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Abstract. The rapid development and deployment of Intelligent Transportation
Systems (ITSs) require the development of data driven algorithms. Travel time
modeling is an integral component of travel and transportation management and
travel demand management functions. Travel time has a massive impact on
driver’s route choice behavior and the assessment of the transportation system
performance. In this paper, a mixture of linear regression is proposed to model
travel times. The mixture of linear regression models has three advantages. First,
it provides better model fitting compared to simple linear regression. Second, the
proposed model can capture the bi-modal nature of travel time distributions and
link it to the uncongested and congested traffic regimes. Third, the means of the
bi-modal distributions are modeled as functions of the input predictors. This last
advantage allows for the quantitative evaluation of the probability of each travel
time state as well as the uncertainty associated with each state at any time of the
day given the values of the predictors at that time. The proposed model is
applied to archived data along a 74.4-mile freeway stretch of I-66 eastbound to
connect I-81 and Washington D.C. The experimental results show the ability of
the model to capture the stochastic nature of the travel time and gives good
travel time predictions.
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1 Introduction

Minimizing drivers’ travel times from their origins to their destinations is a major
Intelligent Transportation Systems (ITSs) objective. However, it is also extremely
challenging due to the dynamic nature of traffic flow, which is, in most cases, highly
unpredictable. One straightforward strategy involves directing vehicles or guiding
drivers to follow routes that avoid congested paths. A critical step for this route
planning or guidance to be effective is the ability to accurately predict travel times of
different alternative routes from source to destination.

In addition, travel time represents an important performance measure for traffic
system evaluation. It is easily understood by drivers and operators of traffic manage-
ment systems, and can be viewed as a simple summary of a traffic system’s complex
behavior. In order for an ITS to accurately predict the travel time, it must have the
following capabilities, each of which comes with associated difficulties:

1. Sensing and acquiring the current state of the transportation network of interest
where a number of data values need to be detected and collected, including traffic
conditions and parameters at different parts of the network, whether some roads are
currently congested, current weather conditions, time of day, whether there is an
incident on any road in the network, etc. Gathering such data on every road and
intersection with the quality that allows accurate forecasting of travel time between
two points in the network may be fairly expensive.

2. Storing a long history of traffic parameters for the transportation network of interest
to support future prediction of travel times. This historical dataset may be large and
difficult to use and manage.

3. Feeding the current state of the network along with its traffic history to some type of
model that predicts travel time if a trip will start from some point and end in another
in the network at some specific time. Designing such a model is challenging, as is
finding a set of current or historical parameters with real prediction power. The most
useful model may be road dependent, and even for a single road, it has been shown
that different models may describe the traffic behavior more accurately at different
traffic conditions. For instance, one model may be more useful when the road is
congested, while another model may be more accurate when vehicles are flowing
freely, etc.

In short, accurate traffic time prediction is challenging due to the high cost of
sensing and collecting enough useful current and historical traffic data. Even when such
data is available, it is still difficult to determine which type of model best describes the
traffic behavior, and which traffic parameters should be fed to the model for the best
predictions. Moreover, the best course of action may be to use two or more models and
switch between them depending on current traffic conditions. This option adds a new
challenge, as it is necessary to decide which model from the set of models will be used
for some specific input data, or whether different models will be used for prediction
with some weight applied to each output prediction to reach a final travel time
prediction.
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In this paper, a new method for travel time prediction is proposed. This method
uses a mixture of linear regressions motivated by the fact that travel time distribution is
not unimodal, since two modes or regimes of traffic can exist—one at congestion state,
and the other at free-flow state. We show how the proposed model is very flexible and
gives slightly different accuracy when we model the travel time or the log of the travel
time using two different set of predictors. The First set of predictors are the selected
elements from the spatiotemporal speed matrix based on their estimated importance
using random forest. Then these set of speeds will be the input predictors to the
statistical model. The second set of predictors are the instantaneous travel time and the
average of the historical travel time. The proposed model is built and tested using probe
data provided by INRIX and supplemented with traditional road sensor data as well as
mobile devices and other sources. The dataset was collected from a freeway stretch of
I-66 eastbound connecting I-81 and Washington, D.C. The traffic on this stretch is often
extremely heavy, which makes travel time prediction more challenging, but also makes
the data more valuable and helps create a more realistic model.

2 Related Work

Various methods and algorithms have been proposed in the literature for travel time
prediction. These methods can roughly be classified into two main categories:
statistical-based data-driven methods and simulation-based methods. This section
focuses on the statistical-based methods since the proposed solution in this paper falls
under this class of methods, and because more research in the literature uses statistical
methods.

Several researchers fit different regression models to predict travel time. A typical
approach is to fit a multiple linear regression (MLR) model using explanatory variables
representing instantaneous traffic state and historical traffic data, as, for example, [1, 2].
The model proposed in [1] was even able to use a single linear regression (SLR) to
successfully provide acceptable travel time predictions. Some researchers developed
hybrid methods where a regression model was used in conjunction with other advanced
statistical methods. For example, [3] used regression with statistical tree methods.
Another approach [4] proposed an SLR model using bus travel time to predict auto-
mobile travel time.

Regression models are generally powerful in predicting travel time for short-term
prediction, whereas long-term predictions are less accurate. Regression models are also
reported to be more suitable for use in free-flow rather than congested traffic, and fail to
accurately predict when incidents have occurred [5].

The idea of using a mixture models for different traffic regimes has also previously
been explored [6]. The model developed in this paper attempts to overcome the
drawbacks of previous work that used mixture models of two or three components to
model travel time reliability, which suffer from the following limitations:

1. The mean of each component is not modeled as a function of the available
predictors.

2. The proportion variable is fixed at each time slot, which limits the model’s
flexibility.
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3. Information provided given the time slot of the day is the probability of each
component (fixed) and the 90th percentile.

Another class of statistical-based methods in literature uses time series models for
travel time prediction, using, for example, auto-regressive prediction models [7–9],
multivariate time series models [10], and the auto-regressive integrated moving average
(ARIMA) technique [11]. Similar to regression models, time series models are more
suitable for free-flow traffic than for congested traffic, may fail with unusual incidents,
and are more accurate for short-term predictions [5].

Another common technique used for travel time prediction is the use of artificial
neural networks. A feed-forward neural network is used in [12] to predict journey time.
Later, more advanced neural network techniques were used to model and predict travel
time [13–19]. Accurate predictions were achieved for most proposed models; for
example, in [20] the prediction error was only 4%.

3 Methods

The definitions of historical, instantaneous and ground truth travel times are introduced
in this section. In addition, we present a brief introduction of the powerful modelling
technique used in this paper. Expectation-maximization (EM) is used to fit the mixture
of linear regression models to the historical data.

3.1 Travel Time Ground Truth Calculation

The calculation of the travel time ground truth is based on trajectory construction and
the known speed through the trajectory’s cells. A simple example of travel time ground
truth calculation based on trajectory construction is demonstrated in Fig. 1. In this
example, the roadway is divided into four sections using segments of length Dx and a
time interval of Dt. We assumed that the speed is homogenous within each cell. The
average speed of the red-dotted cell (i = 2, n = 3) in the figure is uðx2; t3Þ. Conse-
quently, the trajectory slope represents the speed in each cell. Once the vehicle enters a
new cell, the trajectory within this cell can be drawn as the straight blue line in Fig. 1
using the cell speed as the slope. Finally, the ground truth travel time can be calculated
when the trip reaches the downstream boundary of the last freeway section. It should be
noted that the ground truth travel times were computed using the same dataset and used
as the response (y).

3.2 Instantaneous Travel Time

The instantaneous method is very simple where it assumes the segment speed does not
change during the entire trip time. The travel time using the instantaneous approach is
shown in Eq. (1).

instantaneous travel time ¼
Xh
i¼1

Li

tt0i
ð1Þ
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Where
Li is the length of segment i
tt0i is the speed at segment i at the departure time t0
h is the total number of segments.

3.3 Historical Average Method

If the spatiotemporal speed matrices are known for several previous months, then the
ground truth travel time at each time interval for each day can be calculated. The
historical average at any time of day D is calculated using Eq. (2).

average historical travel time ¼
XZDi

i¼1

GTTTt0
Di

ZDi

8Di ¼ Saturday; . . .; Friday ð2Þ

Where GTTTt0
Di

is the ground truth travel time at departure time t0 at historical day
Di and ZDi is number of days included in the average.

3.4 Mixture of Linear Regressions

A mixture of linear regressions was studied carefully [21, 22]. It can be used to model
travel time under different traffic regimes. The mixture of linear regression can be
written as:

f yjXð Þ ¼
Xm
j¼1

kj
rj

ffiffiffiffiffiffi
2p

p e
�

y�XTbjð Þ2
2r2

j ð3Þ

Fig. 1. Illustration of travel time ground truth calculation.
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where yi is the response corresponding to a vector p of predictors; x
T
i , bj is the vector of

regression coefficients for the jth component and kj is mixing probability of the jth

component.
The model parameters w ¼ fb1; b2; . . .; bmr21; r22; . . .r2m; k1; k2; . . .; kmg. can be

estimated by maximizing the log-likelihood of Eq. (1) given a set of response predictor
pairs ðy1; x1Þ; ðy2; x2Þ; . . .; ðyn; xnÞ using an EM algorithm. The EM algorithm itera-
tively finds the maximum likelihood estimates by alternating the E-step and M-step.
Let wðkÞ be the parameters’ estimates after the kth iteration. In the E-step, the posterior
probability of the ith observation from component j is computed using Eq. (4).

wðkþ 1Þ
ij ¼

kðkÞj /j yijxi;wðkÞ
� �

Pm
j¼1 k

ðkÞ
j /j yijxi;wðkÞ

� � ð4Þ

where /j yijxi;wðkÞ
� �

is the probability density function of the jth component.

In the M-step, the new parameters’ estimates wðkþ 1Þ that maximize the log-
likelihood function in Eq. (3) are calculated using Eqs. (5–7)

kðkþ 1Þ
j ¼

Pn
i¼1 w

ðkþ 1Þ
ij

n
ð5Þ

bbðkþ 1Þ
j ¼ ðXTWjXÞ�1XTWj ð6Þ

where X is the predictors’ matrix with n rows and ðpþ 1Þ columns, Y is the corre-

sponding n � 1 response vector, and W is an n � n diagonal matrix which has wðkþ 1Þ
ij

on its diagonal.

r̂2ðkþ 1Þ
j ¼

Pn
i¼1 w

ðkþ 1Þ
ij ðyi � xTi bbðkþ 1Þ

j Þ2Pn
i¼1 w

ðkþ 1Þ
ij

ð7Þ

The E-step and M-step are alternated repeatedly until the change in the incomplete
log-likelihood is arbitrarily small as shown in Eq. (8).

Yn

i¼1

Xm

j¼1
kðkþ 1Þ
j /j yijxi;wðkþ 1Þ

� �
�
Yn

i¼1

Xm

j¼1
kðkÞj /j yijxi;wðkÞ

� ���� ���\n ð8Þ

where n is a small number.
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4 The Predictors’ Sets

In this section, we describe the two approaches used to from the predictors’ sets. In the
first approach, the random forest machine-learning algorithm (RF) is used to select a
subset of important predictors for travel time modelling. Where the second approach
incorporate information from the past by using the historical travel time and summarize
the current speeds within a window starting right before the departure time t0 using the
instantaneous travel time.

4.1 The First Set of Predictors

The I-66 stretch of the freeway section used for this research consists of 64 segments.
The dataset comprises the spatiotemporal speed matrices for every day in 2013. The
default approach for modelling and predicting travel time was to take all the speeds
within a window starting right before the departure time t0 and covering L past time
slots back to time t0 � L. Setting L = 30 min for example, the number of predictors
will be 64 * 6 at 5 min time aggregation. In order to reduce the dimensions of the
predictors’ vector, RF is used to select the most important predictors for the travel time
model. Steps to select the most important predictors are as follows [23]:

1. For each month, build an RF consisting of 100 trees and find the out-of-bag samples
that are not used in the training for each tree.

2. Find the mean square error MSEoutofbag of the RF using the out-of-bag samples.
3. Randomly permute the value for each predictor xi among the out-of-bag samples

and calculate the mean square error MSEpermutedxi
outofbag of the RF.

4. Finally, rank the predictors in descending order based on the

1
12

P12
month¼1

MSEpermutedxi
outofbag �MSEoutofbag

� �
and choose the top m ranked predictors.

The higher the predictor’s rank in step 4, the more important that predictor. The
ranking result shows that, most of the important predictors are speeds of recent seg-
ments (t0 � 5). In addition to speed predictors chosen by RF, the historical average
travel time at t0 given the day of the week is added as a predictor.

4.2 The Second Set of Predictors

The other set of predictors are the instantaneous travel time and the average of his-
torical travel time. For example, if we are interested in the travel time reliability at t0 on
day D, the predictor vector will be the instantaneous travel time at the times ft0�
45; t0� 40; . . .; t0� 5g and the average of the historical travel times on days D at
times ft0; t0þ 5; . . .; t0þ 45g. Figure 2 shows the average of the historical travel time
for each day of the weak. There are two peaks of the travel time during morning and
evening hours. The height of the peaks is different from one day to another especially
between weekdays and weekends.
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5 Data Description

The freeway stretch of I-66 eastbound connecting I-81 and Washington, D.C. was
selected as the test site for this study. High traffic volumes are usually observed during
morning and afternoon peak hours on I-66 heading towards Washington, D.C., making
it an excellent environment to test travel time models.

The traffic data was provided by INRIX, which mainly collects probe data by GPS-
equipped vehicles, supplemented with traditional road sensor data, along with mobile
devices and other sources [24]. The probe data covers 64 freeway segments with a total
length of 74.4 miles. The average segment length is 1.16 miles, and the length of each
segment is unevenly divided in the raw data from 0.1 to 8.22 miles. Figure 3 shows the
study site and deployment of roadway segments. The raw data provides average speed
for each roadway segment and was collected at 1-m intervals.

We sorted the raw data was the roadway direction according to each TMC station’s
geographic information (e.g., towards eastbound of I-66). Data was examined to check
any overlapping or inconsistent stations along the route. Afterward, speed data was
aggregated by time intervals (5 min in this study) to reduce noise and smooth mea-
surement errors. This way, the raw data was aggregated to the form of the daily data

Fig. 2. The average of historical travel time for each day of the week.

Fig. 3. The study site on I-66 eastbound. (source: Google Maps) [25].
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matrix along spatial and temporal intervals. Data was missing in the developed data
matrix, so data input methods were conducted to estimate the missing data using values
of neighboring cells. Finally, the daily spatiotemporal traffic state matrix was generated
to model travel time.

6 Experimental Analysis

The experimental work is divided into two subsections. The first subsection is travel
time modeling using a mixture of two linear regressions with fixed proportions
k1; k2ð Þ. In this subsection, we will model the travel time and the log of the travel time
using the first set and second set of predictors respectively. Consequently, we will show
that log-normal model is better than the normal model. The second subsection
describes the travel time reliability modelling approach, where we modified the pro-
posed model to allow the proportions to vary as a function of the predictors. The
modified model computes the probabilities of encountering free-flow and congested
conditions together with the expected and 90-percentile travel times for each regime.

6.1 Modeling Travel Time Using a Mixture of Linear Regressions
with Fixed Proportions

The purpose of this section is to experimentally compare the lognormal model and
normal model. Each model used a different set of predictor. In other words, the log-
normal model will explain the response vector logðYÞ using the corresponding pre-
dictors matrix X2, where Y is the ground truth travel time and X2 is the second set of
predictors. Where the normal model will explain the response vector Y using the
corresponding predictors matrix X1. For the sake of completeness, we also compare
each model with the corresponding one component linear regression model, which
assumes the travel time distribution is uni-modal distribution. To show that, the
parameters of the proposed models are estimated using the EM algorithm. Then, two
measures are used to compare the models. The Mean Absolute Percentage Error
(MAPE) and the Mean Absolute Error (MAE) are used to quantify the errors of both
models with respect to the ground truth. MAPE is the average absolute percentage

change between the predicted byj1 and the true values yji. MAE is the absolute difference
between the predicted and the true values.

MAPE ¼ 100
I� J

XJ

j¼1

XI

i¼1

yji � byj1
��� ���

yji
ð9Þ

MAE ¼ 1
I� J

XJ

j¼1

XI

i¼1

yji � byj1
��� ��� ð10Þ

Here, J is the total number of days in the testing dataset; I is the total number of
time intervals in a single day; and y and ŷ denote the ground truth and the predicted
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value, respectively, of the travel time for the time interval on the day. The lower the
value of these error measures, the better the model.

Table 1 shows values for the MAE and MAPE for normal models using a different
number of top-ranked predictors. As shown in Table 1, for all models that are built
using a different number of predictors, the models built using the proposed mixture of
regressions are better than the linear regression models with smaller MAE and MAPE.

Table 2 shows values for the MAE and MAPE for lognormal models using the
second set of predictors. Table 2 confirms that two component models are better than
one-component models. Moreover, it shows that the lognormal models and the second
set of predictors are better than the normal models and the first set of predictors
(Table 3).

Different number of predictors are shown in Tables 1 and 2. We tried different
number of predictor in order to find the simplest and most accurate model. As shown in
the above tables the improvement in the accuracy of the models in terms of MAE and
MAPE is not significant. In real time running, we prefer simple models. So that, for the
normal model and lognormal model the models which has 16 and 11 predictors
respectively are chosen.

Table 1. Comparison between one and two components normal models using the first set of
predictors [25].

MAE MAPE
p m = 1 m = 2 m = 1 m = 2

6 6.57 5.22 7.19 5.69
11 6.39 5.10 6.99 5.63
16 6.36 5.05 6.96 5.57
21 6.32 5.04 6.89 5.56
26 6.31 5.06 6.90 5.59
31 6.32 5.09 6.90 5.64
36 6.30 5.08 6.88 5.62
41 6.30 5.13 6.88 5.69
46 6.29 5.12 6.87 5.68
51 6.23 5.13 6.80 5.70
56 6.24 5.12 6.82 5.69
61 6.18 5.16 6.77 5.74
66 6.18 5.16 6.76 5.74
71 6.20 5.15 6.79 5.73
76 6.19 5.15 6.78 5.73
81 6.20 5.16 6.79 5.74
86 6.18 5.19 6.78 5.78
91 6.19 5.21 6.79 5.80
96 6.19 5.22 6.79 5.80
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Table 2. Comparison between one and two components lognormal models using the second set
of predictors.

MAE MAPE
p m = 1 m = 2 m = 1 m = 2

3 5.04 4.28 5.46 4.58
5 5.04 4.28 5.45 4.58
7 5.03 4.28 5.45 4.58
9 5.03 4.28 5.45 4.58
11 5.03 4.27 5.45 4.57
13 5.03 4.28 5.45 4.58
15 5.03 4.26 5.45 4.56
17 5.03 4.26 5.45 4.56
19 5.03 4.25 5.46 4.56

Table 3. The EM parameters’ estimates for a mixture of linear regression assuming normal
distribution [25]*.

1st component 2nd component

intercept 79.4354 96.5943
x29;t0�1 −0.0153 −0.0148
x2;t0�1 −0.0903 −0.0250
x28;t0�1 −0.0668 0.0061
x18;t0�1 −0.0912 −0.0519
x27;t0�1 0.0187 −0.0449
x40;t0�1 −0.2107 −0.1107
x25;t0�1 −0.0652 −0.0603
x14;t0�1 −0.0245 −0.0136
x29;t0�2 −0.0106 −0.0224
x1;t0�1 −0.0745 −0.0150
x39;t0�1 −0.0174 −0.0331
x21;t0�1 −0.0203 −0.0252
x24;t0�1 −0.0742 −0.0239
x19;t0�1 0.0075 −0.0078
x30;t0�1 −0.1269 −0.0558
x13;t0�1 0.6767 0.0834

r2j 11.8066 1.7746

kj 0.4466 0.5534

*(In this table x_(seg#, time) is the speed at
certain segment and time)
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Based on the above experimental results we conclude that using the lognormal
model is more accurate and simpler in terms of number of predictors than using normal
model. So that we can choose the mixture of two linear regression with 11 predictors
and use it for the next set of experiments.

6.2 Travel Time Reliability

Travel time reliability is the form of information that we can convey to traveler using
the travel time model. Using the proposed model, we can provide the traveler what are
the probabilities of congestion and free flow. Moreover, the expected and 90% per-
centile travel time for each regime can be provided. In order to get good estimates for
the above quantities, the proportions should be a function of the predictor which means
it varies depending on the values of the predictors. Revisiting the EM algorithm, it
estimates the posterior probabilities wij and the model parameters w and returns only w
at convergence and does not use wij. As shown in Eq. (4), the returned kj is an average
of the posterior probabilities wij.In the two component models, if we modeled wij using
logistic regression at the convergence of the EM, this means that kj becomes a function
of the predictors as well as the components’ means. The final wij obtained while fitting
the model described in Table 4 are used to build a logistic regression. This logistic
regression models the probability of predictor vector being drawn from component
number two. Then using simple algebra manipulation, we got the coefficient of the
logistic model for k2 which are shown in Table 5. Now, the new model is exactly the
model in Table 4 but with variable k2 and k1.

Table 4. The EM parameters’ estimates for a mixture of linear regression assuming lognormal
distribution.

1st component 2nd component

intercept 3.4875 3.9663

xinsðto�25Þ −0.0003 −0.0001

xinsto�20ð Þ −0.0002 0.0001

xinsto�15ð Þ 0.0001 −0.0001

xinsto�10ð Þ 0.0000 0.0000

xinsto�5ð Þ 0.0020 0.0026

xhisðtoÞ 0.0017 −0.0002

xhisðtoþ 5Þ 0.0036 0.0010

xhistoþ 10ð Þ 0.0028 0.0012

xinstoþ 15ð Þ 0.0013 −0.0008

xhisðtoþ 20Þ −0.0022 0.0011

xinsðtoþ 25Þ 0.0028 −0.0003

r2j 0.1008 0.0222

kj 0.4655 0.5345
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Table 5. The estimated coefficient for the logistic model for k2.

Predictors Coefficient

intercept −12.1702

xinsðto�10Þ −0.0046

xinsðto�5Þ 0.0354

xhisðtoÞ 0.0890

xhisðtoþ 15Þ 0.0476

xhisðtoþ 20Þ −0.1015

xhisðtoþ 25Þ 0.0718

Fig. 4. The ground truth travel time (red curve), the mean of each component of the proposed
model (blue curves), and the k1 which is the congestion probability for two different days. The
upper panel is weekday and the bottom panel is a weekend day (Color figure online).
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We tested the proposed model by visually inspect the ground truth travel time for
each day and the mean of each component as well as the k1, which is the probability of
congestion in the fitted model. We visually check if the value of k1 is large at the time
when the ground truth becomes large. As shown in Fig. 4 for weekday (top panel),
there are two peaks at morning and evening and at the same time the values of k1
approach one which means the probability of congestion is high. The bottom panel
shows a weekend where this no morning congestion but there is an evening congestion
and k1 has only high values at the evening peak.

In order to better test the proposed model, we calculate the mean, 90% percentile,
and probabilities of congestion and free flow for each predictor vector in each day of
May 2013. Then based on the curves in Fig. 2, we divided the day into four time
interval and calculated the mean of the above quantities within each time interval given
for each day of the weak. The result shown in Table 6 is consistent with the travel time
pattern that we observe in Fig. 2 where at the congestion time of the day the probability
of the congestion component becomes higher. Also, the model shows that the proba-
bility of the morning congestion during weekends is lower than its values at weekdays.

7 Conclusions

In this paper, we proposed a travel time model based on mixture of linear regressions.
We compared two models using two different predictor sets. The first model assumes
the distribution of each component in the mixture follows the normal distribution.

Table 6. Testing the model for travel time reliability using May 2013.

1:40 am – 4:55 am 5:00 am – 10:00 am 10:05 am – 3:00 pm 3:05 am – 7:00 pm

Free-flow Congested Free-flow Congested Free-flow Congested Free-flow Congested

Sunday Mean 73.05 75.17 73.15 74.73 75.82 80.76 76.24 82.90

90% percentile 75.16 85.54 75.27 85.04 78.05 91.94 78.46 94.44

Probability 0.9853 0.0147 0.9864 0.0136 0.8769 0.1231 0.7993 0.2007

Monday Mean 73.00 74.62 82.07 95.92 75.71 77.99 78.85 91.50

90% percentile 75.10 84.92 84.76 109.61 78.00 88.81 81.23 104.69

Probability 0.9876 0.0124 0.3014 0.6986 0.9014 0.0986 0.4528 0.5472

Tuesday Mean 73.05 74.83 86.19 107.37 76.15 79.69 81.13 98.82

90% percentile 75.16 85.16 89.02 123.02 78.46 90.81 83.60 113.27

Probability 0.9859 0.0141 0.1140 0.8860 0.8604 0.1396 0.2819 0.7181

Wednesday Mean 73.06 74.58 83.52 102.16 76.85 80.26 84.26 105.49

90% percentile 75.17 84.87 86.16 117.00 79.13 91.42 86.91 120.88

Probability 0.9874 0.0126 0.1823 0.8177 0.8525 0.1475 0.1676 0.8324

Thursday Mean 73.02 74.58 84.54 106.41 77.61 82.37 85.91 112.97

90% percentile 75.13 84.87 87.24 121.97 79.95 93.93 88.59 129.16

Probability 0.9874 0.0126 0.1352 0.8648 0.7630 0.2370 0.0709 0.9291

Friday Mean 72.88 74.37 76.93 85.48 75.78 80.43 85.92 111.09

90% percentile 74.98 84.64 79.24 97.69 78.02 91.62 88.57 127.15

Probability 0.9888 0.0112 0.6883 0.3117 0.8689 0.1311 0.0733 0.9267

Saturday Mean 73.00 74.78 73.03 75.00 75.89 82.75 80.59 97.49

90% percentile 75.11 85.09 75.14 85.36 78.11 94.19 83.04 111.24

Probability 0.9870 0.0130 0.9837 0.0163 0.8343 0.1657 0.2593 0.7407
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The second model uses the log-normal distribution instead of the normal distribution.
The experimental results show that the model that uses the log-normal distribution and
the historical and instantaneous travel time predictors is better than the other model.
The proposed model can capture the stochastic nature of the travel time. The two-
component model assigns one component to the uncongested regime and the other
component to the congested regime. The means of the components are a function of
various input predictors. The proposed model can be used to provide travel time
reliability information at any time-of-the-day for any day-of-the-week if the predictor
vector is available. The experimental results show promising performance of the
proposed algorithm.

The current model does not consider the weather condition, assumes no incidents,
or work zones; however this model has the ability to easily integrate these factors if the
historical data includes these variables. Our future work will focus on extending, the
proposed model to include these factors and study their effect on the travel time
distribution.
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