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Abstract. Many traditional feature extraction methods takes the global or the
local characteristics of training samples into consideration during the process of
feature extraction. How to fully utilize the global or the local characteristics to
improve the feature extraction efficiencies is worthy of research. In view of this,
a new Manifold-based Feature Extraction Method (MFEM) is proposed. MFEM
takes both the advantage of Linear Discriminant Analysis (LDA) in keeping the
global characteristics and the advantage of Locality Preserving Projections
(LPP) in keeping the local characteristics into consideration. In MFEM, Within-
Class Scatter based on Manifold (WCSM) and Between-Class Scatter based on
Manifold (BCSM) are introduced and the optimal projection can be obtained
based on the Fisher criterion. Compared with LDA and LPP, MFEM considers
the global information and local structure and improves the feature extraction
efficiency.
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1 Introduction

Linear Discriminant Analysis (LDA) [1] is popular in practice, in which the non-
singularity problem has greatly influent its improvement of efficiencies. In view of this,
many effective improvements are made by scientists: Regularized Discriminant
Analysis (RDA) proposed by Friedman [2] efficiently solves the above problem; 2D-
LDA is proposed to directly extract the features based on Fisher criterion [3];
Orthogonal LDA (OLDA) tries to diagonalize the scatter matrix so as to obtain the
discriminant vectors [4]; Direct LDA (DLDA) [5] carries no discriminative information
by modifying the simultaneous diagonalization procedure. Besides, the commonly-
used improvement approach include Pseudo-inverse LDA (PLDA) [6], Two-stage
LDA [7], Penalized Discriminant Analysis (PDA) [8], Enhanced Fisher Linear Dis-
criminant Model (EFM) [9]. In recent years, as to the under-sampled problems, we
proposed Scalarized LDA (SLDA) [10], and Matrix Exponential LDA (MELDA) [11].

The general strategy of above approach is to solve the singularity problem firstly
and then uses the Fisher criterion to obtain the optimal projections. LDA only takes the
sample global information into consideration but always neglects the local structure.
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On the other hand, many popular manifold learning approach such as Locality Pre-
serving Projection (LPP) [12], only focus on the local structure.

Therefore, all the sample information including the global characteristics and local
structure is taken into consideration, and propose a new Manifold-based Feature
Extraction Method (MFEM). MFEM inherits the advantage of Fisher criterion and
manifold learning and effectively improve the feature extraction efficiency.

2 Background Knowledge

2.1 LDA

Given a dataset matrix X = [x1, x2, …, xN] = [x1, x2, …, xc] where xi(i = 1, …, N),
N and c are respectively the training size and the class size. Ni denoting the number of
sample in the i th class.

In LDA, two scatters named between-class scatter SB and within-class scatter SW
are defined as:

SB ¼
Xc

i¼1

Ni

N
ð�xi - �xÞð�xi - �xÞT ð1Þ

SW =
Xc

i¼1

XNi

j¼1

1
N
(xij � �xi)(xij � �xi)T ð2Þ

where �xi ¼ 1
Ni
Xiei with ei ¼ ½1; . . .; 1�T 2 RNi is the centroid of class i and �x ¼ 1

N Xe

with ei ¼ ½1; . . .; 1�T 2 RN is the global centroid.
The optimal function of LDA is:

JðWoptÞ ¼ max
W

WTSBW
WTSWW

ð3Þ

The Eq. (3) is equivalent to:

max
W

WTSBW ð4Þ

and

min
W

WTSWW ð5Þ

where W is the optimal projection.
The projection W can be obtained by calculating the eigenvectors.
It can be seen from the above analysis, LDA tries to preserve the global charac-

teristics invariant before and after feature extraction. Its efficiency can not be improved
because it neglects the local structure of each class.
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2.2 LPP

The optimal problem of LPP is:

min
W

X
i;j

(WTxi �WTxjÞ2Sij ð6Þ

s:t
X
i

WTxiDiixTi W ¼ 1 ð7Þ

where W is the optimal projection, Sij is the weight function which reflects the simi-
larity of samples, Dii ¼

P
j Sij.

The above optimization problem can be transformed as follows based on the linear
algebra theory:

min
W

WTXLXTW ð8Þ

s:t: WTXDXTW¼1 ð9Þ

where L = D − S.
The optional projection matrix is obtained by computing all the nonzero eigen-

vectors of XLXTW = kXDXTW.
In conclusion, LPP tries to preserve the local characteristic but does not take the

global characteristics into consideration, especially, when encountering noise, the
feature extraction efficiency of LPP is greatly influenced.

3 MFEM

Feature extraction is a classical preprocessed approach in dealing with the high-
dimensional samples. Though they are widely-used in practice, the feature extraction
efficiency is limited due to neglecting the global characteristics and local structure. In
order to take all the characteristics of the training samples, a new Manifold-based
Feature Extraction Method (MFEM) is proposed. In MFEM, Within-Class Scatter
based on Manifold (WCSM) and Between-Class Scatter based on Manifold (BCSM)
are introduced and the optimal projection can be obtained based on the Fisher criterion.

3.1 Between-Class Scatter Based on Manifold

Inspired by manifold learning, we firstly construct the adjacency graph GD ¼ fX;Dg
where GD donates a graph with different classes, X and D donate the dataset and the
weight of different classes respectively. The different-class weight function of two
random samples xi and xj can be defined:
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Dij ¼ expð�d
.

xi � xj
�� ��2Þ; li 6¼ lj
0; li ¼ lj

(
ð10Þ

where li (i = 1, 2, …, N) donates the class label and d is a constant.
The different-class weight function verifies that if the samples xi and xj belong to

different classes, the weight of them is large; or else, the weight is zero.
In order to preserve the local characteristics of different classes, the samples xi and

xj belonged to different classes will be far away after feature extraction. The opti-
mization problem can be described as follows.

max
W

X
i;j

ðyi � yjÞ2Dij ð11Þ

Where yi ¼ WTxi, W donates the projection matrix and xi 2 X.P
i;j
ðyi � yjÞ2Dij is reformulated to the following equations based on the algebraic

transformation.

1
2

P
i;j
ðyi � yjÞ2Dij

¼ 1
2

P
i;j
ðWTxi �WTxjÞ2Dij

¼ P
i;j
ðWTxiDiixTi W �WTxiDijxTj WÞ

¼ WTXD0XTW �WTXDXTW
¼ WTXðD0 � DÞXTW
¼ WTSDW

ð12Þ

where SD ¼ XðD0 � DÞXT, D0 is a diagonal matrix and D0 ¼ P
j Dij.

By taking (12) to (11), (11) is reformulated to

max
W

WTSDW ð13Þ

Based on the above analysis, we can see Eqs. (4) and (13) reflect the global
characteristics of different classes and local structure of each class respectively. In order
to fully utilize all the above information, we can obtain the following optimization
expression based on (4) and (13).

max
W

aWTSBWþð1� aÞWTSDW

¼ max
W

WT½aSB þð1� aÞSD�W
¼ max

W
WTMBW

ð14Þ

where MB ¼ aSB þð1� aÞSD and a is a parameter balancing SB and SD. MB is called
Between-Class Scatter based on Manifold (BCSM).
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3.2 Within-Class Scatter Based on Manifold

Similarity with BCSM, the same-class weight function of two random samples xi and xj
is defined:

Sij ¼ expð� xi � xj
�� ��2.sÞ; li ¼ lj

0; li 6¼ lj

(
ð15Þ

where li (i = 1, 2, .., N) donates the class label and s is a constant.
The same-class weight function verifies that if the samples xi and xj with the same

class label, the weight of them is large; or else, the weight is zero.
In order to keep the neighborhood close, it can be described as:

min
W

X
i;j

ðyi � yjÞ2Sij ð16Þ

where yi ¼ WTxi, W donates the projection matrix and xi 2 X.P
i;j
ðyi � yjÞ2Sij is reformulated to the following equations based on the algebraic

transformation.

1
2

P
i;j
ðyi � yjÞ2Sij

¼ 1
2

P
i;j
ðWTxi �WTxjÞ2Sij

¼ P
i;j
ðWTxiSiixTi W �WTxiSijxTj WÞ

¼ WTXS0XTW �WTXSXTW
¼ WTXðS0 � SÞXTW
¼ WTSSW

ð17Þ

where SS ¼ XðS0 � SÞXT , S0 is a diagonal matrix and S
0 ¼ P

j Sij.
By taking (17) to (16), (16) is reformulated to

max
W

WTSSW ð18Þ

The following optimization expression based on (5) and (18).

max
W

bWTSWWþð1� bÞWTSSW

¼ max
W

WT½bSW þð1� bÞSS�W
¼ max

W
WTMWW

ð19Þ

where MW ¼ bSW þð1� bÞSS and b is a parameter balancing SW and SS. MW is
called Within-Class Scatter based on Manifold (WCSM).
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3.3 The Optimization Problem

Inspired by the Fisher criterion, the above optimization problem can be described as
follows.

J ¼ max
W

MB

MW
¼ max

W

WTðaSB þð1� aÞSDÞW
WTðbSW þð1� bÞSSÞW

ð20Þ

The solution of the maximization of (20) is given by computing all the nonzero
eigenvectors of MBW ¼ kMWW.

From the optimization expression of MFEM, it can be seen MFEM not only takes
the global characteristics into consideration, but also preserves the local structure.
MFEM inherits the advantages of LDA and LPP and improves the feature extraction
efficiency to some extent. When a ¼ b ¼ 1 or d ¼ s ¼ 1, MFEM is equivalent to
LDA; When a ¼ b ¼ 0, d ¼ 1 and s\1, MFEM is equivalent to LPP.

In practice, MW maybe singular and the optimal projection can not be obtained by
the above approach. For the sake of convenience, the singular value perturbation by
adding a little positive number to the diagonal ofMW is introduced to solve the singular
problem.

3.4 Optimization Algorithm

Input: the original dataset X and the reduced dimension d
Output: the corresponding lower dimensional dataset Y = [y1, y2, …, yd]
Step1: Construct the adjacency graph GD ¼ fX;Dg and GS ¼ fX;Sg where X ¼
fx1,x2; . . .; xNg donates the original dataset, D and S respectively donate the weights of
different classes and the same class. We put an edge between xi and xj if they are in
different classes in the GD, or else, put an edge between them in the Gs.
Step2: Compute the different-class weights and the same-class weights. If different-
class samples xi and xj are connected, utilize Eq. (10) to compute the different-class
weights; else utilize Eq. (15) to compute the same-class weights.
Step3: Compute SW , SB, MW and MB.
Step4: Solving the singular problem of MW . The singular value perturbation is
introduced to solve the singular problem. Let MW transform to M0

W after perturbation.
Step5: Compute the optimal projection W. The solution of the optimal projection W is
given by computing all the nonzero eigenvectors of M�1

W MBW = kW or M0�1
W MBW ¼

kW. The nonzero eigenvectors corresponding to the biggest d eigen-values are combine
to form the optimal projection W = [w1, …, wd].
Step6: As to a certain sample xi 2 X, the corresponding lower dimensional sample can
be obtained by yi ¼ WTxi.
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4 Experimental Analysis

4.1 UCI Two-Dimensional Visualization

Wine dataset, including 178 samples with 3 classes, in UCI machine learning reposi-
tory is used in the experiment. Set the reduced dimension is two, successively run PCA,
LPP, LDA, MFEM on the wine dataset, and we can obtain the experimental results,
shown in Table 1.

It can be seen from Fig. 1, some different-class samples are overlapped after feature
extraction by PCA. LPP, LDA and MFEM can mainly fulfill the feature extraction task
but the efficiencies are different. After feature extraction by LPP, some samples lying
near the three-class boundary are overlapped. Therefore, compared with LDA and
MFEM, the efficiency of LPP is lowest. The efficiencies of LDA and MFEM are both
high, but in the respect of distribution, MFEM shows much more perfect than LDA.
This is because MFEM tries to preserve the original distribution by taking both the
global and local characteristics, while LDA only focus on the global characteristics
based on the Fisher criterion so as to make the different-class samples far and the same-
class samples close. Although the within-class scatter reflects the closeness of the
same-class samples, yet it does not take the relationship of adjacent samples before and
after feature exaction.

4.2 Experiments on Face Datasets

Experiment datasets include ORL face dataset and Yale face dataset. We will discuss
the relationship between the sizes of training samples and recognition rates as well as
the relationship between the reduced dimensions and recognition rates.

Table 1. Recognition rates of PCA, LPP, LDA, MFEM on the face datasets

Data sets k PCA LPP LDA MFEM

ORL 3 0.711(28) 0.789(28) 0.814(30) 0.875(20)
4 0.808(28) 0.867(30) 0.875(30) 0.954(18)
5 0.845(22) 0.890(24) 0.905(30) 0.950(21)
6 0.863(22) 0.906(30) 0.950(30) 0.963(25)
7 0.892(20) 0.917(22) 0.925(26) 0.958(20)
8 0.873(20) 0.925(30) 0.938(26) 0.963(23)

Yale 4 0.619(12) 0.733(14) 0.667(14) 0.733(12)
5 0.667(14) 0.763(14) 0.767(14) 0.767(13)
6 0.653(12) 0.770(14) 0.747(10) 0.787(14)
7 0.750(12) 0.833(12) 0.833(14) 0.900(14)
8 0.800(10) 0.899(14) 0.822(14) 0.867(14)
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Relationship Between the Size of Training Samples and the Recognition Rate. The
training dataset consists of the first k images of each subject, and the remainders are
used for test. The values of k in ORL and Yale dataset are selected from 3, 4, 5, 6, 7 and
from 3, 5, 7, 9 respectively. The comparative experimental results are show in Table 1.
In order to overcome the small size problem in LDA, we utilize PCA + LDA instead
for LDA in the experiment.

It can be seen from Table 1, compared with PCA, LPP, LDA, MFEM performs best
on the ORL dataset and except k = 8, the efficiency of MFEM is highest on the Yale
dataset.

Relationship Between the Reduced Dimensions and Recognition Rates. The
training dataset consists of the first 5 images of each subject, and the remainders are
used for test. We can obtain the experiment results shown in Fig. 2.

It can be seen from Fig. 2, as the reduced dimension becomes higher, the corre-
sponding recognition rate mainly has an upward tendency. Compared with PCA, LPP,
LDA, MFEM performs best.

(a) PCA (b) LPP

(c) LDA (d) MFEM

Fig. 1. The experiment results of 2-dimensional visualization
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5 Conclusions

Researches on current feature extraction approaches can be reduced to two ways, one
pays more attention on the global structure, and the other originates from local structure
and tries to make the relationship between samples before and after feature extraction
be invariant. In view of shortages of classical feature extraction approaches, MFEM is
proposed. MFEM considers all the information and improves the feature extraction
efficiency. Experiments on some standard datasets verify the effectiveness of MFEM.
In practice, linear inseparability is a quite common problem and how to solve it is
attracting more and more researchers’ interest. MFEM proposed in this paper is suitable
to the linear separability situation, how to expand MFEM to linear inseparability is our
next work.
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