
Prediction of Plant lncRNA-Protein
Interactions Using Sequence Information

Based on Deep Learning

Haoran Zhou1, Yushi Luan2, Jael Sanyanda Wekesa1,
and Jun Meng1(&)

1 School of Computer Science and Technology,
Dalian University of Technology, Dalian 116024, Liaoning, China

mengjun@dlut.edu.cn
2 School of Bioengineering, Dalian University of Technology,

Dalian 116024, Liaoning, China

Abstract. Plant long non-coding RNA (lncRNA) plays an important role in
many biological processes, mainly through its interaction with RNA binding
protein (RBP). To understand the function of lncRNA, a basic step is to
determine which proteins are interacted with lncRNA. Therefore, RBP can be
predicted by computational approaches. However, the main challenge is that it is
difficult to find interaction patterns or primitives. In this study, we propose a
method based on sequences to predict plant lncRNA-protein interaction, namely
PLRPI uses k-mer frequency feature for RNA and protein, stacked denoising
autoencoder and gradient boosting decision tree to learn the hidden interaction
between plant lncRNAs and proteins sequences. The experimental results show
that PLRPI achieves good performance on the test datasets ATH948 and
ZEA22133 based on lncRNA-protein interaction of Arabidopsis thaliana and
Zea mays. Our method gets an accuracy of 90.4% on ATH948 and 82.6% on
ZEA22133. PLRPI is also superior to other methods in some public RNA-
protein interaction datasets. The result shows PLRPI has strong generalization
ability and high robustness. It is an effective model for predicting plant lncRNA-
protein interactions.

Keywords: lncRNA-protein � k-mer � Stacked denoising autoencoder �
Gradient boosting decision tree

1 Introduction

Long non-coding RNA (lncRNA) [1] is a kind of RNA molecule with specific func-
tions in eukaryotes. Its length is generally more than 200 nt. Basically, they have no
ability to encode proteins, which are large in number and are presented in the nucleus
or cytoplasm. It has been found that lncRNA can participate in various levels of gene
expression regulation by interacting with proteins such as chromatin-modified com-
plexes and transcription factors. lncRNA also plays a regulatory role in many important
biological processes. Their interactions are closely related to the most basic life
activities of organisms [2–5]. Many key cellular processes such as signal transduction,
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chromosome replication, material transport, mitosis, transcription and translation, are
closely related to the interaction between RNA and protein [6–8]. Although there is no
doubt about the role of lncRNA in the regulation of gene expression, only a few
functions and mechanisms of lncRNA have been studied. Since the regulatory role of
lncRNA mostly requires the coordination of protein molecules, it is necessary to
identify the interactions of lncRNA and protein molecules.

Research on plant lncRNA is still in its infancy compared with animals. To date,
nearly 10,000 lncRNAs have been found in several plants such as Arabidopsis thali-
ana, wheat, corn, soybeans, and rice, accounting for 1% of total lncRNAs. They play
an important role in guiding reproductive development, growth, stress response,
chromosome modification, and protein interactions.

The interaction of lncRNA with protein is ubiquitous. At present, there are few
structural data of protein complexes obtained by conventional methods such as X-ray
diffraction, nuclear magnetic resonance, electron microscopy and neutron diffraction.
This is mainly because the experimental methods have disadvantages like high cost,
long time-consuming and complicated measurement process. With the development of
high-throughput sequencing technology, people can quickly obtain a large amount of
transcriptome and proteomic information, including a large number of potential RPI
needs analysis. However, traditional experimental methods can only be studied on
specific protein, RNA or protein-RNA complexes, which is far from technically suf-
ficient. Therefore, machine learning is widely used in bioinformatics to extract features
from samples and analyze them.

Traditional machine learning models require manual feature extraction, which may
not be able to pinpoint hidden relationships in raw data. Deep learning provides a
powerful solution to this problem. It consists of multi-layer neural network model
architecture [9–11] that automatically extracts high-level abstractions from the data. At
the same time, in the fields of image recognition [12], speech recognition, signal
recognition [13], deep learning shows better performance than other commonly used
machine learning methods. It has also been well applied in the field of bioinformatics
[14, 15]. For example, deep learning has been successfully applied to predict RNA
splicing patterns [16]. Compared with other sequence-based methods, deep learning
can automatically learn the sequence characteristics of RNA and protein, discover the
specific correlation between these sequences [17, 18], and reduce the influence of noise
in the original data by learning the real hidden advanced features. In addition, some
methods based on deep learning artificially introduce noise to reduce over-fitting,
which can enhance the generalization ability and robustness of the model.

This study presents a new model, PLRPI, for predicting plant lncRNA-protein
interactions based on sequence information. For a particular plant protein and lncRNA
pair, PLRPI can predict whether there are interactions between them. In the experiment,
we first extracted the 4-mer features of lncRNA and the 3-mer features of proteins [19].
20 amino acids of proteins were divided into 7 groups according to their physico-
chemical properties [20]. They are embedded into matrices and features are extracted
using stacked denoising autoencoder. Then the extracted features of lncRNAs and
proteins are contacted and added into the softmax layer, which is compared with the
data labels for supervised learning, the advanced features are obtained and fine-tuned.
The gradient boosting descent tree classifier is used for ensemble classification, and the
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final result is obtained. We evaluated the performance of PLRPI on plant datasets and
other RNA-protein datasets from previous studies for comparison with other advanced
methods. The results show that PLRPI not only has high prediction accuracy, but also
has good generalization ability and high robustness. It can effectively predict the
interaction between plant lncRNAs and proteins.

2 Materials and Methods

2.1 Datasets

To test the performance of PLRPI, we created the datasets ATH948 and ZEA22133
based on Arabidopsis thaliana and Zea mays. Firstly, we downloaded Arabidopsis
thaliana and Zea mays lncRNA-protein datasets fromMing Chen’s bioinformatics group
(http://bis.zju.edu.cn/PlncRNADB/index.php?p=network&spe=Zea%20mays). In order
to reduce the bias of sequence homology, the redundant sequences with sequence sim-
ilarity greater than 90% for both protein and lncRNA sequences were excluded by using
CD-HIT [21]. For constructing non-interaction pairs, the same number of negative pairs
were generated through randomly pairing proteins with lncRNAs and further removing
the existing positive pairs [19]. After redundancy removal, ATH948 dataset, including
948 interactive pairs and 948 non-interactive pairs, was obtained consisting of 35 protein
chains and 109 lncRNA chains. Similarly, ZEA22133 dataset, including 22133 inter-
active pairs and 22133 non-interactive pairs, was obtained consisting of 42 protein chains
and 1704 lncRNA chains. It should be pointed out that compared with other datasets, it is
more difficult to extract features from plant lncRNA-protein interaction datasets. This is
due to the poor homology of plant lncRNA and the fact that a larger number of inter-
actions require only a smaller number of lncRNAs and proteins. It may increase the noise
which is more evident in ZEA22133. The details are shown in Table 1.

To test the robustness of PLRPI, we also collected other RNA-protein datasets from
previous studies, such as RPI1807 [22], RPI369 [19], RPI2241 [19] and RPI488 [23],
which were all extracted based on structure-based experimental complexes. RPI1807,
RPI369 and RPI2241 datasets are RNA-protein interactions from many species,
including human, animals and plants. Only RPI488 dataset is lncRNA-protein
interaction.

Table 1. Experimental datasets.

Dataset lncRNA Protein Interaction pair Non-interaction pair

ATH948 109 35 948 948
ZEA22133 1704 42 22133 22133
RPI2241 842 2043 2241 2241
RPI369 332 338 369 369
RPI488 25 247 243 245
RPI1807 1078 1807 1807 1436
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2.2 Methods

We first extracted 4-mer features of lncRNAs and 3-mer features of proteins, and then
put them into stacked denoising autoencoder models, respectively. The results are fine-
tuned using label information from RNA-protein pairs. After high-level features were
fine-tuned and they were classified using gradient boosting decision tree to get the
output. The detailed process is shown in Fig. 1.

The datasets and python code supporting the findings of this study are available at
https://github.com/zhr818789/PLRPI. The source code for the experiments was written
in python 3.5.2 using Keras 2.2.2 with Tensorflow 1.10.0 backend.

Sequence Information Processing
In order to obtain the raw features of autoencoder, we extracted simple sequence
component composition features from both RNAs and proteins. For RNA sequences,
4-mer frequency features of RNA sequences (A, C, G, T) are extracted, we got
4 � 4 � 4 � 4 = 256 dimensional features. Each feature value is the normalized
frequency of 4-mer nucleotides in RNA sequences, which is AAAA…CATC…TTTT.
For protein sequences, analysis by existing studies indicates that RNA-binding residues
are prone to amino acids with certain properties. According to the physicochemical
properties of amino acids and the effects of interactions, the 20 amino acids are divided
into 7 categories. They include: {Val, Gly, Ala}, {Phe, Pro, Leu, Ile}, {Ser, Tyr, Met,
Thr}, {His, Asn, Tpr, Gln}, {Arg, Lys}, {Glu, Asp} and {Cys}. We divided the protein
sequences into 7 groups according to the rules above. Since the conjoint triad (3-mer)
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Fig. 1. The flowchart of proposed PLRPI.
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of protein is composed by 3 amino acids, we extracted the 3-mer features of protein
trimer and got 7 � 7 � 7 = 343 dimensional features.

Stacked Denoising Autoencoder (SDAE)
Autoencoder (AE)
Autoencoder belongs to unsupervised learning and does not need to label training
samples. It is composed of two parts. The first part is an encoding network consisting of
input layer and middle layer which is used to compress the signal. The second part is a
decoding network consisting of middle layer and output layer which is used to restore
the compressed signal.

Suppose that we input an n-dimensional signal x (x < [0, 1]) through the input layer
to the middle layer, the signal becomes y, which is expressed by the following formula:

y ¼ sðWxþ bÞ ð1Þ

where s is a non-linear function, such as sigmoid. W is the link weight from input layer
to middle layer, and b is the bias of middle layer. Signal y is decoded by decoding layer
and output to output layer with n neurons, and then the signal becomes z. The following
formula is used:

z ¼ sðW 0yþ b0Þ ð2Þ

where s is a non-linear function, such as sigmoid. W′ is the link weight from the middle
layer to the output layer, b′ is the bias of the output layer, and z is regarded as the
prediction of x. Then the network parameters are adjusted to make the final output z as
close to the original input signal x as possible.

Denoising Autoencoder
Due to the complexity of the model, the amount of training data and the noise of data,
the initial model obtained by autoencoder often has the risk of over-fitting. In order to
prevent overfitting of the input data (input layer network), noise is added, so as to
enhance the generalization ability of the model.

As shown in Fig. 2, x is the original input data, and the denoising autoencoder sets
the value of the input layer node to 0 with a certain probability, so as to get the model
input xˆ with noise. This is similar to dropout, except that dropout sets the neurons in
the hidden layer to 0. By calculating y and z with the corrupted data x′ and iterating
errors with z and the original x, the network learns the corrupted data.

y

x zx

f g

LH (x,z)

Fig. 2. The flowchart of denoising autoencoder.
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Through the comparison with non-corrupted data training, the weight noise of
corrupted data is relatively small. This is because the input noise is accidentally
removed, and the corrupted data alleviates the generation gap between training data and
test data to a certain extent. Because part of the data is removed, the corrupted data is
close to the test data to a certain extent.

Stacked Denoising Autoencoder (SDAE)
The idea of SDAE is to stack multiple DAEs together to form a deep architecture [24].
Noise is added to the input when training the model. A SDAE with two hidden layers is
shown in Fig. 3.

Each encoding layer carries out unsupervised training separately. The training
objective is to minimize the error between input (input is the hidden output of the
previous layer) and reconstruction results. The output of layer K is obtained through
forward propagation, and then layer K + 1 is trained with the output of layer K as the
input.

Once SDAE training is completed, its high-level features are used as input of
traditional supervised algorithms. A layer of logistic regression layer can be added at
the top level, and then the network can be fine-tuned with labeled data.

Gradient Boosting Decision Tree (GBDT)
GBDT is one of the best algorithms to fit the real distribution in traditional machine
learning algorithms. Its effect is good and it is used for classification and regression.

GBDT uses multiple iterations, and each iteration produces a weak classifier. Each
classifier is trained on the basis of the residual of the previous one. The requirement for
weak classifiers is usually simple enough with low variance and high deviation,
because the training process is to improve the accuracy of the final classifier by
reducing the deviation. The weak classifier will generally choose CART (classification
and regression tree). Because of the above high deviation and simple requirement, the
depth of each classification regression tree will not be very deep. The final total
classifier is the sum of weighted weak classifiers obtained from each round of training
(that is the additive model).

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Encode

Encode

Decode

Fig. 3. A SDAE with two hidden layers.
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Evaluation Criteria
In this study, we classify protein and lncRNA pairs to be interacting or not. We follow
the widely used evaluation measure by means of the classification accuracy, precision,
sensitivity, specificity and MCC defined respectively as follows:

Accuracy ¼ TPþ TN
TPþ TN þFPþFN

ð3Þ

Precision ¼ TP
TPþFP

ð4Þ

Sensitivity ¼ TP
TPþFN

ð5Þ

Specificity ¼ TN
TNþFP

ð6Þ

MCC¼ TP� TN � TP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ TPþFNð Þ TN þFPð Þ TN þFNð Þp ð7Þ

where TP, TN, FP, FN represents true positive, true negative, false positive, and false
negative, respectively. To guarantee unbiased comparison, the testing and training
datasets do not overlap with each other.

3 Results and Discussion

3.1 Results

In this study, PLRPI method is tested on ATH948 and ZEA22133 datasets which are
the interactions between lncRNA and protein. The test results are shown in Table 2.

Through the experimental results, we find that our method not only has high
accuracy, but also has excellent sensitivity and precision. This indicates that PLRPI has
a strong ability to recognize negative samples, and the proportion of actual positive set
samples in the predicted positive set is large. Although deep learning models generally
require enough data as support, the larger amount of data, does not yield higher
accuracy. The data of ZEA22133 is more, however, its accuracy is not as good as that
of ATH948.

Table 2. Performance of proposed method on our constructed datasets (%).

Dataset Accuracy Precision Sensitivity Specificity MCC

ATH948 90.4 92.8 87.6 93.2 81.1
ZEA22133 82.6 99.9 67.5 99.6 69.6
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3.2 Comparing with Other Methods

We compared PLRPI with other sequence-based methods IPMiner [23], RPISeq [19]
and lncPro [25] on our datasets. In study [19], the authors proposed RPISeq-RF and
RPISeq-SVM for predicting RNA-protein interaction, and RPISeq-RF performed better
than RPISeq-SVM on most datasets. Accordingly, here we only compared PLRPI with
RPISeq-RF. As shown in Table 3, on data ATH488 and ZEA22133, PLRPI achieved
the best performance. On dataset ATH488 it increased the accuracy with 10% over
IPMiner. Compared with other methods, it obtained the best performance in other
indexes with a little advantage over IPMiner, RPISeq-RF and lncPro. On dataset
ZEA22133, PLRPI achieved a prediction accuracy of 82.6% with an increase of about
20% over other methods. It achieved a precision of 99.9% and a specificity of 99.6%
with an increase of about 50% over other methods. This shows that our model performs
well in plant lncRNA-protein interactions datasets, and can effectively extract advanced
features and make predictions.

PLRPI outperforms other models on ATH948 and ZEA22133 datasets is because it
uses GBDT as a classifier. For GBDT, trees are not a multi-training average rela-
tionship. They are interrelated, hierarchical, and the variance must be relatively large.
However, because its learning ability is relatively strong, its deviation is very small,
and the more trees there are, the stronger the learning ability and the smaller the
deviation. Thus, as long as the number of trees for learning is enough, the predicted
mean will be infinitely close to the target.

3.3 Testing the Robustness of PLRPI

To test the robustness of PLRPI, we also compared it with other sequence-based
methods on other published ncRNA-protein and RNA-protein datasets. On dataset
RPI2241 and RPI369, the proposed method achieved higher performance than the
other methods. This shows that our method has strong robustness (Table 4).

Table 3. Performance compared with other methods on our constructed datasets (%).

Dataset Method Accuracy Precision Sensitivity Specificity MCC

ATH948 PLRPI 90.4 92.8 87.6 93.2 81.1
IPMiner 88.2 89.2 86.9 89.5 76.5
RPISeq-RF 75.6 76.2 75.2 73.0 79.4
lncPro 75.4 76.9 75.4 74.7 71.5

ZEA22133 PLRPI 82.6 99.9 67.5 99.6 69.6
IPMiner 68.7 69.6 66.5 70.9 37.5
RPISeq-RF 65.4 64.1 62.5 70.3 35.9
lncPro 60.3 61.3 60.8 69.6 30.9
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On dataset RPI488 and RPI1807, PLRPI has not achieved the best performance but
its indicators are almost the same as other methods. The reason is that the datasets are
mixed with samples of different organisms, and our model is better at dealing with the
plant lncRNA with poor homology, that is, our single species dataset.

PLRPI achieves good results on public datasets, mainly because of the use of
stacked denoising autoencoder. When the amount of training data is small, if we use the
traditional autoencoder to build the learning network, after passing the first few layers,
the error is extremely small. In addition, the training becomes invalid, and the learning
speed is slow. SDAE first performs unsupervised pre-training on each single hidden
layer of the denoising autoencoder, then stacks them, and finally performs overall fine-
tuning training to avoid the above problems and obtain better results.

In the process of training, the early stop method is used, which means that training
is stopped when the performance of the model begins to decline on the verification set,
thus avoiding the problem of over-fitting caused by continued training. PLRPI stops
training when the generalization loss exceeds the threshold, which reduces the impact
of over-fitting and save time. To further reduce the impact of over-fitting, we set
dropout to 0.5 [26], which is a common setting.

It can be found that PLRPI is not strict with the requirement of data quantity. From
hundreds to tens of thousands of sequences, the performance is excellent, but if the
number of interaction between lncRNA and protein is large and the number of their
respective sequences is relatively small (which is common in plant data), other general
models do not perform well, and our model still maintains a good performance. This
proves that PLRPI can adapt well to the data of plant lncRNA-protein interaction and
obtain higher performance.

Table 4. Performance comparison with different methods on other public datasets (%).

Dataset Method Accuracy Precision Sensitivity Specificity MCC

RPI2241 PLRPI 70.7 72.9 65.9 75.5 41.7
IPMiner 64.8 65.7 62.0 67.6 29.7
RPISeq-RF 64.6 66.3 65.2 63.0 29.3
lncPro 65.4 66.9 65.9 64.0 31.0

RPI369 PLRPI 74.5 73.3 77.2 71.8 49.2
IPMiner 72.3 72.4 72.3 72.3 44.7
RPISeq-RF 70.4 70.7 70.5 70.2 40.9
lncPro 70.4 71.3 70.8 69.6 40.9

RPI488 PLRPI 89.0 93.9 83.3 94.6 78.5
IPMiner 89.1 93.5 84.0 94.4 78.8

RPI1807 PLRPI 97.2 97.2 98.2 96.5 94.3
IPMiner 97.4 97.3 98.1 96.5 94.8
RPISeq-RF 97.3 96.0 96.8 98.4 94.6
lncPro 96.9 95.5 96.5 98.1 93.8
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4 Conclusion

In this study, we propose a computational method PLRPI based on stacked denoising
autoencoder and gradient boosting decision tree to predict plant lncRNA-protein
interactions. It achieved a better performance on our constructed lncRNA-protein
datasets ATH948 and ZEA22133. The comprehensive experimental results of other
previously published datasets also show the effectiveness of PLRPI. In dataset
ZEA22133, it improves the performance of the model by about 20% compared with
other existing sequence-based methods. The results show that stacked denoising
autoencoder extracts discriminant high-level features, which is very important for
building deep learning model. The high-level features are the features automatically
learned from multiple layers of neural network. PLRPI has shown good performance in
plant lncRNA-protein, which is better than other advanced methods. In future work, we
will apply different methods for sequence information of lncRNA and protein such as
OPT, PSSM, One-hot, and adjust the network structure according to different datasets.
We hope that we can use this model to construct network for plant lncRNAs and
proteins, which can be used to infer the functions of plant lncRNAs.
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