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Preface

This volume contains papers presented at the 16th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2019), held in Milan, Italy,
during September 4–6, 2019. This conference followed MDAI 2004 (Barcelona),
MDAI 2005 (Tsukuba), MDAI 2006 (Tarragona), MDAI 2007 (Kitakyushu), MDAI
2008 (Sabadell), MDAI 2009 (Awaji Island), MDAI 2010 (Perpinyà), MDAI 2011
(Changsha), MDAI 2012 (Girona), MDAI 2013 (Barcelona), MDAI 2014 (Tokyo),
MDAI 2015 (Skövde), MDAI 2016 (Sant Julià de Lòria), MDAI 2017 (Kitakyushu),
and MDAI 2018 (Mallorca).

The aim of this conference was to provide a forum for researchers to discuss
different facets of decision processes in a broad sense. This includes model building
and all kinds of mathematical tools for data aggregation, information fusion, and
decision-making; tools to help make decisions related to data science problems (in-
cluding, e.g., statistical and machine learning algorithms as well as data visualization
tools); and algorithms for data privacy and transparency-aware methods so that data
processing procedures and the decisions made from them are fair, transparent, and
avoid unnecessary disclosure of sensitive information.

The MDAI conference included tracks on the topics of (a) data science, (b) data
privacy, (c) aggregation functions, (d) human decision-making, (e) graphs and (social)
networks, and (f) recommendation and search.

The organizers received 50 papers from 15 different countries, 30 of which are
published in this volume. Each submission received at least two reviews from the
Program Committee and a few external reviewers. We would like to express our
gratitude to them for their work. This volume also includes some of the plenary talks.

The conference was supported by the Information Retrieval Laboratory (IR Lab),
the Department of Informatics, Systems, and Communication (DISCO), the University
of Milano-Bicocca, the European Society for Fuzzy Logic and Technology
(EUSFLAT), the Catalan Association for Artificial Intelligence (ACIA), the Japan
Society for Fuzzy Theory and Intelligent Informatics (SOFT), the UNESCO Chair in
Data Privacy, and Axioms – MDPI.

June 2019 Vicenç Torra
Yasuo Narukawa

Gabriella Pasi
Marco Viviani
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Incomplete Knowledge in Computational
Social Choice

Jérôme Lang

Laboratoire d’Analyse et Modélisation des Systèmes pour l’Aide à la Décision
(LAMSADE)

Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny,

75775 Paris Cedex 16

Abstract. Social choice theory studies the aggregation of individual preferences
towards a collective choice. Computational social choice emerged in the late
1980s, and mostly uses computational paradigms and techniques to provide a
better analysis of social choice mechanisms (especially in the fields of voting
and of fair division of resources), and to construct new ones. Among the sub-
fields of artificial intelligence that are concerned by this interaction, knowledge
representation plays an important role (other subfields being machine learning,
reasoning with uncertainty, search, and constraint programming). The reasons
for which it plays an important role include: representing preferences and rea-
soning about them; computing collective decisions with incomplete knowledge
of agents’ preferences; the role of knowledge in strategic behavior; and using
logic for automated theorem proving in social choice.



As Simple as Possible But Not Simpler
in Multiple Criteria Decision Analysis:
The Robust Stochastic Level Dependent

Choquet Integral Approach1

Salvatore Greco

Department of Economics and Business, University of Catania, Corso Italia 55,
95024 Catania, Italy

salgreco@unict.it

Abstract. The level dependent Choquet integral has been proposed to take into
account multiple criteria decision making problems in which the importance of
criteria, the sign and the magnitude of their interactions may depend on the level
of the alternatives’ evaluations. This integral is based on a level dependent
capacity, which is a family of single capacities associated to each level of
evaluation for the considered criteria. Since, in general, there is not only one but
many level dependent capacities compatible with the preference expressed by
the Decision Maker, we propose to take into account all of them by using the
Robust Ordinal Regression (ROR) and the Stochastic Multicriteria Acceptability
Analysis (SMAA). On one hand, ROR defines a necessary preference relation (if
an alternative a is at least as good as an alternative b for all compatible level
dependent capacities), and a possible preference relation (if a is at least as good
as b for at least one compatible level dependent capacity). On the other hand,
considering a random sampling of compatible level dependent capacities,
SMAA gives the probability that each alternative reaches a certain position in
the ranking of the alternatives as well as the probability that an alternative is
preferred to another. A real decision problem related to ranking of universities is
provided to illustrate the proposed methodology.

References

1. Angilella, S., Greco, S., Matarazzo, B.: Non-additive robust ordinal regression: a multiple
criteria decision model based on the Choquet integral. Eur. J. Oper. Res. 201(1), 277–288
(2010)

2. Angilella, S., Corrente, S., Greco, S.: Stochastic multiobjective acceptability analysis for the
Choquet integral preference model and the scale construction problem. Eur. J. Oper. Res. 240
(1), 172–182 (2015)

3. Arcidiacono, S.G., Corrente, S., Greco, S.: As simple as possible but not simpler in multiple
criteria decision aiding: the ROR-SMAA level dependent choquet integral approach. arXiv
preprint, arXiv:1905.07941 (2019)

1 Joint work with Sally Giuseppe Arcidiacono and Salvatore Corrente
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4. Giarlotta, A., Greco, S.: Necessary and possible preference structures. J. Math. Econ. 49(2),
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General Chebyshev Type Inequality
for Seminormed Fuzzy Integral

Micha�l Boczek1, Anton Hovana2, and Ondrej Hutńık2(B)

1 Institute of Mathematics, Lodz University of Technology,
ul. Wólczańska 215, 90-924 Lodz, Poland

michal.boczek.1@p.lodz.pl
2 Institute of Mathematics, Faculty of Science,

Pavol Jozef Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia
anton.hovana@student.upjs.sk, ondrej.hutnik@upjs.sk

Abstract. We give a necessary and sufficient condition for Chebyshev
type inequality in the class of seminormed fuzzy integrals with respect to
m-positively dependent functions. Reviewing the literature many known
results are generalized. We also present the Chebyshev type inequality
for Shilkret integral for independent random variables.

Keywords: Aggregation functions · Semicopula ·
Seminormed integral · Capacity · Chebyshev inequality ·
Positively dependent functions

1 Introduction

In the last decade, a huge amount of papers appeared in the connection of
inequalities and non-additive integrals. In this paper, we restrict our attention
to the Chebyshev type inequality for the class of integrals called the seminormed
fuzzy integrals. This class includes the prominent Sugeno and Shilkret integral.
For the definitions, we refer to Sect. 2.

The classical Chebyshev integral inequality reads as follows, see [9]: If (X,A)
is a measurable space, then A-measurable functions f, g : X → R satisfy the
inequality ∫

fg dP �
∫

f dP
∫

g dP (1)

for any probability measure P if and only if f and g are comonotone.
It is well-known that the classical integral inequalities (including the Cheby-

shev one) need not hold in general when considering non-additive measure and

This work was supported by the Slovak Research and Development Agency under the
contract No. APVV-16-0337 and also cofinanced by bilateral call Slovak-Poland grant
scheme No. SK-PL-18-0032 with the Polish National Agency for Academic Exchange
PPN/BIL/2018/1/00049/U/00001.

c© Springer Nature Switzerland AG 2019
V. Torra et al. (Eds.): MDAI 2019, LNAI 11676, pp. 3–16, 2019.
https://doi.org/10.1007/978-3-030-26773-5_1
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4 M. Boczek et al.

integral setting. In fact, when replacing the probability measure P by a non-
additive measure m, and the additive (Lebesgue) integral in (1) by the semi-
normed fuzzy integral IS, in most cases we have to require additional assump-
tions on semicopula S or non-additive measure m in order to the Chebyshev
inequality hold even for comonotone functions. For the reader’s convenience, we
briefly describe the present state of art of the Chebyshev type inequalities for IS.

A Short Historical Overview. The first paper dealing with the Chebyshev
type inequality for seminormed fuzzy integral was published in 2007 by Flores-
Franulič and Román-Flores [12] in the particular case for the Sugeno integral.
Their results were generalized in [18] by proving the Chebyshev type inequality
for an arbitrary continuous monotone measure-based Sugeno integral and for any
two monotone functions (in the same sense). Using the concept of comonotonic-
ity, in 2009, Mesiar and Ouyang [16] generalized the results for a non-decreasing
continuous binary operation �. In that paper, the condition � � ∧, with ∧ being
the pointwise minimum, appeared for the first time and then this condition
was frequently applied in further papers, see [3–5,20,23]. Later on, Ouyang and
Mesiar [19] proved the result on Chebyshev type inequality for seminormed fuzzy
integral in general. They showed that the inequality is true for all comonotone
functions whenever

S(a � b, c) � (S(a, c) � b) ∨ (a � S(b, c))

holds for all a, b, c ∈ [0, 1]. This is equivalent to � � ∧ (see Corollary 1) in the case
of Sugeno integral, i.e., for the minimum semicopula S = M. The result from [19]
was further extended by other researchers, see e.g. [1,2,7,8]. In 2014, Kaluszka
et al. [14] provided not only a sufficient condition for validity of the Chebyshev
type inequalities, but also a necessary one for a wider class of functions than
comonotone ones. This is the first time in the literature of various generalizations
of the seminormed fuzzy integral inequalities when the necessary condition is
given. It is also worth noting that already in 2011 certain equivalent conditions
for validity of the Chebyshev inequality were given by Girotto and Holzer [13]
providing a characterization of comonotonicity by the Chebyshev inequality for
the Sugeno integral and all monotone measures, analogically with the above
mentioned work of Armstrong [9].

Aim and Structure of the Paper. In Sect. 2, we review some basic concepts
and notations including the class of m-positively dependent functions with exam-
ples. The introduction of m-positively dependent functions in the consideration
of the Chebyshev type inequality allows us to obtain the equivalent conditions
in Sect. 3. Furthermore, in Sect. 4, we discuss the existing sufficient conditions
in the literature and provide relationships among them. These results together
with Theorem 1 enable us to cover many known results in the literature related
to the Chebyshev type inequalities for IS.
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2 Preliminaries

A semicopula S: [0, 1]2 → [0, 1] is a non-decreasing function, i.e., S(a, c) � S(b, d)
whenever a � b and c � d, such that S(x, 1) = S(1, x) = x for all x. From it
follows that S(x, 0) = 0 = S(0, x) for any x and S(x, y) � x ∧ y for all x, y,
where a ∧ b = min(a, b). Typical examples of semicopulas are the functions
M(a, b) = a∧b, Π(a, b) = ab and W(a, b) = (a+b−1)∨0, where a∨b = max(a, b).
The set of all semicopulas S will be denoted by S.

Furthermore, we deal with a measurable space (X,A), where A is a σ-algebra
of subsets of a non-empty set X. For the given measurable space (X,A) we denote
the set of all A-measurable functions f : X → [0, k], k ∈ (0, 1], by F k

(X,A). We
also consider the set M(X,A) of all monotone measures (or, capacities), i.e., set
functions m : A → [0, 1] satisfying m(A) � m(B) whenever A,B ∈ A such that
A ⊂ B, and the boundary conditions m(∅) = 0 and m(X) = 1. We denote
the range of m by m(A). We say that a monotone measure m is continuous if
m

( ⋃∞
n=1 An

)
= lim

n→∞ m(An) and m
(⋂∞

n=1 Bn

)
= lim

n→∞ m(Bn) for A1 ⊂ A2 ⊂ . . .

and B1 ⊃ B2 ⊃ . . . .
Let S ∈ S. A functional IS : M(X,A) × F 1

(X,A) → [0, 1] defined by

IS(m, f) := sup
t∈[0,1]

S
(
t,m({f � t})

)
,

where {f � t} = {x ∈ X : f(x) � t}, is called the seminormed fuzzy integral
[10,11,21]. It is clear that IS(m, f1A) = IS,A(m, f) for A ∈ A, where 1A denotes
the indicator function of a subset A ∈ A and

IS,A(m, f) := sup
t∈[0,1]

S
(
t,m({f |A � t})

)
.

Here, h|C is the restriction of an A-measurable function h to a set C ⊂ X.
Obviously, {h|C � t} = {x ∈ C : h(x) � t} = C ∩ {h � t}. Replacing semicopula
S with W, Π and M, we get the opposite-Sugeno integral, Shilkret integral and
Sugeno integral of [0, 1]-valued functions, respectively.

Definition 1. Let f, g ∈ F k
(X,A), m ∈ M(X,A) and A,B ∈ A with k ∈ (0, 1].

Functions f |A and g|B are called m-positively dependent with respect to an oper-
ator � : m(A) × m(A) → m(A), if

m({f |A � a} ∩ {g|B � b}) � m({f |A � a}) � m({g|B � b})

holds for all a, b ∈ [0, k].

This concept was introduced by Kaluszka et al. in [14]. It includes all comono-
tone functions1 on A being m-positively dependent with respect to �= ∧ with
B = A and any capacity, and all independent random variables with respect to
probability measure when �= · and A = B = X.

1 Functions f, g : X → R are called comonotone on D ⊂ X if (f(x) − f(y))(g(x) −
g(y)) � 0 for all x, y ∈ D. In the case D = X we will simply say “f, g are comono-
tone”.
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3 Main Results

Recall that a non-decreasing operator ◦ : [0, 1]2 → [0, 1] is left-continuous if it is
left-continuous with respect to each coordinate.

Theorem 1. Suppose that k ∈ (0, 1], m ∈ M(X,A), Si ∈ S for i = 1, 2, 3 and
�,♦ : [0, 1]2 → [0, 1] are non-decreasing and ♦ be left-continuous. Let ϕi : [0, 1] →
[0, 1] be functions such that ϕ1 is non-decreasing and ϕj are increasing and right-
continuous, ψi : [0, ϕi(1)] → [0, 1] be non-decreasing and ψj be left-continuous,
where i = 1, 2, 3 and j = 2, 3.

(a) Assume that the inequality

ψ1

(
S1(ϕ1(a � b), c � d)

)
� ψ2

(
S2(ϕ2(a), c)

)
♦ ψ3

(
S3(ϕ3(b), d)

)
(2)

holds for all a, b ∈ [0, k] and c, d ∈ m(A). If f |A, g|B ∈ F k
(X,A) are m-

positively dependent with respect to � : m(A) × m(A) → m(A), then

ψ1

(
IS1,A∩B(m,ϕ1(f � g))

)
� ψ2

(
IS2,A(m,ϕ2(f))

)
♦ψ3

(
IS3,B(m,ϕ3(g))

)
.
(3)

(b) Suppose that a � 0 = 0 � a = 0 for all a ∈ m(A) and the condition
(Z1) holds, i.e., for all c, d ∈ m(A) there exists sets C,D ∈ A such that
c = m(C), d = m(D) and m(C ∩ D) = m(C) � m(D). If (3) is true for
all m-positively dependent functions f |A and g|B with respect to �, then (2)
holds for all a, b ∈ [0, k] and c, d ∈ m(A).

Proof. (a) Observe that ψ’s are well defined in (2) as Sj(ϕj(a), c) ∈ [0, ϕj(1)] for
all a ∈ [0, k] and c ∈ m(A), where j = 2, 3 and S1(ϕ1(a � b), c � d) ∈ [0, ϕ1(1)]
for all a, b ∈ [0, k] and c, d ∈ m(A). From monotonicity of �, the inequality
f(x) � g(x) � a � b holds for x ∈ {f � a} ∩ {g � b}. Then from m-positive
dependency of f |A and g|B and monotonicity of m, we get

m(A ∩ B ∩ {f � g � a � b}) � m(A ∩ {f � a}) � m(B ∩ {g � b})

for any a, b ∈ [0, k]. As ϕ1 is non-decreasing and ϕj are increasing for j = 2, 3,
we have

m
(
A ∩ B ∩ {ϕ1(f � g) � ϕ1(a � b)}) � ca � db

for all a, b ∈ [0, k] with ca := m(A∩{ϕ2(f) � ϕ2(a)}) and db := m(B ∩{ϕ3(g) �
ϕ3(b)}). From the assumption on the monotonicity of S1 and ψ1, as well as
definition of IS1 we obtain

ψ1

(
IS1,A∩B(m, ϕ1(f � g))

)
� ψ1

(
S1(ϕ1(a � b), ca � db)

)

for any a, b ∈ [0, k]. From (2) it follows that

ψ1

(
IS1,A∩B(m, ϕ1(f � g))

)
� ψ2

(
S2(ϕ2(a), ca)

)
♦ψ3

(
S3(ϕ3(b), db)

)
(4)
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for all a, b ∈ [0, k]. Let H(x) = x♦ y for a fixed y ∈ [0, 1] and all x ∈ [0, 1] as well
as h(a) = S2(ϕ2(a), ca) for all a ∈ [0, k]. The function H(ψ2) : [0, ϕ2(1)] → [0, 1]
is non-decreasing and left-continuous as ♦ and ψ2 are non-decreasing and left-
continuous, thus

sup
a∈[0,k]

H
(
ψ2(h(a))

)
= H

(
ψ2( sup

a∈[0,k]

h(a))
)
. (5)

Moreover, supa∈[0,k] h(a) = supa∈[0,1] h(a) due to S2(x, 0) = 0. Putting t =
ϕ2(a), we get

sup
a∈[0,k]

h(a) = sup
t∈ϕ2([0,1])

S2

(
t,m(A ∩ {ϕ2(f) � t})

)
,

where ϕ2([0, 1]) is the image of ϕ2. By the right-continuity of ϕ2 and properties
of S2, we have

sup
a∈[0,k]

h(a) = sup
t∈[0,1]

S2

(
t,m(A ∩ {ϕ2(f) � t})

)
. (6)

From (4)–(6) we conclude

ψ1

(
IS1,A∩B(m,ϕ1(f � g))

)
� ψ2

(
IS2,A(m,ϕ2(f))

)
♦ψ3

(
S3(ϕ3(b), db)

)

for all b ∈ [0, k]. Proceeding similarly with the supremum in b ∈ [0, k], we
obtain (3).

(b) Fix a, b ∈ [0, k] and c, d ∈ m(A). Define f = a1X and g = b1X , and
consider A,B ∈ A satisfying the condition (Z1). Then f |A and g|B are m-
positively dependent for �. Thus,

IS1,A∩B(m, ϕ1(f � g))) = S1(ϕ1(a � b), m(A ∩ B)) = S1(ϕ1(a � b), m(A) � m(B)),

IS2,A(m, ϕ2(f)) = S2(ϕ2(a), m(A)),

IS3,B(m, ϕ3(g)) = S3(ϕ3(b), m(B)).

Applying (3) we obtain (2) for all a, b ∈ [0, k] and c, d ∈ m(A). ��

4 On Existing Sufficient Conditions

The most frequently used sufficient conditions appearing in the literature in the
context of Chebyshev type inequality for comonotone functions are:

(C1) ψ1

(
S1(ϕ1(a � b), c ∧ d)

)
� ψ2

(
S2(ϕ2(a), c)

)
� ψ3

(
S3(ϕ3(b), d)

)
for all a, b ∈

[0, k] and c, d ∈ D;
(C2) ψ1

(
S1(ϕ1(a � b), c)

)
�

[
ψ2

(
S2(ϕ2(a), c)

)
� ψ3(ϕ3(b))

] ∨ [
ψ2(ϕ2(a)) �

ψ3

(
S3(ϕ3(b), c)

)]
for all a, b ∈ [0, k] and c ∈ D;

(C3) � � ∧, i.e., a � b � a ∧ b for all a, b ∈ [0, 1],
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where D is some subset of [0, 1]. Note that (C1) is a special case of (2) with �= ∧
and ♦ = �. The inequality in (C2) with ψi = ϕ−1

i for i = 1, 2, 3, is the result of
research stated in [2]. Lastly, the condition (C3) appears in the literature on non-
additive integral inequalities exclusively in connection with the Sugeno integral.
We describe relations among the conditions. In what follows, let id denote the
identity function on the interval [0, 1].

Proposition 1. Fix D ⊂ [0, 1] such that 1 ∈ D. Let � : [0, 1]2 → [0, 1] be
a non-decreasing operation and k ∈ (0, 1]. Assume that ϕi : [0, 1] → [0, 1] and
ψi : [0, ϕi(1)] → [0, 1] are non-decreasing for i = 1, 2, 3. Then

(a) (C1) ⇔ (C2)
(b) (C3) ⇒ (C1) if k = 1, Si = M, ϕ1(1) = ϕj(1), ψ1 � ψj and ψj(ϕj) � id �

ψ1(ϕ1), where i = 1, 2, 3 and j = 2, 3.

Proof. To shorten ongoing expressions, we put L(a, b, c) := ψ1

(
S1(ϕ1(a � b), c)

)
and P (a, b, c, d) := ψ2(ϕ2(a) ∧ c) � ψ3(ϕ3(b) ∧ d).

(a) “(C1) ⇒ (C2)” Putting d = 1 ∈ D in (C1) and then c = 1 in (C1), we get
(C2).
“(C2) ⇒ (C1)” By assumptions, we get

L(a, b, c) � ψ2

(
S2(ϕ2(a), c)

)
� ψ3(ϕ3(b)) = ψ2

(
S2(ϕ2(a), c)

)
� ψ3

(
S3(ϕ3(b), 1)

)
� ψ2

(
S2(ϕ2(a), c)

)
� ψ3

(
S3(ϕ3(b), d)

)

for any a, b ∈ [0, k] and c, d ∈ D. Also, the inequality

L(a, b, d) � ψ2(ϕ2(a)) � ψ3

(
S3(ϕ3(b), d)

)

for all a, b ∈ [0, k] and d ∈ D implies

Ld � ψ2

(
S2(ϕ2(a), c)

)
� ψ3

(
S3(ϕ3(b), d)

)

for any a, b ∈ [0, k] and c, d ∈ D. Combining these inequalities we get (C1).
(b) From the obvious inequalities and the assumptions on ψi and ϕi, we have

P (a, b, c, d) � ψ2(ϕ2(a)) � ψ3(ϕ3(b)) � a � b � ψ1(ϕ1(a � b)) (7)

for all a, b ∈ [0, 1] and c, d ∈ D. Consider four cases:

(i) Firstly, suppose c ∈ D∩ [0, ϕ2(1)] and d ∈ D∩ [0, ϕ3(1)]. Applying ψj � ψ1

and � � ∧, we get

P (a, b, c, d) � ψ2(c) � ψ3(d) � ψ1(c) ∧ ψ1(d)

for any a, b ∈ [0, 1]. By (7) and monotonicity of ψ1, we obtain

P (a, b, c, d) � ψ1(ϕ1(a � b) ∧ c ∧ d)

for all a, b ∈ [0, 1].
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(ii) Let c ∈ D ∩ (ϕ2(1), 1] and d ∈ D ∩ (ϕ3(1), 1]. From (7) and the condition
on �, we conclude that

P (a, b, c, d) � ψ1(ϕ1(a � b)) = ψ1(ϕ1(a � b) ∧ ϕ1(1))

for any a, b ∈ [0, 1]. By ϕ1(1) = ϕj(1) for j = 2, 3,

P (a, b, c, d) � ψ1(ϕ1(a � b) ∧ c ∧ d)

for all a, b ∈ [0, 1].
(iii) Suppose that c ∈ D ∩ (ϕ2(1), 1] and d ∈ D ∩ [0, ϕ3(1)]. Then

P (a, b, c, d) � ψ2(ϕ2(a)) ∧ ψ3(d) � ψ1(ϕ1(a)) ∧ ψ1(d) (8)

for any a, b ∈ [0, 1]. Combining (7) and (8), we get

P (a, b, c, d) � ψ1(ϕ1(a � b) ∧ ϕ1(a) ∧ d) � ψ1(ϕ1(a � b) ∧ c ∧ d)

for all a, b ∈ [0, 1].
(iv) The case c ∈ D ∩ [0, ϕ2(1)] and d ∈ D ∩ (ϕ3(1), 1] is similar to (iii).

Finally, by (i)–(iv) we get (C1). ��
Now, we will provide other connections among the conditions (Ci).

Proposition 2. Let D = [0, 1], k = 1 and � : [0, 1]2 → [0, 1] be a non-decreasing
operation. Assume that ϕi, ψi : [0, 1] → [0, 1] are non-decreasing with ϕi(1) = 1
and ψ1([0, 1]) = [0, 1] for i = 1, 2, 3. Then

(a) (C1) ⇒ (C3) if ψj � ψ1 for j = 2, 3.
(b) (C2) ⇒ (C3) if either

(i) a � 1 � a for all a ∈ [0, 1], ψ2(ϕ2) � id � ψ1(ϕ1) and ψ3 � ψ1, or
(ii) 1 � b � b for all b ∈ [0, 1], ψ3(ϕ3) � id � ψ1(ϕ1) and ψ2 � ψ1.

Proof. (a) Putting a = b = 1 in (C1) we obtain

ψ1

(
S1(ϕ1(1 � 1), c ∧ d)

)
� ψ2(c) � ψ3(d) � ψ1(c) � ψ1(d)

for all c, d ∈ [0, 1]. Since M � S1 and ψ1 is non-decreasing, we get ψ1(c)∧ψ1(d) �
ψ1(c) � ψ1(d) for any c, d ∈ [0, 1]. To obtain (C3) observe that ψ1([0, 1]) = [0, 1].

(b) Putting b = 1 in (C2) we get

ψ1

(
S1(ϕ1(a � 1), c)

)
� ψ2(ϕ2(a)) � ψ3(c)

for all a, c ∈ [0, 1]. By the fact that a � a � 1 and M � S1, we conclude that

ψ1(ϕ1(a)) ∧ ψ1(c) � ψ2(ϕ2(a)) � ψ3(c)

for any a, c ∈ [0, 1]. Using ψ2(ϕ2) � id � ψ1(ϕ1) and ψ3 � ψ1 we have a∧ψ1(c) �
a � ψ1(c) which finishes the proof of the first part of (b).

Now, let 1 � b � b for all b ∈ [0, 1]. Setting a = 1 in (C2) and proceeding
similarly as above, we get (C3). ��
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From Propositions 1 and 2 (a) we get the conditions under which all (Ci)’s
are equivalent.

Corollary 1. Let � : [0, 1]2 → [0, 1] be a non-decreasing operation. Assume that
ϕ : [0, 1] → [0, 1] are increasing with ϕ([0, 1]) = [0, 1]. Then

(C1) ⇔ (C2) ⇔ (C3)

with D = [0, 1], k = 1, Si = M, ϕi = ϕ and ψi = ϕ−1, where i = 1, 2, 3.

5 Special Cases

We describe in detail the relationship of many results from the literature with
Theorem 1. At first, we cover Theorem 2.3 with Y = [0, 1] and ◦i ∈ S in [14].

Corollary 2. Let k ∈ (0, 1], Si ∈ S, m ∈ M(X,A) and �,♦ : [0, 1]2 → [0, 1]
be non-decreasing such that ♦ is left-continuous for i = 1, 2, 3. Assume that
� : m(A) × m(A) → m(A) satisfies the boundary conditions 0 � a = a � 0 = 0
for all a. Let ϕi : [0, 1] → [0, 1] be increasing and continuous such that ϕi(0) =
0 for all i = 1, 2, 3, and the condition (Z1) is fulfilled. The Chebyshev type
inequality

ϕ−1
1

(
IS1,A∩B(m,ϕ1(f � g))

)
� ϕ−1

2

(
IS2,A(m,ϕ2(f))

)
♦ ϕ−1

3

(
IS3,B(m,ϕ3(g))

)

is satisfied for arbitrary m-positively dependent functions f |A, g|B ∈ F k
(X,A) if

and only if the inequality

ϕ−1
1

(
S1(ϕ1(a � b), c � d)

)
� ϕ−1

2

(
S2(ϕ2(a), c)

)
♦ ϕ−1

3

(
S3(ϕ3(b), d)

)

is true for all a, b ∈ [0, k] and c, d ∈ m(A).

Proof. Putting ψi = ϕ−1
i in Theorem 1 we get the statement. Note that ψ’s are

well defined. ��
Remark 1. The condition ϕi(0) = 0 can be abandoned being a consequence of
the inequality (12). Indeed, consider ϕ−1

2

(
S(ϕ2(a), c)

)
for all a, c. Setting c = 0,

we get ϕ−1
2

(
S(ϕ2(a), 0)

)
= ϕ−1

2 (0), and therefore 0 ∈ ϕ2([0, 1]), so ϕ2(0) = 0.
Proceeding similarly, one can check that ϕi(0) = 0 for i = 1, 3. Adding the
assumptions on ϕi(0) = 0 simplifies the use of Corollary 2.

Since the previous result still refers to the wider class of functions than the
most usually used in the literature, we give a consequence of Theorem 1 (a) which
will be useful in order to compare results of the Chebyshev type inequalities
for the seminormed fuzzy integral and comonotone functions with other known
results.
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Corollary 3. Assume that k ∈ (0, 1], m ∈ M(X,A) and � : [0, 1]2 → [0, 1] is
non-decreasing and left-continuous. Let ϕi : [0, 1] → [0, 1] be increasing and right-
continuous, and ψi : [0, ϕi(1)] → [0, 1] be non-decreasing and left-continuous for
i = 1, 2, 3. If for S ∈ S the inequality

ψ1

(
S(ϕ1(a � b), c)

)
�

[
ψ2

(
S(ϕ2(a), c)

)
� ψ3(ϕ3(b))

] ∨ [
ψ2(ϕ2(a)) � ψ3

(
S(ϕ3(b), c)

)]

(9)

is true for any a, b ∈ [0, k] and c ∈ m(A), then for all comonotone functions
f, g ∈ F k

(X,A) on A ∈ A it holds

ψ1

(
IS,A(m,ϕ1(f � g))

)
� ψ2

(
IS,A(m,ϕ2(f))

)
� ψ3

(
IS,A(m,ϕ3(g))

)
.

Proof. Put Si = S, A = B, ♦ = � and �= ∧ in Theorem 1 (a). Then the
inequality (9) for all a, b ∈ [0, k] and c ∈ m(A) is equivalent to (2) for all
a, b ∈ [0, k] and c, d ∈ m(A) from Proposition 1 (a) with D = m(A). Then
Theorem 1 (a) provides the statement, since comonotone functions f |A and g|A
are m-positively dependent with respect to ∧. ��

Now, we provide the power-mean type Chebyshev inequality for IS. Hereafter,
we use the convention Sp(x, y) = (S(x, y))p.

Corollary 4. [1, Theorem 3.1] Let m ∈ M(X,A) and � : [0, 1]2 → [0, 1] be a left-
continuous and non-decreasing operation. If S ∈ S satisfies

Sλ((a � b)α, c) � (Sν(aβ , c) � b) ∨ (a � Sτ (bγ , c)) (10)

for all a, b, c ∈ [0, 1], where α, β, γ, λ, ν, τ ∈ (0,∞) such that γτ � 1 and βν � 1,
then

(
IS,A(m, (f � g)α)

)λ �
(
IS,A(m, fβ)

)ν
�

(
IS,A(m, gγ)

)τ

is valid for any comonotone functions f, g ∈ F 1
(X,A) on A ∈ A.

Proof. From (10) and assumptions we get

Sλ((a � b)α, c) � (Sν(aβ , c) � bγτ ) ∨ (aβν � Sτ (bγ , c)) (11)

for all a, b, c ∈ [0, 1]. Put in Corollary 3 the following functions: ψ1(x) = xλ,
ψ2(x) = xν , ψ3(x) = xτ , ϕ1(x) = xα, ϕ2(x) = xβ , ϕ3(x) = xγ for all x ∈ [0, 1].
Then the inequality (11) takes the form (9) and Corollary 3 with k = 1 gives
the conclusion. ��

Next, we present the result proved in [7] which generalizes other known results
in the literature for the seminormed integral IS.

Corollary 5. [7, Corollary 3.10] Let k ∈ (0, 1], m ∈ M(X,A), S ∈ S, opera-
tion � : [0, 1]2 → [0, 1] be non-decreasing and left-continuous, η : [0, k] → [0, 1]
be non-decreasing and left-continuous, and ϕi : [0, 1] → [0, 1] be increasing and
continuous functions such that ϕi(0) = 0 for i = 1, 2, 3. If

ϕ−1
1

(
S(ϕ1(η(a) � η(b)), c)

)
�

[
η
(
ϕ−1
2

(
S(ϕ2(a), c)

))
� η(b)

] ∨ [
η(a) � η

(
ϕ−1
3

(
S(ϕ3(b), c)

))]

(12)
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for all a, b ∈ [0, k] and c ∈ [0, 1], then

ϕ−1
1

(
IS,A

(
m, ϕ1(η(f) � η(g))

))
� η

(
ϕ−1

2

(
IS,A(m, ϕ2(f))

))
� η

(
ϕ−1

3

(
IS,A(m, ϕ3(g))

))

(13)

is fulfilled for any comonotone functions f, g ∈ F k
(X,A) on A ∈ A.

Proof. Define a�ηb = η(a)�η(b) for all (a, b) ∈ [0, k]2. It is clear that �η : [0, k]2 →
[0, 1] is non-decreasing and left-continuous. Then the inequality (12) takes the
form

ϕ−1
1

(
S(ϕ1(a �η b), c)

)
�

[
ϕ−1
2

(
S(ϕ2(a), c)

)
�η b

] ∨ [
a �η ϕ−1

3

(
S(ϕ3(b), c)

)]
(14)

for all a, b ∈ [0, k] and c ∈ [0, 1]. Observe that (14) is the same as (9) (when
exchanging � for �η) with functions ψi = ϕ−1

i for i = 1, 2, 3. Then Corollary 3
gives the integral inequality

ϕ−1
1

(
IS,A(m,ϕ1(f �η g))

)
� ϕ−1

2

(
IS,A(m,ϕ2(f))

)
�η ϕ−1

3

(
IS,A(m,ϕ3(g))

)
,

which is the same as (13) by definition of �η. ��
Putting ϕi = id for all i = 1, 2, 3 in Corollary 5, we get [8, Theorem 2 with

n = 2 ]. Moreover, [2, Theorem 4.1] is the special case of Corollary 5 with k = 1
and η = id. In addition, if ϕi = ϕ, where ϕ is a continuous and increasing
function such that ϕ(0) = 0, we get [6, Corollary 3.5] and for ϕ = id, we obtain
[19, Theorem 3.1].

Using Theorem 1 for Si = M or Si = Π we can get the Chebyshev type
inequality for the Sugeno and Shilkret integral, respectively. In the special cases
of �, the condition (2) can be replaced by another one which is easier to verify.
Consequently, the integral inequality is still true.

5.1 Sugeno Integral on [0, 1]

In what follows, we say that a binary operation � satisfies the condition (M1),
if � : [0, 1]2 → [0, 1] is non-decreasing, left-continuous and � � ∧.

Corollary 6. Let m ∈ M(X,A) and � satisfy (M1). Let ϕi : [0, 1] → [0, 1] be
increasing and right-continuous and ψi : [0, ϕi(1)] → [0, 1] be non-decreasing and
left-continuous, where i = 1, 2, 3. Assume that ϕ1(1) = ϕj(1), ψ1 � ψj and
ψj(ϕj) � id � ψ1(ϕ1) for j = 2, 3. Then the Chebyshev type inequality

ψ1

(
IM,A(m,ϕ1(f � g))

)
� ψ2

(
IM,A(m,ϕ2(f))

)
� ψ3

(
IM,A(m,ϕ3(g))

)

holds for all comonotone functions f, g ∈ F 1
(X,A) on A ∈ A.

Proof. Put k = 1, Si =�= ∧, A = B and ♦ = � in Theorem 1 (a). Then the
assumptions yield the inequality (2) for all a, b ∈ [0, 1] and c, d ∈ m(A) from
Proposition 1 (b) with D = m(A). Then Theorem 1 (a) gives the statement. ��
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Corollary 7. Let m ∈ M(X,A) and � satisfy (M1). Let η : [0, 1] → [0, 1] be
left-continuous and non-decreasing such that η � id, and ϕj : [0, 1] → [0, 1] be
continuous and increasing such that ϕj(0) = 0 and ϕ2(1) = ϕ3(1), where j = 2, 3,
and ϕ1 = ϕ2 ∧ ϕ3. Then

ϕ−1
1

(
IM,A

(
m, ϕ1(η(f) � η(g))

))
� η

(
ϕ−1
2

(
IM,A(m, ϕ2(f))

))
� η

(
ϕ−1
3

(
IM,A(m, ϕ3(g))

))

(15)

is true for any comonotone functions f, g ∈ F 1
(X,A) on A ∈ A.

Proof. Define a�ηb = η(a)�η(b) for all a, b ∈ [0, 1]. Then �η is left-continuous and
non-decreasing such that �η � ∧. By Corollary 6 with ψi = ϕ−1

i for i = 1, 2, 3
and �η instead of �, we obtain

ϕ−1
1

(
IM,A(m,ϕ1(f �η g))

)
� ϕ−1

2

(
IM,A(m,ϕ2(f))

)
�η ϕ−1

3

(
IM,A(m,ϕ3(g))

)
,

which is the same as (15). ��
The assumption on ϕi(0) = 0 cannot be omitted in Corollary 7. To see this, it

is enough to put η = id, ϕi(x) = 0.5(x+1)1[0,1](x) for i = 1, 2, 3, f = g = 0.51X ,
� = · and m(A) = 0.4 in Corollary 7. Putting ϕi = id in Corollary 7 we get the
Chebyshev type inequality presented in [4, Theorem 3.1 with (k, n) = (1, 2)].

It can be shown that the boundary conditions of functions ϕi in Corollary 7
can be replaced by continuity of m ∈ M(X,A). To do so, we firstly derive the
helpful result.

Lemma 1. Let m ∈ M(X,A) be continuous and V1, V2 : [0, 1] → [0, 1] be contin-
uous and increasing such that V1 � V2 and V2(0) = 0. Then

V −1
1

(
IM,A(m,V1(f))

)
� V −1

2

(
IM,A(m,V2(f))

)

is satisfied for each f ∈ F 1
(X,A) and A ∈ A.

Proof. Since IM,A(m,Vi(f)) ∈ [0, Vi(1)], there exists ai ∈ [0, 1] such that
V −1

i

(
IM,A(m,Vi(f))

)
= ai for i = 1, 2, as Vi(0) = 0. From monotonicity of

Vi and [22, Lemma 9.5 (4)] we obtain

m(A ∩ {f � ai}) = m(A ∩ {Vi(f) � Vi(ai)}) � Vi(ai)

for i = 1, 2. Since V1 � V2, then

a1 = V −1
1

(
IM,A(m,V1(f))

)
� V −1

1

(
V1(a2) ∧ m(A ∩ {f � a2})

)
� V −1

1

(
V1(a2) ∧ V2(a2)

)
= V −1

1 (V1(a2)) = a2

and the proof is complete. ��
Now, we cover the result [5, Theorem 4.11 with n = 2] for the Sugeno integral

of [0, 1]-valued functions.



14 M. Boczek et al.

Corollary 8. Let m ∈ M(X,A) be continuous and � satisfy (M1). Let η : [0, 1] →
[0, 1] be left-continuous and non-decreasing such that η � id, and ϕi : [0, 1] →
[0, 1] be continuous and increasing such that ϕi(0) = 0, i = 1, 2, 3, and ϕ1 �
ϕ2 ∧ ϕ3. Then the Chebyshev type inequality (15) is valid for all comonotone
functions f, g ∈ F 1

(X,A) on A ∈ A.

Proof. Let ϕ̃j : [0, 1] → [0, 1] be continuous and increasing such that ϕ̃j(0) = 0,
ϕ̃2(1) = ϕ̃3(1), where j = 2, 3, and ϕ̃1 = ϕ̃2 ∧ ϕ̃3. Moreover assume that ϕ̃j � ϕj

and ϕ1 � ϕ̃1. By Lemma 1 we get

ϕ−1
1

(
IM,A(m,ϕ1(h))

)
� ϕ̃−1

1

(
IM,A(m, ϕ̃1(h))

)
, (16)

ϕ̃−1
j

(
IM,A(m, ϕ̃j(h))

)
� ϕ−1

j

(
IM,A(m,ϕj(h))

)
(17)

with j = 2, 3, for all h ∈ F 1
(X,A). By Corollary 7 and inequalities (16)–(17) we

get the statement. ��
Corollary 8 generalizes many results in the literature for the Sugeno

integral of [0, 1]-valued functions, e.g. [5, Theorem 4.11], [23, Theorem 4.1],
[3, Theorem 3.1], [16, Theorem 3.1], [20, Theorem 3.1], [18, Theorems 2.6 and
2.7], [15, Theorems 2.1 and 2.2] and [12, Theorems 3 and 4].

5.2 Shilkret Integral on [0, 1]

Similarly as in the previous subsection we replace the condition (2) for Si = Π
with another one which is easier to check and still provides a sufficient condi-
tion guaranteeing the validity of the Chebyshev type inequality for the Shilkret
integral.

Theorem 2. Suppose that m ∈ M(X,A) and � : [0, 1]2 → [0, 1] is a non-
decreasing left-continuous binary operation. Let ϕi : [0, 1] → [0, 1] be increasing
and right-continuous, ψj : [0, 1] → [0, 1] be non-decreasing and left-continuous
such that ψj ∨ ϕj � id � ϕ1, where i = 1, 2, 3 and j = 2, 3. If · � �, then

√
IΠ,A∩B(m,ϕ1(f � g)) � ψ2

(
IΠ,A(m,ϕ2(f))

)
� ψ3

(
IΠ,B(m,ϕ3(g))

)
(18)

is satisfied for arbitrary m-positively dependent functions f |A, g|B ∈ F 1
(X,A) with

respect to ·.
Proof. Set Si =�= ·, ♦ = � and ψ1(x) =

√
x in Theorem 1 (a). Note that

ϕ1(a � b) � a � b � ϕ2(a) � ϕ3(b) � ψ2(ϕ2(a)c) � ψ3(ϕ3(b)d)) (19)

for any a, b, c, d ∈ [0, 1]. Due to � � ·, we have

cd � c � d � ψ2(ϕ2(a)c) � ψ3(ϕ3(b)d)) (20)

for any a, b, c, d. Multiply (19) and (20) we obtain
√

ϕ1(a � b)cd � ψ2(ϕ2(a)c) � ψ3(ϕ3(b)d).

for all a, b, c, d. Then Theorem 1 (a) finishes the proof. ��
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Corollary 9. Let (X,A,P) be a probability space. Then the Chebyshev type
inequality

IΠ(P, fg) �
(
IΠ(P, f)

)2 · (
IΠ(P, g)

)2
is true for any independent random variables f, g ∈ F 1

(X,A).

6 Concluding Remarks

We have presented a necessary and sufficient condition guaranteeing the validity
of the Chebyshev type inequality

ψ1

(
IS1,A∩B(m,ϕ1(f � g))

)
� ψ2

(
IS2,A(m,ϕ2(f))

)
♦ψ3

(
IS3,B(m,ϕ3(g))

)

for any m-positively dependent functions f |A and g|B . It has enabled us to
generalize many known results from the literature related to the Chebyshev type
inequalities for IS for the class of comonotone functions. Using the relationship
between the conditions appearing in the literature we were able to present the
Chebyshev type inequality for the Sugeno integral and Shilkret integral with
easier conditions to be checked.

Since the considered seminormed integrals are aggregation functions [17], we
expect applications of our results everywhere where some bounds on the aggre-
gation process is needed, such as information aggregation, or decision making.
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Abstract. The validity of the monotone convergence theorem, the
Fatou and the reverse Fatou lemmas, and the dominated convergence
theorem of the Choquet integral of measurable functions converging in
measure are fully characterized by the conditional versions of the mono-
tone autocontinuity and the autocontinuity. In those theorems the non-
additive measure may be infinite and the functions may be unbounded.
The dual measure forms and the extension to symmetric and asymmetric
Choquet integrals are also discussed.

Keywords: Nonadditive measure · Choquet integral ·
Conditional autocontinuity · Convergence in measure theorem

1 Introduction

The purpose of the paper is to give full descriptions of the monotone conver-
gence theorem, the Fatou and the reverse Fatou lemmas, and the dominated
convergence theorem of the Choquet integral of measurable functions converg-
ing in measure. Such theorems are collectively called the convergence in measure
theorems and already discussed with a certain degree of generality when the
measures are finite and/or the functions are bounded [2,4,5,7,8,11,15,16].

In this paper, those convergence in measure theorems are reconsidered in the
general case where the nonadditive measure may be infinite and the functions
may be unbounded. To this end, it is necessary to introduce the conditional ver-
sions of the already known characteristics of nonadditive measures such as the
monotone autocontinuity and the autocontinuity. In fact, it will be shown that
the validity of the monotone nonincreasing convergence in measure theorem is
fully characterized by the conditional monotone autocontinuity from above, and
the validity of the dominated convergence in measure theorem is fully charac-
terized by the conditional autocontinuity.

The paper is organized as follows. Section 2 contains notation and the defini-
tion of a nonadditive measure and the Choquet integral. In Sect. 3 the conditional
versions of the characteristics of nonadditive measures are introduced and their
mutual relations are clarified. In next three sections the monotone convergence
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in measure theorem, the Fatou and the reverse Fatou in measure lemmas, and
the dominated convergence in measure theorem are fully characterized in terms
of the conditional versions of the characteristics of nonadditive measures. The
dual measure forms are considered in Sect. 7, and the extension to symmetric
and asymmetric Choquet integrals are discussed in Sect. 8. The last section gives
concluding remarks.

In this paper the detailed proofs are given only for typical results since the
reader can prove others easily or in a similar way.

2 Preliminaries

Throughout the paper, (X,A) is a measurable space. Let IR = (−∞,∞) denote
the set of the real numbers and IN the set of the natural numbers. Let IR :=
[−∞,∞] be the set of the extended real numbers with usual total order and
algebraic structure. Let us assume that (±∞) ·0 = 0 ·(±∞) = 0 since this proves
to be convenient in measure and integration theory. Let F(X) denote the set of
all A-measurable functions f : X → IR and let F+(X) := {f ∈ F(X) : f ≥ 0}.
For a subset A of X, the symbol χA denotes the characteristic function of A,
that is, χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise, and the symbol Ac denotes
the complement of A, that is, Ac := X \ A.

A nonadditive measure is a set function μ : A → [0,∞] such that μ(∅) = 0
and μ(A) ≤ μ(B) whenever A,B ∈ A and A ⊂ B. It is called finite if μ(X) < ∞
and infinite if μ(X) = ∞. This type of set function is also called a mono-
tone measure [16], a capacity [1], or a fuzzy measure [10,14] in the literature.
Let M(X) denote the set of all nonadditive measures μ : A → [0,∞] and let
Mb(X) := {μ ∈ M(X) : μ(X) < ∞}. For any μ ∈ Mb(X), its dual μ̄ is defined
by μ̄(A) := μ(X) − μ(Ac) for each A ∈ A. Then μ̄ is also a nonadditive measure
and ¯̄μ = μ. If μ is finitely additive, then μ = μ̄. A set N ∈ A is called μ-null if
μ(N) = 0 as usual. See [3,9,16] for further information on nonadditive measures.

The Choquet integral [1,13] is a typical nonlinear integral and widely used
in nonadditive measure theory. For each (μ, f) ∈ M(X) × F+(X), the Choquet
integral is defined by

Ch(μ, f) :=
∫ ∞

0

μ({f > t})dt,

where the right hand side is the Lebesgue integral or the improper Riemann
integral. The nonincreasing distribution function μ({f > t}) may be replaced
with μ({f ≥ t}) without any change. A function f ∈ F(X) is called μ-integrable
if Ch(μ, |f |) < ∞. The Choquet integral is equal to the Šipoš integral [12] for
any nonadditive measure μ and also equal to the abstract Lebesgue integral if μ
is σ-additive [6, Propositions 8.1 and 8.2].

For a sequence {fn}n∈IN ⊂ F(X) and f ∈ F(X) we say that fn converges in
μ-measure to f and write fn

µ−→ f if for every x ∈ X and n ∈ IN both fn(x) and
f(x) do not simultaneously take ∞ or −∞ and limn→∞ μ({|fn − f | > ε}) = 0
for every ε > 0. If fn

µ−→ f , then f+
n

µ−→ f+, f−
n

µ−→ f−, |fn| µ−→ |f |, and
|fn − f | µ−→ 0.
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3 The Conditional Autocontinuity of Nonadditive
Measures

The autocontinuity of nonadditive measures and its monotone versions are
known to play a crucial role when formulating the convergence in measure the-
orems of the Choquet integral; see, for instance, [5,7,8,11,15].

Definition 1. Let μ ∈ M(X).

1. μ is called autocontinuous from above if μ(A ∪ Bn) → μ(A) whenever A ∈ A,
{Bn}n∈IN ⊂ A, and μ(Bn) → 0.

2. μ is called autocontinuous from below if μ(A \ Bn) → μ(A) whenever A ∈ A,
{Bn}n∈IN ⊂ A, and μ(Bn) → 0.

3. μ is called autocontinuous if it is autocontinuous from above and below.
4. μ is called monotone autocontinuous from above if μ(A ∪ Bn) → μ(A) when-

ever A ∈ A, {Bn}n∈IN ⊂ A is nonincreasing, and μ(Bn) → 0.
5. μ is called monotone autocontinuous from below if μ(A\Bn) → μ(A) whenever

A ∈ A, {Bn}n∈IN ⊂ A is nonincreasing, and μ(Bn) → 0.
6. μ is called monotone autocontinuous if it is monotone autocontinuous from

above and below.

In order to give full description of the convergence in measure theorems in
terms of the characteristics of nonadditive measures it is necessary to introduce
the following conditional versions of the autocontinuity.

Definition 2. Let μ ∈ M(X).

1. μ is called conditionally autocontinuous from above if μ(A ∪ Bn) → μ(A)
whenever A,C ∈ A, {Bn}n∈IN ⊂ A, μ(C) < ∞, μ(Bn) → 0, and A∪Bn ⊂ C
for every n ∈ IN.

2. μ is called conditionally autocontinuous from below if μ(A \ Bn) → μ(A)
whenever A,C ∈ A, {Bn}n∈IN ⊂ A, μ(C) < ∞, μ(Bn) → 0, and A \ Bn ⊂ C
for every n ∈ IN.

3. μ is called conditionally autocontinuous if it is conditionally autocontinuous
from above and below.

4. μ is called conditionally monotone autocontinuous from above if μ(A∪Bn) →
μ(A) whenever A ∈ A, {Bn}n∈IN ⊂ A is nonincreasing, μ(A ∪ B1) < ∞, and
μ(Bn) → 0.

5. μ is called conditionally monotone autocontinuous from below if μ(A\Bn) →
μ(A) whenever A ∈ A, {Bn}n∈IN ⊂ A is nonincreasing, μ(A) < ∞, and
μ(Bn) → 0.

6. μ is called conditionally monotone autocontinuous if it is conditionally mono-
tone autocontinuous from above and below.

The conditional versions of the autocontinuity are strictly weaker than the
corresponding usual ones, and they coincide if μ is finite; see Example 1. More-
over, whether “conditional” or not, the monotone autocontinuity is strictly
weaker than the autocontinuity; see Example 2.
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Example 1. Let X := IR and A be the σ-field of all Lebesgue measurable subsets
of X. Let λ be the Lebesgue measure on IR.

(1) Let μ : A → [0,∞] be the nonadditive measure defined by

μ(A) :=

{
∞ if λ(A) ≥ 1,

λ(A) if λ(A) < 1,

then μ is conditionally autocontinuous from below, but is not monotone
autocontinuous from below.

(2) Let μ : A → [0,∞] be the nonadditive measure defined by

μ(A) :=

{
∞ if λ(A) > 1,

λ(A) if λ(A) ≤ 1,

then μ is conditionally autocontinuous from above, but is not monotone
autocontinuous from above.

Example 2. Let X := [1,∞) and A be the family of all subsets of X. Let μ : A →
[0,∞] be the nonadditive measure defined by

μ(A) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞ if A = X,

3 if Ac is a singleton,

2 if A and Ac both contain at least two points,
1/t if A = {t} for some t ∈ X,

0 if A = ∅.

Then μ is monotone autocontinuous since every nonincreasing {Bn}n∈IN ⊂ A
with μ(Bn) → 0 has the property that Bn = ∅ for almost all n ∈ IN. However, it
is neither conditionally autocontinuous from above nor below. For instance, let
A := {2}, Bn := {n + 2} (n = 1, 2, . . . ), and C := (1,∞). Then μ(A) = 1/2,
μ(C) = 3, μ(Bn) = 1/(n + 2) → 0, and μ(A ∪ Bn) = 2 for every n ∈ IN. This
means that μ is not conditionally autocontinuous from above. If we let A :=
(1,∞), Bn := {n + 1} (n = 1, 2, . . . ), and C := (1,∞), then μ(A) = μ(C) = 3,
μ(Bn) = 1/(n + 1) → 0, and μ(A \ Bn) = 2 for every n ∈ IN, which imply that
μ is not conditionally autocontinuous from below.

Let us list some properties of various types of the autocontinuity to clarify
their mutual relations. Recall the following characteristics of nonadditive mea-
sures; see, for instance, [3,9,16]: A nonadditive measure μ : A → [0,∞] is called
continuous from above if μ(An) → μ(A) whenever A,An ∈ A and An ↓ A,
continuous from below if μ(An) → μ(A) whenever A,An ∈ A and An ↑ A,
conditionally continuous from above if μ(An) → μ(A) whenever A,An ∈ A,
An ↓ A, and μ(A1) < ∞, conditionally continuous from below if μ(An) → μ(A)
whenever A,An ∈ A, An ↑ A, and μ(A) < ∞, order continuous if μ(An) → 0
whenever An ∈ A and An ↓ ∅, and conditionally order continuous if μ(An) → 0
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whenever An ∈ A, An ↓ ∅, and μ(A1) < ∞. Moreover, μ is called null-additive
if μ(A ∪ B) = μ(A) whenever A,B ∈ A and μ(B) = 0, and subadditive if
μ(A ∪ B) ≤ μ(A) + μ(B) for every A,B ∈ A.

– If μ is continuous from above (or below) and null-additive, then it is monotone
autocontinuous from above (or below, respectively).

– If μ is conditionally continuous from above (or below) and null-additive, then
it is conditionally monotone autocontinuous from above (or below, respec-
tively).

– If μ is monotone autocontinuous from above (or below) and order continuous,
then it is continuous from above (or below, respectively).

– If μ is conditionally monotone autocontinuous from above (or below) and
conditionally order continuous, then it is conditionally continuous from above
(or below, respectively).

– If μ is monotone autocontinuous from above or below, then it is null-additive.
– If μ is conditionally autocontinuous from below, then it is null-additive. How-

ever, this is not the case for the conditional autocontinuity from above and
the conditional monotone autocontinuity from below; see Example 3

Example 3. Let X be an infinite set and A the family of all subsets of X. Let
μ : A → [0,∞] be the nonadditive measure defined by

μ(A) :=

⎧⎪⎨
⎪⎩

∞ if A = X,

1 if A �= X and A is infinite,
0 if A = ∅ or A is finite.

Then μ is conditionally autocontinuous from above and conditionally monotone
autocontinuous from below, but is not null-additive. To see this, take any x0 ∈ X
and let A := {x0}c and B := {x0}. Then μ(A) = 1, μ(B) = 0, but μ(A∪B) = ∞.

4 The Monotone Convergence in Measure Theorem

Let us explain our strategy of proving the convergence in measure theorems of
the Choquet integral: First establish a proper distributional convergence theo-
rem, which is a convergence theorem of distribution functions, and gives a bridge
between the Choquet integral and the Lebesgue integral. Then the target theo-
rem is derived from the convergence theorems of the Lebesgue integral.

Theorem 1. Let μ ∈ M(X). The following conditions are equivalent.

1. μ is conditionally monotone autocontinuous from above and null-additive.
2. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if they satisfy

(a) f ≤ fn+1 ≤ fn μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
then it follows that μ({fn > t}) ↓ μ({f > t}) for every continuity point t ∈ IR
of μ({f > t}) with μ({f1 > t}) < ∞.
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3. The monotone nonincreasing convergence in measure theorem holds for μ,
that is, for any {fn}n∈IN ⊂ F+(X) and any f ∈ F+(X), if they satisfy
conditions (a) and (b) of assertion 2 and Ch(μ, f1) < ∞, then it follows that
Ch(μ, fn) ↓ Ch(μ, f). Moreover, every fn and f are μ-integrable.

Proof. 1 ⇒ 2: For each t ∈ IR, let ϕ(t) := μ({f > t}) and ϕn(t) := μ({fn >
t}) (n = 1, 2, . . . ). Let t0 ∈ IR be a continuity point of ϕ with μ({f1 > t0}) < ∞.
Then the null-additivity of μ and condition (a) show that ϕ(t0) ≤ ϕn+1(t0) ≤
ϕn(t0) for every n ∈ IN, and hence, ϕ(t0) ≤ infn∈IN ϕn(t0). Thus, it suffices to
prove

inf
n∈IN

ϕn(t0) ≤ ϕ(t0). (1)

To see this, fix ε > 0 and let A := {f > t0 − ε}, Bn := {|fn − f | > ε} (n =
1, 2, . . . ), and C := {f1 > t0}. Then μ(Bn) → 0 by condition (b), and μ(C) < ∞.
By condition (a) and the null-additivity of μ, one can find a nondecreasing
sequence {Nn}n∈IN of μ-null sets such that f(x) ≤ fn+1(x) ≤ fn(x) for every
x �∈ Nn. Then it is easy to verify that {Bn \ Nn}n∈IN is nonincreasing and
{fn > t0} \ Nn ⊂ (A ∪ (Bn \ Nn)) ∩ C, so that

μ({fn > t0}) ≤ μ((A ∩ C) ∪ {(Bn \ Nn) ∩ C}) (2)

for every n ∈ IN. Since μ is conditionally monotone autocontinuous from above,

μ(A ∩ C) = inf
n∈IN

μ((A ∩ C) ∪ {(Bn \ Nn) ∩ C}). (3)

Thus, (1) follows from (2) and (3).
2 ⇒ 3: Since Ch(μ, f1) < ∞, there is a Lebesgue null set L such that μ({f1 >

t}) < ∞ for every t �∈ L. Let D be the set of all discontinuity points of μ({f > t}).
Then by assertion 2, μ({fn > t}) ↓ μ({f > t}) for every t �∈ L∪D. Consequently,

Ch(μ, fn) =
∫ ∞

0

μ({fn > t})dt ↓
∫ ∞

0

μ({f > t})dt = Ch(μ, f)

by the Lebesgue monotone convergence theorem.
3 ⇒ 1: Let A,Bn ∈ A and assume that {Bn}n∈IN is nonincreasing, μ(A ∪

B1) < ∞, and μ(Bn) → 0. Let fn := χA∪Bn
and f := χA. Then they satisfy

conditions (a) and (b). Moreover, Ch(μ, f1) = μ(A ∪ B1) < ∞. Therefore,

μ(A ∪ Bn) = Ch(μ, fn) → Ch(μ, f) = μ(A),

which shows that μ is conditionally autocontinuous from above.
Let A,B ∈ A and μ(B) = 0. If μ(A) = ∞, then μ(A ∪ B) = μ(A) = ∞, and

hence, assume that μ(A) < ∞. Let fn := χA and f := χA∪B. Then fn and f
satisfy conditions (a), (b), and Ch(μ, f1) = μ(A) < ∞. Therefore,

μ(A ∪ B) = Ch(μ, f) = lim
n→∞ Ch(μ, fn) = μ(A),

and hence, μ is null-additive. ��
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The monotone nondecreasing convergence in measure theorem is also derived
in a similar way by the same strategy. Recall that every nonadditive measure
that is monotone autocontinuous from below is null-additive.

Theorem 2. Let μ ∈ M(X). The following conditions are equivalent.

1. μ is monotone autocontinuous from below.
2. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if they satisfy

(a) fn ≤ fn+1 ≤ f μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
then it follows that μ({fn > t}) ↑ μ({f > t}) for every continuity point t ∈ IR
of μ({f > t}).

3. The monotone nondecreasing convergence in measure theorem holds for μ,
that is, for any {fn}n∈IN ⊂ F+(X) and any f ∈ F+(X), if they satisfy
conditions (a) and (b) of assertion 2, then it follows that Ch(μ, fn) ↑ Ch(μ, f).

Remark 1. The classical Riesz theorem for a σ-additive measure μ states that
every sequence {fn}n∈IN ⊂ F(X) converging in μ-measure to f ∈ F(X) has a
subsequence {fnk

}k∈IN converging μ-almost everywhere to f , so that the dom-
ination fn ≤ f μ-a.e. follows from the monotonicity fn ≤ fn+1 μ-a.e. for every
n ∈ IN and fn

µ−→ f . However, this is not valid in general for a nonadditive
measure unless μ has property (S); see, for instance, [4, Theorem 5.17]. There-
fore, in the above theorems it is necessary to assume in advance that each fn is
dominated by the limit function f almost everywhere.

5 The Fatou and the Reverse Fatou in Measure Lemmas

The Fatou lemma can be proved by the same strategy as is stated in Sect. 4.

Theorem 3. Let μ ∈ M(X). The following conditions are equivalent.

1. μ is autocontinuous from below.
2. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if fn

µ−→ f then it follows
that μ({f > t}) ≤ lim infn→∞ μ({fn > t}) for every continuity point t ∈ IR
of μ({f > t}).

3. The Fatou in measure lemma holds for μ, that is, for any {fn}n∈IN ⊂
F+(X) and any f ∈ F+(X), if fn

µ−→ f then it follows that Ch(μ, f) ≤
lim infn→∞ Ch(μ, fn).

To characterize the validity of the dominated convergence in measure theorem
in terms of the characteristics of nonadditive measures, the following dominated
versions of the Fatou and the reverse Fatou in measure lemmas are needed.

Theorem 4. Let μ ∈ M(X). The following conditions are equivalent.

1. μ is conditionally autocontinuous from below.
2. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if they satisfy
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(a) there is a g ∈ F(X) such that fn ≤ g μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
then it follows that μ({f > t}) ≤ lim infn→∞ μ({fn > t}) for every continuity
point t ∈ IR of μ({f > t}) with μ({g > t}) < ∞.

3. The dominated Fatou in measure lemma holds for μ, that is, for any
{fn}n∈IN ⊂ F+(X) and any f ∈ F+(X), if they satisfy
(a) there is a g ∈ F+(X) such that fn ≤ g μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
(c) Ch(μ, g) < ∞,

then it follows that Ch(μ, f) ≤ lim infn→∞ Ch(μ, fn). Moreover, every fn and
f are μ-integrable.

Proof. 1 ⇒ 2: For each t ∈ IR, let ϕ(t) := μ({f > t}) and ϕn(t) := μ({fn >
t}) (n = 1, 2, . . . ). Let t0 ∈ IR be a continuity point of ϕ with μ({g > t0}) < ∞.
Fix ε > 0 and let A := {f > t0 + ε}, Bn := {|fn − f | > ε} (n = 1, 2, . . . ),
and C := {g > t0}. Then μ(Bn) → 0 by condition (b), and μ(C) < ∞. By
condition (a), for each n ∈ IN there is a μ-null set Nn such that fn(x) ≤ g(x) for
every x �∈ Nn. Then it is easy to verify that A\ (Bn ∪Nn) ⊂ {fn > t0}\Nn ⊂ C
for every n ∈ IN. Since μ is conditionally autocontinuous from below, it follows
that lim infn→∞ ϕn(t0) ≥ ϕ(t0 + ε), which gives the conclusion.

2 ⇒ 3: Since Ch(μ, g) < ∞, there is a Lebesgue null set L such that μ({g >
t}) < ∞ for every t �∈ L. Let D be the set of all discontinuity points of μ({f > t}).
Then by assertion 2, μ({f > t}) ≤ lim infn→∞ μ({fn > t}) for every t �∈ L ∪ D.
Consequently, it follows that

Ch(μ, f) ≤
∫ ∞

0

lim inf
n→∞ μ({fn > t})dt

= sup
n∈IN

∫ ∞

0

inf
k≥n

μ({fk > t})dt ≤ lim inf
n→∞ Ch(μ, fn)

by the Lebesgue monotone convergence theorem.
3 ⇒ 1: Let A,C ∈ A, {Bn}n∈IN ⊂ A, μ(C) < ∞, μ(Bn) → 0, and A\Bn ⊂ C

for every n ∈ IN. Let fn := χA\Bn
, f := χA, and g := χC . Then they satisfy

conditions (a), (b), and (c) of assertion 3. Therefore, it follows that

μ(A) = Ch(μ, f) ≤ lim inf
n→∞ Ch(μ, fn) = lim inf

n→∞ μ(A \ Bn),

which implies that μ is conditionally autocontinuous from below. ��
Theorem 5. Let μ ∈ M(X). The following conditions are equivalent.

1. μ is conditionally autocontinuous from above and null-additive.
2. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if they satisfy

(a) there is a g ∈ F(X) such that fn ≤ g μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
then it follows that lim supn→∞ μ({fn > t}) ≤ μ({f > t}) for every continuity
point t ∈ IR of μ({f > t}) with μ({g > t}) < ∞.
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3. The reverse Fatou in measure lemma holds for μ, that is, for any {fn}n∈IN ⊂
F+(X) and any f ∈ F+(X), if they satisfy
(a) there is a g ∈ F+(X) such that fn ≤ g μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
(c) Ch(μ, g) < ∞,

then it follows that lim supn→∞ Ch(μ, fn) ≤ Ch(μ, f). Moreover, every fn is
μ-integrable.

6 The Dominated Convergence in Measure Theorem

The dominated convergence in measure theorem now follows from the dominated
Fatou and the reverse Fatou in measure lemmas.

Theorem 6. Let μ ∈ M(X). The following conditions are equivalent.

1. μ is conditionally autocontinuous.
2. The dominated convergence in measure theorem holds for μ, that is, for any

{fn}n∈IN ⊂ F+(X) and any f ∈ F+(X), if they satisfy
(a) there is a g ∈ F+(X) such that fn ≤ g μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
(c) Ch(μ, g) < ∞,

then it follows that Ch(μ, fn) → Ch(μ, f). Moreover, every fn and f are
μ-integrable.

Proof. 1 ⇒ 2: By Theorems 4 and 5, every fn and f are μ-integrable, and

Ch(μ, f) ≤ lim inf
n→∞ Ch(μ, fn) ≤ lim sup

n→∞
Ch(μ, fn) ≤ Ch(μ, f),

which gives the conclusion.
2 ⇒ 1: It follows from Theorems 4 and 5. ��

7 The Dual Measure Forms

The dual measure forms of the convergence in measure theorems are inevitable in
our strategy to obtain convergence theorems of the symmetric and asymmetric
Choquet integrals. Whether “conditional” or not, the dual measure μ̄ is not
necessarily autocontinuous even if the original measure μ is autocontinuous. This
means that the dual measure forms are not direct consequences of the results
in previous sections. For instance, the dual measure forms of the Fatou and the
reverse Fatou in measure lemmas are stated and proved as follows.

Theorem 7. Let μ ∈ Mb(X). The following conditions are equivalent.

1. μ is autocontinuous from above.
2. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if fn

µ−→ f then it follows
that lim supn→∞ μ({fn < t}) ≤ μ({f < t}) for every continuity point t ∈ IR
of μ({f < t}).
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3. The dual Fatou in measure lemma holds for μ, that is, for any {fn}n∈IN ⊂
F+(X) and any f ∈ F+(X), if fn

µ−→ f then it follows that Ch(μ̄, f) ≤
lim infn→∞ Ch(μ̄, fn).

Theorem 8. Let μ ∈ Mb(X). The following conditions are equivalent.

1. μ is autocontinuous from below.
2. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if fn

µ−→ f then it follows
that μ({f < t}) ≤ lim infn→∞ μ({fn < t}) for every continuity point t ∈ IR
of μ({f < t}).

3. The dual reverse Fatou in measure lemma holds for μ, that is, for any
{fn}n∈IN ⊂ F+(X) and any f ∈ F+(X), if they satisfy
(a) there is a g ∈ F+(X) such that fn ≤ g μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
(c) Ch(μ̄, g) < ∞,

then it follows that lim supn→∞ Ch(μ̄, fn) ≤ Ch(μ̄, f). Moreover, every fn is
μ̄-integrable.

Proof. 1 ⇒ 2: Observe that assertion 2 of this theorem is equivalent to that of
Theorem 3.

2 ⇒ 3: By assertion 2, for almost all t ∈ IR it follows that μ({f < t}) ≤
lim infn→∞ μ({fn < t}), and hence, lim supn→∞ μ̄({fn ≥ t}) ≤ μ̄({f ≥ t}).
Moreover, condition (a) and the null-additivity of μ imply that μ̄({fn ≥ t}) ≤
μ̄({g ≥ t}) for every t ∈ IR and n ∈ IN, so that condition (c) gives∫ ∞

0

sup
n∈IN

μ̄({fn ≥ t})dt ≤
∫ ∞

0

μ̄({g ≥ t})dt = Ch(μ̄, g) < ∞.

Then the conclusion follows from the Lebesgue monotone convergence theorem.
3 ⇒ 1: Let A,Bn ∈ A and μ(Bn) → 0. Let fn := χAc∪Bn

, f := χAc , and
g := 1. Then they satisfy conditions (a), (b), and (c). Therefore,

μ̄(Ac) = Ch(μ̄, f) ≥ lim sup
n→∞

Ch(μ̄, fn) = lim sup
n→∞

μ̄(Ac ∪ Bn),

and hence, μ̄(Ac ∪ Bn) → μ̄(Ac). Consequently,

μ(A \ Bn) = μ(X) − μ̄(Ac ∪ Bn) → μ(X) − μ̄(Ac) = μ(A),

which implies that μ is autocontinuous from below. ��
In the same way as Theorem 6, the dual measure form of the dominated

convergence in measure theorem follows from Theorem 8 and the dominated
version of Theorem 7.

Theorem 9. Let μ ∈ Mb(X). The following conditions are equivalent.

1. μ is autocontinuous.
2. For any {fn}n∈IN ⊂ F+(X) and any f ∈ F+(X), if they satisfy

(a) there is a g ∈ F+(X) such that fn ≤ g μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
(c) Ch(μ̄, g) < ∞,

then it follows that Ch(μ̄, fn) → Ch(μ̄, f). Moreover, every fn and f are
μ̄-integrable.
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8 The Extension to Symmetric and Asymmetric Integrals

The Choquet integral Ch: M(X) × F+(X) → [0,∞] can be extended in the
following two ways:

Chs(μ, f) := Ch(μ, f+) − Ch(μ, f−), (μ, f) ∈ M(X) × F(X),

Cha(μ, f) := Ch(μ, f+) − Ch(μ̄, f−), (μ, f) ∈ Mb(X) × F(X).

The functional Chs is called the symmetric Choquet integral, while Cha is called
the asymmetric Choquet integral. They are not defined if the right hand side is
of the form ∞ − ∞. The symmetric Choquet integral Chs is symmetric in the
sense that

Chs(μ,−f) = −Chs(μ, f)

and the asymmetric integral Ia is asymmetric in the sense that

Cha(μ,−f) = −Cha(μ̄, f).

Given μ ∈ M(X), a function f ∈ F(X) is called symmetrically μ-integrable
if Chs(μ, f) < ∞, and asymmetrically μ-integrable if Cha(μ, f) < ∞. In this
section the dominated convergence in measure theorem is extended to symmetric
and asymmetric integrals.

Theorem 10. Let μ ∈ M(X). The following conditions are equivalent.

1. μ is conditionally autocontinuous.
2. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if they satisfy

(a) there are p, q ∈ F(X) such that q ≤ fn ≤ p μ-a.e. for every n ∈ IN,
(b) fn

µ−→ f ,
(c) Ch(μ, p+) < ∞ and Ch(μ, q−) < ∞,

then it follows that Chs(μ, fn) → Chs(μ, f). Moreover, every fn and f are
symmetrically μ-integrable.

Assume that μ is finite. Then assertion 1 is equivalent to the following
assertion.

3. For any {fn}n∈IN ⊂ F(X) and any f ∈ F(X), if they satisfy conditions (a)
and (b) of assertion 2, and Ch(μ, p+) < ∞ and Ch(μ̄, q−) < ∞ then it follows
that Cha(μ, fn) → Cha(μ, f). Moreover, every fn and f are asymmetrically
μ-integrable.

Proof. We give only the proof of 1⇒ 3. Observe that condition (a) implies that
f+
n ≤ p+ and f−

n ≤ q− μ-a.e. for every n ∈ IN, and condition (b) implies that
f+
n

µ−→ f+ and f−
n

µ−→ f−. Therefore it follows from Theorems 6 and 9 that

Cha(μ, fn) = Ch(μ, f+
n ) − Ch(μ̄, f−

n )

→ Ch(μ, f+) − Ch(μ̄, f−) = Cha(μ, f)

and fn and f are asymmetrically μ-integrable. ��
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9 Concluding Remarks

In this paper, in the case where the nonadditive measure may be infinite and
the functions may be unbounded, the validity of the monotone convergence in
measure theorem, the Fatou and the reverse Fatou in measure lemmas, and the
dominated convergence in measure theorem of the Choquet integral are fully
characterized by the characteristics of nonadditive measures. Our strategy is
based on suitable distributional convergence theorems, which are convergence
theorems of distribution functions, and the convergence theorems of the Lebesgue
integral. This strategy is also applicable for other convergence theorems such as
the bounded convergence theorem and the Vitali convergence theorem [2,5,7,8],
and for other modes of convergence of functions such as pointwise convergence,
almost everywhere convergence, and almost uniform convergence [3,4,6,9,11,12,
15,16].
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Abstract. A Markov decision process with constraints of coherent risk
measures is discussed. Risk-sensitive expected rewards under utility func-
tions are approximated by weighted average value-at-risks, and risk con-
straints are described by coherent risk measures. In this paper, coherent
risk measures are represented as weighted average value-at-risks with
the best risk spectrum derived from decision maker’s risk averse utility,
and the risk spectrum can inherit the risk averse property of the deci-
sion maker’s utility as weighting. To find risk levels for feasible ranges,
firstly a risk-minimizing problem is discussed by mathematical program-
ming. Next dynamic risk-sensitive reward maximization under risk con-
straints is investigated. Dynamic programming can not be applied to
this dynamic optimization model, and we try other approaches. A few
numerical examples are given to understand the obtained results.

1 Introduction

This paper discusses risk-sensitive decision making which will be useful for artifi-
cial intelligence’s quick and responsible reasoning. Risk management in decision
making is studied by several approaches. One is risk-sensitive expected rewards,
which were introduced by Howard and Matheson [4]. Risk-sensitive expectation
is given by

f−1(E(f(·))), (1)

where f and f−1 are decision maker’s utility function and its inverse function
and E(·) is an expectation. This approach is to estimate risky aspects of states
through utility functions, and it is studied by several authors (Bäuerle and
Rieder [3]). However this criterion (1) with non-linear utility functions f has
complexity regarding computation in general.

Another approach is risk criteria given by risk measures such as value-at-
risks, conditional value-at-risks and so on. Risk measure is one of the most
important concepts in economic theory, financial analysis, asset management,
engineering and so on, and it has been improved from practical aspects as well
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as theoretical researches. The variance was used as a risk measure in decision
processes. Nowadays drastic declines of asset prices are studied, and value-at-
risk (VaR) is used widely to estimate the risk of asset price decline in practical
management. VaR is defined by percentiles at a specified probability, however it
does not have coherency. Coherent risk measures have been studied to improve
the criterion of risks with worst scenarios (Artzner et al. [2]). Several improved
risk measures based on VaR are proposed: for example, conditional value-at-
risks, expected shortfall, entropic value-at-risk (Rockafellar and Uryasev [6],
Tasche [7]). Recently Kusuoka [5] gave a spectral representation for coherent risk
measures. Further Yoshida [10] has introduced a spectral weighted average value-
at-risk as the best coherent risk measure derived from decision maker’s utility
functions. Using this derived coherent risk measure, the risk measure can inherit
the risk averse property of the decision maker’s utility function as risk spectrum
weighting. Yoshida [12] has also applied it to portfolio selection in finance. In
this paper we adopt the spectral weighted average value-at-risks when we esti-
mate a dynamic risk-sensitive rewards under risk constraints given by coherent
risk measures. This paper is a risk-sensitive extension of objective functions in
Yoshida [9], and it also extends the results in Yoshida [11] to dynamic Markov
decision models.

2 Coherent Risk Measure Derived from Risk Averse
Utility

In this section we introduce basic concepts from Yoshida [10]. Let R = (−∞,∞)
and let P be a non-atomic probability on a sample space Ω. Let X be the
family of all integrable real-valued random variables X on Ω with a continuous
distribution function x �→ FX(x) = P (X < x) for which there exists a non-
empty open interval I such that FX(·) : I → (0, 1) is strictly increasing and
onto. Value-at-risk (VaR) at a positive probability p is given by the percentile
of the distribution FX , i.e.

VaRp(X) = sup{x ∈ I | FX(x) ≤ p} = F−1
X (p) (2)

for p ∈ (0, 1) and VaR1(X) = sup I, where F−1
X is the inverse function of FX .

Then average value-at-risk (AVaR) at a positive probability p is given by

AVaRp(X) =
1
p

∫ p

0

VaRq(X) dq. (3)

Definition 1 is introduced to characterize risk measures (Artzner et al. [2]).

Definition 1. A map ρ : X �→ R is called a coherent risk measure if it satisfies
the following (i)–(iv):

(i) ρ(X) ≥ ρ(Y ) for X,Y ∈ X satisfying X ≤ Y (monotonicity).
(ii) ρ(cX) = cρ(X) for X ∈ X and c ∈ R satisfying c ≥ 0 (positive homogene-

ity).
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(iii) ρ(X + c) = ρ(X) − c for X ∈ X and c ∈ R (translation invariance).
(iv) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for X,Y ∈ X (sub-additivity).

It is known in Artzner et al. [2] that −AVaRp(·) is a coherent risk measure
however −VaRp(·) is not coherent because sub-additivity (iv) does not hold.
Conditional value-at-risks and expected shortfall are also famous coherent risk
measures. Now, for a probability p ∈ (0, 1] and a non-increasing right-continuous
function λ on [0, 1] satisfying

∫ 1

0
λ(q) dq = 1, we define a weighted average value-

at-risk with weighting λ on (0, p) by

AVaRλ
p(X) =

∫ p

0

VaRq(X)λ(q) dq

/∫ p

0

λ(q) dq. (4)

Then λ is called a risk spectrum. Hence coherent risk measures are represented
by weighted average value-at-risks with risk spectra (Kusuoka [5], Yoshida [10]).

Lemma 1. Let ρ : X �→ R be a law invariant, comonotonically additive, con-
tinuous coherent risk measure. Then there exists a risk spectrum λ such that

ρ(X) = −AVaRλ
1 (X) (5)

for X ∈ X . Further, −AVaRλ
p is a coherent risk measure on X for p ∈ (0, 1).

In this paper we use a law invariant, comonotonically additive, continuous
coherent risk measure ρ for risk constraints, and we also deal with a case when
value-at-risks are represented as

VaRp(X) = E(X) + κ(p) · σ(X) (6)

with the mean E(X) and the standard deviation σ(X) of random variables
X ∈ X , where κ : (0, 1) �→ (−∞,∞) is an increasing function. We assume there
exists a probability distribution ψ on R × [0,∞) of means E(X) and standard
deviations σ(X) of random variables X ∈ X . From (4) and (6) we have

AVaRλ
p(X) = E(X) + κλ(p) · σ(X), (7)

where κλ(p) =
∫ p

0
κ(q)λ(q) dq

/ ∫ p

0
λ(q) dq. Let f : I �→ R be a C2-class risk

averse utility function satisfying f ′ > 0 and f ′′ ≤ 0 on I, where I is an open
interval. For a probability p ∈ (0, 1] and a random variable X(∈ X ), a non-linear
risk-sensitive form f−1( 1p

∫ p

0
f(VaRq(X)) dq) is an average value-at-risk of X on

the downside (0, p) under the utility f . The following lemma is from Yoshida [10].

Lemma 2. A risk spectrum λ which minimizes the distance between the non-
linear risk-sensitive form and weighted average value-at-risk (4):

∑
X∈X

(
f−1

(
1
p

∫ p

0

f(VaRq(X)) dq

)
− AVaRλ

p(X)
)2

(8)

for p ∈ (0, 1] is given by

λ(p) = e− ∫ 1
p

C(q) dqC(p) (9)

with a component function C in [10] if λ is non-increasing.
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If utility function f is specified, the component function C is given concretely
in Example 2. In Lemma 2 the coherent risk measure −AVaRλ

p has a kind of
semi-linearity such as Definition 1(ii)(iii) and it is useful for computation, and
the risk spectrum λ can also inherit the risk averse property of the non-linear
utility function f as weighting on (0, p). Regarding risk-sensitive rewards, in the
next section we use the risk spectrum λ given in Lemma 2 because −AVaRλ

p is
the best coherent risk measure derived from risk averse utility f .

3 Markov Decision Processes with Risk Constraints

We deal with the following Markov decision process. Let n be a positive integer.
Let a state space be R and let an action space be A = {(x1, x2, · · · , xn) ∈ [0, 1]n |∑n

i=1 xi = 1 and xi ≥ 0(i = 1, 2, · · · , n)}. A positive integer T denotes a terminal
time. Let {Xi

t}T
t=0(⊂ X ) be a reward process for asset i(= 1, 2, · · · , n) such that

Xi
t is independent of the past information Mt−1, which is the σ-field generated

by {Xj
s | s = 0, 1, 2, · · · , t − 1; j = 1, 2, · · · , n}. Then an immediate reward is

Ri
t = Xi

t − Xi
t−1. Hence we put their expectations and covariances respectively

by μi
t = E(Ri

t) and σij
t = E((Ri

t − μi
t))(R

j
t − μj

t )) for i, j = 1, 2, · · · , n. We give
Markov policies by π = {πt}T

t=1 where mappings πt = (π1
t , π2

t , · · · , πn
t ) : Ω �→ A

for t = 1, 2, · · · , T , and then πt is called a strategy. They are chosen depending
only on the current state Xπ

t−1. Put a collection of all Markov policies by Π. For
a Markov policy π = {(π1

t , π2
t , · · · , πn

t )}T
t=1 ∈ Π, a weighted sum of n immediate

rewards and the reward at next time t are given by

Rπ
t =

n∑
i=1

πi
tR

i
t and Xπ

t = Xπ
t−1 + Rπ

t . (10)

The expectation and the standard deviation of immediate reward Rπ
t are respec-

tively

E(Rπ
t ) =

n∑
i=1

πi
tμ

i
t and σ(Rπ

t ) =

√√√√ n∑
i=1

n∑
j=1

πi
tπ

j
t σ

ij
t . (11)

Let ρ be a coherent risk measure in Lemma 1 and let f be a C2-class risk averse
utility functions in the previous section. Let δ be a positive constant. Then we
investigate the following problem.

Problem 1. Maximize the risk-sensitive expected terminal reward

f−1(E(f(Xπ
T ))) (12)

with respect to Markov policies π ∈ Π under risk constraints

ρ(Rπ
t ) ≤ δ (13)

for all t = 1, 2, · · · , T .
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In (12), f−1(E(f(·))) = f−1(
∫ 1

0
VaRq(f(·)) dq) = f−1(

∫ 1

0
f(VaRq(·)) dq) is

approximated, using Lemma 2, by AVaRλ
1 (·) with a risk spectrum λ. Regarding

(13) by Lemma 1 we give a coherent risk measure ρ by ρ = −AVaRν
p with a risk

spectrum ν. Hence we estimate the downside risks on (0, p). Thus we discuss the
following optimization instead of Problem 1.

Problem 2. Maximize the weighted average value-at-risk

AVaRλ
1 (Xπ

T ) (14)

with respect to Markov policies π ∈ Π under risk constraints

− AVaRν
p(Rπ

t ) ≤ δ (15)

for all t = 1, 2, · · · , T .

4 Feasibility of Risk Constraints and Risk-Sensitive
Expected Rewards

Let Πt(δ) be the collection of all Markov policies π ∈ Π satisfying the risk
constraints (15), and let Πt =

⋃
δ>0 Πt(δ). In this section we firstly discuss the

feasibility for risk constraints (15), i.e. Πt(δ) 	= ∅. Fix a probability p ∈ (0, 1)
and time t(= 1, 2, · · · , T ). We investigate the following maximization problem
for AVaRν

p(Rπ
t ) to find the lower bound of −AVaRν

p(Rπ
t ).

Problem 3. Maximize weighted average value-at-risk

AVaRν
p(Rπ

t ) =
n∑

i=1

πi
tμ

i
t + κν(p)

√√√√ n∑
i=1

n∑
j=1

πi
tπ

j
t σ

ij
t (16)

with respect to strategies πt = (π1
t , π2

t , · · · , πn
t ) ∈ Πt.

Let γ ∈ R. Under a constraint

E(Rπ
t ) =

n∑
i=1

πiμi = γ, (17)

Problem 3 is solved by quadratic programming (Yoshida [8]), and then the cor-
responding value (16) is reduced to

γ + κν(p)

√
Atγ2 − 2Btγ + Ct

Δt
, (18)

where

μt =

⎡
⎢⎢⎢⎣

μ1
t

μ2
t
...

μn
t

⎤
⎥⎥⎥⎦ , Σt =

⎡
⎢⎢⎢⎣

σ11
t σ12

t · · · σ1n
t

σ21
t σ22

t · · · σ2n
t

...
...

. . .
...

σn1
t σn2

t · · · σnn
t

⎤
⎥⎥⎥⎦ , 1 =

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ ,
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At = 1TΣ−1
t 1, Bt = 1TΣ−1

t μt, Ct = μT
tΣ

−1
t μt,Δt = AtCt −B2

t and T denotes the
transpose of a vector. If At > 0, Δt > 0 and κν(p) < −√Δt/At are satisfied,
we can easily check the real-valued function (18) of γ is concave and it has the

maximum Bt−
√

Atκν(p)2−Δt

At
at γ = Bt

At
+ Δt

At

√
Atκν(p)2−Δt

. Since supπt∈Πt
(18) =

supγ{supπt∈Πt:
∑n

i=1 πi
tμi

t=γ(18)}, we obtain the following analytical solutions for
Problem 3 (Yoshida [8]).

Lemma 3. Let At > 0, Δt > 0, κν(p) ≤ κλ(1) ≤ 0 and κν(p) < −√Δt/At.
The maximum weighted average value-st-risk in Problem 3 is

Bt −√Atκν(p)2 − Δt

At
(19)

at the expected immediate reward

γ =
Bt

At
+

Δt

At

√
Atκν(p)2 − Δt

. (20)

We define the lower bound of risk values −AVaRν
p(Rπ

t ) by a constant δt(p) =
infπt∈Πt

(−AVaRν
p(Rπ

t )) = − supπt∈Πt
AVaRν

p(Rπ
t ). From Lemma 3, it follows

δt(p) = −Bt

At
+

√
Atκν(p)2 − Δt

At
. (21)

Therefore its feasible range is {δ | Πt(δ) 	= ∅} = [δt(p),∞). Let a risk level
δ ∈ [δt(p),∞). Next we discuss the following optimization at time t.

Problem 4. Maximize the weighted average value-at-risk

AVaRλ
1 (Rπ

t ) = E(Rπ
t ) + κλ(1) · σ(Rπ

t ) (22)

with respect to Markov policies π ∈ Π under risk constraints

AVaRν
p(Rπ

t ) = E(Rπ
t ) + κν(p) · σ(Rπ

t )) ≥ −δ. (23)

Since κλ(1) ≤ 0 and κν(p) < 0, from the viewpoint of (18), Problem 4 is
reduced to the following problem.

Problem 5. Maximize the expected risk-sensitive expected reward

γt + κλ(1)

√
Atγ2

t − 2Btγt + Ct

Δt
(24)

with respect to γt ∈ R under risk constraint

γt + κν(p)

√
Atγ2

t − 2Btγt + Ct

Δt
≥ −δ. (25)
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Hence (25) is equivalent to γt ∈ [γ−
t , γ+

t ], where

γ±
t =

Btκ
ν(p)2 + Δtδ ∓ √

Δtκ
ν(p)

√
Atδ2 + 2Btδ + Ct − κν(p)2

Atκν(p)2 − Δt
. (26)

By solving Problem 5, we obtain the following lemma (Refer to Yoshida [11]).

Theorem 1. Let At and Δt be positive and let κλ(1) and κν(p) satisfy κν(p) ≤
κλ(1) ≤ 0 and κν(p) < −√Δt/At. Then the following (i) and (ii) hold:

(i) The maximum the weighted average value-at-risk, which implies risk-
sensitive expected reward, in Problem 4 is

ϕ◦
t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bt

At
−

√
Atκλ(1)2 − Δt

At
at a reward γ◦

t =
Bt

At
+

Δt

At

√
Atκλ(1)2 − Δt

if δ+t ≤ δ and κλ(1) < −√
Δt/At,

γ+
t − κλ(1)

κν(p)
(δ + γ+

t ) at a reward γ◦
t = γ+

t otherwise,

(27)

where δ+t = −Bt

At
+

Atκ
λ(1)κν(p) − Δt

At

√
Atκλ(1)2 − Δt

.

(ii) Further an optimal strategy is given by

π◦
t = ξ◦

t Σ−1
t 1 + η◦

t Σ−1
t μt, (28)

where ξ◦
t = Ct−Btγ

◦
t

Δt
and η◦

t = Atγ
◦
t −Bt

Δt
, if πt ≥ 0.

5 Dynamic Risk-Sensitive Rewards Under Risk
Constraints

Let a time space T = {1, 2, · · · , T}. In this section we assume At > 0, Δt > 0,
κν(p) ≤ κλ(1) ≤ 0 and κν(p) < −√Δt/At for all t ∈ T. Let the initial state be
a real number Xπ

0 = x0. Then E(X0) = γ0 = x0 and σ(X0)2 = 0. For a Markov
policy π = {πt}T

t=1 ∈ Π, the expectation and the standard deviation of terminal
rewards Xπ

T = x0 +
∑T

t=1 Rπ
t are

E(Xπ
T ) = x0 +

T∑
t=1

(
n∑

i=1

πi
tμ

i
t

)
and σ(Xπ

T ) =

√√√√√
T∑

t=1

⎛
⎝ n∑

i=1

n∑
j=1

πi
tπ

j
t σ

ij
t

⎞
⎠.(29)

In similar approach to Problem 5, Problem 2 is reduced to Problem 6 using (29).

Problem 6. Maximize the risk-sensitive expected reward

Φ(γ1, γ2, · · · γT ) = x0 +
T∑

t=1

γt + κλ(1)

√√√√ T∑
t=1

Atγ2
t − 2Btγt + Ct

Δt
(30)
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with respect to (γ1, γ2, · · · γT ) ∈ R
T under risk constraint

γt ∈ [γ−
t , γ+

t ] (31)

for all t ∈ T = {1, 2, · · · , T}.

It is difficult to solve Problem 6 by dynamic programming because of the form
(30). If T is not large, we can calculate solutions of Problem 6 by multi-parameter
optimization. In the rest of this section, we investigate Problem 6 taking into
account of large T . We can easily check the following lemma.

Lemma 4. Let t ∈ T and constants E,D ∈ R satisfying D ≥ 0. Define a
function

ψ(γ) = E + γ + κλ(1)

√
Atγ2 − 2Btγ + Ct

Δt
+ D (32)

for γ ∈ R. Then the following (i) and (ii) hold:

(i) If κλ(1)2 ≤ Δt/At, then function ψ is non-decreasing on R.
(ii) If κλ(1)2 > Δt/At, then function ψ is concave and it has a maximum at

γ = γD, where

γD =
Bt

At
+

Δt

√
1 + AtD

At

√
Atκλ(1)2 − Δt

. (33)

Further we can obtain the following result from the first-order necessary
condition for optimal solutions in Problem (P6).

Theorem 2. Assume At > 0, Δt > 0, κν(p) ≤ κλ(1) ≤ 0 and κν(p) <
−√Δt/At for all t ∈ T. Let Φ has a maximum at a point (γ∗

1 , γ∗
2 , · · · , γ∗

T ) ∈∏T
t=1[γ

−
t , γ+

t ] in Problem (P6). Then the following (i) and (ii) hold:

(i) There exists a subset T∗ of T = {1, 2, · · · , T} for which (34) and (35) hold:

κλ(1)2 >
∑
t�∈T∗

Δt

At
(34)

and the point (γ∗
1 , γ∗

2 , · · · , γ∗
T ) satisfies

γ∗
t =

⎧⎪⎨
⎪⎩

γ+
t for t ∈ T

∗

Δtθ
∗ + Bt

At
(< γ+

t ) for t 	∈ T
∗,

(35)

where

D∗ =
∑
t∈T∗

At(γ+
t )2 − 2Btγ

+
t + Ct

Δt
and θ∗ =

√∑
t�∈T∗

1
At

+ D∗
√

κλ(1)2 −∑t�∈T∗
Δt

At

. (36)
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(ii) Further an optimal strategy is given by

π∗
t = ξ∗

t Σ−1
t 1 + η∗

t Σ−1
t μt, (37)

where ξ∗
t = Ct−Btγ

∗
t

Δt
and η∗

t = Atγ
∗
t −Bt

Δt
, if πt ≥ 0.

Remark. From (35) in Theorem 2, the point (γ∗
1 , γ∗

2 , · · · , γ∗
T ) is given by γ∗

t =
γ+

t or γ∗
t = Δtθ+Bt

At
. Therefore we need to investigate solutions (35) with 2T

combination, however 2T becomes numerous if T is larger. Hence the following
theorem, which is from Lemma 4 and a sufficient condition ∂Φ

∂γt

∣∣∣
γt=γ+

t

≥ 0 for

all t, brings us easy computation of optimal solutions in Problem (P6) when T
is large.

Theorem 3. Assume At > 0, Δt > 0, κν(p) ≤ κλ(1) ≤ 0 and κν(p) <
−√Δt/At for all t ∈ T. If an inequality condition

κλ(1)2 max
t∈T

(
Atγ

+
t − Bt

Δt

)2

≤
∑
t∈T

At(γ+
t )2 − 2Btγ

+
t + Ct

Δt
(38)

holds, then the optimal solution in Problem (P6) is γ∗
t = γ+

t for all t ∈ T.

Remark. The left term in (38) is bounded upper, however the right term (≥∑
t∈T

1
At

> 0) becomes larger and it goes to infinity as T → ∞. Therefore in
actual cases we can check (38)is satisfied for large T .

6 Numerical Examples

Example 1. Let a domain I = R and let f be a risk neutral utility function
f(x) = ax + b for x ∈ R with constants a(> 0) and b(∈ R). Then its risk
spectrum in Lemma 2 is given by λ(p) = 1. The corresponding weighted average
value-at-risk (5) is reduced to the average value-at-risk (3) and the risk-sensitive
expectation is reduced to the usual expectation: Let κ̂(p) =

∫ p

0
κ(q) dq

/ ∫ p

0
dq =

1
p

∫ p

0
κ(q) dq. Then (7) follows AVaRλ

p(·) = AVaRp(·) = E(·) + κ̂(p) · σ(·) with
κ̂(p) = κλ(p). Hence we note κ̂(1) = 0 in Fig. 2 and f−1(E(f(·))) = AVaRλ

1 (·) =
AVaR1(·) = E(·).
Example 2. Let a domain I = R and let a risk averse exponential utility func-
tion

f(x) =
1 − e−τx

τ
(39)

for x ∈ R with a positive constant τ . Then − f ′′

f ′ = τ is the degree of the absolute
risk averse of decision maker’s utility (39) (Arrow [1]). Figure 1 illustrates utility
functions. Let X be a family of random variables X which have normal distribu-
tion functions, and let G : R → (0, 1) be the cumulative distribution function of
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the standard normal distribution, i.e. G(x) = 1√
2π

∫ x

−∞ e− z2
2 dz for x ∈ R. Define

an increasing function κ : (0, 1) �→ R by its inverse function κ(p) = G−1(p) for
probabilities p ∈ (0, 1). Then we have value-at-risk VaRp(X) = μ + κ(p) · σ for
X ∈ X with mean μ and standard deviation σ. Suppose there exists a distribu-
tion function ψ : R×(0,∞) �→ [0,∞) such that ψ(μ, σ) = φ(μ) · 21−n/2

Γ (n/2) σn−1e− σ2
2

for (μ, σ) ∈ R × [0,∞), where φ(μ) is some probability distribution, Γ (·) is a
gamma function and 21−n/2

Γ (n/2) σn−1e− σ2
2 is a chi distribution with degree of free-

dom n. Let n = 4 be the number of assets. Hence we put the expectations μi
t

and the covariances σij
t of immediate rewards Ri

t(∈ X ) as Table 1. We take a
utility f(x) = 1−e−0.05x

0.05 with τ = 0.05 in (39), and by Lemma 2 there exists a
risk spectrum λ satisfying f−1(E(f(·))) ≈ AVaRλ

1 (·). Then, by Yoshida [10], the
best risk spectrum in Lemma 2 is given by

λ(p) = e− ∫ 1
p

C(q) dqC(p) (40)

for p ∈ (0, 1], where the component function C is given by

C(p) =
1
p

·

∫ ∞

0

(
1 − 1

1
p

∫ p

0
eτσ(κ(p)−κ(q)) dq

)
σne− σ2

2 dσ

∫ ∞

0

log
(

1
p

∫ p

0
eτσ(κ(p)−κ(q)) dq

)
σne− σ2

2 dσ

(41)

with τ = 0.05. From (40) and (41), we have κλ(1) =
∫ 1

0
κ(q)λ(q) dq

/
∫ 1

0
λ(q) dq = −0.03. On the other hand for risk measures ρ we use another

utility g(x) = 1 − e−x with τ = 1 in (39). Then we give a coherent risk mea-
sure ρ by ρ = −AVaRν

p with a risk spectrum ν given by the downside esti-
mate g−1( 1p

∫ p

0
g(VaRq(·)) dq) ≈ AVaRν

p(·). We discuss a case of risk probability
p = 0.05 in the normal distribution, and then similarly we have κν(0.05) =∫ 0.05

0
κ(q) ν(q) dq

/∫ 0.05

0
ν(q) dq = −2.29701. Hence we have At = 13.534 > 0

and Δt = 0.00230221 > 0, and we can easily check κν(0.05) < κλ(1) <
−√Δt/At = −0.0130425. From (25) we also have δt(p) = 0.533748. Therefore
now we take a risk level δ = 1 in the feasible range [0.533748,∞).

Table 1. The expectations μi
t and the covariances σij

t of immediate rewards.

μi
t

i = 1 0.096
i = 2 0.085
i = 3 0.093
i = 4 0.087

σij
t j = 1 j = 2 j = 3 j = 4

i = 1 0.41 −0.08 −0.06 0.05
i = 2 −0.08 0.39 −0.07 0.06
i = 3 −0.06 −0.07 0.38 −0.05
i = 4 0.05 0.06 −0.05 0.37
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Fig. 1. Utility functions f(x). Fig. 2. Functions κ̂(p) and κλ(p)

From Theorem 1, the maximum risk-sensitive reward in Problem 4 is ϕ◦
t =

0.0832788 at the reward γ◦
t = 0.092334 in [γ−

t , γ+
t ] = [0.0855802, 0.0957352] with

an optimal strategy π◦
t = (0.391686, 0.179112, 0.36118, 0.0680223). Here Fig. 3

illustrates the maximum risk-sensitive reward ϕ◦
t and the expected reward γ◦

t for
δ, which are connected at δ+t = 0.600997. We see ϕ◦

t is smaller than γ◦
t because

γ◦
t implies actual expected rewards and the maximum risk-sensitive reward ϕ◦

t

contains decision maker’s risk aversity under his utility.

Fig. 3. Maximum risk-sensitive expected
reward ϕ◦

t and the expected reward γ◦
t .

Fig. 4. Maximum Φ at γ∗
t (T = 1, 2, · · · , 7)

We investigate a dynamic case with a terminal time T in Sect. 5. We need to
find expected rewards γ∗

t in constraint [γ−
t , γ+

t ] = [0.0855802, 0.0957352]. Hence
we have κλ(1)2 = 0.0009 > Δt/At = 0.00017 for all t = 1, 2, · · · , T and κλ(1)2 >∑T

t=1 Δt/At for T = 1, 2, · · · , 5. Now we check solutions for each T .

Case of T ≥ 4: Inequality condition (38) holds since

κλ(1)2 max
t∈T

(
Atγ

+
t − Bt

Δt

)2

= 0.813024 < 0.910218 ≤ T × 0.227555

=
∑
t∈T

At(γ+
t )2 − 2Btγ

+
t + Ct

Δt
.

By Theorem 3 we get the expected reward γ∗
t = γ+

t = 0.0957352 for all
t = 1, 2 · · · , T . Then the maximum risk-sensitive expected reward is Φ =
0.354319, 0.446676, 0.539357, 0.632284 respectively for T = 4, 5, 6, 7.
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Case of T = 3: From (35) and (36), we have T
∗ = ∅, θ∗ = 23.8502 and γ∗

t =
Δtθ

∗+Bt

At
= 0.0946796 < γ+

t = 0.0957352. Therefore we get the maximum
risk-sensitive expected reward Φ = 0.17215 at γ∗

t = 0.0946796 for t = 1, 2, 3.
Case of T = 2: From (35) and (36), we also have T

∗ = ∅, θ∗ = 16.2476 and γ∗
t =

Δtθ
∗+Bt

At
= 0.0933863 < γ+

t = 0.0957352. Therefore we get the maximum
risk-sensitive expected reward Φ = 0.262574 at γ∗

t = 0.0933863 for t = 1, 2.

Finally Fig. 4 illustrates the maximum risk-sensitive expected rewards Φ.

Concluding remark. Maximization of risk-sensitive expected rewards in Prob-
lem 1 is a traditional and famous problem in Markov decision processes. Using
Lemmas 1 and 2, we can incorporate the decision maker’s risk averse attitude
into coherent risk measures as weighting for average value-at-risks, and we apply
it to Problem 1. Once spectra λ in (40) and κλ(p) in Fig. 2 are prepared, we can
obtain solutions in various optimization quickly. The proposed method brings
quick and responsible decision making for artificial intelligence reasoning.
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Abstract. In this paper, inspired by the Zadeh approach to the fuzzy
connectives in fuzzy set theory and by some applications, we introduce
and study set-based extended functions on different universes. After pre-
senting some results for set-based extended functions on a general uni-
verse, we focus our investigation on set-based extended functions on some
particular universes, including lattices and (bounded) chains. A special
attention is devoted to characterization of set-based extended aggrega-
tion functions on the unit interval [0, 1].

Keywords: Aggregation function · Extended aggregation function ·
Extended function · Set-based extended aggregation function ·
Set-based extended function

1 Introduction

Lotfi Zadeh proposed in his seminal paper [13] to use the minimum and maximum
operators for modeling fuzzy intersection and fuzzy union, respectively. This
paper focuses on such kinds of fusion procedures that share with Zadeh’s proposal
a particular property, namely, that these fuzzy connectives can be seen as func-
tions which, for any n,m ∈ N and any input vectors x = (x1, . . . , xn) ∈ [0, 1]n

and z = (z1, . . . , zm) ∈ [0, 1]m such that the sets {x1, . . . , xn} and {z1, . . . , zm}
coincide, provide for input vectors x and z the same output values, i.e.,

Min(x) = Min(z) and Max(x) = Max(z).
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In statistics, for a sample (x1, . . . , xn) several kinds of mean values have been
introduced. For example, the arithmetic mean AM(x) = 1

n

∑n
i=1 xi is the mini-

mizer of the sum of squares
∑n

i=1(xi − a)2 (Least Squares Method). Minimizing
the maximal deviation, i.e., looking for the minimizer of max{|xi − a| | i =
1, . . . , n} leads to the resulting mean M given by

M(x) =
min{x1, . . . , xn} + max{x1, . . . , xn}

2
.

Observe that repeating or rearrangement of observations does not have any
influence on the output of M , i.e., for example, taking a sample

z = (x1, x1, x1, x2, x2, x3, . . . , xn),

we obtain M(z) = M(x).
Inspired by the mentioned observations, and taking into account that in most

fusion problems the number of values to be fused cannot be fixed a priori, in this
paper we will work with extended functions F :

⋃

n∈N

Xn → X, X �= ∅, satisfying,

in addition, the above discussed property. They will be called set-based extended
functions on X (for the definition see below). Evidently, each such set-based
extended function depends on the set {y1, . . . , yk} of values related to the input
vector (x1, . . . , xn), where {x1, . . . , xn} = {y1, . . . , yk} and card({y1, . . . , yk}) =
k. Hence, neither the repetition of arguments to be fused nor their rearrangement
have any influence on the output result.

We will proceed as follows. First, we propose the concept of set-based
extended functions defined for arbitrary but finitely many inputs from some
non-empty universe X, with outputs also from X. In the beginning, we examine
properties of set-based extended functions acting on a general universe X. The
obtained results are contained in Sect. 2. The next section is devoted to the inves-
tigation of set-based extended functions on a (bounded) lattice X. In Sect. 4, X
is considered to be a (bounded) chain. This section also contains a characteri-
zation of set-based extended aggregation functions on X = [0, 1]. Finally, some
concluding remarks are added.

2 Set-Based Extended Functions on a General Universe

Suppose that we classify some products and their samples as good or bad only,
i.e., we deal with the universe X = {g, b}. A function F :

⋃

n∈N

Xn → X assigns

to a sample x = (x1, . . . , xn) ∈ Xn either the value good—if all the inputs
x1, . . . , xn are good, or the value bad—in all other cases. The output value F (x)
depends on the set {x1, . . . , xn} only, namely,

F (x1, . . . , xn) =
{

b if b ∈ {x1, . . . , xn},
g otherwise.
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Moreover, if we add any other inputs y1, . . . , yk, but such that each of them has
already appeared in the original sample, i.e., y1, . . . , yk ∈ {x1, . . . , xn}, then

F (x1, . . . , xn, y1, . . . , yk) = F (x1, . . . , xn).

In what follows, we formalize the above described situation, and define the
notion of set-based extended function on a general universe X. We start by
recalling the notion of extended function on X.

Definition 2.1. Let X �= ∅. Any function F :
⋃

n∈N

Xn → X will be called an

extended function on X.

Extended functions have open arity, i.e., they can work for any finite number
of arguments.

Definition 2.2. Let X �= ∅. A function F :
⋃

n∈N

Xn → X is called a set-

based extended function on X if F (y) = F (x) for any n, k ∈ N and all x =
(x1, . . . , xn) ∈ Xn, y = (y1, . . . , yk) ∈ Xk, such that {x1, . . . , xn} = {y1, . . . , yk}.
Example 2.1. Consider a set X with cardinality card(X) > 2. Let E be a proper
subset of X, and a, b ∈ X, a �= b. Define FE,a,b :

⋃

n∈N

Xn → X by

FE,a,b(x1, . . . , xn) =
{

a if E ∩ {x1, . . . , xn} �= ∅,
b otherwise.

Then FE,a,b is a set-based extended function on X. Note that FE,a,b is associative
if and only if a ∈ E, where the associativity of a function F :

⋃

n∈N

Xn → X means

that
F (x,y) = F (F (x), F (y))

for all x,y ∈ ⋃

n∈N

Xn.

Example 2.1 is an example of a particular case of the construction of set-based
extended functions described in the following proposition.

Proposition 2.1. Let X �= ∅. Let P = {E1, . . . , Ek} be a partition of X and
a1, . . . , ak ∈ X. Define F :

⋃

n∈N

Xn → X by

F (x) = ai, where i = min{j ∈ {1, . . . , k} | {x1, . . . , xn} ∩ Ej �= ∅}. (1)

Then F is a set-based extended function on X.

Example 2.2. Let p ∈ N and X = {1, . . . , p}. Then

– if we consider the partition P = {Ei}p
i=1, where Ei = {i}, and ai = i, then

(1) defines the function Min :
⋃

n∈N

Xn → X given by Min(x1, . . . , xn) =

min{x1, . . . , xn};
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– if P = {Ei}p
i=1, where Ei = {p − i+ 1} and ai = p − i+ 1, then (1) yields the

function Max, Max(x1, . . . , xn) = max{x1, . . . , xn}.

Lemma 2.1. Let X �= ∅ and H(X) = {∅ �= E ⊆ X | E is finite}. Then each
set-based extended function F on X corresponds in a one-to-one correspondence
to a set function G : H(X) → X given, for each E = {x1, . . . , xn} in H(X), by

G(E) = F (x1, . . . , xn).

Clearly, H(X) is the power set of X except the empty set whenever X is
finite.

Note that properties of the set function G : H(X) → X can be transformed
into new kinds of properties of the related set-based extended function F on X,
as is shown in the following example.

Example 2.3. Consider X = N and define G : H(N) → N by G(E) =
∑

i∈E

i.

Obviously, G is monotone non-decreasing, because for all E1, E2 in H(N),
G(E1) ≤ G(E2) whenever E1 ⊆ E2. G is also additive, i.e.,

G(E1 ∪ E2) = G(E1) + G(E2) whenever E1 ∩ E2 = ∅.

The set-based extended function F :
⋃

n∈N

N
n → N corresponding to G, is given by

F (x1, . . . , xn) =
∑

i∈N

i · min

⎧
⎨

⎩
1,

n∑

j=1

1{i}(xj)

⎫
⎬

⎭
,

and is neither monotone non-decreasing nor additive in the standard case,
because, given any n ∈ N, the relation x ≤ y does not imply F (x) ≤ F (y)
for all x,y ∈ N

n, and similarly, the additivity property F( x+y) = F (x)+F (y)
does not hold for all x,y ∈ N

n.
However, F is monotone non-decreasing with respect to the partial order 


on
⋃

n∈N

N
n, defined as follows: for any n, k ∈ N and all x ∈ N

n, y ∈ N
k,

x 
 y whenever n ≤ k and xi = yi for all i ≤ n.

Indeed, then for all x,y ∈ ⋃

n∈N

N
n, if x 
 y then F (x) ≤ F (y).

Similarly, F is concatenation additive, i.e., if {x1, . . . , xn}∩{y1, . . . , yk} = ∅,
then F (x,y) = F (x) + F (y).

We still give another example illustrating Lemma 2.1.

Example 2.4. Consider X = {0, 1}. Then a function F :
⋃

n∈N

{0, 1}n → {0, 1} is

an extended Boolean function. The cardinality of X is card(X) = 2, H(X) =
{{0}, {1}, {0, 1}}, i.e., card(H(X)) = 3, thus there are exactly 23 = 8 set func-
tions Gi : H(X) → {0, 1}, i = 1, . . . , 8. Consequently, there are 8 set-based
extended Boolean functions Fi, where Fi corresponds to Gi by Lemma 2.1. The
results are summarized in Table 1.
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Table 1. Set-based extended Boolean functions

Gi\E {0} {1} {0,1} Fi(x)

G1 0 0 0 0

G2 0 0 1
∨

j,k

|xj − xk|

G3 0 1 0
∧

j

xj

G4 0 1 1
∨

j

xj

G5 1 0 0 1 − F4(x)

G6 1 0 1 1 − F3(x)

G7 1 1 0 1 − F2(x)

G8 1 1 1 1 − F1(x)

Proposition 2.2. Fix X = {1, 2, . . . , k}. Consider a permutation σ : X → X
and a total order 
σ on X determined by σ, given by

x 
σ y if and only if σ−1(x) ≤ σ−1(y).

Let Gσ : H(X) → X, Gσ(E) = min�σ
{x | x ∈ E}. Then the set-based extended

function Fσ :
⋃

n∈N

Xn → X, Fσ(x) = Gσ({x1, . . . , xn}), is symmetric, associa-

tive, and with neutral element e = σ(n), but in general, Fσ need not be monotone.

Recall that e ∈ X is a neutral element of an extended function F on X, if
for all n ∈ N, and all x ∈ Xn, with e = xi for some i ∈ {1, . . . , n}, we have

F (x1, . . . , xi−1, e, xi+1, . . . , xn) = F (x1, . . . , xi−1, xi+1, . . . , xn).

Obviously, in Proposition 2.2, there are k! set-based extended functions Fσ.

Remark 2.1. In Proposition 2.2, if for each x, y ∈ X,

x < y < e ⇒ σ−1(x) < σ−1(y) and x > y > e ⇒ σ−1(x) < σ−1(y),

then Fσ is an idempotent uninorm (and only in that case). There are 2k−1

idempotent uninorms on X.

Note that the previous result for idempotent uninorms was also proved by
Zemánková in [12].

We now summarize some properties related to general set-based functions.

Proposition 2.3. Let X �= ∅. Set-based extended functions on X have the fol-
lowing properties.

(i) Each set-based extended function on X is symmetric.
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(ii) For any function V : Xk → X and any set-based extended functions
F1, . . . , Fk on X, also the composite F = V (F1, . . . , Fk) :

⋃

n∈N

Xn → X

is a set-based extended function on X.
(iii) For any function V : X → X and a any set-based extended function F on

X, also the composites V (F ), F (V ) :
⋃

n∈N

Xn → X, given by

V (F )(x) = V (F (x)) and F (V )(x) = F (V (x1), . . . , V (xn)),

respectively, are set-based extended functions.

Proposition 2.4. Let Xi �= ∅, i = 1, . . . , k, and let X be the Cartesian product
of Xi, X = X1 × · · · × Xk. For any set-based extended functions Fi on Xi,
i = 1, . . . , k, the function F :

⋃

n∈N

Xn → X, defined by

F ((x
(1)
1 , . . . , x

(1)
k ), . . . , (x

(n)
1 , . . . , x

(n)
k )) = (F1(x

(1)
1 , . . . , x

(n)
1 ), . . . , Fk(x

(1)
k , . . . , x

(n)
k )),

is a set-based extended function on X.

The following theorem shows that some algebraic properties of a function
F :

⋃

n∈N

Xn → X already ensure that F is a set-based extended function on X.

Theorem 2.1. Let X �= ∅. Let F :
⋃

n∈N

Xn → X be symmetric, idempotent and

associative. Then F is a set-based extended function on X.

Proof: Let F satisfy the given assumptions. For any n ∈ N and each x =
(x1, . . . , xn) ∈ Xn with card({x1, . . . , xn}) = k, let {x1, . . . , xn} = {y1, . . . , yk}.
Then there is a partition {I1, . . . , Ik} of {x1, . . . , xn} given by

Ii = {j ∈ {1, . . . , n} | xj = yi}.

Then, writing Ii = {ji1, . . . , jimi
}, where mi = card(Ii), we have

F (x) = F (xj11
, . . . , xj1m1

, xj21
, . . . , xj2m2

, . . . , xjk1
, . . . , xjkmk

)

= F (F (xj11
, . . . , xj1m1

), F (xj21
, . . . , xj2m2

), . . . , F (xjk1
, . . . , xjkmk

))

= F (y1, . . . , yk),

where the first equality follows from the symmetry of F , the second one from its
associativity, and the third one follows from the idempotency of F . Obviously,
for all x, z ∈ ⋃

n∈N

Xn, such that {x1, . . . , xn} = {y1, . . . , yk} = {z1, . . . , zm}, we

have F (x) = F (z), and hence F is a set-based extended function on X. �
Note that neither idempotency nor associativity are necessary properties for

being F a set-based extended function, see Example 2.1 and Proposition 2.1.
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3 Set-Based Extended Functions on Lattices

In this section we consider X to be a carrier of a lattice (X,≤). For any fixed
a ∈ X, we define a function Fa :

⋃

n∈N

Xn → X by

Fa(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∨

i

xi if
∨

i

xi < a,
∧

i

xi if
∧

i

xi > a,

a otherwise.

Obviously, Fa is symmetric and idempotent, and its associativity can also be
verified. By Theorem 2.1, Fa is a set-based extended function on X. Moreover,
Fa is monotone non-decreasing, and thus it is an extended aggregation function
on X, see [7] (because of the idempotency of Fa we need not consider X to
be a bounded lattice). Observe that if X is bounded, with top and bottom
elements 1X and 0X , respectively, then F1X

= ∨ is the standard join on X, and
F0X

= ∧ is the standard meet on X. By Theorem 2.1, any idempotent uninorm
F on a bounded (distributive) lattice X [8], is a set-based extended function on
X. Similarly, idempotent nullnorms on bounded lattices, see [9], are set-based
extended functions.

Proposition 3.1. Let (X,≤) be an ordinal sum of lattices (Xi,≤i)i∈I , and let
for any i ∈ I, Fi :

⋃

n∈N

Xn
i → Xi be a set-based extended function on Xi. Define

F :
⋃

n∈N

Xn → X by

F (x1, . . . , xn) = Fi(y1, . . . , yk),

where

i = min{j ∈ I | {x1, . . . , xn} ∩ Xj �= ∅},

k = card({j ∈ {1, . . . , n} | xj ∈ Xi}),
{y1, . . . , yk} = {xj | xj ∈ Xi}.

Then F is a set-based extended function on X. Moreover, F is monotone non-
decreasing if and only if all Fi, i ∈ I, are of that property, and it is idempotent
if and only if all Fi, i ∈ I, are idempotent.

More information on ordinal sum of lattices can be found, e.g., in [3].

4 Set-Based Extended Aggregation Functions on Chains

In this section we consider X to be a (bounded) chain. A total order on X has an
important impact on characterization of monotone set-based extended functions
on X.
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Proposition 4.1. Let X be a chain. Then F :
⋃

n∈N

Xn → X is a monotone non-

decreasing (non-increasing) set-based extended function if and only if for each
x ∈ ⋃

n∈N

Xn we have

F (x) = D(Min(x),Max(x)), (2)

for some monotone non-decreasing (non-increasing) function D : X2 → X.

Proof: It is not difficult to see that representation of F in the form (2) is suffi-
cient for being F a monotone non-decreasing (non-increasing) set-based extended
function on X. We only prove a necessary condition.

Let F be a monotone non-decreasing set-based extended function on a chain
X. As F is symmetric, with no loss of generality, we can only consider elements
x ∈ ⋃

n∈N

Xn such that x1 ≤ · · · ≤ xn. Then x1 = Min(x), xn = Max(x) and we

can write

F (x1, xn) = F (x1, . . . , x1, xn) ≤ F (x1, x2, . . . , xn−1, xn) ≤ F (x1, xn, . . . , xn)
= F (x1, xn), (3)

which yields F (x) = F (Min(x),Max(x)). Putting D = F |X2 , we obtain the
required representation in the form (2). The monotonicity of D follows from
the monotonicity of F . To get the result for a monotone non-increasing F , it is
enough to reverse the inequalities in (3). �

Now we provide a characterization of set-based extended aggregation func-
tions acting on a bounded chain X, in particular on X = [0, 1]. In what follows,
we only recall the notion of extended aggregation function on [0, 1], for more
details on (extended) aggregation functions and their properties we recommend,
e.g., [4,7,10], see also [1,2].

Definition 4.1. A function A :
⋃

n∈N

[0, 1]n → [0, 1] is an extended aggregation

function on [0, 1] if A is monotone non-decreasing and satisfies the boundary
conditions, i.e.,

(i) for all elements 0 = (0, . . . , 0),1 = (1, . . . , 1) ∈ ⋃

n∈N

[0, 1]n, A(0) = 0 and

A(1) = 1;
(ii) for all x,y ∈ ⋃

n∈N

[0, 1]n we have A(x) ≤ A(y) whenever x ≤ y.

Note that for x,y ∈ ⋃

n∈N

[0, 1]n we have x ≤ y if and only if x and y are

n-tuples of the same arity n satisfying xi ≤ yi for each i = 1, . . . , n.
We will also work with n-ary aggregation functions on [0, 1], i.e., functions

A(n) : [0, 1]n → [0, 1]

which satisfy boundary conditions (i) and monotonicity conditions (ii) from Def-
inition 4.1 for a considered fixed n ∈ N. Clearly, given an extended aggregation
function A on [0, 1], the function A(n) = A|[0,1]n

is an n-ary aggregation function.
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Definition 4.2. A function A :
⋃

n∈N

[0, 1]n → [0, 1] is a set-based extended aggre-

gation function if A is an extended aggregation function on [0, 1] satisfying the
set-based property, i.e., for all n, k ∈ N, and all x = (x1, . . . , xn) ∈ [0, 1]n and
y = (y1, . . . , yk) ∈ [0, 1]k, A(y) = A(x) whenever {x1, . . . , xn} = {y1, . . . , yk}.

It can be shown that set-based extended aggregation functions on [0, 1] can
be completely characterized as follows.

Theorem 4.1. Let A :
⋃

n∈N

[0, 1]n → [0, 1] be an extended aggregation function

on [0, 1]. A is a set-based extended aggregation function on [0, 1] if and only if
for all x ∈ ⋃

n∈N

[0, 1]n we have

A(x) = A(Min(x),Max(x)). (4)

For more results on set-based extended aggregation functions on [0, 1],
see [11].

By the previous theorem, set-based extended aggregation functions on [0, 1]
are generated by binary aggregation functions; there is a one-to-one correspon-
dence between the set of all set-based extended aggregation functions and the
set of all symmetric binary aggregation functions. Observe that in the case of
an associative symmetric binary aggregation function A : [0, 1]2 → [0, 1] there
are two possible ways how to extend it into an extended aggregation func-
tion. On the one hand, based on formula (2), one can define the function
A� :

⋃

n∈N

[0, 1]n → [0, 1] by

A�(x) = A(Min(x),Max(x)),

and on the other hand, using the associativity of A, one can define the function
A� :

⋃

n∈N

[0, 1]n → [0, 1] by

A�(x1) = x1, A�(x1, x2) = A(x1, x2),

and for all n ≥ 3,

A�(x1, . . . , xn) = A(A�(x1, . . . , xn−1), xn).

Due to Proposition 2.1, A� = A� if and only if a binary aggregation function
A is idempotent, i.e., A(x, x) = x for all x ∈ [0, 1]. Note that this is, e.g., the
case of idempotent uninorms [6,12], and also the case of idempotent nullnorms
[5] (compare Fa introduced in Sect. 3). As a negative example, consider the stan-

dard product A(x1, x2) = x1x2. Then A�(x1, . . . , xn) =
n∏

i=1

xi is the standard

product, which, if n �= 2, differs from A�(x) = (Min(x)) · Max(x)).
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5 Concluding Remarks

In this paper, we have introduced and discussed set-based extended functions,
which can be seen as a generalization of extended functions F :

⋃

n∈N

Xn → X,

which are symmetric, idempotent and associative. In the case when X is a lat-
tice, the introduced set-based extended functions can be viewed as a particular
generalization of joins, meets, idempotent uninorms and idempotent nullnorms.
In the case of bounded chains, we have shown the existence of a one-to-one cor-
respondence between set-based aggregation functions A and symmetric binary
aggregation functions D given by

A(x) = D(Min(x),Max(x)).

Based on the presented approach, in our future research we intend to solve
how to relate aggregation of input values x1, . . . , xn to aggregation of inputs
x1, . . . , xn, xn+1, . . . , xn+k, where xn+1, . . . , xn+k are some additionally obtained
observations.
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D. Gómez and J. Montero kindly acknowledge the support of the projects TIN205-
66471-P (Government of Spain), S2013/ICE-2845 (State of Madrid) and Complutense
University research group GR3/14-910149. Moreover, the authors thank M. Botur for
inspirative personal discussion.

References

1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for
Practitioners. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
73721-6

2. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-24753-3

3. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence
(1973). Sec. Printing
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Abstract. While Bayesian Confirmation Measures assess the degree to
which an antecedent E supports a conclusion H in a rule E ⇒ H by
means of probabilities, Fuzzy Confirmation Measures evaluate the qual-
ity of fuzzy association rules between the fuzzy antecedent A and fuzzy
consequence B. Fuzzy Confirmation Measures defined in terms of confi-
dence can be compared in different ways, among them symmetry prop-
erties evaluations play an important role. We first focus on symmetry
properties for Fuzzy Confirmation Measures and then on the evaluation
of possible levels of asymmetry. We suggest a way to measure the level
of asymmetry and we also provide some examples to illustrate its possi-
ble use.

Keywords: Fuzzy Association Rules · Fuzzy Confirmation Measures ·
Symmetries · Asymmetry degree

1 Introduction

The fact that a large number of records in a database that possess a (set of)
attribute(s) A, possess also a (set of) attribute(s) B, highlighting a regularity in
the dataset, can be expressed in terms of an association rule A ⇒ B that turns
out to be relevant when exceptions to it are rare (see [1,22]).

The relevance of association rules hidden in a dataset can be evaluated with
the so called interestingness measures; among them two remarkable examples
are support and confidence.

To assess the relevance of association rules, a class of interestingness mea-
sures is the so called family of Bayesian Confirmation Measures (BCMs); since
they were defined in different contexts, many attempts can be found in litera-
ture aimed at understanding which one performs better, in which context and
with respect to which criteria. Some relevant criteria suggested to classify a
BCM as preferable (or not preferable) are symmetry properties as proposed and
discussed, e.g., in [10,12,19,21].
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The notion of Bayesian Confirmation Measure inspired the definition of Fuzzy
Confirmation Measures (FCMs) for fuzzy association rules due to Glass [15]:
while in the case of crisp association rules a record can possess or not an attribute,
fuzzy association rules allow a record to possess an attribute with a certain
degree. Rules become in this case much more flexible in describing information
hidden in the data and new interestingness measures can be defined in order to
assess their relevance. This implies, in particular, a new definition of support
and of confidence of the association rule. Besides Fuzzy Confirmation Measures,
Glass also introduces symmetry properties for Fuzzy Confirmation Measures,
suggesting which of them should be considered as desirable and which should not.

In this paper we will further discuss symmetry properties for Fuzzy Con-
firmation Measures, expanding the set of symmetries to be considered and, for
measures that are not symmetric, providing a way to measure the degree of their
asymmetry.

We will recall in Sect. 2 the definitions of Bayesian and of Fuzzy Confirmation
Measures, furthermore some new FCMs will be proposed. Symmetry properties
will be presented and studied in Sect. 3, while in Sect. 4 we will suggest a way
to evaluate the degree of asymmetry of FCMs, providing some examples of its
computation. Concluding remarks are presented in Sect. 5.

2 Bayesian and Fuzzy Confirmation Measures

As mentioned, Bayesian Confirmation Measures (BCMs) are interestingness
measures aimed at evaluating the degree to which an antecedent E supports
or contradicts the conclusion H, using prior probability Pr(H), posterior prob-
ability Pr(H|E) and Pr(E), the probability of antecedent E. The emerging of
antecedent E may change the knowledge about the occurrence of H, since con-
clusion H may be confirmed when Pr(H|E) > Pr(H), or disconfirmed when
Pr(H|E) < Pr(H). This way, it is natural to define a measure of confirmation
as follows (see, e.g., [11,14]).

Definition 1. A function c of antecedent E and conclusion H, is a Bayesian
Confirmation Measure (BCM) when

c(E,H) > 0 if Pr(H|E) > Pr(H) (confirmation case)
c(E,H) = 0 if Pr(H|E) = Pr(H) (neutrality case)
c(E,H) < 0 if Pr(H|E) < Pr(H) (disconfirmation case)

Very well-known BCMs are, e.g.,

d(E,H) = Pr(H|E) − Pr(H) K(E,H) =
Pr(E|H) − Pr(E|¬H)
Pr(E|H) + Pr(E|¬H)

(1)

defined by Carnap in [3] and by Kemeny and Oppenheim in [23], respectively.
If a BCM evaluates the degree to which an antecedent E supports or contra-

dicts the hypothesis H, its fuzzy counterpart, i.e. a Fuzzy Confirmation Measure
(FCM), is required to weigh the strength of a fuzzy association rule A ⇒ B,
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namely a rule for which a record admitting a fuzzy antecedent A also has fuzzy
consequence B (see Glass in [15]). Before recalling the definition of a FCM it is
necessary to fix the notion of confidence of a fuzzy association rule.

Given a set of records X = {x1, x2, . . . , xn} and a set A of attributes, each
attribute Ai (i = 1, . . . , m) in A can be represented as a fuzzy set defined by a
membership function Ai : X → [0, 1], where Ai(xj) denotes the degree to which
the ith attribute Ai applies to record xj . Similarly, the standard negator n(Ai) :
X → [0, 1] defined by n(Ai(xj)) = 1 − Ai(xj) identifies the fuzzy complement
set n(Ai) of the fuzzy set Ai.

This way, given the set F of all the fuzzy sets in X, a fuzzy association rule
A⇒B between rule antecedent A and rule consequence B, where A,B ∈ F , can
be evaluated by measures like support (supp) and confidence (conf ):

supp(A⇒B) =
∑

x∈X A(x) ⊗ B(x)
|X| conf(A⇒B) =

∑
x∈X A(x) ⊗ B(x)
∑

x∈X A(x)

where ⊗ denotes a t-norm used to define the intersection of fuzzy sets (see [15])1.
It is precisely the definition of confidence for the fuzzy association rule A⇒B

that is used in [15] to propose a definition of Fuzzy Confirmation Measure.
Since in the crisp case the confidence measure can be considered as an esti-

mate of the conditional probability Pr(B|A), based on the relative frequency
of B given A, in [15] Glass considers conf(A ⇒ B) as the fuzzy counterpart of
Pr(B|A) and the confidence of the default rule T ⇒ A as the fuzzy counterpart
of the estimate of Pr(A)2.

In the Bayesian confirmation setting the fact that the antecedent E con-
firms the conclusion H can be equivalently expressed by one of the following
inequalities (see e.g. [24])

a. Pr(H|E) > Pr(H)
b. Pr(H|E) > Pr(H|¬E)
c. Pr(E|H) > Pr(E)
d. Pr(E|H) > Pr(E|¬H).

These conditions constitute different perspectives of confirmation (Bayesian
confirmation, strong Bayesian confirmation, likelihoodist confirmation and strong
likelihoodist confirmation, respectively, see [22]) with different philosophical
motivations. Nevertheless, from the logical point of view, those perspectives are
equivalent (provided they do not lead to undefined values). It is with reference
to this aspect that the idea of considering confidence as the fuzzy counterpart
of probability requires some caution. In fact, the choice of the t-norm used to
define the confidence conf(A⇒B) has a direct impact on the equivalence among
the fuzzy counterparts of the four above defined perspectives:

a. conf(A⇒B) > conf(T ⇒B)
1 Throughout the paper, the formulas are assumed to be well defined, i.e. we assume

as granted that denominators do not vanish.
2 Here T is the totally true constant, that is T (x) = 1 ∀x ∈ X.
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b. conf(A⇒B) > conf(n(A) ⇒B)
c. conf(B⇒A) > conf(T ⇒A)
d. conf(B⇒A) > conf(n(B)⇒A)

provided conf(T ⇒A) and conf(T ⇒B) are neither 0 nor 1.
In particular, the equivalence among inequalities conf(A ⇒ B) > conf(T ⇒

B) and conf(B⇒A) > conf(T ⇒A) is verified by fuzzy confidence measures that
satisfy weak dependence (see [15]). If in addition also conf(A⇒B) > conf(T ⇒
B) is equivalent to conf(A⇒B) > conf(n(A) ⇒B), the fuzzy confidence mea-
sure is said to satisfy strong dependence. The use of the product t-norm ensures
weak and strong dependence: it was therefore chosen by Glass to set the defini-
tion of a Fuzzy Confirmation Measure.

Definition 2. A Fuzzy Confirmation Measure of the degree to which a fuzzy set
A confirms a fuzzy set B is a function cf : F × F → IR that satisfies:

(i) cf (A,B) > 0 if conf(A⇒B) > conf(n(A) ⇒B) (confirmation case)
(ii) cf (A,B) = 0 if conf(A⇒B) = conf(n(A) ⇒B) (neutrality case)
(iii) cf (A,B) < 0 if conf(A⇒B) < conf(n(A) ⇒B) (disconfirmation case)

where conf is the product based fuzzy confidence measure

conf(A⇒B) =
∑

x∈X A(x) · B(x)
∑

x∈X A(x)
.

In the following we assume that conf(A ⇒ B) is defined by means of the
product t-norm. Fuzzy Confirmation Measures can be obtained by adapting the
analogous Bayesian confirmation measures to the fuzzy environment [15]:

d(A,B) = conf(A⇒B) − conf(T ⇒B) (2)

whose corresponding BCM was defined by Carnap [3],

G(A,B) = log
[

conf(B⇒A)
conf(n(B)⇒A)

]

(3)

which recalls the BCM proposed by Good [18],

K(A,B) =
conf(B⇒A) − conf(n(B)⇒A)
conf(B⇒A) + conf(n(B)⇒A)

(4)

which corresponds to the BCM defined by Kemeny and Oppenheim [23], and

Z(A,B) =

⎧
⎪⎪⎨

⎪⎪⎩

Z1(A,B) =
conf(A⇒B) − conf(T ⇒B)

1 − conf(T ⇒B)
in case of confirmation

Z2(A,B) =
conf(A⇒B) − conf(T ⇒B)

conf(T ⇒B)
otherwise.

(5)
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The last measure, Z, was defined in the BCM framework by Rescher [27] and
further analysed in [11] and [20]. Remark that, besides d and Z, with the help
of some algebraic manipulation also G and K can be expressed in terms of
conf(T ⇒B) and conf(A⇒B) only.

The FCMs that can be written as functions of conf(A ⇒ B) and conf(T ⇒
B) only, constitute a special class of FCMs, let’us call them IFC (Initial Final
Confidence) Fuzzy Confirmation Measures.3 In order to provide a set of FCMs
to be used as guinea pigs in the next sessions, we add some FCMs that are not
necessarily IFC Fuzzy Confirmation Measures.

A first example of a not-IFC Fuzzy Confirmation Measure is

b(A,B) = [conf(A⇒B) − conf(T ⇒B)]conf(T ⇒A) , (6)

proposed in [15], in which a third variable, namely conf(T ⇒ A), needs to be
considered in the definition.

Other examples of not-IFC measures are

M(A,B) = conf(B⇒A) − conf(T ⇒A) (7)

and
N(A,B) = conf(B⇒A) − conf(n(B)⇒A) (8)

which correspond in the BCM framework to the measures M(E,H) and N(E,H)
proposed in [25] and [26]. The measures M and N cannot be rewritten using only
conf(A⇒B) and conf(T ⇒B), but can be formulated in terms of conf(A⇒B),
conf(T ⇒B) and conf(T ⇒A) as

M(A,B) = conf(T ⇒A)
conf(A⇒B) − conf(T ⇒B)

conf(T ⇒B)

and

N(A,B) = conf(T ⇒A)
conf(A⇒B) − conf(T ⇒B)

conf(T ⇒B)(1 − conf(T ⇒B))
.

Further fuzzy measures can be defined referring to other BCMs (for the corre-
sponding measures in the BCM setting, see [9,13,22,28]):

F (A,B) = [conf(A⇒B) − conf(T ⇒B)]/conf(T ⇒B) (9)

C(A,B) =
conf(A⇒B)conf(T ⇒A) + conf(n(A)⇒n(B))conf(T ⇒n(A)

1 − conf(T ⇒A)conf(T ⇒B) − conf(T ⇒n(A))conf(T ⇒n(B))

− conf(T ⇒A)conf(T ⇒B) + conf(T ⇒n(A))conf(T ⇒n(B))
1 − conf(T ⇒A)conf(T ⇒B) − conf(T ⇒n(A))conf(T ⇒n(B))

(10)
R(A,B) = [conf(T ⇒n(B)) − conf(A⇒n(B))]/conf(T ⇒n(B)) (11)

Gr(A,B) =
√

conf(B⇒A) −
√

conf(T ⇒A) (12)
3 The IFC definition recalls the analogous class of BCMs that can be written as func-

tions of Pr(H|E) and Pr(H) only, which are called IFPD (Initial Final Probability
Dependence) confirmation measures [11].
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Theorem 1. The measures C(A,B), F (A,B), Gr(A,B), M(A,B), N(A,B)
and R(A,B) are Fuzzy Confirmation Measures.

Proof. We present the proof for the measure M(A,B).
By definition, M(A,B) > 0 if and only if

conf(B⇒A) > conf(T ⇒A)

that is, by weak dependence property which is satisfied by the product-based
confidence measure conf , if and only if

conf(A⇒B) > conf(T ⇒B).

Moreover, by strong dependence definition proposed in [15] and the assumption
of product t-norm in the definition of conf , the previous inequality is satisfied if
and only if

conf(A⇒B) > conf(n(A) ⇒B).

Therefore the measure M satisfies the sign condition which is required in the case
of confirmation. Analogous observations can be used to prove the sign conditions
for the case of neutrality and of disconfirmation.

��

3 Symmetries

Symmetry properties of confirmation measures have been widely studied in the
literature (see, e.g., [20] and [17]), discussing on the reasons why some of them
should be required while some other ones should be considered as undesirable.
The main symmetry properties have been introduced in [3] and then investigated
in [19]. In [10] the list of symmetry properties has been extended to the set
specified in the following definition4.

Definition 3. A confirmation measure c(E,H) satisfies

Evidence Symmetry (ES) if c(E,H) = −c(¬E,H);
Hypothesis Symmetry (HS) if c(E,H) = −c(E,¬H);
Evidence Hypothesis Symmetry (EHS) if c(E,H) = c(¬E,¬H);
Inversion Symmetry (IS) if c(E,H) = c(H,E);
Evidence Inversion Symmetry (EIS) if c(E,H) = −c(H,¬E);
Hypothesis Inversion Symmetry (HIS) if c(E,H) = −c(¬H,E);
Evidence Hypothesis Inversion Symmetry (EHIS) if c(E,H) =
c(¬H,¬E).

4 Inversion Symmetry (IS) is also called Commutativity Symmetry (see e.g. [12]).
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Let us observe that adding to the set of the symmetries listed in
Definition 3 the trivial symmetry c(E,H) = c(E,H), the set can be seen as
a group isomorphic to the dihedral group D8 (see [2,6,30]). As a consequence,
symmetry properties are related; for example, if ES and IS are satisfied then
also EIS holds.

As mentioned, several authors have analyzed the desirability and, conversely,
the undesirability of symmetry properties of confirmation measures. Among
them, Eells and Fitelson [12] and Glass [16] stated that an acceptable measure
should not exhibit symmetries ES, EHS and IS while HS represents the only
desirable property in the context of probabilistic confirmation measures and in
the context of association rule strength. Note that EHIS, EIS and HIS sym-
metries have not been considered and that those Authors implicitly assert that
the measures that solely satisfy HS are acceptable. Carnap’s d is an example of
an acceptable confirmation measure in Eells and Fitelson’s framework. Crupi et
al. [10] widened the set of the symmetries and distinguished the cases of confir-
mation and disconfirmation in their analysis. They considered as desirable only
HS, HIS and EHIS in case of confirmation and only HS, EIS and IS in case
of disconfirmation, while all other symmetries were be considered undesirable.
Rescher’s Z, defined in [27], is an example of BCM that meets all the symme-
try requirements considered desirable in [10]. Observe that, again, only HS was
considered a desirable symmetry in both confirmation/disconfirmation cases.

In the field of rule interestingness, Greco et al. [21] considered ES, EHS
and HS as desirable properties, while they classified as undesirable all the other
symmetry properties. This way, a good measure appears to be, for example,
Nozick’s confirmation measure N(E,H) = Pr(E|H) − Pr(E|¬H) [26].

Given that, depending on the context, different symmetry properties are
considered as desirable, it is interesting to study which of them can coexist: this
has been addressed in [6,8,30].

In the framework of fuzzy association rules, the same set of symmetry prop-
erties of Definition 3 can be expressed in terms of the fuzzy sets A, n(A), B and
n(B).

Definition 4. A Fuzzy Confirmation Measure cf (A,B) satisfies

Evidence Symmetry (ES) if cf (A,B) = −cf (n(A), B);
Hypothesis Symmetry (HS) if cf (A,B) = −cf (A,n(B));
Evidence Hypothesis Symmetry (EHS) if cf (A,B) = cf (n(A), n(B));
Inversion Symmetry (IS) if cf (A,B) = cf (B,A);
Evidence Inversion Symmetry (EIS) if cf (A,B) = −cf (B,n(A));
Hypothesis Inversion Symmetry (HIS) if cf (A,B) = −cf (n(B), A);
Evidence Hypothesis Inversion Symmetry (EHIS) if cf (A,B) =
cf (n(B), n(A)).

In Table 1 we list all the symmetry properties satisfied by the FCMs consid-
ered in Sect. 2, either proposed by Glass or introduced in this paper for the first
time (those properties can be deduced using Theorem 3 in [15] and Proposition
3 in [6]).
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Table 1. Symmetries of some FCMs

FCM ES HS EHS IS EIS HIS EHIS

b(A, B) Yes Yes Yes Yes Yes Yes Yes

C(A, B) No No Yes Yes No No Yes

d(A, B) No Yes No No No No No

F (A, B) No No No Yes No No No

G(A, B) No Yes No No No No No

Gr(A, B) No No No No No No No

K(A, B) No Yes No No No No No

M(A, B) Yes No No No No No No

N(A, B) Yes Yes Yes No No No No

R(A, B) No No No No No No Yes

Z(A, B) No Yes No No No No No

The symmetry properties in Definition 4 are provided in terms of the fuzzy
sets A and B and their negations n(A) and n(B), respectively, but can also be
expressed in terms of the confidence measures which are involved in the definition
of a Fuzzy Confirmation Measure (see [4] and [5] for the analysis presented in
the BCM setting). More precisely, if we define

α = conf(T ⇒A), β = conf(T ⇒B), γ = conf(A⇒B)

where conf is the product based fuzzy confidence measure, it is possible to
express in terms of α, β, γ all the above defined symmetries.
For example, if we consider symmetry HS, i.e.,

cf (A,B) = −cf (A,n(B))

we can rewrite HS as

cf (conf(T ⇒A), conf(T ⇒B), conf(A⇒B))
= −cf (conf(T ⇒A), conf(T ⇒n(B)), conf(A⇒n(B)))

and, since conf(T ⇒n(B)) = 1 − conf(T ⇒B), also as

cf (conf(T ⇒A), conf(T ⇒B), conf(A⇒B))
= −cf (conf(T ⇒A), 1 − conf(T ⇒B), 1 − conf(A⇒B))

that is, cf (α, β, γ) = −cf (α, 1 − β, 1 − γ). Similar algebraic manipulations allow
to rewrite each symmetry property of a FCM in terms of α, β and γ, as reported
in Table 2.

4 Lack of Symmetry and Degree of Asymmetry

Confirmation measures may satisfy a symmetry property or even combinations
of symmetry properties, but we focus now on symmetry properties that a confir-
mation measure does not meet: how far is the measure from satisfying them? For
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Table 2. Symmetries in the (α, β, γ) setting

Symmetry Definition Expression in terms of α, β, γ

ES cf (A, B) = −cf (n(A), B) cf (α, β, γ) = −cf (1− α, β, (β − αγ)/(1− α))

HS cf (A, B) = −cf (A, n(B)) cf (α, β, γ) = −cf (α, 1− β, 1− γ)

EHS cf (A, B) = cf (n(A), n(B)) cf (α, β, γ) = cf (1− α, 1− β, 1− (β − αγ)/(1− α))

IS cf (A, B) = cf (B, A) cf (α, β, γ) = cf (β, α, αγ/β)

EIS cf (A, B) = −cf (B, n(A)) cf (α, β, γ) = −cf (β, 1− α, 1− αγ/β)

HIS cf (A, B) = −cf (n(B), A) cf (α, β, γ) = −cf (1− β, α, (1− γ)α/(1− β))

EHIS cf (A, B) = cf (n(B), n(A)) cf (α, β, γ) = cf (1− β, 1− α, 1− (1− γ)α/(1− β))

example, C(A,B) and F (A,B) both satisfy property IS, but neither of them
satisfies HS: how far are the two measures from satisfying it? Is their lack of
symmetry comparable? In other terms, we want to define a degree of asymmetry
of a confirmation measure, with respect to a given symmetry.

Let us consider, as an example, HS symmetry, since a FCM cf fulfills Hypoth-
esis Symmetry if

cf (α, β, γ) = c̃f (α, β, γ) ∀α, β, γ

with c̃f (α, β, γ) = −cf (α, 1−β, 1−γ), when the condition is not satisfied, we can
evaluate the degree of asymmetry considering how much the values of cf (α, β, γ)
are far from c̃f (α, β, γ), as α, β, γ vary.

More in general, a Fuzzy Confirmation Measure cf satisfies symmetry S, with
S ∈ {ES,HS,EHS, IS,EIS,HIS,EHS}, if

cf (α, β, γ) = c̃f (α, β, γ) (13)

and c̃f (α, β, γ) is a suitably defined function, which depends on both the chosen
symmetry S and the Fuzzy Confirmation Measure cf under consideration; the
functions c̃f to be considered in each symmetry are reported in the right hand
side term of the last column of Table 2. Accordingly, when condition (13) is not
satisfied, cf will be called S-asymmetric (or, asymmetric with respect to S).

To evaluate the degree of asymmetry of a FCM we first introduce an order of
asymmetry (see [7]), which will be used in the definition of asymmetry measure
(Definition 6) to avoid the possibility of facing two FCMs which, with respect
to the same symmetry S, are inversely ordered by different asymmetry mea-
sures [29].

Definition 5. A Fuzzy Confirmation Measure cf1 is called to be less
S-asymmetric than a Fuzzy Confirmation Measure cf2 , written cf1	Sacf2 , if

|cf1(α, β, γ) − c̃f1(α, β, γ)|
|cf1(α, β, γ)| ≤ |cf2(α, β, γ) − c̃f2(α, β, γ|

|cf2(α, β, γ)|
for each (α, β, γ).
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Observe that 	Sa is a preorder, that is the relation is reflexive and tran-
sitive. Note that it is not antisymmetric: in fact, if we consider, for example,
the FCMs C(A,B) and F (A,B) satisfying Inversion Symmetry, this implies
that C(α, β, γ) − C̃(α, β, γ) = 0 = F (α, β, γ) − F̃ (α, β, γ), that is C	ISaF and
F	ISaC when IS is considered, but the two FCMs are different.

Finally, we can propose a general definition of asymmetry measure which is
compatible with the preorder.

Definition 6. A measure of S-asymmetry is a function μSa that satisfies the
following conditions:

1. μSa(cf ) = 0 if and only if cf is S-symmetric;
2. if cf1	Sacf2 then μSa(cf1) ≤ μSa(cf2).

Let us consider the Lp-norm of function cf (x, y, z)−c̃f (x, y, z) as a measure of
the distance among cf and c̃f . More precisely we propose the set of S-asymmetry
measures defined as:

μSa
p(cf ) =

‖cf − c̃f‖p
‖cf‖p

(14)

where ‖ · ‖p denotes the Lp-norm, p ∈ [1,∞], and ‖cf‖p is used to allow compar-
isons of the asymmetry measures μSa among different FCM functions.

The proposed measures μSa
p are clearly compatible with the partial order

	Sa as required in Definition 6.
Observe that different choices of p allow to emphasize different kinds of

S-asymmetries: for example, when p = 1 attention is put on the average degree of
S-asymmetry, while p = ∞ drives the focus on the maximal degree of asymmetry
that can be attained on single points.

As an example, considering the measures C and F , and the L1-norm, we can
compare them with respect to the Hypothesis Symmetry; we obtain5

μHSa
1(C) = 0, 33206841 μHSa

1(F ) = 1, 07571540

by which the lack of HS is highlighted; moreover, it is possible to compare their
degree of asymmetry and claim that C	HSaF .

Roughly speaking, since HS is considered as a desirable property (e.g., in
[15]), C could be considered preferable to F if one of the two measures has to be
chosen. If instead we consider ES, which is considered as undesirable by some
Authors, F performs better than C given that

μESa
1(C) = 0, 33206841 μESa

1(F ) = 0, 80840290

from which the suggestion is, instead, to choose F since C	ESaF .

5 Asymmetry degree computations were performed with Wolfram’s software Mathe-
matica (version 11.0.1.0).
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5 Conclusions

The large number of Bayesian Confirmation Measures available in the literature
suggest possible definitions of associated FCMs. As with the BCMs, symmetry
properties may help in identifying the FCMs which are more apt to be chosen
in different contexts. In this paper we extended the set of symmetry properties
for FCMs, which was proposed by Glass [15]. Moreover, we focused on suitable
measures of the asymmetry of FCMs. We provided some preliminary numerical
computations that highlight the possible different levels of asymmetry displayed
by a FCM when symmetry properties are checked. It is therefore possible to
observe how close a FCM is in meeting a symmetry property which is considered
as desirable or how far it is in meeting a undesirable symmetry property.
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(eds.) MDAI 2016. LNCS (LNAI), vol. 9880, pp. 114–125. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45656-0 10

6. Celotto, E., Ellero, A., Ferretti, P.: Coexistence of symmetry properties for
Bayesian confirmation measures. 17/WP/2018, Department of Economics, Uni-
versity Ca’ Foscari Venezia, pp. 1–14 (2018). ISSN 1827–3580

7. Celotto, E., Ellero, A., Ferretti, P.: Asymmetry degree as a tool for comparing
interestingness measures in decision making: the case of Bayesian confirmation
measures. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.)
WIRN 2017 2017. SIST, vol. 102, pp. 289–298. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-95098-3 26

8. Celotto, E., Ellero, A., Ferretti, P.: Concurrent symmetries of Bayesian confirma-
tion measures: a new perspective (2019, submitted)

9. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20(1), 37–46 (1960)

10. Crupi, V., Tentori, K., Gonzalez, M.: On Bayesian measures of evidential support:
theoretical and empirical issues. Philos. Sci. 74(2), 229–252 (2007)

11. Crupi, V., Festa, R., Buttasi, C.: Towards a grammar of Bayesian confirmation.
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19. Greco, S., Pawlak, Z., S�lowiński, R.: Can Bayesian confirmation measures be useful

for rough set decision rules? Eng. Appl. Artif. Intell. 17(4), 345–361 (2004)
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Abstract. Nowadays, big volumes of User-Generated Content (UGC)
spread across various kinds of social media. In microblogging, UCG can
be generated in the form of ‘newsworthy’ posts, i.e., related to infor-
mation that has a public utility for the people. In this context, being
the UGC diffused without almost any traditional form of trusted exter-
nal control, the possibility of incurring in possible fake news is far from
remote. For this reason, several approaches for fake news detection in
microblogging have been proposed up to now, mostly based on machine
learning techniques. In this paper, an ongoing work based on the use of
the Multi-Criteria Decision Making (MCDM) paradigm to detect fake
news is proposed. The aim is to reduce data dependency in building the
model, and to have flexible control over the choices behind the fake news
detection process.

Keywords: Credibility · Fake news · Social media ·
User-Generated Content · Multi-Criteria Decision Making ·
Aggregation operators

1 Introduction

In the Web 2.0 era, the interaction between users is promoted by a number of
social media that facilitate the establishment of multiple social relationships [3],
and the diffusion of information in the form of User-Generated Content (UGC).
In most cases, UGC is referred to personal information, comments, interests
that users share within the virtual community they are involved in, for reasons
that are connected to their emotional sphere. These contents, namely conver-
sation posts, usually have an interest only for friends, or people sharing for
example the same interests, of the person who generated the content. In other
cases, however, contents that are of more general interest can be diffused, the
so-called newsworthy or news posts. In the Social Web scenario, news posts are
diffused in particular by microblogging platforms, such as Twitter,1 and the Chi-
nese Sina Weibo,2 where millions of users act as real-time news diffusers [15].
1 https://twitter.com.
2 https://weibo.com.
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It is clear how, in a context where traditional intermediaries have disappeared,
through the phenomenon of ‘disintermediation’ that characterizes social media,
the possibility of incurring in fake news is always higher. Due to the social conse-
quences that relying on fake news can have (think, for example, of the possibility
of directing political elections, or of spreading conspiracy theories at the level
of public opinion) several approaches have been proposed in the last years to
combat this phenomenon [7,24].

Some methods are based on Machine Learning (ML) (mostly supervised)
algorithms to classify news based on their credibility. Other methods are based
on the propagation of initial credibility values, usually learned from a classifier.
Although both types of approaches have proved to be effective, they present
some open issues. On the one hand, the issues are related to the (possible)
inscrutability of some of the ML algorithms used for fake news detection and
to the difficulty of gathering suitable and unbiased labeled training data for
supervised solutions [14]; on the other hand, to the need of correctly identifying
the credibility values associated with news to be propagated.

In this paper, the focus is on a classification-based approach relying on the
Multi-Criteria Decision Making (MCDM) paradigm, and on the proposal, in
particular, of a numerical solution based on aggregation operators guided by
linguistic quantifiers. The proposed approach tackles the open issues related
to data-driven approaches for fake news detection, by giving to users flexible
control over the classification process, and less dependency on the available data
in building the model.

To illustrate the approach and for evaluation purposes, the proposed MCDM
solution has been instantiated over the CREDBANK dataset,3 constituted by
microblogging posts gathered from Twitter; nonetheless, it can be generalized to
other microblogging sites, and, potentially, to other kinds of social media [23].

2 Related Work

Several approaches have been proposed in the last years for detecting fake news
in microblogging sites. Among the works in the literature, some of them have
considered as an information unit (to be evaluated in terms of credibility) a single
post (e.g., a tweet); other works have considered a thread (e.g., a set of tweets on
the same topic) that represents a single news event. As previously introduced,
these approaches belong to two main categories, namely (i) classification-based,
and (ii) propagation-based. Approaches belonging to the first category are based
on the use of machine learning algorithms (mostly supervised) that consider
multiple features connected to both users and the content they generated. In the
second category fall those approaches that, starting from given credibility values
(usually learned from a classifier) are based on their propagation over the social
network structure [13,15,27]. In this paper, a solution that is alternative to ML
classification-based approaches is considered; for this reason, in the following,
only the main approaches belonging to the first category will be detailed.
3 https://github.com/compsocial/CREDBANK-data.

https://github.com/compsocial/CREDBANK-data
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Castillo et al. [4,5] were among the first to tackle in a structured way the
problem of information credibility on microblogging sites, Twitter in particular,
by using classification-based approaches. The authors focus on automatic meth-
ods for assessing the credibility of a given ‘time-sensitive’ set of tweets, i.e., a
trending topic. Specifically, they analyze tweets related to trending topics, and
they classify these topics as credible or not credible based on multiple features
extracted from tweets and their authors. In [5], in particular, the authors extend
the model presented in [4], and evaluate it on the scenario of the use of Twitter
during a crisis event. The approaches are based on the use of Bayesian meth-
ods, Logistic Regression, J48, Random Forests, and Meta Learning based on
clustering, trained over labeled data obtained using crowdsourcing tools.

Other classification-based approaches (mostly supervised) are those described
in [9,11,12,16], each of which proposes different features, machine learning algo-
rithms and evaluation datasets, depending on the considered problem, i.e., the
assessment of the credibility of target-topics in Twitter [16], the identification of
credible tweets during high impact events [12], the detection of spammers [11]
and troll profiles [9] in microblogging sites. With respect to the above-mentioned
approaches, the recent work by Buntain and Golbeck described in [2] aims at
considering a large set of credibility features, which are employed to automat-
ically identify fake news in Twitter threads. Their model is trained over large-
scale labeled datasets, CREDBANK in particular [20], which is a set of Twitter
threads about news events labeled with crowdsourced credibility assessments.

Despite their effectiveness, the above-described approaches present some
open issues related to the possible inscrutability of some of the machine learning
algorithms employed and to their data dependency in training the models. To
tackle these issues, in the next section a classification-based approach focusing
on Multi-Criteria Decision Making is described. It represents a solution aimed at
demonstrating the comparable effectiveness of the model-driven paradigm with
respect to the data-driven one in the considered research context.

3 MCDM and Aggregation Operators

In a Multi-Criteria Decision Making (MCDM) problem, there are usually a set
of candidate solutions, i.e., alternatives that are available to a decision maker
(DM), multiple criteria, which are satisfied in a different way by each alterna-
tive, and different importance weights associated with each criterion. Solving an
MCDM problem means to provide the decision maker with one or more optimal
solutions (alternatives) respecting her/his preferences [10].

In the literature, many solutions to assist decision makers in choosing among
a finite set of alternatives by employing numerical techniques have been pro-
posed. A solution often employed consists in assigning distinct scores, namely
performance scores, to each alternative with respect to each criterion. Each score
represents a degree of satisfaction that expresses to what extent an alternative
is satisfactory with respect to a criterion. In the considered context, where the
alternatives are the news to be evaluated, and the criteria are the features char-
acterizing the news, these performance scores can be interpreted as degrees of
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credibility of the news with respect to each feature. These multiple credibility
scores can then be subsequently aggregated to obtain an overall credibility score.
Formally, let us assume that: A = {a1, a2, . . . , am} is the set of alternatives, i.e.,
the news; C = {c1, c2, . . . , cn} is the set of criteria, i.e., the features character-
izing the news; si is the satisfaction function that, for a criterion ci (1 ≤ i ≤ n),
returns the performance score si(aj) ∈ I, I = [0, 1], to which the alternative aj

(1 ≤ j ≤ m) satisfies the criterion ci (i.e., the credibility score in this context).
In MCDM, a common solution to obtain an overall performance score σj

for each alternative aj , i.e., an overall credibility score for each piece of news,
is to employ an n-ary function A(n), called aggregation operator (or aggrega-
tion function), which is a mapping A(n) : [0, 1]n → [0, 1] acting on a defi-
nite number n of performance scores to be aggregated (for n ∈ N0). Formally:
σj = A(n)(s1(aj), s2(aj), . . . , sn(aj)). In the considered context, being the num-
ber of scores to be aggregated always known, the simple notation A will be used
to indicate an aggregation operator.

3.1 OWA Operators and Linguistic Quantifiers

In the literature, several classes of aggregation operators, averaging operators in
particular, have been employed to solve Multi-Criteria Decision Making prob-
lems [6,8,10,19]. In the context of fake news detection, a family of aggregation
operators that could be of potential interest is that of Ordered Weighted Aver-
aging (OWA) operators, extensively studied in the literature [26].

Definition 1. An aggregation operator AOWA : [0, 1]n → [0, 1] is called an
Ordered Weighted Averaging (OWA) operator of dimension n if it has associated
a weighting vector W = [w1, w2, . . . , wn] such that wk ∈ [0, 1] and

∑n
k=1 wk = 1,

and where AOWA(x1, x2, . . . , xn) =
∑n

k=1 wkbk, in which bk is the kth largest of
the xi values to be aggregated.

Employing OWA operators gives the possibility to guide the aggregation by
linguistic quantifiers (e.g., all, some, many, ...), which allow to choose the best
alternative(s) based on the satisfaction of a ‘certain amount’ of the criteria by
the alternative(s). In general, in the process of quantifier-guided aggregation, the
decision maker provides a linguistic quantifier Q indicating the number (abso-
lute quantifier) or the proportion (relative quantifier) of criteria s/he believes
is sufficient to have a good solution. The procedure of generating the weighting
vector W from a linguistic quantifier Q depends on its type. In this paper, Reg-
ular Increasing Monotone (RIM) relative quantifiers are considered, such as at
least k% and most. A linguistic quantifier is said to be a RIM quantifier if [25]:
Q(0) = 0, Q(1) = 1, and Q(r) ≥ Q(s) if r > s (r, s ∈ [0, 1]).

Equal Importance of Criteria. Starting form the definition of a RIM quan-
tifier Q, the weights wi of a weighting vector W of dimension n (n values to be
aggregated) can be defined as follows:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, for i = 1, . . . , n (1)
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Equation (1) allows to define the weighting vector W by assuming that all
the considered criteria are equally important for the DM. In real scenarios, it
is often crucial to be able to discriminate the importance of the criteria that
concur in a decision making process, as detailed in section below (e.g., in fake
news detection, not all the features connected with a piece of news are equally
significant in terms of credibility assessment).

Unequal Importance of Criteria. In [25], a way has been proposed for aggre-
gating n scores with distinct importance associated with the criteria that gener-
ated them. Let us consider an alternative a (i.e., a piece of news in the considered
context) to be evaluated with respect to n criteria; the performance scores by a
of the n criteria are denoted by x1, x2, . . . , xn, each xi ∈ [0, 1], while the numeric
values denoting the importance of the n criteria are denoted by V1, V2, . . . , Vn.
In the reordering process of the xi values, it is important to maintain the correct
association between the values and the importance of the criteria that originated
them. For this reason, by uj it is denoted the importance originally associated
with the criterion that has the jth largest satisfaction degree. E.g., assuming
that x5 is the highest value among the xi values, thus b1 = x5 and u1 = V5.
At this point, to obtain the weight wj of the weighting vector with weighted
criteria, it is possible to employ, for each alternative a, the following equation:

wj = Q

(∑j
k=1 uk

T

)
−Q

(∑j−1
k=1 uk

T

)
(2)

where T =
∑n

k=1 uk is the sum of the importance values ujs. The weighting
vector used in this aggregation will generally be different for each a, i.e., for
each considered piece of news.

4 An OWA-Based Approach for Fake News Detection

In the context of fake news detection, a user is confronted with multiple news-
worthy posts of which s/he does not know a priori the level of credibility. As
illustrated in Sect. 2, it is possible to evaluate credibility either with respect to
a single post, or with respect to a thread representing a news event. If every
single post is considered as an alternative, credibility features (i.e., criteria) are
those associated with the considered post and/or with the user who generated
it. In the case of a news event, the features describe ‘global properties’ of the
event, i.e., of the posts that compose the thread and their authors. In general,
each feature can be more or less important in the assessment of the credibility
of a piece of news (be it a single post or a news event). Moreover, as illustrated
in Sect. 3.1, only a ‘certain amount’ of the features (criteria) could be satisfied
by the alternative to provide optimal solutions to the decision maker.

By considering these premises, in this section an MCDM approach based on
the use of OWA aggregation operators is proposed; different aggregation schemes
guided by distinct linguistic quantifiers are presented, which allow to tune the
number of (important) features to be considered, and to provide an overall cred-
ibility score associated with each considered piece of news.
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4.1 Fake News Event Detection on Twitter

The proposed approach aims at representing an alternative to classification-
based approaches focusing on (supervised) machine learning techniques. Most of
these solutions have referred to Twitter and employed (labeled) datasets built on
this social media platform to prove their effectiveness. Therefore, in this paper,
the same context has been taken into account to instantiate and evaluate the
proposed approach, by focusing in particular on the assessment of the credibility
of news events extracted from the CREDBANK dataset.

The CREDBANK Dataset. It is composed of about 80 millions of tweets
and associated metadata, grouped into 1,376 news events (circa 60,000 tweets
per event). To each news event, it is associated a 30-element vector of credibil-
ity labels (called accuracy labels in [20]) provided by 30 distinct experts. Each
credibility label is expressed on a 5-point Likert scale ranging from −2 (certainly
false) to 2 (certainly true). The final decision can be made considering, for exam-
ple, the majority of the credibility label values expressed by the 30 experts. To
illustrate the proposed approach, a ‘reduced’ version of the CREDBANK dataset
is employed in this paper, i.e., the one described and provided in [2], where the
authors have considered the most retweeted tweets in order to discard, among
the 1,376 events, those provoking less reaction. To have an overall score associ-
ated with each news event, they have computed the mean accuracy rating based
on the 30 accuracy labels provided by experts. This led the authors to finally
select 156 news events, of which 99 are labeled as true and 57 as fake.4 It is worth
to be underlined that this dataset contains only the news events representing the
most significant news (in terms of reactions), and each news event is made up
of thousands of individual tweets, for a total of more than 9 million tweets.

Features Identification and Representation. In the literature, several fea-
tures have been used for evaluating the credibility of Twitter threads (i.e., rep-
resenting news events); they belong to the following macro-categories: Structural
features [S]: they are specific to the structure of each Twitter thread; User-related
features [U]: they represent attributes related to the users, their profiles, their
connections and interactions; Content-related features [C]: they are based on
textual properties extracted from the content of the tweets; Temporal features
[T]: they allow to take into consideration how the values of the other types of
features change over time. In this paper, only the most informative feature set
is considered, as illustrated in [2], which is composed of the following 15 fea-
tures: 1. Media count [S]: the frequency of tweets that contain media contents
(images, videos, etc.); 2. Mention count [S]: the frequency of tweets that con-
tain mentions; 3. URL count [S]: the frequency of tweets that contain URLs;
4. Retweet count [S]: the number of retweets for the event; 5. Hashtag count
[S]: the frequency of tweets that contain hashtags; 6. Status count [S]: the
average number of tweets with respect to each user profile (in the thread); 7.

4 https://github.com/cbuntain/CREDBANK-data.

https://github.com/cbuntain/CREDBANK-data
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Tweet count [S]: the frequency of tweets that contain only text (no media,
mentions, hashtags or URLs); 8. Verified [U]: the number of verified profiles
(in the thread); 9. Density [U]: the density of the network w.r.t. users (nodes)
and their interactions (edges, i.e., mentions, replies, etc.); 10. Followers [U]:
the average number of followers with respect to each user profile (in the thread);
11. Friends also known as Followees [U]: the average number of followees with
respect to each user profile (in the thread); 12. Polarity [C]: the average posi-
tive or negative feelings expressed by the tweets (in a thread); 13. Objectivity
[C]: the score of whether a thread is objective or not; 14. Ages [T]: the author
account age relative to a tweet creation; 15. Lifespan [T]: the minutes between
the first and the last tweet of the thread.

The above-mentioned features are of a different nature, refer to distinct con-
cepts and, therefore, are expressed on different numerical scales. In the proposed
MCDM approach, starting from the values associated with features, it is neces-
sary to select a suitable satisfaction function that is able to transform them into
suitable performance scores in the [0, 1] interval to be aggregated, as illustrated
in Sect. 3. To do this, the min-max normalization function has been employed:

si(aj) =
xi,j − min(xi,h)

max(xi,h) − min(xi,h)
(3)

where, for a news event aj , si(aj) is the performance score normalized in the
[0, 1] interval with respect to the feature ci, xi,j is the value of the feature ci for
aj , h = 1, . . . , m, and m is the total number of news events. The performance
scores obtained this way are considered as the degrees of satisfaction of each
news event with respect to each feature in terms of credibility. The value ‘1’
is assumed as the evidence of a full satisfaction in terms of credibility, and the
value ‘0’ as a complete dissatisfaction.5

4.2 Quantifier-Guided Aggregation Schemes

The different aggregation schemes employed by the proposed approach are illus-
trated in this section. Initially, three simple aggregation schemes have been con-
sidered, whose acronyms are denoted below in capital letters. These aggregation
schemes employs OWA operators guided by the following linguistic quantifiers:
(i) the all (min) quantifier – OWA ALL; (ii) the at least one (max) quantifier
– OWA ONE; (iii) the mean (arithmetic mean) quantifier – OWA MEAN.

In addition to aggregation schemes (i)–(iii), two additional schemes have
been developed, based on OWA operators guided by the following linguistic
quantifiers: (iv) the more than k% quantifier – OWA MORE; (v) the most quan-
tifier – OWA MOST. The formal definitions of the quantifiers employed in the
proposed approach are provided in the following.

5 Empirically, for all the features, higher values can be interpreted as ‘more credible’.
Some theoretical justifications about the type of features and the values associated
with them in the assessment of the credibility of information are provided in [18,23].
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More than k%. According to [1], the more than k% (more) quantifier can be
defined as

Qmore (r) =

{
0 for 0 < r ≤ k
r−k
1−k for k < r ≤ 1

(4)

In this paper, two configurations of this quantifier have been considered, i.e., for
k = 50 and k = 75, representing the percentages of the satisfied criteria. The
shape of Qmore for both configurations is illustrated in Fig. 1(a) and (b).

(a () b)

Fig. 1. Graphical representation of the Q function for the ‘more than 50% ’ (a), and
the ‘more than 75% ’ (b) linguistic quantifiers.

Most. Two definitions of the most quantifier are considered in this paper. In a
first definition [25], Qmost can be expressed as:

Qmost (r) = r2 (5)

According to [1], another definition of the most quantifier is the following:

Qmost (r) =

⎧
⎪⎨

⎪⎩

0 for 0 < r ≤ α
r−α
β−α for ε < r < β

1 for r ≥ β

(6)

The shape of Qmost under the two different definitions is illustrated in Fig. 2(a)
and (b). In particular, Fig. 2(b) reports as an example the case of α = 0.3 and
β = 0.8.

When considering all criteria as equally important, the weighting vector W
for aggregation schemes (iv) and (v) can be obtained according to Eq. (1), as
illustrated in Sect. 3.1, ‘Equal Importance of Criteria’. In this case, the above-
defined linguistic quantifiers represent the proportion of criteria to be satisfied
by the alternatives.

To consider the proportion of the important criteria to be satisfied, other
aggregation schemes have been considered, where the weighting vector W is
built by employing Eq. (2) illustrated in Sect. 3.1, ‘Unequal Importance of Crite-
ria’, together with linguistic quantifiers defined by Eqs. (4)–(6). These additional
schemes are denoted as: (vi) OWA MORE I; (vii) OWA MOST I.
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(a () b)

Fig. 2. Graphical representation of the Q function for the ‘most ’ linguistic quantifier,
expressed according to Eqs. (5) and (6).

In the considered context, to assign distinct importance values to each cred-
ibility feature, a priori knowledge of the domain has been considered. In the
literature [4,18,21,24], it has been highlighted that usually temporal and user-
related features are particularly effective in assessing information credibility,
more than content-related and structural features taken individually. Therefore,
with respect to the proposed categorization provided in Sect. 4.1, discrete impor-
tance values in the set {1, 2, 3, 4} have been assigned to each category of features:
in particular, to temporal [T] features it has been assigned an importance value
equal to 4; to user- [U] and content-related [C] features it has been assigned an
importance value equal to 3 and 2 respectively; to structural [S] features it has
been assigned an importance value equal to 1. It is important to notice that also
continuous values, for example in the [0, 1] interval, could have been employed.

5 Evaluation

To evaluate the proposed MCDM approach, a binary classification into fake news
events and genuine ones has been performed by employing both the aggregation
schemes (i)–(vii) proposed in this paper, and the data-driven approach proposed
in [2], which employed the CREDBANK dataset and the same features used in
this paper, and overcame several data-driven approaches in the literature. The
evaluation metrics considered in this paper are accuracy, precision, recall, and
F1-score, as defined in [17] for classification purposes.

5.1 Implementation Details

The experimental phases have been conducted by employing the Python pro-
gramming language. In particular, to manage and to make numerical compu-
tations on data, such as the development of the proposed aggregation schemes,
the pandas and NumPy libraries6 has been used, while the scikit-learn library7

6 https://pandas.pydata.org, http://www.numpy.org.
7 http://scikit-learn.org/stable/index.html.

https://pandas.pydata.org
http://www.numpy.org
http://scikit-learn.org/stable/index.html
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has been employed to evaluate the performance of the implemented classifiers
with respect to the baseline through the computation of the evaluation metrics
introduced before. It is worth to be underlined that the original code provided by
Buntain and Golbeck8 has been employed to perform the 5-fold cross-validation
using the 100-tree Random Forest classifier at the basis of their approach, which
is used in this paper as a baseline for the data-driven paradigm. With respect to
the proposed MCDM approach, by applying aggregation schemes (i)–(vii) to the
performance scores of criteria associated with news events, for each news event
an overall credibility score in the [0, 1] interval has been obtained. Then, news
events have been classified as genuine or fake by selecting an optimal threshold
over these overall scores. The threshold has been chosen in an experimental way,
by selecting the one that maximizes classification effectiveness [22].

5.2 Summarization of Results and Discussion

In this section, the effectiveness of the binary classification (of news events into
genuine or fake) provided by both the proposed aggregation schemes and the
considered data-driven baseline is illustrated. Table 1 summarizes the results
obtained with respect to the evaluation metrics previously introduced.

Table 1. Summarization of results of all the experiments.

accuracy precision recall F1-score

Baseline [2] 79% 80% 90% 85%

OWA ALL 73% 87% 68% 76%

OWA ONE 68% 69% 89% 78%

OWA MEAN 70% 70% 93% 80%

OWA MORE (50%) 76% 82% 81% 81%

OWA MORE (75%) 79% 87% 79% 83%

OWA MOST (exp) 65% 77% 65% 70%

OWA MOST (0.5–0.6) 78% 79% 89% 84%

OWA MORE I (50%) 83% 83% 91% 87%

OWA MORE I (75%) 83% 85% 89% 87%

OWA MOST I (exp) 73% 78% 80% 79%

OWA MOST I (0.5–0.6) 82% 82% 91% 86%

As it emerges from the table, aggregation schemes guided by simple linguis-
tic quantifiers (i.e., all, at least one, mean) do not provide significant results.
For this reason, a detailed discussion will be provided only for non-trivial cases.

8 https://github.com/cbuntain/CREDBANK-data/tree/master/src/main/python/
Labeling.

https://github.com/cbuntain/CREDBANK-data/tree/master/src/main/python/Labeling
https://github.com/cbuntain/CREDBANK-data/tree/master/src/main/python/Labeling
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With respect to aggregation schemes guided by the more than k% and most lin-
guistic quantifiers, several configurations have been tested for each of them, i.e.,
the OWA MORE (50%) and the OWA MORE (75%), i.e., more than 50% and
more than 75% of criteria satisfied, and the OWA MOST (exp) and OWA MOST
(0.5–0.6), where in the first case the most quantifier is expressed according to
Eq. (5), while in the second case it is expressed by means of Equation (6) where
α = 0.5 and β = 0.6 (these parameters provided the best results for the con-
sidered aggregation scheme). Aggregation schemes considering different impor-
tance associated with criteria have also been tested, i.e., OWA MORE I (50%),
OWA MORE I (75%), OWA MOST I (exp), and OWA MOST I (0.5–0.6). A
first consideration is that aggregation schemes based on OWA operators guided
by the more than k% quantifier perform better with respect to those based on
the most quantifier, in any case. Furthermore, at it was expected, those aggrega-
tion schemes considering different importance associated with criteria perform
better than those considering all criteria as equal. With respect to this aspect,
in particular, it is interesting to notice that the aggregation schemes for which
importance values have been defined heuristically based on a prior knowledge,
OWA MORE I (50%) and OWA MORE I (75%) in particular, perform better
than the baseline that is completely data-driven. This suggests the potential fea-
sibility and the effectiveness of the use of a completely model-driven approach
to tackle the considered fake news detection problem.

6 Conclusions

In this paper, an approach for fake news detection in microblogging based on
the Multi-Criteria Decision Making (MCDM) paradigm has been proposed. It is
a model-driven classification-based approach, employing aggregation operators
guided by linguistic quantifiers. In this model, news represent alternatives to be
evaluated in terms of credibility; to each alternative are associated distinct cred-
ibility features that are satisfied by the alternative to a certain credibility extent,
which can be expressed as a numerical credibility score. The overall credibility
score of an alternative, i.e., a piece of news, is therefore obtained as the aggre-
gation of the distinct credibility scores associated with the alternative. In this
scenario, the decision maker can have a flexible control on the model; s/he can
act: (i) on the choice of the aggregation operator (or the family of aggregation
operators) to be used, (ii) on the choice of the number or the proportion of the
features s/he estimates sufficient to have a good solution (by choosing absolute
or relative linguistic quantifiers and their formal representations), and (iii) on
the assignment of different importance values to different credibility features,
for example exploiting prior knowledge s/he has of the considered domain. Fur-
thermore, by proposing a model-driven solution, the proposed approach aims at
tackling the difficulty to gather suitable and unbiased training data to be used
by supervised data-driven approaches in assessing the credibility of UGC, as it
has been discussed in the literature [14]. Since the construction of the model does
not require learning data, the proposed approach also aims to be generalizable
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to other social media UGC, not only news. In the future, it will be interesting
to learn the importance weights of the OWA operator, and to investigate other
aggregation operators, such as WOWA operators and Fuzzy Integrals.
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Abstract. We consider settings of group decision-making where agents’
preferences/choices are influenced (and thus changed) by each other.
As the influence of reality faced by an agent usually comes from more
than one agent, previous work discussed at length multiple influences
but in an individual way, which assumed that all influencing agents
exert their own influences independently from each other and that the
resulting preference/choice of the influenced agent could be a simple lin-
ear weighted aggregation of all influencing agents’ preferences/choices.
Some works discussed the influence of coalitions of multiple agents. As
some agents hold the same beliefs, opinions or choices (such as in an
“opinion alliance”), an extra influencing effect in addition to that of the
separate individual influences should be considered. However, the struc-
tural influence has been ignored. The structure here mainly refers to the
influencing relations among agents (which can be represented as links in
social networks). Actually, previous work considers the structure (links)
among agents just as the paths or channels of influence but ignores the
fact that the structure itself can also exert an extra influencing effect.
Moreover, it is not easy to address the influence of structures on an
agent: as the influencing subject and the influenced object are disparate;
the former are inter-relationships between agents, while the latter is the
preference/choice of an individual agent. In this paper, we proposed a
elementary framework to address the three levels of influence (individual,
coalitional and structural influence) and their mixed effects.

Keywords: Group decision-making · Social network ·
Individual influence · Coalitional influence ·
Structural influence

1 Introduction

In the context of multi-agent (such as group decision-making) systems, the influ-
ence among agents’ preferences or choices is quite common and has been studied
by scholars from various disciplines [17], including artificial intelligence (particu-
larly multi-agent system) [1,13,17,19–22], economics, decision theory and social
network [2–12,14,15], and even politics [16,18]. In real-world situations, influ-
ences are diversified in polarity and strength [17], such as a positive influence
c© Springer Nature Switzerland AG 2019
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from a friend (ally) vs. a negative influence from an enemy (opponent) [16–18]
and a strong influence from a close friend (family, relative) vs. a weak influence
from a common friend (even a nodding acquaintance) [16,17]. Moreover, the
influence faced by an agent is usually not from only a single agent (at a time)
but simultaneously from more than one agent [16–18].

Previous work extensively discussed influences from multiple agents, but
nearly all assumed that the influencing agents exert their own influences inde-
pendently from each other. Some works discussed the influence of coalitions of
agents [7–12] possessing the same belief, opinion or choice. Below, we sketch a
more sophisticated model of influence (three levels of influence) where not only
the influencing individual agents and their coalitions but also the structures
among influencing agents are considered. The structures here in the context of
a group decision with mutual influence indicate the influencing relations among
agents, which can be represented as links or ties in a social network. Actually,
the structures should not be perceived as just channels or paths of influence, but
they themselves can exert some specific influencing effects, which will affect the
influence result significantly. However, this structural influence has been ignored
in previous work. Formally representing and computing this special influence is
the essential work in this paper.

However, how to address the influencing effect from structures to an agent is
not a straightforward question, as the influencing subject and influenced object
are two disparate categories of variables. The former is the interpersonal rela-
tionship among agents (usually expressed by links in a networked graph), but
the latter is the preference or choice of an individual (usually expressed by a
normalized value or an alternative out of a set). It is relatively simple to address
the influence of multiple agents’ preferences/choices on another agent’s prefer-
ence/choice, but how to address the influencing effect from structures among
agents on an individual agent’s preference/choice to successfully close the gap
and achieve the transformation between these two disparate things is a key ques-
tion.

2 Influence Model in Group Decision-Making

In the settings of group decision-making, the influence model captures the influ-
encing relations among agents, that is, when preferences (like utilities, beliefs,
opinions) or choices of agents are affected by others [17]. Recently, in the fields
of artificial intelligence, economics, and politics, the dynamics of influence have
been extensively studied, especially in the framework of social networks [1,3–
17,19–22], using the ties (links) between nodes (agents) to represent the influ-
encing relationships between them [17].

2.1 Influence in Social Networks

Many of influence models assume a unidimensional value as utility or belief for
each agent, which will be affected by his or her “neighbors” (namely, linked other
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agents) depending on the social structure [17]. Jackson [15] described a social
network scenario where each agent’s belief will be influenced (in the form of learn-
ing) by other agents’ beliefs and also his or her own belief according to a weight
allocation [17], where weights may be bigger or smaller to represent stronger or
weaker influences among agents; and he [15] used a matrix composed of entries
that each represent the weight of influence between two agents to express the
influences in a social network [17]. Besides, [13] proposed a model combining
opinion diffusion and social networks, assumed that each agent’s binary opinion
will be affected by his or her neighbors in the network according to the trust the
agent has in them, namely, the more trust, the bigger weight of influence [17].
Some most recent works [1,21] also discussed the influence and its impact on the
evolution of experts’ opinions in the framework of social networks.

2.2 Influence of Coalitions of Agents

Through comparing influence models and command games, Grabisch and
Rusinowska [7–12] proposed a series of specific influence functions in social net-
works and systematically discussed the influence of a coalition upon an individual
in depth, but in some sense they “skipped” the influence of individuals directly
to the influence of a coalition, not distinguished the influence from a coali-
tion as an extra effect in addition to that of individual influences. They mainly
[7,9–12] assumed that agents are to make a yes/no (acceptance/rejection) binary
choice, where each has an inclination to say either. Due to the mutual-influence
among agents, the choice of each agent may be different from his or her origi-
nal inclination; they deem such a transformation from inclinations to choices as
influence [17].

2.3 Social Choice Functions and Social Influence Functions

Most recently, Luo [17] discussed the simultaneous influence of more than one
agent on another agent by both non-ordering and ordering approaches. He [17]
extended the classic social choice functions, such as the Borda count and the Con-
dorcet method, to signed and weighted social influence functions in the context
of social networks, namely, the influence can be varied both in strength: stronger
or weaker, and in polarity: positive or negative. Moreover, he [17] extended the
KSB distance metric to a matrix influence function, defined the rule of how to
transform each preference ordering into a matrix and then set a distance met-
ric to compute the distance between any two ordering matrices; the preference
that has the smallest weighted sum of the distances from all influencing agents’
preferences will then be the resulting preference of the influenced agent [17].

In conclusion, previous work discussed the influence from multiple agents
but mainly in an individual (independent) way, which assumed that all influ-
encing agents exert their own influences independently from each other. Thus,
the result for the influenced agent could be a simple linear weighted aggrega-
tion of all influencing agents’ preferences or choices. However, these previous
studies less discussed the coalitions of influencing agents (possessing the same
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beliefs, opinions or choices) and particularly ignored that the structures (namely,
influencing relations) within influencing agents will also produce additional and
extraordinary influencing effects.

3 Graphical and Mathematical Expressions of the Three
Levels of Influence

If we look back at previous work on influence models, we could conclude that
the discussions about the influence from coalitions and particularly the influence
from structures actually advance and complete the system of influence studied.
Now, we could propose a new analytical framework of influence as the three levels
of influence, in which the influences discussed in previous work can be mainly
classified as the level I influence from independent agents (individual influence),
while the level II influence from coalitional agents (coalitional influence) is less
discussed and the level III influence from structural agents (structural influence)
has been ignored. Only in the third level, the influence from the structures
(namely, the influencing relations) themselves are considered in the process and
computation of multiple influences as origins of influence, not just as paths or
channels of influence anymore.

Definition 1. (Group Decision-making Society with Mutual-Influence) Assume
a society S = {N,M,P,C,W}: N = {1, 2, .., n} is the set of all agents (a general
term for decision-makers, voters, game players, etc.); M = {o1, o2, ..., om} is
the set of all alternatives (candidates); P = {P(1), P(2), ..., P(n)} is the set of
all agents’ preferences (such as utilities, beliefs, decision-making probabilities,
etc.); C = {C(1), C(2), ..., C(n)} is the set of all agents’ choices out of the set of
alternatives; W is the matrix whose entries are the weights of influence between
each of two agents, W = [w(i,j)] (i, j ∈ N), in which w(i,j) means the weight of
influence from agent i to agent j.

3.1 Level I Influence from Independent Agents

Definition 2. (Individual Influence) is the influence just from agents as indi-
viduals. When an agent is simultaneously influenced by more than one agent but
these influencing agents are independent from each other, separately exerting
their own influences, the influences from different agents can be simply linearly
summed just by their respective weights (of influence). This kind of influence
from independent agents can be expressed as a directed line marked as →x,y, in
which x indicates the influencing subject and y indicates the influenced object.
The weight of this kind of influence can be defined as wx,y, which indicates the
weight of influence from x to y.
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Example 1. (A Graphical Expression of the Individual Influence) As in Fig. 1,
we assume there are five agents 1–5, where agent 5 is simultaneously influenced
by agents 1, 2, 3, 4 and 5 (himself or herself)1, who all exert their own influences
separately on agent 5. This is the basic hypothesis of most of previous work
assumed so far. Thus, there are five individual (independent) influences, from
1 to 5 (marked as →1,5), from 2 to 5 (→2,5), from 3 to 5 (→3,5), from 4 to 5
(→4,5), and from 5 to 5 himself or herself (→5,5).

4

2

5

1

3

1,5

2,5

3,5

4,5

5,5

Fig. 1. Level I-influence from individual (Independent) agents

If the agents’ preferences (such as utilities, beliefs, etc.) over an issue are
expressed in a normalized value, then the resulting preference of the influenced
agent will be a simple weighted sum of all influencing agents’ preferences:

P ′
5 =

w1,5P1 + w2,5P2 + w3,5P3 + w4,5P4 + w5,5P5

|w1,5| + |w2,5| + |w3,5| + |w4,5| + |w5,5|
Definition 3. (Individual Influence Function) transforms multiple independent
influencing agents’ preferences to the influenced agent’s preference. If this influ-
ence function considers the iteration of influence and multiperiod interactions,
then:

P(i)(t + 1) =

∑
j∈N

w(j,i)P(j)(t)
∑

j∈N
|w(j,i)| i ∈ N

In which P(i)(t + 1) represents the preference of agent i after t-th mutual
influence, and P(j)(t) represents the preference of agent j at t-th mutual
influence.

1 The influence from oneself cannot be ignored. In reality, your current preference or
choice over an issue is remarkably affected by your previous preferences or choices
over the same or similar issue, which explains well why under identical influences
from other people, some people can insist on their own preferences or choices while
others change [17].
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3.2 Level II Influence from Coalitional Agents

Definition 4. (Coalitional Influence) considers (a portion of) influencing
agents as a united coalition, especially those agents possessing the same or sim-
ilar beliefs, opinions (like an opinion alliance), etc., which, under certain cir-
cumstances, will create an extra influencing effect (named the coalitional influ-
ence)2. Thus, the multiple influences felt by the influenced agent might not merely
be a simple weighted sum of all influences from individuals. This coalitional
influence can be expressed as a dotted directed line marked as ���X,y, where
X = {x1, x2, ..., xc} is a coalition of influencing agents holding the same or sim-
ilar preferences and y is the influenced agent. The weight of this kind of influence
can be defined as w{x1,x2,...,xc},y, which indicates the weight of the influence from
the coalition X = {x1, x2, ..., xc} to y.

A daily example is provided to illustrate why we should consider the coali-
tional influence.

Example 2. (Paper Submission and Review) When you submit a paper to a
conference and receive three reviews back, if only one or two reviewers give
negative evaluations, it would not severely harm your confidence and feelings,
and you might think they do not really understand your paper, but if three
independent reviewers all judge your paper as “rubbish”, then you would likely
feel despair (the hard feeling would be more than three times that of one negative
evaluation), which can be understood as a kind of coalitional effect produced by
multiple influencing agents possessing the same or similar views.

Example 3. (A Graphical Expression of the Coalitional Influence) As in Fig. 2,
again we assume that agent 5 is simultaneously influenced by agents 1, 2, 3, 4
and 5 (himself or herself), but agent 5 further observes or believes that agents
1, 2, and 3 have the same or similar preferences (like beliefs, opinions, etc.).
Then, not only do the five agents 1, 2, 3, 4, and 5 all separately exert their own
influences on agent 5, but also the coalition formed by agents 1, 2, and 3 (as an
opinion alliance) would exert an extra coalitional influence, which is marked as
���{1,2,3},5.

If the agents’ preferences are expressed in a normalized value, let w{1,2,3},5
represents the weight of influence from agents {1,2,3} as a uniform coalition to
agent 5, and define χ as the function for the coalitional influence, then:

P ′
5 =

w1,5P1 + w2,5P2 + w3,5P3 + w4,5P4 + w5,5P5 + w{1,2,3},5χ{P1, P2, P3}
|w1,5| + |w2,5| + |w3,5| + |w4,5| + |w5,5| + |w{1,2,3},5|

2 A similar concept is the peer pressure.
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Fig. 2. Level II-influence from coalitional agents

Definition 5. (Coalitional Influence Function) transforms multiple coalitional
influencing agents’ preferences to the influenced agent’s preference. If it is
expressed in a general multiperiod form, then:3

P(i)(t + 1) =

∑
j∈N

w(j,i)P(j)(t) +
∑

c∈C[N](i)(t)
w(c,i)χ[c]

∑
j∈N

|w(j,i)| +
∑

c∈C[N](i)(t)
|w(c,i)| i ∈ N

In which C[N](i)(t) represents the set of all coalitions of agents with the same
or similar preferences within the set of agents N from the perspective of agent i
at t-th mutual influence, χ[c] (c ∈ C[N](i)(t)) represents the coalitional influence
produced by coalition c, and w(c,i) represents the weight of influence from coalition
c to agent i.

3.3 Level III Influence from Structural Agents

Definition 6. (Structural Influence) comes from the influencing relations
among the influencing agents. The structures constituted by the influencing rela-
tions, which are represented as links in a social network, will also be perceived
as origins of influence but not just channels of influence and then produce an
extra influencing effect (named the structural influence). This structural influ-
ence can be expressed as: ���x1→x2,y. The influencing subject discussed here is
not an individual x1 or x2 or a coalition of x1 and x2 anymore but rather an
influencing relation from x1 to x2. The weight of this kind of influence can be
defined as wx1x2,y, which indicates the weight of the influence from the influenc-
ing relationship (x1 influenced x2) to y.

3 This is just a general expression of how to address the coalitional influence, one
specific coalitional influence function can be found in the Sect. 4.
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Example 4. (A Graphical Expression of the Structural Influence) As in Fig. 3,
again we assume agent 5 is simultaneously influenced by agents 1, 2, 3, 4 and 5
(himself or herself), but agent 5 further finds or believes that among the three
influencing agents 1, 2, and 3, there are two influencing relations from agent 1
to 2 and from agent 1 to 3. Thus, not only do the five agents 1, 2, 3, 4, and 5
all separately exert their own influence on agent 5, but also the two influencing
relations among them would produce extra influencing effects, which are marked
as ���1→2,5 and ���1→3,5.

4

2

5

1

3

1

1,5

2,5

3,5

4,5

1→2,5

1→3,5
5,5

Fig. 3. Level III-influence from structural agents

If the agents’ preferences are expressed in a normalized value, let w12,5 and
w13,5 respectively represent the weights of influence from influencing relation
1 → 2 and influencing relation 1 → 3 to agent 5, and define ϕ as the function
for the structural influence, then:

P ′
5 =

w1,5P1 + w2,5P2 + w3,5P3 + w4,5P4 + w5,5P5 + w12,5ϕ[P1, P2] + w13,5ϕ[P1, P2]

|w1,5| + |w2,5| + |w3,5| + |w4,5| + |w5,5| + |w12,5| + |w13,5|

Definition 7. (Structural Influence Function) transforms multiple interacting
influencing agents’ preferences to the influenced agent’s preferences. If it is
expressed in a general multiperiod form, then:4

P(i)(t + 1) =

∑
j∈N

w(j,i)P(j)(t) +
∑

s∈S[N](i)(t)
w(s,i)ϕ[s]

∑
j∈N

|w(j,i)| +
∑

s∈S[N](i)(t)
|w(s,i)| i ∈ N

In which S[N](i)(t) represents the set of all structures (influencing relations)
among the set of agents N from the perspective of agent i at t-th mutual influence,
ϕ[s] (s ∈ S[N](i)(t)) represents the structural influence produced by influencing
relation s, and w(s,i) represents the weight of influence from influencing relation
s to agent i.
4 This is just a general expression of how to address the structural influence, one

specific structural influence function will be discussed in the Section 4.
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The Relations among the Three Levels of Influence

We have to admit that this work is just a mathematical modelling and graphical
expression for the individual, coalitional and structural influence, and we have
not evaluated and compared the relative merits of the above different influence
models (functions). A critical reason is that the relations among the three levels
of influence are not substitutional or competitive, but all of them together could
fully describe the complicated features of influence in the real-world settings.

4 The Interplay Between the Coalitional Influence
and the Structural Influence: A Probability-Based
Approach

As the three levels of influence may work together in reality. To better under-
stand the mechanisms of the coalitional influence and the structural influence
and particularly their mixed effects, we provide a simple group decision-making
example and use a probability-based choice approach to illustrate of how to
address the three levels of influence:

Example 5. (The Mixed Effects of the Coalitional and Structural Influences)
As in Fig. 4, we assume a group decision-making system with eight agents (1–
8) making a choice with three alternatives: {a, b, c}. From the perspective of
agent 8 at the bottom, he or she is simultaneously influenced by eight agents,
with four agents (1, 2, 4, 6) choosing a, one agent (3) choosing b, and three
agents (5, 7, and 8 himself or herself) choosing c. The weights of influence are
marked on the links. What’s more, the agent 8 observes or believes that there
are two influencing relations among the three influencing agents saying a and
one influencing relation between the two influencing agents saying b. Assume the
influencing relations are specific as “following” (the influenced one follows what
the influencing one says); and assume that all influence are positive.

Fig. 4. An example of the mixed effects of the coalitional and structural influence
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4.1 Individual Influences

If just considering the independent influences from all influencing agents but not
the coalitions and structures among them, it is easy to form a linear weighted
function to obtain the influence result.

Definition 8. (Probability-based Individual Influence Function) Assume that
Po(i)(t + 1) is the preference of agent i for alternative o after t-th mutual influ-
ence, which can be expressed by a probability of agent i choosing alternative o. It
will be influenced by other agents choosing alternative o at t-th mutual influence,
and according to their weights of influence on agent i:

Po(i)(t + 1) =

∑
C(j)(t)=o w(j,i)
∑

j∈N
w(j,i)

i ∈ N, o ∈ M

In which C(j)(t) = o means the choice of agent j at t-th mutual influence is
alternative o.

In the Example 5, assume that Pa(8), Pb(8), Pc(8) are respectively the proba-
bilities of the influenced agent 8 choosing a, b, c after the mutual influence:

Pa(8) =
w1,8 + w2,8 + w4,8 + w6,8

w1,8 + w2,8 + w3,8 + w4,8 + w5,8 + w6,8 + w7,8 + w8,8
=

8
16

= 0.5000

Pb(8) =
w3,8

w1,8 + w2,8 + w3,8 + w4,8 + w5,8 + w6,8 + w7,8 + w8,8
=

1
16

= 0.0625

Pc(8) =
w5,8 + w7,8 + w8,8

w1,8 + w2,8 + w3,8 + w4,8 + w5,8 + w6,8 + w7,8 + w8,8
=

7
16

= 0.4375

4.2 Structural Influences

However, if the influencing effects from structures (influencing relations) are con-
sidered, there would be still different perspectives to understand and address, as
human minds are natively complicated. Different people have varied personali-
ties and value systems. Even for a single person, his cognition will be different
under changing environments, spaces, times, emotions and other cases. Here,
we just give one simple framework with two perspectives: one is weakening the
weights of influence from the “followers”, the other is intensifying the weights of
influence from the “leaders”.

From one angle of view, the influenced agent might think that some influenc-
ing agents just follow some other influencing agents and do not have independent
ideas or their own mind (thus, looking down on them as just “followers”); there-
fore, after perceiving such influencing relations within influencing agents, the
influenced agent might be inclined to “ignore”, or more specifically, decrease the
weights of influence from the “influenced” influencing agents. From the other
angle of view, the influenced agent might focus on the influencers or uninflu-
enced ones but not the influenced ones within influencing agents, thinking that
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the reason for some influencing agents always insist on their ideas and even influ-
enced more other agents is that they indeed have correct or better beliefs (like
truth-holders) or that they are very influential, forceful or powerful (like opinion
leaders or authorities), and deem that these “pure” influencing agents (like wise
men or leaders)’ preferences or choices might be safer or more beneficial; there-
fore, after perceiving such influencing relations, the influenced agent might be
inclined to “empathize”, or more specifically, increase the weights of influence
from the “uninfluenced” influencing agents.

To realize this solution for the structural influence, first, we should distinguish
the influencing agents with uninfluenced (original) preferences and influenced
preferences (also influenced by other influencing ones). Thus, some more delicate
variables should be defined to achieve such classification.

Definition 9. (Probability-based Structural Influence Function) Assume that
α, β is a pair of structural influence coefficients, which are timed respectively
by the weights of “uninfluenced” influencing agents and the weights of “influ-
enced” influencing agents. The structural influence coefficients should satisfy
α + β = 1 and α ≥ β by common sense. Assume that P S

o(i)(t + 1) is the prob-
ability of agent i choosing alternative o after t-th mutual influence considering
the Structural influence, which will be influenced by other agents choosing o at
t-th mutual influence according to their weights of influence, and also affected
by these agents’ “roles” in the influencing relationships within the influencing
agents:

P S

o(i)(t + 1) =
α

∑
C(j)(t)=o=C(j)(t−1) w(j,i) + β

∑
C(j)(t)=o�=C(j)(t−1) w(j,i)

α
∑

C(j)(t)=C(j)(t−1) w(j,i) + β
∑

C(j)(t) �=C(j)(t−1) w(j,i)

i ∈ N, o ∈ M

In the Example 5, assume that P S

a(8) is the probability of the influenced agent
8 choosing a after the mutual influence combining the Structural influence:

P S

a(8) =
αw1,8 + αw2,8 + βw4,8 + βw6,8

αw1,8 + αw2,8 + αw3,8 + βw4,8 + αw5,8 + βw6,8 + βw7,8 + αw8,8

=

⎧
⎪⎨

⎪⎩

0.5×3+0.5×2+0.5×2+0.5×1
0.5×3+0.5×2+0.5×1+0.5×2+0.5×3+0.5×1+0.5×1+0.5×3

= 0.5000, α = 0.5, β = 0.5
0.8×3+0.8×2+0.2×2+0.2×1

0.8×3+0.8×2+0.8×1+0.2×2+0.8×3+0.2×1+0.2×1+0.8×3
= 0.4423, α = 0.8, β = 0.2

1×3+1×2+0×2+0×1
1×3+1×2+1×1+0×2+1×3+0×1+0×1+1×3

= 0.4167, α = 1, β = 0

When α = 0.5, β = 0.5, the structure influence is actually not considered;
when α = 1, β = 0, the weights of influence from the “followers” are totally
eliminated, namely, just ignoring the “followers”; and we also assume a relatively
mild case α = 0.8, β = 0.2. We can find that the probability of the influenced
agent 8 choosing a is reduced after considering the structural influence, which
makes sense as agent 8 finds or believes that half of influencing agents choosing
a are just “followers”, without independent ideas or their own mind.

4.3 Coalitional Influences

If the influencing effects from coalitions (coalitional agents) are also considered,
the mixed effects with the influencing effects from structures (structural agents)
should be addressed.
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Definition 10. (Probability-based Coalitional Influence Function) Assume that
P SC

o(i)(t) is the probability of agent i choosing alternative o after both the
Structural influence and the Coalitional influence. If the coalitional influence
works in a way similar to the Majority rule, which means once the probability
of agent i choosing o (namely, the weighted ratio of influencing agents choosing
o) exceeds 1

2 , then the resulting choice will be o for sure; otherwise, unsure, but
depending on the comparison of the probabilities of the influenced agent choosing
different alternatives.

P SC

o(i)(t) =

⎧
⎪⎨

⎪⎩

1, P S

o(i)(t) > 1
2

P S

o(i)(t),
∧

o′∈M
P S

o′(i)(t) ≤ 1
2

0, otherwise

i ∈ N, o ∈ M

As shown in Fig. 5, the two curves of different colors mean that when
P S

o(i)(t) < 1
2 , there are two different possible outcomes for P SC

o(i)(t); while if P S

o(i)(t)
reaches the majority, there will be 100% uniformly.

Fig. 5. Decision-making probability after the coalitional influence by the Majority rule
and the Plurality rule

If the coalitional influence works in a way similar to the Plurality rule, which
means that once the probability of agent i choosing o exceeds 1

2 , then o will defi-
nitely be the resulting choice (as a majority is certainly a plurality); and once the
probability of agent i choosing o falls short of 1

m , then o will definitely not be the
resulting choice (as less than 1

m is certainly not a plurality for m alternatives);
otherwise, unsure, but depending on the comparison of the probabilities of agent
i choosing different alternatives.
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P SC

o(i)(t) =

⎧
⎪⎨

⎪⎩

1, P S

o(i)(t) > 1
2

1, 1
2 ≥ P S

o(i)(t) > 1
m

∧
o′∈M\{o} P S

o(i)(t) > P S

o′(i)(t)
0, otherwise

i ∈ N, o ∈ M

As shown in Fig. 5, the two curves of different colors mean that when
P S

o(i)(t) > 1
2 or < 1

m , then there will be 100% or 0% uniformly; otherwise, there
are two different possible outcomes for P SC

o(i)(t).

In the Example 5, when structural influence coefficients α = 0.8, β = 0.2,
we have the preference of the influenced agent 8 after the structural influence
as: P S

a(8) = 0.4423, P S

b(8) = 0.0769, P S

c(8) = 0.4808. If the coalitional influence
works in a way similar to the Majority rule, then P SC

a(8) = P S

a(8) = 0.4423, P SC

b(8) =
P S

b(8) = 0.0769, P SC

c(8) = P S

c(8) = 0.4808 as no one reaches the majority; while
if the coalitional influence works in a way similar to the Plurality rule, then
P SC

a(8) = 0, P SC

b(8) = 0, P SC

c(8) = 1 as P S

c(8) is larger than both P S

a(8) and P S

b(8), thus
the plurality.

5 Discussion, Conclusion and Future Work

We consider settings of group decision-making where agents’ preferences or
choices can be influenced by each other. To address the simultaneous influence
of more than one agent on another agent, the previous work mainly discussed
the multiple influences in an individual way, assuming that all influencing agents
exert their own influences independently from each other and the resulting pref-
erence or choice of the influenced agent could be simply a linear weighted aggre-
gation of all influencing agents’ preferences or choices. Some previous work dis-
cussed the influence of coalitions of multiple agents. As for some influencing
agents holding the same or similar beliefs, opinions, or choices, an extra influ-
encing effect besides the separate individual influences should be considered.
However, another important influencing effect, which could be named the struc-
tural influence has been ignored, in which the structure (namely, influencing
relations) among influencing agents should be addressed to determine the result
of the influenced agent. Actually, previous work just perceived the structure
(represented as links or ties in social networks) among agents just as the path or
channel of influence, while ignore the structure itself can also exert some extra
influences.

However, the influencing effect from structures on an agent is not easy to be
expressed and computed, as it considers two disparate categories of variables:
the influencing subject is the influencing relationship among agents, and the
influenced object is the preference or choice of one individual agent. In this paper,
we provide an elementary model of how to address the influence from structures
on an agent, accompanied by the influence from coalitions of agents. Based
on previous work and new thoughts, we extend a new model of influence with
three levels: the first level is the influence from independent agents (individual
influence), the second level is the influence from coalitional agents (coalitional
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influence), and the third level is the influence from structural agents (structural
influence).

The discussion of the three levels of influence has both theoretical values
and practical meaning in a wide range of disciplines like (distributed) artificial
intelligence, economics, and decision theory (particularly group decision, voting,
and games), and even politics and international relations. However, our work is
not yet sufficient, as other prospects remain:

– Though starting from common sense, we have not validated the models of
the three levels of influence (particularly the structural influence that we
proposed) to accurately characterize influences among agents in reality. In
the future, a contribution uniting other disciplines like psychology, cognitive
science and behavioural science will be much valuable.

– While addressing the structural influence, we introduce the structural influ-
ence coefficients α and β (the former for “uninfluenced” influencing agents
and the latter for the “influenced” influencing agents) and provide different
assignments of specific values to display the model and observe the effects. As
the structural influence coefficients are quite subjective and may be diversi-
fied for different people, it is not easy to accurately estimate the coefficients.
In the future, the structural influence coefficients could be systematically
studied, such as what they actually are from the aspect of psychology, how
they are measured and computed, and what their computational costs are.

– While addressing the interplay between the structural influence and the coali-
tional influence, we only provide one elementary model by a probability-
based choice approach: decreasing the influenced one’s weight of influence or
increasing the uninfluenced one’s weight of influence for the structural influ-
ence; amplifying or reducing the decision-making probability referring to some
classical social choice functions for the coalitional influence. There might be
many other meaningful analytical frameworks to be discussed in the future;
indeed, as human minds are complicated, different people have varied value
systems and their own judgements, and even for a single person, his cognition
will change under different environments, spaces, time, emotions and so on.
Besides, an ordering-based approach instead of the non-ordering approach for
the three levels of influence could be tried in future work.

Acknowledgment. This study is supported by a National Natural Science Founda-
tion of China Grant (71804006) and a National National Natural Science Foundation of
China and European Research Council Cooperation and Exchange Grant (7161101045).
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Abstract. The notion of betweenness space or of a convex structure
is an abstraction of the standard notion of convexity in a linear space.
We first consider a ternary betweenness relation that gives rise to an
interval space structure and then we propose a more general definition
of betweenness. We study morphism between abstract convex spaces and
we characterize aggregation function that are monotone with respect to
a betweenness relation.

Keywords: Betweenness · Convexity · Aggregation function

1 Introduction

There are two ways of defining a convexity on a set: by intersection of a family
of subset (for example half spaces in an Euclidean space) or by the property of
being closed with a family of finitary functions (linear convex combinations in a
vector space).

The present paper considers these two aspects of convexity, a very general
definition of a betweenness relation and then of an abstract convex space. It is
proved that the two definitions are equivalent. In this context it is important
to note that in [1] and [2] many significant examples of betweenness spaces are
detailed. The paper is organized as follows. In Sect. 2, we consider the case of
ternary betweenness and of interval spaces. In Sect. 3 we propose a more general
definition of betweenness while in Sect. 4 we study morphisms and aggregation
functions in convex spaces.

2 Ternary Betweenness and Interval Spaces

The notion of a point lying between two given points on a geometric line or
a totally ordered set has strong intuitive appeal, and has been generalized in a
number of directions In all of these, betweenness is taken to be a ternary relation
that satisfies certain conditions.

The ternary relation of betweenness comes up in different structures on a
given set, reflecting intuitions that range from order-theorethic to the geometrical
and topological settings with different meanings.
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Modern axiomatic definition of betweenness is due to Hedĺıková [3] who intro-
duced the ternary representation of betweenness. These relations have been intro-
duced in the context of abstract convexity in [7], in the context of property spaces
(see for example [4] and [5]) as well as in graph theory (see [6]).

In a lattice L is defined a ternary betweenness relation

B = {(x, z, y) ∈ L3 : x ∧ y ≤ z ≤ x ∨ y}.
This ternary relation satisfies the following properties:

[B1] (Reflexivity) If z ∈ {x, y} then B(x, z, y)
[B1](Symmetry) If B(x, z, y) then B(y, z, x)
[B1](Transitivity) If B(x, x′, y), B(x, y′, y) and B(x′, z, y′) then B(x, z, y). Let
us assume that these properties characterize a ternary betweenness relation.
There is a close link between interval spaces defined below and the relation of
betweenness. We introduce interval spaces (X, I(x, y)) (see [8] and the references
therein) namely a set X and a function I : X2 → P(X) that satisfy the following
properties:
[I1] (Extension) {x, y} ⊆ I(x, y).
[I2] (Symmetry) I(x, y) = I(y, x).
[I3] (Convexity) If {x′, y′} ⊆ I(x, y) then I(x′, y′) ⊆ I(x, y).

We could consider interval spaces that also satisfies the following property:
[I4] (Idempotence) I(x, x) = x.

The following proposition can be easily proved.

Proposition 1. If on the set X is defined a ternary betweenness the function

I(x, y) = {z ∈ X | B(x, z, y)}
defines an interval space (X, I(x, y)).

If (X, I(x, y)) is an interval spaces the ternary relation

B(x, z, y) if and only if z ∈ I(x, y)

defines a ternary betweenness in X.

3 Betweenness Spaces as Abstract Convex Structures

Let us consider a more general definition of betweenness as a binary relation
involving points and finite subsets of a non empty set X. We introduce this
relation by considering for every k ∈ N a k-ary interval function Ik : Xk → P(X)
such that
F1 xi ∈ Ik(x1, . . . , xk) for every k, 1 ≤ i ≤ k
F2 Ik is a symmetric function for every k ∈ N

F3 if y1, . . . , yh ∈ Ik(x1, . . . , xk) then Ih(y1, . . . , yh) ⊆ Ik(x1, . . . , xk)
The set Ik(x1, . . . , xk) is called a generalized k-interval and we say that an

element x in X is between the elements x1, . . . , xk if x ∈ Ik(x1, . . . , xk). Then
we assume that no point is between the empty set and we can describe also
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betweenness as binary relation involving points and finite subsets of a given set
(see [7]). We say that an element x is between a finite set {x1, . . . , xk} of elements
of X if x ∈ Ik(x1, . . . , xk)

A non empty set X endowed with a family of k-ary functions Ik : Xk → P(X)
that satisfy properties F1–F3 is called a betweenness space.

Then we consider the general notion of abstract convexity structure studied
in [7] and we refer to [7] for a general theory of convexity.

A convex structure consists of a set X and a collection C of subsets of X such
that the following properties are satisfied: C1 ∅ and X belong to C
C2 if Ci,∈ C then

⋂
i Ci ∈ C

C3 if C1 ⊆ C2 . . . ⊆ Ci . . . are elements of C then
⋃

i Ci ∈ C
The elements of C are called convex sets of X and the pair (X, C) is called a

convex space. A convex set with a convex complement is called an half-space.
Moreover, the convexity notion allows us to define the notion of the convex

hull operator, which is similar to that of the closure operator in topology. If X is
a set with a convexity C and A is a subset of X, then the convex hull of A ⊆ X
is the set

co(A) =
⋂

{C ∈ C : A ⊆ C}. (1)

This operator enjoys certain properties that are identical to those of usual
convexity: for instance co(A) is the smallest convex set that contains set A. It is
also clear that C is convex if and only if con(C) = C.

The convex hull of a set {x1, . . . , xk}is called an k-interval and is denoted by
[x1, . . . , xn]. A 2-interval [a, b] is called an interval or the segment joining a, b.

A convex structure is completely determined by its hull operator, or even by
its effect on finite sets since if an element x belongs to co(A) then x belongs to
co(F ) where F is a finite subset of A (see Proposition 2.1 of [7]).

A convexity C is called n-ary (n ∈ N) if A ⊆ C whenever co(F ) ⊆ A for all
F ⊆ A where F has at most n elements.

Note that convex spaces are often derived from some mathematical struc-
ture (see for example [2]). The following result proves that a convex space is
completely characterized by its betweenness relation.

Proposition 2. Let X a non empty set and {Ik : k ∈ N} a family of func-
tions Ik : Xk → P(X) that satisfy properties F1, F2 and F3. Then there exists a
convexity C on X such that

x ∈ Ik(x1, . . . , xk) ⇐⇒ [ for all C ∈ C : x1, . . . , xk ∈ C =⇒ x ∈ C] . (2)

Conversely if (X, C) is a convex space the functions Ik : Xk → P(X) defined
by

Ik(x1, . . . , xk) = co({x1, . . . , xk}) (3)

satisfy properties F1, F2 and F3

Proof. Let {Ik : k ∈ N} a family of functions Ik : Xk → P(X) that satisfy
properties F1, F2, and F3. Then we define a convexity C on X where C ∈
C if and only if for everyk x ∈ Ik(x1, . . . , xk) and x1, . . . , xk ∈ C then x ∈ C.
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We can easily prove that ∅ and X belong to C and that the intersection of
elements of C is an element of C.

Moreover if we consider a chain C1 ⊆ C2 . . . ⊆ Ci . . . of elements of C when
{x1, . . . , xk} ⊆ ⋃

i Ci there exists j such that {x1, . . . , xk} ⊆ Cj then we can get
that Ik(x1, . . . , xk) ⊆ Cj ⊆ ⋃

i Ci.
Now we have to prove that if for all C ∈ C if x1, . . . , xk ∈ C implies that

x ∈ C then x ∈ Ik(x1, . . . , xk). This can be proved by noting that by property
F3 Ik(x1, . . . , xk) is an element of the convexity C. The second part can be easily
verified.

4 Morphisms and Aggregation Functions

The class of convexity spaces can be considered as a category and the morphisms
are the convexity preserving functions.

If X and Y are betweenness space a map f : X → Y is a morphism if for
every x1, . . . , xk ∈ X

f(Ik(x1, . . . , xk)) ⊆ I ′
k(f(x1), . . . , f(xk))

where Ik and I ′
k are n-ary functions in X and Y respectively.

If X and Y are interval spaces with betweenness function B and B′ respec-
tively, a map f : X → Y is a morphism if for every x, y, z ∈ X

B(x, z, y) =⇒ B′(f(x), f(z), f(y)).

The following proposition proves a very natural property of morphisms of
abstract convex structures.

Proposition 3. If X and Y are betweenness space, a map f : X → Y is a
morphism if and only if for every convex set C in Y f−1(C) is convex in X.

Proof. Let f be a morphism and C a convex set in Y . If {x1, . . . , xk} ⊆ f−1(C)
then f(Ik(x1, . . . , xk)) ⊆ Ik(f(x1), . . . , f(xk)) ⊆ C.

Then we get that Ik(x1, . . . , xk) ⊆ f−1(C) and then we can prove that
f−1(C) is convex.

Conversely note that {x1, . . . , xk} ⊆ f−1Ik(f(x1), . . . , f(xk)) then
Ik(x1, . . . , xk) ⊆ f−1(Ik(f(x1), . . . , f(xk)) since f−1Ik(f(x1), . . . , f(xk)) is
convex.

Therefore we can conclude that f(Ik(x1, . . . , xk)) ⊆ Ik(f(x1), . . . , f(xk)).

If N = {1, . . . , n} and X is a betweenness space, then an aggregation function
is a map F : Xn → X. Note that the space Xn is a convex space with the product
convexity (see [7] for details).

We consider now some properties that an aggregation functional F : Xn → X
may or may not satisfy.

Let F be an aggregation function, F : Xn → X acting on a betweenness
space X F is said to be monotone if when F (x1, . . . xi . . . , xn) ∈ Ik(z1, . . . , zk)
for z1, . . . , zk ∈ X and yi ∈ Ik(z1, . . . , zk) , F (x1, . . . yi . . . , xn) ∈ Ik(z1, . . . , zk) .
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F is idempotent if and only if for every x ∈ X, F (x, x, . . . , x) = x.
Now we can easily prove the following statement.

Proposition 4. If X is a betweenness space and F : Xn → X an aggre-
gation function then F is monotone if and only if for every C ∈ C if
F (x1, . . . xi . . . , xn) ∈ C and yi ∈ C then F (x1, . . . yi . . . , xn) ∈ C.

We characterize the class of monotone aggregation functions.
A family of subset of N , F ⊆ P(N) is called an upper set if when A ⊆ B

and A ∈ F then B ∈ F .

Proposition 5. Let X be a betweenness space and F : Xn → X an idempotent
aggregation function. Then F is monotone if and only if for every C ∈ C there
exists an upper set FC such that

F (x) ∈
⋂

{C : {i ∈ N : xi ∈ C} ∈ FC}. (4)

Proof. Note that if F : Xn → X is an idempotent aggregation function that
satisfies (4) then if F (x1, . . . , xn) ∈ C and (y1, . . . , yn) ∈ Xn is such that {i ∈
N : xi ∈ C} ⊆ {i ∈ N : yi ∈ C} then obviously F (x1, . . . , xn) ∈ C.

If C is an element of C and x an element of Xn, let A(x, C) = {i ∈ N :
xi ∈ C}. Being F a monotone and idempotent function we can prove that if we
consider two elements x,y ∈ Xn such that for every i ∈ N , xi ∈ C if and only
if yi ∈ C then F (x) ∈ C if and only if F (y) ∈ C.

We say that a set A is C-decisive if there exists x ∈ XN such that A(x, C) =
A and F (x) ∈ C. Hence a set is C-decisive if and only if for every x ∈ Xn such
that A(x, C) = A, F (x) ∈ C.

For every C ∈ C let FC the family of C-decisive subsets of N . Then we get
that for every x ∈ Xn, F (x) ∈ C if and only if A(x, C) ∈ FC . The family of
subset FC is non empty since F is idempotent. For every C ∈ C the family of
subsets FC is an upper set since F is a monotone function.

Now we consider the class of monotone aggregation functions that are also
morphisms.

Proposition 6. If X is a betweeness space and F : Xn → X a monotone and
idempotent aggregation function. Then F is a morphism if and only if for every
C ∈ C there exists a totally ordered set FC of elements of P(N) such that

F (x) ∈
⋂

{C : {i ∈ N : xi ∈ C} ∈ FC}. (5)

Proof. If we consider a product of finitely many convex spaces all convex sets
are product of convex sets (see Proposition 1.10.2 in [8]). Then F is a morphism
if and only F−1(C) is a product of convex sets Ci, 1 ≤ i ≤ n for every C ∈ C.

Hence F (x1, . . . , xn) ∈ C if and only if xi ∈ Ci and then if and only FC is a
totally ordered subset of P(N).
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5 Concluding Remarks

We have considered and characterized an abstract definition of betweenness. We
have shown that this definition is equivalent to that of abstract convex space and
we have considered also morphisms and aggregation functions in betweenness
spaces. We plan to consider other classes of aggregation functions, and to find
more applications of our results in future work.
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Abstract. In this paper we describe the class of idempotent n-ary uni-
norms on a given chain. When the chain is finite, we axiomatize the latter
class by means of the following conditions: associativity, quasitriviality,
symmetry, and nondecreasing monotonicity. Also, we show that associa-
tivity can be replaced with bisymmetry in this new axiomatization.

1 Introduction

Let X be a nonempty set and let n ≥ 2 be an integer. For a few decades,
many classes of binary aggregation functions have been investigated due to their
great importance in data fusion (see, e.g. [8] and the references therein). Among
these classes, the class of binary uninorms plays an important role in fuzzy logic.
Recently, the study of the class of n-ary uninorms gained an increasing interest
(see, e.g. [9]).

This paper, which is a shorter version of [6]1, focuses on characterizations
of the class of idempotent n-ary uninorms (Definition 3). In Sect. 2, we provide
a characterization of these operations and show that they only depend on the
extreme values of the variables (Proposition 1). We also provide a description of
these operations as well as an alternative axiomatization when the underlying
set is finite (Theorem 1). In particular, we extend characterizations of the class
of idempotent binary uninorms obtained by Couceiro et al. [4, Theorems 12
and 17] to the class of idempotent n-ary uninorms. In Sect. 3, we investigate
some subclasses of bisymmetric n-ary operations and derive several equivalences
involving associativity and bisymmetry. More precisely, we show that if an n-
ary operation has a neutral element, then it is associative and symmetric if and
only if it is bisymmetric (Corollary 1). Also, we show that if an n-ary operation
is quasitrivial and symmetric, then it is associative if and only if it is bisym-
metric (Corollary 1). These observations enable us to replace associativity with
bisymmetry in our axiomatization (Theorem2).

We adopt the following notation throughout. We use the symbol Xk if X
contains k ≥ 1 elements, in which case we assume without loss of generality
1 This paper is also an extended version of [7].
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that Xk = {1, . . . , k}. Finally, for any integer k ≥ 1 and any x ∈ X, we set
k · x = x, . . . , x (k times). For instance, we have F (3 · x, 2 · y) = F (x, x, x, y, y).

Recall that a binary relation R on X is said to be

– total if ∀x, y: xRy or yRx;
– transitive if ∀x, y, z: xRy and yRz implies xRz;
– antisymmetric if ∀x, y: xRy and yRx implies x = y.

Recall also that a total ordering on X is a binary relation ≤ on X that is
total, transitive, and antisymmetric. The ordered pair (X,≤) is then called a
chain.

Definition 1. An operation F : Xn → X is said to be

– idempotent if F (n · x) = x for all x ∈ X;
– quasitrivial (or conservative) if F (x1, . . . , xn) ∈ {x1, . . . , xn} for all

x1, . . . , xn ∈ X;
– symmetric if F (x1, . . . , xn) is invariant under any permutation of x1, . . . , xn;
– associative if

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)
= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)

for all x1, . . . , x2n−1 ∈ X and all i ∈ {1, . . . , n − 1};
– bisymmetric if

F (F (r1), . . . , F (rn)) = F (F (c1), . . . , F (cn))

for all n × n matrices [c1 · · · cn] = [r1 · · · rn]T ∈ Xn×n.
– nondecreasing for some total ordering ≤ on X if F (x1, . . . , xn) ≤

F (x′
1, . . . , x

′
n) whenever xi ≤ x′

i for all i ∈ {1, . . . , n}.
Given a total ordering ≤ on X, the maximum (resp. minimum) operation

on X for ≤ is the symmetric n-ary operation max≤ (resp. min≤) defined by
max≤(x1, . . . , xn) = xi (resp. min≤(x1, . . . , xn) = xi) where i ∈ {1, . . . , n} is
such that xj ≤ xi (resp. xi ≤ xj) for all j ∈ {1, . . . , n}.

Definition 2. Let F : Xn → X be an operation. An element e ∈ X is said to
be a neutral element of F if

F ((i − 1) · e, x, (n − i) · e) = x

for all x ∈ X and all i ∈ {1, . . . , n}.



100 J. Devillet et al.

2 A First Characterization

In this section we provide a characterization of the n-ary operations on X that are
associative, quasitrivial, symmetric, and nondecreasing for some total ordering
≤ on X. We will also show that in the case where X is finite these operations
are exactly the idempotent n-ary uninorms.

Recall that a uninorm on a chain (X,≤) is a binary operation U : X2 → X
that is associative, symmetric, nondecreasing for ≤, and has a neutral element
(see [5,11]). It is not difficult to see that any idempotent uninorm is quasitrivial.

The concept of uninorm can be easily extended to n-ary operations as follows.

Definition 3 (see [9]). Let ≤ be a total ordering on X. An n-ary uninorm is
an operation F : Xn → X that is associative, symmetric, nondecreasing for ≤,
and has a neutral element.

The next proposition provides a characterization of idempotent n-ary uni-
norms. In particular, since any idempotent uninorm is quasitrivial, it shows that
an idempotent n-ary uninorm always outputs either the greatest or the smallest
of its input values.

Proposition 1. Let ≤ be a total ordering on X and let F : Xn → X be an
operation. Then F is an idempotent n-ary uninorm if and only if there exists a
unique idempotent uninorm U : X2 → X such that

F (x1, . . . , xn) = U(min≤(x1, . . . , xn),max≤(x1, . . . , xn)), x1, . . . , xn ∈ X.

In this case, the uninorm U is uniquely defined as U(x, y) = F ((n − 1) · x, y).
We now introduce the concept of single-peaked total ordering which first

appeared for finite chains in social choice theory (see Black [2,3]).

Definition 4. Let ≤ and � be total orderings on X. We say that � is single-
peaked for ≤ if for any a, b, c ∈ X such that a < b < c we have b ≺ a or
b ≺ c.

When X is finite, the single-peakedness property of a total ordering � on X
for some total ordering ≤ on X can be easily checked by plotting a function,
say f�, in a rectangular coordinate system in the following way. Represent the
reference totally ordered set (X,≤) on the horizontal axis and the reversed ver-
sion of the totally ordered set (X,�), that is (X,�−1), on the vertical axis. The
function f� is defined by its graph {(x, x) : x ∈ X}.2 We then see that the total
ordering � is single-peaked for ≤ if and only if f� has only one local maximum.

Example 1. Consider X = X6 endowed with the usual total ordering ≤ defined
by 1 < 2 < 3 < 4 < 5 < 6. Figure 1 gives the functions f� and f�′ corresponding
to the total orderings 3 ≺ 4 ≺ 2 ≺ 5 ≺ 1 ≺ 6 and 4 ≺′ 2 ≺′ 6 ≺′ 1 ≺′ 3 ≺′ 5,
2 When X = Xk for some integer k ≥ 1, the graphical representation of f� is then
obtained by joining the points (1, 1), . . . , (k, k) by line segments.
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respectively, on X6. We see that � is single-peaked for ≤ since f� has only one
local maximum while �′ is not single-peaked for ≤ since f�′ has three local
maxima.
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Fig. 1. � is single-peaked (left) while �′ is not (right)

It is known (see, e.g., [1]) that there are exactly 2k−1 single-peaked total
orderings on Xk for the usual total ordering ≤ defined by 1 < . . . < k.

The following theorem provides several characterizations of the class of asso-
ciative, quasitrivial, symmetric, and nondecreasing operations F : Xn → X. In
particular, it provides a new axiomatization as well as a description of idem-
potent n-ary uninorms when the underlying set X is finite. In the latter case,
it also extends characterizations of the class of idempotent uninorms obtained
by Couceiro et al. [4, Theorems 12 and 17] to the class of idempotent n-ary
uninorms.

Theorem 1. Let ≤ be a total ordering on X and let F : Xn → X be an opera-
tion. The following assertions are equivalent.

(i) F is associative, quasitrivial, symmetric, and nondecreasing for ≤.
(ii) There exists a quasitrivial, symmetric, and nondecreasing operation

G : X2 → X such that

F (x1, . . . , xn) = G(min≤(x1, . . . , xn),max≤(x1, . . . , xn)), x1, . . . , xn ∈ X.

(iii) There exists a total ordering � on X that is single-peaked for ≤ and such
that F = max�.

If X = Xk for some integer k ≥ 1, then any of the assertions (i)− (iii) above is
equivalent to the following one.

(iv) F is an idempotent n-ary uninorm.

Moreover, there are exactly 2k−1 operations F : Xn
k → Xk satisfying any of the

assertions (i) − (iv).
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Now, let us illustrate Theorem 1 for binary operations. Recall that the con-
tour plot of any operation F : X2

k → Xk is the undirected graph (X2
k , E), where

E = {{(x, y), (u, v)} | (x, y) 	= (u, v) and F (x, y) = F (u, v)}.
We can always represent the contour plot of any operation F : X2

k → Xk by
fixing a total ordering on Xk. For instance, using the usual total ordering ≤ on
X6, in Fig. 2 (left) we represent the contour plot of an operation F : X2

6 → X6
3.

It is not difficult to see that F is quasitrivial and symmetric. To check whether F
is associative and nondecreasing it suffices by Theorem 1 to find a total ordering
� on X6 that is single-peaked for ≤ and such that F = max�. In Fig. 2 (right)
we represent the contour plot of F by using the total ordering � on X6 defined
by 3 ≺ 4 ≺ 2 ≺ 5 ≺ 6 ≺ 1. It is not difficult to see that � is single-peaked for ≤.
Also, we have F = max� which shows by Theorem 1 that F is associative and
nondecreasing for ≤. Thus, by Theorem 1 we conclude that F is an idempotent
uninorm.

�

�

1 2 3 4 5 6

1

2

3

4

5

6

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

�

�

3 4 2 5 6 1

3

4

2

5

6

1

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Fig. 2. An idempotent uninorm F : X2
6 → X6

Remark 1. We observe that an alternative characterization of idempotent uni-
norms on chains was provided in [10]. Due to Proposition 1, we can extend this
characterization to the class of idempotent n-ary uninorms.

3 An Alternative Characterization

In this section we investigate bisymmetric n-ary operations and derive several
equivalences involving associativity and bisymmetry. More precisely, if an n-ary
operation has a neutral element, then it is associative and symmetric if and only if
it is bisymmetric. Also, if an n-ary operation is quasitrivial and symmetric, then
it is associative if and only if it is bisymmetric. In particular, these observations
enable us to replace associativity with bisymmetry in Theorem 1.
3 To simplify the representation of the connected components, we omit edges that can
be obtained by transitivity.
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Definition 5. We say that an operation F : Xn → X is ultrabisymmetric if

F (F (r1), . . . , F (rn)) = F (F (r′
1), . . . , F (r′

n))

for all n × n matrices [r1 · · · rn]T , [r′
1 · · · r′

n]T ∈ Xn×n, where [r′
1 · · · r′

n]T is
obtained from [r1 · · · rn]T by exchanging two entries.

Ultrabisymmetry seems to be a rather strong property. However, as the next
result shows, this property is satisfied by any operation that is bisymmetric and
symmetric.

Proposition 2. Let F : Xn → X be an operation. If F is ultrabisymmetric,
then it is bisymmetric. The converse holds whenever F is symmetric.

Proposition 3. Let F : Xn → X be an operation. Then the following assertions
hold.

(a) If F is quasitrivial and ultrabisymmetric, then it is associative and
symmetric.

(b) If F is associative and symmetric, then it is ultrabisymmetric.
(c) If F is bisymmetric and has a neutral element, then it is associative and

symmetric.

Corollary 1. Let F : Xn → X be an operation. Then the following assertions
hold.

(a) If F is quasitrivial and symmetric, then it is associative if and only if it is
bisymmetric.

(b) If F has a neutral element, then it is associative and symmetric if and only
if it is bisymmetric.

From Corollary 1 we immediately derive the following theorem, which is an
important and surprising result.

Theorem 2. In Theorem 1(i) we can replace associativity with bisymme-
try. Also, in Theorem 1(iv) we can replace associativity and symmetry with
bisymmetry.
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Raiņa bulvāris 29, Riga, Latvia

http://www.lumii.lv

Abstract. This paper deals with solutions for numeric evaluation of
risks containing several different risk factors assessed by experts. The pro-
posed methods can be used to assess the risks and obtain the risk scores
in different industries, including financial industry, but they are also suit-
able for assessing risks in other areas, e.g. project management. While
risk is usually considered as a function of probability and impact with
strong quantitative background, there are many practical cases when
only qualitative risk assessment based on expert opinions can be used. At
the same time there are still requirements and needs for applying numer-
ical values and mathematical models to such qualitative assessments. We
consider the options for aggregation of risk levels for corresponding risk
factors and obtaining consolidated risk level using transparent and self-
explanatory approach. The proposed models are constructed using maxi-
mum t-conorm and �Lukasiewicz t-conorm. Practical example is provided
for calculation of consolidated risk score.

Keywords: Risk assessment · Aggregation operators ·
Maximum t-conorm · �Lukasiewicz t-conorm

1 Introduction

The risk assessment methods and tools have been widely developed for differ-
ent purposes over the last decades. Many industries consider risk assessment as
important part of their business, but for some of them the risk management
process is the milestone in their daily operations. The financial industry is one
of the most evident examples. Therefore we have based the main part of our
research on examples from this particular industry.

While such risks as the credit risk, the financial risk and the liquidity risk
have always had a solid statistic basis for numerical calculations and application
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of the probability theory, supervisory authorities have increased their expecta-
tions and demands for introducing mathematical models for assessment of the
compliance risk, including the risk of money laundering, which lacks any solid
mathematical background and can rely on expert opinions only. At the same
time it should be noted that the number of subjects to Anti Money Launder-
ing (AML) laws has significantly increased over the last decade. Therefore the
models for scoring of money laundering risk often shall be implemented not only
by financial institutions, but also by real estate brokers, gambling companies,
notaries and other obliged entities pursuant to applicable laws.

The leading global AML software providers have developed different techno-
logical solutions to cope with increasing legal demands for scoring and monitoring
of customers and their transactions. However, these solutions often have rather
sophisticated underlying mathematical models, which are not openly disclosed
even to the end users. It should be also admitted that so far there have been
very few attempts in proposing the models for money laundering risk assessment
in scientific publications. The review article [1], published in February 2018,
summarizes all efforts used so far in finding the most appropriate approach for
efficient handling of tasks related to prevention of money laundering and high-
lights importance of the suspicious transactions’ detection. It is evident from the
practical point of view that transactional patterns are just consequences from
engaging into business with particular customers posing lower or higher risk of
money laundering. A use case provided in [2] allows to cope with a very sim-
ple transactional pattern, but it is important to take into account the customer
specifics as part of so called Know Your Customer (KYC) process as mentioned
also in [1].

The main goal of the KYC process is to implement a robust solution allowing
the obliged entities to assess the level of money laundering risk as part of the
customer relationship establishment, often referred as an on-boarding process.
The customers shall disclose different qualitative and quantitative data which
can be afterwards evaluated by experts and transposed into risk factors with
corresponding risk levels. Aggregation of these risk levels results in the risk
scores. Different scales can be used for this purpose, but we will apply the fuzzy
numbers and assign the values close to 0 for the lowest risks, and the values close
to 1 for the highest risk. It shall be noted that some risk models are inverted
by assigning the values close to 1 for the lowest risks, and the values close to
0 for the highest risk. Depending on the resulting money laundering risk scores
obliged entities are required to apply risk mitigation actions, which include,
but are not limited to regular monitoring of customer transactions, obtaining
relevant documentation on customers’ sources of wealth and funds etc.

The paper considers several options for risk level aggregation of such risk
factors as customer residence, occupation or business for legal entities, customer
reputation, estimated volumes and values of transactions and other similar fac-
tors as selected by the obliged entity or required by applicable laws and regu-
lations. Section 2 provides an overview of aggregation principles which are fur-
ther analysed by considering application of maximum t-conorm in Sect. 3 and
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�Lukasiewicz t-conorm in Sect. 4. Combination of these t-conorms is proposed in
Sect. 5. A practical example of risk levels’ aggregation based on expert evalua-
tions is presented in the Sect. 6.

2 Conditions for Aggregation of Risk Factors
in Qualitative Risk Assessment Model

The risk is usually considered as a function of probability and impact or likeli-
hood and severity. Such definition is suitable for many industries as outlined, for
example, in [3,4]. It also allows application of Mamdani-Type or Sugeno-Type
fuzzy inference systems for obtaining the consolidated risk levels as described
by [5,6]. This process is similar to different other practical applications provided
in [7].

Contrary to the previous examples of risks, qualitative risk assessment often
has rather limited quantitative basis for applying mathematical models. We will
use the money laundering risk to explain our approach. This risk is rather specific
and embraces comparably vague component of severity, which can be hardly
characterised by any numeric value. It particularly applies to such indicators as
reputational impact or business sustainability. At the same time AML laws and
regulations require implementation of detailed KYC procedures and assessment
of multiple risk factors for each customer. Therefore an expert opinion is among
the most appropriate solutions for assigning the risk levels for corresponding
notional risk factors. A simple example can be used to explain the need for a
human decision in assessing the risk level. Let us consider two companies of
different size and their estimated average transaction values. While EUR 100
000 payment would be treated as low risk indicator with value close to 0 for the
large company, it would be definitely a high risk indicator with value close to 1
for the small company. Similar judgement is valid also for assessment of expected
payment volumes which can be considered as another different risk factor.

Let us consider that all risk levels of corresponding risk factors Xk, k ∈
{1, ..., i} and k ∈ N are expressed in the form of fuzzy set μ = (x1, ..., xi), i ∈
{1, ..., n} and n ∈ N. In order to aggregate these risk levels we will use aggre-
gation operator A :

⋃

n∈N

[0, 1]n → [0, 1]. An example of ten risk factors (i = 10)

with corresponding risk levels for two sample customers is provided in Fig. 1.
It is evident that customers can be different and with different risk levels for
corresponding risk factors, which are notional and do not correspond to any
particular values on x axis.

The use of risk level fuzzy sets, especially their graphical representation,
provides a good preliminary overview of overall customer risk level. However,
they do not encompass importance of each risk factor, and also do not provide a
clear answer, if the obliged entity is facing high or low risk customer. Therefore we
will explore the options for aggregation of risk levels using different aggregation
operators in order to obtain the customer risk score. First of all we consider
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Fig. 1. Example of risk levels for two sample customers.

application of different average operators analysed by [8]. We define the fuzzy
weighted average of risk levels (x1, ..., xi) as follows:

W (x1, ..., xn) =
n∑

i=1

ωixi

where ωi are weights for each corresponding xi and
n∑

i=1

ωi = 1. At the first

glimpse such approach could be considered as suitable since the risk score is
the mean value of all weighted risk levels. However, due to specifics of money
laundering risk there are many occasions when it is not reasonable to accept
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that the risk score is lower than value of the highest risk level in the fuzzy
set μ = (x1, ..., xn). Therefore alternative aggregation operators should be
considered.

3 Aggregation of Risk Levels with Maximum T-Conorm

As part of the risk level aggregation it can be assumed that for particular cases
the total risk level of any sample customer cannot be lower than the highest
(maximum) risk level of all risk factors. Therefore we can apply the maximum
t-conorm M(x1, ..., xn) = max(x1, ..., xi), i ∈ {1, ..., n} and n ∈ N. It should be
noted that all risk factors Xk may not be equally important for customer risk
scoring. Therefore we apply fuzzy coefficients ai ∈ [ 0, 1] , i ∈ {1, ..., n} and n ∈ N

allowing to keep the values of certain initial risk levels or decrease them in sim-

ilar way as proposed by [9]. In our model
n∑

i=1

ai �= 1, and fuzzy coefficients can

be regarded as the indicators of risk appetite resulting in the fact that particu-
lar risk levels are decreased, if obliged entity considers them as less important.
Consequently the maximum t-conorm can be expressed in the following format:

M(x1, ..., xn) = max(a1x1, ..., aixi), (1)

i ∈ {1, ..., n} and n ∈ N.
When applying such aggregation, the most important risk factors with corre-
sponding risk levels are considered. However, other risk factors of lower impor-
tance with non-zero risk levels should not be disregarded as their aggregated
impact could be more severe than the highest risk level of the most important
risk factor. This implies that additional options for aggregation of the risk levels
of non-critical risk factors are required.

4 Aggregation of Risk Levels with �Lukasiewicz T-Conorm

Aggregation using arithmetic sum often results in values exceeding 1. If we con-
sider the example provided in Fig. 1, it is evident that the sum of only two partic-
ular risk levels for both sample customers is greater than 1 while there are non-
zero risk level values for four more risk factors. In order to overcome this problem,

we apply �Lukasiewicz t-conorm L(x1, ..., xn) = min(1,
n∑

i=1

xi), n ∈ N. As in the

case of maximum t-conorm we note that the risk factors are not equally impor-
tant. Therefore we apply the same fuzzy coefficients ai ∈ [ 0, 1] , i ∈ {1, ..., n} and
n ∈ N for calibration of the risk level values. The adjusted �Lukasiewicz t-conorm
is expressed as follows:

L(x1, ..., xn) = min(1,
n∑

i=1

aixi), (2)

n ∈ N. The formula (2) underlines the meaning of coefficients ai as values
expressing the risk appetite. It is evident that lower ai means higher risk appetite,
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and more risk factors can be included in the total risk score unless it does not
exceed the threshold of non-acceptable risk as internally set by the obliged entity.

While �Lukasiewicz t-conorm and formula (2) provide a sound basis for suit-
able aggregation of money laundering risk levels into single value risk score, such
aggregation may decrease the importance of some critical risk factors preserved
in case of the maximum t-conorm. There is another scenario when the obliged
entity may select some critical risk factors and benchmark their risk levels against
aggregated risk level values of the remaining risk factors. Therefore construction
of the combined aggregation operator is proposed in the Sect. 5.

5 Aggregation of Risk Levels with Combined T-Conorm

Let us assume that we have to deal with some critically important risk factors and
less significant risk factors by splitting them in two groups and combining results

using the following t-conorm: C(x1, ..., xn) = max(x1, ..., xk,min(1,
n∑

j=k+1

xj)),

n ∈ N. Such t-conorm is commutative, monotone, and the number 1 acts as its
identity element. However, this t-conorm is not associative as it basically consists
of two independent parts. From the practical point of view, it is not critical that
associativity does not hold. The t-conorm C is not unique in that sense, as there
are similar examples of functions, like copulas and quasicopulas analysed in [10],
where associativity does not hold.

When applying the combined t-conorm C we should consider the same
principle of the importance of risk factors applied to maximum t-conorm and
�Lukasiewicz t-conorm. The resulting formula will be the following:

C(x1, ..., xn) = max(a1x1, ..., akxk,min(1,
n∑

j=k+1

ajxj)), (3)

n ∈ N. In practice (3) will allow to select the critical risk factors out of the sum
of remaining risk factors. Such calculation is two folded. First of all it secures
that important high level risk factors are not missed, and secondly it allows to
benchmark aggregated level of less important risk factors against critical risk
factors.

6 Example of Aggregated Risk Score

The main purpose of the proposed aggregation model is to enable the end users,
including obliged entities and supervisory authorities, to implement simple and
clear solutions for obtaining the customer’s money laundering risk score. In our
example we will use four risk levels and apply them to each risk factor pursuant
to the widely accepted international standards: low risk, medium risk, high risk,
non-acceptable risk. Table 1 provides corresponding intervals for each risk level.
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Table 1. Values of risk levels.

Risk level Interval of risk score

Low [ 0, 0,30)

Medium [ 0,30, 0,60)

High [ 0,60, 0,95]

Non-acceptable ( 0,95, 1]

We will use a sample customer A from Fig. 1 with corresponding fuzzy set
of 10 risk levels μ = (x1, ..., x10) = (0; 0, 2; 0, 6; 0, 1; 0, 9; 0; 0; 0, 4; 0; 0, 5). As the
next step we will apply the following fuzzy coefficients characterising importance
of corresponding risk factors: a1 = 1, a2 = 1, a3 = 1, a4 = 0, 8, a5 = 0, 7, a6 =
0, 5, a7 = 0, 5, a8 = 0, 4, a9 = 0, 3, a10 = 0, 2. In such case (1) and (2) result
in the following values: M = 0, 63, L = min(1, 1, 77) = 1. It means that the
maximum t-conorm returns the value slightly above the lowest value of the high
risk, while application of �Lukasiewicz t-conorm results in non-acceptable risk.
Therefore intuitively these values could indicate that the most suitable level of
aggregated risk score could be high, but certainly lower than non acceptable.
In order to apply (3) we will select x1, x2, x3, x4 as the most critical risk fac-
tors. Such selection results in the following value of the combined t-conorm:
C = max(0, 6;min(1; 0, 89)) = 0, 89. The result corresponding to high level risk
(with risk score 0,89) is quite suitable for the obliged entity with rather low risk
appetite. At the same time it should be admitted that the risk appetite can be
increased by modifying fuzzy coefficients ai, and a5 in particular.

7 Conclusions

The proposed methods for aggregation of risk levels enable efficient calculation
of risk scores. While simple t-conorms result in loss or overestimation of the
importance of corresponding risk factors, combination of t-conorms provide a
good basis for a simple risk scoring. Transparency of the combined t-conorm can
allow supervisory authorities to identify the risk appetite of any obliged entity
which has chosen to apply such aggregation model for obtaining money launder-
ing risk scores. Further research will focus on the fine-tuning of the aggregation
model and also introducing Mamdani-Type or Sugeno-Type fuzzy inference sys-
tems towards each risk factor of the money laundering risk.
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Abstract. Fuzzy systems have been proven to be an effective tool for
modeling and control in real applications. Fuzzy control is a well estab-
lished area that is used in a large number of real systems. Fuzzy rule
based systems are defined in terms of rules in which the concepts that
define the rules (both in the antecedent and consequent) can be defined
in terms of fuzzy sets. In applications, rules are fired and then a set of
consequents need to be combined to make a final decision. This final
decision is often computed by means of a defuzzification method. In this
paper we discuss the defuzzification proces and propose the use of a
Choquet integral for this process. In contrast with standard defuzzifica-
tion methods which are based on mean operators (usually discrete), the
Choquet integral permits us to have an output variable with values that
have different importances and with interactions among the values them-
selves. To illustrate the approach, we use a numerical Choquet integral
software for continuous functions that we have recently developed. We
also position the application of the approach to handle the uncertainty
associated to a mission-oriented Cyber-Physical System (CPS).

1 Introduction

Knowledge based systems are used in a large number of real-world applications.
Among them, rule based systems stand out for their interpretability. As the
name indicates, they are defined in terms of sets of rules, with each rule defined
by an antecendent that establishes when the rule applies, and a consequent that
establishes the conclusion when the rule applies. Different types of rules have
been considered. We want to underline the case of rules that permit to represent
some type of uncertainty.

Fuzzy rules [5,10] are the rules to be used when we need to consider vagueness
and fuzziness in the concepts (either in the antecedent or the consequent). Recall
that a concept on the reference set X is imprecise when different elements of X
satisfy the concept (e.g., temperature below zero) and a concept is vague when
there are values in X for which it is doubtful to affirm that they satisfy or not
the concept (e.g., temperature is cold). Vague and imprecise concepts can be
represented by means of fuzzy sets.
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In contrast to standard (crisp) sets where characteristic functions are defined
in terms of the Boolean sets {true, false} or {0, 1} (i.e., an element is either in a
set A or not), fuzzy sets are defined in terms of membership functions that assign
to each element a value in the [0,1] interval. So, for a set A on the reference set
X, a characteristic function for A is typically of the form χA : X → {0, 1} while
a membership function is of the form μA : X → [0, 1]. Then, a value μA(x) of
zero means no membership, a value of one means total membership, and values
in (0, 1) represent partial membership.

Fuzziness distinguishes from probability because while a fuzzy membership of
e.g. 0.7 represents partial truth, probability of 0.7 is a measure of our certainty of
being the fact completely true. To illustrate the difference [3] gives an example of
two bottles A and B where A is marked with membership of 0.91 to be potable
and B with probability 0.91 to be potable. The later means that B will be
potable 91% of the trials, but 9% may be deadly. In contrast, the fuzzy bottle A
will contain perfectly potable water, maybe not completely pure, but not deadly
in any case.

Due to the fact that the rules are defined using fuzzy sets, and fuzzy sets can
be partially satisfied, at a given time, several rules may apply. This is so because
each of the rules may satisfy partially the conditions given in the antecedent. The
degree of satisfaction of a rule (the truth value of the antecedent) is computed
taking into account the fuzzy sets that define the rules, as well as appropriate
operators (e.g., operators to model conjunction and disjunction of the concepts
in the antecedent). Fuzzy systems usually fire all rules with positive degree of
satisfaction. Then, this degree is propagated to the conclusion. This leads to
a set of conclusions that need to be considered together, with each conclusion
having the corresponding degree of satisfaction of the rule.

A variety of fuzzy rule based systems exist in the literature. A detailed dis-
cussion of their differences is beyond the interest of this paper. See, for instance,
references [5,8–10,15,16,21] for a detailed description of some of them. We will
focus on rule based systems in which the terms of both antecedents and con-
sequents are described in terms of fuzzy sets. For simplicity, we will consider
antecedents in which terms are only combined in a conjunctive way, and in
which consequents have only one variable. Observe that this constraint is not
relevant in our work because we focus on how to operate with the conclusions
of the rules. Therefore, rules follow this pattern:

If V1 is T1 and V2 is T2 and . . .and V2 is T2 then VO is TO

We will give a more accurate description of the rules in Sect. 2. Here, Vi

represent variables, Ti terms that are represented by fuzzy sets, VO is the output
variable and TO an output term.

In our study, the output of a rule will be a fuzzy set. This fuzzy set will be
defined in terms of the fuzzy set TO of a rule, and the degree of satisfaction
of the antecedent. The collection of fuzzy sets obtained from all rules need to
be combined (through a data fusion or aggregation process). We obtain in this
way an aggregated fuzzy set. In order to obtain this set, we can proceed in
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different ways. In this work we will use the union of sets, as commonly used in
the literature [5].

The combination of consequents of rules does not lead to an appropriate
output. Most applications in control and modeling need as output a single value
in the appropriate range of the output variable (e.g., the actual value to give to
a controller). Therefore, a fuzzy set as system’s output cannot be used without
further processing. Defuzzification is the name of the process to select a single
value from the aggregated fuzzy set. Different defuzzification strategies have been
defined in the literature. The center of area is probably the most used one, but
other solutions have been proposed.

Most defuzzification procedures can be seen as a two step process (see e.g. [6]).
First, the aggregated fuzzy set is transformed into an appropriate distribution
(e.g., a probability distribution via normalization or a distribution that elimi-
nates inappropriate values). Then, an element is selected from the distribution
(e.g., the expected value of the distribution).

In this paper, we propose the use of a Choquet integral [4] in the defuzzifica-
tion process. This permits us to take into consideration some particularities of
the domain of the output variable. For example, we may consider that different
subdomains of the output variable have different relevance, and that different
subdomains are incompatibles.

In a CPS, physical and software components are tightly connected. Real-
time decisions are often needed, and systems need to adapt dynamically to their
context. Rule-based approaches are appropriate for reactive systems. Changes
in the environment cause changes in the input variables, that are quickly prop-
agated into the output. Fuzzy rule based systems are an effective approach for
implementing reactive systems.

Our model for defuzzification based on the Choquet integral permits us a
dynamic modification of the focus of interest of the output variable. While keep-
ing constant the fuzzy rule based system and the aggregation process, we will
be able to adapt the center of interest of the output variable taking into account
some additional variables of the environment. This will be done by means of a
modification of the parameter of the Choquet integral (i.e., the fuzzy measure).
As it is shown later, we consider an example with a simulated annealing-type
approach where the defuzzification shifts from a less supported value to a more
supported one (more conservative) when time progresses.

The structure of the paper is as follows. In Sect. 2 we give an overview of
fuzzy measures and the Choquet integral. We will use these concepts later to
formally define our approach. In Sect. 3 we describe the type of fuzzy rule based
system we use in this work. In Sect. 4 we formalize our defuzzification method.
In Sect. 5, we position the application of the approach to handle the uncertainty
associated to a mission-oriented CPS. The paper finishes with some conclusions
and lines for future work.



116 V. Torra and J. Garcia-Alfaro

2 Fuzzy Measures and the Choquet Integral

Let us start reviewing the concept of fuzzy measure, also known as non-additive
measure or monotonic game. Fuzzy measures generalize additive measures and
probabilities replacing the additivity condition by a condition on monotonicity:
monotonicity with respect to set inclusion.

Definition 1. Let (Ω,F) be a measurable space. A set function μ defined on F
is called a fuzzy measure if an only if

– 0 ≤ μ(A) ≤ ∞ for any A ∈ F ;
– μ(∅) = 0;
– μ(Ω) = 1;
– If A1 ⊆ A2 ⊆ F then

μ(A1) ≤ μ(A2)

The boundary condition μ(Ω) = 1 is not always required. In our context, it
will be convenient. It corresponds to the condition that the probability of the
whole reference set Ω is one.

When the set of reference is discrete, the Choquet integral of a function with
respect to a fuzzy measure is defined as follows.

Definition 2. Let X be a reference set, and let μ be a fuzzy measure on X =
{x1, . . . , xn}; then, the Choquet integral of a function f : X → R

+ with respect
to μ is defined by

(C)
∫

fdμ =
n∑

i=1

[f(xs(i)) − f(xs(i−1))]μ(As(i)), (1)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤
f(xs(1)) ≤ · · · ≤ f(xs(n)) ≤ 1, and where f(xs(0)) = 0 and As(i) =
{xs(i), . . . , xs(n)}.

When the reference set is not finite, the Choquet integral of f with respect
to μ is defined with the following expression

(C)
∫

fdμ :=
∫ ∞

0

μf (r)dr, (2)

where μf (r) = μ({x|f(x) ≥ r}).
This definition generalizes the Lebesgue integral, and it reduces to the

Lebesgue integral when μ is additive.

3 Fuzzy Rule Based Systems

We will consider fuzzy rules following the structure below. For the sake of sim-
plicity, we consider that all rules have n input variables and a single output.
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As we have indicated in the introduction, we only allow for conjunction to com-
bine the variables and their terms in the antecedent.

R: If V1 is tR1a and V2 is tR2b and · · · Vn is tRnz then Y is tRyo

Here, Vi represents an input variable and Xi its domain, tRie is a term for
the ith input variable, Y represents an output variable and tRyo is a term for
output variable. More specifically, for each variable Xi, we have a set of terms
ni terms denoted by ti1, . . . , tini

. Similarly, we have a set of no terms for the
output variable Y . These terms are ty1, . . . , tyno

. Naturally, tR1a ∈ {t11, . . . , t1n1},
tR2b ∈ {t21, . . . , t2n2}, etc.

Each tij is described in terms of a fuzzy set defined on the domain of variable
Vi. We denote this fuzzy set by μij . Naturally, μij : Xi → [0, 1].

Let us consider the rule below for controling the temperature of a device.
We have two input variables ε and Δε representing, respectively, the error (with
the objective temperature) and error difference (change in the error in two con-
secutive time instants), and an output variable that controls the device. We
have three terms, one for each variable. They are, positive, positive, and
small-negative. Each term will be defined by a fuzzy set. Fuzzy sets will be
defined in the range of the variable (this means that the term positive for
variable ε may be different than the term positive for variable Δε).

Rule1: if ε is positive and Δε is positive
then control-variable is small-negative

Fuzzy inference for fuzzy rule based systems for this type of rules usually
follows four steps. We give these fours steps formally below. We begin with an
informal description based on the previous rule.

Step 1. Rules are fired when we have actual values for each of the input
variables. E.g., we have that the error ε is 3 degrees (ε = 3) and that the error
has decreased 0.2 degrees (Δε = −0.2). Then, the degree of satisfaction for each
variable is defined as the membership degree of the actual value of the variable
using the appropriate membership function. In our case με,positive(3).

In our rules, the only operator in the antecedent is and. Because of that, the
membership degrees obtained for each variable in the antecedent are combined
using an operator that models the conjunction. In fuzzy logic, t-norms play this
role. The minimum min(a, b) and the product aḃ are examples of t-norms. This
combination corresponds to the degree of satisfaction of the antecedent.

Step 2. The degree of satisfaction of the antecedent is propagated to the
consequent. This is done clipping the membership function associated to the
output variable using the degree of satisfaction of the antecedent. The process
implies that when the antecendent is completely satisfied (i.e., degree equal to
one), the output is just the fuzzy term. In contrast, when the antecedent is not
at all satisfied (i.e., degree equal to zero), the output is just the empty set (i.e.,
all membership values are zero).

Step 3. All rules of our knowledge base (say KB) are fired applying the
approach just described. We obtain in this way a collection of fuzzy sets (say μR

for each rule R in KB). All these fuzzy sets are combined. It is usual to use the
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union of all fuzzy sets for this purpose. We obtain in this way an aggregated fuzzy
set. From a mathematical point of view, this approach is to consider fuzzy rules
in a disjunctive way. That is, either we apply R1 or R2 or . . . or Rt. Under this
interpretation, we take the union of the outputs (the output of R1 or the output
of R2 . . . ). For crisp and disjoint rules, this would result into a single output.
In the case of fuzzy rules, this step results into a fuzzy set that contains pieces
of information of several rules. See e.g. Figure 1 that shows a typical output of
Step 3. It corresponds to the union of two clipped fuzzy sets (one with maximum
value at y = 2 and the other with maximum value at y = 3). Then, in Step 4
we obtain a kind of average of the outputs (average weighted by the degree of
satisfaction of the rule).

In a previous work [18] we showed that the process of combination can be
expressed in terms of a Sugeno integral [14]. Understanding the fusion of con-
sequents in this way, we generalize the usual approach introducing a model in
which rules do not need to be independent. A similar idea is present in [2,11]
where the Choquet integral is used to combine outcomes from rules, also to
permit non independent rules.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aggregated membership

Fig. 1. Example of aggregated fuzzy set obtained in Step 3.

Step 4. A value is obtained from the aggregated set. This step is called defuzzi-
fication. The center of area is one of this defuzzification processes. This method
is the one given in Step 4 below.

We give now a more formal definition of this process.

Step 1. Degree of satisfaction of the antecedent of each rule R

αR = T (μR
1a(x1), μR

2b(x2), . . . , μR
n (xnz))

for a t-norm T .
Step 2. Application of all rules R and computation of their consequents

μR(x) = min(αR, μR
yo).
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Step 3. Application of a set of rules and computation of the corresponding
consequent. In terms of the membership function, it is the following:

μ̃ = ∪R∈KBμR.

If we consider memberships at given y in the space of the output Y , this is

μ̃(y) = ∪R∈KBμR(y)

for all y ∈ Y . We often use a t-conorm (e.g., the maximum) to compute the
union.

Step 4. Defuzzification

y∗ =

∑
y μ̃(y) · y∑

z μ̃(z)
or y∗ =

∫
yμ̃(y)dy∫
μ̃(z)dz

. (3)

4 Defuzzification Based on the Choquet Integral

Equation 3 is one of the existing approaches to select a value from the aggregated
fuzzy set. This approach is known as center of area or gravity defuzzification.
Driankov et al. [5] describe five other methods: center of sums, center of largest
area, first of maxima, middle of maxima, and height defuzzification.

As briefly explained in the introduction, following [6], most defuzzification
procedures can be seen from a two step process perspective. The first step trans-
forms the fuzzy set μ̃ into an appropriate distribution, and the second step is
about selecting an element from the distribution. In the center of area, the trans-
formation is about building the following probability distribution from the fuzzy
set μ̃: p(y) = μ̃(y)/

∑
z μ̃(z), or p(y) = μ̃(y)/

∫
μ̃dz in the continuous case. Selec-

tion is defined as the expected value of the distribution p. First of maxima sets
to zero all memberships that are not maximal and then selects the first y with
a maximal membership (i.e., let α = supz μ̃(z) then μ̃′(y) = α if and only if
μ̃(y) = α and select miny{y|μ̃′(y) = α}). Middle of maxima follows the same
approach but selects 0.5(miny{y|μ̃′(y) = α} + maxy{y|μ̃′(y) = α}).

Mathematically, the two step process for the center of area corresponds to
(i) building the probability distribution and then (ii) computing the expectation
of this distribution. We use the definition of the expectation as the Lebesgue
integral of the function f(y) = y with respect to the probability distribution.
That is, considering a continuous membership function μ̃:

y∗ =
∫

ydp

where p(y) = μ̃(y)/
∫

μ̃(z)dz.
Our contribution is to use in this process the Choquet integral of the function

f(y) = y with respect to a measure ν built from the fuzzy set μ̃. That is, our
proposal is to defuzzify using

y∗ = (C)
∫

dν (4)
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where ν is built from μ̃. Therefore, we need to consider ways to construct fuzzy
measures ν defined for all the sets [x,∞] (note that the values of ν([x,∞]) are the
only ones actually considered in the integration process). We give some examples
below. In the examples we use p(y) = μ̃(y)/

∫
μ̃(y)dz as above.

Example 1. If we define ν([x,∞]) =
∫ ∞

x
p(x)dx then the Choquet integral

corresponds to the Lebesgue integral, and the defuzzification is the center of
area.

Example 2. If we define ν([x,∞]) = Q(
∫ ∞

x
p(x)dx) for a distortion function

Q (i.e., a function Q(x) such that Q(0) = 0, Q(1) = 1 and monotonic with
respect to x), we result into the continuous WOWA operator for defuzzification
(see [17] for details). Note that measures of this form correspond to distorted
probabilities. I.e., ν = QoP .
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Fig. 2. Function 1 − e−k used to define the distortion function Qk, and the resulting
defuzzified values.

Let us consider the continuous piece-wise linear functions Q(a,b)(x) defined
as 0 for x < a, 1 for x > b, and linear between a and b. This is to model that
the values that accumulate probabilities in (a, b) (as in quantile functions) are
the most relevant in the defuzzification process. Let us consider a system where
we can consider risky alternatives (with less suport) at the initial times, but
more conservative alternatives (with more support) at later times. To model
this situation, we consider tk = ek (a popular cooling schedule – the exponential
one – in simulated annealing). We then consider the intervals (ak, bk) defined as
(max(0, 1−ek −0.1),min(1, 1−ek +0.1)) to build the corresponding distortions
Qk. The function 1−ek as well as the outcome of the defuzzification with respect
to time k is given in Fig. 2 (left and right, respectively).

We can see in Fig. 2 (right) how the defuzzified value tend to the minimum
when time increases.
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Example 3. For a given fuzzy measure ν′, we define the measure ν by set μ̃:

ν([x,∞]) =
(C)

∫
[x,∞]

pdν′

K
, (5)

where p(y) is defined as before p(y) = μ̃(y)/
∫

μ̃(z)dz, and with normalizing
factor K = (C)

∫
[−∞,+∞]

pdν′. Note that in this equation, we can use equiv-
alently either μ̃ or p because we have the normalizing factor K. For ν′ = λ
(i.e., ν′ is the Lebesgue measure), this definition results into the measure
above ν([x,∞]) =

∫ ∞
x

p(x)dx. For fuzzy measures ν′, this results into a fuzzy
measure ν.

To illustrate this example, we have considered two cases: measures ν′
1 and

ν′
2 which result using Expression 5 into two measures ν1 and ν2. They are the

following ones:

– ν′
1([a, b]) = (l1/5) + (l2/5)2 + 0.2(l1/5)(l2/5)4

– ν′
2([a, b]) = (l1/5) +

√
l2/5 + 0.2(l1/5)

√√
l2/5

where l1 = λ([a, b] ∩ [0, 3]) and l2 = λ([a, b] ∩ [3, 6]) (here λ is the Lebesgue
measure).

The first measure gives more relevance for elements x < 3 than the second
measure that have more relevance for elements x > 3. Compare the measure of
ν1([2, 3]) = 0.6373673 and ν1([3, 4]) = 0.08365445 vs. ν2([2, 3]) = 0.2400694 and
ν2([3, 4]) = 0.6262801. This implies that the defuzzification using ν1 is smaller
than the defuzzification using ν2. Experiments show that this is true, as in the
first case we obtain a defuzzified value of 2.306174 while in the second case it is
2.576696.

Example 3 shows that defuzzification using a Choquet integral provides addi-
tional flexibility, and that we can model situations in which different regions of
the domain have different relevance. We can exploit non-additivity of the measure
to reduce or increase the relevance of conservative or risky values. In addition,
we can also consider measures in line with Example 2 where the measure is time-
dependent, and, thus permits us to shift the focus of the system over time even
when its inputs do not change.

The outcomes of these examples have been computed considering the mem-
bership functions as continuous functions and computing the Choquet integrals
numerically. The numerical Choquet integral has been computed using the soft-
ware in R we provided in [20]. In Example 3, we need to compute the Choquet
integral of f(x) = x with respect to ν in the interval [0,6]. ν is the Choquet
integral of μ̃ with respect to ν. The integration of f requires the computation of
ν([a, 5]) for several values of a (i.e., several numerical Choquet integrals). This
makes the process costly. E.g., the defuzzification of the fuzzy set using ν2 takes
43 s in a Laptop (Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz).
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5 Applying the Approach to Cyber-Physical Systems

We present in this section the application of the defuzzification approach pre-
sented in this paper, to handle the uncertainty associated to a mission-oriented
CPS1. We assume a CPS in which entities integrate computation, communi-
cation and physical processes [7]. Examples include robotics and autonomous
vehicles. Our CPS scenario assumes the existence of a decentralized process
that computes corrective control actions based on our defuzzification approach.
Mathematically, the CPS is modeled as a spatially distributed system whose
control loops are closed by a wireless communication network. The communi-
cation network connects the different components of the CPS, assumed to be a
series of mobile agents that exchange messages to complete a mission-oriented
problem. The scenario follows previous work presented in [1,12] (cf. http://j.
mp/scavesim for further details and some related media), in order to address
classical theoretical problems studied in the CPS literature, such as stabiliza-
tion of mobile systems and control-theoretic techniques addressing uncertainty.
A quick summary of the scenario is presented next.

5.1 Trajectory Search Scenario

A series of mobile agents (e.g., unmanned aerial vehicles) must accomplish a mis-
sion. The mission relies on a trajectory search scenario. The agents must cross
different segments of, e.g., city blueprints, by physically identifying an unknown
number of intermediary trajectory points in each segment. Identifying and visit-
ing all the trajectory points, as well as reaching the final destination, it is crucial
to label the mission as accomplished. The agents collect and deliver informa-
tion at each trajectory point, such as taking pictures and exchanging messages
between them, in order to discover the way to reaching the following trajec-
tory point. The mission is considered as accomplished when all the intermediate
points specified in the trajectory are successfully visited by all the agents. The
mission fails when at least one of the agents fails at identifying or visiting one
of the points in the trajectory.

A trajectory is represented as an unknown number of intermediate points.
At every trajectory point, the agents must collectively determine the next step
by solving a search problem [1]. We define the trajectory search problem as a
collective solution in which a bounded number of agents follow a trajectory from
s (starting point) to t (terminal point), as depicted in Fig. 3.

The agents must discover the trajectory points instructed by a decentralized
CPS process. The process is to collect the information from all the agents, and
apply the defuzzification approach presented in this paper in the reasoning pro-
cess. Together, the agents travel from a trajectory point to any other. With the
trajectory points identified to vertices, they form a complete graph. We assume

1 The term CPS, coined in 2006 by H. Gill at the National Science Foundation [13],
refers to next generation embedded ICT systems, which include monitoring and
control technologies in charge of physical components for pervasive applications.

http://j.mp/scavesim
http://j.mp/scavesim
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s vi

i+1 tvi

Fig. 3. Group of mobile agents traveling from s (initial point of a trajectory) to t
(terminal point of the trajectory). Segments (vi, vi+1) represent the connection of two
trajectory points (vi and vi+1). They cooperate to navigate from s to t.

that the agents are unaware of the terrain and locations of the trajectory points.
However, their CPS process has the capability to correlate data collectively col-
lected by the overall system and take decisions. The agents communicate and
exchange information between them. The mission of the agents is assumed to be
accomplished if all the agents successfully find all the trajectory points within
the segments that start in s and end in t. See [22] for further details.

6 Concluding Remarks

In this paper we have proposed the use of Choquet integrals in the defuzzifi-
cation of fuzzy rule based systems. We have shown with some examples that
our definition permits to take into account the relevance of different regions.
We have also considered using the proposed approach for the accomplishment of
critical missions under uncertain conditions of a mission-oriented CPS. We have
presented a CPS scenario in which a series of mobile agents are instructed to
solve a trajectory search problem. The agents must discover and physically visit
a series of unknown trajectory points. To successfully accomplish the mission, all
the agents must collectively share information at each trajectory point, such as
taking pictures or exchanging messages between them, in order to discover the
following steps towards the following step of the trajectory. The mission is said
to have been accomplished when all the intermediate segments specified in the
trajectory are successfully visited by all the agents. The mission fails when one
of the agents fails at identifying or visiting one of the trajectory points. Future
work includes embedding the approach in a fuzzy system, and develop more
efficient solutions to compute the defuzzified values using the Choquet integral.
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Abstract. The paper deals with uninorms and nullnorms as basic oper-
ations which are associative, commutative and monotone (increasing).
These operations were first introduced on the unit interval and later
generalized to bounded lattices. In this contribution we show how it is
possible to generalize them to bounded posets. We will study their exis-
tence, property and conditions under which it is possible to construct
their idempotent versions, since these are the most important operations
from the point of view of possible applications.

Keywords: Bounded Poset · Associative operation ·
Idempotent uninorm · Idempotent nullnorm · Uninorm · Nullnorm

1 Introduction

Uninorms and nullnorms on the unit interval are special types of aggregation
functions since, due to their associativity they can be straightforwardly extended
to n-ary operations for arbitrary n ∈ N. They are important in various fields
of applications, e.g., neuron nets, fuzzy decision making and fuzzy modelling.
They are interesting also from a theoretical point of view. Important is, among
others, the class of idempotent operations, studied, e.g., in [1,2,9,15]. Recently
they have been studied on bounded lattices (see, e.g., [4–6,9–11,22]).

Uninorms were introduced by Yager and Rybalov [27]. Special types of asso-
ciative, commutative and monotone operations with neutral elements had been
already studied in [12,16,17]. Deschrijver [13,14] has shown that on the lat-
tice L[0,1] of closed subintervals of the unit interval there exist uninorms which
are neither conjunctive nor disjunctive (i.e., whose annihilator is different from
both, 0 and 1). Particularly, he constructed uninorms having the neutral ele-
ment e = [e, e], where e ∈]0, 1[. In [22] the authors have shown that on arbitrary
bounded lattice L it is possible to construct a uninorm regardless which element
of L is chosen to be the neutral one. A different type of construction of uninorms
on bounded lattices was presented in [4].
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In [20] construction of a uninorm for arbitrary pair (e, a) of incomparable
elements such that e is the neutral element and a the absorbing one, was pre-
sented. In [19] the author showed that on some special bounded lattices, one can
construct operations which are both, proper uninorms and nullnorms, meaning
that their neutral, as well as annihilators are different from both, 0 and 1.

T-operators were defined on [0, 1] by Mas et al. in 1999. In 2001, Calvo et al.
introduced the notion of nullnorms, also on [0, 1]. Both of these operations were
defined as generalizations of t-norms and t-conorms. As Mas et al. in 2002
pointed out, t-operators and nullnorms coincide on [0, 1]. Particularly, under
constrained that Op : [0, 1]2 → [0, 1] is a commutative, associative and mono-
tone operation then properties

(a) 0 and 1 are idempotent elements of Op and functions Op(0, ·) and Op(1, ·)
are continuous,

(b) there exists a ∈ [0, 1] such that 0 is a partial neutral element of Op on [0, a],
and 1 is a partial neutral element of Op on [a, 1],

are equivalent to each other. Afterwards, only nullnorms were studied and later
generalized as operations on bounded lattices [21]. In [6], the authors have
pointed out some differences between nullnorms and t-operators on bounded
lattices. In this paper we will deal only with nullnorms.

2 Basic Notations and Some Known Facts and Notions

In the whole paper, (P,0,1,≤) will denote a bounded poset, where P �= ∅ is a
given set and 0,1 its two distinguished elements such that 0 ≤ x ≤ 1 for all
x ∈ P . If it will cause no confusion, by P we will denote also the poset itself.
First, we recall some basic properties of binary operations.

Definition 1. Let P be a bounded poset and ∗ be a binary commutative opera-
tion on P . Then

(i) element c ∈ P is said to be idempotent if c ∗ c = c,
(ii) element e ∈ P is said to be neutral if e ∗ x = x for all x ∈ P ,
(iii) element a ∈ P is said to be annihilator if a ∗ x = a for all x ∈ P .

Lemma 1. Let ∗ be a commutative and associative operation on L. Further, let
c be an idempotent element. Assume that there exist elements x, y ∈ L such that
x ∗ c = y. Then also y ∗ c = y.

Schweizer and Sklar [26] introduced the notion of a triangular norm (t-norm
for brevity).

Definition 2 ([26]). An operation T : [0, 1]2 → [0, 1] is a t-norm if it is asso-
ciative, commutative, monotone, and 1 is its neutral element.



128 M. Kalina

T-norms and t-conorms are dual to each other. If T : [0, 1]2 → [0, 1] is a t-norm,
then

S(x, y) = 1 − T (1 − x, 1 − y)

is the dual t-conorm to T . For details on t-norms and t-conorms see, e.g., [23].
As a generalization of both t-norms and t-conorms Yager and Rybalov [27]

proposed the notion of uninorm.

Definition 3 ([27]). An operation U : [0, 1]2 → [0, 1] is a uninorm if it is asso-
ciative, commutative, monotone, and if it possesses a neutral element e ∈ [0, 1].

A uninorm U is proper if its neutral element e ∈ ]0, 1[.
Every uninorm has an annihilator. A uninorm with the annihilator 0 is con-

junctive, and a uninorm with annihilator 1 is disjunctive.

Lemma 2 ([27]). Let U : [0, 1]2 → [0, 1] be a uninorm whose neutral element is
e. Then its dual operation

Ud(x, y) = 1 − U(1 − x, 1 − y)

is a uninorm whose neutral element is 1 − e. Moreover, U is conjunctive if and
only if Ud is disjunctive.

Results in paper [27] imply the following assertion.

Lemma 3. Let U : [0, 1]2 → [0, 1] be a uninorm whose neutral element is e. Then
there exists a t-norm TU : [0, 1]2 → [0, 1] and a t-conorm SU : [0, 1]2 → [0, 1] such
that

(∀x, y ∈ [0, e]2)(U(x, y) = e · TU (xe ,
y
e )),

(∀x, y ∈ [e, 1]2)(U(x, y) = e + (1 − e) · SU (x−e
1−e ,

y−e
1−e )).

Lemma 4 ([27]). Assume U is a uninorm with neutral element e. Then:

1. for any x and all y > e we get U(x, y) ≥ x,
2. for any x and all y < e we get U(x, y) ≤ x.

Definition 4 ([7]). An operation V : [0, 1]2 → [0, 1] is said to be a nullnorm if V
is associative, commutative, monotone, and moreover if there exists an element
a ∈ [0, 1] such that

(1b) V (0, x) = x for all x ∈ [0, a],
(2b) V (1, x) = x for all x ∈ [a, 1].

A nullnorm is proper if a /∈ {0, 1}.

Remark 1.

(a) It is well-known that the element a in Definition 4 is the absorbing element of
nullnorm V . Further, 0 is a partial neutral element of V on the interval [0, a]
and 1 is a partial neutral element of V on the interval [a, 1]. Particularly,
we have

V (0, 0) = 0, V (1, 1) = 1. (1)
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(b) Setting a = 0 (a = 1) the nullnorm V becomes a t-norm (t-conorm). For
properties of t-norms and t-conorms see, e.g., the monograph [23].

Definition 5. Let a ∈ P be a fixed element. Then ‖a denotes the set of all
elements of P that are incomparable with a.

For more information on associative (and monotone) operations on [0, 1] refer
to the monographs [8,18,23].

3 Existence of Uninorms and Nullnorms on Bounded
Posets

In this part we will show how it is possible to construct a proper uninorm and a
proper nullnorm on every bounded poset P with at least 3 elements. Important
is that on every bounded poset P there exists at least one t-norm TD and one
t-conorm SD, namely

TD(x, y) =

⎧
⎪⎨

⎪⎩

x if y = 1,
y if x = 1,
0 otherwise,

SD(x, y) =

⎧
⎪⎨

⎪⎩

x if y = 0,
y if x = 0,
1 otherwise.

(2)

Theorem 1. For arbitrary bounded poset P with at least 3 elements, and arbi-
trarily chosen element e /∈ {0,1} there exist at least two uninorms Uc and Ud

whose neutral element is e. The annihilator of Uc is 0 and of Ud is 1.

Proof. Based on the t-norm TD and t-conorm SD we construct a conjunctive
and a disjunctive uninorm:

Uc(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if y = e, or if x < e and y > e,

or if x > e and y ‖ e,

y if x = e, or if y < e and x > e,

or if y > e and x ‖ e,

1 if x > e and y > e,

0 otherwise,

Ud(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if y = e, or if x > e and y < e,

or if x < e and y ‖ e,

y if x = e, or if y > e and x < e,

or if y < e and x ‖ e,

0 if x < e and y < e,

1 otherwise.

Monotonicity and commutativity (symmetry) of both, Uc as well as Ud are obvi-
ous. We skip a detailed proof of the associativity of these operations. It is enough
to realize that Uc(x, y) = 0 and Ud(x, y) = 1 if (x, y) ∈ (‖e)2. ��
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Theorem 2. For arbitrary bounded poset P with at least 3 elements, and arbi-
trarily chosen element a /∈ {0,1} there exists a nullnorm V whose annihilator
is a.

Proof. Similarly to the proof of Theorem1, we will construct a nullnorm V based
on the t-norm TD and t-conorm SD:

V (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x if x ≤ a and y = 0,
or if x ≥ a and y = 1,

y if y ≤ a and x = 0,
or if y ≥ a and x = 1,

a otherwise.

��
Example 1. Consider poset P whose Hasse diagram is given on Fig. 1.

0

1

c1 c2

c3 c4

Fig. 1. Hasse diagram of the poset P

The poset P is not a lattice, but for any ci, the intervals [0, ci] and [ci,1] are
lattices. If we choose c3 to be the neutral element of a uninorm, there exist 4
t-norms on [0, c3] and the only t-conorm on [c3,1]. For every of the four t-norms
we can choose from one of 3 possibilities for the annihilator, namely any element
of {0, c4,1}. Using the constructions in proof of Theorem1, we have the following
uninorms Uc and Ud, respectively:

Uc(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x for (x, y) ∈ P × {c3}, for (x, y) ∈ {0, c1, c2} × {c4,1},
and for (x, y) ∈ {1} × {c4},

y for (x, y) ∈ {c3} × P, for (x, y) ∈ {c4,1} × {0, c1, c2},
and for (x, y) ∈ {c4} × {1},

0 otherwise,



Uninorms and Nullnorms and their Idempotent Versions on Bounded Posets 131

Ud(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x for (x, y) ∈ P × {c3} and (x, y) ∈ {0, c1, c2} × {c4},
y for (x, y) ∈ {c3} × P and (x, y) ∈ {c4} × {0, c1, c2},
0 for (x, y) ∈ {0, c1, c2}2,
1 otherwise.

Except of uninorms Uc and Ud, we can construct another uninorm U3 with the
neutral element c3, whose annihilator is equal to c4. If we choose meet and join
for the respective underlying t-norm and t-conorm on the intervals [0, c3] and
[c3,1], we get the following

U3(x, y) =

⎧
⎪⎨

⎪⎩

x ∧ y for (x, y) ∈ [0, c3]2,
x ∨ y for (x, y) ∈ {c3,1}2,
c4 otherwise.

When constructing a proper nullnorm on P , we can choose any of the elements
ci to serve as the annihilator. For the annihilator equal to c3 we have 4 t-conorms
on [0, ci] and 1 t-norm on [ci,1]. When we want to use the construction from
the proof of Theorem 2, we get the following:

V (x, y) =

⎧
⎪⎨

⎪⎩

x for (x, y) ∈ [0, c3] × {0} and (x, y) ∈ {c3,1} × {1},
y for (x, y) ∈ {0} × [0, c3] and (x, y) ∈ {1} × {c3,1},
c3 otherwise.

(3)

4 Idempotent Uninorms and Nullnorms

Consider again Example 1 and the operations constructed there. The uninorms
U1, U2, U3 are idempotent, while the nullnorm V is not idempotent.

Lemma 5. Let P be the poset whose Hasse diagram is sketched on Fig. 1. There
exists no idempotent nullnorm on P .

Proof. We will not consider all cases. Similarly to the nullnorm V given by
formula (3), assume that c3 is the annihilator of nullnorm V . Then the following
holds

V (0,1) = c3 ≥ V (c4,0) ≥
{
c1 = V (0, c1),
c2 = V (0, c2)

.

This gives V (c4,0) = c3 ≤ V (c4, c4). I.e., there are only two possibilities for the
value V (c4, c4), namely c3 and 1. This gives that V is not idempotent. All the
other cases could be proven in a similar way. ��

To give conditions under which there exist idempotent uninorms and/or null-
norms on a bounded poset P , first we provide the following Theorems 3 and 4
which are necessary conditions for the existence of an idempotent uninorm and
nullnorm, respectively.
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Theorem 3. Let P be a bounded poset with at least three elements and e /∈
{0,1}. There exists an idempotent t-norm on [0, e] if and only if ([0, e],≤) is a
meet semi-lattice.

There exists an idempotent t-conorm on [e,1] if and only if ([e,1],≤) is a
join semi-lattice.

Proof. We show that a t-norm T : [0, e]2 → [0, e] is idempotent if and only if
T (x, y) = x∧ y. Assume for some (x, y) ∈ [0, e]2 T (x, y) = z �= x∧ y. Then there
exists s that is bounded from above by both, x and y and either s > z or s ‖ z.
Monotonicity of T implies T (s, s) ≤ T (x, y) �= s and this implies that T is not
idempotent.
Similarly we could show that a t-conorm S on [e,1] is idempotent if and only if
S(x, y) = x ∨ x.

In the same way as we proven Theorem 3 we could prove the following
assertion.

Theorem 4. Let P be a bounded poset with at least three elements and a /∈
{0,1}. There exists the idempotent t-conorm on [0, a] if and only if ([0, a],≤) is
a join semi-lattice.
There exists the idempotent t-norm on [a,1] if and only if ([a,1],≤) is a meet
semi-lattice.

The following theorems state some sufficient conditions under which it is
possible to construct an idempotent uninorm on P .

Theorem 5. Let (P,0,1,≤) be a bounded poset with at least three elements and
e /∈ {0,1}. Assume [0, e] is a meet semi-lattice, [e,1] is a join semi-lattice. Fur-
ther assume (‖e,≤) is either a meet semi-lattice such that x < e and y ∈‖e
imply x < y, or (‖e,≤) is a join semi-lattice such that x > e and y ∈‖e
imply y < x. Then there exists an idempotent uninorm on P whose neutral
element is e.

Proof. Assume ‖e is a meet semi-lattice fulfilling that x < e and y ∈‖e imply
x < y. Then the following operation is a conjunctive uninorm:

Uc(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∧ y for (x, y) ∈ [0, e]2 and for (x, y) ∈‖2e,
x ∨ y for (x, y) ∈ [e,1]2,
x if y ∈ [e,1] and x < e or x ∈‖e,

or if x < e and y ∈‖e,
y if x ∈ [e,1] and y < e or y ∈‖e,

or if y < e and x ∈‖e .
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In case ‖e is a join semi-lattice fulfilling x > e and y ∈‖e imply y < x, the
following operation is a disjunctive uninorm:

Ud(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∧ y for (x, y) ∈ [0, e]2,
x ∨ y for (x, y) ∈ [e,1]2 and for (x, y) ∈‖2e,
x if y ∈ [0, e] and x > e or x ∈‖e,

or if x > e and y ∈‖e,
y if x ∈ [0, e] and y > e or y ∈‖e,

or if y > e and x ∈‖e .

Concerning associativity of Uc, this is implied by the fact that both, meet and
join, are associative operations and we assume their existence on the respective
parts of P , and further, elements of [e,1] are partial neutral element for the
remaining part of P and elements of ‖e are partial neutral elements for values
x < e.

Similarly we could show the associativity of Ud. ��
Theorem 6. Let (P,0,1,≤) be a bounded poset with at least three elements and
e /∈ {0,1}. Assume [0, e[ ∪ ‖e is a meet semi-lattice, [e,1] is a join semi-lattice
([0, e] is a meet semi-lattice and ]e,1] ∪ ‖e is a join sem-lattice). Then there
exists an idempotent uninorm on P whose neutral element is e.

Proof. We construct an idempotent uninorm in the case [0, e[ ∪ ‖e is a meet
semi-lattice.

Uc1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∨ y for (x, y) ∈ [e,1]2,
x for (x, y) ∈ ([0, e[ ∪ ‖e) × [e,1],
y for (x, y) ∈ [e,1] × ([0, e[ ∪ ‖e),
x ∧ y otherwise.

��
The following example illustrates that the constraints in Theorems 5 and 6

are really just sufficient.

Example 2. Assume a poset P1 given by the following Hasse diagram (Fig. 2)
Set c3 = e. As can be easily checked, ‖e= ‖c3= {c4, c5, c6} and the set {c4, c5, c6}
is neither a meet nor a join semi-lattice and moreover, there exists neither join
nor meet for any pair of different elements from ‖c3 , i.e., P1 fulfils neither the
constraints of Theorem 5 nor of Theorem 6.

Define a preference among elements of ‖c3 by c4 ≺ c5 ≺ c6, and

ci � cj if ci � cj for (ci, cj) ∈ (‖c3)2.
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0

1

c1 c2

c3 c4 c5 c6

c7 c8

Fig. 2. Hasse diagram of the poset P1

We construct now a conjunctive uninorm on P1 whose neutral element is c3.

Uc2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∨ y for (x, y) ∈ [c3,1]2,
x for (x, y) ∈ ({0, c1, c2} ∪ {c7, c8,1}) × ({c3}∪ ‖c3),

and for (x, y) ∈ {0, c1, c2} × {c7, c8,1}∪ ‖c3 ×{c3},
y for (x, y) ∈ ({c3}∪ ‖c3) × ({0, c1, c2} ∪ {c7, c8,1})

and for (x, y) ∈ {c7, c8,1} × {0, c1, c2} ∪ {c3}× ‖c3 ,
x � y for (x, y) ∈ (‖c3)2,
x ∧ y otherwise

The uninorm Uc2 is idempotent.
A necessary condition the set ‖e has to fulfil to yield the existence of an

idempotent uninorm, is formulated in the next theorem.

Theorem 7. Let (P,0,1,≤) be a bounded poset with at least three elements and
e /∈ {0,1}. Assume there exists an eight-truple {c1, c2, c3, c4, c5, c6, c7, c8} ∈‖e
having Hasse diagram depicted in Fig. 3, whose join of (c1, c2), (c3, c4), (c5, c6),
and meet of (c3, c4), (c5, c6), (c7, c8), are not defined. Then there exists no idem-
potent uninorm U on P whose neutral element is e.

Proof. Denote C = {c|1, c2, c3, c4, c5, c6, c7, c8}. Since U is an idempotent uni-
norm, for arbitrary (ci, cj) ∈ C2 such that ci ≤ cj , we have

ci = U(ci, ci) ≤ U(ci, cj) ≤ U(cj , cj) = cj .

Let us define the value of U(c3, c4). By monotonocity of U we get U(c3, c4) ∈ C.
Because of the symmetry of Hasse diagram in Fig. 3 it is enough to check three
possibilities, U(c3, c4) ∈ {c1, c3, c5}. Set U(c3, c4) = c5. Then

c5 = U(c3, c4) ≤ U(c3, c6) ∈ [c3, c6],
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c1 c2

c3 c4

c6c5

c7 c8

Fig. 3. Hasse diagram of the eight-tuple {c1, c2, . . . , c8}

which is a contradiction. Similarly, for U(c3, c4 = c1 we get the follwing contra-
diction

c1 = U(c3, c4) ≥ U(c2, c4) ∈ [c2, c4].

The last possibility is U(c3, c4) = c3. Then

c3 = U(c3, c4) ≤ U(c5, c4) ∈ [c4, c5], c3 = U(c3, c4) ≤ U(c6, c4) ∈ [c4, c6].

The above formulas imply U(c5, c6) ≥ c5 and U(c5, c6) ≥ c6. Set U(c5, c6) = c7.
In this case we get the following contradiction

c7 = U(c5, c6) ≤ U(c6, c8) ∈ [c6, c8]. ��

The following theorem states conditions under which it is possible to con-
struct an idempotent nullnorm on P .

Theorem 8. Let (P,0,1,≤) be a bounded poset with at least three elements
and a /∈ {0,1}. Assume [0, a] is a join semi-lattice, [a,1] is a meet semi-lattice.
Further assume that there exist c1 ∈ [0, a] and c2 ∈ [a,1] such that ‖a⊂ [c1, c2]
and x ‖ y for all x ∈‖a and y ∈ ]c1, a] ∪ [a, c2[ ∪ ‖c1 ∪ ‖c2 , and moreover,
(‖a ∪{c1, c2},≤) is either a meet or a join semi-lattice. Then there exists an
idempotent nullnorm on P whose annihilator is a.

Proof. We provide a construction of an idempotent nullnorm for the case ‖a is
a meet semi-lattice.

V (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∨ y for (x, y) ∈ [0, a]2,
x ∧ y for (x, y) ∈ [a,1]2 and for (x, y) ∈‖2a,
x if y ∈‖a and x ∈ [c1, a] ∪ [a, c2]∪ ‖c1 ∪ ‖c2 ,
y if x ∈‖a and y ∈ [c1, c2],
c1 if (x, y) ∈ [0, c1]× ‖a ∪ ‖a ×[0, c1],
c2 if (x, y) ∈ [c2,1]× ‖a ∪ ‖a ×[c2,1],
a otherwise.

��
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Finally, we provide a necessary condition for the existence of an idempotent
nullnorm on P .

Theorem 9. Let (P,0,1,≤) be a bounded poset with at least three elements and
a /∈ {0,1}. Assume [0, a] is a join semi-lattice, [a,1] is a meet semi-lattice. If
there exists an idempotent nullnorm V on P whose annihilator is a, then:

(i) for arbitrary pair (c1, c2) ∈ [0, a]2 and arbitrary c3 ∈ ‖a such that c3 ≥ c1 and
c3 ≥ c2, we have that V (c1, c2) ≤ c3,

(ii) for arbitrary pair (c4, c5) ∈ [a,1]2 and arbitrary c6 ∈ ‖a such that c6 ≤ c4
and c6 ≤ c5, we have that V (c4, c5) ≥ c6.

Proof. We show the case (i). Assume (c1, c2) ∈ [0, a]2 and arbitrary c3 ∈ ‖a such
that c3 ≥ c1 and c3 ≥ c2, and V (c1, c2) �≤ c3. Since V is idempotent, V (c1, c3) ∈
[c1, c3] and because of monotonicity of V we get V (c1, c3) ≥ V (c1, c2) /∈ [c1, c3],
which is a cintradiction. ��

5 Conclusions

In this contribution we have introduced uninorms and nullnorms on bounded
posets. We have shown that on every bounded poset with at least three ele-
ments it is possible to construct a conjunctive and a disjunctive proper uninorm
regardless which element we choose to serve as the neutral one. Further we have
shown that on every bounded poset with at least three elements it is possible
to construct a proper nullnorm. Further, we have provided some sufficient and
some necessary conditions under which it is possible to construct idempotent
uninorms and/or nullnorms.
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Abstract. In this paper we study necessary and sufficient conditions for
the existence of the derivative for fuzzy measures when we are considering
the Choquet integral. Results apply to discrete domains. The main result
is based on the definition we introduce of compatible permutation for two
pairs of measures (μ, ν).

As an application of the main result, we present the conditions for
possibility measures.

1 Introduction

Choquet integral [2] permits to integrate a function with respect to a fuzzy mea-
sure. Fuzzy measures [3,12], also known as capacities and non-additive measures,
generalize standard measures replacing the additivity condition by a monotonic-
ity one. Then, when a fuzzy measure is additive, Choquet integral reduces to
the Lebesgue integral.

The Radon-Nikodym derivative is a very important concept related to the
Lebesgue integral. The Radon-Nikodym theorem establishes that we can express
one additive measure with respect to another one under some conditions. In
particular, the condition of absolute continuity between two measures plays a
pivotal role.

In addition to its intrinsic mathematical interest, the Radon-Nikodym deriva-
tive is useful in practical applications. More particularly, it has been used
to define distances and divergences between pairs of measures. In particular,
f -divergences, which are defined in terms of Radon-Nikodym derivatives, are
extensively used in statistics and information theory. Recall that the Hellinger
distance, the Kullback-Leibler divergence, the Rényi distance and the variation
distance are all examples of f -divergences. They are used to compare probability
distributions, and the Kullback-Leibler divergence can also be used to define the
entropy.

Because of its theoretical and applied interest, the problem of defining Radon-
Nikodym-like derivatives for fuzzy measures is a relevant question. In the con-
tinuous case, Graf, Mesiar and Sipos, Nguyen, Rébillé, and Sugeno [5–9] have
studied the existence and computation of a Radon-Nikodym like derivative for
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non-additive measures in the context of Choquet integrals. We have considered
the problem ourselves in the context of defining f -divergence for fuzzy mea-
sures. We have considered both discrete and continuous case. See e.g. [11,13] (for
f -divergence and Hellinger distances) and [10] (for the definition of the entropy).
This derivative has also been used in [1] to define an alternative expression for
f -divergence.

In this paper we consider the problem of existence of the derivative when
the reference set is finite. More particularly, we consider the problem of finding
necessary and sufficient conditions on the existence of the derivative.

The structure of the paper is as follows. In Sect. 2 we review the concepts
that are needed in the paper. In Sect. 3 we present the main results. In Sect. 4,
as the application of the main result, we present the conditions for possibility
measures.

2 Preliminaries

Let us consider the universal set X := {x1, x2. · · · , xn}. Let us review the defi-
nitions of fuzzy measure and Choquet integral.

Definition 1. A set function μ such that μ(∅) = 0 and that is monotonic with
respect to the set inclusion (i.e., μ(A) ≤ μ(B) when A ⊂ B) is called a fuzzy
measure, non-additive measure, capacity or monotonic game.

It is often also required that μ satisfies μ(X) = 1. We do not require this
condition in this paper.

Definition 2. A fuzzy measure μ on (X, 2X) is called a possibility measure, if
μ(A ∪ B) = μ(A) ∨ μ(B) for A,B ∈ 2X . Here ∨ is understood as the maximum.

Definition 3. Let μ be a fuzzy measure and f be a function f : X → [0,∞).
The Choquet integral of the function f with respect to the fuzzy measure μ is
defined by

(C)
∫

fdμ =
∫ ∞

0

μ({x|f(x) ≥ α})dα (1)

Let A ⊂ X. The Choquet integral of the function f over A with respect to the
fuzzy measure μ is defined by

(C)
∫

A

fdμ =
∫ ∞

0

μ({x|f(x) ≥ α} ∩ A)dα (2)

When μ is additive, this expression corresponds to the classical Lebesgue inte-
gral. Using Eq. 2 we can consider defining measures in terms of other measures.
That is, we can define a measure μ from another measure ν as follows

μ(A) = (C)
∫

A

fdν =
∫ ∞

0

ν({x|f(x) ≥ α} ∩ A)dα (3)

Given μ and ν in Eq. 3, we can consider the problem of finding the function
f . When the measures are additive, this corresponds to the Radon-Nikodym
derivative, as the Choquet integral reduces to the Lebesgue integral.
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3 Condition for the Existence of a Derivative

While for additive fuzzy measures the Radon-Nikodym derivative exist when
the measures are absolutely continuous, this is not the case for fuzzy measures.
Because of that, it is rellevant to study when the derivative exist. We give some
conditions for its existence in this section. From now on, we will consider mea-
sures ν such that ν({xi}) �= 0 for all xi.

Definition 4. Let μ, ν be fuzzy measures on (X, 2X). We say that μ and ν are
compatible if there exists a permutation σ on {1, 2, . . . , n} such that

μ({xσ(1)})
ν({xσ(1)})

≥ μ({xσ(2)})
ν({xσ(2)})

≥ · · · ≥ μ({xσ(n)})
ν({xσ(n)})

.

A permutation σ satisfying this condition is said to be a compatible permu-
tation for (μ, ν).

From the definition of compatible permutation for a pair of measures (μ, ν),
it is easy to prove the following proposition.

Proposition 1. Let σ be a compatible permutation for (μ, ν). Then, we have
∣∣∣∣ μ({xσ(k)}) ν({xσ(k)})
μ({xσ(k+1)}) ν({xσ(k+1)})

∣∣∣∣ ≥ 0

for k = 1, 2, . . . , n − 1.

We will now give the main theorem of this paper. Let us now consider the
following. Let xk ∈ X and f(xk) := μ({xk})

ν({xk}) for k = 1, 2, · · · , n.

Since
(C)

∫
{xk}

fdν = f(xk)ν({xk}),

we have
μ({xk}) = (C)

∫
{xk}

fdν.

Let A2 := {xi1 , xi2}. Suppose that

μ(A2) = (C)
∫

A2

fdν.

with f(xσ(i1)) ≥ f(xσ(i2))
Since

(C)

∫
A2

fdν = f(xσ(i2))[ν({xσ(i1), xσ(i2)}) − ν({xσ(i1)})] + f(xσ(i1))ν({xσ(i1)})

=
μ({xσ(i2)})
ν({xσ(i2)})

[ν({xσ(i1), xσ(i2)}) − ν({xσ(i1)})] +
μ({xσ(i1)})
ν({xσ(i1)})

ν({xσ(i1)})

=
μ({xσ(i2)})
ν({xσ(i2)})

[ν({xσ(i1), xσ(i2)}) − ν({xσ(i1)})] + μ({xσ(i1)}),
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we have

μ({xσ(i1), xσ(i2)}) − μ({xσ(i1)}) =
μ({xσ(i2)})
ν({xσ(i2)})

[ν({xσ(i1), xσ(i2)}) − ν({xσ(i1)})],

that is,

ν({xσ(i2)})[μ({xσ(i1), xσ(i2)})−μ({xσ(i1)})] = μ({xσ(i2)})[ν({xσ(i1), xσ(i2)})−ν({xσ(i1)})] (4)

Let A3 := {xi1 , xi2 , xi3}. Suppose that Eq. 4 and

μ(A3) = (C)
∫

A3

fdν.

with f(xσ(i1)) ≥ f(xσ(i2)) ≥ f(xσ(i3)).

Then, we have

(C)

∫
A3

fdν = f(xσ(i3))[ν({xσ(i1), xσ(i2), xσ(i3)}) − ν({xσ(i1), xσ(i2), })]

+f(xσ(i2))[ν({xσ(i1), xσ(i2)}) − ν({xσ(i1)})] + f(xσ(i1))ν({xσ(i1)})

=
μ({xσ(i3)})
ν({xσ(i3)})

[ν({xσ(i1), xσ(i2), xσ(i3)}) − ν({xσ(i1), xσ(i2), })]

+
μ({xσ(i2)})
ν({xσ(i2)})

[ν({xσ(i1), xσ(i2)}) − ν({xσ(i1)})] +
μ({xσ(i1)})
ν({xσ(i1)})

ν({xσ(i1)})

=
μ({xσ(i3)})
ν({xσ(i3)})

[ν({xσ(i1), xσ(i2), xσ(i3)}) − ν({xσ(i1), xσ(i2), })]

+μ({xσ(i1), xσ(i2)}) − μ({xσ(i1)}) + μ({xσ(i1)})

=
μ({xσ(i3)})
ν({xσ(i3)})

[ν({xσ(i1), xσ(i2), xσ(i3)}) − ν({xσ(i1), xσ(i2), })] + μ({xσ(i1), xσ(i2)})

Then we have

ν({xσ(i3)})[μ({xσ(i1), xσ(i2), xσ(i3)}) − μ({xσ(i1), xσ(i2)})]
=μ({xσ(i3)})[ν({xσ(i1), xσ(i2), xσ(i3)}) − ν({xσ(i1), xσ(i2)})]

Let Ak := {xi1 , xi2 , . . . , xik
}. Then, by induction, if

μ(Ak) = (C)
∫

Ak

fdν,

then we have

ν({xσ(ik)})[μ({xσ(i1), xσ(i2), . . . , xσ(ik)}) − μ({xσ(i1), xσ(i2) . . . , xσ(ik−1)})]
=μ({xσ(i3)})[ν({xσ(i1), xσ(i2), . . . , xσ(ik)}) − ν({xσ(i1), xσ(i2) . . . , xσ(ik−1)})].
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Therefore we have the next theorem

Theorem 1. Let μ, ν be fuzzy measures on (X, 2X) and σ be a compatible per-
mutation for (μ, ν). Then, there exists a function f on X such that

μ(Ak) = (C)
∫

Ak

fdν

for all Ak = {xi1 , xi2 , · · · , xik
} ⊂ X if and only if

∣∣∣∣∣∣
1 μ({xσ(i1), xσ(i2) . . . , xσ(ik−1)}) ν({xσ(i1), xσ(i2) . . . , xσ(ik−1)})
1 μ({xσ(i1), xσ(i2), . . . , xσ(ik)}) ν({xσ(i1), xσ(i2), . . . , xσ(ik)})
0 μ({xσ(ik)}) ν({xσ(ik)})

∣∣∣∣∣∣ = 0 (5)

for all k = 2, . . . , n.
Here, xσ(ik) will be the element with smallest μ({xσ(ik)})/ν({xσ(ik)}) in the

set xσ(i1), xσ(i2), . . . , xσ(ik).

We illustrate this theorem with an example. We give two measures on a ref-
erence set of three elements that are compatible. We show that the determinants
of Theorem 1 are zero and thus, there exists a derivative of one measure with
respect to the other one.

Example 1. Let X := {x1, x2, x3} and let μ and ν two non-additive measures
defined as in Table 1.

Table 1. Two measures μ and ν that are compatible.

A {x1} {x2} {x3} {x1, x2} {x2, x3} {x1, x3} {x1, x2, x3}
μ(A) 0.2 0.3 0.4 0.5 0.6 0.55 0.8

ν(A) 0.1 0.3 0.8 0.4 0.9 0.8 1

We can observe that

μ({x1})
ν({x1})

>
μ({x2})
ν({x2})

>
μ({x3})
ν({x3})

.

Let us now check that the determinants are zero for all Ak ⊆ X. We need to
consider only k = 2 and k = 3 as there are only 3 elements in X.

Let us begin with k = 2, and we need to consider the sets {x1, x2}, {x1, x3},
{x2, x3}. Then, for the first set we obtain the following determinant that is equal
to zero:

∣∣∣∣∣∣
1 μ({x1}) ν({x1})
1 μ({x1, x2}) ν({x1, x2})
0 μ({x2}) ν({x2})

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0.2 0.1
1 0.5 0.4
0 0.3 0.3

∣∣∣∣∣∣ = 0.
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For the second set we obtain the following determinant that is also equal to
zero:

∣∣∣∣∣∣
1 μ({x1}) ν({x1})
1 μ({x1, x3}) ν({x1, x3})
0 μ({x3}) ν({x3})

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0.2 0.1
1 0.55 0.8
0 0.4 0.8

∣∣∣∣∣∣ = 0.

Similarly, for the third set we obtain the following determinant that is also
equal to zero:

∣∣∣∣∣∣
1 μ({x2}) ν({x2})
1 μ({x2, x3}) ν({x2, x3})
0 μ({x3}) ν({x3})

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0.3 0.3
1 0.6 0.9
0 0.4 0.8

∣∣∣∣∣∣ = 0.

Then, for k = 3 we need to consider the only set with 3 elements. That is,
{x1, x2, x3}. In this case we have the following determinant that is also equal to
zero.

∣∣∣∣∣∣
1 μ({x1, x2}) ν({x1, x2})
1 μ({x1, x2, x3}) ν({x1, x2, x3})
0 μ({x3}) ν({x3})

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0.5 0.4
1 0.8 1
0 0.4 0.8

∣∣∣∣∣∣ = 0.

Therefore, Theorem 1 implies that defining

f(x1) =
μ({x1})
ν({x1})

, f(x2) =
μ({x2})
ν({x2})

, f(x3) =
μ({x3})
ν({x3})

,

or, more specifically, with

f(x1) = 2.0, f(x2) = 1.0 and f(x3) = 0.5

we have
μ(A) = (C)

∫
A

fdν,

for all A. This last equation can be checked with straightforward computation.

4 Possibility Measures

Let us consider two possibility measures μ and ν. We will reconsider for this
type of measures Theorem 1 and make the condition for the existence of the
derivative simpler.

Definition 5. Let μ and ν be compatible fuzzy measures on (X, 2x) and σ be a
compatible permutation on (μ, ν). Then, μ (resp. ν) is said to be weakly monotone
decreasing for σ if

μ({xσ(1)}) ≥ μ({xσ(2)}) ≥ · · · ≥ μ({xσ(n)})

(resp. ν({xσ(1)}) ≥ ν({xσ(2)}) ≥ · · · ≥ ν({xσ(n)})).



144 Y. Narukawa and V. Torra

Suppose that μ and ν are weakly monotone increasing for σ
Since

μ({xσ(i1), xσ(i2) . . . , xσ(ik−1)}) = μ({xσ(i1), xσ(i2), . . . , xσ(ik)}) = μ({xσ(i1))

and

ν({xσ(i1), xσ(i2) . . . , xσ(ik−1)}) = ν({xσ(i1), xσ(i2), . . . , xσ(ik)}) = ν({xσ(i1)),

for any k = 2, . . . , n we have that we can prove that the following equality holds
∣∣∣∣∣∣
1 μ({xσ(i1), . . . , xσ(ik−1)}) ν({xσ(i1), . . . , xσ(ik−1)})
1 μ({xσ(i1), . . . , xσ(ik)}) ν({xσ(i1), . . . , xσ(ik)})
0 μ({xσ(ik)}) ν({xσ(ik)})

∣∣∣∣∣∣
and

=

∣∣∣∣∣∣
1 μ({xσ(i1)}) ν({xσ(i1)})
1 μ({xσ(i1)}) ν({xσ(i1)})
0 μ({xσ(ik)}) ν({xσ(ik)})

∣∣∣∣∣∣ = 0

for all k = 2, . . . , n.
Therefore, as this implies that Eq. 5 holds for all k = 2, . . . , n, applying

Theorem 1, we have the next theorem.

Theorem 2. Let μ and ν be compatible possibility measures on (X, 2x) and σ
be a compatible permutation on (μ, ν).

If μ and ν are weakly monotone increasing for σ, there exists a function f
on X such that

μ(Ak) = (C)
∫

Ak

fdν

for all Ak = {xi1 , xi2 , · · · , xik
} ⊂ X.

Let us consider a special case, let ν be a 0-1 possibility measure such that
ν(A) = 1, if A �= ∅, ν(A) = 0,if A �= ∅.

Then for every possibility measure μ, μ and ν are compatible.
Let σ be a compatible permutation for (μ, ν). Then we have

μ({xσ(1)})
1

≥ μ({xσ(2)})
1

≥ · · · ≥ μ({xσ(n)})
1

.

μ and ν are both weakly monotone decreasing.
Therefore we have the next corollary.

Corollary 1. Let ν be a 0-1 possibility measure such that ν(A) = 1, if A �= ∅,
ν(A) = 0,if A �= ∅. For every possibility measure μ, there exists a function f on
X such that

μ(Ak) = (C)
∫

Ak

fdν

for all Ak = {xi1 , xi2 , · · · , xik
} ⊂ X.

If μ and ν have some strict condition, we have the converse of Theorem 2.
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Definition 6. Let μ, ν be fuzzy measures on (X, 2X). We say that μ and ν are
strict compatible if there exists a permutation σ on {1, 2, . . . , n} such that

μ({xσ(1)})
ν({xσ(1)})

>
μ({xσ(2)})
ν({xσ(2)})

> · · · >
μ({xσ(n)})
ν({xσ(n)})

.

Suppose that possibility measures μ and ν are strict compatible and μ is not
weakly monotone increasing. Then, there exist l,m(1 ≤ l < m ≤ n) such that
μ({xσ(il)}) < μ({xσ(im)}).

Let Am = {xσ(il), xσ(im)}, and let us define α1, α2, β1, β2 and D as follows:

μ({xσ(il)}) = α1, μ({xσ(im)}) = α2, ν({xσ(il)}) = β1, ν({xσ(im)}) = β2

and

D =

∣∣∣∣∣∣
1 μ({xσ(il)}) ν({xσ(il)})
1 μ({xσ(il), xσ(im)}) ν({xσ(il), xσ(im)})
0 μ({xσ(im)}) ν({xσ(im)})

∣∣∣∣∣∣ .

Observe that from these definitions it follows α1 < α2. Then, we have for D
the following:

D =

∣∣∣∣∣∣
1 α1 β1

1 α2 β1 ∨ β2

0 α2 β2

∣∣∣∣∣∣ = β2(α2 − α1) − α2(β1 ∨ β2 − β1)

Then, if β1 ≥ β2, we have

D = β2(α2 − α1) − α2(β1 − β1) = β2(α2 − α1) > 0,

and if β1 < β2 we have

D = β2(α2 − α1) − α2(β2 − β1) = α2β1 − α1β2.

Since (μ, ν) is strict and as σ is a compatible permutation for (μ, ν) (i.e.,
α1/α2 ≤ β1/β2), we have that

D = β1β2(
α2

β2
− α1

β1
) < 0.

In any case, we have D �= 0.
Therefore we have the next proposition.

Proposition 2. Let μ, ν be fuzzy measures on (X, 2X) which are strict compat-
ible, and let σ be a compatible permutation for (μ, ν).

Suppose that there exists a function f on X such that

μ(Ak) = (C)
∫

Ak

fdν

for all Ak = {xi1 , xi2 , · · · , xik
} ⊂ X, k = 2, . . . , n. Then μ and ν are both weakly

monotone decreasing.



146 Y. Narukawa and V. Torra

Table 2. Possibility measures μ and ν defined by the measures on the singletons.

A {x1} {x2} {x3} {x4}
μ(A) 0.9 0.8 0.6 0.4

ν(A) 0.8 0.8 0.7 0.5

Example 2. Let X := {x1, x2, x3, x4} and possibility measures defined as in
Table 2.

Then (μ, ν) are strictly compatible, and μ and ν are weakly monotone.
From Proposition 2, it follows that there exists a function f on X such that

μ(Ak) = (C)
∫

Ak

fdν

for all Ak = {xi1 , xi2 , · · · , xik
} ⊂ X, k = 2, . . . , n.

5 Conclusion

In this paper we have studied the problem of existence of Radon-Nikodym-like
derivatives for fuzzy measures. We have proven a theorem on the necessary and
sufficient conditions based on the definition of compatible permutation for pairs
of measures. We have introduced this definition. We have also shown how these
results apply to possibility measures.
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Abstract. Recommender systems help individuals in a community to find
information or items that are most likely to meet their needs. In this paper, we
propose a new recommendation model called non-negative matrix factorization
for recommender systems based on dynamic bias (NMFRS-DB). As well as the
two factor matrices, the proposed method incorporates two bias matrices, which
improve the interpretability of the recommendations by expressing differences
between observed and estimated ratings. First, the relevant probabilistic distri-
butions are modeled, and then the factor matrices and bias matrices are calcu-
lated. Finally, the algorithm is described and explained. To evaluate the
proposed method, we conduct experiments on three real-world datasets. The
experimental results demonstrate the effectiveness of the NMFRS-DB model.

Keywords: Recommender system � Matrix factorization �
Probability distribution � Rating matrix � Dynamic bias

1 Introduction

Recommender systems (RS) are an effective tool for filtering information [1]. Various
types of recommendation algorithms have been proposed, including collaborative fil-
tering [7], content-based recommendation [9], and hybrid RS [5].

As the Netflix Prize competition has demonstrated, matrix factorization (MF) mod-
els are very suitable for generating product recommendations [4]. In MF, both the users
and items are modeled by vectors of factors inferred from item ratings. This produces
two low-rank matrices, representing the relation between users and factors and the
relation between items and factors, respectively. The product of these two matrices is
used to predict users’ future preferences. As a variant of MF, non-negative matrix
factorization (NMF) is one of the most effective decomposition tools for extracting
factors from user–item rating matrix. NMF factorizes and reconstructs matrices whose
elements are all greater than or equal to zero. Thus, a dense matrix, similar to the original
one, can be constructed iteratively.

Hernando et al. [2] proposed an NMF recommender system based on a Bayesian
probabilistic model. In their approach, each element in two non-negative factor matrices
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is within the range [0, 1], which provides an understandable probabilistic meaning.
However, this approach has a high training cost, and is prone to overfitting.

In this paper, we propose an improved version of the model described in [2]. The
contributions of our non-negative matrix factorization for recommender systems based
on dynamic bias (NMFRS-DB) are as follows. First, two matrices composed of
dynamic biases are incorporated into NMF, allowing the differences between observed
ratings and estimated ratings to be calculated explicitly. This strategy improves the
interpretability and quality of recommendations. Second, for elements modeling the
relationship between items and factors, evidence of both liking and disliking are
considered using two parameters, rather than the single parameter used in [2]. This
strategy improves the accuracy of the predictions. Third, the calculation of the prob-
ability that the rating given by user uj for item ik belongs to a certain group is sim-
plified. Because this parameter is critical for computing the estimated ratings, this
simplification reduces the burden of model learning.

2 Problem Description

RS is typically described by a rating matrix (RM). Let U ¼ fu1; u2; . . .; uMg be a set
of users and I ¼ fi1; i2; . . .; iNg be a set of items. The associated RM R is an
M�N matrix. Each entry rj,k of R corresponds to user uj’s (1� j�M) preference for
item ik (1� k�N). If rj,k 6¼ 0, then uj has rated ik; otherwise, the item has not been rated
by this user.

MF factorizes the original RM into two rank-L matrices A and B, where A is an
M�L matrix, B is an N�L matrix, and L < <min{M, N}. A is interpreted as the user–
factor matrix, and the row vector aj

* is a user-specific latent factor vector. B is inter-

preted as the item–factor matrix, and the row vector bk
*

is an item-specific latent factor
vector. This factorization process is implemented by minimizing the cost function
measuring the difference between R and the estimate ABT. Specifically, each entry rj,k

of R is estimated as r�j;k ¼ aj
* � bk

*

. The goal of MF is:

min
XM
j¼1

XN
k¼1

ðrj;k � aj
* � bk

* Þ ð1Þ

where rj,k is the observed rating given by user uj to item ik.
The main difference between NMF and MF is that NMF carries out the factor-

ization process subject to a non-negative constraint, i.e., A� 0 and B� 0.

3 Related Work

The basic idea of MF-based RS is to identify the unknown L latent factors that allow us
to estimate the ratings of users by solving an optimization problem. This approach is
successful because it does not consider missing ratings to be equivalent to zero.
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Once the factor matrices have been learned, MF-based RS can estimate the users’
ratings efficiently. Thus, MF has become a popular methodology for RS [4], and
several powerful algorithms have been proposed.

Recently, NMF has been shown to be useful in RS. NMF is applied when certain
non-negativity constraints exist; these constraints make the results easier to explain, as
it is natural to consider users producing non-negative ratings. Several NMF-based
recommendation methods have been proposed, including regularized single-element-
based NMF [6] and social similarity-based NMF [10].

In [3, 8], the problem of RS is studied from the perspective of probabilistic MF. In
these studies, it was assumed that the row vectors of the two factor matrices follow a
Gaussian distribution. The problem is that the ratings in RS are discrete, and the
Gaussian distribution is not a discrete distribution. Thus, probabilistic interpretations of
these methods are unintuitive. Using a Bayesian probabilistic model, Hernando et al.
[2] proposed an NMF-based RS. In this method, the different roles of the users, items,
and ratings are assumed to follow different probability distributions, and all the ele-
ments of the two factor matrices are probabilities within the range [0, 1]. The meaning
of these matrices can be understood and explained, and the reported experimental
results are good. However, the computational cost of their model is high, and the
interpretability of the model training process is not sufficiently clear.

4 Proposed Method

4.1 Basic Model

Let R be a rating matrix and each rating rj,k in R be a real number in the range [1, L],
where L is the number of groups of users that the algorithm is going to identify. Here,
we assume that the number of groups of users is the same as the maximal rating. Each
user uj could belong to one or more groups, and each item ik could be liked by users in
one or more groups. Besides the two matrices A and B described in Sect. 2, two bias
matrices are also considered. The estimated rating matrix is calculated as:

R� ¼ ABT þ 1
2
Cþ 1

2
D ð2Þ

where C is the bias matrix of A, recording the mean values of the difference between
the observed ratings and estimated ratings of users; the row vector of C is represented
by cj

* ¼ ðcj1; cj2; . . .; cjNÞ, where cj1 = cj2 = … = cjN, and each element can also be
denoted by cj. Similarly, D is the bias matrix of B, recording the mean values of the
difference between the observed ratings and estimated ratings of items; the row vector

of D is represented by dk
* ¼ ðdk1; dk2; . . .; dkNÞ, where dk1 ¼ dk2 ¼ . . . ¼ dkN , and each

element can also be denoted by dk.
Note that we use probabilistic MF in our model, so all elements in A, B, C, and

D are in the range [0, 1]. As in [2], aj,l represents the probability that user uj belongs to
group l of users, such that

PL
l¼1 aj;l ¼ 1, and bl,k represents the probability that users in
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group l like item ik. To fit this scenario, the elements of the rating matrix R are reg-
ularized in the range [0, 1] during the pre-processing phase.

4.2 Probabilistic Distribution

In this sub-section, we formally describe the ratings that users make over the items by
means of the following probabilistic distributions. Here, we consider the problem in
terms of the estimated rating r* and the observed rating r. We assume that r* is related
to users, and r is related to items.

According to [2], r�j;k follows a categorical distribution. That is:

r�j;k �Catðaj* þ cj
*Þ ð3Þ

where aj
* is the jth row vector of matrix A and cj

* is the jth row vector of matrix C. From
[2], aj

* is known to follow a Dirichlet distribution:

aj
* �Dirðlj* Þ ð4Þ

where lj
* is an L-dimensional vector and each of its elements lj,s is a parameter to be

learned. According to [2], rj,k follows a binomial distribution:

rj;k �BinðL; bk;sÞ ð5Þ

and each entry of matrix B follows a beta distribution:

bk;s �Betaðak;s; bk;sÞ ð6Þ

where ak,s and bk,s are parameters to be learned. ak,s is related to the amount of evidence
that the algorithm requires to deduce that user uk likes item is, and bk,s is related to the
amount of evidence that the algorithm requires to deduce that user uk dislikes item is.

4.3 Factor Matrices

In this sub-section, we describe how to calculate entries in the factor matrices. As in
[2], we adopt the variational inference technique (or variational Bayes) to calculate a
distribution approaching the real posterior distribution.

Let us suppose that:

pðr�j;k ¼ sÞ ¼ kj;k;s ð7Þ

where r�j;k is the estimated rating of user uj for item ik in R*, and pðr�j;k ¼ sÞ is the
probability that r�j;k is equal to s.
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According to Eq. 2:

kj;k;s / expðE
qðaj*Þ;qðbk

*Þ;qðrj;kÞ;qðcjÞ;qðdkÞ
ln pðaj* ; bk

*

; rj;k; r
�
j;k; cj; dkÞÞ ð8Þ

where pð�Þ and qð�Þ denote the actual probability and posterior probability, respectively.
From Eqs. 3 and 4, the estimated rating is related to l, and:

aj;s /
lj;sPL
f¼1 lj;f

ð9Þ

where the sth element of vector lj
* can be approximated as:

lj;s ¼ cþ cj þ
X Ij j

f¼1
kj;f ;s ð10Þ

in which c2(0, + ∞) is the bias parameter of the Dirichlet distribution—the higher the
value of c, the more diverse the user’s taste—and Ij j is the number of elements in the
set I , i.e., the number of items. We can see from Eq. 10 that each entry lj,s (1� s� L)
of lj

* can be approximated by the bias parameter, elements from the same row of matrix
C, and items for which the estimated ratings of user uj are s.

According to Eqs. 9 and 10:

aj;s / cj ð11Þ

Thus, we assume that the estimated ratings are related to the elements of matrix
A. According to Eq. 6:

bk;s / ak;s
ak;s þ bk;s

ð12Þ

We approximate these two parameters by:

ak;s ¼ dþ
X Uj j

f¼1
rf ;kkf ;k;s þ dk ð13Þ

bk;s ¼ eþ
X Uj j

f¼1
ð1� rf ;kÞkf ;k;s � dk ð14Þ

where d2(0, + ∞) is a bias parameter indicating the degree to which user uk likes item
is and e2(0, + ∞) is a bias parameter indicating the degree to which user uk dislikes
item is. That is, the higher the value of d, the greater the degree to which uk likes is; the
higher the value of e, the greater the degree to which uk dislikes is. We can see from
Eqs. 13 and 14 that each entry bk,s of matrix B can be approximated by the bias
parameters, users’ observed ratings on ik, users whose estimated ratings for item ik are
s, and elements from the same row of matrix D.
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According to Eqs. 13 and 14:

bk;s / dk ð15Þ

Thus, we assume that the observed ratings are related to the elements of matrix
B. Based on the above analysis, Eq. 8 can be approximated as:

kj;k;s / expðE
qðaj*Þ;qðbk

*Þ
ðln pðr�j;k ¼ s j aj* Þ þ ln pðrj;k ¼ s jbk

* ÞÞÞ ð16Þ

Equation 16 can be further transformed as:

kj;k;s / expðE
qðaj*Þ

ðln pðr�j;k ¼ sj aj* ÞÞ þ E
qðbk

*Þ
ðln pðrj;k ¼ s j bk

* ÞÞÞ ð17Þ

According to Eq. 3, r�j;k follows a categorical distribution, and so:

pðr�j;k ¼ s j aj* Þ ¼ aj;s ð18Þ

From Eq. 5, rj,k follows a binomial distribution. Thus, rj,k = s is only related to
element bk,s, and we have:

pðrj;k ¼ s j bk
* Þ ¼ pðrj;k ¼ s j bk;sÞ

¼ L

rj;k

� �
brj;kk;sð1� bk;sÞðL�rj;kÞ / brj;kk;sð1� bk;sÞðL�rj;kÞ ð19Þ

Substituting Eqs. 18 and 19 into Eq. 17, we have:

kj;k;s / expðE
qðaj*Þ

ðln aj;sÞþ rj;kE
qðbk

*Þ
ðln bk;sÞþ ðL� rj;kÞE

qðbk
*Þ
ðlnð1� bk;sÞÞÞ ð20Þ

According to the probability distribution of aj,s, we have:

E
qðaj*Þ

ðln aj;sÞ / wðlj;sÞ � wð
XL

f¼1
lj;f Þ ð21Þ

and from the probability distribution of bk,s, we can deduce that:

E
qðbk

*Þ
ðln bk;sÞ / wðak;sÞ � wðak;s þ bk;sÞ ð22Þ

E
qðbk

*Þ
ðlnð1� bk;sÞÞ / wðbk;sÞ � wðak;s þ bk;sÞ ð23Þ

156 W. Song and X. Li



Substituting Eqs. 21–23 into Eq. 20, we have:

kj;k;s / expðwðlj;sÞ � wð
XL
f¼1

lj;f Þþ rj;kwðak;sÞþ ðL� rj;kÞwðbk;sÞ � Lwðak;s þ bk;sÞÞ

ð24Þ

where w(x) is the digamma function defined as:

wðxÞ ¼ C0ðxÞ
CðxÞ ¼ ln x� 1

2x
�
X1

n¼1

B2n

2nx2n
ð25Þ

in which C(x) is the gamma function and B2n is the 2n-th Bernoulli number. Thus, we
have:

expðw xð ÞÞ / x ð26Þ

Using Eq. 26, we can simplify Eq. 24 as:

kj;k;s /
lj;s � ðak;sÞrj;k � ðbk;sÞðL�rj;kÞ

PL
f¼1

lj;f � ðak;s þ bk;sÞL
ð27Þ

4.4 Bias Matrices

In our method, the bias matrix C is assumed to be related to users, so we define cj, the
value of the jth row of C, as:

cj ¼
P Ij j

f¼1 rj;f � r�j;f
� �
Ij j ð28Þ

Similarly, dk, the value of the kth row of D, is defined as:

dk ¼
P Uj j

f¼1 rf ;k � r�f ;k
� �
Uj j ð29Þ

4.5 Algorithm Description

Combining the above discussion, the proposed NMFRS-DB algorithm is described in
Algorithm 1, which trains two factor matrices and two bias matrices and uses them to
provide recommendations to the target users.
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Step 1 of Algorithm 1 calls the Initialization procedure (see Algorithm 2). Step 2
then initializes the iteration number to 1. The main loop (Steps 3–31) constructs the
recommender model. The bias matrices C and D are calculated in Step 4. The loop in
Steps 5–12 updates matrix A, whereas the loop in Steps 13–20 updates matrix B. Note
that Eqs. 9 and 12 are used to “approximate” the elements in A and B. That is, “=” is
used to replace “/”. Equation 27 in Step 24 is used in the same way. The values of k
are then calculated and normalized in the loop from Step 21–28. R* is calculated in

158 W. Song and X. Li



Step 29. The number of iterations is then incremented by one in Step 30. Note that,
after we have calculated the estimated ratings, we need to transform them to obtain
non-normalized values. For example, when the typical rating scale {1, 2, 3, 4, 5} is
used, the calculated values should be multiplied by 5 before they are used to estimate
user ratings.

In Algorithm 2, the factor matrix A is initialized randomly in the loop from Step
1–6. Similarly, B is initialized randomly in the loop from Step 7–12. Using these initial
values, the values of k are initialized and normalized in the loop from Step 13–20. Step
21 initializes the two bias matrices C and D at random. R* is then calculated in Step 22.
In Algorithm 2, Eqs. 9, 12 and 27 are used to compute approximations.

5 Performance Evaluation

We compare our NMFRS-DB algorithm with that of a latent factor model (LFM)-based
recommender algorithm, denoted as LFM-RS [4], and a Bayesian probabilistic model-
based recommender algorithm, denoted as BPM-RS [2].
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5.1 Datasets

Three datasets were used for the evaluation. MovieLens 100K and MovieLens 1M can
be downloaded from https://grouplens.org/datasets/movielens/; the ratings in these two
datasets are real values ranging from 1.00–5.00. Jester Dataset 2 can be downloaded
from http://eigentaste.berkeley.edu/dataset/; this dataset consists of real values ranging
from −10.00–10.00, and the values are transformed to 1.00–5.00 in our experiments.
Thus, L, the number of user groups, is set to 5. The datasets were divided into two
parts, with 80% used as the training set T and 20% used as the testing set S.

5.2 Evaluation Metrics

We study the accuracy of the estimations given by our model through the Mean
Absolute Error (MAE). This metric measures the average absolute error between the
observed values and the estimated values, and is calculated as:

MAE ¼
P

ðj;kÞ2S j rj;k � r�j;kj
jSj ð30Þ

We can see that smaller values of MAE indicate more precise estimations.
We also evaluate the quality of the recommendations through the F1-measure:

F1�measure ¼ 2� Precision � Recall
Precision þ Recall

ð31Þ

where

Prcesion ¼ jES\ASj
jESj ð32Þ

Recall ¼ jES\ASj
jASj ð33Þ

in which ES is the set of items not rated by each user that have been estimated with the
highest values (greater than 4), and AS is the set of items rated by each user with high
values. Overall, the higher the value of the F1-measure, the greater the likelihood that
the recommended items will be rated highly by users.

5.3 Parameter Settings

In our model, the bias parameters c, d, e must be set to appropriate values. We first
outline the approximate range of these parameters, and then determine their optimal
values by progressive refinement. Tables 1, 2 and 3 illustrate the change in MAE with
respect to c, d, and e, respectively, on MovieLens 100K.

According to the results in Tables 1, 2 and 3, we set c = 0.01, d = 2.01, and
e = 1.61 when using MovieLens 100K. Similarly, we determined values of c = 0.01,
d = 2.20, e = 1.70 for MovieLens 1M and c = 0.10, d = 1.20, e = 0.60 for Jester
Dataset 2.
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5.4 Experimental Results

We first compare the difference between the observed values and the estimated values
using MAE. The results are presented in Table 4.

From Table 4, it is clear that the proposed NMFRS-DB model can estimate the
users’ ratings more accurately than the comparative methods on all three datasets. This
is because evidence of both liking and disliking items is considered in NMFRS-DB.
Thus, elements in the item–factor matrix can be approximated more accurately. As a
result, the estimated ratings also have a higher accuracy.

A comparison of the F1-measure under different numbers of recommendations on
the three datasets is presented in Table 5.

We can see from Table 5 that the F1-measure values from NMFRS-DB are superior
to those of the other two methods. The reason is that the interpretability of NMFRS-DB
is improved by modeling the observed and estimated ratings in bias matrices. Thus, the
quality of recommendations can also be improved.

Table 1. Change of MAE with respect to c on MovieLens 100K

0.01 0.21 0.41 0.61 0.81 1.01

MAE 0.663 0.668 0.671 0.674 0.672 0.677

Table 2. Change of MAE with respect to d on MovieLens 100K

0.01 1.01 2.01 3.01 4.01 5.01

MAE 0.678 0.672 0.665 0.687 0.684 0.701

Table 3. Change of MAE with respect to e on MovieLens 100K

0.01 0.81 1.61 2.41 3.21 4.01

MAE 0.700 0.691 0.663 0.684 0.699 0.721

Table 4. Comparison of MAE results

Dataset LFM-RS BPM-RS NMFRS-DB

MovieLens 100 K 0.691 0.764 0.662
MovieLens 1 M 0.683 0.723 0.665
Jester Dataset 2 0.801 0.842 0.778
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6 Conclusions

Using dynamic bias, we have presented a recommendation model based on NMF called
NMFRS-DB. In NMFRS-DB, two bias matrices are used alongside the user–factor
matrix and item–factor matrix. From a probabilistic perspective, we analyzed how to
approximate elements in the four matrices, and described the algorithms in detail.
Experimental results show that the NMFRS-DB model is more precise than two other
recommendation methods.

Acknowledgments. This work was partially supported by the Great Wall Scholar Program
(CIT&TCD20190305), High Innovation Program of Beijing (2015000026833ZK04), and
Beijing Urban Governance Research Center.
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Abstract. Reservoirs are largely natural or artificial lakes used as a
source of water supply for society daily applications. However, reservoirs
are limited natural resources which water levels vary according to annual
rainfalls and other natural events. Therefore, prediction techniques are
helpful to manage the water used more efficiently. This paper compares
state-of-the-art methods to predict the water level in Catalan reservoirs
comparing two approaches: using the water level uniquely, uni-variant,
and adding meteorological data, multi-variant. With respect to relate
works, our contribution includes a longer times series prediction keep-
ing a high precision. The results return that combining Support Vector
Machine and the multi-variant approach provides the highest precision
with an R2 value of 0.99.
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1 Introduction

Since the beginning of time, water is a fundamental resource for existence.
Thereby, its management is key to assure efficient water use worldwide. One
way to manage the flow of water for society use, dams and reservoirs were built.
Reservoirs are largely natural or artificial lakes used as a source of water supply
to the population. The “Agència Catalana de l’Aigua” (ACA) [6] claim that
in Catalonia there are more than 40 reservoirs of different capacities, types,
and characteristics. Among them, the large reservoirs are the ones that have
the capacity to supply the population. ACA defines as large reservoirs, by cur-
rent regulations, such as those with a height of more than 5 m and a capacity
exceeding 100,000 m3. In Catalonia, there are 23 reservoirs that meet these char-
acteristics that make us consider large reservoirs. Although these reservoirs may
contain a large quantity of water, meteorological variations may influence its
availability along the time. Hence, it is necessary not only the real-time water-
level measurement also its prediction to manage the reservoir for optimal use. For
instance, dry periods of weather may provoke the reduction of water levels and,
in consequence, lack of supply. Then, a prediction of water levels may help to pre-
pare a management plan for an optimal supply. Nevertheless, forecasting meth-
ods require data to predict future periods. Fortunately, thanks to governmental
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strategies to collect environmental data and offer it openly, users can implement
data mining techniques to provide worthy information for society. Üneş et al.
[25] consider that the implementation of data science methods in the field of
hydrology is important for the maintenance and control of infrastructure, pollu-
tion control, flood control, navigation, tourism, etc., as well as for the hydraulic
structures that depend on it. Thus, for example, they emphasise the importance
that the volume of water in reservoirs may have on economic activities, energy,
policies, consumption, among others. Therefore, providing smart tools capable
of predicting, displaying or deciding on data can be key in the efficient manage-
ment of these infrastructures, both complex and economically expensive. As the
researchers discussed, the prediction of the water level is equivalent to the pre-
diction of a decisional variable in the management of the infrastructure. Jun-He
Yang et al. [10] directly link the importance of this prediction to the economy of
a country, tourism, crop irrigation, flood control, water supply, and hydroelectric
power generation. Therefore, the forecast for the management of the reservoirs is
key for the country in general, affecting many more areas than the hydrological
one, and for the development of the area where they are located in particular.
Nwobi-Okoye and Igboanugo [15] consider a serious problem for their country
(Nigeria) to poorly plan electricity generation. Its objective is to predict the
level of water in the Kainji dam, which is the one that provides water to the
country’s main hydroelectric power plant. Therefore, a good prediction of the
water level in this reservoir can be good planning of the electricity produced and
supplied, since the level of water is directly related to the capacity to produce
energy, simply because it occurs with more force for the turbines and, therefore,
it generates more electricity. This paper aims to implement state-of-the-art fore-
casting techniques in Catalan reservoirs. Our main contributions are, but not
limited to:

– Analyse open data provided by governmental organisations.
– Compare state-of-the-art forecasting techniques.
– Predict reservoir water levels in longer periods of time series than literature.
– Predict reservoir water levels in higher accuracy than similar works in the

state-of-the-art.

The remainder of this paper is organised as follows: Sect. 2 explores the literature
for related works. We briefly describe the extraction of data procedure as the
two approaches designed in Sect. 3. In Sect. 4 is presented the achieved product
by highlighting the results, insights and future improvements. Finally, the paper
is concluded in Sect. 5, summarising our contributions.

2 State of the Art

With respect to the use of techniques within data science for reservoir prediction,
we find many works. A variant of the prediction of the water level in the marshes
is the prediction of the flow of entry, which we can find in Valipour et al. [20],
which compares between an autoregressive integrated moving average (ARIMA)
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model and a model based on neuronal networks. Kitsuchart and Siripen [17]
analyse the prediction of the flow of rivers to elaborate better management of
possible floods or alerts of danger. The prediction is made after the previous
72 h of the next 24 h of the level of the Chao Phraya River in Thailand. They
have trained different models, where the best result is obtained with support
vector machine (SVM) with radial base Kernel function. Mokhtar et al. [14]
propose a neural network model with architecture (5-25-1) to try to model the
time margin between rainfall and that this rain is reflected in the volume of
water in the reservoir, at the Timah Tasoh of Malaysia. It uses data from the
daily water level in the reservoir from 1999 to 2006. According to Valizadeh and
El-Shafie [21], methods such as linear regression and the ARIMA model and its
variants were the tools that were used until neuronal networks were imposed on
these types of studies. Combinations of neural networks with other methods such
as diffuse logic (Chaves and Kojiri [3]; El-Shafie et al. [5]) and SVM (Wieland
et al. [23]; Kisi et al. [12]), for example, have tried to influence this area to
improve predictions of models based on the predominant neural networks. There
are many studies with variants in the use of neural networks, for instance, Moeeni
et al. [13], draw up a model based on neuronal networks and genetic algorithms
(ANN-GA) on the reservoir flows into the reservoir. And the integration of neu-
ronal networks with fuzzy logic, the model adaptive neuro-fuzzy inference system
(ANFIS) appears as an object of investigation in numerous articles on prediction
in the hydrological field. The work done by Chang and Chang [2], Wang et al.
[22] and Valizadeh and El-Shafie [21], can be an example. All of them carry out
predictions of water volumes in reservoirs using the ANFIS technique. Hipni et
al. [8] point out that ANFIS has been widely used in the predictive modeling of
problems related to hydrology, emphasizing its ease of implementation, rapid and
successful learning and a great generalization capacity, such as some of its causes
popularity. Jain et al. [9] use the neuronal networks to predict the input flow
into the reservoir and Ondimu and Murase [16] also for predictions of water level
in reservoirs. In their case, the number of steps to predict reach up to 10 days.
Our work aims to increase the prediction to fifteen days increasing management
flexibility. In addition, we propose two approaches: using uniquely the water level
data, uni-variant and, adding meteorological data called multi-variant.

3 Data Processing

This section aims to describe briefly the reservoirs to predict, data acquisition
and processing and the features selection for both the uni-variant and the multi-
variant approach.

3.1 Reservoirs

The reservoirs of the internal basins of Catalonia are of autonomous ownership,
managed by the l’Agència Catalana de l’Aigua. In the basins, there are 9 large
reservoirs: Darnius - Boadella, Sau, Siurana, Foix, Llosa del Cavall, Sant Ponç,
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la Baells, Susqueda, and Riudecanyes. The first 7 are owned by the ACA; On the
other hand, the Susqueda reservoir is owned by Endesa and that of Riudecanyes
is owned by the community of irrigators of Riudecanyes. These 9 reservoirs have
a total capacity of 694 hm3, designed to meet domestic, industrial and irrigation
needs. We selected the Sau and La Baells reservoirs because of data quality. The
election of these reservoirs is out of scope.

3.2 Data Extraction and Feature Selection

With the advancement of digital content, governmental institutions offer to soci-
ety of environmental data to be used publicly. In our case, we acquire reservoirs
status information from ACA [6] and meteorological data from the Servei Mete-
orológic de Catalunya (a.k.a. meteocat) [7]. In the first source, data can be
downloaded directly while in meteocat, it is necessary to request meteorolog-
ical data indicating specific locations. Note that reservoirs may not match in
a location exactly with respect to the meteorological data. Table 1 contains an
example of data generated by the Sau reservoir.

Table 1. Reservoir variables from ACA

Variable Description Unit

4165140 E06 Vilanova Sau Sau Cabal output m3/s

4159510 E06 Vilanova Sau Sau Volum reservoir hm3

4165141 E06 Vilanova Sau Sau Cabal input m3/s

4159509 E06 Vilanvova Sau Sau Nivell reservoir m.s.n.m.

4159547 Vilanova Sau Sau Percentatge reservoir volume %

3378678 E06 Emb Sau Total group volumes 1+2 m3/s

The above data can be collected daily from the reservoir construction and its
generation of data until the present day. In our case, we established January 1st
1986 as initial collection data because of consistency among the rest of reservoirs.
After preprocessing, we have the data in a temporary series format, where data
on the volume in cubic hectometres of reservoirs is the most consistent data
in all cases. Thus, we will consider this data by the prediction part from a
single variable, we have called uni-variant analysis. Table 2 shows the variables
of meteorological data requested to meteocat.

In the Sau reservoir, we have rain data from the reservoir itself. The rest of
the meteorological data that they transmit to us are those of the population of
Viladrau, the station closest to the marsh of the meteocat service, according to
the data transmitted, that is to about 13 km in a straight line of the marsh. In
the case of the La Baells reservoir, the data of both rain and other meteorological
data are those of the small town of La Quar, the closest to the reservoir with
a weather station according to the data transmitted to us. This town is at a
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Table 2. Meteorological variables requested to meteocat

Variable Description Unit

TM Average daily temperature ◦C

TX Maximum daily temperature ◦C

TN Minimum daily temperature ◦C

HRM Average daily relative humidity %

PPT24h Daily cumulative precipitation mm

PM Average daily atmospheric pressure hPa

VVM2 Average daily wind speed at 2 m high m/s

DVM2 Average daily wind direction at 2m high ◦

VVX2 Maximum daily wind gust at 2 m high m/s

DVVX2 Direction of the maximum daily wind gust to 2 m high ◦

VVM10 Average daily wind speed at 10 m high m/s

DVM10 Average daily wind direction at 10m high ◦

VVX10 Maximum daily wind gust at 10 m high m/s

DVVX10 Direction of the maximum daily wind gust to 10 m high ◦

distance of about 7 km in a straight line from the swamp. We will dispense
with the wind variables. We are not experts, but we make this decision not to
overload the model with unnecessary variables, supporting us in the article by
Jun-He Yang et al. [10], which eliminates the wind variables, which are the least
relevant, while improving the model without considering them. Thus, we remain
with the daily average temperature, relative humidity, atmospheric pressure and
precipitation as attributes that we will consider to elaborate the models for the
multi-variant approach.

4 Methodology and Results

This section describes the strategies and methods implemented on the selected
reservoirs and, the results from the optimized simulations.

Since the goal of this research is the prediction on several days ahead, we fol-
low a multi-step forecast where three different strategies can be distinguished [1]:

– Iterative strategy: A model which predicts the next one-step forecast and
incorporates the predicted value to the model’s entry to predict the following.
In this way, the following time steps are predicted, iteratively, one by one,
updating the model with the values of the predictions.

– Direct strategy: It generates a model for each desired output. There will
be a model predicting the next value of the time series yt+1, another one that
predicts yt+2, etc. But always based on real historical observations.

– MIMO strategy (multi-input multi-output): A single model that gen-
erates multiple outputs from multiple entries.
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We explored the following state-of-the-art forecasting methods [18]:

– Neural Networks
• Multilayer perceptron (MLP)
• Convolutional neural network (CNN)
• Long Short Term Memory (LSTM)

– Support Vector Machine (SVM)
– Random Forest (RF)

Combining the above list of strategies and techniques, we explored a large num-
ber of models. A model will be expressed with the technique acronym and the
approach. For instance, using the support vector machine with the uni-variant
approach would be named SVM-Uni. Due to space limitation, we will show
uniquely the best six methods from each reservoir. Details about the chosen
models and data specifications are displayed in Table 3. This table presents the
number of samples used for training and test, the number of steps in and out
and the strategy.

Table 3. Models and data specifications

Reservoir Model Train Test n steps in n steps out Strategy

Sau SVM-Multi 3,412 854 11 15 MIMO

MLP-Multi 3,416 854 7

SVM-Uni 2,823 706 17

LSTM-Uni 2,812 704 30

RF-Uni 5,463 1,366 5

RF-Multi 3,417 855 5

La Baells SVM-Multi 3,413 854 10

MLP-Multi 3,412 854 11

SVM-Uni 2,817 705 24

MLP-Uni 2,812 704 30

RF-Uni 5,463 1,366 5

RF-Multi 3,412 854 11

The columns in Table are described as:

– Train: number of joint train records
– Test: number of test set records
– N steps in: previous days of observations from which we make the prediction.
– N steps out: number of future days predicted by the model. Strategy: input

and output format.
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Note that the implemented techniques have been optimised where parameter
values are:

– LSTM
• Neuron LSTM layer: 5
• Epochs: 1000
• Learning rate: 0.0045
• Batch size: 128
• Optimizer: Adam
• Activation function: sigmoid
• Input days: 30

– MLP La Baells-Multi / La Baells-Uni / Sau-Multi
• Neuron Hidden layer: 5 / 30 / 48
• Epochs: 773 / 600 / 337
• Learning rate: 0.001267 / 0.0006 / 0.00079
• Batch size: 47 / 16 / 126
• Optimizer: Adam / Adam / Adam
• Activation function: sigmoid / sigmoid / sigmoid
• Input days: 11 / 30 / 7

– SVM La Baells-Multi / La Baells-Uni / Sau-Multi / Sau-Uni
• C: 85 / 124 / 25 / 24
• Epsilon: 0.0115 / 0.0144 / 0.015 / 0.0127
• Gamma: 0.0101 / 0.0852 / 0.010 / 0.2788
• Input days: 10 / 24 / 11 / 17

– RF La Baells-Uni / La Baells-Multi / Sau-Uni / Sau-Multi /
• Number of estimators: 120 / 303 / 362 / 140
• Maximum number of features: 5 / 84 / 5 / 5
• Maximum tree depth: 15 / 11 / 83 / 91
• Minimum number of samples to split: 26 / 29 / 21 / 11
• Minimum number of samples per leaf: 14 / 3 / 44 / 18
• Input days: 5 / 11 / 5 / 5

To optimise the parameters we have used different methodologies, such as loops
for exhaustive, first with large jumps of values and then more closely related to
the parameters that have yielded the best results; but the most efficient and best-
performing method has been the use of 500 random combinations of parameters
defined in ranks of values. Using this technique, we have seen that exhaustive
search around the best parameters found was not necessary. The range of values
for the optimisation of the neural networks is:

– No hidden cell neurons: integers in the range of values (5, 500)
– No of training periods: integers in the range of values (50, 1000)
– Learning rate: from 0.0001 to 0.01.
– Batch size: list values [8, 16, 32, 64, 128] or Batch size: from 8 to 128

By the SVM model:

– Parameter C: integers in the range of values (5, 125)



Forecasting Water Levels of Catalan Reservoirs 171

– Epsilon: Decimal numbers in the range of values (0.0001, 0.1)
– Gamma: decimals in the range of values (0.01, 0.9)

By the Random forest model:

– n estimators: integers in the range of values (5, 500)
– max features: integers in the range (1, no attributes)
– max depth: integers in the range (1, 121)
– min samples split: integers in the range (2, 50)
– min samples leaf: integers in the range (1, 45)

Finally, the number of observations in the temporary series of models is opti-
mised, maintaining the fixed output at 15.

Figures 1 and 2 compare the six best method and approach combinations
with the lowest root mean square error (RMSE) values along the time for the
Sau and La Baells reservoirs, respectively. Using the multi-variant SVM model,
the RMSE in overall provides the lowest values along the time. Table 4 shows
the RMSE, mean absolute error (MAE) and R-squared (R2) results at the 15th
day and global on Sau reservoir.
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Fig. 1. The multi-variant SVM model returns the lowest RSME values from the 3rd
predicted day on Sau reservoir

The best results are achieved with the multi-variant SVM model. Further-
more, the MAE error, which is expressed in the same units as the data and that
RMSE, is lower in all cases, therefore, the most important errors are penalising
the error of RMSE. We also note that, looking at the MAE, the classification
varies: the uni-variant SVM would pass in front of multi-variant MLP and the
uni-variant RF would be ahead of the multi-variant, to the extent global. This
means that these models provoke fewer errors, but they make them bigger, which
is why they penalise the RMSE. On the other hand, we can verify that we obtain
a very acceptable R2 determination coefficient, even in the worst model and day,
which would be the 0.87 uni-variant RF on the fifteenth day. Table 5 shows the
RMSE, MAE and R2 results at the 15th day and global on La Baells reservoir.
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Table 4. The multi-variant SVM model returns the lowest RMSE and MAE values on
Sau reservoir

Model 15th day Global

RMSE MAE R2 RMSE MAE R2

SVM-Multi 7.6907 5.7391 0.9130 5.2961 3.6088 0.9581

MLP-Multi 7.7908 5.9308 0.9107 5.4435 3.8811 0.9558

SVM-Uni 8.3699 6.3386 0.9065 5.6627 3.7640 0.9568

LSTM-Uni 8.6653 6.7872 0.8998 5.8064 3.9718 0.9546

RF-Multi 8.5605 6.7438 0.8921 5.9549 4.3192 0.9470

RF-Uni 9.1335 6.9229 0.8716 6.2832 4.2043 0.9662
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Fig. 2. The multi-variant SVM model returns the lowest RSME values in overall along
all predicted days on La Baells reservoir

Table 5. The multi-variant SVM model returns the lowest RMSE and MAE values on
La Baells reservoir

Model 15th day Global

RMSE MAE R2 RMSE MAE R2

SVM-Multi 4.0029 2.4098 0.9515 2.5085 1.3506 0.9811

MLP-Multi 4.0330 2.7339 0.9508 2.6122 1.6148 0.9795

SVM-Uni 4.0985 2.6003 0.9537 2.6198 1.4503 0.9812

MLP-Uni 4.1279 2.8958 0.9531 2.6569 1.5905 0.9806

RF-Uni 4.3563 2.7258 0.9243 2.8514 1.4887 0.9677

RF-Multi 4.9869 3.5642 0.9248 3.3500 2.1372 0.9396

The worst model on the fifteenth day of La Baells has an R2 higher than the
best model of Sau, 0.9248 of multi-variant RF for the 0.9130 of the best model
of Sau. We can also verify that global R2s are really good enough. Analysing
the MAE, we reaffirm that multi-variant SVM as the best model. If we consider
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the predictions of the Sau reservoir, then those in La Baells reservoir would be
spectacular, since, although the RMSE is not directly comparable, dimension
difference between both reservoirs do not justify the error gap from the models.
However, the data from the Sau reservoir have been much more difficult to
model than those of La Baells. Therefore, with worse results, the result of the
best model of Sau can be more valuable than one of the best model of La Baells.
Models studied in the literature predict the level of water in meters above sea
level (MAMSL). This would explain their results with RMSE values close to zero.
Table 6 compares the main articles that we have analysed with their predictions
achieved.

Table 6. Our work outperforms related literature studies

Work Unit Intervals Timesteps RMSE R2 Others

Rani and Parekh [19] MAMSL 135–148 10 0.82 0.95

Üneş et al. [25] MAMSL 23.5–24.6 1 0.057 0.893

Onidmu and Murase [16] MAMSL 1886–1888 4 0.12 (%MSE)

Kilinç and Cigizoglu [11] Volum (hm3) 47–153 1 7.63 0.86

Dogan et al. [4] MAMSL 1647–1650 1 0.035 0.93

Çimen and Kisi [24] MAMSL 1647–1650 1 0.073 0.985

The Intervals columns corresponds to the minimum and maximum of the
time series that each research is about. In the Timesteps column, we have the
predicted future values of the corresponding time series of each proposed model.
For instance, with a range of values ranging from 1647 to 1650 m, where pre-
dictions move at 3 m, the error will be smaller than predictions on wider ranges
(i.e. 12 m). Therefore, this justifies these tiny RMSE values, which we can not
compare to. Thus, when we predict the volume, as in the case of Kilinç and
Cigizoglu [11], then we no longer have such ranges of values so short, as in the
case of meters above sea level, and the error increases. In comparison with the
literature, our research considers the prediction on volume and also through the
determination coefficient, which evaluates the explanatory capacity of the model.
In terms of R2, our models are similar to the literature. The worst model is the
uni-variant RF on Sau reservoir with a global value of 0.94, which is better than
three out of the five results from Table 6. Our best model, the multi-variant SVM
of La Baells returned an R2 of 0.981, is better than all of them except Çimen and
Kisi [24] with 0.985. Nevertheless, this last mentioned model makes a prediction
at a time step, then we should compare it with the value of R2 we get for the
first day of our model, which is 0.99. Comparing our results with, far to the best
of our knowledge, the only research article predicting the volume of water [11].
They obtained an RMSE of 7.63 hm3 and, according to the range of volume of
water from 47 to 153 hm3, we may compare it with the study of the Sau reser-
voir (9.5 and 165 hm3). In this case, the best and worst model returns an RMSE
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of 5.30 and 6.28 hm3, respectively. Therefore, our models outperform state-of-
the-art works. Note that models with the best overall result are those that have
the best results on the fifteenth prediction day, specifically, and generally in the
longest-term prediction. Since in the long term prediction it is where we accu-
mulate more errors, therefore, an improvement in these farther days supposes an
outstanding improvement in the global model. The models with the best overall
result do not have to be those that further refine the prediction to one day, as
in the case of multi-variant MLPs, which we have already seen are beginning to
be the worst to end up practically in line with the best, both in the last days of
prediction and in the overall result.

5 Conclusion and Future Work

The data of heat and weather coincided with good quality in temporarily large
enough bands to be able to handle them. It is plausible to think that input
and output flow data had helped multivariate prediction, especially input, that
reflect the effect on the rain or snow dam. Thus, we might think that the effect
of rainfall, the flow of entry, may be more relevant as a given to the rain itself.
This would open us the most difficult debate of multivariate analysis, which is
to know what attributes it is necessary to treat, a question that is not easy,
since, for example, we have seen that the accumulation of sediments can vary
the capacity of a reservoir. SVM, which in any case has been placed above the
neuronal networks, both in the multi-variant and in the uni-variant analysis.
Although results of the neural networks have been very close to the SMV, there
is no point of comparison because of the computational cost. Results returned a
longer prediction with higher precision than state-of-the-art related works. The
models we have considered to make the comparison have been extracted from
the reading of the state of the art [4,11,15,16,19,25], where neuronal networks
are widely used for the prediction of time series in the hydrological field and
we have seen that they are usually compared to the SVM model [8,14,24]. The
review of an article used by Random Forest [10] made us also consider including
this model in the study.

As future work, we plan but not limited to model a reservoir so that it has
the possibility of being able to generalise, include different natural events such
as snow and landslides or, study other sophisticated techniques such as deep
learning.
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Abstract. MicroRNAs (miRNAs) are a set of short non coding RNAs
that play significant regulatory roles in cells. The study of miRNA
data can be of valuable support for the early diagnosis of multifacto-
rial diseases such as pediatric Multiple Sclerosis. However the analysis of
miRNA expressions poses several challenges due to high dimensionality
and imbalance of data. In this paper we present a data science workflow
to develop a predictive model that is intended to support the clinicians in
the diagnosis of Multiple Sclerosis starting from miRNA data produced
by Next-Generation Sequencing. The goal is to create an effective model
able to predict the pathological condition of a patient starting from his
miRNA expression profile. Based on the proposed workflow, the miRNA
dataset is firstly preprocessed in order to reduce its high dimensional-
ity (from 1287 features to 40 features) and to mitigate class imbalance.
Then a classification model is learnt from data via neural network train-
ing. Results show that the model defined by using the 40 data-driven
selected features achieves an overall classification accuracy of 94% on
test data and overcomes the model based on 42 features selected by the
experts that achieves only 83% of overall accuracy.

Keywords: microRNA expression · Next-Generation Sequencing ·
Pediatric Multiple Sclerosis · Feature selection ·
Artificial neural networks · Classification.

1 Introduction

Physiological processes and cellular functions can be studied by quantifying the
production (called expression) of RNAs in biological samples. Next-Generation
Sequencing (NGS) techniques allow to quantify the expression of the whole set
of RNAs that are active in the cells of a sample. MicroRNAs (miRNAs) are
a class of small RNA that regulate the expression of other longer RNA and
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the consequent production of proteins [3]. In the past few years, research on
miRNA-related problems has become a hot field of bioinformatics because of
miRNAs’ essential biological function. Actually, the study of miRNA expression
changes gives the possibility to identify biomarkers, i.e., molecules that are pre-
dictive of the clinical course or response to treatments, especially for complex
and multifactorial diseases such as Multiple Sclerosis (MS).

Multiple Sclerosis (MS) is a demyelinating autoimmune disease of the CNS
that usually affects young adults [16]. The onset during childhood and adoles-
cence is being increasingly recognized [5], together with the demonstration of
cognitive deficits in more than one-third of these patients [2]. The study of pedi-
atric MS patients (PEMS) offers the unique opportunity of investigating the
pathogenic mechanisms occurring at the earliest stages of the disease. To this
aim, the analysis of miRNA expressions can be of valuable help. In a previ-
ous study [12,13] we investigated the transcriptome profile of peripheral blood
samples in a cohort of PEMS patients, and we further validated (with specific
laboratory assays and on a larger cohort of subjects) 12 miRNAs with statisti-
cally significant increase of expression and one miRNA with decreased expression
in PEMS patients compared to pediatric healthy control (HCPE) subjects.

The bionformatic pipelines developed for miRNA expression analysis usually
apply statistical tests to search for differentially expressed miRNAs in the com-
parison between healthy controls and diseased patients [14,15]. Such analysis
allows the isolation of evident changes in expression, but it fails in extracting
more complex interactions among different miRNAs that are correlated to the
disease. Machine Learning (ML) algorithms, such as Artificial neural networks
(ANNs) can be useful tools to capture complex interactions among miRNA
expressions and their relation to the disease. However, to our knowledge, the
use of ANNs to correlate miRNAs to autoimmune diseases has not been investi-
gated so far. ANNs have been widely applied to microarray data [10], and some
works have been presented on NGS data [11]. Few papers on ANNs applied to
miRNA expression analysis have been published in the study of cancer [1,6].

The modeling of miRNA using ML methods such as ANNS poses several
challenges. Redundant information is usually represented in datasets, moreover
not all the features could be significant for class discrimination. This affects and
sometimes invalidates the process of predictive modeling. For this reason feature
selection techniques are commonly used to select a subset of relevant features [8].
Feature reduction has several advantages: model simplification, shorter training
times, reduction of the over-fitting problem [19]. Moreover, while a large number
of samples are required to create accurate predictive models using machine learn-
ing, in biological domains the number of features is very high, while the number
of available observations is often rather low. In addition, biomedical datasets are
often unbalanced since the number of positive samples (patients affected by the
disease) is typically lower than the number of negative samples. The principal
limitation of NGS is the high cost of sequencing, but when studying rare pedi-
atric diseases it is both difficult to find an adequate number of patients and to
recruit healthy children who accept to provide blood samples.
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All these issues call for the use of data processing techniques that are neces-
sary to reduce the dimension of the input space and to balance the dataset before
applying ML algorithms. Moreover, since expert knowledge cannot be completely
replaced by machines, intelligent techniques that combine human expertise and
computational models for advanced data analysis are necessary to develop more
reliable predictive models [4].

In this work, we propose a data science workflow that is intended to pro-
cess miRNA expressions in order to extract a predictive model capable to detect
the pathological condition of a patient. The dataset under analysis includes
miRNA expressions of PEMS patients along with miRNA expressions of chil-
dren affected by Attention deficit hyperactivity disorder (ADHD). Actually it has
been observed that ADHD patients share some cognitive disorders with PEMS
patients, hence deriving a predictive model capable to distinguish between these
two diseases on the basis of miRNA expressions may be of valuable help for
Biology experts. Our work is the first attempt to automatically analyze this spe-
cific dataset in order to derive a predictive model that is capable to discriminate
between ADHD and PEMS on the basis of miRNA expressions.

The rest of the paper describes in detail all the phases of the workflow.

Fig. 1. The data science workflow.

2 The Workflow

The workflow designed to create a predictive model from miRNA expressions of
PEMS patients includes the standard phases of a data science process (Fig. 1),
namely data acquisition, data pre-processing, model construction, and model
evaluation.

As concerns the data acquisition, the dataset was produced at the Insti-
tute for Biomedical Technologies of the Italian National Research Council (ITB-
CNR) through small RNA sequencing of peripheral blood samples obtained from
47 children. The sequence data files produced were processed with a standard
bionformatic pipeline. The sequences were compared with databases of known
miRNAs, and sequence counts were computed to estimate miRNA expressions.
The dataset includes expressions of 1287 miRNAs detected in 47 patients. The
patients under study differ by pathological conditions. Besides healthy controls,
we analyzed some patients affected by Multiple Sclerosis and some others affected
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by cognitive disorders. The number of patients for each class (pathological con-
dition) is reported in Table 1.

Table 1. Data summary.

ClassID Condition Acronym # Samples

0 Cognitive disorders ADHD 8

1 Healthy controls HCPE 20

2 Multiple Sclerosis PEMS 19

The data pre-processing phase (Sect. 3) includes three steps that are dic-
tated by the nature of the data under analysis. There are no missing values
nor negative values in the data. However the dataset has a high dimensionality
(1287 features) vs a low number of samples (only 60). Moreover the dataset is
quite unbalanced. For these reasons, we apply a multi-stage data pre-processing
in order to reduce drastically the dimensionality of the dataset and balance it.
Specifically, we propose a double-step feature selection that leads to a drastic
reduction of the number of features needed to represent miRNA expressions.

Given the pre-processed data, the next phase of the workflow is the construc-
tion of a predictive model capable to classify a patient as belonging to one of
the 3 classes starting from a reduced set of features representing the miRNA
expressions of the patient. To do this, several Machine Learning methods can be
applied. In particular ANNs are powerful tools to construct predictive models by
learning from biological data [6]. For this reason in this work we used ANNs to
create a pool of predictive models (4). From this pool the best model is selected
as final model to be evaluated on test data (Sect. 5). Moreover the final model
has been evaluated by a comparison with a model created on the basis of 42
features selected by experts.

3 Data Preprocessing

To cope with high dimensionality and unbalancement, data are processed in
order to obtain a more informative and easy-to-compute representation. Three
pre-processing steps are performed, namely normalization, feature selection, and
class balancing. Standard methods were applied for normalization and balancing,
while a novel method was developed for a drastic and robust feature selection.

3.1 Normalization

The activity of miRNAs and their relative expression can have effect at different
scales. This may hamper the quality of the predictive model derived from data.
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Hence we apply a normalization so that all the features values are bounded in
the interval [0, 1]. The MinMax scaling algorithm1 is used.

From each value xi in each feature x a scaled value x̂i is computed as:

x̂i =
xi − min(x)

max (x) − min (x)

This kind of normalization reduces the variance in data, as well as the effect
of outliers [20].

3.2 Feature Selection

The number of features in the smallRNA dataset is very high. In order to signifi-
cantly reduce the data dimensionality without loosing significant information, we
propose to combine two feature selection methods: the Variance Threshold and
the Select K Best (SKB) [20]. Both methods are implemented in the Scikit-learn
Python Library2 [17].

The Variance Threshold method was firstly used to remove the features with
a variance lower than a fixed threshold. We used the mean variance computed
over all the feature as threshold. In this way genes whose expression do not
significantly vary over the samples are not selected, since they would not be
useful to discriminate the different conditions. Using this method we selected
564 features out of the total 1287 features.

Then the SelectKBest method was applied to further reduce this subset of
features. This method selects the most significant k features, based on the corre-
lation information between each feature and the class information of each sample.
The Chi-squared test is used to select the most discriminative features for the
given classes.

3.3 Class Balancing

As previously discussed, the dataset presents class imbalance (see Table 1) since
the number of patient affected by cognitive disorders is lower than the number of
patients belonging to the other two classes. Class imbalance should be avoided
since it could mislead the classification results. Common methods to balance the
dataset are undersampling and oversampling [20]. In undersampling a subset
of samples is removed from the class with more instances. In oversampling the
minority class is over-sampled with replacement. Undersampling is not suitable
for our dataset, since the total number of samples is small. For this reason,
we applied oversampling3 by adding some randomly selected samples from the
under represented class so that each class is represented by 20 samples.

1 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html.

2 https://scikit-learn.org/stable/modules/feature selection.html.
3 Oversampling algorithm is provided in scikit-learn module: https://imbalanced-

learn.readthedocs.io/en/stable/.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://imbalanced-learn.readthedocs.io/en/stable/
https://imbalanced-learn.readthedocs.io/en/stable/
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4 Model Construction

To derive a predictive model from miRNA data we used multi-layered feed-
forward neural networks [7]. The network architecture is composed of one input
layer, two hidden layers and one output layer. The input layer contains k nodes,
being k the number of features that were selected at the end of the pre-processing
phase. The number of nodes for each hidden layer was empirical estimated, as
discussed below. The relu activation function was used for all hidden nodes. The
output layer is made of three nodes, one for each class. The softmax function
has been used to encode the output as a probability, i.e, the output of the j-th
node indicates the probability of the input sample to belong to class j. The class
with the highest probability is associated to the given input sample.

The training of the neural network is based on optimization of the sparse
categorical cross-entropy loss function:

loss = −
M∑

j=1

tp,j log(op,j)

where M is the number of classes, op,j is the j-th output of the network for the
p-th input sample and tp,j is the j-th component of the target vector for the
p-th sample (assuming 1-out-of-n encoding for the target values). Optimization
of the loss function can be performed in several ways. In our simulations we use
the Adam (Adaptive moment estimation) method since it has been suggested
to be the best overall choice among state-of-art gradient descent optimization
algorithms [18]. The Adam method performs efficient stochastic optimization by
computing only first-order gradients with little memory requirement [9]. Updates
of network weights are computed iteratively on the basis of a running average
of first and second moment of the gradient. The Python Keras library4 running
on Tensorflow5 was used for the network training, using Jupyter Notebook6 and
taking advantage of the Colaboratory platform provided by Google7.

To create a predictive model via neural network training, the dataset was
divided into a training set (70% of the data, 42 examples) and test set (30% of the
data, 18 examples). To perform model selection a stratified 5-fold cross validation
was applied, taking into account class information to avoid constructing folds

Table 2. Experimental setup.

Parameter

Number of features (k of SelectKBest) 10, 20, 30, 40

Number of hidden neurons 32x32, 64x32, 64x64

4 https://keras.io/.
5 https://www.tensorflow.org/.
6 https://jupyter.org/.
7 https://colab.research.google.com/notebooks/welcome.ipynb.

https://keras.io/
https://www.tensorflow.org/
https://jupyter.org/
https://colab.research.google.com/notebooks/welcome.ipynb


A Predictive Model for MicroRNA Expressions in Pediatric MS 183

with unbalanced class distributions. In each run the training of the network was
stopped at 100 epochs. Several training runs were performed to find the best
configuration of the model that will be used to predict test data. The setup is
reported in Table 2.

To evaluate the effectiveness of the model in correctly predicting the class of
unknown samples we used the loss function as well as the classification accuracy:

Accuracy =
Number of correct predictions

Total number of predictions

In Fig. 2 we show the trend of the loss function on both the training set and
validation set during the training of the best model, for each subset of features.
Low differences between the loss values on the training set and the validation
set mean that the model is able to learn the relationships in data, without
overfitting. It can be seen that the model trained with 40 features has the best
loss trend. Table 3 reports the loss and accuracy values on the test set for models
obtained with different configurations of hidden neurons and number of features.
It can be observed that, as the number of the selected features increases, the
loss decreases and the accuracy increases. The neural network with 40 features
and 64 neurons in each hidden layer provides the best performance on test data
(accuracy=0.94, loss=0.13) hence it was selected as the best model to perform
the classification task.

The outcome of this experiment is that a good predictive model can be
obtained with only 40 features. The subset of 40 features selected out of the initial
1287 features is reported in Table 4. It includes two out of the 13 differentially

Table 3. Loss and accuracy values on test set.

10 features 20 features 30 features 40 features

Hidden neurons Loss Acc Loss Acc Loss Acc Loss Acc

32 × 32 0.87 0.56 0.71 0.78 0.55 0.83 0.22 0.94

64 × 32 0.81 0.61 0.59 0.72 0.40 0.78 0.17 0.94

64 × 64 0.81 0.61 0.53 0.72 0.36 0.83 0.13 0.94

Table 4. List of 40 miRNA selected by our data-driven procedure.

miR-125a-3p miR-1304-5p miR-188-3p miR-215-5p miR-221-3p

miR-29a-3p miR-29c-3p miR-30d-3p miR-3117-3p miR-3120-3p

miR-3140-3p miR-3179 miR-3682-3p miR-3688-3p miR-378h

miR-4440 miR-4443 miR-4489 miR-452-5p miR-4665-5p

miR-4690-3p miR-4731-3p miR-4734 miR-4763-5p miR-4804-5p

miR-483-3p miR-502-5p miR-582-3p miR-589-3p miR-619-5p

miR-6770-3p miR-6820-3p miR-6821-3p miR-6883-3p miR-6884-3p

miR-6894-5p miR-7113-5p miR-7-1-3p miR-885-5p miR-942-5p
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10 features 20 features

30 features 40 features

Fig. 2. Trend of the loss function during training with different subsets of features.

expressed miRNAs that were validated by further laboratory assays (miR-221-
3p, miR-942-5p).

5 Model Evaluation

The selected best model was further evaluated on the test set composed of 18
examples (6 for each class). We evaluated True positive (TP), true negative
(TN), false positive (FP), and false negative (FN) values, for each class c against
the remaining two classes, and we computed the accuracy as well as the following
classification measures:

– Positive Predictive Value (PPV): ratio of correctly classified samples w.r.t.
those identified as pertaining to class c (ppv = tp

tp+fp )
– Negative Predictive Value (NPV): ratio of correctly classified samples w.r.t.

those identified as not pertaining to class c (npv = tn
tn+fn )

– True Positive Rate (TPR): ratio of samples correctly classified as belonging
to class c w.r.t. those actually belonging to class c (tpr = tp

tp+fn )
– True Negative Rate (TNR): ratio of samples correctly classified as not belong-

ing to class c w.r.t. those actually not belonging to class c (tnr = tn
fp+tn )

Table 6 reports the confusion matrix of the classification model, while the
classification metrics are shown in Table 7. It can be seen that healthy patients
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(HCPE) are correctly detected. For the class ADHD (patients affected by cogni-
tive disorders) we observe high values for PPV and TPR measures. This means
that the model is able to correctly detect the patients in this condition. As it
can be observed in Table 6(a), only one patient has been wrongly classified as
affected by Multiple Sclerosis (PEMS), this causes low values for TNR and NPV.
The class of patients with Multiple Sclerosis is more difficult to be predicted than
the other two classes. Indeed, one PEMS patient has been classified as ADHD.
This result can be justified by the fact that ADHD patients share some cogni-
tive disorders with PEMS patients, hence there may be a significant overlapping
between the molecular pathways of these two classes (27% of PEMS patients
show similar cognitive symptoms of ADHD patients [21]). In fact, the patient
that is misclassified was diagnosed with a low grade of Multiple Sclerosis, but
he showed some cognitive difficulties like ADHD patients.

Finally, to complete the evaluation of the model, we compared it with the
best model obtained by training a neural network on a subset of 42 features
proposed by the Biology experts (Table 5). This subset contains some results of
the differential expression analysis previously performed on this dataset and a
list of miRNAs that are known to be involved in neurodegeneration. We found
that the model obtained by training the neural network on the features proposed
by experts achieves an overall classification accuracy on the test of 83% which is
lower than the overall accuracy of 94% achieved by the model obtained with our
data-driven feature selection. Also the classification results shown in Table 6(b)
indicate that the model based on the features selected by the experts has lower
classification ability. Indeed, for all the three classes the classification measures
present lower values than those obtained with the automatically selected fea-
tures. It is interesting to observe that the model using the features selected by
the experts can correctly identify all the patients affected by Multiple Sclerosis
condition, but it misclassifies the patients belonging to the other two classes.
In fact, the experts selected the features by an analysis of miRNAs that are
differently expressed between HCPE and PEMS, while no experience had been
gained on ADHD patients. Anyway, it misclassifies two healthy patients and one

Table 5. List of 42 miRNAs selected by domain experts.

let-7a-5p let-7b-5p let-7i-3p let-7i-5p miR-10a-5p

miR-125a-5p miR-128-3p miR-1304-3p miR-1307-3p miR-130b-3p

miR-140-3p miR-144-5p miR-148b-3p miR-151a-3p miR-151b

miR-15b-5p miR-16-2-3p miR-16-5p miR-181a-2-3p miR-181a-5p

miR-182-5p miR-185-3p miR-185-5p miR-21-5p miR-221-3p

miR-25-3p miR-26a-5p miR-26b-3p miR-26b-5p miR-27b-3p

miR-28-3p miR-29a-3p miR-30e-3p miR-30e-5p miR-320a

miR-3605-3p miR-484 miR-501-3p miR-652-3p miR-6842-3p

miR-942-5p miR-99b-5p
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affected by cognitive disorders as belonging to the PEMS class (see Table 6(b)).
It is important to highlight how such false positives can be considered as seri-
ous mistakes because they represent erroneous Multiple Sclerosis diagnosis for
healthy children.

Finally, it should be noted that the set of features selected by experts is
only partially overlapped with the set of data-driven selected features. In par-
ticular, the two lists share three common miRNAs (miR-221-3p, miR-29a-3p,
miR-942-5p), two complementary miRNAs (hsa-miR-125a-3p instead of 5p, hsa-
miR-1304-5p instead of 3p), and a miRNA variant (hsa-miR-30d-3p instead of
30e). Moreover, the list of data-driven selected features has been submitted to
Biology experts and they also found that other 25 miRNAs in the list are involved
in genetic pathways that should be correlated to Multiple Sclerosis, like inflam-
mation, immune response and neuronal functions. However, in order to fully
assess the importance of the selected features, a deep biological investigation is
required since most of the miRNA functions are still unknown.

Table 6. Confusion matrix of the model obtained by training the neural network on
(a) the 40 data-driven selected features and (b) the 42 features selected by the experts.

(a)

Actual

P
re

di
ct

ed ADHD HCPE PEMS
ADHD 6 0 1
HCPE 0 6 0
PEMS 0 0 5

(b)

Actual

P
re

di
ct

ed ADHD HCPE PEMS
ADHD 5 0 0
HCPE 0 4 0
PEMS 1 2 6

Table 7. Classification results of the model obtained by training the neural network on
(a) the 40 data-driven selected features and (b) the 42 features selected by the experts.

(a)

acc tnr tpr ppv npv

ADHD 0.94 0.86 1.00 1.00 0.91
HCPE 1.00 1.00 1.00 1.00 1.00
PEMS 0.94 1 0.92 0.83 0.92

(b)

acc tnr tpr ppv npv

ADHD 0.94 1.00 0.92 0.83 1.00
HCPE 0.89 1.00 0.85 0.66 1.00
PEMS 0.83 0.67 1.00 1.00 0.75

6 Conclusions

In this paper we have presented a data science workflow for the classification of
the pathological condition of a patient based on the miRNA expressions obtained
with NGS technology. One significant contribution is the proposed data pre-
processing phase that allows a drastic data-driven feature selection (from 1287
to only 40 features) useful for a good classification. Indeed, the selected features
allow the creation of a predictive model via neural network training that achieves
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94% of overall accuracy on test data. A comparison with a classification model
built on the basis of 42 features proposed by the experts has confirmed the
effectiveness of the proposed method in correctly identifying significant features
that lead to good classification results. Of course the obtained results heavily
depend on the available dataset which is quite small. Actually, the size of the
current dataset was limited by the rarity of PEMS onset and includes all the
patients that were recruited over a 3-years period. It would be useful to repeat the
experiments proposed in this work with a bigger dataset. Moreover, as a future
work, it would be interesting to consider other ML methods to accomplish the
phase of model creation and compare their performance with ANNs.

As a final remark, we point out that this work is the first attempt to create
a model useful to support the experts in the analysis of the miRNA dataset
collected at the Institute for Biomedical Technologies of the Italian National
Research Council (ITB-CNR). Such a model can be deployed as a tool to distin-
guish the three classes of the patients in a completely automatic way, discovering
hidden relationships among the miRNAs that can not be derived by a classical
differential expression analysis. Moreover the 40 miRNAs automatically selected
by the proposed feature selection method can be further analyzed to derive other
biological observations, such as an evaluation of the genes that are regulated by
those miRNAs and an analysis of the molecular pathways involved in the acti-
vation of target genes, both for the study of pediatric Multiple Sclerosis and for
novel investigations about ADHD. This work represents the first step toward
the development of an intelligent system capable to support the expert in the
analysis of miRNA expressions for early diagnosis of pediatric Multiple Sclerosis.
To this aim, further work is in progress to combine data on miRNA expressions
with clinical data about the patients, in order to derive more powerful diagnostic
support models.
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with Possibilistic Clustering for Spherical

Data Based on Tsallis Entropy
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Abstract. This paper proposes a collaborative filtering (CF) method
using possibilistic clustering for spherical data based on Tsallis entropy.
This study was motivated by a previous work, which showed that adopt-
ing fuzzy clustering for spherical data in CF tasks provided better rec-
ommendation accuracy than fuzzy clustering for categorical-multivariate
data. Moreover, possibilistic clustering algorithms are naturally more
robust to noise than fuzzy clustering. The results of experiments con-
ducted on an artificial dataset and one real dataset indicate that the
proposed method is better than the conventional methods in terms of
recommendation accuracy.

1 Introduction

Collaborative filtering (CF) is one of the most promising technique for recom-
mender systems [1,2]. CF automatically predicts the interests of a target user by
collecting preference-related information from other users who have preferences
similar to those of the target user. There are various approaches to CF, includ-
ing GroupLens [3], which is a representative CF method based on neighborhood
models. Although neighborhood-based methods, such as GroupLens, are simple
and time-efficient, in practice, the definition of a “neighborhood” is vague. How-
ever, it is natural to consider that users can be implicitly placed in groups based
on their preferences. In case, if we are able to find such a user group, then we
can define the neighborhood of a user as the group to which the user belongs.
Thus, clustering involves finding implicit groups among users. Once clustered,
the users in the same cluster are assumed to have similar preferences, whereas
those in different clusters are assumed to have different preferences.

From among the many clustering methods, Kondo and Kanzawa [6] pro-
posed using their clustering algorithm, referred to as q-divergence-based fuzzy
clustering for spherical data (qFCS) [5], for CF tasks. They indicated that their
proposed CF algorithm using qFCS outperforms GroupLens algorithm.

Fuzzy clustering methods are useful. However, their memberships do not
always correspond well to the degree of belonging of the data. To address this
weakness of fuzzy clustering methods, Krishnapuram and Keller [7] created a

c© Springer Nature Switzerland AG 2019
V. Torra et al. (Eds.): MDAI 2019, LNAI 11676, pp. 189–200, 2019.
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possibilistic c-means (PCM) algorithm that uses a possibilistic membership func-
tion. Ménard et al. [8] proposed another possibilistic clustering technique that
employs Tsallis entropy, referred to as Tsallis-entropy-regularized PCM (tPCM).
Furthermore, Kanzawa devised a possibilistic clustering approach for spherical
data, referred to as Tsallis-entropy-regularized possibilistic clustering for spheri-
cal data (tPCS) [9]. Note that q-divergence reduces to Tsallis entropy if the unit
distribution serves as a reference for q-divergence. Then, we can say that tPCS
is a possibilistic clustering corresponding to qFCS.

In this study, we propose a CF algorithm based on the tPCS method. First,
to address the cases of missing data in the clustering phase of the CF task,
all the unknown rating values are initialized with the lowest value from among
all the known, rated values. Second, the tPCS method is applied to the matrix
of rating values to obtain user clusters. The use of the tPCS method ensures
that the users in the cluster to which the target user belongs are present in the
appropriate neighborhood of the active user. Third, the GroupLens algorithm is
applied to the cluster to which the active user belongs to predict the unknown
rating values for this user. Finally, all items with predicted rating values higher
than the preset threshold value are recommended to the active user. For all the
numerical experiments, our proposed method is compared with other clustering-
based CF algorithms on which the qFCS algorithm is based [5]. Our experiments
are conducted on one artificial dataset and one real datasets. The results of our
experiments show that the proposed method outperforms the other approaches
in terms of accuracy.

The remainder of this paper is organized as follows. Section 2 discusses the
GroupLens algorithm of the representative CF algorithm, namely the qFCS-
based CF algorithm, which achieved the best recommendation accuracy in a
previous study [6]. Section 2 also introduces a possibilistic clustering for spher-
ical data based on Tsallis entropy, referred to as tPCS. Section 3 presents our
proposed CF algorithm. The details of our numerical experiments are presented
in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Preliminaries

2.1 Conventional Collaborative Filtering Method: GroupLens

Neighborhood-based methods are the most frequently used algorithms for CF [3].
For these neighborhood-based methods, the subset of appropriate users is
selected based on their similarity to an active user, and the weighted aggre-
gate of their ratings is used to generate predictions for the active user. Let N
and M be the number of users and items, respectively. Let x ∈ R

N×M
+ be a

matrix whose (k, �)-th element is the rating value of the k-th user for the �-th
item. It is important to note that some elements of x may be missing; the goal
of CF is to predict such missing values. Then, a binary matrix y ∈ R

N×M is
defined by setting yk,� equal to one if the k-th user has a rating for the �-th
item; else, it is zero. x̂k,� represents the prediction for the active user k for item
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� if yk,� = 0. sim(k, k′) is the similarity weight between the active user and a
neighbor k′, as defined by the following Pearson correlation coefficient:

sim(k, k′) =
∑

�:yk,�yk′,�=1

(xk,� − x̄k,·)(xk′,� − x̄k′,·)

√ ∑

�:yk,�yk′,�=1

(xk,� − x̄k,·)2
√ ∑

�:yk,�yk′,�=1

(xk′,� − x̄k′,·)2
, (1)

where

x̄k,· =

∑

�:yk,�yk′,�=1

xk,�

M∑

�=1

yk,�yk′,�

. (2)

The GroupLens method [3] uses Pearson correlations to weigh the user simi-
larity values that can be used by all available correlated neighbors, and then,
it estimates the rating by computing the weighted average of deviations from
the neighbors’ mean. Further, the missing values for the active user, x̂k,�, are
predicted from the evaluated values of the other users and their associated sim-
ilarities using

x̂k,� = x̄k,· +

∑
k′:sim(k,k′)≥0 sim(k, k′)(xk′,� − x̄k′,·)∑

k′:sim(k,k′)≥0 sim(k, k′)
, (3)

where xk′,� is replaced by x̄k′,· if xk′,� is missing.
The prediction method involved in the GroupLens algorithm is summarized

by the following algorithm:

Algorithm 1 (GroupLens)

Step 1. Calculate similarities using Eq. (1).
Step 2. Calculate x̂ using Eq. (3). ��

2.2 CF Using qFCS

In the GroupLens method, the neighborhood is defined heuristically as
sim(k, k′) ≥ 0. Note that this definition is not based on any theory. Neigh-
borhoods for target users can be defined in many ways, one of them being
to cluster users based on their preferences. From among the many clustering
methods, Kondo and Kanzawa proposed the qFCS algorithm, as follows. Let
X = {xk ∈ R

M | k ∈ {1, · · · , N}, ‖xk‖2 = 1} be a dataset of M − 1-dimensional
spherical points. The membership of xk to the i-th cluster is denoted by ui,k

(i ∈ {1, · · · , C}, k ∈ {1, · · · , N}), and the set of ui,k is denoted by u. The clus-
ter center set is denoted by v = {vi | vi ∈ R

M , i ∈ {1, · · · , C}}. The variable
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controlling the i-th cluster size is denoted by πi. The i-th element of vector π
is denoted by πi. The qFCS algorithm is obtained by solving the optimization
problem

minimize
u,v,π

C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m(1 − xT
kvi) +

λ−1

m − 1

C∑

i=1

N∑

k=1

(ui,k)m − ui,k (4)

subject to
C∑

i=1

ui,k = 1,
C∑

i=1

πi = 1, ‖vi‖2 = 1, (5)

and the algorithm is as bellow:

Algorithm 2

Step 1. Set the number of clusters C, fuzzification parameters m and λ, initial
cluster centers v, and initial variables controlling the cluster size π.

Step 2. Calculate d using

di,k = 1 − xT
kvi. (6)

Step 3. Calculate u as

ui,k =
πi(1 + λ(1 − m)xT

kvi)
1

1−m

∑C
j=1 πj(1 + λ(1 − m)xT

kvj)
1

1−m

. (7)

Step 4. Calculate v as

vi =
∑N

k=1(ui,k)mxk∥∥∥
∑N

k=1(ui,k)mxk

∥∥∥
2

. (8)

Step 5. Calculate π as

πi =

(∑N
k=1 ui,k(1 + λ(1 − m)xT

kvi)
) 1

m−1

∑C
j=1

(∑N
k=1 uj,k(1 + λ(1 − m)xT

kvj)
) 1

m−1
. (9)

Step 6. Check the limiting criterion for (u, v, π). If the criterion is not satisfied,
go to Step 2.

Furthermore, Kondo and Kanzawa proposed using the above qFCS algorithm
for CF tasks as follows:

Algorithm 3

Step 1. Set a threshold value, x̌.
Step 2. Replace each missing value with the lowest value among all the ratings

values.
Step 3. Process Algorithm 2.
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Step 4. Calculate x̂ using

x̂k,� = x̄k,· +

∑
f(xk′ )≡f(xk)

sim(k, k′)(xk′,� − x̄k′,·)∑
f(xk′ )≡f(xk)

sim(k, k′)
. (10)

Step 5. Recommend all items to the active user #k with x̂k,� ≥ x̌ and yk,� = 0.
��

Kondo and Kanzawa indicated through some numerical experiments that their
proposed CF algorithm using qFCS outperforms not only the GroupLens algo-
rithm but also CF using FCCMM [4].

2.3 Possibilistic Clustering for Spherical Data Based on Tsallis
Entropy

Kanzawa [9] proposed a possibilistic clustering methods for spherical data using
Tsallis entropy, defined as

minimize
u,v

C∑

i=1

N∑

k=1

um
i,k(1 − xT

kvi) +
λ−1

m − 1

C∑

i=1

N∑

k=1

(um
i,k − ui,k) − λ−1

C∑

i=1

N∑

k=1

ui,k,

(11)

subject to ‖vi‖2 = 1, (12)

where all the symbols correspond to those for qFCS. The tPCS algorithm is
described as follows:

Algorithm 4

Step 1. Select a subset of objects as initial cluster centers. It is possible consider
all objects: C = N ; vi = xi i ∈ {1, · · · , C}. Set fuzzification parameters m
and λ.

Step 2. Perform possibilistic clustering as follows:
Step (A). Calculate u as

ui,k = (1 − λ(1 − m)(1 − xT
kvi))

1
1−m . (13)

Step (B). Calculate v as

vi =
∑N

k=1(xk)m

‖∑N
k=1(xk)m‖2

. (14)

Step (C). If (u, v) converges, terminate the possibilistic clustering.
Otherwise, go to Step. (A).

Then, we obtain C cluster centers.
Step 3. Merge the cluster centers among which the distances are negligible.
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3 Proposed Method

As mentioned previously, fuzzy clustering methods are useful; however, their
memberships do not always correspond well to the degree of belonging of the
data. To address this weakness of fuzzy clustering methods, Krishnapuram and
Keller [7] proposed a possibilistic c-means (PCM) algorithm that uses a pos-
sibilistic membership function. In particular, possibilistic clustering algorithms
are supposedly naturally immune to noise relative to fuzzy clustering.

While some users in the recommendation system faithfully express their true
opinion, many provide noisy ratings, which can be detrimental to the quality
of the generated recommendations. The presence of noise can violate modeling
assumptions and may thus lead to instabilities in estimation and prediction.
Even worse, malicious users can deliberately insert attack profiles in an attempt
to bias the recommender system to their benefit.

Then, adopting possibilistic clustering in CF tasks is expected to pro-
duce more accurate recommendation results than fuzzy clustering. A previous
study [6] showed that CF based on qFCS outperforms CF based on qFCCMM in
terms of recommendation accuracy. The tPCS algorithm is a possibilistic coun-
terpart to the qFCS algorithm. Then, adopting tPCS instead of qFCS in CF
tasks is expected to produce more accurate recommendation results than CF
based on qFCS.

If Algorithm 4 is implemented, the missing values are obtained using the
proposed methods.

Algorithm 5

Step 1. Set a threshold value, x̌.
Step 2. Replace each missing value with the lowest value among all the ratings’

values.
Step 3. Process Algorithm 4.
Step 4. Calculate x̂ using Eq. (10).
Step 5. Recommend all items to the active user #k with x̂k,� ≥ x̌ and yk,� = 0.

��

Though this algorithm is time consuming, in practice, however, the first four
steps of the algorithm can be preformed before an active user tries the recom-
mendation system.

Tables 1, 2, 3, 4 and 5 show the flow of Algorithm 5. In particular, Table 1
shows an initial rating matrix, where four users evaluate five items, and users
#2 and #4 do not evaluate items #4 and #2, respectively, denoted by “N/A.”
Table 2 shows the rating matrix after Step 2 of Algorithm 5 was applied to
Table 1. Thus, “N/A” is replaced with min

1≤k≤4
1≤�≤5

(k,�) �∈{(2,4),(4,2)}

xk,�. Further, Table 3

shows the rating matrix after Step 3 of Algorithm 5 was applied to Table 2,
where users #1 and #3 are placed in cluster #1, and users #2 and #4 are
placed in cluster #2. Then, Table 4 shows the rating matrix immediately before
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Step 4 of Algorithm 5 is applied to cluster #2 in Table 2, where the value
min

1≤k≤4
1≤�≤5

(k,�) �∈{(2,4),(4,2)}

xk,� is restored to “N/A,” to be predicted. Table 5 shows the rat-

ing matrix immediately after Step 4 of Algorithm 5 was applied to cluster #2
in Table 2, where the restored “N/A” is replaced with the predicted rating value.
If these predicted values are higher than a given threshold value x̌, the corre-
sponding items are recommended to the relevant users.

Table 1. Example of initial rating matrix: N = 4, M = 5, and {xk,�}(4,5)

(k,�)=(1,1) are
actual rating values from the users, and x2,4 and x4,2 need to be predicted

�User
Item #1 #2 #3 #4 #5

#1 x1,1 x1,2 x1,3 x1,4 x1,5

#2 x2,1 x2,2 x2,3 N/A x2,5

#3 x3,1 x3,2 x3,3 x3,4 x3,5

#4 x4,1 N/A x4,3 x4,4 x4,5

Table 2. Example of rating matrix to be clustered: N = 4 and M = 5. x2,4 and x4,2

are set as the minimal value of {xk,�}(4,5)

(k,�)=(1,1)

�����User
Item #1 #2 #3 #4 #5

#1 x1,1 x1,2 x1,3 x1,4 x1,5

#2 x2,1 x2,2 x2,3 min
1≤k≤4
1≤�≤5

(k,�) {∈� (2,4),(4,2)}

xk,� x2,5

#3 x3,1 x3,2 x3,3 x3,4 x3,5

#4 x4,1 min
1≤k≤4
1≤�≤5

(k,�) {∈� (2,4),(4,2)}

xk,� x4,3 x4,4 x4,5

4 Numerical Experiments

This section describes the four example datasets used to evaluate the proposed
algorithm, comprising one artificial dataset and one real datasets. We compare
the CF accuracy of the following three algorithms: Algorithms 1, 3, and 5.

An artificial 100 × 100 rating matrix composed of 100 users and 100 items
is shown in Table 6, which includes exactly 5 user clusters. In the dataset, users
and items #1–#20 have identical ratings for all values. Correspondingly, users
and items #21–#40, #61–#80, and #81–#100 also have the same ratings
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Table 3. Example of rating matrix clustered using qFCCMM: N = 4, M = 5, and
C = 2.

�����Cluster
�����User

Item #1 #2 #3 #4 #5

#1 #1 x1,1 x1,2 x1,3 x1,4 x1,5
#3 x3,1 x3,2 x3,3 x3,4 x3,5

#2 #2 x2,1 x2,2 x2,3 min
1≤k≤4
1≤�≤5

(k,�) {∈� (2,4),(4,2)}

xk,� x2,5

#4 x4,1 min
1≤k≤4
1≤�≤5

(k,�) {∈� (2,4),(4,2)}

xk,� x4,3 x4,4 x4,5

Table 4. Example of the rating matrix to be applied to GroupLens: N = 2 and M = 5.
x2,4 and x4,2 are predicted from the user ratings in cluster #2.

�����Cluster
�����User

Item #1 #2 #3 #4 #5

#2 #2 x2,1 x2,2 x2,3 N/A x2,5
#4 x4,1 N/A x4,3 x4,4 x4,5

Table 5. Example of the rating matrix applied to GroupLens: N = 2 and M = 5. x2,4

and x4,2 are replaced with the predicted values, x̂2,4 and x̂4,2, respectively. If these
predicted values are higher than a given threshold value x̌, then the corresponding
items are recommended to the corresponding users.

�����Cluster
�����User

Item #1 #2 #3 #4 #5

#2 #2 x2,1 x2,2 x2,3 x̂2,4 x2,5
#4 x4,1 x̂4,2 x4,3 x4,4 x4,5

among their groups. The ideal memberships of five user clusters are depicted
in Fig. 1, in which each row shows the 100-dimensional membership vector
ui = (ui,1, · · · , ui,100)T in gray scale (white and black are for umax and 0, respec-
tively). The aim of the experiment is to extract a similar structure from the
dataset.

The experiment was conducted as follows. Algorithm 1 contained no param-
eter settings. In Algorithm 3, the cluster number was set as C = 5, which
is the actual value. In addition, the fuzzification parameters were set as
m ∈ {1.0001, 1.0004, 1.0007, 1.0010} and λ ∈ {20/10, 21/10, . . . , 25/10} for
Algorithm 3, and the initial membership was set based on actual information.
In Algorithm 5, the cluster number and initial membership did not need to be
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Fig. 1. Ideal membership of the artificial rating matrix

set, and the fuzzification parameters were set similar to those in Algorithm 3.
Then, we applied three algorithms to this dataset with 7500 missing values; the
rating values were selected randomly and were then considered missing in this
dataset for purposes of the experiment. For each missing value, the outcome of
the proposed method is probabilistic and depends on which entries were ran-
domly deleted. In our experiment, five trials were performed using five different
sets of incomplete data in order to produce more significant, reproducible results.
The three algorithms specified above were applied to the abovementioned set-
ting. In our study, we used the mean absolute error (MAE) metric to evaluate the
prediction accuracy of the algorithms. MAE measures the average error between
the predicted rating and true rating. Let x∗

k,� be the true ratings, and x̂k,� be
the ratings predicted by CF. Further, let W be the number of user-item pairs
for which CF suggested predictions. Then, MAE is defined as follows:

MAE =

∑N
k=1

∑M
�=1 |x̂k,� − x∗

k,�|
W

. (15)

It is obvious that lower MAE values are preferred.
The fuzzification parameter values were selected as the lowest sum of the

MAE values for all five missing patterns. The lowest sum of MAE values and the
corresponding fuzzification parameter value for each cluster number are shown in
Table 7. This table shows that the MAE value obtained from Algorithm 5 is the
lowest (best) among those obtained from the three algorithms. This result indi-
cates that the possibilistic clustering algorithm (Algorithm 4) is able to identify
the group to which active users belong based on their preferences.

Table 6. Artificial dataset

�����User
Item 1 · · · 20 21 · · · 40 41 · · · 60 61 · · · 80 81 · · · 100
1 1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4 5 · · · 5
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
20 1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4 5 · · · 5
21 5 · · · 5 1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
40 5 · · · 5 1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4
41 4 · · · 4 5 · · · 5 1 · · · 1 2 · · · 2 3 · · · 3
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
60 4 · · · 4 5 · · · 5 1 · · · 1 2 · · · 2 3 · · · 3
61 3 · · · 3 4 · · · 4 5 · · · 5 1 · · · 1 2 · · · 2
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
80 3 · · · 3 4 · · · 4 5 · · · 5 1 · · · 1 2 · · · 2
81 2 · · · 2 3 · · · 3 4 · · · 4 5 · · · 5 1 · · · 1
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
100 2 · · · 2 3 · · · 3 4 · · · 4 5 · · · 5 1 · · · 1
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Table 7. Lowest sum of MAE for the artificial dataset and the corresponding fuzzifi-
cation parameter value for Algorithms 1, 3, and 5

Algorithm Lowest sum of MAE Fuzzification parameter (λ, t)

1 0.628045 —

3 0.628045 (1.2, 32)

5 0.536231 (2, 32)

The remaining dataset is “MovieLens” [10] released by the GroupLens
Research Project at the University of Minnesota. This dataset was compiled
through the “MovieLens” web-site [10], and contains the reactions of users asked
to evaluate movies they watched. In “MovieLens,” 6,040 users recorded 1,000,000
ratings for 3,900 movies, where, the ratings are scaled from 1 to 5, with 5 being
the best score. We used 277,546 ratings from 905 users for 684 movies in our
experiments. It is because the original dataset is too sparse to define neighbors
of active users for all the methods compared in this experiment. Therefore, each
movie was evaluated by more than 240 people, and each user rated over 200
movies. Restricting subsets both users and movies makes clear the difference
among results obtained from methods.

We applied the three algorithms, namely Algorithms 1, 3, and 5, to the
real dataset, and compared the obtained prediction accuracy using the area
underneath the receiver operating characteristic (ROC) curve (AUC), defined as
follows. AUC is the area under the ROC curve [11,12], and the ROC curves are
constructed as follows. First, all the recommendations were ranked as per the
rating score. Recall and Fallout were calculated for each rating cut-off pair, as
seen below.

Recall =
TP

TP + FN
, (16)

Fallout =
FP

FP + TN
(17)

where True Positive (TP) is the number of correctly recommended items from
the selected items, False Positive (FP) is the number of incorrectly recommended
items from the selected items, False Negative (FN) is the number of correctly
recommended items from the non-selected items, and True Negative (TN) is the
number of incorrectly recommended items from the non-selected items. In this
experiment, the AUC was calculated using the discrete threshold values from
0.1 to the maximal rating value in increments of 0.1.

Algorithm 1 did not contain parameter settings. In Algorithm 3, the cluster
numbers were set as C ∈ {2, 3, . . . , 7}. In addition, the fuzzification param-
eters were set as m ∈ {1.0001, 1.0004, 1.0007, 1.001, 1.01, . . . , 1.1} and λ ∈
{101, . . . , 105} for Algorithm 3. In Step 1 of Algorithm 2 (this algorithm was
used as Step 3 of Algorithm 3), the initial item typicality values were provided
in a manner similar to that of the k-means++ method [13]. In particular, the
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first item membership was the normalizing value selected uniformly at random
from the data points being clustered. Thereafter, each subsequent item mem-
bership was the normalizing value selected from the remaining data points with
a probability inversely proportional to its pseudo similarity from the point’s
closest existing initial membership. For the 10 initial settings, the clustering
result with the maximal objective function value was selected for Step 3 in
Algorithm 3. In Algorithm 5, the cluster number and initial membership did not
need to be set, and the fuzzification parameters were set as m ∈ {1.01, . . . , 1.1}
and λ ∈ {101, . . . , 105}.

The experiment was performed as follows. First, 100,000 rating values in the
“MovieLens” dataset, was randomly selected to be missing. Next, Algorithm 1,
Algorithm 3, and Algorithm 5 were applied to the dataset for five settings of
missing values. Finally, the average of the five AUC values were calculated for
each dataset.

The highest AUC value for each method and the parameter value at which the
highest AUC value was achieved are shown in Table 8, where the highest AUC
value among the three methods is underlined. Table 8 shows that the AUC value
obtained from Algorithm 5 is higher than those obtained from the other methods.
Thus, we can say that the proposed algorithm outperforms other methods in
terms of CF accuracy.

Table 8. The highest AUC value for each method and the corresponding parameter
values for the “MovieLens” dataset

Method AUC Parameter value
m λ C

Algorithm 1 0.787015�
��

�
��

�
��

Algorithm 3 0.788122 1.01 100000 6

Algorithm 5 0.790486 1.3 100 �
��

5 Conclusion

In this study, we proposed a CF algorithm for a recommendation system based on
possibilistic clustering for spherical data. The results of experiments conducted
on four datasets indicate that the CF method based on the possibilistic clustering
algorithm for spherical data outperforms the conventional methods in terms of
recommendation accuracy.

In future research, the proposed method will be compared with other methods
further detailed setting, e.g., applied to a large number of real datasets, along
with measuring trends of accuracy as increasing the number of missing values.
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Abstract. Machine learning–based decision support systems (DSS) are
attracting the interest of the medical community. Their usage, however,
could have deep consequences in terms of biasing the doctor’s interpre-
tation of a case through automation bias and deskilling. In this work
we address the design of DSS with the goal of minimizing these biases
through the design and implementation of programmed inefficiencies
(PIs), that is, features with the stated purpose of making the reliance of
the human doctor on the DSS less obvious (or more difficult). We illus-
trate this concept by presenting a real-life medical DSS, called DataWise,
embedding different PIs and currently undergoing iterative prototyping
and testing with the medical users in two clinical settings. We describe
the main features of DataWise, and show how different PIs have been
conveyed by prompting doctors for multiple input and using qualitative
visualizations instead of precise, but possibly misleading, indications.
Finally, we discuss the implications of this design approach to naturalis-
tic decision making, especially in life-saving domains like medicine is.

Keywords: Human decision making · Uncertainty · DSS

1 Motivation and Background

In the decision support systems (DSS) community, researchers are generally
aware that decision making is a human activity that technology can at best
support, but never replace. However, DSS are different from any other technology
that could support decision makers do their job, e.g. different from systems
that can allow decision makers to get access to the relevant information, whose
availability can either suggest or confirm the right decision. DSS are directly
involved in human decision making, for their role in presenting viable options
(if not the “one best option”), among many potential alternatives, and possibly
present these already ranked for importance, confidence or plausibility. In other
words, their output can influence decisions more than any other technology used
in decision making, and this is their explicit and primary purpose: to influence
decisions so that the rate of decision error could be lower than without their
c© Springer Nature Switzerland AG 2019
V. Torra et al. (Eds.): MDAI 2019, LNAI 11676, pp. 201–212, 2019.
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support, as observed in [2], for Deep Learning–based techniques, or in [17], for
Swarm Intelligence–based techniques.

DSS based on machine learning and large amounts (big) of annotated data
(that is, past accurate decisions) are exhibiting lower error rates than ever before
and hence come with a strong promise to improve decision making in many fields
where this is a delicate and life-saving process, like medicine [21]. These systems
are often called black-box algorithms, as neither users, nor their developers, can
easily get a full understanding of how such a DSS comes to suggest one best
option against the others and, most notably, why. In medicine this can have
deep consequences, both in the short term, as the DSS can bias and prime
the doctor’s interpretation of a case, leading to automation bias [19] (that is
the use of DSS as replacements for vigilant information seeking and processing,
leading to overreliance on the DSS’ output); and in the long term, as it has been
speculated that this kind of DSS can undermine the doctors’ judgment capability
and deskill them [3].

In our research, we address this twofold potential unintended consequence of
embedding highly accurate, black-box DSSs into medical human decision mak-
ing: we try to assess the impact of these systems on doctors’ performance, and
design real-life DSS aimed at minimizing automation bias and at preserving the
decision autonomy of humans. We pursue this latter aim, which is the focus of
this paper, by means of the concept of programmed inefficiency (PI).

A PI is a DSS feature purposely developed to make DSS-assisted human deci-
sion making less efficient, that is possibly longer, more difficult, less immediate
than if performed without this feature1. A PI is aimed at making human reliance
on the DSS advice less obvious, e.g., by purposely and slightly undermining the
DSS accuracy and making the user aware of this, or just letting users be aware
of the intrinsic and unavoidable uncertainty of any automatic classification and
prediction. In what follows, we will illustrate how we embedded a number of
PIs in a real-life DSS, called DataWise. This system is under iterative proto-
typing and testing to support more than 100 surgeons working in an Italian
large teaching hospital, where they perform more than 5,000 joint replacement
surgeries yearly. In particular, DataWise is currently used for two main tasks:
first, the pre-operative prognostic evaluation of the odds different treatments
proposed for a given patient will be effective. As such, DataWise is both a tool
to support shared decision making in doctor-patient communication, and a tool
to assess the appropriateness of different surgical alternatives, among which the
one of not undertaking surgery at all. This latter one is an important purpose
to pursue, for its role in enabling and positively informing policies of so called
value-based health care, that is health care that transitions from a fee-for-service
model (an orientation that can bring to opportunistic overuse), to reimbursement
models that are directly informed by the observed outcome of any treatment
option in large groups of patients, as this is assessed on the basis of the available
records [22]. The second task regards follow-up management, that is DataWise

1 As such a PI is something in between what Tenner calls inspired inefficiency [20]
and Ohm and Frankle desirable [13].



Programmed Inefficiencies in DSS-Supported Human Decision Making 203

as a tool for the post-operative phase, where its prognostic capabilities, and in
particular its feature to estimate the risk of complication (at any follow-up step,
starting from the discharge of the patient from the hospital), can help doctors
adapt the intensity of care and of the monitoring tasks on-the-fly, so as to focus
on the most problematic (to be) patients, save resources, and make health care
a more sustainable activity.

2 Programmed Inefficiencies in DataWise

We designed some programmed inefficiencies in DataWise to test its accept-
ability and utility in naturalistic decision making [10] in the ambit mentioned
above: the main PI is that DataWise can abstain from producing a prediction.
This occurs whenever its confidence on any potential target class is below a
certain threshold [4]. Furthermore, we purposely avoided giving doctors quan-
titative estimates of confidence, performance rates, probabilities and prediction
scores, unless explicitly requested. Rather, we exploited Gestalt elements instead
(i.e., shape- or color-related elements) to convey the same information but endow
it with a more concrete idea of the uncertainty that affects any DSS prediction
and statistical estimation. For the interpretation of the prediction, we largely
employ intuitive visualizations that nudge the decision makers to stick to the
available evidence (i.e., the data about the single case, or other similar cases)
instead of thinking in purely abstract and model-oriented terms. In so doing, we
aim to promote a naturalistic approach to the design of human decision making
support, that is solutions emphasizing the process nature of decision making,
instead of reducing it to the consultation of an oracle, however accurate, and
encouraging the doctors to take fully into account the situated, contingent, and
interpretative elements available to them [11]. Also in so doing, we address the
requirement, raised by Raiffa in 1968, for “a methodology that brings informa-
tion, however vague and imprecise, into the analysis, rather than a method that
suppresses information in the name of scientific objectivity” [1]. In what follows,
we will first outline the main use case of DataWise; then we will focus on specific
subtasks (prediction visualization, prediction interpretation) and illustrate how
we introduced gentle PIs to have humans engage with the system.

3 The DataWise Use Case

DataWise is the DSS module of a larger application, called DataReg: this is
an electronic health registry that has been in use for 2 years to date and that
allows to collect and manage both medical data (as those reported by doctors
in surgery diaries, discharge letters, followup encounters forms) and Patient-
Reported Outcome (PRO) data, which are data reported by the patients about
their own health conditions (and how they perceive the outcome of specific treat-
ments they had undergone) by means of standard and validated questionnaires
at regular times, mainly 3, 6 and 12 months after a specific treatment (in our
case, surgery). The data collected by DataReg are periodically used as training
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data for the development of the predictive models employed in DataWise. Basi-
cally, DataWise provides doctors with predictions about the prospective PRO
that a specific patient will report at some future steps in the surgery followup.

The main use case of the human decision making process supported by
DataWise unfolds along a 5-step sequential workflow, described in the following
sections.

3.1 Patient and Model Selection

First, the doctor has to select a patient from the DataReg registry. DataWise
then imports the necessary predictor data, and prompts for the input of any
other data that is not yet available (e.g. the surgical procedure if the system
is used at the pre-operative step). The doctor also has the option of asking a
prediction for a patient not currently in the DataReg list; in this case DataWise
will present the doctor a form where to impute the necessary predictor values.

Then, the doctor has to select a prediction model among the available ones
(e.g. if DataWise is used at pre–operative time, it allows to predict either the
3– or 6– months PRO, that is, how the selected patient should feel after those
time interval), at a specific “time step” (in the followup path). DataWise will
also ask the doctor to express their preference (if any) among specificity (i.e. false
positives avoidance) and sensitivity (i.e. false negatives avoidance), as well as to
provide what they deem is the most likely outcome (in terms of the prospective
target score) and tell how much confident they feel about their prediction.

As any PI, also these requests may seem to require an additional, useless,
effort by the doctor. However, asking their for specific or sensitive predictions
allows the doctor to provide a weight to make the advice potentially less accurate
but more aligned with their values and attitudes, which can depend on contextual
factors: e.g., the need to minimize overuse [18] or to adapt to the patient’s
preferences and attitudes towards interventional treatments.

On the other hand, the latter PI allows to compare the doctor’s progno-
sis with DataWise’s prediction, and assess the performance of both when the
patient will eventually give a feedback after the treatment. This is done not to
foster a competitive attitude of the doctors towards the AI support (although
comparing the diagnostic/prognostic performance between machine and humans
is a recurrent theme in the specialist literature, e.g. [8,9]); but rather to have
doctors keep exercising the difficult art of interpretation and forecasting, and
prevent them from over-relying on the newly available computational support:
moreover, incentives can be associated to the highest accuracy rates and pro-
posed for the doctors exhibiting them, beyond direct gratification and visibility.

3.2 Prognostic Support

In the Result page (see Fig. 1), DataWise displays four visualizations:

1. On the top-left side of this page, a bidimensional diagram depicts the score
predicted by the regression model, where this is put in relation with the
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(a) Predicted score and confidence
interval.

(b) Agreement of doctor and model
predictions

(c) Predicted probabilities for the
outcome classes.

(d) Predicted risk of complications.

Fig. 1. The results page.

present score. The score estimate is rendered with its 95% confidence interval
and placed in a plane that is partitioned in three colored regions; these repre-
sent different prognostic categories, i.e., improved, worsened, and hard to say.
The latter partition corresponds to a buffer zone whose width is estimated
according to the Minimal clinically important difference (MCID) associated
to the predicted score (if this is available in the specialist literature [15]), or



206 F. Cabitza et al.

to some safety margin suggested by the doctor in the analysis phase (usually
around 10%).

2. On the top right side of the Result page, DataWise reports the agreement
level between the forecast given by the doctor and the model’s prediction.
This agreement is qualitatively represented by two lines inscribed within a
circle: one, corresponding to the model output, is perfectly vertical; the other,
corresponding to the doctor’s guess, is inclined in function of the difference
between the two scores, so that, if the two scores are equal, the two lines are
parallel, and, if their deviation is maximum, they cross orthogonally.

3. On the bottom left side of the Result page, DataWise reports the predic-
tion scores assigned to the different possible outcomes of the treatment (i.e.,
improved, worsened and normalized scores) are rendered in terms of a tripolar
visualization, that is, a triangle in which each pole (or vertex) corresponds to
one of the three classes above and the mutual ratio between the prediction
scores is represented by the position of a circle inside the triangle.

4. Finally, on the bottom right side of the page, DataWise reports the predicted
risk of complications: the plot does not show the precise probability scores
assigned to the two classes but it transforms these scores in terms of the
proximity of a “probability glyph” to one of the two extremes. The middle
area represents uncertain predictions, that is prediction scores of either classes
that are lower than a certain threshold and, thus, insufficient to give a reliable
estimate: for the criticality of complication prediction, the probability glyph
is indistinguishable in the uncertain region of the visualization, which then
acts as an indication of abstention.

With respect to point 3 above, the agreement among the prediction given
by the doctor and the one given by the model, and the corresponding angle, is
defined as:

Agr(SModel, SDoctor) =
|SModel − SDoctor|

|SMax − SMin| (1)

Deg(SModel, SDoctor) = arcsin(
√

Agr(SModel, SDoctor)) (2)

where SModel is the score value predicted by the model, SDoctor is the score value
predicted by the doctor and SMax (resp. SMin) are the maximum (resp. min)
possible value assumed for the score.

In regard to the prognostic support, the designed PI regards the abstention
and the qualitative and number-less visualization of the predictions. In regard to
this latter PI, we designed DataWise to purposely avoid to convey any result in
terms of quantities (e.g., numbers, percentages). These, although of immediate
comprehension, could induce a misplaced sense of accuracy and precision in
regard to prediction that are nevertheless affected by some degree of uncertainty.
Rather, the indications are given in topological terms (i.e., how close a circle is
to some pole or extreme), position (i.e., in which region a circle is located) or
shades of colors, and the doctor is free to get an informed idea of how reliable
the provided indication is.
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With respect to the abstention PI, it is noteworthy that, in the classifica-
tion model described in point 3, the hard to say is not to be considered (in the
training and predictions of the model) as a third class to predict, but rather
as the neutral response of the model when it abstains from giving a binary
prediction, as illustrated in more detail in [4]. The tripolar diagram then rep-
resents the output of a three–way–out classification task (and not a multi-class
one). In order to implement this approach and compute three probability scores,
the system performs transformations inspired by [5]: in short, given three deci-
sion costs λ(Improved|Worsened) (the cost of saying that a patient improved
when, in reality, she is worsened), λ(Worsened|Improved) (the cost of saying
that a patient worsened when, in reality, she is improved), and α (the cost of
abstaining) and the basic probability scores given by the prediction algorithm
P (Improved), P (Worsened) we compute the respective prediction risks:

r(Improved) = λ(Improved|Worsened) ∗ P (Worsened) (3)
r(Worsened) = λ(Worsened|Improved) ∗ P (Improved) (4)

r(Hard to Say) = α (5)

Thus, let m = max{r(Improved), r(Worsened), r(Hard to Say)}, we then
compute

s(·) = 1 − r(·)
m

(6)

for each of Improved, Worsened and Hard to Say and normalize the three values
in order to make them sum to 1. In doing so, we obtain the probability scores
which are plotted on the tripolar diagram. The central zone of the triangle (the
one inside the dashed circle) represents an area of second–order uncertainty, i.e.
it represents the area in which the probability scores of the three alternatives
are so close to each other that the predictive model is uncertain on its own
prediction (which, in its turn, encompasses the uncertain outcome, when the
model abstains from giving a binary outcome, as explained above).

3.3 Interpretation Support

In the following Interpretation page, the doctor can explore the model and
the given predictions by leveraging explainable AI techniques. More specifically,
DataWise allows doctors to:

1. See the local feature relevance (computed using Local Surrogate Models [16]),
in order to understand the impact of each feature on the model prediction.

2. Conduct a counterfactual analysis [23] of the given indications: in so doing,
the doctor can try to understand what prediction would the model give if
any patient values were different and, the other way round, see how small
changes in the predictive features could alter the model’s prediction;

3. Perform an analogical analysis, on the basis of the most similar patients that
the system has found with respect to the patient under examination;
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(a) Counterfactual exploration (background color gradient of the value cells) and
feature importances (background color of the heading cells).

(b) Similarity betweem the selected patient and its nearest neighbors, the dashed
circle represents the diversity w.r.t. the reference population. The table shows the

anagraphics and clinical data for the depicted patients

Fig. 2. The Interpretation page.

The Interpretation page interface is divided in three distinct parts (see Fig. 2):
The topmost part of the page displays the patient values, with respect to the
predictor features. The header of the patient record supports the interpretation
of the feature relevance in a qualitative manner: the darker the background of
a column name, the more important the corresponding feature for the given
prediction. This gradient is displayed according to the feature relevance scores
(obtained with methods from the LIME library [16]): each feature is associated
with weights of a corresponding linear regression model, and these are converted
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into relevance scores by taking their absolute values and normalizing by the
maximum value.

On the other hand, the background of the value fields below addresses the
counterfactual analysis in the same qualitative manner: according to a gradient
scale, the darker the color, the lower the absolute distance (on either ordinal or
scalar fields) between the current value and a different value that would make the
prediction change. In regard to nominal scales (like, e.g., gender), the darkest
color indicates that any change in that field would have the effect to change
the target value. We are currently working on a prototype that would allow the
doctor to manually alter the values of the selected patient’s features in order to
observe, in real-time, the causal effect of these interventions in the indications
given by the underlying ML model.

The middle and bottom parts of the screen show information about the most
similar patients to the one currently under examination (with respect to a PCA
analysis). This is done to allow the doctor to reason analogically and explore
the features and records of those patients to look for similarities or cues that
could be relevant for the patient at hand. This latter one is compared with all
of the other patients whose record is stored in DataReg in order to find the 5
most similar patients. These patients are then represented as data points, whose
color represents the degree of similarity with respect to the patient at hand, and
whose position on a 2D scatter plot represents their values in regard to the 2 most
relevant features (computed considering the global feature importance mentioned
above). The degree of diversity of the patient with respect to the training set
is represented in terms of the offset between the center of a dashed circle and
the patient circle (the higher the offset, the less representative the training set
of the patient under consideration). Below this twofold visualization, the system
reports a summary of the records of these patients (basic identity information
and the values of the predictor features), with a link to the corresponding patients
records.

With respect to point 1, in order to compute the color gradient indicating how
large a change would be required to make the selected patient change prediction
outcome, the following formula is used:

G(a) = B(a) =

⎧
⎪⎨

⎪⎩

|vp
a−vs

a|
|vmax

a −vmin
a | a is continuous

|r(vp
a)−r(vs

a)|
|Va|−1 a is ordinal

1vp
a �=vs

a
a is categorical

(7)

where a is a specific predictor feature, R(a) = 1 (resp. B(a), G(a)) is the red
(resp. blue, green) color channel value for feature a, vp

a is the value for feature
a for the selected patient p, vs

a is the value for feature a for the patient s most
similar to p in the other outcome class, r(vp

a) (resp. r(vs
a)) is the rank of value

vp
a (resp. r(vs

a)), Va is the number of values feature a can assume and 1 is the
indicator function for a given predicate.

With respect to point 2, in order to compute the patients most similar to the
selected one, first the categorical variables are transformed into dummy values
using one–hot encoding then the Euclidean distance is computed (normalizing
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the distances of each feature, in order to ignore distortions due to magnitude
effects), from which the 5 patients with minimal distance value are selected.

In order to compute the offset of the patient circle with respect to the center
of the dashed circle, first the centroid c of the training set D is computed,
and the distance between the patient’s record and the centroid is computed as

dist(p, c) =
√∑

a∈A( vp
a−vc

a

vmax
a −vmin

a
)2.

Denoting as dist(D) = {dist(p′, c)|p′ ∈ D}, we compute the offset as2

dist(p, c)
max{dist(p′, c)|p’ is not an outlier}

After the interpretation step, doctors can (and actually are invited to) vali-
date the process and evaluate the extent the system did actually support their
decision making task. This is done through a short questionnaire regarding both
the usability and the usefulness of the system. In particular, usefulness is eval-
uated in terms of the pragmatic value of the tool to have doctors reflect on the
case at hand, and induce any change in their initial opinion. This information
is useful for the improvement of the user experience and for future retraining of
the model.

4 Conclusion

In this paper we have presented a set of features of a real-world machine learning-
based DSS that we are testing in the health care domain, in particular in the
prognostic and therapeutic management of musculoskeletal disorders. These fea-
tures are illustrated both from the point of view of the interaction design, and
of the underlying computational methods we developed to deploy them. In addi-
tion, we have provided a more general design framework, whose main idea is to
endow an accurate DSS with purposely programmed inefficiencies.

Other different explanatory tools have been developed, the most recent one
being Google’s What-If Tool [7]. This tool shares some features with DataWise:
visualizations of the most similar patients and conterfactual analysis. What-If
also provides the possibility of editing a data-point to check if prediction changes
and allows to compare multiple models. DataWise, on the other hand, provides
qualitative-based information nudging the doctor towards a deeper analysis of
the evidence at hand (see the concept of PI), for example making more explicit
the model’s uncertainty (through the use of abstention).

The features presented in this paper are intended to be a preliminary proof of
the concept and a driver to enable further analyses of the doctors’ performance
and satisfaction. In particular, the PIs that we have developed in our medical
DSS, called DataWise, and that we have described in this paper, are currently
under evaluation both in terms of user acceptance and perceived informativeness
2 The value offset(p) could be greater than 1 (thus, resulting in the patient’s circle

being outside of the dashed circle); this means that the training set is unrepresenta-
tive of the patient under consideration.
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and utility. As stated above, programmed inefficiencies are a kind of purposely
designed “computational friction” [6], that is any feature, contrivance and device
that calls for specific actions to turn data, in this case the DSS predictions, into
useful information. In this mould, we intend PI as way to make DSS-assisted
(and in particular AI-assisted) human decision making a more “viscous” process,
and therefore as a way to counteract known phenomena emerging from human
decision making when highly accurate DSSs offer their predictions and interpre-
tation in a more straightforward way: automation bias and decision deskilling.
Designs with Programmed Inefficiencies (PI) require decision makers to con-
sider more information than those that do not encompass them, and therefore
to devote more time in making sense of the data provided (hence the concept
of inefficiency). However, PI designs do not undermine efficiency by means of
a low-usability tool or by information overload. On the contrary, they require
the doctors to build a comprehension from less quantitative, numeric and easy-
to-interpret (as well as to-misinterpret) indications, in favour of analog, visual
(even pictorial) and possibly more uncertain and vague visualizations: doing so
aims to avoid the quantitative fallacy [12,14], for which AI systems can look
even more accurate than they actually are. Medical AI is recognized as a great
opportunity for medical work to increase its effectiveness, efficiency and safety;
however, it can also pose issues if deployed recklessly [3], like the disruption of
clinical workflow. PI-endowed DSSs are proposed as a solution to “enable AI
assistance without encouraging clinical decision making passivity” [24] by trad-
ing off a small amount of efficiency to minimize the odds of automation bias
and deskilling, by requiring doctors to keep exercising their “decision muscle”.
In particular, PIs are conceived and developed to keep humans in the loop and,
even more than this, “force” them to exert both perceptual and cognitive skills
to make sense of the DSS output. Their introduction ground on the awareness
that AI-based DSS will inevitably change the process of the traditional human
decision making (hopefully making it more effective, more accurate and more
safe [21]), but will also require humans to develop new skills to make sense of its
output. Our future work will be devoted in tuning the number and kind of PIs
to optimize performance (in terms of decision accuracy) and user satisfaction; in
particular, we are planning to test the acceptance of two features: one by which
doctors can interact with the prediction visualizations to change the sensitiv-
ity/specificity trade-off and see how predicted outcome change accordingly; the
other one by which the system renders complication risk by means of pictures
according to Gestalt principles (like closure and good form) instead of in terms
of linear scales and length (like in the current version, see Fig. 1). Lastly, we aim
to compare the performance of medical teams that are supported by our tool
with the performance of similar teams that do not use it in real-world conditions,
to assess its actual impact on human decision making.

References

1. Berg, M.: Rationalizing Medical Work: Decision-Support Techniques and Medical
Practices. MIT Press, Cambridge (1997)



212 F. Cabitza et al.

2. Bien, N., Rajpurkar, P., Ball, R.: Deep-learning-assisted diagnosis for knee mag-
netic resonance imaging: development and retrospective validation of MRNet.
PLoS Med. 15(11), e1002699 (2018)

3. Cabitza, F., Rasoini, R., Gensini, G.F.: Unintended consequences of machine learn-
ing in medicine. JAMA 318(6), 517–518 (2017)

4. Campagner, A., Cabitza, F., Ciucci, D.: Exploring medical data classification with
three-way decision tree. In: HEALTHINF 2019. SCITEPRESS (2019)

5. Campagner, A., Ciucci, D.: Three-way and semi-supervised decision tree learning
based on orthopartitions. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 854,
pp. 748–759. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91476-
3 61

6. Frischmann, B., Selinger, E.: Re-engineering Humanity. Cambridge University
Press, New York (2018)

7. Google What-If Tool. https://pair-code.github.io/what-if-tool/index.html
8. Haenssle, H., et al.: Man against machine: diagnostic performance of a deep learn-

ing convolutional neural network for dermoscopic melanoma recognition in com-
parison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

9. Han, S.S., Park, G.H., Lim, W., et al.: Deep neural networks show an equivalent
and often superior performance to dermatologists in onychomycosis diagnosis. PloS
One 13(1), e0191493 (2018)

10. Klein, G.: Naturalistic decision making. Hum. Factors 50(3), 456–460 (2008)
11. Mongtomery, K.: How Doctors Think: Clinical Judgment and the Practice of

Medicine. Oxford University Press, New York (2005)
12. Muller, J.Z.: The Tyranny of Metrics. Princeton University Press, Princeton (2018)
13. Ohm, P., Frankle, J.: Desirable inefficiency. Florida Law Review (777) (2017)
14. O’Mahony, S.: Medicine and the mcnamara fallacy. JRCPE 47(3), 281–287 (2017)
15. Revicki, D., et al.: Recommended methods for determining responsiveness and

minimally important differences for patient-reported outcomes. J. Clin. Epidemiol.
61(2), 102–109 (2008)

16. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. CoRR abs/1602.04938 (2016)

17. Rosenberg, L., Lungren, M., Halabi, S., et al.: Artificial swarm intelligence
employed to amplify diagnostic accuracy in radiology. In: IEMCON 2018, pp. 1186–
1191 (2018)

18. Rumball-Smith, J., Shekelle, P.G., Bates, D.W.: Using the electronic health record
to understand and minimize overuse. JAMA 317(3), 257–258 (2017)

19. Skitka, L.J., Mosier, K.L., Burdick, M.: Does automation bias decision-making?
IJHCS 51(5), 991–1006 (1999)

20. Tenner, E.: The Efficiency Paradox: What Big Data Can’t Do. Knopf, New York
(2018)

21. Topol, E.J.: High-performance medicine: the convergence of human and artificial
intelligence. Nat. Med. 25(1), 44 (2019)

22. Vetter, T.R., Uhler, L.M., Bozic, K.J.: Value-based healthcare: a novel transitional
care service strives to improve patient experience and outcomes. Clin. Orthop.
Relat. Res. 475(11), 2638–2642 (2017)

23. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harv. J. Law Technol.
31(2), 2018 (2017)

24. Yu, K.H., Kohane, I.S.: Framing the challenges of artificial intelligence in medicine.
BMJ Qual. Saf. 28(3), 238–241 (2019)

https://doi.org/10.1007/978-3-319-91476-3_61
https://doi.org/10.1007/978-3-319-91476-3_61
https://pair-code.github.io/what-if-tool/index.html


Multilayer Identification: Combining
N-Grams, TF-IDF and Monge-Elkan
in Massive Real Time Processing

Ignacio González and Alfonso Mateos(&)

Decision Analysis and Statistics Group, Departamento de Inteligencia Artificial,
Universidad Politécnica de Madrid, Madrid, Spain

igmigonzalezgarcia@gmail.com, alfonso.mateos@upm.es

Abstract. In modern societies control is based on information. Nowadays, in
many countries, companies are obligated to provide to tax administrations all
their invoices and withholders and financial entities to provide information that
is used to offer prefilled tax declaration. In the case of Spain, the Tax Agency
(AEAT) receives 180 million invoices by month and must process in a few days
at the end of January more than 500 millions of registers to prefill Income Tax
forms. Hundreds of thousands of these data are not correctly identified by the
provider and must be returned to the sender or stored as not identified and
analyzed afterwards. Traditionally this process consumed many technical and
human resources. AEAT has been able to provide for first time a solution for
identification in real time with enormous throughput that fulfil its needs. It is
based in a combination of six algorithms, based in three different ideas, n-gram,
TI-ILF, and Monge-Elkan that has surpassed any previous expectative.

Keywords: Identification � Monge-Elkan � Edit distance � Hybrid metrics �
NLP

1 Introduction

Public administrations need, in many cases, to identify citizens knowing only some
aspects of their activity, and, in others to attribute them wealth or income after crossing
their data with those imputed by third parties as withholders or financial entities. The
objective may be to detect discrepancies, which are used in risk analysis or to help the
taxpayer, as it happens when a prefilled declaration [1] is offered.

Prepopulated forms have become a key element of the quality of the service pro-
vided by tax administrations and evaluated by organisms as International Monetary
Fund, that includes this indicator in the guide of TADAT (Tax Administration Diag-
nostic Assessment Tool), in Performance Outcome Area 4 (Timely Filing of Tax
Declarations) [2].

The quality of the process of identification is critical. IMF guide defines as best
practice: “At time of filing, automatically checks the taxpayer’s identity against the
registration database, records the date of filing, performs arithmetic checks, records the
tax liability, and stores declaration data” If this it is not done correctly, the estimated
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risks are erroneous, and taxpayers are selected for inspection due to wrongly imputed
information or the prefilled forms are delivered with errors. Bad identification can
cause annoyance to millions of people and to thousands of merchants. The information
that is wrongly rejected originates expenses and complaints and false positives move to
undue inspections. The information stored as not - identified is almost useless.

Nowadays the problem has reached a new dimension. In many countries tax
administrations require e-invoices1 (SII system in Spain) and prefilled declarations are
extended from Income Tax to VAT. Authorities access with crawlers and scrappers to
Internet to download data necessary for the control of the collaborative economy.
While a few years ago AEAT had to identify hundreds of millions of data by year, now
has to identify billions of data by month.

Spain has the highest rate in the process of these forms, (returns/minute), followed
by Sweden (7.1) and Denmark (4.7) [OECD, p. 13].

In January 2019, during the period established to receive from companies the data
that must be used to prefill Income Tax declaration, AEAT (Tax Agency), has received
464,178,746 records from 12,479 declarants, corresponding to 15 forms (withholdings,
yields of financial products, subsidies, etc.) containing the largest of them 35,543,350
records. The number of invoices received in the SII system, a simultaneous process,
designed to enforce VAT declaration, has been 180 million by month.

In the past information was presented in magnetic support, using Value Added
Networks and afterwards using Internet. The format of the files was validated during
the reception and identification was made later. The result was communicated to the
interested parties including the detail of errors, that should be corrected.

By Order HFP/231/2018 the possibility of providing information in magnetic
support was eliminated and in 2019, for the first time, real-time identification was done
in real time. The description of these forms, of the processes and a text portal is public2.

It has been necessary to create an innovative platform to process data in memory,
reaching a speed of 140,000 fully validated and processed records per minute. The type
of process has let to increase the quality of the process of identification dramatically.

We distinguish three moments in the process of identification:
Previous. The data provided by a taxpayer about itself are clearly associated with their
NIF (Tax Identification Number). It is not the case for data attributed to them by third
parties. It happens that the person obligated to inform, merchants or Internet platforms,
neither must nor can they verify some data of their clients. Internet platforms request
data to connect their users, but often they provide only a name or nickname and a
contact telephone and there are no rules to structure these data.

During the process. Inconsistencies appear as a consequence of the existence of
erroneous data. Sometimes the error is intentional, as it happens when the interested
parties that know that their data will be delivered to the Treasury, hide part of their
names, use abbreviations, misspell surnames or invent identification codes since the

1 https://www.ciat.org/la-factura-electronica-en-america-latina/
2 https://www.agenciatributaria.es/AEAT.internet/en_gb/informativas.shtml
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algorithm is public. With these restrictions it must be decided in real time if the
information received is reliable and attributable or not.

After the presentation. Inspectors need to consult the data base with incomplete data. It
happens when it is necessary to locate taxpayers with common surnames and names,
and their identification code is not known, but some additional data are known such as
the city of residence, or age. Duplication must be minimized. Sometimes the infor-
mation available, although associated with different keys, belongs to the same person.
For instance, information related to an account opened by a non-resident who after-
wards is resident in the country with a new identification code.

The algorithm for creating the control digit is public and it is possible to create a
fictitious code using a string of numbers (e.g.: 11111111), to search for its control digit,
obtaining H, and to use the combination 1111111H, Juan Español Español in some
invoices. The system should detect falsehood. In this case, it is easy due to the lack of
connection between the code and the name and surnames. In others is not so easy.
There are several types of problems to be solved: (i) invented codes as NIF 11111111H
that should be rejected; (ii) correct NIF’s with misspelled names, Juan M. Gonzales
Gonzales; (iii) Shortened names- Instead of Juan Manuel Gonzalez Martinez the sender
of the invoice refers to Juan Gonzalez or Juan Gonzalez González.

The purpose of this communication is to show the combination of algorithms that
have led the quality of the identification to a new frontier, its components and its
results.

2 Multilayer Identification

The new identification process combines six algorithms based on three different
philosophies: (i) a layer of modified Monge-Elkan algorithms; (ii) a layer of traditional
cleaning and comparison algorithms that take advantage of the features of the instal-
lation, such as identifying anagrams and one other based on the concept of n-gram,
(iii) a layer based in an abstract engine of recovery using TF-ILF. The structure is:

Previous step: Cleaning of data, translation and pseudo-transcription.

Layer 1: MONGE-ELKAN_LEVENSHTEIN, MONGE-ELKAN_TRIGRAM and
MONGE-ELKAN_BIGRAM.
Layer 2: TRIGRAM and COMPARA.
Layer 3: TF-IDF.

2.1 The Nucleus of the System

The AEAT developed in the last century, when the identification process was carried
out in a mainframe, an algorithm (COMPARA), developed in PLI, that was executed in
batch. It used as input either “NumberOfFiscalIdentification + Surname/Name” or
“NumberOfFiscal_Identification + 3CharactersOfAnagram”. This option allows to use
information that is received when the taxpayers, besides names and surnames, send an
anagram (code of four letters that is a combination of characters of names and sur-
names) provided by AEAT.
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In a previous step data are processed with a character-based tool that eliminates
points, commas, capitals, accents, whites, double blanks, restore standardized abbre-
viations, eliminate irrelevant words, such as “de”, “el”, “la” (articles), and abbreviations
such as Exmo, Snas, Mr., Epouse, etc. After cleaning, abbreviated surnames are
replaced, Basque and Catalan names are translated to their equivalents in Spanish and a
phonetic pseudo-transcription is made to some Asian names. COMPARA considers the
strings as character sequences and detects misspellings and typographical errors. This
was very useful with manual data entry. This algorithm is maintained, although the
situation has evolved, because it is useful although must be complemented.

Using a new technology and programming in Java, three layers containing new
algorithms have been added. The first one includes uses of TRIGRAM, a Java
implementation of 3-gram. An n-gram is a sequence of words and a bigram is a 2-gram
[3]. The underlying idea is that when two chains are very similar, they have many
n-grams in common. Their implementation is now standard3 [4]. Gomma and Fahmy
[5] explained the three main categories of text similarity approach, but did not discuss
about algorithms performance. Gelbuckh [6] edited a text with bibliography about the
many similarity metrics [7]. It is known that the best string distance to use depends on
the situation and that character-based measures are useful for recognizing typographical
errors, but not recognizing rearranged terms, and [8] that in Name-Matching tasks the
combination of TF-IDF is useful because TF-IDF performed best among several string-
edit based metrics. The second one TRIGRAM and COMPARA.

2.2 Upgrading the System. TF-IDF

We begin with the description of a non-standard component of the solution that was
initially used to solve a general problem of data mining and that has evolved. If we
want to identify, without knowledge of his NIF, a taxpayer, who is male, with annual
income close to 24,000 euros, that lives in the town of Valencia, that has children and
that has a current account in BBVA, the search should use some specific values of
variables Yj (e.g.: Y1 = Genre; Y2 = Income; Y3 = Children, etc.)

y1 ¼ male; y2 � 24;000; y3 ¼ Valencia; y4 ¼ Yes; y5 ¼ BBVA

The system should return the best candidates providing their NIFs and data, and a
score between 0 and 1 for the similarity. The problem is that data are dispersed in many
datamarts with many columns (>20,000) in tables with hundreds of millions of reg-
isters. A recovery engine, as explained in Fig. 1 is needed.

Retrieval Theory uses measures of similarity. Some of them use an edit distances,
that is the minimum number of single-character edit operations needed to transform one
string to another [9]. Many types of edit distances and many elaborations of under-
laying statistical models have been proposed; Hamming [10], Levenshtein [11],

3 http://sourceforge.net/projects/secondstring/; http://sourceforce.net/projects/simmetrics; http://geo
graphiclib.sourceforge.net.
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Damerau-Levenshtein [12, 13], Needleman-Wunsch [14], Jaro [15, 16], Jaro-Winkler
[17], N-gram [18]. One alternative is the use of resemblance coefficients. Static token -
based measures that compare tokens. Monge and Elkan [19, 20] proposed one hybrid
similarity measure that combines the benefits of sequence-based and token based
methods.

Combining these ideas with TF_IDF [21, 22] a very abstract recovery system was
developed. TF-IDF (Term frequency. Inverse document frequency) are numeric values
used to measure how important is a word in a document. TF refers to how many times a
given term appears in a document. IDF measures if the word is rare o common in the
document. The intuition is that frequent terms are less important. Each word has both
scores. For a term t in a document d, the weight Wt,d of term t in document d is given
by: Wt,d = TFt,d log (N/IDFt). Google has been using TF*IDF as a ranking factor.

In Fig. 1, the variables represented are: E: datamart where the search is defined; V:
variable of Entity E on which the search is defined; Lm: value that is sought; s:
similarity criterion; T, dimension of the maximum number of values that are expected
as a result; D: dimension for maximum distance. The result of the query is: {(vi, si, pi)},
0� i�T. The set is formed by the T values; vi 2 D E;Vð Þ with a greater similarity with
the pattern Lm, given si; in this case the popularity of the value, pi is the number of
rows with this value.

The general approach is: Let considerer n variables Y1; Y2; . . .:Yn and look forward
the case in which their values are ðY1 ¼ y1; Y2; ¼ y2; . . .Þ. We will find records of a
certain database whose values in these magnitudes are as close as possible to the
targeted n-tuple. In the case that we are describing, the database, SYSBASE, was
accessed through a dictionary. When the n-vector space formed by the n (multidi-
mensional) variables Yj is built and the database is projected, some records will appear
as a conglomerate because they are close to the target n-tuple. The underlying logic was
to decide the best candidates using a logistic curve. It was implemented also the control
of conjunctive variables, if one value is not given can not be given the other, using b
factors that graded the AND nature of each variable.

Similarity, s, after redundancy correction is:

s ¼
Xn

i¼1

aixi

 !
Yn

i¼1

1� bi 1� xið Þð Þ1=
Pn

j¼1
cij

 !
;

where
Pn

i¼1 ai ¼ 1; bi 2 0; 1½ �.

Fig. 1. Scheme of the recovery engine
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The similarity is defined from the normalized distance between S and P, D
(S, P) by means of the formula:

sim S;Pð Þ ¼ e�K2D S;Pð Þ;

where K2 a constant that quantifies how similarity decreases as distance increases.
The normalized distance is obtained by dividing d(S, P) by the sum of the IDF(Si),

that is, the normalized costs of the words that make up the searched string.

idf Sið Þ ¼ log N=nið Þ;

where N is the total number of occurrences of words and ni the number of occurrences
of the word Si in the collection. Normalization consists in dividing the value of idf (Si)
by the maximum value of idf (Si) in the collection.

In the implemented model, the operations that can be performed are: (i) Delete (Si),
consume the term Si with a cost equal to idf (Si); (ii) Substitute (Si, Pj), consume the
terms Si and Pj when their similarity measure is greater than the threshold U. The cost
of the operation is:

Idf Sið Þþ Idf Pj
� �� �

1� K Si;Pj
� �

sim Si;Pj
� �� �

;

where K(Si, Pj) is 1 if no change is necessary.
A new version in Java of TF_IDF was included in layer 3. The combination of

these algorithms in three layers was used until 2018 using thresholds (COMPARA =
0.8; TRIGAM = 0.8; and TF-IDF = 0.8). But the solution did not let to process data in
real time with more than a 99% of identified registers that was our objective.

3 A Variation of Monge-Elkan Algorithm

It was necessary a deeper understanding of the problem. While in other cases as the
detection of plagiarism, complete sentences are searched in long texts, in this case
subtle differences in short texts must be evaluated. We knew [8] that Jaro and Jaro-
Wrinkler are primarily intended for short strings (e.g.: personal first and last names),
but the real problem was different. It has three dimensions: (a) Similarity between
names or surnames is high and the risk of false positives increases. For example,
between two sisters Ana González Martínez and Eva González Martínez the difference
is very small and these are very common surnames (Martínez, González, etc.); (b) In
massive information provided by merchant data are not false but incomplete. Each
person has, in the general case, two names and two surnames and in many cases uses
only two or three of the four, that is only two or three of the four components arrive in
the input because there those known by the merchants. Are included two names and a
surname, or not? What is the right order? The information of the NIF is correct? If the
merchant only knows that his client is Juan Martinez, instead of Juan Manuel Martinez
or Yan Hue and provides this information with the correct code (NIF) it is an unnec-
essary inconvenience to reject the information.
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Given to texts A, B with |A| and |B| being the respective number of tokens
(e.g.: name), and an external intertoken similarity measure, the Monge-Elkan measure
is computed as follows:

simMongeElkan A;Bð Þ ¼ 1
Aj j
XAj j

i¼1

max Bj j
j¼1 sim0 ai; bj

� �� �
:

Informally, this measure is the average of the similarity values between the more
similar token pairs in both strings and it is a good approach to the problem of SII
declarants.

It was considered, after the study of previous investigation in the field [25] the
possibility of combining Monge-Elkan (1966) with the previous solution but intro-
ducing some changes. The solution built was: A matrix Wij is created with the com-
parison of all the words of the name and of the pattern, those that exist. Next, for each
word of the name, the word with maximum similarity is searched, starting with the
maximum. Once the maximum tuple is located, the algorithm eliminates (resets the
level of similarity) in this said word of the pattern (if we have already used that word
from the pattern we eliminated so that it is not considered in the following words in
which to look for similarity), since nobody has the name Juan Juan, and continues with
the rest of the words.

4 Fine Tuning and Results

4.1 Final Solution

The solution, combination of three layers, was initially evaluated with a file with
68,999 records built by experts with real data, selecting all possible cases, very com-
mon surnames, names of men and women, from different areas of the country, etc.,
omitting one of the names of pile etc.

Each layer delivered the lowest percentage of errors with a different threshold.
Although all the similarity functions give values between 0 and 1, unless they are
normalized, the singular points (minimum values) are in different zones of the values of
the thresholds. With these data a first solution was designed.

In Fig. 2 are presented the false positives and negatives for each type of metrics
obtained in the analysis. In x-axis is presented the relative distances to the point where
both curves (false positives and false negatives) intersect. The curve ME_LEV_FP
(Monge-Elkan_Levensthien_FalsePositives) begins with the point (1) with false posi-
tives = 6,098, false negatives = 10 at threshold (in its own scale) 0.40 The intersection
occurs in a point with threshold 0.5575. The graph is rescaled so this first point has an
abscise of 0.1575. This process is repeated with all metrics. Clearly using Lovenshtein
distance inside Monge-Elkan metrics smoother curves are obtained.
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4.2 Fine Tuning

Information received of electronic invoices (180 M registers by month) has been used
fine tune the thresholds. The platform is based in x86 servers. There are 225 blades
with 900 cores of 2,3 GHz and 2163 of 2 GHz with 45 Tb of memory. The description
of the technology of the TGVI (Transmission of Big Volumes of Information) is public
[25]. The resources dedicated to the reception of the information and to identification
14 blades with 24 cores (4,376 Tb). The size of the census loaded in memory was
0.4 Tb. From 1/2/2019 to 7/03/2019 information was processed with initial thresholds.
It was tested against the file of control and samples of the data received that the rate of
false positives was less than 1%.

The idea used in fine-tuning is explained in Fig. 3 with a diagram based on Signal
Detection Theory [24] and the rationale used in a ROC (Receiver Operating Charac-
teristic) curve construction. We consider two metrics a, b. A register with a name has
sima = 0.7 and simb = 0.8. Both values are greater than thresholds Ti and this register
would be accepted and imputed but with a risk of “false positive” CBD. Conceptually
is similar to the erroneous decision adopted when accepting noise as signal. If threshold
a is increased this register it is not identified in the first layer, is considered as noise,
and it is processed in the second one, probably more appropriate (other type of dis-
tance) to solve the problem placed by the string. If the order and thresholds are
optimized the best possible solution is adopted.

The decision about the order of the layers was adopted during first evaluation. The
aim in this phase of the investigation was to optimize the thresholds. After a few days
of testing, from 08/03/ to 13/03/2019, the threshold of COMPARA was adjusted to 0.7.

From 14/03/2019 to 18/04/2019 the thresholds of the first layer was reduced letting
more registers pass. This was a clear expression of the quality of the decision realized
in the front end using the combination of three hybrids algorithms, included Monge-
Elkan. In Fig. 4 we see that percentage of unidentified continuously diminish from
more than 3.5% to less than 0.8% when the total structure of layers is tuned with
throughput of more than 4 millions of registers processed in real time by day.

Fig. 2. Errors by type, threshold and metrics
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Nowadays, layer 1 implements Monge-Elkan_Levenshtein (75%), Monge-
Elkan_Trigram (66%) and Monge-Elkan-Bigram (75%). Second layer Trigram
(50%) and COMPARA (75%); third layer TF-IDF (70%). Call to algorithms is made
sequentially and in this specific order. In each case if threshold is surpassed identifi-
cation is accepted. If not, at the end registers considered unidentified. During the
evolution some peaks with more than 99.9% of records identified has been reached.
The quality of the service provided to taxpayers has increased in dramatic form. During
the monthly process of 180 millions of invoices the number of undue errors commu-
nicated to taxpayers has been reduced in 5,370,000. Companies have avoided the
administrative burden needed to solve this impressive amount of incidents only in one
month.

Fig. 3. Tuning of the thresholds

Fig. 4. Process of fine tuning
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5 Conclusions and Future Work

The problem of identification in real time of information that contains codes, names
and surnames that had AEAT has been solved.

Recognition results have been obtained with rates lower than 1% of errors, reaching
0.1% during in many files and with peaks of full recognition, at rates exceeding
140,000 per minute This is a pioneering but robust solution that offer to tax admin-
istrations new possibilities.

The evolution of Monge-Elkan algorithm has been built, in three classes of Java
without external references and its code is offered to other administrations and insti-
tutions in the webpage of the AEAT [26].

Acknowledgements. This paper was supported by the Spanish Ministry of Economy and
Competitiveness project MTM2017-86875-C3-3-R.
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Abstract. Users are often surrounded by a large variety of items. For
this purpose, Recommender Systems (RSs) have emerged aiming to help
and to guide users towards items of interest. Collaborative Filtering (CF)
is among the most popular recommendation approaches, which seeks to
pick out the most similar users to the active one in order to provide rec-
ommendations. In CF, clustering techniques can be used for grouping the
most similar users into some clusters. Nonetheless, the impact of uncer-
tainty involved throughout the clusters’ assignments as well as the final
predictions should also be considered. Therefore, in this paper, we pro-
pose a clustering approach for user-based CF based on the belief function
theory. This theory, also referred to as evidence theory, is known for its
strength and flexibility when dealing with uncertainty. In our approach,
an evidential clustering process is performed to cluster users based on
their preferences and predictions are then generated accordingly.

Keywords: Recommender Systems ·
User-based collaborative filtering · Uncertain reasoning ·
Belief function theory · Evidential clustering

1 Introduction

Recommender Systems (RSs) [1] have sprung up as a convenient solution to deal
with the information overload problem. They are considered as helpful tools to
guide users in their decision making process in a very personalized way. More
specifically, they filter data, predict users’ preferences and provide them with
the appropriate predictions. Collaborative Filtering (CF) [2] is a very popular
approach in RSs field, and has received a great deal of attention. The recom-
mendation process in a CF system consists on predicting the users’ preferences
based on the users or the items having similar ratings. In this kind of RS, a
typical matrix of user-item ratings is exploited to compute similarities between
users (user-based) or items (item-based). Predictions are then performed based
on the computed similarities. Although CF strategies are very simple and intu-
itive, they reveal some limitations such as the scalability problem [3]. Indeed, the
c© Springer Nature Switzerland AG 2019
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whole user-item matrix needs to be browsed in order to compute similarities and
generate predictions accordingly. In this situation, a lot of heavy computations
is required, which leads to a poor scalability performance. Therefore, clustering
techniques can be adopted to partition the set of items or users based on the
historical rating data. Hence, predictions can be generated independently within
each partition. Ideally, clustering would improve the quality of the provided pre-
dictions and increase the scalability of CF systems [4]. In this paper, we are
particularly interested in the user-based CF category. Actually, when perform-
ing the clustering process of users in the system, they are likely to bear upon
more than only one cluster, which is referred to as soft clustering. This imperfec-
tion may affect the correlation between the users and consequently the quality of
the produced predictions. Therefore, the uncertainty spreading around the clus-
ters’ assignment should be considered. To tackle this issue, we opt for the belief
function theory (BFT), also referred to as evidence theory [5–7]. This latter is
known for its strength and flexibility when dealing with uncertainty. It allows
a rich representation of knowledge uncertainty in different levels ranging from
the complete ignorance to the total certainty. For these reasons, we propose, in
this work an evidential clustering approach for user-based CF where a clustering
process is performed under the BFT to group the users based on their prefer-
ences and generate predictions accordingly. To do so, we involve the Evidential
C-Means (ECM) [8] which allows us to handle uncertainty for objects’ assign-
ment. Indeed, a preliminary work [9] has been addressed in this context based
only on the item-based CF category. Contrariwise, the proposed approach covers
an evidential clustering for user-based CF where users are assigned to soft clus-
ters rather than items. Moreover, the uncertainty of the final predictions is also
quantified and represented to the active user based on the Evidential K-Nearest
Neighbors [10] formalism. We assume that such representation may increase the
intelligibility and the transparency of the provided predictions.

This paper is organized as follows: Sect. 2 recalls the basic concepts of the
belief function theory and introduces both the Evidential C-Means and the Evi-
dential K-Nearest Neighbors techniques. Section 3 presents briefly some related
works on clustering CF as well as CF under the belief function framework. Our
proposed recommendation approach is presented in Sect. 4. Section 5 exposes the
experimental results conducted on a real world data set. Finally, the paper is
concluded in Sect. 6.

2 Background Related to Evidence Theory

In this section, we recall the basic concepts and notations related to the Evidence
theory or belief function theory [5–7]. Besides, two machine learning techniques
in an evidential framework will be presented namely ECM [8] and EKNN [10].

2.1 Basic Concepts and Notations

Belief function theory, also called Evidence theory or Dempster-Shafer theory
[5,6], is a rich and flexible framework for modeling and quantifying imperfect
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knowledge. Let Ω be the frame of discernment defined as a finite set of variables
w. Such set refers to n elementary events to a given problem such that:
Ω = {w1, w2, · · · , wn}. The key point of the belief function theory is the basic
belief assignment (bba) which represents the belief committed to each element of
Ω such that m : 2Ω → [0, 1] and

∑

E⊆Ω

m(E) = 1. The mass m(E) quantifies the

degree of belief exactly assigned to an element E of Ω. The plausibility function
denoted pl, quantifies the maximum amount of belief that could be given to a
subset E of Ω. It is defined as: pl(E) =

∑

E∩F �=∅

m(F ).

Evidence may be ambiguous or incomplete. Consequently, it may not be
equally trustworthy. That is why, a discounting operation can be applied to get
the discounted bba denoted by mδ such that:

mδ(E) = (1 − δ) · m(E),∀E ⊂ Ω and mδ(Ω) = δ + (1 − δ) · m(Ω) (1)

where δ ∈ [0,1] is the discounting factor.

Two bba’s m1 and m2 derived from two reliable and independent information
sources can be fused using Dempster’s rule of combination defined as:

(m1 ⊕ m2)(E) = k.
∑

F,G⊆Θ:F∩G=E

m1(F ) · m2(G) (2)

where (m1 ⊕ m2)(∅) = 0 and k−1 = 1 −
∑

F,G⊆Ω:F∩G=∅

m1(F ) · m2(G)

Ultimately, in order to making decisions, several solutions have been pro-
posed in the frame of belief function theory such as the maximum of plausibility
pl and the pignistic probability denoted BetP . BetP is defined as follows:

BetP (E) =
∑

F⊆Ω

|E ∩ F |
|F |

m(F )
(1 − m(∅))

for all E ∈ Ω (3)

Within the belief function theory, the decision can be made by choosing the
hypothesis having the highest value of the plausibility function pl or the pignistic
probability BetP .

2.2 Evidential C-Means (ECM)

The Evidential C-Means (ECM) [8] is an evidential clustering technique which
generalizes both the hard k-means and Fuzzy C-Means (FCM) methods [11].
The core idea of this technique is to assign each object to the different subsets of
clusters with degrees of belief. In fact, each cluster wk is presented by its center
vk which is also referred to as prototype. However, unlike FCM, one object can
belong not only to a singleton cluster but also to a partition of clusters (Ej ⊆ Ω)
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that can be called a meta-cluster. Correspondingly, the meta-cluster Ej is also
represented by a prototype denoted vj and defined as follows:

vj =
1

|Ej |
c∑

k=1

skjvk (4)

where c is the number of clusters, skj = 1 if wk ∈ Ej and skj = 0 otherwise.
The credal partition of each object is obtained by minimizing the following

objective function JECM for n objects and c clusters:

JECM =
n∑

i=1

∑

j/Ej �=∅,Ej⊆Ω

|Ej |αmβ
ijd

2
ij +

n∑

i=1

δ2mβ
i∅ (5)

where mij denotes mi(Ej) and dij is the euclidean distance between the ith

object and the jth partition’s prototype. The parameter α consists of controlling
the degree of penalization for subsets with high cardinality. For β and δ, they
present two parameters for treating noisy objects.

2.3 Evidential K-Nearest Neighbors

The Evidential K-Nearest Neighbors (EKNN) classifier [10] extends the classical
K-Nearest Neighbors (KNN) methods by incorporating classifier output uncer-
tainties. Let X = {(xi = xi

1, · · · , xi
P ) | i = 1, · · · , C} be the set of training

samples. Each object xi is characterized by a class label Li ∈ {1, · · · , C} indi-
cating its membership to a specific class in Ω = {w1, · · · , wC}. Considering that
y is a new pattern to be classified using the information of the training set. We
denote ΓK the set of the K-nearest neighbors of y in X. Each object xi ∈ ΓK

represents an independent piece of evidence regarding the class membership of
y. Hence, each neighbor induces a basic belief assignment defined as follows:

m({wq}|xi) = α0φq(di)

m(Ω|xi) = 1 − α0φq(di)

m(E|xi) = 0, ∀E ∈ 2Ω \ {Ω, {wq}}
(6)

where wq refers to the class label of xi, α0 is a parameter where 0 < α0 < 1.
The constant α0 has been heuristically fixed to a value of 0.95. di corre-

sponds to the euclidean distance between the object to be classified and the
other objects in the training set while φq is a decreasing function verifying:
φq(d) = exp(−γqd

2). Note that γq has been defined as a positive parameter
assigned to each class wq. It is considered as the inverse of the mean distance
between all the training patterns belonging to the class wq. Since each neigh-
bor represents a particular source of evidence, we obtain K bba’s that can be
aggregated into a unique one my using Dempster’s rule of combination such as:

my = m(.|x1) ⊕ · · · ⊕ m(.|xK) (7)

where {1, · · · ,K} is the set containing the indexes of the K-nearest neighbors.
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3 Related Works on Collaborative Filtering

A panoply of clustering-based CF approaches that rely on a cluster model to pro-
vide predictions have been proposed in RSs. They consist on identifying users
or items sharing similar ratings and group them in clusters. Thereafter, only
users or items associated to the same partition are considered in the prediction.
For instance, authors in [3] have proposed to partition the users of a CF system
using a clustering algorithm and used the obtained partitions as neighborhoods.
They first applied a clustering technique (i.e. k-means) on the user-item ratings
matrix to obtain different clusters. In the next step, the neighborhood for the
active user is selected based on the cluster where he belongs. Finally, predictions
scores are computed based on aggregating ratings of active user’s neighbors using
traditional CF technique. Similarly, a CF approach has been introduced in [12]
based on users’ preferences clustering. They supposed that users in the ratings
matrix can be grouped into three different user’s clusters namely, optimistic
user cluster, in which users prefer to use high ratings, pessimistic user clus-
ter, in which users prefer to use low ratings and neutral user cluster, in which
users tend to give reasonable ratings for items. In [13], authors have proposed
a smoothing-based CF approach where clusters are generated from the training
data and predictions are performed on this basis. The authors in [14] presented
a different CF approach in which, instead of users, they group items into several
clusters using the Pearson Correlation similarity measure and the kMetis graph
partitioning algorithm. The author in [4] proposed a personalized CF approach
that joins both the user clustering and item clustering strategies. In fact, users
are grouped according to their past preferences towards items, and each group of
users has a cluster center. The nearest neighbors of the active are selected based
on the similarity between the active user and cluster centers and a smoothing
of the given predictions is performed where necessary. In the final step, an item
clustering process for CF is applied to produce the recommendations.

Clustering allows to alleviate the scalability problem and improve the rec-
ommendation performance. On the other hand, handling uncertainty that reigns
throughout the whole prediction process is considered also as an important
challenge in real-world RSs problems. Thus, the belief function theory [5–7]
is regarded as a convenient and a rich framework for dealing with uncertainty.
Recent studies have emphasized the favors of using such theory for uncertain rea-
soning in RSs area. Authors in [15–17] have proposed to model the user’s prefer-
ences within the evidential framework and incorporate context information and
social network to provide recommendations. A new method for combining infor-
mation about users’ preferences has been proposed in [18] based on the belief
function theory to deal with highly conflicting mass functions. In [19,20], the
authors have proposed an evidential extension of the standard item-based CF
where the nearest items have been treated as the pieces of evidence conducting
the resulted predictions. In the same context, they adopted in [9] an evidential
clustering for item-based CF using the Evidential C-Means technique to cluster
items based on their ratings. When it comes to user-based CF, which is the
framework of this work, a preliminary work has been performed in [21] where
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the user-based CF has been represented under the belief function framework.
Their recommendation process consisted in computing the similarities between
the active user and the other users by exploiting the current user-item matrix.
An aggregation of the nearest users’ ratings has been performed to provide pre-
dictions. However, a lot of heavy computations are required in such situation.
This problem is referred to as the scalability problem which we tackle in our
proposed recommendation approach.

4 EC-UBCF: Evidential Clustering User-Based for CF

Fundamentally, our purpose is to improve the existing user-based CF under the
belief function theory. Especially, we aim to cope with the scalability problem
occurring in user-based CF by performing a clustering process where uncertainty
is also handled. We assume that considering the uncertainty emerged during the
clusters’ assignment would retain or rather improve as well as possible the scala-
bility and predictions performance. Besides, the uncertainty pervaded in the final
predictions is also taken into account to reflect more reliable and credible rec-
ommendations. The proposed approach goes through five main steps namely
evidential users’ clustering, identifying clusters, users’ neighborhood selec-
tion, modeling users’ neighborhood ratings and generating users’ neighborhood
predictions.

4.1 Evidential Users’ Clustering

During this first step, we aim to carry out an evidential clustering process for the
given users in the system. The process consists on embracing the belief function
theory in order to handle uncertainty about users’ assignments to clusters. We
define Ω1 = {w1, w2, . . . , wc} where c is the number of clusters. In the proposed
recommendation approach, each user can belong to all clusters with a degree of
belief. Moreover, the evidential clustering of the users bestows a credal partition
that enables a given user to be assigned to multiple clusters, or rather multiple
partitions of clusters. For this purpose, we opt for the Evidential C-Means (ECM)
[8], an efficient soft clustering technique which allows us to generate the credal
partition of users. In other words, each user in the system will be allocated a
mass of belief not only to single clusters, but also to any subsets of the frame
of discernment Ω1. At the start, we make use of the user-item ratings matrix to
randomly initialize the cluster centers commonly referred to as prototypes. The
euclidean distance is then computed between the users and the non empty sets
of Ω1. Finally, the convergence and the minimization of the objective function
(Eq. 5) generates the final credal partition. Table 1 illustrates an example of a
credal partition generated for five users where the number of clusters is c = 3.

4.2 Identifying Clusters

Until now, we have obtained a credal partition corresponding to each user in
the system. In fact, each bba can be transformed into a pignistic probability
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Table 1. Example of credal partition corresponding to five users

Users ∅ {w1} {w2} {w1, w2} {w3} {w1, w3} {w2, w3} Ω1

Eric 0.0025 0.9682 0.009 0.0078 0.0046 0.0043 0.0018 0.0017

Alice 0.0468 0.2946 0.2715 0.1106 0.1135 0.0731 0.0516 0.0382

John 0.0005 0.0010 0.0018 0.0004 0.9934 0.0009 0.0017 0.0004

Maria 0.0062 0.0212 0.8856 0.0174 0.0247 0.0107 0.0246 0.0097

Peter 0.0366 0.1484 0.4931 0.0909 0.0947 0.0479 0.0556 0.0327

BetP (wk) (Eq. 3). Thereupon, we apply throughout this second step, these pig-
nistic probabilities for the purpose of making a final decision about the cluster
corresponding to the current user. These values are interpreted as the degree of
membership of the user u to cluster wk. Finally, a hard partition can be easily
obtained by assigning each user to the cluster with the highest BetP value as
illustrated in Table 2. Note that in some cases where the pignistic probability
values are equal or quite close, the plausibility function pl can be computed and
each user can be assigned to the cluster having the highest plausibility value.

Table 2. Example of pignistic probabilities corresponding to five users

Users BetP ({w1}) BetP ({w2}) BetP ({w3}) Selected cluster

Eric 0.9773 0.0144 0.0083 w1

Alice 0.4188 0.3833 0.1979 w1

John 0.0017 0.0029 0.9953 w3

Maria 0.0387 0.9155 0.0458 w2

Peter 0.2374 0.5992 0.1633 w2

4.3 Users’ Neighborhood Selection

Once the users’ preferences have been analyzed and the cluster model has been
built, we should now consider only the users belonging to the same cluster as
the active user for the neighborhood selection. Hence, based on the obtained
clusters, this step consists on identifying the set of the K-nearest neighbors of
the active user Ua. To this end, the distances between Ua and the whole users
in this cluster are computed as follows:

dist(Ua, Ui) =
1

|I(a, i)|
√ ∑

I∈I(a,i)

(ra,j − ri,j)2 (8)

|I(a, i)| corresponds to the number of items rated by the active user Ua and the
user Ui, ra,j and ri,j denote respectively the ratings of the user Ua and Ui for
the item Ij . According to the obtained distances, we pick up the Top-K most
similar users leading to the users’ neighborhood formation.
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4.4 Modeling Users’ Neighborhood Ratings

Let Γk be the set of the K-nearest neighbors of the active user. We define the
frame of discernment Ωpref = {r1, r2, · · · , rL} as a rank-order set of L preference
labels. In this phase, the rating of each user Ui belonging to Γk is transformed
into a mass function spanning over the frame of discernment Ωpref in order to
model uncertainty. This representation is defined as follows:

mUa,Ui
({rp}) = α0 exp−(γ2

rp
×(dis(Ua,Ui))

2

(9)

mUa,Ui
(Ωpref ) = 1 − α0 exp−(γ2

rp
×(dis(Ua,Ui))

2

Following [10], α0 is set to the value of 0.95 and γrp
is the inverse of the average

distance between each pair of users who gave the same ratings rp. To evaluate
the reliability of each neighbor, these bba’s are then discounted as follows:

mδ
Ua,Ui

({rp}) = (1 − δ) · mUa,Ui
({rp}) (10)

mδ
Ua,Ui

(Ωpref ) = δ + (1 − δ) · mUa,Ui
(Ωpref )

Where δ corresponds to the discounting factor. It is defined on the basis of
the users’ distances such that: δ = dis(Ua,Ui)

max(dist) where max(dist) is the maximum
value of the computed distances.

4.5 Generating Users’ Neighborhood Predictions

After the representation and the discounting of the evidence corresponding to
each similar user, the obtained bba′s are combined follows:

mδ({rp}) =
1
N

(1−
∏

U∈Γk

(1−αrp
)) ·

∏

rp �=rq

∏

U∈Γk

(1−αrq
) ∀rp ∈ {r1, · · · , rNb}

(11)

mδ(Ωpref ) =
1
N

Nb∏

p=1

(1 −
∏

U∈Γk

(1 − αrp
))

Nb denotes the number of the ratings provided by the similar users, Γk is
the set of the K-nearest neighbors of the active user, αrp

is the belief committed
to the rating rp, αrq

is the belief committed to the rating rq 	= rp and N is a
normalized factor defined by [10]:

N =
Nb∑

p=1

(1 −
∏

U∈Γk

(1 − αrp
)

∏

rq �=rp

∏

U∈Γk

(1 − αrq
) +

Nb∏

p=1

(
∏

U∈Γk

(1 − αrq
))) (12)

The main advantage behind this representation is that the final prediction must
be a basic belief assignment which reflects more credible results. The decision
about the final rating that should be provided to the active user is made with
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the pignistic probability. We assume that the rating within the greatest pignistic
probability is more likely to be the potential future one. On the other hand, all
the other possible preferences generated by this approach are also displayed to
the active user as illustrated in Fig. 1.

Fig. 1. Example of evidential ratings predictions

5 Experiments and Discussions

MovieLens1, one of the widely used real world data set in the CF area has
been used in our experiments. In this data set, a collection of 100.000 ratings
obtained from 943 users on 1682 movies has been performed. In our experiments,
we perform a comparative evaluation over our proposed method as well as the
traditional evidential user-based CF proposed in [21]. We followed the strategy
conducted in [22] where movies are first ranked based on the number of their
corresponding ratings. Different subsets containing the ratings given by the users
for 20 movies are then extracted by progressively increasing the number of the
missing rates. Hence, each subset will contain a specific number of ratings leading
to different degrees of sparsity. For all our experiments, we used 5 different
subsets where, for each one, we randomly extract 20% of the available ratings
as a testing data and the remaining 80% were considered as a training data.

5.1 Evaluation Metrics

Two evaluation metrics typically used in RSs have been considered to evalu-
ate our proposal namely the Mean Absolute Error (MAE) and the Root Mean
Squared Error (RMSE) defined by:

MAE =

∑
u,i |pu,i − ru,i|

‖pu,i‖ and RMSE =

√∑
u,i(pu,i − ru,i)2

‖pu,i‖ (13)

Where ru,i is the real rating for the user u on the item i, pu,i is the predicted
rating, ‖pu,i‖ is the total number of the predicted ratings over all the users.

Lowest values of these measures imply a better prediction accuracy and a
higher performance.

1 http://movielens.org.

http://movielens.org
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5.2 Results

We carried out experiments over the selected subsets by switching each time the
number of clusters c. We used c = 2, c = 3, c = 4 and c = 5. For each selected
cluster, we used 10 different neighborhood sizes and the average results of 10
repetitions were represented for that cluster. Finally, the results corresponding
to the different number of clusters used in the experiments are also averaged.
That is to say, we compute the MAE and the RMSE measure for each value
of c and we note the overall results. For all our experiments, we used α = 2,
β = 2 and δ2 = 10 as invoked in [8]. Considering different sparsity degrees, the
experimental results are summarize in Table 3.

Table 3. The comparison results in terms of MAE and RMSE

Evaluation metrics Sparsity degrees Evidential UB-CF Evidential
clustering UB-CF

MAE 60.95% 0.740 0.691

RMSE 1.089 1.069

MAE 65% 0.766 0.678

RMSE 0.965 0.888

MAE 70% 0.737 0.742

RMSE 0.821 0.807

MAE 75% 0.685 0.716

RMSE 0.850 0.891

MAE 80.8% 0.650 0.707

RMSE 0.854 0.902

Overall MAE 0.716 0.707

Overall RMSE 0.916 0.911

The performance of the proposed evidential clustering user-based CF is com-
pared to that of the traditional evidential user-based CF [21]. It can be seen that
the clustering based approach provides a slightly better performance than the
other evidential approach. In fact, EC-UBCF acquires the lowest average values
in terms of MAE and RMSE (0.707 compared to 0.716 for MAE) and (0.911
compared to 0.916 for RMSE). These results show that the evidential clustering
process would maintain a good prediction quality while improving the scalability
performance which is an important challenge in RSs.

5.3 Scalability Performance

We perform the scalability of our approach by varying the sparsity degree. We
compare the results to the standard evidential UB-CF as depicted in Fig. 2.

According to Fig. 2, the elapsed time corresponding to the Evidential
Clustering UB-CF is substantially lower than the basic Evidential UB-CF.
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Fig. 2. Elapsed time of evidential clustering UB-CF vs. evidential UB-CF

These results are explained by the fact that standard user-based CF method
needs to search the closest neighbors to the active user in the whole users’ space,
which leads to huge computing amount. However, in our approach, predictions
are made based on the neighbors belonging to the active user’s cluster, which
consequently reduces the time needed for the neighborhood formation.

6 Conclusion

In this paper, we have proposed a new evidential clustering user-based CF app-
roach. We first build a clustering model according to the users’ past preferences.
Based on the obtained clusters, the K-nearest users are selected and the predic-
tions are then performed and provided to the active user. Compared to a previous
user-based CF method under the belief function theory, elapsed time has been
significantly improved while maintaining a good recommendation performance.
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Abstract. We analyze the behavior of the Italian electricity market
with an agent-based model. In particular, we are interested in testing
the assumption that the market participants are fully rational in the
economical sense. To this aim, we extend a previous model by consid-
ering a wider class of cases. After checking that the new model is a
correct generalization of the existing model, we compare three optimiza-
tion methods to implement the agents rationality and we verify that the
model exhibits a very good fit to the real data. This leads us to conclude
that our model can be used to predict the behavior of this market.

1 Introduction and Related Work

The need for understanding the evolution of the prices in the electrical power
markets has increased with the new trends (the emergence of the liberalized
market) of the electrical market in many countries [13,14]. The use of Artifi-
cial Intelligence techniques has already proven to be effective in modeling the
electricity market. Faia et al. proposed in [3] a Genetic Algorithm (GA) based
approach to solve the portfolio optimization problem for simulating the Iberian
electricity market. The results show that their GA based method is able to
reach better results than previous implementations of Particle Swarm Optimiza-
tion (PS) and Simulated Annealing (SA) methods. Santos et al. proposed in [12]
a new version of the Multi-Agent System for Competitive Electricity Markets
(MASCEM, [11]) with the aim of optimizing it with repect to the results as well
as to the execution time.

Other models have been proposed, like the one presented by Urielli et al.
[17], in which the authors study the impact of the Time-Of-Use (TOU) tariffs
in a competitive electricity market place. A very interesting and recent survey
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of potential design changes in the electricity market and their consequences, has
been proposed by Ela et al. in [2].

In this paper, we propose a framework which helps analysing the behavior of
the participants in the Italian electrical power market [15]. We would like to stress
that our interest is in understanding how the market behaves as a consequence of
the actions of its participants to make profit, and also in analysing the behavior
of the market in order to maximize the social welfare from an economical rational
point of view [16,18], i.e., with respect to the electricity producers as well as with
respect to the electricity consumers. To this aim, we first reproduce and then
extend an existing economical-based model for the Italian electricity market [7].

The paper is organized as follows. Section 2 briefly presents the three opti-
mization methods used in the paper. Section 3 presents the mechanism of
exchanges in the Italian market proposed in the literature. Section 4 presents the
extended model as well as the obtained results. Section 5 concludes the paper.

2 Some Background: A Brief Description of the Used
Methods

In this section, we will briefly present the three methods used in our work to
model the rationality of the market participants.

A Genetic Algorithm (GA) [6,8] is a computational technique inspired by
biology. The basic idea of a GA is to mimic the Darwinian principle of survival
according to which species with a high capacity of adaptation have an higher
probability to survive and then to reproduce. The algorithm considers a pop-
ulation of individuals represented by their genes. Three operators can be used
to mimic the evolution of these individuals: mutation which randomly changes
some bits of a gene, crossover which mimics the sexual reproduction of the living
beings, and selection which consists of deciding which among the individuals in
the population will survive in the next generation. This choice is made thanks to
a fitness function which is an objective function allowing to compute the extent
to which an individual of the population is adapted to solve the considered
problem.

In Monte Carlo Optimization [1], an approximation to the optimum of an
objective function is obtained by drawing random points from a probability
distribution, evaluating them, and keeping the one for which the value of the
objective function is the greatest (if a maximum is sought for) or the least (if a
minimum is sought for). As the number of points increases, the approximation
converges to the optimum.

Particle Swarm Optimization (PS) [9,10] is a meta-heuristic method inspired
by the behavior or rules that guide the group of animals, for example bird flocks.
According to these rules, the members of the swarm need to balance two oppo-
site behaviors in order to reach the goal: individualistic behavior, in which each
element searches for an optimal solution, and social behavior, which allows the
swarm to be compact. Therefore, individuals take advantage from other searches
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moving toward a promising region. In this algorithm, the evolution of the pop-
ulation is re-created by the changing of the velocity of the particles. The idea is
to tweak the values of a group of variables in order to make them become closer
to the member of the group whose value is closest to the considered target. PS is
similar to genetic algorithms (GAs). It is also a population-based method with
the particularity that the elements of the population are iteratively modified
until a termination criterion is satisfied.

3 The Italian Electricity Market

3.1 The Market Configuration

The reality of the Italian Electricity Market which takes place in the Italian
Power Exchange (IPEX), considers a two-settlement market configuration with
a generic forward market and the Day-Ahead Market (DAM). The DAM price
value is commonly adopted as underlying for forward contracts; therefore, as
in Guerci et al. [7], we will refer to DAM as the spot (i.e. immediate, instant)
market session for simplicity. The forward market session is modeled by assuming
a common, zone-independent, and unique forward market price P f for all market
participants and by determining the exact historical quantity commitments for
each generating unit.

Definition 1 (Generating Company). A generating company (GenCo) is
an agent g, (with g = 1, 2, ..., G, and G is the number of GenCos) which
owns Ng generators1. The ith generator (where i = 1, 2, . . . , Ng) has lower Q

i,g

and upper Qi,g production limits, which define the feasible production interval
for its hourly real-power production level Q̂i,g,h = Q̂f

i,g,h + Q̂s
i,g,h ([MW]), with

Q
i,g

≤ Q̂i,g,h ≤ Qi,g where Q̂f
i,g,h and Q̂s

i,g,h are respectively the quantity sold in
the forward market and the quantity accepted in the DAM.

It is assumed that the company g takes a long position in the forward market
(it means that the company makes agreement with the market operator with
large advance) for each owned generator i, corresponding to a fraction fi,g,h
(where h indicates the hour of the day) of its hourly production capacity, that
is Q̂f

i,g,h = fi,g,h · Qi,g. The value of such fraction varies throughout the day,
indeed forward contracts are commonly sold according to standard daily profiles.
The value of fi,g,h has been estimated by looking at historical data and thus
corresponds to a realistic daily profile for each generator.

Definition 2 (Revenues for the forward and spot markets). The revenue,
Rf

g,h ([eh]), from forward contracts for company g is:

Rf
g,h =

Ng∑

i=1

Q̂f
i,g,h · P f (1)

1 In the following we will use the terms generator and power plant interchangeably.
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The spot revenue, Rs
g,h, per hour for GenCo g is obtained as follows:

Rs
g,h =

Z∑

z=1

Q̂s
z,g,h · P s

z,h (2)

where P s
z,h is the price in the spot market in zone z at hour h, and Z is the

total number of zones.

Let Ci,g,h ([e/h])2 be the total cost (of production) function of the ith gener-
ator of GenCo g. The total profit per hour, πg,h, [e/h] for GenCo g is computed
as follows:

πg,h = Rs
g,h + Rf

g,h −
Ng∑

i=1

Ci,g,h(Q̂i,g,h) (3)

The considered set of thermal power plants, independently owned by GenCos,
consists of up to 224 generating units, using 5 different technologies. The num-
ber of generation companies and generating units offering in the DAM varies
throughout the day. Based on historical data, it has been determined for each
period (day and hour) the thermal power plants that offered in DAM.3 For each
power plant in the dataset, information on the maximum and minimum capacity
limits is available, as well as on the parameters needed to compute the cost.

3.2 Market Exchanges

A GenCo g submits to the DAM a bid consisting of a pair of values corresponding
to the limit price P s

i ([e/MW]) and the maximum quantity of power Qs
i ≤

Qi,g − Q̂f
i,g([MW]) that it is willing to be paid and to produce, respectively.

After receiving all generators’ bids, the market operator clears the DAM by
performing a social welfare maximization, subject to the following constraints:

– the zonal energy balance (Kirchhoff’s laws),
– the maximum and minimum capacity of each power plant,
– the inter-zonal transmission limits.

It is worth noting that the Italian demand curve in the DAM is price-inelastic,
i.e., it is unaffected when the price changes. Therefore, the social welfare maxi-
mization can be transformed into a minimization of the total reported production
costs, i.e., of the bid prices (see Eq. 4). This mechanism determines both the unit
commitments for each generator and the Locational Marginal Price (LMP) for
each connection bus. However, the Italian market introduces two slight modifica-
tions. Firstly, sellers are paid the zonal prices (LMP), therefore, this fact has to
2 The details about the function can be found in [7].
3 Notice that bid data are publicly available on the power exchange website with a

one-week delay, therefore, information about what plants were actually present and
the like is supposed to be common knowledge.
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be explicitly considered in the model, whereas buyers pay a unique national price
(PUN, Prezzo Unico Nazionale) common for the whole market and computed as
a weighted average of the zonal prices with respect to the zonal loads. Secondly,
transmission power-flow constraints differ according to the flow direction.

The factor which has to be minimized by solving the linear program is the
following:

min
G∑

g=1

Ng∑

i=1

P s
i,g,hQ̂s

i,g,h (4)

It is subjected to the following constraints:

– Active power generation limits: Q
i,g

≤ Q̂i,g,h = Q̂s
i,g,h + Q̂f

i,g,h ≤ Qi,g [MW]
– Active power balance equations for each zone z:∑G

g=1

∑
j∈z Q̂s

j,g,h − Qz,load,h = Qz,inject,h [MW]
being

∑G
g=1

∑
j∈z Q̂s

j,g,h the sum of all the productions over all generators
located in zone z, Qz,load,h, the load demand at zone z in hour h and
Qz,inject,h, the net oriented power injection in the network at zone z in
hour h.

– Real power flow limits of line, l: Ql,st ≤ Ql,st [MW] and Ql,ts ≤ Ql,ts [MW]
being Ql,st the power flowing from zone s to zone t of line l and Ql,st the
maximum transmission capacity of line l in the same direction. Ql,st are
calculated with the standard DC power flow model [4].

The solution consists of the set of the active powers Q̂s
i,g,h generated by each

plant i and the set of zonal prices P s
z (LMPs) for each zone z ∈ [1, 2, . . . , Z],

where Z is the number of zones.

4 Relaxing the Zonal Constraint

In this section we will present the new “relaxed” framework as well as the results
we have obtained from our experiments.

4.1 Model Description

Each GenCo g must submit to the DAM a bid, i.e., a set of prices for each of
its own power plants. Therefore, each GenCo has an action space for each power
plant, which is a set of possible prices that the GenCo can choose. This set is
represented by Vector ASi,g which is obtained with the following product:

ASi,g = MCi,g · MKset, (5)

where, ASi,g represents the action space of power plant i of Genco g, MCi,g is
the marginal cost of the same power plant, and MKset = [1.00, 1.04, . . . , 5.00] is
the vector with the mark-up levels. In this way, GenCos are sure not to propose
a price lower than the costs.
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The Multi-agent System. The multi-agent system is depicted in Fig. 1. The G
GenCos are reported on the top of the figure. These GenCos repeatedly interact
with each other at the end of each period r ∈{1,. . . ,R}, that is they all submit
bids to the DAM according to their current beliefs on opponents’ strategies.

Fig. 1. A schematic representation of a simulation.

At the beginning of each period r, GenCos need to study the current market
situation in order to identify a better reply to the opponents, to be played at
period r + 1.

In order to choose the most competitive strategy, GenCos need to repeat-
edly solve the market for different private strategies. This corresponds to an
optimization problem.

4.2 The Optimization Process

In this context, the goal of the optimisation algorithm is to keep a large pop-
ulation of candidate strategies and to improve at the same time their fit-
ness/performance in the market. Thus, a population of size P , (see Fig. 1), of
strategies is defined, which will evolve throughout the Kr generations. Unlike
Guerci et al. [7], we consider that each power plant can have its own strategy
independently of the zone.

A Strategy. In this new framework, a strategy for a GenCo g, depicted as a
black dot in Fig. 1, is a vector of prices in the action space, one for each of the
Ng power plants of GenCo g.
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The Two Used Fitness Functions. In [7], for a given GenCo g, a fitness
function, fg : R

Ag → R returns the profit of a strategy which is a vector of
prices in the action space, one for each collection of power plants, (Ag), situated
in the same zone and using the same technology. As it has been defined in [7],
such a fitness reinforces the weight of the power plants with low prices. We will
name it type 1 fitness.

In our “relaxed” framework, instead, for a given GenCo g, a fitness function,
f ′
g : RNg → R returns the profit of a strategy which is a vector of prices in the

action space, one for each single power plant. Here, we propose a more “realistic”
fitness which considers the amount of profit (given by Eq. 3) a given individual
(strategy) allows the power plans to get. We will name it type 2 fitness.

Selecting a Strategy. At the end of each period r, each GenCo bids to the
market by selecting one strategy belonging to its current population of candi-
dates.

In [7] the selection is done according to a probabilistic choice model in order to
favor the most represented strategy in the population (i.e., based on the frequency
probability). Here, in addition to the frequency based strategy of selection used in
[7], we use a second strategy based on the value of the fitness of the individuals.
We name it fitness-based strategy.

4.3 Evaluation of the Proposed Approach

We have considered and tested two different market models:

– ApproxGenco, which replicates the market model proposed in [7] — the Gen-
Cos adopt a common strategy for all the power plants with a common tech-
nology, situated in the same zone.

– RealGenco, which relaxes the above constraint and makes it possible to model
the fact that each power plant may adopt a different strategy — this is the
way it happens in the reality.

The Goal of the Experiments. We have evaluated the effectiveness of the
proposed framework. To this aim we have:

– shown that our model really extends the model proposed in [7],
– verified if the fact of relaxing the assumptions according to which all the

power plants in the same zone should be associated to the same strategy
compromises the results,

– compared the results obtained with a simplest statistical method relying
on repeated random sampling as the Monte Carlo method with the results
obtained with the two studied models,

– verified if another population based-method like the Particle Swarm Opti-
misation (PS) method, lying on the hypothesis of cooperation between the
individuals in the population, instead of Genetic Algorithms (GA) in which
the individuals of the population can be perceived as being in competition,
may improve the results.
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The Different Scenarios. In order to test the ability and the robustness of
each optimization method to reproduce the daily PUN time series, we have con-
sidered the three methods (Genetic Algorithm, Particle Swarm, Montecarlo),
the two fitness functions, (type 1 and type 2 fitness) and the two types of strat-
egy choice (probability based and fitness based), obtaining thus the different
scenarios listed in Table 1.

Table 1. Experimental scenarios

Acronym Fitness function of the
genetic algorithm

Best strategy choice based on

GaFreq1 Type 1 Frequency

GaFreq2 Type 2 Frequency

GaFitness1 Type 1 Fitness

GaFitness2 Type 2 Fitness

PsFreq1 Type 1 Frequency

PsFreq2 Type 2 Frequency

PsFitness1 Type 1 Fitness

PsFitness2 Type 2 Fitness

Montecarlo Type 2 Fitness

Data. The demand of energy for each zone is provided in a load matrix with
the following information: a first column which contains the zones, the second
which contains the maximum limit prices and the third column which contains
the demand quantities of electricity.

All the characteristics of the power plants are collected in a structure with
the following features:

– the names of the GenCos (for example ATEL, EDISON, . . .),
– the names of the used technologies (for example coal, combined cycle gas

turbine,. . .),
– the prices of the fuels,
– information related to the Italian power plants: the columns indicates respec-

tively the zone, maximum production quantity, minimum production quan-
tity, coefficient a, coefficient b, coefficient c (see Sect. 3), Genco’s id, technol-
ogy index, and fuel index and power plant’s id.

– the production quantity data from other power plants (i.e. not produced by
the GenCo).

The PUN historical values used in the experiments are public data which can
be found in [5].
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Implementation and Results. The framework described has been imple-
mented in MATLAB R2017a with Optimization and Global Optimization tool-
boxes. Experiments were performed on a computer running Windows 7 and
based on an Intel c©CoreTMi7-3610QM @2.30 GHz microprocessor with 8 GB
RAM.

In all the simulations, the number of GenCos participating in the market
varies between 15 and 19, while the number of power plants for each GenCo
varies between 1 and 90. The three optimisation methods used the matlab
default parameters and they are allocated the same number of objective function
evaluations.

The results of our experiments lead us to conclude that the ApproxGenco
model can be considered as a reliable replication of the model proposed in [7].
Indeed, under the same conditions (the ones supported by the old model), it
reproduces exactly the same market mechanism — we obtain the same result,
i.e., the same PUN with the two models.

In Fig. 2, we can see the historical values (red line), as well as the values
obtained with [7] (we named it old) which are represented with dashed (purple)
lines and the values obtained with our relaxed model under the same assumptions
that the ones made in [7] (we named it GAfreq1, they are represented by the
green line with squares).

Fig. 2. Reproducibility – Real and simulated PUNs provided by ApproxGenco. (Color
figure online)

We can now proceed with its comparison with the alternative scenarios.
Two interesting points emerge. We can observe, thanks to the results illus-

trated in Fig. 3, that despite having “relaxed” the constraint reducing the action
space, and under the same assumptions, (i) the results are similar for both
ApproxGenco and RealGenco models, i.e., the simulated PUN is similar, (ii)
the time needed for running the ApproxGenco and RealGenco models is similar.
More precisely, the running time of each iteration for ApproxGenco with a pop-
ulation of 50 elements is 11.62 s for GA, 15.76 s for PS, and 11.34 s for Monte
Carlo. Concerning the RealGenco the values are: 14.56 s for GA, 18.68 s for PS
and 10,5 s for Monte Carlo.
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We can then conclude that we can take into account the differences between
the power plants as for example their different efficiency levels without worsening
the quality of the results.

Evaluation of the RMSD. These considerations at macro-level are supported by
the evaluation of the root-mean-square deviation (RMSD) which is a frequently
used measure of the difference between values predicted by a model and the
values actually observed. The RMSD represents the sample standard deviation
of the differences between predicted values and observed values. The formula we
have used is the following:

RMSD =

√∑24
h=1(ŷh − yh)2

24
(6)

where h represents the hour of the day (therefore it varies between 1 and 24), ŷh
and yh are respectively the predicted value and the observed value of the PUN
at hour h.

Figure 3 shows the RMSD of all the scenarios we have considered for Approx-
Genco’s and RealGenco’s.

Fig. 3. RMSD for ApproxGenco and RealGenco methods

Evaluation of the Absolute Error. These considerations at macro-level are also
supported by the results concerning the absolute error which, in our work, rep-
resents the distance between the curve with the historical PUNs values and the
one obtained from the different scenarios. The formula used is the following:

AEh = |prh − histh| (7)

where prh is the prediction at hour h and histh is the historical value of the
PUN at the same hour.
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Fig. 4. Absolute errors for the best ApproxGenco model and for the RealGenco model.

Figure 4 illustrates the absolute errors for the three best optimization meth-
ods for both ApproxGenco and RealGenco models. We can notice that in the
ApproxGenco model the results obtained by the three PS algorithms are better
than the ones obtained by the best GA algorithm in the peak hours. Instead,
during the off-peak hours the GA algorithm outperforms two out of three PS
algorithms. Things are slightly different with the RealGenco model, where PSfit-
ness1 (cyan line with squares) outperforms all the other algorithms in the off-
peak hours while it produces the worse results in the peak hours. However, the
PSfreq1 algorithm (dashed purple line) outperforms all the others in the peak
hours.

5 Conclusion

We have extended an existing agent-based model of the Italian electricity market
and we have investigated the rationality of the market participants by comparing
three optimization methods.

We can conclude that in the reality the planning for managing GenCos fol-
lows a rational strategy which can be modeled thanks to an optimization method
without reducing the action space. We can also conclude that the particle swarm
optimization method is the method which allows to better simulate the behavior
of the agents in the Italian electricity market — its results better fit with the
historical PUN values. Therefore, our model can be used to predict the behav-
ior of the Italian electricity market, for example by performing counterfactual
analyses.
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Abstract. Democracies are based on political parties and election sys-
tems allowing voters to put the confidence in representers of these polit-
ical parties to defend their interests. There are many studies analyzing
the results of elections with the goal of (1) explaining the results, and
(2) trying to predict what will happens in future elections. However no
many attention has received the abstention, why voters do not use their
right to elect representers? Commonly, abstention has not been too sig-
nificant, however in last years it has been increased in many countries
and it could be of great interest to analyze the causes. Studies about
elections, both voting and abstention, are commonly based on statisti-
cal methods. The current paper is focused on analyzing the abstention
based on symbolic learning methods (decision trees). Particularly, we are
interested on identifying the groups of potential voters that have decided
to abstain. We worked on data of the elections to Catalan Parliament
held in 2015.

Keywords: Electoral results · Ecological inference · Abstention ·
Explanations · Inductive learning methods · Decision trees

1 Introduction

One of the main rights in democracy is the free election of political representers.
Representers belong to political parties that have a political program and voters
choose the one that best fits their social, economic, and ethic values. Until recent
times, political parties are aware to both predict the vote to their own party
and, after the elections, explain why voters exhibited the resulting behaviour.
Traditionally, predictions are made based on questionnaires before and during
elections. In addition to directly ask for the vote, sometimes the voter is also
questioned about aspects of his life. As McConway [13] explains, such question-
naires are difficult to elaborate and there is also a risk that the person asked
do not answer what he actually believes (specially when asked directly for vote
intention).
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However, in addition to the interest in determining the vote to each political
party, another important fact arises: the abstention. Lastly, the percentage of
voters that abstain in elections increases in all the countries. Ferreira et al. [4]
analyzed the causes of this increment and mainly they associate it to political
disaffection and no representativeness of political parties. In fact it is increasing
the percentage of population that does not identify theirselves with a particu-
lar party [8]. There are several reasons for this lack of representativeness, for
instance, lack of confidence in democracy in general, corruption, etc. [1,2,14].

Cazorla et al. [2] analyze the causes of abstention of Spanish voters in Euro-
pean elections held in 2014. In this analysis the authors conclude that in the
particular case of Spain, there are two main reasons for the increment of absten-
tion: (1) the fragmentation of the space of political parties mainly due to the
growing of two new parties, and (2) the demobilisation and dissatisfaction of the
voters, mainly due to economic crisis, corruption cases and political scepticism.
This analysis has been made using the results of a post-electoral questionnaire
designed to provide relevant information about both abstentionists and support-
ers of the different political parties. By grouping and recoding variables they
used Structural Equation Modelling to obtain a set of variables useful to explain
abstention.

Ecological inference [10] is the process to use aggregated data to infer rela-
tionships at individual level when there are not information about individu-
als. The ecological inference handles two observed variables Xi and Yi and two
unobserved variables αi and βi for 1 ≤ i ≤ n being n the number of observa-
tions (aggregated units). Until 1997 there were two main approaches for solving
ecological inference problems: the followers of the method of bounds proposed
by Duncan y Davis [3], and the followers of the Goodman’s approach, based
on regression [7]. In 1997, King [9] introduced a new paradigm based on both
approaches consisting on, given a set of constraints (see [10]) the goal is to obtain
the straight lines that he calls tomographies that represent the space of possible
solutions. Such space represents an estimation of the parameters αi and βi of
the ecological inference.

Castela and Galindo-Villardón [1] use the ecological inference method pro-
posed by King as a basis to use the HJ-Biplot method [19] to determine groups of
population and their electoral behaviour from data of Portuguese elections held
in 2002 and 2005. This work is interesting because it is possible to determine
the evolution of votes. In our case we have only data belonging to one electoral
date (the one of 2015 to Catalan Parliament).

A different approach is the one of Nwankwo et al. [14] that, from a question-
naire including socio-demographic questions, use Principal Component Analysis
(PCA) to determine the main aspects that influence the abstention in South
Eastern Nigeria. In particular, they obtained eight main components: socioe-
conomic status, lack of trust in the electoral process, social trust and unem-
ployment, registration and demographic factor, corruption and inadequate secu-
rity, deception and intimidation, indigene status and electoral manipulation and
poverty.
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A method that has provided interesting results is the one proposed by Flax-
man et al. [6]. In particular, it has been used to explain the results of the E.E.U.U.
elections held in 2012 [6] and 2016 [5]. The Flaxman’s method exploits the con-
nexion between Gaussian process regression [17] and kernel ridge regression [18]
to use Bayesian approximation for learning and to include prior information.

In this paper we introduce a different approach: the use of symbolic learning
methods to analyze the results of elections. Statistical methods give us valuable
information such as correlations between variables. However, correlations take
globally all the data and in our opinion to provide a more detailed exam of the
data it is necessary to fragment them in significant groups that follow a pattern.
This kind of pattern is the one that can be obtained using decision trees [15,16].
The advantage of decision trees is that their results are easily understood by
experts and can be seen as explanations or descriptions of classes of objects.
Notice that, in fact, the goal of methods such as the ones of Flaxman, King,
Duncan and Davis, and Goodman is to solve the problem on ecological inference,
i.e., to obtain particular data from general data. Instead, our goal is almost the
converse one, we want to obtain significant patterns (i.e., general enough) to
describe population groups having a similar behaviour from the point of view of
the abstention. However, we could obtain patterns satisfied by reduced groups
of electoral sections allowing to solve the ecological inference problem. In other
words, if we allow overfitting when growing the decision tree, we could obtain
patterns satisfied by only a few of electoral sections that is the goal of ecological
inference.

In Catalonia, there are four different kind of elections: local, Catalan Parlia-
ment, Spanish Parliament and European Parliament. If we analyze separately
the results of each one of them, the patterns can be easily compared and it will
be possible to show the differences or similarities of voters according each kind
of election. We focus our analysis in the abstention. Thus, our goal is to char-
acterize electoral sections according to their abstention level. In the future we
plan to extend this analysis to other elections.

The paper is organized as follows. In Sect. 2 there is a brief explanation
of decision trees. In Sect. 3 there is the description of the data base used in the
experiments. Section 4 contains a description and a discussion of the experiments
carried on. Finally, Sect. 5 is devoted to conclusions and future work.

2 Decision Trees

A Decision Tree (DT) is a directed acyclic graph in the form of a tree. The
root of the tree has not incoming edges and the remaining ones have exactly
one incoming edge. Nodes without outgoing edges are called leaf nodes and the
others are internal nodes. A DT is a classifier expressed as a recursive partition
of the set of known examples of a domain [12]. The goal is to create a domain
model predictive enough to classify future unseen domain objects.

Each node of a tree has associated a set of examples that are those satisfying
the path from the root to that node. The leaves determine a partition of the
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original set of examples, since each domain object only can be classified following
one of the paths of the tree. The construction of a decision tree is performed by
splitting the source set of examples into subsets based on an attribute-value test.
This process is repeated on each derived subset in a recursive manner. Figure 1
shows the ID3 algorithm [15,16] commonly used to grow decision trees. From a
decision tree we can extract rules (i.e., patterns) giving descriptions of classes,
since each path from the root to a leaf form a description of a class. When all
the examples of a leaf belong to the same class such description is discriminant.
Otherwise, the description is no discriminant.

ID3 (examples, attributes)
create a node
if all examples belong to the same class return class as the label for the node
otherwise

A  best attribute
for each possible value vi of A

add a new tree branch below node
examplesvi  subset of examples such that A = vi
ID3(examplesvi, attributes - {A})

return node

Fig. 1. ID3 algorithm for growing a decision tree.

A key issue of the construction of decision trees is the selection of the most
relevant attribute to split a node. Each measure uses a different criteria, therefore
the selected attribute could be different depending on it and thus the whole tree
could also be different. In our experiments we used the López de Mántaras
distance (LM) [11] that is an entropy-based normalized metric defined in the set
of partitions of a finite set. It compares the partition induced by an attribute,
say ai, with the correct partition, i.e., the partition that classifies correctly all
the known examples. The best attribute is the one inducing the partition which
is closest to the correct partition. Given a finite set X and a partition P =
{P1, . . . , Pn} of X in n sets, the entropy of P is defined as (| · | is the cardinality
function):

H(P) = −
n∑

i=1

pi · log2 pi, where pi =
|Pi|
|X|

and where the function x · log2 x is defined to be 0 when x = 0. The López
de Mántaras’ distance between two partitions P = {P1, . . . , Pn} and Q =
{Q1, . . . , Qm} is defined as:

LM(P,Q) =
H(P|Q) + H(Q|P)

H(P ∩ Q)
, (1)
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where

H(P|Q) = −
n∑

i=1

m∑

j=1

rij · log2
rij
qj

, H(Q|P) = −
m∑

j=1

n∑

i=1

rij · log2
rij
pi

,

H(P ∩ Q) = −
n∑

i=1

m∑

j=1

rij · log2 rij ,

with qj =
|Qj |
|X| , and rij =

|Pi ∩ Qj |
|X| .

Decision trees can be useful for our purpose because their paths give us
patterns describing classes of objects (electoral sections in our approach) in a
user-friendly manner. One shortcoming of decision trees is overfitting, meaning
that there are few objects in most of the leaves of the tree. In other words, paths
are actually descriptions that poorly represent the domain. The main procedure
to either avoid or reduce overfitting is by pruning the tree, i.e., under some
conditions, a node is no longer expanded. However, this means that leaves can
contain objects belonging to several classes and, therefore, paths do not represent
discriminatory descriptions of classes, i.e., these descriptions are satisfied by
objects of more than one class. In our approach, we managed overfitting by
controlling the percentage of elements of each class. Let SN be the set of objects
associated with an internal node N , the stopping condition in expanding N (the
if of the ID3 algorithm) holds when the percentage of objects in SN that belong
to the majority class decreases in one of the children nodes. In such a situation,
the node N is considered as a leaf.

Notice, however, that allowing overfitting can produce results near to the
goal of ecologic inference since the patterns obtained can be specific enough to
almost identify particular objects.

3 The Data Base

Electoral landscape of Catalonia is formed by 5048 electoral sections each one of
them composed of a minimum of 500 potential voters and a maximum of 2000.
Most of times, each electoral section corresponds to an electoral table although
this can variate if the number of voters of a table is either too high or the
population is scattered throughout the territory represented by the electoral
section. In such cases, an electoral section is divided in several electoral tables
with the constraint that no electoral table can have less than 200 voters.

The data base we have is composed of 5048 records, each one of them corre-
sponds to an electoral section in Catalonia. Each record has two kinds of infor-
mation: socio-demographic data and electoral data. Socio-demographic data has
been formed from an aggregation of the data coming from several public data
bases. The result of such aggregation is the typology of families seen in Table 1
and it is the one contained in the data base Habits c© from the AIS Group. The
file containing the electoral results for all the Catalan electoral sections is public
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and contains (in absolute numbers and in percentage) the votes to each polit-
ical party, the null votes, the blank votes, abstention and how many potential
votes has an electoral section (electoral census). This file does not contain socio-
demographic information associated to the electoral sections. Then, an ecological
inference process has been carried out to assess how many families of each typol-
ogy are in each electoral section. In https://www.ais-int.com/marketing-y-ventas/
geomarketing-habits-big-data/ there is a description of the method used to assess how
many families of each typology are in each electoral section. The resulting file contain-
ing the socio-demographic information related to each electoral section is the one we
used in our experiments.

Table 1. Families typology as obtained as it is explained in https://www.ais-int.com/
marketing-y-ventas/geomarketing-habits-big-data/

Type Description

AF Families with adolescents (until 18 years old) and children

BG Families with young sons (from 18 to 35 years old)

CH Families with children

DK Families where the main salary is a pension

EI Families with two working persons and without children (DINK)

J Families with one or two members, no children, only one salary

LP Families with one or two members, no children, one or two pensions

M Singles older than 35 with a salary

N The main person is a student, a housework or a permanent disability

O The main person of the family is unemployed

Q Family formed by only one person receiving a pension

R The main person of the family is an immigrant

Expenses Average of the expenses of a family

Income Average of the income in a family

Table 2 shows the electoral attributes we used for each electoral section. Mainly
there are percentages of both voters and votes to each political party, and we rejected
all results corresponding to absolute numbers. We have take such decision in order to
properly compare the results between political parties. The elections to the Catalan
Parliament held in 2015 were somewhat special because of in addition to the traditional
vote according right or left ideology, the independentist/no independentist aspect was
very important. In fact, this aspect conducted to the creation of a new coalition and
also was the focus of the electoral campaign. The main parties that concurred to the
elections were the following:

– Cs (Ciudadanos). Party of right ideology and no independentist.
– JxSi (Junts pel Si). New independentist coalition formed by a right party and a

left one.
– PSC (Socialist). Party of center-left ideology and no independentist.

https://www.ais-int.com/marketing-y-ventas/geomarketing-habits-big-data/
https://www.ais-int.com/marketing-y-ventas/geomarketing-habits-big-data/
https://www.ais-int.com/marketing-y-ventas/geomarketing-habits-big-data/
https://www.ais-int.com/marketing-y-ventas/geomarketing-habits-big-data/
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– CSQEP (Catalunya Si Que Es Pot). Coalition of left ideology and mainly no inde-
pendentist although some members of it could be favorable to independence.

– PP (Partit Popular). Party of right ideology and no independentist.
– CUP (Candidatures d’Unitat Popular). Party of extreme left and anti-system ide-

ology, and independentist.

All the attributes have numerical values and we have discretized them. Such dis-
cretization has been done by computing the quartiles of each one and assessing a label
to each one of the resulting intervals. Table 2 shows the quartiles used to define the dis-
cretization intervals of the electoral attributes and the label we associated with them.
The information about the families of each electoral section has been discretized in a
similar way.

Summarizing, the data base used in the experiments is composed of the attributes
shown in Tables 1 and 2 each one of them discretized according the corresponding
quartiles.

Table 2. Discretization intervals for some the atributes corresponding to electoral
results, i.e., the percentage of votes for null votes, blank votes, abstention, number of
voters, and votes to each relevant political party.

Attribute Very low Low High Very high

Census [25, 796] (796,1040] (1040, 1310] (1310, 3670]

Null [0,0.15] (0.15,0.32] (0.32,0.54] (0.54,5.37]

Blank [0,0.29] (0.29,0.49] (0.49,0.72] (0.72,4.03]

Abstention [3.16,17.7] (17.7,21.6] (21.6,26.2] (26.2,73.3]

Cs [0,11] (11,17.3] (17.3,23.6] (23.6,50]

JxSi [2.45,24] (24,40.6] (40.6,54.2] (54.2,91.3]

PSC [0,7.19] (7.19,11.2] (11.2,17.5] (17.5,58.3]

CSQEP [0,4.67] (4.67,8.37] (8.37,12.4] (12.4,27]

PP [0,5.56] (5.56,7.87] (7.87,10.6] (10.6,42.1]

CUP [0,5.82] (5.82,7.87] (7.87,10.3] (10.3,47.7]

4 Experiments

Because our focus is the analysis of the abstention in the elections to Catalan Parlia-
ment, we have growth a decision tree taking as class label the percentage of abstention
of the electoral sections. In order to avoid overfitting we cut the node expansion when
the percentage of the majority class decreases if a node was expanded (see Sect. 2). We
only have manually analyzed the paths (patterns) corresponding to leaves that contain
around the 25% of the population in the root of the tree. Most of significant pat-
terns are not discriminant, i.e., they are satisfied by electoral sections having different
abstention levels.

After growing a decision tree, two patterns involving around the 25% of the electoral
sections have been found:
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• P1: [[PSC = very high]]
• P2: [[PSC = very low ]]

We expected that the abstention was related with socio-demographic attributes as
it has been found for instance in [2,4]. However, our experiments show that in the
particular case of the Catalan elections held in 2015 the abstention level is directly
related to the percentage of votes to the PSC party. In fact, this is not a contradictory
result with the ones in [2,4] since they only take into account the sociologic data
coming from a questionnaire and no electoral data are included in their analysis. In our
experiments, we included both socio-demographic data and electoral data. Moreover,
our socio-demographic data come from real population data (census, register, and so
on) instead of with a questionnaire.

Table 3. Level of abstention satisfied by the patterns P1, P2 and P3 and both number
(#ES) and percentage (%ES) of electoral sections satisfying the patterns.

Pattern #ES %ES Very low Low High Very high

P1 1262 25.00 3.49 13.31 29.79 53.41

P2 1263 25.02 60.25 25.18 10.85 3.72

P3 976 19.33 15.06 32.58 31.97 20.39

Table 3 shows the support of each one of the patterns P1 and P2 to each abstention
level. Notice that around the 83% of electoral sections that have had many votes for
PSC have been high or very high abstention levels (pattern P1), the dual pattern
(pattern P2) is also true: around the 85% of electoral sections that have had very few
votes for PSC have been low or very low abstention levels. In other words, it seems that
the level of abstention is directly correlated with the percentage of votes for PSC. In
fact, this correlation has been proved statistically to be 0.580. Also we have seen that
the percentage of abstention has an inverse correlation of −0.546 with the percentage
of votes for JxSi. In our approach only the direct relations are explicit in the patterns,
however a manual study of the patterns has show that the percentage of votes for PSC
is inverse to the percentage of votes for JxSi. That is to say, electoral sections with low
percentage of votes for PSC have high percentage of votes to JxSi (and low percentage of
abstention). In our opinion the relatively low correlation between PSC and abstention
is due to the fact that the percentage of votes for PSC explains well the abstention
for the extreme values (very low and very high), whereas in the intermediate part we
cannot found any relevant pattern because there is not a significant trend and is this
part the one responsible of the relatively low correlation. With our approach we are
capable to take several subsets with different behaviour.

Patterns including intermediate levels of votes (high or low) to PSC are not signif-
icant enough to represent a clear abstention level. For instance the pattern P3 = [PSC
= high] satisfied by around the 19% of electoral sections has not a clear support to
any of abstention levels (see Table 3). Notice that around the 52% of electoral tables
satisfying P3 have high or very high abstention levels whereas the remaining 47.64%
of electoral sections have low or very low abstention levels.

It has been surprising that information of families seems not to be relevant to
explain the abstention level. In fact, we obtained some patterns relating the abstention
with some family typology, for instance the following ones:
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• P4: [[PSC = low ], [R = high]]
• P5: [[PSC = low ], [R = low ]]

Notice that the patterns above relate low percentage of votes for PSC and the typol-
ogy R (immigration) with a low level of abstention (around 65% and 77% respectively).
Table 4 shows the support of the patterns P4 and P5 to each abstention level. These
patterns are not significant enough due to low number of electoral sections that satisfy
it, but we think that could be interesting as a basis to perform ecological inference.
In the regression model also happens that the familiar information is not relevant to
explain the abstention and we also found that families type R are the most correlated
with the abstention. As future work, we have to check if this irrelevance of the family
status is due to the way in which the family typologies has been obtained or conversely
there is an actual independence between abstention and family status.

Table 4. Level of abstention satisfied by the patterns P4 and P5 and both number
(#ES) and percentage (%ES) of electoral sections satisfying the patterns.

Pattern #ES %ES Very low Low High Very high

P4 237 4.70 20.68 44.30 26.58 8.44

P5 201 3.98 44.78 32.34 18.41 4.48

With the goal of trying to relate abstention to family typologies, we have growth
a decision tree taking into account only the attributes describing family typologies
(those in Table 1). Most of the patterns are not significant in the sense that they are
satisfied by only a few electoral sections. However, there are two patterns satisfied by
a significant number of electoral sections (more than 25%):

• [[R = very low ]]: satisfied by 1262 electoral sections (25%) where the 44.14% of
them have very low abstention, the 25.59% low, the 18.86% high, and the 11.41%
very high.

• [[R = high]]: satisfied by 1240 electoral sections (24.56%) where the 8.06% of them
have very low abstention, the 17.50% low, the 27.82% high, and the 46.61% very
high.

Thus, patterns above shows some trend to relate electoral sections with very low or
low percentage of families type R with low or very low abstention (69.73%) and electoral
sections with high or very high percentage of families type R with high or very high
abstention (74.43%). Both patterns seems to support the idea that immigrant collective
tends to abstain.

Summarizing, the results provided by decision trees are consistent with those
obtained by statistical models. However, our approach is more informative since in
addition to explicit the correlation between variables also explain the intervals where
such correlation is higher. Thus, from the patterns we have seen that the percentage of
votes to PSC is directly correlated with the percentage of abstention, but only when the
percentage of votes is in one of the extremes, i.e., it is very low or very high, whereas
in the intermediate values such correlation is not so clear. The statistical model gives a
global perspective of the correlation between variables but it cannot focus on intervals
as the patterns can do.



Analysis of Abstention in the Elections to the Catalan Parliament 257

5 Conclusions and Future Work

In this paper we introduced a new approach to analyze electoral data: the decision
trees. This kind of methods are commonly used to construct domain models useful for
prediction. In the current application, the branches of trees can be interpreted as pat-
terns, i.e., similarities between the electoral sections that have a particular behaviour.
Our focus has been the abstention and the goal was to show if electoral sections with
similar abstention levels have also some common pattern. Experimental results have
shown that patterns allow to separate subgroups of electoral sections (differently than
statistical methods that have a global vision of them) and support the experts in
focusing on a particular group and investigate in depth the characteristics of it.

Our main conclusions are that abstention level in Catalan elections held in 2015 was
directly related with the percentage of votes to the Catalan Socialist Party (PSC). When
we focus on sociologic features, we found that the percentage of families belonging to
the typology R (immigration) is directly correlated with abstention.

In the future we plan to use the same methods on data coming from different
Catalan Parliament elections. The patterns of both elections will be easy to compare
and the experts could determine similarities and differences of behaviour of the same
subgroup of electoral sections in different elections. A different research line could be
to use the patterns in combination with some ecological inference method, such as the
one of G. King.
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Abstract. Building large knowledge bases (KBs) is a fundamental task
for automated reasoning and intelligent applications. Needing the inter-
action between domain and modeling knowledge, it is also error-prone.
In fact, even well-maintained KBs are often found to lead to unwanted
conclusions. We deal with two kinds of decisions associated with faulty
KBs. First, which portions of the KB (and their conclusions) can still be
trusted? Second, which is the correct way to repair the KB? Our solution
to both problems is based on storing all the information about repairs
in a compact data structure.

1 Introduction

In logic-based knowledge representation, the goal is to encode the relevant knowl-
edge of an application domain through a collection of axioms, which intuitively
restrict the way in which the symbols used may be interpreted, so as to provide
them with an unambiguous and clear meaning. Such a collection of axioms is
known as a knowledge base (KB). Historically, many knowledge representation
languages have been proposed; most notably, perhaps, are propositional logic [6],
constraint systems [1], and description logics (DLs) [2]. Their success has led to
the creation of more and larger KBs.

It should come as no surprise that constructing a KB, which requires a com-
bination of domain and modeling knowledge, is an arduous and error-prone task.
As a consequence, it is not uncommon to detect errors even in well-maintained
KBs. Unfortunately, after an error has been detected, it is also quite difficult to
identify the main sources, and select the adequate correction of the fault. More-
over, KB updates are typically subject to a production cycle that prevents them
from publishing corrected versions on-demand. For example, Snomed CT [15]—
a very large KB about medical terms—publishes two updated versions every
year. Thus, even when a KB is known to be faulty, it may be necessary to wait
for several months before a corrected version is available.

Since KBs are not static entities to be observed, but rather tools necessary for
automated reasoning in practical scenarios, users cannot simply drop a faulty KB
and wait for the next version to appear. At the same time, they cannot ignore the
fact that some of the knowledge that they contain is wrong. Hence, they need to
be able to use the KB, but in a way that preserves some guarantees of correctness.
c© Springer Nature Switzerland AG 2019
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In this paper, we propose a method for reasoning about consequences that takes
into account the repairs of the KB. In a nutshell, the repairs correspond to
the ways in which all errors may be removed, by deleting a minimal amount
of axioms from the KB. Our approach consists in encoding all repairs through
a Boolean function over the axioms in the KB. This function can be easily
updated if new errors are encountered, and can then be used to decide whether
a consequence follows from one or all repairs. Thus, our method can be used
throughout deployment time, collecting all known errors as they are detected,
and providing guarantees over all reasoning results.

At some point, the knowledge engineer will take control of the KB, and will
need to decide which of the many potential repairs is the right one; that is, which
axioms are indeed wrong. We emphasise that this task cannot be automated
because it needs the expert human knowledge to discern correctness. Rather
than making them verify each axiom, we devise a method that suggest to them
which axioms to check first, in order to reduce the search space efficiently. With
the help of this method, finding the right repair requires minimal human effort,
which is the most expensive resource in the repairing scenario.

2 Preliminaries

We consider an abstract logic-based knowledge representation language, where
explicit knowledge is expressed via a set of constraints (or axioms), and logical
entainments derive other implicitly encoded knowledge. For simplicity, we con-
sider that axioms and implicit consequences have the same shape, although the
results can be easily generalised to avoid this restriction (see e.g. [4,11]).

Formally, a knowledge representation language is defined by an infinite set
A of (well-formed) axioms and an entailment relation |= ⊆ Pfin(A) × A, where
Pfin(A) denotes the class of all finite subsets of A. In general, we call any finite
subset of A a knowledge base (KB). Thus, a knowledge representation language
provides the syntax of the axioms that form a knowledge base, and the semantics
are given through the entailment relation expressing what consequences can be
derived from which KBs. We use infix notation for the entailment relation; i.e.,
K |= α expresses that the KB K entails the axiom α. In this work, we are only
interested in monotonic knowledge representation languages; these are those
where the entailment relation is monotonic in the sense that for every two KBs
K, K′, and axiom α, if K |= α and K ⊆ K′, then K′ |= α.

For the sake of building an example and improving understanding of the
results presented here, we consider a very simple knowledge representation lan-
guage consisting of directed graphs and reachability between nodes. In this case,
given an infinite set V of nodes, an axiom is of the form v → w, where v, w ∈ V.
Intuitively, this axiom expresses that w is reachable from v. A KB, that is, a
finite set of axioms, can be represented as a finite graph. The graph K entails
the axiom v → w iff the node w is reachable from v in K (see Fig. 1).

An important operation for KB update and belief revision is known as con-
traction. The goal of this operation is to remove a consequence from a KB; in
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other words, given the KB K and the axiom α, the contraction K − α should
yield a KB K′ such that K′ �|= α. While it is possible to define many different
kinds of contractions, we focus on one that provides minimal syntactic changes
to the original KB, which is based on the notion of a repair.

Definition 1 (repair). A repair of K w.r.t. α is a sub-KB K′ ⊆ K such that
(i) K′ �|= α and (ii) for all K′ ⊂ L ⊆ K, L |= α.

In words, a repair is a maximal sub-KB of K that does not entail α. It is impor-
tant to notice that repairs are not unique. In fact, removing a single consequence
from a KB can produce exponentially many such repairs [10]. To try to reduce
the number of options, some heuristics can be proposed; for example, to con-
sider only the repairs with the largest cardinality. However, in general, this is still
insufficient to identify one single solution. In order to find only one (adequate)
solution, human intervention is needed to provide the expert domain knowl-
edge that distinguishes the axioms that are in fact incorrect w.r.t. the current
knowledge and should hence be removed.

As it is well known in the area of belief revision, the problem of choosing the
right repair becomes even more crucial in the presence of an iterated contrac-
tion [8]; that is, when more than one consequence is to be removed in successive
steps. Obviously, making a wrong choice of repair in any given step will nega-
tively affect the following contraction steps. For example, suppose that we are
only interested in finding a repair of maximum cardinality that removes a set
of consequences from K. If we simply choose one maximum cardinality repair at
each step, we are not guaranteed to end up with a solution of maximum cardi-
nality. If human intervention is necessary, then asking an expert to choose the
right repair at every single contraction step becomes excessively expensive in
terms of human expert resources.

Henceforth, it is useful to consider the dual notion of a repair, called a jus-
tification, that corresponds to a minimal sub-KB entailing a consequence.

Definition 2 (justification). A justification of a consequence α w.r.t. the KB
K is a set K′ ⊆ K such that K′ |= α and for all L ⊂ K′ it holds that L �|= α.

It is well known (see [16]) that repairs and justification are dual in the sense
that are repair can be obtained by removing at least one axiom from every
justification, and justifications are obtained similarly from the axioms that are
removed to form repairs. This duality will allow us to exploit efficient methods
developed for finding justifications to deal with repairs as well.

In the following sections, we first show how to deal with iterative contrac-
tions automatically without losing any valuable information, and then provide
a method for helping a human expert to choose the right solution among the
potentially exponentially many available, minimising the need of human effort.

3 Iterative Contractions

We are interested in an iterative process for repairing a KB. Starting from a given
KB K, we assume that a user is detecting a sequence of erroneous consequences



262 R. Peñaloza
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Fig. 1. A KB, and its repairs w.r.t. v → w and v → y.

that they try to bypass, while waiting for an official correction by the knowledge
experts. In the meantime, the KB is still operational and new errors may be
derived. At any point in this process, the knowledge expert may attempt to find
the correct repair, for which automated support should be given.

In order to preserve all the information needed for computing the correct
repair, all possible solutions should be stored; otherwise, we risk removing the
best option from the search space. As mentioned already, even at the first con-
traction, the number of repairs may become exponential on the size of the KB.
Moreover, suppose that we have already a set of repairs obtained after a sequence
of contractions. When the following erroneous consequence is detected, it is nec-
essary to contract each of these repairs. In practice, this means potentially com-
puting an exponential number of new KBs for each previously known repair,
with the additional cost of verifying that no set appears twice, and that they
are all actual repairs. For example, Fig. 1 depicts a simple KB and its repairs
w.r.t. the consequence v → w (all the squared KBs), and w.r.t. the two errors
v → w, v → y (with a grey background). Notice that the set of axioms obtained
by removing v → y from the lower-left repair is not a repair, because it is strictly
contained in the lower-right repair.

To solve this issue, it was proposed in [14] to succinctly encode the class
of all repairs by associating with each axiom in the KB a propositional for-
mula expressing to which repairs this axiom belongs, and to which it does not.
Although effective, this approach has several issues; most importantly, there is
a trade-off between the succinctness of the representation, and the readability
of the repairs. That is, reducing the size of the representation comes at the cost
of making it harder to know the axioms that belong to each repair.

We propose an alternative approach, encoding the class of all repairs by a
Boolean function over the original KB, called a repair function.

Definition 3 (repair function). Let K be a KB and C a set of consequences.
A function repC : P(K) → {0, 1} is a repair function of K w.r.t. C iff for every
K′ ⊆ K it holds that repC(K′) = 0 iff there is an α ∈ C such that K′ |= α.
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Intuitively, a repair function takes as input a sub-KB K′ of K, and returns 1, if
K′ does not entail any of the (erroneous) consequences in C (that is, if K′ gets
rid of all errors), and 0 otherwise. Notice, however, that repC(K′) = 1 does not
mean that K′ is a repair, since the maximality criterion is not being considered
in the definition of this function, but it is easy to detect the repairs from it.
When clear by the context, we remove the subscript C from the name rep.

If we see every axiom as a propositional variable, then rep is simply a proposi-
tional formula over the variables in K. Hence, we can encode this function using
any of the existing datatypes for compact representation of formulas, such as
circuits [17], binary decision diagrams (BDDs) [9], or the more recent sentential
decision diagrams (SDDs) [7]. For the sake of an example, and to be consistent
with previous work (as should become clear later in this paper), we consider
BDDs. In a nutshell, a BDD is a directed acyclic graph with one root node and
two terminal nodes (called 0 and 1) such that every non-terminal node node is
labelled with a propositional variable and has exactly two successors called the
low and the high branch, and in every path from the root to a terminal node the
same variable can appear at most once. A valuation is checked by the BDD by
traversing the graph starting from the root and following the low branch if the
variable is set of false, and the high branch otherwise. The valuation is a model
of the BDD iff this traversal leads to the terminal 1.

To achieve our goal, we build a sequence of repair functions, updating the
last one whenever a new fault is found. At the beginning, we have only a KB K,
and no errors; that is, C = ∅. Hence, we have a trivial repair function that maps
every subset of K to 1. In terms of propositional formulas, we represent it as a
tautology, which corresponds to the BDD having only one node 1.

Suppose now that we have already detected a set of faults C, and that we have
computed a repair function rep for it. For simplicity, we observe this function as
a propositional formula. Our goal now is, given a new unwanted consequence α,
to compute a repair function rep′ w.r.t. C ∪ {α}. One could, of course, compute
this new function from scratch, ignoring the properties of rep. We instead opt to
update rep to exclude those sub-KBs of K that entail α from being accepted.

Recall that a justification is a minimal sub-KB that entails α. Intuitively, if
M is a justification, then any set containing M will entail α. If M was the only
justification, then minimality would imply that excluding at least one axiom
from M would also get rid of the consequence α; i.e., if M\K′ �= ∅, then K′ �|= α
holds for all K′ ⊆ K. Since there may exist more than one justification, we need
to ensure that none of them is contained in a set to guarantee that α is not
entailed. We do this with the help of a pinpointing formula [3].

Definition 4 (pinpointing formula). Let K be a KB, and α a consequence.
A pinpointing formula for α w.r.t. K is a Boolean function pinα : P(K) → {0, 1}
such that, for every K′ ⊆ K it holds that pinα(K′) = 1 iff K′ |= α.

Notice that the pinpointing formula is the analogous notion to the repair func-
tion, when speaking about justifications instead of repairs. The name is chosen
to preserve consistency with existing terminology. Pinpointing refers to the task
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Fig. 2. A BDD for the repairs of Fig. 1.

of computing all justifications, and the notion of formula arises from considering
all axioms as propositional variables inside the Boolean function pin, as we did
before for the repair function. It is perhaps worth noting that Definition 4 is
simpler than Definition 3 mainly because the former refers to only one conse-
quence, while the later must consider a whole set of them. It is easy to see that
for all α and all C, rep{α} = ¬pinα and repC =

∧
α∈C ¬pinα.

Effective methods for constructing and dealing with pinpointing formulas
have been studied and implemented for different representation languages; most
notably for DLs [18]. The bottom line is that it is possible to efficiently construct
a pinpointing formula for many different cases. In particular, one can even build
a BDD encoding this formula for expressive representation languages.

As mentioned already, the pinpointing formula can be used to update the
repair function to exclude one more consequence. Remember that, from each
repair, we need to exclude every justification. That is, the new repair function
should map a sub-KB K′ to 1 if the original rep did so (i.e., rep(K′) = 1), but the
pinpointing formula did not (pin(K′) = 0). If we see these functions as formulas,
this means that rep′ should be rep ∧ ¬pin.
Theorem 5. Let K be a KB, rep a repair function w.r.t. a set of consequence C,
and pin a pinpointing formula w.r.t. the consequence α. Then rep′ := rep ∧ ¬pin
is a repair function w.r.t. C ∪ {α}.
Proof. Let K′ ⊆ K. We need to show that rep′(K′) = 0 iff there is a β ∈ C ∪{α}
such that K′ |= β. We see that rep′(K′) = 0 iff rep(K′) = 0 or pin(K′) = 1. The
former holds iff there is a β ∈ C such that K′ |= β, while the latter holds iff
K′ |= α. Hence, overall, we get the desired result. 
�
This means that the repair functions can be iteratively constructed by conjoining
the negations of the pinpointing formulas of the unwanted consequences that are
encountered during the use of the KB. At any moment, we can try to extract
some meaningful information out of this repair function. Before we describe the
kind of information that can be extracted, and the methods for doing so, we
note that the correctness of Theorem 5 depends fundamentally on the fact that
the repair function captures all sub-KBs that do not entail the consequences in
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C, and not only the repairs (i.e., not only the subset-maximal ones). Figure 2
depicts a BDD for the repairs w.r.t. {v → w, v → y} constructed this way.

Recall now that we are using, during production, a KB that is known to
contain some errors. Still, until it is completely repaired, we want to be able to
extract some meaningful information out of this KB. In particular, we would
like to be able to derive consequences with a guarantee, or at least a hint, of
correctness. This motivates the use of cautious and brave consequences.

Definition 6 (cautious, brave consequences). Let K be a KB, C a set of
consequences, and α a consequence. K cautiously entails α w.r.t. C (K |=c α)
iff for every repair K′ of K w.r.t. C it holds that K′ |= α. K bravely entails α
w.r.t. C (K |=b α) iff there exists a repair K′ of K w.r.t. C such that K′ |= α.

Intuitively, a cautious consequence is guaranteed to hold regardless of which
repair we choose, and hence we are certain that, after the errors have been fixed,
this consequence will still hold. Thus, a user can safely use this consequence,
which circumvents all the known errors. On the other hand, brave consequences
only need to hold in at least one repair. Note that this could, in fact, be the
correct repair, in which case this consequence would still hold after the KB
is fixed. However, there is no guarantee that this will be the case. Although
brave consequences are relatively weak, and do not preserve some basic logical
closure properties (e.g., K |=b a → b and K |=b b → c does not imply that
K |=b a → c), they can be useful to know that the consequence is still possible
after repairing. If this is a wanted consequence, we can use this information
to guide the search for the right repair. Or, if it is an unwanted consequence,
knowing that it is not bravely entailed allows us to avoid making an additional
(but irrelevant) contraction step. We first see that brave consequences can be
decided by operating over the repair function and the pinpointing formula.

Proposition 7. Let K be a KB, rep a repair function w.r.t. C, and pin a pin-
pointing formula for α. K bravely entails α w.r.t. C iff rep does not entail ¬pin.
Proof. If K |=b α, then there exists a repair K′ w.r.t. C such that K′ |= α.
By definition, this means that rep(K′) = 1 = pin(K′). So, it cannot hold that
rep ⇒ ¬pin. Conversely, if K �|=b α, then for every repair K′ we know that
K′ �|= α. By monotonicity of the consequences, the same is true for all subsets
of a repair. That is, for every L ⊆ K, if rep(L) = 1 then L �|= α. In terms of
the pinpointing formula, this means that if rep(L) = 1, then pin(L) = 0, or
alternatively, ¬pin(L) = 1. Hence rep ⇒ ¬pin. 
�
Dealing with cautious consequences requires a slightly more complex analysis. To
verify that a consequence is not cautiously entailed, it does not suffice to simply
check whether there is a set accepted by rep that is rejected by pin (i.e., a set
that avoids C and also rejects α). This is because rep also accepts all subsets of
the repairs. In particular, the empty KB is such that rep(∅) = 1 and pin(∅) = 0,
assuming that α and the consequences in C are not tautologies. Thus, we really
need to be careful that the maximality of the repairs is taken into consideration.
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Proposition 8. Let K be a KB, repC a repair function w.r.t. C, and pinα a
pinpointing formula for α. K cautiously entails α w.r.t. C iff for every set K′

satisfying repC ∧ ¬pinα there exists some L ⊃ K′ that satisfies repC ∧ pinα.

Proof. Suppose that K |=c α, and let K′ be such that satisfies repC ∧ ¬pinα. By
definition of pin, K′ �|= α. Since α is cautiously entailed, K′ cannot be a repair,
but since repC(K′) = 1, it should be a subset of a repair. Let L be any repair
containing K′. By construction, L satisfies repC ∧ pinα. Conversely, if K �|=c α,
then there exists some repair K′ such that K′ �|= α. Again, by construction K′

satisfies repC ∧ ¬pinα. But since K′ is a repair, for every L ⊃ K′ we know that
repC(L) = 0. Hence, there exists no L ⊃ K′ that satisfies rep ∧ pin. 
�
For the sake of completeness, we consider a third kind of entailment that has
been studied in the literature. A KB IAR entails the consequence α w.r.t. a
set C iff α follows from the intersection of all repairs of K w.r.t. C [5]. In this
case, the name IAR is an acronym for intersection of all repairs. Note that when
dealing with IAR entailments, the structure of the repairs becomes irrelevant,
and the only important information is which axioms appear in all of them. In
fact, if we know the intersection of all the repairs, then IAR entailment becomes
just a standard entailment over this sub-KB.

To solve IAR entailments, it suffices to identify the axioms that appear in
the intersection. This can be done in two ways: either, on demand, whenever an
IAR entailment test is required, or during the construction of the repair function,
while preserving an additional data structure. We can see that the intersection
of all repairs is the complement of the union of all justifications. Hence, as we
construct rep, every time that we compute the set of all justifications, we can
simply remove their union from the set of still active axioms. This approach
becomes more efficient if many IAR entailment tests are expected, since the
intersection is computed only once, and used for all tests.

We have so far focused on the problem of computing the repair function,
which encodes all the repairs for a sequence of unwanted consequences from a
KB, and how to use this function, together with the pinpointing formula, to
perform meaningful reasoning tasks that avoid the known errors. In the next
section, we consider a different problem; namely, helping a knowledge engineer
to find the right repair (that is, identify which are the truly faulty axioms) from
a potentially exponential class of options without having to analyse all of them
independently, and trying to minimise their effort.

4 Choosing the Right Repair

So far we have worked under the assumption that a user of the KB, while capable
of detecting errors in the consequences observed, is not knowledgeable enough—
or is not authorised—to definitely fix the KB. As we have seen, there may exist
many different repairs, and each of them is a potential solution to get rid of all
the errors. However, not all of them are equally valid. Suppose for example that
our KB refers to a concept hierarchy, where a → b means that every a is a b.
In this setting, we can consider the KB that has two axioms human → mammal
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and mammal → plant. A consequence of this KB is that every human is a plant,
which is obviously unwanted. Each of the two axioms human → mammal and
mammal → plant is a repair, but clearly, only the former one is a valid repair
w.r.t. the domain of the KB. The task of the knowledge engineer is to identify
this right repair from the sea of all potential repairs.

It should be clear that it is completely infeasible for the knowledge engineer
to explore all the repairs one by one, and decide which is the correct one. First,
there are many such repairs, making this an overwhelming task for a human
resource. Moreover, each repair is expected to be large and, as in the original
KB, it may be very hard to spot an error in an axiom hidden within thousands
of other axioms. Our proposal is to make the knowledge engineer verify only
one axiom at a time, rather than a full repair. Once again, one could think of
checking each axiom in the KB, which is clearly infeasible for very large KBs.
Instead, we select first those axioms that are more likely to lead to the correct
repair in the least amount of steps, regardless of the answer provided by the
knowledge engineer. More precisely, we try to find an axiom that belongs to half
of all repairs, or as close as possible to that.

Definition 9 (cut axiom). Let K be a KB, and R the set of all repairs of K
w.r.t. a set of consequences C. Given an axiom α ∈ K, we define the sets

R+
α := {L ∈ R | α ∈ L},

R−
α := {L ∈ R | α /∈ L}.

The axiom α is called a cut axiom iff for every β ∈ K it holds that

|R+
α | − |R−

α | ≤ |R+
β | − |R−

β |.
The idea behind the cut axiom is that, by verifying its correctness, we can
immediately cut the search space (almost) in half. Specifically, if α is correct,
then we know that the right repair is among R+

α , and if it is wrong, we should
focus only on R−

α . Hence, the first question is how to compute such an axiom.
Unfortunately, it turns out that deciding whether an axiom is a cut axiom is
coNP-hard already for the very simple representation language that we are using
as an example, and only one unwanted consequence is known.

Theorem 10. Given a graph K, an edge v → w ∈ K, and an unwanted reacha-
bility entailment x → y, deciding whether v → w is a cut axiom is coNP-hard.

Proof. We prove this by a reduction from the following coNP-hard problem: is
there a repair L for K w.r.t. x → y such that v → w /∈ L? [12]. Let n := |K|.
We notice that there can exist at most 2n−1 repairs that contain v → w and at
most 2n−1 that do not contain this axiom. Assuming w.l.o.g. that there are at
least two repairs, we construct the new KB M, which extends K by adding 2n
new vertices z1, . . . , z2n, and the edges

E′ := {v → zi, zi → w | 1 ≤ i ≤ 2n}.

Clearly, the size of M is linear on the size of K.
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This new KB has the following property. For every repair K′ of K w.r.t.
x → y, (i) if v → w ∈ K′ then K ∪ E′ is the only repair of M w.r.t. x → y that
contains K′ (that is, there is a one-to-one correspondence between the repairs of
K and of M that contain x → y); and (ii) if v → w /∈ K′, then there exist 22n

different repairs of M w.r.t. x → y that contain K′; in particular, exactly 22n−1

of those repairs contain the axiom v → z1.
In particular, if K has m repairs containing v → w and � not containing this

axiom, then M will have m + � · 22n−1 repairs containing v → z1 and � · 22n−1

repairs not containing the axiom. Moreover, every other axiom of K will appear in
at most 2n−1 repairs of M, and all the axioms in E′ will be in exactly the same
number of repairs as v → z1. Thus, x → z1 is a cut axiom w.r.t. M iff � ≥ 1; that
is, iff there is at least one repair of K that does not contain v → w. 
�
What this theorem shows is that it is in general hard to detect which axiom is the
best option to verify first in order to guarantee a reduction of the search space. In
fact, it is very unlikely that the exact complexity coincides with this lower bound.
It is known that counting the number of justifications, and the number of jus-
tifications to which an axiom belongs are #P-complete problems [13]. Although
such hardness results have not been shown, to the best of our knowledge, also
for the problem of counting repairs, the duality between both problems strongly
suggests that this is the case as well.

On the other hand, notice that not all knowledge representation languages
are as inexpressive as our example graph language. Indeed, even if we restrict to
decidable cases, there are some mainstream languages where reasoning is at least
NExpTime-hard [2]. In such cases (and indeed in any language where reasoning
is PSpace-hard), finding a cut axiom is as expensive, in terms of computational
complexity, as merely deciding whether a consequence follows.

Suppose that we have found a cut axiom α. The next step is to use it to
prune the search space in a way that the process can be iterated until the right
repair is found. After we propose this axiom to the knowledge engineer, they
will respond either that the axiom is (i) correct, or that it is (ii) incorrect. In
the second case, we know that α cannot appear in the right repair. Thus, we
simply eliminate it from the KB K. In practical terms, this means updating the
repair function to ignore α, considering it as being always false. If the repair
function is expressed as a BDD, this operation corresponds simply to removing
the nodes representing α from the diagram, and updating every edge pointing
to those nodes to now point to their lower children—that is, to the node reached
when α is evaluated to false at that node.

In the case (i)—i.e., when α is marked as correct—then we should ignore
all repairs that do not contain α, and focus only on those that include it. In
principle, we could do as before and remove all α nodes, but now assuming that
it is always true within the repair function. However, we want to preserve the
knowledge that α must appear in all repairs. Hence, rather than removing the
variable from the formula, we enforce the repair function to exclude any set that
does not contain α. In a BDD, this is achieved by substituting the lower branch
of every α node with the 0-terminal.
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Importantly, after these operations the resulting structure is still a repair
function, but which now accepts only those repairs that comply with the infor-
mation provided by the knowledge engineer. Hence, we can repeat the process,
reducing at each step the total number of repairs remaining. Note that once that
an axiom has been analysed by the knowledge engineer, it will never be proposed
by the system again. Hence, in the worst case, it will need as many tests as there
are axioms in the KB; i.e., it is not worse than the näıve approach of testing
all axioms in order. In reality, far less axioms will be tested. First, notice that
all axioms that appear either in all repairs, or in none of them will never be
proposed by the method: the only way they become cut axioms is if there is only
one repair left, in which case the process has already finished. Second, every time
that we test an axiom, we reduce the class of remaining repairs, which in turn
increases both, the class of axioms that belong to all repairs, and the class of
axioms that belong to none. Thus, more axioms will be excluded from testing.

5 Conclusions

We have proposed a methodology for helping knowledge engineers to make deci-
sions in relation to faulty knowledge bases. The premise of this work is based
on the idea of preserving all the information regarding all the possible ways in
which errors, which may be detected while a KB is in use, may be avoided.
For this purpose, we propose to store a Boolean function, which accepts only
those sub-KBs that are free of all known errors. If new faults are encountered,
this Boolean function—called the repair function—can be updated using known
techniques from the area of consequence explanation (or axiom pinpointing).

The importance of the repair function is that it can be used to decide different
properties of the consequences of the original KB. Specifically, one can verify
whether a consequence can still be derived from any possible repair (cautious
reasoning), or from at least one of them (brave reasoning). As we have no precise
notion a priori of the actual repair that will be obtained after the knowledge
engineer has verified the correctness of the axioms, brave consequences have also
a place as ones that can potentially remain.

In addition, we introduced the notion of a cut axiom, which is the one that
appears in half the repairs, or as close to that as possible. Although finding a
cut axiom is computational hard, it is an effective tool for guiding the search for
the right repair that fixes all the faults encountered. The computational effort
needed to find the cut axiom is a good investment in reducing the human cost
of verifying the correctness of a repair. We notice that a full repair plan (e.g.
a decision tree) can be computed offline before any intervention by the human
expert, so that they are given a sequence of questions without delay.

In summary, our proposal is to preserve all the information of the poten-
tial repairs during deployment to allow users to make informed decisions that
sidestep known errors, and to use this information to minimise the number of
queries made to a human expert to identify the actual correct knowledge base
that should be used in the following publishing cycle.
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One line of future research is to try to extend the notion of a cut axiom into
a cut consequence; that is, using potentially complex consequences to better
separate the space of repairs. The challenge in this direction is to adequately
restrict the class of consequences that may be used, and to develop an effective
method that does not need to enumerate them all. Another goal is to improve
the notion of a cut axiom so that it also takes into account the improvements
on the following steps; for instance, to consider those that minimise the average
number of questions that need to be asked overall. Finally, we will implement
a prototypical system for a well-known knowledge representation language, and
test the effectiveness of our methods on realistic KBs.
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Abstract. Several conventional clustering methods consider the squared
L2-normwhich is calculated fromobjects coordinates.To extractmeaning-
ful clusters from a set of massive objects, it is required to calculate the dis-
similarity from both objects coordinates and other features such as objects
distribution. In this paper, JS-divergence based k-medoids (JSKMdd) is
proposed as a novel method for clustering network data. In the proposed
method, the dissimilarity that is based on objects coordinates and an
object distribution is considered. The effectiveness of the proposed method
is verified through numerical experiments with artificial datasets which
consist non-linear clusters. The influence of the parameter in the proposed
method is also described.

Keywords: Clustering · k-medoids · Kernel density estimation ·
Jensen-Shannon divergence

1 Introduction

Clustering is one of the data analysis methods that divide a set of objects into
groups called clusters [1,2]. Objects classified in the same cluster are considered
similar, whereas those in different clusters are considered dissimilar. A similarity
or dissimilarity which are defined between objects is considered in the clustering
procedure. The squared L2-norm is a typical dissimilarity. When the squared
L2-norm is considered as the dissimilarity, a cluster partition forms a Voronoi
diagram. Because of the property of the squared L2-norm, it is difficult to cluster
a set of objects into non-linear clusters. Kernel method is actively used in pattern
analysis to handle complex datasets and extract important properties [1,3,4].
The kernel method is well-known as the significant method to handle complex
datasets which consist non-linear cluster boundary. The dissimilarity between
object and cluster center is considered in high dimensional feature space in the
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kernelized clustering method. Several conventional clustering methods consider
the squared L2-norm which is calculated from objects coordinates.

To extract meaningful clusters from a set of massive objects, it is required to
calculate the dissimilarity from both objects coordinates and other features such
as objects distribution. For example, the Mahalanobis distance that is based on
the variance-covariance matrix is a typical example of above [1,5]. In addition,
noise clustering [6], tolerance [7], and even-sized [8] approaches are typical exam-
ples of clustering methods that considers typical cluster structures into optimiza-
tion framework. Moreover, local outlier factor (LOF) which is known to as a useful
anomaly detection method uses k-distance to calculate the density of objects [9].
Thesemethods and their utility suggest that objects coordinates, cluster structure,
and data distribution are effective to cluster a set of massive objects.

In this paper, JS-divergence based k-medoids (JSKMdd) is proposed as a
novel method for clustering network data. In the proposed method, the dissim-
ilarity that is based on objects coordinates and an object distribution is con-
sidered. First, the probability density function is estimated from an object and
its neighbors by kernel density estimation (KDE) [11]. Second, the dissimilar-
ity between the distributions obtained by KDE is calculated by Jensen-Shanon
divergence (JS-divergence) [12]. Third, k-medoids (KMdd) [10] is executed to
obtain cluster partition by using the dissimilarity based on JS-divergence.

Further, the effectiveness of the proposed method is verified through numer-
ical experiments with artificial datasets which consist non-linear clusters. The
influence of the parameter in the proposed method is also described.

The remainder of this paper is organized as follows: In Sect. 2, we intro-
duce the notation, KMdd, KDE, and JS divergence. In Sect. 3, we propose
JS-divergence based KMdd (JSKMdd). In Sect. 4, we describe the conducted
experiments to demonstrate the effectiveness of the proposed method. In Sect. 5,
we provide some concluding remarks regarding this research.

2 Preliminaries

A set of objects to be clustered is given, and it is denoted by X = {x1, . . . , xn} ,
where xk (k = 1, . . . , n) is an object. In most cases, each object xk is a vector in
the p-dimensional Euclidean space �p, that is, an object xk ∈ �p. A cluster is
denoted by Gi, and a collection of clusters is given by G = {G1, . . . , Gc}. The
membership degree of xk belonging to Gi and a partition matrix is denoted as
uki, and U = (uki)1≤k≤n, 1≤i≤c.

2.1 k-medoids

k-medoids is a variant of k-means clustering. The cluster center is used as a
cluster representative in k-means [2]. In contrast, an object in each cluster is
chosen as a cluster representative in k-medoids [10]. An objective function of
k-medoids is as follows:

JKMdd(U,W ) =
c∑

i=1

n∑

k=1

n∑

l=1

ukiwlirkl. (1)
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Here, rkl represents a measure of relationship between objects and W =
(wli)1≤l≤n, 1≤i≤c is a variable called prototype weight. In many cases, rkl is con-
sidered as a dissimilarity between objects. An algorithm of k-medoids is based on
the alternating optimization with uki and wli under the constraints on uki and wli

as follows:

Uh =

{
(uki) : uki ∈ {0, 1} ,

c∑

i=1

uki = 1, ∀k

}
, (2)

Wh =

{
(wli) : wli ∈ {0, 1},

n∑

l=1

wli = 1, ∀i

}
. (3)

The lth-object that takes wli = 1 is the representative in a cluster. The
important feature of k-medoids is that it handles relational data denoted as a
table of distances between objects such as network data.

The optimal solutions for uki and wli are as follows:

uki =

⎧
⎪⎨

⎪⎩
1

(
i = arg min

s

n∑

l=1

wlsrkl

)

0 ( otherwise )
, (4)

wli =

⎧
⎪⎨

⎪⎩
1

(
l = arg min

t

n∑

k=1

ukirkt

)

0 ( otherwise )
. (5)

The medoid of Gi is denoted in another form as follows:

Mdd(Gi) = arg min
xk∈Gi

∑

xl∈Gi

d (xk, xl) . (6)

(5) and (6) mean the same optimal solution. By considering the optimization
problem of Jkd, the optimal solution of wli is described in (5). Further, (6) is
considered by considering k-medoids in the algorithmic procedure. The algorithm
of KMdd is summarized as follows:

Algorithm 1. KMdd
KMdd1 Set initial medoids wli ∈ W .
KMdd2 Calculate uki ∈ U by (4).
KMdd3 Calculate wli ∈ W by (5).
KMdd4 If convergence criterion is satisfied, stop. Otherwise go back to KMdd2.

The number of repetitions, the convergence of each variable, or the conver-
gence of an objective function is used as the convergence criterion in KMdd4.
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2.2 Kernel Density Estimation

KDE is one of the methods to estimate probability density function [11]. KDE is
a nonparametric method and does not require a specific density function. KDE
estimates theprobability density function fromgiven a set of objects automatically.

Let xk be an independent, identically distributed random variable. KDE
estimates a probability density function according to the following function:

p(x) =
1

nh

n∑

k=1

K

(
x − xk

h

)
. (7)

where K(·) is a kernel function and h > 0 is the bandwidth parameter which
controls the smoothness.

The kernel function K(·) satisfies the following properties:

K(x) ≥ 0,

∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
x2K(x)dx > 0.

A common example of K(x) is the Gaussian kernel:

K(x) =
1√
2π

exp
(

−x2

2

)
.

A multivariate density function estimated from KDE is as follows:

p(x) =
1
n

n∑

k=1

p∏

j=1

1
hj

K

(
xj − xj

k

hj

)
. (8)

where, hj is also the bandwidth parameter which controls the smoothness for
each dimension.

2.3 Jensen-Shannon Divergence

JS-divergence is a method that measures the dissimilarity between two proba-
bility distribution functions [12]. JS-divergence is based on the Kullback-Leibler
divergence (KL-divergence) [13]. KL-divergence between two probability distri-
bution functions p(x) and q(x) is as follows:

KL(p || q) =
∫ +∞

−∞
p(x) log

p(x)
q(x)

dx.

It is known that KL-divergence is not symmetric. Then, JS-divergence has
been proposed to realize symmetry. JS-divergence is as follows:

JS(p || q) =
1
2
KL(p || m) +

1
2
KL(q || m), (9)

where m(x) = 1
2 (p(x) + q(x)).
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3 Proposed Method

JSKMdd is proposed as a novel method that considers objects coordinates and
distribution to calculate the dissimilarity. In JSKMdd, KDE estimates an object
distribution of xk by using its neighbors. JS-divergence gives the dissimilarity
between two distributions.

First, the procedure of estimating the object distribution is described. The
neighbor objects xk is defined as follows:

N(xk) = {x ∈ X | d(xk, x) ≤ D} (10)

where D > 0 is a parameter which is a radius of hyper-sphere and d(xk, x) is a
distance of two objects like L2-norm. It means that objects x within the range
from the object x to D are included to N(xk). Another definition is as follows:

N(xk) = {x ∈ X | d(xk, x) ≤ d(xk, xq(t))} (11)

Here, q(t) means the object numbers sorted ascending order of the distance.
First, the distance between xk to x ∈ X is calculated.

d(xk, x1), . . . , d(xk, xn).

The above distance is sorted in ascending order as follows:

d(xk, xq(1)) ≤ . . . ≤ d(xk, xq(n)),

where q(t) ∈ {1, . . . , n} means the object number with t-th smallest distance.
q(t) is the number replaced in order of the distance. Compared with (10), N(xk)
defined by (11) consists t neighbors.

The object distribution p(xk) is calculated by KDE using the N(xk) defined
by (10) or (11) as follows:

p(xk) =
1

|N(xk)|
∑

x∈N(xk)

p∏

j=1

1
hj

K

(
xj − xj

k

hj

)
. (12)

where |N(xk)| means the number of objects in N(xk). p(xk) is the data dis-
tribution calculated by its neighbors N(xk). The dissimilarity is calculated by
JS-divergence with the data distribution p(xk) according to (9).

The optimization problem of JSKMdd is as follows:

JJSKMdd(U,W ) =
c∑

i=1

n∑

k=1

n∑

l=1

ukiwlir
′
kl,

Uh =

{
(uki) : uki ∈ {0, 1} ,

c∑

i=1

uki = 1, ∀k

}
,

Wh =

{
(wli) : wli ∈ {0, 1},

n∑

l=1

wli = 1, ∀i

}
.
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where the objective function and constraints are the same as (1), (2), and (3).
The difference of KMdd and JSKMdd is that r′

kl is the JS-divergence calculated
by (9) under (11).

The algorithm of JSKMdd is summarized as follows:

Algorithm 2. JSKMdd
JSKMdd1 Set parameter t or D. Calculate p(xk) by (12).
JSKMdd2 Calculate rkl by (9).
JSKMdd3 Set initial medoids.
JSKMdd4 Calculate uki ∈ U by (4).
JSKMdd5 Calculate wli ∈ W by (5).
JSKMdd6 If convergence criterion is satisfied, stop.

Otherwise go back to JSKMdd4.

In this paper, k-medoids type algorithm is considered because a large calcu-
lation time is required to calculate JS-divergence. If JS-divergence is considered
in k-means type algorithm, the dissimilarity between object and cluster centers
is required to update in each iteration. JS-divergence based k-means takes much
computation costs. To avoid much computation costs, k-medoids type algorithm
is considered.

4 Experiments

We conducted numerical experiments with two datasets to verify the effective-
ness of JSKMdd. First, we describe the calculation conditions of the numerical
experiments. Second, we describe the results by JSKMdd, k-means, KMdd and
spectral clustering [14]. Third, we summarize the results and the features of the
proposed method.

4.1 Experimental Setup

The abovementioned methods are compared using the Polaris and Double circle
dataset and evaluated the value of adjusted rand index (ARI) [15]. ARI is a
measure of similarity between two cluster partitions, and it takes the best value
of 1 when two cluster partitions are exactly the same.

The Polaris dataset comprises 3 clusters of 51 objects in total, and it has two
attributes in original form. There are 13, 15, and 23 objects in each cluster. This
dataset is linearly separable. The Double circle dataset comprises 2 clusters of
150 objects in total, and it has two attributes in original form. There are 100
objects in outer circle and 50 ones in inner ball. This dataset is not linearly
separable and known to as one of the benchmark dataset which has nonlinear
cluster boundary. Figures 1 and 2 are illustrative examples of adequate cluster
partition.
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Fig. 1. Porlais dataset. Fig. 2. Double circle dataset.

4.2 Experimental Results

First, the results of ARI of each method are summarized in Table 1. Table 1 shows
that several methods including the proposed method obtain adequate cluster
partition. The result of JSKMdd for the Polaris dataset is when |N(xk)| = 6
and for each hj = 2.000. The result of JSKMdd for Double circle dataset is
when |N(xk)| = 4 and for each hj = 0.001. The best ARI are shown by k-means
and KMdd from the 100 trials.

Figures 3 and 4 are illustrative examples of cluster partition by spectral clus-
tering and k-medoids, respectively. Spectral clustering fail to obtain adequate
cluster partition that one object which is the center bottom is clustered into right
cluster from Fig. 3. KMdd can not obtain adequate cluster partition because of
the Double circle dataset consists non-linear cluster from Fig. 4.

Table 1. Results of ARI.

Polaris Double cicle

JSKMdd 1.000 1.000

k-means 1.000 0.008

KMdd 1.000 0.005

Spectral clustering 0.935 1.000

Next, the graphs showing how the value of ARI changes with Double circle
dataset are presented. In Figs. 6, 7, 8, 9, 10, 11 and 12, the vertical and horizontal
axes indicate the value of ARI and the value of hj , respectively. In these graphs,
all hj are the same value and are set between 0.001 and 0.030. The value of
ARI increases ranges in 0.001 and around 0.008 and tales 1.0. The value of ARI
decreases as the value of hj increases. From these Figs., JSKMdd are robust with
a wider interval of hj in case of |N(xk)| = 15.
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Fig. 3. Result of Porlais dataset by
spectral clustering.

Fig. 4. Result of Double circle dataset by
KMdd.

Fig. 5. Value of ARI by JSKMdd
(|N(xk)| = 3) with Double circle
dataset.

Fig. 6. Value of ARI by JSKMdd
(|N(xk)| = 5) with Double circle dataset.

Fig. 7. Value of ARI by JSKMdd
(|N(xk)| = 7) with Double circle
dataset.

Fig. 8. Value of ARI by JSKMdd
(|N(xk)| = 10) with Double circle dataset.
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Fig. 9. Value of ARI by JSKMdd
(|N(xk)| = 12) with Double circle
dataset.

Fig. 10. Value of ARI by JSKMdd
(|N(xk)| = 15) with Double circle dataset.

Fig. 11. Value of ARI by JSKMdd
(|N(xk)| = 17) with Double circle
dataset.

Fig. 12. Value of ARI by JSKMdd
(|N(xk)| = 20) with Double circle dataset.

4.3 Discussions

The overview of the proposed method shown in Table 1 and the abovementioned
figures is that the proposed method obtains the best cluster partition for each
dataset.

The features of the proposed method are summarized as follows:

– Table 1 shows that JSKMdd obtains better results than other methods. In
JSKMdd, the objects are converted to density function by KDE according
to (8). The dissimilarity between the objects which are converted to density
function is calculated by JS-divergence (9). Owing to the dissimilarity based
on both objects coordinates and distribution, JSKMdd obtains better results
for Polaris and Double circle datasets..

– JSKMdd uses two parameters |N(x)| and hj . Figures 5, 6, 7, 8, 9, 10, 11
and 12 show relationship between ARI and parameters. Except in the case
of |N(x)| = 20 described in Fig. 12, ARI is 1 near hj = 0.010 described in
Figs. 5, 6, 7, 8, 9, 10 and 11. In the case of |N(x)| = 7 described in Fig. 7,
ARI increases or decreases between 0.010 and 0.020. These results show that
determining two parameters |N(x)| and hj is important for JSKMdd.

– JSKMdd obtains both linear and non-linear cluster partition. Applying
KDE and JS-divergence requires much calculation cost. Simplification and
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approximation for calculating the dissimilarity are important to apply
JSKMdd to real world datasets. To clarify the impact of those procedures
to cluster boundary is also important.

The strength of JSKMdd is obtaining linear and non-linear cluster boundary.
To obtain better cluster partition and clarify the cluster boundary, automatic
determination mechanism for parameters is required.

5 Conclusions

In this paper, JSKMdd was proposed. The proposed method is different from
KMdd in that, it uses KDE and JS-divergence to calculate dissimilarity. More-
over, the effectiveness of the proposed method is verified through numerical
experiments. These experiments indicate that JSKMdd can be used in a wider
range than k-means, KMdd and Spectral clustering.

In future works, we will compare the proposed method with other clustering
methods with several benchmark datasets. Comparison with other estimation
based on other density function is also possible future work. We will also con-
struct new clustering methods for network data [16] according to the procedure
of JSKMdd.

Acknowledgments. This work was partly supported by JSPS KAKENHI Grant
Numbers JP19K12146. This work was also partly supported by Telecommunications
Advancement Foundation.
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Abstract. In this paper we focus on a still neglected consequence of
the adoption of AI in diagnostic settings: the increase of cases in which a
human decision maker is called to settle a divergence between a human
doctor and the AI, i.e., second opinion requests. We designed a user
study, involving more than 70 medical doctors, to understand if the sec-
ond opinions are affected by the first ones and whether the decision
makers tend to trust the human interpretation more than the machine’s
one. We observed significant effects on decision accuracy and a sort of
“prejudice against the machine”, which varies with respect to the respon-
dent profile. Some implications for sounder second opinion settings are
given in the light of the results of this study.

Keywords: Human decision making · Second opinion ·
ECG overreading · Decision support systems

1 Introduction

Many approaches to the design of computer-based decision support systems take
a cognitivist perspective: according to this stance, a decision maker is an agent
that must be supported in reaching the optimal decision in light of the available
evidence or data. However, studies in the field of naturalistic decision making [9]
have observed that human decision making seldom occurs in single-agent settings
but rather in social and collaborative ones. In real-world settings, decision mak-
ers can rely on the support of colleagues in case they deem themselves unable
to reach a definitive decision autonomously. In medicine, these situations are
common and are called “second opinion”. When a second opinion is pursued by
a doctor (and not by a patient to get an alternative point of view) this involves
a colleague to get support on the interpretation of a complex case.

In this paper we focus on particular (and still prospective) second-opinion
scenario, where this opinion is requested by a human doctor to resolve a discor-
dance with a diagnostic AI. We report the main results of a user study performed
in the application domain of Artificial Intelligence-assisted Electrocardiogram
(ECG) reading. AI-supported ECG reading will likely improve this clinical task
both in terms of efficiency (i.e., higher throughput) and in terms of effectiveness
c© Springer Nature Switzerland AG 2019
V. Torra et al. (Eds.): MDAI 2019, LNAI 11676, pp. 283–294, 2019.
https://doi.org/10.1007/978-3-030-26773-5_25
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(i.e., high diagnostic accuracy). Preliminary researches seem to back this pre-
diction: In [1] the authors describe a deep learning algorithm capable to iden-
tify asymptomatic left ventricular dysfunction from traditional 12-lead ECGs
with a better performance with respect to the common BNP blood test. Simi-
larly, [19] claimed to have developed a deep learning algorithm capable to detect
and classify myocardial infarctions in traditional ECGs at the performance level
of human cardiologists; [13] claimed to have developed an algorithm that even
exceeds the performance of board-certified cardiologists in detecting a wide range
of heart arrhythmias from electrocardiograms recorded with a single-lead wear-
able monitor. The deep learning system described in [17] exhibited an accuracy
of 92% in detecting a wide range of abnormalities in emergency situations, while
the system described in [5] reached an accuracy of 98% in detecting myocardial
infarctions.

Furthermore, the need for this kind of support is clear: indeed, it is known
that cardiologist proficiency at ECG interpretation is far from being perfect, not
only in case of residents [16], when almost one ECG out of two can be misread,
but also in case of expert cardiologists, when accuracy rates ranging from 53%
to 96% [14] also depending on the difficulty of the cases considered. This is also
reflected by the relatively low agreement that is observed among cardiologists
who interpret the same ECG [3].

For all these reasons, it is a reasonable guess that in the next future most
cardiological practices will be supported by new-generation, AI-driven computer
supported ECG interpretation systems. It is likewise reasonable to believe that
current recommendations will be valid even when these systems spread in car-
diological practice, and that therefore AI-based decision support systems will
remain adjuncts to the clinician, and that “all computer-based reports [will]
require physician overreading” [10].

To our knowledge, no study has yet focused on the potential biases occurring
in second opinion settings1, that is the process in which a previous decision is
either confirmed or rejected by a second decision maker. In particular, in this
paper we will focus on two constructs: conformity bias2, which is the tendency to
conform to, and hence confirm, the opinion of others, thus considering them more
expert in regard to some matter than they actually are; and the balance between
authority bias and automation bias, that is any tendency of second-opinion deci-
sion makers to prefer either the opinion of the human expert (considered a sort of
authority) or the advice by the machine [7]. In our study, this means to address
whether overreading (or second opinion) is affected by, respectively, a tendency
to confirm the first opinion (cf. conformity bias) or by a tendency to agree with
either an expert colleague or any machine that is perceived as highly accurate
(authority vs automation bias).

1 These kind of settings in the cardiological domain is also called ECG overreading.
2 Other contributions call this bias “truth bias” [18], which is defined as the tendency of

someone to believe that “others are telling the truth more often than they actually
are” and hence to confirm what they say, mainly to spare themselves feelings of
discomfort.
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2 Methods

Methodologically we have adopted the business simulation game approach, which
is an established method to understand how people interact with technologies
and are affected by the business models and policies underlying and enacted by
those technologies [4]. For this study, we conceived a simulation game where we
invited a panel of clinicians with varying proficiency in ECG reading to formulate
informed opinions on three clinical cases, described succinctly and accompanied
with a high-resolution 12-lead ECGs.

We asked the participants to get themselves into a part in the following busi-
ness scenario: they were told that a colleague of theirs, a senior cardiologist with
26 years of experience in ECG reading, had disagreed with the interpretation
that an advanced and certified Artificial Intelligence (AI) system supplied him,
in regard to three non-trivial cases; therefore he requested each participant to
act as an arbitrator and express a ‘second opinion’ by over-reading the ECGs
at hand. The participants were also told that the above AI had been recently
acquired by their hospital and had shown a diagnostic accuracy on border-line
cases of approximately 96–97%.

To help design this scenario, two cardiologists extracted three cases from the
ECG Wave-Maven3 database, which is an online repository of more than 500
ECGs of various difficulty developed for the self-assessment of students and clin-
icians in ECG reading proficiency. The ECG Wave-Maven database categorizes
cases according to a 5-level scale of difficulty (from 1, the simplest cases to 5, the
most difficult ones): the three cases were extracted randomly from the 94 cases
denoted as of difficulty 4 (namely, cases no. 6, 18, 73), in order to avoid extremely
difficult cases and at the same time to make the need to rely on over-reading
and second opinion credible.

An online, multi-page questionnaire was then prepared on the Limesurvey
platform, to be administered to a sample of clinicians. These gave their consent
to the anonymous and aggregate use of the responses to address our research
questions. In the online questionnaire, each of the above three cases was pre-
sented in a different page, with a brief clinical description and single ECG.
This was rendered as a raster color image of 675× 450 pixels (see Fig. 1), but
a floating magnifying lens feature was available to let respondents look at ECG
details at a twofold resolution. The form asked the respondents to either choose
among two alternative diagnoses, one given by the AI and the other one by the
human colleague, or, in case of disagreement with these interpretations, to pro-
pose a third one, different from the former two. Respondents were also requested
to assess the plausibility of each diagnosis proposed to them (on a semantic
differential rating scale, from 1 ‘very low’ to 4 ‘very high’). To assess prefer-
ences, since we were interested in assessing how conformity bias affects human
decision in case of erroneous advice, both the proposed diagnoses were wrong

3 ECG Wave-Maven, Copyright (c) 2001–2016 Beth Israel Deaconess Medical Cen-
ter. All rights reserved. https://ecg.bidmc.harvard.edu/maven/mavenmain.asp Last
Accessed: 17th May 2018.

https://ecg.bidmc.harvard.edu/maven/mavenmain.asp
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(although variously plausible). In order to avoid order bias, half of the sam-
ple read the diagnosis proposed by the AI before the diagnosis by the human
colleague, while the other half read the diagnoses in the opposite order. Also
the two wrong diagnoses associated to each case were randomly assigned to
either the AI or the human colleague so that each diagnosis was seen associ-
ated with both kinds of first opinions an even number of times at sample level.
In its last page, the online questionnaire asked the respondents some profiling
information (namely gender, main specialty, work experience in that specialty,
and self-assessed proficiency in ECG reading on a 3-level rating scale, from 1,
basic skills, to 3 advanced skills). This would allow to create three further strata
(besides gender): cardiologists (vs. non-cardiologists), long-experienced clinicians
(vs. clinicians with less than 10 years of practice), and advanced proficiency read-
ers (vs. lower proficiency readers).

Fig. 1. Screenshot from the questionnaire page presenting the case no. 18 ‘79-year-old
woman with shortness of breath requiring intubation’ and its ECG (Copyright, 2005
Beth Israel Deaconess Med Ctr.). The magnifying lens feature is superimposed on the
ECG raster image. The alternative options were displayed to each study participant in
random order.

Since we would not be able to detect those cases in which neither of the two
first opinions were really misleading the reader but, so to say, one of the advices
just confirmed an autonomous (wrong) interpretation by the human reader, we
also conceived a second survey, where the same panel of experts were supposed
to consider the same three ECGs (in different order) after a due wash-out period
but without receiving any prior advice, neither by AI nor a human colleague.
Since the respondents were never given the right diagnoses, nor received any
feedback on their interpretation, we consider four months as an adequate lapse
for the wash-out period.

3 Results and Analyses

In July 2017, a panel of 157 potential participants were personally invited by
email to complete participate in the simulation game. Invitations were personal
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and the questionnaires had restricted (tokenized) access to avoid multiple com-
pilations and allow for one gentle reminder that was sent after two weeks after
the initial invitation. When we closed the survey two additional weeks later,
we collected 246 unique interpretations by 75 clinicians (see Fig. 2) who had
completed the overall task of reading 3 ECG and giving their opinion in approx-
imately 10 min and 7 s on average (M = 607, SD = 538 s).

Fig. 2. Descriptive statistics of the profile of the participants of the second opinion
study (N = 73, as two participants did not fill in the profile items).

3.1 Plausibility Analysis

In regard to the perceived plausibility of the first opinions, not surprisingly, those
who discarded these options (mean rank = 148) considered these significantly less
plausible that those who trusted them (mean rank = 243, Mann whitney test,
U = 10684, Z =−7.54, P< .000). The former respondents did not found signifi-
cantly different the two interpretation with which they disagreed (Mann Whit-
ney test, U = 1999, Z =−.41, P= .68). Conversely, the latter respondents found
the responses given by the human colleague significantly more plausible (mean
rank = 164, see Fig. 4) than those given by the AI (mean rank = 134) although,
we remind the reader, these were the same (and equally wrong) at sample level
(Mann Whitney test, U = 8863, Z =−3.12, P = .002). As a whole, the respondent
sample deemed the interpretations proposed by the human colleague signifi-
cantly more plausible than those proposed by the AI (Mann Whitney test: mean
ranks = 231 vs. 201, U = 20149, Z =−2,5, P= .011). Moreover, in absolute terms
respondents found the AI advice to be generally of low plausibility significantly
(MedianAI = 2 CI = [2,1], frequency of plausibility values equal or lower than 2:
.42 CI = .7; and equal or greater than 3: .58 CI = .7, proportion test: P = .009),
while statistical significance was not found with respect to the average perceived
accuracy of the human colleague (MedianHuman = 3 CI = [3,2]). Even among
the respondents who confirmed the interpretation by the AI, the majority (76
vs. 70) attached to this interpretation a plausibility of 1 or 2 (Median = 2, in a
4-point scale).
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The average plausibility attached to the options given by the AI can be
considered associated with trust in the AI support. Gender and proficiency
in ECG reading were found to affect this perceived accuracy of AI: Perform-
ing a Mann Whitney test we found that female readers tended to find the
AI advice significantly more accurate/reliable than male readers (U = 3299,
P = .045, means = 2.27 vs 2.62, medians = 2 vs 4), and the same holds for the
less skilled readers (U = 2213, P = .048, means = 2.25 vs 2.0, medians = 2 vs 2).
As depicted in Fig. 4 (on the right), no other profile characteristic was found to
have a significant influence on the perceived reliability of AI.

3.2 Confirmation Trends Analysis

After considering the plausibility of each option proposed, the respondents had
to choose between one of these or propose a different, new interpretation. Confir-
mation rate was high: The respondents agreed with one of the two (inaccurate)
previous interpretations most of the times (70%, 171 times out of 246). Not sur-
prisingly, cardiologists and the respondents claiming to possess advanced ECG
reading skills were those who discarded others’ advice significantly more often
(more precisely, cardiologists rejected the advice twice more often than non car-
diologists, 35% vs 18%, P = .016; the same holds for the more skilled readers
with respect to the less skilled ones, 50% vs 25%, P = .005). Thus, observations
allow to claim that specialization and (self-perceived) reading proficiency influ-
ence reliance on others’ opinion. Conversely, gender and work experience did not
affect this behavior. Indeed, the more experienced readers discarded the advices
as many times as the less experienced ones (29% vs 29% P = 1), and the male
readers did it slightly more often than the female ones (31% vs 24%, P = .33)
but not significantly so.

Interestingly (and in accordance with the results on plausibility mentioned
above), the participants chose the human interpretation significantly more often
than the AI one (57%4, 43%4) although, as recalled above, the given advices
had been randomized so that both the AI and the human colleague were giving
the very same interpretations. This result (all together with the finding about
the perceived plausibility) amounts to what we can call a prejudice against the
machine. This prejudice was stronger in the cardiologists than in other medi-
cal specialists and in those claiming an advanced ECG reading competency in
comparison to those readers who claimed to have a less than advanced skill.

Respondents preferred the interpretation formulated by the human colleague
more often than the diagnosis given by the AI (97 vs. 74). This difference is statis-
tically significant: The one-tailed probability of this ratio (or a more extreme one)
assuming that frequencies should be equal because the two sources (i.e., human
and AI) offered the very same diagnoses is P = .044 (z = 1.70). As depicted in
Fig. 3, the cardiologists, the clinicians with less than 10 years of ECG reading
practice, and clinicians claiming to possess advanced ECG reading skills were
the categories of respondents that preferred the human advice over the AI’s
one more often. In the former case the difference in the proportions of choice is
statistically significant.
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3.3 Impact on Accuracy Analysis

To assess the impact of first opinions on accuracy, we refer to the results of
the subsequent questionnaire, sent in December 2017. As said in Sect. 2, we
recontacted the respondents who had actually participated in the comparative
study and asked to report their most plausible diagnosis for each case in a free
text field (each case was presented in random order). As hinted above, while
the case description and ECG were the same with respect to the second opinion
study, in this second study no diagnostic alternative or previous interpretation
was proposed.

Fewer people responded to this second invitation (N = 21) and completed
the three reading tasks in approximately 10 min (M = 611.27 s, SD = 361.64).
Although different in cardinality, the samples in the two studies were not signif-
icantly different in regard to: work experience (Fisher’s exact test on the experi-
ence dichotomized in terms of proportions of ECG readers with less than 10 years
of experience vs. readers with at least 10 years, P = .79, OR = 0.81, CI = 0.29 to
2.29); in regard to the proportion between cardiologists and non-cardiologists
involved (Fisher’s exact test P = .78 OR = 1.2941, CI: .42 to 4); and in regard to
the self-assessed proficiency in ECG reading (Median = 2, Mann-Whitney test
on mean ranks, 53.2 vs. 45.4, P = .21, Z =−1.26, U = 586): in particular, the
proportions of clinicians declaring to possess at least intermediate skills were
approximately the same in the two studies, i.e., three quarters of the sample
(Fisher’s exact test P = 1, OR = 1.0345, CI = 0.3 to 3.56). This is important to
allow for the comparison of the results.

Fig. 3. Stacked bar charts indicating the proportions of respondents who confirmed
the external advice provided by either the human (blue side) or the AI (red side).
Since the proportion of respondents who confirmed one advice is the complement of
the proportion of those who chose the other, if a confidence interval (denoted as the
slanting border between the two sides of the bar) does not cross the 50% vertical line,
the corresponding estimates of the proportions of choice are significantly different.
(Color figure online)
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3.4 Conformity Bias Analysis

If we combine the results from both stages of the study, we can address whether
the respondents’ opinions were affected by conformity bias and, if so, what kind
of opinion source was prominent. As said above, all the times the respondents
confirmed a first opinion in the first part of the study (either by the AI or the
expert colleague) they actually confirmed an inaccurate diagnosis. Even when
they differed with the external opinions, the participants proposed an accurate4

diagnosis only in one fourth of cases (19 out of 75, 25%). Therefore (see Fig. 5),
the overall error rate was surprisingly high, 92% (19 right diagnoses out of 245).
It is worth noting that the three cases were labelled as a level 4 difficulty in
the ECG Wave-Maven database (on a 1 to 5 scale), that is challenging but
not extremely difficult. Fisher’s exact test revealed that the error rate in read-
ers claiming to have at least 10 years of experience and the error rate of those
with less than 10 years of experience were not statistically different (P = .62, odd
ratio = 1.53, CI = .5662 to 4.1429); likewise, no significant difference was found
with respect to error rate between cardiologists and non cardiologists (P = .42,
OR = .78, CI = .2976 to 2.0857). Conformity bias affects clinicians irrespective of
their work experience (38–89 vs. 27–64, P= 15). Cardiologists were the profes-
sional stratum less prone to conformity bias and who refused the others’ advice
more often (53–98 vs. 9–52, P = .003). The same holds for those who claimed to
have advanced EG reading skills (18-18 vs. 48–135, P = .009). Lastly, we have
observed that cardiologists, when provided with two likewise plausible diagnoses
by an expert colleague and a state-of-the-art artificial intelligence, still prefer
significantly the human advice, even when this is wrong: we can therefore claim
that expert bias (or, according to our naming convention, prejudice against the
machine) is still significantly stronger than automation bias in aid supported
ECG over-reading.

4 Discussion and Conclusion

Discrepant findings that require arbitration constitute an important subset of
clinical examinations [6] and the deployment of highly accurate computerized
systems will probably increase the number of divergences, if only for the fact
that their use could make the ‘second opinion’ protocol (when one opinion is by
the AI system itself) the new ‘de facto’ standard of exam interpretation (and
hence also ECG reading).

In this paper we have presented a user study aimed at investigating the
impact of inaccurate decision support in ECG reading and whether respondents
4 Accuracy was judged by two cardiologists according to whether the diagnosis was

either the same given by the gold standard (i.e., the official diagnosis associated with
the ECG), or it was somehow close to it and would have informed an appropriate
treatment or management of the case at hand.

5 We present the data in a 2× 2 contingency table and the P value associated with
a Fisher’s exact test. The first figure in the pair represents the number of clinicians
who discarded the given advice.
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Fig. 4. On the left: Box plots of the perceived reliability of the first opinions, for
all respondents (on the left), and for the respondents who agreed with one of the
proposed interpretations (on the right). Responses were given on an ordinal 4-value
scale from ‘very low’ to ‘very high’. Notches indicate the 95% confidence intervals of
the medians (no overlap indicates statistically significant difference). N indicates the
number of plausibility values recorded, not the number of respondents who gave those
values. On the right: Confidence intervals of the difference of the average perceptions of
reliability of the AI advice. If an interval does not contain the vertical line denoted as
0, the corresponding means are significantly different. The interval is represented closer
to the category of respondents who attached the higher reliability to the AI advice.
Thicker lines are associated with statistical significance.

Fig. 5. Bar charts indicating the interpretation performance in the second opinion
study: the 3 cases above and the total error rate at the bottom bar. Accuracy has been
assessed with respect to the Gold Standard. The percentage of errors that can be related
to the conformity bias is conjectured by comparing the error rate of the second study
undertaken by the same sample of respondents on the same cases after due washout
period. The confidence intervals are calculated for the difference of proportions between
the two experimental conditions (opinions given vs. no opinion given). Whenever the
confidence intervals does not cross the 0% line the observed difference is statistically
significant and not due to chance.

could be “primed” by knowing what interpretation would be given by what
advice source (either a human colleague or a specialized AI). We define confor-
mity bias as ‘the extent the second opinion of a decision maker is misled by a
first opinion’, irrespective of the fact that this latter opinion is given by a human
or an AI system. We observed a significant conformity bias in every strata of our
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sample if the given advice is wrong, as the second opinion scenario was associated
with significantly higher error rates.

Our study contributes in studying bias in the AI-supported ECG reading
domain and suggests that conformity bias entails a negative impact on accuracy
in this domain, and significantly so in one of the cases that we presented to
the participants. Since this case was observed as the most difficult one in the
simulation game, further research is necessary to assess this kind of bias in
simpler cases than those considered in this study, which constitute the majority
of cases clinicians have to address on a daily basis.

In light of our findings, a clear indication from this study is the following
one: first opinions should not be displayed to doctors involved in second opinion
services before they produce their own interpretation. Only afterwards, the pre-
vious diverging opinions can be exposed with indication of who/what produced
them, to avoid conformity and prejudices.

Our study presents some limitations: first, the experiment design presented
in this paper was motivated by the intention to use the full power of the study
to assess effects on accuracy due to bias. Thus, one could argue that interpreters
were purposely misled by the opinions given and this inflated the role of confor-
mity bias. However, the effect observed should not be considered in hindsight:
participants were not informed, nor could imagine, that both the opinions given
to them were purposely and systematically wrong. Thus, it is still to be demon-
strated that the best scenario differs significantly from the worst one, while it
is reasonable to conjecture that if the opinions are “basically” right (that is,
accurate and helpful), conformity and decision accuracy may increase.

Second, we can not assess the extent conformity bias depends on priming
or social desirability effects. In fact, we purposely did not focus on the causal
mechanisms for the emergence of conformity bias or the factors related to the
prejudice against the machine: intuitively, we conjecture that the former bias
could be related to a number of phenomena, mainly priming effects (which is
when exposure to a certain stimulus affects the interpretation of subsequent
stimuli), but also other factors in various degrees: availability heuristic (which
occurs when one relies on immediate examples coming to one’s mind when eval-
uating a specific decision); informational social influence, social loafing [12] and
group conformity bias [8] (which all occur when one relies on the options pro-
posed within a group by peers and colleagues whom are felt to belong to the
same social group).

Interestingly, we found that the participants to our study generally found the
AI opinion less reliable than the human one (which, nevertheless, gave the very
same wrong advice), as depicted in Fig. 4 (on the left). In particular, cardiolo-
gists chose to follow the human advice more often than the AI one (see Fig. 3):
this probably reflects a general distrust of these professionals in the reliability
of most of currently available tools of computerized interpretation of ECGs [15].
Among those who chose the others’ advice, we did not find a significant propen-
sity towards either the human advice or the AI’s one. However, if we consider the
clinicians who most likely could consider a competent opinion helpful (that is, in
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our sample, non-cardiologists, people with less than 10 years of work experience
or claiming to possess not higher than intermediate ECG reading skills), con-
formity is common, and reliance on AI is greater than on the human colleague.
Thus, if a study involving a greater sample size confirmed the higher reliance
by this kind of clinician toward the AI aid instead of more specialized or expert
colleagues, the adoption of this kind of tools should undergo further scrutiny, not
only for its misleading potential, but also for its potential to undermine human
collaboration among different specialists and the young.

To conclude: the main original contribution of this study is the characteriza-
tion and assessment of the effect we called prejudice against the machine. This
study has also a confirmatory value; in general, this regards the general phe-
nomenon of the automation bias and its impact on decision accuracy. More in
particular, this work confirms previous research about conformity bias and the
tendency of people toward accepting, rather than refuting, diagnostic hypothe-
ses [11]. Also in our study physicians found it difficult to reject incorrect diag-
noses and had their accuracy affected by confirmatory tendencies. We also con-
firm the findings by [20], who found that clinicians (non cardiologists) are influ-
enced significantly by the incorrect advice of computerized aid in ECG reading.
Furthermore, we can generalize this effect to different specialists (including car-
diologists) and to any external aid; to this latter regard, we also found that
the error-inducing effect is even stronger in case of human support (at least, to
date). We can also confirm the findings of a recent study [2] that considered only
automated aids and involved fewer experts (30 vs. 75), but was carried out on
more ECG interpretations (9000 vs. 3116): incorrect advices from automated aids
reduce diagnostic accuracy and hence bring to automation bias; non-cardiologists
tend to agree more with the automated aids in comparison to cardiologists and
are hence affected more by automation bias. These studies and our contribution
thus suggest caution in the deployment of powerful AI-based decision support
systems and to consider the potential negative effects of biases, like conformity
bias, authority bias and automation bias, in second-opinion settings.
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15. Schläpfer, J., Wellens, H.J.: Computer-interpreted electrocardiograms: benefits and
limitations. J. Am. Coll. Cardiol. 70(9), 1183–1192 (2017)

16. Sibbald, M., Davies, E.G., Dorian, P., Eric, H.: Electrocardiographic interpretation
skills of cardiology residents: are they competent? Can. J. Cardiol. 30(12), 1721–
1724 (2014)

17. Smith, S.W., et al.: A deep neural network learning algorithm outperforms a con-
ventional algorithm for emergency department electrocardiogram interpretation.
J. Electrocardiol. 52, 88–95 (2019)

18. Street, C.N., Masip, J.: The source of the truth bias: Heuristic processing? Scand.
J. Psychol. 56(3), 254–263 (2015)

19. Strodthoff, N., Strodthoff, C.: Detecting and interpreting myocardial infarction
using fully convolutional neural networks. Physiol. Measur. 40(1), 015001 (2019)

20. Tsai, T.L., Fridsma, D.B., Gatti, G.: Computer decision support as a source of
interpretation error: the case of electrocardiograms. J. Am. Med. Inform. Assoc.
10(5), 478–483 (2003)

https://doi.org/10.1038/s41591-018-0268-3


Applications of Different CNN
Architectures for Palm Vein Identification
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Abstract. In this paper a palm vein identification system is presented,
which exploits the strength of convolutional neural network (CNN) archi-
tectures. We built and compared six different CNN approaches for bio-
metric identification based on palm images. Four of them were devel-
oped by applying transfer learning and fine-tuning techniques to relevant
deep learning architectures in the literature (AlexNet, VGG-16, ResNet-
50 and SqueezeNet). We proposed and analysed two novel CNN archi-
tectures as well. We experimentally compared the identification accu-
racy and training convergence of these models. Each model was trained
and evaluated using the PUT palm vein near infrared image database.
To increase the accuracy obtained, we investigated the influence of
some image quality enhancement methods, such as contrast adjustment
and normalization, Gaussian smoothing, contrast limited adaptive his-
togram equalization, and Hessian matrix based coarse vein segmentation.
Results show high recognition accuracy for almost every such CNN-based
approach.

Keywords: Convolutional neural networks · Transfer learning ·
Biometric identification · Palm vein recognition

1 Introduction

The rapid development of smart devices, cloud computing and home automa-
tion brings up various security and privacy problems. People gradually recog-
nize the importance of guarding their personal data stored in networks. Access
to resources is usually granted based on certain control credentials that must
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represent unique identifiers possessed or memorized by the user. Traditional
authentication and identification methods (e.g. tokens, ID cards, etc.) are losing
ground, as they are relatively easy to intercept or reproduce.

The most secure automated human authentication methods rely on biometric
data, which represent physical or behavioral characteristics of the individual
that are difficult to forge or steal: e.g. face, fiducial points, fingerprints, veins,
palm and dorsal hand veins, finger veins, iris, retina, ears, voice and the DNA.
Biometrics based on vascular system patterns have recently attracted increasing
attention [1].

It is known that the blood vessel network, which is already formed in embryo
state, substantially differs from one individual to another. On the contrary, it is
not known what is the reason of this uniqueness. Technically, palm vein detec-
tion is usually performed by Near Infrared (NIR) or Far Infrared (FIR) cameras
because of the different absorption of IR radiation in the vessels and the sur-
rounding tissues. The acquisition protocol is not standardized and differs from
one database to another. Images are usually characterized by very low reso-
lution, low contrast, and grayscale intensities of narrow spectrum. Vein-based
approaches can be classified into three different types:

1. Shape based methods rely on the vascular structure and extract lines or curves
as basic representation. Meraoumia et al used Discrete Wavelet Transform
(DWT) along the Laplacian of Gaussian (LoG) operator to extract the veins
and eliminate noise [2]. The Hamming distance was applied for the matching
step. The line-based methods also called geometric methods are based on the
extraction of short line-segments that contribute to the approximation of the
veins. The algorithms from this category make use of minutiae, bifurcation,
endpoint and crossing point detection. Soliman et al detected minutiae with
SIFT feature points and used Linear Vector Quantization for classification [3].
Kang et al combined not only SIFT points, but also SURF and Affine-SIFT
points [4]. The most important drawback of geometric methods is the difficult
comparison of several skeleton-like structures in order to obtain their similar-
ity coefficient. They require registered images and a standardized alignment
of the vessel structure not only the input image. In our previous article we
proposed an alignment and registration method using 3D rigid transformation
for dorsal hand veins [5].

2. The subspace methods reduce the data dimensionality. The most used data
reduction methods are the principal component analysis (PCA) that extracts
the highest variation components like in [6], or the linear discriminant fea-
tures [2] determining the components that maximize the he ratio of the vari-
ance between the classes to the variance within the classes.

3. Local or texture based methods usually involve descriptors like local binary
patterns (LBP) [7]. This type of local feature was used along with DWT and
isometric projection obtaining reduced feature vectors and applying a sum
based matching [8]. On the other hand, the most used descriptor types are
based on different combinations of Gabor jets with optimized parameters [9].
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The most recent research area of convolutional neural networks is very rarely
used in biometric identification, especially in case of palm vein recognition. The
first CNN based approach is presented in [10]. Here the authors use an extremely
simple CNN with only two convolution layers and two fully connected layers of
7 activations each. The second method applying CNN is the so called Deep
Hashing Palm Network (DHPN) [11]. Here the architecture relies on the pre-
trained weights of VGG-16 and 5 convolutional and 3 FC layers.

This paper proposes two CNN architectures that will be deployed detection
in palm vein network identification, and provides a comparison with four existing
pre-trained CNN architectures fine-tuned via transfer learning.

The remainder of the paper is structured as follows: Sect. 2 describes the
database used, followed by Sect. 3 in which the transfer learned and fine-tuned
CNNs are presented. Section 4 describes our proposed CNN architectures used
in the experimental setup. Finally, in Sect. 5 the experiments carried out are
presented, putting an accent on the comparison of architectures and the influence
of different image processing steps on the identification accuracy. The paper ends
with conclusions and future perspectives (Sect. 6).

2 The Database

The presented approach was trained and evaluated on the PUT Vein database of
the Poznan University of Technology [1]. The vein pattern database consists of
2400 images of human veins of the hand. Half of them 1200 are wrist vein patterns
and the other half palmar vein patterns. Obviously, we have used only the palmar
images. The near infrared images of 50 different subjects were acquired both for
the left and right hand. For each subject there are 12 images taken in three
series of four snapshots each with one-week interval between them. The images
were aligned by positioning the palm according to a line that had to be right
at the base of their fingers. The images have a resolution of 1024 × 768 pixels
with a depth of 24 bit. Owing to the low-cost acquisition equipment the images
captured for this database have small illumination changes, a narrow intensity
histogram with a high noise level. There are only small changes in translation,
rotation and illumination because of the physical image adjustment step.

3 Transfer Learning

Given a certain CNN architecture, its weights can be fine-tuned via transfer
learning, to make it suitable for new input data. Transfer learning proved to
enhance the accuracy and efficiency, compared to retraining the CNN from the
beginning. Two of the CNN network architectures participating in this study
were built and trained from scratch, while the other four existing networks enu-
merated below were fine-tuned starting from their pre-trained state:

1. AlexNet was the winner architecture at the ImageNet Challenge in 2012 [12],
the first one to implement parallelism in network training. Originally it
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worked with 3-channel RGB images of size 224 × 224. It consists of five con-
volutional layers, three overlapping max-pool layers, and two fully connected
(FC) layers at the end. In our approach, we fine-tuned the trained weights
for ImageNet and changed the final FC layer to be adequate for our 100-class
classification problem.

2. VGG is a much deeper model than AlexNet, containing 16 (VGG-16) or 19
(VGG-19) layers [13]. The idea was to stack several convolutional layers. The
VGG-16 model that is involved in our study, has 13 conv-layers, 5 max-pooling
layers and 3 FC layers. The other design novelty in this architecture was the
doubling of filter depth after reducing the input layers size to half in both
dimensions, thus reducing the number of parameters. This network has about
138 million parameters and was extremely hard to train. In our approach, we
retrained the initial weights of this network obtained from ImageNet and
replaced the last FC layer according to our 100 class scores.

3. ResNet was introduced with the intent to optimize the training and improve
the decision accuracy of very deep convolutional networks [14]. The authors
formulated a residual learning framework in which layers are learning resid-
ual functions with respect to layer inputs, and provided empirical evidence to
prove the superiority of the residual training technique. In our experiments,
we used the ResNet-50 architecture consisting of fifty layers and fine-tuned the
pre-trained weights of this architecture using the PUT palm vein database,
added data augmentation and refined the weights and the dense layers accord-
ing to the palm vein network identification problem.

4. The SqueezeNet architecture is a CNN with a highly decreased number fo
weights (of 1.2 million only), but with performances in ImageNet similar to
AlexNet [15]. The main ideas at the foundation of this network are the so-
called fire modules in conjunction with the same activation map sizes and
by reducing their spatial sizes later and fewer times in the architecture. The
SqueezeNet is built of a conv-layer, max-pool for downsampling, three fire
modules, max-pool again, four fire modules, max-pool, a final conv-layer and
average pooling at the end, i.e., a total of 11 layers based on convolutions. In
our application, we refined the vanilla SqueezeNet without bypasses, retrained
the above described network and adapted the FC layer at the end to the 100-
class classification problem.

4 The Proposed Approach

The aim of this paper is the design, application and evaluation of two end-
to-end trained CNN networks with the purpose of palm vein based identifica-
tion. These two networks are built of simple CNN layers like convolution and
fully connected ones, thus they are relatively easy to train. Their performance
is compared to well-known CNNs such as AlexNet, VGG-16, ResNet-50 and
SqueezeNet, described above. The first network proposed and trained end-to-
end is a 6-layered CNN formed of 4 convolutional and 2 dense layers. The input
image was resized with bilinear interpolation to the standard image size used
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for network training at the ImageNet competition, i.e., to 224 × 224 × 3. The
number of training datasets is very small for an adequate training from scratch
without using transfer learning. The most widespread method used to extend
the training image set is the data augmentation technique. Instead of twelve,
several thousand images are generated applying different affine transformations
in every epoch. In our case the most relevant augmentation steps were random
rotation by ±10◦. We have used centre-crop based on background extraction to
consider only the palm region. Random rotation of the images by ±10◦ and ran-
dom translation in both X and Y directions of maximum 10% horizontally and
5% vertically were also applied. The last step was the normalization of images
to a mean of 0 and a standard deviation of 1.

In this research, our intension was to build a simple CNN architecture with
a reduced number of parameters in order to be trained easily, which leads to
identification accuracy comparable to other pre-trained CNNs described in the
literature.

Fig. 1. conv4-fc2 architecture trained from end-to-end

Fig. 2. conv6-fc2 architecture trained from end-to-end

First we have proposed to build a simpler network with only 4 convolutional
layers for considerably fewer number of parameters. The convolutional kernel in
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case of every layer was 3 × 3. As shown in [13], the activation map of larger
filters of size 5, 7, 9, 11 pixels can be obtained by multiple layers of kernel 3× 3.
The bigger the number of filters, the higher is the number of weights between
consecutive layers. The number of parameters (weights) between two layers with
a convolutional filter of size a×a and a 3D input layer of W ×H×DI (W-width,
H-height, DI -depth) is W × H × DI × DO + DO, where DO is the number of
activation maps, and the additive term DO stands for the bias. The output of
the conv-layer is of size W ×H ×DO. The output size of a layer is preserved to
the next layer only if the adequate padding and stride parameters are chosen. In
case of 3× 3 convolution the stride has to be s = 1 and the zero-padding also 1.
The activation function of every layer is a rectifying linear unit (ReLU), which
is more suitable for CNNs than tanh or sigmoid activations.

In order to make the training process more efficient, batch normalization
(BN) is applied. This has a regularization effect and trainable parameters for
normalization. Dropout is used in training to deactivate a number of randomly
chosen neurons in the layer followed by dropout. The most common values for
dropout are between 25%–50%. Different sizes of the input image and subse-
quent layer outputs can be obtained by the pooling layers (max, min or average
pooling). The pooling layer of 2×2 pixels reduces the W ×H size of a given layer
to its half W/2×H/2. A typical way of maintaining almost the same volume of
the layer after pooling is by doubling the depth of the next convolution layer.
The last layers of the CNNs are commonly fully connected ones which produce
the highest number of weights.

Fig. 3. Block diagram of the proposed system

In the first architecture proposed conv4-fc2 summarized in Fig. 1. we work
with three W × H sizes: the input size (size1 = 224 × 224), its half (size1/2 =
112× 112) and its quarter (size1/4 = 56× 56). On every size, two conv-layers of
3×3 are applied and their outputs are normalized using batch normalization. On
size1 the filters have a depth of 32 and 32, respectively. On size1/2 the depths
of filters are doubled for both layers to 64. Finally, on size1/4 the layer-depth is
64. We use a dropout right after the first reduction in size with a probability of
0.25 and with 0.5 after the second reduction from size1/2 to size1/4. The last
pooling layer is global average pooling, because this type of layer reduces the
overfitting before the first dense layer. The 4 conv-layers are followed by 2 dense
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layers (FC). The first FC has an input of 56 × 56 × 64 and an output of 512.
The last FC has on output equal to the number of persons in the dataset. The
probability responses after this last layer are obtained by a softmax classifier.

The second variant of our CNN (conv6-fc2 ) is built from 6 convolutional
layers and two fully connected layers. The 4 convolutional layers from the pre-
vious architecture are completed by another two on the 1/4 size of the original
dimension. So the input of conv-layer5 is 56× 56× 64 producing 128 activations
and its output will be 56 × 56 × 128. The sixth layer has the 5th layer as input
and produces 56×56×128 output. In this case the max pooling is used between
layers 4–5 and the average pooling is applied only before the two dense layers.
The first FC has 1000 neurons. It makes the mapping form from 100352 to 1000
and the second from 1000 to the number of classes (persons). The input-output
dimensions and kernel sizes for this network are summarized in Fig. 2.

5 Results and Experiments

This section presents our experiments about palm vein recognition with different
types of convolutional networks. Beside comparing some well-known CNNs with
our proposed two models, we have also carried out some experiments related to
the influence of several image processing steps on the identification accuracy and
training convergence of the presented networks.

The block diagram of the proposed system is shown in Fig. 3. Our system
uses the PUT database images for training all the desired networks. The image
processing steps are followed by the fundamental building block in our approach,
namely, the CNN architecture used for palm vein based biometric identification.

In our study we have carried out different experiments with various setups.
At first, we have compared our two networks trained from scratch and the 4
networks with pre-trained weights fine-tuned via transfer learning approach. We
have considered three datasets: the training set, validation set and test set. Out
of 12 images per person we have randomly selected 6 into the training set, 3
to the validation and the remaining 3 to the test set. With data augmentation
we have multiplied ten times the training set and five times the other two sets.
For all the proposed and fine-tuned networks we have compared the recognition
accuracy using the same number of epochs (400) in training. Obviously, all the
other hyperparameters were also set to the same value. The error between the
last layer and the target was expressed as cross entropy loss. The optimization of
the weights used common mini-batch stochastic gradient descent. The learning
rate was set to 0.01 with a decay of 10 every 40 epochs. Training and validation
convergence is better in case of conv6-fc2 network compared to conv4-fc2, how-
ever, the total number of parameters in both cases are approximately the same.
Figure 4 shows a better decrease for the 6 layered network for the training and
the validation data as well. The accuracy of these networks is 92.5% and 95%
respectively (Table 1).

Our next experiment was related to the learning rate and optimization meth-
ods of the networks. We trialed different types of learning rates between 10−3
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and 10−1, with and without learning rate decay. Finally, the best learning rate
value found lr = 0.1, with learning rate decay of 10 in every 35–45 epochs. The
next experiment analysed the influence of different optimization methods. We
compared Adam (with β1 = 0.9 and β2 = 0.999), SGD (lr = 0.1), mini-batch
SGD (batch size = 32) and RMSProp (lr = 0.1, α = 0.9). The best optimization
method in our case was the mini-batch SGD with learning rate decay. We also
found that the same value of validation loss cannot be achieved by all the 6 tri-
aled networks. Thus, their performance can be compared based on the limitation
of the number of epochs.

We also performed experiments with the fine-tuning of the most well-known
CNNs from the state-of-the-art, detailed in Sect. 4. We managed to modify them
and adjust the pre-trained weights to be adequate for palm vein based biometric
identification. We studied not only the final accuracy of the networks, but also
the behavior of the networks in training and validation phases. Results show
(Figs. 4 and 5) best performances for the ResNet-50 network, over 99.8% in
recognition rate. It is somehow evident, because it contains the highest number
of conv-layers (50) and FC layers at the end. Our conv6-fc2 architecture obtains
similar results to the outcome of VGG-16, about 96%–97%. The advantage of our
network compared to VGG is its smaller number of layers (only 8 instead of 16)
and its reduced number of parameters i.e. weights. Our conv4-fc2 architecture
with only 4 convolutional layers has about 3–4% worse accuracy than conv6-fc2.
Figure 5 shows a good training loss decrease for all these four networks. On the
other hand, the same figure draws the attention of the SqueezeNet and AlexNet,
the losses of which drop much slower. Moreover, AlexNet has an oscillating
behaviour. This worse training process is in connection with the lower accuracy
results (between only 84–92%) see Table 1.

Our second group of experiments analysed the effect of different kind of image
processing steps, while the experiments described above were related to the CNN
architectures and the variation of hyperparameters. We applied the presented 6
CNN not only on the original images, but also to processed images with the
following approaches: inhomogeneity correction, contrast limited adaptive his-
togram equalization (CLAHE), and Hessian affine detector.

The prepocessing steps were necessary because of the low-quality images in
the database described in Sect. 2. According to the authors of the database the
images are acquired with a low-cost USB web camera and the system uses IR
LED lamp for a better vein imaging. The images are having 24 bit depth, still
they cannot be considered colored. Some of them are redish others greenish and
the majority is simply grayscale (Fig. 6(a)). This variety of colors, but with sin-
gle channel intensity information is disturbing the training process. The other
artefact is the misalignment of the palms. However, the images are somehow
aligned with a quasi-rigid positioner, which does not impose a fixed hand posi-
tion. The misalignment was corrected with translation and rotation in the data
augmentation phase of our experiments.

The first image processing step is the conversion to grayscale and normaliza-
tion of image intensities on a single color channel. Histogram equalization was
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performed to enhance the contrast of the image. In this way the intensity range
was extended from the original interval to [0, 255]. This is followed by the noise
filtering of the images with a 3×3 Gaussian kernel to reduce the noise and blur-
riness (Fig. 6(b)). This way we managed to obtain images with quite uniform
luminance.

The next step, in order to increase image quality and local contrast, was the
CLAHE algorithm. We evaluated the histograms in blocks of 127 × 127 pixels.
The clipping limit was set to a maximum slope-size of 7.

Training epochs
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Training loss of proposed networks

conv4fc2 - corrected
conv4fc2 - CLAHE
conv6fc2 - CLAHE
conv4fc2 - Hessian
conv6fc2 - Hessian
conv6fc2 - corrected

Fig. 4. Comparison of the two proposed networks trained from scratch

The Hessian matrix can be used to locally detect line-like, plate-like and
blob-like image structures. Each element of the Hessian matrix is a regularized
derivative of the input image. It is obtained by convolving the image with the
derivative filters of a Gaussian kernel at scale σ. The eigenvalues and eigenvectors
are computed for the Hessian matrix. The relations between the eigenvalues of
the Hessian lead to the detection of different structures. In particular, a pixel
belonging to a vessel region or a tubular structure will be signaled by large
eigenvalues and the corresponding eigenvectors indicate the direction along the
vessel. In this way, different vessel widths can be detected at their corresponding
scales. The filter applied obtains the largest eigenvalues of the Hessian matrix
with a smoothing scale of σ = 8 for every image point. Vessels and tubular
structures of the skin are displayed in high intensities [16]. The effect of Hessian
filtering on a palm image is given in Fig. 6(d). The obtained tube-like structures
may support a visual comparison and a checkup of the test results. Moreover,
we have tried to use these types of images as input for CNNs.

The above presented CNN networks were trained, validated and tested on
the corrected images, on CLAHE images and on the Hessian coded images, as
well. The identification accuracies for each type of image are presented in Table 1.
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Fig. 5. Comparison of training losses of the fine-tuned networks

Fig. 6. Image quality enhancement: (a) original; (b) corrected; (c) CLAHE; (d) Hessian.

Table 1. Identification accuracy obtained using the test set

Image CNN network

Enhancement conv4-fc2 conv6-fc2 AlexNet VGG16 ResNet-50 SqueezeNet

Corrected 0.9083 0.9366 0.8916 0.9650 0.9983 0.8750

CLAHE 0.9250 0.9516 0.9216 0.9733 0.9983 0.9166

Hessian 0.9100 0.9416 0.8466 0.9400 0.9966 0.8633



CNN Architectures for Palm Vein Identification 305

According to the results measured, best identification accuracies are obtained for
the CLAHE images, which overpass by 3–4% the outcome using the corrected
images. The Hessian images representing tubular structures are not beneficial
in this case. The objective function in the networks applied in our case was
the cross entropy loss, adequate in case of classification problems. The tubular
structure extraction with the Hessian method will come in handy for our future
experiments of vein segmentation.

Overall, the identification accuracies of the transfer-learning approach and
the end-to-end training are comparable and similar. The best results, regardless
the preprocessing step, obtains the ResNet-50 CNN with over 99% for all the
three preprocessed image types. It is followed by VGG-16 with 97% and the our
network trained from scratch reaches 95%. The AlexNet and SqueezeNet have
10% lower identification rate for the same test set (Table 1).

An even higher, about 100% identification, rate can be achieved if we com-
bine the softmax output of two or three of the proposed networks. This approach
is based on the linear opinion pool that combines of probabilistic opinions cal-
culating a weighted linear average of the individual responses.

6 Conclusion and Future Work

In this research we compared different convolutional neural network architec-
tures with the purpose of palm vein based biometric identification. We managed
to create and train two simple architectures from scratch and compared their
performances with four well-known state-of-the-art CNNs, initially trained for
ImageNet Challenge. The best results were obtained for the largest networks
with pre-trained weights and transfer learning techniques. Although ResNet-50
obtains almost 100% in accuracy, it is considerable difficult to train. In this work
we demonstrate that a simple architecture, even if it is trained from scratch, is
also suitable for palm vein based biometric identification. The most important
advantage of networks with smaller number of parameters is not only their train-
ing in reasonable time, but also the possibility of embedding them in low-resource
systems.

For the future we propose to validate our method not only on the PUT palm
database, but on other larger and higher quality image sets. Another interesting
experiment would be a comparison and combination of palm and dorsal hand [17]
or even finger vein based identification of the same subjects.

References
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Abstract. In this paper, we describe the infinite replicated Softmax
model (iRSM) as an adaptive topic model, utilizing the combination of
the infinite restricted Boltzmann machine (iRBM) and the replicated
Softmax model (RSM). In our approach, the iRBM extends the RBM by
enabling its hidden layer to adapt to the data at hand, while the RSM
allows for modeling low-dimensional latent semantic representation from
a corpus. The combination of the two results is a method that is able to
self-adapt to the number of topics within the document corpus and hence,
renders manual identification of the correct number of topics superfluous.
We propose a hybrid training approach to effectively improve the perfor-
mance of the iRSM. An empirical evaluation is performed on a standard
data set and the results are compared to the results of a baseline topic
model. The results show that the iRSM adapts its hidden layer size to
the data and when trained in the proposed hybrid manner outperforms
the base RSM model.

Keywords: Restricted Boltzmann machine · Unsupervised learning ·
Topic modeling · Adaptive Neural Network

1 Introduction

One important task of data analysis is clustering which usually addresses the
problem of grouping data points that share similar conceptual characteristics
into groups. Analyzing textual data can be seen as a special case of clustering.
Here, clusters, often referred to as topics, consist of words that are frequently
occurring together.

Topic modeling algorithms are statistical methods for analyzing co-
occurrences of words within text documents to discover topics that can be fur-
ther used for categorization purposes within different application scenarios [1].
One of the most widely employed topic model is the latent Dirichlet allocation
(LDA) [10], introduced by Blei and Jordan (2003) which is able to discover the
thematic structure within large archives of text [1]. Each document within such
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V. Torra et al. (Eds.): MDAI 2019, LNAI 11676, pp. 307–318, 2019.
https://doi.org/10.1007/978-3-030-26773-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26773-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-26773-5_27


308 N. A. Huhnstock et al.

a document corpus, as explained in [10, pp. 5–6], can be regarded as a bag-
of-words that has been produced by the mixture of topics that the document’s
author intended to discuss. Each topic is hence represented by a distribution over
all words that can be found in the document corpus. Abstractly speaking, when
a document is generated, the author would repeatedly pick a topic, then a word
belonging to that topic and places it in the bag until a document is complete.
The objective of topic modeling is then to find the statistical parameters of such
a process that is likely to have generated the corpus [10, pp. 5–6].

Topic modeling algorithms work unsupervised and do not usually require
any prior annotations or labeling of the documents since topics emerge from
the original texts under analysis [1]. However, most topic modeling methods
rely on manually setting important initial input parameters, such as the number
of topics that is to be expected to be found in the document corpus [3]. The
estimation of this rather crucial parameter is challenging and usually requires a
certain level of knowledge about the content of document corpus that sometimes
could be provided by human experts.

In this work, we attempt to overcome the challenge of determining the num-
ber of topics manually and propose a neural network-based approach to topic
modeling that is able to self adapt the number of topics within a corpus of text.
This method utilizes the combination of two recently developed extensions to
the restricted Boltzmann machine (RBM) [13]: the replicated Softmax model
(RSM) [6] which adapts the RBM to be usable for topic modeling, and the infi-
nite restricted Boltzmann Machine (iRBM) [2] which is an adaptation of the
RBM able to self identify the number of clusters needed for a traditional clus-
tering problem. We combine these two different extension of the RBM into the
infinite replicated Softmax model (iRSM) that is capable to self identify the
number of topics within a corpus of text documents.

The remainder of the paper is structured as follows: In order to describe
the aforementioned approach to topic modeling, we first provide some formal
information and preliminaries regarding RBM, RSM and iRBM in Sect. 2. This
is followed by the presentation of relevant related work in Sect. 3 after which the
proposed model is introduced in Sect. 4. Section 6 describes the empirical and
qualitative evaluations of our approach and our results are presented in Sect. 7.
We conclude the paper with a brief summary of our findings and conclusions
drawn, in Sect. 9.

2 Preliminaries

Two main problems arise when trying to model the contents (represented by
topics) of a corpus of textual documents with a RBM. Firstly, the number of
words within documents may vary from one document to another and secondly,
to infer topics from documents the number of topics that the model is able to
represent has to be set in advance which requires knowledge about the corpus’
contents which a user cannot be guaranteed to have.

In this section, the two methods the iRSM is based on are introduced: the
RBM and the two different adaptions to it, namely the RSM and the iRBM.
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2.1 RBM

The RBM [13] can be described as an undirected bipartite graphical model com-
posed of one visible layer v and one hidden layer h. A weight Wij is associated
with each connection between units vi and hj of the two layers. Given a binary
RBM with n visible and m hidden units we can describe the energy of the model
for a given state (v,h) as:

E(v,h) = −cTh − hTWv − bTv (1)

Due to its bipartite structure, states of visible and hidden units are only depen-
dent on the other layers’ units. The conditional distributions of the layers are
therefore described by:

p(hk = 1 | v) = σ

(
ck +

n∑
i=1

Wkivi

)
, (2)

p(vk = 1 | h) = σ

⎛
⎝ m∑

j=1

hjWjk + bk

⎞
⎠ , (3)

where σ(x) = (1 + exp(−x))−1.

2.2 RSM

The replicated Softmax model (RSM), proposed by Salakhutdinov and
Hinton [6], has been used to enable the RBM to model documents of words.
The RSM addresses the problem of a varying number of words within docu-
ments by allocating one visible unit per word in the document while sharing
parameters (weights) over all visible units. Hence, it allows the RSM to model
arbitrarily sized documents while decoupling the number of free parameters from
the document length. This comes, however, at the cost of disregarding the order
in which the words occur within the document.

When deploying an RSM, a document is modeled as binary matrix U ∈
{0, 1}V,D, where V is the number of words in the dictionary and D is the number
of words in the document. The matrix U defines the observed state of the visible
units v such that Uη

k = 1 is equal to the kth unit taking value η (vk = η). The
energy of the RSM given a state (v,h) is described by:

E(v,h) = −DcTh −
n=D∑
i=1

hTW•,vi
−

n∑
i=1

bvi
(4)

To balance the offset that has been introduced through the varying number of
visible units that are contributing to the model’s energy, the hidden bias term
cTh is scaled according to the document’s length D.
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Since the bipartite structure of the RBM is preserved, the conditional distri-
butions of hidden and visible units are given by:

p(hk = 1 | v) = σ

(
Dck +

n=D∑
i=1

Wk,vi

)
, (5)

p(vk = υ∗ | h) =
exp

(∑m
j=1 hjWj,υ∗ + bυ∗

)
∑V

t=1 exp
(∑m

j=1 hjW t
j,i +

∑n
i=1 bt

i

) . (6)

2.3 iRBM

The infinite restricted Boltzmann machine [2] extends the RBM by enabling it
to adapt the size of its hidden layer. This behavior is achieved by introducing
a, in theory infinitely large, hidden layer h of that only a subset {hj | j ≤ z}
is considered. The number of hidden units describing this subset is given by the
value of the introduced random variable z. The weights and biases associated
with the hidden units {hj | j > z} are assumed to have a value of 0 and the
energy of a given binary iRBM is given by:

E(v,h, z) = −
z∑

j=1

(cjhj − βj) −
z∑

j=1

hjWj,•v − bTv. (7)

To counteract the growth of z, Salakhutdinov and Hinton [2] introduced a penalty
term βj , which penalizes the accumulation of untrained units. The penalty term
is parametrized on each hidden unit’s bias with a global penalty β as βj =
β soft+(cj). With soft+(x) = ln(1 + exp(x))

With the introduced random variable z the conditional distributions of the
model are given by:

p(hk = 1 | v) =

{
σ(ck + Wj,•v), k ≤ z

0, otherwise
(8)

p(vk = 1 | h) =

{
σ

(∑m
j=1 hjWjk + bk

)
, k ≤ z

0, otherwise
(9)

p(z | v) =
exp −F (v, z)∑∞
z∗ exp−F (v, z∗)

(10)

It can be shown that the infinite sum occurring in the denominator of (10) can
be reformulated into a sum over a term of trained hidden units and a finite
geometric series that can be a computed analytically, given that β is greater
than 1 [2].
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3 Related Work

Inspired by the RSM’s weight sharing technique, Larochelle and Laury [8]
extended the neural autoregressive distribution estimator (NADE) [9] and
enabled the model to represent documents. The so-called DocNade inherits
the advantageous characteristic of computing the gradient of the negative log-
likelihood over the data without requiring approximation. The DocNode uses a
hierarchy of binary logistic regressions to represent the distribution of words,
which results in a sublinear scaling with V when sampling the probability of an
observed word. Although the DocNade architecture corresponds to several par-
allel hidden layers, i.e. one for each input word, with tied weights the number of
units in each layer needs to be defined manually and is static.

Based on the RSM, Srivasta et al. [14] developed the Over-Replicated
Softmax model, which belongs to the family of Deep Boltzmann Machines,
i.e. Boltzmann Machines that contain at least two hidden layers. The Over-
Replicated Softmax has softmax visible units and binary hidden units in the
first layer and on top of that another softmax hidden layer. This is supposed to
provide a more flexible prior over the hidden representations.

Srivasta et al. introduced this second hidden layer without the usual increase
in model parameters, by reusing the weights that connect the visible layer to the
first hidden layer, for the connections between the first and second hidden layer.
This allows the Over-Replicated Softmax model to be trained as efficiently as
the RSM despite the presence of an additional layer.

Even though the Over-Replicated Softmax model and the DocNade model
achieved better results than the RSM model, both models require manual setting
of the hidden layer(s), which is the fundamental issue that will be resolved within
the proposed iRSM.

4 Proposed Model

The proposed model is a combination of the RSM [6] and the iRBM [2] which
we refer to as the infinite replicated Softmax model (iRSM). It combines the
capability of the RSM as an undirected topic model while, at the same time, it
adapts to the number of represented topics automatically.

The iRSM can be trained on documents of varying length due to the use of the
RSM’s weight sharing technique, allowing it to replicate input units depending on
the input document’s length. Furthermore, the iRBM’s hidden layer’s growing
behavior has been adopted by introducing a theoretical infinite hidden layer
together with a growing penalty. Figure 1 shows a graphical illustration of the
proposed model.

The energy function of the iRSM takes the following from:

E(v,h, z) = −D

z∑
j=1

(cjhj − βj) −
z∑

j=1

n=D∑
i=1

hjWj,vi
−

n∑
i=1

bvi
, (11)
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Fig. 1. Graphical representation of the iRSM. (left) An iRSM with three visible softmax
units. (right) Visible softmax units replaced with a single multinomial unit which is
sampled D times. The shaded hidden units indicate that these are added based on the
state of z.

with βj = β soft+(cj). The growing penalty βj , defined in the same way as for
the iRBM, enables the model to adapt its hidden layer size according to the
inputs. In addition to the scaling of the hidden term of the RSM, the growing
penalty β is scaled by the size of the document in order to maintain balance
among terms.

Given an iRSM with binary hidden units, the conditional distributions are
given by:

p(hk = 1 | v) =

{
D(ck − βk) +

∑
i=1 nWj,vi

, k ≤ z

0, otherwise
(12)

p(vk = 1 | h) =

⎧⎨
⎩

exp(∑m
j=1 hjWj,υ∗+bυ∗)

∑V
t=1 exp(∑m

j=1 hjW t
j,i+

∑n
i=1 bt

i)
, k ≤ z

0, otherwise
(13)

p(z | v) =
exp −F (v, z)∑∞
z∗ exp −F (v, z∗)

(14)

The iRSM’s learning parameters are obtained through the application of
gradient descent on the model’s negative log-likelihood (NLL) over documents.
For a single document v this takes the form:

∂ − log(p((v)))
∂θ

= Eh,z|v

[
∂

∂θ
E(v,h, z)

]
− Ev,h,z

[
∂

∂θ
E(v,h, z)

]
(15)

The computation of the second expectation term is considered to be too
expensive since it involves the sum over all possible states of the network. Instead,
Contrastive Divergence (CD) [5] can be used to approximate the gradient of the
NLL by running a short Markov Chain wherein sampling is alternated between
z ∼ p(z | v), h ∼ p(h | v, z) and v ∼ p(v | h, z).
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5 Hybrid Training

Additionally to the iRSM model introduced previously we propose a hybrid
training approach. The idea of this training method is to combine the iRSM
and RSM into a two phase training procedure, where the former determines the
networks hidden layer size and the latter is used to improve performance. The
motivation behind this procedure is that the iRSM is, even in later stages of the
training process, still slightly adjusting its hidden layer size. This behavior was
as well observed in previous work for the iRBM in the context of clustering [7].
This leads to the situation, in which some of the already limited amount of
information is continuously devoted to the task of adjusting the hidden layer’s
size. In order to leverage as much as possible from the sparse information, we
decided to discard the adaptive behavior of the iRSM at a point in the training
process where the iRSM has had sufficient time to develop its hidden layer. From
this point forward the training is solely focused on optimising weight and bias
parameter to learn the representation of the data as good as possible. By making
the size of the hidden layer static at a given point in time, the parameters will
be fine-tuned to that size of the hidden layer. The training process begins by
training an iRSM; after some predefined time, e.g. half the total training time,
this iRSM is transformed into a RSM and training continues until termination.

6 Experiment Design

In this section, we describe the empirical and qualitative experiments we con-
ducted. Since Salakhutdinov and Hinton [6] showed that the base RSM is able
to outperform Latent Dirichlet Allocation (LDA) we do not further go into the
comparison with LDA and focus on comparing the RSM with iRSM and the
iRSM trained in the proposed hybrid manner.

The first experiment quantitatively analyses the influence of the regulariza-
tion parameter beta on the behavior of the iRSM and makes the comparison
with the base RSM, we report mean and standard deviation of 10 trials. The
second experiment provides an analysis of the top words per topic identified by
an hybridly trained iRMS for different parameter settings. The “Reuters-21578,
Distribution 1.0” corpus contains 10,788 news documents totaling 1.3 million
words and was compiled by David Lewis1. The data set is split into 7,769 train-
ing documents and 3019 test documents. Common stopwords are removed from
the data and the words are stemmed. To effectively reduce the dimensionality
of the problem space, we only consider the 2000 most frequent words similar to
what Salakhutdinov and Larochelle [6,8] suggested by.

We use per word perplexity as a metric to assess the models generative per-
formance through:

exp

(
− 1

N

N∑
i=1

1
Di

log p(vi)

)
, (16)

1 Available at: http://www.daviddlewis.com/resources/testcollections/reuters21578/
[Accessed 22 May 2019].

http://www.daviddlewis.com/resources/testcollections/reuters21578/
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where Di represents the word count of the i-th document. The perplexity is
evaluated in a similar fashion as Salakhutdinov [6] over 50 randomly held out
test documents. Computing the probability of held-out documents exactly is
intractable for undirected models, such as the RBM, since it requires to enu-
merate of over an exponential number of terms. Therefore, annealed importance
sampling (AIS) [6] is deployed to obtain p(v) of the RSM and iRSM by averaging
over 100 runs using 1,000 in [0, 1] uniformly spaced temperatures β.

To allow comparison between the models: all models processed the data in
batches of size 100 and were trained for an equal amount of epochs. During
training, the adaptive gradient algorithm ADAGRAD [4] with an initial learning
rate of 0.05 is deployed.

7 Results

The results of the first experiment are depicted in Fig. 2. The plot shows average
perplexity scores and final hidden layer sizes for the iRSM trained and hybridly
trained iRSM (iRSM hybrid) for beta values from 1.1 to 2. Additionally, average
RSM score are indicated as lines in the plot for models with hidden layer sizes
of 25, 50, 100 and 250 hidden units.

The plots show that a higher beta value results in smaller sized hidden layers.
This is the expected behavior since a higher penalty term increases the model’s
growing threshold. For lower beta values, i.e., lower than 1.2, the size of the
hidden layer falls between 75 and 100 hidden units, whereas for higher values of
beta, i.e., greater than 1.5, hidden layer size average between 25 an 50 hidden
units. Overall, the range of hidden layer sizes of the iRSM seems to be in a
reasonable range considering that the best performing RSM has as well 50 hidden
units. Hidden layer sizes of iRSM and iRSM hybrid is very similar which is not
surprising considering that the iRSM does not tend to change its hidden layer
size much in later stages of the training and since iRSM hybrid is an iRSM for
the first half of the training process its hidden layer size is almost equal to hidden
layer sizes of iRSM models.

The top plot of Fig. 2, depicting average perplexity scores, shows that the
iRSM does not reach the performance of any of the RSM models. The iRSM
scores improve with higher values of beta which seems to be correlated with the
resulting smaller sized hidden layers. It becomes as well apparent that the iRSM
suffers from slightly higher variances (indicated by the shaded areas) than the
RSM, which is certainly caused by the non-static hidden layer sizes. The plot
shows as well that the hybridly trained iRSM (IRSM hybrid) performs better
than the iRSM and as well better than all RSMs, for the whole range of evaluated
beta values.

Table 1 illustrates the influence of training time on the performance of the
different models. It can be seen that at epoch 200 RSM models perform better
than the iRSM based models. Among the base RSM models, the RSMs with
50 hidden units show the best performance of all throughout the course of the
training.
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Fig. 2. (top) The plot depicts the average perplexity results of several RSM models with
hidden layer sizes of 25, 50, 100 and 250; mean and standard deviation of iRBM models
trained with different β settings as well as mean and standard deviation of hybridly
trained iRSMs. Mean (line) and standard deviation (shade) based on 10 evaluations
per configuration are plotted. (bottom) Mean (line) and standard deviation (shade)
of the hidden layer sizes. Results of 10 evaluations per setting. All models have been
trained for 800 epochs.

In the interval from epoch 200 to epoch 400 the hybridly trained iRSM has
had the largest improvement of all models.

From epoch 200 on all RSM models gradually increase their performance
scores as training progresses. Although, the best iRSM models do as gradually
increase their performance as the RSM models its performance wrt. the average
overall considered beta value decreases. This is causes by the poor performance
of the very low valued beta settings which accumulate too many hidden units
during the course of the training.

Figure 3 shows the perplexity for 50 randomly selected test documents of
RSM, iRSM and iRSM trained in the proposed hybrid manner to give a closer
look at how models compare with to each other. The given iRSM and hybrid
iRSM models were trained with beta set to 1.5, the RSM model has a hidden
layer size of 50 and all models were trained for 800 epochs. The left plot shows
that the iRSM perplexity scores are consistently higher than the RSM for all
test documents. Similarly, the right plot shows that the hybridly trained iRSM
reaches lower perplexity scores than the RSM model.
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Table 1. Results of iRSM models for different beta settings compared to RSM models
with different hidden layer sizes.

Avg. Test perplexity per word (in nats)

RSM iRSM iRSM hybrid

(by hidden layer size) (by beta) (by beta)

Epochs 25 50 100 250 Best All Best All

200 1361 1358 1360 1363 1375 1390 1375 1390

400 1357 1355 1357 1360 1373 1385 1346 1348

600 1355 1353 1355 1359 1373 1388 1344 1345

800 1353 1352 1354 1358 1374 1388 1343 1344

8 Discussion

The final number of units in the iRSMs adaptive hidden layer seems reasonable
when comparing to the hidden layer sizes of the tested RSM models. Figure 2
depicts that for β values smaller than 1.4 the hidden layer size is between 100
and 50 units whereas for bigger values of β it averages between 50 and 25 units.
Remarkably, this change in hidden layer size is within the range of the three best
performing RSM models under test. These results show that the iRSM is able to
adequately adapt its hidden layer size to the documents and reach a reasonable
hidden layer size for a broad range of β values.

The results of the conducted experiments summarized in Table 1 and Fig. 2
show that the RSM models do reach better perplexity scores early into the train-
ing process than the adaptive iRSM models. This is most likely caused by the
fact that the iRSMs first have to adapt the size of their hidden layers, from
initially 1 unit, on by gradually growing their hidden layers in the first epochs
of the training process. Therefore, they suffer from a slow start with respect to
representation learning compared to the RSM based models which have all hid-
den units available to train from the very start. Especially, the hybridly trained
iRSM does quickly surpass the performance of the RSM models.

The increase in performance is well depicted in Fig. 2. The hybrid iRSM
achieves superior scores than both the iRSM and the RSM. A possible explana-
tion for this might be that the RSM models do make steady but small improve-
ments throughout the learning process. The hybridly trained iRSM, on the other
hand, does not have this steady monotonous perplexity improvements: it starts
rather slow, as already discussed above, but as soon as the transformation to an
ordinary RSM takes place the model is able make a big leap wrt. its perplexity
scores, see Table 1. The ordinary RSM seems to be able to improve upon the
essentially, by the iRSM, pretrained model much better than by starting from a
normal initialized RSM model, given that the iRSM learned a reasonable sized
hidden layer.
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(a) Document-wise perplexity compari-
son of an RSM with 50 hidden units and
an iRSM.

(b) Document wise perplexity compari-
son of an RSM with 50 hidden units and
an hybridly trained iRSM.

Fig. 3. Perplexity score comparison of RSM, iRSM and hybridly trained iRSM on each
of the 50 randomly selected test documents. All models were trained for 800 epochs.

Despite the difference in performance values, Fig. 3 as well depicts that all
three models seem to, represent each document almost equally well relative to
their individual performance realm, which is indicated by the fact that the dots
are arranged along an imaginary straight line. One would maybe expect different
kind of models to showcase differing representational behavior here, e.g. being
able to represent some pattern better than others, and therefore expect a more
diffused score pattern. But considering that all the iRSM models inherited espe-
cially their representational characteristics from the base RSM, this behavior
seems reasonable.

9 Conclusion

In order to adapt automatically the number of topics found in a corpus of text,
this paper presents a novel combination of two RBM based methods: the RSM
and the iRBM. The resulting iRSM inherits the topic modeling properties of the
RSM as well as the iRBM’s adaptive hidden layer, which obviates the need to
set the size of the hidden layer manually. In addition, we also introduce a hybrid
training procedure to effectively increase the performance of the iRSM over the
standard training procedure. We conducted empirical experiments to showcase
the functioning of the proposed method.

In upcoming work, we are interested in comparing the proposed model with
already existing topic models that are as well able to adapt the number of topics,
such as the Hierarchical Dirichlet Process Model [15]. For future extensions of
this method we are interested in moving from a flat representational structure
to structures consisting of several layers of units, that could enable a beneficial
interaction between topic features, as already discussed by Salkhutdinov and
Hinton [12]. Similarly, Peng et al. developed the infinite deep Boltzmann machine
(IDBM) by stacking a fixed number of iRBMs [11].
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Abstract. Intentional-Value-Substitution (IVS) learning was shown to
be effective for missing data. This paper gives further insight into the
optimal value for the substitution during the learning of a regression
model. Function fitting is focused on as the task of the machine learn-
ing model. Theoretical analysis on the optimal substitution value for
IVS learning is presented before a series of experiments with neural net-
works are conducted in order to confirm the validity of the theoretical
analysis. This paper also proposes a method for estimating the optimal
substitution values without using the information of the target function.
Another series of computational experiments are conducted to evaluate
the accuracy performance of the estimation method.

Keywords: Machine learning · Incomplete data · Regression ·
Neural network

1 Introduction

Many machine learning techniques assume that there are no missing values in
the features of a given training dataset. An ideal situation is that the sample size
is large enough to build a model as well as each data point is complete without
any missing values. However, this does not always happen in the real world. For
example in a medical diagnosis, some measurements might not be available due
to the failure in the measuring equipment or patient’s personal reasons.

There are several ways to overcome the issue of handling missing value [1].
One way is to impute the missing value by a certain value (e.g., zero, the average
value of the feature value, or the output of an imputation model constructed from
the training dataset). Another way is to omit the deficit features and construct
a model without those features that include missing values. Some papers have
presented how to handle the incomplete data with missing values by using a sta-
tistical modeling. Methods for the parameter estimation were also proposed [2,3].
Furthermore, the way of handling of missing values have been discussed as mul-
tiple imputation [4,5] and maximum likelihood estimation [6].
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Volker et al. [7] provided a way to incorporate missing/uncertain value during
the training of neural networks and it was shown that heuristic ways such as
substitution can be harmful in the training of neural networks. Alan [8] discussed
substitution strategies for missing values because non-optimum strategies for
missing values could produce biased estimates, distorted statistical power, and
invalid conclusions.

It should be noted that the above-mentioned methods consider the case where
both training and test datasets have the missing values. On the other hand, we
consider the case where the training dataset is complete without any missing
values while there are missing values in the test dataset. This situation happens
in a real world such as emergency medical cares and sports where more than
enough information is available in the training/learning phase, but in the prac-
tical situation one must make a decision in a short time with a limited amount
of information.

2 Intentional-Value-Substitution (IVS) Learning

Hasegawa et al. [9] proposed a method for training a data-driven model for the
case where there are missing values only in the test data. In this paper, we
call this method Intentional-Value-Substitution (IVS) learning. It is assumed in
the IVS learning that the training dataset has no missing values while some
values are missing in the test dataset. IVS learning substitutes a non-missing
value in the training dataset with some value. In other words, they model the
target function using a modified training dataset where some feature values are
substituted with a certain value.

In this section, we first introduce the IVS method for training a model in
the following subsections. Next, we also introduce a mathematical analysis by
Hasegawa et al. [9] where the optimal substitution value for IVS learning is
obtained in the case where we assume the target function is known. Finally, we
propose a method that for estimating the optimal value even though the target
function is unknown.

It should be noted that a feature value in the training dataset is substituted
even if its true value is available (since the training dataset is complete with no
missing values). We also note that the substitution does not always occur but a
feature value is substituted with a pre-specified probability.

2.1 Method

In this subsection, we introduce the procedure of the IVS method for training a
robust machine learning model. The following procedure assumes that a single
input vector is used to train a model and we also know that which features of
Dtest will contain missing values beforehand. We can easily expand the procedure
for a mini-batch training by iterating the process as many as the number of input
vectors in the batch set.
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Step 1: Draw an input vector with its associated target value from the training
dataset Dtrain.

Step 2: With a pre-specified probability, substitute those feature values that are
missing in Dtest with certain values.

Step 3: Train a prediction model with the modified input vector and the target
value.

In the IVS during training, we need to consider two things: Which value is
used for substitution, and what is the best probability of the substitution. These
settings are used in Step 2 in the above procedure. In the following subsection,
we show a mathematical analysis on these two questions under the condition that
the other experimental settings are ideal (e.g., the target function is known, a
prediction model has a sufficient accuracy in approximating the target function).
Then, we will validate the mathematical analysis through a series of computa-
tional experiments where synthetic regression problems are considered.

2.2 Analysis on the Optimal Values with the Target Function

Mathematical Formulation. This section first presents the formulation of a
model that is trained using the IVS method. Next, we discuss the values for
substitution in place of the missing values. The expected error of the trained
model for test data is mathematically investigated. The mathematical investiga-
tion reveals that naive substitutions such as an average and a zero do not lead
to a good trained model with a high prediction performance for unseen data. We
also introduce the appropriate substitution value that is mathematically given
under the above conditions. It should be noted that the mathematically appro-
priate substitution value can be obtained only for a situation where the target
function is known and which feature will be missing in the prediction phase.

First of all, we mathematically describe our situation where a feature value
is missing. It is generally assumed that such deficiency happens in any features.
Let us consider an n-dimensional regression problem.

Let us denote the n feature variables as an n-dimensional random variable
vector X = (X1,X2, . . . , Xn). We also consider an n-dimensional random vari-
able vector R = (R1, R2, . . . , Rn), where each element of the vector represents
whether the corresponding feature is observed or missing as follows:

Ri =
{

1, if xi is observed,
0, otherwise (i.e., xi is missing). (1)

Now let us define a new random variable as follows:

X ′
i =

{
Xi, if the i-th feature value is observed,
?, if it is missing.

(2)

Then, we can define φ : X × R −→ X ′, where φ is a bijective function.
When we consider the modeling problem with missing data using a joint

probability distribution on the universe of discourse (X1, . . . , Xn, R1, . . . , Rn),
the joint probability function p(x, r) is defined as follows:

p(x, r) = p(x|r)p(r) = p(r|x)p(x), (3)
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where p(x) = p(x1, . . . , xn) is the marginal probability density function of X1,
. . . , Xn, and p(r|x) is the probability function which represents whether xi is
observed or not for X = x.

Secondly, we define a substituting operation for missing elements of the fea-
ture values. Let a mapping be ψ : Rn

? → R
n where R

n
? is {x′ = (x′

1, · · · , x′
n)|x′

i ∈
R ∪ {?}}. Then the substituted data follow x∗ = ψ(x′) = ψ(φ(x, r))(� ψr (x)).
Furthermore, when we put ψr (x) = ψr

1 × · · · × ψr
n(x) = (ψr

1 (x), . . . , ψr
n(x)), we

can obtain

ψi(φ(x, r)) =
{

xi, if ri = 1,
ψ′r
i (xobs), if ri = 0,

(4)

where xobs is a vector that consists of those observed features.
Next, we discuss the machine learning model and its loss function for a task.

For simplicity, let the target function be f , and the prediction model be g. In
this paper, for the sake of simplicity, we suppose f : Rn → R and g : Rn → R.
Moreover, let us define the distance (i.e., error) between f and g for an input
vector x as δ(f(x), g(x)), and also let us define a possible vector set for r as S =
{s1, · · · , sn|∀i ∈ N, si ∈ {0, 1}}. Then, the expectation of the error δ between f
and g is represented as follows:

E[δ(f, g)] =
∑
s∈S

∫
. . .

∫
DX

p(x, r = s)δ(f(x), g(ψs(x)))dX (5)

=
∫

. . .

∫
DX

p(x, r = 1)δ(f(x), g(x))dX

+
∑

s∈S\{1}

∫
. . .

∫
DX

p(x, r = s)δ(f(x), g(ψs(x)))dX (6)

Unless otherwise noted, we denote
∫

. . .
∫
DX

=
∫
DX

for simplifying equations
hereafter. In Eq. (6), the first term is the expectation for those input vectors with
no missing values, and the second term means the one for those input vectors
with missing feature values. Here, when we suppose that the loss is evaluated
by δ(f, g) = {f − g}2, then we have the following equation for obtaining the
expected loss:

E[δ(f, g)] =
∫
DX

p(x, r = 1){f(x) − g(x)}2dX

+
∑

s∈S\{1}

∫
DX

p(x, r = s){f(x) − g(ψs(x))}2dX (7)

Now, we focus only on a single term in the latter part of Eq. (7) (i.e., the
summation term starting with

∑
s∈S\{1}

). In this discussion, we assume that the

s is s1 = s2 = · · · = sk = 1, sk+1 = sk+2 = · · · = sn = 0, without loss
of generality. However, please note that the following discussion is same even
if the assumption is not satisfied. Let us denote Xobs = X1,X2, · · · ,Xk, and
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Xmis = Xk+1,Xk+2, · · · ,Xn. When we suppose p(x, r = s) = ps(x), the latter
term that satisfies r = s in Eq. (7) is written as follows:

∫
DX

ps (x){f(x)− g(ψs (x))}2dX

=

∫
DX

ps (x)f
2(x)dX

−2

∫
DXobs

×DXmis

ps (x)f(x)g(xobs, ψ
′s
k+1(xobs), . . . , ψ

′s
n (xobs)) dXmis dXobs

+

∫
DXobs

×DXmis

ps (x)g
2(xobs, ψ

′s
k+1(xobs), . . . , ψ

′s
n (xobs)) dXmis dXobs

=

∫
DX

ps (x)f
2(x)dX

−2

∫
DXobs

g(xobs, ψ
′s
k+1(xobs), . . . , ψ

′s
n (xobs))

[∫
DXmis

ps (x)f(x) dXmis

]
dXobs

+

∫
DXobs

g2(xobs, ψ
′s
k+1(xobs), . . . , ψ

′s
n (xobs))

[∫
DXmis

ps (x) dXmis

]
dXobs, (8)

where
∫
DXmis

ps(x) dXmis = ps(xobs)
∫
DXmis

ps(xmis|xobs) dXmis in Eq. (8)

denotes a marginal distribution by Xmis. By rearranging
∫
DXmis

ps(x)f(x)dXmis,
the following equation is obtained:

∫
DXmis

ps(x)f(x) dXmis = ps(xobs)
∫
DXmis

ps(xmis|xobs)f(x) dXmis

= ps(xobs)EXmis [f(x)]. (9)

This represents the expected output value for the missed value. For simplicity,
we denote this as EXmis

[f(x)] = es(xobs) in the following equations. Based on
these discussions, by setting g′(xobs) � g(xobs, ψ

′s
k+1(xobs), . . . , ψ′s

n (xobs)), then
we have the following:

∫
DX

ps(x){f(x) − g(ψs(x))}2dX

=
∫
DX

ps(x)f2(x)dX

+
∫
DXobs

−2g′(xobs)es(xobs)ps(xobs) + g′2(xobs)ps(xobs) dXobs

=
∫
DXobs

ps(xobs) {g′(xobs) − es(xobs)}2 − ps(xobs)e2s(xobs) dXobs

+
∫
DX

ps(x)f2(x)dX. (10)
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If there is only one combination of the observed features and the missing fea-
tures, that is, if r = s, the optimal model g′ that minimizes Eq. (10) can be
trained from the training using IVS method. Equation (10) is minimized when
g′(xobs) = g(xobs, ψ

′s
k+1(xobs), . . . , ψ′s

n (xobs)) = es(xobs). As it is possible that
there is no missing value in the input vector, it is necessary to minimize Eq. (7),
which Eq. (10) is substituted with. Now, we suppose that f can be approxi-
mated by g, and g � f . Then, we obtain the function ψ′s

k+1, . . . , ψ
′s
n satisfy-

ing g(xobs, ψ
′s
k+1(xobs), . . . , ψ′s

n (xobs)) = es(xobs). This leads to the substitution
value for minimizing the expectation of error in the case where the above missing
observations could occur.

Finally, we discuss this mathematical analysis in more detail by tackling to a
concrete example. Let us assume that R1, R2, · · · , Rn, and X are independent,
that is, p(x, r) = p(x)p(r1)p(r2) . . . p(rn). Moreover, we also suppose p(r1 = 1) =
· · · = p(rn−1 = 1) = 1.0, p(rn = 0) = pmis. This means that the value missing
happens with a probability pmis only at the last dimension. The expected error
under these settings is obtained from Eq. (7) as follows:

E[δ(f, g)] = (1 − pmis)
∫
DX

p(x){f(x) − g(x)}2dX

+ pmis

∫
DX

p(x){f(x) − g(ψs(x))}2dX (11)

and from Eq. (10), we obtain

E[δ(f, g)] = (1 − pmis)
∫
DX

p(x){f(x) − g(x)}2dX

+ pmis

∫
DXobs

p(xobs) {g′(xobs) − e(xobs)}2 − p(xobs)e2(xobs) dXobs

+ pmis

∫
DX

ps(x)f2(x)dX,

where e(xobs) = EXn
[f(x)] =

∫ ∞
−∞ p(xn|xobs)f(x)dXn (see Eq. (9) ). Now, when

g � f , the expected error is minimized if ψ satisfies the following equation:

ψ′
n(xobs) = arg min

xn

{∫ ∞

−∞
p(xn|xobs)f(xobs, xn) dXn − f(xobs, xn)

}2

(12)

Examples. We use the following benchmark functions in the computational
experiments:

f1 (Sphere function): f(x) =
2∑
n

x2
k, (−5 < xk < 5)

If we suppose that n = 2 and also if we suppose p(x1, x2) = p(x1)p(x2) and
p(x1) = p(x2) = 1

10 (i.e., a uniform distribution), then the optimal substitution
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value in the ideal situation is obtained from Eq. (12) as follows:

ψ′
2(x1) = arg min

x2

{∫ 5

−5

1
10

(x2
1 + x2

2) dx2 − (x2
1 + x2

2)
}2

= ± 5√
3
. (13)

f2 (for 2D variables): f(x) = (x1 − x2)2, (−5 < x1, x2 < 5)

If we suppose that p(x1, x2) = p(x1)p(x2) and p(x1) = p(x2) = 1
10 (i.e., a uniform

distribution), the optimal substitution value in the ideal situation is obtained
from Eq. (12) as follows:

ψ′
2(x1) = arg min

x2

{∫ 5

−5

1
10

(x1 − x2)2 dx2 − (x1 − x2)2
}2

= x1 ±
√

x2
1 +

25
3

. (14)

3 Estimation of Optimal Substitution Values Without
the Target Function

In the previous section, we obtained the function ψ(·) by assuming that we know
the target function f beforehand. However, of course, the target function f is
always unknown in many problem settings. On the other hand, according to
the previous chapter, it is clear that the optimal substitution value has a very
important meaning in the IVS learning. Therefore, in this section, we propose a
method to estimate the optimal value without the target function.

For simplicity, we assume that the dimensionality of the problem is 2 and the
missing occurs only at the second dimension in the following explanation. Our
proposed method consists of the following four steps to calculate the function
ψ(·) to estimate optimal substitution values.

Step 1: Divide the domain of the dimension that is not missing (i.e., first dimen-
sion) into the predefined size d.

Step 2: Calculate the average yavg of the objective variable yt for T training
data points that exist in the interval (x1i, x1(i+1)].

Step 3: Let the estimated substitution value in the interval (x1i, x1(i+1)] be x2 =
xt′
2 when t′ = arg min(yavg − yt)2.

Step 4: Repeat Step 2. and 3. for all intervals.

We also describe our proposed method as pseudo-code in Algorithm 1. Note
that although we assume the dimensionality of data is 2 and the missing element
is limited to be the last one for simplicity, we could apply this method regardless
the missing elements.
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Algorithm 1. Estimate ψ(·). Assume that the dimensionality of data is 2 and
the value missing happens only at the last dimension.
Require: Dtrain = {(x, y)|x = (x1, x2) s.t., a < x1, x2 < b}
Require: The number of division d

bandwidth ← (b − a)/d
for i ← 0 to bandwidth − 1 do

count ← 0
ysum ← 0
for xt ∈ Dtrain do

if xt
1 in (x1i, x1(i+1)] then

count ← count + 1
ysum ← ysum + yt

end if
yavg ← ysum/count

end for
t′ ← arg min(yavg − yt)2

x2 ← xt′
2 at (x1i, x1(i+1)]

end for

4 Computational Experiments

4.1 Experimental Setup

In this experiment, we assume that dimensionality of the problem is 2, and a
value missing happens with a probability of pmis only at the last dimension. The
IVS method is performed with probability psub. We assume that the data follow
a uniform distribution for all dimensions.

A neural network is employed to model benchmark functions. The neural
network is trained with the following settings: The number of training data
Ntrain is 500, and the number of epoch is 1000. The size of a mini-batch is 32.
The number of layers in the neural network is set to three and the number of
hidden units is specified as 50. The sigmoid function is used as an activation
function for each layer and each unit. Adam algorithm is used as the optimizer
that computes adaptive learning rates for updating the weights of the networks.

4.2 Estimated Values

Figure 1 depicts the result of the estimation method when x1 is divided into
d = 22. The horizontal axis is the value of the first element of the data, and the
vertical axis means the substitution value at the second dimensional data. The
thin line is the optimal substitution value obtained by Eqs. (13) and (14), and
the bold line represent the value estimated by our proposed method. As shown in
Fig. 1, the value around the optimal substitution value can be obtained. Thus, we
found that the proposed method has the effectiveness for estimating the optimal
substitution values.
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(a) f1 (b) f2

Fig. 1. Results of the proposed estimation method. The thin lines are the optimal
substitution values and the bold lines represent the estimated value.

4.3 Generalization Performance

The results of the prediction errors when training with probability psub =
[0.00, 0.25, 0.50, 0.75, 0.90, 1.00] by using the substitution values are shown in
Figs. 2, and 3. The test error in f1 and f2 are compared among five types of the
substitution value. “Fixed best” substitutes the value that minimizes the test
error and “Fixed avg” does so with the average in each setting of test probability,
respectively. “Theory” and “Theory random” are set to the substitution value as
shown in Eqs. (13), (14). The difference between them is that “Theory” indicates
the two substitution values (positive and negative) obtained by Eqs. (13), (14)
that give preference to the positive one. On the other hand, “Theory random”
substitutes the two values randomly. It is fixed to the value when there is only
one optimal substitution value as in the case of Eq. (14) (i.e. −5 < x1 < −2,
2 < x1 < 5).

“Estimation” substitutes the value estimated by the our proposed method
Algorithm 1. The colored area represents the variance of the test error. The
optimal substitution value can be obtained by our proposed methods. Thus, the
performance of “Estimation” is as good as “Theory” and “Theory Random” for
all settings. Therefore, it is shown that the estimated substitution values work
effectively for those data that include missing values even though the target
function f is unknown. Moreover, the test error was not increased even in the
case where the intentional substitution was performed at the learning phase but
the unknown data had no missing data.

On the other hand, the models with “Fixed best” performed well only for
the setting f1. The substitution value that theoretically minimizes the expected
error is fixed for f1. In other words, the substitution value is independent from
the x1, as shown in Fig. 1(a). Thus, the optimal substitution value can be also
obtained with the setting “Fixed best”. However, as shown in Fig. 1(b) in the
case of f2, the optimal substitution value changes with the value of x1. Therefore,
“Fixed best” makes the models robust and performs well for f1, but not for f2.
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(a) psub = 0 (b) psub = 0.25 (c) psub = 0.5

(d) psub = 0.75 (e) psub = 0.9

Fig. 2. Test error maps on f1 (Sphere)

(a) psub = 0 (b) psub = 0.25 (c) psub = 0.5

(d) psub = 0.75 (e) psub = 0.9

Fig. 3. Test error maps on f2
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5 Conclusions

In this research, we proposed the estimation method of the optimal substitution
value in the IVS learning. As the results of numerical experiments, it was shown
that the validity of the robust model against the loss for unknown data by
estimating the optimal substitution values. For future work, we will conduct
experiments with a biased-distribution data, and make use of the findings of
this research for handling missing values in other noisy experimental settings.
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Abstract. Microaggregation is a well-known family of statistical disclo-
sure control methods, that can also be used to achieve the k-anonymity
privacy model and some of its extensions. Microaggregation can be
viewed as a clustering problem where clusters must include at least k
elements. In this paper, we present a new microaggregation heuristic
based on Lloyd’s clustering algorithm that causes much less information
loss than the other microaggregation heuristics in the literature. Our
empirical work consistently observes this superior performance for all
minimum cluster sizes k and data sets tried.

Keywords: Anonymization · Statistical disclosure control ·
Microaggregation · Lloyd’s algorithm

1 Introduction

Collecting data and sharing them for secondary analysis is increasingly
widespread and brings undoubted social and economic benefits. Yet, when data
are personally identifiable information (PII), sharing them may be a threat to
people’s privacy. As a consequence, administrations have strengthened privacy
regulation to protect the citizens. In a nutshell, these new privacy regulations,
epitomized by the EU General Data Protection Regulation, require consent from
data subjects for any PII collection, sharing or analysis. In the many situations
in which obtaining consent is not feasible, anonymization is the only way to
go. After anonymization, data no longer qualify as PII and, thus, are no longer
subject to data protection regulations.

Anonymizing data involves not only suppressing any identifiers, but alter-
ing other attributes as well. The original data are first stripped from identifiers
and then a statistical disclosure control method is used to mask the remain-
ing attributes so that they no longer reveal information about original data
subjects. Masking is not straightforward because, to keep the masked data sta-
tistically valid, the information loss must be minimized. Among the available
statistical disclosure control techniques, in this paper we focus on microaggrega-
tion. Microaggregation replaces records in the original data set by (aggregated)
c© Springer Nature Switzerland AG 2019
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records that refer to groups of data subjects. The greater the groups, the stronger
the protection. To guarantee at least a certain level of protection, microaggre-
gation algorithms take a parameter k that determines the minimum required
group size.

In recent years, the research on data anonymization performed by the com-
puter science community has focused on privacy models. A privacy model
describes the condition that data must satisfy for disclosure risk to be at an
acceptable level, but it does not describe how this condition should be attained.
k-Anonymity [15] is among the most popular privacy models. It seeks to limit the
probability of successful record re-identification by altering the value of quasi-
identifier attributes. Quasi-identifiers are attributes that are not re-identifying
when separately considered (e.g. in general Age, Profession and Zipcode do
not identify anyone separately), but such that their combination may iden-
tify the subject to whom a record corresponds (there may be a single 95-year
old doctor in a certain zipcode, and it may be easy to find her name in an
electoral roll). Interestingly, running microaggregation on the quasi-identifiers
yields k-anonymity [8]. Microaggregation is also useful to enforce l-diversity and
t-closeness, two extensions of k-anonymity [7,19], as well as a building block of
ε-differentially private algorithms [17,18].

To minimize the information loss incurred by microaggregation, we need
to carefully choose the groups of records to be aggregated. A common app-
roach in numerical microaggregation is to attempt to minimize the sum of
squared distances between original records and their corresponding aggregated
records, which will be called SSE. Unfortunately, finding a microaggregation
that minimizes SSE is an NP-hard problem. For this reason, existent approaches
are heuristic. Most current microaggregation algorithms generate clusters with
a fixed size (the minimum required cluster size). This cardinality constraint
reduces the complexity of the microaggregation algorithm but it may result
in large information loss. To reduce information loss, heuristic variable-size
microaggregation algorithms have been proposed, but their computational com-
plexity is greater than that of their fixed-size counterparts. Also, in some cases
they need additional parameters whose optimal values are hard to determine.

Contribution and Plan of this Work
Microaggregation is closely related to clustering: in fact, it is clustering with a
minimum cardinality constraint on clusters. In this work, we take advantage of
the information loss minimization capabilities of Lloyd’s clustering algorithm [12]
to achieve near-optimal variable-size microaggregation. First, we embed a mini-
mum cluster size constraint in the algorithm. Second, given that Lloyd’s algorithm
requires the number of clusters to be fixed beforehand, we modify it to allow a
variable number of clusters. We call the resulting heuristic ONA (Near-Optimal
microaggregation Algorithm). We then present empirical results on the informa-
tion loss and the computing time of variable-size microaggregation with ONA.
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In Sect. 2, we give some background on microaggregation and Lloyd’s algo-
rithm. In Sect. 3, we describe some limitations of current microaggregation algo-
rithms. In Sect. 4 we present the ONA algorithm to deal with these limitations.
In Sect. 5, we experimentally compare ONA with existing methods. We finalize
with conclusions and future work directions in Sect. 6.

2 Background

2.1 Microaggregation

Microaggregation is a perturbative method for statistical disclosure control of
microdata releases. It is based on the following two steps:

– Partition: The records in the original data set are partitioned into several
clusters, each of them containing at least k records (the minimum cluster
size). To minimize information loss in the following step, records in each
cluster should be as close to one another as possible.

– Aggregation: An aggregation operator is used to compute the centroid of all
the records in the cluster. If all attributes are numerical, the centroid record
is the mean record. Finally, every record in the cluster is replaced with the
cluster centroid record.

When replacing records by cluster centroids in the aggregation step of
microaggregation, some information is lost. The ensuing loss of variability is
a measure of information loss. A microaggregation algorithm is optimal if it
minimizes information loss.

Let SST be the total sum of squares, that is, the sum of squared distances
between each record r in an original data set D and the centroid record c(D) of
the entire data set:

SST =
∑

r∈D

‖r − c(D)‖2 .

Clearly, SST represents the total variability of D. Then compute the sum of
squared records errors SSE, that is, the sum of squared distances between each
record r and the centroid c(r) of the cluster r belongs to:

SSE =
∑

r∈D

‖r − c(r)‖2 .

SSE represents the loss of variability incurred when replacing records with
centroids. We can normalize SSE by dividing it by SST , so that SSE/SST
accounts for the proportion of the total variability lost due to the microaggrega-
tion. With numerical attributes, the mean is a sensible choice as the aggregation
operator, because for any given cluster partition it minimizes SSE in the aggre-
gation step; the challenge thus is to come up with a partition that minimizes the
overall SSE.

Finding an optimal algorithm is feasible for univariate microaggregation of a
numerical attribute. There are two well-known necessary optimality conditions in
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this case [4]: clusters must contain consecutive records and the size of the clusters
must be between k and 2k − 1. Given these two conditions, a shortest-path
algorithm can find the optimal univariate microaggregation with cost O(n log n)
for n records [9].

Since realistic data sets contain multiple attributes, univariate microaggre-
gation is not enough. Multivariate microaggregation is more complex: the first
optimality condition above does not apply for want of a total order in the data
domain. As a result, the search space for the optimal multivariate microaggrega-
tion remains too large and finding the optimal solution is NP-hard [14]. There-
fore, heuristics are employed to obtain an approximation with reasonable cost.
An example heuristic for the partition step of microaggregation is MDAV [8],
which generates fixed-size clusters. Alternatively, VMDAV [16] is an adaptation
of the MDAV heuristic that allows variable-size clusters.

2.2 MDAV

The MDAV algorithm aims at satisfying the optimality conditions of numerical
univariate microaggregation:

1. Optimal clusters must contain consecutive elements. Since a total order is
lacking in a multivariate domain, the meaning of consecutive elements is not
well-defined. However, the intuition remains valid: it makes no sense to include
a record r′ in a cluster if a record r closer to the records of the cluster is not
in the cluster.

2. The size of optimal clusters ranges between k and 2k − 1. This condition
remains valid in the multivariate case.

Thus, rather than minimizing the overall information loss, the MDAV heuristic
proceeds by selecting specific records at the boundary of the set of records not
yet assigned to any cluster and generating clusters of k elements around them:
given a record r, a cluster is formed with r and the k − 1 records closest to r
among those not clustered yet. See Algorithm 1.

2.3 VMDAV

VMDAV is an adaptation of MDAV that can yield variable-size clusters. The
underlying idea is that variable-size clusters can be more adapted to the distri-
bution of the records and, thus, reduce the information loss.

Essentially, VMDAV takes two steps: (i) generate a cluster of size k that
contains the record that is farthest from the average record and its closest k − 1
records, and (ii) expand the cluster with neighboring records. These steps are
repeated until all the records have been assigned to a cluster.

The first step is similar to MDAV. So we only describe the second step.
Once we have a cluster with k records, we look for ru, the unclustered record
that minimizes the distance to the records in the cluster. Let din be such min-
imum distance. The we compute dout, the minimum distance between ru and
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Algorithm 1. MDAV microaggregation algorithm with minimal cluster size k

1 Let D be a data set
2 Let k be the minimum cluster size
3 Clusters = ∅
4 While |D| ≥ 3k
5 xa=average record of D
6 xr=record of D that is most distant from xa

7 C=cluster containing xr and the k − 1 records of D closest to xr

8 Clusters = Clusters ∪ C
9 D = D \ C

10 xs=record of D that is most distant from xr

11 C=cluster containing xs and the k − 1 records of D closest to xs

12 Clusters = Clusters ∪ C
13 D = D \ C
14 End while
15 If 2k ≤ |D| ≤ 3k − 1 Then
16 xa=average record of D
17 xr=record of D that is most distant from xa

18 C=cluster containing xr and the k − 1 records of D closest to xr

19 Clusters = Clusters ∪ C
20 D = D \ C
21 End if
22 Clusters = Clusters ∪ D
23 Return Clusters

the remaining unclustered records. The cluster expansion procedure is based on
these two distances. If din is smaller than dout, then ru is closer to the records in
the cluster than to the other unclustered records. In that case, adding ru to the
current cluster is a sensible choice. To allow tuning cluster expansion, VMDAV
introduces a threshold parameter γ, so that the current cluster is expanded with
ru if din < γdout.

2.4 Clustering and Lloyd’s Algorithm

There are several approaches to generate clusters. In this work, we are interested
in centroid-based clustering (a.k.a. c-means clustering). The purpose of c-means
is to split the records in a fixed set of c clusters in a way that SSE is minimized.

Lloyd’s algorithm is designed for c-means clustering. Starting from an arbi-
trary set of c centroids, the algorithm proceeds by iteratively assigning each
record to the closest centroid and recomputing the centroids, until a conver-
gence criterion is met. See Algorithm 2.

The runtime of Algorithm 2 is O(ncdi), where n is the number of records,
c is the number of clusters, d is the number of attributes per record and i the
number of iterations needed until convergence. Lloyd’s algorithm is thus often
considered of linear complexity in practice, although in the worst case it can be
superpolynomial.
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Algorithm 2. Lloyd’s online clustering of a data set D into c clusters
1 Let D be a data set
2 Let Centroids = {c1, . . . , cc} be the initial set of centroids
3 Let Ci = ∅ be the cluster associated with ci for i = 1, . . . , c
4 Repeat
5 For each r ∈ D
6 If r was assigned to a cluster Cj Then extract r from Cj

7 Compute the distance between r and c1, . . . , cc
8 Assign r to the cluster around the closest centroid
9 End for

10 Until convergence condition
11 Return {C1, . . . , Cc}

3 Limitations of MDAV and VMDAV

MDAV is quite effective at generating clusters that are as compact as possible: it
looks for the record that is farthest from the average record and then generates
a cluster that contains it and the k − 1 records closest to it. In this way MDAV
creates compact clusters and avoids the presence of intersecting clusters, which
are undesirable because their records could be rearranged in non-intersecting
clusters, thereby reducing information loss. The greatest limitation of MDAV is
that all clusters (except perhaps the last one) have fixed size k. This is much more
restrictive than the optimality condition according to which cluster cardinality
must be between k and 2k − 1, and it may have a significant negative impact on
information loss. This limitation not only affects MDAV but all microaggregation
methods that use fixed-size clusters.

VMDAV improves over MDAV by being more flexible about cluster sizes.
However, the cluster expansion criterion is difficult to adjust. VMDAV uses an
extra threshold parameter γ to decide between expanding the current cluster
with an additional element (up to a maximum 2k − 1 elements) or creating a
new cluster. The difficulty comes from the fact that it is not known how to fix
γ appropriately.

In [16], we find some vague recommendations, which suggest the use of large
thresholds (e.g. γ = 1.1) when records are concentrated around specific areas of
the data domain, whereas smaller thresholds (e.g. γ = 0.2) are preferable when
records are scattered. The rationale for the rule that recommends the use of
small γ for scattered records is clear: in this case, small clusters are preferable
to avoid large SSE. However, we should keep in mind that by using small γ
the cluster expansion mechanism is hampered, and VMDAV becomes closer to
MDAV. The rationale for using large γ when records are concentrated around
specific points is unclear to us. After all, regardless of the distribution of records,
we should prefer smaller clusters to larger clusters. This is illustrated in Fig. 1,
where two microaggregation partitions with minimum size k = 3 are displayed
that could be obtained using VMDAV. On the left, all clusters have size 3, which
is a result compatible with VMDAV for small γ (and also with MDAV). On the
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right, the size of the clusters is greater than 3, which is compatible with VMDAV
for large γ. By looking at the distribution of the records, we observe that they are
concentrated around two points; thus, according to the rules suggested in [16] we
would select a large threshold, which would make the right-hand side partition
likelier. However, SSE and hence the information loss is larger for this partition
than for the left-hand side partition.

The issues of VMDAV that we have hinted are confirmed in the experimen-
tal section, where VMDAV and MDAV achieve comparable levels of information
loss. That is, the cluster expansion procedure of VMDAV is not capable of offer-
ing noticeable reductions in the information loss.

Fig. 1. Two microaggregation partitions with minimum size k = 3. Left, partition
where all clusters have size 3. Right, partition where clusters have size greater than 3.

One justification for suggesting large γ when records are concentrated in
different regions is to avoid obtaining clusters that expand across more than one
region. On the left-hand side of Fig. 2, we show an example of this undesirable
situation. This partition, where all clusters except one have size 3, could be the
result of taking k = 3 in MDAV or in VMDAV with small γ. Taking a large
threshold in VMDAV is expected to facilitate variable-size clusters, which might
solve the problem. However, as shown on the right-hand side of Fig. 2, it is not
guaranteed that variable-size clusters achieve the required result: there is still a
cluster spread among two regions.

Even if the previous VMDAV threshold rules were effective for data sets that
are clearly concentrated or scattered, we would still be at a loss for data sets
that do not qualify as any of those two types. For example, consider a data set
that has several small regions with concentrated records and a big region with
scattered records.

Furthermore, in general it cannot be assumed that the data controller choos-
ing anonymization parameters knows whether her data set is scattered, concen-
trated, etc. In fact, for large and high-dimensional data sets, it may be quite
difficult to grasp how records are distributed in the domain of attributes.
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Fig. 2. Clusters than expand across regions. Left, partition output by MDAV with
k = 3 or by VMDAV with k = 3 and small γ. On the right, partition output by
VMDAV with large γ, where cluster size can vary between k = 3 and 2k − 1 = 5.

In summary, fixed-size microaggregation incurs a large information loss and
cluster expansion strategies such as those used in VMDAV are difficult to adjust.

4 ONA: Near-Optimal MicroAggregation

In this section we propose ONA (Near-Optimal microAggregation), a novel
variable-size microaggregation method that is based on standard clustering algo-
rithms. On the one hand, clustering algorithms adjust the size of each cluster
automatically. We plan to take advantage of this property in ONA, while making
sure that the size of the clusters stays within the known optimal bounds, that is,
between k and 2k − 1. On the other side, clustering algorithms usually take the
number of clusters as a parameter. In microaggregation, we do not care about the
number of clusters; we simply want a valid clustering that minimizes the infor-
mation loss. Thus, the need to tell the microaggregation algorithm the number
of clusters we want would be an artificial restriction that we prefer to avoid,
both for the sake of algorithm clarity and to avoid unnecessary information loss.

ONA follows Lloyd’s online algorithm (see Algorithm 2) but it makes several
adjustments to guarantee that an appropriate number of clusters with an appro-
priate size is generated. Algorithm 3 formalizes ONA and its steps are explained
next:

– We start (at line 3) by generating a random set of clusters whose cardinality
is k or more. The minimum cardinality constraint of microaggregation is
enforced by starting with a set of clusters that conforms to it and by making
sure that any modification of the clusters does not violate it.

– The proposed algorithm is iterative. Each iteration (lines 4–29) is designed
to reduce the SSE of the clustering, until convergence is reached. The con-
vergence condition is not specified in the algorithm. To be strict, we should
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require a completely stable set of clusters. However, as most of the reduc-
tion in SSE is attained in the first few iterations, it is usually safe to use
less strict conditions to speed up the execution. We will describe alternative
convergence conditions when reporting experiments in Sect. 5.

– Following Lloyd’s online algorithm, loop through the records (lines 5–28) in
the data set and reassign them (if needed) to the closest cluster so that SSE
decreases.

– It is only possible to reassign a record if its current cluster contains more
than k records (lines 7–11). Otherwise, there would remain less than k records
in the cluster and the clustering would not satisfy the minimum cardinality
constraint. If the cluster of the current record has more than k records, remove
the record from the cluster (line 9) and assign it to the closest cluster (line
11).

– When the cluster of the current record has k records, the only way to reassign
the current record to another cluster is to dissolve the cluster and reassign all
its records to other clusters (lines 12–20). This is only done if it reduces SSE.
In line 15 all reassignments are computed: Cj(s) is the cluster to which record
s is reassigned. The contribution to SSE of the original clusters (SSE1, line
16) and the SSE of the reassigned clusters (SSE2, line 17) are computed. If
SSE2 < SSE1, the reassignments are applied; otherwise, the current cluster-
ing is kept unmodified.

– Finally, the algorithm checks that all clusters have at most 2k − 1 records (as
one of the optimality conditions requires). This condition must be checked
because the reassignments can make clusters grow beyond 2k − 1 records. If
a cluster with 2k or more records is found, we apply the same Algorithm 3 to
the cluster, which will split it into two clusters of size between k and 2k − 1
thereby reducing SSE.

In spite of the distinction between the current cluster having more than k
records or k records, the complexity of Algorithm 3 remains essentially the same
as the one of Lloyd’s algorithm (see Sect. 2.4).

5 Experimental Evaluation

5.1 Evaluated Methods

The motivation of our algorithm has been based on the limitations of MDAV
and VMDAV. However, for completeness, the experimental section will not be
limited to comparing with those two methods. We will compare the informa-
tion loss using SEE and 100 × SSE/SST (as described in Sect. 2.1) for the
following methods: MDAV [4], VMDAV [16], MD-MHM [3], MDAV-MHM [3],
CBFS-MHM [3], NPN-MHM [3], μ-Approx [6], M-d [10], TFRP-1 [2], TFRP-2
[2], DBA-1 [11], DBA-2 [11] and IMHM [13].
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Algorithm 3. ONA algorithm for a data set D and minimal cluster size k.
1 Let D be a data set
2 Let k be the minimal cluster size
3 Randomly generate a set of clusters C = {C1, . . . , C�|D|/k�} such that each cluster

contains at least k records
4 Repeat
5 For each r ∈ D
6 Let Ci(r) ∈ C be the cluster that contains r
7 If |Ci(r)| > k Then
8 // Should r be reassigned to another cluster?
9 Extract r from Ci(r)

10 Compute the distance between r and the centroids of the clusters in C
11 Add r to the cluster whose centroid is closest to r
12 Else If |Ci(r)| = k Then
13 // Should cluster Ci(r) be dissolved?
14 Let Cj(s) be the cluster with the closest centroid to s ∈ Ci(r) among
those in C \ Ci(r)

15 Let C′
k = Ck ∪ {s ∈ Ci(r) : j(s) = k}, for each k �= i(r)

16 Let SSE1 = SSE(Ci(r)) +
∑

k∈{j(s):s∈Ci(r)} SSE(Ck)

17 Let SSE2 =
∑

k∈{j(s):s∈Ci(r)} SSE(C′
k)

18 If SSE1 > SSE2 Then
19 C = {C′

k : k �= i(r)}
20 End if
21 End if
22 // Split clusters that have become too large
23 For each C ∈ C
24 If |C| ≥ 2k Then
25 Run Algorithm 3 on C with minimal cluster size k
26 End if
27 End for
28 End for
29 Until convergence condition

5.2 Data Sets

The evaluation was performed on data sets [1] that have been used in the liter-
ature to evaluate microaggregation algorithms:

– Census. Data set with 1080 records and 13 numerical attributes.
– Tarragona. Data set with 834 records and 13 numerical attributes.
– EIA. Data set with 4092 records and 11 numerical attributes.

5.3 Evaluation Results

The evaluation results are shown in Table 1. We observe that, while there are
only small differences in the information loss reported by other methods, our
proposal achieves a significantly smaller information loss. This behavior is con-
sistent across cluster sizes and data sets.
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Table 1. Information loss 100×SSE/SST for several values of k and several data sets

Data set Method k = 3 k = 5 k = 10

Census ONA 1.59 2.33 3.88

MDAV 5.69 9.09 14.16

VMDAV 5.69 8.98 14.07

MD-MHM 5.69 8.99 14.40

MDAV-MHM 5.65 9.08 14.22

CBFS-MHM 5.67 8.89 13.89

NPN-MHM 6.34 11.34 18.73

μ-Approx 6.25 10.78 17.01

M-d 6.11 10.30 17.17

TFRP-1 5.93 9.36 14.44

TFRP-2 5.80 8.98 13.96

DBA-1 6.15 10.84 15.79

DBA-2 5.58 9.04 13.52

IMHM 5.37 8.42 12.23

Tarragona ONA 5.75 9.54 14.40

MDAV 16.93 22.46 33.19

VMDAV 16.96 22.88 33.26

MD-MHM 16.98 22.53 33.18

MDAV-MHM 16.93 22.46 33.19

CBFS-MHM 16.97 22.53 33.18

NPN-MHM 17.39 27.02 40.18

μ-Approx 17.10 26.04 38.80

M-d 16.63 24.50 38.58

TFRP-1 17.23 22.11 33.19

TFRP-2 16.88 21.85 33.09

DBA-1 20.70 26.00 35.39

DBA-2 16.15 25.45 34.81

IMHM 16.93 22.19 30.78

EIA ONA 0.23 0.41 1.02

MDAV 0.48 1.67 3.84

VMDAV 0.53 1.30 2.88

MD-MHM 0.44 1.26 3.64

MDAV-MHM 0.41 1.26 3.77

NPN-MHM 0.55 0.96 2.32

μ-Approx 0.43 0.83 2.26

TFRP-1 0.53 1.65 3.24

TFRP-2 0.42 0.91 2.59

DBA-1 1.09 1.89 4.26

DBA-2 0.42 0.82 2.08

IMHM 0.37 0.76 2.18
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The algorithm has been implemented in Java and the experiments have been
run on a AMD Ryzen 1700X machine under Ubuntu 17.04 x64. Table 2 shows
the runtimes of ONA for the various test data sets and cluster sizes. To compute
these runtimes, we have used the strictest convergence criterion: we keep iterat-
ing until no more record reassignments take place. We should remark that the
steepest SSE decrease takes place during the first few iterations. Thus, a less
strict convergence condition could offer significantly shorter runtimes without a
substantial difference in the SSE. Indeed, we have observed that the SSE reaches
a stationary value long before the number of reassignments reaches 0.

Table 2. ONA runtimes in seconds for the test data sets and the tested cluster sizes.

Time (s) k = 3 k = 5 k = 10

Census 0.295 0.376 0.196

Tarragona 0.254 0.485 0.212

EIA 1.751 1.430 1.607

6 Conclusions and Future Research

We have proposed ONA, a novel microaggregation algorithm that significantly
reduces the information loss with respect to existent algorithms. ONA operates
iteratively and is based on Lloyd’s clustering algorithm. Each iteration of ONA
decreases the information loss until it converges to a (possibly local) minimum.

In the design of ONA, we have tried to match the two necessary conditions
for optimal microaggregation as closely as possible. First, we make sure that each
cluster contains only adjacent records. This is achieved by reassigning records
to the cluster with the closest centroid. Second, we make sure that the size of
clusters ranges between k and 2k − 1. In record reassignments, we take care
that a source cluster is never left with less than k records (otherwise we disband
it) and that a destination cluster never increases to more than 2k − 1 records
(otherwise we split it into two clusters).

In the experimental section, we have presented an exhaustive comparison
of the information loss with existent microaggregation algorithms. The results
show that ONA offers a very significant reduction of the information loss. It is
also important to remark that such a reduction is effected without resorting to
complex procedures. Indeed, the internal operation of ONA is simpler than that
of most of the microaggregation algorithms included in the comparison.

As future work, we plan to conduct a detailed analysis of the convergence
conditions for ONA and also to extend it to categorical data. Currently, the
range of microaggregation algorithms available for dealing with this kind of data
is rather limited. The work in [5] provides a good starting point.
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Abstract. In general, just suppressing identifiers from released micro-
data is insufficient for privacy protection. It has been shown that
the risk of re-identification increases with the dimensionality of the
released records. Hence, sound anonymization procedures are needed to
anonymize high-dimensional records. Unfortunately, most privacy mod-
els yield very poor utility if enforced on data sets with many attributes.
In this paper, we propose a method based on principal component analy-
sis (PCA) to mitigate the curse of dimensionality in anonymization. Our
aim is to reduce dimensionality without incurring large utility losses. We
instantiate our approach with anonymization based on differential pri-
vacy. Empirical work shows that using differential privacy on the PCA-
transformed and dimensionality-reduced data set yields less information
loss than directly using differential privacy on the original data set.

Keywords: Privacy preserving data publishing ·
Curse of dimensionality · Differential privacy

1 Introduction

Under the EU General Data Protection Regulation (GDPR), which is becoming
a de facto global standard, personally identifiable information (PII) cannot be
accumulated for secondary use. Hence, to stay GDPR-compliant, exploratory
analytics must take place on anonymized data.

As repeatedly aired in the media [1,15,19], just suppressing direct identifiers
(names, passport numbers, etc.), let alone replacing them by pseudonyms, is not
enough to anonymize a data set. In the case of high-dimensional data even adding
a small amount of noise may not be enough to prevent re-identification [11].

In this work we deal with anonymization of microdata with a moderate to
large number of attributes. This type of data are more and more common in
the big data landscape, in which data sets are constructed by merging several
sources and may end up having a great number of attributes.

Direct application of statistical disclosure control (SDC) methods [8] to high-
dimensional data is likely to result in high information loss and hence in poor
utility, due to the sparsity of such data.
c© Springer Nature Switzerland AG 2019
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In this work we tackle the problem by investigating a pre-processing trans-
formation aimed at reducing dimensionality before anonymization is carried out.
Specifically, we propose principal component analysis (PCA), which could also
be replaced by another dimensionality reduction technique, e.g. if data are not
numerical. Subjects send their original records to the controller, who gathers
the entire original data set and can compute the principal components of it. The
dimensionality reduction comes from the controller choosing only those compo-
nents that carry most information. Anonymization is carried out on this smaller
set of components and the result if mapped back to the domain of the original
attributes to obtain the anonymized data set.

For the sake of concreteness, we exemplify dimensionality reduction to obtain
differentially private data sets. According to our experiments, using differential
privacy on the PCA-transformed and dimensionality-reduced data incurs sub-
stially less information loss than directly applying differential privacy on the
original data.

The rest of this paper is organized as follows. In Sect. 2, we recall some
background concepts. In Sect. 3 we deal with dimensionality reduction. Section 4
exemplifies our approach to generate differentially private data sets. Empirical
work on the presented approach is reported in Sect. 5. Finally, in Sect. 6 we
summarize conclusions and indicate future research lines.

2 Background

2.1 Principal Component Analysis

PCA is a dimensionality-reduction technique that uses an orthogonal transfor-
mation to convert a set of observations of possibly correlated attributes into a
set of values of linearly uncorrelated attributes called principal components. This
transformation is defined in such a way that the first principal component has
the largest possible variance (that is, accounts for as much of the variability in
the data as possible), and each succeeding component in turn has the highest
possible variance under the constraint that it is orthogonal to the preceding
components.

More formally, consider a data set X containing n records with m attributes,
such that the attribute means are zero. The covariance matrix of X is

CX =
1
n

XT X.

We want to find a new basis {p1, . . . , pm} such that: (i) V ar(Pi) ≥ V ar(Pj), for
all i < j, (ii) Cov(Pi, Pj) = 0, for all i �= j (low redundancy) and (iii) the vectors
pi are orthonormal.

The PCA transformation is attained by means of the change of basis matrix
P = [p1 . . . pm], where the pi’s are eigenvectors of CX sorted by descending order
of the corresponding eigenvalues. That is, the resulting data set is XP .

Since the principal components are sorted in descending order of the informa-
tion they contain (the first component has the largest amount of information),
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dimensionality reduction is very simple. We just have to drop some components
starting from the last one (which is the least informative one).

2.2 Differentially Private Data Sets

Definition 1 (ε-differential privacy). A randomized function κ gives ε-dif-
ferential privacy (ε-DP, [6]) if, for all data sets X1 and X2 that differ in one
record (a.k.a. neighbor data sets), and all S ⊂ Range(κ), we have

Pr(κ(X1) ∈ S) ≤ exp(ε) Pr(κ(X2) ∈ S).

Given a query function f , the goal in DP is to find a randomized function
κf that satisfies ε-DP and approximates f as closely as possible. For the case of
numerical queries κf can be obtained via noise addition; that is κf () = f()+N ,
where N has been properly adjusted. Adding Laplace distributed noise whose
scale has been adjusted to the global sensitivity of the query f is, probably,
the most common approach (other alternatives include [10,12,16]). The global
sensitivity or L1-sensitivity, Δf , of a function f : Dn → R

d is the maximum
variation of f between neighbor data sets:

Δf = max
d(X1,X2)=1

‖f(X1) − f(X2)‖1 .

Proposition 2. Let f : Dn → R
d be a function. The mechanism κf (X) =

f(X) + (N1, . . . , Nd), where Ni are drawn i.i.d. from a Laplace(0,Δf/ε) distri-
bution, is ε-DP.

The above original definition of DP was intended for interactive queries to a
database. If we want to obtain a DP data set, a straightforward procedure would
be to add noise to the results of queries about individual attribute or record
values. However, this is not feasible, because the sensitivity of individual records
is large, and according to Proposition 2 a lot of noise would be needed and the
results would be very inaccurate. Better methods to produce DP microdata sets
can be found in the literature, based on histograms [7], microaggregation [17],
Bayesian networks [20] or synthetic data [9,14]. Although using histograms is
especially problematic for high-dimensional data (due to sparsity), the rest of the
above approaches also yield increasingly inaccurate results as the dimensionality
of the original data set increases. In the rest of this paper, we will use the
microaggregation-based procedure [17], that we next recall.

Microaggregation [4,5] is a well-known SDC technique that works in two
steps: (i) split the original data set into clusters of at least k records following
a criterion of maximum within-cluster similarity; (ii) replace the records in each
cluster by the cluster centroid. In [18], the focus is moved from the original data
set X to its microaggregated version X̄. After X̄ is generated, X is dropped
and the goal becomes to protect X̄ via DP. Since X̄ contains less information
than X, this change of focus does not increase the risk of disclosure: that is,
X̄ε (an ε-DP version of X̄) entails less disclosure risk than Xε (an ε-DP version
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of X). Additionally, X̄ is less sensitive to changes in one individual than X. In
particular, when centroids are computed as arithmetic averages, the sensitivity
of the centroid of a cluster C is a factor 1/|C| of the sensitivity of the original
records.

Let X be the original data set (with attributes A1, . . . , Am) and X̄ be a
microaggregated version of X (with attributes Ā1, . . . , Ām). Among the possi-
bilities described in [17], we use the individual ranking microaggregation app-
roach: each attribute is microaggregated separately from the rest. The DP data
set X̄ε is generated by combining εi-DP versions of each of the attributes: by
the sequential composition property of DP, if we have an εi-DP version of each
attribute Āi, the combination is (ε1 + . . . + εm)-DP.

To obtain the εi-DP version of attribute Āi we proceed as illustrated in Fig. 1.
Each centroid is masked with an appropriate amount of noise that depends on
the cardinality |Cj | of the corresponding cluster, on the sensitivity ΔAi of the
original attribute, Ai, and on the εi assigned to the attribute. For each cluster Cj

of Ai values, we sample a noise nj from a Laplace(0,ΔAi/(|Cj |×εi)) distribution
and add it to the corresponding centroid cj , to obtain cj +nj . It is important to
remark that each occurrence of cj is replaced by the same masked value cj +nj .

Āi Āε
i

cρ(1) cρ(1) + nρ(1)

cρ(2) cρ(2) + nρ(2)

...
...

...
cρ(n) cρ(n) + nρ(n)

where ρ(r) =number of record r’s cluster
nj = Laplace(0, ΔAi/(|Cj | × εi))

Fig. 1. Procedure to generate an (ε1 + . . . + εm)-DP data set by combining an εi-DP
version of the attribute Ai, for i = 1, . . . , m.

3 PCA-Based Dimensionality Reduction

Given a data set X, PCA applies a change of basis to X. Let XPC be the
resulting data set and {p1, . . . , pm} be the new basis (the principal components).
A change of basis is a bijective transformation: it alters the representation of the
information but does not alter the amount of information. Thus, both X and
XPC have the same risk of disclosure.

PCA concentrates the information in the first components. That is, the
amount of information contained in pi is greater than in pj for any i < j.
As explained in Sect. 2, we can take advantage of this property to reduce the
dimensionality of the data set. This is done by dropping some of the last principal
components (the ones with less information). Let XPC′ be the data set gener-
ated from XPC by dropping components pl+1, . . . , pm. This transformation is



350 J. Soria-Comas and J. Domingo-Ferrer

not injective: as the result of dropping components, we reduce the amount of
information in the data set. Thus, XPC′

incurs no more risk of disclosure than
X.

After generating an anonymized data set Y PC′
by applying an appropriate

statistical disclosure control method G to XPC′
, we would like to release the

protected data set in terms of the original basis. That is, we want to generate an
anonymized data set Y in the same basis as X. To do so, we need to apply the
inverse PCA transformation. In other words, we need to change the basis from
{p1, . . . , pl} to {x1, . . . , xm}.

Algorithm 1 presents a formal description of the previously described steps.

Algorithm 1. Reducing data dimensionality via PCA in anonymization
Require:

X : original data set
G: Anonymization algorithm

Let XPC := PCA representation of X
Let XPC′

:= projection of XPC over the first l principal components
Let Y PC′

:= G(XPC′
)

Let Y := result of applying the inverse PCA transformation to Y PC′

Return Y

4 Example: Differential Privacy Anonymization
on PCA-Reduced Dimensionality Data

We illustrate the PCA-based dimensionality reduction when the anonymization
algorithm G in Algorithm 1 intends to reach differential privacy. Algorithm 1
entails a pre-processing of the original data set (PCA representation and projec-
tion over the first l principal components) and a post-processing of the DP data
set (inverse PCA transformation).

It is well established that post-processing DP results preserves the same level
of DP: if an output satisfies ε-DP, any transformation of it that adds no new
information offers at least the same level of privacy. However, the PCA pre-
processing step should be performed in a DP way. In [3] it is described how to
attain DP in PCA.

In this section, we slightly depart from strict DP. We claim that, in our
specific case, we can use a non-DP PCA transformation without degrading the
privacy of subjects with respect to DP. If using a non-DP PCA transformation
is safe, it should be preferred over DP PCA because it is simpler and yields more
accurate data.

Our claim is based on the following observation: data sets X and XPC are
equivalent (they contain exactly the same information) and, hence, the privacy
risk of Xε (an ε-DP version of X) is equivalent to the privacy risk of XPC

ε
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(an ε-DP version of XPC). After generating XPC , we drop some of the compo-
nents to reduce the dimensionality of the data and obtain XPC′

. As the amount
of information in XPC′

is smaller than in XPC , the privacy risk of XPC′
is

smaller than the privacy risk of XPC , and thus than the privacy risk of X.
Even though publishing the principal components would entail privacy leak-

age for subjects (as principal components are based on the original data set X),
we assert that the way PCA is used in Algorithm 1 does not increase the privacy
leakage associated with the anonymization algorithm G, because:

– Algorithm 1 does not disclose the data in their principal components repre-
sentation: the PCA transformation is done in the first step and it is undone
in the last step.

– The anonymized data Y returned for publication are computed based on an
anonymized version Y PC′

of the principal components coefficients. In the case
of using DP as G, Y is computed based on coefficients Y PC′

:= XPC′
ε that

are DP; thus Y does not leak more private information than the one DP leaks
about the coefficients.

5 Empirical Work

In this section we present experimental work on the example given in Sect. 4
above. To evaluate the DP anonymization on PCA-reduced dimensionality
data, we compared the accuracy of the DP data set generated using the
microaggregation-based approach described in Sect. 2.2, with and without the
proposed PCA-based dimensionality reduction methodology. In particular, we
compared against the accuracy of DP data sets obtained in [13].

The empirical evaluation was performed on the Census data set [2], which is
a widely used reference numerical data set and was also employed in [13]. Census
contains 13 numerical attributes and 1080 records. For the sake of comparability
with [13], we defined the domain of each attribute to range between 0 and 1.5
times the maximum attribute value in the data set. The difference between
the bounds of the domain of each attribute Ai determines the sensitivity of
that attribute (ΔAi) and, as detailed above, determines the amount of Laplace
noise to be added to microaggregated outputs. Since the Laplace distribution
is unbounded, for consistency we bounded noise-added outputs to the domain
ranges define above.

We used the same information loss measure as in [13], namely the relative
error (RE). RE is measured as the absolute difference between each original
attribute value a and its masked version a′ divided by the original value. A
sanity bound was included in the denominator to mitigate the effect of very
small values. We used the same sanity bound as in [13]: for an attribute A it is
|max(Dom(A)) − min(Dom(A))|/100. Thus,

REA(a, a′) =
|a − a′|

max{a, sanity boundA} .
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When using PCA, the amount of dimensionality reduction is the number of
discarded principal components. First, we examined the accuracy of the gener-
ated DP data set in terms of RE as we changed the amount of dimensionality
reduction. In these experiments, we took ε = 1 as the target DP level, which is
smaller than the ε values usually chosen when generating DP data sets —in spite
of DP not offering any effective privacy guarantee for large ε, it is not uncommon
to see ε = 10 or larger in this context. In Fig. 2 we report the average RE (y-axis)
over the remaining l principal components for different microaggregation cluster
sizes (x-axis); each curve represents a different number l of remaining principal
components.

RE is the result of three errors: the dimensionality reduction error, the
microaggregation error, and the noise introduced by DP. We focused on ana-
lyzing the interplay between the error due to dimensionality reduction and the
other types of errors.

The effect of dimensionality reduction is twofold. On the one side, the fewer
the components that remain, the greater the error due to dimensionality reduc-
tion. On the other side, the fewer the components, the larger the share of ε we
can assign to each component, which reduces the error due to DP. This is clear
by looking at the curves with one and two components in Fig. 2. For small values
of k, the total error in the one-component curve is smaller. The reason is that,

Fig. 2. Average RE (y-axis) of the DP data set for ε = 1 in terms the cluster
size (x-axis). Each curve corresponds to a different number l of remaining principal
components.



Mitigating the Curse of Dimensionality in Data Anonymization 353

for a small k, the error due to DP dominates and having multiple components
magnifies it. In contrast, for larger k, the error due to DP becomes less signifi-
cant and it is preferable to decrease the error due to dimensionality reduction,
even if that implies increasing the error due to DP.

Even if the total RE is a combination of opposing factors, it becomes apparent
in Fig. 2 that preserving a large number of components is, in general, not a good
compromise. To emphasize this fact and show the real value of the proposed
method we compared against the results in [13], which do not use dimensionality
reduction. Figure 3 shows the RE of the method described in [13] when dealing
with the 13 attributes of the Census data set. We observe in Fig. 3 that for
DP with ε = 1 the best RE is substantially greater than 1 (actually around 4)
because the scale is logarithmic. Using PCA dimensionality reduction with 3
principal components we reached an RE of 0.5. Even though RE = 0.5 may still
be too much, the improvement is very significant. To reduce the RE to more
acceptable rates, we could slightly increase ε (e.g. ε = 2). Indeed, despite DP
becomes meaningless if a large ε is used, greater values are common in DP data
set generation. In contrast, increasing ε is not very useful in [13]: even using
ε = 10 (too large to offer any privacy guarantees) yields results worse than those
obtained for ε = 1 with our approach.

13 attributes

=

Fig. 3. Average RE (y-axis) of the DP data set in terms the cluster size (x-axis) of the
DP data set generation method described in [13] and of the baseline microaggregation
algorithm.



354 J. Soria-Comas and J. Domingo-Ferrer

6 Conclusions and Future Research

In the context of privacy-preserving data publishing, attaining privacy guar-
antees at the individual level while preserving a reasonable data utility is only
feasible for low-dimensional data sets. We have presented an approach for dimen-
sionality reduction that is aimed at improving the loss of information caused by
anonymization.

We leverage principal components decomposition: subjects send their original
records to the controller, who gathers the entire original data set and computes
the principal components of it. The dimensionality reduction comes from the
controller choosing only those components that carry most information.

We have exemplified our approach for the specific case of DP data set gener-
ation. We have shown that pre-processing data (to transform the original data
set into its principal components) does not increase the risk of disclosure. Exper-
imental results are based on the DP data set generation mechanism of [17], and
they show a very significant information loss reduction in the DP data set.

Future research lines include the following:

– Amplify empirical work by working on data sets with more attributes and
more records.

– Extend the PCA-based dimensionality reduction for categorical attributes.
This will require resorting to dimensionality reduction techniques for cate-
gorical data, such as correspondence analysis or others.

– Study the case in which the controller is not trusted. In this case, the con-
troller does not gather the entire original data set. Therefore, dimensionality
reduction cannot be achieved via PCA as explained in this paper. Possible
alternatives are to use randomized response to allow clustering of attributes,
in such a way that attributes in different clusters are weakly dependent or
nearly independent. This would make it possible to separately deal with each
cluster of attributes, which would provide dimensionality reduction.
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14. Snoke, J., Slavković, A.: pMSE mechanism: differentially private synthetic data
with maximal distributional similarity. In: Domingo-Ferrer, J., Montes, F. (eds.)
PSD 2018. LNCS, vol. 11126, pp. 138–159. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99771-1 10

15. Solon, O.: ‘Data is a fingerprint’: why you aren’t as anonymous as you think online.
The Guardian, 13 Jul 2018

16. Soria-Comas, J., Domingo-Ferrer, J.: Optimal data-independent noise for differen-
tial privacy. Inf. Sci. 250, 200–214 (2013)

17. Soria-Comas, J., Domingo-Ferrer, J.: Differentially private data publishing via opti-
mal univariate microaggregation and record perturbation. Knowl.-Based Syst. 125,
13–23 (2018)

18. Soria-Comas, J., Domingo-Ferrer, J.: Differentially private data sets based on
microaggregation and record perturbation. In: Torra, V., Narukawa, Y., Honda,
A., Inoue, S. (eds.) MDAI 2017. LNCS (LNAI), vol. 10571, pp. 119–131. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67422-3 11

19. Sweeney, L.: Simple Demographics Often Identify People Uniquely. Carnegie Mel-
lon University, Data Privacy Working Paper 3, Pittsburgh (2000)

20. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: PrivBayes:
private data release via bayesian networks. ACM Trans. Database Syst. 42(4), 25
(2017)

https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-319-99771-1_10
https://doi.org/10.1007/978-3-319-99771-1_10
https://doi.org/10.1007/978-3-319-67422-3_11


Author Index

Abdelkhalek, Raoua 224
Armengol, Eva 248

Bevilacqua, Sara 236
Boczek, Michał 3
Boukhris, Imen 224

Cabitza, Federico 201, 283
Campagner, Andrea 201
Cardin, Marta 92
Casalino, Gabriella 177
Casas-Roma, Jordi 164
Castellano, Giovanna 177
Celotto, Emilio 52
Ciucci, Davide 201
Consiglio, Arianna 177

da Costa Pereira, Célia 236
De Grandis, Marco 64
Devillet, Jimmy 98
Domingo-Ferrer, Josep 333, 346

Ellero, Andrea 52
Elouedi, Zied 224

Ferretti, Paola 52
Font, Jordi 164
Fukushima, Takuya 319

Garcia-Alfaro, Joaquin 113
Gómez, Daniel 41
González, Ignacio 213
Guerci, Eric 236

Hamasuna, Yukihiro 272
Hasegawa, Taku 319
Hovana, Anton 3
Huhnstock, Nikolas Alexander 307
Hutník, Ondrej 3

Kalina, Martin 126
Kanzawa, Yuchi 189
Karlsson, Alexander 307
Kawabe, Jun 17

Kingetsu, Yuto 272
Kiss, Gergely 98
Kolesárová, Anna 41
Krastiņš, Māris 105

Lefkovits, László 295
Lefkovits, Szidónia 295
Li, Xuesong 151
Liguori, Maria 177
Luo, Hang 77

Marichal, Jean-Luc 98
Mateos, Alfonso 213
Mesiar, Radko 41
Montero, Javier 41
Mulero, Rafael 333

Nakano, Shusuke 272
Nakashima, Tomoharu 319
Narukawa, Yasuo 138
Nuzziello, Nicoletta 177

Parada, Raúl 164
Pasi, Gabriella 64
Peñaloza, Rafael 259
Precioso, Frédéric 236
Primiceri, Davide 177

Riveiro, Maria 307

Sartori, Claudio 236
Šeliga, Adam 41
Seveso, Andrea 201
Song, Wei 151
Soria-Comas, Jordi 333, 346
Steinhauer, H. Joe 307
Szilágyi, László 295

Torra, Vicenç 113, 138

Vicente, Zaida 248
Viviani, Marco 64

Yoshida, Yuji 29


	Preface
	Organization
	Abstracts of Invited Talks
	Incomplete Knowledge in Computational Social Choice
	As Simple as Possible But Not Simpler in Multiple Criteria Decision Analysis: The Robust Stochastic Level Dependent Choquet Integral Approach
	Contents
	Aggregation Operators and Decision Making
	General Chebyshev Type Inequality for Seminormed Fuzzy Integral
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 On Existing Sufficient Conditions
	5 Special Cases
	5.1 Sugeno Integral on [0,1]
	5.2 Shilkret Integral on [0,1]

	6 Concluding Remarks
	References

	Convergence in Measure Theorems of the Choquet Integral Revisited
	1 Introduction
	2 Preliminaries
	3 The Conditional Autocontinuity of Nonadditive Measures
	4 The Monotone Convergence in Measure Theorem
	5 The Fatou and the Reverse Fatou in Measure Lemmas
	6 The Dominated Convergence in Measure Theorem
	7 The Dual Measure Forms
	8 The Extension to Symmetric and Asymmetric Integrals
	9 Concluding Remarks
	References

	Risk-Sensitive Markov Decision Under Risk Constraints with Coherent Risk Measures
	1 Introduction
	2 Coherent Risk Measure Derived from Risk Averse Utility
	3 Markov Decision Processes with Risk Constraints
	4 Feasibility of Risk Constraints and Risk-Sensitive Expected Rewards
	5 Dynamic Risk-Sensitive Rewards Under Risk Constraints
	6 Numerical Examples
	References

	Set-Based Extended Functions
	1 Introduction
	2 Set-Based Extended Functions on a General Universe
	3 Set-Based Extended Functions on Lattices
	4 Set-Based Extended Aggregation Functions on Chains
	5 Concluding Remarks
	References

	Fuzzy Confirmation Measures (a)symmetry Properties
	1 Introduction
	2 Bayesian and Fuzzy Confirmation Measures
	3 Symmetries
	4 Lack of Symmetry and Degree of Asymmetry
	5 Conclusions
	References

	Fake News Detection in Microblogging Through Quantifier-Guided Aggregation
	1 Introduction
	2 Related Work
	3 MCDM and Aggregation Operators
	3.1 OWA Operators and Linguistic Quantifiers

	4 An OWA-Based Approach for Fake News Detection
	4.1 Fake News Event Detection on Twitter
	4.2 Quantifier-Guided Aggregation Schemes

	5 Evaluation
	5.1 Implementation Details
	5.2 Summarization of Results and Discussion

	6 Conclusions
	References

	Individual, Coalitional and Structural Influence in Group Decision-Making
	1 Introduction
	2 Influence Model in Group Decision-Making
	2.1 Influence in Social Networks
	2.2 Influence of Coalitions of Agents
	2.3 Social Choice Functions and Social Influence Functions

	3 Graphical and Mathematical Expressions of the Three Levels of Influence
	3.1 Level I Influence from Independent Agents
	3.2 Level II Influence from Coalitional Agents
	3.3 Level III Influence from Structural Agents

	4 The Interplay Between the Coalitional Influence and the Structural Influence: A Probability-Based Approach
	4.1 Individual Influences
	4.2 Structural Influences
	4.3 Coalitional Influences

	5 Discussion, Conclusion and Future Work
	References

	Betweenness Spaces: Morphism and Aggregation Functions
	1 Introduction
	2 Ternary Betweenness and Interval Spaces
	3 Betweenness Spaces as Abstract Convex Structures
	4 Morphisms and Aggregation Functions
	5 Concluding Remarks
	References

	On Idempotent n-ary Uninorms
	1 Introduction
	2 A First Characterization
	3 An Alternative Characterization
	References

	On Aggregation of Risk Levels Using T-Conorms
	1 Introduction
	2 Conditions for Aggregation of Risk Factors in Qualitative Risk Assessment Model
	3 Aggregation of Risk Levels with Maximum T-Conorm
	4 Aggregation of Risk Levels with Łukasiewicz T-Conorm
	5 Aggregation of Risk Levels with Combined T-Conorm
	6 Example of Aggregated Risk Score
	7 Conclusions
	References

	Towards an Adaptive Defuzzification: Using Numerical Choquet Integral
	1 Introduction
	2 Fuzzy Measures and the Choquet Integral
	3 Fuzzy Rule Based Systems
	4 Defuzzification Based on the Choquet Integral
	5 Applying the Approach to Cyber-Physical Systems
	5.1 Trajectory Search Scenario

	6 Concluding Remarks
	References

	Uninorms and Nullnorms and their Idempotent Versions on Bounded Posets
	1 Introduction
	2 Basic Notations and Some Known Facts and Notions
	3 Existence of Uninorms and Nullnorms on Bounded Posets
	4 Idempotent Uninorms and Nullnorms
	5 Conclusions
	References

	Derivative for Discrete Choquet Integrals
	1 Introduction
	2 Preliminaries
	3 Condition for the Existence of a Derivative
	4 Possibility Measures
	5 Conclusion
	References

	Data Science and Data Mining
	A Non-Negative Matrix Factorization for Recommender Systems Based on Dynamic Bias
	Abstract
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Proposed Method
	4.1 Basic Model
	4.2 Probabilistic Distribution
	4.3 Factor Matrices
	4.4 Bias Matrices
	4.5 Algorithm Description

	5 Performance Evaluation
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Parameter Settings
	5.4 Experimental Results

	6 Conclusions
	Acknowledgments
	References

	Forecasting Water Levels of Catalan Reservoirs
	1 Introduction
	2 State of the Art
	3 Data Processing
	3.1 Reservoirs
	3.2 Data Extraction and Feature Selection

	4 Methodology and Results
	5 Conclusion and Future Work
	References

	A Predictive Model for MicroRNA Expressions in Pediatric Multiple Sclerosis Detection
	1 Introduction
	2 The Workflow
	3 Data Preprocessing
	3.1 Normalization
	3.2 Feature Selection
	3.3 Class Balancing

	4 Model Construction
	5 Model Evaluation
	6 Conclusions
	References

	On Collaborative Filtering with Possibilistic Clustering for Spherical Data Based on Tsallis Entropy
	1 Introduction
	2 Preliminaries
	2.1 Conventional Collaborative Filtering Method: GroupLens
	2.2 CF Using qFCS
	2.3 Possibilistic Clustering for Spherical Data Based on Tsallis Entropy

	3 Proposed Method
	4 Numerical Experiments
	5 Conclusion
	References

	Programmed Inefficiencies in DSS-Supported Human Decision Making
	1 Motivation and Background
	2 Programmed Inefficiencies in DataWise
	3 The DataWise Use Case
	3.1 Patient and Model Selection
	3.2 Prognostic Support
	3.3 Interpretation Support

	4 Conclusion
	References

	Multilayer Identification: Combining N-Grams, TF-IDF and Monge-Elkan in Massive Real Time Processing
	Abstract
	1 Introduction
	2 Multilayer Identification
	2.1 The Nucleus of the System
	2.2 Upgrading the System. TF-IDF

	3 A Variation of Monge-Elkan Algorithm
	4 Fine Tuning and Results
	4.1 Final Solution
	4.2 Fine Tuning

	5 Conclusions and Future Work
	Acknowledgements
	References

	An Evidential Clustering for Collaborative Filtering Based on Users' Preferences
	1 Introduction
	2 Background Related to Evidence Theory
	2.1 Basic Concepts and Notations
	2.2 Evidential C-Means (ECM)
	2.3 Evidential K-Nearest Neighbors

	3 Related Works on Collaborative Filtering
	4 EC-UBCF: Evidential Clustering User-Based for CF
	4.1 Evidential Users' Clustering
	4.2 Identifying Clusters
	4.3 Users' Neighborhood Selection
	4.4 Modeling Users' Neighborhood Ratings
	4.5 Generating Users' Neighborhood Predictions

	5 Experiments and Discussions
	5.1 Evaluation Metrics
	5.2 Results
	5.3 Scalability Performance

	6 Conclusion
	References

	Analysing the Impact of Rationality on the Italian Electricity Market
	1 Introduction and Related Work
	2 Some Background: A Brief Description of the Used Methods
	3 The Italian Electricity Market
	3.1 The Market Configuration
	3.2 Market Exchanges

	4 Relaxing the Zonal Constraint
	4.1 Model Description
	4.2 The Optimization Process
	4.3 Evaluation of the Proposed Approach

	5 Conclusion
	References

	Analysis of Abstention in the Elections to the Catalan Parliament by Means of Decision Trees
	1 Introduction
	2 Decision Trees
	3 The Data Base
	4 Experiments
	5 Conclusions and Future Work
	References

	Making Decisions with Knowledge Base Repairs
	1 Introduction
	2 Preliminaries
	3 Iterative Contractions
	4 Choosing the Right Repair
	5 Conclusions
	References

	k-Medoids Clustering Based on Kernel Density Estimation and Jensen-Shannon Divergence
	1 Introduction
	2 Preliminaries
	2.1 k-medoids
	2.2 Kernel Density Estimation
	2.3 Jensen-Shannon Divergence

	3 Proposed Method
	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Discussions

	5 Conclusions
	References

	Biases Affecting Human Decision Making in AI-Supported Second Opinion Settings
	1 Introduction
	2 Methods
	3 Results and Analyses
	3.1 Plausibility Analysis
	3.2 Confirmation Trends Analysis
	3.3 Impact on Accuracy Analysis
	3.4 Conformity Bias Analysis

	4 Discussion and Conclusion
	References

	Applications of Different CNN Architectures for Palm Vein Identification
	1 Introduction
	2 The Database
	3 Transfer Learning
	4 The Proposed Approach
	5 Results and Experiments
	6 Conclusion and Future Work
	References

	An Infinite Replicated Softmax Model for Topic Modeling
	1 Introduction
	2 Preliminaries
	2.1 RBM
	2.2 RSM
	2.3 iRBM

	3 Related Work
	4 Proposed Model
	5 Hybrid Training
	6 Experiment Design
	7 Results
	8 Discussion
	9 Conclusion
	References

	Estimating Optimal Values for Intentional-Value-Substitution Learning
	1 Introduction
	2 Intentional-Value-Substitution (IVS) Learning
	2.1 Method
	2.2 Analysis on the Optimal Values with the Target Function

	3 Estimation of Optimal Substitution Values Without the Target Function
	4 Computational Experiments
	4.1 Experimental Setup
	4.2 Estimated Values
	4.3 Generalization Performance

	5 Conclusions
	References

	Data Privacy and Security
	Efficient Near-Optimal Variable-Size Microaggregation
	1 Introduction
	2 Background 
	2.1 Microaggregation 
	2.2 MDAV
	2.3 VMDAV
	2.4 Clustering and Lloyd's Algorithm

	3 Limitations of MDAV and VMDAV 
	4 ONA: Near-Optimal MicroAggregation
	5 Experimental Evaluation
	5.1 Evaluated Methods
	5.2 Data Sets
	5.3 Evaluation Results

	6 Conclusions and Future Research
	References

	Mitigating the Curse of Dimensionality in Data Anonymization
	1 Introduction
	2 Background
	2.1 Principal Component Analysis
	2.2 Differentially Private Data Sets

	3 PCA-Based Dimensionality Reduction
	4 Example: Differential Privacy Anonymization on PCA-Reduced Dimensionality Data
	5 Empirical Work
	6 Conclusions and Future Research
	References

	Author Index



