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Abstract. The field of declarative process discovery comprises tech-
niques for mining declarative constraint sets from event logs. While
current techniques verify the relation of individual constraints to the
log, they do not consider the interrelation between constraints. This can
lead to logical contradictions between the discovered constraints. In this
work, we introduce a new form of such contradictions entitled implicit
inhibitors. In short, these are sets of constraints which will always be
activated together, but demand contradicting reactions. In turn, such
constraint sets can be denoted as quasi-inconsistent, as the contained
constraints are unsatisfiable should they be activated together. We intro-
duce a structured approach to detect and analyze quasi-inconsistencies
in declarative process models and evaluate our approach through formal
analysis and run-time experiments on real-life data-sets.
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1 Introduction

Declarative process models consist of constraints which specify the behavior
which company processes should adhere to. Process execution in declarative
process models is thus all allowed behaviour within the set of constraints. The
semantics of declarative constraints is mostly formalized with temporal logic, e.g.
with modelling languages such as DECLARE [6,14]. For example, the DECLARE
constraint CHAINRESPONSE(a, b) imposes that if a task a occurs, it must be
directly followed by a task b. Likewise, RESPONSE(q, b) states, that if a task a
occurs, it must be eventually followed by a task b. When utilizing declarative
models, companies face numerous current challenges: In the scope of process
discovery, current discovery techniques can yield sets of constraints which are
unusable or confusing to modelers [7]. Also, human modelling errors or merging
models in the scope of company mergers can yield erroneous models [3].
As an example, consider the constraint sets C; and Co, defined via

C1 ={CHAINRESPONSE(a, b) Cy = {CHAINRESPONSE(a, b)
NOTRESPONSE(a, b)} CHAINRESPONSE(b, ¢)
NOTRESPONSE(q, ¢)}.
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In both cases, the task a is inhibited by (multiple) constraints which define
which tasks must or must not follow. However, these constraints demand logically
contradicting reactions to the occurence of task a. In turn, should the task a
occur, the declarative process model cannot further be executed.

Motivation: Can’t this be already solved with finite state automata?
The observant reader might ask whether the above examples are not inconsis-
tencies as defined in Di Ciccio et al. [7], and thus could already be detected by
existing approaches such as automata products. In short, the above examples
are not inconsistencies, but rather quasi-inconsistencies, explained as follows.
Di Ciccio et al. [7] have discussed the problem of inconsistent constraints that
can be returned during process discovery. Those authors define inconsistency as
a declarative process model which does not accept any execution trace, i.e. it is
unsatisfiable. An example would be the constraint set Cs, defined via

C3 ={PARTICIPATION(a)
CHAINRESPONSE(a, b)
NOTRESPONSE(a, b)}.

As can be seen, C3 contains the constraint PARTICIPATION(a), which states
that the task a must occur in every execution trace. In result, the constraints
CHAINRESPONSE(a, b) and NOTRESPONSE(a, b) must also always be activated in
any execution trace. However, this constellation is inconsistent, i.e. there cannot
exist a trace that satisfies the model in Cs.

On the contrary, a model containing the constraints in C; or C can accept an
arbitrary amount of execution traces, namely any trace which does not contain
the task a. For example, a trace “bcbdbde” would satisfy respective models in
C1 or Cy. Thus, these constraint sets are not inconsistent as defined in [7], but
rather quasi-inconsistent. That is, certain tasks are implicitly inhibited by a
set of contradictory constraints. Due to this different conceptualization, this
implicit inhibition can however not be detected via automata products as in
[7], as there can be a non-empty set of accepted traces. In result, this paper
discusses a new form of problem in declarative process discovery. Intuitively,
declarative process models should not contain sets of constraints as in C; or Ca,
as the can potentially make models unusable. Yet, current discovery techniques
can return such quasi-inconsistent constraint sets. Furthermore, as motivated
above, such quasi-inconsistencies can currently not be detected by existing means
such as automata products. This is underlined by our experiment results (cf.
Sect. 5), where we analyzed real-life models and found more than 25.000 of such
contradictory constraint sets as in C1 or Ce, which cannot be detected with the
approach by Di Ciccio et al. [7]. In this work, we therefore introduce the notion
of quasi-inconsistency and propose a first structured approach to detect and
analyze all minimal implicit inhibition sets in declarative process models.

The remainder of this paper is as follows. Section?2 provides background
information on declarative process models. In Sect. 3, we introduce the novel
concept of quasi-inconsistent subsets and show how results from the scientific
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field of inconsistency measurement can be adapted to detect and analyze such
subsets. In Sect. 4, we present an algorithm for the feasible computation of quasi-
inconsistent subsets. The proposed capabilities for detection and analysis are
evaluated in Sect. 5, followed by a conclusion in Sect. 6.

2 Background

Traditional process models define a clear imperative structure of how exactly
company activities should be executed. To allow for more flexibility, declarative
process models have received increasing attention [1,6,7]. Here, a declarative
process model defines constraints which must be upheld or not be violated, and
thus process execution is flexible within this set of constraints.

Definition 1 (Declarative Process Model). A declarative process model is
a tuple M = (A, T, C), where A is a set of tasks, T is a set of constraint
templates, and C' is the set of actual constraints, which instantiate the template
elements in T with tasks in A.

In this paper, we consider DECLARE [14], which is a widely acknowledged
declarative process modelling language and notation. DECLARE allows to define
constraints by using predefined templates and passing tasks as parameters to
respective templates, cf. the examples in Sect. 1. In this way, modelers can use
the rather intuitive templates to define constraints, with the formal semantics
“hidden” from the user. Formally, the semantics of DECLARE can be defined
with temporal logic [1,4]. This allows to use the amenities of temporal logic
checking, as well as to create custom DECLARE constraint templates.

We define the semantics of DECLARE constraints with LTL, [13], a linear-
time temporal logic with past. An LTL,, formula is given by the grammar

= al (=) (1 A p2) (OP) (91 Ugpa2) (O) | (915 02)-

Each formula is built from atomic propositions € A (relative to a declarative
process model), and is closed under the boolean connectives, the unary tempo-
ral operators (O (next) and © (previous), and the binary temporal operators
U (until) and S (since). Given a declarative process model M = (A, T,C), a
sequence t (with length n) of tasks in A, where t(i) denotes the i*" element of
the sequence ¢, the semantics of LTL,, formulae are defined as follows:

t,i | True/t,i = False tifEa iff ¢i)=a

ti e iff ti fE e tiE 1 Ape iff ti =1 and ti = @2
tiEQe iff i<nandt,i+lEg tiEOe iff i>1landt,i—1F¢
tiFE 1 Ugs iff t,jEw2 with i <j<n,andt k¢ forall k st.i<k<j
tiE @1 S iff 6,5 E @2 with 1<j <4, and t,klE¢1 forall k st. j<k<i
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From the above syntax and semantics, we furthermore derive 1 V o as
=(—p1 A pa), p1 — @a as 1 V pa, Op as TrueUg (which indicates that
¢ will eventually hold true, possibly later and not directly following t(7)), ¢
as True S ¢ (which indicates that ¢ holds true sometime before ¢(i), but not
necessarily directly before (7)), and Op as =0—¢ (which indicates that there is
no future ¢(i) which does not satisfy ¢).

Based on such LTL, formulae, the semantics of individual DECLARE con-
straints can be defined. For instance, the exemplary constraints used in C;
and Co are defined as CHAINRESPONSE(a,b) = O(a — (Ob), NOTCHAINRE-
SPONSE(a,b) = O(a — = O b), NOTRESPONSE(a, b) = O(a — —0b). A standard
set of Declare templates and corresponding semantics have been defined derived
from the work of [8]. Please see [1,7] or [12] for further details.

An interesting gist about such constrains is that DECLARE seems to capture
activation-response relations between tasks. For instance, CHAINRESPONSE(a, b)
can be interpreted such that, if there is an activation a, then this entails a
reaction (Ob. Therefore, following [2], we use the notion of reactive constraints,
which make the activation and reaction semantics of LTL, constraints explicit.

Definition 2 (Reactive Constraints [2]). Given a declarative process model
M= (A, T, C), and a constraint € C with activation « and reaction @, a reactive
constraint (RCon) W is a pair (a, ). We denote ¥ = (a, ) as a = . We say
that a activates the constraint and the reaction .

Table 1 provides an overview of DECLARE constraints used in this work, as
well as the corresponding RCon and activation. Please refer to [2,7] for a further
discussion and classification of activations in DECLARE constraints.

Table 1. Reactive constraints corresponding to exemplary DECLARE constraints

Constraint Reactive constraint | Activation
RESPONSE(a, b) a= Ob a
CHAINRESPONSE(a, b) a= Ob a
ALTERNATERESPONSE(a, b) a= O(—a U b) a
PRECEDENCE(a, b) b= %a b
CHAINPRECEDENCE(a, b) b= Oa b
ALTERNATEPRECEDENCE(q, b) |b = O(-b S a) b
NOTRESPONSE(a, b) a = —0b a
NOTCHAINRESPONSE(a, b) a=-0b a
NOTPRECEDENCE(a, b) b= —%a b
NOTCHAINPRECEDENCE(a, b) |b= —a b

In result, a quasi-inconsistency is present if we have a constraint set contain-
ing multiple RCons with the same activation, but contradictory reactions. In
the following, we will show how such quasi-inconsistencies in declarative process
models can be detected and analyzed.
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3 Detecting and Assessing Quasi-Inconsistencies

3.1 Detection

As declarative constraints are inherently of reactive nature, they underly the
principle of ex falso quodlibet: no conclusions can be made without knowledge of
activation. As motivated in Sect. 1, this means that the exemplary constraint sets
Cy and Cy are not inconsistent per se, as it is not known whether these constraints
will actually be activated (i.e., there is no constraint like PARTICIPATION(a)
which dictates the occurrence of a task a in an execution). In turn, there can
be an arbitrary amount of traces that satisfy models as in C; and Cs, thus it
is not possible to detect quasi-inconsistency by the existing means of automata
products as in [7], which detects inconsistency as an empty set of acceptable
input traces.

Thus, we present a novel means for detecting quasi-inconsistency. In the fol-
lowing, we use the RCon representation, but sometimes provide specific DECLARE
templates for readability. Furthermore, let a constraint ¢, we denote out(c) as
the outcome of a constraint, i.e. ¢ of the respective RCon.

Definition 3 (Individual Constraint Activation). A set of activations A
activates an individual constraint ¢ : a = ¢ iff a € A.

Quasi-inconsistencies can arise, if we have a set of activations A’, such that
A’ activates at least two different constraints, and these constraints have contra-
dictory outcomes, e.g. in example Cy, the activation set {a} activates two con-
tradictory constraints. However, as the conclusions of some constraints might
be an activation to other constraints themselves via transitive relations, the
activation set A’ might activate a multitude of constraints. In order to analyze
quasi-inconsistencies, all these activated constraints must be considered.

Definition 4 (Constraint Set activation). A set of activations A activates
a set of constraints C iff Ve € C : AU {out(c)|c € C} activates c.

Example 1. Consider the constraint set C4, defined via
Cys={a=bb=cc=d}.

For each individual constraint, the activation set is simply the premise of the
constraint, i.e. a is the activation set of the individual constraint a = b. Fur-
thermore, the activation a also activates the entire set of constraints in C4 via
the transitive relations.

Given a declarative set of constraints, the introduced notions allow to define
quasi-inconsistent subsets.

Definition 5 (Quasi-Inconsistent Subset). For a constraint set C, the set
of quasi-inconsistent subsets QI is defined as a set of pairs (A, C), s.t.

1. CcCC
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2. A activates C
3. AUCEL

To clarify, we consider a set of activations A, which activate C. Then, the
entirety of all activations and activated constraints is inconsistent. Our proposi-
tion of quasi-inconsistent subsets allows to determine the “inconsistent subsets”
of arbitrary declarative constraints sets, by augmenting activations and thus
determining those constraints which will (a) always be activated together, and
(b) yield an inconsistency, should they be activated. Consequently, we define
minimal quasi-inconsistent subsets analogously.

Definition 6 (Minimal Quasi-Inconsistent Subset). For a constraint set
C, the set of minimal quasi-inconsistent subsets MQI is defined as set of pairs t
= (A, C), s.t.

1. t is a quasi-inconsistent subset in C
2. for any t' C t, where exactly one element is deleted from exactly one of the
setsin t,: t' FL

A minimal quasi-inconsistent subset is a quasi-inconsistent subset which is min-
imal w.r.t. set inclusion, i.e., removing exactly one constraint resolves the quasi-
inconsistency. As we are mostly interested in the distinct constraints which are
quasi-inconsistent to each other, we use M to denote the set of constraints C
from any M € MQI.

Ezample 2. Consider the following DECLARE constraint set Cs, defined via

Cs = {CHAINRESPONSE(a, b), RESPONSE(b, d), NOTCHAINPRECEDENCE(a, b)
CHAINRESPONSE(d, €), NOTRESPONSE(a,b), CHAINRESPONSE(e,c)
CHAINRESPONSE(b, ¢), RESPONSE(a, b) NOTRESPONSE(q, ¢) }

Then',

MQI(Cs) = {My, My, M3, My, Ms, Mg, M7}

ME = {NOTCHAINPRECEDENCE(a, b), CHAINRESPONSE(a, b) }

M$ = {CHAINRESPONSE(a, b), NOTRESPONSE(a, b) }

MS = {RESPONSE(a, b), NOTRESPONSE(a, b)}

MY = {REsPONSE(a, b), NOTRESPONSE(a, ¢), CHAINRESPONSE(D, ¢) }

ME = {CHAINRESPONSE(a, b), CHAINRESPONSE(b, ¢), NOTRESPONSE(a, ¢) }

M¢ = {RESPONSE(a, b), RESPONSE(b, d), CHAINRESPONSE(d, ¢),
CHAINRESPONSE(e, ¢), NOTRESPONSE(a, ¢) }

ME = {CHAINRESPONSE(a, b), RESPONSE(b, d), CHAINRESPONSE(d, €),
CHAINRESPONSE(e, ¢), NOTRESPONSE(a, ¢) }

M = ({a}, {NOTCHAINPRECEDENCE(a, b), CHAINRESPONSE(a, b) })

L Ms—M; are omitted due to space restrictions, but are analogously to M (all with
activation set {a}).
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This example shows the minimal quasi-inconsistent subsets of the constraint
set Cs. As can be seen, all such subsets implicitly inhibit certain tasks in an unsat-
isfiable way. Thus, in the example, should the task a occur, the resp. model is
unsatisfiable and can thus not be used for simulation or to govern compliant pro-
cess execution. Intuitively, declarative process models should therefore not con-
tain such inhibiting subsets. Through our novel definition of quasi-inconsistent
subsets, we are able to detect all such problematic subsets within a set of con-
straints. Furthermore, our definition of quasi-inconsistent subsets enables a fur-
ther assessment of resp. subsets.

3.2 Analysis

In order to understand potential inconsistencies, companies should be provided
with a careful analysis of detected quasi-inconsistencies. To this aim, results from
the scientific field of inconsistency measurement can be adapted [10]. Inconsis-
tency measurement is a discipline concerned with the analysis of inconsistent
information. Here, the central object of study are quantitative measures, which
allow to assign a numerical value to (elements of) a constraint set, with the
informal meaning that a higher value reflects a higher degree of inconsistency.
These measures can be distinguished into so-called inconsistency measures, and
culpability measures. The former is used to assess the inconsistency of the entire
constraint set, while the latter is used to assess the degree of blame that indi-
vidual constraints carry in the context of the overall inconsistency. As some of
these measures are based on set-theoretic principles, we propose to adopt these
measures to analyze quasi-inconsistent subsets as follows.

Quasi-Inconsistency Measures. Let € denote the universe of all declarative
constraint sets. Then, an inconsistency measure Z is a function

I:¢—[0,00)

which assigns a non-negative real value to a constraint set, with the informal
meaning that a higher value reflects a higher severity of inconsistency.

Following recent surveys [16,17], there are four measures based on minimal
inconsistent subsets which have been proposed, namely the MIl-inconsistency
measure, the Mlc—inconsistency measure, the problematic inconsistency measure
and the muv-inconsistency measure. Currently these measures are only defined
for inconsistencies (and not for quasi-inconsistencies). To analyze the degree of
quasi-inconsistency of declarative process models, these can easily be adapted to
fit the use-case of quasi inconsistencies. For further evaluation, we present this
for the example of the Ml-inconsistency measure. We omit a detailled discussion
of all measures due to space limitations.

Let C be a set of constraints and A(C) denote the tasks in a set C. Then, the
adapted versions of the abovementioned measures are defined as follows.
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Definition 7 (MQI-inconsistency measure). Define the MQl-inconsistency
measure via

(€)= IMQIC)|
This measure counts the number of minimal quasi-inconsistent subsets in C.
Example 3. We revisit the constraint set Cs from Example 2. Then

Iy(Cy) =17

Culpability Measures. Next to assessing the degree of inconsistency for an
entire constraint set, results from inconsistency measurement also allow to quan-
tify the degree of inconsistency for individual constraints. This allows to pin-
point constraints with a high degree of blame for the overall inconsistency. Let ¢
denote the universe of all possible constraints, and € the universe of declarative
constraint sets. Then, a culpability measure I" is a function

I':¢xc—[0,00)

which assigns a non-negative number to a mapping of an individual constraint to
a constraint set, and can thus assess the culpability that an individual constraint
represents w.r.t. the constraint set. There are two culpability measures based on
minimal inconsistent subsets which have been proposed, namely the cardinality
based culpability measure I'y, and the normalized culpability measure I, [11].
Again, these can be easily adopted for the use-case at hand, which we show for
the cardinality-based culpability measure.

Definition 8 (Cardinality-Based Culpability Measure). Define the car-
dinality based culpability measure F;“g via
rg(C a)=|M e MQIC)|la € MC|

This measure counts the number of minimal quasi-inconsistent subsets that a
constraint o appears in.

Example 4. We revisit the constraint set Cs from Example 2. Then

(2) Fg(cs, CHAINRESPONSE(a, b)) = 4 (vi) F;f (C5, RESPONSE(b, d) = 2

(i) Ff((}g,, NOTCHAINPRECEDENCE(a, b) = 1 (vii) Fﬁ (Cs, CHAINRESPONSE(d, €) = 2
(#4%) Ff (Cs, NOTRESPONSE(a, b) = 2 (viii) Fi (Cs, CHAINRESPONSE(e, ¢) = 2
(iv) I’f (Cs, CHAINRESPONSE(b, ¢) = 2 (ix) Fg (Cs, RESPONSE(a, b) = 3

(v) I’z (Cs, NOTRESPONSE(a, ¢) = 4

Culpability measures provide quantitative insight that can help companies
to understand and resolve problems in their models [15]. The intuition here
is that a higher culpability reflects a higher degree of blame that an individual
constraint carries in the context of the overall inconsistency [9]. For example, the
Ir'¢is essentially a scoring function which quantifies how many quasi-inconsistent
subsets can be resolved, if a constraint is deleted.
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4 Computation of Quasi-Inconsistent Subsets

The basis for the proposed detection and analysis are quasi-inconsistent sub-
sets. In the following, we therefore propose an novel approach for the feasible
computation of MQI. Algorithm 1 shows our approach to compute minimal quasi-
inconsistent subsets for declarative constraints. As a central object of study, we
utilize reactive constraints to construct a so-called reactive entailment graph.

4.1 Reactive Entailment Graph

Definition 9 (Reactive Entailment Graph). Given a declarative process
model M = (A, T, C), its reactive entailment graph (REG) is defined as a graph
G = (A, E,7,n), where A = AU A are the tasks in M in two forms (with and
without overline symbol), E C A x A is the set of directed edges between tasks
in A, T is a function 7 : E — T assigning an individual edge in E to a template
type in T, and n is a function n : E — N which assign a natural number to an
edge to allow for multiple edges between the same tasks in A.

The reactive entailment graph is a graph representation of reactive con-
straints. For example, given the declarative constraint CHAINRESPONSE(a, b),
this can be represented as two nodes a and b, related by an edge of type O. In
the following, we ommit edge numbering for simplicity.

An important detail is that we include two “forms” of tasks, explained as
follows. As can be seen in Table1, one could argue there are essentially two
types of declarative constraints. First, there are constraints such as CHAINRE-
SPONSE, which are aimed to ensure that, should some event occur, then another
event must occur (in a certain way). Then, there are other constraints such as
NOTCHAINRESPONSE, which are aimed to ensure that, should some event occur,
then another event must not occur (in a certain way). The reactive entailment
graph captures these two types of demanding and prohibiting constraints, with
the intuition that the overlined form of a task relates to a prohibition and vice
versa. Then, the edges, respectively the edge types convey information on how
exactly a task is demanded or prohibited, w.r.t a node which is the activation.

Ezxample 5. We revisit the exemplary constraint set from Example 2. Then, this
yields the following reactive entailment graph:
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This graph encodes the relations between tasks of a declarative process model,
as well as their relation type. For example, it can be seen that a = Ob, and
a = —Ob. This encodes that the activation a demands task b, resp. prohibits
a later occurence of task b. An advantage of including two forms of tasks to
encode the demanding, resp. prohibiting, nature of reactive constraints is an
efficient way to scan the REG for potential inconsistencies, by searching for pairs
of nodes n and n’, where n = n/, as will be discussed in the subsequent section.

The graph relations can be transformed back into the original constraints,
where if («,t;) € E, then the original reactive constraint ¢; is defined as ¢; =
a = 7(a,t;)t;. For an edge e € E, we denote the corresponding constraint as
e®. Given a path p being a sequence of edges in the REG, we denote the set of
corresponding constraints captured by p as p©.

4.2 Algorithm for Computing MQI in Declarative Constraint Sets
Following Definition 5, quasi-inconsistency can only occur if

1. There is at least one task A
2. A is the outcome of at least two constraints ¢; and co
3. out(cr) = out(ca)

Furthermore, the constraints ¢; and cs have to be activated simultaneously, thus
4. ¢1 and ¢y have the same activation set a

Algorithm 1 computes MQI of declarative constraint sets by exploiting the
reactive entailment graph to search for subsets satisfying 1-4. In the following,
we explain our algorithm based on the constraint set from Example 2 and the
corresponding REG from Example 5.

Algorithm 1. Computation of minimal quasi-inconsistent subsets

Input : Set of constraints C
Output: MQI(C)
gmis «— ;
compConstraints = findComplements(C);
foreach n:compConstraints do
a «— n.actiwation;
w «— n.reactionTask ;
P = findPaths(a,w) U findPaths(w, a);
foreach P:P do
if aUnU P® =1 then
L L mis — mis Un U P

© 0 N0 A W N

In line 1, a set to store minimal quasi-inconsistent subsets (mgis) is initialized.
Then, we start by identifying all nodes n’ of the REG which are a complement to
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another node n” (line 2). In the example, there are three such cases, namely a
vs @, b vs b and ¢ vs € (cf. the corresponding REG). Due to space limitations, we
focus on ¢ in the following, i.e., we assume the current iterated node n; = ¢. Its
activation « is its predecessor in the REG, here a. The algorithm subsequently
search for all shortest paths from « to the inverse of the current n; via a breadth-
first search, stored in P (i.e., in our example the algorithm searches for all
shortest paths from a to ¢, and from ¢ to a in the REG). We store possible
paths from 77; to «, to cope with constraints such as precedence. Also, note that
these can be transitive paths with multiple hops. As can be seen in the REG in
Example 5, there are four paths from a to c. Subsequently, the algorithm verifies
whether the constraints pertaining to a found path P contradict the original
constraint ¢; = a = —={c. To this aim, we verify if @ U ¢; U PY =1, in which
case we have found a minimal quasi-inconsistent subset. In the example, the
conditions verified in line 8 are respectively:

(1) a U NOTRESPONSE(a, ¢) U { CHAINRESPONSE(a, b), CHAINRESPONSE(b, ¢) } =L

(2) a U NOTRESPONSE(a, ¢) U {RESPONSE(a, b), CHAINRESPONSE(b, ¢)} =1

(3) a U NOTRESPONSE(a, ¢) U { CHAINRESPONSE(a, b), RESPONSE(b, d),
CHAINRESPONSE(d, €), CHAINRESPONSE(e, ¢)} =L

(4) a U NOTRESPONSE(a, ¢) U {RESPONSE(a, b), RESPONSE(b, d),

CHAINRESPONSE(d, €), CHAINRESPONSE(e, ¢)} =L

Note that the activation « is augmented in line 8 to allow for this detection
of quasi-inconsistent subsets via Definition 5. Concluding the example, as all
4 cases return true, we have successfully found four mgis based on the reac-
tive entailment graph (cf. the formalization of these four mgis in Example 2,
specifically My—M~).

5 Evaluation

We implemented an MQIl-solver for DECLARE constraints. Our implementation
takes as input a DECLARE constraint set C' and returns as output MQI(C') and the
introduced (quasi) inconsistency measures. We then performed run-time exper-
iments on the following real-life data sets:

— BPI challenge 20172. This data set contains an event log of a loan application
process of a Dutch financial institute. The log is constituted of 1,202,267
events corresponding to 31,509 loan application cases.

— BPI challenge 20183. This data set contains an event log of a process at the
level of German federal ministries of agriculture and local departments. The
log comprises 2,514,266 events corresponding to 43,809 application cases.

2 https://www.win.tue.nl/bpi/doku.php?id=2017:challenge.
3 https://www.win.tue.nl/bpi/doku.php?id=2018:challenge.
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— Sepsis 2016%. This data set contains an event log of a hospital process con-
cerning the treatment of sepsis, which is a life threatening condition. The log
contains around 1000 cases with 15,000 events.

We selected these data-sets because they provide recent data from real-life
processes. Also, we selected these data-sets to analyze data of domains which are
subject to a high degree of regulatory control and sensible to compliant process
execution (e.g., financial-, government- and medical sector).

From these logs, we mined declarative process models using Minerful, which is
a state-of-the-art tool for declarative constraint discovery [7]. As configuration for
mining, we considered the three parameters of support, confidence and interest.
The support threshold indicates the minimum number of traces a constraint
has to be fulfilled in for it to be included in the discovered model. Confidence
scales the support by the ratio of traces in which the activation occurs, resp.
interest scales by the ratio of traces both the constrained tasks occur in. We
ran Minerful with a support of 75%, confidence of 12.5% and interest factor
of 12.5%, as proposed in the experiment design by [7]. We then applied our
implementation to (a) compute all minimal quasi-inconsistent subsets, and (b)
compute the I,\% quasi-inconsistency measures, as well as the Fg culpability
measures for all constraints. The experiments were run on a machine with 3
GHz Intel Core i7 processor, 16 GB RAM (DDR3) under macOS High Sierra
Version 10.13.6.

Table 2. Results of run-time experiments for the analyzed data-sets

Log BPI Challenge ’17 | BPI Challenge '18 | Sepsis '16
Constraints 305 70 207

T8 (or # of mgis) | 28954 25303 7736
Runtime 27074 ms 10930 ms 4379 ms

Table2 shows an overview of the resp. mined constraints, as well as the
number of detected mgis, and resp. quasi-inconsistency measures. For the model
mined from the BPI’17 log, nearly 29.000 mqis were detected. The largest mqi
had 17 elements. Here, the REG could efficiently be used to detect this subset via
a path-based search. In the BPI’18 model, the largest mgi contained 22 elements.
Also, 62 of the 70 discovered constraints were part of the overall inconsistency
(as opposed to only 87/305 constraints in the BPI'17 log). Interestingly, only 70
constraints still lead to a high amount of mgis. In the Sepsis’16 log, there were
roughly 7.700 mgqis.

* https://data.4tu.nl/repository /uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.
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Ezample 6. For illustration, the following shows an actual mqi that we detected
in the BPT’'17 model.

COEXISTENCE(A_Accepted, A_Concept),

CHAINRESPONSE(A_Concept, W _Validateapplication).
CHAINRESPONSE(W _Validateapplication, W _Personal Loancollection),
COEXISTENCE(A_Accepted, A_Create Application),
RESPONSE(A_CreateApplication, O_Sent),
NoTCOEXISTENCE(W _Personal Loancollection, O_Sent)

This actual constraint set returned by the discovery algorithm is quasi-inconsistent.
First, A_Accepted and A_Concept are constrained to appear together. Then, A_Concept
transitively entails W_Personal Loancollection via two CHAINRESPONSE constraints.
Also, A_Accepted and A_CreateApplication are constrained to appear together. Then,
because A_CreateApplication occurs, the task O_Sent must occur later. However,
the last constraint demands that O_Sent and W _Personal Loancollection never occur
together, both of which are however entailed. In result, this is a quasi-inconsistent
subset with the activation A_Accepted. Note that the discovery algorithm however did
not return a constraint such as PARTICIPATION(A_Accepted). Thus, this set of con-
straints returned by the miner is not inconsistent per se and thus cannot be detected
as problematic with existing approaches. Yet, we argue that such a set of constraints
should not be contained in any declarative process model, as it is highly confusing and
potentially makes the model unusable in practice. Here, our approach allows to detect
such problematic sets of constraints as quasi-inconsistent subsets. Table 2 shows that
a high number of these mgis was actually returned by the miner for all three analyzed
logs. As identifying such amount of problematic subsets manually is unfeasible, our
approach therefore contributes a feasible means to detect problematic constraints and
thus to improve model quality.

In the scope of identifying the actual causes of inconsistency, culpability measures
can be used to quantify the degree of blame that individual constraints carry [9]. For
the three discovered models, we therefore computed the respective Fg values for all
constraints.

2 % 8 8| x & 150 |-%
= 200 5 =
- -5-4 6 -
5 5 5 100
+ 100 < 4 -
E E Z 50
9 9 2 X 9
% 0 [ MEOODORIMK K X XK X % X XIOBEIEOBEEK X XX X % 0 SOMMIOK X X,
0 0.5 1 1.5 0 0.5 1 1.5 0 02 04 06 038
Fivalue .104 Fivalue .104 ngalue 104
(a) (a) BPI challenge 2017 (b) (b) BPI challenge 2018 (c) (c) Sepsis 2016

Fig. 1. Distribution of culpability values for the constraints in the respective models,
using the I’i measure.

Figure1l shows the distribution of the I i culpability values for the con-
straints mined from the respective logs. The x-axis shows the respective culpa-
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bility value, while the y-axis shows the number of constraints with this value.
What can be seen for all analyzed models is that we have a high number of
constraints with a culpability value of 0 (i.e. they are not part of any mgi),
and only a few number of individual constraints which are highly responsible
in the context of the overall inconsistency (i.e. they are part of many mgi). For
example, in the constraint set mined from the BPI’2017 log, there are around
200 constraints with a culpability of 0, which can thus be seen as unproblem-
atic. This equates to % of all constraints. It is thus possible to identify those
(roughly) 100 constraints, which should be attended to. We argue that this is
a valuable piece of business intelligence and increases efficiency in managing
constraints. Here, the corresponding culpability ranking is a further driver for
understanding inconsistencies in the context of resolution strategies. That is, for
all the considered models, a few number of constraints can be identified that
have the highest culpability values. Thus, these constraints can be strategically
targeted first to allow for an effective inconsistency resolution. This is evident
in the model mined from the Sepsis 2016 log. There was one specific constraint
which was part of all mgis, namely RESPONSE(AdmissionNC', ReleaseA). If one
would delete this constraint, all quasi-inconsistencies would be resolved. This
information could therefore be exploited for effective resolution means. As a
further example, the model derived from the BPI’17 log contained the con-
straint RESPONSE(A_Incomplete, O_Accepted), which had the highest Fg value
of 16890, meaning one could eliminate over 60% of all mgis while deleting only
one constraint.

To summarize, due to the distribution of culpability values, it would be possi-
ble to resolve all quasi-inconsistent subsets through targeting selected constraints
via the culpability ranking and deleting only these few elements. This would
allow to mitigate all potential inconsistencies, i.e. implicit inhibition sets, with
a low amount of information loss. As mentioned, this is clearly shown for the
model of the Sepsis’l6 log, where it would be possible to resolve all mqis while
deleting only one constraint. In result, we argue that our analysis capabilities by
the means of culpability measures provide valuable business insights that can be
used as a basis for an informed resolution strategy.

6 Related Work

Our work is related to the discipline of business rules management, i.e., ensur-
ing a consistent set of business rules. In this context, companies have to be
supported with means to ensure design-time compliance of declarative process
models. While there are some approaches that are aimed to solve problems as
discussed in this work by design, i.e. during modelling, this work is related to
works that assess an existing set of constraints. This is relevant when existing
constraints have to be analyzed, which can be often the case, e.g. analyzing the
constraints discovered in process discovery, analyzing a previously modelled set
of constraints or analyzing a merged set of constraints after company mergers.
A closely related work is that by Di Ciccio et al. [7], who focus on resolving
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redundancies and inconsistencies in declarative process models. However, as dis-
cussed in the introduction, those authors define inconsistency as a model which
cannot accept any traces, i.e. it is unsatisfiable. To detect such inconsistencies,
those authors represent declarative constraints as finite state automata A, and
denote L(.A) as the set of strings accepted by .A. Then, those authors can detect
inconsistent constraints by identifying those constraint sets that are unsatisfi-
able via automata products, i.e. £L(A’) = (. As motivated in our introduction,
quasi-inconsistent constraint sets can still accept an arbitrary set of traces. Thus,
quasi-inconsistency cannot be detected by existing means. Our contribution rel-
ative to [7] can be seen in the analysis of the BPI'17 log, which was also analyzed
by those authors. Where our approach found nearly 29.000 potential inconsisten-
cies, those authors reported 2 inconsistencies. While not inconsistent per se, we
argue that quasi-inconsistent sets of constraints such as in C; or C; should still
not be contained in declarative process models, as they can potentially make the
model unusable and are highly confusing to modelers. Here, to the best of our
knowledge, our approach is the first to offer a tractable solution for detecting
all sets of potentially contradictory constraints, i.e. minimal implicit inhibition
sets, in declarative process models.

7 Conclusion

In this work, we presented the novel concept of quasi-inconsistencies in declara-
tive process models. As quasi-inconsistencies potentially make the model unus-
able, it is important to detect such problems. Here, we proposed a first approach
for such a detection. Through the proposed inconsistency measures, companies
are presented with quantitative insights regarding model quality. Element-based
culpability measures furthermore allow to prioritize problematic constraints and
pin-point individual constraints which should be attended to. Through a compu-
tation of MQI based on the reactive entailment graph, our approach is applicable
to arbitrary reactive constraints.

Future work could be directed towards the integration of our results, espe-
cially the proposed analysis capabilities. In the scope of process discovery, incon-
sistency measures could be used to as a metric to evaluate the quality of dis-
covered constraint sets. For example, users could define a threshold of allowed
quasi-inconsistency. Also, the quantitative insights provided by culpability mea-
sures could be used to pin-point the actual causes of quasi-inconsistency, and
could thus be integrated into existing methods for resolving errors in declarative
process models, e.g. [7], or as a basis for cost-analysis in trace alignment [5].
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