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Abstract. Liver diseases, especially liver cancer, are a major threat to human
health. In order to assist doctors in efficiently diagnosing the condition and
developing treatment plans, automatic segmentation of the liver from CT images
has a strong clinical need. However, it is difficult to design an accurate seg-
mentation algorithm because of the blurred boundary of CT images and the great
difference of pathological changes. In this paper, we propose a cascade model
for liver segmentation from CT images, which uses cascade U-nets with
adversarial learning to obtain more accurate segmentation results. The experi-
mental results show that the proposed algorithm is competitive and its dice value
reaches 0.955.
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1 Introduction

1.1 Motivation

Liver is the largest abdominal organ in human body, which is often threatened by
diseases and drug damage. According to the Global Hepatitis Report 2017 released by
the World Health Organization, about 325 million people worldwide are infected with
chronic hepatitis B virus or hepatitis C virus, which can lead to chronic infection for
life and eventually lead to progressive liver damage. CT image is a very convenient
way to detect abdominal organs. Radiologists often need to observe the shape and
texture of patients’ liver through CT images to find visible lesions. However, it is
tedious and inefficient to analyze abdominal CT images manually by radiologists.
Therefore, it is very important to study the automatic liver segmentation technique in
CT images. However, as shown in Fig. 1, this task faces many challenges, such as great
variation of size and shape, unclear boundaries and different degrees of lesions, so
automatic segmentation technology has not yet entered the clinical stage.

1.2 Related Work

Traditional manual segmentation requires extensive radiology experience and is very
time consuming. In order to help radiologists improve their work efficiency, researchers
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have turned their attention to automatic liver segmentation technology. In recent years,
many automatic segmentation methods have been proposed. Pham et al. [16] proposed
a method based on grayscale and texture. This method includes global threshold, region
growth, voxel classification and edge detection, but it is easy to segment along the
blurred boundary, resulting in boundary leakage. Chan et al. [1] proposed a variational
semi-automated liver segmentation method, which employs prior knowledge and
morphological features into account. Zheng et al. [22] and Zhang et al. [21] proposed a
point-based statistical shape model (SSM), which can obtain higher accuracy in the
case of small amount of data.

Fig. 1. Example of liver CT images displaying large variations
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2 Background

2.1 Image Segmentation Network

The fully convolutional network (FCN) [13] is the basic architecture for many semantic
segmentation tasks, which consists of cascaded downsampling path and upsampling
path. The U-net [18] extends FCN by introducing skip connection between down-
sampling path and corresponding upsampling path. The skip connection improves the
network performance by facilitating the transmission of information. The DeepLab
architecture [12] involved atrous convolutions and poolings into the CNN architecture.
Based on the DeepLab [2], Chen et al. proposed the latest DeepLabV3 [3]. The
upsampling path of this model only consists of very few convolution layers, which is
different from the upsampling path used in the FCN and the U-net. Jegou et al. [10]
introduces the Dense connection [8] into FCN for segmentation tasks.

In recent years, fully convolutional network has developed rapidly in the field of
semantics segmentation, and has achieved remarkable results in the competition of
image segmentation. Exploration of this new segmentation method has begun for
medical image segmentation. Christ et al. [4] and Vorontsov et al. [19] proposed a
cascaded fully convolutional network, which combines two fully convolutional net-
works. The first network is used to segment liver, and the second network is used to
segment liver lesions on the basis of the first network. The segmentation results are
processed by 3D conditional random field to make results more accurate. The authors
of [5] proposed a deeply supervised network for liver segmentation. The input of the
network is part of the 3D bounding box, which has to be slid on a target scan during the
test time. In order to alleviate the problem of vanishing gradient, the network uses
additional deconvolution layers to generate feature maps from two intermediate layers,
and the gradients of loss are calculated from several branches. A three-dimensional
convolutional neural network is proposed in [7]. This method contains two steps. First,
a deep 3D CNN is trained to learn prior map of the liver. Then, in order to optimize
segmentation result, both global and local appearance information from the prior
segmentation are adaptively incorporated into a segmentation model. Rafiei et al. [17]
proposed a 3D-2D fully convolutional network, which makes full use of the spatial
information in CT volume to segment the liver while computation and memory con-
suming are moderate.

2.2 GAN

GAN [6] has achieved great success in the field of image generation. It is inspired by
the theory of zero-sum game. It regards generation problem as conflict and cooperation
between two players: Discriminator and generator. First, images will be generated from
noise by the generator, and then, with the help of discriminator, quality of the image
will be improved step by step. CGAN [14] has gained impressive results in various
image-to-image conversion problems, such as image super-resolution [11], image
inpainting [15], and style transfer [12]. CGAN regards original image as a constraint,
feeding it into the network along with noise as input, and adding conditional variables
into loss functions of both generator and discriminator. Under this circumstance, the
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generated image is of higher quality and closer to the real image. Zhang et al. [20]
firstly proposed a stacking model of GAN called StackGAN. The model can be divided
into two stages: The first stage generates a coarse image mainly containing primitive
shapes and colors based on the given text description. Then, the second stage takes the
coarse image and text description as input, to generate high-resolution images gradu-
ally. Huang et al. [9] designed a stacked GAN, which is trained to invert the hierar-
chical representations of a bottom-up discriminative network. Each GAN in this
stacked model learns to generate lower-level representations that are conditional on
higher level representations in order to generate more qualified images.

3 Method

In this paper, we propose a cascade model with adversarial learning for liver seg-
mentation. The algorithm is able to segment the liver accurately and efficiently from CT
slices. It consists of two stages: In the first stage, the 2D slice images are fed into the
first stage U-net segmentation network, and the segmentation results of the first stage
are obtained. In the second stage, CT slices are concatenated with the results of the first
U-net, and then input into the second stage U-net segmentation network to obtain more
accurate segmentation results. The training of the above two stages utilizes the
adversarial loss. The model is illustrated in the Fig. 2.

3.1 Model

Generative Adversarial Networks (GANs) consists of two components: an generator G
and a discriminator D. The two components are competing in a zero-sum game, in
which the generator G aims to produce a realistic image given an input z, that conforms
to a certain distribution. The discriminator D is forced to distinguish if a given image is
generated by G or it is indeed a real one from the dataset. The adversarial competition
enables the generator and the discriminator to achieve better performance, whilst
making it hard for D to differentiate generation of G from the real data. Conditional
Generative Adversarial Networks (CGANs) extends GANs by introducing an addi-
tional observed information, namely conditioning variable, to both the generator G and
the discriminator D.

Fig. 2. The proposed cascade model
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The architecture of the proposed model is shown in the Fig. 3. It consists of two
stacked CGANs: CGAN1(G1, D1), CGAN2(G2, D2), with the second stacked on top
of the first. CGAN is an extension of GAN. It introduces additional conditional vari-
ables for both generator and discriminator. In the proposed model, CT slice is the
conditional variable. The architectures of the generator G and discriminator D (ignoring
BN and ReLU) can be seen in Tables 1 and 2, respectively.

Fig. 3. The architecture of cascade CGAN model for liver segmentation
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Both the generator G1 and the discriminator D1 of the first CGAN are added with
condition, the CT image x. G1 is trained to produce mask G1 (z, x) corresponding to
CT image. y denotes the ground truth corresponding x.

The objective function of the CGAN1 is:

Ladversarial1 G1;D1ð Þ ¼ Ex;y� pdata x;yð Þ logD1 x; yð Þ½ �
þEx� pdata xð Þ;z� pz zð Þ log 1� D1 x;G1 xð Þð Þð Þ½ � ð1Þ

In order to obtain deterministic results from G1, we eliminate random noise and
simplify the formula as follows:

Table 1. Architecture of the generator G.

Type Kernel Stride Output size Output channels

conv. 5 � 5 2 � 2 128 � 128 64
conv. 5 � 5 2 � 2 64 � 64 128
conv. 5 � 5 2 � 2 32 � 32 256
conv. 5 � 5 2 � 2 16 � 16 512
conv. 5 � 5 2 � 2 8 � 8 512
conv. 5 � 5 2 � 2 4 � 4 512
conv. 5 � 5 2 � 2 2 � 2 512
conv. 5 � 5 2 � 2 1 � 1 512
deconv. 5 � 5 2 � 2 2 � 2 1024
deconv. 5 � 5 2 � 2 4 � 4 1024
deconv. 5 � 5 2 � 2 8 � 8 1024
deconv. 5 � 5 2 � 2 16 � 16 1024
deconv. 5 � 5 2 � 2 32 � 32 512
deconv. 5 � 5 2 � 2 64 � 64 256
deconv. 5 � 5 2 � 2 128 � 128 128
deconv. 5 � 5 2 � 2 256 � 256 1
Sigmoid – – 256 � 256 1

Table 2. Architecture of the discriminator D.

Type Kernel Stride Output size Output channels

conv. 5 � 5 2 � 2 128 � 128 64
conv. 5 � 5 2 � 2 64 � 64 128
conv. 5 � 5 2 � 2 32 � 32 256
conv. 5 � 5 1 � 1 32 � 32 512
Linear – – 1 –

Sigmoid – – 1 –

Liver Segmentation in CT Images with Adversarial Learning 475



Ladversarial1 G1;D1ð Þ ¼ Ex;y� pdata x;yð Þ logD1 x; yð Þ½ �
þEx� pdata xð Þ log 1� D1 x;G1 xð Þð Þð Þ½ � ð2Þ

In addition to adversarial loss, L1 loss is also applied to obtain more accurate pixel-
level classification results:

Ldata1 G1ð Þ ¼ Ex;y� pdata x;yð Þ y� G1 xð Þj jj j ð3Þ

So, the final objective function of CGAN1 is:

LCGAN1 ¼ Ladversarial1 þ kLdata1 ð4Þ

k is L1 loss weighted coefficient. For CGAN2, it consists of G2 and D2. We use
similar objective functions. The adversarial loss of CGAN2 is:

Ladversarial2 G2;D1jG1ð Þ ¼ Ex;y;r� pdata x;y;rð Þ logD2 x; y; rð Þ½ �
þEx� pdata xð Þ log 1� D2 x;G1 xð Þ;G2 x;G1 xð Þð Þð Þð Þ½ � ð5Þ

The difference is that CGAN2 combines CT slices and the output of CGAN1 as
input. Finally, the objective function of the whole model is:

Ltotal ¼ k min
G1;G2

max
D1;D2

Ldata1 G1ð Þþ kLdata2 G2jG1ð ÞþLadversarial1 G1;D1ð Þ
þLadversarial1 G2;D2jG1ð Þ ð6Þ

The output of CGAN1 is fed into CGAN2 as a prior knowledge to help it get more
accurate segmentation results.

3.2 Training

Training is divided into two phases. The first phase employs an alternating training
scheme. Specifically, each time a mini-batch CT slices is fed into model, firstly, update
G1, D1, with G2, D2 fixed. Then, update G2, D2, and fix G1, D1. After 10 epochs
training, enter the second stage. In the second phase, the entire model is end-to-end
trained for several epochs updating CGAN1 and CGAN2 simultaneously.

4 Experiment

4.1 Dataset

We employ dataset provided by Liver Tumor Segmentation Challenge (LiTS) which is
organized by ISBI and MICCAI in conjunction to evaluate the proposed method. The
open dataset includes 131 CT volumes and corresponding expert standard labels. The
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dataset was collected from six different clinical sites using different scanners and
scanning methods with different slice resolutions and slice spacings. We randomly
divided the data set into 10 folds, each with about 13 volumes, and a fold is used for
validation, while the others for training, namely 10-fold cross validation. For data
preprocessing, we crop the image intensity values of all volumes to the range of [−200,
250] HU, in order to reduce irrelevant information.

4.2 Implementation

The proposed model was implemented based on tensorflow1.12.0. All experiments
were performed on workstations equipped with two Intel Xeon E5-2609 processors,
64G RAM and one NVIDIA TITAN XP GPU.

We use the Adam solver to train the CGAN1 and CGAN2 with a mini-batch size of
8. The model was trained for 15 epochs and the initial learning rate was set to 0.0002.
In the second phase of training, the learning rate is divided by 10. In our experiments, k
is set to 100.

5 Comparison with Other Methods

The proposed model is compared with two baseline methods. U-net is widely used in
biomedical image segmentation tasks. A 3D-2D model proposed in [17] makes full use
of volume’s 3D spatial information.

Dice is employed for evaluating our model. The Dice score is defined as:

Dice ¼ 2 X \ Yj j
Xj j þ Yj j ð7Þ

where |X| and |Y| are the pixel values of predicted result and ground truth respectively,
and the Dice score is in the interval [0,1]. A perfect segmentation yields a Dice score of
1. Dice is usually divided into Dice per case and Dice global where Dice per case score
refers to an average Dice score per volume while Dice global score is the Dice score
evaluated by combining all datasets into one. In this paper, we employ Dice per case
score to evaluate liver segmentation performance.

Some quantitative results of several methods are shown in Table 3 through cross
validation. It is observed that our model has achieved more accurate segmentation
results. This is because we introduced adversarial loss, which can be seen as a high-
level loss that provides more global optimization information for the model. On the
other hand, the cascade structure can help the model to further improve performance.
Using the output of the first stage as the prior knowledge of the second stage can
provide more reliable information for the second stage CGAN and help it achieve more
accurate segmentation. Some results are demonstrated in Fig. 4.
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6 Conclusion

In this paper, we propose a cascade model for liver segmentation with adversarial. This
model is able to segment the liver accurately and efficiently from CT slice images. It
consists of two stages: In the first stage, the 2D CT slice image is input into the first-
level CGAN segmentation network to obtain the segmentation result of the first stage.
In the second stage, the CT slice image is concatenated with the corresponding seg-
mentation results of the first stage as input of the second stage CGAN2 to obtain more
accurate segmentation results. The main contributions of this work are the followings:
First, the generative adversarial method is introduced into the liver segmentation task in
CT images. Compared with the traditional L1 and L2 losses, adversarial loss can get a

Table 3. Quantitative comparison between the proposed method and other methods

Methods Dice score

U-net [18] 0.924
3D-2D FCN [17] 0.935
only CGAN1 0.943
Cascade model 0.955

Fig. 4. Results of the proposed method
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clear prediction result and reduce the ambiguity of the segmentation results. Second,
due to the cascade structure, the segmentation result of the first phase can provide a
prior knowledge for the second phase. Thus, more accurate segmentation results can be
obtained. Further research can explore more efficient CGAN cascading methods.
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