
Chapter 1
From Analytical Mechanics Problems
to Rewriting Theory Through M. Janet’s
Work

Kenji Iohara and Philippe Malbos

1 Introduction

This chapter is devoted to a survey of the historical background of Gröbner bases for
D-modules and linear rewriting theory largely developed in algebra throughout the
twentieth century and to present deep relationships between them. Completionmeth-
ods are the main streams for these computational theories. In the theory of Gröbner
bases, they were motivated by algorithmic problems in elimination theory such as
computations in quotient polynomial rings modulo an ideal, manipulating algebraic
equations, and computing Hilbert series. In rewriting theory, they were motivated
by computation of normal forms and linear bases for algebras and computational
problems in homological algebra.

In this chapter, we present the seminal ideas of the French mathematician
M. Janet on the algebraic formulation of completion methods for polynomial sys-
tems. Indeed, the problem of completion already appears in Janet’s 1920 thesis [47],
which proposed an original approach by formal methods in the study of systems of
linear partial differential equations, PDE systems for short. The corresponding con-
structions were formulated in terms of polynomial systems, but without the notions
of ideal and Noetherian induction. These two notions were introduced by Noether in
1921 [68] for commutative rings.

Thework ofM. Janet was forgotten for about half of a century. It was rediscovered
by Schwarz in 1992 in [81]. Our exposition in this chapter does not follow the
historical order. The first section deals with the problems that motivate the PDE
study undertaken by M. Janet. In Sect. 3, we present completion for monomial PDE
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systems as introduced by Janet in his monograph [51]. This completion used an
original division procedure on monomials. In Sect. 4, we present an axiomatization
of this Janet notion of division, called involutive division, due to V. P. Gerdt. The
last two sections concern the case of polynomial PDE systems, with M. Janet’s
completion method used to reduce a linear PDE system to a canonical form and the
axiomatization of the reductions involved in terms of rewriting theory.

1.1 From Analytical Mechanics Problems to Involutive
Division

1.1.1 From Lagrange to Janet. The analysis of linear PDE systems was mainly
motivated in eighteenth century by the desire to solve problems of analytical mechan-
ics. The seminal work of J.-L. Lagrange gave the first systematic study of PDE
systems launched by such problems. The case of PDE of one unknown function of
several variables has been treated by J. F. Pfaff. The Pfaff problem will be recalled
in Sect. 2.1. This theory was developed in two different directions: toward the general
theory of differential invariants and the existence of solutions under given initial con-
ditions. The differential invariants approach will be discussed in Sects. 2.1 and 2.1.4.
The question of the existence of solution satisfying some initial conditions was for-
mulated in the Cauchy–Kowalevsky theorem recalled in Sect. 2.1.3.

1.1.2 Exterior Differential Systems. Following the work of H. Grassmann in 1844
which did set up the rules of exterior algebra computations, É.Cartan introduced exte-
rior differential calculus in 1899. This algebraic calculus allowed him to describe
a PDE system by an exterior differential system that is independent of the choice
of coordinates. This did lead to the so-called Cartan–Kähler theory, reviewed in
Sect. 2.2. We will present a geometrical property of involutivity on exterior differ-
ential systems in Sect. 2.2.6, which motivates the formal methods introduced by M.
Janet for the analysis of linear PDE systems.

1.1.3 Generalizations of the Cauchy–Kowalevsky Theorem. Another origin of
the work of M. Janet is the Cauchy–Kowalevsky theorem that gives the initial con-
ditions of solvability of a family of PDE systems that we describe in Sect. 2.1.3.
É. Delassus, C. Riquier, and M. Janet attempted to generalize this result to a wider
class of linear PDE systems which in turn led them to introduce the computation of
a notion of normal form for such systems.

1.1.4 The Janet Monograph. Section3 presents the historical work that motivated
M. Janet to introduce an algebraic algorithm in order to compute normal form of
linear PDE systems. In particular, we recall the problem of computation of inver-
sion of differentiation introduced by M. Janet in his monograph � Leçons sur les
systèmes d’équations aux dérivées partielles � on the analysis of linear PDE sys-
tems, published in 1929 [51]. Therein, M. Janet introduced formal methods based
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on polynomial computations for analysis of linear PDE systems. He developed an
algorithmic approach for analyzing ideals in the polynomial ring K[ ∂

∂x1
, . . . , ∂

∂xn
]

of differential operators with constant coefficients. Having the ring isomorphism
between this ring and the ring K[x1, . . . , xn] of polynomials with n variables in
mind, M. Janet gave its algorithmic construction in this latter ring. He began by
introducing some remarkable properties of monomial ideals. In particular, he recov-
ered Dickson’s Lemma [17], assertion that monomial ideals are finitely generated.
This property is essential for the Noetherian properties on the set of monomials. Note
that M. Janet was not familiar with the axiomatization of the algebraic structure of
ideals and the property of Noetherianity already introduced by Noether in [68] and
[69]. Note also that the Dickson Lemma was published in 1913 in a paper on number
theory in an American journal. Due to the First WorldWar, it took a long time before
these works became accessible to the French mathematical community. Janet’s alge-
braic constructions given in his monograph will be recalled in Sect. 3 for monomial
systems and in Sect. 5 for polynomial systems.

1.1.5 Janet’s Multiplicative Variables. The computations on monomial and poly-
nomial ideals carried out byM. Janet are basedon thenotionofmultiplicative variable
that he introduced in his thesis [47]. Given an ideal generated by a set of monomi-
als, he distinguished the monomials contained in the ideal and those contained in
the complement of the ideal. The notions of multiplicative and non-multiplicative
variables appear in order to stratify these two families of monomials. We will recall
this notion of multiplicativity of variables in Sect. 3.1.9. This leads to a refinement
of the classical division on monomials, nowadays called Janet’s division.

1.1.6 Involutive Division and Janet’s Completion Procedure. The notion of mul-
tiplicative variable is local, in the sense that it is defined with respect to a subset U of
the set of all monomials. A monomial u in U is said to be a Janet divisor of a mono-
mialw with respect toU , ifw = uv and all variables occurring in v are multiplicative
with respect to U . In this way, we distinguish the set coneJ (U) of monomials having
a Janet divisor in U , called multiplicative or involutive cone of U , and the set cone(U)

of multiple of monomials in U for the classical division. The Janet division being
a refinement of the classical division, the set coneJ (U) is a subset of cone(U). M.
Janet called a set of monomials U complete when this inclusion is an equality.

To a monomial PDE system (�) of the form

∂α1+...+αn ϕ

∂xα1
1 . . . ∂xαn

n
= fα(x1, x2, . . . , xn),

where (α1, . . . ,αn) belongs to a subset I of N
n , M. Janet associated the set of

monomials
lm(�) = {xα1

1 . . . xαn
n | (α1, . . . ,αn) ∈ I }.

The compatibility conditions of the system (�) correspond to the factorizations of the
monomials ux in coneJ (lm(�)), where u is in lm(�) and x is a non-multiplicative
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variable of u with respect to lm(�), as explained in Sect. 3.3.1. By definition, for any
monomial u in lm(�) and x non-multiplicative variable of u with respect to lm(�),
the monomial ux admits such a factorization if and only if lm(�) is complete, see
Proposition 3.2.5.

The main procedure presented in Janet’s monograph [51] completes in a finite
number of operations a finite set of monomials U to a complete set of monomials ˜U
that contains U . This procedure consists in analyzing all the local defects of com-
pleteness, by adding all the monomials ux where u in U and x is a non-multiplicative
variable for u with respect to U . This procedure will be recalled in Sect. 3.2.9. A gen-
eralization of this procedure to any involutive division was given by Gerdt in [25],
and is recalled in Sect. 4.2.12.

Extending this procedure to a set of polynomials, M. Janet applied it to linear PDE
systems, giving a procedure that transforms a linear PDE system into a complete
PDE system with the same set of solutions. This construction is given in Sect. 5.6. In
Sect. 6, we present such a procedure for an arbitrary involutive division given by V.
P. Gerdt and Blinkov in [27] and its relation to the Buchberger completion procedure
in commutative polynomial rings, [7].

1.1.7 The Space of Initial Conditions. In order to stratify the complement of the
involutive cone coneJ (U), M. Janet introduced the notion of complementary mono-
mial, see Sect. 3.1.13.With this notion, themonomials that generate this complement
in a such a way that the involutive cone of U and the involutive cone of the set U� of
complementary monomials form a partition of the set of all monomials, see Propo-
sition 3.2.2.

For each complementary monomial v in lm(�)�, each analytic function in the
multiplicative variables of v with respect to lm(�)� provides an initial condition of
the PDE system (�) as stated by Theorem 3.3.3.

1.1.8 Polynomial Partial Differential Equations Systems. In Sect. 5, we present
the analysis of polynomial PDE systems as Janet [51]. To deal with polynomials, he
defined some total orders on the set of derivatives, corresponding to total orders on
the set ofmonomials.We recall them in Sect. 5.1. The definitions onmonomial orders
given byM. Janet clarified the same notion introduced previously by Riquier in [74].
In particular, hemademore explicit the notion of parametric and principal derivatives
in order to distinguish the leading derivative in a polynomial PDE. In this way, he
extended the algorithms for monomial PDE systems to the case of polynomial PDE
systems. In particular, using these notions, he defined the property of completeness
for polynomial PDE systems. Namely, a polynomial PDE system is complete if the
associated set of monomials corresponding to leading derivatives of the system is
complete. Moreover, M. Janet extended the notion of complementary monomials to
define the notion of initial condition for a polynomial PDE system as in themonomial
case.

1.1.9 Initial Conditions. In this way, the notion of completeness provides a suitable
framework to discuss the existence and the uniqueness of the initial conditions for a
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linear PDE system. M. Janet proved that if a linear polynomial PDE system of the
form

Diϕ =
∑

j

ai, j Di, jϕ, i ∈ I,

with one unknown function ϕ is such that all the functions ai, j are analytic in a
neighborhood of a point P in C

n and if it is complete with respect to some total
order, then it admits at most one analytic solution satisfying the initial condition
formulated in terms of complementary monomials, see Theorems 5.3.4 and 5.3.6.

1.1.10 Integrability Conditions. A linear polynomial PDE system of the above
form is said to be completely integrable if it admits an analytic solution for any given
initial condition.M. Janet gave an algebraic characterization of complete integrability
by introducing integrability conditions formulated in terms of factorization of leading
derivatives of the PDEby non-multiplicative variables. These integrability conditions
are stated explicitly in Sect. 5.4.4 as generalization to the polynomial situation of the
integrability conditions formulated above for monomial PDE systems in Sect. 3.3.
M. Janet proved that a linear polynomial PDE system is completely integrable if and
only if every integrability condition is trivially satisfied, as stated in Theorem 5.4.7.

1.1.11 Janet’s Procedure of Reduction of Linear PDE Systems to a Canoni-
cal Form. In order to extend algorithmically the Cauchy–Kowalevsky theorem on
the existence and uniqueness of solutions of initial value problems as presented
in Sect. 2.1.3, M. Janet considered normal forms of linear PDE systems with respect
to a suitable total order on derivatives, satisfying some analytic conditions on coeffi-
cients and a complete integrability condition on the system, as defined in Sect. 5.5.2.
Such normal forms of PDE systems are called canonical by M. Janet.

Procedure 7 is Janet’s method for deciding if a linear PDE system can be trans-
formed into a completely integrable system. If the system cannot be reduced to a
canonical form, the procedure returns the obstructions to such a reduction. Janet’s
procedure depends on a total order on derivatives of unknown functions of the PDE
system. For this purpose, M. Janet introduced a general method to define a total order
on derivatives using a parametrization of a weight order on variables and unknown
functions, as explained in Sect. 5.1.5. The Janet procedure uses a specific weight
order called canonical and defined in Sect. 5.6.2.

The first step of Janet’s method consists in applying autoreduction procedure,
defined in Sect. 5.6.4, in order to reduce any PDE of the system with respect to the
total order on derivatives. Namely, two PDE of the system cannot have the same
leading derivative, and any PDE of the system is reduced with respect to the leading
derivatives of the others PDE, as specified in Procedure 5.
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The second step is the completion procedure, Procedure 6. In it, the set of leading
derivatives of the system defines a complete set of monomials in the sense given
in Sect. 5.3.2.

Having transformed the PDE system to an autoreduced and complete system, one
can look at its integrability conditions. M. Janet showed that this set of integrability
conditions is a finite set of relations that do not contain principal derivatives, as
explained in Sect. 5.4.4. Hence, these integrability conditions are J -normal forms
and uniquely defined. By Theorem 5.4.7, if all of these normal forms are trivial,
then the system is completely integrable. Otherwise, any nontrivial condition in the
set of integrability conditions that contains only unknown functions and variables
imposes a relation on the initial conditions of the system. If there is no such relation,
the procedure is applied again on the PDE system completed by all the integrability
conditions. Note that this procedure depends on the Janet division and on a total
order on the set of derivatives.

By this algorithmic method, M. Janet did generalize in certain cases the Cauchy–
Kowalevsky theorem at the time where the algebraic structures have not been intro-
duced to perform computations with polynomial ideals. This is pioneering work in
the field of formal approaches to analysis of PDE systems. Algorithmic methods for
dealing with polynomial ideals were developed throughout the twentieth century and
extended to a wide range of algebraic structures. In the next subsection, we present
some milestones on these formal themes in mathematics.

1.2 Constructive Methods and Rewriting in Algebra
Through the Twentieth Century

The constructions developed by M. Janet in his formal theory of linear partial differ-
ential equation systems are based on the structure of ideals that he called module of
forms. This notion corresponds to those introduced previously by Hilbert in [43] with
the terminology of algebraic form. Notice that Gunther studied such a structure in
[39]. The axiomatization of the notion of ideal in an arbitrary ring is due to Noether
[68]. As we will explain in this chapter, M. Janet introduced algorithmic methods to
compute a family of generators of an ideal having the involutive property and called
an involutive basis. This property is used to obtain a normal form of linear partial
differential equation systems.

Janet’s computation of involutive bases is based on a refinement of classical poly-
nomial division, called involutive division. He defined a division that is suitable for
reduction of linear partial differential equation systems. Thereafter, other involutive
divisions were studied, in particular, by Thomas [86] and by Pommaret [72]; we refer
to Sect. 4.3 for a discussion on these divisions.

The main purpose is to complete a generating family of an ideal to an involutive
basis with respect to a given involutive division. This completion process is quite
similar to those introduced bymeans of the classical division in the theory of Gröbner
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bases. In fact, involutive bases appear to be particular cases of Gröbner bases. The
principle of completion has been developed independently in rewriting theory, which
proposes a combinatorial approach to equivalence relations motivated by several
computational and decision problems in algebra, computer science, and logic.

1.2.1 Some Milestones in Algebraic Rewriting and Constructive Algebra. The
main results in the work of M. Janet rely on constructive methods in linear algebra
using the principle of computing normal forms by rewriting and the principle of
completion of a generating set of an ideal. These two principles have been developed
through the twentieth century in many algebraic contexts with different formulations
and in several instances. We review below some important milestones in this long
and rich history from T. Seki to the more recent developments.

1683. Seki introduced the notion of resultant and developed the notion of deter-
minant to express the resultant. He also made progress in elimination theory in
the Kai-fukudai-no-hō, see, e.g., [94].

1840. Sylvester studied the resultant of two polynomials in [85] and gave an exam-
ple for two quadratic polynomials.

1882. Kronecker [54] gave the first result in elimination theory using this notion.

1886. Weierstrass proved a fundamental result called preparation theorem on the
factorization of analytic functions by polynomials. As an application, he obtained
a division theorem for rings of convergent series [93].

1890. Hilbert proved that any ideal in a ring of commutative polynomials in a finite
set of variables over a field or over the ring of integers is finitely generated [43].
This is the first formulation of the Hilbert basis theorem, which states that every
polynomial ring over a Noetherian ring is Noetherian.

1913. In a paper on number theory, L. E. Dickson proved a monomial version of
the Hilbert basis theorem by a combinatorial method [17, Lemma A].

1913. In a series of forgotten papers,N.Günther developed algorithmic approaches
for polynomials rings [38–40]. A review of Günther’s theory can be found in [41].

1914. Dehn described the word problem for finitely presented groups [16]. Using
systems of transformations rules, A. Thue studied the problem for finitely pre-
sented semigroups [87]. It was only much later, in 1947, that the problem
for finitely presented monoids was shown to be undecidable, independently by
Post [73] and Markov [64, 65].

1916. Macaulay was one of the pioneers in commutative algebra. In his book
The algebraic theory of modular systems [59], following the fundamental Hilbert
basis theorem, he initiated an algorithmic approach to treat generators of polyno-
mial ideals. In particular, he introduced the notion of H-basis corresponding to a
monomial version of Gröbner bases.
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1920. Janet defended his doctoral thesis [47], which presents a formal study of
systems of partial differential equations following works of Ch. Riquier and É.
Delassus. In particular, he analyzed completely integrable systems and Hilbert
functions of polynomial ideals.

1921. In her seminal paper, Idealtheorie in Ringbereichen [68], Noether laid the
foundation of general commutative ring theory, and gave one of the first general
definitions of a commutative ring. She also formulated the Finite Chain Theorem
[68, Satz I, Satz von der endlichen Kette].

1923. Noether formulated in [69, 70] concepts of elimination theory in the lan-
guage of ideals that she had introduced in [68].

1926. Hermann, a student of Noether [42], initiated purely algorithmic approaches
to ideals, such as the ideal membership problem and primary decomposition ide-
als. Thiswork is a fundamental contribution to the emergence of computer algebra.

1927. Macaulay showed in [60] that the Hilbert function of a polynomial ideal I is
equal to the Hilbert function of the monomial ideal generated by the set of leading
monomials of the elements in I with respect a monomial order. As a consequence,
the coefficients of the Hilbert function of a polynomial ideal are polynomial for
sufficiently big degree.

1937. Based on early works by Ch. Riquier and Janet, in [86] J. M. Thomas refor-
mulated in the algebraic language of B. L. van der Waerden, Moderne Algebra
[89, 90], the theory of normal forms of systems of partial differential equations.

1937. In [32], W. Gröbner exhibited the isomorphism between the ring of polyno-
mials with coefficients in an arbitrary field and the ring of differential operators
with constant coefficients, see Proposition 3.1.2. The identification of these two
rings was used before in the algebraic study of systems of partial differential
equations, but without being explicit.

1942. In a seminal paper on rewriting theory, M. Newman presented rewriting as
a combinatorial approach to study equivalence relations [66]. He proved a funda-
mental rewriting result stating that under a termination hypothesis, the confluence
property is equivalent to local confluence.

1949. In his monograph Moderne algebraische Geometrie. Die idealtheoretischen
Grundlagen [33], W. Gröbner surveyed algebraic computation on ideal theory
with applications to algebraic geometry.

1962. Shirshov introduced in [83] an algorithmicmethod to compute normal forms
in a free Lie algebra with respect to a family of elements of the Lie algebra
satisfying a confluence property. The method is based on a completion procedure.
He also proved a version of Newman’s lemma for Lie algebras, called composition
lemma, and deduced a constructive proof of the Poincaré–Birkhoff–Witt theorem.
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1964. Hironaka introduced in [44] a division algorithm and proposed the notion of
standard basis, analogous to the notion of Gröbner basis, for rings of power series
in order to solve problems of resolution of singularities in algebraic geometry.

1965. Under the supervision ofW. Gröbner, B. Buchberger developed in his Ph.D.
thesis an algorithmic theory of Gröbner bases for commutative polynomial alge-
bras [7, 8, 10]. Buchberger gave a characterization of Gröbner bases in terms of
S-polynomials as well as an algorithm to compute such bases, with a complete
implementation in the assembler language of the computer ZUSE Z 23 V.

1967. Knuth and Bendix defined in [53] a completion procedure that completes
with respect to a termination a set of equations in an algebraic theory into a
confluent term rewriting system. The procedure is similar to Buchberger’s com-
pletion procedure. We refer the reader to [9] for a historical account of critical
pair/completion procedures.

1972. Grauert introduced in [30] a generalization ofWeierstrass’s preparation divi-
sion theorem in the language of Banach algebras.

1973. Nivat formulated a critical pair lemma for string rewriting systems and
proved that for a terminating rewriting system, the local confluence is decidable
[67].

1976, 1978. Bokut in [5] and Bergman in [4] extended the Gröbner bases and
Buchberger’s algorithm to associative algebras. They obtained the confluence
Newman Lemma for rewriting systems in free associative algebras compatible
with a monomial order, called, respectively, Diamond Lemma for ring theory and
Composition Lemma.

1978. Pommaret introduced in [72] a global involutive division simpler than those
introduced by M. Janet.

1980. Schreyer in his Ph.D. thesis [80] gave a method that computes syzygies in
commutative multivariate polynomial rings using the division algorithm, see [18,
Theorem 15.10].

1980. Huet [45] gave a proof ofNewman’s lemmausing aNoetherianwell-founded
induction method.

1985. Gröbner basis theory was extended to Weyl algebras by A. Galligo in [24],
see also [79].

1997. Gerdt and Blinkov [25, 27] introduced the notion of involutive monomial
division and its axiomatization.

1999, 2002. Faugère developed efficient algorithms for computing Gröbner bases,
algorithm F4 [20], then an algorithm F5 [21].

2005. Gerdt [26] presented and analyzed an efficient involutive algorithm for com-
puting Gröbner bases.

2012. Bächler, Gerdt, Lange-Hegermann, and Robertz algorithmized in [2] the
Thomas decomposition of algebraic and differential systems.
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1.3 Conventions and Notations

The set of nonnegative integers is denoted byN. In this chapter,K[x1, . . . , xn]denotes
the polynomial ring on the variables x1, . . . , xn over a field K of characteristic zero.
For a subset G of K[x1, . . . , xn], we will denote by Id(G) the ideal of K[x1, . . . , xn]
generated by G. A polynomial is either zero or it can be written as a finite sum of
nonzero terms, each term being the product of a scalar in K by a monomial.

1.3.1 Monomials. We denote by M(x1, . . . , xn) the set of monomials in the ring
K[x1, . . . , xn]. For a subset I of {x1, . . . , xn}wewill denote byM(I ) the set ofmono-
mials in M(x1, . . . , xn) whose variables lie in I . A monomial u in M(x1, . . . , xn)

is written as u = xα1
1 · · · xαn

n , were the αi are nonnegative integers. The integer αi

is called the degree of the variable xi in u, it will be also denoted by degi (u). For
α = (α1, . . . ,αn) in N

n , we denote xα = xα1
1 · · · xαn

n and |α| = α1 + · · · + αn .
For a finite subset U ofM(x1, . . . , xn) and 1 � i � n, we denote by degi (U) the

largest degree in the variable xi of the monomials in U , that is

degi (U) = max
(

degi (u) | u ∈ U
)

.

We call the cone of a subset U ofM(x1, . . . , xn) the set of all multiples of monomials
in U , defined by

cone(U) =
⋃

u∈U
uM(x1, . . . , xn) = { uv | u ∈ U , v ∈ M(x1, . . . , xn) }.

1.3.2 Homogeneous Polynomials. A homogenous polynomial in K[x1, . . . , xn] is
a polynomial for which all nonzero terms have the same degree. A homogenous
polynomial is of degree p if all its nonzero terms have degree p. We denote by
K[x1, . . . , xn]p the space of homogeneous polynomials of degree p. The dimension
of this space is given by the formula:

� p
n := dim

(

K[x1, . . . , xn]p
) = (p + 1)(p + 2) · · · (p + n − 1)

1 · 2 · · · · · (n − 1)
.

1.3.3 Monomial Order. Recall that amonomial order onM(x1, . . . , xn) is a relation
� on M(x1, . . . , xn) satisfying the following three conditions:

(i) � is a total order on M(x1, . . . , xn),
(ii) � is compatible with multiplication, that is, if u � u′, then uw � u′w for any

monomial w inM(x1, . . . , xn),
(iii) � is awell-order onM(x1, . . . , xn), that is, every non-empty subset ofM(x1, . . . ,

xn) has a smallest element with respect to �.

The leading term, leading monomial, and leading coefficient of a polynomial f
of K[x1, . . . , xn], with respect to a monomial order �, will be denoted by lt�( f ),
lm�( f ), and lc�( f ), respectively. For a set F of polynomials in K[x1, . . . , xn], we
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will denote by lm�(F) the set of leading monomials of the polynomials in F . For
simplicity, we will use notations lt( f ), lm( f ), lc( f ), and lm(F) if there is no danger
of confusion.

2 Exterior Differential Systems

Motivated by problems in analytical mechanics, Euler (1707–1783) and Lagrange
(1736–1813) initiated the so-called variational calculus, cf. [57], which led to the
problem of solving partial differential equations, PDEs for short. In this section, we
briefly present the evolution of this theory to serve as a guide to M. Janet’s contribu-
tions.We follow the history to introduce material on exterior differential systems and
various PDE problems. For a deeper discussion of the theory of differential equations
and the Pfaff problem, we refer the reader to [22, 92] or [11].

2.1 Pfaff’s Problem

2.1.1 Partial Differential Equations for One Unknown Function. In 1772,Lagrange [56]
considered a PDE of the form

F(x, y,ϕ, p, q) = 0, with p = ∂ϕ

∂x
and q = ∂ϕ

∂y
, (2.1)

i.e., a PDE for one unknown function ϕ of two variables x and y. Lagrange’s method
to solve this PDE can be summarized as follows.

(i) Express the PDE (2.1) in the form

q = F1(x, y,ϕ, p), with p = ∂ϕ

∂x
and q = ∂ϕ

∂y
. (2.2)

(ii) Ignore for the moment that p = ∂ϕ
∂x and consider the 1-form

� = dϕ − pdx − qdy = dϕ − pdx − F1(x, y,ϕ, p)dy,

where p is regarded as some (not yet fixed) function of x, y, and ϕ.
(iii) If there exist functions M and � of x, y, and ϕ satisfying M� = d�, then

�(x, y,ϕ) = C for some constant C . Solving this new equation, we obtain a
solution ϕ = ψ(x, y, C) to Eq. (2.2).

2.1.2 Pfaffian Systems. In 1814–15, Pfaff (1765–1825) [71] studied a PDE for one
unknown function of n variables; this work was then continued by Jacobi (1804–
1851) (cf. [46]). Recall that a PDE of any order is equivalent to a system of first-order
PDEs. Thus, we may only think of systems of first-order PDEs with m unknown
functions
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Fk
(

x1, . . . , xn,ϕ
1, . . . ,ϕm,

∂ϕa

∂xi
(1 � a � m, 1 � i � n)

) = 0, for 1 � k � r.

Introducing new variables pa
i , the system lives on the space with coordinates

(xi ,ϕ
a, pa

i ) and is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Fk(xi ,ϕ
a, pa

i ) = 0,

dϕa −
n
∑

i=1

pa
i dxi = 0,

dx1 ∧ · · · ∧ dxn �= 0.

Note that the last conditionmeans that the variables x1, . . . , xn are independent. Such
a system is called a Pfaffian system. One is interested in the questions whether this
system admits a solution or not, and if there exists a solution, if it is unique under
some conditions. We will refer to these as Pfaff’s problems.
2.1.3 Cauchy–Kowalevsky’s Theorem. Anaive approach toPfaff’s problems,with
applications tomechanics inmind, is the question of the initial conditions. In series of
articles published in 1842, A. Cauchy (1789–1857) studied the system of first-order
PDEs:

∂ϕa

∂t
= fa(t, x1, . . . , xn) +

m
∑

b=1

n
∑

i=1

f i
a,b(t, x1, . . . , xn)

∂ϕb

∂xi
, for 1 � a � m,

where fa, f i
a,b and ϕ1, . . . ,ϕm are functions of n + 1 variables t, x1, . . . , xn .

Kowalevsky (1850–1891) [91] in 1875 considered systems of PDEs of the following
form: for some ra ∈ Z>0 (1 � a � m),

∂ra ϕa

∂tra
=

m
∑

b=1

ra−1
∑

j=0
j+|α|�ra

f j,α
a,b (t, x1, . . . , xn)

∂ j+|α|ϕb

∂t j∂xα
,

where f j,α
a,b and ϕ1, . . . ,ϕm are functions of n + 1 variables t, x1, . . . , xn , and

where for a multi-index α = (α1, · · · ,αn) in (Z�0)
n , we set |α| =∑n

i=1 αi and
∂xα = ∂xα1

1 · · · ∂xαn
n . They showed that under the hypothesis of analyticity of the

coefficients, such a system admits a unique analytic local solution satisfying a given
initial condition. This statement is now called the Cauchy–Kowalevsky theorem.

2.1.4 Completely Integrable Systems. A first geometric approach to the above
problem was undertaken over by Frobenius (1849–1917) [23] and independently by
Darboux (1842–1917) [15]. Let X be a differentiable manifold of dimension n. We
consider the Pfaffian system

ωi = 0 1 � i � r,
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where ωi are 1-forms defined on a neighborhood V of a point x in X . Suppose that
the family

{(ωi )y}1�i�r ⊂ T ∗
y X

is linearly independent for all y in V . For 0 � p � n, let us denote by �
p
X (V ) the

space of differentiable p-forms on V . A p-dimensional distribution D on X is a
subbundle of T X with fiber of dimension p. A distributionD is involutive if, for any
vector fields ξ and η taking values in D, the Lie bracket

[ξ, , η] := ξη − ηξ

takes values inD as well. Such a Pfaffian system is said to be completely integrable.
G. Frobenius and G. Darboux showed that the ideal I of

⊕n
p=0 �

p
X (V ), generated

by the 1-forms ω1, . . . ,ωr , is a differential ideal, i.e., d I ⊂ I , if and only if the
distribution D on V defined as the annihilator of ω1, . . . ,ωr is involutive.

2.2 The Cartan–Kähler Theory

Here, we give a brief historically oriented exposition of the so-called Cartan–Kähler
theory. In particular, we will present the notion of system in involution. For the
original treatment by the founders of the theory, we refer the reader to [14, 52],
modern introductions are provided in [6, 62], and a quick survey can be found
in [95, Appendix].

2.2.1 Differential Forms. Grassmann (1809–1877) [29] introduced in 1844 the
first equation-based formulation of the structure of exterior algebra with the anti-
commutativity rule

x ∧ y = −y ∧ x .

Using this setting, Cartan (1869–1951) [11] defined in 1899 the exterior differential
and differential p-forms. He showed that these notions are invariant under arbitrary
coordinate transformation. Thanks to these differential structures, several results
obtained in the nineteenth century were reformulated in a clear manner.

2.2.2 Exterior Differential Systems. An exterior differential system � is a finite
set of homogeneous differential forms, i.e., � ⊂⋃p �

p
X . Cartan [12], in 1901, stud-

ied exterior differential systems generated by 1-forms, i.e., Pfaffian systems. Later,
Kähler (1906–2000) [52] generalizedCartan’s theory to anydifferential ideal I gener-
ated by an exterior differential system. For this reason, the general theory on exterior
differential systems is nowadays called the Cartan–Kähler theory.

In the rest of this subsection, we discuss briefly the existence theorem for such
a system. Since the argument developed here is local and we need the Cauchy–
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Kowalevsky theorem, we assume that all functions are analytic in x1, . . . , xn unless
otherwise stipulated.

2.2.3 Integral Elements. Let � be an exterior differential system on a real analytic
manifold X of dimension n such that the ideal generated by � is a differential ideal.
For 0 � p � n, set� p = � ∩ �

p
X .We fix x in X . For p > 0, a pair (E p, x), with a p-

dimensional vector subspace E p ⊂ Tx X , is called an integral p-element if ω|E p = 0
for any ω in �

p
x := � p ∩ �

p
X,x , where �

p
X,x denotes the space of differential p-

forms defined on a neighborhood of x in X . We denote the set of integral elements
of dimension p by I� p

x .
An integral manifold Y is a submanifold of X whose tangent space TyY at each

point y in Y is an integral element. Since the exterior differential system defined by
� is completely integrable, there exists independent r -functions ϕ1(x), . . . ,ϕr (x),
called integrals of motion or first integrals, defined on a neighborhood V of a point
x ∈ X such that their restrictions on V ∩ Y are constants.

The polar space H(E p) of an integral element E p of� at the point x is the vector
subspace of Tx X generated by the vectors ξ ∈ Tx X such that E p + Rξ is an integral
element of �.

2.2.4 Regular Integral Elements. Let E0 be the real analytic subvariety of X
defined as the zeros of �0 and let U be the subset of smooth points. A point in
E0 is called integral point. A tangent vector ξ in Tx X is called a linear integral ele-
ment if ω(ξ) = 0 for any ω ∈ �1

x with x ∈ U . We define inductively the properties
called “regular” and “ordinary” as follows:

(i) The zeroth-order character is the integer s0 = maxx∈U {dimR�1
x }. A point x ∈

E0 is said to be regular if dimR�1
x = s0, and a linear integral element ξ ∈ Tx X

is called ordinary if x is regular.
(ii) Let E1 = Rξ, where ξ is an ordinary linear integral element. The first-order

character is the integer s1 satisfying s0 + s1 = maxx∈U {dim H(E1)}. The ordi-
nary integral 1-element (E1, x) is said to be regular if dim H(E1) = s0 + s1.
An integral 2-element (E2, x) is called ordinary if it contains at least one regular
linear integral element.

(iii) Assume that all these concepts are defined up to (p − 1)th step and that s0 +
s1 + · · · + sp−1 < n − p + 1.
The pth-order character is the integer sp satisfying

p
∑

i=0

si = max
x∈U

{dim H(E p)}.

An integral p-element (E p, x) is said to be regular if

p
∑

i=0

si = dim H(E p).

The integral p-element (E p, x) is called ordinary if it contains at least one
regular integral element (E p−1, x).
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Let h be the smallest positive integer such that
∑h

i=0 si = n − h. Then, there does not
exist an integral (h + 1)-element. The integer h is called the genus of the system �.
For 0 < p � h, one has

p−1
∑

i=0

si � n − p.

2.2.5 Theorem Let 0 < p � h be an integer.

(i) The case
∑p−1

i=0 si = n − p : let (E p, x) be an ordinary integral p-element and
let Yp−1 be an integral manifold of dimension p − 1 such that (Tx Yp−1, x)

is a regular integral (p − 1)-element contained in (E p, x). Then, there exists
a unique integral manifold Yp of dimension p containing Yp−1 such that
Tx Yp = E p.

(ii) The case
∑p−1

i=0 si < n − p : let (E p, x) be an integral p-element and let Yp−1

be an integral manifold of dimension p − 1 such that (Tx Yp−1, x) is a regular
integral (p − 1)-element contained in (E p, x). Then, there is a one-to-one cor-

respondence between the set of real analytic functions Cω(Rp, R
n−p−∑p−1

i=0 si )

and the set of p-dimensional integral manifolds Yp containing Yp−1 such that
Tx Yp = E p.

This theorem states that a given chain of ordinary integral elements

(E0, x) ⊂ (E1, x) ⊂ · · · ⊂ (Eh, x), dim E p = p (0 � p � h),

one can inductively find an integral manifold Yp of dimension p such that Y0 = {x},
Yp−1 ⊂ Yp and Tx Yp = E p. Notice that to obtain Yp from Yp−1, one applies the
Cauchy–Kowalevsky theorem to the PDE system defined by � p and the choice of
real analytic functions in the above statement provide a datum to define the integral
manifold Yp.

2.2.6 Systems in Involution. In many applications, the exterior differential systems
one considers admit p-independent variables x1, . . . , x p. In such a case, we are
only interested in the p-dimensional integral manifolds among which no additional
relation between x1, . . . , x p is imposed. In general, an exterior differential system �

for n − p unknown functions and p-independent variables x1, . . . , x p is said to be
in involution if it satisfies the two following conditions:

1. its genus is larger than or equal to p,
2. the defining equations of the generic ordinary integral p-element introduce no

linear relation among dx1, . . . , dx p.

2.2.7 Reduced Characters. Consider a familyF of integral elements of dimensions
1, 2, . . . , p − 1 than can be included in an integral p-element at a generic integral
point x ∈ X . Take a local chart with origin x . The reduced polar system H red(Ei ) of
an integral element at x is the polar system of the restriction of the exterior differential
system � to the submanifold
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{x1 = x2 = · · · = x p = 0}.

The integers s ′
0, . . . , s ′

p−1, called the reduced characters, are defined in such a way
that s ′

0 + · · · + s ′
i is the dimension of the reduced polar system H red(Ei ) at a generic

integral element. For convenience, one sets s ′
p = n − p − (s ′

0 + · · · + s ′
p−1).

Let � be an exterior differential system of n − p unknown functions of
p-independent variables such that the ideal generated by � is a differential ideal.
É. Cartan showed that � is a system in involution iff the most general integral
p-element in F depends on s ′

1 + 2s ′
2 + · · · + ps ′

p independent parameters.

2.2.8 Recent Developments. In 1957, Kuranishi (1924 –) [55] considered the prob-
lem of the prolongation of a given exterior differential system and treated what É.
Cartan called total case. Here, M. Kuranishi as well as É. Cartan worked locally in
the analytic category. After an algebraic approach to the integrability was proposed
by Guillemin and Sternberg [34], in 1964, Singer and Sternberg, [84], in 1965 stud-
ied some classes of infinite-dimensional systems which can be treated even in the
C∞-category. In 1970s, with the aid of jet bundles and the Spencer cohomology,
Pommaret (cf. [72]) considered formally integrable involutive differential systems
generalizing the work of M. Janet, in the language of sheaf theory. For other geo-
metric aspects not using sheaf theory, see the books by Griffiths (1938-) [31], and
Bryant et al. [6].

3 Monomial PDE Systems

In this section, we present the method introduced byM. Janet under the name “calcul
inverse de la dérivation” in his monograph [51]. In [51, Chap. I], M. Janet considered
monomial PDE, that is, PDE of the form

∂α1+α2+···+αn ϕ

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

= fα1α2...αn (x1, x2, . . . , xn), (3.1)

where ϕ is an unknown function and the fα1α2...αn are analytic functions of several
variables. By an algebraic method, he analyzed the solvability of such an equation,
namely, the existence and the uniqueness of an analytic solution ϕ of the system.
Notice that the analyticity condition guarantees the commutativity of partial differ-
entials operators. This property is crucial for the constructions that M. Janet carried
out in the ring of commutative polynomials. Note that the first example of PDE that
does not admit any solution was found by Lewy in the 1950s in [58].

3.1 Ring of Partial Differential Operators and
Multiplicative Variables

3.1.1 Historical Context. In the beginning of 1890s, following collaboration with
C.Méray (1835–1911), Riquier (1853–1929) initiated his research on finding normal
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forms of systems of (infinitely many) PDEs for finitely many unknown functions of
finitely many independent variables (see [75] and [76] for more details).

In 1894, Tresse [88] showed that such systems can be always reduced to systems
of finitely many PDEs. This is the first result on Noeterianity of a module over a ring
of differential operators. Based on this result, É. Delassus (1868–19..) formalized
and simplified Riquier’s theory. In these works, one already finds an algorithmic
approach for analyzing ideals of the ring K[ ∂

∂x1
, . . . , ∂

∂xn
].

It was Janet (1888–1983) who already in his thesis [47], published in 1920, had
realized that the latter ring is isomorphic to the ring of polynomials with n variables
K[x1, . . . , xn]. At that time, several abstract notions on rings were introduced by
E. Noether in Germany but by M. Janet in France was not familiar with them. It was
only in 1937 that W. Gröbner (1899–1980) proved this isomorphism.

3.1.2 Proposition [32, Sect. 2.] There exists a ring isomorphism

� : K[x1, . . . , xn] −→ K[ ∂

∂x1
, . . . ,

∂

∂xn
],

from the ring of polynomials in n variables x1, . . . , xn with coefficients in an arbitrary
field K to the ring of differential operators with constant coefficients.

3.1.3 Derivations and Monomials. M. Janet considers monomials in the variables
x1, . . . , xn and uses implicitly the isomorphism � of Proposition 3.1.2. To a mono-
mial xα = xα1

1 xα2
2 · · · xαn

n , he associates the differential operator

Dα := �(xα) = ∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

.

In [51, Chap. I], M. Janet considered finite monomial PDE systems. The equations
are of the form (3.1) and since the system has a finitely many equations, the set of
monomials associated to it is finite. The first result of the monograph is a finiteness
result onmonomials stating that a sequence ofmonomials in which none is amultiple
of a preceding one is necessarily finite. M. Janet proved this result by induction on
the number of variables. We can formulate it as follows.

3.1.4 Lemma ([51, Sect. 7]) Let U be a subset of M(x1, . . . , xn). If, for any mono-
mials u and u′ in U , the monomial u does not divide u′, then the set U is finite.

This result corresponds to Dickson’s Lemma [17], which asserts that every mono-
mial ideal of K[x1, . . . , xn] is finitely generated.

3.1.5 Stability of the Multiplication. M. Janet paid a special attention to families
ofmonomials with the following property. A subset ofmonomialU ofM(x1, . . . , xn)

is called multiplicatively stable if for any monomial u in M(x1, . . . , xn) such that
there exists u′ in U that divides u, one has that u is in U . In other words, the set U is
closed under multiplication by monomials inM(x1, . . . , xn).



20 K. Iohara and P. Malbos

As a consequence of Lemma 3.1.4, if U is a multiplicatively stable subset of
M(x1, . . . , xn), then it contains only finitely many elements that are not multiples of
any other elements in U . Hence, there exists a finite subset U f of U such that for any
u in U , there exists u f in U f such that u f divides u.

3.1.6 Ascending Chain Condition. M. Janet observed another consequence of
Lemma 3.1.4: the ascending chain condition on multiplicatively stable monomial
sets, which he formulated as follows. Any ascending sequence of multiplicatively
stable subsets of M(x1, . . . , xn)

U1 ⊂ U2 ⊂ · · · ⊂ Uk ⊂ · · ·

is finite. This corresponds to the Noetherian property on the set of monomials in
finitely many variables.

3.1.7 Inductive Construction. Let us fix a total order on the variables xn > xn−1 >

· · · > x1. LetU be a finite subset ofM(x1, . . . , xn). Let us define, for every 0 � αn �
degn(U),

[αn] = {u ∈ U | degn(u) = αn }.

The family ([0], . . . , [degn(U)]) forms a partition of U . We define for every 0 �
αn � degn(U)

[αn] = {u ∈ M(x1, . . . , xn−1) | uxαn
n ∈ U }.

We set for every 0 � i � degn(U)

U ′
i =

⋃

0�αn�i

{u ∈ M(x1, . . . , xn−1) | there exists u′ ∈ [αn] such that u′|u }.

Finally, we set

Uk =
{

{ uxk
n | u ∈ U ′

k }, if k < degn(U),

{ uxk
n | u ∈ U ′

degn(U) }, if k � degn(U),

and M(U) = ⋃

k�0
Uk . By this inductive construction, M. Janet obtains the monomial

ideal generated by U . Indeed, M(U) coincides with the following set of monomial:

{ u ∈ M(x1, . . . , xn) | there exists u′ in Usuch that u′|u }.

3.1.8 Example. Consider the subset U = { x3x2
2 , x3

3 x2
1 } ofM(x1, x2, x3). We have

[0] = ∅, [1] = {x3x2
2 }, [2] = ∅, [3] = {x3

3 x2
1 }.

Hence,
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[0] = ∅, [1] = {x2
2 }, [2] = ∅, [3] = {x2

1 }.
The set M(U) is defined using of the following subsets:

U ′
0 = ∅, U ′

1 = {xα1
1 xα2

2 | α2 � 2}, U ′
2 = U ′

1, U ′
3 = {xα1

1 xα2
2 | α1 � 2 ou α2 � 2}.

3.1.9 Janet’s Multiplicative Variables [47, Sect. 7]. Let us fix a total order xn >

xn−1 > · · · > x1 on variables. Let U be a finite subset of M(x1, . . . , xn). For all
1 � i � n, we define the following subset of U :

[αi , . . . ,αn] = {u ∈ U | deg j (u) = α j for all i � j � n}.

That is, [αi , . . . ,αn] contains monomials of U of the form vxαi
i · · · xαn

n , with v in
M(x1, . . . , xi−1). The sets [αi , . . . ,αn] with αi , . . . ,αn in N form a partition of U .
Moreover, for all 1 � i � n − 1, we have [αi ,αi+1, . . . ,αn] ⊆ [αi+1, . . . ,αn] and
the sets [αi , . . . ,αn], where αi ∈ N, form a partition of [αi+1, . . . ,αn].

Given a monomial u in U , the variable xn is said to be multiplicative for u in the
sense of Janet if

degn(u) = degn(U).

For i � n − 1, the variable xi is said to be multiplicative for u in the sense of Janet if

u ∈ [αi+1, . . . ,αn] and degi (u) = degi ([αi+1, . . . ,αn]).

We will denote by MultUJ (u) the set of multiplicative variables of u in the sense of
Janet with respect to the set U , also called J -multiplicative variables.

Note that, by definition, for any u and u′ in [αi+1, . . . ,αn], we have

{xi+1, . . . , xn} ∩ MultUJ (u) = {xi+1, . . . , xn} ∩ MultUJ (u′).

Accordingly, we will denote this set of multiplicative variables byMultUJ ([αi+1, . . . ,

αn]).
3.1.10 Example. Consider the subset U = {x2x3, x2

2 , x1} of M(x1, x2, x3) with the
order
x3 > x2 > x1. We have deg3(U) = 1; hence, the variable x3 is J -multiplicative
for x3x2 and not J -multiplicative for x2

2 and x1.
For α ∈ N, we have [α] = {u ∈ U | deg3(u) = α}, hence

[0] = {x2
2 , x1}, [1] = {x2x3}.

We have deg2(x2
2 ) = deg2([0]), deg2(x1) �= deg2([0]) and deg2(x2x3) = deg2([1]),

so the variable x2 is J -multiplicative for x2
2 and x2x3 and not J -multiplicative for

x1. Further,
[0, 0] = {x1}, [0, 2] = {x2

2 }, [1, 1] = {x2x3},
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and deg1(x2
2 ) = deg1([0, 2]), deg1(x1) = deg1([0, 0]) and deg1(x3x2) = deg1([1, 1]),

so the variable x1 is J -multiplicative for x1, x2
2 and x3x2.

3.1.11 Janet Divisor. Let U be a subset of M(x1, . . . , xn). A monomial u in U is
called Janet divisor of a monomial w in M(x1, . . . , xn) with respect to U , if there
is a decomposition w = uv, where any variable occurring in v is J -multiplicative
with respect to U .

3.1.12 Proposition Let U be a subset of M(x1, . . . , xn) and w be a monomial in
M(x1, . . . , xn). Then w admits in U at most one Janet divisor with respect to U .

Proof If u is a Janet divisor ofw with respect to U , there is a v inM(MultUJ (u)) such
that w = uv. We have degn(v) = degn(w) − degn(u). If degn(w) � degn(U), then
the variable xn isJ -multiplicative and degn(v) = degn(w) − degn(U). If degn(w) <

degn(U), then xn cannot be J -multiplicative and degn(v) = 0.
As a consequence, for any Janet divisors u and u′ of w in U , we have degn(u) =

degn(u
′) and u, u′ ∈ [α] for some α ∈ N.

Suppose now that u and u′ are two distinct Janet divisors of w in U . There exists
1 < k � n such that u, u′ ∈ [αk, . . . ,αn] and degk−1(u) �= degk−1(u

′). Suppose that
degk−1(u) > degk−1(u

′). Then the variable xk−1 cannot be J -multiplicative for u′
with respect to U . It follows that u′ cannot be a Janet divisor of w. This leads to a
contradiction, hence u = u′. �

3.1.13 Complementary Monomials. Let U be a finite subset of M(x1, . . . , xn).
The set of complementary monomials of U is the set of monomials

U� =
⋃

1�i�n

U�(i), (3.2)

where
U�(n) = {xβ

n | 0 � β � degn(U) and [β] = ∅},

and for every 1 � i < n,

U�(i) = { xβ
i xαi+1

i+1 . . . xαn
n

∣

∣ [αi+1, . . . ,αn] �= ∅,

0 � β < degi ([αi+1, . . . ,αn]), [β,αi+1, . . . ,αn] = ∅ }.

Note that the union in (3.2) is disjoint, since U�(i) ∩ U�( j) = ∅ for i �= j .

3.1.14 Multiplicative Variables of Complementary Monomials. For any mono-

mial u in U�, we define the set �Mult
U�

of multiplicative variables for u with respect
to complementary monomials in U� as follows. If the monomial u is in U�(n), we set

�Mult
U�(n)

J (u) = {x1, . . . , xn−1}.
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For 1 � i � n − 1, for any monomial u in U�(i), there exist αi+1, . . . ,αn such that
u ∈ [αi+1, . . . ,αn]. Then

�Mult
U�(i)

J (u) = {x1, . . . , xi−1} ∪ MultUJ ([αi+1, . . . ,αn]).

Finally, for u in U�, there exists a unique 1 � iu � n such that u ∈ U�(iu). Then we
set

�Mult
U�

J (u) = �Mult
U�(iu )

J (u).

3.1.15 Example [51, p. 17]. Consider the subsetU = { x3
3 x2

2 x2
1 , x3

3 x3
1 , x3x2x3

1 ,

x3x2 } of M(x1, x2, x3) with the order x3 > x2 > x1. The following table gives the
multiplicative variables for each monomial:

x3
3 x2

2 x2
1 x3 x2 x1

x3
3 x3

1 x3 x1
x3x2x3

1 x2 x1
x3x2 x2

The sets of complementary monomials are

U�(3) = {1, x2
3 }, U�(2) = {x3

3 x2, x3},
U�(1) = {x3

3 x2
2 x1, x3

3 x2
2 , x3

3 x2
1 , x3

3 x1, x3
3 , x3x2x2

1 , x3x2x1}.

The following table gives the multiplicative variables for each monomial:

1, x2
3 x2 x1

x3
3 x2 x3 x1
x3 x1

x3
3 x2

2 x1, x3
3 x2

2 x3 x2
x3
3 x2

1 , x3x1, x3
3 x3

x3x2x2
1 , x3x2x1 x2

3.2 Completion Procedure

In this subsection, we present the notion of complete system introduced by Janet
in [51]. In particular, we recall the completion procedure that he gave in order to
complete a finite set of monomials.

3.2.1 Complete Systems. Let U be a subset of M(x1, . . . , xn). For a monomial u
in U (resp. in U�), M. Janet defined the involutive cone of u with respect to U (resp.
to U�) as the set of monomials
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coneJ (u,U) = { uv | v ∈ M(MultUJ (u)) }
(resp. cone�

J (u,U) = { uv | v ∈ M(�Mult
U�

J (u)) }).

The involutive cone of the set U is defined by

coneJ (U) =
⋃

u∈U
coneJ (u,U) (resp. cone�

J (U) =
⋃

u∈U�

cone�
J (u,U)).

M. Janet called complete a set ofmonomialsU when cone(U) = coneJ (U). An invo-
lutive cone is called class in Janet’s monograph [51]. The terminology “involutive”
first appeared in the paper [25] by Gerdt and is standard now. We refer the reader to
[63] for a discussion of the relation between this notion and the notion of involutivity
in the work of É. Cartan.

3.2.2 Proposition [51, p. 18] For any finite subset U of M(x1, . . . , xn), we have
the partition

M(x1, . . . , xn) = coneJ (U) � cone�
J (U).

3.2.3 A Proof of Completeness by Induction. Let U be a finite subset of
M(x1, . . . , xn). Consider the partition [0], . . . , [degn(U)] of monomials in U by
their degrees in xn . Let α1 < α2 < · · · < αk be positive integers such that [αi ] is
non-empty. Recall that [αi ] is the set of monomials u in M(x1, . . . , xn−1) such that
uxαi

n is in U . With these notations, the following result gives an inductive method to
prove that a finite set of monomials is complete.

3.2.4 Proposition [51, p. 19] A finite setU is complete if and only if the two following
conditions are satisfied:

(i) the sets [α1], . . . , [αk] are complete,
(ii) for any 1 � i < k, the set [αi ] is contained in coneJ ([αi + 1]).

As an immediate consequence of this proposition,M. Janet obtained the following
characterization.

3.2.5 Proposition [51, p. 20] A finite subset U of M(x1, . . . , xn) is complete if and
only if, for any u in U and any x non-multiplicative variable of u with respect to U ,
ux lies in coneJ (U).

3.2.6 Example [51, p. 21]. Consider the subset U = { x5x4, x5x3, x5x2, x2
4 , x4x3,

x2
3 } ofM(x1, . . . , x5). The multiplicative variables are given by the following table:

x5x4 x5 x4 x3 x2 x1
x5x3 x5 x3 x2 x1
x5x2 x5 x2 x1
x2
4 x4 x3 x2 x1

x3x4 x3 x2 x1
x2
3 x3 x2 x1
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To prove that this set of monomials is complete, we apply Proposition 3.2.5. The
completeness follows from the identities

x5x3 · x4 = x5x4 · x3,
x5x2 · x4 = x5x4 · x2, x5x2 · x3 = x5x3 · x2,

x2
4 · x5 = x5x4 · x4,

x4x3 · x5 = x5x4 · x3, x4x3 · x4 = x2
4 · x3,

x2
3 · x5 = x5x3 · x3, x2

3 · x4 = x4x3 · x3.

3.2.7 Examples. For every 1 � p � n, the set of monomials of degree p is com-
plete. Any finite set of monomials of degree 1 is complete.

3.2.8 Theorem (Janet’s Completion Lemma, [51, p. 21]) For any finite subset U of
M(x1, . . . , xn) there exists a finite set J (U) satisfying the following three conditions:

(i) J (U) is complete,
(ii) U ⊆ J (U),

(iii) cone(U) = cone(J (U)).

3.2.9 Completion Procedure. From Proposition 3.2.5, M. Janet deduced the com-
pletion procedure Complete(U), Procedure 1, which computes a completion of a
finite subset U of M(x1, . . . , xn) [51, p. 21]. M. Janet did not give a proof of the
fact that this procedure terminates. We will present a proof of the correctness and
termination of this procedure in Sect. 4.2.

Input: U a finite subset of M(x1, . . . , xn)

Output: A finite set J (U) satisfying the conditions of Theorem 3.2.8.

begin
˜U ← U
while exist u ∈ ˜U and x ∈ NMult˜UJ (u) such that ux is not in coneJ (˜U) do

Choose such u and x ,
˜U ← ˜U ∪ {ux}.

end
end

Procedure 1: Complete(U)

3.2.10 Example [51, p. 28]. Consider the subset U = { x3x2
2 , x3

3 x2
1 } of M(x1, x2,

x3) with the order x3 > x2 > x1. The following table gives the multiplicative vari-
ables for each monomial:

x3
3 x2

1 x3 x2 x1
x3x2

2 x2 x1

We complete the set U as follows. The monomial x3x2
2 · x3 is not in coneJ (U); we

set ˜U ← U ∪ {x2
3 x2

2 } and we compute multiplicative variables with respect to ˜U :
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x3
3 x2

1 x3 x2 x1
x2
3 x2

2 x2 x1
x3x2

2 x2 x1

The monomial x3x2
2 · x3 is in coneJ (˜U), but x2

3 x2
2 · x3 is not in coneJ (˜U); we set

˜U ← ˜U ∪ {x3
3 x2

2 }. The multiplicative variables of this new set of monomials are

x2
3 x2

2 x3 x2 x1
x3
3 x2

1 x3 x1
x2
3 x2

2 x2 x1
x3x2

2 x2 x1

The monomial x3x2
1 · x2 is not in coneJ (˜U), the other products are in coneJ (˜U), and

we prove that the system

˜U = { x3x2
2 , x3

3 x2
1 , x3

3 x2
2 , x3

3 x2x2
1 , x2

3 x2
2 }

is complete.

3.3 Inversion of Differentiation

In this subsection, we recall the results of Janet from [51] on the solvability of
monomial PDE systems of the form

(�) Dαϕ = fα(x1, x2, . . . , xn), α ∈ N
n, (3.3)

where ϕ is an unknown function and fα are analytic functions of several variables.
As recalled in Sect. 3.1.1, an infinite set of partial differential equations can be always
reduced to a finite set of such equations. This is a consequence of Dickson’s Lemma,
whose formulation due toM. Janet is given inLemma3.1.4.Accordingly,without loss
of generality, we can assume that the system (�) is finite. Using Proposition 3.1.2,
M. Janet associated to each differential operator Dα amonomial xα inM(x1, . . . , xn).
In this way, to a PDE system (�) in the variables x1, . . . , xn he associated a finite
set lm(�) of monomials. By Theorem 3.2.8, any such set lm(�) of monomials can
be completed to a finite complete set J (lm(�)) having the same cone as lm(�).

3.3.1 Computation of Inversion of Differentiation. Let us now assume that the
set of monomials lm(�) is finite and complete. Since the cone of lm(�) is equal
to the involutive cone of lm(�), each monomial u in lm(�) and non-multiplicative
variable xi in NMultlm(�)

J (u), admits a decomposition

uxi = vw,
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where v is in lm(�) and w belongs to M(Multlm(�)

J (v)). To each such a decompo-
sition, it corresponds a compatibility condition of the PDE system (�), that is, for
u = xα, v = xβ and w = xγ with α,β and γ in N

n ,

∂ fα
∂xi

= Dγ fβ .

Let us denote by (C�) the set of all such compatibility conditions. M. Janet showed
that under the completeness hypothesis this set of compatibility conditions is suffi-
cient for the PDE system (�) to be formally integrable in the sense of [72].

3.3.2 The Space of Initial Conditions. Let us consider the set lm(�)� of comple-
mentary monomials of the finite complete set lm(�). Suppose that the PDE system
(�) satisfies the set (C�) of compatibility conditions. M. Janet associated to each
monomial v = xβ in lm(�)� with β ∈ N

n an analytic function

ϕβ(xi1 , . . . , xikv
),

where {xi1 , . . . , xikv
} = �Mult

lm(�)�

J (v). By Proposition 3.2.2, the set of such analytic
functions provides a compatible initial condition. Under these assumptions, M. Janet
proved the following result.

3.3.3 Theorem [51, p. 25] Let (�) be a finite monomial PDE system such that
lm(�) is complete. If (�) satisfies the compatibility conditions (C�), then it admits a
unique solution with initial conditions given for any v = xβ in lm(�)� withβ ∈ N

n by

Dβϕ
∣

∣

x j =0 ∀x j ∈�NMult
lm(�)�
J (v)

= ϕβ(xi1 , . . . , xikv
),

where {xi1 , . . . , xikv
} = �Mult

lm(�)�

J (v).

These initial conditions were called by M. Janet initial conditions. A method to
obtain these initial conditions is illustrated by the two following examples.

3.3.4 Example [51, p. 26]. Consider the following monomial PDE system (�) for
the unknown function ϕ of the variables x1, . . . , x5:

∂2ϕ

∂x5∂x4
= f1(x1, . . . , x5),

∂2ϕ

∂x5∂x3
= f2(x1, . . . , x5),

∂2ϕ

∂x5∂x2
= f3(x1, . . . , x5),

∂2ϕ

∂x24
= f4(x1, . . . , x5),

∂2ϕ

∂x4∂x3
= f5(x1, . . . , x5),

∂2ϕ

∂x23
= f6(x1, . . . , x5).

The set (C�) of compatibility relations of the PDE system (�) is a consequence of
the identities used in Example 3.2.6 to prove the completeness of the system:
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x5x3 · x4 = x5x4 · x3,
∂ f2
∂x2

= ∂ f1
∂x3

,

x5x2 · x4 = x5x4 · x2, x5x2 · x3 = x5x3 · x2,
∂ f3
∂x4

= ∂ f1
∂x2

,
∂ f3
∂x3

= ∂ f2
∂x2

,

x2
4 · x5 = x5x4 · x4,

∂ f4
∂x5

= ∂ f1
∂x4

,

x4x3 · x5 = x5x4 · x3, x4x3 · x4 = x2
4 · x3,

∂ f5
∂x5

= ∂ f1
∂x3

,
∂ f5
∂x4

= ∂ f4
∂x3

,

x2
3 · x5 = x5x3 · x3, x2

3 · x4 = x4x3 · x3,
∂ f6
∂x5

= ∂ f2
∂x3

,
∂ f6
∂x4

= ∂ f5
∂x3

.

The initial conditions are obtained using themultiplicative variables of the set lm(�)�

of complementary monomials of lm(�). We have

lm(�)�(5) = lm(�)�(4) = lm(�)�(1) = ∅, lm(�)�(3) = {1, x3, x4}, lm(�)�(2) = {x5}.

The multiplicative variables of these monomials are given in the table

1, x3, x4 x1, x2,
x5 x1, x5.

By Theorem 3.3.3, the PDE system (�) always admits a unique solution with any
given initial conditions of the type

∂ϕ

∂x4

∣

∣

∣

∣

x3=x4=x5=0

= ϕ0,0,0,1,0(x1, x2),

∂ϕ

∂x3

∣

∣

∣

∣

x3=x4=x5=0

= ϕ0,0,1,0,0(x1, x2),

ϕ|x3=x4=x5=0 = ϕ0,0,0,0,0(x1, x2),

∂ϕ

∂x5

∣

∣

∣

∣

x2=x3=x4=0

= ϕ0,0,0,0,1(x1, x5).

3.3.5 Example. In a last example, M. Janet considered a monomial PDE system
where the partial derivatives of the left-hand side do not form a complete set of
monomials, namely, the PDE system (�) for one unknown function ϕ of the vari-
ables x1, x2, x3, given by

∂3ϕ

∂x2
2∂x3

= f1(x1, x2, x3),
∂5ϕ

∂x2
1∂x3

3

= f2(x1, x2, x3).

We consider the set of monomials lm(�) = {x3x2
2 , x3

3 x2
1 }. In Example 3.2.10, we

complete lm(�) to the complete set of monomials

J (lm(�)) = { x3x2
2 , x3

3 x2
1 , x3

3 x2
2 , x3

3 x2x2
1 , x2

3 x2
2 }.

The complementary sets of monomials are
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J (lm(�))�(3) = {1}, J (lm(�))�(2) = {x2
3 x2, x2

3 , x3x2, x3},
J (lm(�))�(1) = {x3

3 x2x1, x3
3 x2, x3

3 x1, x3
3}.

The multiplicative variables of these monomials are given in the table

J (lm(�))�(3) x1, x2,
J (lm(�))�(2) x1.
J (lm(�))�(1) x3.

By Theorem 3.3.3, the PDE system (�) admits always a unique solution for any
given initial conditions of the type

ϕ|x3=0 = ϕ0,0,0(x1, x2),
∂ϕ

∂x3

∣

∣

∣

∣

x2=x3=0
= ϕ0,0,1(x1),

∂2ϕ

∂x3∂x2

∣

∣

∣

∣

∣

x2=x3=0

= ϕ0,1,1(x1),

∂2ϕ

∂x23

∣

∣

∣

∣

∣

x2=x3=0

= ϕ0,0,2(x1),
∂3ϕ

∂x23∂x2

∣

∣

∣

∣

∣

x2=x3=0

= ϕ0,1,2(x1),
∂3ϕ

∂x33

∣

∣

∣

∣

∣

x1=x2=0

= ϕ0,0,3(x3),

∂4ϕ

∂x33∂x1

∣

∣

∣

∣

∣

x1=x2=0

= ϕ1,0,3(x3),
∂4ϕ

∂x33∂x2

∣

∣

∣

∣

∣

x1=x2=0

= ϕ0,1,3(x3),
∂5ϕ

∂x33∂x2∂x1

∣

∣

∣

∣

∣

x1=x2=0

= ϕ1,1,3(x3).

4 Monomial Involutive Bases

In this section, we recall a general approach of involutive monomial divisions intro-
duced by Gerdt in [25], see also [27, 28]. In particular, we give the axiomatic
properties of an involutive division. The partition of variables into multiplicative and
non-multiplicative can be deduced from this axiomatics. In this way, we explain how
the notion of multiplicative variable in the sense of Janet can be deduced from a
particular involutive division.

4.1 Involutive Division

4.1.1 Involutive Division. An involutive divisionI on the set ofmonomialsM(x1, . . . , xn)

is definedby a relation |UI inU × M(x1, . . . , xn), for every subsetU ofM(x1, . . . , xn),
satisfying, for all monomials u, u′ in U and v, w inM(x1, . . . , xn), the following six
conditions:

(i) u|UIw implies u|w,
(ii) u|UI u, for all u in U ,

(iii) u|UI uv and u|UI uw if and only if u|UI uvw,
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(iv) if u|UIw and u′|UIw, then u|UI u′ or u′|UI u,
(v) if u|UI u′ and u′|UIw, then u|UIw,

(vi) if U ′ ⊆ U and u ∈ U ′, then u|UIw implies u|U ′
I w.

When there is no danger of confusion, the relation |UI will be also denoted by |I .
4.1.2 Multiplicative Monomial. If u|UIw, by (i) there exists a monomial v such
that w = uv. We say that u is an I-involutive divisor of w, that w is an I-involutive
multiple of u, and that v is I-multiplicative for u with respect to U . When the
monomial uv is not an involutive multiple of u with respect to U , we say that v is
I-non-multiplicative for u with respect to U .

We define in the same way the notion of multiplicative (resp. non-multiplicative)
variable. We denote by MultUI (u) (resp. NMultUI (u)) the set of multiplicative (resp.
non-multiplicative) variables for the division I of a monomial u with respect to U .
We have

MultUI (u) = { x ∈ {x1, . . . , xn}
∣

∣ u|UI ux }

and thus obtain a partition of the set of variables { x1, . . . , xn } into sets of multi-
plicative and non-multiplicative variables. An involutive division I is thus entirely
defined by a partition

{x1, . . . , xn} = MultUI (u) � NMultUI (u),

for any finite subset U of M(x1, . . . , xn) and any u in U , satisfying conditions (iv),
(v) and (vi) of Definition 4.1.1. The involutive division I is then defined by setting
u |UI w ifw = uv and the monomial v belongs toM(MultUI (u)). Conditions (i), (ii),
and (iii) of Definition 4.1.1 are consequences of this definition.

4.1.3 Example. Consider U = {x1, x2} inM(x1, x2) and suppose that I is an invo-
lutive division such that MultUI (x1) = {x1} and MultUI (x2) = {x2}. Then we have

x1 �I x1x2, and x2 �I x1x2.

4.1.4 Autoreduction. A subset U of M(x1, . . . , xn) is said to be autoreduced with
respect to an involutive divisionI, orI-autoreduced, if it does not contain amonomial
I-divisible by another monomial of U .

In particular, by the definition of the involutive division, for any monomials u, u′
in U and any monomial w inM(x1, . . . , xn), we have u|Iw and u′|Iw implies u|Iu′
or u′|Iu. As a consequence, if a set of monomials U is I-autoreduced, then any
monomial in M(x1, . . . , xn) admits at most one I-involutive divisor in U .
4.1.5 Janet Division. We call Janet division the division onM(x1, . . . , xn) given by
the multiplicative variables in the sense of M. Janet defined in Sect. 3.1.9. Explicitly,
for a subset U ofM(x1, . . . , xn) and monomials u in U and w inM(x1, . . . , xn), we
define u|UJ w if u is a Janet divisor of w as defined in Sect. 3.1.11, that is w = uv,
where v ∈ M(MultUJ (u)) and MultUJ (u) is the set of Janet’s multiplicative variables
defined in Sect. 3.1.9.
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By Proposition 3.1.12, for a fixed subset of U , any monomial of M(x1, . . . , xn)

has a unique Janet divisor in U with respect to U . As a consequence, the conditions
(iv) and (v) of Definition4.1.1 hold trivially for Janet division. Now suppose that
U ′ ⊆ U and u is a monomial in U ′. If u|UJ w, then there is a decomposition w = uv

with v ∈ M(MultUJ (u)). As MultUJ (u) ⊆ MultU
′

J (u), this implies that u|U ′
J w. Hence,

the conditions (vi) of Definition4.1.1 holds for Janet division. We have thus proved.

4.1.6 Proposition [27, Proposition 3.6] Janet division is involutive.

4.2 Involutive Completion Procedure

4.2.1 Involutive Set. Let I be an involutive division onM(x1, . . . , xn) and let U be
a set of monomials. The involutive cone of a monomial u in U with respect to the
involutive division I is defined by

coneI(u,U) = { uv
∣

∣ v ∈ M(x1, . . . , xn) and u|UI uv }.

The involutive cone of U with respect to the involutive division I is the following
subset of monomials:

coneI(U) =
⋃

u∈U
coneI(u,U).

Note that the inclusion coneI(U) ⊆ cone(U) holds for any set U . When the set U is
I-autoreduced, this union is disjoint, thanks to involutivity.

A subset U ofM(x1, . . . , xn) is I-involutive if the following equality holds:

cone(U) = coneI(U).

In other words, a set U is I-involutive if any multiple of an element u in U is also
the I-involutive multiple of an element v of U . Note that the monomial v can be
different from the monomial u, as we have seen in Example 3.2.6.

4.2.2 Involutive Completion. A completion of a subset U of M(x1, . . . , xn) with
respect to an involutive division I, or I-completion for short, is a set of monomials
˜U satisfying the following three conditions:

(i) ˜U is involutive,
(ii) U ⊆ ˜U ,

(iii) cone(˜U) = cone(U).

4.2.3 Noetherianity. An involutive division I is said to be Noetherian if all finite
subset U of M(x1, . . . , xn) admits a finite I-completion ˜U .

4.2.4 Proposition [27, Proposition 4.5] Janet division is Noetherian.
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4.2.5 Prolongation. LetU be a subset ofM(x1, . . . , xn). We call prolongation of an
element u of U a multiplication of u by a variable x . Given an involutive division I,
a prolongation ux is multiplicative (resp. non-multiplicative) if x is a multiplicative
(resp. non-multiplicative) variable.

4.2.6 Local Involutivity. A subset U of M(x1, . . . , xn) is locally involutive with
respect to an involutive division I if any non-multiplicative prolongation of an ele-
ment of U admit an involutive divisor in U . That is

∀u ∈ U ∀xi ∈ NMultUI (u) ∃v ∈ U such that v|Iuxi .

4.2.7 Example [27, Example 4.8]. By definition, if U is I-involutive, then it is
locally I-involutive. The converse is false in general. Indeed, consider the involutive
division I onM = M(x1, x2, x3) defined by

MultMI (x1) = {x1, x3}, MultMI (x2) = {x1, x2}, MultMI (x3) = {x2, x3},

with MultMI (1) = {x1, x2, x3} and MultMI (u) is empty for deg(u) � 2. Then the set
{x1, x2, x3} is locally I-involutive, but not I-involutive.
4.2.8 Continuity. An involutive division I is continuous if for any finite subset U
of M(x1, . . . , xn) and any finite sequence (u1, . . . , uk) of elements in U for which
there exists xi j in NMultUI (u j ) such that

uk |Iuk−1xik−1 , . . . , u3|Iu2xi2 , u2|Iu1xi1 ,

it holds that ui �= u j , for any i �= j .
For instance, the involutive division in Example 4.2.7 is not continuous. Indeed,

there exists the following cycle of divisions:

x2|Ix1x2, x1|Ix3x1, x3|Ix2x3, x2|Ix1x2.

4.2.9 From Local to Global Involutivity. Any I-involutive subset U ofM(x1, . . . ,
xn) is locally I-involutive. When the division I is continuous, the converse is also
true. Indeed, suppose that U is locally I-involutive and I is continuous. Let us show
that U is I-involutive.

Given a monomial u in U and a monomial w inM(x1, . . . , xn), we claim that the
monomial uw admits an I-involutive divisor in U . If u|Iuw, the claim is proved.
Otherwise, there exists a non-multiplicative variable xk1 in NMultUI (u) such that
xk1 |w. By local involutivity, themonomial uxk1 admits anI-involutive divisor v1 inU .
If v1|Iuw, the claim is proved. Otherwise, there exists a non-multiplicative variable
xk2 in NMultUI (v1) such that xk2 divides

uw
v1
. By local involutivity, the monomial v1xk2

admits an I-involutive divisor v2 in U .
In this way, we construct a sequence (u, v1, v2, . . .) of monomials in U such that

v1|Iuxk1 , v2|Iv1xk2 , v3|Iv2xk3 , . . .
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By the continuity hypothesis, all monomials v1, v2, . . . are distinct. Moreover, all
these monomials are divisors of uw, which admits a finite set of distinct divisors.
As a consequence, the above sequence is finite. It follows that its last term vk is an
I-involutive monomial of uw. We have thus proved the following result.

4.2.10 Theorem [27, Theorem 4.10] Let I be a continuous involutive division. A
subset of M(x1, . . . , xn) is locally I-involutive if and only if it is I-involutive.

4.2.11 Proposition [27, Corollary 4.11] Janet division is continuous.

Input: U a finite subset of M(x1, . . . , xn)

begin
˜U ← U
while exist u ∈ ˜U and x ∈ NMult˜UI (u) such that ux does not have an I-involutive
divisor in ˜U do

Choose such a u and x corresponding to the smallest monomial ux with respect to
the monomial order �
˜U ← ˜U ∪ {ux}

end
end

Output: ˜U the minimal involutive completion of the set U .

Procedure 2: Involutive completion procedure.

4.2.12 Involutive Completion Procedure. Procedure 2 generalizes Janet’s comple-
tion procedure given in Sect. 3.2.9 to any involutive division. Let us fix a monomial
order � on M(x1, . . . , xn). Given a set of monomials U , the procedure completes
the set U by all possible non-involutives prolongations of monomials in U .

By introducing the notion of constructive involutive division, Gerdt and Blinkov
gave in [27] some conditions on the involutive division I in order to establish the
correctness and the termination of this procedure. A continuous involutive division
I is constructive if for any subset U ofM(x1, . . . , xn) and for any non-multiplicative
prolongation ux of a monomial u in U satisfying the two conditions

(i) ux does not have an I-involutive divisor in U ,
(ii) any non-multiplicative prolongation vy �= ux of a monomial v in U that divides

ux has an I-involutive divisor in U ,
the monomial ux cannot be I-involutively divided by a monomial w in coneI(U)

with respect to U ∪ {w}.
If I is a constructive division, then the completion procedure completes the set

U to an involutive set. We refer the reader to [27, Theorem 4.14] for a proof of the
correctness and termination of the completion procedure under these hypotheses.

4.2.13 Example. An application of this procedure to the set of monomials U =
{ x3x2

2 , x3
3 x2

1 } given by Janet in [51] is presented in Sect. 3.2.10.
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4.3 Others Involutive Approaches

For the analysis of differential systems, several other notions of multiplicative vari-
ables were studied by J. M. Thomas 1937 and J.-F. Pommarret in 1978. Other exam-
ples of involutive divisions can be found in [28].

4.3.1 Thomas Division. In [86], Thomas introduced an involutive division that dif-
fers from that of M. Janet, also used in the analysis of differential systems. The
multiplicative variables in the sense of Thomas’s division for a monomial u with of
a finite subset U of M(x1, . . . , xn) are defined by the rule

xi ∈ MultUT (u) if degi (u) = degi (U).

In particular, we have u|UT w ifw = uv and for all variables xi in v, we have degi (u) =
degi (U). The Thomas division is a Noetherian and continuous involutive division.
We refer the reader to [27] for detailed proofs of these results. Note also that the
Janet division is a refinement of the Thomas division, in the sense that for any finite
set of monomials U and any monomial u in U , the following inclusions hold:

MultUT (u) ⊆ MultUJ (u) and NMultUJ (u) ⊆ NMultUT (u).

4.3.2 Pommaret Division. In [72], Pommaret studied an involutive division that is
defined globally, that is, the multiplicative variables for the Pommaret division do
not depend on a given subset of monomials. In this way, Pommaret’s division can be
defined on an infinite set of monomials.

Fix an order on the variables x1 > x2 > · · · > xn . Given a monomial u =
xα1
1 · · · xαk

k , with αk > 0, the Pommaret multiplicative variables for u are defined
by the rule

x j ∈ MultM(x1,...,xn)

P (u), if j � k, and x j ∈ NMultM(x1,...,xn)

P (u), if j < k.

Set MultM(x1,...,xn)

P (1) = {x1, . . . , xn}. The Pommaret division is a continuous invo-
lutive division that is not Noetherian [27]. The Janet division is a refinement of
the Pommaret division, that is, for an autoreduced finite set of monomials U , the
following inclusions hold for any monomial u in U :

MultUP(u) ⊆ MultUJ (u) and NMultUJ (u) ⊆ NMultUP(u).

Finally, let us remark that the separation of variables into multiplicative and non-
multiplicative ones in the Pommaret division was used first by Janet in [51, Sect. 20].
For this reason, the terminology Pommaret division does not reflect correctly the
history of the theory.We refer the reader to the monograph by Seiler [82, Section3.5]
for a historical account.
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5 Polynomial Partial Differential Equations
Systems

In this section, we extend the results on monomial systems presented in Sect. 3 to
linear (polynomial) systems. All PDE systems are considered in analytic categories,
meaning that all unknown functions, coefficients, and initial conditions are assumed
to be analytic. In the first part, we recall the notion of principal derivative with
respect to an order on derivatives introduced by M. Janet. This notion is used to give
an algebraic characterization of complete integrability conditions of a PDE system.
Then we present a procedure that decides whether a given finite linear PDE system
can be transformed into a completely integrable linear PDE system. Finally, we recall
the algebraic formulation of involutivity introduced by Janet in [51].

5.1 Parametric and Principal Derivatives

5.1.1 Motivations. In [51, Chapter 2], M. Janet first considered the following PDE
for one unknown function on C

n:

∂2ϕ

∂x2n
=

∑

1�i, j<n

ai, j (x)
∂2ϕ

∂xi ∂x j
+

∑

1�i<n

ai (x)
∂2ϕ

∂xi ∂xn
+

n
∑

r=1

br (x)
∂ϕ

∂xr
+ c(x)ϕ + f (x),

(5.1)
where the functions ai, j (x), ai (x), br (x), c(x) and f (x) are analytic functions in
a neighborhood of a point P = (x0

1 , . . . , x0
n ) in C

n . Given two analytic functions
ϕ1 and ϕ2 in a neighborhood UQ of a point Q = (x0

1 , . . . , x0
n−1) in C

n−1, M. Janet
studied the problem of the existence of solutions of equation (5.1) with the initial
condition

ϕ|xn=x0
n

= ϕ1,
∂ϕ

∂xn

∣

∣

∣

∣

xn=x0
n

= ϕ2, (5.2)

in a neighborhood of the point Q. In Sect. 5.4.2, we will formulate such condition
for higher order linear PDE systems with several unknown functions, called initial
condition.

5.1.2 Principal and Parametric Derivatives. In order to treat the problems of the
existence and uniqueness of a solution of Eq. (5.1) under the initial condition (5.2),
M. Janet introduced the notions of parametric and principal derivatives defined as
follows. The partial derivatives Dαϕ, with α = (α1, . . . ,αn), of an analytic function
ϕ are determined by

(i) ϕ1 and its derivatives for αn = 0,
(ii) ϕ2 and its derivatives for αn = 1,

in the neighborhoodUQ . These derivatives forαn = 0 andαn = 1 are calledparamet-

ric, while the derivatives for αn � 2, i.e., the derivatives of ∂2ϕ
∂x2

n
, are called principal.

Note that the values of the principal derivatives at the point P are entirely given byϕ1
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and ϕ2 and by their derivatives thanks to Eq. (5.1). Note that the notion of parametric
derivative corresponds to a parametrization of the initial conditions of the system.

5.1.3 Janet’s Orders on Derivatives. Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn)

be in N
n . Let ϕ be an analytic function. The derivative Dαϕ is said to be posterior

(resp. anterior) to Dβϕ if

|α| > |β| (resp. |α| < |β|) or |α| = |β| and αn > βn (resp.αn < βn).

Obviously, any derivative of ϕ admits only finitely many anterior derivatives of ϕ.
Using this notion of posteriority, M. Janet showed the existence and uniqueness of
the solution to Eq. (5.1) under the initial conditions (5.2).

In his monograph, M. Janet gave several generalizations of the above notion of
posteriority. Thefirst one corresponds to the degree lexicographic order [51, Sect. 22],
formulated as follows:

(i) for |α| �= |β|, the derivative Dαϕ is called posterior (resp. anterior) to Dβϕ, if
|α| > |β| (resp. |α| < |β|),

(ii) for |α| = |β|, the derivative Dαϕ is called posterior (resp. anterior) to Dβϕ if
the first nonzero difference

αn − βn , αn−1 − βn−1 , . . . , α1 − β1,

is positive (resp. negative).

5.1.4 Generalization. Let us consider the following generalization of equation
(5.1):

Dϕ =
∑

i∈I

ai Diϕ + f, (5.3)

where D and the Di are differential operators such that Diϕ is anterior to Dϕ for all
i in I . The derivative Dϕ and all its derivatives are called principal derivatives of
the Eq. (5.3). All the other derivatives of u are called parametric derivatives of the
Eq. (5.3).

5.1.5 Weight Order. Further generalization of these order relations was given by
M. Janet by introducing the notion of cote, which corresponds to a parametrization of
a weight order defined as follows. Let us fix a positive integer s. We define a weight
matrix

C =
⎡

⎢

⎣

C1,1 . . . Cn,1
...

...

C1,s . . . Cn,s

⎤

⎥

⎦

that associates to each variable xi nonnegative integers Ci,1, . . . , Ci,s , called the
s-weights of xi . This notion was called cote by Janet in [51, Sect. 22] following the
terminology introduced by Riquier [75]. Ritt used the term mark in [77]. For each
derivative Dαϕ, with α = (α1, . . . ,αn), of an analytic function ϕ, we associate the
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s-weight �(C) = (�1, . . . , �s), where the �k are defined by

�k =
n
∑

i=1

αi Ci,k .

Given two monomial partial differential operators Dα and Dβ as in Sect. 5.1.3, we
say that Dαϕ is posterior (resp. anterior) to Dβϕ with respect to the weight matrix
C if

(i) |α| �= |β| and |α| > |β| (resp. |α| < |β|), or
(ii) |α| = |β| and the first nonzero difference

�1 − �′
1, �2 − �′

2 , . . . , �s − �′
s,

is positive (resp. negative).

In thisway,wedefine anorder on the set ofmonomial partial derivatives, calledweight
order. Note that, by setting Ci,k = δi+k,n+1, we recover the Janet order defined in
Sect. 5.1.3.

5.2 First-Order PDE Systems

We consider first the resolution of first-order PDE systems.

5.2.1 Complete Integrability. In [51, Sect. 36], M. Janet considered a first-order
PDE system of the form

(�)
∂ϕ

∂yλ
= fλ(y1, . . . , yh, z1, . . . , zk,ϕ, q1, . . . , qk) (1 � λ � h), (5.4)

where ϕ is an unknown function of the independent variables y1, . . . , yh, z1, . . . , zk ,
with h + k = n and qi = ∂ϕ

∂zi
. It is assumed that the functions fλ are analytic in a

neighborhood of a point P . M. Janet wrote down explicitly the integrability condition
of the PDE systems (�) as the equality

∂

∂yλ

(

∂ϕ

∂yμ

)

= ∂

∂yμ

(

∂ϕ

∂yλ

)

,

for any 1 � λ,μ � h. Differentiating (5.4), we deduce that

∂

∂yλ

(

∂ϕ

∂yμ

)

= ∂ fμ
∂yλ

+ ∂ϕ

∂yλ

∂ fμ
∂ϕ

+
k
∑

i=1

∂ fμ
∂qi

∂2ϕ

∂yλ∂zi
,

= ∂ fμ
∂yλ

+ fλ
∂ fμ
∂ϕ

+
k
∑

i=1

∂ fμ
∂qi

(

∂ fλ
∂zi

+ qi
∂ fλ
∂ϕ

)

+
k
∑

i, j=1

∂ fλ
∂qi

∂ fμ
∂q j

∂2ϕ

∂zi ∂z j
.
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Hence, the integrability condition reads

∂

∂yλ

(

∂ϕ

∂yμ

)

− ∂

∂yμ

(

∂ϕ

∂yλ

)

= ∂ fμ
∂yλ

+ fλ
∂ fμ
∂ϕ

+
k
∑

i=1

∂ fμ
∂qi

(

∂ fλ
∂zi

+ qi
∂ fλ
∂ϕ

)

− ∂ fλ
∂yμ

− fμ
∂ fλ
∂ϕ

−
k
∑

i=1

∂ fλ
∂qi

(

∂ fμ
∂zi

+ qi
∂ fμ
∂ϕ

)

= 0,
(5.5)

for any 1 � λ �= μ � h. When the PDE system (�) in (5.4) satisfies relation (5.5),
it is said to be completely integrable.

5.2.2 Theorem Suppose that the PDE system (�) in (5.4) is completely integrable.
Let P be a point in C

n and ϕ(z1, . . . , zk) be an analytic function in the neigh-
borhood of the point π(P), where π : C

n → C
k denotes the canonical projection

(y1, . . . , yh, z1, . . . zk) �→ (z1, . . . , zk). Then, the system (�) admits only one ana-
lytic solution satisfying u = ϕ ◦ π in a neighborhood of the point P.

5.3 Higher Order Finite Linear PDE Systems

In [51, Sect. 39], M. Janet discussed the existence of solutions of a finite linear PDE
system for one unknown function ϕ in which each equation is of the form

(�) Diϕ =
∑

j

ai, j Di, jϕ, i ∈ I. (5.6)

All the functions ai, j are assumed to be analytic in a neighborhood of a point P inC
n .

5.3.1 Principal and Parametric Derivatives. Consider Janet’s order�J on deriva-
tives as the generalization defined in Sect. 5.1.3. We assume that each equation of
the system (�) defined by (5.6) satisfies the following two conditions:

(i) Di, jϕ is anterior to Diϕ, for any i in I ,
(ii) all the Di ’s for i in I are distinct.

We extend the notion of principal derivative introduced in Sect. 5.1.4 for one PDE
equation to a system of the form (5.6) as follows. The derivative Diϕ, for i in I , and
all its derivatives are called principal derivatives of the PDE system (�) in (5.6) with
respect to Janet’s order. Any other derivative of ϕ is called parametric derivative.

5.3.2 Completeness with Respect to Janet’s Order. Fix an order xn > xn−1 >

· · · > x1 on variables. By the isomorphism of Proposition 3.1.2, which identifies
monomial partial differential operators with monomials inM(x1, . . . , xn), we asso-
ciate to the set of operators Di ’s, i in I , defined in Sect. 5.3.1, a set lm�J (�) of
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monomials. By definition, the set lm�J (�) contains the monomials associated to
leading derivatives of the PDE system (�) with respect to Janet’s order.

The PDE system (�) is said to be complete with respect to Janet’s order �J if the
set of monomials lm�J (�) is complete in the sense of Sect. 3.2.1. Procedure 6 is a
completion procedure that transforms a finite linear PDE system into an equivalent
complete linear PDE system.

By definition, the set of principal derivatives corresponds, via the isomorphism of
Proposition 3.1.2, to the multiplicative cone of the monomial set lm�J (�). Hence,
when (�) is complete, the set of principal derivatives corresponds to the involutive
cone of lm�J (�). By Proposition 3.2.2, there is a partition

M(x1, . . . , xn) = coneJ (lm�J (�)) � cone�
J (lm�J (�)).

It follows that the set of parametric derivatives of a complete PDE system (�)

corresponds to the involutive cone of the set of monomials lm�J (�)�.

5.3.3 Initial Conditions. Consider the set lm�J (�)� of complementary monomials
of lm�J (�), as defined in Sect. 3.1.13. To a monomial xβ in lm�J (�)�, with β =
(β1, . . . ,βn) in N

n and

�Mult
lm�J (�)�

J (xβ) = {xi1 , . . . , xikβ
},

we associate an arbitrary analytic function

ϕβ(xi1 , . . . , xikβ
).

Using these functions, M. Janet defined an initial condition:

(Cβ) Dβϕ
∣

∣

x j =0 ∀x j ∈�NMult
lm�J

(�)�
J (xβ)

= ϕβ(xi1 , . . . , xikβ
).

Then he introduced an initial condition for the Eq. (5.6) with respect to the Janet
order as the set

{ Cβ | xβ ∈ lm�J (�)� }. (5.7)

5.3.4 Theorem [51, Sect. 39] If the PDE system (�) in (5.6) is complete with respect
to Janet’s order �J , then it admits at most one analytic solution satisfying the initial
condition (5.7).

5.3.5 PDE Systems with Several Unknown Functions. The construction of initial
conditions given in Sect. 5.3.3 for one unknown function can be extended to linear
PDE systems on C

n with several unknown functions using a weight order. Consider
a linear PDE system with m unknown analytic functions ϕ1, . . . ,ϕm of the form

(�) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
ar,s

α,β Dβϕs, α ∈ I r , (5.8)
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for 1 � r � m, where I r is a finite subset of N
n and the ar,s

α,β are analytic functions.
For such a system, we define a weight order as follows. Fix a positive integer s.

To any variable xi we associate s + 1 weights Ci,0, Ci,1, . . . , Ci,s by setting Ci,0 = 1
and taking Ci,1, . . . , Ci,s as defined in Sect. 5.1.5. To each unknown function ϕ j ,
we associate s + 1 weights T ( j)

0 , T ( j)
1 . . . , T ( j)

s . With these data, we define the s + 1
weights �

( j)
0 , �

( j)
1 , . . . , �

( j)
s of the partial derivative Dαϕ j with α = (α1, . . . ,αn)

in N
n by setting

�
( j)
k =

n
∑

i=1

αi Ci,k + T ( j)
k (0 � k � s).

We define the notions of anteriority and posteriority on derivatives with respect to
this weight order, denoted by �wo, as it is done in Sect. 5.3.1 for systems with one
unknown function. In particular, we define the notions of principal and parametric
derivatives in a similar way to the case of systems with one unknown function.

Now suppose that the system (5.8) is written in the form

(�) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

ar,s
α,β Dβϕs, α ∈ I r . (5.9)

We can formulate the notion of completeness with respect to the weight order�wo as
in Sect. 5.3.2. Let lm�wo(�,ϕr ) be the set of monomials associated to leading deriva-
tives Dα of all PDE in (�) such thatα belongs to I r . The PDE system (�) is complete
with respect to �wo, if for any 1 � r � m, the set of monomials lm�wo(�,ϕr ) is
complete in the sense of Sect. 3.2.1. Finally, we can formulate, as in (5.7), an initial
condition for the linear PDE system (5.9) with respect to such a weight order:

{ Cβ,r | xβ ∈ lm�wo(�,ϕr )�, for 1 � r � m }. (5.10)

5.3.6 Theorem [51, Sect. 40] If the PDE system (�) in (5.9) is complete with
respect to a weight order �wo, then it admits at most one analytic solution satisfying
the initial condition (5.10).

M. Janet asserted that this result could be proved in a way similar to the proof of
Theorem 5.3.4.

5.4 Completely Integrable Higher Order Linear PDE
Systems

In this subsection, we will introduce integrability conditions for higher order lin-
ear PDE systems with several unknown functions. The main result, Theorem 5.4.7,
characterizes algebraically the complete integrability property for complete PDE
systems. It states that, under the completeness property, the complete integrability
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condition is equivalent to all integrability conditions being trivially satisfied. In this
subsection, we will assume that the linear PDE systems are complete. In Sect. 5.6
we will provide Procedure 6 that transforms a linear PDE system of the form (5.9)
into a complete linear PDE system with respect to a weight order.

5.4.1 Formal Solutions. Consider a linear PDE system (�) of the form (5.9) with
unknown functions ϕ1, . . . ,ϕm and independent variables x1, . . . , xn . Assume that
(�) is complete; hence, the set of monomials lm�wo(�,ϕr ) = {xα | α ∈ I r } is com-
plete for all 1 � r � m. For the remaining part of this subsection, we will denote
lm�wo(�,ϕr ) by Ur . Let (coneJ ,�wo(�)) denote the PDE system

�(u)(Dαϕr ) =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

�(u)
(

ar,s
α,β Dβϕs

)

, 1 � r � m,

for α ∈ I r and u ∈ M(Mult(xα,Ur )).
We use the PDE system (coneJ ,�wo(�)) to compute the values of the principal

derivative at a point P0 = (x0
1 , . . . , x0

n ) of C
n . We call formal solutions of the PDE

system (�) at the point P0 the elements ϕ1, . . . ,ϕm in C[[x1 − x0
1 , . . . , xn − x0

n ]]
which are solutions of (�). If the system (�) admits an analytic solution, then
these formal solutions are convergent series and give analytic solutions of (�) on a
neighborhood of the point P0.

5.4.2 Initial Conditions. We are interested in condition under which the system
(�) admits a solution for any given initial condition. The initial conditions are
parametrized by the set U�

r of complementary monomials of the set of monomi-
als Ur as in Sect. 5.3.3. Explicitly, for 1 � r � m, to a monomial xβ in U�

r , with β in

N
n and �Mult

U�
r

J (xβ) = {xi1 , . . . , xikr
}, we associate an arbitrary analytic function

ϕβ,r (xi1 , . . . , xikr
).

Then by initial condition one means the following data:

(Cβ,r ) Dβϕr
∣

∣

x j =x0
j ∀x j ∈�NMult

U�
r

J (xβr )
= ϕβ,r (xi1 , . . . , xikr

).

Then, as the initial condition for the system (�) in (5.8), one takes the set

⋃

1�r�m

{ Cβ,r | xβr ∈ U�
r }. (5.11)

Note that M. Janet calls degree of generality of the solution of the PDE system (�)

the dimension of the initial conditions of the system, that is

Max
u∈U�

r

∣

∣
�Mult

U�
r

J (u)
∣

∣.
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5.4.3 J -Normal Form. Suppose that the PDE system (�) is complete. Given a lin-
ear equation E among the unknown functions ϕ1, . . . ,ϕm and variables x1, . . . , xn ,
aJ -normal form of E with respect to the system (�) is an equation obtained from E
by the reduction process that replaces principal derivatives by parametric derivatives
by means of a procedure similar to RightReduce given in Procedure 5.

5.4.4 Integrability Conditions. Given 1 � r � m and α ∈ I r , let xi in NMultUr
J

(xα) be a non-multiplicative variable. Apply the partial derivative�(xi ) = ∂
∂xi

to the
equation

Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

ar,s
α,β Dβϕs .

This yields the PDE

�(xi )(Dαϕr ) =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

(

∂ar,s
α,β

∂xi
Dβϕs + ar,s

α,β�(xi )(Dβϕs)

)

. (5.12)

Using the system (coneJ ,�wo(�)), we can rewrite the PDE (5.12) as a PDE formu-
lated in terms of parametric derivatives and independent variables. The set of mono-
mialsUr being complete, there existsα′ inN

n with xα′
inUr and u inM(MultUr

J (xα′
))

such that xi xα = uxα′
. Then we have �(xi )Dα = �(u)Dα′

and we obtain the
equation

∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

(

∂ar,s
α,β

∂xi
Dβϕs + ar,s

α,β�(xi )(Dβϕs)

)

=
∑

(β′,s)∈Nn×{1,2,...,m}
Dβ′

ϕs≺wo Dα′
ϕr

�(u)(ar,s
α′,β′ Dβ′

ϕs).

(5.13)
Using the equations of the system (coneJ ,�wo(�)), we replace all principal deriva-
tives in the equation (5.13) by parametric derivatives and independent variables. The
order �wo being well-founded this process is terminating. Moreover, when the PDE
system (�) is complete this reduction process is confluent in the sense that any trans-
formations of an Eq. (5.13) end with a unique J -normal form. The set of resulting
J -normal forms is denoted by IntCondJ ,�wo(�).

5.4.5 Remarks. Since the system (�) is complete, any Eq. (5.13) is reduced to
a unique normal form. Such a normal form allows us to judge whether a given
integrability condition is trivial or not.

Recall that the parametric derivatives correspond to the initial conditions. Hence,
a nontrivial relation in IntCondJ ,�cwo(�) provides a nontrivial relation among the
initial conditions. In this way, we can decide whether the system (�) is completely
integrable or not.

5.4.6 Completely Integrable Systems. A complete linear PDE system (�) of the
form (5.9) is said to be completely integrable if it admits an analytic solution for any
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given initial condition (5.11). For the geometrical interpretation of this condition, we
refer the reader to Sect. 2.1.4.

5.4.7 Theorem [51, Sect. 42] Let (�) be a complete finite linear PDE system of the
form (5.9). Then the system (�) is completely integrable if and only if every relation
in IntCondJ ,�wo(�) is a trivial identity.

A proof of this result is given in [51, Sect. 43]. Note that the condition in this
theorem is equivalent to asserting that any relation (5.13) is an algebraic consequence
of a PDE equation of the system (coneJ ,�wo(�)).

5.5 Canonical Forms of Linear PDE Systems

In this subsection, we recall from [51] the notion of canonical linear PDE system.
A canonical system is a normal form with respect to a weight order on derivatives,
and such that it satisfies some analytic conditions, allowing to extend the Cauchy–
Kowalevsky theorem given in Sect. 2.1.3. Note that this terminology refers to a notion
of normal form, but it does not correspond to the well-known notion for a rewrit-
ing system meaning both terminating and confluence. In this chapter, we present
canonical systems with respect to a weight order as it has done in Janet’s monograph
[51], but we point out here that this notion can be defined with any total order on
derivatives.

5.5.1 Autoreduced PDE Systems. Let (�) be a finite linear PDE system. Suppose
that a weight order �wo is fixed on the set of unknown functions ϕ1, . . . ,ϕm of (�)

and their derivatives, as defined in Sect. 5.3.5. Suppose also that each equation of the
system (�) can be expressed in the form

(�(α,r)) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

a(α,r)

(β,s) Dβϕs,

so that
(�) =

⋃

(α,r)∈I

�(α,r), (5.14)

the union being indexed by a multiset I . The support of the equation (�(α,r)) is
defined by

Supp(�(α,r)) = { (β, s) | a(α,r)

(β,s) �= 0 }.

For 1 � r � m, consider the set of monomials lm�wo(�,ϕr ) corresponding to
leading derivatives, that is, monomial xα such (α, r) belongs to I . The system (�)

is said to be
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(i) J -left-reduced with respect to �wo if for any (α, r) in I there exist no (α′, r) in I

and nontrivial monomial xγ inM(Mult
lm�wo (�,ϕr )

J (xα′
)) such that xα = xγxα′

;
(ii) J -right-reduced with respect to �wo if, for any (α, r) in I and any (β, s)

in Supp(�(α,r)), there exist no (α′, s) in I and nontrivial monomial xγ in
M(Mult

lm�wo (�,ϕr )

J (xα′
)) such that xβ = xγxα′

;
(iii) J -autoreduced with respect to �wo if it is both J -left-reduced and J -right-

reduced with respect to �wo.

5.5.2 Canonical PDE Systems. A PDE system (�) is said to be J -canonical with
respect a weight order �wo if it satisfies the following five conditions

(i) it consists of finitely many equations, and each equation can be expressed in
the form

Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺wo Dαϕr

a(α,r)

(β,s) Dβϕs,

(ii) the system (�) is J -autoreduced with respect to �wo;
(iii) the system (�) is complete;
(iv) the system (�) is completely integrable;
(v) the coefficients a(α,r)

(β,s) of the equations in (i) and the initial conditions of (�)

are analytic.

Under these assumptions, the system (�) admits a unique analytic solution satisfy-
ing appropriate initial conditions parametrized by complementary monomials as in
Sect. 5.3.3.

5.5.3 Remark. We note that the notion of canonicity proposed by Janet in [51] does
not impose the condition of being J -autoreduced, even if M. Janet did mentioned
this autoreduced property for some simple cases. The autoreduced property implies
the minimality of the system. This fact was formulated by Gerdt and Blinkov in [28]
with the notion of minimal involutive basis.

5.5.4 Example. In [51, Sect. 44], M. Janet studied the following linear PDE system
with one unknown function ϕ:

(�)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p54 = p11,

p53 = p41,

p52 = p31,

p44 = p52,

p43 = p21,

p33 = p42,

where pi, j denotes
∂2ϕ

∂xi∂x j
. In Example 3.2.6, we have shown that the left-hand sides

of the equations of this system form a complete set of monomials. Let us define the
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following weights for the variables:

x1 x2 x3 x4 x5
1 0 1 1 2
0 0 0 1 1

We deduce the following weights for the second derivatives:

p22
p21

p32
p42

p11

p31

p33

p52

p41

p43

p44
p51

p53
p54 p55

0 1 1 2 2 2 3 3 4
0 0 1 0 1 2 1 2 2

As seen in Example 3.3.4, given any four analytic functions

ϕ0(x1, x2), ϕ3(x1, x2), ϕ4(x1, x2), ϕ5(x1, x5),

there exists a unique solution of the PDE system (�). Note that the initial condition
is given by

ϕ|x3=x0
3 ,x4=x0

4 ,x5=x0
5

= ϕ0,0,0,0,0(x1, x2),

∂ϕ

∂x3

∣

∣

∣

∣

x3=x0
3 ,x4=x0

4 ,x5=x0
5

= ϕ0,0,1,0,0(x1, x2),

∂ϕ

∂x4

∣

∣

∣

∣

x3=x0
3 ,x4=x0

4 ,x5=x0
5

= ϕ0,0,0,1,0(x1, x2),

∂ϕ

∂x5

∣

∣

∣

∣

x2=x0
2 ,x3=x0

3 ,x4=x0
4

= ϕ0,0,0,0,1(x1, x5).

We set
A = p54 − p11 x5 x4 x3 x2 x1
B = p53 − p41 x5 x3 x2 x1
C = p52 − p31 x5 x2 x1
D = p44 − p52 x4 x3 x2 x1
E = p43 − p21 x3 x2 x1
F = p33 − p42 x3 x2 x1

where the variables on the right correspond to the multiplicative variables of the first
term. In order to decide if the system (�) is completely integrable it suffices to check
if the terms

B4, C4, C3, D5, E5, E4, F5, F4
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are linear combinations of derivatives of the terms A, B, C, D, E, F with respect
to their multiplicative variables. Here Yi denotes the derivative ∂

∂xi
Y of a term Y .

Finally, we observe that

B4 = A3 − D1 − C1,

C4 = A2 − E1, C3 = B2 − F1,

D5 = A4 − B1 − C5,

E5 = A3 − C1, E4 = D3 + B2,

F5 = B3 − A2 + E1, F4 = E3 − D2 − C2.

As a consequence, the system (�) is completely integrable; hence, it isJ -canonical.

5.6 Reduction of a PDE System to a Canonical Form

In his monograph [51], M. Janet did not talk about the correctness of the procedures
that he introduced in order to reduce a finite linear PDE system to a canonical form.
In this section, we explain how to transform a finite linear PDE system with several
unknown functions by derivation, elimination, and autoreduction, into an equivalent
linear PDE system that is either in canonical form, or an incompatible system. For
linear PDE systems with constant coefficients, the correctness of the procedure can
be verified easily.

5.6.1 Equivalence of PDE System. Janet’s procedure transforms by reduction and
completion a finite linear PDE system into a new PDE system, which is equivalent
to the original one. In his work, M. Janet dit not explain this notion of equivalence
which can be described as follows. Consider two finite linear PDE systems with m
unknown functions and n independent variables,

(�l)

m
∑

j=1

pl
i, jϕ

j = 0, i ∈ I l ,

for l = 1, 2, where pl
i, j are linear differential operators. We say that the PDE systems

(�1) and (�2) are equivalent if the sets of solutions of the two systems coincide.
This notion can be also formulated by saying that the D-modules generated by the
families of differentials operators (p1

i,1, . . . , p1
i,m) for i ∈ I 1 and (p2

i,1, . . . , p2
i,m) for

i ∈ I 2 coincide.

5.6.2 A Canonical Weight Order. Consider a finite linear PDE system (�) of m
unknown functions ϕ1, . . . ,ϕm of the independent variables x1, . . . , xn . To these
variables and functions, we associate the following weights:
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x1 x2 . . . xn−1 xn ϕ1 ϕ2 . . . ϕm

1 1 . . . 1 1 0 0 . . . 0
0 0 . . . 0 0 1 2 . . . m
0 0 . . . 0 1 0 0 . . . 0
0 0 . . . 1 0 0 0 . . . 0
...

...
...

...
...

...
...

0 1 . . . 0 0 0 0 . . . 0
1 0 . . . 0 0 0 0 . . . 0

The weight order on monomial partial derivatives defined in Sect. 5.1.5 induced by
this weight system is total. Following M. Janet, this order is called canonical weight
order and is denoted by �cwo.

5.6.3 Combination of Equations. Consider the PDE system (�)with the canonical
weight order �cwo defined in Sect. 5.6.2. We assume that the system (�) is given in
the same form as (5.14) and that each equation of the system is written in the form

(E (α,r)
i ) Dαϕr =

∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺cwo Dαϕr

a(β,s)
(α,r),i Dβϕs, i ∈ I (α,r).

The leading pair (α, r) of the equation E (α,r)
i will be denoted by ldeg�cwo

(Eα,r
i ).

We will denote by Ldeg�cwo
(�) the subset of N

n × {1, . . . , m} consisting of leading
pairs of the equations forming the system (�):

Ldeg�cwo
(�) = { ldeg�cwo

(E) | E is an equation of � }.

The canonical weight order �cwo induces a total order on N
n × {1, . . . , m} denoted

by ≺lp. We will denote by K (α, r, i) the set of pairs (β, s) of running indices in the
sum of the equation E (α,r)

i . Given i and j in I (α,r), we set

(αi, j , ri, j ) = Max
(

(β, s) ∈ K (α, r, i) ∪ K (α, r, j) | a(β,s)
(α,r),i �= a(β,s)

(α,r), j

)

.

We define

b
(αi, j ,ri, j )

(α,r) =

⎧

⎪

⎨

⎪

⎩

a
(αi, j ,ri, j )

(α,r),i , if (αi, j , ri, j ) ∈ K (α, r, i) \ K (α, r, j),

−a
(αi, j ,ri, j )

(α,r),i , if (αi, j , ri, j ) ∈ K (α, r, j) \ K (α, r, i),

a
(αi, j ,ri, j )

(α,r),i − a
(αi, j ,ri, j )

(α,r),i , if (αi, j , ri, j ) ∈ K (α, r, i) ∩ K (α, r, j),
(5.15)

and we denote by E (α,r)
i, j the equation

Dαi, j ϕri, j =
∑

(β,s)∈K (α,r, j)
(β,s)≺lp (αi, j ,ri, j )

c(β,s)
(αi, j ,ri, j ), j Dβϕs −

∑

(β,s)∈K (α,r,i)
(β,s)≺lp (αi, j ,ri, j )

c(β,s)
(αi, j ,ri, j ),i

Dβϕs, (5.16)
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where, for any k = i, j ,

c(β,s)
(αi, j ,ri, j ),k

= a(β,s)
(α,r),k/b

(αi, j ,ri, j )

(α,r) .

Equation (5.16) corresponds to a combination of the two equations E (α,r)
i and

E (α,r)
j and accordingly it will be denoted by Combine�cwo(E (α,r)

i , E (α,r)
j ). Proce-

dure 3 adds to a set of PDE equations (�) an equation E by combination.

Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite linear PDE system with unknown functions ϕ1, . . . ,ϕm of independent

variables x1, . . . , xn given in the same form as (5.14) such that the leading derivatives
are different.

- E be a linear PDE in the same form as (5.14).

begin
� ← �

(β, s) ← ldeg�cwo
(E)

if (β, s) /∈ Ldeg�cwo
(�) then

� ← � ∪ {E}
end
else

let E (β,s) be the equation of the system (�) whose leading pair is (β, s).
C ← Combine�cwo (E (β,s), E)

Add�cwo (�, C)

end
end

Output: � a PDE system equivalent to the system obtained from (�) by adding equation E .

Procedure 3: Add�cwo(�, E)

Note that at each step of the procedure RightReduceJ ,�cwo
the running system �

remains J -left-reduced. Combining this procedure with the procedure
LeftReduceJ ,�cwo we obtain the following autoreduce procedure that transform a
PDE system into a autoreduced PDE system.

5.6.4 Procedure AutoreduceJ ,�cwo(�). Let us fix a canonical weight order �cwo

for ϕ1, . . . ,ϕm and x1, . . . , xn . Let (�) be a finite linear PDE system given in
the same form as (5.14), with unknown functions ϕ1, . . . ,ϕm of the independent
variables x1, . . . , xn . We assume that the leading derivatives of (�) are all differ-
ent. The procedure AutoreduceJ ,�cwo transforms the PDE system (�) into an J -
autoreduced PDE system equivalent to (�), by applying successively the procedures
LeftReduceJ ,�cwo and RightReduceJ ,�cwo

. An algebraic version of this procedure
is given in Procedure 9. Let us remark that the autoreduction procedure given in
Janet’s monographs corresponds to the LeftReduceJ ,�cwo , so does not deal with
right reduction of equations.
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Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite linear PDE system with unknown functions ϕ1, . . . ,ϕm of independent

variables x1, . . . , xn given in the same form as (5.14) such that the leading derivatives
are different.

begin

� ← �

I ← Ldeg�cwo
(�)

Ur ← {xα | (α, r) ∈ I }
while

(

exist (α, r), (α′, r) in I and a non-trivial monomial xγ in M(MultUr
J (xα′

)) such

that xα = xγ xα′)
do

� ← � \ {E (α,r)}
Let Dγ E (α′,r) be the equation obtained from the equation E (α′,r) by applying the
operator Dγ to the two sides.
C ← Combine�cwo (E (α,r), Dγ E (α′,r))

Add�cwo (�, C)

end
end

Output: � a J -left-reduced PDE system with respect to �cwo that is equivalent to (�).

Procedure 4: LeftReduceJ ,�cwo(�)

Note that the procedure AutoreduceJ ,�cwo fails if and only if the procedure
Combine�cwo fails. This occurs when the procedureCombine�cwo is applied to equa-

tions E (α,r)
i and E (α,r)

j and some coefficients b
(αi, j ,ri, j )

(α,r) , as defined in (5.15), vanish at
some point of C

n . In particular, the procedure AutoreduceJ ,�cwo does not fail when
all the coefficients are constant. This constraint on the coefficients of the system
concerns only the left reduction and was not discussed in Janet’s monograph. As a
consequence, we have the following result.

5.6.5 Theorem If (�) is a finite linear PDE system with constant coefficients, the
procedure AutoreduceJ ,�cwo terminates and produces a finite autoreduced PDE
system that is equivalent to (�).

5.6.6 Completion Procedure of a PDE System. Consider a finite linear PDE sys-
tem (�) with the canonical weight order �cwo given in Sect. 5.6.2. If the system (�)

is J -autoreduced, then the following procedure CompleteJ ,�cwo
(�) transforms the

system (�) into a finite completeJ -autoreduced linear PDE system.This completion
procedure appears in Janet’s monograph [51] but not in an explicit way.

5.6.7 Completion and Integrability Conditions. In Procedure 6, the set Prr

contains all the obstructions to the completeness of a system. The procedure
CompleteJ ,�cwo

adds to the system the necessary equations in order to eliminate
all these obstructions. The equations added to the system have the form

Dβϕr = Rhs(E (β,r)) − a(δ,r)

(β,r) Dδϕr + a(δ,r)

(β,r) Dγ(Rhs(E (α,r)))



50 K. Iohara and P. Malbos

Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite linear PDE system with unknown functions ϕ1, . . . ,ϕm of independent

variables x1, . . . , xn that is given in the same form as (5.14) and that is J -left reduced
with respect to �cwo.

begin
� ← �

�′ ← �

I ← Ldeg�cwo
(�)

// The canonical weight order �cwo induces a total
// order on the set I of leading pairs denoted by �lp
(δ, t) ← max(I ) with respect to �lp

while �′ �= ∅ do
�′ ← �′ \ {E (δ,t)}
I ← I \ {(δ, t)}
S ← Supp(E (δ,t))

Ur ← {xα | (α, r) ∈ I }
while

(

exist (β, r) in S, (α, r) in I and a non-trivial monomial xγ in M(MultUr
J (xα))

such that xβ = xγ xα
)

do

� ← � \ {E (δ,t)}
C ← E (δ,t) − a(β,r)

(δ,t) Dβϕr + a(β,r)

(δ,t) Dγ(Rhs(E (α,r)))

Add�cwo (�, C)

end
end

end

Output: � a J -right-reduced PDE system with respect to �cwo that is equivalent to (�).

Procedure 5: RightReduceJ ,�cwo
(�)

with δ �= β and lead to the definition of a new integrability condition of the form
(5.13) by using the construction given in Sect. 5.4.4.

5.6.8 Janet’s Procedure. Given a finite linear PDE system (�) with the canoni-
cal weight order �cwo defined in Sect. 5.6.2, Janet’s procedure JanetJ ,�cwo either
transforms the system (�) into a PDE system (�) that is J -canonical with respect
to �cwo, or computes an obstruction to the feasibility of such a transformation. In
the first case, the solutions of the J -canonical system (�) are solutions of the initial
system (�). In the second case, the obstruction corresponds to a nontrivial relation
on the initial conditions. We refer the reader to [81] or [78] for a deeper discussion
on this procedure and its implementations.

Applying the procedures AutoreduceJ and CompleteJ successively, the first
step of the procedure consists in reducing the given PDE system (�) to a PDE
system (�) that is J -autoreduced and complete with respect to �cwo.

Then one computes the set IntCondJ ,�cwo(�) of integrability conditions of the
system (�). Recall from Sect. 5.4.4 that this set is a finite set of relations that do
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Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite J -autoreduced linear PDE system with unknown functions ϕ1, . . . ,ϕm of

independent variables x1, . . . , xn given in the same form as (5.14) and whose leading
derivatives are different.

begin
� ← �

� ← ∅
for r = 1, . . . , m do

while � = ∅ do

I ← Ldeg�cwo
(�)

Ur ← {xα | (α, r) ∈ I }
Prr ← {

∂E
∂x | E ∈ �, x ∈

NMultUr
J (xδ) with (δ, r) = ldeg(E) and xxδ /∈ coneJ (Ur )

}

C ← 0

while Prr �= ∅ and C = 0 do

choose E (β,r) in Prr , whose leading pair (β, r) is minimal with respect to
�cwo.

Prr ← Prr \ {E (β,r)}
C ← E (β,r)

SC ← Supp(C)

while exist (δ, r) in SC , (α, r) in I and xγ in M(MultUr
J (xα)) such that

xδ = xγ xα do

C ← C − a(δ,r)
(β,r)

Dδϕr + a(δ,r)
(β,r)

Dγ(Rhs(E (α,r)))

SC ← Supp(C)

end
end
if C �= 0 then

� ← AutoreduceJ ,�cwo (� ∪ {C})
end
else

� ← �

end
end

end
end

Output: (�) a linear J -autoreduced PDE system equivalent to (�) and that is complete
with respect to �cwo.

Procedure 6: CompleteJ ,�cwo
(�)

not contain principal derivatives. Hence, these integrability conditions are J -normal
forms with respect to (�). Since the system (�) is complete, these normal forms are
unique, and by Theorem 5.4.7, if all of these normal forms are trivial, then the system
(�) is completely integrable. Otherwise, the procedure takes a nontrivial condition
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R in the set IntCondJ ,�cwo(�) and distinguishes two cases. If the relation R is
among functions ϕ1, . . . ,ϕm and variables x1, . . . , xn , then it imposes a relation on
the initial conditions of the system (�). In the other case, the set IntCondJ ,�cwo(�)

contains at least one PDE involving a derivative of one of the functions ϕ1, . . . ,ϕm

and the procedure JanetJ ,�cwo is applied again to the PDE system (�) completed
by all the PDE equations in IntCondJ ,�cwo(�).

5.6.9 Remarks. If the procedure stops at the first loop, that is, if C consists only
of trivial identities, then the system (�) is reducible to the J -canonical form (�)

equivalent to (�).
When the setC contains an integrability condition involving at least one derivative

of the unknown functions, the procedure is applied again to the system (�) ∪ C .
Notice that it could be also possible to recall the procedure on (�) ∪ C , but as done
in Janet’s monograph [51], we choose to restart the procedure on (�) ∪ C in order
to have a PDE system where each equation has a clear meaning, namely, it comes
either from the initial problem or from the integrability condition.

Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite linear PDE system with unknown functions ϕ1, . . . ,ϕm of independent

variables x1, . . . , xn given in the same form as (5.14) and whose leading derivatives
are different.

begin

� ← AutoreduceJ ,�cwo (�)

� ← CompleteJ ,�cwo
(�)

C ← IntCondJ ,�cwo (�)

if C consists only of trivial identities then

return The PDE system (�) is transformable to a J -canonical system (�).
end
if C contains a non-trivial relation R among functions ϕ1, . . . ,ϕm and variables
x1, . . . , xn then

return The PDE system (�) is not reducible to a J -canonical system and the
relation R imposes a non-trivial relation on the initial conditions of the system (�).

end
else

// C contains a non-trivial relation among the functions ϕ1, . . . ,ϕm, the variables
x1, . . . , xn,
// and at least one derivative of one of the functions ϕ1, . . . ,ϕm.
� ← � ∪ {C}
JanetJ ,�cwo (�).

end
end

Output: Complete integrability of the system (�) and its obstructions to be reduced to a
J -canonical form with respect to �cwo.

Procedure 7: JanetJ ,�cwo(�)
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Finally, note that the procedure JanetJ ,�cwo fails on a PDE system (�) if and only
if the procedureAutoreduceJ ,�cwo fails on (�) ∪ C ,whereC consists of the potential
nontrivial relations among the unknown functions and the variables added during
the process, as explained in Sect. 5.6.4. In particular, by Theorem 5.6.5, if (�) is a
finite linear PDE systemwith constant coefficients, the procedureAutoreduceJ ,�cwo

terminates and produces a finite autoreduced PDE system equivalent to (�).

5.6.10 Example. In [51, Sect. 47], M. Janet studied the PDE system

(�)

{

p33 = x2 p11,

p22 = 0,

where pi1...ik denotes the derivative
∂kϕ

∂xi1 . . . ∂xik

of an unknown function ϕ of the

independent variables x1, x2, x3. The set of monomials of the left-hand side of the
system (�) is U = {x2

3 , x2
2 }. The set U is not complete. Indeed, for instance the

monomial x3x2
2 is not in the involutive cone coneJ (U). If we complete the set U by

the monomial x3x2
2 we obtain a complete set ˜U := U ∪ {x3x2

2 }. The PDE system (�)

is then equivalent to the PDE system

(�)

⎧

⎪

⎨

⎪

⎩

p33 = x2 p11,

p322 = 0,

p22 = 0.

Note that p322 = ∂x3 p22 = 0. The table of multiplicative variables with respect to
the set ˜U is given by

x2
3 x3 x2 x1

x3x2
2 x2 x1

x2
2 x2 x1

We deduce that there exists only one nontrivial compatibility condition, which reads

p3322 = ∂x3 p322 = ∂2
x2 p33, (x3 · x3x2

2 = (x2)
2 · x2

3 )

= ∂2
x2(x2 p11) = 2p211 + x2 p2211 = 2p211 = 0, (p2211 = ∂2

x1 p22 = 0).

Hence, p211 = 0 is a nontrivial relation of the system (�). Hence, the PDE system
(�) is not completely integrable. Then, we consider the new PDE system given by

(�′)

⎧

⎪

⎨

⎪

⎩

p33 = x2 p11,

p22 = 0,

p211 = 0.

The associated set of monomials U ′ = {x2
3 , x2

2 , x2x2
1 } is not complete. It can be com-

pleted to the complete set ˜U ′ := U ′ ∪ {x3x2
2 , x3x2x2

1 }. The PDE system (�′) is then
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equivalent to the following PDE system:

(�′)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p33 = x2 p11,

p322 = 0,

p3211 = 0,

p22 = 0,

p221 = 0.

Note that p322 = ∂x3 p22 and p3211 = ∂x3 p211. The multiplicative variables with
respect to the set of monomials U ′ are given by the following table:

x2
3 x3 x2 x1

x3x2
2 x2 x1

x3x2x2
1 x1

x2
2 x2 x1

x2x2
1 x1

We deduce that the only nontrivial compatibility relation is

p33211 = ∂x3(p3211) = 0,

= ∂2
x1∂x2(p33) = ∂2

x1∂x2(x2 p11),

= ∂2
x1(p11 + x2 p211) = p1111, since p211 = 0.

We see that p1111 = 0 is a nontrivial relation of the system (�′). Hence, the system
(�′) is not completely integrable. Now consider the new PDE system given by

(�′′)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p33 = x2 p11,

p22 = 0,

p211 = 0,

p1111 = 0.

The associated set of monomials U ′′ = {x2
3 , x2

2 , x2x2
1 , x4

1 } is not complete. It can
be completed to the set of monomials ˜U ′′ := U ′′ ∪ {x3x2

2 , x3x2x2
1 , x3x4

1 }. The PDE
system (�′′) is seen to be equivalent to the system

(�′′)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p33 = x2 p11,

p322 = 0,

p31111 = 0,

p22 = 0,

p211 = 0,

p1111 = 0.
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Note that p322 = ∂x2 p22 and p31111 = ∂x3 p1111. All the compatibility conditions are
trivial identities, and by Theorem 5.4.7 we deduce that the PDE (�′′) obtained
from the initial PDE system (�) by adding compatibility conditions is completely
integrable.

5.6.11 Remark. Let us mention that using a procedure similar to the one presented
in this section, Janet in [51, Sect. 48] gave a constructive proof of a result obtained
previously by Tresse [88] asserting that an infinite linear PDE system can be reduced
to a finite linear PDE system.

5.7 Algebra, Geometry, and PDEs

The notion of ideal first appeared in the work of R. Dedekind. It appeared also in a
seminal paper [43] of Hilbert, where he developed the theory of ideals in polynomial
rings. In particular, he proved Noetherianity results, such as the Noetherianity of
the ring of polynomials over a field, a result known now as Hilbert’s basis theorem.
In his works on PDE systems [48–50], M. Janet used the notion of ideal generated
by homogeneous polynomials under the terminology of module of forms, which he
defined as follows. He called form a homogeneous polynomial with several variables
and he defined a module of forms as an algebraic system satisfying the two following
conditions:

(i) if a form f belongs to the system, then the form h f belongs to the system for
every form h,

(ii) if f and g are two forms of the same order in the system, then the form f + g
belongs to the system.

Finally, in [51, Sect. 51], M. Janet recalls Hilbert’s basis theorem.

5.7.1 Characteristic Functions of Homogeneous Ideals. In [51, Sect. 51],M. Janet
recalled the Hilbert description of the problem of finding the number of indepen-
dent conditions so that a homogenous polynomial of order p belongs to a given
homogeneous ideal. These independent conditions correspond to the independent
linear forms that annihilate all homogeneous polynomials of degree p in the ideal.
Janet recalled from [43] that this number of independent conditions is expressed as
a polynomial in p for sufficiently large p.

Let I be a homogenous ideal of K[x1, . . . , xn] generated by polynomials
f1, . . . , fk . Given a monomial order on M(x1, . . . , xn), we can assume that all the
leading coefficients are equal to 1. For any p � 0, consider the homogeneous com-
ponent of degree p so that I =⊕p Ip, with

Ip := I ∩ K[x1, . . . xn]p.
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Recall that
dim Ip � dim

(

K[x1, . . . , xn]p
) = � p

n .

The number of independent conditions such that a homogeneous polynomial of order
p belongs to the ideal I is given by the difference

χ(p) := � p
n − dim Ip.

This is the number ofmonomials of degree p that cannot be divided by themonomials
lm( f1), . . . , lm( fk). The function χ(p) corresponds to a coefficient of the Hilbert
series of the ideal I and is called the characteristic function of the ideal I , or pos-
tulation by Janet in [51, Sect. 52]. We refer the reader to [18] for the definition of
Hilbert series of polynomial rings and their applications. In Sect. 5.8, we will show
that the function χ(p) is polynomial for sufficiently large p. Finally, note that the set
of monomials that cannot be divided by the monomials lm( f1), . . . , lm( fk) consists
of a finite number of classes of complementary monomials.

5.7.2 Geometric Remark. M. Janet made the following geometric observation
about the characteristic function. Suppose that p is sufficiently large so that the
function χ(p) is polynomial. Let λ − 1 be the degree of the leading term of the
polynomial χ(p). Consider the projective variety V (I ) defined by

V (I ) = {a ∈ P
n−1 | f (a) = 0 for all f in I }.

The integerμ = lc(χ(p))(λ − 1)! corresponds to the degree of the variety V (I ) [43].
If χ(p) = 0 then the variety V (I ) is empty, in the other cases V (I ) is a subvariety
of P

n−1 of dimension λ − 1.

5.7.3 Example [51, Sect. 53]. Consider the monomial ideal I of K[x1, x2, x3] gen-
erated by x2

1 , x1x2, and x2
2 . The characteristic function χ(p) of the ideal I is constant

and equal to 3. The unique point that annihilates the ideal I is (0, 0, 1), with multi-
plicity 3. This result is compatible with the fact that the zeros of the ideal J generated
by the polynomials

(x1 − ax3)(x1 − bx3), (x1 − ax3)(x2 − cx3), (x2 − cx3)(x2 − dx3),

consists of the three points

(a, c, 1), (a, d, 1), (b, c, 1).

5.7.4 The Ideal – PDE Dictionary. Let I be a homogeneous ideal ofK[x1, . . . , xn]
generated by a set F = { f1, . . . , fk} of polynomials. For a fixed monomial order
on M(x1, . . . , xn), we set U = lm(F). Consider the ring isomorphism � from
K[x1, . . . , xn] to K[ ∂

∂x1
, . . . , ∂

∂xn
] given in Proposition3.1.2. To each polynomial

f in I , we associate a PDE �( f )ϕ = 0. In this way, the ideal I defines a PDE
system (�(I )). Let λ and μ be the integers associated to the characteristic function
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χ(p) as defined in 5.7.2. The maximal number of arguments of the arbitrary analytic
functions used to define the initial conditions

{ Cβ | xβ ∈ U� }

of the PDE system (�(I )), as defined in (5.7), corresponds to λ, explicitly,

λ = max
v∈U�

|�Mult
U�

J (v)|,

where U� denotes the set of complementary monomials of U . Moreover, the number
of arbitrary analytic functions with λ arguments in the initial conditions { Cβ | xβ ∈
U� } is equal to μ, that is

μ = ∣∣ { v ∈ U� such that |�Mult
U�

J (v)| = λ } ∣∣.

Conversely, let (�) be a PDE system with one unknown function ϕ of the inde-
pendent variables x1, . . . , xn . Denote by ldo(�) the set of differential operators asso-
ciated to the principal derivatives of PDE in (�), with respect to Janet’s order on
derivatives defined in Sect. 5.1.3. The isomorphism � associates to any monomial
differential operator ∂|α|

∂x
α1
1 ···∂xαn

n
in ldo(�) a monomial xα1

1 · · · xαn
n inM(x1, . . . , xn).

Denote by I (�) the ideal of K[x1, . . . , xn] generated by �−1(ldo(�)). Note that,
by construction, the ideal I (�) is monomial and for any monomial u in I (�) the
derivative �(u)ϕ is a principal derivative of the PDE system (�) as defined in
Sect. 5.3.1. In [51, Sect. 54], M. Janet called characteristic form any element of the
ideal I (�).

In this way, M. Janet concluded that the degree of generality of the solutions of a
linear PDE system with one unknown function is described by the leading term of
the characteristic function of the ideal of characteristic forms defined in Sect. 5.7.1.

5.7.5 The Particular Case of First-Order Systems. Consider a completely inte-
grable first-order linear PDE system (�). The number λ, defined in Sect. 5.7.4, which
is equal to the maximal number of arguments of the arbitrary functions used to define
the initial conditions of the system (�), is also equal in this case to the cardinality of
the set U� of complementary monomials of the set of monomials U = �−1(ldo(�)).

5.8 Involutive Systems

In this subsection, we recall the algebraic formulation of involutive systems as intro-
duced by M. Janet. This formulation first appeared in its work in [48] and [49]. But
notice that this notion comes from the work of Cartan in [13].
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5.8.1 Characters and Derived Systems. Let I be a proper ideal of K[x1, . . . , xn]
generated by homogeneous polynomials. M. Janet introduced the characters of
the homogeneous component Ip as the nonnegative integers σ1,σ2, . . . ,σn defined
inductively by the formula

dim

⎛

⎝Ip +
⎛

⎝

h
∑

i=1

K[x1, . . . , xn]p−1xi

⎞

⎠

⎞

⎠ = dim(Ip) + σ1 + · · · + σh , 1 � h � n.

Note that the sum σ1 + σ2 + · · · + σn corresponds to the codimension of Ip in
K[x1, . . . , xn]p.

Given a positive integer λ, we set

Jp+λ = K[x1, . . . , xn]λ Ip.

We define the nonnegative integers σ(λ)
1 ,σ(λ)

2 , . . . ,σ(λ)
n by the relations

dim

(

Jp+λ +
(

h
∑

i=1

K[x1, . . . , xn]p+λ−1xi

))

= dim(Jp+λ) + σ
(λ)
1 + · · · + σ

(λ)
h , 1 � h � n.

For λ = 1, M. Janet called Jp+1 the derived system of Ip. Let us mention some
properties of these numbers proved by M. Janet.

5.8.2 Lemma We set σ′
h = σ(1)

h and σ′′
h = σ(2)

h for 1 � h � n. Then,

(i) σ′
1 + σ′

2 + · · · + σ′
n � σ1 + 2σ2 + · · · + nσn.

(ii) Ifσ′
1 + σ′

2 + · · · + σ′
n = σ1 + 2σ2 + · · · + nσn, the two following relations hold:

(a) σ′′
1 + σ′′

2 + · · · + σ′′
n = σ′

1 + 2σ′
2 + · · · + nσ′

n.
(b) σ′

h = σh + σh+1 + · · · + σn.

We refer the reader to [51] for a proof of the relations of Lemma 5.8.2.

5.8.3 Involutive Systems. The homogenous component Ip is said to be in involution
when

σ′
1 + σ′

2 + · · · + σ′
n = σ1 + 2σ2 + · · · + nσn.

Following properties (ii)–(a) of Lemma 5.8.2, if the component Ip is in involution,
then the component Ip+k is in involution for all k � 0.

5.8.4 Proposition [51, Sect. 56 & Sect. 57] The characters of a homogeneous com-
ponent Ip satisfy the two following properties:

(i) σ1 � σ2 � · · · � σn.
(ii) if Ip �= {0}, then σn = 0.
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5.8.5 Polynomiality of Characteristic Functions. Suppose that the homogeneous
component Ip is in involution.We claim that the characteristic functionχ(P) defined
in Sect. 5.7.1 is polynomial for P � p. Indeed, using Lemma 5.8.2, we show by
induction that for any 1 � h < n and any positive integer λ, it holds that

σ(λ)
h =

n−h−1
∑

k=0

(

λ + k − 1

k

)

σh+k .

The codimension of Ip+λ in K[x1, . . . , xn]p+λ is given by

n−1
∑

h=1

σ(λ)
h =

n−1
∑

h=1

n−h−1
∑

k=0

(

λ + k − 1

k

)

σh+k =
n−1
∑

i=1

(

i−1
∑

k=0

(

λ + k − 1

k

)

)

σi

=
n−1
∑

i=1

(

i−1
∑

k=0

(

P − p + k − 1

k

)

)

σi =
n−1
∑

i=1

(

P − p + i − 1

i − 1

)

σi .

This proves the polynomiality of the characteristic function of the ideal I for suffi-
ciently large p.

5.9 Concluding Remarks

Recall that the so-called Cartan–Kähler theory is concernedwith the Pfaffian systems
on a differentiable (or analytic) manifold and its aim is to determine whether a given
system is prolongeable to a completely integrable system or an incompatible system.
The Cartan–Kähler method relies on a geometrical argument, which is to construct
integral submanifolds of the system inductively. Here, a step of the induction is to
find an integral submanifold of dimension i + 1 containing the integral submanifold
of dimension i , and their theory does not allow to deduce whether such step can be
achieved or not.

Janet’s method is, even if it works only locally, completely algebraic and algo-
rithmic so that it partially completes the parts where the Cartan–Kähler theory does
not work.

According to theseworks, there are two seemingly different notions of involutivity,
the one by G. Frobenius, G. Darboux, and É. Cartan and the other by M. Janet. The
fact is that at each step of the induction in the Cartan–Kähler theory, one has to
study a system of PDE. The system is called in involution (compare with those
in Sects. 2.2.6 with Sect. 5.8) if it can be written in a canonical form, as defined
in Sect. 5.5.2, perhaps after a change of coordinates, if necessary. Following Janet’s
algebraic definition of involutivity, several involutive methods were developed for
polynomial and differential systems, [72, 86]. In these approaches, a differential
system is involutive when its non-multiplicative derivatives are consequences of
multiplicative derivatives. In [25, 27], Gerdt gave an algebraic characterization of
involutivity for polynomial systems.Gerdt’s approach is presented in the next section.
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6 Polynomial Involutive Bases

In this section, we present the algebraic definition of involutivity for polynomial
systems given by Gerdt in [25, 27]. In particular, we relate the notion of involutive
basis for a polynomial ideal to the notion of Gröbner basis.

6.1 Involutive Reduction on Polynomials

6.1.1 Involutive Basis. Recall that a monomial ideal I of K[x1, . . . , xn] is an ideal
generated by monomials. An involutive basis of the ideal I with respect to an involu-
tive division I is an involutive set of monomials U that generates I . By the Dickson
Lemma [17], everymonomial ideal I admits a finite set of generators.When the invo-
lutive division I is Noetherian as defined in Sect. 4.2.3, this generating set admits a
finite I-completion that forms an involutive basis of the ideal I . As a consequence,
we deduce the following result.

6.1.2 Proposition Let I be a Noetherian involutive division on M(x1, . . . , xn).
Every monomial ideal of K[x1, . . . , xn] admits an I-involutive basis.

The objective of this section is to show how to extend this result to polynomial
ideals with respect to a monomial order. In the remainder of this subsection, we
assume that a monomial order � is fixed onM(x1, . . . , xn).

6.1.3 Multiplicative Variables for a Polynomial. Let I be an involutive division
onM(x1, . . . , xn). Let F be a set of polynomials from K[x1, . . . , xn], and let f be a
polynomial in F . We define the set of I-multiplicative (resp. I-non-multiplicative)
variables of the polynomial f with respect to F and the monomial order� by setting

MultFI,�( f ) = Mult
lm�(F)

I (lm�( f )) ( resp. NMultFI,�( f ) = NMult
lm�(F)

I (lm�( f )) ).

Note that the I-multiplicative variables depend on the monomial order � used to
determine the leading monomials of the polynomials of F .

6.1.4 Polynomial Reduction. Polynomial division can be described as a rewriting
operation as follows. Given polynomials f and g in K[x1, . . . , xn], we say that f is
reducible modulo g with respect to �, if there is a term λu in f whose monomial u
is divisible by lm�(g) for the usual monomial division. In this case, we denote such

a reduction by f
g�

h, where

h = f − λu

lt�(g)
g.
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For a set G of polynomials of K[x1, . . . , xn], we define a rewriting system cor-

responding to the division modulo G by considering the relation reduction
G�

defined by
G� =

⋃

g∈G

g�
.

We will denote by
G�

−→∗ the reflexive and transitive closure of the relation
G�

.

6.1.5 Involutive Reduction. In a same way, we define a notion of reduction with
respect to an involutive division I on M(x1, . . . , xn). Let g be a polynomial in
K[x1, . . . , xn]. A polynomial f in K[x1, . . . , xn] is said to be I-reducible modulo g
with respect to the monomial order �, if there is a term λu of f , with λ ∈ K − {0}
and u ∈ M(x1, . . . , xn), such that

u = lm�(g)v and v ∈ M(Mult
lm�(G)

I (g)).

Such an I-reduction is denoted by f
g�

I
h, where

h = f − λ

lc�(g)
gv = f − λu

lt�(g)
g.

6.1.6 Involutive Normal Forms. Let G be a set of polynomials of K[x1, . . . , xn].
A polynomial f is said to be I-reducible modulo G with respect to the monomial
order �, if there exists a polynomial g in G such that f is I-reducible modulo g. We

will denote by
G�

I
this reduction relation defined by

G�

I
=
⋃

g∈G

g�

I
.

The polynomial f is said to be in I-irreducible modulo G if it is not I-reducible
modulo G. A I-normal form of a polynomial f is an I-irreducible polynomial h
such that there is a sequence of reductions from f to h:

f
G�

I
f1

G�

I
f2

G�

I
· · · G�

I
h,

The procedure InvReductionI,�( f, G) computes a normal form of f modulo
G with respect to the division I. The proofs of its correctness and termination can
be carried out as in the case of the division procedure for the classical polynomial
division, see for instance [3, Proposition 5.22].
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Input: a polynomial f in K[x1, . . . , xn] and a finite subset G of K[x1, . . . , xn].
begin

h ← f

while exist g in G and a term t of h such that lm�(g)|lm�(G)

I
t

lc�(t) do

choose such a g
h ← h − t

<�(g)
g

end
end

Output: h a I-normal form of the polynomial f with respect to the monomial order �

Procedure 8: InvReductionI,�( f, G)

6.1.7 Remarks. Note that the involutive normal form of a polynomial f is not
unique; in general, it depends on the order in which the reductions are applied. Sup-
pose that for each polynomial f we have a I-normal form with respect to the mono-
mial order�, denoted by nfG

I,�( f ). Denote by nfG
�( f ) a normal formof a polynomial

f obtained by the classical division procedure. In general, the equality nfG
�( f ) =

nfG
I,�( f ) does not hold. For example, let G = {x1, x2} and consider the Thomas

division T defined in Sect. 4.3.1. Then nfG
�(x1x2) = 0, while nfG

T ,�(x1x2) = x1x2
because the monomial x1x2 is a T -irreducible modulo G.

6.1.8 Autoreduction. Recall from Sect. 4.1.4 that a set of monomials U is I-
autoreduced with respect to an involutive division I if it does not contain a monomial
I-divisible by anothermonomial ofU . In that case, everymonomial inM(x1, . . . , xn)

admits at most one I-involutive divisor in U .
A set G of polynomials of K[x1, . . . , xn] is said to be I-autoreduced with respect

to the monomial order �, if it satisfies the two following conditions:

(i) (left I-autoreducibility) the set of leadingmonomials lm�(G) is I-autoreduced,
(ii) (right I-autoreducibility) for any g in G, there is no term λu �= lt�(g) of g, with

λ �= 0 and u ∈ coneI(lm�(G)).

Note that the condition (i), (resp. (ii)) corresponds to the left-reducibility (resp.
right-reducibility) property given in Sect. 5.5.2. Any finite set G of polynomials of
K[x1, . . . , xn] can be transformed by Procedure 9 into a finite I-autoreduced set that
generates the same ideal. The proofs of the correctness and termination are immediate
consequences of the property of involutive division.
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Input: G a finite subset of K[x1, . . . , xn].
begin

H ← G
H ′ ← ∅
while exist h ∈ H and g ∈ H \ {h} such that h is I-reducible modulo g with respect to �
do

choose such a h
H ′ ← H \ {h}
h′ ← nfH ′

I,�(h)

if h′ = 0 then
H ← H ′

end
else

H ← H ′ ∪ {h′}
end

end
end

Output: H an I-autoreduced set generating the same ideal as G does.

Procedure 9: AutoreduceI,�(G)

6.1.9 Proposition [27, Theorem 5.4] Let G be anI-autoreduced set of polynomials
of K[x1, . . . , xn] and f be a polynomial in K[x1, . . . , xn]. Then nfG

I,�( f ) = 0 if and
only if the polynomial f can be written in the form

f =
∑

i, j

βi, jgivi, j ,

where gi ∈ G, βi, j ∈ K and vi, j ∈ M(Mult
lm�(G)

I (lm�(gi ))), with lm�(vi, j ) �=
lm�(vi,k) if j �= k.

Proof Suppose that nfG
I,�( f ) = 0. Then there exists a sequence of involutive reduc-

tions modulo G,

f = f0
g1

I
f1

g2

I
f2

g3

I
. . .

gk−1

I
fk = 0,

terminating on 0. For any 1 � i � k, we have

fi = fi−1 − λi, j

lc�(gi )
givi, j ,

with vi, j inM(Mult
lm�(G)

I (lm�(gi ))). This shows the equality.
Conversely, suppose that f can be written in the indicated form. Then the leading

monomial lm�( f ) admits an involutive I-divisor in lm�(G). Indeed, the leading



64 K. Iohara and P. Malbos

monomial of the decomposition of f has the form

lm�

⎛

⎝

∑

i, j

givi, j

⎞

⎠ = lm�(gi0)vi0, j0 .

The monomial lm�(gi0) is an involutive divisor of lm�( f ), and by the autore-
duction hypothesis, such a divisor is unique. Hence, the monomial lm�(gi0)vi0, j0
does not divide other monomials of the form lm�(gi )vi, j . We apply the reduction

gi0vi0, j0

gi0�

I
0 to the decomposition. In this way, we define a sequence of reductions

ending on 0. This proves that nfG
I,�( f ) = 0. �

6.1.10 Uniqueness and Additivity of Involutive Normal Forms. From decompo-
sition Proposition6.1.9, we deduce two important properties of involutive normal
forms. Let G be an I-autoreduced set of polynomials of K[x1, . . . , xn] and f be
a polynomial. Suppose that h1 = nfG

I,�( f ) and h2 = nfG
I,�( f ) are two involutive

normal forms of f . From the involutive reduction procedure that computes this two
normal forms, we deduce two decompositions

h1 = f −
∑

i, j

βi, jgivi, j , h2 = f −
∑

i, j

β′
i, jgiv

′
i, j .

As a consequence, h1 − h2 admits a decomposition as in Proposition 6.1.9, hence
nfG

I,�(h1 − h2) = 0. The polynomial h1 − h2 being in normal form, we deduce that
h1 = h2. This shows the uniqueness of the involutive normal formmodulo an autore-
duced set of polynomials.

In a same manner, we prove the following additivity formula for any polynomial
f and f ′:

nfG
I,�( f + f ′) = nfG

I,�( f ) + nfG
I,�( f ′).

6.2 Involutive Bases

Fix a monomial order � on M(x1, . . . , xn).

6.2.1 Involutive Bases. Let I be an ideal ofK[x1, . . . , xn]. A subset G of polynomi-
als in K[x1, . . . , xn] is an I-involutive basis of the ideal I with respect the monomial
order �, if G is I-autoreduced and satisfies the following property:

∀g ∈ G, ∀u ∈ M(x1, . . . , xn), nfG
I,�(gu) = 0.

In other words, for any polynomial g in G and any monomial u in M(x1, . . . , xn),
there is a sequence of involutive reductions:
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gu
g1�

I
f1

g2�

I
f2

g3�

I
. . .

gk−1�

I
0,

with gi inG. In particular, we recover the notion of involutive sets ofmonomials given
in Sect. 4.2.1. Indeed, if G is an I-involutive basis, then lm�(G) is an I-involutive
set of monomials of M(x1, . . . , xn).

6.2.2 Proposition Let I be an involutive division on K[x1, . . . , xn] and G be a
J -involutive subset of K[x1, . . . , xn]. A polynomial of K[x1, . . . , xn] is reducible
with respect to G if and only if it is I-reducible modulo G.

Proof Let f be a polynomial in K[x1, . . . , xn]. By the definition of the involutive

reduction, if f is I-reducible modulo G, then it is reducible for the relation
G�

.

Conversely, suppose that f is reducible by a polynomial g in G. That is, there exists
a term λu in f , where λ is a nonzero scalar and u is a monomial in M(x1, . . . , xn)

such that u = lm�(g)v, where v ∈ M(x1, . . . , xn). The set G being involutive, we
have nfG

I,�(gv) = 0. By Proposition 6.1.9, the polynomial gv can written in the form

gv =
∑

i, j

βi, jgivi, j ,

where gi ∈ G, βi, j ∈ K, and vi, j ∈ M(Mult
lm�(G)

I (lm�(gi ))). In particular, this
shows that the monomial u admits an involutive divisor in G. �

6.2.3 Uniqueness of Normal Forms. Let us mention an important consequence of
Proposition 6.2.2 given in [27, Theorem 7.1]. Let G be a J -involutive subset of
K[x1, . . . , xn], for any reduction procedure that computes a normal form nfG

�( f )

of a polynomial f in K[x1, . . . , xn] and any involutive reduction procedure that
computes an involutive normal form nfG

I,�( f ), as a consequence of the uniqueness
of the involutive normal form and Proposition 6.2.2, we have

nfG
�( f ) = nfG

I,�( f ).

6.2.4 Example. We setU = {x1, x2}. We consider the deglex order induced by x2 >

x1 and theThomasdivisionT . Themonomial x1x2 isT -irreduciblemoduloU .Hence,
it does not admit zero as T -normal form and the set U cannot be an T -involutive
basis of the ideal generated by U . In turn, the set {x1, x2, x1x2} is a T -involutive basis
of the ideal generated by U .

We now consider the Janet division J . We have deg2(U) = 1, [0] = {x1} and
[1] = {x2}. The J -multiplicative variables are given by the table

u MultUJ (u)

x1 x1
x2 x1 x2
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It follows that the monomial x1x2 is not J -reducible by x1 modulo U . However, it
is J -reducible by x2. We conclude that the set U forms a J -involutive basis.

As an immediate consequence of involutive bases, the involutive reduction pro-
cedure provides a decision method of the ideal membership problem, as stated by
the following result.

6.2.5 Proposition [27, Corollary 6.4] Let I be an ideal of K[x1, . . . , xn], and G be
an I-involutive basis of I with respect to a monomial order �. For any polynomial
f of K[x1, . . . , xn], we have f ∈ I if and only if nfG

I,�( f ) = 0.

Proof If nfG
I,�( f ) = 0, then the polynomial f can be written in the form Propo-

sition6.1.9. This shows that f belongs to the ideal I . Conversely, suppose that f
belongs to I . Then it can be decomposed in the form

f =
∑

i

higi ,

where hi =∑ j λi, j ui, j ∈ K[x1, . . . , xn]. Since the set G is I-involutive, we have
nfG

I,�(ui, jgi ) = 0, for anymonomials ui, j and gi inG. By the linearity of the operator
nfG

I,�(−), we see that nfG
I,�( f ) = 0. �

6.2.6 Local Involutivity. Gerdt and Blinkov introduced in [27] the notion of local
involutivity for a set of polynomials. A set G of polynomials in K[x1, . . . , xn] is said
to be locally involutive if the following condition holds:

∀g ∈ G, ∀x ∈ NMult
lm�(G)

I (lm�(g)), nfG
I,�(gx) = 0.

For a continuous involutive division I, they prove that an I-autoreduced set of
polynomials is involutive if and only if it is locally involutive [27, Theorem 6.5].
This local involutivity criterion is essential for computing the completion of a set
of polynomials into an involutive basis. Note that this result is analogous to the
critical pair lemma in rewriting theory stating that a rewriting system is locally
confluent if and only if all its critical pairs are confluent, see, e.g., [36, 37]. Together
with the Newman Lemma stating that for terminating rewriting, local confluence
and confluence are equivalent properties, this gives a constructive method to prove
confluence in a terminating rewriting system by analyzing the confluence of critical
pairs.

6.2.7 Completion Procedure. For a given monomial order � on M(x1, . . . , xn)

and a continuous and constructive involutive division I, as defined in [27, Definition
4.12], Procedure 10 computes anI-involutive basis of an ideal froma set of generators
of the ideal. We refer the reader to [27, Sect. 8] or [19, Sect. 4.4] for the correctness
of this procedure and conditions for its termination. This procedure is in the same
vein as the completion procedure for rewriting systems by Knuth and Bendix [53],
and completion procedure for commutative polynomials by Buchberger [7].
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Input: F a finite set of polynomials in K[x1, . . . , xn].
begin

F ′ ← AutoreduceI,�(F)

G ← ∅
while G = ∅ do

Pr ← { f x | f ∈ F ′, x ∈ NMultF
′

I,�( f )}
p′ ← 0
while Pr �= ∅ and p′ = 0 do

choose p in Pr such that lm�(p) is minimal with respect to �.
Pr ← Pr \ {p}
p′ ← InvReductionI,�(p, F ′)

end
if p′ �= 0 then

F ′ ← AutoreduceI,�(F ′ ∪ {p′})
end
else

G ← F ′
end

end
end

Output: G an I-involutive basis of the ideal generated by F with respect to the monomial
order �.

Procedure 10: InvolutiveCompletionBasisI,�(F)

6.2.8 Example: Computation of an Involutive Basis. Let I be the ideal of
Q[x1, x2] generated by the set F = { f1, f2}, where the polynomial f1 and f2 are
defined by

f1 = x2
2 − 2x1x2 + 1,

f2 = x1x2 − 3x2
1 − 1.

We compute an involutive basis of the ideal I with respect to the Janet division J
and the deglex order induced by x2 > x1. We have lm( f1) = x2

2 and lm( f2) = x1x2,
hence the following J -reductions

x2
2

f1

J
2x1x2 − 1, x1x2

f2

J
3x2

1 + 1.

The polynomial f1 is J -reducible by f2, and we have

f1
f2

J
x2
2 − 2(3x2

1 + 1) + 1 = x2
2 − 6x2

1 − 1.

Thus, we set f3 = x2
2 − 6x2

1 − 1 and we consider the reduction
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x2
2

f3

J
6x2

1 + 1.

The set F ′ = { f2, f3} is J -autoreduced and generates the ideal I . Let us compute
the multiplicative variables of the polynomials f2 and f3. We have deg2(F ′) =
deg2({x2

2 , x1x2}) = 2, [1] = {x1x2} and [2] = {x2
2 }. Hence, theJ -multiplicative vari-

ables are given by the table

f lm( f ) MultF ′
J ( f )

f2 x1x2 x1
f3 x2

2 x1 x2

The polynomial f2x2 = x1x2
2 − 3x2

1 x2 − x2 is the only non-multiplicative prolon-
gation to consider. This prolongation can be reduced as follows:

f2x2
f3

J
6x3

1 + x1 − 3x2
1 x2 − x2

f2

J
− 3x3

1 − 2x1 − x2.

We set f4 = −3x3
1 − 2x1 − x2; the associated reduction of f4 is

x3
1

f4

J
− 2

3
x1 − 1

3
x2,

and we set F ′ = { f2, f3, f4}. We have deg2(F ′) = 2, [0] = {x3
1}, [1] = {x1x2} and

[2] = {x2
2 }. Hence, the J -multiplicative variables are given by the table

f lm( f ) MultF ′
J ( f )

f2 x1x2 x1
f3 x2

2 x1 x2
f4 x3

1 x1

There are two non-multiplicative prolongations to consider:

f2x2 = x1x2
2 − 3x2

1 x2 − x2, f4x2 = −3x3
1 x2 − 2x1x2 − x2

2 .

We have lm( f2x2) = x1x2
2 < lm( f4x2) = x3

1 x2. Hence, the prolongation f2x2 must
be examined first. We have the following reductions:

f2x2
f3

J
6x3

1 + x1 − 3x2
1 x2 − x2

f2

J
− 3x3

1 − 2x1 − x2
f4

J
0.

Hence, there is no polynomial to add. The other non-multiplicative prolongation is
f4x2, which can be reduced to an J -irreducible polynomial as follows:
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f4x2
f2

J
− 3x3

1 x2 − 6x2
1 − x2

2 − 2
f3

J
− 3x3

1 x2 − 12x2
1 − 3

f2

J − 9x41 − 15x21 − 3
f4

J 3x1x2 − 9x21 − 3
f2

J 0.

All the non-multiplicative prolongations are J -reducible to 0; consequently, the set
F ′ is a Janet basis of the ideal I .

6.3 Involutive Bases and Gröbner Bases

In this subsection, we recall the notion of Gröbner basis and we show that any
involutive basis is a Gröbner basis. We fix a monomial order � on M(x1, . . . , xn).

6.3.1 Gröbner Bases. A subset G of K[x1, . . . , xn] is a Gröbner basis with respect
to the monomial order � if it is finite and satisfies one of the following equivalent
conditions:

(i)
G�

is Church-Rosser,

(ii)
G�

is confluent,

(iii)
G�

is locally confluent,

(iv)
G�

has unique normal forms,

(v) f
G�

−→∗ 0, for all polynomial f in Id(G),
(vi) every polynomial f in Id(G) \ {0} is reducible modulo G,
(vii) for any term t in lt�(Id(G)), there is g in G such that lt�(g) divides t ,

(viii) S�(g1, g2)
G�

−→∗ 0 for all g1, g2 in G, where

S�(g1, g2) = μ

lt�(g1)
g1 − μ

lt�(g2)
g2,

with μ = ppcm(lm�(g1), lm�(g2)), is the S-polynomial of g1 and g2 with
respect to the monomial order �,

(xi) any critical pair

μ
μ

lt(g1)
g1

μ
lt(g2)

g2

μ − μ
lt(g1)

g1 μ − μ
lt(g2)

g2
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with μ = ppcm(lm(g1), lm(g2)), of the relation
G�

is confluent.

We refer the reader to [3, Theorem 5.35] for proofs of these equivalences, see also
[35, Section3] [61]. The proofs of the equivalence of conditions (i)–(iv) are classical
results for terminating rewriting systems. Note that condition (viii) corresponds to
the Buchberger criterion [7] and condition (ix) is a formulation of this criterion in
rewriting terms. We refer to [1, Chapter 8] for the rewriting interpretation of the
Buchberger algorithm.

A Gröbner basis of an ideal I of K[x1, . . . , xn] with respect to a monomial order
� is a Gröbner basis with respect to � that generates the ideal I . This can be also be
formulated saying that G is a generating set for I such that Id(lt(G)) = Id(lt(I )).

6.3.2 Involutive Bases and Gröbner Bases. Let I be an ideal of K[x1, . . . , xn].
Suppose that G is an involutive basis of the ideal I with respect to an involutive
division I and the monomial order �. In particular, the set G generates the ideal I .
For every g1 and g2 in G, we consider the S-polynomial S�(g1, g2)with respect to�.
By definition, the polynomial S�(g1, g2) belongs to the ideal I . By the involutivity
of the set G, it follows from Sect. 6.2.3 and Proposition 6.2.5 that we have

nfG(S�(g1, g2)) = nfG
I (S�(g1, g2)) = 0.

In this way, G is a Gröbner basis of the ideal I by the Buchberger criterion (viii).
We have thus proved the following result due to V. P. Gerdt and Y. A. Blinkov.

6.3.3 Theorem [27, Corollary 7.2] Let � be a monomial order on M(x1, . . . , xn)

and I be an involutive division on K[x1, . . . , xn]. Any I-involutive basis of an ideal
I of K[x1, . . . , xn] is a Gröbner basis of I .

Since the involutive division used to define involutive bases is a refinement of the
classical division with respect to which the Gröbner bases are defined, the converse
of this result is false in general.
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