Chapter 7

Plant Growth-Promoting Bacterial Life s
at High Salt Concentrations: Genetic
Variability

Ritika Kapoor and S. S. Kanwar

Abstract Abiotic stresses are emerging environmental factors limiting agricultural
productivity around the world. Among these stresses, salt stress is a serious threat
affecting crop production especially in arid and semiarid regions of the world.
Development of strategies to ameliorate deleterious effects of salt stress on plants
has received considerable attention. In this scenario, the use of salt-tolerant plant
growth-promoting microorganisms to enhance salinity resilience in crops is encour-
aged due to their vital interactions with crop plants. Bacteria are widely used to
diminish deleterious impacts of high salinity on crop plants because they possess
various direct and indirect plant growth-promoting characteristics. This chapter
focuses on the effect of salt stress on plants, plant growth-promoting bacterial
survival in saline conditions, and their mechanisms to mitigate salt stress at genetic
level.

7.1 Introduction

Salinity is one of the major abiotic stresses which negatively affects crop growth and
yields and puts down crop production. The presence of high sodium chloride
concentration has been reported to cause reduction in microbial flora in the soil
(Ibekwe et al. 2010). Most of the world’s plateaus confined to the tropics and
Mediterranean regions have potential salinity problems (Cordovilla et al. 1994). It
is accounted for the presence of naturally high salt levels, salt accumulation during
irrigation, or the application of chemical fertilizers. High salinity owing to its toxic
effects inhibits the growth of plants by affecting cellular growth and entry of ions
across the root system by slowing down the water uptake of plants. Sodium chloride
is the most disparaging salt that affects the growth of plants. Saline habitats are
frequently inhabited by an abundance of microbial communities adapted to these
ecosystems (Zahran et al. 1992). Halophilic bacteria which flourish in hypersaline
habitats may retain their potential to express various types of plant growth-
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promoting activities such as phosphate solubilization, nitrogen fixation, or phyto-
hormone production. These PGPRs offer promise as potential biofertilizers for
improvement of plant growth under stress conditions by reducing the impact of
salinity on plant growth and its productivity. Salt-tolerant bacterial species of
Bacillus, Pseudomonas, Azotobacter, and Enterobacter have been isolated from
salt-affected soil and were found to be efficient plant growth promoters
(Gopalkrishnan et al. 2012; Allam et al. 2018; Nakbanpote et al. 2014; Kapoor
etal. 2017). It is well drafted that indigenous strains have better potential to multiply
under stress conditions as compared to the exotic strains. These facts are important
while selecting the microbial inoculants for a specific environment. This chapter
emphasizes on the assessment of plant growth-promoting rhizobacteria (PGPR)
approaches for the alleviation of salinity stress with a brief overview of adaptation
mechanism and genetic variability of salt-tolerant strains facilitating them to grow in
saline environments.

7.2 Diversity of Salt-Tolerant Bacteria

Salinity affects the structure and species composition of the rhizospheric communi-
ties. Saline environments harbor taxonomically diverse bacterial groups such as
Enterobacter, Pseudomonas, Vibrio, and a few Gram-positive bacterial species,
e.g., Bacillus, Micrococcus, and Salinicoccus, which exhibit modified physiological
and structural characteristics under the prevailing saline conditions (DasSarma and
DasSarma 2012). Salt-tolerant bacteria have been isolated from different sources
such as salt lakes (Hedi et al. 2009), river water (Tiquia et al. 2007), rhizosphere
(Hasnain and Taskeen 1989), root nodules (Gal and Choi 2003), and soil samples
(Takashina et al. 1994). Gram-negative bacteria including nodulating bacteria have
been reported to colonize the saline soil (Zahran et al. 1992). Nodulating bacteria
such as Rhizobium have been reported in association with the salt marsh grass
(Whiting et al. 1986). Among free-living bacteria, those belonging to genus
Azospirillum, Bacillus, Enterobacter, and Azotobacter play a crucial role in different
stressed conditions (Sahoo et al. 2014). In fact, inoculation with Azotobacter has
been found to exert several beneficial effects on plant yields as possess various plant
growth promoting traits and also found to produce exopolysaccharides under saline
conditions (De la Vega et al. 1991; Mrkovacki et al. 1996). Consequently, it has been
implicit that isolating bacteria with PGP traits from naturally saline environments
would give indigenous isolates to improve the effect of salt stress on plants.
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7.3 Plant Growth-Promoting Activities of Salt-Tolerant
Bacteria

7.3.1 Nitrogen Fixation Under Salt Stress

Nitrogen is the essential macronutrient required for plant growth. Bacteria inhabiting
under saline conditions alter some of their activities and pathways to adapt them-
selves. One of the sensitive activities is the nitrogenase activity, which is affected by
extreme saline conditions. Nitrogen fixation was found to be decreased in saline soils
as salt stress adversely affects the nitrogenase enzyme activity (Gao et al. 2014). The
extent of effects of salinity on denitrification process is dependent on the type of
nitrogen compound present in the soil (EI-Shinnawi et al. 1982). These stressed
conditions disrupt the nitrogen cycle and lead to the disappearance of nitrate (NO* ™)
from saline soil through denitrification process, resulting in alteration of enzymatic
processes (Azhar et al. 1989). Biological nitrogen fixation (BNF) involves the
enzymatic reduction of nitrogen to ammonia (NH3), which acts as the precursor
molecule for the biosynthesis of amino acids and other nitrogen-containing bio-
molecules. Islam et al. (2010) studied the free-living culturable diazotrophic bacteria
of paddy soils under salt stress conditions and found that 32 bacteria were positive
for acetylene reduction assay (ARA) and the values ranged from 1.8 to 2844.7 nmol
ethylene h™' mg™' protein. The study carried out by Chowdhury et al. (2007) on
diazotrophic bacterial isolates showed that the predominance of Gram-negative
bacteria from the surface-sterilized roots of Lasiurus scindicus were capable of
fixing nitrogen. Nitrogen-fixing Bacillus strains were also obtained from saline
lands of Egypt; these strains reduced acetylene in pure culture at 5% NaCl (Zahran
et al. 1992).

7.3.2 Phosphate Solubilization

Phosphorus is one of the key nutrients for plants, but a major portion of it is available
in insoluble form. Microorganisms play a vital role in solubilizing phosphorous and in
increasing the availability of phosphorous to plants. Phosphate-solubilizing microor-
ganisms belonging to genera Klebsiella, Erwinia, Rhizobium, Achromobacter,
Aerobacter, Enterobacter, Pseudomonas, Micrococcus, and Bacillus have been
reported earlier. However, strains belonging to Pseudomonads and Bacillus are
deliberated as the most proficient phosphate solubilizers (Villegas and Fortin 2002),
whereas fungal species such as Aspergillus, Penicillium, and Curvularia and yeast are
widely reported to solubilize various forms of inorganic phosphates (Das et al. 2013).

Several researchers have isolated phosphate-solubilizing microorganisms from var-
ious niches of saline soils (Sharan et al. 2008; Park et al. 2010; Srinivasan et al. 2012).
A salt-tolerant, nitrogen-fixing, and phosphate-solubilizing species Swaminathania
salitolerans has been isolated from the rhizosphere, roots, and stems of salt-tolerant



104 R. Kapoor and S. S. Kanwar

mangrove associated with wild rice (Loganathan and Nair 2004). In another study,
phosphate-solubilizing bacteria Alteromonas sp. and Pseudomonas aeruginosa have
been isolated from salt-affected soils. These isolates were found to solubilize phosphate
under saline conditions, i.e., up to 2M NaCl concentration (Srinivasan et al. 2012).
Rosado et al. (1998) and Nautiyal (1999) observed increased phosphate-solubilizing
activity of bacteria in the presence of 10% NaCl, but the solubilizing activity decreased
with increase in NaCl concentration.

7.3.3 Siderophore Production

Iron is the fourth abundant and essential growth element for all living organisms and
perhaps the most important micronutrient used by bacteria for their metabolism. To
confiscate and solubilize ferric iron, many microorganisms utilize low-molecular-
weight (<1000 Da) compounds with high iron affinity known as “siderophores.”
Siderophores are produced by rhizospheric bacteria to enhance the growth and
development of plants by increasing the availability of iron. Siderophore-producing
microorganisms prevailing in the rhizosphere suggest that plants would all become
iron deficient in the absence of iron-chelating siderophores (Kloepper et al. 1980).
Nine halophilic archaea were isolated from marine salterns for siderophore produc-
tion (Dave and Desai 2006). Ramadoss et al. (2013) found that Bacillus
halodenitrificans and Halobacillus sp. isolated from saline habitats exhibited
siderophore-producing activity.

7.3.4 Indole Acetic Acid (IAA) Production

Some PGPR strains enhance plants’ growth and development by modulating the
concentration of known phytohormones. Among plant hormones, auxins and ethyl-
ene play an essential role in root system development and crop yield. Indole-3-acetic
acid (IAA) is the common natural auxin that extensively affects plant physiology.
Diverse microbial groups are capable of producing physiological active auxins,
which exert pronounced effects on plant growth and its establishment. In order to
produce auxin, bacteria use tryptophan as a precursor molecule and convert it into
IAA (Etesami et al. 2009). In plants, saline stress often affects the production of IAA
and makes them imbalance. Thus, it is important to study IAA-producing
rhizobacteria in saline conditions which could facilitate plant growth under salt
stress. It has been reported that pre-sowing seeds with phytohormones alleviated
the growth-restricted effect of salt stress (Ramadoss et al. 2013). Zahir et al. (2010)
isolated IA A-producing halophilic Rhizobium phaseoli strains from the mung bean
nodules and evaluated their growth parameters in the presence and absence of
tryptophan under salt stress conditions. Growth promotion effects were observed,
and this might be due to higher auxin production and mineral uptake in rhizosphere,
which reduced the adverse effect of salinity.
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7.3.5 Lytic Enzyme Production

Lytic enzyme production is one of the indirect approaches for plant growth promo-
tion. A wide array of organisms have been obtained from harsh environments that
produce many active and stable enzymes including proteases (Durham et al. 1987),
amylases (Horikoshi 1971), lipases (Watanable et al. 1977), etc. Lytic enzymes
produced by biocontrol organisms mediate defense against the pathogens and
improve plant growth (Vivekananthan et al. 2004). Enzymes that are stable and
active at extreme saline conditions are very much in demand for various industrial
processes. Shaheen et al. (2008) reported the protease enzyme production by Bacil-
lus subtilis at different concentrations of salt (0—6% NaCl). Sivaprakasam et al.
(2011) obtained salt-tolerant alkaline protease from P. aeroginosa that was capable
of enzymatic degradation.

7.4 Mechanism of Salt Tolerance

Salt stress reduces microbial population in the rhizosphere. Microbes that inhabit
hypersaline environments experience intense osmotic pressure and thus use “com-
patible solute strategy” or the “salt-in strategy” to resist salt stress (Etesami and
Beattie 2017). Bacteria accumulate compatible solutes and other amino acids under
saline conditions (Brown 1976). Some salt-tolerant bacteria can use salt in strategy
mechanism and accumulate electrolytes, e.g., K* glutamate. Furthermore, enzymes,
ribosomes, and transport proteins of these bacteria require high level of potassium
for stability and activity. Organic solutes increase the intracellular osmotic strength
and stabilize the cellular macromolecules (Lippert and Galinski 1992).

Specific genetic induction is required to accumulate compatible organic solutes in
salt-tolerant bacteria (Plemenitas et al. 2014). Intracellular proline was found to
increase rapidly in Bacillus in response to osmotic stress by NaCl, and the
corresponding genes were detected as proB, proA, and proC encoding y-glutamyl
kinase (y-GK), y-glutamyl-phosphate reductase (y-GPR), and pyrroline-5-carboxyl-
ate (P5C) reductase, respectively (Chen et al. 2007). Various genes encoding
L-aspartokinase (Ask), L-2.,4-diaminobutyric acid transaminase (EctB), L-2,4-
diaminobutyric acid acetyltransferase (EctA), and L-ectoine synthase (EctC) have
been located and found to be involved in the biosynthesis of ectoine in Halobacillus
dabanensis (Nada et al. 2011). Four genes, viz., betl, betC, betB, and beta, were
found to be essential for oxidation of choline or choline-O-sulfate to glycine betaine
organized in one operon (Sevin and Sauer 2014). Other antiporter genes that have
been reported in salt-tolerant bacteria are also essential for maintaining the balance
of Na* and K" ions in the cell in order to attain an osmotic equilibrium. This
mechanism is accompanied by certain physiological modifications which are
required to protect all the metabolic and regulatory functions at high salinity
(Eisenberg and Wachtel 1987). Na*/H" antiporters are membrane proteins involved
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in pH and Na™ homeostasis in cells that exchange Na * for H" (Inaba et al. 2001). The
genes that are proved to be involved in halotolerance in bacteria either through
knockout studies or through overexpression studies are given in Table 7.1.

7.4.1 Genetic Variations Based on Nha

Sodium hydrogen antiporters transport Na* or Li* in exchange for H* across the
cytoplasmic membrane of cell (Alkoby et al. 2014) and maintain intracellular pH
homeostasis, detoxification of cells from Na* ions, regulation of cell volume, and
establishment of an electrochemical potential of Na* ions (Padan 2014). Various
Na*/H" antiporters such as nhaA, nhaB, nhaC, nhaD, nhaP, chaA, tetA(L), and napA
have been identified in Gram-positive and Gram-negative bacteria (Padan et al.
2001; Majernik et al. 2001). NhaA gene responsible for salt tolerance in

Table 7.1 Genes conferring salt-tolerance response in selected bacteria

Strains Genes Product Source
Pseudomonas | nhaP Na*/H* antiporter | Inaba et al. (2001)
aeruginosa
Sinorhizobium | relA (p)ppGpp synthe- | Wei et al. (2004)
meliloti bet genes tase Pocard et al. (1997)
betS gene Glycine Betaine/ Nogales et al. (2002)
greA proline
Kup Betaine transporter
Transcription
cleavage factor
Potassium uptake
protein
Rhizobium ntrY, ndvA and ndvB Histidine kinase Miller and Wood (1996)
tropici (synthetic gene) Na*/H* antiporter
nhaA, nhaB, nhaC
Azotobacter ggpPS Glucosyl glycerol | Klahn et al. (2009)
vinelandii biosynthesis
Enterobacter nhaA Na™/H" antiporter | Kapoor et al. (2017)
ludwigii
Synechocystis nhaS1, nhaS2, Na*/H" antiporter | http://www.ncbi.nlm.nih.gov/
nhaS3, nhaS4, and nuccore/NC_016514
nhaS5
Aphanothece napA Na*/H* antiporter | Inaba et al. (2001)
halophytica
Bacillus proA, proB, proC y-Glutamyl kinase | Chen et al. (2007)
subtilis
Enterobacter nhaA Na*/H* antiporter | Kapoor (2014)
cloacae
Bacillus nhaA Na*/H" antiporter | Kapoor (2014)
aquimaris
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Enterobacter sp. has been reported previously (Kapoor et al. 2017). The primary
structure of all the abovementioned genes exhibits very weak or no significant
homology. This indicates that different transport systems coupling H" and Na*
circulation have developed during evolution. Several genes encoding Na*/
H'*antiporters from different microorganisms have been shown variability by
replacing nhaA of Escherichia coli e.g., nhaA of Vibrio alginolyticus (Nakamura
et al. 1994), Vibrio parahaemolyticus (Kuroda et al. 1994), Bacillus aquimaris and
Enterobacter cloacae (Kapoor 2014), Enterobacter ludwigii (Kapoor et al. 2017), as
well as nhaB of V. parahaemolyticus (Nozaki et al. 1996), nhaD of
V. parahaemolyticus (Nozaki et al. 1998), nhaP of Pseudomonas aeruginosa
(Utsugi et al. 1998), nhaC of Bacillus pseudofirmus OF4 (Ivey et al. 1993), napA
of Enterococcus hirae (Strausak et al. 1993), and mnh of Staphylococcus aureus
(Hiramatsu et al. 1998).

Amino acid residues Asp-133, Asp-163, and Asp-164 (Inoue et al. 1995) and
His-225 were proposed to be involved in pH sensitivity in E. coli for binding of
sodium ions (Gerchman et al. 1993). Furthermore, amino acid residues Gly-14,
Gly-166, Phe-267, Leu-302, Gly-303, Cys-335, Ser-342, and Ser-369 located in
the cell membrane were identified by Nuomi et al. (1997) and found to be essential
for the activity of nhaA in E. coli. In general, 111 amino acid residues were found to
be fully conserved in the nhaA gene products from different bacteria (Inoue et al.
1995; Vimont and Berche 2000). Our previous study showed that specific insertions/
deletions caused major variations of amino acids in salt-tolerant strains (Kapoor et al.
2017). However, these types of alleles mined the rare mutation among the salt- and
non-salt-tolerant strains, and little information is available on allele mining of genes
responsible for salt tolerance.

7.5 Conclusions

The salt tolerance mechanism of plants modulated by rhizosphere bacteria opens up
new prospects to understand plant-microbe interaction. PGPR strains have been
conventionally used as biofertilizers to augment the growth and yield of different
crops under salt stress conditions. The variability in salt tolerance behavior of
bacteria can be explored by targeting the genes involved in salt tolerance mecha-
nism. Genetic and genomic studies used to determine allele mining in gene
sequences among salt- and non-salt-tolerant strains are yet to be explored. Gene
silencing approach can be used to study the precise function of specific gene in salt-
tolerant strains.
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