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Radlinského 9, 812 37 Bratislava, Slovakia

anna.kolesarova@stuba.sk
3 Instituto de Matematica Interdisciplinar,

Departamento de Estad́ıstica e Investigación Operativa,
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Abstract. In this paper, inspired by the Zadeh approach to the fuzzy
connectives in fuzzy set theory and by some applications, we introduce
and study set-based extended functions on different universes. After pre-
senting some results for set-based extended functions on a general uni-
verse, we focus our investigation on set-based extended functions on some
particular universes, including lattices and (bounded) chains. A special
attention is devoted to characterization of set-based extended aggrega-
tion functions on the unit interval [0, 1].
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1 Introduction

Lotfi Zadeh proposed in his seminal paper [13] to use the minimum and maximum
operators for modeling fuzzy intersection and fuzzy union, respectively. This
paper focuses on such kinds of fusion procedures that share with Zadeh’s proposal
a particular property, namely, that these fuzzy connectives can be seen as func-
tions which, for any n,m ∈ N and any input vectors x = (x1, . . . , xn) ∈ [0, 1]n

and z = (z1, . . . , zm) ∈ [0, 1]m such that the sets {x1, . . . , xn} and {z1, . . . , zm}
coincide, provide for input vectors x and z the same output values, i.e.,

Min(x) = Min(z) and Max(x) = Max(z).
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In statistics, for a sample (x1, . . . , xn) several kinds of mean values have been
introduced. For example, the arithmetic mean AM(x) = 1

n

∑n
i=1 xi is the mini-

mizer of the sum of squares
∑n

i=1(xi − a)2 (Least Squares Method). Minimizing
the maximal deviation, i.e., looking for the minimizer of max{|xi − a| | i =
1, . . . , n} leads to the resulting mean M given by

M(x) =
min{x1, . . . , xn} + max{x1, . . . , xn}

2
.

Observe that repeating or rearrangement of observations does not have any
influence on the output of M , i.e., for example, taking a sample

z = (x1, x1, x1, x2, x2, x3, . . . , xn),

we obtain M(z) = M(x).
Inspired by the mentioned observations, and taking into account that in most

fusion problems the number of values to be fused cannot be fixed a priori, in this
paper we will work with extended functions F :

⋃

n∈N

Xn → X, X �= ∅, satisfying,

in addition, the above discussed property. They will be called set-based extended
functions on X (for the definition see below). Evidently, each such set-based
extended function depends on the set {y1, . . . , yk} of values related to the input
vector (x1, . . . , xn), where {x1, . . . , xn} = {y1, . . . , yk} and card({y1, . . . , yk}) =
k. Hence, neither the repetition of arguments to be fused nor their rearrangement
have any influence on the output result.

We will proceed as follows. First, we propose the concept of set-based
extended functions defined for arbitrary but finitely many inputs from some
non-empty universe X, with outputs also from X. In the beginning, we examine
properties of set-based extended functions acting on a general universe X. The
obtained results are contained in Sect. 2. The next section is devoted to the inves-
tigation of set-based extended functions on a (bounded) lattice X. In Sect. 4, X
is considered to be a (bounded) chain. This section also contains a characteri-
zation of set-based extended aggregation functions on X = [0, 1]. Finally, some
concluding remarks are added.

2 Set-Based Extended Functions on a General Universe

Suppose that we classify some products and their samples as good or bad only,
i.e., we deal with the universe X = {g, b}. A function F :

⋃

n∈N

Xn → X assigns

to a sample x = (x1, . . . , xn) ∈ Xn either the value good—if all the inputs
x1, . . . , xn are good, or the value bad—in all other cases. The output value F (x)
depends on the set {x1, . . . , xn} only, namely,

F (x1, . . . , xn) =
{

b if b ∈ {x1, . . . , xn},
g otherwise.
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Moreover, if we add any other inputs y1, . . . , yk, but such that each of them has
already appeared in the original sample, i.e., y1, . . . , yk ∈ {x1, . . . , xn}, then

F (x1, . . . , xn, y1, . . . , yk) = F (x1, . . . , xn).

In what follows, we formalize the above described situation, and define the
notion of set-based extended function on a general universe X. We start by
recalling the notion of extended function on X.

Definition 2.1. Let X �= ∅. Any function F :
⋃

n∈N

Xn → X will be called an

extended function on X.

Extended functions have open arity, i.e., they can work for any finite number
of arguments.

Definition 2.2. Let X �= ∅. A function F :
⋃

n∈N

Xn → X is called a set-

based extended function on X if F (y) = F (x) for any n, k ∈ N and all x =
(x1, . . . , xn) ∈ Xn, y = (y1, . . . , yk) ∈ Xk, such that {x1, . . . , xn} = {y1, . . . , yk}.
Example 2.1. Consider a set X with cardinality card(X) > 2. Let E be a proper
subset of X, and a, b ∈ X, a �= b. Define FE,a,b :

⋃

n∈N

Xn → X by

FE,a,b(x1, . . . , xn) =
{

a if E ∩ {x1, . . . , xn} �= ∅,
b otherwise.

Then FE,a,b is a set-based extended function on X. Note that FE,a,b is associative
if and only if a ∈ E, where the associativity of a function F :

⋃

n∈N

Xn → X means

that
F (x,y) = F (F (x), F (y))

for all x,y ∈ ⋃

n∈N

Xn.

Example 2.1 is an example of a particular case of the construction of set-based
extended functions described in the following proposition.

Proposition 2.1. Let X �= ∅. Let P = {E1, . . . , Ek} be a partition of X and
a1, . . . , ak ∈ X. Define F :

⋃

n∈N

Xn → X by

F (x) = ai, where i = min{j ∈ {1, . . . , k} | {x1, . . . , xn} ∩ Ej �= ∅}. (1)

Then F is a set-based extended function on X.

Example 2.2. Let p ∈ N and X = {1, . . . , p}. Then

– if we consider the partition P = {Ei}p
i=1, where Ei = {i}, and ai = i, then

(1) defines the function Min :
⋃

n∈N

Xn → X given by Min(x1, . . . , xn) =

min{x1, . . . , xn};
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– if P = {Ei}p
i=1, where Ei = {p − i+ 1} and ai = p − i+ 1, then (1) yields the

function Max, Max(x1, . . . , xn) = max{x1, . . . , xn}.

Lemma 2.1. Let X �= ∅ and H(X) = {∅ �= E ⊆ X | E is finite}. Then each
set-based extended function F on X corresponds in a one-to-one correspondence
to a set function G : H(X) → X given, for each E = {x1, . . . , xn} in H(X), by

G(E) = F (x1, . . . , xn).

Clearly, H(X) is the power set of X except the empty set whenever X is
finite.

Note that properties of the set function G : H(X) → X can be transformed
into new kinds of properties of the related set-based extended function F on X,
as is shown in the following example.

Example 2.3. Consider X = N and define G : H(N) → N by G(E) =
∑

i∈E

i.

Obviously, G is monotone non-decreasing, because for all E1, E2 in H(N),
G(E1) ≤ G(E2) whenever E1 ⊆ E2. G is also additive, i.e.,

G(E1 ∪ E2) = G(E1) + G(E2) whenever E1 ∩ E2 = ∅.

The set-based extended function F :
⋃

n∈N

N
n → N corresponding to G, is given by

F (x1, . . . , xn) =
∑

i∈N

i · min

⎧
⎨

⎩
1,

n∑

j=1

1{i}(xj)

⎫
⎬

⎭
,

and is neither monotone non-decreasing nor additive in the standard case,
because, given any n ∈ N, the relation x ≤ y does not imply F (x) ≤ F (y)
for all x,y ∈ N

n, and similarly, the additivity property F( x+y) = F (x)+F (y)
does not hold for all x,y ∈ N

n.
However, F is monotone non-decreasing with respect to the partial order 


on
⋃

n∈N

N
n, defined as follows: for any n, k ∈ N and all x ∈ N

n, y ∈ N
k,

x 
 y whenever n ≤ k and xi = yi for all i ≤ n.

Indeed, then for all x,y ∈ ⋃

n∈N

N
n, if x 
 y then F (x) ≤ F (y).

Similarly, F is concatenation additive, i.e., if {x1, . . . , xn}∩{y1, . . . , yk} = ∅,
then F (x,y) = F (x) + F (y).

We still give another example illustrating Lemma 2.1.

Example 2.4. Consider X = {0, 1}. Then a function F :
⋃

n∈N

{0, 1}n → {0, 1} is

an extended Boolean function. The cardinality of X is card(X) = 2, H(X) =
{{0}, {1}, {0, 1}}, i.e., card(H(X)) = 3, thus there are exactly 23 = 8 set func-
tions Gi : H(X) → {0, 1}, i = 1, . . . , 8. Consequently, there are 8 set-based
extended Boolean functions Fi, where Fi corresponds to Gi by Lemma 2.1. The
results are summarized in Table 1.
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Table 1. Set-based extended Boolean functions

Gi\E {0} {1} {0,1} Fi(x)

G1 0 0 0 0

G2 0 0 1
∨

j,k

|xj − xk|

G3 0 1 0
∧

j

xj

G4 0 1 1
∨

j

xj

G5 1 0 0 1 − F4(x)

G6 1 0 1 1 − F3(x)

G7 1 1 0 1 − F2(x)

G8 1 1 1 1 − F1(x)

Proposition 2.2. Fix X = {1, 2, . . . , k}. Consider a permutation σ : X → X
and a total order 
σ on X determined by σ, given by

x 
σ y if and only if σ−1(x) ≤ σ−1(y).

Let Gσ : H(X) → X, Gσ(E) = min�σ
{x | x ∈ E}. Then the set-based extended

function Fσ :
⋃

n∈N

Xn → X, Fσ(x) = Gσ({x1, . . . , xn}), is symmetric, associa-

tive, and with neutral element e = σ(n), but in general, Fσ need not be monotone.

Recall that e ∈ X is a neutral element of an extended function F on X, if
for all n ∈ N, and all x ∈ Xn, with e = xi for some i ∈ {1, . . . , n}, we have

F (x1, . . . , xi−1, e, xi+1, . . . , xn) = F (x1, . . . , xi−1, xi+1, . . . , xn).

Obviously, in Proposition 2.2, there are k! set-based extended functions Fσ.

Remark 2.1. In Proposition 2.2, if for each x, y ∈ X,

x < y < e ⇒ σ−1(x) < σ−1(y) and x > y > e ⇒ σ−1(x) < σ−1(y),

then Fσ is an idempotent uninorm (and only in that case). There are 2k−1

idempotent uninorms on X.

Note that the previous result for idempotent uninorms was also proved by
Zemánková in [12].

We now summarize some properties related to general set-based functions.

Proposition 2.3. Let X �= ∅. Set-based extended functions on X have the fol-
lowing properties.

(i) Each set-based extended function on X is symmetric.
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(ii) For any function V : Xk → X and any set-based extended functions
F1, . . . , Fk on X, also the composite F = V (F1, . . . , Fk) :

⋃

n∈N

Xn → X

is a set-based extended function on X.
(iii) For any function V : X → X and a any set-based extended function F on

X, also the composites V (F ), F (V ) :
⋃

n∈N

Xn → X, given by

V (F )(x) = V (F (x)) and F (V )(x) = F (V (x1), . . . , V (xn)),

respectively, are set-based extended functions.

Proposition 2.4. Let Xi �= ∅, i = 1, . . . , k, and let X be the Cartesian product
of Xi, X = X1 × · · · × Xk. For any set-based extended functions Fi on Xi,
i = 1, . . . , k, the function F :

⋃

n∈N

Xn → X, defined by

F ((x
(1)
1 , . . . , x

(1)
k ), . . . , (x

(n)
1 , . . . , x

(n)
k )) = (F1(x

(1)
1 , . . . , x

(n)
1 ), . . . , Fk(x

(1)
k , . . . , x

(n)
k )),

is a set-based extended function on X.

The following theorem shows that some algebraic properties of a function
F :

⋃

n∈N

Xn → X already ensure that F is a set-based extended function on X.

Theorem 2.1. Let X �= ∅. Let F :
⋃

n∈N

Xn → X be symmetric, idempotent and

associative. Then F is a set-based extended function on X.

Proof: Let F satisfy the given assumptions. For any n ∈ N and each x =
(x1, . . . , xn) ∈ Xn with card({x1, . . . , xn}) = k, let {x1, . . . , xn} = {y1, . . . , yk}.
Then there is a partition {I1, . . . , Ik} of {x1, . . . , xn} given by

Ii = {j ∈ {1, . . . , n} | xj = yi}.

Then, writing Ii = {ji1, . . . , jimi
}, where mi = card(Ii), we have

F (x) = F (xj11
, . . . , xj1m1

, xj21
, . . . , xj2m2

, . . . , xjk1
, . . . , xjkmk

)

= F (F (xj11
, . . . , xj1m1

), F (xj21
, . . . , xj2m2

), . . . , F (xjk1
, . . . , xjkmk

))

= F (y1, . . . , yk),

where the first equality follows from the symmetry of F , the second one from its
associativity, and the third one follows from the idempotency of F . Obviously,
for all x, z ∈ ⋃

n∈N

Xn, such that {x1, . . . , xn} = {y1, . . . , yk} = {z1, . . . , zm}, we

have F (x) = F (z), and hence F is a set-based extended function on X. �

Note that neither idempotency nor associativity are necessary properties for

being F a set-based extended function, see Example 2.1 and Proposition 2.1.
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3 Set-Based Extended Functions on Lattices

In this section we consider X to be a carrier of a lattice (X,≤). For any fixed
a ∈ X, we define a function Fa :

⋃

n∈N

Xn → X by

Fa(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∨

i

xi if
∨

i

xi < a,
∧

i

xi if
∧

i

xi > a,

a otherwise.

Obviously, Fa is symmetric and idempotent, and its associativity can also be
verified. By Theorem 2.1, Fa is a set-based extended function on X. Moreover,
Fa is monotone non-decreasing, and thus it is an extended aggregation function
on X, see [7] (because of the idempotency of Fa we need not consider X to
be a bounded lattice). Observe that if X is bounded, with top and bottom
elements 1X and 0X , respectively, then F1X

= ∨ is the standard join on X, and
F0X

= ∧ is the standard meet on X. By Theorem 2.1, any idempotent uninorm
F on a bounded (distributive) lattice X [8], is a set-based extended function on
X. Similarly, idempotent nullnorms on bounded lattices, see [9], are set-based
extended functions.

Proposition 3.1. Let (X,≤) be an ordinal sum of lattices (Xi,≤i)i∈I , and let
for any i ∈ I, Fi :

⋃

n∈N

Xn
i → Xi be a set-based extended function on Xi. Define

F :
⋃

n∈N

Xn → X by

F (x1, . . . , xn) = Fi(y1, . . . , yk),

where

i = min{j ∈ I | {x1, . . . , xn} ∩ Xj �= ∅},

k = card({j ∈ {1, . . . , n} | xj ∈ Xi}),
{y1, . . . , yk} = {xj | xj ∈ Xi}.

Then F is a set-based extended function on X. Moreover, F is monotone non-
decreasing if and only if all Fi, i ∈ I, are of that property, and it is idempotent
if and only if all Fi, i ∈ I, are idempotent.

More information on ordinal sum of lattices can be found, e.g., in [3].

4 Set-Based Extended Aggregation Functions on Chains

In this section we consider X to be a (bounded) chain. A total order on X has an
important impact on characterization of monotone set-based extended functions
on X.
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Proposition 4.1. Let X be a chain. Then F :
⋃

n∈N

Xn → X is a monotone non-

decreasing (non-increasing) set-based extended function if and only if for each
x ∈ ⋃

n∈N

Xn we have

F (x) = D(Min(x),Max(x)), (2)

for some monotone non-decreasing (non-increasing) function D : X2 → X.

Proof: It is not difficult to see that representation of F in the form (2) is suffi-
cient for being F a monotone non-decreasing (non-increasing) set-based extended
function on X. We only prove a necessary condition.

Let F be a monotone non-decreasing set-based extended function on a chain
X. As F is symmetric, with no loss of generality, we can only consider elements
x ∈ ⋃

n∈N

Xn such that x1 ≤ · · · ≤ xn. Then x1 = Min(x), xn = Max(x) and we

can write

F (x1, xn) = F (x1, . . . , x1, xn) ≤ F (x1, x2, . . . , xn−1, xn) ≤ F (x1, xn, . . . , xn)
= F (x1, xn), (3)

which yields F (x) = F (Min(x),Max(x)). Putting D = F |X2 , we obtain the
required representation in the form (2). The monotonicity of D follows from
the monotonicity of F . To get the result for a monotone non-increasing F , it is
enough to reverse the inequalities in (3). �


Now we provide a characterization of set-based extended aggregation func-
tions acting on a bounded chain X, in particular on X = [0, 1]. In what follows,
we only recall the notion of extended aggregation function on [0, 1], for more
details on (extended) aggregation functions and their properties we recommend,
e.g., [4,7,10], see also [1,2].

Definition 4.1. A function A :
⋃

n∈N

[0, 1]n → [0, 1] is an extended aggregation

function on [0, 1] if A is monotone non-decreasing and satisfies the boundary
conditions, i.e.,

(i) for all elements 0 = (0, . . . , 0),1 = (1, . . . , 1) ∈ ⋃

n∈N

[0, 1]n, A(0) = 0 and

A(1) = 1;
(ii) for all x,y ∈ ⋃

n∈N

[0, 1]n we have A(x) ≤ A(y) whenever x ≤ y.

Note that for x,y ∈ ⋃

n∈N

[0, 1]n we have x ≤ y if and only if x and y are

n-tuples of the same arity n satisfying xi ≤ yi for each i = 1, . . . , n.
We will also work with n-ary aggregation functions on [0, 1], i.e., functions

A(n) : [0, 1]n → [0, 1]

which satisfy boundary conditions (i) and monotonicity conditions (ii) from Def-
inition 4.1 for a considered fixed n ∈ N. Clearly, given an extended aggregation
function A on [0, 1], the function A(n) = A|[0,1]n

is an n-ary aggregation function.
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Definition 4.2. A function A :
⋃

n∈N

[0, 1]n → [0, 1] is a set-based extended aggre-

gation function if A is an extended aggregation function on [0, 1] satisfying the
set-based property, i.e., for all n, k ∈ N, and all x = (x1, . . . , xn) ∈ [0, 1]n and
y = (y1, . . . , yk) ∈ [0, 1]k, A(y) = A(x) whenever {x1, . . . , xn} = {y1, . . . , yk}.

It can be shown that set-based extended aggregation functions on [0, 1] can
be completely characterized as follows.

Theorem 4.1. Let A :
⋃

n∈N

[0, 1]n → [0, 1] be an extended aggregation function

on [0, 1]. A is a set-based extended aggregation function on [0, 1] if and only if
for all x ∈ ⋃

n∈N

[0, 1]n we have

A(x) = A(Min(x),Max(x)). (4)

For more results on set-based extended aggregation functions on [0, 1],
see [11].

By the previous theorem, set-based extended aggregation functions on [0, 1]
are generated by binary aggregation functions; there is a one-to-one correspon-
dence between the set of all set-based extended aggregation functions and the
set of all symmetric binary aggregation functions. Observe that in the case of
an associative symmetric binary aggregation function A : [0, 1]2 → [0, 1] there
are two possible ways how to extend it into an extended aggregation func-
tion. On the one hand, based on formula (2), one can define the function
A� :

⋃

n∈N

[0, 1]n → [0, 1] by

A�(x) = A(Min(x),Max(x)),

and on the other hand, using the associativity of A, one can define the function
A� :

⋃

n∈N

[0, 1]n → [0, 1] by

A�(x1) = x1, A�(x1, x2) = A(x1, x2),

and for all n ≥ 3,

A�(x1, . . . , xn) = A(A�(x1, . . . , xn−1), xn).

Due to Proposition 2.1, A� = A� if and only if a binary aggregation function
A is idempotent, i.e., A(x, x) = x for all x ∈ [0, 1]. Note that this is, e.g., the
case of idempotent uninorms [6,12], and also the case of idempotent nullnorms
[5] (compare Fa introduced in Sect. 3). As a negative example, consider the stan-

dard product A(x1, x2) = x1x2. Then A�(x1, . . . , xn) =
n∏

i=1

xi is the standard

product, which, if n �= 2, differs from A�(x) = (Min(x)) · Max(x)).
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5 Concluding Remarks

In this paper, we have introduced and discussed set-based extended functions,
which can be seen as a generalization of extended functions F :

⋃

n∈N

Xn → X,

which are symmetric, idempotent and associative. In the case when X is a lat-
tice, the introduced set-based extended functions can be viewed as a particular
generalization of joins, meets, idempotent uninorms and idempotent nullnorms.
In the case of bounded chains, we have shown the existence of a one-to-one cor-
respondence between set-based aggregation functions A and symmetric binary
aggregation functions D given by

A(x) = D(Min(x),Max(x)).

Based on the presented approach, in our future research we intend to solve
how to relate aggregation of input values x1, . . . , xn to aggregation of inputs
x1, . . . , xn, xn+1, . . . , xn+k, where xn+1, . . . , xn+k are some additionally obtained
observations.
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12. Mesiarová-Zemánková, A.: A note on decomposition of idempotent uninorms into
an ordinal sum of singleton semigroups. Fuzzy Sets Syst. 299, 140–145 (2016)

13. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

https://doi.org/10.1007/978-3-662-43505-2_4
https://doi.org/10.1007/978-3-662-43505-2_4

	Set-Based Extended Functions
	1 Introduction
	2 Set-Based Extended Functions on a General Universe
	3 Set-Based Extended Functions on Lattices
	4 Set-Based Extended Aggregation Functions on Chains
	5 Concluding Remarks
	References




