
Alexander Romanovsky
Elena Troubitsyna
Friedemann Bitsch (Eds.)

LN
CS

 1
16

98

38th International Conference, SAFECOMP 2019
Turku, Finland, September 11–13, 2019
Proceedings

Computer Safety,
Reliability, and Security

Lecture Notes in Computer Science 11698

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Alexander Romanovsky •

Elena Troubitsyna • Friedemann Bitsch (Eds.)

Computer Safety,
Reliability, and Security
38th International Conference, SAFECOMP 2019
Turku, Finland, September 11–13, 2019
Proceedings

123

Editors
Alexander Romanovsky
Newcastle University
Newcastle upon Tyne, UK

Elena Troubitsyna
Åbo Akademi University
Turku, Finland

Friedemann Bitsch
Thales Deutschland GmbH
Ditzingen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-26600-4 ISBN 978-3-030-26601-1 (eBook)
https://doi.org/10.1007/978-3-030-26601-1

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4076-3331
https://orcid.org/0000-0001-6152-4121
https://doi.org/10.1007/978-3-030-26601-1

Preface

This volume contains the proceedings of the 38th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP 2019) held during September
10–13, 2019, in Turku, Finland. The European Workshop on Industrial Computer
Systems, Technical Committee 7 on Reliability, Safety, and Security (EWICS TC7),
established the SAFECOMP conference series in 1979. It has since contributed con-
siderably to the progress of the state of the art of dependable computer systems and
their application in safety-related and safety-critical systems, for the benefit of industry,
transport, space systems, health, energy production and distribution, communications,
smart environments, buildings, and living. It covers all areas of dependable systems in
the Smart World of Things, influencing our everyday life. Embedded systems,
cyber-physical systems, (industrial) Internet of Things, autonomous systems,
systems-of-systems, safety and cybersecurity, digital society, and transformation are
some of the keywords. For all of the ICT upcoming trends, safety, reliability, and
security are indispensable, and SAFECOMP addresses them properly from a technical,
engineering, and scientific point of view, showing its increasing relevance for today’s
technology advancements. The special themes of SAFECOMP 2019 were Safety and
Security of Autonomous Systems.

We received a good number of high-quality submissions (65), and the international
Program Committee (more than 50 members from 14 countries) worked hard to select
21 papers for presentation and publication in the SAFECOMP 2019 proceedings
(Springer LNCS 11698). The review process was thorough and each paper was
reviewed by at least three independent reviewers. The merits of each paper were
evaluated by the Program Committee members during the on-line discussions and
face-to-face meetings. Three renowned speakers from the international community
were invited to give keynotes: Marco Vieira (University of Coimbra, Portugal)
“Trustworthiness Benchmarking of Safety Critical Systems”; Ross Anderson
(University of Cambridge, UK) “The Sustainability of Safety, Security and Privacy”;
and Jack Weast (Intel, USA) “An Open, Transparent, Industry-Driven Approach to AV
Safety”. Following tradition, the conference was organized as a single-track event,
allowing for intensive networking during breaks and social events, and participation in
all presentations and discussions. This year again we had five high-quality workshops
running in parallel the day before the main conference: SASSUR – International
Workshop on Next Generation of System Assurance Approaches for Safety-Critical
Systems, DECSoS – International ERCIM/EWICS/ARTEMIS Workshop on
Dependable Smart Embedded Cyber-Physical Systems and Systems-of-Systems,
STRIVE – International Workshop on Safety, Security, and Privacy In Automotive
systems, WAISE – International Workshop on Artificial Intelligence Safety Engi-
neering, and ASSURE – International Workshop on Assurance Cases for
Software-intensive Systems. These workshops covered a diverse range of topics related

to safety and security. The proceedings of the workshops are published in a separate
SAFECOMP workshop proceedings volume (LNCS 11699).

We would like to express our sincere gratitude to many people whose contributions
made SAFECOMP 2019 possible: the authors of the submitted papers and the invited
speakers; the Program Committee members and external reviewers; EWICS and the
supporting organizations; the sponsors; and last but not least, the local Organization
Committee, who took care of the local arrangements, the web-master, and the Publi-
cation Chair for finalizing this volume. We hope that the reader will find these pro-
ceedings interesting and thought provoking.

September 2019 Alexander Romanovsky
Elena Troubitsyna

vi Preface

Organization

Committees

EWICS TC7 Chair

Francesca Saglietti University of Erlangen-Nuremberg, Germany

General Chairs and Program Co-chairs

Alexander Romanovsky Newcastle University, UK
Elena Troubitsyna KTH Royal Institute of Technology, Sweden

and Åbo Akademi, Finland

General Workshop Chairs

Ilir Gashi CSR, City University London, UK
Erwin Schoitsch AIT Austrian Institute of Technology, Austria

Publication Chair

Friedemann Bitsch Thales Deutschland GmbH, Germany

Local Organizing Committee

Elena Troubitsyna Åbo Akademi, Finland
Minna Carla Åbo Akademi, Finland
Christel Engblom Åbo Akademi, Finland
Inna Vistbackka Åbo Akademi, Finland

International Program Committee

Uwe Becker Draeger Medical GmbH, Germany
Peter G. Bishop Adelard, UK
Friedemann Bitsch Thales Deutschland GmbH, Germany
Jean-Paul Blanquart Airbus Defence and Space, France
Sandro Bologna Associazione Italiana Esperti Infrastrutture Critiche,

Italy
Andrea Bondavalli University of Florence, Italy
Jens Braband Siemens AG, Germany

Simon Burton Robert Bosch GmbH, Germany
António Casimiro University of Lisbon, Portugal
Mads Dam KTH Royal Institute of Technology, Sweden
Peter Daniel EWICS TC7, UK
Ewen Denney SGT/NASA Ames Research Center, USA
Felicita Di Giandomenico ISTI-CNR, Italy
Wolfgang Ehrenberger University of Applied Science Fulda, Germany
John Favaro Intecs, Italy
Francesco Flammini Linnaeus University, Sweden
Simon Fuerst BMW Group, Germany
Barbara Gallina Mälardalen University, Sweden
Ilir Gashi CSR, City University London, UK
Anatoliy Gorbenko National Aerospace University, KhAI, UK
Janusz Górski Gdańsk University of Technology, Poland
Jérémie Guiochet LAAS-CNRS, France
Hans Hansson Mälardalen University, Sweden
Mats Heimdahl University of Minnesota, USA
Maritta Heisel University of Duisburg-Essen, Germany
Constance Heitmeyer Naval Research Laboratory, USA
Alexei Iliasov Newcastle University, UK
Christopher Johnson University of Glasgow, UK
Rajeev Joshi Automated Reasoning Group, Amazon Web Services,

USA
Karama Kanoun LAAS-CNRS, France
Joost-Pieter Katoen RWTH Aachen University, Germany
Phil Koopman Carnegie-Mellon University, USA
Peter Ladkin University of Bielefeld, Germany
Timo Latvala Space Systems Finland Ltd., Finland
Simin Nadjm-Tehrani Linköping University, Sweden
Mattias Nyberg Scania, Linköping University, Sweden
Frank Ortmeier Otto-von-Guericke Universität Magdeburg, Germany
Philippe Palanque ICS-IRIT, University Toulouse, France
Michael Paulitsch Intel, Austria
Holger Pfeifer Technical University of Munich, Germany
Peter Popov City University London, UK
Laurent Rioux Thales R&T, France
Matteo Rossi Politecnico di Milano, Italy
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Christoph Schmitz Zühlke Engineering AG, Switzerland
Erwin Schoitsch AIT Austrian Institute of Technology, Austria
Christel Seguin Office National d’Etudes et Recherches Aérospatiales,

France
Håkan Sivencrona Zenuity AB, Sweden
Oleg Sokolsky University of Pennsylvania, USA
Kenji Taguchi CAV Technologies Co., Ltd., Japan
Stefano Tonetta Fondazione Bruno Kessler, Italy

viii Organization

Martin Törngren KTH Royal Institute of Technology, Sweden
Mario Trapp Fraunhofer Institute for Experimental Software

Engineering, Germany
Tullio Vardanega University of Padua, Italy
Marcel Verhoef European Space Agency, The Netherlands
Jonny Vinter RISE Research Institutes of Sweden, Sweden
Hélène Waeselynck LAAS-CNRS, France

Sub-reviewers

Mehrnoosh Askarpour Politecnico di Milano, Italy
Zeinab Bakhshi Mälardalen University, Sweden
Philipp Berger RWTH Aachen University, Germany
Matthew Fernandez Intel, Austria
Peter Folkesson RISE Research Institutes of Sweden, Sweden
Jelena Frtunikj BMW Group, Germany
Mohammad Gharib University of Florence, Italy
Tim Gonschorek Otto-von-Guericke Universität Magdeburg, Germany
Robert Heumüller Otto-von-Guericke Universität Magdeburg, Germany
Dubravka Ilic Space Systems Finland Ltd., Finland
Ramneet Kaur University of Pennsylvania, USA
Björn Leander Mälardalen University, Sweden
Naveen Mohan KTH Royal Institute of Technology, Sweden
Sebastian Nielebock Otto-von-Guericke Universität Magdeburg, Germany
Thomas Noll RWTH Aachen University, Germany
Viorel Preoteasa Space Systems Finland Ltd., Finland
Ashur Rafiev Newcastle University, UK
Clément Robert LAAS-CNRS, France
Ivan Ruchkin University of Pennsylvania, USA
Behrooz Sangchoolie RISE Research Institutes of Sweden, Sweden
Rishad Shafik Newcastle University, UK
Irfan Sljivo Mälardalen University, Sweden
Joel Svensson RISE Research Institutes of Sweden, Sweden
Lars Svensson KTH Royal Institute of Technology, Sweden
Xin Tao KTH Royal Institute of Technology, Sweden
Kimmo Varpaaniemi Space Systems Finland Ltd., Finland
Inna Vistbakka Åbo Akademi, Finland
Fredrik Warg RISE Research Institutes of Sweden, Sweden
Teng Zhang University of Pennsylvania, USA
Xinhai Zhang KTH Royal Institute of Technology, Sweden

Organization ix

Supporting Institutions

European Workshop on
Industrial Computer Systems –
Reliability, Safety and Security

Kungliga Tekniska högskolan –

Royal Institute of Technology

Newcastle University

Åbo Akademi

Austrian Institute of Technology

City University London

x Organization

Thales Deutschland GmbH

Intel

Lecture Notes
in Computer Science (LNCS),
Springer Science + Business Media

Austrian Computer Society

ARTEMIS Industry Association

Electronic Components and Systems
for European Leadership - Austria

Organization xi

Verband österreichischer
Software Industrie

European Research
Consortium for Informatics
and Mathematics

xii Organization

Invited Talks

Trustworthiness Benchmarking of Safety
Critical Systems

Marco Vieira

University of Coimbra, Portugal
mvieira@dei.uc.pt

Abstract. Some recent incidents and analyses have indicated that possibly the
vulnerability of IT systems in railway automation is increasing. Due to several
trends, such as digitalization or the use of commercial IT and communication
systems the threat potential has increased. This paper discusses the way forward
for the railway sector, how many advantages of digitalization can be realized
without compromising safety. In particular topics like standardization or certi-
fication are covered, but also technical issues like software update.

The Sustainability of Safety, Security
and Privacy

Ross Anderson

University of Cambridge, UK
ross.anderson@cl.cam.ac.uk

Abstract. Now that we are putting software and network connections into cars
and medical devices, we will have to patch vulnerabilities, as we do with
phones. But we can't let vendors stop patching them after three years, as they do
with phones. So in May, the EU passed Directive 2019/771 on the sale of goods.
This gives consumers the right to software updates for goods with digital ele-
ments, for the time period the consumer might reasonably expect. In this talk I'll
describe the background, including a study we did for the European Commis-
sion in 2016, and the likely future effects. As sustainable safety, security and
privacy become a legal mandate, this will create real tension with existing
business models and supply chains. It will also pose a grand challenge for
computer scientists. What sort of tools and methodologies should you use to
write software for a car that will go on sale in 2023, if you have to support
security patches and safety upgrades till 2043?

An Open, Transparent, Industry-Driven
Approach to AV Safety

Jack Weast

Intel, USA
jack.weast@intel.com

Abstract. At Intel and Mobileye, saving lives drives us. But in the world of
automated driving, we believe safety is not merely an impact of AD, but the
bedrock on which we all build this industry. And so we proposed
Responsibility-Sensitive Safety (RSS), a formal model to define safe driving and
what rules an automated vehicle, independent of brand or policy, should abide to
always keep its passengers safe. We intend this open, non-proprietary model to
drive cross-industry discussion; let’s come together as an industry and use RSS
as a starting point to clarify safety today, to enable the autonomous tomorrow.

Contents

Formal Verification

Towards Zero Alarms in Sound Static Analysis of Finite State Machines 3
Josselin Giet, Laurent Mauborgne, Daniel Kästner,
and Christian Ferdinand

Graceful Degradation Design Process for Autonomous Driving System 19
Tasuku Ishigooka, Satoshi Otsuka, Kazuyoshi Serizawa, Ryo Tsuchiya,
and Fumio Narisawa

Formal Verification of Memory Preservation of x86-64 Binaries 35
Joshua A. Bockenek, Freek Verbeek, Peter Lammich,
and Binoy Ravindran

Autonomous Driving

Brace Touch: A Dependable, Turbulence-Tolerant, Multi-touch Interaction
Technique for Interactive Cockpits . 53

Philippe Palanque, Andy Cockburn, Léopold Désert-Legendre,
Carl Gutwin, and Yannick Deleris

Fitness Functions for Testing Automated and Autonomous
Driving Systems . 69

Florian Hauer, Alexander Pretschner, and Bernd Holzmüller

A SysML Profile for Fault Trees—Linking Safety Models
to System Design . 85

Kester Clegg, Mole Li, David Stamp, Alan Grigg, and John McDermid

Safety and Reliability Modeling

Spectrum-Based Fault Localization in Deployed Embedded Systems
with Driver Interaction Models . 97

Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

Forecast Horizon for Automated Safety Actions in Automated
Driving Systems . 113

Ayhan Mehmed, Moritz Antlanger, Wilfried Steiner,
and Sasikumar Punnekkat

Digital Forensics in Industrial Control Systems . 128
Robert Altschaffel, Mario Hildebrandt, Stefan Kiltz, and Jana Dittmann

Security Engineering and Risk Assessment

Efficient Model-Level Reliability Analysis of Simulink Models 139
Kai Ding, Andrey Morozov, and Klaus Janschek

Increasing Trust in Data-Driven Model Validation: A Framework
for Probabilistic Augmentation of Images and Meta-data Generation
Using Application Scope Characteristics . 155

Lisa Jöckel and Michael Kläs

A Pattern for Arguing the Assurance of Machine Learning in Medical
Diagnosis Systems . 165

Chiara Picardi, Richard Hawkins, Colin Paterson, and Ibrahim Habli

Safety Argumentation

BACRank: Ranking Building Automation and Control System Components
by Business Continuity Impact . 183

Herson Esquivel-Vargas, Marco Caselli, Erik Tews, Doina Bucur,
and Andreas Peter

Model-Based Run-Time Synthesis of Architectural Configurations
for Adaptive MILS Systems . 200

Alessandro Cimatti, Rance DeLong, Ivan Stojic, and Stefano Tonetta

Dynamic Risk Assessment Enabling Automated Interventions for Medical
Cyber-Physical Systems . 216

Fábio L. Leite Jr., Daniel Schneider, and Rasmus Adler

Verification and Validation of Autonomous Systems

Practical Experience Report: Engineering Safe Deep Neural Networks
for Automated Driving Systems . 235

Jelena Frtunikj

Autonomous Vehicles Meet the Physical World: RSS, Variability,
Uncertainty, and Proving Safety . 245

Philip Koopman, Beth Osyk, and Jack Weast

Automated Evidence Analysis of Safety Arguments Using Digital
Dependability Identities . 254

Jan Reich, Marc Zeller, and Daniel Schneider

xx Contents

Interactive Systems and Design Validation

SafeDeML: On Integrating the Safety Design into the System Model 271
Tim Gonschorek, Philipp Bergt, Marco Filax, Frank Ortmeier,
Jan von Hoyningen-Hüne, and Thorsten Piper

Towards Trusted Security Context Exchange Protocol for SDN Based Low
Latency Networks . 286

Abdul Ghafoor, A. Qudus Abbasi, and Zaheer Khan

Devil’s in the Detail: Through-Life Safety and Security Co-assurance
Using SSAF . 299

Nikita Johnson and Tim Kelly

Author Index . 315

Contents xxi

Formal Verification

Towards Zero Alarms in Sound Static
Analysis of Finite State Machines

Josselin Giet, Laurent Mauborgne, Daniel Kästner(B),
and Christian Ferdinand

AbsInt GmbH. Science Park 1, 66123 Saarbrücken, Germany
kaestner@absint.com

Abstract. In safety-critical embedded software, the absence of critical
code defects has to be demonstrated. One important class of defects
are runtime errors caused by undefined or unspecified behavior of the
programming language, including buffer overflows or data races. Sound
static analyzers can report all such defects in the code (plus some pos-
sible false alarms), or prove their absence. A modern sound analyzer is
composed of various abstract domains, each covering specific program
properties of interest. In this article we present a novel abstract domain
developed in the static analyzer Astrée. It automatically detects finite
state machines and their state variables, and allows to disambiguate the
different states and transitions by partitioning. Experimental results on
real-life automotive and aerospace code show that embedded control soft-
ware using finite state machines can be analyzed with close to zero false
alarms, and that the improved precision can reduce analysis time.

1 Introduction

During the past years the size and complexity of embedded software has sharply
increased. Contributing factors have been trends to higher levels of automation in
various industry domains, cost reduction by shifting functionality from hardware
to software, and generic interfaces imposed by standardization frameworks, such
as the AUTOSAR architecture for automotive software.

A significant part of embedded software deals with safety-relevant function-
ality. A failure of a safety-critical system may cause high costs or even endan-
ger human beings. With the growing size of software-implemented functionality,
preventing software-induced system failures becomes an increasingly important
task. It becomes paramount when fail-operational behavior is required, which is
the case for systems providing highly automated driving capability.

One particularly dangerous class of errors are runtime errors due to unde-
fined or unspecified behaviors of the programming language used. Examples
are faulty pointer manipulations, numerical errors such as arithmetic overflows
and division by zero, data races, and synchronization errors in concurrent soft-
ware. Such errors can cause software crashes, invalidate separation mechanisms

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-26601-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_1

4 J. Giet et al.

in mixed-criticality software, and are a frequent cause of errors in concurrent and
multi-core applications. At the same time, these defects also constitute security
vulnerabilities, and have been at the root of a multitude of cybersecurity attacks,
in particular buffer overflows, dangling pointers, or race conditions [10].

The absence of such code defects can be shown by abstract interpretation, a
formal methodology for semantics-based static program analysis [4]. It supports
formal soundness proofs, i.e., it can be proven that no error is missed. Abstract
interpretation-based static analyzers provide full control and data coverage and
allow conclusions to be drawn that are valid for all program runs with all inputs.
Such conclusions may be that no timing or space constraints are violated, or
that runtime errors or data races are absent: the absence of these errors can be
guaranteed [8]. From a methodological point of view, sound static analyzers can
be seen as equivalent to testing with full data and control coverage. Nowadays,
abstract interpretation-based static analyzers that can detect stack overflows
and violations of timing constraints [9,18] and that can prove the absence of
runtime errors and data races [16] are widely used for developing and verifying
safety-critical software.

Safety-critical functionality is often related to control-and-command func-
tions. A straightforward way to implement control functions is by using finite
state machines, in particular when automatic code generators are used. At the
model level formal methods are available which are able to prove correctness
properties of such finite state machines. However, at the code level, finite state
machines are typically represented by a sequence of if- or switch statements, pos-
sibly distributed over many source functions. Since the behavior of the automa-
ton is determined by the transitions and the states, the control flow at the code
level becomes dependent on the data flow, in particular on the values of the
state variables of the automaton. The values of those variables must therefore
be known very precisely for specific control paths. For large-size programs, the
abstractions necessary to scale up depend heavily on the structure of the code.
That means that when analyzing code generated from state machines, using
legacy abstractions, the analysis is either very imprecise or very slow and mem-
ory demanding, sometimes both. Hence the required precision used not to be
feasible, typically resulting in high false alarm rates.

In this article we present a novel abstract domain for finite state machines,
implemented in the abstract interpretation based static analyzer Astrée. The
key idea is to keep as much information as if the structure of the state machine
was explicitly reflected in the control flow of the program. To achieve that,
the new domain keeps, for each possible value of the state, separate abstract
values (corresponding to sets of possible values) for all other variables. The
main difficulty is that in a modern and precise static analyzer, abstract values
contain also memory information and points-to relations which may change how
the state is referenced. This is tackled with a dedicated domain tracking changes
on the state references. The second difficulty is the efficiency of the approach:
keeping separate invariants may be very costly, especially memory-wise. This
is mitigated by the data sharing capabilities of Astrée, and the introduction of

Towards Zero Alarms in Sound Static Analysis of Finite State Machines 5

directives providing explicit control to select the parts of the program for which
the state machine abstraction may be relevant. The case distinctions then are
only performed when analyzing these parts. These directives can be inserted
manually or under control of tailored heuristics.

After a brief overview of related work in Sect. 2 we introduce the concept of
abstract interpretation and its application to run-time error analysis in Sect. 3.
The structure and design of the analyzer Astrée is illustrated in Sect. 4. Section 5
gives a concrete example to illustrate the challenges of analyzing finite state
machine code and the key contribution of our approach. The state machine
domain is formally defined in Sect. 6, Sect. 7 sketches its implementation within
Astrée. The precision gain and efficiency of the new domain are measured on
industrial examples in Sect. 8, Sect. 9 concludes.

2 Related Work

In static analysis, disjunctions have long been observed to be key to precision of
the analyses. One of the first practical work on the subject is the development
of dynamic partitioning by François Bourdoncle [3], which was implemented for
analysing the LUSTRE language, allowing partitions on boolean variables [7].
The main limitation of the approach was scalability. Techniques based on reduced
cardinal power of abstract domains [5] were proposed and implemented in [14],
allowing dynamic partitions relating boolean variables to numerical variables
(still used in Astrée). The main limitation of those works is that they cannot
partition memory layout and points-to information, which are parts of the state
machine implementation in modern programs.

Another approach consists in verifying properties expressed as state
machines. In the typing community, these properties are known as typestate
properties [19]. An advanced analysis of such types was proposed by [6], based
on flow-insensitive pointer analysis. For large-scale Java programs, Clara [2]
is a framework for specifying and verifying finite-state properties of programs,
combining static analysis and insertion of dynamic monitoring code instrumen-
tation. The main limitations of this line of work, compared to our approach,
is the need for explicit specifications. Some other lines of work, such as [20]
could extract the finite state machines from the code, using machine learning
techniques. But such a technique, based on a set of actual executions, may miss
rare states, and would only be a first step in providing specifications covering
all possible unwanted undefined behaviors of some C or C++ code that Astrée
is now able to exclude using the new state machine domain.

3 Abstract Interpretation

The semantics of a programming language is a formal description of the behav-
ior of programs. The most precise semantics is the so-called concrete semantics,
describing closely the actual execution of the program on all possible inputs. Yet
in general, the concrete semantics is not computable. Even under the assumption

6 J. Giet et al.

that the program terminates, it is too detailed to allow for efficient computa-
tions. Unsound analyzers may choose to reduce complexity by not taking certain
program effects or certain execution scenarios into account. A sound analyzer is
not allowed to do this; all potential program executions must be accounted for.
Since in the concrete semantics this is too complex, the solution is to introduce
a formal abstract semantics that approximates the concrete semantics of the
program in a well-defined way and still is efficiently computable. This abstract
semantics can be chosen as the basis for a static analysis. Compared to an anal-
ysis of the concrete semantics, the analysis result may be less precise but the
computation may be significantly faster.

Formally, for a given concrete domain D, the abstract semantics require
specifying an abstract domain D

#, transfer functions which specify the effect of
each statement on the abstract values, and a join function � which specifies how
to compute the union of several abstract values at control flow joins. Together,
these functions allow to define the abstract semantics [[s]]#A for each statement s.
The abstract semantics defines an abstraction function α which converts concrete
values into abstract values, the concretization functions γ does the opposite. In
order to be able to reason about approximations, the abstract domain must be
equipped with a partial order (a � b means that a is more precise than b). When
the abstract domain is a complete lattice which satisfies the ascending chain
condition [1], and transfer and join functions are monotonic, the abstraction and
concretization functions form a Galois connection [4]. In this case, the definition
of the abstract semantics is simplified and the abstract interpretation framework
automatically implies termination and soundness of the involved operations [4].
Quite often, though, to be precise enough the abstract domain does not satisfy
the ascending chain condition. In such cases, one must also define a widening
operator ∇ [4], which ensures termination of all computations in the abstract
domain, at the cost of extra approximation. The widening operator may be
thought of as a way to introduce extrapolations in the analysis.

4 Sound Static Runtime Error Analysis

In runtime error analysis, soundness means that the analyzer never omits to
signal an error that can appear in some execution environment. If no potential
error is signaled, definitely no runtime error can occur: there are no false nega-
tives. When a sound analyzer does not report a division by zero in a/b, this is a
proof that b can never be 0. If a potential error is reported, the analyzer cannot
exclude that there is a concrete program execution triggering the error. If there
is no such execution, this is a false alarm (false positive).

In the following we will concentrate on the sound static runtime error ana-
lyzer Astrée [11,17]. Its main purpose is to report program defects caused by
unspecified and undefined behaviors according to the C99 norm. The reported
code defects include integer/floating-point division by zero, out-of-bounds array
indexing, erroneous pointer manipulation and dereferencing (buffer overflows,
null pointer dereferencing, dangling pointers, etc.), data races, lock/unlock prob-
lems, and deadlocks. The analyzer also computes data and control flow reports

Towards Zero Alarms in Sound Static Analysis of Finite State Machines 7

containing a detailed listing of accesses to global and static variables sorted
by functions, variables, and processes and containing a summary of caller/-
called relationships between functions. It reports each effectively shared vari-
able, the list of processes accessing it, and the types of the accesses (read, write,
read/write). Astrée is widely used in safety-critical systems, and provides the
necessary tool qualification support, including Qualification Support Kits and
Qualification Software Life Cycle Data reports. Practical experience on avionics
and automotive industry applications are given in [11,13,16]. They show that
industry-sized programs of millions of lines of code can be analyzed in acceptable
time with high precision for runtime errors and data races.

4.1 Basic Design of Astrée

Astrée uses abstractions to efficiently represent and manipulate over-
approximations of program states. One simple example of abstraction used per-
vasively in Astrée is to consider only the bounds of a numeric variable, forgetting
the exact set of possible values within these bounds. However, more complex
abstractions can also be necessary, such as tracking linear relationships between
numeric variables (which is useful for the precise analysis of loops).

As no single abstraction is sufficient to obtain sufficiently precise results,
Astrée is actually built by combining a large set of efficient abstractions. Some
of them, such as abstractions of digital filters – and now of finite state machines –,
have been developed specifically to analyze control-command software as these
constitute an important share of safety-critical embedded software. In addition
to numeric properties, Astrée contains abstractions to reason about pointers,
pointer arithmetic, structures, arrays (in a field-sensitive or field-insensitive way).
Finally, to ensure precision, Astrée keeps a precise representation of the con-
trol flow, by performing a fully context-sensitive, flow-sensitive (and even par-
tially path-sensitive) inter-procedural analysis. Combined, the available abstract
domains enable a highly precise analysis with low false alarm rates.

Astrée directives, e.g., for specifying range information for inputs, or tailoring
the finite state machine domain as described in Sect. 6.2, can be specified in the
formal language AAL [12] by locating them in the abstract syntax tree without
modifying the source code – a prerequisite for analyzing automatically generated
code.

To deal with concurrency defects, Astrée implements a sound low-level con-
current semantics [15] which provides a scalable sound abstraction covering all
possible thread interleavings. The interleaving semantics enables Astrée, in addi-
tion to the classes of runtime errors found in sequential programs, to report data
races, and lock/unlock problems, i.e., inconsistent synchronization. The set of
shared variables does not need to be specified by the user: Astrée assumes that
every global variable can be shared, and discovers which ones are effectively
shared, and on which ones there is a data race. Since Astrée is aware of all locks
and spinlocks held for every program point in each concurrent thread, Astrée
can also report all potential deadlocks. The analyzer takes task priorities into
account and, on multi-core processors, the mapping of tasks to cores.

8 J. Giet et al.

5 Analyzing State Machines – An Example

Consider the code fragment in Fig. 1a. It implements the state machine described
in Fig. 1b whose state is represented by variable state. One major difficulty on
this simple code, is to recognize that in state 3, the pointer p always points to
the variable state. Using standard abstract domains, we get the result shown
in Fig. 2: the analyzer cannot distinguish between individual iterations of the
endless loop, it can only compute invariants which hold for any possible loop
iteration. That means that the analyzer will (correctly) determine that at the
beginning of any iteration of the loop p being either uninitialized (invalid) or
pointing to state. After executing the statements of case 0 the value of p
did not change, but state can be in 1, 2. After case 1, p points to state,
and state must be 3. However, as the information at the beginning of the loop
body is imprecise the analyzer cannot infer that when execution reaches case
3, it must have been in case 1 in the previous iteration. Therefore it cannot
exclude that p may be invalid and will raise an alarm in line 17 (possibly invalid
pointer dereference).

Fig. 1. State machine with corresponding C-code implementation

Using the Astrée option for activating the state machine domain (Sect. 6)
and indicating that the variable state stores the state of the state machine,
Astrée is able prove that the program contains no error (pointer p is always well

Towards Zero Alarms in Sound Static Analysis of Finite State Machines 9

Fig. 2. Result with traditional abstract domains

defined in line 17), and also to precisely know the state after state 3, even though
variable state is not directly mentioned in that case.

In addition, activating the option for automatic detection of the state machine
(Sect. 7), Astrée can discover by itself the state variable and automatically prove
the absence of runtime error on this piece of code.

6 The State Machine Domain

The state machine domain allows us to map each relevant program variable to
an own abstract value for every possible value of a state variable in a finite state
machine. This works by partitioning the abstract value of the memory domain
according to the state variable.

Let us first assume we already have a basic abstraction for sets of memory
states, which we assume to be sound and terminating. Such an abstraction intro-
duces an abstract domain that will be referred in the following as the underlying
domain. We denote this domain D

#, � its maximal element, � its approximation
partial order, � its join operator, and ∇ its widening operator (see Sect. 3). The
meaning of an abstract element is described by the concretization function γ,
such that for any abstract element a, γ(a) is the set of memory states represented
by a. This is summarized by the following notation:

(
D

#,�,�,�,∇) γ−→ (P (M) ,⊆,∪) (1)

In order to formally define the state machine abstract domain, we intro-
duce the sets: L, of expressions of a program which are valid destinations of
assignments (left-values), and V, of integer values. Our goal is to define a new
abstraction where we can have a separate abstract value of the underlying

10 J. Giet et al.

domain (i.e. a set of memory states) for each integer value that the state variable
may take. For reasons of efficiency this partitioning must not be applied in cases
where it is not relevant (i.e. when we are outside the scope of a finite machine
implementation), or unnecessarily costly. Then the state machine domain D

#
A is

defined as follows:

D
#
A :=

(
(V → D

#) × L
) ∪ (

D
× {�}) (2)

An abstract value of the state machine domain is either a value of the underly-
ing abstract domain combined with � to denote cases when we do not partition.
Or it is a function fS : V → D

#, called partitioning function, from integer values
to abstract values in the underlying domain, combined with an expression l ∈ L

that is currently partitioned. Here l is an lvalue of a state variable S, and the
integer values in V are the values S can take. This allows us to have different
abstract values in the underlying domain for each different value of S. As men-
tioned before, the underlying domain is the memory domain which keeps track
of the values of all program variables. Hence we can separately keep track of the
values of all variables for each possible value of the state variable.

6.1 Abstract Operators

The invariant maintained by the domain is that the image of an integer value s by
the partitioning function fS is an abstract memory state representing abstract
values for all variables in the program, but where the only possible value of the
state variable S is s. In order to maintain this invariant, we define three new
operators, guard, trans and forget, used to compute the abstract semantics of
program statements.

The first operator, guard, aims at reducing the value of an expression accord-
ing to a given value. Its purpose is to do an abstract evaluation of the guard
in an if-then-else statement, a while loop statement or an assertion statement.
We assume E to be the set of all possible program expressions. Then, for any
expression e ∈ E, value b and abstract value d, guard(d, b, e) filters the set of
memory states represented by d, keeping only those in which e evaluates to b.
Of course, this may introduce approximations.

Let’s assume we have an abstract value d = (f, S) with the partitioning
function f being defined on values 0 and 1, i.e., S is a state machine variable
and we distinguish between program states where it is 0 and 1. Let’s further
assume that at a given program point we have f(0) = {S = 0, x ∈ [0, 10], ...} and
f(1) = {S = 1, x ∈ [5, 8], ...} (“. . . ” represents the values of all other variables,
which are irrelevant for the example). If the next statement is if (x<2)s1;
else s2;, then, to determine the abstract memory state in the then part, we
can apply the guard function guard(d, true,x<2) which returns d′ = (f ′, S): f ′

is a partial function only defined on element 0 with f ′(0) = {S = 0, x ∈ [0, 1]}
(since x < 2). In particular the value f(1) has been filtered out since in that
case x ∈ [5, 8] which is not compatible with the condition. As a consequence,
e.g., the analyzer will know that the then part can only be executed when the
state machine is in state 0.

Towards Zero Alarms in Sound Static Analysis of Finite State Machines 11

The second operator we use to compute the abstract semantics is called
trans. It is needed when performing transitions on the state machine: for any
abstract value d and expression � that can be used as left-value, trans(d, �)
computes a new abstract value where the different values taken by � are sepa-
rated (i.e. represented by different underlying abstract values, through use of the
guard function). Note that d and trans(d, �) represent the same set of concrete
values, just the representation is different.

There are two main usages for this operator: when we first want to track
a state variable (upon encountering the __ASTREE_states_track directive,
see Sect. 6.2), we apply the trans operator on an lvalue � of the state variable
(trans((d,�), �)) to create fS , i.e., the partitioning according to the current
possible values of the state variable S. In the case that a state variable can take
values {0, 1} according to the abstract state of the underlying domain, the trans
operator creates the partitioning fS(0) = {S = 0, ...} and fS(1) = {S = 1, ...}.
Second, when there is an assignment to a state variable, i.e. the value of the
state variable changes inside a partition, the partitioning must be updated and
“re-sorted” by computing the appropriate joins, so that the partitioning remains
consistent. Changes of state variables are detected by a dedicated domain (see
Sect. 7).

The final basic operator needed for the state machine abstract domain is the
forget(d) operator, which simply computes the join of all partitioned abstract
values, forgetting the relationships with the state variable. This is useful to keep
the domain efficient, and only keep the extra information inside the state machine
implementation, where it matters.

For reasons of space we skip the formal definition of the ordering �A, the join
�A and the widening ∇A operators of the partitioning domain. The termination
properties of the widening operator can be proven assuming we put a limit on
the number of partitions (corresponding to a limit on the number of states of
the underlying state machine), and assuming there can be only a finite number
of expressions seen during a given program analysis. Note that such limits are
enforced independently of the number of states actually declared or automati-
cally found (see Sect. 7): any statement that would lead to more states than the
limit is handled as forget.

6.2 Abstract Semantics

Semantics for Atomic Statements. The abstract semantics of atomic state-
ments (such as assignments) on partitioned abstract values consists in applying
the semantics of the underlying domain to each sub-value, and to reapply the
partitioning according to the variable using trans. In the case of a top value,
the underlying semantics is simply applied to the value.

[[s]]#A (d,�)
−→ (
[[s]]#(d),�)

(3)

[[s]]#A (v
→ dv, �)
−→ trans
(
v
→ [[s]]#(dv), �

)
(4)

12 J. Giet et al.

When the statement s does not make any assignment to the expression we
do not have to make any repartitioning, hence the simplified formula:

[[s]]#A (v
→ dv, �) =
(
v
→ [[s]]#(dv), �

)
(5)

Directives for the Partitioning Domain. Moreover we add two new direc-
tives, that do not have any effect on the concrete semantics, but trigger the
partition in the new domain:

– __ASTREE_states_track((�));, where � ∈ L, and
– __ASTREE_states_merge(());

The effect of __ASTREE_states_track((�)); in the abstract domain is
simply to apply the trans function. So, given an abstract value d, it returns
trans(d, �). The variable given as argument is the new state variable that controls
the partitioning.

The directive __ASTREE_states_merge(()); is used in order to stop a
partitioning by merging all partitioned sub-values. Given an abstract value d, it
returns forget(d).

Semantics for Complex Statements. For non atomic statements (e.g., con-
ditionals, loops, statements blocks), we follow the basic framework of abstract
interpretation (Fig. 3).

Fig. 3. Abstract semantics for complex statements

The abstract semantics of a sequence of statements is defined as applying
the abstract semantics of each statement in order. In case of a conditional state-
ment we apply the semantics of the statements in the then-part (resp. else-part)
on the abstract value compatible with evaluating the condition to true (resp.
false) and compute the join of the results. The most intricate statement is the
while loop statement: on the abstract, the semantics of the statement is com-
puted as the least fixpoint for the function which takes an abstract value dn

(representing the accumulated set of possible states at the head of the loop),

Towards Zero Alarms in Sound Static Analysis of Finite State Machines 13

refine it so that it only represents concrete states on which the loop guard is
true (using the guard operator, yielding gn), then apply the abstract semantics
of the loop body ([[s]]#A). The new value is compared to the value accumulated
in the previous iteration dn, using the widening operator ∇A to extrapolate to
dn+1. The sequence d0, d1, . . . , dn, . . . is guaranteed to reach a fixpoint, which we
call limn dn, and on which we can apply the loop guard again to only keep those
states on which the guard evaluates to false, which are those leaving the loop.

The proof that the abstract interpretation in the partitioning domain D
#
A

terminates and is sound is by induction over the syntax of the program. The
interesting case is the one for the atomic statements, and it is a straightforward
consequence of the soundness of the abstract interpretation in the underlying
domain and the soundness of the trans operator.

6.3 Putting It Together

The result of the analysis using the FSM domain on the working example of
Sect. 5 is shown in Fig. 4. Let’s call an abstract value of the underlying memory
domain an environment. Using the heuristics described in Sect. 7, the analyzer
automatically detects the finite state machine in the code and is aware that the
variable state represents its states. Therefore it maintains a full partitioning
of state which means that it keeps a separate environment for each possible
value of state. The environment includes full information about the abstract
value of all relevant program variables. In particular, this allows the analyzer to

Fig. 4. Result with novel FSM domains

14 J. Giet et al.

be aware of the fact that when state is 3 at the beginning of a loop iteration,
p must point to state. Figure 4 depicts this partitioning, i.e. the environments
associated with every possible value of state at the beginning of the loop
(A), immediately before the break statement in each switch case (B-E), and
immediately before the return (F). More precisely, the tree structures of Fig. 4
represent the partitioning functions. For example, the tree shown at location (B)
represents the abstract value d = (f,state), where state is the state machine
variable, and f a partitioning function such that f(1) is the abstract memory
value (i.e. the environment) in which state is 1, p is invalid and E is true. f(2)
is the abstract memory value in which state is 2, p is invalid and E is false.

7 Implementation

As described in Sect. 4, Astrée combines a lot of abstract domains to achieve
precision, parameterization and efficiency. There is a global hierarchy in the
implementation, which determines what kind of information each domain may
access, and what level of abstraction they can use.

The State Machine Domain builds on the Memory Layout Domain, which
abstracts memory locations and pointer information, and associates memory
locations to unique keys. All value domains only see the keys and compute
sets of possible values for those keys. A dedicated helper value domain tracks
which keys must be considered as state machine variables, and warns the State
Machine Domain when such a variable is modified. Then, and only then, does
the State Machine Domain trigger a call to trans, which is key to the efficient
implementation for that domain.

While state machine state variables can be declared by an end-user using
a simple directive, we always aim at the maximum automation of Astrée. In
order to avoid this end-user declaration, we also have implemented automatic
discovery of state machine state variables. It works in the following way:

– Identify integer variables used in switch statements
– keep those variables which are also assigned in at least one case of the switch,

possibly following function calls
– keep only the switch statements appearing inside possibly infinite loops

That heuristics captures some commonly generated state machines, and allows
for a fully automatic and precise analysis of codes using this pattern. When
the heuristics misses a state machine, the analysis will just miss the expected
precision gain, which can still be achieved using directives. When the heuristics
wrongly identifies a state machine, if the number of supposed states is small
enough, the analysis will just be imprecise, and if the number of supposed states
exceeds a built-in threshold, it will be rejected by the heuristics. Generalizing
the heuristics to cover more complex patterns is subject of future work.

Towards Zero Alarms in Sound Static Analysis of Finite State Machines 15

8 Experimental Results

We have tested our approach on multiple examples. The summary of these exper-
iments is displayed in Table 1. In this table, we used the following notations:

– (∗) means the state machine variable was automatically detected by Astrée,
– (I) denotes industrial code (avionics/automotive),
– (TL) denotes code generated by TargetLink,
– (Sc) denotes code generated by SCADE.

Table 1. Experimental results

Benchmark Code size

(LOC)

#Errors #Alarms Memory Time #States

max

wo/ w/ wo/ w/ wo/ w/ wo/ w/

B1 (I) 348 530 1 0 45 4 814 424 24′34′′ 9′′ 4

B2 (I)(∗) 11 646 2 2 82 80 482 647 5′22′′ 8′50′′ 3

B3 (TL) 2 335 0 0 34 34 215 230 16′′ 3′15′′ 24

B4 (Sc) 4 442 0 0 15 3 156 159 2′′ 3′′ 3

B5 (I)(Sc) 8 733 0 0 57 48 173 243 6′′ 30′′ 14

B6 (I) 2 044 805 6 6 1787 1787 12 729 15 167 4h07′ 3h32′ 4

The tables indicates the code size measured in lines of preprocessed code
without comments and blank lines, the number of states discovered, as well as
the number of alarms, definite runtime errors, time and memory consumption
with vs. without finite state machine domain. For reasons of confidentiality we
cannot disclose further information about the industrial examples.

8.1 Number of Errors and Alarms

The performance of the abstract interpretation is strongly correlated with the
place of the state machine in the code. For example, in the second benchmark,
the state machine is only a small part of the code. On the contrary, in the first
example the state machine is central in the design of the code.

At this point, one has to make a remark about the difference between alarms
and errors raised by Astrée. In Astrée, an error is raised when all traces in an
abstract value leads to a definite run-time-error. In the first example the error
disappears since with the finite state domain Astrée is able to recognize that the
context leading to the definite alarm was infeasible, i.e., it was actually a false
alarm.

The performance also depends on the explicitness of the transitions. Indeed,
in the third example all transitions are explicitly guarded. Therefore no improve-
ments are made in the analysis since the partitioning previously performed by
Astrée is enough to handle the state machine.

16 J. Giet et al.

In order to determine the false alarm rate in the code parts related to finite
state machines, we performed a manual review of code and findings. The result
is that with the state machine domain, all alarms related to the implemented
state machine could be disproved by the automatic analysis in all investigated
benchmarks. In the last example, the state machine implementation did not
induce any alarm in the analysis, which explains why we get the same number
of alarms with and without the state machine domain activated.

8.2 Efficiency

As expected, the required analysis time typically increases, and the observed
increase depends on the number of combined states possible at a given pro-
gram location during the run of the program. For example, the third and fifth
examples show that such an increase can be significant. Still, the local approach
achieved with our abstract domain is much more efficient than a full partition-
ing of the control flow. This is confirmed by experiment B6, which shows that
activating the finite state domain is feasible for code sized above 2 million lines
of preprocessed C code.

On the other hand, in the first and sixth example we observe a significant
decrease of analysis time. The reason of that is a reduction in the size of the
state space Astrée has to explore to cover all possible program behaviors, and
thus be sound. The increased precision allows Astrée to exclude infeasible paths
it could not recognize as infeasible before. In particular, in the latter case, the
finite state domain does not reduce the number of alarms, but there is still a
positive effect due to the reduction in analysis time.

In general, the memory needed for the analysis increases when we do an anal-
ysis with state partitioning. In the benchmarks under investigation the maximum
observed increase in RAM usage is 40% (B5), with RAM usage decreasing by
48% in B1. The moderate increase in memory consumption illustrates how the
intrinsic sharing enforced by Astrée allows for keeping memory overhead low,
validating our approach.

9 Conclusion

The work described in this paper solves the long-standing problem of statically
analyzing finite state machines at the C code level. In the past, due to a lack
of efficient abstractions, static analyzers suffered from high false alarm rates
and/or high analysis complexity. This article presents a novel abstract domain
which allows a highly precise analysis of finite state machines implemented in C
programs. State variables can be automatically detected, and are disambiguated
by state partitioning in the relevant program scope. The novel abstract domain is
sound and enables highly efficient implementations, making the analysis appli-
cable on large-scale industry-size software projects. Experimental results with
the static analyzer Astrée on real-life software confirm both the precision and
the efficiency of our approach.

Towards Zero Alarms in Sound Static Analysis of Finite State Machines 17

References

1. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-
Wesley (1969)

2. Bodden, E.: Verifying finite-state properties of large-scale programs. Ph.D. thesis,
McGill University (2009)

3. Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Funct. Pro-
gram. 2(4), 407–423 (1992)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM Press (1977)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th
POPL, pp. 269–282. ACM Press, San Antonio (1979)

6. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate
verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17(2),
9:1–9:34 (2008)

7. Jeannet, B.: Dynamic partitioning in linear relation analysis: application to the
verification of reactive systems. Formal Methods Syst. Des. 23(1), 5–37 (2003)

8. Kästner, D.: Applying abstract interpretation to demonstrate functional safety. In:
Boulanger, J.-L. (ed.) Formal Methods Applied to Industrial Complex Systems.
ISTE/Wiley, London (2014)

9. Kästner, D., Ferdinand, C.: Proving the absence of stack overflows. In: Bondavalli,
A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 202–213.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 14

10. Kästner, D., Mauborgne, L., Ferdinand, C.: Detecting safety- and security-relevant
programming defects by sound static analysis. In: Rainer Falk, J.-C.B., Chan, S.
(eds.) The Second International Conference on Cyber-Technologies and Cyber-
Systems (CYBER 2017). IARIA Conferences, vol. 2, pp. 26–31. IARIA XPS Press
(2017)

11. Kästner, D., et al.: Finding all potential runtime errors and data races in automo-
tive software. In: SAE World Congress 2017. SAE International (2017)

12. Kästner, D., Pohland, J.: Program analysis on evolving software. In: Roy, M. (ed.)
CARS 2015 - Critical Automotive Applications: Robustness & Safety, France, Paris
(2015)

13. Kästner, D., Schmidt, B., Schlund, M., Mauborgne, L., Wilhelm, S., Ferdinand,
C.: Analyze this! sound static analysis for integration verification of large-scale
automotive software. In: Proceedings of the SAE World Congress WCX2019 (SAE
Technical Paper). SAE International (2019)

14. Mauborgne, L.: Astrée: verification of absence of runtime error. In: Jacquart, R.
(ed.) Building the Information Society. IIFIP, vol. 156, pp. 385–392. Springer,
Boston, MA (2004). https://doi.org/10.1007/978-1-4020-8157-6 30

15. Miné, A.: Static analysis of run-time errors in embedded real-time parallel C pro-
grams. Logical Methods Comput. Sci. (LMCS) 8(26), 63 (2012)

16. Miné, A., Delmas, D.: Towards an industrial use of sound static analysis for the
verification of concurrent embedded avionics software. In: Proceedings of the 15th
International Conference on Embedded Software (EMSOFT 2015), pp. 65–74.
IEEE CS Press, October 2015

17. Miné, A., et al.: Taking static analysis to the next level: proving the absence of
run-time errors and data races with Astrée. Embedded Real Time Software and
Systems Congress ERTS2 (2016)

https://doi.org/10.1007/978-3-319-10506-2_14
https://doi.org/10.1007/978-1-4020-8157-6_30

18 J. Giet et al.

18. Souyris, J., Le Pavec, E., Himbert, G., Jégu, V., Borios, G., Heckmann, R. : Com-
puting the worst case execution time of an avionics program by abstract interpreta-
tion. In: Proceedings of the 5th International Workshop on Worst-Case Execution
Time (WCET) Analysis, pp. 21–24 (2005)

19. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Software Eng. 12(1), 157–171 (1986)

20. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine
models from software executions. Empirical Softw. Eng. 21(3), 811–853 (2016)

Graceful Degradation Design Process
for Autonomous Driving System

Tasuku Ishigooka1(B), Satoshi Otsuka1, Kazuyoshi Serizawa2, Ryo Tsuchiya2,
and Fumio Narisawa2

1 Research and Development Group, Hitachi Ltd., Tokyo, Japan
tasuku.ishigoka.kc@hitachi.com

2 Hitachi Automotive Systems Ltd., Tokyo, Japan

Abstract. An autonomous driving system requires the safety and avail-
ability of automated driving. For example, an autonomous driving sys-
tem with automation level 3 requires the functions to request the driver
to take over driving and to sustain safe automated driving until the
driver accepts the request if a hardware failure occurs. However, there is
a demand to continue automated driving if the system maintains suffi-
cient performance for automated driving after the failure occurs. There-
fore, we propose a graceful degradation design process to improve the
automated driving continuation rate by defining degradation functions
against performance limitation and hardware failure. The process inte-
grates and extends ISO/PAS 21448 and ISO26262 and carries out these
tasks in the order of system-level, ECU-level, and microcontroller-level
degradation design. Furthermore, we propose a framework to calculate
worst-case mode switch time (WCMST), which means the time duration
from failure detection to degradation processing, by utilizing degrada-
tion design results. To evaluate the proposed process and framework, we
applied them to the prototype system with automation level 3. The eval-
uation results showed that the designed system can sustain automated
driving against 86.1% of performance degradation factors and that the
framework can improve the calculation accuracy of WCMST by 35.3%.

Keywords: Graceful degradation · Autonomous driving ·
Fail-operational

1 Introduction

An autonomous driving (AD) system requires a fail-operational function, that
sustains safe automated driving and stop the vehicle in a safe place, if a failure
occurs during automated driving. The functions that the system requires are
defined by SAE J3016 as automation levels according to the driver assistance
level [1].

For example, an AD system with automation level 3 (AD-Lv3) requires a
fail-operational function to request the driver to take over driving if a hardware

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 19–34, 2019.
https://doi.org/10.1007/978-3-030-26601-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_2

20 T. Ishigooka et al.

failure occurs. If the request is accepted by the driver, the autonomous driving
operation of the system will terminate. If the request is denied due to time-
out, the system with AD-Lv4 has to guarantee safety. For example, the system
moves the vehicle to a safe place and stops. In this paper, we assume even AD-
Lv3 supplies safety functions like the above for a frequently encountered part of
the specific driving situation.

Meanwhile, as the system consists of multiple sensors and a microcontroller
(MC), an increase of the frequency of hardware failure occurrence may cause
a decrease of availability. Therefore, if failure propagation is protected and the
system still has sufficient performance to guarantee safe automated driving, con-
tinuation of automated driving is demanded instead of requests to take over
driving or stop the vehicle in a safe place.

As a method to select degradation functions (DFs) according to the running
system performance, graceful degradation is proposed [2]. The DF provides a
limited function compared with a full function executed in the normal state.
The system with graceful degradation monitors its own running performance.
If it detects a failure of hardware such as sensors, actuators, and electronic
control units (ECUs), it selects a DF (the execution condition of which can be
satisfied by the current system performance) from candidates and carries out the
function [3]. Graceful degradation enables the improvement of availability while
guaranteeing safety by selecting the DF with the highest performance among
the candidates. Graceful degradation is mainly studied in the avionics domain
[4] and recently has been studied in the automotive domain [5].

The factors that reduce system performance are classified as hardware fail-
ure or performance limitation of sensors, actuators, and algorithms. In the auto-
motive domain, safe design against hardware failure is performed according to
the functional safety standard ISO26262 [6]. Most fail-operational architectures
apply at least double modular redundancy to sensors, actuators, network buses,
ECUs, and power supply devices. Furthermore, regarding ECUs, the AD function
executed in the normal state and the DF executed after a failure are allocated
to different ECUs [7]. For example, if the autonomous driving ECU (AD-ECU)
for AD-Lv3 fails, another ECU with a DF submits the request to take over driv-
ing, sustains driving while waiting for takeover acceptance, and stops in a safe
place if the request is denied by time-out, and so on. On the other hand, in the
automotive domain, safety design against performance limitation is performed
according to ISO/PAS 21448 [8]. This standard defines the analytic process for
the performance degradation of the sensor, actuator, and algorithm caused by
the weather and road conditions. Furthermore, it defines the process to improve
the system specification by adding a sensor or updating the algorithm to prevent
performance degradation.

To achieve the coexistence of safety and availability in the AD system, grace-
ful degradation taking into account both hardware failure and performance limi-
tation is necessary. A design methodology for ISO26262 and ISO/PAS21448 has
already been proposed [9]. However, it does not focus on graceful degradation.

Graceful Degradation Design Process for Autonomous Driving System 21

Therefore, we propose a graceful degradation design process against hardware
fault and performance limitation.

The proposed process consists of system-level, ECU-level, and MC-level
degradation design. In system-level degradation design, DFs against performance
limitation and DFs against hardware fault of sensors and ECUs are indepen-
dently defined. After that, DFs against the combination of both are defined.
Consequently, all of the DFs for an AD system can be defined. In ECU-level
degradation design, DFs against ECU internal hardware failure are defined. For
example, DFs are clarified for when a failure of an MC among multiple MCs
occurs or when multiple sensor inputs stop due to an Ethernet switch failure. In
MC-level degradation design, defined DFs and a function to select a DF accord-
ing to the failure factor are designed. Thus, the process enables the development
of an AD system based on graceful degradation with safety and availability by
analyzing multiple factors causing performance degradation and defining DFs
against these factors.

ISO26262 requires evidence about that mode switch time, which shows the
duration time from failure detection to DF execution, and the mode switch must
finish by the deadline. An existing method [10] based on execution flow can cal-
culate WCMST. However, the calculated WCMST is pessimistic because the
combination of the failure factor and the DF may not actually happen. To ana-
lyze the actual combination and calculate the WCMST, a method using model
checker is proposed [11]. But, if the WCMST does not satisfy the deadline, the
re-designing efforts may be huge because the function specification and software
design must be changed.

Therefore, we propose a framework that enables accurate calculation of the
WCMST by utilizing state machine information of degradation design results. In
particular, the framework finds failure factors requiring maximum fault detection
time at each MC for each DFs. Then, it determines the WCMST by comparing
the mode switch time of each factors. The major contributions of our paper are
as follows:

(i) AD system concept based on graceful degradation
(ii) graceful degradation design process for AD system
(iii) integration of proposed process into ISO26262 and ISO/PAS21448
(iv) calculation framework of WCMST
(v) evaluation results through the AD-Lv3 prototype

In Sect. 2, we present the proposed design process. In Sect. 3, we explain
the detail of the calculation framework of WCMST. In Sect. 4, we explain the
evaluation result through a case study using the AD-Lv3 prototype. In Sect. 5,
we conclude with a brief summary and mention future work.

2 Graceful Degradation Design Process

In this section, we explain the proposed AD system concept based on graceful
degradation and the design process.

22 T. Ishigooka et al.

2.1 Autonomous Driving System Concept with Graceful
Degradation

In this section, we present the AD system concept based on graceful degrada-
tion against performance limitation and hardware failure. The concept improves
availability because the system can sustain automated driving instead of request-
ing the driver to take over or stopping in a safe place if performance limitation
or hardware failure occurs.

In this paper, we classify performance limitation and failure as different
events. The reason is that performance limitation is an event (such as certain
weather or a road condition) that lead to a transient state, but hardware failure
is an event that leads to permanent state. Regarding temporary failure of the
hardware such as neutron ray, we assume that it is masked or corrected. Further-
more, regarding software failure, the factors are eliminated at the development
process.

Fig. 1. System concept based on graceful degradation

We show the system concept by using a state machine diagram, as shown in
Fig. 1. This figure shows the system behavior expressed by a hierarchical state
machine, which consists of four groups. They are safe state (SS), guaranteeing
safety from the AD point of view, normal state (NS), running by automated
driving without failures, limited performance state (LP), running by automated
driving with failures, and emergency operation state (EO), moving to SS due to
failures. States that execute a DF for performance limitation are defined as a
lower layer of NS.

For example, in AD-Lv3, if a performance limitation or a hardware failure
occurs and the system requires the driver to take over driving, the system state
changes from AD state of NS to take-over waiting state of EO. If the driver

Graceful Degradation Design Process for Autonomous Driving System 23

accepts the request, the system state transit from EO to manual driving state
of SS. If the driver does not accept within the deadline, the system state transit
to safe stop state of EO.

On the other hand, if the system can sustain automated driving after the fail-
ure occurs, the system state transit from NS to LP. Consequently, the proposed
concept can guarantee both safety and availability by utilizing LP.

2.2 Clarification of Factors to Transit to EO

This section clarifies the factors to transit to EO. As mentioned in the previous
section, the EO of AD-Lv3 requires sustaining automated driving during the
takeover procedure to a driver. In this paper, the effects of performance limitation
or a hardware failure are classified into two groups: effects that immediately
complicate the automated driving or effects that complicate the arrival at the
destination although guaranteeing the automated driving.

An example of a factor that causes the former effect is performance degra-
dation caused by a single point of failure of a mission-critical sensor, such as a
camera, for the automated driving or a performance limitation. A safety mea-
sure is required against performance limitation and hardware failure because EO
cannot be achieved if the automated driving is difficult. In this paper, we assume
that the system applies heterogeneous redundant sensors and ECUs against per-
formance limitation and hardware failure caused by mission-critical factors. Fur-
thermore, we do not focus on an additional failure after a failure occurs because
the frequency of this occurring is negligibly small [6]. The definition of DF for
the redundant system is presented in Sect. 2.3.

An example of a factor to cause the latter effect is hardware failure of sensors,
such as the GNSS, or hardware failure of the ECU to provide map information.
In this case, the redundant design is not mandatory in AD-Lv3 because the
automated driving can continue for a short duration. However, the system must
take over the driving operation to the driver by EO because it cannot receive
the map information to arrive at the destination.

2.3 Proposed Design Process

We propose a graceful degradation design process according to the concept
mentioned in Sect. 2.1. Figure 2 shows an overview of the proposed design pro-
cess. This process consists of system-level, ECU-level, and MC-level degradation
design phases. The process proceeds by stages in the order of DF definition,
clarification of state transition condition, and DF implementation.

The system-level degradation design independently defines DFs against per-
formance limitation and against hardware failure of sensors, acutuators, and
ECUs. Subsequently, DFs against both are defined. The DFs of an AD sys-
tem are determined by integrating each defined DF. The ECU-level degradation
design defines DFs against ECU internal hardware failure and verifies that the
WCMST satisfies the deadline. The MC-level degradation design defines the fail-
ure factor that causes MC failure by analyzing MC internal failure and updates

24 T. Ishigooka et al.

the state machine developed by system-level and ECU-level design. The state
machine is implemented as a state management module to select a DF according
to the detected hardware fault.

The details of each design process are explained by using an example of
AD-Lv3 for highway from next subsection.

Fig. 2. Proposed design process

2.4 System-Level Degradation Process: Degradation Definition
Against Performance Limitation

The AD system recognizes lane and other vehicle by camera and measures the
distance from them by Lidar or Radar. It provides automated driving by collision
avoidance by controlling steering and braking according to the traffic condition.
The performance limitation of these sensors, recognition algorithm, and actuator
may occur according to the weather or road conditions. According to ISO/PAS
21448 [8], the factors triggering performance limitation are bad weather, such as
fog, rain, and snow, or bad road conditions such as faint white lines and tunnels.

Table 1 shows the characteristics of major sensors for AD systems. For exam-
ple, the camera can recognize objects that are far away. However, the perfor-
mance decreases due to bad weather. On the other hand, Radar is not affected
by weather. Radar is useful to accurately measure the distance from obstacle,
but has problems to classify objects or recognize lane position. Thus, a sensor

Graceful Degradation Design Process for Autonomous Driving System 25

alone cannot handle various driving situations. Therefore, the AD system has
redundant sensors by using different sensors for all directions to complement the
characteristics of each other.

Table 1. Example of sensor characteristic

Table 2. Example of impact analysis matrix

To define DF against performance limitation, we focus on the kinds of sensors
and sensing direction of a target system architecture. We analyze the change
of recognition contents or range in each direction against each factor causing
performance limitation and define DFs if necessary (see Table 2(a)).

For example, in an AD system whose both camera and Radar sense the
front of an ego vehicle, if the weather is fog, as the Radar is not affected, the AD
system selects automated driving based on Radar. However, the camera can only
recognize white lanes that are a short distance away due to the fog. Therefore,

26 T. Ishigooka et al.

the AD system needs a DF for driving at a low speed to avoid the situation when
the traffic lane deviates during a sharp curve.

We can define DFs against performance limitation by analyzing all sensing
directions in all situations. Weather or road conditions may recover during auto-
mated driving. Therefore, states to execute DFs against performance limitation
are sub-states of NS (see Fig. 2(a)).

2.5 System-Level Degradation Process: Degradation Definition
Against Hardware Failure

As mentioned in Sect. 2.2, to continue automated driving after the failure occurs,
hardware redundancy is necessary. For example, regarding sensors, redundant
heterogeneous sensors are applied, as mentioned in Sect. 2.4. Furthermore, the
AD-ECU also must be redundant. In this step, DFs against hardware failure of
sensors and ECUs are defined.

A sensor failure may affect recognition distance or content. However, the
effect of the failure is prevented by the redundant sensor; otherwise the effect
occurs. Moreover, if the vehicle is equipped with sensors of the same kind, the
required DFs depend on the sensing direction, such as the front, left, right, and
rear of the vehicle. Therefore, the definition of DFs is conducted by taking into
account the sensing direction affected by each sensor failure (see Table 2(b)).

In particular, the system sensing the front by camera and Lidar conducts
the automated driving by using a camera with a long recognition distance in
NS. If a camera failure occurs, the system can sustain automated driving by
using Lidar for front obstacle detection. However, as the recognition distance
becomes shorter, the DF to reduce the speed according to the changed recogni-
tion distance is necessary for collision avoidance. For lane detection for sustaining
automated driving, the side camera or rear camera can be substituted for the
front camera.

In the system duplicated by AD-ECU and degradation ECU, if the failure of
AD-ECU occurs, the AD function degrades. For example, if the failure of AD-
ECU with passing function occurs, the degradation ECU without the passing
function sustains the automated driving for EO. If the failure occurs during
passing a vehicle, the degradation ECU does not work because of the impossible
situation. Therefore, a DF to fill the function gap is necessary. For example,
the trajectory information of AD-ECU is stored as backup in the degradation
ECU in NS. If the failure of AD-ECU occurs, the backup is utilized until the
automated driving of the degradation ECU is available.

2.6 System-Level Degradation Design: Degradation Definition
Against Performance Limitation and Hardware Failure

In Sects. 2.4 and 2.5, DFs against performance limitation and hardware fault are
defined independently. In this section, DFs for both are defined. The important

Graceful Degradation Design Process for Autonomous Driving System 27

point of the analysis is to define DFs when the failure of one of the redun-
dant sensors occurs when the performance of the other sensor is degraded (see
Table 2(c)).

Fig. 3. Example of degradation function against performance limitation and hardware
failure

For example, in a system sensing the front by camera and Radar, if the
performance degradation of the camera due to heavy rain while driving on the
highway occurs, the system switches to automated driving based on Radar and
conducts a DF to reduce speed according to the sensing distance (T1 of Fig. 3).
Furthermore, if the failure of the front Radar occurs during low-speed automated
driving, the system must drive at a slower speed because the system must rely on
the degraded camera. However, this produces an unacceptable risk of rear-end
collision. Hence, the system decides to request the driver to take over driving (T2

of Fig. 3). If the take-over request is accepted, the operation becomes manual
driving by the driver (T3 of Fig. 3). On the other hand, if the request is not
accepted by the deadline, the system will stop at the edge of the road (T4 and
T5 of Fig. 3).

The state machine of the system is established by integrating the DFs defined
in this section, Sects. 2.4, and 2.5 (see Fig. 2(c)).

2.7 ECU Level Degradation Design: Function Design and Allocation

The AD function and DFs are implemented in AD-ECU or the degradation ECU.
In this step, before the definition of DF against ECU internal hardware failure,
we design the algorithm of DFs and allocate each DF to the MC.

In this paper we assume that AD-ECU consists of MCs called RP-MC,
PL-MC, and CL-MC. For example, RP-MC performs recognition processing for
camera, Lidar, or Radar, and failure detection (FD) for the hardware of sensors
and other ECUs. PL-MC performs a function to integrate recognition results,
localization, trajectory generation, and DFs. CL-MC performs a decision-making
function to select a DF as fault reaction (FR) if performance limitation or hard-
ware failure occurs. Furthermore, CL-MC performs a function to translate the

28 T. Ishigooka et al.

trajectory information to control command for the actuators (see Fig. 2(d)). The
degradation ECU may consist of an MC because the ECU has minimum functions.

2.8 ECU Level Degradation Design: ECU Safety Analysis

In this section, DFs against ECU internal hardware failure are defined. The
analysis target is an ECU internal device such as the communication bus between
sensor and MC, the bus between MCs, a network switch, a power supply device,
and MC.

If a failure of network switch occurs, it causes multiple point failure of the
sensors. Therefore, additional DFs may be necessary according to the new per-
formance degradation. The DFs against multiple point failure of sensors can be
defined at the system-level degradation design step. However, it is not efficient
because of the huge number of the potential combination. Thus, in this step,
only the actual combinations are analyzed.

2.9 ECU Level Degradation Design: Verification of Mode Switch
Performance

In this section, the real-time performance of the system is verified. In particular,
the WCMST of the system can finish by the failure time to interval (FTTI) [6]
to avoid hazards and is verified by referring to the specification information. If
it does not finish, the design process must return to Sect. 2.7, and the function
allocation must be re-designed. This process is conducted before the software
or hardware development. Therefore, the process is efficient to reduce efforts if
specification refinement is necessary.

The calculation method of WCSMT is specified in Sect. 3.

2.10 MC Level Degradation Design: Function Implementation

In this section, DFs against MC internal hardware failure such as CPU and
memory are defined. Furthermore, the functions defined in this proposed whole
process are implemented on MCs. Consequently, we can develop the AD system
based on graceful degradation.

2.11 Integration into ISO26262 and ISO/PAS 21448

In Sect. 2.3, we explained the design process for graceful degradation. In this
section, we explain the position of the proposed process in the whole process
based on ISO26262 and ISO/PAS 21488.

Figure 4 shows the overview. Section 2.4 is contained in the process on
improvement of function and system specification. Section 2.5 is contained in the
process for functional safety requirement definition. Section 2.6 is not clarified in
the standards. Therefore, we establish it as the independent process. Section 2.9
is contained in the process for technical safety requirement definition. Section 3

Graceful Degradation Design Process for Autonomous Driving System 29

is originally defined in the integration process after implementation. However,
as mentioned before, we proposed the WCSMT verification, which refers to the
specification information, to reduce efforts. Since the corresponding process is
not defined in the standards, we define it as the new process.

3 Calculation Framework of Worst-Case Mode Switch
Time

The system based on graceful degradation consists of multiple FDs and DFs, as
shown in Fig. 2(d). The mode switch processing means a series of processings, e.g.
from FD against hardware failure and a selection of a DF to execute the DF.

As a calculation method of WCMST, there exists a method of worst-case
response time analysis by using execution flow [10]. However, the method can-
not analyze the state transition to select a DF according to the performance
degradation factor. Therefore, the method determines WCSMT by addition of
a FD, a FR, and a DF with maximum time. Since the FR is a common process-
ing executed after the execution of FDs, WCMST is calculated by addition of
FD1+FR+DF2 or FD1+FR+DF3 in Fig. 5(a). Consequently, it may show
the pessimistic result because the combination between the FD and DF actually
may not happen.

In this paper, we propose a calculation framework for WCMST by utilizing
state transition information produced by the graceful degradation design process
(see Fig. 5(b)). The framework improves the accuracy of WCMST because it
evaluates only the actual combinations between FDs and FDs. However, there
is a disparity about communication time from FD to FR or from FR to DF
because of various function allocations (see Fig. 2(d)).

Fig. 4. Integration of Proposed Process into ISO26262 and ISO/PAS 21448

30 T. Ishigooka et al.

Fig. 5. Methods for worst-case mode switch time calculation

Thus, the proposed framework determines WCMST by selecting the combi-
nation between FD and DF with maximum time at each MC and by comparing
with each mode switch time, which is calculated by adding the selected FD,
FR, and DF. According to ISO26262, the maximum time of FD means the fault
detection time interval (FDTI). The result by adding the maximum time of FR,
DF, and the communication time means the fault reaction time interval (FRTI).
The framework to calculate FDTI, FRTI, and WCMST is shown below.

TFD means the fault detection time, TMP means an execution period of FD,
TComFR means the communication time from FD to FR, TFR means the fault
reaction time, TComDF means the communication time from FD to DF, and TDF

means the time until the first output of DF.

FDTI = TFD + TMP (1)

FRTI = TComFR + TFR + TComDF + TDF (2)

WCMST = max(FDTI + FRTI) (3)

Consequently, in Sect. 2.9, we can verify that the WCMST of the system
satisfies FTTI.

4 Case Study

To evaluate the effectiveness of the proposed process and framework, we applied
them to the AD-Lv3 prototype as a case study.

4.1 Evaluation Target

The target system architecture of AD-Lv3 for a highway is shown in Fig. 6.
The system requests take-over to the driver as the fail-operational function if
a critical failure occurs. The system supplies fail-operational functions for a
frequently encountered part of the highway driving situations after the time-out
of the request as mentioned in Sect. 1.

The target system consists of AD-ECU and degradation ECU for fail-
operational purpose. The AD-ECU is connected by six camera1s and three
Lidars. The degradation ECU is connected by a camera2 and five Radars. These

Graceful Degradation Design Process for Autonomous Driving System 31

ECUs are connected by a redundant network bus to detect the other ECU fail-
ure. The map information inputs to AD-ECU. Each ECU can output calculated
signals to integrated control ECUs via the redundant network bus. Furthermore,
the AD-ECU and degradation ECU are run by different power supply devices.

Regarding sensing direction, camera1, Radar, and Lidar can monitor the
surroundings of the ego vehicle by each sensor. Camera2 monitors only the front
of the vehicle. The map information has lane information to the destination
direction.

Fig. 6. System architecture of case study

The ECU architecture follows the assumption mentioned in Sect. 2.7. AD-
ECU consists of three RP-MC, a PL-MC, and a CL-MC. Degradation ECU
consists of a RP-MC, a PL-MC, and a CL-MC. The sensing information is input
to RP-MCs via several network buses and a switch. The RP-MC processes the
sensing information and sends the result to PL-MC. The PL-MC calculates the
trajectory information and sends it to the integrated control ECUs via CL-MC.

The AD-ECU have functions for automated driving and passing. The degra-
dation ECU have a function for only automated driving.

4.2 Evaluation Result on Graceful Degradation

In this section, we explain the summary of the application result of the proposed
process and the evaluation result. In Sect. 2.4, we defined a DF to reduce speed
for lane detection during bad weather condition. The DF conducts the auto-
mated driving based on Radar. In Sect. 2.5, we defined a DF to reduce speed
according to a change of sensing range if the failure of the front camera occurs.
Furthermore, we clarified the failure of a map information supply device and
AD-ECU as the factors to transit to EO. As EO, we defined a DF to utilize the
trajectory backup if the failure of AD-ECU occurs during passing. In Sect. 2.6,
we clarified the failure of the front Radar during bad weather as the factor to
transit to EO because there exists the risk on rear-end collision due to slower
speed. Furthermore, we defined a DF to limit automatic passing if the side Radar
failed during bad weather. In Sect. 2.7, we allocated defined DFs into MCs. In

32 T. Ishigooka et al.

Sect. 2.8, we found out that the failure of the network switch caused the termina-
tion of the inputs of both camera2, Radar, and map information. Consequently,
we could design the AD-Lv3 based on graceful degradation according to the
proposed process.

Figure 7 shows the AD-Lv3 system state machine. It consists of 2 states in
SS, 2 states in NS, 3 states in LP, and 4 states in EO. Through the process,
we clarify performance degradation factors, which consist of 8 factors caused by
performance limitation, 36 factors caused by hardware failure, and 288 factors
caused by both. Among them, 46 factors are transition events to EO. Therefore,
the result showed the system can sustain 86.1% of the automated driving if a
performance degradation factor occurs.

Fig. 7. Evaluation result of graceful degradation

Fig. 8. Evaluation result of worst-case mode switch time

4.3 Evaluation Result on Worst-Case Mode Switch Time

We evaluated the WCMST of the designed system. In this evaluation, we calcu-
lated WCMST according to the proposed framework. We selected the FD with
maximum time for each DF in 5 MCs and calculated each FRTI. Some of MCs
did not transit to EO. As a result, we extract 9 combinations and calculated
each mode switch time (see Fig. 8). The WCMST was 330 ms. Furthermore, we

Graceful Degradation Design Process for Autonomous Driving System 33

calculated WCMST according to the method based on execution flow mentioned
in Sect. 3. The method showed 510 ms as WCSMT (see Ref. of Fig. 8). Therefore,
the comparison result showed the proposed framework improved the calculation
accuracy of WCSMT by 35.3%.

5 Conclusion

In this paper, we proposed a graceful degradation design process for an AD sys-
tem and a calculation framework for WCMST. The proposed process consists
of system-level, ECU-level, and microcontroller-level degradation design. The
process enables to improve the automated driving continuation rate by defin-
ing degradation functions against performance limitation and hardware failure.
Futhermore, we showed that the process is compliant with ISO/PAS 21448 and
ISO26262. The proposed framework enables to calculate WCMST accurately by
utilizing degradation design results. We applied them to an AD-Lv3 prototype
and evaluated the effects as a case study. The result showed that the automated
driving continuation rate of the designed system was 86.1% and the framework
could improve the accuracy of WCMST by 35.3%.

As a future plan, we plan to research a method to develop a cold-standby
DF by refactoring.

References

1. SAE International, J3016: Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles (2016)

2. Shelton, C.P., Koopman, P., Nace, W.: A framework for scalable analysis and
design of system-wide graceful degradation in distributed embedded systems.
In: Proceedings of IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (2003)

3. Reschka, A., Boehmer, J.R., Nothdurft, T., Hecker, P., Lichte, B., Maurer, M.:
A surveillance and safety system based on performance criteria and functional
degradation for an autonomous vehicle. In: Proceedings of IEEE Conference on
Intelligent Transportation Systems (2012)

4. Nya, T.D., Stilkerich, S.C., Siemers, C.: Self-aware and self-expressive driven fault
tolerance for embedded systems. In: Proceedings of IEEE Symposium on Intelligent
Embedded Systems (2014)

5. Schlatow, J., et al.: Self-awareness in autonomous automotive systems. In: Pro-
ceedings of Design, Automation, and Test in Europe Conference and Exhibition
(2017)

6. International Organization for Standardization, ISO 26262:2018 Road vehicles -
Functional safety (2018)

7. Ishigooka, T., Honda, S., Takada, H.: Cost-effective redundancy approach for fail-
operational autonomous driving system. In: Proceedings of IEEE International
Symposium on Real-Time Distributed Computing (2018)

8. International Organization for Standardization, ISO/PAS 21448, Road vehicles -
Safety of the intended functionality (2019)

34 T. Ishigooka et al.

9. Feth, P., et al.: Multi-aspect safety engineering for highly automated driving. In:
Proceedings of International Conference on Computer Safety, Reliability, and Secu-
rity (2018)

10. Schlatow, J., Moestl, M., Tobuschat, S., Ishigooka, T., Ernst, R.: Data-age anal-
ysis and optimization for cause-effect chains in automotive control systems. In:
Proceedings of International Symposium on Industrial Embedded Systems (2018)

11. Hang, Y., Hansson, H.: Timing analysis for mode switch in component-based multi-
mode systems. In: Proceedings of Euromicro Conference on Real-Time Systems
(2012)

Formal Verification of Memory
Preservation of x86-64 Binaries

Joshua A. Bockenek1(B), Freek Verbeek1, Peter Lammich2,
and Binoy Ravindran1

1 Bradley Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA 24061, USA

{jabocken,freek,binoy}@vt.edu
2 School of Computer Science, University of Manchester, Manchester, UK

peter.lammich@manchester.ac.uk

https://ece.vt.edu/, https://www.cs.manchester.ac.uk/

Abstract. Formal verification of a binary can provide high software
assurance, even when the source code is unavailable. It is, however,
inherently hard due to the low level of abstraction involved; instead of
verifying typed and structured source code, one has to verify machine
code or reconstructed assembly. This paper presents a semi-automated
methodology for formally verifying memory preservation, as well as reg-
ister preservation, over disassembled binaries. The methodology is based
on formal symbolic execution and Floyd-style verification. We show that
the methodology is compositional on the function level, which is crucial
for scalability. The methodology works for loops, recursion, and both
optimized and non-optimized code. It can be used to expose precondi-
tions required for non-exceptional behavior. We demonstrate applicabil-
ity by verifying a set of functions from the HermitCore unikernel library.

Keywords: x86-64 · Assembly · Isabelle/HOL · Formal verification

1 Introduction

Building high-assurance software greatly benefits from the usage of formal ver-
ification. Typically, formal verification shows that a given piece of source code
satisfies a certain property. In contrast, this paper considers formal verification
of binaries. Binary verification can be applied to legacy software or software
whose source code is unavailable, e.g., due to proprietary reasons. Moreover, it
significantly reduces the trusted computing base (TCB) of the verification effort.

The drawback of binary verification is the semantical gap between a binary
and its source code. The compilation process removes information such as types,
control flow structure, and data structures such as arrays. Manual proofs over
large sequences of assembly are so intricate and user-intensive that they are
practically infeasible, and a fully automated proof methodology is theoreti-
cally impossible due to the undecidability of semantic properties over programs
c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 35–49, 2019.
https://doi.org/10.1007/978-3-030-26601-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_3

36 J. A. Bockenek et al.

(Rice’s theorem [11]). An approach is required that automates binary verification
as far as possible, but still allows user interaction.

This paper combines interactive theorem proving with automated generation
of formal proofs. This semi-automated approach to binary verification eliminates
the need for large and intricate proofs over assembly blocks while still allow-
ing the user to direct the prover whenever necessary. This contrasts with fully
automated methods such as SMT solvers [1,19]. The approach is tailored for a
specific property called memory preservation. Memory preservation shows that
the memory written to by a program is restrained to specified regions. This can
then be used to prove the absence of common memory-related issues, such as
buffer overflows or some forms of data leakage (the next section discusses mem-
ory preservation further). To achieve scalability, the approach uses function-level
compositionality.

The methodology is applied to several functions from the HermitCore uniker-
nel library [15]. HermitCore is an operating system (OS) kernel library aiming
to provide real-time guarantees for high-performance computing. The functions
have been compiled for the x86-64 instruction set architecture (ISA) using the
GNU Compiler Collection (GCC). The functions chosen provide a variety of fea-
tures, including memory operations, loops, recursion, non-trivial data structures,
pointers, and subcalls.

Fig. 1. Overview of methodology

Figure 1 shows an overview of the contribution’s methodology. The approach
disassembles a binary using an off-the-shelf disassembler, performs analysis on
the binary to extract data for automation, and embeds it into a theorem prover
using the symbolic execution toolchain of Roessle et al. [26], the machine model
of which is based on the work of Heule et al. [9]. Within the theorem prover,
two things need to be manually defined: an invariant and the set of regions that
the function is allowed to write to. Defining invariants manually is traditionally
a hard task, but this paper provides requirements for invariants targeted at
memory preservation. Given the manually-added invariants and regions as input,
a formal proof of memory preservation is generated largely automatically. The
methodology is implemented in Isabelle/HOL [22] for the x86-64 ISA.

2 Memory Preservation

A program that satisfies memory preservation does not write to locations outside
of pre-specified memory regions. Memory preservation is an important property
for the following reasons:

Formal Verification of Memory Preservation of x86-64 Binaries 37

Security. Various vulnerabilities occur in software whose memory usage is
unbounded, such as buffer overflows or data leakage. An example of data leak-
age from the past few years that had a significant affect on security was the
Heartbleed vulnerability, wherein invalid input caused out-of-bounds memory
accesses, leaking potentially sensitive data. Memory preservation can be used as
a starting point to expose such vulnerabilities.

Composition. Any verification effort over software is scalable only when it is
compositional. If one targets proofs of full functional correctness over a large
suite of software, that suite needs to be decomposed into separate chunks. Sepa-
ration logic provides a frame rule that allows such decomposition [25]. This rule
intuitively states that if a program can be confined to a certain part of a state,
properties of this program carry over when the program is part of a bigger sys-
tem. Memory preservation essentially discharges the most involved part of this
frame rule when it comes to functions in a binary: it shows a function is confined
to specific regions of the memory. Being able to prove memory preservation is
thus a prerequisite for any larger proof effort over binaries.

Concurrency. Reasoning over concurrent programs is complicated due to
potential interactions between threads. Interactions can be intended, e.g., via
IPC, I/O, or interrupts. Shared memory can be a cause of unintended interac-
tion between threads. By showing that the functions in two threads write to
specifically allowed regions of shared memory only, unintended interactions can
be removed.

2.1 Formal Definition

The formal definition of memory preservation starts with the notion of state. In
this implementation, states are defined by a record that stores registers, flags, and
64-bit addressable byte-level memory. Moreover, a machine model is required.
Let S denote the type of states and let A denote the type of instructions. The
machine model provides a function step ::A×S �→ (S | ⊥E). This function takes
as input an instruction and a state σ. It is a partial function, producing either
the constant ⊥E (indicating an exception) or some state σ′.

From the machine model, we manually derive a run function run until :: (S �→
B) × S �→ (S | ⊥E | ⊥NT). This partial function takes as input a state predi-
cate H and a state σ. Predicate H denotes the halting condition. Typically, the
halting condition instructs the run function to stop at a certain line of the assem-
bly, such as at a ret instruction. The run function iteratively fetches the current
instruction via the current value of the instruction pointer and uses the machine
model to execute it. Whenever an exception occurs, it stops and returns ⊥E . If
the execution were to continue forever without an exception or reaching the halt-
ing condition (e.g. due to an infinite loop), the function returns ⊥NT . Formally,
this is achieved by a standard least-fixed-point construction.

38 J. A. Bockenek et al.

A Hoare triple denotes a pre- and postcondition for a certain program. Let P
and Q be state predicates. In our notation, {P} H {Q} denotes that, for any
state σ, assuming precondition P and termination, run until(H,σ) produces a
non-exceptional state that satisfies postcondition Q. Note that this differs from
standard textbook Hoare triples [10,20] as it uses a halting condition instead of
an explicit program statement. Instead, the program statement is characterized
by the addresses of its initial and ending instructions, defined in P and H.

Before memory preservation can be defined, some further notations and defi-
nitions need to be introduced. A memory region [a, s] is defined by its address a
(a 64-bit word) and size s in bytes (a natural number). A memory region is
assumed not to overflow, i.e., the address plus the size is less than 264. To read
a region of memory in the state, we use the notation σ : ∗[a, s]. If it is clear from
context which state is meant, that state will be omitted. This function reads a
list of bytes from the given address, reverses it (since we are dealing with a little-
endian architecture) and converts it to a word. The following notation denotes
writing a word v to address a in state σ: σ�a

M= v�. This function decomposes the
given word into bytes, reverses them and then writes it into memory. Note that
an explicit size is not necessary, since that information is enclosed in the type
of v. Similarly, operators R= and F= write to registers and flags, respectively; := is
also used for register assignment in places. Central notions concerning memory
regions are separation, enclosure, and overlapping:

Definition 1. Two regions r = [a, s] and r′ = [a′, s′] are separated, r �� r′, if
and only if s = 0 ∨ s′ = 0 ∨ a + s ≤ a′ ∨ a′ + s′ ≤ a. Region r = [a, s] is enclosed
by region r′ = [a′, s′], r � r′, if and only if a ≥ a′ ∧ a + s ≤ a′ + s′. Two regions
overlap if they are not separate.

Memory preservation is defined as a Hoare triple. Assume a predicate P
that characterizes the initial state, e.g., sets the instruction pointer to the first
instruction of a function body. Moreover, let R be a set of regions that the
function is allowed to write to. Set R includes the stack frame and utilized
data sections from the binary as well as any utilized heap memory. Memory
preservation formulates that any byte not within any region in R has to remain
unchanged. This is formalized as follows.

Definition 2. Let R be a set of regions, let P be a precondition and let H
denote a halting condition. A piece of assembly provides memory preservation if
and only if, for any address a and byte-value v0:

(∀r ∈ R · r �� [a, 1]) =⇒ {P ∧ ∗[a, 1] = v0} H {∗[a, 1] = v0} (1)

3 Blocks

This section describes how to prove memory preservation over blocks of assembly.
A block is defined as a sequence of assembly instructions whose behavior can be
described using only state transitions and branches. A block always terminates
and has no loops.

Formal Verification of Memory Preservation of x86-64 Binaries 39

3.1 Symbolic Execution

The main proof technique applied is symbolic execution, which uses rewrite rules
to establish the semantics of a block. Since we do symbolic execution within
Isabelle/HOL, each rewrite rule is formally proven correct. Rewrite rules essen-
tially allow lifting the level of abstraction. For example, the next subsection
defines rewrite rules for writing into memory. Instead of unfolding the write
function – which contains details on byte-level little-endian memory – the write
function is kept abstract: the fact that writing decomposes a value into a byte
list and reverses it is invisible in the rewritten state.

An inherent difficulty caused by symbolic execution is the alias problem.
Consider the following symbolic state: σ�a

M= v, a′ M= v′�. Two values have been
written into memory, first value v to address a and then value v′ to address a′.
The addresses are however completely symbolic, meaning that it is unknown
whether regions [a, |v|] and [a′, |v′|] overlap or not (|x| meaning the size of value
x). If they do not overlap, then this is indeed the most concise symbolic repre-
sentation of the current state. In that case, reading from address a will simply
return value v. However, problems occur when the regions do overlap. Consider,
e.g., a = a′ and |v| = |v′|. In that case, the most concise symbolic representation
is actually σ�a

M=v′�. Reading from address a will then return v′ instead of v. This
becomes more complicated when the regions do overlap but the addresses are
not equal or the sizes of the values are different, such as when writing multi-byte
objects into a byte array and vice versa.

3.2 Rewriting of Memory Accesses

Symbolic execution of a block of assembly will result in a symbolic state with a
series of memory writes: σ�a0

M=v0, a1
M=v1, . . .�. In order to read from such a state,

the alias problem must be solved: if it is unknown whether any of the written
regions overlap, then reading from memory cannot be resolved deterministically.
To solve the alias problem, rewrite rules are formulated that ensure that the
symbolic state always satisfies the following form: any two regions written to
memory are separate. This is an invariant over the form of the symbolic state,
e.g., it prevents a state of the form σ�a0

M= v0, a0
M= v0�. Given this invariant,

reading a region r = [a, s] can be achieved by looping over the written regions
r0, r1, . . . one by one. If a region rn is found such that r � rn, then a value can
be read. Any region rn such that r �� rn can be ignored. It might be possible
that no single written region encloses region r completely, but a set of written
regions encloses it. In that case, that set of regions can be merged into one region.
Subsequently, that new region encloses region r and can thus be used to resolve
the read.

Writing to Memory. In order to preserve the region separation invariant,
writing a region into memory can require region merging, defined as follows.
Let r0 be the region to be written and let r1 be a region already in memory.

40 J. A. Bockenek et al.

If the regions overlap, the state after having written region r0 will contain one
region that is the result of overwriting region r1 with r0. To define that merged
region, we use list functions tk(n, x) and dr(n, x) (for taking/dropping the first n
elements of list x) and list appending (@). The merged region is defined as
mrg([a1, v1], [a0, v0])

def= [min(a0, a1), r′], where

r′ = tk(max(0, a0 − a1), v0) @ v0 @
dr(a0 + |v0| < a1 + |v1| ? a0 + |v0| − a1 : |v1|, v1) (2)

Rewrite Rule Eq. 3 shows the rewrite rule used whenever a new region is
written into memory. That rule preserves the necessary invariant. The right hand
side underlines the redexes in the rewritten statement (note this notation is only
used for this particular rewrite rule). That is, after application of this rewrite
rule, non-underlined parts will not be rewritten any further. For this rule only,
we use an alternative notation for writing to memory: e.g., σ�a0

M= v0, a1
M= v1�

is equivalent to w(a1, v1,w(a0, v0, σ)), and we also have r0 = [a0, |v0|] and r1 =
[a1, |v1|].

w(a0, v0,w(a1, v1, σ)) ≡
{

w(a1, v1,w(a0, v0, σ)) if r0 �� r1

w(mrg(r1, r0), σ) otherwise
(3)

In order to admit this rule to the Isabelle/HOL logic, it needs to be formally
proven correct. The proof is based on two lemmas. First, writing separate blocks
is commutative. Second, the merge function is correct: the produced region is
the result of two sequential and overlapping memory writes.

Reading from Memory. Let r = [a, s] be a region to be read in a state with
a series of memory writes. Rewrite Rule Eq. 4 provides a rule for this case.

σ�a1
M= v1� : ∗[a, s] ≡

{
tk(s,dr(a − a1, v1)) if [a, s] � [a1, |v1|]
σ : ∗[a, s] if [a, s] �� [a1, |v1|]

(4)

If an enclosing region has been found, the read can occur. A separate region can
be ignored. However, the rule is incomplete: the memory might contain a written
region that overlaps with r but does not enclose it. Two cases can arise. First, it
can be the case that the set of overlapping regions is still not sufficient to enclose
region r. In that case, no further rewriting is possible. This corresponds to a case
where memory that has not been written to is read. The second case occurs when
there is a set of overlapping regions enclosing region r. In that case, those regions
have to be merged before Rule Eq. 4 can be applied. The proof of Rewrite Rule
Eq. 4 is among other things based on correctness of the functions that (a) split a
word value into a byte list, (b) reverse that list, and (c) concatenates that byte
list back to a word value.

Formal Verification of Memory Preservation of x86-64 Binaries 41

3.3 Reasoning over Memory Regions

The previous subsection showed that we need to reason over separation and
enclosure of memory regions. Given assumptions on the memory layout, it needs
to be automatically inferred whether two regions overlap or not. We first detail
how to formulate these assumptions, and then show what steps are needed to
set up automatic inference of memory region properties.

Without any assumptions, the memory model is a simple flat function from
64-bit words to bytes. Symbolic execution then places the data sections of a
binary in some part of the memory and places the stack frame in some other
part of the memory. Naturally, these should not overlap. We use function

⊗
to formulate such assumptions. This function takes as input a set of regions
annotated with a unique ID. This ID allows reasoning over (in)equality of regions:
without an ID, it is impossible to decide whether two regions of the same size
are equal.

Definition 3. Let R be a set of pairs of unique IDs and regions. Set R is sep-
arated if and only if all of its regions are separated:⊗

(R) def= ∀(i0, r0), (i1, r1) ∈ R · if i0 = i1 then r0 = r1 else r0 �� r1 (5)

Typically, set R contains large regions, such as the stack frame. The rewrite
rules typically concern small regions, such as the region of a local variable within
the stack frame. We thus need rules that infer properties over small regions from
larger ones.

Fig. 2. Rewrite rules for properties over memory regions.

Figure 2 shows such rules. These rewrite rules are able to infer, from the
assumptions over larger regions, the properties separation and non-enclosure
over smaller regions. However, they can not sufficiently infer enclosure. Often,
the only way to prove enclosure is to unfold its definition. This introduces two
inequalities over words (see Definition 1). Such inequalities can be solved using
the Isabelle/HOL tool unat arith, which is a solver for arithmetic bit-vector equa-
tions [6]. This tool is augmented with several heuristics and auxiliary lemmas

42 J. A. Bockenek et al.

to facilitate proofs of enclosure. These proofs are time-consuming and can sig-
nificantly clutter the proof effort. Therefore, we introduce the concept of parent
regions. A parent region is a member of set R, and is thus a region annotated with
an ID. The parent region for each memory region occurring in an assembly block
must be manually established. For example, local variables have as parent region
the stack frame, whereas constants have as parent frame some data section. The
following notation is used to link a memory region r0 to a parent region r1 with
ID i: parent(r0, i, r1). The parent regions are thus manually defined. Given that
information, the proof of enclosure is done automatically, and only once. The
established enclosure properties are then used in the inference based on the rules
in Fig. 2.

As a concrete example, consider a two-byte array starting at address 10 and
having ID 5. The region for this array would be [10, 2], with ID formulation
(5, [10, 2]). If we take the two bytes of the array as child regions, the region
relations would be parent([10, 1], 5, [10, 2]) and parent([11, 1], 5, [10, 2]).

4 Loops

When using symbolic execution to analyze code, loops pose a significant prob-
lem. First, they result in significant path explosion. There exist methodologies
to reduce the number of paths to execute when using loops [23,27]. However,
these are not formally verified and therefore not usable within Isabelle/HOL.
Second, deciding the looping condition on a symbolic state may produce non-
determinism, which can cause symbolic execution itself to loop infinitely.

We instead apply a method similar to Floyd verification [7]. This style of
verification assumes that, for each loop, at least one instruction is annotated
with a state predicate. In this way, blocks lie between annotated state pairs.
If, for each annotated state, the succeeding annotated state satisfies its state
predicate, a Hoare triple can be inferred for the program as a whole. Floyd-style
verification allows breaking up a larger program with loops into smaller blocks,
each of which is verifiable using symbolic execution.

A Floyd invariant is a function I ::L �→ ((S �→ B) | ⊥). For each program
location L it can optionally provide a state predicate. We use loc(σ) to get
the location of the given state (e.g., the current instruction pointer). Notation
I(σ) applies the Floyd invariant to the current state, i.e., I(σ) = I(loc(σ)) �=
⊥ ∧ I(loc(σ), σ).

Definition 4. A Floyd invariant I holds if and only if, for any state σ,

I(σ) −→ σ′ �= ⊥E ∧ (σ′ = ⊥NT ∨ I(σ′)), (13)

where σ′ = run until((λσ · I(loc(σ)) �= ⊥), σ).

If the Floyd invariant holds in the current state σ, then running to the next
annotated location does not produce an exception. If it terminates, the produced
state σ′ satisfies the Floyd invariant.

The following theorem states that a Floyd invariant can be used to prove a
property over the program as a whole:

Formal Verification of Memory Preservation of x86-64 Binaries 43

Theorem 1. Assume that Floyd invariant I holds and provides an annotation
for locations l0 and lf (the initial and final location). Let halting condition H
stop at location lf , i.e., H(σ) −→ loc(σ) = lf . Then {I(l0)} H {I(lf)}.

Intuitively, Floyd style verification allows a program to be modeled as a
control flow graph (CFG). In that CFG, each arrow can be seen as an implication.

5 Composition

Compositionality is crucial for scalability. It is required for two different reasons.
First, at the level of function calls, compositionality should ensure that when a
function is called, a previous verification effort over that function can be reused,
without opening up the function body. Second, compositionality can drastically
improve scalability within a function body as well. Consider the following pseu-
docode, which sequentially executes an if-statement and some program P :

if b then x else y; P

The assembly code corresponding to this code can be verified using symbolic
execution. This would first consider the case where b is true, execute x and
subsequently symbolically execute program P . Then it would consider the case
where b is false, execute y and then P . Program P is thus symbolically executed
twice. Without compositionality, programs with if-statements may require cer-
tain parts to be executed a number of times exponentially in the number of
if-statements. With compositionality, program P needs to be symbolically exe-
cuted only once.

The notion of Hoare triples as defined in this paper (see Sect. 2.1) uses a
halting condition. Standard composition [10,20] does not apply to this kind of
Hoare triples. Consider a run obtained by halting condition H ′. It is possible
to break this run into two, by first running until a halting condition H, and
then until H ′. This requires that H ′ is stronger than H, i.e., H ′ implies H. This
ensures that the run first stops at H before it stops at H ′.

Theorem 2. Hoare triples are compositional with respect to stronger halting
conditions:

{P} H {Q} {Q} H ′ {R} ∀σ · H ′(σ) −→ H(σ)
(14){P} H ′ {R}

Consider the block of assembly associated with the pseudocode example.
Let lf denote the final location, and let lP denote the initial location of pro-
gram P . Theorem 2 can be used by instantiating H with halting at either loca-
tion lf or lP , and H ′ with halting at lf . Assuming programs x and y do not
contain goto’s, condition H ′ is actually equivalent to halting at lP . Since H ′ is
stronger than H, compositionality is then possible.

Generally, compositionality over function calls requires a proof that the stack
pointer remains unchanged after execution of a function call. Consider a function

44 J. A. Bockenek et al.

body of function f starting in a text section at location l0. The function is called
from a different text section by call f at location lcall . This means the return
address is lcall + 5 (the size of the call instruction is 5). After execution of the
instruction call f, the program is at location l0 and the stack pointer has some
value rsp0. In order to apply compositionality to function calls, the pre- and
postcondition have to meet the following requirements. The precondition must
imply that the return address is pushed on the stack (which has been done by
call): ∗[rsp0, 8] = lcall + 5 ∧ rsp = rsp0.

The postcondition must imply that after ret, the net effect of the function
body is that the stack pointer has been incremented by 8: rsp = rsp0 +8∧ loc =
lcall +5. Note that call has decremented it with 8, so this implies the net effect
from the point of view of the caller is that the stack pointer has been unchanged.
Also, the postcondition shows that the location has been set back to right after
the call.

Besides the stack pointer, modern calling conventions have other callee-saved
registers, such as rbp and r12-r15. It is generally assumed that the net effect
of a function call does not touch these registers. Consider a situation in which
rbp contains an address, to which a value is written after a function call. In
order to prove memory preservation, it must be known that rbp is preserved.
Generally, this is easy to prove by strengthening the pre- and postcondition with
a conjunct rbp = rbp0. The proof is generally not complicated, since these callee-
saved registers are pushed onto the stack at the beginning of the functional calls,
and popped at the end.

6 Case Study: HermitCore

A relatively recent trend in the field of virtualization is the usage of unikernels:
programs designed for specific tasks that are compiled with all the kernel code
necessary to run the programs on a hypervisor or even bare metal without an
intermediary OS [17]. Unikernels allow an application to include only the neces-
sary parts of the OS, increasing security by reducing the attack surface. Hermit-
Core is such a unikernel [15]. It is designed for the x86-64 ISA and is written in
C with some inline assembly. HermitCore is an interesting target for verification,
as it aims to provide a high-speed and real-time environment for cloud software.
In order to demonstrate the applicability of our methodology, we verified a sub-
set of HermitCore’s library functions. These functions contain loops, recursion,
structs, unions, pointers, and function calls. Generally, both non-optimized and
optimized versions have been verified. The proofs and all associated code are
available at https://doi.org/10.6084/m9.figshare.7356110.v2.

Machine Model. The machine model must provide a step function that pro-
vides semantics for instructions. We have used the machine model of Roessle
et al. [26], which is built upon the work of Heule et al. [9]. Heule et al.
used machine learning to derive semantics by executing instructions on an
actual x86-64 machine. Their semantics have been validated against the Intel

https://doi.org/10.6084/m9.figshare.7356110.v2

Formal Verification of Memory Preservation of x86-64 Binaries 45

Table 1. Summary of functions analyzed

Functions Count SLOC Insts† Loops Recursion Pointer args Globals Subcalls -O3

dequeue_* 3 46 159 3 3 3

buddy_* 5 67 225 1 1 1 3 3 3

task_list_* 3 43 128 3 3

vring_* 3 19 80 1 3

string.h 8 81 280 8 8

syscall.c 23 293 857 5 19 7 17

tasks.c 10 122 396 2 3 9 4

spinlock.h 8 89 254 2 8 2 6

Total 71 760 2379 18 1 46 21 33 12
† Non-optimized count

reference manual. The formal model is obtained by embedding these semantics
into Isabelle/HOL. It has been tested against an actual x86-64 machine, increas-
ing the model’s reliability. It provides a formalization of large parts of the x86-64
ISA, including several modern instruction sets. Concurrency is not modeled.

Functions Analyzed. The selected functions (see Table 1) include functional-
ity pertaining to a generic circular queue or ring buffer (the dequeue_* func-
tions), the internals of HermitCore’s kmalloc setup (the buddy_* functions), task
management lists used by HermitCore’s scheduler (task_list_*), and functions
concerning virtual I/O (vring_*). We also verified standard string and memory
related functions: memcpy, memcmp, memset, strlen, strcpy, strncpy, strcmp,
and strncmp. This verification effort affirmed the well-known fact that some of
those functions require an extra precondition, i.e., that the given string is null-
terminated; failure to use null-terminated strings and/or using output buffers of
too small a size can result in buffer overflows. Additional functions that were ver-
ified consist of some providing syscall support, more task- and scheduler-related
functions, and functions for manipulating spinlocks.

Figures 3a and 3b show the CFGs for two of those functions, dequeue_push
and buddy_large_avail. The former pushes a value onto a generic array-based
queue while the latter checks for the smallest available reused memory block for a
given allocation size. The former, lacking any loops, requires only pre- and post-
conditions (though additional invariants may be added). In contrast, the latter
function requires a loop invariant in addition to the pre- and postconditions.

Discussion on Usability. In order to apply the method to a function in a
binary, three steps require user interaction: (a) defining a Floyd invariant, (b)
defining set R, and (c) proving. Traditionally, defining invariants over software is
a complicated matter. However, by restricting ourselves to memory preservation,
invariants become significantly easier.

Section 5 provides requirements that define common parts of the invariants.
For loops, one simply has to annotate each jump with a state predicate as in

46 J. A. Bockenek et al.

Fig. 3. Example Floyd invariants

Fig. 3b. However, for recursion the invariant becomes more complicated. Gener-
ally, it has to be shown that both the stack and frame pointers are preserved
throughout the recursion. Moreover, it has to be shown that return addresses
are pushed correctly. A second interaction in defining a Floyd invariant is finding
the right precondition. Such preconditions need not be derived from a reference
manual or from source code annotations; instead, users can run symbolic exe-
cution until non-determinism occurs. At that point, Isabelle/HOL provides the
exact condition under which exceptional behavior happens. It is then up to the
user to strengthen the precondition based on that condition. This means that
the proof methodology may expose implicit or undocumented preconditions.

The proof effort consists of defining parent relations and running symbolic
execution. After symbolic execution, it must be proved that the resulting state
satisfies the invariant. In most of the cases, those proofs could be handled by
Isabelle/HOL using standard off-the-shelf tools. The exception is again recur-
sion. The proof that the stack and frame pointers preserve their values requires
interactive theorem proving with a large focus on word arithmetic.

7 Related Work

Going back to the late 80’s and early 90’s, Yu and Boyer [3,28] provided seman-
tics and mechanized reasoning for a subset of instructions of the MC68020 micro-
processor in the Boyer-Moore theorem prover (Nqthm) [2], a precursor to ACL2
[12]. This work also utilized symbolic execution and even covered many of the
same string functions we did, such as strcpy and strcmp. Similarly, Clutterbuck
and Carré performed formal verification of low-level code using SPACE-8080 [5],
a verifiable subset of the Intel 8080 ISA that is analyzable and formally verifiable
using the Southampton Program Analysis Development Environment (SPADE)

Formal Verification of Memory Preservation of x86-64 Binaries 47

[4]. Another usage of SPADE for verification of assembly was in the correctness
proof of fuel control code for a Rolls-Royce jet engine [24].

Decompilation into logic allows formal verification of assembly and machine
code [21]. Developed in the HOL4 theorem prover, that work uses operational
semantics of machine code to lift programs into a functional form, which can
then be used in a Hoare logic framework for program analysis. It has been
successfully used with machine models of the ARM ISA. This work builds upon
decompilation to derive highly automated proofs for a specific property.

Matthews et al. [18] used the theorem prover ACL2 [12] to target a simple
machine model called TINY as well as Java virtual machine (JVM) bitcode
using the M5 operational model. Both of these assembly-style languages feature
a stack for handling scratch variables rather than a register file as x86, ARM,
and most other mainstream ISAs do. They utilize symbolic execution of code
annotated with invariants on specific instructions. While they proved functional
correctness, they did not show effective scalability due to the restricted models
and small amount of code verified.

In contrast to the bottom-up approach presented in this paper, top-down
approaches have been studied extensively. The CompCert project [16] provides
a compiler that has been verified to produce assembly or machine code with the
same semantics as the source, thus removing them from the TCB. A top-down
approach requires verification of the original source code as well. One such ver-
ification project is AutoCorres [8], part of the seL4 verified microkernel project
[13]. This tool parses C code into a shallowly-embedded monadic representa-
tion. It produces proofs of the semantic equivalence between the original code
and the monadic version and can be used to prove properties via Hoare logic.
Another top-down project is CakeML [14], a full-toolchain project for proof syn-
thesis and in-logic execution. It utilizes a subset of Standard ML modeled with
big-step operational semantics.

8 Conclusion

Formal verification of binaries can produce highly reliable claims over software.
By eliminating trust in a compiler or in the semantics of a source language, the
TCB is drastically decreased. It is, however, fundamentally a harder problem
than source code verification.

This paper targets formal verification of memory usage in x86-64 binaries,
showing that functions in a binary restrict themselves to certain regions of mem-
ory. It aims to automate verification as much as possible while still allowing
user interaction wherever necessary. This semi-automated methodology requires
setting up an invariant, which traditionally is a hard problem in itself. Require-
ments for memory preservation invariants are provided. For recursive functions,
more involved invariants are required, plus interactive theorem proving to show
preservation of the stack and frame pointers. Invariants include preconditions
necessary for excluding exceptional behavior. Such preconditions are exposed by
applying the methodology to a binary, instead of deriving them from documents
or source code annotations.

48 J. A. Bockenek et al.

The approach was applied to functions of HermitCore, a unikernel OS. We
formally proved memory preservation for functions with loops, recursion, C
structs and unions, and dynamic memory operations. Both optimized and non-
optimized versions were verified.

Major additions to our framework would be handling of concurrency and
related instruction variants. Additionally, proper modeling of virtual machine
and hypervisor calls in logic would allow verification of a wider range of functions
from the HermitCore library.

Acknowledgments. We thank the reviewers for their insightful comments, which
have significantly improved the paper. This work is supported in part by ONR under
grant N00014-17-1-2297 and NAVSEA/NEEC under grant N00174-16-C-0018.

References

1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

2. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press Inc., Cambridge
(1979)

3. Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used micropro-
cessor. J. ACM 43(1), 166–192 (1996)

4. Carré, B.A., O’Neill, I.M., Clutterbuck, D.L., Debney, C.W.: SPADE-the
southampton program analysis and development environment. In: Software Engi-
neering Environments. Peter Peregrinus, Ltd., Stevenage (1986)

5. Clutterbuck, D.L., Carré, B.A.: The verification of low-level code. Softw. Eng. J.
3(3), 97–111 (1988). https://doi.org/10.1049/sej.1988.0012

6. Dawson, J.: Isabelle theories for machine words. Electron. Notes Theor. Comput.
Sci. 250(1), 55–70 (2009)

7. Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19(1),
19–32 (1967)

8. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: automatic verified
abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
99–115. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8 8

9. Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified synthesis: automatically
learning the x86-64 instruction set. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
pp. 237–250. ACM, New York, NY, USA (2016)

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Pearson, London (2006)

12. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Publishers, Dordrecht (2000)

13. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, pp.
207–220. ACM Press, New York, NY, USA (2009). https://sel4.systems/

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1049/sej.1988.0012
https://doi.org/10.1007/978-3-642-32347-8_8
https://sel4.systems/

Formal Verification of Memory Preservation of x86-64 Binaries 49

14. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2014, pp. 179–191. ACM, New
York, NY, USA (2014). https://cakeml.org/

15. Lankes, S., Pickartz, S., Breitbart, J.: HermitCore: a unikernel for extreme scale
computing. In: ROSS 2016, pp. 4:1–4:8. ACM, New York, NY, USA (2016)

16. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pCert - a formally verified optimizing compiler. In: Embedded Real Time Software
and Systems, 8th European Congress, ERTS 2016, SEE, HAL, Toulouse, France,
January 2016. http://compcert.inria.fr/

17. Madhavapeddy, A., Scott, D.J.: Unikernels: the rise of the virtual library operating
system. Commun. ACM 57(1), 61–69 (2014)

18. Matthews, J., Moore, J.S., Ray, S., Vroon, D.: Verification condition generation
via theorem proving. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 362–376. Springer, Heidelberg (2006). https://doi.org/10.
1007/11916277 25

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 44

21. Myreen, M.O., Gordon, M.J.C., Slind, K.: Machine-code verification for multiple
architectures - an application of decompilation into logic. In: 2008 Formal Methods
in Computer-Aided Design, pp. 1–8. IEEE, November 2008

22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science, vol. 2283, 1st edn.
Springer Science & Business Media, Heidelberg (2002). https://doi.org/10.1007/
3-540-45949-9

23. Obdržálek, J., Trt́ık, M.: Efficient loop navigation for symbolic execution. In: Bul-
tan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 453–462. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1 34

24. O’Neill, I.M., Clutterbuck, D.L., Farrow, P.F., Summers, P.G., Dolman, W.C.:
The formal verification of safety-critical assembly code. In: IFAC Symposium on
Safety of Computer Control Systems 1988, SAFECOMP 1988, vol. 21, pp. 115–120,
November 1988. https://doi.org/10.1016/S1474-6670(17)54540-1

25. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science, Proceedings, pp.
55–74. IEEE (2002)

26. Roessle, I., Verbeek, F., Ravindran, B.: Formally verified big step semantics out of
x86-64 binaries. In: Proceedings of the 8th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, CPP 2019, pp. 181–195. ACM, New York,
NY, USA (2019)

27. Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic exe-
cution on binary programs. In: Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis, ISSTA 2009, pp. 225–236. ACM, New
York, NY, USA (2009)

28. Yu, Y.: Automated proofs of object code for a widely used microprocessor. Ph.D.
thesis, University of Texas at Austin (1992)

https://cakeml.org/
http://compcert.inria.fr/
https://doi.org/10.1007/11916277_25
https://doi.org/10.1007/11916277_25
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-71209-1_44
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-24372-1_34
https://doi.org/10.1016/S1474-6670(17)54540-1

Autonomous Driving

Brace Touch: A Dependable,
Turbulence-Tolerant, Multi-touch Interaction

Technique for Interactive Cockpits

Philippe Palanque1,2(&), Andy Cockburn3,
Léopold Désert-Legendre1, Carl Gutwin4, and Yannick Deleris5

1 ICS-IRIT, Université Paul Sabatier, Toulouse 3, France
palanque@irit.fr

2 Industrial Design, Technical University of Eindhoven,
Eindhoven, The Netherlands

3 University of Canterbury, Christchurch, New Zealand
andy@cosc.canterbury.ac.nz

4 University of Saskatchewan, Saskatoon, Canada
gutwin@cs.usask.ca

5 Airbus Operations, Toulouse, France
yannick.deleris@airbus.com

Abstract. A cockpit (also called a flight deck) is an interactive environment of
an aircraft that enables both pilot and first officer to monitor and control the
aircraft systems. Allowing the crew to control aircraft systems through display
units by using a keyboard and cursor control unit is one of the main features in
the new generation of cockpits based on the ARINC 661 standard. Aircraft
manufacturers are now investigating the deployment of touch interactions in
future cockpits and ARINC 661 standard (supplement 7) extends it for that
purpose. While touch interactions have demonstrated benefits in terms of per-
formance (from the user point of view), their dependability is an important issue
that has not been addressed so far. This paper proposes an interaction technique
for touch devices called Brace Touch that aims at increasing the dependability of
touch interactions by providing solutions to address development, natural and
operation faults.

Keywords: Human-computer interaction � Interaction techniques �
Fault-tolerance � Dependability � Usability

1 Introduction

The evolution of cockpits in large civil aircraft has followed two different paths:

• Small increments/evolutions targeting identified problems or integrating new
equipment (similar to existing technology) into an existing cockpit;

• Significant steps/evolutions resulting in complete re-design of the cockpit including
control and displays. Examples of such evolutions include the glass cockpit (where
large display units were included in the flight deck) and more recently interactive

© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 53–68, 2019.
https://doi.org/10.1007/978-3-030-26601-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_4

cockpits compliant with ARINC 661 specifications [3] where interaction takes place
through mouse-like input devices and keyboards.

In parallel with these evolutions, multi-touch interfaces have appeared in most
environments including mobile technologies, flight entertainment systems, and con-
sumer electronics. Such interfaces have demonstrated benefits related to the fact that
the output device (screen) integrates input management (touch device) thus bridging
the (usual) gap between input and output in user interfaces. These systems have also
demonstrated benefits in terms of performance for triggering commands by exploiting
multi-finger interactions that can reduce the number of unnecessary modes.

Changing interaction in cockpits brings a set of issues that already appeared when
interactions in the cockpit evolved from “physical interactions” (by manipulating
physical knobs and reading information on dials) to software controls mainly based on
the ARINC 661 specification [3]. Often considered as reliable means to trigger com-
mands, devices such as pushbuttons, rotators and safe-guarded physical buttons are
now common in the flight deck. However, these devices generate significant weight
load and bring maintenance issues in terms of augmentation of cockpit functions [6].
This is a key issue as these physical components are directly linked to the aircraft
systems they control, resulting in the fact that evolutions (of the aforementioned sys-
tems) are likely to require modifications to the components themselves or their orga-
nization in the cockpit. This is extremely costly as tuning part of the cockpit is likely to
have broad implications for the aircraft and its operation [24]. Local changes might
affect performance, and ultimately require adaptation of procedures and flying crew
training going far beyond the system itself. Bringing touch interactions to commercial
cockpits offers potential advantages to pilots, airlines, and aircraft manufacturers. Pilots
may benefit (beyond the touch advantages presented above) from their familiarity with
touch interactions on personal devices. Airlines and manufacturers could benefit from
reduced hardware installation complexities, easier maintenance and reduced training.
Replacing hard-wired physical controls with touchscreens could therefore ease devel-
opment, facilitate upgrades, reduce weight, and improve pilot interaction as argued in
[8]; and this is why AEEC produced a supplement of ARINC 661 for touch [4].

Providing multi-touch interactions for the command and control of civil aircraft
would be another significant evolutionary step as far as cockpits design is concerned.
However, together with the benefits presented above, multi-touch interfaces bring a set
of issues that are still to be solved prior to making them “certifiable” and thus
deployable for command and control of (safety) critical interactive systems. These
issues affect multiple properties such as reliability, fault-tolerance, and usability.

Our previous work [22] and [21] mostly addressed the modeling aspects of multi-
touch interactions and their use for cockpit applications to deal with development faults
by providing a dedicated formal description technique based on high-level Petri nets
[20]. This paper builds on that previous work and focuses on the dependability aspects
of multi-touch interactions from a holistic point of view, addressing development
faults, natural faults, and operation faults (according to the taxonomy from [6]). To this
end, we propose a new interaction technique called Brace Touch (introduced in [12])
where the empirical evaluation of its usability is demonstrated. This interaction

54 P. Palanque et al.

technique allows flying crew to interact with touchscreens even under turbulence [11],
which one of the main usability problems for touch interactions in cockpits, together
with muscular fatigue and postures, as studied by Airbus human factors experts [8].

The remainder of this paper is organized as follows. The next section describes the
underlying hardware, software, and interaction techniques for touchscreens. Section 3
identifies the dependability aspects of touch interactions. Section 4 presents the design
and the principles of Brace Touch interaction together with a precise description of its
behavior. Section 5 presents our proposal for addressing the dependability of Brace
Touch interactions, including development, operation, and natural faults. Section 6
concludes the paper and highlights future directions.

2 Touch Interactions

This section introduces the usability and user experience (UX) aspects of touch
interactions before focusing on touch device hardware, software and interaction
aspects.

2.1 Usability and UX (Operations)

As presented above and argued in [36] (much before the advent of multi-touch inter-
actions on personal and mobile devices), touch interactions provide the advantage of
bridging the gap between input and output allowing users to interact without any
artificial input device such as stylus or mouse. Interaction thus does not occur remotely
but directly at the fingertip of the users, and early work such as [26] has demonstrated
that touch screens can provide better performance for task completion. Such benefits do
not come without disadvantages. First, current user interfaces are designed for inter-
action with mice or trackpads that provide higher levels of precisions that the so-called
“fat finger”. Fingers occlude small targets during selection and this reduced precision
results in higher error rates on small targets. Beyond fingers, hands and arms increase
occlusion on large touch screens. These issues have been at the center of recent
research in human-computer interaction and solutions have identified new touch
interaction techniques such as offering a fixed cursor offset [34], enlarging the target
area [32], and providing on-screen widgets to facilitate selection [1].

This paper proposes a similar approach presenting the Brace Touch interaction
technique designed to guarantee a reasonable level of usability even in the context of
moderate or severe turbulence. In other work on compensating for vibration during
touch interaction, [11] has shown that users stabilized their hand by resting on the
bezels, i.e., the non-interactive part of the screen, in order to select targets with
accuracy. However, as the hand is stabilized on the bezel only a small proportion of a
large display can be reached. The Brace Touch interaction aims at increasing accuracy
and reducing errors during turbulence while allowing interaction with the entire
touchscreen.

Brace Touch 55

2.2 Hardware

A touchscreen consists of a pointing device (touch sensor) combined with a display
(e.g., LCD or CRT). The pointing device is responsible for capturing (X,Y) coordinates
on the touch sensor and dispatching this information to the software component (ex-
ploiting a dedicated driver). There are multiple touch screen technologies but this paper
focusses on the four main categories available on the market (beyond research pro-
totypes): resistive, capacitive, surface acoustical wave (SAW) and infrared (IR). The
interested reader can find a full review on touch technologies in [40].

Resistive technology consists of two conductive layers separated by an isolating layer
(pierced with very small holes in a grid manner). On finger contact, the two layers get in
contact at the closest location of a hole, creating a new voltage. This technology is cheap,
contaminant-proof and works with any pointed object (not only a finger). However, it has
poor screen clarity and does not support multi-touch. Moreover, such technology
requires pressure, which may interfere with user interaction and performance.

Capacitive technology uses the user’s body capacitance to detect contact on the
screen. This technology is largely used on smartphones since Apple’s first iPhone in
2007. It offers excellent clarity and supports multi-touch, but only detects body contact.

Infrared technologies consist of IR LEDs and photodetectors organized as a grid.
The IR light is stopped by an opaque object contacting the screen. IR technology offers
excellent screen clarity, supports multi-touch, and is very robust to the environment.
However, such technology remains expensive.

Surface acoustic wave technology uses piezo transducers that emit and receive
ultrasonic Raleigh waves along the bezels of the screen. On contact, the finger partially
absorbs the wave which results in a temporary loss of amplitude in the received wave.
This technology is cheap and offers excellent visual quality. However, it requires the
user to press (rather strongly) on the screen (thus potentially reducing user perfor-
mance) and it only supports two contact points.

This multiplicity of technologies demonstrates the maturity of the domain and the
fact that diversity can be addressed at the hardware level to tolerate and possibly
remove hardware faults. For instance, on the input side, it would be possible to
combine a layer of capacitive technology on top of a resistive touchscreen. The main
touchscreen manufacturers do not provide information about the frequency of hardware
transient failures, but 10−5 is informally put forward by manufacturers. Such a com-
bination would be a path towards deployment of tactile screens for Development
Assurance Levels (DAL) B or C applications [13] by bringing together diversity,
redundancy and segregation at the hardware level.

2.3 Software

Even though hardware can significantly vary from one touch screen to another, most
programming toolkits offer the same low level events and information: a location (X,Y)
on the screen, an event type Down, Move, or Up and a touch id to identify continuous
Move events. This id allows identifying that the second move event received has been
performed by the same finger as the first move. Apart from this common basis, par-
ticular hardware can enrich the touch information with physical data such as pressure,

56 P. Palanque et al.

finger contact area, or finger orientation. All this information may be used to design
touch interaction techniques (as presented in Sect. 2.4).

Many dedicated programming toolkits exist for the development of multi-touch
interactive applications, including libraries from hardware platform manufacturers such
as Google, Microsoft, or Apple. Such toolkits usually support the user interface
guidelines defined by the manufacturer and are more or less in line with the ISO
standard on touch devices [25]. The number of users and the iterative correction of
defects are typical arguments put forward to argue for the reliability of this layer.
However, despite some work on the use of formal methods for input device driver
description [2], OS manufacturers do not provide information about the reliability
means used in the development of that layer.

2.4 Touch Interaction

Touch interaction techniques are highly dependent on the low-level events produced by
the hardware. As seen in the previous section, most platforms only provide touch
location, the event type, and an identification number of the finger (id). These events
enable designers to build temporal interactions (e.g., dwelling), spatial interactions [7],
and spatio-temporal interactions such as gestures [27]. Other interactions rely on
hardware capturing particular physical data such as pressure [12], finger contact area
[23], or finger orientation [41]. Finally, finger identification consists in linking a touch
event to a particular finger; this problem has proved difficult even though some research
contributions are promising using geometrical analysis of touch points [5], using
additional camera input [15], biometric data [37], or additional hardware worn on the
fingers [28].

These elements provide the basic underlying language on top of which touch
interaction techniques have to be built. For instance, a horizontal movement of the
finger on the surface of the screen will trigger a higher level event called a swipe in
most platforms. This swipe event is only triggered if the quantity of horizontal
movement is large enough and if no additional fingers have been pressed during the
movement. Only work from [22] has addressed the formal definition of touch inter-
action techniques that are usually crafted jointly by user interface designers and
developers. Interaction techniques are thus usually of low reliability and exhibit faults
at operation time. Detection of development faults is only addressed by testing which
cannot be exhaustive due to the very nature of interactive systems [29]. Beyond that,
the inner nature of interaction techniques might be more or less fault-tolerant (as shown
in Fig. 1). In case of a hardware failure of a line on the touchscreen hardware grid, the
swipe in Fig. 1(a) might not be recognized even though the operator has correctly
performed the gesture. In Fig. 1(b) the swipe gesture is now an upside-down V shape
that could still be recognized even in the presence of several hardware touch screen
lines failures. However, these more complex gestures come with a cost in terms of
usability (more movements and thus more time) and their use must be the result of a
thorough analysis of the usability-dependability trade-off, such as the ones presented in
[17] for standard non-touch interaction techniques.

Brace Touch 57

3 Fault Model for Touch Interactions

As for any kind of computing systems, multi-touch interactive systems can be subject
to faults at development and operation time but may also be subject to natural faults
(such as bit flips due to cosmic rays). Interactive cockpits are a specific kind of
command and control system and, as such, the entire taxonomy of faults presented in
[6] applies. The fault model considered in the current paper does not include malicious
faults because, during operation, the cockpit can be considered as a closed world and
development is carefully monitored.

Our research work aims at contributing to the dependability of touch interaction by
considering development, natural, and operation faults. Due to space constraints, the
current paper focusses on operation faults for touch interactions but we present in this
section how to address other faults.

Addressing Development Faults. We propose to address development faults by using
formal description techniques and dedicated verification mechanisms. However, due to
the very nature of interactive systems, specific methods are required that are able to
handle:

– Concurrency: for instance to represent multiple concurrent interactions with mul-
tiple fingers on the touch screen;

– Dynamic instantiation of objects: for instance, when fingers are added and removed
from the touch screen, their reference must be captured by models;

– Quantitative time, as most interaction techniques include temporal evolutions: for
instance, the time between two touch events required to trigger a double-tap higher
level event;

– Large number of states: for instance, current requirements for touch screen in
aircraft cockpit mandate the management of up to 20 fingers on a given touch
screen. Such a large number of fingers make it possible to use complex interaction
such as finger clustering [21] exhibiting a very large state space.

For this reason, we propose to use a formal description techniques called ICOs [31]
that covers these needs and has been used for describing in a complete and unam-
biguous way all the components of the previous generation of interactive cockpits [9].

Addressing Natural Faults. We consider here a similar fault model as the one pre-
sented in [16] with a focus on erroneous control (transmission of a different action from
the one done by crew members – e.g., sending a swipe event while the user has
performed a long tap) and inadvertent control (transmission of an action without any
crew member action). These faults can be addressed by extending touch technologies

Fig. 1. Tolerance of swipe touch interaction techniques to hardware faults (loss of a line in the
hardware grid) – (a) non tolerant (b) tolerant

58 P. Palanque et al.

with self-checking capabilities as was done with interactive cockpits [16] but this is not
presented here due to space constraints. In addition, the diversity and redundancy of
hardware platforms as presented above would increase tolerance to natural faults.

Addressing Operation Faults. In aircraft cockpits, operation faults typically fall in
the classification of human errors either being intentional (called violation) or non-
intentional (called mistakes, lapses, or slips depending on their type [35]). While such
errors may have multiple sources, some of them are induced by the user interface
design itself [38], but they can result from the operation environment too. For touch
interactions, there is a need for safeguards against undesirable and potentially dan-
gerous environmental conditions, such as turbulence, that might be precursors for each
error type presented above. This paper proposes an interaction technique that aims at
reducing operation faults triggered by turbulence.

4 Brace Touch to Improve Dependability of Touch
Interactions

4.1 Principles of Brace Touch

The primary design intention of Brace Touch is to allow users to mechanically stabilize
touch interactions by concurrently placing multiple fingers onto the display. Selections
and other interactions are then completed by the user issuing a recognizable gesture
while the other stabilizing contacts are maintained on the display. For example, Fig. 2
shows the index finger selecting an item by tapping while all of the other digits of the
hand are pressed onto the display.

Brace Touch uses the multi-touch capabilities of contemporary touchscreens to give
users two alternative ways of completing selections. First, when the interaction envi-
ronment is stable (i.e., no turbulence), users can select items by simply tapping on them
with a single finger, which allows convenient touchscreen interaction in a manner
similar to that used on current mobile devices. Second, during turbulence, braced
selections can be made when certain selection criteria are satisfied. These selection
criteria involve waiting until at least four concurrent contacts are registered on the
touchscreen, then selecting the item (if any) beneath the last-placed contact when it is
removed from the display. In this way, the user can place four fingers of one hand (e.g.,
all but the index finger) onto the display – thereby stabilizing their hand on the display–
then complete a gesture on the target using their index finger (a fifth contact) to select

Fig. 2. Illustration of the brace touch interaction concept

Brace Touch 59

it. Subsequent selections can be made by dragging the four initially placed contacts
across the display, then gesturing again with the index finger – there is no need to lift
all fingers off the display when completing a series of selections.

Our experimental validation of Brace Touch (results briefly described in Sect. 5)
compared user performance with three different variants of the terminating selection
gesture: double tap, dwell (a long press), and force-press. As double-tap is the most
usable (better efficiency and higher satisfaction), we detail this technique in the fol-
lowing sections).

4.2 Hardware and Software Architecture of Brace Touch Interaction

Figure 3 shows the general software architecture to manage touch events in order to
provide brace touch interaction. The architecture is mapped onto the generic ARCH
architecture for interactive systems [10] (left-hand side of Fig. 3). As a result, the
hardware and drivers belong to the physical interaction level, finger management and
brace interaction models to the logical interaction level. We present the formal
description of each element of this logical interaction level using the ICO description
technique [31].

For each user action, the hardware driver produces raw touch events with basic
information (e.g., the event type and a touch id). The finger manager handles those
events and manages creation and destruction of finger models. The finger model pro-
cesses low-level events provided by the hardware layer and offers data consultation and
update services. The brace interaction model handles interaction logic from the finger
manager and produces higher-level events (brace touches) dispatched to interested
applications.

4.3 Behavioral Description of Brace Touch Using ICOs

Informal Description of the ICO Formal Notation. The ICO (Interactive Cooper-
ative Objects) notation is a formal description technique devoted to interactive systems.
Using high-level Petri nets [20] for dynamic behavior description, the notation also

Fig. 3. High-level software architecture of brace interaction

60 P. Palanque et al.

relies on an object-oriented approach (dynamic instantiation, classification, encapsu-
lation, inheritance and client/server relationships) to describe the structural or static
aspects of systems. ICO notation objects are composed of four components: a coop-
erative object for the behavior description, a presentation part (i.e. Graphical Interface),
and two functions (activation and rendering) describing the links between the coop-
erative object and the presentation part. The interested reader can find more information
in [31]. ICO addresses all the issues presented in the previous sections including
representation of dynamic instantiation of input devices (fingers) which is not
addressed in other modelling techniques. For instance, ICO uses the capabilities of
Petri nets to describe tokens’ creations which are used in models to represent input
devices such as fingers on a touchscreen. In the following sections, we will use the
following formalism to describe ICO models: places, events, and transitions.

Finger Behavioral Model. The finger model handles touch information through the
Info place (center of Fig. 4). The model provides accessors services to touch data
through getTouchInfo which is accessible by other models to get information about a
given finger. The information of the finger can be modified using the update service
called by the low level architecture to store a new value for the finger. Finally, the
terminate service handles finger model removal (triggered when the finger is not in
contact with the touchscreen anymore).

Finger Manager Behavioral Model. The finger manager is a model responsible for
managing the set of fingers currently on the touch screen. That model received raw
events from the platform and abstracted them away in meaningful information in terms
of interaction. Figure 5 shows an abstract model of the behavior of the finger manager
(the full ICO model cannot be presented due to space constraints). In this view, places
are represented with ovals, transitions with rectangles, event transitions by rectangles
with italic text, produced events in italic font alongside the producing transition, and
conditions of transition activation under the transition name, separated by a horizontal
line.

Fig. 4. ICO behavioral model of a finger using ICO notation

Brace Touch 61

In Fig. 5, place Fingers stores the references to the finger models (one per finger
currently present on the touchscreen). As Brace interaction relies on double tap for
target selection, the finger used to perform this interaction will leave (for a short period
of time) the surface of the touch screen and will come back at the same location.
According to the finger model, leaving the surface would require removing the finger
from the pool of fingers. The Brace model thus handles this short disappearance by
storing fingers in the Pending Fingers place. In order to disambiguate an Up-Down
from the same finger with an Up and Down from two different fingers, we chose a
temporal and geographical logic. Thus, on finger Up, the reference to the finger model
is set in place Pending Fingers for a duration defined in the PendingTimer transition. If
a Down event is received before the time has elapsed, its location is compared with the
location of the finger when Up occurred. If the location is close enough (a parameter in
the model), the same finger model is updated and set back into Fingers and a fin-
gerRecovered event is raised (Down/sameLocation). A copy of the reference of that
finger model is also stored in RecoveredFingers.

Down events correspond to the arrival of a new finger on the touchscreen. When
this occurs, a new finger model is instantiated (by the finger manager) and its reference
is stored in IncomingFingers. If the Down event corresponds to a finger that was in the
pending state, the information stored in IncomingFingers is filtered with SameFinger,
thus preventing the creation of a new finger model. Finally, on update, the finger model
is updated and fingerUpdated event is raised so the information (e.g., the location on
the screen) is updated in the corresponding finger model.

Figure 6 shows the finger manager model pending process using the ICO notation.
PendingTimer, timed transition is set to 500 ms which corresponds to the maximum
time allowed to the user to perform a double tap. Finally, the geographical disam-
biguation logic consists in verifying that the Down event received lies within 30px
from the previous Up event location (see shapeProcessing transition performing the
proximity calculation).

Brace Touch Interaction Behavioral Model. Figure 7 shows an abstract view of the
Brace Touch interaction behavior in a similar way as we presented the finger manager
in Fig. 5.

Fig. 5. Abstract behavioral model of the finger manager

62 P. Palanque et al.

The Brace Touch Interaction model listens to the events produced by the Finger
Manager namely fingerAdded, fingerPending, fingerRemoved and fingerRecovered
events, the production of which was detailed in the previous section.

On fingerAdded, the reference of the created finger model is stored in place Fin-
gers. According to Brace Touch design [12], a double tap is specified as two con-
secutive taps within 500 ms, a tap being a consecutive Up and Down with the same
finger on the same location (spatial threshold of 30 pixels). Thus, on finger Up and
Down, the finger manager produces respectively fingerPending and fingerRecovered,
unless the finger does not touch the screen again, in which case a fingerRemoved event
is received. On fingerRecovered, the braceEvent_tap is raised and the reference to the
finger model is stored in WaitingSecondTap.

If a second tap is not initiated within the time frame specified in TimerBetweenTaps,
the double tap interaction is exited and the reference to the finger model is stored back in
Fingers. The second tap interaction has the same behavior as the first tap, apart from the
validation of the double tap interaction: if the time between the first tap and the second

Fig. 6. Part of the finger manager behavior filtering new fingers from returning fingers

Fig. 7. Abstract model of Brace Touch interaction behavior

Brace Touch 63

tap is less than 500 ms, braceEvent_doubleTap is raised. Otherwise, the second tap is
considered as a single tap following a first tap.

Due to space constraints we cannot present the ICOmodel of brace interaction but its
main features have been highlighted. It is important to note that these models can be
analyzed using knowledge from Petri nets theory, such as computing locks and traps as
well as P and T invariants [18]. These verification techniques allow interaction designers
to assess the correctness of a given model (absence of deadlock) and also evaluate the
compatibility between models (e.g., the events produces by a model are consumed by an
upper model). The formal analysis performed by the development platform called
PetShop [18] supports the detection of development faults.

5 Dependability and Usability of Brace Touch

While a formal notation was presented in previous section to deal with software
development faults of interaction techniques in general and Brace Touch interaction in
particular, dealing with natural and operational faults is required to bring such concepts
into real operation in aircraft cockpits. We have briefly mentioned diversity, redun-
dancy and segregation in hardware technologies for touch devices as a mean to address
hardware faults.

Natural faults could affect software (via bit flips, for example) but also operators
(via vibration of the touch device). As for natural software faults, self-checking tech-
niques for interactive widgets and interaction techniques as presented in [39] could
support detection and removal of faults in touch interactions. However, touch inter-
actions are more sensitive to natural faults such as turbulence that will trigger unin-
tentional operational faults. Brace Touch interaction aims at reducing the effect of
turbulence on operational faults for touch interactions.

However, as presented in [17] the introduction of dependability mechanisms might
affect negatively usability of the interactive system. It was thus important to assess the
impact on the overall performance of braced interaction to ensure that the technique
does not slow down operation. This is demonstrated in Fig. 8: in vibrating conditions,
braced interaction with selection using double-tap has a similar (though slightly slower)
performance to non-braced interactions in non-vibrating conditions.

Fig. 8. Target selection times with Braced and Single-Finger selections in static (left) and
vibrating (right) conditions [12].

64 P. Palanque et al.

In [12], Cockburn et al. report results of an experiment examining three different
forms of braced selections in turbulent and static environments. Turbulence was sim-
ulated using a Mikrolar motion platform, with a seat and touchscreen mounted on the
platform. The three bracing variants differed in the gesture used for completing a
selection: doubletap, dwell (long press) and force threshold (not considered further in
this paper). Participants also completed selections using traditional single-finger tap-to-
select modalities, with this data serving as a baseline comparator for the braced
selection methods. Additionally, in one portion of the experiment, participants were
allowed to choose whether to complete selections using braced touch (placing multiple
fingers on the display) or normal hand postures (using a single finger without bracing,
terminated with a doubletap, dwell or force-press).

Figure 8 summarises the usability study of Brace Touch looking at performance
(a) and user errors (b). Selection time results using the three bracing methods and
equivalent single-finger selections in static (pink bar) and turbulent (bleu bar) settings.
As expected, in static settings single-finger selections are faster than braced selections,
but when vibration is present, braced selections were significantly faster and more
accurate than single-finger selections. In tasks where participants were free to choose
whether or not to use braced postures, 88% of double-tap users chose to use bracing
when vibration was present, compared to only 19% when static. This suggests that
users were aware of the benefits provided by bracing and appropriately chose to use it
to overcome interaction problems stemming from vibration.

Two types of errors were analysed: false-negative selections, in which subjects tried
but failed to complete a selection; and wrong-target selections, in which a target other
than the intended one was selected. Figure 8(b) summarises the results of errors from
the user study. The histogram highlight the strong tolerance to vibrations of Brace
Touch with respect to false negatives. Value of wrong target selection (not as good as
false negatives) was influenced by the tasks performed by the users which were related
to aircraft operations with which they were not familiar. In [12], Cokburn et al. show
that for the later tasks, wrong target selection errors with Brace Touch disappeared and
that in 87.3% of selections, subjects elected to use braced selections during vibrations.

According to Avizienis et al.’s taxonomy [6], as far as touch screens are concerned,
vibrations would belong to natural faults triggering non-intentional human-made faults
during operation, and would correspond to slips in the human error classifications [35].
Looking at the interaction itself, the operator decides intentionally to interact with the
touch screen and to use (preferably) Brace Touch interactions in cases of turbulence
[12]. However, while interacting, the user might unintentionally make errors that will
prevent Brace Touch interaction from being performed. For instance, in Brace, the
index finger is meant to be the finger used for performing the double-tap while the other
fingers are constantly touching the touch device. Vibrations might make other fingers
(especially the little finger) bounce and thus trigger unintentional double-taps. We have
extended the behavior of Brace Touch to detect the position of index fingers (which can
be deduced from the relative position of the other fingers) and discard spurious double-
taps triggered by the other fingers. Due to space constraints, we do not present the ICO
model here, but the approach is the same as the one presented in Brace Interaction
model.

Brace Touch 65

6 Conclusion and Perspective

New interactive technologies are making their way into command and control positions
of safety critical systems. This is due to the new type of work and new type of data that
operators have to manipulate, but also because those technologies are now pervasive
and used in everyday life. This paper presented a contribution to the dependability of
touch interactions to be deployed in real life contexts such as aircraft cockpits.

We have presented a formal description technique dedicated to interactive system
description that addresses the problem of development faults in interaction techniques.
We used that formal description technique to model a new touch interaction technique
called Brace Touch that is able to avoid operational natural faults. We also shown that
Brace Touch does not jeopardize the usability of touch interactions, providing good
performance, recall, and user satisfaction.

This work cannot be separated from design aspects of interactive systems that
include how to present information to the operators, and more precisely, the size and
the colors of objects. Previous work [14] has highlighted that vibrations affects per-
ception and thus there is a need to address the entire interaction loop (perception,
cognition, and action). This is what will be done in future studies that could lead to user
interface guidelines for touch interfaces in transportation. It is important to note that
previous work on model-based approaches for usability engineering [33] and interac-
tion reconfigurations [30] provide some bases to address that problem.

References

1. Albinsson, P.A., Zhai, S.: High precision touch screen interaction. In: Proceedings of
ACM CHI Conference, pp. 105–112 (2003)

2. Accot, J., Chatty, S., Maury, S., Palanque, P.: Formal transducers: models of devices and
building bricks for the design of highly interactive systems. In: Harrison, M.D., Torres, J.C.
(eds) Design, Specification and Verification of Interactive Systems 1997. Eurographics,
pp. 143–159. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-6878-3_10

3. ARINC 661 Cockpit Display System Interfaces to User Systems. ARINC Specification 661.
Airlines Electronic Engineering Committee (AEEC) (2002)

4. ARINC 661. Cockpit display system interfaces to user systems. ARINC Specification 661,
supplement 7 (April 2019). Airlines Electronic Engineering Committee (AEEC) (2019)

5. Au, O.K.C., Tai, C.L.: Multitouch finger registration and its applications. In: ACM CHI
Conference, pp. 41–48 (2010)

6. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

7. Bailly, G., Lecolinet, E., Guiard, Y.: Finger-count & radial-stroke shortcuts: 2 techniques for
augmenting linear menus on multi-touch surfaces. In: ACM CHI Conference, pp. 591–594
(2010)

8. Barbé, J., Chatrenet, N., et al.: Physical ergonomics approach for touch screen interaction in
an aircraft cockpit. In: Conference on Interaction Homme-Machine (IHM), pp. 9–16.
ACM DL (2012)

66 P. Palanque et al.

http://dx.doi.org/10.1007/978-3-7091-6878-3_10

9. Barboni, E., Conversy, S., Navarre, D., Palanque, P.: Model-based engineering of widgets,
user applications and servers compliant with ARINC 661 specification. In: Doherty, G.,
Blandford, A. (eds.) DSV-IS 2006. LNCS, vol. 4323, pp. 25–38. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-69554-7_3

10. Bass, L., et al.: The arch model: Seeheim revisited. In: User Interface Developers’
Workshop, April 1991

11. Cockburn, A., et al.: Turbulent touch: Touchscreen input for cockpit flight displays. In:
Proceedings of ACM CHI Conference, pp. 6742–6753 (2017)

12. Cockburn, A., et al.: Design and evaluation of brace touch for touchscreen input
stabilisation. Int. J. Hum.-Comput. Stud. 122(21–37), 7 (2019)

13. DO-178C/ED-12C, Software Considerations in Airborne Systems and Equipment Certifi-
cation, published by RTCA and EUROCAE (2012)

14. Dodd, S., Lancaster, J., Miranda, A., Grothe, S., DeMers, B., Rogers, B.: Touch screens on
the flight deck: the impact of touch target size, spacing, touch technology and turbulence on
pilot performance. In: Proceedings of the HFES Annual Meeting, vol. 58, no. 1, pp. 6–10
(2014)

15. Ewerling, P., Kulik, A., Froehlich, B.: Finger and hand detection for multi-touch interfaces
based on maximally stable extremal regions. In: ACM TEI Conference, pp. 173–182 (2012)

16. Fayollas, C., Palanque, P., Fabre, J-C., Martinie, C., Déléris, Y.: Dealing with faults during
operations: beyond classical use of formal methods. In: [19], pp. 549–575 (2017)

17. Fayollas, C., Martinie, C., Palanque, P., Deleris, Y., Fabre, J.-C., Navarre, D.: An approach
for assessing the impact of dependability on usability: application to interactive cockpits. In:
IEEE European Dependable Computing Conference (EDCC), pp. 198–209 (2014)

18. Fayollas, C., Martinie, C., Palanque, P., Barboni, E., Fahssi, R., Hamon, A.: Exploiting
action theory as a framework for analysis and design of formal methods approaches:
application to the CIRCUS integrated development environment. In: [19], pp. 465–504

19. Weyers, B., Bowen, J., Dix, A., Palanque, P. (eds.): The Handbook of Formal Methods in
Human-Computer Interaction. HIS. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-51838-1

20. Genrich, H.J.: Predicate/transitions nets. In: Jensen, K., Rozenberg, G. (eds) High-Levels
Petri Nets: Theory and Application. Springer, Heidelberg, pp. 3–43 (1991). https://doi.org/
10.1007/978-3-642-84524-6_1

21. Hamon-Keromen, A., Palanque, P., Deleris, Y., Navarre, D., Barboni, E.: A tool-supported
development process for bringing touch interactions into interactive cockpits for controlling
embedded critical systems. In: HCI in Aeronautics (HCI’Aero), pp. 25–36. ACM DL (2012)

22. Hamon-Keromen, A., Palanque, P., Silva, J.-L., Deleris, Y., Barboni, E.: Formal description
of multi-touch interactions. In: ACM Engineering Interactive Computing Systems, pp. 207–
216 (2013)

23. Harrison, C., Schwarz, J., Hudson, S.E.: TapSense: enhancing finger interaction on touch
surfaces. In: Proceedings on ACM UIST Conference, pp. 627–636. ACM (2011)

24. Hutchins, E., Lauwsen, T.: Distributed cognition in an airline cockpit. In: Engeström, Y.,
Middleton, D. (Eds) Cognition and Communication at work. Cambridge University Press,
Cambridge (1996)

25. ISO 9241-9:2010 Usability - Part 9: Requirements for non-keyboard input devices (2010)
26. Karat, J., McDonald, J., Anderson, M.: A comparison of selection techniques: touch panel,

mouse, keyboard. Int. J. Man-Mach. Stud. 1, 73–92 (1986)
27. Kin, K., Hartmann, B., Agrawala, M.: Two-handed marking menus for multitouch devices.

ACM Trans. Comput.-Hum. Interact. (TOCHI) 18(3), 16 (2011)

Brace Touch 67

http://dx.doi.org/10.1007/978-3-540-69554-7_3
http://dx.doi.org/10.1007/978-3-319-51838-1
http://dx.doi.org/10.1007/978-3-319-51838-1
http://dx.doi.org/10.1007/978-3-642-84524-6_1
http://dx.doi.org/10.1007/978-3-642-84524-6_1

28. Marquardt, N., Kiemer, J., Ledo, D., Boring, S., Greenberg, S.: Designing user-, hand-, and
handpart-aware tabletop interactions with the TouchID toolkit. In: Proceedings of ACM TEI,
pp. 21–30 (2011)

29. Memon, A.M.: An event-flow model of GUI-based applications for testing. Softw. Test.
Verif. Reliab. 17, 137–157 (2007)

30. Navarre, D., Palanque, P., Basnyat, S.: A formal approach for user interaction reconfig-
uration of safety critical interactive systems. In: Harrison, M.D., Sujan, M.-A. (eds.)
SAFECOMP 2008. LNCS, vol. 5219, pp. 373–386. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87698-4_31

31. Navarre, D., Palanque, P., Ladry, J.F., Barboni, E.: ICOs: a model-based user interface
description technique dedicated to interactive systems addressing usability, reliability and
scalability. ACM Trans. Comput.-Hum. Interact. 16(4), 18 (2009)

32. Olwal, A., Feiner, S.: Rubbing the fisheye: precise touch-screen interaction with gestures and
fisheye views. In: Conference Supplement of UIST 2003, pp. 83–84 (2003)

33. Palanque, P., Barboni, E., Martinie, C., Navarre, D., Winckler, M.: A model-based approach
for supporting engineering usability evaluation of interaction techniques. In: Conference on
ACM Engineering Interactive Computing Systems (EICS 2011), pp. 21–30 (2011)

34. Potter, R.L., Weldon, L.J., Shneiderman, B.: Improving the accuracy of touchscreens: an
experimental evaluation of three strategies. In: Proceedings of CHI 1988, pp. 27–32 (1988)

35. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)
36. Shneiderman, B.: Touchscreens now offer compelling uses. In: Sparks of Innovation in

Human-Computer Interaction. Ablex, Norwood (1993)
37. Sugiura, A., Koseki, Y.: A user interface using fingerprint recognition: holding commands

and data objects on fingers. In: Proceedings of ACM UIST Conference, pp. 71–79 (1998)
38. Stanton, N., et al.: Predicting design induced pilot error using HET (Human Error Template)

– a new formal human error identification method for flight decks. J. Aeronaut. Sci. 110,
107–115 (2006)

39. Tankeu-Choitat, A., Navarre, D., Palanque, P., Deleris, Y., Fabre, J.-C., Fayollas, C.: Self-
checking components for dependable interactive cockpits using formal description
techniques. In: IEEE Pacific Rim Dependable Computing Conference, pp. 164–173 (2011)

40. Walker, G.: A review of technologies for sensing contact location on the surface of a display.
J. Soc. Inf. Disp. 20(8), 413–440 (2012)

41. Wang, F., Cao, X., Ren, X., Irani, P.: Detecting and leveraging finger orientation for
interaction with direct-touch surfaces. In: Proceedings of ACM UIST Conference, pp. 23–32
(2009)

68 P. Palanque et al.

http://dx.doi.org/10.1007/978-3-540-87698-4_31
http://dx.doi.org/10.1007/978-3-540-87698-4_31

Fitness Functions for Testing Automated
and Autonomous Driving Systems

Florian Hauer1(B), Alexander Pretschner1, and Bernd Holzmüller2

1 Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
{florian.hauer,alexander.pretschner}@tum.de

2 ITK Engineering GmbH, Im Speyerer Tal 6, 76761 Ruelzheim, Germany
bernd.holzmueller@itk-engineering.de

Abstract. Functional specifications and real drive data are typically
used to derive parameterized scenarios for scenario-based testing of driv-
ing systems. The domains of the parameters span a huge space of possible
test cases, from which “good” ones have to be selected. Heuristic search,
guided by fitness functions, has been proposed as a suitable technique in
the past. However, the methodological challenge of creating suitable fit-
ness functions has not been addressed yet. We provide templates to for-
mulate fitness functions for testing automated and autonomous driving
systems. Those templates ensure correct positioning of scenario objects
in space, yield a suitable ordering of maneuvers in time, and enable the
search for scenarios in which the system leaves its safe operating enve-
lope. We show how to compose them into fitness functions for heuristic
search. Collision and close-to-collision scenarios from real drive data serve
as a use case to show the applicability of the presented templates.

Keywords: System verification · Automated and autonomous
driving · Scenario-based testing · Search-based techniques

1 Introduction

Striving for highly automated and autonomous driving systems results in ever-
more complex and capable systems. Due to the complexity of these systems and
the complexity and sheer number of possible scenarios, ensuring safety and func-
tional correctness is a crucial challenge [9]. Since verification and validation by
real test drives alone are practically infeasible [17], the focus shifts to virtual
test drives. For virtual testing, scenario-based closed-loop testing in the form
of X-in-the-Loop settings is used [16]. Such scenarios describe dynamic traffic
situations to test the behavior of the automated or autonomous driving system.
A whole set of such scenarios is encoded by a parameterized scenario. We show
such a parameterized scenario for a highway pilot in Fig. 1. The ego vehicle e
accelerates from standstill and approaches car c3, which is driving at lower veloc-
ity than e. e then changes to the middle lane, while simultaneously c1 changes
also to the middle lane behind e. During this scenario, e must not violate the
c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 69–84, 2019.
https://doi.org/10.1007/978-3-030-26601-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_5

70 F. Hauer et al.

safety distances, e.g. the one to c2 (shaded area in Fig. 1). Each other car ci,
i ∈ {1, 2, 3} has a parameter for its longitudinal starting position s0,ci , a start-
ing time tstart,ci for accelerating from standstill, and a desired velocity vi it tries
to reach and hold throughout the scenarios. In addition, the lane change of c1 is
triggered at a specific time, described by parameter tlc,c1 . The domains of these
ten parameters span a ten-dimensional space of possible test scenarios.

Fig. 1. Parameterized highway scenario with ten parameters and their domains

Most scenarios in this space are not useful test cases, however. In some sce-
narios, e will not even perform a lane change; will perform it in front of c2
instead of behind it; or c1 performs its lane change several seconds later than
e. Instead, “good” test cases need to be identified within the parameter space.
In one interpretation of “good” test scenarios, a correct system approaches safe
operating limits, and a faulty system violates them. Existing works suggest the
use of search-based techniques. These were successfully applied for testing clas-
sic advanced driver assistance systems (SAE levels 1&2 [14]), e.g. a parking
assistant, an adaptive cruise control, an emergency braking system, and their
combination.

Those works focus on technical aspects, e.g. on how to improve the search
algorithm, and assume the fitness functions to be given or created ad-hoc. This
was an important, and successful, first step. Because these search-based tech-
niques are so promising, we want to apply them to testing automated and
autonomous driving systems of SAE levels 4&5 [14]. Such systems are funda-
mentally different, as they take over the complete driving task including decision
making and executing active maneuvers in dynamic traffic scenarios. Thus, the
variety of different possible parameterized scenarios is huge, which requires the
definition of many different fitness functions. However, formulating fitness func-
tions correctly is difficult, time-consuming, and requires experience. Wrongly
derived fitness functions leave “good” test cases unidentified, which might even
lead to wrong conclusions about the test results. It seems clear that creating
fitness functions ad-hoc, as done in the past, is not sufficient. For the derivation
of fitness functions at large scale, methodological guidance for test engineers is
needed.

The contribution of this paper is the following: We provide such guidance
in the form of a set of fitness function templates for testing automated and
autonomous driving systems in dynamic traffic scenarios with heuristic search.

Fitness Functions for Testing Automated and Autonomous Driving Systems 71

It is further explained how those templates can be easily combined and applied
to identify “good” test cases for complex scenario types.

Section 2 explains scenario-based testing and the application of search-based
techniques in this domain. The templates are described in Sect. 3, before Sect. 4
presents ways to combine them. An application is provided in Sect. 5. We discuss
related work in Sect. 6 and conclude in Sect. 7.

2 Scenario-Based Testing with Search-Based Techniques

In scenario-based testing of automated and autonomous driving systems, the
goal is to test the behavior of such systems in dynamic traffic situations. A mul-
titude of different scenario types exist. Several sources of information are used
for the identification of those types, e.g. requirements, safety analysis, functional
specifications, traffic rules, and real (test) drives. For each scenario type, one or
more parameterized scenarios are derived, each describing a set of test cases.
Generalizing and adapting the formalism of [2] and [10], we define a parameter-
ized scenario as (X,V,D), where X is the data set that describes the scenario
type (e.g. lane change) and context (e.g. two-lane highway). It can be described
using the OpenScenario [1] or CommonRoad [5] formats. The variables vi ∈ V
(i ≤ n) are parameters (e.g. velocities of traffic participants) with their domains
Di ∈ D. Assigning a value to each vi yields a single test case. The domains in
D span an infinite search space A = D1 × D2 × . . . × Dn ⊂ R

n of test cases.

Fig. 2. Example of a simple safe operating envelope (green plain rectangle) bounded
by the necessary safety distances (red shaded rectangles) and lane markings (Color
figure online)

The simulated scenario describes input and environment conditions of a test
case. The expected behavior of continuous systems is described with the help
of domains and thresholds. In this context, a safe operating envelope is used
(Fig. 2). Inside the envelope, the system is allowed to freely optimize its perfor-
mance [9], and as long as it does not leave the envelope, it is considered safe. By
that the safe operating envelope provides a description of safe system behavior.
It depends on the scenario and changes over time during the scenario. Recent
works, e.g. the responsibility-sensitive safety (RSS) model [15], the safety force
field model [11] as well as other formal models [13] presented such envelopes.
These works provide a model of safe system behavior even for scenarios, in which
the system alone cannot guarantee complete safety, as other traffic participants
may still cause accidents. In the spirit of limit testing, we define a “good” test
case as follows (see [12]):

72 F. Hauer et al.

A “good” test case can reveal potentially faulty system behavior. That
means in a “good” test scenario, a correct system approaches the limits

of the safe operating envelope, and a faulty system violates them.

A fitness function f : A → W assigns every test case a quality value
w ∈ W , which depends on the observed behavior of the system under test in
the respective test case. It is important that a total order on the fitness values
is preserved, such that a scenario gets a better quality value than another if it is
a better test case. If the search space A and the quality function f are created
accordingly, then search-based techniques may be used to find the “good” test
cases in the following way (see Fig. 3):

Test Cases

Input OutputSearch-Based Optimization

Search Space /
Parameterized

Scenario

Fitness Function Test Oracle

Simulation
Results

Fitness Value

New
Candidates

Fitness
Computation

Optimizer

Simulation

Fig. 3. Search-based techniques for scenario optimization

An initial set of scenario candidates is created either by reusing existing
scenarios, by using manually created ones by experts, or by generating them
randomly. These candidates are then executed in a simulation and the simula-
tion results are evaluated by the fitness function, which returns a quantitative
quality measure for the respective scenario. According to these fitness values, the
optimization algorithm tries to adapt the parameter values in order to obtain
scenarios of better quality. This iteration may be continued until a maximum
number of iterations is reached, the assigned computation time is spent or the
optimizer fails to find a better solution. This means that during the optimiza-
tion process, the system is usually tested in one test case per fitness function
evaluation, depending on the applied optimization technique. In the ideal case,
search-based techniques would find the global optimum, which is the best sce-
nario. This scenario is called worst-case. In the case that the system does not
leave the safe operating envelope in the worst-case, it is considered to be safe.

In the following, templates are presented, which may be combined to fitness
functions. For this work, the search space is assumed to be given, e.g. we use a
parameterized scenario created by a domain expert.

3 Fitness Function Templates

In order to capture all potential scenarios, we present templates to aim for qual-
itative and quantitative test goals. Our goal is to find test cases, in which the

Fitness Functions for Testing Automated and Autonomous Driving Systems 73

system violates the safe operating envelope, e.g. by coming below a distance
threshold. We call this a quantitative test goal, since a quantitative value (e.g.
a distance between cars) is used to assign a fitness value. We present a suitable
template to search for a violation of the safe operating envelope.

However, search spaces usually contain many scenarios in which a desired
system behavior, e.g. a lane change, does not take place because the neces-
sary context to provoke it does not occur. For instance, there is no lane change
if there is no car to be overtaken. In theory it might be possible to only use
a quantitative test goal and search for the violation of a safe operating enve-
lope in a search space covering all possible scenarios. However, in practice this
is undesired for several reasons. Scenario types (e.g. lane change, cut-in) are
human-interpretable; testing every type on its own provides information about
the quality of the system behavior in those specific scenarios. Further, testing
these interpretable scenario types will be required by certification authorities.
Lastly, such a theoretical search space that contains all possible scenarios is high-
dimensional and complex. The search for a safety violation would be difficult - or
even practically infeasible - for current search-based techniques. Thus, we need
to ensure that the scenario description encodes the relevant parts of the context.
Those are called qualitative test goals, since the mere existence of the relevant
circumstances is used to assign a fitness value.

For dynamic scenarios, two aspects are of fundamental importance: space and
time. Scenario objects need to be at the correct location at a specific moment,
e.g. one car should be ahead of another. Furthermore, scenario events need to
take place at the right moment in time, e.g. two cars should change the lane
simultaneously. Since the (dynamic) behavior of the ego vehicle is unknown
a-priori, the correct timing of maneuvers and positioning of scenario objects
cannot be established statically and a-priori, e.g. by setting suitable parameter
domain boundaries. However, incorporating such desired qualitative test goals
into fitness functions is possible. We hence present specific templates for timing
and positioning to ensure that such qualitative goals are fulfilled. During opti-
mization those templates identify the scenarios that fulfill the qualitative test
goals. Among them the best scenario is searched with the template that aims at
the quantitative test goal. Note that in this work, minimization is used for opti-
mization purposes. In the following, we will explain the generic idea first, before
transferring it to templates for automated and autonomous driving systems.

3.1 Template for Testing Against Safe Operating Envelopes

We start with a very basic, simple, and intuitive template. Even though most
of the existing works in this domain do not state it explicitly, their idea is to
measure a certain system behavior and identify a test case in which this system
behavior exceeds a threshold. For the case of a constant threshold, a qualitative
generic example is provided in Fig. 4.

The blue time series describes a system behavior and the red line a threshold
that must not be violated. This means the maximum value of the blue curve must
not be greater than the threshold. During an optimization process, it is desired

74 F. Hauer et al.

Fig. 4. Generic case of testing system behavior against a constant threshold (Color
figure online)

that better and better scenarios are found, which means that the maximum
of the blue curve gets closer and closer to the red line or even surpasses it.
The following fitness function idea may be used to achieve the described search
behavior (assuming minimization): fidea,1 = −max(blue curve)

Now, this idea is transferred for testing automated and autonomous driving
systems in dynamic traffic scenarios. As described in Sect. 2, instead of a constant
threshold, a safe operating envelope is used, e.g. as presented in recent works
[11,13,15]. Those works express safety often as a safety distance in time or space,
which is usually depending on velocities of and relative positions among cars and,
thus, is changing over time. We use safeDist as a placeholder for the computation
of a safety distance according to such a safe operating envelope. We stick to the
example of Fig. 1, but for the sake of simplicity, only c2 and the safety distance
to it are considered on a single lane for now (see Fig. 5):

Fig. 5. Schematic depiction of a safety distance that should not be violated

The ego vehicle e is approaching another vehicle c2, which is driving at lower
velocity. Once e gets closer, it will reduce its velocity until it reaches the velocity
of c2. During this period, e must not violate the safety distance. Applying the
classic idea fidea,1 as fitness function would mean that the scenario is searched, in
which the distance d between e and c2 gets smallest. However, a small d does not

Fitness Functions for Testing Automated and Autonomous Driving Systems 75

necessarily mean that the safeDist threshold is violated, since safety distances
might be even smaller (relatively speaking) in scenarios with low velocities. One
cannot conclude by the achieved fitness value whether the safe operating envelope
has been violated or not. The dynamically changing safety distance has to be
included into the template:

Template 1: ftemplate,1 = min(d(t) − safeDist(t)) (1)

The difference of d(t) and safeDist(t) is denoted as the remaining buffer until
violation of the threshold (see Fig. 5). Within the scenario, the minimum remain-
ing buffer is used as characteristic value, since it is the most dangerous moment.
By applying this template, search techniques will identify the scenario in which
the minimum of the remaining buffer is smaller than the minimum remaining
buffer in all other scenarios. This has the side effect that the following test ora-
cle can be applied for this template: If the remaining buffer is greater or equal
than 0 even in the worst-case scenario, the system did never enter and, thus,
never violate the safety distance. It even kept an additional distance equal to
the remaining buffer in the worst-case. It never left the safe operating envelope
and it is considered safe. If the remaining buffer is negative, a faulty system
behavior is revealed. In this case, the absolute value is the amount by which the
system violated the safety distance. Using this template, an argumentation basis
for the release process is provided by making the system behavior measurable.
With the help of this measurement, systems can be compared with respect to
their performance in the system-specific worst-case.

3.2 Templates for Ensuring Qualitative Test Goals

General Idea to Ensure Qualitative Test Goals. A specific scenario does or
does not satisfy the desired qualitative test goals. The following templates can
be used to ensure such goals. By combination of multiple templates (Sect. 4),
multiple qualitative test goals can be fulfilled. In the case of non-fulfillment of
a goal, we assign the value m as fitness value, which has to be greater than
any value that corresponds to a qualitative test goal being fulfilled. If m is
constant, the optimizer will perform like random selection. However, we want
to apply search-based techniques to identify scenarios that satisfy the desired
qualitative test goals. Thus, this m should be a gradual measurement to provide
a ranking among the scenarios that do not fulfill this qualitative test goal. In
order to gradually reach a “fulfilling” scenario, a measurement is used for how
far a scenario is away from fulfilling the goal. Since the mere fulfillment of the
qualitative test goal is sufficient, every scenario that does so is equally good and,
thus, receives the same constant fitness value, e.g. 0:

fidea,2 =

{
m, qualitative test goal not fulfilled
0, otherwise

(2)

Assume a time series (blue curve in Fig. 6), which serves as input for the
computation of m. At a specific time t1, a qualitative test goal should be fulfilled.

76 F. Hauer et al.

Fulfillment means that the value of the time series value(t1) at t1 is in between
the red thresholds zmin and zmax. Note that in general those thresholds do not
need to be constant.

If value(t1) is outside the area described by the thresholds, m is the distance
of value(t1) to the closer threshold to reach the area in between. During the
optimization, value(t1) would approach the area. To avoid having one fitness
function per threshold, the mean of the thresholds is chosen:

fidea,3 =

{∣∣ zmin+zmax

2 − value(t1)
∣∣ , value(t1) outside

0, otherwise
(3)

Fig. 6. Depiction of the general idea: The value of a curve at a specific moment has to
be within a specific domain. (Color figure online)

Template for Correct Positioning of Scenario Objects. This general idea
is now transferred to a template. It ensures that scenario objects, e.g. cars, are
correctly located relative to each other at a specific moment in time during the
scenario. In Fig. 7, a scenario is depicted in which the ego vehicle e and the
other cars c1, c2 are driving on two lanes next to each other. Assume that the
qualitative test goal is that e is located in between c1 and c2 at a specific moment
tevent. This might be desired in the case that e should perform a lane change
into the gap bounded by c1 and c2.

The position of the ego vehicle se is used to compute the measurement m.
The positions of the other cars sc1 , sc2 serve as thresholds. Note that in contrast
to above, here the thresholds are not constant. The transferred template looks
as follows:

Template 2a: (4)

ftemplate,2a =

{∣∣∣ sc1 (tevent)+sc2 (tevent)

2 − se(tevent)
∣∣∣ , e not in between c1 and c2

0, otherwise

During the optimization, the structure of the template will bring e closer
and closer to the gap until it is in the gap. However, as it is the case for the
introductory example in Fig. 1, there might not be a gap. Only a single other car

Fitness Functions for Testing Automated and Autonomous Driving Systems 77

Fig. 7. Qualitative test goal: e should be located in the gap at tevent

Fig. 8. Qualitative test goal: e should be located behind c1 at tevent

is of interest for relative positioning. The ego vehicle should be located behind
c2 for its lane change. This is reduced to the situation of Fig. 8.

In the case that e is ahead of c2, the distance between them is used as
measurement m. Since there is only one threshold (“behind of”), there is a
slight difference to template 2a. This simplifies the template to the following,
where only the distance to the one threshold is used:

Template 2b: (5)

ftemplate,2b =

{
sc2(tevent) − se(tevent), se(tevent) < sc2(tevent)
0, otherwise

Template for Correct Timing of Scenario Events. So far, a template for
the search of safe operating violations as well as templates for correct positioning
of scenario elements were discussed. In the following, a template for timing is
presented. It can be used to ensure that events, e.g. the start of a maneuver, are
happening at the right moments in time relatively to each other. In the example
of Fig. 1, the ego vehicle and the c1 are supposed to perform their lane changes
onto the middle lane simultaneously. This means that c1 starts its lane change
during the lane change of e. This is resembled in Fig. 9.

78 F. Hauer et al.

Fig. 9. Qualitative test goal: Lane changes should happen simultaneously

To allow c1 to start its lane change even a bit before e, an offset Δt1 can be
used. In general, also an offset Δt2 is possible, even though here it is set to 0.
A Δt2 > 0 would mean that c1 starts lane changing after e already completed
its lane change. The general idea of fidea,3 is adjusted to yield a template for
timings. However, this time the thresholds are not on the vertical axis as it is
the case for the location templates, but on the horizontal one. The thresholds
are the start tstart and the end tend of the ego vehicle’s lane change. In the case
that the start of the other vehicle’s lane change is not in between tstart − Δt1
and tend +Δt2, the distance to the middle of the interval is chosen. The template
for timing looks as follows:

Template 3: (6)

ftemplate,3 =

{∣∣ tstart−Δt1+tend+Δt2
2 − tevent

∣∣ , tevent not in between bounds
0, otherwise

4 Combining Templates

We have presented several templates, each addressing a specific aspect. In the
following, it is described how those templates can be combined to a fitness func-
tion that can be used by search-based techniques to yield complex scenarios.
There are two possibilities: Combining the set of templates to a single fitness
function allows the usage of single-objective optimizers, while for multi-objective
search, the fitness functions stay separated.

4.1 Combination for Single-Objective Search

The templates are nested into each other with the help of case distinctions.
The innermost level in the nesting is a template that measures the behavior of
the system with respect to a safe operating envelope; it aims for a quantitative
test goal. The outer levels of nesting are templates for qualitative test goals
(e.g. positioning and timing), which need to be fulfilled for the inner ones. Each
level consists of one template returning the measurement m as described above.

Fitness Functions for Testing Automated and Autonomous Driving Systems 79

Instead of returning 0 in the case that the qualitative test goal is fulfilled, the
measurement m of the next inner level is returned. This structure causes the
optimizer to approach the search in steps. First, scenarios are searched that
are of the desired form. Among those, the best scenario is identified for testing
against a safe operating envelope. To ensure the necessary total order of fitness
values, offsets are added to all levels of nesting except for the most inner one.
This offset needs to be greater than the maximum value of the next inner level.
A simple overapproximation of the sum of the m of the next inner level plus the
offset of the next inner level is sufficient.

4.2 Combination for Multi-objective Search

Most likely, there are some goals that are not dependent on each other, meaning
that each of those independent goals can be fulfilled without the constraint
that the others need to be fulfilled. For instance in the introductory example in
Fig. 1, the goal that “e performs its lane change behind c2” can be fulfilled even
though the goal that “c1 performs its lane change simultaneously with e” is not
fulfilled. In contrast to the usage of single-objective search, independent goals
can be optimized simultaneously with multi-objective search. Multi-objective
search optimizes a vector x of fitness values xi instead of a single fitness value.
The concept of Pareto optimization is used. A vector x is better than another
vector y if all xi ≤ yi and at least one xi < yi. Each xi is computed by a
single template fj , which may depend on one or more fk, j �= k. The fj that are
dependent on other fk, j �= k need to be adjusted in the following way: In the
case that at least one of the fk is not 0, which means that the qualitative test
goal connected to at least one of the fk is not fulfilled, xj is set to a very bad,
high value. Step by step, the preliminary qualitative test goals will get fulfilled
before the remaining test goals are optimized.

5 Application of the Templates

Since many car manufacturers and suppliers are currently developing a highway
pilot system or a comparable system, such a system is chosen for demonstration
purposes. It has to cope with all possible situations on the highway and does
not require the driver to take over in critical situations. Therefore, the highway
pilot is considered to be an automated driving system of SAE’s level 4 [14].
Many natural driving studies have been conducted to gather data for further
understanding of road traffic and the driver’s task (e.g. [8]). The database of
the biggest one [8] got analyzed for near-collision and collision recordings on
highways. The findings were grouped to 24 scenario types [18]. We used those as
use cases for the presented templates. In fact, the example of Figs. 1 and 10 is one
of those scenario types. The presented templates ensure that maneuvers happen
at the right moment and objects are located correctly, while another template
searches for violations of the safe operating envelope. Using these templates, we
were able to create suitable fitness functions for all of those scenario types. Since
those are the near-collision and collision scenarios, they are the most critical

80 F. Hauer et al.

ones. By at least covering those 24 scenarios with the templates, we argue that
the presented set of templates is sufficient for most of the critical highway traffic
scenarios. The following depicts the ease of use of the templates by applying
them to the most complex scenario of the 24, which is the introductory example
of Figs. 1 and 10. A variety of other scenarios is contained in this one, e.g. a lane
change of the ego vehicle behind another car without further surrounding cars.

Fig. 10. Most complex (close-to-)collision scenario of the reduced set of scenarios from
the database analysis [18]

For this scenario, several fitness functions are needed:

• The lane change of e needs to happen, for which a constant template is used.
For the given search space, a constant measurement m is not problematic,
since many candidates contain a lane change of e.

α =

{
∞, e does not change lanes
0, otherwise

(7)

• The lane change of e needs to happen behind c2, which indicates the use of
the positioning template. Let the moment, when e gets past the lane markings
between the starting lane and the target lane, be denoted as te,start.

β =

{
se(te,start) − sc2(te,start), sc2(te,start) < se(te,start)
0, otherwise

(8)

• The lane change of c1 needs to happen behind e. Again, the template for
positioning is used. Let the moment, when c1 gets past the lane markings
between the starting lane and the target lane, be denoted as tc1,start.

γ =

{
sc1(tc1,start) − se(tc1,start), se(tc1,start) < sc1(tc1,start)
0, otherwise

(9)

• Lane changes of e and c1 need to be simultaneously, for which the timing
template is used. Let the moment, when e and c1 are fully on the target
lane, be denoted as te,end and tc1,end. If either tc1,start + Δt1 < te,start or
te,end < tc1,end − Δt2 is true, the lane changes are not considered to be
simultaneous anymore. Δt1 is set to 1 s to allow for an earlier start of the

Fitness Functions for Testing Automated and Autonomous Driving Systems 81

lane change of c1, while Δt2 is set to 0 s such that c1 does not finish the lane
change before e starts changing lanes.

δ =

{∣∣∣ te,start−1+te,end+0
2 − tc1,start+tc1,end

2

∣∣∣ , not simultaneous

0, otherwise
(10)

• We need to search for a violation of the safety distance.

ε = min(sc2(t) − se(t) − safeDist(t)) [te,start, te,end] (11)

The combined fitness function for single-objective search does look as follows.
Powers of ten are used as offsets oi, e.g. o1 = 103 and o2 = 104.

fsingle =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α + o4, e does not change lanes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β + o3, sc2(te,start) < se(te,start)⎧⎪⎨
⎪⎩

γ + o2, se(tc1,start) < sc1(tc1,start){
δ + o1, not simultaneous
ε, otherwise

(12)

For an application of multi-objective search, the templates need to be changed,
e.g. ε can only be computed if all qualitative test goals underlying the other
templates are fulfilled.

ε̃ =

{
∞, α + β + γ + δ > 0
ε

(13)

Incorporating the dependencies also in the other templates yields the final vector
of fitness values. β, γ, and δ are independent of each other; they only depend
on α. In contrast to a combination for single-objective search as above, they can
be optimized simultaneously when combined for multi-objective search. α stays
unchanged as it does not depend on other templates.

fmulti = [α β̃ γ̃ δ̃ ε̃] (14)

The actual technical application of search-based techniques is not the focus of
this work as is has been done by various existing works. However, for interested
readers, we provide supplementary material online at https://mediatum.ub.tum.
de/1474281. Contained are two experiments that use the presented parameter-
ized scenario and combined fitness function as well as videos of the worst-case
scenarios identified by single- and multi-objective search during the experiments.

6 Related Work

Search-based techniques have been proposed for test scenario selection. The ini-
tial research presented the idea of applying search-based techniques for the func-
tional testing of advanced driver assistance systems by testing a parking assis-
tant [6] and a braking assistant [7]. Their setup is close to what we describe as

https://mediatum.ub.tum.de/1474281
https://mediatum.ub.tum.de/1474281

82 F. Hauer et al.

scenario-based testing. Recently, machine learning was introduced to improve the
performance of test case generation in this domain. For instance, with learning
surrogate models the optimization speed may be improved [3] and with build-
ing decision-trees the test engineer receives information about the search space
during test case selection [2]. Both works apply the presented techniques on an
emergency braking system. For testing a feature interaction of an adaptive cruise
control and an emergency braking system, search-based techniques are improved
in a way that they search for multiple faulty interactions simultaneously [4].

While all these technical improvements are important and show great results,
these works assume the fitness function to be given or create them ad-hoc, e.g.
to test the interaction of some specific features [4]. This is, because those works
focus on the technical aspect of the search-based techniques. Neither of them
addresses the methodological aspect of how fitness functions are correctly created
to allow for statements about safety, e.g. by testing against a safe operating
envelope as for instance provided by recent works [11,13,15]. Additionally, the
evaluation systems are rather reactive driver assistance systems of SAE level 1&2
[14] or combination of such. The provided fitness functions for those systems
are mostly not applicable to higher automated systems (e.g. level 4&5) with
decision making and active functionality (e.g. lane changing or overtaking) in
complex dynamic traffic scenarios, which require the fulfillment of qualitative
test goals. This motivates the need for methodological guidance when deriving
fitness functions.

7 Conclusion

We started by describing the necessity of suitable fitness functions to identify
“good” test cases within huge search spaces, described by parameterized scenar-
ios for automated and autonomous driving. A correct derivation of such suitable
functions is crucial, but difficult. For the application of search-based techniques
at larger scale for testing automated and autonomous driving systems, guidance
for test engineers is necessary. In this work, we provide such guidance in form
of templates and the means to combine them to fitness functions for complex
traffic scenarios. To test against thresholds of a safe operating envelope, we pre-
sented a specific template which provides the test engineer with an automated
oracle. Additional templates for relative positioning in time and space ensure
that the optimizer identifies scenarios that fulfill the qualitative test goals. For
combining the templates, we presented both a single and a multi-objective app-
roach which make use of case distinctions to provide a total ordering on scenario
candidates such that better scenarios are assigned to better fitness values. As
an evaluation, we presented the application of the templates on the most com-
plex (close-to-)collision highway scenario contained in the biggest natural driving
study database (identified by [18]). We conclude that the presented templates
provide a structured way for test engineers to formulate fitness functions to iden-
tify “good” test cases. Thus, this work adds a much needed methodological angle
to the otherwise technical solutions.

Fitness Functions for Testing Automated and Autonomous Driving Systems 83

The application of search-based techniques requires both a fitness function
and a search space. The derivation of the search space is not discussed in this
work. Similarly to the fitness function derivation, methodological guidance for
the derivation of search spaces (parameterized scenarios) is of high interest.
Both are difficult the creation of a suitable skeleton of a parameterized scenario
and the identification of suitable parameters and their domains. Further, in
addition to the methodological guidance presented in this work, an automated
fitness function derivation would be very useful to support test engineers. Using
a suitable scenario description as input, the described combination for single-
and multi-objective techniques might be automated.

References

1. OpenScenario 0.9.1 (2017). Technical report, OpenScenario Initiative. http://www.
openscenario.org. Accessed 11 Jan 2019

2. Abdessalem, R.B., Nejati, S., Briand, L., Stifter, T.: Testing vision-based control
systems using learnable evolutionary algorithms. In: Proceedings of the 40th Inter-
national Conference on Software Engineering (ICSE 2018). ACM (2018)

3. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver
assistance systems using multi-objective search and neural networks. In: 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 63–74 (2016)

4. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing
autonomous cars for feature interaction failures using many-objective search. In:
33rd ACM/IEEE International Conference on Automated Software Engineering,
pp. 143–154 (2018)

5. Althoff, M., Koschi, M., Manzinger, S.: Commonroad: composable benchmarks for
motion planning on roads. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp.
719–726. IEEE (2017)

6. Bühler, O., Wegener, J.: Evolutionary functional testing of an automated parking
system. In: Proceedings of the International Conference on Computer, Communi-
cation and Control Technologies (CCCT) and the 9th. International Conference
on Information Systems Analysis and Synthesis (ISAS) (2003)

7. Bühler, O., Wegener, J.: Evolutionary functional testing. Comput. Oper. Res.
35(10), 3144–3160 (2008)

8. Hankey, J.M., Perez, M.A., McClafferty, J.A.: Description of the shrp 2 natural-
istic database and the crash, near-crash, and baseline data sets. Technical report,
Virginia Tech Transportation Institute (2016)

9. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and valida-
tion. SAE Int. J. Transp. Saf. 4(1), 15–24 (2016)

10. Mullins, G.E., Stankiewicz, P.G., Gupta, S.K.: Automated generation of diverse
and challenging scenarios for test and evaluation of autonomous vehicles. In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 1443–1450
(2017)

11. Nister, D., Lee, H.L., Ng, J., Wang, Y.: The safety force field. https://www.nvidia.
com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-
force-field.pdf. Accessed 10 May 2019

12. Pretschner, A.: Defect-based testing. In: Dependable Software Systems Engineering
(2015)

http://www.openscenario.org
http://www.openscenario.org
https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/self-driving-cars/safety-force-field/the-safety-force-field.pdf

84 F. Hauer et al.

13. Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehi-
cles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66845-1 4

14. SAE: Definitions for terms related to on-road motor vehicle automated driving
systems. J3016, SAE International Standard (2014)

15. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars. arXiv:1708.06374. Accessed 5 May 2019

16. Ulbrich, S., et al.: Testing and validating tactical lane change behavior planning
for automated driving. In: Watzenig, D., Horn, M. (eds.) Automated Driving, pp.
451–471. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-31895-0 19

17. Wachenfeld, W., Winner, H.: The release of autonomous vehicles. In: Autonomous
Driving, pp. 425–449. Springer (2016)

18. Zhou, J., del Re, L.: Reduced complexity safety testing for adas & adf. IFAC-
PapersOnLine 50(1), 5985–5990 (2017)

https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/978-3-319-66845-1_4
http://arxiv.org/abs/1708.06374
https://doi.org/10.1007/978-3-319-31895-0_19

A SysML Profile for Fault Trees—Linking
Safety Models to System Design

Kester Clegg1(B), Mole Li2, David Stamp2, Alan Grigg2, and John McDermid1

1 University of York, York YO10 5DD, UK
{kester.clegg,john.mcdermid}@york.ac.uk
2 Rolls-Royce (Controls) PLC, Derby, UK

{mole.li,david.stamp,alan.grigg}@rolls-royce.com

Abstract. Model Based Systems Engineering (MBSE) has encouraged
the use of a single systems model in languages such as SysML that fully
specify the system and which form the basis of all development effort.
However, using SysML models for safety analysis has been restricted by
the lack of defined modelling standards for analytical techniques like
Fault Tree Analysis (FTA). In lieu of such standards, the ENCASE
project (See acknowledgements.) has formulated a simple SysML pro-
file that captures the information required to represent fault trees and
which enables the linkage of failure modes to other parts of the SysML
model. We describe our experience of integrating fault tree models within
a SysML MBSE environment for critical systems development, and show
how that can be done while keeping existing (often certified) analytical
tools as part of the development process. Common definitions of the sys-
tem specification improves the quality of safety analysis, and the closer
alignment of system and safety models provides opportunities for greater
traceability, coherence and verification.

Keywords: SysML · Fault Tree Analysis · Failure modes

1 Introduction

Systems Modelling Language (SysML)1 is an extension of the Unified Modelling
Language (UML) that focuses on systems modelling. SysML supports the speci-
fication, analysis, design, verification and validation of a broad range of systems
and systems-of-systems. However, ‘support’ in this sense is intended to mean a
well-defined specification to describe the system, so that development and analy-
sis can be performed using tools that take their data from a single model repos-
itory. The approach is widely described as Model Based Systems Engineering
(MBSE) and among its benefits is the hope it will remove most of the errors and
wasted development effort caused by conflicting sources of information. However

1 This paper refers to the current Object Modelling Group (OMG) SysML v1.5, not
the upcoming 2.0 standard. See http://www.omgsysml.org/.

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 85–93, 2019.
https://doi.org/10.1007/978-3-030-26601-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_6&domain=pdf
http://www.omgsysml.org/
https://doi.org/10.1007/978-3-030-26601-1_6

86 K. Clegg et al.

there are also benefits for safety analysis, provided that the tool chains typically
used in traditional critical systems development can be brought under the sin-
gle SysML model. Unfortunately support for safety analysis has lagged behind
the Object Modelling Group’s (OMG) SysML specification. This paper details
our progress in the setting of Rolls-Royce’s UltraFan engine demonstrator devel-
opment to provide SysML support to Fault Tree Analysis. The profile outlined
here will form part of a wider safety and reliability profile similar to that recently
proposed by the OMG (see below).

1.1 Background and Previous Work

To date, SysML has focused on supporting the requirements capture and func-
tional side of systems engineering. However for safety critical systems, non-
functional forms of analysis can be essential to argue that the system meets
a required safety standard. Fault logic is typically modelled using a graphical
representation of logic gates that traces the fault from base event to effect and
which can contain additional information, such as failure rate, dispatch infor-
mation and descriptive failure modes. A typical example is shown on the right
hand side of Fig. 3 and the technique is defined in standards like IEC 61025 [4].

ENCASE’s initial starting point after conducting a wider review of model
based approaches [6] and taking into account the choice of SysML by Rolls-
Royce as the modelling language to use on UltraFan, was an early paper from
the National Aeronautics and Space Administration (NASA)’s Jet Propulsion
Laboratory on fault protection modelling, which captured fault logic using activ-
ity diagrams [2]. We investigated using this approach but found issues with it.
For example, there is no provision for AND gate representation in Activity Dia-
grams and the fault logic modelling at Rolls-Royce requires this to express the
redundancy provided by a dual channel FADEC (Full Authority Digital Engine
Control) [5]. Secondly activity diagrams were never intended to model fault trees.
Activities on Activity Diagrams become Call Behaviour Actions, which seman-
tically seems at odds with fault logic, which is generally expressed as logic gates
and failure modes. Although there are other potential diagram types none offer
specific support for fault tree analysis and we decided we could best meet our
needs by creating a bespoke diagram type.

In 2017 the OMG issued a Request for Proposals on how to represent fault
trees in SysML as part of the Safety and Reliability Analysis Profile for UML,
which will extend the SysML language with “the capability to model safety
information, such as hazards and the harms they may cause, model reliability
analyses, including Fault Tree Analysis (FTA) and Failure Mode and Effects
Analysis (FMEA), and use structured argument notation to organize the model
and specify assurance cases” [1]. As part of this, an early profile for Fault Tree
Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) has been devel-
oped and published [1] and is likely to form part of SysML 2.0. However, while
the new profile is a step in the right direction, there were several pragmatic
aspects that made it unsuitable to adopt for the development of UltraFan within
Rolls-Royce. These are primarily to do with how the Failure Mode and Effects

A SysML Profile for Fault Trees 87

Analysis (FMEA) results are kept and used as part of FTA in the existing tool
chain, and discussions around how failure modes could be linked to functional
specifications in the model. This is discussed in more detail in Sect. 2.

There is also recent work investigating the formal translation of Activity Dia-
grams in UML/SysML to fault trees [3]. While this is a rigorous method, that
entails a one to one correspondence between the two models, at this stage in
the ENCASE project a more pragmatic approach is required due to the vari-
ety of ways engineers model activities. For example there are parts of Activity
Diagrams, such as Join Nodes, that are semantically ambiguous and can be
used/interpreted differently by users which would make automated translation
difficult. More importantly there is a different approach to modelling between
the system engineers (who model how things work) and the safety analysts (who
model how things fail). The primary practical concern for the safety team was
that the SysML fault tree models should be capable of modelling the system
fault logic as it had been done historically and exporting it in a format where
it could be analyzed by their existing tools such as FaultTree+ (part of Iso-
graph’s Reliability Workbench suite2). Extensions to SysML such as proposed
in [7] for component fault trees were rejected for this reason. It is relatively sim-
ple to model the fault logic to the point at which the base events are specified,
the base event details (failure rates from the FMEA/FMECA, exposure peri-
ods, etc.) can then be extracted from the Failure Modes and Effects Summary
(FMES) database (see [8]) using spreadsheet macros and exported as a work-
book to be imported by FaultTree+. This gives a low risk migration strategy
from the existing approach to that offered by MBSE, even though as we discuss
in Sect. 2.1 changing the way fault logic is currently modelled will be necessary
to maximize the benefits of MBSE.

2 A Bespoke Fault Tree Profile for SysML

Rolls-Royce (Controls, UK) currently use failure modes as human readable place-
holders or descriptions within the fault tree that describe the fault logic gate
below them (see right hand side of Fig. 3). Their primary purpose is to help
safety analysts understand and keep track of the fault logic of the system, which
can be extremely large (i.e. hundreds of pages) and complex. By associating
them with specific functional behavior modelled as activities in SysML, the sys-
tem engineers gain visibility of failure modes while modelling system functions
and can view the associated fault logic. However, this linkage (through failure
mode linked elements) also gives the future possibility of validating fault trees
against a system function or associated hardware when changes to the SysML
model are made. See Fig. 1 and its description below for more details.

To meet the challenges of traditional safety engineering that uses separate
models from system models, and in a similar spirit to the OMG RFP mentioned
earlier, we propose part of a new Model Based Safety Assurance (MBSA) profile
2 https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-

software/.

https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/
https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/

88 K. Clegg et al.

that allows safety analysis models to link to existing system models. Our profile
remains a work in progress—we are aware there are additional logic gates (such
as vote gates) to add to the profile. However what we outline is sufficient to start
to migrate the existing fault tree models into the SysML repository. Similar to
SysML extensions in UML, the proposed Fault Tree Profile reuses a subset of
UML 2.5 and provides additional extensions to aid Fault Tree analysis in UML
and SysML [1].

Fig. 1. Meta model of the proposed Fault Tree Profile, which will form part of a larger
MBSA profile. The Fault Tree Diagram scripts are not part of the profile but serve to
recreate a familiar user interface for safety analysts in PTC Integrity Modeller (PTC
IM).

The meta-model of our Fault Tree profile is shown in Fig. 1.3 In software
engineering, a meta-model is a mechanism for representing a well-formed formula
or the abstract syntax of a modelling language [9]. The definitions and semantics
of each concept of the meta-model are introduced as follows:

3 The meta-model we have developed includes a domain view meta-model as well,
which provides a modelling tool and language independent view and shows meta-
associations. We considered this to be out of scope for SAFECOMP but the authors
are happy to give details if requested.

A SysML Profile for Fault Trees 89

Logic Gate. Abstract meta-class (i.e. no concrete entity in the SysML model)
and implemented as a stereotype (i.e. an applied extension) that generalises
the common attributes of AND Gate, OR Gate, Base Event and House Event.
As it is a general modelling concept, its ID tag definition specifies the unique
reference for gates in the fault tree. Description allows users to specify textual
information to assist identification.

AND & OR Gate. Concrete meta-classes that represent the two most common
gates in fault trees. Implemented as the stereotyped UML: Class meta-class
making AND & OR Gates first-class entities. As they generalize the Logic
Gate meta-class, they inherit ID and Description tag definitions.

Base Event. Concrete meta-class that represents lowest level of a fault tree
diagram. Meta-modelling mechanism similar to AND & OR Gates. Links to
hardware components via Base Event Linked Element meta-class. The Base
Event FMES code allows scripts to retrieve its failure rates, probabilities,
exposure periods and dispatch information from the FMES database.

House Event. Concrete meta-class similar to a base event except that it serves
as a Boolean flag or switch to isolate parts of the fault tree under a particular
analysis (i.e. it’s a “normal event” expected to happen, not a “failure”).

Failure Mode. Concrete meta-class that represents a descriptive placeholder
used to describe the fault logic at that point in the fault tree. The meta-
modelling mechanism is similar to the logic gates.

Failure Mode Relationship. Concrete meta-class that defines the relation-
ship between Logic Gate such as AND Gate, OR Gate, Base Event, House
Event and Failure Mode. Implemented as a stereotyped UML: Dependency
meta-class to represent Failure Mode Relationship as a first-class entity. Two
reference-type tag definitions Logic Gates and Linked Failure Mode connect
Logic Gate and Failure Mode.

Hazard. Concrete meta-class that represents the top level Hazard in a fault tree.
We intend this class to be part of wider profile used to capture Functional
Hazard Analysis (see ARP4761 [8]). It generalises Failure Mode and extends
the tag definitions Hazard Log ID and Hazard Description.

Base Event Linked Element. Meta-class that links one or more Base Event to
system hardware components defined in SysML Internal Block Diagrams and
Block Definition Diagrams. Not implemented as a first-class entity, therefore
cannot exist by itself. The stereotype applies to UML: Class (SysML Block is
a stereo-typed UML: Class) in order to increase safety visibility for systems
engineers. In addition, it has a reference type tag definition Source Base Event
to connect stereotyped system hardware component and Base Event.

Failure Mode Linked Element. Meta-class that links one or more Failure
Mode to abstract hardware specifications defined in SysML Internal Block
Diagrams and Block Definition Diagrams, and system features and functions
in SysML Activity Diagrams. The meta-modelling mechanism is similar to
Base Event Linked Element.

FMES Code. Concrete meta-class that represents FMES Base Event codes.
Linked with zero or more Base Event via reference tag definition FMES Links
of Base Event. The Value tag is a unique identifier in the FMES database.

90 K. Clegg et al.

Fault Tree Diagram. A bespoke diagram type to model fault logic using fault
trees. In order to make the current SysML modelling tool (PTC’s Integrity
Modeler) a user friendly interface for safety analysts accustomed to working
with Isograph’s FaultTree+, user defined scripts provide some UI behaviour
(more details in Sect. 2.1). The extension mechanism is the same as the SysML
Internal Block Diagram that extends UML Composite Structure Diagram.

Fig. 2. Assigning failure modes (RHS dialogue box) from the fault tree level “Channel
A LP overspeed protection ineffective” (LHS tree hierarchy) via a Failure Mode Linked
Element on the Activity ‘Check for LP Shaft Overspeed Event’ (RHS top panel).

2.1 Implementation

For the UltraFan demonstrator, Rolls-Royce are using SysML as the focus of
their systems specification and development. The current modelling environment
is provided by PTC’s Integrity Modeler. The use of scripts enable user defined
toolbars and actions on a bespoke diagram type. A typical screenshot is shown
in Fig. 2. This has one “level” in a branch of the fault tree defined as an AND
gate, with failure modes describing the junction point above and below. Double
clicking on either of the failure modes below will take the user to the next
level below or create a new level (defined as a failure mode) in the tree. The
hierarchical structure (i.e. the fault logic) of the fault tree is shown in the left
hand panel. At the lowest level of this branch in the fault tree are the base

A SysML Profile for Fault Trees 91

events with their FMES codes. Scripts will be able to “walk” the fault tree
hierarchy down to the base events and export this to a spreadsheet within the
FMES database, where macros can combine it with information linked to the
Base Event FMES codes to be imported into FaultTree+ for analysis.

Fig. 3. Lower level of H01 fault tree showing base events with FMES identifiers. The
LHS is our profile as rendered by PTC IM, the RHS shows the output from FaultTree+.

The most striking difference between our profile and the initial safety profile
published by the working group for the OMG [1] is our decision not to bring the
FMEA information directly into the SysML model. Instead, the base events keep
their unique identifier that can allow that information to be extracted from the
FMES database. The reason for this is that the FMES is quite large (>3K rows)
and there has to be an explicit case made for bringing that information into the
SysML model where it is less easy to keep it maintained and checked. In the case
of dispatch events (these are faults that have an exposure period with respect
to maintenance intervals), a case can be made for linking them to derived safety
requirements kept elsewhere in the model and we will be issuing an updated
profile at a later date to reflect this, but otherwise all that is needed is the
FMES code. The FMES is a summary of the FMECA database (>25K rows),
and it is this database that is changed and maintained with the latest failure
rates. Therefore it is easiest if a new analysis is to be run to extract the summary
failure rate data directly from the databases, while keeping the fault logic and
knowledge of the failure modes within the SysML model. This is in keeping with
our belief that the SysML model represents a knowledge repository, whereas the
FMECA and FMES databases are designed to handle, import and export large
amounts of data efficiently and are able to interface with a wide range of tools.
Figure 3 shows the implementation of our profile in PTC Integrity Modeler and
compares two fault tree structures. Removing the FMES data (which is not used

92 K. Clegg et al.

by the safety analysts when modelling the fault logic - it is added by FaultTree+
by combining the failure rates of base events) gives a much cleaner interface,
with greater opportunity to add explicit descriptions within the failure modes
that can then be linked outwards to activities or hardware components.

2.2 Alignment of Safety and System Models

Advocates of MBSE are quick to point out the improved fidelity and efficiency of
maintaining a single development model. However, as safety engineers have tra-
ditionally modelled their understanding of the system’s fault logic with respect
to a hazard independently of other system models, some abstract failure modes
may have little obvious connection to system functions. In such cases, a realign-
ment and reassessment of failure modes may be necessary. For example safety
engineers often model a system with respect to its redundancy and mitigation
against a hazard, thus an analysis for a dual channel control system might query
why the mitigation provided by the redundant channel has failed in addition
to the channel in control. Contrast this with the system engineer’s perspective,
which is to consider an engine protection feature in its abstract specification
first, then to consider its implementation and finally how it is implemented on
a respective channel. In MBSE, fault logic models should follow where possible
the functional breakdown of the system engineers. Fault trees are often “richer”
models that can include physical or external factors outside the system’s func-
tional specification but required to understand how that function could fail. To
maximise benefits such as being able to cross-check models for inconsistencies, or
auto-generate fault trees from parts of the model, the profile must allow failure
modes to be associated with and traceable to specific parts of the SysML model.

3 Conclusions

The use of MBSE may lower development costs but it is not proven that it
results in safer systems. Part of the challenge is how to transition from a tried
and trusted development process to one that offers better coherence, traceability
and verification potential. Our proposal here is to accept that everything can
move under the SysML umbrella, but that by keeping trusted analytical tools as
part of the process, the transition can be managed, remain trustworthy and begin
to reap some of the benefits of MBSE. It is critical to understand at an earlier
stage what will be needed to export data from models so that it can be analysed
by existing tools. Losing the additional assurance of an independent model of the
system’s fault logic needs to be justified by demonstrating the value of validation
checks between models and being able to more easily identify changes to models
during development. Bringing safety and system models together to share their
definition of system artifacts improves the quality of safety analysis, helps assure
compliance and moves us a step closer to auto-generating parts of the fault tree
model from the system design.

A SysML Profile for Fault Trees 93

Acknowledgements. Development supported by Rolls-Royce PLC and funded as
part of Innovate UK’s ENCASE project (Enabling Novel Controls and Advanced Sen-
sors for Engines).

References

1. Biggs, G., Juknevicius, T., Armonas, A., Post, K.: Integrating safety and reliability
analysis into MBSE: overview of the new proposed OMG standard. In: INCOSE
International Symposium, vol. 28, pp. 1322–1336, July 2018. https://doi.org/10.
1002/j.2334-5837.2018.00551.x

2. Day, J., Murray, A., Meakin, P.: Toward a model-based approach to flight system
fault protection. In: Aerospace Conference, 2012 IEEE, pp. 1–17. IEEE (2012)

3. Dickerson, C.E., Roslan, R., Ji, S.: A formal transformation method for automated
fault tree generation from a UML activity model. IEEE Trans. Reliab. 67(3), 1219–
1236 (2018). https://doi.org/10.1109/TR.2018.2849013

4. IEC 61025: Fault tree analysis (FTA). Standard, International Electrotechnical
Commission, Geneva, CH, August 2006

5. Li, M., Batmaz, F., Guan, L., Grigg, A., Ingham, M., Bull, P.: Model-based systems
engineering with requirements variability for embedded real-time systems. In: 2015
IEEE International Model-Driven Requirements Engineering Workshop (MoDRE),
pp. 1–10, August 2015. https://doi.org/10.1109/MoDRE.2015.7343874

6. Lisagor, O., Kelly, T., Niu, R.: Model-based safety assessment: review of the disci-
pline and its challenges. In: The Proceedings of 2011 9th International Conference
on Reliability, Maintainability and Safety, pp. 625–632, June 2011. https://doi.org/
10.1109/ICRMS.2011.5979344

7. Nordmann, A., Munk, P.: Lessons learned from model-based safety assessment with
SysML and component fault trees. In: Proceedings of the 21st ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems, pp. 134–
143, MODELS 2018. ACM, New York (2018). https://doi.org/10.1145/3239372.
3239373

8. Guidelines and methods for conducting the safety assessment process on civil air-
borne systems and equipment ARP4761, Standard, SAE International, Warrendale,
PA, USA, 1 December 1996

9. Seidewitz, E.: What models mean. IEEE Softw. 20(5), 26–32 (2003)

https://doi.org/10.1002/j.2334-5837.2018.00551.x
https://doi.org/10.1002/j.2334-5837.2018.00551.x
https://doi.org/10.1109/TR.2018.2849013
https://doi.org/10.1109/MoDRE.2015.7343874
https://doi.org/10.1109/ICRMS.2011.5979344
https://doi.org/10.1109/ICRMS.2011.5979344
https://doi.org/10.1145/3239372.3239373
https://doi.org/10.1145/3239372.3239373

Safety and Reliability Modeling

Spectrum-Based Fault Localization
in Deployed Embedded Systems
with Driver Interaction Models

Ulrich Thomas Gabor1(B) , Simon Dierl1 , and Olaf Spinczyk2

1 Department of Computer Science, TU Dortmund, 44227 Dortmund, Germany
{ulrich.gabor,simon.dierl}@tu-dortmund.de

2 Institute of Computer Science, Osnabrück University, 49090 Osnabrück, Germany
olaf.spinczyk@uni-osnabrueck.de

Abstract. Software faults are still a problem especially in deployed sys-
tems. We propose a new approach to monitor a deployed embedded
system with another embedded system, which acts autonomously and
isolated. The monitoring system generates reports containing probable
fault locations, which can later be obtained without requiring expen-
sive debugging hardware or continuous access to the monitored embed-
ded system. For this, we assessed failure-detection oracles, transaction
detectors and suspiciousness metrics and evaluated them in a practical
combustion engine scenario. Especially, we propose a driver interaction
model to capture correct interaction with periphery and use it as oracle.
Our results show that for the repetitive behavior of an engine control
unit, simple approaches perform best.

Keywords: Reliability · Fault tolerance · Software reliability ·
Embedded software · Software quality

1 Introduction

Despite the continuous efforts of software engineering researchers, software faults
are still a problem in modern software development [19] leading to failures. They
can bring down spacecrafts [27] or whole data centers1 and with the increasing
number of pervasive embedded systems in households, e.g., smart speakers, fail-
ures are becoming more in absolute numbers due to the sheer number of devices.

While debugging techniques have improved in recent years, for example due
to better update mechanisms and systematic capture of crash/trace logs, regu-
larly there is still a lot of manual effort required to deal with logs, bug reports
and traces. Since manual labor is not only time-consuming, but also expensive,
the vision is to automatically assess such bug-related data and pinpoint the most
probable fault location for the expensive skilled developer.

1 https://status.aws.amazon.com/s3-20080720.html.

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 97–112, 2019.
https://doi.org/10.1007/978-3-030-26601-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_7&domain=pdf
http://orcid.org/0000-0003-4143-2400
http://orcid.org/0000-0001-9730-9335
https://status.aws.amazon.com/s3-20080720.html
https://doi.org/10.1007/978-3-030-26601-1_7

98 U. T. Gabor et al.

Spectrum-Based Fault Localization (SBFL) [24] is one approach serving
this purpose and is based on the fact that if a failure is observed, the faulty com-
ponent of a program must have been executed and therefore should be present
in information regarding this run. A program spectrum [24] entails execution
information from a specific perspective, e.g., which components were executed.
Such multiple spectra can be obtained for multiple runs together with an error
vector containing if the corresponding run failed or succeeded.

The idea is to find a relation between the spectra and the error vector, such
that components can be ranked for examination. The function mapping spectra
and an error vector to a suspiciousness [15] is called suspiciousness met-
ric [31]. For efficient computation, some suspiciousness metrics depend only on
aggregated information. For each component an aggregated matrix [3] can be
constructed, which lists the four counts for “component was or was not executed
in a succeeding or failing run”.

These definitions can be modified in granularity such that a component is not
a module or file, but a called function. Another variant is that a run is actually
not a full run, but a run is split into transactions and each transaction is assessed
as failing or succeeding.

1.1 Motivation

Observing already deployed embedded systems can be challenging, because
access to deployed systems is often restricted, for example, because the device
is not accessible physically. Attaching debuggers to every deployed system may
also not be an option due to regularly high costs of debuggers and it might not be
possible to reach the devices at all, besides scheduling an on-site appointment.

Our motivation is to be able to assess information on another small, cheap
embedded system which we will call monitor and only transmit or save an aggre-
gated fault localization report. These reports can then be transmitted using little
bandwidth or can be downloaded at the next on-site inspection.

1.2 Requirements

The proposed idea to generate fault localization reports directly in the field
should fulfill multiple requirements. First, the reports should obviously assist
in localizing bugs. Second, the monitoring should work autonomously, without
manual intervention, at least until the reports are obtained. Third, the monitor-
ing must operate in isolation, because a failure in the embedded device must be
assessed properly and should not lead to a failure of the monitor and vice versa.
As an additional bonus, it should be possible to monitor arbitrary existing soft-
ware without the need to change the source code of the monitored application.

1.3 Contributions

In this paper we present a new approach, which fulfills the aforementioned
requirements. We use an additional embedded system to monitor the physi-
cally isolated application-under-test. Further, we assess multiple spectrum types

SBFL in Deployed Embedded Systems with Driver Interaction Models 99

and suspiciousness metrics regarding their suitability for the proposed use case
and evaluate them in the context of control software for a simulated combus-
tion engine. Since the monitoring should work autonomously, we also need an
oracle to determine if a failure actually occurred and for long-running systems
the execution must be split into shorter so-called transactions by a transaction
detector [8]. To the best of our knowledge, we are the first to consider machine-
learned driver interaction models as failure-oracle in a spectrum-based software
fault localization resulting in suspiciousness rankings. These models allow us to
detect failures based on the modeled communication with periphery. Finally,
we use the AspectC++ compiler, which provides aspect-oriented programming
(AOP) features for C++ [26], to instrument the application-under-test and make
it transmit information to the monitoring device without forcing the developer
to modify the source code.

1.4 Paper Organization

We will list related work in Sect. 2 and our new approach performing fault local-
ization on an deployed embedded system in Sect. 3. Section 4 will demonstrate
why our approach is feasible for our specific use case and in Sect. 5 we will
name threats to validity, since our use-case is quite specific. Finally, Sect. 6 will
summarize our findings.

2 Related Work

Fault localization can be done using multiple approaches. One of these
approaches is model-based diagnosis. Abreu et al. use observations to construct a
propositional formula, but finding an assignment, i.e., a faulty component, boils
down to find a minimal hitting set [2], for which even approximations require
noticeable computational power. Other approaches require manual modeling of
the expected behavior [14], which can be a complex and error-prone task. Model-
based approaches are therefore not the best choice for our setting.

Another approach is based on coverage-based techniques, which often require
to compute full or dynamic slices, showing which statements of a program mod-
ify a variable or were executed. Xiaolin et al. have combined execution coverage
of statements based on test cases with execution slices in a prototype implemen-
tation called HSFal to improve suspiciousness metrics and found their approach
to reduce the average cost of examined code around 2.98 % – 31.79 % [16]. While
the idea seems reasonable to us, slices are statement-based and that will likely
exceed the available memory on small systems.

The most promising approach for our setting are spectrum-based fault local-
ization approaches, where only a subset of the observable information of an
application is taken into account, therefore we used this method. This approach
has already successfully been used for embedded systems by Abreu et al. [5], but
they inserted detectors manually in source code, which requires human effort
and knowledge of the functionality of the application. Others regularly use unit

100 U. T. Gabor et al.

tests or metamorphic testing [32] for failure detection in case unit tests are not
possible. There are also approaches which combine spectrum-based with model-
based techniques [3], but they also require more computational power than is
available on low-cost microprocessors.

One core-component of classical spectrum-based approaches is the choice
of an appropriate suspiciousness metric, where the so-called Ochiai metric out-
performed other metrics when applied in real scenarios [4,18]. Recent approaches
tried to combine multiple metrics by learning a weight from previous faults and
applying the weights to compute suspiciousness for new faults [33], but this again
requires computational power not available in the field of embedded systems. It
might be possible though to perform the learning phase before deploying the
system, but we have not yet examined this. Instead we just selected multiple
existing metrics and compared them.

3 Methodology

Our overall methodology is shown in Fig. 1. On the left side the system-under-
test is shown, which was augmented with a tracing component, transmitting
trace data to the monitoring machine. In our case we have used AspectC++ to
inject the tracing seamlessly into an existing application. Although this does not
have to be done with AOP, it has the advantage of injecting trace code into the
application without modifying the original source code.

The monitoring machine on the right performs all of the fault localiza-
tion functionality. The continuous stream of information provided by the target
machine is assessed by an oracle to decide if the current transaction is succeeding
or failing. At the same time the stream is analyzed by a transaction detector to
check if the data belongs to a new transaction, in which case the aggregation
unit is informed. All information is aggregated to save space and a report based
on the obtained information can be generated.

The report should rank software components according to their suspicious-
ness for being responsible for a failed run. A human can then inspect the com-
ponents in that order.

3.1 Methodology Variants

Our method is not concrete about the used mechanisms as oracle or transaction
detector. In fact, we will evaluate multiple variants in Sect. 4. Therefore, we
will introduce multiple concepts in the rest of this section, which are evaluated
regarding their individual efficacy later.

3.2 Observed Entities for Spectrum Generation

Section 1 introduced the concept of “components” in different granularity. We
will use the called functions of a program as “components” to be able to pinpoint
faults with little human effort.

SBFL in Deployed Embedded Systems with Driver Interaction Models 101

Fig. 1. High-level architecture of the analysis framework yielding a fault localization
report

Additionally, we will assess the benefit of using the extension method call
sequence hit spectra (MCSHS) [9,30] in our evaluation, where “components”
are method call sequences of length z. For example, for the method hit sequence
〈f(), g(), h()〉 and z = 2 the following two “components” would be marked as
executed {(f(), g()), (g(), g())}. With z = 1 the extension is disabled and only
called functions without their predecessors will be used.

3.3 Transaction Detector

We have assessed the well-known timing-based transaction detector, which splits
the input stream every second into separate transactions as proposed by Abreu
et al. [1]. This is necessary if a system cannot easily provide separate runs, for
example because it runs continuously. Since results with these transactions were
already good, see Sect. 4, we have not examined other approaches.

3.4 Failure-Detection Oracle

Our idea for a failure-detecting oracle is based on the fact that one of the main
purposes of an embedded system is to interact with its environment. We use this
fact to learn how correct interaction with periphery looks like and use this model
to decide, if an embedded system still behaves as expected or failed. We call this
model driver interaction model (DIM), which is a finite state machine where
all states are accepting and the input symbols are communication messages to
the hardware. A DIM for a fictional wireless chipset driver can be seen in Fig. 2.

We propose that either a correct implementation or the successful execu-
tions during development, e.g., supported by unit tests, can be used to learn a
DIM, which can then be deployed with the monitoring system. In the unfamiliar
environment our model will detect potential failures, which can be used by the
developer to either fix a fault or to improve the DIM iteratively. Our approach is

102 U. T. Gabor et al.

Fig. 2. A fictional DIM for a wireless chipset driver

therefore applicable in multiple scenarios, for example helping a developer imple-
ment new software, but also checking a re-implementation or software variant.

For that, once a driver interaction model was learned, it can be saved. It can
then be loaded later again and augmented with new information, but it is also
possible to manually modify or check the model according to a specification.

Learning driver interaction models is a CPU-and memory-intensive task and
requires multiple runs as reference data, which is another reason why we propose
to learn the model beforehand and deploy it on the monitoring machine. We
used a variance of the k-tails algorithm [6] to merge equivalent states during
learning. Regularly, two states are equivalent if their k-tails are equal, i.e., the
same words of length k are accepted beginning from the two states. We relaxed
this and consider states for merging if the source state’s k-tail is contained in
the target state’s k-tail to obtain more realistic models. Since the learning data
is based on sequences of method calls, each node (besides an initial node) has
exactly one k-tail and merging nodes will not lead to more k-tails, otherwise
the nodes would not have been merged. This observation allows to merge states
during learning using a map from k-tails to already inferred nodes. Learning a
new node is done by first checking if the k-tail is present in the map. If it is, the
two nodes are merged; if not, a new node is created and the map updated with
this newly created node.

This algorithm is used to merge similar traces. Consider the most basic
example, where identical message sequences occur in two traces, e.g., (connect,
okay) → (send, okay) → (send, . . .). It is likely that in both traces the periph-
ery’s internal state was identical, therefore the origin states are merged.

Such a driver interaction model can be used as oracle by following transitions
and in case this is not possible, a failure is detected. If the execution should
continue after a failure was detected, we just try to find fitting transitions for
the next events starting in the erroneous state. A reset threshold r is used and
after r successful consecutive transitions, the oracle is used to detect failures

SBFL in Deployed Embedded Systems with Driver Interaction Models 103

again. If not specified otherwise, we used the learning parameter k also as reset
threshold, as this is the first intuitive choice.

Interaction can be observed on different abstraction levels, e.g., binary com-
munication or already decoded packages, and the data can be obtained either
directly in the driver or via an external sniffer.

We also examined software behavior graphs (SBG) [20], a graph where
nodes correspond to functions and an edge (s, t) exists, if function s calls function
t. They can be learned from trace data and during fault localization encountering
a missing edge can be interpreted as a failure. Since the evaluation in Sect. 4
shows that they do not perform well in our setting, we will not go into details.

3.5 Thread Separation

Since modern software is often executed in parallel and even embedded systems
make use of multi-core CPUs nowadays, it is sometimes necessary or at least
helpful to know which CPU or thread caused a failure. We investigated a mech-
anism to isolate parallel executions. Since we did not want to expect that an
embedded operating system provides a thread abstraction, we configured our
approach to use the CPU core id as identifier, although it is possible to use a
thread id in systems where this abstraction exists.

3.6 Failure Indexing

Spectrum-based fault localization (SBFL) is guided by the idea to localize one
fault, whereas in practice often multiple faults will be present simultaneously. If
enough computational power is present, this is not a problem, as one fault can be
fixed, and then another SBFL experiment can be run. In long-running, isolated
systems, this is not that easy, therefore it is preferable to collect information
regarding multiple faults at the same time, if possible. One problem is, how the
observed effects can be pinpointed to one of multiple faults. One idea is to use the
information which oracle detected the failure caused by a fault or how it detected
the failure to distinguish different causes. This is called failure indexing. We
will assess in the next section if this feature helps in our use case.

4 Evaluation and Application

We have implemented our approach and performed multiple experiments to
determine the best choice and configuration regarding oracles/detectors and
parameters presented in the last section.

4.1 Testbed

We have implemented our approach exemplarily based on the embedded operat-
ing system CyPhOS [7], running the application EMSComponent [25] simulating
an engine control unit on a Wandboard Quad – a development board hosting an

104 U. T. Gabor et al.

i.MX6 CPU providing the ARM Cortex-A9 instruction set and 2GB of RAM.
We used the same operating system and board to deploy the monitoring system.
To simulate a combustion engine, EMSBench2 [17] was used, which was deployed
on an STM32F4-Discovery development board – a low-power development board
featuring an ARM Cortex-M3 CPU.

To trace the application we used AspectC++, which can be easily inte-
grated into the CyPhOS build process. It was used to transmit information
about called methods and driver interaction events to the monitoring machine.
Since AspectC++ automatically numbers relevant methods sequentially (join
point ID, short: JPID), we used these numbers to identify functions. Although
this is not necessary for our approach, it is convenient to transmit information
efficiently. We also used AspectC++ to modify the low-level GPIO driver to
obtain trace data for the driver-interaction-model oracle.

Since most suspiciousness metrics are easy to compute, we included five met-
rics in total: Barinel [3], D∗ [28], Ochiai [23], Op2 [21] and Tarantula [15], where
D∗ is parametrized with ∗ ∈ N.

To compute these metrics we only need the aggregated matrices as described
in Sect. 1. Further, we reduced memory occupation by only storing the lower row
of aggregated matrices, the one which counts the succeeding/failing transactions
the component participated in, and two counters for succeeding and failing over
all transactions. The upper row can be recomputed from these. Actually, storing
the spectra and aggregated matrix requires some more thought to not exhaust
the available memory. We have used a variation of the trie data structure [12]
to be able to use method call sequences as keys for storing.

Our approach uses a domain-agnostic oracle and transaction detector. As
a baseline for our experiments, we implemented domain-specific counterparts.
The domain-specific oracle detects an error in CyPhOS by monitoring the crash
handler. Since CyPhOS is a component-based operating system, it was possible
to use calls of the function to switch between two components as an identifier
for a new transaction. We will later refer to this transaction detector as “OSC”.

We used our own tool [13] to inject software faults according to a well-known
fault model [10,22], without the addition for more realistic faults based on soft-
ware metrics. We filtered faults which were not useful, e.g., resulted in images
that did not boot or modifications in dead code, resulting in 41 patches insert-
ing faults into the application, see Fig. 2 for an explanation of the corresponding
abbreviations.

4.2 Experiments

We performed multiple experiments to determine the best oracle and the best
configuration for our use case. For that, we have performed the following steps:

– Generate patch files to inject software faults into our application.

2 https://www.informatik.uni-augsburg.de/en/chairs/sik/research/running/
emsbench/.

https://www.informatik.uni-augsburg.de/en/chairs/sik/research/running/emsbench/
https://www.informatik.uni-augsburg.de/en/chairs/sik/research/running/emsbench/

SBFL in Deployed Embedded Systems with Driver Interaction Models 105

– Learn a driver interaction model and a software behavior graph from suc-
cessful runs to determine the quality of the oracles regarding detection of
failures triggered by the previously generated faults, and assess the impact of
parameter k of our k-tails learning algorithm.

– Determine speed and therefore feasible configurations for continuous moni-
toring.

– Determine whether thread separation and which transaction detection mech-
anism performs best.

– Assess found configurations as a whole.

Table 1. Oracle-detected errors for the injected faults per driver interaction model
(DIM) with different k, software behavior graph (SBG) and domain-specific CPU
exception detector

Fault type Oracle Fault type Oracle Fault type Oracle

MFC-1 2-DIM MIES-2 MLPA-2

MFC-2 1, 2-DIM MIES-4 MLPA-10 1, 2-DIM

MFC-4 MIES-6 2-DIM MLPA-26 1, 2-DIM

MFC-5 MIES-7 2-DIM MLPA-29 2-DIM

MFC-6 1, 2-DIM MIES-11 2-DIM MLPA-30 2-DIM

MIA-2 MIFS-1 MRS-1

MIA-3 MIFS-3 MRS-9 2-DIM

MIA-5 MIFS-5 MRS-10 CPU ex. & SBG

MIA-6 MIFS-7 2-DIM MRS-15

MIA-7 MIFS-8 2-DIM MRS-18 2-DIM

MIEB-2 1, 2-DIM MLOC-3 1, 2-DIM & SBG MVIV-7

MIEB-3 1, 2-DIM MLOC-4 1, 2-DIM MVIV-15

MIEB-4 2-DIM MLOC-5

MIEB-7 2-DIM MLOC-8

MIEB-10 2-DIM

To learn driver interaction models, we used 15 runs of the EMSComponent
for k-tails with k = 1, . . . , 10, but already for k = 3 the resulting oracle returns
false-positives. Therefore, we only used k = 1 and k = 2, where for k = 2 the
oracle detected 53.7% of the errors, whereas for k = 1 only 19.5% were detected.
Table 1 shows detected errors caused by injected faults (see Table 2 for the fault
type acronyms) for the driver interaction model (DIM) with k = 1 or 2 in
comparison to the domain-specific CPU exception detector, which detected only
one error, and the software behavior graph (SBG), which detected two errors.
Since only our driver interaction model with learning parameter k = 2 was able
to identify a notable number of errors at all, we used this oracle for all further
experiments.

106 U. T. Gabor et al.

Table 2. Fault types used for software fault injection in our experiments

MFC Missing function call

MIA Missing if construct around statements

MIEB Missing if construct plus statements plus else before statements

MIES Missing if construct plus statements plus else plus statements

MIFS Missing if construct plus statements

MLOC Missing OR clause in branch condition

MLPA Missing small and localized part of the algorithm

MRS Missing return statement

MVIV Missing variable initialization using a value

Next, we evaluated the parameter specifying the length of method call
sequences with and without failure indexing and thread separation, so that trace
information can be processed on another device without loosing information. The
maximum baud rate of the used UART is 460800, which leads to a maximum of
57600B/s or, with our encoding, 3840 event messages per second. Table 3 shows
the resulting numbers, where the processing numbers high enough to cope with
the maximum baud rate are highlighted bold. As can be seen, only for a method
call sequence length of z = 1 (see Sect. 3.2) the speed is always above the neces-
sary computation border. Since it may be possible to improve the implementa-
tion and therefore increase the processing speed or use buffers on the monitoring
device to puffer trace bursts, we did not drop sequence length of 2 altogether,
but will assess it in later experiments. Although, it remains an open question if
the computations can be actually improved to fulfill the real-time requirements.

Table 3. Processing speeds for different campaign configurations

Sequence length Failure indexing Thread separation Avg. B/s Min. B/s

2 Yes Yes 11 196 5 441

2 Yes No 7 445 3 344

2 No Yes 20 788 10 032

2 No No 12 813 5 777

1 Yes Yes 81 335 48 819

1 Yes No 68 147 39 683

1 No Yes 146 787 95 129

1 No No 127 094 76 523

Our overall goal is to find the best combination and configuration of tech-
niques and parameters for our fault-localization approach. We will use the well-
known EXAM metric [29] to assess the performance. The EXAM metric specifies

SBFL in Deployed Embedded Systems with Driver Interaction Models 107

in percent what proportion of the reported code positions have to be examined
before actually encountering the faulty position. Therefore, a value of 0% is best.

We first compared the six suspiciousness metrics mentioned in the introduc-
tion, see Sect. 1, each with and without thread separation and different trans-
action detection approaches in Table 4. We show the average EXAM score over
all faults and its standard deviation. Since multiple experiments resulted in a
perfect EXAM score of 0%, we also show the number of these experiments.

One can draw at least two conclusions from these experiments. First, activat-
ing thread separation leads to worse EXAM scores in nearly all cases. Although
our workload was mostly single-threaded it is still a surprise that this feature
is mostly hindering. Our best guess at the moment is that activating this fea-
ture led to a high number of successful transactions on other cores which had a
negative influence on the metrics. This would explain the good performance of
Barinel and Tarantula metric, which become more accurate when the number of
successful runs vastly exceed the number of runs of the faulty component. Since
our workload was not suitable to examine this problem further, we leave this
for future work. Second, the timer-based transaction detector outperformed the
domain-agnostic component-based detector (“OSC”), although the influence is
not as severe as that of thread separation.

Table 4. Accuracy results in EXAM metric for different analysis configurations

Thread
Sep.

Trans.
Detect.

#0% Avg. σ #0% Avg. σ #0% Avg. σ

Barinel
Ochiai

D2

Op2

D3

Tarantula

Off OSC 11 5.1 % 8.1 pp 13 4.7 % 8.2 pp 13 4.7 % 8.2 pp

13 4.7 % 8.2 pp 13 4.7 % 8.2 pp 11 5.1 % 8.1 pp

Off Timer 13 2.9 % 4.1 pp 15 2.7% 4.7 pp 15 2.7% 4.7 pp

14 3.0 % 4.7 pp 14 3.0 % 4.7 pp 12 3.6 % 4.7 pp

On OSC 1 43.2 % 21.2 pp 1 44.5 % 18.4 pp 0 43.1 % 15.3 pp

1 44.5 % 18.4 pp 0 43.1 % 14.6 pp 1 43.2 % 21.2 pp

On timer 13 5.6 % 10.5 pp 0 27.4 % 8.8 pp 0 27.8 % 8.8 pp

0 27.8 % 8.7 pp 0 28.3 % 8.7 pp 12 6.0 % 10.5 pp

Since the results of Table 4 are quite clear, we configured our method with-
out thread separation and with the timer-based transaction detector to assess
some remaining questions in a last experiment. First, we analyzed whether using
parameters as part of the call sequence improves or worsens the results. Second,
we analyzed whether reducing the reset threshold has notable impact. Lastly, we
analyzed whether increasing the sequence length, and therefore actually using
the MCSHS extension, improves fault localization. We performed the last exper-
iment despite having assessed already that our current implementation is not
able to cope with the trace data on time, but it may be possible to improve the
runtime of our method.

108 U. T. Gabor et al.

The results of our last experiments are shown in Table 5. As can be seen,
none of the experiments leads to significantly better results. If we ignore func-
tion parameters and for example compare D2 and D3 with Table 4 it can be
seen that only the standard deviation improves, whereas the number of zero
percent occurrences is reduced, i.e., some faulty components are not inspected
first anymore. Reducing the reset threshold to 1 actually worsens the results a
bit. Regarding the MCSHS extension, if we use the averaging proposed in the
corresponding paper [9], where each function is assigned a suspiciousness based
on the suspiciousness values of all sequences it appeared in, the results are signif-
icantly worse than before, see the last row. If we instead use an approach where
each method occurring in the sequence is examined and therefore the suspicious-
ness of the first occurrence of the faulty method in any sequence is significant,
the results improve a little bit, see the results highlighted bold, but we might
lose trace data due to missing real-time requirements, cf. Table 3. Additionally,
depending on the selected examination strategy, the number of methods to check
is doubled with k = 2. We can conclude that for our repetitive application the
reset threshold is not relevant and that using the MCSHS extension, if it could
cope with the trace data in real-time, would not improve the results significantly.

Table 5. Accuracy results in EXAM metric for variants of the “ideal” configuration

Mode #0% Avg σ #0% Avg σ #0% Avg σ

Barinel
Ochiai

D2

Op2

D3

Tarantula

Ignore 12 2.9 % 3.8 pp 13 2.7 % 3.9 pp 13 2.7 % 3.9 pp

Parameters 12 3.0 % 4.0 pp 12 3.0 % 4.0 pp 10 3.6 % 4.0 pp

Reset Threshold 12 3.2 % 4.2 pp 14 3.0 % 4.7 pp 14 3.0 % 4.7 pp

13 3.3 % 4.7 pp 14 3.0 % 4.7 pp 11 3.9 % 4.7 pp

Seq. Len. z = 2 12 3.8 % 5.5 pp 14 2.7 % 4.9 pp 14 2.7 % 4.9 pp

Best EXAM-Score 13 2.9 % 4.9 pp 14 2.4% 4.6 pp 11 4.1 % 5.5 pp

Seq. Len. z = 2 9 18.8 % 24.1 pp 10 17.1 % 22.2 pp 10 19.2 % 23.3 pp

Avg EXAM-Score 9 17.9 % 23.7 pp 10 21.1 % 28.0 pp 8 19.3 % 24.3 pp

5 Threats to Validity

While our results are promising, we used a specific setting hindering the exten-
sion of these results to other experiments. Foremost, the repetitive work of the
engine control unit is very helpful when using statistical methods. In a setting
where the software or device has a wider range of functionality, our results may
not hold. However, many embedded systems implement control loops and are
therefore similar to our experiment. Second, the used fault model has a great
impact on the results. While we used a fault model widely accepted in the fault-
injection community it still may not accurately represent real faults of specific
scenarios.

SBFL in Deployed Embedded Systems with Driver Interaction Models 109

Another problem can be that our instrumentation to transfer trace data to
another system might have an impact on the timing behavior of the system-
under-test. This can lead to modified behavior or cause it to violate real-time
constraints.

6 Conclusion

In this paper we have assessed spectrum-based fault localization techniques espe-
cially in the setting of deployed embedded systems, where continuous access to
the systems and expensive debugging hardware is not an option. We have com-
pared multiple known suspiciousness metrics using the EXAM score by applying
them in an engine-control-unit scenario and found that regularly less than 10%
of probable fault locations have to be analyzed to find the fault. Further, we
showed how oracles other than unit tests can be used to decide if an execution
was successful or failing, and for that case demonstrated a new form of passively
learned automaton, the driver interaction model, which can be used to learn
correct behavior when interacting with periphery. We have compared this oracle
with others and were able to show that our approach works well in our setting.

While our driver interaction models already performed good, during qualita-
tive examination we found that it may still be possible to improve their represen-
tativeness. In future work it may be promising to try to improve their accuracy
and expressiveness by using probabilistic or extended probabilistic automata [11]
instead.

In general it seems that a spectrum-based approach based on behavior-
comparing oracles seems useful above-average in a setting where the application
behavior is repetitive, where only limited memory is available to store (aggre-
gated) trace data and where observable interaction with external units takes
place. In this case even simple approaches already provide good results, i.e., it
is often enough to analyze the single most suspiciousness component to already
find the underlying fault.

Acknowledgement. We thank Erwin Schoitsch, Austrian Institute of Technology
(AIT), for his valuable feedback and dedicated effort to improve this paper.

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Program spectra analysis in embed-
ded software: a case study. Technical report, TUD-SERG-2006-007, Software Engi-
neering Research Group, Delft University of Technology (2006). http://arxiv.org/
abs/cs/0607116

2. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: An observation-based model for
fault localization. In: Proceedings of the 2008 International Workshop on Dynamic
Analysis: Held in Conjunction with the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2008), WODA 2008, pp. 64–70. ACM,
New York (2008). https://doi.org/10.1145/1401827.1401841

http://arxiv.org/abs/cs/0607116
http://arxiv.org/abs/cs/0607116
https://doi.org/10.1145/1401827.1401841

110 U. T. Gabor et al.

3. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Spectrum-based multiple fault
localization. In: Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, ASE 2009, pp. 88–99. IEEE Computer Society,
Washington, DC (2009). https://doi.org/10.1109/ASE.2009.25

4. Abreu, R., Zoeteweij, P., Gemund, A.J.V.: An evaluation of similarity coefficients
for software fault localization. In: 2006 12th Pacific Rim International Symposium
on Dependable Computing (PRDC 2006), pp. 39–46, December 2006. https://doi.
org/10.1109/PRDC.2006.18

5. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.: A practical evaluation
of spectrum-based fault localization. J. Syst. Softw. 82(11), 1780–1792 (2009).
https://doi.org/10.1016/j.jss.2009.06.035. sI: TAIC PART 2007 and MUTATION
2007

6. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. C–21(6), 592–597 (1972).
https://doi.org/10.1109/TC.1972.5009015

7. Borghorst, H., Spinczyk, O.: CyPhOS - a component-based cache-aware multi-core
operating system. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm, J., Pionteck,
T. (eds.) ARCS 2019. Lecture Notes in Computer Science, vol. 11479, pp. 171–182.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18656-2 13

8. Casanova, P., Schmerl, B., Garlan, D., Abreu, R.: Architecture-based run-time
fault diagnosis. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS,
vol. 6903, pp. 261–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23798-0 29

9. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight defect localization for Java. In:
Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 528–550. Springer, Heidelberg
(2005). https://doi.org/10.1007/11531142 23

10. Durães, J.A., Madeira, H.S.: Emulation of software faults: a field data study and a
practical approach. IEEE Trans. Softw. Eng. 32(11), 849–867 (2006). https://doi.
org/10.1109/TSE.2006.113

11. Emam, S.S., Miller, J.: Inferring extended probabilistic finite-state automaton
models from software executions. ACM Trans. Softw. Eng. Methodol. 27(1), 4:1–
4:39 (2018). https://doi.org/10.1145/3196883

12. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960). https://doi.org/
10.1145/367390.367400

13. Gabor, U.T., Siegert, D., Spinczyk, O.: Software-fault injection in source code
with Clang. In: Proceedings of the 32nd International Conference on Architecture
of Computing Systems (ARCS 2019), Workshop Proceedings (2019, to appear)

14. Hooman, J., Hendriks, T.: Model-based run-time error detection. In: Giese, H.
(ed.) MODELS 2007. LNCS, vol. 5002, pp. 225–236. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69073-3 24

15. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2005, pp. 273–282. ACM, New
York (2005). https://doi.org/10.1145/1101908.1101949

16. Ju, X., Jiang, S., Chen, X., Wang, X., Zhang, Y., Cao, H.: HSFal: effective fault
localization using hybrid spectrum of full slices and execution slices. J. Syst. Softw.
90, 3–17 (2014). https://doi.org/10.1016/j.jss.2013.11.1109

https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1007/978-3-030-18656-2_13
https://doi.org/10.1007/978-3-642-23798-0_29
https://doi.org/10.1007/978-3-642-23798-0_29
https://doi.org/10.1007/11531142_23
https://doi.org/10.1109/TSE.2006.113
https://doi.org/10.1109/TSE.2006.113
https://doi.org/10.1145/3196883
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1007/978-3-540-69073-3_24
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1016/j.jss.2013.11.1109

SBFL in Deployed Embedded Systems with Driver Interaction Models 111

17. Kluge, F., Ungerer, T.: EMSBench: Benchmark und Testumgebung für reaktive
Systeme. Betriebssysteme und Echtzeit. I, pp. 11–20. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48611-5 2

18. Le, T.D.B., Thung, F., Lo, D.: Theory and practice, do they match? A case with
spectrum-based fault localization. In: 2013 IEEE International Conference on Soft-
ware Maintenance, pp. 380–383, September 2013. https://doi.org/10.1109/ICSM.
2013.52

19. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now?
An empirical study of bug characteristics in modern open source software. In: Pro-
ceedings of the 1st Workshop on Architectural and System Support for Improving
Software Dependability, ASID 2006, pp. 25–33. ACM, New York (2006). https://
doi.org/10.1145/1181309.1181314

20. Liu, C., Yan, X., Yu, H., Han, J., Yu, P.S.: Mining behavior graphs for “backtrace”
of noncrashing bugs. In: Proceedings of the 2005 SIAM International Conference
on Data Mining, pp. 286–297. Society for Industrial and Applied Mathematics
(2005). https://doi.org/10.1137/1.9781611972757.26

21. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. 20(3), 11:1–11:32 (2011). https://
doi.org/10.1145/2000791.2000795

22. Natella, R., Cotroneo, D., Duraes, J.A., Madeira, H.S.: On fault representativeness
of software fault injection. IEEE Trans. Softw. Eng. 39(1), 80–96 (2013). https://
doi.org/10.1109/TSE.2011.124

23. Ochiai, A.: Zoogeographical studies on the soleoid fishes found in Japan and its
neighbouring regions-II. Bull. Japan. Soc. Sci. Fish 22(9), 526–530 (1957). https://
doi.org/10.2331/suisan.22.526

24. Reps, T., Ball, T., Das, M., Larus, J.: The use of program profiling for software
maintenance with applications to the year 2000 problem. In: Jazayeri, M., Schauer,
H. (eds.) ESEC/SIGSOFT FSE -1997. LNCS, vol. 1301, pp. 432–449. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63531-9 29

25. Schulte-Althoff, T.: Validierung des Echtzeitverhaltens des ereignisbasierten
Betriebssystems CyPhOS am Beispiel einer Motorsteuerung (2017). https://ess.
cs.tu-dortmund.de/Teaching/Theses/

26. Spinczyk, O., Lohmann, D.: The design and implementation of AspectC++.
Knowl. Based Syst. Spec. Issue Tech. Produce Intell. Secure Softw. 20(7), 636–
651 (2007). https://doi.org/10.1016/j.knosys.2007.05.004

27. Stephenson, A.G., et al.: Mars climate orbiter mishap investigation board phase I
report, November 1999. https://llis.nasa.gov/llis lib/pdf/1009464main1 0641-mr.
pdf

28. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290–308 (2014). https://doi.org/10.
1109/TR.2013.2285319

29. Wong, W.E., Debroy, V., Xu, D.: Towards better fault localization: a crosstab-
based statistical approach. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
42(3), 378–396 (2012). https://doi.org/10.1109/TSMCC.2011.2118751

30. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. PP(99), 1 (2016). https://doi.org/10.1109/
TSE.2016.2521368

31. Xie, X., Chen, T.Y., Kuo, F.C., Xu, B.: A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization. ACM Trans. Softw. Eng. Methodol.
22(4), 31:1–31:40 (2013). https://doi.org/10.1145/2522920.2522924

https://doi.org/10.1007/978-3-662-48611-5_2
https://doi.org/10.1109/ICSM.2013.52
https://doi.org/10.1109/ICSM.2013.52
https://doi.org/10.1145/1181309.1181314
https://doi.org/10.1145/1181309.1181314
https://doi.org/10.1137/1.9781611972757.26
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/TSE.2011.124
https://doi.org/10.1109/TSE.2011.124
https://doi.org/10.2331/suisan.22.526
https://doi.org/10.2331/suisan.22.526
https://doi.org/10.1007/3-540-63531-9_29
https://ess.cs.tu-dortmund.de/Teaching/Theses/
https://ess.cs.tu-dortmund.de/Teaching/Theses/
https://doi.org/10.1016/j.knosys.2007.05.004
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSMCC.2011.2118751
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/2522920.2522924

112 U. T. Gabor et al.

32. Xie, X., Wong, W.E., Chen, T.Y., Xu, B.: Spectrum-based fault localization: Test-
ing oracles are no longer mandatory. In: 2011 11th International Conference on
Quality Software, pp. 1–10, July 2011. https://doi.org/10.1109/QSIC.2011.20

33. Xuan, J., Monperrus, M.: Learning to combine multiple ranking metrics for fault
localization. In: 2014 IEEE International Conference on Software Maintenance and
Evolution, pp. 191–200, September 2014. https://doi.org/10.1109/ICSME.2014.41

https://doi.org/10.1109/QSIC.2011.20
https://doi.org/10.1109/ICSME.2014.41

Forecast Horizon for Automated Safety
Actions in Automated Driving Systems

Ayhan Mehmed1,2(B), Moritz Antlanger1, Wilfried Steiner1,
and Sasikumar Punnekkat2

1 TTTech Auto AG, Vienna, Austria
{ayhan.mehmed, moritz.antlanger}@tttech-auto.com

wilfried.steiner@tttech.com
2 Mälardalen University, Väster̊as, Sweden

sasikumar.punnekkat@mdh.se

Abstract. Future Automated Driving Systems (ADS) will ultimately
take over all driving responsibilities from the driver. This will as well
include the overall safety goal of avoiding hazards on the road by exe-
cuting automated safety actions (ASA). It is the purpose of this paper
to address the general properties of the ASA. One property of particular
interest is the forecast horizon (FH) that defines how much in advance
a hazard has to be identified in order to ensure the timely execution of
an ASA. For the estimation of the FH, we study the fault-tolerant time
interval concept defined by the ISO 26262 and extend it for the use case
of fail-operational ADS. We then perform a thorough study on all param-
eters contributing to the FH, assign typical values for each parameter for
a running example, and formalize our work by a set of equations. The set
of equations are then applied to two specific driving scenarios, and based
on the running example values, the FH is estimated. We conclude our
work with a summary of the estimated FH for each of the specific driving
scenarios at different road conditions and the recommended road speed
limits. Such a scientific way of deciding optimal bounds on the FH is
essential to ensure the safety of the future autonomous vehicles and can
be a major requirement for clearing the regulatory needs on certification.

Keywords: Automated safety actions · Forecast horizon ·
Automated driving system · Specific relevant scenarios

1 Introduction

Today, major car manufacturers have their first series production vehicles with
driving automation capabilities. Apart from serving as a comfort feature (auto-
matically maneuvering the vehicle from point A to B), the Automated Driving
System (ADS) is responsible for the overall vehicle safety. For example, the
ADS shall reliably execute automated safety actions (ASAs) by detecting obsta-
cles in the driving path and either safely circumvent the obstacles or reach a

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 113–127, 2019.
https://doi.org/10.1007/978-3-030-26601-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_8

114 A. Mehmed et al.

safe halt before colliding with them. In case of an ADS failure, these vehicles do
still require a fallback-ready driver to be alerted and ready to take immediately
or in a timely manner over the fallback driving tasks. Ultimately, in the race
for higher automated driving capabilities (L3, L4, and L5 ADS [8]), all driving
responsibilities are to be shifted from the driver to the ADS itself - including the
fallback driving tasks. As no fallback-ready driver exists, the responsibility for
executing an ASA also remains in case of internal ADS failures. Thus, requiring
a continuous operation after a failure - a fail-operational system design.

The currently accepted automotive standard ISO 26262 only covers func-
tional safety, i.e., it only addresses how to engineer a system such that it safely
executes its functions (including the ASA function). However, the ISO 26262
defines neither which specific ASA to implement, nor general properties of ASA.
The time to execute an ASA, for instance, can vary from milliseconds up to tens
of seconds depending on factors as the ASA strategy (e.g., evasive maneuver,
emergency braking), the road conditions (dry, wet, snowy, icy), and others. In
some cases, the time needed to execute the ASA can be higher than the time to
the hazard - thus jeopardizing the overall safety of the vehicle.

A way to ensure the safety of the vehicle is to provide the required time for
the ASA execution by detecting the hazard early enough in advance. We define
this as the forecast horizon, that is the lower bound of a time interval that defines
how much in advance an impending potential hazard has to be identified so that
the execution of ASA is guaranteed. It is the purpose of this paper to define the
bounds of the forecast horizon for specific automated safety actions.

While the ISO 26262 does not cover ASA, we need to consider it when extract-
ing general properties for ASA. For example, in the forecast horizon, we need
to consider the functional safety of the ASA functions: the function responsible
for identifying a hazard may be faulty. Thus fault detection and fault-mitigation
actions need to be factored in when calculating the forecast horizon. While, such
fault detection and fault-mitigation aspects are the subject of ISO 26262 we also
critically review these aspects and extend them, as ISO 26262 has been designed
for achieving safe systems mainly by fail-silent system design (e.g., switching-
off), while ADSs demand a fail-operational system design. Throughout the paper
we follow the terminology of ISO 26262, version 2011 [3].

The paper continues with Sect. 2, that formulates in details the problem to be
addressed. Next, in Sect. 3 we explore the parameters contributing to the forecast
horizon and exemplify using running example values. In Sect. 4, we define the
specific driving scenarios that later in Sect. 5 are used for the estimation of the
forecast horizon. We conclude our work in Sect. 6.

2 Problem Statement

Ensuring the safety of fully automated vehicles is a well-recognized complex
interdisciplinary challenge [5]. At present, there is no single straightforward
solution for ensuring automated vehicle’s safety. Instead, the consensus of cross-
domain experts is to use a set of complementary safety methods that together
are sufficient to ensure the safety levels required from the automotive safety
standards and most importantly for public acceptance.

Forecast Horizon for Automated Safety Actions 115

The problem under investigation contributes to the overall goal of automated
vehicle safety by estimating the sufficient forecast horizon. The forecast horizon
aims to guarantee the execution of ASA and thus ensures the vehicle reaching
a safe state in case of hazardous situations. As a reference for our estimations
we take a fail-operational ADS consisting of a primary ADS and a fallback ADS
working in a hot-standby configuration, and a safety monitor responsible for
the overall ADS safety by verifying the correctness of the primary and fallback
outputs.

The first parameter contributing to the forecast horizon is the time needed
to execute the ASA. It may range from milliseconds up to a second when only
a small to medium amount of braking is needed to keep a safe distance to a
vehicle cutting into the ego vehicle’s lane. Another example is when an imme-
diate emergency braking in the current lane is needed to avoid a crash with an
unavoidable static obstacle - resulting in an ASA time of more than ten seconds
in bad road conditions and at a high initial speed of the ego vehicle.

The factors influencing the ASA time are the ASA strategy and the road
conditions (dry, wet, snowy, icy). The ASA strategy is influenced by the (i) the
operational design domain (e.g. highway traffic jam pilot, highway pilot, urban
pilot), (ii) the type of the primary ADS fault (see Fig. 7), (iii) the type of the
obstacles on the road (static or dynamic), (iv) and the ego vehicle state (speed,
position on the road, etc.) at the moment of fault occurrence. The combination
of the above results in a vast number of possible scenarios that are difficult to
enumerate exhaustively.

This makes the definition of a sufficient forecast horizon time a complex task.
Indeed, a single wide forecast horizon of tens of seconds will be sufficient for all
possible scenarios that may occur. However, in our work, we have not found
studies addressing concepts as the forecast horizon with such a wide range. To
address the complexity introduced by the numerous scenarios, we define a set
of specific highway driving scenarios in Sect. 4. In Sect. 5 we then estimate the
forecast horizon for the specific scenarios.

For fail-operational ADS, further parameters have to be taken into account
for the estimation of the sufficient forecast horizon. In particular, we analyze a
scenario where the primary (active) ADS does not detect a hazardous situation
on the road, thus leading to non-initiation of an ASA. To activate an ASA, (i)
the primary ADS fault has to be detected by the safety monitor, (ii) the fallback
ADS has to take over, and (iii) then initiate the execution the ASA. To estimate
the forecast horizon, the time needed for the actions above has to be accounted
and summed with the ASA execution time (Fig. 1).

Fig. 1. Parameters influencing the forecast horizon: a high-level overview.

116 A. Mehmed et al.

3 Parameters Influencing the Forecast Horizon

In this section, we investigate the parameters contributing to the forecast hori-
zon. For each of the parameters, we define upper bounds and exemplify using
realistic numbers. A basis for our estimations is the fault-tolerant time interval
(FTTI) concept defined in the ISO 26262 [3]. We then (i) further break down the
existing parameters in the FTTI concept and (ii) extend it to account for the
time to execute the ASA - thus adapting to the fail-operational system design.

3.1 The FTTI Concept and Proposed Extension

In late 2011, the International Organization for Standardization (ISO), released
the “Road vehicles - Functional safety” standard - the ISO 26262. With the aim
of supporting the definition of the safety requirements for the safety mechanisms,
the ISO defined the FTTI: the time-span in which a fault can be present in a
system before a hazardous event occurs (Fig. 1).

Fig. 2. Fault reaction time and fault tolerant time interval (source: [3]).

The requirement towards any safety mechanism is to bring the vehicle to a
safe state in less than the FTTI (tftti). The time to bring the system to a safe
state is defined by (i) the time to detect the fault, defined by the diagnostic test
interval (tdti), (ii) and fault reaction time (tfr) that is the time-span from the
detection of a fault to reaching the safe state. To ensure the prevention of the
hazard and reaching a safe state, the following condition needs to be satisfied:

tdti + tfr < tftti (1)

The ISO 26262 defines a safe state as an operating mode of an item without
an unreasonable level of risk. The operating modes are defined as (i) a normal or
degraded operating mode, (ii) a switched-off mode, or (iii) emergency operation.
For ADS with a fallback-ready driver switching-off (fail-silent behavior) upon a
failure is enough to reach a safe state. For ADS without a fallback-ready driver,
a continuous operation after a failure is necessary. However, continuing with
normal or degraded operation after an ADS failure, does not guarantee the safe

Forecast Horizon for Automated Safety Actions 117

state has been reached. For instance, detecting a fault in the primary ADS which
has failed to recognize a static obstacle on the road, and reacting to the fault by
switching to the fallback ADS which continues with a degraded operation, does
not ensure a safe state is reached. The fallback ADS should then execute specific
“actions” to avoid the obstacle and reach a safe state. A candidate to describe
these “actions” in ISO 26262 terms is the emergency operation. However, this
term is ambiguously defined in the ISO 26262 version 2011 [3]. Thus the FTTI
concept is not fully suitable for the fail-operational ADS use case.1

We propose the use of the ASA, to describe the case where after the reaction
to the fault (e.g., switchover) the fallback ADS should execute certain actions to
reach a safe state. An extension of the ISO 26262 concept is presented in Fig. 3.

Fig. 3. Proposed extension of the FTTI concept for the use case of fail-operational
ADS where to reach a safe state, an ASA is needed after reaction to a fault.

The ADS is assumed to consist of primary ADS, fallback ADS and a monitor
serving as a safety mechanism. The vehicle is either in normal, faulty or in ASA
operation. The primary ADS experiences a fault leading to the vehicle being in
faulty operation. In order to reach a safe state:

1. The primary ADS fault should be detected by the monitor in a certain fault
detection time (tfd). To optimize the tfd, we propose the use of the test
execution out-of-sync time (toos) and the test execution time (tte) instead of
the diagnostic test interval (tdti) in Fig. 2.

2. The fault has to be mitigated, and the vehicle should be brought to a normal
operation mode in a certain fault reaction time (tfr). For a fail-operational

1 At the time of finalization of this paper, the 2018 version of ISO26262 was published
and we note that the emergency operation term has been refined. The emergency
operation time interval was introduced and extended the original FTTI concept
making it suitable for fail-operational ADS. However, we have kept our original
terminology since it was a parallel and independent development.

118 A. Mehmed et al.

ADS, this is done by switching over to the fallback ADS. Thus the fault
reaction time is equal to the fallback switch-over time (tfs).

3. The fallback ADS should execute an ASA to avoid the hazard and bring the
vehicle to a safe state. The time for the execution of the ASA is defined as
tasa. In particular, emergency braking is assumed. Thus the tasa consists of
the brakes initiation time (tbi) and the emergency braking time (tb).

The time to hazard (ttth) defines the time from occurrence of the fault in the
primary ADS to the occurrence of the hazard. In order to ensure the safe state
will be reached before the occurrence of the hazard, the sum of tfd, tfr, and tasa
has to be smaller than the ttth (Eq. 2).

tfd + tfr + tasa < ttth (2)

Equation 2 may not always be kept, as in some cases the tasa can be in the
range of tens of seconds - much higher than ttth. To ensure the ASA will be
executed and a safe state will be reached, the fault has to be detected early in
advance. The answer of “how much earlier in advance is enough?” is defined
by the forecast horizon. For the estimation of the forecast horizon the tfd, the
tfr, the tasa, and the tsm have to be taken into account (Eq. 3). Where the tsm
ensures a certain safe distance to the hazard after the completion of the ASA
(see Sect. 3.5). Table 1 summarizes the parameters and the exemplified values
that will be used as a running example throughout this paper.

tfh = tfd + tfr + tasa + tsm (3)

Table 1. Summary of the values for the parameters influencing the forecast horizon

Parameter Value Parameter Value

Test execution out-of-sync time (toos) 1µs Brakes initiation time (tbi) 11 ms

Test execution time (tte) 10 ms Emergency braking time (t
′
b)

−v0
2ab

Fallback switch-over time (tfs) 10 ms Safety Margin (tsm) 140 ms

The following subsections depict our studies on defining the upper bounds
for these parameters.

3.2 Fault Detection Time

The fault detection time (tfd) is the time span from when the fault in the
primary ADS has occurred to the time when the monitor detects the fault. The
assumption is that the monitoring tasks are executed in a certain time interval
(diagnostic test interval (tdti)) that is then used to define the upper bound of
the tfd (Fig. 2). Hence, the lower the tdti is, the lower the tfd will be. For the

Forecast Horizon for Automated Safety Actions 119

sake of further lowering the upper bound for tfd, we define the test execution
time (tte) and the test execution out-of-sync time (toos) is described next.

Figure 4 depicts an example where the primary ADS generates an output in
certain time interval defined by tpo. A monitor is verifying the correctness of the
primary ADS outputs by means of a predefined test criteria. The time to execute
the test is defined by the tte. Depending on how well the tasks of ADS outputting
the signal and the monitor testing the signal are synchronized, different delays
to the fault detection time are added. To account for such delays, we define the
toos and consider it in tfd. Based on this, the time needed to detect the fault is
given by

tfd = toos + tte. (4)

Hence Eq. 3 accordingly updated (Eq. 5).

tfh = toos + tte + tfr + tasa + tsm (5)

Fig. 4. Time to detect the fault.

Test Execution Out-of-Sync Time. To lower the test execution out-of-sync
time (toos), we envision two approaches. The first is lowering of the diagnostic
test interval - thus the lower the tdti, the smaller the toos is. The second is to
design an event chain based on the predefined offline tasks schedule that enables
the execution of a check immediately after an ADS output is generated.

While the upper bound for the first approach is defined by the tdti (tmax1

oos ≤
tdti), the upper bound for the second is defined by “how well” the predefined
schedule is executed. The “how well” is dependent on the clock synchronization
accuracy of the doer (primary ADS) and the checker (the monitor) with respect
to the UTC (Coordinated Universal Time). We assume that both, primary ADS
and the monitor are time-aware systems, implementing the time synchronization
protocol defined in IEEE 802.1AS (.1AS) standard. In recent simulation studies,
the .1AS guarantees a synchronization quality of 1µs for time-aware systems
that are up to 30 hops away from the grandmaster [2]. Hence, we bound the
upper limit of the out-of sync-time of the second approach to tmax2

oos = 1µs and
use it as a value for the toos in the running example.

120 A. Mehmed et al.

Test Execution Time. The test execution time (tte) is dependent on the algo-
rithmic solution used for testing and the underlying hardware performance and
optimization techniques. To bound the test execution time, a standard method
such as worst-case execution time analysis is advisable - a topic requiring a study
on its own. For the approximation of tte, we assume it to be 10% of the auto-
mated driving system’s end-to-end latency: i.e., from sensor acquisition of the
environment to actuator response. A recently published study in [6] suggests an
end-to-end latency for ADS of 100 ms or below. Hence leading to an estimated
test execution time of tte = 10 ms for the running example.

3.3 Fault Reaction Time

In a fail-operational ADS example composed of a primary and fallback ADS, a
reaction to a primary ADS fault is to switch over to the fallback ADS (tfr = tfs).
Hence Eq. 5 is updated to:

tfh = toos + tte + tfs + tasa + tsm (6)

The fallback switch-over time (tfs) is the time from when the primary ADS
fault is detected by the monitor, to the time when the fallback ADS has taken
over control of the vehicle. Redundant pairs can generally be in cold or hot
standby configuration. We consider a cold-standby redundant configuration as
inapplicable for fail-operational ADS since it does not meet the real-time require-
ments for automated driving. Based on practical experience, a hot-standby con-
figuration enables primary to fallback switch-over times in the range of millisec-
onds. To exemplify, we assume a switchover time of tfs = 10 ms.

3.4 Automated Safety Action

In the case of emergency braking, the automated safety action time (tasa) is the
sum of the time to initiate the brakes (tbi) and the time to brake (tb) until a full
stop is reached:

tasa = tbi + tb (7)

Brakes Initiation Time. The brakes initiation time (tbi) is the time from when
the fallback ADS outputs a braking signal to the time when the actuators start
braking. We assume that future automated driving system-equipped vehicles will
utilize brake-by-wire systems. Therefore we do not consider any delays caused by
mechanical or hydraulically nature. For the estimation of tbi we consider (i) the
communication latency from the time when the fallback ADS outputs a braking
signal to the time when that signal reaches the electronic control unit (ECU)
responsible for the braking (tcl), (ii) the ECU processing time (tecup), and (iii)
the time from when the ECU outputs the control signal to the time when the
brakes actually start braking (tba).

Forecast Horizon for Automated Safety Actions 121

tbi = tcl + tecup + tba (8)

To estimate the communication latency, we look in studies for real-time com-
munication networks (FlexRay and TSN) in [7,9,10], that based on analysis
and simulations conclude on a communication latency below a millisecond and
latency jitter below 10 µs. Therefore, we assume a communication latency of
tcl = 1 ms for the running example.

The estimation of (ii) and (iii) is strongly depending on the underlying system
hardware, hence requiring future simulation or prototype studies to be done. For
the current estimation, we assume the sum of tecup + tba to be roughly 10% from
the ADS end-to-end latency. Based on [6], the assumed value for the sum of
tecup + tba is estimated to be 10 ms. Thus the estimated brakes initiation time
for the running example is tbi = 11 ms.

Time to Brake. By use of equation of motion, the time to brake (tb) and the
distance to brake (x(tb)) are estimated as

tb = −v0/ab (9)

and

x(tb) = −v2
0/2a. (10)

Where v0 is the vehicle’s initial speed. The v(tb) is the vehicle speed after execu-
tion of the braking - for emergency braking v(tb) = 0 at full stop. The ab is the
acceleration: for braking ab < 0. The estimations are valid under the assump-
tion that the ego vehicle is moving in a straight line with constant deceleration.
Braking curve model is not taken into account for the sake of simplicity and will
be added in future studies.

Due to the non-constant speed of the vehicle, the braking time (tb) cannot be
used for the estimation of the forecast horizon (tfh). Instead, one has to answer
the question of “how far in advance the error needs to be predicted in order to
provide the required braking distance (x(tb))?”. For that, we define the t

′
b, which

is the time the vehicle needs to travel the braking distance x(tb) with the initial
speed (v0) being constant (Fig. 5).

Fig. 5. Differentiation between the time to break (tb) and the t
′
b.

122 A. Mehmed et al.

The relation between the t
′
b and tb can be expressed as

v0t
′
b = v0tb +

1
2
abt

2
b . (11)

Having the time to brake equal to tb = −v0/ab, the Eq. 11 can be further simplified
to Eq. 12.

t
′
b =

−v0
ab

+
1
2
ab
v0

(−v0
ab

)2

=
−v0
2ab

(12)

Based on Eqs. 12, 7 for the case where the ASA is emergency braking is
updated to

tasa = tbi + t
′
b. (13)

Furthermore, the forecast horizon equation in Eq. 6 can be updated to:

tfh = toos + tte + tfs + tbi + t
′
b + tsm (14)

3.5 Safety Margin

The purpose of introducing the safety margin is to ensure there will be a rea-
sonable safety distance (xsm) between the vehicle and the potential hazard after
the ASA is completed (Fig. 6). If no safety margin exists the distance (xhm) left
between the vehicle and the hazard after the ASA execution cannot be ensured.

Fig. 6. Time to brake vs forecast horizon

The safety margin to be added to the forecast horizon is defined as follows:

tsm = xsm/v0. (15)

To exemplify the time needed to be added (tsm) to the forecast horizon, we
assume a safety margin of 5 meters (xsm = 5 m) and a vehicle moving with an
initial speed of 130 km/h (v0 = 36, 1 m/s). Thus the assumed safety margin for
the running example is equal to 138.5 ms (tsm ≈ 140 ms).

Forecast Horizon for Automated Safety Actions 123

4 Complexity Reduction

In this section, we address the complexity introduced by the numerous scenarios
that may occur. The approach is to decompose the general problem to specific
problems. Such a decomposition can be in regards to a restriction of the auto-
mated vehicle’s operational design domain (e.g., highway pilot, traffic jam pilot,
etc.), the operating conditions (e.g., weather and road condition), and the vehicle
state (e.g., operating mode, vehicle speed). Hence, instead of solving the general
problem to finding “all relevant scenarios”, we decompose the problem by defin-
ing “specific relevant scenarios”. For each of the “specific relevant scenarios” we
then define the corresponding safe state and specific strategy to reach it. As the
research and technology in automated driving progress, we expect that more and
more complex driving scenarios can be mastered.

4.1 Specific Relevant Scenarios

Figure 7 depicts an example of four specific relevant scenarios. We restrict the
operational design domain to a highway driving scenario with 130 km/h speed
limit (highway pilot). The vehicle state is defined as the primary ADS being
in faulty operation. To generate the specific scenarios, we then introduce three
parameters: (i) the type of fault, (ii) the type of the obstacle (static or dynamic),
and (iii) the avoidability of the obstacle. For each of the scenarios, different road
conditions and initial vehicle speeds is applied in the following sections.

Fig. 7. Generalized scenarios for a highway ADS experiencing different faults.

In scenario 1, the primary ADS experiences a failure that causes the gen-
eration of a faulty output leading to a sudden sharp turn to the road barriers.
In scenario 2, the primary ADS experiences a failure caused by reasons varying
from incapability of the environment perception algorithm to low sensor perfor-
mance. As a result, a static obstacle on the road is not detected. The object is
not avoidable, e.g., a traffic jam on the road. Scenario 3 is similar to scenario
2, this time the obstacle is avoidable. In scenario 4 the obstacle is dynamic and
not avoidable (e.g., another vehicle cutting in ego vehicle’s lane).2

2 The analyses done for scenario 3 and 4 are not described further in this paper due
to page limitations. A follow-up paper will be produced to publish our work.

124 A. Mehmed et al.

4.2 Safe States and Strategies for the Specific Relevant Scenarios

Figure 8, defines the safe states and corresponding strategy to reach them for
scenario 1 and 2. In scenario 1, going back from incorrect to correct operation
is considered a safe state. The strategy to reach the safe state is to isolate the
faulty primary ADS operation by switching to the fallback ADS and continuing
the dynamic driving tasks with full or degraded functionality. A safe state in
scenario 2 is reached once the static obstacle is avoided. Since the obstacle is not
avoidable by a maneuver, the strategy is to initiate an emergency braking until
the vehicle is at a full stop.

Fig. 8. Safe states for the specific scenarios and strategies to reach the safe states.

4.3 Road Conditions and Speed Limits

For scenarios that require braking, we investigate the change of the sufficient
forecast horizon depending on different road conditions as dry, wet clean, wet
slippery (e.g.during the first minutes of the rainfall), snowy and icy road. For this
we use braking adhesion coefficients from [4] and [12]. The maximum achievable
braking deceleration is estimated as ab = gk [m/s2], where g = 9.8 ≈ 10 m/s2

is the gravity and k is the adhesion coefficient. Table 2 summarizes the k for
different road (asphalt) conditions and the corresponding braking deceleration.3

Different speed limits apply depending on the road conditions. The speed
limits are taken from [1] and [11] and summarized as follows: 30 km/h for icy
road, 110 km/h for wet/snowy roads, and 130 km/h for dry roads.

Table 2. Adhesion coefficient at different road conditions and maximum deceleration.

Road condition Ice Snow Wet slippery Wet clean Dry

Adhesion coefficient (k) 0.1 0.2 0.25 0.5 0.7

Braking deceleration (ab) 1 2 2.5 5 7

3 In reality, the adhesion coefficient (k) is not constant: starting at zero at time zero,
during the first second is rising to the maximum stated values and then slowly
declining. For simplicity, we assume a constant k and thus a constant ab.

Forecast Horizon for Automated Safety Actions 125

5 Estimation of the Forecast Horizon

In this section, we estimate the values of the forecast horizon for the specific sce-
narios 1 and 2. For the estimations the exemplified parameter values in Table 1
are used. The change of the forecast horizon in different road condition is inves-
tigated based on the values in Table 2.

5.1 Scenario 1

Due to the type of fault in scenario 1, no ASA is needed to reach the safe state.
Instead, a simple switchover to the fallback ADS and continuing with full or
degraded functionality is sufficient. The forecast horizon for this scenario (ts1fh) is
estimated via Eq. 16, resulting to a sufficient forecast horizon of ts1fh = 31 ms. As
no braking is performed, the forecast horizon is not affected by road conditions.

ts1fh = toos + tte + tfs + tsm (16)

For faults that do not require an AHA, we recommend using the original
FTTI concept from the ISO 26262 (Fig. 2) and Eq. 1. As long as tdti + tfs < tftti
is guaranteed, no prediction of the hazard (forecast horizon) is needed.

5.2 Scenario 2

In scenario 2, the ASA is an execution of an emergency braking until the vehicle
reaches a full stop. Equation 17 estimates the ts2fh and Fig. 9 depicts the results.

ts2fh = toos + tte + tfs + tbi + t
′
b + tsm (17)

For a scenario where the road is dry, the estimated forecast horizon at speed
v0 = 130 km/h is ts2fh = 2.75 s assuming a constant braking deceleration ab =
7 m/s2. In case of a wet clean surface, the estimated forecast horizon at speed
v0 = 110 km/h is ts2fh = 3.23 s with constant braking deceleration ab = 5 m/s2.

Fig. 9. Forecast horizon time for a scenario, a full stop is needed to reach a safe state.

126 A. Mehmed et al.

The forecast horizon increases significantly once the road is wet and slippery
at the beginning of the rainfall. The estimation is ts2fh = 6.28 s at initial vehicle
speed v0 = 110 km/h with assumed constant deceleration ab = 2.5 m/s2. For
a snowy road scenario, the estimated forecast horizon at speed v0 = 110 km/h
is ts2fh = 7.81 s with constant braking deceleration ab = 2 m/s2. Finally, in a
scenario with an icy road surface the estimated forecast horizon is ts2fh = 4.34 s
at speed v0 = 30 km/h with constant braking deceleration ab = 1 m/s2.

6 Conclusions

Fully automated vehicles are no longer a distant future goal. Both, the academic
and industrial sectors invest a vast amount of resources in meeting the market
demands on the one hand and ensure the vehicle’s safety on the other. Reaching
an automated vehicle safety level, such that the user trust is not lost is a complex
interdisciplinary challenge. In this paper, we contribute to solving this challenge
by studying the sufficient forecast horizon used to ensure the vehicle will always
have the time for executing the needed automated safety action (ASA). For
that, we first looked into the already existing fault-tolerant time interval concept
defined by ISO 26262 (version 2011 [3]) and extended it for the use case of fail-
operational ADS where upon a failure an ASA execution is needed. Next, we
(i) conducted a detailed study on the parameters contributing to the estimation
of the forecast horizon and assigned theoretic values for these parameters, (ii)
formalized our work by a set of equations, (iii) defined four specific highway
driving scenarios to reduce the complexity introduced by the high number of
possible scenarios, and last (iv) estimated the sufficient forecast horizon for the
first two scenarios at different road conditions and the recommended road speed
limits. Although the fault detection time and the fallback switch-over time may
be considered as small in comparison to the rest of the parameters (e.g., the
ASA time), for the vehicle’s safety to be guaranteed, these parameters have to
be accounted in the forecast horizon estimation.

Our studies show that in certain scenarios, such as emergency braking,
demand forecast horizon values that we believe are very hard to achieve. In
particular in case of an emergency braking at icy (ts4fh = 4.34 s), wet (slippery)
(ts4fh = 6.28 s), and snowy (ts4fh = 7.81 s) road surfaces. It is for this reason that
we here open the discussion on whether different road speed limits for automated
vehicles will be needed. Reducing the speed limit from 110 km/h to 90 km/h or
lower at wet or snowy road conditions will significantly lower the required fore-
cast horizon. Thus the overall goal of ensuring the automated vehicle’s safety
can be practically achieved.

References

1. European Mobility and Transport: Passenger cars standard speed limits in Europe,
October 2018. https://ec.europa.eu/transport/road safety/specialist/knowledge/
speed/speed limits/current speed limit policies en

https://ec.europa.eu/transport/road_safety/specialist/knowledge/speed/speed_limits/current_speed_limit_policies_en
https://ec.europa.eu/transport/road_safety/specialist/knowledge/speed/speed_limits/current_speed_limit_policies_en

Forecast Horizon for Automated Safety Actions 127

2. Gutiérrez, M., et al.: Synchronization quality of IEEE 802.1 AS in large-scale
industrial automation networks. In: IEEE RTAS, pp. 273–282. IEEE (2017)

3. ISO 26262–2011: Road vehicles-functional safety (2011)
4. Kiencke, U.: Realtime estimation of adhesion characteristic between tyres and road.

IFAC Proc. Vol. 26(2), 15–18 (1993)
5. Koopman, P., Wagner, M.: Autonomous vehicle safety: an interdisciplinary chal-

lenge. IEEE Intell. Transp. Syst. Mag. 9(1), 90–96 (2017)
6. Lin, S.-C., et al.: The architectural implications of autonomous driving: constraints

and acceleration. In: Proceedings of the International conference on ASPLOS, pp.
751–766. ACM (2018)

7. Meyer, P., Steinbach, T., Korf, F., Schmidt, T.C.: Extending IEEE 802.1 AVB with
time-triggered scheduling: a simulation study of the coexistence of synchronous and
asynchronous traffic. In: IEEE VNC, pp. 47–54. IEEE (2013)

8. SAE: SAE J3016: Taxonomy and definitions for terms related to on-road motor
vehicle automated driving systems. SAE J3016, June 2018

9. Steinbach, T.: Comparing time-triggered Ethernet with FlexRay: an evaluation of
competing approaches to real-time for in-vehicle networks. In: WFCS, pp. 199–202.
IEEE (2010)

10. Steinbach, T.: An extension of the OMNeT++ INET framework for simulating
real-time Ethernet with high accuracy. In: ICST, pp. 375–382 (2011)

11. Swedish Road Administration: Speed limits on icy roads, October 2018. https://
en.wikipedia.org/wiki/Ice road

12. WABCO: Braking deceleration and projection, October 2018. http://inform.
wabco-auto.com/intl/pdf/815/00/57/8150100573-23.pdf

https://en.wikipedia.org/wiki/Ice_road
https://en.wikipedia.org/wiki/Ice_road
http://inform.wabco-auto.com/intl/pdf/815/00/57/8150100573-23.pdf
http://inform.wabco-auto.com/intl/pdf/815/00/57/8150100573-23.pdf

Digital Forensics in Industrial
Control Systems

Robert Altschaffel(B), Mario Hildebrandt, Stefan Kiltz, and Jana Dittmann

Otto-von-Guericke University, 39102 Magdeburg, ST, Germany
{altschaf,mhildebrandt,kiltz,jana.dittmann}@iti.cs.uni-magdeburg.de

Abstract. The increasing complexity of industrial control systems
(ICS) and interconnection with other systems poses more safety- and/or
security-related challenges due to a rising number of attacks and errors.
The event reconstruction is the goal of the new field of ICS forensics dif-
fering from well-established Desktop-IT forensics. We identify ICS prop-
erties, implications and the impact on the forensic process.

Our primary contribution is the identifcation of ICS specific properties
and their impact on the forensic process in order to foster forensic capa-
bilities and forensic readiness in ICS. An existing model for Desktop-IT
forensics is successfully adapted for use in ICS.

Keywords: Non-traditional forensic scenarios · SCADA · ICS

1 Introduction

Modern industry relies on interconnected embedded systems with growing com-
plexity and rising threats security, and by the cyber-physical nature, to safety.
Though prevention is preferred, detection and recovery from security events is
vital for lessons-learned experience, which requires event reconstruction using
forensics. Contrary to well established Desktop-IT forensics, ICS forensics is still
a relatively new field with specific constraints (see Sect. 3). In this paper we
adapt an existing forensic process model to ICS’ specifics, stress the need for a
new forensic data type of functional data and identify sources of forensic data.
This paper is structured as follows: Sect. 2 gives an overview on Desktop-IT
forensics and on ICS. Section 3 discusses the specifics of ICS and their impact
on forensic processes. Section 4 discusses concepts for increased forensic capabil-
ities and forensic readiness in ICS. A forensic process model for Desktop-IT is
adapted to the ICS specifics. Section 5 provides a conclusion and future work.

2 Background

This section gives a brief overview of Desktop-IT forensics and ICS properties.

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 128–136, 2019.
https://doi.org/10.1007/978-3-030-26601-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_9

Digital Forensics in Industrial Control Systems 129

2.1 Forensics in Desktop IT

The forensic process aims at finding traces to support event reconstruction. The
validity and reliability depends on the way traces are gathered, processed and
analyzed. Of paramount importance is the preservation of authenticity (informa-
tion about the trace origin) and integrity (information if the trace is unaltered)
of the digital evidence. A range of models for the forensic process exist to aid this
process. These models address both classical crime scenes [1] and digital crime
scenes in Desktop IT [2]. These models are often practitioner-driven and usu-
ally break down the forensic process into distinct phases to gather and analyze
the respective traces. We choose the forensic process model from [3] for further
considerations as it contains the practitioner’s and the computer scientist’s view
(see [4]), the latter often being neglected. This model includes investigation steps
(practitioner’s view), data types (computer scientist’s view) and methods for data
access (computer scientist’s view). We discuss changes to investigation steps and
data types in Sect. 4 together with an overview on its original semantics.
The forensic process is further divided into live forensics (the investigated system
is still active) and post-mortem forensics (the investigated system is inactive).
Live forensics allows trace access from highly volatile areas (e.g. main memory)
at the risk of substantial alteration of system states - either by continued opera-
tion or by forensic tool intervention (structural impact [3]). Post-mortem foren-
sics accesses lesser volatile mass storage, ensuring mass storage device integrity
(typically with write-blocking-devices). When to switch from live forensics to
post-mortem is a crucial decision in every forensic examination.

2.2 Industrial Control Systems

At a fundamental level, Industrial Control Systems (ICS) comprise actuators,
sensors, processing units and the communication wiring between them. Sensors
collect environment information whilst actuators manipulate the environment.
The processing units in ICS are Programmable Logic Controller (PLCs) reading
the sensors and driving the actuators. For communication between the various
components direct connections (either analog or digital) are used. Various carrier
mediums are employed and digital connections are often multiplexed using field
bus systems (e.g. PROFIBUS [5]) or industrial Ethernet (e.g. PROFINET [6]
or Modbus TCP [7]). The Purdue enterprise reference architecture [12] is often
used to describe the control hierarchies of the components [9]:

– Level 0 - Process sensors and actuators involved in the basic manufacturing
process, performing basic functions of the ICS

– Level 1 - Basic Control controllers (typically a PLC) that direct and
manipulate the manufacturing process, interfacing with the Level 0 devices

– Level 2 - Area Supervisory Control applications and functions associated
with the Cell/Area zone runtime supervision and operation (incl. operator
interfaces or alarms)

– Level 3 - Site Level plant-wide ICS functions,

130 R. Altschaffel et al.

– Level 4 - Site Business Planning and Logistics functions and systems
(incl. basic business administration tasks) that need standard access to ser-
vices provided by the enterprise network

– Level 5 - Enterprise centralized IT systems and functions

3 A Forensic Understanding of ICS

Forensic investigations in ICS require a deep understanding of ICS architectures,
which are described e.g. by the Purdue Model (see Subsect. 2.2). In this section
we provide the forensic perspective. The Enterprise Zone is akin to the classical
Desktop-IT domain in using standard hard- and software. For ICS forensics,
levels 0 to 2 are more important since components specific to ICS are employed.

Sensor 1...n

MCU

ADC

Sensor 1...n

ADC

Sensor 1...n

Firewall

SCADA Server

RTUPLC

Firewall

SCADA Server

RTUPLC

Supervisory
LAN

Controller
LAN

Bus
Network

L
ev

el
 1

L
ev

el
 2

A
re

a
S

u
p

er
vi

si
o

ry
 C

o
n

tr
o

l
B

as
ic

 C
o

n
tr

o
l

 Standard IT components, frequently updated

Non-standard IT components

Actuator 1...n

DAC

L
ev

el
 0

.5

P
ro

ce
ss

Actuator 1...n

DAC

Environment (Safety-Critical)

Actuator 1...n

analog/discrete
domain

digital domain

L
ev

el
 0

MCU MCUMCU

Local HMI Local HMI

Fig. 1. Levels in Industrial Control Systems according to [9]

Figure 1 gives an overview of the structure of low level components in ICS.
Level 2 represents the SCADA (Supervisory Control And Data Acquisition) con-
trol systems as well as a local HMI (Human Machine Interface) and, possibly, a
process historian. These control systems and HMI consist of purpose-built soft-
ware, which either runs on purpose-built hardware (e.g. Siemens SIMATIC or
Allen-Bradley PanelView) or on generic desktop hardware (e.g. Siemens WinCC
or Rockwell FactoryTalk View). These level 2 components contain information
about the physical process performed by the ICS, like the digital representation
of the physical measurements attained by sensors. Further, these components
usually contain information about the software process, (e.g its starting time,
file names). Level 1 describes the PLCs, which control the manufacturing process.
These hardware components are purpose-built PLCs (e.g. Siemens S7-Series or

Digital Forensics in Industrial Control Systems 131

Allan-Bradley ControlLogix-Series), running purpose-built software. While this
level contains information about the physical process and about the software
process, this information is harder to obtain than in classical Desktop IT (see
Sect. 3.1). Level 0 consists of sensors and actuators involved in the basic manu-
facturing process. The Purdue model does not distinguish between components
performing their task hard-wired and those that are programmable. However,
there is a key difference for ICS forensics. A component which is hard-wired or
does not contain any program logic offers less attack vectors, since an alteration
of the performed operations would require a physical alteration (or defect) of
the component. If such a physical tampering can be excluded, the firmware of
the component is not of particular interest for a forensic investigation, since it
is unaltered. Thus, we propose the introduction of a Level 0.5 in the computer
forensic view on the Purdue model as follows:

– Level 0 - hard-wired Process any components directly involved in the
basic manufacturing process that does not contain any program logic.

– Level 0.5 - programmable Process components with program logic
directly involved in the basic manufacturing process.

3.1 Implications on Forensic Investigations in ICS

The architecture and properties of ICS and their components present a significant
difference to the forensic process for the classical Desktop-IT domain:

– The specific low-level components on Level 0 are of low complexity, includ-
ing processing power and storage capacity for event logs. Additionally, mass
storage is part of the MCU (Microcontroller Unit) itself, complicating access
to its contents.

– ICS are often process-critical. Shutting down an ICS can come with a high
monetary cost or safety. Sometimes, redundant systems might be present,
allowing forensic investigations in specific ICS part while others take over.

– In general, heterogeneous systems and components are common in ICS. This
further increases the difficulty of component access.

– Some ICS might be rarely updated, leading to more legacy hard- and software
in ICS and further complicating access to traces [11].

– ICS are usually geared towards safety, neglecting security. While detection
for transmission errors is usually present in ICS protocols, very few of them
offer any encryption. In addition, sender authenticity is often not given in ICS
networks. Hence, the presence of a given communication does not necessarily
warrant that it was initiated by the given sender, impacting security aspects
considerations and the selection of measures to their implementation [10].

– A lack of publicly available documentation makes access to contents harder.
It hampers understanding of the systems and thus complicating forensics.

– ICS come with an inherent safety implication since they control physical
processes. Interfering with the physical process can harm property and health.

132 R. Altschaffel et al.

4 Revisiting the Forensic Process Model for ICS
Forensics

Because ICS are different from classical Desktop IT we discuss what alterations
of the forensic process (Sect. 2.1)) are needed for ICS.

4.1 Revising Investigation Steps for ICS

Whereas the steps of forensic investigation are applicable to ICS forensics in
general, the importance of the Strategic Preparation is significantly increased
due to the limited resources of the lower level components. [3] describes measures
be taken by the operator of an IT-system, prior to an incident, which support
a forensic investigation techniques by increasing the amount of available traces.
Intrusion detection systems, might be the only accessible source for potential
traces in ICS on level 1 or 2. Thus, a careful planning of the ICS is absolutely
crucial to allow for forensic investigations within it.

Historians recording data from the ICS process are already in use at different
levels of the reference architecture (see Sect. 2.2). A Historian on level 2 would
have overview on the a single, physical process and would be referred to as
a ‘Process Historian’. It captures data required to supervise and control the
physical process for a short period of time, giving an operator access to this
data to make decisions based on it. A ‘Plant Historian’ might reside on a higher
level (3 or 4), capturing data for a longer time period. This data is mostly used
for analysis of the physical process or accounting. These Historians might include
means to ensure authenticity and integrity of the capture data as best as possible.
However, the data they collect is geared towards supervising the physical process
and not so much for detecting attacks. The inclusion of various other data points
might broaden the potential usage of historian data in a forensic process. This
inclusion would also be part of the Strategic Preparation.

In the Operational Preparation the course of the reaction to a symptom is
set. [3] describes measures to prepare for a forensic investigation after a sus-
pected incident. This includes the decisions if an ICS should be stopped and/or
investigated. ICS are tied to physical processes and the system operator might
judge the continuation of the physical process (availability of the process) more
important than stopping a possible exfiltration of process data (process confi-
dentiality). Such a decision becomes more complicated, if an alteration of the
physical process (process integrity) cannot be excluded and carries the risk of
harm for life and property. However, some physical process simple can not be
interrupted, leaving live forensics the only possible option. Ideally, the system
has a sufficient redundancy to switch process control to non-compromised backup
controllers and thus, enabling thorough investigation of the involved components.
However, if the system is not ideally implemented, the live forensic investigation
must not influence the process controls. Thus, we propose the introduction of a
Criticality Map (Sect. 4.2).

In addition, a deep understanding of the processes and the underlying data
is necessary in order to determine which traces might be important a forensic
investigation. Due to the fact that non-volatile storage is not readily accessible in

Digital Forensics in Industrial Control Systems 133

ICS systems, network communication data is more important in ICS forensics,
also due to the distribution of process controls over multiple components. A
central source of information can be the plant historian, which usually exists
already to log the process-relevant data. The data and the historian itself must
be protected against attacks in order to ensure the integrity, authenticity and
availability of the forensic traces.

The Data Gathering, i.e. acquiring and securing digital evidence [3] depends
on the type of the attack. If the data logging mechanisms are sufficient, the low-
level devices might not be investigated directly. However, if the readily available
data implies that the low level ICS components might have been compromised,
e.g. by replacing parts of their programming or firmware, a thorough investiga-
tion of the components is still necessary. Here, low-level means of accessing the
data, such as debugging interfaces (e.g. JTAG) or serial programming interfaces
(SPI) need to be used. This way the Data Investigation, i.e. the evaluation and
extraction of data for further use [3], and Data Analysis, i.e. analysis and cor-
relation between digital evidence [3], are significantly more complicated because
the forensic technician needs to analyze machine code from lots of different pro-
prietary architectures and systems to identify the specific impact of the attack.

The ICS forensics expert needs to have knowledge about the ICS components
and processes they control to identify anomalies as potential traces of an incident.
The last step of Documentation (DO) remains unmodified from [3].

4.2 Criticality Map

A Criticality Map contains the layout of the ICS in question as well as the pos-
sible access points for an investigator usable during data gathering (see Fig. 2).

Sensor 1...n Sensor 1...nSensor 1...n

Firewall

Local HMI

SCADA Server

RTUPLC

Firewall

Local HMI

SCADA Server

RTUPLC

Supervisory
LAN

Controller
LAN

Bus
Network

L
ev

el
 1

L
ev

el
 2

A
re

a
S

u
p

er
vi

si
o

ry
 C

o
n

tr
o

l
B

as
ic

 C
o

n
tr

o
l

Standard IT components, frequently updated

Non-standard IT components

MCU

ADC

Actuator 1...n

DAC

MCU

L
ev

el
 0

.5

P
ro

ce
ss

MCU

ADC

Actuator 1...n

DAC

MCU

Environment (Safety-Critical)

Actuator 1...n

analog/discrete
domain

digital domain

L
ev

el
 0

Shared ressources
(functional +

forensics)

1

2

3

Fig. 2. An example of a Criticality Map based on [9]

134 R. Altschaffel et al.

A Criticality Map’s main purpose is the identification of resources shared
between the ICS and any measure deployed during forensic investigations. It
identifies any resources where a forensic investigation is in danger to interfere
with the process controls and cause Structural Impact (see Sect. 2.1). In case 3, a
forensic utility triggering data requests would be attached to the communication
between SCADA Server, PLC and RTU using the same communication medium.
If the forensic utility would cause large data traffic, this might cause a high load
on this medium, effectively undermining the availability of the ICS process.
Additionally, the SCADA Server is a shared resource and diagnostic requests
might cause a high load in the SCADA Server and cause interference. In case
1, a forensic utility is directly attached to the SCADA Server. The SCADA
Server is the only shared resource in this case, reducing possible influence on
the control process. A forensic utility not triggering any data requests (e.g. a
passive data tap) would avoid resource sharing even if attached directly to the
communication between SCADA Server, PLC and RTU (case 2). It would reduce
access to possible forensic traces, but avoids influencing the control process (see
[8] for a monitoring example). Formulating a Criticality Map should be part of
the Strategic Preparation to support the Operational Preparation.

4.3 Revising Data Types for ICS

Data types [3] group different types of data by the way they are gathered or ana-
lyzed. They are not mutually exclusive. Context-dependend, the same (physical)
bit of data might represent different data types. The ICS forensic data types are:

– DT1 hardware data is defined as not or only in a limited way influenced
by the operating system (OS) and applications. As such, DT1 describes in the
ICS context, data a PLC possesses about its hardware configuration.

– DT2 raw data is defined as a sequence of bits (or data streams) of compo-
nents of the system not (yet) interpreted. Can contain data of all the other
data types. DT2 can describe the physical representation of all data within a
system. On a higher abstraction level, raw data will represent different data
types. In ICS it describes any occurrence of digital data.

– DT3 details about data is defined as meta data added to data, either stored
within this data or externally. It can be persistent or volatile. DT3 can be
attached to various types of data. Furthermore, a clarification on the rela-
tionship between data and its meta data is required. We suggest the following
alteration: meta data added to other data, stored within the annotated chuck
of data or externally.

– DT4 configuration data is defined as can be changed by the OS or applica-
tions, modifying the system behavior, including the configuration of hardware,
of the OS and applications, but not its behavior with regards to communica-
tion. Here, another clarification is required since DT4 in ICS describes the con-
figuration of the specific PLCs with regards to their behavior: can be changed
by the OS or applications and which modifies system behavior, including hard-
ware, OS and applications, but not its communication behavior.

– DT5 network communication data is defined as data that modifies system
behavior with regards to communication.

Digital Forensics in Industrial Control Systems 135

– DT6 process data is defined as data about a running process including the
status of the process, the owner of the process, its priority and memory. This is
problematic, since the word ‘process’ in an ICS usually describes the physical
process, the ICS in question should perform. Hence, we propose: is data about
a running software process within a computing unit.

– DT7 session data is defined as data collected by a system during a session,
regardless of whether the session was initiated by a user, an application or
the OS. It relies on an unclear definition of a session. From the perspective
of a forensic investigation, a session should include all processes and their
communication within the same scope and time frame. In an ICS context,
this describes a snapshot of the sensor readings and actor controls stored
by the plant historian within a specific time frame. For production processes
session data can also relate to the data gathered during the production of one
specific item. Hence, we propose: data collected by a system during a session,
which consist of a number of processes with the same scope and time frame.

– user data is defined as content created, edited or consumed by the user includ-
ing media. This data type represents the data linked to the key functionality
(or purpose) of a system in question. In Desktop IT, this might be handling
of office files or the creation of images. In an ICS context, this would be the
physical process itself. However, from an forensic point of view, the means of
such file handling (or processing) are different. An executable will be analyzed
in a different way and with a different scope than a media file. An executable
file might also be a media file in another context, e.g. an executable be exe-
cuted on a PLC and edited on a Desktop PC might be seen (and analysed)
as ‘media file’ in one context and an ‘executable’ in another case. Hence, we
propose the creation of two distinct data types. These two data types are
linked to performing the key functionality of the system in question. One of
these data types contains the media, which is created, edited, consumed or
processed by the user (the ends). The other contains the applications used
to perform this creating, editing or processing (the means). The media might
be anything fulfilling the purpose of the system - editing office files, devel-
oping software by editing source code, displaying video files. In an ICS, this
media would represent the programming of physical processes performed on
a workstation (with the corresponding means being the environment used
to perform this programming and the execution). The means to process this
media might change over time but the nature of this media does not. We
propose for the investigated system:

– DT8 application data is data representing functions needed to create, edit,
consume or process content relied to the key functionality of the system.

– DT9 functional data is data content created, edited, consumed or processed
as the key functionality of the system.

136 R. Altschaffel et al.

5 Conclusion

We discussed the specifics ICS forensics and adapted a forensic process model
to also include the ICS components. We revised the steps of the forensic process
and the types of forensic data in computer systems. The semantics of these
steps and data types in the context of ICS have been discussed, leading to a
better understanding of the forensic process in ICS. In due course the Purdue
model was extended with an additional level in the hierarchy necessary for the
different implications of hard-wired (‘dumb’) and programmable low-level ICS
components. Further, the data types are refined to better represent the different
handling of the same data in different contexts. Our findings should serve future
work to increase forensic capabilities in ICS.

Acknowledgements. This document was produced with the financial assistance of
the European Union. The views expressed herein can in no way be taken to reflect the
official opinion of the European Union.

References

1. Inman, K., Rudin, N.: Principles and Practises of Criminalistics: The Profession
of Forensic Science. CRC Press LLC, Boca Raton (2001)

2. Pollitt, M.: Applying traditional forensic taxonomy to digital forensics. In: Ray,
I., Shenoi, S. (eds.) DigitalForensics 2008. ITIFIP, vol. 285, pp. 17–26. Springer,
Boston, MA (2008). https://doi.org/10.1007/978-0-387-84927-0 2

3. Kiltz, S., Dittmann, J., Vielhauer, C.: Supporting forensic design - a course profile
to teach forensics. In: IMF 2015. IEEE, Magdeburg (2015)

4. Peisert, S., Bishop, M., Marzullo, K.: Computer forensics in forensis. In: SADFE
2008, pp. 102–112. IEEA, Seattle (2008)

5. PROFIBUS and PROFINET International, PROFIBUS. https://www.profibus.
com/technology/profibus/. Accessed 3 Feb 2019

6. PROFIBUS and PROFINET International: PROFINET. https://www.profibus.
com/technology/profinet/. Accessed 3 Feb 2019

7. Modbus Organisation: Modbus. http://www.modbus.org/. Accessed 3 Feb 2019
8. ENISA: Introduction to Network Forensics. https://www.enisa.europa.eu/topics/

trainings-for-cybersecurity-specialists/online-training-material/documents/
introduction-to-network-forensics-ex1-toolset.pdf. Accessed 20 Feb 2019

9. Rockwell Automation: Converged Plantwide Ethernet (CPwE) Design and
Implementation Guide. https://literature.rockwellautomation.com/idc/groups/
literature/documents/td/enet-td001 -en-p.pdf. Accessed 3 Feb 2019

10. International Electrotechnical Commission: IEC 62443-2-1:2010 Industrial com-
munication networks - Network and system security - Part 2–1: Establishing an
industrial automation and control system security program (2010)

11. Van Vliet, P., Kechadi, M.-T., Le-Khac, N.-A.: Forensics in industrial control
system: a case study. https://arxiv.org/ftp/arxiv/papers/1611/1611.01754.pdf.
Accessed 3 Feb 19

12. Williams, T.J.: The Purdue enterprise reference architecture: a technical guide
for CIM planning and implementation. Instrument Society of America, Research
Triangle Park, NC (1992)

https://doi.org/10.1007/978-0-387-84927-0_2
https://www.profibus.com/technology/profibus/
https://www.profibus.com/technology/profibus/
https://www.profibus.com/technology/profinet/
https://www.profibus.com/technology/profinet/
http://www.modbus.org/
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/introduction-to-network-forensics-ex1-toolset.pdf
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/introduction-to-network-forensics-ex1-toolset.pdf
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/introduction-to-network-forensics-ex1-toolset.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/td/enet-td001_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/td/enet-td001_-en-p.pdf
https://arxiv.org/ftp/arxiv/papers/1611/1611.01754.pdf

Security Engineering and Risk
Assessment

Efficient Model-Level Reliability Analysis
of Simulink Models

Kai Ding(B), Andrey Morozov, and Klaus Janschek

Institute of Automation, Technische Universität Dresden, Dresden, Germany
{kai.ding,andrey.morozov,klaus.janschek}@tu-dresden.de

Abstract. Model-based software development using MATLAB Simulink
is widely used in safety-critical domains. The reliability properties of
the developed software have to be numerically evaluated for the pre-
cise system-level dependability analysis. Data errors occurred in RAM
or CPU registers can propagate to critical outputs and cause a failure.
The reliability properties can be evaluated at the assembly level, i.e.
on the compiled instructions, by performing a probabilistic modeling of
data errors. It is more accurate to conduct reliability assessment at the
low level, however, the method scalability is questionable due to the
complicated procedure, complexity of the assembly code, and consider-
able computation effort. Thus assembly-level evaluation is unsuitable for
huge and complex Simulink models. In addition, it is more convenient for
design engineers to estimate dependability properties of Simulink models
and even to design reliable control systems at the model level.

In this paper, we propose a method for the reliability evaluation of
Simulink models at the model level, extended with the assembly-level
evaluation. More specifically, we transform the Simulink model into a
stochastic dual-graph error propagation model and specify the reliabil-
ity properties of individual Simulink blocks by loading the data from
a database that have been obtained via the assembly-level evaluation.
We verified the efficiency of the proposed method by the comparison
of the reliability properties, evaluated at the assembly level and at the
model level. The experimental results indicate that the reliability met-
rics, evaluated at the model level, are almost equivalent to the ones,
evaluated at the assembly level. Most prominently, the application of
the proposed model-level assessment can reduce the computation and
engineering effort, and increase the method scalability.

Keywords: Model-based design · Model-level assessment ·
Reliability · Dependability · Stochastic analysis ·
Probabilistic modeling · Bit-flips · Soft errors · Silent data corruption ·
Embedded systems · Simulink

1 Introduction

Model-based design is increasingly used in safety-critical domains since it enables
fast and cost-effective system development. MATLAB R© Simulink R© [12] is one
c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 139–154, 2019.
https://doi.org/10.1007/978-3-030-26601-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_10

140 K. Ding et al.

of the most well-known model-based system development modeling environ-
ments, which is very popular among control engineers. Simulink Coder

TM
or

TargetLink R© can generate highly efficient C/C++ code from Simulink models
and compile it into the assembly code.

Embedded systems are susceptible to hardware faults. Single Event Upset
(SEU) [16] can cause bit-flips, which are hardware transient faults, also known
as soft errors, that may occur in safety-critical systems [2,10,22,23]. Electronic
devices may exhibit abnormal behavior due to the occurrence of bit-flips. During
the flight of the spacecraft Cassini, the NASA reports a rate of 280 soft errors
per day [21]. Data errors occur when a bit-flip alters the content of a memory
cell or a register storing data values. Data errors are more common than timing
or control-flow errors [7,19], thus are the focus of the paper.

The current trend of software analysis is to perform verification and vali-
dation, or fault injection in the early development phase, i.e. at the Simulink
model level. Design deficiencies that are found early in the development phase
are less costly to correct. Verification and validation can be applied to Simulink
models in the early development phase to check whether the model meets spec-
ified requirements and whether it fulfills its intended functions. Additionally,
for safety analyses during model-based development, fault injection mechanisms
can be applied directly to models. A simulation-based fault injection approach
aimed at finding acceptable safety properties for model-based design of automo-
tive systems is presented in [9]. Tools, like MODIFI (MODel-Implemented Fault
Injection) [20] or ErrorSim [15], can inject faults in Simulink models in order
to evaluate robustness against several types of hardware faults. Fault injection
in model-based development facilitates the verification of software during early
phases of the development life-cycle.

Regarding the evaluation of the software tolerance to data errors caused by
bit-flips, an analytical method for the reliability evaluation of Simulink models at
the assembly level is introduced in [5], where a formal Dual-graph Error Propaga-
tion model (DEPM) is used to capture the control flow and data flow structures
of the assembly code. A probabilistic modeling of data errors occurred in RAM
and in CPU is performed using the DEPM. The DEPM [6,13] allows the com-
putation of the reliability metrics using underlying Discrete-time Markov Chain
(DTMC) based on model checking techniques. However, the reliability evalua-
tion of Simulink models at the assembly level is highly complicated due to the
sophisticated procedure, complexity of the assembly code, and the considerable
computation effort. Despite the fact that modern model checkers can handle
models with up to 108 states, the computational complexity may increase expo-
nentially as the assembly code size increases. As a result, the scalability of the
assembly-level analysis is questionable. In this paper, instead of reducing the
DTMC size directly at model checking level using techniques, e.g. bisimulations,
we propose a new model-level assessment of Simulink models.

Efficient Model-Level Reliability Analysis of Simulink Models 141

Simulink
Model

C Code
Assembly

Code
DEPM

Data errors
propabilities

Simulink
Coder Clang Transformation

Results:
Fault activation

Error Propagation

Simulink
Model

Model-level
DEPM

SimPars

Single
Block

C Code
Assembly

Code
DEPM

DatabaseData errors
propabilities

Simulink
Coder

Clang Transformation

Reliability metrics

Reliability metrics

Reliability evaluation at the assembly level

Reliability evaluation at the model level

Evaluation of individual blocks at the assembly level

Fig. 1. Overview of the reliability evaluation of a Simulink model (i) at the assembly
level (top) and (ii) at the model level (bottom).

2 Related Work

2.1 Effectiveness of Fault Injections at the Model Level

Usually, the reliability evaluation of software is performed using fault injec-
tion techniques. The concept of the model-implemented fault injection is defined
recently in [7,20]. MODIFI is a model-level fault injection tool for dependabil-
ity assessment of software developed as Simulink models. MODIFI is simulative,
targeting the emulation of faults at the model level in order to analyze the effects
of injected faults. The injection of bit-flips into Simulink models for robustness
assessment is addressed in [18]. ErrorSim [15] allows a user to inject different
types of faults and analyze error propagation to critical system parts for Simulink
models.

The effectiveness of fault injection in model-based development is verified
by performing a back-to-back fault injection testing [8] between two different
abstraction levels using MODIFI for the Simulink model and GOOFI-2 [17] for
the generated code running on the target microcontroller. The experimental
results indicate that MODIFI may be used to identify most of the severe failures
in an early development stage, although it is stated in [8,19] that there are target
locations, e.g. internal variables of blocks, which are not accessible or considered
in MODIFI, and also several hardware faults that can only be injected when
using GOOFI-2 at the assembly level since MODIFI only allows the user to
inject faults into signals of the Simulink models as it injects faults by adding
separate blocks modeling the faults between the connected blocks of the model.

142 K. Ding et al.

2.2 Reliability Evaluation at the Assembly Level

An analytical method for the reliability evaluation of Simulink models at the
assembly level is introduced in [5]. The evaluation process is shown at the top of
Fig. 1 (assembly-level assessment). In the first step, the C code is automatically
generated from the Simulink model. Then the generated C code is compiled into
the assembly code. In the next step, the assembly code is transformed into the
DEPM for the error propagation analysis. After that, a probabilistic modeling
of data errors occurred in RAM and in CPU is performed at the DEPM level.
Finally, the reliability properties of the Simulink model are computed. It is stated
that the modeling of data errors caused by bit-flips in RAM or CPU at the assem-
bly level is more accurate for the reliability evaluation. The introduced analytical
method numerically evaluates the system reliability. Therefore, it supports, in
particular, realistic low probabilities of the error occurrence, in contrast to the
experimental approaches, e.g. by Monte Carlo methods, that require a huge
number of simulations in order to obtain confident results. In [4], a model-based
redundancy technique to tolerate hardware faults for Simulink models, called
MOdel-based REdundancy, is proposed. The authors have applied the voting
pattern [3] separately to the P, I, D terms of a Simulink PID (Proportional-
Integral-Derivative) controller and evaluated the reliability properties at the
assembly level.

In the aforementioned two papers, the authors have evaluated the reliability
properties of Simulink models at the assembly level that is compiled from the
C code. The evaluation procedure is rather complicated and the scalability of
the proposed method is questionable, thus the method could not be efficiently
employed for the analysis of complex Simulink models. These are the motivations
behind the concept of the model-level assessment.

2.3 Contributions of the Paper

In this paper, we propose an analytical approach for the reliability evaluation
of Simulink models under data errors caused by bit-flips at the model level in
an early development phase. We transform the Simulink model into a stochastic
DEPM and specify the reliability properties loaded from a database, where we
have stored reliability properties of individual Simulink blocks evaluated at the
assembly level by performing a probabilistic modeling of data errors occurred
in RAM and in CPU. We assess and validate the effectiveness of the proposed
model-level evaluation experimentally by performing the reliability evaluations
of Simulink models, conducted at the model level and at the assembly level
respectively. The experimental results show that the reliability metrics, evaluated
at the model level, are almost equivalent to the ones, evaluated at the assembly
level, but with a better performance. Consequently, the reliability evaluation of
Simulink models can be performed directly at the model level that has several
attractive features:

1. First, the reliability evaluation of Simulink models under data errors can be
conducted in the early development phase. It is more convenient for design

Efficient Model-Level Reliability Analysis of Simulink Models 143

engineers to estimate the reliability properties of Simulink models and even
to design reliable models.

2. Second, the evaluation procedure at the model level is significantly simpler
than at the assembly level. Application of the model-level assessment helps to
reduce the DEPM complexity, computation and engineering effort, improve
the applicability and scalability of the method. As a consequence, model-
level assessment has a higher scalability, and can be applied for the reliability
evaluation of complex and huge Simulink models.

3. Third, the generated model-level DEPMs from Simulink models are much
more transparent and interpretable compared to the DEPMs generated from
assembly level.

4. Fourth, in the model-level assessment, we have used assembly-level assess-
ment for individual Simulink blocks that is platform dependent, however,
this assembly-level assessment is performed only once, and the evaluated reli-
ability properties of individual block functions stored in the database can be
reused at the model level for any aggregated Simulink models.

3 Reliability Assessment at the Assembly Level

An overview of the reliability evaluation of Simulink models at the assembly level
is shown at the top of Fig. 1. We use this assembly-level assessment to evaluate
reliability properties of individual Simulink blocks in Sect. 4.1, therefore, we give
a brief method explanation here.

Simulink model: A Simulink PID controller is illustrated in Fig. 2, where
Gain, Discrete-Time Integrator, and Discrete Derivative blocks are used to model
the P, I, D terms. The Discrete Derivative block D is implemented as a sub-
system, shown at the bottom of Fig. 2. Value e is considered always correct since
the closed control loop system has the ability to handle disturbances in the input
signals. The incorrect value of the output u of the PID controller is defined to
be a system failure since u is a control variable sent to the plant.

Generated C code: Fig. 3a shows the step function of the automatically gen-
erated C code, which is invoked in each iteration to compute the output u
of the PID controller and update the state variables. This step function con-
sists of three constants {P Gain, I gainval, TSamp WtEt}, two state variables
{I DSTATE,UD DSTATE}, and two temporary variables {rtb TSamp, I}.

Compiled assembly code: The step function in Fig. 3a is compiled into the
assembly code with Clang. The resulting assembly code is presented in AT&T
syntax in Fig. 3b. In general, each instruction consists of an operation and two
operands. The first operand is the source operand and the second operand is the
destination operand.

Generated DEPM: The Dual-graph Error Propagation Model (DEPM) [6,13]
is a mathematical model that captures system control and data flow structures
and reliability properties of system components. The compiled assembly code
in Fig. 3b is transformed into the DEPM, shown in Fig. 4a, based on the fol-
lowing mapping rules: (i) The operations, e.g. movsd, are mapped into DEPM

144 K. Ding et al.

Fig. 2. An illustrative reference example: a PID (Proportional-Integral-Derivative) con-
troller designed in Simulink.

elements. Element nodes represent fundamental executable parts of the system.
(ii) The operands are mapped into the DEPM data storages. Data storages
represent variables that can be read or written by Elements. (iii) The execution
sequences of instructions are mapped into the DEPM control-flow arcs, extended
with transition probabilities that are described by the control flow command of
elements. iv) The relations between the operation and its operands are mapped
into the DEPM data-flow arcs. DataFlow arcs, connect Elements with Data or
vice versa.

The DEPM elements can have data flow commands that specify (i) the fault
activations during the element execution and (ii) the error propagation from
data inputs to outputs. The red arrow-shaped node Failure specifies the system
failure: the incorrect value of the output u. We will evaluate two reliability
properties (metrics) of Simulink models, (i) mean number of failures (Nerr) and
(ii) probability of a failure (Perr), using automatically generated DTMC models
based on model checking techniques. An open-source tool OpenErrorPro that
supports the DEPM is available on GitHub [1].

Probabilistic modeling of data errors: Table 1 lists the probabilities of data
errors activation in RAM and in CPU registers. The data errors activation, as
well as the error propagation through the DEPM elements, can be modeled, by
specifying the probabilistic data flow commands of the DEPM elements.

Table 1. The data errors activation probabilities in RAM, and in CPU registers [5].

Data errors location Time interval Data errors probability

RAM Variable Sample time (Ts) pRAM

CPU mov Execution of an instruction 0.8 × pCPU

add, sub pCPU

mul, div 1.5 × pCPU

Efficient Model-Level Reliability Analysis of Simulink Models 145

void step(void) {
/* temporary variables */

 real_T rtb_TSamp;
 real_T I;
/* output function of DiscreteIntegrator */

 I = I_gainval * e + I_DSTATE;
 /* output function of TSamp */
 rtb_TSamp = e * TSamp_WtEt;
/* output function sum */

 u = (P_Gain * e + I) + (rtb_TSamp - UD_DSTATE);
/* update function of DiscreteIntegrator */

 I_DSTATE = I;
/* update function of UnitDelay */

 UD_DSTATE = rtb_TSamp;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(a)

movsd _I_gainval(%rip), %xmm0
mulsd _e(%rip), %xmm0
addsd _I_DSTATE(%rip), %xmm0
movsd %xmm0, -16(%rbp)
movsd _e(%rip), %xmm0
mulsd _TSamp_WtEt(%rip), %xmm0
movsd %xmm0, -8(%rbp)
movsd _P_Gain(%rip), %xmm0
mulsd _e(%rip), %xmm0
addsd -16(%rbp), %xmm0
movsd -8(%rbp), %xmm1
subsd _UD_DSTATE(%rip), %xmm1
addsd %xmm1, %xmm0
movsd %xmm0, _u(%rip)
movsd -16(%rbp), %xmm0
movsd %xmm0, _I_DSTATE(%rip)
movsd -8(%rbp), %xmm0
movsd %xmm0, _UD_DSTATE(%rip)

(b)

Fig. 3. (a) The automatically generated model step function of the Simulink PID
controller in Fig. 2, (b) the compiled assembly code from (a).

Data errors in RAM variables: Bit-flips may occur in the RAM cells, storing
data values. It is assumed that the probability of data errors in a single vari-
able during the sample time, i.e. each iteration, is independent and defined as
pRAM (see Table 1). An additional DEPM element FI is generated (see Fig. 4a),
and connected with all five variables of the step function. After the occurrence
of data errors, the variable value is altered to an erroneous (incorrect) value.
Thus, in this specific example, each data storage in the generated DEPM has
two states: ok (correct) or error (incorrect). The data flow commands of the
element FI model the independent error occurrence for each RAM variable. For
instance, in the modeling of data errors in the variable P Gain, the data flow
commands of the DEPM element FI are defined, as follows: (i) (P Gain=ok) ->
(1-pRAM):(P Gain’=ok) + pRAM:(P Gain’=error); (ii) (P Gain=error) ->
1.0:(P Gain’=error); The first command represents the data errors activation
with the probability pRAM in the variable P Gain in RAM. In each iteration,
the data errors can be activated in the variable P Gain with probability pRAM .
The second command denotes the error propagation with probability 1, i.e. if
the value of P Gain is incorrect, already affected by a data error in a previous
iteration, then the P Gain value will stay incorrect in the following iterations.

Since only data errors in RAM are modeled, the other DEPM instruction
elements, e.g. mov1, add1, can not activate data errors. However, data errors may
propagate through these elements. If any data input is incorrect, then all data
outputs are incorrect. For instance, the data flow commands of the element add1
are specified, as follows: (i) (I DSTATE=ok)&(xmm0=ok) -> 1.0:(xmm0’=ok);
(ii) (I DSTATE=error)|(xmm0=error) -> 1.0:(xmm0’=error);

146 K. Ding et al.

mov10

mov11

xmm0

FI

UD_DSTATE

mov2

add3

mov7

mul1

add2

mul3

mul2

mov4

mov9

add1

mov1

I_DSTATE

TSamp_WtEtP_GainI_gainval

sub1

mov3

rbp16

mov8 u

mov6

mov5 rbp8

xmm1

Failure

start

e

(a)

start

FI

I_DSTATEcal_p_output

I_gainvalP_Gain

UD_DSTATE

TSamp_WtEt

cal_i_output

u_p

cal_UD_output

cal_TSamp_out

u_i

cal_u

cal_Diff_output

UD_output TSamp_out

update_i

update_d

u

u_d

Failure

e

(b)

Fig. 4. (a) The DEPM that is generated from the compiled assembly code in Fig. 3b,
(b) the model-level DEPM is generated directly from the Simulink model in Fig. 2.

Data errors in CPU: In the probabilistic modeling of data errors in CPU,
data errors in the destination registers are modeled, where the computed val-
ues are stored, during the execution of each assembly instruction. It is assumed
that the data errors probabilities during instructions execution time are related
to their computation complexities, listed in Table 1. The justification is given
in [5]. For instance, the data flow commands of the third instruction element
add1 in the DEPM are specified, as follows: (i) (I DSTATE=ok)&(xmm0=ok)
-> (1-pCPU):(xmm0’=ok) + pCPU:(xmm0’=error); (ii) (I DSTATE=error) |
(xmm0=error) -> 1.0:(xmm0’=error); The first command specifies the data
errors activation in the destination register with the probability pCPU . The sec-
ond command specifies the error propagation from the erroneous input data to
the output data.

Efficient Model-Level Reliability Analysis of Simulink Models 147

4 Reliability Assessment at the Model Level

It is impossible (insufficient) to evaluate the reliability metrics of a Simulink
model under data errors occurred in RAM and CPU only at the Simulink level,
since the RAM and CPU registers are not accessible at the Simulink model level.

In this paper, we propose an analytical method for the reliability evaluation
of Simulink models under data errors at the model level, extended with the
assembly-level evaluation. The process of the reliability assessment of Simulink
models at the model level is shown at the bottom of Fig. 1. In the database,
we have stored the reliability results, i.e. fault activation and error propagation
probabilities, of each individual block functions, that have been evaluated at the
assembly level. We then transform a Simulink model directly into a model-level
DEPM automatically, considering the interconnections, execution sequence of
blocks, and signal/data transfer among them. Thus the size and complexity of the
model-level DEPM are significantly smaller than the assembly-level DEPM (see
Fig. 4). Then in the generated model-level DEPM, we perform the probabilistic
modeling of data errors, by loading the stored reliability results of each individual
block from the database. As we can see, the reliability evaluation of individual
blocks at the assembly level is the foundation of the model-level assessment,
but this process is performed only once. The evaluated reliability metrics of
individual blocks, stored in a database, can be reused at the model level for
any aggregated Simulink models. The evaluated reliability metrics are heavily
dependent on the tools, e.g. code generation, hardware platform, and settings.
However, the proposed analytical method itself is tool-independent.

4.1 Reliability Evaluation of Individual Simulink Blocks Functions
at the Assembly Level

We use the assembly-level assessment, discussed in Sect. 3, to evaluate reliabil-
ity properties of individual Simulink blocks. We generate the C code (Fig. 5b)
from the illustrative Discrete-Time Integrator block (Fig. 5a). The model step
function consists of an output function and an update function. The compiled
assembly code of the output function is shown in Fig. 5c. We then generate the
DEPM automatically from the compiled assembly code, as shown in Fig. 5d. The
incorrect value of the output u i is defined to be a failure.

Data errors in RAM: In the output function of the Discrete-Time Integrator
block, I DSTATE and I gainval are the variables stored in RAM (see Fig. 5).
We set the value of I DSTATE and I gainval in the DEPM to be correct, then
we compute that the probability of the failure is 0. In the same way, we set both
values to be erroneous, then the computed failure probability is 1. Thus, the
computed reliability properties of the output function of the Integrator block
are specified: (i) (I DSTATE=ok)&(I gainval=ok) -> 1.0:(u i’=ok); (ii)
(I DSTATE=error)|(I gainval=error) -> 1.0:(u i’=error); and stored
into the database in Fig. 6a.

Data errors in CPU: In this case, the value of I DSTATE and I gainval
are initialized to correct. In the DEPM (Fig. 5d), we specify the data

148 K. Ding et al.

void step(void) {
/* output function */

 u_i = I_gainval * e + I_DSTATE;
/* update function */

 I_DSTATE = u_i;
}

code
generation

(a) Simulink block (b) The model step function

movsd _I_gainval(%rip), %xmm0
mulsd _e(%rip), %xmm0
addsd _I_state(%rip), %xmm0
movsd %xmm0, _u_i(%rip)

(c) The compiled assembly code of the output function (d) The generated DEPM

Fig. 5. The generated DEPM from the compiled assembly code of the Integrator block.

flow commands of each instruction element according to the probabilities
in Table 1. For instance, we specify the data flow commands of the add
instruction element: (i) (I DSTATE=ok)&(xmm0=ok) -> (1-pCPU):(xmm0’=ok)
+ pCPU:(xmm0’=error); (ii) (I DSTATE=error)|(xmm0=error) -> 1.0:
(xmm0’=error); The first command shows the data errors activation in the
destination register with probability pCPU . The second command represents the
error propagation from the erroneous input data to the output data. Then in the
generated PRISM model [11], using parametric model checking we can compute
the probability of an erroneous value in u i: −0.96p4CPU + 4p3CPU − 6.14p2CPU +
4.1pCPU . For the simplicity and transparency of the method explanation, we
assume that pCPU = 1e−4. We store this computed probability of an erroneous
output value into the database in Fig. 6b.

4.2 Generated Model-Level DEPM from the Simulink Model

A Simulink model (block diagram) consists of a set of blocks, interconnected
by lines. A block represents an elementary dynamic system, comprising a set
of inputs, states, and outputs. Blocks with states must store previous values of
the states to compute its current state. At each step of execution, Simulink (i)
computes the outputs of blocks in a sorted order, then (ii) updates the states of
blocks in a sorted order. Thus, the output functions and the update functions of
blocks are the fundamental executable units of a Simulink model.

A tool, SimPars [14], can help us to accomplish the transformation from
a Simulink model into a model-level (top-level) DEPM automatically. The
Simulink API provides full access to the model, blocks, ports, and lines. The
transformation method consists of two main steps: (i) control flow analysis, (ii)
data flow analysis. For control flow analysis, we instrument the model and gather
the execution order of the blocks functions. The data flow analysis is realized
as an algorithm that traces the lines that define signal flows between the out-
put/input ports of blocks.

Efficient Model-Level Reliability Analysis of Simulink Models 149

Gain block:
Output function:

 1) P_Gain=ok -> 1.0:(u_p'=ok);
 2) P_Gain=error -> 1.0:(u_p'=error);
Discrete-Time Integrator:

Output function:
 1) (I_DSTATE=ok)&(I_gainval=ok) -> 1.0:(u_i'=ok);
 2) (I_DSTATE=error)|(I_gainval=error) -> 1.0:(u_i'=error);

Update function:
 1) (u_i=ok) -> 1.0:(I_DSTATE'=ok);
 2) (u_i=error) -> 1.0:(I_DSTATE'=error);
Sum block (three inputs):

Output function:
 1) (i1=ok)&(i2=ok)&(i3=ok) -> 1.0:(u'=ok);
 2) (i1=error)|(i2=error)|(i3=error) -> 1.0:(u'=error);

(a) Error propagation properties of block functions

Update function of a Discrete-Time Integrator block 1.59994e-4

Output function of a Sum block (three inputs) 3.59952e-4

Output function of a Discrete-Time Integrator block 4.09939e-4

Output function of a Gain block 3.09970e-4

ProbabilitiesFunctions of blocks

(b) Probabilities of an incorrect value in the output variable

Fig. 6. In the database, we have stored the reliability properties of Simulink blocks
functions, evaluated at the assembly level by a probabilistic modeling of data errors
(a) in RAM, and (b) in CPU (pCPU = 1e− 4).

Figure 4b shows the automatically generated model-level DEPM from the
Simulink PID controller model in Fig. 2. At the Simulink level, this transforma-
tion considers the functions executions of blocks and the input/output signals
of blocks. Thereby the generated DEPM can be employed for the data error
propagations analysis.

4.3 Probabilistic Modeling of Data Errors at the Model Level

Data errors in RAM: In the model-level DEPM (Fig. 4b), (i) we perform the
probabilistic modeling of data errors activations in RAM variables by speci-
fying the data flow commands of the element FI. (ii) The error propagation
through the system can be specified with the data flow commands of other
DEPM elements, by loading the (corresponding) evaluated properties from the
database in Fig. 6a. For instance, we load the reliability properties of the out-
put function of a Discrete-Time Integrator block from the database to specify
the data flow commands of the element cal i output in the model-level DEPM
(Fig. 4b), as follows: (i) (I DSTATE=ok)&(I gainval=ok) -> 1.0:(u i’=ok);
(ii) (I DSTATE=error)|(I gainval=error) -> 1.0:(u i’=error);

Data errors in CPU: In the model-level DEPM, we can specify the
data flow commands of elements, by loading the evaluated properties from
the database in Fig. 6b. For instance, we specify the data flow com-
mands of the element cal i output: (i) (I DSTATE=ok)&(I gainval=ok) ->
(1-4.09939e-4):(u i’=ok) + 4.09939e-4:(u i’=error); (ii) (I DSTATE=
error) | (I gainval=error) -> (u i’=error); The first data flow command
indicates the probability of an erroneous value in the output variable i output is
4.09939e−4 during the execution of cal i output. The second one represents the
error propagation.

150 K. Ding et al.

5 Experimental Results

In order to verify the efficiency of the proposed model-level reliability evaluation,
we conduct experiments by performing the reliability evaluation of Simulink
models both at the assembly level and at the model level on the benchmark set
of seven case studies, listed in Table 2. The first four case studies are the four
implementations of a PID controller, discussed in [5]. The fifth to seventh case
studies are the applications of voting patterns to the P, I, D terms of a PID
controller, introduced in [4]. For instance, the first case study, shown in Fig. 2,
has six blocks and eight blocks functions. The compiled assembly code of the
first case study has 18 instructions.

Table 2. The benchmark set.

Case study ID Assembly level Model level

of instructions # of blocks # of blocks functions

1 18 6 8

2 20 8 10

3 22 1 4

4 28 1 4

5 31 10 11

6 41 10 13

7 40 14 17

Figure 7 shows the comparison of the evaluated reliability properties of
Simulink models obtained at the assembly level and at the model level. Figure 7a
and b show that in the probabilistic modeling of data errors in RAM, the reli-
ability metrics, probability of a failure and mean number of failures, evaluated
at the model level are exactly equal to the reliability properties evaluated at
the assembly level. In the probabilistic modeling of data errors in RAM, occur-
rences of data errors are modeled using the DEPM element FI, and data errors
propagate through the system. Although the generated model-level DEPM has
a smaller size, it describes the correct execution of the Simulink model and con-
siders the error propagation of data errors. Concerning data errors in CPU, the
results shown in Fig. 7c and d reveal that the reliability properties evaluated at
the model level are equal or slightly overestimated with respect to the reliability
properties evaluated at the assembly level. Thus the model-level assessment is
conservative. The conservative margin is less than 17%, and 9% on average. In
the probabilistic modeling of data errors in CPU, data errors might be activated
during each instruction execution, thus reliability metrics depend on the number,
complexity of the instructions, the internal structural, and behavioral properties
of the algorithm. In the model-level assessment, we analyze the compiled assem-
bly code of individual blocks and load the evaluated properties for the analysis of

Efficient Model-Level Reliability Analysis of Simulink Models 151

1 2 3 4 5 6 7
Case study ID

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

ba
bi

lit
y

of
 a

 fa
ilu

re
 (

P
er

r)
Assembly-level assessemt
Model-level assessemt

(a) Perr in the probabilistic modeling of
data errors in RAM.

1 2 3 4 5 6 7
Case study ID

0

5

10

15

20

25

M
ea

n
nu

m
be

r
of

 fa
ilu

re
s

(N
er

r)

Assembly-level assessemt
Model-level assessemt

(b) Nerr in the probabilistic modeling of
data errors in RAM.

1 2 3 4 5 6 7
Case study ID

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ro

ba
bi

lit
y

of
 a

 fa
ilu

re
 (

P
er

r)

Assembly-level assessemt
Model-level assessemt

(c) Perr in the probabilistic modeling of
data errors in CPU.

1 2 3 4 5 6 7
Case study ID

0

1

2

3

4

5

6

7

8

9

10

M
ea

n
nu

m
be

r
of

 fa
ilu

re
s

(N
er

r)

Assembly-level assessemt
Model-level assessemt

(d) Nerr in the probabilistic modeling of
data errors in CPU.

Fig. 7. The reliability metrics of Simulink models evaluated at the assembly level and
at the model level.

1 2 3 4 5 6 7
Case study ID

0

2

4

6

8

10

12

14

N
um

be
r

of
 s

ta
te

s
in

 th
e

ge
ne

ra
te

d
D

T
M

C

104

Assembly-level assessemt
Model-level assessemt

(a) The DTMC size in the probabilistic
modeling of data errors in RAM.

1 2 3 4 5 6 7
Case study ID

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
um

be
r

of
 s

ta
te

s
of

 th
e

ge
ne

ra
te

d
D

T
M

C

Assembly-level assessemt
Model-level assessemt

(b) The DTMC size in the probabilistic
modeling of data errors in CPU.

Fig. 8. The comparison of the resulting underlying DTMC size at the assembly level
and at the model level.

152 K. Ding et al.

the Simulink model. Whereas, in the assembly-level assessment, we analyze the
complete compiled assembly code from the Simulink model, where the structure
of the assembly code is optimized. The downside of the model-level analysis is
that it can be more pessimistic, i.e. loss of accuracy, as the relation among the
extended functional blocks is more abstract.

We also compare the sizes of the generated DTMCs, representing the compu-
tational complexity. The plots in Fig. 8 show clearly that the generated DTMCs
for the model-level assessment are significantly smaller than the DTMCs for the
assembly-level assessment. The size has shrunk by maximum up to 95% (case
study 3, 4 in Fig. 8b), and 73% on average. Results of run time are not shown
since run time depends heavily on the PC configurations. In our observations,
run time is proportional to the DTMC size. For instance, the run time of the
fourth case study with the assembly-level assessment is 1.881 s, and with the
model-level assessment is 0.422 s.

6 Conclusion

In this paper, we have proposed the method for the evaluation of Simulink models
under data errors occurred in RAM and in CPU registers at the model level
in the early development phase. More specifically, first, we store the reliability
properties of each individual block that have been evaluated by the probabilistic
modeling of data errors at the assembly level, in a database. Then we transform
the Simulink model into a model-level DEPM, considering the block functions
(output and update functions) execution sequence, and data flows of signals.
At the model-level DEPM, we specify the probabilistic data flow commands of
Simulink block functions, loading from the database.

The effectiveness of the proposed approach has been assessed and verified
experimentally by performing the reliability evaluation both at the assembly
level and at the model level respectively. The experimental results have indi-
cated that the evaluated reliability properties at the Simulink model level are
almost equivalent to the ones evaluated at the assembly level. We have also com-
pared the sizes of the underlying DTMCs. The generated DTMCs for the model-
level assessment are significantly smaller than the DTMCs for the assembly-level
assessment.

Acknowledgements. This work is supported by the German Research Foundation
(DFG) under project No. JA 1559/5-1.

References

1. Open errorpro on the github. https://mbsa-tud.github.io/OpenErrorPro/
2. Ayatolahi, F., Sangchoolie, B., Johansson, R., Karlsson, J.: A study of the impact

of single bit-flip and double bit-flip errors on program execution. In: Bitsch, F.,
Guiochet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 265–
276. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40793-2 24

https://mbsa-tud.github.io/OpenErrorPro/
https://doi.org/10.1007/978-3-642-40793-2_24

Efficient Model-Level Reliability Analysis of Simulink Models 153

3. Ding, K., Morozov, A., Janschek, K.: Classification of hierarchical fault-tolerant
design patterns. In: 2017 IEEE 15th International Conference Dependable, Auto-
nomic and Secure Computing (DASC). IEEE (2017)

4. Ding, K., Morozov, A., Janschek, K.: MORE: MOdel-based REdundancy for
Simulink. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS,
vol. 11093, pp. 250–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99130-6 17

5. Ding, K., Morozov, A., Janschek, K.: Reliability evaluation of functionally equiv-
alent simulink implementations of a PID controller under silent data corruption.
In: 2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE). IEEE (2018)

6. Ding, K., Mutzke, T., Morozov, A., Janschek, K.: Automatic transformation of uml
system models for model-based error propagation analysis of mechatronic systems

7. Eriksson, H.: D 5.1 - simulating hardware-related faults at model level. Technical
report

8. Folkesson, P., Ayatolahi, F., Sangchoolie, B., Vinter, J., Islam, M., Karlsson, J.:
Back-to-back fault injection testing in model-based development. In: Koornneef, F.,
van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 135–148. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24255-2 11

9. Juez, G., Amparan, E., Lattarulo, R., Rúız, A., Pérez, J., Espinoza, H.: Early safety
assessment of automotive systems using sabotage simulation-based fault injection
framework. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017.
LNCS, vol. 10488, pp. 255–269. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66266-4 17

10. Koopman, P.: A case study of toyota unintended acceleration and software safety.
Presentation (2014)

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

12. MATLAB: version 9.6 (R2019a). The MathWorks Inc., Natick, Massachusetts
13. Morozov, A., Janschek, K.: Probabilistic error propagation model for mechatronic

systems. Mechatronics 24(8), 1189–1202 (2014)
14. Morozov, A., Janschek, K., Krüger, T., Schiele, A.: Stochastic error propagation

analysis of model-driven space robotic software implemented in simulink. In: Pro-
ceedings of the 3rd Workshop on Model-Driven Robot Software Engineering. ACM
(2016)

15. Saraoğlu, M., Morozov, A., Söylemez, M.T., Janschek, K.: ErrorSim: a tool for error
propagation analysis of simulink models. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 245–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66266-4 16

16. Schroeder, B., Pinheiro, E., Weber, W.D.: Dram errors in the wild: a large-scale
field. In: ACM SIGMETRICS Performance Evaluation Review, vol. 37. ACM
(2009)

17. Skarin, D., Barbosa, R., Karlsson, J.: Goofi-2: a tool for experimental dependability
assessment. In: 2010 IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 557–562. IEEE (2010)

18. Svenningsson, R.: Model-implemented fault injection for robustness assessment
19. Svenningsson, R., Eriksson, H., Vinter, J., Törngren, M.: Model-implemented fault

injection for hardware fault simulation. In: 2010 Workshop on Model-Driven Engi-
neering, Verification, and Validation (MoDeVVa), pp. 31–36. IEEE (2010)

https://doi.org/10.1007/978-3-319-99130-6_17
https://doi.org/10.1007/978-3-319-99130-6_17
https://doi.org/10.1007/978-3-319-24255-2_11
https://doi.org/10.1007/978-3-319-66266-4_17
https://doi.org/10.1007/978-3-319-66266-4_17
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-66266-4_16

154 K. Ding et al.

20. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: A MODel-
Implemented Fault Injection Tool. In: Schoitsch, E. (ed.) SAFECOMP 2010.
LNCS, vol. 6351, pp. 210–222. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15651-9 16

21. Swift, G.M., Guertin, S.M.: In-flight observations of multiple-bit upset in drams.
IEEE Trans. Nucl. Sci. 47(6), 2386–2391 (2000)

22. Verzola, I., Lagny, A.E., Biswas, J.: A predictive approach to failure estimation and
identification for space systems operations. In: SpaceOps 2014 Conference (2014)

23. Vinter, J., Johansson, A., Folkesson, P., Karlsson, J.: On the design of robust
integrators for fail-bounded control systems. In: Proceedings of 2003 International
Conference on Dependable Systems and Networks, pp. 415–424, June 2003

https://doi.org/10.1007/978-3-642-15651-9_16
https://doi.org/10.1007/978-3-642-15651-9_16

Increasing Trust in Data-Driven
Model Validation

A Framework for Probabilistic Augmentation
of Images and Meta-data Generation Using Application

Scope Characteristics

Lisa Jöckel(&) and Michael Kläs(&)

Fraunhofer Institute for Experimental Software Engineering IESE,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{lisa.joeckel,michael.klaes}@iese.fraunhofer.de

Abstract. In recent years, interest in autonomous systems has increased. To
observe their environment and interact with it, such systems need to process
sensor data including camera images. State-of-the-art methods for object
recognition and image segmentation rely on complex data-driven models such
as convolutional neural networks. Although no final answer exists yet on how to
perform safety evaluation of systems containing such models, such evaluation
should comprise at least validation with realistic input data, including settings
with suboptimal data quality. Because many test datasets still lack a sufficient
number of representative quality deficits, we consider augmenting existing data
with quality deficits as necessary. For this purpose, a novel tool framework is
presented and illustrated using traffic sign recognition as a use case. The
extendable approach distinguishes between augmentation at the object, context,
and sensor levels. To provide realistic augmentation and meta-data for existing
image datasets, known context information and conditional probabilities are
processed. First applications on the GTSRB dataset show promising results. The
augmentation of datasets facilitates a more rigorous investigation of how various
quality deficits affect the accuracy of a model in its target application scope.

Keywords: Safety � Traffic sign recognition � Data augmentation �
Data quality � Application scope characteristics � Uncertainty �
Convolutional Neural Networks

1 Motivation

In recent years, interest in autonomous systems – particularly, but not limited to,
autonomous driving – has increased [2]. Such systems work in an open context, which
cannot be exhaustively specified upfront. They need to sense their environment in order
to adapt their behavior. A self-driving car needs to detect pedestrians crossing the street
or a temporary stop sign and react appropriately. Cameras are still the sensor of choice
here, providing the key input for detecting and recognizing objects through, e.g., deep

© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 155–164, 2019.
https://doi.org/10.1007/978-3-030-26601-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_11

convolutional neural networks (CNNs) [3]. Ciresan et al. [4], e.g., achieved a classi-
fication accuracy of 99.46% on GTSRB, a German traffic sign benchmark dataset [1].

However, especially when we consider safety-related functionality of autonomous
systems such as detection of a stop sign, we need to ask how much we can rely on
accuracy statements obtained from processing existing test datasets.

Like any data-driven model used for image recognition, CNNs face the problem
that their intended input-output relationship cannot be completely specified [5]; i.e., the
model needs to learn this relationship on a comparatively small and probably not
representative sample of input-output examples. This strongly limits traditional veri-
fication, making sound statistical validation on test data even more essential. Statistical
conclusions on how a data-driven model performs in its target application scope can
only be drawn, however, if the test dataset is representative for the target scope.

Today, we can commonly not assume that available test datasets are representative
for the intended target application scope of a tested model. Our experience shows that
most datasets are artificially clean, i.e., they omit or at least underrepresent many of the
quality deficits that arise in real-world settings [6]. However, it does not appear rea-
sonable to make statements about the real-world performance of a data-driven model if
it was not tested on data reflecting the real world. For example, a model for traffic sign
recognition should also be tested on images with heavy rain or backlight conditions, a
dirty camera lens, or snow-covered traffic signs if such deficits can occur in its target
application scope. A related challenge is that even if representative test data is avail-
able, most critical edge cases might be too rare to be included in sufficient numbers in a
reasonably sized dataset. Examples are pedestrians on a rural road at night or the
combination of a defective headlight and oncoming traffic with high beam.

Besides intensifying the collection of real data, there are two ways to deal with these
problems: creating artificial images using simulation environments [7] or augmenting
existing images with quality deficits. The first approach suffers from the ‘reality gap’.
Attempts to narrow this gap train specialized GANs [8] and apply them to artificially
generated images to make them look more realistic. Even though success has been
reported for restricted settings, such as grasping tasks of a stationary robot [7], we are
not aware of successful applications in more complex environments such as road traffic.

Our contribution is a framework and a tool instantiation for augmenting image data
with realistic quality issues and corresponding meta-data. The framework provides
guidance for the identification of possible quality deficits, the design of a context model
for deriving conditional probabilities for the occurrence of possible deficits, and the
layering of various kinds of potentially interacting augmentations. Extending existing
work, the framework allows (1) enriching datasets with quality deficits reflecting their
natural distribution in the target application scope and (2) applying several deficits to
the same image without causing artificial overlay issues.

The remainder of this paper is structured as follows. Section 2 provides an over-
view of related work in the area of quality-related augmentation of images. Section 3
outlines and illustrates nine steps for building an augmentation-tooling instance for a
given data-driven component and three steps for applying it to a given image dataset.
Section 4 concludes the paper by discussing limitations and future work.

156 L. Jöckel and M. Kläs

2 Related Work

Image augmentation is a commonly used preprocessing technique to improve the
performance of data-driven models and make them more robust by increasing the count
and variety of data points available during model training [9]. In the context of model
validation, augmentation has been applied less frequently to date.

Three kinds of augmentation can be distinguished: (1) those mainly used to
increase the number and variety of data points, such as image rotations and shifts;
(2) those used to intentionally decrease the quality of the image, making the task harder
for the model; and (3) those specifically designed to fool a given data-driven model by
generating adversarial examples [10]. Because this work focuses on the validation of
data-driven models, we consider neither the first kind, which is mainly relevant for
model training, nor the third kind, which is an important but security-related topic.

Quality-related augmentations can be distinguished with respect to the degree of
realism they intend to provide: (a) Simple artificial augmentations do not intend to
emulate concrete, real quality deficits but are added to images, e.g., in the form of
various kinds of random noise [6, 11, 12]. (b) Artificially appearing augmentations
capture specific aspects of a real quality deficit, e.g., emulating snow by reducing the
saturation of an image [13]. (c) Near-photorealistic augmentations use, e.g., available
depth information to adjust haze on a pixel basis [14]. There are also approaches that
utilize style transfer and GANs [15, 16]. Because our aim is to use augmentations to
make a given test dataset more realistic and to investigate the effects of specific quality
deficits, this work focuses on near-photorealistic augmentations. However, we decided
against the use of GANs because the quality of their results still appears to be unstable.

A review in the context of street scenes and traffic sign recognition showed that
besides work on specific deficits such as haze and fog, snow, rain, shadows, and
defocus [14, 17], a number of frameworks exist that include augmentations for several
quality deficits. Cheng et al. address, e.g., haze, fog, and snow [13] and Temel et al.
examined the robustness of traffic sign recognition under challenging conditions [18].

However, most reviewed papers on quality-related augmentation, including the
identified frameworks, deal with quality deficits on an individual basis; i.e., they apply
only a single deficit to a given image or ignore possible interactions when applying
multiple deficits. One exception from this observation is an approach that combines
augmentations on a LAB color space [19]. Moreover, the reviewed papers do not
consider probabilistic dependencies between meta-data characterizing the context of an
image and the applied augmentations. This means that they neither allow generating a
realistic distribution of deficits, such as would occur in the target application scope, nor
do they consider correlations between various kinds of deficits (including the extreme
of mutual exclusivity).

3 Conceptual Augmentation Framework

This section introduces a general augmentation framework for data-driven components
processing image data. Moreover, it illustrates how to instantiate it using the example
of a tool that supports the augmentation of traffic sign images in an existing dataset.

Increasing Trust in Data-Driven Model Validation 157

The overall process consists of two major stages. The first stage (P1-P9) comprises
all the steps for building the specific augmentation-tooling instance for a given data-
driven component and its target application scope. The second stage (A1-3) comprises
all the steps required to apply an augmentation-tooling instance to an image dataset.

P1 - Understand the Data-Driven Component and Its Target Application Scope.
Building an augmentation-tooling instance requires an understanding of the investi-
gated data-driven component, including its potential input data and the scope in which
it is intended to be applied.

Our example considers a traffic sign recognition component with an image of the
detected traffic sign as its main input and data from other vehicle sensors as optional
additional information sources (e.g., outside temperature sensor, velocity signal, GPS
signal, rain sensor, brightness sensor, online weather broadcast).

Furthermore, we defined its target application scope as passenger vehicles using
public roads in Germany, independent of the time of year or the time of day.

P2 - Identify Quality Deficits (QD) Affecting the Data-Driven Component. Con-
sidering realistic conditions in the target application scope, there are situations that
reduce the quality of the data. In order to build a framework that augments data with
quality deficits, relevant quality issues occurring in the target application scope have to
be identified and described, considering existing literature and domain expert opinion.
The findings should be consolidated in a list and grouped according to sensor, context,
and object. If necessary, quality deficits can be prioritize with respect to their occur-
rence probability and expected impact on the outcome quality of the data-driven
component.

For traffic sign recognition, we identified quality deficits concerning either the
context of the sign, the sign itself (object), or the built-in camera as the sensor.
Specifically, these deficits include: for context – light, darkness, weather condition
(rain, snow, haze, heat shimmer), shadows, occlusion; for object – physical damage
(bent, broken, holes), graffiti and stickers, faded colors, dirty sign, wet sign, snow on
sign; and for sensor – placement, particles on lens (dirt, snow, rain drops, steam), lens
and sensor limitations (e.g., resolution, noise, glare effects, backlight, motion blur),
camera calibration (e.g., defocus, color temperature), camera processing (e.g. com-
pression errors).

P3 - Identify Scope Characteristics Influencing the Occurrence or Intensity of
QD. In order to identify relevant scope characteristics, we go through the list of
identified quality deficits, consider when and why they occur, and look at the char-
acteristics of the target application scope influencing their occurrence or intensity.

As relevant scope characteristics that influence quality issues in recognizing traffic
signs we identified factors related to geographical position, weather, time, lighting
conditions, and vehicle velocity (see white boxes in Fig. 1). As the augmentation
addresses traffic sign recognition – not traffic sign detection – factors influencing the
detection or relevance of the detected traffic sign such as the placement or reflective
surfaces causing wrongly detected mirror images are not considered.

158 L. Jöckel and M. Kläs

P4 - Define a Causal Model with Dependencies Between Scope Characteristics. In
order to model dependencies between scope characteristics, we arrange them into an
acyclic graph, where the directed relations mean ‘influences’. In a refinement, missing
scope characteristics that influence other relevant scope characteristics are added.

For our example application, a graph is presented in Fig. 1. Time, e.g., influences
various other scope characteristics, such as weather or traffic situation, directly; others,
such as lighting conditions, do so indirectly through other characteristics. From the
geographical position, we can determine road type (e.g., motorway, farm road, street in
town), constructions (e.g., tunnels, street canyons), natural surface formations (e.g.,
forest, hills, rocks) that can cause shading, and traffic situation based on the current
time.

P5 - Derive Conditional Probabilities to Quantify Identified Dependencies. Scope
characteristics follow a probability distribution pðSCV¼ujTASÞ regarding their natural
occurrence in the target application scope TAS, with SCV¼u being the scope charac-
teristic with value V ¼ u. Because different characteristics can be interdependent, we
also need to consider conditional probabilities. Example: How likely is it that the
temperature will be higher than 30 °C when we are in location x; yð Þ with x being the
latitude and y the longitude on day 143 of the year at 3 p.m.?

Several public data sources exist that can be used to calculate these probabilities
(e.g., historic weather data from DWD [20] or maps from OpenStreetMap [21]). If no
empirical data is available, reasonable expert-based approximations need to be applied,
e.g., for the velocity of a car based on its geographical position or the likelihood and
amount of dirt on a traffic sign.

Time
Time of year
Time of day
Weekday Weather

Temperature
Precipitation amount Rain
Precipitation form Rain
Air pressure
Relative humidity
Cloud coverage
Wind direction Rain
Wind speed Rain
Sunshine hours
Sun position

Vehicle velocity
Rain

Speedometer signal

p(temperature | time
of year, time of day)

P3

Quality Deficit Augmenation: Raini,a(image) with
i = intensity(Constructions, Precipitation amount, Precipitation form)
a = appearance(Wind direction, Wind speed, Spatial orientation, Vehicle velocity, Directed light)

System time

GPS signal,
Street maps,
Traffic data

Rain sensor,
temperature
sensor,
weather
broadcast

Light sensor

Headlight
on/off

P4
P5

P6, P7, P8

P9

Target
Application Scope:

Germany public
roads, passenger

cars, …

Quality Deficits:
Rain
…

P1

P2

3. Artificial directed light Rain
Headlights of oncoming traffic
Headlights of own car
Headlights of preceding/following vehicles

2. Natural directed light Rain
Solar azimuth angle
Solar altitude
Cloud coverage
Shading

1. Basic brightness
Sunshine hours
Solar altitude
Streetlights
Constructional &
natural shading

Lighting conditions

Coordinates
Altitude
Spatial orientation Rain

Road type
Constructions Rain
Natural surface formation

Traffic situation

Geographical position

Scope Characteris c Sensor signals

•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•

•
•

•

•
•

•
•
•

•
•
•
•

•
•
•
•

•
•
•

•
•
•

•

influence

Fig. 1. Steps P1 to P9 of the augmentation framework with a focus on the context model.

Increasing Trust in Data-Driven Model Validation 159

P6 - Identify Existing Augmentation Techniques Available for QD. In the next
step, we need an overview of existing work on image augmentation for the quality
deficits identified as relevant. We must understand how the quality deficit manifests in
an image and what needs to be considered when changing the image in order to
augment a specific quality deficit.

For example, dirt on a sign can occur in different colors and degrees. It affects only
the pixels of the object (i.e., the traffic sign) and needs to be applied as a randomized
semitransparent pattern influencing also the reflection property of the affected areas.

P7 - Define the Order of Applying Augmentations. In many cases, there is a certain
order to consider when applying augmentation. For instance, object augmentations
(e.g., dirt) should be applied first, then context (e.g., darkness), and finally sensor (e.g.,
steamed-up). This way, consequences from having a particular quality issue can be
incorporated into the augmentation of other quality issues; e.g., dirt on a traffic sign
reduces its reflective effect when illuminated at night by headlights and the brightness
of the fog on a camera lens decreases with the general reduction of brightness at night.

In Fig. 2, the interaction with different intensities of the quality deficits darkness,
dirt on sign, and steamed-up lens is displayed, considering previous influences.

P8 - Implement the Augmentations for the Quality Deficits. During implementa-
tion, we need to consider how scope characteristics determine the intensity of the
quality deficit and influence the appearance of the augmentation. Characteristics of
quality deficits might determine colors, specific proportions of the image, shapes, etc.

In our example, we illustrate this for the quality deficit rain in Fig. 1. The
appearance of the augmentation is defined by the direction and velocity of the wind
relative to the driving direction and the velocity of the car, causing a slant in the
raindrops (cf. also Fig. 3). Another example is that the location of a traffic sign in the
forest rather than in the city will influence the color of the dirt accumulated on it,
making it greenish.

0.
0

0.
5

1.
0

0.0 0.5 1.0
Intensity of dirt on sign

Intensity of darkness = 0.0 Intensity of darkness = 0.35 Intensity of darkness = 0.75

In
te

ns
ity

 o
f s

te
am

ed
 o

ve
r l

en
s

Fig. 2. Combination of darkness, dirt on sign, and steamed-up lens at different intensity levels.

160 L. Jöckel and M. Kläs

Figure 3 contrasts augmentations targeting a high degree of realism, like the ones
implemented in our tooling, and artificially appearing augmentations commonly
applied.

P9 - Derive Conditional Probabilities to Quantify Further Sensor Outputs.
Finally, we need to specify how scope characteristics determine the output of previ-
ously identified sensors, including typical inaccuracies of sensor signals.

In our example, sensor data that might be simulated as part of the meta-data output
of the framework is illustrated by gray shaded boxes in Fig. 1. Dotted lines indicate the
scope characteristics used to simulate the respective sensor signal. For example, the
value of the temperature sensor can be obtained by distorting the actual value with a
Gaussian error term considering the standard error provided by the specification of the
temperature sensor. The same is true for the GPS signal, which uses a Gaussian
distribution with an approximated standard error of 8 m.

A1 - Randomly Sample a Context Vector. Realistic context information is generated
by taking a sample for pðSCV¼ujTASÞ, the probability of a scope characteristic taking
the value u in the target application scope TAS considering the dependencies in the
context model between different scope characteristics.

Considering Fig. 1, an approach may start by sampling a time based on available
statistics on when people are driving by car, then sampling a possible location based on
traffic data for each point in Germany at the given time using OpenStreetMap, next
sampling specific weather conditions based on location and time, etc.

A2 - Determine Augmentation(s) to Apply and Their Parameter Values. In order
to determine realistic accuracy of a data-driven model, data with quality deficits is
created, where the intensity values of each quality deficit follow a probability distri-
bution of their natural occurrence pðQDI¼xjTASÞ, where QDI¼x is a quality deficit with
intensity I ¼ x in the target application scope TAS. If specific quality deficits are
already present at a representative rate in the dataset to be augmented, they can be
excluded from the augmentation.

Most quality deficits have certain demands on the environment in order to be present
with a given intensity. Therefore, quality deficits that occur under the given scope
characteristics are selected for every quality deficit QD1; . . .;QDn:

Without aug. Dirt on sign Light rain Heavy rain Motion blur Steam on lens Dirt on lens Darkness

Without aug. Gaussian noise Poisson noise Salt & pepper FGSM Fog Haze Snow

Fig. 3. Example traffic sign with augmentations from the nn-dependability kit [13] in the first
row, and augmentations from our framework in the second row.

Increasing Trust in Data-Driven Model Validation 161

pðQDi;I¼xi jSC1;V¼u1 ; . . .; SCm;V¼um&TASÞ; 1� i� n: ð1Þ

For example, the likelihood and intensity value for the rain augmentation directly
depends on the value of the context factor precipitation amount.

A3 - Apply Augmentations and Generate Meta-data. In this step, an image is first
randomly drawn from the available dataset containing image data. Each image is only
selected once. Next, all augmentations are applied to the image with the previously
determined intensity and appearance parameter values. Then the values for relevant
further data sources, e.g., rain sensor, brightness sensor, GPS signal of the vehicle, are
determined. Finally, the augmented image is stored along with the generated meta-data.
Such data can then be used to improve model training or analyze uncertainty [22].

4 Conclusion

This paper presented a framework for image augmentation and explained how to apply
it to (UC1) introduce realistic quality deficits to existing image datasets considering the
typical distribution of deficits and resulting coincidences in the target application scope.
It can also be applied to (UC2) sample realistic context characteristics in which a given
selection of quality deficits may occur. Besides the augmented image, meta-data
comprising context information and additional sensor data (e.g., from a rain sensor) is
generated. A layer concept applying quality deficits in a given order from object via
context to sensor-related issues allows passing relevant information to subsequent
augmentations, preventing interference between multiple augmentations on the same
image.

A preliminary evaluation showed that a tool prototype based on the framework in
the context of traffic sign recognition provided visually authentic results on the GTSRB
dataset. Although our approach allows combining quality deficits with various inten-
sities and appearances considering the context of the image, several topics remain open
to be addressed in the future.

At the technical level, the challenge of automatically deriving an object mask that
identifies all pixels related to the traffic sign has not been finally solved, even though
image segmentation using an adapted GrabCut algorithm provides promising results.
Application UC2 is also not implemented yet. As future work, we plan to address UC2
by considering the context model as a Bayesian network and inferring the unobserved
scope characteristics with stochastic MCMC simulation.

The parameters of the augmentations still need to be calibrated and validated on
empirical data (e.g., which intensity value best represents 4 mm of rainfall). We also
need to further investigate how well the augmented data represents the intended target
application scope. This includes evaluating the coverage of relevant quality deficits and
the realism of the generated images, investing the impact of the augmentations on the
accuracy of data-driven component outcomes, and finally comparing the impact of the
augmented quality deficits with the impact of their natural counterparts.

162 L. Jöckel and M. Kläs

Acknowledgments. Parts of this work have been funded by the German Federal Ministry of
Education and Research (BMBF) under grant number 01IS16043E (CrESt).

References

1. German Traffic Sign Benchmarks. http://benchmark.ini.rub.de/?section=gtsrb. Accessed 19
Feb 2019

2. CrESt Project Website. https://crest.in.tum.de/. Accessed 19 Feb 2019
3. Krizhevsky, A., Sutskever, I., Hinton G.E.: ImageNet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems (NIPS), vol. 25,
pp. 1097–1105 (2012)

4. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image
classification. In: Staff, I. (ed.) 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3642–3649. IEEE (2012)

5. Kläs, M.: Towards identifying and managing sources of uncertainty in AI and machine
learning models - an overview. arxiv.org/pdf/1811.11669v1 (2018)

6. Dodge, S., Karam, L.: Understanding how image quality affects deep neural networks. arxiv.
org/pdf/1604.04004v2 (2016)

7. Shrivastava, A., Pfister, T., Tuzel, O., et al.: Learning from simulated and unsupervised
images through adversarial training. In: Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, Hawaii, pp. 2242–2251 (2017)

8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In:
Advances in Neural Information Processing Systems (NIPS), vol. 27 (2014)

9. Wong, S.C., Gatt, A., Stamatescu, V., et al.: Understanding data augmentation for
classification: when to warp? In: International Conference on Digital Image Computing:
Techniques and Applications (DICTA) (2016)

10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial Examples.
arxiv.org/pdf/1412.6572v3 (2014)

11. Carlson, A., Skinner, K.A., Vasudevan, R., et al.: Modeling camera effects to improve visual
learning from synthetic data. arxiv.org/pdf/1803.07721v6 (2018)

12. Karahan, S., Yildirum, M.K., Kirtac, K., et al.: How image degradations affect deep cnn-
based face recognition? In: International Conference of the Biometrics Special Interest
Group (BIOSIG), Darmstadt, Germany (2016)

13. Cheng, C.-H., Huang, C.-H., Nührenberg, G.: nn-dependability-kit: engineering neural
networks for safety-critical Systems. arxiv.org/pdf/1811.06746v1 (2018)

14. Pezzementi, Z., Tabor, T., Yim, S., et al.: Putting image manipulations in context: robustness
testing for safe perception. In: International Symposium on Safety, Security, and Rescue
Robotics (SSRR) (2018)

15. Luan, F., Paris, S., Shechtman, E., et al.: Deep photo style transfer. arxiv.org/pdf/1703.
07511v3 (2017)

16. Liu, M.-Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. arxiv.
org/abs/1703.00848v6 (2018)

17. UjjwalSaxena Automold - Road Augmentation Library. http://github.com/UjjwalSaxena/
Automold–Road-Augmentation-Library. Accessed 26 Feb 2019

18. Temel, D., Kwon, G., Prabhushankar, M., et al.: CURE-TSR: challenging unreal and real
environments for traffic sign recognition. arxiv.org/abs/1712.02463v2 (2018)

Increasing Trust in Data-Driven Model Validation 163

http://benchmark.ini.rub.de/?section=gtsrb
https://crest.in.tum.de/
https://arxiv.org/ftp/arxiv/papers/1811/1811.11669.pdf
https://arxiv.org/pdf/1604.04004v2.pdf
https://arxiv.org/pdf/1604.04004v2.pdf
https://arxiv.org/pdf/1412.6572v3.pdf
https://arxiv.org/pdf/1803.07721v6.pdf
https://arxiv.org/pdf/1811.06746v1.pdf
https://arxiv.org/pdf/1703.07511v3.pdf
https://arxiv.org/pdf/1703.07511v3.pdf
https://arxiv.org/abs/1703.00848v6
https://arxiv.org/abs/1703.00848v6
http://github.com/UjjwalSaxena/Automold%e2%80%93Road-Augmentation-Library
http://github.com/UjjwalSaxena/Automold%e2%80%93Road-Augmentation-Library
https://arxiv.org/abs/1712.02463v2

19. Harisubramanyabalaji, S.P., ur Réhman, S., Nyberg, M., Gustavsson, J.: Improving image
classification robustness using predictive data augmentation. In: Gallina, B., Skavhaug, A.,
Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 548–561.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99229-7_49

20. Climate Data Center. https://cdc.dwd.de/portal/. Accessed 19 Feb 2019
21. OpenStreetMap. https://www.openstreetmap.de/. Accessed 19 Feb 2019
22. Kläs, M., Sembach, L.: Uncertainty wrappers for data-driven models – increase the

transparency of AI/ML-based models through enrichment with dependable situation-aware
uncertainty estimates. In: Workshop on Artificial Intelligence Safety Engineering (WAISE),
Turku, Finland (2019)

164 L. Jöckel and M. Kläs

http://dx.doi.org/10.1007/978-3-319-99229-7_49
https://cdc.dwd.de/portal/
https://www.openstreetmap.de/

A Pattern for Arguing the Assurance
of Machine Learning in Medical

Diagnosis Systems

Chiara Picardi(B), Richard Hawkins, Colin Paterson, and Ibrahim Habli

Assuring Autonomy International Programme, The University of York, York, UK
{Chiara.Picardi,Richard.Hawkins,Colin.Paterson,Ibrahim.Habli}@york.ac.uk

Abstract. Machine Learning offers the potential to revolutionise
healthcare with recent work showing that machine-learned algorithms
can achieve or exceed expert human performance. The adoption of such
systems in the medical domain should not happen, however, unless
sufficient assurance can be demonstrated. In this paper we consider
the implicit assurance argument for state-of-the-art systems that uses
machine-learnt models for clinical diagnosis, e.g. retinal disease diagno-
sis. Based upon an assessment of this implicit argument we identify a
number of additional assurance considerations that would need to be
addressed in order to create a compelling assurance case. We present
an assurance case pattern that we have developed to explicitly address
these assurance considerations. This pattern may also have the potential
to be applied to a wide class of critical domains where ML is used in the
decision making process.

Keywords: Machine Learning · Assurance · Assurance cases ·
Clinical diagnosis

1 Introduction

Machine Learning (ML) offers the potential to create health care applications
that can perform as well as, or better than, human clinicians for certain tasks
[16]. This could help address major societal challenges, including the shortage
of clinicians to meet the demands of an ageing population and the inadequate
access to health care services in poor parts of the world [28]. For example, the
prevalence of sight-threatening diseases has not been matched by the availability
of ophthalmologists with the clinical expertise to interpret eye scans and make
the appropriate referral decisions [3]. ML has the potential to address this short-
age and augment, and in certain cases improve, existing clinical practices by
giving clinicians more time to care for patients [25].

However, clinical diagnosis is a critical activity, the failure of which could
compromise the safety and quality of the overall care process. As such, the
introduction of clinical diagnosis technologies for augmenting or replacing human

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 165–179, 2019.
https://doi.org/10.1007/978-3-030-26601-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_12

166 C. Picardi et al.

expertise has to undergo the necessary rigorous evaluation of the system in its
intended context and the assurance of the processes by which the system is
developed, evaluated and maintained [23]. For ML-based systems, this includes
performance characteristics, e.g. hit and false alarm rates, and the appraisal of
the quality and appropriateness of the data and processes by which the system
is trained and tested.

Because of their critical nature, clinical diagnosis systems require assurance.
Assurance is defined as justified confidence in a property of interest [12], often
the property of interest is safety. The assurance of a system is typically commu-
nicated in the form of an assurance case, capturing “a reasoned and compelling
argument, supported by a body of evidence, that a system, service or organisation
will operate as intended for a defined application in a defined environment” [1].

This paper proposes an assurance argument pattern that provides a struc-
tured, clear and reusable basis for justifying, as part of an assurance case, the use
of Machine Learnt models (MLM) in clinical diagnosis systems. This includes
reasoning about the performance of the models and the means by which they are
trained and tested. The argument pattern can be used to support the develop-
ment of holistic assurance cases, potentially utilising further evidence for clinical
effectiveness and patient safety from randomised control trials and pilot clini-
cal deployments. The generation of a compelling assurance case will both guide
development of MLM, as well as facilitating the necessary dialogue between ML
developers, clinical users and independent assessors (e.g. regulators).

The rest of the paper is organised as follows. In Sect. 2, we motivate the need
for an assurance argument pattern by focusing on a significant machine-learnt
system for retinal diagnosis and referral [5]. We construct an explicit assurance
argument for this system and examine the assurance factors that have to be
demonstrated prior to the adoption of such a system. In Sect. 3, we propose an
assurance argument pattern that addresses the assurance factors highlighted in
the previous section. This considers, in an integrated manner, the performance
of the MLM and the means by which these models are trained and tested. In
Sect. 4 we discuss the argument pattern and consider its applicability in the
wider domain, e.g. for non-healthcare industries, noting that generalisability
would require a similarly detailed analysis in other domains. This is identified
in Sect. 5 as one of the areas for future work.

2 Motivating Case Study

The pattern introduced in this paper arose through the consideration of the
implicit assurance arguments for three major deep learning models covering the
following clinical areas:

– Retinal disease diagnosis and referral [5];
– Optimal treatment strategies for sepsis in intensive care [15];
– Arrhythmia detection and classification [11].

A Pattern for Arguing the Assurance of Machine Learning 167

In this paper, we focus on the first study by Fauw and colleagues [5], because
of the significance and richness of the published results. The study describes
a system able to examine three-dimensional Optical Coherence Tomography
(OCT) scans and make referral recommendations on a range of sight-threatening
retinal diseases. Figure 1 shows how the system is composed of two parts repre-
sented by two different deep neural networks: segmentation and classification.

Fig. 1. Automated retinal disease diagnosis and referral system (Adapted from [5]).

The segmentation network, which is trained using 877 images manually seg-
mented by trained ophthalmologists, takes as input OCT scans and creates a
detailed device-independent tissue-segmentation map (used for identifying clin-
ical features in scans for diagnosis). The map created is then given as input to
the classification network in order to provide one of the four referral sugges-
tions in addition to the presence or absence of multiple retinal pathologies. The
classification network is trained using 14884 tissue maps labelled by four retina
specialists and four optometrists with the diagnosis and the referral decision.
The two neural networks represent the two MLM of the system. In this section
we report our interpretation of the implicit assurance argument contained in the
published study and discuss the additional assurance considerations needed to
support a potential deployment of the technology.

2.1 Understanding the Implicit Assurance Argument

We represent here the assurance argument structures for the segmentation and
classification neural networks which we have extracted from the information
in the published study. This implicit argument has been represented explicitly
using the Goal Structuring Notation (GSN) [1]. GSN is a graphical notation for
explicitly capturing the different elements of an argument (claims, evidence and

168 C. Picardi et al.

contextual information) and the relationships between these elements. GSN is a
generic argument structuring language that is widely used in the safety-critical
domain [26].

Fig. 2. GSN graphical notation

Figure 2 shows the graphical elements that we use in this paper. In GSN,
the claims of the argument are documented as Goals and the evidence is cited
in Solutions. Additional information, in the form of Contexts, are also provided.
The notation includes two types of links that can be used to document the
relationships between elements: SupportedBy (represented as lines with solid
arrowheads) indicates inferential or evidential relationships; InContextOf (rep-
resented as lines with hollow arrowheads) declares contextual relationships. The
additional elements shown in Fig. 2 are provided to support patterns and are
introduced in Sect. 3. The reader is advised to consult the publicly available
GSN standard [1] for a more detailed description of the notation.

The assurance arguments for the neural networks are shown in Figs. 3 and
4 (abstracted from the detailed assurance arguments in [19]). The main claim
is that the neural network achieves or exceeds the intended performance (i.e. in
tissue-segmentation, diagnosis and referral). This claim is supported by the per-
formance results reported in the study. In addition to this claim and supporting
evidence, the study provides a number of items of contextual information:

– description of the clinical setting (Moorfields Eye Hospital which is the largest
eye hospital in Europe and North America);

– description of the neural networks used;
– description of the benchmark against which the performance of the neural

networks is judged, including the profiles of the clinical experts;
– description of the data used.

The data is divided into three different sets: training, validation and test
sets. The training set is used to find the best model; the validation set is used to
choose the hyperparameters of the model in order to avoid overfitting; and the
test set is used to verify the model with data never seen before. The type of the
data, and the amount included in each set, are described as context to the main
claim.

It is important to highlight that the arguments reported above represent our
interpretation of the implicit argument contained within the published study,
which required several review iterations of the results, including the rich supple-
mentary material. We could characterise the structure of the implicit arguments

A Pattern for Arguing the Assurance of Machine Learning 169

Fig. 3. Segmentation neural network assurance argument

Fig. 4. Classification neural network assurance argument

for the neural networks as being of the form depicted in Fig. 5. That is, the per-
formance claim is directly supported by evidence. Importantly, this evidential
relationship is established with clear links to the machine learnt network, the
clinical context, the data used and the benchmark against which the acceptabil-
ity of the performance is judged.

2.2 Review of the Implicit Assurance Argument

Having identified the implicit argument shown in Fig. 5, we evaluated this argu-
ment from the point of view of an assessor who is seeking to make a decision on
whether to permit the use of the system as part of real clinical diagnosis. In doing
so we identified a number of additional assurance considerations that would need
to be addressed in order for use of the system to be approved. It is important

170 C. Picardi et al.

Fig. 5. The structure of the implicit assurance arguments for the ML networks

to note that the issues we identify are not deficiencies in the published study as
they are beyond the scope of the reported results. However, they do represent
requirements for a potential assured deployment of the system. The assurance
considerations we identified are summarised below. They were identified by per-
forming a systematic review of the argument structure in Fig. 5, following the
staged argument review process in [1,14], by considering the sufficiency of each
of the elements in turn with respect to the confidence they provide.

1. Clinical Setting: In order to assure the learnt model, the context in which
that model will be used must be fully and clearly understood. If the model is
used in a manner for which it was not developed then there is little confidence
that the model will perform as required. The clinical setting is described in
the published paper, but there is no evidence to support the sufficiency of
this description with respect to how the model will be used in practice. In
addition, the impact of possible changes or variations in the clinical setting
is not clearly considered. For example, is the model still assured if used in
a hospital other than Moorfields? Is there anything in particular about this
setting that is significant from an assurance perspective? An assurance case
for the neural network would need to justify the validity of the clinical setting
description.

2. Benchmark: If a judgement is to be made on the safety of the network in
clinical diagnosis, then a target against which the performance of the net-
work can be judged must be defined. The benchmark is identified in the case
study as the gold standard obtained from clinical records of the final diagno-
sis and optimal referral pathways determined by experts. The profile of the
experts involved in the diagnosis are described. The published study does not
make clear how the experts were chosen: how was it decided how many years
of experience are enough? What specialty is considered appropriate for the

A Pattern for Arguing the Assurance of Machine Learning 171

benchmark? An assurance case would need to explain why the benchmark is
considered sufficient to indicate that the output of the model is acceptable.

3. Machine Learnt Model: Whilst the problem domain restricts the choice of
the MLM which may be employed, the number of model types and variants
which can be used to tackle a problem is still typically large. Selecting a model
type and variant has a significant impact on model performance and is typi-
cally performed with reference to previous domain experience. The choice of
model should also be undertaken with respect to a wider set of requirements,
such as the need for explainability, or with consideration of the operating
environment. An argument should therefore be constructed to explain the
choice of model with reference to the system level requirements. In the case
study the model form is clearly shown, i.e. a convolutional network, and the
performance demonstrated with respect to the classification and segmenta-
tion tasks. If an assurance case were to be created for this network, the wider
impact of this choice, and explicit justification for the decisions made would
be required.

4. Training and Validation Data: The data collected for the training of MLM
is a key assurance consideration as the knowledge encoded within the model
is derived directly from this data. The data should be sufficient to represent
all relevant aspects of the clinical setting. An assurance argument will need
to consider both the relevance and completeness of the data used for training
the model. The case study gives specific details on the setting in which data
was gathered, i.e. 32 clinic sites serving an urban, mixed socioeconomic and
ethnicity population centered around London, but does not supply explicit
justification for the relevance or coverage that this data provides.

5. Test Data: Whilst every effort is made to ensure that the training and
validation data captures the features present in the clinical setting, evidence
is required to verify that the model will continue to perform as expected when
deployed for real world diagnosis. To provide such assurances requires the test
data to be both representative of the clinical setting and independent of the
training data and learning process. The size of the test data set is provided
in the case study, however, details of independence are implicit. To form
a compelling assurance case a justification of the decisions concerning the
collection of test data should be presented.

6. ML Process: The development strategy has a profound impact on the per-
formance of the MLM and as such an argument should be made about the
choices which underpin the design strategy. Typically this will concern the
validation strategies used to evaluate model performance, the hyperparame-
ters used to control the training process and the methods employed to select
and tune these hyperparameters. In the case study the authors give details of
the process undertaken (e.g. the segmentation network was trained five times
with different order of inputs and random initialised weights) with reference
to previous work which demonstrated the effectiveness of such approaches.
Further explicit justification of decisions taken during the development pro-
cess are required for a more compelling case (discussed in Sect. 3).

172 C. Picardi et al.

Importantly, it is how issues such as those described above are addressed that
would be of most interest to an independent assessor e.g. representing a regu-
latory authority; the performance evidence alone would not be considered to
provide sufficient confidence, particularly when the assurance case is extended
to cover safety. This is analogous to how conventional safety-related software
requires an understanding of the implementation of the software in addition to
black-box testing. In forming this view we have been fortunate to be able to
interact with a number of assessors from the medical domain including repre-
sentatives from NHS Digital. It would also be necessary to show how the MLM
provides other desired features such as explainability or robustness. In the next
section we propose an argument pattern that explicitly addresses these issues.

3 Making an Explicit and Compelling Assurance
Argument for ML Decision Making

Figures 6 and 7 show a pattern that documents a reusable assurance argument
structure that can be instantiated to create arguments for MLMs. The argument
pattern is represented using the pattern language of GSN [1]. Figure 2 showed
the to be developed and to be instantiated symbols that can be used to create
abstract argument structures that can then be re-used as approapriate. To be
developed attached to an element indicates that the element must be further
developed as appropriate for the target system (through provision of specific
argument and evidence). To be instantiated attached to an element indicates
that some part of the element’s content is a variable that requires instantiation.
Variables are declared as part of the argument structure using curled braces,
such as {MLM} in Fig. 6. These variables can be substituted for references to
specific instances relevant to the system of application (for example a reference
to the actual MLM that has been created).

The pattern extends the argument extracted from the published study in
Fig. 5 such that the additional assurance considerations identified in Sect. 2.2 can
be addressed. In particular, the pattern makes use of Assurance Claim Points
(ACPs) [13], indicated by the black squares in the pattern. These ACPs repre-
sent points in the argument at which further assurance is required through the
provision of a more detailed assurance argument focusing specifically on how
confidence can be demonstrated (referred to as a confidence argument [13]). It
should be noted that although the argument could be made without using ACPs
we feel that it is more clear and effective to do so. The advantages of separating
confidence and risk arguments within an assurance case are discussed in detail in
[13]. It should be noted that the undeveloped claims in Figs. 6 and 7 will require
further development when instantiated for a specific application; all claims must
eventually be supported by evidence.

The pattern in Fig. 6 retains the performance claim, supported by perfor-
mance evidence, and is made in the context of the defined operating environment,
the performance benchmark, and the MLM. We have used ‘operating environ-
ment’ rather than ‘clinical setting’ as this represents the more general case for

A Pattern for Arguing the Assurance of Machine Learning 173

Fig. 6. Assurance argument pattern for machine learning in medical diagnosis

Fig. 7. Data confidence argument pattern for ACP4 and ACP5

the context that defines where and how MLM may be used. The data, that had
previously been split into training, test and validation, has now been split into
just development data and test data. This represents the fact that there are mul-
tiple ways in which development data may be used. Whether separate validation
data is selected (as in the published study) depends upon the chosen validation
strategy. This representation therefore provides a more general case. Each of the
items of context has an associated ACP (ACP1 to ACP5).

As can be seen in Fig. 6 the pattern includes the structure for the confidence
argument for ACP3 to demonstrate that there is sufficient confidence in the
process used to generate the MLM. This is done through consideration of the
development strategy adopted, including the choice of the model type and the
respective hyperparameters, and the required features such as explainability or
robustness that the learned model possesses. A pattern is also presented for the

174 C. Picardi et al.

arguments at ACPs 4 and 5 to demonstrate confidence in the data. This pattern
is shown in Fig. 7. It can be seen that, althought the particular details of the
argument will be different (as discussed later), the same general approach can
be taken to argue about both the development and the test data. Therefore a
standard pattern can be created for these data types.

The argument pattern presented in Figs. 6 and 7 has been constructed to
explicitly address the six assurance considerations identified in Sect. 2.2. Here
we explain how the argument pattern addresses each:

Considerations 1 and 2 are addressed at ACP1 and ACP2 respectively, where
arguments will be provided to justify that the operating environment and bench-
mark are correctly defined for the application of the MLM as part of the diagnosis
system. The sufficiency of the environmental definition and the benchmark that
is used cannot be assessed through consideration of the MLM alone. The suffi-
ciency of both can only be assessed within the broader context of the diagnosis
and referral pathway. As such these issues would be addressed as part of the
broader assurance case for the diagnosis system of which this argument forms a
part [10]. Further discussion of this is beyond the scope of this paper.

Consideration 3 concerning the machine learnt model is addressed at ACP3
through focusing on confidence in the machine learnt model. The structure of
this argument is shown in Fig. 6. Selecting a suitable model type will typically
be undertaken with reference to the category of problem being addressed by
machine learning (e.g. classification or regression), type and quantity of devel-
opment data available [2,21] and in light of personal experience. The choice of
model also affects a number of criteria which may impact assurance claims such
as the explainability [6] or the ability of the model to be transferred between
operating contexts [18]. In addition, features of the artefact produced may influ-
ence assurance arguments. Where this is the case, it should be made explicit.
Reusing convolutional layers in a neural network may improve performance and
training times for example, but introduce the risk of ‘backdoors’ [9].

Consideration 4 concerning the development data is addressed at ACP4 using
the data confidence argument pattern shown in Fig. 7. It is important for the
argument to consider firstly, what the requirements on the training data are.
These requirements should reflect the property of interest (e.g. correct diagnosis),
and the defined operating environment in which that must be achieved. Two
characteristic which are of particular interest are relevance and completeness. In
order to construct an argument concerning the relevance of data used in training,
one should be able to demonstrate that the data is representative of the intended
operational environment. In practice, collecting this data may be difficult due
to safety, security or financial concerns. In such cases, it may be necessary to
synthesise data sets [20] or reuse data from similar domains [22]. Even when
data can be collected directly from the operating environment it is unlikely to
be complete due to the complexity of most real world environments. Indeed
defining completeness in many environments is a difficult task. Consider the
task of photographing an injury from a single patient for use in a classification
task. The lighting and position of the camera with respect to the patient will

A Pattern for Arguing the Assurance of Machine Learning 175

lead to a large number of possible images. A clear argument therefore needs to
be presented about how the data is captured and how much data is required to
adequately characterise the features of interest with the operational environment.
In addition, rare cases may be known to exist but difficult to gather in practice
thus leaving holes in the data set. Finally, labelling of images is a non-trivial task
and experts may differ in the diagnosis offered for a given patient. In such cases,
the process of labelling should be clearly stated as part of the data preparation
task with conflicts and resolutions clearly stated. The supplementary information
in [5] provides a detailed case of how such a task could be rigorously performed.

Consideration 5 concerning the test data is addressed at ACP5, again using
the data confidence argument pattern. The central challenge of machine learning
is to ensure that the trained model performs well on new, previously unseen,
inputs (this is known as generalisation [8]). It is vital therefore that the test set is
both representative of the operating environment and independent of the training
process. It is common in machine learning to have a single data collection process
and set aside a portion (usually 20%) of the data for testing. Whilst this may be
suitable in some contexts, it may be more appropriate to have a collection team
designated to collect testing data since the collection process itself may introduce
bias into the data sets (i.e. similar to the independence requirement between
the development and verification teams in the aerospace guidance DO178C [7]).
Humans are very good at spotting patterns and unusual features in a data set
and, if the developers have sight of the test set, the temptation to engineer
features of the training set to improve training may invalidate the assumed test
set independence. For the case study for example, it may be possible to collect
scans from a different hospital which uses the same hardware. It is also common
in traditional software engineering for the test team to check edge cases; similar
tactics may be employed in the testing of MLM with rare, or complex, cases over
represented in the test set.

Consideration 6 concerning the ML process is also addressed as part of ACP3
when focusing on the development strategy. Having selected a suitable artefact
type, the machine learning strategy tunes parameters of the artefact to optimise
an error function. The aim of the function is to quantify the performance of the
artefact. In order to make such an assessment, the development team must choose
a validation strategy during training. Typically this involves strategies such as
cross-validation which allow the developer to reason about the artefacts ability
to generalise to unseen data. This ability to generalise is important in all but
the most simple domains and as such the validation strategy should be provided
as part of the assurance evidence. The model training process itself is controlled
through the selection of hyperparameters which, in turn, control the performance
of the artefact produced. The choice of hyperparameters should, therefore, be
explicitly stated to support any assurance argument. Hyperparameters such as
early stopping [8] or dropout [24], for example, may be used to control overfitting
of the model to training data. Once initial values for the hyperparamters are
selected, these are tuned by repeatedly training the models and updating the
hyperparamters through the analysis of model performance.

176 C. Picardi et al.

In this section we have presented a pattern that we have developed for arguing
the assurance of MLM, based on our review of machine-learnt models for clinical
diagnosis. In the next section, we discuss the benefits and implications of using
such a pattern to help assure similar systems.

4 Discussion

The assurance argument pattern presented in the previous section is intended
to be used to guide developers of MLM for use in clinical diagnosis systems.
It identifies how to create a compelling assurance case for the MLM that is
sufficient to support a decision regarding approval to deploy the models as part
of a diagnosis system. The argument pattern identifies the nature of the claims
that must be made about the MLM, but also importantly helps to identify where
evidence is required (testing, analysis, validation, review etc.) to support those
claims. As such, practitioners who make use of the pattern will be guided towards
performing a particular set of assurance activities that are required to make an
assurance case for their system. In this way, the pattern should help to improve
processes and practices for the utilisation of ML in clinical diagnosis.

ML is often seen as essentially an optimisation problem [27]. One thing that
this paper has particularly highlighted is the fact that when ML is being used
in critical applications such as clinical diagnosis, although optimisation of the
learnt model remains important, other aspects of the ML process and associated
contextual assumptions take on a much more critical role. It should be noted
that many of these additional considerations highlighted in this paper are things
that ML developers are already addressing to some extent (see the excellent
supplementary information in [5]), however there has been little consideration,
in the ML community, for their role in a justification for the system.

It is important to emphasise that this paper has considered only the machine
learnt aspects of a larger overall system that deals with the entire retinal disease
diagnosis function. The arguments discussed in this paper would therefore form
part of a larger assurance case that considered the safety of the entire system.
One approach to decomposing a system such as this is to consider the system as
an agent characterised by a need to sense the environment of operation (Sensing),
to understand the information that is sensed by interpreting it in the context
of the system and to create a useful model of the real-world (Understanding),
to make decisions based upon that model (Deciding), and to perform actions
that implement that decision (Acting). Each of these elements, as well as the
interactions between them, must be considered as part of the system assurance
case along with an understanding of the requirements of the system as a whole.
The neural networks considered in this paper would form part of the Under-
standing and Deciding elements of the overall system (e.g. tissue segmentation,
classification and referral for retinal disease). In other work we are investigating
the form of the holistic assurance argument, but the details of this are outside
of the scope of this paper.

A Pattern for Arguing the Assurance of Machine Learning 177

Although this paper has focused on medical diagnosis, it is likely that the
principles that have been extracted from studying these systems and that have
been captured in the argument pattern are more broadly applicable, both to
other medical applications, but potentially more broadly to other types of critical
system that make use of MLM. Demonstrating this will require further case
studies in other domains, however our experience shows that the techniques
and processes applied in developing MLM for medical diagnosis are the same
techniques that are often used for developing models for other domains, e.g.
object detection and classification in autonomous driving [4]. The nature of the
requirements and operational context will of course be unique to the application,
and may bring unique challenges that must be addressed, but we hope that the
general approach reported here will still be valid. This is one of our ongoing
areas of research.

5 Conclusions and Future Work

Machine learning promises to revolutionise the way many tasks are performed
and recent years has seen a growth in the application of ML to domains where
failure would compromise the safety of critical processes. One such area is
medical diagnosis where the benefits offered could address major societal chal-
lenges. However, the adoption of ML will require a change in the way machine
learnt models are developed. Where ML, and the models generated by ML pro-
cesses, are intended for use in these critical domains, there is a need for explicit
assurance.

In this paper, we presented a reusable assurance case pattern that can be used
to create arguments for machine learnt models in medical diagnosis systems and,
as such, informs ML development teams of the key issues to be considered. The
pattern reflects current ML practice as applied in medical diagnosis systems,
and addresses identified assurance considerations. This includes the explicit jus-
tification of choices made during the development process including the nature
of the data used. As part of our overall validation of the approach, we have pre-
sented our work to a wide clinical safety audience [17] and have received positive
feedback on the utility of our approach. We believe that the pattern may also
be applicable in a wide range of critical application contexts that make use of
MLMs, however demonstrating this will require a similarly detailed analysis of
multiple case studies to be conducted across a number of different domains. The
focus of our future work will be to carry out such an evaluation, and to update
and improve the pattern based upon this experience.

Acknowledgements. This work is funded by the Assuring Autonomy International
Programme https://www.york.ac.uk/assuring-autonomy.

References

1. Assurance Case Working Group [ACWG]: Goal Structuring Notation Community
Standard version 2 (2018). https://scsc.uk/r141B:1?t=1. Accessed 13 Nov 2018

https://www.york.ac.uk/assuring-autonomy
https://scsc.uk/r141B:1?t=1

178 C. Picardi et al.

2. Azure-Taxonomy: How to choose algorithms for Azure Machine Learning
Studio (2019). https://docs.microsoft.com/en-us/azure/machine-learning/studio/
algorithm-choice. Accessed Feb 2019

3. Bourne, R.R., et al.: Magnitude, temporal trends, and projections of the global
prevalence of blindness and distance and near vision impairment: a systematic
review and meta-analysis. Lancet Glob. Health 5(9), e888–e897 (2017)

4. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine
learning in highly automated driving. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 5–16. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66284-8 1

5. De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in
retinal disease. Nat. Med. 24(9), 1342 (2018)

6. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey.
In: 41st International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pp. 210–215. IEEE (2018)

7. EUROCAE WG-12, RTCA SC-205: Software Considerations in Airborne Systems
and Equipment Certification. EUROCAE and RTCA (2012)

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge
(2016)

9. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: Identifying Vulnerabilities in the
Machine Learning Model Supply Chain. arXiv:1708.06733 (2017)

10. Habli, I., White, S., Sujan, M., Harrison, S., Ugarte, M.: What is the safety case
for health IT? a study of assurance practices in England. Saf. Sci. 110, 324–335
(2018)

11. Hannun, A.Y., et al.: Cardiologist-level arrhythmia detection and classification in
ambulatory electrocardiograms using a deep neural network. Nat. Med. 25(1), 65
(2019)

12. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance cases and prescriptive
software safety certification: a comparative study. Saf. Sci. 59, 55–71 (2013)

13. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear
safety arguments. In: Dale, C., Anderson, T. (eds) Advances in Systems Safety,
pp. 3–23. Springer, London (2011). https://doi.org/10.1007/978-0-85729-133-2 1

14. Kelly, T.: Reviewing assurance arguments-a step-by-step approach. In: Workshop
on Assurance Cases for Security-the Metrics Challenge, Dependable Systems and
Networks (DSN) (2007)

15. Komorowski, M., Celi, L.A., Badawi, O., Gordon, A.C., Faisal, A.A.: The artificial
intelligence clinician learns optimal treatment strategies for sepsis in intensive care.
Nat. Med. 24(11), 1716 (2018)

16. Maddox, T.M., Rumsfeld, J.S., Payne, P.R.: Questions for artificial intelligence in
health care. JAMA 321(1), 31–32 (2018)

17. NHS Digital: Digital Health Safety Conference (2019). https://digital.nhs.
uk/news-and-events/events/2019-events/digital-health-safety-conference-2019.
Accessed 30 May 2019

18. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data
Eng. 22(10), 1345–1359 (2010)

19. Picardi, C., Habli, I.: Perspectives on assurance case development for retinal disease
diagnosis using deep learning. In: Riano, D., Wilk, S., ten Teije, A. (eds) Artificial
Intelligence in Medicine. AIME 2019. LNCS, vol. 11526. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21642-9 46

https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-choice
https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-choice
https://doi.org/10.1007/978-3-319-66284-8_1
http://arxiv.org/abs/1708.06733
https://doi.org/10.1007/978-0-85729-133-2_1
https://digital.nhs.uk/news-and-events/events/2019-events/digital-health-safety-conference-2019
https://digital.nhs.uk/news-and-events/events/2019-events/digital-health-safety-conference-2019
https://doi.org/10.1007/978-3-030-21642-9_46

A Pattern for Arguing the Assurance of Machine Learning 179

20. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIA
dataset: a large collection of synthetic images for semantic segmentation of urban
scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3234–3243 (2016)

21. scikit-Taxonomy: scikit - Choosing the right estimator (2019). https://scikit-learn.
org/stable/tutorial/machine learning map/index.html. Accessed Feb 2019

22. Shneier, M., et al.: Repository of sensor data for autonomous driving research.
In: Unmanned Ground Vehicle Technology, vol. 5083, pp. 390–396. International
Society for Optics and Photonics (2003)

23. Shortliffe, E.H., Sepúlveda, M.J.: Clinical decision support in the era of artificial
intelligence. JAMA 320(21), 2199–2200 (2018)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

25. Topol, E.: The Topol Review: Preparing the healthcare workforce to deliver the
digital future (2019). https://topol.hee.nhs.uk/. Accessed 27 Feb 2019

26. University of York: Goal Structuring Notation, November 2014. https://impact.
ref.ac.uk/casestudies/CaseStudy.aspx?Id=43445. Accessed 03 Jan 2019

27. Wagstaff, K.: Machine Learning that Matters. arXiv preprint arXiv:1206.4656
(2012)

28. World Health Organisation (WHO): Health workforce (2019). https://www.who.
int/gho/health workforce/en. Accessed 27 Feb 2019

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://topol.hee.nhs.uk/
https://impact.ref.ac.uk/casestudies/CaseStudy.aspx?Id=43445
https://impact.ref.ac.uk/casestudies/CaseStudy.aspx?Id=43445
http://arxiv.org/abs/1206.4656
https://www.who.int/gho/health_workforce/en
https://www.who.int/gho/health_workforce/en

Safety Argumentation

BACRank: Ranking Building Automation
and Control System Components
by Business Continuity Impact

Herson Esquivel-Vargas1(B), Marco Caselli2, Erik Tews1, Doina Bucur1,
and Andreas Peter1

1 University of Twente, Enschede, The Netherlands
{h.esquivelvargas,e.tews,d.bucur,a.peter}@utwente.nl

2 Siemens AG, Munich, Germany
marco.caselli@siemens.com

Abstract. Organizations increasingly depend on Building Automation
and Control Systems (BACSs) to support their daily tasks and to com-
ply with laws and regulations. However, BACSs are prone to disruptions
caused by failures or active attacks. Given the role BACSs play in critical
locations such as airports and hospitals, a comprehensive impact assess-
ment methodology is required that estimates the effect of unavailable
components in the system. In this paper, we present the foundations
of the first impact assessment methodology for BACSs focused on busi-
ness continuity. At the core of our methodology, we introduce a novel
graph centrality measure called BACRank. We quantify the contribu-
tion of BACS components to different business activities. Moreover, we
take functional dependencies among components into account to estimate
indirect consequences throughout the infrastructure. We show the prac-
tical applicability of our approach on a real BACS deployed at a 5-story
building hosting 375 employees on an international university campus.
The experimental evaluation confirms that the proposed methodology
successfully prioritizes the most relevant components of the system with
respect to the business continuity perspective.

1 Introduction

Operational Technology (OT), and specifically Building Automation and Con-
trol Systems (BACSs), are steadily increasing in number and complexity [18].
Many organizations depend on BACSs to comply with laws and regulations
required to operate [3–5]. Thus, the dependability of BACSs is crucial for their
daily operation. However, complex systems with extended uptimes are prone to
occasional outages due to failures or active attacks.

Unavailable BACS components have direct consequences on the services they
are part of, and indirect consequences that can spread throughout neighboring
components that rely on them to execute their functions. Knowing the impact
of unavailable BACS components help organizations to better prepare and react
upon those undesired events. From the preventive perspective, they can compute

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 183–199, 2019.
https://doi.org/10.1007/978-3-030-26601-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_13

184 H. Esquivel-Vargas et al.

incident probabilities and obtain risk estimations (Risk = Impact × Probability).
Risks are then used as an input to establish contingency plans and to decide on
improvement strategies. On the other hand, the increasing interest in monitor-
ing tools for BACSs might lead to an overwhelming number of alerts that must
be managed by building administrators [11,12]. In this regard, from the reac-
tive perspective, the impact measurement can be used to prioritize failure and
security alerts, which helps to efficiently allocate resources to solve the problems.

Measuring the impact of unavailable IT components is a well understood
problem [13]. It is not clear, however, how to implement impact assessments for
OT systems like BACSs, that extend beyond the cyber domain to the physical
world. From the security perspective, the situation degenerates considering that
most of the reported attacks on OT systems target their availability [1]. Although
in principle, BACSs could be assessed using business continuity methodologies,
the peculiarities of BACSs must be taken into consideration to develop a com-
prehensive impact assessment in this domain.

1.1 Related Work

Impact assessments focus on diverse target goals ranging from environmental to
economical impact, physical damage, and business continuity, just to mention a
few examples [6,8,13,17,20]. ISO 27031 describes a consolidated methodology to
perform impact assessments in the IT domain focused on business continuity [13].
The analyzed assets are typically devices such as PCs, switches, and servers.
Those assets are linked to one or more pre-scored business activities in order
to assign them the highest score among the related activities. The outcome is
a ranking of IT assets prioritized with respect to the relevance of the business
activities they participate in.

OT, on the other hand, lacks the maturity level of standardized methodolo-
gies for impact assessments. To fill this gap, a number of academic works have
been proposed, mostly for Industrial Control Systems (ICSs) [6,8,20]. These
works are based on the observation of cause-and-effect relations between data
points representing sensors and actuators. The observations are taken from sim-
ulated environments where changes are induced to log the corresponding effects.
Knowing the limits of the physical process (e.g., what is the threshold before
the power plant explodes?), data points with the higher potential to reach those
limits are prioritized.

The only work that is focused on BACSs prioritizes component categories
rather than individual assets [23]. They automatically analyze work orders
describing building’s routine and maintenance operations. Based on the infor-
mation recorded in the work orders, such as location, problem description, and
priority, they rank equipment categories like “fans”, “valves”, “pumps”, etc.

The approach presented in this paper aims to adapt previous works to the
context of BACSs and to solve practical limitations that hinder their implemen-
tation in real BACSs. Our impact assessment is focused on business continuity
as it is commonly done for IT systems. Nonetheless, our assets are not physical
devices since we consider this approach too coarse grained. Neither are individual

BACRank: Ranking BACS Components by Business Continuity Impact 185

data points, as in the ICS prototypes, since such fine grained analysis might suf-
fer from scalability problems in real-life systems. We chose software modules as
a middle ground generic abstraction that provides a suitable granularity level.
Instead of measuring the propagation effect via cause-and-effect experiments,
unlikely to be allowed in real BACS deployments, we use functional dependen-
cies among the software modules. Finally, although many software modules could
be clustered by functional similarity, we acknowledge that the role they play for
different business activities makes a crucial difference. Thus, we reference and
prioritize software modules individually.

1.2 Contribution

We present the first impact assessment methodology for BACSs focused on busi-
ness continuity. We adapt and integrate standard business continuity methodolo-
gies from the IT domain, and combine them with software analysis techniques.
From the IT domain, we follow the standard procedures used to score business
activities. After mapping software modules with business activities, we use the
activities’ score to derive the related modules’ score. From the software engineer-
ing domain, we implement a module dependency analysis that aims to estimate
the propagation effect of unavailable modules.

Our impact assessment methodology models BACS software modules as ver-
tices in a graph data structure where the edges represent functional dependencies
among modules. A quantitative measurement of a node’s relevance in a graph is
called a node’s centrality and it is computed by means of graph centrality mea-
sures [25]. Our impact assessment methodology formally defines the requirements
such centrality measure must satisfy in order to quantify the software modules’
impact. Additionally, we implement an instance of such centrality measure and
we call it BACRank. BACRank scores software modules in a dependency graph
according to their relevance from the business continuity perspective. Our notion
of “relevant” includes those software modules that are: (1) needed by core busi-
ness processes; and (2) needed by other relevant modules.

Finally, we evaluate BACRank in a real-world BACS deployed at a 5-story
office building hosting 375 employees on an international university campus. The
underlying BACS graph is comprised of 160 software modules and 412 module
dependencies. Such evaluation confirms that BACRank prioritizes relevant soft-
ware modules according to the defined relevance notion.

2 Building Automation and Control Systems

Modern buildings provide more than a physical space to their occupants. Envi-
ronmental conditions are controlled by heating, cooling, and ventilation systems.
Indoor transportation of goods and people is done through escalators, elevators,
and travelators. Other services like CCTV, alarms, and physical access control
are also common. Control engineers implement those services and many more
in Building Automation and Control Systems (BACSs). BACSs offer function-
ality that brings comfort and convenience to the users while unified control and
energy efficiency engage building managers.

186 H. Esquivel-Vargas et al.

In BACSs, IT networking infrastructure is used to interconnect all the sub-
systems in a building [19]. We distinguish three levels in the typical BACS archi-
tecture as shown in Fig. 1. The management level provides monitoring and con-
trol functions to building administrators. The automation level is comprised of
embedded systems called BACS controllers that implement the logic behind the
building services. BACS controllers receive inputs from the environment through
sensors, execute the appropriate logic, and send outputs back to the environment
using actuators. Both sensors and actuators are the elements found in the field
level. Dashed lines around field level components denote that software modules
at the automation level are linking them. Building services are comprised of one
or more—possibly interacting—software modules.

Fig. 1. Three-layer architecture of IT networks supporting BACSs.

Organizations typically have specific needs from their BACS. Deciding which
building services are to be implemented depends on the organization’s purpose.
For example, the building services required in a hospital are quite different from
the services required in an office building. Thus, let us start with a brief discus-
sion on the role that BACSs play in organizations.

Organizations Requirements. All organizations have a goal to pursue. Non-
trivial goals require a divide-and-conquer approach that splits the task at hand
into smaller activities. The attainment of the organization’s goal depends on the
success of the individual activities. In what follows, we refer to those activities
as business processes.

Business processes make use of diverse resources like people, supplies, and
assets. Buildings are one of those resources, and fostering business processes
became the main task of BACSs. BACSs, just as other technological projects
like software systems, are the answer to specific business process needs. While
some of those needs are nice-to-have features (perhaps comfort oriented), others
constitute necessities that must be fulfilled [3–5]. In what follows we will refer
to the former type of building services as supporting services and to the latter
as enabling services.

BACRank: Ranking BACS Components by Business Continuity Impact 187

Building Services Dependability.Building services, and particularly enabling
services, must be dependable. Dependability involves, among others, concepts
such as privacy of the data, message integrity, and in general the availability
of the system, meaning that it behaves as it was designed and provides timely
responses [15,21].

Previous research has identified availability as the most important feature
in diverse OT systems such as smart-grids and Industrial Control Systems
(ICS) [9,16,24]. This conclusion seems to match the trend of real-life attacks
on OT systems, typically oriented towards Denial-of-Service [1]. ISO standard
27031 also recognizes the role that OT systems play in business continuity by
adding an annex on “High availability embedded systems” [13]. Although an
impact assessment could be tailored to any of the aforementioned dependability
factors, we focus on the availability of building services, their underlying software
modules, and the supported business processes.

3 System Model and Information Requirements

We consider mature organizations and critical buildings whose dependence on
BACSs is crucial for their daily operations. Such organizations have undergone—
or are willing to apply—business continuity methodologies like those proposed in
ISO standards 22301 and 27031. Although an ISO certification is not required,
critical buildings such as hospitals and airports are typically demanded to
implement business continuity methodologies like those described in the stan-
dards [10,22].

On the technical side, our approach is independent of the BACS protocol in
use and the underlying communication methods. We consider standard BACSs
comprised of sensors and actuators connected to BACS controllers, which contain
the logic behind the smart building, as in Fig. 1.

To implement a comprehensive BACS impact assessment focused on busi-
ness continuity, technical and business aspects must be taken into consideration.
First, it is required to make explicit the relation between BACS services and
business activities. We propose to do so by considering their physical overlap in
the building. Two views of the building layout are needed: one segregated by
business processes and the other segregated by the area of influence of the build-
ing services. We put the two views of the building layout on top of each other
to unveil the mapping. Moreover, we need to quantify the support of building
services on the related business processes. The quantification can be expressed
as a percentage where 100% means that the service in question is an enabling
service, whereas lower values characterize supporting services (see Sect. 2).

The second aspect is to know which business activities are critical for the
organization, so we can map such criticality status to the corresponding BACS
services. Business activity priorities can be found in business continuity plans,
where the activity scores are calculated by means of a procedure called Business
Impact Analysis (BIA). The main purpose of the BIA is to score each business
process based on questionnaires answered by process managers. The idea is to

188 H. Esquivel-Vargas et al.

estimate the impact of a business process halted during different time ranges
(e.g., 0–2 h, 2–8 h, etc.), considering diverse impacts like customer service, legal,
financial, and reputation. The managers assign a severity level to each impact of
the processes they are in charge of. Finally, the average level score is computed
for all processes to determine their relevance with respect to the organization’s
goal. For further details on the BIA, we refer the reader to the ISO standards
22301 and 27031 [13,14]. In summary, the BIA lists all business processes, their
relevance scores according to the business perspective, and a calendar that spec-
ifies their execution period.

Finally, the third aspect lies on the technical side. It is important to know
when the building services are actually needed since they might not be relevant
out of their duty periods (e.g., the heating service during summer). Further-
more, it is crucial to understand how the building services are implemented to
find possible design flaws that could lead to availability issues (e.g., single points
of failure). To obtain this information, we assume access to the BACS design
documentation to identify (1) all building services, (2) their duty cycles, (3) the
underlying software modules, and (4) the functional dependencies among mod-
ules. Since some dependencies might be stronger than others, a quantification is
needed in this regard. We propose a percentage value as a simple mechanism to
denote the dependence strength, where 100% means that the dependent module
cannot operate without the other.

Table 1 summarizes the information requirements. While most of the infor-
mation is typically already available in mature and critical organizations, we
emphasize three components where an expert’s judgment is required: (1) the
building services’ support on business processes; (2) the software modules’ depen-
dency strength; and (3) the building services calendar. It is worth noting that,
if needed, an individual module’s calendar can be derived from the calendar of
the building service it belongs to.

Table 1. Information requirements summary. Expert-based information shown in
italics.

BACRank: Ranking BACS Components by Business Continuity Impact 189

The parameters described in this section provide the basic input that allows
us to account for the impact, in terms of availability, of business processes sup-
ported by building services comprised of software modules. Those parameters
are not only highly meaningful for the purpose of an impact assessment, but are
typically already present in critical organizations. Thus, reducing the effort of
implementing the methodology proposed in this paper. We do not discard, how-
ever, that other business or technical aspects could be included to complement
or replace some elements in the proposed list, while the core principles of our
methodology prevail.

4 Impact Assessment Methodology

We abstract the BACS as a directed graph data structure where software mod-
ules are represented by vertices and their functional dependencies are the edges.
The edge direction denotes the way information flows and its weight represents
the dependency strength. Formally, the BACS is defined as a graph G(V,E)
where V is a nonempty set of vertices (or nodes) and E is a set of edges. Each
edge has exactly two vertices in V as endpoints since self-dependencies (i.e.,
loops) are implicit for all modules. An edge e ∈ E is represented as eu,v where
u and v denote the origin and the destination of the edge, respectively. Edge
weights are represented as a function ω : E → [0, 1] that assigns each edge e ∈ E
a weight ω(e). The set of edges with destination m ∈ V is defined as Γ−(m)
and the set of vertex origins in Γ−(m) is N−(m). Analogously, the set of edges
with origin m is defined as Γ+(m) and the set of vertex destinations in Γ+(m)
is N+(m).

We aim to measure the impact of BACS software modules based on their
relevance to the availability of business processes and their functional depen-
dencies with other modules. The identification of important vertices in a graph
is done by means of graph centrality metrics. Therefore, our impact assessment
methodology can be modeled as a graph centrality measure.

We propose a graph centrality measure comprised of two parts. First, a set
up procedure that assigns vertices an initial score based on the BIA score of the
related business processes and the module’s support to those business processes.
Second, a graph centrality measure that contemplates the propagation effect of
unavailable modules. Module’s rank positions are based on their final impact
scores. The next sections detail both parts.

4.1 Initial Score

Notation. The set of business processes running in the building is defined as P =
{p1, ..., pn}. The set of building services offered is defined as S = {s1, ..., sm}. The
BIA score assigned to each business process is defined as a function β : P → [0, 1],
where β(pi) for any pi ∈ P is proportional to pi’s relevance for the organization.
Given an arbitrary si ∈ S and pj ∈ P , the estimated support si provides to pj
is defined as a function γ : S × P → [0, 1], where higher values denote stronger
support. Since building services are comprised of one or more software modules,

190 H. Esquivel-Vargas et al.

we can formally state that sj ⊆ V for any sj ∈ S. For an arbitrary module
m ∈ V that is part of service sj ∈ S, the support m provides to an arbitrary
pk ∈ P is given by γ(sj , pk). Finally, we define a time function that takes two
inputs: (1) the object whose calendar is going to be inspected (either a business
process or a software module); and (2) the current time t. The output is binary
and indicates whether the object given as first input is running/needed or not
at time t, denoted by a 1 or a 0, respectively.

Initial Score. The initial score given to each software module in the graph,
labels vertices with a numerical value that summarizes three important aspects:
(1) the relevance of the related business processes represented by function β; (2)
the module’s support to each business process represented by function γ; and
(3) the time in which both, the business process is running and the software
module is needed (according to its building service calendar).

To determine the influence that module m ∈ V has over each business pro-
cess, we multiply β(pi) · γ(sj , pi) for all pi ∈ P , given that m is part of sj ∈ S.
Computing the initial score for module m at time t, denoted δ(m, t), consists
of taking the maximum influence found among active business processes, given
that module m is also active at time t. Formally,

δ(m, t) =

{
max1≤i≤n(β(pi) · γ(sj , pi)) if time(pi, t) = time(m, t) = 1,
0 otherwise.

4.2 Graph Centrality Measure

We propose to estimate the propagation effect of unavailable modules by means
of a graph centrality measure. Before describing the requirements for such cen-
trality measure we introduce some definitions.

Definition (Module equivalence). Two modules m1,m2 ∈ V are equivalent
(at time t) (denoted as m1 ≡ m2) if all of the following properties hold:

N+(m1) = N+(m2) (1)

N−(m1) = N−(m2) (2)

∀em1,n ∈ Γ+(m1), em2,n ∈ Γ+(m2) : ω(em1,n) = ω(em2,n) (3)

∀en,m1 ∈ Γ−(m1), en,m2 ∈ Γ−(m2) : ω(en,m1) = ω(en,m2) (4)

δ(m1, t) = δ(m2, t) (5)

Definition (Module equivalence with exception). Two modules m1,m2 ∈
V are called equivalent with exception if at least one of the above equivalence
properties is violated. In this case, we explicitly mention the exception and
denote this as m1 ≡e m2 (exception).

In what follows we define three basic requirements that a centrality measure
Δ(m, t) for module m at time t, must satisfy to quantify the impact of BACS
software modules.

BACRank: Ranking BACS Components by Business Continuity Impact 191

1. For any two active modules one of which, ceteris paribus, has higher initial
score, must score higher.

The aim of the first requirement is to ensure that the impact score difference
of two modules with identical topological features in the graph is determined by
their initial score. Formally described in Eq. 6, for all active modules m1,m2:

m1 ≡e m2 (δ(m1, t) > δ(m2, t)) ⇒ Δ(m1, t) > Δ(m2, t) (6)

2. For any two active modules one of which, ceteris paribus, sends information
to an active module with higher impact score than its counterpart, must score
higher.

The goal of the second requirement is to acknowledge that feedback plays
an important role in software module dependency graphs. Unlike web central-
ity measures, where the feedback contribution comes from a node’s incoming
edges [7], software modules in our setting get their contribution from the mod-
ules they send information to. The rationale being that the receiving modules
depend on that input to execute their functions. Formally described in Eq. 7, for
all active modules m1,m2:

m1 ≡e m2 (∃n1 ∈ N+(m1), n2 ∈ N+(m2) : N+(m1)\{n1} = N+(m2)\{n2} ∧
ω(em1,n1) = ω(em2,n2) ∧ Δ(n1, t) > Δ(n2, t)) ⇒ Δ(m1, t) > Δ(m2, t) (7)

3. For any two active modules one of which, ceteris paribus, sends information
to an active module with stronger dependency than its counterpart, must score
higher.

The purpose of the third requirement is to emphasize that the link strength
regulates the fraction of the impact score to be transferred from the destination
vertex to the source vertex. Formally described in Eq. 8, for all active modules
m1,m2:

m1 ≡e m2 (∃!n′ ∈ N+(m1) = N+(m2) : ω(em1,n′) > ω(em2,n′)) ⇒
Δ(m1, t) > Δ(m2, t) (8)

4.3 BACRank

Taking into account the requirements stated before, we define a new graph cen-
trality measure called BACRank. The BACRank score of vertex m at time t,
is computed as its initial score δ(m, t) plus a contribution from the vertices m
points to. From those vertices, m will get a percentage of their BACRank score
determined by the strength of the link, represented by ω(em,n). This mechanism
boosts the scores of vertices that are highly important from the technical and
business process availability standpoint. The algorithm is defined as

BACRank(m, t; i) =

{
δ(m, t), at iteration i = 0,

δ(m, t) +
∑

n∈N+(m) BACRank(n, t; i − 1) · ω(em,n), for i > 0.

192 H. Esquivel-Vargas et al.

To keep BACRank scores bounded, all scores are normalized in the range
[0, 1] after every iteration. The algorithm is said to converge if for all vertices
the score difference in two consecutive iterations is less than a small value ε. An
empirical convergence proof is provided in Sect. 5 as shown in Fig. 4. The final
score, simply denoted as BACRank(m, t) by leaving out the iteration count i,
is then iteratively computed until iteration i such that the difference between
BACRank(m, t; i) and BACRank(m, t; i − 1) is smaller than ε.

Figure 2 shows a simple BACRank execution example. At iteration 0, in
Fig. 2a, the BACRank score of software modules x and y is their corresponding
initial score δ, in this example setting equals 0.35 and 0.50, respectively. At
iteration 1, in Fig. 2b, module x has increased its BACRank score by 0.10, which
is the result of taking 20% (edge weight) of module y ’s score at iteration 0.
Module y remains with the same score since it does not have any outgoing edges.
Convergence is already reached at iteration 2 (Fig. 2c) because the BACRank
values did not change with respect to the previous iteration.

(a) Iteration 0. (b) Iteration 1. (c) Iteration 2.

Fig. 2. Simple execution example of the BACRank algorithm.

In what follows, we formally prove the requirements from Sect. 4.2. For the
sake of brevity, in the proofs we refer to BACRank simply as BR.

Proof of requirement 1. Let m1,m2 be two active modules such that:

m1 ≡e m2 (δ(m1, t) > δ(m2, t)) (9)

Then the following holds for any iteration i > 0:

BR(m1, t; i) > δ(m2, t) +
∑

n∈N+(m1)

BR(n, t; i) · ω(em1,n) (by (9))

= δ(m2, t) +
∑

n∈N+(m2)

BR(n, t; i) · ω(em1,n) (by equiv. prop. (1))

= δ(m2, t) +
∑

n∈N+(m2)

BR(n, t; i) · ω(em2,n) = BR(m2, t; i) (by equiv. prop. (3))

Proof of requirement 2. Let m1,m2 be two active modules such that:

m1 ≡e m2 (∃n1 ∈ N+(m1), n2 ∈ N+(m2) : N+(m1) \ {n1} = N+(m2) \ {n2}∧
ω(em1,n1) = ω(em2,n2) ∧ BR(n1, t; i) > BR(n2, t; i)) (10)

BACRank: Ranking BACS Components by Business Continuity Impact 193

Then the following holds for any iteration i > 0:

BR(m1, t; i) > δ(m1, t) +
∑

n∈N+(m1)\{n1}
BR(n, t; i) · ω(em1,n) + BR(n2, t; i) · ω(em2,n2) (by (10))

= δ(m1, t) +
∑

n∈N+(m2)

BR(n, t; i) · ω(em2,n) (by (10) and equiv. prop. (3))

= δ(m2, t) +
∑

n∈N+(m2)

BR(n, t; i) · ω(em2,n) = BR(m2, t; i) (by equiv. prop. (5))

Proof of requirement 3. Let m1,m2 be two active modules such that:

m1 ≡e m2 (∃!n′ ∈ N+(m1) = N+(m2) : ω(em1,n′) > ω(em2,n′)) (11)

Then the following holds for any iteration i > 0:

BR(m1, t; i) > δ(m1, t) +
∑

n∈N+(m1)\{n′}
BR(n, t; i) · ω(em1,n) + BR(n′, t; i) · ω(em2,n′) (by (11))

= δ(m1, t) +
∑

n∈N+(m2)

BR(n, t; i) · ω(em2,n) (by equiv. prop. (1))

= δ(m2, t) +
∑

n∈N+(m2)

BR(n, t; i) · ω(em2,n) = BR(m2, t; i) (by equiv. prop. (5))

5 Experimental Evaluation

Environment Description. We executed BACRank on the BACS of a
5-story office building on an international university campus, hosting about 375
employees in 252 rooms. The local building manager provided assistance with
the required technical information. We identified 12 business processes that take
place in this building, some of them running only at specific periods of the year.
The BIA revealed the corresponding scores as presented in Table 2.

The core BACS is implemented using the BACnet protocol [2]. The BACnet
system controls the heating, ventilation, cooling, and lighting services. Other
building services, such as physical access control, are implemented with different
protocols and tools we did not have access to. We consider here only the building
services implemented in BACnet.

The BACnet system is comprised of 160 software modules running in 5
multi-purpose controllers (BACnet profile B-BC) and 28 application-specific con-
trollers (BACnet profile B-ASC). Figure 3 shows the software modules depen-
dency graph where 22 vertices are isolated and the remaining 138 are connected
in the main subgraph. Vertex colors indicate the device they run in. Red modules
are part of the heating controller, whereas blue modules are part of the cool-
ing controller. The lighting system is controlled by the yellow modules. Green
modules run in a controller in charge of multiple services (ventilation, heating,
and cooling) throughout the building. Purple modules also implement multiple

194 H. Esquivel-Vargas et al.

services but in one specific location of the building. Finally, each gray mod-
ule represents one application-specific controller running exactly one software
module (thermostats).

Results. We used weekly time resolution in our experiments based on the activ-
ity of the business processes and software modules analyzed. This implies that
a new ranking has to be computed every week of the year to take into account
business processes that start or stop execution, and software modules that might
or not be needed (e.g., due to changes in climate conditions). For each week,
BACRank is executed a number of iterations until the scores’ convergence is
reached. Figure 4 shows the quick convergence of BACRank on the real BACS
graph. After the tenth iteration, on average, the difference between two consec-
utive scores (ε) is smaller than 0.0006. After 60 iterations ε = 0. To run our
evaluation we defined an ε < 10−6, which implies that 20 iterations are needed.

Table 2. Business Processes (BPs) and their corresponding BIA scores.

No Business Process Score No Business Process Score

1 Research .63 7 Introduction week .60

2 Application/admission .27 8 Administrative support .47

3 Accounting .60 9 Education advisory .53

4 Technical support .43 10 Marketing & communication .43

5 Courses and others (periodic) .73 11 Catering 1.0

6 Trainings and others (non-periodic) .70 12 Student associations .50

Fig. 3. Real software modules dependency graph. (Color figure online)

BACRank: Ranking BACS Components by Business Continuity Impact 195

Figure 5a illustrates the 52 rankings obtained throughout the year, where
each colored line represents a software module (following the same color scheme
used in Fig. 3). The vertical axis represents the ranking position where top ranked
modules start at position 1. Modules with identical scores in Fig. 5a are randomly
assigned a slot next to their analogous. Figure 5b on the other hand, shows the
actual BACRank score for each module. The impression of having fewer lines in
Fig. 5b than in Fig. 5a is due to multiple overlapping lines (i.e., modules with
identical score).

BACRank successfully identifies software modules that are part of relevant
business processes, and are required by other relevant modules in the infrastruc-
ture. Throughout the experiments, module “Multi-purpose Substation” (vertex
A in Fig. 3) was considered the most important because, among others, it sup-
ports the most important business process according to the BIA (BP11) and
it provides information required by 19 other important modules in 7 different
devices. Vertex A is depicted as an horizontal green line at the top of Fig. 5a
and b.

At the bottom of the ranking there is a set of approximately 30 mod-
ules consistently low ranked. Some of them, starting from the last one—
“AirExtraction”—and ascending with “Electricitymeter Experiments”, “Cool-
Section [sect. numbers 1–4] Log”, are shown in Fig. 3 as Z, Y, X, W, V, and U,
respectively. There are two aspects that justify their poor scoring performance.
First, a vertex with out-degree of 0 is likely to be low ranked because an impor-
tant source of BACRank score comes from other vertices that depend on the
module in question. Second, if no other modules depend on it, its BACRank
score comes exclusively from the initial score which is, in turn, based on the
related business processes and the module’s support to them. If there are no
related business processes, as in the case of safety oriented modules; or the mod-
ule’s participation in the business processes is marginal, then the module in
question will get a low BACRank score.

Fig. 4. BACRank scores convergence.

196 H. Esquivel-Vargas et al.

(a) Rank variation in time.

(b) Score variation in time.

Fig. 5. Software modules impact variation in time. Plots only legible in color. (Color
figure online)

BACRank: Ranking BACS Components by Business Continuity Impact 197

Time-independent software modules are typically ranked in similar positions
throughout the year. Figure 5a shows that lighting and thermostat modules (yel-
low and gray lines) are good examples of time-independent modules. Their minor
shifts up and down respond mostly to score variations in other modules rather
than their own scores.

Time-dependent modules, on the other hand, are visible in Fig. 5a between
weeks 14 and 39 of the year. This represents roughly the period between April
and September, that is warmer than the range between October and March, tak-
ing into account the geographical location of the building. Figure 5a shows that
most cooling modules increase their rank in this period whereas some heating
modules suffer a substantial decrease (blue vs. red lines). Heating modules that
remain similar or even increase their rank in the April–September period are
benefited from neighboring cooling modules that got their rank increased. For
example, heating modules “Radiatorgroup South” and “Radiatorgroup North”
in positions 15 and 16 in Weeks 1–13, climbed to positions 9 and 10 in Weeks
14–39. These two modules are labeled as B and C in Fig. 3, which shows their
proximity to cooling modules. Exactly 4 cooling modules—D, E, F, G—depend
on B and C.

Weeks 32–35 of the year (August) are part of the organization’s summer
break in which some of the business processes stop execution. Student-related
processes (BP5 and BP12) do not run in this period, and therefore, the related
software modules lower their ranking positions. Module “AHU WestLectRoom”,
for example, decreases its rank from position 13 in week 31 to position 34 in
week 32. The main reason for its descend is its support to the halted BP5. This
module is labeled with the letter H in Fig. 3.

In weeks 40–51 all software modules rank in the same order they ranked at
the start of the year, due to identical conditions in terms of business processes
running and software modules needed. Week 40 marks the start of the winter
period in which cooling modules decrease their relevance in favor of heating
modules as shown in Fig. 5a and b.

Finally, in week 52 the organization is closed and no business processes are
running in this building. As explained before, Fig. 5a will simply assign an arbi-
trary order to equally ranked modules, whereas Fig. 5b shows that all the mod-
ules get a score of 0 which means that from the business continuity viewpoint
all modules are “equally unimportant”.

6 Conclusion

We have presented the first BACS impact assessment methodology that is
focused on business continuity. Our approach takes into account business and
technical aspects from diverse information sources. The proposed methodology
scores BACS software modules considering their support to the related business
processes and their relevance to other neighboring modules.

Since software modules constitute a dependency graph, our methodology to
score modules is modeled as a graph centrality measure. We formally defined the

198 H. Esquivel-Vargas et al.

general requirements that such centrality measure must satisfy to give scores that
reflect the modules’ relevance in the BACS infrastructure. Finally, we developed
one instance of such centrality measure, which we called BACRank. We formally
proved that BACRank satisfies the defined general requirements and evaluated
it in a real BACS. The evaluation showed that BACRank successfully priori-
tizes the most relevant software modules with respect to the business continuity
perspective.

Our comprehensive scoring methodology provides valuable insights about the
BACS infrastructure typically overlooked by building administrators. Module
dependencies, for example, might organically grow as the BACS evolves to the
point in which administrators are no longer fully aware of the role they play and
their overall impact in case of failures or active attacks.

Acknowledgments. This work is partially funded by the Costa Rica Institute of
Technology. The authors would like to thank Henk Hobbelink and Lisseth Galán-
Calderón for their help throughout this project.

References

1. Al-Mhiqani, M., et al.: Cyber-security incidents: a review cases in cyber-physical
systems. IJACSA 9(1), 499–508 (2018). https://doi.org/10.14569/IJACSA.2018.
090169

2. ANSI/ASHRAE STANDARD 135–2016: A data communication protocol for build-
ing automation and control networks (2016)

3. ANSI/ASHRAE STANDARD 188–2018: Legionellosis: Risk management for build-
ing water systems (2018)

4. ANSI/ASHRAE STANDARD 62.1-2016: Ventilation for acceptable indoor air
quality (2016)

5. ANSI/ASHRAE STANDARD 62.2-2016: Ventilation and acceptable indoor air
quality in residential buildings (2016)

6. Béla, G., István, K., Piroska, H.: A system dynamics approach for assessing the
impact of cyber attacks on critical infrastructures. IJCIP 10, 3–17 (2015). https://
doi.org/10.1016/j.ijcip.2015.04.001

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). https://doi.org/10.1016/
S0169-7552(98)00110-X

8. Cárdenas, A., Amin, S., Lin, Z., Huang, Y., Huang, C., Sastry, S.: Attacks against
process control systems: risk assessment, detection, and response. In: ASIACCS
2011. ACM (2011). https://doi.org/10.1145/1966913.1966959

9. Cheminod, M., Durante, L., Valenzano, A.: Review of security issues in industrial
networks. IEEE Trans. Ind. Inform. 9(1), 277–293 (2013). https://doi.org/10.1109/
TII.2012.2198666

10. Corzine, S.: Operational and Business Continuity Planning for Prolonged Airport
Disruptions, vol. 93. Transportation Research Board (2013). https://doi.org/10.
17226/22531

11. Esquivel-Vargas, H., Caselli, M., Peter, A.: Automatic deployment of specification-
based intrusion detection in the BACnet protocol. In: CPS-SPC 2017, pp. 25–36.
ACM (2017). https://doi.org/10.1145/3140241.3140244

https://doi.org/10.14569/IJACSA.2018.090169
https://doi.org/10.14569/IJACSA.2018.090169
https://doi.org/10.1016/j.ijcip.2015.04.001
https://doi.org/10.1016/j.ijcip.2015.04.001
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1145/1966913.1966959
https://doi.org/10.1109/TII.2012.2198666
https://doi.org/10.1109/TII.2012.2198666
https://doi.org/10.17226/22531
https://doi.org/10.17226/22531
https://doi.org/10.1145/3140241.3140244

BACRank: Ranking BACS Components by Business Continuity Impact 199

12. Fauri, D., Kapsalakis, M., dos Santos, D.R., Costante, E., den Hartog, J., Etalle,
S.: Leveraging semantics for actionable intrusion detection in building automation
systems. In: Luiijf, E., Žutautaitė, I., Hämmerli, B.M. (eds.) CRITIS 2018. LNCS,
vol. 11260, pp. 113–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-05849-4 9

13. ISO, BS: 27031: 2011. Information technology -Security techniques- Guidelines for
information and communication technology readiness for business continuity. BSI
(2011)

14. ISO, BS: 22301: 2012. Societal security. Business continuity management systems.
Requirements. BSI (2012)

15. Krammer, L., Kastner, W., Sauter, T.: A generic dependability layer for building
automation networks. In: WFCS 2016, pp. 1–4. IEEE (2016). https://doi.org/10.
1109/WFCS.2016.7496536

16. Krotofil, M., Cárdenas, A.A.: Resilience of process control systems to cyber-
physical attacks. In: Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS,
vol. 8208, pp. 166–182. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41488-6 12

17. Li, X., Zhou, C., Tian, Y., Xiong, N., Qin, Y.: Asset-based dynamic impact assess-
ment of cyberattacks for risk analysis in industrial control systems. IEEE Trans.
Ind. Inform. 14(2), 608–618 (2018). https://doi.org/10.1109/TII.2017.2740571

18. Market Research Future: Building automation system market research report -
global forecast to 2022 (2019)

19. Merz, H., Hansemann, T., Hübner, C.: Building Automation. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-540-88829-1

20. Orojloo, H., Azgomi, M.A.: A method for evaluating the consequence propagation
of security attacks in cyber-physical systems. Future Gener. Comput. Syst. 67,
57–71 (2017). https://doi.org/10.1016/j.future.2016.07.016

21. Shirey, R.: Internet Security Glossary, Version 2. RFC 4949, IETF (2007). https://
tools.ietf.org/html/rfc4949

22. World Health Organization and Pan American Health Organization: Hospital
safety index: Guide for evaluators (2nd edition) (2015)

23. Yang, C., Shen, W., Chen, Q., Gunay, B.: A practical solution for HVAC prognos-
tics: failure mode and effects analysis in building maintenance. J. Build. Eng. 15,
26–32 (2018). https://doi.org/10.1016/j.jobe.2017.10.013

24. Zeng, W., Zhang, Y., Chow, M.: Resilient distributed energy management subject
to unexpected misbehaving generation units. IEEE Trans. Ind. Inform. 13(1), 208–
216 (2017). https://doi.org/10.1109/TII.2015.2496228

25. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on
dependency graphs. In: ICSE 2008, pp. 531–540. ACM (2008). https://doi.org/
10.1145/1368088.1368161

https://doi.org/10.1007/978-3-030-05849-4_9
https://doi.org/10.1007/978-3-030-05849-4_9
https://doi.org/10.1109/WFCS.2016.7496536
https://doi.org/10.1109/WFCS.2016.7496536
https://doi.org/10.1007/978-3-642-41488-6_12
https://doi.org/10.1007/978-3-642-41488-6_12
https://doi.org/10.1109/TII.2017.2740571
https://doi.org/10.1007/978-3-540-88829-1
https://doi.org/10.1016/j.future.2016.07.016
https://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc4949
https://doi.org/10.1016/j.jobe.2017.10.013
https://doi.org/10.1109/TII.2015.2496228
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1145/1368088.1368161

Model-Based Run-Time Synthesis
of Architectural Configurations
for Adaptive MILS Systems

Alessandro Cimatti1, Rance DeLong2, Ivan Stojic1(B), and Stefano Tonetta1

1 FBK-irst, Trento, Italy
{cimatti,stojic,tonettas}@fbk.eu

2 The Open Group, Reading, Berkshire, UK
r.delong@opengroup.org

Abstract. In order to be resilient, a system must be adaptable. Trust-
worthy adaptation requires that a system can be dynamically recon-
figured at run-time without compromising the robustness and integrity
of the system. Adaptive MILS extends MILS, a successful paradigm for
rigorously developed and assured composable static systems, with recon-
figuration mechanisms and a framework within which those mechanisms
may be safely and securely employed for adaptation.

In this paper, we address the problem of synthesizing at run-time
reconfigurations that are trustworthy taking into account the entwin-
ing of information flows and reconfigurations. The approach is based
on a new extension of the Architecture Analysis & Design Language
(AADL), already used for specifying MILS policy architectures, which is
now enhanced to specify the configuration state space in terms of param-
eters, the possible reconfigurations, monitoring properties and the related
alarms. Supporting tools have been developed for the run-time synthe-
sis of new architectural configurations that preserve safety and security
properties formalized in terms of invariants and information flow.

Keywords: Safety and security · MILS · Reconfiguration ·
Adaptive systems · Model-based systems engineering ·
Formal specification

1 Introduction

MILS comprises an approach to design, a deployment platform, a set of tools for
the specification, verification, configuration, and assurance of systems requiring
high dependability. It originated in a seminal work, and subsequent refinements,
by Rushby [3,22,23], and advanced through subsequent and ongoing research
efforts world wide. The approach was named MILS and gained wider recogni-
tion due to the MILS Initiative, an activity within the Real Time and Embed-
ded Systems Forum of The Open Group that cultivated a nascent ecosystem of
supporting products and services. The name MILS was originally an acronym
for Multiple Independent Levels of Security, which somewhat inaccurately and
incompletely portrayed its essence and potential. Today “MILS” is used sim-
ply as a proper name for the concepts and technologies that manifest the gen-
eral approach. An overarching objective throughout the evolution of MILS has
c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 200–215, 2019.
https://doi.org/10.1007/978-3-030-26601-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_14

Model-Based Run-Time Synthesis of Architectural Configurations 201

Fig. 1. Role of the system model in the CITADEL framework

been the ability to provide demonstrable assurance of safety, security, or other
essential properties, necessitating design-time rigor, analysability, and runtime
robustness. Ongoing research is enabling greater MILS capabilities for broader
applicability while keeping to the overarching objective.

In the CITADEL Project (http://citadel-project.org/), MILS is being
extended to dynamically reconfigurable systems within a framework that pro-
vides analysable and assurable adaptation. The CITADEL approach includes
languages to support the design and implementation of adaptive MILS systems,
via creation of a system model that describes the operational system architec-
ture, the binding with the platform resources, and the system properties that
should be guaranteed by such architecture. In addition to being used in the design
and verification phases, the system model is also used in the run-time adaptation
of the adaptive MILS system, where it supports the operation of the CITADEL
Framework, which implements the higher-level adaptation control subsystem of
an adaptive MILS system and consists of six planes (see Fig. 1). The Founda-
tional Plane provides and controls access to the platform resources, including
processors, memories, network devices, etc. It is a composition of MILS founda-
tional components based on a separation kernel. The Operational Plane consists
of the components of the running application as represented in the system model,
deployed on the resources provided by the Foundational Plane. The Monitoring
Plane monitors the components in the Operational Plane and the resources in
the Foundational Plane and generates alarms when it detects faulty or suspicious
behaviour. The Adaptation Plane performs reasoning about adaptive reconfig-
urations of the Foundational and Operational Planes. The Configuration Plane
takes as input the model of the current and next configurations, based upon
which it reconfigures the MILS platform to achieve the new configuration. The
Certification Assurance Plane constructs and maintains the system assurance
case and a database of supporting evidence.

In CITADEL, we have defined an extension [11] of SLIM (System-Level Inte-
grated Modeling language) [26], which is supported by the COMPASS tool [6]
and in turn extends AADL (Architecture Analysis & Design Language) [13],
a language standardized by SAE [24]. The CITADEL extension is twofold.

http://citadel-project.org/

202 A. Cimatti et al.

First, the architecture is parametrized by a set of indexes and indexed sets
of parameters to represent a possibly infinite set of architectural configurations.
Each parameter assignment corresponds to a configuration, i.e. a static “nor-
mal” architecture. Second, formulas over the parameters describe the possible
initial configurations and reconfigurations, including addition and removal of
components and connections. Since the number of components is parametrized,
formulas are in first-order logic with quantifiers over the component indexes.
Due to this complexity, the formal verification of these Dynamic Parametrized
Architectures (DPAs) is quite challenging [10].

The main contribution of this paper is to describe a method to decide at run-
time the next configuration preserving some invariant properties. The DPA is
first instantiated in the current configuration and the quantifiers in the formulas
are removed by instantiating them on a finite number of terms. These terms
represent the components in the next configuration which is bounded by the
current one since the reconfiguration can add (or remove) a bounded number
of components at a time. The resulting quantifier-free encoding is passed to an
SMT (Satisfiability Modulo Theory) solver to search for the new configuration.
The method has been implemented and evaluated on a number of DPAs.

Paper structure: first in Sect. 2 we overview the related work, then Sect. 3 intro-
duces the modeling and specification language on a running example, Sect. 4
describes the new synthesis method, Sect. 5 reports the experimental evaluation,
and Sect. 6 draws the conclusions and future directions.

2 Related Work

There is an abundant literature on dynamic architectures (see surveys [7,18]).
While standard architecture languages may consider changing the composition of
a static number of components [1,5], dynamic architectures are characterized by
the ability to create/remove components and connections. There are also other
approaches to dynamic changes in the coordination or topology of components
such as pi-calculus [9,17,20] and graph grammars [15,19,21,28,29]. Parametrized
systems are finally related to product lines where parameters are one of the
methods to model variability [27].

Differently from the above approaches, we follow a more symbolic approach to
the specification of components, their compositions and evolution, on the lines
of works such as [4,8,16,25]. In these approaches, first-order or second-order
formulas are used to specify the possible configurations and their evolution,
making them suitable for formal analysis. Such approaches permit a declara-
tive representation of the architecture evolution, which compared to operational
specifications is more suitable to describe how the architecture may evolve non-
deterministically, and to have run-time reasoning to decide the actual reconfig-
urations. Moreover, the formal logic-based framework is suitable to rigorously
define the analysis problems and approach them formally, such as by model
checking [10], and to synthesize the next configuration while preserving some
properties, which to the best of our knowledge was not considered before.

Model-Based Run-Time Synthesis of Architectural Configurations 203

Fig. 2. High-level picture of the language and its semantics

The analysis of how information can flow from one component to another is
addressed in many contexts such as program analysis, process modeling, access
control, and flow latency analysis. The novel challenge addressed in this paper
arises from the complexity of the adaptive system architectures, for which design
and verification is an open problem. We propose a very rich system specification
and we provide verification techniques for simple information-flow properties for-
malized as reachability problems. We consider a transitive notion of information
flow that can be mapped to reachability properties. More complex information-
flow properties extensively studied in the literature on security are related to the
notion of non-interference. In the seminal work of Goguen and Meseguer [14],
the simple information flow property is extended to make sure that components
at different levels of security do not interfere. The non-interference on dynamic
parametrized architectures has not been dealt with previously.

3 The CITADEL Language for Dynamic Parametrized
Architectures

In AADL/SLIM, the system is specified by specifying component interfaces,
their implementations and connections. The interfaces are specified by defining
component types with input and output ports, and the implementations may be
defined compositely by defining subcomponents and their connections. Even if
the behavior of the system is dynamic, the system architecture is static.

The proposed language extends AADL/SLIM with parameters to configure
the architecture and with transitions to change such configurations. Figure 2
gives a high-level picture of the extensions and the semantics. A parametrized
architecture (PA) represents a (possibly infinite) set of “normal” architectures.
The parameters P control the number of components, ports and connections, and
their activation. Therefore, a configuration of the architecture can be defined by

204 A. Cimatti et al.

Fig. 3. The example model; left: parametrized architecture, right: architecture instance

an assignment of values to the parameters. Given an assignment to P , we obtain
the corresponding static architecture. Given a constraint on the parameters, we
instead consider a finite (case I. in Fig. 2) or infinite (case II.) set of architectures.
In these cases, the parameters are considered frozen, i.e., they do not change with
the dynamic evolution of the system.

In order to include the possibility of changing configuration, the language
is further extended with configuration transitions, allowing the definition of a
configuration transition system (CTS) over parameters P . The defined transi-
tion system represents the possible evolutions of the dynamic architecture. The
dynamic evolution of the system in this case interleaves with architectural recon-
figurations. Again, we can constrain the parameters P to consider a finite (case
III.) or infinite (case IV.) set of architectures. In the finite case, the model can be
converted into a model with reconfiguration of a static number of components.

3.1 A Dynamic Client-Server Model Example

In this section, we describe the running example of a dynamic architecture in the
extended version of the AADL/SLIM language. The system represents a network
of software components: clients, servers, and back-end systems which provide
computational resources. The number of components in each of the categories is
arbitrary, and clients and servers can be dynamically added and removed.

Clients require some amount of computational resources that are provided
by the back-end systems. A client does not access the back-end systems directly,
but instead connects to one of the servers, which in turn accesses any number
of the back-end systems and uses their resources in order to satisfy the client
requirement. We constrain the resource use in the system by the following two
constraints. First, the amount of resources used by a server must be equal to
the total amount required by the clients connected to it (i.e., servers do not
unnecessarily use resources). Second, the total amount of resources on a back-end
system used by the servers connected to it is less than the amount of resources
provided by the back-end system (i.e., back-end systems are not overloaded).

Model-Based Run-Time Synthesis of Architectural Configurations 205

Fig. 4. Example of a dynamic architecture in
the CITADEL modeling language

Clients can be associated with
a security level. The required secu-
rity property is that there is no flow
of information from clients with a
higher security level to clients with
a lower one. Such flow may hap-
pen if the two clients access the
same server (in this scenario infor-
mation may flow from the client
with a higher security level to the
server, and then to a client with
a lower security level), or if the
servers accessed by the two clients
use the same back-end system (an
example of this scenario is shown
in Fig. 5). The servers and back-end
systems are not assigned a security
level and they are allowed to receive
information from all components.

Figure 3 (left) shows a diagram
of the PA which models the space
of possible configurations of the
described system. The parameters
are listed below the diagram, and
include three sets of indexes C, S,
and R, which respectively serve as
index sets of the sets of clients,
servers and back-end systems (for
each c in C, there is a client
cli[c] in the system, and simi-
larly for servers and back-end sys-
tems). The rest of the parameters
are in sets of parameters indexed with the above index sets. For each client with
index c, there are three associated parameters: security level sec level[c],
index server of[c] of the server to which the client is connected, and the
amount requires[c] of resources required by the client. uses[s][r] is a
parameter which specifies how much resources from the back-end system res[r]
are used by the server srv[s], and provides[r] is the amount of resources
provided by the back-end system res[r]. The clients connect to the speci-
fied servers, while the servers connect to all back-end systems from which they
use resources. Figure 3 (right) shows an assignment to the parameters and the
corresponding instance.

Figure 4 shows a partial listing of the above model in the extended CITADEL
language. Client components are defined by specifying their interface ports,
parameters, assumptions that specify the allowed values of the parameters, and

206 A. Cimatti et al.

properties (in this case the SecurityLevel property). The required security
property is implicitly defined by the specified security levels. Servers and back-
end systems are defined similarly (not shown in the listing).

The PA is specified in the block system implementation System.Imp.
Its parameters are listed in the block parameters. The block assumptions
contains constraints on the values of the parameters, such as that each index
server of[c] must be present in the set S (not shown in the listing) and
constraints which encode the resource use property (only the part which speci-
fies that back-end systems should not be overloaded is shown). Next, the block
subcomponents defines the components present in the system, and the block
connections defines the connections of the components. The connections are
defined by iterating over the sets of indices using the keyword for and by condi-
tionally including the connections using the keyword if. For example, the shown
connection specification defines, for every pair of indexes c ∈ C and s ∈ S, that
there is a connection from cli[c] to srv[s] if and only if server of[c] = s
(note that the syntax <element> if <condition> is not intended to have
the semantics of a logical implication; it is used to include the <element> in
the model if and only if the <condition> evaluates to true).

The CTS is specified in the block CTS NetworkCTS. At the top the related
PA System.Imp is referenced, and the initial architecture is defined by spec-
ifying an assignment of values to the parameters. Reconfiguration transition
specifications are defined in the block transitions. A transition specification
contains (1) an optional label which is indexed by free variables used in the tran-
sition (the free variables must be of a non-set type), (2) a constraint on the next
values of parameters, (3) an optional guard formula which is specified using key-
word when and which must evaluate to true for the transition to be enabled,
and (4) constraints on the free variables. The transition add server[s] spec-
ifies an addition of a server by adding the index s to the set S. The transition
remove server[u] specifies a removal of the server, reconnection to other
servers of all clients that were connected to the removed server, and reallocation
of resources to servers to which those clients are connected in the next configu-
ration. The * is a non-deterministic term: the semantics are that the next value
of server of[c] is non-deterministically set to some index value.

4 Run-Time Synthesis of Architectural Configurations

In this section, we give the formal definition of the problem and the solution
based on SMT [2]. We give a simplified logic-based definition of the DPA to
keep the paper self-contained and presentation easier to follow. Thus, we do
not consider aspects such as the hierarchy of components, multiple types of
components and index sets, connection ports, component behaviors. The actual
language and tool support these features. The details can be found in the project
deliverables [11,12]. Note that this subset is much richer and more expressive
than the one used to enable model checking in [10].

Model-Based Run-Time Synthesis of Architectural Configurations 207

4.1 System of Parameters and Symbolic Formulas

An index set is a finite set of integers. A set S is indexed by an index set I by
specifying a bijective mapping from I to S (we write S = {si}i∈I). For example,
I = {1, 2, 3} is an index set and S = {s1, s2, s3} is a set indexed by I.

Definition 1. A system of parameters P is a pair (I,V) where I is an index
set parameter and V is finite set of sets of parameters. Each V ∈ V is associated
with sortV ∈ {bool, int, real} and arityV ∈ N0, and is indexed by IarityV .

In practice, once we have defined the set of indexes I, an indexed set V ∈ V
with arity k is a set of parameters {vi1...ik | i1, . . . , ik ∈ I}. We write V (i1, . . . , ik)
for vi1...ik . For example, if V = {V }, sortV = int and arityV = 2, then, for
I = {1, 2}, V is the set of integer parameters {v11, v12, v21, v22}.

Definition 2. An assignment μ to a system of parameters P = (I,V) maps
each parameter to its domain, thus:

– μ(I) is a finite subset of Z;
– For V ∈ V and v ∈ V , μ(v) ∈ Z if sortV = int, μ(v) ∈ R if sortV = real,

and μ(v) ∈ B = {�,⊥} if sortV = bool.

Formulas used to define invariants and other constraints in the DPA are
first-order formulas in a signature derived from the parameter system.

Definition 3. Given a system of parameters P = (I,V), the induced (many-
sort) first-order signature ΣP consists of a set symbol I (technically a constant),
a functional symbol for every parameter V in V with arity arityV and sort
sortV and the symbols of the theory of integers, reals, and sets. Σ-terms and
Σ-formulas and their evaluation (under an assignment μ) �·�μ are defined in the
standard way. The only restriction is that quantifiers can only occur in the form
∀i ∈ I.β or ∃i ∈ I.β.

For example, supposing V = {V }, arityV = 2, and sortV = real, then
∃i ∈ I.(V (1, i) < V (2, i)) is a ΣP -formula and V (1, i) is a ΣP -term.

4.2 Dynamic Parametrized Architectures

Definition 4. An architectural configuration is a pair (V,E), where V is a set
of components and E ⊆ V × V is a set of connections between components.

For example, if V = {v0, v1, v2} and E = {(v0, v1), (v1, v2), (v2, v0)}, the
architectural configuration represents a simple ring of 3 components.

A parametrized architecture represents a set of possible architectural
configurations.

Definition 5. A parametrized architecture is a tuple A = (P , id, ψ, φ, χ) where

– P is a system of parameters;

208 A. Cimatti et al.

– id is a labeling function assigning to any integer i, an identifier id(i);
– ψ(x) is a ΣP -formula (components guard) over a free variable x;
– φ(x, y) is a ΣP -formula (connections guard) over free variables x, y;
– χ is a ΣP -formula (parameters assumption) without free variables.

Given an assignment μ to the system of parameters P = (I,V), the instanti-
ated architectural configuration defined by the assignment μ is given by μ(A) :=
(Vμ, Eμ) where

– Vμ = {id(i) | μ |= i ∈ I, μ |= ψ(i/x), μ |= χ}.
– Eμ = {(id(i), id(j)) | μ |= i ∈ I, μ |= j ∈ I, μ |= φ(i/x, j/y), μ |= χ}.

Example: for P = (I,V), V = {Succ, Last}, Succ is a set of integer param-
eters, with aritySucc = 1, Last is a singleton containing one integer parameter
(arityLast = 0), ψ(x) := �, φ(x, y) := y = Succ(x), χ := 0 ∈ I ∧ Last ∈
I ∧ ∀i.(i ∈ I → (0 ≤ i ≤ Last ∧ Succ(i) ∈ I)). By assigning μ(I) = {0, 1, 2},
μ(Last) = 2, μ(Succ(x)) := (x < Last ? x + 1 : 0), we get the configuration in
the previous example.

Definition 6. A dynamic parametrized architecture is a tuple S = (A, ι, κ, τ),
where

– A = (P , id, ψ, φ, χ) is a parametrized architecture;
– ι is a ΣP -formula, specifying the set of initial assignments;
– κ is a ΣP -formula, specifying the invariant;
– τ specifies the reconfiguration transitions and is in the form

∨

j

I ′ = αj(i1, . . . , ikj
) ∧ γj(i1, . . . , ikj

)

where αj(i1, . . . , ikj
) is a ΣP ∪ Σ′

P -term, γj(i1, . . . , ikj
) a ΣP ∪ Σ′

P -formula,
Σ′

P contains the primed version of symbols in ΣP , and i1, ..., ikj
are implicitly

existentially quantified free variables.

The dynamic parametrized architecture defines a dynamically changing architec-
ture as a transition system over architectural configurations obtained by instan-
tiation from A. The set of initial configurations is given by

{μ(A) : μ is an assignment to P such that μ |= ι and μ |= κ ∧ χ}.

A configuration μ′(A) is directly reachable from a configuration μ(A) iff μ∪μ′ |=
τ and μ′ |= κ ∧ χ, where μ ∪ μ′ assigns values to P as μ and to P ′ as μ′.

Example: consider the parametrized architecture from the previous example,
with ι := Last = 0; κ := � and τ(i) := τ1(i) ∨ τ2(i), where τ1(i) := I ′ =
I ∪ {i} ∧ i > Last ∧ Last′ = i ∧ Succ′(Last) = i ∧ Succ′(i) = 0 ∧ ∀j.((j ∈
I ∧ j < Last) → Succ′(j) = Succ(j)) and τ2(i) := I ′ = I \ {i} ∧ i ∈ I ∧ 0 <
i < Last ∧ Last′ = Last ∧ ∀j.(((j ∈ I ∧ Succ(j) = i) → Succ′(j) = Succ(i)) ∧
((j ∈ I ∧ Succ(j) = i) → Succ′(j) = Succ(j))). This defines the set of initial

Model-Based Run-Time Synthesis of Architectural Configurations 209

srv[1]2

srv[2]2

res[1]2

cli[2]3

srv[1]3

srv[2]3

res[1]3

cli[1]1 srv[1]1

srv[2]1

res[1]1

µ1(A) µ2(A) µ3(A)

sec level = 2

sec level = 1

Fig. 5. Example graph of maximal information flow G(µ1, µ2, µ3)

architectures which contains only the single architecture with one component
and self-loop connection. The first transition adds a new index i, which becomes
the new last index and the successor is updated to maintain a ring topology. The
second transition removes an index different from 0 and Last, again maintaining
a ring topology.

4.3 Run-Time Information Flow Verification Problem

Given a system of parameters P , a parametrized architecture A(P), a DPA
S(A), and a sequence of assignments to parameters μ1, . . . , μn. We denote the
k-th configuration μk(A) with (Vk, Ek). We define the graph of maximal infor-
mation flow as G(μ1, . . . , μn) = (V,E) with

V =
n⋃

k=1

{vk | v ∈ Vk}

E =
n⋃

k=1

{(vk, wk) | (v, w) ∈ Ek} ∪
n−1⋃

k=1

{(vk, vk+1) | v ∈ Vk ∩ Vk+1} .

Example graph of maximal information flow is shown in Fig. 5. Reconfigu-
rations are shown by gray arrows, edges corresponding to connections within
a configuration (the first union in the definition of E) by solid arrows, and
edges between instances of the same component in adjacent configurations (the
second union) by dashed arrows. An identifier vk in V is a copy of the compo-
nent identifier v from Vk and represents the instance of the component v in the
configuration μk(A). Every path in G(μ1, . . . , μn) represents a possible flow of
information from a component to another one through a sequence of communi-
cations (between two connected components in the current configuration) and
reconfigurations (the component keeps the information if it is not removed).

Given a labeling sec : Z → N0 that assigns to every component identifier a
security level, we want to ensure that there is never a path in G from a component
id(i) to a component id(j) if 0 < sec(j) < sec(i) (sec = 0 represents no level).

Definition 7. Given a sequence of configurations μ1, . . . , μn and a labeling func-
tion sec : Z → N0, the reconfiguration synthesis problem is the problem of finding
a next configuration μn+1 such that μn+1 is directly reachable from μn and such
that, in the graph of maximal information flow G(μ1, . . . , μn+1), there is no path
from a component id(i) to a component id(j) if 0 < sec(j) < sec(i).

210 A. Cimatti et al.

4.4 Encoding into SMT

The idea of the solution that we propose is to keep track of the highest level of
information that a component can have, given the history of configurations, and
then encode the problem into SMT. The key of the approach is to exploit the
restrictions on the set updates in the reconfiguration to instantiate the quantifiers
on a finite set of symbolic terms. This way, we can obtain a quantifier-free formula
that can be solved by an SMT solver.

We define maximal taint of a vertex v ∈ V as the element of N0:

taintn(v) = max{sec(w) : there is a path from w to v in G(μ1, . . . , μn)}.

The following formula (1) encodes the reconfiguration synthesis problem.
Any satisfying assignment will correspond to a next configuration solving the
problem. The formula assigns the current parameters to the value given by μn

and constrains the next configuration to be directly reachable from μn (the first
row in (1)). It then encodes the propagation of information from the current
to the next configuration and within the next configuration (second to fourth
row). The encoded propagation of information to a component considers only
its immediate predecessors in the graph of maximal information flow and the
component itself (so that a newly added component is tainted by its own secu-
rity level)—in Fig. 5, the considered information sources for srv[2]3 are srv[2]2,
res[1]3, cli[2]3 and the component srv[2]3 itself. The formula (1) finally ensures
that the security level is not violated by such propagation (last row).

Enc := μn ∧ τ ∧ κ′ ∧ χ′∧
∀i ∈ I ′(((ψ′(i) ∧ i ∈ I ∧ ψ(i)) → tn+1(i) ≥ taintn(i))∧

∀j ∈ I ′((ψ′(i) ∧ ψ′(j) ∧ φ′(j, i)) → tn+1(i) ≥ tn+1(j))∧
(ψ′(i) → tn+1(i) ≥ sec(i)))∧

∀i ∈ I ′((ψ′(i) ∧ sec(i) > 0) → tn+1(i) ≤ sec(i))

(1)

The formula uses an extra function tn+1 that represents the tainting of ver-
tices in the next configuration. A satisfying assignment to the formula, besides
the next configuration, determines also its tainting, i.e., taintn+1(v) is exactly
the value assigned to tn+1(v) for components v such that sec(v) > 0.

Theorem 1. Given a satisfying assignment μ of Enc, let μn+1 be the restriction
of μ to the symbols in P ′. Then μn+1 represents a configuration directly reachable
from μn such that there is no path in G(μ1, . . . , μn+1) violating the information
flow property and μ(tn+1(v)) = taintn+1(v) for all v such that sec(v) > 0.

All proofs can be found in the extended version of the paper which is available
at https://es.fbk.eu/people/stojic/papers/safecomp19/.

4.5 Finding a Model of the Synthesis Encoding

The logic used in the specification of the formulas of a DPA is in general undecid-
able, due to the quantification over sets. However, the synthesis encoding starts

https://es.fbk.eu/people/stojic/papers/safecomp19/

Model-Based Run-Time Synthesis of Architectural Configurations 211

from a concrete configuration and thus we can decide the satisfiability for this
special case, as described below. Since the I ′ can be obtained from I with a
finite number of additions/removals of indexes, we can define a finite number of
symbolic terms over which the quantifiers over I ′ can be instantiated.

From the transition formula τ , we compute the finite set peI′(τ) of possible
elements (terms) of I ′ by syntactically examining the transition formula. peI′ is
defined recursively on the formula:

peI′(β) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

peI′(β1) ∪ peI′(β2) if β = β1 ∨ β2,
peI′(β1) ∪ peI′(β2) if β = β1 ∧ β2,
peI′(α) if β = I ′ = α,
∅ if β is a predicate not containing I ′,
peI′(I1) ∪ peI′(I2) if β = I1 ∪ I2,
peI′(I1) if β = I1 \ I2,
I if β = I.

Suppose the current assignment μn assigns I to {i1, . . . , in}. If τ is I ′ = (I ∪
{t1, t2}) \ {t3}, the possible elements are peI′(τ) = {i1, . . . , in, t1, t2}.

For a concrete example, suppose that, for the running example model of
Fig. 3, in the current assignment we have S = {1, 2, 3}. The transitions which
modify the set of indexes S are add server and remove server (these tran-
sitions are shown in Fig. 4). By inspecting the transitions, it is easy to compute
the set of possible terms which may appear in next(S) as {1, 2, 3, s}, where s
is the term which appears in the transition add server.

In the following, let us assume that peI′(τ) is {t′1, . . . , t
′
m}. The value of I ′ is

then encoded using m fresh Boolean variables {bt′
1
, . . . , bt′

m
} (where bt′ = � if and

only if t′ ∈ I ′). The formula Enc is transformed by eliminating quantifiers and
operators involving sets using the terms t′1, . . . , t

′
m and the Boolean variables

bt′
1
, . . . , bt′

m
. This is done by the transformation QE defined by the following

steps: (1) replace all occurences of the set of indexes I with the constant set
μn(I); (2) apply the formula transformation R(β) defined by recursion on β:

R(β) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(β1) ∨ R(β2) if β = β1 ∨ β2

R(β1) ∧ R(β2) if β = β1 ∧ β2∧
t∈peI′ (τ)(bt ↔ R(t ∈ α)) if β = I ′ = α

R(t ∈ α1) ∨ R(t ∈ α2) if β = t ∈ α1 ∪ α2

R(t ∈ α1) ∧ ¬R(t ∈ α2) if β = t ∈ α1 \ α2∨
t∈peI′ (τ)(bt ∧ R(t1 = t)) if β = t1 ∈ I ′

∨
j∈J R(t = j) if β = t ∈ J for constant set J

�(R(t1), . . . , R(tn)) if β = R(�(t1, . . . , tn)) for predicate �
�(R(t1), . . . , R(tn)) if β = R(�(t1, . . . , tn)) for function �∨

t∈peI′ (τ)(bt ∧ R(β1[t/i])) if β = ∃i ∈ I ′.β1∧
t∈peI′ (τ)(bt → R(β1[t/i])) if β = ∀i ∈ I ′.β1∨
j∈J β1[j/i] if β = ∃i ∈ J.β1 for constant set J∧
j∈J β1[j/i] if β = ∀i ∈ J.β1 for constant set J

212 A. Cimatti et al.

For example, for the assignment in which S = {1, 2, 3}, the subformula
next(S) = remove(S, {u}) (S′ = S \ {u} in the abstract representation)
of the transition remove server is first transformed to S′ = {1, 2, 3} \ {u},
then by case 3 in the definition of R to

∧
t∈{1,2,3,s}(bt ↔ R(t ∈ {1, 2, 3} \ {u})),

then by case 5 to
∧

t∈{1,2,3,s}(bt ↔ R(t ∈ {1, 2, 3})∧¬R(t ∈ {u})), and finally by
two applications of case 7 to

∧
t∈{1,2,3,s}(bt ↔ (t = 1∨ t = 2∨ t = 3)∧¬(t = u)),

which is equivalent to (b1 ↔ 1 = u) ∧ (b2 ↔ 2 = u) ∧ (b3 ↔ 3 = u) ∧ (bs ↔ (s =
1 ∨ s = 2 ∨ s = 3) ∧ (s = u)).

Theorem 2. Enc and QE(Enc) are equivalent.

5 Experimental Evaluation

We have tested a prototype implementation—based on the COMPASS toolset
and written in Python—of the synthesis method to evaluate its scalability. The
testing was done on a machine with an Intel Core i7-8550U CPU (clock up to
4 GHz) with 16 GB of memory and running Debian 9.8 (64-bit). The prototype
implementation and scripts to automatically generate the models and run the
tests can be found at https://es.fbk.eu/people/stojic/papers/safecomp19/.

Models and Experiments. We tested several models: the running exam-
ple model described in Sect. 3 and the models ring, sequence and converging
(in unsafe and safe variants), which are described in [10]. The unsafe vari-
ants contain reachable architectural configurations in which the information flow
property is violated (these configurations are correctly avoided by the synthesis
method), while in the case of the safe variants the information flow property is
satisfied for all reachable configurations. For each model and each tested number
of components, we instantiated a configuration with that many components and
we measured the time taken by the synthesis method for that initial instance.

Results. Figure 6 shows the size of the SMT formula QE(Enc) resulting from
the encoding described in Sect. 4, plotted against the number of components in
the initial instance. The running example (rex in Fig. 6) formula size is signifi-
cantly larger than for the other examples because it contains several quantified
constraints. The running time, shown in Fig. 7, shows that the method scales
beyond small examples, being able to handle models of practically relevant sizes.
For the tested models, about 95% of the synthesis time is spent in generating
the SMT formula and instantiating the resulting model with the Python scripts,
while the rest is spent in the SMT solver.

https://es.fbk.eu/people/stojic/papers/safecomp19/

Model-Based Run-Time Synthesis of Architectural Configurations 213

Fig. 6. Formula size Fig. 7. Synthesis time

6 Conclusions

In order to support the model-based approach to design, verification and adapta-
tion of MILS systems developed in project CITADEL, we propose a method for
run-time synthesis of architectural configurations that preserves required system
invariants and an information flow property. We describe the context and moti-
vation behind the proposed method, overview the modeling language that is used
to define dynamic architectures and their properties, and formally describe the
proposed synthesis method. The method is based on the instantiation (for the
current architectural configuration) of the possible reconfiguration transitions,
the required invariants, and of the information flow property. This enables the
removal of quantifiers and operations involving sets, and encoding in SMT of
the resulting quantifier-free formulas. We perform an experimental evaluation,
showing the scalability of the approach to practically relevant model sizes.

As future work, we aim to extend the method for the analysis of information
flows to use different back-end solvers and to verify more general information flow
properties, involving components which enforce local information flow policies.

Acknowledgement. This work was supported by the CITADEL Project, funded by
the Horizon 2020 Programme of the European Union (grant agreement no. 700665).

References

1. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 21–37.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053581

2. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2009)

3. Boettcher, C., DeLong, R., Rushby, J., Sifre, W.: The MILS component integration
approach to secure information sharing. In: DASC (2008)

4. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012.
LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30564-1 1

https://doi.org/10.1007/BFb0053581
https://doi.org/10.1007/978-3-642-30564-1_1
https://doi.org/10.1007/978-3-642-30564-1_1

214 A. Cimatti et al.

5. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011)

6. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04468-7 15

7. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: WOSS, pp. 28–33
(2004)

8. Bruni, R., Melgratti, H.C., Montanari, U.: Behaviour, interaction and dynamics.
In: Specification, Algebra, and Software - Essays Dedicated to Kokichi Futatsugi,
pp. 382–401 (2014)

9. Canal, C., Pimentel, E., Troya, J.M.: Specification and refinement of dynamic
software architectures. In: Donohoe, P. (ed.) Software Architecture. ITIFIP, vol.
12, pp. 107–125. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-
35563-4 7

10. Cimatti, A., Stojic, I., Tonetta, S.: Formal specification and verification of dynamic
parametrized architectures. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E.
(eds.) FM 2018. LNCS, vol. 10951, pp. 625–644. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-95582-7 37

11. CITADEL Modeling and Specification Languages. Technical report D3.1, Version
2.3, CITADEL Project, August 2018

12. CITADEL Configuration and Reconfiguration Synthesis. Technical report D3.4,
Version 1.0, CITADEL Project, November 2018

13. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. SEI Series in Software
Engineering. Addison-Wesley, Boston (2012)

14. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

15. Hirsch, D., Inverardi, P., Montanari, U.: Reconfiguration of software architecture
styles with name mobility. In: Porto, A., Roman, G.-C. (eds.) COORDINATION
2000. LNCS, vol. 1906, pp. 148–163. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45263-X 10

16. Konnov, I.V., Kotek, T., Wang, Q., Veith, H., Bliudze, S., Sifakis, J.: Parameterized
systems in BIP: design and model checking. In: CONCUR (2016)

17. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIGSOFT,
pp. 3–14 (1996)

18. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

19. Métayer, D.L.: Describing software architecture styles using graph grammars. IEEE
Trans. Softw. Eng. 24(7), 521–533 (1998)

20. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I and II. Inf.
Comput. 100(1), 1–77 (1992)

21. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, Singapore (1997)

22. Rushby, J.: The design and verification of secure systems. In: ACM Operating
Systems Review, pp. 12–21 (1981)

https://doi.org/10.1007/978-3-642-04468-7_15
https://doi.org/10.1007/978-3-642-04468-7_15
https://doi.org/10.1007/978-0-387-35563-4_7
https://doi.org/10.1007/978-0-387-35563-4_7
https://doi.org/10.1007/978-3-319-95582-7_37
https://doi.org/10.1007/978-3-319-95582-7_37
https://doi.org/10.1007/3-540-45263-X_10
https://doi.org/10.1007/3-540-45263-X_10

Model-Based Run-Time Synthesis of Architectural Configurations 215

23. Rushby, J.: Separation and integration in MILS (the MILS constitution). Technical
report, Menlo Park, CA, February 2008

24. Architecture Analysis & Design Language (AADL) (rev. B): SAE Standard
AS5506B, International Society of Automotive Engineers, September 2012

25. Sifakis, J., Bensalem, S., Bliudze, S., Bozga, M.: A theory agenda for component-
based design. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Sys-
tems. LNCS, vol. 8950, pp. 409–439. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-15545-6 24

26. SLIM 3.0 - Syntax and Semantics. Technical Note D1–2, Issue 4.7, COMPASS
Project, June 2016

27. Webber, D., Gomaa, H.: Modeling variability in software product lines with the
variation point model. Sci. Comput. Program. 53(3), 305–331 (2004)

28. Wermelinger, M., Fiadeiro, J.L.: Algebraic software architecture reconfiguration.
In: Nierstrasz, O., Lemoine, M. (eds.) ESEC/SIGSOFT FSE -1999. LNCS, vol.
1687, pp. 393–409. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48166-4 24

29. Xu, H., Zeng, G., Chen, B.: Description and verification of dynamic software archi-
tectures for distributed systems. JSW 5(7), 721–728 (2010)

https://doi.org/10.1007/978-3-319-15545-6_24
https://doi.org/10.1007/978-3-319-15545-6_24
https://doi.org/10.1007/3-540-48166-4_24
https://doi.org/10.1007/3-540-48166-4_24

Dynamic Risk Assessment Enabling
Automated Interventions for Medical

Cyber-Physical Systems

Fábio L. Leite Jr.1,2(&) , Daniel Schneider3, and Rasmus Adler3

1 Department of Software Engineering: Dependability,
University of Kaiserslautern, Kaiserslautern, Germany

2 Center for Strategic Health Technologies – NUTES Paraíba
State University (UEPB), Campina Grande, PB, Brazil

fabioleite@cct.uepb.edu.br
3 Fraunhofer IESE, Kaiserslautern, Germany

{daniel.schneider,rasmus.adler}@iese.fraunhofer.de

Abstract. As in many embedded systems domains, in modern healthcare we
experience increasing adoption of (medical) cyber-physical systems of systems.
In hospitals, for instance, different types of medical systems are integrated
dynamically to render higher-level services in cooperation. One important task
is the realization of smart alarms as well as, in a second step, the realization of
automated interventions, such as the administration of specific drugs. A funda-
mental correlated problem is insufficient risk awareness, which are caused by
fluctuating context conditions, insufficient context awareness, and a lack of
reasoning capabilities to deduce the current risk. A potential solution to this
problem is to make systems context- and risk-aware by introducing a runtime
risk assessment approach. In this paper, we introduce such an approach for a
wider identification of relevant risk parameters and risk assessment model
building based on Bayesian Networks (BN). This model considers not only
changes in the actual health status of the patient but also the changing capa-
bilities to detect and react according to this status. This includes changing
capabilities due to adding or removing different types of sensors (e.g. heart rate
sensors) and replacing sensors of the same type but with other integrity level. In
addition, we present an evaluation of the approach based on a simulated clinical
environment for patient-controlled analgesia.

Keywords: Medical systems � Cyber-physical systems �
Runtime safety assurance � Dynamic risk management � Risk assessment �
Bayesian network

1 Introduction

In modern healthcare environments, we are witnessing increasing adoption of medical
cyber-physical systems. There is huge potential for new kinds of applications and
services aimed at increasing safety, quality of care, and efficiency while saving costs at
the same time. Already today, the medical device industry and hospitals are

© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 216–231, 2019.
https://doi.org/10.1007/978-3-030-26601-1_15

http://orcid.org/0000-0003-1063-8078
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_15

increasingly adopting such systems in order to deal with the flood of alarm in the
wards. Despite the advances regarding alarm precision, such systems still exhibit too
many false positives and false negatives. These limitations have posed challenges for
the adoption of automated supervision. Even bigger challenges are faced in systems
capable of automated intervention (i.e., not just calling for a human operator, but
directly implementing an action) such as administering specific drugs or managing
permissions for the patient to choose administration of a bolus (e.g., patient-controlled
analgesia). Thus, unfortunately, several accidents still occur every year in healthcare
environments due to the limitation of system alarms or the limited hospital resources to
provide care [9–11].

A fundamental problem leading to the increased numbers of false positives and
false negatives is the fact that alarms (as well as other triggers) are typically based on
fixed thresholds of one or a few monitored parameters. Given the very volatile nature of
the relevant context conditions (e.g., the patient’s condition, which is characterized by a
potentially complex interplay of different vital signs), fixed thresholds are a weak
means for assessing the current risk.

To tackle this problem, we aim to improve the context awareness of systems and
equip them with the capability to dynamically calculate the risk of the current situation.
In this paper, we introduce a corresponding runtime risk assessment approach based on
an executable risk model. The risk model is specified as a Bayesian Network
(BN) according to a methodology that is likewise presented in this paper. The
methodology utilizes a metamodel to enhance the identification of relevant risk
parameters according to domain-specific information, system dynamicity, and safety
engineering tasks. Moreover, we specify an adaptive risk management model capable
of dealing with system configuration changes at runtime. Therefore, we define adaptive
risk models so that risk monitors can properly respond to the system and context
changes.

We evaluated the results of the presented approach in a simulated environment and
found that the results outperformed the critical situation detection capabilities of current
approaches and increased treatment availability for the patients. The results are
promising and motivate further research in dynamic risk assessment and control for
medical scenarios. Ultimately, we hope that it will be possible to enable the adoption of
automated supervision and, at some later point in time, automated intervention,
enhancing safety and comfort for the patients while saving money, which could then be
spent in other places.

2 Related Work

According to [6, 17], dynamic risk management (DRA) is a risk assessment method
that updates the estimated risk according to runtime updates of the processes related to
the system functions. There is a wide area of application in the literature for various
domains such as avionics [6], unmanned underwater vehicles [15], automotive [16],
and nuclear power plants [17]. Compared with “static” quantitative risk assessment
techniques, DRA is capable of dealing with runtime changes provided by novel
dynamic systems of systems and cyber-physical systems.

Dynamic Risk Assessment Enabling Automated Interventions 217

Medical cyber-physical systems (MCPS) are life-critical, context-aware, networked
sets of independent medical devices that dynamically cooperate to enable new func-
tions at runtime. Several works have proposed solutions for risk assessment of the
current situation that focus on the patient status. Arney et al. [1] propose a fail-safe
device coordination protocol to avoid overdosage during PCA treatment based on the
SpO2 monitoring. Stevens et al. [14] developed a smart alarm solution to improve
alarm management for post coronary artery bypass graft (post-CABG) surgery patients.
The authors provide patient status analysis by combining different data such as arterial
line, electrocardiogram, pulse oximeter, and historical data. Jiang et al. [5] present an
evolutionary sepsis screening system to speed up detection and improve the positive
effect of the treatment. These approaches show advances for patient modeling and
fuzzy models to predict the patient’s situation based on vital signs; however, dynam-
icity and effective automated actuation demand models built on the foundations of risk
assessment as a solid basis for situation analysis and risk control.

Identification and understanding of the manifold situations for patient-controlled
analgesia requires reasoning about sensor uncertainties, treatment complexity, and
system dynamicity. According to Zio [18] Bayes theorem provides a common
framework to describe the uncertainties in the assessment stands on probability theory,
and particularly on the subjectivistic (Bayesian) theory of probability, as the adequate
framework within which expert opinions can be combined with statistical data to
provide quantitative measures of risk. Furthermore, Bayesian networks have been
adopted by the connected health domain as the main model for dealing with reasoning
about uncertainty and probabilistic risk detection [2, 5, 14, 15, 17].

3 Running Example

Patient-controlled analgesia (PCA) enables self-administration of predetermined doses
of analgesics (in most cases an opioid). It is widely used in hospitals as it enhances the
patient’s comfort regarding postoperative pain relief. However, PCA has been asso-
ciated with accidents such as severe respiratory depression (or even distress) caused by
opioid overdoses. Therefore, several works and health associations [9, 10] have urged
healthcare professionals to consider the potential safety value of proper monitoring of
oxygenation and ventilation in patients receiving IV opioids (e.g., sufentanil, pir-
itramid, morphine, remifentanil, fentanyl) during the postoperative period.

The ASTM F2761-2010 standard [4] defines the safety interlock function as an
abstract specification of a closed-loop scenario to avoid overdosage by the detection of
respiratory depression signs, and stopping the infusion pump if a pre-defined threshold
is reached. In this paper, we consider a refinement of the functionality proposed by [1,
12], where an Integrated Clinical Environment (ICE) controls the infusion, allowing the
operation of the infusion pump via an expiring token that needs to be sent to the pump
at specific intervals. Accordingly, the patient requiring a dose presses a button on a
handheld device connected to the infusion pump, which, in turn and supervised by the
ICE, only infuses the opioid if it has a valid token. Hence, the overall behavior permits
bolus doses to be given only when it is considered safe for the patient and stops the
infusion as soon as any respiratory depression is identified.

218 F. L. Leite Jr. et al.

In our previous work [8], we evaluated the challenges posed by such dynamicity for
these scenarios through the architecture of cooperative medical cyber-physical systems.
Overall, the ICE monitors a patient’s vital signs data through different classes of system
configurations such as: (1) only a pulse oximeter as the sensor; (2) only a respiration
sensor (capnography/capnometry); or (3) both medical devices as sensors. Each device
provides its own set of corresponding services with their own integrity level; therefore,
the same configuration class can provide different integrity levels in its instantiations at
runtime.

In order to cope with such dynamic and critical environments, we established an
approach for DRA based on continuous risk monitoring to support the activation of
appropriate countermeasures (adaptation requirements and/or direct actuation) to deal
with system or context changes [7]. If the current risk level is considered as minor or
negligible, the patient is allowed to have infusion (Fig. 1). “EnableBolus” function
allows the infusion pump to release an opioid dose to the patient when he/she requires
it. In case the risk is deemed as serious, the system stops the bolus infusion and raises
an alarm for the caregivers, showing the patient status and requiring a configuration
with higher guarantees. For this situation, we defined a special check for verifying if
any adaptation was made by the caregivers (bottom right of the Fig. 1). Finally, if the
risk is considered higher than critical, the system stops any infusion and raises critical
alerts to the caregivers.

The remaining challenge for DRA faced in this work is defining a how to derive a
more comprehensive risk assessment approach that considers a wider range of relevant
aspects, dealing with multidisciplinary concerns, and including the context and system
dynamicity aforementioned. Therefore, the main aim of this paper in the next sections
is presenting such DRA approach for specifying the function “Assess the risk” in the
Fig. 1.

Fig. 1. Runtime risk management presented in [7]

Dynamic Risk Assessment Enabling Automated Interventions 219

4 Derivation of the Risk Assessment Model

In this paper, we present essential support for implementing the risk assessment and
evaluation in the sketched DRM approach. Our support comprises two building blocks:

(1) Risk parameter elicitation - we provide a metamodel for identifying all rele-
vant parameters for calculating the risk at runtime. In this work, we use the tree-
based structure of Bayesian Networks for implementing the risk metrics. In a BN-
based calculation approach, each parameter becomes a node in the BN. The chal-
lenge is then to build an overall BN based on these nodes. The metamodel provides
crucial input for coping with this challenge as it shows the risk parameters and the
relationship between them.
(2) Risk model building - we provide guidelines for deriving qualitative aspects for
a BN-based risk metric from the identified risk parameters as well as define
quantitative aspects such as conditional probability tables specification, discretiza-
tion and defuzzification techniques.

In the following, we will explain each of these two building blocks in more detail.

4.1 Risk Parameter Elicitation

The elicitation of the risk parameters comprises dealing with multidisciplinary and
(sometimes) conflicting concerns from different stakeholders. Based on our experience
in dealing with people from diverse educational backgrounds, we derived a meta-model
for the identification and classification of a wider range of relevant risk parameters to
enhance completeness w.r.t concerns such as risk assessment, domain-specific data,
system-specific data, and reliability data. In this section, we will explain the elicitation
process using the risk meta-model applied for the case study.

Figure 2 depicts the meta-model for eliciting the risk parameters. The model
expresses the relationships (using the UML class diagram language) between the
concepts, which are concisely organized into four abstraction layers. At the top of the
figure, we placed the main abstraction layer called “Risk Assessment”, which contains
all the other layers in the lower part of the figure: “System in its Usage Context”,
“System Functional Realization”, and “Functional Safety Analysis”.

The overall “Risk Assessment” model shall identify all aspects that contribute to
risk due to an application service failure. First, we can distinguish between two aspects:
(1) the system (of systems) itself and its likelihood to fail in certain ways; (2) its
context, which gives us possible traces from a failure to harm. This differentiation is
reflected in the top layer in Fig. 3. In the next layer, “System in Context”, we focus on
the second aspect and have a black-box view on the system (of systems). We only
consider the user-perceivable part of the system (of systems): some systems actuate
depending on some monitored parameters, that is, the application service that the
system of systems realizes by orchestrating the available systems.

220 F. L. Leite Jr. et al.

The layer “System in its Usage Context” presents relevant elements that may affect
risk. We considered plenty of infusion scenarios and abstracted the concrete aspects
that we learned from discussions with experts regarding these general classes. There
might be more classes or some classes could be refined in order to enhance support for
risk parameter identification. However, the evaluations showed that our metamodel is a
good starting point and contributes to completeness if safety and domain experts reason
about these aspects in isolation. In this sense, we carefully examined all MCPS use case
scenarios defined by the ASTM standard combined with the use cases found in the
literature in order to identify a common set of relevant information for deriving risk
metrics. Regarding system-related elements, we structured the system interactions
from/to the environment through the monitoring and actuation parameters defined by
the treatment. The former defines a set of information that needs to be sensed by
monitoring medical devices such as pulse oximeter, respiration monitor, and monitor
multi-parameters. The latter refers to parameters controlled by delivery medical devices
that change the patient (or the context) somehow; examples include infusion pump,
pacemaker, ventilators, etc. Furthermore, at this layer we need to identify all parameters
related to the caregivers responsible for the treatment and their related procedures.
Moreover, the metamodel requires the definition of additional treatment details con-
cerning the patient’s healing, such as any additional medication or procedure that might
affect the opioid effect. Finally, we further catalog risk parameters relate to the patient’s
history, data such as weight, age, or any potential apnea history.

The next layer, “Functional Realization”, totally abstracts from the context and
takes a white-box view on the system of systems, but a black-box view on the single
systems. At this level, it is possible to evaluate the nominal performance, for instance,
assuring if specified collaboration of systems is safe, or specifying how the system can
safely change to another configuration.

As can be seen in Fig. 3, we assume that both monitoring and actuation parameters
are given by provided services deployed in the medical devices. The system config-
uration therefore aggregates provided and required services that cooperate to accom-
plish a specific high-level function (application service) such as safety interlock.
Finally, we have the SystemOfSytems entity, which encompasses a set of systems in a
composable structure for performing the respective application services. We also
assume that all context-related information regarding treatment details and patient data
shall be provided by information systems supporting this infrastructure.

The last layer, “Functional Safety Analysis”, addresses potential deviations from the
nominal behavior. Single systems might fail and, following propagation via direct and
indirect usage of the service, this may cause an application service failure. In the ideal
case, the single systems already exhibit some guarantees with respect to their potential
failures so that this information can be used to model some uncertainty about the
correctness of the behavior at runtime. We specified a basic set of safety guarantees (e.g.,
service provision, timing, and value deviations guarantees) exhibited by the system
services defined by the common literature [3]. We assume that such guarantees shall be
specified through formal languages such as ConSerts [13], which shows reliability data
defined at runtime through machine-readable certificates. Each service hence has an
uncertainty model for its behavior; for example, pulse oximeters show different

Dynamic Risk Assessment Enabling Automated Interventions 221

degradation levels while measuring blood saturation, as their accuracy varies according
to the measurement technique used and/or the system implementation details.

At the end of this phase, the safety engineers shall have all the relevant input data
for building the risk metric. The next section details how to build risk assessment
models considering system complexity and dynamicity.

4.2 Risk Model Building

A key problem for defining a risk metric for respiratory depression during PCA is that
no clear rules are available that state exactly when an opioid infusion should be
provided. Anesthetization experts can estimate the risk based on several parameters, but
it is challenging to formalize their expert knowledge. Despite the evolution of phar-
macokinetics models for vital signs, these are not sufficient yet to precisely predict all

Fig. 2. Risk metamodel

222 F. L. Leite Jr. et al.

the drug effects for each single patient. After evaluating several models, we concluded
that Bayesian Networks (BN) are the best fit for our task, as they provide an inherent
framework for modeling expert knowledge, dealing with uncertainty, and deriving
probabilistic distributions. Therefore, we make two assumptions: that (1) an infusion is
always possible, and (2) the risk metric must evaluate the risk of whether the next
infusion might cause overdosage. Based on the risk level, countermeasures can be
defined and implemented in the system. In this subsection, we will derive a risk metric
example from the metamodel previously presented - First, we will identify relevant risk
parameters (qualitative aspect) for building a BN-based risk metric and then we will
define the quantitative aspects of such a risk metric.

Qualitative Aspects. Initially, the previously identified information nodes are arran-
ged in a tree structure in order to form concise data groups reflecting all the concerns of
the treatment. This corresponds to the organization in the presented metamodel. In
Fig. 3, we present a logical (tree structure) view of the risk metric for assessing the risk
of severe respiratory depression for patient-controlled analgesia in post-operatory
treatment. At the top of the figure, we have three gray nodes representing the top-level
risk assessment layer elements, namely the Overall patient risk, System-related ele-
ments, and Context-related elements nodes. The root node represents the final step of
the risk aggregation function. The System-related elements data node refers to data
automatically provided by sensors and actuators; thus, this node organization includes
the Monitoring vital signs node and the System actuation parameters (in Fig. 3, these
are shown in blue from the “System in its Usage Context” layer). The Monitoring vital
signs data node aggregates all relevant monitored vital signs for the treatment. In the
case of PCA, the recommended data are SpO2, heart rate, respiration rate, and EtCO2.

Fig. 3. Risk metric for the most complete configuration class (3) with pulse oximetry and
respiration monitor

Dynamic Risk Assessment Enabling Automated Interventions 223

These nodes correspond to the values of the services provided by the devices (in Fig. 3,
they are highlighted in green as the elements of the “System Functional Realization”
layer). Each provided service has its value adjusted by the Guarantees nodes (the green
nodes in Fig. 3) from the “Functional Safety Layer”. On the right side of Fig. 3, the
Context-related elements node aggregates all the elements relevant to the treatment that
can affect the risk of respiratory depression. The subtree encompasses nodes from the
“System in its Usage Context” layer, which are further refined according to their lower
layers’ elements from the metamodel. Thus, all the information is structured in a tree
and provides the foundation for building the Bayesian network and gathering expert
knowledge for implementing the quantitative aspects of the risk metric.

Adaptation Model and Quantitative Aspects. It is necessary to identify the potential
risk metric variations according to the different configuration classes. We identified all
configuration classes found in the relevant standards, in the state of the art, and those
recommended by anthologists. These configuration classes were presented in Sect. 3
and require different node structuring and weights for the risk function. In Fig. 3, the
nodes are colored according to importance. The darker the node color, the more rel-
evant it is for risk calculation. Thus, the System-related elements node is more relevant
than the Context-related elements node due to its higher confidence from the monitors
defined by the domain experts. This fact can also be observed for the subsequent nodes:
Children of the Context-related elements node are colored with the same color as the
parent node and represent its lower relevance for the overall risk. Vice versa, children
of the System-related elements node have their relevance highlighted in dark gray
colors. We particularly emphasize the dark color of the Monitoring vital signs node
representing the most relevant nodes in the risk metric. For configuration class (2), the
risk metric exhibits lower relevance of the System-related elements data node and
higher confidence for the Context-related elements node. This fact is due to the con-
fidence of the configuration class, which uses only respiration monitors as sensors,
which are reliable enough for treatment but less reliable than configuration (3). For
configuration class (1), the derived risk metric considers the same relevance degree for
both the System-related elements and the Context-related elements data nodes. This
was deemed by domain experts to be a less reliable configuration class for PCA. Hence,
we consider the system’s dynamicity, which varies depending on a particular adapta-
tion, as a fundamental part of the risk assessment and the corresponding risk metrics.

In Fig. 4, we depict how the transition model should work for the identified system
configurations for the case study, given the defined configuration classes and risk
metrics. The blue arrows indicate how the system adaptations can activate the
respective system configuration class and the corresponding risk metric. For instance, if
a running configuration is monitoring the patient with pulse oximeter and capnometer
(Risk Metric 3) and someone disconnects the pulse oximeter, the system monitor needs
to identify that there has been an adaptation and instantiate the proper risk metric, in
this case Risk Metric 2. Thereupon, the risk shall be assessed based on the particu-
larities (defined by CPTs, defuzzification approach, etc.) of the risk metric.

224 F. L. Leite Jr. et al.

It is also important to note that the risk metric is defined to calculate the risk based
on BN predictive algorithms (quantitative aspect). Hence, we defined with domain
experts a quantification strategy for discretizing the continuous values, deriving the
Conditional Probability Tables, and defuzzifying the risk values in order to obtain an
estimated probability value that can be used to proceed with the runtime risk
evaluation.

Discretization of Continuous Values. We abstracted and derived the conditional
probabilities from the existing published literature; the experience of four medical and
clinical experts from the Westpfalz-Klinikum GmbH (major regional hospital in
Kaiserslautern, Germany) and from the Center for Strategic Technologies in Health
(NUTES); standards (ISO 14971, IEC 62304, ISO 9001:2015 Risk Management,
ASTM F2761-2010); and hospital procedures. For example, the most common class of
system configurations for PCA in wards uses pulse oximetry to monitor patients. So if
the patient has a blood saturation of 94%, the risk of respiratory depression is low;
however, the risk increases when the patient receives additional oxygen supplemen-
tation and/or other related treatment [9]. Hence, the groups of observational nodes are
divided according to the discretization strategy:

• Sensor value nodes – represent realistic vital signs readings from medical devices.
Given experimental observation and simulation results, we implemented a normal
distribution function that formalizes the distortion degrees according to the guar-
antees of the provided service. The mean is the sensor value read by the
device/service and the standard deviation represents the distortion of the sensor. The
lower the guarantees, the higher the standard deviation.

• System actuation parameters – these were classified according to data ranges.
However, these parameters strongly impact on the risk metric due to the correlation
with the severity and probability of respiratory depression (for example, type and
dosage of infused drugs).

• Context nodes – context observational nodes were defined according to their data
values. Domain experts defined ranges for groups of values and classified their
relevance based on scale of risk, e.g., oxygen supplementation level.

Fig. 4. The management of the Risk Metric (RM) for the adaptation model of the case study.

Dynamic Risk Assessment Enabling Automated Interventions 225

Conditional Probability Tables (CPTs). CPTs are the specifications of each variable
state’s conditional probability, given the state of the parent variables. For the moni-
toring of vital signs, we defined a risk-based classification comprising negligible,
minor, serious, critical, and catastrophic. For context node CPTs, we aggregate the risk
using only three categories: negligible, minor, and serious, because of their lower
impact on the risk. The root node Overall risk function also classifies the situational
risk into five class scales, where each state is defined with a part of the probability
space.

Defuzzification of the Root Node. Defuzzification is the process of converting a
fuzzified output into a single crisp value with respect to a fuzzy set. The defuzzified
value in an FLC (Fuzzy Logic Controller) represents the action to be taken in con-
trolling the process. Hence, we selected the weighted average method for defuzzifying
the values from the top node and applied a runtime evaluation algorithm based on the
assessment of the final crisp value. Thus, the defuzzified value is defined as:

x� ¼
P

l xð Þ:x
P

l xð Þ ð1Þ

Where
P

denotes the algebraic summation of the valued states and x is the element
with maximum membership function. We also adjust the maximum membership
function x according to the system configuration; the risk thus tends to increase faster
for less reliable configurations.

5 Evaluation

We evaluated our risk assessment approach with respect to the availability of treatment
and the risk of overdosage. In this sense, we defined the following evaluation
questions:

• Can we enhance the runtime risk assessment for PCA? Fixed thresholds
approaches struggle to identify critical scenarios that are not beyond the thresholds
yet. Our assumption is that the proposed approach will improve the identification of
critical situations due to more complete risk metrics.

• Can we improve the availability of PCA treatment regarding conservative
approaches? Improving the availability of PCA treatment will enhance the
patient’s experience and decrease the average pain level during the treatment.
Therefore, we identified scenarios where current approaches conservatively forbid
infusion and the proposed approach allow it.

The main aim of the evaluation was to evaluate simulated situations as proof-of-
concept in order to answer these questions through the analysis of common scenarios
provided by domain experts.

226 F. L. Leite Jr. et al.

5.1 Evaluation Design

In order to answer the evaluation questions, we implemented a simulation environment
for risk assessment of medical cyber-physical systems regarding the described use case
and several scenarios. This environment comprises two systems. The first is an MCPS
simulation implemented with OpenICE1, which defines an integration architecture for
healthcare IT ecosystems through a distributed system platform for connecting network
nodes with each other. It deals with several technical issues such as node discovery,
external interface definition, data publishing, proprietary protocol translation, and so
on. The second system in the simulation environment is an ICE supervisor, which was
responsible for monitoring the MCPS regarding the dynamic risk assessment model
presented in Sect. 4. The ICE monitor implements risk assessment through a SMILE2

Bayesian inference engine for Java. The risk metric management module identifies the
current active configuration and enables the proper risk metric (presented in the
Sect. 3). This system was responsible for raising risk alarms for caregivers and sim-
ulating actuation on the infusion pump that should be taken as a result of the risk
evaluation procedure.

5.2 Results and Discussion

The oxygen supplementation scenario represents a common situation during PCA
treatment according to domain experts and the literature. In [9, 11], the authors argue
that patients treated by PCA with oxygen supplementation should be monitored by
capnometry due to its efficacy in detecting respiratory depression for this kind of
procedures, although several hospitals only use pulse oximeter for monitoring. Figure 5
presents the simulated results for a scenario where a patient was under PCA treatment
with oxygen supplementation through an instance of configuration class (1) and the
ICE Monitor recommended changing to an instance of configuration class (3), which
provides higher safety guarantees regarding the procedure.

Note that in Fig. 5, the risk assessment throughout the time of the treatment is
shown, as well as the situational partitioning according to the approach presented in
Sect. 4. The risk is represented as the probability of the patient getting an overdose
given bolus doses in the normalized range of 0% to 100%. For the situation partitioning
for this procedure, the values for Negligible risk range between 0% and 27%, for Minor
risk between 27% and 45%, and values higher than 45% are deemed as Serious risk.
Ranges for Critical and Catastrophic risk were delimited but not used for this simu-
lation scenario. If the risk reaches the Serious range, the ICE Monitor recommends
some actions depending on the situation, such as raising risk alerts requiring caregivers
to give attention to the patient and/or changing the system configuration and disabling
bolus doses.

We can observe the behavior of the risk according to the SpO2 (on the right side)
and EtCO2 (on the left side) data variations presented in Fig. 6. Observe the risk started
at 42%, but this is still lower than 45%, the limit of the Serious range. Such value

1 https://www.openice.info/.
2 https://www.bayesfusion.com/.

Dynamic Risk Assessment Enabling Automated Interventions 227

https://www.openice.info/
https://www.bayesfusion.com/

characterizes a careful situation, though it still allows the patient to get bolus doses.
After that, the situation changed and the SpO2 decreased. This led to the risk reaching
the Serious range, at time stamp 13:37:56, where the ICE Monitor triggered a risk alert
requiring patient attention and a system configuration with higher guarantees and
forbidding bolus doses. Note in the Fig. 6 that SpO2 reached the Alert range as 91% at
time stamp 13:37:56, but did not reach the critical limit of 85% to raise a device alarm.
Hence, the proposed risk model detects a hazardous situation before the concrete
situation reaches a Critical state, thereby enhancing the patient’s safety. As can be seen
in Fig. 6, SpO2 would have only reached Serious state values later on.

After that SpO2 reaches the Serious range above 85%, the patient received some
treatment due to the opioid effects on respiration, but SpO2 stabilized at 85%. Further
on, the caregiver reconfigured the system to configuration C and started to monitor the
capnometry values (EtCO2 and RR), which are more reliable for this situation. In
Fig. 5, we can see a sharp depression in the risk value, which stabilized around 42% at
time stamp 13:38:23. This means that the risk range was Minor and the patient was
allowed to have bolus doses, since the patient’s EtCO2 measures remained within the
acceptable range, as can be seen in Fig. 6. Hence, the ICE Monitor enables patients to
get opioid bolus doses for situations where this should not be allowed considering
conservative operation. In several hospitals, the patient could have the PCA treatment

Fig. 5. Risk assessment for patient-controlled analgesia with oxygen supplementation

Fig. 6. Vital signs (SpO2 and EtCO2) values for the simulated scenario.

228 F. L. Leite Jr. et al.

suspended and higher surveillance might be required in the ward. The ICE Monitor
therefore improves the patient’s comfort due to its monitoring ability, which allows the
treatment to continue in situations where it would not be allowed traditionally.

6 Conclusion and Future Work

This article presented a novel approach for deriving dynamic and probabilistic risk
assessment models for runtime monitoring of cooperative medical cyber-physical
systems. A key contribution of this work is the reusable metamodel and the guidelines
for a more comprehensive identification of risk parameters. As a second contribution,
we derived a method for guiding safety engineers in the construction of a BBN risk
model that is capable of adapting the risk metric for system changes at runtime. A case
study on the implementation of safety interlocks for patient-controlled analgesia in
post-operatory pain relief treatment was used as a proof of concept by means of a
simulated scenario.

The evaluation section shows the breakthrough of a more comprehensive risk
model for enabling automated actuation for cooperative MCPS. Throughout a wider
range of relevant risk parameters, we could enhance the risk assessment and then obtain
a more accurate identification of the situational status. In the simulated example sce-
nario, the safety monitor was able to identify a critical situation before the fixed
thresholds monitoring. Moreover, we managed to improve the patient’s comfort by
enabling opioid doses for situations in which traditional approaches conservatively
forbid this.

Furthermore, the evaluation results show how the developed models could enable
an adaptive risk model for dealing with system changes at runtime. We simulated a
caregiver’s intervention during the treatment given an increasing risk situation. In that
case, the caregiver actuated on the patient to ease the effects of the opioids and changed
the system configuration class in order to enhance the awareness level. Concurrently,
the system also adapted its risk metric to enable proper assessment given the new
configuration.

It is also worth noting that the presented approach, which promotes more com-
prehensive elicitation of risk parameters, can positively impact on the implementation
of risk metrics independent of the technology used to realize it. In this work, we
implemented the risk metric using Bayesian Networks due to the vast literature
background providing examples and use cases for BN-based risk metrics. The
advantage of BN is its ability to deal with uncertainty and knowledge modeling from
the experts. However, we also examined other technologies for implementing risk
metrics, such as Dempster-Shafer theory knowledge modeling as well as approaches
based on machine learning.

Future Work. Regarding future work, we are currently proceeding with validation
tasks for other treatments and validation scenarios. We need to analyze our risk model
in scenarios provided by hospitals in order to assure the completeness of the model. We
envision that the publication of our risk metamodel will motivate healthcare practi-
tioners to create datasets to support statistical tests of ICE monitors. Furthermore, our

Dynamic Risk Assessment Enabling Automated Interventions 229

approach is limited to a predefined set of configuration classes at design time.
Whenever a new configuration class shows up, we need to design a new risk metric and
update the adaptation models. We believe that as soon as a larger amount of historical
patient data is available, we will be able to adjust our approach in terms of considering
machine learning techniques so that the risk monitor can dynamically derive a new risk
metric at runtime given a new configuration class.

Acknowledgments. The ongoing research that led to this paper is being funded by the Brazilian
National Research Council (CNPq) under grant CSF 201715/2014-7 in cooperation with
Fraunhofer IESE and TU Kaiserslautern. We would also like to thank Sonnhild Namingha for
proofreading.

References

1. Arney, D., et al.: Toward patient safety in closed-loop medical device systems. In:
Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems -
ICCPS 2010, p. 139. ACM Press, New York (2010)

2. Brito, M., Griffiths, G.: A Bayesian approach for predicting risk of autonomous underwater
vehicle loss during their missions. Reliab. Eng. Syst. Saf. 146, 55–67 (2016)

3. Fenelon, P., et al.: Towards integrated safety analysis and design. ACM SIGAPP Appl.
Comput. Rev. 2(1), 21–32 (1994)

4. Goldman, J.M.: Medical devices and medical systems - essential safety requirements for
equipment comprising the patient-centric integrated clinical environment (ICE) - Part 1:
general requirements and conceptual model (2009)

5. Jiang, Y., et al.: A self-adaptively evolutionary screening approach for sepsis patient. In:
Proceedings - IEEE Symposium on Computer-Based Medical Systems, August 2016,
pp. 60–65 (2016)

6. Kurd, Z., Kelly, T., McDermid, J., Calinescu, R., Kwiatkowska, M.: Establishing a
framework for dynamic risk management in ‘intelligent’ aero-engine control. In: Buth, B.,
Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 326–341. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04468-7_26

7. Leite, F.L., Schneider, D., Adler, R.: Dynamic risk management for cooperative autonomous
medical cyber-physical systems. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 126–138. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99229-7_12

8. Leite, F.L., Adler, R., Feth, P.: Safety assurance for autonomous and collaborative medical
cyber-physical systems. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017.
LNCS, vol. 10489, pp. 237–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66284-8_20

9. Lynn, L.A., Curry, J.P.: Patterns of unexpected in-hospital deaths: a root cause analysis.
Patient Saf. Surg. 5(1), 3 (2011)

10. Maddox, R.R., et al.: Continuous respiratory monitoring and a “smart” infusion system
improve safety of patient-controlled analgesia in the postoperative period. Agency for
Healthcare Research and Quality (US), Rockville, MD, USA (2008)

11. McCarter, T., et al.: Capnography monitoring enhances safety of postoperative patient-
controlled analgesia. Am. Heal. drug benefits. 1(5), 28–35 (2008)

12. Pajic, M., et al.: Model-driven safety analysis of closed-loop medical systems. IEEE Trans.
Ind. inform. 10(1), 3–16 (2012)

230 F. L. Leite Jr. et al.

http://dx.doi.org/10.1007/978-3-642-04468-7_26
http://dx.doi.org/10.1007/978-3-319-99229-7_12
http://dx.doi.org/10.1007/978-3-319-99229-7_12
http://dx.doi.org/10.1007/978-3-319-66284-8_20
http://dx.doi.org/10.1007/978-3-319-66284-8_20

13. Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems. ACM
Trans. Auton. Adapt. Syst. 8(2), 1–20 (2013)

14. Stevens, N., et al.: Smart alarms: multivariate medical alarm integration for post CABG
surgery patients. In: Proceedings of the 2nd ACM SIGHIT symposium on International
health informatics - IHI 2012, p. 533. ACM Press, New York (2012)

15. Thieme, C.A., Utne, I.B.: A risk model for autonomous marine systems and operation
focusing on human–autonomy collaboration. Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
231(4), 446–464 (2017)

16. Wardziński, A.: Safety assurance strategies for autonomous vehicles. In: Harrison, M.D.,
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 277–290. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87698-4_24

17. Zeng, Z., Zio, E.: Dynamic risk assessment based on statistical failure data and condition-
monitoring degradation data. IEEE Trans. Reliab. 67(2), 609–622 (2018)

18. Zio, E.: The future of risk assessment. Reliab. Eng. Syst. Saf. 177(March), 176–190 (2018)

Dynamic Risk Assessment Enabling Automated Interventions 231

http://dx.doi.org/10.1007/978-3-540-87698-4_24

Verification and Validation of
Autonomous Systems

Practical Experience Report: Engineering
Safe Deep Neural Networks for Automated

Driving Systems

Jelena Frtunikj(&)

BMW Group, Landshuter Strasse 26, Unterschleißheim, Germany
jelena.frtunikj@bmw.de

Abstract. Deep Neural Networks (DNNs) are one of many supervised machine
learning approaches. These data-driven deep learning algorithms are revolu-
tionizing the modern society in domains such as image processing, medicine and
automotive. In the field of computer vision, DNNs are outperforming the tra-
ditional approaches that use hand-crafted feature extractors. As a result,
researchers and developers in the automotive industry are using DNNs for the
perception tasks of automated driving. Compared to traditional rule-based
approaches, DNNs raise new safety challenges that have to be solved. There are
four major building blocks in the development pipeline of DNNs: (1) function-
ality definition, (2) data set specification, selection and preparation, (3) devel-
opment and evaluation, and (4) deployment and monitoring. This paper gives an
overview of the safety challenges along the whole development pipeline of
DNN, proposes potential solutions that are necessary to create safe DNNs and
shows first experimental results of DNN performing object detection.

Keywords: Safety � Automated driving � Deep neural networks � Uncertainty

1 Introduction

Deep learning (DL) is a data-driven machine learning technique that enables computers
to learn a task by using a considerable amount of data and not by being explicitly
programmed. Deep Neural Networks are becoming more widespread particularly in
computer vision applications due to their powerful performance compared to traditional
computer vision techniques such as edge or corner detection. This makes the usage of
DNN more attractive also in safety-related tasks such as perception of an automated
driving agent. However, before a DNN executing safety-related tasks finds its way into
series production cars, it has to undergo strict assessment concerning safety. In tradi-
tional rule-based programmed software systems established safety engineering pro-
cesses and practices are successfully applied, whereas data-driven based deep learning
algorithms raise new and sometimes obscure safety challenges.

In automotive, two standards handle safety: ISO 26262 Road vehicles – Functional
safety [8] and ISO/PRF PAS 21448 Road vehicles - Safety of the intended function-
ality (SOTIF) [9]. The ISO 26262 addresses possible hazards caused by malfunc-
tioning behavior of electrical/electronic safety-related systems whereas SOTIF

© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 235–244, 2019.
https://doi.org/10.1007/978-3-030-26601-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_16

addresses possible hazards caused by the intended functionality of the product function
or by reasonably foreseeable misuse by the user. Intended functionality means that the
product function is operating as specified including limits of nominal performance.
Both standards have been defined without explicitly considering specifics of DL
algorithms such data set collection and requirements on that, defining safety-related
evaluation metrics, handling uncertainty etc. As a result, this leads to a challenging
issue today for car manufacturers and suppliers who are determined to incorporate DL
for automated driving.

In this paper, we (1) identify the safety challenges (with no claim to be exhaustive)
for achieving safety of DNN along the complete development pipeline of DNNs,
(2) propose potential solutions based on the state of the art w.r.t. those challenges, and
(3) show first experimental results of DNN performing object detection. We target a
pragmatic approach that focuses on producing safety artifacts along the development
chain of DNNs. This paper does not provide a ready-made solution, but proposes
potential solutions that can be used as a starting guidance.

The paper builds upon on [5] and is structured as follows: Sect. 2 provides brief
background information on deep neural networks. Section 3 presents concrete safety-
related challenges along the development chain of DNNs, proposes potential solutions
and shows first experimental results. Section 4 summarizes and concludes this paper.

2 Deep Neural Network Background

Artificial Neural Networks (ANNs) are algorithms that mimic the biological structure
of the brain. The basic structure of an ANN is a “neuron” and “neurons” have discrete
layers and connections to other “neurons”. Each neuron calculates a weighted sum of
its inputs and applies a nonlinear activation function on this sum. Neurons are grouped
in layers, which share a common set of inputs and outputs and each layer of the
network learns a specific feature e.g., curves or edges in image recognition. Deep
neural networks are created when multiple layers are used instead of one. In the case of
a 2D/3D object detection perception task, the input of the networks are commonly
images, lidar point clouds or radar detections. The outputs of an object detection DNN
are commonly rectangles (called bounding boxes) that contain the objects and a label of
the objects class (e.g., car, pedestrian) and its attributes.

There are four major building blocks in the development pipeline of deep learning
networks: (1) functionality definition, (2) data set specification, selection and prepa-
ration, (3) development and evaluation, and (4) deployment and monitoring. Along that
pipeline, DNN specific artifacts are generated in addition to the ones that are generated
during traditional rule/model-based development.

Functionality definition deals with the specification of requirements w.r.t. different
DNN aspects like: definition of operational design domain (ODD), definition of data set
attributes which are important for the DNN task, diverse safety requirements which are
interpreted with DNN specific measurable KPIs (e.g. robustness w.r.t. sensor failures or
synchronization of sensors, etc.). Data specification, selection and preparation focuses
on specifying the data set requirements and collecting data for training and evaluation
of neural networks. This includes topics such as completeness of data set, labelling

236 J. Frtunikj

specification, labelling quality etc. In the development and evaluation phase, the DNN
network architecture and the SW architecture including the DNN is developed, and the
DNN training and evaluation is performed. During training the weights of the DNN are
determined. This is done by minimizing the loss function of the network over a given
set of training data and back-propagating the respective error terms through the net-
work. After training the performance of the trained network is evaluated on an “un-
seen” test set. At the end a trained model is pruned and optimized for a deployment on
specific target hardware. In the inference phase the deployed DNN performs predic-
tions on new data at runtime, e.g. detects object in an autonomous vehicle.

Below we give an overview of the safety-related challenges in each step of the
development pipeline of DNN and provide potential safety engineering solutions.

3 Safety Engineering Along the Development Pipeline
of DNN

3.1 Functionality Definition

When developing particular functionality, usually diverse requirements are defined:
functionality requirements, inputs & outputs of the function, software safety require-
ments, memory and time constraints etc. However, when using a DNN to realize
particular functionality, additional aspects need to be defined. Some examples include:
definition of operational design domain (ODD), definition of data set and labeling
attributes that are required for the DNN task, diverse safety requirements which are
interpreted with measurable KPIs (e.g. robustness w.r.t. sensor failures, synchroniza-
tion of sensors or adversarial attacks, performance w.r.t. safety goals, generalizability
of the DNN to unseen data within the ODD) etc. All these requirements need to be
addressed in the subsequent steps in the DNN development pipeline.

3.2 Data Set Specification, Selection and Preparation

A DNN in general is only able to do what it has been taught i.e. trained for. In other
words, if a training data set only contains labelled cars, a deep neural network trained
on that set would not be able to recognize pedestrians. Since the variance of traffic
scenes, situations and scenarios [15] in the real world is near to infinity, it is impossible
to ensure a complete coverage of all scenes through a single data set, regardless of its
size. Thus, two questions arise: (1) how to specify, select and collect the complete data
set to be labelled such that all needed scenarios including corner cases (e.g. crossings,
traffic accidents, broken infrastructure) are covered and the trained model achieves its
maximum possible performance and generalization ability for its intended usage;
(2) how much data is required. In addition to the challenge of defining the diversity and
the amount of data, it is also important that the data have the same distribution as the
ODD. Furthermore, the data set should include a measure of negative data for the
purpose of allowing the DL module to reduce false alarms.

The answer to the questions above is challenging task and one idea is to use the
situation analysis of the Hazard Identification and Risk Assessment (HARA) of

Practical Experience Report 237

ISO 26262 as possible input for identifying the requirements for the collection of
relevant data. The goal of the situation analysis and hazard identification is to identify
the potential unintended behaviours of the item (e.g. the automated driving function)
that could lead to a hazardous event. Parameters that are considered for the situation
analysis and hazard identification include specific vehicle usage scenarios (e.g. high-
speed driving, urban driving, parking), environmental conditions etc. A structured and
systematic approach defining the parameters for describing a scene, situation and
scenario is offered by the Pegasus project1. Concerning the amount of data required per
scene or situation, a metric derived from the defined operation time and the exposure
(E) parameters of each hazardous situation in the HARA can be used. The metric can
be also relativized w.r.t. the severity (S) assigned to the specific hazard.

In general, a minimal set of quality metrics is required. Those are important for
quantifying the sufficiency of the data set. Such metrics might include: coverage, rel-
evance w.r.t. safety goals and requirements, equivalence classes (negative/positive) etc.

Scenes and scenarios that are needed for training but rarely happen during a
recording in the real world could be compensated through generation and usage of
synthetic (Fig. 1) and augmented data. These include, but are not limited to, corner case
traffic scenes, hazardous weather conditions (e.g. sunset, dusk, heavy rain, fog), traffic
rule violations (e.g. wrong-way driving, red light running), animal hazards. There are
on-going projects [1] focusing on generating synthetic sets for autonomous driving.
However, this raises another question i.e. the quality and influence of synthetic data on
the DNN. Poibrenski et al. [13] introduced a methodology for training with synthetic
data. By using a set of well-designed and bounded experiments, a better judgment of
the “behaviour” of synthetic data is performed.

In addition, an expert should carefully define the labeling specification for the data
set to ensure that the labeling characteristics are defined sufficiently and can efficiently
relate to the target functionality. Moreover, a quality control processes should be in
place to ensure that the data is properly labeled and errors caused by the labeling process

Fig. 1. Synthetic image data: (left) dusk in on a rainy day; (right) child on a skateboard crossing
on a red light. (Color figure online)

1 https://www.pegasusprojekt.de/en/

238 J. Frtunikj

https://www.pegasusprojekt.de/en/

is minimized. Typical labeling errors in the case of an object detection would be: wrong
classification of objects, overseen objects, bounding boxes of wrong size, etc.

The data set should be continuously improved as new scenes or scenarios are
discovered, reducing the unknown space. A method to detect missing data in the data
set is via measuring epistemic uncertainty. Epistemic uncertainty captures model’s lack
of knowledge and indicates the limitation of the detection model due to lack of training
data. High epistemic uncertainty points to a trained DNN that is more likely to make
inaccurate predictions and when this occurs in safety critical applications, the model
should not be trusted. An approach for calculating epistemic uncertainty has been
proposed by Gal [6]. Gal showed that by performing the network forward passes
several times with dropout during the test time for single data sample, one can calculate
the model’s posterior distribution, and thus obtain the epistemic uncertainty. High
epistemic uncertainty for a sample, indicates that further data has to be collected (see
Fig. 2 for example result of an object detection uncertainty experiment performed).

3.3 Development and Evaluation

DNN Development. Having defined the functionality of the DNN by means of: (1) the
specific functional and non-functional DNN KPIs to be reached (Sect. 3.1) and (2) the
data set (Sect. 3.2), the DNN network architecture and the SW architecture including
the DNN has to be developed and the DNN has to be trained and evaluated.

Multi-modal DNN architectures [2, 11] for object detection have been introduced in
order to achieve more reliable and robust performance. These DNN architectures fuse
intermediate layer features coming from different sensor modalities like multiple
cameras, radars and LIDARs. The goal of multi-modal learning is to achieve higher
reliability and robustness using the redundant information provided by multi-modal
data. To deal with degraded data or failures of different sensor inputs, Kim et al. [10]
introduce novel multi-modal fusion architecture. They propose an architecture where a

Fig. 2. 2D object detection uncertainty experiment. Image sample taken from the VOC2007
[18] test set. Only top 2 classification uncertainties shown here. The construction pylon that does
not exist in the training data set is misclassified and shows high uncertainty. The car shows also a
high uncertainty which may be due to the color contrast in the image. (Legend: classification
uncertainty - green, misclassification rate - blue, object detections from non-altered model – red)
(Color figure online)

Practical Experience Report 239

feature-level gated information fusion (GIF) network is introduced. The GIF network
combines the features of each modality such that only information relevant to the task
is aggregated and it controls the amount of information flow incoming through gating
mechanism.

Robustness against degraded data quality or complete failures of sensors can also
be learned i.e. by training with a data set containing various types of degraded
examples, hoping that the architecture learns to use only reliable features for multi-
modal fusion. Degraded examples can be either collected from real situations or created
by using special data augmentation e.g. corrupting the data by blanking, noise addition,
occlusions, severe change in lighting. For example, Zachary et al. [16] apply several
simple image mutations to test the robustness of different person detection DNNs. The
mutations include: (1) procedural perturbations like blurring and randomized changes
like additive noise, or removing image data, (2) “contextual mutators” that make use of
environment geometry information to perform depth-based simulation of haze and
defocus effects and compare these to the simple mutations. Despite testing DNNs w.r.t.
defined mutators, as mentioned earlier one could train DNNs to learn to deal with such
data. Zendel et al. [17] provide list of mutators to which a vision system is potentially
exposed.

The software architecture incorporating a DNN should be able to handle or mitigate
an unexpected behavior of the DNN. For instance, plausibilization methods can check
the DNN model output for consistency (e.g. checking for implausible positions or sizes
of the detected 3D objects). Another idea is to use the monitor/actuator architecture
pattern [12]. When applying this pattern, it is practicable to define rule-based algo-
rithms that guard the system against erroneous behavior of the DNN. In this case, the
“actuator” DL based module performs the primary functions and a paired “monitor”
module performs an acceptance test or other behavioral validation. If the actuator
misbehaves, the monitor (non-DL based algorithm) shuts the entire function down in a
safe state, resulting in a fail-safe system. The monitor module must be simpler and
more transparent than the DL based function so that there can be confidence in its
correctness as the safety of the system depends on the monitor.

The DNN development phase covers also the training of the network. In the
training phase, the weights of the network are determined. This is done by minimizing
the loss function of the network over a given set of training data and back-propagating
the respective error terms through the network via the corresponding gradient (e.g.
stochastic gradient descent). The choice of the loss function could have impact on the
performance of the resulting network and thus restrictions in the choice of possible loss
functions may need to be specified. It is important to note that the safety requirements
(e.g. criticality of particular error types, etc.) are not necessarily being taken into
account when designing the loss function, and so the trained model should be tested
against those safety requirements. Possible solutions to ensure safe functioning could
be the insertion of measurable safety requirements into the loss function e.g. by using
additional terms in the loss function to compensate for safety related fitting goals [6].
Other hyperparameters like types of layers, regularization terms, learning rate etc. are
also specified during training. The choices of the hyperparameters and the reasonable
behind it need to be tracked, as they have impact on the resulting functional and non-
functional properties of the DNN.

240 J. Frtunikj

DNN Evaluation. The quality of the DNN is indicated by its KPI performance
evaluation on an “unseen” test data set. The performance is usually measured by means
such as intersection over union, mean average precision (mAP) [14], false positive/
negative rate, etc. By evaluating a variety of different DNN architectures and models,
w.r.t. relevant KPIs defined in the first step (i.e. functionality definition) a system
designer can choose the best DNN for the task. If the defined KPI performance cannot
be reached, the training and potentially the model and the data set should be adapted.
This is possible via e.g. expanding the data set, changing the network architecture,
changing the model via the network hyper parameters (layer type, learning rate, batch
normalization, regularization, etc.). Given the nature of DL, the primary method is the
extension of the training data set while respecting the relevant statistical distributions.

An experimental evaluation of the robustness of an 3D object detection network
w.r.t. modality failures is shown in Table 1.

100% mAP is not always possible and, in a safety-related application, not all
failures have the same impact. An example is a speed limit classification task where
misclassifying a speed limit of e.g. 30 km/h as 50 km/h may not have a negative safety
impact. Hence, instead of measuring a single mAP and its included false/true positives
and false negatives, the evaluation of the network could be adapted to application-
specific metrics depending on the safety requirements. Ideas of useful object detection
mAP are: (1) Environment mAP – mAP can be measured depending on certain
environment conditions e.g. day/dusk/night, rainy/sunny. These metrics are useful,
when the DL based application is used under specific environmental conditions. The
item definition of ISO 26262 or the system description of SOTIF can be used for
defining the relevant environment mAP.; (2) Distance mAP - mAP can be measured
depending on the distance of other objects to be detected (Fig. 3 for distance mAP
experiments performed of 3D object detection). One can imagine that from a safety
perspective a higher mAP may be required for objects closer to the ego-vehicle (i.e.
“our” car); (3) Perspective mAP - mAP can be measured depending on the function
requirements and field of view of the sensors. For example, separate mAP can be
measured for the different areas of the ego vehicle i.e. front, back and side since in
those areas different sensors are used.

Table 1. Sensor failure evaluation for easy, medium, hard difficulty classes of 3D multi-modal
object detection (excerpt from the experiment results): mAP drops when the camera has a failure.

Object detection mAP Easya Medium Hard

All sensors error free 89.99 87.92 80.09
Camera failure 89.38 79.40 78.83
aDifficulty classes - easy, medium, hard.
Example easy definition - minimum bounding
box height 30 image pixels, no occlusion i.e.
fully visible, maximal object truncation of 15%.

Practical Experience Report 241

Moreover, traceability between the KPIs and the data samples may be useful to
identify the scenes or scenarios that the DNN cannot handle well enough.

3.4 Deployment and Monitoring

In the inference phase the deployed DNN is used to perform predictions on new data
samples at runtime, e.g. to detect objects. An important aspect here is to be able to
monitor and detect unseen situations and deal with unseen critical situation. This means
an online monitor is required for detecting unseen situations i.e. distributional shift
(ODD). One approach to detect those situations is by measuring the epistemic uncer-
tainty as already stated above. However, timing might be an issue since the same
sample has to be passed through the network forward path several times. Another
solution is proposed by Cheng et al. [3]. Neuron activation patterns monitor is gen-
erated by feeding the training data to the network and storing the neuron activation
patterns in an abstract form. At inference, a classification decision over an input sample
is provided by examining if the activation pattern (measured by Hamming distance) is
similar to one of the patterns obtained for the training set. If the monitor does not
contain any similar pattern, it raises a warning that the decision is not based on the
training data. Since the proposed solution uses only activation pattern of the neurons in
the last layer, the applicability of the approach for complex DNN architectures is to be
investigated. Runtime monitoring may result in certain measures to ensure the ongoing
safety of the deployed system. Possible measures may include: development of a new
safety mechanism or improving an existing safety mechanism, updating the ODD etc.

3.5 Safety Artefacts

Artefacts generated in all DNN development steps (Sects. 3.1, 3.2, 3.3 and 3.4) play a
central role when building the safety argument for the safety case. When developing
DNN one has to re-consider which other artefacts are needed apart from the ones that
are generated during traditional rule-based development. To do so, one could consider
the complete DNN development pipeline. Along that pipeline, one could identify the
following artifacts w.r.t. functionality definition: DNN requirements specification

Fig. 3. Distance mAP for easy, medium, hard difficulty classes of 3D multi-modal object
detection: mAP decreases as the distance between ego vehicle object and other objects increases.

242 J. Frtunikj

(specification of ODD, technical safety requirements etc.), KPI specification, etc.
Regarding the data set possible safety artefact may include: data set KPIs, data set
splitting specification, labeling specification, labeling quality report, etc. In the third
step one should consider artefact like e.g. network graphs, hyper parameters of training,
(trained) weight values, test & validation KPI evaluation reports, etc. During the
deployment and monitoring safety artefacts like distributional shift (ODD) monitoring
reports can be considered.

4 Summary and Further Work

DL algorithms are powerful and their attractiveness is gradually driving their adoption
to complex tasks. Until now, most of the DNN research focused on improvements in
capability and performance. However, when executing safety-related tasks, a mal-
function of a DNN can lead to a system failure. The paper provided an overview of
safety challenges along the DNN development pipeline, offered solution ideas, and
discussed state of the art solutions. We expect the paper to awaken the interest of our
industry and research peers in engineering safety for DNN and machine learning in
general. In future, we expect to devote ourselves to developing a common problem
understanding and solution together with our partners.

References

1. Abu Alhaija, H., et al.: Augmented Reality Meets Computer Vision: Efficient Data
Generation for Urban Driving Scenes. arXiv preprint: arXiv:1708.01566 (2017)

2. Chen, X., et al.: Multi-view 3D object detection network for autonomous driving. In: IEEE
Conference on Computer Vision and Pattern Recognition (2017)

3. Cheng, C., et al.: Runtime Monitoring Neuron Activation Patterns (2018)
4. Eifel, A., et al.: Multimodal deep learning for robust RGB-D object recognition. In: IEEE

International Conference on Intelligent Robots and Systems (2015)
5. Frtunikj, J., Fuerst, S.: Engineering safe machine learning for automated driving systems. In:

Safety-Critical Systems Symposium 2019 (2019)
6. Gal, Y.: Uncertainty in deep learning, Ph.D. dissertation, University of Cambridge (2016)
7. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision (2015)
8. ISO 26262 Road vehicles: Functional Safety (2018)
9. ISO/PRF PAS 21448 Road vehicles: Safety of the intended functionality (2018)
10. Kim, J., et al.: Robust deep multi-modal learning based on gated information fusion network.

In: Computer Vision and Pattern Recognition (2018)
11. Ku, J., et al.: Joint 3D Proposal Generation and Object Detection from View Aggregation.

arXiv preprint: arXiv:1712.02294 (2017)
12. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE

Int. J. Transp. Saf. 4(1), 15–24 (2016)
13. Poibrenski, A., Sprenger, J., Müller, C.: Towards a methodology for training with synthetic

data on the example of pedestrian detection in a frame-by-frame semantic segmentation task.
In: First Workshop on Software Engineering for AI in Autonomous Systems (2018)

14. Tang, S., Yuan, Y.: Object Detection based on Convolutional Neural Network (2015)

Practical Experience Report 243

http://arxiv.org/abs/1708.01566
http://arxiv.org/abs/1712.02294

15. Ulbrich, S., Menzel, T., Reschka, A., et al.: Defining and substantiating the terms scene,
situation, and scenario for automated driving. In: IEEE 18th International Conference on
Intelligent Transportation Systems (2015)

16. Zachary, P., et al.: Putting Image Manipulations in Context: Robustness Testing for Safe
Perception (2018)

17. Zendel, O., et al.: How good is my test data? introducing safety analysis for computer vision.
Int. J. Comput. Vis. 125(1–3), 95–109 (2017)

18. Everingham, M., et al.: The PASCAL Visual Object Classes Challenge 2007 Results (2007)

244 J. Frtunikj

Autonomous Vehicles Meet the Physical
World: RSS, Variability, Uncertainty,

and Proving Safety

Philip Koopman1,2(&), Beth Osyk1,2, and Jack Weast1,2

1 Edge Case Research, Pittsburgh, PA, USA
koopman@cmu.edu, bosyk@ecr.guru, jack.weast@intel.com

2 Intel, Chandler, AZ, USA

Abstract. The Responsibility-Sensitive Safety (RSS) model offers provable
safety for vehicle behaviors such as minimum safe following distance. However,
handling worst-case variability and uncertainty may significantly lower vehicle
permissiveness, and in some situations safety cannot be guaranteed. Digging
deeper into Newtonian mechanics, we identify complications that result from
considering vehicle status, road geometry and environmental parameters. An
especially challenging situation occurs if these parameters change during the
course of a collision avoidance maneuver such as hard braking. As part of our
analysis, we expand the original RSS following distance equation to account for
edge cases involving potential collisions mid-way through a braking process.

Keywords: Autonomous vehicle safety � RSS � Operational design domain

1 Introduction

The Responsibility-Sensitive Safety (RSS) model proposes a way to prove the safety of
self-driving vehicles [12]. The RSS approach is currently deployed in Intel/Mobileye’s
test fleet of fully automated vehicles. Application areas of RSS include both fully
autonomous vehicles and driver assistance systems. This paper reports results of an
ongoing joint project to externally validate and further improve RSS.

A salient feature of RSS is the use of Newtonian mechanics to specify behavioral
constraints such as determining safe following distance to avoid collisions even when
other vehicles make extreme maneuvers such as hard braking. Employing RSS as
safety checking logic requires not only knowledge of the physics of the situation, but
also correct measurements to feed into the RSS equations.

We consider an example of applying RSS rules to a longitudinal following distance
scenario involving the vehicle under consideration (often called the ego vehicle) as a
follower behind a lead vehicle. To put RSS into practice, the ego vehicle requires at
least some knowledge of the physical parameters fed into the physics equations,
including ego vehicle and lead vehicle status, road geometry, and operational envi-
ronment. However, proving guaranteed safety via that approach is complicated by
variability and uncertainty.

© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 245–253, 2019.
https://doi.org/10.1007/978-3-030-26601-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_17

This paper identifies the implications for these issues in applying RSS to real
vehicles. Additionally, it proposes a new following distance equation to encompass
edge cases that were out of scope for the original RSS analysis.

A significant finding is that variability and uncertainty in the operational conditions
introduce significant challenges for ensuring safety while maintaining acceptable per-
missiveness. (The permissiveness of a system is how free it is to operate without
violating safety constraints [6].) Variability is especially problematic because of the
large potential dynamic range of driving conditions [9]. For example, the difference
between safe following distance on an icy hill compared to flat dry pavement means
that a one-size-fits-all worst case approach to safe following distance is unlikely to
result in a vehicle people will actually want to use. This paper seeks to identify the
issues that must be resolved to use the RSS equations in a way that provides provable
safety to the maximum degree practicable. Designing approaches that can use this
foundation to address the challenges of variability and uncertainty is left as future work.

2 Related Work

Advanced Driver Assistance Systems (ADAS) have made large strides in improving
automotive safety, especially in mitigating the risk of rear end collisions. Autonomous
Emergency Braking (AEB) can now fully stop a vehicle in many lower-speed situa-
tions [1]. Beyond AEB, vehicles may offer driver assistance technologies including a
safe distance warning [1]. Technologies have differing availability depending on speed
and manufacturer [7]. Test protocols generally select a few speed combinations rep-
resentative of urban and highway driving [7] in controlled conditions. Moreover, it is
typical for current ADAS systems to used fixed rules of thumb (e.g., the two-second
following rule as used by [5]) for establishing operational safety envelopes that while
potentially improving safety on average can either be to conservative or too optimistic.
This paper takes a broader approach that considers the specifics of the vehicles
involved and environmental conditions. We are not aware of other work that considers
expanding physics-based safety analysis such as RSS to consider environmental con-
ditions and vehicle performance characteristics.

Work on characterizing and dealing with perception uncertainty in the context of
safety critical systems is still developing. [3] provides a model of factors that influence
development and operational uncertainty.

Safe state analysis is a theme for autonomous vehicle path planning. Path planning
algorithms may consider the safety of the current state and reachable states in order to
plan a path, including making predictions about potentially occluded obstacles [10].
Such approaches tend to suffer from probabilistic limitations on their ability to provide
deterministic safety, whereas the RSS approach to safety aspires to provide a deter-
ministic model for safety.

We base our analysis on an initial RSS paper [12], and are aware of a follow up
paper [13]. Interest in the performance aspect of RSS continues to grow, with a model
and analysis of traffic throughput presented in [Mattas19] comparing RSS to human
drivers under various values for the RSS parameters. We are not aware of other
published analyses of RSS equations for correctness and completeness.

246 P. Koopman et al.

3 RSS Overview

3.1 The RSS Following Distance Equation

In an RSS leader/follower scenario, the follower vehicle is presumed to be responsible
for ensuring a safe longitudinal distance, so we assume that the ego vehicle is the
follower. For this situation, RSS uses a safety principle of: “keep a safe distance from
the car in front of you, so that if it will brake abruptly you will be able to stop in time.”
[12] Fig. 1 shows a notional vehicle geometry:

This yields a minimum following distance (id., Lemma 2):

d0min ¼ MAX 0; vrqþ 1
2
amax;accelq

2 þ vr þ qamax;accel
� �2

2amin;brake
� v2f
2amax;brake

 !()
ð1Þ

Where in our case the ego vehicle is the following (“rear”) vehicle, and:

• d
0
min is the minimum following distance between the two vehicles for RSS

• vf is the longitudinal velocity of the lead (“front”) vehicle
• vr is the longitudinal velocity of the following (“rear”) vehicle
• q is the response time delay before the ego (rear) vehicle starts braking
• amax,brake is the maximum braking capability of the front vehicle
• amax,accel is the maximum acceleration of the ego (rear) vehicle
• amin,brake is the minimum braking capability of the ego (rear) vehicle

The d
0
min equation considers a leading vehicle, going at initial speed vf, which

executes a panic stop at maximum possible braking force amax,brake. The ego following
vehicle traveling at vr is initially no closer than distance d

0
min. In the worst case, the ego

vehicle is accelerating at amax,accel when the lead vehicle starts braking. There is a
response time q during which the ego vehicle is still accelerating. Then the ego vehicle
detects the lead vehicle braking and reacts by panic braking with deceleration of at least
amin,brake. RSS considers the worst case scenario to be a highly capable lead vehicle
with high amax,brake followed by an ego vehicle that brakes at an initially lower braking
capability of at least amin,brake. A poorly braking follower requires additional distance to
accommodate its inability to stop quickly.

Fig. 1. Reference vehicle geometry for leader/follower.

Autonomous Vehicles Meet the Physical World 247

While a derivation based on comparative stopping distances confirmed the equa-
tion, analysis using Ptolemy II [11] revealed edge cases beyond the scope of the
analysis in [12]. (Additional RSS braking profile information is provided by [13].)
Specifically, Eq. 1 does not detect situations in which the two vehicle positions overlap
in space during – but not at the end of – the braking response scenario.

As a thought experiment, consider an ego vehicle with good brakes that has mat-
ched speeds with a leader of significantly worse braking ability. Equation 1 is derived
assuming the minimum vehicle separation occurs at the final rest positions. If the rear
vehicle has superior braking, it could mathematically be “ahead” of the lead vehicle at
some time during braking, yet still have a final rest position “behind” the lead vehicle
due to shorter stopping distance. In reality, this is a crash. Thus, an additional constraint
is that the rear vehicle must remain behind the lead vehicle at all points in time.

A related scenario is a rear vehicle approaching with high relative velocity and
superior braking. The rear vehicle might collide during the interval in which both
vehicles are braking, while still having a computed stopping point behind the lead
vehicle.

To address these situations, we break the analysis up into two parts based on the
situation at the time of a collision if following distance is violated: (1) impact during
response time q and (2) impact after q but before or simultaneous with the rear vehicle
stopping. (Impact is no longer possible after the rear vehicle stops for this scenario.)

Accounting for situation (1) requires computing the distance change during the
response time q. There are two cases. The first is when the front vehicle stops before q,
and the second is when the front vehicle stops at or after q.

Situation (2) has two parts. First, compute the distance change during q:

d00min ¼ ðvr � vf Þqþ ðamax;accel þ amax;brakeÞq2
2

ð2Þ

Next, solve for the distance between the two vehicles after q as a function of time:

d000min ¼ vr þ amax;accelq
� �

tr � amin;braket2r
2

� vf � amax;brakeq
� �

tf �
amax;braket2f

2

 ! ð3Þ

This is a parametric equation involving the time after the response time for both
vehicles: tr ant tf. The minimum distance will occur at time tr = tf = t when both
vehicles have equal speed (with the value of t then substituted into Eq. 3 for
evaluation):

t ¼ ðvr0 � vf 0Þþ amax;accel þ amax;brake
� �

q

amin;brake � amax;brake
� � ð4Þ

248 P. Koopman et al.

The special case minimum following distance is the sum of d
0
min and d

00
min, and only

holds when the rear vehicle is faster than the front vehicle at the end of the response
time and the rear vehicle can brake better than the front vehicle:

dmin ¼ MAX d0min; d00min þ d000min
� �� �

; special case
d0min ; otherwise Original RSSð Þ

�
ð5Þ

Because amax,accel is likely to be of secondary importance for small q, we focus the
balance of our discussion on braking. However, similar issues apply to acceleration.

3.2 Coefficient of Friction

Implicit in the RSS equations is that the maximum frictional force exerted by the
vehicle on the ground limits braking ability ([14] pg. 119):

Ffriction ¼ l � Fnormal ð6Þ

where:

• Ffriction is the force of friction exerted by the tires against the roadway
• l is the coefficient of friction, which can vary for each tire
• Fnormal is the force with which the vehicle presses itself onto the road surface

The friction coefficient is a property of both the tires and the road surface. It is
important to note that l can be above 1.0 for some materials ([14] pg. 119), so a
rigorous proof cannot assume limited l without placing constraints upon installed tires.

3.3 The Normal Force and Road Slope

The normal force on each tire is a property of the vehicle weight, weight distribution,
the effects of suspension, the slope of the road, and so on. The normal force is the
weight of the vehicle multiplied by the cosine of the road slope, shown by Fig. 2:

Fig. 2. Vehicle forces on an inclined roadway.

Autonomous Vehicles Meet the Physical World 249

In this situation, braking ability is potentially limited by the reduced normal force.
Moreover, gravity is pulling the vehicle down the hill, acting against and further
reducing the net braking force ([14] pg. 102). If l is low, the net force can result in the
vehicle sliding down the hill (either forwards or backwards) if the brakes cannot
overcome the gravitational downhill force vector. Transverse road slope (camber) can
similarly reduce Fnormal, but at least does not affect vehicle speed directly.

3.4 Road Curvature

An additional limitation to braking capability is that the centripetal force exerted by a
vehicle to make turns must be provided by Ffriction ([14] pg. 128). The net vehicle
acceleration (both radial and linear) is a result of a force vector applied by the tire
contact patches to the road surface. It follows that any force used to curve the vehicle
trajectory steals available force from the ability to stop the vehicle by requiring a force
vector that is at off-axis from the vehicle’s direction of travel. That means that if the ego
vehicle is in a tight turn it will have trouble braking effectively. Lane positioning and
racing line techniques [8] add additional complexity.

A banked curve complicates analysis even further, involving potential increases or
decreases to Fnormal depending upon whether the bank (superelevation) is tilted toward
or away from the center of the curve.

4 Uncertainty and Variability

While Newtonian Mechanics provides us the tools to determine following distance in
principle, even a simplified equation setup for a vehicle’s maximum stopping distance
on a downhill corkscrew turn is worthy of a college Physics final exam. But in the real
world we don’t actually know the precise values of all the variables in the equations.

An important issue with proving safety in a cyber-physical system is that there is
inherent uncertainty in sensor measurements. That uncertainty includes both issues of
accuracy (how close the measurement is to the actual value being measured) and
precision (what the distribution of errors in the measurement is across multiple mea-
surements). Uncertainty can additionally be characterized as aleatory uncertainty (e.g.,
sensor noise that causes non-zero precision), and epistemic uncertainty (e.g., inaccurate
measurements and incorrect modeling of the environment) [2]. Both types of uncer-
tainty impair the ability to formally prove safety for a real-world system.

The mere existence of a probability distribution for aleatory uncertainty impairs the
ability to create a perfect proof. In principle any series of data points might, with some
probability, be wildly inaccurate. Data filtering and statistical techniques might improve
the situation, but in the end there is always some non-zero (if infinitesimal) probability
that a string of outlier data samples will cause a mishap. Over-sampling to drive that
uncertainty below life-critical confidence thresholds (e.g., failure rate of 10−9/hr) could
be impracticable due to the fast time constants required for vehicle control.

For epistemic uncertainty, a significant problem is providing a completely accurate
model of the environment and the vehicle. Moreover, even if limitations on sensors and

250 P. Koopman et al.

potential correlated sensor failures are mitigated through the use of high-definition
maps, variability of operational environments is a significant issue.

Uncertainty cannot be completely eliminated in the real world, so the question is
how to account for it within the RSS model while keeping the system practical and
affordable. In support of that, we consider sources of uncertainty and variability.

4.1 Other Vehicle Parameters

Ensuring that the ego vehicle avoids colliding with other vehicles requires under-
standing the state of those other vehicles. Knowing where they are and where they are
going requires other vehicle pose and kinematic information: {position, orientation,
speed, acceleration, curvature} in addition to a prediction of how that information is
going to change in the near future (e.g., path plan). That information will be imperfect.

In the absence of perfect information, RSS simply assumes that distance is known
and that the lead vehicle will immediately execute a panic braking maneuver at
amax,brake. While in an ideal world all vehicles have a predetermined and consistent
amax,brake, in the current world not all vehicles are thus equipped. However, even if new
vehicles are standardized, braking capability can increase further due to factors such as
after-market brake upgrades, after-market tire upgrades, low tire pressure, after-market
aerodynamic modifications, and even driver leg strength. While a vehicle might be
equipped with a feature that intentionally limits maximum deceleration, too strict a
limit would extend stopping distance and increase collision rates in other situations
such as single car crashes.

If the ego vehicle wants to optimize following distance based on the actual lead
vehicle capabilities, it will need a way to determine what those are. Most vehicles are not
designed to brake above 1 g, but it is likely this limit is not universal on public roads.

4.2 Ego Vehicle Parameters

While knowing the exact state of the lead vehicle is difficult, it is also important to
appreciate that knowing the state of the ego vehicle is also difficult. Many of the
parameters that affect the lead vehicle also affect the ego vehicle, although the concern
in this case is more about unexpectedly reduced braking ability. Some factors that
might reduce braking capability below expectations include:

• Transient equipment degradation: brake fade due to overheating, brake wetness
(e.g., due to puddle splash), cold tire temperature, etc.

• Equipment condition: brake wear, brake actuator damage, low tire tread depth, high
tire pressure, etc.

• System interactions: interactions between braking system and electronic stability
control, effect of anti-lock braking features, etc.

4.3 Environmental Parameters

Successfully executing an aggressive braking maneuver involves not only the vehicle,
but also the environment. While environmental conditions in a road segment might be

Autonomous Vehicles Meet the Physical World 251

reasonably well known via a local weather service (which becomes safety critical as
soon as it is relied upon for this purpose), average values might differ substantially
from the instantaneous environmental conditions relevant to a braking maneuver. After
all, it is not the average road conditions over a kilometer of road that matter, but rather
the specific road conditions that apply to paths of the set of tire contact patches of each
vehicle during the course of a panic stop maneuver. Relevant factors that could result in
a faster-than-expected lead vehicle braking maneuver combined with a slower-than-
expected ego vehicle braking maneuver due to differences on the roadway include:

• Road surface friction: road surface, temperature, wetness, iciness, texture (e.g.,
milled ridges that increase traction; bumps that cause loss of tire contact), etc.

• Road geometry: slope, banking, camber, curvature as previously discussed
• Other conditions: hydroplaning, mudslides, flooding, high winds pushing against a

high profile vehicle body, road debris, potholes, road buckling, etc.

While the two vehicles will traverse the same stretch of roadway for some braking
time, their contact patches are not necessarily going to follow exactly the same paths.
Localized tire track road conditions can result in different stopping ability even if we
attempt to measure some average value of l. Consider, for example, a lead vehicle that
brakes hard in snowy weather on a cleared tire path while the following ego vehicle
gets caught slightly laterally displaced from the tracks with its tires on ice.

4.4 Potential Assumption-Violating Actions

Even if we know the values for all the variables, there are assumptions made by the
RSS longitudinal safety guarantees and stated scope limitations that might be violated
by real world situations. Examples include:

• Lead vehicle does not violate the assumed maximum braking deceleration limit
(e.g., due to impact with a large boulder that suddenly falls onto the road).

• Roadway l does not unexpectedly change (e.g., flash ice-over).
• Ego vehicle does not fall below minimum expected braking capability (e.g., due to

brake fade, puddle splashes onto brake rotor).
• There are no significant equipment failures (e.g., catastrophic brake failure of ego

vehicle during a panic braking event).
• There are no unusual vehicle maneuvers (e.g., cut-in scenarios in which a vehicle

suddenly appears too close; cut-out scenarios in which the lead vehicle swerves to
reveal a much slower, too-close new lead vehicle [4]).

5 Conclusion

An examination of RSS has validated the following distance equation for common
situations and augmented that formula to handle a class of edge cases for potential
collisions that can happen during a braking event. A significant potential impediment to
practical adoption of RSS is providing sufficient permissiveness while ensuring safety
in extreme conditions such as icy roads and encountering clusters of outlier sensor data.

252 P. Koopman et al.

To arrive at a practicable balance between safety and permissiveness, further
engagement with government and industry standards organizations is recommended.

Acknowledgment. This research was supported by Intel.

References

1. ADAC Vehicle Testing, Comparative Test of Advanced Emergency Braking Systems (2013)
2. Chen, D., Östberg, K., Becker, M., Sivencrona, H., Warg, F.: Design of a knowledge-base

strategy for capability-aware treatment of uncertainties of automated driving systems. In:
Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol.
11094, pp. 446–457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99229-7_38

3. Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty for safe
automated driving. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11094, pp. 439–445. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99229-7_37

4. European New Car Assessment Programme (Euro NCAP), “Test Protocol – AEB Systems”,
Version 2.0, March 2017

5. Fairclough, S., May, A., Carter, C.: The effect of time headway feedback on following
behaviour. Accid. Anal. Prev. 29(3), 387–397 (1997)

6. Guiochet, J., Powell, D., Baudin, É., Blanquart, J.-P.: Online safety monitoring using safety
modes. In: Workshop on Technical Challenges for Dependable Robots in Human
Environments, PASADENA, United States, pp. 1–13, May 2008

7. Hulshof, W., Knight, I., Edwards, A., Avery, M., Grover, C.: Autonomous emergency
braking test results. In: Proceedings of the 23rd International Technical Conference on the
Enhanced Safety of Vehicles (ESV) (2013)

8. Kapania, N., Subosits, J., Gerdes, J.C.: A sequential two-step algorithm for fast generation of
vehicle racing trajectories. J. Dyn. Syst. Meas. Control, V 138, Paper 091005, September
2016

9. Koopman, P., Fratrik, F.: How many operational design domains, objects, and events? In:
SafeAI 2019, AAAI, 27 January 2019

10. Orzechowski, P., Meyer, A., Lauer, M.: Tackling occlusions & limited sensor range with set-
based safety verification. In: 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC), November 2018. https://arxiv.org/abs/1506.06579

11. Ptolemy Project: heterogeneous modeling and design. https://ptolemy.berkeley.edu/
ptolemyII/index.htm. Accessed 5 May 2019

12. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable self-
driving cars. Mobileye 2017. https://arxiv.org/abs/1708.06374. v6 updated 27 Oct 2018

13. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Vision zero: can roadway accidents be
eliminated without compromising traffic throughput? In: Mobileye 2018. https://export.
arxiv.org/abs/1901.05022

14. Walker: Halliday/Resnick: Fundamentals of Physics, 8th edn., vol. 1. Wiley (2008)

Autonomous Vehicles Meet the Physical World 253

http://dx.doi.org/10.1007/978-3-319-99229-7_38
http://dx.doi.org/10.1007/978-3-319-99229-7_37
http://dx.doi.org/10.1007/978-3-319-99229-7_37
https://arxiv.org/abs/1506.06579
https://ptolemy.berkeley.edu/ptolemyII/index.htm
https://ptolemy.berkeley.edu/ptolemyII/index.htm
https://arxiv.org/abs/1708.06374
https://export.arxiv.org/abs/1901.05022
https://export.arxiv.org/abs/1901.05022

Automated Evidence Analysis
of Safety Arguments Using Digital

Dependability Identities

Jan Reich1(B), Marc Zeller2, and Daniel Schneider1

1 Fraunhofer IESE, Kaiserslautern, Germany
{jan.reich,daniel.schneider}@iese.fraunhofer.de

2 Siemens AG, Munich, Germany
marc.zeller@siemens.com

Abstract. Creating a sound argumentation of why a system is suffi-
ciently safe is a major part of the assurance process. Today, compiling a
safety case and maintaining its validity after changes are time-consuming
manual work performed by safety experts based on their experience and
knowledge. This work is further complicated when supplier components
need to be integrated where important details might not be known. By
using the concept provided by Digital Dependability Identities (DDI), we
present an approach to automatically check evidence validity for safety
requirements through leveraging from formal traceability between safety
argument and evidence models being both parts of the DDI. This app-
roach reduces the effort for creating and maintaining the system-level
safety argument by (a) performing automated evidence analysis for safety
requirements, (b) supporting a model-based multi-tier safety engineering
process and (c) eliminating the human error source by relying on DDI
scripts to encode safety engineering activities. We illustrate our approach
using a case study from the railway domain, which focuses on the safety
assurance of a train control system (ETCS).

1 Introduction

The growing complexity of safety-critical systems in many application domains
such as the automotive, avionics, or railway poses new challenges for system
development. Along with the growing system complexity, also the need for safety
assurance and its associated effort is drastically increasing. Safety assurance is
a mandatory part in order to pass certification and to satisfy the high-quality
demands imposed by the market. Consequently, without safety assurance, mar-
ket introduction and success of a product is in jeopardy. In different applica-
tion domains, safety standards such as ISO 26262 [3] in the automotive domain
or CENELEC EN 50129 [2] for railway signaling equipment define the safety
assurance process. The goal of this process is to identify all failures that cause
hazardous situations and to demonstrate that their occurrence probabilities are
sufficiently low and that the system’s residual risk is thus acceptable. Typical
c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 254–268, 2019.
https://doi.org/10.1007/978-3-030-26601-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_18

Automated Evidence Analysis of Safety Arguments Using DDIs 255

activities in this process are the identification and assessment of hazards, con-
ducting safety analyses (e.g. using FTA) and eventually the creation of a sound
safety argument as to why the system is sufficiently safe. The safety argument
clearly has a central role as it communicates the relationship between safety
requirements and its supporting evidence [5]. The argumentation is often part
of a safety case (depending on the domain) and its creation can generally be
considered a major task of the overall assurance process.

Compiling a safety case is typically very laborious and, as of today, is purely
manual work performed by safety experts based on their experience and knowl-
edge about the applied safety standard and the system under consideration.
There is a lack of guidance, general tool-support and, not surprisingly, there is
no automation available to support the argumentation and the linking of evi-
dence to create the rationale for why a system is sufficiently safe.

By using the concepts provided by Digital Dependability Identities (DDIs)
[10], we present an approach to automatically check the sufficiency of evidence
for safety requirements by automating parts of the assurance process. Partic-
ularly, by means of the presented approach, the effort of compiling a sound
safety case is reduced by automating the creation of the safety argumentation
about the development process and the product itself. Likewise, the effort for the
reassessment of a safety-critical system after performing a modification can be
decreased. The presented approach further supports different engineering sce-
narios in the context of a multi-tier engineering process, i.e. the synthesis of
modular safety-related specifications of a component (in form of a DDI) by a
supplier as well as semi-automated support for the integration of different DDIs
(of supplier components) by an OEM. We illustrate our approach using a case
study from the railway domain, which focuses on the safety assurance of a train
control system, i.e. the European Train Control System (ETCS), as a running
example.

The rest of the paper is organized as follows: In Sect. 2, we introduce the
railway case study which is used as a running example. Afterward, we outline
the concept of DDIs for safety engineering and show how it is embedded in a
distributed development process. In Sect. 4, we present our approach to automate
the creation of a safety argumentation about both processes and product. The
state-of-the-art is briefly summarized in Sect. 5. Sect. 6 concludes the paper.

2 ETCS Running Example

2.1 ETCS System Description

The European Train Control System (ETCS) provides standardized train control
in Europe and facilitates cross-border train operation. ETCS consists of onboard
and trackside subsystems. Moreover, the ETCS subsystems may be produced
by different vendors (suppliers) and must be integrated by a railway operator.
Both subsystems must fulfill the safety requirements defined in Subset-091 of
the ERTMS/ETCS specification [11]. However, functions such as the emergency

256 J. Reich et al.

brake service consist partly of on-board as well as parts of trackside functional-
ities. Thus, a proper analysis of the emergency brake function must span over
both sub-systems. Consequently, the safety case of an ETCS system needed for
certification w.r.t. CENELEC EN 50129 [2] requires the synthesis of a sound
safety argument by the system integrator using the information provided by the
different subsystem suppliers.

2.2 ETCS Safety Case

This section describes an exemplary safety case related to the ETCS trackside
system. The goal of a safety case is to demonstrate in a structured argument
with evidence that a system’s residual safety risk has been reduced to an accept-
able level. In many application domains, there are already standards in place
providing a set of processes or concrete safety requirements to be executed and
satisfied, depending on the required integrity. Thus, safety standards such as
CENELEC EN 50129 provide a basis to structure the high-level safety argu-
ment. Figure 1 shows those parts of an exemplary ETCS safety case relevant for
the paper, documented in the Goal Structuring Notation (GSN) [6]. The refine-
ment of the top-level Goal G1 is on the one hand driven by adherence to railway
safety standards as well as to the ETCS system safety specification. On the other
hand, it is driven by the system decomposition into trackside and onboard sub-
systems, of which the trackside system will be the focus of this paper (see Fig. 1).
Thereby, the root safety goal is refined into process and product argument parts.

The process-related requirements typically directly originate from safety
standards implying required process execution rigor according to the Safety
Integrity Level (SIL). As (at least some) trackside functions are determined
highly safety-critical, they have to be developed demonstrating SIL 4 integrity
(G2). In Fig. 1, G4, G7, G8 and G9 exemplify such normative requirements, of
which the automated validity analysis of G9 will be elaborated in Sect. 4.3.

As rigorous process execution is only an indirect and therefore not definitive
measure of safety, it has to be complemented by product-related safety require-
ments constraining failure rates with respect to system-level hazardous events
to an acceptable level (G3 in Fig. 1). The acceptable failure rate thresholds for
the hazards of the ETCS system are defined in the ETCS specification Subset-
091 [11].

It is important to note that different parts of the safety case are created and
assessed by different stakeholders. While the overall system part of the safety
argument is the responsibility of the ETCS system integrator, G1, G2 and G3
represent the development interface with the Trackside system supplier, i.e. their
further decomposition and the provision of evidence is the supplier’s responsibil-
ity. This enables the supplier to be flexible regarding the choice of safety analysis
techniques to demonstrate that the target failure rate has been achieved by the
supplied system. For providing the required evidence to support satisfaction of
trackside system goals G3, G5 and G6, Component Fault Trees (CFTs) [4] have
been created. Therefore, G5 and G6 can be verified by performing a quantitative
Fault Tree Analysis (FTA) of the top events representing the hazards Erroneous

Automated Evidence Analysis of Safety Arguments Using DDIs 257

Fig. 1. Exemplary ETCS safety case

balise telegram interpretable as correct and Erroneous loop telegram interpretable
as correct. In addition, G4 and its sub goals as the related process requirements
make sure that the CFT creation and maintenance processes yield an adequate
CFT model so that the CFT analysis results can be trusted. Typically, the
evidence for adequate safety process adherence is found in process handbooks,
review sheets or configuration management tools.

3 Distributed Safety Engineering with DDIs

This section describes the general concept of Digital Dependability Identities
and how they can be used to perform continuous safety engineering processes in
different integrator-supplier scenarios.

258 J. Reich et al.

3.1 Digital Dependability Identities (DDIs)

A fundamental problem of current dependability engineering processes ham-
pering effective assurance lies in the fact that safety argument models are not
formally related to the evidence models supporting the claim. Concrete examples
for such evidence are hazard and safety analysis models or dependability pro-
cess execution documentation. As all those artifacts refer to the same system and
therefore are naturally interrelated with each other, we claim this should also
be the case for the system’s model-based reflection: The Digital Dependability
Identity (DDI) [10]. By establishing this kind of traceability, DDIs represent an
integrated set of dependability data models (=What is the evidence data?) that
are generated by engineers and are reasoned upon in dependability arguments
(=How is the evidence data supporting the claim?). A DDI (see Fig. 2) is, there-
fore, an evolution of classical modular dependability assurance models, in that
several separately defined dependability aspect models are now formally inte-
grated allowing for comprehensive dependability reasoning. DDIs are produced
during design, certified when the component or system is released, and then con-
tinuously maintained over the lifetime of a component or system. DDIs are used
for dependable integration of components into systems during development.

A DDI contains information that uniquely describes the dependability char-
acteristics of a system or component. DDIs are formed as modular assurance
cases, are composable and can be synthesized to create more complex DDIs
from the DDIs of constituent systems and system components. The DDI of a
system contains (a) claims about the dependability guarantees given by a system
to other systems (b) supporting evidence for the claims in the form of various
models and analyses and (c) demands from other connected systems being nec-
essary to support the claims.

The starting point for all dependability assurance activities is the description
and planning of the functionality that the system shall render for its stakehold-
ers, which may be either direct system users, companies or even the society.
An essential property of a function is that it is executed on multiple indepen-
dently developed subsystems leading to a required distribution of dependability

Fig. 2. Digital Dependability Identity @ Design Time

Automated Evidence Analysis of Safety Arguments Using DDIs 259

assurance over multiple system manufacturers. For example, the ETCS function
is executed on the train’s onboard system and the trackside system. Enabling
cooperative function execution while still allowing decoupled development is only
possible by making development interfaces explicit for both functional and qual-
ity aspects. Concretely, structural and behavioral aspects of the intended system
function need to be made explicit along with assured constraints regarding their
quality bounds.

DDIs are concerned with the comprehensive and transparent assurance of
dependability claims. Thus, each assurance activity and each artifact contained
in a DDI is motivated by a root dependability claim that defines sufficient risk
reduction regarding a dependability property such as safety, security, availability
or reliability. The definition of acceptable risk reduction is typically derived
from domain-specific risk management standards targeting different risk causes
such as functional safety (e.g. CENELEC EN 50129). These standards contain
requirements for assessing and reducing risks to an acceptable level.

Having a dependability claim to be assured for the system function, the next
step is the systematic planning of risk management activities. These activities
create necessary evidence for supporting the system engineers’ reasoning that
the dependability claim holds for the developed system. For both risk manage-
ment planning and dependability assessment purposes, an explicit argument is
indispensable inductively relating the created evidence to the top-level claim
through several step-wise layers of argumentation. Note that, while the per-
formed activities and produced artifacts vary depending on the kind of risk that
is being managed, the general need for argumentation supported by evidence
is mandatory for all risks. DDIs deal with dependability risks, thus the cur-
rently supported design time DDI assurance activities and evidence focus on
well-established dependability methods such as hazard and risk analysis, safety
and security analyses, safety design concepts, validation, and verification. These
activities proved sufficient over the last decades in demonstrating the dependabil-
ity of embedded systems. In addition, the reliance on model-based approaches
compensated for the increasing complexity of systems in the past.

Figure 2 illustrates the concept of continuous traceability between a SACM
safety argument and safety-related evidence models stemming from hazard and
risk analysis, functional architecture, safety analysis, and safety design concept.
SACM stands for Structured Assurance Case Metamodel and was standardized
by the OMG on the basis of GSN. [7]. It provides the assurance case backbone for
creating the required traceability. Apart from relating evidence models formally
to the assurance argument, a unique contribution of DDIs is the concretiza-
tion of semantics specifically for safety assurance evidence. Based on this added
product semantic, safety engineering activities in form of DDI scripts can be
executed on the DDI data contents automatically. The DDI meta-model formal-
izing the described traceability and evidence semantics is the Open Dependability
Exchange (ODE)1 meta-model. Although we describe DDI usage in this paper
for safety assurance activities, the concept is general enough to equally apply

1 see http://www.deis-project.eu/ and https://github.com/DEIS-Project-EU/.

http://www.deis-project.eu/
https://github.com/DEIS-Project-EU/

260 J. Reich et al.

it to other dependability properties such as security, reliability or availability.
More details on the DDI framework, its technical realization and usage benefits
can be found on the DEIS project website’s dissemination section [1].

3.2 Generic Safety Engineering Process Integrator/Supplier

In order to be able to identify engineering tasks that are supported by partial
or full automation, it is required to anticipate a certain development process in
which the engineering tasks are embedded. Figure 3 shows an abstract develop-
ment process that is representative of domains such as railway or automotive.
There is an integrator company (e.g. the OEM or the railway operator) that
is building a system by integrating a set of components that are provided by
supplier companies. This process involves four steps, in which the DDI concept
together with (semi-)automated engineering support lead to improvement.

Step 1 – DDI Synthesis @ Integrator. Step 1 involves the synthesis of
component specifications that the supplier company must adhere to. One
particular challenge of synthesizing this specification is to collect all relevant
information that is needed by the supplier in order to develop the component
in isolation. This is not only necessary for information about required func-
tionality, but also for safety requirements. In this scenario, DDIs can be seen
as a container, where all this information can be captured in an integrated
and structured way. Thus, engineering tool support for this step should focus
on helping the engineer to collect the relevant information required by the
DDI for the specific tasks the supplier should carry out. Such specific tasks
could be for instance to demonstrate the adequate satisfaction of interface
safety requirements or to check the compatibility of the supplier component
interface with the interface definition provided by the integrator.

Fig. 3. Generic distributed engineering process of safety-critical systems

Automated Evidence Analysis of Safety Arguments Using DDIs 261

Step 2 – DDI Integration @ Supplier. Step 2 represents the integration of
the specification DDI into the development process of the supplier company.
This could mean for example that model stubs are automatically generated
based on the development interface extracted from the imported DDI. Such
a development interface typically consists of functional or technical data-flow
interfaces or safety requirements allocated to those data-flow interfaces. This
could also be placeholders for assurance evidence artifacts that are to be
instantiated by the supplier and connected to the actually created evidence
in shape of safety analysis, verification, validation or architectural models.

Step 3 – DDI Synthesis @ Supplier. After the DDI has been integrated
in a (semi-)automated way, the supplier performs the actual development
work until it is time to deliver the component back to the integrator. In
this instance, delivery means not only the physical component but also the
safety-related documentation that is required to build a sound safety case for
the integrated system (typically according to one of the commonly known
standards). Step 3 is concerned with synthesizing a DDI containing all rele-
vant information that is needed so that the integrator can properly perform
the integration task. From the supplier perspective, all relevant information
means explicitly not all existent information and, therefore, engineering sup-
port for the supplier should focus on identifying and collecting the minimal
set of information to be delivered. Although this paper focuses on the integra-
tor perspective, the presented DDI approach could in principle also be used
by the supplier to automatically check component safety requirement validity
through checking traceability from requirements to software/hardware design
to code and their respective validation activities such as tests.

Step 4 – DDI Integration @ Integrator. Step 4 deals with the integra-
tion of a component DDI into the overall system. This engineering task typ-
ically involves performing compatibility and structural analyses as well as
behavioral compatibility matching with other components. This task needs
to be performed for both functional and safety aspects. Thus, the compo-
nent safety case has to be integrated into the system safety case in order to
demonstrate confidence in the high-level safety assurance claims. Engineer-
ing support should focus on the (semi-)automated generation, integration and
verification of safety case fragments, i.e. (semi-)automated assessment of claim
satisfaction in system safety cases. Thereby, it is necessary to assess whether
the provided argumentation and evidence yields sufficient confidence in the
validity of system-level assurance claims. In order to assess the adequacy of
evidence and argumentation with partial or full automation, we make use of
the aforementioned formal interrelation of safety case models and product
models provided by a DDI. This approach enables assessing how changes in
any of the DDI product models propagate up to the safety case and indicating
to the dependability engineer the impact of changes on the validity of claims.
As safety cases and the models representing the evidence for supporting the
claims tend to be quite large in the real world, partially automated change
impact analysis gives valuable information to the engineer, which parts of the
existing safety artifacts need to be reassessed.

262 J. Reich et al.

4 DDI-Based Evidence Analysis in a Railway Case Study

This section first describes the ETCS System DDI (Sect. 4.1) and afterward
exemplifies the DDI engineering approach for two concrete safety engineering
activities related to the verification of product-related (Sect. 4.2) and process-
related (Sect. 4.3) safety requirements.

4.1 ETCS System DDI

In the ETCS use case, we utilize DDIs to represent the information provided
in the safety assurance process of the ETCS system, in particular, to turn the
integration of the trackside subsystem safety assurance artifacts more efficient.

A high-level overview of a DDI and its contents for the ETCS example is
depicted in Fig. 4. The ETCS DDI’s backbone is the system-level safety argument
expressed in SACM. As described in Sect. 2.2, the concrete safety argument con-
tains a process-related part motivated by safety requirements from CENELEC
EN 50129 and a product-related part mostly driven by the ETCS specification.
In hierarchical system (of system) structures, the refinement of the system-level
safety argument results in safety requirements to be satisfied by the subsystems,
in the ETCS case by the trackside and onboard subsystems. Note that the prin-
cipal structure of the trackside system DDI (lower part of Fig. 4) is almost equal
to the ETCS DDI, with the exception that the root (=the safety guarantees to
be given) of the trackside safety case are the interface safety requirements posed
by the ETCS integrator. From that point on, a safety argument needs to be pro-
vided by the trackside system manufacturer within the context of the trackside
system. This safety argument is supported by evidence artifacts synthesized from
various kinds of models such as failure logic, architecture or process models. The
most notable innovation introduced by DDIs is that the source models for evi-
dence are formally linked to the argument bits supported by them and organized
within an all-embracing container. This characteristic together with the possibil-
ity to automatically match demanded and satisfied requirements in different DDIs
(see the “Trackside System Safety Requirements” demanded by the ETCS system
and satisfied by the trackside system) enable efficient safety-related collaboration
across multi-tier supply chains and semi-automated change management through
explicitly defined exchange interfaces. After the DDIs of all subsystems have been
integrated into the ETCS system DDI by using DDI scripts, the last step in the
assurance process is the provision of integration-level evidence that is typically
based on analyses of the integrated system’s architecture and failure logic as well
as the verification and validation of safety goals and that any assumptions posed
during the development process still hold in the final product.

4.2 Automated Evidence Analysis of Product Safety Argument

In this Section, we want to show how to automatically analyze evidence com-
pleteness for the following ETCS product safety requirement across the supply
chain with the DDI framework (see Figs. 1 and 5).

Automated Evidence Analysis of Safety Arguments Using DDIs 263

Fig. 4. High-level contents of ETCS and trackside DDIs

G3: Hazard rate of trackside functions (“Trusted part”) ≤ 0.67 ·10−9/h has been
demonstrated.

In order to analyze requirement G3 in a conventional safety assurance process
(i.e. without DDIs), the ETCS integration safety engineer would have to perform
the following steps:

S1 Determine, which activities and work products a standard-compliant satis-
faction of the requirement implies

S2 Refine G3 according to the assurance strategy into interface safety require-
ments for all hazardous events (G5 and G6 as examples)

S3 Contact the trackside system’s safety engineer and get documentation
(e.g. documents or models) about evidence for the satisfaction of G5 and G6

S4 Identify the relevant parts within the provided documentation, in this case,
the FTA models and analysis results (typically time-consuming due to differ-
ent processes, tools and safety assurance perspectives)

S5 Sum up the supplier quantitative FTA results for the relevant hazardous
events (2 · 10−11/h) and compare the result to the target failure rate
demanded by G3 (0.67 · 10−9/h).

S6 If the requirement is fulfilled, link and archive evidence source to the require-
ment so that an assessor can find it easily.

Figure 5 shows how the engineering steps to verify requirement G3 listed
above can be carried out automatically with the DDI framework. The start-
ing points are the safety requirements G5 and G6, which are located in SACM

264 J. Reich et al.

Argument packages of both ETCS and trackside DDIs, in the first as part of
the argument refinement, in the latter as explicit safety interface specification
(in Fig. 5, duplication was avoided). Thus, evidence produced for the trackside
system can be traced to from the ETCS safety argument during integration
by automatically matching. This automatic matching is currently done based
on tagged value content matching. However, more intelligent matching mecha-
nisms such as semantic understanding of structured requirements and evidence
descriptions are to be explored. Having established traceability between ETCS
and trackside arguments, the main question is how to (a) relate G5 with the
failure logic model supporting the requirement and (b) how to perform steps S4-
S6 automatically, i.e. how to use the enriched data to produce the verification
result.

To support the understanding of a requirement by a machine, SACM pro-
vides the Terminology mechanism, which enables structured text definition. In
the example this means that G5 is enriched with semantic tags (called Terms)
representing the nature of the requirement:

RequirementType. The type of demand (=Failure Rate Demonstration with
Quantitative FTA), related to a DDI script encoding a safety standard activ-
ity consuming all required DDI models and producing the verification result.

Fig. 5. ETCS failure rate consistency check with DDIs

Automated Evidence Analysis of Safety Arguments Using DDIs 265

ElementReference. Formal reference to the TopEvent element in the Track-
side CFT representing the hazardous event described in the requirement. In
general, this can be any element within the DDI.

VerificationCriteria. The target failure rate to be satisfied by the actual com-
puted failure rate for the fault tree (assumed to be existent in the failureRate
attribute of the top event’s ODE representation). In general, these criteria
should be defined with Boolean conditions to ensure decidability.

Based on a fully integrated DDI data model containing all required verifica-
tion information, the missing piece is the encoded safety intelligence perform-
ing the automated verification. For this task, a script-based safety automation
engine has been created in DEIS relying on the Eclipse Epsilon Framework 2. It
offers various task-specific languages for efficiently querying, manipulation and
generation of models. For the ETCS verification task, DDI scripts have been
created operating on the DDI models shown in Fig. 5. To that end, the Epsilon
Validation Language (EVL) and the Epsilon Object Language (EOL) have been
employed to navigate within and between the DDIs, generate new information
such as analyzing the CFT (EOL) and checking structural constraints such as
the verification criteria on it (EVL). Note that this paper’s focus is on the con-
ceptual idea of using DDIs for the evidence completeness analysis of different
kinds of safety requirements. We plan to elaborate on its technical realization
with the Epsilon Framework in a further publication. However, in our project
deliverables [1], more details can be found.

For the ETCS example, the DDI script for checking failure rate satisfaction
(G5) performs the following tasks:

1. Retrieve those claims in the SACM safety argument representing quantitative
analysis requirements (indicated by the RequirementType Term).

2. For each identified claim, locate the referenced top event element in the Fail-
ureLogicPackage of the subsystem DDI and retrieve the actual failureRate
attribute. If non-existent at that point, invoke another DDI script to perform
an on-demand quantitative FTA for the component fault tree related to the
top event.

3. Compare the actual failure rate with a target failure rate and report a viola-
tion to the safety engineer if the actual failure rate is higher than the actual
failure rate.

The DDI script content outlined above is able to analyze the satisfaction
of single budgeted failure rate requirements. Finally, summing up the actual
failure rates of multiple contributing (sub)system parts (G3) is done in a separate
DDI script orchestrating the Failure Rate Demonstration Scripts for all relevant
contributing parts. This demonstrates, how higher-level requirement satisfaction
can be analyzed by reuse of lower-level safety engineering DDI scripts.

2 https://www.eclipse.org/epsilon/.

https://www.eclipse.org/epsilon/

266 J. Reich et al.

4.3 Automated Evidence Analysis of Process Safety Argument

For process-related safety requirements like G8 and G9 stated below, the engi-
neering activities for requirement verification are similar to those described for
product-related requirements in the previous section. The only difference is that
the queried DDI contents are referring to model-based process execution docu-
mentation formally related to the safety artifacts (i.e. CFT models) produced
by the respective process (i.e. standard-compliant FTA).
G8: FTA is performed and its results have been documented.
G9: Independent reviews of FTA have been performed by two persons. Figure 6
shows the relevant trackside DDI contents for verifying the above requirements
resulting from ETCS process argument refinement. Evidence related to process
execution can be captured in SACM Artifact packages along with the artifacts
the process relates to. Therefore, Events and Activities including their Partici-
pants as well as used Resources and Techniques can be tracked for an Artifact.
Within the DDI, SACM Artifacts may be formally connected to the product
safety models, e.g. the CFT in the DDI’s failure logic package.

In order to automatically verify the evidence of G8 and G9 the following logic
has been codified in EVL DDI scripts:

G8 The FTA Artifact related to G8 should be associated with (a) the actual
produced fault tree models as part of the DDI’s failure logic package and
(b) the Activity “Hazard or Failure analysis”, where the used Technique is
“FTA” and the used resource is the trackside system architecture referencing
the DDI’s trackside system architecture package including the safety-relevant
trackside functions.

G9 The FTA Artifact related to G9 should be associated with (a) the actual
produced fault tree models as part of the DDI’s failure logic package and
(b) an Event “Review”, where there are at least two associated Participants
being different people.

5 Related Work

Related work can be broadly categorized into the two different areas (a) the
formalization of specific safety aspects into meta-models usable for automation
and (b) the integration of multiple aspects for more comprehensive reasoning.
Regarding a), common techniques have been formalized for the definition of sys-
tem failure propagation (e.g. Component Fault Trees [4], HiP-HOPS [8]) and
the corresponding safety argumentation supported by evidences (GSN, SACM)
[5,7]. Using these techniques separately in different phases of the engineering
process proved to be very valuable in the past, but their lack of integration with
each other makes proper reaction to changes a nearly impossible task. There-
fore, some initiatives aim at integrating safety aspects to allow more extensive
safety reasoning supported by automation. In the SPES project series [9], the
Open Safety Metamodel has been created enabling a modular, cross-tool and

Automated Evidence Analysis of Safety Arguments Using DDIs 267

Fig. 6. ETCS FTA process evidence analysis with DDIs

cross-company safety certification. However, it only includes architectural view-
points, safety analysis, and hazard models, missing the very important aspect of
safety argumentation and evidence models, which is the backbone of a DDI. In
the AMASS project, the focus rests on the organization of the safety argument
and in particular the lifecycle of evidence, formalized in the Common Assurance
and Certification Metamodel (CACM) [12]. Although this is very important in
order to fulfill standard process compliance, the lack of product-related model
semantics such as concrete architecture models, failure logic or hazard mod-
els disallows a proper product-related safety reasoning required for a complete
compelling safety case. DDIs extend the state of the art in model-based safety
certification in that they provide a dependability-specific integrated set of data
models and an automation engine that together enable efficient and comprehen-
sive safety reasoning across multiple safety aspects and supply chains.

6 Conclusion and Future Work

In this paper, we presented an approach to automatically verify safety require-
ments by model-based reasoning about multiple safety aspects at once that were
only considered in isolation in the past. The automation is enabled by estab-
lishing formal traceability between safety argument and evidence supported by
concrete product safety models all packaged together in the Digital Dependabil-
ity Identity (DDI). DDIs currently contain SACM safety case models integrated
with hazard and risk models (HARA), architecture, failure propagation. Based

268 J. Reich et al.

on DDIs and the corresponding DDI scripting framework, we showed that safety
requirements in the railway domain can be automatically verified.

Our approach reduces the effort for creation and maintenance of a system
safety case together with all relevant supporting models by first performing auto-
mated safety analysis, verification and safety artifact generation activities, sec-
ond, supporting a model-based multi-tier safety engineering process and third,
eliminating the human error source by relying on DDI scripts to encode safety
engineering activities. The evaluation in the industrial case study suggested that
the DDI approach is feasible for performing safety engineering processes faster
and achieving a better process execution and safety case quality in general.

In the future, we will enrich DDIs with additional dependability aspects such
as security engineering (attack trees, threat and risk analysis). In addition, we are
currently performing a broader evaluation of the DDI framework in application
scenarios such as autonomous driving and health applications.

Acknowledgement. The work presented in this paper was created in context of the
DEIS Project funded by the European Commission (Grant No. 732242).

References

1. DEIS Project Consortium: Project Publications. http://www.deis-project.eu/
dissemination/. Accessed 30 May 2019

2. European Committee for Electrotechnical Standardization (CENELEC): CEN-
ELEC EN 50129: Railway application - Communications, signaling and processing
systems - Safety related electronic systems for signaling (2003)

3. International Organization for Standardization (ISO): ISO 26262: Road vehicles
— Functional safety (2011)

4. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software (2003)

5. Kelly, T.P.: Systematic approach to safety case management. In: Proceedings of
SAE 2004 World Congress (2004)

6. Kelly, T., Weaver, R.: The goal structuring notation - a safety argument notation.
In: Proceedings of the dependable systems and networks workshop (2004)

7. Object Management Group: Structured Assurance Case Metamodel 2.0 (SACM)
(2018). https://www.omg.org/spec/SACM/

8. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and
propagation studies. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139–152. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48249-0 13

9. Pohl, K., Hönninger, H., Achatz, R., Broy, M. (eds.): Model-Based Engineering of
Embedded Systems – The SPES 2020 Methodology. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34614-9

10. Schneider, D., et al.: WAP: digital dependability identities. In: IEEE International
Symposium on Software Reliability Engineering (ISSRE), pp. 324–329 (2015)

11. UNISIG: ETCS/ERTMS Safety Requirements for the Technical Interoperability of
ETCS in Levels (Subset-091, Issue: 3.6.0) (2015)

12. de la Vara, J.L., et al.: Model-based specification of safety compliance needs for
critical systems: a holistic generic metamodel. Inf. Softw. Technol. 72, 16–30 (2016)

http://www.deis-project.eu/dissemination/
http://www.deis-project.eu/dissemination/
https://www.omg.org/spec/SACM/
https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/978-3-642-34614-9

Interactive Systems and Design
Validation

SafeDeML: On Integrating the Safety
Design into the System Model

Tim Gonschorek1(B) , Philipp Bergt2, Marco Filax1 , Frank Ortmeier1 ,
Jan von Hoyningen-Hüne3, and Thorsten Piper4

1 Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
{tim.gonschorek,marco.fialx,frank.ortmeier}ovgu.de
2 Xitaso Engineering GmbH, Werner-Heisenberg-Straße 1,

39106 Magdeburg, Germany
philipp.bergt@xitaso.com

3 Conti Temic microelectronic GmbH, Dornierstrasse 1, 88677 Markdorf, Germany
jan.vonhuene@continental-corporation.com

4 Continental Automotive GmbH, Siemensstraße 12, 93005 Regensburg, Germany
thorsten.piper@continental-corporation.com

Abstract. The safety design definition of a safety critical system is a
complex task. On the one hand, the system designer must ensure that
he addressed all potentially hazardous harwdware faults. This is often
defined not(!) in the model but within extra documents (e.g., Excel
sheets). On the other hand, all defined safety mechanisms must be trans-
formed back into the system model. We think an improvement for the
designer would be given by a modeling extension integrating relevant
safety design artifacts into the normal design work-flow and supporting
the safety design development directly from within the model.

To address this issue, we developed the UML-profile SafeDeML
extending standard SysML such that it integrates the fault modeling
into the system modeling. In addition, we defined a modeling process
with special attention to the Iso 26262 standard. Therefore we introduce
special elements for the diagnosis, modeling required safety mechanisms
within the model and developed a library for standard Iso 26262 faults
and corresponding hardware components, intended to lower the potential
of missing important fault definitions.

Keywords: Model-based system design ·
SysML extension for the automotive domain ·
Safety design according to Iso 26262

1 The Need for Integrating the Safety Design

The job of a system designer is a hard task since the developed systems are
getting more and more complex, integrating lots of sub-systems, designed by
other designers, or delivered by suppliers with often only abstract descriptions

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 271–285, 2019.
https://doi.org/10.1007/978-3-030-26601-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_19&domain=pdf
http://orcid.org/0000-0002-3386-680X
http://orcid.org/0000-0001-7436-1501
http://orcid.org/0000-0001-6186-4142
https://doi.org/10.1007/978-3-030-26601-1_19

272 T. Gonschorek et al.

but no detailed design. Nevertheless, the designer must provide a design meet-
ing all relevant requirements. In the context of safety-critical systems, this is
even more complex, since safety-relevant requirements must be met. One spe-
cific requirement is that all hardware faults of the integrated elements must be
analyzed. If such a fault has the potential of violating a given safety requirement
with a unacceptable likelihood, potentially leading to a hazardous event, must
be prevented by the system design.

Even though many system engineers, develop systems in a model-based me-
thodology, the safety aspects of the design are managed within manually created
and maintained documents with tools like Microsoft’s Excel or Rational’s Rhap-
sody and Doors. This means, that the enumeration of all potentially random
hardware faults, their resulting effects, and further safety measure and mitigation
strategies are kept not within the system model but within a separate document.
Hence, there does not exist a deep, i.e., easily traceable, connection between the
system component, especially the parts containing hazardous faults and cor-
responding safety measures, or fault definitions and design decisions made to
prevent these faults or mitigate their effects. Further, especially for complex sys-
tems developed by several designer, the analysis of fault effects within the global
system context and the corresponding failure propagation analysis requires huge
effort and can introduce structural faults into the design process.

In our point of view, this leads to several problems regarding the quality of
the safety design:

– No automatic consistency validation of the safety design based on the actual
system model (e.g., Are all relevant faults addressed? Are the defined mea-
sures implemented?).

– Changes in the system model lead to a manual reworking of all analysis
documents (even though nothing is changed a manual check is required).

– Safety mechanisms focusing on the system are calculated manually in an
environment without information about the system model.

– Failure propagation through connected elements must manually be analyzed.

This means, the designer must take all relevant design information into account
without direct support of the CASE tool (e.g., what are relevant faults defined
by the standard or information on possible failure propagation due to component
interfaces), project them into extra documents (e.g., an Excel sheet), make the
safety design decisions on basis of these information (e.g., define proper fault
prevention mechanisms), and transform this decisions back to design model.
Even though the designer can handle this transformation process, it leaves space
for potential structural failures (missed faults or overseen component links) and
aggravates the traceability between system model and safety design decisions.

There exist already numerous approaches defining some safety design based
on the system, but in our point of view, there is still a gap since most methods
still require the building of parallel safety models or specific extensions that are
not focused on the fault and failure propagation analysis. In contrast to that,
our proposed Safety Design Modeling Language (SafeDeML) in addition handles

On Integrating the Safety Design into the System Model 273

the design of safety mechanisms and integrates directly into SysML. SafeDeML
is designed to integrate the design decisions, i.e., the correlation between fault,
failure, and safety mechanism, directly within the system model in the CASE
tool. From this, we also derive tool support for the analysis if each defined fault
has been processed by the designer and if all hazardous faults are prevented by a
safety mechanism. Further, we defined a library based on the Iso 26262 standard
containing all essential hardware elements (mentioned by the Iso 26262) and
corresponding faults, itself providing a safety measure for the design process
that the safety design does not miss relevant faults. Therefore, we developed
(i) a SysML profile extension providing all necessary elements required for the
analysis, (ii) a process proposal for the executing and integration the developed
failure injection and analysis method, and (iii) developed a prototypical plugin
for the CASE tool Enterprise Architect.

The remainder of the paper is structured as follows: In Sect. 2 we give a short
background on SysML and relevant Iso 26262 terms. Section 3 handles related
work to our modeling methodology. In Sect. 4 we introduce our developed UML-
profile for SafeDeML, and Sect. 5 presents a corresponding modeling process. A
conclusion of the work and planned future work is presented in Sect. 6.

2 Background

2.1 System Modeling Language

The UML [19] extension SysML, developed by the Object Modeling Group
(OMG), is defined for modeling specific aspects of technical systems. For bet-
ter understanding of the following discussion, we want to mention three basic
elements: Block, Port, and Requirements [22].

Fig. 1. Modeling system com-
ponents in SysML.

SysML::Block is a basic element of the lan-
guage and an extension of the UML::Class. It is
applied for modeling basic entities of a system,
e.g., hardware components or specific system
functions. Like UML::Class elements, blocks can
be hierarchically encapsulated by other classes for
providing several levels of system abstraction. Figure 1 presents two possible sim-
ple system components, a MainController and a SystemBasisChip, represented
as a block each.

SysML::Port is a UML::Port providing an interface between a set of blocks.
These can be input ports, output ports, or bidirectional ports. Ports are directly
attached to a block (cf. Fig. 1). A modeled block component uses such a port to
interact with its environments. Within basic SysML, the communication can also
be defined only by using the interface and a corresponding association between
blocks. In practice, however, ports are often designed to underline the character
of the interaction with external components.

SysML::Requirement elements were introduced with SysML. Using require-
ment modeling has the advantage that we can directly within the system model
assign requirements to the model implementing it and also represent all the

274 T. Gonschorek et al.

refinement of the requirements between them. This means, using requirements
as an element for the system modeling increases the comprehensibility and trace-
ability of the model.

2.2 Error Modeling and Iso 26262 in a Nutshell

Even though known to our well-informed reader, we want to give some infor-
mation about the Iso 26262 Standard Road Vehicles – Functional Safety [1]
and the in this context often applied safety analysis technique Failure Mode and
Effect Analysis. Since this gives only a very brief overview, we would like to refer
interested readers to the given references [13,18].

In general, the scope of the Iso 26262 is the development of an item, i.e.,
the vehicle part under development. This item consists of several (sub-) systems.
Further, an item defines functions that are provided by the item and are realized
by the systems it consists of. The system is also defined as an abstraction of
components which are again an abstraction containing both hardware parts and
software units.

The intended goal of the SafeDeML method is the support of the system
designer, in particular during the safety design process. During safety design
the designer must ensure concerning all events potentially leading to hazardous
system states and addresses them in the design, i.e., implement specific diagnosis
or handling mechanisms. Safety Goal.

Definition 1 (Safety Goal). Safety goals are top-level safety requirements for
the item under development, leading to the functional requirements that must be
concerned for avoiding a hazardous event.

To be compliant with the defined safety goals, the design must ensure that
no safety goal could be violated by the malfunction of any element. Such a
malfunction is in general defined as failure.

Definition 2 (Failure). A failure is the termination of the ability of an ele-
ment of item under development to perform a function as required (in particular
regarding the set of safety goals).

Failures are often defined as the inability of performing a required function or
service, required on the outside of the element. The internal state causing the
failure is often referred to as error.

Definition 3 (Error). An error is a discrepancy between a computed, observed
or measured value or condition, and the true, specified, or theoretically correct
value or condition.

Such an error can occur subsequent to an unforeseen condition during operation
or to a fault within an element.

Definition 4 (Fault). A fault is an abnormal condition that can cause an ele-
ment or the complete item to fail.

On Integrating the Safety Design into the System Model 275

Further, according to [3], we assume that not every error occurring within an
element leads to an observable failure and therefore not every fault has the
potential of leading to a violation of the safety goal. The goal of our modeling
method is to support the designer in concerning all relevant faults.

For preventing that a safety goal relevant fault leads to a failure and even-
tually to a potential hazard, safety measures are defined.

Definition 5 (Safety Measure). A safety measure is an activity or technical
solution to avoid or control systematic failures and to detect or control random
hardware failures or to mitigate their harmful effects.

Especially within the safety design, a system designer often applies a specializa-
tion of safety measures, safety mechanisms.

Definition 6 (Safety Mechanism). A safety mechanism is a technical solu-
tion implemented to detect, or mitigate, or tolerate faults or to control or avoid
failures in order to maintain intended functionality or a safe state.

In correlation to safety mechanisms, often applied key properties are, e.g., Diag-
nostic Coverage (DC), Detection and Reaction Time (DT/RT), Failure In Time
rate (FIT), or the Fault Tolerant Time Interval (FTTI). The DC is the rate of
relevant failures of an element covered by a safety mechanism, the DT/RT is the
time a safety mechanism requires for reacting to a fault, the FIT rate defines the
occurrence likelihood of a fault, and the FTTI is a measure for the time span
between the occurrence of a fault and the corresponding failure.

If a safety mechanism does not cover a specific failure, the failure propagates
to another element. According to Iso 26262 and [3] they propagate either hori-
zontally or vertically. Horizontal propagation means that a failure is propagated
over an existing interface from the initial element, holding the fault, to another
element on the same abstraction level (e.g., system or component level). Vertical
propagation, in contrast, refers to the propagation to higher level abstraction,
e.g., from a sub-component up to a parent component or to the outside of the
element border. Due to this propagation, the system designer must not neces-
sarily place a safety mechanism on the same element as the fault but can add
new elements holding the particular safety mechanism.

In addition, Iso 26262 classifies faults into single-point, residual, multi-point,
and safe faults. A fault is defined as single-point fault if it leads directly to the
violation of a safety goal and no fault of the containing element is covered by
any safety mechanism. Otherwise, no fault of that element is a single-point fault.
If a fault does under no circumstances lead to a violation of the safety goal, it
is a safe fault. Residual faults lead to the violation of a safety goal but are
part of an element that implements a safety mechanism, however, no mechanism
prevents the failure of the actual fault from violating the safety goal. Based on
this, a multi-point fault leads to the violation of a safety goal and its failure
is prevented by a safety mechanism. Depending on whether the corresponding
failure is also detected, multi-point faults can be further classified as detected, if
the corresponding failure is detected, perceived, if the failure is perceived, e.g.,
by the driver, or latent, if the corresponding failure is not detected.

276 T. Gonschorek et al.

3 Related Work

The essential uniqueness of SafeDeML is the direct integration of fault – failure
– safety mechanism modeling into the standard system design life-cycle. In the
literature, there also exist several works on the synthesis of system and safety
design and also further safety analysis.

One of the currently most related works to our approach is SafeML [6,7].
Here, the authors provide an UML-profile extending standard SysML. This inte-
gration, however, is rather static than supporting the actual design process. That
means that SafeML provides a set of elements like faults, failures, and hazards,
but they are not used to support the design process by means of propagation
analysis. They are instead used for integrating safety design results in the sys-
tem model. However, there exist possible synergies, and if SafeML would be
integrated into future SysML releases (cf. [5]), it could be an option to integrate
the model elements with SafeDeML.

The work [15] from the Chess framework [8,21] also presents an approach to
model the fault – failure relations on a system model. Further, they also provide
propagation analysis based on the model structure [10]. This model, however,
is intended to be used for the safety analysis rather than for the direct design
purpose and therefore does not integrate essential design elements, e.g., the
definition of safety mechanisms, into the model. Moreover, the model containing
the failure definitions is defined in a separated modeling language and framework
that must again be kept up to date with the system design.

HipHops [11,16,17] is a language and tool suite for failure modeling and
propagation analysis. From a given system description they generate a parallel
model used for failure definition and propagation analysis. This model, however,
must again be kept up to date with the system model and does also not support
the definition of related safety mechanisms for the system. This is the same for
the Marte UML extension [20] which together with the DAM profile [4] provides a
framework of defining dependability analysis specific extensions to the modeling
language. In general, unfortunately, it is not provided to model the intended
Fault – Failure – Diagnosis chain as it is desirable when executing a fault related
safety measure.

Another work, focussing on the fault modeling and analysis, is the Compo-
nent Fault Tree (CFT) [2,12] methodology providing an extended failure propa-
gation and analysis mechanism based on the system component structure. Even
a tool integration, the SafeT toolbox [14], exists. This methodology, however,
again instead focus on the safety analysis than on the safety design. Only faults
and corresponding failures are modeled but without the ability of the definition
of preventing safety mechanisms which can directly be integrated into the design.

What, in our point of view, is still not sufficient covered by the approaches
from the literature is (i) the propagation analysis of potentially critical faults
with respect to defined safety and diagnosis mechanisms (directly within the
system model) and (ii) the support of the designer in validating that all necessary
faults have been addressed during the safety design process.

On Integrating the Safety Design into the System Model 277

4 The Safety Design Modeling Language

For the model integration we introduce four basic elements SafeDeML::Fault ,
SafeDeML::Failure, SafeDeML::Diagnosis, and SafeDeML::Safety Goal as
extensions to SysML. Therefor, we define an UML profile [9], intended to be
integrateable into general UML\ SysML modeling tools.

Fig. 2. UML-profile defining the extension of SysML by all relevant SafeDeML ele-
ments. For better readability we defined the SafeDeML elements without the corre-
sponding name space.

As Fig. 2 shows, for ensuring the soundness of the integration into SysML,
all elements are derived directly from SysML::Block. This ensures that the mod-
eling extension is not restricted to one particular abstraction but can be used on
all modeling levels, i.e., on hardware, software, and system level. Therefore the
vertical propagation of failures can also be ensured as well as the failure model-
ing at the same level. We introduce further structure-related SysML extensions
and logical operators. On component level the interface between local and global
context is presented by the stereotypes SafeDeML::Port , SafeDeML::InputPort ,
and SafeDeML::OutputPort , derived from the SysML::Port class. In the follow-
ing, we discuss the necessary elements in more detail.

4.1 SafeDeML::Fault

Figure 3a presents the basic visualization of a fault, as circle. A fault can per
definition be active or is set as «effectless» if it is meant to be a safe fault that
does not lead to a component failure. In most situations, the occurring faults cor-
relate to hardware parts implemented within the specific component. Therefore,
we provide in addition the definition of faults for specific atomic hardware parts,
e.g., a power supply or particular memory types, or for the direct assignment to

278 T. Gonschorek et al.

hardware elements. This hardware part definition is especially useful since often
such atomic elements are not modeled on a system level, but their faults must be
handled. By assigning the hardware parts to a component the fault definitions
are directly imported into the component (cf. Fig. 3b). Moreover, for compliance
with the ISO 26262 standard, we implemented all hardware parts and corre-
sponding faults that are mentioned in the correlating standard Part5 – Product
development at the hardware level Table D.1 to D.14. Further, the definition of
faults can also be inherited from abstract component definitions.

(a) Visual rep-
resentations of a
fault.

(b) Associations of a fault to an Element (left)
and an ISO HWElement (right).

Fig. 3. Basic fault representations and associations to (ISO)HWElements.

4.2 SafeDeML::Failure

From the set of defined SafeDeML::Faults we define all relevant component fail-
ures. Therefor, SafeDeML::Failure elements (red triangle) are directly connected
to corresponding SafeDeML::Faults (blue circle) or via a logical operator using
the «results in» association (cf. Fig. 4). Safety-relevant properties, FIT and
FTTI, are added as properties directly to the failure element. The horizontal
propagation is defined by an association to available SafeDeML::OutputPorts
using the «propagate by». External failures are included into an element by an
SafeDeML::InputPort as a propagated failure.

Fig. 4. Possible representations of the SafeDeML::Failure modeling. It shows a
horizontal propagation (top), a SafeDeML::Failure with more than one correlated
SafeDeML::Fault (left) and a single SafeDeML::Fault leading to a failure.

On Integrating the Safety Design into the System Model 279

Further, we define the relation between a fault and a safety goal by failures.
Therefore, we just defined a property for the SafeDeML::Failure element contain-
ing all possibly violated safety goals. Safety goals itself in our current state are
directly derived from a corresponding safety requirement and imported directly
within a SysML requirement diagram (Fig. 5).

4.3 SafeDeML::Safety Goal

Fig. 5. Example of a safety goal modeling
within the introduced SafetyGoalDiagram.

A SafeDeML::Safety Goal can either
be linked to a system component or
directly to an occurring failure ele-
ment. It is directly derived from a set
of relevant safety requirements.

4.4 SafeDeML::Diagnosis

The SafeDeML::Diagnosis elements (visualized as star) are used to provide a
safety mechanism for a given failure, e.g., a failure handling or detection. This
is one of the key improvement of our method. We can directly correlate the
safety mechanism to the corresponding failure and fault, but also it is directly
connected to the system design model element that is meant to implement the
defined measure. In our point of view, this provides an improvement since a
possible source of errors, the transformation, and change between safety design
documents and system model becomes obsolete. This can also be seen as a
structural safety measure for the system development process.

Fig. 6. Example of the SafeDeML::Diagnosis
modeling with a system diagnosis (left) and a
diagnosis perceived by the driver (right).

If a SafeDeML::Diagnosis is
defined as safety mechanism for a
specific fault they are connected
by a «detected by» association
(cf. Fig. 6). Safety-related proper-
ties, e.g., DC, can directly be
added as a property to the diagno-
sis element.

As mentioned in the background, faults are classified according to their poten-
tial of leading to a safety goal violation and designed safety and detection mech-
anisms. To enable the separation between detected and perceived faults, we
also defined a SafeDeML::Perceived Diagnosis element. This defines that the
detection is not implemented within the system but the occurrence of the corre-
sponding SafeDeML::Failure can be perceived and further handled by the driver
(in the Iso 26262 context).

5 Proposal of an Integratable Modeling Process

For integrating our developed modeling mechanism into the system design, we
developed a step-wise modeling process. To verify this process, we developed an

280 T. Gonschorek et al.

Enterprise Architect plugin and applied it for extending a real system model.
The basic process consists of five steps: (A) Fault Modeling, (B) Failure Mod-
eling, (C) Diagnosis in the local component context and (D) Global Analysis,
and (E) Model Analysis in the global context of the system (cf. Fig. 7). This
process is developed according to the normal safety design workflow, starting
with the definition of all faults for relevant elements, followed by the definition
of correlated failures. After that, it is defined whether a safety measure is imple-
mented on the component or the failure is propagated. This is what we define
as local context. In the next step, what we see as the global context, all failure
elements are propagated to the next adjacent components connected via avail-
able interfaces. There, they are again handled in the local component context
as propagated failures. At the last step, it is checked whether all relevant faults
are covered by a safety mechanism and if no safety goal is violated.

Fault
Modeling

Failure
Modeling Diagnosis Global

Analysis
Model
Analysis

Local Context / Library

Propaga on

Fig. 7. A representation of the five process steps for the integration of the safety design
elements into a given system model. The separation into local and global context rep-
resents the view change from a local into the global elements perspective also including
all failures propagated from external connected elements.

In addition to the guided process, the provided integration into case tools is
also an advantage in the direction of a safety measure. Proven-in-use processes,
e.g., version control, and change management as well as user management and
validation if and by whom a fault, failure, or diagnosis has been defined or
changed can improve (a) the development and (b) the quality for the assessment.

Figure 8 shows an excerpt of our brake light system model representing the
control of the brake lights of a car. The specific hazard of the system is that
all brake lights are unavailable at the same time. The figure shows the two
elements MainController and SystemBasisChip. The MainController generates
the control signal for the brake lights and the SystemBasisChip is responsible
for the communication to the brake light components.

5.1 Fault Modeling

Our defined fault modeling extension provides several mechanisms for assigning
faults to model elements (cf. Fig. 9 No (1)). These are (i) the heir of fault def-
initions, (ii) the derivation of faults from specific atomic hardware parts, and
(iii) standard definitions of additional faults.

On Integrating the Safety Design into the System Model 281

Fig. 8. Excerpt of the brake light system used to validate our modeling methodology.
It contains the failure definitions for the MainController (MaC) and the SystemBasis-
Chip (SBC) The numbers assigned to the elements indicate the different steps in which
these elements are added to the fault modeling.

Inheritance from Parent Elements. In the first step all already defined faults
from the parent component are added to the current component fault definition
(of course, failure and diagnosis definitions as well).

Fault Assignments Inherit from Hardware Parts. In a high-level system design
it is not desired to model the system in detail that all atomic hardware parts are
included (e.g., a power supply, register, or a timer). For the analysis, however,
it is essential to cover all critical failures coming from, more or less, the atomic
parts of a component.

To overcome this, we provide the ability to associate atomic hardware parts
to model elements (cf. Fig. 9) in a Element Fault Diagram and implement the
corresponding faults in a Fault Derivation Diagram. In this context, we imple-
mented all Iso 26262 hardware elements and corresponding faults as an entry
point of a library, minimizing the possibility of overseeing the minimal set of
required faults and also reuse already define hardware element – fault relations.

This is further essential since keeping track of all hardware parts potentially
introducing new random hardware faults into the system requires a lot effort. In
addition, even for the safety assessment process, the argumentation about which
faults are analyzed and why gets more transparent if directly linked to available
hardware model elements.

Specific Faults. In addition to the previous methods, it is, of course, possible to
define specific faults the design must cover. This definition is done by linking
the fault to the component at the same level as the hardware parts or directly
within the fault definition diagram.

282 T. Gonschorek et al.

The basic idea behind these fault definition steps is that most of the necessary
faults are automatically generated from specific system model information with-
out much additional effort. These definition can be done in each block diagram
of the structural architecture part of the SysML model.

After the fault definition, all associated faults are transferred into the internal
fault diagram of the component. This step is marked with number (1) in Fig. 8.

Fig. 9. Fault definitions of the MainController component. On the left side the asso-
ciations of the faults to the ISO HWParts is shown and on the right side, instances of
the HWElements are associated with the MainController block.

5.2 Failure Modeling

The task for this step is to analyze whether the occurrence of a fault leads to
a failure (cf. number (2) in Fig. 8). If a fault is not relevant for the behavior
of the component, it is marked as effectless in a Internal Element Fault
Diagram. Further, we correlate the faults and the safety goal over the failure
elements, i.e., we define for each failure element, whether and if so which safety
goal(s) are affected by a specific fault. For this, the tool provides either the
use of SafeDeML::Failure properties or an additional, automatically generated
table, where the designer can enter if a failure violates a safety goal. Per default,
a failure is defined violating all safety goals violated by other SafeDeML::Failure
elements within each component reachable by propagation. This step is repeated
until each fault is either assigned to a failure or marked as effectless. By this,
it can be ensured that no fault has been forgotten until the safety assessment.

5.3 Diagnosis

In this step the specific safety mechanisms handling the occurrences of a spe-
cific failure (cf. step number (3) Fig. 8) within the Internal Element Fault
Diagram. Further, we assign a particular diagnostic coverage for the diagnosis.

On Integrating the Safety Design into the System Model 283

However, it can be possible that, for some failures, we do not implement
a diagnosis on the same model element, e.g., if we want to analyze whether a
fault is critical, if we implement the diagnosis on a different element, or if we just
oversaw a failure. For the case we did not oversee a failure but do not want to
handle it in the local context we can apply the propagation methodology. That
means we define which port propagates a particular failure and associate them
via «propagate by». By default, a not diagnosed failure is propagated over all
available SafeDeML::OutputPorts.

5.4 Global Analysis

The scope of the global analysis is to verify the model elements with all side-
effects that are introduced by failure propagation. Therefore, the first step is
to propagate all SafeDeML::Failures associated with an SafeDeML::OutputPort
over all connected SafeDeML::InputPort (cf. step number (4) Fig. 8). After that,
we repeat step (B) and (C) of the process with the additional further propagated
SafeDeML::Failures, i.e., to decide whether they introduce a safety goal violating
failure (cf. step (5) Fig. 8) and design a diagnosis or propagate the new defined
failure.

5.5 Model Analysis

The completeness of the system model’s safety design, and therefore the integrity
of all safety goals, is analyzed in this last step. Hence, it is checked whether
(i) all SafeDeML::Faults had been handled at least once (set to effectless
or are connected to a SafeDeML::Failure), (ii) all relevant SafeDeML::Failures
are propagated or covered by a diagnosis, and (iii) if the minimal set of faults,
according to the Iso 26262, has been concerned by a SafeDeML::Diagnosis.

If not, the tool integration can focus the designer’s view directly to the ele-
ment violating the integrity of a safety goal. From the model, of course, all
relevant information as item element - fault - failure - diagnosis relations can be
extracted from the model and provided within additional result tables.

6 Conclusion and Future Work

In this work, we presented our UML-profile SafeDeML, a SysML extension for
integrating the safety design process into the model-based system design work-
flow. Therefore we defined a set of modeling elements for fault, failure, and diag-
nosis definitions. In particular, the diagnosis provides an improvement since it
enables the definition of generated safety mechanisms directly within the system
model. Based on the SafeDeML fault definitions, we build a library integrating
all Iso 26262 hardware fault definitions and corresponding hardware elements.
We think that this decreases the effort necessary of ensuring that all relevant
faults are addressed in the safety design and also serves as a starting point for
the design.

284 T. Gonschorek et al.

In addition, we defined a structured process which integrates SafeDeML into
the system modeling process. This process is intended to define a safety measure
itself. Therefore it supports the designer during the safety analysis process by
(i) addressing at least all potentially hazardous faults once in the model, (ii)
ensuring that no information is lost by transforming the information from exter-
nal safety design documents into the model, and (iii) providing a structured way
of analyzing the elements in their local and global context by automatic failure
propagation. In the next steps of our work, we plan to use the safety design
definitions based on SafeDeML and execute Iso 26262 relevant safety analysis.

References

1. Road vehicles - Functional safety: Part(X): Standard
2. Adler, R., et al.: Integration of component fault trees into the UML. In: Dingel,

J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 312–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21210-9_30

3. Avižienis, A., Laprie, J.-C., Randell, B.: Dependability and its threats: a taxonomy.
In: Jacquart, R. (ed.) Building the Information Society. IFIP, vol. 156, pp. 91–120.
Springer, Boston (2004). https://doi.org/10.1007/978-1-4020-8157-6_13

4. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.
Softw. Syst. Model. 10(3), 313–336 (2011)

5. Biggs, G., Juknevicius, T., Armonas, A., Post, K.: Integrating Safety and Reliabil-
ity Analysis into MBSE: overview of the new proposed OMG standard. INCOSE
Int. Symp. 28(1), 1322–1336 (2018)

6. Biggs, G., Sakamoto, T., Kotoku, T.: 2A2-I06 SafeML: a model-based tool for
communicating safety information (Robotics with Safety and Reliability). In: Pro-
ceedings of Robomec 2013(0), _2A2-I06_1-_2A2-I06_4 (2013)

7. Biggs, G., Sakamoto, T., Kotoku, T.: A profile and tool for modelling safety infor-
mation with design information in SysML. Softw. Syst. Model. 15(1), 147–178
(2016)

8. Cicchetti, A., et al.: CHESS: a model-driven engineering tool environment for aid-
ing the development of complex industrial systems. In: Goedicke, M., Menzies, T.,
Saeki, M. (eds.) Proceedings of ASE, p. 362. IEEE, Piscataway (2012)

9. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An introduction to UML profiles.
UML Model Eng. 2, 6–13 (2004)

10. Gallina, B., Javed, M.A., Muram, F.U., Punnekkat, S.: A model-driven dependabil-
ity analysis method for component-based architectures. In: Proceedings of Euromi-
cro DSD/SEAA, pp. 233–240 (2012)

11. Grunske, L., Kaiser, B., Papadopoulos, Y.: Model-driven safety evaluation with
state-event-based component failure annotations. In: Heineman, G.T., Crnkovic,
I., Schmidt, H.W., Stafford, J.A., Szyperski, C., Wallnau, K. (eds.) CBSE 2005.
LNCS, vol. 3489, pp. 33–48. Springer, Heidelberg (2005). https://doi.org/10.1007/
11424529_3

12. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of SCS, pp. 37–46 (2003)

13. Langenhan, T.: Still basic guide to automotive functional safety. epubli, Berlin,
version 2 edn. (2016)

https://doi.org/10.1007/978-3-642-21210-9_30
https://doi.org/10.1007/978-1-4020-8157-6_13
https://doi.org/10.1007/11424529_3
https://doi.org/10.1007/11424529_3

On Integrating the Safety Design into the System Model 285

14. Moncada, V., Santiago, V.: Towards proper tool support for component-oriented
and model-based development of safety critical systems. In: Commercial Vehicle
Technology 2016, pp. 365–374. Shaker Verlag, Aachen (2016)

15. Montecchi, L., Lollini, P., Bondavalli, A.: Dependability concerns in model-driven
engineering. In: Proceedings of ISORC, pp. 254–263. IEEE (2011)

16. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and
propagation studies. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139–152. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48249-0_13

17. Papadopoulos, Y., et al.: Engineering failure analysis and design optimisation with
HiP-HOPS. Eng. Fail. Anal. 18(2), 590–608 (2011)

18. Ross, H.L.: Functional Safety for Road Vehicles. Springer International Publishing,
Cham (2016)

19. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified modeling language reference
manual. Pearson Higher Education (2004)

20. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems
with UML and MARTE: Developing Cyber-Physical Systems. Elsevier (2013)

21. Mazzini, S., Favaro, J.M., Puri, S., Baracchi, L.: CHESS: an open source
methodology and toolset for the development of critical systems. In:
EduSymp/OSS4MDE@MoDELS (2016)

22. Weilkiens, T.: SysML–the systems modeling language. In: The MK/OMG Press
(ed.) Systems Engineering with SysML/UML, pp. 223–270. Elsevier (2007)

https://doi.org/10.1007/3-540-48249-0_13
https://doi.org/10.1007/3-540-48249-0_13

Towards Trusted Security Context
Exchange Protocol for SDN Based Low

Latency Networks

Abdul Ghafoor1,2(&), A. Qudus Abbasi3, and Zaheer Khan4

1 School of Electrical Engineering and Computer Science, Islamabad, Pakistan
2 RISE AB, Isafjordsgatan 22, 164 40 Kista, Sweden

abdul.ghafoor@ri.se
3 Department of Information Technology,

Quaid-i-Azam University, Islamabad, Pakistan
aqudus@qau.edu.pk

4 University of the West of England, Frenchay Campus, Bristol, UK
Zaheer2.Khan@uwe.ac.uk

Abstract. To overcome the latency issue in real-time communication, a number
of research based solutions and architectures are being proposed. In all these,
security is not considered an important factor since it causes extra delay in the
communication and introduces overhead. Therefore, a design decision is needed
to assess tradeoff between efficiency and security mechanisms. In this respect, we
designed a security approach in Software Defined Networks (SDN) based
Vehicular Autonomous Ad hoc Network (VANET) where low latency and
security are essential elements. VNAET provides a system of systems approach
where various hybrid solutions are integrated and installed on number of network
nodes managed by SDN. In such networks, our novel approach exchanges
security context in a synchronized manner to serve as a baseline for network
nodes to dynamically adopt security features as per security requirements of these
nodes. Hence, various security contexts are designed and categorized based on
the nature of information exchange between nodes, mainly, to offer authentica-
tion, secure and trustworthy communication services. These well-designed
security contexts enable devices of different capabilities to securely communicate
by using predefined security parameters and cryptographic functions. This
eliminates the need to negotiate any secure communication parameters and hence
results in less communication overhead. In addition, our approach is integrated
with verifiable identities (Veidblock) concept which addresses privacy issues
through anonymity. These security contexts are verified by using scyther by
demonstrating that the trustworthiness is achieved by countering non-
repudiation, impersonation, tampering, eavesdropping and replay attacks.

Keywords: Trust � Verifiable identities � SDN � Context � Security attributes �
VANET

© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 286–298, 2019.
https://doi.org/10.1007/978-3-030-26601-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_20

1 Introduction

Increasing demand of real time and/or latency sensitive applications encourages net-
work operators to enhance their network infrastructure, for instance 5G network rev-
olution [1]. It is anticipated that such networks would be capable to meet the demand of
real-time applications e.g., IoT, autonomous vehicular systems, tele-surgery, industrial
automation (industry 4.0), augmented reality and virtual reality, as such applications
are highly sensitive to latency and demand high bandwidth [2]. There can be serious
consequences in such applications due to delay in communication between devices;
however, achieving <1 ms delay and acquiring 10–50 GB bandwidth are highly
challenging and several solutions are being proposed e.g., Smart Energy System,
Fieldbus System and Industrial Ethernet [3, 28]. This becomes more challenging when
it is predicted that trillion of devices and sensors will be connected to the internet to
generate & collect data and then exchange data between devices for real-time pro-
cessing [4, 27]. This will require underlying network infrastructures to be highly
efficient, provide high data transfer rates, dependable, trusted, ultra-reliable and secure
communication.

To overcome the latency issue in real-time communication, a number of archi-
tectural solutions are being proposed, for example, Edge computing model [29]. In
edge computing, storage and processing services are kept close to the users’ proximity
to reduce payload for communication and hence low latency but such an infrastructure
causes extra management issues by replicating some services in edge environment. One
of the solutions to handle these issues and efficiently manage edge and main data
centers is programmable networks or Software Defined Networks (SDN) [5]. Cur-
rent SDN developments are mainly focused on automating and orchestrating existing
network facilities [6]. In literature, it is observed that only few network automation
solutions are proposed for low latency networks, which are focusing on per-routing
path calculation, segregation between small and large flows, categorization in control
and data flows, identification of efficient routes based on network state which is derived
by using regular network monitoring mechanisms and others techniques [7, 8].
However, despite these solutions research community has varying views on the pro-
vision of autonomous and efficient connectivity that is mainly based on the pre-
configurations and introduces extra delay in network connectivity. Further, introducing
security features can causes more delays in the system; therefore, current implemen-
tations of SDN and security protocols do not meet the requirements of latency sensitive
applications such as autonomous vehicular network.

Without inclusion of security features in low latency network, it is hard to deploy a
trustworthy infrastructure and applications but, as mentioned above, it causes extra
delay which can be reduced by minimizing number of security messages, preprocessing
and reducing message overheads.

In the above context, a novel solution is proposed that exchanges security context
in a synchronized manner that serves as a baseline to dynamically adopt security
features and fulfill security requirements of the deployed network. In our solution,
various security contexts are designed and categorized based on the nature of infor-
mation exchange between nodes (resources), mainly, to offer authentication; and secure

Towards Trusted Security Context Exchange Protocol for SDN 287

and trustworthy communication services. These well-designed security contexts enable
the devices of different capabilities to securely communicate by using the predefined
security parameters and cryptographic functions. This eliminates the need to negotiate
any secure communication parameters and hence results in less communication over-
head. In our previous work we focused on secure SDN applications [9]; now we extend
our work to secure SDN for low latency network and applications. In [9], we designed
verifiable identities (Veidblock) for devices and users and published it in a Distributed
Ledger Technology (DLT). The Veidblock is used to simplify authenticity process and
establishing trust between various resources involved in communication without ver-
ifying the direct legitimacy of sender and receiver and hence reduces extra commu-
nication overhead. This makes Veidblock a suitable candidate for secure latency
sensitive applications.

After deigning our solution, it has following main features:

– Eliminates security context exchange time to reduce network communication and
increase in message processing time;

– Security context are synched with each node therefor they are secure and
interoperable;

– Reduces message size which decreases communication overhead;
– Reduces authentication time through verifiable identities; and,
– Introduces security contexts which are categorized to facilitate every node with

diverse capabilities.

2 Background and Case Study

In recent years, researchers have been focusing on designing network infrastructure to
facilitate current and future secure and delay sensitive applications [28]. For instance,
fifth generation (5G) of mobile communication network is considered to facilitate low
latency applications designed either in 2020 or beyond [10]. Similarly, edge and fog
computing are also playing a key role to minimize the data transmission time, effi-
ciently utilization of bandwidth and resources [11]. Such enabling technologies target
tactile internet and low latency applications to provide greater throughput and higher
capacity that is not achievable through existing mobile networks. Furthermore, they
focus on to functional requirement by achieving lower communication delay, providing
high reliability and supporting higher connection density without compromising the
non-functional requirements such as security, trust, identity and privacy.

2.1 Secure Software Defined Networks

Due to the growing network size and increasing devices on the internet, network
automation through virtualization and software components plays an important role to
manage such scaling infrastructures. Other organisations have already started investi-
gating SDN to benefit businesses through high elastic nature of the virtual computing
resources [12]. Though such systems can provide economic, management, maintenance
and extensibility benefits, but thorough testing is needed to measure and understand

288 A. Ghafoor et al.

limitations and associated risks before wider adoption by business organisations [30].
Among other challenges, researchers highlighted security of orchestrator and con-
trollers in and SDN environment as one of the major concerns. For Network Function
Virtualisation (NFV), SDN and cloud-based networks, European Telecommunication
Standards Institute (ETSI) is playing an important role and actively contributing and
defining new standards to secure SDN and NFVs. The ETSI [13] focused on defining
basic security services such as AAA (Authentication, Authorization, and Account-
ability) services. They highlighted the need to consider privacy in authentication, anti-
privilege escalation techniques, authorization and accountability through network
infrastructure. The ETSI also mentioned security monitoring and management
requirements in [14] but their standards do not provide technical details on how these
security related services can be implemented.

In [15], other researchers have presented security challenges of SDN and mentioned
that along with conventional security challenges, leakage of sensitive information is
easy in SDN. They recommend that a security protocol and suitable techniques must be
considered to protect SDN from information disclosure attack when programmable
components are used to manage networks. The Open Networking Foundation (ONF)
described security analysis of OpenFlow switch specification in [16]. They recom-
mended certificate-based authentication and secure communication. For trust develop-
ment, they assume that the certificate is issued (to both communicating components) by
same domain; otherwise, communicating virtual switch/host are considered untrusted.

In addition to the above challenges, combination of SDN with low latency network
introduces new challenges. In this respect, there are many solutions proposed in lit-
erature, which claim that SDN can be suitable to minimize delays in packet delivery
[7]. In [17], other researchers contributed to overcoming the delay caused by SDN
controller when it interacts with virtual switches to install new flows and rules. For their
study, they categorized flow types into large volume data carrier (bulk data) and small
data carrier (short messages). In most of the cases, small flows required frequent
transmission and needed frequent controller invocation which caused delays. To
overcome this problem, authors in [7] suggested that the system must be able to predict
frequent communication pairs in advance instead of at run time. Data collected from
switches is maintained and future flows are predicted on maintained data. Though this
solution is reasonable but it is yet unknown how this will behave when security
interventions are introduced in the network. Similarly in [18], other researchers
described a network coding technique to reduce retransmission delays and imple-
mented it in a virtual router. Their results are promising and indicate that they achieved
desired objectives. Among others, security issues in an SDN are discussed in the [17,
18] where other researchers discussed about various attacks and services required by
different components of an SDN. For instance, two of these components are directly
related to the secure flow of information: (i) Secure Communication (SC) Component,
and (ii) Policy Based Communication (PBC) Component. In SC component they
provide solutions for IP-level packets and replaced weak authentication between
backhaul devices with better authentication solutions.

Towards Trusted Security Context Exchange Protocol for SDN 289

2.2 Case Study: Security Issues in Vehicular Ad-hoc Networks

We consider Vehicular Ad hoc Networks (VANET) as a case study to demonstrate a
viable application of low latency network. In VANETs, user authentication and privacy
are the major concerns along with latency issue [19]. To ensure security of the
VANETs, appropriate security protocols and low latency network are the key
requirements. In [20], other researchers discussed privacy and security related chal-
lenges of VANETs; for example, they highlighted various forms of attacks, defined
security primitives and mitigation techniques to support vehicular network applications
and provide a secure and trusted propagation of road information with other drivers.
Similar privacy and security related issues are discussed in [21]. They highlighted
various security protocols, which can be used to protect the vehicular network from
various attacks.

In VANETs like highly mobile and ad hoc network environment, broadcasting of
safety messages requires low latency and high reliability. In [22], other researchers
have provided technical details of techniques for user’s authentication which uses
identity based signature schemes and recommended RSA and ECDSA algorithms for
signature creation and verification. In contrast, batch verification is the most commonly
adopted scheme in VANETs which verifies multiple signature at once rather than
verifying individual signatures [23]. Furthermore in this, privacy issues are handled by
three approaches which include pseudonymous authentication schemes, group signa-
ture based schemes and hybrid schemes. Trust based authentication technique is
described in [24] where verifier nodes are responsible to verify a node for trust based
authentication in VANET by using certificates. Recently, most of low latency appli-
cations are using Blockchain or DLTs for trust and authentication services, for
example, in [25] and [26] VANET based application is presented.

2.3 Research Gap Analysis

After analyzing existing approaches in SDN and low latency applications such as
VANET, we found following limitations:

– Current security solutions for SDN are only applicable in standard SDN environ-
ment. These existing solutions do not cater for underlying non-physical network
and low latency applications on these networks.

– VANET only considers security solutions which are suitable for VANET and meets
the requirements of low latency networks.

– Analysis of the above literature reveals that when these both technologies are
integrated to form an SDN based Vehicular Network; it raises new security
requirements and needs new solutions which must be suitable for various nature of
messages.

290 A. Ghafoor et al.

3 The Proposed Solution: Adaptable Security Contexts

To fill the above gap, this paper introduces a novel approach that defines security
contexts for applications which are able to synchronize security primitives according to
the capabilities of resources available in Vehicular Networks. Our proposed approach
introduces two main characteristics in the SDN based Networks:

– Adaptability: It adapts security solution and cryptographic functions by considering
the sensitivity of data and aims to meet the basic security criteria.

– Dynamicity: It supports security context development and synchronization of the
security parameters between the various devices (of different capabilities) installed
in Vehicular Network.

3.1 Initial Setup with VeidBlock Based Authentication

In [9], we introduced IAV (Identify Authority & Validation) component in SDN to
issue, register and verify identities of various resources in the network. Here we reuse
IAV component and each resource in the system must be registered with IAV and it
possess required security credentials like Veidblock and key pair (public and private
key). Veidblock is a cryptographically digitally signed block which contains randomly
generated identity of the owner, public key of the owner along with required param-
eters which are used for its verification. These all attributes are digitally signed by IAV
which provide information to verifier that the Veidblock is valid and issued to a trusted
resource. Since basic authentication is achieved through Veidblock therefore there is a
need of a secure and trusted protocol which will help resources to develop security
context for secure communication.

3.2 Security Context Exchange Protocol

In our approach, admin of orchestrator is responsible to create security context and
publish it in the DLT. Each security context has following three attributes:

– Version: is used to indicate version of the security context.
– Context-Id: indicates the context which reflects security requirements of a message
– Cryptographic-Functions: various cryptographic functions and sequence of the

cryptographic functions used to generate and process contents of the message.

All recommended security contexts with their associated type of messages are shown in
Table 1. Our solution is customizable and extendable therefore Table 1 can be
extended with more secure and suitable options according to the requirements of their
networks.

Publication of security contexts in the DLT provides immutability, trust and
availability of transactional data for each node. Publication process follows the stan-
dard blockchain transaction process as defined in [22]. In this respect, Admin of SDN
Orchestrator (referred as Admin in this paper) creates security contexts, digitally signs
security contexts and Veidblock and then publishes them in the DLT. After that Admin
submits it to the network where certain rules are applied (which is implemented in the

Towards Trusted Security Context Exchange Protocol for SDN 291

form of smart contract). For example, it checks double publication and verifies Vei-
dblock for Admin authenticity. Similarly each category of security context will be
published in the DLT.

3.3 Categorization of Security Context

Categorization of security context is dependent on the types of security services
required by the resources in a network. Each message must be transmitted with ctx
number and hash of Veidblock (Vh) as a header value of the communication protocol.
There are following possible scenarios:

No Security Services (ctx-1.1): If security services are not required during commu-
nication then its context number should be ‘1.1’. For example, if a car wants to share
general information like music or simple chat messages to other cars then such message
does not need any type of security. These are not critical messages and any attack on
such messages will not be a threat for the VANET. Similarly, if orchestrator or con-
troller sends general messages, like checking heartbeat, to other components then they
also do not need severe security measures. Therefore, in these situations such resources
will use message type 1.1 which represents protocol version along with its context id.

Trusted Messages (ctx-1.2): These are trusted messages and are implemented by
using applying following cryptographic function:

M0 ¼ EðSpr; H Mjnð Þ VhÞj jMjn ð1Þ

By using this context, content of a message and nonce value is hashed by using
hashing algorithms like SHA-256 and then hash value and the hashed value of Veid-
block is signed with private key of the sender. Digitally singed value and actual message
with nonce will be payload of a Secure Message. The recipient of this message will
verify signature. In this the digital signature and hash value of Vh indicates that the
message is coming from legitimate source because only the owner of the private key can
digitally sign the message. These cryptographic functions protect the protocol against
repudiation, tampering, spoofing and impersonation attacks because the Veidblock

Table 1. Recommended security context and suggested operations used in each security context

Ver Context Id Cryptographic Functions

1 1 No Crypto
1 2 E(Spr, H(M | n) | Vh) | M | n
1 3 Exchange SK SK` = E(Rpu, SK)

M` = E(Spr, H(SK`| n) | Vh) | SK` | n
Message M` = E(SK`, M | H(M| n)|Vh) |n

1 4 M` = E(Spr,H(E (Rpu, M) | n) | Vh) | E(Rpu, M) | n

Where E = Encryption, Rpu = Public key of the recipient, SK = Symmetric
Key, Spr = Private key of sender, H = SHA-256 Hash function,
SK` = Encrypted symmetric key, n = nonce and Vh = Hash value of
Veidblock, already calculated

292 A. Ghafoor et al.

owner is a trusted user which has its own trusted public key while nonce in the message
protects it from replay attacks and hash is used to ensure the integrity of the messages.

These types of the messages are normally broadcast types of informative messages
which provide information about weather, accidents, road conditions, etc. Such mes-
sages must be verifiable that it should be coming from trusted source and must provide
authentic information.

Confidential Bulk Messages (ctx-1.3): This type of security context is used to
exchange bulk messages between two resources in peer-to-peer fashion. Normally
these resources are fixed and are not part of the dynamic network. In our framework
such resources are orchestrator, controller or may be some other resources with fixed
and high bandwidth network. In this case, both peers share a symmetric key by using
following cryptographic operation. Public key of the recipient is acquired from the
DLT which is the part of Veidblock architectural configuration and is already trusted.

SK0 ¼ E Rpu; SK
� � ð2Þ

M0 ¼ E Spr; H SK0j nð Þ jVh� �
SK0j j n ð3Þ

The protected key is then used (Eq. 3) to generate key exchange message and these
are same as described in the security context (Eq. 1). Once key is shared then, the peers
can use following cryptographic operations for exchanging bulk messages in secure
way (Eq. 4). These operations provide protection of messages against information
disclosure (eavesdropping) because SK is encrypted by using the using the public key
of the recipients. The tampering, spoofing, replay attacks and provides trusted com-
munication between resources by using digital signature, verification of Veidblock and
inclusion of none in the message.

M0 ¼ E SK0; M H(Mj j nð Þ Vh)j jn ð4Þ

Confidential Light Messages (ctx1.4): This type of security context is recommended
to use for light weight messages exchanged between two low latency devices. Example
of such message are sharing location information with a friend, exchanging codes
between peers, etc. In short, this type of context is used when a peer to peer secure and
trusted communication is required. As depicted in Eq. 5, in this security context, sender
encrypts the message with public key of the recipient and then digitally signs it by
using the Eq. 1.

M0¼E Spr;H E Rpu; M
� � j n� � jVh� �

E Rpu; M
� ��� �� n

ð5Þ

Towards Trusted Security Context Exchange Protocol for SDN 293

4 Mapping of the Proposed Solution to VANET Case Study

As shown in the Fig. 1, various components are configured installed and they are
connected with each other. Each node is also synched with the DLT and stores various
security context in local storage. In this the Orchestrator is responsible to manage
controller therefore they can exchange bulk messages for updated controller configu-
ration, installing new policies and routes. Since these messages are bulk messages
therefore they mention ctx1.3 in the header of a message. Rest of operations are
automatically synched according to the ctx requirements. Similarly, the controller
needs to transfer updated state to orchestrator therefore it also uses ctx1.3.

On the other hand, if a vehicle sends its current location to the Road Side Unit
(RSU) then it uses sctx1.4 because these are light messages and vehicle does not have
fixed connection with RSU. Similarly, if a vehicle wants to exchange information
messages like road condition, air pressure, weather status or urgent help message then
such messages needs only source authentication and data integrity which leads to the

Fig. 1. Architectural view of the use case and interaction between various nodes

294 A. Ghafoor et al.

trusted communication. Such types of messages are normally broadcasted in ad hoc
network and vehicle only specifies ctx1.2 in the message header. Recipients can pro-
cess messages according to the crypto functions specified in ctx specification.

5 Evaluation and Discussion

In this section, various designed message contexts are evaluated by using scyther, a
tool for formal verification of security protocols which already has a built-in adversary
model. In this evaluation, two main security contexts are considered because the others
are subset of these two. These are ctx1.2 and ctx 1.3. In addition to that, in scyther
model, V1 represents a sender Vehicle while the V2 represents a receiver vehicle.

In ctx 1.2, we focused on a match event to ensure that the Veidblock is correct and
authentic therefore it is defined as a global variable since it is fetched from DLT. Other
relevant four claims are: (i) Nisynch, is used to ensure that the communication between
sender and receiver is synched and sent by the sender, (ii) Alive, required for authen-
tication to ensure that the recipient received messages and processed it, (iii) Commit, is
used for commitments between sender and receiver and makes effective claim against
impersonation attack. (iv) Niagree, ensures that the non-injective property is achieved to
protect protocol from replay attack. As shown in Fig. 2 that all claims verified by scyther
and only one claim ‘Alive’ at the V2 failed because our solution provides reduction of
messages exchanged between V1 and V2 by pre-establishing generalized security
context therefore V1 is not receiving any response message.

Fig. 2. Formal verification results of designed ctx1.2 for Trusted Messages

Towards Trusted Security Context Exchange Protocol for SDN 295

The ctx1.3 messages which is used for confidential bulk messages. This type of
security context is also used to exchange a share secret and then by using that secret
encrypted bulk messages are exchanged. Figure 3 shows the results of ctx1.3. In this
we can view that the ‘Alive’ claim is also successful since more than one message are
involved in this verification. In addition to the above claims, we also claimed ‘Secret’
in which to verify that a shared key is exchanged securely and then messages level
confidentiality is also achieved.

Our evaluation results show that the designed security context provides data
integrity, confidentiality, non-reputation and freshness services for SDN based VANET
use case.

6 Conclusions

To overcome the latency issue in real-time communication, a number of research based
solutions and various architectures are being proposed. In this paper, a novel solution is
proposed for such networks to exchange security context in a synchronized manner to
serve as a baseline for nodes to dynamically adopt security features and fulfill security
requirements of deployed nodes. Various security contexts are designed, proposed and
categorized based on the nature of information exchange between nodes (resources)
ensure trustworthy communication services. We verified our security contexts opera-
tions by using scyther and verified that the designed security contexts provide message
authentication, data confidentiality, data integrity and secure key exchange mechanisms
for hybrid network (based on fixed and ad hoc network). In addition to that we also,
discussed that the more suitable security context can be used according to the
requirements of network which makes it adaptable and more flexible. Our future
objective is to extend existing solution and introduce more complex cryptographic
functions with alternative options to make it more adaptable and customizable. To

Fig. 3. Formal verification results of designed ctx1.3 for confidential bulk messages

296 A. Ghafoor et al.

practically demonstrate the realization of the solution and comparing its network
latency and efficiency with existing solution, VEINS simulator based solution (Proof of
Concept) will be implemented in near future.

Acknowledgment. This research activity is partially supported by TOUCHES ICT-TNG project
and KP for Cybersecurity at RISE. We are also thankful to prof. Panos for technical discussion
on initial topic at KTH.

References

1. Chen, M., Qian, Y., Hao, Y., Li, Y., Song, J.: Data-driven computing and caching in 5G
networks: architecture and delay analysis. IEEE Wirel. Commun. 25(1), 70–75 (2018)

2. IEEE 5G and beyond technology roadmap. https://futurenetworks.ieee.org/images/files/pdf/
ieee-5g-roadmap-white-paper.pdf. Accessed 13 June 2019

3. Accenture Consulting. Tactile Internet enabled by pervasive networks. http://technodocbox.
com/Computer_Networking/69821120-Tactile-internet-enabled-by-pervasive-networks.
html. Accessed 12 Feb 2019

4. van Kranenburg, R., Bassi, A.: IoT challenges. mUX: J. Mob. User Exp., 1–9 (2012). https://
doi.org/10.1186/2192-1121-1-9

5. Kreutz, D., Ramos, F., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-defined networking: a comprehensive survey. IEEE. 103(1), 14–76 (2015)

6. Truong, N.B., Lee, G.M., Ghamri-Doudane, Y.: Software defined networking-based
vehicular Adhoc Network with Fog Computing. In: Proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada
(2015)

7. Su, Z., Wang, T., Xia, Y., Hamdi, M.: CheetahFlow: towards low latency software-defined
network. In: Proceedings of IEEE International Conference on Communications (ICC),
Sydney, NSW, Australia (2014)

8. Requena, J.C., et al.: SDN and NFV integration in generalized mobile network architecture.
In: Proceedings of European Conference on Networks and Communications (EuCNC), Paris,
France (2015)

9. Abbasi, A.G., Khan, Z.: VeidBlock: verifiable identity using blockchain and ledger in a
software defined network. In: Proceedings of SCCTSA2017 Co-located 10th IEEE/ACM
Utility and Cloud Computing Conference, Austin, Texas, USA, pp. 173–179 (2017)

10. Kirichek, R.: 5G and Tactile Internet. Network and Services Decentralization. https://www.
itu.int/en/ITU-T/Workshops-and-Seminars/20160921/Documents/Presentations/S1_2_
Ruslan_Kirichek_v3.pdf. Accessed 13 June 2019

11. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key
technologies, applications and open issues. J. Network Comput. Appl. 98, 27–42 (2017)

12. Ramel, D.: SDN a game changer but slow out of the gate, survey shows. https://gcn.com/
Articles/2015/01/13/SDN-adoption.aspx. Accessed 13 June 2019

13. ETSI. Network Functions Virtualisation (NFV); NFV Security; Security and Trust Guidance,
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/003/01.02.01_60/gr_nfv-
sec003v010201p.pdf. Accessed 13 June 2019

14. ETSI. Network Functions Virtualisation (NFV); NFV Security; Problem Statement, http://
www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-
SEC001v010101p.pdf. Accessed 13 June 2019

Towards Trusted Security Context Exchange Protocol for SDN 297

https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf
https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf
http://technodocbox.com/Computer_Networking/69821120-Tactile-internet-enabled-by-pervasive-networks.html
http://technodocbox.com/Computer_Networking/69821120-Tactile-internet-enabled-by-pervasive-networks.html
http://technodocbox.com/Computer_Networking/69821120-Tactile-internet-enabled-by-pervasive-networks.html
http://dx.doi.org/10.1186/2192-1121-1-9
http://dx.doi.org/10.1186/2192-1121-1-9
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20160921/Documents/Presentations/S1_2_Ruslan_Kirichek_v3.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20160921/Documents/Presentations/S1_2_Ruslan_Kirichek_v3.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/20160921/Documents/Presentations/S1_2_Ruslan_Kirichek_v3.pdf
https://gcn.com/Articles/2015/01/13/SDN-adoption.aspx
https://gcn.com/Articles/2015/01/13/SDN-adoption.aspx
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/003/01.02.01_60/gr_nfv-sec003v010201p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/003/01.02.01_60/gr_nfv-sec003v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf

15. Wen, X., Chen, Y., Hu, C., Shi, C., Wang, Yi.: Towards a secure controller platform for
openflow applications. In: Proceedings of 2nd ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking (HotSDN 2013), Hong Kong, China, pp. 171–172 (2013)

16. Wasserman, M., Hartman, S., Zhang, D.: Security analysis of the Open Networking
Foundation (ONF) OpenFlow Switch Specification. https://tools.ietf.org/id/draft-mrw-
sdnsec-openflow-analysis-00.html. Accessed 12 June 2019

17. Szabo, D., Gulyas, A., Fitzek, F.H., Lucani, D.E.: Towards the tactile internet: decreasing
communication latency with network coding and software defined networking. In:
Proceedings of 21st European Wireless Conference, Budapest, Hungary, pp. 1–6 (2015)

18. Liyanage, M., et al.: Enhancing security of software defined mobile networks. IEEE Access
5, 9422–9438 (2017)

19. Parno, B., Perrig, A.: Challenges in securing vehicular networks. https://netsec.ethz.ch/
publications/papers/cars.pdf. Accessed 13 June 2019

20. Al-Raba’nah, Y., Samara, G.: Security Issues in Vehicular Ad Hoc Networks (VANET): a
survey. Int. J. Sci. Appl. Res. 2(4), 50–55 (2015)

21. Zaidi, K., Rajarajan, M.: Vehicular internet: security & privacy challenges and opportunities.
Future Internet 7, 257–275 (2015)

22. Qu, F., Wu, Z., Wang, F.-Y., Cho, W.: A security and privacy review of VANETs. IEEE
Trans. Intell. Transp. Syst. 16(6), 2985–2996 (2015)

23. Shrestha, R., Bajarachary, R., Nam, S.Y.: Challenges of future VANET and cloud-based
approaches. Hindawi Wirel. Commun. Mob. Comput. 2018, 15 (2018)

24. Sugumar, R., Rengarajan, A., Jayakumar, C.: Trust based authentication technique for
cluster based vehicular ad hoc networks (VANET). Wirel. Netw. 24(2), 373–382 (2018)

25. Kaiser, C., Steger, M., Dorri, A., Festl, A., Stocker, A., Fellmann, M., Kanhere, S.: Towards
a privacy-preserving way of vehicle data sharing – a case for blockchain technology? In:
Dubbert, J., Müller, B., Meyer, G. (eds.) AMAA 2018. LNM, pp. 111–122. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-99762-9_10

26. Sharma, P.K., Moon, S.Y., Park, J.H.: Block-VN: a distributed blockchain based vehicular
network architecture in smart city. J. Inform. Process. Syst. 13(1), 184–195 (2017)

27. Bogue, R.: Towards the trillion sensors market. Sens. Rev. 34(2), 137–142 (2014)
28. Aijaz, A., Sooriyabandara, M.: The tactile internet for industries: a review. IEEE 107(2),

414–435 (2018). https://doi.org/10.1109/JPROC.2018.2878265
29. Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S.: Challenges and

opportunities in edge computing. In: IEEE International Conference on Smart Cloud
(SmartCloud), New York, NY, USA (2016). https://doi.org/10.1109/smartcloud.2016.18

30. Sezer, S., et al.: Are we ready for SDN? implementation challenges for software-defined
networks. IEEE Commun. Mag. 51(7), 36–43 (2013)

298 A. Ghafoor et al.

https://tools.ietf.org/id/draft-mrw-sdnsec-openflow-analysis-00.html
https://tools.ietf.org/id/draft-mrw-sdnsec-openflow-analysis-00.html
https://netsec.ethz.ch/publications/papers/cars.pdf
https://netsec.ethz.ch/publications/papers/cars.pdf
http://dx.doi.org/10.1007/978-3-319-99762-9_10
http://dx.doi.org/10.1109/JPROC.2018.2878265
http://dx.doi.org/10.1109/smartcloud.2016.18

Devil’s in the Detail: Through-Life Safety
and Security Co-assurance Using SSAF

Nikita Johnson(B) and Tim Kelly

Department of Computer Science, University of York, York, UK
{nikita.johnson,tim.kelly}@york.ac.uk

Abstract. Regulatory bodies, industry and academia present a plethora
of approaches for risk analysis and engineering for safety and secu-
rity. However, few standards and approaches discuss the management
of both safety and security risks. Fewer yet provide detail on how the
two attributes interact within a given system. In this paper, the Safety-
Security Assurance Framework (SSAF) is presented as a candidate solu-
tion to many of the extant challenges of attribute co-assurance. It is a
holistic approach, based on the concept of independent co-assurance, that
considers both the technical risk impact and the socio-technical impact
on assurance. The Framework’s Technical Risk Model (TRM) is applied
and evaluated against a case study of an insulin pump. It is argued that
SSAF TRM is not only a plausible and practical approach, but also more
effective for co-assurance than many existing approaches alone.

Keywords: System safety · Cyber security · Co-assurance framework

1 Introduction

Advancements in technology have caused an exponential increase in the complex-
ity and interconnectedness of systems that are used by society. These systems
range from autonomous aircraft, to critical national infrastructure and house-
hold appliances. Indeed, these new capabilities allow society to improve in many
ways. However, the challenge is how to ensure that safety and security risk is
managed whilst reaping the benefits of innovation, and how to assess the impact
of change and make the trade-off for a particular risk.

There are many technical risk reduction approaches that consider both safety
and security to different extents; these include, but are not limited to security-
aware HAZOPs, security-aware STPA, integrated attack-fault trees, depend-
ability analysis and architectural methods - all of these have been surveyed in
[17]. Even with these approaches to unified risk management, problems with co-
assurance of the attributes remain. Too often, analysis techniques during devel-
opment do not capture the level of detail required to assess the impact of change
during operation. This is particular true for security assurance, which has the
presence of an intelligent adversary as a distinguishing factor. The lack of detail

c© Springer Nature Switzerland AG 2019
A. Romanovsky et al. (Eds.): SAFECOMP 2019, LNCS 11698, pp. 299–314, 2019.
https://doi.org/10.1007/978-3-030-26601-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26601-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-26601-1_21

300 N. Johnson and T. Kelly

and paucity of assurance information gives rise to issues with the attributes’ tech-
nical risk arguments, e.g. conflicts between safety and security have the potential
to undermine or undercut assurance claims made in a single domain, possibly
causing a reduction in the accuracy of an assurance claim, and a reduction in
the level of confidence we can have in it.

The Safety-Security Assurance Framework (SSAF) [16] is a candidate solu-
tion to address the challenges of co-assurance. It is a two-part approach that
considers both the technical risk arguments for the attributes, and the socio-
technical factors affecting co-assurance. SSAF is based on the new paradigm
of independent co-assurance, that is, maintaining separate assurance processes,
but sharing the right information, with the right people, at the right time. Thus,
gaps in assurance can be managed in a more systematic and demonstrable way
than simply unifying co-assurance processes and artefacts.

In this paper, the challenges and key concepts are introduced in Sect. 1;
Sect. 2 explores the SSAF Technical Risk Model, and Sects. 3 and 4 summarise
and conclude the findings of the case study.

1.1 Safety-Security Co-assurance Primer

This introduction to co-assurance concepts is not meant to be exhaustive or com-
plete, but provide the key concepts and terms that will be used in subsequent
discussion. Assurance will refer to the rationale of why a system has certain
quality attributes e.g. safety or security, and the process of building that ratio-
nale and gaining confidence. Safety will refer to systems safety, and look at the
interaction of software components within a wider technological system. Secu-
rity refers to cyber-security, which consists of information assurance, as well as
physical security and the interactions within a technological system. An assur-
ance case is a structured argument of claims supported by evidence, in a given
context and under specified assumptions. Co-assurance, therefore, is the pro-
cess and rationale that a system has at least two attributes. The difficulty in
discussing assurance may already be apparent, as the word can be both a verb
and a noun - either referring to the outcome of an activity, or to the process by
which assurance is gained. This difficulty is reflected in the existing standards
and frameworks for supporting safety and security assurance.

Safety assurance, for the most part, follows the 4 + 1 Assurance Principles
described in [11]. The Principles 1–3 are concerned with the definition, decom-
position and satisfaction of safety requirements. Principle 4 is concerned with
ensuring that no hazards have been introduced as a result of the preceding prin-
ciples. Finally, Principle 4 + 1 is orthogonal to the first four, and it deals with
confidence of each of the principles. To a lesser or greater extent, most standards
and codes of practice conform to these principles.

Security assurance, however, is currently process based, and most security
standards and codes of practice conform to the Plan-Do-Check-Act (PDCA)
model described in the security standard ISO 27001 [15]. The Check-Act parts
of the PDCA model can be mapped to the 4 + 1 Principles, however the sense
of dynamic change and temporal significance is lessened. In addition, the 4 + 1
Principles can be regarded as reductionist in their approach, this is problematic

Through-Life Safety and Security Co-Assurance 301

for security where an intelligent adversaries may exploit emergent properties of
a system to achieve a goal thereby making decomposition impossible.

Independent Co-Assurance is a paradigm that begins to resolve these assur-
ance conflicts. At its core, it allows for separate safety and security assurance
processes, separate teams, separate artefacts and different timescales for assur-
ance. To many this might appear to be a step in the wrong direction, i.e. a model
of siloed assurance. However, what makes independent co-assurance different is
that it requires the structure for the “separateness” of the attributes to be deter-
mined beforehand. Therefore the right information for assurance activities can
be given to the right people at the right time. Determining this structure is
non-trivial. The Safety-Security Assurance Framework provides guidelines as to
how this might be achieved.

2 SSAF - Technical Risk Model

The Safety-Security Assurance Framework is a two-part, independent co-
assurance solution comprised of:

The Socio-Technical Model (STM) – This recognises that the SSAF Techni-
cal Risk Model, or indeed any technical approach, is limited by the socio-technical
factors that influence it. The STM considers five dimensions - Conceptual,
Structure, People, Process and Tools based on the interacting variable classes iden-
tified for management information systems [3]. Even though the trade-off decisions
made on the socio-technical abstraction level are fundamental to having assurance,
for example, deciding the frequency of security patches versus maintaining safety
certification stability, they are mostly beyond the (necessarily limited) scope of
this research paper.

The Technical Risk Model (TRM) – This is the meta-process and meta-
model for integrated technical co-assurance. It is based on the explicit modelling
of the causal relationships between attributes, which link the artefacts from
activities in one domain to those of the other. In this paper, focus will be on
the SSAF Technical Risk Model process which has previously been introduced
in [16]; the following subsections will provide further detail. The input, activities
and output of each step are shown in Table 1.

Insulin Pump Case Study. To better understand the framework, and to
capture the detail of the modelling, a case study of an insulin pump will be
used. Insulin pumps are portable medical devices whose primary purpose is to
deliver correct dosages of insulin to a diabetic patient. This option is often chosen
instead of multiple insulin injections a day. The technology used in the pump
introduces new avenues for harm to occur. Therefore, risk must be explicitly
considered and safety must be engineered into the system. The components,
described in Hu & Li’s paper on intelligent insulin pump design [13], consist of
an embedded controller which receives input from the patient (such as last meal
data via the keyboard), and delivers a dosage of fast or slow-acting insulin by
controlling the motor and infusion.

302 N. Johnson and T. Kelly

Table 1. Activities, inputs and outputs of SSAF steps.

The following sections will apply the Safety-Security Assurance Framework -
Technical Risk Model (SSAF TRM) process to the Insulin Pump. As far as pos-
sible, existing assurance artefacts in the literature will be used (e.g. assurance
context [28,35], hazard analyses and safety arguments [5,12,39], security analy-
ses [4,24,25,36], system weaknesses [33,34], etc.). The focus of this case study is
not the accuracy of the artefacts themselves, but the creation of a shared meta-
model of the interactions between artefacts. Having correct risk analyses is a
fundamental part of attribute integration, however the assumption is made that
the artefacts presented here are plausible enough to demonstrate the application
of the TRM.

2.1 Step 1: Establish an Ontology and Synchronisation Points

This initial SSAF step is characterised by the creation of a shared language for
assurance across the domains. This may seem trivial, however the similarity of
the domains can lead to a false sense of homogeneity, when there exist potentially
irreconcilable differences. An example is the concept of harm. Within the safety
domain harm is understood, in the strictest sense, to be injury or loss of life. Secu-
rity harm is less clear - significant financial impact is often given as a measure
for security harm, however it has been demonstrated that major data breaches
often do not depress stock market prices for the affected company longer than

Through-Life Safety and Security Co-Assurance 303

a week [21]. This is in stark contrast to the severe impact and in-depth inves-
tigation after an accident or safety incident. Security loss events require more
deliberate trade-off analysis against the benefits of accepting the risk because
many more factors are considered for security risk such as business reputation,
resources available, political climate, competitive advantage, etc. Furthermore,
because the effects of safety harm are perceived to be so egregious, safety often
takes precedence when trade-off decisions must be made during development,
which limits options for security during operation.

On industrial projects, under the pressure of delivery, there may also be dif-
ferent pressures and expectations from safety and security practitioners. Thus,
it is paramount to the success of co-assurance activities to establish a common
dictionary early in the development process. A common ontology does not imply
unified terminology - it is acceptable to define safety risk and security risk sep-
arately, or where there are intractable disagreements. What is important is to
understand the minimal number of terms required for communication and their
relation to each other. This is fundamental to communication whether using
SSAF or any other methodology. For illustrative purposes, Firesmith’s Surviv-
ability model [7] will be used for this case study.

Another important aspect of this step is establishing synchronisation points
and information needs. What is meant by this, is explicit agreement between
practitioners in each domain about what information shall be exchanged and
when. Guidance might be found in existing standards for the system being devel-
oped. For the insulin pump example, AAMI guidance on security risk manage-
ment for medical devices [2] provides a process that is matched to the safety risk
process in ISO 14971 [14]. Specified interaction points are shown in the process,
e.g. security controls affect safety, safety controls affect security, and security risk
has a potential safety impact. Note that SSAF does not advocate how many sync
points should be present. It is possible to instantiate sync points in a variety of
models e.g. aligned with a project’s frequent weekly meetings to limit divergence
of the attributes or aligned with project milestones, etc.; each alignment model
has different advantages and disadvantages.

2.2 Step 2: Model Risk and Assurance Process

SSAF Step 2 - Process Modelling and Step 3 - Argument Modelling are per-
formed within a single domain. This separation accommodates different deliv-
ery timescales that are often present on industrial projects, and removes the
need to try to unify assurance processes completely. The steps are presented
sequentially, however it is more likely that modelling the assurance process and
assurance argument will be done in parallel and incrementally. Specific infor-
mation is required at synchronisation points agreed in Step 1, outside of that,
there is flexibility for the single attribute assurance to be optimised e.g. to meet
their individual concerns of certification or accreditation. For most safety-related
systems there is already an existing standard that provides a risk management
process, and this is increasingly the case for application-specific security stan-
dards, as with ISO 14971 [14] and AAMI TIR57 [2] for medical devices.

304 N. Johnson and T. Kelly

The purpose of this SSAF step is to resolve any issues regarding the infor-
mation requirements for a single attribute. Conflicts arise between traditional
“V” assurance process and modern agile development processes where there are
differences in the information needed and the information available. For exam-
ple, Functional Failure Analysis requires information about all the functions of
a system to be available at the start of the analysis, if an iterative and incre-
mental model-based system development process is being used such as MBSE,
then all the failures required may not be available at the time the FFA is per-
formed. This could lead to an incomplete analysis. This gap in assurance should
be recorded and either resolved when the system model is more mature or the
reasons why it is acceptable should be argued in the assurance case. Modelling
the tasks explicitly allows for strategic assignment of methods, people and time
to meet assurance goals.

2.3 Step 3: Model Assurance Argument

The objective for this SSAF step is to link the artefacts generated in the previous
step to the assurance argument for a single attribute. The benefit of this is
that the meaning of the artefacts is explained. Artefacts generated from a risk
management processes e.g. Hazard List, remain unexplained until an argument is
built about how and why that artefact is relevant, and what it contributes to the
top level claim of safety or security. Table 2 shows an example safety assurance
argument for the insulin pump. It is divided into six levels of claims (denoted
by G*), context elements (C*) and argument strategies (St*). The contents of
the the argument are derived from the structure shown in [12] and from the
hazard lists contained in [8]. The risk argument presented is decompositional,
and argues over each of the safety hazards for the insulin pump. The leaf claim
G1.4.2.3.2 Commanded excess infusion adequately mitigated. is supported by
evidence during a Fault Tree analysis. Part of that Fault Tree is shown in Figure
2 and discussed in the next section.

There are several questions that may arise at this step, such as why not have
a unified co-assurance argument, or why perform the step at all considering the
resource overhead that might be better spent on technical risk reduction. Both
these questions are valid, however a unified assurance argument would be diffi-
cult to construct because of the differing goals of the attributes. This separate
approach to the arguments also allows for work to progress in a single domain,
e.g. if safety risk management begins several months before the security pro-
gramme then valuable progress can be made and security results incorporated.
This only works if SSAF Step 1 – establishing information needs and synchroni-
sation points has been completed. Not explicitly modelling the assurance argu-
ment means that during operation it is difficult to understand the impact of
change via the artefacts; this is especially important for security where there is
the potential for tens of vulnerabilities to be added daily for complex systems.

Through-Life Safety and Security Co-Assurance 305

Table 2. Example safety argument structure for insulin pump

G1. Insulin pump is adequately safe for routine use

C1. Definition of adequately safe & routine use (ISO 14971)

C2. Pump design documentation & system model

C3. Details of patient types and usage environments

St1. Argument mitigation of system hazards

C4. Complete set of hazards

G1.1 Traumatic injury mitigated

G1.2 Biological/chemical contamination mitigated

G1.3 Incorrect therapy mitigated

G1.4 Infusion delivery error mitigated

G1.4.1 Risk of hyperglycaemia adequately mitigated

G1.4.2 Risk of hypoglycaemia adequately mitigated

St2. Argument over delivery modes

G1.4.2.1 Excess insulin during basal infusion mitigated

G1.4.2.2 Excess insulin during pump priming mitigated

G1.4.2.3 Excess insulin during meal/correction bolus infusion mitigated

St3. Argument over commanded vs. uncommanded infusions

G1.4.2.3.1 Uncommanded excess infusion mitigated

G1.4.2.3.2 Commanded excess infusion adequately mitigated

2.4 Step 4: Link Artefacts

This SSAF Step is deceptively simple, but is in fact, the core contribution of the
SSAF Technical Risk Model. The activity is to link the artefacts generated in the
previous steps with those of the other domain at the set synchronisation points.
This might be in the form of experts from safety and security teams meeting
to reconcile requirements, or to determine which vulnerabilities contribute to a
hazard. The difference with SSAF artefact linking is that the causal model is
modelled explicitly.

Fig. 1. SSAF causal model meta-model (Partial)

306 N. Johnson and T. Kelly

Figure 1 shows part of the SSAF TRM causal model meta-model. It is based
on conditions being linked to conditions through a causal relationship. Condi-
tion here can refer to a safety condition such as a hazard, failure of a safety
function, accident; equally it can refer to a security condition such as a threat,
vulnerability, attack, etc. The beauty of this abstraction is that it enables the
relationship between safety and security to be explicitly analysed. For many of
the current co-engineering and co-assurance methods the causal link is implied,
and the assurance gaps that the relationship introduces are obfuscated. This lack
of clarity is counter-productive to the goal of successful and rigorous integration
of the two attributes. The Technical Risk Model does not prescribe particu-
lar causal relationships, however through the meta-model, it provides a way of
explicitly structuring the causal relationships so that they can be reasoned about
regardless of how the modelled relationship was reached, i.e. it is independent
of methodologies for establishing causal links.

Fig. 2. Assurance artefacts. Left. Safety. Right. Security.

Figure 2 shows one instance of the causal link for the insulin pump example.
On the left is the safety artefact - the Fault Tree which has information about
failure behaviour from a safety perspective. On the right, the security artefact -
the attack defence tree (ADT), which is a directed, acyclic graphs that is based
on fault trees [20], however it contains much more information such as potential
mitigations to prevent reaching a particular node. For this SSAF step, expert

Through-Life Safety and Security Co-Assurance 307

judgement is used to determine the causal link between failure event F5. Mali-
cious issuing of commands is connected to the attack node A1. Malicious issuing
of command node. The artefacts are derived directly from examples in the lit-
erature [1,4,25,30,36], and do not necessarily provide the strongest evidence for
safety or security arguments; however it is especially important to form a meta-
model of the links for weak arguments and artefacts so that the relationship can
be examined further, for example, if a safety claim is related to a weak security
artefact this could be revealed in the SSAF analysis and model.

The primary benefit of approaching the problem in this way is that, due to
the implicit causal model represented by the fault tree and the ADT, the link
between the attributes instantly provides the analysts with more information
without having to know the details of the other domain. For example, if there
was a new attack vector discovered where a wired command could be executed
that by-passed mitigation M1. Physical access to wired connection restricted,
then the causal link allows us to know that safety event F5. Malicious issuing
of commands would return true. Through the fault tree failure path, F1. Pump
commanded to infuse more insulin than user intended would be true. If this
fault tree was used as a solution to the claim G1.4.2.3.2 Commanded excess
infusion adequately mitigated from Table 2, then that claim is now undercut by
that evidence. Thus, it is possible to see, in a semi-automated way, the impact
propagation of adding another security condition. This enables better complex-
ity and risk management in the real-world context of hundreds of vulnerabilities
being added to vulnerability databases daily. The SSAF causal link provides a
way of seeing the impact of one attribute on another without the requirement to
resolve the issue i.e. in the insulin example, it is now demonstrated how claims
in safety argument may be invalidated, therefore resources can be allocated pro-
portional to severity - if the risk of excess insulin infusion is too great then the
pump manufacturers might recall the product.

The example in Fig. 2 is just one instance of an artefact link. Table 3 shows
more examples of causal links. SSAF TRM methodology is agnostic to the ontol-
ogy and condition definitions used; for illustrative purposes Firesmith’s Surviv-
ability model and explanation of the conditions are used [7]. There are many
ways to create the causal relationship, some of the methods used in the litera-
ture are included in the Table.

Bi-Directional Link. CR1 and CR2 are an example of a bi-directional link
using the Architecture Trade-Off Analysis Method (ATAM)[19]. ATAM relies
on stakeholder for a system having a structured meeting and evaluating the
benefits of using different architectures, then negotiating the best architecture
based on a set of scenarios. This method was found to be effective in meeting
its goals, and good at creating open communication channels, including between
government and contractors [18]. A limitation of this method however is that it
is resource intensive (the case study in [18] took two days and not all scenarios
were covered).

Security Condition Influencing System Safety. CR3 shows how Systems
Theoretic Process Analysis (STPA)[23] has been adapted to STPA-Sec [38] and

308 N. Johnson and T. Kelly

Table 3. Causal relationship examples.

ID Condition Causal relationship

Source Target Label Method

CR1 Safety requirements Security requirements trade-off ATAM

CR2 Security requirements Safety requirements trade-off ATAM

CR3 Threat condition Safety requirements influence STPA-Sec, STPA-SafeSec

CR4 Vulnerabilities Failure cause FFA

CR5 Vulnerabilities Hazards contribute to SAHARA, DDA, UML, FTA

CR6 Safety effect Attack motivates ADT

CR7 Threat condition Hazard safety impact Standard

CR8 Security controls Safety requirements conflict with ad-hoc

STPA-SafeSec [9] to integrate security conditions to system level hazards and
safety requirements. Like many other techniques that have been adapted from
safety, there are few industrial evaluations currently available and initial eval-
uations have found that Security-Aware STPA has limitations with regards to
analysis of security concerns such as privacy or confidentiality.

Vulnerabilities Contributing to Failure and Hazards. CR4 and CR5 show
the different ways in which vulnerabilities can contribute to hazards or fail-
ures. The methods used: Functional Failure Analysis (FFA), SAHARA [26] and
DDA [6] are based on the bowtie model (in this case, security condition leading
to a safety hazard). They rely on using expert judgement and guide words to
structure the discovery of the effects of one attribute on another. Note that a
causal link can be defined in UML [27], for example using expert knowledge of
a particular application domain to describe a complex relationship.

Safety-Informed Security. There a many methods currently that investigate
the impact of security on safety. However, the reverse relationship: the impact
of safety on security is just as worthy of study. With increased threat from well-
resourced adversaries, and the increased integration of technology into critical
national infrastructure, how a safety risk might motivate a particular attack and
thus increase security risk is worth analysis in its own right. CR6 shows one
example of this, by incorporating safety effects (possibly from a Failure Modes
and Effects Analysis) into an Attack Defence Tree.

Domain- andProject-Specific Links.CR7 demonstrates how causal relation-
ships can be derived from the standards. CR7 shows the safety impact relation-
ship between threat conditions and hazards that is defined in the aerospace safety
and security complementary standards ARP 4754A [32]/DO-326A [31]. The last
causal relationship CR8 shows how the interaction between the attributes can
be analysed in an ad-hoc way, for example a domain expert doing an analysis
in a spreadsheet. The reasons for a this are many and varied, however the most
common might be that there does not exist a causal relationship in the standards
or with existing techniques that allows for the link to be made. Performing this

Through-Life Safety and Security Co-Assurance 309

ad-hoc analysis using a text-based tool is discouraged, a modelling environment
would be better suited for future update of the link.

The causal relationships discussed in this section are a small subset of exam-
ples of the relationships that can exist between safety and security. It is unlikely
that any one method will sufficiently address all the concerns for both attributes,
especially when they are sometimes conflicting (even within a single domain).
With its causal link meta-model, SSAF proposes a way forward that enables work
to continue under uncertainty. Compared to existing techniques for integration,
it allows for updates in knowledge to be more easily incorporated. Borrowing
the idea of an attack surface from security, SSAF enables the assurance surface,
i.e. all the ways that safety and security uncertainty and risk can be reduced, to
be managed in a systematic, strategic and rigorous way.

2.5 Step 5: Update the Model

The purpose of the Safety-Security Assurance Framework is to provide the struc-
ture for through-life co-assurance. This kind of structure is fundamental to the
success of any co-assurance activities during the operational phase of a system.
Without knowledge of the assurance arguments for both safety and security, or
the causal relationship between the two, the problem of determining the impact
and meaning of change becomes intractable. However, stating that a change
structure is a necessary for effective co-assurance does not show how or why this
is the case, so an illustrative example of change for the insulin pump is discussed
in the subsequent section.

Insulin Pump Example: New Vulnerabilities. In October 2016, three new
vulnerabilities for the Animas OneTouch Ping Insulin Pump were released [29].
It was revealed that the insulin pump used cleartext rather than encrypted
communications; in addition, a weak pairing between the pump and its set-up
device enabled a remote adversary to connect with, and spoof the pump to
trigger patient uncommanded insulin infusion.

Considering the impact of these new vulnerabilities in the context of the ADT
in Fig. 2 - both vulnerabilities enable an adversary to bypass the mitigations and
lower levels of the tree, and exploit new paths to reach the node A2. Attacker
executes wireless command. These vulnerabilities challenge and undermine the
assumptions made about the attack vectors that an adversary could exploit at
the time when the ADT analysis was performed. Thus there is a path to mali-
cious issuing of commands which affects the “mitigated excessive infusion” safety
claim. If the artefacts are in a model-based environment, then the new vulnera-
bilities can be added to the ADT and the impact propagated and flagged in the
safety argument. The propagation does not indicate how the change should be
managed, however it does give a clear indication where the assurance argument
has been affected, therefore allowing expert time to be spent on determining the
best course of action rather than attempting to assess impact.

Of course, these are two vulnerabilities, and it is possible for a complex sys-
tem to have hundreds disclosed daily. The SSAF causal models do not trivialise

310 N. Johnson and T. Kelly

the need to manage the gaps in assurance once they are known. They do, how-
ever, allow for more effective impact propagation and SSAF provides a practical
structure to manage the assurance gaps i.e. the known unknowns.

3 SSAF Discussion and Way Forward

In this Section, the theory underlying SSAF will be briefly discussed and eval-
uated, then armed with knowledge from the development of SSAF, Sect. 3.1
provides recommendations for Safety-Security standards of the future.

A major difficulty in integrating safety and security is the lack of an underly-
ing theory of integration or conceptual framework of the connections and trade-
offs. This makes using traditional notions of validity, based on the scientific
method less effective; as there is little information about how integration works,
there is reduced confidence in the hypothesis formation phase, let alone hypothe-
sis testing. To ameliorate the effects of this issue, the development of SSAF used
diverse sets of data1 together with theory-building methodologies2 to create an
underlying model for safety-security interactions.

SSAF TRM theoretical framework was evaluated against three criteria: fit,
workability and modifiability [22]. Fit - The TRM framework closely fits with the
co-assurance concepts and relationships it is representing because it is predom-
inantly based on the incremental application of existing techniques (condition
and process modelling, argumentation, etc.) on large-scale industrial projects.
Workability - The workability of using the TRM approach was demonstrated
on a small scale using the insulin pump case study. Further testing is required of
the full SSAF model (TRM and STM) in an industrial setting to fully evaluate
the workability of the methodology described in Sect. 2. Finally, the Modifia-
bility - This too was evaluated on a small scale when the effects of adding new
conditions were discussed (Sect. 2.5). What is still missing is a full evaluation of
the effects of using the TRM meta-model in different application domains.

The SSAF TRM theoretical framework clearly requires further verification
in an industrial context. However, unlike extant techniques, the TRM offers
a unique way of explicitly modelling and reasoning about integration claims,
therefore enabling the systematic construction of a stronger co-assurance case.

3.1 What Might Safety-Security Standards Look Like?

The difficulty with standardising co-assurance processes is the dynamic security
landscape. For any one system, risk reduction for security would need to take
into account the threat landscape for that system and the organisation devel-
oping/operating it, the assumptions about adversaries, the modes of attack, to
name but a few factors. All this variation is difficult to capture in a standardised
form because, by their nature, standards attempt to abstract from particular

1 Industrial experience at BAE Systems, research literature, and workshop results.
2 Social science approaches: Grounded Theory [10] and Yin-style Case Studies [37].

Through-Life Safety and Security Co-Assurance 311

instances. Furthermore, safety standards aim for stability but the changes from
security require constant adaptation.

Instead of attempting to create generic standards that perfectly unify assur-
ance, and in the process lose information that is valuable for security, potentially
a better way forward would be to have a generic description of an assurance pro-
cess that refers to particular assurance profiles i.e. integration strategies and
methods. Such a standard could describe the benefits and limitations of each
integration strategy, and require particular strategies for systems that need high
assurance levels for both attributes. The SSAF models would be one way to cap-
ture the integration models and strategies. Safety-security co-assurance should
be developed as a discipline in its own right, with the aim of investigating and
resolving the particular integration challenges that are not addressed in either
safety or security domains.

4 Conclusion

There exist real-world challenges that pose barriers to developing and assur-
ing complex, interconnected systems for safety and security. It is insufficient to
disregard this real-world detail in order to make the assurance processes more
tractable. Therefore, to address the challenges, a systematic and rigorous app-
roach must be adopted to manage the interaction between safety and security.

The Safety-Security Assurance Framework (SSAF) was presented as a can-
didate solution to provide the structure and deliberateness required for co-
assurance. SSAF is a two-part framework that consists of a Technical Risk
Model (TRM) and a Socio-Technical Model (STM). The TRM is more effec-
tive at through-life co-assurance than many existing techniques because of its
capacity to propagate the impact of change across domains during all phases of
a system. A key enabler for impact propagation is creating explicit models of the
causal relationships between attributes. However, even with technical models of
causal relationships assurance gaps exist. SSAF TRM or, any other technical
model alone, cannot address wider socio-technical factors affecting assurance.

The aim of this paper is primarily to explore the safety-security framework
TRM and demonstrate the plausibility of such an approach. The scope was
set to just the technical assurance because of the novelty of the approach and
underlying theoretical framework. Rather than over-simplifying and reducing the
problem, SSAF proposes a novel way of looking at the problem - by embracing
the complexity and uncertainty, but doing so in a transparent and reasoned
manner. In this way, it is possible to continue to manage the safety-security
interactions and trade-offs in a deliberate way, thereby systematically improving
co-assurance.
Acknowledgements. Research and development of SSAF supported by the Univer-
sity of York, the Assuring Autonomy International Programme (AAIP), and BAE
Systems. UK Engineering and Physical Sciences Research Council Award Ref EPSRC
iCASE 1515047.

312 N. Johnson and T. Kelly

References

1. AlTawy, R., Youssef, A.M.: Security tradeoffs in cyber physical systems: a case
study survey on implantable medical devices. IEEE Access 4, 959–979 (2016)

2. Association for the Advancement of Medical Instrumentation: AAMI TIR57:2016
Principles for medical device security - Risk management. Technical report, June
2016

3. Bostrom, R.P., Heinen, J.S.: MIS problems and failures: a socio-technical perspec-
tive part I: the causes. MIS Q. 1, 17–32 (1977)

4. Camara, C., Peris-Lopez, P., Tapiador, J.E.: Security and privacy issues in
implantable medical devices: a comprehensive survey. J. Biomed. Inform. 55, 272–
289 (2015)

5. Chen, Y., Lawford, M., Wang, H., Wassyng, A.: Insulin pump software certification.
In: Gibbons, J., MacCaull, W. (eds.) FHIES 2013. LNCS, vol. 8315, pp. 87–106.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53956-5 7

6. Despotou, G., Alexander, R., Kelly, T.: Addressing challenges of hazard analysis in
systems of systems. In: 2009 3rd Annual IEEE Systems Conference, pp. 167–172.
IEEE (2009)

7. Firesmith, D.G.: Common concepts underlying safety security and survivability
engineering. Software Engineering Institute, Carnegie-Mellon University, Pitts-
burgh PA, Technical report (2003)

8. Food and Drug Administration (FDA): Infusion Pumps Total Product Life Cycle:
Guidance for Industry and FDA Staff. Technical report, U.S. Department of Health
and Human Services, December 2014

9. Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., Sezer, S.: STPA-SafeSec:
safety and security analysis for cyber-physical systems. J. Inf. Secur. Appl. 34,
183–196 (2017)

10. Glaser, B.G., Strauss, A.L.: Discovery of Grounded Theory: Strategies for Quali-
tative Research. Routledge, New York (2017)

11. Hawkins, R., Habli, I., Kelly, T.: Principled construction of software safety cases.
In: SAFECOMP 2013-Workshop SASSUR (Next Generation of System Assurance
Approaches for Safety-Critical Systems) of the 32nd International Conference on
Computer Safety, Reliability and Security (2013)

12. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A new approach to creating clear
safety arguments. In: Dale, C., Anderson, T. (eds.) Advances in Systems Safety,
pp. 3–23. Springer, London (2011). https://doi.org/10.1007/978-0-85729-133-2 1

13. Hu, R., Li, C.: The design of an intelligent insulin pump. In: 2015 4th International
Conference on Computer Science and Network Technology (ICCSNT), vol. 1, pp.
736–739. IEEE (2015)

14. ISO 14971:2007 Medical devices - Application of risk management to medical
devices. Standard, International Organization for Standardization, Geneva, CH,
September 2007

15. ISO/IEC 27001:2013 Information technology - Security techniques - Information
security management systems - Requirements. Standard, International Organiza-
tion for Standardization, Geneva, CH, October 2013

16. Johnson, N., Kelly, T.: Safety-security assurance framework (SSAF) in practice. In:
37th International Conference on Computer Safety, Reliability, & Security SAFE-
COMP2018 (Abstract Paper) (2018)

https://doi.org/10.1007/978-3-642-53956-5_7
https://doi.org/10.1007/978-0-85729-133-2_1

Through-Life Safety and Security Co-Assurance 313

17. Johnson, N., Kelly, T.: An assurance framework for independent co-assurance of
safety and security. In: Muniak, C. (ed.) Journal of System Safety. International
System Safety Society (January 2019), presented at: the 36th International System
Safety Conference (ISSC), Arizona, USA, August 2018

18. Jones, L.G., Lattanze, A.J.: Using the architecture tradeoff analysis method to eval-
uate a wargame simulation system: a case study. Technical report, Carnegie Mellon
University; Software Engineering Institute (SEI), Pittsburg, PA, USA (2001)

19. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The
architecture tradeoff analysis method. In: Proceedings Fourth IEEE International
Conference on Engineering of Complex Computer Systems (Cat. No. 98EX193),
pp. 68–78. IEEE (1998)

20. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

21. Lange, R., Burger, E.W.: Long-term market implications of data breaches, not. J.
Inf. Priv. Secur. 13(4), 186–206 (2017)

22. Lazenbatt, A., Elliott, N., et al.: How to recognise a ‘quality’ grounded theory
research study. Aust. J. Adv. Nurs. 22(3), 48 (2005)

23. Leveson, N.G.: A new approach to hazard analysis for complex systems. In: Inter-
national Conference of the System Safety Society (2003)

24. Li, C., Raghunathan, A., Jha, N.K.: Hijacking an insulin pump: security attacks
and defenses for a diabetes therapy system. In: 2011 IEEE 13th International
Conference on e-Health Networking, Applications and Services, pp. 150–156. IEEE
(2011)

25. Luckett, P., McDonald, J.T., Glisson, W.B.: Attack-graph threat modeling assess-
ment of ambulatory medical devices. In: Proceedings of the 50th Hawaii Interna-
tional Conference on System Sciences (2017)

26. Macher, G., Sporer, H., Berlach, R., Armengaud, E., Kreiner, C.: SAHARA: a
security-aware hazard and risk analysis method. In: Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, pp. 621–624. EDA Con-
sortium (2015)

27. OMG Unified Modeling Language. Standard, Object Management Group,
December 2017. https://www.omg.org/spec/UML/About-UML/

28. Piggin, R.: Cybersecurity of medical devices: addressing patient safety and the
security of patient health information. Technical report, BSI Group ANZ Pty Ltd.
(2017)

29. Radcliffe, J., Beardsley, T.: R7–2016-07: Multiple vulnerabilities in animas One-
Touch ping insulin pump. Technical report, Rapid7, October 2016. https://blog.
rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-
ping-insulin-pump/

30. Rathore, H., Mohamed, A., Al-Ali, A., Du, X., Guizani, M.: A review of security
challenges, attacks and resolutions for wireless medical devices. In: 2017 13th Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC),
pp. 1495–1501. IEEE (2017)

31. RTCA: RTCA DO-326: Revision A Airworthiness Security Process Specification.
Technical report, Washington, DC, USA, August 2014

32. SAE International: SAE ARP4754: Rev A Guidelines for Development of Civil
Aircraft and Systems. Technical report, December 2010

https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://www.omg.org/spec/UML/About-UML/
https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/
https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/
https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/

314 N. Johnson and T. Kelly

33. U.S. Cybersecurity and Infrastructure Security Agency (CISA): Advisory (ICSMA-
16-279-01): Animas OneTouch Ping insulin pump vulnerabilities. Technical report,
National Cybersecurity and Communications Integration Center (NCCIC) Indus-
trial Control Systems, October 2016

34. U.S. Cybersecurity and Infrastructure Security Agency (CISA): Advisory (ICSMA-
18-219-02): Medtronic MiniMed 508 insulin pump. Technical report, National
Cybersecurity and Communications Integration Center (NCCIC) Industrial
Control Systems, August 2018. https://ics-cert.us-cert.gov/advisories/ICSMA-18-
219-02

35. U.S. Food & Drug Administration (FDA): Postmarket Management of Cybersecu-
rity in Medical Devices: Guidance for Industry and Food and Drug Administration
Staff. Technical report, Center for Devices & Radiological Health, December 2016

36. Wu, F., Eagles, S.: Cybersecurity for medical device manufacturers: ensuring safety
and functionality. Biomed. Instrum. Technol. 50(1), 23–34 (2016)

37. Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage
publications, Thousand Oaks (2017)

38. Young, W., Leveson, N.G.: An integrated approach to safety and security based
on systems theory. Commun. ACM 57(2), 31–35 (2014)

39. Zhang, Y., Jones, P.L., Jetley, R.: A hazard analysis for a generic insulin infusion
pump. J. Diabetes Sci. Technol. 4(2), 263–283 (2010)

https://ics-cert.us-cert.gov/advisories/ICSMA-18-219-02
https://ics-cert.us-cert.gov/advisories/ICSMA-18-219-02

Author Index

Abbasi, A. Qudus 286
Adler, Rasmus 216
Altschaffel, Robert 128
Antlanger, Moritz 113

Bergt, Philipp 271
Bockenek, Joshua A. 35
Bucur, Doina 183

Caselli, Marco 183
Cimatti, Alessandro 200
Clegg, Kester 85
Cockburn, Andy 53

Deleris, Yannick 53
DeLong, Rance 200
Désert-Legendre, Léopold 53
Dierl, Simon 97
Ding, Kai 139
Dittmann, Jana 128

Esquivel-Vargas, Herson 183

Ferdinand, Christian 3
Filax, Marco 271
Frtunikj, Jelena 235

Gabor, Ulrich Thomas 97
Ghafoor, Abdul 286
Giet, Josselin 3
Gonschorek, Tim 271
Grigg, Alan 85
Gutwin, Carl 53

Habli, Ibrahim 165
Hauer, Florian 69
Hawkins, Richard 165
Hildebrandt, Mario 128
Holzmüller, Bernd 69

Ishigooka, Tasuku 19

Janschek, Klaus 139
Jöckel, Lisa 155
Johnson, Nikita 299

Kästner, Daniel 3
Kelly, Tim 299
Khan, Zaheer 286
Kiltz, Stefan 128
Kläs, Michael 155
Koopman, Philip 245

Lammich, Peter 35
Leite Jr., Fábio L. 216
Li, Mole 85

Mauborgne, Laurent 3
McDermid, John 85
Mehmed, Ayhan 113
Morozov, Andrey 139

Narisawa, Fumio 19

Ortmeier, Frank 271
Osyk, Beth 245
Otsuka, Satoshi 19

Palanque, Philippe 53
Paterson, Colin 165
Peter, Andreas 183
Picardi, Chiara 165
Piper, Thorsten 271
Pretschner, Alexander 69
Punnekkat, Sasikumar 113

Ravindran, Binoy 35
Reich, Jan 254

Schneider, Daniel 216, 254
Serizawa, Kazuyoshi 19
Spinczyk, Olaf 97

Stamp, David 85
Steiner, Wilfried 113
Stojic, Ivan 200

Tews, Erik 183
Tonetta, Stefano 200
Tsuchiya, Ryo 19

Verbeek, Freek 35
von Hoyningen-Hüne, Jan 271

Weast, Jack 245

Zeller, Marc 254

316 Author Index

	Preface
	Organization
	Invited Talks
	Trustworthiness Benchmarking of Safety Critical Systems
	The Sustainability of Safety, Security and Privacy
	An Open, Transparent, Industry-Driven Approach to AV Safety
	Contents
	Formal Verification
	Towards Zero Alarms in Sound Static Analysis of Finite State Machines
	1 Introduction
	2 Related Work
	3 Abstract Interpretation
	4 Sound Static Runtime Error Analysis
	4.1 Basic Design of Astrée

	5 Analyzing State Machines – An Example
	6 The State Machine Domain
	6.1 Abstract Operators
	6.2 Abstract Semantics
	6.3 Putting It Together

	7 Implementation
	8 Experimental Results
	8.1 Number of Errors and Alarms
	8.2 Efficiency

	9 Conclusion
	References

	Graceful Degradation Design Process for Autonomous Driving System
	1 Introduction
	2 Graceful Degradation Design Process
	2.1 Autonomous Driving System Concept with Graceful Degradation
	2.2 Clarification of Factors to Transit to EO
	2.3 Proposed Design Process
	2.4 System-Level Degradation Process: Degradation Definition Against Performance Limitation
	2.5 System-Level Degradation Process: Degradation Definition Against Hardware Failure
	2.6 System-Level Degradation Design: Degradation Definition Against Performance Limitation and Hardware Failure
	2.7 ECU Level Degradation Design: Function Design and Allocation
	2.8 ECU Level Degradation Design: ECU Safety Analysis
	2.9 ECU Level Degradation Design: Verification of Mode Switch Performance
	2.10 MC Level Degradation Design: Function Implementation
	2.11 Integration into ISO26262 and ISO/PAS 21448

	3 Calculation Framework of Worst-Case Mode Switch Time
	4 Case Study
	4.1 Evaluation Target
	4.2 Evaluation Result on Graceful Degradation
	4.3 Evaluation Result on Worst-Case Mode Switch Time

	5 Conclusion
	References

	Formal Verification of Memory Preservation of x86-64 Binaries
	1 Introduction
	2 Memory Preservation
	2.1 Formal Definition

	3 Blocks
	3.1 Symbolic Execution
	3.2 Rewriting of Memory Accesses
	3.3 Reasoning over Memory Regions

	4 Loops
	5 Composition
	6 Case Study: HermitCore
	7 Related Work
	8 Conclusion
	References

	Autonomous Driving
	Brace Touch: A Dependable,	Turbulence-Tolerant, Multi-touch Interaction Technique for Interactive Cockpits
	Abstract
	1 Introduction
	2 Touch Interactions
	2.1 Usability and UX (Operations)
	2.2 Hardware
	2.3 Software
	2.4 Touch Interaction

	3 Fault Model for Touch Interactions
	4 Brace Touch to Improve Dependability of Touch Interactions
	4.1 Principles of Brace Touch
	4.2 Hardware and Software Architecture of Brace Touch Interaction
	4.3 Behavioral Description of Brace Touch Using ICOs

	5 Dependability and Usability of Brace Touch
	6 Conclusion and Perspective
	References

	Fitness Functions for Testing Automated and Autonomous Driving Systems
	1 Introduction
	2 Scenario-Based Testing with Search-Based Techniques
	3 Fitness Function Templates
	3.1 Template for Testing Against Safe Operating Envelopes
	3.2 Templates for Ensuring Qualitative Test Goals

	4 Combining Templates
	4.1 Combination for Single-Objective Search
	4.2 Combination for Multi-objective Search

	5 Application of the Templates
	6 Related Work
	7 Conclusion
	References

	A SysML Profile for Fault Trees—Linking Safety Models to System Design
	1 Introduction
	1.1 Background and Previous Work

	2 A Bespoke Fault Tree Profile for SysML
	2.1 Implementation
	2.2 Alignment of Safety and System Models

	3 Conclusions
	References

	Safety and Reliability Modeling
	Spectrum-Based Fault Localization in Deployed Embedded Systems with Driver Interaction Models
	1 Introduction
	1.1 Motivation
	1.2 Requirements
	1.3 Contributions
	1.4 Paper Organization

	2 Related Work
	3 Methodology
	3.1 Methodology Variants
	3.2 Observed Entities for Spectrum Generation
	3.3 Transaction Detector
	3.4 Failure-Detection Oracle
	3.5 Thread Separation
	3.6 Failure Indexing

	4 Evaluation and Application
	4.1 Testbed
	4.2 Experiments

	5 Threats to Validity
	6 Conclusion
	References

	Forecast Horizon for Automated Safety Actions in Automated Driving Systems
	1 Introduction
	2 Problem Statement
	3 Parameters Influencing the Forecast Horizon
	3.1 The FTTI Concept and Proposed Extension
	3.2 Fault Detection Time
	3.3 Fault Reaction Time
	3.4 Automated Safety Action
	3.5 Safety Margin

	4 Complexity Reduction
	4.1 Specific Relevant Scenarios
	4.2 Safe States and Strategies for the Specific Relevant Scenarios
	4.3 Road Conditions and Speed Limits

	5 Estimation of the Forecast Horizon
	5.1 Scenario 1
	5.2 Scenario 2

	6 Conclusions
	References

	Digital Forensics in Industrial Control Systems
	1 Introduction
	2 Background
	2.1 Forensics in Desktop IT
	2.2 Industrial Control Systems

	3 A Forensic Understanding of ICS
	3.1 Implications on Forensic Investigations in ICS

	4 Revisiting the Forensic Process Model for ICS Forensics
	4.1 Revising Investigation Steps for ICS
	4.2 Criticality Map
	4.3 Revising Data Types for ICS

	5 Conclusion
	References

	Security Engineering and Risk Assessment
	Efficient Model-Level Reliability Analysis of Simulink Models
	1 Introduction
	2 Related Work
	2.1 Effectiveness of Fault Injections at the Model Level
	2.2 Reliability Evaluation at the Assembly Level
	2.3 Contributions of the Paper

	3 Reliability Assessment at the Assembly Level
	4 Reliability Assessment at the Model Level
	4.1 Reliability Evaluation of Individual Simulink Blocks Functions at the Assembly Level
	4.2 Generated Model-Level DEPM from the Simulink Model
	4.3 Probabilistic Modeling of Data Errors at the Model Level

	5 Experimental Results
	6 Conclusion
	References

	Increasing Trust in Data-Driven Model Validation
	Abstract
	1 Motivation
	2 Related Work
	3 Conceptual Augmentation Framework
	4 Conclusion
	Acknowledgments
	References

	A Pattern for Arguing the Assurance of Machine Learning in Medical Diagnosis Systems
	1 Introduction
	2 Motivating Case Study
	2.1 Understanding the Implicit Assurance Argument
	2.2 Review of the Implicit Assurance Argument

	3 Making an Explicit and Compelling Assurance Argument for ML Decision Making
	4 Discussion
	5 Conclusions and Future Work
	References

	Safety Argumentation
	BACRank: Ranking Building Automation and Control System Components by Business Continuity Impact
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Building Automation and Control Systems
	3 System Model and Information Requirements
	4 Impact Assessment Methodology
	4.1 Initial Score
	4.2 Graph Centrality Measure
	4.3 BACRank

	5 Experimental Evaluation
	6 Conclusion
	References

	Model-Based Run-Time Synthesis of Architectural Configurations for Adaptive MILS Systems*-18pt
	1 Introduction
	2 Related Work
	3 The CITADEL Language for Dynamic Parametrized Architectures
	3.1 A Dynamic Client-Server Model Example

	4 Run-Time Synthesis of Architectural Configurations
	4.1 System of Parameters and Symbolic Formulas
	4.2 Dynamic Parametrized Architectures
	4.3 Run-Time Information Flow Verification Problem
	4.4 Encoding into SMT
	4.5 Finding a Model of the Synthesis Encoding

	5 Experimental Evaluation
	6 Conclusions
	References

	Dynamic Risk Assessment Enabling Automated Interventions for Medical Cyber-Physical Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Running Example
	4 Derivation of the Risk Assessment Model
	4.1 Risk Parameter Elicitation
	4.2 Risk Model Building

	5 Evaluation
	5.1 Evaluation Design
	5.2 Results and Discussion

	6 Conclusion and Future Work
	Acknowledgments
	References

	Verification and Validation of Autonomous Systems
	Practical Experience Report: Engineering Safe Deep Neural Networks for Automated Driving Systems
	Abstract
	1 Introduction
	2 Deep Neural Network Background
	3 Safety Engineering Along the Development Pipeline of DNN
	3.1 Functionality Definition
	3.2 Data Set Specification, Selection and Preparation
	3.3 Development and Evaluation
	3.4 Deployment and Monitoring
	3.5 Safety Artefacts

	4 Summary and Further Work
	References

	Autonomous Vehicles Meet the Physical World: RSS, Variability, Uncertainty, and Proving Safety
	Abstract
	1 Introduction
	2 Related Work
	3 RSS Overview
	3.1 The RSS Following Distance Equation
	3.2 Coefficient of Friction
	3.3 The Normal Force and Road Slope
	3.4 Road Curvature

	4 Uncertainty and Variability
	4.1 Other Vehicle Parameters
	4.2 Ego Vehicle Parameters
	4.3 Environmental Parameters
	4.4 Potential Assumption-Violating Actions

	5 Conclusion
	Acknowledgment
	References

	Automated Evidence Analysis of Safety Arguments Using Digital Dependability Identities
	1 Introduction
	2 ETCS Running Example
	2.1 ETCS System Description
	2.2 ETCS Safety Case

	3 Distributed Safety Engineering with DDIs
	3.1 Digital Dependability Identities (DDIs)
	3.2 Generic Safety Engineering Process Integrator/Supplier

	4 DDI-Based Evidence Analysis in a Railway Case Study
	4.1 ETCS System DDI
	4.2 Automated Evidence Analysis of Product Safety Argument
	4.3 Automated Evidence Analysis of Process Safety Argument

	5 Related Work
	6 Conclusion and Future Work
	References

	Interactive Systems and Design Validation
	SafeDeML: On Integrating the Safety Design into the System Model
	1 The Need for Integrating the Safety Design
	2 Background
	2.1 System Modeling Language
	2.2 Error Modeling and Iso26262 in a Nutshell

	3 Related Work
	4 The Safety Design Modeling Language
	4.1 SafeDeML::Fault
	4.2 SafeDeML::Failure
	4.3 SafeDeML::Safety Goal
	4.4 SafeDeML::Diagnosis

	5 Proposal of an Integratable Modeling Process
	5.1 Fault Modeling
	5.2 Failure Modeling
	5.3 Diagnosis
	5.4 Global Analysis
	5.5 Model Analysis

	6 Conclusion and Future Work
	References

	Towards Trusted Security Context Exchange Protocol for SDN Based Low Latency Networks
	Abstract
	1 Introduction
	2 Background and Case Study
	2.1 Secure Software Defined Networks
	2.2 Case Study: Security Issues in Vehicular Ad-hoc Networks
	2.3 Research Gap Analysis

	3 The Proposed Solution: Adaptable Security Contexts
	3.1 Initial Setup with VeidBlock Based Authentication
	3.2 Security Context Exchange Protocol
	3.3 Categorization of Security Context

	4 Mapping of the Proposed Solution to VANET Case Study
	5 Evaluation and Discussion
	6 Conclusions
	Acknowledgment
	References

	Devil's in the Detail: Through-Life Safety and Security Co-assurance Using SSAF
	1 Introduction
	1.1 Safety-Security Co-assurance Primer

	2 SSAF - Technical Risk Model
	2.1 Step 1: Establish an Ontology and Synchronisation Points
	2.2 Step 2: Model Risk and Assurance Process
	2.3 Step 3: Model Assurance Argument
	2.4 Step 4: Link Artefacts
	2.5 Step 5: Update the Model

	3 SSAF Discussion and Way Forward
	3.1 What Might Safety-Security Standards Look Like?

	4 Conclusion
	References

	Author Index

