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Abstract As climate changes endlessly, it becomes more important to understand
possible reactions from soils to the climate system. It is a known fact that microor-
ganisms, which are associated with plant, may stimulate plant growth and enhance
resistance to disease and abiotic stresses. The effects of climate change factors, such
as elevated CO2, drought, and temperature on beneficial plant–microorganism inter-
actions are increasingly being explored. Organisms live in concert with thousands of
other species, such as some beneficial and pathogenic species which have little to no
effect on complex communities. Since natural communities are composed of organ-
isms with very different life history traits and dispersal ability, it is unlikely that all of
the microbial community will respond to climatic change factors in a similar way.
Among the different factors related to climate change, elevated CO2 had a positive
influence on the abundance of arbuscular and ectomycorrhizal fungi, whereas the
effects on plant-growth-promoting bacteria and endophytic fungi were more variable.
The rise in temperature effects on beneficial plant-associated microorganisms were
more variable, positive, neutral, and negative, which were equally common and
varied considerably with the temperature range. Likewise, plant-growth-promoting
microorganisms (i.e., bacteria and fungi) positively affected plants subjected to
drought stress. In this chapter, we explore how climatic change affects soil microbes
and plant-associated microorganisms.

3.1 Introduction

Microbial communities are groups of microorganisms that share a common living
space. The microbial populations that form the community can interact in different
ways, for example, as predators and prey or as symbionts. The community includes
both positive (like symbiosis) and negative (like antibiosis) interactions.

S. Mekala (*)
Department of Vegetable Science, CCSHAU, Hisar, Haryana, India

S. Polepongu
Department of Plant Pathology, PJSTAU, Aswaraopeta, Telangana, India

© Springer Nature Switzerland AG 2019
A. Varma et al. (eds.), Plant Biotic Interactions,
https://doi.org/10.1007/978-3-030-26657-8_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26657-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-26657-8_3


Microorganisms are the backbone of all ecosystems, even then in some zones, they
are unable to process photosynthesis due to absence of light. In such zones, chemo-
synthetic microorganisms provide carbon and energy to the other organisms. Soil
microbial communities play an important role in agro-ecosystem functioning and are
on the field scale essential for plant nutrition and health. Moreover, they are involved
in turnover processes of organic matter, breakdown of xenobiotics and formation of
soil aggregates. These soil microbial communities are responsible for the cycling of
carbon (C) and nutrients in the ecosystem and their activities are regulated by biotic
and abiotic factors such as the quantity and quality of litter inputs, temperature, and
moisture. Atmospheric and climatic changes will affect both abiotic and biotic drivers
in ecosystems and the response of ecosystems to these changes. Soil microbial
communities may also regulate feedbacks from ecosystem to the atmosphere. The
response of the microbial communities that regulate ecosystem processes is less
predictable. These microbes play an important role in biogeochemical cycles. The
nitrogen cycle, the phosphorus cycle, the sulfur cycle and the carbon cycle all depend
on microorganisms. The nitrogen gas, which makes up 78% of the earth’s atmo-
sphere, is unavailable to most organisms, until it is converted to a biologically
available form by the microbial process of nitrogen fixation.

Climate change factors, such as atmospheric CO2 concentrations, temperature,
and altered precipitation regimes, can potentially have both direct and indirect
impacts on soil microbial communities. The response of soil microbial communities
to changes in atmospheric CO2 concentrations can be positive or negative. Increas-
ing temperatures can increase microbial activity, processing, and turnover, causing
the microbial community to shift in favor of representatives adapted to higher
temperatures and faster growth rates (Bradford et al. 2008). How multiple climate
change factors interact with each other to influence microbial community responses
is poorly understood. For example, elevated atmospheric CO2 and precipitation
changes might increase soil moisture in an ecosystem, but this increase may be
counteracted by temperature (Dermody et al. 2007). Similarly, temperature may
increase microbial activity in an ecosystem, but this increase may be eliminated if
changes in precipitation lead to a drier soil condition or reduced litter quantity,
quality, and turnover. Similarly, changes in soil moisture and ecosystem temperature
do not always lead to predictable or significant changes in bacterial and fungal
abundance (Chen et al. 2007; Kandeler et al. 2006).

3.2 Impact of Climate Change on Soil Microbial
Communities

Climate change is a change in the statistical distribution of weather patterns that lasts
for an extended period of time (i.e., decades to millions of years). Impact of climate
change on soil microbial communities results in increasing atmospheric CO2 con-
centration, temperature, and drought. Climate change has both positive and negative

32 S. Mekala and S. Polepongu

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Weather


effects on soil microbial communities. Majority of studies showed that elevated CO2

had a positive influence on the abundance of arbuscular and ectomycorrhizal fungi
whereas the effects on plant-growth-promoting bacteria and endophytic fungi were
more variable. In most cases, plant-associated microorganisms had a beneficial effect
on plants under elevated CO2.

Climate change is caused by various factors such as biotic processes, variations in
solar radiation received by earth, plate tectonics, and volcanic eruptions. Certain
human activities are also responsible for ongoing climate change, often referred to as
global temperature. It will show direct and indirect impacts on terrestrial ecosystems,
both above and below the ground. On the surface of the soil, the effects of global
change will be largely direct: elevated atmospheric carbon dioxide as well as changes
in temperature, precipitation, and nitrogen availability, which will all alter the growth
of plant species. Below the surface of the soil, disturbances often act quickly like
microbial metabolic activities can be changed by many ecosystem-scale factors such
as nitrogen deposition, elevated carbon dioxide (Dhillion et al. 1996; Ajwa et al.
1999; Mayr et al. 1999). The response to climate change is more complex. Plant
responses affect the type and amount of carbon entering the soil system as well as the
physical architecture of the plant root zone.

Through their diverse metabolic activities, soil microbial communities are the
major drivers of soil nutrient cycling and their importance in mediating climate
change and ecosystem functioning should not be underestimated (Balser et al. 2001).
Climatic change involves increasing atmospheric CO2 concentration, temperature,
precipitation, and drought. It can alter the relative abundance and function of soil
communities because soil community members differ in their physiology, temper-
ature sensitivity, and growth rates (Lennon et al. 2012; Briones et al. 2014; Delgado-
Baquerizo et al. 2014).

3.2.1 Impact of Elevated CO2

Altered environmental conditions due to climate change are likely to induce changes
in plant physiology and root exudation. Particularly elevated CO2 leads to increase in
C allocation at the root zone and potentially alters root exudation compositions.
Alterations might include changes in the availability of chemo attractants or signal
compounds as well as a different C/N ratio or nutrient availability (Kandeler et al.
2006; Haase et al. 2007). Photosynthetically derived carbon (C) into the rhizosphere
through root exudation, making root exudates, is a key factor in increasing microbial
abundance and activity in the rhizosphere compared to bulk soil (Lynch 1990;
Kapoor and Mukerji 2006). Low-molecular-weight C compounds present in root
exudates, including sugars, organic acids (OAs), and amino acids are readily assim-
ilated by microorganisms and are proposed to play a primary role in regulating
microbial community dynamics in the rhizosphere (Bais et al. 2006).

Root exudates play a key role in plant–microorganism interactions by influencing
the structure and function of soil microbial communities. Model exudate solutions,
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based on organic acids (OAs) (quinic, lactic, maleic acids) and sugars (glucose,
sucrose, fructose), previously identified in the rhizosphere of Pinus radiata, were
applied to soil miniature. OAs caused significantly greater increases than sugars in
the detectable richness of the soil bacterial community. The greater response of
bacteria to OAs may be due to the higher amounts of added carbon, solubilization of
soil organic matter, or shifts in soil pH. The impact of climate change on root
exudates like model solutions such as OAs, which plays a significant role in shaping
soil bacterial communities therefore, this may have a significant impact on plant
growth (Shi et al. 2011).

Climate change may significantly impact the diversity and activities of such plant-
associated microbial communities (Drigo et al. 2008). Consequently, microorganisms
known for their beneficial effects on plant growth or health might also be impaired, in
terms of exhibiting their desirable properties and their colonization capacity under
certain conditions. The majority of studies performed so far have indicated that elevated
CO2 conditions will lead to increased colonization of PGPF (plant-growth-promoting
fungi). It is also important to note that elevated CO2 concentrations may induce AMF
(arbuscular mycorrhizal fungi) community composition changes (Klironomos et al.
2005). AMF are known to enhance plant nutrient uptake (mostly phosphate) or confer
other benefits in exchange for rhizosphere carbohydrate compounds (Koide 1991;
Newsham et al. 1995).

The composition of microbial communities correlates with plant physiology and
is likely to be driven by root exudation or metabolite patterns. This indicates that the
colonization of plant-associated microorganisms depends on the availability of
certain compounds produced by the plant acting as the primary nutrient source, as
chemo attractants or signal molecules. Consequently, at elevated CO2 concentrations
in particular, but also under conditions of increased temperature or drought, different
genotypes of PGPF or PGPB show potential for different functional activities in the
plant environment (Waldon et al. 1989; Marilley et al. 1999; Drigo et al. 2009).
However, because of altered community structures, beneficial microorganisms
might have to compete with different microbial communities and therefore might
show an altered colonization behavior. In addition to the potential effects of climate
change on microbial colonization characteristics, microbial activities may be
affected (Kandeler et al. 2006; Haase et al. 2008). Microbial communities showing
different activities or producing altered signals in the long term either may result in
the establishment of altered communities or in the elicitation of different plant
responses.

Considering the fact that plant-beneficial microorganisms such as mycorrhizal
fungi and nitrogen-fixing bacteria provide up to 80% N and up to 75% P and that an
extremely high number of plant species are completely dependent on microbial
symbionts for growth and survival, it is evident that alterations in the plant-beneficial
microbial communities may ultimately influence plant diversity and functioning of
soil microbiota. Furthermore, the abundance or the activity of microorganisms with
biocontrol activities may be altered and thereby plant pathogen populations may be
affected (Compant et al. 2010). Under elevated CO2 conditions, nutrients such as N
might be limiting, leading to the need for enhanced fertilizer input in agriculture, in
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such cases plant growth-promoting microorganisms supporting nutrient acquisition
such as mycorrhizae or N-fixing bacteria may gain increasing importance.

Overall, these results suggest that elevated CO2 may interact with the plant–
fungal symbiosis and may lead to increased endophyte infection frequency, although
with lowered toxin production (Brosi et al. 2009). The impact of CO2 on the host
plant and its endosymbionts may additionally change the plant carbohydrate content.

3.2.2 Impact of Temperature

Temperature changes are often coupled with changes in soil moisture, which may
explain some inconsistent results from experiments exploring how microbial com-
munities respond to climatic change. For example, rates of microbial activity at
warmer temperatures can be limited by diffusion and microbial contact with avail-
able substrates (Zak et al. 1993). While bacterial communities may respond rapidly
to moisture pulses, the slower-growing fungal community may lag in their response
(Bell et al. 2008; Cregger et al. 2012, 2014). Global changes such as temperature are
directly altering microbial soil respiration rates because soil microorganisms, and the
processes they mediate are temperature sensitive. The role of elevated temperature in
microbial metabolism has received considerable attention (Bradford 2013; Frey et al.
2013; Hagerty et al. 2014; Karhu et al. 2014). Q10 is often used in climate change
models to account for microbial temperature sensitivity; however, using this rela-
tionship masks many of the interactions that influence the temperature sensitivity of
microbial processes, such as decomposition. Therefore, using only Q10 to account
for temperature sensitivity in models may lead to poor predictions. Further, while
decomposition of soil organic matter, soil respiration, and growth of microbial
biomass generally increase with temperature (Bradford et al. 2008). The tran-
sient effects of temperature on soil communities have been hypothesized. The soil
carbon substrates are depleted by increased microbial activity and because of trade-
offs as microbial communities either acclimate, shift in composition, or constrain
their biomass to respond to altered conditions and substrate availability (Allison and
Martiny 2008; Bradford 2013). Experimental temperature can initially alter the
composition of microbial communities, and shift the abundance of Gram-positive
and Gram-negative bacteria (Zogg et al. 1997).

While plant species migrations in response to climate change are well described
(Grabherr et al. 1994;Walther et al. 2002; Parmesan and Yohe 2003) most studies fail
to address the ability of associated soil microorganisms to shift their range to maintain
the positive or negative relationship between the plant and the soil community (van
der Putten 2012). Shifts in microbial activity can in turn lead to changes in decom-
position, nitrogen mineralization and organic carbon storage. Nitrogen deposition is
likely to decrease mycorrhizal fungal biomass while increasing bacterial and
saprotrophic fungal biomass (Treseder 2004; Rinnan et al. 2007) and has the potential
to increase carbon cycling by increasing the activity of microbial enzymes related to
carbon cycling. Soil biota may be poor dispersers, therefore they may respond to
climate change at a different rate than plants (van der Putten 2012).
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Increased temperature causes the soil water to decrease in some areas
(Le Houerou 1996), leading to enhanced drought in several regions of the world,
whereas others are known to support plant growth and to increase plant tolerance to
biotic and abiotic stresses (Bent 2006). Many of these plant-growth-promoting
microorganisms colonize the rhizosphere, the portion of soil attached to the root
surface and influenced by root exudates and by microorganisms (Bent 2006;
Lugtenberg and Kamilova 2009; Prasad et al. 2015). Some microorganisms can
also enter the root system of their hosts and enhance their beneficial effects with an
endophytic lifestyle (Stone et al. 2000).

In the majority of cases, the responses of AMF to increased temperature had a
positive impact on their colonization and hyphal length. In some cases however, no
effects or negative effects of enhanced temperature on AMF were reported (Compant
et al. 2010). AMF may respond to higher temperatures with enhanced growth and
plant colonization for majority of strains (Furlan and Fortin 1973; Graham et al.
1982; Fitter et al. 2000). This was demonstrated, for instance, in strains of Glomus
intraradices, Glomus mossae, and many others (Baon et al. 1994; Monz et al. 1994).
Temperature may also significantly alter the structure of the AMF hyphal network
and induce a switch from more vesicles responsible for storage in cooler soils to
more extensive mycorrhizal hyphal networks, indicating growth in warmer soils
(Hawkes et al. 2008). This is linked to faster carbon allocation to the rhizosphere and
an increased respiration of the extra mycorrhizal mycelium at a high soil temperature
(Heinemeyer et al. 2006).

3.2.3 Impact of Drought

Drought stress might be an additional consequence of climate change. High temper-
ature leads to drought or soil moisture stress. Soil moisture related to the microbial
community is more highly unpredictable and complex than temperature, and less
investigated. Drought amplifies the differential temperature sensitivity of fungal and
bacterial groups (Briones et al. 2014). Even with small changes in soil moisture
availability (30% reduction in water holding capacity), soil fungal communities may
shift from one dominant member to another while bacterial communities remain
constant. Interactions among microbes and background temperature and moisture
regimes in any given location influence microbial composition and function with
changing climate.

Despite logical mechanisms by which microbial communities may be altered by
changes in soil moisture. Generally, drought reduces AMF colonization, but in some
cases this kind of response might be dependent on strains as reported by Davies et al.
(2002), who demonstrated that drought enhanced arbuscular formation and hyphae
development of the Glomus sp. strain ZAC-19, whereas colonization by a Glomus
fasciculatum strain was reduced.

Drought is frequently responsible for reduced plant growth in roots and aerial
plant parts, which makes the plant susceptible to other pathogens attack. This may
lead to changes in the allocation of photosynthates in the rhizosphere as well as in
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ectomycorrhizal mycelium (ECM) formation. However, plants may change the type
of mycorrhiza colonizing their hosts during longer exposure to drought as it was
shown by Querejeta et al. (2009). The beneficial association between some strains of
AMF and plants may thus reduce the severe effects of water limitation to plants.
Moreover, some AMF may resist drought stress better than others.

Different mechanisms may thus be responsible for ECM-induced stress tolerance.
Improved performance of mycorrhizal seedlings under drought stress conditions
may also be linked to better P and K nutrition as well as to a more extensive root
system with mycelial strands as demonstrated with Picea sitchensis and P. involutus
(Lehto 1992). The consequences of drought stress tolerance induced by ECMmay in
addition affect belowground litter quality and quantity as well as accumulation of
organic matter in soils.

There are some microsymbionts, such as the strains of the taxa Atkinsonella,
Balansia, Balansiopsis, Echinodothis, Epichloë, Myriogenospora (White 1994),
Parepichloë (White and Reddy 1998),Neotyphodium (Glenn et al. 1996), and certain
endophytic fungi that can colonize entirely within plant tissues and may grow within
roots, stems, and/or leaves, emerging to sporulate at plant or host-tissue senescence
(Sherwood and Carroll 1974; Carroll 1988; Bacon and De Battista 1991).
Water may act in concert with nitrogen addition to increase decomposition of plant
tissues (Henry et al. 2005). Increased moisture, or alleviation of water stress, can also
alter the lignification of plant cell walls (Henry et al. 2005), increase grassland
productivity, and impact on soil carbon. Soil moisture coupled with elevated carbon
dioxide also decreases abundance of ammonium oxidizing bacteria, potentially
altering the soil nitrogen cycle (Horz et al. 2004). Temperature with elevated carbon
dioxide may act additively to increase soil respiration (Niinisto et al. 2004; Van Veen
et al. 1991; Hungate et al. 1997). Although there have been few reports on the
interactions between elevated temperature and moisture, there is evidence to suggest
that together they may lead to shifts in the structure of methane-oxidizing bacterial
communities (Horz et al. 2005).

3.3 Conclusion and Future Prospects

Climate change will affect soil microbial communities’ structure and functions both
directly and indirectly. Directly through changing the physical structure of the soil
and carbon allocation and indirectly by changing land use. Soil microbes are
essential components in the agricultural ecosystem responses to climate change
through which the process of cycling of nutrients and soil carbon allocation occurs.
Temperature interacts with changes in water and nitrogen availability. All climate
change factors such as temperature, increasing CO2 concentration, precipitation, and
drought impact will be both positive and negative. However, most of the cases it has
a positive effect on the microbial community. Although, in order to clearly under-
stand the exact mechanism of impact on climate change on soil microbial commu-
nity, some other factors which show impact on soil microbial communities and
models need to be studied.
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