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Abstract. Microaggregation is a well-known family of statistical disclo-
sure control methods, that can also be used to achieve the k-anonymity
privacy model and some of its extensions. Microaggregation can be
viewed as a clustering problem where clusters must include at least k
elements. In this paper, we present a new microaggregation heuristic
based on Lloyd’s clustering algorithm that causes much less information
loss than the other microaggregation heuristics in the literature. Our
empirical work consistently observes this superior performance for all
minimum cluster sizes k and data sets tried.
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1 Introduction

Collecting data and sharing them for secondary analysis is increasingly
widespread and brings undoubted social and economic benefits. Yet, when data
are personally identifiable information (PII), sharing them may be a threat to
people’s privacy. As a consequence, administrations have strengthened privacy
regulation to protect the citizens. In a nutshell, these new privacy regulations,
epitomized by the EU General Data Protection Regulation, require consent from
data subjects for any PII collection, sharing or analysis. In the many situations
in which obtaining consent is not feasible, anonymization is the only way to
go. After anonymization, data no longer qualify as PII and, thus, are no longer
subject to data protection regulations.

Anonymizing data involves not only suppressing any identifiers, but alter-
ing other attributes as well. The original data are first stripped from identifiers
and then a statistical disclosure control method is used to mask the remain-
ing attributes so that they no longer reveal information about original data
subjects. Masking is not straightforward because, to keep the masked data sta-
tistically valid, the information loss must be minimized. Among the available
statistical disclosure control techniques, in this paper we focus on microaggrega-
tion. Microaggregation replaces records in the original data set by (aggregated)
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records that refer to groups of data subjects. The greater the groups, the stronger
the protection. To guarantee at least a certain level of protection, microaggre-
gation algorithms take a parameter k that determines the minimum required
group size.

In recent years, the research on data anonymization performed by the com-
puter science community has focused on privacy models. A privacy model
describes the condition that data must satisfy for disclosure risk to be at an
acceptable level, but it does not describe how this condition should be attained.
k-Anonymity [15] is among the most popular privacy models. It seeks to limit the
probability of successful record re-identification by altering the value of quasi-
identifier attributes. Quasi-identifiers are attributes that are not re-identifying
when separately considered (e.g. in general Age, Profession and Zipcode do
not identify anyone separately), but such that their combination may iden-
tify the subject to whom a record corresponds (there may be a single 95-year
old doctor in a certain zipcode, and it may be easy to find her name in an
electoral roll). Interestingly, running microaggregation on the quasi-identifiers
yields k-anonymity [8]. Microaggregation is also useful to enforce l-diversity and
t-closeness, two extensions of k-anonymity [7,19], as well as a building block of
ε-differentially private algorithms [17,18].

To minimize the information loss incurred by microaggregation, we need
to carefully choose the groups of records to be aggregated. A common app-
roach in numerical microaggregation is to attempt to minimize the sum of
squared distances between original records and their corresponding aggregated
records, which will be called SSE. Unfortunately, finding a microaggregation
that minimizes SSE is an NP-hard problem. For this reason, existent approaches
are heuristic. Most current microaggregation algorithms generate clusters with
a fixed size (the minimum required cluster size). This cardinality constraint
reduces the complexity of the microaggregation algorithm but it may result
in large information loss. To reduce information loss, heuristic variable-size
microaggregation algorithms have been proposed, but their computational com-
plexity is greater than that of their fixed-size counterparts. Also, in some cases
they need additional parameters whose optimal values are hard to determine.

Contribution and Plan of this Work
Microaggregation is closely related to clustering: in fact, it is clustering with a
minimum cardinality constraint on clusters. In this work, we take advantage of
the information loss minimization capabilities of Lloyd’s clustering algorithm [12]
to achieve near-optimal variable-size microaggregation. First, we embed a mini-
mum cluster size constraint in the algorithm. Second, given that Lloyd’s algorithm
requires the number of clusters to be fixed beforehand, we modify it to allow a
variable number of clusters. We call the resulting heuristic ONA (Near-Optimal
microaggregation Algorithm). We then present empirical results on the informa-
tion loss and the computing time of variable-size microaggregation with ONA.
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In Sect. 2, we give some background on microaggregation and Lloyd’s algo-
rithm. In Sect. 3, we describe some limitations of current microaggregation algo-
rithms. In Sect. 4 we present the ONA algorithm to deal with these limitations.
In Sect. 5, we experimentally compare ONA with existing methods. We finalize
with conclusions and future work directions in Sect. 6.

2 Background

2.1 Microaggregation

Microaggregation is a perturbative method for statistical disclosure control of
microdata releases. It is based on the following two steps:

– Partition: The records in the original data set are partitioned into several
clusters, each of them containing at least k records (the minimum cluster
size). To minimize information loss in the following step, records in each
cluster should be as close to one another as possible.

– Aggregation: An aggregation operator is used to compute the centroid of all
the records in the cluster. If all attributes are numerical, the centroid record
is the mean record. Finally, every record in the cluster is replaced with the
cluster centroid record.

When replacing records by cluster centroids in the aggregation step of
microaggregation, some information is lost. The ensuing loss of variability is
a measure of information loss. A microaggregation algorithm is optimal if it
minimizes information loss.

Let SST be the total sum of squares, that is, the sum of squared distances
between each record r in an original data set D and the centroid record c(D) of
the entire data set:

SST =
∑

r∈D

‖r − c(D)‖2 .

Clearly, SST represents the total variability of D. Then compute the sum of
squared records errors SSE, that is, the sum of squared distances between each
record r and the centroid c(r) of the cluster r belongs to:

SSE =
∑

r∈D

‖r − c(r)‖2 .

SSE represents the loss of variability incurred when replacing records with
centroids. We can normalize SSE by dividing it by SST , so that SSE/SST
accounts for the proportion of the total variability lost due to the microaggrega-
tion. With numerical attributes, the mean is a sensible choice as the aggregation
operator, because for any given cluster partition it minimizes SSE in the aggre-
gation step; the challenge thus is to come up with a partition that minimizes the
overall SSE.

Finding an optimal algorithm is feasible for univariate microaggregation of a
numerical attribute. There are two well-known necessary optimality conditions in
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this case [4]: clusters must contain consecutive records and the size of the clusters
must be between k and 2k − 1. Given these two conditions, a shortest-path
algorithm can find the optimal univariate microaggregation with cost O(n log n)
for n records [9].

Since realistic data sets contain multiple attributes, univariate microaggre-
gation is not enough. Multivariate microaggregation is more complex: the first
optimality condition above does not apply for want of a total order in the data
domain. As a result, the search space for the optimal multivariate microaggrega-
tion remains too large and finding the optimal solution is NP-hard [14]. There-
fore, heuristics are employed to obtain an approximation with reasonable cost.
An example heuristic for the partition step of microaggregation is MDAV [8],
which generates fixed-size clusters. Alternatively, VMDAV [16] is an adaptation
of the MDAV heuristic that allows variable-size clusters.

2.2 MDAV

The MDAV algorithm aims at satisfying the optimality conditions of numerical
univariate microaggregation:

1. Optimal clusters must contain consecutive elements. Since a total order is
lacking in a multivariate domain, the meaning of consecutive elements is not
well-defined. However, the intuition remains valid: it makes no sense to include
a record r′ in a cluster if a record r closer to the records of the cluster is not
in the cluster.

2. The size of optimal clusters ranges between k and 2k − 1. This condition
remains valid in the multivariate case.

Thus, rather than minimizing the overall information loss, the MDAV heuristic
proceeds by selecting specific records at the boundary of the set of records not
yet assigned to any cluster and generating clusters of k elements around them:
given a record r, a cluster is formed with r and the k − 1 records closest to r
among those not clustered yet. See Algorithm 1.

2.3 VMDAV

VMDAV is an adaptation of MDAV that can yield variable-size clusters. The
underlying idea is that variable-size clusters can be more adapted to the distri-
bution of the records and, thus, reduce the information loss.

Essentially, VMDAV takes two steps: (i) generate a cluster of size k that
contains the record that is farthest from the average record and its closest k − 1
records, and (ii) expand the cluster with neighboring records. These steps are
repeated until all the records have been assigned to a cluster.

The first step is similar to MDAV. So we only describe the second step.
Once we have a cluster with k records, we look for ru, the unclustered record
that minimizes the distance to the records in the cluster. Let din be such min-
imum distance. The we compute dout, the minimum distance between ru and
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Algorithm 1. MDAV microaggregation algorithm with minimal cluster size k

1 Let D be a data set
2 Let k be the minimum cluster size
3 Clusters = ∅
4 While |D| ≥ 3k
5 xa=average record of D
6 xr=record of D that is most distant from xa

7 C=cluster containing xr and the k − 1 records of D closest to xr

8 Clusters = Clusters ∪ C
9 D = D \ C

10 xs=record of D that is most distant from xr

11 C=cluster containing xs and the k − 1 records of D closest to xs

12 Clusters = Clusters ∪ C
13 D = D \ C
14 End while
15 If 2k ≤ |D| ≤ 3k − 1 Then
16 xa=average record of D
17 xr=record of D that is most distant from xa

18 C=cluster containing xr and the k − 1 records of D closest to xr

19 Clusters = Clusters ∪ C
20 D = D \ C
21 End if
22 Clusters = Clusters ∪ D
23 Return Clusters

the remaining unclustered records. The cluster expansion procedure is based on
these two distances. If din is smaller than dout, then ru is closer to the records in
the cluster than to the other unclustered records. In that case, adding ru to the
current cluster is a sensible choice. To allow tuning cluster expansion, VMDAV
introduces a threshold parameter γ, so that the current cluster is expanded with
ru if din < γdout.

2.4 Clustering and Lloyd’s Algorithm

There are several approaches to generate clusters. In this work, we are interested
in centroid-based clustering (a.k.a. c-means clustering). The purpose of c-means
is to split the records in a fixed set of c clusters in a way that SSE is minimized.

Lloyd’s algorithm is designed for c-means clustering. Starting from an arbi-
trary set of c centroids, the algorithm proceeds by iteratively assigning each
record to the closest centroid and recomputing the centroids, until a conver-
gence criterion is met. See Algorithm 2.

The runtime of Algorithm 2 is O(ncdi), where n is the number of records,
c is the number of clusters, d is the number of attributes per record and i the
number of iterations needed until convergence. Lloyd’s algorithm is thus often
considered of linear complexity in practice, although in the worst case it can be
superpolynomial.
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Algorithm 2. Lloyd’s online clustering of a data set D into c clusters
1 Let D be a data set
2 Let Centroids = {c1, . . . , cc} be the initial set of centroids
3 Let Ci = ∅ be the cluster associated with ci for i = 1, . . . , c
4 Repeat
5 For each r ∈ D
6 If r was assigned to a cluster Cj Then extract r from Cj

7 Compute the distance between r and c1, . . . , cc
8 Assign r to the cluster around the closest centroid
9 End for

10 Until convergence condition
11 Return {C1, . . . , Cc}

3 Limitations of MDAV and VMDAV

MDAV is quite effective at generating clusters that are as compact as possible: it
looks for the record that is farthest from the average record and then generates
a cluster that contains it and the k − 1 records closest to it. In this way MDAV
creates compact clusters and avoids the presence of intersecting clusters, which
are undesirable because their records could be rearranged in non-intersecting
clusters, thereby reducing information loss. The greatest limitation of MDAV is
that all clusters (except perhaps the last one) have fixed size k. This is much more
restrictive than the optimality condition according to which cluster cardinality
must be between k and 2k − 1, and it may have a significant negative impact on
information loss. This limitation not only affects MDAV but all microaggregation
methods that use fixed-size clusters.

VMDAV improves over MDAV by being more flexible about cluster sizes.
However, the cluster expansion criterion is difficult to adjust. VMDAV uses an
extra threshold parameter γ to decide between expanding the current cluster
with an additional element (up to a maximum 2k − 1 elements) or creating a
new cluster. The difficulty comes from the fact that it is not known how to fix
γ appropriately.

In [16], we find some vague recommendations, which suggest the use of large
thresholds (e.g. γ = 1.1) when records are concentrated around specific areas of
the data domain, whereas smaller thresholds (e.g. γ = 0.2) are preferable when
records are scattered. The rationale for the rule that recommends the use of
small γ for scattered records is clear: in this case, small clusters are preferable
to avoid large SSE. However, we should keep in mind that by using small γ
the cluster expansion mechanism is hampered, and VMDAV becomes closer to
MDAV. The rationale for using large γ when records are concentrated around
specific points is unclear to us. After all, regardless of the distribution of records,
we should prefer smaller clusters to larger clusters. This is illustrated in Fig. 1,
where two microaggregation partitions with minimum size k = 3 are displayed
that could be obtained using VMDAV. On the left, all clusters have size 3, which
is a result compatible with VMDAV for small γ (and also with MDAV). On the
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right, the size of the clusters is greater than 3, which is compatible with VMDAV
for large γ. By looking at the distribution of the records, we observe that they are
concentrated around two points; thus, according to the rules suggested in [16] we
would select a large threshold, which would make the right-hand side partition
likelier. However, SSE and hence the information loss is larger for this partition
than for the left-hand side partition.

The issues of VMDAV that we have hinted are confirmed in the experimen-
tal section, where VMDAV and MDAV achieve comparable levels of information
loss. That is, the cluster expansion procedure of VMDAV is not capable of offer-
ing noticeable reductions in the information loss.

Fig. 1. Two microaggregation partitions with minimum size k = 3. Left, partition
where all clusters have size 3. Right, partition where clusters have size greater than 3.

One justification for suggesting large γ when records are concentrated in
different regions is to avoid obtaining clusters that expand across more than one
region. On the left-hand side of Fig. 2, we show an example of this undesirable
situation. This partition, where all clusters except one have size 3, could be the
result of taking k = 3 in MDAV or in VMDAV with small γ. Taking a large
threshold in VMDAV is expected to facilitate variable-size clusters, which might
solve the problem. However, as shown on the right-hand side of Fig. 2, it is not
guaranteed that variable-size clusters achieve the required result: there is still a
cluster spread among two regions.

Even if the previous VMDAV threshold rules were effective for data sets that
are clearly concentrated or scattered, we would still be at a loss for data sets
that do not qualify as any of those two types. For example, consider a data set
that has several small regions with concentrated records and a big region with
scattered records.

Furthermore, in general it cannot be assumed that the data controller choos-
ing anonymization parameters knows whether her data set is scattered, concen-
trated, etc. In fact, for large and high-dimensional data sets, it may be quite
difficult to grasp how records are distributed in the domain of attributes.
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Fig. 2. Clusters than expand across regions. Left, partition output by MDAV with
k = 3 or by VMDAV with k = 3 and small γ. On the right, partition output by
VMDAV with large γ, where cluster size can vary between k = 3 and 2k − 1 = 5.

In summary, fixed-size microaggregation incurs a large information loss and
cluster expansion strategies such as those used in VMDAV are difficult to adjust.

4 ONA: Near-Optimal MicroAggregation

In this section we propose ONA (Near-Optimal microAggregation), a novel
variable-size microaggregation method that is based on standard clustering algo-
rithms. On the one hand, clustering algorithms adjust the size of each cluster
automatically. We plan to take advantage of this property in ONA, while making
sure that the size of the clusters stays within the known optimal bounds, that is,
between k and 2k − 1. On the other side, clustering algorithms usually take the
number of clusters as a parameter. In microaggregation, we do not care about the
number of clusters; we simply want a valid clustering that minimizes the infor-
mation loss. Thus, the need to tell the microaggregation algorithm the number
of clusters we want would be an artificial restriction that we prefer to avoid,
both for the sake of algorithm clarity and to avoid unnecessary information loss.

ONA follows Lloyd’s online algorithm (see Algorithm 2) but it makes several
adjustments to guarantee that an appropriate number of clusters with an appro-
priate size is generated. Algorithm 3 formalizes ONA and its steps are explained
next:

– We start (at line 3) by generating a random set of clusters whose cardinality
is k or more. The minimum cardinality constraint of microaggregation is
enforced by starting with a set of clusters that conforms to it and by making
sure that any modification of the clusters does not violate it.

– The proposed algorithm is iterative. Each iteration (lines 4–29) is designed
to reduce the SSE of the clustering, until convergence is reached. The con-
vergence condition is not specified in the algorithm. To be strict, we should
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require a completely stable set of clusters. However, as most of the reduc-
tion in SSE is attained in the first few iterations, it is usually safe to use
less strict conditions to speed up the execution. We will describe alternative
convergence conditions when reporting experiments in Sect. 5.

– Following Lloyd’s online algorithm, loop through the records (lines 5–28) in
the data set and reassign them (if needed) to the closest cluster so that SSE
decreases.

– It is only possible to reassign a record if its current cluster contains more
than k records (lines 7–11). Otherwise, there would remain less than k records
in the cluster and the clustering would not satisfy the minimum cardinality
constraint. If the cluster of the current record has more than k records, remove
the record from the cluster (line 9) and assign it to the closest cluster (line
11).

– When the cluster of the current record has k records, the only way to reassign
the current record to another cluster is to dissolve the cluster and reassign all
its records to other clusters (lines 12–20). This is only done if it reduces SSE.
In line 15 all reassignments are computed: Cj(s) is the cluster to which record
s is reassigned. The contribution to SSE of the original clusters (SSE1, line
16) and the SSE of the reassigned clusters (SSE2, line 17) are computed. If
SSE2 < SSE1, the reassignments are applied; otherwise, the current cluster-
ing is kept unmodified.

– Finally, the algorithm checks that all clusters have at most 2k − 1 records (as
one of the optimality conditions requires). This condition must be checked
because the reassignments can make clusters grow beyond 2k − 1 records. If
a cluster with 2k or more records is found, we apply the same Algorithm 3 to
the cluster, which will split it into two clusters of size between k and 2k − 1
thereby reducing SSE.

In spite of the distinction between the current cluster having more than k
records or k records, the complexity of Algorithm 3 remains essentially the same
as the one of Lloyd’s algorithm (see Sect. 2.4).

5 Experimental Evaluation

5.1 Evaluated Methods

The motivation of our algorithm has been based on the limitations of MDAV
and VMDAV. However, for completeness, the experimental section will not be
limited to comparing with those two methods. We will compare the informa-
tion loss using SEE and 100 × SSE/SST (as described in Sect. 2.1) for the
following methods: MDAV [4], VMDAV [16], MD-MHM [3], MDAV-MHM [3],
CBFS-MHM [3], NPN-MHM [3], μ-Approx [6], M-d [10], TFRP-1 [2], TFRP-2
[2], DBA-1 [11], DBA-2 [11] and IMHM [13].
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Algorithm 3. ONA algorithm for a data set D and minimal cluster size k.
1 Let D be a data set
2 Let k be the minimal cluster size
3 Randomly generate a set of clusters C = {C1, . . . , C�|D|/k�} such that each cluster

contains at least k records
4 Repeat
5 For each r ∈ D
6 Let Ci(r) ∈ C be the cluster that contains r
7 If |Ci(r)| > k Then
8 // Should r be reassigned to another cluster?
9 Extract r from Ci(r)

10 Compute the distance between r and the centroids of the clusters in C
11 Add r to the cluster whose centroid is closest to r
12 Else If |Ci(r)| = k Then
13 // Should cluster Ci(r) be dissolved?
14 Let Cj(s) be the cluster with the closest centroid to s ∈ Ci(r) among
those in C \ Ci(r)

15 Let C′
k = Ck ∪ {s ∈ Ci(r) : j(s) = k}, for each k �= i(r)

16 Let SSE1 = SSE(Ci(r)) +
∑

k∈{j(s):s∈Ci(r)} SSE(Ck)

17 Let SSE2 =
∑

k∈{j(s):s∈Ci(r)} SSE(C′
k)

18 If SSE1 > SSE2 Then
19 C = {C′

k : k �= i(r)}
20 End if
21 End if
22 // Split clusters that have become too large
23 For each C ∈ C
24 If |C| ≥ 2k Then
25 Run Algorithm 3 on C with minimal cluster size k
26 End if
27 End for
28 End for
29 Until convergence condition

5.2 Data Sets

The evaluation was performed on data sets [1] that have been used in the liter-
ature to evaluate microaggregation algorithms:

– Census. Data set with 1080 records and 13 numerical attributes.
– Tarragona. Data set with 834 records and 13 numerical attributes.
– EIA. Data set with 4092 records and 11 numerical attributes.

5.3 Evaluation Results

The evaluation results are shown in Table 1. We observe that, while there are
only small differences in the information loss reported by other methods, our
proposal achieves a significantly smaller information loss. This behavior is con-
sistent across cluster sizes and data sets.
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Table 1. Information loss 100×SSE/SST for several values of k and several data sets

Data set Method k = 3 k = 5 k = 10

Census ONA 1.59 2.33 3.88

MDAV 5.69 9.09 14.16

VMDAV 5.69 8.98 14.07

MD-MHM 5.69 8.99 14.40

MDAV-MHM 5.65 9.08 14.22

CBFS-MHM 5.67 8.89 13.89

NPN-MHM 6.34 11.34 18.73

μ-Approx 6.25 10.78 17.01

M-d 6.11 10.30 17.17

TFRP-1 5.93 9.36 14.44

TFRP-2 5.80 8.98 13.96

DBA-1 6.15 10.84 15.79

DBA-2 5.58 9.04 13.52

IMHM 5.37 8.42 12.23

Tarragona ONA 5.75 9.54 14.40

MDAV 16.93 22.46 33.19

VMDAV 16.96 22.88 33.26

MD-MHM 16.98 22.53 33.18

MDAV-MHM 16.93 22.46 33.19

CBFS-MHM 16.97 22.53 33.18

NPN-MHM 17.39 27.02 40.18

μ-Approx 17.10 26.04 38.80

M-d 16.63 24.50 38.58

TFRP-1 17.23 22.11 33.19

TFRP-2 16.88 21.85 33.09

DBA-1 20.70 26.00 35.39

DBA-2 16.15 25.45 34.81

IMHM 16.93 22.19 30.78

EIA ONA 0.23 0.41 1.02

MDAV 0.48 1.67 3.84

VMDAV 0.53 1.30 2.88

MD-MHM 0.44 1.26 3.64

MDAV-MHM 0.41 1.26 3.77

NPN-MHM 0.55 0.96 2.32

μ-Approx 0.43 0.83 2.26

TFRP-1 0.53 1.65 3.24

TFRP-2 0.42 0.91 2.59

DBA-1 1.09 1.89 4.26

DBA-2 0.42 0.82 2.08

IMHM 0.37 0.76 2.18



344 J. Soria-Comas et al.

The algorithm has been implemented in Java and the experiments have been
run on a AMD Ryzen 1700X machine under Ubuntu 17.04 x64. Table 2 shows
the runtimes of ONA for the various test data sets and cluster sizes. To compute
these runtimes, we have used the strictest convergence criterion: we keep iterat-
ing until no more record reassignments take place. We should remark that the
steepest SSE decrease takes place during the first few iterations. Thus, a less
strict convergence condition could offer significantly shorter runtimes without a
substantial difference in the SSE. Indeed, we have observed that the SSE reaches
a stationary value long before the number of reassignments reaches 0.

Table 2. ONA runtimes in seconds for the test data sets and the tested cluster sizes.

Time (s) k = 3 k = 5 k = 10

Census 0.295 0.376 0.196

Tarragona 0.254 0.485 0.212

EIA 1.751 1.430 1.607

6 Conclusions and Future Research

We have proposed ONA, a novel microaggregation algorithm that significantly
reduces the information loss with respect to existent algorithms. ONA operates
iteratively and is based on Lloyd’s clustering algorithm. Each iteration of ONA
decreases the information loss until it converges to a (possibly local) minimum.

In the design of ONA, we have tried to match the two necessary conditions
for optimal microaggregation as closely as possible. First, we make sure that each
cluster contains only adjacent records. This is achieved by reassigning records
to the cluster with the closest centroid. Second, we make sure that the size of
clusters ranges between k and 2k − 1. In record reassignments, we take care
that a source cluster is never left with less than k records (otherwise we disband
it) and that a destination cluster never increases to more than 2k − 1 records
(otherwise we split it into two clusters).

In the experimental section, we have presented an exhaustive comparison
of the information loss with existent microaggregation algorithms. The results
show that ONA offers a very significant reduction of the information loss. It is
also important to remark that such a reduction is effected without resorting to
complex procedures. Indeed, the internal operation of ONA is simpler than that
of most of the microaggregation algorithms included in the comparison.

As future work, we plan to conduct a detailed analysis of the convergence
conditions for ONA and also to extend it to categorical data. Currently, the
range of microaggregation algorithms available for dealing with this kind of data
is rather limited. The work in [5] provides a good starting point.
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