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Abstract. In this paper, inspired by the Zadeh approach to the fuzzy
connectives in fuzzy set theory and by some applications, we introduce
and study set-based extended functions on different universes. After pre-
senting some results for set-based extended functions on a general uni-
verse, we focus our investigation on set-based extended functions on some
particular universes, including lattices and (bounded) chains. A special
attention is devoted to characterization of set-based extended aggrega-
tion functions on the unit interval [0, 1].
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1 Introduction

Lotfi Zadeh proposed in his seminal paper [13] to use the minimum and maximum
operators for modeling fuzzy intersection and fuzzy union, respectively. This
paper focuses on such kinds of fusion procedures that share with Zadeh’s proposal
a particular property, namely, that these fuzzy connectives can be seen as func-
tions which, for any n,m € N and any input vectors x = (z1,...,2,) € [0,1]"
and z = (21,...,2m) € [0,1]" such that the sets {z1,...,2,} and {z1,...,2m}
coincide, provide for input vectors x and z the same output values, i.e.,

Min(x) = Min(z) and Maz(x) = Max(z).
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In statistics, for a sample (x4, ..., x,) several kinds of mean values have been
introduced. For example, the arithmetic mean AM (x) = L 3" | #; is the mini-
mizer of the sum of squares Y, (z; — a)? (Least Squares Method). Minimizing
the maximal deviation, i.e., looking for the minimizer of max{|z; — a| | i =

1,...,n} leads to the resulting mean M given by

min{zy,...,2,} + max{zy,...,z,}

M(x) = 5

Observe that repeating or rearrangement of observations does not have any
influence on the output of M, i.e., for example, taking a sample

z = ($1,=’U1,$1,$2,$2,$3, cee axn)a

we obtain M (z) = M (x).

Inspired by the mentioned observations, and taking into account that in most
fusion problems the number of values to be fused cannot be fixed a priori, in this
paper we will work with extended functions F': |J X™ — X, X # (), satisfying,

neN
in addition, the above discussed property. They will be called set-based extended
functions on X (for the definition see below). Evidently, each such set-based
extended function depends on the set {y1,...,yx} of values related to the input
vector (x1,...,2,), where {z1,...,z,} = {y1,...,yx} and card({y1,...,yx}) =
k. Hence, neither the repetition of arguments to be fused nor their rearrangement
have any influence on the output result.

We will proceed as follows. First, we propose the concept of set-based
extended functions defined for arbitrary but finitely many inputs from some
non-empty universe X, with outputs also from X. In the beginning, we examine
properties of set-based extended functions acting on a general universe X. The
obtained results are contained in Sect. 2. The next section is devoted to the inves-
tigation of set-based extended functions on a (bounded) lattice X. In Sect. 4, X
is considered to be a (bounded) chain. This section also contains a characteri-
zation of set-based extended aggregation functions on X = [0, 1]. Finally, some
concluding remarks are added.

2 Set-Based Extended Functions on a General Universe

Suppose that we classify some products and their samples as good or bad only,
i.e., we deal with the universe X = {g,b}. A function F': |J X™ — X assigns

neN
to a sample x = (x1,...,2,) € X" either the value good—if all the inputs
Z1,...,Z, are good, or the value bad—in all other cases. The output value F(x)

depends on the set {x1,...,2,} only, namely,

b if be{xy,...,z,},
g otherwise.

F(xl,...,xn):{
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Moreover, if we add any other inputs ¥, ..., yx, but such that each of them has
already appeared in the original sample, i.e., y1,...,yx € {21,..., 2}, then

F(z1,. @y Y1, yk) = F(z1, ..., 20).

In what follows, we formalize the above described situation, and define the
notion of set-based extended function on a general universe X. We start by
recalling the notion of extended function on X.

Definition 2.1. Let X # 0. Any function F: |J X™ — X will be called an
neN
extended function on X.

Extended functions have open arity, i.e., they can work for any finite number
of arguments.

Definition 2.2. Let X # 0. A function F: |J X" — X is called a set-
neN
based extended function on X if F(y) = F(x) for any n,k € N and all x =

(1,...,m0) € X",y = (y1,---,yx) € X*, such that {x1,..., 2.} = {y1,-- -, Ur}-

Ezample 2.1. Consider a set X with cardinality card(X) > 2. Let E be a proper

subset of X, and a,b € X, a # b. Define Fgq,: |J X" — X by
neN

= {5 B0 o 20

E,a,b( 1s b otherwise.

Then Fg 4 is a set-based extended function on X. Note that Fg 4 5 is associative

if and only if @ € E, where the associativity of a function F': [J X™ — X means
neN
that

F(x,y) = F(F(x), F(y))

forall x,y € | X™
neN

Example 2.1 is an example of a particular case of the construction of set-based
extended functions described in the following proposition.

Proposition 2.1. Let X # (). Let P = {FE1,...,Ex} be a partition of X and

ay,...,ax € X. Define F: |J X" — X by
neN

F(x) =a;, wherei=min{j € {1,...,k} | {z1,...,z,} NE; #0}. (1)
Then F' is a set-based extended function on X.
Ezample 2.2. Let p € Nand X = {1,...,p}. Then

— if we consider the partition P = {E;}'_,, where E; = {i}, and a; = i, then
(1) defines the function Min: |J X™ — X given by Min(z1,...,2,) =
neN
min{zy,..., 2, };
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— if P={E;}_,, where E; = {p—i+1} and a; = p—i+1, then (1) yields the
function Max, Max(x1,...,T,) = max{xy,...,Tpn}.

Lemma 2.1. Let X # 0 and H(X) = {0 # E C X | E is finite}. Then each
set-based extended function F on X corresponds in a one-to-one correspondence

to a set function G: H(X) — X given, for each E = {x1,...,z,} in H(X), by
G(E)=F(x1,...,Tpn)-

Clearly, H(X) is the power set of X except the empty set whenever X is
finite.

Note that properties of the set function G: H(X) — X can be transformed
into new kinds of properties of the related set-based extended function F' on X,
as is shown in the following example.

Ezample 2.3. Consider X = N and define G: H(N) - N by G(E) = > i.
i€k
Obviously, G is monotone non-decreasing, because for all E7, Fy in H(N),
G(FE1) < G(F3) whenever E; C Es. G is also additive, i.e.,

G(F1 U Es) = G(Ey) + G(F2) whenever Ey N Ey = (.

The set-based extended function F': |J N™ — N corresponding to G, is given by
neN

F(zy,...,2,) = Zi~min 1,21{i}(mj) ,

and is neither monotone non-decreasing nor additive in the standard case,
because, given any n € N, the relation x < y does not imply F(x) < F(y)
for all x,y € N and similarly, the additivity property F( x+y) = F(x)+ F(y)
does not hold for all x,y € N™.

However, F' is monotone non-decreasing with respect to the partial order <

on |J N”, defined as follows: for any n,k € N and all x € N", y € N¥,
neN

X =y whenever n < k and x; = y; for all 1 < n.

Indeed, then for all x,y € |J N, if x <Xy then F(x) < F(y).
neN
Similarly, F' is concatenation additive, i.e., if {z1,..., 2, }N{y1,...,yx} =

then F(x,y) = F(x) + F(y).

=

We still give another example illustrating Lemma 2.1.

Ezample 2.4. Consider X = {0,1}. Then a function F: J {0,1}" — {0,1}
neN

[

S

an extended Boolean function. The cardinality of X is card(X) = 2, H(X) =
{{0}, {1},{0,1}}, i.e., card(H(X)) = 3, thus there are exactly 2% = 8 set func-
tions G;: H(X) — {0,1}, ¢ = 1,...,8. Consequently, there are 8 set-based
extended Boolean functions F;, where F; corresponds to G; by Lemma 2.1. The
results are summarized in Table 1.
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Table 1. Set-based extended Boolean functions

G:\E {0} {1} {01} Fi(x)

Gy 0 0 0 0

G2 0 0 1 V|xj_$k‘
g,k

G3 0 1 0 /\IL’j
J

G4 0 1 1 \/$J‘
J

Gs |1 (0 0 1— Fy(x)
Gs |1 0 |1 1— F3(x)
G |1 |1 0 1— F(x)
Gs |1 1 |1 1— F(x)

Proposition 2.2. Fiz X = {1,2,...,k}. Consider a permutation o: X — X
and a total order <, on X determined by o, given by

z =,y if and only if o' (z) < o (y).
Let Go: H(X) — X, Go(FE) = min<_{z | x € E}. Then the set-based extended
function Fy: |J X" — X, Fy(x) = Go({z1,...,2n}), is symmetric, associa-
neN

tive, and with neutral element e = o(n), but in general, F, need not be monotone.

Recall that e € X is a neutral element of an extended function F' on X, if
for all n € N, and all x € X", with e = x; for some ¢ € {1,...,n}, we have

F(ZII17 ey Lj—15€6, L4145 - - ,l‘n) = F([El, ey Lj—1y L1y - - - ,ZIJn).
Obviously, in Proposition 2.2, there are k! set-based extended functions F,.
Remark 2.1. In Proposition 2.2, if for each xz,y € X,

r<y<e = o Yz)<o l(y) and x>y>e = o Yz) <o (y),

then F, is an idempotent uninorm (and only in that case). There are 2¢1

idempotent uninorms on X.

Note that the previous result for idempotent uninorms was also proved by
Zemankovd in [12].
We now summarize some properties related to general set-based functions.

Proposition 2.3. Let X # (. Set-based extended functions on X have the fol-
lowing properties.

(i) Fach set-based extended function on X is symmetric.
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(ii) For any function V: X* — X and any set-based extended functions
Fy,...,Fx on X, also the composite F = V(Fy,...,Fx): U X"* - X
neN
18 a set-based extended function on X.

(iii) For any function V: X — X and a any set-based extended function F on
X, also the composites V(F),F(V): |J X" — X, given by
neN

V(F)(x) =V (F(x)) and F(V)(x)=F(V(x1),...,V(xn)),
respectively, are set-based extended functions.

Proposition 2.4. Let X; #0,i=1,...,k, and let X be the Cartesian product
of Xi, X = X1 x -+ x Xy. For any set-based extended functions F; on X;,
i=1,...,k, the function F: |J X" — X, defined by

neN

1 1 n n 1 n 1 n
F((acg ),H.,xé)),...,(xg ),...,mgg ))) = (Fl(x(l ),...,xg )),.”,Fk(wi),...,xi ))),
is a set-based extended function on X.

The following theorem shows that some algebraic properties of a function

F: |J X™ — X already ensure that F is a set-based extended function on X.
neN

Theorem 2.1. Let X £ (. Let F: |J X™ — X be symmetric, idempotent and
neN
associative. Then F is a set-based extended function on X.

Proof: Let F satisfy the given assumptions. For any n € N and each x =
(x1,...,2p) € X™ with card({z1,...,2n}) =k, let {x1,..., 20} ={y1,. .., Yk}
Then there is a partition {Iy,..., I} of {x1,...,z,} given by

Then, writing I; = {jiy, ..., Jim, }» where m; = card(I;), we have
F(X) :F(Ijllﬂ"'7Ij1m17xj21?"'7:Cj2mgv'"7xjk17"'7xjk7,Lk)
:F(F(mjll,...,l‘jlml),F(.’Ele,...,"ij2m2),...,F(Ijkl,...,xjk"%))
:F(yla"'vyk)a

where the first equality follows from the symmetry of F, the second one from its
associativity, and the third one follows from the idempotency of F'. Obviously,

for all x,z € |J X", such that {z1,..., 20} ={y1,..-,ux} = {z1,-. ., 2m}, we
neN
have F(x) = F(z), and hence F' is a set-based extended function on X. O

Note that neither idempotency nor associativity are necessary properties for
being F' a set-based extended function, see Example 2.1 and Proposition 2.1.
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3 Set-Based Extended Functions on Lattices

In this section we consider X to be a carrier of a lattice (X, <). For any fixed

a € X, we define a function F,: |J X™ — X by
neN

Va; if Va; <a,

i i
F.(x)=4¢ Az if Aa; > a,

i i

a otherwise.

Obviously, F, is symmetric and idempotent, and its associativity can also be
verified. By Theorem 2.1, F, is a set-based extended function on X. Moreover,
F, is monotone non-decreasing, and thus it is an extended aggregation function
on X, see [7] (because of the idempotency of F, we need not consider X to
be a bounded lattice). Observe that if X is bounded, with top and bottom
elements 1x and Ox, respectively, then Fj, = V is the standard join on X, and
Fo, = A is the standard meet on X. By Theorem 2.1, any idempotent uninorm
F on a bounded (distributive) lattice X [8], is a set-based extended function on
X. Similarly, idempotent nullnorms on bounded lattices, see [9], are set-based
extended functions.

Proposition 3.1. Let (X, <) be an ordinal sum of lattices (X;,<;)icr, and let
foranyiel, F;: |J X! — X, be a set-based extended function on X;. Define

neN
F: U X"—> X by
neN
F(xla-“axn):Fi(yla"'7yk)7
where

i=min{j €I | {z1,...,z,} N X, # 0},
k=card({j € {1,...,n} | z; € X;}),
{yla s ayk} = {xj ‘ Tj € Xz}
Then F is a set-based extended function on X. Moreover, F' is monotone non-

decreasing if and only if all F;, i € I, are of that property, and it is idempotent
if and only if all F;, i € I, are idempotent.

More information on ordinal sum of lattices can be found, e.g., in [3].

4 Set-Based Extended Aggregation Functions on Chains

In this section we consider X to be a (bounded) chain. A total order on X has an
important impact on characterization of monotone set-based extended functions
on X.
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Proposition 4.1. Let X be a chain. Then F: |J X™ — X is a monotone non-
neN
decreasing (non-increasing) set-based extended function if and only if for each

x € |J X" we have
neN
F(x) = D(Min(x), Maz(x)), )

for some monotone non-decreasing (non-increasing) function D: X? — X.

Proof: Tt is not difficult to see that representation of F' in the form (2) is suffi-
cient for being F' a monotone non-decreasing (non-increasing) set-based extended
function on X. We only prove a necessary condition.

Let F be a monotone non-decreasing set-based extended function on a chain
X. As F is symmetric, with no loss of generality, we can only consider elements

x € |J X" such that 1 <--- <uz,. Then 21, = Min(x), 2, = Maz(x) and we
neN
can write

F(x1,25) = F(21,...,21,2,) < F(a1, 29, ..., Zn_1,Tn) < F(21,Zn, ..., Tp)
= F(xlvxn)v (3)

which yields F(x) = F(Min(x), Max(x)). Putting D = F|xz, we obtain the
required representation in the form (2). The monotonicity of D follows from
the monotonicity of F'. To get the result for a monotone non-increasing F, it is
enough to reverse the inequalities in (3). O

Now we provide a characterization of set-based extended aggregation func-
tions acting on a bounded chain X, in particular on X = [0, 1]. In what follows,
we only recall the notion of extended aggregation function on [0, 1], for more
details on (extended) aggregation functions and their properties we recommend,
e.g., [4,7,10], see also [1,2].

Definition 4.1. A function A: | [0,1]™ — [0,1] s an extended aggregation

neN
function on [0,1] if A is monotone non-decreasing and satisfies the boundary

conditions, i.e.,
(i) for all elements 0 = (0,...,0),1 = (1,...,1) € U [0,1]*, A(0) = 0 and

neN
A1) =1;
(ii) for all x,y € | [0,1]™ we have A(x) < A(y) whenever x <y.
neN

Note that for x,y € |J [0,1]™ we have x < y if and only if x and y are
neN
n-tuples of the same arity n satisfying xz; < y; foreach i =1,...,n.

We will also work with n-ary aggregation functions on [0, 1], i.e., functions
Aemy: [0,1]" —[0,1]

which satisfy boundary conditions (i) and monotonicity conditions (ii) from Def-
inition 4.1 for a considered fixed n € N. Clearly, given an extended aggregation
function A on [0, 1], the function A, = A|[o,1]" is an n-ary aggregation function.
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Definition 4.2. A function A: |J [0,1]" — [0,1] is a set-based extended aggre-
neN

gation function if A is an extended aggregation function on [0,1] satisfying the

set-based property, i.e., for all n,k € N, and all x = (21,...,2,) € [0,1]" and

y = (y1,...,ur) €[0,1]%, A(y) = A(x) whenever {z1,..., 20} = {y1,. .., Y&}

It can be shown that set-based extended aggregation functions on [0, 1] can
be completely characterized as follows.

Theorem 4.1. Let A: | [0,1]" — [0,1] be an extended aggregation function
neN
on [0,1]. A is a set-based extended aggregation function on [0,1] if and only if

for allx € U [0,1]™ we have
neN

A(x) = A(Min(x), Maz(x)). (4)

For more results on set-based extended aggregation functions on [0, 1],
see [11].

By the previous theorem, set-based extended aggregation functions on [0, 1]
are generated by binary aggregation functions; there is a one-to-one correspon-
dence between the set of all set-based extended aggregation functions and the
set of all symmetric binary aggregation functions. Observe that in the case of
an associative symmetric binary aggregation function A: [0,1]> — [0,1] there
are two possible ways how to extend it into an extended aggregation func-
tion. On the one hand, based on formula (2), one can define the function
Ag: U [0,1]™ — [0,1] by

neN

Ag(x) = A(Min(x), Max(x)),

and on the other hand, using the associativity of A, one can define the function
An: U [0,1]" — [0,1] by
neN

An(r1) =21, Ap(21,22) = A(T1,72),
and for all n > 3,
An(z, .. xn) = A(Aa(21, .oy Bn—1), Tn)-

Due to Proposition 2.1, Ap = A if and only if a binary aggregation function
A is idempotent, i.e., A(z,z) = z for all z € [0, 1]. Note that this is, e.g., the
case of idempotent uninorms [6,12], and also the case of idempotent nullnorms
[5] (compare Fy introduced in Sect. 3). As a negative example, consider the stan-

dard product A(z1,22) = x129. Then Aa(x1,...,2,) = [] x; is the standard
i=1
product, which, if n # 2, differs from Ag(x) = (Min(x)) - Max(x)).
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5 Concluding Remarks

In this paper, we have introduced and discussed set-based extended functions,

which can be seen as a generalization of extended functions F': |J X™ — X,
neN
which are symmetric, idempotent and associative. In the case when X is a lat-

tice, the introduced set-based extended functions can be viewed as a particular
generalization of joins, meets, idempotent uninorms and idempotent nullnorms.
In the case of bounded chains, we have shown the existence of a one-to-one cor-
respondence between set-based aggregation functions A and symmetric binary
aggregation functions D given by

A(x) = D(Min(x), Maz(x)).

Based on the presented approach, in our future research we intend to solve

how to relate aggregation of input values z1,...,x, to aggregation of inputs
TlyeeryTnyTutls .- Tk, Where Tpi1,. .., Ty4k are some additionally obtained
observations.
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