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Abstract. A fundamental problem in conformance checking is aligning
event data with process models. Unfortunately, existing techniques for
this task are either complex, or can only be applicable to restricted classes
of models. This in practice means that for large inputs, current techniques
often fail to produce a result. In this paper we propose a method to
approximate alignments for unconstrained process models, which relies
on the use of relaxation labelling techniques on top of a partial order
representation of the process model. The implementation on the proposed
technique achieves a speed-up of several orders of magnitude with respect
to the approaches in the literature (either optimal or approximate), often
with a reasonable trade-off on the cost of the obtained alignment.

1 Introduction

Conformance checking is expected to be the fastest growing segment in process
mining for the next years1. The main reason for this forthcoming industrial
interest is the promise of having event data and process models aligned, thus
increasing the value of process models within organizations [5]. On its core, most
conformance checking techniques rely on the notion of alignment [1]: given an
observed trace σ, query the model to obtain the run γ most similar to σ. The
computation of alignments is a computational challenge, since it encompasses the
exploration of the model state space, an object that is worst-case exponential
with respect to the size of the model or the trace.

Consequently, the process mining field is facing the following paradox: whilst
there exist techniques to discover process models arbitrarily large, most of the
existing alignment computation techniques will not be able to handle such mod-
els. This hampers the widespread applicability of conformance checking in indus-
trial scenearios.

In some situations, one can live with approximations: For instance, when the
model must be enhanced with the information existing in the event log (e.g.,

1 https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-
254139591.html.
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performance, decision point analysis), or when one aims to animate the model
by replaying the log on top of it (two of the most celebrated functionalities of
commercial process mining tools). Examples of approximations are token-replay
techniques [14], which do not guarantee optimality, or the techniques in [16,17],
which do not guarantee replayability in general, but that significantly alleviate
the complexity of the alignment computation. The method presented in this
paper is of this latter type.

We propose a method that is applied on a partial order representation of the
process model [7]. A pre-processing step is then done once on the partial order,
to gather information (shortest enabling paths between event activations and
computing the behavioral profiles) that is used for aligning traces. We assume
this is a plausible scenario in many situations, where the model is well-known
and it is admissible to have some pre-processing before of aligning traces. For
computing alignments, the method uses Relaxation Labeling algorithm to map
events in each trace to nodes in the partial order. On a training phase, the
weights that guide the relaxation labelling problem are tuned. Once this infor-
mation is obtained, the approach is ready to be applied in the second phase. It
is remarkable that several modes can be considered corresponding to different
objectives, e.g., strive for replayability, optimality, or a weighted combination.

Experimental results computed over existing benchmarks show promising
speedups in computation time, while still being able to derive reasonable approx-
imations when compared to reference techniques.

The paper is organized as follows: next section provides related work for the
problem considered in this paper. Then in Sect. 3 we introduce the background of
the paper, necessary for understanding the main content in Sect. 4. Experimental
evaluation and tool support is provide in Sect. 5, before concluding the paper.

2 Related Work

The work in [1] proposed the notion of alignment, and developed a technique
based on A∗ to compute optimal alignments for a particular class of process mod-
els. Improvements of this approach have been presented in [20]. Alternatives to
A∗ have appeared very recently: in the approach presented in [6], the align-
ment problem is mapped as an automated planning instance. Automata-based
techniques have also appeared [10,13].

The work in [17] presented the notion of approximate alignment to alleviate
the computational demands by proposing a recursive paradigm on the basis of
structural theory of Petri nets. In spite of resource efficiency, the solution is
not guaranteed to be executable. A follow-up work of [17] is presented in [21],
which proposes a trade-off between complexity and optimality of solutions, and
guarantees executable results. The technique in [16] presents a framework to
reduce a process model and the event log accordingly, with the goal to alleviate
the computation of alignments. The obtained alignment, called macro-alignment
since some of the positions are high-level elements, is expanded based on the
information gathered during the initial reduction. Techniques using local search



252 L. Padró and J. Carmona

have recently been also proposed [15]. Decompositional techniques have been
presented [11,19] that instead of computing optimal alignments, they focus on
the decisional problem of whereas a given trace fits or not a process model.

Recently, two different approaches have appeared: the work in [3] proposes
using binary decision diagrams to alleviate the computation of alignments. The
work in [4], which has the goal of maximizing the synchronous moves of the
computed alignments, uses a pre-processing step on the model.

The method of this paper is an alternative to the methods in the litera-
ture, useful when computation time and/or memory requirements hamper their
applicability, and suboptimal solutions are acceptable. In such a scenario, our
approach produces solutions close to the optimum with a much smaller compu-
tational cost.

3 Preliminaries

3.1 Petri Nets, Unfoldings and Process Mining

A Process Model defined by a labeled Petri net system (or simply Petri net)
consists of a tuple N = 〈P, T, F,m0,mf , Σ, λ〉, where P is the set of places, T
is the set of transitions (with P ∩ T = ∅), F ⊆ (P × T ) ∪ (T × P ) is the flow
relation, m0 is the initial marking, mf is the final marking, Σ is an alphabet of
actions, and λ : T → Σ ∪{τ} labels every transition with an action or as silent.
The semantics of Petri nets is given in terms of firing sequences. A marking is an
assignment of a non-negative integer to each place. A transition t is enabled in a
marking m when all places in its preset •t def= {y ∈ P ∪T | (t, y) ∈ F} are marked.
When a transition t is enabled, it can fire by removing a token from each place in
•t and putting a token to each place in its postset t• def= {y ∈ P ∪ T | (y, t) ∈ F}.
A marking m′ is reachable from m if there is a sequence of firings 〈t1 . . . tn〉 that
transforms m into m′, denoted by m[t1 . . . tn〉m′. The set of reachable markings
from m0 is denoted by [m0〉. A Petri net is k-bounded if no marking in [m0〉
assigns more than k tokens to any place. A Petri net is safe if it is 1-bounded. In
this paper we assume safe Petri nets. A firing sequence u = 〈t1 . . . tn〉 is called
a run if it can fire from the initial marking: m0[u〉; it is called a full run if it
additionally reaches the final marking: m0[u〉mf . We write Runs(N) for the set
of full runs of Petri net N . Given a full run u = 〈t1 . . . tn〉 ∈ Runs(N), the
sequence of actions λ(u) def= 〈λ(t1) . . . λ(tn)〉 is called a (model) trace of N .

A finite and complete unfolding prefix π of a Petri net N is a finite acyclic net
which implicitly represents all the reachable states of N , together with transitions
enabled at those states. It can be obtained through unfolding N by successive
firings of transitions, under the following assumptions: (a) for each new firing, a
fresh transition (called an event) is generated; (b) for each newly produced token
a fresh place (called a condition) is generated. The unfolding is infinite whenever
N has an infinite run; however, if N has finitely many reachable states, then the
unfolding eventually starts to repeat itself and can be truncated (by identifying
a set of cut-off events) without loss of information, yielding a finite and complete
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prefix. We denote by B, E and Ecut ⊆ E the sets of conditions, events and cut-
off events of the prefix, respectively. Efficient algorithms exist for building such
prefixes [7–9].

In this paper we use behavioral profiles [23] to guide the search for alignments.

Definition 1 (Behavioral Profiles [23]). Let x, y be two transitions of a Petri
net N . x 
 y if there exists a run of N where x appears before of y. A pair of
transitions (x, y) of a Petri net is in at most one of the following behavioral
relation:

– The strict order relation x � y, if x 
 y and y � x
– The exclusiveness order relation x + y, if x � y and y � x
– The interleaving order relation x‖y, if x 
 y and y 
 x

Definition 2 (Log, Alignment). A log over an alphabet Σ is a finite set of
words σ ∈ Σ∗, called log traces. Given a Petri net N = 〈P, T, F,m0,mf , Σ, λ〉,
and a log trace σ, an alignment is a full run of the model γ ∈ Runs(N) with
minimal edit distance to σ, i.e., ∀γ′ ∈ Runs(N) : γ′ = γ =⇒ dist(σ, γ′) ≥
dist(σ, γ).

3.2 Relaxation Labelling Algorithm

Relaxation labelling (RL) is a generic name for a family of iterative algorithms
which perform function optimization based on local information, from a con-
straint satisfaction approach. Although other optimization algorithms could have
been used (e.g. genetic algorithms, simulated annealing, or even ILP) we found
RL to be suitable to our purposes, given its ability to use models based arbi-
trary context constraints, to deal with partial information, and to provide a
solution even when fed with inconsistent information (though the solution will
not necessarily be consistent if that is the case).

Given a set of variables V = {v1, . . . , vn}, the algorithm goal is to assign
a value (label) to each of them. Values for each vi ∈ V are chosen from a
finite discrete set of labels L(vi) = {ti1 , . . . , timi

}. Variable-label assignments
are rewarded or penalized by a set of constraints C. Each constraint r ∈ C has
the form:

Cr (vi : tij) [(vi1 : ti1j1), . . . , (vidr
: tidr jdr

)]

where (vi : tij) is the target assignment of the constraint (i.e the assignment
that is rewarded or penalized by the constraint), [(vi1 : ti1j1), . . . , (vidr

: tidr jdr
)]

are the constraint conditions (i.e. the assignments of other variables required for
the constraint to be satisfied), and Cr is a real value expressing compatibility
(or incompatibility if negative) of the target assignment with respect to the
conditions.

Algorithm 1 shows the pseudo-code of the used RL variant (a variety of for-
mulas can be used to compute Sij or pij(s + 1). See [18] for a summary), where:

– pij is the current weight for the assignment (vi : tj). Assignment weights are
normalized so that ∀i

∑mi

j=1 pij = 1.
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– Inf(r) = Cr × pi1j1(s) × . . . × pidr jdr
(s), is the influence of constraint r

on its target assignment, computed as the product of the current weights (at
time step s) of the assignments in the constraint conditions (representing how
satisfied the conditions are in the current context) multiplied by the constraint
compatibility value Cr (stating how compatible is the target assignment with
the context).

– Cij ⊆ C is the subset of constraints that have the pair (vi : tj) as target
assignment.

– Sij is the total support received by pair (vi : ej) from all constraints targeting
it. Since Sij depends on the conditioning pairs, it will change over time.

/* Start in a uniformly distributed labelling P */

P := {{p11 . . . p1m1}, . . . , {pn1 . . . pnmn}};
/* Time step counter */

s := 0;
repeat

/* Compute the support Sij that each label receives from the

current weights for the labels of the other variables and the

constraints contributions */

for each variable vi ∈ V do
for each label tij ∈ L(vi) do

Sij :=
∑

r∈Cij

Inf(r)

end

end
/* Compute (and re-normalize) weights for each variable label at

time step s + 1 according to the support they receive */

for each variable vi ∈ V do
for each label tij ∈ L(vi) do

pij(s + 1) :=
pij(s) × (1 + Sij)

mi∑

k=1

pij(s) × (1 + Sik)

end

end
s := s + 1

until no more changes;

Algorithm 1. Pseudo code of the RL algorithm.

At each time step, the algorithm updates the weights of each possible labels
for each variable. The results are normalized per variable, raising weights for
labels with higher support, and reducing them for those with lower support.
Advantages of the algorithm are:

– Its expressivity: The problem is stated in terms of assigning labels to variables,
and a set of constraints between variable-label assignments, allowing to model
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any discrete combinatorial problem. The algorithm can deal with any kind of
constraints encoding any relevant domain information.

– Its highly local character (each variable can update its label weights given
only the state at previous time step), which makes the algorithm highly par-
allelizable.

– Its flexibility: Total consistency or completeness of constraints is not required.
– Its robustness: It can give an answer to problems without an exact solution

(incomplete or partially incompatible constraints, insufficient data, etc.)
– Its complexity. Being n the number of variables, v the average number of

possible labels per variable, c the average number of constraints per label,
and I the average number of iterations until convergence, the average cost is
n × v × c × I. Note that some of these factors can be made constants: The
algorithm can be stopped if convergence is not reached after a maximum
number of iterations. In most problems v and c do not depend on n, or if
they do, they can be bounded (e.g. generating constraints only for nearby
neighbors instead of all variables, or pre-filtering unlikely values). In general,
for problems with a large amount of variables, the complexity can be con-
trolled at the price of reducing expressivity and/or result accuracy, obtaining
accurate enough models with linear or quadratic asymptotic costs.

Drawbacks of the algorithm are:

– Found optima are local, and convergence is not guaranteed in the general
case.

– Constraints must be designed manually, since they encode the domain knowl-
edge about the problem.

– Constraint weights must be assigned manually and/or optimized on tuning
data.

4 Framework to Approximate Alignments

Figure 1 presents an overall description of the framework: A preprocessing step,
(a) inside the gray box, is executed only once per model to compute the model
unfolding, its behavioural profile, and the shortest enabling path between each
pair of nodes. Then, it is used as many times as needed to align log traces. The
alignment algorithm, (c) relaxation labeling, uses weighted constraints (b), and
although their weights can simply be set manually, better results are obtained
if they are tuned using available training data. The algorithm produces partial
alignments without model moves, which are added –if needed– by a completion
post-process (d). The weight tuning procedure is exactly the same: The system
is run on different combinations of constraint weights on a separate section of
the dataset, and the combination producing the best results is chosen to be used
on test data (or used in production).
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Fig. 1. Overall framework representation.

4.1 Stage 1: Pre-computation of Model Unfolding and Additional
Information

We use one of the state-of-the-art techniques to compute an unfolding π of the
Petri net [9]. There are two main reasons to use the unfolding instead of the
Petri net. First, events in the unfolding correspond to a particular firing of a
transition in a Petri net, thus making the correspondence between events in the
trace and events in the unfolding meaningful2. Second, by being well-structured
(e.g., having a clear initial and final node), the computation of alignments is
facilitated.

Two types of information between any pair of events in the unfolding are
required in our setting: (1) Behavioral relations are used to guide RL in order to
reward/penalize particular assignments between events in the trace and unfold-
ing transitions. (2) Shortest enabling paths are necessary for completing the
alignment when gaps exist in alignment arising from the solution found by the
RL algorithm. Notice that this information is computed only once per model,
before aligning each trace in the log.

Behavioral Relations Between Unfolding Events. As it has been pointed
out [2,22], not all runs of the Petri net are possible in the complete unfolding,
which impacts the behavioral information between events in the unfolding. To
amend this, either the unfolding is extended beyond cut-off events so that all
relations are visible [2], or the behavioral relations are adapted to consider the
discontinuities due to cut-off events [22].

In this paper we opted instead for a pragmatic setting: next to the original
unfolding π, a copy πr where the backward-conflicts branches and loops corre-
sponding to the cut-off events are computed (see Fig. 2). We call πr reconnected
unfolding. Notice that, in contrast to the original unfolding, in a reconnected
unfolding all the runs of the original Petri net are possible.

2 Notice that a transition can correspond to several different firing modes, that depend
on the context, which will be represented as different events in the unfolding.
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Next, the behavioral profiles (c.f. Definition 1) for both π and πr are com-
puted. Apart from obtaining the behavioral relations for events, computing these
relations both in π and πr is useful to elicit loop behavior: for two events e1, e2,
if e1 ∦ e2 in π, but e1‖e2 in πr, then the concurrency of e1 and e2 is due to the
existence of a loop in the original Petri net3, while if e1‖e2 in π, then e1 and e2
are in a parallel section (which may or may not be inside a loop). These behav-
ioral relations (ordering, exclusiveness, interleaving and loop relations) are then
used to assign different constraint weights in the created constraint satisfaction
problem instance (see next Section).

Shortest Enabling Paths Between Unfolding Events. Given two events
e1, e2 in πr, the shortest enabling path is the minimal set of events needed
to enable e2 after e1 fires. Since we pose the problem as choosing an event
(transition) in the unfolding for each event in the trace, the RL algorithm will
not suggest new events to be inserted in the trace (i.e. model moves). To complete
the alignment with required model moves, we fill the gaps in the trace with the
shortest enabling path between events, which is precomputed off-line, only once
per model.

The length of the shortest enabling path between two nodes is also used to
modulate the weight of the constraints (see Sect. 4.2).

4.2 Stage 2: Computation of Mapping Through RL

Given πr and a trace σ = a1 . . . an ∈ L, we post the alignment problem as a con-
sistent labelling problem (CLP), which can be solved via suboptimal constraint
satisfaction methods, such as RL. We will illustrate how we build our labelling
problem, as well as how it is handled by the RL algorithm, with the example M8
model from the dataset described in [12]4, and shown in Fig. 2. Below, to avoid
ambiguities, we will refer to events in the unfolding as transitions.
The CLP is built as follows:

– Each event ai ∈ σ is a variable vi for the CLP problem. The set of variables
is V = {v1, . . . , vn}.

– For each variable vi ∈ V, we have a set of labels L(vi) = {ei1 , . . . , eimi
, NULL},

containing all transitions eik in πr such that λ(eik) = ai, plus one NULL label
to allow for the option to not align a particular event in the trace (a log move).
Figure 3 shows the aforementioned encoding for the trace BCGHEFDA and
the M8 model in Fig. 25. Notice that selecting the possible labels for each

3 In case models do not have duplicate labels, the detection of loops can alternatively
be performed as it was done in [2].

4 https://data.4tu.nl/repository/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49.
5 Notice that, for the sake of simplicity, the example in Fig. 2 only contains one unfold-

ing event per label. In general several events in the unfolding can have the same label,
and our technique handles that general case.

https://data.4tu.nl/repository/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49
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Fig. 2. Reconnected unfolding πr for model M8. Dashed edges indicate reconnected
cut-offs.

variable we can introduce hard constraints (e.g. if an assignment is not pos-
sible because of, e.g., data type incompatibility, that value is excluded from
L(vi), avoiding the need of having to encode this fact as a constraint).

– In this work, we base our constraints on the similarity between the order of
the events in the trace and the model, although other kinds of information
could be used if available. For instance, a possible constraint for the trace
in Fig. 3 and the M8 process model in Fig. 2 could be +10.0 (v3 : e4) [(v2 :
e1), (v4 : e5)], stating that the assignment of label e4 to variable v3 gets a
positive reward of +10.0 from a context where v2 is assigned label e1 and v4
is assigned label e5.

Fig. 3. Mapping of the trace BCGHEFDA alignment with model M8 as a consistent
labelling problem. Boldface labels indicate the solution selected by the RL algorithm.

To avoid an explosion of the number of constraints, we restricted ourselves
to use binary constraints –that is, involving just one target assignment and one
condition–, except in the case of the Deletion constraint (see below). We now
provide a description of the constraints used.

Compatibility Constraints. Each constraint has a compatibility value that
may be either positive (to reward consistent assignments) or negative (to penal-
ize inconsistent combinations). The weight for each constraint is tuned experi-
mentally.
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In what follows, d(vi, vj)
def= |i − j| refers to the distance between events ai

and aj in σ, and d(ei, ej) corresponds to the length of a shortest enabling path
between transitions ei and ej in πr.

Constraint Patterns: For each combination of two possible assignments (vi :
ep), (vj : eq), we create the following constraint instances:

Cr (vi : ep) [(vj : eq)]
Cr (vj : eq) [(vi : ep)]

for each of the following cases that are applicable. The compatibility value Cr

depends on each case:

– Right order. If vi precedes vj in σ (i.e., i < j), and ep � eq in πr, Cr is positive,
and inversely proportional to |d(vi, vj) − d(ep, eq)|, rewarding assignments in
the right order, with higher rewards for closer assignments.

– Wrong order. If vi follows vj in σ (i.e., i > j), and ep � eq in πr, Cr

is negative, penalizing assignments with crossed ordering in the trace with
respect to the model.

– Exclusive. If vi and vj co-occur in the trace but ep + eq in πr, Cr is negative,
penalizing assignments that should not happen in the same trace.

– Parallel. If vi and vj co-occur in the trace, and ep‖eq in π, indicating the
presence of a parallel section, Cr is positive, and inversely proportional to
|d(vi, vj) − d(ep, eq)|, rewarding this combination in any order, with higher
rewards for closer assignments.

– Loop. If vi and vj co-occur in the trace, ep‖eq in πr, and ep ∦ eq in π indicating
that the interleaving is due to the presence of a loop, Cr is positive, which
allows the repetition and alternation of looped events.

Deletion. Also, for each combination of three possible assignments (vi−1 :
em), (vi : ep), (vi+1 : eq) such that 1 < i < n (i.e. three consecutive events
in the trace) if the shortest enabling path from em to eq via ep in πr is longer
than the shortest enabling path from em to eq not crossing ep, we create the
constraint instance:

Cr (vi : ep) [(vi−1 : em), (vi+1 : eq)]

where Cr is negative. This constraint penalizes the alignment of an event if that
would require more model moves (and thus a higher cost) than its deletion.

Figure 4 shows examples of how these patterns are instantiated in the M8
example. Note that the high negative weight of the wrong order constraints will
cause that in every pair, at least one of the variables (that with less positive
contribution from others) will end up selecting any other label (which in this
case will be the NULL label). Weights for right order constraints are inversely
proportional to |d(vi, vj) − d(ep, eq)|. The other constraints in the example use
a constant value.
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Fig. 4. Some example constraint pattern instan-
tiations for the M8 alignment example.

It is important to remark
that a single constraint does not
determine the alignment cho-
sen for a particular event. All
constraints affecting the assign-
ment (vi, ej) are combined in
Sij . The re-normalization of the
label weights for each variable
ensures that there will always
be one value selected: even if all
values for a variable had a nega-
tive support, the weight for the
one with less negative Sij would be increased. In our case, we have the NULL
value, which has neither penalization nor reward (Sij = 0) causing its weight to
be raised when all the other possible values have negative support.

The algorithm stops when convergence is reached –i.e. no more changes in
the weight assignment–. Typical solutions consist of weight assignments of 1
for one label in each variable, and zero for the rest. However, if constraints are
incomplete or contradictory, the final state may be a uniform distribution among
a subset of values for some variables. Also, since the optimized cost function
depends on the constraints, convergence is not theoretically guaranteed (since
they may be incomplete or contradictory), although empirical results show that
–if constraints are properly defined as it is the case of our formalization– the
algorithm normally converges.

As described in Sect. 3.2 the complexity of RL is n × v × c × I. In our partic-
ular trace alignment problem, v is a small constant (about 2 o 3 possible labels
per variable). Since we generate constraints for every pair of trace events, the
number of constraints per variable c is proportional to n. The number of required
iterations I is in the order of a few dozens, though a safety stop is forced after 500
iterations. Thus, in our case, the complexity is O(n × c × K) = O(n2) (though
it could be reduced to linear limiting the created constraints to only nearby
neighbor events).

4.3 Stage 3: Generation of Approximate Alignment

The CLP solved via RL will produce a partial alignment, where some trace
events will be assigned to some transitions in the unfolding, and some events
will be assigned the NULL label (see Fig. 3). If the solution is consistent, it rep-
resents synchronous moves (events in the trace are mapped to a transition in
the unfolding) and log moves (events in the trace are assigned to NULL). It may
only lack model moves, i.e., necessary transitions in the unfolding to recover a
full model run.

The approach used to add the needed model moves is to simulate the partial
trace on the Petri net, until a mismatch is found (notice that this is a deter-
ministic procedure, since unfolding transitions are unique). Assuming the RL
solution alignments and deletions are correct, the mismatch can only be caused
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by a missing event in the trace. Thus, the shortest enabling path (previously
computed) connecting the transition where the mismatch was detected and the
transition corresponding to the next event in the trace is inserted at this point,
and the simulation is continued. Note that this completion procedure is also able
to re-insert events that were wrongly deleted by the RL algorithm. However, if
the RL solution contains crucial errors (i.e. alignment of an event that should
have been deleted), the resulting alignment may not be fitting.

To handle the insertions at the beginning or end of the trace, we add two
phantom events, one at the beginning and one the end of the trace, respectively
aligned to the initial and final states. In this way, the simulation will detect if
there are missing events before the first trace element or after the last one.

Figure 5 shows an example of the results of the completion process, i.e., the
technique computes the run ACEGHFDB, which is at edit distance 6 (counted
as number of insertions and deletions) for the input trace BCGHEFDA.

Fig. 5. Complete alignment for example in Fig. 3, after adding necessary insertions to
make the trace fitting. Boldface labels correspond to the alignment produced by RL.
Transitions in italics are model moves inserted by the completion postprocess.

5 Experiments and Tool Support

To evaluate the performance of our approach, we resorted to datasets previously
used in the state-of-the-art to test the performance of alignment techniques [12,
16,17]. Some of these benchmarks are either very large, and/or contain loops
and duplicate activities in the model. We also applied the tool to a real-world
case: We used the Inductive Miner [10] (with default parameters) to extract a
model for BPIC 2017 loan application data6, and then we aligned it with the
whole set of traces. Source code for our tool is available at https://github.com/
lluisp/RL-align.

Since RL results largely depend on the constraint compatibility values, we
used part of the data as a development set to tune the constraint weights, and
we evaluated on the rest. We compared the solution of our approach with a
reference solution: Optimal A∗ alignment by ProM for the models where it is
available, backing off to an approximate method (ILPSDP, see [15]) when ProM
failed to process the model trace file due to memory or time limitations. The
used partition and some statistics about the models and traces can be found in

6 https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

https://github.com/lluisp/RL-align
https://github.com/lluisp/RL-align
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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Table 1. Statistics about dataset used in the experiments.

Model #places Trace length #traces Reference alignment Preprocess

CPU time (s)

Avg Max Min Avg.

cost

Avg.

fitness

Method Paths BPs

Tuning M1 40 13.1 37 8 500 5.8 0.65 ProM 1 2

M3 108 35.9 217 10 500 8.9 0.79 ProM 4 26

M5 35 34.0 71 27 500 14.7 0.64 ProM 1 2

M7 65 37.6 147 20 500 26.3 0.49 IPLSDP 1 5

M9 47 44.3 216 16 500 21.3 0.61 ProM 1 6

ML1 27 28.9 123 11 500 17.9 0.51 ProM 1 4

ML3 45 26.4 194 8 500 22.9 0.35 ProM 1 3

ML5 159 42.0 595 12 500 30.0 0.55 IPLSDP 12 53

prAm6 347 31.6 41 19 1,200 4.1 0.90 ProM 133 829

prCm6 317 42.8 59 15 500 29.3 0.51 IPLSDP 95 394

prEm6 277 98.7 116 80 1,200 4.0 0.96 IPLSDP 64 153

prGm6 357 143.0 159 124 1,200 26.3 0.83 IPLSDP 136 134

TOTAL 59.3 595 8 8,100 16.0 0.71 447 1,611

Evaluation M2 34 17.6 52 14 500 10.3 0.56 ProM 1 2

M4 36 26.8 176 8 500 22.7 0.35 ProM 1 6

M6 69 53.3 125 42 500 42.3 0.46 IPLSDP 1 5

M8 17 16.5 109 8 500 7.3 0.65 ProM 1 1

M10 150 58.2 240 30 500 42.7 0.47 IPLSDP 10 28

ML2 165 87.4 582 27 500 80.9 0.30 IPLSDP 14 33

ML4 36 28.1 89 17 500 25.6 0.34 ProM 1 2

prBm6 317 41.5 59 14 1,200 0.0 1.00 ProM 96 388

prDm6 529 248.4 271 235 1,200 3.6 0.99 IPLSDP 341 100

prFm6 362 240.6 245 234 1,200 36.7 0.86 IPLSDP 107 34

TOTAL 109,9 582 8 7,100 24.0 0.70 570 599

Total 83.0 595 8 15,200 19.8 0.71 1,017 2,210

Realistic BPIC2017 280 38.1 180 10 31,509 38.2 0.10 IPLSDP 27 1,479

Table 1. Cost is computed as edit distance (number of log moves plus number of
model moves). Fitness is computed as the ratio of sync moves over the length
of the trace. The average cost and average fitness columns show the average
cost/fitness per trace over the whole log. Last two columns show the CPU time
required to precompute behavioural profiles and shortest enabling paths.

The tuning procedure consisted on a grid search of weights for each con-
straint type. Since Loop and Parallel use the same weight (the former as a
constant, the latter in inverse proportion to the distance), we have 5 weights to
set. We explored between 6 and 8 possible values for each –totalling over 16,000
combinations– and selected the weight combinations that maximized the desired
measure over the tuning dataset.

Tables 2 and 3 show the results for the performed experiments. We report the
percentage of cases where a fitting alignment was found, in how many of those
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Table 2. Results obtained in scenario 1 (Maximize alignment F1 score)

Model % fitting % same

cost

Obtained alignment CPU time (sec)

Avg.

cost

Δ with

reference

Avg.

fitness

Δ with

reference

RL ILPSDP ProM

Tuning M1 99.4 81.9 6.0 0.3 0.64 −0.01 1 23 4

M3 90.8 75.8 8.9 1.3 0.78 −0.02 5 234 142

M5 44.4 49.5 14.9 1.7 0.64 −0.01 6 59 587

M7 45.2 25.2 16.8 −1.7 0.61 0.06 5 103 -

M9 57.0 62.8 16.1 2.0 0.61 −0.02 10 123 51

ML1 44.8 47.3 14.9 3.8 0.53 −0.03 7 67 18

ML3 43.8 13.2 46.3 27.3 0.30 −0.08 7 89 61

ML5 87.3 51.6 20.3 3.9 0.60 0.01 23 688 -

prAm6 100.0 91.5 4.3 0.2 0.90 −0.003 5 822 58

prCm6 89.8 21.6 27.0 −2.5 0.54 0.04 4 476 -

prEm6 100.0 100.0 4.0 0.0 0.96 0.00 21 3, 145 -

prGm6 0.0 - - - - - 114 7, 757 -

TOTAL 66.8 71.2 11.7 1.6 0.75 −0.001 208 13,586 -

Test M2 97.6 55.1 11.0 0.8 0.55 −0.004 1 30 20

M4 54.8 22.3 31.4 14.6 0.34 −0.05 5 99 29

M6 4.4 4.5 21.7 −7.0 0.68 0.11 8 165 -

M8 62.6 70.3 6.5 1.9 0.68 −0.03 2 19 3

M10 22.4 16.1 32.0 −1.6 0.59 0.08 11 411 -

ML2 52.2 4.6 54.4 −9.0 0.61 0.26 61 1, 743 -

ML4 28.0 6.4 30.8 11.0 0.33 −0.05 4 63 579

prBm6 100.0 100.0 0.0 0.0 1.00 0.00 5 856 54

prDm6 61.0 0.0 42.5 39.1 0.84 −0.15 177 34, 653 -

prFm6 57.2 0.0 9.1 −27.8 0.96 0.10 159 20, 631 -

TOTAL 59.5 42.3 18.0 3.2 0.79 0.003 433 58,670 -

Realistic BPIC2017 99.9 0.4 43.8 5.6 0.15 0.05 2, 091 8, 702 -

the solution had the same cost than the reference approach (ProM or ILPSDP),
the average cost and fitness of the alignments, and their differences with the cost
and fitness achieved by the reference approach. In some cases the cost difference
is negative (and/or the fitness difference is positive) showing that RL obtained
better solutions than ILPSDP.

We also report the required CPU time to process the trace file for each model.
Dashes in CPU time columns for ProM correspond to files were ProM run out
of memory (using a 8 GB Java heap) or did not end after 8 h (wall clock time).
Reported CPU times exclude time required to preprocess each model comput-
ing two behavioural profiles (original and reconnected unfolding) and shortest
enabling paths for all event pairs (see Table 1). Note that the preprocessing is
performed only once per model, so it is amortized in the long run when the
number of aligned traces is large enough.
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Scenario 1: Maximize Quality of Obtained Alignments. Our first scenario
is selecting weights that get better alignments, even this may cause a lower
percentage of cases with a fitting solution. In order to keep a balance between the
quality of the alignments and the number of solved cases, we measure precision
(P = #sync/(#sync + #log), maximized when there are no log moves) and
recall (R = #sync/(#sync + #model), maximized when there are no model
moves), and we aim at maximizing their harmonic mean, or F1 score (F1 =
2PR/(P + R)). The weight combination obtaining higher F1 on tuning data
is: Right Order = +15, Wrong Order = −100, Exclusive = −300, Deletion = −20,
Parallel/Loop = +5.

Results of this configuration both on tuning and test data are shown in
Table 2.

Scenario 2: Maximize Number of Aligned Traces. A second configuration
choice consists of selecting the weights that maximize the number of fitting
alignments, even if they have a higher cost. The weight combination obtaining
a higher percentage of fitting alignments on tuning data is: Right Order = +5,
Wrong Order =−500, Exclusive =−400, Deletion =−300, Parallel/Loop = +5.

Results of this configuration both on tuning and test data are shown in
Table 3.

Discussion. Selecting constraint weights that maximize the percentage of fit-
ting traces (scenario 2) results on large negative values for constraints penaliz-
ing unconsistent assignments (i.e. Wrong Order, Exclusive, and Deletion), which
create a larger number of NULL assignments. Thus, the obtained alignments will
contain more deletions (including wrong deletions of events that could have been
aligned), creating gaps that will be filled by the completion post-process, solving
more cases with a fitting alignment, though more likely to differ from the original
trace, and thus with a higher cost.

On the other hand, when selecting weights that maximize F1 score of the
obtained solution (scenario 1), milder penalization values are selected. Thus,
less events are deleted, causing less alignments to be fitting (a single wrongly
aligned event can cause the whole trace to become non-fitting), but for those
that are, the cost is closer to the reference (since the alignment does not discard
trace events unless there is a strong evidence supporting that decision).

It is interesting to note that the proposed algorithm allows us to choose the
desired trade-off between the percentage of fitting alignments and the quality of
the obtained solutions. Moreover, it is also worth remarking that we tuned the
weights for the dataset as a whole, but that they could be optimized per-model,
obtaining configurations best suited for each model, if our use case required so.

Regarding computing time, the polynomial cost of the algorithm offers com-
petitive execution times, making it suitable for real-time conformance checking,
and feasible to explore configuration space to customize the weights to specific
use cases, even on large models. Specifically, our computation times are about
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Table 3. Results obtained in scenario 2 (Maximize number of aligned traces)

Model % fitting % same

cost

Obtained alignment CPU time (sec)

Avg.

cost

Δ with

reference

Avg.

fitness

Δ with

reference

RL ILPSDP ProM

Tuning M1 100.0 58.8 7.5 1.7 0.59 −0.06 1 23 4

M3 89.4 62.9 9.9 2.2 0.76 −0.03 5 234 142

M5 100.0 11.4 21.7 7.0 0.55 −0.10 3 59 587

M7 99.8 11.8 30.7 4.6 0.49 −0.01 3 103 -

M9 58.4 18.8 27.4 12.4 0.42 −0.21 5 123 51

ML1 69.4 19.3 26.2 10.3 0.36 −0.16 3 67 18

ML3 49.2 8.1 46.5 26.3 0.27 −0.10 2 89 61

ML5 86.7 13.7 34.1 16.8 0.36 −0.22 24 688 -

prAm6 100.0 77.1 5.5 1.4 0.88 −0.02 4 822 58

prCm6 100.0 4.4 61.3 32.0 0.17 −0.33 3 476 -

prEm6 100.0 100.0 4.0 0.0 0.96 0.00 40 3, 145 -

prGm6 98.9 4.5 35.3 9.1 0.78 −0.05 65 7, 757 -

TOTAL 90.8 42.1 22.0 7.8 0.66 −0.05 158 13,586 -

Test M2 100.0 21.4 15.0 4.7 0.44 −0.12 1 30 20

M4 60.6 11.9 35.0 16.2 0.30 −0.08 2 99 29

M6 63.6 4.1 37.7 0.5 0.51 0.02 5 165 -

M8 62.0 59.7 7.0 2.4 0.66 −0.05 1 19 3

M10 73.2 4.1 57.3 18.0 0.35 −0.13 6 411 -

ML2 85.4 4.0 65.8 −9.6 0.57 0.26 45 1, 743 -

ML4 54.6 0.4 44.1 20.1 0.14 −0.20 2 63 579

prBm6 100.0 100.0 0.0 0.0 1.00 0.00 8 856 54

prDm6 99.6 0.0 57.2 53.6 0.80 −0.19 258 34, 653 -

prFm6 100.0 5.2 35.0 −1.7 0.87 0.01 160 20, 631 -

TOTAL 85.8 26.9 33.4 12.8 0.70 −0.05 488 58,670 -

Realistic BPIC2017 100.0 0.0 40.3 2.2 0.06 −0.04 1, 576 8, 702 -

two orders of magnitude smaller than those offered by ILPSDP and ProM, as
presented in Tables 2 and 3.

Our tool also performs well on BPIC 2017 real-world data, achieving results
comparable to other state-of-the-art methods, and solving them in a shorter time
(although the speed-up is not as large in this case).

We must remark that ProM offers optimal solutions (when computational
resources are enough), while relaxation labeling does not. Also, even ILPSDP is
also suboptimal, it produces a fitting alignment for all cases, while RL may pro-
duce non-fitting solutions for some traces. However, we believe that our approach
can be used as fast preprocess to obtain accurate enough suboptimal alignments,
before resorting to more complex and computationally expensive approaches. RL
solutions, either fitting or not, can also be useful as heuristic information to guide
optimal search algorithms such as A∗.

6 Conclusions and Future Work

We presented a flexible approach to align log traces with a process model. The
used problem representation allows a trade-off between amount of solved cases
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and quality of the obtained solutions. The behaviour can be customized to par-
ticular use cases tuning the weights of the used constraints. Weights can be
optimized for a whole dataset (as in presented scenarios 1 and 2), but better
results can be obtained if they are optimized for each model, which may be
useful for some use cases.

The algorithm requires one-time preprocessing to compute model unfolding,
behavioural profile, and shortest enabling paths. Once this is done, any number
of traces can be aligned in linear time, with a CPU time orders of magnitude
smaller than other state-of-the-art methods. The obtained results show that the
method is able to achieve competitive alignments with reasonable costs.

Further research lines include exploring higher-order constraints that allow
the algorithm to use more fine-grained context information, and use the results
as heuristic information to guide optimal search algorithms.
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