
Modeling and Optimization in Science and Technologies

Fouad Bennis
Rajib Kumar Bhattacharjya Editors

Nature-Inspired
Methods for
Metaheuristics
Optimization
Algorithms and Applications in Science
and Engineering

Modeling and Optimization in Science
and Technologies

Volume 16

Series Editors

Srikanta Patnaik, SOA University, Bhubaneswar, India
Ishwar K. Sethi, Oakland University, Rochester, USA
Xiaolong Li, Indiana State University, Terre Haute, USA

Editorial Board

Li Chen, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
Jeng-Haur Horng, National Formosa University, Yulin, Taiwan
Pedro U. Lima, Institute for Systems and Robotics, Lisbon, Portugal
Mun-Kew Leong, Institute of Systems Science, National University of Singapore,
Singapore, Singapore
Muhammad Nur, Diponegoro University, Semarang, Indonesia
Luca Oneto, University of Genoa, Genoa, Italy
Kay Chen Tan, National University of Singapore, Singapore, Singapore
Sarma Yadavalli, University of Pretoria, Pretoria, South Africa
Yeon-Mo Yang, Kumoh National Institute of Technology, Gumi, Korea (Republic of)
Liangchi Zhang, The University of New South Wales, Kensington, Australia
Baojiang Zhong, Soochow University, Suzhou, China
Ahmed Zobaa, Brunel University, London, Uxbridge, Middlesex, UK

The book series Modeling and Optimization in Science and Technologies (MOST)
publishes basic principles as well as novel theories and methods in the fast-evolving
field of modeling and optimization. Topics of interest include, but are not limited
to: methods for analysis, design and control of complex systems, networks and
machines; methods for analysis, visualization and management of large data sets;
use of supercomputers for modeling complex systems; digital signal processing;
molecular modeling; and tools and software solutions for different scientific and
technological purposes. Special emphasis is given to publications discussing novel
theories and practical solutions that, by overcoming the limitations of traditional
methods, may successfully address modern scientific challenges, thus promoting
scientific and technological progress. The series publishes monographs, contributed
volumes and conference proceedings, as well as advanced textbooks. The main
targets of the series are graduate students, researchers and professionals working
at the forefront of their fields.

Indexed by SCOPUS. The books of the series are submitted for indexing to
Web of Science.

More information about this series at http://www.springer.com/series/10577

http://www.springer.com/series/10577

Fouad Bennis • Rajib Kumar Bhattacharjya
Editors

Nature-Inspired Methods for
Metaheuristics Optimization
Algorithms and Applications in Science
and Engineering

123

Editors
Fouad Bennis
Ecole Central de Nantes
Nantes cedex 3, France

Rajib Kumar Bhattacharjya
Department of Civil Engineering
Indian Institute of Technology Guwahati
Guwahati, Assam, India

ISSN 2196-7326 ISSN 2196-7334 (electronic)
Modeling and Optimization in Science and Technologies
ISBN 978-3-030-26457-4 ISBN 978-3-030-26458-1 (eBook)
https://doi.org/10.1007/978-3-030-26458-1

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-26458-1

Preface

Optimization is a powerful technique for obtaining the best possible solution of var-
ious engineering design and planning problems. Over the last two to three decades,
several metaheuristic algorithms have been developed by various researchers which
have the capability to solve more complex engineering optimization problems.
While the gradient-based classical optimization algorithms are not capable of
handling the non-linear nonconvex as well as multimodal problems, the metaheuris-
tic algorithms can handle these types of problems efficiently. As a result, these
algorithms are now used in various fields of engineering and technology. This book
contains the metaheuristic optimization algorithms along with their engineering
applications. The algorithms have been explained using some standard benchmark
problems of various complexities. The applicability of these algorithms in some
complex engineering problem has also been shown.

The book is divided into two sections. The first one, consisting of 14 chap-
ters, deals with the principles of the metaheuristic optimization algorithms. The
algorithms discussed in this section are genetic algorithms, artificial bee colony
algorithm, differential evolution, bacterial foraging algorithm, firefly algorithm,
biogeography-based optimization, invasive weed growth optimization, shuffled
frog-leaping algorithm, teaching-learning-based optimization algorithm and particle
swarm optimization.

Genetic algorithm, one of the relatively older metaheuristic optimization algo-
rithms, was developed based on Charles Darwin’s theory of natural evolution.
Chapters 1, 2 and 3 deal with the theory of genetic algorithm. Chapter 2 explains
genetic algorithm using the social and cultural behaviour of human beings. On the
other hand, in Chap. 3, an interactive genetic algorithm is used to interpret the user’s
choices in deriving the fitness function of the problem. Differential evolution, an
evolutionary algorithm from the field of evolutionary computation, is presented in
Chap. 4. The ability to communicate mutually is a fundamental social behaviour
of all animals, birds, insects, etc. Inspired by the social behaviour of animals,
birds and insects, various optimization algorithms have been developed. Some of
them are artificial bee colony algorithm, firefly algorithm, shuffled frog-leaping
algorithm, particle swarm optimization, etc. Chapters 5, 6, 7 and 8 present artificial

v

http://dx.doi.org/10.1007/978-3-030-26458-1_1
http://dx.doi.org/10.1007/978-3-030-26458-1_2
http://dx.doi.org/10.1007/978-3-030-26458-1_3
http://dx.doi.org/10.1007/978-3-030-26458-1_2
http://dx.doi.org/10.1007/978-3-030-26458-1_3
http://dx.doi.org/10.1007/978-3-030-26458-1_4
http://dx.doi.org/10.1007/978-3-030-26458-1_5
http://dx.doi.org/10.1007/978-3-030-26458-1_6
http://dx.doi.org/10.1007/978-3-030-26458-1_7
http://dx.doi.org/10.1007/978-3-030-26458-1_8

vi Preface

bee colony algorithm, firefly algorithm, shuffled frog-leaping algorithm and particle
swarm optimization, respectively. Bacterial foraging optimization, another algo-
rithm inspired by the group foraging behaviour of bacteria, is presented in Chap. 9.
The other metaheuristic optimization algorithm presented in this section are artificial
immune system (Chap. 10), inspired by the principles and processes of the verte-
brate immune system; biogeography-based optimization (Chap. 11), inspired by the
migration of species between habitats; invasive weed growth optimization (Chap.
12), inspired by the ecological behaviour of weeds in colonizing and finding a
suitable place for growth; teaching-learning-based optimization (Chap. 13), which is
based on the effect of a teacher on a learner; and the multi-agent system (Chap. 14).

The second part of the book consists of 12 chapters dealing mainly with
the applications of the metaheuristic algorithms to different planning and design
problems. They cover solutions to real-world problems in areas such as Civil
Engineering, Mechanical Engineering, Electrical Engineering, Chemical Engineer-
ing, Robotics, Environmental Science, etc. Since their introduction by Professor
John Holland, genetic algorithms have been widely applied for solving various
engineering optimization problems. Due to the ability to avoid the local optimal
solution(s) of a problem, this class of algorithms has gradually received more
and more attention from researchers of different fields of engineering. Chapter 15
shows the application of genetic algorithms for humanoid robot gait generation.
The application of genetic algorithm for obtaining optimal river bank protection
measures for the river Brahmaputra has been presented in Chap. 16. Chapters 17 and
18 show how the genetic algorithm can be applied in finding unknown groundwater
pollution sources and critical slip circle of an earthen embankment, respectively. The
application of genetic algorithm in corridor allocation problem and facility layout
problem has been presented in Chaps. 19 and 20.

Non-dominated sorting genetic algorithm (NSGA) is currently one of the most
robust algorithms for solving multi-objective optimization problems. The algorithm
is based on non-dominated sorting and has the ability to obtain the true Pareto-
optimal font while maintaining a good diversity in the population. Chapters 21,
22 and 23 show some applications of NSGA-II algorithm. Further applications
addressed in this second part include job scheduling using teaching-learning-based
optimization (Chap. 24), branch and bound optimization (Chap. 25) for optimizing
radar search pattern and optimization of the DRASTIC methodology for assessing
groundwater vulnerability (Chap. 26).

Despite some unavoidable limitations, we expect this book to provide read-
ers with the necessary theoretical knowledge to understand and use the set of
metaheuristic optimization algorithms presented here in a number of engineering
applications and to be an important source of inspiration for future research and
developments.

Nantes cedex 3, France Fouad Bennis
Guwahati, Assam, India Rajib Kumar Bhattacharjya

http://dx.doi.org/10.1007/978-3-030-26458-1_9
http://dx.doi.org/10.1007/978-3-030-26458-1_10
http://dx.doi.org/10.1007/978-3-030-26458-1_11
http://dx.doi.org/10.1007/978-3-030-26458-1_12
http://dx.doi.org/10.1007/978-3-030-26458-1_13
http://dx.doi.org/10.1007/978-3-030-26458-1_14
http://dx.doi.org/10.1007/978-3-030-26458-1_15
http://dx.doi.org/10.1007/978-3-030-26458-1_16
http://dx.doi.org/10.1007/978-3-030-26458-1_17
http://dx.doi.org/10.1007/978-3-030-26458-1_18
http://dx.doi.org/10.1007/978-3-030-26458-1_19
http://dx.doi.org/10.1007/978-3-030-26458-1_20
http://dx.doi.org/10.1007/978-3-030-26458-1_21
http://dx.doi.org/10.1007/978-3-030-26458-1_22
http://dx.doi.org/10.1007/978-3-030-26458-1_23
http://dx.doi.org/10.1007/978-3-030-26458-1_24
http://dx.doi.org/10.1007/978-3-030-26458-1_25
http://dx.doi.org/10.1007/978-3-030-26458-1_26

Contents

Part I Algorithms

1 Genetic Algorithms: A Mature Bio-inspired Optimization
Technique for Difficult Problems . 3
Konstantinos L. Katsifarakis and Yiannis N. Kontos

2 Introduction to Genetic Algorithm with a Simple Analogy 27
Arup Kumar Sarma

3 Interactive Genetic Algorithm to Collect User Perceptions.
Application to the Design of Stemmed Glasses . 35
E. Poirson, J.-F. Petiot, and D. Blumenthal

4 Differential Evolution and Its Application in Identification
of Virus Release Location in a Sewer Line . 53
B. G. Rajeev Gandhi and R. K. Bhattacharjya

5 Artificial Bee Colony Algorithm and an Application
to Software Defect Prediction . 73
Rustu Akay and Bahriye Akay

6 Firefly Algorithm and Its Applications in Engineering
Optimization . 93
Dilip Kumar, B. G. Rajeev Gandhi, and Rajib Kumar Bhattacharjya

7 Introduction to Shuffled Frog Leaping Algorithm
and Its Sensitivity to the Parameters of the Algorithm 105
B. G. Rajeev Gandhi and R. K. Bhattacharjya

8 Groundwater Management Using Coupled Analytic Element
Based Transient Groundwater Flow and Optimization Model 119
Komal Kumari and Anirban Dhar

vii

viii Contents

9 Investigation of Bacterial Foraging Algorithm Applied
for PV Parameter Estimation, Selective Harmonic Elimination
in Inverters and Optimal Power Flow for Stability . 135
J. Prasanth Ram and N. Rajasekar

10 Application of Artificial Immune System in Optimal Design
of Irrigation Canal. 169
Sirajul Islam and Bipul Talukdar

11 Biogeography Based Optimization for Water Pump Switching
Problem . 183
Vimal Savsani, Vivek Patel, and Mohamed Tawhid

12 Introduction to Invasive Weed Optimization Method 203
Dilip Kumar, B. G. Rajeev Gandhi, and Rajib Kumar Bhattacharjya

13 Single-Level Production Planning in Petrochemical Industries
Using Novel Computational Intelligence Algorithms 215
Sandeep Singh Chauhan and Prakash Kotecha

14 A Multi-Agent Platform to Support Knowledge Based
Modelling in Engineering Design . 245
Ricardo Mejía-Gutiérrez and Xavier Fischer

Part II Applications

15 Synthesis of Reference Trajectories for Humanoid Robot
Supported by Genetic Algorithm . 267
Teresa Zielinska

16 Linked Simulation Optimization Model for Evaluation
of Optimal Bank Protection Measures . 283
Hriday Mani Kalita, Rajib Kumar Bhattacharjya,
and Arup Kumar Sarma

17 A GA Based Iterative Model for Identification of Unknown
Groundwater Pollution Sources Considering Noisy Data 303
Leichombam Sophia and Rajib Kumar Bhattacharjya

18 Efficiency of Binary Coded Genetic Algorithm in Stability
Analysis of an Earthen Slope . 323
Rajib Kumar Bhattacharjya

19 Corridor Allocation as a Constrained Optimization Problem
Using a Permutation-Based Multi-objective Genetic Algorithm 335
Zahnupriya Kalita and Dilip Datta

20 The Constrained Single-Row Facility Layout Problem
with Repairing Mechanisms . 359
Zahnupriya Kalita and Dilip Datta

Contents ix

21 Geometric Size Optimization of Annular Step Fin Array
for Heat Transfer by Natural Convection . 385
Abhijit Deka and Dilip Datta

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers
Using Analytical Approximation Based on Density Dependent
Flow Correction . 403
Selva B. Munusamy and Anirban Dhar

23 Dynamic Nonlinear Active Noise Control: A Multi-objective
Evolutionary Computing Approach . 421
Apoorv P. Patwardhan, Rohan Patidar, and Nithin V. George

24 Scheduling of Jobs on Dissimilar Parallel Machine Using
Computational Intelligence Algorithms . 441
Remya Kommadath and Prakash Kotecha

25 Branch-and-Bound Method for Just-in-Time Optimization
of Radar Search Patterns . 465
Yann Briheche, Frederic Barbaresco, Fouad Bennis,
and Damien Chablat

26 Optimization of the GIS-Based DRASTIC Model
for Groundwater Vulnerability Assessment . 489
Sahajpreet Kaur Garewal, Avinash D. Vasudeo,
and Aniruddha D. Ghare

Contributors

Bahriye Akay Department of Computer Engineering, Erciyes University,
Melikgazi, Kayseri, Turkey

Rustu Akay Department of Mechatronics Engineering, Erciyes University,
Melikgazi, Kayseri, Turkey

Frederic Barbaresco Thales Air Systems, Voie Pierre-Gilles de Gennes, Limours,
France

Fouad Bennis Laboratoire des Sciences du Numérique de Nantes, UMR CNRS
6004, Nantes, France

Rajib Kumar Bhattacharjya Department of Civil Engineering, Indian Institute of
Technology Guwahati, Guwahati, Assam, India

D. Blumenthal AgroParistech, Massy, France

Yann Briheche Thales Air Systems, Voie Pierre-Gilles de Gennes, Limours, France
Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, Nantes,
France

Damien Chablat Laboratoire des Sciences du Numérique de Nantes, UMR CNRS
6004, Nantes, France

Sandeep Singh Chauhan Department of Chemical Engineering, Indian Institute of
Technology Guwahati, Guwahati, Assam, India

Dilip Datta Department of Mechanical Engineering, Tezpur University, Tezpur,
Assam, India

Abhijit Deka Department of Mechanical Engineering, School of Engineering,
Tezpur University, Tezpur, Assam, India

Anirban Dhar Department of Civil Engineering, Indian Institute of Technology
Kharagpur, Kharagpur, West Bengal, India

xi

xii Contributors

Xavier Fischer ESTIA Engineering School, Technopôle Izarbel, Bidart, France
IMC-I2M, UMR CNRS 5295, Université de Bordeaux, Bordeaux, France

B. G. Rajeev Gandhi Department of Civil Engineering, Indian Institute of Tech-
nology Guwahati, Guwahati, Assam, India

Sahajpreet Kaur Garewal Department of Civil Engineering, Visvesvaraya
National Institute of Technology, Nagpur, Maharashtra, India

Nithin V. George Department of Electrical Engineering, Indian Institute of Tech-
nology Gandhinagar, Gandhinagar, Gujarat, India

Aniruddha D. Ghare Department of Civil Engineering, Visvesvaraya National
Institute of Technology, Nagpur, Maharashtra, India

Sirajul Islam Department of Civil Engineering, Assam Engineering College,
Guwahati, India

Hriday Mani Kalita Department of Civil Engineering, National Institute of Tech-
nology Meghalaya, Shillong, Meghalaya, India

Zahnupriya Kalita Department of Mechanical Engineering, Tezpur University,
Tezpur, Assam, India

Konstantinos L. Katsifarakis Department of Civil Engineering, Aristotle Univer-
sity of Thessaloniki, Thessaloniki, Greece

Remya Kommadath Department of Chemical Engineering, Indian Institute of
Technology Guwahati, Guwahati, Assam, India

Yiannis N. Kontos Department of Civil Engineering, Aristotle University of Thes-
saloniki, Thessaloniki, Greece

Prakash Kotecha Department of Chemical Engineering, Indian Institute of Tech-
nology Guwahati, Guwahati, Assam, India

Dilip Kumar Department of Civil Engineering, G B Pant Engineering College,
Pauri, Uttarakhand, India

Komal Kumari Department of Civil Engineering, Indian Institute of Technology
Kharagpur, Kharagpur, West Bengal, India

Ricardo Mejía-Gutiérrez Design Engineering Research Group (GRID), Universi-
dad EAFIT, Medellín, Colombia

Selva B. Munusamy Department of Civil Engineering, Indian Institute of Technol-
ogy Kharagpur, Kharagpur, West Bengal, India

Vivek Patel Department of Mechanical Engineering, Pandit Deendayal Petroleum
University, Gandhinagar, Gujarat, India

Rohan Patidar Department of Electrical Engineering, Indian Institute of Technol-
ogy Gandhinagar, Gandhinagar, Gujarat, India

Contributors xiii

Apoorv P. Patwardhan Department of Electrical Engineering, Indian Institute of
Technology Gandhinagar, Gandhinagar, Gujarat, India

J.-F. Petiot LS2N, Ecole Centrale de Nantes, Nantes, France

E. Poirson LS2N, Ecole Centrale de Nantes, Nantes, France

N. Rajasekar Department of Energy and Power Electronics, School of Electrical
Engineering, Vellore Institute of Technology (VIT) - Vellore, Vellore, India

J. Prasanth Ram New Horizon College of Engineering (NHCE), Bengaluru,
Karnataka

Arup Kumar Sarma Civil Engineering Department, Indian Institute of Technology
Guwahati, Guwahati, Assam, India

Vimal Savsani Department of Mechanical Engineering, Pandit Deendayal
Petroleum University, Gandhinagar, Gujarat, India

Leichombam Sophia College of Food Technology, Central Agricultural University,
Imphal, India

Bipul Talukdar Department of Civil Engineering, Assam Engineering College,
Guwahati, India

Mohamed Tawhid Department of Mathematics and Statistics, Thompson Rivers
University, Kamloops, BC, Canada

Avinash D. Vasudeo Department of Civil Engineering, Visvesvaraya National Insti-
tute of Technology, Nagpur, Maharashtra, India

Teresa Zielinska Faculty of Power and Aerospace Engineering, Warsaw University
of Technology, Warsaw, Poland

Part I
Algorithms

Chapter 1
Genetic Algorithms: A Mature
Bio-inspired Optimization Technique for
Difficult Problems

Konstantinos L. Katsifarakis and Yiannis N. Kontos

Abstract This chapter is dedicated to the method of genetic algorithms. Aiming
at offering the essentials and at encouraging prospective users, it includes: (a)
Description of the basic idea and the respective terminology, (b) Presentation of
the basic genetic operators (selection, crossover, mutation), together with some
additional ones, (c) Investigation of the values of basic parameters (crossover and
mutation probability), (d) Outline of techniques for handling constraints and of
conditions for the termination of the optimization process, and (e) Discussion on
advantages and disadvantages of genetic algorithms. Moreover, the relationship
between overall accuracy and optimization process accuracy is discussed, and some
hints regarding teaching course modules on genetic algorithms are presented.

Keywords Optimization · Genetic algorithms · Genetic operators · Constraint
handling · Accuracy · Terminology

1.1 Introduction

Genetic algorithms (GAs) are the older sister, if not the mother, of bio-inspired
optimization techniques. They were initially introduced by Holland [11] and
they have evolved into a very efficient mathematical tool for solving difficult
optimization problems, especially when the respective objective functions exhibit
many local optima or discontinuous derivatives. Despite successful use of GAs in
most scientific fields, they should not be considered as a panacea. As the “no free
lunch” theorem states, no method is superior to all others for every problem (e.g.
Wolpert and Macready [30]).

The scientific literature on the theoretical background and the applications of
genetic algorithms is already quite rich. It is difficult to compile even a list of books,

K. L. Katsifarakis (�) · Y. N. Kontos
Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
e-mail: klkats@civil.auth.gr

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_1&domain=pdf
mailto:klkats@civil.auth.gr
https://doi.org/10.1007/978-3-030-26458-1_1

4 K. L. Katsifarakis and Y. N. Kontos

exclusively dedicated, or offering a lion’s share to their study. Rather indicatively,
we record the following: Goldberg [8], Rawlins [25], Michalewicz [23], Dasgupta
and Michalewicz [3], Reeves and Raw [26], Sivanandam and Deepa [27], Yu and
Gen [31]. A question that might arise, then, is the purpose, or the contribution of
one more book chapter on genetic algorithms. Our answer is as follows:

This chapter aims at serving as a practical guide for those who would like to use
this powerful optimization tool efficiently, and even adapt existing codes to their
needs, without going deep into theory. It also aims at providing teaching material
for university courses dealing with advanced optimization techniques. Inevitably, it
starts with a description of the basic GA features. Our presentation (in Sects. 1.2
and 1.3) follows that of Katsifarakis and Karpouzos [15] and makes use of the same
notation.

1.2 The Basic Idea and the Terminology

Genetic Algorithms are essentially a simplified mathematical imitation of the
biological process of evolution of species. Biology is the source of the respective
terminology, too. The population, which evolves in the mathematical GA frame-
work, consists of potential solutions of the examined problem, namely of sets of the
respective decision variables; each solution is considered as an individual, consisting
of one chromosome. For this reason, the terms “individual” and “chromosome” are
practically equivalent and they are used interchangeably.

To apply the genetic operators, namely to proceed with simulation of the
evolution of species process, chromosomes should be properly encoded. In most
early applications and in the majority of recent ones binary encoding is used; first,
each decision variable is expressed as a binary (or Gray) number, and then these
numbers are concatenated, forming a binary string. Each digit of that string is called
gene (or character) and the different values that it can take are called allele. Some
authors, though, define a gene as a subset of the chromosome that represents a
decision variable.

The encoded form of the chromosomes is called genotype, while the decoded
set of decision variables is called phenotype. Both of these puzzling terms are
loans from Biology, with Greek origin. The origins of “phenotype”, for instance,
are traced in the Greek words ϕαίνoμαι (phenomai = appear, look like, cf.
phenomenon) and τύπoς (typos = type).

Most early applications of Genetic algorithms have adopted binary encoding. The
main reasons were: (a) easy construction of genetic operators and (b) the belief in
the theory of schemata or similarity templates (e.g. [8, 11]). In recent years, though,
real-coded genetic algorithms, appear more and more often. An important criterion
is chromosome length (CL), namely the number of its genes. CL depends on the
number of decision variables, the range of their values and the required accuracy. If,

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 5

for instance, a parameter can vary between the real values a1 and b1 and an accuracy
of d decimal points is sought, the required number of binary digits is the smallest
integer m that fulfils the following inequality (e.g. [15]):

2m − 1 ≥ (b1 − a1) 10d (1.1)

When the decision variables exhibit very large ranges of values, or when very
high accuracy is required, binary chromosome length may become excessive. In
such cases, real-coded genetic algorithms, where each variable is represented by
one gene, expressed as a real number, are preferred. They are also a better choice
for some problems, such as the well-known “Travelling salesman problem” (e.g.
[23]), where use of binary genetic operators is not convenient. Octal, hexadecimal
and other encodings have also been used.

GAs are a population-based technique, namely its application starts with a set
of chromosomes, which constitute the initial population, or the first generation. In
most cases, initial population is randomly generated. Nevertheless, one could take
advantage of any information on optimal solution and its location in the search space
(namely the set of all possible solutions). The population size (PS), namely the
number of initial solutions, is defined by the user.

Construction of the first-generation chromosomes is followed by their evaluation.
The evaluation process depends entirely on the specific application of genetic
algorithms and ends up with attributing a fitness value FV(I) to each chromosome
I. Then the next generation is produced, applying genetic operators, which are also
based on biological patterns, usually in a two-step process. The overall procedure,
namely chromosome evaluation-application of genetic operators in order to produce
new sets of solutions (generations), is repeated for a number of times, explicitly or
implicitly defined by the user (see Sect. 1.4). It should be mentioned that in most
cases, the population size PS is the same in all generations. Nevertheless, genetic
algorithms with variable PS have been reported in the literature, claiming better
performance in some problems (e.g. [20]).

1.3 Genetic Operators

Genetic operators could be defined as distinct processes, which are used to produce
new chromosomes from the existing ones. In the “main stream”, generation-based
GAs, a two-step procedure is followed, involving an “intermediate” population
between successive generations. The main genetic operators, which are described
in the following paragraphs, are: (a) selection (b) crossover and (c) mutation. Many
other operators have been also proposed and used. Some of them are briefly outlined,
as well.

6 K. L. Katsifarakis and Y. N. Kontos

1.3.1 Selection

The basic idea of any GA selection process is borrowed from the core of Darwin’s
theory, namely survival of the fittest. In the generation-based GA framework,
selection is used to produce the intermediate population, which consists of copies
of current generation chromosomes. The number of each chromosome’s copies
depends on its fitness, which has been calculated during the evaluation process.
Determinism is moderated, though, through introducing some element of random-
ness, offering a chance of “survival” to weak chromosomes. The most common
selection processes are: (a) The biased roulette wheel and (b) The tournament.

1.3.1.1 The Biased Roulette Wheel

This process, which was initially conceived for maximization problems, is based
on the idea of a roulette wheel with PS unequal slots, with sizes proportional to
the fitness of the respective chromosomes. Then, each time the roulette wheel is
“spinned”, the selection probability p(I) of a chromosome I is equal to:

p (I) = FV (I)

SFV
(1.2)

where SFV is the sum of the fitness values of all chromosomes of current generation.
Roulette wheel spinning is repeated PS times, to select PS chromosome copies. The
resulting intermediate population will include (statistically) more than one copies
of the fittest chromosomes, at the expense of some weak ones. Nevertheless, even
the worst chromosome has a tiny chance to “survive”, namely to be copied to the
intermediate population. A simple example follows.

Example 1.1 The biased roulette wheel process is used in solving a maximization
problem. The population size PS = 25. The fitness values of current generation
chromosomes are shown in Table 1.1. Then, SFV is equal to 1104. The respective
p(I) values can be calculated using Eq. (1.2), and the resulting biased roulette-wheel
is shown in Fig. 1.1.

The p(I) values of the best and worst chromosome are p(1) = 10/1104 and
p(5) = 110/1104 respectively. The probability PT(I), of having at least one copy
to the intermediate population can be calculated by the following formula:

PT(I) = 1 − (1 − p(I))PS (1.3)

Table 1.1 Chromosome fitness values (Example 1.1)

I 1 2 3 4 5 6 7 8 9 10 11 12 13

FV(I) 10 90 52 12 110 24 42 14 48 37 69 15 85
I 14 15 16 17 18 19 20 21 22 23 24 25
FV(I) 11 29 54 17 23 92 11 65 56 43 24 71

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 7

Fig. 1.1 Biased roulette
wheel (PS = 25, fitness
values of Table 1.1)

It results that PT(1) = 0.203 and PT(5) = 0.927. One can see that the total
survival probability of the worst chromosome is substantial, as it slightly exceeds
20%. Moreover, there is 7.3% probability that the intermediate population will not
include copies of the best chromosome.

The computational application of the biased roulette wheel process is quite
simple [15]: At a preliminary step, the fitness value FV(J) of chromosome J is
replaced by the sum of the FV(I) values for I = 1 to J, while, at the same time,
SFV is calculated. Then, the following procedure is repeated PS times: A number
XR between 0 and SFV is randomly selected. If FV(K-1) < XR < FV(K), a copy of
chromosome K is added to the intermediate population.

It is desirable to have good solutions in the initial population, or to find some,
in the first generations. Nevertheless, if few chromosomes of a generation have
very large fitness values compared to the rest, biased roulette wheel selection
may lead to an intermediate population dominated by their copies. This, in turn,
will shrink further search around the respective solutions and may trap the whole
process to local optima. To avoid this phenomenon, which is called “premature
convergence”, some authors suggest scaling down the range of fitness values in the
first generations. Another option is to use the ranking of the solutions, instead of
their fitness values, in order to construct the slots of the roulette wheel.

Roulette wheel can be used in minimization problems, too, since most of them
can be stated as maximization ones, simply by considering the inverse of the
evaluation function. Another option is subtraction of each FV(J) from a properly
selected number Vmax (certainly larger than the maximum FV(J)), and use of the
remainder in subsequent calculations. To avoid suppressing the actual differences
between FV(J) values, Vmax should not be too large, with respect to them.

8 K. L. Katsifarakis and Y. N. Kontos

1.3.1.2 The Tournament Method

The tournament method depends exclusively on chromosome ranking and is directly
applicable both to minimization and maximization problems. Its idea is based
on contests between KK individuals, where KK a predefined number. In the GA
framework, the following procedure is repeated PS times: KK chromosomes of the
current generation are randomly selected, and their fitness values are compared to
each other. A copy of the chromosome with the best (largest or smallest) fitness
value is added to the intermediate population.

The value of KK, which is called selection constant, usually ranges between 3
and 5. It depends on the population size and the desired selective pressure, namely
the degree to which best chromosomes are favored. Increase of KK value reduces the
“survival” probability of weak solutions, namely it increases selective pressure. In
some versions, survival of the worst (KK-1) chromosomes is completely impossible.

A comparative evaluation of selection processes can be found in Goldberg and
Deb [9]. They conclude that ranking based processes (e.g. tournament) have some
advantages over proportionate ones (biased roulette wheel). We tend to prefer the
tournament method, mainly due to its direct application to minimization problems.

1.3.1.3 The Elitist Approach

The selection processes, which have been outlined, do not guarantee that a copy
of the best chromosome of one generation will be included in the next one, too.
To overcome this weakness, many codes use the so-called elitist approach, namely
they include an additional procedure of passing at least one copy of the best
chromosome to the next generation. To our opinion, it is better to pass two copies
to the intermediate population: one to continue unaltered to the next generation, and
one to freely participate in the evolutionary process, achieved by applying the other
genetic operators.

1.3.2 Reproduction Operators

Selection does not introduce any new solutions. This task is left to “reproduction”
operators, which apply to randomly selected members of the intermediate popula-
tion. Not-selected members pass unaltered to the next generation, together with the
new solutions.

We would like to mention that in some papers, particularly early ones, the term
“reproduction” is associated with selection. In this chapter, we use it to denote
processes that produce new solutions, following the majority of recent works.

Due to the versatility of genetic algorithms, many reproduction operators have
been conceived and used. Some of them are problem-specific, while others are of

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 9

general use. A few of them are outlined in the following sections. Application to
binary GAs is discussed first, and then, when applicable, to real-coded GAs, as
well.

We start with the two main operators, namely crossover and mutation.

1.3.2.1 Crossover

Crossover is a gene recombination process. In its basic form, it applies to pairs
of chromosomes, which are named parents. Each member of the intermediate
population can participate to this “mating process”, with a “crossover probability”
CRP (usually larger than 0.5). The degree of randomness in pair-forming varies.
In some crossover versions parents can be successive chromosomes only, while in
others no such restrictions exist. An integer number JC, between 1 and (CL-1), is
randomly selected, as well. Then, each parent binary string is cut into two pieces,
immediately after gene JC. The first piece of each parent is combined with the
second piece of the other, as shown in Fig. 1.2a. In this way two new chromosomes,
called offspring, are formed, which substitute their parents in the next generation. If
each chromosome represents a set of N concatenated variables, crossover is in some
versions restricted to the N-1 points that separate these variables.

Gene recombination, induced by crossover, does not guarantee that any offspring
will be fitter than both parents. Let us consider, for instance, that the parent chromo-
somes A and B of Fig. 1.2 represent solutions of a maximization problem with one
decision variable. Their fitness values are 810,360 and 473,709, respectively, while
those of the two offspring, which resulted from one-point crossover, are 810,093
and 473,976. So, both are less fit than parent A, although they are fitter than parent
B. To cope with such cases, in some crossover versions, offspring replace parents,
only if they have better fitness values. While this modification looks plausible, it
does not guarantee better overall performance, in particular when each chromosome
represents a set of N concatenated variables, as is usually the case.

Direct extensions of the basic crossover process are two and multiple-point
crossover. As their name implies, parent chromosomes are cut in more than two
pieces, which they exchange, in order to produce the offspring. Two-point crossover
(after the second and the fourteenth gene) is shown in Fig. 1.2b. The offspring
fitness values are 998,008 and 286,061 respectively, namely one of them is fitter
than both parents. A further extension is uniform crossover, which introduces
additional randomness; the parents are cut in N pieces, but offspring formation is

Parent A 11000101110/101111000 11/000101110101/111000
Parent B 01110011101/001101101 01/110011101001/101101
Offspring A 11000101110/001101101 11/110011101001/111000
Offspring B

(a) (b)
01110011101/101111000 01/000101110101/101101

Fig. 1.2 (a) One-point crossover (b) Two-point crossover (slashes indicate crossover points)

10 K. L. Katsifarakis and Y. N. Kontos

achieved through selection between respective parental pieces with a predetermined
probability (usually, but not necessarily, equal to 0.5). There is no guarantee, though,
that any of these more complicated crossover versions perform better than the basic
one.

Another extension is three or multi-parent crossover. As the names imply, genes
of three or more parent chromosomes are recombined to form each offspring (e.g.
[27]). Operators with more than two offspring per parent couple have been also
designed and used. In this case, the best two make it to the next generation.

Simple and multi-point crossover applies in a similar way to real-coded genetic
algorithms, as well. Another option is to equate each gene of an offspring to the
arithmetic or to the geometric mean of the respective parent genes. An interesting
extension is blend crossover (BLX-α), introduced by Eshelman and Schaffer [5],
where offspring are produced in the following way: A real positive constant α is
selected (α = 0.5 is a common choice). Let gene i of parent chromosomes A and
B be equal to Ai and Bi respectively. The quantity c = |Ai – Bi| is calculated and
a number d, ranging in the interval [min(Ai, Bi) – α×c, max(Ai, Bi) + α×c] is
randomly selected. Finally, gene i of the offspring is set equal to d. This process is
repeated for all genes of the parent chromosomes.

Another interesting variant is parent-centric crossover, where a “male” and a
“female” parent are defined. The probability to create offspring is larger in the
search area around the female parent, while the male one is used only to define the
extent of this area (e.g. [7]). Moreover, multi-parent crossover is used quite often
with real-coded GAs (e.g. [4]). A review of crossover operators can be found in
Herrera et al. [10].

1.3.2.2 Mutation

Mutation applies to genes. It introduces new “genetic” material, and its aim is
twofold: (a) extension of search to more areas of the solution space, where better
solutions could be found (mainly in the first generations), and (b) local refinement
of good solutions (mainly in the last generations). Nevertheless, as with crossover,
mutation can lead to better or to worse solutions.

Application to binary genetic algorithms, is quite simple: The gene that is
selected for mutation is changed from 0 to 1 and vice versa. The effect of this change
to the phenotype, namely to the decoded value of the respective decision variable,
depends on the gene position in the chromosome. Let us consider, for instance, that
the 10-digit binary string [1001001111] represents one decision variable DV. The
respective decoded value is 591. If the first digit is mutated from 1 to 0, DV is
reduced to 79; if the last digit is selected for mutation, DV changes only slightly (to
590).

In every generation, the mutation probability MP is the same for all genes of all
chromosomes. It is generally much smaller than the crossover probability, but there
is no consensus on the choice of its value. This issue is discussed in more detail in
Sect. 1.3.2.3.

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 11

In real-coded genetic algorithms, mutation is performed by: (a) multiplying
the selected gene by a number close to 1 or (b) by adding or subtracting a
small (compared to the gene value) and randomly generated number from it.
Replacement by a random number (in the range of variation of the selected gene)
has been proposed, too. In “non-uniform” mutation, the magnitude of the added (or
subtracted) amount is gradually reduced from generation to generation (e.g. [23]).

1.3.2.3 Mutation and Crossover Probability

The choice of basic parameters, such as crossover and mutation probability, plays an
important role in GA performance. MP is much smaller than CRP, because it applies
to genes, not to chromosomes. In many applications (e.g. [13]) a value close to 1/CL,
CL being the chromosome length, has been used. The idea is to have, statistically,
one mutation per chromosome. In any case, too small MP values may fail to hinder
premature convergence, while too large ones render the search random.

The practical rule of setting MP = 1/CL was further investigated by Kontos
and Katsifarakis [18, 19], at least as far as the combination of GAs and simplified
groundwater flow and mass transport models is concerned. The theoretical problem
studied, refers to the optimal management of polluted aquifers, bearing few fractures
of known geometrical characteristics, namely to the cost minimization of Hydraulic
Control (HC) or Pump-And-Treat (PAT) pollution control techniques. The aim
was to maintain water quality and total flow rate of existing production wells,
using additional wells for hydrodynamic control of pollutant plumes. The objective
function of the respective optimization problem included the three main cost items,
namely pumping cost, pipe network amortization cost and pumped polluted water
treatment cost.

Steady-state flow in an infinite, confined, homogeneous and isotropic aquifer
(with thickness a = 50 m, hydraulic conductivity K = 10−4 m/s, porosity n = 0.2),
was assumed. Two circular pollutant plumes (with radii of 50 and 60 m, respec-
tively) were taken into account, that would eventually contaminate production wells
1 and 2 (pumping a total flow rate of 250 l/s), if no measures were taken. Additional
wells (max flow rate of 120 l/s each) could be used to control or pump the plumes
(Fig. 1.3). All wells were assumed to have a radius of 0.25 m. Regarding the
fractures, one was almost perpendicular to the expected flow lines between plume 1
and well 1 (70 m long) and one almost parallel to the flow lines between plume 2 and
well 2 (50 m long). Each fracture was simulated as an one-dimensional high speed
runway for water and pollutant particles, not affecting hydraulic head distribution.
To further alleviate the computational load, a two dimensional groundwater flow
model was implemented, combined with a particle tracking code for advective mass
transport simulation.

Advective pollutant transport was simulated by calculating the trajectories of
particles with infinitesimal mass, starting from 16 checkpoints, symmetrically
placed on the circular perimeter of each plume. The study period was assumed to
be equal to the hypothetical pollutant deactivation period (1000 days = 100 time-

12 K. L. Katsifarakis and Y. N. Kontos

Fig. 1.3 Theoretical flow field with checkpoints’ trajectories of best solution of the simplified
problem, aiming at minimization of pumping cost only. Magnified view of each plume on the right
[19]

Fig. 1.4 Typical 70-digit binary chromosome of the pumping cost minimization problem of
Kontos and Katsifarakis [19]

steps of 10 days each). The “pollution arrival” zone of a well W was considered
proportional to the radius of the aquifer’s cylindrical volume, which contains the
water pumped by W during one time-step.

Simple binary GAs were used with 70-digit long chromosomes (CL = 70)
representing the coordinates of the new wells and the flow rates of all wells
(Fig. 1.4). The genetic operators used were tournament selection (including elitist
approach), one-point crossover and mutation/antimetathesis. The following GA
parameter values were used: population size PS = 60, number of generations
NG = 1500 and selection constant KK = 3.

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 13

In the simplest form of the problem the optimization entailed that the fitness value
FV to be minimized equals only the pumping cost Pcost, which was calculated as:

P cos t = A ·
TNW∑

I=1

QIsI (1.4)

where A is a pumping cost coefficient, that depends on the density of pumped
fluid, the electricity cost per kWh, pump efficiency and the pumping duration (here
A = 6.48), TNW the total number of wells, QI the flow rate of well I (l/s) and sI is
the hydraulic head level drawdown at well I (m).

A penalty function (PEN) was added to Pcost, in cases of pollution of an existing
well. PEN was proportional to the number of violated constraints (number of
pollution particles arriving at existing wells) and to the magnitude of the violation
(time step of pollutant arrival at existing wells):

PEN =
NP1∑

I=1

[PC + PV · (TP − tI)] (1.5)

where NP1 is the number of checkpoints that pollute an existing well, PC the
constant part of the Penalty function (for each polluting checkpoint), PV the
coefficient of the variable part of the Penalty function (PC/PV = 100/10), TP the
number of time steps (100) and tI is the time step during which checkpoint I arrives
at the well.

For the described minimization problem, an extended set of test runs was
implemented in order to investigate the best CRP and MP values, namely most
likely to find the optimal solution. The process lead to the proposed as optimal
pumping scheme of Fig. 1.3 and to interesting conclusions, regarding the best choice
of MP values. With 10 test runs for every CRP-MP combination (in order to produce
a satisfactory statistical sample of solutions), CRP ranging from 0 to 0.6 (step
0.02), and MP ranging from 0.01 to 0.028 (step 0.002), the total number of runs
reached 3100, entailing enormous computational volume (the evaluation function
was calculated 279 million times and total computational time reached 156 days
using Intel Core i5 CPU 660 at 3.33 GHz, 4GB of RAM, OS Windows 7, Visual
Basic 6.0).

Figure 1.5 presents the relation of Min or Mean FV with CRP (Fig. 1.5a) and MP
(Fig. 1.5b). Min FV refers to the best solution out of all 100 runs for a certain CRP
value in Fig. 1.5a, and to the best solution out of all 310 runs for a certain MP value
in Fig. 1.5b. Mean FV refers to the average value of FV out of all the respective
runs. It is obvious that CRP variation does not substantially affect Min or Mean FV
values, but there is definitely a correlation between FV and MP. The obvious trend is
that Mean FV values are lower as MP increases, hence it is safe to assume that MP
values quite higher than the empirically proposed 1/CL = 0.014 are more likely to
reach the ideal global optimum. Figure 1.6 presents the lower 5% percentile of FV

14 K. L. Katsifarakis and Y. N. Kontos

Fig. 1.5 Minimum fitness values (a) in relation to CRP and (b) in relation to MP for the
minimization problem of Kontos [18] and Kontos and Katsifarakis [19]

Fig. 1.6 FV5% perc. in relation to CRP and MP values for the minimization problem of Kontos
[18] and Kontos and Katsifarakis [19]. Each value’s symbol and color opacity denote the quarter it
belongs to (FV5% perc. is the lower 5% percentile of Min FV)

for all CRP-MP tests. The higher statistical probability for the algorithm to produce
lower FV solutions by CRP-MP values coming from the upper right area of the
diagram is apparent.

Despite the fact that the optimal solution, due to the stochastic nature of
GAs, resulted from a CRP-MP combination of 0.06–0.01, overall, CRP = 0.42
demonstrated higher probability of finding lower FV values, while as far as MP
is concerned, the respective value was 0.024 (≈ 1.7·CL−1 ≈ 0.014).

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 15

Concluding, this research offered some evidence that CRP values larger than
0.40 are more likely to achieve optimal performance for genetic algorithms, at least
in similar groundwater management problems. Regarding mutation probability,
instead of the empirically proposed MP value of 1/CL, values in the range of
1.5/CL to 2/CL proved to be more likely to direct the algorithm to the global
optimum. Nevertheless, more research is needed, including investigation of a
possible correlation between the chromosome structure and the best MP values that
can lead to the global optimum. There are some indications, that the number of the
decision variables that are included in the chromosome, is quite important.

1.3.2.4 Niche, Speciation, Sharing, Crowding, Migration

These techniques are useful in multimodal problems, namely with many maxima
or minima, when we are interested in locating some or all of them. The basic idea
is to divide the total population in independent or semi-independent subpopulations
(called species), which evolve separately in niches, namely in distinct sub-domains
of the solution space. To sustain different subpopulations, concentration of most
chromosomes to one niche should be discouraged. One technique to achieve this
goal, is “sharing”. The idea is to reduce a chromosome’s fitness, if many individuals
are similar to it. It is performed in the following way: First, a sharing function
Sim(I,J) is defined for each pair of chromosomes (I,J), based on their “distance”
(at the genotypic or at the phenotypic level). The value of Sim(I,J) ranges between 0
and 1 with Sim(I,I) = 1 and Sim(I,J) = 0 for distance larger than a threshold value.
Then, for each chromosome I the share factor, namely the sum of the respective
Sim(I,J) values, is calculated, and its fitness value FV(I) is divided by this sum.

Niching is also favoured by using a crossover version, where each offspring
replaces a member of the intermediate population that is most similar to it. This
replacement process is called crowding.

To allow information exchange between subpopulations, a “migration rate” can
be introduced, allowing crossover between chromosomes that have evolved in
different niches. Migration is allowed to occur with a predefined schedule, e.g. every
10 generations, or if evolution of subpopulations is stalled.

Niching requires large total population size, depending on the number of the
subpopulations, and, generally, entails an increase of computational load.

1.3.2.5 Antimetathesis

Antimetathesis is a mutation-like operator, which has been introduced by Katsi-
farakis and Karpouzos [14]. It applies to pairs of successive genes. Any gene of a
chromosome (except for the last one) can be selected, with equal probability AP. If
it is 1, it is changed to 0, and the following gene is set to 1. The opposite happens
if the selected gene is 0. More explicitly, the following happen, with regard to gene
pairs: (a) [11] becomes [01] (b) [00] becomes [10] (c) [10] becomes [01] and (d)

16 K. L. Katsifarakis and Y. N. Kontos

[01] becomes [10]. In the first two cases, antimetathesis is equivalent to mutation
at the selected position. In the last two though, it is equivalent to mutation of both
genes.

It is not recommended to use antimetathesis instead of mutation, but to use the
two operators interchangeably (e.g. in the even and odd generations respectively).
The merits of the combination in refining solutions can be seen through the
following example [15]:

A genetic algorithm is used to find the optimum value of function F(x), x being
an integer from 0 to 1000. Let’s assume that this optimum occurs for x = 82, and
that a good approach, i.e. x = 81, has been obtained. In binary form we have:
82 = [0001010010]2 and 81 = [0001010001]2.

Comparing the two chromosomes, we can see that mutation alone cannot
improve the solution. Antimetathesis, though, can find the optimum, if applied to
the ninth position of the chromosome. On the contrary, mutation can lead to the
optimum, starting from x = 83. To put it in a more general way, use of antimetathesis
could alleviate the “Hamming cliff” problem, which is inherent to use of binary
numbers. This problem is due to the fact that successive binary numbers may have
more than one different digits (or “Hamming distance” larger than 1), e.g. when the
largest of them is equal to a power of 2 (e.g. 15 = [01111]2, while 16 = [10000]2).

Antimetathesis is also complementary to mutation in leading search to different
solutions, for the following reason: The jump, or change caused by mutation, is
always equal to a power of 2. The change introduced by antimetathesis, applied
at position i, is equal to 2i–2i−1. Thus, the solution space can be searched more
thoroughly, if the two operators are used interchangeably.

1.4 Termination of the Optimization Procedure

Ideally, the optimization procedure should stop, as soon as the optimal solution is
found. This criterion cannot be used with GAs, because in most cases, there is no
guarantee that the optimum will be found, and even if it is found, there is no way to
verify the achievement. Moreover, available computer resources are often restricted,
while, in some cases, we may be satisfied even with good solutions, fulfilling certain
standards (e.g. cost lower than a certain threshold). For these reasons, termination of
the optimization procedure, should be defined by the user. The obvious and simplest
way is to define the number of generations. Some other termination criteria, which
have been summarized in many previous works (e.g. [15]), are:

• No better solution is found over a predetermined number of generations.
• The variation of the average fitness value of the population is below a threshold

over a predetermined number of generations.
• A predetermined desired value of the objective function is reached by the best

individual.

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 17

• The median fitness of the population is better than a predetermined value. This
approach will lead to more than one satisfactory solutions.

1.5 Constraint Handling

Optimization targets, expressed in the GA framework by the chromosome evalua-
tion process, are in most cases subject to constraints, which have usually the form
of lower and/or upper bounds. For instance, availability of machinery could be
translated in upper bound constraints, in optimizing work construction schedules.

In some heavily constrained problems, it might be difficult to find enough
feasible solutions, in order to construct the initial population. Even when constraints
are “light”, though, reproduction operators may result in chromosomes, which
represent infeasible solutions. To overcome this difficulty, many constraint-handling
approaches have been developed. The most common are:

(a) Rejection of “infeasible” chromosomes, namely chromosomes that violate
constraints.

(b) Chromosome repair, i.e. application of algorithms that correct infeasible chro-
mosomes.

(c) Modification of the reproduction operators, in order to produce only “feasible”
chromosomes.

(d) Inclusion of penalties in the evaluation process, to reduce the fitness of
“infeasible” chromosomes

The first approach, which is equivalent to imposing the death penalty, even for
small crimes, is not efficient, especially when the percentage of infeasible chro-
mosomes is large. Applicability of chromosome repair and reproduction operator
modification techniques depends on the required additional computational load. The
most usual approach is inclusion of penalties in the chromosome evaluation process.
Penalty form and magnitude, though, are problem specific, and should be decided
by the user.

Regarding their form, penalties can be: (a) constant (b) proportional to the num-
ber of violated constraints and (c) increasing (linearly, quadratically, logarithmically
etc.) with the degree of violation of each constraint. The latter are usually the most
efficient (e.g. [16]). Regarding their magnitude, penalties should be large enough
to guarantee observance of the constraints. Excessive magnitude, though, may level
out differences in the evaluation function and may hinder the overall optimization
process. Moreover, in search spaces with disjoint feasible regions, it would hinder
moving from one to another, “stepping” on infeasible solutions. For these reasons,
many researchers follow the minimum penalty rule, namely imposing the smallest
penalties, which guarantee that the optimal solution is feasible (e.g. [21]). Others,
though, have opted to use penalties, which render the worst feasible solution better
than the best infeasible one (e.g. [24]).

The magnitude and the form of penalty functions depend also on the elasticity
of the constraints. If small violations can be tolerated, the penalty could combine a

18 K. L. Katsifarakis and Y. N. Kontos

rather small constant term, with strong dependence on the magnitude of constraint
violation. Moreover, some variants include penalty adaptation with the evolution of
the optimization procedure, such as penalty increase if the best solution is infeasible
and penalty reduction if the best solution is feasible for a predetermined number of
generations.

It should not be concluded, from the above discussion, that some form of penalty
is always better than some other constraint-handling technique. An example follows:

Example 1.2 Suppose that we seek to minimize cost of pumping a given total
flow rate Qtot from N wells. If Q(J) is the flow rate of well J, each chromosome
represents a combination of N Q(J) values, while the evaluation function expresses
the respective pumping cost. The constraint has the following form:

N∑

J=1

Q(J) = Qtot (1.6)

This constraint is practically never fulfilled, as each of the N flow rate values can
get any value between 0 and a predetermined upper bound (e.g. Qtot), resulting in
a sum QS between 0 and N×Qtot. Observance of the constraint can be efficiently
imposed by chromosome repair, i.e. by multiplying each Q(J) by the factor Qtot/QS
(e.g. [14]). Use of a penalty for QS exceeding Qtot, would be less efficient.

More ways to handle constraints can be found in the literature, such as introduc-
tion of an artificial immune system [2].

1.6 Steady State Genetic Algorithms

Steady state genetic algorithms do not follow the generation pattern, which has been
described so far. Instead, new chromosomes resulting from reproduction operators
replace immediately an equal number of existing ones. Chromosomes that are
replaced are usually randomly selected, e.g. using a tournament process. Other
options that have been used, include replacement of: (a) The “oldest” member
of the population, (b) The member of the existing population, which is the most
similar with the new one (crowding approach, as discussed in Sect. 1.3.2.4) and
(c) The weakest individual. This option, though, might result in quick reduction of
population diversity and in premature convergence.

1.7 Selection of Optimization Technique-Advantages
and Disadvantages of Genetic Algorithms

Optimization problems arise in almost every scientific field (e.g. [6]), sometimes
without even mentioning the term. The problem variety is reflected to the large
number of optimization methods. Choosing the best method is sometimes a difficult
task; as Reeves and Raw [26] warns us, “there is no royal road to optimization”.

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 19

Experience (when not reduced to habit) and intuition may facilitate the choice,
and use of more than one optimization approaches may be sometimes necessary.
Moreover, use of hybrid techniques, e.g. combining genetic algorithms with a local
search method, is an interesting option (e.g. [12, 22]).

Genetic algorithms are usually a very good choice for “difficult” optimization
problems, namely non-linear, with “recalcitrant” objective functions (e.g. non-
differentiable or with discontinuous derivatives), discontinuous search space, etc.
Their main comparative advantages have been summarized in most relevant books
and book chapters. A short list follows:

• Contrary to traditional methods, search for the global optimum starts from many
points of the search space. Of course, GAs share this advantage with other
population based techniques.

• GAs use data from the objective function only. For this reason, their application
is not restricted by continuity or differentiability requirements, as already stated.

• There is no need to linearize namely to simplify (or oversimplify) the investigated
problem (see also Sect. 1.8).

• They are very flexible, regarding the construction of the evaluation function.
• They do not involve complex mathematics, inviting users to modify genetic

operators or even to create new ones, tailored to the investigated problems.
• They are naturally adapted to parallel processing.
• They can be easily combined with other optimization methods and computational

techniques.
• Many times, they end up with more than one good solutions of the investigated

problem. This point deserves some further discussion. It has already been
mentioned is Sect. 1.3.2.4, that specific techniques, like niching, have been
developed to locate many optima. This is quite understandable when studying
mathematical functions; but in real world problems, when one seeks the lowest
operational cost, for instance, the advantage is not that obvious. Even in such
problems, though, finding a number of good solutions of similar fitness is an
asset, because it offers the possibility of selecting the most suitable one, based
on [15]:

(a) Additional criteria, which have not been included in the evaluation process,
because their expression in mathematical terms is difficult (e.g. intangible
parameters, like aesthetics) or because their inclusion leads to disproportion-
ate increase of the computational load.

(b) Experience or scientific intuition, which could be interpreted as additional
criteria, not explicitly stated.

(c) Solution stability to changes of the values of input parameters; this is very
important, when these values are not accurately known, as in many real-
world problems. This stability could be checked by means of sensitivity
analysis.

Genetic algorithms have some weak points, too. The most important are the
following:

20 K. L. Katsifarakis and Y. N. Kontos

• In most cases, there is no guarantee that the global optimum has been reached (as
in linear programming, for instance).

• The fitness value has to be calculated for every chromosome of each generation.
With rather conservative values for the respective parameters, such as population
size PS = 40 and number of generations NG = 100, 4000 chromosome
evaluations will be performed. For this reason, the total computational volume
increases rapidly with the complexity of the chromosome evaluation process, the
number of generations and the population size.

• GAs are rather slow in local search. This disadvantage can be overcome, if
necessary, by combining GAs with local search techniques.

• The efficiency of the method depends on the form of the evaluation function.
With step functions for instance, the GA performance is mediocre.

1.8 Overall Accuracy vs Accuracy of the Optimization
Procedure

Quite often, engineering problems have the form of predicting response of nat-
ural or man-made systems to certain human activities (e.g. hydraulic head level
drawdown due to pumping) or of guaranteeing a desirable system’s response to
given external pressures (proper construction of a bridge, in order to “survive” a
“design” earthquake with minor damage). The first step towards the solution is
to construct the simulation model, namely to describe mathematically the studied
systems and/or processes with adequate accuracy, and the second to solve this
model, either analytically or numerically.

Optimization, on the other hand, could be defined as a procedure of finding
the best (or, in a broader sense, a sufficiently good solution) of a problem, based
on predefined criteria and under certain constraints. In the GA framework, the
optimization criteria determine the chromosome evaluation process. This process
may include solution of a relevant engineering problem. For instance, in the
pumping cost minimization problem of Example 1.2, the respective hydraulic head
level drawdown should be calculated, namely a groundwater flow problem should
be solved. Detailed simulation models may result in high computational volume
per chromosome evaluation. When the total computational volume becomes a
restricting factor, one has two options: (a) Use smaller number of generations and/or
population size, thus reducing the efficiency of the optimization process and (b)
Use simplified simulation models, or even surrogate models (e.g. [1, 28]), which
eventually compromise the accuracy of the description of the physical problem.

In any case, accuracy of the optimization process does not guarantee overall
accuracy. To clarify the difference, let us study, from this point of view, the following
problem, which has been presented by Tselepidou and Katsifarakis [29], and further
discussed by Katsifarakis and Tselepidou [17]:

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 21

A geothermal aquifer consisting of 2 zones of different transmissivities (T1 and
T2) and 4 zones of different temperatures (θ1, θ2, θ3 and θ4) is considered. The
central zone has the highest temperature. A square area, with dimensions 3 km x
3 km, is available for geothermal development (Fig. 1.7). Its borders are shown with
grey line. Zones of different transmissivities are indicated with different tones of
grey, while their interface is shown as a grey line. Boundaries of thermal zones are
also indicated by means of black lines.

The required total flow rate Qtot depends on the average temperature θav of
pumped water and varies from 500 to 600 l/s (for θav varying from 80 ◦C to 60 ◦C
respectively). To pump Qtot, 4 existing and 6 new wells will be used. The former are
shown in Fig. 1.8 as small black squares. Geothermal water is collected to a central
water tank at the border of the geothermal area, which appears as a larger black

Fig. 1.7 External and
internal boundaries of
geothermal area and layout of
the existing wells [17]

Fig. 1.8 Optimal layout of
wells and the respective pipe
network [17]

22 K. L. Katsifarakis and Y. N. Kontos

square (indicated as CT). The optimization procedure aims at finding the distribution
of Qtot to the 10 wells, together with the locations (coordinates) of the 6 new ones
that minimize the sum of two major cost components, namely: (a) annual pumping
(operation) cost and (b) amortization of construction cost of the pipe network that
carries the hot water from the wells to a central water tank.

A basic simplifying assumption is that the temperature of water, pumped from a
well J, is equal to the temperature θI of the thermal zone, to which the well belongs.
Out of the many data sets, discussed in the aforementioned references, we focus on
the following one:

T1 = 0.001m2/s,T2 = 0.01m2/s, θ1 = 70oC, θ2 = 90oC, θ3 = 60oCθ4 = 60oC.

Each chromosome represents a combination of 10 well flow rates and 6 pairs
of coordinates. The respective fitness value is equal to the sum of the two cost
items, and its calculation entails computation of hydraulic head level drawdown
in an infinite aquifer with two zones of different transmissivities. The following
GA parameters have been used: Population size: 60, number of generations: 2000,
crossover probability: 0.4, mutation/antimetathesis probability: 0.0042 (close to
1/CL).

The pipe network resulting from a typical run appears in Fig. 1.8, where new
wells are shown as small circles. There are many indications that the GA code has
managed to find a solution very close to the optimal one: (a) All new wells are
placed in the higher transmissivity zone, although its area is smaller. In this way,
smaller pumping cost is achieved, due to smaller hydraulic head level drawdown at
the wells. (b) All new wells are placed closer than the existing ones to the central
tank. Moreover, well W9 is close to the Fermat point of the triangle defined by
W1, W6 and W7. In this way, the pipe network length (and amortization cost) is
rather low. (c) No new well is placed in the lowest temperature zone. Moreover, the
new well W5 is placed in the very small area, which is characterized by the higher
transmissivity and the highest temperature. Thus, θav is large, resulting in smaller
Qtot. Nevertheless, the simplifying assumption regarding temperature of pumped
water, affects heavily the results of the optimization process, since 3 out of 6 new
wells are placed almost on the interface of two thermal zones, just inside the higher
temperature one. A more realistic approximation of that temperature, would result
in better overall accuracy of the final solution.

1.9 Teaching Course Modules on Genetic Algorithms

Teaching is a rewarding task, to those who enjoy it. The first author had the
opportunity to include lectures on genetic algorithms in graduate courses and to
discuss and explain their application to students, working on their Diploma and
Doctoral Theses. Moreover, he has gained some insight into the difficulties of the

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 23

respective notions (and the weak points of his own presentations, as well), from
students’ repeated mistakes in relevant tests.

One important issue is clarifying the difference between chromosome and
evaluation function, as many students mistake one for the other. Another issue
is stating all problem constraints and understanding their relationship with the
chromosome evaluation process.

As there is no guarantee that GAs will end up with the globally optimal solution,
it is very important to develop qualitative criteria, in order to estimate how good
the derived “best” solution is. Such criteria have been presented in Sect. 1.8, for
the problem discussed there. Moreover, restrictions both on overall accuracy and on
the accuracy of the optimization procedure should be made clear to the students, as
many tend to consider computer results as some kind of divine truth.

Regarding “technical” details, some students have difficulties with binary encod-
ing. Nevertheless, it is worth teaching it, as it promotes better understanding of the
decimal system, too.

Testing student knowledge is not easy, either. To help teachers, two exercises,
one rather simple and one more sophisticated, are presented below:

Exercise 1: In order to minimize cost of pumping a total flow rate Qtot from 9 wells,
you are going to use the method of binary genetic algorithms. Calculate the
chromosome length (number of genes), if each of the 9 well flow rates can be
up to 130 l/s and the required accuracy is 1 l/s.

Exercise 2: You aim at optimizing the operation of a reservoir, through determining
the level of stored water at weekly basis. The optimization targets are: (a)
Maximization of total revenue from electricity production (during the whole
year) and (b) Elimination of flood damage during the high flood risk period of
the year (by storing temporarily excess water quantities and restricting outflows
to safe levels).

Available data include: (a) The height of the reservoir’s dam (b) the stored water
volume as a function of the water level at the reservoir (c) The required storage
volume (per week), in order to eliminate flood damage and (d) The capacity (largest
flow rate) that can be carried by the pipe, which connects the reservoir with the
electricity production station. The water level at the reservoir, which feeds the
electricity production station, and the respective flow rate towards the electricity
station are considered as constant each week (and equal to the respective weekly
average value).

In order to solve the problem, you are going to use the method of genetic
algorithms. (a) Are you going to formulate a maximization or a minimization
problem? (b) Which (and how many) variables are you going to include at each
chromosome? (c) What are you going to include at the optimization function? (d)
Which constraints could you state?

Moreover, the cost minimization problem, discussed in Sect. 1.8, can serve as an
exercise basis.

24 K. L. Katsifarakis and Y. N. Kontos

1.10 Concluding Remarks

Genetic algorithms are a very strong tool for tackling difficult optimization prob-
lems. Although the respective terminology, originating from Biology, may sound
strange to engineers, application of the method to most engineering problems is
easy, due to its versatility. What is even more important, GAs promote creativity of
the users, if their basic principles are understood. This is manifested by the variety
of existing genetic operators and it is probably the best feature of the method,
allowing not only its survival, but its continuous thriving, in a very competitive
“environment”, namely that of modern optimization techniques.

Understanding the basic principles of genetic algorithms, paves the way for
understanding most nature-inspired and population-based techniques, which are
currently available, allowing researchers a wide choice, based on the features of
the investigated problem, or on their personal scientific background and taste.

While no method should be regarded as a panacea for optimization problems, we
believe that genetic algorithms are at least as important as linear programming to
practicing engineers, and to researchers, as well. For this reason, they should enjoy
a fair share in optimization courses of engineering departments’ curricula.

References

1. Bhattacharjya RK, Datta B (2005) Optimal management of coastal aquifers using linked
simulation optimization approach. Water Resour Manag 19:295–320

2. Coello CAC, Cortés NC (2004) Hybridizing a genetic algorithm with an artificial immune
system for global optimization. Eng Optim 36(5):607–634

3. Dasgupta D, Michalewicz Z (eds) (1997) Evolutionary algorithms on engineering applications.
Springer, Berlin/Heidelberg/New York

4. Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-
parameter evolution. Evol Comput 10(4):371–395

5. Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval schemata. In:
Whitley DL (ed) Foundation of genetic algorithms II. Morgan Kaufmann, San Mateo, pp 187–
202

6. Floudas CA, Pardalos PM (eds) (2008) Encyclopedia of optimization, 2nd edn. Springer, New
York

7. García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez AM (2008) Global and local
real-coded genetic algorithms based on parent-centric crossover operators. Eur J Oper Res
185:1088–1113

8. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning.
Addison-Wesley Publishing Company, Reading

9. Goldberg DE, Deb K (1995) A comparative analysis of selection schemes used in genetic
algorithms. In: Rawlins GJE (ed) Foundations of genetic algorithms. Morgan Kaufmann, San
Mateo, pp 69–93

10. Herrera F, Lozano M, Sánchez AM (2005) Hybrid crossover operators for real-coded genetic
algorithms: an experimental study. Soft Comput 9:280–298

11. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor

1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for. . . 25

12. Huang WC, Yuan LC, Lee CM (2002) Linking genetic algorithms with stochastic dynamic
programming to the long-term operation of a multireservoir system. Water Resour Res
38(12):1304–1312

13. Karpouzos DK, Katsifarakis KL (2013) A set of new benchmark optimization problems for
water resources management. Water Resour Manag 27(9):3333–3348

14. Katsifarakis KL, Karpouzos DK (1998) Minimization of pumping cost in zoned aquifers by
means of genetic algorithms. In: Katsifarakis KL, Korfiatis GP, Mylopoulos YA, Demetra-
copoulos AC (eds) Proceedings of an international conference on protection and restoration of
the environment IV, Sani Greece, pp 61–68

15. Katsifarakis KL, Karpouzos DK (2012) Genetic algorithms and water resources management:
an established, yet evolving, relationship. In: Katsifarakis KL (ed) Hydrology, hydraulics and
water resources management: a heuristic optimisation approach. WIT Press, Southampton/-
Boston, pp 7–37. ISBN 978-1-84564-664-6

16. Katsifarakis KL, Petala Z (2006) Combining genetic algorithms and boundary elements to
optimize coastal aquifers’ management. J Hydrol 327(1–2):200–207

17. Katsifarakis KL, Tselepidou K (2015) Optimizing design and operation of low enthalpy
geothermal systems. In: Chandra Sharma U, Prasad R, Sivakumar S (eds) Energy science and
technology. Vol. 9: Geothermal and Ocean energy, Studium Press. ISBN: 1-62699-070-0, 190-
213

18. Kontos YN (2013) Optimal management of fractured coastal aquifers with pollution problems
(in Greek), PhD thesis, Department of Civil Engineering, Aristotle University of Thessaloniki,
Thessaloniki, Greece, p 465

19. Kontos YN, Katsifarakis KL (2012) Optimization of management of polluted fractured
aquifers using genetic algorithms. Eur Water 40:31–42

20. Koumousis VK, Katsaras CP (2006) A saw-tooth genetic algorithm combining the effects of
variable population size and Reinitialization to enhance performance. IEEE Trans Evol Comput
10(1):19–28

21. Li X, Zang G (2015) Minimum penalty for constrained evolutionary optimization. Comput
Optim Appl 60(2):513–544

22. Mahinthakumar GK, Sayeed M (2005) Hybrid genetic algorithm—local search methods for
solving groundwater source identification inverse problems. J Water Resour Plan Manag
131(1):45–57

23. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer,
Berlin/Heidelberg

24. Michalewicz Z, Xiao J (1995) Evaluation of paths in evolutionary planner/navigator. In:
Proceedings of the 1995 international workshop on biologically inspired evolutionary systems,
Tokyo, Japan, pp 45–52

25. Rawlins GJE (1991) Foundations of genetic algorithms. Morgan Kaufmann Publishers, San
Francisco, p 1991

26. Reeves CR, Raw JE (2003) Genetic algorithms-principles and perspectives. Kluwer Academic
Publishers, Boston

27. Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Berlin/Hei-
delberg

28. Sreekanth J, Datta B (2010) Multi-objective management of saltwater intrusion in coastal
aquifers using genetic programming and modular neural network based surrogate models. J
Hydrol 393(3–4):245–256

29. Tselepidou K, Katsifarakis KL (2010) Optimization of the exploitation system of a low
enthalpy geothermal aquifer with zones of different transmissivities and temperatures. Renew
Energy 35:1408–1413

30. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1(1):67–82

31. Yu X, Gen M (2010) Introduction to evolutionary algorithms. Springer, London/Dordrecht/Hei-
delberg/New York

Chapter 2
Introduction to Genetic Algorithm
with a Simple Analogy

Arup Kumar Sarma

Abstract Genetic Algorithm (GA), which is now considered as a well-established
and one of the most widely applied optimization techniques, started its journey when
Von Neumann first forwarded the theory of self-reproducing automata during fifties
(Fellenius W: Calculation of the stability of earth dams. Trans, of 2nd congress
on Large Dams, vol 4, pp 445–459, 1936). However, implementation of this ideas
came into application during eighties (Baker R: Determination of the critical slip
surface in slope stability computations. Int J Numer Anal Methods Geomech 4:333–
359, 1980; Bishop AW: The use of slip circle in the stability analysis of slopes.
Geotechnique London 5:7–17, 1955; Chen Z-Y, Shao C-M: Evolution of minimum
factor of safety in slope stability analysis. Canadian Geotech J Ottawa 25:735–748,
1988; Celestino TB, Duncan JM: Simplified search for noncircular slip surface. In:
Proceedings of the 10th international conference on SMFE, pp 391–394, 1981).
Because of the obvious advantage of using GA in optimizing even complex non-
linear functions, it has now been used by many researchers for solving varieties
of optimization problems. Basically GA is a computerized search optimization
algorithms based on the principles of survival of the fittest, first laid down by
Charles Darwin. Concept of GA has so far been presented by different researchers
in different forms, mostly in a mathematical framework. The terms like gene,
chromosome, cross over, mutation and generation, which are basically derived from
biological origin, many a time, become confusing to readers of other disciplines
and also it become difficult to appreciate how these processes will lead to an
optimal solution. Therefore, in this article, the basic philosophy of GA is presented
by highlighting how it works and how the natural biological processes can help
in obtaining the most optimal or at least near optimal solution through a simple
analogy.

A. K. Sarma (�)
Civil Engineering Department, Indian Institute of Technology Guwahati, Guwahati, Assam, India
e-mail: aks@iitg.ernet.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_2&domain=pdf
mailto:aks@iitg.ernet.in
https://doi.org/10.1007/978-3-030-26458-1_2

28 A. K. Sarma

2.1 Introduction

Genetic Algorithm (GA), which is now considered as a well-established and one
of the most widely applied optimization techniques, started its journey when Von
Neumann first forwarded the theory of self-reproducing automata during fifties [5].
However, implementation of this ideas came into application during eighties [1–4].
Because of the obvious advantage of using GA in optimizing even complex non-
linear functions, it has now been used by many researchers for solving varieties
of optimization problems. Basically GA is a computerized search optimization
algorithms based on the mechanics of natural genetics and natural selection. The
basic concept of GAs is designed to simulate processes in natural system necessary
for evolution, specifically those that follow the principles of survival of the fittest,
first laid down by Charles Darwin.

Concept of GA has so far been presented by different researchers in different
forms, mostly in a mathematical framework [2]. The terms like gene, chromosome,
cross over, mutation and generation, which are basically derived from biological
origin, many a time, become confusing to readers of other disciplines and also it
become difficult to appreciate how these processes will lead to an optimal solution.
Therefore, in this article, first of all I am trying to present the basic philosophy
of GA highlighting how it works and how the natural biological processes can
help in obtaining the most optimal or at least near optimal solution through a
simple analogy. I hope this analogy will help a GA beginner from any discipline
to appreciate the idea of Genetic Algorithm and its techniques.

2.2 A Simple Analogy to GA

Let me place a question: if we want to find the highest possible intelligence level of
a society in any time domain, can we really have an answer to it? Please note that
the problem in hand is not to find the most intelligent person of a society among
the present generation, rather it is to find the highest possible intelligence level of a
society in any time domain, and the society is not a static entity rather it’s a dynamic
one and depending on various factors intelligence level of the next generation may
become higher than the present generation and thus with progress of generation, the
level of intelligence in a society is also expected to increase. If the problem was to
find the most intelligent person of the society, then one could do it easily by setting
a questionnaire objectively to test their intelligence level and then identifying the
best one based on the mark they score in the test. As the problem is to find the
highest possible intelligence level at any time domain, we will have to imagine
about the future time as well, and can visualize how we can proceed to arrive at the
highest possible intelligence level. In the discussion we will be drawing analogy to
all typical terms of GA, so that reader can relate the biological process for moving
towards optimal with the GA techniques.

2 Introduction to Genetic Algorithm with a Simple Analogy 29

Readers may consider themselves to be ruler of the society under consideration
and imagine the following steps presented below:

1. As we do not know the intelligence level of any individual, we will have
to consider that every member of the society has the potential to have the
highest possible intelligence level and therefore, each one is a potential solution.
To start with, let us, through some test, select a total of say 100 intelligent
persons from the society comprising male and female, so that they can also
play the role of good parents in the present generation. We can device different
methods for selection of these 100 persons. In this case, the objective is to
find the highest possible intelligence level. To move in a systematic manner,
we can make 100 groups in the society and can conduct a test of intelligence
in each of these groups to select the best from each group to make a total
of 100 intelligent persons. To evaluate intelligence level, we can prepare a
questionnaire for evaluating different attributes that determine intelligence level.
For example, learning ability, inquisitiveness, alertness, analytical ability, far-
sightedness, reflection to a situation, logical reasoning and intuitions are some
of the genetic characteristics or variables that can be tested to determine fitness
of a person for considering him/her as an intelligent person. While these genetic
characteristics, which can vary from person to person are equivalent to variables
of a problem, questionnaire set to check fitness of an individual based on value
of these characteristics can be said as fitness function of GA. Combination of
these genetic properties (gene) when placed together in sequence in the form of
a string is referred as chromosome in GA as in bioscience genes are located on
a chromosome. Thus in GA a chromosome is nothing but a number set formed
by the value of the variables (gene); which may either be written in binary form
or in decimal form. The procedure of selecting the proposed 100 best fit person
can be regarded as the first step in GA, which is referred as selection of initial
population of potential solutions. The process of dividing total population of the
society into 100 arbitrary groups and selecting the best from each group to form a
sample of initial 100 potential solutions from the current generation is analogues
to the Roulette wheel selection technique. Figure 2.1 depicts the selection of
initial 100 populations.

2. The above step has given us 100 intelligent persons, and we could of course select
the top scorer among these 100 persons as the most intelligent person. However,
our objective is to find the highest possible intelligence level in any time domain.
This means we need to experiment on how the intelligence level can increase in
the coming future generation. To form a new generation, let us proceed with the
following steps.

3. Let us arrange marriage among male and female of these 100 intelligent persons
from present generation. However, all male and female may not get involve
into marriage and so we can assume that about 70% to 80% of these intelligent
persons will get involve in marriage (Fig. 2.2). Because of mating of an intelligent
male and an intelligent female there is possibility that the children born will
inherit good genetic properties of both mother and father and will become more

30 A. K. Sarma

Fig. 2.1 Selection of intelligent persons

Fig. 2.2 Marriage of intelligent male and female representing cross over operation of GA

2 Introduction to Genetic Algorithm with a Simple Analogy 31

Fig. 2.3 Birth of children with new genetic material

intelligent. However, if some of the children acquire only the bad properties of
the parents then their intelligence level may become even inferior to their parents.
Also, some time, while one child becomes intelligent the other may not become
equally intelligent. Marriage of male and female to give birth to children and
exchange of genetic properties between parents to form child of new generation
is analogues to the cross over operation of genetic algorithm. However, as shown
in Fig. 2.3, in GA we restrict the number of children to 2(two) from one pair of
male and female (parents).

4. Although the children generally derive the genetic characteristics of parents,
they can derive some new characteristics that were not there in their parents.
In biological terms, such arbitrary change in some of the characteristics is
called mutation. While most of the children possess their parent’s characteristic,
only limited numbers of children in a society (say 2–3%) undergo changes
in some of his/her characteristic through mutation. Thus mutation brings to
a child some new characteristics that are not in her/his parents. Therefore,
mutation probability, though generally very low, yet extremely important, as
it can introduce new genetic characteristics to a person, which increases the
chance of having a person of higher intelligence level than that of the parents.
This happen naturally in biological system, and therefore, the children born from
their parents have the chance to become more intelligent than their parents. This
principle is followed in genetic algorithm as well.

5. Once the children are born, we need to check if they are more intelligent than
their parents by the same procedure of determining intelligence level objectively.
If the children are more intelligent, then their parents are replaced by the children
(Fig. 2.4). Otherwise, to ensure that the intelligence level of the next generation
never goes below the present generation, intelligent, and hence smart parents are
allowed to continue as active member of the society in the next generation to
help building a better intelligent society. Thus as member, the new generation
will contain some intelligent smart persons from the previous generation and
some intelligent children (Fig. 2.5).

32 A. K. Sarma

Fig. 2.4 New generation
replacing the parents

Fig. 2.5 Intelligent parents
and children of new
generation

6. Intelligence level of this new generation can now be tested by the same question-
naire and highest intelligence level of this generation can be evaluated. To have
a better group, we may decide to select only those from this generation who bear
a minimum level of intelligence. However, this will reduce the number of person
in the current generation to produce the next generation. For example if only 80
out of these 100 intelligent person satisfy the minimum intelligence criteria then
we will be having only 80 persons to get involved into the reproduction process
and hence to generate the next generation. This limitation can be overcome by
generating 20 additional clones (Fig. 2.6) of intelligent person in the current
generation which is equivalent to allowing some intelligent persons to participate
in more than one marriage (cross over). Thus our population size will remain the
same.

7. The process of reproduction and evaluation as indicated from step 2 through
6 can be repeated for several generations until we observe that the increase
in highest intelligence level of the society is no more significant with increase
in generation. This can be considered as the highest possible intelligence level
of that society. Interestingly, as we are repeatedly generating new generation
of better intelligence level by changing genetic characteristics of each of the
participating persons, it is expected that the all persons (potential solution) from
the final generation will have combinations of genetic properties those will make
their intelligence level very competitive and will be very close to the highest
intelligence level. Thus one will have many possible alternate solutions.

2 Introduction to Genetic Algorithm with a Simple Analogy 33

Fig. 2.6 Formation of clones

2.3 Conclusion

Genetic Algorithm is now being used by researchers from different field for solving
variety of optimization problems. In the analogy presented, we are testing intelli-
gence level of a person based on the mark scored by her/him (potential solution)
in the questions set for testing their learning ability, inquisitiveness, alertness,
analytical ability, far-sightedness, reflection to a situation, logical reasoning and
intuitions etc., which are considered as their genetic characteristics and values of
these variables determine the fitness. It is worth mentioning that, once we get a
value for each of these characteristics, calculation of intelligence level (Fitness
value) does not introduce any mathematical complexities, irrespective of whatever
weightage or whatever complex functions we use for calculating the fitness based
on the value of these parameters (variables). Thus GA can be applied easily to any
complex objective function or fitness function. Also in the ultimate solution, we get
several potential solutions, which is another advantage of GA. With the increase
in computational capability GA can now be used for handling large constraint
optimization problem. Only limitation of GA is that to have quick conversion one
should have some idea about the range of values of these variables. I hope the above
explanation of Genetic Algorithm, elaborating how different procedures and GA
techniques work in sequence to lead towards an optimal solution, will be helpful in
appreciating the working principles of genetic algorithm in an easier way.

34 A. K. Sarma

References

1. Davis L (ed) (1987) Genetic algorithms and simulated annealing. Pitman, London
2. Dejong KA (1985) Genetic algorithm: a 10 year perspective, in Grefenstette, 1985
3. Goldberg DE (1989) Genetic algorithm in search, optimization and machine learning. Addison

Wesley, Reading
4. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann

Arbor
5. J Von Neumann (1966) Theory of self-reproducing automata, AW Burks – IEEE transactions on

neural networks

Chapter 3
Interactive Genetic Algorithm to Collect
User Perceptions. Application
to the Design of Stemmed Glasses

E. Poirson, J.-F. Petiot, and D. Blumenthal

Abstract To avoid flops, the control of the risks in product innovation and the
reduction of the innovation cycles require valid and fast customer’s assessments. A
methodology must be proposed to the designer to take into account the perceptions
of the user. The method presented is based on an iterative process of user selection
of representative CAD models of the product. An IGA is used to interpret the user’s
choices and introduce new products. In the center of this methodology, the user
who, thanks to his decisions, will guide the evolution of the algorithm and its
convergence. After a description of the IGA, a study on the convergence of the
IGA is presented, according to the tuning parameters of the algorithm and the size
of the design problem. An experiment was carried out with a set of 20 users on the
application case proposed a steemed glass. The implementation of the perceptive
tests and the analysis of the results, using Hierarchical Ascendant Classification
(HAC) is described. The main contributions of the paper are proposals of (1) an
interactive product optimization methodology; (2) a procedure for parameterizing
interactive genetic algorithms; (3) a detection of perceptive trends that characterize
customer expectations; (4) an experimental application on a real life product.

Keywords Interactive genetic algorithms · Shape design · Convergence ·
Perceptive tests · Design methodology · Genetic operators

E. Poirson (�) · J.-F. Petiot
LS2N, Ecole Centrale de Nantes, Nantes, France
e-mail: Emilie.poirson@ec-nantes.fr; jean-francois.petiot@ec-nantes.fr

D. Blumenthal
AgroParistech, Massy, France
e-mail: david.blumenthal@agroparistech.fr

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_3&domain=pdf
mailto:Emilie.poirson@ec-nantes.fr
mailto:jean-francois.petiot@ec-nantes.fr
mailto:david.blumenthal@agroparistech.fr
https://doi.org/10.1007/978-3-030-26458-1_3

36 E. Poirson et al.

3.1 Introduction

To allow the companies to remain competitive, the current society imposes times of
development of product/service shorter and shorter, products cheaper and cheaper
and always better quality. The leitmotif of the Quality Function Deployment
methodology is for illustration “the right product the first time and each time”.
QFD is a method of introducing quality at the design stage to satisfy the customer.
The method helps product designers to explicitly identify the needs of consumers,
correlate them with the technical characteristics given by the engineers, and evaluate
the potential characteristics of the product compared to those already existing in the
market [1]. The QFD is adapted for performance indications and product usages
study. For example, [25] presents a methodology to mathematically calculate the
relation between the technical customer requirements and the technical product
characteristics. This methodology is used to fill the house of quality tool of the
quality function deployment method during the product design and development.

This methodology is part of the user-oriented design research topic. One of
the major points of this orientation is taking into account not only the expected
performances but also the perceptions or emotions that the client wishes to
experience. To understand and integrate them throughout the product development
cycle, verbalization is regularly used. The language causes problems whether in
differences of translation or definitions of the verbatim between qualifications
of participants [18]. Indeed, on hedonic studies for which a population of naive
subjects is questioned, the precision in the vocabulary misses accuracy compared
to the expert subjects who used a combination of both descriptions and hedonic
terms when describing a product (wine in [11]), indicating that they are better
at communicating and describing what they like. It is particularly difficult to
verbalize certain perceptions, and even more emotions. To overcome this difficulty,
pictorial representations are used, as PrEmo [2], tools that uses illustrated characters
represented the 5 basics emotions. These methods are part of the current Kansei
Engineering, a method founded by Mr. Nagamachi at Hiroshima University about
30 years ago. Kansei engineering is used to quantify people’s perceptions and to
translate them into the design elements. Sensory tests, statistical methods, and AI
techniques have been applied to formalize these relationships. Various modeling
methods are proposed to provide useful design rules or trend prediction [17, 29].

Another branch of the literature of user oriented design is human-computer
interactions where an algorithm gradually refines the propositions made to the users,
based on their previous assessments. An example of this is interactive evolutionary
computation (IEC), where the user is used as an evaluator in an evolutionary process
[27]. In classical EC, a mathematical function evaluates the fitness (adaptation of the
population to the environment). In IEC, this function is implicit and is provided
by the assessments of the user. Since the user evaluates the fitness, there is no
need for a prior mathematical function. The intervention of humans to replace the

3 Interactive Genetic Algorithm to Collect User Perceptions. Application. . . 37

mathematical evaluation of fitness has been applied in many fields (music, writing,
education, food industry, etc.) involving different sensory modalities. This IEC
method has also been used in a number of fashion applications [15].

Let’s firstly present the family of algorithms chosen for the study: the genetic
algorithm.

3.2 Background on Genetic Algorithms

3.2.1 Definition

Genetic algorithms are evolutionary optimization methods developed originally by
Holland [9]. They are based on iterative generations of population of individuals,
converging step-by-step toward solutions. The term individual refers here to a
specific set of values for the design variables. In other words, an individual is a
specific candidate design. A metaheuristic is used to improve the current population
of solutions. Based on the principle of Darwins natural evolution theory [3], the
algorithm proceeds to a selection of parents, which spread their genetic dominant
heritage in the next generation. The general principle of a genetic algorithm can be
decomposed in 3 steps. (1) Consider an initial population of individuals randomly
created, arbitrarily chosen by the designer, or generated by another calculation
process. (2) This population iss evaluated according to the constraints and objectives
formulated in the optimization problem. If the stopping criteria of the algorithm are
satisfied, the algorithm stops; otherwise (3) the genetic operators are applied to this
population in order to change it to a new population of the individuals that best meet
the requirements. The steps 2–3 are repeated till satisfaction of the mathematical
fitness.

Genetic algorithms are often used in the literature to explore design space,
encourage creativity [23] or to help innovation [19].

3.2.2 Encoding of the Design Variables

Each chromosome represents a particular design. For each design, we can define
design factor. Each factor can thus take different values called levels. A chromosome
containing one level for each variable represents a particular combination, thus
design. A binary string represents a variable where the length of the string depends
on the number of allowed levels for the variables. For example, a product defined
by 5 factors on 4 levels will be encoded by a vector of 5 patterns of 2 bits (4
combinations).

38 E. Poirson et al.

3.2.3 The Genetic Operators

Genetic operators have two objectives: to converge the current population of
individuals to a set of optimal solutions (process efficiency) and to explore the
largest proportion of the design space (process diversification). These operators
are selection, crossover, and mutation. Each operator is performed randomly on
individuals.

The selection is a recopy of an individual. In the implementation here, the
crossover is a single point crossover: from two individuals, a point of crossing is
selected and the two headpieces are swapped. One of the two children is randomly
selected. The mutation is a change of one randomly selected factor value. The
crossover rate (Rc), mutation (Rm), and selection (Rs) are real values chosen
between 0 and 1 such that Rc + Rm + Rs = 1. Each selected chromosome will
therefore undergo one of these 3 operations.

One of the main points of the genetic algorithm is the fitness function that allows
the evaluation of the adaptability of the design in the environment. We have already
discussed the difficulty of objectifying a function when studying perceptions. One
solution is to replace the fitness evaluation by a human one, thus to let the system
be interactive.

3.3 Interactive Genetic Algorithm

3.3.1 Synoptic of the IGA Process

Classically, the fitness evaluation of the individuals concerned is calculated numer-
ically with a mathematical function known beforehand. A particular category of
GA, Interactive Genetic Algorithms (IGA), introduces the user in the optimization
loop to assess the fitness. During each iteration of the process, the user selects
solutions that he/she considers to be the closest to the desired objective. After a
number of iterations, the method may converge toward one or several solutions
that fulfill the users objective. These algorithms are used to explore design spaces
[13]. Since the user decides the individuals fitness, there is no need for a prior and
unique formulation of the fitness function. For some applications, such as finding
the semantic dimensions of a product, this advantage is crucial.

The general process of the IGA can be seen in Fig. 3.1. The IGA creates an
initial population of designs by generating the chromosomes, and presents them to
a user as CAD drawings. The number of individuals in a population is chosen by
the experimenter according to the number of variables and levels and the size of the
screen to represent the designs if visual experiment.

Based on personal criteria the user then selects a subset of these individuals.
This number is also a part of the setting up. Selection consists in choosing,

3 Interactive Genetic Algorithm to Collect User Perceptions. Application. . . 39

Fig. 3.1 Synoptic of the IGA process [14]

among the individuals of a given population, some solutions that seem better
according to the constraints and objectives defined by the instruction of the test.
This selected product are favored in the randomly election for the genetic operators.
The most popular method of election is the roulette method, where individuals
with better performances (selected by the user) have a higher probability of being
selected (illustration in Fig. 3.1). The crossover operator consists in crossing several
individuals with each other in order to generate better individuals. The mutation
operator consists of modifying certain variables of a given individual in order to
create a new, different individual and thus ensure that the search for solutions runs
through the biggest design space as possible. Each generic operator has its own
settings and the effectiveness of the generic algorithm strongly depends on these
settings. Several studies are devoted to the influence of these parameters on the
performance of the genetic algorithm [10, 12, 30].

By definition, in the MOGA-II algorithm [22], each chromosome of the pop-
ulation is a parent of the following generation, which gives robustness to the
algorithm. A new population is thus created and evaluated, comparing each child to
its parents. This iterative method runs until the program has reached the maximum
of generations chosen by the experimenter or until the user estimates that the target
has been reached.

40 E. Poirson et al.

The efficiency of the IGA is ruled by its 3 operators: crossover, mutation, and
selection, chosen randomly for each individual of the population. The rate at which
these operations occur is determined by the value of their weights. The crossover
rate (Rc), mutation rate (Rm) and selection rate (Rs) are real values chosen between
0 and 1 such that Rc + Rm + Rs = 1. An indicator, rand(i), is randomly chosen
between 0 and 1 for each individual with a uniform distribution. (1) rand(i) < Rc,
the operation is a crossover. (2) Rc ≤ rand(i) ≤ Rc + Rm, the operation is a mutation.
(3) rand(i) > Rc + Rm, the operation is a selection.

3.3.2 Challenges of IGA

The first difficulty in the use of IGA lies in the assessment of its fitness by the user:
requiring the user to assess fitness can be time consuming or tiresome [26]. Gong [4]
proposed to calculate the fitness by observing the time taken by the user to determine
if an individual in a group is either “satisfactory” or “unsatisfactory”. For example,
products are presented to the user who is asked if it is “elegant”. The users had to
express their opinion on each product by clicking on “satisfied” or “not satisfied.”
This choice based method was compared to one where the users could rank their
satisfaction on a sliding scale [6]. The task based on a slide required the evaluation
of the entire population for each generation, which was tedious for the user. An
individual’s level of concentration influences their decision time, which can distort
the results. Another way to assess the fitness is to use a choice-based scheme. In [24]
the author’s study a choice task for preference elicitation. The results showed that
choices are practical to represent preference with a tolerable interaction effort and
that algorithms based on binary choices are able to converge in a limited number of
iterations.

Another difficulty in the use of IGA in user’s tests lies in the convergence of the
algorithm: an algorithm that is too slow may imply user’s fatigued. To speed up the
convergence, numbers of tools exist: krigging metamodel [16], chaining of neural
network models and IGA [28] or cooperative interactive genetic algorithm based on
the ratings of previous users [5]. If the acceleration of convergence is significant, it
is limited to case studies with a reduced number of variables, because the choices
can only be made on the products presented.

It is therefore, for our study, to find the right settings of the algorithm to have
a reasonable convergence, that is to say, that give the user enough time to allow
him to reach his target but not too much to tire him. To avoid the risk of premature
convergence because of the selection operator, the mutation operator plays the role
of “noise”, jumping randomly in another part of the design space. Crossover will
also explore new combinations. The difficulty is to balance their ratio.

3 Interactive Genetic Algorithm to Collect User Perceptions. Application. . . 41

3.3.3 Set up of the Genetic Algorithms

To determine the most adapted crossover rate (Rc), mutation rate (Rm) and selection
rate (Rs), we define an automatic mode. A virtual user simulates to evaluate
products. It is assumed that the user has an idea in mind and the more he advances
in the experience, the closer he gets to it. We therefore suppose coherence in his
reasoning and his choices. The goal for the user is to ensure that the proposed
products are getting closer and closer to the target he has in mind. To simulate the
choices of a virtual user, a target product was arbitrarily chosen in the design space:
t = [t1, t2, . . . , Tn var]. We calculate the distance to this target for each of the designs
presented. The “selection” of the user is therefore logically composed of products
that are the closest to the target. Calling this algorithm IGA is a misnomer since the
algorithm is no longer interactive but for better understanding, automatic mode for
IGA will be kept.

For each individual j, the distance d(j,t) to the target was defined by the Euclidian
distance function:

d (j, t) =
√√√√
n var∑

i=1

(
rankxij − rankti

)2 (3.1)

with: rankti: rank of the level of the variable ti
rankxij: rank of the level of the variable xi for individual j

By assumption, the Euclidian distance function used was considered as repre-
sentative of the perceptual distance of the user (tests with other distance functions
showed that the IGA parameters were not too sensitive to the nature of the distance
function used). The automatic mode was used to tune the parameters of the IGA
[20]. This was done in order to be able to launch several simulations in the same
conditions, and to have an average estimate of the convergence rates. Knowing the
convergence rates allows designers to limit the design space (the number of variables
and their levels) to a reasonable size so that the number of generations required for
convergence can be decreased. It was estimated that a subject could process 30
generations in manual mode before becoming fatigued.

The objective is to assess, for a fixed number of generations, the average quality
of the solutions provided by the IGA. The IGA is used in automatic mode (the
fitness is simulated by the computation of the Euclidian distance to a given target).
For the optimal set of IGA parameters, the IGA process was simulated N times
(Monte Carlo method). The quality of the solutions is assessed by two criteria: the
average distance to the target of the best individual of the last generation g, and
the average distance to the target of all the individuals of the last generation. The
average distance to the target of the best individual of the last generation dbest is
given by:

42 E. Poirson et al.

dbest = 1

N

N∑

i=1

dg
(
j ibest , t

)
(3.2)

j ibest = argmin
j∈{1,...popsize}

(
dg (j, t)

)
(3.3)

with: j ibest : the individual minimizing the distance to the target for simulation i
For each iteration of the IGA, the two individuals which minimize this distance

are automatically selected. These individuals are considered as the closest individu-
als to the target. According to this selection, the IGA generates a new population of
individuals.

We arbitrarily consider that the IGA converges and then stops the process if the
distance between an individual, generated by the IGA, and the target is lower than
2 (difference of 2 ranks). The parameters in input of the Automatic IGA are (1)
the number of variables, (2) the number of level for each variable (the same for all
variables), (3) the “roulette” wheel rate (weight of a selected parent to create the
next generation), (4) the mutation and crossover rates (Rm and Rc). Each one has
coherent intervals of variation. For each set of IGA parameters, the IGA process
is simulated N = 10 times and the number of generations is measured. The mean
value of this number of generation is computed, associated to the set of parameters.
We estimated around 20 the number of generations which can be supported by a
subject before fatigue. Consequently, we decided to select a size of problem defined
by 5 variables and 5 levels for each variable for the rest of the study (the IGA, in
automatic mode, needs 10 generations to converge for this size of problem). The
best set of IGA parameters, for the size of problem, defined by 5 variables and 5
levels, with a Wheelrate of 16, Rm = 0.15 and Rc = 0.8.

The results show a global improvement of the fitness of the population according
to the n◦ of generations: the average distance daverage of a population to the target
decreases with the number of generation and the quality of the population globally
increases. The distance daverage reaches a plateau above 60 generations (this distance
is not null because the population is not homogeneous). The distance to the target of
the best individual dbest also decreases, and is null above 60 generations. It signifies
that above 60 generations, the method always converged toward the target for all
the simulations (N = 100). For 30 generations, the distance dbest is approximately
equal to 0.2. A study of the distribution of the distance dg

(
j ibest , t

)
for all the

simulations (N = 100) showed that 60% of the simulations converged perfectly
toward the target, 30% converged toward the target with a difference of one level
for one variable, and 10% converged toward the target with a difference of one level
for two variables.

All these results make us confident in the ability of the IGA to converge when
real subjects are used.

3 Interactive Genetic Algorithm to Collect User Perceptions. Application. . . 43

3.4 Application Case: Protocol and Results

3.4.1 Goal-Seeking Task

To provide an example of the methodology, a study was conducted on a simple
product common to every day French life; a wine glass. The digital mock-up of the
glass (Fig. 3.2) was defined by 5 dimensional variables (V1 to V5) with 5 levels.

Two tests were proposed to a panel of 20 subjects (age between 22 and 25),
students at Ecole Centrale de Nantes: a goal seeking task and the research of the
most “elegant” glass.

For both tests, the following conditions were set:

– The values of the IGA parameters: Rw = 16, Rc = 0.8, Rm = 0.15.
– The IGA were allowed to run through a maximum of 20 generations.
– If the subjects estimated that the task was fulfilled and the design selected

satisfied, they could stop the test before the 20th generation.
– At the end of the entire process, the subject had to give the selected product a

score from 0 to 10, corresponding to the quality of the solution, with respect to
the task.

The type of perceptive test was a choice of maximum 2 (0, 1 or 2) products
on 8 presented. It was dimensioned because of the size of the screen (3 lines of 3
products), and the fact that the target stay visible during all the test thus, take the
ninth place.

V1

V2

V3

V4

V5

Fig. 3.2 Definition of the variables (V1 to V5) to parameterize the geometry of the glass

44 E. Poirson et al.

The test had three goals:

1. Warming up the users, familiarize them with the interface,
2. Confirming the performance of the method for the experimenter testing whether

subjects were able to make the IGA populations converge toward a given goal,
3. Giving a feedback of the choice of the variables on this particular product.

Goal 1 and 2: Familiarization with the Task and Convergence of the Algorithm
The test lasted an average of around 8 min per user. The target needed an average
of 16.75 generations to appear. We estimated that it was a reasonable duration for
a perceptive test. Around half of the subjects (Pop 1) stopped the algorithm before
the last generation, meaning that they thought they had reached the target. This
information confirms the hypothesis of our study.

Goal 3
To estimate the discrepancy between the target and the choices of the subjects, for
each variable of the 5 variables, the standard deviation is calculated on the rank of
the variable to avoid a scale effect. For example, V1 could take i = 5 levels: l1 = 3.5,
l2 = 5, l3 = 7, l4 = 9, l5 = 10. The values themselves li are not used but only the
level i are compared.

This standard deviation σj estimates, for each variable, the degree of agreement
of the subjects’ choices with the target (e.g. σj = 0 if all the subjects chose the
same level than the target for the variable Vj). The results show that the 5 variables
chosen do not have the same influence on the perceived shape of the glass. In Pop
1, everybody chose a target with the exact level for V1 and V3. The conclusion was
that the variations of these variables on the form were easy for the user to perceive.
In contrast, the choices were more heterogeneous on V4 (the height of the point
controlling the form of the glass). The differences were not perceptible in the same
way for all variables, at least for the representation mode chosen. All the variables
don’t have the same perceptive influence on the form of the product. This result is
useful for the designer to distinguish his product on more impacting parameters.

3.4.2 Free Task on “Elegant” Glass: Protocol

In this test, the subjects were not given a target glass, but were told to select the
most elegant wine glass, according to their personal opinions. We assume that each
subject has his/her own target in mind, and makes consistent choices during the
test (no change of target). The objective function to minimize corresponds to the
distance between the target in mind and the products presented. For example, if
the ideal of elegance is a kind of champagne flute, the subject will be attracted by
glasses with a long stem, small diameter and elongated, rejecting the glass of Fig.
3.2 for example.

Figure 3.3 describes the process of IGA, showing the exchange of data between
the subject and the algorithm. A population of 8 glasses was firstly generated. We

3 Interactive Genetic Algorithm to Collect User Perceptions. Application. . . 45

Fig. 3.3 Framework of the iterative user-test

keep 8 products, even if the 9th place dedicated to the target in the previous study
is free, not to disturb the subject, to avoid being always considered as a target. This
population is modeled in CAD tool (Catia V5 in our application) and presented to
the subject via an interface (Matlab). Based on the choices done, a new population is
generated and represented by new CAD modeling. The use of an Interactive Genetic
Algorithm requires a constant exchange of data between the interface, the algorithm,
the tool for product representation.

At the end of the process, the subject had to select one glass, and rate it on a
scale from 0 (not at all elegant) to 10 (perfectly elegant). As in the previous test, the
subject could stop the process and make their final choice before the 20th iteration
(Fig. 3.3: “Finished iterations”? = yes).

The aims of the 2nd test were:

– To know to which extent the process converges toward a satisfying solution for
the subject in the case of a simple product.

– To know if design trends concerning the elegance of a glass can be extracted
from the results of the test. In other words, the problem was to uncover relevant
information about the elegance concerning the design variables of the form.

– To estimate the variability of the results concerning the elegant semantic
dimension, and to show how this information can be taken into account for
product design.

3.4.3 Free Task on “Elegant” Glass: Results

Among the 20 subjects, 8 stopped the test before the 20th generation, giving a score
of 10/10 to the selected product. These 8 subjects were considered as perfectly
satisfied with their choice. For the 12 other subjects, the average satisfaction score
of their chosen glass was 8.3/10. This relatively high score and the low standard

46 E. Poirson et al.

Fig. 3.4 Forms of the different glasses in the three groups

deviation imply that the subjects found satisfying enough glasses, and that 20
generations were sufficient to converge toward the desired product.

The first analyze considered the global population (20 subjects). Concerning the
final glass chosen by the subjects, the results showed that only 2 subjects chose
exactly the same glass. A great diversity in the final glass was noticed. The standard
deviation of a subject compared to the 19 others was computed on each of the
5 levels. The results show that no variable was subjected to a great consensus
concerning the elegance of the glass: the variability was of the same order for
each variable, and no particular level could be considered as representative of the
elegance. The conclusion led us to study more precisely the panel, searching for
groups of subjects with similar image of elegance.

In order to provide a partition of the glasses and to define groups of targets similar
from a perceptual point of view, a hierarchical ascendant classification (HAC) [7]
has been performed. Details on this analyze can be found in [21]. To illustrate the
potential of identifying homogeneous groups of subjects, three groups (HAC) were
considered. The composition of the three groups is given in Fig. 3.4. While some of
the users selected similar products, only S13 and S17 chose the exact same product.

To find a unique representation, a optimization was performed inside a group,
aiming to minimize the dissatisfaction of the subject with the chosen representation.
The results are presented Fig. 3.5.

The main result here is that the semantic dimension of elegance is subjective.
There were at least 3 elegance types among only 20 students and on a total

3 Interactive Genetic Algorithm to Collect User Perceptions. Application. . . 47

Fig. 3.5 Forms of the 3 proposed glasses, minimizing the dissatisfaction

population of 55 glasses. A company could decide what type of elegance it wants
for its glasses. That decision cannot be taken by the IGA methodology, as it is a
strategic choice relating to the company’s target values. One can also observe that
the users have to be representative of the company’s target user base. For example,
Target 1 does not match a “traditional” wine glass form, which could signify that
the users are not wine amateurs.

This test had to be considered as a pilot study, as the number of subjects was
weak, and the product was relatively simple. This test allowed the description of
the method and of the statistical data analysis, which could then used on a more
substantial study with a more complex product.

3.4.4 Conclusions on the Two Tests on the Glasses

A goal-seeking test was carried out to give an estimation of the convergence abilities
of the IGA, and revealed the problem of just noticeable differences in perception
of forms. In Test 1, within a small number of generations, 80% of subjects either
found a glass similar to the target, or one that they perceived to be the target (as
they stopped the task before the end) in a less than 10 min. Perceptual tests with
20 subjects were conducted to demonstrate the validity of IGA and to conduct an
analysis of the results. The perceptual tests on the semantic dimension – elegance –
of a glass were performed to show how the results can be analyzed and how to deal
with inter-individual differences among users.

3.5 Synthesis and Perspectives on the Use of IGA for Design

The interest of IGA was previously demonstrated underlining the opportunities for
design. If the case studied was simple, the methodology is adaptable to very different
and more complicated product or system. The different steps must be broken down
according to the study.

48 E. Poirson et al.

Preliminary step: product and representation.

The first step is, the product/system defined, to choose which sensorial organ will
be activate for the perceptive tests. In the example above, the visual sense was used
but hearing can also be studied (concerning touch, smell and taste, the difficulty
of generating new samples is for the moment an obstacle to the use of IGAs). The
combination of both senses can be also imagined. Each representation has to be
coherent with the goal of the designer. For example, a screenshot of a CAD model
can be if needed completed in Virtual Reality Modeling Language (VRML), or a
control of the sound level can be given to the subject. The interest of this method
is that the representation of the product is independent of the algorithm (Fig. 3.3).
The interface of this study is functional, and the computation time for updating the
model is reasonable; in the wine glass test, the time between generations (time to
built the 8 CAD-models) was less than 8 s. The interface with the CAD software is
a significant advantage. Replacing the glass by another product of 5 variables on 5
levels is immediate. To increase or decrease some of these values, a modification of
the set up of the algorithm is simply needed.

Step 1: Variables and levels

Not totally independent of the previous step, the product must be configurable.
The IGA can help the designer to reduce the complexity of his model. In the
goal-seeking task, the subjects showed the convergence and divergence of results,
meaning that their comprehension of the variables were different. We could
therefore consider some parameters as not influential for the perceived quality of
a product, which allows the designer to reduce his design space.

Step 2: parameterization of the algorithm and protocol

IGA implies the evaluation of the subject as fitness function. The human fatigue
must be taken into account in the protocol, designing a tool limiting the duration and
difficulty of the task. For the duration, the convergence must be studied, depending
on the different parameters of the algorithm (mutation, crossover rates, wheelrate in
the case of Moga II). The targeted task is an adapted tool for this step. Concerning
the difficulty of the task, the choice made is a selection of 2 (maximum) on 8
products. If it seems affordable for a naïve subject, the quantity of information is
not very important, especially increasing the number of variables, thus the design
space. Other interventions of the user can be considered in the algorithm, not only
on the evaluation of the fitness but also on the set up of the algorithm. For example,
the subject could stop, even momentarily, the evolution of a criterion (variable) or
reduce its scale and accelerate the convergence. He can also be asked the to score
at the end of each step the product(s) he/she chose and one or two randomly chosen
product from this generation. Hybrid versions of IGA, mixing evaluation of the
fitness by or the machine or the human (not exclusively human), are also studied in
this way.

3 Interactive Genetic Algorithm to Collect User Perceptions. Application. . . 49

Step 3: analysis of results

A phenomenal amount of information is generated by such perceptive tasks. In
the previous study, the distances between the selected product and the target or
between the final population and the target is computed and studied. The IGA makes
it possible to investigate the inter-individual differences for a group of users in the
relationship between the semantics and the design features. It is possible to separate
which attributes are common for the entire group, which attributes are specific to a
subgroup of subjects, and which attributes are typical of a particular user. Other
results can be exploited as the not chosen products. If a common characteristic
appears in all the choices of the subject, he could reject some values of parameters,
that is also very useful for the designer. The choice process could be redefine
by asking the subject to select 3 categories of products: desired products, neutral
products, rejected products. Modeling the user’s path in the presented database can
help to predict its next choices and thus accelerate convergence.

3.6 Conclusion

The general process for detecting design trends using Interactive Genetic Algo-
rithms and user-tests was described. These tests are proposed to enhance innovation
and to understand which design features are representative of a given semantic
dimension. Applied to a simple example, it is adapted to other product and system
(for example, layout problem [8]).

A limitation of the IGA algorithm used concerns the relative small size of the
design space. To tackle bigger design spaces, several perspectives can be drawn.
Concerning the algorithm, we could fit a model of the response of the subject
(for example with a neural network) during the assessments, and optimize this
response with classical GA. The tools of machine learning can be used to enrich
the perceptive tests and modelize the behavior of the subject.

References

1. Aungst S, Barton R, Wilson D (2003) The virtual integrated design method. Qual Eng 15:565–
579

2. Desmet P (2003) Measuring emotion: development and application of an instrument to measure
emotional responses to products, Human-computer interaction series, 3. Springer, Dordrecht

3. Goldberg DE (1989) Genetic algorithms in search, optimisation and machine learning. Addison
Wesley, Reading

4. Gong DW, Pan FP (2003) Theory and applications of adaptive genetic algorithms. China
University of Mining and Technology, Xuzhou

5. Gong D, Zhou Y, Li T (2005) Cooperative interactive genetic algorithm based on user’s
preference. Int J Inf Technol 11:1–10

50 E. Poirson et al.

6. Gong DW, Guo GS (2007) Interactive genetic algorithms with interval fitness of evolutionary
individuals, dynamics of continuous, discrete and impulsive systems, series B: complex
systems and applications-modeling. Control Simul 14(s2):446–450

7. Hair JF, Tatham RL, Anderson RE, Black W (1998) Multivariate data analysis, 5th edn.
Prentice Hall, Upper Saddle River

8. Hasda RK, Bhattacharjya RK, Bennis F (2017) Modified genetic algorithms for solving facility
layout problems. Int J Interact Des Manuf (IJIDeM) 11(3):713–725

9. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control and artificial intelligence. MIT Press, Cambridge, MA

10. Hong TP, Wang H-S, Lin W-Y, Lee W-Y (2002) Evolution of appropriate crossover and
mutation operators in a genetic process. Appl Intell 16(1):7–17

11. Hopfer H, Heymann H (2014) Judging wine quality: do we need experts, consumers or trained
panelists? Food Qual Prefer 36:1–2

12. Jilkova J, Raida Z (2008) Influence of multiple crossover and mutation to the convergence of
genetic optimization. MIKON 2008, XVII international conference on microwaves, radar and
wireless communications in Poland

13. Kelly JC, Wakefield GH, Papalambros PY (2011) Evidence for using interactive genetic
algorithms in shape preference assessment. Int J Prod Dev 13(2):168–184

14. Kelly J, Papalambros PY, Seifert CM (2008) Interactive genetic algorithms for use as creativity
enhancement tools. In: Proceedings of the AAAI spring symposium, Stanford, CA, pp 34–39

15. Kim HS, Cho SB (2006) Application of interactive genetic algorithm to fashion design. Eng
Des 38:224–237

16. Li M, Li G, Azarm S (2008) A kriging Metamodel assisted multi- objective genetic algorithm
for design optimization. ASME J Mech Des 130(3):031401

17. Nagamachi M (1995) Kansei engineering: a new ergonomic consumer-oriented technology for
product development. Int J Ind Ergon 15:3–11

18. Poirson E, Petiot J-F, Richard F (2010a) A method for perceptual evaluation of products by
naive subjects: application to car engine sounds. Int J Ergon 40(5):504–516

19. Poirson E, Petiot J-F, Aliouat E, Boivin L, Blumenthal D (2010b) Interactive user tests to
enhance innovation; application to car dasboard design. International conference on kansei
engineering and emotion research KEER 2010

20. Poirson E, Petiot J-F, Aliouat E, Boivin L, Blumenthal D (2010c) Study of the convergence of
Interactive Genetic Algorithm in iterative user’s tests: application to car dashboard design. In:
Proceedings of IDMME – virtual concept 2010 Bordeaux, France

21. Poirson E, Petiot JF, Boivin L, Blumenthal D (2013) Eliciting user perceptions using as-
sessment tests based on an interactive genetic algorithm. J Mech De Am Soc Mech Eng
135(3):1–16

22. Poles S, Rigoni E, Robic T (2004) MOGA-II performance on noisy optimization problems.
In: Proceedings of the International conference on bioinspired optimization methods and their
applications, BIOMA2004, 11–12 October 2004, Ljubljana, Slovenia, pp 51–62

23. Qian L, Ben-Arieh D (2009) Joint pricing and platform configuration in product family design
with genetic algorithm. In: Proceedings of IDETC/CIE 2009, San Diego, CA, USA

24. Ren Y, Papalambros PY (2011) A design preference elicitation query as an optimization
process. J Mech Des 133(1):111004

25. Shabestari SS, Bender B (2017) Enhanced integrated sensitivity analysis in model based QFD
method. In: Proceedings of the 21st international conference on engineering design (ICED 17),
Vancouver, Canada, 4, pp 317–326

26. Swait J, Adamowicz W (2001) The influence of task complexity on consumer choice: a latent
class model of decision strategy switching. J Consum Res 28:135–148

27. Takagi H (2001) Interactive evolutionary computation: fusion of the capabilities of EC
optimization and human evaluation. Proc IEEE 89(9):1275–1296

3 Interactive Genetic Algorithm to Collect User Perceptions. Application. . . 51

28. Tseng I, Cagan J,Kotovsky K (2011) Learning stylistic desires and generating preferred
designs of consumers using neural networks and genetic algorithms. DETC2011-48642,
ASME IDETC – design automation conference, Washington, DC

29. Yoshida S, Aoyama H (2008) Basic study on trend prediction for style design. ASME
International Design engineering technical conferences, Brooklyn, New York, USA

30. Zhang J, Chung HSH, Zhong J (2005) Adaptive crossover and mutation in genetic algorithms
based on clustering technique. In: Proceedings of the 7th annual conference on genetic and
evolutionary computation, GECCO’05, Washington DC, USA – June 25–29. ACM, New York,
pp 1577–1578. ISBN:1-59593-010-8, https://doi.org/10.1145/1068009.1068267

https://doi.org/10.1145/1068009.1068267

Chapter 4
Differential Evolution and Its Application
in Identification of Virus Release
Location in a Sewer Line

B. G. Rajeev Gandhi and R. K. Bhattacharjya

Abstract Differential Evolution is a stochastic, population-based optimization
algorithm for solving the nonlinear optimization problems. The algorithm was
introduced by Storn and Price (Minimizing the real functions of the ICEC 1996
contest by differential evolution. In: Proceedings of IEEE international conference
on evolutionary computation, pp 842–844). Later, the algorithm was explored, and
problem specific modifications have been done by many researchers. The beauty
of this meta-heuristic optimization algorithm is that the optimization search can be
made to be bounded, global as well as local search by changing the parameters of the
algorithm. This chapter gives the basic idea behind the origin of this technique and
its recent advancements. The algorithm is then applied for identification of unknown
virus release locations in an underground sewer line.

Keywords Virus transport · Leaking sewers · Simulation-optimization · Source
identification

4.1 Introduction

Many natural processes have optimization at their core. The Darwinian evolution is
based on the optimization principle as the statement “survival of the fittest” states the
same. Nature has the perfect balance between the number of resources available and
the lives that depend upon these resources. If one increases that decreases the other
eventually. This creates a necessity for optimization in all the natural processes.
The observation and careful understanding of natural processes lead to a completely
different approach of optimization which is known as nature-inspired metaheuristic
optimization techniques. The gradient based classical optimization algorithms are

B. G. R. Gandhi (�) · R. K. Bhattacharjya
Department of Civil Engineering, Indian Institute of Technology Guwahati,
Guwahati, Assam, India
e-mail: b.rajeev@iitg.ac.in; rkbc@iitg.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_4&domain=pdf
mailto:b.rajeev@iitg.ac.in
mailto:rkbc@iitg.ac.in
https://doi.org/10.1007/978-3-030-26458-1_4

54 B. G. R. Gandhi and R. K. Bhattacharjya

problem dependent and thus works for a specific problem only. As such, it may
not be suitable for all types of problems. On the other hand, the metaheuristic
approaches are problem independent and work well for any type of problem [4].

There are many algorithms which aim at different processes happening in nature.
Some of the algorithms concentrate on the genetic part of the natural evolution
called Genetic Algorithms (GA). Some of the algorithms are inspired from the
different processes that happen in a particular species such as bird flocks giving
Particle Swarm Optimization (PSO), fireflies (Fire Fly Algorithm), leaping of
frogs for food (Shuffled Frog Leaping Algorithm) and building of ant colonies
(Ant Colony Optimization) etc. One more algorithm coming from the family of
evolutionary algorithms is the Differential Evolution (DE) that has emerged in
the mid-1990s. The DE algorithm was first presented as a technical report by R.
Storn and K.V. Price in 1995 [8]. The DE algorithm was demonstrated at the First
International Contest on Evolutionary Optimization in May 1996 [9]. DE received
the third price on the first ICEO held at Nagoya, Japan and it was given the first price
on the second ICEO [7]. By the next decade after DE was proposed, many variants
and improvements were published such as Self-Adaptive DE [1], Opposition based
DE [13], DE with global and local neighborhood [10], JADE [5], etc.

The Differential Evolution comes under the same category of the Evolutionary
Strategies with the scaled difference between the parent vectors or genomes from
the previous generation as input. Thus, this algorithm resembles mostly of the
Controlled Random Search algorithm. There are many advantages for researchers
to use DE as an optimization tool. One of the advantages is the algorithm is
very simple to understand and also to be coded, which allows a wide range of
applications in many fields of engineering and sciences. It can be programmed easily
with minimal programming skill. The DE algorithm also uses a smaller number
of parameters (F and Cr), which can be easily handled. The significance of the
parameters is well understood and can be explored by running the program under
different conditions. The section “Parameters and Sensitivity” gives much more
details on their significance in the convergence of DE towards the optimal solution.
In this chapter, DE is presented starting with the basic concepts, different structures
and the applications of DE on a large-scale optimization problem.

4.2 Structure of the Algorithm

The algorithm DE consists of four basic steps – initialization of the population,
mutation using difference vectors, recombination, and selection. Once the initial-
ization of the population is made, the rest of the three steps continue until the
termination criterion is not reached. This whole process is explained in the flowchart
shown in Fig. 4.1. Each step of the algorithm is explained in the subsequent sub-
sections.

4 Differential Evolution and Its Application in Identification of Virus Release. . . 55

Fig. 4.1 Differential evolution algorithm

4.2.1 Initialization of the Population

The initial population of all nature inspired meta-heuristic optimization algorithms
are created randomly in the feasible search space according to the problem. Let the
search space be a region ‘R’ of D-dimensional space, where ‘D’ is the number of
decision variables. The number of decision variables and the bounds of the variables
are decided according to the problem to be solved. ‘Xd’ is the vector containing the
decision variables. The population decided for the problem contains a set of these
vectors equal to the total number of population (M). Therefore, the whole population
for each of the generation ‘G’ can be represented as shown in Eq. 4.1.

{
XGd,p

}
=
{
xG1,p, x

G
2,p, x

G
3,p, , x

G
D,p

}
(4.1)

Here ‘p’ extends from 1 to P (total population) and ‘G’ extends from 1 to Gen
(total generations) respectively.

If the search space is bounded, the minimum and maximum of each of the
decision variables exists which can be represented the same way as vectors ‘Xmin’
and ‘Xmax’ respectively. The initial population can be generated for the specified
bound of the variables as shown in Eq. 4.2.

x1
d,p = xd,min + randd,p (0, 1)×

(
xd,max − xd,min

)
(4.2)

56 B. G. R. Gandhi and R. K. Bhattacharjya

‘randd,p’ is a random number generated between 0 and 1. The random number
distribution is assumed to be a uniform distribution. This generates a set of vectors
for each of the population assuming the search space to be continuous. If the search
space is discrete (say integers only), then an integer random number is generated
between the minimum and the maximum of the bounds. The population created is
called a chromosome or a genome.

4.2.2 Mutation with Difference Vectors

The mutation in the evolutionary process resembles the sudden change in the gene,
instructing the gene to do different things than it is supposed to perform. These
mutations can cause the gene to survive extreme conditions, which can help the
chromosome to survive longer. However, the mutations are not always effective,
because too much of mutation causes the gene to behave completely different
and leads to the extinction of the gene. The DE adopts the mutation property
from evolution to change the genes to produce better population than the previous
generation. The mutation is generally carried out with the scaled difference of the
vectors in interest. There are 5 types of mutations with the difference vectors [12].
The best and mostly used one is the random mutation, which can be executed using
Eq. 4.3. The random mutation is started by selecting three random vectors ‘r1, r2
and r3’ from the population. The scaled difference of these vectors ‘r2 and r3’ with
the scale factor ‘F’ (which is a positive number less than 1) is taken and added to
the initial random vector ‘r1’. The random vector ‘r2 and r3’ give the direction to
which the search should perform, and ‘F’ gives the size of step length. The random
mutation changes the population towards the optimal solution over a number of
generations.

vGd,p = xGd,r1 + F
(
xGd,r2 − xGd,r3

)
(4.3)

There are other types of mutations with the difference vectors used by different
researchers. Two of them are listed in Eqs. 4.4 and 4.5. The mutation process that
creates a vector close to the best vector in the current generation is shown in the Eq.
4.4 [6]. The mutation that takes the current chromosome of interest to the best in the
current generation is shown in Eq. 4.5 [6].

vGd,p = xGd,best + F
(
xGd,r1 − xGd,r2

)
(4.4)

vGd,p = xGd,p + F
(
xGd,best − xGd,p

)
+ F
(
xGd,r1 − xGd,r2

)
(4.5)

4 Differential Evolution and Its Application in Identification of Virus Release. . . 57

Here only two random vectors are generated choosing two integers generated
randomly between 1 and P (the total population). There are also other types of
mutations, which are mostly a combination of one or more than one of the above
three listed mutations. Some require 5 random populations; some require 4 and some
require 6 or 7 populations. However, the basic idea of the mutation is to create
a better vector to replace the weaker solutions in the population. As long as the
mutated population is better, any type of mutation can be adopted.

4.2.3 Recombination or Crossover

The recombination allows the mutated vector, called the target vector to get mixed
with the population to form an offspring vector denoted by ‘U’. The recombination
is also called as ‘crossover’ because the vectors from parent generations are used
to produce the offspring. There are two common types of crossover used by the
researchers. One of which is a simple binomial crossover and the other is the
exponential crossover. The simple binomial crossover is given in Eq. 4.6. It uses
the mutated vector on one hand and the actual vector on the other hand combined
with a crossover rate and a random number as shown in Eq. 4.6.

uGd,p =
{
vGd,p if rand (0, 1) <= Cr or d = drand

xGd,p otherwise
(4.6)

Here, ‘drand’ is a random number generated between 1 and D (number of decision
variables). ‘Cr’ is the crossover rate chosen between 0 and 1. This condition for
the crossover rate allows the certain number of mutated population to enter the
population from the previous generation. The condition that the chosen decision
variable is equal to the randomly generated decision variable ensures that not all
the decision variables are changed in the current population. This condition also
allows the population to try a different combination of decision variables to solve
the problem. This is very helpful when there are a very large number of decision
variables.

The other type of crossover that is quite useful for large scaled optimization
problems is the exponential crossover. In this crossover, an integer ‘n’ between
1 and D is chosen at random. The nth vector is the starting point to search for a
better solution. Another integer ‘L’ is chosen between 1 and D, but this time with a
choosing probability according to Eq. 4.7.

P (L = ν) = (Cr) ν − 1 (4.7)

Here, ‘Cr’ represents the crossover rate which can be any fraction between 0
and 1. Whereas ‘ν’ is any integer between 1 and D. This probability can be executed
in the way as given in the pseudo code below [11].

58 B. G. R. Gandhi and R. K. Bhattacharjya

L = 0;

While (rand(0,1) <= Cr and L<= D)

L = L+1;

After choosing the random integers ‘n’ and ‘L’, the vector for the next generation
can be chosen by recombination as shown in Eq. 4.8 where 〈n〉D represents modulo
function with modulus D.

uGd,p =
{
vGd,p if j = 〈n〉D, 〈n− 1〉D, 〈n− 2〉D, , 〈n− L+ 1〉D

xGd,p otherwise
(4.8)

4.2.4 Selection

The selection decides whether the offspring vector is suitable for the population in
the next generation. The condition for survival of the offspring is explained in the
Eq. 4.9. The fitter vector will replace the original one using the following rules.

XG+1
p =

⎧
⎨

⎩
UGp if f

(
UGp

)
≤ f
(
XGp

)

XGp if f
(
UGp

)
> f
(
XGp

) (4.9)

Here, the less than symbol ensures the population to converge towards the best
solution and the equal to symbol ensures the migration of population in between the
vectors corresponding to flat fitness. After the selection of the offspring for the next
generation, the termination criterion is checked and the whole cycle continues until
the optimal solution is reached.

4.3 Parameters and Sensitivity

Differential Evolution is very easy to code because of the simple nature of the
algorithm. Also, a few parameters are required to be adjusted. There are only two
parameters that make DE one of the most successful metaheuristic algorithms.
The mutation with difference vectors takes care of the wide range of search space
with the parameter ‘F’. The crossover rate ‘Cr’ takes care not to replace all the
population by the new population created by the mutation operator. The combination
of mutation, recombination and selection always assures population to converge
and reach the optimal solution of the problem. But, to assure convergence, the user
should select the best combination of these two parameters. To analyze the best
combination of the parameters, a two variable objective function is chosen (the
sphere function) with only one optimum at (0, 0). The mutation method used is

4 Differential Evolution and Its Application in Identification of Virus Release. . . 59

random mutation and the crossover is the binomial crossover. Three values of F are
chosen with three crossover rates each giving rise to nine combinations of choices
for the chosen values of F and Cr.

The rates of Cr are chosen to be 0, 0.5 and 1. The Cr value of 0 will almost not
allow the new vectors to enter the population in the next generation. The rate 0.5
allows the new vectors to be in the population of next generation by almost 50%
and Cr value of 1 will allow 100% replacement of the old population. The values of
F are also chosen to be 0, 0.5 and 1. Here, the value of 0 tells that the new vector is
nothing but the randomly chosen vector or the best vector, according to the mutation
method used. The value of 0.5 indicates that the difference of two random vectors is
scaled to be half of the actual difference, which gives the wide range for the search
by creating the difference vector not too far when the difference is high enough.
The value of 1 indicates that there is no scaling of the difference vectors used to
get the new population. Figure 4.2 shows all the nine different combinations of the
parameters F and Cr.

It can be observed from the figures that as the crossover increases, the ran-
domness in the population is also increasing. The crossover rate of 0.5 shows fast
convergence of the solutions. Although the crossover rate of 0 shows good results
towards convergence, the population gets stagnated more in the same place, as this
allows the population to change very little in the generations next to come. The
only replacement in the population is due to the other condition where the chosen
random number is equal to the variable to be replaced. That is the reason for the
‘+’ pattern observed for the lower rate of crossover. As the crossover rate increases,
the pattern slowly increases towards randomness. From the Fig. 4.2, it can also be
observed that the value of F has a lesser impact on the behavior of the population,
as it is just a scaling factor for the difference vector that can either stay or not stay
in the population of next generation based on the condition for crossover. However,
a higher value of F ensures the required widening of the search space by scaling the
difference vectors. An optimal search operation requires faster convergence and a
smaller degree of randomness in the population. This ensures to check all the local
optimal solutions and to decide on the global optimal based on the information from
all the local optima. Thus, the value of F and Cr can be chosen to be greater than
0.5 for better results.

Some researchers also prefer to alter the values of Cr and F as the DE operation
goes on [11]. These variable parameters improve the population and help to achieve
the optimal solution faster. For example, at the beginning of the search, a larger
value of F can be chosen to explore the entire search space. But as the solution
convergence towards optima, the value of F can be reduced iteration after iteration
to obtain the exact optimal solution of the problem. This helps the algorithm to get
the solution faster. Similarly, the crossover rate should be increased as the solution
reaches the actual optimal. This helps more population to get replaced from the
previous population allowing the algorithm to search for more solutions in lesser
time. When it comes to solving large scale optimization problems or problems with
a larger number of decision variables, it is almost always necessary to change the
parameters as the algorithm progresses.

60 B. G. R. Gandhi and R. K. Bhattacharjya

Fig. 4.2 Nine combinations of the parameters of DE on sphere function on 10th iteration

4.4 Differential Evolution on Mathematical Functions

In the previous subsection, the sensitivity of the model parameters on the sphere
function has been discussed. The combination of the parameters and their effect on
the convergence have also been discussed. In this subsection, the performance of
DE on some of the popular mathematical functions is discussed. The mathematical
functions are chosen in such a way that DE can be tested on different kinds of
problem such as problems having alternate optimal solutions, problems having
local and global optimal solutions, and the problems with single optimal solution.
The functions considered are Cross-in-tray function, Rastrigin function and the
Goldstein-Price function.

4 Differential Evolution and Its Application in Identification of Virus Release. . . 61

4.4.1 Cross-in-Tray Function

The cross-in-tray function is a multi-optimal function with four optimal points in
the domain −10 to 10 in both the directions. The function is given in Eq. 4.10 and
the minima are given in Eq. 4.11.

f (x, y) = −0.001

⎡

⎢⎣

∣∣∣∣∣∣∣
sin x sin y × e

(∣∣∣∣∣100−
√
x2+y2

π

∣∣∣∣∣

)∣∣∣∣∣∣∣
+ 1

⎤

⎥⎦

0.1

(4.10)

Min =

⎧
⎪⎪⎨

⎪⎪⎩

f (1.34941,−1.34941) = −2.06261
f (1.34941, 1.34941) = −2.06261
f (−1.34941, 1.34941) = −2.06261
f (−1.34941,−1.34941) = −2.06261

(4.11)

The contour and the surface plots of the cross-in-tray function are given in the
Fig. 4.3a, b. It can be observed in the Fig. 4.3b that the function represents a cross
in the tray containing egg holder like shapes. The four minima can be seen in
the contour plot in the Fig. 4.3a. The function is solved by using the differential
evolution taking the F and Cr values to be 0.5 and 0.7 respectively. The population
size is 10 and the model is run for 500 generations. The variation of the function
values with the generation for 20 runs is given in the Fig. 4.4.

Fig. 4.3 (a) Contour plot of Cross-in-tray function. (b) Isometric view of Cross-in-tray function

62 B. G. R. Gandhi and R. K. Bhattacharjya

Fig. 4.4 Logarithmic plot of the function value with the number of generations over 20 runs

Fig. 4.5 (a) Contour plot of Rastrigin function. (b) Surface plot of Rastrigin function

4.4.2 Rastrigin Function

The Rastrigin function is a single global optimal function with many local optima.
The domain is taken to be −5.12 < = x, y < = 5.12. The equation representing the
function is given in the Eq. 4.12 and the minimum of the function is zero at (0, 0).

f (x, y) = 2A+ x2 + y2 − A cos (2πx)− A cos (2πy) (4.12)

The contour plot and the surface of the function as a plot in 3D are given in
the Fig. 4.5a, b respectively. The optimization to find the minima is done using
differential evolution with Crossover rate 0.7 and F value at 0.5. The population
size and the number of generations are taken to be 10 and 500 respectively. Figure
4.6 shows the function value with the generations over 20 runs.

4 Differential Evolution and Its Application in Identification of Virus Release. . . 63

Fig. 4.6 Logarithmic plot of the function value with the number of generations over 20 runs

4.4.3 Goldstein-Price Function

The Goldstein-Price function is a single optimal function with a lesser number of
local optima. The domain is between −2 and 2 for both the variables. The equation
of the function is given in Eq. 4.13. The minimum of the function is at (0, −1) with
a minimum value of 3.

f (x, y) = [1 + (x + y + 1)2
(
19 − 14x + 3x2 − 14y + 6xy + 3y2

)]

× [30 + (2x − 3y)2
(
18 − 32x + 12x2 + 48y − 36xy + 27y2

)]

(4.13)

The contour and the surface plot for the Goldstein-Price function are shown in
the Fig. 4.7a, b respectively. The optimization is done using DE with Cr of 0.7 and
F value of 0.5 respectively. The population size and the number of generations are
taken to be 10 and 500. The optimization is carried out for 20 runs. The function
value with respect to the number of generations over the 20 runs is shown in the
Fig. 4.8.

Example Problem
For evaluating the performance of the DE on a large-scale optimization problem, the
problem considered by Gandhi et al. [3] for identifying the leakage of a sewer line
is considered. The number of leaks and the strength of the leaks are not known. This
kind of problems is called a source identification problem, where the source of the
contaminant (virus in this case) is identified based on the temporal concentration
information collected from the observation wells. Figure 4.9 describes the study
area, sewage line, the location of the monitoring wells and the pumping wells. The
dimension of the study area is 200 × 200 × 100 m.

64 B. G. R. Gandhi and R. K. Bhattacharjya

Fig. 4.7 (a) Contour plot of Goldstein-Price function. (b) Surface plot of Goldstein-Price function

Fig. 4.8 Logarithmic plot of the function value with the number of generations over 20 runs

For solving the source identification problem, the aquifer simulation models,
i.e. flow and transport models must be incorporated with the optimization model
[3]. Here, the groundwater flow model is developed using MODFLOW and the
virus transport model is developed using MT3DMS modules available in the
Groundwater Modelling Software (GMS). The virus transport is solved considering
that sorption occurs only in equilibrium phase with a first order irreversible reaction
and following a liner relation between the aqueous and sorbed phase of the
concentrations. Gandhi et al. [3] considered two cases, however in this chapter
one of the most complicated mixed integer problems is attempted using DE. This
sewer line has 20 observation wells that allow collecting the samples from the
wells. The samples are tested for viruses in groundwater. There are records for
the tests conducted for 150 days. Based on this dataset, the number and location
of sources along with the strength of sources are to be identified. Table 4.1 gives

4 Differential Evolution and Its Application in Identification of Virus Release. . . 65

Fig. 4.9 Sewer line that has leaks somewhere along its length. [3]

Table 4.1 Aquifer flow and transport parameters for virus

Flow parameters Hydrodynamic dispersion parameters Virus and sorption parameters

Kxx = 9.0 × 10−5 ms−1 αL = 2 m λ = 0.03 d−1

Kyy = 9.0 × 10−5 ms−1 αTH = 0.2 m λ∗ = 0.02 d−1

Kzz = 9.0 × 10−5 ms−1 αTV = 0.1 m Keq = 10−4 m3kg−1

Ss = 0.001 m−1 D∗ = 6 × 10−10 m2 s− ρb = 1800 kg m−3

the parameters of the aquifer for solving both the flow and transport models. The
virus gets inactivated most of the time according to a first order irreversible reaction
as discussed above. The rates of inactivation of the viruses λ and λ∗ are the rates
in aqueous and in sorbed phase. The slope of the relation in the concentration of
virus in the sorbed phase to the concentration of virus in the aqueous phase is the
distribution coefficient ‘Keq’. The hydraulic conductivity is given by Kxx, Kyy and
Kzz representing the hydraulic conductivities in all the three principal directions.
Ss represents the specific storage in the aquifer. The dispersivity in longitudinal,
transverse horizontal and transverse vertical directions are given by αL, αTH and
αTV . D∗ represents the molecular diffusion coefficient and ρb represents the bulk
density of the porous medium.

66 B. G. R. Gandhi and R. K. Bhattacharjya

No flow boundary
Constant head boundary

No flow boundary
Constant head boundary

Sewer line

Source leakages

Pumping wells

Observation wells

Fig. 4.10 Discretization of the study area and the location of the observation wells

The locations of the observation wells in the aquifer are given in Fig. 4.10. There
are 20 observation wells in the study area.

The partial differential equations for solving the flow and the transport equation
are given in Eq. 4.14 and 4.15.

∂

∂x

(
Kxx

∂φ

∂x

)
+ ∂

∂y

(
Kyy

∂φ

∂y

)
+ ∂

∂z

(
Kzz

∂φ

∂z

)
+W = Ss ∂φ

∂t
(4.14)

Where, K is the hydraulic conductivity tensor. φ is the piezometric head. W
is the volumetric flux per unit volume flowing in and out of the control volume
representing the source and sink terms (T−1). This equation is taken as the governing
equation for flow through porous media [2].

n
∂C

∂t
+ ρbkeq ∂C

∂t
= ∂

∂xi

(
Dij

∂C

∂xj

)
− ∂

∂xi
(qiC)

− nμlC − ρbKeqμs,eqC − q’sC + qsCs
(4.15)

Here, C is the mass of free viruses per unit volume in the aqueous phase
(ML−3). In short, we refer to it as the free virus concentration. The adsorbed
virus concentration is given in terms of the mass of viruses per unit mass of the

4 Differential Evolution and Its Application in Identification of Virus Release. . . 67

soil (MM−1). We refer to it as the attached virus concentrations. Further, n is the
porosity (−); D is the hydrodynamic dispersion tensor (L2 T−1); q is the Darcy’s
flow velocity vector (LT−1); μl is the inactivation rate coefficient for free viruses
(T−1); μs,eq is the inactivation rate coefficient for attached viruses to equilibrium
sites (T−1). q’s is the rate of change of transient ground water storage; qs is the
pumping at the source or sinks and Cs is the concentration of the source or sink.

The simulation model consists of the solution of these two equations for given
inputs. The optimization model minimizes the sum of the absolute difference
between the observed concentration and the simulated concentration at all the
observation wells. The objective function for the optimization model is given in
Eq. 4.16.

Minimize f =
k = sk∑

k = 1

k = oc∑

k = 1

(
OCko − SCko

)2
. W0 (4.16)

Here, OCko is the observed concentration at the well location o for time stepk;
SCkois the simulated concentration at the well location o for time stepk; oc is the
total number of observation well locations; skis the total number of observation
time steps and W0 is the weightage of corresponding observed well location. Here,

the weightage was taken as

(
1
/
(
OCko + 1

)
)2

. The weightage is selected so as to

normalize the concentration at each location. If at all the observed concentration
happens to be zero at some observation location, the effect of such concentrations
will shoot up the objective function to a very large value. So, the additive coefficient
1 is taken for minimizing this effect. Additionally, it will not have much effect for
wells with higher concentrations.

The observed concentrations can be obtained from the field. However, for
the hypothetical problem considered here, the aquifer simulation model is used
with known source locations and strengths of sources to numerically simulate
the observed concentrations at observation locations at different times. Then the
optimization model is run for arbitrary location and leakage to find out the actual
source strengths and locations by minimizing the objective function. The flowchart
of the algorithm is given in Fig. 4.11. The number of leaks in the sewer line are
unknown, so 5 leakages are assumed with continuous leakages (i.e. the leakage is at
the same rate in all the time steps). Therefore, the total number of variables are
10. Five of the variables are integer type variables. The area is discretized into
rectangular grids in each layer. The grids are numbered from the origin of the
coordinates counting 1–20 in the first row of the first layer, 21–40 in the second
row of the first layer and so on. The sewer line starts from 161, continues till 173
and goes column wise up to 233 and then again runs along the row from 233 to
240. Therefore, the potential locations are 161, 162, 163, 164, 165, 166, 167, 168,
169, 170, 171, 172, 173, 193, 213, 233, 234, 235, 236, 237, 238, 239 and 240. Thus,
from these 23 locations, 5 suspected locations are the actual leakages. The source
strengths have no upper limit, but it cannot be less than zero.

68 B. G. R. Gandhi and R. K. Bhattacharjya

Fig. 4.11 Flow chart describing the procedure followed for optimization

The differential evolution method is used to solve the optimization problem. The
objective function is the error function and the minimum value is always close to
zero. As such, the tolerance for the fitness function is taken as 10−6. The values
of F and Cr are taken to be varying according to the fitness and the generation.
The Eqs. 4.17 and 4.18 describes the function used for mutation scaling factor
and the crossover rate. The mutation scaling factor decreases as the generations
increases from 1 to a value slightly greater than zero by the end of the optimization.
The infeasible and the deviating populations created in each generation are always
eliminated by the selection operator. A population size of 20 is considered.

Fp =

⎧
⎪⎪⎨

⎪⎪⎩

fp

/
p=P∑
p=1

fp
if rand (1, 2) = 1

1 − i − 1
/
gen

if rand (1, 2) = 2

(4.17)

Cr =
{

1 if mean
(
fp
) ≤ 100

0.7 otherwise
(4.18)

4 Differential Evolution and Its Application in Identification of Virus Release. . . 69

Table 4.2 Results from the
DE, Actual and Gandhi et al.
[3]

Type of variable Value
Location and flux
(Differential evolution)

Location 167 167
213 167
237 213
N.A. (Dummy) 213
N.A. (Dummy) 237

Flux 2000.000 1991.839
800.000 8.176
1000.000 1.023
0.000 798.978
0.000 1000.000

Fig. 4.12 Combination of the strengths at location 167 with generations

While solving such mixed integer problems, a minor modification for DE is
necessary. At all the generations, the populations should be checked with the
decision variables to be rounded off to the nearest integer in the integer decision
variables. The rest of DE where there are continuous variables can run as it is. The
problem took 753 generations to reach the optimal solution. The optimal solution is
shown in the Table 4.2.

The results show that values of the source leakage are almost closely identified
with a minute relative error of 0.001% which can be considered almost negligible.
The locations are exactly identified by DE. Here, two of the location variables are
assumed to be dummy. But DE has not recognized them as dummy and they are
recognized as the actual locations sharing the total value of the source strength,
which is totally valid. Figures 4.12, 4.13 and 4.14 shows the best population for
the variable corresponding to locations 167, 213 and 237 respectively. Figure 4.15
shows the total population converging towards the best fitness over the generations.
The line with higher thickness represents the best population.

70 B. G. R. Gandhi and R. K. Bhattacharjya

Fig. 4.13 Combination of the strengths at location 213 with generations

Fig. 4.14 Combination of the strengths at location 237 with generations

The Fig. 4.15 clearly shows that there is still some difference in the fitness value
of the population. This indicates that the optimal solution of the problem has not
reached, and the population will continue to converge to the actual optimal solution
of the problem. The objective function value at termination is 3.9239 × 10−7. In
this problem, the DE took 15,060 function evaluations to converge to the optimal
solution. DE is advantageous in many aspects of finding the global solution easily.
Based on the observations from the previous research and the problem solved using
DE, the following conclusions were made.

4 Differential Evolution and Its Application in Identification of Virus Release. . . 71

Fig. 4.15 All the populations converging towards optima

4.5 Conclusions

The differential evolution algorithm is easy to understand and one of the most
basic theories of natural evolution. The evolution of the population is through the
difference in the initial population and as the convergence occurs, the population
tend to converge at optimal point in the search space. The rate of crossover and the
mutation scale factor decide the number of function evaluations required to reach the
optimal solution. These parameters of the algorithm can be decided based on their
behaviors in various combinations. Dynamic parameters (i.e. parameters changing
with generations) gives best result compared to the parameters that are more static
or fixed. The nature and complexity of the problem plays a key role in selecting the
parameters. For the non-convex problems or the problems having a larger number of
decision variables, dynamic parameter setting is necessary. Whereas the problems
that are convex and simple or having lesser number of variables can be solved using
any combination of the parameters. Overall, DE is one of the most robust algorithms
which has the capability to handle the complex engineering optimization problems.
DE also rated as one of the easiest algorithms to program and handle as well as can
be guaranteed to derive the optimal solution.

References

1. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

2. Bear J (1988) Dynamics of fluids in porous media. Dover Publications, New York

72 B. G. R. Gandhi and R. K. Bhattacharjya

3. Gandhi BGR, Bhattacharjya RK, Satish MG (2016) Simulation–optimization-based virus
source identification model for 3D unconfined aquifer considering source locations and number
as variable. J Hazard Toxic Radioact Waste 21(2):04016019. http://ascelibrary.org/doi/abs/
10.1061/(ASCE)HZ.2153-5515.0000334

4. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput Surv 35(3):268–308

5. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external
archive. IEEE Trans Evol Comput 13(5):945–958

6. Price K, Storn R, Lampinen J (2005) Differential evolution—a practical approach to global
optimization. Springer, Berlin

7. Price KV (1997) Differential evolution vs. the functions of the 2nd ICEO. In: Proceedings of
IEEE international conference on evolutionary computation, Indianapolis, Indiana, USA. IEEE
Press, New York, pp 153–157

8. Storn R, Price KV (1995) Differential evolution: a simple and efficient adaptive scheme for
global optimization over continuous spaces,” ICSI, USA, Tech. Rep. TR-95-012 [Online].
Available: http://icsi.berkeley.edu/~storn/litera.html

9. Storn R, Price KV (1996) Minimizing the real functions of the ICEC 1996 contest by
differential evolution. In: Proceedings of IEEE international conference on evolutionary
computation, pp 842–844

10. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighbor-
hood based mutation operator. IEEE Trans Evol Comput 13(3):526–553

11. Das S, Suganthan PN (2011) Differential evolution – a survey of the state of the art. IEEE
Trans Evol Comput 15(1):4–31

12. Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution – an
updated survey. Swarm Evol Comput 27:1–30

13. Rahnamayan S, Tizhoosh HR, Salama MMA (Feb. 2008) Opposition-based differential
evolution. IEEE Trans Evol Comput 12(1):64–79

http://ascelibrary.org/doi/abs/10.1061/(ASCE)HZ.2153-5515.0000334
http://icsi.berkeley.edu/~storn/litera.html

Chapter 5
Artificial Bee Colony Algorithm
and an Application to Software
Defect Prediction

Rustu Akay and Bahriye Akay

Abstract The term swarm refers to any restrained collection of interacting agents
or individuals. For survival, creatures need to live or perform some tasks collectively
such as defending against predators, foraging, mating, etc. An intelligent swarm
optimizes a goal or task by responding adaptively to the local and/or global
environmental changes in a collective manner. Swarm intelligence research field
deals with designing algorithms inspired by the collective behavior of social
creatures. Task division and self-organization abilities lead swarm intelligence to
occur in a colony and the self-organization is characterized by positive-feedback,
negative feedback, fluctuation and multiple interactions in order to use the local
information to form a global pattern without a supervision. Ants, termites, birds, and
fishes are some examples of social animals that have swarm intelligence and inspire
researchers to design problem solving techniques. Bees also are a typical example of
creatures performing tasks collectively in nest site selection, nest building, mating,
and foraging. Among these activities, foraging might be the most crucial one for the
survival of a bee colony. The swarm intelligence in foraging of a honey bee colony
inspired Karaboga to design an optimization algorithm, Artificial Bee Colony
(ABC), in which the search is guided by the bees’ exploration and exploitation
mechanisms to maximize the quality of the honey within the hive. In this chapter,
first, the foraging behavior of real honey bees is summarized and then, the details
of Artificial Bee Colony algorithm about how it mimics the foraging behavior is
provided. In the third section, an application of ABC algorithm is carried out on a
software engineering problem, software defect prediction.

R. Akay
Department of Mechatronics Engineering, Erciyes University, Melikgazi, Kayseri, Turkey
e-mail: akay@erciyes.edu.tr

B. Akay (�)
Department of Computer Engineering, Erciyes University, Melikgazi, Kayseri, Turkey
e-mail: bahriye@erciyes.edu.tr

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_5&domain=pdf
mailto:akay@erciyes.edu.tr
mailto:bahriye@erciyes.edu.tr
https://doi.org/10.1007/978-3-030-26458-1_5

74 R. Akay and B. Akay

Keywords Meta-heuristics · Swarm intelligence · Artificial bee colony
algorithm · Software defect prediction · Classification · Neural network training

5.1 Introduction

Swarm intelligence deals with achieving a goal based on collective behavior patterns
of individual creatures without a central supervision. There are tasks in a swarm
performed by specialized agents (division of tasks). The role of an individual is
identified by the current state of the swarm and it may change the role or its state
based on the information obtained from the others or the environment, which is
called self-organization. Self-organization arises from multiple interactions, positive
feedback, negative feedback and fluctuation properties in the swarm. Information
held by the agents is distributed through the swarm by local interactions of
individuals via a kind of communication (multiple interactions). An individual may
repeat a promising behavior (positive feedback) or may change its behavior to a
more profitable behavior after interaction, or may abandon a behavior that is no
longer profitable (negative feedback). Some agents in the swarm try to find out
undiscovered behavior patterns which are supposed to bring innovation to the swarm
(fluctuation).

Ants, termites, bees, birds, and fishes are example creatures that exhibit swarm
intelligence properties in their vital activities. Researchers have been inspired by the
swarm intelligence coming from nature and proposed problem solving techniques.
Ant colony optimization by Dorigo et al. [12] and Particle swarm optimization by
Kennedy and Eberhart [19] are popular problem solving tools that simulate the
swarm intelligence in an ant colony and fish schools, respectively.

The bees have many intelligent behavior patterns such as task division in the
nest building, mating, navigation, nest site selection, and foraging in addition to
their inherent features such as photographic memories, space-age sensory, etc [16].
Foraging is also a collective activity of honey bees and it is very crucial to ensure
the survival of the colony. There is a division of labor between bees in the foraging
task. The colony is divided into three categories for foraging: employed bees,
onlooker bees and scout bees. The role of the bees and task division may change
adaptively depending on hive’s internal and environmental conditions or the nectar
amount of the food sources they are exploiting. The foraging process is fired by
a forager bee to search for a food source. When a source is discovered, the bee
exploits the nectar, keeps the exploited nectar in her stomach and enzymes are
secreted on the nectar. The bee turns back to the hive, unloads the nectar in her
stomach to the honeycomb cells and cells are closed by some special antibacterial
and anti-fermentative substances. Later on, the bee can return-back to the flower
to exploit more or before turning back, she can dance in the hive to recruit the
other bees to the profitable source. Without a central supervision, bees communicate
between each other and an information flow network is sustained in the colony.
The communication is performed by dancing which includes information about

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 75

the spatial location and the quality of the food source discovered. Therefore, the
onlooker bees are informed about the high quality sources and a positive feedback
effect occurs towards good solutions.

Artificial bee colony (ABC) algorithm developed by Karaboga [14] is a swarm
intelligence algorithm that mimics the foraging behaviour of honey bees. The search
space is composed of the points that correspond to the food source locations. An
initial population of randomly generated locations in the search space goes through
the phases of the ABC algorithm, which are employed bee, onlooker bee and scout
bee phases. As in real bees, the foraging process starts with exploration which
means sending scouts to the sources. Once a source is chosen by the scout bee in
the initialization, this forager bee becomes an employed bee. The employed bee
memorizes the source and starts to exploit the source. While exploration brings
global search capability, exploitation introduces local search ability. Onlooker bees
chose food source based on the information gathered from the employed bees. This
is simulated in ABC algorithm by a probabilistic selection scheme. If a source
can not be improved through a certain number of periods, this source is assumed
to be exhausted and its bee becomes a scout bee. ABC algorithm is a successful
swarm based meta-heuristic algorithm and applied to solve unconstrained and
constrained, single-objective and multi-objective, and continuous and combinatorial
design problems [2, 16, 18].

This chapter gives a comprehensive explanation about the ABC algorithm and its
application to a software engineering problem. In the second section, the details of
the ABC algorithm is presented, its application to a software engineering problem
is provided in the third chapter and finally it is concluded.

5.2 ABC Algorithm

Artificial Bee Colony (ABC) Algorithm developed by Karaboga [14] is a swarm
intelligence algorithm which simulates the behaviors of employed bees, onlooker
bees and scout bees in foraging process. As a swarm algorithm, ABC algorithm
has self-organization and division of labor properties. Division of labor in foraging
process manifests as assigning different roles and responsibilities to the agents in the
swarm such that the bees are categorized as employed, onlooker and scout bee. The
employed bees are assigned to exploitation task and also responsible from informing
the onlooker bees about the location and quality of the food source by dancing. The
onlooker bees watch the dances of the employed bees and decide a food source to fly
and exploit. The scout bees are assigned to explore new sources in the environment
depending on an internal motivation or based on possible external clues. These roles
can change intelligently based on the conditions of the hive. A scout bee becomes an
employed bee when she finds a new source and the employed bee becomes a scout
bee when her source is exhausted. An onlooker bee waits in the hive and watches
the dances in the dance area and she behaves as employed bee when she decides a
source about which she has gathered information.

76 R. Akay and B. Akay

The other characteristic of a swarm is self-organization which is based on pos-
itive feedback, negative feedback, fluctuation and multiple-interactions properties.
Dancing of an employed bee attracts the other bees and recruits them to the source
pointed by the information in dancing. As more bees select a rich source, more
bees dance about the rich source and as more bees dance about the rich source, the
number of the bees recruited to a specific source increases, which is the positive
feedback. Because the positive feedback may cause all the population repeating
the same behavior pattern, it should be balanced inversely when it is needed. The
negative feedback breaks the excessive accumulation effect of positive feedback.
For example, a bee abandonees her source when its nectar is exhausted and she tries
to find new sources. The fluctuation introduces new patterns to bring innovation into
the behavior patterns. In a bee colony, random flights performed by the scout bees
are examples of the fluctuation. The multiple interactions are established based on
the communication of the agents and a network is constructed among them. Spread
of the information among bees is carried out by their dances.

In the algorithm, a food source location corresponds to a possible solution
to the optimization problem. Therefore, the number of decision variables in the
design problem corresponds to the dimension of the food source (dimension of the
solution). For numeric optimization, each dimension of the solution is allowed to
take values within a parameter-specific range. The surfaces constructed by all values
of the design parameters within the ranges establish a search space (Rn) in which
the optimum solution is explored. An initial food source population is generated
and the nectar amount of each source is evaluated. Nectar amount calculation
corresponds to fitness calculation of a solution. The ABC algorithm searches for
the optimum solution in the search space by means of the employed, onlooker and
scout bee phases until maximum number of cycles is reached. Main steps of the
ABC algorithm are given in Algorithm 1 [15, 17].

Data: Assign values for the control parameters;
CS: Number of Food Sources,
MCN : Maximum Cycle Number,
limit : A control parameter to decide whether a source is exhausted
begin

Initialize the food source locations and evaluate them;
cycle = 1;
while cycle < MCN do

Employed Bees’ Phase;
Onlooker Bees’ Phase;
Memorize the Best Solution;
Scout Bee Phase;
cycle + +;

end
end

Algorithm 1: Basic ABC algorithm

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 77

ABC algorithm has three control parameters of which the values are decided
before running the algorithm. Two of them are common in all swarm and population
based algorithms: swarm size (CS) and maximum number of cycles (MCN). The
other control parameter called limit is the number of exploitations to decide whether
a source is exhausted or not. Once their values are assigned, an initial food source
population is generated by using Eq. 5.1:

xij = xminj + rand(0, 1)(xmaxj − xminj) (5.1)

where i = 1 . . . CS, j = 1 . . . D, CS is the number of food sources, D is the
dimension of the problem, problem-specific xminj and xmaxj are lower and upper
boundary of j th dimension, respectively.

After the initial population is generated, the phases of the ABC algorithm are
iterated until the termination criteria is satisfied.

In the employed bee phase the ABC algorithm (Algorithm 2), an analogy of the
food source exploitation is conducted by a local search defined by Eq. 5.2:

υij = xij + φij (xij − xkj) (5.2)

where i is the solution currently being exploited, k is a randomly chosen neighbor
solution and φij is a real random number within the range [−1,1] drawn from
uniform distribution.

In the local search defined by Eq. 5.2, only one randomly chosen dimension of
the current solution (parameter j) is changed. In some modified versions of the ABC
algorithm, the local search changes more than one parameter of the current solution
(Eq. 5.3) [1].

υij =
{
xij + φij (xij − xkj), if Rij < MR

xij , otherwise
(5.3)

where Rij is a real random number drawn from the uniform distribution within (0,1)
and MR, is the modification rate. If Rij < MR is satisfied, then, υij is taken from
the local search, otherwise taken from xij .

When a new solution (υi) is generated, a greedy selection is applied between
the current solution (xi) and the new solution produced by the local search (υi).
The better one is kept and the other one is discarded from the population. If the new
solution is better, because it is a just discovered solution, the number of exploitations
on this solution is zero. Otherwise, if the current solution is better, its counter
holding its number of exploitations is increased by 1.

An employed bee unloads the nectar and then gives information to onlookers
about the quality and the location of her source. High quality solutions have high
chance to be selected but the solutions with low quality can also be selected by the
onlookers. The probability of each solution (pi) can be calculated proportionately
to its fitness value:

78 R. Akay and B. Akay

Data: Food Source Population;
begin

foreach food source xi do
New Solution x′ ←− produced by Eq. 5.2;
f (x′)←− evaluate new solution;
if f (x′) < f (xi) then

xi ←− x′; exploit (xi)←− ∅;
else

exploit (xi) = exploit (xi)+ 1;
end

end
end

Algorithm 2: Employed Bees’ Phase of the ABC algorithm

pi = f itnessi
SN∑
i=1
f itnessi

(5.4)

In the onlooker bees’ phase of the ABC algorithm (Algorithm 3), the onlooker
bees select food sources to fly using a stochastic selection scheme based on the
probability values of the food sources. The multiple interactions phenomena in ABC
is achieved using the probability values which establishes a communication network
between the bees about the sources. When an onlooker bee selects a source, the bee
performs a local search in the vicinity of that solution. As in the employed bees’
phase, a greedy selection is applied and the exploitation counters are updated. The
difference between the employed bees’ and onlooker bees’ is that the onlooker bees
choose the sources based on their quality. Solutions with better quality are likely to
be selected. This shows the positive feedback property in the ABC algorithm.

The scout bees’ phase of the ABC algorithm is given in Algorithm 4. In real
bees, a source is exhausted by the exploitations of its nectar. In the ABC algorithm,
if the number of exploitations related to a source exceeds the control parameter,
limit, the source is assumed to be exhausted. The ABC algorithm has ability to
forget about the patterns that make the convergence supersaturated. This is the
negative feedback of ABC algorithm. Instead of the exhausted solutions, the scout
bees in ABC algorithm make global search and try to explore undiscovered sources
randomly, which is the fluctuation characteristic of the ABC algorithm.

5.3 An Engineering Application: Software Defect Prediction

Software testing is checking whether the output specifications are satisfied when the
input specifications are provided [24] and defect prediction deals with estimating
number of defects or faults in the design or source code of a software in order to
improve product quality and performance capability.

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 79

Data: Food Source Population; Probability of each solution
begin

foreach food source xi do
pi ←− assign probability by (5.4);

end
i ←− 0 ;
t ←− 0 ;
while t < CS do

r ←− rand(0, 1);
if r < p(i) then

t ←− t + 1;
x′ ←− a new solution produced by Eq. 5.2;
f (x′)←− evaluate new solution;
if f (x′) < f (xi) then

xi ←− x′; exploit (xi)←− ∅;
else

exploit (xi) = exploit (xi)+ 1;
end

end
i ←− (i + 1) mod (CS − 1);

end
end

Algorithm 3: Onlooker Bees’ Phase of the ABC algorithm

Data: Food Source Population, Exploitation Counters;
begin

si = {i : exploit (i) = max(exploit)};
if exploit (si) > limit then

xsi ←− random solution by Eq. 5.1;
exploit (si)←− ∅;

end
end

Algorithm 4: Scout Bees’ Phase of the ABC algorithm

A testing team plans and manages the test execution activities to achieve the
quality and performance metrics and to ensure all defects are found and fixed. Better
plans and managing activities are the goal of software development organizations
by predicting the defects because huge amount of budget and resource is allocated
to testing phase to discover the defects. Detecting defects in later stages of the
software life cycle causes high relative cost of fixing a fault [5]. Predicting the
software defects in advance is one of the major issues in software engineering field.
Predicting the defects and the fault-prone modules that needs refactoring in earlier
stages of software production process helps to produce more robust and reliable
software systems, increases software quality and makes the maintenance easier. By
a good defect estimation model, more effort and time can be assigned to the modules
that are fault-prone and this also have positive impact on customer satisfaction,
suppressing the regression effects in software and minimizing the schedule variance.

80 R. Akay and B. Akay

Software defect prediction problem can be considered as a classification problem
or symbolic regression problem. Regression techniques aim to predict the quantity
and density of the defects. Classification techniques can classify the modules into
fault-prone module and defect-free module groups based on the software-metrics
collected [9]. They learn from the data in previous releases of the current project or
the data of other similar projects to forecast the software defects in the projects.

5.3.1 Artificial Neural Networks for Predicting Software
Defects

Several models have been proposed based on machine learning and statistical
techniques for classification of software defects [8]. Menzies et al. [22] reported
71% success rate of defect predictors which is higher than some industrial methods
including manual code reviews.

In traditional statistical classification procedures, classification is performed
based on a probability model which calculates the posterior probability. A major
disadvantage of the statistical models is that they make assumptions on the
underlying probability model and they require a knowledge about both data and
the model [26].

An alternative machine learning technique for classification is Artificial Neural
Network (ANN). ANNs which simulate the biological neural networks, do not make
assumptions on the data and the underlying model. ANNs have been applied to a
variety of real world classification tasks in industry, business and science [25]. In an
ANN, a response is generated when a signal is transmitted in the network by means
of interconnecting neurons through synapses. Each neuron produces an output by
processing the signals coming from the neurons in the previous layer (Fig. 5.1).
Output yi of the ith neuron can be described by Eq. 5.5:

yi = fi(
Ni∑

j=1

ωij xj + θi) (5.5)

where Ni denotes the number of connections to ith neuron, so it is the number of
neurons in the previous layer, xij is the input signal to ith neuron coming from j th
neuron, ωij is the connection weight between ith neuron and j th neuron, θi is the
threshold (or bias) of ith neuron, and fi is the transfer function of ith neuron.

A neural network for a classification problem can be assumed as a mapping
function from d-dimensional input-space to the M-dimensional class-space, E :
Rd → RM [26]. The aim is to minimize an overall error measure (Eq. 5.6):

min
ω,θ∈RE(ω, θ) (5.6)

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 81

xi j wi j Σ f

Activation
function

yi

Output

xi1 wi1

xin win
Weights

Bias
θ

Inputs

Fig. 5.1 A neuron as a processing node

where E(ω, θ) can be defined by (5.7):

E(ω, θ) = 1

Np

Np∑

j=1

No∑

i=1

(di − yi)2 (5.7)

where di and yi are the desired and the actual values of the ith neuron at the output
layer, respectively. No is the number of neurons in the output layer and Np is the
number of patterns in the training phase.

5.3.2 ABC Algorithm in Training an ANN for Software Defect
Prediction

In the implementation of an optimization algorithm in the training of an ANN,
most focus should be given to the encoding scheme and the objective function. The
encoding scheme and perturbation operators should be handled carefully so that
they work compatibly.

Encoding schemes in the optimization of neural networks fall in to two groups:
direct methods and indirect methods. In the direct methods, connection weight
matrices are converted a vector and they are concatenated in an individual. In the
indirect encoding schemes, the genotype of an individual requires to be interpreted
since a compressed description of the network is evolved in a smaller genotype.
While the indirect schemes are scalable and lead to the faster convergence, the direct
schemes are preferable in small architectures [4, 7].

In this study, since it is easy to apply and the architectures in the study are
not so large, we used the direct encoding without compressing. Weight values and
bias values of the network are encoded in an individual represented by a vector. In
the evaluation of an individual by the cost function, elements of the individual are

82 R. Akay and B. Akay

decomposed into weight matrices and bias vectors to be applied to the neurons in
the network.

Another issue that we should give emphasis in designing a neural network is the
objective function which guides the search to minimize the output error between the
neural network and the actual system. Generalization ability of the neural network,
having the least number of local minima, representing the prediction error of the
neural net without any additional curvature should be considered in deciding the
objective function [6].

In the study, we have used root mean square error (RMSE) as the objective
function defined by Eq. 5.8 in the training.

RMSE = √E(ω, θ) (5.8)

Classification error percentage (CEP) can also be used as the objective function.
However, because different individuals with different RMSE error may have the
same CEP value [3], RMSE value can guide the search to the optimum regions bet-
ter. After training NN based on RMSE, we also evaluated the classifier performance
based on the classification metrics given in next section.

Different neighborhood mechanisms has been proposed for ABC algorithm as
mentioned in Sect. 5.2. In this study, the local search scheme in the basic algorithm
(Eq. 5.2) has been used.

5.3.3 Experiments

5.3.3.1 Data Set and Metrics

In the experiments, we used the software data presented by D’Ambros et al. [11]
for the purpose of software defect prediction. The number of classes, version
information and next release bugs of the datasets used in the experiments are given
in Table 5.1.

Each data set has Chidamber and Kemerer (CK) [10] and Object Oriented (OO)
metrics which are the static code features used as inputs by our prediction system.
These attributes are presented in Table 5.2.

CK and OO metrics are easy to compute, have good predictive power and do
not require historical information. OO metrics also have the edge in explanative
power. Using CK and OO metrics together in prediction provides an improvement
in prediction performance [11]. The preprocessed data sets has 17 attributes plus
one target attribute. Target attribute in the data set is the error count related to each
system.

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 83

Ta
bl

e
5.

1
D

at
as

et
us

ed
in

th
e

ex
pe

ri
m

en
ts

[1
1]

Sy
st

em
Pr

ed
ic

tio
n

re
le

as
e

T
im

e
pe

ri
od

#C
la

ss
es

#V
er

si
on

s
#T

ra
ns

ac
tio

ns
#P

os
t-

re
ld

ef
ec

ts

E
cl

ip
se

JD
T

C
or

e
3.

4
1.

1.
20

05
–6

.1
7.

20
08

99
7

91
91

35
46

3

w
w

w
.e

cl
ip

se
.o

rg
/jd

t/c
or

e/

E
cl

ip
se

PD
E

U
I

3.
4.

1
1.

1.
20

05
–9

.1
1.

20
08

15
62

97
50

26
40

1

w
w

w
.e

cl
ip

se
.o

rg
/p

de
/p

de
-u

i/

E
qu

in
ox

fr
am

ew
or

k
3.

4
1.

1.
20

05
–6

.2
5.

20
08

43
9

91
16

16
27

9

w
w

w
.e

cl
ip

se
.o

rg
/e

qu
in

ox
/

A
pa

ch
e

L
uc

en
e

2.
4.

0
1.

1.
20

05
–1

0.
8.

20
08

69
1

99
17

15
10

3

w
w

w
.lu

ce
ne

.a
pa

ch
e.

or
g

www.eclipse.org/jdt/core/
www.eclipse.org/pde/pde-ui/
www.eclipse.org/equinox/
www.lucene.apache.org

84 R. Akay and B. Akay

Table 5.2 Class level source code metrics [11]

Type Metric

CK WMC Weighted Method Count

CK DIT Depth of Inheritance Tree

CK RFC Response For Class

CK NOC Number Of Children

CK CBO Coupling Between Objects

CK LCOM Lack of Cohesion in Methods

OO FanIn Number of other classes that reference the class

OO FanOut Number of other classes referenced by the class

OO NOA Number of attributes

OO NOPA Number of public attributes

OO NOPRA Number of private attributes

OO NOAI Number of attributes inherited

OO LOC Number of lines of code

OO NOM Number of methods

OO NOPM Number of public methods

OO NOPRM Number of private methods

OO NOMI Number of methods inherited

5.3.3.2 Prediction Performance Evaluation

In the experiments, the performance of ANN models trained by Bayesian Regular-
ization (BR) [13, 21], Levenberg-Mardquart (LM) [20], Scaled Conjugate Gradient
(SCG) [23] and ABC algorithms are compared to each other in training and test
phases.

Levenberg-Marquardt training algorithm approximates the second-order Hessian
matrix using H = J T J where J is the Jacobian matrix that contains the first
derivatives of the network errors with respect to the weights and biases. The
Levenberg-Marquardt updates the parameters using Newton-like update defined by
Eq. 5.9

xk+1 = xk − [J T J + μI]−1J T e (5.9)

When μ is zero, the updating rule works as Newton’s method, based on the
approximated Hessian matrix. When μ is large, it works as gradient descent
algorithm. μ is decreased if a reduction in the objective function is achieved and
is increased when the objective function is increased.

BR training algorithm uses LM updating rule and minimizes a linear combination
of squared errors and weights, and then determines the correct combination.

SCG training algorithm is a kind of conjugate gradient (CG) algorithm. CG
algorithm updates the weights by Eq. 5.10 but chooses the search direction and the
step size more carefully by using the second order information (Eq. 5.11).

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 85

ωk+1 = ωk + αk · pk (5.10)

sk = E′′(ωk) · pk (5.11)

In SCG algorithm sk is approximated by Eq. 5.12:

sk ≈ E′(ωk + σk · pk)− E′(ωk)
σk

, 0 < σk � 1 (5.12)

In order to evaluate the training performance, we used the error count as the
output of the ANNs. After the model is trained, in order to the calculate the
classification percentage, the error count column was converted into a Boolean
attribute based on whether the module has defect or not.

For each problem, 85% and 15% of the data is taken as train and test data,
respectively. All the algorithms were run 30 times and in each run, different 85%
and 15% portions of the data are assigned to train and test data to make the results
independent of the data distribution. Average of the RMSE values obtained from 30
runs of the algorithms are presented in Table 5.3. The effect of the number of the
neurons in the hidden layer is also investigated.

On the training of the Eclipse problem, the best RMS error is produced by the
ABC algorithm when the number of neurons in hidden layer is 8. The smallest
standard deviations are produced by the ABC algorithm. On the testing of ANN
models trained by the algorithms for Eclipse problem, the ANN with 16 neurons
in hidden layer and trained by ABC algorithm produced the best result. Again, the
smallest standard deviations are reported for the ANN trained by ABC algorithm.

On the training of the ANN for Equinox problem, the best RMSE is produced by
the ANN model with 32 neurons in hidden layer and trained by ABC algorithm. On
the testing for Equinox problem, the ANN model with eight neurons in hidden layer
and trained by ABC algorithm is superior to the other cases in the table.

On the training of ANN for Lucene problem, ANN model trained by BR
algorithm and with eight neurons in the hidden layer, produced the best RMSE value
while on the testing of ANN for this problem, SCG algorithm produced the smallest
RMSE. However, on this problem ABC algorithm is very close to BR on training
and very close to SCG on testing when the number of neurons is 16.

On the training and testing of ANN for Mylene problem, the best results are
produced by the ANN models trained by ABC algorithm and with 16 neurons and
32 neurons, respectively.

For Pde problem, ANN model with 16 neurons and trained by BR algorithm is
the best in training while ANN with eight neurons and trained by ABC algorithm is
the best in test results.

In addition to the training performance metric, RMSE, the performance of a
classifier is evaluated based upon some evaluation indices such as confusion matrix
(or error matrix), Precision, Recall, etc.

Confusion matrix (Table 5.4) describes the performance of a supervised classifier
upon a set of test data where T P (hit) means that defected module is correctly

86 R. Akay and B. Akay

Ta
bl

e
5.

3
C

om
pa

ri
so

n
of

th
e

av
er

ag
e

R
M

S
er

ro
r

va
lu

es
pr

od
uc

ed
by

30
ru

ns
of

B
R

,L
M

,S
C

G
an

d
A

B
C

al
go

ri
th

m
s

T
ra

in
da

ta
Te

st
da

ta

#N
eu

ro
ns

in
hi

dd
en

L
ay

er
#N

eu
ro

ns
in

hi
dd

en
L

ay
er

Pr
ob

le
m

A
lg

or
ith

m
4

8
16

32
4

8
16

32

E
cl

ip
se

B
R

M
ea

n
0.

08
99

0.
09

09
0.

08
96

0.
09

17
0.

11
22

0.
10

75
0.

11
60

0.
11

22

St
d.

0.
00

66
0.

00
81

0.
00

85
0.

00
97

0.
02

97
0.

02
48

0.
02

60
0.

02
09

L
M

M
ea

n
0.

09
52

0.
09

76
0.

09
20

0.
09

99
0.

11
58

0.
11

96
0.

11
52

0.
12

60

St
d.

0.
01

32
0.

01
63

0.
01

43
0.

01
95

0.
02

18
0.

02
71

0.
03

25
0.

03
31

SC
G

M
ea

n
0.

09
40

0.
09

15
0.

08
93

0.
09

06
0.

10
90

0.
11

20
0.

11
06

0.
10

67

St
d.

0.
00

87
0.

01
31

0.
01

27
0.

01
61

0.
02

56
0.

02
41

0.
02

56
0.

01
86

A
B

C
M

ea
n

0.
09

57
0.

08
90

0.
08

98
0.

08
83

0.
09

37
0.

09
73

0.
09

06
0.

09
99

St
d.

0.
00

28
0.

00
30

0.
00

20
0.

00
25

0.
01

51
0.

01
65

0.
01

36
0.

01
43

E
qu

in
ox

B
R

M
ea

n
0.

06
24

0.
06

51
0.

06
47

0.
06

50
0.

08
64

0.
07

95
0.

08
67

0.
08

45

St
d.

0.
01

06
0.

01
24

0.
00

99
0.

01
33

0.
02

79
0.

01
67

0.
02

02
0.

02
85

L
M

M
ea

n
0.

08
61

0.
07

81
0.

07
35

0.
08

53
0.

09
84

0.
10

46
0.

10
65

0.
11

18

St
d.

0.
02

34
0.

01
99

0.
01

85
0.

02
00

0.
03

08
0.

04
22

0.
04

74
0.

04
45

SC
G

M
ea

n
0.

07
06

0.
06

91
0.

06
67

0.
07

09
0.

08
73

0.
08

97
0.

08
79

0.
08

85

St
d.

0.
01

69
0.

01
52

0.
01

43
0.

01
69

0.
03

13
0.

03
07

0.
02

55
0.

03
21

A
B

C
M

ea
n

0.
07

40
0.

06
31

0.
06

10
0.

05
95

0.
07

26
0.

07
22

0.
07

31
0.

07
58

St
d.

0.
00

29
0.

00
33

0.
00

25
0.

00
22

0.
01

78
0.

01
83

0.
01

75
0.

01
44

L
uc

en
e

B
R

M
ea

n
0.

05
23

0.
05

12
0.

05
18

0.
05

38
0.

06
73

0.
07

30
0.

07
20

0.
06

78

St
d.

0.
00

59
0.

00
67

0.
00

51
0.

00
59

0.
02

25
0.

02
58

0.
02

29
0.

02
62

L
M

M
ea

n
0.

06
02

0.
06

02
0.

05
56

0.
05

38
0.

07
69

0.
07

29
0.

07
37

0.
07

37

St
d.

0.
01

21
0.

01
26

0.
00

76
0.

00
70

0.
03

19
0.

04
73

0.
02

86
0.

02
85

SC
G

M
ea

n
0.

05
43

0.
05

32
0.

05
36

0.
05

17
0.

07
10

0.
05

05
0.

06
40

0.
06

55

St
d.

0.
00

72
0.

00
40

0.
00

65
0.

00
46

0.
02

42
0.

01
59

0.
02

50
0.

02
31

A
B

C
M

ea
n

0.
05

71
0.

05
17

0.
05

13
0.

05
17

0.
05

82
0.

05
64

0.
05

06
0.

05
43

St
d.

0.
00

31
0.

00
24

0.
00

21
0.

00
18

0.
01

82
0.

01
63

0.
01

44
0.

01
89

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 87

M
yl

yn
B

R
M

ea
n

0.
04

58
0.

04
53

0.
04

58
0.

04
71

0.
05

37
0.

05
81

0.
05

60
0.

06
11

St
d.

0.
00

43
0.

00
42

0.
00

42
0.

00
48

0.
01

08
0.

01
45

0.
01

46
0.

01
88

L
M

M
ea

n
0.

04
75

0.
04

69
0.

04
66

0.
05

12
0.

05
31

0.
05

43
0.

05
13

0.
05

58

St
d.

0.
00

67
0.

00
72

0.
00

46
0.

00
74

0.
01

53
0.

01
57

0.
01

30
0.

01
60

SC
G

M
ea

n
0.

04
65

0.
04

67
0.

04
69

0.
04

68
0.

05
43

0.
05

33
0.

04
99

0.
04

91

St
d.

0.
00

31
0.

00
42

0.
00

30
0.

00
43

0.
01

77
0.

01
60

0.
01

49
0.

01
32

A
B

C
M

ea
n

0.
04

68
0.

04
71

0.
04

46
0.

04
49

0.
04

43
0.

04
96

0.
04

94
0.

04
70

St
d.

0.
00

20
0.

00
36

0.
00

21
0.

00
19

0.
01

03
0.

01
35

0.
01

08
0.

01
01

Pd
e

B
R

M
ea

n
0.

02
25

0.
02

31
0.

02
14

0.
02

47
0.

03
16

0.
03

31
0.

03
14

0.
02

95

St
d.

0.
00

46
0.

00
67

0.
00

38
0.

00
56

0.
01

67
0.

01
91

0.
01

57
0.

01
66

L
M

M
ea

n
0.

02
90

0.
02

65
0.

02
83

0.
02

73
0.

02
80

0.
03

99
0.

03
26

0.
03

50

St
d.

0.
00

80
0.

00
77

0.
01

17
0.

00
77

0.
01

23
0.

02
22

0.
01

87
0.

01
99

SC
G

M
ea

n
0.

02
59

0.
02

59
0.

02
45

0.
02

28
0.

02
67

0.
03

56
0.

02
82

0.
03

50

St
d.

0.
00

78
0.

00
69

0.
00

61
0.

00
53

0.
01

02
0.

02
10

0.
01

23
0.

01
68

A
B

C
M

ea
n

0.
03

20
0.

02
83

0.
02

43
0.

02
29

0.
03

04
0.

02
51

0.
02

73
0.

02
87

St
d.

0.
05

00
0.

00
26

0.
00

17
0.

00
17

0.
01

79
0.

01
25

0.
01

18
0.

01
73

88 R. Akay and B. Akay

Table 5.4 Confusion matrix,
TP:True positive, TN:True
negative, FN:False negative,
FP:False positive

Prediction

Positive Negative

Actual Condition Positive T P FN
∑
P

Condition Negative FP TN
∑
N

classified as in actual data, TN (correct rejection) means that defect-free module
is classified as defect-free, FP (false alarm, type I error) means that defect-free
module is incorrectly classified as defected, FN (miss, type II error) means that
defected module is incorrectly classified as defect-free.

The confusion matrices of the ANN classifiers trained by BR, LM, SCG and
ABC algorithms are drawn for training and test phases, separately in Fig. 5.2. From
the confusion matrix, ANN classifier trained by ABC algorithm shows a better
performance in terms of T P , TN and their overall summation. The results of
SCG algorithm are close to ABC algorithm. ABC algorithm is more successful on
predicting defected modules while SCG algorithm is better on predicting defect-free
modules.

Accuracy defined by Eq. 5.13 measures the ratio of the number correctly
classified defected and defect-free modules to the total number of predictions.
Precision given by Eq. 5.14 is the ratio of the number of correctly classified defected
modules to the number of defected modules in the prediction. Recall defined by
Eq. 5.15 is the ratio of the number of correctly classified defected modules to the
number of defected modules in actual data. Recall and Precision counterbalances
each other. Because precision is a measure of correctly classified defected modules
with respect to the prediction data and the recall is a measure of correctly classified
defected modules with respect to actual data, another metric which is harmonic
mean of precision and recall is defined by Eq. 5.16.

Accuracy = T P + TN
T P + FN + FP + TN = T P + TN

P +N (5.13)

Precision = T P

T P + FP (5.14)

Recall = T P

T P + FN = T P

P
(5.15)

F1 = 2 ∗ T P
2 ∗ T P + FP + FN (5.16)

Values of Accuracy, Precision, Recall and F1 metrics produced by the ANN
classifiers trained by BR, SCG, LM and ABC algorithms and have 16 neurons in the
hidden layer are presented in Table 5.5. On different problems, the algorithms have
varying performances. In terms of overall performances considering all problems
together, ABC algorithm is the best in terms of the accuracy metric, BR algorithm

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 89

1 2

1

2

1322
5.5%

2464
10.2%

34.9%
65.1%

1648
6.8%

18776
77.6%

91.9%
8.1%

44.5%
55.5%

88.4%
11.6%

83.0%
17.0%

Target Class

O
ut

pu
t C

la
ss

BR Confusion Matrix

(a)

1 2

1

2

957
4.0%

2829
11.7%

25.3%
74.7%

1445
6.0%

78.4%

92.9%
7.1%

39.8%
60.2%

87.0%
13.0%

82.3%
17.7%

Target Class
O

ut
pu

t C
la

ss

LM Confusion Matrix

(b)

1 2

1

2

1000
4.1%

2786
11.5%

26.4%
73.6%

955
3.9%

19469
80.4%

95.3%
4.7%

51.2%
48.8%

87.5%
12.5%

84.5%
15.5%

Target Class

O
ut

pu
t C

la
ss

SCG Confusion Matrix

(c)

1 2

1

2

1211
5.0%

2575
10.6%

32.0%
68.0%

1116
4.6%

19308
 79.8%

94.5%
5.5%

52.0%
48.0%

88.2%
11.8%

84.8%
15.2%

Target Class

O
ut

pu
t C

la
ss

ABC Confusion Matrix

(d)

18979

Fig. 5.2 The confusion matrices of the ANN classifiers trained by BR, LM, SCG and ABC
algorithms. (a) Confusion matrix of the ANN trained by BR algorithm. (b) Confusion matrix of
the ANN trained by LM algorithm. (c) Confusion matrix of the ANN trained by SCG algorithm.
(d) Confusion matrix of the ANN trained by ABC algorithm

is the best in terms of the precision and the F1 metric and ABC algorithm is the
second best. SCG algorithm is the best in terms of the recall metric on the train set
and while ABC is the best on test results. On the test results, in terms of F1 metric,
which balances Precision and Recall by harmonic mean, ABC algorithm is the best
in overall.

90 R. Akay and B. Akay

Ta
bl

e
5.

5
A

cc
ur

ac
y,

pr
ec

is
io

n,
re

ca
ll

an
d

F1
m

et
ri

cs
of

th
e

A
N

N
cl

as
si

fie
rs

tr
ai

ne
d

by
B

R
,L

M
,S

C
G

an
d

A
B

C
al

go
ri

th
m

s

T
ra

in
da

ta
Te

st
da

ta

Pr
ob

le
m

A
lg

or
ith

m
A

cc
ur

ac
y

Pr
ec

is
io

n
R

ec
al

l
F1

A
cc

ur
ac

y
Pr

ec
is

io
n

R
ec

al
l

F1

E
cl

ip
se

B
R

0.
79

50
0.

50
67

0.
50

26
0.

50
46

0.
78

62
0.

48
31

0.
49

03
0.

48
67

L
M

0.
80

63
0.

33
86

0.
54

86
0.

41
88

0.
79

67
0.

30
51

0.
52

65
0.

38
63

SC
G

0.
83

90
0.

41
06

0.
68

17
0.

51
25

0.
83

40
0.

39
41

0.
68

01
0.

49
90

A
B

C
0.

83
48

0.
47

75
0.

63
08

0.
54

35
0.

83
36

0.
47

67
0.

63
83

0.
54

58

E
qu

in
ox

B
R

0.
69

42
0.

66
98

0.
60

56
0.

63
61

0.
67

28
0.

61
59

0.
57

89
0.

59
68

L
M

0.
69

99
0.

62
06

0.
62

48
0.

62
27

0.
65

44
0.

53
29

0.
56

41
0.

54
80

SC
G

0.
70

10
0.

51
94

0.
65

90
0.

58
09

0.
67

62
0.

46
89

0.
61

59
0.

53
24

A
B

C
0.

72
19

0.
65

49
0.

65
06

0.
65

27
0.

70
20

0.
61

76
0.

62
20

0.
61

98

L
uc

en
e

B
R

0.
89

65
0.

22
88

0.
39

77
0.

29
05

0.
88

46
0.

17
24

0.
29

41
0.

21
74

L
M

0.
89

43
0.

19
14

0.
36

49
0.

25
11

0.
87

21
0.

08
28

0.
15

29
0.

10
74

SC
G

0.
91

08
0.

13
37

0.
57

98
0.

21
73

0.
90

29
0.

07
93

0.
38

98
0.

13
18

A
B

C
0.

91
01

0.
13

87
0.

55
80

0.
22

21
0.

90
06

0.
08

97
0.

36
11

0.
14

36

M
yl

yn
B

R
0.

87
38

0.
24

60
0.

55
67

0.
34

12
0.

86
37

0.
18

23
0.

39
67

0.
24

98

L
M

0.
84

56
0.

18
77

0.
34

92
0.

24
41

0.
84

12
0.

12
86

0.
24

14
0.

16
78

SC
G

0.
86

86
0.

14
54

0.
51

93
0.

22
71

0.
87

11
0.

11
61

0.
43

37
0.

18
32

A
B

C
0.

86
54

0.
15

04
0.

47
86

0.
22

89
0.

86
99

0.
14

30
0.

43
19

0.
21

49

Pd
e

B
R

0.
83

71
0.

30
72

0.
39

44
0.

34
54

0.
82

70
0.

28
97

0.
34

79
0.

31
62

L
M

0.
84

80
0.

25
16

0.
42

65
0.

31
65

0.
83

36
0.

21
78

0.
34

00
0.

26
55

SC
G

0.
83

53
0.

23
10

0.
36

14
0.

28
18

0.
83

17
0.

22
85

0.
33

81
0.

27
27

A
B

C
0.

83
88

0.
24

69
0.

38
20

0.
30

00
0.

83
63

0.
24

57
0.

36
29

0.
29

30

A
ll

B
R

0.
84

11
0.

38
63

0.
50

12
0.

43
63

0.
83

02
0.

34
92

0.
44

51
0.

39
14

L
M

0.
83

65
0.

30
52

0.
47

89
0.

37
28

0.
82

35
0.

25
28

0.
39

84
0.

30
93

SC
G

0.
84

92
0.

28
56

0.
55

10
0.

37
62

0.
84

55
0.

26
41

0.
51

15
0.

34
84

A
B

C
0.

84
94

0.
32

79
0.

54
51

0.
40

95
0.

84
75

0.
31

99
0.

52
04

0.
39

62

5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction 91

From the RMSE values, and the other evaluation metrics, ABC algorithm can
be said a good training algorithm for ANNs established for software prediction.
Besides, it is a robust algorithm when the standard deviations are considered.

5.4 Conclusion

Researchers have been inspired by the ants, termites, bees, birds, and fishes which
have collective intelligence to survive and to adapt the changes in their environment.
New problems solving techniques are proposed to the literature based on their
swarm intelligence characteristics.

Artificial Bee Colony algorithm is a successful swarm based meta-heuristic
algorithm and has been applied to solve may kind of problems in the research
field including unconstrained, constrained, linear, nonlinear, single-objective, multi-
objective, continuous and combinatorial optimization problems. In this chapter, a
comprehensive explanation about the ABC algorithm and swarm intelligence has
been provided.

ABC algorithm has also been applied to a software engineering problem: soft-
ware defect prediction. Essentially, defect prediction is a supervised classification
problem and in this study, artificial neural network is employed as a classifier. ABC
algorithm is used in training of the classifier for software defect prediction. The
performance of the classifier trained by ABC algorithm is compared to those of the
ANN classifiers trained by BR, LM, and SCG algorithms. From the results, ANN
classifier trained by ABC algorithm is a successful, alternative tool for prediction
problems.

Artificial Bee Colony algorithm provides an efficient optimization framework
which has a balanced exploration and exploitation capability. There are studies
which focus on improving local search ability of the algorithm. Besides, when the
discrete representation is adopted for combinatorial problems, designing operators
for the algorithm can be suggested as one of the challenging and important gaps to
fill in the existing literature.

References

1. Akay B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter
optimization. Inf Sci 192:120–142

2. Akay B, Karaboga D (2015) A survey on the applications of artificial bee colony in signal,
image, and video processing. Signal Image Video Process 9(4):967–990

3. Alba E, Chicano JF (2006) Training neural networks with GA hybrid algorithms. In: Alba E,
Martí R (eds) Metaheuristic procedures for training neural networks. Springer, Heidelberg,
p 118

4. Azzini A (2006) A new genetic approach for neural network design and optimization. Ph.D.
thesis, Universita Degli Studi Di Milano

92 R. Akay and B. Akay

5. Boehm BW (1984) Software engineering economics. IEEE Trans Softw Eng SE-10(1):4–21
6. Boozarjomehry RB (1997) Application of artincial intelligence in feedback linearization. Ph.D.

thesis, The University of Calgary
7. Boozarjomehry RB, Svrcek W (2001) Automatic design of neural network structures. Comput

Chem Eng 25:1075–1088
8. Catal C (2011) Software fault prediction: a literature review and current trends. Expert Syst

Appl 38(4):4626–4636
9. Catal C, Banarjee S (2012) Application of artificial immune systems paradigm for developing

software fault prediction models. In: Khosrow-Pour M (ed) Machine learning: concepts,
methodologies, tools and applications. IGI Global, Pennsylvania, pp 371–387

10. Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans
Softw Eng 20(6):476–493

11. D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug prediction
approaches. In: 2010 7th IEEE working conference on mining software repositories (MSR
2010), Cape Town, South Africa, pp 31–41

12. Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical
report 91-016, Politecnico di Milano, Italy

13. Foresee FD, Hagan MT (1997) Gauss-newton approximation to bayesian regularization. In:
Proceedings of the 1997 international joint conference on neural networks, Houston, pp 1930–
1935

14. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical
report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

15. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5(3):6915 revision #91003
16. Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif

Intell Rev 31(1–4):61–85
17. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471
18. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2012) A comprehensive survey: artificial

bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57
19. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference

on neural networks, Piscataway, pp 1942–1948
20. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares.

Q J Appl Math II(2):164–168
21. MacKay DJC (1992) Bayesian interpolation. Neural Comput 4(3):415–447
22. Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect

predictors. IEEE Trans Softw Eng 33(1):2–13
23. Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural

Netw 6(4):525–533
24. Schach SR (2008) Object-oriented software engineering. McGraw-Hill, New York
25. Widrow B, Rumelhart DE, Lehr MA (1994) Neural networks: applications in industry, business

and science. Commun ACM 37(3):93–105
26. Zhang GP (2000) Neural networks for classification: a survey. Trans Sys Man Cyber Part C

30(4):451–462

Chapter 6
Firefly Algorithm and Its Applications
in Engineering Optimization

Dilip Kumar, B. G. Rajeev Gandhi, and Rajib Kumar Bhattacharjya

Abstract Metaheuristic algorithms are optimization algorithms which attempt to
enhance the degree of resolution of the solution space iteratively. This is performed
by utilizing guided search methods along with some randomness properties. These
algorithms are motivated by biological phenomena or the social behavior of the
species. While the deterministic optimization methods depend on the nature of
the optimization problem, the metaheuristic algorithms are generally problem
independent. Due to their specific advantages over the classical methods, these
algorithms have been used extensively in solving the different problems in the
fields of science and engineering. One such metaheuristic algorithm is the firefly
algorithm. It is inspired by the flashing behavior of fireflies and widely used for
solving nonlinear- nonconvex optimization problems. This chapter describes the
firefly algorithm and its recent modifications. The sensitivity of the parameters
affecting the firefly algorithm along with the solution to optimization problems are
discussed in this chapter.

Keywords Metaheuristic algorithm · Nonconvex problems · Swarm intelligence

6.1 Introduction

The optimization methods are a mathematical procedure for obtaining the best
possible solution of a problem under a given set of conditions. There are different
classical methods that can be used for solving an optimization problem. However,

D. Kumar (�)
Department of Civil Engineering, G B Pant Engineering College, Pauri, Uttarakhand, India

B. G. R. Gandhi · R. K. Bhattacharjya
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati,
Assam, India
e-mail: b.rajeev@iitg.ac.in; rkbc@iitg.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_6

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_6&domain=pdf
mailto:b.rajeev@iitg.ac.in
mailto:rkbc@iitg.ac.in
https://doi.org/10.1007/978-3-030-26458-1_6

94 D. Kumar et al.

for the nonlinear nonconvex problem, the classical methods are not suitable and
may provide only the local optimal solution of the problem. In such a situation [1],
the global optimization algorithms have to be used for obtaining the best possible
solution of the problem. Global optimization is important in many applications,
such as water resources management, various structural design, image processing
analysis, and network related problems.

The optimization methods available so far can be broadly classified into two
main sections: the deterministic algorithms and the stochastic algorithms. In case
of deterministic algorithm, we will reach at the same solution every time if we
start the search process from the same initial solution. The benefit of using such
type of algorithms is that they always converge at the same optima wherever the
search begins in a convex space. This might not be applicable for all the problems,
because not every problem has a convex search space. In such cases, the algorithm
leads to different results based on the location of the initial point. On the other
hand, stochastic algorithms use some randomness in their approaches as the name
‘stochastic’ suggests. Due to this, the stochastic algorithm has the capability to come
out of the local optima and can explore the entire search space to obtain the global
optimal solution of the problem. Due to this characteristic, they always produce
unrepeatable path in each individual run. This assures the algorithm to search all
the space and converge to the global optima, if the algorithm is allowed to go with
more and more iterations. Most of the stochastic algorithms fall under the category
of meta-heuristic algorithms. These algorithms are influenced by the different
biological processes as well as social behavior of different species. The algorithms
are simple in nature but more powerful and efficient in solving complex engineering
optimization problems [6, 7]. Some of them are Genetic Algorithm (GA), Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO), Artificial Bee
Colony (ABC), Firefly Algorithm (FA), etc.

Besides their nature in solving complex engineering problems, these algorithms
also have some disadvantages. One of the common disadvantages is that one has
to properly set the parameters of the algorithm in an effective manner. This can be
converted to an advantage if we know how to handle the parameters and understand
their importance over the result. The parameters of the algorithm are capable to
increase the diversity of the search or to intensely search a local region. These
two characteristics of diversification and intensification are the major traits of the
algorithm [18, 19]. The first trait of diversification searches the solution globally and
hence has a better chance to get to the global optima and at the same time it can take
a very large amount of time to converge. The second trait of intensification might
give the solution fast enough but has the problem of giving a local optimal solution
[18]. If we can balance between these two components and find a way to exactly use
these two properties, the solution can be made global optima in a minimum amount
of time and computational effort [5, 18, 19]. In this chapter, we have presented
the Firefly (FA) algorithm, sensitivity of its parameters and the application of the
algorithm.

6 Firefly Algorithm and Its Applications in Engineering Optimization 95

6.2 Firefly Algorithm

6.2.1 Philosophy of the Algorithm

As discussed earlier, Firefly is a metaheuristic global optimization algorithms
motivated by the flashing behavior of fireflies. It was initially proposed by Xin-
She Yang in 2008. He explained how the flashing behavior of fireflies can be used
as an optimization algorithm. Fireflies are bioluminescent and thus produce flashes
of light in a rhythm. They flash either to attract a potential partner or to protect
themselves from a predator. Therefore, the fireflies move towards each other based
on the intensity of the light. The intensity of light of firefly decreases as the distance
in between the fireflies increase [19]. Firefly algorithm is thus followed by these
three idealized rules:

• Fireflies are attracted towards each other, based on the intensity of light and
regardless of gender.

• The attractiveness and brightness of each firefly are correlated and the firefly with
lesser attraction moves towards the firefly with more attraction.

• The firefly brightness is correlated to the objective function [19].

6.2.2 Mathematical Background for the Algorithm

The light intensity and the attractiveness between the fireflies are considered as
two important variables in the Firefly algorithm. Every firefly gets attracted towards
the other firefly which has a greater brightness than its own flash. In other words,
the attractiveness of any firefly is directly proportional to its intensity of light in
the flash. The light intensity is known to be inversely proportional to the distance
from which the intensity is measured. Therefore, the attractiveness decreases as the
distance ‘r’ increases. Attractiveness can be defined as the light intensity as observed
by another firefly, thus the attractiveness is defined as β as given in Eq. 6.1. Here β0

is the attractiveness when the distance is zero, γ is the light absorption coefficient
and the distance between the fireflies is given as r.

β = β0e
−γ r2

(6.1)

The fireflies are assigned the Cartesian coordinates and thus the distance is given
in Eq. 6.2 where d is the number of dimensions.

rij = ∣∣xi − xj
∣∣ =
√√√√

d∑

k=1

(
xk,i − xk,j

)2 (6.2)

96 D. Kumar et al.

Fireflies are attracted towards each other and the movement of the fireflies as a
result of the attraction can be calculated using Eq. 6.3. Here the firefly i is attracted
to j and moves in its direction with some randomness coefficient α.

xt+1
i = xti + β0e

−γ r2
ij

(
xtj − xti

)
+ αεi

0 < εi < 1
(6.3)

Equation 6.3 addresses the most key part in the whole algorithm, the movement
of the fireflies towards the best solution. The light absorption coefficient γ can have
a small value or a large one. If the light absorption coefficient is chosen to be zero,
the attractiveness of the fireflies becomes the same as that of the case in which the
distance between the fireflies is zero. This means that the firefly with such brightness
can be seen from any position making it the global best. If the coefficient γ becomes
too large, the movement of the fireflies becomes random due to the introduction of
the randomness parameter α. By considering these two asymptotic behaviors, the
firefly algorithm can be implemented.

6.2.3 Modified Firefly Algorithm

In case of standard Firefly algorithm, the global best solution is considered as the
current best solution. As also seen that the movement of the fireflies are dominated
by some randomness in each iteration. Because of these random movements, the
attractiveness towards the best firefly might be lost after some iterations which
will eventually influence the performance of the algorithm [11, 16, 19]. To manage
the randomness in the algorithm, Tilahun and Ong [16] proposed that the fireflies
can move in an orderly manner instead of the random movements. The movement
should be ordered towards the best solution. His proposed modification has been
implemented by generation of a unit vector in the direction of improvement of
brightness and to move the firefly in the direction that leads the increase in
brightness of the firefly [14, 15]. If no such improvement is found, the current
brightest firefly will stay at the current position. Wang et al. [17] also presented
some modification to the algorithm to add custom flight for improvement in term of
localized searching for a closer solution. Yu et al. [20], Olamaei et al. [12], Farahani
et al. [8] proposed an adaptive formulation for the randomization value α. They
proposed that when the value of α is large, it is better for the fireflies to explore the
unknown search space like global optimization. For smaller values of α, the fireflies
will perform the local search.

6 Firefly Algorithm and Its Applications in Engineering Optimization 97

6.2.4 Advantages of FA

Following are some of the advantages of FA algorithms:

• FA can deal with highly non- linear, nonconvex optimization problems effi-
ciently.

• The convergence of FA is fast compared to the other classical methods in
achieving the global optima.

• Hybrid tools can be formulated by combining FA with other optimization
algorithms [9, 10, 13].

• A good initial solution is not necessary to start the optimization process i.e. it
leads to the same optima irrespective of the initial solution.

6.3 Parameters of the Algorithm and Their Sensitivity

The parameters of the firefly algorithm are the light absorption coefficient ‘γ’, the
maximum attractiveness ‘β0’ and the randomness parameter ‘α’. The algorithm
is sensitive to these three parameters. As it was mentioned earlier, the firefly
algorithm is a meta-heuristic algorithm which gives the best results when the
problem is nonlinear and nonconvex. Hence the ‘Ackley’ function is chosen to test
the parameters and their sensitivity. Each of the coefficients are tested on a wide
range of their variation and the sensitivity of these parameters on the solution are
presented. The population size is taken as 25. The tolerance of the function is chosen
to be 10−6 whereas the best value of the function is 0. The maximum number of
iterations are taken to be 500. As the algorithm has some randomness as an inherent
property, the solutions are run over 5 runs and the results along with the mean are
presented.

6.3.1 Light Absorption Coefficient ‘γ ’

The coefficient ‘γ’ can have a smaller value to a very large value. However, it is
not possible to search the limiting situation and hence the range of 0–50 is chosen
for the evaluation of the algorithm. The other two parameters β0 and α are kept at 2
and 0.2 respectively. Figure 6.1 shows the variation of the best function value with
the gamma values and Fig. 6.2 shows the variation of number of iterations before
convergence of the function with the gamma values.

From the figures, it can be concluded that the convergence of the algorithm is not
very sensitive to gamma value. The experiment shows that the algorithm provides
the best result when gamma value is kept in the range of 1 and 2. Therefore the light
absorption coefficient is chosen to be 1 for the study.

98 D. Kumar et al.

Fig. 6.1 Best cost variation
with the gamma values from
0 to 50

Fig. 6.2 No of iterations
with gamma values from 0 to
50

6.3.2 Maximum Attractiveness ‘β0’

The coefficient ‘β0’ can only be in the range of the variable space. The minimum and
the maximum value of the variable space are chosen to be −10 and 10 respectively.
Therefore, the value of the maximum attractiveness can only range from 0 to 10. The
values of γ and α are fixed at 1 and 0.2 respectively. Figure 6.3 shows the variation
of the best function value with the maximum attractiveness and Fig. 6.4 shows the
maximum iterations before convergence at the optimal solution.

From the figures, it can be seen that the absolute zero value of the parameter leads
to no solution and the values from 0.5 to 10 leads to the solution almost all the time.

6 Firefly Algorithm and Its Applications in Engineering Optimization 99

Fig. 6.3 Best cost variation
with the β0 values from 0 to
10

Fig. 6.4 No of iterations
with β0 values from 0 to 10

Although, from Fig. 6.4, it can be observed that the parameter when set between 2
and 4 leads to the best results. As such, any value within the range should work fine.

6.3.3 Randomness Parameter ‘α’

The coefficient ‘α’ can also be only in the range of the whole variable space. The
minimum and the maximum value of the variable space are chosen to be −10 and
10 respectively. Therefore the value of the maximum attractiveness can only range

100 D. Kumar et al.

Fig. 6.5 Best cost variation
with α values from 0 to 10

Fig. 6.6 No of iterations
with α values from 0 to 10

from 0 to 10. The values of γ and β0 are fixed at 1 and 2 respectively. Figure 6.5
shows the variation of the best function value with the randomness parameter and
Fig. 6.6 shows the maximum iterations before convergence with the randomness
parameter.

The parameter α has a considerable amount of variation with different values.
Both the figures ensure that the value of the randomness when in a very small range
yields the best results. Figure 6.6 shows that the convergence only occurs when the
value of the randomness coefficient is between 0 and 0.5. Therefore for all the other
calculations, the parameters value of 0.2 is taken.

6 Firefly Algorithm and Its Applications in Engineering Optimization 101

The parameter sensitivity study concludes that the values of the coefficient α

should be between 0 and 0.5, β0 to be within the range of the solution space and γ

to be in between 1 and 2 for better results.

6.4 Firefly Algorithm Applied to a Mathematical Function

The “Ackley’ function which has multiple local optima and a single global optimal
solution has been considered in this chapter. This is a very difficult problem as it
has several local minimum solutions and the algorithm can be trapped in one of the
minima.

The mathematical form of the “Ackley’ function is given in Eq. 6.4.

f (x, y) = −20e−0.2
√

0.5(x2+y2) − e0.5(cos 2πx+cos 2πy) + e + 20 (6.4)

The optimal value of the function is 0 at the point 0,0. The representation of the
function as a surface and contour plot is given in Fig. 6.7.

The function is solved using the firefly algorithm, with population size of 25,
γ value of 1, βo value of 2 and α value of 0.2. The randomization parameter
α is dampened by a factor of 0.98 every iteration. This means by the end of the
500th iteration the value of α will reach the value 8.2 × 10−6. This decreases the
randomization in every iteration and helps the solution to converge by the end of all
the iterations.

By applying these parameters, the optimization is run for twenty different
iterations and the results over the 20 iterations are all given in Fig. 6.8. It can be
observed that the algorithm is capable of finding the global optimal solution of the
problem in every run of the algorithm.

Fig. 6.7 Surface and contour plot of Ackley function

102 D. Kumar et al.

Fig. 6.8 Best cost of Ackley function with iterations over 20 runs

6.5 Conclusion

Firefly algorithm is considered to be a new algorithm in the swarm intelligence
family. Despite the fact that it is new, the firefly algorithm have been used in the
various types of problems. This algorithm have already proved that it is superior
as compared to the other algorithms of swarm intelligence. Even though the firefly
algorithm has proven to be superior compared to the previous swarm intelligence,
there is a possibility of modification to improve the local search as well as global
search [4]. This is to ensure that the solution obtained is the global optimum and
not a premature local optimal solution. Firefly algorithm is a suitable metaheuristic
algorithm that can be used for multidimensional and nonlinear problems [2, 3].
Since its proposal, the firefly algorithm has undergone some major changes in its
structure. The modified algorithm to improve the position of the fireflies and the
introduction of the randomization parameter to perform local search were discussed
in detail in this chapter. The algorithm has much larger scope for modification with
the future studies and it remains one of the most applicative and variant model in
the field of science and engineering.

References

1. Abdullah A, Deris S, Mohamad M, Hashim S (2012) A new hybrid firefly algorithm for
complex and nonlinear problem. In: Distributed computing and artificial intelligence. Springer,
Berlin/Heidelberg, pp 673–680

2. Apostolopoulos T, Vlachos A (2010) Application of the firefly algorithm for solving the
economic emissions load dispatch problem. Int J Comb 2011:1–23

6 Firefly Algorithm and Its Applications in Engineering Optimization 103

3. Apostolopoulos T, Vlachos A (2011) Application of the firefly algorithm for solving the
economic emissions load dispatch problem. Int J Comb 2011:1–23

4. Bhattacharjya RK (2006) Optimal design of open channel section incorpo-
rating critical flow condition. J Irrig Drain Eng (ASCE) 132(5):513–518.
https://doi.org/10.1061/(ASCE)0733-9437(2006)132:5(513)

5. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput Surv (CSUR) 35(3):268–308

6. Breedam A (2001) Comparing descent heuristics and metaheuristics for the vehicle routing
problem. Comput Oper Res 28(4):289–315

7. El-Sawy A, Zaki E, Rizk-Allah R (2012) A novel hybrid ant Colony optimization and firefly
algorithm for solving constrained engineering design problems. J Nat Sci Math 6(1):1–22

8. Farahani S, Abshouri A, Nasiri B, Meybodi M (2011) A Gaussian firefly algorithm. Int J Mach
Learn Comput 1(5):448–453

9. Farahani S, Abshouri A, Nasiri B, Meybodi M (2012) Some hybrid models to improve firefly
algorithm performance. Int J Artif Intell 8(S12):97–117

10. Farook S, Raju P (2013) Evolutionary hybrid genetic-firefly algorithm for global optimization.
Int J Comput Eng Manag 16(3):37–45

11. Hassanzadeh T, Meybodi M (2012) A new hybrid algorithm based on firefly algorithm and
cellular learning automata. Electrical engineering, (ICEE) 2012, 20th Iranian conference on.
IEEE, pp 628–633

12. Olamaei J, Moradi M, Kaboodi T (2013) A new adaptive modified firefly algorithm to solve
optimal capacitor placement problem 18th Electric Power Distribution Conference, pp 1–6

13. Rizk-Allah R, Zaki E, El-Sawy A (2013) Hybridizing ant colony optimization with firefly
algorithm for unconstrained optimization problems. Appl Math Comput 224(3):473–483

14. Srivatsava P, Mallikarjun B, Yang X (2013) Optimal test sequence generation using firefly
algorithm. Swarm Evol Comput 8:44–53

15. Talbi E (2009) Metaheuristics, 1st edn. Wiley, Hoboken
16. Tilahun S, Ong H (2012) Modified firefly algorithm. J Appl Math 2012:1–12
17. Wang G, Guo L, Duan H, Liu L, Wang H (2012) A modified firefly algorithm for UCAV path

planning. Int J Hybrid Inf Technol 5(3):123–144
18. Yang X and Karamanoglu M. (2013). Swarm Intelligence and Bio-Inspired Computation: An

Overview. https://doi.org/10.1016/B978-0-12-405163-8.00001-6.
19. Yang X (2010) Nature-inspired Metaheuristic algorithms, 2nd edn. Luniver Press, Frome
20. Yu S, Yang S, Su S (2013) Self-adaptive step firefly algorithm. J Appl Math 2013:1–8

http://dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:5(513)
http://dx.doi.org/10.1016/B978-0-12-405163-8.00001-6

Chapter 7
Introduction to Shuffled Frog Leaping
Algorithm and Its Sensitivity
to the Parameters of the Algorithm

B. G. Rajeev Gandhi and R. K. Bhattacharjya

Abstract The optimization techniques is an essential tool in many fields of science
and engineering. The evolution of humans and several other species teaches us many
techniques which can be replicated to solve the nonlinear nonconvex optimization
problems in an efficient and faster way. One such evolutionary trait from frogs can
be thought of as an efficient optimization algorithm. This algorithm is based on the
food search by an army of frogs. An army of frogs in a swamp search for food
on the rocks floating around by leaping onto the nearest possible rock and also
communicating with the rest of the frogs for improvising the search process. Each
individual frog tries to get maximum food as fast as possible and thus developing
a strategy to time their leaps in the best possible way. The algorithm developed
replicating this process is called the Shuffled Frog Leaping Algorithm. This chapter
discusses the basic principle of Shuffled Frog Leaping Algorithm and its efficiency
using common benchmark optimization functions.

Keywords Memetic algorithm · Metaheuristic optimization · Non-convex
optimization

7.1 Introduction

Shuffled frog leaping algorithm is a population-based metaheuristic algorithm
and a memetic algorithm. Memetic algorithm approaches the solution based on
cultural information transfer from one individual to another. Memetic is the term
first mentioned by Dawkins [1] in his book ‘The Selfish Gene’. A ‘meme’ is
simply some cultural or intellectual information that survives long enough and
passes the knowledge from mind to mind by imitation or other non-genetic means.

B. G. R. Gandhi (�) · R. K. Bhattacharjya
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam,
India
e-mail: b.rajeev@iitg.ac.in; rkbc@iitg.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_7

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_7&domain=pdf
mailto:b.rajeev@iitg.ac.in
mailto:rkbc@iitg.ac.in
https://doi.org/10.1007/978-3-030-26458-1_7

106 B. G. R. Gandhi and R. K. Bhattacharjya

Memetic passage of information is faster than the genetic passage, as the transfer of
information is in the space. However, the genetic passage takes several generations
for the same [7]. The principle and philosophy of shuffled frog leaping algorithm
is a combination of Shuffled Complex Evolution (SCE) developed originally by
Duan et al. [2] and Particle Swarm Optimization (PSO) developed by Eberhart and
Kennedy [3]. SCE algorithm is based on the global process of natural evolution
where the population is divided into several complexes and evolves independently.
After certain evolutions, they are forced to mix which is called shuffling. The local
evolution or the evolution at each sub-complex are driven by the philosophy of
PSO [6] in the Shuffled Frog Leaping Algorithm (SFLA). This is almost similar
to the teams of researches and conference, where the researchers are allowed to
work with their own way of approaching a problem along with their team members.
The corresponding teams discuss their ideas in the conference and implement the
best idea in the actual applications [7].

7.2 Methodology for SFLA

The SFLA has two steps as mentioned in the introduction. One is the shuffling global
search and the other is localized search in each of the memeplexes. The global search
and shuffling are done after a specific number of evolutions of all the memeplexes.
The frogs are initially placed at positions selected randomly in the search space.
The population of all the frogs is then divided into memeplexes where the frogs
within the memeplex are allowed to evolve independently. The idea of memetic
evolution is that some of the frogs in each of the memeplex can be selected and
infected with the idea of the best meme in the memeplex. Then those frogs travel
towards the best position. If they cannot get through with the best solution, then the
frogs are infected with the best meme in all of the memeplexes (global best). For a
significant improvement, the frogs with better memes should dominate the infection
rather than the frogs with poor ideas (memes). Triangular probability distribution
helps in achieving such a goal. After evolution in memeplexes, the frogs are forced
to return for the reshuffle as well as to carry forward the global search [5]. This cycle
of improving each memeplex and shuffling gives the whole philosophy of Shuffled
Frog Leaping Algorithm (SFLA). The Figs. 7.1 and 7.2 represent the flowcharts for
the whole process of shuffling and frog leaping algorithm respectively.

The FLA described in the flowchart is the actual portion where the frogs in the
memeplexes evolve. The flowchart given in Fig. 7.2 explains the evolution in the
memeplexes.

The shuffled frog leaping algorithm is explained below. The first part of the
algorithm is Shuffling and global search. The subset of this algorithm (the second
part) is the Frog Leaping Algorithm.

Step 1: Initialize the number of memeplex (nm) and the no of frogs in each
memeplex (nf). The total population of frogs in the swamp will be Pf = nm∗nf .

7 Introduction to Shuffled Frog Leaping Algorithm and Its Sensitivity. . . 107

Start

Select the number of memeplexes nm

and number of virtual frogs nf.
Also M = nm* nf

Assign uniform random
position for all number of
frogs M and compute the

fitness

Rank the frogs according to their
fitness into array X and note the

best position Px

Partition into memeplexes based on
ranking and carry on memetic

evolution using FLA

Shuffle the frogs from memeplexes
to X and update Px after sorting.

Check for
convergence

Stop

Yes

Max iterations

No

Fig. 7.1 Shuffled frog leaping algorithm on the large scale

Step 2: Select the decision variables for each of the frogs called memes for
the virtual population of frogs and compute their performances based on the
objective function or the fitness function. Each meme carries a virtual frog
consisting of all the decision variables in the feasible space. Mi = [Mi (1) Mi

(2) Mi (3) . . . Mi (d)] where i = 1. . . . Pf.

Step 3: Rank the frogs according to their performances from best to worst in
descending order and store in the vector X. Note the best position in the whole
population as Px.

Step 4: Partition the sorted frogs into ‘nm’ different memeplexes with ‘nf ’ frogs
each such that the frogs sort themselves into each memeplex in order. Vectors in

108 B. G. R. Gandhi and R. K. Bhattacharjya

Start

Calculate the probabilities using
triangular distribution for all the frogs
in the memeplex and select ‘q’ frogs
based on probabilities. Select the best

‘Pb’ and worst position ‘Pw’.

Improve the frog’s worst
position using the step size

based on local search (within the
memeplex)

Is improved
position within
feasible space?

Calculate the new
fitness and check
if it is better than

the previous worst

Improve the frog’s worst
position using the step size

based on global best (using Px)

Is improved
position within
feasible space?

Calculate the new
fitness and check
if it is better than

the previous worst

Randomly generate a new frog
and replace the worst.

Update the memeplex with the
new positions and sort them.

Stop

Yes

Yes

Yes

Yes

No
No

No
No

Max
Evolutions

Fig. 7.2 Frog Leaping Algorithm (detailed)

7 Introduction to Shuffled Frog Leaping Algorithm and Its Sensitivity. . . 109

each memeplex are called Y each containing nf frogs. For example if nm = 5.
The frog with rank 1,2,3,4 and 5 would go to memeplex 1. The frogs with ranks
6,7,8,9 and 10 to memeplex 2 and so on.

Step 5: Memetic evolution within each of the memeplexes using Frog Leaping
Algorithm (FLA). Yold to Ynew.

Step 6: After a certain number of memetic evolutions, the frogs are shuffled into
memeplexes again replacing the previous X with Ynew. The ranking of frogs are
again done and the new best position is updated in Px.

Step 7: If convergence criterion for the fitness function is satisfied, the algorithm
stops. Otherwise, the algorithm resumes to step 4 into division onto memeplexes.

7.2.1 Frog Leaping Algorithm

Step 1: It is not always the best way to involve all the frogs for the local search
because the frogs will tend to incline towards the local optima. The best way to
overcome this is to construct a submemeplex based on probabilities of the frogs
in the memeplex according to their fitness in a triangular distribution defined by.

pj = 2
(
nf + 1 − j)

nf
(
nf + 1

) Where j = 1 nf (7.1)

Step 2: Construct a sub memeplex with ‘q’ frogs based on the probability ‘pj’. The
best and the worst position are noted to be PB and Pw.

Step 3: Improve the worst frog’s position based on the best position in submeme-
plex. The step size is chosen based on the philosophy of PSO as described below.
Step size S=minimum of {int [rand x (PB–Pw)] , Smax}f or positive step

Maximumof {int [rand x (PB–Pw)] ,−Smax}f or negative step
New position is given by Mq = Pw+S
If the new position is feasible then the function value is calculated and the worst
frog is replaced with the new frog and go to step 6. Otherwise step 4 is continued
with.

Step 4: Improve the worst frog’s position based on the best position globally Px.
The step size is chosen based on the philosophy of PSO as described below.
Step size S =minimum of {int [rand x (Px–Pw)] , Smax} f or positive step

Maximumof {int [rand x (Px–Pw)] ,−Smax} f or negative step
New position is given by Mq = Pw + S
If the new position is feasible then the function value is calculated and the worst
frog is replaced with the new frog and to step 6. Otherwise step 5 is continued
with.

110 B. G. R. Gandhi and R. K. Bhattacharjya

Step 5: Censorship is done by randomly generating a frog in the feasible space and
replacing the worst position. This step is taken only if the local influence over the
frog and the global influence both failed to improve the frog’s position.
Mq = r and f(q)=f(r).

Step 6: Upgrade the memeplex with the original locations of new solutions added
and sort the memeplex

Step 7: Check whether all the memeplexes are upgraded for the maximum number
of evolutions. If they are then return to global search for shuffling. Else continue
with step 1.

7.2.2 Parameters and Sensitivity

Selection of parameters effects the SFLA performance in many ways. There are
major five parameters namely the number of memeplexes (nm), number of virtual
frogs in each memeplex (nf), number of frogs selected for evolution (q), number
of evolutions before reshuffling (Ne) and the maximum step size allowed in an
evolution (Smax). Each of the factors has an effect individually and the selection
of some combination also effects the solution in possible ways.

nm: The number of memeplexes selected provides the diversity for the frogs initially
to settle for more localized searches that can provide the global optima.

nf : The number of frogs in each of memeplex effects the local memetic strategy
if the number of frogs is too small. More number of frogs on the other hand
increases the computational burden.

q: The number of frogs to be selected in each of the submemeplex effects the
solution times. If too many frogs are selected, all the frogs are infected with
unwanted ideas which eventually leads to censorship and increases the search
period. On the other hand, if a lesser number of frogs are selected the information
transfer will be too slow which will eventually increase the time to reach the
optima.

Ne: The number of evolutions should be greater than 1. If the value is less there
will be a frequent shuffling of frogs which will eventually reduce the exchange
of ideas on a local scale. If the value is larger each memeplex shrinks to local
optima resulting in a delay for the global search.

Smax: The maximum step size depends on the boundaries of the search space. A
low value of maximum step size increases the probability to converge at a local
optimal solution. On the other hand, a higher value of maximum step size may
affect the global optimal exploration by missing the optima.

The combinations of all these parameters affect the optimization algorithm [4].
For example, the product of the number of memeplexes and the number of frogs
actually effect the complexity of the problem. The product plays a key role in
addressing the complexity, thus allowing the user to select one of the values based on
the other. Number of total frogs in all the memeplexes and the number of evolutions

7 Introduction to Shuffled Frog Leaping Algorithm and Its Sensitivity. . . 111

directly affect the computational burden. If both values are high, it will take many
function evaluations to eventually reach the optima. However, there is no specific
way of selecting the parameters applicable to any function. They mostly depend
upon the complexity of the function and number of decision variables.

The behavior of the virtual frogs as the loop proceeds on the Himmelblau
function is shown in Fig. 7.3. This function has four optimal solutions with identical
function value. In the Fig. 7.3, it can be observed that the frogs initially start at some

Fig. 7.3 Virtual frogs in movement at the start (top left), 2nd, 4th, 6th 10th and 20th iterations

112 B. G. R. Gandhi and R. K. Bhattacharjya

random locations and leap towards their respective local optima according to their
memeplexes.

All the local optimal points are checked and the final optimal solution is decided
on the basis of the maximum number of frogs gathered at a single point. It can also
be observed in Fig. 7.3 that all the optimal solutions are checked by the algorithm.

7.3 SFLA on Mathematical Functions

The performance of the algorithm on different functions can be tested and the results
are described below.

7.3.1 Himmelblau Function

Himmelblau function is defined by Eq. 7.2, which has four identical minimum at
(3,2), (−2.805118,3.131312), (−3.779310,−3.283186) and (3.584428,−1.848126)
as (x, y) pairs where the function value is zero. The variation can be seen in Fig. 7.4.

f (x, y) =
(
x2 + y − 11

)2 +
(
x + y2 − 7

)2
(7.2)

SFLA is run for 20 iterations under the conditions that nm is 5, nf is 10, q is 50%
of the frogs in memeplex, maximum step Smax is 1 and the number of evolutions Ne

is 5 before shuffling is done again. The mean of the function evaluations to reach
the optima is 2790. The graph in Fig. 7.5 shows the number of function evaluations

Fig. 7.4 Variation of
Himmelblau function in the
domain

7 Introduction to Shuffled Frog Leaping Algorithm and Its Sensitivity. . . 113

Fig. 7.5 Function evaluations varying with each run for 20 runs

Fig. 7.6 Function value with the number of iterations in log-log scale

with number of runs. Figure 7.6 shows all the function values for 20 runs on one
plot along with the mean (in thick red line) with the number of iterations.

7.3.2 Rosenbrock Function

Rosenbrock function is defined in the Eq. 7.3, with two variables and a minimum
value of 0 at (1,1). The variation of the function in the domain is given in Fig. 7.7.

f (x, y) = 100
(
x2

1 − x2

)2 + (1 − x1)
2 (7.3)

114 B. G. R. Gandhi and R. K. Bhattacharjya

Fig. 7.7 Rosenbrock
function in the search space

Fig. 7.8 Function evaluations varying with each run

SFLA is run for the Rosenbrock function for 20 iterations under the conditions
that nm is 5, nf is 10, q is 50% of the frogs in memeplex, maximum step Smax is
1 and the number of evolutions Ne is 5 before shuffling is done again. The mean of
the function evaluations to reach the optima is 10,660 evaluations. The graph in Fig.
7.8 shows the number of function evaluations with number of runs.

Figure 7.9 shows all the function values for 20 runs on one plot along with the
mean (in thick red line) with the number of iterations in log-log scale.

7 Introduction to Shuffled Frog Leaping Algorithm and Its Sensitivity. . . 115

Fig. 7.9 Function value with number of iterations log-log

Fig. 7.10 Variation of
Sphere function over the
domain

7.3.3 Sphere Function

The Sphere function is defined in the Eq. 7.4 given below. It is a two variables
function and the minimum value of of the function is 0 at (0,0). The variation of the
function in the domain is shown in Fig. 7.10.

f (x, y) = x2
1 + x2

2 (7.4)

SFLA is run for the Sphere function for 20 iterations under the conditions that
nm is 5, nf is 10, q is 50% of the frogs in memeplex, maximum step Smax is 1 and
the number of evolutions Ne is 5 before shuffling is done again. The mean of the

116 B. G. R. Gandhi and R. K. Bhattacharjya

Fig. 7.11 Number of function evaluations with no of runs

Fig. 7.12 Function value with number of iterations for all the 20 runs (log-log)

function evaluations to reach the optima is 25,865 evaluations. The graph in Fig.
7.11 shows the number of function evaluations with number of runs. Figure 7.12
shows all the function values for 20 runs on one plot along with the mean (in thick
red line) with the number of iterations in log-log scale.

7.4 Conclusions

Shuffled Frog Leaping Algorithm (SFLA) is a memetic meta-heuristic algorithm to
solve the optimization problems. The sample of virtual frogs which acts as memes
evolve by leaping in the swamp. The algorithm is based on local and global searches

7 Introduction to Shuffled Frog Leaping Algorithm and Its Sensitivity. . . 117

for food and cultural evolution. The change in the position of frogs is obtained by
the infection of best ideas to the worst frogs in each memeplex. The algorithm can
be applied in diversified fields of engineering, science, and technology [4]. It is
relatively very fast compared to the traditional evolutionary meta-heuristic genetic
algorithm. The genetic algorithm is relatively slow because the evolution happens
through generations or genetic transfer of ideas whereas the memetic algorithms are
very fast due to the cultural transfer of ideas. The robustness of the algorithm lies in
choosing the optimal parameters affecting the result. The parameters to be chosen
and the effect of the parameters on the algorithm are discussed in this chapter.
However, the selection of parameters highly depends on the nature of the function
and the number of decision variables. As such utmost care must be taken for the
selection of appropriate parameters based on the problem chosen for solving. The
SFLA can be used for even mixed integer problems [7].

References

1. Dawkins R (1976) The selfish Gene. Oxford University Press, Oxford
2. Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual

rainfall-runoff models. Water Resour Res 28(4):1015–1031
3. Eberhart RC, Kennedy J (1995) A new optimizer using particles swarm theory. In: Proceedings

of the 6th international symposium on micro machine and human science, Nagoya, Japan, 1995,
IEEE Service Center, Piscataway, pp 39–43

4. Eberhart RC, Dobbins RW, Simpson P (1996) Computational intelligence PC tools. Academic,
Boston

5. Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using
the shuffled frog leaping algorithm (SFLA). J Water Resour Plan Manag Am Soc Civ Eng
129(3):210–225

6. Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceedings of
the IEEE international conference on evolutionary computation, Indianapolis, IN, USA, IEEE
Service Center, Piscataway, pp 303–308

7. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a
memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154.
https://doi.org/10.1080/03052150500384759

http://dx.doi.org/10.1080/03052150500384759

Chapter 8
Groundwater Management Using
Coupled Analytic Element Based
Transient Groundwater Flow
and Optimization Model

Komal Kumari and Anirban Dhar

Abstract The groundwater management problems are broadly solved using the
coupled simulation-optimization model. In the coupled simulation-optimization
model, Analytic element method (AEM) based simulation model and particle
swarm optimization (PSO) based optimization model is adopted to find out the best
groundwater management strategy. Moreover, the coupled model is applied to a
illustrative example to check its efficiency in solving the groundwater management
problems involving large number of decision variables. Two-dimensional isotropic,
homogeneous and confined aquifer is considered for the groundwater flow simula-
tion. AEM is used to simulate the groundwater flow and to penalize the constraints,
whereas PSO is used to evaluate the objective function (time varying operating cost)
of the management problem. The optimization model calls the simulation model
repeatedly until the stopping criterion is achieved. To evaluate the performance
of the developed methodology optimization model using Nelder-Meade method is
also considered. The obtained results are compared with PSO based optimization
model. Obtained results demonstrate the potential applicability of the model to solve
groundwater management problems.

Keywords Groundwater management · Analytic element method · Particle
swarm optimization · Present value cost

8.1 Introduction

Management of groundwater systems still remains a challenging problem due
to its complex nature. The groundwater management problems are generally

K. Kumari · A. Dhar (�)
Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West
Bengal, India
e-mail: anirban@civil.iitkgp.ernet.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_8

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_8&domain=pdf
mailto:anirban@civil.iitkgp.ernet.in
https://doi.org/10.1007/978-3-030-26458-1_8

120 K. Kumari and A. Dhar

solved using simulation-optimization technique. The fundamental capability of this
technique is to simulate the groundwater flow, and simultaneously identify the best
management strategy to achieve objectives under prescribed set of constraints. In
the coupled simulation-optimization technique, the optimization model repeatedly
calls the simulation model until the termination criteria is achieved to get the
values of groundwater variables, such as groundwater velocity, concentration, head.
This repetition enhances the computational complexity and in turn increases the
computation time to achieve best solution. However, several researchers have used
particle swarm optimization (PSO) as optimization tool and found it suitable for
computationally demanding problems [20].

The Analytic Element Method (AEM) is one of the most popular methods to
solve regional groundwater flow problem, developed by Strack [23–25]. AEM con-
tributes in solving groundwater flow problems through superposition of elementary
solutions of governing differential equation of flow. These solutions represent the
variety of aquifer features such as well, line sink, area sink, line doublet etc.
AEM is suitable for both finite and infinite domains and typically applied to the
regional scale groundwater flow problems. Hunt [15] provided a review of various
applications of AEM in groundwater modeling. A transient AEM based hydraulic
management model is proposed. AEM based transient simulation model is linked
with PSO based optimization model to ascertain the best groundwater management
strategy. PSO is a heuristic, evolutionary and a population based stochastic compu-
tational technique proposed by Kennedy and Eberhart [16]. It is a computationally
efficient approach for solving complex groundwater optimization problems and, in
several cases, outperforms other evolutionary computation techniques. PSO has a
broad range of applications in the field of engineering research and found to be
suitable for computationally demanding problems with large number of variables.
It has been applied in various domain of water resources management, such as
parameter estimation of non-linear flood routing models [6, 21], groundwater
remediation [19, 20], multi-purpose reservoir operation [2, 5, 17], groundwater
management [1, 7, 9–12, 18, 20, 22]. However, limited applications of AEM-PSO
based simulation-optimization models are available in which dynamic pumping rate
and multiple management periods are considered.

Hsiao and Chang [14] developed groundwater management model incorporat-
ing genetic algorithm (GA) and Constrained Differential Dynamic Programming
(CDDP) considering dynamic nature of groundwater resources system into account
[4, 22]. Chang et al. [4] proposed an approach to optimize the total cost (fixed
cost and time-varying pumping cost) in unconfined aquifers. They considered time-
varying pumping rates, installation schedule, and well locations as the decision
variables. Moreover, several researchers presented comparative study of PSO with
other optimization techniques (ant colony optimization (ACO), genetic algorithm
(GA), simulated annealing) and concluded that PSO is computationally more
efficient than other optimization techniques [20, 22]. Although Gaur et al. [10]
developed the AEM-PSO model to get the optimal solution of groundwater system
and, investigated the benefits of AEM based simulation-optimization model over
the FDM based model [11] in identifying the optimal location and determining

8 Groundwater Management Using Coupled Analytic Element Based. . . 121

the optimal cost. Their model does not consider time-varying pumping rate and
hydraulic head in account while solving the optimization problem. In reality,
the groundwater demand is time varying because of the rise in population and
economic development. Therefore, dynamic simulation-optimization models need
to be considered in account to get satisfactory solutions of management problems
[4, 14].

It is evident that there is scope for development of Simulation-optimization
model incorporating transient analytic element model and PSO. Therefore, the
objective of the present study is to minimize the present value of the pumping cost
while maintaining the minimum hydraulic head and satisfying the demand [14] with
pumping within specified limits.

8.2 Formulation of AEM-PSO Model

The present model incorporates the AEM based flow model and PSO based
optimization model to get the optimal pumping cost. AEM is used to simulate
the flow and to assure minimum or zero constraint violations (groundwater head,
demand and pumping rates) in the model. PSO is used to evaluate the objective
function utilizing the simulation model to satisfy the constraints.

8.2.1 AEM Flow Model

The Analytic Element Method (AEM) is based on the superposition of fundamental
solutions (elements) of governing differential equation of flow [13, 23]. These
solutions represent the variety of aquifer features such as well, line sink, area
sink, line doublet. The streams and their tributaries (line sinks) are broken up into
many segments for accurate modeling. Each segment either receives groundwater (a
gaining stream segment i.e., with positive sink density) or recharges the groundwater
(a losing stream segment i.e., with negative sink density). The governing differential
equation [26] is 2D groundwater flow in terms of discharge potential (�), aquifer
diffusivity (α) and sink term (E).

∂2�

∂x2 + ∂2�

∂y2 = E + 1

α

∂�

∂t
(8.1)

Where,

� = khφ − 1
2kh

2 f or conf ined aquif er

� = 1
2kφ

2 f or unconf ined aquif er

122 K. Kumari and A. Dhar

The transient analytic element model [26] incorporates many analytic elements
including Constant, Wells, Head-line sinks, area-sinks etc. For two-dimensional
flow problems, the components of discharge vector Qx and Qy can also be expressed
in terms of the discharge potential as follows,

Qx = −∂�
∂x
, Qy = −∂�

∂y
(8.2)

8.2.2 Optimization Model

PSO is a heuristic, evolutionary and a population-based stochastic computational
technique proposed by Kennedy and Eberhart [16]. It is a computationally efficient
approach for solving complex groundwater optimization problems and, in several
cases, outperforms other evolutionary computation techniques. The working steps
of PSO method for solution of the current optimization problem are as follows:

• Initialize a population of particles randomly with positions in the range of [Qmin,
Qmax] and velocities in the range of [(Qmin − Qmax)/2, (Qmax − Qmin)/2] in the
D = N × T-dimensional search space.

• Evaluate the fitness value of each particle using the fitness function.
• The solutions are compared for each evaluation, and the following criteria are

always enforced [8].

– Any feasible solution is preferred to any infeasible solution.
– Among two feasible solutions, the one having better objective function value

is preferred.

• Among two infeasible solutions, the one having smaller constraint violation is
preferred.

• Compare particle’s fitness function with the best solution (particle’s best: pbest)
so far. For each particle: analyze if the current fitness value is better than pbest,
then set pbest = fitness value.

• Choose the particle with the best fitness value among all the particles (popula-
tion’s overall best: gbest).

• Update the velocity and position of the particle according to Eqs. (8.3) and (8.4)
given below:

vt+1
i = χ

[
wvti + c1r1

(
P ti − xti

)+ c2r2

(
P tg − xti

)]
(8.3)

xt+1
i = vt+1

i + xti (8.4)

• Loop to step 2 until the stopping criteria is achieved, mostly a maximum number
of iterations or a satisfactorily good fitness value is reached.

8 Groundwater Management Using Coupled Analytic Element Based. . . 123

where c1 and c2 are acceleration constants; r1 and r2 random real numbers in
range (0, 1); w is the inertia weight which is used to control the impact of the
previous velocities on the current one; χ is the constriction coefficient, which is
used to restrain velocity; P ti (pbest) is the best value achieved by individual particle
i; P tg (gbest) is the global best value achieved by the population so far.

A conventional groundwater management model can be designed using the
values of decision variables under consideration of the prescribed constraints. Opti-
mization models are used to minimize or maximize an objective function without
violating the constraints. In this study, the objective of the optimization model is
to minimize the present value of well-operating cost. Mathematical formulations of
the optimization model, including the objective function and required constraints,
are as follows:

Minimize:

min
I⊂�S,K⊂�T

c
∑

i∈I

∑

k∈K

Qki

(
Gl − hki

)

(1 + id)tkp
+ β1Ph + β2PD (8.5)

Subject to:

h = f (Q) (8.6)

hki ≥ hkmin, ∀i, k (8.7)

∑

i

Qki ≥ Dk, ∀k (8.8)

Qki |L ≤ Qki ≤ Qki

∣∣∣U , ∀i, k (8.9)

Ph = max
(

0, hkmin − hki
)

(8.10)

PD = max

(
0, Dk −

∑

i

Qki

)
(8.11)

where Eq. (8.5) is the objective function; i = 1,2, . . . ,Nw (number of wells);
k = 1,2, . . . ,T (number of management period); c is the is the pumping cost
coefficient which is formulated as c = ρ × g × cp × �t; coefficient; cp = electric
power cost per unit work; �t = simulation time step length; ρ = water density;
g = acceleration due to gravity; Qki is the pumping rate of well i at operation time
step k; Gl is the ground surface elevation from lower bottom; id is the interest rate; β1
and β2 are the penalty coefficients; Ph and PD is the penalty terms of the constraint
violation with respect to the minimum hydraulic head constraint and the demand

124 K. Kumari and A. Dhar

constraint; Dk is the water demand at operation time step k; Qki |L and Qki

∣∣U is
the lower and upper limit of pumping rate; hki is the hydraulic head in well i at
management period k.

8.2.3 Simulation-Optimization Model

The simulation and optimization models are formulated and validated with standard
functions. After development and validation, both models are linked to solve
groundwater management problems. Figure 8.1 shows the working steps of the

Start

Initialization of PSO parameters

Computation of fitness function

Checking of Constraints

Finding pbest
and gbest

Calculating velocity
and updating position

PSO
Process

Stopping criteria achieved

End
(model converged results)

AEM Flow
model

Call
Simulation

model

No

Yes

Fig. 8.1 Flow chart for coupled AEM-PSO model

8 Groundwater Management Using Coupled Analytic Element Based. . . 125

linked AEM-PSO model, where the PSO model repeatedly calls the AEM model
to find the global solution of the management problems.

8.3 Model Application and Discussions

Proposed methodology is applied on the illustrative system (5000 m × 3000 m)
adapted from Hsiao and Chang [14] as shown in Fig. 8.2. The aquifer is having
constant-head along left and right boundaries and no-flow boundaries along north
and south direction. The aquifer in the flow domain is assumed to be isotropic,
homogeneous and confined. The study area is described with 35-potential well loca-
tions as represented in Fig. 8.2. Before the commencement of pumping, hydraulic
head distribution is assumed to be in steady state with the aquifer parameters listed
in Table 8.1. The planning horizon is divided into 12 time steps over 3 years (1 time
step = 90 days). The total pumping at each management period must satisfy the
demand as depicted in Fig. 8.3, with 0.5 and 0.01m3/s as maximum and minimum

No-flow boundary X=5000m

No-flow boundary

(x,y)=(0,0)

h=80m h=60m

Y=3000m

Ground
surface

impervious

impervious

Q Q QQ

D
is

ta
nc

e
be

tw
ee

n
gr

ou
nd

su
rf

ac
e

to
lo

w
er

bo
tto

mL*

AA

Fig. 8.2 Hypothetical aquifer system for water supply example

126 K. Kumari and A. Dhar

Table 8.1 Parameters for
illustrative study area and
coupled
simulation-optimization
model

Aquifer Properties Value

Base elevation of aquifer [m] 0
Thickness of aquifer [m] 50
Hydraulic conductivity of aquifer [m/s] 0.000431
Porosity of aquifer [−] 0.200000
Storativity [−] 0.001000
Simulation parameters
Simulation time step length [Days] 90
Planning horizon [Years] 3
Electric power cost (Dollars per kwh) 0.045
PSO parameters
Inertia weight 0.8
Population size 20, 200
Acceleration constants c1 = 1.3, c2 = 2.7
Constriction coefficient 0.5

Fig. 8.3 Water demand for groundwater supply example

8 Groundwater Management Using Coupled Analytic Element Based. . . 127

well capacities and 50 m as minimum hydraulic head. In all management periods 14
pumping wells are selected out of 35 potential well locations.

8.3.1 Sensitivity Analysis

To achieve the best management practice, the coupled simulation optimization
model is executed for several times with different sets of PSO parameters and
the best result among them is considered here. For the faster convergence of
simulation-optimization model, it is important to select the appropriate values of
PSO parameters. Among all of the PSO parameters, inertia weight is considered as
the most critical parameter which is used for balancing the global and local search.
Therefore, in this study the sensitivity analysis is performed with constant inertia
weight (0.8) and randomly varying inertia weight between 0.4 and 0.8 (U(0.4,0.8)).
It is observed that w = U(0.4,0.8) helps the coupled model to converge faster than
that with w = 0.8. However, the PSO model converged to a lower objective function
value with constant inertia weight than the random one. Hence, the constant inertia
weight as 0.8 is adopted in this study. Moreover, the model is run with 20 and 40
particles keeping other PSO parameters same and, the result shows that increasing
the number of particles does not reduce the number of generations of convergence
but increases the simulation time. The parameters adopted are c1 = 1.3, c2 = 2.7,
χ = 0.5 and w = 0.8, which give stable result. Reduced variable optimization model
is solved based on symmetry of the well locations with respect to physical domain.

8.4 Results and Discussions

The developed AEM-PSO model is applied in two management scenarios. In
Scenario-I, the pumping rate remains static with respect to different time stages.
Therefore, the number of decision variables is equal to the number of wells
considered in the problem. However, in the second scenario, dynamic pumping
rates are considered where the number of variables is equal to the number of wells
times the management period. The termination criterion is assumed to be satisfied if
there is no considerable improvement in the solution over 100 successive iterations
upto a convergence limit of four decimal places. Table 8.2 summarizes the optimal
pumping rates, total pumpage at each time steps and pumping costs for Scenario-I
and II. Table 8.2 indicates that the total pumpage at the end of each management
period is satisfying the total demand (in some cases significantly higher than the
total demand) for the illustrative system. The contour plots at the end of each time
step for Scenario-II reveals that with increase in the demand, the total pumpage
increases.

128 K. Kumari and A. Dhar

Ta
bl

e
8.

2
O

pt
im

al
Pu

m
pi

ng
ra

te
s

of
14

w
el

ls
fo

r
sc

en
ar

io
-I

an
d

sc
en

ar
io

-I
I

Sc
en

ar
io

s
Sc

en
ar

io
I:

Sc
en

ar
io

II
:

St
at

ic
pu

m
pi

ng
(m

3
/s

)
D

yn
am

ic
pu

m
pi

ng
(m

3
/s

)

W
el

l
A

E
M

-N
D

A
E

M
-P

SO
1

2
3

4
5

6
7

8
9

10
11

12
1

0.
12

86
0.

05
53

0.
15

19
0.

14
11

0.
20

00
0.

14
34

0.
13

95
0.

01
01

0.
01

75
0.

10
91

0.
13

13
0.

08
19

0.
12

02
0.

14
61

2
0.

05
67

0.
07

97
0.

03
65

0.
12

06
0.

12
76

0.
07

64
0.

06
16

0.
03

16
0.

05
53

0.
01

00
0.

13
76

0.
09

10
0.

08
75

0.
11

33
3

0.
07

68
0.

08
12

0.
05

27
0.

02
45

0.
04

61
0.

03
88

0.
05

85
0.

10
57

0.
07

21
0.

06
71

0.
02

37
0.

05
55

0.
08

77
0.

11
43

4
0.

08
30

0.
07

16
0.

11
14

0.
09

88
0.

01
90

0.
05

12
0.

11
07

0.
09

33
0.

12
43

0.
06

60
0.

03
66

0.
09

82
0.

01
00

0.
01

00
5

0.
06

74
0.

09
02

0.
14

94
0.

01
76

0.
11

23
0.

12
24

0.
13

32
0.

08
69

0.
08

29
0.

12
26

0.
07

93
0.

08
45

0.
13

09
0.

09
03

6
0.

11
14

0.
09

01
0.

02
93

0.
10

37
0.

05
94

0.
11

39
0.

09
91

0.
06

06
0.

14
03

0.
09

12
0.

13
06

0.
11

81
0.

06
24

0.
01

00
7

0.
10

53
0.

09
23

0.
10

91
0.

08
64

0.
18

19
0.

07
53

0.
01

00
0.

10
04

0.
15

69
0.

02
72

0.
06

20
0.

07
01

0.
14

30
0.

09
57

8
0.

12
35

0.
16

53
0.

18
44

0.
19

82
0.

20
00

0.
03

85
0.

14
70

0.
19

61
0.

13
11

0.
14

22
0.

11
62

0.
14

71
0.

14
77

0.
10

00
9

0.
12

35
0.

16
53

0.
18

44
0.

19
82

0.
20

00
0.

03
85

0.
14

70
0.

19
61

0.
13

11
0.

14
22

0.
11

62
0.

14
71

0.
14

77
0.

10
00

10
0.

10
53

0.
09

23
0.

10
91

0.
08

64
0.

18
19

0.
07

53
0.

01
00

0.
10

04
0.

15
69

0.
02

72
0.

06
20

0.
07

01
0.

14
30

0.
09

57
11

0.
11

14
0.

09
01

0.
02

93
0.

10
37

0.
05

94
0.

11
39

0.
09

91
0.

06
06

0.
14

03
0.

09
12

0.
13

06
0.

11
81

0.
06

24
0.

01
00

12
0.

06
74

0.
09

20
0.

14
94

0.
01

76
0.

11
23

0.
12

24
0.

13
32

0.
08

69
0.

08
29

0.
12

26
0.

07
93

0.
08

45
0.

13
09

0.
09

03
13

0.
08

30
0.

07
16

0.
11

14
0.

09
88

0.
01

9
0.

05
12

0.
11

07
0.

09
33

0.
12

43
0.

06
60

0.
03

66
0.

09
82

0.
01

00
0.

01
00

14
0.

07
68

0.
08

12
0.

05
27

0.
02

45
0.

04
61

0.
03

88
0.

05
85

0.
10

57
0.

07
21

0.
06

71
0.

02
37

0.
05

55
0.

08
77

0.
11

43
To

ta
l

1.
32

01
1.

32
1.

46
1

1.
32

01
1.

56
5

1.
1

1.
31

81
1.

32
77

1.
48

8
1.

15
17

1.
16

57
1.

31
99

1.
37

11
1.

1
C

os
t

(M
ill

io
n)

$0
.8

33
22

$0
.8

41
17

2
$0

.8
47

58

8 Groundwater Management Using Coupled Analytic Element Based. . . 129

8.4.1 Scenario-I (Static Pumping Rate)

In this scenario, static pumpage is considered and thus the model runs with only 14
(equal to the number of wells) decision variables. The model runs with 20 and 40
particles keeping other PSO parameters same and, the result shows that increment
in the number of particles from 20 to 40 does not decreases the number of iterations
very much but inhances the computation time. Therefore, inertia weight, w = 0.8
and 20 number of particles show better results than other combinations for the
problem considered here. In this case, the best PSO parameters found are c1 = 1.3,
c2 = 2.7, χ = 0.5 and w = 0.8, with 20 number of particles. The value of optimal
operating cost, in this case, is found to be equal to $0.841172 Million. Figure 8.4
summarizes the change in the value of objective function in each generation for
AEM-PSO model of management scenario-I, in which an inset plot is added to the
main plot with reduced dimension (up to 21 generations) so that the main graph
remains partially visible. The hydraulic head distribution for the present scenario at
the end of 1st, 4th, 8th and 12th time steps is shown in Fig. 8.5. The contour plots
at the end of each time step for scenario-I reveals that with the change in time stage,

Fig. 8.4 Objective function versus number of iterations for AEM-PSO in scenario-I

130 K. Kumari and A. Dhar

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

(c) (d)

Fig. 8.5 Contour plot for scenario-I at four different time steps. (a) Contour plot at 1st (90 day)
time step. (b) Contour plot at 4th (360 day) time step. (c) Contour plot at 8th (720 day) time step.
(d) Contour plot at 12th (1080 day) time step

slight variation in hydraulic head is observed since the pumping rate remains static
in this case.

To evaluate the performance of the present scenario, Nelder-Meade algorithm
[3] based optimization model is also considered and its result is compared to that
of PSO based optimization model. The optimal pumping values obtained in AEM-
PSO model is used as the initial guess value in the Nelder-Meade method and linked
with AEM (hereinafter referred as “AEM-ND”) to achieve the best solution. The
variation of objective function and constraint violation versus number of generations
for AEM-ND model of management scenario-I is shown in Fig. 8.6, in which an
inset plot is added with reduced dimension (up to 50 function evaluations). It can
be observed from Fig. 8.6 that constraint violation values are higher than that of the
objective function at early function evaluations while the convergence starts nearby
1000th function evaluation with constant zero constraint violation and checked up
to 1407 function evaluation. However, in the case of AEM-PSO model constraint
violation is zero from the first iteration only while the convergence starts nearby
200th iteration and checked up to 400 iterations (Fig. 8.4).

The value of optimal operating cost for AEM-ND is found to be equal to
$0.83322 Million which is better than that of the result of AEM-PSO. Therefore,
with a reasonable initial guess value, Nelder-Meade algorithm outperforms PSO for
this hydraulic management problem.

8 Groundwater Management Using Coupled Analytic Element Based. . . 131

Fig. 8.6 Objective function and constraint violation values versus number of function evaluations
for AEM-ND in scenario-I

8.4.2 Scenario-II (Dynamic Pumping Rate)

In this scenario, time varying pumpage is considered and thus the model runs with
14 × 12 (number of wells times the number of management periods) decision
variables. The model runs with 200 and 400 particles keeping other PSO parameters
same and, the result shows that increasing the number of particles does not reduce
the number of generations very much but increases the computation time. Therefore,
inertia weight, w = 0.8 and 200 particles show better results than other combinations
for the problem considered here. In this case, the best PSO parameters found are
c1 = 1.3, c2 = 2.7, χ = 0.5, w = 0.8 and, 200 number of particles. The value of
optimal operating cost in this case is found to be equal to $0.84758 Million.

The objective function and constraint violation value versus number of gener-
ations for AEM-PSO model of management scenario-II is shown in Fig. 8.7, in
which an inset plot is added with reduced dimension (up to 21 generations). It can
be observed from Fig. 8.7 that at early iterations minimal constraint violation are
there while the solution starts converging nearby 100th iteration with constant zero
constraint violation and checked upto 200 iterations. The hydraulic head distribution

132 K. Kumari and A. Dhar

Fig. 8.7 Objective function and constraint violation values versus number of iterations for
scenario-II

for the present scenario at the end of 1st, 4th, 8th and 12th time steps is shown in Fig.
8.8. The contour plots at the end of each time step for scenario-II reveals that with
the increase in demand, the total pumpage increases. The optimal pumping rate for
the wells located in the western region is higher than that of wells located nearby the
right boundary of the groundwater supply system. Thus providing better solution of
pumping cost, since specified hydraulic head in the left boundary is higher.

The present scenario can be further modified to couple the optimal pumping
values obtained in the AEM-PSO model with the Nelder-Meade algorithm as done
in the case of scenario-I.

8.5 Conclusions

A groundwater pumping management plan based on AEM and PSO model is
developed. The proposed model links the PSO model with AEM to minimize present
value of operating cost. The optimal solution of groundwater management problems
are determined satisfying three constraints: maintaining minimum hydraulic head,
satisfying total demand at each time steps with the optimal pumping lying in the

8 Groundwater Management Using Coupled Analytic Element Based. . . 133

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

(c) (d)

Fig. 8.8 Contour plot for scenario-II at four different time steps. (a) contour plot at 1st (90 day)
time step. (b) contour plot at 4th (360 day) time step. (c) Contour plot at 8th (720 day) time step.
(d) Contour plot at 12th (1080 day) time step

range of lower and upper bound of pumping values. It has been observed in the
integrated AEM-ND model that the solutions are improved to that of AEM-PSO
model in scenario-I. However, it alone can not suffice our management goal since
it needs a proper initialization of decision variables, which is obtained using AEM-
PSO model only. Although this study considers only confined aquifer, the developed
AEM-PSO model can be further modified for the application of unconfined aquifers.
In reality, the groundwater demand and hydraulic head are time varying components
of groundwater supply system. Therefore, the developed model for Scenario-II can
be efficiently applied to solve real field problems, since the time-varying pumping
rates are considered. In future, the potential applicability of the developed model
could be enhanced with the development of more efficient transient elements.

References

1. Ayvaz MT, Elci A (2013) A groundwater management tool for solving the pumping cost
minimization problem for the Tahtali watershed (Izmir-Turkey) using hybrid HS-Solver
optimization algorithm. J Hydrol 478:63–76

2. Baltar AM, Fontane DG (2008) Use of multiobjective particle swarm optimization in water
resources management. J Water Resour Plan Manag 134(3):257–265

134 K. Kumari and A. Dhar

3. Belegundu AD, Chandrupatla TR (2002) Optimization concepts and applications in engineer-
ing. Pearson Education Pvt. Ltd, Delhi, India, p 432

4. Chang LC, Chen YW, Yeh MS (2009) Optimizing system capacity expansion schedules for
groundwater supply. Water Resour Res 45(7):W07407

5. Chang J, Bai T, Huang Q, Yang D (2013) Optimization of water resources utilization by PSO-
GA. Water Resour Manag 27(10):3525–3540

6. Chu HJ, Chang LC (2009) Applying particle swarm optimization to parameter estimation of
the nonlinear Muskingum model. J Hydrol Eng 14(9):1024–1027

7. Dhar A, Datta B (2009) Saltwater intrusion Management of Coastal Aquifers. I: linked
simulation-optimization. J Hydrol Eng 14(12):1263–1272

8. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods
Appl Mech Eng 186:311–338

9. El-Ghandour HA, Elsaid A (2013) Groundwater management using a new-coupled model of
flow analytical solution and particle swarm optimization. Int J Water Resour Environ Eng
5(1):1–11

10. Gaur S, Chahar BR, Graillot D (2011a) Analytic element method and particle swarm
optimization based simulation-optimization model for groundwater management. J Hydrol
402(3):217–227

11. Gaur S, Mimoum D, Graillot D (2011b) Advantages of the analytic element method for the
solution of groundwater management problems. Hydrol Process 25(22):3426–3436

12. Gaur S, Sudheer C, Graillot D, Chahar BR, Kumar DN (2013) Application of artificial neural
networks and particle swarm optimization for the management of groundwater resources.
Water Resour Manag 27(3):927–941

13. Haitjema HM (1995) Analytic element modeling of groundwater flow. Academic, San Diego
14. Hsiao CT, Chang LC (2002) Dynamic optimal groundwater management with inclusion of

fixed costs. J Water Resour Plann Manag 128(1):57–65
15. Hunt J (2006) Groundwater modeling applications using the analytic element method. Ground

Water 44(1):5–15
16. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding of the IEEE

international conference on neural networks, IEEE service center, Piscataway, NJ, pp 1942–
1948

17. Kumar D, Reddy J (2007) Multiple reservoir operation using particle swarm optimization. J
Water Resour Plann Manag 133(3):192–202

18. Majumder P, Eldho TI (2016) A new groundwater management model by coupling analytic
element method and reverse particle tracking with cat swarm optimization. Water Resour
Manag 30(6):1953–1972

19. Mategaonkar M, Eldho TI (2012) Groundwater remediation optimization using a point
collocation method and particle swarm optimization. J Environ Model Softw 32:37–48

20. Matott LS, Rabideau AJ, Craig JR (2006) Pump-and-treat optimization using analytic element
method flow models. Adv Water Resour 29(5):760–775

21. Moghaddam A, Behmanesh J, Farsijani A (2016) Parameters estimation for the new four-
parameter nonlinear Muskingum model using the Particle Swarm Optimization. Water Resour
Manag 30(7):2143–2160

22. Sedki A, Ouazar D (2011) Swarm intelligence for groundwater management optimization. J
Hydroinf 13(3):520–532

23. Strack ODL (1989) Groundwater mechanics. Prentice Hall, Englewood Cliffs
24. Strack ODL, Haitjema HM (1981a) Modeling double aquifer flow using a comprehensive

potential and distributed singularities: 1. Solution for homogeneous permeability. Water Resour
Res 17(5):1535–1549

25. Strack ODL, Haitjema HM (1981b) Modeling double aquifer flow using a comprehensive
potential and distributed singularities: 2. Solution for inhomogeneous permeabilities. Water
Resour Res 17(5):1551–1560

26. Zaadnoordijk WJ, Strack ODL (1993) Area sinks in the analytic element method for transient
groundwater flow. Water Resour Res 29(12):4121–4129

Chapter 9
Investigation of Bacterial Foraging
Algorithm Applied for PV Parameter
Estimation, Selective Harmonic
Elimination in Inverters and Optimal
Power Flow for Stability

J. Prasanth Ram and N. Rajasekar

Abstract Inspired by the foraging behavior in bacteria (e-coli), Bacterial For-
aging Algorithm (BFA) is designed for solving global optimization problems.
Being unique in optimization, BFA has already received universal attention from
researchers to apply for various engineering application. In order to investigate the
BFA performance, mathematical equations for unimodal and multimodal functions
are investigated for minimization problem and the optimal results are reported in
this regard. Performance indices of BFA method are comprehensively gauged for all
functions and a comparative study with standard algorithms like Genetic Algorithm
(GA), Particle Swarm Optimization (PSO) and Geometric Search Optimization
(GSO) Algorithm is reported. Finding more suitable to optimize non-linear prob-
lems, the modified BFA in fusion with nelder- meed method is also introduced. This
chapter binds the collective knowledge on BFA that aids the researchers to apply for
their research application. Taking BFA as their optimization tool, few authors have
attained their research objectives in following areas: (i) PV parameter estimation
(2) Selective Harmonic Elimination in inverters and (3) a modified BFA method
for optimal power flow to maintain load stability. To have an interior understanding
the applications, the simulation results of the above study are also presented more
in detail. In all the cases, the due role of BFA to attain accurate results is always
appreciated.

Keywords Parameter estimation · Optimization · PWM inverter · Optimal
power flow

J. P. Ram
New Horizon College of Engineering (NHCE), Bengaluru, Karnataka

N. Rajasekar (�)
Department of Energy and Power Electronics, School of Electrical Engineering, Vellore Institute
of Technology (VIT)- Vellore, Vellore, India

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-26458-1_9

136 J. P. Ram and N. Rajasekar

9.1 Introduction

The nature and science are always a great source of education for the mankind.
Moreover the interdependency in these sources is vital for the universe to explore
and exploit engineering applications. To solve the complexity present in engineering
applications, the nature inspired biological algorithms are investigated and applied
over a large extent. Further the effectiveness in these algorithms is more suitable to
solve non-linear problems to improve the accuracy in design applications [28].

In terms of biology, population defines to the compilation of inter-breeding
organisms of a particular species. Further, population size in a one of the essential
phenomenon’s to play a major role in the development of Evolutionary Algorithms
(EAs) [9]. So far, many EAs inspired by nature and biological process are proposed.
However, the improper selection of population for a specified framework introduces
redundant computation in the optimization process. The setback in computation is
due to the factors such as: (1) the lack of knowledge in the relationship between
population size and dimensionality; and (2) the undefined relationship between
the size of population and complexity in optimization problem. To alleviate the
drawback of fixing population size, few methods have investigated in selecting
the optimal population size; however, the guarantee for their performance is found
uncertain. Therefore, in most of the applications, the population size is determined
based on trial and error procedure.

Various evolutionary algorithms found successful in recent years with optimal
selection of population size are: Genetic Algorithm, Particle Swarm Optimization
Ant colony optimization and Flower Pollination Algorithm [10]. Similarly, foraging
behaviour of bacteria is formulated as Bacterial Foraging Algorithm by Passino
[28, 35]. The search for nutrients via chemotaxis movement performed by bacteria
ensures the search for global solutions in problem search space [7, 8]. Further the
ability in BFA to handle non-linearity is widely received in various engineering
applications. Interestingly multi dimensional problem are even handled with ease
is a noteworthy feature in BFA optimization. Adapting BFA, Alanis et al. [3],
have improved the performance of sliding mode controller. In another approach,
Rajasekar et al. [29] have used BFA for PV parameter extraction. Witnessing the
potential with the area, later in 2016, Awadallah [5] has performed an experimental
work in estimating the performance of PV. Further the authors have managed to
generate the PV characteristics or four different modules. Using BFOA, Babu et al.
[6] have proposed a scholarly research for optimizing the switching angle to mitigate
the voltage harmonics in an inverter. Understanding the potential of optimization
in electric drives, Bhushan and Singh [11], has used BFA to find the unknown
nonlinear dynamics of the motor and the load parameters.

Having played a vital role in drives, BFA have also been utilized in power
electronics for its effective usage. In order to reduce peak over shoot as well as
to improve the systems response, Arunkumar et al. [4] have tuned proportional
and integral constants of a boost converter using BFA. With the of help of power
electronics, the BFA has also made its survival to optimize the planning of passive

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 137

power filters (PPFs) and distributed generations (DGs). The author Mohammadi
et al. [22] has used the method intelligently to reduce Total Harmonic Distortion
(THD) and power loss in DG. Understanding the load demand and power loss,
Dhillon et al. [15] has optimized the load flow control using BFA. In a different
approach, Ramyachitra and Veeralakshmi [31] have made an interesting approach
of predicting protein structure using the properties of bacteria. Being different from
the above, Turanoğlu and Akkaya [42] recently investigated the dynamic facility
layout problem using hybrid heuristic algorithm.

In addition to the above, hybrid and modified works with BFA is also seen in the
literature. Incorporating nelder-meed properties, Edward et al. [16] have attempted
to reduce the generation cost by handling optimal power flow problem. Since BFA is
a multi dimensional optimization, Daryabeigi et al. [14] proposed a novel smart BFA
(SBFA) to select a suitable capacitor for parallel circuit. Similar to the earlier, the
modifications are made in conventional to maintain the optimal power flow in hydro
thermal power generation system [25]. In another approach, the author Naveen et al.
[23] have proposed the modified version of BFA for network optimization problem
in power systems. Owing to the flexibility in BFA, Elattar [17] fused GA method
with BFA to solve economic dispatch problem. Identifying BFA as one of the
accurate and low-invasive tool for solving non linearity, a 7.5 kW motor subjected
to power quality issues are optimized. Further, the unbalance voltage condition and
its efficiency are found improved in this regard.

Finding BFA a potential method to improve its conventional properties, an
adaptive crossover bacterial foraging optimization algorithm (ACBFOA) to improve
the chemotaxis behavior is proposed by Panda and Naik [26]. Considering three
mathematical functions, the exploration made by the adaptive form of BFA outper-
forms conventional BFA method in terms o accuracy. Similarly, optimal foraging
has proposed by Zhu and Zhang [45] has also verified its method for twenty
mathematical expressions. Earlier to the above, Li et al. [20] has explored another
version of BFA and the method was tested for various population sizes. Further,
the decision on deciding the optimal population is comprehensively arrived and
truthfully verified.

Thus the promise shown by BFA to solve the stochastic nature is well proven.
From the above literature the dominance of BFA is seen in three major fields (1)
PhotoVoltaics (2) Drives and (3) power flow in power system. Hence, In this book
chapter the authors have investigated aforesaid three different fields in electrical
engineering. The BFA applied for specific areas in above fields are displayed as
follows (1) Renewables- Parameter estimation, (2) Power Electronics- Harmonic
Elimination in inverter and (3) Power system – Optimal power flow. The remaining
subsection is organized as follows.

Section 2 gives the outline of BFA method and describes the design procedure in
BFA optimization. In Sect. 3, the selection of different PV parameters is analyzed,
selective harmonic elimination using BFA is studied in Sect. 4, and the modified
BFA using nelder-meed for an optimal power flow problem is investigated in Sect.
5. Conclusions are presented at last.

138 J. P. Ram and N. Rajasekar

9.2 Bacterial Foraging Algorithm

Bacteria Foraging Algorithm (BFA) is one of the nature inspired algorithms
proposed by Kevin passino in 2002. In BFA, foraging behavior refers to process
involved in search for food. Based on the genes having successful foraging
capability, evolution chain is formulated. It is important here to note here that E-Coli
bacteria present in human intestine will also undergo similar strategy. Application
of E-Coli bacterium foraging strategy is the hidden theory behind BFA to apply
for multi dimensional optimization problems. Further BFA method search process
involves four important steps to explore and exploit problem search space as
follows:

1. Chemotaxis
2. Swarming
3. Reproduction
4. Elimination and dispersal.

9.2.1 Chemotaxis

In chemotaxis, the bacterium stimulates its movement towards search for food via
two processes namely (i) swimming and (ii) tumbling. For the bacteria over entire
lifetime, it follows only swimming or tumbling movement to locate food sources.
But at the same it can perform both the action to move towards food location. The
movement in bacteria is achieved by flagella. It is observed that when flagella move
in clock wise direction, the bacterium is allowed to move independently on its own
cell. Further, the bacteria tumble slowly to locate nutrients under harmful places. It
is seen that when bacteria moves in anticlockwise direction, the swimming gets
faster. The swim and tumble movement of a bacteria is presented in Fig. 9.1a.
For illustration, if θ i (j, k, l) is assumed to bacterium location in population the it
represents ith bacterium at jth chemotactic movement, kth reproductive action and
lth elimination-dispersal step; then the bacterium tumbles for an unit step size of
C in different random direction ϕ(i) so as to find a new direction of movement.
The tumbling movement in bacterium followed by movement in new direction is
represented by

θi (j + 1, k, l) = θi (j, k, l)+ C ∗ φ(i) (9.1)

Where φ(i) = �(i)√
�T (i) �(i)

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 139

Fig 9.1a Swim and tumble of
a bacterium

If the present direction is rich in nutrients then, the bacterium will continue to
swim after the tumble, however limited up to a maximum number of steps Ns.
Chemotaxis process is one of the vital steps in the BFA to create exploration.
Chemotaxis in foraging strategy implements a local optimization in which the
bacteria try to climb the nutrient concentration hence to avoid noxious substance.

9.2.2 Swarming

In swarming process, an interesting behavior is followed as bacteria already
travelling in optimal path gains the attention of other bacterium so that, it attain
desired location as a group. A group of bacterium E.coli cells arrange themselves in
a traveling ring by moving up the nutrient gradient when placed amidst a semisolid
matrix with a single nutrient chemo-effecter. The cells when stimulated by a high
level of succinate, release an attractant aspertate. This helps the bacteria to move as
group to particular location. This typical behavior in BFA is technically termed as
swarming. The bacteria are formed in groups in concentric patterns will have high
bacterial density. The mathematical representation of cell-to-cell signaling between
bacteria can represented as

S∑

i=1

Jcc

(
θ, θ i (j, k, l)

) =
S∑
i=1

[
−dattract exp

(
−wattract

p∑
m=1

(
θm − θim

)2
)]

+
S∑
i=1

[
−hrepelent exp

(
−wrepelent

p∑
m=1

(
θm − θim

)2
)]

(9.2)

140 J. P. Ram and N. Rajasekar

Fig 9.1b Swarm action of a
bacteria in multimodal
objective function 2

1.5

0.5

0
2

21
10

0-1 -1
-2 -2

1

Where, Jcc denotes time varying objective function whose value relies on cell-to-
cell signaling based on attractant-repellent profile. The swarm action of a bacteria
for in a multimodal objective function is given in Fig. 9.1b.

9.2.3 Reproduction

In this step, every bacterium in the population will undergo health evaluation based
on the mathematical equation defined as follows.

J ihealth =
Nc+1∑

j=1

J (i, j, k, l) (9.3)

The attained health values of bacterium is arranged in ascending order while
the least healthy bacteria in the population are removed; n the other hand healthy
bacteria which can locate good food locations (Bacteria locating poorer location-
s/local solutions) are split into two, thus always helping the application to maintain
constancy in population. This process will reserve healthier bacteria to stay in
population and removes the awful ones. Further, it also helps the algorithm to speed
up the searching process for pareto front.

9.2.4 Elimination and Dispersal

Due to numerous reasons, gradual or rapid changes in the local environment may
cause either of occurrences (i) a group of bacteria is killed or (ii) the bacteria’s will
disperse into a new location. Occasionally this process will place the bacterium to

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 141

near good nutrients/global solutions. Furthermore, this elimination and dispersion
in BFA reduces the probabilities to converge for local solutions i.e., premature
convergence. If the considered population is small then, this step in BFA has higher
possibilities to explore global regions. Furthermore, this exclusive feature in the
algorithm helps to avoid premature convergence problem and hence increases the
exploration capability.

BFA processes towards locating global solutions involving chemotaxis, swarm-
ing, reproduction, elimination and dispersion for a non-linear problem is imple-
mented by utilizing the following steps.

Step 1: Initialize the following parameters p, S, Nc, Ns, Nre, Ned, Ped, C, θ i, i = 1,
2, 3, S

Step 2: Declare Elimination–dispersal loop as l = l + 1
Step 3: Declare Reproduction loop k = k + 1
Step 4: Declare Chemotaxis loop j = j + 1

(a) For, i = 1, 2, 3, , S, obtain chemotactic step for each bacterium.
(b) Determine the objective function J(i, j, k, l).

Let J(i, j, k, l) = J(i, j, k, l) + Jcc(θ i(j, k, l), P(j, k, l))
(c) Let us assume Jlast = J(i, j, k, l), in order to save the fitness value. Since it

will result us with better solution in further movements.
(d) Tumbling: Create a random vector as �(i), with each bacterium drawn from

uniform distrubtion from [−1, 1].
(e) Move: Let

θi (j + 1, k, l) = θi (j, k, l)+ C ∗ φ(i)

This step size C(i) results in the tumbling direction for bacteriumi.
Compute fitness J(i, j + 1, k, l) and let

J (i, j + 1, k, l) = J (i, j, k, l)+ Jcc
(
θi (j + 1, k, l) , P (j + 1, k, l)

)

(9.4)

(f) Swim (another movement by bacterium):

(i) Let m = 0 (swim length counter)
(ii) If m < NS

• Increment the counter m = m + 1
• If the current fitness J(i, j + 1, k, l) < Jlast (if doing better) then, let

the last fitness Jlast = J(i, j + 1, k, l) and
θ i (j + 1, k, l) = θ i (j, k, l) + C ∗ ϕ(i) , use above θ i (j + 1, k, l) to
calculate new J(i, j + 1, k, l) (as performed in step f).

• Else, let the m = NS. (End of if statement)

(g) Go for the next bacterium (i + 1) if i �= S.

142 J. P. Ram and N. Rajasekar

Step5: If j < Nc, goto [step 4] and continue chemotaxis process, since the bacteria
life is not over.

Step6: Reproduction:

(a) For given k , l, for every i = 1, 2, 3, , S, let us compute

health of bacterium as J ihealth =
Nc+1∑
j=1

J (i, j, k, l) for ith bacterium and

arrange the fitness Jhealth in ascending order
(b) The Sr bacteria having highest fitness (Jhealth) values die and left over Sr

bacteria with the minimum fitness value gets split.

Step 7: If k < Nre, then switch to step 3. In this case, when reproduction steps
specified in initialization are not reached, then start the next generation from
the chemotactic loop.

Step 8: Elimination–dispersal step: For every bacterium i = 1, 2, 3, . .
. , S, an arbitrary number is created and if it is less than or equal to
Ped, then the corresponding bacterium is dispersed to new random location in
search space else it remains at its current location.

Step 9: If l < Ned, then switch to step 2 else stop the process and print the result.

The flowchart for BFA implementation is shown in Fig. 9.2.

9.2.5 Movement of Bacteria in Search Space

Considering the movement of bacterium in a search space, an exclusive study for
a minimization problem is considered. Taking θ1, θ2 in x-axis and y-axis, the
convergence rate for a set of bacteria’s is observed. The representation of bacterial
movement is shown in Fig. 9.3. For the initial generation, the bacterial movement
is seen in all over the search space. The chemotaxial movement made by bacterium
has arrived them to reach near optimal fitness value. Once the bacterium finds its
minimal fitness value, the convergence of all the bacterium to the minimal value
below 10 is seen in 2nd generation. As intense progress made by bacterium in 1st
and 2nd generation results the trajectories to surrender for minimal value in 3rd and
4th generation.

9.2.6 Verification of BFA with Mathematical Equations

To validate BFA for its success, various unimodal and multimodal benchmark
functions are tested and its success rate is benchmarked with Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Group Search Optimizer (GSO) and Fast

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 143

Start

Initialization of variables,
limits and constaints

Elimination and dispersal
loop, L=1

Reproduction loop, K=1

Chemo tactic loop, P=1

Cost function computation with
swarming for each bacterium as
f(L,P), L-Bacterium number,

I=1,2,3..S

A

B

C

D

I=1

f(I,P)<f(I,P-1)

Swim, Sw(i)=Sw(i)+1

Sw(i)<Ns

I=I+1

I>S

P=P+1

P<Nc

Increment reproduction
counter, K=K+1

K<Nre

Elimination and dispersal,
L=L+1

L<NedStop Print results

A

Tumble

Sw(I)=0

NO

YES

NO

YES

NO

YES

B

C

D

YES

YES

YES

NO

NO

NO

Fig. 9.2 Flowchart for Bacterial foraging algorithm

Evolutionary Programming (FEP) methods. All the aforesaid algorithm algorithms
are coded and made to run for a trial of 50 runs. Based on the results obtained
from various functions, the mean and standard deviation is tabulated in Table
9.1. For evaluations, five equations corresponding to unimodal function and five
multidimensional bench mark functions are evaluated. The equations considered for
evaluations are given below.

144 J. P. Ram and N. Rajasekar

Fig. 9.3 Movement of Bacterium for 4 Generations

High Dimensional unimodal Benchmark Functions

1. Sphere model: f1(x) =
30∑
i=1
x2

1 − 100 − 100 ≤ xi ≤ 100

min (f1) = f1 (0, , 0) = 0

2. Schwefel’s Problem
2.22

f2(x) =
30∑
i=1

|xi | +
30∏
i=1

|xi | − 10 ≤ xi ≤ 10

min (f2) = f2 (0, , 0) = 0

3. Schwefel’s Problem
2.21

f3(x) = maxi {|xi | , 1 < i < 30} − 100 ≤ xi ≤ 100
min (f3) = f3 (0, , 0) = 0

4. Rosenbrock’s
function

f4(x) =
29∑
i=1

[
100
(
xi+1 − x2

i

)+ (xi − 1)2
] ;

− 30 ≤ xi ≤ 30
min (f4) = f4 (1, , 1) = 0

5. Step Function f5(x) =
30∑
i=1
(|xi + 0.5|)2 − 100 ≤ xi ≤ 100

min (f5) = f5 (0, , 0) = 0

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 145

High Dimensional Multimodal Benchmark Functions

6. Generalised
Schwefel’s Problem
2.26

f6(x) =
30∑
i=1

−xi sin
(√
x
) − 500 ≤ xi ≤ 500

min (f6) = f6 (420.9687, , 420.9687)
= −12569.5

7. Generalised
Rastrigin’s Function

f7(x) =
30∑
i=1

[
x2
i − 10 cos (2πxi)+ 10

]

− 5.12 ≤ xi ≤ 5.12
min (f7) = f7 (0, , 0) = 0

8. Ackley’s Function f8(x) = −20 exp−
(

0.2

√
1
n

30∑
t=1
x2
i

)

− exp

(
1
30

30∑
t=1

cos (2πxi)

)
+ 20 + e

− 32 ≤ xi ≤ 32
min (f8) = f8 (0, , 0) = 0

9. Generalised
Girewank Function

f9(x) = 1
4000

30∑
i=1
x2
i +

30∏
i=1
Cos
(
xi√
i

)
+ 1

− 600 ≤ xi ≤ 600
min (f9) = f9 (0, , 0) = 0

10. Generalised
Penalised Functions

f10(x) = π
30

{
10sin2 (πy1)

+
29∑
t=1
(yt − 1)2

[
1 + 10sin2 (πyt+1)

]+ (y29)
2}

+
30∑
t=1
u (xt , 5, 100, 4) , −32 ≤ xt ≤ 32

min (f10) = f10 (1, , 1) = 0
where,

yi = 1 + 1
4 (xi + 1)

u (xi, a, k,m) =
⎧
⎨

⎩

k(xi − 1)m, xi > a,
0,−a < xi < a,
k(−xi − 1)m, xi < −a

From Table 9.2, it is found that for the mathematical functions f2–f5, BFA method
has showcased a far better performance in comparison to FEP, GSO and PSO.
Nevertheless, PSO method on overall has regularly attained a better fitness to attain
second position in order. More importantly, PSO has beaten BFA for sphere model
by producing an accuracy of 3.6927 × 10–37. Overall, for the unimodal functions,
BFA has rendered its excellence for all the functions except first sphere function. In
case of multimodal functions, attaining convergence is quite challenging because,
the controllability to have an edge over multi-dimensions is found critical. However,
the BFA has yet again outplayed all the algorithms by producing a better fitness

146 J. P. Ram and N. Rajasekar

Ta
bl

e
9.

1
M

ea
n

an
d

st
an

da
rd

de
vi

at
io

n
fo

r
va

ri
ou

s
un

im
od

al
an

d
m

ul
tim

od
al

fu
nc

tio
ns

Fu
nc

tio
n

Pa
ra

m
et

er
B

FO
A

G
A

PS
O

FE
P

G
SO

f 1
μ

,M
ea

n
9.

90
08

×
10

–9
3.

17
11

3.
69

27
×

10
–3

7
5.

7
×

10
–4

1.
94

81
×

10
–8

σ
,s

ig
m

a
8.

53
07

×
10

–9
1.

66
21

2.
45

98
×

10
–3

6
1.

3
×

10
–4

1.
98

41
×

10
–8

f 2
μ

,M
ea

n
5.

27
01

×
10

–5
0.

57
71

2.
91

68
×

10
–2

4
8.

1
×

10
–3

3.
70

39
×

10
–5

σ
,s

ig
m

a
3.

35
27

×
10

–5
0.

13
06

1.
13

62
×

10
–2

3
7.

7
×

10
–4

8.
61

85
×

10
–5

f 3
μ

,M
ea

n
0.

12
04

7.
96

1
0.

41
23

0.
3

0.
10

78
σ

,s
ig

m
a

0.
10

21
1.

50
63

0.
25

0.
5

3.
99

81
×

10
–2

f 4
μ

,M
ea

n
7.

71
45

×
10

–4
33

8.
56

16
37

.3
58

2
5.

06
49

.8
35

9
σ

,s
ig

m
a

2.
10

35
×

10
–3

36
1.

49
7

32
.1

43
6

5.
87

30
.1

77
1

f 5
μ

,M
ea

n
0

3.
69

7
0.

14
6

0
1.

60
00

×
10

–2
σ

,s
ig

m
a

0
1.

95
17

0.
41

82
0

0.
13

33
f 6

μ
,M

ea
n

−1
25

89
.4

88
2

−1
25

66
.0

97
7

−9
65

9.
69

93
−1

25
54

.5
−1

25
69

.4
88

2
σ

,s
ig

m
a

1.
25

82
×

10
–2

2.
10

88
46

3.
78

25
52

.6
2.

21
40

×
10

–2
f 7

μ
,M

ea
n

0.
31

19
0.

65
09

20
.7

86
3

4.
6
×

10
–2

1.
01

79
σ

,s
ig

m
a

0.
33

18
0.

28
05

5.
94

1.
2
×

10
–2

0.
95

09
f 8

μ
,M

ea
n

1.
61

25
×

10
–5

0.
86

78
1.

34
04

×
10

–3
1.

8
×

10
–2

2.
65

48
×

10
–5

σ
,s

ig
m

a
2.

92
89

×
10

–5
0.

28
05

4.
23

88
×

10
–2

2.
1
×

10
–2

3.
08

20
×

10
–5

f 9
μ

,M
ea

n
2.

45
49

×
10

–2
1.

00
38

1.
06

33
×

10
–2

2.
6
×

10
–2

3.
12

83
×

10
–2

σ
,s

ig
m

a
4.

23
53

×
10

–2
6.

75
45

×
10

–2
1.

08
95

×
10

–2
2.

2
×

10
–2

2.
87

57
×

10
–2

f 1
0

μ
,M

ea
n

1.
92

96
×

10
–9

4.
35

72
×

10
–2

3.
95

03
×

10
–2

0.
2
×

10
–6

2.
76

48
×

10
–1

1
σ

,s
ig

m
a

2.
05

33
×

10
–9

5.
05

39
×

10
–2

9.
14

24
×

10
–2

6.
13

95
×

10
–6

9.
16

74
×

10
–1

1

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 147

Table 9.2 Parameter values
obtained using BFA for
different irradiation
conditions

Parameters Mono crystalline S36 Thin Film ST40
GA BFA GA BFA

G = 1000 W/m2

Rs 1 1.6959 1 1.6489
Rp 0.4148 0.1281 1.654 1.01
a 200.391 478.4748 457.478 370.9784
G = 800 W/m2

Rs 1 1.7931 1.8338 1.6234
Rp 0.6041 0.0414 1 1.01
a 461.3881 489.8589 372.434 370.9784
G = 600 W/m2

Rs 1 1.7491 1.7243 1.6496
Rp 0.6178 0.0216 1.2199 1.0027
a 207.2336 475.3372 162.2678 299.2976
G = 400 W/m2

Rs 1 1.6756 1.3607 1.6547
Rp 0.8074 0.0867 1.8495 1
a 441.8377 479.3708 372.434 309.5164
G = 200 W/m2

Rs 1 1.6043 1.5797 1.6297
Rp 0.3891 0.02 1.1144 1.0187
a 451.6129 486.3113 193.5484 384.6959

value. To be specific, a qualitative comparison made in terms of mean and standard
deviation, it is found that for functions f6–f9, the BFA was in high standard and
in case of Generalised penalized function i.e., f10, GSO method comes out as a
surprise to emerge better fitness.

9.2.7 Modified Bacterial Foraging Algorithm

Understanding the scope and visibility with BFA, the scope for improvisations with
conventional BFA is found higher. Moreover, the possibilities of tuning parameters
with BFA method are found very higher. Further, it is possible that good solutions
arrived with BFA method can further be enhanced to achieve near optimal value.
Thus, a nelder-meed property is introduced in BFA for improving the good solutions
in BFA. Further on trial and error, the author Edward et al. [16] has proved that the
nelder meed-BFA fusion can suit many of the engineering applications. The pseudo
code with defined parameter values for attaining the optimal solutions is presented
as a pseudocode below.

148 J. P. Ram and N. Rajasekar

Pseudo Code for Nelder-Meed BFA Method
Pseudo code for nelder-meed BFA method:

Initialize the following parameters as follows (i) Number of bacteria S: 4, (ii) Number
of chemotactic steps Nc: 5 (iii) Swimming length Ns: 4, (iv) Number of reproduction
steps Nre: 4 (v)Number of elimination and dispersal events Ned: 2(vi) Probability of
elimination and dispersal Ped: 0.2. (vii) Depth of attractant: 0.01,(viii)Width of
attractant: 0.04, (xi) Height of repellent: 0.01, (x)Width of repellent: 10.0.

Obtain fitness for all the bacterium in population,
For (l=0 to Ned)

For(k=0 to Nre)
For (j=0 to Nc)

Chemotaxis and swim for given population.,
For (bacterium € population)

If (fitness(current bacterium<=global best)
Global best= Current bacterium (location)

End
End

End
Sort the fitness in ascending order (population)
Select the bacterium by health by using Bacterium (population, fitness sum/2)
Select the best bacterium in population (Use nelder-meed algotithm to evaluate
the best location)
For (bacterium € population)

If (rand() <=Ped)
Create random location for FACTS devices

End
End

End
RETURN (BEST BACTERIUM IN POPULATION AND FITNESS) (I,E)FINAL

9.3 BFA for PV Parameter Estimation

In recent years, tremendous recognition gained by Solar PV among renewables has
made it as a promising alternative for conventional power generation [30]. Although
the PV has advantages like zero carbon emission and less maintenance, the accurate
reproduction of PV characteristics is very much essential for a PV panel to deliver
maximum power. Hence accurate modelling of solar PV is needed to be carried
out by figuring out the suitable parameters. It is important here to mention that PV
modelling parameters highly depend to the change in environmental characteristics.

The PV modelling in general demands the manufacturer’s datasheet values like
Voltage at MPP (VMPP), Current at MPP (IMPP), Short circuit current (ISC) and
Open circuit Voltage (VOC). However, despite these data few more parameters
like PV current (IPV), series resistance (RS), diode ideality factor (a) and Parallel
resistance (RP) also becomes a mandatory obligation that can be estimated using
an optimization procedure [30]. Two important modelling procedures available in

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 149

Fig. 9.4 Single diode model
of solar PV

Rs

Rp

Ipv,n ID

Ipv

Vpv

‘a’

literature are (i) Analytical and (ii) Numerical. The procedure adopted in earlier
approach is time consuming and non-accurate while, in case of the later approach
use accurate mathematical procedure in consideration to individual points on the
I–V curve [29].

Two common models that are prevalent in the field of PV modelling are one diode
and two diode model. The two diode model has an excessive diode compared to one
diode model which makes it to generate accurate PV characteristics even under low
irradiation conditions. Various optimization procedures involved in extracting PV
parameters are: Genetic Algorithm, Bird Mating Optimization, Simulate Annealing,
Flower Pollination Algorithm and Bee pollinated Flower Pollination Algorithm.
In 2013, Rajasekar et al. [29] has investigated PV modelling using BFA. The
Excellency of BFA to explore and exploit search space has yielded appreciable
results with fair convergence speed. The results and optimization and the problem
formulation are explained in further subsections.

9.3.1 PV Modelling

The commonly used one diode electric model to represent the behavior of a PV
module is shown in Fig. 9.4. Further, one diode model is given importance for its less
complexity and simple accessibility. The schematic of one diode model comprises
of a current source (Ipv), diode, series resistance (Rs) and parallel resistance (RP).
Series resistance (Rs) is formulated with an effect to cumulative resistance of
semiconductor material and metallic contacts in panel. Parallel resistance (RP) is
formulated to measure the leakage losses.

Applying KCL to the Fig. 9.2., the PV module output current equation can be
written as:

IPV = Ipv,n − ID − VD

Rp
(9.5)

Where, VD is the diode voltage and ID is the diode current.
The diode current equation can be given as:

150 J. P. Ram and N. Rajasekar

ID = Io
(
eVD/αVt − 1

)
(9.6)

Where, ‘a’ is the diode ideality factor and thermal voltage ‘Vt’ is given as:

Vt = NskT /q (9.7)

Where, k is the Boltzmann constant, T is the cell temperature in Kelvin, q is the
electron charge, Ns is the number of cells in series. Using KVL, the output voltage
of the module can be written as:

V = VD − IRs (9.8)

Thus, from the above discussion it can inferred that for a single-diode model five
parameters are needed to be computed (Ipv, Io, Rs, Rp, and a).

9.3.2 Problem Formulation

Among the five parameters (Ipv, Io, Rs, Rp, and a.) Ipv and Io are calculated
analytically to reduce computational complexity, and the remaining Rs, Rp, and a are
arrived via BFA such that, the error between the computed and actual characteristics
is minimized. The PV current can be measured using

Ipv = (Iscn + kidT) G
Gn

(9.9)

Where, Iscn is the nominal short circuit current at Standard Test Condition (STC), ki

is the short circuit current temperature coefficient taken from panel datasheet. Gn is
the irradiation at STC (i.e.,) 1000 W/m2 0and G is the specific irradiation for which
the panel is exposed and change in temperature dT = T − Tn, Where, Tn is the
standard temperature at STC condition i.e. 25oC and T is the surface temperature of
the PV panel.

The reverse saturation current in diode can be calculated is obtained using the
equation formulated as below:

Io = Ipv

exp [(Voc + kvdT) /a/Vt] − 1
(9.10)

The Open circuit voltage (Voc) and Voltage at maximum power (Vmp) values are
determined using the following equation

Voc = Vocn + Vt ln

(
G

Gn

)
+ kvdT (9.11)

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 151

Vmp = Vmpn + Vt ln

(
G

Gn

)
+ kvdT (9.12)

Pseudo Code for PV Parameter Estimation Using BFA

Pseudo code for PV parameter estimation using BFA:

Initialize the following parameters as (i) Chemotaxis loop counter , Nc= 200, (ii)
Reproduction loop counter, Nre = 4, (iii) Elimination and dispersal loop counter,
Ned = 2, (iv) Population size = 50, (v)Elimination and dispersal probability =
0.25, 0<Rs<2, 50<Rp<500,1<a<2
Choose random locations of Rs, Rp, a in search space.
Obtain fitness for all the bacterium in population,
For (l=0 to Ned)

For(k=0 to Nre)
For (j=0 to Nc)

Chemotaxis and swim for given population.,
For (bacterium € population)

If (fitness(current bacterium<=global best)
Global best= Current bacterium

End
End

End
Sort the fitness in ascending order (population)
Select the bacterium by health by using Bacterium (population, fitness sum/2)
Select the best bacterium in population
For (bacterium € population)

If (rand() <=Ped)
Create random location for Rs,Rp,a

End
End

End
Return (best bacterium in population and fitness) (i,e)final Rs, Rp, a and Gbest

In order to improve accuracy the above equations are modified and represented
as

Voc = Vocn + Vt ln

(
G

Gn

)
+ kvdT − α log

(
G

Gn

)
(9.13)

Vmp = Vmpn + Vt ln

(
G

Gn

)
+ kvdT − βVt log

(
G

Gn

)
(9.14)

Similarly, maximum power point current can be given as:

Imp = Impn ln

(
G

Gn

)
{1 + kidT } (9.15)

152 J. P. Ram and N. Rajasekar

The calculated Voc and Vmp values using the above equations accurately match
with the manufacturer’s datasheet and has the ability to vary according to the solar
panel. The values of α is taken as 0.9 and β is taken as 1.65 in the work to appreciate
accuracy.

Based on the mathematical condition at Maximum Power Point (MPP), the
derivative of the power with respect to voltage is equal to zero. i.e. dP

dV
= 0.

The power equation in general can be written as P = VI. Applying the condition
at MPP, the above equation becomes

dP

dV
= V dI

dV
+ I (9.16)

The objective function is a minimization function and it can be represented as,

J =
∣∣∣∣
dI

dV

∣∣∣∣
(Vmp,Imp)

+ Imp

Vmp
(9.17)

Where, dI/dV is obtained from single diode model basic current equation as

∣∣∣∣
dI

dV

∣∣∣∣
(Vmp,Imp)

= Io � exp
{
�
(
Vmp + ImpRs

)}−Gp
1 + Io � Rs exp

{
�
(
Vmp + ImpRs

)}−GpRs (9.18)

Where, Gp = 1/Rp and � = 1/aVt

The optimal solution is obtained in regard to a specific value for which the fitness
value is calculated after each iteration.

9.3.3 Results and Discussion

The initial random guesses for the PV model parameters are randomly chosen within
the boundary limit. It is general fact that, the value of series resistance is observed
to have very small which is to reduce the loses and parallel resistance is chosen as
high to restrict the recombination losses.

With above inputs, the MATLAB code for the BFA is programmed for BFA and
Genetic Algorithm. Further two module characteristics (Shell S36, ST40) charac-
teristics are reproduced for five irradiations respectively (200 W/m2, 400 W/m2,
600 W/m2, 800 W/m2 &1000W/m2) and shown in Figs. 9.5 and 9.6. respectively.
The corresponding parameters extracted using BFA and GA is tabulated in Table
9.2. From Table 9.2 it is understood that BFA provides accurate reproduction of
manufacturers curves with a better computational efficiency. The search process in
BFA to effectively use chemotaxis movement has improved the solution quality via
swimming and tumbling hence convergence to global solutions via exploitation is
assured via BFA method. Although solution quality with high accuracy is seen, the
convergence time of BFA is inferior to GA as BFA converge at 200th iteration while
GA converges at 80th iteration.

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 153

0 5 10 15 20
0

0.5

1

1.5

2

2.5

Voltage

C
ur

re
nt

1000 W/m2

800 W/m2

600 W/m2

400 W/m2

200 W/m2

Experimental
Simulated

I-V Curves for different irradiations

Fig. 9.5 I-V Curve of Shell S36 panel for different irradiance and temperature conditions

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Voltage

C
ur

re
nt

1000 W/m2

800 W/m2

600 W/m2

400 W/m2

200 W/m2

Experimental
Simulated

I-V Curves for different irradiations

Fig. 9.6 I-V Curve of ST40 panel for different irradiance and temperature conditions

154 J. P. Ram and N. Rajasekar

9.4 BFA for Selective Harmonic Elimination in PWM
Inverter

Pulse Width Modulation (PWM) technique is one of the commonly used switching
scheme to regulate the inverter output voltage. In general, the voltage and frequency
of PWM inverter is regulated by controlling the switching sequences of power
semiconductor devices [44]. Having witnessed the dynamic growth of digital
processors and recent advancements in low price semiconductor switches, the
inverters are built cost efficient. Further the efficiency in PWM inverters has made
them inevitable in industrial and commercial applications [32].

Being benefitted with several advantages like (i) Elimination of triplen har-
monics, (ii) The ability to deliver satisfactory performance even at low switching
frequency and (iii) Controlled harmonic limits in the output waveform help the
PWM inverter to stand tall among other traditional inverters [6]. After getting
discovered in [43], the output voltage waveforms of SHE PWM inverter are
analyzed in Fourier domain and developed as non-linear transcendental equation
which can be solved using iterative Newton-Raphson method [38]. However the
method is derivative dependent and it may converge to local convergence. In
another work, Walsh functions are used to optimize the switching angles of power
semiconductor devices [21, 40]. But then the method fails to optimally locate an
angle which is continuously varying for the given interval.

Later to the mathematical approaches, the switching sequence optimization
is quite alternatively handled by global optimization techniques. Further these
methods are found to locate accurate global solutions irrespective of the non-
linearity present in the system. Several algorithms like Genetic Algorithm (GA) [37]
Particle Swarm Optimization (PSO) [33] and are Ant Colony Optimization (ACO)
[39] and Artificial Bee Colony (ABC) [19] are proposed for harmonic elimination in
PWM inverters. Inspired by genetics, GA based switching sequence generation was
attempted in [37], however premature convergence and delayed computation adds
to GA as a drawback. To solve the issues in GA, a much simpler and faster PSO
is attempted is proposed in [33], but the convergence is highly dependent to initial
exploration in control variables. In consequence, premature convergence may occur.
In another approach ACO and ABC are also proposed for setting gate sequence
to eliminate harmonics in PWM inverter. However the similar drawbacks found in
GA and PSO is also found here and in addition parameter setting increases the
computational burden. As a replacement to earlier methods, BFA based switching
sequence is designed and discussed in [6]. Further the method has come up with a
positive result in comparison to the earlier methods. The formulation ob objectives
and the results attained via BFA are discussed below.

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 155

Fig. 9.7 Output Voltage waveform for a PWM inverter

9.4.1 Problem Formulation

The output voltage for a 1-� PWM inverter having ‘k’ pulse in a half cycle is
illustrated in Fig. 9.7. For realization, it is assumed that output voltage have ‘k’
pulses in a half cycle where the switching angles are found symmetrical with respect
to π /2. Further, ‘k’ is an odd number and varies in the range from three, five,
seven, nine etc. The output voltage of a PWM inverter using the Fourier series is
represented as,

V0 = a0 +
∞∑

n=1

AnCos (nωt)+
∞∑

n=1

Bn sin (nωt) (9.19)

It is well fact that for a symmetrical signal, even harmonics are absent. Hence,
the Fourier coefficients An and a0 in above equation becomes zero due to symmetry.
Further the output voltage equation becomes,

V0 =
∞∑

n=1

Bn sin (nωt) , (9.20)

The Fourier coefficient Bn can be computes as

Bn = 4Vdc
nπ

[cos (nωt)]α1,α3,......αk
α2,α4,......π/2

(9.21)

156 J. P. Ram and N. Rajasekar

The value of fundamental component value is mathematically realized using

B1 = 4Vdc
π

[cos (nωt)]α1,α3,......αk
α2,α4,......π/2

(9.22)

The basic objective behind the proposed method is to generate switching
instance (α1, α2. . . . αk) for the output voltage waveform for which the harmonic
components B3, B5,B2k − 1 are made zero. It is also important o note here
that the fundamental component (‘B1’) equals the output voltage. Hence output
voltage of inverter is regulated along with harmonic regulation. This problem is
suitably addressed by using BFA as an iterative based optimization function. The
minimization objective function can be mathematically presented as follows.

F (α) = F (α1, α2, , αk) = er + hc (9.23)

Constraints for the Objective:

0 ≤ α1 ≤ α2. . . . · · · ≤ αk−1 ≤ αk ≤ π/2

Where,

er =
∣∣V ∗

0 − B1
∣∣ and hc = |B3| + |B5| + |B7| + |B9| + · · · + |B2k−1|

(9.24)

The research objective is twofold (i) to maintain desired output voltage level
of inverter. i.e., (er). (ii) selective harmonic elimination of harmonic content i.e.,
(hc). Based on generation of pulses in a half cycle (odd number) harmonics (even
number) can be eliminated. For explanation, if k-pulses exist in a output voltage for
a half cycle, then k − 1 harmonics can be reduced.

9.4.2 Simulation Results and Discussion

To minimize the objective function defined in (9.23), the identification of switching
sequence is mandatory. Further the BFA method is utilized here to generate the
optimum switching instances (α1,α2, ,αk). The ability in BFA to explore an
exploit the search space has satisfactorily addressed two important concerns (i)
Lower order harmonics elimination and (ii) Fundamental component improvement.
A dedicated MATLAB program is developed for BFA to undergo performance
evaluations. Further the PSO and GA method is also coded in MATLAB for
comparison. To code the algorithm the parameters set in BFA are dattract, Wattract,
hrepellent, Wrepellent, C, Ped and S are set to 0.01, 0.04, 0.01, 10, 0.1, 0.25 and 50
respectively. In case of PSO, inertia weight factor w1 and social weight (c1) and
cognitive weight factor (c2) are set to 0.4, 1.6 and 1.43 respectively.

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 157

0 50 100 150 200 250 300 350 400 450 500
10-3

10-2

10-1

100

0 50 100 150 200 250 300 350 400 450 500
10-4

10-3

10-2

10-1

100

O
bj

ec
tiv

e
Fu

nc
tio

n

Number of iterations Number of iterations

Number of iterationsNumber of iterations

(a) 3 Pulses per cycle (b) 5Pulses per cycle

BFA
PSO
GA

BFA
PSO
GA

O
bj

ec
tiv

e
Fu

nc
tio

n

0 50 100 150 200 250 300 350 400 450 500
10-2

10
-1

100

101

0 50 100 150 200 250 300 350 400 450 500
10-3

10-2

10-1

100

101
(d) 9Pulses per cycle

BFA
PSO
GA

BFA
PSO
GA

O
bj

ec
tiv

e
Fu

nc
tio

n

O
bj

ec
tiv

e
Fu

nc
tio

n

(c) 3 Pulses per cycle

Fig. 9.8 Convergence characteristics of BFA,PSO and GA 3,5,7&9 pulse generation sequence

In order to determine the solution quality, the convergence characteristics for
GA, PSO and BFA methods are plotted for 3, 5, 7, 9 pulses per half cycle. Further
the graphs correspond to convergence can be seen in Fig. 9.8a–d. From the figure
it is clear that, BFA method has very low fitness value for the switching sequence
generation which indicates the accuracy of BFA to explore more search space to
arrive global solutions. Although GA and PSO methods has performed better in 3
and 5 pulse generation sequence, due to the smaller value difference in firing angle
for 7 and 9 pulse per half cycle, the methods got fallen for local optima. Hence it can
be concluded that the BFA method investigated for harmonic elimination is superior
to PSO and GA methods.

To further strengthen the harmonic spectra generated at 3, 5, 7 and 9 pulse per
half cycle sequences are plotted and presented in Fig. 9.9a–d. The lesser harmonics
present in BFA compared to GA and PSO illustrates the suitability of BFA to the
research objective and emerges as an implementable solution to reduce voltage
harmonics.

158 J. P. Ram and N. Rajasekar

Fig. 9.9 Harmonic spectra Simulated for (a) k = 3 (b) k = 5 (c) k= 7 and (d) k= 9 pulses per
half cycle. (a) 3 pulses per half cycle. (b) 5 pulses per half cycle. (c) 7 pulses per half cycle. (d) 9
pulses per half cycle

9.5 Modified BFA for Optimal Power Flow

J. Carpentier in 1962 has evolved a new non-linear optimal power flow (OPF)
problem [12]. The problem formulation made via mathematical approach was large
and took decades to arrive at solutions via efficient algorithms [18]. Numerous
works have been carried out to solve OPF problem. Some of the notable and intel-
ligent algorithms applied for OPF problem are Genetic Algorithm [41], Simulated
Annealing [34], Differential Evolution [2] and Particle Swarm Optimization [1].

Recent development in Flexible AC Transmission Systems (FACTS) utilizing
power electronic components has increased the flexibility of a power system to
control power flow [16]. It is noteworthy to mention here that the stability and
safety of the power system is increased drastically even under abnormal operating
conditions. Some of the important FACTS devices used in transmission system are
Unified Power Quality Controller (UPQC), Unified Power Flow Controller (UPFC),
Thyristor, TCSC and Static VAR Compensator (SVC). These FACTS devices can
easily regulate power flow parameters like (i) bus voltages, (ii) line impedances
and (ii) Phase angle. In addition, incorporating FACTS devices thermal stress over
increased transmission line can be limited. One can see the first paper proposed for
OPF in [24]. The authors have used phase shifters and series capacitors to control
flow. Later GA [13] and PSO [36] are utilized to solve non-linear OPF problem.

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 159

Witnessing the advantages of using BFA in an optimization, Edward et al. [16],
introduced BFA for a optimal power flow an IEEE-30 bus system. Further the
author commended that BFA is one of the powerful optimization tools in real world.
However the selection of optimal solutions is found difficult in BFA hence, nelder-
meed property is fused with BFA for an OPF. A similar method is used for an
economic dispatch problem in [27].

9.5.1 Modelling of FACTS Devices

To obtain optimal power flow, two FACTS devices are constructed (i) Static VAR
Compensator (SVC) for Reactive power compensation (ii) TCSC is used to change
the reactance of the line.

9.5.1.1 Modeling of SVC

The SVC structure has a Thyristor Controlled Reactor (TCR) connected in parallel
with capacitor bank as shown in Fig. 9.10. The operation of SVC resemble to
the variable reactance connected in parallel. This SVC can absorb or generate
reactive power to regulate voltage at PCC (Point of Common Coupling). Further
the mathematical representation of controllable reactance ‘XV ’ in terms of reactive
impedance ‘XL’ is given as.

XV = XL π

2π − 2α + sin (2α)
(9.25)

Where α denotes the firing angle of the thyristor.
The Fixed Capacitor-Thyristor Controlled Reactor (FC-TCR) effective suscep-

tance ‘B’ in SVC is given by:

Fig. 9.10 Representation of
VAR compensator

160 J. P. Ram and N. Rajasekar

B = XV +XC
XVXC

(9.26)

Where ‘XC’ denotes the capacitive reactance of the fixed capacitor.
The SVC is able to perform both inductive and capacitive compensation. Further

it is modeled as an ideal reactive power injection at bus ‘i’. The power injected at ith

bus is given as.

�Qis = QSVC (9.27)

9.5.1.2 Modeling of TCSC

The purpose of attaining controllable reactance utilizing a TCSC inserted in related
transmission line can be realized by schematic shown in Figs. 9.11 and 9.12. The
mathematical equation for the power flow in transmission line is realized as follows:

Pmn = V 2
mgmn − VmVngnm cos (δm − δn)+ VmVnbnm sin (δm − δn) (9.28)

Qmn = V 2
mgmn − VmVngnm sin (δm − δn)+ VmVnbnm sin (δm − δn) (9.29)

Where

Fig. 9.11 Schematic of
TCSC

Fig. 9.12 Single line
diagram for TCSC regulation

m nrmn + jxmn -jxc

Vm ∠dm Vn ∠dn

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 161

gmn = rmn

r2
mn + (xmn − xc)2

, bmn = − xmn − xc
r2
mn + (xmn − xc)2

The conventional OPF objective function is been modified to apply for the
FACTS devices. The objective defined for optimization is discussed in followed
section.

9.5.2 Formulation of Objective Function

9.5.2.1 Cost Function

The primary objective of this work is locate FACTS devices in order to minimize the
overall cost function. This cost function consists of generation cost and investment
cost of FACTS devices.

(i) Conventional Cost Function

The conventional generation cost function can be approximated as a quadratic
function in terms of US$/Hour as represented in (9.30):

Cx
(
Pg
) = aP 2

g + bP g + c (9.30)

Where ‘Pg’ denotes a vector of active power outputs for the generators in (MW), a,
b and c are the cost coefficients of generator.

(ii) FACTS Devices Cost Functions

Based on Siemens AG Database, the cost functions of SVC and TCSC are
developed and mathematically represented as follows:

(i). The SVC cost function is:

CSVC = 0.0003S2 − 0.315S + 127.38 (US$/kV ar) (9.31)

(ii). The TCSC cost function is:

CTCSC = 0.0015S2 − 0.7130S + 153.38 (US$/kV ar) (9.32)

Total cost investment function for FACTS devices can be given as

Cy(f) = CSVC + CTCSC (9.33)

162 J. P. Ram and N. Rajasekar

9.5.3 Optimal Cost Minimization Using BFA

9.5.3.1 Optimal FACTS allocation

The overall cost function CT involves two functions (i) cost of generation ‘Cx(Pg)’
and (ii) average investment costs of FACTS devices ‘Cx(Pg)’.

CT = Cx
(
Pg
)+ Cx

(
Pg
)

(9.34)

The objective function is to minimize the total cost CT

Min (CT) = Min
(
Cx
(
Pg
)+ Cy(f)

)
(9.35)

Subjected to the following constraints

E (f, g) = 0 (9.36)

B1(f) < b1, B2(g) < b2 (9.37)

Where, E(f, g):is the conventional power flow equations. B1(f) and B2(g) are the
FACTS devices inequality constraints to maintain the conventional power flow.

The derived minimization cost function is further solved to find the best rated
values of FACTS devices as well to locate devices. The implementation procedure
for BFA-nelder meed (BFA-NM)method applied for optimal power flow represented
above as pseudo code.

9.5.4 Results and Discussion

To demonstrate the effectiveness of BFA method for optimal power flow, IEEE
30 bus system is considered for testing. Further the method is tested for various
operating conditions in order to find the suitable optimal location and its consequent
FACTS controller rating to ensure optimal power flow. Four different cases along
with optimized FACTS devices location corresponding to different levels of loading
are analyzed for different buses and presented. The cases study performed are listed
as follows (1) Regular Loading for IEEE 30 bus system. In order to analyze the
effect of loading in the system, different levels of loading are done at different bus.
(2): increased loading only at bus 2, (3): increased loading at only bus 15, and (4):
increased loading at buses 2 and 4 concurrently.

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 163

0 50 100 150 200 250 300 350 400
795

800

805

810

815

820

825

No. of iteartions

O
bj

ec
tiv

e
fu

nc
tio

n
($

/h
r)

Cost convergence curve

GA
BFA
BFA-NM

Fig. 9.13 Cost convergence for case1

Case 1: Regular Loading of IEEE 30 Bus Systems
In this case the hybrid BFA- NM method is utilized to solve the conventional OPF
Problem without the inclusion of FACTS devices. To test the computation ability of
the scheme, the BFA-NM convergence along with conventional BFA and GA is also
coded and plotted in Fig. 9.13.

Case 2: With Increased Loading at Bus 2
With the additional load of 30 MW at bus no. 2, the FACTS device (SVC) is
installed at line 36 of 73.38 MVAr rating. Further the location of FACTS device-
SVC rating is found via trial and error method. On performing several runs using
BFA-NM method, the generators outputs values by including SVC are found to
be 201.46 MW, 49.76 MW, 22.27 MW, 13.97 MW, 11.05 MW and 17.42 MW
respectively. Furthermore the ability of BFA-NM to locate SVC in the bus meets
the requirement in the entire run.

Case 3: With Increased Loading at Bus 15
With an increased load of 20 MW at 15th bus is considered for this case and TCSC
is selected at 10th line. In similar to case 1, the location of TCSC is arrived via the
trial and error. The SVC rating is taken as 72.90MVAr. A dedicated MATLAB code
is now developed and simulated for case 3. In consequence, the generators outputs
are found are listed as follows: 199.73 MW, 50.16 MW, 19.71 MW, 11.48 MW,
12.97 MW and 12.94 MW respectively. The results in with case 2 have reduced
the total cost slightly but at the same time the total loss in the system increases
significantly.

164 J. P. Ram and N. Rajasekar

0 100 200 300 400 500 600
900

905

910

915

920

925

930

No. of iteartions

O
bj

ec
tiv

e
fu

nc
tio

n
($

/h
r)

Cost convergence curve

CASE2
CASE3
CASE4

Fig. 9.14 Cost convceregnce cureve for Case 2, 3 & 4

Case 4: With Increased Loading at Buses 2 and 4 Simultaneously
Having simultaneous increase in load of 15 MW at 2nd and 4th bus, in order to
meet the surmount loading, the SVC is placed at 34th line of 65.04 MVAr rating.
The generators outputs corresponding to different trial are found to be 213.63 MW,
44.72 MW, 20.04 MW, 12.18 MW, 10.32 MW and 12.49 MW respectively. In the
present case; since the addition of SVC has produced reduced total loss in above
cases, in this case SVC is considered to meet the new load demand. The convergence
characteristics for Case2, Case3& Case4 is shown in Fig. 9.14.

Thus from the above discussions, it is inferred that, the FACTS device maintains
the power flow and decreased the total losses in system. However generation cost
is increased. Therefore initial investment is needed in the beginning to increase
generation but the cost can be met with the savings made via loss reduction.

9.6 Conclusion

In this book chapter the Bacterial Foraging Algorithm for an optimization problem
is presented. It is noticed that chemotactic movement based on swimming and
tumbling are more helpful for BFA method to find its success in optimization
domain. An Enhanced exploration created in chemotactic movement is key reason
for exploration in BFA. Based on various observations made with bacterial foraging
optimization method, the following inferences are observed:

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 165

(i) The tumbling movement represented in mathematical form helps the bacteria
to create specific exploitation in the search space.

(ii) On mathematical evaluations, the BFA method has performed its best in all the
trial runs.

(iii) It is found that BFA has all scope to fuse with any of the soft computing
methods to further improve its solutions.

(iv) Three various research problems investigated in this chapter clearly demon-
strates that BFA is far superior to GA and PSO.

(v) Computational efficiency and convergence rate with global solutions are more
appropriate for BFA to be an eventual choice for non-linear optimization
problems.

(vi) A wide and huge scope for BFA to apply for modern engineering applications
is seen at foresight and possibilities to replace existing methods with BFA as
an optimization tool are its future scope.

Acknowledgements The authors would like to thank the Managements, Vellore Institute of
Technology, Vellore and New Horizon College of Engineering, Bengaluru, India for providing
the support to carry out research work. This work is carried out at Solar Energy Research Cell
(SERC), school of Electrical Engineering, Vellore Institute of Technology, Vellore.

References

1. Abido MA (2002) Optimal power flow using particle swarm optimization. Int J Electr Power
Energy Syst 24(7):563–571

2. Abou El Ela AA, Abido MA, Spea SR (2009) Optimal power flow using differential evolution
algorithm. Elect Eng (Archiv fur Elektrotechnik) 91(2):69–78

3. Alanis AY, Arana-Daniel N, Lopez-Franco C (2015) Bacterial foraging optimization algorithm
to improve a discrete-time neural second order sliding mode controller. Appl Math Comput
271:43–51

4. Arunkumar G, Gnanambal I, Karthik PC, Naresh S (2016) Proportional and integral constants
optimization using bacterial foraging algorithm for boost inverter. Energy Procedia 90:535–
539

5. Awadallah MA (2016) Variations of the bacterial foraging algorithm for the extraction of PV
module parameters from nameplate data. Energy Convers Manag 113:312–320

6. Babu TS, Priya K, Maheswaran D, Kumar KS, Rajasekar N (2015) Selective voltage harmonic
elimination in PWM inverter using bacterial foraging algorithm. Swarm Evol Comput 20:74–
81

7. Back T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolution-
ary programming, genetic algorithms. Oxford University Press, Oxford

8. Bar Tana J, Howlett BJ, Koshland DE (1977) Flagellar formation in Escherichia coli electron
transport mutants. J Bacteriol 130(May 2):787–792

9. Berg HC (2000) Motile behavior of bacteria. Phys Today 53(January 1):24–29
10. Bounds DG (1987) New optimization methods from physics and biology. Nature

329(September):215–219
11. Bhushan B, Singh M (2011) Adaptive control of DC motor using bacterial foraging algorithm.

Appl Soft Comput 11(8):4913–4920
12. Carpentier J (1962) Contribution a l’etude du dispatching economique. Bulletin de la Societe

Francaise des Electriciens 3(1):431–447

166 J. P. Ram and N. Rajasekar

13. Chung TS, Li YZ (2000) A hybrid GA approach for OPF with consideration of FACTS devices.
IEEE Power Eng Rev 20(8):54–57

14. Daryabeigi E, Zafari A, Shamshirband S, Anuar NB, Kiah MLM (2014) Calculation of optimal
induction heater capacitance based on the smart bacterial foraging algorithm. Int J Electr Power
Energy Syst 61:326–334

15. Dhillon SS, Lather JS, Marwaha S (2016) Multi objective load frequency control using hybrid
bacterial foraging and particle swarm optimized PI controller. Int J Electr Power Energy Syst
79:196–209

16. Edward JB, Rajasekar N, Sathiyasekar K, Senthilnathan N, Sarjila R (2013) An enhanced
bacterial foraging algorithm approach for optimal power flow problem including FACTS
devices considering system loadability. ISA Trans 52(5):622–628

17. Elattar EE (2015) A hybrid genetic algorithm and bacterial foraging approach for dynamic
economic dispatch problem. Int J Electr Power Energy Syst 69:18–26

18. Huneault M, Galiana FD (1991) A survey of the optimal power flow literature. IEEE Trans
Power Syst 6(2):762–770

19. Kavousi A, Vahidi B, Salehi R, Bakhshizadeh MK, Farokhnia N, Fathi SH (2012) Application
of the bee algorithm for selective harmonic elimination strategy in multilevel inverters. IEEE
Trans Power Electron 27(4):1689–1696

20. Li MS, Ji TY, Tang WJ, Wu QH, Saunders JR (2010) Bacterial foraging algorithm with varying
population. Biosystems 100(3):185–197

21. Liang TJ, O’Connell RM, Hoft RG (1997) Inverter harmonic reduction using Walsh function
harmonic elimination method. IEEE Trans Power Electron 12(6):971–982

22. Mohammadi M, Rozbahani AM, Montazeri M (2016) Multi criteria simultaneous planning
of passive filters and distributed generation simultaneously in distribution system considering
nonlinear loads with adaptive bacterial foraging optimization approach. Int J Electr Power
Energy Syst 79:253–262

23. Naveen S, Kumar KS, Rajalakshmi K (2015) Distribution system reconfiguration for loss
minimization using modified bacterial foraging optimization algorithm. Int J Electr Power
Energy Syst 69:90–97

24. Noroozian M, Andersson G (1993) Power flow control by use of controllable series compo-
nents. IEEE Trans Power Deliv 8(3):1420–1429

25. Panda A, Tripathy M, Barisal AK, Prakash T (2017) A modified bacteria foraging based
optimal power flow framework for hydro-thermal-wind generation system in the presence of
STATCOM. Energy 124:720–740

26. Panda R, Naik MK (2015) A novel adaptive crossover bacterial foraging optimization
algorithm for linear discriminant analysis based face recognition. Appl Soft Comput 30:722–
736

27. Panigrahi BK, Pandi VR (2008) Bacterial foraging optimisation: Nelder–Mead hybrid algo-
rithm for economic load dispatch. IET Gener Transm Distrib 2(4):556–565

28. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Syst 22(3):52–67

29. Rajasekar N, Kumar NK, Venugopalan R (2013) Bacterial foraging algorithm based solar PV
parameter estimation. Sol Energy 97:255–265

30. Ram JP, Babu TS, Rajasekar N (2017) A comprehensive review on solar PV maximum power
point tracking techniques. Renew Sust Energ Rev 67:826–847

31. Ramyachitra D, Veeralakshmi V (2017) Bacterial foraging optimization for protein structure
prediction using FCC & HP energy model. Gene Rep 7:43–49

32. Ray RN, Chatterjee D, Goswamie SK (2008) A modified reference approach for harmonic
elimination in pulse-width modulation inverter suitable for distributed generations. Electr
Power Compon Syst 36(8):815–827

33. Ray RN, Chatterjee D, Goswami SK (2010) A PSO based optimal switching technique for
voltage harmonic reduction of multilevel inverter. Expert Syst Appl 37(12):7796–7801

34. Roa-Sepulveda CA, Pavez-Lazo BJ (2003) A solution to the optimal power flow using
simulated annealing. Int J Electr Power Energy Syst 25(1):47–57

9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter. . . 167

35. Santos VS, Felipe PV, Sarduy JG (2013) Bacterial foraging algorithm application for induction
motor field efficiency estimation under unbalanced voltages. Measurement 46(7):2232–2237

36. Saravanan M, Slochanal SMR, Venkatesh P, Abraham JPS (2007) Application of particle
swarm optimization technique for optimal location of FACTS devices considering cost of
installation and system loadability. Electr Power Syst Res 77(3):276–283

37. Shi KL, Li H (2005) Optimized PWM strategy based on genetic algorithms. IEEE Trans Ind
Electron 52(5):1458–1461

38. Sundareswaran K, Kumar AP (2004) Voltage harmonic elimination in PWM AC chopper using
genetic algorithm. IEE Proc Electr Power Appl 151(1):26–31

39. Sundareswaran K, Jayant K, Shanavas TN (2007) Inverter harmonic elimination through a
colony of continuously exploring ants. IEEE Trans Ind Electron 54(5):2558–2565

40. Swift F, Kamberis A (1993) A new Walsh domain technique of harmonic elimination and
voltage control in pulse-width modulated inverters. IEEE Trans Power Electron 8(2):170–185

41. Todorovski M, Rajicic D (2006) An initialization procedure in solving optimal power flow by
genetic algorithm. IEEE Trans Power Syst 21(2):480–487

42. Turanoğlu B, Akkaya G (2018) A new hybrid heuristic algorithm based on bacterial foraging
optimization for the dynamic facility layout problem. Expert Syst Appl 98:93–104

43. Turnbull FG (1964) Selected harmonic reduction in static DC—AC inverters. IEEE Trans
Commun Electr 83(73):374–378

44. Tutkun N (2010) Improved power quality in a single-phase PWM inverter voltage with bipolar
notches through the hybrid genetic algorithms. Expert Syst Appl 37(8):5614–5620

45. Zhu GY, Zhang WB (2017) Optimal foraging algorithm for global optimization. Appl Soft
Comput 51:294–313

Chapter 10
Application of Artificial Immune System
in Optimal Design of Irrigation Canal

Sirajul Islam and Bipul Talukdar

Abstract Artificial Immune System (AIS) is an emerging field of computational
intelligence used in engineering and scientific applications. Like other biologically
inspired algorithms, they are evolutionary in nature. Over the years, these algorithms
have been applied in many problems of Engineering Optimization and they have
proved to be superior search methods. An optimization algorithm based on artificial
immune system is formulated in the present study and is applied in optimal design
of an irrigation canal section. Results are compared with those obtained from
optimization using Genetic Algorithm (GA). The results compare very keenly.
Moreover, the due to the modifications incurred into the AIS algorithm, it consumes
much less time in comparison to GA while converging to the optimal solution.

Keywords Optimization · Artificial immune system · Clonal selection
algorithm · Affinity · Cloning · Mutation

10.1 Introduction

Artificial Immune System (AIS) is a comparatively new computational paradigm
which is derived from the natural immune system. AIS is used in a wide range
of applications for solving real world science and engineering problems such
as machine learning, pattern recognition, data mining, intrusion detection and
engineering system optimization etc.

The biological immune system is a complex, distributed, and adaptive system
that defends the body from invasions by using a multilevel defense mechanism. This
defense mechanism works by recognizing all cells within the body and then cate-
gorizing them as self (body’s own cells) and non-self (foreign cells). The immune
system learns through evolution to distinguish between body’s own cells and foreign

S. Islam (�) · B. Talukdar
Department of Civil Engineering, Assam Engineering College, Guwahati, India

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_10

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-26458-1_10

170 S. Islam and B. Talukdar

cells, also called the antigens. The body’s immune defense mechanism generally
coexists with cells that carry distinctive “self” marker molecules. But when immune
defenders encounter cells or organisms carrying “non-self” molecules, they quickly
launch an attack. The immune system is characterized by its adaptability, learning
and memory mechanisms that can be easily applied in many computational tasks.
Several concepts have been derived from the specific immunological theories for
development of search algorithms. Some of these concepts are- Immune Network
Theory, Negative Selection Mechanism and Clonal Selection Principle. These
theories or combinations of them have been used to develop algorithms that are
applied for problem solving in science and engineering.

The concept of AIS emerged in the mid 1980s with the work of Farmer, Packard
and Perelson [11] on theoretical immune network models proposed to describe the
maintenance of immune memory. Ishida [23] proposed the first immune network
algorithm which was subsequently re-defined and implemented by Timmis et al.
[21]. A negative selection algorithm was proposed for the first time by Forrest et
al. [12] to detect data manipulation caused by a virus in a computer system. De
Castro and Von Zuben [10] developed a Clonal Selection Algorithm (CSA) named
CLONALG for learning and optimization, which is by far the most popular and
widely used AIS algorithm. Being one of the pioneers of research in the field of AIS,
Dasgupta [5–7, 9] conducted extensive studies on various aspects of AIS. Dasgupta
et al. [8] presented a detailed account of recent developments in AIS research and
new computational techniques being developed by using various immunological
theories. Attempts have also been made to develop hybrid algorithms by combining
AIS with other evolutionary computation methods such as genetic algorithm (GA),
particle swam optimization (PSO) etc. A PSO-AIS hybrid algorithm was proposed
by Ge et al. [13] for job-shop scheduling and was found to be very effective. Zheng
and Ponnambalam [25] used a combined GA-AIS algorithm for optimization of
turning operations and reported that this hybrid technique performed better than
other heuristics.

In the recent time, AIS has seen few applications in water resources management.
Chu et al. [4] proposed an optimization procedure based on a CSA framework to
optimize the designs of water distribution networks. In a comparative evaluation of
different evolutionary algorithms for parameter estimation of a hydrologic model,
Zhang et al. [24] found the performance of CLONALG to be at par with other
evolutionary algorithms. Luo and Xie [18] used a CSA for parameter estimation
of the non- linear Muskingum model for stream flow routing. Wang et al. [22]
employed AIRS as a new approach of data mining to extract operating rules on
a water-supply reservoir and reported that AIRS could effectively extract reservoir
operating rules. In authors’ earlier works, CSA was used for optimization of a single
reservoir operation [14] as well as for conjunctive management of the irrigation
system [15]. In the present study, CSA is used for optimal design of an irrigation
canal system.

10 Application of Artificial Immune System in Optimal Design of Irrigation Canal 171

10.2 Overview of AIS Algorithms

Inspired by various theories about the function and behavior the adaptive immune
system, the following computational techniques have been derived from specific
immunological theories.

10.2.1 Clonal Selection Algorithm

A class of algorithms inspired by Burnet’s clonal selection theory of acquired
immunity [2] that explains the basic features of an immune response to antigenic
stimulus. These algorithms focus on the Darwinian attributes of the theory that only
those cells that recognize the antigens can proliferate and produce clones subject to
a mutation process known as somatic hypermutation. Clonal selection algorithms
are most commonly applied to optimization and pattern recognition domains.

10.2.2 Negative Selection Algorithm

These Algorithms are inspired by the mechanism of the immune system to train
the T-Cells (thymus cells) to recognize the antigens and to prevent them from
recognizing the body’s own cells [8]. The T-cells undergo a process of Negative
selection whereby the self-reacting cells are destroyed and the rest are allowed
to proliferate. This class of algorithms is typically used for classification and
pattern recognition problem domains where the problem space is modeled in the
complement of available knowledge.

10.2.3 Immune Network Algorithms

These Algorithms are inspired by the idiotypic network theory proposed by Jerne
[16] that describes the regulation of the immune system by an idiotypic network of
interconnected B-cells. Two B-cells are interconnected when the affinities they share
exceed a certain threshold, and the strength of the connection is directly proportional
to the affinity they share. Immune network algorithms are used in clustering, data
visualization, control, and optimization domains, and share properties with artificial
neural networks.

Apart from the above classes of AIS algorithms, attempts have also been made
to develop algorithms based on Danger Theory, Dendritic Cell and some hybrid
techniques involving various immunological theories as described in Dasgupta et
al. [8].

https://en.wikipedia.org/wiki/Clonal_selection
https://en.wikipedia.org/wiki/Darwinism
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/w/index.php?title=Idiotypic_network&action=edit&redlink=1
https://en.wikipedia.org/wiki/Artificial_neural_networks

172 S. Islam and B. Talukdar

10.3 Formulation of AIS Algorithm

Among the different versions of AIS, CSAs have mostly been applied in numerical
optimization. The feature of selection, cloning and mutation etc. make these
algorithms suitable for finding global optima of engineering optimization problems.
In the present study, a modified CSA is formulated for application in water resources
system optimization.

The basic ingredients of a CSA as defined in CLONALG are -generation of
antibody cells (self-cells), affinity computation, selection, cloning and mutation. A
single decision variable of the optimization problem is known as a chromosome of
an antibody cell. These chromosomes are represented in a string structure. Next step
is affinity computation, which refers to the evaluation of the objective function. After
measuring the affinity of the antibodies, a sizeable percentage of the best affinity
population is selected and each of them is replicated by cloning. The clones are
then subjected to random genetic changes called somatic hypermutation (or simply
mutation). The process is repeated for specific number of generations or until some
stopping criteria are fulfilled.

Two unique features of a CSA [1] that make this algorithm more suitable for
finding global optima are-

1. Affinity proportionate cloning, which means that the number of clones to be
produced for a particular antibody is proportional to its affinity.

2. Affinity inverse proportionate mutation, which means that the quantum of genetic
change effected to a particular chromosome is inversely proportional to its
affinity.

In the present work, a CSA is formulated with certain modifications to the
traditional CSAs. The algorithmic steps of the formulation are presented in Fig.
10.1. In the traditional CSAs such as CLONALG, the lower affinity population of
antibodies is replaced by new ones during transition to each new generation, so as
to maintain population diversity. This necessitates computation of the affinity again
at the beginning of the next generation for obtaining the best affinity population,
resulting in huge computational burden. But in the present formulation, a chosen
percentage of random population is added to the existing population just after
mutation. The affinity is then computed and a selected best affinity population is
sent to the next generation. This avoids the need to compute the affinity again at
the beginning of the next generation. Thus, the number of functions to be evaluated
at each generation in the new CSA formulation is equal to the number of clones
produced. It is expressed as:

NC =
Ab∑

ab=1

ab × RC (10.1)

10 Application of Artificial Immune System in Optimal Design of Irrigation Canal 173

No

Stop

Start

Generate antibody
population

Test affinity

Selection

Cloning

Somatic hypermutation

Test affinity

Are the stopping
criteria fulfilled?

Add new population

Next generation

Yes

Fig. 10.1 Flowchart representing the formulated clonal selection algorithm

174 S. Islam and B. Talukdar

where, NC is the total number of clones produced; RC is the rate at which cloning
occurs; ab is the antibody index in ascending order of affinity and Ab is the number
of selected best affinity antibodies.

10.4 Model Application

The formulated AIS algorithm is applied on a problem of optimal design of an
irrigation canal. The objective of the problem is to minimize water loss from the
canal subject to fulfillment of design criteria. The total water loss from a canal
section is given by

qw = qs + qe (10.2)

where, qw is the total water loss from the channel section, which is the sum of
seepage discharge per unit length of the canal, qs (m2/s) and evaporation discharge
per unit length of the canal qe (m2/s). qs and qe are given by Swamee et al. [20]

qs = kynF (10.3)

qe = ET (10.4)

where, k is the hydraulic conductivity of the porous medium (m/s), yn is the depth
of water in the canal (m), F is a seepage function depending on channel geometry,
E is the evaporation discharge per unit free surface area (m/s) and T is the width of
free surface (m). Replacing qs and qe from Eq. 10.3 and Eq. 10.4 in Eq. 10.1, the
optimization problem can be expressed as

Minimize : f = kynF + ET (10.5)

Where, f is the objective function to be minimized. The minimization problem
expressed by Eq. 10.5 is subject to the constraint of resistance of flow in canal. The
most commonly used flow equation in design of uniform open canal is Manning’s
equation [3] which is applicable to rough turbulent flow and with a limited
bandwidth of relative roughness. The present study uses the modified equation
proposed by Swamee et al. [20] which relaxes the above mentioned restrictions.
It is given by,

Q = −2.457A
√
gRS0 ln

(
ε

12R
+ 0.221ν

R
√
gRS0

)
(10.6)

where, Q = canal discharge (m3/s); A = flow area (m2); g = gravitational
acceleration (m/s2); R = hydraulic radius (m) defined as the ratio of the flow area to

10 Application of Artificial Immune System in Optimal Design of Irrigation Canal 175

the wetted perimeter P (m); ε = average roughness height of the canal lining (m);
and ν = kinematic viscosity of water (m2/s); S0 = bed slope (dimensionless).

The above equation is inserted as equality constraint to the minimization
problem. In addition to the above constraint, optimal design of canal section is
also subject to limitation on the flow velocity. The average flow velocity Va for
the designed section is expressed by the continuity equation

Va = Q

A
(10.7)

This average velocity Va has to be less than the limiting velocity Vl.

10.4.1 Design Problem

The present study considers the design of a concrete lined canal with rectangular
section. Figure 10.2 shows the dimensional notations for the canal section. For
rectangular section, width of free surface T is same with that of bed width b. Swamee
et al. [20] derived the expression for seepage function, F for rectangular section as

F =
[(

4π − π2
)0.77 +

(
b

yn

)0.77
]1.33

(10.8)

Thus, Eq. 10.5 may be expressed as

f = kyn
[(

4π − π2
)0.77 +

(
b

yn

)0.77
]1.33

+ bE (10.9)

Fig. 10.2 Rectangular canal
section with dimensional
notations

yn

b

T

176 S. Islam and B. Talukdar

In order to evaluate the performance of AIS in comparison to other evolutionary
algorithms, the present study considers the input parameters from literature [17],
where GA was used for optimal design of concrete lined canal with rectangular
section. The different parameters are Q = 10 m3/s; ε =1 mm; k = 10−6 m/s;
E = 2.5 × 10−6 m/s; ν = 1.1 × 10−6 m2/s; Vl = 2.5 m/s; S0 = 0.001; g = 9.79 m/s2.

10.4.2 Optimization Using CSA

The proposed CSA is implemented in MATLAB platform using real coding scheme.
The objective function as well as initialization, cloning and mutation functions are
stored in separate m-files, which are called from the main optimization module.
The decision variables in this optimization problem are the bed width, b and the
depth of water, yn. It’s necessary to impose upper and lower bounds on the decision
variables in a CSA. Depending on the discharge and flow requirements, the upper
and lower bounds for both the variables are chosen to be 3 m and 2 m respectively.
The MATLAB code for the optimization algorithm is presented in Appendix.

Like most of the evolutionary search algorithms, Penalty function approach [19]
is used to handle the constraints in a CSA. In penalty function method, the set
of constraint functions is added to the objective function as a cost for violation
of constraints, and as a result, the constrained optimization problem turns into an
unconstrained one in the following manner.

fp = f +
M∑

m=1

β fcm (10.10)

where, fp is the penalty function; f is the objective function; fc is the constraint
function; m is the constraint function index; M = the number of constraints; β is a
multiplier such that, β = 1, if constraint is violated or β = 0, if constraint is satisfied.

The present problem consists of one equality constraint i.e. Q = 10 m3/s and one
inequality constraint i.e. V ≤ 2.5 m/s.

10.5 Results and Discussion

A sensitivity analysis is carried out for the different CSA parameters used in the
present algorithms. The most important user defined parameters of the formulated
CSA that influence the convergence speed and computational time are Ab and RC.
Sensitivity of the algorithm is tested using different values of these two parameters.
The results are tabulated in Table 10.1. Ab = 20 and RC = 2 are the best values

10 Application of Artificial Immune System in Optimal Design of Irrigation Canal 177

Table 10.1 Sensitivity
analysis of CSA parameters

ab RC

Best objective
function value
(f) (× 10−5)

Constraint
violation
(value of β)

1 2 3 4
10 2 1.6215 0
15 2 1.6178 0
20 2 1.5997 0
20 3 1.5984 0
20 5 1.5980 0

Table 10.2 Optimal design parameters for rectangular canal section

Number of
generations

Best objective
function value
(f) (× 10−5) b yn A V

1 2 3 4 5 6
50 1.601 2.273 2.285 5.195 1.925
100 1.593 2.241 2.324 5.207 1.920
200 1.587 2.269 2.290 5.196 1.924

Table 10.3 Comparative results of optimization from CSA and GA

Search method

Best objective
function value
(f) (× 10−5) b yn A V

1 2 3 4 5 6
AIS 1.587 2.269 2.290 5.196 1.924
GA 1.579 2.170 2.414 5.238 1.909

obtained. Using these values, the model is run three times each for 50,100 and 200
generations respectively. At each run, the algorithm yields separate results, but the
objective function value remains the same for the same number of generations. The
results are shown in Table 10.2. The best result is obtained from 200 generations of
iterations with objective function value of 1.587E-05. The values of Q = 9.999 and
V = 1.924 show that the constraints are not violated. The best results are also shown
in comparison with those obtained by using GA [17], in Table 10.3.

The results compare very keenly. The object function value obtained from the
present algorithm is nearly the same with that obtained from GA optimization.
Moreover, due to the modifications incurred to the CSA, it involves lesser computa-
tional burden as compared to GA. Hence the present algorithm may be considered
a good option to obtain accurate results with.

178 S. Islam and B. Talukdar

10.6 Summary and Conclusions

This study presented an overview of the algorithms based on AIS and their
applications in real life problem solving. A CSA was formulated and applied in
the design of a rectangular canal section using input data from literature. The
results obtained from optimization using CSA were found to be satisfactory. The
results were also shown to be comparable with those obtained from established
evolutionary optimization algorithm like GA.

Appendix: MATLAB Code for Real Coded Clonal Selection
Algorithm

Optimization Module

10 Application of Artificial Immune System in Optimal Design of Irrigation Canal 179

U
se

r d
ef

in
ed

 p
ar

am
et

er
s

1. clear all % Remove data from memory
2. Objectfun = @ Canaldesign; % Objective function
3. Initializationfun = @initAB; % Initialization function used
4. Cloningfun =@clonefun; % Cloning function used
5. Mutationfun =@mutfun; % Mutation function used
6. ABpop = 100; % Size of antibody population to be

generated
7. Bounds =[2 3; 2 3]; % bounds on the variables (antigens)
8. bestaffinABpop =20; % best population to select on the basis

of affinity
9. rateclone =2; % rate of afinity proportionate cloning
10. ratemut =1; % rate of affinity inverse proportionate

mutation
11. sizeclone = rateclone*bestaffinABpop*….

(bestaffinABpop+1)/2; % cloning size
12. np = 0.2; % size of new antibodies for next gen.
13. Gen =100; % No. of generations to be iterated

14. genAB = initAB(ABpop,bounds); % generate random population with the
help of user defined function “initAB”

15. options = []; % options on the input variables
16. for G=1:Gen
17. for k=1:ABpop
18. [x,aff] = Objectfun (genAB (k,:),options); % test the affinity
19. affinval(:, k) = aff;
20. affinx(:, k)=x;
21. end
22. affinmatrix (:,1)=affinval; % matrix of affinity values
23. affinmatrix (:,2:size (bounds,1)+1)=affinx';
24. sortmatrix = (sortrows(affinmatrix,1)); % arrange the affinity values in descending

order
25. bestaffin = sortmatrix(ABpop-bestaffinABpop…

+1:ABpop,1:size(bounds,1)+1); % select the best affinity antibodies
26. cloneABpop = clonefun (bounds,……

bestaffinABpop, bestaffin, rateclone); % cloning by using function “clonefun”
27. [mutposition,mutABpop]=mutationfun…..

(bounds,cloneABpop,rateclone,ratemut,…
bestaffinABpop); % Mutation using “mutationfun” function

28. for k =1:sizeclone
29. [x,aff] = Objectfun(mutABpop(k,:),options); % test the affinity after mutatation
30. mutaffinity(:,k)=aff;
31. mutx (:,k) = x;
32. end
33. memoryABpop (:,1) = mutaffinity;
34. memoryABpop (:,2:size (bounds,1)+1)=mutx';

180 S. Islam and B. Talukdar

35. sortmemoryAB=flipud….
(sortrows (memoryABpop,1));

36. bestsol (G,:)=max(sortmemoryAB(:,1)); % best value for affinity
37. xval = sortmemoryAB……

(1,2:size (bounds,1)+1);
38. bestmutABpop=sortmemoryAB…

(1:ABpop*(1-np),2:size(bounds,1)+1); % keep the best population after mutation
39. addpop =(ones(ABpop*np,1)*…..

(bounds(:,2)-bounds(:,1))').*….
40. (rand(ABpop*np,size(bounds,1))).....

+(ones(ABpop*np,1)*bounds(:,1)'); % add new population of antibodies
41. genAB(1:ABpop*np,1:size(bounds,1))….

= addpop;
42. genAB(ABpop*np+1:ABpop,…..

1:size(bounds,1))=bestmutABpop; % new generation of popuation
43. end
44. xval % best values at the end of specified no. of

generations.

Initialization Function

1. function genAB= initAB(ABpop,bounds)
genAB = (ones(ABpop,1)*(bounds(:,2)…
bounds(:,1))').*(rand(ABpop,size(bounds,1)))....

+(ones(ABpop,1)*bounds(:,1)'); % Initialize population

Cloning Function

1. function [cloneABpop] =clonefun…
(bounds,bestaffinABpop,bestaffin,rateclone);

2. for p=1:bestaffinABpop
3. clonematrix(1+rateclone*p*(p-1)/2:rateclone*p*(p+1)/2,...

1:size(bounds,1)+1)= repmat….
(bestaffin(p,:),p*rateclone,1); % affinity proportionate cloning

4. cloneABpop=clonematrix…..
(1:rateclone*p*(p+1)/2,2:size(bounds,1)+1);

5. end

10 Application of Artificial Immune System in Optimal Design of Irrigation Canal 181

Mutation Function

6. function [mutposition,mutABpop] =……..
mutfun(bounds,cloneABpop,rateclone,ratemut,bestaffinABpop);

7. sizeclone = rateclone*bestaffinABpop*(bestaffinABpop+1)/2;
8. for p =1:bestaffinABpop
9. mutposition = round(rand * (size(bounds,1)-1))+1;
10. randmut(1+rateclone*p*(p-1)/2:rateclone*p*(p+1)/2-1).......

= ratemut/p.^2*randn(rateclone*p-1,1)...
+cloneABpop(rateclone*p-1, mutposition); % random mutation of antibodies inversely

proportional to affinity
11. end
12. mutABpop = cloneABpop;
13. mplr = bounds(mutposition,1);
14. mpur = bounds(mutposition,2);
15. for m =1:sizeclone-1
16. if randmut(m)<mplr
17. randmut(m)=mplr;
18. elseif randmut(m)>mpur
19. randmut(m) = mpur;
20. end
21. mutABpop(m,mutposition) = randmut(m);
22. end

References

1. Brownlee J (2007) Clonal selection algorithms. CIS technical report 070209A, Centre for Infor-
mation Technology Research, Swinburne University of Technology, Melbourne, Australia

2. Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge University
Press

3. Chow VT (1973) Open channel hydraulics. McGraw-Hill Book Co. Inc, New York
4. Chu CW, Lin MD, Liu GF, Sung YH (2008) Application of immune algorithms on solving

minimum cost problem of water distribution network. Math Comput Model 48(11–12):1888–
1900

5. Dasgupta D (1999) Artificial immune systems and their applications. Springer, Berlin
6. Dasgupta D, Ji Z, Gonzalez F (2003) Artificial immune system (AIS) research in the last five

years. In: Congress on evolutionary computation (CEC’03), 1, pp 123–130
7. Dasgupta D, Ji Z (2007) Revisiting negative selection algorithms. Evol Comput 15(2):223–251
8. Dasgupta D, Yua S, Nino F (2011) Recent advances in artificial immune systems: models and

applications. Appl Soft Comput 11:1574–1587
9. Dasgupta D, Silva GC (2014) Steps toward developing an artificial cell signaling model applied

to distributed fault Detection. In: 13th international conference on unconventional computation
and natural computation (UCNC), University of Western Ontario, Canada

10. De Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection
principle. IEEE Trans Evol Comput Spec Issue Artif Immune Syst 6(3):239–251

11. Farmer JD, Packard N, Perelson A (1986) The immune system, adaptation and machine
learning. Physica D 2:187–204

182 S. Islam and B. Talukdar

12. Forrest S, Perelson AS, Allen L, Cherukuri R (1994) Self-nonself discrimination in a computer.
In: Proceedings of the IEEE symposium on research in security and privacy, Los Alamitos, CA,
pp 202–212

13. Ge HW, Liang YC, Qian F (2008) An effective PSO and AIS based hybrid intelligent algorithm
for job-shop scheduling. IEEE Trans Syst Man Cybern Syst Hum 38(2):358–368

14. Islam S, Talukdar B (2012) Application of artificial immune system in optimization of reservoir
operation. Int J Water Resour Environ Manag 3(2):241–254

15. Islam S, Talukdar B (2016) A linked simulation–optimization (LSO) model for conjunctive
irrigation management using clonal selection algorithm. Journ Inst Eng India Ser A 97(3):181–
189

16. Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol 125(C):373–
389

17. Kentli A, Mercan O (2014) Application of different algorithms to optimal design of canal
sections. J Appl Res Technol 12:762–768. 768

18. Luo J, Xie J (2010) Parameter estimation for nonlinear Muskingum model based on immune
clonal selection algorithm. J Hydrol Eng 15(10):844–851

19. Smith AE, Coit DW (1996) Penalty functions. In: Handbook of evolutionary computation.
Oxford University Press and Institute of Physics Publishing

20. Swamee PK, Mishra GC, Chahar BR (2000) Design of minimum seepage loss canal sections.
J Irrig Drain Eng 126(1):28–32

21. Timmis J, Neal M, Hunt J (2000) An artificial immune system for data analysis. Biosystems
55:143–150

22. Wang XL, Cheng JH, Yin ZJ, Guo MJ (2011) A new approach of obtaining reservoir operation
rules:artificial immune recognition system. Expert Syst Appl 38(9):11701–11707

23. Ishida Y (1990) Fully distributed diagnosis by PDP learning algorithm: towards immune
network PDP model. IEEE International joint conference on neural networks, San Diego, USA

24. Zhang X, Srinivasan R, Zhao K, Liew VM (2008) Evaluation of global optimization algorithms
for parameter calibration of a computationally intensive hydrologic model. Hydrol Process
23(3):430–441

25. Zheng LY, Ponnambalam SG (2010) In: Liu H et al (eds) A hybrid GA-AIS heuristic for
optimization of multipass turning operations, ICIRA, Part-II, LNAI 6425. Springer, Berlin,
pp 599–611

Chapter 11
Biogeography Based Optimization for
Water Pump Switching Problem

Vimal Savsani, Vivek Patel, and Mohamed Tawhid

Abstract This chapter introduces the basic concepts of biogeography based opti-
mization (BBO) algorithm and its application to a combinatorial water switching
problem. Water switching optimization is a pump scheduling problem which
considers minimization of total electrical energy requirement as an objective
function. Pump status (switch on/switch off) of pumping stations are considered
as a discrete (binary) decision variables for the optimization problem. Suction and
discharge pressure are considered as constraints in the procedure. A case study
with 10 pumping station and 40 pumps is presented for the experimentation. The
performance of BBO is tested against other state-of-the art algorithms that includes
genetic algorithm (GA), branch & bound method (B&B), harmony search (HS)
algorithm, particle swarm optimization (PSO) and ant colony optimization (ACO)
algorithms. Water pump switching problem is also investigated by using different
constraint handling techniques and by considering different pump situations in a
pumping station. The Computational results indicate that BBO is an appropriate
algorithm to solve water pump switching problem and is effective over other
optimization methods. Moreover, 20 alternative optimum solutions are presented
to demonstrate water switching problem as a multi-modal problem with different
optimum solutions and the search capability of BBO to find alternate optimum
solutions.

Nomenclature

E pumping energy (hp)
Q flow rate (cfs)

V. Savsani (�) · V. Patel
Department of Mechanical Engineering, Pandit Deendayal Petroleum University, Gandhinagar,
Gujarat, India

M. Tawhid
Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_11

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-26458-1_11

184 V. Savsani et al.

P pump pressure (psi)
x binary variable
n pumping station
m pump

Greek letters

η motor-pump efficiency
γ specific weight (lb/ft3)

Subscript

L lower limit
U upper limit

Superscript

D discharge
L pressure loss
S suction

Biogeography-Based Optimization

Biogeography-based optimization (BBO) is an evolutionary algorithm (EA) that is
used for the optimization of a mathematical function, especially discrete in nature,
by using stochastic and iterative process. It was developed by Dan Simon in 2008
based on the mathematical modeling of immigration and emigration of species from
one place to the other. The basic mathematical models for the biogeography of the
species were reported in the early 1960s by Robert MacArthur and Edward Wilson.
Their work was published in 1967 titled as ‘The Theory of Island Biogeography’.
The basic mathematical models of biogeography is based on how species migrate
from one island (habitat) to another, how new species arise, and how species become
extinct. Geographical areas that are well suited as residences for biological species
are said to have a high habitat suitability index (HSI).The factors (natural factors)
that characterize habitability are called suitability index variables (SIVs). Habitats
with a high HSI tend to have a large number of species, while those with a low HSI
have a small number of species. Habitats with a high HSI have many species that

11 Biogeography Based Optimization for Water Pump Switching Problem 185

emigrate to nearby habitats, because of the large number of species that they host.
Habitats with a high HSI have low species immigration rate because they are already
nearly saturated with species.

‘Biogeography Based Optimization’ works on the concept of immigration and
emigration of the species also written as BBO in abbreviate form. To solve an
optimization problem by BBO, a good solution is comparable to an island with
a high HSI, and a poor solution represents an island with a low HSI. High HSI
solutions resist change more than low HSI solutions. By the same expression,
high HSI solutions tend to share their characteristics with low HSI solutions.
This approach is the key driving factor for the working of biogeography-based
optimization (BBO).

BBO searches for the solution by using two natural phenomenon called, migra-
tion and mutation. Migration is a process in which different species transfer from
one habitat to the other. Consider a population of candidate solution which is
represented by design variables. These design variables are mimicked for suitability
index variables (SIVs). The solutions that are good can be considered to be habitats
with a high HSI, and those that are poor can be considered to be habitats with a low
HSI. This goodness of solution is obtained from the value of objective function. It
can be assumed that each solution (habitat) has an identical species curve shown
in Fig. 11.1 (with E = I), but the S value represented by the solution depends
on its HSI. As observed from the figure, the maximum possible immigration rate
occurs when there are zero species on the island. As the number of species increases,
the island becomes more crowded, fewer species are able to survive immigration,
and the immigration rate decreases. The largest possible number of species that
the habitat can support is Smax, at which the immigration rate is zero. If there
are no species on the island, then the emigration rate is zero. As the number of
species on the island increases, it becomes more crowded, more species are able

Fig. 11.1 Species model for
single habitat showing two
candidate solutions

E=I

ra
te

S1 S2 Smax
number of species

immigration
l

emigration
m

186 V. Savsani et al.

to leave the island, and the emigration rate increases. When the island contains the
largest number of possible species Smax, the emigration rate reaches its maximum
possible.

Let S1 and S2 represent two solutions with different HSI. The emigration and
immigration rates of each solution are used to probabilistically share information
between solutions (habitats). If a given solution is selected to be modified, then its
immigration rate λ is used to probabilistically decide whether or not to modify each
design variable in that solution. If a given design variable in a given solution Si is
selected to be modified, then the emigration rates μ of the other solutions is used to
probabilistically decide which of the solutions should migrate a randomly selected
SIV to solution Si. As with other population-based optimization algorithms, some
sort of elitism is incorporated in order to retain the best solutions in the population.
BBO updates the solution by migration by using Algorithm-1.

__
Algorithm-1: Migration in BBO
__
1. For each individual, map the fitness to the number of species
2. Calculate the immigration rate λi and the emigration rate μi for each individual
Solutioni
3. For i = 1 to N(N=number of habitats)
4. Select Solutioni with probability proportional to λi

5. If rand(0, 1) < λi

6. For j = 1 to N
7. Select Solutionj with probability proportional to μj

8. If rand(0, 1) < μj

9. Randomly select a variable x from Solutionj

10. Replace the corresponding variable in Solutioni with x
11. Endif
12. Endfor
13. Endif
14. Endfor
__

In nature a habitat’s HSI can change suddenly due to apparently random events
(unusually large flotsam arriving from a neighbouring habitat, disease, natural
catastrophes, etc.). This phenomenon is termed as SIV mutation, and species
count probabilities are used to determine mutation rates. The SIV mutation can be
understood easily from the Algorithm-2:

11 Biogeography Based Optimization for Water Pump Switching Problem 187

__
Algorithm-2: Mutation in BBO
__
1. For i = 1 to N
2. Compute the probability Pi
3. Select design variable Xi(j) with probability (Pi)
4. If rand (0, 1) < mi (mi is user defined parameter for mutation)
5. Replace Xi(j) with a randomly generated SIV
6. End if
7. End for
__

BBO improves the current solutions by only considering the objective function
value. BBO is a metaheuristics technique since it implements several variations
and it does not make any assumptions about the problem to be solved. The
above advantages make BBO to be applied to a wide class of problems. BBO
was specifically developed to solve discrete optimization problems that can be
multidimensional real-valued functions and it does not use the gradient of the
function. So, BBO do not require the function to be differentiable as required by
many classic optimization methods. BBO can therefore be used on discontinuous
functions as well. So, BBO optimizes a problem by maintaining a population of
candidate solutions, and creating new candidate solutions by combining existing
ones according to simple rules of migration and mutation. In this way the objective
function is simply treated as a black box.

The basic working of BBO can be understood by following pseudo code:

1. Initialize the BBO parameters (maximum species count (N), migration rates (E
and I), maximum mutation rate mi)

2. Initialize a random set of solutions (habitats). (Migration)
3. For each solution, map the HSI to the number of species S and find immigration

rate λ, and emigration rate μ for each solution.
4. Probabilistically use immigration and emigration rates to modify each solution.

(Mutation)
5. For each solution, update the probability and perform SIV mutation.
6. Preserve elite solution and go to step (3) for the next iteration till the termination

criteria is reached

The population size N is a tuning parameter. If N is too small or too large, then
the performance of BBO will suffer on different problems. Typical implementations
of BBO use a value of N somewhere between 20 and 200, but it can be noted
that the value of N largely depends on the type of problem to be solved. The
initial population of candidate solutions is usually generated randomly. However, it
could be generated in a problem-dependent way based on some logical and realistic
guesses or previously-known good solutions to the optimization problem required
to be solved. The termination criterion is also other parameter which requires some

188 V. Savsani et al.

attention. In most applications the termination criterion can be a generation count
limit or function evaluations.

Many variants have been proposed to the basic BBO algorithm in the literature so
far. Elitism is implemented in most EAs to make sure that the best candidate solution
is not lost from one generation to the next. This can be implemented in a variety of
ways, but one common way is to save the best candidate solutions at the beginning
of each generation that can replace the worst solutions with the elite solution at the
end of the generation, after migration and mutation have completed. The number
of elite solution can also make a significant difference in the performance of BBO,
and it is always required to experiment with different number of elite solutions.
Duplicate replacement is often implemented in BBO. This is a procedure at the end
of each generation that replaces duplicate individuals in the population. Scanning
for duplicates can be computationally intensive because it is an O(N2) operation, so
it is often performed only every few generations, rather than in every generation.
Blending can be implemented in BBO to improve its performance. In blending,
instead of replacing design variables in an immigrating solution with the design
variable from the emigrating solution, the immigrating solution is updated based on
the linear combination of immigrating and the emigrating solution. Blended BBO is
based on blended crossover in genetic algorithms and has been shown to outperform
standard BBO [14]. Other approaches for selecting the immigrating and emigrating
candidate solutions have also been proposed [11, 23]. The migration curves in the
basic BBO are linear, but nonlinear migration curves often give better performance
[13]. Hybridization of BBO is also reported with several other EAs, such as
particle swarm optimization [11, 30], differential evolution [3], evolution strategy
[6], opposition-based computing [7], case-based reasoning, artificial bee colony
algorithm [1], bacterial foraging optimization [12], harmony search [28], ant colony
algorithm and artificial immune algorithm [20] and the simplex algorithm [26]. BBO
had been combined with local search to develop a memetic algorithm that performs
much better than basic BBO. BBO has been mathematically analyzed using Markov
models [24] and dynamic system models [22]. BBO has been implemented to noisy
functions, constrained functions [17, 18], combinatorial functions [25], engineering
design problems [16, 19] and multi-objective functions [5, 17, 18].

This chapter extends the use of standard BBO for the challenging combinatorial
water switching problem. The description of the problem along with its mathemati-
cal formulation is explained in the subsequent section.

Water Pump Switching Problem

Rising awareness of environmental issues, sustainable living, and limited energy
supply has prompted interest in energy saving research in various industrial and
commercial applications. In the present chapter energy saving of a pump system
in water pump switching problem is investigated. Water pump switching system
is to deliver water from water sources to demanding place. Water pump switching

11 Biogeography Based Optimization for Water Pump Switching Problem 189

system consists of number of pumping station and each pumping station operates
with number of pumps in series which adds pressure to deliver the water.

In general, savings in pump energy can be achieved in two ways. One is by
designing more efficient pumps [4, 8]. Another is improving pump performance
with effective scheduling strategies [2, 27, 29]. The objective of the scheduling
model is to minimize energy consumption of the pump system while maintaining
the performance of the hydraulic load in an expected range. An optimal schedule
determines the most preferred configuration of pumps.

Traditional techniques for optimization like iterative optimization, linear &
non-linear programming, geometric programming etc. are point search methods
which may require large number of function evaluation and so, such methods are
computationally not suitable to solve challenging water switching problem. Also,
because of point search method the traditional methods are likely to get trapped at
local optima and it do not guarantee global optimum solution. The water pump
switching problem is a combinatorial multi-modal problem that involves binary
variables which increases with the increase in number of pumps. Hence, it is difficult
to solve water pump switching problem with traditionally optimization techniques.

The main purpose of the present chapter is to introduce Bio-geographic based
optimization [21], algorithms for water pump switching problem. The objectives
of this study are (i) to optimize the operating status of the pumps for minimum
energy requirement by using PSO, ACO, and BBO algorithms (ii) to demonstrate
the effectiveness of BBO algorithm to solve water pump switching problem. (iii) To
compare the results of BBO with the results obtained by using PSO and ACO and
also with the published results of GA [10] and HS [9].

Mathematical Formulation for Water Pump Switching
Optimization Problem

Typically, for any water pump switching system the water flow rate (i.e. requirement
of water at demanding place) as well as the number of pumping station (n) and
pumps (m) within each pumping stations are obtainable. The problem is then to
decide that how many pumps should be operated at each pumping stations and in
which sequence so that the total energy requirements are minimum. While deciding
the operating status of the pumps for minimum energy requirement the suction and
discharge pressure requirement at each pumping stations should also be fulfill. So,
there are m × n numbers of decision variable in water pump switching problem.
Figure 11.2 shows the pumping system considered in the present work.

Water can be delivered from water source into demanding place by the pressure
which is added by each pump and consumed along each pipeline due to the friction
between water and pipe. For example, in any pumping station i, the pump j can add
pressure Pij using energy Eij if pump is turn on. The energy Eij (in hp) required by

190 V. Savsani et al.

Fig. 11.2 Layout of water pump switching problem

the pump is a function of specific weight of water (γ in lb/ft3), flow rate Q (in cfs),
Pressure rise Pij (in psi) across pump and motor pump efficiency ηij and given by
[9].

Eij = γ Q Pij

238.3ηij
(11.1)

The on/off scheduling of the pump is denoted by assigning a binary variable xij

∈{0,1} to each pump at each station.

Objective Function

The objective function of the problem is to minimize the total electrical energy
requirement of the pump station. Moreover, to take in to account the effect of
constraints violation during the optimization process an arbitrarily large value
(known as penalty function) is also added to the objective function. So, finally the
objective function for the present problem is represented as,

Minimize f (x) =
n∑

i=1

m∑

j=1

Eijxij +
m∑

j=1

R1
(
gj (X)

)2 (11.2)

Where, R1 is the penalty parameter having a static value. gj(X) indicates violation of

jth constraint. The term
m∑
j=1

R1
(
gj (X)

)2 takes into account the effect of constraints

violation. The above mention objective function for water pump switching problem
is subjected to following constraints.

11 Biogeography Based Optimization for Water Pump Switching Problem 191

Discharge Pressure Constraints

A discharge pressure PDi in pumping station i should be equal to the summation of

suction PSi and all operating pressures
m∑
j=1

Pij xij

PDi = PSi +
m∑

j=1

Pij xij , i = 1, , n (11.3)

Discharge Pressure Bound Constraints

Discharge pressure in any station should be placed less than upper limit discharge
pressure UPDi

PDi ≤ UP
D
i , i = 1, , n (11.4)

Suction Pressure Constraints

A suction pressure in pumping station i + 1 should be calculated by subtracting
pressure loss PLi , which is occurred along the pipe line i, from discharge pressure
in pumping station i,

PSi+1 = PDi − PLi , i = 1, , n− 1 (11.5)

Suction Pressure Bound Constraints

Any suction pressure should be placed between lower suction pressure LP
S
i and

upper suction pressure UP Si .

LP
S
i ≤ PSi ≤ UP

S
i , i = 1, , n (11.6)

192 V. Savsani et al.

Initial Suction Pressure Constraints

Initial suction pressure (i.e. suction pressure of first pumping station) is assumed to
be zero

PSi = 0 (11.7)

Binary Decision Variable Constraints

The binary value (0 or 1) is assigned to decision variable xij.

xij ∈ {0, 1} , i = 1, , n j = 1, , m (11.8)

Present problem is solved by using the steps outlined below:

Step1: Assuming values of a set of decision variables (i.e. operating status of the
pumps) and estimating the suction and discharge pressure at each pumping
stations energy requirements of the pumps.

Step2: Evaluation of the energy requirements of the pumps at each pumping
stations and formulation of the objective function.

Step3: Verifying suction and discharge pressure constraint at each pumping
station and evaluation of the objective function

Step4: Utilization of the PSO, ACO, and BBO, algorithms to select a new set of
values for the decision variables.

Step5: Iteration of the previous steps until a minimum of the objective function is
found.

Results and Discussion

In the present case study the water pump switching system consists of 10 pipes
(n = 10) and 10 pump stations (n = 10) with 4 pumps (m = 4) in series within each
station. Thus, the number of decision variables (pump status variables) is 40 (i.e.
n × m). Each decision variable xij (i = 1, . . . ,n, j = 1,..,m) has a binary value (0
or 1), representing pump status: if xij equals to 1, pump is on; and if xij equals to
0, pump is off. Pumping pressure Pij across each pump is tabulated in Table 11.1,
and corresponding energy Eij can be calculated using Eq. 11.1, where motor pump
efficiencies ηi for ten stations are tabulated in Table 11.2.

The pressure loss PLi along the pipeline i, which can be calculated using
Darcy-Weisbach and Colebrook-White equations is tabulated in Table 11.3. The
lower suction pressure bound LP

S
i , upper suction pressure bound UP

S
i , and upper

discharge pressure bound UPDi in pumping station i are also shown in Table 11.3.

11 Biogeography Based Optimization for Water Pump Switching Problem 193

Table 11.1 Pumping pressure data

Pump number (i, j) Pumping pressure Pij (psi) Pump number (i, j) Pumping pressure Pij (psi)

(1, 1) 173.22 (6, 1) 209.82
(1, 2) 173.22 (6, 2) 209.82
(1, 3) 173.22 (6, 3) 209.82
(1, 4) 86.62 (6, 4) 104.91
(2, 1) 191.78 (7, 1) 229.13
(2, 2) 191.78 (7, 2) 229.13
(2, 3) 191.78 (7, 3) 229.13
(2, 4) 95.89 (7, 4) 114.56
(3, 1) 191.78 (8, 1) 169.51
(3, 2) 191.78 (8, 2) 169.51
(3, 3) 191.78 (8, 3) 169.51
(3, 4) 95.89 (8, 4) 84.75
(4, 1) 100.07 (9, 1) 211.32
(4, 2) 100.07 (9, 2) 211.32
(4, 3) 100.07 (9, 3) 211.32
(4, 4) 50.04 (9, 4) 105.66
(5, 1) 110.35 (10, 1) 192.31
(5, 2) 110.35 (10, 2) 192.31
(5, 3) 110.35 (10, 3) 192.31
(5, 4) 55.18 (10, 4) 96.15

Table 11.2 Motor-pump
efficiency data

Pump station (n) Motor-pump efficiency (η)

1 0.9789
2 0.9810
3 0.9810
4 0.9630
5 0.9660
6 0.9830
7 0.9840
8 0.9700
9 0.9800
10 0.9600

Experiments are carried out to find out the proper value of common con-
trolling parameters (i.e. population size(N) and maximum number of generation)
and algorithmic specific parameters of different algorithms considered in the
present work. For the experiments 10–200 population size and 50–1000 numbers
of generations is investigated initially to identify the best combination. Finally,
after experimentations, the common controlling parameters as well as algorithmic
specific parameters used in the present work are listed in Table 11.4.

The performance of all the algorithms is sensitive to the tuning of control param-
eters. The algorithms experimented with arbitrary values of control parameters

194 V. Savsani et al.

Table 11.3 Pressure loss and pressure limit data

Pump stations (n) Pi
L (psi) LPi

S (psi) UPi
S (psi) UPi

D (psi)

1 309.85 00 200 900
2 154.98 25 200 900
3 258.19 25 200 800
4 309.85 25 400 900
5 154.98 25 250 900
6 309.85 25 350 900
7 309.85 25 450 1100
8 284.07 25 550 1100
9 82.675 25 400 1100
10 51.658 25 400 1100

Table 11.4 Control
parameters of the different
algorithms used in the present
work

PSO algorithm
Population size 25
Number of generations 200
Inertia weight (w) 0.4
Cognitive parameter (c1) 1.6
Social parameter (c2) 1.8
ACO algorithm
Population size 25
Number of generations 200
Initial pheromone value 0.02
Pheromones update constant 50
Global pheromone decay rate 0.5
Local pheromone decay rate 0.5
BBO algorithm
Population size 25
Number of generations 200
Maximum immigration rate 1
Maximum emigration rate 1
Mutation coefficient 0.1

required more computational effort (i.e. more number of function evaluations) or
it can be possible for the algorithm to trap in the local optima. Table 11.5 shows
the optimized pump status variable of the case study obtained by using PSO, ACO,
and BBO algorithms and its comparison with the published optimized pump status
variables obtained by using GA and B&B method [10] and HS method [9].

As seen from Table 11.5, solution provided by Goldberg and Kuo [10] by using
GA results with 15 pumps in operation requiring 11263.19 HP power. Goldberg
and Kuo [10] provided two more solution of the same problem by branch & bound
method (B&B, B&B modified) using two different branch & bound method code.
B&Ba results in 12 pumps in operation with 11,187 HP requirements while B&B
modified results in 13 pumps in operation with 11181.37 HP requirements. The

11 Biogeography Based Optimization for Water Pump Switching Problem 195

Table 11.5 Comparison of the solutions from different algorithms

Method Energy (HP) Pump status

GA 11263.19 1100 1001 1001 1101 1001 1100 1100 0000 0000 0000
B&B 11187.00 1100 1000 1110 1000 0000 1100 1101 0000 0000 0000
B&B
modified

11181.37 1011 0001 1110 0000 1010 0110 0110 0000 0000 0000

HS 11169.43 1100 0010 1011 0110 0000 1011 1010 0000 0000 0000
PSO 11169.43 1100 0010 1011 0110 0000 1011 1010 0000 0000 0000
ACO 11174.22 1100 0010 1101 0100 0100 0101 1011 0001 0000 0000
BBO 11165.95 1010 1001 0111 0001 0001 1011 1010 0000 0000 0000

solution provided by Geem [9] by using HS results in 13 pumps in operation
with 11169.43 HP requirements. The solution obtained using PSO algorithm also
results in 13 pumps in operation with 11169.43 HP requirements. The solution
obtained using ACO algorithm result in 11174.22 HP requirements with 14 pumps
in operation. While, the solution obtained using the BBO algorithm results in 14
pumps in operation with 11165.95 HP requirements. The operating sequence of
the pumps obtained by using BBO algorithm is different compared to rest of five
solutions.

Results shows that by using BBO algorithm, horsepower requirements of the
present problem reduced by 3.48HP compared to HS approach given by Geem [9].
The solution obtained using PSO algorithm is alike to the solution obtained by HS
approach. The solution obtained by using the ACO approach requires additional
4.79 HP compared to the solution obtained by using HS, and PSO algorithms.
The present approaches using BBO results in one additional pump in operation
compared to HS, and PSO approaches which reduced the energy requirement of
the other pumps to increase the pressure of the fluid, and this reduction is more than
the extra energy requirement for one additional pump in operation, so the overall
energy requirement is reduced in the BBO approach.

The comparative results of the suction and discharge pressure solutions of
GA, B&B modified, HS, PSO, and BBO are reported in Tables 11.6 and 11.7
respectively. It is observed from the results that all the solutions satisfy the upper
and lower pressure bounds constraints. The suction and discharge pressure solutions
of GA, B&B modified, HS, PSO, ACO and BBO are profiled in Figs. 11.3 and 11.4
respectively.

For the performance comparison of PSO, ACO, and BBO algorithms, two
hundred trial runs of all the algorithms are performed on the considered case
study. The performances of the algorithms are compared based on three different
criteria: best value, mean value and standard deviation obtained through the two
hundred independent run. In this comparison, best value gives the global optima,
and mean value serves the purpose for the average performance to search optimum
result. Standard deviation gives the deviation of best result from the mean result.
Table 11.8 shows the performance comparison of considered algorithms for the
present case study. Table 11.8 also shows the performance comparison of the
considered approaches with GA and HS approaches where both the algorithms

196 V. Savsani et al.

Table 11.6 Suction pressure solution obtained by different algorithms

B&B modified B&B GA HS PSO ACO BBO
Pumping station Suction pressure (Psi)

1 0 0 0 0 0 0 0
2 123.21 36.59 36.59 36.59 36.59 36.59 36.59
3 64.12 73.39 169.28 73.39 73.39 73.39 169.28
4 381.27 390.54 198.76 294.65 294.65 294.65 390.54
5 71.42 180.76 139.09 184.94 184.94 84.87 130.73
6 137.14 25.78 149.64 29.96 29.96 40.24 30.93
7 246.93 135.57 259.43 244.66 244.66 45.12 245.63
8 395.34 398.54 407.84 393.07 393.07 308.09 394.04
9 111.27 114.47 123.77 109 109 108.77 109.97
10 28.595 31.795 41.095 26.325 26.325 26.09 27.295

Table 11.7 Discharge pressure solution obtained by different algorithms

B&B modified B&B GA HS PSO ACO BBO
Pumping station Discharge pressure (Psi)

1 346.44 433.06 346.44 346.44 346.44 346.44 346.44
2 228.37 219.1 324.26 228.37 228.37 228.37 324.26
3 648.73 639.46 456.95 552.84 552.84 552.84 648.73
4 490.61 381.27 448.94 494.79 494.79 394.71 440.58
5 180.76 292.12 304.62 184.94 184.94 195.22 185.91
6 445.42 556.78 569.28 554.51 554.51 354.97 555.48
7 708.39 705.19 717.69 702.92 702.92 617.94 703.89
8 398.54 395.34 407.84 393.07 393.07 392.84 394.04
9 114.47 111.27 123.77 109 109 108.77 109.97
10 31.795 28.595 41.095 26.325 26.325 26.09 27.295

were implemented with the same criteria on the considered problem by previous
researchers [9, 10]. It is observed from the result that BBO algorithm performs better
compared to other algorithms.

In order to identify the effect of different constrained handling methods on the
performance PSO, ACO and BBO, four different constrained handling methods
namely Superiority of Feasible Solutions (SF), Adaptive Penalty (AP), ε-Constraint
(EC) and Stochastic Ranking (SR) [15] are experimented with the considered
algorithms. The considered algorithms are experimented with different constrained
handling methods with 5000 maximum function evaluations. Two hundred trial
runs of each algorithm are performed for each constrained handling method.
The comparative results of the algorithms are reported in Table 11.9. Here, the
comparison is carried out based on three different criteria: best value (B), mean
value(M) and standard deviation (SD) obtained through two hundred independent
runs. It is observed from the results that Stochastic Ranking method of constraint
handling perform better than rest of the methods with considered algorithms.

11 Biogeography Based Optimization for Water Pump Switching Problem 197

Fig. 11.3 Suction pressures solution of different algorithm

Fig. 11.4 Discharge pressures solution of different algorithm

198 V. Savsani et al.

Table 11.8 Performance comparison of GA, HS, PSO, ACO, and BBO algorithms

Best solution Mean solution Standard deviation Computational time (s)

GA 11263.19 11320.19 196.61 20.00
HS 11169.43 11215.11 48.13 15.00
PSO 11169.43 11211.73 46.57 16.00
ACO 11174.22 11219.73 52.12 24.00
BBO 11165.95 11194.14 17.91 21.00

Table 11.9 Comparative results of different constraint handling techniques with considered
algorithms

SP SF AP EC SR

PSO B 11169.43 11169.43 11169.43 11169.43 11169.43
M 11211.73 11210.62 11208.81 11209.56 11204.33
SD 46.57 42.23 41.47 42.54 39.3

ACO B 11174.22 11174.22 11174.22 11174.22 11174.22
M 11219.73 11216.64 11213.66 11216.21 11209.71
SD 52.12 49.63 43.75 48.94 41.13

BBO B 11165.95 11165.95 11165.95 11165.95 11165.95
M 11194.14 11190.21 11186.64 11188.73 11182.27
SD 17.91 15.58 14.47 14.93 12.43

SP Static Penalty, SF Superiority of Feasible Solutions, AP Adaptive Penalty, EC ε-Constraint,
SR Stochastic Ranking
B Best value, M Mean value, SD Standard deviation

The considered case study of water pump switching problem is multimodal prob-
lem. So, the problem has more than one solution for minimum energy requirement.
Each solution has different operating status of pump; hence in case of any pump
failure we can switch on to the alternate solution for same energy requirement. Table
11.10 shows the alternative solutions for minimum energy requirements with pump
status obtained using the BBO algorithm. Similarly, Table 11.11 shows the energy
requirement and pump status with different numbers of pump in operation obtained
by using the BBO algorithm. Finally, the convergence comparison of the proposed
approaches for minimum energy requirement consideration is shown in Fig. 11.5. It
is observed from the Fig. 11.5 that objective function converges within about 4000
function evaluations using PSO and ACO algorithms, and 2000 function evaluations
using BBO algorithm. Geem [9] described that using HS algorithm, convergence of
the objective function was obtained within about 3500 function evaluations. Thus,
BBO algorithm converges to the optimum value of objective function quite rapidly
with better function value compared to other approaches.

11 Biogeography Based Optimization for Water Pump Switching Problem 199

Table 11.10 Alternative solutions for minimum energy requirements with pump status using BBO
algorithm

Energy (HP) Pump status

11165.95 1 1 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11165.95 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 11.11 Energy requirement and pump status with different numbers of pump in operation
using BBO algorithm

No. of
pumps

Energy
(HP) Pump status

12 11177.59 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 11170.91 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 11165.95 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
15 11179.28 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 11181.25 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0
17 11204.35 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
18 11308.62 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
19 11440.74 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0
20 11887.70 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1
21 12757.14 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1
22 13753.80 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1
23 14623.23 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1
24 15619.89 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1
25 16616.54 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1

200 V. Savsani et al.

Fig. 11.5 Convergence comparison of PSO, ACO, BBO, ABC and TLBO algorithms

Summary

The basic concepts of biogeography based optimization algorithm are explained to
understand the use of BBO for the optimization of a problem. This chapter also
demonstrates the application of PSO, ACO, and BBO for the combinatorial water
pump switching problem to find minimum energy consumption by appropriately
scheduling the pumps in a pumping station. Case study with 40 pumps is optimized
in order to identify the minimum energy requirement of the water pump switching
system. The performance of BBO is judged against other methods such as GA,
B&B, HS, PSO and ACO. The results indicate that BBO is effective over other
methods. Effect of constrained handling methods on the performance of the pro-
posed algorithms is also explored. Moreover, the alternate solutions for minimum
energy require view point in case of pump failure as well as the energy requirement
for different numbers of pumps in operation are also presented.

References

1. Arora P, Kundra H, Panchal VK (2012) Fusion of biogeography based optimization and
artificial bee colony for identification of natural terrain features. Int J Adv Comput Sci Appl
3(10):107–111

2. Barán B, von Lücken C, Sotelo A (2005) Multi-objective pump scheduling optimisation using
evolutionary strategies. Adv Eng Softw 36(1):39–47

11 Biogeography Based Optimization for Water Pump Switching Problem 201

3. Bhattacharya A, Chattopadhyay PK (2010) Hybrid differential evolution with biogeography-
based optimization for solution of economic load dispatch. IEEE Trans Power Syst
25(4):1955–1964

4. Bonaiuti D, Zangeneh M, Aartojarvi R, Eriksson J (2010) Parametric design of a waterjet
pump by means of inverse design, CFD calculations and experimental analyses. J Fluids Eng
132(3):031104

5. Di Barba P, Dughiero F, Mognaschi ME, Savini A, Wiak S (2016) Biogeography-inspired
multiobjective optimization and MEMS design. IEEE Trans Magn 52(3):1–4

6. Du D, Simon D, Ergezer M (2009) Biogeography-based optimization combined with evolu-
tionary strategy and immigration refusal. In: Systems, man and cybernetics, 2009, October,
SMC 2009, IEEE international conference on. IEEE, pp 997–1002

7. Ergezer M, Simon D, Du D (2009) Oppositional biogeography-based optimization. In:
Systems, man and cybernetics, 2009, October, SMC 2009, IEEE international conference on.
IEEE, pp 1009–1014

8. Fan J, Eves J, Thompson HM, Toropov VV, Kapur N, Copley D, Mincher A (2011)
Computational fluid dynamic analysis and design optimization of jet pumps. Comput Fluids
46(1):212–217

9. Geem ZW (2005) Harmony search in water pump switching problem. In: International
conference on natural computation. Springer, Berlin/Heidelberg, pp 751–760

10. Goldberg DE, Kuo CH (1987) Genetic algorithms in pipeline optimization. J Comput Civ Eng
1(2):128–141

11. Kundra H, Sood M (2010) Cross-country path finding using hybrid approach of PSO and BBO.
Int J Comput Appl 7(6):15–19

12. Lohokare MR, Pattnaik SS, Devi S, Panigrahi BK, Das S, Bakwad KM (2009) Intelligent
biogeography-based optimization for discrete variables. In: Nature & biologically inspired
computing, 2009, December, NaBIC 2009, World Congress on. IEEE, pp 1088–1093

13. Ma H (2010) An analysis of the equilibrium of migration models for biogeography-based
optimization. Inf Sci 180(18):3444–3464

14. Ma H, Simon D (2011) Blended biogeography-based optimization for constrained optimiza-
tion. Eng Appl Artif Intell 24(3):517–525

15. Mallipeddi R, Suganthan PN (2010) Ensemble of constraint handling techniques. IEEE Trans
Evol Comput 14(4):561–579

16. Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced optimization
techniques. Springer Science & Business Media, London

17. Roy PK, Ghoshal SP, Thakur SS (2010a) Biogeography based optimization for multi-
constraint optimal power flow with emission and non-smooth cost function. Expert Syst Appl
37(12):8221–8228

18. Roy PK, Ghoshal SP, Thakur SS (2010b) Multi-objective optimal power flow using
biogeography-based optimization. Electr Power Compon Syst 38(12):1406–1426

19. Savsani VJ, Rao RV, Vakharia DP (2009) Discrete optimisation of a gear train using
biogeography based optimisation technique. Int J Des Eng 2(2):205–223

20. Savsani P, Jhala RL, Savsani V (2014) Effect of hybridizing biogeography-based optimization
(BBO) technique with artificial immune algorithm (AIA) and ant colony optimization (ACO).
Appl Soft Comput 21:542–553

21. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713
22. Simon D (2011) A dynamic system model of biogeography-based optimization. Appl Soft

Comput 11(8):5652–5661
23. Simon D (2013) Evolutionary optimization algorithms. Wiley, Chichester
24. Simon D, Ergezer M, Du D, Rarick R (2011) Markov models for biogeography-based

optimization. IEEE Trans Syst Man Cybern B Cybern 41(1):299–306
25. Song Y, Liu M, Wang Z (2010) Biogeography-based optimization for the traveling salesman

problems. In: Computational science and optimization (CSO), 2010, May, Third international
joint conference on. IEEE, vol 1, pp 295–299

202 V. Savsani et al.

26. Wang L, Xu Y (2011) An effective hybrid biogeography-based optimization algorithm for
parameter estimation of chaotic systems. Expert Syst Appl 38(12):15103–15109

27. Wang JY, Chang TP, Chen JS (2009) An enhanced genetic algorithm for bi-objective pump
scheduling in water supply. Expert Syst Appl 36(7):10249–10258

28. Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with
biogeography based optimization for global numerical optimization. J Comput Theor Nanosci
10(10):2312–2322

29. Zhang Z, Zeng Y, Kusiak A (2012) Minimizing pump energy in a wastewater processing plant.
Energy 47(1):505–514

30. Zhang Y, Wang S, Dong Z, Phillip P, Ji G, Yang J (2015) Pathological brain detection in
magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-
based optimization and particle swarm optimization. Prog Electromagn Res 152:41–58

Chapter 12
Introduction to Invasive Weed
Optimization Method

Dilip Kumar, B. G. Rajeev Gandhi, and Rajib Kumar Bhattacharjya

Abstract The weeds are generally defined as the unwanted plants growing in an
agricultural field. The weeds are not very useful and occupy the space in the field to
successfully outnumber the plants that are cultivated for regular use. Thus, a popular
agronomical belief is that “The Weeds Always Win”. Weeds typically generate large
numbers of seeds, supporting their spread by wind or some other natural factors.
They can also grow in adverse conditions and are very adaptable. These unique
properties of weed growth shows the way for the development of optimization
techniques. One of the algorithms motivated by this common phenomenon in
agriculture field is based on the expansion of invasive weeds. The algorithm is
known as Invasive Weed Optimization (IWO). In this chapter, we have described
the IWO algorithm and its use in obtaining the optimal solution of common popular
functions.

Keywords Invasive weeds · Seeds · Optimization

Introduction

Weeds occupy an agricultural field by means of spreading of seeds from the plants
and take control of places between the crops. Weeds generally occupy the unused
space of the field and further grow to a flowering weed. This flower provides new
weeds and the cycle repeats. The production capacity of the flowering plant to
produce weed depends on the adaptation of the flowering weeds in the field [6].

D. Kumar (�)
Department of Civil Engineering, G B Pant Engineering College, Pauri, Uttarakhand, India

B. G. R. Gandhi · R. K. Bhattacharjya
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam,
India
e-mail: b.rajeev@iitg.ac.in; rkbc@iitg.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_12

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_12&domain=pdf
mailto:b.rajeev@iitg.ac.in
mailto:rkbc@iitg.ac.in
https://doi.org/10.1007/978-3-030-26458-1_12

204 D. Kumar et al.

The weeds with better adaptation to the environment will be able to occupy more
unused space in the field. They will grow faster and will generate more seeds. These
newly produced weeds are again scattered over the field and grow as new flowering
weeds [5]. This cycle lasts until the number of weeds reaches its maximum capacity.
Due to the competition between different weed plants, only the weeds with better
adaptation capability can survive and produces new weeds i.e. they follow Darwin’s
principle of “survival of the fittest” [7, 8]. In brief, we can simply define the concept
behind the invasive weed theory as:

(a) A measurable number of seeds are scattered over the field, known as the initial
population.

(b) Each spread seed turns to a flowering plant and produces new seeds based on
their adaptability with the surroundings, known as reproduction.

(c) The produced seeds are being scattered by some natural agency over the rest of
the field and turn to new plants known as the spatial distribution of weeds.

(d) This cycle continues until the number of plants reaches a maximum. Once
the number of plants reaches the maximum, the plants with the best fitness
and adaptability survives and produce new seeds. Rest of the weak plants are
eliminated which is called as competitive elimination or survival of the fittest.

(e) At last, the weed plant with the best fitness and adaptability are only present in
the field.

These processes are used to design the optimization algorithm called the Invasive
Weed growth Algorithm (IWO). The initialization of the population, reproduction,
spatial distribution, competitive exclusion and the optimal solution are the steps
involved in the design of the IWO algorithm [14, 15]. Each of these steps is
described in detail in the following section.

Working Procedure of Invasive Weed Optimization Algorithm
(IWO)

Initialize a Population

In general terms, the population is defined as the total number of people or residents
living in a country, state or any specified region. If the region is specified to be the
whole agricultural field, the initial weeds that emerge randomly over the field are
the initial population. So, to replicate that in the IWO, we can define the population
as initial number of seeds scattered over the field [1]. Mathematically we can define
the population as the bunch of initial solutions which being expanded over the D
dimensional problem space with random or blind positions.

Consider a set of population as a matrix X, with elements that are referred as
plants or agents. Each plant represents possible solution in defined population size,
max plant. For a D-dimensional problem and a population of size N, the matrix ‘X’
representing the population is given as.

12 Introduction to Invasive Weed Optimization Method 205

X =

⎡

⎢⎢⎣

x11 x12 . . . x1D

x21 x22 . . . x2D

.

xN1 xN2 . . . xND

⎤

⎥⎥⎦ (12.1)

The ith population consists of D variables as the dimension of the problem is ‘D’.
Therefore the coordinates of the elements xi1 is limited between the boundaries, U1
and L1, i.e., (L1 < xi1 < U1) and xiD is limited between two other boundaries, UD
and LD i.e., (LD < xiD < UD). Let the lower and upper bounds be the vectors of
length ‘D’ represented by L and U as given in Eq. 12.2 as follows.

L = [L1 L2 . . . LD]
U = [U1 U2 . . . UD

] (12.2)

Pseudo Code for Initialization of Population

Define Vectors L and U and dimension D
for dim = 1:D
for pop = 1:N

X(pop,dim) = L(1,dim)+rand()x{U(1,dim)-L(1,dim)}
end
end

Using this similar code in MATLAB, the population can be initialized in the same
way as the initial weeds are produced in the field.

Reproduction

The weeds present in the filed have different strengths, i.e. the some plants are
highly adaptable and can produce a large number of offsprings whereas some of the
plants die off quickly. So, the fitness of the plant decides the number of offsprings
it will produce. To reproduce the same process in the IWO algorithm, the fitness
of the initial population is calculated. The plant in the population is then allowed
to produce seeds depending on its own fitness and the adaptability as well as the
lowest and the highest fitness value of the plants in the colony [7, 8]. The number of
seeds produced by each plant will increases linearly (Fig. 12.1) from the minimum
possible seed (Smin) to its maximum level (Smax). The fitness of any plant ‘p’ can
be represented as ‘Fp’. The Eq. (12.3) can be used to calculate the number of seeds
produced by a plant according to its fitness.

Sp = Smin + (Fp − FW
) ((FB − Fw)/

(Smax − Smin)

)
(12.3)

206 D. Kumar et al.

Fig. 12.1 Procedure of reproduction

Pseudo Code for Reproduction

Calculate fitness of ‘N’ Population as F
Scale the fitness from worst to best
Assign FW as worst fitness and FB as best fitness
Define minimum and maximum no of seeds as Smin and Smax

for pop = 1:N
S(pop) = Smin+(F(pop)-FW)x{(Smax-Smin)/(FB-FW)}

end

This reproduction part is coded in MATLAB to get the number of seeds to
be produced by each weed. The reproduction part decides only the number of
offsprings (seeds) that are to be produced by each weed. The spread of the seeds
of each of the weeds is decided in the next subsection.

Spatial Distribution of Seeds

The number of seeds that are generated according to the fitness values are to be
dispersed around the parent weed. The dispersion happens by means of mostly wind.
Initially, when there is enough space in the filed for the weeds to grow, the dispersion

12 Introduction to Invasive Weed Optimization Method 207

of seeds will be over a greater radius. But, as the empty space in the field gets
occupied by the new weeds, the dispersion has to shrink to a minimum area close to
the parent weed [3]. This process is replicated in the IWO algorithm as follows.

The seeds generated are distributed randomly over the search space. The random
distribution is followed by a normal distribution with a zero mean but a variable
variance. This ensures that the seeds will be randomly distributed such that they
stand near the parent plant. However, standard deviation (σ) is generally reduced
once you are reaching the optimal solution. As such, the standard deviation is
varying from an initial value of σinitial to a final value of σfinal in every step
(generation). The following equation (Eq. 12.4) can be used to change the standard
deviation in each iteration.

σiter = (itermax − iter)n
iternmax

(
σinitial − σf inal

)+ σf inal (12.4)

Where, itermax is the maximum number of iterations, σ iter is the standard deviation
at the present step and n is the nonlinear modulation index. The variation of
the standard deviation with each iteration from maximum of 0.5 to minimum of
0.001with and ‘n’ value of 2 is given in Fig. 12.2.

Pseudo Code for Spatial Distribution

Define σfinal, σinitial, and exponent n.
for iter = 1:Maxiter

σiter = {(Maxiter-iter)/Maxiter}nx (σinitial - σfinal)+ σfinal

for pop = 1:N
for dim = 1:D
for seedpop = 1:S(pop)

Xseed(pop,seedpop,dim) = X(pop,dim)+σiterxrandNormal()
end
end
end
end

Fig. 12.2 Standard deviation
varying with the iterations

208 D. Kumar et al.

This gives the population of seeds for each of the weeds distributed spatially over
the area according to their respective normal distribution and the standard deviation.
The spatial distribution part is also coded in MATLAB according to the pseudo code.

Competitive Elimination

By reproduction and the spatial dispersal of the seeds over a number of generations,
the plants will occupy the whole field. The growth of the weeds and the seeds
combined have to be limited by some principle so that the maximum number of
plants and weeds in each generation is minimized to a specified value [2, 4]. Based
on the minimum number of seeds (when set to zero), if a plant leaves no offspring
then it would go extinct. Also, the plants producing a lesser number of offsprings
would also be outnumbered by the seeds produced by the fitter weeds [5, 14]. These
two processes can be incorporated into IWO by combining the whole population of
weeds and seeds and then excluding the population which is not the fittest based
on the maximum number of allowable population (Pmax). This ensures that in each
generation only a maximum of Pmax population exists throughout the algorithm.

Pseudo Code for Competitive Elimination

Define the maximum population allowed Pmax

Combine X and Xseed to Xtemp and calculate the fitness F
Scale the fitness from best to worst and sort Xtemp

If size(F) < Pmax

Xnew = Xtemp

else
Xnew = Xtemp(1:Pmax)

end

This eliminates the inferior solutions of the population and the better solutions
are allowed to go to the next generation. The process is then continued from
reproduction to competitive elimination until the termination criteria is reached. The
flow chart of the algorithm is shown in Fig. 12.3.

We have considered an area of 20 × 20 units to demonstrate the initialization of
the population, reproduction and competitive exclusion in the following example.
The function is taken as Ackley function with optimal solution at (0,0) and the initial
population is 50, maximum population is 100. Figure 12.4a gives the scatter plot of
the initial population, Fig. 12.4b gives the scatter plot of the reproduced population
and the Fig. 12.4c gives the scatter plot of the population reduced to maximum after
competitive exclusion.

12 Introduction to Invasive Weed Optimization Method 209

Fig. 12.3 Flowchart showing the IWO algorithm

Fig. 12.4 Scatter plots of the population at different stages of the IWO algorithm. (a) Initial
population. (b) Population after reproduction. (c) Population after competitive elimination

Standard Examples

The IWO algorithm can be used for solving the non-linear non convex problems.
However, the robustness of the algorithm can be observed by solving some
standard mathematical functions [11]. These mathematical functions are of different
kinds such as one global optima (sphere function) and multiple global optima
(Himmelblau function). There are many other functions containing of many local
optima and only one global optima (Ackley function). All these functions represent
different types of problems that arise in engineering optimization. The efficiency
of an algorithm can be measured by obtaining the solution of these functions.
The solutions for all the three functions considering two variables are discussed
in the next sections. The parameters used for the optimization are as given below in
Table 12.1.

210 D. Kumar et al.

Table 12.1 Parameters used
for solving the problems

Parameter Value used

Maximum iterations 200
Initial population size 10
Maximum population size 25
Minimum no. of seeds 0
Maximum no. of seeds 5
Exponent ‘n’ 2
Sigma-initial 0.5
Sigma-final 0.001

Fig. 12.5 Sphere function contour and the surface plot

Sphere Function

The sphere function is a simple part of the sphere in between the bounds. The
minimum value of the function is at (0,0). The variation of the function in its bounds
is given in Fig. 12.5. The equation of the sphere function is given in Eq. 12.5.

f (x, y) = x2 + y2 (12.5)

This function is solved 20 number of times with the same parameters and the
results of the best fitness for each iteration in each of the solution are presented in
Fig. 12.6. It can be observed that, every time, the optimal value is reached over the
total number of iterations.

12 Introduction to Invasive Weed Optimization Method 211

Fig. 12.6 Best fitness with number of iterations over 20 runs

Fig. 12.7 Contour and surface plots of the Himmelblau function

Himmelblau Function

This function is defined by the equation below which has four identical minimum at
(3,2), (−2.805118,3.131312), (−3.779310,−3.283186) and (3.584428,−1.848126)
as (x,y) pairs where the function value is zero. The function is given in Eq. 12.6.
The variation of the function can be seen in Fig. 12.7.

f (x, y) =
(
x2 + y − 11

)2 +
(
x + y2 − 7

)2
(12.6)

212 D. Kumar et al.

Fig. 12.8 Best fitness with number of iterations over 20 runs

The function with four identical optima is also solved 20 times with the same
parameters as mentioned in the Table 12.1. The results of the best fitness with the
number of iterations over 20 runs can be seen in the Fig. 12.8.

Ackley Function

This function resembles most of the functions in engineering optimization. This
contains many local optima and only one global optima at (0,0). The function is
given in Eq. 12.7. The figure for the variation of the function along the interval is
given in Fig. 12.9.

f (x, y) = 20

(
1 − e−0.2

√
x2+y2

2

)
+ e − e cos(2πx)+cos(2πy)

2 (12.7)

The solution of the Ackley function for 20 runs is carried out. The best fitness
with the iterations for all the 20 runs are given in Fig. 12.10.

For all the three functions, the behavior of the algorithm for the best fitness
did not change much. This is because of the typical behavior of the invasive weed
growth optimization. The fitness initially decreases rapidly, then decreases slowly
for most number of iterations and then again decreases rapidly over the end of the
iterations. This can be observed in the Figs. 12.6, 12.8 and 12.10. This assures that
IWO is a pure metaheuristic optimization approach. The nature of the problem does
not have an effect on the solution. Thus this algorithm is efficient in solving different
optimization problems in engineering and many other fields.

12 Introduction to Invasive Weed Optimization Method 213

Fig. 12.9 Ackley function contour and surface plots

Fig. 12.10 Best fitness along with iterations for 20 runs

Conclusions

This chapter provides an overview of an IWO algorithm described from an
evolutionary comparison or natural phenomena. The applications and growth of
natural computing in the last decade has increased vastly. Numerous optimization
problems in computer networking [13], bioinformatics [15], data mining, game
theory, power systems [10], image processing, industry and engineering, robotics,
applications involving the security of information systems etc [9, 12]. have been
using such nature inspired optimization methods. The simulation results obtained
by using IWO indicate the effectiveness and robustness of the algorithm in solving
nonlinear non-convex problems.

214 D. Kumar et al.

References

1. Bevelacqua PJ, Balanis CA (2007) Minimum sidelobe levels for linear arrays, antennas and
propagation. IEEE Trans Antennas Propag 55:12

2. Chen TB, Chen YB, Jiao YC, Zhang ES (2005) Synthesis of antenna array using particle swarm
optimization. In: Asia-Pacific microwave conference proceedings 2005 (APMC 2005), vol 3,
December 4{7, 2005}

3. Kacem I, Hammadi S, Borne P (2002) Approach by localization and multiobjective evolu-
tionary optimization for flexible job shop scheduling problems. IEEE Trans Syst Man Cybern
32:245–276

4. Khodier MM, Christodoulou CG (2005) Linear array geometry synthesis with minimum
sidelobe level and null control using particle swarm optimization. IEEE Trans Antennas Propag
53(8):2674–2679

5. Mallahzadeh AR (2008) Application of the invasive weed optimization technique for antenna
configurations. Prog Electromagn Res PIER 79:137–150

6. Mallahzadeh AR, Es’haghi S, Alipour A (2009) Design of an E shaped MIMO antenna using
IWO algorithm for wireless application at 5.8 Ghz. Prog Electromagn Res PIER 90:187–203

7. Mehrabian AR, Lucas C (2006a) A novel numerical optimization algorithm inspired from weed
colonization. Eco Inform 1:355–366

8. Mehrabian AR, Lucas C (2006b) A novel numerical optimization algorithm inspired from weed
colonization. Eco Inform 1:355–366

9. Mekni S, Châar Fayéch B, Ksouri M (2010) TRIBES application to the flexible job shop
scheduling problem. IMS 2010 10th IFAC workshop on intelligent manufacturing systems,
Lisbon, Portugal, July 1st -2nd 2010

10. Rattan M, Patterh MS, Sohi BS (2008) Design of a linear array of half wave parallel dipoles
using particle swarm optimization. Prog Electromagn Res M 2:131–139

11. Sakarovitch M (1984) Optimisation combiantoire. Méthodes mathématiques et algorithmiques.
Hermann, Editeurs des sciences et des arts, Paris

12. Xia W, Wu Z (2005) An effective hybrid optimization approach for multiobjective flexible job
shop scheduling problems. J Comput Ind Eng 48:409–425

13. Zaharis Z, Kampitaki D, Papastergiou A Hatzigaidas A, Lazaridis P, Spasos M (2006) Optimal
design of a linear antenna array using particle swarm optimization. In: Proceedings of the 5th
WSEAS international conference on data networks, communications and computers, 69{74,
Bucharest, Romania, October 16}

14. Zaharis ZD, Skeberis C, Xenos TD (2012) Improved antenna array adaptive beamforming
with low side lobe level using a novel adaptive invasive weed optimization method. Prog
Electromagn Res 124:137–150

15. Zhang X, Wang Y, Cui G, Niu Y, Xu J (2009) Application of a novel IWO to the design of
encoding sequence for DNA computing. Comput Math Appl 57:2001–2008

Chapter 13
Single-Level Production Planning
in Petrochemical Industries Using Novel
Computational Intelligence Algorithms

Sandeep Singh Chauhan and Prakash Kotecha

Abstract Optimal production planning requires the solution of combinatorial
optimization problems that need to be efficiently modelled so as to be solved
with computational intelligence (CI) techniques. In this work, we report the
computational performance of five recently proposed CI techniques, namely the
sanitized-teaching-learning-based optimization (s-TLBO), moth flame optimization
(MFO), flower pollination optimization, water cycle optimization, and adaptive
wind driven optimization on the single level production planning problem which
involves complex domain-hole constraints, nonlinearities in the production and
investment costs, resource and unique process constraints. In this work, the domain-
hole constraints are handled using a hard-penalty approach. The performance is
evaluated on the case study of the Saudi Arabia petrochemical industry to determine
optimal portfolio from 54 processes for producing 24 products with three production
levels. Based on 2040 (8 Cases × 51 runs × 5 algorithms) unique instances of the
problem, it was observed that s-TLBO and MFO are consistently able to determine
efficient solutions and that s-TLBO was able to quickly discover feasible solutions
and had relatively low variance.

Keywords Production planning · Evolutionary computation · Optimization ·
Combinatorial optimization · Sanitized-teaching-learning-based optimization
algorithm · Moth flame optimization algorithm · Flower pollination algorithm ·
Water cycle optimization algorithm · Adaptive wind driven optimization algorithm

S. S. Chauhan · P. Kotecha (�)
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati,
Assam, India
e-mail: sandeep.chauhan@iitg.ac.in; pkotecha@iitg.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_13

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_13&domain=pdf
mailto:sandeep.chauhan@iitg.ac.in
mailto:pkotecha@iitg.ac.in
https://doi.org/10.1007/978-3-030-26458-1_13

216 S. S. Chauhan and P. Kotecha

Nomenclature

asr amount of raw material r required in process s for producing per ton
of product

k production capacity level, K denotes the total number of production
capacity level of a process

nt number of active processes employed to produce product t
r index for raw material, r ∈ (1, .., R); R denotes the total number of

raw materials
s index for process, s ∈ (1, .., S); S denotes the total number of

processes
t index for product, t ∈ (1, .., T); T denotes the total number of

products
xs total amount of product produced from process s
yks binary variable to indicate the production level from process s;

yks= 1, if
(
Lks ≤ xs ≤ Lk+1

s

)
, else 0

zs binary parameter to indicate the production in domain hole; zs = 0
if (xs = 0) or (Ls ≤ xs ≤ Us), else 1

B total available monetary resources ($)
Cs total production cost of process s
Es selling price per ton of the product produced from process s
Is total investment cost of process s
Lks production capacity level of level k for process s
P rawmaterialr penalty incurred in fitness function due to insufficient raw material

of type r
PBudget penalty incurred in fitness function due to insufficient investment

cost
Punit penalty incurred in fitness function due to violation of unique

process constraint for product t
Qks production cost for production capacity level k of process s
St set of processes that can produce product t
Us maximum production from process s
V ks investment cost for production capacity level k of process s
λ, γ static penalty factor

Introduction

Petrochemical industries use petroleum and natural gas as feedstock to produce a
variety of petrochemicals that are subsequently transformed into everyday consumer
goods. The products of these industries act as raw materials for a large number of
industries in the manufacturing sector and thus potentially represent the financial
backbone of a country. The global market value of petrochemical industries has

13 Single-Level Production Planning in Petrochemical Industries Using. . . 217

been reported to be $514.5 billion in 2014 and it is estimated that the petrochemical
industries would be worth $758.3 billion by 2022 (available at https://bit.ly/
2kdX8UA). In addition to the variety of products that can be produced from a
particular raw material, a large number of processes are also available which can
convert a particular raw material into a specified product. These industries usually
operate on large scale, which makes them capital as well as energy–intensive [5],
and is encountering stiff competition from several environments friendly alternatives
including synthetic biology and synthetic DNA [13]. It has also been proposed that
petrochemical industries can utilize unconventional raw materials such as coal and
biofuels [26]. Moreover, with an increasing emphasis on biorefineries, integration
of biorefineries into petrochemical plants has also received increased attention. The
abundance of choices from the selection of raw materials, processes, and products
gives rise to combinatorial optimization problems. In order to sustain its economic
viability, it has become essential for the petrochemical industries to solve these
complex problems and to implement optimal production plans so as to enable the
best use of its limited resources [1, 19]. To this end, artificial intelligence and soft
computing tools [2, 27] have been increasingly employed for challenging problems
in the oil industry and a concerted effort is being made to realize the strategic
importance of operations research [16, 22].

In this work, we use the term Computational Intelligence techniques to refer to
computational intelligence techniques designed for solving optimization problems
and thus includes evolutionary, swarm and other stochastic optimization techniques.
CI techniques have been increasingly employed for solving optimization problems
in the oil sector. In view of its popularity, genetic algorithm has been predominantly
used for wide ranging applications including reservoir characterization, gas storage,
seismic inversion, and oil field development [29]. Other works include the use of
simulated annealing to analyze and predict the estimations of petroleum exergy
production and consumption [24], the use of ant colony optimization to estimate
the energy demand of Turkey [28] using factors such as population, gross domestic
product, import and export, and the use of Particle Swam Optimization (PSO)
to estimate the oil demand in Iran based on socio–economic indicators [3].
The intelligent design of sensor networks [6] and design optimization of LPG
thermal cracker [23] with respect to conflicting objectives using multi–objective
evolutionary algorithms have also been reported.

CI techniques have also been used to solve combinatorial optimization problems.
Despite their benefits over gradient based mathematical programming techniques,
the use of CI techniques for solving optimization problems in the petrochemi-
cal sector has been relatively limited, particularly in the case of combinatorial
optimization problems. The success of CI techniques depends on a large number
of factors such as efficient encoding of the solution, modification of existing
operators or incorporation of problem–specific operators [15]. CI techniques are
able to solve black–box optimization problems and do not require the postulation
of the optimization problem in terms of conventional equalities and inequalities.
This benefit has to be harnessed to efficiently model the problem and the use of
artificial decision variables to postulate the problem in the conventional form needs

https://bit.ly/2kdX8UA
https://bit.ly/2kdX8UA

218 S. S. Chauhan and P. Kotecha

to be avoided. Some of the works which have successfully used CI techniques to
solve combinatorial optimization problem include the solution of refinery crude
oil scheduling problem by hybridizing genetic algorithm with finite state method
[12] as well as integration with graph representation as structure adapted genetic
algorithm [25]. The refinery production scheduling problem involving operational
transition has been solved using an efficient hybridization of discrete PSO and
linear programming which was otherwise intractable by Mixed Integer Linear
Programming (MILP) approaches [31]. The use of moth flame optimization and
teaching–learning–based optimization for solving the combinatorial production
planning have also been reported [7, 17]. A comparison of CI techniques has also
reported for multi-unit production planning with only continuous variables [8] for
nonlinear cost function and as a mixed integer problem for piece-wise linear cost
functions [9].

The use of recent optimization techniques, which have shown promising perfor-
mance on benchmark optimization problems, remains relatively unexplored in the
petrochemical sector, primarily as these have not been incorporated in the popular
mathematical software. Moreover in recent years, a plethora of CI techniques
have been proposed for solving optimization problems and conflicting results have
been reported on the performance of these algorithms. In a majority of the cases,
the algorithms are demonstrated on different sets of problems thereby making it
difficult to compare their performance. In this article, we study the performance
of five recently proposed CI techniques viz., (i) Adaptive wind driven optimization
algorithm (AWDO), (ii) Water cycle optimization algorithm (WCO), (iii) Flower
pollination algorithm (FP), (iv) Moth flame optimization algorithm (MFO) and (v)
Sanitized-teaching–learning–based optimization algorithms (s-TLBO) to solve the
combinatorial production-planning problem. The performance is evaluated based
on 2040 unique instances arising from the eight cases of the Saudi Arabian
petrochemical production–planning problem reported in the literature. Though
demonstrated in the context of petrochemical industry, the results can be extended
to production planning problems in other industries. The article is structured as
follows: In Sect. 13.2, we provide the problem description and follow with a
discussion of the solution strategy. In Sect. 13.4, we provide a brief description
of the five CI techniques. Section 13.5 discusses the performance of the algorithm
from various perspectives. The article is subsequently concluded by summarizing
the developments in this work and discussing potential future work.

Problem Description

In the production–planning problem, a set of processes (S) are available which
can be used to produce a set of products (T) from a set of raw materials (R). A
particular product can be produced by more than one process. Tables 13.1, 13.2,
13.3 and 13.4 is an example of production planning problem that has been widely
studied in literature for the Saudi Arabian petrochemical industry [1] and consists

13 Single-Level Production Planning in Petrochemical Industries Using. . . 219

Ta
bl

e
13

.1
D

at
a

fo
r

pr
op

yl
en

e
pr

od
uc

ts
an

d
pr

oc
es

se
s

[1
]

C
ap

ac
ity

(1
03

to
n/

yr
)

Pr
od

uc
tio

n
co

st
($

10
6
/y

r)
In

ve
st

m
en

tc
os

t(
$1

06
)

Pr
od

uc
tn

am
e

Pr
od

uc
t

ID
Sa

le
pr

ic
e

($
/to

n)
Pr

oc
es

s
ID

Pr
oc

es
s

na
m

e

Pr
op

yl
en

e
us

ed
/to

n
a s

2
L

1 s
L

2 s
L

3 s
Q

1 s
Q

2 s
Q

3 s
V

1 s
V

2 s
V

3 s

Po
ly

pr
op

yl
en

e
co

po
ly

m
er

T
1

97
5

S1
A

m
oc

o/
C

hi
ss

o
0.

94
80

70
13

5
27

0
50

.7
90

.1
17

0.
7

55
81

.1
13

1.
6

S2
B

A
SF

0.
94

32
75

15
0

30
0

56
.8

10
3.

8
19

6.
2

58
85

.1
13

2.
4

S3
H

im
on

t
0.

94
90

77
.5

15
5

31
0

56
.9

10
3.

7
19

5.
7

60
.2

86
.8

13
4.

1
Po

ly
pr

op
yl

en
e

bl
oc

k
co

po
ly

m
er

T
2

97
5

S4
Su

m
ito

m
o

(g
as

ph
as

e)
0.

95
46

70
14

5
29

0
51

.7
97

.6
18

4.
8

55
.1

83
.1

13
2

S5
U

C
C

/S
he

ll
0.

95
50

47
.5

95
19

0
38

.2
69

.8
13

0.
4

43
.3

66
.8

10
4.

3
Po

ly
pr

op
yl

en
e

ho
m

op
ol

ym
er

T
3

78
0

S6
B

or
ea

lis
1.

04
50

40
80

16
0

38
.5

65
.2

12
0.

7
66

.2
92

.8
15

3.
2

S7
U

C
C

/S
he

ll
1.

05
00

40
80

16
0

31
.8

57
.1

10
5.

5
40

61
.4

95
.1

Ph
en

ol
T

4
73

5
S8

Fr
om

C
6
H

6
/C

3
H

8
vi

a
cu

m
en

e

0.
51

03
45

90
18

0
37

.8
57

.7
94

.9
10

6.
6

15
1.

7
23

1.
5

A
cr

yl
ic

ac
id

(e
st

er
gr

ad
e)

T
5

14
50

S9
Tw

o-
st

ag
e

ox
id

at
io

n
0.

62
89

40
80

16
0

38
.5

65
.6

11
9.

1
82

.8
12

5.
4

20
7

(c
on

tin
ue

d)

220 S. S. Chauhan and P. Kotecha

Ta
bl

e
13

.1
(c

on
tin

ue
d)

C
ap

ac
ity

(1
03

to
n/

yr
)

Pr
od

uc
tio

n
co

st
($

10
6
/y

r)
In

ve
st

m
en

tc
os

t(
$1

06
)

Pr
od

uc
tn

am
e

Pr
od

uc
t

ID
Sa

le
pr

ic
e

($
/to

n)
Pr

oc
es

s
ID

Pr
oc

es
s

na
m

e

Pr
op

yl
en

e
us

ed
/to

n
a s

2
L

1 s
L

2 s
L

3 s
Q

1 s
Q

2 s
Q

3 s
V

1 s
V

2 s
V

3 s

Pr
op

yl
en

e
ox

id
e

T
6

11
30

S1
0

A
rc

o
pr

oc
es

s
(s

ty
re

ne
pr

od
uc

t)

0.
86

48
90

18
0

36
0

92
.2

15
9.

2
29

0.
9

23
3.

5
39

0.
7

69
8.

7

S1
1

Te
xa

co
(T

bu
ta

no
l

by
pr

od
uc

t)

0.
95

46
90

18
0

36
0

86
.7

15
4.

1
28

7.
7

18
5.

8
30

4.
5

53
7.

1

S1
2

C
hl

or
oh

yd
ri

n
0.

82
65

90
18

0
36

0
95

.8
17

5
33

0.
9

11
9

17
9.

4
28

9.
2

S1
3

A
cr

o
pr

oc
es

s
(T

bu
ta

no
l

by
pr

od
uc

t)

0.
78

75
90

18
0

36
0

87
.5

15
7.

2
29

4.
9

21
2.

3
36

2.
7

65
7.

7

S1
4

C
el

ll
iq

uo
r

ne
ut

ra
liz

at
io

n
0.

81
01

90
18

0
36

0
10

5.
9

19
6.

6
37

5.
2

10
9.

8
16

4.
3

26
3.

1

S1
5

Sh
el

lp
ro

ce
ss

(s
ty

re
ne

by
pr

od
uc

t)

0.
87

82
90

18
0

36
0

93
.1

13
1.

1
23

9.
4

22
1.

7
37

6.
1

67
2.

7

N
-b

ut
an

ol
T

7
83

0
S1

6
V

ia
co

ba
lt

hy
dr

oc
ar

bo
ny

l
ca

ta
ly

st

0.
81

50
50

10
0

20
0

41
.4

68
.7

11
7.

2
11

5.
5

18
0.

4
28

7.
4

S1
7

V
ia

N
bu

tr
ya

ld
eh

yd
e

R
h

ca
ta

ly
st

0.
69

94
50

10
0

20
0

34
.9

62
11

1.
6

63
.7

10
0.

2
15

6.
3

C
um

en
e

T
8

45
0

S1
8

Fr
om

C
6
H

6
an

d
pr

op
yl

en
e

0.
37

84
60

12
0

24
0

36
.6

62
.1

12
0.

8
23

.1
33

.2
50

.7

13 Single-Level Production Planning in Petrochemical Industries Using. . . 221

Ta
bl

e
13

.2
D

at
a

fo
r

et
hy

le
ne

pr
od

uc
ts

an
d

pr
oc

es
se

s
[1

]

C
ap

ac
ity

(1
03

to
n/

yr
)

Pr
od

uc
tio

n
co

st
($

10
6
/y

r)
In

ve
st

m
en

tc
os

t(
$1

06
)

Pr
od

uc
tn

am
e

Pr
od

uc
t

ID
Sa

le
pr

ic
e

($
/to

n)
Pr

oc
es

s
ID

Pr
oc

es
s

na
m

e

E
th

yl
en

e
us

ed
/to

n
a s

1
L

1 s
L

2 s
L

3 s
Q

1 s
Q

2 s
Q

3 s
V

1 s
V

2 s
V

3 s

Po
ly

vi
ny

l
C

hl
or

id
e

T
9

74
0

S1
9

Su
sp

en
si

on
po

ly
m

er
iz

a-
tio

n

10
0

20
0

40
0

67
.6

12
5.

2
23

7.
2

11
7.

6
18

6
30

7.
5

S2
0

B
ul

k
po

ly
m

er
-

iz
at

io
n

50
10

0
30

0
33

63
.1

16
3.

8
62

.5
11

4
20

9.
6

Po
ly

vi
ny

l
C

hl
or

id
e

(d
is

pe
rs

io
n)

T
10

12
50

S2
1

B
at

ch
em

ul
si

on
po

ly
m

er
iz

a-
tio

n

25
50

10
0

28
.7

48
.3

86
73

.1
10

1.
1

14
8

S2
2

C
on

tin
uo

us
em

ul
si

on
po

ly
m

er
iz

a-
tio

n

25
50

10
0

24
43

.1
79

.5
46

.5
70

.7
11

0.
1

V
in

yl
ch

lo
ri

de
T

11
43

0
S2

3
T

O
SO

H
te

ch
no

lo
gy

12
5

25
0

50
0

63
.8

12
3.

5
24

1
49

.2
74

.4
11

2.
8

S2
4

Py
ro

ly
si

s
12

5
25

0
50

0
68

.5
13

4.
5

26
4

79
.1

14
4.

2
25

8.
1

S2
5

C
hl

or
in

at
io

n/
O

xy
ch

lo
ri

na
-

tio
n

0.
46

78
25

0
50

0
10

00
10

1.
5

19
5

37
7

13
4

22
9.

9
39

2.
2

E
th

yl
en

e
gl

yc
ol

T
12

60
0

S2
6

H
yd

ra
tio

n
of

E
O

al
lE

O
fo

r
E

G

0.
72

67
90

18
0

36
0

50
.3

90
16

5.
6

14
2.

6
23

4.
8

39
7.

5

(c
on

tin
ue

d)

222 S. S. Chauhan and P. Kotecha

Ta
bl

e
13

.2
(c

on
tin

ue
d)

V
in

yl
ac

et
at

e
T

13
69

0
S2

7
Fr

om
et

hy
le

ne
an

d
ac

et
ic

ac
id

0.
39

30
67

.5
13

5
20

0
53

.9
10

1.
2

14
6.

4
82

.7
13

3.
6

18
1.

3

H
ig

h
de

ns
ity

po
ly

et
hy

le
ne

T
14

86
0

S2
8

U
C

C
pr

oc
es

s
1.

02
00

70
13

5
27

0
42

.1
75

.1
14

1.
8

56
.9

84
.5

13
1.

5

S2
9

D
u

Po
nt

pr
oc

es
s

1.
02

00
70

13
5

27
0

44
.6

77
.5

14
7.

7
63

.4
84

.5
13

6.
9

S3
0

Ph
ili

ps
pr

oc
es

s
1.

02
00

70
13

5
27

0
44

.6
78

.8
14

8
66

.5
96

.2
14

7.
7

L
in

ea
r

lo
w

de
ns

ity
po

ly
et

hy
le

ne

T
15

90
0

S3
1

D
ry

m
od

e
ga

s
ph

as
e

un
iv

at
io

n
pr

oc
es

s

0.
94

61
10

0
20

0
40

0
55

.7
10

6.
8

20
8.

4
51

.4
83

.0
14

4.
5

S3
2

B
im

od
al

gr
ad

e
by

m
ix

ed
m

et
ta

l-
lo

ce
ne

/Z
ie

gl
er

ca
ta

ly
st

0.
93

87
75

15
0

30
0

48
.3

90
.2

17
2.

8
46

.9
66

98
.6

S3
3

B
im

od
al

gr
ad

e
by

un
ip

ol
pr

oc
es

s

0.
94

30
12

2.
5

24
5

49
0

92
17

4
33

6.
2

82
.4

11
6.

6
17

5.
6

L
ow

de
ns

ity
po

ly
et

hy
le

ne
T

16
87

0
S3

4
H

ig
h

pr
es

su
re

tu
bu

la
r

re
ac

to
r

1.
06

00
50

10
0

20
0

34
.9

63
.9

12
0.

4
72

11
7.

7
19

9.
7

13 Single-Level Production Planning in Petrochemical Industries Using. . . 223

Ta
bl

e
13

.3
D

at
a

fo
r

sy
nt

he
si

s
ga

s
pr

od
uc

ts
an

d
pr

oc
es

se
s

[1
]

C
ap

ac
ity

(1
03

to
n/

yr
)

Pr
od

uc
tio

n
co

st
($

10
6
/y

r)
In

ve
st

m
en

tc
os

t(
$1

06
)

Pr
od

uc
tn

am
e

Pr
od

uc
t

ID

Sa
le

pr
ic

e
($

/to
n)

Pr
oc

es
s

ID
Pr

oc
es

s
na

m
e

M
et

ha
ne

us
ed

/to
n

a s
3

L
1 s

L
2 s

L
3 s

Q
1 s

Q
2 s

Q
3 s

V
1 s

V
2 s

V
3 s

A
ce

tic
ac

id
T

17
48

0
S3

5
L

ow
pr

es
su

re
ca

rb
on

yl
at

io
n

(R
h.

C
at

al
ys

t
so

lu
tio

n)

18
2.

5
36

5
54

0
63

.2
11

1.
4

15
6.

6
12

5.
6

19
5.

9
25

9.
6

S3
6

L
ow

pr
es

su
re

ca
rb

on
yl

at
io

n
su

pp
or

te
d

R
h.

ca
ta

ly
st

18
2.

5
36

5
54

0
60

.3
10

3
14

2.
6

11
6.

4
16

8.
2

21
3.

5

S3
7

L
ow

pr
es

su
re

ca
rb

on
yl

at
io

n
R

h.
H

al
id

e
ca

ta
ly

st

18
0

36
0

55
0

64
.7

11
0.

2
15

4.
6

13
3.

2
19

6.
3

24
8.

9

A
m

m
on

ia
T

18
16

0
S3

8
IC

I
A

M
V

pr
oc

es
s

6.
35

00
30

0
43

0
59

0
48

.3
65

85
21

0.
9

27
8.

2
35

6
S3

9
M

W
K

el
lo

g
pr

oc
es

s
5.

92
80

30
0

43
0

59
0

52
.8

71
.4

92
.7

24
3.

5
32

2.
4

41
2.

6

S4
0

IC
I

L
C

A
pr

oc
es

s
6.

67
80

10
5

17
0

34
0

19
.4

27
.4

47
.3

87
11

9.
5

19
6.

7
Fo

rm
al

de
hy

de
1

T
19

50
0

S4
1

Fr
om

m
et

ha
no

l
us

in
g

si
lv

er
ca

ta
ly

st

6.
67

80
15

25
50

6.
6

9.
7

17
.7

15
.3

20
.2

32
.7

S4
2

Fr
om

m
et

ha
no

l
us

in
g

Fe
M

o
ca

ta
ly

st

6.
67

80
15

25
50

6.
9

10
.6

19
.4

17
.9

26
.2

44
.9

M
et

ha
no

l
T

20
15

0
S4

3
L

ur
gi

pr
oc

es
s

7.
86

70
41

5
83

0
16

60
55

.2
96

.3
18

4.
3

22
4.

6
36

5.
5

68
2.

1
S4

4
IC

I
pr

oc
es

s
co

pp
er

ca
ta

ly
st

7.
77

80
41

5
83

0
16

60
56

.5
10

0.
5

19
4.

3
22

8.
5

38
4.

6
72

7.
6

S4
5

IC
I

L
C

M
pr

oc
es

s
7.

66
10

41
5

83
0

16
60

51
.9

98
18

7.
6

19
9.

1
37

1.
5

70
2.

9

224 S. S. Chauhan and P. Kotecha
Ta

bl
e

13
.4

D
at

a
fo

r
ar

om
at

ic
s

(B
T

X
)

pr
od

uc
ts

an
d

pr
oc

es
se

s
[1

]

C
ap

ac
ity

(1
03

to
n/

yr
)

Pr
od

uc
tio

n
co

st
($

10
6
/y

r)
In

ve
st

m
en

tc
os

t(
$1

06
)

Pr
od

uc
tn

am
e

Pr
od

uc
t

ID

Sa
le

pr
ic

e
($

/to
n)

Pr
oc

es
s

ID
Pr

oc
es

s
na

m
e

E
th

yl
en

e
us

ed
/to

n
a s

1
L

1 s
L

2 s
L

3 s
Q

1 s
Q

2 s
Q

3 s
V

1 s
V

2 s
V

3 s

St
yr

en
e

T
21

76
0

S4
6

L
iq

ui
d

ph
as

e
al

ky
l/a

di
ab

at
ic

de
hy

dr
og

en
at

io
n

0.
28

91
22

5
45

0
68

0
10

5.
8

20
4.

8
30

6
11

6.
9

19
0

26
5.

1

S4
7

L
iq

ui
d

ph
as

e
al

ky
lo

xi
da

tiv
e

re
he

at
in

g

0.
28

78
22

5
45

0
68

0
10

8
20

9.
7

31
3.

5
11

5.
6

19
1.

8
26

6.
8

S4
8

V
ap

or
ph

as
e

al
ky

l/a
di

ab
at

ic
de

hy
dr

og
en

at
io

n

0.
28

43
22

5
45

0
68

0
10

5.
6

20
2.

5
30

2.
6

12
5.

2
19

2.
7

26
9

S4
9

V
ap

or
ph

as
e

al
ky

l/i
so

th
er

m
al

de
hy

dr
og

en
at

io
n

0.
28

74
22

5
45

0
68

0
10

6.
7

20
6.

1
30

8.
1

12
5.

2
20

2
28

5.
5

Pt
ha

lic
an

hy
dr

id
e

T
22

70
0

S5
0

A
tto

ch
em

/N
ip

po
n

12
.5

25
50

9.
4

16
.4

28
.4

26
40

.8
63

.9

S5
1

Fr
om

O
-X

yl
en

e
by

A
ls

ui
ss

e
It

al
ia

pr
oc

es
s

12
.5

25
50

9
15

.4
27

.3
27

.7
39

.6
56

.9

Ph
en

ol
T

23
73

5
S5

2
L

iq
ui

d
ph

as
e

ox
id

at
io

n
of

to
lu

en
e

45
90

18
0

36
.8

64
11

8.
7

10
8.

8
15

7.
2

25
1.

6

PT
A

T
24

68
0

S5
3

H
yd

ro
ly

si
s

of
di

m
et

hy
l

te
re

ph
th

al
at

e

12
5

25
0

50
0

81
.4

14
5.

8
27

5.
5

20
8.

1
30

8.
6

51
5.

5

S5
4

Fr
om

P-
xy

le
ne

by
br

om
in

e
pr

om
ot

ed
ai

r
ox

id
at

io
n

12
5

25
0

50
0

78
.4

14
5

27
7

17
0.

5
26

7.
3

45
2.

7

13 Single-Level Production Planning in Petrochemical Industries Using. . . 225

of 24 different products (represented by T1 to T24) which can be produced by 54
processes (represented by S1–S54). For example, high–density polyethene (T14 in
Table 13.2) can be produced by UCC process (S28 in Table 13.2), Du point process
(S29 in Table 13.2) and Philips process (S30 in Table 13.2). The investment cost
(V) and the production costs (Q) of each process are dependent on the production
capacity and is provided for K capacity levels. In the current example, these details
are available at three different levels (low, medium and high denoted as L1

s , L
2
s , and

L3
s respectively). For example, Table 13.1 shows that the production cost of process

S3 for producing 77.5 × 103 tons/year of product T1 is $ 56.9 × 106. Similarly, the
production cost is $ 103.7 × 106 per year for producing 155 × 103 tons/year, and
it is $ 195.7 × 106 for producing 310 × 103 tons/year. The minimum production
from a process is 0 whereas the maximum production of a single unit is restricted
by the production capacity of the highest level i.e., LKs (in this case L3

s). It should be
noted that the amount of production from a process has to be either 0 or greater than
or equal to L1

s , i.e. if a process is selected, it has to produce a minimum specified
amount of product for operational reasons. The production cost and investment cost
for any production between the lowest and the highest level capacity are determined
using a piece–wise linear function between the two successive levels as shown in
Fig. 13.1. In this figure Q1

s ,Q
2
s , and Q3

s denote the production cost of the three
levels whereas V 1

s , V
2
s and V 3

s denotes the investment cost. It should be noted that
the production cost is assumed to constitute all the various costs such as raw material

Investment Cost

Production Cost

V

V

V

Q

Q

Q

L

3
s

2
s

1
s

3

2

s

1

s

s

1
s L2

s L3
s

Fig. 13.1 Production cost and investment cost as a function of production capacity. [1]

226 S. S. Chauhan and P. Kotecha

cost, labor cost, and utility cost [1]. The amount of raw material r that is required
to produce the product using the process s is also known and indicated by ars. The
maximum amount of raw material r that is available is given by Rr. Additionally, the
maximum amount of monetary resource that is available (B) and the selling price
(Es) of the product from process s are known.

The objective is to determine the optimal production plan in order to maximize
the profit, which is the difference between the revenue realized by selling the
products and the production cost of the products subject to the constraints on
the raw material and investment cost. In particular, the optimal production plan
requires the identification of (i) the products to be produced, (ii) the processes to be
employed to produce the selected products, and (iii) the amount of the product that
has to be produced from each of the selected processes. Another special constraint
is the unique process constraint, which requires that an identical product should
not be produced from more than one processes. The incorporation of the unique
process constraint can lead to a reduction in the profitability but may be required
to potentially diversify the product portfolio and reduce the complexity of the plant
by avoiding the use of different type of processes to produce an identical product.
The solution of the optimization problem with unique process constraint can be
relatively challenging for CI techniques and hence we have included it to evaluate
their performance.

Solution Strategy

The appropriate choice of the decision variables is crucial for the successful
application of CI techniques to combinatorial optimization problems. In this strategy
[7], the use of binary variables is avoided and the problem is formulated with the
help of continuous variables without compromising on the rigor of the formulation.
Moreover, unlike mathematical programming techniques, CI techniques do not rely
on the gradient information and are designed to even solve black–box optimization
problems. This benefit of CI technique is exploited in this strategy to efficiently
model this problem without using artificial decision variables. In this strategy, a
single decision variable is employed to represent the production from each process.
If there are S processes, an equal number of continuous decision variables are
employed and the production from a particular process s is denoted by xs. The lower
bound of the decision variables are set to zero to accommodate no production from
a process.

The upper bound of the decision variable for the process s is denoted by Us and
can be determined by using Eq. (13.1)

Us = max∀k=1,2,...K

(
Lks

)
(13.1)

13 Single-Level Production Planning in Petrochemical Industries Using. . . 227

Fitness

f

xs
CI Techniques

Decision variable Equation (13.2)

to

Equation (13.13)
Algorithm

Problem
Statement

Fig. 13.2 Information flow between CI technique and the optimization problem

In the above equation, Lks indicates the production capacity of level k for process
s. Thus, the decision variables and its bounds are given by Eq. (13.2).

0 ≤ xs ≤ Us ∀s = 1, 2, . . . , S (13.2)

If there is a process with three production levels (say low, medium and high)
of 50 units, 70 units and 80 units, then L1

s = 50, L2
s = 70, L3

s = 80 and the
value of Us would be 80 (= max (50, 70, 80)). It can be observed that the upper
bound can differ for each process depending on the maximum amount that can be
produced from the various levels available for it. Figure 13.2 depicts the typical
relationship between a CI technique and the optimization problem that is being
solved. In every iteration, the CI techniques provide candidate solutions (the set of
decision variables) whose fitness is to be determined using the problem statement.
The fitness value of the candidate solution is to be returned to the CI technique,
which utilizes this information to potentially discover better solutions. In the rest of
the discussion, we describe the determination of the fitness based on the decision
variables provided by a CI technique. Equation (13.3) helps in the determination of
the processes, which violate the domain–hole constraint. Based on the value of the
decision variable xs, the binary parameter zs is set to a value of 1 if the production
in process s violates the domain–hole constraint and is set to 0 if it does not violate
the domain–hole constraint.

zs =
⎧
⎨

⎩

0 xs = 0 or
0 (∃xs : Ls ≤ xs ≤ Us)
1 otherwise

∀s = 1, ..,S (13.3)

Equation (13.4) assigns a value of 1 to the binary parameter yks if the amount
of production lies in between the level k and k + 1, and zero otherwise for the
process s. The notation V ks andQks denote the investment and the production cost of
production capacity level k respectively for process s.

228 S. S. Chauhan and P. Kotecha

yks =
{

1 Lks ≤ xs ≤ Lk+1
s

0 otherwise
∀k = 1, 2, .., K − 1; ∀s = 1, 2, .., S (13.4)

Equations (13.5) and (13.6) determine the investment and production cost of the
process s respectively. It should be noted that Eqs. (13.5) and (13.6) ensure that the
production and investment cost for any production between two successive levels
(say k and k + 1) is calculated based on the linear interpolation between the two
successive costs (refer to Fig. 13.1).

Is =
K−1∑

k=1

yks

(
V ks +

(
V k+1
s − V ks
Lk+1
s − Lks

)(
xs − Lks

))
∀s = 1, 2, .., S (13.5)

Cs =
K−1∑

k=1

yks

(
Qks +

(
Qk+1
s −Qks
Lk+1
s − Lks

)(
xs − Lks

))
∀s = 1, 2, .., S (13.6)

Equation (13.7) determines the number of processes, which are employed to pro-
duce product t with St indicating the set of processes that can produce the product t.

nt =
St∑

s=1

K−1∑

k=1

yks ∀t = 1, 2, .., T (13.7)

Equation (13.8) determines the penalty to be incorporated in the objective
function for the violation of the raw material constraint where Rr indicates the
amount of raw material r that is available and asr indicates the amount of raw
material r that is required in process s. The equation ensures that the penalty is
zero if the amount of raw material required is lower than or equal to the amount of
raw material available.

P rawmaterial
r =

[
min

{(
Rr −

S∑

s=1

asrxs

)
, 0

}]2

(13.8)

Similarly, Eq. (13.9) determines the penalty to be assigned if the budget
constraint is violated where B indicates the monetary resource that is available for
investment.

PBudget =
[

min

{(
B −

S∑

s=1

Is

)
, 0

}]2

(13.9)

13 Single-Level Production Planning in Petrochemical Industries Using. . . 229

The unique process constraint is implemented using Eq. (13.10) wherein a
penalty is assigned only if the product t is being produced by more than one process.

P uni
t =

{
1000nt nt > 1
0 otherwise

t = 1, 2, .., T (13.10)

In Eq. (13.11), Es denotes the selling price per unit of the product produced from
the process s, which is used to calculate the total profit from the production plan.

Profit =
S∑

s=1

(Esxs − Cs) (13.11)

Equation (13.12) determines the sum of all the penalties associated with domain–
hole constraints, raw material constraints, investment constraints and the unique
process constraints.

P =
{(
γ

S∑

s=1

zs

)
+
(
R∑

r=1

P rawmaterial
r

)
+
(
PBudget

)
+
(
T∑

t=1

P uni
t

)}
(13.12)

The objective is to maximize the profit but since most CI algorithms are designed
for minimization problems, the fitness function involves minimizing the negative
of profit. The fitness function that can be used with CI techniques to solve this
combinatorial optimization problem is given by Eq. (13.13).

Minimize f = −Profit + λ(P) (13.13)

Primary purpose of the fitness function in CI techniques is to discriminate the
quality of the solutions. The fitness function ensures that a feasible solution has
better fitness than an infeasible solution as the value of P would be zero. Moreover,
between two feasible solutions, the solution with a larger profit would have a better
fitness value. In the case of two solutions, which are infeasible, the solution with
lower penalty would be selected as per the Eq. (13.13).

It should be noted that the decision variables to be used in the CI techniques
for this production planning problem are only xs ∀ s = 1, 2, .., S. All the other
variables used in Eq. (13.3) to Eq. (13.13) are uniquely fixed, if the values of the set
of variables denoted by xs are known, and should not be used as decision variables
in the CI techniques.

230 S. S. Chauhan and P. Kotecha

Brief Description of CI Techniques

In this section, we briefly describe five algorithms that have been proposed in the
recent past. One of the reasons for selecting these algorithms is that the authors
have provided their codes and it is possible to do a critical analysis of the code and
the algorithm. In view of the nature of the computational intelligence algorithm, it is
often observed that there have been conflicting results [10, 20] which primarily arise
due to the incomplete description of the algorithm. However, with the availability of
the codes, the claims can be independently verified by researchers. Moreover, these
algorithms have claimed superiority over many of the conventional algorithms such
as Genetic Algorithm, Differential Evolution and Particle Swarm Optimization. It
should be noted that a detailed explanation of these algorithms can be obtained from
the literature and is not provided here for the sake of brevity.

Sanitized–Teaching–Learning–Based Optimization Algorithm

Teaching–learning–based optimization algorithm is a stochastic population–based
algorithm that has been proposed multiple times and is inspired by the teaching–
learning process of the classroom. The algorithm consists of two phases, viz., the
teacher phase, which is based on a student learning from the teacher, and the
student’s phase in which a student learns from other classmates. The decision
variables correspond to the marks secured by a student and the student with the
best fitness function is considered as the teacher of the class.

TLBO algorithm requires only two parameters in terms of the population size
and the number of generations to be used for terminating the algorithm. There have
been several issues in the implementation of TLBO, which have been described
in literature [11]. The implementation used for this work does not employ any
duplication removal step as it increases the computational complexity, requires
additional evaluation of the objective function and does not significantly aid in
the discovery of better results. Moreover, the rest of the four algorithms do not
employ any duplication removal step and in order to provide a fair comparison, the
duplicate removal step has not been included. In every generation, each member of
s-TLBO helps in the discovery of two potentially new solutions (one each in the
student and the teacher’s phase) whose objective function needs to be evaluated.
Thus the total number of fitness evaluations is given by {(2 × population size
× number of generations) + population size}. Recent variants of TLBO include
FTLBO Kommadath and Kotecha [18]. We have used the online available s-TLBO
codes (available at https://goo.gl/vk8gLb).

https://goo.gl/vk8gLb

13 Single-Level Production Planning in Petrochemical Industries Using. . . 231

Moth Flame Optimization Algorithm

Moth flame optimization algorithm is a stochastic population–based approach
[21] and its performance has been demonstrated on benchmark real parameter
optimization problems and computationally expensive optimization problems. It
is inspired by the natural transverse orientation employed by moths to navigate
at nights for travelling long distances in straight paths by maintaining a fixed
angle with respect to distant celestial objects such as the moon. This mechanism
becomes ineffective if the light source is nearby and often misleads the moths to
spiral around in useless paths. In MFO, the decision variables of the optimization
problem corresponding to the positions of the moth and a flame population are
employed to correspond to the best positions of the moths. The moth positions are
iteratively updated using a spiral function around the flame to ensure exploration
and exploitation of the search space. Similar to s-TLBO, this algorithm also requires
only two user–defined parameters in terms of the number of moths and the number
of iterations. However, it requires only a single evaluation of the objective function
per member of the population. Thus the total number of fitness evaluations is given
by {(moth size × number of generations) + moth size. We have used the online
available MFO code (available at https://goo.gl/usMXG4).

Flower Pollination Optimization Algorithm

Flower pollination algorithm is population–based algorithm [30] and is inspired
by the flower pollination process associated with the transfer of pollen by biotic
and abiotic pollinators. The solutions in the search space are termed as pollens. In
every generation, each population member has to probabilistically either undergo
global or local pollination. The global pollination is designed to model the transfer
of pollen to the large distance by pollinators such as insects and utilizes the global
best solution and Levy distribution. On the contrary, local pollination is designed
to model the transfer in the neighborhood and relies on randomly selected solutions
from the population. FP requires three user–defined parameters, viz., population size
(flowers), the termination criteria in terms of the maximum number of generations
and switch probability, which is used to select the type of pollination for every
member. The newly generated solution is accepted if it is better than the solution
undergoing the pollination. In every generation, FP evaluates one solution per
population member. The number of total functional evaluations in FP is given by
{(population size × number of generations) + population size}. We have used the
online available FP algorithm code (available at https://goo.gl/vqfftk).

https://goo.gl/usMXG4
https://goo.gl/vqfftk

232 S. S. Chauhan and P. Kotecha

Water Cycle Optimization Algorithm

Water cycle optimization algorithm is a population–based metaheuristic optimiza-
tion algorithm [14] that is conceived from the water cycle process and the flow of
rivers and streams into the sea. The population is divided into sea, river and streams
based on the value of the fitness function. The solution representing the sea has the
best fitness function value which is followed by rivers and streams. The streams are
updated on the basis of a river whereas the rivers are updated based on the sea. In
both the cases, a better-updated solution would be used to replace the corresponding
river or sea. In order to avoid being trapped at the local optima, an evaporation
condition is incorporated to model the merging of a river to the sea. These are
replaced with new streams generated randomly to mimic the raining process. In
addition to the population size and the number of iterations, WCA requires three
user–defined parameters (i) the number of rivers, (ii) a tolerance value to indicate
the merging of the river into the sea and (iii) a parameter to update the streams.
The number of total functional evaluations in WCA is given by {(population size ×
number of iteration) + population size}. We have used the online available WCA
optimization algorithm code (available at https://goo.gl/HCgVg7).

Adaptive Wind Driven Optimization Algorithm

Adaptive wind driven optimization algorithm [4] is the extension of the classical
Wind driven optimization. It is based on the concept of atmospheric motion and
reportedly captures the movement of wind from regions of high pressure to low
pressure. The population members are considered as air parcels and are scaled
in the domain of [−1, 1]. The pressure is analogous to the cost function and is
utilized to rank the air parcels. A good solution is characterized by low pressure
whereas a high pressure indicates an inferior solution. The velocity of the parcels
used to determine new positions are modelled using the pressure gradient, friction,
gravitational and the coriolis force. Thus it requires parameters such as friction
coefficient, gravitational constant, the universal gas constant, temperature and the
rotation of the Earth to be set by the user. AWDO employs the popular Covariance
Matrix Adaptation Evaluation Strategy to adaptively tune these parameters and
hence requires only two user–defined parameters, viz., (i) population size and (ii)
number of generations to be used for terminating the algorithm. The number of
total functional evaluations in AWDO algorithm is given by {(population size ×
number of generations) + population size}. We have used the online available
AWDO optimization algorithm code (available at http://www.thewdo.com/).

https://goo.gl/HCgVg7
http://www.thewdo.com/

13 Single-Level Production Planning in Petrochemical Industries Using. . . 233

Results and Discussion

In this section, we evaluate the performance of the five computational intelligence
algorithms to solve the combinatorial problem of single–level production planning
problem of the Saudi Arabian petroleum industry. In this case study, 24 products
can be produced by using 54 different processes. It should be noted that not all the
products are produced by using every process and a product can be produced by
more than one process. There are 18 processes available to produce 8 propylene
derivative by–products, 16 processes available to produce 8 ethylene derivative by–
products, 11 processes available to produce 4 synthesis gas derivative by–products
and 9 processes available to produce 4 aromatic based derivative by-products. The
production and investment costs for three different production capacities are also
provided. Two different raw materials propylene (denoted as R1) and ethylene
(denoted as R2), required for the production of various products, are available in
limited quantities. Details about the production costs, raw material requirements
and investment costs for each process to produce their respective product, along
with selling price of the product is provided in Tables 13.1, 13.2, 13.3 and 13.4.

Two categories of problem are reported in the literature on the basis of the
requirement of unique process constraint. Each category has four distinct cases.
Case 1 – Case 4 form Category – I and require that an identical product should
not be produced by more than a process. For example, there are three different
processes (Lurgi process (S43 in Table 13.3), ICI process copper catalyst (S44 in
Table 13.3) and ICI LCM process (S45 in Table 13.3) available to produce methanol
(T20 in Table 13.3). For the four cases in Category – I, due to the requirement of the
unique process, only one of these three process can be used to produce methanol.
Category – II comprises of Case 5 – Case 8 that permit the production of an identical
product from more than one process. The investment cost available for Case 1 and
Case 2 is $1,000 million whereas $2,000 million is available for Case 3 and Case
4. The amount of raw material (R1 and R2) are available for Case 1 and Case 3
is 500,000 tons/year whereas 100,000 tons/year of raw materials are available for
Case 2 and Case 4. The resource availability for Case 5 – Case 8 is identical to Case
1 – Case 4 respectively (as shown in Table 13.5). The current strategy leads to 54
decision variables corresponding to the 54 processes. The number of constraints in
Category I and Category II are 81 and 57 respectively. The difference in the number
of constraints is due to the presence of 24 unique process constraints (corresponding
to the 24 products) in Category I. This is in addition to the bound constraints on the
54 decision variables.

All computations are performed using MATLAB R2015a on an Intel(R)
Core(TM) i7–4790 CPU@3.60GHz processor with 16 GB memory running
Windows 7. In view of the stochastic nature of the algorithms, all the five algorithms
are run for 51 times with different random seeds of the random number generator.
The seed of the random number generator (‘v5normal’) in MATLAB R2015a
is varied from 1 to 51 in order to realize the independent runs thereby creating
2040 (= 5 algorithm × 51 runs × 8 cases) unique instances. This ensures that

234 S. S. Chauhan and P. Kotecha

Table 13.5 Resource availability and utilization

Case
Raw Material 1
(103 tons/year)

Raw Material 2
(103 tons/year)

Investment Budget
(B) ($ 106)

Available Utilized Available Utilized Available Utilized

Case1 500.00 435.44 500.00 496.53 1000.00 989.06
Case2 1000.00 571.02 1000.00 829.73 1000.00 999.95
Case3 500.00 496.13 500.00 499.30 2000.00 1903.81
Case4 1000.00 979.52 1000.00 1000.00 2000.00 1844.79
Case5 500.00 499.20 500.00 389.02 1000.00 998.61
Case6 1000.00 577.15 1000.00 998.06 1000.00 1000.00
Case7 500.00 490.58 500.00 493.57 2000.00 1986.70
Case8 1000.00 999.10 1000.00 1000.00 2000.00 1973.16

the results reported in this work are reproducible which we believe is necessary
for scientific progress. The population size for all the five algorithms is set to 200
and the stopping criteria for each of the five algorithms (in every single run) are
set to 100,200 functional evaluations. This translates into 500 iterations for all the
algorithms except for s-TLBO. In case of s-TLBO, as it requires two functional
evaluations per member in an iteration, 250 iterations are required to account for
100,200 functional evaluations. The parcel velocity in AWDO is set to 0.3 whereas
the switching probability is set to 0.8 for FP. In WCA, the number of rivers is set to
3, the distance between stream and river is set to 10−16 and the constant C of the
algorithm is set to 2. These parameters have been set based on the recommendations
in their original works. The value of γ and λ in Eqs. (13.12) and (13.13) are 105

and 1015 respectively.
The best fitness function value obtained by the five algorithms at the end of

100,200 function evaluations for each run of the eight cases are shown in Fig.
13.3. If an algorithm is unable to obtain a feasible solution, the value of the fitness
function is very high due to the penalties. Thus for better representation, only the
values obtained in the feasible runs are shown in the figure. It can be observed
that s-TLBO and MFO are able to determine feasible solutions in all the instances.
However, FP was not able to determine even a single feasible solution for any of the
cases. Of the 408 (8 Cases × 51 runs) instances, AWDO was unable to determine a
feasible solution in 332 instances. In particular, AWDO fails to determine a feasible
solution for 41 instances in Case 1, 42 instances in Case 2, 43 instances in Case 3,
42 instances in Case 4, 45 instances in Case 5, 42 instances in Case 6, 43 instances
in Case 7 and for 34 instances in Case 8. On the other hand, WCA was not even able
to determine even a single feasible solution in 132 instances. In particular, it fails in
23 instances for Case 1, 17 instances in Case 2, 21 instances in Case 3, 22 instances
in Case 4, 17 instances in Case 5, 16 instances in Case 6, 10 instances in Case 7 and
6 instances in Case 8.

The statistical results of all the 2040 instances (8 Cases × 51 runs × 5 algorithms)
are consolidated in Table 13.6, which shows the best, the worst, the mean, the
median and the standard deviation of the best fitness values obtained in all the runs.
It can be seen from the “best” value of Table 13.6 that AWDO, WCA, MFO and

13 Single-Level Production Planning in Petrochemical Industries Using. . . 235

Table 13.6 Statistical performance of 51 runs

Case AWDO WCA FP MFO TLBO

Case 1 Best −597.01 −545.27 5.7E+21 −607.60 −636.43
Worst 1.2E+22 1.1E+21 1.2E+22 −268.80 −309.75
Mean 2.7E+21 6.0E+19 8.6E+21 −488.69 −499.54
Median 1.6E+21 −195.35 8.4E+21 −512.35 −506.94
St.dev 3.2E+21 1.8E+20 1.4E+21 81.87 71.24

Case 2 Best −607.35 −635.20 4.8E+21 −709.10 −745.14
Worst 8.7E+21 1.8E+21 1.2E+22 −304.00 −389.75
Mean 1.7E+21 8.2E+19 8.1E+21 −570.06 −571.59
Median 6.2E+20 −225.90 8.0E+21 −596.44 −572.72
St.dev 2.3E+21 2.8E+20 1.6E+21 94.71 71.93

Case 3 Best −494.35 −703.64 3.1E+21 −813.14 −834.73
Worst 7.4E+21 1.1E+21 7.4E+21 −513.29 −554.25
Mean 1.0E+21 5.7E+19 5.2E+21 −684.67 −695.18
Median 6.3E+20 −360.33 5.1E+21 −683.19 −699.51
St.dev 1.3E+21 2.0E+20 1.0E+21 70.90 60.86

Case 4 Best −796.87 −912.28 1.6E+21 −1047.69 −1032.20
Worst 6.2E+21 5.4E+20 6.7E+21 −625.32 −740.91
Mean 1.0E+21 1.2E+19 4.4E+21 −849.62 −888.35
Median 4.9E+20 −347.76 4.3E+21 −860.15 −881.85
St.dev 1.3E+21 7.6E+19 1.1E+21 109.46 71.81

Case 5 Best −409.80 −549.66 4.3E+21 −688.49 −712.72
Worst 4.4E+21 1.6E+21 8.3E+21 −366.50 −417.08
Mean 1.3E+21 7.9E+19 6.0E+21 −513.73 −545.46
Median 1.3E+21 −223.70 6.0E+21 −512.60 −545.95
St.dev 1.1E+21 2.4E+20 7.8E+20 81.90 64.14

Case 6 Best −532.15 −662.35 3.7E+21 −818.66 −784.65
Worst 3.0E+21 1.6E+21 7.3E+21 −322.95 −388.17
Mean 1.0E+21 5.6E+19 5.6E+21 −626.29 −601.71
Median 7.7E+20 −309.70 5.6E+21 −618.89 −593.01
St.dev 9.6E+20 2.4E+20 8.1E+20 78.78 96.61

Case 7 Best −701.00 −867.11 2.4E+21 −979.56 −986.29
Worst 1.8E+21 4.7E+20 4.3E+21 −501.71 −612.05
Mean 3.3E+20 2.7E+19 3.3E+21 −773.40 −790.84
Median 1.3E+20 −480.29 3.2E+21 −795.30 −798.09
St.dev 4.0E+20 9.8E+19 4.8E+20 118.52 97.35

Case 8 Best −1079.95 −1022.26 1.7E+21 −1249.41 −1233.26
Worst 8.6E+20 1.7E+20 3.7E+21 −624.50 −794.05
Mean 1.8E+20 8.3E+18 2.8E+21 −1030.88 −1025.76
Median 7.9E+19 −636.73 2.8E+21 −1038.50 −1026.05
St.dev 2.3E+20 3.3E+19 4.9E+20 126.61 106.41

236 S. S. Chauhan and P. Kotecha

Fig. 13.3 Best objective function obtained in all the runs of the five algorithms

s-TLBO are able to identify the feasible solutions for all the eight cases whereas FP
is not able to determine even a single feasible solution for any of the eight cases.
It should be noted that this table provides a consolidated view of Fig. 13.3. Among
the 2040 instances, it can be observed that for all the eight cases, the best value
discovered by s-TLBO is better in five cases (Case 1, Case 2, Case 3, Case 5, and
Case 7) than all other algorithms. While MFO determined the best value for three
cases, (Case 4, Case 6 and Case 8) than other algorithms (AWDO, WCA, FP and s-
TLBO). In addition to the best function value obtained, standard deviation obtained
by s-TLBO in seven of the eight cases are lower than that of MFO. Interestingly, in

13 Single-Level Production Planning in Petrochemical Industries Using. . . 237

all the eight cases, the worst solution reported by s-TLBO is better than the worst
solution reported by MFO. The median determined using MFO is better than s-
TLBO in four cases.

The convergence curve depicts the performance of the algorithm with respect
to each functional evaluation. The best value determined by the algorithm (till that
functional evaluation) is plotted against the number of times the objective function
has been evaluated (as a percentage of the maximum functional evaluation). The
convergence curve is plotted for the run that was able to determine the best objective
function value. Due to the high penalty values, the curve is plotted only after the
determination of the first feasible solution by an algorithm. From Fig. 13.4, it can

Fig. 13.4 Convergence curves of the best run

238 S. S. Chauhan and P. Kotecha

be observed that initially there is no feasible solution obtained by any of the five
algorithms. The algorithms are able to determine a feasible solution after certain
function evaluations and subsequently, the value of the objective function starts
improving. Both s-TLBO and WCA are able to quickly determine a feasible solution
in comparison to the other algorithms. In some of the cases, WCA determines a
better feasible solution than s-TLBO. However WCA is not able to improve on this
whereas s-TLBO determines a consistently better solution than WCA in all the eight
cases. On the other hand, MFO requires a larger number of function evaluations to
determine the first feasible solution. However, it quickly determines a better solution
than s-TLBO but stagnates whereas s-TLBO is able to slowly determine a solution
better than MFO (line corresponding to s-TLBO crossing the line corresponding
to MFO) in many of the cases. It can be observed that in all the cases, the four
algorithms (except FP) have converged to a final value.

Figure 13.5 shows the percentage of functional evaluations utilized for the
algorithm to determine the first feasible solution by each algorithm in eight cases
for all the feasible runs. From Fig. 13.5, it can be observed that s-TLBO is able to
determine a feasible solution with very few function evaluations (in all the 51 runs
for all eight cases) than the other four algorithms. AWDO was unable to determine
feasible solutions in many instances and in other instances, it required a significantly
larger number of function evaluations to determine the feasible solutions. MFO
required a larger number of function evaluations in comparison to s-TLBO and
WCA to determine the first feasible solution but lower than AWDO. As discussed
earlier, FP was unable to determine even a single feasible solution.

The decision variables, i.e., the production plan corresponding to the best
objective function value for each of the eight cases are given in Table 13.7. In
Case 1 – Case 4, it can be observed that none of the products is produced by more
than a single process thereby demonstrating the satisfaction of the unique process
constraint. In contrast, multiple processes are used to produce profitable products
in Case 5 – Case 8. For example, T1 and T21 are produced by multiple processes
in Case 5. The product T1 is produced in six of the eight cases (except Case 3
and Case 7) whereas product T16 and T21 are produced in all the eight cases. In
view of the high availability of resources and the unique process constraint, Case 4
has the most diverse product portfolio. The resource utilization is given under the
column “Utilized” in Table 13.5 and it can be observed that the production plans
utilize most of the available resources. Figure 13.6 depicts the profit distribution
among the various processes for all the eight cases. For the cases in Category – I,
the largest contribution to profit is from process P47 whereas in Category II, product
T21 contributes the maximum to the profit. Thus these processes can be considered
as critical and need to be intensively maintained. For the sake of brevity, details
are not provided but several insights can be obtained from post–optimality analysis
of the production plan. From the results and discussions, it can be observed that
s-TLBO and MFO are better than the rest of the three algorithms for this problem.

13 Single-Level Production Planning in Petrochemical Industries Using. . . 239

Fig. 13.5 Onset of feasibility in all the runs of the five algorithms

240 S. S. Chauhan and P. Kotecha

Table 13.7 Optimal production plan

Unique process constraint Without unique process constraint

Case
Product
number

Process
number

Net amount
produced (103

ton/year) Case
Product
number

Process
number

Net amount
produced (103

ton/year)

Case 1 T1 P1 267.92 Case 5 T1 P1 270.00
T2 P5 190.00 P3 256.31
T10 P22 100.00 T17 P36 540.00
T15 P31 317.96 T21 P47 680.00
T17 P36 537.55 P48 680.00
T19 P42 50.00
T21 P47 680.00

Case 2 T1 P3 310.00 Case 6 T1 P2 300.00
T2 P4 290.00 P3 310.00
T14 P28 270.00 T15 P31 400.00
T15 P31 400.00 P32 300.00
T17 P36 540.00 T21 P48 680.00
T21 P47 611.15 P49 503.43

Case 3 T3 P7 75.58 Case 7 T2 P4 218.43
T5 P9 160.00 P5 190.00
T6 P15 360.00 T5 P9 160.00
T9 P20 300.00 T10 P21 100.00
T10 P22 100.00 P22 42.54
T15 P31 320.89 T14 P29 101.83
T17 P36 540.00 T17 P35 540.00
T19 P42 50.00 P36 540.00
T21 P47 680.00 T19 P41 50.00

T20 P45 519.86
T21 P46 679.26

P48 680.00
Case 4 T1 P3 310.00 Case 8 T1 P2 300.00

T2 P4 290.00 P3 310.00
T3 P7 160.00 T2 P5 190.00
T5 P9 160.00 T5 P9 160.00
T7 P17 200.00 T7 P17 200.00
T10 P22 100.00 T9 P20 300.00
T14 P28 270.00 T14 P28 228.23
T15 P31 400.00 T15 P31 400.00
T16 P34 141.93 T17 P36 540.00
T17 P36 540.00 T21 P48 680.00
T19 P42 49.99 P49 680.00
T21 P47 680.00
T22 P51 50.00

13 Single-Level Production Planning in Petrochemical Industries Using. . . 241

Fig. 13.6 Individual contribution of processes to profit

242 S. S. Chauhan and P. Kotecha

Conclusions

In this work, we have evaluated the performance of five recently proposed com-
putational intelligence techniques on the combinatorial optimization problem of
single–level production planning. The problem involves complex constraints arising
from the domain holes and unique process requirements. The algorithms were tested
for 408 unique instances of constrained optimization problem arising from 51 runs
and 8 cases. The results of 2040 instances showed that s-TLBO was able to provide
superior results as compared to other computational intelligence algorithms such as
AWDO, WCA, and FP. It was also observed that the performance of MFO is compet-
itive but had relatively high variance across the multiple runs. Though demonstrated
for the case study of petrochemical production planning, this strategy can be
applicable to many other industries that require the design of optimal production
portfolio. Future work can include evaluating the computational performance in the
presence of efficient constraint handling techniques and problems with conflicting
multiple objectives.

References

1. Alfares H, Al Amer A (2002) An optimization model for guiding the petrochemical industry
development in Saudi Arabia. Eng Optim 34(6):671–687

2. Aminzadeh F (2005) Applications of AI and soft computing for challenging problems in the
oil industry. J Pet Sci Eng 47(2):5–14

3. Assareh E, Behrang MA, Assari MR, Ghanbarzadeh A (2010) Application of PSO (particle
swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in
Iran. Energy 35(12):5223–5229

4. Bayraktar Z, Komurcu M (2016) Adaptive wind driven optimization. In: Proceedings of the 9th
EAI international conference on bio-inspired information and communications technologies,
New York, USA. https://doi.org/10.4108/eai.3-12-2015.2262424

5. Toledo CEE, Aranda CG, Mareschal B (2010) Petrochemical industry: assessment and
planning using multicriteria decision aid methods. Technol Invest 1(2):118–134

6. Cecchini RL, Ponzoni I, Carballido JA (2012) Multi-objective evolutionary approaches
for intelligent design of sensor networks in the petrochemical industry. Expert Syst Appl
39(3):2643–2649

7. Chauhan SS, Kotecha P (2016) Single level production planning in petrochemical indus-
tries using Moth-flame optimization. IEEE region 10 conference (TENCON), Singapore.
https://doi.org/10.1109/TENCON.2016.7848003

8. Chauhan SS, Kotecha P (2018) An efficient multi-unit production planning strategy based on
continuous variables. Appl Soft Comput 68:458–477

9. Chauhan SS, Sivadurgaprasad C, Kadambur R, Kotecha P (2018) A novel strategy for the
combinatorial production planning problem using integer variables and performance evaluation
of recent optimization algorithm, Swarm and Evolutionary Computation, 43, 225–243

10. Chinta S, Kommadath R, Kotecha P (2016) A note on multi-objective improved teaching–
learning–based optimization algorithm (MO–ITLBO). Inf Sci 373:337–350

11. Črepinšek M, Liu SH, Mernik L (2012) A note on teaching–learning–based optimization
algorithm. Inf Sci 212:79–93

http://dx.doi.org/10.4108/eai.3-12-2015.2262424
http://dx.doi.org/10.1109/TENCON.2016.7848003

13 Single-Level Production Planning in Petrochemical Industries Using. . . 243

12. Duan QQ, Yang GK, Pan CC (2014) A novel algorithm combining finite state method and
genetic algorithm for solving crude oil scheduling problem. Sci World J 2014:1–11

13. Editorial (2015) Synthesizing tomorrow. Nat Plants 1:15047
14. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm – a novel

metaheuristic optimization method for solving constrained engineering optimization problems.
Comput Struct 110–111:151–166

15. Hasda RK, Bhattacharjya RK, Bennis F (2016) Modified genetic algorithms for solving facility
layout problems. Int J Interact Des Manuf 11(3):713–725

16. Joly M, Rocha R, Sousa LCF, Takahashi MT, Mendonça PN, Moraes LAM, Quelhas AD
(2015) The strategic importance of teaching operations research for achieving high perfor-
mance in the petroleum refining business. Educ Chem Eng 10:1–19

17. Kadambur R, Kotecha P (2015) Multi-level production planning in a petrochemical industry
using elitist teaching–learning-based-optimization. Expert Syst Appl 42(1):628–641

18. Kommadath R, Kotecha P (2017) Teaching learning based optimization with focused learning
and its performance on CEC2017 functions, 2017 IEEE congress on evolutionary computation
(CEC), San Sebastian, Spain. https://doi.org/10.1109/CEC.2017.7969595

19. Kadambur R, Kotecha P (2016) Optimal production planning in a petrochemical industry using
multiple levels. Comput Ind Eng 100:133–143

20. Mernik M, Liu S-H, Karaboga D, Črepinšek M (2015) On clarifying misconceptions when
comparing variants of the artificial bee Colony algorithm by offering a new implementation.
Inf Sci 291:115–127

21. Mirjalili S (2015) Moth–flame optimization algorithm: a novel nature-inspired heuristic
paradigm. Knowl-Based Syst 89:228–249

22. Moro LFL (2009) Optimization in the petroleum refining industry – I the virtual refinery.
Comput Aided Chem Eng 27:41–46

23. Nabavi R, Rangaiah GP, Niaei A, Salari D (2011) Design optimization of an LPG thermal
cracker for multiple objectives. Int J Chem React Eng 9(A80):1–4634

24. Ozcelik Y, Hepbasli A (2006) Estimating petroleum exergy production and consumption using
a simulated annealing approach. Energy Sources 1(3):255–265

25. Ramteke M, Srinivasan R (2012) Large-scale refinery crude oil scheduling by integrating graph
representation and genetic algorithm. Ind Eng Chem Res 51(14):5256–5272

26. Ren T, Daniëls B, Patel MK, Blok K (2009) Petrochemicals from oil, natural gas, coal and
biomass: production costs in 2030–2050. Resour Conserv Recycl 53(12):653–663

27. Sheremetov L, Bañares-Alcántara MAR, Aminzadeh F, Mansoori GA (2005) Intelligent
computing in petroleum engineering. J Pet Sci Eng 47(1–2):1–3

28. Toksarı MD (2007) Ant colony optimization approach to estimate energy demand of Turkey.
Energy Policy 35(8):3984–3990

29. Velez-Langs, Oswaldo, (2005). Genetic algorithms in oil industry: An overview. Journal of
Petroleum Science and Engineering 47:15–22

30. Yang XS (2012) Flower pollination algorithm for global optimization. In: Proceedings of the
11th international conference on unconventional computation and natural computation, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_27

31. Zhang L, Jiang Y, Gao X, Huang D, Wang L (2016) Efficient two–level hybrid algorithm for
the refinery production scheduling problem involving operational transitions. Ind Eng Chem
Res 55(28):7768–7781

http://dx.doi.org/10.1109/CEC.2017.7969595
http://dx.doi.org/10.1007/978-3-642-32894-7_27

Chapter 14
A Multi-Agent Platform to Support
Knowledge Based Modelling
in Engineering Design

Ricardo Mejía-Gutiérrez and Xavier Fischer

Abstract Nowadays engineering design process requires the involvement of mul-
tiple partners from multiple disciplines throughout the Product Life Cycle (PLC).
Consequently, the construction of numerical models became a difficult task due to
the distribution of experts. This article proposes an agent based approach to support
a coherent know-how elicitation, to enrich design problem analysis, based on the
re-use of experiences and their storage in a standardized knowledge base. A set of
Tutor-Agents (TAs) aid experts in the knowledge modelling process focusing on
Variables, Domains and Constraints as a key component of engineering knowledge.
A shared and coherent knowledge base is the main purpose of the proposed Multi-
Agent System (MAS). The interaction among agents enables to highlight potential
incoherencies during the modelling process to avoid inconsistent information. The
Multi-Agent approach is implemented in a software prototype and a knowledge
base can then be constructed, providing standardized Product Life Cycle (PLC)
constraints (based on the product related knowledge) for creating models to be
analyzed by traditional inference engines such as Optimization solvers, Constraint
Satisfaction programming, etc.

Keywords Distributed knowledge modelling · Multi-agent system · Experts’
knowledge reuse · Tutor agent · Engineering design

R. Mejía-Gutiérrez (�)
Design Engineering Research Group (GRID), Universidad EAFIT, Medellín, Colombia
e-mail: rmejiag@eafit.edu.co

X. Fischer
ESTIA Engineering School, Technopôle Izarbel, Bidart, France

IMC-I2M, UMR CNRS 5295, Université de Bordeaux, Bordeaux, France
e-mail: x.fischer@estia.fr

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_14

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_14&domain=pdf
mailto:rmejiag@eafit.edu.co
mailto:x.fischer@estia.fr
https://doi.org/10.1007/978-3-030-26458-1_14

246 R. Mejía-Gutiérrez and X. Fischer

Introduction

It can be assumed that particular classes of design problems can be formulated
as optimisation, constraint satisfaction, or algebraic equation-solving problems [6].
Distributed knowledge may be formalised and used in early stages of product design
as constraints in numerical models. The creation of such a model is not a simple
task, especially in networked enterprises where multiple disciplines are involved
in a common distributed project. Nowadays product design teams, working in a
distributed environment, require new working methods and techniques in order
to improve their design activities. The process of analysing problems in product
development is a key task that requires the integration of experts’ know-How
and experience in early stages of product development. Engineering knowledge
can be then considered as “a set of relations among a set of variables and their
domains”. That is why Constraint Satisfaction Problems fit to the Engineering
Design needs as design problems can be modelled with this approach and then they
can be solved by traditional inference engines such as Optimization or Constraint
Satisfaction solvers, etc. There is evidence in the literature that CSP proofed to be
a suitable numerical tool to help engineers in solving design problems [14, 28, 35].
Experiences are formalized trough Variables and the set of values that they can
adopt, as well as the set of constraints (relations among variables) issued from
experts’ experience. The combination of Variables, Domains and Constraints enable
the numerical modelling of design problems.

The ideas proposed in this article are located into the preliminary design phases.
At this stage, several concepts are found and a set of variables start to emerge.
The design process is a continuous decision making and that is why any help in
Decision Support becomes critical. However, in early stages of the engineering
process, design is still in a conceptual stage and values that those Variables can
take are still fuzzy [11] converting the decision making a critical aspect. The
modelling approach enable to consider several possibilities by using combinatorial
analysis. The results comes from an inference engine that may produce an output
corresponding to a set of possible solutions that meets a set of constraints. Any
design can be defined by a vector in multidimensional space where each design
variable represents a different dimension. Usually, if an optimisation is needed, an
objective function expresses cost, weight, range, efficiency, return-on-investment, or
any combination of parameters. It is subject to functional constraints in accordance
to given relationships between variables and parameters and to variables’ domains.
These functional constraints will be considered from now on in this article as
domain specific knowledge. These constraints define the permissible space where
the optimum value has to be found, e.g. limits due to minimum sheet thickness,
maximum stress, limit speed, etc. An agreement on those variables that compose
functional constraints is a critical step in distributed environments. This issue will
be addressed in this article in order to achieve an optimal distributed design process.
Due to the importance of including experts’ know-How in early stages of product
development, the use of the company’s knowledge is a new issue that arises.

14 Multi-Agent Platform for KBM in Engineering Design 247

Background

There are previous works on implementing constraint-based methods to model
Engineering Design problems [1, 30, 32, 36] or to aid in the formalization of
Decision Support Systems [21]. There are also generic implementations not neces-
sarily for design problems, but including agents [33], and some other researchers
work on novel approaches that integrates the collaborative design aspect, as it
is the particular case of CoCSP (Cooperative Constraint Satisfaction Problem)
[38]. However, some of them focused on the information gathering, others in
the computational analysis and others are focused on the solution. The proposed
work presented in this article, intends to go further by support the distributed
approach with agents and characterizing the different environmental entities of the
Multi-Agent System. This enable agents to have more information available to
perform analysis and to communicate (ask or request other agent’s information)
in order to have a standardized knowledge base, that can be employed to re-
use/restore experiences to build a consolidated model. Some previous experiences
have shown the importance of Knowledge Based Systems (KBS), particularly from
the Knowledge Management domain in organizational applications [2], knowledge
intensive collaborative environments [8] and applications to the decision-making
process in design projects [12], among others. An interesting survey was published
around methods to automatically manage Knowledge Bases [23], being the key
to support that standardized knowledge bases may help in further computational
processing as optimization methods or combinatorial exploration, in order to be
applied in engineering design.

The aim of this research is to help the design team through a tutored process
to cooperatively create a model for analysis including Product Life Cycle (PLC)
information. To achieve this, the use of Multi-agents technology has been con-
sidered, as those systems have proven to properly support a very large domain
of applications, rich in knowledge and strong in the collaborative aspect [19].
Multi-Agent System (MAS) supports applications in areas such as collaborative
building design [31], computer integrated manufacturing (CIM) and networked
organizations [5], as well as virtual enterprises [22]. Multi-Agents systems (MAS)
represents one of the most promising technological paradigms for the development
of open, distributed, cooperative, and intelligent software systems [16]. Several
applications in product development process have been tested in research and
industrial applications. Some of these agent based systems have proved a great
potential in creation and automation of collaborative and distributed environments
for product design [15, 18, 26, 29, 34]; however, they are specific applications on
a given domain with specific knowledge. There are also other Multi-Agent System
(MAS) with application in Optimization [37], but they are often applied in the model
solving, rather than helping experts to define constraints, based on their domain–
specific knowledge. That is why a Tutor Agent (TA) is proposed to identify actors’
know-how, focusing on the method to elicitate knowledge from different technical
domains in order to be able to re-use that experts’ knowledge to model a general
formulation of an engineering design problem.

248 R. Mejía-Gutiérrez and X. Fischer

A well accepted aspect about agents is the notion of autonomous and interactive
entities that exist as part of an environment shared with other agents [9]. However,
agents should play an active role to facilitate the process of creating structured
models by distributed teams. Therefore each agent is considered to be a tutor, able
to guide a user through a reflection process according to the current design problem.
The tutoring method and the concept of “actors” from the literature [10] are
interesting to the guiding purposes that Tutor Agent (TA) s intend to offer. The use
of standard Multi-Agent frameworks has been widely used for MAS development
[20]. Additionally, some ontology based approaches for optimization have been
presented in the literature [27] for automating the creation of mathematical models
based on operations research principles. The prototype system of the Multi–Agents
approach addressed in this research is implemented using Java Agent DEvelopment
framework (JADE™) [4]. It provides FIPA compliant communication protocols as
well as Ontology based messaging [3].

The contribution of this research is the combination of multi-agents technology
to support engineering problems description by knowledge elicitation in early stages
of product design. A methodology is proposed and implemented in a software
prototype to support distributed design teams to (i) Identify relevant knowledge
throughout the Product Life Cycle (PLC); (ii) Formalize and standardize variables
and knowledge, and (iii) Construct numerical models for analysis.

Modeling the Knowledge

Technical Knowledge in Engineering Design may be considered as “a relation
among a set of variables and its domains”. Therefore, a structured process of
elicitation should be set up in terms of P (V,D, C)1 where V is the set of n
design variables {V1, V2, . . . , Vn}, D is the set of n domains2 of each variable
{D1,D2, . . . , Dn} and C is the set of p relations among variables, called constraints
{C1, C2, . . . , Cp}.

This knowledge, issued from expert’s experience, is desired to be elicitated
properly in order to be reused to enrich future product developments. The idea is to
help experts (involved as partners) in distributed engineering teams to work together
in the definition of coherent models for analysis, by using their experiences to
avoid problems related to potential design problems. By including this experiences
since the beginning, downstream problems are minimized. The issue starts by
coordinating efforts in distributed and heterogeneous knowledge modelling.

1From the triple 〈X,D,C〉 definition of Constraint Satisfaction Problem (CSP) theory that defines
CSP as mathematical problems composed by as a set of objects whose state must satisfy a number
of constraints
2Set of possible values that a variable Vi can take

14 Multi-Agent Platform for KBM in Engineering Design 249

As the design problems analysis will require a structured modelling process, a
way to describe a variable in relation to its properties is proposed. Under an object
oriented approach, variables are considered as objects. As such, a set of properties
may be defined (e.g. Name, Representation, type, units, etc.), being the key to
identify potential redundancies after their definition by experts. This section will
describe the way a variable should me described. Accordingly, the properties are
stored on a Knowledge Base (KB) for further instantiation in a specific problem
modelling, aided by the modelling interface of the Tutor Agent (TA) prototype.

Variable Model

After previous identification of relevant knowledge, the first task for experts is
to define the set of variables from the design problem V in order to be able to
define relations among them (knowledge as constraints). Therefore, each variable
should be characterized in order to facilitate the Tutor Agent (TA) task of analysis.
Variables are composed of a set of properties that should make each variable
“unique”. However as humans think in a different way, multiple variables may
be defined by different experts to measure the same parameter. The variables’
properties enable a structured definition of knowledge by describing a variable in
terms of its characteristics.

The reference model for a variable is composed by a tuple of sets where
properties are instantiated from a set of values in order to be able to compare and
analyze variables in succeeding analysis [24]. Properties are stored with the variable
in the KB for further instantiation in a specific problem modelling. An instance of a
variable from the set V , can be expressed in terms of its properties in the form of:

Prop(v):
V→N ×R× P ×�7 ×K × T × L× X × ℘ (X)× S
V �→Prop(v) ≡ (nv, rv, pv, uv, kv, T cv, Lcv, rv, Usv, Scv)

(14.1)

From those properties, nv and rv correspond, respectively, to the “Name”
and “Representation” of the variable. These two variables are assigned with
a string and are freely filled by the user (according to suggestions from
Tutor Agent (TA)). These are usually defined in regular modelling, being rv
the definition of the variable into the numerical model. The other properties are
proposed to be included as Meta-Data as well, being important information for the
standardization process performed by Tutor Agents (TAs). Among those properties
the Measured parameter (pv) belongs to a set of common parameters extracted from
a review of different domains from physics and technical sciences and compiled
in the P = {speed, distance, f orce, . . . , work}. The Units’ dimensional
exponents (uv) is a seven tuple specifying the values of the dimensional exponents
dimQ = uv = 〈α, β, γ, δ, ε, ζ, η〉 from the unit of a quantity Q expressed in

250 R. Mejía-Gutiérrez and X. Fischer

terms of the “The International System of Units (SI)” as Q = lαmβtγ I δT εnζ I
η
l

corresponding to the base quantities: length (l), mass (m), time (t), electric current
(I), thermodynamic temperature (T), amount of substance (n), and luminous
intensity (Il). The Variable type (kv) can be Critical (VCr), Design variable (VD) or
intermediary variable (VI). The Technical classification (T cv) comes from a list of
technical domains T = {electronic,mechanical, f luids, . . . , manuf acture}.
The stage from the Product Life Cycle (PLC) (Lcv) belongs to the set
L = {design,manuf acturing, dispatching, . . . , recycling} that contains
the different Life Cycle stages. The variable’s Responsible (rv) is the user
that creates a variable for the first time and will be responsible for further
negotiations over his variable, if some other partner will use it. rv ∈ X , where X =
{partner1, partner2, . . . , partneri} is the set of experts (also called “partners”)
involved in the modelling process. The variable’s Users (Usv) represent all users
that exploit/share/use the same variable, Usv ∈ ℘ (X). Finally, the source of the
information Scv belongs to the set S = {T able, Interview, . . . , Empirical}.

Modelling Process

Traditional knowledge elicitation processes provide a link between experts and the
storage of his know-how (ready-to-use experiences). In order to achieve this, a
methodology is proposed (See Fig. 14.1) to support the distributed modeling process
for describing problems in engineering design, by allowing knowledge creation or
re-use. The main stages of the methodology are:

Knowledge determination This stage intends to locate throughout the Product
Life Cycle (PLC), all the relevant information needed to create a coherent model for
analyzing a specific design problem. The aim is to guide experts trough a structured
process of reflection to inquire into their experiences or available information, in
order to extract relevant knowledge from the corresponding discipline aided by a
tutoring process [24]. Four basic ways to determine variables are: (i) Optimization
objectives definition (Sm = 1), (ii) Morphologic analysis of physical interaction
(Sm = 2), (iii) Physical behavior analysis (Sm = 3) and (iv) Domain knowledge
analysis (Sm = 4) which are basically all relevant expert’s experience relevant to a
specific design problem. Agents provide a dynamic and a static help, where partners
can follow a questionnaire in order to be guided to a set of defined knowledge.
Additionally a set of information can be presented to users in order to help them
in a new constraints definition based on traditional physics or domain specific
knowledge (e.g. manufacturing, costing, etc).

Knowledge formalization At this stage, experts have to formalize their corre-
sponding variables according to their discipline. Under an object oriented approach,
variables are considered as objects with a set of properties: Name, Representation,
type, units, etc. Experts can explore the knowledge base to search any equation

14 Multi-Agent Platform for KBM in Engineering Design 251

Fig. 14.1 Modelling process

that represents their interests among those already stored. If they find it, they just
extract the variables from the base and standardize them to be coherent to the current
problem. Otherwise, experts have to define a new constraint and its variables.

Knowledge modelling The description of the variable is supported by a tuple of
sets where properties are instantiated from a set of values. Properties are stored with
the variable in the knowledge base for further instantiation in a specific problem
modelling. Those properties will be useful for redundancies analysis and they will
state a basis for negotiation and decision making. Once variables are already stored
in the knowledge base, experts can proceed to write their rules based on they
knowledge and according to design problem. It is necessary to have all variables
defined before, as knowledge will be constructed by retrieving variables from the
base.

Multi Agent System (MAS)

The MAS environment can be formally represented by its structural parts. The
formalism used to describe the system is based on the basic concepts, used to
represent the structural parts of a multi-agent environment [17]. This representation
helped to the characterisation of the proposed Multi-Agent System (MAS) in a
distributed engineering design context. The different components are described
below and Fig. 14.2 depicts the multi-level distribution of the different entities
involved in a distributed knowledge modelling approach.

252 R. Mejía-Gutiérrez and X. Fischer

Fig. 14.2 Layers of the multi-agent environment. Adapted from [25]

Environmental Entities and Properties

Evolved from [25], the set of “Environmental Entities” is defined E =
{e1, e2, . . . , en}, and they can be partitioned into a set of disjoint subsets
PartE = {E1, E2, . . . , Ek}, with each subset grouping entities of the same kind
and Ei ∩ Ej = ∅,∀i �= j . Under a distributed knowledge modelling approach,
E is composed by several sets of partitioned environmental entities, and expressed
PartE = {TA,V,D, C}, with:

TA = {TA1, T A2, . . . , T Ai} The set of i tutor agents
V = {V1, V2, . . . , Vn} The set of n variables
D = {D1,D2, . . . , Dn} The set of n domains
C = {C1, C2, . . . , Cp

}
The set of p constraints

(14.2)

The set of “Environmental Properties” is defined P = {p1, p2, . . . , pm}, as well as
the set of partitions of those properties in different kinds PartP = {P1, P2, . . . , Pl}.
Then, for the distributed knowledge modelling environment it is possible to have
an optimisation objective (that will compose the objective function to maximize or
minimize). These design objectives can be defined as the partitioned environmental
property PartP = {O}, where O is the set of j optimisation objectives O ={
O1,O2, . . . , Oj

}
.

14 Multi-Agent Platform for KBM in Engineering Design 253

The State of the Constituents

The set of all constituents is defined by C = E ∪ P . The formalism says that
constituents can be partitioned according to their kind PartC = PartE ∪ PartP =
{C1, C2, . . . , Ck+l}. The “state of the constituents” SCi is the set of all possible
states of constituents of kind Ci . The agent’s communication analysis is based on
all possible states for tutor agents STA , for variables SV , for domains SD and for
constraints SC , and they are:

STA = {Awaiting, V alidating, Negotiating, Deciding}
SV = {In-def inition, Owned, Shared, Questioned}
SD = {In-def inition, Open, F lexible, Closed}
SC = {In-def inition, Relevant, I rrelevant}

(14.3)

Agents Embodied as Environmental Entities

Embodiment of agents: As described in Sect. 14, let X be the set of experts involved
in the modelling process, that corresponds to the list of partners from the top level
in Fig. 14.2. The set of partners will be instantiated into a set of agents (Tutor-
Agents) to interact in the distributed environment. The function of instantiating
external partners into agents is called “embodiment”. Partners are embodied as
environmental entities by Embody : X → E. It maps an agent to an environmental
entity in the form of:

Embody : X → TA
partneri �→ TAi

(14.4)

Embodiment describes the relation between partners and the Multi-Agent envi-
ronment. From the context of distributed product design, the elements from the set
X will be the partners involved in the product development, which will be assigned
to a TA. The environmental entity represents the tangible part [7], by means of
which an agent exists in a particular environment. The embodiment of agents as
environmental entities is defined as the Embody function that maps a partner to the
environmental entity TA that embodies the partner:

Embody (Partner1) = TA1

Embody (Partner2) = TA2

Embody (Partneri) = TAi
(14.5)

254 R. Mejía-Gutiérrez and X. Fischer

Agents Analysis

Inter-Agent Analysis: Communication Among Agents

To clarify the communication aspect, consider the multi-agent system at a time
t ′. At this time, each component of the Multi-Agent System and the model has a
predefined state (from Eq. 14.3). For example, the case of states for an Agent and a
Variable, can be expressed:

Init (T A) = S
t0
TA = 〈Awaiting〉

�−→ S
(t=t ′)
TA = 〈Negotiating〉

Init (V) = S
t0
V ariable = 〈In-def inition〉

�−→ S
(t=t ′)
V ariable = 〈Questioned〉

(14.6)

The case of the TA’s states (as a constituent from the environment) are very
important in the communication among agents. The variation from one state to the
other depends on communication status with other agents. Agents are by default in
mode STA = Awaiting and can be interacting with the Expert. After a validation
of an input, when STA = V alidating, the agent initiates a communication in
order to validate information with other agents from the MAS. The result from
standardisation is an input to Tutor Agent (TA) that can be positive if information
is coherent (not redundant variables) or requested for validation if a redundancy is
discovered or suggested. Then a new state begins where STA = Negotiating. At
this state the Tutor Agent (TA) propose redundancies to the user to be analyzed and
make a decision STA = Decision in collaboration with the other Tutor Agent (TA)
involved. Those states can be better identified from a sequence diagram from UML
notation as depicted in Fig. 14.3.

Intra-Agent Analysis: Standardization

When a Tutor Agent (TA) receives information to be analysed during STA =
V alidating, it manipulates variables as objects and exchange corresponding
properties (those explained in Sect. 14) in order to perform a redundancy analysis
based on Graph Theory. In the context of this project, a “graph” is a collection
of nodes (variables) and a collection of edges (relation between variables) that
connect pairs of nodes. The relations are taken from constraints issued from different
partners. To detect potential incoherencies, a new set is constructed, by the union of
the variables set V and two sets of properties from Prop(v) (See Eq. 14.1). This
can be represented by a graph corresponding to graph G = (U,A) where some
properties and algorithms from graph theory, such as cycles’ analysis, can highlight

14 Multi-Agent Platform for KBM in Engineering Design 255

Fig. 14.3 States of Agents and communication principles

potential redundancies and partners may remark variables already defined by other
Tutor Agent (TA). For example, the case of U = V ∪ P ∪ T means that different
technical domains T cv ∈ T are trying to measure a similar parameter pv ∈ P
if a cycle is found. This analysis can also be performed with other properties as
we obtain a graph with multi-properties representation. If a closed path (cycle) is
found, there is a potential incoherence caused by variables linked in such a way that
a starting node will be the ending point of a path. Under a product design view, this
may be an incoherence that is suggested to the expert by the Tutor Agent (TA) but
it is up to him to react on this (negotiate or accept the stored variable if that is the
case).

Implementation

A prototype system is proposed. It was developed with java™ and MySQL™
technologies. The system is composed of agents that are instantiated according to
the number of partners involved (See Sect. 14) and the tutoring process is assigned
to each expert. The Multi-Agents approach is supported by JADE™ framework
and communication protocols are FIPA compliant. The system launches a Tutor

256 R. Mejía-Gutiérrez and X. Fischer

Agent (TA) for each partner involved in the project by instantiating a TutorAgent
general class created by extending the jade.core.Agent class and redefining
the setup() method in the form of:

public class TutorAgent extends Agent {
protected void setup() {

// Register the tutoring service in the yellow pages
...
// Update the list of neighbor agents
...
sendMessage();
addBehaviour(new ReceiverBehaviour(this));

}}

Each Tutor Agent (TA) has associated a main graphical user interface (GUI) in
order to interact with the corresponding Partners from the physical world. Agents
will interact in the virtual world (Multi-Agent System). This main GUI is the type
of “desktop” (see Fig. 14.4) and in that space called Desktop, each phase of the
methodology is processed and displayed independently. We therefore find three sub-
windows according to the process explained in Sect. 14:

• Identification: containing sub-modules for the initial analysis, it is “Quality”,
“Morphology”, “Behavioral” or “Technical”.

Fig. 14.4 TA’s GUI main desktop

14 Multi-Agent Platform for KBM in Engineering Design 257

Fig. 14.5 Tutor agents instantiated into the JADE main container

• Formalisation & Modeling: containing the CSP basics to model the knowledge.
Three tabs are proposed for “Variables”, “Domains” and “Constraints” definition.

• Structure: the construction of the numerical model. This window is accessible
from the button “Export model” and enables de sub-model integration in order to
export it to the solver.

Agents Definition and Communication

The benefit of using agents, instead of a regular application, is the flexibility of
creating and destroying agents without affecting the environment. Under a product
development approach, the identification of experts is not fixed. It is a continuous
process where agents can be created as new expertises are needed to be included
in the modelling process. Each Tutor Agent (TA) instance is identified by an AID
(jade.core.AID) which is composed of a unique name plus some addresses
<local-name>@<platform-name>, and it is the name that TAs will receive
from the agents’ manager. The tutoring process of TAs is defined as Behaviour
methods by extending the jade.core.behaviours.Behaviour class (as
shown in Fig. 14.5).

Agents interacts among them through communication, as explained in Sect. 14.
To send a message to other agents, Tutor Agent (TA) have to fill the fields of
an ACLMessage object and then use the method sendMessage of the agent
class. Under JADE framework, messages are FIPA compliant. Ontologies are used
as a base to communicate and JADE propose the use of ontologies for messages’
structure. An ontology is an explicit specification of a conceptualization, which is a
body of formally represented knowledge [13]. The information is then represented
as objects into the agents (ease to manipulate) and the use of Ontologies enable to
convert those objects into a group of characters (to be more easy to transfer in the
message). The Ontology helps to interpret those messages to convert them again in
objects into the receiver agent (See Fig. 14.6).

258 R. Mejía-Gutiérrez and X. Fischer

Inside of an Agent

Information
represented as a string

(easy to transfer)

Information represented
as Java Objects

(Easy to manipulate)

Inside of an Agent

Information represented
as Java Objects

(Easy to manipulate)

ACLMessage

Fig. 14.6 Content language and ontologies with JADE

This is an advantage from the proposed MAS as it is easy to handle informa-
tion within agents and easy to send messages, being an asset in the distributed
environment. Messages are then exchanged easily under the ACLMessage context
from the JADE framework enabling an organized and referenced communication
standard. According to this, the implementation method for the communication
protocols are described in the following extract of code:

private void sendMessage() {
try {

Variable variable = new Variable();
ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
for (int i = 0; i < receiverAgents.length; ++i) {

msg.addReceiver(receiverAgents[i]);
}

msg.setLanguage(codec.getName());
msg.setOntology(ontology.getName());
manager.fillContent(msg,variable);
send(msg);

}}

Once the system is running, the agents interact with their corresponding experts
using the tutoring process. As the information that is relevant is identified, it
is formalized and the Tutor Agent (TA) is in charge of sharing the variable’s
information to other Tutor Agent (TA) s, in order to be validated by the set of agents
and minimize the risk of having duplicated information. Figure 14.7 depicts the
FIPA compliant communication into the MAS.

The exchange of messages is carried out continuously and fosters collaborative
and distributed work among partners involved. Similarly, the identification of
redundancies allow partners to establish negotiations or conciliation to define the
shared variables. The goal is that the information stored in the DataBase should
be homogeneous in order to be able to construct a coherent knowledge model that
supports the decision making process in conceptual engineering design.

14 Multi-Agent Platform for KBM in Engineering Design 259

Fig. 14.7 FIPA compliant communication

Experiences Re-Use: Model Construction

Experts invited to participate in the engineering design team are able to collaborate
through the aid of their corresponding Tutor Agent (TA) s in order to contribute,
exploit and re-use the knowledge base for the construction of an experience based
model. This model is built with variables, domains and constraints, related to a
specific design problem and supported by expert’s experiences. In the proposed
software prototype, each Tutor Agent (TA) has a function able to “structure a model”
while the GUI displays all constraints from the database. The expert can extract
a subset of constraints that will be considered in the numerical evaluation of the
knowledge model. The Tutor Agent (TA) is then able to “export” the model in
an external file, according to the solver language. Tutor Agent (TA) evaluates the
constraints taken into account and it automatically includes the variables and the
corresponding domains. Figure 14.8 shows an example of exporting a partial model
(sub-set of constraints) as a way to re-use expert’s knowledge. Subsequently, the
CSP file is exported with a specific programming language (the example shows a
language model adapted to CON’FLEX software). In this way, Tutor Agent (TA)
leads partners from the design team to construct a “granular”, “standardized” and
“Homogeneous” model of a engineering design problem. After having a coherent
model, experts are able to build the knowledge model by converting the experiences
stored in the Data-Base into a formal CSP model. The proposed approach enable

260 R. Mejía-Gutiérrez and X. Fischer

Fig. 14.8 Knowledge re-use and Tutor Agent (TA) ’s export functionality

to distributed project teams to implement an analytical mathematical model of the
engineering design problem. This model can then be treated with appropriate numer-
ical resolution methods (inference systems) such as optimisation, combinatorial
analysis, etc. Under this approach, a global model composed by diverse experiences
from different technical areas are able to build local models that describe a specific
design problem. Each local model includes the knowledge of each area of expertise
needed to help the decision making. Once the model is structured, it can be exported
to an inference engine, being able to execute the solution process in the solver
and having as a result the possible solutions for the set of variables, respecting the
included constraints (or one solution if it is an optimisation process).

Conclusion

Collaborative and distributed engineering approaches are leading nowadays engi-
neering processes. The design process under these conditions demands more and
more for tools and methods to help experts involved in the product develop-
ment to facilitate their activities. The fact of having multiple partners implies
a potential level of repetitive information, creating a problem as these issues
may be tackled since early stages of the design process. The contribution of this
research is the proposal of a tutoring methodology supported by multi-agents
technology that supports distributed engineering teams to identify, formalize and
model relevant experiences in a standardized way in order to construct models
for analyzing problems in engineering design. There are several possibilities for
inference engines, but they are limited to the numerical solution and they do not
tackle the modelling issue leading to a complete absence of modelling techniques.
The proposed approach gives an insight on how to aid engineering teams to
collaboratively model a design problem by means of a tutor agent into a multi-agent

14 Multi-Agent Platform for KBM in Engineering Design 261

system. A new interactive way to navigate the models and knowledge space is
available. The software may serve as input for the current offer of numerical
solvers for solutions searching. It is important to remark that this approach is a
semiautomatic decision aid system, as no determination/decision is automatically
set. Contrarily, it highlight possible inconvenient to the user and it is up to them to
better decide. It enhance communication among partners (instead of avoiding it),
as this approach foster focused discussion on specific information, as well as the
exchange among experts in order to avoid downstream problems in the full product
development process. The scope of this research does not include communication
tools; hence, traditional communication methods are still necessarily. The proposed
approach also serves as a way to capitalize and store expert’s knowledge in order
to consolidate them into a centralized database and able to be re-used in future
projects. As further research, there are current sub-projects oriented to complete
the prototype development focusing on: agents Behaviour improvement, database
access optimisation, constraints and dimensional analysis, fuzzy domains analysis,
Multi-language availability and a long-term project that intends to integrate a built-
in solver to the system.

References

1. Aldanondo M, Vareilles E, Hadj-Hamou K, Gaborit P (2008) Aiding design with constraints:
an extension of quad trees in order to deal with piecewise functions. Int J Comput Integr Manuf
21(4):353–365

2. Barao A, de Vasconcelos JB, Rocha A, Pereira R (2017) A knowledge management approach
to capture organizational learning networks. Int J Inf Manage 37(6):735–740

3. Bellifemine F, Poggi A, Rimassa G (1999) JADE – A FIPA-compliant agent framework. In:
Proceedings of PAAM, vol 99. pp 97–108

4. Bellifemine F, Poggi A, Rimassa G (2001) Developing multi-agent systems with JADE. In:
Intelligent agents VII. Agent theories architectures and languages: 7th international workshop,
ATAL 2000. Springer, Berlin/Heidelberg, pp 42–47

5. Camarinha-Matos L, Afsarmanesh H, Marík V (1999) Multi-agent systems applications. Rob
Auton Syst 27:1–2

6. Chandrasekaran B (1990) Design problem solving: a task analysis. AI Mag 11(4):59
7. Ferber J, Michel F, Baez J (2005) Agre: integrating environments with organizations. In: Weyns

D, Dyke Parunak H, Michel F (eds) Environments for multi-agent systems. Lecture notes in
computer science, vol 3374. Springer, Berlin/Heidelberg, pp 48–56

8. Ferreira F, Faria J, Azevedo A, Marques AL (2017) Product lifecycle management in
knowledge intensive collaborative environments: an application to automotive industry. Int J
Inf Manage 37(1, Part A):1474–1487

9. Flores-Mendez R (1999) Standardization of multi-agent system frameworks. ACM Crossroads
5(4):18–24

10. Frasson C, Mengelle T, Aïmeur E, Gouardéres G (1996) An actor-based architecture for
intelligent tutoring systems. In: Proceedings of ITS’96 conference. Lecture notes in computer
science, vol 1086. Springer, Berlin/Heidelberg, pp 57–65

11. Giachetti R, Young R, Roggatz A, Eversheim W, Perrone G (1997) A methodology for the
reduction of imprecision in the engineering process. Eur J Oper Res 100(2):277–292

262 R. Mejía-Gutiérrez and X. Fischer

12. Girodon J, Monticolo D, Bonjour E, Perrier M (2015) An organizational approach to designing
an intelligent knowledge-based system: application to the decision-making process in design
projects. Adv Eng Inform 29(3):696–713

13. Gruber T (1995) Toward principles for the design of ontologies used for knowledge sharing.
Int J Hum Comput Stud 43(5/6):907–928

14. Guan Q, Friedrich G (1992) Extending constraint satisfaction problem solving in structural
design. In: Belli F, Radermacher F (eds) Industrial and engineering applications of artificial
intelligence and expert systems. Lecture notes in computer science, vol 604. Springer, Berlin
Heidelberg, pp 341–350

15. Hao Q, Shen W, Zhang Z (2005) An autonomous agent development environment for
engineering applications. Adv Eng Inform 19:123–134

16. Hao Q, Shen W, Zhang Z, Park S-W, J-K L (2006) Agent-based collaborative product design
engineering: an industrial case study. Comput Ind 57:26–38

17. Helleboogh A, Vizzari G, Uhrmacher A, Michel F (2007) Modeling dynamic environments in
multi-agent simulation. Auton Agent Multi Agent Syst 14(1):87–116

18. Jin Y, Zhou W (1999) Agent-based knowledge management for collaborative engineering. In:
Proceedings of DETC’99 – 1999 ASME design engineering technical conferences, Las Vegas

19. Karacapilidis N (2002) Modeling discourse in collaborative work support systems: a knowl-
edge representation and configuration perspective. Knowl Based Syst 15(7):413–422

20. Kravari K, Bassiliades N (2015) A survey of agent platforms. J Artif Soc Soc Simul 18(1):11
21. Liao S, Wang H, Liao L (2002) An extended formalism to constraint logic programming for

decision analysis. Knowl Based Syst 15(3):189–202
22. Liu P, Raahemi B, Benyoucef M (2011) Knowledge sharing in dynamic virtual enterprises: a

socio-technological perspective. Knowl Based Syst 24(3):427–443
23. Martinez-Gil J (2015) Automated knowledge base management: a survey. Comput Sci Rev

18(Supplement C):1–9
24. Mejia-Gutierrez R, Fischer X, Bennis F (2008) A tutor agent for supporting distributed

knowledge modelling in interactive product design. International Journal of Intelligent Systems
Technologies and Applications 4(3):399–420

25. Mejia-Gutierrez R, Fischer X, Bennis F (2008) Virtual knowledge modelling for distributed
teams: towards an interactive design approach. Int J Networking Virtual Organ 5(2):166–189

26. Moon S-K, Kumara S, Simpson T (2006) A multi agent system for modular platform design
in a dynamic electronic market environment. In: Proceedings of DETC/CIE 2006–ASME
2006 international design engineering technical conferences & computers and information in
engineering conference

27. Munoz E, Capon-Garcia E, Lainez-Aguirre JM, Espuna A, Puigjaner L (2014) Integration of
methods for optimization in a knowledge management framework. In: Klemes JJ, Varbanov
PS, Liew PY (eds) Proceedings of 24th European symposium on computer aided process
engineering. Computer aided chemical engineering, vol 33. Elsevier, pp 859–864

28. Nadel BA, Lin J 7 (1991) Automobile transmission design as a constraint satisfaction problem:
modelling the kinematic level. Artif Intell Eng Des Anal Manuf 5:137–171

29. Ostrosi E, Fougères A-J, Ferney M (2012) Fuzzy agents for product configuration in collabo-
rative and distributed design process. Appl Soft Comput 12(8):2091–2105

30. Qureshi AJ, Dantan J-Y, Bruyere J, Bigot R (2010) Set based robust design of mechan-
ical systems using the quantifier constraint satisfaction algorithm. Eng Appl Artif Intell
23(7):1173–1186

31. Ren Z, Yang F, Bouchlaghem N, Anumba C (2011) Multi-disciplinary collaborative building
design – a comparative study between multi-agent systems and multi-disciplinary optimisation
approaches. Autom Constr 20(5):537–549

32. Scaravetti D, Nadeau J-P, Pailhes J, Sebastian P (2005) Structuring of embodiment design
problem based on the product lifecycle. Int J Prod Dev 2(1/2):47–70

33. Wang H, Liao L (1997) A framework of constraint-based modeling for cooperative decision
systems. Knowl Based Syst 10(2):111–120

14 Multi-Agent Platform for KBM in Engineering Design 263

34. Wang J, Tang M (2006) An agent based approach to collaborative product design. In:
Proceedings of DETC/CIE 2006–ASME 2006 international design engineering technical
conferences & computers and information in engineering conference

35. Yan-hong Q, Guang-xing W (2009) Product configuration based on CBR and CSP. In: Interna-
tional conference on measuring technology and mechatronics automation, ICMTMA’09, vol 3.
IEEE, pp 681–684

36. Yang D, Dong M (2012) A constraint satisfaction approach to resolving product configuration
conflicts. Adv Eng Inform 26(3):592–602

37. Yang S, Liu Q, Wang J (2017) A multi-agent system with a proportional-integral protocol for
distributed constrained optimization. IEEE Trans Automat Contr 62(7):3461–3467

38. Yvars P-A (2009) A CSP approach for the network of product lifecycle constraints consistency
in a collaborative design context. Eng Appl Artif Intell 22(6):961–970

Part II
Applications

Chapter 15
Synthesis of Reference Trajectories
for Humanoid Robot Supported
by Genetic Algorithm

Teresa Zielinska

Abstract This work presents biologically inspired method of gait generation. It
uses the reference to the periodic signals generated by biological Central Pattern
Generator (CPG). The coupled oscillators with correction functions are used to
produce leg joint trajectories. The human gait is used as the reference pattern. The
features of generated gait are compared to the human walk. The example illustrates
well the profit offered by the optimization using genetic algorithm. The problem
would be impossible to solve using traditional approach.

Keywords Robotics · Gait generation · Genetic algorithms

Introduction

Genetic algorithms belong to stochastic search methods inspired by biology, they
use evolution as a strategy for optimizing complex and usually non-linear problems
with a large number of variables.

The origins of genetic algorithms (GA) date back to fifties of XX c. and are
associated with the beginnings of computer simulations of biological evolution
processes. Computer simulation of evolution processes were initiated by Nils Aall
Barricelli but his publications dated 1954 [1, 2] were not widely noticed. The roots
of genetic algorithms are also seen in the works of Alan Turing who in 1950s
issued the concept of learning machine [16]. From 1957 [7] the geneticist Alex
Fraser published a series of papers on simulation of artificial selection process.
The computer simulation of biological evolution became more common in the early
1960s Several methods were described in the books by Fraser and Burnell [8] and
by Crosby [5]. Fraser’s simulations included all key elements of modern genetic
algorithms. Hans-Joachim Bremermann in his papers published in 1960s described

T. Zielinska (�)
Faculty of Power and Aerospace Engineering, Warsaw University of Technology, Warsaw, Poland
e-mail: teresaz@meil.pw.edu.pl; http://www.meil.pw.edu.pl

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_15

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_15&domain=pdf
mailto:teresaz@meil.pw.edu.pl
http://www.meil.pw.edu.pl
https://doi.org/10.1007/978-3-030-26458-1_15

268 T. Zielinska

solution to optimization problems with recombination, mutation, and selection. His
research created a fundamentals for modern genetic algorithms. In 1960s and early
1970s Ingo Rechenberg’s group was able to solve complex engineering problems
through evolution process. Other relevant works were by Richard Friedberg, George
Friedman, and Michael Conrad, many of those papers were later reprinted by
Fogel [6].

In seventies the book by John Holland [10] marked a significant milestone. He
had elaborated a formalized method for predicting the quality of next generation, it
is now known as the Holland’s schema indicating how to solve optimization prob-
lem. J.Holland underscored that the fittest individual in each biological generation
represents the best solution reached so far, therefore evolution allows to obtain
a set of improving solutions with the evolving generations. Finally it leads with
approaching the optimum. Another approach for solving the optimization problems
was the evolutionary programming method by Lawrence J. Fogel. Evolutionary
programming originally used finite state machines for predicting environments, and
used variation and selection for optimization. The concept of cellular automata was
used by J. Holland in his book.

Until the end of eighties research on GA remain mainly theoretical. Starting
from 1990 John Koza, the computer scientists published a series of papers on
genetic programming describing the set of practical optimization examples. In his
approach the computer program was initiated using some pre-solutions (represented
by set of chromosomes) called population. The better solutions from one population
were preserved and used for forming a next population. Idea was motivated by
expectation that the next population will be better than the previous. Solutions
which were preserved (offsprings) were selected considering their fitness – the
more suitable had more chances being reproduced. Such scheme was repeated until
reaching some condition – for example limit number of populations or defined
fitness condition.

In 1992 J. Koza presented the genetic programming method using LISP.
The First International Conference on Genetic Algorithms was held in Pittsburgh,

Pennsylvania in mid eighties. Afterwards the use of generic algorithms for solving
practical problems become very popular.

Fundamentals of Genetic Algorithms

In genetic algorithms the analyzed quantities contributing to solution are called
chromosomes. The most common way of encoding it are a binary strings. The
examples of chromosomes are:

chromosome 1: 0101100100110110
chromosome 2: 1101111000011111

Gene is ether the single bit on chromosome or the set of adjacent bits. That
encode an element in candidate solution. Population is the set of genes available

15 Synthesis of Reference Trajectories for Humanoid Robot Supported by. . . 269

to test. The crossover and mutation are the key parts of genetic algorithm. The
method performance is influenced mainly by these two operators. The first step
in algorithm is crossover which selects genes from parent chromosomes and
creates a new offspring. Reproduction methods are mainly use two parents what
is biologically inspired, but some researchers [2, 9] suggest that using more than
two parents can produce higher quality chromosomes.

The simplest way of cross-over is to choose randomly some crossover point in
parent chromosomes and take a part before this point from one parent and a part
after crossover point from a second parent.

Example:

chromosome 1: 01011 ‖ 00100110110
chromosome 2: 11011 ‖ 11000011111
offspring 1: 01011 ‖ 11000011111
offspring 2: 11011 ‖ 00100110110

Then mutation take place. This prevents of falling all population into a local
optimum. During mutation some bits in the offsprings are changed randomly. In
binary encoding it mean that a few randomly chosen bits are changed from 1 to 0 or
from 0 to 1.

For example:

original offspring 1: 01011 ‖ 110000111
original offspring 2: 10011 ‖ 001001101
mutated offspring 1: 10001 ‖ 110000111
mutated offspring 2: 10011 ‖ 011001101

The population size depends on the nature of the problem, and typically contains
several hundreds or thousands of possible solutions (encoded in chromosomes)
because genetic algorithms are often used for optimizing large-scale problems.

The optimization process starts from a population of randomly generated chro-
mosomes or from pre-defined set if some (acceptable) solution to the problem is
known. In consecutive iterations the new populations called also a generations are
produced. For each generation, the fitness of every individual is evaluated;. The
fitness is evaluated using the objective function of the optimized problem. The
more fitting chromosomes are selected from actual population, and are used for
forming next generation using cross-over and mutation operations. The algorithm
terminates when either a pre-specified number of generations has been produced, or
an objective function reached satisfactory fitness.

A fundamental components of genetic: algorithm are:

– a genetic representation of the solution domain,
– a fitness function evaluating the solution domain.

The fitness function is defined for genetic representation and measures the quality
of generated solution. A representation of a solution might be the value of objective
function or can be composed from an array of bits or integer numbers. In the
array each position represents a fitness for different object or factor, or a penalty

270 T. Zielinska

measure. In the case of penalty the value is set from the predefined range depends
on how much a penalty condition is exceeded. The final fitness o is the sum of all
partial fitness and the penalty components. However in some problems, it is hard or
impossible to define the fitness formula; in these cases, a simulation may be used
for obtaining the fitness value.

In genetic algorithms the crossover and mutation are the most important parts.
The performance of the method is significantly influenced by these two operations.

During successive generations, a part of the population is selected to produce
a new generation. Chromosomes are selected taking into account their fitness.
Solutions (chromosomes) obtaining better fitness are more likely to be selected.
Some selection methods rate the fitness for each chromosome from population.
Other methods evaluate fitness only for random sample of the population, because
evaluating the fitness foe each chromosome may take a lot of time.

It must be also noted that there are some limitations of genetic algorithms
comparing to the classic optimization methods:

– fitness evaluation for complex problems may require several hours to several
days, typical optimization methods can not deal with such types of problems,
and it may be necessary to use a simplified fitness and simplified models of the
problem,

– in genetic algorithms is observed an exponential increase of search space size
with the size of problem, therefore the complex problems must be decomposed
into a set of simpler representations,

– in some problems genetic algorithms may have tendency for converging in local
optima or even in some random points, a common technique of overcoming it
is to introduce a niche penalty, wherein for group of individuals of specified
similarity (a niche radius) a penalty is considered, another technique is to replace
that part of population with randomly generated individuals, when most of the
population is too similar to each other,

– another issue concerns protecting good solutions from further destructive muta-
tions what can be done by many ways,

– the improvement of a solution is judged only by comparison to other ones, it
means. That he stop criterion can be not so obvious.

Gait Generation Using Coupled Oscillators

In recent years there are many attempts for obtaining the two-legged robots mowing
as a humans [9, 12, 14]. Unfortunately achieving human like robot movement is still
a problem due to the mechanical construction limits and due to the weaknesses
of motion generation methods [13]. The biologically inspired methods of gait
generation often refers to the neural generators called Central Pattern Generators
(CPGs). CPG is the system of biological neural networks which produces the living
rhythms, in that the rhythmic pattern of locomotion without the sensory feedback.

15 Synthesis of Reference Trajectories for Humanoid Robot Supported by. . . 271

CPG was found in almost all vertebrates as the neural structure located in the
vertebral column. During the organism development such structure learns by trials
and errors how to generate the locomotion rhythm. Once gained, the rhythm is
stored, it is be modified when needed by higher levels of neural system taking into
account the sensory feedbacks.

A broad discussion of profits from using the CGP inspired motion generation
methods in robotics can be found in [11]. The recent works are focusing on
CPG based motion generation methods which allows the self-adjustment of gait
dynamics [15]. The oscillators formula are commonly used for imitating the work
of biological CPG’s. Coupled oscillators are storing in the compact way the
fundamental rhythmic pattern and they allow to generate relatively easy the motion
transitions. An interesting overview of the different oscillators utilized for motion
generation can be found in [4].

Considered by us method applies a special type of coupled oscillators as the leg
joints trajectory generators – they are van der Pol oscillators. Equations describing
the dynamical properties of those oscillators have the following general form:

ẍosc − μ · (p2 − x2
osc) · ẋosc + g2 · xosc = q (15.1)

The variables μ, p2, g2, q influence the properties of oscillators.
In our work cyclic solutions of four coupled oscillators formula was considered

as the legs joint trajectories for a hip and knee [3]:

α̈1 − μ1 · (p2
1 − x2

a) · α̇1 + g2
1 · xa = q1 (15.2)

α̈2 − μ2 · (p2
2 − x2

b) · α̇2 + g2
2 · xb = q2

α̈3 − μ3 · (p2
3 − x2

c) · α̇3 + g2
3 · xc = q3

α̈4 − μ4 · (p2
4 − x2

d) · α̇4 + g2
4 · xd = q4

where

xa = α1 − λ21 · α2 − λ31 · α3

xb = α2 − λ12 · α1 − λ42 · α4

xc = α3 − λ13 · α1 − λ43 · α4

xd = α4 − λ24 · α2 − λ34 · α3

These equations have 24 parameters: μ1, μ2, μ3, μ4, p2
1, p

2
2, p2

3, p
2
4,

g2
1, g

2
2, g

2
3, g

2
4, q1, q2, q3, q4, λ13, λ31, λ12, λ21, λ24, λ42, λ43, λ34. The

relationship between these parameters and oscillations is very complex. The angles
αs1, αs2, αs3, αs4 correspond to the adequately scaled α1, α2, α3, α4. The angles αsi
are positive if the thigh or shank are in front of the vertical line and negative
when behind (Fig. 15.1a). The variables αi and αsi represent the values expressed

272 T. Zielinska

in degrees. The oscillators have many stable cycles. With 24 parameters there are is
a large space of possible solutions, therefore is a serious problem how to select the
properly all the parameters for obtaining the trajectories similar to those in human
gait assuring proper frequency of the limit cycle. On the other hand once the proper
parameters are selected by modifying them accordingly the gait transitions can
be obtained. This is main advantage of the method, because generation of motion
transitions is still a problem in human like robots.

In this work we describe utilization of genetic algorithm for selecting the
oscillator parameters. The advantage of using it is obvious, the manual search
of unknown parameters for imitating accurately the human trajectories is almost
impossible or it will take a lot of time.

Genetic Algorithm Applied for Parameters Search

Exact analytical solution of considered coupled oscillators can not be obtained. As
it was already mentioned, coupled oscillators are characterized by many locally
stable cycles. In the other works dedicated to coupled oscillators the approximate
solutions are often used (e.g. for coupled chemical oscillators), where the analytical
form of approximation is assumed first and later – through iterative search, the
parameters of the assumed form are found. Unfortunately such method does not
picture sufficiently the synergy of coupling and not obviously all the possible stable
cycles.

Due to above difficulties and pretending to imitate the biological learning process
a genetic algorithm for oscillators parameters evaluation was applied. The search
started from the previously identified (by simple search) set of parameters [21, 22]:
μ1 = 1, μ2 = 2, μ3 = 1, μ4 = 2, p2

1 = 1, p2
2 = 1, p2

3 = 1, p2
4 = 1,

g2
1 = 17, g2

2 = 20, g2
3 = 17, g2

4 = 20, q1 = 12, q2 = −20, q3 = 12, q4 = −20,
λ13 = 0.2, λ31 = 0.2, λ12 = −0.2, λ21 = −0.2, λ24 = 0.2, λ42 = 0.2, λ43 =
−0.2, λ34 = −0.2.

The human gait trajectories recorded, processed and evaluated using the spe-
cialized software (combined with the VICON motion recording system) were used
as the reference. The motion was sampled every 0.021 s. It was confirmed that
considered person (healthy young man) was walking with statistically verified, rep-
resentative gait (Fig. 15.1b). The gait period was 1.04 s, walking speed was 1.53 m/s,
the support phase was about 60% of the gait period, in this the double support
phase took 20% of the gait period. Those values match the norms established for
the human gait [17, 20].

The biped robot consisting of the lower extremities and the torso was meant to
serve as a research platform for presented method of motion synthesis.

Searched oscillator parameters were stored forming a chromosome. The search
for parameters started with 100 chromosomes (for each identical at this stage)
holding the previously identified set of parameters [21]. The next 200 chromosomes
were created in following way: 50 chromosomes were produced using simple

15 Synthesis of Reference Trajectories for Humanoid Robot Supported by. . . 273

l24

l42

a3
s

a4
s

a1

a2
s

s

l43

l31

l13

l34

l12

l21

heel
strike

foot
flat

mid
stance

heel
off

toe
off

mid
swing

heel
strike

10%
double
support

40%
single

support

10%
double
support

60%
support (stance) phase

40%
transfer (swing)

phase

gait period

a b

+

–

–

–

Fig. 15.1 Joints and the coupling between them considered in coupled oscillators (a), gait
phases (b)

cross-over, next 50 chromosomes were obtained by the arithmetic cross-over, and
another 100 was produced by simple mutations. In simple cross-over the a pair
of chromosomes was draw, next the cross-over point was stochastically selected.
First part of new chromosome was identical with the first parent chromosome till
the cross-over point, the part after cross-over was taken from the next parent. In
arithmetic cross-over Coff sping = rCparent 1 + (1 − r)Cparent where r ≤ 1 was
the arbitrary selected parameter. In simple mutations only one gene was draw for
modification. The oscillators formula was solved numerically for each obtained set
of chromosomes (oscillator parameters). Only chromosomes resulting in periodic
oscillations were accessed using the the primary fitness function and penalties.
The fitness function was an square error between trajectories obtained by genetic
algorithm parameters and those for a human:

fj =
∑n
i=1(α

h
j (i)− αsj (i))2
n

(15.3)

where αhj (i) is the value of j -th joint angle during human walk in the i-th data
instant, and αsj (i) is the angle obtained from the generator, n is the number of data
registered for one walking step.

The six applied penalties had experimentally chosen ranges (over those ranges
oscillators were becoming unstable). The penalties were as following: s1 – penalty
weight considering inter-limb coordination, this penalty was maximal (s1 = 5)
when both legs were moving together, s2 – penalty weight for unstable oscillations
(maximal s2 = 10), s3 – penalty weight for backward movement of torso (maximal
s3 = 3), s4 – penalty weight for backward movement of the foot (maximal s4 = 3),
s5 – penalty weight for lack of foot forward motion (maximal s5 = 3), s6 – penalty
weight for abnormal knee bend (maximal s6 = 3). If any of the listed above
conditions was not fulfilled the appropriate penalty assumed its minimum – si = 1.

274 T. Zielinska

Fig. 15.2 Generated joint trajectories related to human trajectories: (a) before correction, after
correction (b)

The penalties applied in our example can be referred as an equivalent of qualitative
feedback experienced by a baby when learning the locomotion rhythm.

The overall fitness function was expressed by:

FFG = −(f1 + f2 + f3 + f4) ·
∏

k=1,...,6

sk (15.4)

Chromosomes were sorted taking into account the obtained fitness function. Next
they are were ordered taking into account their fitness. The first ones had the smallest
fitness and they were selected as the new parents without draw. The probability of
selecting the chromosomes along in the sequence was decreasing (chromosomes
with worse fitness were considered less often in the draw). By that way a 100 new
parents were produced and the scheme was repeated.

In repeated trials it was found that the considerable convergence to human motion
pattern takes place only for early mutations, the farther chromosome mutations were
not much effective. Figure 15.2a illustrates obtained joint trajectories related to the
human gait. Oscillator parameter are as following: μ1 = μ3 = 3.59375, μ2 =
μ4 = 2, p2

1 = p2
3 = 2, p2

2 = p2
4 = 1, g2

1 = g2
3 = 28.0039, g2

2 = g2
4 = 17.7031,

q1 = q3 = 15.8516, q2 = q4 = −7.04492, λ12 = λ21 = λ34 = λ43 = −0.451172,
λ24 = λ42 = λ31 = λ13 = 0.417969.

In that stage the gait rhythm was acquired however the differences between
generated trajectories and human trajectories sill remained. It was not possible to
minimize the error using only genetic algorithm.

15 Synthesis of Reference Trajectories for Humanoid Robot Supported by. . . 275

Fine Tuning of Gait Generator

It was observed that the difference (error) between the human and generated
trajectories in each joint occurred only for some small parts of the gait. Moreover
such error smoothly drifts from zero to some level (depends on the joint – positive
or negative) and then returns to zero (Figs. 15.2a and 15.3). This brought the idea
that proper addition (or substraction) of some smooth function will made the needed
correction. The function should have its derivative equal to zero at moth ends of the
domain. This will provide the needed correction for joint trajectories. Basis on the
above we selected the following correcting function:

Fcorr = A cos2(φ) φ =< −�/2,�/2 > (15.5)

where amplitude A can be positive or negative. Negative correction is needed for
a knee. It is activated at the moment when the knee angle is maximal (leg is

Fig. 15.3 Illustration of introduced corrections

276 T. Zielinska

in maximum forward position just before ground touch down) and lasts until the
middle of the gait period (in our tests it was 48% of the gait period). Positive
correction function is for a hip joint. It starts for minimum hip angle which is
just after mid-stance. In the same moment the knee correction ends. Hip trajectory
correction takes about half of the gait period (in our tests it was 52% of the
gait period – Fig. 15.3). With introduced corrections the generated and real gait
trajectories were almost overlapping (Fig. 15.2b).

The absolute cumulative errors expressing the discrepancy between human
and generated gait in one gait period were calculated using the formula |Ej | =∑
i |αhj (i) − αsj (i)|/n. The errors were as following: |E1| = 3.1037◦, |E2| =

2.8389◦, |E3| = 3.7892◦, |E4| = 2.0064◦. The error are small taking into account
that the hip trajectories are varying in range −8◦,+15◦ and the knee trajectories in
range −20◦,+25◦.

The biggest observed error was for hip trajectory and it was less than 12◦
(Fig. 15.4). Such difference are not critical, in the normal walk of the healthy person
the joint trajectories from step to step can differ by 8◦ or even more. In that way we
concluded that important features of gait were achieved.

Final Proof

For the final proof the point mass model of the human body was considered. Masses
of body parts and link dimensions were taken from anthropomorphic data for the
person whose gait was recorded. The body built was typical for the 95% centile
level. With introduced simplification the model of human body consisted of five
parts – two shanks together with feet, two thighs and one part representing the
whole upper part. The dynamical modeling was performed using our own software
with Newton-Euler formulation in 3D space. The time courses of reaction forces
were matching the forces recorded in human walk. The ZMP (Zero Moment Point)
positions for the real and generated gait were compared. (The ZMP is the point
on the ground where the reaction force must be applied to produce the moment
compensating the tipping moments (Mx ,My) due to gravity and inertial forces. The
condition for equilibrating the moments is expressed with reference to the contact
point P which is the vertical projection of the middle of the ankle joint onto the
support plane (see Fig. 15.6). The body posture is stable when application point
FZMP of reaction force is located in the footprint. The ZMP criterion is a simplified
formulation of torques equilibrium condition. The details regarding ZMP can be
found in many publications – e.g. [18, 19].

The following formula produces the coordinates xZMP , yZMP of the point
FZMP :

xZMP =
∑n
i mi(z̈i − g)xi −

∑n
i mi ẍi zi −

∑n
i I

y
i α̈

y
i∑n

i mi(z̈i − g)
(15.6)

15 Synthesis of Reference Trajectories for Humanoid Robot Supported by. . . 277

Fig. 15.4 Human and generated corrected trajectories for one leg: (a) knee joint, (b) hip joint

yZMP =
∑n
i mi(z̈i − g)yi −

∑n
i mi ÿi zi −

∑n
i I

x
i α̈

x
i∑n

i mi(z̈i − g)
(15.7)

mi is the mass of the i-th body part, xi , yi , zi are the coordinates of mass center
of i-th part expressed in the frame attached to the trunk (Fig. 15.5), ẍi , ÿi z̈i are
accelerations of those points with respect to this frame, I xi , I yi are the main moments
of inertia for i-th body part about X and Y axis, and α̈xi , α̈yi are the angular
accelerations about those axes, g is the gravity constant. We assumed that feet are

278 T. Zielinska

Fig. 15.5 Model of the human body (the distance between hip joints, and distance between foot,
along y axis is 0.3 m)

Fig. 15.6 Model of the foot;
reference point P is the
vertical projection onto the
support plane of the ankle
joint center

massless (their masses were taken into account when calculating the point masses
of shanks and the positions of those point masses in relation to the shank segments).
The proportions of body parts match those of the considered human (Fig. 15.6).

For both, the generated and the human gait the ZMP point varies in a narrow
range. Figure 15.7 illustrates the ZMP trajectory during single support phase. In
both gaits the ZMP trajectory shows similar trend, the ZMP moves from the inner
side of the foot in the begging of single support to the middle and next to the outer
side what indicates a side sway of the body. The ZMP stays inside the foot area what
means that the posture is dynamically stable.

15 Synthesis of Reference Trajectories for Humanoid Robot Supported by. . . 279

Fig. 15.7 ZMP trajectory of human and generated gait for the left leg

Fig. 15.8 Position of body mass center: (a) human gait, (b) generated gait

For final comparison, the trajectories of center of mass, angular velocities and
accelerations of the hip and knee joints were calculated. Looking to Fig. 15.8 it can
be noticed that coordinates x, z of center of mass (measured in the reference frame
attached to the supporting foot – Fig. 15.6a, b) are changing similarly in human
and generated gait. The small time shift in the time axes of those two figures was
introduced intentionally following the start time of our simulations.

Figures 15.9a, b illustrate angular velocities and Figs. 15.9c, d show angular
accelerations. For velocities the greatest difference between real and generated gait
occurs for the knee joint during the double support phase and during the touch-
down of next supporting leg (i.e., at time 2.4 to 2.6 s in the Fig. 15.9a). For the hip
joint the differences are greatest in fully loaded single support phase (i.e., at time

280 T. Zielinska

Fig. 15.9 Final validation taking into account velocities and accelerations: (a) velocity of knee
joint, (b) velocity of hip joint, (c) acceleration of knee joint, (d) acceleration of hip joint

2.1 to 2.3 s in the Fig. 15.9b). The greatest difference in angular acceleration in the
knee joint occurs during single support phase when the leg is almost straightened.
This is during smallest angular transition in the knee joint which occurs near to
−10◦ (i.e., close to the time 2.2 s in the Fig. 15.9c). Another larger discrepancy is
near the middle of the double support phase (i.e., at time 2.45 s). Considering the
acceleration of the hip joint, the greatest difference is visible in the support phase
when the thigh, moving backward towards the trunk, passes the vertical line (the
moment when the hip angle drops bellow 0◦), and lasts until the end of the support
phase which is close to minimal value of this angle (i.e., at time 2.1 to 2.4 in the
Fig. 15.9d). Figure 15.10 shows the stick diagram of human and generated gaits.
The differences obtained by analyzing ZMP position, velocities and accelerations
are not noticeable in this diagram.

15 Synthesis of Reference Trajectories for Humanoid Robot Supported by. . . 281

Fig. 15.10 Stick diagram: (a) – human gait, (b) – generated gait

Conclusions

The generic algorithm allowed final tuning of the oscillators parameters. This
would be not possible by trial an errors due to large amount of parameters and
factors which must be considered when obtaining the proper gait pattern. Adding
the corrective function delivered finally the gait pattern very similar to the real
gait. Discussed example illustrates well usability of genetic algorithm as un-typical
optimization method and proposes biologically inspired method for humanoid robot
gait generation.

References

1. Barricelli NA (1954) Esempi numerici di processi di evoluzione. Methods 6:45–68
2. Barricelli NA (1957) Symbiogenetic evolution processes realized by artificial methods.

Methods 9:143–182
3. Bay JS, Hemami H (1987) Modeling of a neural pattern generator with coupled nonlinear

oscillators. IEEE Trans Biomed Eng BME-34(4):297–306
4. Buchli J, Righetti L, Ijspeert AJ (2006) Engineering entrainment and adaptation in limit circle

systems. From bilogical inspiration to application in robotics. Biol Cybern 95:645–664
5. Crosby JL (1973) Computer simulation in genetics. Wiley, London
6. Fogel DB (ed) (1998) Evolutionary computation: the fossil record. IEEE, New York
7. Fraser A (1957) Simulation of genetic systems by automatic digital computers. I. Introduction.

Aust J Biol Sci 10:492–499
8. Fraser A, Burnell D (1970) Computer models in genetics. McGraw-Hill, New York
9. Harada K, Yoshida E, Yokoi K (eds) (2010) Motion planning for humanoid robots. Springer

10. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control and artificial intelligence. MIT (reprint)

11. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots; a
review. Preprint of Neural Networks 21/4:642–653

12. Kulic D, Venture G, Yamane K, Demircan E, Mizuuchi I, Mombaur K (2016) Anthropomor-
phic movement analysis and synthesis: a survey of methods and applications. IEEE Trans
Robot 32(4):776–795

13. Nakanishi J, Morimoto J, Endo G, Cheng G, Schaal S, Kawato M (2004) Learning from
demonstration and adaptation of biped locomotion. Robot Auton Syst 47:79–91

282 T. Zielinska

14. Ouezdou FB, Konno A et al (2002) ROBIAN biped project – a tool for the analysis of
the human-being locomotion system. In: Proceedings of the 5th international conference on
climbing and walking robots

15. Santos CP, Juan NA, Moreno C (2017) Biped locomotion control through a biomimetic CPG-
based controller. J Intell Robotic Syst 85(1):47–70

16. Turing AM (1950) Computing machinery and intelligence. Mind LIX(238):433–460
17. Vaughan ChL, Davis BL, O’Connor JC (1992) Dynamics of human gait. Champaign: Human

Kinetics Publishers
18. Vukobratovic M, Borovac B (2004) Zero-moment point – thirty five years of its life. Int J HR

1(1):157–173
19. Vukobratovic M, Stepanenko Y (1972) On the stability of anthropomorphic systems. Math

Biosci 15:1–37
20. Winter DA (1991) Biomechanics and motor control of human gait: normal, elderly and

pathological. University of Waterloo, Ontario
21. Zielinska T (1996) Coupled oscillators utilized as gait rhythm generators of a two-legged

walking machine. Biol Cybern 74:263–273
22. Zielinska T, Chew ChM, Kryczka P, Jargilo T (2009) Robot gait synthesis using the scheme of

human motion skills development. Mech Mach Theory 44(3):541–558

Chapter 16
Linked Simulation Optimization Model
for Evaluation of Optimal Bank
Protection Measures

Hriday Mani Kalita, Rajib Kumar Bhattacharjya, and Arup Kumar Sarma

Abstract This work proposes a new methodology for determination of cost
effective river training work using groynes. The proposed methodology links the two
dimensional (2D) hydrodynamic model with genetic algorithm based optimization
model. The hydrodynamic model uses Beam and Warming implicit finite difference
scheme for solution of the governing equations of unsteady free surface flows in
general coordinate system. The optimization model minimizes the total construction
cost of the groyne system required for achieving desirable training of the river.
Binary coded GA is used for solving the proposed optimization problem. The
efficiency and field applicability of the developed model is evaluated using two
different test problems. The first problem considers a hypothetical meandering
channel and the second problem deals with a vulnerable reach of river Brahmaputra
in India. The performance evaluation of the model shows potential of the developed
model for field application.

Keywords River training · Groyne · Beam and warming scheme · Genetic
algorithm · Simulation- optimization · Hydrodynamic model

Introduction

River training is a very important activity for management of water resources of a
region. Groynes or spur dikes are commonly used river training structures, which are
constructed from the bank extending towards the main flow. Groynes are constructed

H. M. Kalita (�)
Department of Civil Engineering, National Institute of Technology Meghalaya, Shillong,
Meghalaya, India

R. K. Bhattacharjya · A. K. Sarma
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam,
India
e-mail: rkbc@iitg.ernet.in; aks@iitg.ernet.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_16

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_16&domain=pdf
mailto:rkbc@iitg.ernet.in
mailto:aks@iitg.ernet.in
https://doi.org/10.1007/978-3-030-26458-1_16

284 H. M. Kalita et al.

for various purposes; one of which is the reduction of water speed to promote
sedimentation and to prevent the bank erosion. The construction cost of a groyne
is very expensive, as it requires huge quantity of high quality materials to carry out
the construction. Therefore, an optimal combination of groynes in terms of their
number, position and length is necessary to minimize the total construction cost of
the project.

For obtaining the optimal combination of groynes, the 2D hydrodynamic flow
simulation model is required to be incorporated with the optimization model.
Extensive studies by numerous investigators [9, 18, 19, 23, 24, 33, 37, 39, 43] have
been carried out for developing hydrodynamic flow simulation model using different
numerical techniques such as, finite difference, finite element and finite volume
methods. Among them, Beam and Warming implicit finite difference method is one
of the excellent methods that can be used for solution of shallow water equations.
Beam & Warming [7] developed this method for solution of the two dimensional
Euler equations. The major advantage of the Beam & Warming scheme is that it
is a non-iterative in nature method. It has the capability for quickly converge and
has the ability of remain stable for a larger time step than that of explicit scheme.
Many researchers [20, 23, 25, 28, 30, 34] have applied this scheme for solution of
the unsteady free surface flow equations to simulate wide varieties of hydrodynamic
problems. Beam and Warming scheme is used in this study for developing the 2D
hydrodynamic model.

Numerous experimental as well as mathematical model studies [1, 17, 27, 28, 35,
41] have been carried out for simulating the flow process around groyne. However,
only few studies [3, 11, 15] have focused to find the optimal combination of groynes.
The studies so far conducted considers some pre-decided combination of groynes
and the best one is found out from the chosen alternatives. Recently, Kalita et al.
[23] have proposed a linked simulation-optimization model for finding true optimal
combination of groynes by utilizing optimization model. The restriction of their
model is that it is applicable to straight channel only. In this present study, a more
general model is proposed, which is capable to handle any kind of river shape.

In order to obtain an optimal combination, the flow model needs to incorporate
with the optimization model. The flow model can be incorporated with the optimiza-
tion model using linked simulation-optimization approach [4, 6, 10, 23, 31, 38, 40].
The present study also uses the linked simulation-optimization approach where the
hydrodynamic model which solves the governing equations of unsteady free surface
flow is linked with an optimization model. This approach can automatically evaluate
the optimal combination of groynes leading to minimum construction cost.

An optimization technique is necessary to solve the simulation-optimization
model. Many investigators [2, 12, 14, 16, 22, 32, 42] applied traditional gradient
based techniques and global search methods such as the genetic algorithms for
solving various problems related to water resources engineering. Genetic algorithms
are generally suitable for solving non-linear non-convex problems as they have the
mechanism to overcome the local optimal solutions. Genetic algorithm is an iterative
based robust search technique which is based on the evolution process of natural
species. One of the major differences between genetic algorithms and the other

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 285

classical optimization search techniques is that the genetic algorithm works with a
population of possible solutions, whereas the classical optimization techniques work
with a single initial solution. Further, binary coded genetic algorithm is also efficient
in handling integer variable problem. As such, this study uses genetic algorithm
for solving the proposed linked simulation-optimization model for finding optimal
combination of groynes.

Hydrodynamic Model

Governing Equations and Solution Technique

The equations describing 2D unsteady free surface flow in a boundary fitted
coordinate system (ξ , η) are [8]:

∂L

∂t
+ ∂M

∂ξ
+ ∂N

∂η
= P (16.1)

Where the variables L, M, N, and O are defined in matrix form as:

L = J
⎧
⎨

⎩

h

hu

hv

⎫
⎬

⎭ ,M = J

⎧
⎪⎨

⎪⎩

hU

hUu+ ξx gh2

2

hUv + ξy gh2

2

⎫
⎪⎬

⎪⎭
,

N = J

⎧
⎪⎨

⎪⎩

hV

hV u+ ηx gh2

2

hV v + ηy gh2

2

⎫
⎪⎬

⎪⎭
, P = J

⎧
⎨

⎩

0
− gh (Sox − Sf x

)

− gh (Soy − Sfy
)

⎫
⎬

⎭

In the above relation J is determinant of the coordinate transformation jacobian,
h is the depth of flow, u is the velocity component in x direction, v is velocity
component in y direction, U is the velocity component in ξ direction, V is the
velocity component in η direction, g is acceleration due to gravity, Sox is bed slope
in x direction, Soy is bed slope in y direction, Sfx and Sfy are the friction slopes in x
and y direction respectively and are calculated using Manning’s equation. Following
relations exist for the coordinate transformation matrices:

J = xξyη − yξxη, ξx = yη

J
, ξy = −xη

J
, ηx = −yξ

J
, ηy = xξ

J
(16.2)

The matrices xξ,xη,yξ,yη calculated using central finite difference approxima-
tions. The relation between velocities of computational and physical coordinates is
given by the following equation.

{
U

V

}
=
{
ξx ξy

ηx ηy

}{
u

v

}
(16.3)

286 H. M. Kalita et al.

Equation (16.1) presented above is solved using Beam and Warming implicit
finite difference scheme [13] in the computational coordinate. Beam and Warming
scheme is a second order accurate Alternate Direction Implicit (ADI) scheme. This
scheme consists of two-step (double sweep) sequence, where each step involves
the solution of a block tridiagonal matrix. For the efficient solution of the block
tridiagonal system, Thomas algorithm [5] is used. The equations solved in ξ-
direction and η-direction are as follows:

[
I +�t θ

1 + γ
∂

∂ξ
Ak
]
L∗ = −�t 1

1 + γ
(
∂M

∂ξ
+ ∂N

∂η
+ P
)k

+ γ

1 + γ �tL
k

(16.4)

[
I +�t θ

1 + γ
(
∂

∂η
B +Q

)k]
L∗∗ = L∗ (16.5)

Lk+1 = Lk + L∗∗ (16.6)

Where, I is identity matrix of size 3 by 3;Δt is the time step, θ and γ are parameters
of Beam and Warming scheme, k is time step index, L∗ is incremental value obtained
for matrix L after one sweep, ΔtLk is the increment of matrix L from the previous
time step, L∗∗ is the final increment of the matrix L and A, B and Q are the
jacobians of matrices M, N and P respectively. Following expressions are exists
for the jacobians A, B and Q.

A =
⎧
⎨

⎩

0 ξx ξy

ghξx − Uu U + uξx uξy

ghξy − Uv vξx U + vξy

⎫
⎬

⎭ , B =
⎧
⎨

⎩

0 ηx ηy

ghηx − V u V + uηx uηy

ghηy − V v vηx V + vηy

⎫
⎬

⎭ ,

Q =

⎧
⎪⎨

⎪⎩

0 0 0

− gSox − 7
3gn

2u2h− 4
3 2gn2uh− 4

3 0

− gSoy − 7
3gn

2v2h− 4
3 0 2gn2vh− 4

3

⎫
⎪⎬

⎪⎭

In this work θ = 1 and γ = 0.5 (Three point backward formulation) is considered.
The primitive flow variables at each step are calculated as:

hk+1
i,j = hki,j + h∗∗i,j

uk+1
i,j = uhki,j + uh

∗∗
i,j

hk+1
i,j

vk+1
i,j = vhki,j + vh

∗∗
i,j

hk+1
i,j

(16.7)

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 287

Boundary Condition

For solution of the Eqs. (16.4), (16.5) and (16.6) presented above, boundary
conditions are required at each computational boundary. For supercritical case, at
upstream all the three variables are needed. No conditions are required at down-
stream boundary, as no characteristics enter into the domain from the downstream
boundary. However for subcritical case, two boundary conditions are required at
upstream and one is needed at downstream. When there is no need of boundary
condition one some boundaries, then extrapolation technique is generally used to get
the values of flow variables. Free slip boundary technique [26] is used for simulating
the banks. Reflection procedure [13] is used for simulating the groyne. The sand bars
are simulated using no slip boundary technique [29].

Courant-Friedrichs-Lewy Condition

Since the implicit scheme presented above is a time marching method, �t must be
specified tosatisfy the Courant-Friedrichs-Lewy (CFL) condition. Equation (16.8)
gives the value of �t.

�t = CN ∗ min

⎡

⎣
∣∣∣∣
U

�ξ

∣∣∣∣+
∣∣∣∣
V

�η

∣∣∣∣+
√
gh

{(
ξx

�ξ
+ ηx

�η

)2

+
(
ξy

�ξ
+ ηy

�η

)2
} 1

2
⎤

⎦
−1

(16.8)

Where, CN is the Courant number. Molls & Zhao [30] used Beam and Warming
scheme and observed that the solution remains stable for a higher value of CN of
2.5 for their case. However for explicit scheme this value is limited to one only.

Artificial Viscosity

For the present numerical scheme, artificial viscosity is required to damp the high-
frequency oscillations [13]. Following artificial viscosity (Eq. 16.9) is added to the
right hand side of the Eq. (16.4).

AV = Ct × [(Li,j+1 − 2Li,j + Li,j−1
)+ (Li+1,j − 2Li,j + Li−1,j

)]
(16.9)

Where, Ct is a dissipation coefficient and a small value of Ct which is necessary to
damp the numerical oscillations should be used.

288 H. M. Kalita et al.

Fig. 16.1 Computed velocity vector by the present model for the Rajaratnam & Nwachukwu [35]
experimental channel

Hydrodynamic Model Validation

For testing the present hydrodynamic model for flow simulation around groyne, the
experimental data from Rajaratnam & Nwachukwu [35] are used. The experimental
studies were done on a straight rectangular flume of 37 m long and 0.914 m
wide. The groyne considered was an aluminum plate, of length 0.15 m. These
experimental data were used by many researchers [21, 36] for validation of their
numerical model. In all of the studies presented above, extent of the area that has
been simulated mathematically was from 1.8 m upstream of the groyne to 3.6 m
downstream of the groyne. In this present study also, same extent is considered. The
study area was discretized into finite difference grid of size 97 by 45. Manning’s
n value is taken equal to 0.01, as the channel is said to be a smooth one. At the
upstream boundary, u and v are given as 0.253 m/s and 0 m/s respectively. The
value of h is extrapolated from interior domain. However at downstream boundary,
the values of u and v are extrapolated from interior domain and h is given as 0.189 m.
The courant number is set equal to 2.2 and Ct is considered as 0.01.

Figure 16.1 shows the velocity vector plot of the final solution. The recirculation
zone developed at downstream of the groyne ends at 3.5 m. The value of the same
in experimental case was 3.6 m. The resultant velocity (W) is non-dimensionalized
with respect to free stream velocity of 0.253 m/s. Figure 16.2 shows the comparison
of simulated and experimental velocity at different distances from the bank where
groyne is attached. These results show very good agreement between the numerical
and experimental data.

Optimization Model Formulation

The proposed linked simulation-optimization model minimizes the total construc-
tion cost of the groyne system for reducing the flow speed to a desired minimum
value. Two different formulations of the optimization model are prepared as given
below:

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 289

Fig. 16.2 Comparison of simulated and experimental speed for the Rajaratnam & Nwachukwu
[35] experimental channel. (a) 0.15 m from the bank; (b) 0.225 m from the bank; (c) 0.4 m from
the bank; (d) 0.6 m from the bank

Formulation I

The formulation I deals with determination of optimal number, position and length
of the groynes on both the banks of a river to achieve a predefined target speed on
a predefined area. The objective is to minimize the total construction cost of the
project. The number of groynes having non-zero length is the required number of
groynes. The optimization model can be formulated as given below.

Minimize C (Lrg,Llg) =
∑N

Ng=1
(Lrg + Llg)× C1 (16.10)

Subject to,

UU ≤ �,Llgmin ≤ Llg ≤ Llgmax, P lgmin ≤ P lg ≤ P lgmax,

Lrgmin ≤ Lrg ≤ Lrgmax, P rgmin ≤ Prg ≤ Prgmax (16.11)

where C is total construction cost of groynes in i |, Lrg is length of groyne on the
right bank in terms of grid number, Llg is length of groyne on the left bank in terms
of grid number, Prg is position of groyne on the right bank in terms of grid number
from upstream boundary, Plg is position of groyne on the left bank in terms of grid
number from upstream boundary, N is the initial number of groynes considered, Ng

290 H. M. Kalita et al.

is total number of groynes required, C1 is per meter construction cost of the groyne
system and is taken equal to |100,000, UU is maximum speed on the specified
areas in m/s and is obtained at every iteration of optimization model by simulating
the hydrodynamic process, and Ω is target speed value in m/s, Llgmin to Llgmax is
extreme limit of groyne length in terms of grid number on the left bank, Plgmin to
Plgmax is extreme limit of groyne position on the left bank in terms of grid number
from the upstream boundary within which the groynes are to be placed, Lrgmin to
Lrgmax is extreme limit of groyne length in terms of grid number on the right bank,
Prgmin to Prgmax is extreme limit of groyne position on the right bank in terms of
grid number within which the groynes are to be placed.

Formulation II

In the second formulation, the positions of the groynes are fixed on both the banks.
The present model determines the optimal length and number of the groynes for
achieving a predefined target speed on a predefined area leading to minimum
construction cost. The mathematical formulation is as follows.

Minimize C (Lrg,Llg) =
∑N

Ng=1
(Lrg + Llg)× C1 (16.12)

Subject to,

UU ≤ �,Llgmin ≤ Llg ≤ Llgmax, Lrgmin ≤ Lrg ≤ Lrgmax (16.13)

Solution of Linked Simulation-Optimization Model Using
Genetic Algorithm

The different formulations of the proposed linked simulation-optimization model
presented above are solved using genetic algorithm. As discussed earlier, the
variables in this optimization problem are number, length and position of groynes.
Since, values of all these parameters are integer; the variables are coded using
binary strings with an accuracy of one. This leads to results of the variables as an
integer. The string lengths used for coding the variables for all the formulations are
presented in the subsequent sections. The selection operation is carried out using the
tournament selection method with a tourney size of two. The crossover probability
of 0.9, the mutation probability of 0.003 and the elitism fraction of 0.1 are employed
in all the formulations.

Figure 16.3 shows the schematic representation of the proposed genetic algo-
rithm based linked simulation-optimization model. The initial population is created
randomly between specified lower and upper bounds, which are actually some

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 291

Start

Initial population

Calculation of fitness
value

Is optimal

Hydrodynamic flow
simulation model

Yes

No

Elitism

Selection

Crossover and Mutation

Stop

Generation + +

Fig. 16.3 Schematic representation of the proposed GA based linked simulation optimization
model

strings (chromosome) representing the location and length of the groynes. For each
chromosome, the model finds the fitness function value. The constraint function
value is obtained by running the hydrodynamic model with the combination created
by genetic algorithms. The population is then checked for termination criteria. If it
is satisfied, the iteration terminates automatically. If not, the population again passes
through the genetic operators, i.e. reproduction, crossover, mutation and elitism.

Application of the Proposed Methodology

The proposed model is tested for two different cases. Firstly, the model is applied
for a hypothetical channel bend. For showing the field applicability of the proposed
model, the model is also applied on a portion of the River Brahmaputra.

292 H. M. Kalita et al.

Case A: Hypothetical Channel Bend

Figure 16.4 shows the study area composed of two bends connected by a short
tangent. The inner radiuses of the bends are 350 m each and the channel width is
240 m. The lengths of the approach channel, middle channel and the exit channel
are 246 m, 123 m and 246 m respectively. The grid selected is 86 by 17. Figure 16.5
shows the finite difference grid along with proposed near bank low speed zones for
this channel. The hydrodynamic model simulates a discharge of 1200 cumec. The
values of CN and Ct are 1.2 and 0.24 respectively. Manning’s roughness n is 0.031.
Slope of the channel is 1:10000. Binary coded string of length 3 is used for coding
the decision variable ‘length of groyne’ (Llg and Lrg). However, position of groyne
(Plg and Prg) is coded using binary string of length 5.

Fig. 16.4 Study area for the hypothetical channel bend. (a) Finite difference grid; (b) Area of
speed reduction

Fig. 16.5 Satellite image of the vulnerable reach of the River Brahmaputra

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 293

Case B: Application to River Brahmaputra

The River Brahmaputra and its tributaries constitute the major river system of
northeastern part of India. Extensive bank erosion occurs particularly during flood
in several reaches of River Brahmaputra. An area located on the south bank of
River Brahmaputra in the Nagaon and Morigaon district of Assam in India is also
facing the problem of extensive river bank erosion. Figure 16.5 shows the satellite
image of the study area. To mitigate the erosion hazard of this area, the present
linked simulation-optimization model was applied here to determine the optimal
combination of groynes required to save this area. Figure 16.6 shows the generated
grid of size 100 by 50 cells and the proposed low speed zone.

The hydrodynamic model simulates a high discharge of 40,000 cumec. The
values of CN, Ct, and n are 1.2, 0.2 and 0.031 respectively. To have an idea
of the present situation, the hydrodynamic model is run without considering any
groyne. Figure 16.7 shows the velocity vector and speed contour map for the present
condition. Velocity vectors (Fig. 16.7a) indicate that water is directed towards the
south bank of the river in several locations. Speed contour (Fig. 16.7b) reveals high
speed near the south bank indicating flow concentration at the south bank. These
results lead to a conclusion that erosion is initiated on the southern bank primarily
because of high flow speed near the bank.

As the erosion is near the south bank, the groynes are placed on the south bank
only. Binary coding having string length 3 is used for coding the decision variable
length of groyne (Llg). The decision variable, position of groyne (Plg) is coded
using binary string of length 7.

Fig. 16.6 Vulnerable reach of the River Brahmaputra. (a) Finite difference grid; (b) Area of speed
reduction

294 H. M. Kalita et al.

Fig. 16.7 Simulation of the present condition for the reach of River Brahmaputra. (a) Velocity
vector; (b) Speed contour map

Results and Discussion

The proposed genetic algorithms based linked simulation-optimization model is run
for both the channels with different formulations. The results obtained are presented
in the subsequent sections.

Case A: Hypothetical Channel Bend

Formulation I minimizes the total construction cost of the groyne system for
attaining a target speed value of 0.3 m/s on the predefined areas on both the banks.
The value of Plgmin and Plgmax are grid numbers 11 and 41 respectively. Similarly,
at the right bank values of Prgmin and Prgmax are 46 and 76 respectively. The values
of Llgmin and Llgmax are 0 and 4 respectively. Similarly, value of Lrgmin and Lrgmax

are also considered as 0 and 4 respectively. Number of possible groynes on each of
the banks is initially assumed as 6 within the position limits. This leads to maximum
of 12 possible groynes. The associated variables with all of these 12 groynes are the
position of groyne and length of groyne. As such, the number of variables becomes
24. The population size is 240. The actual length of the groyne is calculated by
multiplying the transverse grid spacing (15 m in this channel) with the integer form
of groyne length obtained from the optimization model.

The present model results in 7 number (Ng = 7) of groynes for attaining the
predefined target speed value. Out of these 7 groynes, 4 groynes having length of
45 m, 30 m, 15 m and 60 m are needed on the left bank at grid locations 13, 25, 28
and 41 respectively. The other 3 groynes of length 30 m, 15 m, and 15 m are to be
placed on the right bank at locations 46, 60 and 75 respectively from the upstream
boundary. Figure 16.8 shows the velocity vector plot and speed contour map with

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 295

Fig. 16.8 Optimal combination of groynes for hypothetical channel bend by formulation I with
target speed of 0.3 m/s. (a) Velocity vector; (b) Speed contour

Fig. 16.9 Optimal combination of groynes for hypothetical channel bend by formulation I with
target speed of 0.2 m/s. (a) Velocity vector; (b) Speed contour

the proposed combination of the groynes. Due to the presence of the groynes, the
velocity vector shows a deflected pattern from the banks towards the central portion
of the channel. In between the groynes, the lengths of the velocity vectors are very
less representing very low speed on those areas. For this combination, the total
construction cost is found as |2.10 × 107. Another experiment is conducted for
achieving target speed value of 0.2 m/s on the predefined areas and the models
results a need of 7 number of groynes (Ng = 7). Out of these 7 groynes, 4 groynes
with length of 60 m, 45 m, 45 m and 45 m are needed on the left bank at the grid
locations of 11, 24, 29 and 41 respectively. On the right bank, optimal lengths of the
groynes are 60 m, 15 m and 15 m and the positions are 46, 62 and 76 respectively.
Figure 16.9 shows the velocity vector and speed contour map. As a result of increase
in length of the groynes, the total construction cost is also raised to |2.85 × 107.

In case of formulation II, the positions of the groynes are already fixed on both
the banks. On the left bank, the uniformly distributed positions of groynes are grid
number 11, 16, 21, 26, 31, 36 and 41. On the right bank, these positions are on grid

296 H. M. Kalita et al.

number 46, 51, 56, 61, 66, 71 and 76. For this case, possible maximum number of
groynes is 14, which is the summation of the number of groynes on both the banks.
For each of the groyne, the associated variable is only length of groynes as positions
of the groynes are already fixed. Thus, the number of variables is 14. The initial
population is considered as 140 and the values of Llgmin and Llgmax are 0 and 4
respectively. Similarly the values of Lrgmin and Lrgmax are also 0 and 4 respectively.

The formulation II of the proposed model is run to find the required length of
groynes on those specified 14 positions to achieve a target speed of 0.3 m/s on the
predefined areas. The present model results in 7 numbers of groynes. Out of these,
4 groynes having lengths of 30 m, 15 m, 45 m and 60 m are needed on the left bank
at grid numbers 11, 16, 26 and 41 respectively. Similarly, the optimal positions of
the groynes on the right bank are 46, 61 and 76 with optimal lengths of 30 m, 15 m
and 15 m respectively. The associated total construction cost is |2.10 × 107. Cost of
construction for this case is similar to formulation I which shows that the problem
has alternate optimal solutions. Figure 16.10 shows the velocity vector plot and
speed contour map for the optimal combination of groynes. In order to reduce the
target speed to 0.2 m/s also, 7 numbers of groynes is sufficient. However, position
and length of the groynes are different than the previous case. Out of these 7 groynes,
4 groynes having length of 45 m each are needed on the left bank at positions of
11, 21, 31 and 41 respectively. The remaining 3 groynes are needed at the right
bank at optimal positions of 46, 61 and 76 having length of 45 m, 15 m and 45 m
respectively. The total construction cost for this groyne system is |2.85 × 107. In
this case also, the construction cost is similar to formulation I. Figure 16.11 shows
the velocity vector plot and speed contour map with this proposed combination
of groynes. One important observation is that, length of the groynes required is
more when the reduction of speed required is more. These results are intuitively as
expected.

Fig. 16.10 Optimal combination of groynes for hypothetical channel bend by formulation II with
target speed of 0.3 m/s. (a) Velocity vector; (b) Speed contour

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 297

Fig. 16.11 Optimal combination of groynes for hypothetical channel bend by formulation II with
target speed of 0.2 m/s. (a) Velocity vector; (b) Speed contour

Fig. 16.12 Optimal combination of groynes for River Brahmaputra by formulation I with target
speed of 0.6 m/s. (a) Velocity vector; (b) Speed contour

Case B: Application to River Brahmaputra

The main objective the model in this case is to find out the number of groynes which
are to be placed on the reach so that the bank of the river can be protected. In the
first case, flow speed limit is 0.6 m/sec. The possible maximum number of groynes
is 7. Thus initial population is considered as 140. The values of Plgmin and Plgmax
are grid numbers 18 and 90 respectively and the values of Llgmin and Llgmax are 0
and 5 respectively. The optimal solution shows that 5 numbers of groynes (Ng = 5)
are necessary for attaining the predefined target speed value. The lengths of these
groynes are 440 m, 500 m, 260 m, 320 m and 1250 m with corresponding positions
on grid numbers 22, 32, 37, 59 and 87 respectively from the upstream boundary.
For this combination, the total construction is |2.77 × 108. Figure 16.12 shows
the velocity vector plot and speed contour map with the proposed combination

298 H. M. Kalita et al.

of groyne for this case. The present model also results in 5 numbers of groynes,
to achieve another target speed of 0.5 m/s on the predefined area. The lengths of
these groynes are found as 1160 m, 1040 m, 320 m, 280 m and 1020 m with
corresponding positions on grid numbers 26, 37, 61, 75 and 88 respectively from
upstream boundary. Due to the increase in length of groynes, the total construction
cost has increased to |3.82 × 108. Figure 16.13 shows the velocity vector plot and
speed contour map with the proposed combination of groyne.

For formulation II, initially assumed groyne positions are grid numbers 8, 27,
36, 45, 54, 63, 72, 81 and 90 from upstream boundary. The initial population is 90.
The values of Llgmin and Llgmax are 0 and 5 respectively. The proposed model is
run to find the required lengths of groynes on those positions to achieve a target
speed of 0.6 m/s. For this case, the present model results in 6 numbers of groynes.
The optimal position of these 6 groynes are grid numbers 18, 27, 36, 72, 81 and
90, having optimal length of 200 m, 720 m, 800 m, 300 m, 500 m and 260 m
respectively. The total construction cost is |2.78 × 108. Figure 16.14 shows the
velocity vector plot and speed contour map for this combination. With a target speed
value of 0.5 m/s on the predefined area, the present model results in 7 numbers of
groynes. The optimal position of these groynes are 18, 27, 36, 54, 63, 81 and 90,
having optimal lengths of 200 m, 960 m, 800 m, 340 m, 330 m, 1000 m and 260 m
respectively. Due to the increase in the length of groynes, the total construction cost
has also increased to |3.89 × 108. Figure 16.15 shows the velocity vector plot and
speed contour map for this combination.

Fig. 16.13 Optimal combination of groynes for River Brahmaputra by formulation I with target
speed of 0.5 m/s. (a) Velocity vector; (b) Speed contour

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 299

Fig. 16.14 Optimal combination of groynes for River Brahmaputra by formulation II with target
speed of 0.6 m/s. (a) Velocity vector; (b) Speed contour

Fig. 16.15 Optimal combination of groynes for River Brahmaputra by formulation II with target
speed of 0.5 m/s. (a) Velocity vector; (b) Speed contour

Computational Time Requirement

The example problems are run on a Windows 7 based Intel Core 2 Quad CPU
with 2.66 GHZ Processor computer. The genetic algorithm based linked simulation-
optimization model is solved using Matlab. For checking the computational effi-
ciency of the present methodology, the computational time required for all the
channels for different formulations are found out. The computational time required
for formulation I in both the channels are very high, i.e. 180 h for the hypothetical
channel bend and 200 h for the reach of River Brahmaputra. Computational time
required by formulation II is lesser than formulation I (105 h and 128 h for
the channel bend and River Brahmaputra respectively). This shows that the time
required by the proposed model is basically dependent upon the size of the problem
being considered.

300 H. M. Kalita et al.

Conclusions

A linked simulation-optimization methodology is developed for obtaining opti-
mal combination of groynes for required training of a river. In the simulation
model, the governing equations of unsteady free surface flow in a boundary fitted
coordinate system are solved using Beam and Warming implicit finite difference
method. The hydrodynamic model is linked with a binary coded genetic algorithm
based optimization model. The limited evaluation made through the two example
problems shows that the cost of the project is dependent to the amount of speed
reduction to be done on that particular reach of the river. The comparison of results
between different target speed values for a same formulation reveals that if the target
speed value reduces, required length of the groyne also increases which eventually
increases the construction cost of the groyne system. Though computational time
required for such genetic algorithm based linked simulation-optimization model is
high, this may not be considered as a limitation, as number of alternatives tested
during the computational procedure is enormous. Test of such large alternatives
would have otherwise taken much more time and effort as compared to the time
required by the model.

References

1. Ahmed H, Tanaka N, Tamai N (2011) Flow modeling and analysis of compound channel in
river network with complex floodplains and groynes. J Hydroinf 13(3):474–488

2. Ahmed JA, Sarma AK (2005) Genetic algorithm for optimal operating policy of a multipurpose
reservoir. Water Resour Manag 19(2):145–161

3. Alauddin M, Tsujimoto T (2012) Optimum configuration of groynes for stabilization of alluvial
rivers with fine sediments. Int J Sediment Res 27(2):158–167

4. Aljuboori M, Datta B (2018) Linked simulation-optimization model for optimum hydraulic
design of water retaining structures constructed on permeable soils. Int J Geomate 14(44):39–
46

5. Anderson DA, Tannehill JD, Pletcher RH (1984) Computational fluid mechanics and heat
transfer. McGraw-Hill, New York

6. Ayvaz MT (2017) Optimal dewatering of an excavation site by using the
linked simulation – optimization approaches. Water Sci Technol Water Supply.
https://doi.org/10.2166/ws.2017.175

7. Beam RM, Warming RF (1976) An implicit finite difference algorithm for hyperbolic systems
in conservation law form. J Comput Phys 22:87–110

8. Bellos CV, Soulis JV, Sakkas JG (1991) Computation of two-dimensional dam-break-induced
flows. Adv Water Resour 14(1):31–41

9. Bellos V, Hrissanthou V (2011) Numerical simulation of dam break flood wave. Eur Water
33:45–53

10. Bhattacharjya RK, Datta B (2009) ANN-GA based multiple objective management of coastal
aquifers. J Water Resour Plan Manag 135(4):314–322

11. Bhuiyan F, Hey RD, Wormleaton PR (2010) Bank-attached vanes for bank erosion control and
restoration of river meanders. J Hydraul Eng 136(9):583–596

12. Celeste A, Suzuki K, Kadota A (2004) Genetic algorithms for real-time operation of multipur-
pose water resource systems. J Hydroinf 6(1):19–38

http://dx.doi.org/10.2166/ws.2017.175

16 Linked Simulation Optimization Model for Evaluation of Optimal Bank. . . 301

13. Chaudhry MH (2008) Open channel flow, 2nd edn. Prentice Hall, Englewood Cliffs
14. Damodaram C, Zechman EM (2013) Simulation-optimization approach to design low impact

development for managing peak flow alterations in urbanizing watersheds. J Water Resour Plan
Manag 139(3):290–298

15. Dehghani AA, Azamathulla HM, Najafi SAH, Ayyoubzadeh SA (2013) Local scouring around
L-head groynes. J Hydrol 504:125–131

16. Fang T, Ball JE (2007) Evaluation of spatially variable control parameters in a complex
catchment modeling system: a genetic algorithm application. J Hydroinf 9(3):163–173

17. Fazli M, Ghodsian M, Neyshabouri SAAS (2008) Scour and flow around a spur dike in a 900

bend. Int J Sediment Res 23(1):56–68
18. Fennema RJ, Chaudhry MH (1990) Explicit methods for 2D transient free-surface flows. J

Hydraul Eng 116(8):1013–1034
19. Haleem DA, Kesserwani G, Caviedes-Voullieme D (2015) Haar wavelet-based adaptive finite

volume shallow water solver. J Hydroinf 17(6):857–873
20. Jha A, Akiyama J, Ura M (1994) Modeling unsteady open-channel flows-modification to Beam

and Warming scheme. J Hydraul Eng 120(4):461–476
21. Jia Y, Wang SSY (1999) Numerical model for channel flow and morphological change studies.

J Hydraul Eng 125(9):924–933
22. Johns MB, Keedwell E, Savic D (2014) Adaptive locally constrained genetic algorithm for

least-cost water distribution network design. J Hydroinf 16(2):288–301
23. Kalita HM, Sarma AK, Bhattacharjya RK (2014) Evaluation of optimal river training work

using GA based linked simulation-optimization approach. Water Resour Manag 28(8):2077–
2092

24. Kalita HM (2016) A new total variation diminishing predictor corrector approach for two-
dimensional shallow water flow. Water Resour Manag 30(4):1481–1497

25. Kassem AA, Chaudhry MH (2005) Effect of bed armoring on bed topography of channel
bends. J Hydraul Eng 131(12):1136–1140

26. Klonidis AJ, Soulis JV (2001) An implicit scheme for steady two-dimensional free-surface
flow calculation. J Hydraul Res 39(3):1–10

27. Kuhnle RA, Alonso CV, Shields FD (1999) Geometry of scour holes associated with 900 spur
dikes. J Hydraul Eng 125(9):972–978

28. Molls T, Chaudhry MH, Khan KW (1995) Numerical simulation of two dimensional flow near
a spur dike. Adv Water Resour 18(4):221–236

29. Molls T, Chaudhry MH (1995) Depth-averaged open-channel flow model. J Hydraul Eng
121(6):453–465

30. Molls T, Zhao G (2000) Depth-averaged simulation of supercritical flow in channel with wavy
sidewall. J Hydraul Eng 126(6):437–445

31. Mousavi SJ, Shourian M (2010) Capacity optimization of hydropower storage projects using
particle swarm optimization algorithm. J Hydroinf 12(3):275–291

32. Ostfeld A, Salomons E, Lahav O (2011) Chemical water stability in optimal operation of water
distribution systems with blended desalinated water. J Water Resour Plan Manag 137(6):531–
541

33. Petaccia G, Natale L, Savi F, Velickovic M, Zech Y, Soares-Frazao S (2013) Flood wave
propagation in steep mountain rivers. J Hydroinf 15(1):120–137

34. Rahimpour M, Tavakoli A (2011) Multi-grid Beam and Warming scheme for the simulation of
unsteady flow in an open channel. Water SA 37(2):229–236

35. Rajaratnam N, Nwachukwu A (1983) Flow near groin like structure. J Hydraul Eng
109(3):463–480

36. Sarveram H, Shamsai A, Banihashemi MA (2012) Two-dimensional simulation of flow pattern
around a groyne using semi-implicit semi Lagrangian method. Int J Phys Sci 7(20):2775–2783

37. Schwanenberg D, Harms M (2004) Discontinuous Galerkin finite-element method for trans-
critical two-dimensional shallow water flows. J Hydraul Eng 130(5):412–421

302 H. M. Kalita et al.

38. Shourian M, Mousavi SJ, Menhaj M, Jabbari E (2008) Neural network-based simulation
optimization model for optimal water allocation planning at basin scale. J Hydroinf 10(4):331–
343

39. Simons F, Busse T, Hou J, Ozgen I, Hinkelmann R (2014) A model for overland flow and
associated processes within the hydroinformatics modelling system. J Hydroinf 16(2):375–
391

40. Singh RM, Datta B (2006) Identification of groundwater pollution sources using GA-based
linked simulation optimization model. J Hydrol Eng 11(2):101–109

41. Vaghefi M, Ghodsian M, Neyshabouri SAAS (2012) Experimental study on scour around a T
shaped spur dike in a channel bend. J Hydraul Eng 138(5):471–474

42. Wu W, Simpson AR, Maier HR, Marchi A (2012) Incorporation of variable-speed pumping in
multi objective genetic algorithm optimization of the design of water transmission systems. J
Water Resour Plan Manag 138(5):543–552

43. Zhao DH, Shen HW, Tabios GQ, Lai JS, Tan WY (1994) Finite volume two dimensional
unsteady flow model for river basins. J Hydraul Eng 120(7):863–883

Chapter 17
A GA Based Iterative Model for
Identification of Unknown Groundwater
Pollution Sources Considering Noisy Data

Leichombam Sophia and Rajib Kumar Bhattacharjya

Abstract Genetic Algorithms have been applied in solving various complex engi-
neering optimization problems. This chapter presented the application of Genetic
Algorithms in identifying unknown groundwater pollution sources of an aquifer.
The unknown groundwater pollution sources can be identified by using the inverse
optimization model. The inverse optimization model minimizes the difference
between the simulated and observed concentration at the observation locations for
obtaining the unknown pollution sources. However, the model cannot be setup
unless and until the number of pollutions sources are not known. As such, an
iterative based methodology is used to obtain the exact number of pollution sources
along with their source strength. Further, it is not always possible to accurately
measure the concentration data in the field. As such an analysis has been carried out
to evaluate the model performance when noisy data is used for the prediction of the
sources. The performance of the model is evaluated using an illustrative study area.

Keywords Groundwater pollution source · Inverse optimization model · Linked
simulation-optimization · Genetic algorithm

Introduction

Groundwater is considered to be an important resource of water as it supplies
almost half of the drinking water to the world [29]. It can be also regarded
as a long-term reservoir because the amount of freshwater stored in the earth
by groundwater is around 30.1% whereas surface water stores only a meagre

L. Sophia (�)
College of Food Technology, Central Agricultural University, Imphal, India

R. K. Bhattacharjya
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam,
India
e-mail: rkbc@iitg.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_17

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_17&domain=pdf
mailto:rkbc@iitg.ac.in
https://doi.org/10.1007/978-3-030-26458-1_17

304 L. Sophia and R. K. Bhattacharjya

0.3% in the forms like river, streams, lakes etc. However, the immense growth in
the industrial and the agricultural fields has led to numerous adverse effects on
the socio-economic condition of different communities of the world. Unwanted
activities like the improper dumping of industrial waste, leachate from landfill,
overuse of pesticides, septic tanks leakage etc. have led to an alarming rate of
groundwater contamination. Above this, the contamination of the groundwater has
also given birth to numerous waterborne diseases to the mankind. Therefore, the
identification of the groundwater pollution sources becomes the initial steps for
efficiently remediating the contaminated groundwater aquifer.

In most of the situation, groundwater pollution sources can be identified effec-
tively using linked simulation-optimization approach. This technique is considered
one of the best methods due to its ability to solve the inverse problem associated with
the identification of pollution sources. The source identification approaches can be
regarded as an inverse problem. The problem is considered an ill-posed problem
because a unique solution can never be guaranteed. The response matrix approach
adopted by Gorelick et al. [13] reflected the earlier technique of the simulation-
optimization approach in identification of groundwater pollution sources. The
application of this technique could be further seen when Datta et al. [10] developed
an expert system methodology to identify groundwater pollution sources. The
algorithm of the methodology is based on the optimal statistical pattern recognition
technique. However, this linear response matrix approach has shown large com-
putational error in the result when the source identification problem is solved for a
heterogeneous aquifer. With the inability of the response matrix to solve highly non-
linear problem, the embedded approach came into light which is capable of solving
complex and non-linear problem. The applications of embedded approach were first
presented by Aguado and Remson [1]. Later, Mahar and Datta [18–20] employed
embedded technique for groundwater source identification and monitoring network
design. They adopted this approach and embedded the physical processes of
groundwater as constraints in the optimization model. Aral et al. [3] further used this
technique and proposed a new combinatorial optimization approach using Genetic
Algorithms which they presented as progressive genetic algorithm (PGA). Using
this new approach, the release histories and the location of the contaminant sources
were successfully identified. However, the embedded technique is limited to a small-
scale problem. In order to solve the problem of pollution sources identification for
a large-scale area, the linked simulation-optimization evolves to be a better option.
In this technique, the groundwater simulation model is linked as an external module
to the optimization algorithm. Various sophisticated aquifer simulation models
like FEFLOW, MODFLOW, MT3DMS, SEAWAT, SUTRA etc. which have the
capability to simulate the complex phenomenon of groundwater flow and transport
processes can be linked to the optimization model for solving the groundwater
source identification model or the groundwater management model. Datta et al. [11]
solved the groundwater pollutant source identification problem by externally linking
the simulation model SUTRA with a nonlinear optimization model. Datta et al. [12]
further modified the problem by linking a classical nonlinear optimization model
with the SUTRA. But the degree of complexity was much higher when applied to a

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 305

large aquifer. As a result, many researchers have attempted different heuristic global
search approach for solving the source identification problems.

With the advancement of simulation-optimization technique, different types
of source identification model were developed based on various techniques like
statistical pattern recognition [10], Tikhonov regularization [28], Genetic Algorithm
[3, 5, 21, 25], Simulated Annealing [15, 16]. Jha and Datta [17] proposed Adaptive
Simulated Annealing (ASA) to determine the source characteristics and compared
with the results obtained by GA. They concluded that the proposed approach can
converge to an optimal solution faster proving to be a computationally efficient
technique but with a large number of simulation GA gives better results. Ayvaz
[4] successfully identified all the characteristics of unknown pollution sources by
integrating the user-friendly groundwater flow and transport models, MODFLOW
and MT3DMS with the optimization model based on heuristic harmony search (HS)
algorithm. Additionally, an iterative technique was also employed for identifying the
exact number of pollution sources. An overview on the identification of groundwater
pollution was also presented by Chadalavada et al. [8] and Amirabdollahian and
Datta [2].

Another major concern in the study of groundwater source identification problem
is the computational efficiency of the model. In order to overcome the computational
burden, Bhattacharjya et al. [6] used the artificial neural network (ANN) as the
surrogate model and replaced the density-dependent flow and transport processes
in a coastal aquifer. Results indicated that the developed ANN model proved
to be computationally efficient and require less CPU time when compared with
the embedded technique. Furthermore Borah and Bhattacharjya [7] suggested that
improvement in the computational time can be seen with hybrid optimization model.
They initially solved the model by using surrogate ANN model and later using
numerical simulation models available in Groundwater Modeling System (GMS).
The optimization model was solved using GA. This technique drastically reduced
the computational time and also could efficiently obtain the optimal solution.
Focussing on the budgetary constraints, an effective monitoring network plays an
important role in the identification of unknown groundwater pollution sources. The
optimal placement of monitoring wells will monitor the contaminant concentration
effectively and the accuracy of the source identification model can be further
enhanced. Therefore, based on this notion many researchers have identified the
unknown pollution sources effectively. Meyer and Brill [23] presented a method for
locating the wells in the monitoring network using Monte Carlo technique. A facility
well location model was also used to select a fixed number of well locations. Later,
Dhiman and Datta [9] developed a model for designing a groundwater quality mon-
itoring network by linking the groundwater pollution transport simulation model
with chance-constrained optimization model. The model was solved using mixed
integer programming. Prakash and Datta [24] used trained genetic programming
models for developing a monitoring network design. The model identifies the
pollution source fluxes using the candidate monitoring locations.

The review of the literature suggested that the inverse model can efficiently
identify the unknown pollution sources. In this technique, the difference between

306 L. Sophia and R. K. Bhattacharjya

the simulated and observed contaminant concentrations at the observation well
locations is minimized by using an optimization model. The simulated concentra-
tions can be obtained using groundwater simulation model whereas the observed
concentrations are recorded in the field. Most of the earlier studies assumed that the
information about the pollution source location is known to the problem. However,
in real case scenario, the location of the pollution sources is not known. As such,
an iterative search methodology has been used for identifying the location and
flux of the pollution sources. In this approach, the number of pollution sources
is subsequently increased based on the feedback of the function values until the
optimal solutions are not achieved. Further, measurement error associated with the
observed data has also play a significant role in determining the unknown pollution
sources. As such, an analysis has also been carried out to evaluate the effect of
different level of measurement error in the observed concentrations in identifying
the unknown pollution sources. The groundwater flow and transport processes
have been solved using MODFLOW-2000 and MT3DMS. The models are then
externally linked with the GA based optimization model in MATLAB platform. The
performance of the developed methodology is evaluated using an illustrative study
area [20].

Methodology

As discuss above, for the real scenario, the number and the source characteristics
are not known. For solving such problems, an iterative based process is used in
this study. Figure 17.1 shows the schematic representation of the iterative based
unknown source identification model. The search for the optimal locations and
source fluxes is initiated considering two pollutant sources. The reason for initiating
with two number of pollution sources is that it always requires a one dummy
source to confirm the actual number of pollution sources. It is then continued
with the successive number of pollutant source until all the sources are identified.
The source locations, number and the magnitude of the source fluxes are treated
as the unknown decision variables. The Genetic Algorithm is used for solving
the optimization model. Thus the initial solutions are generated randomly. The
initial solution is known as the population. The initial population comprises of
the source locations and the fluxes. For each of the solution, the MT3DMS and
the MODFLOW packages of the Groundwater Modeling System (GMS) is used
for simulating observed concentrations. The observed concentration at observation
location is used to get the objective function value or the fitness function value.

A large value of fitness function value (F, as given by Eq. 17.1) at the end
of the optimization run means that the magnitude of the observed and simulated
concentration does not match with each other. The recovered source location and
the source flux are bound to be erroneous values as the concentration values at
the respective observation wells are giving inaccurate results. Henceforth, it clearly
shows the presence of more pollution sources in the aquifer. As such, another

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 307

Initiate MODFLOW and
MT3DMS with n=2

Initial
population

Objective function minimizes
the difference between the
observed and the simulated

conc.

Optimal number of pollution
sources, location and fluxes

are identified

Yes

No

Evaluate
fitness
value

Estimated function value
satisfactory?

Re-simulate groundwater processes with ‘n’= n+1

Fig. 17.1 Methodology of the iterative search model

pollution source is added to the existing one, i.e. n = n + 1. The model will
again run and optimal fitness function will be calculated. If the fitness function
value converges to a minimum value for n = 3, it corresponds to the best match
between the observed and simulated contaminant concentration. Therefore, for
further confirmation, another source is added (n = n + 1) to the prevailing one
and now with n = n + 1, the present methodology is repeated. After repeating the
whole process, if the fitness value converges to a minimum value with a dummy
source (sources with negligible concentrations), this signifies that the actual number
of pollution sources have been attained. The final confirmation of the exact number
of pollution sources is based on the dummy source. It is because the retrieved source
being a redundant source (dummy), does not have contaminant concentration. It
suggests that there is no further pollution source in the aquifer. Hence, the dummy
source can be discarded and the exact number of identified pollution source is given
by n = n−1.

Source Identification Model

The groundwater pollution source identification problem can be solved using the
linked simulation-optimization model by minimizing the difference between the
simulated concentration and the observed concentration at the well locations.
The observed concentration is the concentration measured at different observation
locations in different time steps. The simulated concentration can be obtained
by solving the groundwater flow and transport simulation model. In the present

308 L. Sophia and R. K. Bhattacharjya

methodology, the modules MODFLOW and MT3DMS present in GMS are used
in simulating the groundwater flow and transport processes respectively. In order
to minimize the absolute difference between the observed and the simulated
concentration in space and time, an optimization model is adopted. The genetic
algorithm (GA) is used for solving the optimization problem. The exact pollution
source location will be identified when the observed and the simulated contaminant
concentrations perfectly match with each other at different time steps. The decision
variables of the present optimization model are the pollution source location (X, Y)
and the source flux (Sf). The objective function of the optimization model can be
written as,

Minimize Fn =
M∑

i

N∑

j

(
C
j
o,i − Cjs,i

)2
(17.1)

Subject to

C = f (X,Y,Sf) (17.2)

Sfmin ≤ Sf ≤ Sfmax (17.3)

Xmin ≤ X ≤ Xmax (17.4)

Ymin ≤ Y ≤ Ymax (17.5)

Here, Fn is the objective function for the present optimization model with n
number of pollution source; Cjo,i is the observed concentration at jth time step for ith

well location; Cjs,i is the simulated concentration at jth time step for ith well location;
M is the total number of observation wells and; N is the total number of time steps;
C is the concentration vectors of the simulated concentration; Sf is the vector of the
pollutant source fluxes such that Sf = [Sf1, Sf2, Sf3, . . . ,Sfn]T; X and Y are the source
location vectors such that X = [x1, x, x3, . . . ,xn]T and Y = [y1, y2, y3, . . . ,yn]T; Sfmin

and Sfmax are the lower and upper bounds of the source flux; Xmin, Xmax, Ymin and
Ymax are the lower and upper bounds where the source location are expected. It can
be noted that the bounds for source fluxes are taken as Sfmin = 0 g/s and Sfmax=
100 g/s. It may be noted that in MT3DMS model the location of the pollutant sources
should coincide with the centre of the discretized grid blocks [4]. Therefore, the
lower and upper bounds for the source locations are provided on the basis of the
maximum number of grids discretised for the study area in the GMS environment
which will ultimately assist in reducing the search space.

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 309

Table 17.1 Genetic Algorithm parameters used in the present methodology

Parameter Value Function parameter Adopted

Population size 200 Scaling function Rank
Generations 1000 Selection function Stochastic uniform
Crossover fraction 0.8 Mutation function Constraint dependent
Elite count 0.5 Crossover function Scattered

Optimization Algorithm

The Genetic Algorithms (GA) is employed to solve the simulation-optimization
based inverse optimization model. The GA was first introduced by professor
Holland [14] and is based on the theory of natural selection and genetics. IT is a
heuristic search technique which mimics the natural selection processes of nature.
Unlike the traditional search, GA opts for different path producing many directions
for the optimal solution. For the source identification model, the algorithm starts by
generating candidate solutions of source fluxes and the source locations. The set of
candidate solutions is known as the population. The randomly generated population
is then sent to the objective function routine for calculating the function value of
each individual. If the calculated function value does not fulfil the termination
criteria, the population will pass on to next successive generation following the
three genetic operators i.e. selection, mutation and crossover for producing better
offspring. Each of these successive steps will continue until the stopping criterion
is reached. The genetic algorithm parameters used in the algorithm is shown in
Table 17.1.

Simulation Model

The groundwater flow and transport processes have been simulated using MOD-
FLOW and MT3DMS models. MODFLOW [22] is an executable program written
in FORTRAN. It is based on finite difference method that can numerically solve a
groundwater flow equation efficiently. MODFLOW consists of various packages
which can be used in specifying various hydrogeological characteristics of an
aquifer. The division of various packages enables the user to selects particular
hydrologic conditions of the aquifer accordingly. After successfully simulating
MODFLOW, different ASCII and binary files of the used packages gets saved in the
disk. These files are then used by MT3DMS in simulating the groundwater transport
equation. The groundwater flow equation used in MODFLOW can be written as,

∂

∂x

(
Kxx

∂h

∂x

)
+ ∂

∂y

(
Kyy

∂h

∂y

)
+ ∂

∂z

(
Kzz

∂h

∂z

)
+W = Ss ∂h

∂t
(17.6)

310 L. Sophia and R. K. Bhattacharjya

Where, Kxx, Kyy and Kzz are the hydraulic conductivity along the x, y and z directions
(LT−1); h is the hydraulic head (L); Ss is the specific storage coefficient; t is the time
(T); W is the recharge flux per unit area (LT−1).

MT3DMS [30] is a 3D modular transport model that can be used in the simula-
tion of advection, dispersion and chemical reactions of dissolved constituents in the
groundwater system. MT3DMS has a number of packages similar to MODFLOW
that will deal the groundwater transport processes. MT3DMS works in conjunction
with MODFLOW. MODFLOW compute the heads cell-by-cell during the flow
simulation and are written in formatted files. Later MT3DMS read these files as the
flow fields that are used in transport model simulation. Therefore, for performing
MT3DMS simulation, one has to run the MODFLOW in order to obtain the flow
field. The graphical interphase present in the GMS can be used for performing the
MT3DMS transport simulation by undergoing pre-processing and post-processing
steps. The inputs required for MT3DMS are generated in GMS, and then the files
are saved in the disk. Later, the outputs from the MT3DMS are exported for post-
processing in GMS. The transient groundwater transport equation can be written
as

∂ (θC)

∂t
= ∂

∂xi

(
θDij

∂C

∂xj

)
− ∂ (θviC)

∂xj
+ qsCs +

∑
Rn (17.7)

Where, C is the dissolved concentration in the groundwater (ML−3); θ is the porosity
of the subsurface medium; t is the time(T); xi is the distance along the respective
Cartesian co-ordinate axis (L); Dij is the hydrodynamic dispersion coefficient tensor
(L2 T−1); vi is the seepage or linear pore water velocity (LT−1); qs is the volumetric
flow rate per unit volume of aquifer representing fluid sources (positive) and sinks
(negative) (T−1); Cs is the concentration of the source or sinks flux (ML−3);

∑
Rn

is the chemical reaction term (ML−3 T−1).

Measurement Errors

As discussed earlier, the pollution source can be efficiently identified by minimizing
the error function as stated in Eq. 17.1. In actual scenario, the observed contaminant
concentrations data can be obtained from the field. However, for the hypothetical
problem considered in this study, the numerical simulation model (MT3DMS) is
used to generate the observed data. As some measurement errors always exist
in the observed contaminant concentration during field measurement, a random
error has been incorporated to the data. However, the extent of measurement error
is not known to us. As such different level of error has been introduced in the
observed concentrations to evaluate the effect of the measurement error. As reported,
the effect of measurement error in the source identification problem was also
performed by many researchers [5, 12, 20, 24, 27]. However, much emphasis was
given on the impact it might have while determining the pollution source locations

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 311

and magnitude of source fluxes. The effect of measurement error in the observed
contaminant concentration can be shown by adding randomly generated error term
in the simulated values of the observed concentrations. The following [20] the
equation is used in the study.

PCo
j
i = Coji (1 + err) (17.8)

Where, PCoji is the perturbed simulated concentration value; Coji is the simulated
concentration value; err is the error term to be introduce. The error term (err) can
be further represented as

err = a x ξ (17.9)

Here, a signifies different level of error magnitude equal to ranging from 0.05 to
0.2 [26]. When a< 0.1, it signifies a low noise level, 0.1≤a ≤ 0.15 denotes moderate
level of noise and a ≥ 0.15 signifies high level of noise [26]. ξ represent random
fraction generated following normal distribution for mean 0 and standard deviation
of 1.

If the err term is not introduced in the numerically simulated observed concentra-
tions, then there is zero noise in the measured contaminant concentration. With no
measurement error in the observed concentrations, the source identification model
will give the best optimal solution. However, it does not support the realistic case
as explained above. Therefore, introducing the error term will be regarded as one of
the best approaches to check the effectiveness of the model. As such the perturbed
concentrations will be used to identify the pollution source location and source
fluxes using the linked simulation-optimization model. Thus the present approach
will demonstrate the performance and robustness of the model in determining the
characteristics of the pollution sources under the different level of measurement
errors. If the location of the pollution sources and the magnitude of the pollution
sources are efficiently identified under the given conditions, then the present source
identification model will prove to be an effective one.

However, it may be noted that the present methodology also requires obtaining
the exact number of pollution sources when it is assumed that very limited
information is available in the affected aquifer. Therefore, determining the exact
number of pollution sources also a primary objective of the study. As the number
of pollution sources is completely unknown, an iterative approach has been adopted
for determining the exact number of pollution sources [5]. As such in this study, a
methodology has been presented for identification of the number and location of the
pollution sources along with the magnitude of the source fluxes under the influence
of different measurement error. Initially it is assumed that there is no measurement
error in the observed contaminant concentrations, therefore a =0 for zero noise
level. The same given steps are followed subsequently with different noise levels
i.e. a< 0.05 for low noise level, 0.1≤a ≤ 0.15 for moderate noise level and a ≥ 0.15
for high noise level.

312 L. Sophia and R. K. Bhattacharjya

Performance Evaluation Criteria

The performance of the proposed simulation-optimization model is evaluated using
different performance criteria. Analysis using the error free data and erroneous data
can be performed using the normalized error (NE) [20] and relative error (RE) [7].
The normalized error (NE) can be represented as

NE =
∑ns
p=1
∑nl
r=1

∣∣Ef p,r − Af p,r
∣∣

∑ns
p=1
∑nl
r=1Af p,r

× 100 (17.10)

The relative error (RE) criteria to evaluate each of the source flux can be
computed as

RE =
∣∣Ef p,r − Af p,r

∣∣

Afp,r
× 100 (17.11)

Where Efp, r and Afp, r are the estimated and the actual source fluxes respectively at
rth location and pth stress period; nl is the total number of source location; ns is the
total number of stress period.

Study Area

An illustrative study area with an area of 1.04 km2 (Fig. 17.2) is adopted for
evaluating the performance of the proposed model. The boundary conditions and
the geometry of the study area have been considered as proposed by Mahar and
Datta [20]. It is a homogeneous and isotropic aquifer with constant head boundary
on the left and right-hand boundaries. The no-flow boundary condition has been
considered on the upper and lower boundaries of the aquifer. The 2D study area
has been discretized in 13 columns and 8 rows. The cell size is 100 m x 100 m.
A total number of 12 observation wells are placed randomly around the suspected
area of the aquifer. The hydrological parameters used in the study area are shown in
Table 17.2. The observation wells are designated as W1, W2 . . .W12. The adopted
study area can be regarded as a complex model due to the presence of a large
number of pollutant source in the aquifer. A total number of four pollutant sources
are present in the aquifer but the location and number of source pollutant are
completely unknown to us and have to be identified using the present methodology.
The groundwater flow and transport processes are simulated for 5 years (5 stress
periods) at an interval of 3 months. It is assumed the pollution sources are active
for 4-time steps i.e. the source releases pollutant for 1 year. The magnitudes of the

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 313

Pollutant source location Observation well location

S1

S2

S3

S4 W1

W5 W6

W7 W8 W9

W10

W11 W12

W2 W3

W4

No flow boundary

No flow boundary

C
on

st
an

th
ea

d
bo

un
da

ry
C

onst anthe ad
bound ary

99.58 m

100.00 m 88.00 m

88.72.00 m

P

Pumping well location

Fig. 17.2 Illustrative study area showing pollutant source locations, observation wells and
pumping wells

Table 17.2 Hydrological
parameters used in the study
area

Parameters Values

Hydraulic conductivity in x direction, Kxx(m/s) 0.0002
Hydraulic conductivity in y direction, Kyy (m/s) 0.0002
Porosity, ε 0.25
Thickness of the aquifer, b (m) 30.5
Longitudinal dispersivity, αL (m) 40
Transverse dispersivity, αT (m) 9.6
Time steps, Δt (months) 3

Table 17.3 Source fluxes for different time steps (g/s)

Sources Time step 1 Time step 2 Time step 3 Time step 4

S1 30 58.5 0 35
S2 47 15 37 0
S3 41.26 0 14.40 16.88
S4 21.7 0 29.68 0

pollutant sources are shown in Table 17.3. There is a pumping well in the aquifer
and the pumping rates for the twenty stress period are given in Table 17.4.

Results and Discussion

The present linked simulation-optimization model has searched for the optimal
number, locations and source fluxes starting from one number of pollution sources.
As such, the search has been initiated considering two pollution sources in the

314 L. Sophia and R. K. Bhattacharjya

Table 17.4 Pumping rates of
the well at the pumping
location of the aquifer (m3/d)

Time step Rate Time step Rate

1 273.02 11 163.29
2 163.29 12 327.45
3 327.45 13 273.02
4 163.29 14 163.29
5 273.02 15 381.02
6 327.45 16 217.72
7 163.29 17 273.02
8 273.02 18 163.29
9 381.02 19 327.45
10 217.72 20 217.72

Table 17.5 Estimated source flux, Final fitness (F) value and normalized error (NE) for different
number of source considering no measurement error in the observed concentrations

Estimated source flux (g/s)

No. of
sources

No. of
decision
variable

Estimated
source
location

Time
step 1

Time
step 2

Time
step 3

Time
step 4

Final
function
value F NE

2 10 (3,3) 59.38 30.00 5.01 0.00 F2 = 5.38 101.21
(4,4) 69.73 58.99 76.89 20.70

3 15 (3,3) 43.89 72.49 8.99 20.22 F3 = 3.94 67.93
(5,3) 70.54 28.01 10.45 0.07
(7,4) 68.96 47.95 16.03 8.05

4 20 (3,3) 30.18 57.91 1.48 33.98 F4 = 0.072 0.054
(5,3) 46.67 16.61 34.59 1.18
(7,4) 40.79 0.137 15.59 15.94
(2,4) 20.92 2.16 27.10 1.41

5 25 (3,3) 30.58 56.81 3.026 33.36 F5 = 0.0201 1.32
(5,3) 46.36 17.33 34.05 1.24
(7,4) 41.16 2.42 9.85 19.20
(2,4) 21.70 0.13 29.23 0.34
(1,10) 6.82 3.90 4.38 6.12

aquifer. The number of pollution sources is then successively increased and objected
function values have been noted down. Initially, it is assumed that there is no
measurement error in the observed concentrations. As such the identification of the
source location, the magnitude of the flux and the number of pollution sources are
based on zero noise level. Table 17.5 shows the estimated source flux, Normalized
Error (NE) and the final objective function values (F) for different number of
pollution sources considering no measurement error in the observed concentration.
In the first trial, it is assumed that only two pollutant sources are present in the
affected aquifer. For the present scenario, the candidate solution for a two sources
will have only 10 decision variables. Eight of these decision variables will represent
the source fluxes while the remaining two will represent the source locations. The
estimated source locations are (3, 3) and (4, 4), and the objective function value (F2)

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 315

is 5.38 which is considered to be a large value. Moreover, the NE value is also found
to be very large 101.21. This indicates the possibilities of more pollution sources.
Henceforth, the simulation-optimization model is run further with three number of
pollution sources.

The source locations predicted by the model for three number of pollution
sources are (3, 3), (5, 3) and (7, 4). For this case, the F3 and NE values are reduced
to 3.94 and 67.93 respectively. But both the values are considered to be high and are
not enough to give an optimal solution. So, the iterative process is again repeated
with four number of pollution sources and found the source locations as (3, 3), (5,
3), (7, 4) and (2, 4). The F4 value has been remarkably reduced to 0.072 and goes
well with the decreased value of NE as 0.054. The evaluated values of the present
scenario demonstrate an optimal solution but for further confirmation, an additional
iteration is performed with five number of pollution sources. The final F5 value and
NE are obtained as 0.0201 and 1.32 respectively. This shows that the actual number
of pollution sources in the aquifer is four. Therefore, the results with four number
of pollution sources are the optimal solution.

The trend at which the fitness values are obtained for different number of
pollution sources can be seen in Fig. 17.3. It is also observed that the fitness function
value slowly decreases with the increase in the number of pollution sources. Later,
the fitness value converges to a minimum value when the number of pollution
sources reaches four which is the actual number of pollution sources. Furthermore,
when the fitness function is evaluated for five number of pollution sources. It is
observed that the fitness function value for four and five number of pollution sources
almost matches with each other with minimum values.

Even though the exact number of pollution sources is successfully identified,
the concern lies in the proximity of the identified source fluxes. Figure 17.4 shows
the comparison between the actual and the identified pollution sources. It clearly
signifies the close resemblance of the source fluxes when no measurement error has

0

1

2

3

4

5

6

2 3 4 5

F
in

al
 fi

tn
es

s
fu

nc
ti

on
 (

F
)

Number of pollution sources (n)

5.38

3.94

0.072
0.020

Fig. 17.3 Final fitness function for different number of pollution sources

316 L. Sophia and R. K. Bhattacharjya

0

10

20

30

40

50

60

70

S11S12S13S14S21S22S23S24S31S32S33S34S41S42S43S44

So
ur

ce
 F

lu
x

(g
/s

)

Time Steps

Actual

Estimated

Fig. 17.4 Comparison between the actual and the estimated source fluxes

been considered. Presence of source fluxes could be seen on some of the inactive
time steps (S24, S31, and S44) but as the range of the recovered source fluxes is
found to be a minimal one and it can be neglected.

From the results obtained using the present methodology, it can be concluded
that there is four number of pollution sources and the location and magnitude of
source flux were efficiently identified by the proposed methodology. These optimal
results were obtained considering that there is no measurement error in the observed
concentration. Now to see the effect of measurement error, different noise levels
(a = 0.05, a = 1, a = 0.15 and a = 0.2) are added to the observed concentration.

Table 17.6 shows the coordinates of the estimated source locations considering
different noise levels. It is observed that when two pollution sources are considered,
the simulation-optimization model could not predict the exact pollution source
location with all the different noise levels except for source location (3, 3). For 3
numbers of pollution sources, the same location (3, 3) has been identified by all
the different number of pollution sources. However, it may be noted that the other
source locations estimated by the model for different level of noises are found to be
very near to the actual ones. In case of 4 number of pollution sources, the model
could identify the exact source i.e. (3,3), (5,3), (7,4) and (2,4) very precisely except
for noise level a = 0.2. This shows that the different noise levels have less impact on
identification of source locations. Similarly, for n = 5 also, the model could identify
the actual source locations along with a dummy source.

Table 17.7 shows the estimated source fluxes for five number of pollution source
under different noise levels. At zero noise level, the predicted source fluxes showed
some similarity with the actual fluxes however some contradictory flux values are
also observed. The actual magnitude of source flux for S1, S2 and S3 at second
and third-time steps are 58.80 g/s, 37 g/s and 14.40 g/s but the model predicted as
56.81 g/s, 34.05 g/s and 9.29 g/s respectively. However, these differences do not

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 317

Table 17.6 Coordinates of the actual and estimated source location

Estimated source location
Actual
source
location

No. of
pollution
sources

With noise level
a = 0.05

With noise level
a = 0.1

With noise level
a = 0.15

With noise level
a = 0.2

(3,3) 2 (3,3) (8,4) (3,3) (6,3)
(4,4) (3,3) (5,5) (3,3)

(5,3) 3 (3,3) (3,3) (1,4) (6,3)
(6,3) (1,4) (6,3) (3,3)
(4,4) (6,3) (3,3) (1,3)

(7,4) 4 (3,3) (3,3) (3,3) (3,3)
(5,3) (5,3) (5,3) (6,3)
(7,4) (7,4) (7,4) (7,4)
(2,4) (2,4) (2,4) (2,4)

(2,4) 5 3,3) (3,3) (3,3) (3,3)
(5,3) (5,3) (5,3) (5,3)
(7,4) (7,4) (7,4) (7,4)
(2,4) (2,4) (2,4) (2,4)
(1,11) (1,10) (1,11) (1,11)

show any major impact on the other source fluxes of the respective locations. S5
being a dummy source, a negligible amount of source fluxes is predicted by the
model. The reason for the presence of some source fluxes in dummy source is due
to the effect of contaminant concentration from other pollution sources on it. With
the rise in noise level, the magnitudes of source fluxes shows some variations. This
indicates that the magnitude of the source fluxes are susceptible to erroneous results
with the increase in noise levels.

Figure 17.5 presents the bar graph showing objective function values for the
different number of pollution sources considering the different level of noises and
its impact on the function value. The effect of the various noise levels (i.e. zero noise
level, moderate noise level and high noise level) does not show much variation on
the objective function value for each of the different number of pollution sources.
It can be remarked from the bar graph that the final fitness function values are
converging towards the best minimum value as it proceeds towards the actual
number of pollution sources. The final fitness value with four and five number of
pollutant sources almost matches with a minimum value of fitness value and thus
confirming that no more pollution sources are available in the affected aquifer. This
implies that with the presence of noise in observed data has a less significant impact
in determining the optimal number of pollution sources. It clearly shows that the
present model is capable of identifying the exact number of pollution sources even
under different noise levels.

318 L. Sophia and R. K. Bhattacharjya

Ta
bl

e
17

.7
E

st
im

at
ed

so
ur

ce
flu

xe
s

fo
r

n
=

5
at

di
ff

er
en

tn
oi

se
le

ve
l

M
ag

ni
tu

de
of

es
tim

at
ed

so
ur

ce
flu

xe
s

(g
/s

)

T
im

e
St

ep
s

So
ur

ce
lo

ca
tio

ns
A

ct
ua

ls
ou

rc
e

flu
xe

s
(g

/s
)

A
tz

er
o

no
is

e
le

ve
l

A
tn

oi
se

le
ve

l
a
=

0.
05

A
tn

oi
se

le
ve

l
a
=

0.
1

A
tn

oi
se

le
ve

l
a
=

0.
15

A
tn

oi
se

le
ve

l
a
=

0.
2

1
S1

30
.0

0
30

.5
8

30
.7

5
28

.4
1

27
.7

9
29

.8
2

S2
47

.0
0

46
.3

6
45

.6
1

46
.8

3
45

.3
5

43
.1

9
S3

41
.2

6
41

.1
6

40
.6

2
43

.3
2

39
.6

5
37

.5
9

S4
21

.7
0

21
.7

0
24

.6
2

24
.3

3
24

.7
8

27
.2

9
S5

x
3.

82
1.

17
3.

20
7.

83
7.

42
2

S1
58

.8
0

56
.8

1
56

.1
7

63
.8

9
61

.8
0

64
.9

4
S2

15
.0

0
16

.3
3

18
.8

3
17

.4
3

17
.8

3
21

.3
6

S3
0.

00
2.

42
1.

63
4.

32
2.

42
3.

76
S4

0.
00

0.
13

2.
69

2.
76

3.
87

7.
78

S5
x

2.
90

5.
73

1.
89

6.
90

7.
01

3
S1

0.
00

2.
03

4.
18

6.
19

3.
02

5.
82

S2
37

.0
0

34
.0

5
32

.9
2

29
.9

2
29

.3
4

23
.0

5
S3

14
.4

0
9.

29
13

.6
3

6.
73

9.
85

14
.5

6
S4

29
.6

8
29

.2
3

29
.1

6
25

.9
1

19
.7

6
20

.9
0

S5
x

4.
38

1.
39

3.
60

5.
37

10
.0

1
4

S1
35

.0
0

33
.3

6
31

.6
8

29
.7

0
28

.7
6

27
.7

3
S2

0.
00

1.
24

1.
59

2.
13

4.
76

8.
80

S3
16

.8
8

15
.5

3
16

.6
9

17
.5

6
19

.2
1

13
.8

5
S4

0.
00

0.
34

1.
17

1.
03

1.
39

3.
36

S5
x

6.
12

1.
53

5.
96

4.
31

6.
05

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 319

0

1

2

3

4

5

6

7

8

2 3 4 5

O
bj

ec
ti

ve
 F

un
ct

io
n

(F
)

Number of Sources

Noise level = 0

Noise level = 0.05

Noise level = 0.1

Noise level = 0.15

Noise level = 0.2

Two Sources

Three Sources

Four Sources Five Sources

Fig. 17.5 Bar graph of different function values for different number of pollution sources
considering different noise level

Conclusions

This chapter presented a GA based methodology for optimal identification of
unknown pollution sources under different noise levels. It has been assumed that
no information is available about the pollution sources. As such, an iterative based
search technique is adapted for identifying the exact number of pollution sources
and the source locations. The identification of the unknown groundwater pollution
sources is carried out using the inverse optimization technique. For evaluating the
methodology, an illustrative study area is taken. The application of the model to
the study area shows that the GA based model is capable of identifying the exact
location and source fluxes of the pollution sources when there is no noise in the
observed data. Further, the model is also capable of finding the exact location of the
pollution sources even when measurement errors are added to the observed source
concentration. However, the accuracy in determining the source fluxes has been
reduced when errors are added to the observed data.

References

1. Aguado E, Remson I (1974) Groundwater hydraulics in aquifer management. J Hydraul Div
ASCE 100(1):103–118

2. Amirabdollahian M, Datta B (2013) Identification of contaminant source characteristics and
monitoring network design in groundwater aquifers: an overview. J Environ Pro 4:26–41

3. Aral MM, Guan J, Maslia ML (2001) Identification of contaminant source location and release
history in aquifers. J Hydrol Eng ASCE 6(3):225–234

320 L. Sophia and R. K. Bhattacharjya

4. Ayvaz MT (2010) A linked simulation-optimization model for solving the unknown ground-
water pollution source identification problems. J Contam Hydrol 117(1–4):46–59

5. Ayvaz MT (2015) A new simulation-optimization approach for simultaneously identifying the
spatial distribution and source fluxes of the areal groundwater pollution sources. In: 36th IAHR
world congress. The Hague, pp 1–7

6. Bhattacharjya RK, Datta B, Satish MG (2005) Optimal management of coastal aquifer using
linked simulation optimization approach. Water Resour Manag 19(3):295–320

7. Borah T, Bhattacharjya RK (2014) Solution of source identification problem by using GMS
and MATLAB. J Hydrol Eng 19(3):297–304

8. Chadalavada S, Datta B, Naidu R (2011) Uncertainty based optimal monitoring network design
for a chlorinated hydrocarbon contaminated site. Environ Monit Assess 173:929–940

9. Datta B, Dhiman SD (1996) Chance constrained optimal monitoring network design for
pollutants in groundwater. J Water Resour Plann Manage 122(3):180–188

10. Datta B, Beegle JE, Kavvas ML, Orlob GT (1989) Development of an expert-system embed-
ding Pat- tern-recognition techniques for pollution source identification. Technical Report,
Department of Civil Engineering, California University, Davis

11. Datta B, Chakrabarty D, Dhar A (2009) Simultaneous identification of unknown groundwater
pollution sources and estimation of aquifer parameters. J Hydrol 376(1):48–57

12. Datta B, Chakrabarty D, Dhar A (2011) Identification of unknown groundwater pollution
sources using classical optimization with linked simulation. J Hydro Environ Res 5(1):25–36

13. Gorelick SM, Evans B, Remson I (1983) Identifying sources of groundwater pollution: an
optimization approach. Water Resour Res 19(3):779–790

14. Holland JH (1975) Adaptation in natural and artificial systems. MIT Press, Cambridge, MA
15. Jha MK, Datta B (2011) Simulated Annealing based simulation-optimization approach for

identification of unknown contaminant sources in groundwater aquifer. Desalin Water Treat
32(1–3):79–85

16. Jha M, Datta B (2013) Three-dimensional groundwater contamination source
identification using adaptive simulated annealing. J Hydrol Eng 18:307–317.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000624

17. Jha M, Datta B (2014) Linked simulation-optimization based dedicated monitoring network
design for unknown pollutant source identification using dynamic time warping distance. Water
Resour Manag 28(12):4162–4182

18. Mahar PS, Datta B (1997) Optimal monitoring network and groundwater pollution source
identification. Water Resour Manag 123(4):199–207

19. Mahar PS, Datta B (2000) Identification of pollution sources in transient groundwater. Water
Resour Manag 14(3):209–227

20. Mahar PS, Datta B (2001) Optimal identification of ground-water pollution sources and
parameter estimation. J Water Resour Plan Manag 127(1):20–29

21. Mahinthakumar G, Sayeed M (2005) Hybrid genetic algorithm – local search methods for
solving groundwater source identification inverse problems. J Water Resour Plan Manag
1(45):45–57. https://doi.org/10.1061/(ASCE)0733-9496(2005)131

22. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite difference ground-
water flow model. USGS Report

23. Meyer PD, Bril ED (1988) A method for locating wells in a groundwater monitoring network
under conditions of uncertainty. Water Resour Res 24(8):1277–1282

24. Prakash O, Datta B (2015) Optimal characterization of pollutant sources in contami-
nated aquifers by integrating sequential-monitoring-network design and source identification:
methodology and an application in Australia. Hydro J 23(6):1089–1107

25. Singh R, Datta B (2006) Identification of groundwater pollution sources using GA-based linked
simulation optimization model. J Hydrol Eng 11(2):101–109

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000624
http://dx.doi.org/10.1061/(ASCE)0733-9496(2005)131

17 A GA Based Iterative Model for Identification of Unknown Groundwater. . . 321

26. Singh RM, Datta B (2007) Artificial neural network modeling for identification of unknown
pollution sources in groundwater with partially missing concentration observation data. Water
Resour Manage 21(3):557–572

27. Singh RM, Datta B, Jain A (2004) Identification of un- known groundwater pollution sources
using artificial neural networks. Water Resour Plann Manag 130(6):506–514

28. Skaggs TH, Kabala ZJ (1994) Recovering the release history of a groundwater contaminant
plume: method of quasi-reversibility. Water Resour Res 3(11):2669–2673

29. UN-WWAP (2009) United Nations world water assessment programme. The world water
development report 3: water in a changing world. UNESCO, Paris

30. Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport
model for simulation of advection, dispersion, and chemical reactions of contaminants in
groundwater systems; documentation and user’s guide. Alabama University

Chapter 18
Efficiency of Binary Coded Genetic
Algorithm in Stability Analysis
of an Earthen Slope

Rajib Kumar Bhattacharjya

Abstract The critical factor of safety and the corresponding slip circle of an
earthen slope can be determined by using an optimization technique. This chapter
evaluates the efficiency of genetic algorithms in locating critical slip circle of
a homogeneous earthen slope. Genetic algorithm, a global search technique, is
highly efficient in finding the global optimal solution of a problem, having highly
irregular response surface. The evaluation of results shows that genetic algorithm is
very robust in locating critical slip circle. On the other hand, the gradient-based
classical optimization method is highly sensitive to the initial solution supplied
to the problem. This implies that there are multiple local optimal solutions of the
problem. As a result, the classical optimization techniques many times trap at local
optimal solutions.

Keywords Slope stability · Method of slices · Optimization · Genetic
algorithms

Introduction

The stability analysis of an earthen slope is one of the main exercises for the civil
engineers working on various activities in hilly terrain. The factor of safety of the
most critical slip circle is generally used to evaluate the stability of an earthen slope.
The critical factor of safety and the corresponding slip circle can be obtained by
using optimization techniques. The limiting equilibrium-based methods such as the
method of slices [6], modified Bishop’s method [2], Janbu’s method [9], Sarma’s
method [12] etc. are generally used to calculate the factor of safety for an arbitrary
slip circle. Generally, a series of trial slip circles are considered and the factor of

R. K. Bhattacharjya (�)
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam,
India
e-mail: rkbc@iitg.ernet.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_18

323

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_18&domain=pdf
mailto:rkbc@iitg.ernet.in
https://doi.org/10.1007/978-3-030-26458-1_18

324 R. K. Bhattacharjya

safety of each slip circle is calculated. The slip circle corresponding to the minimum
factor of safety is then determined from the series of trial slip circles. The slip circle
corresponding to the minimum factor of safety is known as the critical slip circle.

The classical optimization techniques were widely used to calculate the factor
of safety of the critical slip circle. Some of the application of classical algorithms
for locating the critical slip circle are found in Celestino and Duncan [4], Baker
[1], Nguyen [11], Li and White [10], Chen and Shao [3], etc. The classical
optimization methods generally use the gradient search techniques to find the
optimal solution. The performance of the gradient-based classical optimization
methods is not satisfactory when the response surface is highly irregular. In such
a situation, it is very likely that the solutions obtained would be a local optimal
solution. One possible remedy is to use multiple solution points as an initial solution
to obtain the global optimal solution. Moreover, many times it may be difficult to
calculate the gradient of the objective or the constraint functions for the real-world
optimization problem.

There is another class of optimization algorithms which do not require the
gradient information of the objective function or the constraint functions. However,
these algorithms start from single initial solution. This class of algorithms is known
as direct search method. Some of the applications of direct search technique are
Yamagami and Ueta [13], Chen and Shao [3], Greco [7] etc. The direct search
technique works by creating a set of search direction iteratively. This technique
can be effectively used for solving nonlinear optimization problems. It is therefore
considered as a robust tool for optimization. These algorithms are simple in concept
and can easily be implemented for solving complex optimization problems. The
main advantage of the algorithm is that it works without gradient information
of the objective function and the constraint functions. The disadvantage of these
algorithms is that it can yield only the local optimal solutions as it starts from
a single initial solution and does not have any mechanism to overcome the local
optimal solution. In case of non-convex optimization problems, the algorithm is also
highly sensitive to the initial solution chosen to start the iteration. As an alternative
to classical optimization methods and direct search algorithms, the global search
methods such as Genetic Algorithm can be used to solve the non-convex, nonlinear
optimization problems.

The Genetic Algorithms is a search technique based on the concept of natural
selection inherent from natural genetics. This algorithm is relatively more efficient
in obtaining global optimal solution even when the response surface is highly
irregular. Unlike the classical algorithms, the search process is initiated from a set of
solutions generated randomly using a distribution function. The Genetic Algorithm
combines the law of ‘survival of fittest’ with the genetic operators abstracted from
nature. One of the advantages of the Genetic Algorithm is that it does not require
continuity or differentiability of either the objective function or the constraints. The
main difference of genetic algorithm with classical methods is that the Genetic
Algorithm works with the coding of the parameter set, and not the parameters
themselves and it starts from a population of points rather than a single initial
starting point [8].

18 Efficiency of Binary Coded Genetic Algorithm in Stability Analysis. . . 325

The chapter presented here evaluates the performance the Genetic Algorithms in
locating the critical slip circle of an earthen slope. The method of slices [6] is used
to calculate the factor of safety for an arbitrary slip circle. An example problem
taken from literature has been used to evaluate the relative efficiency of the Genetic
Algorithms.

Optimization Model Formulation

The ordinary method of slices is one of the most frequently used iterative procedures
to calculate the factor of safety of an earthen slope. Figure 18.1 shows a homoge-
neous earthen slope with a trial slip circle. Let BD is the trial slip circle with r, the
radius, and O(x, y) centre of the slip circle. B(0, 0) is the toe of the slope. The factor
of safety can be determined as

F = crδ + tanφ
∑
(Ni − Ui)∑

Ti
(18.1)

r

a

H

C

A

B (0,0)

D

O (x,y)

d

Fig. 18.1 Homogeneous earthen slope

326 R. K. Bhattacharjya

Where, F is the factor of safety; c is the cohesion in kN/m2; δ is the arc angle, c
is cohesion, φ is the angle of internal friction in degree; i is the slice number; Ni

is the normal component of weight; Ti is the tangential component of weight; Ui

is the pore water pressure. For any arbitrary slip circle, the factor of safety can be
determined using Eq. (18.1).

The parameters of the critical slip circle can be determined by minimizing factor
of safety. The optimization model can be formulated as:

Minimize

F (x, y, r) = crδ + tanφ
∑
(Ni − Ui)∑

Ti
(18.2)

Subject to

xL < x < xU (18.3)

yL < y < yU (18.4)

rL < r < rU (18.5)

Where, F is the factor of safety calculated using method of slices, xL and xU are the
lower and upper limit on x; yL and yU are the lower and upper limit on y; and rL and
rU are the lower and upper limit on r.

Genetic Algorithms

The Genetic Algorithms (GA) was introduced by Prof. John H. Holland, Professor
of electrical engineering and computer science at the University of Michigan, Ann
Arbor. Since its introduction, the algorithm has been applied in various fields of
science and engineering for solving nonlinear non-convex optimization problems.
It has now emerged as one of the most powerful and robust tools for function
optimization.

GA is the search techniques that are motivated by the theory of natural genetics
and natural selection. The basic techniques of GA are designed to simulate the
mechanism of population genetics and natural rules of survival in pursuit of the ideas
of adaptation. The GAs operators are borrowed from the natural genetics and applied
artificially to search for the global optimal solution of an optimization problem.
The genetic operators are reproduction, crossover, and mutation. The algorithms are
computationally simple, but powerful in their search for improvement after each
generation [8].

18 Efficiency of Binary Coded Genetic Algorithm in Stability Analysis. . . 327

Working Principle of GA

The algorithm starts with the random generation of a set of initial solutions
(chromosomes), called the population of possible solutions. Each solution of the
population is known as a chromosome. These chromosomes are evaluated based on
their objective function value. The population is then passed through the three basic
genetic operators with an aim to produce better offspring in the next generation.
These operators are reproduction, crossover, and mutation. Reproduction is a
process in which individual strings are copied according to their fitness [8]. This
operator eliminates the weaker chromosomes and makes multiple copies of the
stronger chromosomes. Crossover is a process of exchange of gene between two
chromosomes for producing their offsprings. In this operation, the algorithm picks
up two chromosomes from the population to perform crossover at a randomly
selected crossover site of the chromosome. A probability, known as ‘crossover
probability’ is also used to control the crossover process. The aim of this operator
is to search for better solution near the current solution. Therefore, this operator
performs the local search. Mutation is the occasional introduction of a new feature
into the population pool to maintain diversity in the population. The main purpose
of this operator is to come out of the location optimal solution and try to explore
the other areas of the search space. Random bit-by-bit mutation is used in this
study to generate new chromosomes. These three genetic operators are designed
in such a way that it would produce better solution after each generation and
the search process would converge towards the global optimal solution of the
function. Sometimes, crossover and mutation may produce inferior solutions. But
these solutions will not be able to propagate further and the selection process
will eliminate these solutions. Moreover, to increase the efficiency of the genetic
algorithms, it is also necessary to preserve some better solutions for the next
generation. This process is known as elitism. Generally, some percentage (say 5%)
of the population is preserved for the next generation without applying crossover
and mutation operator. As such these solutions will propagate to the next generation
without going through the crossover and mutation operators. Elitism is important
since it allows the solutions to get better over time. These procedures would continue
till the better individual is better enough to suit the objective of the problem. Figure
18.2 shows the working principle of GAs in the form of a schematic diagram.

Representation of a Solution String

The Genetic Algorithms represent the solution in binary code. Each solution string
contains the binary representation of all the variables. If there are two variables in
the solution string with x bits to code each variable, then the overall string length
will be 2x. Figure 18.3 shows a binary solution string with two variables. For this
string, each variable is coded by 6 bits. Therefore, the total string length of the string

328 R. K. Bhattacharjya

Fig. 18.2 Simple GA

Fig. 18.3 Binary coded string

is 12 in this case. The solution string is also called a chromosome and each bit of
the chromosome is called a gene. The mapping between real variable and the binary
variable can be done by the following equation [5].

xi = xmin
i + xmax

i − xmin
i

2li − 1
DV (si) (18.6)

Here, xmin
i and xmax

i are the lower bound and the upper bound of the variable xi;
li is the string length for the variable xi; DV(si) is the decoded value of the string si.
Any arbitrary precision can be achieved by using Eq. (18.6).

Fitness of a Solution String

The search technique of GA is based on the principle of natural selection and natural
genetics. GA does not use any gradient or auxiliary problem information to guide
the search for evolving at an optimal solution. The search technique of GAs is

18 Efficiency of Binary Coded Genetic Algorithm in Stability Analysis. . . 329

guided by the fitness of a solution string. The fitness of a string is an assigned value
which is a function of the objective function value. The fitness function determines
the relative quality of the solution strings. The solution string having better fitness
would receive more emphasis and would have a better probability of survival for the
next generation.

Reproduction Operator

The main objective of reproduction operator is to identify better solutions and
also to make multiple copies of better individuals. Inferior solutions are also
eliminated by this operator. The operator is designed in such a way that the total
population is remaining same after eliminating the inferior solutions, and after
making multiple copies of the better solutions. Some of the popular methods for
reproduction are proportionate selection, tournament selection, rank selection, etc.
Proportionate selection selects the better individual in proportion to their fitness
function. The solution having a higher fitness value will have multiple copies in the
next generation according to their proportion. The solution with a lower fitness value
will be eliminated. In binary tournament selection, tournaments are played between
two or more solutions, selected randomly from the population pool and the winner of
the tournament is selected for the next generation. For tournament size of two, each
solution of the population will play the tournament for two times. Therefore, the
best solution in the population pool will win the tournament both the times and will
always have two copies in the next generation. The solution with the worst fitness
value will lose the tournament both the times and will not have a copy in the next
generation. The other solutions will have one or two copies in the next generation.
Higher tournament size can also be taken. However, in that case, the population
will be saturated with the better individuals only. This is not a healthy situation and
exploration may end prematurely. The algorithm for the rank selection operator is
similar to that of roulette wheel selection. However, the selection probability of a
solution is proportional to relative fitness of the solution rather than the absolute
fitness.

Crossover Operator

The crossover operator is used to create new solutions from the existing solutions
available in the mating pool after applying selection operator. This operator
exchanges the gene information between the solutions in the mating pool. There
are several crossover operators proposed by various researchers. The most popular
crossover selects any two solution strings randomly from the mating pool and a
portion of the first string is exchanged with the corresponding portion of the other
string. The crossover site, i.e. the exchange point is selected randomly. A probability

330 R. K. Bhattacharjya

of crossover (Pc) is also used to give freedom to an individual solution string to
determine whether the particular solution would go for crossover or not. A biased
coin with a probability (Pc) towards head is tossed. If it is head, the individual
solution would go for crossover, and if it is tail the individual solution would go to
the next generation without crossover. Therefore, (Pc) percent of the total population
will participate in crossover operation and (1 − Pc) percent of the total population
will move to the next generation without going through crossover operator. The
crossover operator produces two children for the next generation. The children may
be better than their parents. However, the crossover operator may also produce
inferior solutions. In this case, the inferior solutions will be eliminated by the
selection operator in the next iteration. Figure 18.4 shows a single point crossover
operation. In the figure, (P1) and (P2) are the parent solutions. Similarly, (C1) and
(C2) are the child solutions created after the crossover operators. Figure 18.5 shows
two points crossover operation.

Mutation Operator

Mutation is the occasional introduction of new features into a solution string of the
population. This operator is used to maintain diversity in the population. Though
crossover has the main responsibility to search for the optimal solution, mutation
is also used for this purpose. Mutation operator changes a ‘1’ to ‘0’ or otherwise,
with a mutation probability of (Pm). The mutation probability is generally kept low
for steady convergence. A high value of mutation probability would search here
and there like a random search technique. Figure 18.6 shows the mutation operation
where fourth bit has been changed from ‘1’ to ‘0’.

Fig. 18.4 Single-point crossover operation

18 Efficiency of Binary Coded Genetic Algorithm in Stability Analysis. . . 331

Fig. 18.5 Two-point crossover operation

Fig. 18.6 Mutation operation

Elitism

The genetic operators, i.e. crossover and mutation are designed in such a way
that it would produce better solution after each generation. However, sometime
these operators may produce inferior solutions. But these solutions would die out
when passing through the selection operator next time. Moreover, to increase the
efficiency of the GA, it is necessary to preserve some better solutions for the next
generation without applying crossover and mutation operator. This process is known
as elitism. In this process, the better 5–10% of the total population is preserved
for the next generation without applying crossover and mutation operator. Elitism
is important since it allows the solutions to get better over time. If the elitism
percentage is high, GA would lose its diversity to search for better solutions. The
population will be saturated with the better individuals and it will converge at the
local optimal solution.

332 R. K. Bhattacharjya

Results and Discussion

A graphical interface based model in MATLAB (Fig. 18.7) is developed to calculate
the factor of safety of an arbitrary slip circle. The developed MATLAB model
calculates the factor of safety along with the parameters of the critical slip circle
for a given earthen slope. The input parameters to the model are slope angle (α), the
height of the slope (H), cohesion of the soil (c), the angle of shearing resistance (φ),
unit weight of the soil (γ), and the pore pressure ratio (ru). The developed MATLAB
model is then linked with the genetic algorithm code to find critical slip circle of
the slope along with the corresponding value of the factor of safety. Therefore, the
output from the model is the critical factor of safety (F), the coordinate of the critical
slip circle (x, y) and the radius (r) of the critical slip circle. The Genetic Algorithms
parameters used in this study are listed in Table 18.1.

Fig. 18.7 GUI based model to calculate factor of safety

Table 18.1 Genetic
algorithm parameters

Genetic parameters Value

Population size (p) 100
Crossover probability (pc) 0.85
Mutation probability (pm) 0.001
Generation (g) 500
Elitism size (E) 5% of p

18 Efficiency of Binary Coded Genetic Algorithm in Stability Analysis. . . 333

Table 18.2 Range F
obtained using different
optimization techniques

Method Range of factor of safety

Yamagami and Ueta [13]
BFGS 1.338
DFP 1.338
Powel 1.338
Simplex 1.339–1.348
Greco [7]
Pattern search 1.327–1.33
Monte Carlo 1.327–1.333
The present study
Genetic algorithm 1.276
Gradient search 1.335

Example Problem

A 5 m high slope with an inclination of 26.56◦ be comprised of soil whose cohesion
c = 9.8 kPa, the angle of internal friction φ = 10◦, unit weight of soil γ = 17.64
kN/m3. The range of factor of the safety calculated by Yamagami and Ueta [13],
Greco [7], and the present study are shown in Table 18.2. The factor of safety
obtained using genetic algorithm is 1.276. The factor of safety is also obtained
by using the gradient search method and the value obtained is 1.335. This value is
similar to the factor of safety calculated Yamagami and Ueta [13] and [7]. The factor
of safety calculated using genetic algorithm is more critical than the factor of safety
calculated using other methods. It has been observed that classical optimization
techniques are highly sensitive to the initial solution, which implies that there
may have several local optimal solutions of the problem. Therefore, the genetic
algorithms produce better solution that the classical optimization algorithms. The
evaluation of the results shows that the genetic algorithm is very robust in locating
critical slip circle and the corresponding factor of safety of an earthen slope.

Conclusion

The study presents the efficiency of genetic algorithm in locating critical slip
circle of an earthen slope. The method of slices is used to calculate the factor of
safety of an arbitrary slip circle. The evaluation of results shows that the result
derived using genetic algorithm is consistence and better than the other search
algorithms. The gradient based search methods are highly sensitive to initial solution
supplied and many times they trapped in local optimal solutions. This implies that
the optimization problem is nonlinear and there may have several local optimal
solutions.

334 R. K. Bhattacharjya

References

1. Baker R (1980) Determination of the critical slip surface in slope stability computations. Int J
Numer Anal Methods Geomech 4:333–359

2. Bishop AW (1955) The use of slip circle in the stability analysis of slopes. Geotechnique
London 5:7–17

3. Chen Z-Y, Shao C-M (1988) Evolution of minimum factor of safety in slope stability analysis.
Canadian Geotech J Ottawa 25:735–748

4. Celestino TB, Duncan JM (1981) Simplified search for noncircular slip surface. In: Proceed-
ings of the 10th international conference on SMFE, pp 391–394

5. Deb K (1999) An introduction to genetic algorithms. Sadhana 24(4):293–315
6. Fellenius W (1936) Calculation of the stability of earth dams. Trans, of 2nd congress on Large

Dams, vol 4, pp 445–459
7. Greco VR (1996) Efficient Monte Carlo technique for locating critical slip surface. J Geotech

Eng ASCE 122(7):517–525
8. Goldberg DE (1989) Genetic algorithms in search, optimization, and in machine learning.

Addison Wiley Longman, Inc, Boston
9. Janbu N (1973) Slope stability computations. In: Hirschfield E, Poulos S (eds) Embankment

dam engineering, Casagrande memorial volume. Wiley, New York, pp 47–86
10. Li KS, White W (1987) Rapid evaluation of the critical slip surface in slope stability problems.

Int J Numer Anal Methods Geomech 11:449–473
11. Nguyen VU (1985) Determination of critical slope failure surface. J Geotech Eng ASCE

111(2):238–250
12. Sarma SK (1979) Stability analysis of embankments and slopes. J Geotech Eng ASCE

105(12):1511–1524
13. Yamagami T, Ueta Y (1988) Search for noncircular slip surface by Morgenstern-price method.

In: Proceedings of the 6th international conference numerical methods in geomechanics, pp
1219–12223

Chapter 19
Corridor Allocation as a Constrained
Optimization Problem Using a
Permutation-Based Multi-objective
Genetic Algorithm

Zahnupriya Kalita and Dilip Datta

Abstract The corridor allocation problem (CAP) seeks the optimum arrangement
of given facilities along two sides of a central corridor. The CAP is so far handled
as an unconstrained optimization problem without imposing any restriction on
the placement of the facilities. In practice, however, some facilities may need
to satisfy certain constraints on their placement. Accordingly, a constrained bi-
objective CAP (cbCAP) model is proposed here, where some facilities are restricted
to fixed, same and/or opposite rows. Realizing the difficulties to any algorithm
for handling such a combinatorial problem, a cbCAP specific permutation-based
genetic algorithm (cbCAP-pGA) with specialized operators is also proposed for
solving the cbCAP model by generating only feasible solutions. In the numerical
experimentation, the cbCAP-pGA is found capable in searching promising solutions
even for a set of large-size benchmark instances.

Keywords Combinatorial optimization · Corridor allocation problem · Genetic
algorithm

Introduction

The well-known corridor allocation problem (CAP) seeks the effective placement
of given facilities along the two sides of a straight central corridor, so as to optimize
some objective functions. The CAP studied by Amaral [2], Ghosh and Kothari [8]
and Ahonen et al. [1] is a variant of the double row facility layout problem (DRFLP),
where the placement of the facilities along the two rows can be started from any
level and some physical gap between two adjacent facilities of a row is also allowed

Z. Kalita · D. Datta (�)
Department of Mechanical Engineering, Tezpur University, Tezpur, Assam, India
e-mail: zk@tezu.ernet.in; ddatta@tezu.ernet.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_19

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_19&domain=pdf
mailto:zk@tezu.ernet.in
mailto:ddatta@tezu.ernet.in
https://doi.org/10.1007/978-3-030-26458-1_19

336 Z. Kalita and D. Datta

without any restriction on the length of the corridor [4]. Further, the DRFLP is
simplified to a linear problem by neglecting the width of the corridor. However,
Kalita and Datta [9] claimed that the DRFLP and CAP may find applications mainly
in planning machines in workshops or factories, but they are not applicable to many
problems, such as the placement of office rooms in an administrative building or
shops in a supermarket, where the placement of the facilities is to be started from
a common level along the corridor of non-zero width. Further, any physical gap
between two adjacent facilities of a row is not allowed and equal lengths of the
two rows are preferred, even if such restrictions increase the material handling cost
among the facilities. Accordingly, Kalita and Datta [9] proposed the bi-objective
corridor allocation problem (bCAP) for minimizing simultaneously both the overall
material handling cost among the facilities and the required length of the corridor.
It is to be mentioned that Zuo et al. [14] and Wang et al. [13] also used non-zero
corridor width in their DRFLP formulations. Zuo et al. [14] minimized the material
flow cost and the layout area, while Wang et al. [13] minimized the material flow
and re-arrangement costs.

In all the above cases, optimal layouts were searched considering arbitrary place-
ment of the facilities along the two sides of a corridor. However, it is often found
that some restrictions are preferred on the placement of the facilities, particularly in
the layout design of service industries. Such restrictions were imposed by Motaghi
et al. [12] in a hospital layout, where the rooms of patients were placed on one
side and the technical rooms on the other side of the corridor. Lin et al. [11] also
stated that the sterile storage room and operating rooms in operation theaters should
always be placed on the same side of a corridor. According to Ebster [7], in order
to promote sales rather than minimizing material handling costs, the checkouts and
registers in supermarkets or shopping malls should be located on one side of the
entrance (corridor), while the other side should be used for the exposure of products.

Motivated by above, a constrained bi-objective CAP (cbCAP) model is proposed
here for minimize simultaneously the material handling cost among the facilities
and the length of the corridor by imposing constraints on the placement of some
facilities on the two rows. In this model, some facilities are restricted to a fixed row,
some facilities in the same row, while some others in opposite rows. A permutation
based genetic algorithm (pGA) was proposed by Datta et al. [5] for solving SRFLP,
which was modified by Kalita and Datta [9] and Kalita et al. [10] for handling
the bCAP. But the pGA alone is not adequate for solving the cbCAP effectively
due to the presence of the constraints. Hence, for solving the cbCAP by generating
feasible solutions only, the pGA is further modified here as the cbCAP-pGA with
problem-specific operators. In the numerical experimentation, the potentiality of the
cbCAP-pGA is demonstrated by solving a set of large-size instances in the range of
[60, 80].

The article is divided into different Sections. The proposed cbCAP model
is described in Sect. 19, followed by the cbCAP-pGA in Sect. 19. Presenting
the computational experiments and discussion in Sect. 19, the article is finally
concluded in Sect. 19.

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 337

The Proposed cbCAP Model

The cbCAP model requires an optimal arrangement of given facilities in two parallel
rows along a central corridor by imposing some constraints on the placement of the
facilities, so as to minimize the material handling cost among them and the length
of the corridor. As in the bCAP model, the placement of the facilities in the cbCAP
is also to be started from the same level on both the rows and no physical gap is
allowed between two adjacent facilities placed in the same row. Additionally, the
following constraints are imposed to the cbCAP:

1. Fixed row constraint: Some facilities are to be placed in the specified fixed row.
2. Same row constraint: Some pairs of facilities are to be placed in the same row.
3. Opposite row constraint: Some pairs of facilities are to be placed in opposite

rows.

Accordingly, the cbCAP model can be stated as to minimize simultaneously the
material handling cost among n number of facilities and the length of the corridor by
arranging some facilities in the first row and remaining facilities in the second row
with t1 number of facilities in fixed rows, t2 pairs of facilities in the same row and
t3 pairs of facilities in opposite row. The problem related parameters and variables
are defined as follows (constraint related parameters are denoted in uppercase and
variables are superscribed with π):

Indices
i, j : Indices of facilities
π : Index of a permutation of given facilities

Fixed parameters
li : Length of the ith facility (i = 1, 2, . . . , n)
cij : Flow cost between the ith and j th facilities

(i, j = 1, 2, . . . , n; i �= j)
w : Width of the corridor∏
n : Set of all permutations of the given n facilities

Xi : Index of placing the ith facility in fixed row
Xi ∈{Y (yes), N (no)}

Fi : Required fixed row of the ith facility (Fi ∈ {1, 2})
Sij : Index of placing the ith facility in the same row with the j th facility

Sij ∈{Y (yes), N (no)}
Zij : Index of placing the ith facility in opposite row with the j th facility

Zij ∈{Y (yes), N (no)}

Variables
nπp : Number of facilities placed in the pth row

(p ∈ {1, 2}; nπ1 + nπ2 = n, ∀π ∈∏n)
Bπi : Index of the row of the given ith facility
rπpq : Index of the qth facility of the pth row

338 Z. Kalita and D. Datta

xπrpq : Centroidal distance of facility rπpq along the corridor

Objective functions
f π1 : Overall material handling cost among all the given n facilities
f π2 : Difference between the required lengths of the two rows

In terms of the above notations, the objective functions of the cbCAP can
be formulated mathematically as in Eqs. (19.1)–(19.5) [10], while the imposed
constraints as in Eqs. (19.6)–(19.8).

Minimize f π1 ≡
nπ1 −1∑
i=1

nπ1∑
j=i+1

crπ1,i r
π
1,j

∣∣∣xπr1,i − xπr1,j
∣∣∣

+
nπ2 −1∑
k=1

nπ2∑
m=k+1

crπ2,kr
π
2,m

∣∣∣xπr2,k − xπr2,m
∣∣∣

+
nπ1∑
i=1

nπ2∑
k=1
crπ1,i r

π
2,k

{(
xπr1,i − xπr2,k

)2 + w2
} 1

2

(19.1)

Minimize f π2 ≡L
π − Lth

Lth
× 100% (19.2)

where, Lπ =max

{(
xπr1,n1

+ 1

2
lrπ1,n1

)
,

(
xπr2,n2

+ 1

2
lrπ2,n2

)}
(19.3)

Lth =1

2

n∑

i=1

li (19.4)

xπrp,q =1

2
lrπp,1

+ 1

2

q∑

t=2

(
lrπp,t−1

+ lrπp,t
)

(19.5)

Subject to, Bπi = Fi ; if Xi =Y ; i =1, 2, · · · , n (19.6)

Bπi = Bπj ; if Sij =Y ; i, j=1, 2, · · · , n ; i �= j (19.7)

Bπi �= Bπj ; if Zij=Y ; i, j=1, 2, · · · , n ; i �= j (19.8)

The first and second terms of f π1 in Eq. (19.1) are the material flow costs among
the facilities placed respectively in the first row and second rows, while the third
term is the material flow cost among the facilities placed in opposite rows. The
centroidal distance of a facility along the length of the corridor from the starting
level of the placement of facilities, used in Eq. (19.1), is expressed by Eq. (19.5). The
distance between two facilities is simply the difference between their such centroidal
distances if they are placed in the same row (as used in the first two terms of f π1),
while the same is computed using the Pythagoras’ rule if the facilities are placed
in opposite rows (as used in the third term of f π1). The distance between the j th

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 339

Fig. 19.1 Computation of
the distances between pairs of
facilities placed in the same
row and in opposite rows

xi

xj

xj − xi

i

j

(x
j−

xi
)2

+
w2

w

k

xk − xj

row 1

row 2

corridor

and kth facilities placed in the same row, and that between the ith and j th facilities
placed in opposite rows, are illustrated in Fig. 19.1, where w is the width of the
corridor.

In order to minimize the length of the corridor, f π2 in Eq. (19.2) is defined as the
percentage deviation of the longest row expressed by Eq. (19.3) from the theoretical
minimum length of the corridor expressed by Eq. (19.4) as one half of the total
length of all the n facilities placed in the two rows.

The constraint in Eq. (19.6) ensures that facilities are placed in their fixed rows,
if required, where Xi = Y indicates that the given ith facility will occupy a fixed
row and Fi is that fixed row. Similarly, the constraint in Eq. (19.7) ensures that both
the ith and j th facilities are placed in the same row if Sij = Y, while they are not
allowed in the same row if Zij = Y as shown by the constraint in Eq. (19.8).

The Proposed Genetic Algorithm for the cbCAP Model

Genetic Algorithm (GA) is a stochastic optimization technique developed based on
the concept of biological evolution. The basic element of a GA is an individual that
represents a solution of a problem. A set of individuals, known as a GA population,
is evolved gradually towards the optima of a problem by repeated applications of
mainly three operators, namely the selection, crossover and mutation operators. A
selection operator identified some good individuals from the current GA population,
a crossover operator generates new individuals by exploiting those identified by
the selection operator, and a mutation operator is employed for exploring the
neighborhood of the new individuals generated by the crossover operator. The
process of evolution is continued until some termination criteria are met, such
as the desired optimum is obtained or the predefined number of generations (i.e.,
iterations) are completed.

A permutation based genetic algorithm (pGA), suitable for solving single-row
facility layout problems (SRFLPs), was introduced by Datta et al. [5], where an

340 Z. Kalita and D. Datta

individual of the pGA represents a permutation of given facilities (the pGA is a
modification of the nondominated sorting genetic algorithm II NSGA-II, a widely
applied multi-objective GA proposed by Deb et al. [6], with permutation based
crossover and mutation operators). The pGA was customized by Kalita and Datta
[9] and Kalita et al. [10] for solving some bCAP models. For solving the proposed
cbCAP model, the pGA is modified here further by introducing some problem-
specific operators, and named it as the cbCAP-pGA.

Individual Representation and Initialization

In the pGA introduced by Datta et al. [5], an individual can be any permutation
of given facilities as a feasible solution of the SRFLP or bCAP. However, any
arbitrary permutation of the facilities may not be a feasible solution of the proposed
cbCAP model, but it has to satisfy the constraints imposed to the cbCAP. Hence,
in order to generate a feasible solution for the cbCAP model, an individual
initialization technique is introduced in the proposed cbCAP-pGA, where the
constrained facilities are arranged first and then the remaining facilities are arranged
arbitrarily in vacant positions. Still all the constraints may not get satisfied until the
permutation of the facilities represented by a cbCAP-pGA individual is split into
two rows, which is explained in Sects. 19 and 19.

Splitting an Individual into Two Rows

An individual is first initialized with an arbitrary permutation of the facilities by the
random initialization technique (refer Datta et al. [5] for detail). In the next step, the
individual is split into two parts in order to form a cbCAP solution with the facilities
of the two parts in two rows of the solution. The individual is split in a way to obtain
a solution with the minimum possible length of the corridor, i.e., the individual is to
be split after the n1th element by minimizing the deviation of the first row from the
theoretical minimum corridor length Lth given by Eq. (19.4). Accordingly, n1 can
be determined through Eq. (19.9).

n1 =

⎧
⎪⎪⎨

⎪⎪⎩

s ; if L1 = Lth

s ; if Lth − L1 � L2 − Lth ; L1 < L
th ; L2 > L

th

s + 1 ; if L2 − Lth < Lth − L1 ; L1 < L
th ; L2 > L

th

(19.9)

where, L1 =
s∑

i=1

li ; L2 = L1 + ls+1

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 341

Fig. 19.2 Pseudo-code implementing Eq. (19.9) for finding the splitting element in a cbCAP-pGA
individual for forming a cbCAP solution

The pseudo-code, implementing Eq. (19.9) for finding the splitting element in a
cbCAP-pGA individual in the process of forming a cbCAP solution, is presented
in Fig. 19.2 as subroutine splitting_element(n, l, P, n1), where n is the
number of given facilities, l is a vector containing lengths of the facilities, P is
the cbCAP-pGA individual, and n1 is the splitting element to be returned by the
subroutine.

Forming cbCAP Individual

A cbCAP solution is formed by satisfying the constraints imposed on the placement
of the facilities. The constraints are satisfied based on the decreasing order of
their complexities. The fixed row constraint is satisfied first, followed by the same
row constraint and then the opposite row constraint. Hence, a constraint satisfying
procedure for the cbCAP model is developed here. For formulating the procedure,
the following additional parameters and notations are used:

P : Array of the facilities representing a feasible cbCAP solution
P ′ : Temporary array of the facilities before satisfying the constraints
I : Array of the positions of the facilities in P
n′ : Number of available positions in array P
e : Array of the vacant positions of P

In the above notations, P is a feasible cbCAP solution, i.e., an array where
the facilities are stored after satisfying the constraints imposed on their placement.
P ′ is a temporary array of the facilities placed serially, i.e., as 1, 2, · · · , n. The
constrained facilities are first picked up from P ′ one by one and placed in proper
positions in P . Each time a facility is shifted, P ′ is updated by eliminating

342 Z. Kalita and D. Datta

Fig. 19.3 Illustration of the
procedure for forming a
feasible cbCAP solution by
satisfying the imposed
constraints step by step

0 0 0 0 0

00000 row 2

row 1

Array P

0 0 0 0

0000

3

6 row 2

row 1

0

0000

3

6

1 5 8 row 1

row 2

3 1 5 8 7 row 1

row 26 4 0 0 0

row 13

6 4

5 8 71

row 22 9 10

Place facilities in specified fixed row

Place facilities in the same row

Place facilities in opposite row

Place the unconstrained facilities

that facility from it. Once the placement of the constrained facilities is over, the
unconstrained facilities are shifted from P ′ to arbitrary vacant positions of P . For
illustrating the procedure, consider a small example of 10 facilities, where the third
and sixth facilities are to be placed respectively in the first and second rows. The
pair of the first and third facilities as well as the pair of the fifth and eighth are to be
placed in the same row, while the pair of the third and fourth facilities as well as the
pair of the sixth and seventh facilities are to placed in opposite rows. The formation
of P by satisfying the constraints step by step is demonstrated in Fig. 19.3, where
the constrained facilities are shown in cyan color and the unconstrained ones in light
blue color.

Formulation and satisfaction procedures of the three types of constraints imposed
to the cbCAP model are presented below:

1. Fixed row constraint: If the ith facility requires a fixed row in P , it is placed in the
vacant position b of that row through Eq. (19.10), where b is obtained randomly
using Eq. (19.11) and Ii = 0 means that the ith facility is not yet placed in P .

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 343

Pb = i

Ii = b

P ′
j = P ′

j+1

⎫
⎪⎬

⎪⎭
;

if Xi = Y ; Ii = 0
i = 1, 2, · · · , n
j = i, i + 1, · · · , n− 1

(19.10)

where, b = et ; t ∈ {1, n′} ; et
{
� n1 ; if Fi = 1

> n1 ; if Fi = 2
(19.11)

The self-explanatory pseudo-code, implementing Eqs. (19.10) and (19.11) for
placing facilities in the specified rows in P is shown in Fig. 19.4 as subroutine
fix_row(n, P, P ′, n1, n2),where subroutine random_positions(1, n1,

n′, e, P) find the vacant positions in P and subroutine random_integer
(1, n′) returns a random integer in the range of [1, n′].

2. Same and opposite row constraints: Each of the same/opposite row constraints
involves a pair of facilities. Hence, two cases may arise while satisfying such
constraints, either one facility of a pair is already placed in P or both the facilities
are yet to be placed.

(a) If one facility of a pair of the same/opposite row facilities is already placed in
P , the other one can be placed through Eq. (19.12) in the vacant position b of
the appropriate row, where b is obtained randomly using Eq. (19.13).

Pb = i

Ii = b

P ′
j = P ′

j+1

⎫
⎪⎬

⎪⎭
;

if
(
Siy = Y or Ziy = Y

) ; Iy �= 0 ; Ii = 0
j = i, i + 1, · · · , n− 1
i = 1, 2, · · · , n

(19.12)

Fig. 19.4 Pseudo-code implementing Eqs. (19.10) and (19.11) for placing facilities in fixed rows
in cbCAP solution

344 Z. Kalita and D. Datta

where, b = et ; t ∈ {1, n′}

et ∈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{1, n1} ; if Siy = Y ; Iy � n1

{n1 + 1, n2} ; if Siy = Y ; n1 < Iy � n2

{n1 + 1, n2} ; if Ziy = Y ; Iy � n1

{1, n1} ; if Ziy = Y ; n1 < Iy � n2

(19.13)

In Eq. (19.13), Siy = Y means that the ith and yth facilities are to be placed
in the same row, while Ziy = Y means that they are to be placed in opposite
rows. Further, Iy � n1 means that the yth facility is placed in the first row,
while n1 < Iy � n2 if it is placed in the second row.

The self-explanatory pseudo-code, implementing Eqs. (19.12)–(19.13)
for placing one facility of a pair in the same/opposite row with the other
facility, which is already placed in P is shown in Fig. 19.5 in the subroutine
same_opp_row_cons_fixed(n, P, P ′, n1, n2). Here, subroutines
random_positions(1, n1, n

′, e, P) and random_positions(n1 +
1, n2, n

′, e, P) find the vacant positions in the first row and second row of P ,
respectively. The subroutine random_integer(1, n′) returns a random
integer in the range of [1, n′].

(b) If both the same/opposite row facilities of a pair are yet to be placed in P ,
they can be placed through Eq. (19.14) in the vacant positions a and b of the
appropriate row(s), where a and b are obtained randomly using Eq. (19.15) or
(19.16).

Fig. 19.5 Pseudo-code implementing Eqs. (19.12) and (19.13) for placing one facility of each pair
in the same/opposite rows with the other facility already placed in the cbCAP individual

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 345

Pa = i

Pb = y

Ii = a

Iy = b

P ′
j = P ′

j+1

P ′
k = P ′

k+1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

;
if
(
Siy = Y or Ziy = Y

) ; Iy = 0 ; Ii = 0
j = i, i + 1, · · · , n− 1
k = y, y + 1, · · · , n− 1
i = 1, 2, · · · , n

(19.14)

where, a = eu ; b = et ; u, t ∈ {1, n′}
eu, et ∈ {1, n1} or {n1 + 1, n2} ; if Siy = Y (19.15)

eu ∈
{
{1, n1} ; if Ziy = Y ; et ∈ {n1 + 1, n2}
{n1 + 1, n2} ; if Ziy = Y ; et ∈ {1, n1}

(19.16)

In Eq. (19.15), Siy = Y means that the ith and yth facilities are to be placed in
the same row, while Ziy = Y in Eq. (19.16) means that they are to be placed
in opposite rows.

The self-explanatory pseudo-code, implementing Eqs. (19.14)–(19.16)
for placing both facilities of a pair in the same/opposite rows, such that
none of them are already in P is shown in Fig. 19.6 in the subroutine
same_opp_row_cons_free(n, P, P ′, n1, n2).

Here, subroutines random_positions(1, n1, n
′, e, P) and random_

positions(n1 + 1, n2, n
′, e, P) find the vacant positions in the first row

and second row of P , respectively. The subroutine random_integer(1, n′)
returns a random integer in the range of [1, n′].

Selection Operation

Once the population of the cbCAP-pGA is initialized as explained in Sect. 19,
its each individual is evaluated first through Eqs. (19.1)–(19.5) and then a mating
pool is formed by applying the crowded tournament selection operator [6] to the
population. The operator picks up two random individuals at a time from the mating
pool and a copy of the best individual, based on the non-dominated ranks and
crowding distances of the individuals, is stored in the mating pool. This is the same
selection operator used in the original NSGA-II [6].

346 Z. Kalita and D. Datta

Fig. 19.6 Pseudo-code implementing Eqs. (19.14)–(19.16) for placing both facilities of a pair in
the same/opposite rows in the cbCAP solution

Crossover Operation

In the cbCAP-pGA, a cbCAP specific crossover operator is proposed, which
generates only feasible cbCAP solutions. Taking two random parent individuals at a
time from the mating pool formed by the selection operator, the crossover operator
generates a child (new) individual by importing facilities, as many as possible, from
one of the parent individuals. Importing means that a facility is placed in the same
position of the child individual as it was occupying in the parent individual where
from it is imported. The operator works first on importing facilities in the order of
facilities requiring fixed rows, pairs of facilities requiring the same/opposite rows,

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 347

and unconstrained facilities. The facilities, that could not be imported from any of
the parent individuals due to the pre-occupancy of their specific positions in the
child individual by other facilities, are first stored in reserve during the process
of importing and finally they are placed randomly in the vacant positions of the
child individual following the same procedure used in Sect. 19 for initializing an
individual. For explaining the procedure of importing facilities from the parent
individuals, the following additional notations are defined:

C : To be generated child individual
I (c) : Array of the positions of the facilities in C
I(1) : Array of the positions of the facilities in first parent individual
I (2) : Array of the positions of the facilities in second parent individual

In terms of the above notations and those defined earlier, the importing of a
facility requiring a fixed row in the child individual is expressed by Eq. (19.17),
where the ith facility is imported to the vacant bth position of the child individual if
it were occupying the bth position in one of the parent individuals.

Cb = i

I
(c)
i = b

}
; if Xi = Y ; I (c)i = 0

i = 1, 2, · · · , n
where, b = I (1)i or b = I (2)i

⎫
⎪⎬

⎪⎭
(19.17)

The self-explanatory pseudo-code, implementing Eq. (19.17) for importing the
fixed-row facilities to the child individualC from any one parent individual is shown
in Fig. 19.7 in the subroutine crossover_fix_row(n, I (c), I (1), I (2), C).
Here, the parent individual is chosen based on a random number, represented
by r , ranging from [0, 1]. If r < 0.5, then the first parent is chosen, otherwise the
second parent is chosen.

After importing fixed-row facilities as many as possible, pairs of facilities
requiring the same/opposite rows are imported through Eq. (19.18), where such a

Fig. 19.7 Pseudo-code showing the procedure used for placing facilities in fixed rows in the child
individual by the crossover operator of the cbCAP-pGA

348 Z. Kalita and D. Datta

pair of the ith and yth facilities are imported respectively to the ath and bth positions
in the same/opposite rows of the child individual if they were occupying the same
positions in one of the parent individuals.

Ca = i

Cb = y

I
(c)
i = a

I
(c)
y = b

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
; if

(
Siy = Y or Ziy = Y

) ; I (c)y = 0 ; I (c)i = 0
i = 1, 2, · · · , n

where,
(
a = I (1)i and b = I (1)y

)
or
(
a = I (2)i and b = I (2)y

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
(19.18)

The self-explanatory pseudo-code, implementing Eq. (19.17) for placing facil-
ities in same/opposite rows in the child individual C form any one parent indi-
vidual is shown in Fig. 19.8 in the subroutine crossover_same_opp_row
(n, I (c), I (1), I (2), C). The parent individual is selected randomly, with the similar
procedure used for importing the fixed-row facilities.

Then, unconstrained facilities are imported using Eq. (19.19), where the ith
facility is imported to the vacant bth position of the child individual, if it were
occupying the bth position in one of the parent individuals and not paired with any
facility (shown as the yth and zth facilities) for placing in the same/opposite rows.

Cb = i

I
(c)
i = b

}
;

if Xi �= Y ; Siy �= Y ; Ziz �= Y ; I (c)i = 0
y, z ∈ {1, 2, · · · , n} ; y �= i ; z �= i
i = 1, 2, · · · , n

where, b = I (1)i or b = I (2)i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(19.19)

Fig. 19.8 Pseudo-code showing the procedure used for placing facilities in same/opposite rows in
the child individual by the crossover operator of the cbCAP-pGA

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 349

Fig. 19.9 Pseudo-code showing the procedure used for placing unconstrained facilities in the child
individual by the crossover operator of the cbCAP-pGA

The self-explanatory pseudo-code, implementing Eq. (19.19) for importing each
unconstrained facility to the child individual C from any one parent individual
chosen randomly, as mentioned above, is shown in Fig. 19.9 in the subroutine
crossover_uncons(n, I (c), I (1), I (2), C).

Finally, as stated earlier, the facilities, that could not be placed in the child
individual through any of Eqs. (19.17)–(19.19), are placed randomly in the vacant
positions of the child individual following the same procedure used in Sect. 19 for
initializing an individual.

Mutation Operation

A mutation operator explores the neighborhood of a child individual generated
by a crossover operator. The cbCAP specific mutation operator incorporated in
the cbCAP-pGA chooses two random elements at a time from a child individual
and their values are interchanged if no constraint imposed to the cbCAP model is
violated from such swapping.

Elite Preserving Mechanism

Like those in any other variants of GA, the cbCAP specific crossover and mutation
operators, incorporated in the proposed cbCAP-pGA, also do not guarantee the
generation of children individuals better than their parent individuals, even the
former could be worse than the latter pushing the search opposite to the optima
of a problem. Hence, the elite preserving mechanism, proposed in the NSGA-II [6],

350 Z. Kalita and D. Datta

is applied in the cbCAP-pGA also for carrying over the elite individuals of one
generation to the next generation. The mechanism first combines the current
population and the newly generated children population, and then the population
for the next generation is formed with the best 50% of the combined population
based on the nondominated ranks and crowding distances of the individuals (refer
Deb et al. [6] for detail).

Computational Experiment and Discussion

The proposed cbCAP-pGA is coded in C programming language and executed in
Fedora 15 Linux environment. It is tested for 20 large-size instances in the range of
[60, 80], which were introduced by Anjos et al. [3] for testing SRFLP models.

The cbCAP involves the satisfaction of the constraints imposed on the placement
of some facilities. For easy recognition, such constraints are imposed on the same set
of facilities in each of the studied 20 instances. The fixed-row constraint is imposed
on facilities 13 and 40, requiring the placement of facility 13 in the first row and
facility 40 in the second row. The pair of facilities 15 and 24, as well as that of
facilities 40 and 42, are constrained to be placed in the same rows. On the other
hand, the constraint of opposite rows is imposed to the pair of facilities 13 and 18,
as well as that of facilities 27 and 39.

It is a known fact that the performance of stochastic algorithms including the
proposed cbCAP-pGA may be influenced by their algorithmic parameter settings.
However, without going through any procedure for fine tuning such parameters,
the cbCAP-pGA related parameters for each of the studied 20 instances are set
simply based on some trial runs as follows: a population of size 60 is evolved over
10,000 generations with crossover probability of 75% and mutation probability of
5%. Further, 30 independent runs for each instance are performed with different sets
of initial solutions and the obtained best results are reported here.

Since the proposed cbCAP is a bi-objective optimization problem, its result is
not a single solution but a set of trade-off solutions known as the Pareto front. In
a Pareto front of cbCAP, its solutions are conflicting with each other in terms of
the objective functions f1 (material handling cost) and f2 (deviation of the obtained
corridor length from its theoretical minimum length) as expressed by Eqs. (19.1) and
(19.2), respectively. As an illustration, the best Pareto front obtained for instance
Anjos60_1 [3] is shown in Fig. 19.10, where the extreme solutions of the Pareto
front are best either in the material handling cost (f best

1) or deviation in corridor
length (f best

2).
As shown in Fig. 19.10, the objective values of the extreme solutions of the Pareto

fronts obtained for the studied 20 instances (i.e., the solutions containing f best
1 and

f best
2), are shown in Table 19.1.

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 351

Fig. 19.10 Pareto front for instance Anjos60_1 [3]

Since no work could be found in the specialized literature studying any CAP
model with constraints, the acceptability of the results obtained in the present work
could not be verified. Hence, in order to have some coarse estimate, the cbCAP
results for the studied instances presented in Table 19.1 are compared with the
bCAP results reported by Kalita et al. [10] for those instances. Such comparison
is also presented in Table 19.1 marking the best values in boldface fonts. It seen
that the values of f best

1 for the instances under the cbCAP model are higher than
those under the bCAP model, which is obvious as some facilities under the cbCAP
model missed the best possible positions as they are constrained to be placed in some
other positions. However, it is observed that their relative deviations (presented in
percentage in Table 19.1) are marginal in all the studied 20 instances. On the other
hand, an interesting observation is that the corridor lengths (presented in Table 19.1
in the forms of f2 and f best

2) are reduced in the case of some instances under the
cbCAP model. Hence, it may be concluded that the proposed cbCAP model can be
applied to practical applications even if the constraints on the facilities increase the
material flow cost by some amount.

The arrangements of the facilities in the two rows obtained by the proposed
cbCAP model for the two scenarios (i.e., f best

1 and f best
2) are shown in Tables 19.2

and 19.3, respectively. For easy identification, the constrained facilities are shown
in boldface fonts.

352 Z. Kalita and D. Datta

Ta
bl

e
19

.1
O

bj
ec

tiv
e

va
lu

es
of

th
e

ex
tr

em
e

so
lu

tio
ns

of
th

e
Pa

re
to

fr
on

ts
ob

ta
in

ed
fo

r
th

e
st

ud
ie

d
20

in
st

an
ce

s
an

d
th

ei
r

co
m

pa
ri

so
n

w
ith

th
os

e
of

bC
A

P
m

od
el

re
po

rt
ed

by
K

al
ita

et
al

.[
10

]
(t

he
be

st
va

lu
es

ar
e

sh
ow

n
in

bo
ld

fo
nt

s)

So
lu

tio
ns

w
ith
f

be
st

1
So

lu
tio

ns
w

ith
f

be
st

2

cb
C

A
P

m
od

el
bC

A
P

m
od

el
cb

C
A

P
m

od
el

bC
A

P
m

od
el

SN
In

st
an

ce
ID

Si
ze

f
be

st
1

f
2

f
be

st
1

f
2

In
cr

ea
se

in
f

be
st

1
(i

n
%

)
f

1
f

be
st

2
f

1
f

be
st

2

In
cr

ea
se

in
f

be
st

2
(i

n
%

)

1
A

nj
os

60
_1

60
75

20
23
.0

1.
45

73
95

16
.0

0.
10

1.
69

75
27

99
.0

0.
00

73
95

82
.0

0.
00

1.
79

2
A

nj
os

60
_2

60
42

88
07
.0

1.
76

42
10

74
.0

1.
87

1.
84

42
91

27
.0

0.
05

42
14

19
.0

0.
05

1.
83

3
A

nj
os

60
_3

60
33

03
15
.5

1.
55

32
49

31
.5

1.
88

1.
66

33
04

88
.5

0.
05

32
52

22
.5

0.
05

1.
62

4
A

nj
os

60
_4

60
20

26
78
.0

0.
18

19
94

34
.0

0.
09

1.
63

20
27

66
.0

0.
00

19
94

41
.0

0.
00

1.
67

5
A

nj
os

60
_5

60
16

43
94
.0

2.
98

15
96

52
.0

1.
39

2.
97

16
46

15
.0

0.
06

15
98

70
.0

0.
07

2.
97

6
A

nj
os

70
_1

70
77

36
03
.0

1.
16

76
51

23
.0

1.
17

1.
11

77
36

51
.0

0.
03

76
57

11
.0

0.
04

1.
04

7
A

nj
os

70
_2

70
72

98
19
.0

1.
49

72
11

56
.0

0.
97

1.
20

72
98

88
.0

0.
00

72
12

51
.0

0.
00

1.
20

8
A

nj
os

70
_3

70
77

12
58
.5

0.
97

76
02

63
.5

0.
60

1.
45

77
18

49
.5

0.
00

76
04

69
.5

0.
00

1.
50

9
A

nj
os

70
_4

70
49

30
14
.0

0.
32

48
47

46
.0

0.
26

1.
71

49
30

90
.0

0.
03

48
48

48
.0

0.
03

1.
70

10
A

nj
os

70
_5

70
21

46
93

7.
5

1.
64

21
09

74
1.

5
0.

78
1.

76
21

48
07

0.
5

0.
00

21
09

84
5.

5
0.

00
1.

81

11
A

nj
os

75
_1

75
12

14
70

7.
5

0.
86

11
97

91
0.

5
0.

13
1.

40
12

14
82

0.
5

0.
00

11
98

08
3.

5
0.

00
1.

40

12
A

nj
os

75
_2

75
21

78
62

8.
0

1.
53

21
62

18
2.

0
0.

53
0.

76
21

79
35

0.
0

0.
03

21
62

58
1.

0
0.

03
0.

78

13
A

nj
os

75
_3

75
63

71
76
.0

1.
13

62
51

18
.0

0.
99

1.
93

63
74

25
.0

0.
00

62
53

17
.0

0.
00

1.
94

14
A

nj
os

75
_4

75
19

89
66

8.
5

0.
85

19
72

58
7.

5
0.

41
0.

87
19

90
02

7.
5

0.
03

19
72

89
7.

5
0.

03
0.

87

15
A

nj
os

75
_5

75
91

59
45
.0

2.
64

89
60

16
.0

0.
45

2.
22

91
81

82
.0

0.
00

89
61

27
.0

0.
00

2.
46

16
A

nj
os

80
_1

80
10

50
88

3.
5

0.
12

10
35

13
4.

5
0.

12
1.

52
10

50
99

9.
5

0.
00

10
35

15
0.

5
0.

00
1.

53

17
A

nj
os

80
_2

80
97

76
73
.0

0.
28

96
13

38
.0

0.
09

1.
70

97
76

73
.0

0.
28

96
14

20
.0

0.
03

1.
69

18
A

nj
os

80
_3

80
16

51
95

6.
0

1.
29

16
26

93
4.

0
1.

23
1.

54
16

52
27

3.
0

0.
00

16
27

50
8.

0
0.

00
1.

52

19
A

nj
os

80
_4

80
18

88
01

1.
0

0.
15

18
74

65
6.

0
0.

57
0.

71
18

88
12

7.
0

0.
03

18
75

11
3.

0
0.

03
0.

69

20
A

nj
os

80
_5

80
80

74
99
.0

0.
73

79
50

89
.0

0.
03

1.
56

80
76

33
.0

0.
03

79
50

89
.0

0.
03

1.
58

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 353

Ta
bl

e
19

.2
A

rr
an

ge
m

en
t

of
th

e
fa

ci
lit

ie
s

ob
ta

in
ed

by
th

e
cb

C
A

P
m

od
el

in
th

e
so

lu
tio

ns
pr

es
en

te
d

in
Ta

bl
e

19
.1

ag
ai

ns
t
f

be
st

1
of

th
e

st
ud

ie
d

20
in

st
an

ce
s

(c
on

st
ra

in
ed

fa
ci

lit
ie

s
ar

e
pr

es
en

te
d

in
bo

ld
fa

ce
fo

nt
s)

SN
In

st
an

ce
ID

Si
ze

A
rr

an
ge

m
en

ts
of

th
e

fa
ci

lit
ie

s
in

th
e

so
lu

tio
ns

w
ith
f

be
st

1

1
A

nj
os

60
_1

60
27

11
24

15
28

21
25

37
6

46
9

36
35

32
8

26
2

14
13

49
23

57
31

45
53

59
19

60
20

48
34

56
18

55
58

3
40

51
54

7
12

44
42

16
33

4
17

22
41

47
29

38
5

43
50

10
52

30
39

1

2
A

nj
os

60
_2

60
20

22
15

4
23

3
7

38
58

60
16

27
51

59
36

46
17

1
24

25
37

28
5

21
34

14
12

9
30

13
10

53

11
57

42
19

2
48

49
47

6
43

55
18

26
45

54
39

52
40

56
33

32
31

8
50

29
41

35
44

3
A

nj
os

60
_3

60
4

24
59

20
44

1
27

37
52

34
51

12
15

56
35

46
43

26
17

25
58

9
55

13
57

54
22

36
16

19
5

6
53

49
47

21
40

32
31

10
39

23
18

33
30

50
8

60
45

28
7

2
14

41
11

48
29

38
3

42
4

A
nj

os
60

_4
60

20
12

13
10

7
24

22
11

36
6

17
46

23
5

53
3

50
14

35
16

54
27

26
15

32
30

56
52

38
4

41
25

31
19

57
55

39
44

40
33

21
37

59
45

18
2

58
8

60
29

51
42

47
48

9
49

1
28

34
43

5
A

nj
os

60
_5

60
33

53
49

52
11

41
19

1
43

29
23

51
24

57
45

27
25

5
15

60
6

28
14

30
35

46
13

54
34

16
12

39
44

37
59

38
55

26
58

22
32

31
56

42
40

21
50

8
48

10
36

18
20

17
9

2
4

47
3

7

6
A

nj
os

70
_1

70
50

35
17

48
25

45
34

66
14

59
49

58
13

21
36

23
12

27
24

52
67

44
61

64
68

51
31

63
32

62
2

15
47

39
37

57
29

43
46

4
3

38
20

7
6

54
11

60
55

5
30

19
42

18
33

26
10

70
56

41
16

1
69

9
8

28
65

22
40

53

7
A

nj
os

70
_2

70
50

25
47

21
36

1
57

19
58

9
45

60
14

68
44

43
24

15
54

22
27

16
34

55
12

17
69

70
48

59
64

52

28
13

53
10

26
7

3
67

23
29

30
62

11
63

18
6

40
49

8
4

42
2

20
46

5
37

32
31

35
38

65
33

66
51

41
61

39
56

8
A

nj
os

70
_3

70
15

44
52

17
64

33
27

12
13

55
62

60
65

36
5

28
25

53
14

70
37

68
4

11
6

41
23

32
21

24
51

30

16
31

57
34

69
46

38
59

48
45

35
3

22
39

18
66

49
40

56
10

50
42

2
19

7
61

26
9

47
67

1
20

58
29

43
54

63
8

9
A

nj
os

70
_4

70
7

15
47

9
54

22
61

29
24

12
63

26
60

58
53

2
49

50
23

27
13

44
69

57
70

17
67

62
43

3
10

31
4

8
35

66

16
51

30
52

6
64

42
11

14
33

18
68

46
5

34
40

36
37

1
28

56
59

19
21

55
20

48
32

45
65

39
38

25
41

10
A

nj
os

70
_5

70
28

38
68

23
31

51
58

22
6

10
16

63
27

8
61

14
24

35
12

11
29

34
3

13
26

59
45

15
57

52
33

64
44

67

19
32

1
62

40
2

37
50

54
65

49
41

43
21

56
20

42
70

5
36

30
4

7
53

39
60

46
66

55
25

48
47

18
69

9
17

(c
on

tin
ue

d)

354 Z. Kalita and D. Datta

Ta
bl

e
19

.2
(c

on
tin

ue
d)

SN
In

st
an

ce
ID

Si
ze

A
rr

an
ge

m
en

ts
of

th
e

fa
ci

lit
ie

s
in

th
e

so
lu

tio
ns

w
ith
f

be
st

1

11
A

nj
os

75
_1

75
47

48
13

51
21

17
35

75
62

15
24

43
68

66
34

12
10

19
20

4
55

44
7

65
61

27
33

26
52

28
73

54
69

60
38

14
16

72
5

56
8

39
11

6
22

25
71

53
37

70
40

42
74

31
1

3
32

2
41

23
30

49
50

45
18

59
36

57
63

9
29

67
46

64
58

12
A

nj
os

75
_2

75
49

64
32

72
28

44
14

50
33

1
58

5
52

53
71

67
12

8
62

27
22

15
68

55
13

17
9

19
10

69
24

45
30

70
2

37
43

25

51
61

47
21

6
63

60
7

57
42

59
4

20
75

65
3

34
36

11
23

16
38

46
74

48
31

73
41

29
54

18
35

40
66

39
56

26

13
A

nj
os

75
_3

75
47

54
69

55
8

72
26

27
38

2
68

44
62

59
32

6
13

58
75

9
24

45
21

73
65

11
30

71
61

37
60

41
43

63
14

33
10

15
50

1
17

25
42

29
70

4
39

66
18

20
48

3
34

49
5

67
28

35
40

7
52

57
36

16
31

12
56

74
64

23
46

51
53

19
22

14
A

nj
os

75
_4

75
60

15
9

14
7

75
10

37
30

57
22

29
56

46
55

64
16

28
13

73
32

1
2

24
35

63
66

59
54

71
4

11
61

25
6

68
27

17

36
5

49
42

50
62

8
70

47
20

41
40

33
12

3
65

52
44

53
18

34
67

45
19

48
58

26
23

43
39

31
74

51
38

69
72

21

15
A

nj
os

75
_5

75
20

37
9

63
2

43
44

53
16

22
69

56
45

34
57

54
61

25
17

3
55

29
12

5
49

15
23

73
32

47
1

35
64

52
13

24
33

27
26

19
6

58
50

60
14

74
21

75
4

18
59

67
48

11
28

30
36

42
70

8
10

46
65

7
31

66
38

41
71

68
39

62
72

40
51

16
A

nj
os

80
_1

80
78

25
80

67
27

65
29

46
43

19
52

14
75

51
45

34
47

54
41

32
58

9
31

36
15

76
74

56
17

37
72

13
69

24
59

3
64

1
71

60
11

55
70

2
44

8
40

21
16

63
53

61
12

68
49

39
62

66
48

20
10

50
23

6
22

33
7

42
73

26
5

30
35

77
38

28
4

18
79

57

17
A

nj
os

80
_2

80
22

10
58

46
56

27
12

47
15

29
24

1
7

13
28

35
20

36
34

8
65

62
75

59
68

76
70

79
37

31
64

80
69

49
48

45
17

11

57
55

5
18

14
32

74
54

41
16

33
77

72
23

25
67

53
3

6
4

44
38

9
40

2
50

39
42

26
21

19
30

73
71

52
78

60
51

63
43

61
66

18
A

nj
os

80
_3

80
74

16
33

49
46

47
43

56
24

67
28

6
66

38
9

75
2

11
73

15
59

27
21

80
44

78
51

77
13

76
22

35
48

70
26

34
36

54
63

37
58

68
61

62
64

45
5

4
65

42
79

12
31

60
55

71
1

19
7

41
23

14
17

3
39

8
52

50
10

18
25

30
72

32
40

69
29

20
53

57

19
A

nj
os

80
_4

80
69

50
75

38
54

30
28

24
80

43
74

76
70

6
67

2
16

20
72

31
33

48
52

15
79

77
51

5
27

11
13

23
25

34
46

36
57

22
47

60
64

71
35

78
63

32
66

12
42

14
29

62
17

4
3

7
18

19
26

1
53

37
8

39
49

65
9

59
45

68
73

55
10

44
21

58
61

40
56

41

20
A

nj
os

80
_5

80
2

47
52

61
10

67
24

22
15

1
9

76
33

6
54

30
34

75
71

66
32

80
43

62
63

50
5

28
14

64
29

72
27

13
60

58
48

25

7
78

38
73

21
68

37
74

70
31

19
36

44
39

53
35

55
59

40
65

3
4

77
20

18
79

45
23

46
57

11
56

26
16

8
51

49
12

69
42

41
17

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 355

Ta
bl

e
19

.3
A

rr
an

ge
m

en
t

of
th

e
fa

ci
lit

ie
s

ob
ta

in
ed

by
th

e
cb

C
A

P
m

od
el

in
th

e
so

lu
tio

ns
pr

es
en

te
d

in
Ta

bl
e

19
.1

ag
ai

ns
t
f

be
st

2
of

th
e

st
ud

ie
d

20
in

st
an

ce
s

(c
on

st
ra

in
ed

fa
ci

lit
ie

s
ar

e
pr

es
en

te
d

in
bo

ld
fa

ce
fo

nt
s)

SN
In

st
an

ce
ID

Si
ze

A
rr

an
ge

m
en

ts
of

th
e

fa
ci

lit
ie

s
in

th
e

so
lu

tio
ns

w
ith
f

be
st

2

1
A

nj
os

60
_1

60
27

11
24

15
28

21
25

37
6

46
12

36
35

33
8

26
2

14
13

49
23

57
31

43
10

59
19

60
20

48
34

56
18

55
58

3
40

51
54

7
9

44
42

16
32

4
17

22
41

29
47

38
5

45
50

53
52

30
39

1

2
A

nj
os

60
_2

60
20

57
15

4
23

3
7

38
58

60
16

27
51

55
36

46
17

1
24

25
37

28
5

21
34

14
12

9
41

13
10

53

11
22

42
19

2
48

49
47

6
43

59
18

26
45

54
39

52
40

56
33

32
31

8
50

29
30

35
44

3
A

nj
os

60
_3

60
4

24
59

20
44

1
27

37
52

34
51

12
15

56
35

46
43

26
17

60
58

9
55

13
57

41
11

36
16

19
5

6
53

49
47

21
40

32
31

10
39

23
18

33
30

50
8

25
45

28
7

2
14

54
22

48
29

38
3

42
4

A
nj

os
60

_4
60

31
12

13
10

7
24

22
36

11
6

17
46

23
5

53
3

50
14

35
16

54
27

26
15

32
30

56
48

28
1

41
25

20
19

57
55

39
44

40
33

21
37

59
45

18
2

58
8

60
29

51
42

47
52

9
49

38
4

34
43

5
A

nj
os

60
_5

60
33

53
49

52
38

41
19

1
43

29
23

51
24

57
45

27
25

5
15

60
10

28
14

30
35

46
13

54
34

16
7

39
44

37
59

11
55

26
58

22
32

31
56

42
40

21
50

8
48

6
36

18
20

17
9

2
4

47
3

12

6
A

nj
os

70
_1

70
50

35
17

48
25

45
34

66
14

59
49

58
13

21
36

23
12

27
24

52
67

44
61

64
68

51
31

63
32

28
2

15
53

39
37

57
29

43
46

4
3

38
20

7
6

54
11

60
5

55
30

19
42

18
33

26
10

70
56

41
16

1
69

9
8

62
65

22
40

47

7
A

nj
os

70
_2

70
50

25
47

21
36

1
57

19
58

9
45

60
14

6
44

43
24

15
54

22
27

16
34

55
12

17
69

66
48

59
64

56

28
13

53
10

26
7

3
67

23
29

30
62

11
63

18
68

40
49

8
4

42
2

20
46

5
37

32
31

35
38

65
33

70
51

41
61

39
52

8
A

nj
os

70
_3

70
15

44
52

17
64

33
27

12
13

55
62

60
65

5
28

49
25

53
14

68
70

7
4

11
6

41
23

32
21

24
51

30

16
31

57
34

69
46

38
59

48
45

35
3

22
39

18
36

66
40

10
50

56
42

2
37

19
61

26
9

47
67

1
20

58
43

29
54

63
8

9
A

nj
os

70
_4

70
7

15
47

9
54

22
61

29
24

12
63

26
60

58
53

2
49

50
23

27
13

44
69

57
70

21
67

62
43

3
10

31
4

8
35

41

16
30

51
52

6
64

42
11

14
33

18
68

46
5

34
40

36
37

1
28

56
59

19
17

55
20

48
32

45
65

39
38

25
66

10
A

nj
os

70
_5

70
28

38
68

23
31

51
58

22
6

10
16

63
27

8
61

70
24

35
12

11
29

34
3

13
26

59
45

15
57

52
33

64
17

67

19
32

1
62

40
2

37
50

54
65

49
41

43
21

56
20

42
14

5
30

36
4

7
53

39
60

46
66

55
25

48
47

18
69

9
44

(c
on

tin
ue

d)

356 Z. Kalita and D. Datta

Ta
bl

e
19

.3
(c

on
tin

ue
d)

SN
In

st
an

ce
ID

Si
ze

A
rr

an
ge

m
en

ts
of

th
e

fa
ci

lit
ie

s
in

th
e

so
lu

tio
ns

w
ith
f

be
st

2

11
A

nj
os

75
_1

75
47

48
13

51
21

17
35

75
62

15
24

43
68

66
34

12
10

19
20

4
55

44
7

65
61

27
33

26
52

28
73

54
29

60
38

14
16

72
5

56
8

39
11

6
22

25
71

53
37

70
40

42
74

31
1

3
32

2
41

23
30

49
50

45
18

59
36

57
63

9
67

69
46

64
58

12
A

nj
os

75
_2

75
49

64
32

72
28

44
63

50
33

1
58

5
52

53
71

67
12

8
62

27
22

15
68

55
13

17
9

19
10

69
24

45
66

70
2

37
26

25

51
61

47
21

6
14

60
7

57
42

59
4

20
75

65
3

34
36

11
23

16
38

46
74

48
31

73
41

29
54

18
35

40
30

39
56

43

13
A

nj
os

75
_3

75
47

54
69

55
8

72
26

27
38

2
68

44
62

59
32

6
13

58
9

75
24

28
21

52
65

16
71

30
61

37
60

41
43

63
14

19
10

15
50

1
17

25
42

29
70

4
39

66
18

20
48

3
34

49
5

67
45

35
40

7
73

57
36

11
31

12
56

74
64

23
46

51
53

33
22

14
A

nj
os

75
_4

75
36

15
9

14
7

75
10

37
30

57
22

29
56

46
55

3
16

28
13

73
32

1
2

24
35

63
26

59
54

71
4

11
61

25
6

68
27

21

60
5

49
42

50
62

8
70

47
20

41
40

33
12

64
65

52
44

53
18

34
67

45
19

48
58

66
23

43
39

31
74

51
38

69
72

17

15
A

nj
os

75
_5

75
20

37
9

63
2

43
44

53
16

22
69

56
45

34
57

54
61

11
17

28
30

36
12

5
49

15
23

73
32

47
1

35
64

52
13

24
33

27
26

19
6

58
50

60
14

74
21

75
4

18
59

67
48

25
3

55
29

42
70

8
10

46
65

7
31

38
66

41
71

68
39

62
72

40
51

16
A

nj
os

80
_1

80
78

25
80

67
27

65
21

29
43

19
52

14
75

51
45

47
34

54
41

32
58

9
31

36
15

6
74

56
17

37
72

13
69

24
59

3
64

1
71

60
11

55
70

2
44

8
40

16
46

63
53

61
12

68
49

39
62

66
48

20
50

10
23

76
22

33
7

42
73

26
5

30
35

77
38

28
4

18
79

57

17
A

nj
os

80
_2

80
22

10
58

46
56

27
12

47
15

29
24

1
7

13
28

35
20

36
34

8
65

62
75

59
68

76
70

79
37

31
64

80
69

49
48

45
17

11

57
55

5
18

14
32

74
54

41
16

33
77

72
23

25
67

53
3

6
4

44
38

9
40

2
50

39
42

26
21

19
30

73
71

52
78

60
51

63
43

61
66

18
A

nj
os

80
_3

80
37

26
69

64
72

30
76

67
77

3
8

78
44

11
27

59
19

15
1

55
52

38
31

79
13

65
6

24
5

45
43

34
49

68
33

16
54

57

53
36

62
32

29
48

22
25

42
56

10
50

51
17

80
21

14
23

7
41

73
75

39
2

71
66

18
60

9
12

28
4

35
46

47
70

40
61

20
58

63
74

19
A

nj
os

80
_4

80
69

60
64

21
78

54
30

28
66

80
43

76
29

9
27

17
49

2
3

7
20

52
33

26
53

13
51

15
70

11
68

74
23

63
36

24
71

22
50

41

47
75

35
38

46
42

34
32

12
14

59
62

6
4

67
79

77
16

31
72

48
19

37
18

1
8

5
65

45
25

39
73

55
44

10
58

57
61

56
40

20
A

nj
os

80
_5

80
2

47
52

61
10

67
24

22
15

1
9

76
33

6
54

30
34

75
71

66
32

80
43

62
63

57
5

28
14

64
51

72
27

13
60

58
48

25

7
78

38
73

21
68

37
74

70
31

19
36

44
39

53
35

55
59

40
65

3
4

77
20

18
79

45
23

46
50

11
56

26
16

8
29

49
12

69
42

41
17

19 Corridor Allocation as a Constrained Optimization Problem Using a. . . 357

Conclusion

Owing practical applications, the bi-objective corridor allocation problem (bCAP),
which requires to arrange given facilities along two sides of a central corridor, is
presented here as a constrained bCAP (cbCAP) by restricting some facilities to be
placed in fixed, same, and/or opposite rows. Satisfying the imposed constraints,
the facilities are to be arranged starting in both the rows from a common level
along the length of the corridor and without allowing any physical gap between two
adjacent facilities of a row, so as to minimize simultaneously the material handling
cost among the facilities and the required length of the corridor. Since it would be
difficult for any general-purpose optimizer to handle such a constrained permutation
problem, a cbCAP specific permutation based genetic algorithm (cbCAP-pGA) is
also proposed for handling the problem. The specialty of the cbCAP-pGA is that it
generates only feasible solutions for the cbCAP model through its problem-specific
initialization technique and crossover and mutation operators.

Applying to a set of benchmark instances in the numerical experimentation, it
is observed that the cbCAP-pGA could search promising solutions with marginally
increased material handling costs in comparison to those of the bCAP model. It is
also observed that the cbCAP-pGA could even improve the required corridor lengths
for studied some instances. The proposed cbCAP model and the cbCAP-pGA
procedure may be applied in future to real-life problems in order to investigate their
practical applicability.

References

1. Ahonen H, de Alvarenga AG, Amaral ARS (2014) Simulated annealing and tabu search
approaches for the corridor allocation problem. Eur J Oper Res 232:221–233

2. Amaral ARS (2012) The corridor allocation problem. Comput Oper Res 39(12):3325–3330
3. Anjos MF, Kennings A, Vannelli A (2005) A semidefinite optimization approach for the single-

row layout problem with unequal dimensions. Discrete Optim 2:113–122
4. Chung J, Tanchoco JMA (2010) The double row layout problem. Int J Prod Res 48(3):709–727
5. Datta D, Amaral ARS, Figueira JR (2011) Single row facility layout problem using a

permutation-based genetic algorithm. Eur J Oper Res 213(2):388–394
6. Deb K, Agarwal S, Pratap A, Meyarivan T (2002) A fast and elitist multi-objective genetic

algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
7. Ebster C (2011) Store design and visual merchandising: creating store space that encourages

buying. Business Expert Press, New York
8. Ghosh D, Kothari R (2012) Population heuristics for the corridor allocation problem. Technical

report W.P. No. 2012-09-02, Indian Institute of Management, Ahmedabad, India
9. Kalita Z, Datta D (2014) Solving the bi-objective corridor allocation problem using a

permutation-based genetic algorithm. Comput Oper Res 52:123–134
10. Kalita Z, Datta D, Palubeckis G (2019) Bi-objective corridor allocation problem using a

permutation-based genetic algorithm hybridized with a local search technique. Soft Comput
23(3):961–986

11. Lin QL, Liu HC, Wang DJ, Liu L (2015) Integrating systematic layout planning with fuzzy
constraint theory to design and optimize the facility layout for operating theatre in hospitals. J
Intell Manuf 26(1):87–95

358 Z. Kalita and D. Datta

12. Motaghi M, Hamzenejad A, Riahi L, Kashani MS (2011) Optimization of hospital layout
through the application of heuristic technique (diamond algorithm) in Shafa Hospital. Int J
Manag Bus Res 1(3):133–138

13. Wang S, Zuo X, Liu X, Zhao X, Li J (2015) Solving dynamic double row layout problem via
combining simulated annealing and mathematical programming. Appl Soft Comput 37:303–
310

14. Zuo X, Murray CC, Smith AE (2014) Solving an extended double row layout problem using
multiobjective tabu search and linear programming. IEEE Trans Autom Sci Eng 11(4):1122–
1132

Chapter 20
The Constrained Single-Row Facility
Layout Problem with Repairing
Mechanisms

Zahnupriya Kalita and Dilip Datta

Abstract The single-row facility layout problem (SRFLP), which deals with the
placement of some facilities along a row by minimizing the overall material flow
cost among them, is usually studied as an unconstrained problem allowing the
placement of the facilities arbitrarily without any restriction. But a practical SRFLP
instance may require to respect certain constraints imposed on the arrangement
of its facilities. Such an SRFLP model, which can be termed as a constrained
SRFLP (cSRFLP), is studied here by requiring to place some facilities in fixed
locations, and/or in predefined orders with/without allowing the arrangement of any
other facility in between two ordered facilities. The handling of such a complex
problem generally requires a specialized algorithm incorporating some problem-
specific information for intelligent search. But the development of an algorithm
needs expertise, from which practitioners often suffer. Hence, it is shown here how
the cSRFLP can be tackled using a general-purpose algorithm with some repairing
mechanisms outside the algorithm for forcibly satisfying the constraints of the
problem. Employing a permutation-based genetic algorithm for this purpose, the
potentiality of the proposed procedure is demonstrated by applying it to a set of
cSRFLP instances of different sizes.

Keywords Combinatorial optimization · Facility layout problem · Constraint ·
Repairing mechanism · Genetic algorithm

Introduction

The single-row facility layout problem (SRFLP) seeks the placement of some
facilities along a row on one side of a corridor, so as to minimize the overall material
flow cost among the facilities. It has applications in different domains, such as

Z. Kalita · D. Datta (�)
Department of Mechanical Engineering, Tezpur University, Tezpur, Assam, India
e-mail: zk@tezu.ernet.in; ddatta@tezu.ernet.in; datta_dilip@rediffmail.com

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_20

359

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_20&domain=pdf
mailto:zk@tezu.ernet.in
mailto:ddatta@tezu.ernet.in
mailto:datta_dilip@rediffmail.com
https://doi.org/10.1007/978-3-030-26458-1_20

360 Z. Kalita and D. Datta

installation of machines in flexible manufacturing system [12], or arrangement of
stores in supermarkets, departments in office buildings, and laboratories in hospitals,
among others [24, 29].

The SRFLP is a combinatorial optimization problem, which has been investi-
gated by both exact and heuristic procedures. Studied exact methods include branch-
and-bound [29], dynamic programming [24], semidefinite programming [3], and
mixed-integer linear programming [1, 13, 20]. Various heuristic and metaheuristic
procedures, investigated to obtain approximate solutions for large-size instances in
a lesser computational time, include simulated annealing [11], constructive greedy
heuristic [17], metaheuristics [6], ant colony algorithm [30], scatter search [18],
particle swarm optimization [28], tabu search [27], and genetic algorithm [5], among
others.

The SRFLP has been studied so far as an unconstrained problem, where a
facility is allowed to be placed in any location in a permutation of the facilities.
However, many real-life problems might require to satisfy certain positioning and
ordering constraints on the placement of some facilities, such as placing a facility
in a fixed location, two facilities together, a facility before another, and so on.
In the hospital layout problem investigated by Padgaonkar [23], the departments
involving more inter-floor movement were arranged closer to elevators and those
involving more inter-departmental movement were arranged on the same/next floor.
Considering the possibility of more sale if a customer passes through more items,
Ozgormus [22] proposed in the design of a grocery store layout to disperse basic
commodities at the end of the store. In regard of ordering, Monma [21] found that
duplicate billing in subsequent months can be prevented by preferring the job of
recording the payments of customers to precede the job of preparing the bills. In
manufacturing systems, Gapp et al. [9] studied precedence constraints requiring a
given operation to precede another operation (e.g., drilling a hole in a work-piece
before tapping it) and the contiguity constraints requiring a given set of operations
to be performed together irrespective of their intra-ordering (e.g., performing all
the milling operations together). It is also found in sequence flexibility based
manufacturing systems that the ordering of operations can be altered by performing
some operations in sequence and others arbitrarily [4, 19, 26]. Such restrictions
in sequencing operations are common in many cases as a manufacturing system
is neither very rigid like the well-known job-shop problem which requires strict
ordering of the operations nor very flexible like the open-shop problem where the
operations can be performed arbitrarily [14, 25].

In view of above, a constrained SRFLP model, naming as the constrained single-
row facility layout problem (cSRFLP), is studied in the present work considering
positioning and ordering constraints on the arrangement of some given facilities.
Since it would be computationally very expensive for a general-purpose search
technique to fulfill such permutation-based constraints on its own, the development
of a specialized algorithm by incorporating certain problem-specific components
becomes essential for intelligent search. However, practitioners and academia work-
ing on application areas often suffer from expertise required for the development of
specialized algorithms, and hence they prefer some alternative techniques to get

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 361

their works done through some existing general-purpose algorithms or commercial
software packages. Such a procedure is presented here by developing some repairing
mechanisms, which can be applied along with a general-purpose algorithm for
forcibly satisfying the constraints of the cSRFLP outside the algorithm. Each time
the algorithm sends a solution to an outside subroutine for evaluation, the solution
is first checked and steered to the feasible region by forcibly satisfying the violated
constraints, if any, and then the repaired solution along with its objective value is
returned to the algorithm. Taking the permutation-based genetic algorithm (pGA),
employed by Datta et al. [5] for the unconstrained SRFLP, as the general-purpose
algorithm, the potentiality of the proposed procedure is demonstrated in the
numerical experimentation by solving of a set of cSRFLP instances of sizes in the
range of [64,100].

Note that prior to formulating the general SRFLP model by Datta et al. [5]
as an unconstrained permutation-based optimization problem, it was studied with
different constraints on the placement of given facilities in a row of minimum
possible length by avoiding the overlapping of the facilities. The positioning and
ordering constraints imposed in the present cSRFLP model should not to be
confused with those length based and overlapping constraints imposed in the exact
formulation of the general SRFLP model.

The remaining of the present article is organized as follows: presenting the
cSRFLP model in Sect. 20, the proposed repairing mechanisms are explained in
Sect. 20. The pGA developed for the unconstrained SRFLP model is presented
briefly in Sect. 20, and its performance to some cSRFLP instances in Sect. 20.
Finally, the article is summarized in Sect. 20.

The cSRFLP Formulation

As stated in Sect. 20, the cSRFLP model is studied in the present work incorporating
the following two types of constraints:

1. Positioning constraints: Some given facilities are to be placed in predefined fixed
positions.

2. Ordering constraints: Some given pairs of facilities are to be placed in predefined
orders, with/without allowing to place other facilities in between such an ordered
pair.

The studied cSRFLP is explained here through a small instance of 10 facilities.
Say, the eighth and seventh positions are reserved for placing facilities 3 and 4,
respectively. Also, facility 2 is required to be placed on the right side of facility 4,
facility 6 is prior to facility 5 and facility 5 is prior to facility 9. Further, facility 10
is required to be placed prior to facility 6 and facility 8 prior to facility 7, but
without allowing the placement of any other facility in between the two facilities
of a pair, i.e., each pair is required to come together. In terms of the two types
of constraints mentioned above, the same can be stated as facilities 3 and 4 are

362 Z. Kalita and D. Datta

23410 6 8 7 951

Fig. 20.1 An illustrative solution of the cSRFLP model showing the constrained facilities in cyan
color and others in gray color

required to be placed in predefined fixed positions, facilities 10 and 6 as well as
facilities 8 and 7 are required to be ordered in pairs without allowing the placement
of other facilities in between a pair, while facilities 6 and 5 as well as facilities 5
and 9 are required to be ordered in pairs allowing the placement of other facilities
in between a pair. A possible solution of the instance is shown in Fig. 20.1 by
marking the constrained facilities with cyan color and the unconstrained one with
gray color. Note that the total material flow cost (i.e., the objective value) in a
constrained solution (i.e., a cSRLFP solution) in general would be higher than that
in an unconstrained solution (i.e., a SRFLP solution).

According to above, the cSRFLP can be defined as a problem requiring the
effective placement of n number of facilities along a row with some facilities in pre-
defined fixed positions and some pairs of facilities in predefined orders with/without
allowing the placement of other facilities in between such an ordered pair. Hence,
the following notations can be defined for formulating the problem (parameters
related constraints are defined by uppercase alphabets):

Indices
i, j, k : Indices to represent facilities and positions
π : Index of a permutation of given facilities

Parameters
n : Number of given facilities to be arranged along a row
li : Length of facility i in the direction of the row
cij : Material flow cost between facilities i and j (i �= j)
Ti : Indicator of the predefined fixed position for facility

i (Ti ∈ {Y (yes), N (no)})
Pi : predefined fixed position of facility i (positioning constraint)
Oi : Indicator for ordering facility i on the left side another facility

(Oi ∈ {Y (yes), N (no)} ordering constraint)
Ri : Facility to be placed on the right side of facility i (ordering constraint)
Aij : Indicator to allow the placement of other facilities in between the

ordered facilities i and j (Aij ∈ {Y (yes), N (no)})

Variables
rπi : Facility placed at position i of permutation π
xrπi

: Distance to the centre point of facility rπi from the left end of the row
f π : Overall material flow cost among all the facilities of π

For demonstration, the constraints posed in the instance of Fig. 20.1 are shown
in Table 20.1 in terms of the notations Ti–Aij defined above. The value ‘Y’ to
Ti indicates that facility i is required to be placed at a predefined fixed position,

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 363

Table 20.1 Representation of the constraints of the cSRFLP instance shown in Fig. 20.1 in a
matrix form

Facility (i) 1 2 3 4 5 6 7 8 9 10

Whether to be arranged in predefined position (Ti) N N Y Y N N N N N N

Predefined position (Pi) – – 8 7 – – – – – –

Whether to be ordered on the left side (Oi) N N N Y Y Y N Y N Y

Ordered facility on the right side (Ri = j) – – – 2 9 5 – 7 – 6

Other facilities allowed within the pair (Aij) – – – Y Y Y – N – N

which is marked by Pi . On the other hand, values to Ri and Aij are required against
facility i only if it is paired with another facility for placing on its right side. Such
pairing of facility i is denoted by Oi = Y (otherwise Oi = N if the facility does
not have such pairing).

In terms of the notations defined above, the cSRFLP model in a general form for
permutation π can be expressed mathematically by Eqs. (20.1)–(20.4).

Minimize f π ≡
n−1∑

i=1

n∑

j=i+1

crπi ,r
π
j

∣∣∣xrπj − xrπi
∣∣∣ (20.1)

Subject to Prπi
= k ; if Trπi

= Y ; k ∈ {1, 2, . . . , n} ; i = 1, 2, . . . , n

(20.2)

j

⎧
⎪⎪⎨

⎪⎪⎩

= i + 1 ; if Orπi
= Y ; Rrπi = rπj ; Arπi ,rπj = N

� i + 1 ; if Orπi
= Y ; Rrπi = rπj ; Arπi ,rπj = Y

i, j = 1, 2, . . . , n ; i �= j
(20.3)

where, xrπi
= lrπ1

2
+ 1

2

i∑

j=2

(
lrπj−1

+ lrπj
)

(20.4)

For permutation π , f π expressed by Eq. (20.1) is the objective function. In
Eq. (20.2), Prπi bears the predefined fixed position of rπi if it is subject to positioning
constraint. Similarly, j given by Eq. (20.3) denotes ordering constraints with Rrπi =
rπj indicating that facilities rπi and rπj are to be ordered by placing rπj right to rπi .
Further, ‘Arπi ,rπj = N’ in Eq. (20.3) says that facilities rπi and rπj are required to
be ordered without allowing other facilities in between them, while ‘Arπi ,rπj = Y’
relaxes that restriction. On the other hand, xrπi in Eq. (20.4) indicates the centroidal
distance of facility rπi from the left end of the row of placement of the facilities of
permutation π .

364 Z. Kalita and D. Datta

The Repairing Mechanisms

Because of the increasing complexity with the rigidity of the constraints, they should
be repaired based upon their decreasing complexities. Accordingly, the positioning
constraints will be repaired prior to the ordering constraints. Further, three cases are
possible with an ordering constraint of a pair of two facilities, which in decreasing
order of their complexities are as follows: one facility is in a fixed position, no
other facility is allowed to be placed in between the facilities, and other facilities
are allowed to be placed in between the facilities. Hence, the imposed positioning
and ordering constraints will be repaired in a sequence of a total of four cases (the
positioning constraints and the three cases of the ordering constraints).

In order to formulate the repairing mechanisms for the above four cases, the
following notations are also defined in addition to those defined in Sect. 20:

ui : Facility at position i before repairing
vi : Facility at position i after repairing
pr
i : Position of facility i before repairing
pv
i : Position of facility i after repairing
z : Right side facility of an ordered pair (z = Ri if Oi = Y)
a : Position of the left side facility of an ordered pair after repairing
b : Position of the right side facility of an ordered pair after repairing
n′ : Number of available positions for placing a particular facility
eq : qth available position for placing a particular facility

In the above notations, v is an array in which the repaired facilities will be stored,
while u is another array that will start as a copy of the current permutation r and
will delete a facility from it once it (the facility) is placed in v after repairing. Both
u and v will act globally until all the constraints are repaired. Before starting the
repairing of any constraint, u will be initialized with r and v with zero (i.e., ui = ri
and vi = 0 ; i = 1, 2, . . . , n). On the other hand, after placing the facilities in
v by repairing each type of constraints, r and u will be updated accordingly before
going to repair another type of constraints (r will be updated by copying the repaired
facilities from v and filling the vacant positions by the remaining facilities taking in
order from u). It is to be mentioned that u is mandatory only if any facility appears
in two or more ordering constraints, otherwise (if no facility appears in more than
one ordering constraint) a facility can be deleted directly from r once it is repaired
and placed in v.

While repairing ordered facilities, the array pr will keep record of the positions
of the facilities in r before repairing, and pv those of the facilities placed in
v after repairing. Both pr and pv will act locally during the repairing of each
type of ordering constraints. Before starting the repairing of any type of ordering
constraints, pr will be initialized with the positions of the facilities in r (i.e., pr

ri
= i ;

i = 1, 2, . . . , n), while pv with the positions of those facilities already placed in v
and with zero for the remaining facilities (i.e., pv

vi
= i if vi �= 0 and pv

vi
= 0 if

vi = 0 ; i = 1, 2, . . . , n).

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 365

The array e will be used to report the vacant positions for placing a facility in v
and n′ is the number of such vacant positions. On the other hand, only for handling
convenient, a and b as well as z will be used, respectively, as shorter notations of
the positions of the two facilities of an ordered pair and the right side facility of that
ordered pair.

Positioning Constraints

As the very first step of repairing the constraints, irrespective of any other
requirement, Eq. (20.5) is applied for placing the facilities of r in their specified
fixed positions in v, if any, and subsequently for removing them from u.

vk = ri
ui = 0

}
; if Tri = Y ; Pri = k ; i = 1, 2, . . . , n (20.5)

Ordering Constraints With a Facility of a Pair in a Fixed
Position

For an ordered pair with one facility already placed in a specified fixed position in
v using Eq. (20.5), the other facility is to be placed in another suitable position in v,
if not yet placed.

(i) If the left facility ri is already placed in its specified fixed position Pri in v,
Eqs. (20.6a) and (20.6b) can be used to place the right facility z in another
suitable position of v and subsequently to update pv and u.

vb = z
pv
z = b

upr
z
= 0

⎫
⎬

⎭ ; if Ori = Y ; Tri = Y ; Tz = N ; pv
z = 0 (20.6a)

where, a = Pri

b =

⎧
⎪⎪⎨

⎪⎪⎩

a + 1 ; if Ari,z = N ; va+1 = 0 or z

pr
z ; if Ari,z = Y ; vpr

z
= 0 ; pr

z > a

et ; if Ari,z = Y ; b = 0 ; et > a ; t ∈ {1, n′}
i = 1, 2, . . . , n .

(20.6b)

For placing z in v, the first condition in Eq. (20.6b) for b checks the availability
of the adjacent position on the right side of the fixed position a (= Pri) in v (i.e.,
whether the position a + 1 is vacant or already occupied by z only) if ri and z
are to be placed without allowing other facilities in between them. On the other

366 Z. Kalita and D. Datta

hand, when ri and z are allowed to be placed with other facilities in between
them, the second condition in Eq. (20.6b) checks if the position pr

z of z in r is
on the right side of a and its corresponding position in v is vacant (i.e, vpr

z
= 0),

otherwise the third condition finds a random vacant position in v on the right
side of a (b = 0 in the third condition means that a suitable value for b could
not be obtained by satisfying the previous condition). Then, Eq. (20.6a) places
z in position b of v if it is not yet placed in v (i.e., pv

z = 0).
(ii) If the right facility z is already placed in its specified fixed position Pz in v,

Eqs. (20.6c) and (20.6d) can be used to place the left facility ri in another
suitable position of v and subsequently to update pv and u.

va = ri
pv
ri

= a
ui = 0

⎫
⎬

⎭ ; if Ori = Y ; Tri = N ; Tz = Y ; pv
ri

= 0 (20.6c)

where, b = Pz

a =

⎧
⎪⎪⎨

⎪⎪⎩

b − 1 ; if Ari,z = N ; vb−1 = 0 or ri

i ; if Ari,z = Y ; vi = 0 ; i < b
et ; if Ari,z = Y ; a = 0 ; et < b ; t ∈ {1, n′}

i = 1, 2, . . . , n .

(20.6d)

For placing ri in v, the first condition in Eq. (20.6d) for a checks the availability
of the adjacent position on the left side of the fixed position b (= Pz) in v (i.e.,
whether the position b − 1 is vacant or already occupied by ri only) if ri and z
are to be placed without allowing other facilities in between them. On the other
hand, when ri and z are allowed to be placed with other facilities in between
them, the second condition in Eq. (20.6d) checks if the position i of ri in r is
on the left side of b and its corresponding position in v is vacant (i.e, vi = 0),
otherwise the third condition finds a random vacant position in v on the left side
of b (a = 0 in the third condition means that a suitable value for a could not
be obtained by satisfying the previous condition). Then, Eq. (20.6c) places ri in
position a of v if it is not yet placed in v (i.e., pv

ri
= 0).

Ordering Constraints with a Pair of Facilities in Two Adjacent
Positions

For an ordered pair of facilities ri and z, none of which requires a specified fixed
position and no other facility is allowed in between them, Eq. (20.7) can be used to
place them in two adjacent positions of v and subsequently to update pv and u.

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 367

va = ri
pv
ri

= a
ui = 0

⎫
⎬

⎭ ; if Ori = Y ; Ari,z = N ; Tri = N ; Tz = N ; pv
ri

= 0 (20.7a)

vb = z
pv
z = b

upr
z
= 0

⎫
⎬

⎭ ; if Ori = Y ; Ari,z = N ; Tri = N ; Tz = N ; pv
z = 0 (20.7b)

where, a =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i ; if vi = 0 or ri ; vi+1 = 0 or z

i − 1 ; if a = 0 ; vi−1 = 0 or ri ; vi = 0 or z

pr
z ; if a = 0 ; vpr

z
= 0 or ri ; vpr

z+1 = 0 or z

pr
z − 1 ; if a = 0 ; vpr

z−1 = 0 or ri ; vpr
z
= 0 or z

et ; if a = 0 ; vet+1 = 0 ; t ∈ {1, n′}
b = a + 1
i = 1, 2, . . . , n .

(20.7c)

In this case, two adjacent vacant positions a and b in v, in which ri and z can
be placed, are first obtained by satisfying any of the five conditions for a given
by Eq. (20.7c). The first condition checks if positions i and i + 1 of v are vacant
or already filled up respectively with ri and z, while the second condition checks
positions i − 1 and i of v for the same. Similarly, the third and fourth conditions
check positions in v for the same, corresponding to the pairs of positions (P r

z , P
r
z+1)

and (P r
z −1, P r

z), respectively. If two suitable adjacent positions in v, corresponding
to the present position of ri or z in r , are not found, then the fifth condition is applied,
which checks for two suitable random adjacent positions in v. Note that a = 0 in
each condition, starting from the second condition, means that its previous condition
was not satisfied.

Once two suitable adjacent positions a and b are found in v by satisfying one of
the five conditions given by Eq. (20.7c), facility ri is placed in a using Eq. (20.7a)
if it is not yet placed in v (i.e., pv

ri
= 0) and z is placed in b using Eq. (20.7b) if it

is not yet placed in v (i.e., pv
z = 0). Finally, the positions and facilities of pv and u,

respectively, are updated as per the requirement.

Ordering Constraints Allowing Other Facilities in Between a
Pair of Facilities

For an ordered pair of facilities ri and z, none of which requires a specified fixed
position and other facilities are also permitted in between them, Eq. (20.8) can be
used to place them in two adjacent positions of v and subsequently to update pv

and u.

368 Z. Kalita and D. Datta

va = ri
pv
ri

= a
ui = 0

⎫
⎬

⎭ ; if Ori = Y ; Ari,z = Y ; Tri = N ; Tz = N ; pv
ri

= 0 (20.8a)

vb = z
pv
z = b

upr
z
= 0

⎫
⎬

⎭ ; if Ori = Y ; Ari,z = Y ; Tri = N ; Tz = N ; pv
z = 0 (20.8b)

where, (a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i, pr
z) ; if vi = 0 or ri ; vpr

z
= 0 or z ; i < pr

z

(pr
z, i) ; if a = b = 0 ; vi = 0 or z ; vpr

z
= 0 or ri ; i > pr

z

(i, et2) ; if a = b = 0 ; vi = 0 or ri ; pv
z = 0 ; pr

z < i ; et2 > i
(et1 , p

r
z) ; if a = b = 0 ; pv

ri
= 0 ; i > pr

z ; vpr
z
= 0 or z ; et1 < pr

z

(et1 , et2) ; if a = b = 0 ; pv
ri

= 0 ; pv
z = 0 ; et1 < et2 ; t1, t2 ∈ {1, n′}

i = 1, 2, . . . , n .
(20.3)

This constraint is similar with the previous one of Sect. 20, with the only
difference that ri and z can be placed here in any two suitable positions in v allowing
the placement of other facilities in between them. In this case, two suitable vacant
positions a and b (a < b) in v, in which ri and z can be placed, are first obtained
by satisfying any of the five conditions for a and b given by Eq. (20.3). The first
condition checks if positions in v corresponding to positions i and pr

z of r are
vacant or already filled up respectively with ri and z when i < pr

z, while the second
condition checks the same in reverse order when i > pr

z. In the third condition, the
position in v corresponding to position i of r is either vacant or filled up with ri , but
z is not yet placed in v and its position in r is on the left side of ri (i.e., pr

z < i),
and hence, a suitable random position et2 (> i) is obtained in v as b for placing z.
The forth condition is similar to the third condition. In this case, the position in v
corresponding to position pr

z of r is either vacant or filled up with z, but ri is not yet
placed in v and its position in r is on the right side of z (i.e., i > pr

z), and hence,
a suitable random position et1 (< pr

z) is obtained in v as a for placing ri . On the
other hand, the fifth condition says that none of ri and z is yet placed in v and the
positions in v corresponding to their positions in r are also not vacant, and hence,
two suitable random positions et1 and et2 (et1 < et2) are obtained in v as a and b for
placing ri and z, respectively. Note that a = b = 0 in each condition, starting from
the second condition, means that its previous condition was not satisfied.

Once two suitable positions a and b (a < b) are found in v by satisfying one of
the five conditions given by Eq. (20.3), facility ri is placed in a using Eq. (20.8a) if
it is not yet placed in v (i.e., pv

ri
= 0) and z is placed in b using Eq. (20.8b) if it is

not yet placed in v (i.e., pv
z = 0). Finally, the positions and facilities of pv and u,

respectively, are updated as per the requirement.

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 369

Illustration of the Repairing Mechanisms

The instance considered in Sect. 20 involves all the four types of constraints
introduced in Sects. 20, 20, 20, and 20, detail of which is given in Table 20.1.
Starting with a permutation arranging the 10 facilities serially, the step-wise
repairing of various constraints using Eqs. (20.5)–(20.8), leading to the final solution
of Fig. 20.1, is shown in Fig. 20.2. Initially all the facilities are shown in gray color.
Thereafter, once a facility is repaired and placed in a new position, its color is
changed to cyan. At the very first step, facilities 3 and 4 are placed at their fixed
positions of 8 and 7, respectively (positioning constraints explained in Sect. 20),
and their original positions are filled up by shifting the un-repaired facilities 5–8
towards left. In the next step, facilities 4 and 2 are ordered (ordering constraint
explained in Sect. 20), in which facility 2 is placed at position 9 and its original
position is filled up by shifting facilities 5–9 towards left. The third step repairs the
ordering constraints addressed in Sect. 20, in which facility 10 is first placed on the
immediate left side of facility 6 by shifting facility 5, 7, 8 and 9 towards right (to
positions 4–6 and 10, respectively), and then facilities 7 and 8 are interchanged so
as to order them together. Although the final step is responsible for repairing the
ordering constraints of Sect. 20, practically nothing is required to do as both the
pairs (facilities 6 and 5, and facilities 5 and 9) are already ordered.

Repairing positioning constraints of type 1

Repairing ordering constraints of type 2(a)

Repairing ordering constraints of type 2(b)

Repairing ordering constraints of type 2(c)

2 3 4 5 6 7 8 9 101

0192 5 6 7 8 4 31

101 5 6 7 8 349 2

1 9234510 6 8 7

23410 6 8 7 951

Fig. 20.2 Illustration of the step-wise repairing of various constraints imposed to the proposed
cSRFLP model (repaired facilities are shown in cyan color and others in gray color)

370 Z. Kalita and D. Datta

Pseudo-Codes of the Repairing Mechanisms

It can be observed in Eqs. (20.5)–(20.8), as well as in the illustration in Fig. 20.2,
that the repairing of the considered positioning and ordering constraints could be
complicated to understand and implement. Therefore, the pseudo-codes for the four
types of repairing mechanisms are also provided through Tables 20.2, 20.3, 20.4,
20.5, 20.6, and 20.7 by implementing Eqs. (20.5)–(20.8).

The subroutine repair_cSRFLP(), shown in Table 20.2, first initializes the global
vectors u and v, then calls other subroutines for repairing different types of
constraints, and finally returns the completely repaired permutation r .

The positioning constraints are repaired by implementing Eq. (20.5) in the
subroutine cSRFLP_position() as shown in Table 20.3. It first places all the fixed-
position facilities in the specified positions in v, then updates r and u by calling the
subroutine cSRFLP_update(), and finally returns u, v and r .

The subroutine cSRFLP_order_fix() in Table 20.4 implements Eq. (20.6) for
repairing the first type of ordering constraints, in which one facility of a pair is
already placed in a fixed position by the subroutine cSRFLP_position() shown
in Table 20.3. It first initializes pr and pv locally by calling the subroutine
cSRFLP_repair_initialize(). Next, a suitable position b in v is obtained for z using
Eq. (20.6b) when ri is in a specified fix position, or a is obtained for ri using
Eq. (20.6d) when z is in a specified fix position. Then, ri and z are arranged in v

Table 20.2 Pseudo-code for repairing the constraints imposed to cSRFLP

subroutine repair cSRFLP(n,r)
for (i = 1 to n) do // Initialize global u and v

vi := 0
ui := ri

end for
call cSRFLP position(n,u,v,r) // Repair positioning constraints expressed by Eq. (5)
call cSRFLP order fix(n,u,v,r) // Repair ordering constraint expressed by Eq. (6)
call cSRFLP order together(n,u,v,r) // Repair ordering constraint expressed by Eq. (7)
call cSRFLP order free(n,u,v,r) // Repair ordering constraint expressed by Eq. (8)

return r
end subroutine

Table 20.3 Pseudo-code implementing the mechanism for repairing positioning constraints as
expressed by Eq. (20.5) in Sect. 20

subroutine cSRFLP position(n,u,v,r)
for (i = 1 to n) do

if (Tri = Y) do
vk := ri // ri is placed at position k (= Pri) of v
ui := 0 // ri is removed from u

end if
end for
call cSRFLP update(n,v,r,u fosutatsehtetadpU//) r and u

return u,v,r
end subroutine

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 371

Table 20.4 Pseudo-code implementing the mechanism for repairing ordering constraints with a
facility of a pair in a fixed position as expressed by Eq. (20.6) in Sect. 20

subroutine cSRFLP order fix(n,u,v,r)
call cSRFLP repair initialize(n,r,v, pr, pv ezilaitinI//) pr and pv

for (i = 1 to n) do
if (Ori = N) continue end if // ri is not ordered on left side
z := Rri // Right hand side facility
if (Tri = N, Tz = N) continue end if // No facility in fixed position
a := b := 0
if (Tri = Y) do // ri in a fixed position

a := Pri // Fixed position of ri in v
if (Ari,z = N, a+1 n, va+1 = 0 or z) do b := a+1 end if // 1st condition of Eq. (6b)
if (Ari,z = Y, vpr

z = 0, pr
z > a) do b := pr

z end if // 2nd condition of Eq. (6b)
if (Ari,z = Y, b = 0) do // 3rd condition of Eq. (6b)

call random positions(v,a+1,n,n ,e (niycnacaV//) a+1,n) in v
if (n = 0) do // Vacant position(s) available

call t := random integer(1,n 1(niregetnimodnaR//) ,n)
b := et // Random position for z in v

if (Tz = Y) do // z in a fixed position (not ri)
b := Pz // Fixed position of z in v
if (Ari,z = N, b> 1, vb−1 = 0 or ri) do a := b−1 end if // 1st condition of Eq. (6d)
if (Ari,z = Y, vi = 0, i< b) do a := i end if // 2nd conditions of Eq. (6d)
if (Ari,z = Y, a = 0) do // 3rd conditions of Eq. (6d)

call random positions(v,1,b−1,n ,e 1(niycnacaV//) ,b−1) in v
if (n = 0) do // Vacant position(s) available

t := call random integer(1,n 1(niregetnimodnaR//) ,n)
a := et // Random position for ri in v

if (a = 0, b = 0, (va = 0 or ri), (vb = 0 or z)) do
call cSRFLP arrange(a,b, i, pr

z,ri,z,u,v, p
v egnarrA//) ri and z in v

else call cSRFLP constraint error(n,v,r,u,ri,z) // Arrangement not possible
end else if

end for
call cSRFLP update(n,v,r,u) // Update r and u
return u,v,r

end subroutine

by calling the subroutine cSRFLP_arrange(). Finally, u, v and r are returned after
updating r and u through the subroutine cSRFLP_update().

Equation (20.7) is implemented in the subroutine cSRFLP_order_together(), as
shown in Table 20.5, for repairing the second type of ordering constraints, in which
the two facilities of an ordered pair are to be placed in two adjacent positions, i.e.,
without allowing any other facility in between them. The subroutine first initializes
pr and pv locally by calling the subroutine cSRFLP_repair_initialize(). Next, two
adjacent vacant positions a and b are obtained for ri and z using Eq. (20.7c). Then,
ri and z are arranged in v by calling the subroutine cSRFLP_arrange(). Finally, u, v
and r are returned after updating r and u through the subroutine cSRFLP_update().

Next, the pseudo-code implementing Eq. (20.8) is presented through the sub-
routine cSRFLP_order_free() in Table 20.6 for repairing the third type of ordering
constraints, which allow the placement of other facilities in between the two
facilities of an ordered pair. The subroutine first initializes pr and pv locally by
calling the subroutine cSRFLP_repair_initialize(). Then, ri and z are arranged in
v by calling the subroutine cSRFLP_arrange() after obtaining there two suitable

372 Z. Kalita and D. Datta

Table 20.5 Pseudo-code implementing the mechanism for repairing ordering constraints with the
two facilities of an ordered pair in two adjacent positions as expressed by Eq. (20.7) in Sect. 20

subroutine cSRFLP order together(n,u,v,r)
call cSRFLP repair initialize(n,r,v, pr, pv ezilaitinI//) pr and pv

for (i = 1 to n) do
if (Ori = N) continue end if // ri is not ordered on left side
z := Rri // Right hand side facility
if (Tri = Y or Tz = Y) continue end if // One facility in fixed position
if (Ari ,z = Y) continue end if // Adjacent placement not required
a := b := 0
if (vi = 0 or ri, i+1 n, vi+1 = 0 or z) do a := i end if // 1st condition of Eq. (7c)
if (a = 0, i−1 1, vi−1 = 0 or ri, vi = 0 or z) do a := i−1 end if // 2nd condition of Eq. (7c)
if (a = 0, vprz = 0 or ri, pr

z +1 n, vprz+1 = 0 or z) do a := pr
z end if // 3rd condition of Eq. (7c)

if (a = 0, pr
z−1 1, vprz−1 = 0 or ri, vprz = 0 or z) do a := pr

z−1 end if // 4th condition of Eq. (7c)
if (a = 0) do // 5th condition of Eq. (7c)

call random positions(v,1,n,n ,e) // Vacancy in (1,n) in v
if (n 2) do // Vacant positions available

repeat
t1 := call random integer(1,n 1(niregetnimodnarA//) ,n)
t2 := call random integer(1,n 1(niregetnimodnarrehtonA//) ,n)

while |t1 − t2 = 1 // Not adjacent positions
if (t1 < t2) do a := et1 end if
if (t1 > t2) do a := et2 end if

if (a = 0) do b := a+1 end if // a and b are required positions
if (a = 0, b = 0, (va = 0 or ri), (vb = 0 or z)) do

call cSRFLP arrange(a,b, i, pr
z,ri,z,u,v, p

v egnarrA//) ri and z
else call cSRFLP constraint error(n,v,r,u,ri,z elbissoptontnemegnarrA//)
end else if

end for
call cSRFLP update(n,v,r,u) // Update r and u
return u,v,r

end subroutine

vacant positions a and b using Eq. (20.3). Finally, r and u are updated through the
subroutine cSRFLP_update(), and then u, v and r are returned.

On the other hand, the five auxiliary subroutines called in the above men-
tioned four repairing subroutines are presented in Table 20.7, which are cSR-
FLP_repair_initialize(), random_positions(), cSRFLP_arrange(), cSRFLP_update()
and cSRFLP_constraint_error(). The positioning subroutine cSRFLP_position() in
Table 20.3 calls cSRFLP_update() only, while all the five auxiliary subroutines
are called in the three ordering subroutines presented in Tables 20.4, 20.5, and
20.6. At the very beginning of each of the three ordering subroutines, the auxiliary
subroutine cSRFLP_repair_initialize() is called for initializing the vectors pr and
pv locally with the positions of the facilities arranged in r and v, respectively. The
auxiliary subroutine random_positions() is called for obtaining the vacant positions
in v in a given range, in one of which a particular facility is to be placed. The
auxiliary subroutine cSRFLP_arrange() is engaged for placing the facilities of a
pair if suitable positions for them can be obtained in v, otherwise the auxiliary
subroutine cSRFLP_constraint_error() reports the inability to repair the ordering
pair. Upon successful repairing of each type of constraints, the auxiliary subroutine
cSRFLP_update() is called for updating the global vectors r and u.

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 373

Table 20.6 Pseudo-code implementing the mechanism for repairing ordering constraints with the
permission for placing other facilities in between the two facilities of an ordered pair as expressed
by Eq. (20.8) in Sect. 20

subroutine cSRFLP order free(n,u,v,r)
call cSRFLP repair initialize(n,r,v, pr, pv ezilaitinI//) pr and pv

for (i = 1 to n) do
if (Ori = N) continue end if // ri is not ordered on left side
z := Rri // Right hand side facility
if (Tri = Y or Tz = Y) continue end if // One facility in fixed position
if (Ari ,z = N) continue end if // Facilities to be placed together
a := b := 0
if (vi = 0 or ri, vprz = 0 or z, i< pr

z) do a := i, b := pr
z end if // 1st condition of Eq. (8c)

if (a = b = 0, vi = 0 or z, vprz = 0 or ri, i> pr
z) do a := pr

z, b := i end if // 2nd condition of Eq. (8c)
if (a = b = 0, vi = 0 or ri, pv

z = 0, pr
z < i) do // 3rd condition of Eq. (8c)

call random positions(v, i+1,n,n ,e (niycnacaV//) i+1,n) in v
if (n > 0) do // Vacant position(s) available

t2 := call random integer(1,n) // A random integer in (1,n)
a := i, b := et2 // i and et2 are positions in v

if (a = b = 0, pv
ri

= 0, i> pr
z, vprz = 0 or z) do // 4th condition of Eq. (8c)

call random positions(v,1, pr
z −1,n ,e 1(niycnacaV//) , pr

z) in v
if (n > 0) do // Vacant position(s) available

t1 := call random integer(1,n) // A random integer in (1,n)
a := et1 , b := pr

z // et1 and pr
z are positions in v

if (a = b = 0, pv
ri

= 0, pv
z = 0) do // 5th condition of Eq. (8c)

call random positions(v,1,n,n ,e) // Vacancy in (1,n) in v
if (n 2) do // Vacant positions available

repeat
t1 := call random integer(1,n 1(niregetnimodnarA//) ,n)
t2 := call random integer(1,n 1(niregetnimodnarrehtonA//) ,n)

while t1 = t2
if (t1 < t2) do a := et1 , b := et2 end if
if (t1 > t2) do a := et2 , b := et1 end if

if (a = 0, b = 0, (va = 0 or ri), (vb = 0 or z)) do
call cSRFLP arrange(a,b, i, pr

z,ri,z,u,v, p
v egnarrA//) ri and z

else call cSRFLP constraint error(n,v,r,u,ri,z elbissoptontnemegnarrA//)
end else if

end for
call cSRFLP update(n,v,r,u) // Update r and u
return u,v,r

end subroutine

Implementation of the Repairing Mechanisms

The repairing mechanisms, expressed through Eqs. (20.5)–(20.8) and pseudo-codes
in Tables 20.3, 20.4, 20.5, and 20.6, can be implemented outside of an optimizer (a
general algorithm or a commercial software package). However, the optimizer
should have the provision to support an external subroutine evaluating a solution (a
permutation in the present study) and also to accept the solution modified in the
subroutine. Such a procedure is shown in Fig. 20.3. In this case, the optimizer starts
by initializing a solution, which is sent to the external subroutine for evaluation.
The external subroutine first repairs the solution if required, and then evaluates (i.e.,
computes the objective value) and returns the repaired solution to the optimizer.
The optimizer improves the repaired solution towards the optimum and then sends
it to the external subroutine for evaluation. In this way, the process of improving
and evaluating the solution is continued until some given termination criteria are
fulfilled.

374 Z. Kalita and D. Datta

Table 20.7 Five auxiliary subroutines called in other subroutines presented in Tables 20.3, 20.4,
20.5, and 20.6

subroutine cSRFLP repair initialize(n,r,v, pr, pv)
for (i = 1 to n) do pv

i := 0 end for
for (i = 1 to n) do

pr
ri

:= i // Position of ri
if (vi = 0) do pv

vi
:= i end if // Position of vi

return pr, pv

end subroutine

subroutine random positions(v,a,b,n ,e)
n := 0
for (i = a to b) do

if (vi = 0) do n = n +1, en := i end if // Vacant positions in v found

return n ,e
end subroutine

subroutine cSRFLP arrange(a,b, lp,rp, lf,rf,u,v, pv)
if (pv

lf
= 0) do // Facility lf to be arranged in v

pv
lf

:= a // Facility lf placed at a of v
va := lf

ulp := 0 // Facility lf removed from lp of u
if (pv

rf
= 0) do // Facility rf to be arranged in v

pv
rf

:= b // Facility rf placed at b of v
vb := rf

urp := 0 // Facility rf removed from rp of u
return u,v, pv

end subroutine

subroutine cSRFLP update(n,v,r,u)
s := 1
for (i = 1 to n) do // Updating r

if (vi = 0) do ri := vi
else do

for (j = s to n) do
if (u j = 0) do

ri := u j
s := j+1
break

for (i = 1 to n) do // Updating u
if (vi = 0) do ui := 0
else do ui := ri

return r,u
end subroutine

subroutine cSRFLP constraint error(n,v,r,u, lf,rf)
write “Facilities lf and rf could not be ordered” quit // Error message

end subroutine

Genetic Algorithm for Optimizing the cSRFLP Model

Genetic algorithm (GA) is a stochastic technique that mimics the Darwin’s evolution
mechanisms based on the “survival of the fittest” concept. The primary component
of a GA is an individual representing a complete solution of a problem, where
the individual is usually codified as an array of the decision variables of the
problem. A set of individuals is taken as a GA population, which is gradually
evolved towards the optimum of the problem through repeated application of three
operators similar to those from natural evolution, namely selection, crossover, and

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 375

Initialize solution

Repair solution

Evaluate solution

Terminate?

Stop

Improve solution

repaired solution

Evaluate the

Optimizer External subroutine

No

Yes

Fig. 20.3 Implementation of an external subroutine in an optimizer for repairing and evaluating a
solution

mutation operators. The selection operator identifies the better individuals from
the current GA population, the crossover operator generates new individuals by
exploiting those better individuals identified by the selection operator, and finally
the mutation operator is engaged to explore the neighborhood of the new individuals
generated by the crossover operator. The process of evolution of the GA population
is continued in this way until some termination criteria are fulfilled, usually until a
given maximum number of generations are performed (see Deb [7], Goldberg [10]
for further detail).

The permutation-based genetic algorithm (pGA), investigated by Datta et al. [5]
for solving the unconstrained SRFLP model, is adopted here as the general-purpose
algorithm for handling the cSRFLP model, which will call an external subroutine for
repairing and evaluating its individuals. The main working procedure of the pGA, in
the context of the proposed cSRFLP, is presented here in brief (refer Datta et al. [5],
Kalita and Datta [15] for detail of the pGA).

Individual Initialization

Each individual of the pGA is considered to be an array to represent a permutation
of a given number (in the present work, the number of facilities to be arranged).
Unlike in real and integer-valued problems, a random initialization process is likely
to generate an invalid individual for a permutation-based problem by repeating some
values while omitting others. Therefore, a greedy technique is applied in the pGA
for initializing an individual with a valid permutation. In this process, a temporary
array is taken first to represent a permutation of n in ascending order starting from
one. Then, the elements of an individual are assigned one by one with the values

376 Z. Kalita and D. Datta

of random positions of the temporary array. After assigning a value to an element
of the individual, the temporary array is updated by deleting that value from it. The
process is continued until the temporary array is exhausted, i.e., the pGA individual
is assigned with a valid permutation.

Individual Evaluation

An individual of the pGA, as initialized in Sect. 20 or generated by the crossover and
mutation operators in Sects. 20 and 20 respectively, represents a valid permutation
of a given number. However, the cSRFLP seeks the placement of its facilities subject
to the positioning and ordering constraints imposed to some facilities as given by
Eqs. (20.2) and (20.3), respectively, which means that an arbitrary permutation of
the given facilities may not be a feasible solution of the cSRFLP model. Therefore,
as shown in Fig. 20.3, each pGA individual is sent to an external subroutine, where
it is first repaired by applying the repairing mechanisms addressed in Sect. 20 and
then evaluated for the objective function expressed by Eq. (20.1).

Selection Operator

For forming a mating pool, the binary tournament selection operator [7] is used to
select better individuals from the current pGA population. The operator picks up at a
time two random individuals from the pGA population and updates the mating pool
with a copy of the best one based on their objective values. In order to reduce the
algorithmic complexity of a GA, the size of the mating pool is usually made equal
to that of the GA population by repeating the process of selecting and copying of
better individual.

Crossover Operator

A problem-based crossover operator is used in the pGA for generating a new
feasible individual (i.e., a valid permutation of the given facilities) by exploiting
two random parent individuals picked up from the mating pool generated by the
selection operator. The crossover operator generates a new individual with a prefixed
crossover probability as follows: each element of the new individual is assigned the
value of the corresponding element of one of the selected two parent individuals
with equal probability. If an element of the new individual is not vacant, the value
selected against it is kept temporarily in reserve. Finally, all the values kept in
reserve are assigned randomly to the vacant elements of the new individual.

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 377

Mutation Operator

The pGA employs a very simple mutation operator, which chooses two elements
randomly from an individual, generated in the crossover operation. Then the values
of the elements are swapped with a low mutation probability. Since none of the
values is altered, but those are swapped only, the mutation operator forms a new
individual by exploring successfully the neighborhood of an existing individual.

Elite Preserving Mechanism

Although GA is expected to converge to the optimum because of the exploitation of
the previous individuals by the crossover operator and exploration of the search
space by the mutation operator, the stochastic nature may cause it to fail in
generating better individuals at some generations, or even to push the search
opposite to the optimum of upon generation of new individuals worse than those
of the present population. For preventing such situations, it is generally suggested
to preserve some elite individuals of the population over generations. In such an
attempt, the elite preserving mechanism proposed by Deb et al. [8] is employed
in the pGA. This mechanism first combines the current and new populations of a
generation, and then the best 50% individuals of the combined population is taken
to form the population for the next generation 20.

Computational Experiment

The repairing mechanisms proposed in Sect. 20 and the pGA presented in Sect. 20
are coded in C programming language and executed in a Linux environment.

The set of 20 instances in the range of [60,80], introduced by Anjos et al. [2] for
evaluating their SRFLP formulation, are taken in the present study for evaluating
the cSRFLP model by imposing positioning and ordering constraints to some of
the facilities. For easy recognition, the two types of constraints are imposed to the
same facilities of all the instances. Facilities 1 and 60 are made to subject to the
positioning constraints requiring to place them, respectively, at the first and sixtieth
positions of a permutation. On the other hand, for demonstrating the ordering
constraints, the pair of facilities 20 and 30 are made to be ordered without allowing
other facilities in between them, while the pair of facilities 25 and 10 are made to
be ordered allowing to place other facilities in between them.

In the numerical experiment, the number of facilities requiring predefined
positions, as well as the indices and required predefined positions for those facilities
are taken as the input parameters for the positioning constraints. For the ordering
constraints, the input parameters include the number of facility pairs required to be

378 Z. Kalita and D. Datta

ordered, the indices of the left side and right side facilities of each ordering pair.
Further input parameter for the ordering constraints is the option for allowing or not
allowing the placement of other facilities in between the facilities of a given pair. For
applying the repairing mechanisms expressed by Eqs. (20.5)–(20.8), whose pseudo-
codes are given in Tables 20.2, 20.3, 20.4, 20.5, 20.6, and 20.7, all the facilities can
first be arranged in a matrix form as shown in Table 20.1.

It is a known fact that the performance of a stochastic optimizer, like a GA,
may greatly be influenced by the chosen algorithmic parameter values, particularly
in the case of combinatorial optimization problems including the facility layout
problem. Hence, researchers often conduct some transition rule based experiments
for obtaining a suitable set of algorithmic parameter values for effectively tackling
a problem at hand. However, since the present work is not aimed at developing an
algorithm but to demonstrate a procedure for handling the cSRFLP problem, based
on some trial runs a pGA population of size 60 is considered to be evolved for a
maximum of 500 generations with fixed crossover probability of 75% and mutation
probability of 1%. With those parameter values, the pGA is executed for 30 times
for each problem instance with different sets of initial solutions.

The obtained best results in terms of the objective values (i.e., the overall material
flow cost among the given facilities) for the studied set of problem instances are
shown in Table 20.8, where the constrained facilities are shown in boldface fonts
for identifying easily. Since it is an introductory work on the cSRFLP, the results
obtained here could not be compared with any existing work. Therefore, the best
known results, obtained by Kothari and Ghosh [16] studying the instances under
their unconstraint SRFLP model, are also shown in Table 20.8 for comparing with
the same obtained for the cSRFLP model. Due to the obvious reasons upon imposing
the positioning and ordering constraints, the results of the cSRFLP instances are
found inferior to those of the SRFLP instances by some amount.

Conclusion

So far, the single-row facility layout problem (SRFLP) is studied as an uncon-
strained optimization problem for minimizing the overall material flow cost among
a given number of facilities, i.e., the facilities can be placed freely at any position,
thus making any permutation of the facilities as a feasible solution of the problem.
However, a practical problem might face some restrictions on the arrangement of
some facilities in random positions, instead requiring a facility to be placed at a
predefined fixed position or a particular pair of facilities to be arranged in a given
order with or without allowing the placement of other facilities in between them.
Accordingly, a constrained SRFLP model (cSRFLP in short) is introduced here by
imposing positioning and ordering constraints to some given facilities.

Since a general-purpose optimizer may face a huge computational burden on
satisfying such permutation-based constraints, an intelligent search will require
the development of a specialized algorithm by incorporating certain problem-

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 379

Ta
bl

e
20

.8
T

he
be

st
cS

R
FL

P
so

lu
tio

ns
ob

ta
in

ed
fo

r
th

e
20

in
st

an
ce

s
of

A
nj

os
et

al
.[

2]
an

d
th

ei
r

ob
je

ct
iv

e
va

lu
es

(i
.e

.,
th

e
to

ta
lm

at
er

ia
lfl

ow
co

st
s)

al
on

g
w

ith
th

e
be

st
kn

ow
n

co
rr

es
po

nd
in

g
SR

FL
P

va
lu

es
re

po
rt

ed
by

K
ot

ha
ri

an
d

G
ho

sh
[1

6]

ID
In

st
an

ce
M

at
er

ia
lfl

ow
co

st
Pe

rm
ut

at
io

n
of

th
e

fa
ci

lit
ie

s
(c

SR
FL

P
m

od
el

)
SR

FL
P

cS
R

FL
P

%
in

cr
ea

se

1
60

-0
1

14
77

83
4.

0
14

99
31

8.
0

1.
45

1
27

11
48

56
28

24
15

21
3

40
25

6
51

54
46

7
57

12
47

36
44

16
13

35
4

32
33

8
26

2
17

14
42

22
49

41
9

5
38

29
23

45
31

43
37

50
53

10
52

59
19

58
55

20
30

39
18

34
60

2
60

-0
2

84
17

76
.0

85
88

64
.0

2.
03

1
4

5
19

6
59

24
53

49
47

27
21

32
52

20
30

37
2

57
7

51
25

10
12

23
18

56
40

35
46

39
17

50
43

8
33

26
9

45
28

58
15

55
34

31
14

44
41

11
54

13
22

48
36

38
29

16
42

3
60

3
60

-0
3

64
83

37
.5

69
69

37
.5

7.
50

1
4

5
19

6
59

24
53

49
47

27
21

32
52

20
30

37
2

57
7

51
25

10
12

23
18

56
40

35
46

39
17

50
43

8
33

26
9

45
28

58
15

55
34

31
14

44
41

11
54

13
22

48
36

38
29

16
42

3
60

4
60

-0
4

39
84

06
.0

45
77

37
.0

14
.8

9
1

13
12

43
25

55
34

4
41

28
38

20
30

49
9

52
48

51
32

47
54

37
42

26
29

16
8

14
27

18
58

15
50

35
2

45
5

3
53

59
40

17
46

6
23

21
11

56
44

33
22

24
36

7
39

10
57

19
31

60
5

60
-0

5
31

88
05
.0

34
54

53
.0

8.
36

1
33

12
49

44
52

34
38

3
11

26
43

29
32

14
57

23
22

18
5

51
15

58
31

45
24

28
56

42
21

50
25

10
8

48
6

27
40

20
30

36
35

17
46

2
55

13
9

54
4

41
19

47
59

16
7

37
53

39
60

6
70

-0
1

15
28

53
7.

0
15

96
18

3.
0

4.
43

1
53

47
40

65
2

39
28

62
8

22
15

32
9

63
51

69
68

25
16

64
61

41
38

56
10

67
44

70
26

14
19

33
42

20
30

59
55

11
23

21
24

36
18

27
13

54
5

12
58

6
49

52
7

66
3

34
4

31
60

45
46

43
48

17
29

57
35

37
50

7
70

-0
2

14
41

02
8.

0
14

56
77

7.
0

1.
09

1
28

39
53

52
25

36
21

10
26

7
3

19
13

69
58

9
67

33
23

45
29

62
18

63
14

11
6

44
43

24
42

49
20

30
8

40
4

2
46

54
5

16
22

27
15

37
34

68
31

55
32

35
12

65
38

17
70

66
60

51
48

47
41

59
61

57
64

50
56

8
70

-0
3

15
18

99
3.

5
15

61
14

7.
5

2.
78

1
8

63
51

20
30

27
54

29
21

43
58

32
23

24
67

41
47

6
9

26
4

22
65

61
7

70
19

2
42

37
68

53
14

25
10

50
49

28
18

56
36

66
39

5
3

40
11

35
62

13
55

45
48

12
59

33
46

38
60

15
64

69
34

17
31

57
52

44
16

(c
on

tin
ue

d)

380 Z. Kalita and D. Datta

Ta
bl

e
20

.8
(c

on
tin

ue
d)

M
at

er
ia

lfl
ow

co
st

ID
In

st
an

ce
SR

FL
P

cS
R

FL
P

%
in

cr
ea

se
Pe

rm
ut

at
io

n
of

th
e

fa
ci

lit
ie

s
(c

SR
FL

P
m

od
el

)

9
70

-0
4

96
87

96
.0

10
33

61
2.

0
6.

69
1

41
16

25
35

8
38

31
45

47
43

52
63

48
20

30
3

6
40

67
17

55
23

21
19

70
69

57
56

27
34

50
37

28
59

44
18

5
49

2
13

46
36

14
26

24
12

53
68

62
58

33
42

61
11

29
22

64
9

60
54

10
65

32
39

51
4

15
7

66

10
70

-0
5

42
18

00
2.

5
42

75
60

6.
5

1.
37

1
28

19
38

32
68

23
62

31
51

2
40

58
37

50
22

39
6

54
16

65
63

27
49

8
26

41
43

61
21

56
14

35
24

70
20

30
5

12
36

4
53

11
7

29
34

46
3

42
59

66
15

25
10

55
45

48
57

47
60

52
13

18
33

69
9

64
44

17
67

11
75

-0
1

23
93

45
6.

5
24

89
35

4.
5

4.
01

1
38

46
16

29
9

63
72

54
28

51
5

13
33

21
8

45
17

22
25

75
11

39
62

20
30

43
68

70
3

4
66

10
32

31
12

34
74

19
2

42
40

24
37

53
55

71
41

44
6

35
7

23
50

49
65

15
56

18
60

61
26

59
27

52
36

57
73

69
67

48
14

47
64

58

12
75

-0
2

43
21

19
0.

0
44

15
17

0.
0

2.
17

1
25

49
26

56
37

61
47

72
28

66
39

18
35

7
24

33
54

10
4

19
53

5
75

46
65

71
12

36
67

22
8

62
23

34
27

15
3

11
38

16
74

68
13

17
55

48
9

31
52

73
58

41
69

29
59

20
30

57
60

50
42

45
40

63
14

70
6

44
2

21
32

64
43

51

13
75

-0
3

12
48

42
3.

0
12

51
98

0.
0

0.
28

1
22

50
54

14
63

53
55

25
8

72
18

70
66

38
2

37
44

20
30

31
62

65
3

59
34

52
49

6
32

7
40

58
9

75
24

21
28

35
45

67
5

73
57

11
16

48
71

13
27

36
12

56
61

64
74

39
4

26
60

68
23

29
46

41
51

43
17

15
33

19
10

42
69

47

14
75

-0
4

39
41

81
6.

5
42

05
91

1.
5

6.
70

1
21

17
9

72
38

69
68

27
25

6
51

61
74

11
31

4
71

43
54

59
23

26
58

66
63

56
48

19
2

35
67

32
13

45
24

18
34

73
53

44
28

52
16

65
3

64
12

55
46

39
33

40
29

41
20

30
57

22
60

47
70

37
8

62
10

42
75

7
50

15
14

5
49

36

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 381

15
75

-0
5

17
91

40
8.

0
18

52
78

2.
0

3.
43

1
24

37
72

52
13

35
50

43
58

20
30

68
71

44
47

32
22

73
66

65
7

31
23

46
42

49
8

38
3

17
28

12
70

5
55

25
29

10
59

45
34

36
11

57
48

54
15

67
4

56
21

75
69

39
74

16
61

41
60

18
53

14
40

64
62

6
2

51
19

63
9

26
33

27

16
80

-0
1

20
69

09
7.

5
21

08
98

9.
5

1.
93

1
78

25
11

79
57

71
4

28
64

8
77

38
3

35
59

5
26

73
72

69
24

37
33

13
7

17
74

6
18

23
22

76
36

20
30

31
9

15
58

42
32

50
10

41
48

54
66

56
62

34
51

49
75

45
47

68
52

53
60

12
61

39
43

14
63

19
29

46
16

21
40

65
27

44
67

80
2

70
55

17
80

-0
2

19
21

13
6.

0
19

90
79

0.
0

3.
63

1
57

24
55

58
46

14
49

15
74

47
56

32
77

12
54

41
7

16
28

72
27

25
23

76
67

21
20

30
19

13
6

4
38

36
34

39
8

65
42

2
44

50
9

40
62

75
53

68
3

35
26

59
33

29
73

37
71

79
60

52
70

31
78

64
80

51
69

63
43

45
5

48
61

66
17

10
11

18
22

18
80

-0
3

32
51

36
8.

0
34

87
87

4.
0

7.
24

1
57

54
37

53
36

68
34

69
29

20
30

32
13

48
72

22
25

56
76

10
77

31
50

52
51

8
78

71
17

27
80

44
21

18
11

14
23

41
7

73
59

2
19

15
75

55
38

39
3

9
66

12
79

6
28

65
42

24
60

67
4

45
5

35
43

64
47

46
70

26
62

49
61

33
16

58
40

63
74

19
80

-0
4

37
46

51
5.

0
40

09
51

8.
0

7.
02

1
69

64
75

71
35

38
78

54
46

28
32

42
12

80
74

43
14

20
30

76
29

9
62

27
6

17
67

4
18

3
2

16
7

72
31

19
15

26
52

48
33

79
37

53
77

13
49

8
51

65
70

5
11

39
45

68
23

25
60

59
66

73
63

34
24

55
10

44
36

21
58

57
22

56
61

40
50

41
47

20
80

-0
5

15
88

88
5.

0
16

36
43

8.
0

2.
99

1
25

2
48

7
47

52
38

61
73

10
68

21
37

72
49

74
70

11
8

22
19

76
31

36
79

62
9

33
75

34
35

54
6

44
71

32
53

20
30

55
59

65
3

39
66

77
18

43
80

40
4

45
23

63
46

50
57

5
60

26
56

24
28

15
14

64
67

16
51

29
12

13
27

42
78

69
58

41
17

382 Z. Kalita and D. Datta

specific components in it. However, many practitioners and academia working
on application areas suffer from expertise required for the development of such
a specialized algorithm. Hence, they prefer some alternative techniques to get
their works done through some existing general-purpose algorithms or commercial
software packages. Such a procedure is presented here by developing some repairing
mechanisms, which can be applied along with a general-purpose algorithm for
forcibly satisfying the constraints of the cSRFLP outside the algorithm.

Taking a permutation-based genetic algorithm (name the pGA) as the general-
purpose algorithm, the potentiality of the proposed procedure is demonstrated by
applying it to a set of instances of sizes in the range of [60,80], which could be
taken as benchmark instances in future studies on constrained SRFLP models.

References

1. Amaral ARS (2006) On the exact solution of a facility layout problem. Eur J Oper Res
173:508–518

2. Anjos MF, Kennings A, Vannelli A (2005) A semidefinite optimization approach for the single-
row layout problem with unequal dimensions. Discrete Optim 2:113–122

3. Anjos MF, Vannelli A (2008) Computing globally optimal solutions for single-row layout
problems using semidefinite programming and cutting planes. INFORMS J Comput 20:611–
617

4. Benjaafar S, Ramakrishnan R (1996) Modelling, measurement and evaluation of sequencing
flexibility in manufacturing systems. Int J Prod Res 34(5):1195–1220

5. Datta D, Amaral ARS, Figueira JR (2011) Single row facility layout problem using a
permutation-based genetic algorithm. Eur J Oper Res 213(2):388–394

6. de Alvarenga AG, Negreiros-Gomes FJ, Mestria M (2000) Metaheuristic methods for a class
of the facility layout problem. J Intell Manuf 11:421–430

7. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
8. Deb K, Agarwal S, Pratap A, Meyarivan T (2002) A fast and elitist multi-objective genetic

algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
9. Gapp W, Mankekar PS, Mitten LG (1965) Sequencing operations to minimize in-process

inventory costs. Manage Sci 11(3):476–484
10. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, New Jersey
11. Heragu SS, Alfa AS (1992) Experiment Analysis of simulated annealing based algorithms for

the layout problem. Eur J Oper Res 57(2):190–202
12. Heragu SS, Kusiak A (1988) Machine layout problem in flexible manufacturing systems. Oper

Res 36:258–268
13. Heragu SS, Kusiak A (1991) Efficient models for the facility layout problem. Eur J Oper Res

53:1–13
14. Huang J, Lu X, Zhang G, Qu J (2014) Study on the rheological, thermal and mechanical

properties of thermoplastic polyurethane/poly (butylene terephthalate) blends. Polym Test
36:69–74

15. Kalita Z, Datta D (2014) Solving the bi-objective corridor allocation problem using a
permutation-based genetic algorithm. Comput Oper Res 52:123–134

16. Kothari R, Ghosh D (2014) A scatter search algorithm for the single row facility layout
problem. J Heuristics 20(2):125–142

17. Kumar KR, Hadjinicola GC, Lin TL (1995) A heuristic procedure for the single-row facility
layout problem. Eur J Oper Res 87:65–73

20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms 383

18. Kumar S, Asokan P, Kumanan S, Varma B (2008) Scatter search algorithm for single row
layout problem in FMS. Adv Prod Eng Manag 3:193–204

19. Lafou M, Mathieu L, Pois S, Alochet M (2016) Manufacturing system flexibility: sequence
flexibility assessment. In: 49th CIRP Conference on Manufacturing System (CIRP CMS2016),
Stuttgart

20. Love RF, Wong JY (1976) On solving a single row space allocation problem with integer
programming. INFOR 14:139–143

21. Monma CL (1981) Sequencing with general precedence constraints. Discrete Appl Math
3(2):137–150

22. Ozgormus E (2015) Optimization of block layout for grocery stores. PhD thesis, Auburn
University, USA

23. Padgaonkar AS (2004) Modelling and analysis of the hospital facility layout problem. Master’s
thesis, Department of Industrial and Manufacturing Engineering, New Jersey Institute of
Technology, New Jersey

24. Picard J, Queyranne M (1981) On the one dimensional space allocation problem. Oper Res
29(2):371–391

25. Rachamadugu R, Nandkeolyar U, Schriber T (1993) Scheduling with sequencing flexibility.
Decis Sci 24(2):315–342

26. Rachamadugu R, Schriber TJ (1990) Performance of dispatching rules under perfect
sequencing flexibility. In: 22nd conference on winter simulation. IEEE Press, Piscataway,
pp 653–658

27. Samarghandi H, Eshghi K (2010) An efficient tabu algorithm for the single row facility layout
problem. Eur J Oper Res 205:98–105

28. Samarghandi H, Taabayan P, Jahantigh FF (2010) A particle swarm optimization for the single
row facility layout problem. Comput Ind Eng 58:529–534

29. Simmons DM (1969) Single row space allocation: an ordering algorithm. Oper Res 17(5):812–
826

30. Solimanpur M, Vrat P, Shankar R (2005) An ant algorithm for the single row layout problem
in flexible manufacturing systems. Comput Oper Res 32:583–598

Chapter 21
Geometric Size Optimization of Annular
Step Fin Array for Heat Transfer by
Natural Convection

Abhijit Deka and Dilip Datta

Abstract Although a substantial amount of research is available on annular step
fin, only a few works are dedicated to the study of annular step fin array. In the
present work, an annular fin array consisting of two-stepped rectangular cross-
sectional identical fins is modeled as a multi-objective optimization problem for
simultaneously maximizing the total heat transfer rate from the fin array and
minimizing the total volume of the fins. Maximization of the surface efficiency and
augmentation factor of the fin array are also studied as two additional objective
functions for further assessment of the fin array. Considering a constant base
temperature and one-dimensional heat flow along the radial direction of the fins,
the cross-sectional half-thicknesses and outer radii of the two steps of a fin as well
as the total number of fins in the fin array are taken as five design variables. The
hybrid spline difference method is used to solve the one-dimensional heat transfer
equations and then NSGA-II is applied for approximating the Pareto-optimal fronts
for different cases. In order to investigate the influence of various design variables
on the objective functions, a Pareto-optimal sensitivity analysis is also carried
out. The proposed procedure should aid designers in adopting suitable fin array
configurations as per their requirements and practicability.

Keywords Annular fin array · Step fin profile · Convection heat transfer ·
Multi-objective optimization · Genetic algorithm

A. Deka · D. Datta (�)
Department of Mechanical Engineering, School of Engineering, Tezpur University, Tezpur,
Assam, India
e-mail: adeka13@tezu.ernet.in; ddatta@tezu.ernet.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_21

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_21&domain=pdf
mailto:adeka13@tezu.ernet.in
mailto:ddatta@tezu.ernet.in
https://doi.org/10.1007/978-3-030-26458-1_21

386 A. Deka and D. Datta

Nomenclature

Ab Area of the base of an individual fin of the fin array, m2

As Heat transfer surface area of an individual fin of the fin array, m2

Asp Fin inter-spacing base area, m2

Bi Biot number; Bi = hrb/ka
f1 Heat transfer rate through the fin array, W
f2 Fin volume of the array, m3

f3 Surface efficiency
f4 Augmentation factor
g Acceleration due to gravity, m/s2

h Convective heat transfer coefficient, W/m2K
k Thermal conductivity of the fin material, W/mK
ka Thermal conductivity of the fin material at ambient temperature, W/mK
nfin Number of fins
R Non-dimensional radial coordinate; R = r

r2

R1 Non-dimensional inner radius of the fin; R1 = rb
r2

R2 Non-dimensional radius of the fin at the point of step change in thick-
ness; R2 = r1

r2
r Radial coordinate for the entire fin, m
rb Inner radius of the fin, m
r1 Radius of the fin at the point of step change in thickness (r1 > rb), m
r2 Outer radius of the fin (r2 > r1), m
Ra Rayleigh number
sb Fin inter-spacing at the base, m
sm Mean fin inter-spacing, m
Tb Base temperature of the fin, K
T1 Local temperature in the radial direction within the first step of the fin, K
T2 Local temperature in the radial direction within the second step of the fin,

K
T∞ Ambient temperature, K
t Thickness ratio; t = t2

t1
t1 Half-thickness of the first step of the fin, m
t2 Half-thickness of the second step of the fin (t2 < t1), m
Z0, Z1 Non-dimensional fin parameters defined in Eq. (21.6)
W Length of the primary cylinder, m

Greek Symbols

α Non-dimensional variable thermal conductivity parameter; α = (Tb − T∞) β
α′ Thermal diffusivity, m/s2

β Parameter describing the variation of the thermal conductivity, K−1

21 Geometric Size Optimization of Annular Step Fin Array. . . 387

β ′ Thermal expansion coefficient, K−1

δ Non-dimensional temperature factor; δ = T∞
Tb−T∞

θ Non-dimensional temperature in the first step of the fin; θ = T1−T∞
Tb−T∞

ν Kinematic viscosity, m/s2

ξ Fin aspect ratio; ξ = t1
rb

φ Non-dimensional temperature in the second step of the fin; φ = T2−T∞
Tb−T∞

Introduction

An annular fin array is used for augmenting heat transfer from a cylindrical surface
to the surroundings. This is done primarily by increasing the heat transfer surface
area. However, the addition of fins is associated with additional design material and
fabrication costs, thus raising the total production cost. Hence, efforts are being
made on size and shape optimization as well as the fin inter-spacing optimization
of an annular fin array for effective utilization of the fin material. Designers need
to identify a fin array configuration that would dissipate maximum heat through
minimum fin volume. Although an annular fin array with fins of rectangular cross-
section is the simplest one from the manufacturing point of view, its material at the
tip of the fins is not utilized efficiently. Because of that, annular fins of different
profiles, such as triangular, trapezoidal, parabolic and hyperbolic, are found in
literature [7]. In order to achieve the maximum heat transfer rate with the lowest
production cost, designers strive to optimize the fin profile as well as the fin inter-
spacing of a fin array, so as to dissipate either the maximum amount of heat from
a fixed fin volume or a specified amount of heat from the minimum fin volume.
However, because of the complexity involved with the manufacturing processes, the
practical applicability of complex fin profiles (shape optimization) is still limited.
As an alternate approach, researchers also attempt to optimize the dimensions (size
optimization) of the fin profiles of predefined shapes. Therefore, there lies immense
scope in modifying the geometry of a rectangular fin profile, such that the fin
material is used effectively in dissipating heat as well as reducing the complexity
of the fabrication processes [11]. Since the shape of the profile of a fin with step
change in thickness is similar to that of a constant thickness fin, its fabrication is
simple. Also, the heat dissipation rate per unit volume of a stepped fin is always
higher than that of a constant thickness fin. Even if the design criteria of fin arrays
differ from application to application, the primary concerns are the maximization
of the rate of heat transfer from an fin array and minimization of the total volume
of the fins. Thus, the optimization of a fin array based on these two requirements is
highly desirable.

An excellent comprehensive review of the existing literature on extended surface
heat transfer was published by Kraus et al. [7]. Analyzing the performance of a
stepped annular fin under dehumidifying surface conditions, Kundu [8] observed
that the stepped annular fin profiles are better than the concentric annular disc

388 A. Deka and D. Datta

fin profiles from the point of view of the heat dissipation rate under the identical
surface conditions. Some more studies are found, where similar observations as
in Kundu [8] were made after carrying out thermal analysis and optimization of
annular rectangular stepped fins [11, 14]. With the application of Bessel functions,
Brown [2] optimized the dimensions of a constant thickness radial fin. Extending
the work of Brown [2] for determining the efficiency and optimum dimensions
of annular fins of various linear and nonlinear profiles (rectangular, triangular,
parabolic and hyperbolic) under constant heat transfer coefficient, Ullmann and
Kalman [25] observed that the fin of parabolic profile outperformed the fins of
all other considered profiles. Arslanturk [1] proposed an analytical approach for
maximizing the heat transfer rate from an annular fin of constant volume rectangular
profile, where heat transfer only by convection was considered under a constant
thermal conductivity of the fin material. Based on differential transformation, Yu
and Chen [31] presented an analytical method for thermal analysis and constant
volume optimization of a rectangular profile annular fin with variable convective
heat transfer coefficient and variable thermal conductivity. Sharqawy and Zubair
[24] analyzed the performance and optimization issues of annular fin related to
simultaneous heat and mass transfers under various dehumidifying conditions.
Based on a variable separation method, Kang [6] presented an optimization strategy
for a rectangular annular fin of fixed height. Optimizing eccentric and elliptical
annular disc fins with restriction of space in one or both sides of the fluid carrying
tube, Kundu and Das [10, 12] observed that for a given volume, eccentric and
elliptical annular disc fins can dissipate more heat in comparison to concentric
annular disc fins. Other works optimizing annular fins can be found in [4, 17, 20–
22].

All of the above works were concerned with the optimization of a single
annular fin isolated from the surrounding. However, application of a single fin for
heat dissipation is rarely found in practice. Instead, a number of fins in a row,
known as a fin array, is generally used for augmenting heat transfer. In that case,
optimization of a fin profile in combination with fin inter-spacing becomes essential
for efficiently dissipating heat from a fin array. Still, only a limited number of works
in that direction have been reported in literature. Kundu and Das [13] developed an
analytical model for performance analysis and design optimization of fins attached
to flat and curved primary surfaces. In another study, Kundu et al. [15] carried
out thermal analysis of a step annular disc fin array considering heat dissipation
from the fin surface by convection only. Other works dealing with the design of
annular fin arrays were reported by Kundu and Barman [9], Lai et al. [16]. Many
such optimization processes are carried out considering fins of constant thickness
or constant inter-spacing [13, 15, 16]. However, an appreciable saving in the fin
material can be achieved by modifying the fin profile and fin inter-spacing of a fin
array.

Though the maximization of heat dissipation from fins is a primary requirement,
there exist some other objectives to be satisfied, thus leading the fin design to be a
multi-objective optimization problem for optimizing all such conflicting objective
functions simultaneously. As for example, the total heat dissipation rate from a fin

21 Geometric Size Optimization of Annular Step Fin Array. . . 389

array conflicts with both total volume and surface efficiency of the fin array, which
may result in an optimized solution with respect to one of those objectives (single-
objective optimization) unacceptable in terms of the other objectives. The multi-
objective optimization process gives a set of trade-off solutions, where an optimized
solution satisfies all the objectives with a certain level of acceptance without being
influenced by any other solution. However, scrutinizing the present literature, it
is observed that no work designing an annular step fin array as a multi-objective
optimization problem has been reported so far. The only work in that direction,
found in specialized literature, studied a single annular step fin as a multi-objective
optimization problem [5].

Motivated by the research gaps as stated above, the present study proposes
a complete methodology for the multi-objective optimization of an annular fin
array consisting of two-stepped rectangular cross-sectional identical fins. Taking the
cross-sectional half thicknesses and outer radii of the two steps of a fin as well as
the number of fins in the fin array as five design variables, they are tuned through an
optimization tool for optimizing some fin performance related objective functions
under various thermal conditions. The chosen main objective functions are the
maximization of the total heat transfer rate and minimization of the fin volume of the
array. For further assessment of the performance of the fin array, the maximization
of the surface efficiency and augmentation factor of the fin array are taken as two
more objective functions. Finally, in order to analyze the level of influence of the
design variables on the objective functions, a Pareto-optimal sensitivity analysis is
also carried out. In the solution procedure, the temperature field is first evaluated
by solving the one-dimensional differential heat transfer equations using the hybrid
spline difference method (HSDM), a highly accurate numerical method proposed by
Wang et al. [29]. Then, the heat transfer rate and subsequently the surface efficiency
and augmentation factor are evaluated using the known temperature field. On the
other hand, the objective functions are optimized using the non-dominated sorting
genetic algorithm II (NSGA-II), a well-known and widely used multi-objective
genetic algorithm proposed by Deb et al. [3].

The main objective of the present study is to put forward the trade-off optimal
scenarios based on various conflicting objective functions along with the level of
influence of different design variables on the objective functions, so that designers
can enjoy the freedom to choose favourable solutions as per their requirements
depending upon the availability and practicability of information and resources.

Thermal Modeling of Annular Stepped Fin

The present study analyzes an annular fin array consisting of identical fins with
two-stepped rectangular cross-sectional area, which is attached to a heat exchanger
of cylindrical primary surface with uniform fin inter-spacing. The thickness of a
fin is considered to be very small, so that the temperature difference in its lateral
direction would become negligible and the flow of heat through the fin can be treated

390 A. Deka and D. Datta

as one-dimensional. Since the heat transfer by radiation can be neglected for a low
temperature difference [18], the heat loss from the fin surface as well as from the
fin inter-spacing is considered to be taken place by natural convection only. Steady
state heat transfer without internal heat generation is made another assumption.

The schematic diagram of such an annular fin array is shown Fig. 21.1a. The fin
array is taken in the horizontal orientation so as to make the gravity forces parallel to
the fins. In Fig. 21.1a, rb and r2 are respectively the inner and outer radii of a fin with
r1 as the radius at its point of step change in thickness, t1 and t2 are respectively the
cross-sectional half-thickness at the base and tip of the fin, sb is the fin inter-spacing
at the base, W is the total length of the primary surface, and nfin is the number of
fins in the fin array.

Note in Fig. 21.1a that the attachment of the fin array on the primary surface is
actually a repetitive surface containing one fin and some spacing (fin inter-spacing).
Hence, the thermal analysis of the whole fin assembly can be done by analyzing
a repetitive symmetric sector (heat transfer module) only. A schematic diagram of
such a module is shown in Fig. 21.1b.

Symmetric sector
(Fin & spacing)

r

sb/2

2t2

r1

rb

r2

sb 2t1

(a) (b)

Fig. 21.1 Array of identical annular fins with profile of step change in thickness and equal fin
inter-spacing. (a) Schematic diagram of the fin array. (b) Transverse section of a fin (heat transfer
module)

21 Geometric Size Optimization of Annular Step Fin Array. . . 391

Formulation of the Thermal Model

Since the thermal conductivity (k) of most of the engineering materials varies
linearly with temperature (T), the simple relationship expressed by Eq. (21.1)
is adopted here, where T∞ is the ambient temperature and ka is the thermal
conductivity of the fin material at T∞, β is a predefined parameter for governing
the variation in k with Ti (the steps of the fin are denoted by i with i = 1 for the
first step and i = 2 for the second step).

k = ka {1 + β (Ti − T∞)} ; i ∈ {1, 2} (21.1)

The average natural convective heat transfer coefficient (h) for air flowing
through two adjacent fins can be estimated by the correlation expressed by
Eq. (21.2) [23], where sm is the mean fin inter-spacing and Ra is the Rayleigh
number in the laminar range of

(
5, 108

)
with properties evaluated at the film

temperature of Tb+T∞
2 .

h = k
sm

{
c0 + c1Ra

a0

(
r2
rb

)a1 + c2Ra
a2 + c3

(
r2
rb

)a3
}

where, Ra = gβ ′(Tb−T∞)s4
m

2να′r2
c0 = −3.827 ; c1 = 0.047 ; c2 = 1.039 ; c3 = 2.548
a0 = 0.348 ; a1 = 0.173 ; a2 = 0.175 ; a3 = 0.009

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(21.2)
It is to be mentioned that the correlation given by Eq. (21.2) was proposed by
Senapati et al. [23] for uniform thickness annular fin array. Due to the non-
availability of a similar correlation for annular stepped fin array, it is adopted here
considering sm as the mean fin inter-spacing.

Having Eqs. (21.1) and (21.2), the steady state energy balance governing equa-
tion for an individual fin of the fin array can be expressed by Eq. (21.3).

d
dr

[
r {1 + β (Ti − T∞)} dTidr

]
− hr
kati
(Ti − T∞) = 0

where, rb ≤ r ≤ r1 ; for i = 1
r1 ≤ r ≤ r2 ; for i = 2

⎫
⎪⎪⎬

⎪⎪⎭
(21.3)

In this study, it is considered that the temperature at the base of a fin (i.e., Tb) is
constant and heat is transferred from the tip of the fin to the surrounding by natural
convection only. Also, there must be a continuity of temperature as well as energy
balance at the interface of the two steps of a fin. Hence, Eq. (21.3) will be subjected
to the boundary conditions given by Eq. (21.4).

T1 = Tb ; at r = rb (21.4a)

392 A. Deka and D. Datta

−ka {1 + β (T2 − T∞)} dT2

dr
= h (T2 − T∞) ; at r = r2 (21.4b)

T1 = T2 ; at r = r1 (21.4c)

−t1ka {1 + β (T1 − T∞)} dT1

dr
= −t2ka {1 + β (T2 − T∞)} dT2

dr

+ h (t1 − t2) (T1 − T∞) ; at r = r1
(21.4d)

Non-dimensional Formulation of the Thermal Model

In order to normalize the temperature distribution and fin dimensions shown in
Fig. 21.1a, some non-dimensional parameters are defined as given by Eq. (21.5).

R1 = rb
r2

R2 = r1
r2

R = r
r2

t = t2
t1

ξ = t1
rb

Bi = hrb
ka

θ = T1−T∞
Tb−T∞ φ = T2−T∞

Tb−T∞ δ = T∞
Tb−T∞ α = (Tb − T∞) β

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(21.5)
Finally, in terms of the non-dimensional parameters of Eq. (21.5), the thermal

model governing Eqs. (21.3) and (21.4) are normalized in dimensionless forms as
expressed by Eqs. (21.6) and (21.7).

(1 + ακ) d2κ
dR2 +

{
α dκ
dR

+ 1
R
(1 + ακ)

}
dκ
dR

− Z2κ = 0

where, κ = θ , Z = Z0
R1

; if R1 ≤ R ≤ R2

κ = φ , Z = Z1√
t
; if R2 ≤ R ≤ 1

Z0 =
√

Bi
ξ

Z1 = Z0
R1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21.6)

θ = 1 ; at R = R1 (21.7a)

− (1 + αφ) dφ
dR

= Bi

R1
φ ; at R = 1 (21.7b)

θ = φ ; at R = R2 (21.7c)

R1 (1 + αθ) dθ
dR

= tR1 (1 + αφ) dφ
dR

− Bi (1 − t) θ ; at R = R2 (21.7d)

21 Geometric Size Optimization of Annular Step Fin Array. . . 393

Optimization Modeling

As stated in Sect. 21, the performance of the annular fin array having fins of step
profile is evaluated in different combination of the four parameters, which are
the total heat transfer rate from the fin array (Q̇), total fin volume (V), surface
efficiency (ηs) and augmentation factor (εs) of the fin array. The configuration of
the fin array as shown in Fig. 21.1a can be defined in terms of five independent
parameters, which are the radius of an individual fin at the point of step change
in thickness (r1), outer radius of the fin (r2), cross-sectional half thickness of the
thick (first) step of the fin (t1), cross-sectional half thickness of the thin (second)
step of the fin (t2) and the total number of fins in the fin array (nfin). Any change
in the values of any of these five independent parameters will give rise to a new fin
array configuration with new values of the four functions considered for measuring
the performance of the array. Hence, the present problem at hand can be formulated
as a multi-objective optimization problem as expressed by Eq. (21.8) by treating
the five independent parameters as the design variables and the four performance
parameters as the objective functions.

Determine x = (r1, r2, t1, t2, nfin)
T

to maximize f1(x) = Q̇

minimize f2(x) = V

maximize f3(x) = ηs

maximize f4(x) = εs

subject to g1(x) ≡ r1 > rb

g2(x) ≡ r2 > r1

g3(x) ≡ t1 � W
4

g4(x) ≡ t1 > t2

g5(x) ≡
⌈

W
2t1+smax

⌉
� nfin �

⌊
W

2t1+smin

⌋

r1, r2, t1, t2 ≥ 0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21.8)

In Eq. (21.8), constraints g1(x), g2(x) and g4(x) are related to the geometry of
the individual fins, while constraints g3(x) and g5(x) are related to the configuration
of the fin array. Constraint g1(x) ensures the existence of the fins by making the
radius at step change in thickness (r1) greater than the predefined radius at the
base (rb), and constraint g2(x) ensures the existence of two steps in a fin by making
the outer radius (r2) greater than radius at step change in thickness (r1) while
constraint g4(x) ensures that the inner step of the fin is thicker than its outer step. On
the other hand, constraint g3(x) restricts the fin half-thickness at the base (t1) to such
a value that an array of fins can be formed by accommodating at least two fins within
the limited predefined length (W) of the primary surface, and constraint g5(x) forms
the fin array with the lower limit for two fins and the upper limit avoiding the
excess number of fins over the length (W) of the primary surface ((smin, smax) is

394 A. Deka and D. Datta

the allowable range of fin inter-spacing at base). The last line in Eq. (21.8) makes
the design variable non-negative.

The maximization of the heat transfer rate (Q̇), surface efficiency (ηs) and
augmentation factor (εs) would enhance the overall thermal performance of the
fin array, while the minimization of the total fin volume (V) of the array will
reduce the fin material cost. These objective functions, in terms of the notations
and formulations of the thermal model of the fin array presented in Sect. 21, can be
expressed by Eq. (21.9).

Q̇ = nfin ×
{
−kAb

dT1

dr

∣∣∣∣
r=rb

+ hAsp (Tb − T∞)
}

(21.9a)

V = nfin × 2π
{
t1

(
r1

2 − rb2
)
+ t2
(
r2

2 − r12
)}

(21.9b)

ηs = 1

nfin
× f1(x)

hAs (Tb − T∞)+ hAsp (Tb − T∞) (21.9c)

εs = 1

nfin
× f1(x)

hAb (Tb − T∞)+ hAsp (Tb − T∞) (21.9d)

where, Ab = 4πrbt1

As = 2π
(
r2

2 − rb2
)
+ 4π {r1 (t1 − t2)+ r2t2} (21.9e)

Asp = 2πrbsb

Solution Procedure

The multi-objective optimization model of the fin array design problem, for-
mulated in Eq. (21.8), is solved by using a very popular and widely applied
multi-objective genetic algorithm, namely the non dominated sorting genetic algo-
rithm II (NSGA-II) proposed by Deb et al. [3].

Constraints Handling Through Variable Bounds

Though the design of the studied fin array is formulated in Eq. (21.8) as a
constrained optimization problem, it can easily be handled as an unconstrained
optimization problem.

Since rb (radius of a fin at its base) is a predefined fixed parameter, constraints
g1(x) and g2(x) can be made satisfied by generating two values in the range of
(rb, rmax] and then sorting them in ascending order as the values of r1 (radius at

21 Geometric Size Optimization of Annular Step Fin Array. . . 395

step change in thickness) and r2 (outer radius of the fin), respectively (rmax is the
allowable upper limit of r1 and r2). Similarly, constraints g3(x) and g4(x) can be
made satisfied by generating two values in the range of

[
tmin,

W
4

]
and then sorting

them in descending order as the values of t1 (fin half-thickness at the base) and t2 (fin
half-thickness at the tip), respectively (tmin is the allowable lower limit of t1 and t2).
Note that the maximum half-thickness of a fin could be W

4 , but it may be taken to
be tmax � W

4 if the heat flow through the fin is to be treated as one-dimensional.
The process for satisfying constraint g5(x) is slightly different. In this case, the

range [smin, smax] for the fin inter-spacing at the base is to be so chosen that the
air flowing through two consecutive fins would maintain the Rayleigh number in
the laminar range of

[
5, 108

]
. Accordingly, the range [smin, smax] may be obtained

through a reserve calculation. Since the Rayleigh number (Ra) as expressed in
Eq. (21.2) is a function only of the fin mean inter-spacing (sm) and the fin outer
radius (r2) keeping all other terms constant for a given scenario, sm can be computed
as smin by replacing r2 by rmax and Ra by its lower limit of 5. Similarly, sm can be
computed as s′max (maximum fin inter-spacing at the tip) by replacing r2 by rmin (rmin
is the allowable minimum value of r2, i.e., rmin > rb) and Ra by its upper limit of
108, and then to estimate smax by deducting 2(tmax − tmin) from s′max.

Once all the five constraints are made satisfied automatically as above, the equal
fin inter-spacing (sb) at base for all the adjacent pairs of fins can be obtained using
Eq. (21.10).

sb = W

nfin
− 2t1 (21.10)

Evaluation of Objective Functions

In every iteration of the employed optimizer, the values of the four objective
functions given by Eqs. (21.9a)–(21.9d) will be required, which are to be evaluated
numerically. The critical one is the heat transfer rate Q̇ given by Eq. (21.9a), which
is to be evaluated by solving the problem governing Eq. (21.6) along with its initial
and boundary conditions given by Eq. (21.7). For this, the hybrid spline difference
method (HSDM) is used, which is a highly accurate numerical method proposed
by Wang et al. [26, 27, 28, 29]. This method is based on a discretization scheme as
given in Eq. (21.11), where�r , N , n and p represent the grid size, number of grids,
grid index of space, and spline parameter, respectively.

κn =p
(i)
n−1 + 10p(i)n + p(i)n+1

12
(21.11a)

κ ′n =p
(i)
n+1 − p(i)n−1

2�r
−�κ ′n (21.11b)

396 A. Deka and D. Datta

κ ′′n =p
(i)
n−1 − 2p(i)n + p(i)n+1

�r2
(21.11c)

where, �κ ′n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−3κ ′′n+4κ ′′n+1−κ ′′n+2

)
�r

24 ; n = 0
(
κ ′′n+1−κ ′′n−1

)
�r

24 ; n = 1, 2, · · · , N(i) − 1
(
3κ ′′n−4κ ′′n−1+κ ′′n−2

)
�r

24 ; n = N(i)
(21.11d)

i ∈ {1, 2}

The following is the detail procedure for evaluating Q̇ through the HSDM
scheme expressed by Eq. (21.11):

(a) Discretize Eqs. (21.6) and (21.7) using Eq. (21.11).
(b) Evaluate pn (n = 0, 1, . . . , N) by solving the discretized forms of Eqs. (21.6)

and (21.7), which can be done through the variant of the Thomas algorithm
proposed by Martin and Boyd [19].

(c) At all the grid points, evaluate the dimensionless temperature distribution and
their derivatives up to the second order (i.e., θn, θ ′n and θ ′′n) using the values of
pn in Eq. (21.11).

(d) Evaluate the temperature gradient at the base of the fin, i.e., dT1
dr

∣∣∣
r=rb

, using the

dimensionless temperature gradient θ ′o at the base of the fin.
(e) Finally, evaluate the heat transfer rate from the fin array using the value of

dT
dr

∣∣
r=rb in Eq. (21.9a).

Numerical Experimentation and Discussion

An annular fin array with identical fins of rectangular cross-section having a
step change in thickness is taken up in the present study. It is assumed that the
temperature at the base of the fins is constant, thermal conductivity of the fin
material varies linearly with temperature, and heat is dissipated from the fin array
by natural convection only.

The operating condition, the thermal properties of the fin material, and the
fin array configuration with reference to Fig. 21.1a, considered for numerical
experimentation, are listed in Table 21.1, while the opted user-defined algorithmic
parameter settings for NSGA-II (the applied optimizer) are given in Table 21.2. With
those input parameters, NSGA-II is applied to Eq. (21.8) for studying the problem at
hand under two scenarios. In the first scenario, the objective functions f1–f4 given
by Eq. (21.9) are optimized in different pairs, while all the four objective functions
are optimized simultaneously in the second scenario.

21 Geometric Size Optimization of Annular Step Fin Array. . . 397

Table 21.1 Operating conditions, fin material properties, and fin array geometry

Parameter Value/range

Ambient temperature, T∞ 300 K

Fin temperature at the base, Tb 373 K

Thermal conductivity of the fin material at T∞, ka 186 W/mK

Parameter for variable thermal conductivity, β −0.00018 K−1

Fin base radius, rb 2.0 cm

Outer radii of two steps of a fin, [rmin, rmax] for r1 and r2 [2.5–6.0] cm

Half-thickness of two steps of a fin, [tmin, tmax] for t1 and t2 [0.01–0.2] cm

Length of the primary cylinder,W 40.0 cm

Fin inter-spacing at base, [smin, smax] [0.36, 18.0] cm

Table 21.2 User-defined parameter setting in the context of NSGA-II

Parameter Value/range of value

Population size 100

Number of generations (iterations) 400

Crossover probability 90%

Mutation probability (0–1)%

F
E

D
C

B
A

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200 250
Fin volume, f2 (cm3)

H
ea

t
tr

an
sf

er
 r

at
e,

 f
1

(W
)

(a)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Surface efficiency, f3

H
ea

t
tr

an
sf

er
 r

at
e,

 f
1

(W
)

(b)

Fig. 21.2 Pareto fronts of f1 separately paired with f2 and f3. (a) Pareto front in terms of f1 and
f2. (b) Pareto front in terms of f1 and f3

Scenario I

At the first instance, the fin array design problem is studied for maximizing the total
heat dissipation rate (f1 ≡ Q̇) from the fin array and simultaneously minimizing
the total fin volume (f2 ≡ V) of the array. Figure 21.2a shows the obtained Pareto
optimal front containing a set of trade-off solutions in terms of f1 and f2, which
clearly depicts the conflicting nature between the two objective functions, i.e., one
cannot be improved without degrading the other at least by some amount. The
efficient fin geometries corresponding to six selective trade-off solutions marked
by A–F in Fig. 21.2a are shown in Fig. 21.3, where the variations in the pattern of
the individual fins and the total number of fins in the fin array are most noticeable.

398 A. Deka and D. Datta

Fig. 21.3 Six selective efficient fin geometries corresponding to trade-off solutions (A)–(F) of
Fig. 21.2a

Apart from the optimum values of the five design variables (r1, r2, t1, t2 and nfin)
and optimized two objective functions (f1 and f2), the corresponding values of the
surface efficiency (f3 ≡ ηs) and augmentation factor (f4 ≡ εs) are also computed
and shown in Fig. 21.3.

Notice in Fig. 21.3 that the pattern of variation of f3 with respect to those of f1
and f2 is not very clear. Hence, the fin design problem is studied in the second step
for maximizing the heat dissipation rate f1 from the fin array and simultaneously
maximizing the surface efficiency f3 of the fin array. The obtained Pareto front
is shown in Fig. 21.2b, where it is seen that f1 conflicts with f3 also, i.e., an
improvement in f1 degrades f3 by some amount and vice-versa.

Computing the augmentation factor values of the trade-off solutions of the Pareto
front of Fig. 21.2b, they are plotted against the surface efficiency values. The plot
shown separately in Fig. 21.4, where the surface efficiency and augmentation factor
is found conflicting with each other, i.e., an increase in the augmentation factor
decreases the efficiency of utilization of the fin material. Note that the surface
efficiency of the fin array is the ratio of the actual heat transfer rate from the fin
array to the heat transfer rate when all the surfaces of the fin array is at the base
temperature, while the augmentation factor of the fin array is the ratio of the actual
heat transfer rate from the fin array to the heat transfer rate from the base surface of
the fin array when there are no fins.

Scenario II

In Sect. 21, studying the considered four objectives functions of the problem at hand
in pairs, it is observed that their variations are arbitrary leading to no common
pattern of the heat transfer rate. Hence, in order to arrive at a general conclusion,

21 Geometric Size Optimization of Annular Step Fin Array. . . 399

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

A
ug

m
en

ta
ti

on
fa

ct
or

, f
4

Surface efficiency, f3

Fig. 21.4 Plot of the surface efficiency (f3) and augmentation factor (f4) of the trade-off solutions
of Fig. 21.2b

Fig. 21.5 Visualization of the four-dimensional Pareto in the parallel coordinate system

all the four objective functions, i.e., f1–f4 given by Eq. (21.9), are optimized here
simultaneously. Since it is difficult to analyse a plot of more than two dimensions on
a two dimensional-page, the obtained four-dimensional Pareto front is visualized in
a parallel coordinate system (refer [30]) as shown in Fig. 21.5, where the objective
functions are marked on the horizontal axis and their values corresponding to the
trade-off solutions of the Pareto front are plotted on a series of parallel vertical
coordinate axes of equal length. Connecting by a crossing line the objective values
of each solution of the Pareto front plotted on different vertical axes in Fig. 21.5, the
conflicting nature among all the optimized objective functions could be observed
clearly. As an example, the solution corresponding to the highest heat transfer

400 A. Deka and D. Datta

rate from the fin array have a moderately low fin volume and a moderately high
surface efficiency, while the highest augmentation factor. With such information,
it is now up to a designer to adopt suitable solution(s) based upon the availability
and accessibility of resources at hand. One such compromise solution is shown in
Fig. 21.5 by a thick crossing line.

Pareto Optimal Sensitivity Analysis

In order to study the influence of the design variables on the heat transfer rate, a
Pareto optimal sensitivity analysis is performed. For this, an intermediate solution
is chosen, whose various values are as follows: r†

1 = 3.35 cm, r†
2 = 5.11 cm,

t
†
1 = 0.05 cm, t†2 = 0.01 cm, n†

fin = 20, f †
1 = 178.46 W and f †

2 = 3.36 cm3.
The problem is solved here five times, each time allowing a design variable to
vary ±15% from the chosen value while keeping the other four design variable
fixed. Figure 21.6 shows the plots of the deviations of the heat transfer rate from
the fin array against the corresponding variations in the design variables, where it
is observed that the outer radius (r2) of the fins has more influence on the heat
transfer rate, followed by the number of fins (nfin) in the fin array. On the other
hand, the influences of the cross-sectional half-thickness (t1 and t2) and the radius
of the step change in thickness (r1) of the fins are comparatively very less. With
this information at hand, a designer can adjust the design variables of the fin array
in order to achieve the desired heat transfer effect based upon the availability and
accessibility of information and resources.

Fig. 21.6 Pareto optimal
sensitivity analysis of the heat
transfer rate in terms of the
design variables

−0.25
−0.2

−0.15
−0.1

−0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25

−15 −10 −5 0 5 10 15
Change in design variables (%)

r1 variable
r2 variable
t1 variable
t2 variable

nfin variable

f 1
−

f
† 1

/f
† 1

21 Geometric Size Optimization of Annular Step Fin Array. . . 401

Conclusion

A complete procedure for multi-objective optimization of the design of fin arrays
is proposed in this study. Considering the fin array to be consisting of identical
fins with rectangular profile and having step change in thickness, steady state one-
dimensional heat transfer is considered with heat dissipation from the fin array
surface to the surrounding by natural convection only. Taking various geometric
parameters of the fin array configuration as the design variables, Pareto fronts (sets
of trade-off optimal solutions) are approximated by simultaneously optimizing
the heat dissipation rate, fin volume, fin array surface efficiency and fin array
augmentation factor. In the computational process, the hybrid spline difference
method (HSDM) is used for evaluating heat transfer rate numerically and the
nondominated sorting genetic algorithm-II (NSGA-II) is applied for optimizing
objective functions. Finally, a comparative analysis on the degree of influences
of the design variables on the heat transfer rate is also studied. It is observed
from the numerical experimentation that the heat transfer rate from the fin array
conflicts with fin volume and surface efficiency of the array, i.e., the heat transfer
rate cannot be improved without degrading at least one of the other objectives, i.e.,
fin volume and surface efficiency by some amount and vice-versa. Further, it is also
observed that different design variables influence the heat transfer rate differently.
Such information can be exploited in designing economic annular stepped fin array
with industrial viability.

References

1. Arslanturk C (2004) Performance analysis and optimization of a thermally non-symmetric
annular fin. Int Commun Heat Mass Trans 31(8):1143–1153

2. Brown A (1965) Optimum dimensions of uniform annular fins. Int J Heat Mass Trans
8(4):655–662

3. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

4. Deka A, Datta D (2017) B-spline curve based optimum profile of annular fins using
multiobjective genetic algorithm. J Therm Stresses 40:733–746

5. Deka A, Datta D (2017) Geometric size optimization of annular step fin using multi-objective
genetic algorithm. J Therm Sci Eng Appl 9:0210131–0210139

6. Kang H-S (2009) Optimization of a rectangular profile annular fin based on fixed fin height. J
Mech Sci Technol 23(11):3124–3131

7. Kraus AD, Aziz A, Welty J (2001) Extended surface heat transfer. John Wiley & Sons, New
York

8. Kundu B (2009) Analysis of thermal performance and optimization of concentric circular fins
under dehumidifying conditions. Int J Heat Mass Trans 52(11–12):2646–2659

9. Kundu B, Barman D (2011) An analytical prediction for performance and optimization
of an annular fin assembly of trapezoidal profile under dehumidifying conditions. Energy
36(5):2572–2588

10. Kundu B, Das P (1999) Performance analysis and optimization of eccentric annular disk fins.
ASME J Heat Trans 121(1):128–135

402 A. Deka and D. Datta

11. Kundu B, Das P (2001) Performance analysis and optimization of annular fin with a step
change in thickness. ASME J Heat Trans 123(3):601–604

12. Kundu B, Das P (2007) Performance analysis and optimization of elliptic fins circumscribing
a circular tube. Int J Heat Mass Trans 50(1–2):173–180

13. Kundu B, Das P (2009) Performance and optimum design analysis of convective fin arrays
attached to flat and curved primary surfaces. Int J Refrig 32:430–443

14. Kundu B, Lee K-S (2014) Analytical tools for calculating the maximum heat transfer of annular
stepped fins with internal heat generation and radiation effects. Energy 76:733–748

15. Kundu B, Lee K-S, Campo A (2012) Exact and approximate analytic methods to calculate
maximum heat flow in annular fin arrays with a rectangular step profile. Int J Thermophys
33:1314–1333

16. Lai C-Y, Kou H-S, Lee J-J (2006) Optimum thermal analysis of annular fin heat sink by
adjusting outer radius and fin number. Appl Therm Eng 26:927–936

17. Laor K, Kalman H (1996) Performance and optimum dimensions of different cooling fins with
a temperature-dependent heat transfer coefficient. Int J Heat Mass Trans 39(9):1993–2003

18. Leung C, Probert S (1989) Heat exchanger performance: effect of orientation. Appl Energy
33:235–252

19. Martin A, Boyd ID (2010) Variant of the Thomas algorithm for opposite-bordered tridiagonal
systems of equations. Int J Numer Method Biomed Eng 26(6):752–759

20. Nagarani N, Mayilsamy K, Murugesan A (2012) Fin effectiveness optimization of elliptical
annular fins by genetic algorithm. Procedia Eng 38:2939–2948

21. Nemati H, Samivand S (2015) Performance optimization of annular elliptical fin based on
thermo-geometric parameters. Alex Eng J 54(4):1037–1042

22. Pashah S, Moinuddin A, Zubair SM (2016) Thermal performance and optimization of
hyperbolic annular fins under dehumidifying operating conditions-analytical and numerical
solutions. Int J Refrig 65:42–54

23. Senapati JR, Dash SK, Roy S (2016) Numerical investigation of natural convection heat
transfer over annular finned horizontal cylinder. Int J Heat Mass Trans 96:330–345

24. Sharqawy MH, Zubair SM (2007) Efficiency and optimization of an annular fin with combined
heat and mass transfer–an analytical solution. Int J Refrig 30(5):751–757

25. Ullmann A, Kalman H (1989) Efficiency and optimized dimensions of annular fins of different
cross-section shapes. Int J Heat Mass Trans 32(6):1105–1110

26. Wang C-C, Chen-Hung H, Yang D-J (2011) Hybrid spline difference method for steady-state
heat conduction. Numer Heat Trans B 60(6):472–485

27. Wang C-C, Chao L-P, Liao W-J (2012) Hybrid spline difference method (HSDM) for transient
heat conduction. Numer Heat Trans B 61(2):129–146

28. Wang C-C, Liao W-J, Hsu Y-S (2012) Hybrid spline difference method for the burgers’
equation. Appl Math Comput 219(3):1031–1039

29. Wang C-C, Liao W-J, Yang C-Y (2013) Hybrid spline difference method for heat transfer and
thermal stresses in annular fins. Numer Heat Trans B 64(1):71–88

30. Wegman EJ (1990) Hyperdimensional data analysis using parallel coordinates. J Am Stat
Assoc 85:664–675

31. Yu L-T, Chen C-K (1999) Optimization of circular fins with variable thermal parameters. J
Franklin Inst 336(1):77–95

Chapter 22
Optimal Control of Saltwater Intrusion
in Coastal Aquifers Using Analytical
Approximation Based on Density
Dependent Flow Correction

Selva B. Munusamy and Anirban Dhar

Abstract Pumping well management in coastal aquifers required to account for the
saltwater intrusion problem. The prevention saltwater contamination of pumping
wells should be considered along with the objective of maximum groundwater
withdrawal. Saltwater intrusion constraint can be based on (1) sharp interface model
(2) density-dependent transport model. Sharp interface models are preferable in
the case of limited computation cost available and density-dependent transport
models are preferable for accuracy. The correction factor introduced to account
for the density-dependent dispersion by Pool and Carrera (Water Resour Res
47(5):W05506, 2011) vastly improves the sharp interface solution. In this present
study, the application of the modified sharp interface solution based on the density-
dependent correction factor for the pumping optimization is demonstrated for a
regional scale aquifer in Nellore, Andhra Pradesh, India. The proposed optimization
model sought to maximize the total pumping and minimize the landward toe
intrusion from the sea.

Keywords Coastal aquifer · Analytical solution · Pumping optimization ·
Density-dependent flow · Multi-objective optimization

Introduction

Coastal aquifers are important for the water demands of humans since they are
heavily populated. The higher population density in the coastal region leads to over-
exploitation of groundwater for the needs of domestic, agricultural and industrial
use. The seawater in the coast is denser compared to freshwater in the coastal

S. B. Munusamy · A. Dhar (�)
Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West
Bengal, India
e-mail: anirban@civil.iitkgp.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_22

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_22&domain=pdf
mailto:anirban@civil.iitkgp.ac.in
https://doi.org/10.1007/978-3-030-26458-1_22

404 S. B. Munusamy and A. Dhar

aquifer. The density difference results in the intrusion of denser saltwater in the
coastal aquifer. There is a freshwater flux flows towards coast due to the head
gradient between inland and coastal sea level. The saltwater intruded due to
density gradient is in balance with the freshwater flux. However, the pumping of
groundwater makes this balance vulnerable and excessive pumping leads to the
further intrusion of saltwater due to negative gradient. Once the coastal aquifer is
contaminated with saltwater, the available remedial measures based on engineering
solutions are costly most of the time [25]. Thus the planning of pumping well system
locations, pumping schedule and pumping rates should consider the possibility
of saltwater contamination in the coastal aquifers [5]. Apart from drinking water
purpose, coastal aquifer acts as a conduit for the contaminants to reach the sea,
which is a habitat for large biodiversity. More details on the saltwater intrusion can
be found in Cooper et al. [3], Bear et al. [1], Diersch and Kolditz [11], Simmons [21],
and Werner et al. [25]. Optimization techniques are widely used for the pumping
well planning and management [2, 4, 9, 16, 18, 20, 22].

The saltwater intrusion problems are solved either by considering sharp interface
(Fig. 22.1) between freshwater and saltwater or diffused mixing region with the
concentration of the mixing zone varies from freshwater to saltwater. However,
sharp interface assumption overestimates the toe location of the saltwater interface
[6]. Sharp interface approach is more preferable in computational costs point of
view, whereas diffused interface method is better for the accurate mapping of the
field aquifer. However, sharp interface approach can be applied for the coastal
aquifers with narrow mixing zones [12]. Pool and Carrera [19] demonstrated
that the sharp interface approximation with a non-dimensional correction factor
[1 − (αT /b)1/6] with transverse dispersivity αT and aquifer thickness b can fairly

Impervious Datum

Production Well

Saline
groundwater

x
z

Piezometric level

Impervious

hf

ξ

Zone-II Zone-I

Fresh groundwater qf

Interface

h ϕ
d b

Sea

Fig. 22.1 Schematic representation of saltwater-freshwater sharp interface in a coastal confined
aquifer [10]

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using. . . 405

estimate the density dependent flow equivalent interface location for a confined
aquifer under pumping from a fully penetrated pumping well. The non-dimensional
correction factor is obtained by minimizing the difference between Strack [23]
analytical solution and density dependent numerical solution. The sharp interface is
assumed to be equivalent to the 0.1% isochlor of saltwater contours corresponding
to the dispersive mixing zone numerical solution. Pool and Carrera [19] study was
based on constant recharge inland boundary condition, which is applicable for the
infinitely large model domain [13]. The correction factor can be applied to modify
the classical Ghyben-Herzberg sharp interface relationship based on the buoyancy
factor. The Pool and Carrera correction factor is applicable for steady state, flux-
controlled system. Lu et al. [13] analyzed the applicability of the correction factor
given by Pool and Carrera [19] for the constant head inland boundary condition
and concluded that the correction factor is applicable. The constant head boundary
condition assumes sufficiently large model domain instead of an infinitely large
model domain. Lu et al. [13] found that the difference between the maximum
pumping rate corresponding to constant flux inland boundary and the constant head
is less than 2.5%, if the well is located at a distance less than one-fifth of the
domain length from the coastal boundary. Lu and Werner [14] demonstrated that
for a head controlled system without pumping wells, [1 − (αT /b)1/4] can be used as
a correction factor corresponding to isochlor of 0.1 saltwater concentration contour.
Koussis et al. [15] proposed a composite correction by combining correction
for freshwater outflow gap and correction for transverse dispersivity effects [19].
Outflow gap correction is derived to consider the freshwater outflow region at the
coastal boundary (outcrop). Werner [26] used (αT /b)1/4 to derive correction for
the freshwater head of a river in a freshwater lens set-up in a saline aquifer. The
correction factor is used to improve the freshwater-saltwater interface in freshwater
lens. Freshwater lenses exist in saline aquifers near freshwater river, where the saline
water is flowing towards the river.

The objective of the present work is to find out optimal pumping well manage-
ment solution for multiple well system in a coastal aquifer. The multi-objective
optimization approach uses the sharp interface solution modified to account for
density-dependent correction [19] to prevent saltwater intrusion. The proposed
sharp interface based optimization model reduces computational time compared
to density-dependent numerical model. The multi-objective optimization is demon-
strated for field conditions of coastal aquifer in Nellore, Andhra Pradesh, India.

Strack’s Analytical Solution for Saltwater Intrusion

Strack [23] derived analytical solution for salt water intrusion in coastal aquifers
under pumping well conditions. The derivation is based on Ghyben-Herzberg
solution by using Strack’s single potential. A semi-infinite confined aquifer with

406 S. B. Munusamy and A. Dhar

homogeneous and isotropic hydraulic conductivity is considered. Initially, the
derivation of the Strack’s single potential is explained. The vertical component
of the velocity of flow is considered to be negligible as per Dupuit-Forchheimer
assumption. The thickness of the aquifer is considered as linear function of the head.
The average velocity vector components for the above assumptions can be obtained
by Darcy law as following,

qx = −K ∂φ
∂x

qy = −K ∂φ
∂y

qz = 0

(22.1)

where K is hydraulic conductivity of the aquifer, x and y are the longitudinal and
lateral directions in the horizontal plan, z is the vertical direction, qx, qy, and qz are
Darcy velocity (specific discharge) components in x, y, and z directions respectively.
The components of discharge per unit distance can be written by multiplying the
Darcy velocity with cross-sectional area. Discharge components can be given as,

Qx = −Kh∂φ
∂x

Qy = −Kh∂φ
∂y

Qz = 0

(22.2)

The aquifer thickness can be given as following by considering it as a linear
function of head,

h = c1 φ + c2 (22.3)

where c1 and c2 are constants. For unconfined aquifer if the potential is measured by
considering aquifer impervious bottom as a datum, the thickness of the flow region
is same as the potential head. Thus, c1 = 1 and c1 = 0 for flow in unconfined aquifer.
For confined aquifer, the thickness of the flow region is equal to the distance between
confining layers, which is a constant. Thus, c1 = 0 and c2 = b for flow in unconfined
aquifer, where b is the thickness between confining layers. By substituting the
relationship for thickness of the aquifer Eq. (22.3), in the expression for discharge
Eq. (22.2) and simplifying as following,

For case c1 �= 0,

Qx = − ∂
∂x

[
1
2K c1

(
φ + c2

c1

)2
]

Qy = − ∂
∂y

[
1
2K c1

(
φ + c2

c1

)2
] (22.4)

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using. . . 407

For case c1 = 0,

Qx = − ∂
∂x
(K c2 φ)

Qy = − ∂
∂y
(K c2 φ)

(22.5)

The vertical components and unconfined aquifer cases are omitted since the
problem considered Dupuit-Forchheimer assumptions and confined aquifer. The
terms inside the differentials can be considered as potentials. In same aquifer there
can be different zones of flow occurs, for example, the flow in saltwater zone,
freshwater zone in saltwater intrusion problem. Strack introduced a constant to make
the potential to be single valued function for all zones of flow in an aquifer. Thus,
the Strack’s single-valued potential for different cases can be written as,

For case c1 �= 0,

Φ = 1

2
K c1

(
φ + c2

c1

)2

+ C (22.6)

For case c1 = 0,

Φ = K c2 φ + C (22.5)

By substituting Eq. (22.5) and Eq. (22.6) in Eq. (22.4), the components of
discharge vector transform to following expressions,

Qx = − ∂Φ
∂x

Qy = − ∂Φ
∂y

(22.7)

The continuity equation which represents the conservation of mass equation for
the groundwater equation can be written as,

∂Qx

∂x
+ ∂Qy

∂y
= N (22.8)

where, N is the influx to the confined aquifer which can be recharge due to rainfall or
any other source/sink term. By substituting Qx and Qy in terms of Strack’s potential,
continuity equation becomes,

∂2Φ

∂x2 + ∂2Φ

∂y2 = −N (22.9)

408 S. B. Munusamy and A. Dhar

In coastal aquifers saltwater intrusion phenomenon happens due to the density
difference between the denser saltwater from the seaside and freshwater in the
aquifer. The saltwater and freshwater are in delicate balance, which is affected by the
excessive pumping for water usage. In field due to the mixing between saltwater and
freshwater a zone of diffusion or mixing zone forms. The salt concentration in the
zone of diffusion changes from salt water concentration (ρs) which is maximum,
to freshwater concentration (ρf) which is almost zero. To derive the analytical
solution, the problem is simplified to certain assumptions as following: (1) The
width of mixing zone or zone of diffusion is negligible. Thus, it is considered that
the freshwater and saltwater separated by a sharp interface. (2) The saltwater flow
inside saltwater zone is negligible when compared with the freshwater flow. Thus,
saltwater is static. (3) Dupuit-Forchheimer assumption is valid. That is the vertical
gradients of potential are negligible. (4) The coastal confined aquifer confining
layers (both top and bottom) are horizontal. Thus the thickness of the aquifer (b)
is uniform for full extent. (5) The extent of the confined aquifer is semi-infinite (6)
The mean sea level above aquifer bottom is d (7) The pumping well is penetrated
to the full depth of the aquifer (8) Ghyben-Herzberg theory is applicable. Ghyben-
Herzberg theory is used to get the relation between the head above the mean sea
level (hf) to the depth of freshwater-saltwater interface from the mean sea level (ξ).
The relationship can be obtained by equating the expressions for pressure at either
side of the interface as following,

ρf ghf + ρf gξ = ρsgξ
ξ =
(

ρf
ρs−ρf

)
hf = hf

ε

(22.10)

where ε is buoyancy factor defined as (ρs − ρf)/ρf . The flow in the confined aquifer
can be divided into the two zones: (1) Zone 1 in which only freshwater exists. The
thickness of flow region is equal to the thickness of the confined aquifer (b), (2)
Zone 2 in which the freshwater-saltwater interface exists. The thickness of the flow
region (ξ + hf) is above the saltwater interface since the flow in saltwater region is
neglected. The piezometric head in zone 2 if aquifer bottom impermeable layer is
considered as datum can be expressed as,

φ = d + hf (22.11)

Thickness of the flow region can be expressed as,

h = ξ − (d − b) (22.12)

By substituting Eq. (22.10) and Eq. (22.11) in Eq. (22.12), the thickness of the
flow regime can be written as,

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using. . . 409

h =
(

ρf
ρs−ρf

)
φ −
(

ρs
ρs−ρf

)
d + b

= φ
ε
−
(

1+ε
ε

)
d + b

(22.13)

By substituting the expression for thickness of flow region as a linear function of
piezometric head potential Eq. (22.2) into the Strack potential for confined aquifer
Eq. (22.4), the equation for Strack potential in zone-2 can be obtained as,

Φ = 1
2K
(

ρf
ρs−ρf

) [
φ − d ρs

ρf
+ b ρs−ρf

ρf

]2 + Czone−2

= 1
2Kε[ξ − (d − b)]2 + Czone−2

(22.14)

In the confined aquifer flow part zone-1, the thickness of the flow region is
constant,

h = b (22.15)

By substituting Eq. (22.15) in the Strack’s potential Eq. (22.5) for c1 = 0,

Φ = Kbφ + Czone−1 (22.16)

The potential of zone-1 and zone-2 should be equal at the point of tip of the
saltwater interface to make the Strack potential be continuous for the full extent of
aquifer. By enforcing this condition by equating Eq. (22.14) and Eq. (22.15),

Czone−1 − Czone−2 = 1

2
Kε[ξ − (d − b)]2 −Kbφ (22.17)

At the tip of the interface, the thickness of the flow region in zone-2 h is equal to
b. By using this, Eq. (22.13) reduces to,

φtoe = ρs

ρf
d = (1 + ε) d (22.18)

By assuming Czone − 2 = 0 and substituting Eq. (22.11) and Eq. (22.18) in Eq.
(22.17),

Czone−1 = 1

2
Kε[ξ − (d − b)]2 −Kb (1 + ε) d (22.19)

The Strack potential for both confined flow (zone-1) and confined-interface flow
(zone-2) can be written as,

410 S. B. Munusamy and A. Dhar

Φ =
{
K b ε

[
ξ − (d − b

2

)]
for zone 1

1
2K ε[ξ − (d − b)]2 for zone 2

(22.20)

To get the Strack potential at the toe of the location (�toe), substituting ξ = d in
any one of the expressions in Eq. (22.20),

Φtoe = 1

2
Kε b2 (22.21)

The problem of saltwater intrusion in coastal aquifer in terms of Strack potential
in Eq. (22.9) should be solved using coastal head boundary condition. Strack
potential along the coastal boundary can be obtained by using h = 0 in Eq. (22.13)
and Eq. (22.14),

Φ = 0, x = 0,−∞ < y <∞ (22.22)

The partial differential Eq. (22.9) is with harmonic routes. The solution can be
following if the freshwater towards sea is qf and the well with discharge rate Q is
located at (xw, yw),

Φ = qf x + Q

4π
ln

[
(x − xw)

2 + (y − yw)
2

(x + xw)
2 + (y − yw)

2

]
(22.23)

In the above equation, the value of �toe can be used in place of � to find out the
toe location (xtoe, ytoe),

Φtoe = qf xtoe + Q

4π
ln

[
(xtoe − xw)

2 + (ytoe − yw)
2

(xtoe + xw)
2 + (ytoe − yw)

2

]
(22.24)

For multiple wells, the toe location can be derived using superposition of the
previous equation [2],

Φtoe = qf xtoe +
nw∑

i=1

Qi

4π
ln

[
(xtoe − xi)

2 + (ytoe − yi)
2

(xtoe + xi)
2 + (ytoe − yi)

2

]
(22.25)

where nw is the total number of wells, Qi is the pumping rate of i-th well, (xi, yi) is
the coordinate of i-th well.

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using. . . 411

Modified Ghyben-Herzberg Theory Based Analytical Solution
of Saltwater Intrusion

Strack [23] solution is based on the sharp interface assumption. Strack solution
is relatively accurate when the width of the mixing zone is narrow. Strack sharp
interface solution does not consider the flow in the saltwater wedge and mixing
between freshwater and saltwater. The sharp interface approach overestimates the
toe location of the interface compared to dispersive interface approach [6, 8, 24].
Pool and Carrera [19] analyzed the error introduced in the saltwater intrusion under
pumping well conditions by sharp interface assumption in confined aquifers by
comparing the Strack’s sharp interface solution with numerical solution of coupled
flow and transport equation. Pool and Carrera [19] defined the critical pumping rate
as maximum pumping rate for which the saltwater mixing with freshwater is less
than 0.1% of maximum salt concentration (seawater concentration) at the pumping
well. By analyzing the non-dimensional parameters, Pool and Carrera [19] found
that the ratio of transverse dispersivity (αT) to the thickness of the confined aquifer
dictates the diffused interface flow mechanism. Based on regression analysis, Pool
and Carrera [19] introduced a correction factor for the sharp interface analytical
solution. Pool and Carrera correction for the Ghyben-Herzberg sharp interface
relation for the depth of the interface from the mean sea level is given as
ξ = hf /(ε χPC), where χPC is the Pool-Carrera correction factor. Pool-Carrera
correction factor (χPC) is defined as,

χPC =
[

1 −
(αT
b

)1/6
]

(22.26)

The toe location corresponding to Pool-Carrera correction model can be con-
sidered as tip location (xtip, ytip). The equation for tip location based on Strack’s
solution can be written as,

1

2
K ε b2 χPC = qf xtip +

nw∑

i=1

Qi

4π
ln

[(
xtip − xi

)2 + (ytip − yi
)2

(
xtip + xi

)2 + (ytip − yi
)2

]
(22.27)

Optimization Formulation and Application

The objective of the optimization is to get the maximum total discharge from the
number of wells in the field without contaminating any well with saltwater. So, one
objective function is the maximization of the sum of pumping rates of all wells,

412 S. B. Munusamy and A. Dhar

f1 ≡ Maximization
nw∑

i=1

Qi (22.28)

The second objective is that the saltwater front should not reach any of the
pumping well. This can be represented as minimization of the maximam absolute
difference of the x coordinate between the tip location of the interface for each well
and seaside boundary.

f1 ≡ Minimization Max∀i
∣∣xti − xref

∣∣ (22.29)

where xti is the location of the toe corresponding the i-th well and xref represents
the reference location which is the shore location. The Strack’s analytical solution
with Pool and Carrera [19] correction factor for the tip location will act as a binding
constraint,

1
2Kεb

2χPC

= qf xtj +
nw∑
i=1

Qi
4π ln

[(
xt

j−xi

)2+
(

yt
j−yi

)2

(
xt

j+xi

)2+
(

yt
j−yi

)2

]
,∀j ∈ {1, 2, . . . , nw} (22.30)

Moreover, upper and lower bounds of pumping values are specified to as
constraints to make certain that the pumping values remain in technically feasible
range.

QLi ≤ Qi ≤ QUi ,∀j ∈ {1, 2, . . . , nw} (22.31)

whereQUi andQLi are the upper and lower limits of discharge rates from the wells.
The location of tip due to the effects of pumping wells can be obtained by solving

the Eq. (22.30). The optimization problem can be solved by using nondominated
sorting genetic Algorithm-II (NSGA-II) and evolutionary multi-objective optimiza-
tion algorithm (EMO). NSGA-II algorithm for multi-objective optimization was
developed by Deb [7]. NSGA-II can even handle discontinuous Pareto front for
highly nonlinear problems. NSGA-II uses random population generation strategy
to generate the initial population [9]. The generated spatial pumping value sets are
utilized in the analytical solution to obtain the corresponding tip location. Then,
the tip locations obtained from the analytical solutions are used by the NSGA-
II algorithm to calculate the second objective function for the populated pumping
values. The procedure is repeated till the iterations reach the specified termination
criterion. The stepwise description of the algorithm is presented below:

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using. . . 413

Step 1: Generate initial population (t = 0)Pt of size N using Latin Hypercube
Sampling Strategy [17].

Step 2: Evaluate all objective functions and constraints.
Step 3: Classify initial population Pt into F fronts (1 is the best level) and

calculate crowding distance.
Step 4: Perform tournament selection using population of size N.

Randomly pick a pair of population member.
Select the member which is having better rank, if the members are
having equal rank then select the member having higher value of
crowding distance.
Copy this member to Ot.
Repeat till Ot has N members.

Step 5: Perform crossover on Ot.
Step 6: Perform mutation on Ot.
Step 7: Evaluate all objective functions and constraints.
Step 8: Combine parent and offspring populations (Rt = Pt ∪ Ot)
Step 9: Classify combined population Pt into F fronts (1 is the best level) and

calculate crowding distance.
Step 10: Set Pt + 1 = !, null set and i = 1.

Step 11: Perform Pt + 1 = Pt + 1 ∪ Fi, till |Pt + 1| + |Fi| < N, i = i + 1

Step 12: Choose N − |Pt + 1| widely spread solutions F ’
i ⊂ Fi ,

Pt+1 = Pt+1 ∪ F ’
i based on crowding distance.

Step 13: Stop if termination criteria are satisfied, otherwise t = t + 1, go to
Step 4.

The proposed methodology for saltwater intrusion problem is applied to the
coastal aquifer in Nellore district (Fig. 22.2) of Andhra Pradesh, India. The costal
aquifer is in the Penna river delta which is along the Bay of Bengal. The location
of the aquifer extent is: Latitude: 14◦35′ 24′′ – 14◦48′ 36′′, Longitude: 79◦57′ 00′′-
80◦10′ 12′′. Two following Mandals (administrative units) of the Nellore district
considered for the model: Allur and Vidavalur, which have 15 villages (197 square
km) and 10 villages (158 square km) in their divisions respectively. The population
of Allur is 52,990 and the same for Vidavalur is 46,793. The pumping wells (55
pumping wells) are used extensively for the needs of agriculture, aquaculture,
and domestic water utilization. Due to the excessive pumping, the groundwater
levels are already below the mean sea level. The reliance on aquaculture for the
revenue led to excessive water use, but still, the proliferation of the aquaculture has
not stopped. The cropping pattern which is heavily dependent on water intensive
paddy as a major crop is also puts additional pressure to water requirements. The
deficient amount of rainfall (Allur: 113.3 cm/year and Vidavalur: 114.1 cm/year) is
not sufficient for the requirement of aquifer recharge. The optimization algorithm
NSGA-II is run for 500 generations, population size 24, lower limit of discharge
QLi = 0 m3/d, and upper limit of dischargeQUi = 300 m3/d. The parameter values

414 S. B. Munusamy and A. Dhar

Fig. 22.2 Map representing the well locations in the study area: Allur and Vidavalur Mandals,
Nellore District, Andhra Pradesh, India [10]

Table 22.1 Parameter values used for pumping optimization of Nellore aquifer

Parameter Value

Freshwater flux from inland, qf 1.0 m2/d, 0.5 m2/d
Hydraulic conductivity, K 10 m/d, 20 m/d, 30 m/d, 100 m/d
Transverse dispersivity, αt 1 m
Aquifer thickness, b 30 m
Freshwater density, ρf 1000 kg/m3

Saltwater density, ρs 1025 kg/m3

used for the optimization are given in Table 22.1. The Figs. 22.3, 22.4, 22.5, 22.6,
22.7, 22.8, 22.9 and 22.10 shows the comparison of optimization plots between
the objective functions f1 and f2 for sharp interface without density correction
(χPC = 1.00) and with density correction (χPC = 0.43). The optimization plots
compared for four different hydraulic conductivity K values of 10 m/d, 20 m/d,
30 m/d, and 100 m/d, and two different freshwater flux qf values of 1.00 m2/d, and
0.50 m2/d. The comparison plot for K = 10 m/d, qf = 1.00 m2/d (Fig. 22.3) shows

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using. . . 415

Fig. 22.3 Plot between the between the two objective functions for different iterations of NSGA-II
algorithm qf = 1 m2/d, K = 10 m/d, αt = 1 m, b = 30 m, ρf = 1000 kg/m3, ρs = 1025 kg/m3

Fig. 22.4 Plot between the between the two objective functions for different iterations of NSGA-II
algorithm qf = 0.5 m2/d, K = 10 m/d, αt = 1 m, b = 30 m, ρf = 1000 kg/m3, ρs = 1025 kg/m3

that the saltwater intrusion is more inland for the case without correction when
compared to the density correction based on transverse dispersivity. Three points
on the plot from lower pumping rate, medium pumping rate and higher pumping
rates are highlighted in Fig. 22.3 (for all other comparison plots also). The lower
pumping region of the optimization plot with correction A(1649 m3/d, 50.49 m), for

416 S. B. Munusamy and A. Dhar

Fig. 22.5 Plot between the between the two objective functions for different iterations of NSGA-II
algorithm qf = 1.0 m2/d, K = 20 m/d, αt = 1 m, b = 30 m, ρf = 1000 kg/m3, ρs = 1025 kg/m3

Fig. 22.6 Plot between the between the two objective functions for different iterations of NSGA-II
algorithm qf = 0.5 m2/d, K = 20 m/d, αt = 1 m, b = 30 m, ρf = 1000 kg/m3, ρs = 1025 kg/m3

the total pumping rate of 1649 m3/d the saltwater tip intrudes to 50.49 m. However,
for the saltwater interface without correction the intrusion is higher (117.0 m) for the
lower pumping rate of 1449 m3/d [point A1(1449 m3/d, 117.0 m) of Fig. 22.3]. The
trend is similar for comparison of points B-B1and C-C1. The saltwater tip intrusion

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using. . . 417

Fig. 22.7 Plot between the between the two objective functions for different iterations of NSGA-II
algorithm qf = 1.0 m2/d, K = 30 m/d, αt = 1 m, b = 30 m, ρf = 1000 kg/m3, ρs = 1025 kg/m3

Fig. 22.8 Plot between the between the two objective functions for different iterations of NSGA-II
algorithm qf = 0.5 m2/d,K = 30 m/d, αt = 1 m, b = 30 m, ρf = 1000 kg/m3, ρs = 1025 kg/m3

is doubled for the halving of the freshwater flux to qf = 0.50 m2/d in the lower
pumping region [Fig. 22.4, A(1708 m3/d, 106.5 m) and A1(1274 m3/d, 242.6 m)].
However, with the increasing total pumping rate, the intrusion corresponding to
qf = 0.50 m2/d is rapid compared to qf = 1.00 m2/d. The intrusion for highest total

418 S. B. Munusamy and A. Dhar

Fig. 22.9 Plot between the between the two objective functions for different iterations of NSGA-II
algorithm qf = 1.0 m2/d, K = 100 m/d, αt = 1 m, b = 30 m, ρf = 1000 kg/m3, ρs = 1025 kg/m3

Fig. 22.10 Plot between the between the two objective functions for different iterations of NSGA-
II algorithm qf = 0.5 m2/d, K = 100 m/d, αt = 1 m, b = 30 m, ρf = 1000 kg/m3, ρs = 1025 kg/m3

pumping rate region for qf = 1.00 m2/d and qf = 0.50 m2/d are 221.1 m and 3833 m
respectively for the case with density correction.

The optimization plots for higher hydraulic conductivity values, i.e.,K = 20 m/d,
qf = 1.00 m2/d and K = 20 m/d, qf = 0.50 m2/d are shown in Figs. 22.5 and
22.6 respectively. The hydraulic conductivity is double the value of previous
plots. The saltwater intrusion also approximately doubled. This is consistent to the

22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using. . . 419

proportional relationship between hydraulic conductivity and coordinate xtj from
Eq. (22.30). The decrease in freshwater flux between Figs. 22.5 and 22.6 shows
similar trend as hydraulic conductivity K = 10 m/d cases [Figs. 22.3 and 22.4]. The
Figs. 22.7 and 22.8 are corresponding to hydraulic conductivity K = 30 m/d, and
Figs. 22.9 and 22.10 are corresponding to hydraulic conductivity K = 100 m/d. From
the optimization plots it can be observed that the saltwater intrusion is very sensitive
to regional freshwater flux. From the above points taken from the optimization front,
it is evident that the two objective functions are conflicting objectives: with the
increasing total pumping rate the minimization objective of saltwater intrusion is
increasing.

Conclusions

A coastal aquifer pumping well management system framework based on multi-
objective optimization is developed. The proposed framework links the saltwater
intrusion in coastal aquifer with the total pumping rate constraint. The saltwater
intrusion analytical solution is based on modified sharp interface solution consid-
ering density-dependent flow correction. Two conflicting objectives of maximizing
the total pumping production from the number of pumping wells and minimizing
the maximum toe intrusion from seashore are considered as objective functions.
The modified sharp interface solution is used as a binding constraint. The developed
framework is applied to Nellore coastal aquifer to test the performance. The regional
freshwater flux plays important role in determining the maximum pumping rate.
These nondominated fronts can provide initial management plan for solving the
full-scale density-dependent flow based framework. The framework can be easily
modified for the application of unconfined aquifer pumping optimization based on
Koussis et al. [15] solution.

References

1. Bear J, Cheng AHD, Sorek S, Ouazar D, Herrera I (1999) Seawater intrusion in coastal
aquifers: concepts, methods and practices, vol 14. Springer Science & Business Media,
Dordrecht

2. Cheng AH-D, Halhal D, Naji A, Ouazar D (2000) Pumping optimization in saltwater-intruded
coastal aquifers. Water Resour Res 36(8):2155–2165

3. Cooper HH Jr, Kohout FA, Henry HR, Glover RE (1964) Sea water in coastal aquifers: US
Geological Survey Water-Supply Paper, 1613-C, C28

4. Datta B, Vennalakanti H, Dhar A (2009) Modeling and control of saltwater intrusion in a
coastal aquifer of Andhra Pradesh, India. J Hydro Environ Res 3(3):148–159

5. Datta B, Dhar A (2011) Density dependent flows in saltwater intrusion and management,
In: Aral MA, Taylor SW (eds) Groundwater quantity and quality management. Groundwater
Management Technical Committee of the Groundwater Council of EWRI Environmental and
Water Resources Institute (EWRI) of the American Society of Civil Engineers, pp 394–429

420 S. B. Munusamy and A. Dhar

6. Dausman AM, Langevin C, Bakker M, Schaars F (2010) A comparison between SWI and
SEAWAT – the importance of dispersion, inversion and vertical anisotropy. In: 21st Salt water
intrusion meeting, pp 271–274

7. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
8. Dentz M, Tartakovsky DM, Abarca E, Guadagnini A, Sanchez-Vila X, Carrera J (2006)

Variable-density flow in porous media. J Fluid Mech 561:209–235
9. Dhar A, Datta B (2009) Saltwater intrusion management of coastal aquifers. I: linked

simulation-optimization. J Hydrol Eng 14(12):1263–1272
10. Dhar A, Munusamy SB (2014) Modified Ghyben-Herzberg theory based modelling and control

of saltwater intrusion in coastal aquifers. In: 7th international symposium on environmental
hydraulics ISEH 2014, Singapore, pp 355–358

11. Diersch H-JG, Kolditz O (2002) Variable-density flow and transport in porous media:
approaches and challenges. Adv Water Resour 25(8–12):899–944

12. Llopis-Albert C, Pulido-Velazquez D (2014) Discussion about the validity of sharp-interface
models to deal with seawater intrusion in coastal aquifers. Hydrol Process 28:3642–3654

13. Lu C, Chen Y, Luo J (2012) Boundary condition effects on maximum groundwater withdrawal
in coastal aquifers. Ground Water 50(3):386–393

14. Lu C, Werner AD (2013) Timescales of seawater intrusion and retreat. Adv Water Resour
59:39–51

15. Koussis AD, Mazi K, Riou F, Destouni G (2015) A correction for Dupuit-Forchheimer
interface flow models of seawater intrusion in unconfined coastal aquifers. J Hydrol 525:277–
285

16. Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of
saltwater intrusion. Water Resour Res 39(12):1335

17. McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics
21:239–245

18. Park C-H, Aral M (2004) Multi-objective optimization of pumping rates and well placement
in coastal aquifers. J Hydrol 290(1–2):80–99

19. Pool M, Carrera J (2011) A correction factor to account for mixing in Ghyben-Herzberg and
critical pumping rate approximations of seawater intrusion in coastal aquifers. Water Resour
Res 47(5):W05506. https://doi.org/10.1029/2010WR010256

20. Shamir U, Bear J, Gamliel A (1984) Optimal annual operation of a coastal aquifer. Water
Resour Res 20(4):435–444

21. Simmons CT (2005) Variable density groundwater flow: from current challenges to future
possibilities. Hydrogeol J 13(1):116–119

22. Sreekanth J, Datta B (2010) Multi-objective management of saltwater intrusion in coastal
aquifers using genetic programming and modular neural network based surrogate models. J
Hydrol 393(3–4):245–256

23. Strack ODL (1976) A single-potential solution for regional interface problems in coastal
aquifers. Water Resour Res 12(6):1165–1174

24. Volker RE, Rushton KR (1982) An assessment of the importance of some parameters for
seawater intrusion in aquifers and a comparison of dispersive and sharp-interface modelling
approaches. J Hydrol 56(3–4):239–250

25. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Barry DA
(2013) Seawater intrusion processes, investigation and management: recent advances and
future challenges. Adv Water Resour 51:3–26

26. Werner AD (2017) Correction factor to account for dispersion in sharp-interface models of
terrestrial freshwater lenses and active seawater intrusion. Adv Water Resour 102:45–52

http://dx.doi.org/10.1029/2010WR010256

Chapter 23
Dynamic Nonlinear Active Noise Control:
A Multi-objective Evolutionary
Computing Approach

Apoorv P. Patwardhan, Rohan Patidar, and Nithin V. George

Abstract Evolutionary-computing-algorithm-based nonlinear active noise control
(ANC) removes the requirement of secondary path modeling, which is essential for
proper functioning of a conventional gradient-descent-approach based ANC system.
However, the noise mitigation capability of such algorithms is largely dependent on
the proper selection of the agent count as well as on the number of sound samples
processed by an agent in a given iteration. In order to alleviate this dependency, we
propose a dynamic nonlinear ANC (DNANC) system, which adapts its parameters
in accordance with the acoustic scenario under consideration. The nonlinear ANC
(NANC) problem has been formulated as a multi-objective optimization problem
in this chapter. We have used the non-domination sorting genetic algorithm II
(NSGA-II) for solving the optimization task. The conflicting objectives employed
in this chapter are the ensemble mean-square error and the computation time. The
proposed DNANC system has been shown to adapt itself to several ANC scenarios
in a dynamic manner, wherein, the controller structure has been optimized for the
situation considered.

Keywords Nonlinear active noise control · Functional-link artificial neural
network · Non-domination sorting genetic algorithm II · Particle swarm
optimization · Differential evolution · Cuckoo search algorithm

Introduction

The field of noise cancellation can be broadly divided into two categories: passive
and active. Active noise control (ANC), which is based on the principle of
destructive superposition of sound waves, has seen enhanced interest in the recent

A. P. Patwardhan · R. Patidar · N. V. George (�)
Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar,
Gujarat, India
e-mail: apoorv@btech2011.iitgn.ac.in; rohanpatidar@btech2011.iitgn.ac.in; nithin@iitgn.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_23

421

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_23&domain=pdf
mailto:apoorv@btech2011.iitgn.ac.in
mailto:rohanpatidar@btech2011.iitgn.ac.in
mailto:nithin@iitgn.ac.in
https://doi.org/10.1007/978-3-030-26458-1_23

422 A. P. Patwardhan et al.

past owing to advances in control theory as well as the availability of improved
processing capability. In its basic form, a feed-forward ANC system consists of a
reference microphone which senses the noise, an active loudspeaker which produces
the necessary anti-noise, and an error microphone to measure the level of noise
mitigation attained [14]. The active loudspeaker is driven by an adaptive controller,
which has a transfer function W(z).

Figure 23.1 shows the block diagram of a filtered-x least-mean-square (FxLMS)
based ANC system. In the figure, P(z) is the transfer function of the primary path
(the acoustic path from the reference microphone to the error microphone), S(z)
is the transfer function of the secondary path (the electroacoustic path from the
output of the adaptive controller to the output of the error microphone), Ŝ(z) is the
transfer function of a model of the secondary path, W(z) is the transfer function of
the adaptive controller, x(n) is the reference signal, d(n) is the primary path output,
y(n) is the output of the adaptive controller, d̂(n) is the output of the secondary path,
and e(n) = d(n) − d̂(n) is the error signal. The weight vector w(n) of the adaptive
controller is updated using the FxLMS algorithm as

w (n+ 1) = w(n)+ μe(n)x′(n) (23.1)

where μ is the learning rate and x
′
(n) is the reference signal vector filtered through

Ŝ(z).
The basic FxLMS algorithm, which uses a finite-impulse-response (FIR) filter

as the adaptive controller, is designed on the assumption that the primary and
secondary paths are linear. In the actual implementation of an ANC system, the
primary and secondary paths may offer nonlinearities, and the FxLMS-based ANC
system can fail to effectively cancel the primary noise. Several nonlinear ANC
(NANC) systems have been proposed in the recent past to achieve noise mitigation
in a nonlinear environment. A Volterra-filter-based ANC system has been proposed

Fig. 23.1 Block diagram of an FxLMS algorithm based ANC system

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 423

in [21]. Das and Panda [7] have recently developed a nonlinear ANC system based
on functional-link artificial neural networks (FLANNs). The same authors have
also proposed a filtered-s least-mean-square (FsLMS) algorithm [7] to update the
weights of the FLANN. Several newer versions of the FLANN-based ANC system
have been reported in the literature that aims to further enhance noise cancellation
capability [12, 15, 26].

All the ANC systems discussed so far require an accurate modeling of the
secondary path and its model is kept fixed during the operation of the system.
Imperfect modeling of the secondary path can cause the ANC system to diverge
[3]. In a real-life scenario, the secondary path may vary with time and can affect the
performance of the ANC system. Several online secondary-path modeling schemes
have been proposed to overcome this limitation [1, 4, 22]. But, most of these
schemes require the injection of an additional white noise in order to achieve
the modeling [25]. This additional noise adds to the final residual noise and also
increases the computational complexity. Some of the other online secondary path
modeling methods require additional adaptive filters to achieve the modeling task,
and in some cases, the order of the secondary path needs to be fixed apriori [2, 24].
Fixing the order apriori may lead to under or over estimation of the secondary path.

It has been lately reported that the use of meta-heuristic algorithms in ANC
systems can remove the requirement of modeling secondary paths. A genetic
algorithm (GA) based ANC system has been proposed in [6]. Rout et al. [16,
17] have recently proposed an ANC scheme based on particle-swarm optimization
(PSO), wherein the authors design a de-multiplexer/multiplexer arrangement for
real-time implementation. A nonlinear ANC system based on a bacterial-foraging
algorithm has been reported in [13]. George and Panda [11] extended the approach
to nonlinear multichannel ANC systems and introduced a decentralized version that
offers flexibility in scaling up a multichannel ANC system. The presence of non-
linear secondary paths as well as the use of infinite impulse response filters as the
controller may result in a non-quadratic error cost function. The traditional gradient
descent algorithms may fall into local minima in such cases and may lead to non-
optimal noise cancellation. In addition to avoiding the requirement of secondary
path modeling, meta-heuristic-based ANC systems can also avoid this local minima
problem. Another gradient-free approach towards ANC has been presented in [19].

The success of the meta-heuristic-based ANC system is largely dependent on the
proper selection of the switching quotient Q (the count of sound samples after which
switching occurs in a de-multiplexer/multiplexer arrangement) and the population
count L. In most of the available literature, these values have been computed exper-
imentally for each of the experiments considered. In a practical implementation
of an ANC system, the primary and secondary paths may vary, and fixing Q and
L may lead to improper noise mitigation. In order to overcome this limitation of
meta-heuristic-based ANC systems, this chapter proposes a dynamic nonlinear ANC
(DNANC) system where switching in the de-multiplexer/multiplexer arrangement,
as well as the population count of the meta-heuristic algorithm, are adaptively
selected based on the ANC scenario. The selection of Q as well as L will be
formulated as a multi-objective optimization problem, with the computation time

424 A. P. Patwardhan et al.

and the ensemble mean-square error (EMSE) as two conflicting objective functions.
The non-domination sorting genetic algorithm II (NSGA-II) [9] has been used as
the multi-objective optimization algorithm in this work. In addition, the chapter
also develops two novel meta-heuristic-based ANC systems, one based on a cuckoo
search algorithm (CSA) [23] and the other based on differential evolution (DE)
[20], which offer improved noise control over other meta-heuristic-based ANC
systems available in literature. All the proposed schemes also avoid the local
minima problem existing in ANC systems trained using traditional gradient descent
algorithms.

The rest of the chapter is organized as follows. The meta-heuristic-based ANC
scenario is discussed in Sect. 1.2. The dynamic nonlinear ANC system proposed
in this chapter is designed in Sect. 1.3, which also discusses the various single-
and multi-objective meta-heuristic algorithms used in the chapter. An extensive
simulation study has been carried out in Sect. 1.4 and concluding remarks are drawn
in Sect. 1.5.

Meta-Heuristic-Based NANC System

As discussed in the previous section, the FxLMS-based linear ANC system may
fail to effectively mitigate noise in the presence of non-linearities. FLANN-based
nonlinear ANC systems have gained significant attention in the recent past owing to
the low computational complexity offered in comparison with other nonlinear-filter-
based ANC schemes. In a FLANN-based nonlinear controller, the reference signal
x(n) is functionally expanded before it is input to an adaptive weight network. The
functional expansion can be trigonometric, Legendre, or Chebyshev. Trigonometric
FLANNs are among the most popular type.

In an FsLMS-based NANC system, the tap-delayed input signal vector
x(n) = [x(n), x(n − 1), . . . , x(n − M + 1)]T of length M is trigonometrically
expanded into N terms as

X(n) = {x(n), sin [πx(n)] , cos [πx(n)] , sin [2πx(n)] ,

cos [2πx(n)] , , sin [απx(n)] , cos [απx(n)]}T
(23.2)

with α as the order of the FLANN filter and N = M (2α + 1). The adaptive weights
W (n) are updated as

W (n+ 1) = W (n)+ μe(n)X′(n) (23.3)

where μ is the learning rate, e(n) is the error signal and X
′
(n) is X(n) filtered through

a model of the secondary path. The requirement of secondary-path modeling in
an FsLMS-based ANC system can be avoided by using a meta-heuristic algorithm
for weight update, which minimizes the objective function E(e2), where E(·) is the

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 425

expectation operator. The block diagram of the meta-heuristic-based ANC scheme
will be similar to that in Fig. 23.1, except that the dotted block will not be part of
the final structure.

The controller structure in a meta-heuristic-based ANC system is similar
to the primary meta-heuristic algorithm block in Fig. 23.2. The adaptive
de-multiplexer/multiplexer arrangement has to be replaced by a regular de-
multiplexer/multiplexer. A meta-heuristic algorithm utilizes a number of agents
having different attributes. In the context of an NANC system, the attribute of any
particular agent relates to the weight vector, which multiplies the expanded FLANN
vector X(n). These attributes help in distinguishing one agent’s performance
from that of the other. In conventional meta-heuristic-based filter designs, errors
corresponding to all the agents in the meta-heuristic framework are evaluated for
every input sample considered. In an online application like NANC, this method is
not appropriate, as only a single active loudspeaker and error microphone can be
activated to achieve noise cancellation at any given instant.

In order to make this framework online, Rout et al. [16] proposed a de-
multiplexer/multiplexer arrangement in a meta-heuristic-based ANC system. At any
given time, only one agent is in the active electronic path between the reference

Fig. 23.2 Schematic diagram of the DNANC system

426 A. P. Patwardhan et al.

microphone and the secondary path. After evaluating Q errors corresponding to the
first agent, the fitness of the agent is evaluated as the value of the mean-square-error.
After an agent has finished processing Q samples of the input sound, the meta-
heuristic engine switches the sound input to the next agent in the population. This
process is continued for LQ sound input samples after which the meta-heuristic
engine updates the weight vectors corresponding to each agent using the meta-
heuristic algorithm. This process is repeated for rest of the primary noise samples.

It is to be noted that, the switching quotient Q and the agent count L in
this framework remain constant throughout. However, this may lead to a sub-
optimal design of the meta-heuristic controller, owing to the fact that different
performance is achieved by this controller in dynamically-changing sound and
path environments. Moreover, controller performance also depends heavily on the
algorithm type supported by the controller engine. In an endeavour to overcome this
limitation of the meta-heuristic ANC scenario, a novel NANC scheme with dynamic
Q and L is designed in the next section.

Dynamic Nonlinear Active Noise Control System

The noise mitigation performance of an evolutionary-computing-based NANC
system is largely dependent on the proper selection of the switching quotient Q
and the agent count L. To the best of our knowledge, all the works reported in
the field of evolutionary-computing-based ANCs use fixed values for Q and L,
which are experimentally determined for a particular ANC scenario. In a practical
implementation of an ANC system, fixed values of Q and L may not lead to optimal
noise mitigation in a meta-heuristic-based NANC system. This is attributed to the
dynamic nature of the ANC environment in terms of the transfer functions of the
primary and secondary paths, as well as in terms of the reference noise.

In order to cope with a dynamically changing ANC environment, it is desirable
for the meta-heuristic framework to be dynamic in terms of Q and L. A higher value
of L can improve the noise cancellation capability of the ANC system. However,
this improvement is achieved at the cost of increased computational load. It is
desirable to have an optimal combination of Q and L that can simultaneously
maximize noise cancellation and minimize computational load. This goal can be
achieved by formulating a meta-heuristic-based NANC system as a multi-objective
optimization problem. In this chapter, we have considered computational time (τ)
and ensemble mean-square error (ξ) as the two conflicting objectives, with Q
and L as the controlling variables. In contrast to a conventional meta-heuristic-
based NANC system, this approach continuously updates Q and L for improving
performance.

The basic form of the dynamic nonlinear ANC system proposed in this chapter is
shown in Fig. 23.2. In the figure, the primary meta-heuristic block refers to the meta-
heuristic controller in a conventional meta-heuristic-based NANC system as dis-
cussed in Sect. 1.2. To allow dynamicity, the traditional de-multiplexer/multiplexer

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 427

arrangement has been replaced with an adaptive de-multiplexer/multiplexer sys-
tem. Multi-objective optimization is achieved in the DNANC system by using a
secondary meta-heuristic block, containing an evolutionary multi-objective opti-
mization algorithm. The detailed mechanism of the interaction between the primary
and secondary meta-heuristic blocks in the DNANC system is discussed below.

The primary meta-heuristic block shown in Fig. 23.2 combines a 1 × L de-
multiplexer and an L × 1 multiplexer system. The de-multiplexer/multiplexer
arrangement switches the non-linearly expanded sound samples X(n) between the
component weight sets (agents for the primary meta-heuristic algorithm) after Q
sound samples. As the proposed NANC system is dynamic in nature, the Q and L
values are updated according to the existing acoustic scenario. The Q and L update
is achieved using a secondary meta-heuristic block, which essentially contains a
multi-objective optimization algorithm engine. The meta-heuristic processor should
ensure that Q and L belong to a set of natural numbers by approximating the updated
Q and L to the next highest integer. In this work, PSO, CSA, and DE have been
considered as candidates for the primary meta-heuristic algorithm.

The secondary meta-heuristic algorithm employed in this chapter is the non-
domination sorting genetic algorithm II (NSGA-II) proposed by Deb et al. [9].
NSGA-II, which falls under the category of multi-objective optimization algorithms
have found successful applications in diverse fields of science and technology. Let
f1(x1, x2) and f2(x1, x2) be two objective functions that are conflictive in nature,
with x1 and x2 as the controlling variables. In a typical NSGA-II-based optimization
problem, which aims to simultaneously optimize f1(x1, x2) and f2(x1, x2), the
solution set gives rise to a Pareto-optimal front of solutions [9]. A Pareto- optimal
front is a curve connecting all the Pareto-optimal solutions [8].

In this chapter, the two objective functions used are the computation time (τ)
and the ensemble mean-square error (ξ), and the control variables are Q and L. In
a real-time application like ANC, the evaluation of the objective functions for the
various agents of NSGA-II requires a modification in the conventional NSGA-II
framework, leading to the introduction of a dual 1 × R de-multiplexer and a dual
R × 1 multiplexer. The two inputs to the de-multiplexer are the objective function
values τ and ξ . For each agent, the two values that the rth agent passes through the
multiplexer are Q(r) and L(r). The switching coefficient for the secondary meta-
heuristic block corresponding to the rth agent is

φ(r) = Q(r − 1) L (r − 1) βp (23.4)

where Q(r − 1), L(r − 1) and βp correspond to the switching coefficient, the agent
count, and the iteration count, respectively, for the primary meta-heuristic block due
to the previous agent of the secondary meta-heuristic algorithm. A flowchart of the
proposed NSGA-II based secondary meta-heuristic block is shown in Fig. 23.3 and
the schematic diagram of the complete DNANC system is depicted in Fig. 23.2.

428 A. P. Patwardhan et al.

Fig. 23.3 Flowchart of
NSGA-II based secondary
meta-heuristic block

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 429

Simulation Study

In an endeavour to evaluate the noise cancelling performance of the proposed
DNANC system, an extensive simulation study has been carried out in this section.
The NSGA-II-based multi-objective optimization algorithm in the DNANC system
aims to simultaneously improve noise cancellation and reduce computational load.
The level of noise cancellation, which is the first objective function that needs to be
minimized, is measured in terms of ensemble mean-square error (EMSE), which is
defined as

ξ = 10log10E
[
e2(n)

]
(23.5)

where E [.] is the expectation operator. The second objective function is the
computational time (τ) measured in seconds, which is the time required for the
meta-heuristic ANC block to process the given set of input sound samples. Both
objective functions have been modelled as functions of two variables: meta-heuristic
algorithm switching quotient (Q) and the agent count (L). The switching quotient
is the number of samples of sound processed through an agent of the meta-
heuristic algorithm before the signal is routed to the next agent of the meta-heuristic
framework.

In order to exemplify the robustness of the proposed DNANC system, a total of 9
different testing experiments have been included. Each experiment is a combination
of different primary paths, secondary paths, and type of input sound. The various
sound types considered are random noise, tonal noise, and logistic chaotic noise.
In addition, primary and secondary paths characterized by low-nonlinearity as well
as high-nonlinearity have also been used. All the experiments have been carried
out in a MATLAB environment on an Intel Core i5 PC, having a 4-GB RAM and
2.60-GHz processor. The algorithms used are CSA, DE, and PSO for the primary
meta-heuristic and NSGA-II for the secondary meta-heuristic. The tap length M for
the FLANN filter is taken as 2 and the order of the FLANN, α is also 2 for all
the cases studied in this chapter. For all the subsequent experiments considered in
this chapter, the scaling factor and the crossover rate are taken to be 0.3 and 0.6,
respectively, for DE. Similarly, in the case of CSA, the probability of discovering
an alien egg is set to the value 0.15 and the step size is chosen to be 0.01, while
the Levy flight parameter is chosen to be equal to 2.5. In PSO, the behavioural
parameters c1 and c2 are set to the values 0.4 and 0.9, respectively, while linearly
varying the inertia weight from 0.9 to 0.3 [11].

Case A: Random Input Noise

A set of three experiments is carried out in with a random input noise, which is
uniformly distributed in the range [−0.5, 0.5].

430 A. P. Patwardhan et al.

Experiment 1

In this experiment, the primary noise d(n) reaching the error microphone is given by

d(n) = x(n)+ 0.8x (n− 1)+ 0.3x (n− 2)+ 0.4x (n–3)
− 0.8x(n)x (n− 1)+ 0.9x(n)x (n− 2)+ 0.7x(n)x (n− 3)

(23.6)

where x(n) is the input noise [18]. Similarly, the cancelling sound sensed at the error
microphone is given by

d̂(n) = y(n)+ 0.35y (n− 1)+ 0.09y (n− 2)− 0.5y(n)y (n− 1)
+ 0.4y(n)y (n− 2) .

(23.7)

Figure 23.4 shows the variation of EMSE with respect to time for the proposed
DNANC system, implemented using CSA, DE, and PSO. The dynamic behaviour
of the proposed method, which is attributed to the usage of NSGA-II, is evident
from the variation of the meta-heuristic algorithm switching quotient (Q) and the
agent count (L) plotted in Fig. 23.5. Both Q and L have been rounded to the next

Fig. 23.4 Experiment 1: Variation with respect to time for a DNANC system with CSA, DE, and
PSO as the primary meta-heuristic algorithm and random input noise. All results plotted have been
averaged over ten independent trials

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 431

0 5 10 15

x 10
5

5

10

15

20

Time

L

(c)

0 5 10 15

x 10
5

5

10

15

20

Time

L

(b)

0 5 10 15

x 10
5

5

10

15

20

Time

L

(a)

0 5 10 15

x 10
5

50

100

Time

Q

(c)

0 5 10 15

x 10
5

50

100

Time

Q

(b)

0 5 10 15

x 10
5

50

100

Time

Q

(a)

Fig. 23.5 Experiment 1: Variation of L and Q with respect to time for a DNANC system with
(a) CSA, (b) DE and (c) PSO as the primary meta- heuristic algorithm and random input noise.
NSGA-II is used as the secondary meta-heuristic algorithm

highest integer in cases where the algorithm returns a fractional value. It can be
observed that the three meta-heuristic algorithms employed in this work converge
to different values of Q and L. Thus, the DNANC scheme offers the freedom in
NSGA-II to select the best Q and L, which minimizes EMSE and computational
time simultaneously. The final average EMSE values obtained are −24.04, −20.25,
and − 8.07 dBs for the DNANC system with the primary meta-heuristic algorithm
taken as CSA, DE, and PSO, respectively. The best Pareto front obtained using
NSGA-II with CSA as the meta-heuristic algorithm is shown in Fig. 23.6.

Experiment 2

The primary path employed in this experiment is given by

d(n) = x(n)+ 0.8x (n− 1)+ 0.3x (n− 2)+ 0.4x (n− 3)
− 0.8x(n)x (n− 1)+ 0.9x(n)x (n− 2)+ 0.7x(n)x (n− 3)

− 3.9x2 (n− 1) x (n− 2)− 2.6x2 (n− 1) x (n− 3)
+ 2.1x2 (n− 2) x (n− 3) .

(23.8)

The secondary path [18], as well as all the other simulations parameters used
in this experiment, are the same as that of Experiment 1. All other simulation
parameters are also similar to that of experiment one. Figure 23.7a shows the
variation of EMSE with respect to time for the proposed DNANC system with

432 A. P. Patwardhan et al.

Fig. 23.6 Experiment 1: The best Pareto front obtained using NSGA-II with CSA as the primary
meta-heuristic algorithm and random input noise

CSA, DE, and PSO as the primary meta-heuristic algorithm and NSGA-II as the
secondary meta-heuristic algorithm. The final average EMSE values obtained are
−9.48, −19.27, and − 8.86 dBs for the DNANC system with the primary meta-
heuristic algorithm taken as CSA, DE, and PSO respectively.

Experiment 3

In this experiment, a primary path same as that of experiment two is considered.
The secondary path considered in this experiment, which is a Hammerstein filter, is
given by

d̂(n) = w(n)+ 0.2w (n− 1)+ 0.05w (n− 2) (23.9)

where

w(n) = tanh [y(n)] . (23.10)

All the other simulation parameters employed in this experiment are same as that
used in experiment two. The change in EMSE with time is depicted in Fig. 23.7b. A

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 433

Fig. 23.7 Experiments 2 and 3: Variation of EMSE with respect to time for a DNANC system
with CSA, DE, and PSO as the primary meta-heuristic algorithm and random input noise. (a)
Experiment 2, (b) Experiment 3. All results plotted have been averaged over ten independent trials

final average EMSE of −7.32, −17.74, and − 8.88 dBs have been obtained for the
DNANC system with the primary meta-heuristic algorithm taken as CSA, DE, and
PSO, respectively.

Case B: Tonal Input Noise

Two sets of experiments have been conducted considering a sinusoidal signal
given by

434 A. P. Patwardhan et al.

x(n) = sin

(
2πfn
fs

)
, (23.11)

where fs = 10,000 Hz is the sampling frequency and fn is taken as 500 Hz [5].

Experiment 4

The primary and secondary paths, as well as the other simulation parameters applied
in this experiment, are same as that in Experiment 1. The variation of EMSE with
time for the DNANC system with CSA, DE and PSO as the primary meta-heuristic
algorithms is shown in Fig. 23.8a, where the final average EMSE values are −12.24,
−19.27, and − 8.86 dB, respectively. The improved noise mitigation performance
of CSA- and DE-based DNANC systems are evident from the results.

Experiment 5

In this experiment, the primary path, the secondary path, and the simulation
parameters used are same as that of Experiment 2. Figure 23.8b shows the variation
of EMSE with time for the three primary meta-heuristic algorithms considered, with
final average EMSE of −7.19, −11.98, and − 2.69 dB, respectively.

Case C: Logistic Chaotic Input Noise

A logistic chaotic input noise is used in the next two experiments, given by

x(n) = γ x (n− 2) [1 − x (n− 2)] for n = 2, 3, . . . (23.12)

where x(n) = 0.9 for n = 0, 1 and γ = 4 [5].

Experiment 6

The primary path and the secondary path transfer functions used in this experiment
are same as that of Experiment 1. The time behaviour of EMSE for CSA, DE, and
PSO is depicted in Fig. 23.9a, while the final average EMSE obtained is −20.40,
−18.74 and − 7.08 dB respectively. The CSA- and DE-based DNANC systems have
been shown to outperform the PSO-based DNANC system for the logistic chaotic
input noise considered.

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 435

Fig. 23.8 Experiments 4 and 5: Variation of EMSE with respect to time for a DNANC system with
CSA, DE, and PSO as the primary meta-heuristic algorithm and tonal input noise. (a) Experiment
4, (b) Experiment 5. All results plotted have been averaged over ten independent trials

Experiment 7

Another experiment has been carried out using the logistic chaotic noise given by
(12). The primary and secondary paths used in this experiment is same as that used
in Experiment 3. The improved noise cancellation achieved using CSA and DE
primary meta-heuristic algorithms is evident from the variation of EMSE plotted
in Fig. 23.9b, with a final average EMSE of −20.40, −18.74 and − 7.08 dBs
respectively.

436 A. P. Patwardhan et al.

Fig. 23.9 Experiments 6 and 7: Variation of EMSE with respect to time for a DNANC system
with CSA, DE, and PSO as the primary meta-heuristic algorithm and logistic chaotic input noise.
(a) Experiment 6, (b) Experiment 7. All results plotted have been averaged over ten independent
trials

Case D: Dynamically Changing Environment

In most of the real-life implementations of an ANC system, the type of the noise, as
well as the characteristics of the primary and secondary paths, are subject to change.
Two experiments have been conducted to evaluate the performance of the DNANC
system under such scenarios.

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 437

Experiment 8

In this experiment, three different primary and secondary path combinations have
been considered for a random noise uniformly distributed between [−0.5, 0.5]. In
the first one-third of the primary sound samples, the paths used are same as that
in Experiment 2. In the next one-third, the primary and secondary path transfer
functions employed in Experiment 1 have been considered. The paths used in
Experiment 3 have been used in the last third. The EMSE values are plotted against
time in Fig. 23.10a. The dynamic behaviour of the proposed scheme is evident from

Fig. 23.10 (a) Experiment 8: Variation of EMSE with respect to time for a DNANC system with
CSA, DE, and PSO as the primary meta-heuristic algorithm and FsLMS algorithm with online
secondary path modelling (using Eriksson’s method) for time-varying primary and secondary
paths. (b) Experiment 9: Variation of EMSE with respect to time for a DNANC system and time-
varying input noise with CSA, DE, and PSO as the primary meta-heuristic algorithm. All results
plotted have been averaged over ten independent trials

438 A. P. Patwardhan et al.

the results. In order to verify the effectiveness of the proposed scheme for noise
control without secondary path modeling, the results obtained in this experiment
has been compared with that obtained using an FsLMS algorithm, with online
secondary path modeling using the Eriksson’s method [10]. The improvement in
noise mitigation as well the enhanced adaptability of the proposed scheme is clear
from Fig. 23.10a.

Experiment 9

The input noise considered in this experiment consists of tonal noise given by
(11) followed by logistic chaotic noise given by (12), which is further followed
by random noise uniformly distributed between [−0.5, 0.5]. Each of the noise type
considered in this experiment exists for an equal duration during the experiment.
The variation of EMSE with time for a DNANC system is shown in Fig. 23.10b.
The robustness of the DNANC system to time-varying nature of the primary sound
is clear from the results.

Concluding Remarks

A DNANC system, which is robust to dynamically changing sound inputs as well as
to dynamically changing acoustic system environments, is proposed in this chapter.
The dynamic behaviour of the proposed scheme is attributed to the integration of
a multi-objective evolutionary algorithm like NSGA-II to an evolutionary-based
NANC system. The DNANC framework is a step towards achieving an effective
sound cancelling mechanism for ANC systems without the need for secondary path
modeling.

Acknowledgements This work was supported by the Department of Science and Technology,
Government of India under the Fast Track Scheme for Young Scientists (SERB/ET-0018/2013).

References

1. Akhtar MT, Abe M, Kawamata M (2005) A new structure for feed forward active noise
control systems with improved online secondary path modeling. IEEE Trans Speech Audio
Proc 13:1082–1088

2. Akhtar MT, Abe M, Kawamata M (2006) A new variable step size LMS algorithm-based
method for improved online secondary path modeling in active noise control systems. IEEE
Trans Audio Speech Lang Process 14:720–726

3. Ardekani IT, Abdulla WH (2012) Effects of imperfect secondary path modeling on adaptive
active noise control systems. IEEE Trans Control Syst Technol 20:1252–1262

23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary. . . 439

4. Aslam MS, Raja MAZ (2015) A new adaptive strategy to improve online secondary path
modeling in active noise control systems using fractional signal processing approach. Signal
Process 107:433–443

5. Behera SB, Das DP, Rout NK (2014) Nonlinear feedback active noise control for broadband
chaotic noise. Appl Soft Comput 15:80–87

6. Chang CY, Chen DR (2010) Active noise cancellation without secondary path identification by
using an adaptive genetic algorithm. IEEE Trans Actions Instrum Measur 59:2315–2327

7. Das DP, Panda G (2004) Active mitigation of nonlinear noise processes using a novel filtered-s
LMS algorithm. IEEE Trans Speech Audio Proc 12:313–322

8. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester
9. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic

algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197
10. Eriksson LJ, Allie MC (1989) Use of random noise for on-line transducer modeling in an

adaptive active attenuation system. J Acoust Soc Am 85:797–802
11. George NV, Panda G (2012a) A particle swarm optimization based de- centralized nonlinear

active noise control system. IEEE Trans Instrum Meas 61:3378–3386
12. George NV, Panda G (2012b) A robust filtered-s LMS algorithm for nonlinear active noise

control. Appl Acoust 73:836–841
13. Gholami-Boroujeny S, Eshghi M (2012) Non-linear active noise cancellation using a bacterial

foraging optimisation algorithm. IET Signal Proc 6:364–373
14. Kuo SM, Morgan DR (1999) Active noise control: a tutorial review. Proc IEEE 87:943–975
15. Patel V, Gandhi V, Heda S, George NV (2016) Design of adaptive exponential functional link

network-based nonlinear filters. IEEE Trans Circuit Syst I Regul Papers 63:1434–1442
16. Rout NK, Das DP, Panda G (2011) Particle swarm optimization based active noise control

algorithm without secondary path identification. IEEE Trans Instrum Meas 61:554–563
17. Rout NK, Das DP, Panda G (2016) Particle swarm optimization based nonlinear active noise

control under saturation nonlinearity. Appl Soft Comput 41:275–289
18. Sicuranza GL, Carini A (2011) A generalized FLANN filter for nonlinear active noise control.

IEEE Trans Audio Speech Lang Process 19:2412–2417
19. Spiriti E, Morici S, Piroddi L (2014) A gradient-free adaptation method for nonlinear active

noise control. J Sound Vib 333:13–30
20. Storn R, Price K (1997) Differential evolution-A simple and efficient heuristic for global

optimization over continuous spaces. J Glob Optim 11:341–359
21. Tan LZ, Jiang J (1997) Filtered-X second-order Volterra adaptive algorithms. Electron Lett

33:671–672
22. Tyagi S, Katre V, George NV (2014) Online estimation of secondary path in active noise

control systems using Generalized Levinson Durbin algorithm. In: Proceedings of the 19th
international conference on digital signal processing, pp 552–555

23. Yang XS, Deb S (2009) Cuckoo search via L´evy flights. In: Proceedings of IEEE world
congress on nature & biologically inspired computing, pp 210–214

24. Zhang M, Lan H, Ser W (2001) Cross-updated active noise control system with online
secondary path modeling. IEEE Trans Speech Audio Proc 9:598–602

25. Zhang M, Lan H, Ser W (2005) On comparison of online secondary path modeling methods
with auxiliary noise. IEEE Trans Speech Audio Proc 13:618–628

26. Zhao H, Zeng X, Zhang J (2010) Adaptive reduced feedback FLNN filter for active control of
nonlinear noise processes. Signal Process 90:834–847

Chapter 24
Scheduling of Jobs on Dissimilar Parallel
Machine Using Computational
Intelligence Algorithms

Remya Kommadath and Prakash Kotecha

Abstract The success of Computational Intelligence (CI) techniques to solve
combinatorial scheduling problem critically depends on efficient modelling of the
problem. In this chapter, we study the scheduling of a set of jobs with different
release and due dates on a set of dissimilar parallel machine problems to minimize
the processing cost. The performance of five recent CI techniques viz., Artificial
Bee Colony, Dynamic Neighborhood Learning based Particle Swarm Optimizer,
Genetic Algorithm, Multi-Population Ensemble Differential Evolution (MPEDE)
and Sanitized Teaching-Learning based Optimization is evaluated on problems
reported in the literature. It was observed from 750 unique trials (5 problems × 2
datasets × 5 algorithms × 15 runs) that MPEDE showed superior performance to
the other four algorithms for larger problems.

Keywords Scheduling · Artificial Bee Colony · Particle Swarm Optimization ·
Genetic algorithm · Differential evolution · Teaching-learning based optimization

Introduction

Scheduling involves the allocation of tasks to the available resources in order to
accomplish certain objectives within the specified time. In an increasingly compet-
itive environment with several uncertainties, it becomes critical for organizations
to optimally employ their limited resources for completing a given set of tasks to
increase their profitability. Scheduling problems are combinatorial in nature and
these have received significant attention from researchers working in the area of
operations research. In a typical machine-scheduling problem, the jobs represent the
tasks that are to be performed whereas the machines indicate the available resources.

R. Kommadath · P. Kotecha (�)
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati,
Assam, India
e-mail: remya@iitg.ac.in; pkotecha@iitg.ac.in

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_24

441

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_24&domain=pdf
mailto:remya@iitg.ac.in
mailto:pkotecha@iitg.ac.in
https://doi.org/10.1007/978-3-030-26458-1_24

442 R. Kommadath and P. Kotecha

The aim is to sequence and schedule the processing of tasks by the set of available
resources to achieve the optimal solution with respect to certain objective(s). Some
of the common objectives include minimization of makespan [17], minimization of
the total processing cost [11, 12], and minimization of inventory cost [7]. These
problems are predominantly solved using mathematical programming techniques
by explicitly posing the problem in a Mixed-Integer Linear Programming (MILP)
or Mixed-Integer Non-Linear Programming (MINLP) framework. Some other
techniques such as Constraint Programming (CP), heuristic methods as well as
stochastic optimization techniques have also been used in relatively fewer instances.
The scheduling of a set of tasks with release and due date has been considered
in the literature [12] and has been solved using MILP, CP, combined MILP-CP
OPL model and a hybrid MILP/CP model. This work was further studied [10]
with the development of advanced Benders cuts for the objective of minimization of
makespan for the sub-problems. This work also relied on hybridizing CP and MILP.
Minimization of makespan for parallel batch processing machines with unequal
ready time and arbitrary job sizes have been solved using a combination of MILP
and compound algorithm along with three different heuristic techniques [4]. Several
surveys are available for the scheduling problems that discuss various aspects of the
problem [1, 27].

Traditional mathematical programming techniques have been reported to be
inefficient to solve large-scale scheduling problems due to an almost exponen-
tial increase in the number of binary variables and constraints. Computational
Intelligence techniques possess several advantages such as (i) ability to handle
nonlinearities, (ii) accommodates conflicting objectives, (iii) provides value-added
solutions, (iv) solves black-box optimization problems, (v) does not require infor-
mation about gradients, (vi) can be tuned to accommodate problem specific
operators, (viii) does not require the problem to be postulated in the conventional
equality and inequality form, (ix) the number of decision variables and constraints
do not exponentially increase with an increase in the problem size, and (x) can be
easily integrated with parallel and GPU computing. The success of these techniques
for real parameter optimization has been significantly larger than combinatorial
optimization problems. Despite their advantages, it should be noted that these
techniques need to be judiciously applied to combinatorial optimization problems.
These might exhibit poor performance if these are used to solve such problems
posed in the conventional MILP or MINLP models that use a large number of
artificial variables. In many instances, their success is critically dependent on
appropriate choice of decision variables [2, 3] and their bounds, modification or
incorporation of specific operators [9] that exploit the structure of the problem.
Even though these techniques do not explicitly guarantee the global optima, these
still can determine multiple reasonable schedules in a lower time as compared to
the traditional methods [21]. These multiple solutions can provide flexibility to the
users for selecting the appropriate schedule as per their requirements.

A hybrid version of Genetic Algorithm (GA) was utilized for minimizing the
makespan for scheduling parallel batch processing machines with arbitrary job sizes
[14]. The scheduling of jobs with flexibility in assigning machines to the different

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 443

operations of each job has been solved [26] using a modified GA that employs
rule-based assignment methods for creating initial population and also incorporates
multiple strategies for reproduction and variation of the solutions. A combination
of GA and Simulated Annealing (SA) has been proposed [30] to solve the multi-
objective job shop scheduling with minimization of makespan, total work load of
machines and critical machine work load as the objective functions. The parallel
machine scheduling problem has also been solved with SA [16] and a Discrete
Particle Swarm Optimization along with a hybrid variant [13]. A memetic algorithm
based on Particle Swarm Optimization (PSO), SA, Nawaz-Enscore-Ham heuristic
has also been devised to solve the flowshop scheduling problem [19]. Another
hybrid version with PSO and a local search technique has also been reported [24] to
solve the multi-objective job shop scheduling.

A large number of CI techniques [8, 23], Punnathanam and Kotecha [28] are
developed every year but some of the proposed techniques are demonstrated on
trivial optimization problems and their performance is not critically evaluated
on benchmark optimization problems. In many cases, there have been issues in
independently implementing the algorithms due to incomplete description and
conflicting results reported in the literature [5, 22] including unfair comparisons.
Some of these techniques have shown to be significantly better than the traditional
techniques such as GA, SA and PSO on real parameter optimization problems
but they have not been used or benchmarked with other algorithms for solving
scheduling problems. In this work, we attempt to address this lacuna by solving the
job shop scheduling problem with five recently proposed optimization techniques
on various instances of a combinatorial scheduling problem. It should be noted that
it has been reported that neither MILP nor CP were able to solve this problem on a
standalone basis [12, 15].

The chapter is organized as follows: In the succeeding section, we provide a
detailed description of the problem statement and the solution strategy. In Sect. 24.3,
we briefly describe the five techniques which have been considered in this work.
Section 24.4 presents the experimental settings, whereas the results and its detailed
analysis is provided in Sect. 24.5. We conclude by summarizing the developments
in this work and suggest possible future work.

Problem Statement

In this problem, a set of independent orders (I) need to be processed on a set of
dissimilar parallel machines (M). A machine can process multiple orders whereas
an individual order cannot be processed on multiple machines. It should be noted
that a machine could process only one order at a given point of time. The processing
cost and time depend on the order as well as the machine used for processing the
order. The notations cim and pim denote the processing cost and processing time
respectively of order i on machine m. Every order is associated with a release
date (ri) and due date (di). Pre-emption or extension of processing of orders is

444 R. Kommadath and P. Kotecha

not permitted i.e., the processing of any order must be performed on or after the
release date and has to be completed on or before the due date. The objective is
to determine the minimum cost schedule such that all the orders are completed
before their due dates subject to the satisfaction of all the constraints. Typically, for
a MILP formulation, this problem is modelled with the inclusion of binary decision
variables, say xim which will be assigned a value of 1 if order i is processed on
machine m and zero otherwise. Another binary variable yij is used to sequence
the orders on a given machine and assumes a value of one if and only if the ith

and jth order are processed by the same machine with the ith order preceding the
jth order. Another set of continuous variables are employed to determine the start
and end times. The number of discrete variables can exponentially increase with an
increase in the number of order and machines. Such a modeling strategy may not
yield successful results with respect to CI techniques. The fact that CI techniques
do not require an explicit optimization formulation has been exploited to efficiently
model this problem [15] as described below.

Decision Variables A careful analysis of the problem would indicate that there are
only two decision variables associated with every order, i.e., (i) the machine used to
process a particular order and (ii) the start time of the order on the machine. Hence
the problem can be efficiently modelled with 2I decision variables, which is not only
independent of the number of machines but does not exponentially increase with an
increase in the number of orders. For a problem with I orders, the decision variables
can be divided into two distinct sets as in Fig. 24.1.

The first set indicates the machine that is assigned to each order whereas the
second set indicates the starting time of each order. The first decision variable
indicates the machine to which the first order is assigned, the second decision
variable indicates the machine to which the second order is assigned and so on until
the Ith decision variable. The (I + 1)th variable indicates the starting time of the first
order, the (I + 2)nd decision variable indicates the starting time of the second order
and so on till the starting time of the Ith order in the 2I position. For example, Eq.
(24.1) shows a potential solution for the assignment of four machines to five orders.

X =
⎡

⎢⎣

Machines︷ ︸︸ ︷
2 3 1 4 3 1 3 5 2 7

︸ ︷︷ ︸
Starting time

⎤

⎥⎦ (24.1)

m1 m2 mI t1 t2 tI

Machines processing orders Starting time of orders

Fig. 24.1 Example of a solution vector

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 445

In the above example, order I1 is assigned to machine M2, order I2 is assigned
to machine M3, order I3 is assigned to machine M1 whereas orders I4 and I5

are assigned to machine M4 and machine M3 respectively. This selection of the
representation of the decision variables inherently satisfies the condition that an
order is not assigned to more than one machine. The second set of decision variable
indicates that I1 which is assigned to M2 is started at time 1. Similarly, I2 (assigned
to M3) starts at time 3 whereas I3, I4 and I5 start at time 5, 2, and 7 respectively on
their specified machines.

Bounds The lower and upper bound is identical for all the decision variables in
the first set with 1 being the lower bound and the maximum number of machines
available being the upper bound. The lower bound for the second set of decision
variables is the release date whereas the upper bound is the difference between the
due date and the minimum processing time required for the order among all the
machines. The lower bound of starting time ensures the processing of orders does
not begin before the release date. Thus, unlike the first set of decision variables, the
variables in the second set of decision variables need not have an identical lower
and upper bounds.

Constraints The following three constraints are incorporated to ensure that a
feasible schedule is obtained.

(i) Due date: The completion time of order i is the sum of the starting time and
the processing time of the order on its assigned machine as in Eq. (24.2) and it
should be less than or equal to the due date of the order.

endi = ti + p (i,mi) ∀i ∈ I (24.2)

As per the decision variable in Eq. (24.1), m1 = 2 (since order 1 is assigned
to machine 2) m2 = 3; m3 = 1; m4 = 4 and. Thus the violation in the due date
constraint can be determined as Eq. (24.3).

Pduei =
{

0 if di ≥ endi
|endi − di | otherwise

∀i ∈ I (24.3)

(ii) Overlapping of Orders: If more than a single order is processed on the same
machine, then the start time of the subsequent order should not be lower than the
end time of the preceding order. The penalty for violation of this requirement is
calculated as Eq. (24.4).

Pmi =
{

0 if endi < ti+1

|endi − ti+1| otherwise
∀i ∈ Im,m ∈ M : ti < ti+1 (24.4)

446 R. Kommadath and P. Kotecha

It should be noted that the penalty is incurred if there is an overlapping with
respect to the immediate succeeding order on that machine. In order to understand
the above constraint, consider the following example, which has nine orders and
three machines.

X =
⎡

⎢⎣

Machines︷ ︸︸ ︷
3 1 2 1 2 1 2 1 3 8 4 6 14 9 7 11 5 2

︸ ︷︷ ︸
Starting time

⎤

⎥⎦

As per the encoding scheme explained earlier, it can be observed that I2, I4, I6

and I8 are processed on M1 whereas I3, I5 and I7 are processed on M2 with the
remaining two orders processed on M3. Without loss of generality and for ease in
understanding, let us consider that the processing time of all the nine orders on their
respective machines is 3 time units. As per Eq. (24.4),

• I2 begins at 4 and will end at 7. However, I8 on M1 begins at 5. Thus there is
overlapping of orders and hence P 1

1 = 2.
• I8 begins at 5 and will end at 8. However, I6 on M1 begins at 7. Thus there is

overlapping of orders and hence P 1
2 = 1.

• I6 begins at 7 and will end at 10. However, I4 on M1 begins at 14. Thus there is
no overlapping of orders and hence P 1

3 = 0.

Thus the total penalty due to the overlapping of orders on M1 is 3. A similar
analysis will yield that the total penalty is 1 for M2 and 0 for M3.

(iii) Maximum Processing Time: The difference between the earliest release date
and the maximum due date among all the orders assigned to a particular
machine provides an upper bound on the maximum time available to a machine
and is determined as per Eq. (24.5).

Hm = max
i∈Im

(di)− min
i∈Im

(ri) ∀m ∈ M (24.5)

The total amount of time required for completing all the orders on a machine can
be determined as Eq. (24.6).

Tm =
Im∑

i=1

p (i,mi) ∀m ∈ M (24.6)

All the orders assigned to a particular machine should be completed within the
available time. The amount of penalty for the violation of this constraint is calculated
using Eq. (24.7).

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 447

Pm =
{

0 if Hm > Tm

Tm −Hm otherwise
∀m ∈ M (24.7)

The total penalty for violation in the various constraints can be calculated as Eq.
(24.8).

Penalty =
I∑

i=1

Pduei +
M∑

m=1

Im∑

i=1

Pmi +
M∑

m=1

Pm (24.8)

Fitness Function The objective function is the determination of the least cost
schedule for processing all the orders. The cost associated with a potential schedule
is calculated using Eq. (24.8)

f =

⎧
⎪⎪⎨

⎪⎪⎩

I∑
i=1
c (i,mi) if P enalty = 0

I∑
i=1
c (i,mi)+ Penalty +∑

i∈I
max
m∈M

{c (i,m)} otherwise

(24.9)

For a feasible solution, the sum of all penalty must be equal to zero. An infeasible
solution is penalized by the amount of violation of constraints as well as the
maximum cost associated to process an ith order. This ensures that an infeasible
solution will not have a better fitness value in comparison with a feasible solution. It
should be noted that the above strategy can be easily incorporated in CI techniques
but cannot be incorporated in mathematical programming technique as mi is a
decision variable that is used as an index to access the corresponding data. The
p-codes of the objective functions and Gantt charts can be downloaded from https://
goo.gl/4eVNL5.

Algorithm Description

In this section, we provide a brief description of the algorithms and additional details
can be obtained from the relevant cited literature. These algorithms have not only
been selected in view of their popularity but also because of the availability of their
exact implementations. This helps in independent verification of the results and
avoids the criticism that the poor performance of an algorithm is due to its improper
implementation.

https://goo.gl/4eVNL5
https://goo.gl/4eVNL5

448 R. Kommadath and P. Kotecha

Artificial Bee Colony

ABC is a swarm intelligence based CI technique which imitates the intelligent
behavior of honey bee swarm in determining the food sources. A potential solution
of the optimization problem is referred to as food source and the fitness of the
solution is referred as the nectar amount in the food source. Three types of bees
are used in ABC to search the optimal solution (i) employed bees, (ii) the onlooker
bees and (iii) the scout bees. In the first stage, the employed bees determine new
food sources based on the food sources that it had visited previously and on the
information received from other employed bees. The employed bee changes its
position if it is able to determine a better food source. In the second stage, the
onlooker bees determine new food sources similar to the employed bees but also
use the information about the nectar content of food sources from the employed
bees. The onlooker bees update their positions if they are able to determine a better
food source than their previous food source. The solution, which repeatedly fails
a specified number of times to determine a better solution in the employed bee
phase or the onlooker phase, is replaced by a random solution in the scout phase
of the algorithm. These three stages are repeatedly performed until the termination
criterion is achieved. The scout bees are reported to explore the search space, as it
does not utilize the information about the previous position whereas the onlooker
and employed bees are reported to perform the exploitation of the search space.
The food source discovered with the largest nectar content is considered as the best
solution. The critical issues in the implementation of ABC are discussed in [22].
In this work, we have used the implementation of ABC that is publicly available
(https://goo.gl/zqeujq).

Dynamic Neighborhood Learning Based Particle Swarm
Optimizer (DNLPSO)

PSO is one among the most popular swarm intelligence technique and a large
number of variants have been proposed to improve its performance. In PSO, the
solutions are termed as particles and new potential solutions are determined using
the historical best of a particular particle, (known as personal best), as well as the
global best of all the particles. Comprehensive Learning PSO was proposed [18] to
increase the explorative nature of the algorithm by (i) removing the dependency on
the global best and (ii) relying on the personal best of other solutions rather than
its own personal best. However, it has been reported that this leads to a reduction
in the convergence rate. Dynamic Neighborhood Learning based Particle Swarm
Optimizer (DNLPSO) [25] is a modified version of CLPSO in which each particle
updates its velocity with the help of its personal best or the exemplar particle
that is selected from its neighborhood and also the global best. The formation
of the neighborhood with a ring topology has been recommended though other

https://goo.gl/zqeujq

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 449

topologies can also be implemented. The learning from the neighborhood solution
is implemented only if the personal best does not improve for a specified number
(refreshing gap) of consecutive iterations. In order to encourage exploration, a
dynamic neighborhood is employed which is formed after a specified number
of iterations. In this work, we have employed the implementation of DNPLSO
provided by the authors (http://bit.ly/30mLciT).

Genetic Algorithm (GA)

GA [6] is probably the most popular and one of the earliest evolutionary techniques.
It is based on the working principles of natural genetics and natural selection. The
search for an optimal solution begins with randomly generated solutions within
the search space that constitutes the population. Each solution in the population
is termed as chromosome whose fitness is represented by the value of the objective
function. In every generation, reproduction operators are used to form the mating
pool by choosing multiple copies of better chromosomes. Variation operator such
as crossover and mutation are employed to generate offspring which are potential
solutions. The occurrence of crossover or mutation of a chromosome is decided
based on the values of user-defined parameters such as crossover and mutation
probability. The reproduction, crossover and mutation operators perform the explo-
ration and exploitation of the search space. At the end of every generation, the best
chromosomes among the parents and offspring progress to the next generation. In
this work, we have used the inbuilt ga function of MATLAB2016a.

Multi-population Ensemble Differential Evolution (MPEDE)

DE is also a popular evolutionary technique that has found applications in diverse
areas. It can employ multiple mutation strategies and it is not always possible to
select the best mutation strategy for an arbitrary problem. A variant of DE, MPEDE
[29] embeds three mutation strategies in its working.

In particular, the population is divided into four subgroups in every generation,
three of which are equal in size and are known as the indicator population whereas
the remaining members constitute the reward population that is comparatively
larger. Each indicator population is assigned a different mutation strategy (Current-
to-pbest/1” and “rand/1” with the uniform binary crossover and Current-to-rand/1
without any crossover). It also employs an adaptive strategy to tune various
parameters required in the mutation strategies. After periodic intervals, the best
performing strategy, determined with respect to the improvement in fitness value and
the number of functional evaluations utilized, is assigned to the reward population.
The implementation of MPEDE provided by the authors is used in this work (http://
bit.ly/33LktPc).

http://bit.ly/30mLciT
http://bit.ly/33LktPc
http://bit.ly/33LktPc

450 R. Kommadath and P. Kotecha

Sanitized Teaching-Learning Based Optimization (s-TLBO)

TLBO is a population based stochastic technique and has been proposed multiple
times in literature. It is inspired by the concept of knowledge transfer in a classroom
environment through the teaching and learning process. A solution is termed as
student and the marks scored in various subjects offered to the student is analogous
to the values of the design variables in the optimization problem. A set of solutions
that constitutes the population is known as the class. The solution that has the
best fitness is termed as teacher. Each iteration of TLBO involves two phases,
viz., teacher phase and learner phase. In the teacher phase, a potential solution is
generated for every member of the class based on the teacher, marks of the particular
member, teaching factor and mean of the class. In the student phase, a potential
solution is generated for every member of the class depending on the marks of
the particular member and marks of a randomly selected learning partner. In the
teacher phase as well as the learner phase, a new solution is accepted if it is better
than the solution undergoing the teaching-learning process. In view of the various
discrepancies reported in the literature [5], we have developed an in-house code
which does not remove any duplicates and provides a deterministic relation between
the maximum number of objective function evaluations and the number of iterations
in s-TLBO (https://goo.gl/RGsbNM).

Experimental Settings

We have considered ten instances of job shop scheduling problems that have been
widely used in literature [12, 15, 20] These instances arise from five problems with
the smallest problem containing 3 orders and 2 machines and the largest problem
comprises of 20 orders and 5 machines. The details of the five problems are provided
in Table 24.1. Each of the five problems has two datasets arising from the difference
in processing time. The ten instances are labeled as P1S1, P1S2 and so on till P5S2
in which ‘P1’ corresponds to Problem 1 and ‘P5’ corresponds to Problem 5 whereas
‘S1’ and ‘S2’ indicate to the two datasets of a particular problem. For the sake of
brevity, the due date, release date, processing time and cost are provided in Table
24.2 for Problem 1. For the rest of the eight instances, the data can be obtained
from the literature (https://goo.gl/QPM0G4). The first instance indicated by ‘S1’
have longer processing times and have been reported to be more complex as these
contain fewer feasible schedules than the second instance S2.

Very often, there are conflicting claims about the performance of CI techniques,
which are primarily attributed to improper implementation of the algorithm and
the absence of the details regarding the values of algorithm-specific parameters.
The details of the various algorithm-specific parameters are provided in Table 24.3
and are primarily based on the recommendations in the literature by their authors.
In view of the stochastic nature of the metaheuristic techniques, 15 independent

https://goo.gl/RGsbNM
https://goo.gl/QPM0G4

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 451

runs are executed for each of the ten instances. Hence a total of 750 unique trials
(5 Problems × 2 datasets × 15 runs × 5 algorithms) are executed to evaluate
the performance of the five algorithms. All the simulations were performed on
MATLAB 2016a on an Intel i7 processor (3.6 GHz) PC with 16 GB RAM.

The population size Np for each algorithm is a function of the number of
decision variables of the problem and is set as 20D, where D is the number of
decision variables of the problem (given in Table 24.1). For a fair comparison
between the algorithms, the termination criterion for all the algorithms is set as
the maximum allowed functional evaluations (MaxFE). The inbuilt ga function of
MATLAB requires Np (Ng + 1) + 1 objective function evaluation for performing
Ng generations where Np is the population size. The ga function is used for 500
generation and hence the maximum number of functional evaluation for all the
algorithms is given by

MaxFE = 501Np + 1 (24.10)

CI techniques are primarily designed to solve the optimization problem with
continuous decision variables. However, the decision variable corresponding to the
machine used by a particular order has to be an integer. In order to accommodate
these integer variables, the rounding scheme is employed as shown in Eq. (24.11)

yi = �yc� if yc − �yc� < 0.5,
yi = �yc otherwise

(24.11)

where yc is the continuous variable determined by the algorithm and yi is the integer
value determined using this continuous variable. However, in the case of GA, the
inbuilt function of MATLAB permits the use of integer variables and the same has
been used to handle integer variables.

Results and Discussions

In this section, we evaluate the performance of five different stochastic population
based CI techniques for solving the combinatorial job shop scheduling problems.

Table 24.1 Details of orders and machines for all the problems

Problem Number of orders Number of machines Number of decision variables

P1 3 2 6
P2 7 3 14
P3 12 3 24
P4 15 5 30
P5 20 5 40

452 R. Kommadath and P. Kotecha

Table 24.2 Data for problem 1 [12]

Durations
Cost on machine Dataset 1 Dataset 2

Order(i) ri di M1 M2 M1 M2 M1 M2

1 2 16 10 6 10 14 5 7
2 3 13 8 5 6 8 3 4
3 4 21 12 7 11 16 5 7

Table 24.3 Parameter settings for various algorithms

Algorithms Parameters Values

ABC Number of onlooker bees Population size
Abandonment limit parameter round(0.6 × population size ×

problem dimension)

Upper bound of acceleration
coefficient

1

DNLPSO Acceleration coefficients 1.49445
w0 0.9
w1 0.4
Refreshing group 3
Regrouping gap 5

Learning probability 0.45 − 0.4 (Population Index−1)
(Population size−1)

Parameter for determination of
velocity bound

2

MPEDE Fraction of indicator population for
each strategy

0.2

Best mutation strategy determining
period

20

The performance of the algorithms in the individual runs is shown in Fig. 24.2. In
P1S1, it can be seen that all the algorithms except DNLPSO are able to determine
the best solution. In P1S2, it can be seen that the algorithms are able to either obtain
the objective function value of 18 or 21. In P5S1, most of the runs of the algorithms
are unable to reach the best solution and are clustered around the value of 400,
while a few runs of MPEDE being able to reach the best solution. It can also be
observed that DNLPSO is consistently unable to determine the best solution for any
of the ten instances. Figure 24.3 shows the number of runs in which an algorithm
was unable to determine a feasible solution. It can be observed that the number of
infeasible runs in the dataset 1 is higher than for dataset 2. This can be attributed
to the reason that the processing time in the second dataset is shorter and thus the
number of feasible solutions is higher. In P1S2 and P2S2, all the algorithms are able
to determine a feasible solution in all the runs. MPEDE has the lowest number of
infeasible runs among all the algorithms followed by ABC.

The best, mean and standard deviation values of the best objective function
value obtained in the fifteen runs by each algorithm are shown in Tables 24.4

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 453

Fig. 24.2 Performance of the algorithms in the various runs

and 24.5. Table 24.4 also shows the results of Grey-Wolf Optimization and the
JAYA algorithm which have been reported in recent literature [20] with identical
termination conditions as used in this work. In Table 24.4, the values shown for GA
(MATLAB) have been generated as described earlier whereas the value indicated
against GA correspond to those provided in the literature [15] which does not
clearly specify the termination criteria. It can be observed that the best value as
well as the mean value obtained by all the algorithms for P1S1 are identical except
for DNLPSO. Moreover, the value of zero to standard deviation implies that the
algorithms are able to determine the global optima of this problem in all the runs.
In the case of P1S2, all the algorithms except DNLPSO are able to determine the
best value. Moreover, ABC is able to determine the solution in all the runs whereas
s-TLBO showed the largest standard deviation. Thus in the case of P1, ABC seems
to outperform all the other algorithms as it is able to consistently determine the
best solution. The convergence curve of each algorithm for the best run of P1 is
shown in Fig. 24.4. The values in y-axis show the best solution discovered until
the completion of the specified number of functional evaluations denoted by the
value in x-axis. It can be observed that all the algorithms are able to determine an
identical solution in both instances except DNLPSO in P1S2. For all the problems,
the Gantt chart is shown for the best solution that has been determined across the
five algorithms. Figure 24.5 shows the Gantt chart for the two instances of P1. It can
be observed that the processing time of the orders in the second instance are longer
in P1S1 as compared to P1S2.

Similar to P1, ABC outperforms the other algorithms with its ability to determine
the better solution in both the instances of P2. Moreover, as reflected in the mean
values, it is able to determine better solutions consistently. MPEDE is also able
to determine the best solution reported by ABC and has a better mean than all
algorithms except ABC. Across all algorithms, the standard deviation is high in

454 R. Kommadath and P. Kotecha

Table 24.4 Statistical analysis of best objective function value obtained in problem 1 to problem 3

Problems Algorithms Best Worst Mean Median SD

P1S1 ABC 26 26 26 26 0
DNLPSO 26 60 55.8 58 8.3
GA (MATLAB) 26 26 26 26 0
MPEDE 26 26 26 26 0
TLBO 26 26 26 26 0
GWO 26 − 26 26 0
JAYA 26 − 26 26 0
GA 26 26 26 − 0

P1S2 ABC 18 18 18 18 0
DNLPSO 21 21 21 21 0
GA (MATLAB) 18 21 20 21 1.46
MPEDE 18 21 18.8 18 1.37
TLBO 18 21 19.8 21 1.52
GWO 18 − 18 18 0
JAYA 18 − 18 18 0
GA 18 21 18.72 − 1.28

P2S1 ABC 60 130 64.67 60 18.07
DNLPSO 137 150 143 143 3.76
GA (MATLAB) 60 134 126.67 131 18.46
MPEDE 60 131 97.87 131 36.66
TLBO 60 132 107.6 131 34.84
GWO 60 − 117.9 132 28.9
JAYA 60 − 117.9 132 28.9
GA − − − − −

P2S2 ABC 44 45 44.73 45 0.46
DNLPSO 47 55 51.2 51 2.27
GA (MATLAB) 45 46 45.47 45 0.52
MPEDE 44 45 44.33 44 0.49
TLBO 45 46 45.47 45 0.52
GWO 44 − 45.7 46 1.3
JAYA 44 − 45.7 46 0.6
GA − − − − −

P3S1 ABC 235 238 236.93 237 0.96
DNLPSO 254 270 263.8 265 4.43
GA (MATLAB) 235 246 239.13 239 2.75
MPEDE 104 230 170.93 228 64.26
TLBO 103 239 216.8 233 45.87
GWO 102 − 217.9 233 42.3
JAYA 233 − 237.4 237 2.5
GA − − − − −

(continued)

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 455

Table 24.4 (continued)

Problems Algorithms Best Worst Mean Median SD

P3S2 ABC 86 89 87.53 88 0.99
DNLPSO 99 224 158.67 107 62.19
GA (MATLAB) 87 94 90.73 91 1.67
MPEDE 85 86 85.53 86 0.52
TLBO 85 88 86.67 87 0.82
GWO 86 − 90.1 90 1.8
JAYA 88 − 90.2 90 1.3
GA – − − − −

P2S1. The performance of GA and s-TLBO are almost identical and these have
not been able to determine the best solution of 44 even in one of their runs. The
performance of DNLPSO is not satisfactory. The time required for completing all
the orders in both the instances is 28 time units and corresponds to the due date of
order 4. The convergence curve corresponding to the best run of every algorithm
for P2 is shown in Fig. 24.6. It can be observed that in P2S1, ABC requires larger
number of objective function evaluations to determine the best solution. In both
instances, MPEDE shows the fastest convergence to the best solution. The Gantt
chart for P2 is shown in Fig. 24.7.

In P3S1, the best value reported by GWO is better than all the five algorithms
considered in this work. It is observed that s-TLBO reports the best solution of
103 for P3S1. Though the best solution reported by MPEDE is 104, it has a very
impressive mean of 170.93 against the mean of 216.80 determined by s-TLBO and
217.90 determined by GWO. The performance of the rest of the three algorithms is
not satisfactory as their best value is more than twice that of s-TLBO and MPEDE.
In the case of P3S2, MPEDE and s-TLBO are able to determine an identical best
solution with MPEDE being able to determine a better mean and a lower standard
deviation. Figure 24.8 shows the convergence curve of the algorithms for P3. In both
the instances, s-TLBO is able to converge faster than MPEDE to a better solution.
The Gantt chart for P3 is given in Fig. 24.9. For P3S1, it can be observed that orders
4, 5, 6, 8 and 10 are processed on M1, the orders 2, 3, 9 and 12 are processed on M2
whereas the remaining three orders are processed on M3. In the case of P3S2, M1
is not used to process any order whereas eight orders are processed on M2 and four
orders are processed on M3.

In P4S1, it can be observed that GWO was able to determine a better solution
(best) compared to the identical solution of 119 determined by s-TLBO and
MPEDE. However, the mean and standard deviation of MPEDE is significantly bet-
ter than that of GWO and TLBO. Among the other algorithms, ABC performs better
than GA and DNLPSO. In P4S2, MPEDE is able to determine the best solution and
has a better mean than s-TLBO. However, the difference in performance for this
problem is not as prominent as P4S1. In Fig. 24.10, it can be observed that all
the algorithms have converged, with MPEDE and s-TLBO providing an identical
solution for P4S1 whereas MPEDE converges to a better solution than s-TLBO in

456 R. Kommadath and P. Kotecha

Table 24.5 Statistical analysis of best objective function value obtained in the problem 4 to
problem 5

Problems Algorithms Best Worst Mean Median SD

P4S1 ABC 129 287 274.47 285 40.26
DNLPSO 300 314 306.93 307 4.08
GA (MATLAB) 284 292 289.53 290 2.13
MPEDE 119 122 120.2 120 0.94
TLBO 119 281 195.87 129 80.27
GWO 118 − 147 123 57.1
JAYA 134 − 282.7 286 21.4
GA 120 283 185.67 − 75.73

P4S2 ABC 111 114 113.2 113 0.86
DNLPSO 124 276 166.87 127 67.6
GA (MATLAB) 114 118 115.67 116 1.23
MPEDE 104 108 106.73 107 1.16
TLBO 105 111 107.73 108 1.75
GWO 108 − 111.9 112 2.2
JAYA 110 − 116.2 116 2
GA 105 117 109.96 − 1.94

P5S1 ABC 395 403 398.47 398 2.23
DNLPSO 425 437 432.27 433 3.67
GA (MATLAB) 398 414 408.87 409 3.48
MPEDE 167 380 321.6 377 95.58
TLBO 374 400 388.93 391 7.75
GWO 167 − 352.2 380 73.8
JAYA 392 − 399.4 400 3.6
GA 165 389 349.26 − 75.43

P5S2 ABC 154 164 158.2 157 2.68
DNLPSO 173 378 362.13 376 52.36
GA (MATLAB) 161 170 165.53 165 2.47
MPEDE 144 146 145.67 146 0.62
TLBO 142 157 149.67 150 4.7
GWO 151 − 157.8 158 3.5
JAYA 158 − 164.2 164 2.8
GA 146 167 151.63 − 3.60

P4S2. The Gantt chart for P4 is shown in Fig. 24.11. For the first instance, all the
machines are used whereas only three machines are used in the second instance.
In both instances, all the orders are completed at 38 with order 9 being the last
processed order.

In P5S1, it can be observed that the performance of MPEDE is significantly
better than all the algorithms including s-TLBO which was otherwise performing
reasonably similar to MPEDE in the other instances. It should be noted that the
best solution determined by MPEDE and GWO are identical. Though the standard

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 457

0

10

20

30

40

50

60

70

80

P1S1 P1S2 P2S1 P2S2 P3S1 P3S2 P4S1 P4S2 P5S1 P5S2

N
o.

 o
f r

un
s w

ith

in
fe

as
ib

le
 so

lu
tio

n

Problem Instances

ABC DNLPSO GA MEPDE s-TLBO

Fig. 24.3 Details of infeasible runs

Fig. 24.4 Convergence curves for problem 1

deviation of MPEDE is higher than s-TLBO and GWO, the mean of MPEDE is
better than that of both algorithms. In P5S2, the best solution determined by s-TLBO
is better than that determined by MPEDE but the mean determined by MPEDE
is better than that of s-TLBO. As in all the other problems, the performance of
DNLPSO is the least satisfactory. Figure 24.12 shows the convergence curve for
P5 and it can be observed that some of the algorithms have not converged but
have been terminated due to the utilization of the maximum number of objective
function evaluations. Unlike in other problems, MPEDE utilizes more than 80% of
the objective function evaluations to determine the best solution. Figure 24.13 shows
the Gantt chart for P5 and it can be observed that all the 20 orders are scheduled

458 R. Kommadath and P. Kotecha

Fig. 24.5 Gantt chart for problem 1 (3 orders and 2 machines)

Fig. 24.6 Convergence curves for problem 2

without any conflict on any of the machines. Moreover, all the orders are processed
in according to their release date and are completed by the due date. On analyzing
the overall performance of algorithms on this scheduling problem, it is observed that
MPEDE has consistently determined better solutions in majority of runs except in
two smaller problems (P1S2 and P2S1).

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 459

Fig. 24.7 Gantt chart for problem 2 (7 orders and 3 machines)

Fig. 24.8 Convergence curves for problem 3

Time Complexity

Time complexity provides a measure of the time required by an algorithm to solve
the optimization problem. In this work, we determine the time complexity of the
algorithm on every problem instance as per the following procedure that is pre-
dominantly based on the procedure used to benchmark computational intelligence
techniques in the competitions held at the Congress on Evolutionary Computation.

460 R. Kommadath and P. Kotecha

Fig. 24.9 Gantt chart for problem 3 (12 orders and 3 machines)

Fig. 24.10 Convergence curves for problem 4

Step 1: Determine the time required (TM) for computing certain basic mathematical
operations for 106 times.

Step 2: Determine the time required (TO) to evaluate the objective function for
MaxFe times.

Step 3: Determine the time required (TA) for an algorithm to solve a particular
instance (with MaxFe as the termination criterion). In view of the stochastic

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 461

Fig. 24.11 Gantt chart for problem 4 (15 orders and 5 machines)

Fig. 24.12 Convergence curves for problem 5

nature of the algorithms, TA is determined for five runs and its mean (TAv) is
used to evaluate time complexity.

Step 4: The time complexity of an algorithm is given by (TAv – T0)/ TM .

It should be noted that Step 3 is to be performed for every combination of the
algorithm and problem instance whereas Step 2 is independent of the algorithm
and is to be executed for every problem instance. The time complexity for the 50
combinations (5 algorithms × 2 datasets × 5 problems) is depicted in Fig. 24.14.

462 R. Kommadath and P. Kotecha

Fig. 24.13 Gantt chart for problem 5 (20 orders and 5 machines)

0

20

40

60

80

100

120

140

160

180

200

P1S1 P1S2 P2S1 P2S2 P3S1 P3S2 P4S1 P4S2 P5S1 P5S2

T
im

e
C

om
pl

ex
ity

Problem Indices

ABC DNLPSO GA MPEDE s-TLBO

Fig. 24.14 Time complexity of the algorithms

Across all algorithms, it can be observed that the time complexity is higher for the
second dataset than the first dataset. Among the algorithms, DNLPSO possesses
the lowest time complexity whereas the inbuilt ga function of MATLAB possesses
the highest time complexity. However, it should be noted that DNLPSO was not
able to determine the best solution. The best solution is usually determined by
either MPEDE or s-TLBO and it can be observed that MPEDE has a lower time
complexity than s-TLBO. Moreover, the increase in the time complexity with an
increase in the problem dimension is relatively lower for MPEDE.

24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational. . . 463

Conclusion

The performance of five recent optimization techniques has been evaluated on the
dissimilar job shop scheduling problems and it was observed that MPEDE was able
to consistently determine the best solution followed by s-TLBO even for the larger
problems. It was also observed that the first dataset (S1) which involves higher
processing time are comparatively challenging to solve due to the presence of only
a few feasible solutions. DNPLSO showed relatively poor performance but was able
to generate better solutions in its initial stage. The time complexity of MPEDE does
not significantly scale up with an increase in the size of the problem. Future work
can involve the design of efficient schemes as well as hybridization among various
algorithms to efficiently determine the optimal solution.

References

1. Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of scheduling problems
with setup times or costs. Eur J Oper Res 187(3):985–1032

2. Chauhan SS, Kotecha P (2018) An efficient multi-unit production planning strategy based on
continuous variables. Appl Soft Comput 68:458–477

3. Chauhan SS, Sivadurgaprasad C, Kadambur R, Kotecha P (2018) A novel strategy for the
combinatorial production planning problem using integer variables and performance evaluation
of recent optimization algorithms. Swarm Evol Comput, 43:225–243

4. Chung SH, Tai YT, Pearn WL (2009) Minimising makespan on parallel batch processing
machines with non-identical ready time and arbitrary job sizes. Int J Prod Res 47(18):5109–
5128

5. Črepinšek M, Liu SH, Mernik L (2012) A note on teaching learning-based optimization
algorithm. Inf Sci 212:79–93

6. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York.
ISBN 978-81-265-2804-2

7. Dobson G, Arai Yano C (1994) Cyclic scheduling to minimize inventory in a batch flow line.
Eur J Oper Res 75(2):441–461

8. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm – a novel
metaheuristic optimization method for solving constrained engineering optimization problems.
Comput Struct 110–111:151–166

9. Hasda RK, Bhattacharjya RK, Bennis F (2017) Modified genetic algorithms for solving facility
layout problems. Int J Interact Des Manuf 11(3):713–725

10. Hooker JN (2005) A hybrid method for the planning and scheduling. Constraints 10(4):385–
401

11. Hooker JN, Ottosson G, Thorsteinsson ES, Kim HJ (1999) On integrating constraint propaga-
tion and linear programming for combinatorial optimization. In: Proceedings of 16th national
conference on artificial intelligence. Orlando, MIT Press, pp 136–141

12. Jain V, Grossmann IE (2001) Algorithms for hybrid MILP/CP models for a class of optimiza-
tion problems. INFORMS J Comput 13(4):258–276

13. Kashan AH, Karimi B (2009) A discrete particle swarm optimization algorithm for scheduling
parallel machines. Comput Ind Eng 56(1):216–223

14. Kashan AH, Karimi B, Jenabi M (2008) A hybrid genetic heuristic for scheduling parallel
batch processing machines with arbitrary job sizes. Comput Oper Res 35(4):1084–1098

464 R. Kommadath and P. Kotecha

15. Kotecha PR, Bhushan M, Gudi RD (2011) Constraint programming and genetic algorithm.
Stoch Glob Optim World Sci 2:619–675. https://doi.org/10.1142/9789814299213_0018

16. Lee WC, Wu CC, Chen P (2006) A simulated annealing approach to makespan minimization
on identical parallel machines. Int J Adv Manuf Technol 31(3):328–334

17. Lenstra JK, Shmoys DB, Tardos É (1990) Approximation algorithms for scheduling unrelated
parallel machines. Math Program 46(1):259–271

18. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput
10(3):281–295

19. Liu B, Wang L, Jin YH (2007) An effective PSO-based memetic algorithm for flow shop
scheduling. IEEE Trans Syst Man Cybern B Cybern 37(1):18–27

20. Maharana D, Kotecha P (2019) Optimization of Job Shop Scheduling Problem with Grey
Wolf Optimizer and JAYA Algorithm. In: Panigrahi B., Trivedi M., Mishra K., Tiwari S.,
Singh P. (eds) Smart Innovations in Communication and Computational Sciences. Advances in
Intelligent Systems and Computing, vol 669. Springer, Singapore

21. Mastrolilli M, Gambardella LM (2000) Effective neighbourhood functions for the flexible job
shop problem. J Sched 3(1):3–20

22. Mernik M, Liu SH, Karaboga D, Črepinšek M (2015) On clarifying misconceptions when
comparing variants of the artificial bee Colony algorithm by offering a new implementation.
Inf Sci 291:115–127

23. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic
paradigm. Knowl-Based Syst 8:228–249

24. Moslehi G, Mahnam M (2011) A Pareto approach to multi-objective flexible job-shop
scheduling problem using particle swarm optimization and local search. Int J Prod Econ
129(1):14–22

25. Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neigh-
borhood learning based particle swarm optimizer for global numerical optimization. Inf Sci
209:16–36

26. Pezzella F, Morganti G, Ciaschetti G (2008) A genetic algorithm for the flexible job-shop
scheduling problem. Comput Oper Res 35(10):3202–3212

27. Pfund M, Fowler JW, Gupta JND (2004) A survey of algorithms for single and multi-objective
unrelated parallel-machine deterministic scheduling problems. J Chin Inst Ind Eng 21(3):230–
241

28. Punnathanam V, Kotecha P (2016) Yin-Yang-pair optimization: a novel lightweight optimiza-
tion algorithm. Eng Appl Artif Intell 54:62–79, http://bit.ly/31SmmYE

29. Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H (2016) Differential evolution with multi-
population based ensemble of mutation strategies. Inf Sci 329:329–345

30. Xia W, Wu Z (2005) An effective hybrid optimization approach for multi-objective flexible
job-shop scheduling problems. Comput Ind Eng 48(2):409–425

http://dx.doi.org/http://bit.ly/31SmmYE

Chapter 25
Branch-and-Bound Method for
Just-in-Time Optimization of Radar
Search Patterns

Yann Briheche, Frederic Barbaresco, Fouad Bennis, and Damien Chablat

Introduction and Context

Set covering is a well-known problem in combinatorial optimization. The objective
is to cover a set of elements, called the universe, using a minimum number of
available covers. The theoretical problem is known to be generally NP-difficult to
solve [1], and is often encountered in industrial processes and real-life problem. In
particular, the mathematical formulation of the set cover problem is well-suited for
radar search pattern optimization of modern radar systems.

Electronic scanning and numerical processing allow modern radars to dynam-
ically use bi-dimensional beam-forming, giving them great control on the radar
search pattern. While traditional rotating radars search the space sequentially along
the azimuth axis and reproduce at each azimuth the same pattern along the elevation
axis, modern radars can optimize the search pattern along both axis simultaneously
(Fig. 25.1). Those new possibilities requires a more sophisticated formulation for
the optimization problem of the radar search pattern. Approximation of radar
search pattern optimization as a set cover problem offers a flexible yet powerful
formulation [2], capable of accounting radar specific constraints (localized clutter,

Y. Briheche (�)
Thales Air Systems, Voie Pierre-Gilles de Gennes, Limours, France

Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, Nantes, France
e-mail: yann.briheche@thalesgroup.com

F. Barbaresco
Thales Air Systems, Voie Pierre-Gilles de Gennes, Limours, France

F. Bennis · D. Chablat
Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, Nantes, France

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_25

465

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_25&domain=pdf
mailto:yann.briheche@thalesgroup.com
https://doi.org/10.1007/978-3-030-26458-1_25

466 Y. Briheche et al.

azimuth

elevation

azimuth

elevation

Fig. 25.1 Radar search pattern for a rotating radar (left) and a modern fixed-panel radar (right)

adaptive scan-rate updates, multiple missions) without changing the underlying
mathematical structure of the optimization problem.

Various optimization algorithms have been proposed for solving the set cover
problem: exact methods such as branch-and-bound combined with relaxations
methods, and approximation algorithms such as greedy algorithm, simulated anneal-
ing and genetic algorithms (see [3] for a recent survey of those methods). In
practice, problems of reasonable size can be efficiently solved by branch-and-bound
exploration using linear relaxation for lower bound estimation. More importantly,
branch-and-bound features interesting characteristics, making it particularly fit for
producing just-in-time solutions, for example for radars in operational situation.

Problem Statement

Definition

Let G = {gm,n} be the set representation of a finite bi-dimensionalM-by-N regular
grid with

• each element gm,n representing a cell indexed by (m, n) ∈ [0,M[×[0, N [⊂ N
2.

The grid containsMN cells.
• each couple (m, n) representing the node at the intersection of them-th horizontal

line and the n-th vertical line with (m, n) ∈ [0,M] × [0, N] ⊂ N
2. The grid has

(M + 1)(N + 1) nodes.

On the grid, a rectangular cover is a subset of elements included in a rectangle,
uniquely defined by its upper left corner node (m0, n0) and its lower right corner
node (m1, n1), such that 0 ≤ m0 < m1 ≤ M and 0 ≤ n0 < n1 ≤ N . The set
representation of a cover defined by corners (m0, n0) and (m1, n1) is:

C = {gm,n, (m, n) ∈ [m0,m1[×[n0, n1[}
For example, in cover C7 (Fig. 25.2), the corners are (m0, n0) = (0, 1) and
(m1, n1) = (1, 2).

Let C = {C1, . . . , CD} be a collection of D rectangular covers on G.
Let TC ∈ R

+ be the associated cost of cover C ∈ C (also noted Ti for cover Ci).
Find a minimum cost sub-collection S ⊂ C covering all cells of grid G.

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 467

Fig. 25.2 Grid G to cover (left), a cover (center) and the collection C of available covers (right)

Fig. 25.3 Surveillance area AS (left), its projection in direction cosines (center) and the surveil-
lance grid (right)

Example

There are six available covers such as in Fig. 25.2 to cover G:

• S1 = {C1, C4, C5, C6, C7} is a valid sub-optimal covering collection with total
cost T1 + T4 + T5 + T6 + T7 = 8.

• S2 = {C2, C3, C6, C7} is a valid optimal covering collection with total cost T2 +
T3 + T6 + T7 = 6, as there are no solution with total cost 5 or less.

• S3 = {C2, C5, C6, C8} is another optimal covering collection, thus an optimal
solution is not necessarily unique.

The optimization formulation of this set cover problem can be written as:

min
∑
C∈S TC

s.t. ∀gm,n ∈ G, ∃C ∈ S, gm,n ∈ C
S ⊂ C

(25.1)

In the case of radar search pattern application, the grid G represents the
surveillance area (Fig. 25.3), while each cover C ∈ C represents a radar beam and
its detection area on the grid G (Fig. 25.4). The associated cost TC is the duration
required to emit the radar signal, then receive and process the echo. The total cost of
collection of radar beams is the time required to emit all beams in sequential order,
as the radar cannot emit simultaneously several beams.

468 Y. Briheche et al.

azimuth

elevation

tilt

direction cosines

Fig. 25.4 Radar detection beam (left), its radiation pattern (center) and the associated cover (right)

Combinatorial Complexity

A rectangle cover is uniquely define by its upper left and lower right corners. Those
corners are mathematically defined by choosing two values m0 and m1 among the
M + 1 horizontal lines, and two values n0 and n1 among the N + 1 vertical lines on
the grid. Thus there are at most

(
M + 1

2

)(
N + 1

2

)
= MN(M + 1)(N + 1)

4
= O(M2N2)

possible distinct rectangles on a M-by-N grid. And so the maximum number of
possible sub-collections of rectangular covers on the grid is 2MN(M+1)(N+1)/4.

Even for a 10-by-10 grid, which is relatively small, the number of possible sub-
collections is approximately 10900, which is far too big to allow the use of brute-
force exploration.

Integer Programming

Problem Formulation

The set cover problem can be written as an integer program by using matrix
formulations. We represent each cover C ∈ C as a binary M-by-N matrix noted
C, or as a binary vector of lengthMN noted c (Fig. 25.5):

C(m, n) = c(m+Mn) =
{

1 if gm,n ∈ C
0 otherwise

For each cover Ci ∈ C, let xi ∈ {0, 1} be the binary selection variable of cover
Ci , such that the vector x = (x1, . . . , xD) ∈ {0, 1}D represents the sub-collection
S = {Ci ∈ C s.t. xi = 1}, containing the chosen covers.

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 469

c = N.M

0
0
0

0

0
0

0

1
1

C =

N

M
0

0
0
0

0
0
0

1
1

Fig. 25.5 Radar detection beam (left), its binary matrix representation (center) and its binary
vector representation (right)

Let T = (T1 · · · TD)T be the cost vector and let

A = (c1 · · · cD
) =

⎛

⎜⎜⎜⎜⎜⎜⎝

C1(0, 0) · · · CD(0, 0)
C1(1, 0) · · · CD(1, 0)

...
. . .

...

C1(m, n) · · · CD(m, n)
...

...
...

⎞

⎟⎟⎟⎟⎟⎟⎠

be the cover matrix.
Then the set cover problem (25.1) can be written as the following integer

program:

min TT .x
s.t. A · x ≥ 1

x ∈ {0, 1}D
(25.2)

where 1 is the vector (1 · · · 1) of lengthMN . As an example, the set cover problem
represented in Fig. 25.2 can described by the following Equation:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T = (2 2 2 2 2 1 1 1
)T

and x =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

x8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25.3)

In their general form, integer programs are NP-hard to solve. Intuitively, this
means that solving those problems is difficult, and requires some form of exhaustive
enumeration of all possible solutions, whose number is often exponential in respect
to the problem size.

470 Y. Briheche et al.

Linear Relaxation

The linear relaxation of an integer program can be obtained by relaxing the
integrality constraint of (25.2) into a positivity constraint, allowing the variables
(xi)1≤i≤D to take continuous values in [0, 1]:

min TT .x
s.t. A · x ≥ 1

0 ≤ x ≤ 1
(25.4)

Any valid solution of the integer program is also a valid solution of its linear
relaxation. Consequently the optimal value of the linear relaxation is inferior to
the optimal value of the integer program, since an optimal solution of the integer
program is a valid solution of the linear relaxation.

Note that the constraint x ≤ 1 is in fact unnecessary, since the problem

min TT .x
s.t. A · x ≥ 1

0 ≤ x
(25.5)

has the same optimal solutions as (25.4). Intuitively, in the linear relaxation, a cell
is going to be covered by a sum of “fractional” covers (with xi < 1), or as at least
one integer cover (with xi = 1) and thus has no need for covers with xi > 1.

We formalize mathematically this idea in the following proof:

• Let xb = (xb1 · · · xbD) be an optimal solution of (25.5). Let y =
(y1 · · · yD) with yi = min{xbi , 1}.
Immediately we have TT y ≤ TT xb. Since xb is a valid solution of (25.5):

∀(m, n),
∑

i

xbi Ci(m, n) =
∑

xbi ≤1

xbi Ci(m, n)+
∑

xbi >1

xbi Ci(m, n) ≥ 1

– Case 1:
∑
xbi >1 x

b
i Ci(m, n) = 0

∑

i

yiCi(m, n) ≥
∑

xbi ≤1

xbi Ci(m, n) =
∑

xbi ≤1

xbi Ci(m, n)+
∑

xbi >1

xbi Ci(m, n) ≥ 1

– Case 2:
∑
xbi >1 x

b
i Ci(m, n) > 0

∃j s.t. xbj > 1 and Cj (m, n) > 0, and since Cj (m, n) ∈ {0, 1}, Cj (m, n) =
1, thus:

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 471

∑

i

yiCi(m, n) ≥ yjCj (m, n) ≥ Cj (m, n) ≥ 1

So y is a valid solution of (25.5), and since TT y ≤ TT xb, y is also an optimal
solution of (25.5).

From this, we deduce TT y = TT xb and with T > 0, we deduce xb = y, so xb

is a valid solution for (25.4).
• Let xa be an optimal solution of (25.4), xa is also a valid solution of (25.5), so

TT xb ≤ TT xa . We just showed that if xb is an optimal solution of (25.5) then it
is also a valid solution of (25.4), so we also have TT xa ≤ TT xb, and thus we can
conclude TT xb = TT xa .

So any optimal solution of (25.4) is an optimal solution of (25.5) and
reciprocally, thus both problems have the same set of optimal solutions.

Furthermore, the positivity constraints 0 ≤ x can be integrated in the matrix
formulation with

R =
(

A
I

)
and d =

(
1
0

)

by rewriting the linear program as

min TT .x
s.t. R · x ≥ d

(25.6)

And the three formulations of the linear relaxation (25.4), (25.5) and (25.6) are
equivalent.

The integer program representing our set cover problem and its linear relaxation
have two more interesting properties:

• Easily-checked feasibility: an integer program is feasible if there is at least one
solution validating all constraints. It is possible that no valid solution exists if
some constraints are conflicting, or if one constraint is impossible. In our case,
feasibility is easy to check: the integer program as well as its linear relaxation
are feasible if and only if xF = (1 · · · 1) is a feasible solution, i.e. A · xF =∑D
i=1 ci ≥ 1:

– if xF is a valid solution, then the problem is feasible by definition.
– if xF is an invalid solution, then there is an invalidated constraint for xF , i.e.:

∃(m, n) s.t.
∑D
i=1 Ci (m, n) < 1, and since ∀(i,m, n), Ci (m, n) ∈ {0, 1},

∃(m, n) s.t. ∀i,Ci (m, n) = 0 ⇒ ∃(m, n) s.t. ∀(xi)1≤i≤D,∑D
i=1 xiCi

(m, n) = 0 < 1
In other words, A has its (m+Mn)-th row filled with zeros, corresponding to
a constraint which can be satisfied by no solution.

472 Y. Briheche et al.

Fig. 25.6 Decision space for 2D linear and integer programs

Intuitively, xF represents C, the collection of all available covers itself, and if
it is an invalid solution, then there is a cell which cannot be covered. This can
happen in a real system if there is a cell which cannot be scanned, because of
an obstacle or because the radar has not enough power to achieve the desired
detection range.

• Boundedness: a recurring question for linear programs is whether they are
bounded, that is whether the cost function is bounded (below for minimization)
for valid solutions. In our case the cost function is positive and thus bounded
below by 0.

Linear Programming

There are three important geometrical aspects describing the decision space of the
integer and linear programs (Fig. 25.6):

• T is the cost function gradient. The cost function is linear and its gradient is
constant. −T is the direction of maximum decrease of the cost function.

• A is the cover matrix. Each row of A correspond to a detection constraint on a
cell of G. In the decision space, each constraint corresponds to an hyperplane,
the limit between the halfspace of solutions validating the constraint and the
halfspace of solutions violating the constraint. The intersection of those halfspace
forms a convex polyhedron.

• The positivity constraint of the linear relaxation 0 ≤ x ≤ 1 bounds the values of
the valid solutions in the hypercube [0, 1]D .

For the integer program, the integrality constraint x ∈ {0, 1}D further reduces
the set of valid solutions to the vertices of the hypercube [0, 1]D .

So the set of valid solutions for the linear relaxation is the intersection of the
valid halfspaces for all constraints, and the hypercube [0, 1]D . Geometrically, it is a
bounded convex polyhedron in R

D , and can be described by its vertices (“corners”).
Each vertex of this polyhedron is a point where at least D hyperfaces of the
polyhedron intersect, in other words, a point where D constraints are tight.

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 473

Fig. 25.7 Illustration of Dantzig’s simplex method for solving linear programs

Such a point is called a basic solution (or basic vertex) of the linear program. It
has been proved that if a linear program is bounded and feasible, then it has a basic
optimal solution [4].

For a linear program, the polyhedron convexity allows the use of descent
methods, such as Dantzig’s simplex method, represented in Fig. 25.7, which moves
from vertex to vertex on the feasible polyhedron until it reaches an basic optimal
solution, i.e. a vertex with no decreasing neighbor. However, this type of method
generally cannot be used to solve integer programs, for which solutions are isolated
points.

So for a given basic optimal solution, we have D tight constraints. Let B ≤ MN
be the number of tight detection constraints. If D > B then we have Z = D − B
tight bound constraints. By considering formulation (25.5), we know that those Z
tight bound constraints are of the form xi ≤ 0, thus xi = 0. The corresponding
Z variables are called non-basic variables and are zeroes. The other D − Z = B

variables are called basic variables and can be non-zero values. We reorganize the
variables as xT = (xTB xTZ), where xB are the basic variables, and xZ are the non-
basic variables. Thus we have B tight detection constraints in A, such that

ABxB = 1

where AB is the square B-by-B submatrix of A linking the basic variables xB to the
tight detection constraints. Furthermore, AB is necessarily non-singular: since the
hyperplanes of all constraints intersect, the constraints are linearly independent.

Integral Program and Total Unimodularity

So for any basic optimal solution of the linear program, there is a (possibly non-
unique) square non-singular submatrix AB of A such that ABxB = 1 (note that the
reverse is not true, the condition is necessary, but not sufficient). Thus, xB = A−1

B 1
and xT = (xTB xTZ) = (xTB 0).

474 Y. Briheche et al.

So if A−1
B is an integral matrix (i.e. contains only integral values), then x is

also integral. This means that the linear program and the integer program share
an optimal solution. The integrality of an invert matrix is determined by the
determinant of its forward matrix:

det(AB) ∈ {−1,+1} ⇒ A−1
B = com(AB)

det(AB)−1
is integral

A matrix A is said to be unimodular if det(A) ∈ {−1, 0,+1}. A matrix is said
to be totally unimodular if all its square submatrices are unimodular. An integer
program whose constraint matrix is totally unimodular can be directly solved by
linear relaxation, because the integer program and its linear relaxation have the
same basic optimal solutions. In this case, the problem and its associated convex
polyhedron are said to be integral. Geometrically, this means that all vertices of the
polyhedron are integral points.

Total unimodularity is an important concept in combinatorial optimization,
because it reduces integer programming to linear programming, which is theoret-
ically an “easier” problem. Linear programming is solvable in polynomial time, and
very efficient practical algorithms exist.

One-Dimensional Cover Problem

For example, let us consider the one-dimensional case of our problem, with
M = 1:

• G = {gn, n ∈ [0, N [} is a vector with N cells to covers.
• a cover C = {gn, n ∈ [n0, n1[} is a contiguous subset of G, uniquely defined

by a starting element n0 and an ending element n1 such that 0 ≤ n0 < n1 ≤ N .
Each cover can be represented by a binary vector

c(n) =
{

1 if n0 ≤ n < n1

0 otherwise

which contains contiguous “ones”, i.e. there is no “zero” between two “ones”.
• C = {C1, . . . , CD} is a collection of covers on G.

An example of this problem is presented in Fig. 25.8.
For the one-dimensional cover problem, the cover matrix A = (c1 · · · cD

)
is

an interval matrix, i.e. each column ci of A has its ones “consecutively”. Interval
matrices are known to be unimodular [5], and thus totally unimodular, since every
submatrix is also an interval matrix. Every basic optimal solution of the linear
relaxation is an integral solution, and a valid solution for the integer program.
Solving the linear relaxation of the one-dimensional cover is sufficient to solve the
problem itself, making it an “easy” problem.

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 475

Fig. 25.8 Instance of the one-dimensional cover problem

However this not the case for the two-dimensional cover problem. For the
problem represented in Fig. 25.2 and described by Eq. (25.3), the linear basic
optimal solution is xL = (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2)
T . A possible AB submatrix for this

solution is

which has a determinant of −2, thus explaining the appearance of 1
2 values in the

linear basic solution. This counterexample disproves the total unimodularity of the
two-dimensional cover.

Integrality Gap

For the two-dimensional cover problem, the linear optimal solution might not be a
valid solution for the integer problem and may have fractional values. The optimal
cost of the linear relaxation described by Eq. (25.3) is TT xL = 11

2 . The optimal cost
of the integer program cannot be fractional and is necessarily integer (in this case, it
is 6). The difference between the optimal cost of the integer program and its linear
relaxation is called the integrality gap.

Dynamic Programming

Interestingly, the difficulty gap between the one-dimensional and two-dimensional
cover problems can be found by a completely different, algorithmic approach
using dynamic programming. Dynamic programming is a method for solving an

476 Y. Briheche et al.

Fig. 25.9 Optimal substructure of the one-dimensional cover problem

optimization problem by recursively solving smaller sub-problems. Problems solved
by dynamic programming usually possess an optimal substructure, which means
that an optimal solution can be constructed by combining optimal solutions of its
sub-problems. The method is particularly efficient if this substructure can be broken
down recursively in a polynomial number of sub-problems.

This the case for the one-dimensional cover (Fig. 25.9). An optimal subcollection
S covering G for this problem is going to be the combination of:

• a cover c including the last cell, so such that n0 ≤ n < N(= n1). Thus c covers
the last cell but might also covers some previous cells.

• a subcollection covering optimally the first n0 cells (which are not covered by c)

Then it’s possible to recursively define the solution covering optimally the first
K cells as the union of a one cover including the K-th cell and a solution covering
optimally the first k cells with k < K . This is formalized by the following equation,
called the Bellman recursion:

x[1,K] =

⎧
⎪⎪⎨

⎪⎪⎩

0 if K = 0
x[1,K−1] if Ax[1,K−1] ≥ 1[1,K]

argmin{TT x s.t. x =
(x[1,k] + xi), k < K, Ax ≥ 1[1,K]} otherwise

where

– x[1,K] is the solution covering optimally at least the first K cells
– 1[1,K] is the vector of length N starting with K ones and ending with N − K

zeroes
– xi is the vector of length D with a one at position i and zeroes elsewhere,

representing the addition of the cover ci .
– k is the first non-zero element of the given cover ci

And the recursion can be described by the following steps

– x[1,0] is the solution covering zero cells, initialized at 0
– If the solution covering K − 1 cells also covers the K-th cell, we keep it.
– Otherwise, search the optimal solution covering the first K cells as a combina-

tion of:

· a cover ci containing the K-th cell
· the sub-solution x[1,k] optimally covering the first k < K cells not covered

by ci

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 477

first substructure
second substructure
substructures cut

Fig. 25.10 Substructure decomposition of the one-dimensional cover problem (left) and the two-
dimensional cover problem (middle)

So the dynamic programming method computes optimal sub-solutions for all
sub-problems of covering the first K cells for K ≤ N . So we must solve N sub-
problems. For each sub-problem, the solution is computed as a combination of a
cover and a smaller substructure optimal solution, so requires O(D) steps to search
through all covers. Thus, the algorithmic complexity of the dynamic programming
algorithm is O(ND), which is polynomial.

A natural question would be whether this approach can be generalized to the
two-dimensional cover problem. Let us consider an optimal solution for the two-
dimensional cover problem. It can be viewed as a combination of a rectangular cover
C including the last bottom-right cell and an optimal cover for the substructure of
cell not covered by C.

So the optimal substructure of the two-dimensional cover problem is the cover
sub-problem of a first “top-left” half of the M-by-N grid G. The number of sub-
problems is equal to the number of way of cutting G into two substructures: a top-
left part and a bottom-right part, as presented in Fig. 25.10. Equivalently, this is
equal to the number of paths between the top-right corner and the bottom-left corner
of G.

A cut is constituted by N +M edges on the grid, with M vertical edges and N
horizontal edges. Any cut can be defined uniquely by choosing the N vertical edges
(or equivalently M horizontal edges) among the N + M edges. So the number of
possible paths between two opposite corners of G, and thus the number of cover
sub-problems on G is

(
N+M
N

) = (N+M
M

)
.

Let K = min{N,M}, then the number of possible cuts can be bound below by
the following approximation using Stirling’s formula

(
N +M
N

)
≥
(

2K

K

)
"

√
2π2K(2K)2K

e2K

(
eK√

2πKKK

)2

= 22K

√
πK

Thus, the number of sub-problems to solve grows exponentially with the grid
size: an increase by 10 of the grid size increase the number of sub-problems by
approximately 22·10 ≈ 106. Even for small values, the number of sub-problems
explodes (Table 25.1):

478 Y. Briheche et al.

Table 25.1 Number of
sub-problems

N = M 10 20 30 40 50(2N
N

) " 105 " 1011 " 1017 " 1023 " 1029

So while theoretically usable for the two-dimensional cover problem, dynamic
programming has an exponential complexity for this problem, making the approach
rather unpractical. This hints that the two-dimensional cover problem is computa-
tionally harder than the one-dimensional cover problem. The two-dimensional cover
problem is in fact NP-difficult to solve [6]. To efficiently solve the two-dimensional
cover problem, we need to use a more general optimization method.

Branch&Bound

Integer programs are generally NP-hard optimization problems: there is currently
no know algorithm capable of finding quickly an optimal solution. Informally, exact
algorithms “have to” search through the solution space.

The space of all possible solutions can be represented as a finite binary tree with
depth p, each node representing the value choice of an integer variable (Fig. 25.11).
Each end leaf represents a solution for the integer program. The number of possible
solutions is finite, but grows exponentially and is usually huge: in our case, 2D

possible solutions.
Exploring the entire tree is computationally unfeasible in reasonable time.

However it is possible at each node to estimate a lower bound of the node sub-
tree best solution, by solving its linear relaxation. Knowing their lower bound, it is
possible to avoid exploring certain subsets. This method is known as the branch-
and-bound method [7]:

• Branching: Each branch at the current node (with depth i − 1) correspond to a
chosen value, 0 or 1, for the next variable xi . In each branch, xi is no longer
a variable but a parameter. The current problem is thus divided into 2 smaller
sub-problems, each considering a different value for xi and each having one less
variable.

• Bounding: The current problem is relaxed into a linear program, whose solution
is a lower bound of the current problem best solution. Depending on the lower
bound value, the node sub-tree will be explored next (if it is the most promising
branch), later (if there is a more promising branch), or never (if a better solution
has already be found in another branch).

Defining what a promising branch is a difficult question, a lower bound is not
necessarily better since deeper nodes may have higher bounds while being closer to
optimal solutions. Integer programming solvers usually rely on various heuristics to
define the exploration strategy and improve bound estimations.

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 479

Fig. 25.11 Finite tree of solutions (left) and branch-and-bound method (right)

Description

We present in this section a pseudo-code describing a basic implementation of the
branch-and-bound method in Algorithm 1. Each node in the tree can be described
by the sequence of choices leading to it:

N = (x1, x2, . . . , xn)

From a given node, we can compute its children N0 = (x1, . . . , xd, 0) and N1 =
(x1, . . . , xd , 1). At each node N explored, (x1, x2, . . . , xn) are set, and we solve a
linear relaxation of the problem with respect to the variables (xn+1, . . . , xD) using
the simplex method, then add N to the list of nodes to explore.

The algorithm can be summarized by the following steps:

0. Initialization:
Initialize the list of node to explore with the root node.

1. Exploration:
Pop next node to explore from the list of nodes and compute its linear relaxation.

2. Bounding:
If the current node relaxation value is less than the current best solution found,
proceed to Step 3, otherwise, drop current node and go back to Step 1.

3. Update:
If the current node relaxation is an integral solution, then its an improving
solution (note that an end leaf always yield an integral solution). Update best
current solution and proceed to Step 1.
Otherwise:

4. Branching:
Compute the current node children. For each child, check if the descendants
contains a valid solution (this can be done by summing covers already used
by the parent, the cover of the child node if used, and covers available to the
descendants). If the child node is valid, add it to the list of node to explore.
Proceed to Step 1.

480 Y. Briheche et al.

Algorithm 1 Branch-and-bound
% LP_SOLVE is the relaxation subroutine called during branching
function LP_SOLVE(N)
(x1, . . . , xd−1) := N # At node N , the first d − 1 variables are set
(xd , . . . , xD) := argmin{∑D

j=d Tj xj , s. t. A · x ≥ 1} # Optimization of non-set variables
return xL := (x1, . . . , xd , xd+1, . . . , xD)

end function

% Initialization
Nroot = ()
N := {Nroot } # Start with root node
xbest := xF = (1 · · · 1) # Best solution found so far (by default, xF is a valid solution)

% Exploration
while N is not empty do
N := pop(N) # Take next node in N
xL := LP_SOLVE(N) # Solve node relaxation

% Bounding
if TT · xL < TT · xbest then # Explore node N only if it can improve best solution

% Update
if xL ∈ {0, 1}D then # Check if xL is an integral solution

xbest := xL else

end
(x1, . . . , xd) := N

% Branching
for x ∈ {0, 1} do # Compute children of node N
Nc := (x1, . . . , xd , x)

if
∑d
j=1 xj cj + xcd+1 +∑D

j=d+2 cj ≥ 1 then # Check child feasibility
N := N ∪ {Nc} # Add child to the candidate list

end if
end for

end if
end if

end while
return xbest

This very generic description is just a presentation of the general idea of the
method. Efficient implementations of the branch-and-method usually combined
several techniques such as cutting planes, diving heuristics and local branching to
improve bounds estimation and speed.

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 481

Application Example

In this section, we apply and describe the behavior of the branch-and-bound method
on the example represented in Fig. 25.2 and described in Eq. 25.3.

• N = {}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13:
Solving the root relaxation yields the linear solution (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2) with

cost 11
2 ≤ 13. Root node children (0) and (1) are feasible, and thus added to the

exploration list N := {(0), (1)}
• N = {(0), (1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13:

Relaxation of (0) yields the same linear solution (0 1
2

1
2

1
2

1
2

1
2

1
2

1
2) with

cost 11
2 . We add the children (0, 0) and (0, 1) to the exploration list N :=

{(1), (0, 0), (0, 1)}
• N = {(1), (0, 0), (0, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13:

Relaxation of (1) yields the linear optimal solution xL = (1 0 1 1 1
2

1
2

1
2

1
2)

with cost 15
2 < 13. We add the children (0, 0) and (0, 1) to the exploration list

N := {(1, 0), (1, 1)}
• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT ·xbest =

13:
Relaxation of (0, 0) yields the linear optimal solution xL = (0 0 1 1 0 0 1 1) with
cost 6 < 13. xL is an integral solution, thus we update the best current solution
xbest := xL; fbest := 6.

At this point, we can already deduce than we have found an integer optimal
solution. The root relaxation has linear optimal cost 11

2 . Since any integer solution
is a valid linear solution, it has an integer cost greater than the linear optimal cost 11

2 ,
so greater than 6. This suffices to prove the optimality of xbest = (0 0 1 1 0 0 1 1)
for the integer program described by Eqs. (25.2) and (25.3).

Multiple Solutions Enumeration

While we could terminate the exploration once we have found an optimal solution,
we also have the possibility to pursue the exploration in order to found alternative
optimal solutions.

In engineering applications, multiple solutions are a desirable feature for engi-
neers and operators who can select a solution among multiple candidates based on
their expertise. This choice in turn can be analyzed to define preferences, to add
secondary selection criterion to the method or even refined the model into a multi-
objective optimization problem.

Multiple solutions enumeration can be done by slightly modifying steps 2. and 3.
of the branch-and-bound method:

482 Y. Briheche et al.

2. Bounding:
If the current node relaxation value is less than or equal to the current best
solution found, proceed to Step 3, otherwise, drop current node and go back to
Step 1.

3. Update and Enumerate:
If the current node relaxation is an integral solution, then its an improving
solution. If it is strictly better than the current solution, empty the set of best
solutions and update best current solution. Otherwise, update the set of best
solutions. Proceed to Step 4 (as there could be other optimal solutions among
the children of the current node).

This result in modifications to Algorithm 1 pseudo-code as described in Algo-
rithm 2.

If we pursue the method application to the numerical example previously
described:

• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT ·xbest =
13 :

Algorithm 2 Multiple solutions enumeration branch-and-bound
% Initialization
...
xbest := xF = (1 · · · 1) # Best solution found so far (by default, xF is a valid solution)
Xbest := {xF } # Set of best solutions found so far

% Exploration
while N is not empty do

...

% Bounding
if TT · xL ≤ TT · xbest then # Explore N if its relaxation is at least as good as xbest

% Update and Enumerate
if xL ∈ {0, 1}D then # Check if xL is an integral solution

if TT · xL < TT · xbest then
xbest := xL
Xbest := {xL} else

end
Xbest := Xbest ∪ {xL}

end if
end if

% Branching
for x ∈ {0, 1} do

...
end for

end if
end while
return Xbest

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 483

Fig. 25.12 Graphical representation of the branch-and-bound application example

Relaxation of (0, 0) yields the linear optimal solution xL = (0 0 1 1 0 0 1 1) with
cost 6 ≤ 13. xL is an integral solution, thus we update the best current solution
xbest := xL; fbest := 6.
We add the children (0, 0, 0) and (0, 0, 1) to the exploration list N .

• N = {(0, 1), (1, 0), (1, 1), (0, 0, 0), (0, 0, 1)}, xbest = (0 0 1 1 0 0 1 1), fbest =
TT · xbest = 6:
Relaxation of (0, 1) yields the linear optimal solution x1 = (0 1 1 0 0 1 1 0) with
cost 6 ≤ 6. x1 is an integral solution, thus added to Xbest := {xbest , x1}. We add
the children (0, 1, 0) and (0, 1, 1) to the exploration list N .

• N = {(1, 0), (1, 1), (0, 0, 0), . . . }, xbest = (0 0 1 1 0 0 1 1), fbest = TT ·xbest =
6 :
Relaxation of (1, 0) yields the linear optimal solution xL = (1 0 1 1 1

2
1
2

1
2

1
2)

with cost 15
2 > 6. We drop node (1, 0) and proceed with the next node.

• N = {(1, 1), (0, 0, 0), . . . }, xbest = (0 0 1 1 0 0 1 1), fbest = TT · xbest = 6:
Relaxation of (1, 1) yields the linear optimal solution xL = (1 1 1 0 0 0 1 1) with
cost 8 > 6. We drop node (1, 1) and proceed with the next node.

This numerical example is graphically represented in Fig. 25.12, with the
optimization phase, the enumeration phase and some nodes rejection.

Just-in-Time Criteria

One of the most interesting features of the branch-and-bound method from an
operational point of view is the possibility to use a “just-in-time” criteria. For
example, a radar system with an embedded computer must optimize its cover just
before a mission start. However, it only has 5 min to perform the optimization.

484 Y. Briheche et al.

Algorithm 3 Just-in-time branch-and-bound

% Exploration
current_time := time() # Get current time
while N is not empty AND current_time ≤ time_limit do

...
end while
return Xbest , BN

A “just-in-time” is a time limit condition that would ensure that even if the optimum
has not been reached, the algorithm will return the best solution it found in the
available lapse of time. Another strength of the method is the fact that linear
relaxation provides a lower bound of the optimal solution value:

BN = min{TT · xL : xL = LP_SOLVE(N),N ∈ N }
thus during the computation of the method, we always have an interval of confidence
for the optimal solution value, above the lower bound but below the current best
value:

BN ≤ T · xopt ≤ T · xbest

Knowing the lower bound, we can compute the (worst-case) relative optimality gap
as:

�opt = T · xbest − BN
BN

which give as a percentage the best gain we can hope from the optimal solution
relatively to the current best solution. The pseudo-code modifications required
to account a time limit and provided the current lower bound are described in
Algorithm 3.

In practice, if the algorithm has a broad choice of available covers, it will find
very quickly a good quality solution. Typically within ≤ 10% of relative optimality
gap. However closing those last percents to reach the optimal solution can be
difficult. Because the decision space is often huge, the algorithm spends a long time
crossing out possibilities. In some case even, the algorithm finds quickly the optimal
solution, and spends a long time proving its optimality.

Application to Radar Engineering

In this section, we give a study case example of radar search pattern optimization
and its simulation results. We present first a quick informal description with intuitive
and quantitative insight on our mathematical model of the radar system.

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 485

Radar Model

An active radar is a system capable of detecting distant metallic objects, by sending
electromagnetic waves and listening to reflected echoes. To perform detection in
a given azimuth-elevation direction (az, el), the radar antenna is electronically
controlled to focus power in direction (az, el), maximizing the radiation pattern in
that direction. A signal containing a series of impulses is then sent through the radar.
Upon reception, the reflected signal is filtered to detect echoes. A longer signal is
more energetic and easier to filter out. The energy received by the radar from a target
at distance R is

Er = K g2 T

R4 (25.7)

whereK is a constant accounting for the radar emitting power, internal losses, target
reflectability, etc., g is the antenna radiation pattern in direction (az, el), and T is
the signal duration.

Equation (25.7) is a simpler version of the radar equation [8], a fundamental
concept in radar theory. It formalize the intuitive idea that the reflected energy
increases with antenna directivity and signal duration, but decreases with the target
distance. The radar has a certain detection threshold Et , and detects a target only if
its reflected energy is above this threshold.

For a given radar system, we have a set of feasible rectangular radiation patterns
for the antenna and a set of available signals. The combination of a radiation pattern
and a time signal is called a dwell.

Simulation Parameters

The desired detection range is defined by a minimum distanceDmin and a minimum
altitude Hmin. We want to detect targets within that range, closer than Dmin and
below altitude Hmin, so the desired detection range is defined as:

Rc(az, el) =
{
Dmin if el ≤ asin

(
Hmin
Dmin

)

Hmin
sin(el) otherwise

Informally, the volume defined by the detection range resembles a sliced cylinder
(Fig. 25.13). The radar can use two different type of signals: a short signal and a
long signal.

In our simulation, the detection grid G is a 20×20 lattice with 326 valid cells.
We computed 866 feasible dwells in our study case, with 815 dwells using a short
time signal with duration Ts and 51 dwells using a long time signal with duration
Tl . We compute the cost vector T with size 866 associating each dwell to its signal
time duration.

486 Y. Briheche et al.

Fig. 25.13 Desired detection range: elevation cut (left), azimuth cut (center) and 3D view (right)

Long
Short

Fig. 25.14 From left to right: computed radar search pattern, emission pattern and detection range

We want to find a optimal radar search pattern, i.e. a sub-collection of dwells
among the 866 available dwells covering all 326 valid detection cells with minimal
total time-budget. For each of the 866 dwells, we use Eq. (25.7) to compute the
dwell detection cover on the 326 cells. From the detection covers, we can compute
the cover matrix A with shape 326×866.

Having computed T and A, we can use the branch-and-bound method described
previously to search an optimal radar search pattern. The corresponding integer
program has 866 variables and 326 detection constraints.

The optimization is done through the CPLEX solver [9], which implements
an improved version of the branch-and-bound. The total time required to find the
solution is 5 s on an i7-3770@3.4GHz processor.

Optimal Solution

The returned optimal solution is shown in Fig. 25.14: the left sub-figure shows the
discrete covers of the 20 dwells used in the pattern. Ten dwells use a short signal
(represented in blue) and cover high elevation, and ten dwells use a long signal
(represented in red) and cover low elevations.

This result is explained by the fact that a radar must usually achieve high
detection range near the horizon (where targets are located) and low detection range
at high elevation (since most aircrafts have limited flying altitude). It makes sense
to use longer, and thus “more energetic” dwells at low elevations than at high
elevations.

25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search. . . 487

Fig. 25.15 Two other possible optimal solutions

Enumeration

As we have seen before, there may be multiple optimal solutions. In this simulation
we managed to found 3500 different optimal solutions in 5 min. However, this
search is unlikely to be exhaustive: due to the wide choice of possible dwells, there
is often an extremely high number of possible alternative optimal solutions. Finding
all solutions is unfeasible in practice.

However optimal solutions share certain characteristics: all solutions have ten
shorts signal dwells at high elevation and ten long signal dwells at low elevation.
The long-signal dwells (in red) are mostly the same for all optimal solutions found,
and form an optimality invariant. The short-signal dwells (in blue) are however
different for each solution.

Intuitively, the low-elevation area is more “energetically demanding”; thus low-
elevation detection constraints are the “hardest constraints” of the problem, and
do not leave a lot of choice for covering the low-elevation area. High-elevation
detection constraints are in comparison “easier” and can be validated by different
covers (Fig. 25.15).

Conclusion

The branch-and-bound method is a practical and powerful technique. It can be used
as an exact algorithm if exploration is pushed to its completion, when there is no
more branch left with a potentially better solution. It can also be used as an heuristic,
with stopping criterion based on an time limit or a optimality gap threshold. This is
especially useful in operational situations with broad choices, when finding a good
solution is easy, but proving optimality is difficult.

488 Y. Briheche et al.

The method is very generic, and can be used to solve a lot of different
combinatorial problems. Many of those problems have evident practical values and
important applications in various industries, such as the set cover problem in radar
applications. The versatility of the method and its various “flavors” can be used
for different purposes: enumeration permits analysis of the radar “possibilities”
during conception, while just-in-time criteria improves resources management in
operational situations. Branch-and-bound is an extremely efficient tool for a broad
variety of engineering applications.

Acknowledgements This work is partly supported by a DGA-MRIS scholarship.

References

1. Vazirani VV (2001) Approximation algorithms. Springer, New York
2. Briheche Y, Barbaresco F, Bennis F, Chablat D, Gosselin F (2016) Non-uniform constrained

optimization of radar search patterns in direction cosines space using integer programming. In:
2016 17th International Radar Symposium (IRS)

3. Yelbay B, Birbil Şİ, Bülbül K (2015) The set covering problem revisited: an empirical study of
the value of dual information. J Ind Manag Optim 11(2):575–594

4. Matouek J, Gärtner B (2006) Understanding and using linear programming (universitext).
Springer, New York/Secaucus

5. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley-Interscience,
New York

6. Briheche Y, Barbaresco F, Bennis F, Chablat D (2018) Theoretical complexity of grid cover
problems used in radar applications. J Optim Theory Appl 179(3):1086–1106 [Online]. https://
doi.org/10.1007/s10957-018-1354-x

7. Conforti M, Cornuejols G, Zambelli G (2014) Integer programming. Springer Publishing
Company, Incorporated

8. Skolnik M (2008) Radar handbook, 3rd edn. McGraw-Hill Education, New York
9. IBM ILOG CPLEX Optimization Studio, v12.6 (2015) http://www-03.ibm.com/software/

products/en/ibmilogcplestud/

https://doi.org/10.1007/s10957-018-1354-x
https://doi.org/10.1007/s10957-018-1354-x
http://www-03.ibm.com/software/products/en/ibmilogcplestud/
http://www-03.ibm.com/software/products/en/ibmilogcplestud/

Chapter 26
Optimization of the GIS-Based
DRASTIC Model for Groundwater
Vulnerability Assessment

Sahajpreet Kaur Garewal, Avinash D. Vasudeo, and Aniruddha D. Ghare

Abstract Groundwater vulnerability assessment is an essential tool for iden-
tification, classification and analysis of factors affecting groundwater and thus
to take necessary steps for reduction of adverse environmental consequences.
DRASTIC is a widespread approach for assessment of groundwater vulnerability.
It is a region specific method and a major challenge is to manage its intrinsic
subjectivity for evaluating the approximate parameters and assigning rates and
weight to the parameters, depending on the regional factors affecting groundwater.
In order to minimize the subjectivity of DRASTIC, in the present study DRASTIC
methodology was optimized by addition of Land use (Lu) parameter and rebuilding
the parameters rates and weight. The criteria for the optimization of rates were mean
nitrate concentration and weight of the parameters was Analytical Hierarchy Process
(AHP). The modified DRASTICLu model formed by optimizing the conventional
DRASTIC by applying various modification shows good correlation with field
quality parameters.

Keywords Groundwater · Vulnerability · DRASTIC · Land use · Nitrate ·
AHP

Introduction

Groundwater is globally important and necessary environmental element for sus-
tainable and economical development. Increasing urbanization has induced tremen-
dous pressure on existing natural resources. Last few decades have witnessed
overexploitation and quality degradation of surface and ground water, which has
affected the living creature and surrounding environment [9]. Contamination of
water is a serious issue in India, 80% of the surface water resources and various

S. K. Garewal (�) · A. D. Vasudeo · A. D. Ghare
Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur,
Maharashtra, India

© Springer Nature Switzerland AG 2020
F. Bennis, R. K. Bhattacharjya (eds.), Nature-Inspired Methods for Metaheuristics
Optimization, Modeling and Optimization in Science and Technologies 16,
https://doi.org/10.1007/978-3-030-26458-1_26

489

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26458-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-26458-1_26

490 S. K. Garewal et al.

groundwater zones are found to be contaminated by organic, inorganic and physical
contaminants [21]. Over exploitation of the groundwater has been observed mainly
in the areas where municipal water supply is limited or the other available surface
water resources are polluted. While making efforts to meet the required quantity
of water as per demand, it is essential to maintain the specific quality of water.
Above scenario calls for the necessary step to make suitable strategies for effective
planning, management and development of available water resource.

The effort to enhance the groundwater condition is limited due to its invisibility
in nature and large cost and time requirement [23]. With increasing awareness
about the significance of groundwater resources, attempts are being made to reduce,
prevent and eliminate the groundwater contamination [13]. At the national and
regional levels, some progress is being made for estimating the quantity and
quality of water available and coordinating efforts to manage its use. Assessment
of groundwater vulnerability has become an effective tool, which identifies the area
less or more susceptible to contamination, allow the better understanding of local
hydrogeology of the area and helps in making effective policies for the regional
development of groundwater [23].

The methodology adopted for vulnerability assessment of groundwater is basi-
cally classified as statistical methods, overlay and index methods and process-based
simulation models, which is selected on the basis of data availability. A GIS based
DRASTIC method is a well-known approach used for assessment of groundwater
vulnerability. It has been applied successfully over the world such as India [5, 13,
17, 19], Japan [3], China [6, 7, 20, 22], Turkey [16], Iran [4, 8, 12, 15] and so on.

Though worldwide usage of DRASTIC methodology for groundwater vulnera-
bility assessment it has been criticized by various researchers due to its subjectivity
towards selected parameters and assigned rates and weights [15]. DRASTIC is a
region specific method, the parameters can be added or subtracted and modification
can be applied to assigned rates and weights depending upon the local hydrogeology
of the area [3]. The map showing groundwater vulnerable zones generated using
DRASTIC approach is unique can only be used for a specific study area. On the
basis of aforesaid literature, it can be concluded that optimization of the DRASTIC
methodology by applying various modification helps in better assessment of
groundwater vulnerability.

In the present study, groundwater vulnerability of Nagpur city is evaluated using
the conventional DRASTIC methodology and for better prediction of groundwater
vulnerable zone, an optimization to DRASTIC methodology was attempted based
on the:

(i) Addition of land use parameter along with the intrinsic DRASTIC parameters.
(ii) Revising the rates assigned to the parameters using mean nitrate concentration.

(iii) Revising the parameters weight using AHP.

26 Optimization of the GIS-Based DRASTIC Model for Groundwater. . . 491

Study Area

Nagpur urban is located at geographical centre of India, indicated by zero mile
stone (Fig. 26.1). It is situated between longitude 79◦00′ – 79◦15′ and latitude
21◦00′ – 21◦15′ at 310 m a.s.l. The city occupies approx 218 sq. km of area
within Nagpur Municipal Corporation (NMC) limit with the population of about
2,405,665. The stratigraphy of the city is comprised by massive Deccan trap and
Archeans crystalline in the western zone of the city. Sandstone aquifers are located
in North-East zone and, central and North-South is occupied by lameta formation.
The major water bodies within the city limits are Nag River and Pilli River. Nag

Fig. 26.1 Map showing Nagpur Urban

492 S. K. Garewal et al.

River is originated from Ambazari Lake and runs towards the east of the city meets
Pilli River before joining the Kanhan River. The city named after the Nag River.
Pilli River is originated from Gorewada lake travels approx 17 km within the city.
The average temperature in winter is 12 ◦C and 45 ◦C during summer and mean
precipitation is 1100 mm.

Methodology

DRASTIC (Conventional Method)

The intrinsic vulnerability of groundwater is evaluated including DRASTIC seven
hydro-geological parameters such as Depth to water table (D), Recharge (R),
Aquifer media (A), Soil media (S), Topography (T), Impact of vadose zone (I) and
Hydraulic conductivity (C) [1]. The parameters are characterized into different sub-
parameters and rated on the scale from 1 to 10 based on their effect on vulnerability
of groundwater. Weight is assigned to all the parameters from 1 to 5 showing their
importance in overall vulnerability assessment. The Intrinsic Vulnerability Index
(IVI) is evaluated by addition of all the parameters using Eq. (26.1).

IVI = DrDw + RrRw + ArAw + SrSw + TrTw + IrIw + CrCw (26.1)

Where,
w and r are the weight and rates assign to individual parameters in the overlay

analysis.
The groundwater vulnerability Index is evaluated by assigning the rates and

weight to the parameters which are already documented by [1] using Delphi
technique. The resultant vulnerability map is classified in different vulnerable
zones showing the area under very high to very low vulnerability index using
Natural breaks (jerks) classification tool of GIS. Figure 26.2 shows the complete
methodology adopted in the present study. The intrinsic vulnerability evaluated
using DRASTIC parameters are calibrated and validate using Field quality data.

Optimization of Conventional DRASTIC

The major constraint of the DRASTIC approach is its intrinsic subjectivity in
selecting the appropriate parameters and determining the weighting coefficients and
rating scales of the parameters. An attempt has been made to optimize the DRASTIC
methodology with the aim of better prediction of groundwater vulnerable zone of
Nagpur city by:

26 Optimization of the GIS-Based DRASTIC Model for Groundwater. . . 493

Groundwater Vulnerability Map
(Overlay Analysis)

DRASTIC

DRASTICLu

Intrinsic
parameters

(Intrinsic + Lu)
parameters

Modified
DRASTICLu

(Intrinsic + Lu)
parameters

(Revised rate and
weight)

Validation
(Field quality parameters)

Correlation coefficient

Correlation index

Modifying Weight of parameter

AHP

Pair wise Comparison

CR<0.1

Groundwater monitoring well
Quality data (45 wells)

Correlation Matrix

Calibration Validation

Field Data

Controlling parameters of Groundwater

Depth to water

Recharge

Soil media

Topography

Impact of vadose Zone

Aquifer Media

Hydraulic conductivity

Soil data

DEM

Transmissivity

Well log data

Land useSatellite Image

Water table

Rainfall

Well log data

Raw Data Thematic Map

Geographical Information System (GIS)

Fig. 26.2 Methodology for the present study

Addition of Land Use Parameter with Conventional DRASTIC Parameters
(DRASTICLu)

Groundwater vulnerability map evaluated using DRASTIC methodology involves
the intrinsic parameters of aquifer responsible for transportation and attenuation
of contamination, irrespective of any actual site specific data or source of the
contaminant. There is no data or methodology available to identify whether the
presence of the contaminant in the groundwater is due to the properties of the
material or by the anthropogenic activities at the land surface [5]. In the present
study, Land Use (Lu) parameter is incorporated with the intrinsic parameter of the
aquifer to involve the effect of different land occupied by various activities affecting
the potential of groundwater. The land use parameter classification is rated on the
basis, that the area which contributes more to groundwater contamination were
assigned higher value. The Vulnerability Index (VI) is calculated by adding the land
use parameter with IVI as formulated in Eq. (26.2)

VI = IVI + LurLuw (26.2)

494 S. K. Garewal et al.

Where,
w and r are the weight and rate assigned to additional Land use (Lu) parameter.

Revising the Rates of the Parameters Using Quality Data

The ratings of the DRASTIC parameters are revised using mean nitrate concen-
tration (quality data). The presence of source at land surface and presence of
the contaminant in groundwater at the particular location is not correlative. The
contaminant travels from the land surface to groundwater is affected by various
elements such as properties of media through which it is traveling, the slope of
the area, the concentration of contaminant and so on. The mean concentration of
nitrate is observed under various parameter classifications to revise the rating based
on the presence of the actual contaminant in the area. Nitrate is selected for the
modification of parameter rate because they are not present in the groundwater under
the natural condition it’s mainly due to anthropogenic activities at the land surface.

Revising the Weights of the Parameters Using AHP (Modified
DRASTICLu)

The weight assigned to DRASTIC parameters proposed by [1] can give unrealistic
results sometimes due to the changing hydrogeology of the area [16]. Analytic
Hierarchy Process (AHP) is a Multi Decision Making Analysis (MCDA) tool
proposed by [14], which assist the decision maker to make the best decision by
setting the priorities between the parameters. AHP is incorporated in the DRASTIC
method by [18] for revising the rate and weight of DRASTIC parameters and
followed by various researches [11, 16]. In AHP, pair wise comparison matrix
between the parameters are formed by comparing the parameters in a standard
nine level scale developed by Saaty [14]. In the scale, 9 signifies extremely more
important parameter and 1/9 signifies extremely less important parameter. The
principal Eigen vector and value evaluated by pair-wise comparison matrix is
helpful in decision making. For judgment of the comparison matrix, Consistency
Ratio (CR) is evaluated which should be within threshold value 0.1(10%). CR is the
ratio of Consistency Index (CI) calculated using Eq. (26.3) to Random Index (RI),
which is already defined for ‘n’ order matrix [14]. If CR fails to be within the range
than the answer of comparison is revised.

CI = λmax − n

n − 1
(26.3)

Where,
CI is Consistency Index, λmax is largest eigen value of respected ‘n’ order matrix.

26 Optimization of the GIS-Based DRASTIC Model for Groundwater. . . 495

Results

Preparation of DRASTIC Thematic Map

The data used for preparing the thematic map of DRASTIC parameters are col-
lected from the different government organization, research institutes and previous
research papers. All the operation used for obtaining the maps is performed in
ArcGIS version 10. The map of Depth to water table is generated using data of
45 monitoring wells collected from CGWB, Nagpur department. The available data
is in the statistical discrete form, Kriging interpolation tool is used to generate a
surface map of groundwater table showing different level within the city limit. The
depth to water level in the city varies from 0.7 to 15.2 m (Table 26.1). Greater the
depth to water level, lesser will be the chance of contamination as the contaminant
will take more time to reach aquifer and attenuation of contaminant will also take
place. Rainfall gives a major contribution for groundwater recharge; in the study

Table 26.1 Rates are weight of the parameters

DRASTIC [1] Modified DRASTIC

Parameter Sub parameter Rating Weights

Average
nitrate con-
centration

Rating
(Average No3
concentration)

Weight
(AHP)

Depth of
water (m)

0.7–2.61 10 5 21 No changes 0.035
2.62–3.87 9 46.78
3.87–4.69 8 41.36
4.69–5.95 6 84.12
5.95–7.86 4 71.96
7.86–10.77 2 54.14
10.77–15.2 1 52

Recharge
(mm)

423–433 9 4 67.86 10 0.160
417–422 8 63.24 9
411–416 7 61 8
405–410 5 25.5 4
396–404 3 22.19 3

Aquifer
media

Amgaon-
Gneiss-
complex

8 3 87.9 10 0.198

Unclassified-
Gneiss

7 63.16 8

Massive basalt 4 49.86 6
Intertrapean 1 21 3

Soil media Sand 8 2 86.33 10 0.047
Clayey 7 72.4 7
Clay loam 3 57.21 8

(continued)

496 S. K. Garewal et al.

Table 26.1 (continued)

DRASTIC [1] Modified DRASTIC

Parameter Sub parameter Rating Weights

Average
nitrate con-
centration

Rating
(Average No3
concentration)

Weight
(AHP)

Topography
(%)

<2.69 10 1 89.67 No changes 0.089
2.69–5.01 9 67.89
5.01–7.90 7 30.67
7.90–11.56 5 57.80
11.56–16.19 4 39.40
16.19–22.93 3 60.45
>22.93 1 12.33

Impact of
vadose zone
(m)

0.60–3.16 8 5 43.41 No changes 0.037
3.16–3.88 7 58.42
3.88–4.48 6 89.58
4.48–5.08 5 89.22
5.08–5.88 4 74.33
5.88–7.08 3 71.83
7.08–10.79 2 52

Hydraulic
conductivity
(m/s)

10−3–10−4 9 3 95.33 10 0.172
10−4–10−5 8 63.16 8
10−5–10−6 6 51.98 6
>10−6 5 21 3

Land use Agriculture 9 5 70.72 10 0.262
Built-Up 7 66.925 8
Water bodies 5 65.22 6
Wasteland 3 51.56 5
Forest 2 15.99 2

30–40% of rainfall is considered as recharge [2, 5]. Recharge in the study varies
from 396 to 433 mm which is nearly constant (Table 26.1), greater the recharge
more amount of contaminants will infiltrate to the groundwater. Aquifer media
is acquired using litho log data collected from CGWB, Nagpur. Mainly the city
is comprises of hard rock aquifer tabulated in Table 26.1. Soil media restrict the
movement of recharge from the surface to groundwater. The soil media in the city
varies from sand, clay to clayey loam (Table 26.1). The topography is specified in
the form of slope generated from DEM (Table 26.1). The slope is flat to mild in
the eastern zone and steeped in the western zone of the city. Impact of vadose zone
is given the form of a thickness of the zone calculate using DEM and depth to the
water level of the city and methodology proposed by [10] (Table 26.1). Lesser the
thickness of vadose zone more will be the contamination and vice versa. Hydraulic
conductivity depends on the characteristic of media through which the groundwater
travels. Table 26.1 shows the hydraulic conductivity range within the city; Greater
the hydraulic conductivity more will be the contamination migration. Land use is

26 Optimization of the GIS-Based DRASTIC Model for Groundwater. . . 497

obtained from the satellite image (LISS III) in the current study, comprising of
built-up area, agriculture, water bodies, forest and waste lands (Table 26.1). Each
classification has an individual impact on groundwater contamination.

DRASTIC (Conventional Method)

Intrinsic vulnerability index (DRASTIC) map evaluated by overlay analysis of seven
thematic maps using Eq. (26.1) is shown in Fig. 26.3. The vulnerability map of
groundwater is classified in five vulnerable zones on the basis of the vulnerability
index value, higher the index value more will be the chance of contamination.
From the observation of the resultant intrinsic vulnerability map of the study area,
South and South-West region is found to safe from contamination having least
vulnerability index. Center to south region is having moderate vulnerability index
and East and North-East region is at high risk having higher vulnerability index
value. The areas covered under different vulnerable zones are shown in Fig. 26.4.

Fig. 26.3 Groundwater
Vulnerability maps of Nagpur
city

498 S. K. Garewal et al.

Fig. 26.4 Areas covered
under different vulnerable
zone

DRASTICLuDRASTIC

Modified DRASTICLu

Very low

Low

Moderate

High

Very high

14.20%

49.30%

10.09%

19.02%

7.
39

%

24.68%

31.99%

14.06%

23.68%

5.
59

%

18.95%

22.71%

16.38%

37.44%

4.
52

%

Optimization of Conventional DRASTIC

Addition of Land Use Parameter with Conventional DRASTIC Parameters
(DRASTICLu)

The conventional DRASTIC approach is enhanced by the addition of land use
parameter. Vulnerability index map is obtained using Eq. (26.2) from overlay
analysis eight parameters is shown in Fig. 26.3. The resultant vulnerability map
(DRASTICLu) shows that the East and North-East zone is occupied by higher vul-
nerability index except few isolated pocket which lies under moderate vulnerability
index. The Central south zone is covered with the moderate vulnerability index and
South-West is safe having least vulnerability index. The area occupied by different
vulnerable zone is shown in Fig. 26.4.

Revising the Rates of the Parameters Using Quality Data

The rates of the parameters used in DRASTIC methodology are revised using mean
nitrate concentration of the city. The concentration of nitrate is observed in different
parameters classification. For each classification, an average value of nitrate is
calculated by using the data of monitoring wells lying under the same classification.
The mean nitrate value of all the classes is observed and the classification carrying
the maximum average nitrate concentration is rated as 10 and the other classification

26 Optimization of the GIS-Based DRASTIC Model for Groundwater. . . 499

is calibrated accordingly to the scale of 10 (Table 26.1). It was observed from the
analysis that depth to water level, topography and impact of vadose zone are not
showing any trend, so the ratings of these parameters remain unchanged.

Revising the Weights of the Parameters Using AHP (Modified
DRASTICLu)

The groundwater vulnerability map is generated using all the eight parameters rated
using mean nitrate concentration and weighted using AHP technique. The weights
of all the parameters are modified using pair wise comparison matrix using AHP
approach. The resultant groundwater vulnerability (Modified DRASTICLu) map
shows different vulnerable zones within the city limit (Fig. 26.3). From the close
observation of the Modified DRASTICLu groundwater vulnerability map, it was
observed that South-West zone is under least vulnerability index, Central and Center
west is under moderate vulnerability and East-North is under high to very high
vulnerability index. The area under different vulnerable zone according to Modified
DRASTICLu is shown in Fig. 26.4.

Validation
The groundwater vulnerability maps evaluated using DRASTIC approach and
various modifications are region specific generated using regional hydrogeology of
the study area, which needs to be validated. To evaluate the effectiveness of obtained
vulnerability maps, correlation coefficient is evaluated between the resultant maps
and nitrate concentration of the city using different regression techniques tabulate in
Table 26.2. The results shows that Modified DRASTICLu shows a better correlation
with the nitrate concentration followed by DRASTICLu and DRASTIC.

As DRASTIC methodology has been already modified using mean nitrate
concentration, other quality parameters such EC, TH and Cl are used to find the
effectiveness of the resultant vulnerability map. The Correlation Index (CI) method
suggested by [15] is used in the study to find correlation between vulnerability
maps and quality parameters. The vulnerability map and the field quality parameter
are classified in five classes showing very high to very low vulnerability. The
classification of the quality parameters is based on the permissible limit (drinking
water) of the parameters. To find a correlation, the wells data are observed in
the vulnerability maps. If the well contamination value and vulnerable zone show
convergence, mean both lies in same vulnerable class for example very high
contamination lies in a very high vulnerable zone than the numbers of wells are

Table 26.2 Correlation between Nitrate concentration and DRASTIC models

Correlation DRASTIC DRASTICLu Modified DRASTICLu

Pearson coefficient 0.249 0.310 0.561
Spearman coefficient 0.174 0.215 0.521
Kendall’s coefficient 0.130 0.154 0.377

500 S. K. Garewal et al.

Table 26.3 Correlation Index between quality parameters and groundwater vulnerability map

Map Zones Electrical conductivity (EC) Chlorine (Cl) Total Hardness (TH)
VL L M H VH VL L M H VH VL L M H VH

X VL 0 0 0 0 0 2 4 3 7 7 0 0 0 1 1
L 0 2 2 2 3 1 2 3 1 3 0 1 0 1 2
M 3 4 6 8 8 0 0 1 2 1 3 5 7 7 7
H 0 0 3 1 2 0 0 4 1 1 0 0 1 1 0
VH 0 0 0 1 0 0 0 0 1 1 0 0 3 2 3

CI = 170 CI = 140 CI = 177
Y VL 0 0 0 0 0 0 4 7 6 6 0 0 0 2 0

L 0 2 2 2 3 1 2 3 1 3 0 1 0 0 3
M 1 4 9 8 7 0 0 1 2 1 0 6 11 6 6
H 0 0 3 1 2 0 0 3 1 2 0 0 1 1 0
VH 0 0 0 1 0 0 0 0 1 1 0 0 2 3 3

CI = 176 CI = 141 CI = 178
Z VL 0 0 0 0 0 0 5 13 6 0 0 0 2 0 0

L 0 1 5 3 2 0 1 6 2 0 0 1 1 2 0
M 0 4 13 5 4 0 0 1 3 0 0 4 13 7 4
H 0 2 2 2 1 0 0 2 1 1 0 0 1 0 1
VH 0 0 0 0 1 0 0 1 1 2 0 0 3 3 3

CI = 184 CI = 157 CI = 186

VH = Very High; H = High; M = Moderate; L = Low; VL = Very Low
X = DRASTIC; Y = DRASTICLu; Z = Modified DRASTICLu

multiplied by 5. If the difference is 1 like very high contamination value wells lies
in a high vulnerable zone or high contamination value wells lies in very high or
moderate vulnerable zone than the numbers of wells are multiplied by 4. Similarly
for the difference 2, 3 and 4 the numbers of wells are multiplied by 3, 2 and 1
respectively. Table 26.3 shows the wells lying in the different vulnerable zone and
calculated CI. The result of the analysis shows higher correlation index of Modified
DRASTICLu with field quality parameters in comparison with DRASTICLu and
DRASTIC.

Discussion and Conclusion

The groundwater vulnerability of Nagpur city is evaluated using the conventional
DRASTIC method and by applying optimization to the conventional approach
by adding a land use parameter and modifying the rates using mean nitrate
concentration and weight using AHP approach. The resultant vulnerability map
shows that the Modified DRASTICLu method shows a good correlation with field
quality parameters followed by DRASTICLu and DRASTIC. DRASTIC includes
only hydro-geological parameters of the aquifer, whereas DRASTICLu includes

26 Optimization of the GIS-Based DRASTIC Model for Groundwater. . . 501

the effect of anthropogenic activities of land surface by involving the land use
parameter in the analysis along with hydro-geological parameters, which increase
the effectiveness of DRASTICLu method in the study area. The groundwater
vulnerability map evaluated using optimization, by applying various modification
to DRASTIC shows the best result in the study area in comparison to other
applied approach as it includes the source of contamination (land use parameter),
presence of contamination in groundwater by modifying the rates using mean nitrate
concentration and revising the weight using pair wise comparison of involved
parameter (AHP technique). All this modification helps in better assessment of
groundwater vulnerability of Nagpur city.

From the resultant groundwater vulnerability maps, it can be concluded that
East zone of the city is more vulnerable to contamination, while the south zone
is safe having least vulnerability index. Various groundwater zones and monitoring
wells are affected by the higher contaminant concentration, which needs effective
remedial measure for the further prevention of groundwater contamination. The
vulnerability map obtained using Modified DRASTICLu approach can be used for
making effective policies for regional groundwater development.

References

1. Aller L, Lehr J, Petty R, Bennett T (1987) A standardized system to evaluate groundwater
pollution using hydrogeologic setting. J Geol Soc India 29(1):23–37

2. Baalousha H (2006) Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC.
Environ Geol 50(3):405–415

3. Babiker IS, Mohamed MA, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for
assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci
Total Environ 345(1–3):127–140

4. Barzegar R, Moghaddam AA, Baghban H (2015) A supervised committee machine artificial
intelligent for improving DRASTIC method to assess groundwater contamination risk: a case
study from Tabriz plain aquifer, Iran. Stoch Env Res Risk A 30:1

5. Gupta N (2014) Groundwater vulnerability assessment using DRASTIC method in Jabalpur
District of Madhya Pradesh. Int J Recent Technol Eng 3(3):36–43

6. Huan H, Wang J, Teng Y (2012) Assessment and validation of groundwater vulnerability to
nitrate based on a modified DRASTIC model: a case study in Jilin City of Northeast China.
Sci Total Environ 440:14–23

7. Jang C-S, Lin C-W, Liang C-P, Chen J-S (2015) Developing a reliable model for aquifer
vulnerability. Stoch Env Res Risk A 30(1):175–187

8. Javadi S, Kavehkar N, Mousavizadeh MH, Mohammadi K (2011) Modification of DRASTIC
model to map groundwater vulnerability to pollution using nitrate measurements in agricultural
areas. J Agric Sci Technol 13:239–249

9. Karamouz M, Ahmadi A, Akhbari M (2011) Groundwater hydrology engineering, planning
and Managment. CRC press, London

10. Li R, Zhao L (2011) Vadose zone mapping using geographic information systems and
Geostatistics a case study in the Elkhorn River basin, Nebraska, USA. In: International
symposium on water resource and environmental protection, IEEE, pp 3177–3179

11. Neshat A, Pradhan B, Dadras M (2014) Groundwater vulnerability assessment using an
improved DRASTIC method in GIS. Resour Conserv Recycl 86:74–86

502 S. K. Garewal et al.

12. Neshat A, Pradhan B, Pirasteh S, Mohd Shafri HZ (2013) Estimating groundwater vulnerability
to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ
Earth Sci 71(7):3119–3131

13. Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in
shallow aquifer in Aligarh, India. Appl Geogr 28(1):32–53

14. Saaty T (1980) The analytic hierarchy process. McGraw-Hill, New York
15. Sadeghfam S, Hassanzadeh Y, Nadiri AA, Zarghami M (2016) Localization of groundwater

vulnerability assessment using catastrophe theory. Water Resour Manag 30:4585–4601
16. Sener E, Davraz A (2013) Assessment of groundwater vulnerability based on a modified

DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir
Lake basin (Isparta, Turkey). Hydrogeol J 21(3):701–714

17. Sinha MK, Verma MK, Ahmad I, Baier K, Jha R, Azzam R (2016) Assessment of groundwater
vulnerability using modified DRASTIC model in Kharun Basin, Chhattisgarh, India. Arab J
Geosci 9(98):1–22

18. Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRASTIC: software for specific
aquifer vulnerability assessment using DRASTIC model and GIS. Environ Model Softw
18(7):645–656

19. Umar R, Ahmed I, Alam F a (2009) Mapping groundwater vulnerable zones using modified
DRASTIC approach of an alluvial aquifer in parts of central ganga plain, Western Uttar
Pradesh. J Geol Soc India 73(2):193–201

20. Wang J, He J, Chen H (2012) Assessment of groundwater contamination risk using hazard
quantification, a modified DRASTIC model and groundwater value, Beijing plain, China. Sci
Total Environ 432:216–226

21. WaterAid (2016) FSM – urban wash: an assessment of Faecal sludge management policies and
programmes at the national and select states level. WaterAid, New Delhi

22. Wu H, Chen J, Qian H (2016) A modified DRASTIC model for assessing contamination risk
of groundwater in the northern suburb of Yinchuan, China. Environ Earth Sci 75(483):1–10

23. Yu C, Yao Y, Hayes G, Zhang B, Zheng C (2010) Quantitative assessment of groundwater
vulnerability using index system and transport simulation, Huangshuihe catchmentment,
China. Sci Total Environ 408:6108–6116

	Preface
	Contents
	Contributors
	Part I Algorithms
	1 Genetic Algorithms: A Mature Bio-inspired Optimization Technique for Difficult Problems
	1.1 Introduction
	1.2 The Basic Idea and the Terminology
	1.3 Genetic Operators
	1.3.1 Selection
	1.3.1.1 The Biased Roulette Wheel
	1.3.1.2 The Tournament Method
	1.3.1.3 The Elitist Approach

	1.3.2 Reproduction Operators
	1.3.2.1 Crossover
	1.3.2.2 Mutation
	1.3.2.3 Mutation and Crossover Probability
	1.3.2.4 Niche, Speciation, Sharing, Crowding, Migration
	1.3.2.5 Antimetathesis

	1.4 Termination of the Optimization Procedure
	1.5 Constraint Handling
	1.6 Steady State Genetic Algorithms
	1.7 Selection of Optimization Technique-Advantages and Disadvantages of Genetic Algorithms
	1.8 Overall Accuracy vs Accuracy of the Optimization Procedure
	1.9 Teaching Course Modules on Genetic Algorithms
	1.10 Concluding Remarks
	References

	2 Introduction to Genetic Algorithm with a Simple Analogy
	2.1 Introduction
	2.2 A Simple Analogy to GA
	2.3 Conclusion
	References

	3 Interactive Genetic Algorithm to Collect User Perceptions. Application to the Design of Stemmed Glasses
	3.1 Introduction
	3.2 Background on Genetic Algorithms
	3.2.1 Definition
	3.2.2 Encoding of the Design Variables
	3.2.3 The Genetic Operators

	3.3 Interactive Genetic Algorithm
	3.3.1 Synoptic of the IGA Process
	3.3.2 Challenges of IGA
	3.3.3 Set up of the Genetic Algorithms

	3.4 Application Case: Protocol and Results
	3.4.1 Goal-Seeking Task
	3.4.2 Free Task on “Elegant” Glass: Protocol
	3.4.3 Free Task on “Elegant” Glass: Results
	3.4.4 Conclusions on the Two Tests on the Glasses

	3.5 Synthesis and Perspectives on the Use of IGA for Design
	3.6 Conclusion
	References

	4 Differential Evolution and Its Application in Identification of Virus Release Location in a Sewer Line
	4.1 Introduction
	4.2 Structure of the Algorithm
	4.2.1 Initialization of the Population
	4.2.2 Mutation with Difference Vectors
	4.2.3 Recombination or Crossover
	4.2.4 Selection

	4.3 Parameters and Sensitivity
	4.4 Differential Evolution on Mathematical Functions
	4.4.1 Cross-in-Tray Function
	4.4.2 Rastrigin Function
	4.4.3 Goldstein-Price Function

	4.5 Conclusions
	References

	5 Artificial Bee Colony Algorithm and an Application to Software Defect Prediction
	5.1 Introduction
	5.2 ABC Algorithm
	5.3 An Engineering Application: Software Defect Prediction
	5.3.1 Artificial Neural Networks for Predicting Software Defects
	5.3.2 ABC Algorithm in Training an ANN for Software Defect Prediction
	5.3.3 Experiments
	5.3.3.1 Data Set and Metrics
	5.3.3.2 Prediction Performance Evaluation

	5.4 Conclusion
	References

	6 Firefly Algorithm and Its Applications in EngineeringOptimization
	6.1 Introduction
	6.2 Firefly Algorithm
	6.2.1 Philosophy of the Algorithm
	6.2.2 Mathematical Background for the Algorithm
	6.2.3 Modified Firefly Algorithm
	6.2.4 Advantages of FA

	6.3 Parameters of the Algorithm and Their Sensitivity
	6.3.1 Light Absorption Coefficient `γ'
	6.3.2 Maximum Attractiveness `β0'
	6.3.3 Randomness Parameter `α'

	6.4 Firefly Algorithm Applied to a Mathematical Function
	6.5 Conclusion
	References

	7 Introduction to Shuffled Frog Leaping Algorithm and Its Sensitivity to the Parameters of the Algorithm
	7.1 Introduction
	7.2 Methodology for SFLA
	7.2.1 Frog Leaping Algorithm
	7.2.2 Parameters and Sensitivity

	7.3 SFLA on Mathematical Functions
	7.3.1 Himmelblau Function
	7.3.2 Rosenbrock Function
	7.3.3 Sphere Function

	7.4 Conclusions
	References

	8 Groundwater Management Using Coupled Analytic Element Based Transient Groundwater Flow and Optimization Model
	8.1 Introduction
	8.2 Formulation of AEM-PSO Model
	8.2.1 AEM Flow Model
	8.2.2 Optimization Model
	8.2.3 Simulation-Optimization Model

	8.3 Model Application and Discussions
	8.3.1 Sensitivity Analysis

	8.4 Results and Discussions
	8.4.1 Scenario-I (Static Pumping Rate)
	8.4.2 Scenario-II (Dynamic Pumping Rate)

	8.5 Conclusions
	References

	9 Investigation of Bacterial Foraging Algorithm Applied for PV Parameter Estimation, Selective Harmonic Elimination in Inverters and Optimal Power Flow for Stability
	9.1 Introduction
	9.2 Bacterial Foraging Algorithm
	9.2.1 Chemotaxis
	9.2.2 Swarming
	9.2.3 Reproduction
	9.2.4 Elimination and Dispersal
	9.2.5 Movement of Bacteria in Search Space
	9.2.6 Verification of BFA with Mathematical Equations
	9.2.7 Modified Bacterial Foraging Algorithm

	9.3 BFA for PV Parameter Estimation
	9.3.1 PV Modelling
	9.3.2 Problem Formulation
	9.3.3 Results and Discussion

	9.4 BFA for Selective Harmonic Elimination in PWM Inverter
	9.4.1 Problem Formulation
	9.4.2 Simulation Results and Discussion

	9.5 Modified BFA for Optimal Power Flow
	9.5.1 Modelling of FACTS Devices
	9.5.1.1 Modeling of SVC
	9.5.1.2 Modeling of TCSC

	9.5.2 Formulation of Objective Function
	9.5.2.1 Cost Function

	9.5.3 Optimal Cost Minimization Using BFA
	9.5.3.1 Optimal FACTS allocation

	9.5.4 Results and Discussion

	9.6 Conclusion
	References

	10 Application of Artificial Immune System in Optimal Design of Irrigation Canal
	10.1 Introduction
	10.2 Overview of AIS Algorithms
	10.2.1 Clonal Selection Algorithm
	10.2.2 Negative Selection Algorithm
	10.2.3 Immune Network Algorithms

	10.3 Formulation of AIS Algorithm
	10.4 Model Application
	10.4.1 Design Problem
	10.4.2 Optimization Using CSA

	10.5 Results and Discussion
	10.6 Summary and Conclusions
	Appendix: MATLAB Code for Real Coded Clonal Selection Algorithm
	Optimization Module
	Initialization Function
	Cloning Function
	Mutation Function

	References

	11 Biogeography Based Optimization for Water Pump Switching Problem
	Nomenclature
	Greek letters
	Subscript
	Superscript
	Biogeography-Based Optimization
	Water Pump Switching Problem
	Mathematical Formulation for Water Pump Switching Optimization Problem
	Objective Function
	Discharge Pressure Constraints
	Discharge Pressure Bound Constraints
	Suction Pressure Constraints
	Suction Pressure Bound Constraints
	Initial Suction Pressure Constraints
	Binary Decision Variable Constraints

	Results and Discussion
	Summary
	References

	12 Introduction to Invasive Weed Optimization Method
	Introduction
	Working Procedure of Invasive Weed Optimization Algorithm (IWO)
	Initialize a Population
	Reproduction
	Spatial Distribution of Seeds
	Competitive Elimination

	Standard Examples
	Sphere Function
	Himmelblau Function
	Ackley Function

	Conclusions
	References

	13 Single-Level Production Planning in Petrochemical Industries Using Novel Computational Intelligence Algorithms
	Nomenclature
	Introduction
	Problem Description
	Solution Strategy
	Brief Description of CI Techniques
	Sanitized–Teaching–Learning–Based Optimization Algorithm
	Moth Flame Optimization Algorithm
	Flower Pollination Optimization Algorithm
	Water Cycle Optimization Algorithm
	Adaptive Wind Driven Optimization Algorithm

	Results and Discussion
	Conclusions
	References

	14 A Multi-Agent Platform to Support Knowledge Based Modelling in Engineering Design
	Introduction
	Background
	Modeling the Knowledge
	Variable Model
	Modelling Process

	Multi Agent System (MAS)
	Environmental Entities and Properties
	The State of the Constituents
	Agents Embodied as Environmental Entities

	Agents Analysis
	Inter-Agent Analysis: Communication Among Agents
	Intra-Agent Analysis: Standardization

	Implementation
	Agents Definition and Communication
	Experiences Re-Use: Model Construction

	Conclusion
	References

	Part II Applications
	15 Synthesis of Reference Trajectories for Humanoid Robot Supported by Genetic Algorithm
	Introduction
	Fundamentals of Genetic Algorithms
	Gait Generation Using Coupled Oscillators
	Genetic Algorithm Applied for Parameters Search
	Fine Tuning of Gait Generator
	Final Proof
	Conclusions
	References

	16 Linked Simulation Optimization Model for Evaluation of Optimal Bank Protection Measures
	Introduction
	Hydrodynamic Model
	Governing Equations and Solution Technique
	Boundary Condition
	Courant-Friedrichs-Lewy Condition
	Artificial Viscosity
	Hydrodynamic Model Validation

	Optimization Model Formulation
	Formulation I
	Formulation II

	Solution of Linked Simulation-Optimization Model Using Genetic Algorithm
	Application of the Proposed Methodology
	Case A: Hypothetical Channel Bend
	Case B: Application to River Brahmaputra

	Results and Discussion
	Case A: Hypothetical Channel Bend
	Case B: Application to River Brahmaputra
	Computational Time Requirement

	Conclusions
	References

	17 A GA Based Iterative Model for Identification of Unknown Groundwater Pollution Sources Considering Noisy Data
	Introduction
	Methodology
	Source Identification Model
	Optimization Algorithm
	Simulation Model
	Measurement Errors
	Performance Evaluation Criteria
	Study Area
	Results and Discussion
	Conclusions
	References

	18 Efficiency of Binary Coded Genetic Algorithm in Stability Analysis of an Earthen Slope
	Introduction
	Optimization Model Formulation
	Genetic Algorithms
	Working Principle of GA
	Representation of a Solution String
	Fitness of a Solution String
	Reproduction Operator
	Crossover Operator
	Mutation Operator
	Elitism

	Results and Discussion
	Example Problem

	Conclusion
	References

	19 Corridor Allocation as a Constrained Optimization Problem Using a Permutation-Based Multi-objective Genetic Algorithm
	Introduction
	The Proposed cbCAP Model
	The Proposed Genetic Algorithm for the cbCAP Model
	Individual Representation and Initialization
	Splitting an Individual into Two Rows
	Forming cbCAP Individual

	Selection Operation
	Crossover Operation
	Mutation Operation
	Elite Preserving Mechanism

	Computational Experiment and Discussion
	Conclusion
	References

	20 The Constrained Single-Row Facility Layout Problem with Repairing Mechanisms
	Introduction
	The cSRFLP Formulation
	The Repairing Mechanisms
	Positioning Constraints
	Ordering Constraints With a Facility of a Pair in a Fixed Position
	Ordering Constraints with a Pair of Facilities in Two Adjacent Positions
	Ordering Constraints Allowing Other Facilities in Between a Pair of Facilities
	Illustration of the Repairing Mechanisms
	Pseudo-Codes of the Repairing Mechanisms
	Implementation of the Repairing Mechanisms

	Genetic Algorithm for Optimizing the cSRFLP Model
	Individual Initialization
	Individual Evaluation
	Selection Operator
	Crossover Operator
	Mutation Operator
	Elite Preserving Mechanism

	Computational Experiment
	Conclusion
	References

	21 Geometric Size Optimization of Annular Step Fin Array for Heat Transfer by Natural Convection
	Nomenclature
	Greek Symbols
	Introduction
	Thermal Modeling of Annular Stepped Fin
	Formulation of the Thermal Model
	Non-dimensional Formulation of the Thermal Model

	Optimization Modeling
	Solution Procedure
	Constraints Handling Through Variable Bounds
	Evaluation of Objective Functions

	Numerical Experimentation and Discussion
	Scenario I
	Scenario II
	Pareto Optimal Sensitivity Analysis

	Conclusion
	References

	22 Optimal Control of Saltwater Intrusion in Coastal Aquifers Using Analytical Approximation Based on Density Dependent Flow Correction
	Introduction
	Strack's Analytical Solution for Saltwater Intrusion
	Modified Ghyben-Herzberg Theory Based Analytical Solution of Saltwater Intrusion
	Optimization Formulation and Application
	Conclusions
	References

	23 Dynamic Nonlinear Active Noise Control: A Multi-objective Evolutionary Computing Approach
	Introduction
	Meta-Heuristic-Based NANC System
	Dynamic Nonlinear Active Noise Control System
	Simulation Study
	Case A: Random Input Noise
	Experiment 1
	Experiment 2
	Experiment 3

	Case B: Tonal Input Noise
	Experiment 4
	Experiment 5

	Case C: Logistic Chaotic Input Noise
	Experiment 6
	Experiment 7

	Case D: Dynamically Changing Environment
	Experiment 8
	Experiment 9

	Concluding Remarks
	References

	24 Scheduling of Jobs on Dissimilar Parallel Machine Using Computational Intelligence Algorithms
	Introduction
	Problem Statement
	Algorithm Description
	Artificial Bee Colony
	Dynamic Neighborhood Learning Based Particle Swarm Optimizer (DNLPSO)
	Genetic Algorithm (GA)
	Multi-population Ensemble Differential Evolution (MPEDE)
	Sanitized Teaching-Learning Based Optimization (s-TLBO)

	Experimental Settings
	Results and Discussions
	Time Complexity

	Conclusion
	References

	25 Branch-and-Bound Method for Just-in-Time Optimization of Radar Search Patterns
	Introduction and Context
	Problem Statement
	Definition
	Example
	Combinatorial Complexity

	Integer Programming
	Problem Formulation
	Linear Relaxation
	Linear Programming
	Integral Program and Total Unimodularity
	One-Dimensional Cover Problem
	Integrality Gap
	Dynamic Programming

	Branch&Bound
	Description
	Application Example
	Multiple Solutions Enumeration
	Just-in-Time Criteria

	Application to Radar Engineering
	Radar Model
	Simulation Parameters
	Optimal Solution
	Enumeration

	Conclusion
	References

	26 Optimization of the GIS-Based DRASTIC Model for Groundwater Vulnerability Assessment
	Introduction
	Study Area
	Methodology
	DRASTIC (Conventional Method)
	Optimization of Conventional DRASTIC
	Addition of Land Use Parameter with Conventional DRASTIC Parameters (DRASTICLu)
	Revising the Rates of the Parameters Using Quality Data
	Revising the Weights of the Parameters Using AHP (Modified DRASTICLu)

	Results
	Preparation of DRASTIC Thematic Map
	DRASTIC (Conventional Method)
	Optimization of Conventional DRASTIC
	Addition of Land Use Parameter with Conventional DRASTIC Parameters (DRASTICLu)
	Revising the Rates of the Parameters Using Quality Data
	Revising the Weights of the Parameters Using AHP (Modified DRASTICLu)

	Discussion and Conclusion
	References

