcite: Raman spectroscopy evidence. Geochim Cosmochim Acta 175:271–281
- Saniger JM (1995) Al-O infrared vibrational frequencies of γ-alumina. Mater Lett 22(1):109–113
- Sanjeewa LD, McGuire MA, Garlea VO, Hu L, Chumanov G, McMillen CD, Kolis JW (2015) Hydrothermal synthesis and characterization of novel brackebuschite-type transition metal vanadates: $Ba₂M$ $(VO_4)_2OH$, $M = V^{3+}$, Mn^{3+} , and Fe³⁺, with interesting Jahn–Teller and spin-liquid behavior. Inorg Chem 54 (14):7014–7020
- Sanjeewa LD, McGuire MA, McMillen CD, Willett D, Chumanov G, Kolis JW (2016) Honeycomb-like $S=$ 5/2 spin-lattices in manganese (II) vanadates. Inorg Chem 55:9240–9249
- Santos VP, Soares OSGP, Bakker JJW, Pereira MFR, Órfão JJM, Gascon J, Kapteijn F, Figueiredo JL (2012) Structural and chemical disorder of cryptomelane promoted by alkali doping: influence on catalytic properties. J Catal 293:165–174
- Sapozhnikov AN, Kaneva EV, Cherepanov DI, Suvorova LF, Levitsky VI, Ivanova LA, Reznitsky LZ (2012) Vladimirivanovite, $Na_6Ca_2[Al_6Si_6O_{24}](SO_4, S_3, S_2,$ Cl)2∙H2O, a new mineral of sodalite group. Geol Ore Depos 54(7):557–564
- Sapozhnikov AN, Kaneva EP, Surorova LP, Levitsky VI, Ivanova LA (2016) Sulfhydrylbystrite, Na₅K₂Ca $[A]_6Si_6O_{24}](S_5)(SH)$, a new mineral with the LOS framework, and re-interpretation of bystrite: cancrinite-group minerals with novel extra-framework anions. Mineral Mag. [https://doi.org/10.1180/minmag.](https://doi.org/10.1180/minmag.2016.080.106) [2016.080.106](https://doi.org/10.1180/minmag.2016.080.106)
- Sarma LP, Prasad PSR, Ravikumar N (1998) Raman spectroscopic study of phase transitions in natural gypsum. J Raman Spectrosc 29(9):851–856
- Sarr O, Diop L (1984) The vibrational spectra of the crystalline tripotassium hydrogen pyrophosphates K3HP2O7∙3H2O and K3HP2O7. Spectrochim Acta A 40(11):1011–1015
- Sarr O, Diop L (1987) Ir and Raman spectra of $M_3HP_2O_7nH_2O$ (M = Na, Cs; $n = 0, 1, 9$). Correlation between the POP bridge vibrational frequencies and the POP angle value. Spectrochim Acta A 43 (8):999–1005
- Sasaki K, Tanaike O, Konno H (1998) Distinction of jarosite-group compounds by Raman spectroscopy. Can Mineral 36:1225–1235
- Sasaki K, Nakamuta Y, Hirajima T, Tuovinen OH (2009) Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 95(1):153–158
- Sato T, Aoki K, Kino R, Kuroe H, Sekine T, Hase M, Ito T, Eisaki H (2014) Raman scattering in (Cu, Zn ₃(Mo,W)₂O₉. JPS Conf Proc. [https://doi.org/10.](https://doi.org/10.7566/JPSCP.3.014035) [7566/JPSCP.3.014035](https://doi.org/10.7566/JPSCP.3.014035)
- Scheetz BE, White WB (1977) Vibrational spectra of the alkaline earth double carbonates. Am Mineral 62:36–50
- Scheuermann W, Schutte CJH (1973a) Raman and infrared spectra of BaCrO₄ and BaSeO₄. J Raman Spectrosc 1(6):605–618
- Scheuermann W, Schutte CJH (1973b) Raman and infrared spectra of SrSeO₄ and PbSeO₄. J Raman Spectrosc 1(6):619–627
- Schiffer J, Hornig DF (1961) On a reported new form of ice. J Chem Phys 35:1136–1137
- Schingaro E, Kullerud K, Lacalamita M, Mesto E, Scordari F, Zozulya D, Erambert R, Ravna EJ (2014) Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): structure, composition and origin. Lithos 210:1–13
- Schlüter J, Pohl D, Golla-Schindler U (2008) Santarosaite, $CuB₂O₄$, a new mineral with disordered structure from the Santa Rosa mine, Atacama desert, Chile. N Jb Miner Abh 185(1):27–32
- Schlüter J, Malcherek T, Husdal TA (2009) The new mineral stetindite, CeSiO₄, a cerium end-member of the zircon group. N Jb Miner Abh 186(2):195–200
- Schlüter J, Geisler T, Pohl D, Stephan T (2010) Krieselite $Al_2GeO_4(F,OH)_2$: a new mineral from the Tsumeb mine, Namibia, representing the Ge analogue of topaz. N Jb Miner Abh 187(1):33–40
- Schlüter J, Malcherek T, Mihailova B, Gebhard G (2013) The new mineral erikapohlite, $Cu₃(Zn,Cu,$ Mg)4Ca2(AsO4)6∙2H2O, the Ca-dominant analogue of keyite, from Tsumeb, Namibia. N Jb Miner Mh 190 (3):319–325
- Schlüter J, Malcherek T, Mihailova B (2014) Galloplumbogummite from Tsumeb, Namibia, a new member of the alunite group with tetravalent charge balance. N Jb Miner Abh 191(3):301–309
- Schlüter J, Malcherek T, Gebhard G (2016) Vanackerite, a new lead cadmium arsenate of the apatite supergroup from Tsumeb, Namibia. N Jb Miner Abh 193 (1):79–86
- Schmetzer K, Bosshart G, Bernhardt H-J, Gübelin EJ, Smith CP (2002) Serendibite from Sri Lanka. Gems Gemology 38:73–79
- Schmetzer K, Burford M, Kiefert L, Bernhardt H-J (2003) The first transparent faceted grandidierite, from Sri Lanka. Gems Gemol 39:32–37
- Schmid T, Dariz P (2015) Shedding light onto the spectra of lime: Raman and luminescence bands of CaO, Ca $(OH)_2$ and CaCO₃. J Raman Spectrosc 46(1):141-146
- Schmidt M, Lutz HD (1993) Hydrogen bonding in basic copper salts: a spectroscopic study of malachite,

 $Cu₂(OH)₂CO₃$, and brochantite, $Cu₄(OH)₆SO₄$. Phys Chem Minerals 20(1):27–32

- Schmidt GR, Reynard J, Yang H, Downs RT (2006) Tychite, $\text{Na}_6\text{Mg}_2(\text{CO}_3)_4(\text{SO}_4)$: structure analysis and Raman spectroscopic data. Acta Crystallogr E. [https://](https://doi.org/10.1107/S160053680603491X) doi.org/10.1107/S160053680603491X
- Schmidt BC, Gehlken P-L, Böttcher ME (2013) Vibrational spectra of $BaMn(CO₃)₂$ and a re-analysis of the Raman spectrum of $BaMg(CO₃)₂$. Eur J Mineral 25:137–144
- Schmidt A, Lerch M, Eufinger J-P, Janek J, Tranca I, Islam MM, Bredow T, Dolle R, Wiemhöfer H-D, Boysen H, Hölzel M (2014) Chlorine ion mobility in Cl-mayenite $(Ca_{12}Al_{14}O_{32}Cl_2)$: an investigation combining hightemperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ionics 254:48–58
- Schmutzler B, Eggert G, Kuhn-Wawrzinek CF (2016) Copper (II) hydroxide on artefacts: corrosion, conservation, colourants. Stud Conserv:1–7. [https://doi.org/](https://doi.org/10.1080/00393630.2016.1215591) [10.1080/00393630.2016.1215591](https://doi.org/10.1080/00393630.2016.1215591)
- Schneider P, Tropper P, Kaindl R (2013) The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria). Mineral Petrol 107(2):327–340
- Schofield K (2004) Elegant elusive oxidation mechanism of mercury. Prepr Pap Am Chem Soc Div Fuel Chem 49(1):294–295
- Scholz R, Frost RL, Xi Y, Graça LM, Lagoeiro L, López A (2013a) Vibrational spectroscopic characterization of the phosphate mineral phosphophyllite – Zn_2Fe (PO4)2∙4H2O, from Hagendorf Süd, Germany and in comparison with other zinc phosphates. J Molec Struct 1039:22–27
- Scholz R, Xi Y, Frost RL (2013b) The molecular structure of matioliite – NaMgAl5(PO4)4(OH)6∙2(H2O) – a pegmatite mineral from Minas Gerais, Brazil. J Molec Struct 1033:265–271
- Scholz R, Frost RL, Frota L, Belotti FM, López A (2015) SEM, EDX and vibrational spectroscopy of the phosphate mineral vauxite from Llallagua, Bolívia. Spectrochim Acta A 151:149–155
- Schönenberger UW, Günter JR, Oswald HR (1971) Polymorphism of copper (II) hydroxide. J Solid State Chem 3(2):190–193
- Schumer BN, Yang H, Downs RT (2016) Natropalermoite, $Na₂SrAl₄(PO₄)₄(OH)₄$, a new mineral isostructural with palermoite, from the Palermo No. 1 mine, Groton, New Hampshire, USA. Mineral Mag. [https://doi.org/10.](https://doi.org/10.1180/minmag.2016.080.133) [1180/minmag.2016.080.133](https://doi.org/10.1180/minmag.2016.080.133)
- Schutte CJH, Van Rensburg DJJ (1971) Low-temperature infrared and Raman studies. X. The vibrational behaviour of ammonium fluoro-borate – its phase changes and the rotational freedom of its ions. J Molec Struct 10:484–489
- Schwalowsky L, Bismayer U, Lippmann T (1996) The improper ferroelastic phase transition of letovicite, $(NH_4)_3H(SO_4)_2$: an optical birefringence, X-ray diffraction and Raman spectroscopic study. Phase Transit 59(1–3):61–76
- Schwendt P, Joniaková D (1975) Vibrational spectra of vanadium(V) compounds. II. Vibrational spectra of divanadates with nonlinear bridge VOV. Chemzvesti 29(3):381–386
- Scott JF (1968) Raman spectra of BaClF, BaBrF, and SrClF. J Chem Phys 49(6):2766–2769
- Seetharaman S, Bhat HL, Narayanan PS (1983) Raman spectroscopic studies on sodium metavanadate. J Raman Spectrosc 14(6):401–405
- Seguin L, Figlarz M, Cavagnat R, Lassègues JC (1995) Infrared and Raman spectra of $MoO₃$ molybdenum trioxides and MoO3∙xH2O molybdenum trioxide hydrates. Spectrochim Acta A 51(8):1323–1344
- Seidel H, Ehrhardt H, Viswanathan K, Johannes W (1974) Darstellung, Struktur und Eigenschaften von Kupfer (II)-Carbonat. Z anorg allg Chemie 410(2):138–148. (in German)
- Sejkora J, Čejka J (2007) Šreinite from Horní Halže, the Krušné hory Mountains, Czech Republic, a new mineral species, its comparison with asselbornite from Schneeberg, and new data for asselbornite. N Jb Mineral Abh 184(2):197–206
- Sejkora J, Ozdín D, Vitáloš J, Tuček P, Čejka J, Ďuďa R (2007) Schafarzikite from the type locality Pernek (Malé Karpaty Mountains, Slovak Republic) revisited. Eur J Mineral 19:419–427
- Sejkora J, Čejka J, Kolitsch U (2008) Uranosphaerite from Horní Halže near Měděnec (Krušné hory Mountains, Czech Republic): description and vibrational characteristics. N Jb Miner Abh 185(1):91–98
- Sejkora J, Čejka J, Frost RL, Bahfenne S, Plášil J, Keeffe EC (2010) Raman spectroscopy of hydrogen-arsenate group $(AsO₃OH)$ in solid-state compounds: copper mineral phase geminite Cu(AsO₃OH)∙H₂O from different geological environments. J Raman Spectrosc 41 (9):1038–1043
- Sejkora J, Plášil J, Filip J (2011) Plimerite from Krásno near Horní Slavkov ore district, Czech Republic. J Geosci 56:215–229
- Sejkora J, Čejka J, Malíková R, López A, Xi Y, Frost RL (2014) A Raman spectroscopic study of a hydrated molybdate mineral ferrimolybdite, Fe₂(MoO₄)₃⋅7-8H2O. Spectrochim Acta A 130:83–89
- Sejkora J, Grey IE, Kampf AR, Price JR, Čejka J (2016) Tvrdýite, $Fe^{2+}Fe^{3+}{}_{2}Al_{3}(PO_{4})_{4}(OH)_{5}(OH_{2})_{4}$ 2H₂O, a new phosphate mineral from Krásno near Horní Slavkov, Czech Republic. Mineral Mag. [https://doi.](https://doi.org/10.1180/minmag.2016.080.045) [org/10.1180/minmag.2016.080.045](https://doi.org/10.1180/minmag.2016.080.045)
- Sekine T, Izumi M, Nakashizu T, Uchinokura K, Matsuura E (1980) Raman scattering and infrared reflectance in $2H-MoSe₂$. J Phys Soc Jpn 49(3): 1069–1077
- Sekine T, He H, Kobayashi T, Shibata K (2006) Sinoite $(Si₂N₂O)$ shocked at pressures of 28 to 64 GPa. Am Mineral 91(2–3):463–466
- Serena S, Sainz MA, Caballero A (2014) Single-phase silicocarnotite synthesis in the subsystem $Ca_3(PO_4)_{2}$ – Ca2SiO4. Ceramics Int 40:8245–8252
- Serena S, Caballero A, De Aza PN, Sainz MA (2015) New evaluation of the in vitro response of silicocarnotite monophasic material. Ceram Int 41(8):9411–9419
- Serghiou G, Guillaume C (2004) Stability of K_2CrO_4 to 50 GPa using Raman spectroscopy measurements. J Solid State Chem 177(12):4672–4679
- Serna CJ, García-Ramos JV, Peña MJ (1985) Vibrational study of dawsonite type compounds $MAI(OH)_{2}CO_{3}$ $(M = Na, K, NH₄)$. Spectrochim Acta A 41(5):697–702
- Shahar A, Bassett WA, Mao HK, Chou IM, Mao W (2005) The stability and Raman spectra of ikaite, CaCO3∙6H2O, at high pressure and temperature. Am Mineral 90(11–12):1835–1839
- Shantakumari C (1953) Raman spectra of crystalline sulphates of zinc, magnesium and sodium. Proc Indian Acad Sci 37:393–401. [https://doi.org/10.1007/](https://doi.org/10.1007/BF03052656) [BF03052656](https://doi.org/10.1007/BF03052656)
- Shao H, Padmanathan N, McNulty D, O'Dwyer C, Razeeb KM (2016) Supercapattery based on binder-free Co3(PO4)2∙8H2O multilayer nano/microflakes on nickel foam. ACS Appl Mater Interf. [https://doi.org/](https://doi.org/10.1021/acsami.6b08354) [10.1021/acsami.6b08354](https://doi.org/10.1021/acsami.6b08354)
- Shao-Long T, Qiang S, Ya-Qin Y, Jian-Fang M (1996) A new phosphate, $KMgY(PO4)_2$, isostructural with xenotime. Chin J Chem 14(1):25–30
- Sharma SK, Pandya DK (1974) Laser-Raman spectra of crystalline (NH₄)₂FeCl₅⋅H₂O, K₂FeCl₅⋅H₂O and K2FeCl5∙D2O. J Inorg Nucl Chem 36(5):1165–1166
- Sharma SK, Simons B, Yoder HS Jr (1983) Raman study of anorthite, calcium Tschermak's pyroxene, and gehlenite in crystalline and glassy states. Am Mineral 68(11–12):1113–1125
- Sharma SK, Yoder HS, Matson DW (1988) Raman study of some melilites in crystalline and glassy states. Geochim Cosmochim Acta 52(8):1961–1967
- Sharma SK, Parthasarathy G, Ravindran TR, Arora AK, Kumar B (2001) Laser-Raman spectroscopic on graphite from East Antarctica. Polar Geosci 14:157–164
- Sharygin VV, Stoppa F, Kolesov BA (1996a) Cuspidine in melilitolites of San Venanzo, Italy. Transact (Doklady) Russ Acad Sci Earth Sci Sect 349(5):747–751
- Sharygin VV, Stoppa F, Kolesov BA (1996b) Zr-Ti disilicates from the Pian di Celle volcano, Umbria, Italy. Eur J Mineral 8:1199–1212
- Sharygin VV, Lazic B, Armbruster TM, Murashko MN, Wirth R, Galuskina IO, Galuskin EV, Vapnik Y, Britvin SN, Logvinova AM (2013a) Shulamitite Ca₃TiFe³ $+AIO_8$ – a new perovskite-related mineral from Hatrurim Basin, Israel. Eur J Mineral 25(1):97–111
- Sharygin VV, Pekov IV, Zubkova NV, Khomyakov AP, Stoppa F, Pushcharovsky DY (2013b) Umbrianite, $K_7Na_2Ca_2[Al_3Si_{10}O_{29}]F_2Cl_2$, a new mineral species from melilitolite of the Pian di Celle volcano, Umbria, Italy. Eur J Mineral 25(4):655–669
- Sharygin IS, Golovin AV, Korsakov AV, Pokhilenko NP (2013c) Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia) – a new locality and host rock type. Eur J Mineral 25(5):825–834
- Sharygin VV, Kryvdik SG, Karmanov NS, Nigmatulina EN (2014) Chlorine-bearing annite from Khlebodarovka enderbites, Azov Sea region, Ukrainian shield. 30th International Conference on "Ore potential of alkaline, kimberlite and carbonatite magmatism", Antalya, Turkey, 29 September–02 October 2014, p 162
- Shatskiy A, Gavryushkin PN, Sharygin IS, Litasov KD, Kupriyanov IN, Higo Y, Borzdov YM, Funakoshi K, Palyanov YN, Ohtani E (2013) Melting and subsolidus phase relations in the system $Na₂CO₃$ $MgCO₃ \pm H₂O$ at 6 GPa and the stability of Na₂Mg $(CO₃)₂$ in the upper mantle. Am Mineral 98 (11–12):2172–2182
- Shatskiy A, Gavryushkin PN, Litasov KD, Koroleva ON, Kupriyanov IN, Borzdov YM, Funakoshi K, Palyanov YN, Ohtani E (2015) Raman spectroscopic and X-ray diffraction studies of the Na-Ca carbonates synthesized under upper mantle conditions. Eur J Mineral. [https://](https://doi.org/10.1127/ejm/2015/0027-2426) doi.org/10.1127/ejm/2015/0027-2426
- Sherwin R, Clark RJ, Lauck R, Cardona M (2005) Effect of isotope substitution and doping on the Raman spectrum of galena (PbS). Solid State Commun 134 (8):565–570
- Shi F, Rocha J, Trindade T (2005) Synthetic NaMnPO4 microtubules. Mater Lett 59(6):652–655
- Shi W, Zhang X, Che G (2013) Hydrothermal synthesis and electrochemical hydrogen storage performance of porous hollow NiSe nanospheres. Int J Hydrogen Energy 38(17):7037–7045
- Shimura T, Akai J, Lazic B, Armbruster T, Shimizu M, Kamei A, Tsukada K, Owada M, Yuhara M (2012) Magnesiohögbomite-2N4S: a new polysome from the central Sør Rondane Mountains, East Antarctica. Am Mineral 97(2–3):268–280
- Shin Y, Lee DW, Choi KY, Koo HJ, Ok KM (2013) VSb $(SeO₃)₄$, first selenite containing $V³⁺$ cation: synthesis, structure, characterization, magnetic properties, and calculations. Inorg Chem 52(24):14224–14230
- Shinde VV, Dhoble SJ (2015) Wet chemical synthesis of $Na₂₁(SO₄)₇F₆Cl:Ce optoelectronics materials. IOP$ Conf Series Mater Sci Eng 73(1):012038. (7 pp). <https://doi.org/10.1088/1757-899X/73/1/012038>
- Shinde VV, Shinde SV, Dhoble NS, Dhoble SJ (2015) Luminescence investigations of RE^{3+} (RE^{3+} = Dy^{3+} , Eu³⁺, Tb³⁺) activated Na₂₁(SO₄)₇F₆Cl optoelectronic nanophosphors under near UV excitation for LED. J Inorg Organometal Polym Mater 25 (3):593–600
- Shirozu H, Ishida K (1982) Infrared study of some 7 Å and 14 Å layer silicates by deuteration. Mineral J (Jpn) 11 (4):161–171
- Shoval S, Boudeulle M, Yariv S, Lapides I, Panczer G (2001) Micro-Raman and FT-IR spectroscopy study of the thermal transformations of St. Claire dickite. Opt Mater 16(1):319–327
- Shoval S, Gaft M, Panczer G (2003) Luminescence of Cr^{3+} in natural and calcined diaspore. J Therm Anal Calorim 71(3):699–706
- Shu J, Zhu X, Yi T (2009) RETRACTED: CuCrO₂ as anode material for lithium ion batteries. Electrochim Acta 54(10):2795–2799
- Siebert H (1959) Ultrarotspektren von Tellursäuren, Telluraten und Antimonaten. Z anorg allg Chemie 301(3–4):161–170. (in German)
- Silva EN, Ayala AP, Guedes I, Paschoal CWA, Moreira RL, Loong CK, Boatner LA (2006) Vibrational spectra of monazite-type rare-earth orthophosphates. Opt Mater 29(2):224–230
- Silva MDP, Silva FC, Sinfrônio FSM, Paschoal AR, Silva EN, Paschoal CWA (2014) The effect of cobalt substitution in crystal structure and vibrational modes of $CuFe₂O₄$ powders obtained by polymeric precursor method. J Alloys Compd 584:573–580
- Simakin AG, Eremyashev VE, Kucherinenko YV (2010) New data on dmisteinbergite. Zapiski RMO (Proc Russ Miner Soc) 139(3):102–108. (in Russian)
- Singh N, Hiller J, Metiu H, McFarland E (2014) Investigation of the electrocatalytic activity of rhodium sulfide for hydrogen evolution and hydrogen oxidation. Electrochim Acta 145:224–230
- Siqueira KP, Moreira RL, Dias A (2010) Synthesis and crystal structure of lanthanide orthoniobates studied by vibrational spectroscopy. Chem Mater 22 (8):2668–2674
- Sirbescu M-LC, Nabelek PI (2003) Dawsonite: an inclusion mineral in quartz from the Tin Mountain pegmatite, Black Hills, South Dakota. Am Mineral 88 (7):1055–1059
- Sithole J, Ngom BD, Khamlich S, Manikanadan E, Manyala N, Saboungi ML, Knoessen D, Nemutudi R, Maaza M (2012) Simonkolleite nano-platelets: synthesis and temperature effect on hydrogen gas sensing properties. Appl Surface Sci 258(20):7839–7843
- Sivakumar T, Chang HY, Baek J, Halasyamani PS (2007) Two new noncentrosymmetric polar oxides: synthesis, characterization, second-harmonic generating, and pyroelectric measurements on $TlSeVO₅$ and $TlTeVO₅$. Chem Mater 19(19):4710–4715
- Škácha P, Buixaderas E, Plášil J, Sejkora J, Goliáš V, Vlček V (2014a) Permingeatite, $Cu₃SbSe₄$, from Příbram (Czech Republic): description and Raman spectroscopy investigations of the luzonite-subgroup of minerals. Can Mineral 52(3):501–511
- Škácha P, Plášil J, Sejkora J, Čejka J, Škoda R, Meisser N (2014b) Unique occurrence of bayleyite, $Mg_2(UO_2)$ (CO3)3∙18H2O, from Jáchymov. Bull Mineral-petrolog Odd NárMuz (Praha) 22(2):240–247. ISSN 1211- 0329. (in Czech)
- Škácha P, Sejkora J, Plášil J (2017) Selenide mineralization in the Příbram uranium and base-metal district (Czech Republic). Fortschr Mineral. [https://doi.org/](https://doi.org/10.3390/min7060091) [10.3390/min7060091](https://doi.org/10.3390/min7060091)
- Škoda R, Plášil J, Čopjaková R, Novák M, Jonsson E, Vašinová Galiová M, Holtstam D (2017) Gadolinite- (Nd), a new member of the gadolinite supergroup from Fe-REE deposits of Bastnäs-type, Sweden. Mineral Mag. <https://doi.org/10.1180/minmag.2017.081.047>
- Slade RC, Knowles JA, Jones DJ, Rozière J (1997) The isomorphousacidsalts α-Zr(HPO4)2∙H2O, α-Ti $(HPO₄)₂·H₂O$ and α -Zr(HAsO₄)₂⋅H₂O. Comparative thermochemistry and vibrational spectroscopy. Solid State Ionics 96(1):9–19
- Spectrosc 41(12):1700–1707 Smit WMA, Dirksen GJ, Stufkens DJ (1990) Infrared and Raman spectra of the elpasolites $Cs₂NaSbCl₆$ and $Cs₂NaBiCl₆$: evidence for a pseudo Jahn-Teller distorted ground state. J Phys Chem Solids 51 (2):189–196
- Smith AJ, Meek PE, Liang WY (1977) Raman scattering studies of $SnS₂$ and $SnSe₂$. J Phys C $10(8):1321-1333$
- Smith CP, Bosshart G, Graeser S, Hänni H, Günther D, Hametner K, Gübelin EJ (2003) Poudretteite: a rare gem species from the Mogok valley. Gems Gemol 39:24–31
- Snyder MQ, McCool BA, DiCarlo J, Tripp CP, DeSisto WJ (2006) An infrared study of the surface chemistry of titanium nitride atomic layer deposition on silica from $TiCl₄$ and $NH₃$. Thin Solid Films 514 (1):97–102
- Sobkowiak A, Roberts MR, Younesi R, Ericsson T, Häggström L, Tai CW, Andersson AM, Edström K, Gustafsson T, Björefors F (2013) Understanding and controlling the surface chemistry of $LiFeSO₄F$ for an enhanced cathode functionality. Chem Mater 25 (15):3020–3029
- Sobron P, Alpers CN (2013) Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund site, California. Astrobiol 13(3):270–278
- Sohr G, Wilhelm D, Vitzthum D, Schmitt MK, Huppertz H (2014) The high-pressure borate HP-(NH₄)B₃O₅. Z anorg allg Chemie 640(14):2753–2758
- Sokol EV, Seryotkin YV, Kokh SN, Vapnik Y, Nigmatulina EN, Goryainov SV, Belogub EV, Sharygin VV (2015) Flamite, $(Ca, Na, K)₂(Si, P)O₄$, a new mineral from ultra high temperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineralog Mag 79(3):583–596
- Sokol EV, Kokh SN, Khoury HN, Seryotkin YV, Goryainov SV (2016) Long-term immobilisation of Cd^{2+} at the Tulul Al Hammam natural analogue site, central Jordan. Appl Geochem 70:43–60
- Sokolova E, Hawthorne FC, Abdu YA (2013) From structure topology to chemical composition. XV. Titanium silicates: revision of the crystal structure and chemical formula of schüllerite, $Na₂Ba₂Mg₂Ti₂(Si₂O₇)₂O₂F₂$, from the Eifel volcanic region, Germany. Can Mineral 51(5):715–725
- Sokolova E, Abdu Y, Hawthorne FC, Genovese A, Cámara F, Khomyakov AP (2015a) From structure topology to chemical composition. XVIII. Titanium silicates: revision of the crystal structure and chemical formula of betalomonosovite, a Group-IV TS-block mineral from the Lovozero alkaline massif, Kola Peninsula, Russia. Can Mineral 53(3):401–428
- Sokolova E, Cámara F, Abdu YA, Hawthorne FC, Horváth L, Pfenninger-Horváth E (2015b) Bobshannonite, $Na₂KBa(Mn,Na)₈(Nb,$

 $Ti)_{4}(Si₂O₇)_{4}O_{4}(OH)_{4}(O,F)₂$, a new TS-block mineral from Mont Saint-Hilaire, Québec, Canada: description and crystal structure. Mineral Mag 79(7):1791–1811

- Solferino G, Anderson AJ (2012) Thermal reduction of molybdite and hematite in water and hydrogen peroxide-bearing solutions: insights on redox conditions in Hydrothermal Diamond Anvil Cell (HDAC) experiments. ChemGeol 322:215–222
- Souag R, Kamel N, Hammadi M, Kamel Z, Moudir D, Aouchiche F, Mouheb Y, Kamariz S (2015) Study of leaching of a 2M-Zirconolite $(Ca_{0.83}Ce_{0.17}ZrTi_{1.66}Al_{0.34}O_7)$ in acidic and basic media. J Ceram Proc Res 16(1):150–155
- Sourisseau C, Cavagnat R, Fouassier M, Maraval P (1990) Electronic, vibrational and resonance Raman spectra of the layered semiconducting compound $NbS₃$. J Raman Spectrosc 21(6):337–349
- Souza de Araujo A, Carlos Diniz J, da Silva AOS, Alves de Melo RA (1997) Hydrothermal synthesis of cerium aluminophosphate. J Alloys Compd 250 (1):532–535
- Spandler C, Morris C (2016) Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks. Contrib Mineral Petrol 171(12):104. (24 pp)
- Spektor K, Nylen J, Mathew R, Edén M, Stoyanov E, Navrotsky A, Leinenweber K, Häussermann U (2016) Formation of hydrous stishovite from coesite in highpressure hydrothermal environments. Am Mineral 101 (11):2514–2524
- Spengler W, Kaiser R, Christensen AN, Müller-Vogt G (1978) Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN. Phys Rev B 17(3):1095–1101
- Spinner E (1959) The vibration spectra and structures of the hydrochlorides of urea, thiourea and acetamide. The basic properties of amides and thioamides. Spectrochim Acta 15:95–109
- Spratt HJ, Rintoul L, Avdeev M, Martens WN (2013) The crystal structure and vibrational spectroscopy of jarosite and alunite minerals. Am Mineral 98 (10):1633–1643
- Srinivasan TT, Srivastava CM, Venkataramani N, Patni MJ (1984) Infrared absorption in spinel ferrites. Bull Mater Sci 6(6):1063–1067
- Srivastava R, Chase LL (1972) Raman spectra of $CrO₂$ and MoO2 single crystals. Solid State Commun 11:349–353
- Sronsri C, Noisong P, Danvirutai C (2014) Synthesis and properties of $LiM^{II}PO₄$ ($M^{II} = Mg$, $Mn_{0.5}Mg_{0.5}$, $Co_{0.5}Mg_{0.5}$ affected by isodivalent doping and Li-sources. Solid State Sci 36:80–88
- Stalder R, Kronz A, Schmidt BC (2009) Raman spectroscopy of synthetic $(Mg,Fe)SiO₃$ single crystals. An analytical tool for natural orthopyroxenes. Eur J Mineral 21(1):27–32
- Stamatovska N, Makreski P, Pejov L, Jovanovski G (2011) Minerals from Macedonia. XXVII: Theoretical and experimental study of the vibrational spectra of endemic nežilovite. J Molec Struct 993(1):104–108
- Stanila D, Smith W, Anderson A (2000) Raman spectra of selenium dioxide at high pressures. Spectrosc Lett 33 (4):555–567
- Stanimirova T, Kerestedjian T, Kirov G (2016) Dehydration and rehydration of Zn-hydroxy sulfate minerals with interrupted decorated hydroxide sheets. Appl Clay Sci. <https://doi.org/10.1016/j.clay.2016.08.032>
- Stavrakieva D, Ivanova Y, Pyrov J (1988) On the composition of the crystal phases in the PbO $TeO₂$ system. J Mater Sci 23(5):1871–1876
- Stefaniak EA, Alsecz A, Sajó IE, Worobiec A, Máthé Z, Török S, Van Grieken R (2008) Recognition of uranium oxides in soil particulate matter by means of μ-Raman spectrometry. J Nucl Mater 381 (3):278–283
- Stefaniak EA, Alsecz A, Frost R, Máthé Z, Sajó IE, Török S, Worobiec A, Van Grieken R (2009) Combined SEM/EDX and micro-Raman spectroscopy analysis of uranium minerals from a former uranium mine. J Hazard Mater 168(1):416–423
- Stefov V, Šoptrajanov B, Petruševski V (1992) Vibrational spectra of hexaaqua complexes. II. External motions of water molecules in the spectra of $AICl_3.6H_2O.$ J Molec Struct 267:203–208
- Stefov V, Šoptrajanov B, Spirovski F, Kuzmanovski I, Lutz HD, Engelen B (2004) Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phosphate hexahydrate. J Molec Struct 689 $(1):1-10$
- Steiner M, Tropper P, Vavtar F, Kaindl R, Krismer M (2010) Balkanite from the Cu ore deposit Röhrerbühel, Kitzbühel (N-Tyrol, Austria). N Jb Miner Abh 187 (2):207–215
- Štengl V, Henych J (2013) Strongly luminescent monolayered $MoS₂$ prepared by effective ultrasound exfoliation. Nanoscale 5(8):3387–3394
- Štengl V, Tolasz J, Popelková D (2015) Ultrasonic preparation of tungsten disulfide single-layers and quantum dots. RSC Adv 5(109):89612–89620
- Stepakova LV, Skripkin MY, Chernykh LV, Starova GL, Hajba L, Mink J, Sandström M (2008) Vibrational spectroscopic and force field studies of copper (II) chloride and bromide compounds, and crystal structure of KCuBr₃. J Raman Spectrosc 39(1):16–31
- Števko M, Sejkora J, Peterec D (2015) Grumiplucite from the Rudňany deposit, Slovakia: a second worldoccurrence and new data. J Geo Sci 60(4):269–281
- Stidham HD, Bates JB, Finch CB (1976) Vibrational spectra of synthetic single crystal tephroite, $Mn_2SiO₄$. J Phys Chem 80(11):1226–1234
- Stodolski R, Heidemann D, Wieker W, Pilz W (1985) Thermische Zersetzung von Afwillit Ca3(SiO3OH)2∙2H2O. Z anorg allg Chemie 527 (8):150–160. (in German)
- Stoilova D, Koleva V (2000) IR study of solid phases formed in the $Mg(HCOO)_2-Cu(HCOO)_2-H_2O$ system. J Molec Struct 553(1):131–139
- Stoilova D, Vassileva V (1999) X-ray powder diffraction study and vibrational spectra of calcium cadmium formate. Crystal Res Technol 34(3):397–401
- Stoilova D, Vassileva V (2002) Infrared spectroscopic study of solids in the $Cu₂(OH)₃Cl$ (paratacamite) – Zn5(OH)8Cl2∙H2O (simonkolleite) series. Compt Rend de l'Academie Bulgare Sci 55(7):51–54
- Stoilova D, Marinova D, Georgiev M (2009) Hydrogen bond strength in chromates with kröhnkite-type chains, $K_2Me(CrO_4)_2$ ∙2H₂O (Me = Mg, Co, Ni, Zn, Cd). Vib Spectrosc 50(2):245–249
- Stranford GT, Condrate RA Sr (1984a) The vibrational spectra and normal coordinate analyses of $VSO₅$, $VPO₅$ and $VMoO₅$ phases. Spectrosc Lett $17(2):85-113$
- Stranford GT, Condrate RA Sr (1984b) The vibrational spectra of α -MoPO₅ and α -NbPO₅. J Solid State Chem 52(3):248–253
- Stranford GT, Condrate RA Sr (1984c) The infrared and Raman spectra of β-TaPO₅ and β-NbPO₅. J Mater Sci Lett 3(4):303–306
- Stranford GT, Condrate RA Sr (1990) A vibrational spectral study of hydrated tantalum phosphate $(TaPO₅)$ phases. J Solid State Chem 85(2):326–331
- Strobel P, Ibarra-Palos A, Anne M, Poinsignon C, Crisci A (2003) Cation ordering in $Li₂Mn₃MO₈$ spinels: structural and vibration spectroscopy studies. Solid State Sci 5(7):1009–1018
- Su Y, Balmer ML, Bunker BC (2000) Raman spectroscopic studies of silicotitanates. J Phys Chem B 104 (34):8160–8169
- Suchanek W, Yashima M, Kakihana M, Yoshimura M (1998) β-Rhenanite (β-NaCaPO₄) as weak interphase for hydroxyapatite ceramics. J Eur Ceram Soc 18 (13):1923–1929
- Sumathi S, Gopal B (2015) A new insight into biomedical applications of an apatite like oxyphosphate – BiCa4(PO4)3O. Ceram Intern 41(3):4852–4860
- Sun Z, Luo K, Tan F, Zhang J (1994) Pingguite a new bismuth tellurite mineral. Acta Mineral Sin 14:315–321
- Sun HY, Sun W, Huang YX, Mi JX (2010a) Low temperature flux synthesis and characterizations of a new layered barium borate $BaB_8O_{11}(OH)_4$. Z anorg allg Chemie 636(6):977–981
- Sun L, Zhao X, Li Y, Li P, Sun H, Cheng X, Fan W (2010b) First-principles studies of electronic, optical, and vibrational properties of $LaVO₄$ polymorph. J Appl Phys 108(9):093519-1–093519-10
- Sun W, Huang YX, Pan Y, Mi JX (2015) Synthesis and magnetic properties of centennialite: a new $S = \frac{1}{2}$ Kagomé antiferromagnet and comparison with herbertsmithite and kapellasite. Phys Chem Minerals 43(2):1–10
- Sundarakannan B, Ravindran TR, Kesavamoorthy R, Satyanarayana SVM (2002) High pressure Raman spectroscopic study of BaFCl. Solid State Commun 124(10):385–389
- Sundarakkannan B, Kesavamoorthy R (1998) Anharmonic behaviour of BaFCl using Raman scattering. Eur Phys J B 3(2):179–183
- Sushchinsky MM (1981) Raman scattering of light and the structure of matter. Nauka Publishing House, Moscow. (in Russian)
- Suzuki J, Ito M, Sugiura T (1976) A new copper sulfatecarbonate hydroxide hydrate mineral, (Mn,Ni, Cu ₈(SO₄)₄(CO₃)(OH)₆·48H₂O, from Nakauri, Aichi Prefecture, Japan. J Mineral Petrol Econ Geol 71:183–192
- Suzuki Y, Wakihara T, Itabashi K, Ogura M, Okubo T (2009) Cooperative effect of sodium and potassium cations on synthesis of ferrierite. Top Catal 52 $(1-2):67-74$
- Švecová E, Čopjaková R, Losos Z, Škoda R, Nasdala L, Cícha J (2016) Multi-stage evolution of xenotime– (Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study. Mineral Petrol. [https://doi.org/10.1007/s00710-](https://doi.org/10.1007/s00710-016-0442-6) [016-0442-6](https://doi.org/10.1007/s00710-016-0442-6)
- Sweet LE, Buck EC, Henager CH, Hu S, Meier DE, Peper SM, Schwantes JM, Su Y-F, Sams RL, Blake TA, Johnson TJ (2012) Investigations into the polymorphs and hydration products of $UO₃$. Proc SPIE 8358:83581R-1. (7 pp)
- Syme RWG, Lockwood DJ, Kerr HJ (1977) Raman spectrum of synthetic zircon $(ZrSiO₄)$ and thorite (ThSiO₄). J Phys C 10(8):1335–1348
- Syrbu NN, Bogdanash M, Moldovyan NA (1996a) Vibrational modes in ZnAl₂S₄ and CdIn₂S₄ crystals. Infrared Phys Technol 37(7):763–768
- Syrbu NN, Radautsan SI, Cretu RV, Tezlevan VE, Moldoveanu NA (1996b) Far infrared and Raman optical study of $CdInGaS₄$, $CdIn₂S₄$, $HgInGaS₄$ and CdIn₂S₂Se₂ crystals. Cryst Res Technol $31(3):307-314$
- Szilágyi IM, Madarász J, Hange F, Pokol G (2004) Online evolved gas analyses (EGA by TG-FTIR and TG/ DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition and partial reduction of ammonium paratungstate tetrahydrate. Solid State Ionics 172 (1):583–586
- Szuszkiewicz W, Dynowska E, Gorecka J, Witkowska B, Jouanne M, Morhange JF, Julien C, Hennion B (1999) Peculiarities of the lattice dynamics of cubic mercury chalcogenides. Phys Status Solidi B 215 (1):93–98
- Tait KT, Yang H, Downs RT, Li C, Pinch WW (2010) The crystal structure of esperite, with a revised chemical formula, $PbCa_2(ZnSiO_4)_3$, isostructural with beryllonite. Am Mineral 95(5–6):699–705
- Tait KT, Barkley MC, Thompson RM, Origlieri MJ, Evans SH, Prewitt CT, Yang H (2011) Bobdownsite, a new mineral species from Big Fish River, Yukon, Canada, and its structural relationship with whitlockite-type compounds. Can Mineral 49(4):1065–1078
- Tait KT, Dicecco V, Ball NA, Hawthorne FC, Kampf AR (2014) Backite, $Pb₂AI(TeO₆)Cl$, a new tellurate mineral from the Grand Central mine, Tombstone Hills, Cochise County, Arizona: description and crystal structure. Can Mineral 52:935–942
- Tait K, Ball NA, Hawthorne FC (2015) Pieczkaite, ideally $Mn_5(PO_4)_3Cl$, a new apatite-supergroup mineral from Cross Lake, Manitoba, Canada: description and crystal structure. Am Mineral 100: 1047–1052
- Takahashi Y, Iwasaki K, Masai H, Fujiwara T (2008) Raman spectroscopic study of benitoite-type compounds. J Ceram Soc Jpn 116(1358):1139–1142
- Takubo K, Kubota R, Suzuki T, Kanzaki T, Miyahara S, Furukawa N, Katsufuji T (2011) Evolution of phonon Raman spectra with orbital ordering in spinel $MnV₂O₄$. Phys Rev B 84(9):094406-1–094406-8
- Tang ZH, Chen X, Li M (2008) Synthesis and crystal structure of a new strontium borate, $Sr₂B₁₆O₂₆$. Solid State Sci 10(7):894–900
- Tang Y, Cui M, Guo W, Zhang S, Yang M, He Z (2015) Syntheses, structure, and magnetic properties of new $3d-4f$ heterometallic hydroxysulfates $Ln₂Cu$ $(SO₄)₂(OH)₄$ (Ln = Sm, Eu, Tb, or Dy) with a two-dimensional triangle network. Cryst Growth Design 15(6):2742–2747
- Tao Y, Shiyang G, Lixia Z, Shuping X, Kaibei Y (2002) Crystal growth and crystal structure of magnesium oxysulfate 2MgSO4(Mg(OH)2)∙2H2O. J Molec Struct 616(1):247–252
- Tao Z, Zhang W, Huang Y, Wei D, Seo HJ (2014) A novel pyrophosphate $BaCr_2(P_2O_7)_2$ as green pigment with high NIR solar reflectance and durable chemical stability. Solid State Sci 34:78–84
- Tarassov M, Mihailova B, Tarassova E, Konstantinov L (2002) Chemical composition and vibrational spectra of tungsten-bearing goethite and hematite from Western Rhodopes, Bulgaria. Eur J Mineral 14 (5):977–986
- Tarte P (1963) Etude infra-rouge des orthosilicates et des orthogermanates – III: Structures du type spinelle. Spectrochim Acta 19(1):49–71. (in French)
- Tarte P, Cahay R, Rulmont A, Werding G (1985) Infrared spectrum of synthetic isotopic species of sinhalite MgAlBO4. Spectrochim Acta A 41(10):1215–1219
- Tarte P, Rulmont A, Merckaert-Ansay C (1986) Vibrational spectrum of nasicon-like, rhombohedral orthophosphates $M^1M^{IV}{}_{2} (PO_4)_3$. Spectrochim Acta A 42(9):1009–1016
- Tarte P, Rulmont A, Sbai K, Simonot-Grange MH (1987) Vibrational spectrum of $KM^{\text{II}}P_3O_9$ tricyclophosphates with the benitoite structure. Spectrochim Acta A 43 (3):337–343
- Taylor JCW, Weichman FL (1971) Raman effect in cuprous oxide compared with infrared absorption. Can J Phys 49(5):601–605
- Taylor MD, Cheung TT, Hussein MA (1972) Variations of the infrared spectra with the nature and structure of the rare earth metal halides. J Inorg Nucl Chem 34 (10):3073–3079
- Taylor P, Sunder S, Lopata VJ (1984) Structure, spectra, and stability of solid bismuth carbonates. Can J Chem 62(12):2863–2873
- Teng MK, Massot M, Balkanski M, Ziolkiewicz S (1978) Atomic substitution and ferroelectric phase transition in $Bi_xSb_{1-x}SI$. Phys Rev B 17(9):3695. (6 pp)
- Ternane R, Ferid M, Kbir-Ariguib N, Trabelsi-Ayedi M (2000) The silver lead apatite $Pb_8Ag_2(PO_4)_6$: hydrothermal preparation. J Alloys Compd 308(1):83–86
- Ternane R, Ferid M, Panczer G, Trabelsi-Ayadi M (2008) Structural, optical and scintillation properties of cerium cyclotriphosphates and polyphosphates. J Phys Chem Solids 69(7):1684–1690
- Terra O, Dacheux N, Clavier N, Podor R, Audubert F (2008) Preparation of optimized uranium and thorium bearing brabantite or monazite/brabantite solid solutions. J Am Ceram Soc 91(11):3673–3682
- Theiss F, López A, Frost RL, Scholz R (2015a) Spectroscopic characterisation of the LDH mineral quintinite Mg4Al2(OH)12CO3∙3H2O. Spectrochim ActaA 150:758–764
- Theiss FL, López A, Scholz R, Frost RL (2015b) A SEM, EDS and vibrational spectroscopic study of the clay mineral fraipontite. Spectrochim Acta A 147:230–234
- Thema FT, Beukes P, Gurib-Fakim A, Maaza M (2015) Green synthesis of MonteponiteCdO nanoparticles by Agathosmabetulina natural extract. J Alloys Compd 646:1043–1048
- Thema FT, Manikandan E, Gurib-Fakim A, Maaza M (2016) Single phase bunsenite NiO nanoparticles green synthesis by Agathosmabetulina natural extract. J Alloys Compd 657:655–661
- Thomas R (2002) Determination of the H_3BO_3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy. Am Mineral 87(1):56–68
- Thomas R, Davidson P (2010) Hambergite-rich melt inclusions in morganite crystals from the Muiane pegmatite, Mozambique and some remarks on the paragenesis of hambergite. Mineral Petrol 100 (3–4):227–239
- Thomas R, Davidson P (2017) Hingganite-(Y) from a small aplite vein in granodiorite from Oppach, Lusatian Mts., E-Germany. Mineral Petrol. [https://](https://doi.org/10.1007/s00710-016-0489-4) doi.org/10.1007/s00710-016-0489-4
- Thomas R, Webster JD (1999) Characteristics of berlinite from the Ehrenfriedersdorf pegmatite, Erzgebirge, Germany. Z geol Wiss 27(5/6):443–454
- Thomas GH, Falk M, Knop O (1974) Infrared studies of water in crystalline hydrates: $K_2CuCl_4·2H_2O$. Can J Chem 52(7):1029–1041
- Thomas R, Webster JD, Rhede D (1998) Strong phosphorus enrichment in a pegmatite-forming melt. Acta Univ Carolinae Geol 42(1):150–164
- Thomas R, Davidson P, Hahn A (2008) Ramanite-(Cs) and ramanite-(Rb): new cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy. Am Mineral 93(7):1034–1042
- Thomas R, Davidson P, Beurlen H (2011a) Tantalite-(Mn) from the Borborema Pegmatite Province, northeastern Brazil: conditions of formation and melt-and fluidinclusion constraints on experimental studies. Miner Deposita 46(7):749–759
- Thomas R, Webster JD, Davidson P (2011b) Be-daughter minerals in fluid and melt inclusions: implications for the enrichment of Be in granite-pegmatite systems. Contrib Mineral Petrol 161(3):483–495
- Tite T, Shu GJ, Chou FC, Chang YM (2010) Structural and thermal properties of MnSi single crystal. Appl Phys Lett 97(3):031909-1–031909-3
- Tlili A, Smith DC (2007) Raman spectroscopic study of synthetic Na-Mg-Al-Si trioctahedral micas compared with their Ge-and Ga-equivalents. In: Rull-Pérez F, Edwards H, Smith D, Vandenabeele P (eds) Selected topics in Raman spectroscopic applications: geologybio-materials-art. Edition: Universidad Valladolid. ISBN 978-84-690-9239-2
- Tlili A, Smith DC, Beny JM, Boyer H (1989) A Raman microprobe study of natural micas. Mineral Mag 53 (2):165–179
- Többens DM, Kahlenberg V, Kaindl R (2005) Characterization and ab initio XRPD structure determination of a novel silicate with vierer single chains: the crystal structure of NaYSi_2O_6 . Inorg Chem 44(25):554–9560
- Tomašić N, Gajović A, Bermanec V, Rajić M (2004) Recrystallization of metamict Nb–Ta–Ti–REE complex oxides: a coupled X-ray-diffraction and Raman spectroscopy study of aeschynite-(Y) and polycrase- (Y). Can Mineral 42(6):1847–1857
- Tomašić N, Bermanec V, Gajović A, Rajić Linarić M (2008) Metamict minerals: an insight into a relic crystal structure using XRD, Raman spectroscopy, SAED and HRTEM. Croat Chem Acta 81(2):391–400
- Tomašić N, Gajović A, Bermanec V, Linarić MR, Su D, Škoda R (2010) Preservation of the samarskite structure in a metamict ABO₄ mineral: a key to crystal structure identification. Eur J Mineral 22(3):435–442
- Tomasini EP, Dubois CMF, Little NC, Centeno SA, Maier MS (2015) Identification of pyroxene minerals used as black pigments in painted human bones excavated in Northern Patagonia by Raman spectroscopy and XRD. Microchem J 121:157–162
- Tomaszewski PE, Mączka M, Majchrowski A, Waśkowska A, Hanuza J (2005) Crystal structure and vibrational properties of $KMg_4(PO_4)_3$. Solid State Sci 7 (10):1201–1208
- Tong H-J, Qian Z-G, Reid GP, Zhang Y-H (2011) High temporal and spatial resolution measurements of the rapid efflorescence of sea salt droplets. Acta Phys-Chim Sin 27(11):2521–2527
- Tong Y, Ma J, Zhao S, Huo H, Zhang H (2015) A Saltassisted combustion method to prepare well-dispersed octahedral $MnCr₂O₄$ spinel nanocrystals. J Nanomater. <https://doi.org/10.1155/2015/214978>
- Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y-S, Ho C-Y, Yan J, Ogletree DF, Aloni S, Ji J, Li S, Li J, Peeters FM, Wu J (2014) Monolayer behaviour in bulk ReS_2 due to electronic and vibrational decoupling. Nat Commun. [https://doi.org/10.](https://doi.org/10.1038/ncomms4252) [1038/ncomms4252](https://doi.org/10.1038/ncomms4252)
- Toumi M, Tlili A (2008) Rietveld refinement and vibrational spectroscopic study of alunite from El Gnater, Central Tunisia. Russ J Inorg Chem 53(12): 1845–1853
- Toumi M, Hlel F, Chaabane TB, Smiri L, Laligant Y, Emery J (1998) X-ray powder structure determination of Li6P6O18∙3H2O. Eur J Solid State Inorg Chem 35 (10):689–697
- Tran TT, Halasyamani PS (2013) New fluoride carbonates: centrosymmetric $KPb(CO_3)_2F$ and
noncentrosymmetric $K_{2.70}Pb_{5,15}(CO_3)_5F_3$. Inorg $K_{2.70}Pb_{5.15}(CO_3)_{5}F_3.$ Inorg Chem 52(5):2466–2473
- Tran TH, Tran KA, Pham TH, Le TV, Le QM (2012) Effect of the soft-template agents on size, shape and optical properties of YVO₄: $Eu³⁺$ nanomaterials. Adv Natur Sci Nanosci Nanotechnol 3(3):035012. (4 pp)
- Trefler M, Wilkinson GR (1969) Motion of ammonium ions in non-cubic crystal sites. Discus Faraday Soc 48:108–115
- Treiman AH (2008) Rhönite in Luna 24 pyroxenes: first find from the Moon, and implications for volatiles in planetary magmas. Am Mineral 93(2–3):488–491
- Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68(10):1755–1761
- Tribaudino M, Artoni A, Mavris C, Bersani D, Lottici PP, Belletti D (2008) Single-crystal X-ray and Raman investigation on melanophlogite from Varano Marchesi (Parma, Italy). Am Mineral 93(1):88–94
- Tribaudino M, Mantovani L, Bersani D, Lottici PP (2011) Raman investigation on pigeonite in ureilite. Spectrosc Lett 44(7–8):480–485
- Trolard F, Bourrié G, Abdelmoula M, Refait P, Feder F (2007) Fougerite, a new mineral of the pyroauriteiowaite group: description and crystal structure. Clays Clay Minerals 55(3):323–334
- Tsuda H, Jongebloed WL, Stokroos I, Arends J (1993) Combined Raman and SEM study on CaF₂ formed on/in enamel by APF treatments. Caries Res 27 (6):445–454
- Tsunogae T, Santosh M (2005) Ti-free högbomite in spinel-and sapphirine-bearing Mg-Al rock from the Palghat-Cauvery shear zone system, southern India. Mineral Mag 69(6):937–949
- Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130
- Tumiati S, Godard G, Martin S, Nimis P, Mair V, Boyer B (2005) Dissakisite-(La) from the Ulten zone peridotite (Italian Eastern Alps): a new end-member of the epidote group. Am Mineral 90(7):1177–1185
- Turcotte SB, Benner RE (1993) Surface analysis of electrochemically oxidized metal sulfides using Raman spectroscopy. J Electroanal Chem 347:195–205
- Tyutyunnik AP, Zubkov VG, Tarakina NV, Krasil'nikov VN, Perelyaeva LA, Baklanova IV, Svensson G (2006) Synthesis, crystal structure and vibrational spectra of $KCrV₂O₇$ and $RbCrV₂O₇$. Solid State Sci 8 (11):1344–1352
- Uchida H, Downs RT, Yang H (2006) Crystal-chemical investigation of kalsilite from San Venanzo, Italy, using single-crystal X-ray diffraction and Raman spectroscopy. Geochim Cosmochim Acta 70(18):A677
- Uchida H, Downs RT, Thompson RM (2007) Reinvestigation of eakerite, Ca₂SnAl₂Si₆O₁₈(OH)₂⋅2H₂O: H-atom positions by single-crystal X-ray diffraction and correlation with Raman spectroscopic data. Acta Crystallogr E. <https://doi.org/10.1107/S1600536807002000>
- Uher P, Milovská S, Milovský R, Koděra P, Bačík P, Bilohuščin V (2015) Kerimasite, ${Ca_3}[Zr_2](SiFe^{3+}2)$ O_{12} garnet from the Vysoká-Zlatnoskarn, Štiavnica stratovolcano, Slovakia. Mineral Mag 79(3):715–734
- Ullrich A, Miletich R, Nestola F, Weikusat C, Ohashi H (2009) Lattice compression and structural behavior of NaVSi₂O₆ clinopyroxene to 11 GPa. Am Mineral 94 (4):557–564
- Unger WK, Farnworth B, Irwin JC, Pink H (1978) Raman and infrared spectra of $CdIn₂S₄$ and $ZnIn₂S₄$. Solid State Commun 25(11):913–915
- Unger WK, Karecki D, Clayman BP, Irwin JC, Pink H (1979) Raman and far-infrared spectra of NaCrS₂. Solid State Commun 29(3):149–151
- Unnikrishnan NV, Ittyachen MA (2016) Growth and characterization of Sm^{3+} doped cerium oxalate single crystals. J Mater Res Technol. [https://doi.org/10.](https://doi.org/10.1016/j.jmrt.2016.01.001) [1016/j.jmrt.2016.01.001](https://doi.org/10.1016/j.jmrt.2016.01.001)
- Uriarte LM, Dubessy J, Boulet P, Baonza VG, Bihannic I, Robert P (2015) Reference Raman spectra of synthesized CaCl₂⋅nH₂O solids (n = 0, 2, 4, 6). J Raman Spectrosc 46(10):822–828
- Ursaki VV, Manjón FJ, Tiginyanu IM, Tezlevan VE (2002) Raman scattering study of pressure-induced phase transitions in MIn2S4spinels. J Phys Condens Matter 14(27):6801–6813
- Utyuzh AN, Timofeev YA, Stepanov GN (2010) Effect of pressure on Raman spectra of $SnS₂$ single crystals. Phys Solid State 52(2):352–356
- Uztetik-Amour A, Kizilyalli M (1995) Solid-state synthesis, X-ray powder diffraction, and IR data of Na2GdOPO4. J Solid State Chem 120(2):275–278
- Vallette Campos MM, Alvarado Aguayo T (2015) Vibrational spectroscopy for the study of Chilean cultural heritage. Heritage Sci 3(1):1–10
- Van Loosdrecht PHM, van Bentum PJM, Balzuweit K (1992) Raman study of incommensurately modulated calaverite (AuTe₂). Ferroelectrics $125(1):517-522$
- Vandenabeele P (2013) Practical Raman Spectroscopy an introduction. Wiley, London
- Vandenborre MT, Husson E, Brusset H, Cerez A (1980) Spectres de vibration et calcul du champ de force des antimoniates de structure 'type $PbSb₂O₆'$. Spectrochim Acta A 36:1045–1052. (in French)
- Vandenborre MT, Husson E, Fourquet JL (1982) Spectresvibrationnels et champ de force de divers composés de formule $A_2B_2O_7$ et $A_2B_2O_6$ de structure pyrochlore. Spectrochim Acta A 38(9):997–1003. (in French)
- Vard E, Williams-Jones AE (1993) A fluid inclusion study of vug minerals in dawsonite-altered phonolite sills, Montreal, Quebec: implications for HFSE mobility. Contrib Mineral Petrol 113(3):410–423
- Vardeny Z, Brafman O (1979) Phonon anomalies in Cu halides. Phys Rev B 19(6):3276–3288
- Vassileva M, Vergilov I, Dobrev S, Kolkovski B (2005) Mineralogical features of Zn-Mn spinel (hetaerolite) from the Au-base-metal Madjarovo deposit, Eastern Rrhodopes. Annu Univ Mining Geol "St. Ivan Rilski", Geol Geophys 48(I):23–28
- Velchuri R, Kumar BV, Devi VR, Prasad G, Prakash DJ, Vithal M (2011a) Preparation and characterization of rare earth orthoborates, $LnBO₃$ ($Ln = Tb$, La , Pr , Nd , Sm, Eu, Gd, Dy, Y) and $LaBO₃:Gd$, Tb, Eu by metathesis reaction: ESR of $LaBO₃:Gd$ and luminescence of LaBO₃:Tb, Eu. Mater Res Bull $46(8)$:1219–1226
- Velchuri R, Kumar BV, Devi VR, Prakash DJ, Vithal M (2011b) Solid-state syntheses of rare-earth–doped $Sr_{1-x}Ln_{2x/3}MgP_2O_7$ (Ln = Gd, Eu, Dy, Sm, Pr, and Nd; $x = 0.05$) by metathesis reactions and their spectroscopic characterization. Spectrosc Lett 44(4):258–266
- Venkateswaran CS (1936) The Raman spectra of selenious acid and its sodium salts. Proc Indian Acad Sci A 3 (6):533–543
- Venkateswarlu K (1940) Raman spectrum of sulphur. Proc Indian Acad Sci 12(14):453–461
- Ventruti G, Della Ventura G, Orlando R, Scordari F (2015) Structure refinement, hydrogen-bond system and vibrational spectroscopy of hohmannite, $Fe³⁺_{2} [O]$ (SO4)2]-8H2O. Mineral Mag 79:11–24
- Ventruti G, Della Ventura G, Bellatreccia F, Lacalamita M, Schingaro E (2016) Hydrogen bond system and vibrational spectroscopy of the iron sulfate fibroferrite, Fe(OH)SO4∙5H2O. Eur J Mineral. [https://](https://doi.org/10.1127/ejm/2016/0028-2571) doi.org/10.1127/ejm/2016/0028-2571
- Verble JL, Humphrey FM (1974) Infrared and Raman spectra of MnS₂. Solid State Commun 15 (10):1693–1697
- Vermaak MKG (2005) Fundamentals of the flotation behaviour of palladium bismuth tellurides. Dissertation, University of Pretoria
- Verwoerd WJ (2008) Kamphaugite-(Y) from the Goudini carbonatite, South Africa. Can Mineral 46:1007–1022
- Vieira Ferreira LF, Conceição DS, Ferreira DP, Santos LF, Casimiro TM, Ferreira Machado I (2014) Portuguese 16th century tiles from Santo António da Charneca's kiln: a spectroscopic characterization of pigments, glazes and pastes. J Raman Spectrosc 45 (9):838–847
- Vignola P, Hatert F, Bersani D, Diella V, Gentile P, Risplendente A (2012) Chukhrovite-(Ca), $Ca_{4.5}Al₂(SO₄)F₁₃·12H₂O$, a new mineral species from the Val Cavallizza Pb-Zn-(Ag) mine, Cuasso al Monte, Varese province, Italy. Eur J Mineral 24:1069–1076
- Vignola P, Gatta GD, Hatert F, Guastoni A, Bersani D (2014) On the crystal-chemistry of a near-endmember triplite, $Mn^{2+}(PO_4)F$, from the Codera Valley (Sondrio Province, Central Alps, Italy). Can Mineral 52(2):235–245
- Vignola P, Gatta GD, Rotiroti N, Gentile P, Hatert F, Baijot M, Risplendente A, Pavese A (2016) Albertiniite, Fe²⁺(SO₃)⋅3H₂O, a new sulfite mineral species from the Monte Falò Pb-Zn mine, Coiromonte

municipality, Verbano Cusio Ossola province, Piedmont, Italy. Mineral Mag. [https://doi.org/10.1180/](https://doi.org/10.1180/minmag.2016.080.033) [minmag.2016.080.033](https://doi.org/10.1180/minmag.2016.080.033)

- Vigouroux JP, Husson E, Calvarin G, Dao NQ (1982) Etude par spectroscopié vibrationnelle des oxydes Pb_3O_4 , Sn Pb_2O_4 et Sn $Pb(Pb_2O_4)_2$. Spectrochim Acta A 38(4):393–398. (in French)
- Villanova-de-Benavent C, Aiglsperger T, Jawhari T, Proenza JA (2012) Micro-Raman spectroscopy of garnierite minerals: a useful method for phase identification. Revista Soc Espaňola Mineral 16(12): 180–181
- Villanova-de-Benavent C, Tredoux M, Aiglsperger T, Proenza JA (2014) Ni-Mg-phyllosilicates from Bon Accord, Barberton, South Africa: new data on willemseite and nimite. Proceedings of the 21st General Meeting of the International Mineralogical Association "IMA2014", p 657
- Vilminot S, Richard-Plouet M, André G, Swierczynski D, Bourée-Vigneron F, Kurmoo M (2003) Hydrothermal synthesis in the system Ni(OH)₂-NiSO₄: nuclear and magnetic structures and magnetic properties of $\text{Ni}_3(\text{SO}_4)_2(\text{OH})_2$ ∙2H₂O. Inorg Chem 42 (21):6859–6867
- Vimal G, Mani KP, Jose G, Biju PR, Joseph C, Unnikrishnan NV, Ittyachen MA (2014) Growth and spectroscopic properties of samarium oxalate single crystals. J Cryst Growth 404:20–25
- Viñals J, Jambor JL, Raudsepp M, Roberts AC, Grice JD, Kokinos M, Wise W (2008) Barahonaite-(Al) and barahonaite-(Fe), new Ca-Cu arsenate mineral species, from Murcia province, southeastern Spain, and Gold hill, Utah. Can Mineral 46:205–217
- Vivekanandan K, Selvasekarapandian S, Kolandaivel P (1995) Raman and FT-IR studies of Pb₄(NO₃)₂(PO₄)₂⋅2H₂O. Mater Chem Phys 39:284–289
- Vlaev LT, Genieva SD, Gospodinov GG (2005) Study of the crystallization fields of cobalt (II) selenites in the system CoSeO₃-SeO₂-H₂O. J Thermal Anal Calorimetry 81(2):469–475
- Voit EI, Panasenko AE, Zemnukhova LA (2009) Vibrational spectroscopic and quantum chemical study of antimony (III) oxide. J Struct Chem 50(1):60–66
- Volkovich VA, Griffiths TR, Fray DJ, Fields M (1998) Vibrational spectra of alkali metal (Li, Na and K) uranates and consequent assignment of uranate ion site symmetry. Vib Spectrosc 17(1):83–91
- Voll D, Beran A, Schneider H (2006) Variation of infrared absorption spectra in the system $Bi_2Al_{4-x}Fe_xO_9$ (x = 0–4), structurally related to mullite. Phys Chem Minerals 33(8–9):623–628
- Voloshin AV, Karpov SM, Isaenko SI, Chernyavsky AV, Sergeeva NE (2014) Raman spectroscopy of vanadium association minerals in massive sulfide deposits of the pyrrhotite gorge (Kola region, Russia) and Vihanti (Finland). Zapiski RMO (Proc Russ Miner Soc) 143 (4):55–60. (in Russian)
- Voloshin AV, Chernyavsky AV, Bocharov VN, Vasil'ev EA (2015a) Raman spectroscopy of minerals from tetradymite and aleksite groups. In: Voytekhovsky YL (ed) Geology and base minerals of Kola region. K & M, Apatity. (in Russian)
- Voloshin AV, Karpov SM, Chernyavsky AV (2015b) New mineral data. First finds in Russia and Kola region. In: Voytekhovsky YL (ed) Geology and base minerals of Kola region. K & M, Apatity. (in Russian)
- Von Czarnowski A, Hübner K (1987) Raman and infrared investigations of stishovite and their interpretation. Phys Status Solidi B 142(1):K91–K96
- Vtyurin AN, Isaenko LI, Krylova SN, Yelisseyev A, Shebanin AP, Turchin PP, Zamkova NG, Zinenko VI (2004) Raman spectra and elastic properties of KPb_2Cl_5 crystals. Phys Status Solidi C 1(11):3142– 3145
- Vuk AŠ, Orel B, Dražič G (2001) IR spectroelectrochemical studies of $Fe₂V₄O₁₃$, $FeVO₄$ and $InVO₄$ thin films obtained via sol-gel synthesis. J Solid State Electrochem 5(7–8):437–449
- Vymazalová A, Zaccarini F, Bakker RJ (2014) Raman spectroscopy characterisation of synthetic platinumgroup minerals (PGM) in the Pd–Sn–Te and Pd–Pb– Te ternary systems. Eur J Mineral 26(6):711–716
- Wada N, Kamitakahara WA (1991) Inelastic neutron-and Raman-scattering studies of muscovite and vermiculite layered silicates. Phys Rev B 43(3):2391–2397
- Wahlberg N, Runčevski T, Dinnebier RE, Fischer A, Eggert G, Iversen BB (2015) Crystal structure of thecotrichite, an efflorescent salt on calcareous objects stored in wooden cabinets. Cryst Growth Design 15 (6):2795–2800
- Walenta K, Theye T (2012) Heisenbergite, a new uranium mineral from the uranium deposit of Menzenschwand in the Southern Black Forest, Germany. N Jb Miner Abh 189(2):117–123
- Wallwork K, Kolitsch U, Pring A, Nasdala L (2002) Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia. Mineral Mag 66(1):181–188
- Wang A, Zhou Y (2014) Experimental comparison of the pathways and rates of the dehydration of Al-, Fe-, Mg-and Ca-sulfates under Mars relevant conditions. Icarus 234:162–173
- Wang XW, Noble RJ, Finnigan DJ, Spitulnik F, McGinnis P, Fu LP, Petrou AP (1993) Laser deposition of cubic and hexagonal structured CdS thin films. Proc SPIE 1793, Integr Opt Microstruct. [https://doi.org/10.](https://doi.org/10.1117/12.141211) [1117/12.141211](https://doi.org/10.1117/12.141211)
- Wang R, Xu S, Francois F, Lin C (1997) Tantalite in Suzhou granite: mineralogy and geological implications. Chin J Geochem 16(4):353–358
- Wang A, Haskin LA, Jolliff BL (1998a) Characterization of mineral products of oxidation and hydration by laser Raman spectroscopy – implications for in situ petrologic investigation on the surface of Mars. 29th Annual Lunar and Planetary Science Conference
- Wang R-P, Zhou Y-L, Pan S-H, Zhang H, Guo X-X, Xiong X-M, Lu H-B, Zhen Z-H, Yang G-Z (1998b) Structural characteristics of $CeO₂$ films grown on

biaxially textured nickel (001). J Appl Phys 84 (4):1994–1997

- Wang A, Jolliff BL, Haskin LA (1999) Raman spectroscopic characterization of a highly weathered basalt: igneous mineralogy, alteration products, and a microorganism. J Geophys Res 104(11):27067–27077
- Wang A, Jolliff BL, Haskin LA, Kuebler KE, Viskupic KM (2001a) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am Mineral 86(7–8):790–806
- Wang C, Tang K, Yang Q, Shen G, Hai B, An C, Zuo J, Qian Y (2001b) Characterization of $PbSnS₃$ nanorods prepared via an iodine transport hydrothermal method. J Solid State Chem 160(1):50–53
- Wang G, Wu Y, Fu P, Liang X, Xu Z, Chen C (2002) Crystal growth and properties of β-Zn₃BPO₇. Chem Mater 14(5):2044–2047
- Wang Z, Saxena SK, Neumeier JJ (2003) Raman scattering study on pressure-induced phase transformation of marokite (CaMn2O4). J Solid State Chem 170 (2):382–389
- Wang A, Freeman JJ, Jolliff BL, Chou IM (2006a) Sulfates on Mars: a systematic Raman spectroscopic study of hydration states of magnesium sulfates. Geochim Cosmochim Acta 70(24):6118–6135
- Wang CM, Liao CH, Chen PL, Lii KH (2006b) $UF_3(H_2O)$ $(C_2O_4)_{0.5}$: a fluorooxalate of tetravalent uranium with a three-dimensional framework structure. Inorg Chem 45(4):1436–1438
- Wang Y, Yi Z, Li Y, Yang Q, Wang D (2007) Hydrothermal synthesis of potassium niobate powders. Ceram Intern 33(8):1611–1615
- Wang A, Freeman JJ, Arvidson R (2008) Study of two structural polymorphs of $MgSO_4$ H₂O by Raman, IR, XRD, and humidity buffer experiments – implication for martian kieserite. 39th Lunar and Planetary Science Conference (1391):2172
- Wang C, Xue S, Hu J, Tang K (2009a) Raman, far infrared, and Mössbauer spectroscopy of $CuFeS₂$ nanocrystallites. Jpn J Appl Phys 48:023003- 1–023003-3
- Wang Y, Pan S, Tian X, Zhou Z, Liu G, Wang J, Jia D (2009b) Synthesis, structure, and properties of the noncentrosymmetric hydrated borate $Na₂B₅O₈(OH)$ ∙2H2O. Inorg Chem 48(16):7800–7804
- Wang X, Ming-Chou I, Hu W, Burruss RC, Sun Q, Song Y (2011) Raman spectroscopic measurements of $CO₂$ density: experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations. Geochim Cosmochim Acta 75:4080–4093
- Wang Y, Liang J, Wen T, Li K, Wang Y, Li G, Lin J (2012) Syntheses and properties of a series of chromium vanadates $ACrV₂O₇$ (A = Na, K, Rb, Cs) with layered structure. J Solid State Chem 192:1–6
- Wang Y, Lu X, Wang T, Pan F, Yan Y, Zhang Z (2013) Hydrothermal synthesis of flower-like ammonium illite constructed by nanosheets from coal series kaolin. Mater Lett 96:233–236
- Wang M, Zhang P, Li J, Jiang C (2014) The effects of Mn loading on the structure and ozone decomposition activity of MnO_x supported on activated carbon. Chin J Catal 35(3):335–341
- Wang A, Freeman JJ, Jolliff BL (2015) Understanding the Raman spectral features of phyllosilicates. J Raman Spectrosc 46(10):829–845
- Wang T, Sanchez C, Groenen J, Sciau P (2016) Raman spectroscopy analysis of terra sigillata: the yellow pigment of marbled sigillata. J Raman Spectrosc. [https://](https://doi.org/10.1002/jrs.4906) doi.org/10.1002/jrs.4906
- Warrier AVR, Krishnan RS (1964) Raman spectrum of strontium fluoride (SrF₂). Naturwissenschaften 51 $(1):8-9$
- Watanabe I, Noguchi S, Shimizu T (1983) Study on local structure in amorphous Sb–S films by Raman scattering. J Non-Cryst Solids 58(1):35–40
- Watenphul A, Burgdorf M, Schlüter J, Horn I, Malcherek T, Mihailova B (2016a) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. Am Mineral 101(4):970–985
- Watenphul A, Schlüter J, Bosi F, Skogby H, Malcherek T, Mihailova B (2016b) Influence of the octahedral cationic-site occupancies on the framework vibrations of Li-free tourmalines, with implications for estimating temperature and oxygen fugacity in host rocks. Am Mineral 101(11):2554–2563
- Watté J, Wuyts K, Silverans RE, Van Hove M, Van Rossum M (1994) A combined x-ray diffraction and Raman analysis of Ni/Au/Te-ohmic contacts to n-GaAs. J Appl Phys 75(4):2055–2060
- Weber I, Böttger U, Jessberger EK, Hübers HW, Pavlov SG, Schröder S, Tarcea N, Dörfer T (2012) Raman spectroscopy of Mars relevant minerals for planetary exploration. 43rd Lunar Planetary Sci Conf 43:1793–1794
- Wehrmeister U, Soldati AL, Jacob DE, Häger T, Hofmeister W (2010) Raman spectroscopy of synthetic, geological and biological vaterite: a Raman spectroscopic study. J Raman Spectrosc 41(2):193–201
- Wei Q, Cheng JW, He C, Yang GY (2014) An acentric calcium borate $Ca_2[B_5O_9]$ (OH)∙H₂O: ynthesis, structure, and nonliner optical property. Inorg Chem 53 (21):11757–11763
- Wei C, Bai Y, Deng A, Bao Y (2016) Universal synthesis of air stable, phase pure, controllable $FeSe₂$ nanocrystals. Nanotechnol 27(16):165702. (9 pp)
- Weil M (2000) Preparation, single crystal structure analysis, and thermal behaviour of the acidic mercury (I) phosphate $(Hg_2)_2(H_2PO_4)(PO_4)$. Z anorg allg Chemie 626(8):1752–1756. (in English)
- Weis FA, Lazor P, Skogby H, Stalder R, Eriksson L (2016) Polarized IR and Raman spectra of zoisite: insights into OH-dipole orientation and the luminescence. Eur J Mineral. [https://doi.org/10.1127/ejm/](https://doi.org/10.1127/ejm/2016/0028-2528) [2016/0028-2528](https://doi.org/10.1127/ejm/2016/0028-2528)
- Welch MD, Kleppe AK (2016) Polymorphism of the hydroxide perovskite $Ga(OH)_3$ and possible proton-

driven transformational behavior. Phys Chem Minerals 43:515–526

- Welch MD, Mitchell RH, Kampf AR, Chakhmouradian AR, Smith D, Carter M (2014) Crystal structure and topological affinities of magbasite, $KBaFe³$ $+ \overline{M}g_7\overline{Si}_8O_{22}(OH)_2F_6$: a trellis structure related to amphibole and carpholite. Mineral Mag 78:29–45
- Welch MD, Rumsey MS, Kleppe AK (2016) A naturallyoccurring new lead-based halocuprate (I). J Solid State Chem 238:9–14
- Welsh FS (2008) Identification of 1850s brown zinc paint made with franklinite and zincite at the US Capitol. APT Bull J Preserv Technol 39(1):17–30
- Wesełucha-Birczyńska A, Toboła T, Natkaniec-Nowak L (2008) Raman microscopy of inclusions in blue halites. Vib Spectrosc 48(2):302–307
- White SN (2009) Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem Geol 259(3):240–252
- White WB, Keramidas VG (1972) Vibrational spectra of oxides with the C-type rare earth oxide structure. Spectrochim Acta A 28(3):501–509
- Wickleder M, Logemann C, Schwarzer S (2016) Oxidizing rhodium with sulfuric acid: the sulfates $Rh_2(SO_4)$ ₃ and $Rh_2(SO_4)$ ₃⋅2H₂O. Eur J Inorg Chem. <https://doi.org/10.1002/ejic.201601247>
- Widulle F, Kramp S, Pyka NM, Göbel A, Ruf T, Debernardi A, Lauck R, Cardona M (1999) The phonon dispersion of wurtzite CdSe. Phys B 263–264:448–451
- Wieghardt K, Siebert H (1971) Zur Kenntnis der Hexafluoromanganate (III). Z anorg allg Chemie 381 (1):12–20. (in German)
- Wienold J, Jentoft RE, Ressler T (2003) Structural investigation of the thermal decomposition of ammonium heptamolybdate by in situ XAFS and XRD. Eur J Inorg Chem 2003(6):1058–1071
- Wiewióra A, Hida T (1996) X-Ray determination of superstructure of pyrophyllite from Yano-Shokozan mine, Hiroshima, Japan. Clay Sci 10(1):15–35
- Wijzen F, Rulmont A, Tarte P (1994) Origin of spurious bands in the infrared spectrum of $Ba₂TiO₄$. Spectrochim Acta A 50(4):677–681
- Wild S, Elliott H, Thompson DP (1978) Combined infrared and X-ray studies of β -silicon nitride and β' -sialons. J Mater Sci 13(8):1769–1775
- Wildner M, Tillmanns E, Andrut M, Lorenz J (2003) Sailaufite, $(Ca, Na, \Box)_{2}Mn_{3}O_{2}(AsO_{4})_{2}(CO_{3})$ 3H₂O, a new mineral from Hartkoppe hill, Ober-Sailauf (Spessart mountains, Germany), and its relationship to mitridatite–group minerals and pararobertsite. Eur J Mineral 15:555–564
- Wilkins RWT (1971) Infrared spectroscopy in the mineralogical analysis of uranium ores. N Jb Miner Mh 11:441–450
- Wilmarth WR, Begun GM, Nave SE, Peterson JR (1988) The Raman spectra of polycrystalline orthorhombic YF_3 , SmF_3 , HoF_3 , YbF_3 , and single crystal TbF₃. J Chem Phys 89(2):711–715
- Wilson MJ (2014) The structure of opal-CT revisited. J Non-Cryst Solids 405:68–75
- Windom BC, Sawyer WG, Hahn DW (2011) A Raman spectroscopic study of $MoS₂$ and $MoO₃$: applications to tribological systems. Tribol Lett 42(3):301–310
- Witt K, Mecke R (1967) Grundschwingungen von Phenanthren aus experimentellen Ergebnissen. Z Naturforsch A 22(8):1247–1254. (in German)
- Witzke T, Zhen S, Seff K, Doering T, Nasdala L, Kolitsch U (2001) Ronneburgite, $K_2MnV_4O_{12}$, a new mineral from Ronneburg, Thuringia, Germany: description and crystal structure. Am Mineral 86(9):1081–1086
- Witzke T, Kolitsch U, Krause W, Wiechowski A, Medenbach O, Kampf AR, Steele IM, Favreau G (2006) Guanacoite, $Cu_2Mg_2(Mg_{0.5}Cu_{0.5})$ $(OH)₄(H₂O)₄(AsO₄)₂$, a new arsenate mineral species from the El Guanaco Mine, near Taltal, Chile: description and crystal structure. Eur J Mineral 18(6): 813–821
- Włodyka R, Wrzalik R (2004) Apophyllite from the Międzyrzeczesill near Bielsko-Biała, the type of area of the teschenite-picrite association. Mineral Polonica 35(1):19–32
- Wopenka B, Freeman JJ, Nikischer T (1998) Raman spectroscopic identification of fibrous natural zeolites. Appl Spectrosc 52(1):54–63
- Wopenka B, Freeman JJ, Grew E (1999) Raman spectroscopic identification of B-free and B-rich kornerupine (prismatine). Am Mineral 84(4):550–554
- Wu L, Chen XL, Li H, He M, Xu YP, Li XZ (2005) Structure determination and relative properties of novel cubic borates MM'4 (BO3) 3 ($M = Li$, $M' = Sr$; $M = Na$, M' $=$ Sr, Ba). Inorg Chem 44(18):6409–6414
- Wu L, Chen XL, Xu YP, Sun YP (2006a) Structure determination and relative properties of novel noncentrosymmetric borates $MM'_4(BO_3)$ ₃ (M = Na, M' = Ca and $M = K$, $M' = Ca$, Sr). Inorg Chem 45 (7):3042–3047
- Wu L, Chen XL, Zhang Y, Kong YF, Xu JJ, Xu YP (2006b) Ab initio structure determination of novel borate NaSrBO₃. J Solid State Chem 179 (4):1219–1224
- Wu L, Sun JC, Zhang Y, Jin SF, Kong YF, Xu JJ (2010a) Structure determination and relative properties of novel chiral orthoborate KMgBO₃. Inorg Chem 49 (6):2715–2720
- Wu SY, Liu XQ, Chen XM (2010b) Hydrothermal synthesis of $NaNbO₃$ with low NaOH concentration. Ceram Int 36(3):871–877
- Wu H, Pan S, Poeppelmeier KR, Li H, Jia D, Chen Z, Fan X, Yang Y, Rondinelli JM, Luo H (2011) $K_3B_6O_{10}Cl$: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc 133 (20):7786–7790
- Wu B, Wang R-C, Yang J-H, Wu F-Y, Zhang W-L, Gu X-P, Zhang A-C (2015) Wadeite $(K_2ZrSi_3O_9)$, an alkali-zirconosilicate from the Saimaagpaitic rocks in northeastern China: its origin and response to multi-stage activities of alkaline fluids. Lithos 224: 126–142
- Wulferding D, Lemmens P, Scheib P, Röder J, Mendels P, Chu S, Han T, Lee YS (2010) Interplay of thermal and quantum spin fluctuations in the kagome lattice compound herbertsmithite. Phys Rev B 82(14):144412- 1–144412-6
- Wulferding D, Lemmens P, Yoshida H, Okamoto Y, Hiroi Z (2012) The spin dynamics in distorted kagome lattices: a comparative Raman study. J Phys Condens Matter 24(18):185602. (4 pp)
- Xhaxhiu K, Saraçi E, Bente K (2013) Sequestration of supercritical $CO₂$ by mercury oxide. Chem Papers 67 (6):594–600
- Xia Y, Ma Q, Zhang Z, Liu Z, Feng J, Shao A, Wang W, Fu Q (2014) Development of Chinese barium copper silicate pigments during the Qin Empire based on Raman and polarized light microscopy studies. J Archaeolog Sci 49:500–509
- Xia C, Li P, Gandi AN, Schwingenschlögl U, Alshareef HN (2015) Is $NiCo₂S₄$ really a semiconductor? Chem Mater 27(19):6482–6485
- Xiao B, Dellen J, Schlenz H, Bosbach D, Suleimanov EV, Alekseev EV (2014) Unexpected structural complexity in cesium thorium molybdates. Cryst Growth Design 14(5):2677–2684
- Xiao B, Schlenz H, Dellen J, Bosbach D, Suleimanov EV, Alekseev EV (2015) From two-dimensional layers to three-dimensional frameworks: expanding the structural diversity of uranyl compounds by cation-cation interactions. Cryst Growth Design 15(8):3775–3784
- Xie X, Minitti ME, Chen M, Mao HK, Wang D, Shu J, Fei Y (2002) Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite. Geochim Cosmochim Acta 66(13):2439–2444
- Xie X, Minitti ME, Chen M, Mao HK, Wang D, Shu J, Fei Y (2003) Tuite, γ -Ca₃(PO₄)₂: a new mineral from the Suizhou L6 chondrite. Eur J Mineral 15(6):1001–1005
- Xie HD, Shen DZ, Wang XQ, Shen GQ (2007) Growth and characterization of $KBi(WO₄)₂$ single crystals. Cryst Res Technol 42(1):18–22
- Xie J, Zheng Y-X, Pan R-J, Liu S-Y, Song W-T, Cao G-S, Zhu T-J, Zhao X-B (2011) Sb-based alloy (NiSb, FeSb₂) nanoparticles decorated graphene prepared by one-step solvothermal route as anode for Li-ion batteries. Int. J Electrochem Sci 6:4811–4821
- Xie B, Lu G, Wang Y, Guo Y, Guo Y (2012) Selective synthesis of tetragonal $LaVO₄$ with different vanadium sources and its luminescence performance. J Alloys Compd 544:173–180
- Xie X, Chen M, Zhai S, Wang F (2014) Eutectic metal + troilite + Fe-Mn-Na phosphate + Al-free chromite assemblage in shock-produced chondritic melt of the Yanzhuang chondrite. Meteor Planet Sci 49 (12):2290–2304
- Xie X, Yang H, Gu X, Downs RT (2015) Chemical composition and crystal structure of merrillite from the Suizhou meteorite. Am Mineral 100 (11–12):2753–2756
- Xie X, Gu X, Chen M (2016) An occurrence of tuite, γ-Ca₃(PO₄)₂, partly transformed from Ca-phosphates in the Suizhou meteorite. Meteorit Planet Sci 51 (1):195–202
- Xiong Z-H, Zhao M-Z, He J-G, Li Y-P, Li H-Z (2016) Raman spectra of bredigite at high temperature and high pressure. Spectrosc Spectral Anal 36 (10):3404–3409
- X-ray Laboratory, Peking Institute of Uranium Geology, Wuhan Geological College (1978) Orthobrannerite – a new mineral of the brannerite group. Acta Geol Sin 52:241–251. (in Chinese, English abstr)
- Xu G (1998) A fluid inclusion study of syntectonic Zn-Pb-Ag mineralization at Dugald River, Northwest Queensland, Australia. Econc Geol 93(8):1165–1179
- Xu J, Gilson DF, Butler IS (1998) FT-Raman and highpressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, Ca (H2PO4)2∙H2O. Spectrochima Acta A 54 (12):1869–1878
- Xu J, Butler IS, Gilson DF (1999) FT-Raman and highpressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO₄⋅2H₂O) and anhydrous dicalcium phosphate (CaHPO₄). Spectrochim Acta A 55(14):2801–2809
- Xu S, Wu W, Xiao W, Yang J, Chen J, Ji S, Liu Y (2008) Moissanite in serpentinite from the Dabie Mountains in China. Mineral Mag 72(4):899–908
- Xu H, Song Y, Pan W, Chen Q, Wu X, Lu P, Gong Q, Wang S (2015a) Vibrational properties of epitaxial $Bi₄Te₃$ films as studied by Raman spectroscopy. AIP Adv 5(8):087103-1–087103-7
- Xu X, Yang J, Robinson PT, Xiong F, Ba D, Guo G (2015b) Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Res 27(2):686–700
- Xue D-J, Yang B, Yuan Z-K, Wang G, Liu X, Zhou Y, Hi L, Pan D, Chen S, Tang J (2015) $CuSbSe₂$ as a potential photovoltaic absorber material: studies from theory to experiment. Adv Energy Mater 5 (23):1501203. (9 pp)
- Yagoubi S, Obbade S, Benseghir M, Abraham F, Saadi M (2007) Synthesis, crystal structure, cationic mobility, thermal evolution and spectroscopic study of $CS_8(UO_2)_4(WO_4)_4(WO_5)_2$ containing infinite uranyl tungstate chains. Solid State Sci 9(10):933–943
- Yagoubi S, Renard C, Abraham F, Obbade S (2013) Molten salt flux synthesis and crystal structure of a new open-framework uranyl phosphate $Cs_3(UO_2)_2(PO_4)O_2$: spectroscopic characterization and cationic mobility studies. J Solid State Chem 200:13–21
- Yakovenchuk VN, Ivanyuk GY, Pakhomovsky YA, Panikorovskii TL, Britvin SN, Krivovichev SV, Shilovskikh VV, Bocharov VN (2017) Kampelite, $Ba_3Mg_{1.5}Sc_4(PO_4)_6(OH)_3.4H_2O$, a new very complex Ba-Sc phosphate mineral from the Kovdor phoscoritecarbonatite complex (Kola Peninsula, Russia). Mineral Petrol. <https://doi.org/10.1007/s00710-017-0515-1>
- Yakubovich OV, Massa W, Chukanov NV (2008) Crystal structure of britvinite $[Pb_7(OH)_3F(BO_3)_2(CO_3)]$ $[Mg_{4,5}(OH)_{3}(Si_{5}O_{14})]$: a new layered silicate with an original type of silicon-oxygen networks. Crystallogr Repts 53(2):206–215
- Yan G, Zhang S, Zhao M, Ding J, Li D (1992) Jianshuiite a new magnesic mineral of chalcophanite group. Acta Mineral Sin 12:69–77. (in Chinese, English Abstr)
- Yan T, Wang X, Long J, Lin H, Yuan R, Dai W, Li Z, Fu $X(2008)$ Controlled preparation of In_2O_3 , InOOH and $In(OH)₃$ via a one-pot aqueous solvothermal route. New J Chem 32(11):1843–1846
- Yan C, Gu E, Liu F, Lai Y, Li J, Liu Y (2013) Colloidal synthesis and characterizations of wittichenite copper bismuth sulphide nanocrystals. Nanoscale 5 (5):1789–1792
- Yang Z, Giester G (2016) Hydrogen-bonding system in amarillite, NaFe $(SO_4)_2(H_2O)_6$: the structure refinement. Eur J Mineral. [https://doi.org/10.1127/ejm/](https://doi.org/10.1127/ejm/2016/0028-2567) [2016/0028-2567](https://doi.org/10.1127/ejm/2016/0028-2567)
- Yang TR, Lu CC, Chou WC, Feng ZC, Chua SJ (1999) Infrared and Raman spectroscopic study of Zn_{1-} x_xMn_x Se materials grown by molecular-beam epitaxy. Phys Rev B 60(23):16058–16064
- Yang J, Cheng GH, Zeng JH, Yu SH, Liu XM, Qian YT (2001) Shape control and characterization of transition metal diselenides MSe_2 (M = Ni, Co, Fe) prepared by a solvothermal-reduction process. Chem Mater 13 (3):848–853
- Yang M, Yu J, Shi L, Chen P, Li G, Chen Y, Xu R, Gao S (2006) Synthesis, dtructure, and magnetic property of a new open-framework manganese borophosphate, $[NH_4]_4[Mn_9B_2(OH)_2(HPO_4)_4(PO_4)_6]$. Chem Mater 18 (2):476–481
- Yang H, Costin G, Keogh J, Lu R, Downs RT (2007a) Cobaltaustinite, CaCo(AsO4)(OH). Acta Crystallogr E 63(2):i53–i55
- Yang JS, Dobrzhinetskaya L, Bai WJ, Fang QS, Robinson PT, Zhang J, Green HW (2007b) Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geol 35(10):875–878
- Yang N, Yang H, Jia J, Pang X (2007c) Formation and magnetic properties of nanosized $PbFe_{12}O_{19}$ particles synthesized by citrate precursor technique. J Alloys Compd 438:263–267
- Yang H, Dembowski RF, Conrad PG, Downs RT (2008a) Crystal structure and Raman spectrum of hydroxylbästnasite-(Ce), CeCO₃(OH). Am Mineral 93 (4):698–701
- Yang Y, Fang H, Zheng J, Li L, Li G, Yan G (2008b) Towards the understanding of poor electrochemical activity of triclinic LiVOPO4: experimental characterization and theoretical investigations. Solid State Sci 10 (10):1292–1298
- Yang H, Jenkins RA, Downs RT, Evans SH, Tait KT (2011a) Rruffite, Ca₂Cu(AsO₄)₂⋅2H₂O, a new member of the roselite group, from Tierra Amarilla, Chile. Can Mineral 49(3):877–884
- Yang H, Sun HJ, Downs RT (2011b) Hazenite, KNaMg2(PO4)2∙14H2O, a new biologically related phosphate mineral, from Mono Lake, California, USA. Am Mineral 96(4):675–681
- Yang JJ, Martens WN, Frost RL (2011c) Transition of chromium oxyhydroxide nanomaterials to chromium oxide: a hot-stage Raman spectroscopic study. J Raman Spectrosc 42(5):1142–1146
- Yang YW, Stevenson RA, Siegel AM, Downs GW (2011d) Redetermination of eveite, $Mn₂AsO₄(OH)$, based on single-crystal X-ray diffraction data. Acta Crystallogr E. <https://doi.org/10.1107/S1600536811044266>
- Yang Y, Pan S, Li H, Han J, Chen Z, Zhao W, Zhou Z (2011e) $Li_4Cs_3B_7O_{14}$: synthesis, crystal structure, and optical properties. Inorg Chem 50(6): 2415–2419
- Yang Y, Wu J, Wang Y, Zhu J, Liu R, Meng C (2011f) Synthesis, crystal structure and characterization of a new protonated magnesium borophosphate: $(H_3O)Mg$ (H2O)2[BP2O8]∙H2O. Z anorg allg Chemie 637 (1):137–141. (in English)
- Yang H, Jenkins RA, Thompson RM, Downs RT, Evans SH, Bloch EM (2012) Markascherite, $Cu₃(MoO₄)$ (OH)4, a new mineral species polymorphic with szenicsite, from Copper Creek, Pinal County, Arizona, USA. Am Mineral 97(1):197–202
- Yang H, Downs RT, Evans SH, Jenkins RA, Bloch EM (2013a) Rongibbsite, $Pb_2(Si_4Al)O_{11}(OH)$, a new zeolitic aluminosilicate mineral with an interrupted framework from Maricopa County, Arizona, USA. Am Mineral 98(1):236–241
- Yang H, Downs RT, Evans SH, Pinch WW (2013b) Scottyite, the natural analog of synthetic $BaCu₂Si₂O₇$, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa. Am Mineral 98 (2–3):478–484
- Yang H, Downs RT, Evans SH, Pinch WW (2014) Lavinskyite, $K(LiCu)Cu₆(Si₄O₁₁)₂(OH)₄$, isotypic with plancheite, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa. Am Mineral 99(2–3):525–530
- Yang H, Andrade MB, Downs RT, Gibbs RB, Jenkins RA (2016a) Raygrantite, $Pb_{10}Zn(SO_4)_6(SiO_4)_2(OH)_2$, a new mineral isostructural with iranite, from the Big Horn Mountains, Maricopa County, Arizona, USA. Can Mineral 54:625–634
- Yang Z, Giester G, Mao Q, Ma Y, Zhang D, Li H (2016b) Zincobotryogen, $\text{ZnFe}^{3+}(\text{SO}_4)_2(\text{OH})$ -7H₂O: validation as a mineral species and new data. Mineral Petrol. <https://doi.org/10.1007/s00710-016-0484-9>
- Yanqing Z, Erwei S, Suxian C, Wenjun L, Xingfang H (2000) Hydrothermal preparation and characterization of brookite-type TiO₂ nanocrystallites. J Mater Sci Lett 19(16):1445–1448
- Yeon J, Kim SH, Hayward MA, Halasyamani PS (2011) "A" cation polarity control in ACuTe₂O₇ (A = Sr^2) Ba^{2+} , or Pb²⁺). Inorg Chem 50(17):8663–8670
- Yin P-F, Sun L-L, Gao Y-L, Wang S-Y (2008) Preparation and characterization of $Co₉S₈$ nanocrystalline and nanorods. Bull Mater Sci 31(4):593–596
- Yin J, Li G, Yang G, Ge X, Xu H, Wang J (2015) Fluornatropyrochlore, a new pyrochlore supergroup mineral from the Boziguoer rare earth element deposit, Baicheng County, Akesu, Xinjiang, China. Can Mineral 53:455–460
- Yoder CH, Pasteris JD, Krol KA, Weidner VL, Schaeffer RW (2012) Synthesis, structure, and solubility of

carbonated barium chlor- and hydroxylapatites. Polyedron 44:143–149

- Yong W, Botis S, Shieh SR, Shi W, Wither AC (2012) Pressure-induced phase transition study of magnesiochromite $(MgCr₂O₄)$ by Raman spectroscopy and X-ray diffraction. Phys Earth Planet Interiors 196:75–82
- You J, Jiang G, Xu K (2001) High temperature Raman spectra of sodium disilicate crystal, glass and its liquid. J Non-Cryst Solids 282(1):125–131
- Yu YS, Lee HC, Kim HK, Han SG, Lee JH, Song JY, Lee GI, Jang MS (1990) The crystal growth of $BiNbO₄$. Ferroelectrics 107(1):225–228
- Yu Z-T, Shi Z, Jiang Y-S, Yuan H-M, Chen J-S (2002) A chiral lead borate containing infinite and finite chains built up from BO_4 and BO_3 units. Chem Mater 14 (3):1314–1318
- Yu H, Pan S, Wu H, Su X, Yang Z (2014) Synthesis, structures, optical properties and electronic structures of two mixed metal borates $MBaB_5O_9$ (M = Na, K). J Alloys Compd 585:602–607
- Yu H, Young J, Wu H, Zhang W, Rondinelli JM, Halasyamani PS (2016) Electronic, crystal chemistry, and nonlinear optical property relationships in the dugganite $A_3B_3CD_2O_{14}$ family. J Am Chem Soc 138 (14):4984–4989
- Yuan AQ, Wu J, Huang ZY, Wu K, Liao S, Tong ZF (2008) Synthesis of NH4FePO4∙H2Onano-plates via solid-state reaction at low temperature and its thermochemistry properties. Mater Res Bull 43(6):1339–1345
- Yun-Fang W, Ya-Han C, Yung-Tang N, In-Gann C (2013) Crystal structure and optical performance of $Al³⁺$ and Ce^{3+} codoped $Ca_3Sc_2Si_3O_{12}$ green phosphors for white LEDs. J Am Ceram Soc 96(1):234–240
- Yuran D, Li W (1998) Study on Raman spectrum characteristics of hsianghualite, baotite, huanghoite and jixianite. Rock Mineral Anal 3:181–184. (in Chinese, English Abstr)
- Yuvaraj S, Karthikeyan K, Kalpana D, Lee YS, Selvan RK (2016) Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi₂O₄ as negative electrodes for Li-ion hybrid capacitors. J Colloid Interface Sci 469:47–56
- Yuzyuk YI, Simon P, Gagarina E, Hennet L, Thiaudiere D, Torgashev VI, Raevskaya SI, Raevskii IP, Sauvajol JL (2005) Modulated phases in NaNbO₃: Raman scattering, synchrotron x-ray diffraction, and dielectric investigations. J Phys Condens Matter 17 (33):4977–4990
- Zaccarini F, Thalhammer OA, Princivalle F, Lenaz D, Stanley CJ, Garuti G (2007) Djerfisherite in the GuliDunite Complex, Polar Siberia: a primary or metasomatic phase? Can Mineral 45(5):1201–1211
- Zaccarini F, Bakker RJ, Garuti G, Aiglsperger T, Thalhammer OA, Campos L, Proenza JA, Lewis JF (2010) Platinum group minerals in chromitite bodies of the Santa Elena Nappe, Costa Rica: mineralogical characterization by electron microprobe and Ramanspectroscopy. Boletín Soc Geol Mexicana 62 (1):161–171
- Zaccarini F, Bindi L, Pushkarev E, Garuti G, Bakker RJ (2016) Multi-analytical characterization of minerals of the bowieite–kashinite series from the Svetly Bor complex, Urals, Russia, and comparison with worldwide occurrences. Can Mineral 54:461–473
- Zadov AE, Pekov IV, Zubkova NV, Gazeev VM, Chukanov NV, Yapaskurt VO, Kartasheov PM, Galuskin EV, Galuskina IO, Pertsev NN, Gurbanov AG, Pusharovsky DY (2013) Aklimaite, $Ca_4[Si_2O_5(OH)_2] (OH)_4·5H_2O$, a new natural hydrosilicate from Mount Lakargi, the Northern Caucasus, Russia. Geol Ore Depos 55(7):541–548
- Zaghib K, Julien CM (2005) Structure and electrochemistry of FePO4∙2H2O hydrate. J Power Sources 142 (1):279–284
- Zahoransky T, Friis H, Marks MA (2016) Luminescence and tenebrescence of natural sodalites: a chemical and structural study. Phys Chem Minerals 43:459–480
- Zaitsev AN, Keller J, Spratt J, Jeffries TE, Sharygin VV (2009) Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano, Tanzania. Geol Ore Depos 51(7):608–616
- Zaitsev AN, Williams CT, Britvin SN, Kuznetsova IV, Spratt J, Petrov SV, Keller J (2010) Kerimasite, $Ca₃Zr₂(Fe³⁺₂Si)O₁₂$, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, northern Tanzania. Mineral Mag 74 (5):803–820
- Zaitsev AN, Chakhmouradian AR, Siidra OI, Spratt J, Williams CT, Stanley CJ, Petrov SV, Britvin SN, Polyakova EA (2011) Fluorine-, yttrium-and lanthanide-rich cerianite-(Ce) from carbonatitic rocks of the Kerimasi volcano and surrounding explosion craters, Gregory Rift, northern Tanzania. Mineral Mag 75(6):2813–2822
- Zaitsev AN, Avdontseva EY, Britvin SN, Demény A, Homonnay Z, Jeffries TE, Keller J, Krivovichev VG, Markl G, Platonova NV, Siidra OI, Spratt J, Vennemann T (2013) Oxo-magnesio-hastingsite, $NaCa₂(Mg₂Fe³⁺₃)(Al₂Si₆)O₂₂O₂$, a new anhydrous amphibole from the Deeti volcanic cone, Gregory rift, northern Tanzania. Mineral Mag 77(6):2773–2792
- Zaitsev AN, Britvin SN, Kearsley A, Wenzel T, Kirk C (2017) Jörgkellerite, Na_3Mn^3 ⁺₃(PO₄)₂(CO₃)O₂·5H₂O, a new layered phosphate-carbonate mineral from the Oldoinyo Lengai volcano, Gregory rift, northern Tanzania. Mineral Petrol 111:373–381
- Zajzon N, Váczi T, Fehér B, Takács Á, Szakáll S, Weiszburg TG (2013) Pyrophanite pseudomorphs after perovskite in Perkupa serpentinites (Hungary): a microtextural study and geological implications. Phys Chem Minerals 40(8):611–623
- Zákutná D, Repko A, Matulková I, Nižňanský D, Ardu A, Cannas C, Mantlíková A, Vejpravová J (2014) Hydrothermal synthesis, characterization, and magnetic properties of cobalt chromite nanoparticles. J Nanoparticle Res 16(2):1–14
- Zavorotynska O, Corno M, Damin A, Spoto G, Ugliengo P, Baricco M (2011) Vibrational properties of MBH₄ and MBF₄ crystals ($M = Li$, Na, K): a

combined DFT, infrared and Raman study. J Phys Chem C 115:18890–18900

- Zedgenizov DA, Shatskiy A, Ragozin AL, Kagi H, Shatsky VS (2014) Merwinite in diamond from São Luiz, Brazil: a new mineral of the Ca-rich mantle environment. Am Mineral 99(2–3):547–550
- Zhai S, Wu X, Ito E (2010) High-pressure Raman spectra of tuite, γ -Ca₃(PO₄)₂. J Raman Spectrosc 41 (9):1011–1013
- Zhai S, Akaogi M, Kojitani H, Xue W, Ito E (2014) Thermodynamic investigation on β- and $γ$ -Ca₃(PO₄)₂ and the phase equilibria. Phys Earth Planet Interiors 228:144–149
- Zhai S, Shieh SR, Xue W, Xie T (2015) Raman spectra of stronadelphite $Sr₅(PO₄)₃F$ at high pressures. Phys Chem Minerals 42(7):579–585
- Zhai S, Yin Y, Shieh SR, Chang YY, Xie T, Xue W (2016) Raman spectroscopic study of $MnAl₂O₄$ galaxite at various pressures and temperatures. Phys Chem Minerals. [https://doi.org/10.1007/s00269-016-](https://doi.org/10.1007/s00269-016-0845-2) [0845-2](https://doi.org/10.1007/s00269-016-0845-2)
- Zhan P (2009) Large scale hydrothermal synthesis of β-Co $(OH)₂$ hexagonal nanoplates and their conversion into porous Co3O4nanoplates. J Alloys Compd 478 (1):823–826
- Zhang G, Redhammer J, Salje EKH, Mookherjee MM (2002a) LiFe $Si₂O₆$ and NaFe $Si₂O₆$ at low temperatures: an infrared spectroscopic study. Phys Chem Minerals 29:609–616
- Zhang G, Wu Y, Fu P, Wang G, Liu H, Fan G, Chen C (2002b) A new sodium samarium borate $Na₃Sm₂(BO₃)₃$. J Phys Chem Solids 63(1):145–149
- Zhang M, Xu H, Salje EKH, Heaney PJ (2003) Vibrational spectroscopy of beta-eucryptite (LiAlSiO₄): optical phonons and phase transition(s). Phys Chem Minerals 30:457–462
- Zhang PH, Zhu JC, Zhao ZH, Gu XP, Lin JF (2004) Zincospiroffite, a new tellurite mineral species from the Zhongshangou gold deposit, Hebei Province, People's Republic of China. Can Mineral 42(3):763–768
- Zhang G, Wu Y, Li Y, Chang F, Pan S, Fu P, Chen C (2005) Flux growth and characterization of a new oxyborate crystal $Na₃La₉O₃(BO₃)₈$. J Cryst Growth 275(1):e1997–e2001
- Zhang D, Yoshioka F, Ikeue K, Machida M (2008) Synthesis and oxygen release/storage properties of Ce-substituted La-oxysulfates, $(La_{1-x}Ce_x)_2O_2SO_4$. Chem Mater 20(21):6697–6703
- Zhang G, Liu Z, Zhang J, Fan F, Liu Y, Fu P (2009a) Crystal growth, structure, and properties of a non-centrosymmetric fluoride borate, Ba₃Sr₄(BO₃)₃F₅. Cryst Growth Des 9(7):3137–3141
- Zhang H, Chen G, Li X, Wang Q (2009b) Electronic structure and water splitting under visible light irradiation of BiTa_{1-x}Cu_xO₄ ($x = 0.00{\text -}0.04$) photocatalysts. Int J Hydrogen Energy 34(9):3631–3638
- Zhang SY, Jiang HL, Sun CF, Mao JG (2009c) Syntheses, crystal structures, and properties of five new transition metal molybdenum(VI) selenites and tellurites. Inorg Chem 48(24):11809–11820
- Zhang A, Hsu W, Li Q, Liu Y, Jiang Y, Tang G (2010a) SIMS Pb/Pb dating of Zr-rich minerals in lunar meteorites Miller Range 05035 and LaPazIcefield 02224: implications for the petrogenesis of mare basalt. Sci China Earth Sci 53(3):327–334
- Zhang L, Ling LS, Qu Z, Tong W, Tan S, Zhang YH (2010b) Study of lattice dynamics in the CuIr₂S₄ system. Eur Phys J B 77(1):83–86
- Zhang FX, Lang M, Liu Z, Ewing RC (2011) Phase stability of some actinides with brannerite structure at high pressures. J Solid State Chem 184 (11):2834–2839
- Zhang M, Pan S, Han J, Yang Z, Su X, Zhao W (2012a) $Li_2Sr_4B_{12}O_{23}$: a new alkali and alkalineearth metal mixed borate with $[B_{10}O_{18}]^{6-}$ network and isolated $[B_2O_5]^{4-}$ unit. J Solid State Chem 190:92-97
- Zhang W, Wang X, Shen G, Shen D (2012b) Top-seeded growth, optical properties and theoretical studies of noncentrosymmetric Te₂V₂O₉. Cryst Res Technol 47 (2):163–168
- Zhang Y, Karatchevtseva I, Qin M, Middleburgh SC, Lumpkin GR (2013) Raman spectroscopic study of natural and synthetic brannerite. J Nucl Mater 437 (1):149–153
- Zhang H, Lei L, Zhang X (2014) One-step synthesis of cubic pyrite-type $\cos \theta_2$ at low temperature for efficient hydrogen evolution reaction. RSC Adv 4 (97):54344–54348
- Zhang Z, Fu Y, Zhou C, Lai Y (2015) Facile synthesis of $CuSbS₂$ blocks, and their lithium ion storage performance. J Electron Mater 44(1):252–257
- Zhang S, Xie M, Cai B, Zhang H, Ma Y, Chen Z, Zhu Z, Hu Z, Zeng H (2016a) Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain. Phys Rev B 93(24):245303- 1–245303-7
- Zhang Y, Zhang Y, Zhao X, Zhang Y (2016b) Sol–gel synthesis and properties of europium–strontium copper silicates blue pigments with high near-infrared reflectance. Dyes Pigments 131:154–159
- Zhao K, Guo H (2014) Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis. Environ Sci Pollut Res 21(3):1944–1953
- Zhao H, Wang J, Li J, Xu G, Zhang H, Yu L, Gao W, Xia H, Boughton RI (2008a) Lattice vibrations and thermal properties of stoichiometric $KYb(WO₄)₂$ crystal. Cryst Growth Design 8(11):3978–3983
- Zhao WY, Wei P, Wu XY, Wang W, Zhang QJ (2008b) Lattice vibration characterization and magnetic properties of M-type barium hexaferrite with excessive iron. J Appl Phys 103(6):063902. (5 pp)
- Zhao W, Pan S, Han J, Zhou Z (2011) Synthesis, crystal structure and optical properties of a new lead bismuth borate. Inorg Chim Acta 379(1):130–134
- Zhao W, Pan S, Wang Y, Yang Z, Wang X, Han J (2012) Structure, growth and properties of a novel polar material, $KSr_4(BO_3)_3$. J Solid State Chem 195:73–78
- Zhao C, Wang F, Sun Y, Zhou Y (2013a) Synthesis and characterization of β-Yb₂Si₂O₇ powders. Ceram Int 39 (5):5805–5811
- Zhao X-M, Zhang J, Berlie A, Qin Z-X, Huang Q-W, Jiang S, Zhang J-B, Tang L-Y, Liu J, Zhang C, Zhong G-H, Lin H-Q, Chen X-J (2013b) Phase transformations and vibrational properties of coronene under pressure. J Chem Phys 139(14):144308-1–144308-7
- Zhao L, Liu W, Cao L, Su G, Gao R, Yang H (2015) A new member of ferrous sulfates, FeSO₄⋅2H₂O with PtS topology showing spin-canted long-range antiferromagnetic ordering. J Solid State Chem 231:58–63
- Zheng HL, Zhang ZC, Zhou JG, Yang SS, Zhao J (2012) Vibrational spectra of CaGa₂O₄, Ca₂GeO₄, CaIn₂O₄ and CaSnO₃ prepared by electrospinning. Appl Phys A 108(2):465–473
- Zhigadlo ND, Zhang M, Salje EKH (2001) An infrared spectroscopic study of $Li₂B₄O₇$. J Phys Condens Matter 13(30):6551–6561
- Zhizhin GN, Mavrin BN, Shabanov VF (1984) Optical vibrational spectra of crystals. Nauka Publishing House, Moscow. (in Russian)
- Zhong J, Xiang W, Cai Q, Liang X (2012) Synthesis, characterization and optical properties of flower-like Cu3BiS3 nanorods. Mater Lett 70:63–66
- Zhou T, Schwarz U, Hanfland M, Liu ZX, Syassen K, Cardona M (1998) Effect of pressure on the crystal structure, vibrational modes, and electronic excitations of HgO. Phys Rev B 57(1):153–160
- Zhou D, Huang G, Chen X, Xu J, Gong S (2004) Synthesis of LaAlO₃ via ethylenediaminetetraacetic acid precursor. Mater Chem Phys 84(1):33–36
- Zhou Y, Hoffmann S, Huang YX, Prots Y, Schnelle W, Menezes PW, Carrillo-Cabrera W, Sichelschmidt J, Mi J-X, Kniep R (2011) $K_3Ln[OB(OH)_2]_2[HOPO_3]_2$ $(Ln = Yb, Lu)$: layered rare-earth dihydrogen borate monohydrogen phosphates. J Solid State Chem 184 (6):1517–1522
- Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J (2014) Solution-processed antimony selenide heterojunction solar cells. Adv Energy Mater. [https://](https://doi.org/10.1002/aenm.201301846) doi.org/10.1002/aenm.201301846
- Zhu L, Teo M, Wong PC, Wong KC, Narita I, Ernst F, Mitchell KAR, Campbell SA (2010) Synthesis, characterization of a $\cos \epsilon_2$ catalyst for the oxygen reduction reaction. Appl Catal A 386(1):157–165
- Zhu D, Yun S, Nai X, Zhao D, Liu X, Li W (2013) Synthesis and characterization of strontium chloroborate whiskers. Cryst Res Technol 48 $(1):6–10$
- Zhukova ES, Mikheykin AS, Torgashev VI, Bush AA, Yuzyuk YI, Sashin AE, Prokhorov AS, Dressel M, Gorshunov BP (2016) Crucial influence of crystal site disorder on dynamical spectral response in artificial magnetoplumbites. Solid State Sci 62:13–21
- Zhuo JQ, Caban-Acevedo M, Liang HF, Samad L, Ding Q, Fu YP, Li MX, Jin S (2015) Highperformance electrocatalysis forhydrogen evolution reaction using se-doped pyrite-phase nickeldiphosphide nanostructures. ACS Catal 5:6355–6361
- Zubko M, Kusz J, Malczewski D, Häger T, Hofmeister W (2013) High temperature study of metamict rinkite. Solid State Phenom 203–204:331–334

Index

A

Abellaite, 95, 741 Abelsonite, 741 Abhurite, 742 Acanthite, 742 Acetamide solution, 742 Actinolite, 742, 743 Adachiite, 743 Adamite, 743 Adelite, 743 Admontite, 71, 744 Adolfpateraite, 744 Aegirine, 744 Aegirine-augite, 267 Aegirine Li analogue, 744 Aerinite, 745 Aeschynite-(Y), 745 Afmite, 745 Afwillite, 745 Agakhanovite-(Y), 746 Agardite-(Ce), 629, 746 Agardite-(La), 746 Agardite-(Nd), 630 Agardite-(Y), 746 Agricolaite, 747 Ahlfeldite, 747 Ahrensite, 747 Aikinite, 747 Ajoite, 748 Akaganeite, 748 Åkermanite, 245, 748 Åkermanite Sr analogue, 748 Akimotoite, 321, 749 Aklimaite, 749 Alabandite, 749 Alacránite, 749 Alamosite, 749 Alamosite polymorph, 266 Alarsite, 750 Albertiniite, 750 Albite, 750 Aleksite, 750 Alforsite, 431 Alforsite F-analogue, 431

Alforsite OH-analogue, 751 Alforsite vanadate analogue, 578 Alfredopetrovite, 661 Allactite, 617, 751 Allanite (Ce), 751 Allanite-(Nd), 751 Allanpringite, 752 Allendeite, 752 Allophane, 752 Almandine, 752 Almarudite, 753 Alpersite, 501 Alstonite, 753 Altaite, 753 Althausite, 458, 753 Alum-(K), 754 Aluminite, 754 Aluminium acid selenite hydrate, 639 Aluminium decavanadate hydrate, 556 Aluminium niobate, 125 Aluminium phosphate hydrate, 355 Aluminium selenite hydrate, 640 Aluminocerite-(Ce), 754 Aluminocopiapite, 501, 755 Alumohydrocalcite, 755 Alumovesuvianite, 251 Alunite, 755 Alunogen, 517, 755 Alwilkinsite-(Y), 755 Amakinite, 210 Amarantite, 756 Amarillite, 502 Amblygonite, 756 Ambrinoite, 756 Ameghinite, 756 Amesite, 757 Ammoniojarosite, 757 Ammoniozippeite, 532 Ammonium bicarbonate, 80 Ammonium calcium borate, 43 Ammonium cuprooxopolymolybdate (NH₄)₄[H₆CuMo₆O₂₄]⋅4H₂O, 665 Ammonium dichromate, 590 Ammonium heptamolybdate, 666

 \circ Springer Nature Switzerland AG 2020

Ammonium iron(II) phosphate hydrate, 357 Ammonium magnesium phosphate, 357 Ammonium manganese(II) borophosphate, 393 Ammonium nickel molybdate $(NH_4)Ni₂(HMoO₄)(MoO₄)$ $(OH)₂$, 666 Ammonium paratungstate tetrahydrate, 707 Ammonium pentaborate, 41 Ammonium sulfate tellurate, 536 Ammonium titanophosphate, 358 Ammonium uranyl vanadate hydrate, 556 Ammonium vanadyl compound (NH₄)_{0.5}V₂O₅⋅nH₂O, 557 Ammonium vanadyl pyrophosphate, 355 Ammonium zirconofluoride, 226 Analcime, 757 Anapaite, 758 Anatase, 758 Ancylite-(Ce), 758 Andalusite, 759 Andersonite, 759 Andradite, 759 Andychristyite, 760 Angastonite, 760 Anglesite, 760 Anhydrite, 8, 760 Anilite, 761 Ankerite, 761 Ankoleite, 432 Annabergite, 761 Annite, 761 Annite Cl-analogue, 761 Anorpiment, 762 Anorthite, 762 Antarcticite, 762 Anthophyllite, 763 Anthraxolite, 763 Antigorite, 763, 764 Antimonselite, 764 Antimony, 764 Antimony(III) phosphate, 359 Antimony(V) oxophosphate, 359 Antlerite, 764 Antofagastaite, 474 Apachite, 765 Aphthitalite, 765 Apjohnite, 765 Apuanite, 765 Aradite, 766 Aragonite, 8, 731, 766 Arangasite, 535 Arapovite-related silicate, 766 Aravaipaite, 767 Arcanite, 767 Archerite, 767 Ardealite, 535, 767 Ardennite-(As), 768 Arfvedsonite, 768 Argentojarosite, 768 Argutite, 768 Arhbarite, 617

Arisite (Ce), 769 Armalcolite, 769 Arrojadite-(KFe), 769 Arsenbrackebuschite, 769 Arsendescloisite Sr-analogue, 770 Arseniosiderite, 770 Arsenogorceixite, 770 Arsenolamprite, 770 Arsenolite, 770 Arsenopyrite, 771 Arsentsumebite, 771 Arsenuranylite, 771 Arthurite, 772 Artinite, 772 Arzakite, 772 Asbolane, 772, 773 Aspedamite, 773 Asselbornite, 773 Atacamite, 773 Atelestite, 774 Atelisite (Y), 774 Athabascaite, 774 Atokite, 774 Augelite, 775 Augite, 775 Aurichalcite, 775 Aurostibite, 776 Austinite, 776 Autunite, 776 Avicennite, 776 Avogadrite, 776 Awaruite, 777 Axinite-(Fe), 777 Azurite, 777 B Bacalite, 104 Backite, 777 Badalovite, 632 Baddeleyite, 778

Bafertisite, 778 Baghdadite, 778 Bahianite, 778 Bairdite, 779 Balestraite, 779 Balkanite, 779 Bambollaite Te analogue, 779 Baotite, 780 Barahonaite-(Al), 780 Barahonaite-(Fe), 780 Bararite, 780 Barberiite, 781 Barbosalite, 781 Barentsite, 84 Bariandite Al-free analogue, 781 Barićite, 781 Barioferrite, 782 Barioperovskite, 782 Barium borate, 42

Barium bromide dihydrate, 664 Barium calcium diborate, 43 Barium calcium tellurate, 680 Barium cerium tantalite, 126 Barium chromium pyrophosphate, 361 Barium cobalt antimonate, 127 Barium cobaltate, 127 Barium cobalt selenite hydrate, 640 Barium cobalt tellurate, 680 Barium copper tellurate tellurite, 681 Barium formate, 98 Barium lanthanum thorium orthovanadate, 558 Barium magnesium fluoride, 227 Barium manganese fluoride, 227 Barium nickel oxide BaNiO₂, 128 Barium nickel oxide BaNi O_3 , 129 Barium nickel tellurate, 682 Barium niobate, 129 Barium sodium cyclotriphosphate hydrate, 361 Barium strontium orthoborate fluoride, 21 Barium titanate, 130 Barium titanium sulfide, 481 Barium vanadyl phosphate, 362 Barium vanadyl vanadate, 558 Barium zinc tellurate, 682 Barium zirconium orthoborate, 22 Barnesite, 782 Barringtonite, 782 Barrydawsonite-(Y), 782 Bartelkeite, 783 Barylite, 783 Barysilite, 246 Baryte, 783 Baryte selenate analogue, 641 Barytocalcite, 784 Bassanite, 784 Bassoite, 784 Bastnäsite-(Ce), 784 Batievaite-(Y), 340 Batiferrite co-bearing, 785 Baumhauerite, 785 Bavenite, 785 Bayerite, 785 Bayldonite, 786 Bayleyite, 90, 786 Baylissite NH4-analogue, 786 Bazhenovite, 786 Bazirite, 341, 787 Bazzite, 787 Mereheadite, 77 Beaverite-(Cu), 787 Beaverite-(Zn), 529 Becquerelite, 787 Behierite, 788 Behoite, 788 Bĕhounekite, 788 Belakovskiite, 788 Bellidoite, 789 Bendadaite, 789

Benitoite, 789 Benstonite, 789 Beraunite, 351, 353, 789 Berborite, 40 Berdesinskiite, 790 Bergenite, 790 Berlinite, 790 Berlinite tetragonal polymorph, 791 Bermanite, 791 Bernalite, 791 Berndtite, 791 Berthierite, 791 Bertrandite, 792 Beryl, 792 Beryl Cs-bearing, 792 Beryllonite, 793 Berzeliite, 793 Berzeliite polymorph alluaudite-type, 793 Betalomonosovite, 344, 345, 793 Bettertonite, 618 Beudantite, 794 Beusite, 794 Beyerite, 794 Bianchite/Goslarite, 794 Bikitaite, 795 Billietite, 795 Biotite, 795 Biphosphammite, 795 Birnessite, 795, 796 Bischofite, 796 Bismite, 174, 796 Bismoclite, 796 Bismuth, 796 Bismuth(III) aluminate $Bi₂Al₄O₉$, 131 Bismuth(III) aluminoferrite $Bi_2Fe_3AlO_9$, 132 Bismuth(III) calcium oxophosphate, 363 Bismuth copper sulfate tellurite, 482 Bismuth ferrite, 135 Bismuth(III) ferrite dimolybdate, 667 Bismuthinite, 797 Bismuth(III) magnesium oxovanadate, 560 Bismuth(III) magnesium oxovanadate BiMg(VO₄)O, 559 Bismuth molybdate, 668 Bismuth(III) nickel oxophosphate BiNi(PO₄)O, 364 Bismuth(III) stannate pyrochlore-type, 133 Bismuth sulfate, 483 Bismuth(III) tantalate $Bi₇Ta₃O₁₈$, 133 Bismuth(III) tellurite selenate, 642 Bismuth(III) titanate $Bi₄Ti₃O₁₂$, 134 Bismuth tungstate, 708 Bismuthyl sulfate, 483 Bismutite, 797 Bismutocolumbite, 175, 797 Bismutoferrite, 797 Bismutotantalite, 798 Bismutotantalite triclinic dimorph, 176 Bitikleite, 798 Bityite, 327 Bixbyite, 798

Blatterite, 798 Blödite, 799 Bluebellite, 799 Bluelizardite, 799 Bobcookite, 471, 799 Bobdownsite, 800 Bobierrite, 800 Bobshannonite, 800 Bohdanowiczite, 800 Böhmite, 801 Boleite, 801 Boltwoodite, 801 Bonaccordite, 801 Bonattite, 802 Bonazziite, 802 Boracite, 802 Borax, 803 Bornite, 803 Boron arsenate, 599 Boron phosphate, 365 Bosiite, 803 Botallackite, 803 Botryogen, 803 Bottinoite, 804 Boulangerite, 804 Bournonite, 804 Boussingaultite, 804, 805 Bowieite, 805 Braccoite, 805 Bracewellite, 805 Brackebuschite, 806 Bradaczekite, 626 Bradleyite, 806 Braggite, 806 Brandholzite, 806 Brannerite, 807 Brannockite, 807 Brassite, 807 Braunite, 176, 807 Brazilianite, 808 Bredigite, 808 Breithauptite, 808 Brewsterite-Sr, 808 Brianyoungite, 809 Briartite, 809 Bridgmanite, 321 Bridgmanite trigonal polymorph, 322 Britvinite, 15, 16, 809 Brizziite, 809 Brizzite polymorph, 177 Brochantite, 810 Bromargyrite, 810 Bromellite, 178, 810 Brookite, 178, 811 Browneite, 811 Brownleeite, 811 Brownmillerite, 811 Brucite, 2, 12, 812 Brucite Co-analogue, 179

Brüggenite, 812 Brugnatellite, 812 Brunogeierite, 597 Brushite, 812 Buchwaldite, 813 Buchwaldite dimorph, 450 Bukovskýite, 813 Bulgakite, 345 Bunnoite, 813 Bunsenite, 813 Burangaite, 814 Burbankite, 814 Burckhardtite, 814 Burgessite, 815 Burkeite, 815 Buseckite, 815 Bustamite, 815 Butlerite, 816 Buttgenbachite, 816 Byströmite, 816

$\mathbf C$

Cabalzarite, 816 Cabvinite, 817 Cacoxenite, 817 Cadmium formatedihydrate, 98 Cadmium molybdate, 668 Cadmium oxalate trihydrate, 99 Cadmium stannate, 136 Cadmium tungstate, 708 Cadmoindite, 817 Cadmoselite, 817 Cafarsite, 818 Cafetite, 818 Cahnite, 818 Cairncrossite, 818 Calamaite, 476 Calaverite, 819 Calciborite, 819 Calcioaravaipaite, 819 Calciojohillerite, 634 Calciolangbeinite, 820 Calcio-olivine, 819 Calciopetersite, 820 Calcite, 8, 731, 820 Calcium antimonite, 138 Calcium arsenate $CaAs₂O₆$, 602 Calcium borate, 45 Calcium chlorarsenate, 601 Calcium chlorophosphate ("chlor-spodiosite"), 368 Calcium copper titanate $CaCu₃Ti₄O₁₂$, 139 Calcium dihydrophosphate monohydrate, 369 Calcium hydroxychloride, 540 Calcium indium oxide $Ca₂InO₄$, 135 Calcium iron(III) tin orthophosphate, 432 Calcium magnesium lanthanum phosphate, 370 Calcium magnesium yttrium phosphate, 370 Calcium niobate columbite-type, 139 Calcium orthoarsenate trigonal polymorph, 603

Index 1355

Calcium orthoborate fluoride, 23 Calcium orthophosphate orthosilicate, 347 Calcium orthovanadate trigonal polymorph, 560 Calcium plumbate, 140 Calcium samarium thorium arsenate, 603 Calcium strontium orthophosphate whitlockite-type, 422 Calcium tellurite monohydrate, 683 Calcium tetraborate, 45 Calcurmolite, 821 Calderite, 821 Calderónite, 821 Caledonite, 821 Callaghanite, 822 Calomel, 822 Calumetite, 822 Camaronesite, 822 Camerolaite, 823 Campostriniite, 503 Canavesite, 823 Cancrinite, 727, 823 Cancrinite Ca-free analogue, 306 Cancrinite CO₃-deficient, 301 Cancrinite $NO₃$ -analogue, 304 Cancrinite NO_3 -analogue low-hydrous, 305 Cancrinite SO4-rich, 823 Canfieldite, 824 Cannonite, 824 Canosioite, 619 Canutite, 637 Caoxite, 104, 105 Carbocernaite, 824 Carbonatecyanotrichite, 824 Carletonite, 825 Carlfrancisite, 825 Carlfriesite, 825 Carlhintzeite, 226 Carlinite, 825 Carlosturanite, 826 Carlsbergite, 826 Carlsonite, 515 Carminite, 826 Carnallite, 826 Carnegieite, 826 Carnegieite (high), 306 Carnegieite (low), 307 Carnotite, 827 Carpathite, 827 Carpholite, 827 Carrboydite, 827 Carrollite, 828 Caryopilite, 828 Cassiterite, 828 Castellaroite, 597, 828 Caswellsilverite, 829 Catalanoite, 829 Catapleiite, 829 Catapleiite heating product, 346 Cattierite, 829 Cavansite, 829

Cebaite (Ce), 830 Čejkaite, 830 Celadonite, 830 Celestine, 830 Celsian, 831 Centennialite, 545 Cerianite-(Ce), 831 Cerium metaphosphate trihydrate, 372 Cerium(III) polyphosphate, 372 Cerium(IV) pyrophosphate, 371 Černýite, 831 Ceruleite, 831 Cerussite, 16, 832 Cervantite, 832 Cesanite, 832 Cesàrolite, 118 Cesium acid (pentahydrogen) arsenate, 600 Cesium acid arsenate selenate, 642 Cesium acid (pentahydrogen) phosphate, 366 Cesium antimony chloride, 539 Cesium beryllium orthoborate, 22 Cesium borosilicate pollucite-type, 330 Cesium calcium borate, 44 Cesium copper chloride, 537 Cesium fluormolybdate CsMoO2F3, 669 Cesium hexafluorphosphate, 228, 229 Cesium iron arsenate Cs₇Fe₇O₂(AsO₄)₈, 601 Cesium iron sulfate, 484 Cesium magnesium chloride, 538 Cesium manganese(II) pyrophosphate, 367 Cesium sodium stibiochloride, 539 Cesium stibiofluoride, 229 Cesium thorium molybdate, 670 Cesium uranyl niobate $Cs_2(UO_2)_2(Nb_2O_8)$, 137 Cesium uranyl niobate $Cs₉[(UO₂)₈O₄(NbO₅)(Nb₂O₈)₂], 137$ Cesium uranyl oxophosphate, 368 Cesium uranyl tungstate $Cs_4[(UO_2)_4(WO_5)(W_2O_8)O_2]$, 709 Cesium uranyl tungstate $Cs₄[(UO₂)₇(WO₅)₃O₃]$, 710 Cesium uranyl tungstate $Cs_8(UO_2)_4(WO_4)_4(WO_5)_2$, 710 Chabazite-Ca, 832 Chalcanthite, 832 Chalcoalumite, 833 Chalcocite, 833 Chalcocyanite, 833 Chalcomenite, 833 Chalconatronite, 834 Chalcophanite, 834 Chalcophyllite, 834 Chalcopyrite, 834 Chalcosiderite, 835 Chalcostibite, 835 Challacolloite, 835 Chambersite, 835 Chamosite, 836 Changbaiite, 836 Changoite, 522, 836 Changoite (slightly deuterated), 503

Chapmanite, 836 Charlesite, 521 Charoite, 836 Chegemite, 837 Chekhovichite, 837 Chenevixite, 837 Cheralite, 837 Cheralite La-bearing, 620 Cheremnykhite trigonal dimorph, 585 Chernikovite, 838 Chernovite-(Y), 838 Chervetite, 838 Chiavennite, 327, 838 Chibaite, 207, 839 Childrenite, 839 Chiolite, 839 Chloraluminite, 839 Chlorapatite, 840 Chlorargyrite, 840 Chlorellestadite, 335 Chloritoid, 840 Chlorkyuygenite, 840 Chlormayenite, 180, 840 Chlorocalcite, 841 Chloromagnesite, 841 Chlorophoenicite, 630 Chloroxiphite, 841 Chondrodite, 841 Chromatite, 842 Chromite, 842 Chromium disilicide, 320 Chromium iron(III) orthovanadate, 561 Chromium uranium oxide Cr_2UO_6 , 141 Chromium vanadate $Cr_2V_4O_{13}$, 562 Chrysoberyl, 181, 842 Chrysocolla, 843 Chrysothallite, 843 Chrysotile, 9, 843 Chudobaite, 599 Chukanovite, 85, 843 Chukhrovite (Ca), 843 Churchite-(Nd), 844 Churchite-(Y), 844 Cinnabar, 844 Claringbullite, 844 Clarkeite, 210 Claudetite, 845 Clausthalite, 845 Clinoatacamite, 845 Clinobisvanite, 579, 846 Clinocervantite, 224, 846 Clinochalcomenite, 846 Clinochlore, 846 Clinoclase, 847 Clinoenstatite, 847 Clinohedrite, 847 Clinometaborite, 847 Clinoptilolite (Na), 848 Clinotobermorite-like mineral, 848

Clinozoisite, 848 Clintonite, 848 Coahuilite, 106 Coalingite, 94, 849 Cobaltarthurite, 849 Cobaltaustinite, 849 Cobalt dinickel orthoborate, 39 Cobalt ferrite spinel-type, 142 Cobaltkoritnigite, 849 Cobaltomenite, 661, 850 Cobaltpentlandite, 850 Cobalt selenite, 662 Cobalt selenite hydrate, 663 Cobalt zinc tellurium oxide, 141 Coccinite, 850 Cochromite, 850 Cochromite Ni-bearing, 182 Coconinoite, 851 Coesite, 851 Coffinite, 851 Colemanite, 851 Colimaite, 852 Colinowensite, 279, 852 Coloradoite, 852 Columbite-(Mg), 852 Columbite-(Mn), 183, 853 Comancheite, 545, 853 Combeite, 853 Compreignacite, 853 Conichalcite, 853 Connellite, 854 Cookeite, 292, 297 Cooperite, 854 Copiapite, 504, 854 Copper acid diperiodate hydrate, 702 Copper(II) carbonate, 81 Copper chromate, 590 Copper divanadate hydroxide hydrate, 562 Copper(II) hydroxide, 142 Copper iodate, 699, 700 Copper molybdate selenite, 644 Copper oxychloride hydrate, 541 Copper strontium formate, 100 Copper tinanium oxyphosphate, 373 Coquandite, 855 Coquimbite, 855 Corderoite, 855 Cordierite, 855 Cordylite (Ce), 856 Corkite, 856 Cornetite, 856 Cornubite, 856 Cornwallite, 857 Coronadite, 857 Correianevesite, 857 Corundum, 183, 858 Cosalite, 858 Cotunnite, 858 Coulsonite, 858

Covellite, 858 Crandallite, 859 Cranswickite, 859 Creaseyite, 859 Crednerite, 859 Creedite, 860 Cristobalite, 860 Crocoite, 860 Cryptohalite, 861 Cryptomelane, 861 Cu,Al-hydroxyphosphate, 459 Cubanite, 861 Cuboargyrite, 861 Cumengeite, 549, 861 Cummingtonite, 862 Cuprite, 862 Cuprocopiapite, 862 Cuproiridsite, 862 Cupromolybdite, 863 Cuprorhodsite, 863 Cuprorivaite, 863 Cuprosklodowskite, 863 Cuprospinel, 864 Cuprotungstite, 864 Curienite, 864 Curite, 864 Cuspidine, 244, 865 Cyanochroite, 865 Cyanotrichite, 865 Cymrite, 865 Cyprine, 250 Cyrilovite, 866 Czochralskiite, 866

D

Dachiardite (Na), 866 Dalnegorskite, 269 Danalite, 329 Danburite, 866 Daqingshanite-(Ce), 456 Darapskite, 867 Darrellhenryite, 332, 333, 867 Dashkovaite, 867 Datolite, 867 Daubréelite, 868 Davidite-(La), 868 Davidlloydite, 868 Davinciite, 282 Davisite, 868 Dawsonite, 869 Decrespignyite-(Y), 869 Delafossite Al analogue, 184 Delafossite, 869 Delhayelite, 869 Deliensite, 870 Dellaite, 870 Deltalumite, 122 Delvauxite, 870 Demartinite, 871

Demesmaekerite, 871 Demicheleite-(Br), 871 Demicheleite-(Cl), 871 Demicheleite-(I), 871 Denningite, 696, 872 Depmeierite, 302 Derriksite, 872 Desautelsite, 872 Dessauite-(Y), 872 Destinezite, 873 Deveroite-(Ce), 106, 110 Devilline, 873 Devitoite, 873 Devitrite, 873 Dewindtite, 874 Diaboleite, 874 Diadochite, 874 Diamond, 874 Diaoyudaoite, 220 Diaspore, 875 Dicalcium hexaborate monohydrate, 46 Dickinsonite-(KMnNa), 875 Dickite, 875 Digenite, 875 Dimorphite, 876 Diomignite, 876 Diopside, 876 Dioptase, 876 Dipotassium sodium zinc pentaborate, 47 Dissakisite-(La), 877 Dixenite, 877 Djer fisherite, 877 Dmisokolovite, 877 Dmisteinbergite, 313, 878 Dolomite, 878 Domerockite, 878 Donnayite-(Y), 878 Dorallcharite, 879 Dorfmanite, 879 Dorrite, 267 Double perovskite KBa(XeNaO 6), 704 Double perovskite KCa(XeNaO 6), 704 Double perovskite KSr(XeNaO 6), 705 Double-ring borate $(Na,K)_{3}Sr(B_{5}O_{10})$, 47 Dovyrenite, 879 Downeyite, 879 Doyleite, 880 Dravite, 880 Dreyerite, 880 Drugmanite, 467 Drysdallite, 880 Dualite, 283 Dufrénoysite, 881 Duftite, 881 Dumontite, 881 Dumortierite, 881 Dundasite, 882 Durangite, 882 Dussertite, 882

Duttonite, 211 Dwornikite, 882 Dypingite, 883 Dysprosium copper hydroxysulfate $\text{Dy}_2\text{Cu}(\text{SO}_4)_2(\text{OH})_4$, 485 Dysprosium decavanadate hydrate, 563 Dzhalindite, 883 Dzhuluite, 883 Dzier żanowskite, 883

E

Eakerite, 884 Eastonite, 884 Ecandrewsite, 884 Ecdemite, 885 Eckhardite, 885 Edgrewite, 885 Edingtonite, 885 Edoylerite, 886 Effenbergerite, 886 Eitelite, 886 Ekanite, 886 Ekplexite, 887 Elbaite, 887 Elbrusite, 888 Eleomelanite, 470 Eleonorite, 888 Elpasolite, 888 Eltyubyuite, 888 Embreyite, 595 Emmonsite, 889 Enargite, 889 Enstatite, 889 Eosphorite, 890 Epidote, 890 Epidote-(Sr), 257 Epistilbite, 890 Epsomite, 890, 891 Ericlaxmanite, 891 Erikapohlite, 891 Eringaite, 891 Eriochalcite, 892 Erionite-Ca, 892 Erionite-K, 313 Erlichmanite, 892 Ernstburkeite, 892 Erythrite, 893 Erythrosiderite, 893 Eskebornite, 893 Eskolaite, 894 Esperite, 894 Ettringite, 731, 894 Euchroite, 894 Euclase, 895 Eucryptite-β, 895 Eugsterite, 895 Eulytine, 896 Euxenite-(Y), 896 Evansite, 896

Eveite, 896 Evenkite, 897 Ezcurrite, 897

F

Fabriesite, 897 Fair fieldite, 897 Falcondoite, 286, 898 Falottaite, 898 Fangite, 898 Farringtonite, 898 Fassinaite, 899 Faujasite-Ca, 316 Faujasite-Na, 899 Favreauite, 899 Fayalite, 899 Feitknechtite, 900 Fels őbányaite, 900 Ferberite, 900 Fergusonite-(Ce)- β, 900 Fergusonite-(La)- β, 901 Fergusonite-(Nd)- β, 901 Fergusonite-(Y), 901, 902 Fergusonite-(Y)- β, 901 Fermiite, 902 Feroxyhyte, 902 Ferriakasakaite-(La), 258 Ferriallanite-(Ce), 902 Ferricopiapite, 505, 903 Ferricoronadite, 117 Ferri-eckermannite, 903 Ferrierite-K, 903 Ferrierite-Na, 903 Ferrierite-NH 4, 319 Ferri-fluoro-katophorite, 277 Ferri-fluoro-leakeite, 274 Ferrihollandite, 118 Ferrihydrite, 904 Ferri-kaersutite, 904 Ferri-leakeite, 274 Ferrilotharmeyerite, 904 Ferrimolybdite, 905 Ferrinatrite, 473, 905 Ferrisaponite, 300 Ferrisepiolite, 297 Ferristrunzite, 905 Ferrivauxite, 434 Ferro-actinolite, 905 Ferrocarpholite, 906 Ferroceladonite, 906 Ferro-ferri-fluoro-leakeite, 273 Ferro-ferri-katophorite, 271 Ferro-ferri-nybøite, 272 Ferro-glaucophane, 906 Ferrohögbomite, 907 Ferro-hornblende, 906 Ferrokësterite, 907 Ferronigerite-2N1S, 215 Ferro-pargasite, 271

Ferrorhodonite, 265 Ferroselite, 907 Ferrosilite, 907 Ferrostrunzite, 908 Ferrovesuvianite, 251, 256 Ferruccite, 908 Fersmite, 908 Feruvite, 908 Fervanite (?), 586 Fetiasite, 620 Fibroferrite, 519 Fichtelite, 909 Fiedlerite, 909 Fiedlerite-1A, 550 Finnemanite, 909 Flamite, 909 Flinteite, 910 Florencite-(La), 910 Florencite-(Nd), 452 Fluellite, 910 Fluocerite-(Ce), 911 Fluocerite-(La), 911 Fluorapatite As-rich, 911 Fluorapatite, 911 Fluorapophyllite-(K), 735, 736, 912 Fluorbarytolamprophyllite, 336 Fluor-buergerite, 912 Fluorcalciobritholite, 912 Fluorcalciomicrolite, 185, 912 Fluorcalciopyrochlore, 215 Fluorcalcioroméite, 913 Fluorcaphite, 913 Fluorcarmoite-(BaNa), 451 Fluorchegemite, 238 Fluor-dravite, 334 Fluor-elbaite, 913 Fluorite, 914 Fluorkyuygenite, 914 Fluorlamprophyllite, 914 Fluormayenite, 915 Fluormayenite-related garnet, 914 Fluornatropyrochlore, 185 Fluorocronite, 915 Fluoro-edenite, 915 Fluoro-pargasite, 278 Fluorowardite, 916 Fluor-schorl, 913 Fluor-uvite, 916 Fluorvesuvianite, 257 Fluorwavellite, 439, 916 Fogoite-(Y), 341 Foitite, 916 Fontarnauite, 71 Foordite, 917 Forêtite, 917 Formanite-(Y), 917 Formicaite, 917 Fornacite, 918 Forsterite, 918

Fraipontite, 918 Francevillite, 919 Francisite, 919 Franckeite, 919 Françoisite-(Nd), 919 Franconite, 920 Frankdicksonite, 920 Franklinite, 173, 920 Freboldite, 920 Fredrikssonite, 921 Fresnoite, 921 Friedrichbeckeite, 921 Frohbergite, 921 Frolovite, 922 Frondelite, 922 Fulgurite (a high-silicon glass), 922 Fupingqiuite, 465

Fougèrite, 918 Fowlerite, 264

G

Gadolinite-(Nd), 922 Gadolinite-(Y), 326 Gahnite, 923 Gaidonnayite, 923 Galaxite, 923 Galeite, 523 Galena, 923 Galileiite, 924 Gallite, 924 Gallium hydroxyde hydrate Ga(OH)3⋅nH₂O, 186 Gallium(III) oxide, 124 β-Gallium(III)-oxide, 131 Gallium sulfide, 924 Gallium(III) oxyhydroxide, 124 Galloplumbogummite, 924 Galuskinite, 925 Gamagarite, 925 Gamma-alumina, 180 Gananite, 235, 925 Ganomalite, 253, 926 Ganterite, 926 Garavellite, 926 Garnet, 926 Gartrellite, 927 Garutiite, 927 Gaspéite, 927 Gaudefroyite, 927 Gauthierite, 209 Gaylussite, 928 Gazeevite, 928 Gearksutite, 928 Geffroyite, 928 Gehlenite, 929 Geikielite, 929 Geminite, 929 Gerdtremmelite, 631 Gerenite-(Y), 279 Gerhardtite, 929

Gerstleyite, 930 Geschieberite (?), 505 Geschieberite, 930 Ghiaraite, 930 Gianellaite, 506 Gibbsite, 930 Gilalite, 931 Gillardite, 931 Gillespite, 931 Giniite, 932 Gismondine, 932 Glass, 300 Glauberite, 932 Glaucocerinite, 932 Glauconite, 932 Glaucophane, 933 Glaukosphaerite, 933 Glushinskite, 933 Gmelinite-Na, 934 Goethite, 934 Gold fieldite, 934 Goldmanite, 934 Gonnardite, 934 Goosecreekite, 935 Gorceixite, 935 Gordaite, 507 Görgeyite, 935 Gormanite, 935 Goryainovite, 441, 936 Goslarite, 936 Götzenite, 936 Goudeyite, 936 Gowerite, 937 Goyazite, 937 Graemite, 937 Graeserite, 937 Graftonite, 938 Gramaccioliite-(Y), 938 Grandaite, 938 Grandidierite, 938 Graphite, 729, 939 Gratonite, 939 Greenockite, 939 Gregoryite, 939 Greigite, 940 Griceite, 940 Grimaldiite, 940 Grimselite, 941 Grossite, 941 Grossular, 941 Groutite, 941 Grumiplucite, 942 Grunerite, 757, 942 Guanacoite, 942 Guanine, 943 Gudmundite, 943 Gugiaite, 328 Guilleminite, 943 Guimarãesite, 466

Gunningite, 943 Gurimite, 944 Gwihabaite, 944 Gypsum, 944 Gyrolite, 944

H

Hafnon, 945 Häggite, 212 Haidingerite, 945 Haiweeite, 945 Hakite, 945 Halite, 732, 946 Halloysite-10Å, 946 Halotrichite, 946 Hambergite, 946 Hanjiangite, 947 Hanksite, 947 Hannayite, 947 Hannebachite, 947 Hansesmarkite, 948 Haradaite, 269 Hardystonite, 246, 948 Harmotome, 948 Harmunite, 948 Harmunite cubic polymorph, 187 Harmunite Mn⁴⁺-bearing, 949 Hartite, 949 Hashemite, 949 Hatchetine, 949 Hatrurite triclinic polymorph, 239 Hatrurite, 950 Hauerite, 950 Hausmannite, 187, 950 Haüyne, 951 Hawleyite, 951 Hawthorneite, 951 Haynesite, 951 Hazenite, 952 Heazlewoodite, 952 Hectorite, 952 Hedenbergite, 952 Hedyphane, 953 Heisenbergite, 953 Heklaite, 236 Heliophyllite, 953 Hellyerite, 953 Hematite, 954 Hemihedrite, 954 Hemimorphite, 954 Hemleyite, 955 Hemusite, 955 Hendricksite, 955 Henmilite, 955 Henritermierite, 956 Henryite, 956 Herbertsmithite, 956 Hercynite, 956 Herderite, 957

Herzenbergite, 957 Hessite, 957 Hetaerolite, 957 Heterogenite, 958 Heterosite, 958 Heulandite, 958 Hexaamminenickel(II) nitrate, 111 Hexacelsian, 308, 958 Hexaferrum, 959 Hexahydrite, 959 Hexahydroborite, 959 Hiärneite, 959 Hibonite, 960 Hibonite-(Fe), 960 Hidalgoite, 960 Hieratite, 960 Hilarionite, 961 Hingganite-(Y), 326, 961 Hinsdalite, 961 Hiortdahlite, 961 Hisingerite, 961 Hochelagaite, 962 Hoelite, 962 Hoganite, 962 Hogarthite, 962 Hohmannite, 963 Holdawayite, 963 Holfertite, 963 Hollandite, 963 Hollingworthite, 964 Holmquistite, 964 Honessite, 964 Hopeite, 964, 965 Hörnesite, 965 Hsianghualite, 965 Huanghoite-(Ce), 965 Huanzalaite, 717, 966 Hubeite, 966 Hübnerite, 966 Hughesite, 966 Huizingite-(Al), 516 Humberstonite, 967 Humboldtine, 967 Humite, 967, 968 Hummerite, 968 Hungchaoite, 968 Huntite, 968 Hureaulite, 969 Hurlbutite, 969 Hyalite, 223 Hydrobiotite, 296 Hydroboracite, 969 Hydrocalumite, 222, 546, 969 Hydrocerussite, 15 –17, 970 Hydrochamosite-1M, 299 Hydrodelhayelite-related compound, 970 Hydrogarnet Sr 3Al 2(OH)12, 164 Hydrohalite, 553, 971 Hydrohonessite, 971

Hydrokenomicrolite, 188 Hydromagnesite, 971 Hydronaujakasite, 298 Hydroniumjarosite, 971, 972 Hydronium jarosite Pb,As-bearing, 512 Hydronium jarosite Pb,Cu-bearing, 513 Hydronium jarosite Pb,Zn-bearing, 514 Hydroromarchite, 216, 972 Hydrotalcite, 972 Hydrotalcite-2H, 972 Hydroterskite, 343 Hydrotungstite, 706, 973 Hydrovesuvianite, 261 Hydroxyapophyllite-(K), 973 Hydroxycalciobeta fite, 973 Hydroxycalciomicrolite, 974 Hydroxycalciopyrochlore, 974 Hydroxycalcioroméite, 974 Hydroxycancrinite (?), 301 Hydroxyferroroméite, 974 Hydroxykenoelsmoreite, 975 Hydroxylapatite, 975 Hydroxylbastnäsite-(Ce), 975 Hydroxylchondrodite, 976 Hydroxylclinohumite, 976 Hydroxyledgrewite, 976 Hydroxylellestadite, 977 Hydroxylgadolinite-(Y), 325 Hydroxylgugiaite, 324 Hydroxylherderite, 977 Hydrozincite, 977 Hydrucerussite-like mineral 9-40, 87 Hypersthene, 978

I

Ianbruceite, 978 Iangreyite, 978 Ice, 978 Idaite, 979 Idrialite, 979 Ikaite, 95, 979 Ilesite, 980 Ilmenite, 980 Ilsemannite, 189 Ilvaite, 980 Imogolite, 287, 980 Inderite, 981 Indite, 981 Indium oxide, 143 Indium vanadate selenite $In(VSe₂O₈), 644$ Indium vanadate tellurite $In(VTe₂O₈)$, 684 Indium zinc selenite $In₂Zn(SeO₃)₄$, 645 Inesite, 981 Innsbruckite, 981 Insizwaite, 982 Inyoite, 982 Iodargyrite, 982 Iowaite, 983 Iranite, 596, 983

Irarsite, 983 Iriginite, 984 Irinarassite, 984 Iron, 984 Iron(II) acid phosphate hydrate, 376 Iron(III) basic sulfate, 485, 486 Iron dimolybdate selenite hydrate $Fe₂(Mo₂O₇)(SeO₃)₂·H₂O, 646$ Iseite, 984 Ishikawaite, 224 Isocubanite, 985 Isokite, 985 Isomertieite, 985 Ivanyukite-Cs, 342 Ivsite, 507, 985 Iwakiite-hausmannite intermediate member, 189 Iwateite, 985 Iyoite, 986

J

Jáchymovite, 986 Jacobsite, 986 Jadeite, 986 Jakobssonite, 987 Jalpaite, 987 Jamborite, 987 Jamesonite, 987 Janchevite, 589 Jarosite, 988 Jeffbenite, 988 Jennite, 988 Je žekite, 989 Jianshuiite, 212 Jixianite, 989 Joaquinite-(Ce), 989 Joegoldsteinite, 508, 989 Joëlbruggerite, 990 Johachidolite, 990 Johannite, 990 Johnbaumite, 991 Johnbaumite Sr-analogue, 621 Johninnesite, 991 Jordisite, 991 Jörgkellerite, 433 Joteite, 992 Jouravskite, 530 Juansilvaite, 638 Junitoite, 249 Jurbanite, 529

K

Kaatialaite, 622 Kaersutite, 992 Kainite, 992 Kalgoorlieite, 992 Kaliborite, 993 Kalicinite, 993 Kalininite, 508, 993 Kalinite, 993

Kaliophilite, 994 Kalsilite, 312, 994 Kamacite, 994 Kamarizaite, 628 Kamiokite, 679 Kamotoite-(Y), 994 Kampelite, 994 Kamphaugite-(Y), 995 Kanemite, 288 Kangite, 995 Ka ňkite, 995 Kanoite, 996 Kaolinite, 2, 996 Kapellasite, 996 Kapundaite, 996 Karelianite, 997 Karpenkoite, 997 Karrooite, 997 Kashinite, 997 Kasolite, 998 Kassite, 998 Katayamalite, 998 Katerinopoulosite, 520 Katiarsite, 622 Katoite, 998 Kawazulite, 999 Kazanskyite, 999 Keilite, 999 Keiviite-(Yb), 247, 1000 Kemmlitzite, 1000 Kempite, 1000 Kentbrooksite, 895 Kentrolite, 1000 Kenyaite, 1001 Kerimasite, 1001 Kermesite, 1001 Keyite, 1001 Khademite, 1002 Khatyrkite, 1002 Khesinite, 263, 1002 Khvorovite, 1002 Kiddcreekite, 1003 Kidwellite, 1003 Kieftite, 1003 Kieserite, 1003 Kilchoanite, 1003 Killalaite, 1004 Kimzeyite, 1004 Kinoite, 1004 Kinoshitalite, 1005 Kintoreite, 1005 Kipushite, 1005 Kirschsteinite, 241, 1005 Kladnoite, 1006 Klaprothite, 1006 Klebelsbergite, 1006 Klockmannite, 1006 Knorringite, 1007

Kobokoboite, 1007
Koechlinite, 1007 Kojonenite, 1007 Kokchetavite, 1007 Koktaite, 1008 Kolskyite, 1008 Kolwezite, 1008 Konyaite, 1008 Koritnigite, 1009 Kornelite, 1009 Kornerupine, 1009 Kosmochlor, 1010 Kosnarite NH4-analogue, 435 Kosnarite NH₄-analogue cubic polymorph, 435 Kosnarite, 1010 Kotoite, 1010 Kottenheimite dimorph, 471 Köttigite, 1010 Kotulskite, 1011 Kovdorskite, 1011 Kozyrevskite, 1011 Krásnoite, 437 Kremersite, 1011 Krieselite, 1012 Kröhnkite, 1012 KröhnkiteMn analogue, 508 Krotite, 1012 Krut'aite, 1012 Kryzhanovskite, 1013 Ktenasite, 523, 1013 Kuksite, 1013 Kuksite trigonal dimorph, 459 Kuksite trigonal Mg analogue, 460 Kulanite, 1013 Kuliginite, 551 Kullerudite, 1014 Kumdykolite, 1014 Kummerite, 436 Kumtyubeite, 1014 Kuramite, 1014 Kuranakhite, 1015 Kuratite, 1015 Kurnakovite, 1015 Kusachiite, 217, 1015 Kushiroite, 1016 Kutnohorite, 1016 Kuzminite, 1016 Kyanite, 1016 Kyawthuite, 190, 1017

\mathbf{L}

Laachite, 733, 1017 Lacroixite, 1017 Lafossaite, 1017 Laihunite, 242, 1018 Lakargiite, 1018 Lamprophyllite, 1018 Lanarkite, 1019 Långbanite, 1019 Langbeinite, 1019

Langite, 1019 Lanmuchangite, 1020 Lansfordite, 1020 Lantanum nitrate hexahydrate, 112 Lanthanite-(Nd), 1020 Lanthanum aluminum oxide, 144 Lanthanum calcium oxophosphate, 374 Lanthanum iron(III) oxide, 144 Lanthanum molybdate, 670 Lanthanum orthoborate, 24 Lanthanum orthosilicate, 238 Lanthanum oxosulfate, 487 Lanthanum selenite, 646, 647 Lanthanum strontium oxophosphate, 375 Lanthanum uranyl orthovanadate divanadate, 564 Lapeyreite, 1020 Larnite, 1021 Laueite, 1021 Laumontite, 1021 Laurentianite, 1021 Laurionite, 1022 Laurionite Ba-analogue, 547 Laurionite I-analogue, 703 Laurite, 1022 Lausenite, 1022 Lautarite, 1023 Lavendulan, 1023 Lavenite Fe-analogue, 338 Lavinskyite, 1023 Lawrencite, 1023 Lawsonite, 247, 1024 Layered perovskite BaBi₂Ta₂O₉, 191 Layered perovskite CaBi₂Ta₂O₉, 191 Layered perovskite $K_4Xe_3O_{12}$, 706 Layered perovskite $SrBi₂Ta₂O₉$, 192 Lazaridisite, 524, 1024 Lazulite, 1024 Lazurite, 1024 Lead, 1025 Lead aluminium orthoborate fluoride $Pb_6Al(BO_3)_2OF_7$, 24 Lead beryllium phosphate hurlbutite-type, 376 Lead bismuth orthoborate, 25 Lead borate $Pb_6B_{11}O_{18}(OH)_9$, 48 Lead borate PbB_4O_7 , 49 Lead cadmium orthoborate, 26 Lead copper orthoborate, 26 Lead copper tellurate tellurite, 684 Lead iron(III) phosphate, 377 Lead iron(III) trivanadate, 564 Lead orthoborate chromate, 591 Lead orthoborate molybdate, 671 Lead orthoborate tungstate, 27, 29 Lead(II) oxalate, 100 Lead(II) oxysulfate, 487 Lead phosphate nitrate hydrate, 378 Lead phosphate sulfate, 378 Lead selenate, 643 Lead silver phosphate apatite-type, 379 Lead sodium calcium phosphate apatite-type, 380

Lead(II) stannate Pb_2SnO_4 , 145 Lead tin oxide $Pb^{2+}{}_{4}Pb^{4+}Sn^{4+}O_8$, 146 Lead uranyl divanadate, 565 Leadhillite, 533, 534, 1025 Lechatelierite, 1025 Lecoqite-(Y), 85 Leguernite, 1025 Leifite, 329 Leightonite, 1025 Leiteite, 1026 Lemanskiite, 623, 624, 1026 Lemoynite, 1026 Leogangite, 1027 Leószilárdite, 1027 Lepidocrocite, 200, 1027 Lesukite Cu-bearing variety, 121 Letovicite, 1027 Leucite, 1028 Leucophosphite, 1028 Lévyne-Ca, 1028 Leydetite, 1028 Libethenite, 1029 Liebenbergite, 1029 Liebigite, 1029 Likasite, 1030 Lime, 1030 Linarite, 1030 Lindbergite, 1030, 1031 Lindgrenite, 1031 Lindsleyite, 1031 Línekite, 90 Lingunite, 1031 Lingunite K-analogue, 1031 Linnaeite, 1032 Linzhiite, 1032 Liroconite, 1032 Lishizhenite, 509 Liskeardite, 1032 Litharge, 1033 Lithiophilite, 1033 Lithiophorite, 1033 Lithiophosphate, 1033 Lithiotantite, 1034 Lithium aluminate $LiAl₅O₈$, 146 Lithium aluminate LiAlO₂-beta, 147 Lithium aluminate $LiAlO₂$ -gamma, 148 Lithium aluminium orthoborate, 28 Lithium aluminium oxide-alpha, 148 Lithium aluminium oxide-gamma, 149 Lithium aluminoborate, 49 Lithium cesium borate $Li_4Cs_3B_7O_{14}$, 50 Lithium chromium pyrophosphate, 380 Lithium cobalt(III) iron(III) oxide delafossite-type, 149 Lithium copper tungstate, 712 Lithium cyclo-hexaphosphate trihydrate, 383 Lithium dimolybdate selenite, 672 Lithium ferrite LiFe $3+5$ O₈, 150 Lithium hexafluorosilicate, 230 Lithium iron(III) oxide, 151

Lithiumiron(III) pyrophosphate, 381 Lithium iron(II) sulfate fluoride tavorite-type, 488 Lithium iron(III) tungstate wolframite-type, 711 Lithium magnesium manganese(IV) oxide spinel-type, 151 Lithium magnesium phosphate olivine-type, 382 Lithium manganese oxide spinel-type, 152 Lithium metasilicate, 265 Lithium molybdate tellurite, 672 Lithium nickel phosphate triphylite-type, 382 Lithium nickel tungstate, 713 Lithium nickel vanadate, 566 Lithium niobateilmenite-type, 153 Lithium sodium borate $LiNaB₄O₇$, 51 Lithium strontium borate $Li_2Sr_4B_{12}O_{23}$, 52 Lithium strontium orthoborate, 29 Lithium strontium orthophosphate, 384 Lithium tetraborate, 53 Lithium trivanadate, 566 Lithium tungstate tellurite, 685 Lithium tungstate vanadate brannerite-type, 567 Lithium vanadyl phosphate, 384–386 Lithium zinc niobium oxide spinel-type, 153 Lithium zinc phosphate monohydrate, 386 Lithium zinc selenite Li₂Zn₃(SeO₃)₄⋅2H₂O, 648 Lithium zirconium arsenate, 604, 605 Liversidgeite, 1034 Livingstonite, 1034 Lizardite, 1034 Löllingite, 1035 Lomonosovite, 1035 Lonecreekite, 1035 Lonsdaleite, 1035 Lópezite, 1036 Lorándite, 1036 Lorenzenite, 1036 Löweite, 1036 Luanshiweiite, 284 Luddenite, 1037 Ludjibaite, 1037 Ludlamite, 1037 Ludlockite, 627, 1037 Ludwigite, 1038 Lueshite, 193, 1038 Luinaite-(OH), 334 Lulzacite, 453, 1038 Lüneburgite, 41, 1038 Luobusaite, 322 Luogufengite, 1039 Lusernaite-(Y), 1039

M

Macedonite, 1039 Mackayite, 1039 Mackinawite, 1040 Macquartite, 1040 Magadiite, 1040 Magbasite, 1040 Maghemite, 1041

Magnesio-arfvedsonite, 1041 Magnesioaubertite, 474 Magnesiocanutite, 636 Magnesiocarpholite, 734, 1041 Magnesiochloritoid, 236, 1041 Magnesiochromite, 1042 Magnesiocopiapite, 509, 1042 Magnesio-ferri-hornblende, 270 Magnesioferrite, 1042 Magnesio-foitite, 1042 Magnesiohögbomite-2N3S, 122, 219 Magnesiohögbomite-2N4S, 222, 1043 Magnesio-hornblende, 1043 Magnesiokoritnigite, 598 Magnesiopascoite, 580 Magnesiotaaffeite-2N'2S, 1043 Magnesiotaaffeite-6N'3S, 1043 Magnesiovesuvianite, 253 Magnesiovoltaite, 480 Magnesite, 1043 Magnesium acid phosphate hydrate, 387 Magnesium borophosphate, 365 Magnesium chromate, 592 Magnesium hydroxychlorite atacamite-type, 551 Magnesium hydroxysulfate hydrate, 489 Magnesium orthoborate fluoride, 30 Magnesium oxychloride hydrate Mg₃Cl₂(OH)₄⋅4H₂O, 541 Magnesium strontium diorthoborate, 54 Magnesium sulfate hydroxide Mg₆(SO₄)(OH)₁₀⋅7H₂O, 490 Magnesium tellurite MgTe₂O₅, 686 Magnesium vanadate Mg7V4O16(OH)2∙H2O, 568 Magnetite, 1044 Magnetoplumbite, 1044 Majorite, 1044 Makatite, 1044 Malachite, 1045 Malayaite, 1045 Malladrite, 1045 Mallardite, 1045 Mallestigite, 1045 Mandarinoite, 1046 Manganese acid phosphate hydrate, 388 Manganese(II) antimony(III) oxide, 154 Manganese hydroxysulfate $Mn_5(SO_4)(OH)_8$, 489 Manganese(II) titanium orthophosphate, 388 Manganese(II) titanium phosphate MnTi₄(PO₄)₆, 389 Mangangordonite, 457 Manganite, 1046 Manganlotharmeyerite, 1046 Manganochromite, 1046 Manganolangbeinite, 1047 Manganosite, 1047 Manitobaite, 354 Manjiroite, 1047 Marcasite, 1047 Margarite, 289, 1047 Margarosanite, 1048 Marićite, 1048

Markascherite, 1048 Marokite, 1048 Marthozite, 1048 Martinandresite, 318 Martyite, 735, 1049 Maruyamaite, 1049 Mascagnite, 1049 Maskelynite, 1049 Massicot, 1050 Masuyite, 206 Mathesiusite, 1050 Mathiasite, 1050 Matildite, 1050 Matioliite, 1051 Matlockite, 1051 Mattagamite, 1051 Matteuccite, 1051 Maxwellite, 1051 Mazzite-Na, 317 Mbobomkulite, 1052 Mcallisterite, 1052 Mcalpineite, 1052 Mcconnellite, 1052 Mcguinnessite, 1053 Megawite, 1053 Meisserite, 1053 Meixnerite, 1053 Melanarsite, 738, 739, 1054 Melanophlogite, 5–11, 1054 Melanterite, 1054 Meliphanite, 1054 Mellite, 1054 Mellizinkalite, 1055 Mendeleevite-(Nd), 322 Mendipite, 1055 Mercallite, 510, 1055 Mercury(I) acid phosphate, 390 Mercury(I) orthoarsenate, 605 Mercury(II) orthoarsenate, 606 Merelaniite, 1055 Merenskyite, 1056 Meridianiite, 1056 Merlinoite, 314 Merrillite, 1056 Merrillite Na-free analogue, 1056 Merwinite, 1056 Mesolite, 1057 Meta-ankoleite, 1057 Meta-autunite, 1057 Metacinnabar, 1057 Metahewettite, 1058 Metakirchheimerite, 1058 Metalodèvite, 1058 Metamunirite, 1058 Metarauchite, 1058 Metarossite, 1059 Metasideronatrite, 476 Metastibnite, 1059 Metastudtite, 193, 1059

Metathénardite, 479, 1059 Metatorbernite, 1060 Metatyuyamunite, 1060 Metauranocircite-I, 1060 Metauranospinite, 1060 Metavariscite, 1061 Metavivianite, 1061 Metazeunerite, 1061 Meurigite-Na, 1061 Meyerhofferite, 1062 Meymacite monoclinic analogue, 1062 Miargyrite, 1062 Microcline, 724, 1062 Miersite, 1062 Mikasaite, 1063 Milarite, 1063 Millerite, 1063 Millosevichite, 1063 Mimetite, 1064 Minguzzite, 1064 Minium, 194, 1064 Minjiangite, 360, 438, 469 Minnesotaite, 1064 Minyulite, 352, 1064 Mirabilite, 1065 Misakiite, 1065 Mitscherlichite, 1065 Mixite, 1065 Moctezumite, 1066 Mogánite, 1066 Mohite, 1066 Mohrite, 1066 Moissanite, 1066 Mojaveite, 1067 Molybdenite, 1067 Molybdite, 1067 Molybdofornacite, 1067 Molybdophyllite, 14, 15, 1068 Molybdyl phosphate, 390 Molysite, 1068 Monazite-(Ce), 1068 Monazite-(La), 1068 Monazite-(Nd), 1068 Monazite-(Sm), 1069 Moncheite, 1069 Monetite, 1069 Monipite, 1069 Monohydrocalcite, 1070 Montebrasite, 1070 Monteponite, 1070 Montgomeryite, 1070 Monticellite, 1070 Montmorillonite, 296, 1071 Montroseite, 1071 Montroydite, 217, 1071 Moolooite, 1071 Mopungite, 195, 1072 Moraskoite, 1072 Mordenite, 1072

Morenosite, 1072 Morimotoite, 237 Moschelite, 1073 Mosesite, 1073 Mottramite, 1073 Motukoreaite-related mineral, 533 Mountkeithite, 1073 Moydite-(Y), 1073 Mukhinite, 1074 Mukhinite V-rich analogue, 1074 Mullite, 1074 Muscovite, 734, 1074 Mushistonite, 213

N

Nabiasite, 1075 Nabimusaite, 1075 Nacrite, 1075 Nadorite, 1075 Nafertisite, 1076 Nagelschmidtite, 1076 Nahcolite, 1076 Nahpoite, 1076 Nakauriite, 92, 93 Nalipoite, 451 Namibite, 1077 Nantokite, 1077 Naquite, 1077 Narsarsukite, 1077 Nasonite, 245 Natalyite, 1077 Natisite, 1078 Natrite, 1078 Natroalunite, 1078 Natrochalcite, 1078 Natrodufrénite, 351, 1079 Natrojarosite, 1079 Natrolemoynite, 1079 Natrolite, 1079 Natron, 1080 Natroniobite, 1080 Natropalermoite, 1080 Natrophilite, 461, 1080 Natrosilite, 1081 Natrouranospinite, 1081 Natroxalate, 1081 Natrozippeite, 1081 Naumannite, 1082 Nealite, 1082 Negevite, 1082 Neighborite, 1082 Nekoite, 1082 Nenadkevichite, 1083 Nepheline, 1083 Neptunium(IV) oxalate hexahydrate, 101 Nesquehonite, 1083 Nestolaite, 1083 Newberyite, 1084 Ne žilovite, 1084

Nichromite, 195 Nickel antimonate fluoride, 231 Nickelaustinite, 1084 Nickelbischofite, 1084 Nickelboussingaultite, 1085 Nickelhexahydrite, 1085 Nickel hydroxychlorite atacamite-type, 552 Nickel hydroxysulfate hydrate Ni₃(SO₄)₂(OH)₂⋅2H₂O, 491 Nickeline, 1085 Nickel manganese(IV) oxide, 155 Nickel oxychloride hydrate Ni₃Cl_{2.1}(OH)_{3.9}⋅4H₂O, 542 Nickelpicromerite, 1085 Nickel vanadyl phosphate hydrate, 391 Nickenichite, 635 Nierite hexagonal polyborph, 1086 Nierite, 113 Nifontovite, 1086 Nimite, 1086 Niningerite, 1086 Niobium sulfide $NbS₃$, 491 Nioboholtite, 1086 Niobylphosphate, 392 Niter, 1087 Nitratine, 114, 1087 Nitrobarite, 1087 Nitrocalcite, 1087 Nitromagnesite, 1088 Nobleite, 1088 Noelbensonite, 1088 Nolanite, 1088 Nolzeite, 331 Nontronite, 1088 Norbergite, 1089 Nordenskiöldine, 1089 Nordstrandite, 1089 Normandite, 1089 Norsethite, 1090 Northupite, 1090 Nosean, 1090 Nováčekite-II, 1090 Novgorodovaite, 1091 Nsutite, 1091 Nullaginite, 1091 Nyerereite, 1091

O

Offretite, 1092 Okenite, 1092 Okhotskite, 254 Oldhamite, 1092 Olgite, 1092 Olivenite, 1093 Olivine P-rich variety, 1093 Olmiite, 1093 Olshanskyite, 1093 Omongwaite, 1094 Omphacite, 1094 Onoratoite, 1094

Opal-A, 1094 Opal-CT, 1094 Ophirite, 1095 Oppenheimerite, 1095 Ordoñezite, 1095 Orlandiite, 663 Orpiment, 1095 Orschallite, 1096 Orthobrannerite, 214 Orthoclase, 1096 Orthojoaquinite-(Ce), 1096 Osakaite, 521, 1096 Osbornite, 114, 1097 Oskarssonite, 1097 Osumilite, 1097 Otavite, 1097 Ottemannite, 1098 Ottensite, 1098 Ottohahnite, 1098 Otwayite, 1098 Oxammite, 1099 Oxo-magnesio-hastingsite, 276 Oxybetafite-(Gd), 196 Oxybetafite-(Sm), 196 Oxybismuthobetafite, 197 Oxybritholite thorium analogue, 243 Oxycalcioroméite, 1099 Oxy-dravite, 1099 Oxykinoshitalite, 1099 Oxynatromicrolite, 1100 Oxyplumboroméite, 1100 Oxypyromorphite, 439 Oyelite, 1100 Ozokerite, 1100

\mathbf{D}

Pabstite, 280, 1100 Padmaite, 1101 Paganoite phosphate analogue, 461 Pakhomovskyite, 1101 Palermoite, 1101 Palladinite, 1101 Palladosilicide, 1102 Palygorskite, 1102 Panguite, 1102 Panichiite, 1102 Papagoite, 1102 Parabutlerite, 477, 1103 Paracoquimbite, 1103 Paragonite, 1103 Paraguanajuatite, 1103 Parahopeite, 1104 Paramelaconite, 197 Paramontroseite, 1104 Paranatrolite, 1104 Paraotwayite, 1104 Parapierrotite, 1105 Pararealgar, 1105 Pararobertsite, 1105

Parascholzite, 1105 Parascorodite, 1105 Parasibirskite, 1106 Parasymplesite, 1106 Paratacamite, 1106 Paratellurite, 1107 Paratooite-(La), 94, 1107 Paravauxite, 1107 Pargasite, 1107 Parisite-(Ce), 79, 1108 Parisite-(La), 78, 1108 Parnauite, 1108 Parsonsite, 1108 Parthéite, 1109 Partzite, 1109 Pašavaite, 1109 Pascoite, 1110 Patrónite, 1110 Pattersonite, 1110 Pauflerite, 1110 Pauflerite tetragonal dimorph, 517 Pauladamsite, 519 Paulingite-K, 1111 Paulmooreite, 1111 Pauloabibite, 1111 Paulscherrerite, 1111 Pavlovskyite, 1112 Pearlite, 323 Peatite-(Y), 1112 Pecoraite, 1112 Pectolite, 1112 Peisleyite, 1113 Péligotite, 1113 Penberthycroftite, 624 Penikisite, 453 Penkvilksite-2O, 1113 Penroseite, 1113 Pentagonite, 1114 Pentahydrite, 1114 Pentahydroborite, 1114 Pentlandite, 1114 Peretaite, 1115 Perhamite, 1115 Perite, 1115 Permingeatite, 1115 Perovskite, 1116 Pertsevite-(OH), 1116 Petalite, 1116 Petersite-(Ce), 1116 Petewilliamsite-related Cd diarsenate, 625 Petitjeanite, 455, 1117 Petrukite, 1117 Petterdite, 1117 Petzite, 1117 Pezzottaite, 1117 Pharmacolite, 1118 Pharmacosiderite, 1118 Pharmazincite, 1118 Phenakite, 1118

Philipsbornite, 1119 Philipsburgite, 1119 Phillipsite-K, 1119 Phillipsite-NH₄, 315 Philolithite, 1119 Phlogopite, 734, 1120 Phoenicochroite, 1120 Phosgenite, 1120 Phosphammite, 1120 Phosphohedyphane, 1121 Phosphophyllite, 1121 Phosphorrösslerite, 462 Phosphosiderite, 1121 Phosphuranylite, 1121 Phurcalite, 1122 Pickeringite, 1122 Picromerite, 1122 Picromerite dimorph (?), 512 Picropharmacolite, 1122 Pieczkaite, 1123 Piemontite, 1123 Pigeonite, 1123 Pilawite-(Y), 240 Pilsenite, 1123, 1124 Pimelite, 1124 Pinakiolite, 1124 Pingguite, 696 Pinnoite, 1124 Pirssonite, 1125 Pitticite, 1125 Plancheite, 1125 Plášilite, 511, 1125 Platarsite, 1126 Platinum, 1126 Plattnerite, 1126 Plavnoite, 1126 Plimerite, 1127 Plombièrite, 1127 Plumbogummite, 1127 Plumbojarosite, 1127 Plumbophyllite, 289, 1128 Plumbotellurite, 698 Plumbotsumite, 1128 Poitevinite, 1128 Pokrovskite, 1128 Poldervaartite, 1129 Pollucite, 1129 Polyakovite-(Ce), 336 Polycrase-(Y), 1129 Polydymite, 1129 Polyhalite, 1130 Popovite, 1130 Portlandite, 1130 Posnjakite, 1130 Potarite, 1131 Potassic-ferri-leakeite, 275 Potassic-ferro-pargasite, 276 Potassic-magnesio-fluoro-arfvedsonite, 273 Potassium acid phosphate, 394

Potassium acid pyrophosphate hydrate, 394 Potassium acid selenite, 648 Potassium acid tellurate hydrate K₂[TeO₂(OH)₄]⋅3H₂O, 686 Potassium aluminium molybdate, 673 Potassium antimonate tungstate, 713 Potassium antimony fluoride, 231 Potassium antimony oxoarsenate, 607 Potassium antimony oxophosphate, 396 Potassium antimony(V) oxophosphate, 395 Potassium arsenate tungstate $K(AsW₂O₉)$, 714 Potassium barium borate KBaB₅O₉, 54 Potassium bismuth(III) phosphate, 396 Potassium bismuth(III) tungstate, 715 Potassium borate KB₃O₃(OH)₄⋅H₂O, 73 Potassium borate KB₃O₅⋅H₂O, 55 Potassium borosilicate pollucite-type, 330 Potassium borosulfate $K_5[B(SO_4)_4]$, 492 Potassium calcium orthoborate, 31 Potassium chloride borate perovskite-related $K_3B_6O_{10}Cl$, 56 Potassium chromium divanadate, 568, 569 Potassium decavanadate decahydrate, 570 Potassium difluorphosphate, 397 Potassium diuranate, 155 Potassium hexavanadate hydrate, 570 Potassium hydronium uranyl selenate hydrate, 649 Potassium iron diarsenate (pyroarsenate), 608 Potassium iron pyrophosphate, 398 Potassium lead borophosphate, 398 Potassium lead carbonate fluoride, 81 Potassium lead phosphate, 399 Potassium magnesium acid phosphate hydrate, 400 Potassium magnesium acid pyrophosphate hydrate, 400 Potassium magnesium arsenate hexahydrate, 608 Potassium magnesium chromate hydrate, 592 Potassium magnesium orthoborate, 31 Potassium magnesium orthophosphate $KMg_4(PO_4)_3$, 401 Potassium magnesium yttrium phosphate (xenotime-type), 402 Potassium manganese arsenate, 609 Potassium manganese(III) fluoride, 232 Potassium mercury chloride hydrate, 543 Potassium monofluorphosphate, 402 Potassium nickel chromate hydrate, 593 Potassium niobate, 156 Potassium niobate KNb₇O₁₈, 157 Potassium niobate perovskite-type, 157 Potassium niobate tungstate, 158 Potassium niobium oxophosphate, 403 Potassium pentaborate, 56 Potassium peroxochromate, 593 Potassium sodium iron arsenate $Na_{2.77}K_{1.52}Fe_{2.57}(AsO_4)_4, 610$ Potassium sodium selenate, 650 Potassium sodium vanadyl sulfate, 493 Potassium sodium zinc borate $K_2NaZnB_5O_{10}$, 57 Potassium strontium orthoborate, 32 Potassium tantalate tungstate, 159

Potassium tantalite perovskite-type, 159 Potassium tin orthophosphate, 404 Potassium titanium iodate, 701 Potassium titanium oxophosphate, 404 Potassium titanium silicate K₂TiSi₃O₉⋅H₂O, 338 Potassium triborate, 58 Potassium uranium(V) sorosilicate, 349 Potassium uranyl fluoride, 232 Potassium urinate, 160 Potassiumvanadyl phosphate, 405 Potassium ytterbium acid orthoborate acid orthophosphate, 406 Potassium ytterbium tungstate, 715 Potassium yttrium selenite, 650 Potassium zinc acid pyrophosphate hydrate, 406 Potassium zinc cyclotriphosphate benitoite-type, 407 Potassium zinc hydrogen phosphate, 463 Potassium zinc selenite $K_2Zn_3(SeO₃)₄$, 651 Potassium zinc sulfate chloride trihydrate, 493 Potassium zinc sulfate hexahydrate, 494 Potassium zirconium arsenate, 610 Pottsite, 1131 Poubaite, 1131 Poudretteite, 1131 Poughite, 697, 1131 Povondraite, 1132 Powellite, 1132 Praseodymium chromate(V), 594 Praseodymium cyclotriphosphatetrihydrate, 408 Prehnite, 1132 Preiswerkite, 1132 Pretulite, 1133 Příbramite, 1133 Priceite, 76, 1133 Priderite Al-analogue, 1133 Priderite Cr-analogue, 1134 Priderite Mg-analogue, 1133 Prismatine, 1134 Probertite, 76 Proshchenkoite-(Y), 332 Protoimogolite, 290 Proustite, 1134 Pseudoboleite, 1134 Pseudobrookite, 1135 Pseudocotunnite, 1135 Pseudojohannite, 1135 Pseudolaueite, 1135 Pseudomalachite, 1136 Pseudowollastonite, 1136 Pucherite, 585, 1136 Pumpellyite-(Al), 1136 Pyracmonite, 525 Pyrargyrite, 1137 Pyrite, 1137 Pyroaurite, 1137 Pyrochroite, 214, 1137 Pyrolusite, 1138 Pyromorphite As-rich, 1138 Pyromorphite, 1138

Pyrope, 1139 Pyrophanite, 198, 1139 Pyrophyllite, 291, 1139 Pyrosmalite-(Fe), 1139 Pyrosmalite-(Mn), 1139 Pyroxmangite, 1140 Pyrrhotite, 1140

Q

Qandilite, 1140 Qingheiite, 1140 Qingsongite, 1141 Qingsongite (C-bearing), 115, 116 Quadridavyne, 1141 Quartz, 1141 Quenstedtite, 1141 Quetzalcoatlite, 1141 Quintinite, 1142 Quintinite-related hydroxyde carbonate $Mg_4Cr_2(OH)_{12}(CO_3)$ ·nH₂O, 87 Quintinite-related hydroxyde carbonate $Ni₄Cr₂(OH)₁₂(CO₃) $\cdot nH₂O$, 88$

R

Raadeite, 463 Rabejacite, 1142 Raguinite, 1142 Rajite, 1143 Ramanite-(Cs), 1143 Ramanite-(Rb), 1143 Rambergite, 1143 Rameauite, 1144 Ramikite-(Y), 1144 Ramsdellite, 1144 Ranciéite, 1144 Rankamaite, 1145 Rankinite, 1145 Rapidcreekite, 1145 Raspite, 1145 Rasvumite, 1146 Ravatite, 1146 Raygrantite, 1146 Realgar, 1146 Rebulite, 1147 Reedmergnerite, 1147 Reevesite, 1147 Re fikite, 107 Reichenbachite, 1147 Reinerite, 1148 Reinhardbraunsite, 1148 Rengeite, 1148 Reppiaite, 582 Retgersite, 1148 Reyerite, 1148 Rhabdophane-(Ce), 1149 Rhabdophane-(Nd), 1149 Rheniite, 1149 Rhodium sulfate, 525

Rhodium sulfate hydrate, 526 Rhodizite, 1149 Rhodochrosite, 1150 Rhodonite, 1150 Rhomboclase, 473, 1150 Rhönite, 1150 Richelsdor fite, 1151 Richterite, 1151 Riebeckite, 1151 Riebeckite (Crocidolite), 1151 Rimkorolgite, 1152 Ringwoodite, 1152 Rinkite, 1152 Riomarinaite, 1152 Riotintoite, 472 Rippite, 282 Robertsite, 1152 Robinsonite, 1153 Rockbridgeite, 444, 1153 Rodalquilarite, 1153 Rodolicoite, 1153 Roedderite Na-free analogue, 284 Rokühnite, 1154 Romanèchite, 1154 Romanorlovite, 737, 1154 Romarchite, 218, 1154 Römerite, 475, 1155 Rondor fite, 1155 Rongibbsite, 319, 1155 Ronneburgite, 587, 1155 Rooseveltite, 1156 Roquesite, 1156 Rosasite, 1156 Roscherite, 467 Roselite, 1156 Rosiaite, 1157 Rostite, 1157 Rouaite, 1157 Roumaite, 1157 Rowlandite-like mineral, 249 Rowleyite, 1158 Roxbyite, 1158 Roymillerite, 97 Rozenite, 1158 Rruffite, 1158 Rubicline, 308 Rubidium beryllium sulfate hydrate, 495 Rubidium iron(III) pyrophosphate, 408 Rubidium vanadyl phosphate, 409 Rucklidgeite, 1159 Rudashevskyite, 1159 Ruizite, 1159 Rusinovite, 1159 Russellite, 1159 Rustumite, 1160 Rutherfordine, 1160 Rutile, 198, 1160 Rynersonite, 1160

S

Sabugalite, 1161 Sahlinite, 1161 Sailau fite, 1161 Sakhaite, 1161 Salammoniac, 1162 Saléeite, 1162 Samarium metaphosphate, 410 Samarium orthoborate, 33 Samarium oxalate decahydrate, 102 Samarskite-(Y), 208, 225, 1162 Samarskite-(Yb), 208 Sampleite, 1162 Sanderite $Fe²⁺$ analogue, 526 Sanderite, 1162 Sanguite, 553, 1163 Sanidine, 1163 Sanjuanite, 1163 Sanmartinite, 718, 1163 Santabarbaraite, 1164 Santarosaite, 1164 Santite, 1164 Saponite, 1164 Sapphirine, 323 Sarcopside, 1165 Sarkinite, 1165 Sarmientite, 1165 Sartorite, 1165 Sassolite, 1166 Satimolite, 75 Sborgite, 73 Scacchite, 1166 Scandium arsenate monohydrate, 611 Scandium lanthanum orthoborate, 33 Scandium vanadate tellurite, 687 Scandium vanadyl selenite, 652 Scarbroite, 89 Schafarzikite, 1166 Schäferite, 555 Schäferite Ni analogue, 584 Schairerite, 527 Scheelite, 1166 Schiavinatoite, 1166 Schlossmacherite, 1167 Schmiederite, 1167 Schmitterite, 1167 Schneiderhöhnite, 1167 Schoen fliesite, 199, 1168 Schoepite, 1168 Scholzite, 1168 Schorl, 1168 Schorlomite, 1169 Schreibersite, 1169 Schreyerite, 1169 Schröckingerite, 1169 Schuetteite, 1170 Schülerite-type mineral, 343 Schultenite, 1170 Schumacherite, 1170

Schwartzembergite, 537 Schwertmannite, 1170 Scolecite, 1170 Scorodite, 1171 Scotlandite, 1171 Scottyite, 248, 1171 Scrutinyite, 1171 Sederholmite, 1172 Segnitite, 1172 Seinäjokite, 1172 Sejkoraite-(Y), 1172 Sekaninaite, 1173 Selenium, 1173 Seligmannite, 1173 Sellaite, 1173 Sénarmontite, 1174 Senegalite, 1174 Sepiolite, 1174 Sérandite, 1174 Serendibite, 1175 Serpierite, 1175 Shannonite, 96 Shattuckite, 1175 Shcherbinaite, 1175 Shchurovskyite, 1176 Shortite, 1176 Shuangfengite, 1176 Shulamitite, 1176 Shumwayite, 514 Siderite, 1176 Sideronatrite, 1177 Sidorenkite, 1177 Sidwillite, 1177 Siegenite, 1177 Sigloite, 1178 Siidraite, 1178 Silicocarnotite, 1178 Silicon, 8, 1179 Silinaite, 291 Sillénite, 1179 Sillimanite, 1179 Silver indium sulfide AgIn₅S₈, 495 Silver iron(III) pyrophosphate, 410 Silver tantalum sul fide, 496 Simojovelite, 108 Simonkolleite, 547, 548, 1179 Sinhalite, 72, 1179 Sinjarite, 1180 Sinoite, 116, 1180 Skinnerite, 1180 Skippenite, 1180 Sklodowskite, 1181 Skorpionite, 1181 Smirnite, 1181 Smirnovskite, 440 Smithite, 1181 Smithsonite, 1182 Smythite, 1182 Sobolevskite, 1182

Sodalite, 1182 Sodalite Ca-Al-Mo-analogue, 120 Sodalite Ca-Al-Mo-W-analogue, 119 Sodalite Ca-Al-Mo-W-analogue, 120 Sodalite nitrite analogue, 309 Soddyite, 1182 Sodium acid diarsenite tellurite, 688 Sodium acid pyrophosphate hydrate, 411 Sodium acid selenite, 653 Sodium acid tellurate $Na₂[TeO₂(OH)₄]$, 688 Sodium aluminium molybdate, 674 Sodium aluminum borate $Na₂Al₂B₂O₇$, 58 Sodium barium borate NaBa B_5O_9 , 59 Sodium bismuth molybdate scheelite-type, 674 Sodium borate Na₂B₅O₈(OH)∙2H₂O, 60 Sodium borophosphate $Na₅(B₂P₃O₁₃)$, 60 Sodium borosulfate $Na₅[B(SO₄)₄]$, 61 Sodium cadmium selenate hydrate, 654 Sodium cadmium sulfate hydrate, 497 Sodium calcium orthoborate, 34, 35 Sodium calcium pentaborate $Na₃Ca(B₅O₁₀)$, 62 Sodium calcium silicophosphate $Na₂Ca₄(PO₄)₂SiO₄$ (apatite-type), 457 Sodium diuranate, 161 Sodium gadolinium oxophosphate, 412 Sodium indium arsenate (alluaudite-type), 612 Sodium iron(II) iron(III) phosphate alluaudite-type, 412 Sodium iron(II) pyrophosphate, 413 Sodium iron(III) pyrophosphate, 414 Sodium iron(III) tin orthophosphate, 441 Sodium lanthanum orthoborate, 35 Sodium lanthanum pyrophosphate, 414 Sodium lead neodymium arsenate chloride (apatite-type), 613 Sodium lithium aluminosilicate $Na₃Li₂(AlSi₂O₈)$, 285 Sodium lithium gadolinium carbonate $Na₂LiGd(CO₃)₃$, 82 Sodium lithium selenate hydrate, 654 Sodium magnesium orthophosphate pyrophosphate Na₄Mg₃(PO₄)₂(P₂O₇), 415 Sodium magnesium pentaborate $\text{Na}_3\text{MgB}_5\text{O}_{10}$, 63 Sodium manganese(II) iron(III) phosphate alluaudite-type, 416 Sodium manganese(II) sulfate alluadite-type, 497 Sodium molybdenum(VI) tellurite, 689 Sodium nickel iron(III) arsenate, 613 Sodium niobium oxophosphate, 416 Sodium samarium orthoborate, 36 Sodium scandium carbonate Na₅Sc(CO₃)₃⋅2H₂O, 83 Sodium stannate, 161 Sodium strontium aluminum borate $NaSr₇AIB₁₈O₃₆$, 64 Sodium strontium orthoborate, 37 Sodium tantalite perovskite-type, 162 Sodium tellurate tellurite hydrate Na₂Te₂O₆⋅1.5H₂O, 690 Sodium tellurite β -Na₂Te₄O₉, 690 Sodium thioborate $Na₃B₃S₆$, 498 Sodium thioborate $Na₃BS₃$, 499 Sodium tin orthophosphate, 417

Sodium tin phosphate, 442 Sodium titanate $Na₂Ti₃O₇$, 200

Sodium titanate $Na₂Ti₆O₁₃$, 207 Sodium titanium iodate, 702 Sodium titanium phosphate, 445 Sodium titanium silicate Na₂TiSi₂O₇⋅2H₂O, 339 Sodium tungsten tellurite, 691 Sodium uranate, 163 Sodium vanadyl borate $Na₃(VO₂)B₆O₁₁$, 64 Sodium vanadyl phosphate Na(VO)PO₄, 418 Sodium vanadyl phosphate $Na_2(VO_2)(PO_4)$, 418 Sodium yttrium selenite, 655 Sodium yttrium tellurate borate $Na_2Y_2(Te^{6+}B_2O_{10})$, 65 Sodium yttrium titanate, 163 Sodium zinc orthophosphate, 419 Sodium zinc pentaborate $Na₃ZnB₅O₁₀$, 66 Sodium zinc pyrophosphate, 420 Sodium zinc selenite Na₂Zn₃(SeO₃)₄⋅2H₂O, 656 Sodium zirconium arsenate, 614, 615 Söhngeite, 1183 Somersetite, 86 Sonolite, 1183 Sonoraite, 1183 Spangolite, 1183 Spencerite, 1184 Sperrylite, 1184 Spertiniite, 201, 1184 Spessartine, 1184 Spessartine Ca-rich, 241 Sphaerobertrandite, 324 Sphaerobismoite, 202 Sphalerite, 1184 Spherocobaltite, 1185 Spinel, 1185 Spionkopite, 1185 Spiroffite, 1185 Spodumene, 1186 Spurrite, 1186 Šreinite, 1186 Srilankite, 1186 Stanfieldite, 1186 Stanleyite, 1187 Stannite, 1187 Starkeyite, 1187 Starovaite, 1187 Staurolite, 1188 Steedeite, 1188 Steenstrupine-(Ce), 1188 Stepanovite, 108 Stephanite, 522, 1188 Štěpite, 1189 Stercorite, 1189 Steropesite, 1189 Stetindite, 1189 Stevensite, 293 Stibarsen, 1189 Stibiconite, 1190 Stibioclaudetite, 1190 Stibiocolumbite, 1190 Stibiopalladinite, 1190

Stibnite, 1191

Stichtite, 79, 1191 Stilbite-Ca, 1191 Stilbite-Na, 1191 Stilleite, 1192 Stilpnomelane, 1192 Stishovite, 1192 Stoiberite, 1192 Stolzite, 1192 Stoppaniite, 1193 Stottite, 1193 Strashimirite, 1193 Strengite, 1193 Stringhamite, 1194 Stromeyerite, 1194 Stronadelphite, 1194 Strontianite, 1194 Strontiofluorite, 1194 Strontiohurlbutite, 445, 1195 Strontiojoaquinite, 1195 Strontium aluminum hydroxide, 164 Strontium bismuth(III) selenite hydrate, 656 Strontium borate chloride $Sr₂B₅O₉Cl$, 67 Strontium borate SrB₂O₄, 67 Strontium borate SrB_8O_{13} , 68 Strontium boroarsenate $Sr(BAsO₅)$, 69 Strontium cerium antimonate perovskite-type, 164 Strontium copper tellurate tellurite, 692 Strontium iron(III) oxycarbonate, 83 Strontium iron phosphate whitlockite-related, 420 Strontium magnesium niobate, 165 Strontium magnesium pyrophosphate, 421 Strontium selenate, 657 Strontium tungstate, 716 Strontium vanadyl vanadate, 571 Strunzite, 1195 Struvite, 1196 Struvite Cd analogue, 356 Struvite-(K), 1195 Studtite, 1196 Sturmanite, 1196 Stützite, 1196 Sudoite, 294, 1197 Sudovikovite, 1197 Sulfhydrylbystrite, 310 Sulfur, 1197 Sulphohalite, 1197 Sulvanite, 1198 Suredaite, 1198 Sursassite, 1198 Susannite, 1198 Suseinargiuite, 1199 Svabite, 633 Svanbergite, 1199 Švenekite, 1199 Svornostite, 1199 Swamboite-(Nd), 349 Swedenborgite, 1200 Symplesite, 628, 1200 Synchysite-(Ce), 1200

Syngenite, 1200 Szaibélyite, 1200 Szenicsite, 1201 Szmikite, 1201 Szomolnokite, 478, 1201

T

Takedaite, 1201 Takovite, 1202 Talc, 1202 Talmessite, 1202 Tangdanite, 1203 Tangeite, 1203 Tantalite-(Fe), 1203 Tantalite-(Mg), 1203 Tantalite-(Mn), 1204 Tantalum oxyarsenate, 615 Tantalum oxyphosphate, 422 Tantalum oxyvanadate, 572 Tantite, 202 Tantite orthorhombic polymorph, 1204 Taranakite, 1204 Tarapacáite, 1204 Tarbuttite, 1205 Tausonite, 1205 Tazheranite, 1205 Tazzoliite, 1205 Teepleite, 1205 Teineite, 1206 Tellurantimony, 1206 Tellurite rhombohedral polymorph, 166 Tellurium, 694, 1206 Tellurium(IV) oxosulfate, 499 Tellurium(IV) oxovanadate, 572 Tellurium oxumolybdate, 675 Tellurium(IV) oxyphosphate, 423 Tellurium(IV) oxyselenate, 658 Tellurium oxyselenite, 658 Tellurium(IV) tin oxide $Te₃SnO₈$, 166 Tellurium(IV) titanium oxide $Te₃TiO₈$, 167 Tellurium(IV) zirconium oxide Te₃ZrO₈, 168 Tellurobismuthite, 1206 Telluroperite, 555 Tengerite-(Y), 1206 Tennantite, 1207 Tenorite, 1207 Tephroite, 1207 Terlinguacreekite, 549 Tetraferrinontronite, 295 Tetrahedrite, 1207 Tetrammine zinc borofluoride, 233 Tetrawickmanite, 1208 Thadeuite, 468 Thallium feldspar, 311 Thallium sodalite, 311 Thallium tellurite, 692 Thallium(I) selenite vanadate $TlSeVO₅$, 573 Thallium(I) tellurite vanadate TlTeVO $_5$, 574 Thaumasite, 732, 734, 1208

Thecotrichite, 1208 Theophrastite, 1208 Thermonatrite, 1208 Thometzekite, 1209 Thomsonite-Ca, 1209 Thorianite, 1209 Thorikosite, 1209 Thorite, 1210 Thorium divanadate cubic polymorph, 574 Thorium divanadate orthorhombic polymorph, 575 Thorium hydrogenphosphate, 424 Thorium tellurite, 693 Thorneite, 1210 Thortveitite, 1210 Thorutite, 1210 Threadgoldite, 1211 Tiemannite, 1211 Tilasite, 1211 Tilleyite, 1211 Tin(IV) hydroxide, 168 Tin tetraborate, 69 Tiragalloite, 1212 Tissintite, 1212 Tistarite, 203, 1212 Titanite, 1212 Titanium acid phosphate monohydrate, 425 Titanium(III) orthophosphate, 424 Titanium oxophosphate hydrate, 426 Titanoholtite, 1213 Tlapallite, 1213 Tobelite hydrated variety, 286 Tobermorite, 278, 1213 Todorokite, 1213 Tokyoite, 1214 Tolbachite, 554, 1214 Tondiite, 1214 Tooeleite, 1214 Topaz, 723, 725, 1215 Torbernite, 1215 Toturite, 1215 Trabzonite, 1215 Tremolite, 1216 Trevorite, 1216 Trevorite Co-analogue, 203 Triammoniun hydrogen disulfate, 500 Triazolite, 110 Tridymite, 1216 Trilithionite, 1216 Trinepheline, 1217 Triphylite Mg-analogue, 446 Triplite, 1217 Trippkeite, 1217 Tripuhyite, 1217 Trogtalite, 1218 Troilite, 1218 Trolleite, 454 Trona, 1218 Tschermigite, 1218 Tschernichite, 317

Tsumcorite, 1218 Tsumebite, 1219 Tsumoite, 1219 Tugarinovite, 1219 Tuite, 1219 Tululite, 1220 Tunellite, 1220 Tungstenite, 1220 Tungsten(VI) oxyphosphate, 427 Tungsten trioxide monoclinic, 169 Tungsten trioxide orthorhombic, 170 Tungsten trioxide triclinic, 170 Tungstite, 1220 Tunisite, 1221 Turquoise, 1221 Tuzlaite, 1221 Tvrdýite, 352, 447 Tychite, 1221 Tyretskite (monoclinic polytype), 74 Tyrolite, 1222 Tyuyamunite, 1222

U

Uedaite-(Ce), 254 Ulexite, 1222 Ulfanderssonite-(Ce), 243 Ulrichite, 1222 Ulvospinel Zn-analogue, 204 Ulvöspinel, 1223 Umangite, 1223 Umbite, 1223 Umbrianite, 1223 Ungemachite, 1224 Uraninite, 1224 Uranium(IV) oxalate fluoride hydrate, 102 Uranophane-α, 1224 Uranopilite, 1224 Uranosphaerite, 1225 Uranospinite, 638 Uranyl fluoride, 234 Uranyl nitrate hexahydrate, 113 Uranyl oxy-hydroxyphosphate, 427 Uranyl perrhenate hydrate, 719 Urea solution, 1225 Ushkovite, 1225 Usturite, 1225 Uvarovite, 1226 Uvite, 1226

V

Vaesite, 1226 Vajdakite, 1226 Valentinite, 1227 Vanackerite, 1227 Vanadinite Sr,OH-analogue, 580 Vanadinite, 1227 Vanadium(III) antimony(V) selenite, 659 Vanadium oxide bariandite-type, 171 Vanadyl molybdate, 678

β-Vanadyl pyrophosphate, 363 γ-Vanadyl pyrophosphate, 374 Vanadyl selenite, 660 Vanadyl sulfate, 517 Vandenbrandeite, 204 Vandenbrandeite hydrogen-free analogue, 205 Vandendriesscheite, 1227 Vanmeersscheite, 1228 Vantasselite, 1228 Vanthoffite, 1228 Vapnikite, 1229 Variscite, 1229 Variscite-4O, 353 Varulite, 455 Västmanlandite-(Ce), 1229 Vaterite, 1229 Vauquelinite, 1230 Vauxite, 1230 Väyrynenite, 443, 1230 Velikite, 1231 Versiliaite, 1231 Vésigniéite, 1231 Vesuvianite, 2, 5, 259, 1231 Vesuvianite B-bearing, 262, 263 Vesuvianite Cr-bearing, 260 Vesuvianite S-bearing, 260 Veszelyite, 1231 Villamanínite, 1232 Vishnevite, 303 Vishnevite CO₃-bearing, 304 Vishnevite potassium analogue, 302 Vittingeite, 268 Vivianite, 731, 1232 Vladimirivanovite, 1232 Vladykinite, 1232 Voglite, 1233 Volaschioite, 1233 Volborthite, 1233 Vonsenite, 1233 Vorlanite, 1234 Vrbaite, 1234 Vuorelainenite, 1234 Vyacheslavite, 464 Vyacheslavite anhydrous Th analogue, 464 Vysokýite, 626, 1234 Vysotskite, 1235

W

Wadalite, 237 Wadeite, 1235 Wadeite dimorph, 280 Wadeite Rb analogue, 281 Wadsleyite, 1235 Wagnerite-Ma5bc, 1235 Waimirite-(Y), 1236 Waimirite-(Yb), 235 Wakabayashilite, 1236 Wakefieldite-(Ce), 1236 Wakefieldite-(La), 1236 Wakefieldite-(Nd), 1236 Wakefieldite-(Pr), 581

Wakefieldite-(Y), 588, 1237 Walpurgite, 1237 Walstromite, 1237 Wardite, 1237 Waterhouseite, 1238 Wavellite, 1238 Wavellite-(OH), 443 Waylandite, 1238 Weddellite, 1238 Weeksite, 1239 Wegscheiderite, 1239 Weissbergite, 1239 Weloganite, 1239 Wendwilsonite, 1240 Wermlandite carbonate analogue, 91 Wernerbaurite, 584 Wernerkrauseite, 1240 Wesselsite, 298 Wetherillite, 1240 Wheatleyite, 1241 Whelanite, 1241 Whewellite, 1241 Whitecapsite, 1241 Whiteite [possibly, whiteite-(CaMnMg)], 1242 Whitlockite, 1242 Whitmoreite, 1242 Widenmannite, 1242 Wiklundite, 348 Wilhelmgümbelite, 448 Willemite, 1243 Willemseite, 1243 Wiluite, 252, 255 Windhoekite Na-bearing variety, 293 Winstanleyite, 1243 Witherite, 1243 Wittichenite, 1243 Wollastonite, 1244 Wölsendorfite, 221 Woodallite, 123 Woodhouseite, 1244 Wopmayite, 1244 Wulfenite, 1244 Wupatkiite, 1245 Wurtzite, 1245 Wüstite, 1245

X

Xanthoxenite, 438 Xenotime-(Y), 1245 Xieite, 1246 Ximengite polymorph, 448, 449 Xocolatlite, 1246 Xocomecatlite, 1246 Xonotlite, 1246

Y

Yafsoanite, 695 Yangzhumingite, 295 Yarrowite, 1247 Yavapaiite, 478 Yecoraite, 1247

Ye'elimite, 1247 Yimengite, 1247 Yingjiangite, 1247 Yoshimuraite, 337 Yttriaite-(Y), 1248 Yttrium barium borate $YBa₃B₉O₁₈$, 70 Yttrium hydroxychloride hydrate, 543 Yttrium iron antimony(V) oxide pyrochlore-type, 172 Yttrium metaphosphate, 428 Yttrium oxide, 172 Yttrium tungstate, 717 Yttrium vanadyl oxyselenite, 660 Yttrium vanadyl oxytellurite, 694 Yukonite, 1248 Yuksporite, 1248 Yurmarinite, 1248 Yushkinite, 1249 Yvonite, 1249

Z

Żabińskiite, 1249 Zadovite, 1249 Zaherite, 518 Zálesíite, 1250 Zanazziite, 1250 Zaratite, 1250 Zdenĕkite, 1250 Zellerite, 1251 Zemannite, 698, 1251 Zemkorite, 1251 Zhangpeishanite, 1251 Zhemchuzhnikovite, 109 Ziesite, 1252 Ziesite and blossite polymorph, 582 Ziminaite, 588

Ziminaite monoclinic polymorph, 583 Zinc basic pyrovanadate hydrate, 577 Zinc hydroxychloride, 544 Zinc hydroxyfluoride, 234 Zinc iron(III) orthovanadate, 576 Zincite, 206, 1252 Zinc molybdate, 676 Zincoberaunite, 350 Zincobotryogen, 528 Zincochromite, 1252 Zincocopiapite, 1252 Zinc orthoborate hydroxide, 38 Zinc orthoborate orthophosphate, 39 Zinc orthovanadate, 576 Zincospiroffite, 1253 Zincovelesite-6N6S, 220 Zincovoltaite, 531 Zinc stannate, 174 Zinc telluromolybdate, 676 Zinc vanadyl oxide $Zn(VO₂)₂O₂$, 578 Zinc vanadyl phosphate, 429 Zinkenite, 1253 Zippeite, 1253 Zircon, 1253 Zirconium acid arsenate monohydrate, 616 Zirconium acid phosphate monohydrate, 429, 430 Zirconium basic oxalate, 103 Zirconium molybdenum oxide (monoclinic), 677 Zirconium molybdenum oxide (trigonal), 678 Zirconolite-2M, 218 Zoisite, 1254 Zorite, 1254 Zuktamrurite, 1254 Zunyite, 1254 Zýkaite, 1255