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Abstract. This paper proposes a continuous PID sliding mode control strategy
based on a neural third-order sliding mode observer for robotic manipulators by
using only position measurement. A neural third-order sliding mode observer
based on radial basis function neural network is first proposed to estimate both
the velocities and the dynamic uncertainties and faults. In this observer, the
radial basis function neural networks are used to estimate the parameters of the
observer, therefore, the requirement of prior knowledge of the dynamic uncer-
tainties and faults is eliminated. The obtained velocities and lumped uncer-
tainties and fault information are then employed to design the continuous PID
sliding mode controller based on the super-twisting algorithm. Consequently,
this controller provides finite-time convergence, high accuracy, chattering
reduction, and robustness against the dynamic uncertainties and faults without
the need of velocity measurement and the prior knowledge of the lumped
dynamic uncertainties and faults. The global stability and finite-time conver-
gence of the controller are guaranteed in theory by using Lyapunov function.
The effectiveness of the proposed method is verified by computer simulation for
a PUMA560 robot.
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1 Introduction

Robot manipulators are high nonlinear systems – which have very complex dynamics
with coupling terms. It is arduous to get its exact dynamics or even impossible in
practice because of the frictions, disturbances, and payload changes – well-known as
dynamic uncertainties. In rare case, unavoidable faults happen when the robot working.
To deal with these uncertainties and faults, various control methods have been pro-
posed in literature, such as PID control [1, 2], adaptive control [3], fuzzy control [4, 5],
neural network control [6, 7], sliding mode control (SMC) [8–10]. Compared with
other controllers, SMC standouts with salient features such as easy design procedure,
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robustness against the effect of dynamic uncertainties and faults. Basically, SMC uses a
proportional-derivative (PD) sliding function to deal with the overshoot problem and
get a fast response, respectively. To archive higher accuracy, an integral part has been
added into the sliding function which is called proportional-integral-derivative SMC
(PID-SMC) [11]. However, both conventional SMC and PID-SMC still include the
disadvantages, such as: (1) chattering phenomenon; (2) do not provide the finite-time
convergence; (3) require the prior knowledge of the dynamic uncertainties and faults,
and (4) the design procedure need the velocity information.

In order to eliminate the chattering problem, this paper employs super-twisting
algorithm (STA) to provide continuous control signal instead of the discontinuous one.
On the other hand, the finite-time convergence of STA has been successfully proved in
literature [12, 22]. Unfortunately, its design procedure still requires the velocity mea-
surement information and the prior knowledge of the lumped uncertainties and faults
which do not exist in realization. In order to obtain the dynamic uncertainties and faults
information, a lot of estimation methods have been developed, such as time delay
estimation [13, 14], neural network observer [15], third-order sliding mode observer
(TOSMO) [16, 17]. Among them, TOSMO is the remarkable estimation method
because of its ability to estimate not only the lumped dynamic uncertainties and faults
but also the velocity information without the need of a lowpass filter.

Although the requirement of the prior knowledge of uncertainties and faults is
eliminated in controller design procedure, however, it is still needed in the process of
designing of TOSMO. Generally, the observer’s parameters are selected based on
experience and the upper bound of the lumped dynamic uncertainties and faults. In
literature, various methods have been developed to estimate system parameters, such as
adaptive law [18], fuzzy logic [19], radial basis function neural network (RBFN) [20].
In this paper, RBFN is used to approximate the parameters of TOSMO because of its
fast learning ability, high approximation accuracy, and simple structure [17].

This paper proposes a neural TOSMO which can estimate both the velocities and
the dynamic uncertainties and faults with high accuracy fast response without the need
of lowpass filter. Additionally, the assumption of prior knowledge of the lumped
uncertainties and faults are eliminated. Based on the obtained information of the
observer, a PID-SMC control method based on super-twisting algorithm is designed to
deal with the robot dynamic uncertainties and faults. The proposed control strategy
provides high position tracking accuracy with less chattering, highly robust against the
effects of the uncertainties and faults with only position measurement. The global
stability and finite-time convergence are guaranteed by Lyapunov theory.

The structure of this paper is as follows. The dynamic equation of a n-link robotic
manipulator is first described in Sect. 2. Then, the process of designing of TOSMO and
neural TOSMO for robotic manipulators is presented in Sect. 3. Section 4 introduces
the controller design procedure. In Sect. 5, the simulation results of the proposed
control method are shown for a PUMA560 robotic manipulator. Finally, conclusions
are presented in Sect. 6.
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2 Problem Statement

The dynamic equation of a serial n-link robotic manipulator with faults is given as

€h ¼ M�1 hð Þ s� C h; _h
� �

_h� G hð Þ � F h; _h
� �

� sd
h i

þ c t � Tf
� �

W tð Þ ð1Þ

where h; _h; €h 2 R
n denote position, velocity, and acceleration of robot joints, respec-

tively. s 2 R
n, M hð Þ 2 R

n�n, C h; _h
� �

2 R
n, G hð Þ 2 R

n represent the control input

torque, inertia matrix, Coriolis and centripetal forces, gravitational force term,

respectively. F h; _h
� �

2 R
n, sd 2 R

n denote the friction vector and disturbance vector,

respectively, these two elements constitute the dynamic uncertainties. W tð Þ 2 R
n

indicates unknown faults with the time of occurrence Tf .
c t � Tf
� � ¼ diag c1 t � Tf

� �
; c2 t � Tf
� �

; . . .; cn t � Tf
� �� �

is the time profile of the
faults

c1 t � Tf
� � ¼ 0 if t� Tf

1� e�1i t�Tfð Þ if t� Tf

�
ð2Þ

where 1i [ 0 is the unknown faults evolution rate. The small and large values of 1i
characterize incipient faults and abrupt faults, respectively.

For simpler in design procedure, the robot dynamics of (1) can be rewritten in state
space as

_x1 ¼ x2

_x2 ¼ ! xð ÞþM�1 x1ð ÞuðtÞþNðx; tÞ ð3Þ

where x1 ¼ h; x2 ¼ _h;x ¼ x1 x2½ �T , uðtÞ ¼ s; ! xð Þ ¼ M�1 hð Þ �C h; _h
� �

_h� G hð Þ
h i

and N x; tð Þ ¼ M�1 hð Þ �F h; _h
� �

� sd
h i

þ c t � Tf
� �

W tð Þ indicates the lumped dynamic

uncertainties and faults.
The purpose of this paper is to design a continuous PID-SMC based on neural

TOSMO which can handle the effect of lumped dynamic uncertainties and faults with
only available position measurement. This controller is designed based on the fol-
lowing assumption.

Assumption 1: The lumped dynamic uncertainty and fault N x; tð Þ of the system and its
time derivative are bounded as

N x; tð Þj j � �N ð4Þ
_N x; tð Þ		 		� �K ð5Þ

where �N and �K are positive constants.
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3 Observer Design

3.1 Third-Order Sliding Mode Observer

Based on robot dynamics (3), the third-order sliding mode observer is designed as [17]

_̂x1 ¼ l1 x1 � x̂1j j2=3sign x1 � x̂1ð Þþ x̂2
_̂x2 ¼ !ðx̂ÞþM�1 x̂1ð ÞuðtÞþ l2 x1 � x̂1j j1=3sign x1 � x̂1ð Þþ ẑ

_̂z ¼ l3sign x1 � x̂1ð Þ
ð6Þ

where x̂ is the estimation of x and li denotes the sliding mode gains.
The estimation error can be obtained by subtracting (6) from (3)

_~x1 ¼ �l1 ~x1j j2=3sign ~x1ð Þþ~x2
_~x2 ¼ �l2 ~x1j j1=3sign ~x1ð ÞþNðx; tÞþ d ~x; tð Þ � ẑ

_̂z ¼ l3sign ~x1ð Þ
ð7Þ

where ~x ¼ x� x̂ and d ~x; tð Þ ¼ !ðxÞþM�1 x1ð ÞuðtÞ � !ðx̂ÞþM�1 x̂1ð ÞuðtÞð Þ.
Defining ~x3 ¼ �ẑþNoðx; tÞ, where Noðx; tÞ ¼ Nðx; tÞþ d ~x; tð Þ. Equation (7)

becomes

_~x1 ¼ �l1 ~x1j j2=3sign ~x1ð Þþ~x2
_~x2 ¼ �l2 ~x1j j1=3sign ~x1ð Þþ~x3
_~x3 ¼ �l3sign ~x1ð Þþ _Noðx; tÞ

ð8Þ

By choosing the candidate Lyapunov function L0 and using the same proving
procedure as in [21], we can prove that the system (8) is stable and the estimation errors
~x1;~x2; and ~x3 converge to zero in finite time with convergence time as

T0 ~x0ð Þ� L1=50 ~x0ð Þ
1
5v

ð9Þ

where ~x0 is the initial condition of (8) and 0� v� 2:8� 10�4:
After the convergence process, the estimated states will achieve the real states

x̂1 ¼ x1; x̂2 ¼ x2ð Þ and d ~x; tð Þ ¼ 0, the third term of system (8) becomes

_~x3 ¼ �l3sign ~x1ð Þþ _Nðx; tÞ � 0 ð10Þ

The lumped dynamic uncertainties and the faults can be reconstructed as

N̂ x; tð Þ ¼
Z

l3sign ~x1ð Þ ð11Þ
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We can see that the estimated dynamic uncertainties and faults in (11) can be
reconstructed directly without the need of lowpass filter. Besides, an integral element is
included, therefore, the chattering of the estimated function is partially eliminated.

Although the TOSMO provides high estimation accuracy and finite time conver-
gence, its parameters in still selected based on experience and the upper bound of the
lumped dynamic uncertainties and faults. In the next Section, the neural TOSMO will
be designed to surpass this drawback of TOSMO.

3.2 Neural Third-Order Sliding Mode Observer

Based on robot dynamics (3), the neural TOSMO is designed as

_̂x1 ¼ l̂1 ~x1j j2=3sign ~x1ð Þþ x̂2
_̂x2 ¼ !ðx̂ÞþM�1 x̂1ð ÞuðtÞþ l̂2 ~x1j j1=3sign ~x1ð Þþ ẑ

_̂z ¼ l̂3sign ~x1ð Þ
ð12Þ

where l̂i is the estimation of li

l̂i ¼ V̂T
i Ui Xkð Þ; i ¼ 1; 2; 3 ð13Þ

where Xk ¼ e1 e2½ �T is the neural network input with e1 ¼ x1 � x̂1 and e2 ¼ _̂x1 � x̂2.
The RBFN is used as an activation function

Ui Xkð Þ ¼ exp
Xk � cij


 

2

r2ij

 !
ð14Þ

where cij denotes the center vector, rij denotes the spread factor, j ¼ 1; 2; . . .;N denotes
the number of nodes in the hidden layer.

The weigh update law is as

_̂Vi ¼ giUi Xkð Þ Xkk k ð15Þ

where gi denote the learning rate.
By the same procedure with Sect. 3.1, we can reconstruct the lumped dynamic

uncertainties and faults as

N̂ x; tð Þ ¼
Z

l̂3sign ~x1ð Þ ð16Þ

Consequently, the requirement of prior knowledge of the lumped dynamic uncer-
tainties and faults has been removed. The obtained velocities and faults information are
used to design controller in Sect. 4. The effectiveness of the proposed observer will be
shown in simulation results.
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4 Controller Design

We define the tracking error and velocity error as

ê ¼ x̂1 � xd ð17Þ

_̂e ¼ x̂2 � _xd ð18Þ

where xd and _xd describe the desired trajectory and velocity, respectively.
The PID sliding function is selected as [11]

ŝ ¼ KpêþKi

Z
êþKd _̂e ð19Þ

where Ki;Kp; and Kd denote the proportional, integral, and derivative gains,
respectively.

Taking the first-time derivative of sliding function, we obtain

_̂s ¼Kp
_̂eþKiêþKd

_̂_e

¼Kp
_̂x1 � _xd
� �þKiêþKd

_̂x2 � €xd
� �

¼Kp
_̂x1 � _xd
� �þKiêþKd

!ðx̂ÞþM�1 x̂1ð ÞuðtÞ
þ l̂2 ~x1j j1=3sign ~x1ð Þþ l̂3

R
sign ~x1ð Þ � €xd

 ! ð20Þ

The control law is designed as follows

u ¼ � 1
Kd

M x1ð Þ ueq þ usmc
� � ð21Þ

where the equivalent control law ueq is designed as

ueq ¼ Kp
_̂x1 � _xd
� �þKiêþKd !ðx̂Þþ l̂2 ~x1j j1=3sign ~x1ð Þþ l̂3

Z
sign ~x1ð Þ � €xd

� �
ð22Þ

and the switching control law usmc is designed based on super-twisting algorithm as

usmc ¼ q1 ŝj j1=2sgn ŝð Þþ#

_# ¼ q2sgn ŝð Þ
ð23Þ

Substituting the control laws (21–23) into (20), we obtain

_̂s ¼ q1 ŝj j1=2sgn ŝð Þþ#

_# ¼ q2sgn ŝð Þþ _d
ð24Þ
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Since the estimation of the lumped dynamic uncertainties and faults l̂3
R
sign ~x1ð Þ is

included in the equivalent control signal, the stability and finite time convergence of the
system (24) will be guaranteed in [22] if the sliding gains are chosen as

q1 [ 0

q2 [ 3þ 2
�d

q21

� �
�d

ð25Þ

where d ¼ N̂� N denotes the uncertainties and faults estimation error and _d
		 		� �d.

The stability and finite time convergence of system (24) have been successfully
proved by using Lyapunov theory in [22].

5 Simulation Results

In this section, the effectiveness of control method is proved by computer simulation
for a PUMA560 robot with the last three links are locked. The explicit dynamic model
and parameter values of PUMA560 robot are given in [23].

Fig. 1. Comparison of velocity estimation error between TOSMO and neural TOSMO among
three joints.
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The friction F h; _h
� �

2 R
n and disturbance sd 2 R

n vectors are assumed as

F h; _h
� �

¼
0:8 _h1 þ 1:2 cos 3h1ð Þ
1:3 _h2 þ 0:5sin 5h2ð Þ
0:7 _h3 þ 0:3 sin 3:5h3ð Þ

2
64

3
75 and sd ¼

1:2 sin 0:95 _h1
� �

0:9 cos 1:7 _h2
� �

0:5 sin 3:2 _h3
� �

2
66664

3
77775 ð26Þ

The fault occurs at Tf ¼ 10s and is assumed as

W ¼ 2 cosð0:8tÞ 3 sinðtÞ 1:2 sinðtÞ½ �T ð27Þ

In this simulation, three RBFNs with 20 neurons in each hidden layer are used to
approximate three parameters of the proposed observer, respectively. The learning rates
are chosen as gi ¼ 2:5; i ¼ 1; 2; 3. The sliding gains of TOSMO are selected as
l1 ¼ 3L1=3; l2 ¼ 1:5L1=2; l3 ¼ 1:1L with L ¼ 6 [24]. The estimation of velocities and
the lumped uncertainties and faults are shown in Figs. 1 and 2. We can see that the
obtained information are almost the same with the results of TOMSO, however, the
upper bound of the lumped uncertainties and faults is not needed.

Fig. 2. Comparison of lumped uncertainty and fault estimation error between TOSMO and
neural TOSMO among three joints.
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In order to verify the effectiveness of the proposed controller, the parameters of
proposed controller are selected as Ki ¼ 7; Kp ¼ 3; Kd ¼ 0:5; q1 ¼ 1:5; q2 ¼ 1:1.
Figure 3 shows the comparison of position tracking error between the proposed con-
troller and the conventional PID-SMC which is designed as follows:

Fig. 3. Comparison of position tracking error between conventional PID-SMC and proposed
controller among three joints.
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The PID sliding function is selected as

s ¼ KpeþKi

Z
eþKd _e ð28Þ

where e ¼ x1 � xd and _e ¼ x2 � _xd
The control law is designed as follows

u ¼ � 1
Kd

M x1ð Þ ueq þ usmc
� � ð29Þ

ueq ¼ Kp _eþKieþKd !ðxÞ � €xdð Þ ð30Þ

usmc ¼ Psgn sð Þ ð31Þ

where P� �N is sliding gain.
From the results, the proposed controller provides higher tracking accuracy,

however, its convergence time becomes longer. This phenomenon is a consequence of
the velocity estimation delay. The output control signal is shown in and Fig. 4. The
results show that the chattering phenomenon is eliminated thanks to the effectiveness of
super-twisting algorithm.

Fig. 4. Comparison of control signal between conventional PID-SMC and proposed controller
among three joints.
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6 Conclusions

This paper proposes a continuous PID-SMC strategy based neural TOSMO for
uncertainty robotic manipulator without velocity measurement. The neural TOSMO
provides high estimation accuracy without the requirement of the prior knowledge of
lumped dynamic uncertainties and the faults. The tracking error accuracy is improved
by using the proposed control algorithm. The global stability and finite-time conver-
gence of system is guaranteed. The simulation results on a 3-DOF PUMA560 robot
verify the effectiveness of the proposed strategy.
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