
Chapter 5
Plant Metabolites Involved
in Plant–Pathogen Interactions

Daraksha Parween, Binod Bihari Sahu, Maya Kumari,
and Ramesh N. Pudake

Abstract Plants constantly confront different pathogens and undergo stress. To
overcome such hurdles, plants produce primary and secondary metabolites. Primary
metabolites are essential for the growth and development of plant and secondary
metabolites are vital for plant survival by providing resistance against various
pathogens and maintaining an elegant stability with the environment. Plants produce
a huge number of metabolites, andmany of such metabolites have yet to be identified.
For the analysis of these wide range of highly complex metabolites synthesized by the
plants, various tools and techniques are required for the study of metabolomics. Study
of plant metabolomics comprises of sample preparation or extraction of bioactive
molecules from the plants, detection and identification of the metabolites, and data
processing and statistical analysis of the identified metabolites. Modern technologies
used for the study of plant metabolomics includes metabolic fingerprinting, metab-
olite profiling and targeted and non-targeted detection analysis. Starting with the
definition of primary and secondarymetabolites, we aimed to focus on the behavior of
different metabolites during plant–pathogen interaction and to finally concentrate on
different tools and techniques, which are required for the identification and analysis of
metabolites. With the help of current high-resolution mass spectrometers it has
become quite feasible to identify low-molecular-mass metabolites. Efforts are made
to develop computational tools for the identification of unknown metabolites and to
develop mass spectral databases which will provide an authentic reference for the
identified compounds.
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5.1 Introduction

Under natural conditions, plants are surrounded by many probable enemies. To
defend against pathogen bout, plants create defense strategies mainly through chem-
ical and mechanical defenses (Olivoto et al. 2017). The former includes structures
such as trichrome, thick cuticle, spines, and smooth, sticky, or hard surfaces, which
avert pathogens from laying eggs or food selection. Chemical defenses comprise a
variety of constituents which are repellent, toxic, or which make plant tissues difficult
to digest for animals. These chemical substances retaliate against abiotic or biotic
stimuli, traditionally referred to as secondary metabolites which play a major role in
plant defense mechanism (Goyal et al. 2012).

Plants are an unlimited source of phytochemicals in the form of primary and
secondary metabolites. However, secondary metabolites corrugate leading interest
because of their multifunctional activities extending from antimicrobial, insecticidal,
antibiotic properties, to extremely important pharmaceutical activities (Stöckigt et al.
1995). Studies on the functions of these compounds for plant defense has increased
in the last two decades (Rhodes et al. 1994).

5.2 Primary Metabolites

Primary metabolites are limited molecules derived from living cells. Primary metab-
olites are the intermediary or final products of the metabolic pathways of transitional
metabolism (e.g., lipid metabolism, amino acid metabolism, carbohydrate metabo-
lism), and these are the composition units for vital macromolecules, or can be altered
into coenzymes (Demain 2000). Primary metabolites such as organic acids, phytos-
terols, amino acids, nucleotides, and acyl lipids are biomolecules required to perform
basic metabolic processes. These are found throughout the plant kingdom, required
for basal metabolic roles that are usually noticeable and are highly useful to plants.
These are produced in plentiful masses and can be effortlessly extracted from
different species of plants. Primary metabolites are a portion of a cell’s basic
molecular structure (Croteau et al. 2000).

Primary metabolites are concentrated in vegetative storage organs and seeds in
higher plants and are required for physiological development to perform basic cell
metabolism. Generally, primary metabolites are obtained for commercial use, which is
high volume–low value bulk chemicals. However, there are exemptions to this rule.
For example, β-carotene and myoinositol are exclusive primary metabolites as their
extraction, isolation, and purification are strenuous (Balandrin et al. 1985). Primary
metabolites are mainly used in the food industry which incorporates fatty acids
(utilized for manufacturing soaps and detergents), vegetable oils, flavor nucleotides
(50-inosinic acid, 50-guanylic acid), alcohols (ethanol), polyols (mannitol, glycerol,
erythritol, xylitol), amino acids (monosodium glutamate, lysine, threonine, phenylal-
anine, tryptophan), organic acids (acetic, propionic, succinic, fumaric, lactic), sugars
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(fructose, sorbose, ribose), vitamins [biotin, riboflavin (B2), cyanocobalamin (B12)],
and polysaccharides (xanthan, gellan) (Demain 2000).

5.3 Secondary Metabolites

Secondary metabolites are derivatives of primary metabolites, synthesized by plants
in a diverse array. Secondary metabolites are well known to act as chemical defenses
that avert pests and pathogens; they have a key role in controlling plant growth and
protecting plants from environmental pressures (Fraire-Velázquez and Balderas-
Hernández 2013). They do not comprise basic molecular cell structure. These
metabolites are produced in lesser amounts and their extraction from plants is
tough. Classes of secondary metabolites are restricted to selected plant species or
families; they are found at particular stages of development, with a limited role in the
plant (Osbourn et al. 2003).

Plants collectively produce natural products of above 100,000 low molecular
mass, i.e., secondary metabolites. These metabolites can be distinguished from the
constituents of intermediary (primary) metabolic products in that they are generally
nonessential for the chief metabolic processes of the plant. Most of them are derived
from the phenylpropanoid, alkaloid or fatty acid/polyketide, and isoprenoid path-
ways. Such a rich diversity has made it difficult to apply conventional molecular and
genetic techniques to know the functions of natural products, also to select the
genotypes for improved defense against microbial infection or insect/animal preda-
tion in plant defense, or to increase plant disease resistance by using metabolic
pathway engineering (Dixon 2001).

5.3.1 Major Classes of Secondary Metabolites

Secondary metabolites can be divided into two different chemical groups: nitrogen-
containing compounds and nitrogen-free compounds.

5.3.1.1 Nitrogen-Containing Secondary Metabolites

Nitrogen-containing compounds include alkaloids, nonprotein amino acids, amines,
glucosinolates, cyanogenic glycosides, protease inhibitors, and lectins.

5.3.1.1.1 Alkaloids

Alkaloids are biologically active compounds which contain a ring structure or a
heterocyclic compound with a nitrogen atom connected to minimum two carbon
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atoms and have some role in biological, ecological, pharmacological, chemical, and
medicinal activity. Alkaloids are special compounds which participate in various
biological processes of microorganisms, plants, and animals at different cellular
levels in altered environments (Aniszewski 2015). Alkaloids are classified
depending upon their physical and biological attributes to help their morphological
identification and understand their technical and applied uses. Alkaloids can be
classified according to their chemical structure, ecological, and biological action;
biosynthetic pathway; and relation with chemical and technological innovations.

According to biological activity, alkaloids are cleaved into neutral or weakly
basic molecules (e.g., indicine, ricinine), animal-derived alkaloids (e.g., arthropod,
anuran, and mammalian alkaloids), moss alkaloids, nonnatural alkaloids, marine
alkaloids, and fungal and bacterial alkaloids (Pelletier 1983). Nonnatural alkaloids
are a part of bioorganic and stereochemistry research, which are used in pharmaco-
logical research. Due to constant change in the species of the pathogens and their
infection ability, it has become necessary for plants to become resistant to medicines
and antibiotics.

Based on their relationship in the branches of chemistry and technology, alkaloids
can be divided into three groups: (1) natural, (2) biomimic and bionic, and (3) syn-
thetic. Natural alkaloids are synthesized by living organisms and are naturally
synthesizing molecules which exist in nature because of the progression of life on
Earth. Biomimetic alkaloids are structurally identical to natural alkaloids and are
copied artificially in laboratories. Bionic alkaloids are those biomimetic compounds
which are synthesized artificially but are not similar analogues to natural alkaloids.
Synthetic alkaloids are molecules which are artificially synthesized using high-level
techniques and planned models, having the chemical characteristics of alkaloids.

Based on their chemical structures at alkaloid base, it can be divided into various
types: bisindoles, indolizidines, carbolines, purines, pyrolidines, pyrrolizidines, ste-
roids, terpenoids, diterpenes, triterpenes, pyridines, quinolozidines, quinolones, and
quinolizolines (Eftekhari-Sis et al. 2013). Based on shape, structure, and the biological
pathway used to create the molecules, alkaloids can be of three main type: true
alkaloids, protoalkaloids, and pseudoalkaloids (Hegnauer 1988). True alkaloids are
derived from amino acid with nitrogen in their heterocyclic ring. These are extremely
reactive compounds with biological activities even in low doses. Except nicotine, all
true alkaloids are bitter in taste. The primary precursors of true alkaloids are L-
tryptophan, L-tyrosine/phenylalanine, L-ornithine, L-lysine, and L-histidine. These
alkaloids can be natural, bionic, or synthetic, and some examples of true alkaloids
are dopamine, cocaine, quinine, and morphine. In protoalkaloids, the N-atom acquired
from an amino acid is not part of the heterocyclic ring. These compounds are derived
from L-typtophan and L-tyrosine. These can be bionic, natural, or synthetic alkaloids,
and mescaline, hordenine, and yohimbine are some examples. Pseudoalkaloids are not
derived from amino acids, but from the precursors of amino acids from the amination
and transamination reactions. They can also be obtained from non-amino acid pre-
cursors (Aniszewski 2015).
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5.3.1.1.2 Amines

Amines are ammonia derivatives where one, two, or all three hydrogens of ammonia
are replaced by organic groups. They play a significant metabolic and physiologic
role in living organisms. Biologically active amines are cyclic, heterocyclic, and
aliphatic and most of them are named after their precursor amino acids, e.g., trypt-
amine from tryptophan, tyramine from tyrosine. Bioactive or biologically active
amines can be classified based on the number of amine groups as mono- (phenyleth-
ylamine, tyramine), di- (cadaverine, histamine, tryptamine, serotonin, putrescine), or
polyamines (spermine, agmatine, spermidine). According to their chemical structure,
amines can be aromatic (phenylethylamine, tyramine), aliphatic (putrescine,
spermine, spermidine, cadaverine, agmatine), or heterocyclic (histamine, serotonin,
tryptamine). Based on their biosynthetic pathway, they are classified as natural or
biogenic (Glória 2005).

5.3.1.1.3 Nonprotein Amino Acids (NPAAs)

In nature, more than thousands of nonprotein amino acids are extracted from micro-
organisms, plants, and other sources (Barrett 2012). These amino acids are not
formed in the main chains of protein, but some times they do get added in protein
by post-translational modification. For these amino acids an exact transfer RNA and
codon triplet is absent (Hunt 1985). Many nonprotein amino acids are considered as
structural analogs of protein amino acids. For example, S-aminoethylcysteine is an
analog to L-azetidine-2-carboxylic acid to L-proline, L-lysine, 3-cyanoalanine to L-
alanine and L-indospicine, or L-canavanine to L-arginine (Wink 2003).

5.3.1.1.4 Cyanogenic Glycosides (CNglcs)

CNglcs are the source of HCN that occur extensively in the plant kingdom (Conn
1969) and are specialized bioactive plant products derived from amino acids char-
acterized by α-hydroxynitriles (cyanohydrins) and oximes as key intermediates.
Cyanogenic glycosides release ketones and toxic hydrogen cyanide (HCN) when
hydrolyzed by α-hydroxynitrilases and β-glycosidases in a process referred to as
cyanogenesis. Cyanogenesis is an effective defense against herbivores but is not
effective against fungal pathogens because many fungi convert HCN into carbon
dioxide and ammonia (Gleadow and Møller 2014).

5.3.1.1.5 Glucosinolates (GSLs)

Glucosinolates (GSLs), the precursors of isothiocyanates, are organic anions
containing β-thioglucoside-N-hydroxysulfates, which represents an important and
unique class of secondary metabolites found in seeds, roots, stem, and leaves of
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plants (mainly in the Brassicaceae) (Fahey et al. 2001; Vig et al. 2009).
Glucosinolates on hydrolyzation liberate D-glucose, sulfate, and an unstable agly-
cone, which converts to isothiocyanate (Mithen et al. 2000). There are more than
120 diverse glucosinolates identified till date, mainly belonging to the family
Brassicaceae and other important crops. Glucosinolates represent a classical example
of plant compounds which affect the plant–insect interactions (Hopkins et al. 2009).
The defense activity of glucosinolates are increased upon hydrolysis by the enzyme
myrosinase. In plants, myrosinase is stored in special myrosinase cells. Myrosinase
is a thioglucosidase that transforms glucosinolates into toxic isothiocyanates (Rask
et al. 2000). In damaged plant tissues, due to the myrosinase activity, the
glucosinolates stowed in the vacuole come in contact with the myrosinase and result
in the formation of various toxic products, such as nitriles, isothiocyanates, and
oxazolidinethiones (Bones and Rossiter 2006).

5.3.1.2 Nitrogen-Free Secondary Metabolites

Nitrogen-free compounds are various terpenoids (mono-, di-, tri-, and tetraterpenes;
saponins; and cardiac glycosides), polyketides (anthraquinones), polyacetylenes,
and phenolics (phenolics acids, flavonoids, catechol tannins, anthocyanins, lignans,
galloyl and lignins).

5.3.1.2.1 Terpenoids

Terpenoids are abundant in plants with more than 30,000 compounds (Aharoni et al.
2006). Among the myriad bioactive compounds produced by plants, terpenoids
(isoprenoids) epitomize the largest and most varied group of chemicals. A majority
of plant terpenoids are utilized for specialized chemical interactions and defense in
abiotic and biotic stress environments (Tholl 2015). They play substantial roles in
nature during plant–plant, plant–environment, plant–insect, and plant–animal inter-
actions (Pichersky and Gershenzon 2002).

5.3.1.2.2 Phenolics

Plants phenolic compounds emerge as one of the main categories of secondary
metabolites and are essential for the growth, development, resistance to pathogens,
pigmentation, reproduction, and for many other functions in plants (Lattanzio et al.
2006). As stated by Harborne, the term “phenolic” embraces plant substances with
an aromatic ring bearing one (phenol) or more (polyphenol) hydroxyl substituents in
common (Harborne 1989). Phenolic substances are water soluble as they frequently
occur homogenized with sugar as glycosides and are commonly located in the cell
vacuole. Flavonoids form the largest group among the natural phenolic compounds
whereas simple monocyclic phenols, phenolic quinones, and phenylpropanoids exist
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in considerable amounts (Harborne 1984). The participation of phenolic compounds
in the defense role of plant–animal and/or plant–microorganism interaction, is
related to their antinutritional and antibiotic properties (Wink 1997). Flavonoids
help plants to reside in soils rich in noxious metals, such as aluminum (Barcelo and
Poschenrieder 2002). Several flavonoids oozing out from plant roots act as signaling
molecules, which induce bacterial gene transcription and production of proteins are
required for the infection method (Cooper 2004; Hungria and Stacey 1997;
Kobayashi et al. 2004). Several flavonoids oozing out from plant roots function as
signals, which induce bacterial gene transcription, and protein products are required
for the infection process (Cooper 2004; Hungria and Stacey 1997; Kobayashi et al.
2004). Based on their defense role, flavonoids can be split into two groups, i.e.,
preformed and induced compounds. Preformed flavonoids are innate compounds
that may play a signaling and/or a direct role in defense. These are synthesized
during the regular development of plant tissue. Induced flavonoid compounds are
produced by plants during physical injury, stress, or infection (Treutter 2006).

5.3.2 Responses of Secondary Metabolites During Biotic
Stress in Plants

Plants, being sessile organisms, live in persistently changing environments which
are often unfavorable or stressful for their growth and development (Zhu 2016).
Adverse environmental conditions result in affected plant growth; metabolism is
enormously involved in physiological regulation, signaling, and defense responses
(Fraire-Velázquez and Balderas-Hernández 2013). Very often the wild-type species
is resistant to microorganisms, and abiotic or biotic stress. To strengthen the
resistance of a specialized species will be of no use. So, an addition of secondary
metabolites to increase the resistance of a plant in which the species is adapted could
be the solution (Wink 1988).

Higher plants often persuade the synthesis and hoarding of defense-related sec-
ondary metabolites upon biotic stress (e.g., herbivore or pathogen attack), referred to
as phytoalexins (Mithöfer et al. 2004). Plants possessing these biochemical defense
mechanisms help them to prevent or reduce further damage from pathogens (Eder and
Cosio 1994). Plants, during infection or stress, accumulate phytoalexins which are
low-molecular-weight antimicrobial compounds (Kuc 1995).

Defensive secondary compounds or metabolites become associated in response to
both abiotic and biotic stress conditions (Akula and Ravishankar 2011). PhA
(Phenylamides) play an important role in plant growth, development, and stress
defense. PhA involved in plant defense have an antimicrobial activity that can
protect plants against both abiotic and biotic stresses (Edreva et al. 2007). It is also
reported that the active production of reactive oxygen species (ROS) in plants
controls several different physiological processes, such as pathogen defense, abiotic
and biotic stress response and systemic signaling. However, cells are provided with
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outstanding antioxidant defensive machineries to detoxify the detrimental effects of
ROS. These antioxidant defense mechanisms may be either nonenzymatic (e.g.,
carotenoids and flavonoids) or enzymatic (e.g., catalase glutathione peroxidase,
superoxide dismutase) (Gill and Tuteja 2010).

5.3.3 Behavior of Secondary Metabolites During Plant
Defense Mechanisms

5.3.3.1 Phenolic Compounds

Phenolic compounds are natural products which arise biogenetically from phenyl-
alanine and tyrosine during shikimate, phenylpropanoids, and flavonoids pathways
(Lattanzio et al. 2006). Tannins are a varied group of polyphenolics. Tannins may
defend plant by reducing the digestibility of plants consumed by herbivores by
binding with digestive enzymes, dietary proteins (Robbins et al. 1987). In 1970, it
was reported by Feeny that tannins act as a defense compound to the Oak moth
(Opheropthera brumata) larvae. He found that tannin level in the leaves increased
significantly prior to cessation of feeding by the larvae. This limitation was assumed
to be because of the reaction of tannins with digestive enzymes in the gut of the
larvae and the complexation of tannins with host proteins (Feeny 1970). High
tannin-containing ‘bird-resistant’ cultivars (sorghum plants) have also been recog-
nized, which were compared to cultivars with low tannin which were severely
damaged in field trials (Bennett and Wallsgrove 1994). Slugs are one of the major
pests which attack several economically essential crops. Deroceras reticulatum is
amongst the major slug pests of potato which leads to extensive crop damage. Some
potato cultivars were found considerably less attractive to slugs owing to high levels
of phenolics and polyphenoloxidase activities (Bennett and Wallsgrove 1994).
Plants with high level of phenolics are very less palatable to herbivores, and poly-
phenolics like tannins are considered common antifeedants (Fahey and Jung 1989).
More often, phenolics are noxious towards the fungal pathogens in vitro and are
accumulated near the infection sites which lead to lignin deposition, necrosis, and
resistance (Moran 1998). It was also reported that in sweet potato cultivars resistant
to Meloidogyne incognita (root-knot nematode), the concentrations of soluble and
wall-bound phenolics significantly increased after infection (Gapasin et al. 1988). It
is well known that Rhizobia species utilizes phenolic acids as a carbon source
(Irisarri et al. 1996). Plant phenolic compounds behave as potential candidates as
signaling molecules in the establishment of arbuscular mycorrhizal symbioses,
initiation of legume rhizobia symbioses, and can also act as a means in plant defense
processes. Flavonoids are multifarious of polyphenolic compounds, act as signaling
molecules in plant–microbe interactions. Flavonoids are released from different
zones of the leguminous plant roots (Mandal et al. 2010). Flavonoids (luteolin)
bind at the active transcriptional sites of Rhizobial nod genes that control root nodule
organogenesis. This induction of the rhizobial nod genes leads to the production of
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Nod (nodule-inducing) factors, lipochitooligosaccharides (LCOs), which are modi-
fied differently depending on the Rhizobium species (Schultze and Kondorosi 1998).
Many phenolics and alkaloids released from roots or seeds function primarily as
defense elements against soil-borne pathogens and root-feeding insects (Ndakidemi
and Dakora 2003). Rapid accumulation of phenolic acids, mostly cinnamic, tannic,
gallic and ferulic acids revealed the effectiveness of Rhizobia in inducing resistance
in rice plants against the nectrotrophic soil-borne fungus R. solani (Mishra et al.
2006). Gallic acids provide antimicrobial activity (Binutu and Cordell 2000).
Gallotannins are a derivative of gallic acid which get converted during accumulation
and provide defense to plants against bacteria and fungi (Singh et al. 2002).
Cinnamic and ferulic acids ascended from the shikimic acid pathway and are
reported to be antioxidant and antifungal, respectively (Madhavi et al. 1997).
Cinnamic acid serves as a precursor for the production of ferulic acid and is a key
product of the phenylpropanoid pathway, which plays a crucial role in providing
host resistance during pathogenic stress (Singh and Prithiviraj 1997).

5.3.3.2 Alkaloids

The majority of alkaloids are regarded as derivatives of certain amino acids, e.g.,
tryptophan, lysine, ornithine, phenylalanine, and tyrosine. Precursors of terpenoid
and steroid are incorporated into the carbon skeletons of alkaloids. Till now, around
3000 different phytoalkaloids are known, which occur dissolved as cations in plant
sap. They are mostly accumulated in the peripheral region of leaves, bark, or fruit,
which can be shed (Levinson 1976). Common alkaloids can be found in the
Liliaceae, the Leguminosae, the Amaryllidaceae, and the Solanaceae plant families
which can be important resistance factors against herbivorous pests (Petterson et al.
1991). Because of their general toxicity and deterrence capability, alkaloids are
believed to be key defensive elements against predators, especially mammals
(Hartmann 1991; Robinson 1980). Death of a large number of animals in USA is
reported due to the ingestion of plants containing alkaloids. A large number of
grazing livestock is infected by consumption of alkaloids-containing plants such as
lupines (Lupinus) and larkspur (Delphinium) (Keeler 1975).

5.4 Extraction and Isolation of Bioactive Compounds from
Plant Extracts

It is an ancient thought that plant extracts have great healing power, and these
phytocompounds have recently attracted interest because of their versatile applica-
tions (Bariş et al. 2006). Plant species contain various metabolites. However, only
a small percentage of these phytochemicals have been investigated around the
globe (Hostettmann and Wolfender 1997). Use of chemical pesticides induces
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environmental hazards in agricultural systems. So, the use of phytocompounds as an
antimicrobial agent can be the best biorational alternative today (Tiwari et al. 2007).
As large number of plant species are available for future studies, it is vital to have
effective methods to evaluate the efficacy of plant origin antimicrobial agent and the
identification of biologically active principles involved in it (Tanaka et al. 2006).
Plants contain a number of metabolites which expose only a very narrow range of
their constituents. Thus, the potential of higher plants is still largely unexplored as
sources of new drugs (Hamburger and Hostettmann 1991). The selection of plant
species for screening for biologically active constituents is a crucial factor in the
investigation.

During searching for active phytocompounds, it is essential to verify the plant
varieties for the success of the study. Targeted grouping of plant material is based
on considering chemotaxonomic interaction and utilization of current ethnomedical
information. The use of different technologies has allowed rich isolation of various
fungicidal, larvicidal, and molluscicidal products (Hostettmann and Wolfender
1997).

Thousands of bioactive compounds from plants are found to be safe and have
less adverse effects due to their beneficial biological activity, e.g., antimicrobial,
antioxidant, and wound-healing activity. The leading steps to exploit the phyto-
chemicals from plant resources include extraction, isolation, screening, identifica-
tion, and characterization of bioactive compounds. Plant extracts contains
multicomponent mixtures of bioactive compounds with different polarities, which
still poses problems in identifying and characterizing phytochemicals and their
separation. Purification of phytochemicals most commonly includes member of
chromatographic techniques and other different purification methods to identify
phytochemicals (Sasidharan et al. 2011). To extract the desired phytochemical from
a plant, sample preparation is a crucial leading step in the analysis of plant or herbs
for further separation and characterization of those isolated bioactive compounds
(Huie 2002).

5.5 Metabolomics Tools and Their Application in Plants
and Plant–Host Interactions

Metabolomics is now a briskly developing technology. With the help of specialized
bioinformatics tools and data mining tools, metabolomics, like transcriptomics and
proteomics, generates a huge amount of data. Metabolomics tools can possibly lead
to identifying many of the compounds in plants undergoing stress (Shulaev et al.
2008). Current methodologies used in plant metabolomics comprise metabolic
fingerprinting, metabolite profiling, and targeted and nontargeted detection analysis
(Halket et al. 2004; Bajad and Shulaev 2007; Fiehn 2002); these are described
below.

70 D. Parween et al.



5.5.1 Metabolic Profiling and Fingerprinting

Research in metabolomics includes metabolite profiling and fingerprinting
approaches. “Metabolic profiling” was coined during the 1970s (Horning and
Horning 1971), and it is used to identify and quantify metabolites associated with
their certain metabolic pathways or similarities in their compound classes. It involves
common chromatographic separation techniques like liquid chromatography coupled
with MS (LC-MS) or gas chromatography coupled with MS (GC-MS) to detect,
quantify, and, if at all possible, identify the metabolites in an extract. In metabolite
fingerprinting, metabolite profiles are obtained from simple cellular extracts or crude
samples through rapid and high-throughput methods. Metabolite fingerprinting
involves techniques like NMR (nuclear magnetic resonance spectroscopy) (Krishnan
et al. 2004), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR)
(Johnson et al. 2003), MS (Goodacre et al. 2003), and electrospray ionization (ESI)-
MS to detect all the metabolites present in a sample irrespective of their identification
(Allwood et al. 2008).

Liquid chromatography mass spectrometry (LC-MS) is preferred for the analysis
of flavonoids, phenylpropanoids, and alkaloids. Using GC-MS, fatty acids were
found as the key component to provide resistance to gall midge rice varieties
(Agarrwal et al. 2014). By using liquid chromatography tandem mass spectrometry
(LC-MS/MS), the identification and quantification of more than 90 flavonoids were
reported. It also studies the occurrence of their biosynthesis in various rice tissues
during different developmental stages (Dong et al. 2014). As compared with the
common cultivars, it was found that tomatoes contain 70-fold higher flavonoids by
using LC/photodiode array detection along with liquid chromatography, quadrupole
time of flight mass spectrometer (LC-QTOF-MS), and direct infusion QTOF-MS
(Hall et al. 2002).

Capillary electrophoresis–mass spectrometry (CE-MS) as well as liquid
chromatography–mass spectrometry (LC-MS) offers a better alternative for nonvol-
atile compounds. Capillary electrophoresis–mass spectrometry (CE-MS) has now
come into view as a powerful tool for the analysis of charged molecules. CE-MS
provides separation of metabolites based on charge and size and then it is detected
using MS by observing over a large range of m/z values. CE-MS provides very high
resolution, and nearly any charged species can be able to infuse into MS (Soga et al.
2003). The application of LC-MS in metabolomics is gradually growing after its
recent acceptance of the ultra-performance liquid chromatography technology,
which helps it to increase the efficiency of separation and decreases the analysis
time of metabolites (Giri et al. 2007; Granger et al. 2007).

GC-MS is biased in contrast to nonvolatile high molecular weight metabolites
and is functional towards polar nonvolatile metabolites (e.g., organic acids, amino
acids, and sugars) that are volatile up to 250 �C through chemical derivatization
(Allwood et al. 2008). In 2000, Roessner et al. (2000) described two stages of
derivatization process for the analysis of plant extracts using GC-MS. Firstly,
O-alkylhydroxylamine transforms the carbonyl group of the sample to oximes for
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thermal stabilization and then it is treated with a silylating compound, e.g., N-
methyl-N-(trimethylsilyl) trifluoro-acetamide, which leads to the formation of vola-
tile trimethyl-silyl esters (Roessner et al. 2000). Electron impact (EI), facilitating
GC-MS ion formation, provides independent exclusion of the sample’s solvent
before vaporized sample being cleared into the ionization source which allows
steady electron flow and thus ionizes the vaporized molecule (Gross 2006). Detec-
tion of mass is conducted by QTOF-MS or ion-trap-based mass analyzers. A single
QTOF-mass analyzer requires an hour of chromatographic time to provide a stan-
dard separation of a complex metabolite (Dunn and Ellis 2005). Metabolites can be
identified by tandem MS (MS-MS) which is responsible for metabolite fragmenta-
tion through collision with an inert gas like argon and causes collision-induced
dissociation (Wysocki et al. 2005).

NMR (nuclear magnetic resonance) spectroscopy is a nondestructive technique
which requires least sample preparation, and is presently also considered high
throughput (hundreds of samples per day). NMR uses nuclei with odd mass or
atomic numbers, which behave like magnets and intercommunicate with an external
magnetic field by a method called nuclear spin (Kitayama and Hatada 2013). In
particular, 1H NMR has been extensively used for metabolites profiling in clinical
samples (Holmes et al. 2000; Nicholson and Wilson 1989) and also has been
functional towards complex compounds exuded out from the roots of cereals (Fan
et al. 2001). Unlike GC-MS, which senses only volatilized compounds, 1H NMR can
instantaneously detect all compounds bearing proton in a sample. It covers mostly
organic compounds, such as ethers, amino acids, fatty acids, carbohydrates, amines,
and lipids esters, present in plant tissues. 1H-NMR provide a nonbiased fingerprint in
contrast with other metabolomics approaches, and therefore NMR is now evolving
as one of the standard metabolic profiling platforms (Ward et al. 2003).

5.5.2 Targeted and Nontargeted Detection Analysis

Separation methods of numerous analytes from a particular sample have now been
established. However, for effective application of such methods, it needs detectors
which is accomplished of fast data-acquisition rates along with high specificity and
sensitivity. Two major means of MS-based metabolomics are targeted and
nontargeted detection analysis. Analytes in the targeted detection mode are
predetermined, having a definite mass filter allotted to a specific analyte (Bajad
and Shulaev 2007). Standard methods have been developed to identify specific
members of a compound class while ignoring others. For example, polyamines
thought to be involved in various important plant processes, e.g., drought stress,
and quantification of polyamines in different plant species in response to various
stimuli or environmental conditions has been developed (Bouchereau et al. 2000).
Targeted analysis also results in comparative metabolite profiling of a huge number
of identified metabolites. SRM (Selected reaction monitoring) provides high metic-
ulosity and has been successfully used to quantitate a number of analytes at the same
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time. For example, SRM can analyze more than 100 metabolites in a single chro-
matographic run, based on highly parallel targeted assays (Bajad and Shulaev 2007;
Bajad et al. 2006). Target analysis will continue to be the most wide-spread system
in different areas of biological research. However, in case of functional genomics
studies it has restricted use, because the levels of target analytes may be changed by
unexpected reasons which cannot be understood without comprehensive
approaches. Thus, a wider analysis of metabolic modifications is required to limit
overinterpretation of data (Fiehn 2001).

The problem with targeted detection is that it is not an actual beneficial approach
as it is not quite practical to assemble SRMs for all molecules of interest present in
the sample containing numerous analytes. Thus, it cannot detect analytes with no
SRMs. Also, it is difficult to predict the compositions of the sample. Therefore, in
such cases, nontargeted detection analysis is used to cover a broad array of analytes
and used to detect and find unknown or novel molecules (Hong et al. 2003; Tohge
et al. 2005).

In nontargeted detection analysis, to detect common molecules of specific molec-
ular mass range, scanning of mass spectrometer is done over a set m/z 100–1000 in
both positive and negative ionization modes. For comparative profiling, full-scan
mode acquired data along with low-resolution instruments are most commonly used.
Data obtained in full-scan mode along with automated MS to MS/MS switching
provide added information about the elemental composition and arrangement of
fragments of the analytes, as well as the unknown components by using an accurate
mass instrument (e.g., Fourier transform MS or qTOF). Obtained data are then
subjected to library (e.g., the NIST library) search to identify the unknown com-
pounds (Bobeldijk et al. 2001). Nontargeted analysis provides an unbiased detection
method of the chemical nature of the sample which results in a holistic approach to
detect and identify unexpected or unknown metabolites which can be important in
environmental and pharmaceutical analysis (Bajad and Shulaev 2007). There are
some examples of a nontargeted analysis in pharmaceutical and environmental
analysis. Ibanez et al., using SPE-LC/QTOF-MS along with data processing, iden-
tified six unknown compounds from environmental waters (Ibáñez et al. 2005). A
successful study of drug metabolites in pharmaceutical has also been outlined using
application of nontargeted analysis (Idborg et al. 2004).

5.5.3 Data Processing and Analysis

Regardless of any analytical technique used, data analysis forms an essential part.
The raw data must be preprocessed to transform them to a readable format. The
modified data can be subjected to data reduction to facilitate the use of only
appropriate input variables in the succeeding data analysis (Brown et al. 2005).
Before analyzing data from most analytical instruments statistically, consequential
preprocessing is required, and standardization of techniques is necessary. A lot of
researchers put emphasis on requirement of post-sampling techniques such as

5 Plant Metabolites Involved in Plant–Pathogen Interactions 73



deconvolution, noise reduction, internal standards reference, alignment of profile,
and labeling of peak by using spectral libraries (Hall et al. 2002).

Large volumes of data produced from metabolome analysis are analyzed by the
instruments to detect small signals with high resolution. For this metabolome anal-
ysis, programmed software is required to detect peaks of raw NMR or MS data to
arrange the peaks in order amongst samples and to detect and measure the quantity of
each metabolite (Fukushima et al. 2009; Fernie and Schauer 2009; Go 2010).
Numerous statistical methods are used for metabolomics data. PCA (principal com-
ponent analysis) is a multivariate analysis usually used in the study of metabolomics.
PCA provides an outline of every sample or interpretation in a data and highlights the
variance between the complex metabolites in each sample (Catchpole et al. 2005;
Baker et al. 2006; Dixon 2003; Kim et al. 2006; Ku et al. 2009b). In addition to this,
other statistical analytical methods are used to analyze metabolomic datasets, which
are PLS-DA (partial least squares discriminant analysis) (Jonsson et al. 2004; Ku
et al. 2009a; Kusano et al. 2007), HCA (hierarchical cluster analysis) (Grata et al.
2007; Parveen et al. 2007), and BL-SOM (batch-learning self-organizing map anal-
ysis) (Hirai et al. 2004).

Bioinformatics is the key supporter to gather information and make sense of the
data. Currently, in the field of metabolomics, bioinformatics mainly focuses on the
metabolic pathway simulation and construction of models (Fiehn et al. 2001).
Schuster et al. (2000) tried to shed new light on the concept of identifying possible
metabolic pathway leading to a given element. Databases like the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) can serve as a model in providing information
on the combination of simulated pathway with pathway databases. KEGG provides
knowledge of systematic analysis of functions of gene based on the networks of
genes and molecules. It develops and provides several computational tools for
reforming biochemical pathways from a complete genomic sequence and predicting
the regulatory networks of gene from the profiles of gene expression. The KEGG
databases are updated on a daily basis and are available without restrictions (http://
www.genome.ad.jp/kegg/) (Ogata et al. 1999).

Data handling and analysis of metabolomics using “omic” technologies have been
improved dramatically in recent years. They help in the detection of specific metabo-
lites in a biological sample in a nonbiased and nontargeted way. Compared to omics
technology applied for the study of genomics, transcriptomics, and proteomics,
metabolomics has numerous theoretical advantages over the other omics approaches
(Horgan and Kenny 2011). The functional genomics databases include DOME (http://
medicago.vbi.vt.edu), MetNetDB (http://www.metnetdb.org/MetNet_db.htm), data
model for plant metabolomics research ArMet (http://www.armet.org/) (Shulaev et al.
2008), and pathway databases and pathway viewers like KEGG (http://www.genome.
ad.jp/kegg/), KaPPA-View (http://kpv.kazusa.or.jp/kappa-view/) (Tokimatsu et al.
2005), MetaCyc (http://metacyc.org/) (Caspi et al. 2006), AraCyc (http://www.
Arabidopsis.org/tools/aracyc/) (Zhang et al. 2005), BioCyc (http://biocyc.org) (Paley
and Karp 2006), MapMan (http://gabi.rzpd.de/projects/MapMan/) (Thimm et al. 2004),
BioPathAT (http://www.ibc.wsu.edu/research/lange/public%5Ffolder/) (Lange and
Ghassemian 2005), and the Atomic Reconstruction of Metabolism database (http://
www.metabolome.jp/) (Yamazaki et al. 2004).
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Some of the selected open-access bioinformatics tools for multifarious LC-MS
data analysis applied to environmental and pharmaceutical analysis are BL-SOM
(http://prime.psc.riken.jp/?action¼blsom_index) (Kanaya et al. 2001), MZmine
(http://mzmine.sourceforge.net/) (Katajamaa and Orešič 2005), XCMS (http://
metlin.scripps.edu/download/) (Smith 2013), MSFACTs (http://noble.org/) (Duran
et al. 2003), MeMo (http://dbkgroup.org/memo/) (Spasić et al. 2006), and
MET-IDEA (http://noble.org/) (Broeckling et al. 2006).

LC-MS is broadly used in both proteomics and metabolomics. Integrated non-
target metabolomics (LC-MS/MS) and proteomics (2D gel electrophoresis) have
been applied in wheat genotype Nyubai. Gunnaiah et al. (2012) found that Fusarium
head blight resistance locus, Fhb1, provides resistance against the spread of
F. graminearum within the spikes. The involvement of Fhb1 in providing resistance
in wheat, in response to F. graminearum, is mainly recognized due to the triggering
of fatty acid, terpenoid, and phenylpropanoid metabolic pathways. This study used
NILs (near isogenic lines) which set a good example to demonstrate that
proteometabolomic studies are not delimited up to the genetics of a given QTL
(Gunnaiah et al. 2012).

Biotechnological approaches require genetic modification to govern the assembly
of specific metabolites in plants, to progress food quality, to increase their adaptation
against environmental stress, and to increase crop yield. Unluckily, these approaches
do not essentially lead to an estimated result because of the complex mechanisms
required for the plants metabolic regulation. Metabolites such as inositol, salicylic
acid, ethylene, and jasmonic acid have been linked to plant defense signaling
pathways against biotic stress (Kushalappa and Gunnaiah 2013). Many resistances
related (RR) metabolites which were identified based upon nontargeted analysis to
possess antimicrobial properties (Ahuja et al. 2012; Ballester et al. 2013) are
discussed in Table 5.1. Many bioinformatic tools are accessible for LC-MS data
processing for mass spectral output processing and compound annotation mentioned
in Table 5.2.

5.6 Conclusion and Future Aspects

Currently, plant–pathogen interactions exemplify the utmost biochemically complex
and thought-provoking scenarios being evaluated by metabolomics approaches.
For example, there is complication in identifying which metabolites are procured
from the plant and which metabolites are interacting from the pathogen side.
Phytocompounds are involved in resistance mechanisms of plant. Until now, there
is much information on the mechanism of resistance of plants against invading
pathogens, but very less is known about the pathogenicity of invading pathogens.
Toxins certainly play a role in the pathogenicity factor during plant–pathogen
interaction. Plant components which have a negative effect upon the growth and
development or survival of another organism can be considered as toxins. The way
plants store their toxins are often critical for their effectiveness. Some plant species
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store toxins in resin ducts, laticifers (Dussourd and Hoyle 2000), or glandular
trichomes (Hallahan 2000) from where the toxins are released in huge amounts as
soon as these structures are broken by pathogens. For instance, hydrogen cyanide
released from cyanogenic glycosides inhibits cellular respiration (Jones et al. 2000),
saponins disrupt cellular membranes (Osbourn 1996), and cardenolides are specific
Na+/K+-ATPase inhibitors (Bramer et al. 2015). One substantial challenge for the
study of plant metabolomics is it lacks fully defined and interpreted metabolome for
any plant species. It is estimated that the plant kingdom produces around
90,000–200,000 diverse metabolites. Still, the definite number of metabolites pre-
sent in independent species of a plant is unknown (Fiehn et al. 2001). A reiterate
theme in all aspects of spheres of plant–pathogen interaction is the ability of each
participant to recognize and respond to cues generated by the other. Still, under-
standing of molecular recognition and response systems, receptors involved in plant
perception of pathogens in its infancy, and many other important questions remain
unanswered. In future, research focusing on the identification of effector molecules
from pathogens and their mechanism of action is likely to set a new stage in plant–
pathogen interaction.

Table 5.2 Open access databases for metabolite search and compound annotation

Database Features Weblink

PRIMe Provide web-based service for metabolomics and
transcriptomics tools.
It measures standard metabolites through GC/MS,
CE/MS, LC/MS, and multi-dimensional NMR
spectroscopy, unique tools for transcriptomics,
metabolomics, and integrated analysis of omics data

http://prime.psc.riken.
jp/

PlantCyc Plant metabolic pathway database for compounds,
enzymes, genes, and pathways intricated in primary
and secondary metabolism.
Tools for BLAST, user input pathway generation and
comparative analysis
Downloadable reference pathways for rice,
Arabidopsis, cassava corn, papaya, grape, poplar,
potato

http://www.plantcyc.
org/

METLIN Over 64,000 structures, tandem mass spectra of more
than about 10,000 metabolites, external link to other
databases, batch search

http://metlin.scripps.
edu/

ReSpect Provides phytochemicals tandem mass spectral
database

http://spectra.psc.
riken.jp/

KNAPSACK Database for metabolites-species relation, search
options; organism name, organism taxonomic tree,
metabolite name, molecular weight, formula, batch
search

http://kanaya.aist-nara.
ac.jp/KNApSAcK/

McGill-MD Metabolites related to plant biotic stress resistance, in
planta fragmentations using LC-LTQ-orbitrap and
annotated with in silico fragmentation

http://metabolomics.
mcgill.ca

ChEBI A database, dictionary, and ontology of manually
annotated small molecules

http://www.ebi.ac.uk/
chebi/init.do

Referred from Kushalappa and Gunnaiah (2013)
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