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Preface

This volume is a collection of several works focusing on differential equations from
viewpoints of formal calculus and geometry through applications of quiver theory.
This book consists of two parts. The first one introduces the theory of Gröbner
bases in their commutative and noncommutative contexts. In particular, the lectures
will focus on algorithmic aspects and applications of Gröbner bases to analysis on
systems of partial differential equations, effective analysis on rings of differential
operators, and homological algebra. The second part constitutes an introduction to
representations of quivers, quiver varieties, and their applications to the moduli
spaces of meromorphic connections on the complex projective line P

1. All the
contributions are presented without assuming any particular background, and the
authors have done their best to make the chapters suitable for graduate students.

Gröbner bases and quivers in algebra and geometry. Gröbner bases and more
generally linear rewriting systems constitute models for computation in algebras of
various types (associative, commutative, Lie…). One of the applications of the
theory is to compute normal forms, bases, and more generally Hilbert or Poincaré
series. Another important application is a generalization of Gaussian elimination to
polynomial systems in various types of algebras (commutative, Weyl algebra…).
The theory of Gröbner bases was developed in the twentieth century. Several works
had led to the development of computational methods in algebra well before the
introduction of algebraic structures such as ideals and algebras and the modern
algebraic language. Chapter 1 explains the long and rich developments from the
work of M. Janet in 1920 on partial differential equations, elimination theory with
seminal works of E. Noether in 1921, and the computational methods in algebraic
geometry with the theory of Gröbner bases for commutative algebras developed by
B. Buchberger in 1965. In recent years, new algorithms of the theory of Gröbner
bases were developed in rings of differentials operators by Oaku–Takayama. In the
meanwhile, decision problems in semigroups and groups by A. Thue in 1914 and
M. Dehn in 1910 motivate a new combinatorial theory of equivalence relations, the
rewriting theory. This theory was expended throughout the twentieth century, in
particular with seminal results on confluence by M. Newman in 1942, on completion
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by Knuth–Bendix in 1970. Rewriting theory had been applied to algebra with works
of A. I. Shirshof in 1962 for computing bases in Lie algebras and L. A. Bokut and G.
Bergman independently in 1976–1978 for associative algebras. More recently at the
end of 1980s, rewriting methods were applied in homological algebra by several
authors such as D. J. Anick, C. Squier, K. Brown, and Y. Kobayashi.

Graphical methods in representation theory are rather new in comparison to the
theory of Gröbner bases. Nevertheless, many applications are developed in the last
decade. In 1934, H. Coxeter classified the finite real reflection groups and repre-
sented their fundamental relations in terms of graphs which was applied by E. Witt
in 1941 to study the structure of semisimple Lie algebras. H. Weyl, in 1925–1926,
and B. L. van der Waerden in 1933 simplified the classification of simple Lie
algebras after W. Killing in 1888–1890, but it was E. B. Dynkin in 1946 who used
the graphical expression to classify simple Lie algebras, where the name (Coxeter-)
Dynkin diagram came from. In 1972, the Dynkin diagrams of type ADE have
re-appeared by the work of P. Gabriel in view of the classification of the algebras
with finitely many isomorphic classes of simple modules, see Chap. 6. It was only
in the 1990s when the so-called quiver varieties were introduced by G. Lusztig for
his study on quantum groups and H. Nakajima for his study on gauge theory, see
Chap. 7. Their geometric approaches have big impacts not only on representation
theory but also on algebraic geometry, for example, the moduli spaces of mero-
morphic connections on compact Riemann surfaces.

Gröbner bases and applications. The aim of the first part of the volume is to focus
on various aspects of the theory of Gröbner bases and of the mathematical problems
at the origin of the theory. Chapter 1 briefly reviews the seminal works on con-
structive methods for computing in ideals by M. Janet in 1920 motivated by
integration of partial equation differential systems by C. Riquier and É. Cartan. The
main tool introduced by M. Janet is the notion of involutive bases which are
particular cases of Gröbner bases. Another domain in application that will be treated
is the effective analysis on rings of differential operators. In particular, integral
transformations and restriction functors on D-modules will be presented using
noncommutative Gröbner bases. Chapters 2 and 3 present algorithmic aspects
on D-modules. In particular, Chap. 2 deals with the notion of Gröbner bases in
D-modules and their applications to Bernstein–Sato polynomials. An introduction
to algorithms for D-modules with Quiver D-modules is also given in Chap. 3.
Another aspect of Gröbner bases theory for noncommutative associative algebras is
given in Chap. 4. A generalization of noncommutative Gröbner bases without a
monomial order and a link between the theory of Gröbner bases and rewriting
theory will be also explained. Finally, an application of Gröbner bases to the
computation of free resolutions for associative algebras will be given. Chapter 5
will conclude this part with applications of the theory Gröbner bases to computa-
tional algebraic statistics.

Quivers and applications. The lectures of this part will be devoted to a geometric
application of quivers. In particular, the geometry of the moduli spaces of mero-
morphic connections on P

1 with irregular singularities is one of the subjects which
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has been developed recently, and this is the main theme of this part. Chapters 6 and
7 will provide introduction to representations of quivers and quiver varieties. There
are some results known by the experts but never explained in the literature. In
Chap. 8, the so-called additive Deligne–Simpson problem will be presented
including some background materials. Some known results due to Crawley-Boevey
and the author himself will also be explained. Geometric aspects of this problem
with some recent development will be given in the final chapter (Chap. 9), where
the author will recall necessary backgrounds from quiver varieties and symplectic
geometry.
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Kobe, Japan Nobuki Takayama
February 2018

Acknowledgements Several chapters presented in this volume were exposed at the Kobe—Lyon
Summer School in Mathematics in July 2015 on the theme On Quivers: Computational aspects
and Geometric applications. We would like to mention the following supports for the Summer
School: Kobe University, Université Claude Bernard Lyon 1, JSPS Grant-in-aid (S) 24224001
(PI: Masa-Hiko SAITO), JSPS Grant-in-aid (B) 25287018 (PI: Nobuki TAKAYAMA),
LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, Institut Camille Jordan, UMR
5208, Lyon.

Preface vii



Contents

Part I First Algebraic Byway: Gröbner Bases

1 From Analytical Mechanics Problems to Rewriting Theory
Through M. Janet’s Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Kenji Iohara and Philippe Malbos

2 Gröbner Bases in D-Modules: Application to Bernstein-Sato
Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Rouchdi Bahloul

3 Introduction to Algorithms for D-Modules with Quiver
D-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Hiromasa Nakayama and Nobuki Takayama

4 Noncommutative Gröbner Bases: Applications
and Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Philippe Malbos

5 Introduction to Computational Algebraic Statistics . . . . . . . . . . . . . . 185
Satoshi Aoki

Part II Second Algebraic Byway: Quivers

6 Introduction to Representations of Quivers . . . . . . . . . . . . . . . . . . . 215
Kenji Iohara

7 Introduction to Quiver Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Yoshiyuki Kimura

8 On Additive Deligne–Simpson Problems . . . . . . . . . . . . . . . . . . . . . . 271
Kazuki Hiroe

9 Applications of Quiver Varieties to Moduli Spaces
of Connections on PP

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Daisuke Yamakawa

ix



Contributors

Satoshi Aoki Department of Mathematics, Graduate School of Science, Kobe
University, Kobe, Japan

Rouchdi Bahloul Université Lyon, Université Claude Bernard Lyon 1,
CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France

Kazuki Hiroe Faculty of Mathematics and Informatics, Faculty of Science, Chiba
University, Chiba, Japan

Kenji Iohara Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR
5208, Institut Camille Jordan, Villeurbanne, France

Yoshiyuki Kimura Faculty of Liberal Arts and Sciences, Osaka Prefecture
University, Osaka, Japan

Philippe Malbos Université Lyon, Université Claude Bernard Lyon 1,
CNRS UMR 5208, Institut Camille Jordan, Villeurbanne, France

Hiromasa Nakayama Department of Mathematics, Tokai University, Hiratsuka,
Japan

Nobuki Takayama Department of Mathematics, Graduate School of Science,
Kobe University, Kobe, Japan

Daisuke Yamakawa Department of Mathematics, Faculty of Science Division I,
Tokyo University of Science, Tokyo, Japan

xi



Part I
First Algebraic Byway: Gröbner Bases



Chapter 1
From Analytical Mechanics Problems
to Rewriting Theory Through M. Janet’s
Work

Kenji Iohara and Philippe Malbos

1 Introduction

This chapter is devoted to a survey of the historical background of Gröbner bases for
D-modules and linear rewriting theory largely developed in algebra throughout the
twentieth century and to present deep relationships between them. Completionmeth-
ods are the main streams for these computational theories. In the theory of Gröbner
bases, they were motivated by algorithmic problems in elimination theory such as
computations in quotient polynomial rings modulo an ideal, manipulating algebraic
equations, and computing Hilbert series. In rewriting theory, they were motivated
by computation of normal forms and linear bases for algebras and computational
problems in homological algebra.

In this chapter, we present the seminal ideas of the French mathematician
M. Janet on the algebraic formulation of completion methods for polynomial sys-
tems. Indeed, the problem of completion already appears in Janet’s 1920 thesis [47],
which proposed an original approach by formal methods in the study of systems of
linear partial differential equations, PDE systems for short. The corresponding con-
structions were formulated in terms of polynomial systems, but without the notions
of ideal and Noetherian induction. These two notions were introduced by Noether in
1921 [68] for commutative rings.

Thework ofM. Janet was forgotten for about half of a century. It was rediscovered
by Schwarz in 1992 in [81]. Our exposition in this chapter does not follow the
historical order. The first section deals with the problems that motivate the PDE
study undertaken by M. Janet. In Sect. 3, we present completion for monomial PDE
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4 K. Iohara and P. Malbos

systems as introduced by Janet in his monograph [51]. This completion used an
original division procedure on monomials. In Sect. 4, we present an axiomatization
of this Janet notion of division, called involutive division, due to V. P. Gerdt. The
last two sections concern the case of polynomial PDE systems, with M. Janet’s
completion method used to reduce a linear PDE system to a canonical form and the
axiomatization of the reductions involved in terms of rewriting theory.

1.1 From Analytical Mechanics Problems to Involutive
Division

1.1.1 From Lagrange to Janet. The analysis of linear PDE systems was mainly
motivated in eighteenth century by the desire to solve problems of analytical mechan-
ics. The seminal work of J.-L. Lagrange gave the first systematic study of PDE
systems launched by such problems. The case of PDE of one unknown function of
several variables has been treated by J. F. Pfaff. The Pfaff problem will be recalled
in Sect. 2.1. This theory was developed in two different directions: toward the general
theory of differential invariants and the existence of solutions under given initial con-
ditions. The differential invariants approach will be discussed in Sects. 2.1 and 2.1.4.
The question of the existence of solution satisfying some initial conditions was for-
mulated in the Cauchy–Kowalevsky theorem recalled in Sect. 2.1.3.

1.1.2 Exterior Differential Systems. Following the work of H. Grassmann in 1844
which did set up the rules of exterior algebra computations, É.Cartan introduced exte-
rior differential calculus in 1899. This algebraic calculus allowed him to describe
a PDE system by an exterior differential system that is independent of the choice
of coordinates. This did lead to the so-called Cartan–Kähler theory, reviewed in
Sect. 2.2. We will present a geometrical property of involutivity on exterior differ-
ential systems in Sect. 2.2.6, which motivates the formal methods introduced by M.
Janet for the analysis of linear PDE systems.

1.1.3 Generalizations of the Cauchy–Kowalevsky Theorem. Another origin of
the work of M. Janet is the Cauchy–Kowalevsky theorem that gives the initial con-
ditions of solvability of a family of PDE systems that we describe in Sect. 2.1.3.
É. Delassus, C. Riquier, and M. Janet attempted to generalize this result to a wider
class of linear PDE systems which in turn led them to introduce the computation of
a notion of normal form for such systems.

1.1.4 The Janet Monograph. Section3 presents the historical work that motivated
M. Janet to introduce an algebraic algorithm in order to compute normal form of
linear PDE systems. In particular, we recall the problem of computation of inver-
sion of differentiation introduced by M. Janet in his monograph � Leçons sur les
systèmes d’équations aux dérivées partielles � on the analysis of linear PDE sys-
tems, published in 1929 [51]. Therein, M. Janet introduced formal methods based
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on polynomial computations for analysis of linear PDE systems. He developed an
algorithmic approach for analyzing ideals in the polynomial ring K[ ∂

∂x1
, . . . , ∂

∂xn
]

of differential operators with constant coefficients. Having the ring isomorphism
between this ring and the ring K[x1, . . . , xn] of polynomials with n variables in
mind, M. Janet gave its algorithmic construction in this latter ring. He began by
introducing some remarkable properties of monomial ideals. In particular, he recov-
ered Dickson’s Lemma [17], assertion that monomial ideals are finitely generated.
This property is essential for the Noetherian properties on the set of monomials. Note
that M. Janet was not familiar with the axiomatization of the algebraic structure of
ideals and the property of Noetherianity already introduced by Noether in [68] and
[69]. Note also that the Dickson Lemma was published in 1913 in a paper on number
theory in an American journal. Due to the First WorldWar, it took a long time before
these works became accessible to the French mathematical community. Janet’s alge-
braic constructions given in his monograph will be recalled in Sect. 3 for monomial
systems and in Sect. 5 for polynomial systems.

1.1.5 Janet’s Multiplicative Variables. The computations on monomial and poly-
nomial ideals carried out byM. Janet are basedon thenotionofmultiplicative variable
that he introduced in his thesis [47]. Given an ideal generated by a set of monomi-
als, he distinguished the monomials contained in the ideal and those contained in
the complement of the ideal. The notions of multiplicative and non-multiplicative
variables appear in order to stratify these two families of monomials. We will recall
this notion of multiplicativity of variables in Sect. 3.1.9. This leads to a refinement
of the classical division on monomials, nowadays called Janet’s division.

1.1.6 Involutive Division and Janet’s Completion Procedure. The notion of mul-
tiplicative variable is local, in the sense that it is defined with respect to a subset U of
the set of all monomials. A monomial u in U is said to be a Janet divisor of a mono-
mialw with respect toU , ifw = uv and all variables occurring in v are multiplicative
with respect to U . In this way, we distinguish the set coneJ (U) of monomials having
a Janet divisor in U , calledmultiplicative or involutive cone of U , and the set cone(U)

of multiple of monomials in U for the classical division. The Janet division being
a refinement of the classical division, the set coneJ (U) is a subset of cone(U). M.
Janet called a set of monomials U complete when this inclusion is an equality.

To a monomial PDE system (�) of the form

∂α1+...+αnϕ

∂xα1
1 . . . ∂xαn

n
= fα(x1, x2, . . . , xn),

where (α1, . . . ,αn) belongs to a subset I of N
n , M. Janet associated the set of

monomials
lm(�) = {xα1

1 . . . xαn
n | (α1, . . . ,αn) ∈ I }.

The compatibility conditions of the system (�) correspond to the factorizations of the
monomials ux in coneJ (lm(�)), where u is in lm(�) and x is a non-multiplicative
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variable of u with respect to lm(�), as explained in Sect. 3.3.1. By definition, for any
monomial u in lm(�) and x non-multiplicative variable of u with respect to lm(�),
the monomial ux admits such a factorization if and only if lm(�) is complete, see
Proposition 3.2.5.

The main procedure presented in Janet’s monograph [51] completes in a finite
number of operations a finite set of monomials U to a complete set of monomials ˜U
that contains U . This procedure consists in analyzing all the local defects of com-
pleteness, by adding all the monomials ux where u in U and x is a non-multiplicative
variable for u with respect to U . This procedure will be recalled in Sect. 3.2.9. A gen-
eralization of this procedure to any involutive division was given by Gerdt in [25],
and is recalled in Sect. 4.2.12.

Extending this procedure to a set of polynomials, M. Janet applied it to linear PDE
systems, giving a procedure that transforms a linear PDE system into a complete
PDE system with the same set of solutions. This construction is given in Sect. 5.6. In
Sect. 6, we present such a procedure for an arbitrary involutive division given by V.
P. Gerdt and Blinkov in [27] and its relation to the Buchberger completion procedure
in commutative polynomial rings, [7].

1.1.7 The Space of Initial Conditions. In order to stratify the complement of the
involutive cone coneJ (U), M. Janet introduced the notion of complementary mono-
mial, see Sect. 3.1.13.With this notion, themonomials that generate this complement
in a such a way that the involutive cone of U and the involutive cone of the set U� of
complementary monomials form a partition of the set of all monomials, see Propo-
sition 3.2.2.

For each complementary monomial v in lm(�)�, each analytic function in the
multiplicative variables of v with respect to lm(�)� provides an initial condition of
the PDE system (�) as stated by Theorem 3.3.3.

1.1.8 Polynomial Partial Differential Equations Systems. In Sect. 5, we present
the analysis of polynomial PDE systems as Janet [51]. To deal with polynomials, he
defined some total orders on the set of derivatives, corresponding to total orders on
the set ofmonomials.We recall them in Sect. 5.1. The definitions onmonomial orders
given byM. Janet clarified the same notion introduced previously by Riquier in [74].
In particular, hemademore explicit the notion of parametric and principal derivatives
in order to distinguish the leading derivative in a polynomial PDE. In this way, he
extended the algorithms for monomial PDE systems to the case of polynomial PDE
systems. In particular, using these notions, he defined the property of completeness
for polynomial PDE systems. Namely, a polynomial PDE system is complete if the
associated set of monomials corresponding to leading derivatives of the system is
complete. Moreover, M. Janet extended the notion of complementary monomials to
define the notion of initial condition for a polynomial PDE system as in themonomial
case.

1.1.9 Initial Conditions. In this way, the notion of completeness provides a suitable
framework to discuss the existence and the uniqueness of the initial conditions for a



1 From Analytical Mechanics Problems to Rewriting Theory … 7

linear PDE system. M. Janet proved that if a linear polynomial PDE system of the
form

Diϕ =
∑

j

ai, j Di, jϕ, i ∈ I,

with one unknown function ϕ is such that all the functions ai, j are analytic in a
neighborhood of a point P in C

n and if it is complete with respect to some total
order, then it admits at most one analytic solution satisfying the initial condition
formulated in terms of complementary monomials, see Theorems 5.3.4 and 5.3.6.

1.1.10 Integrability Conditions. A linear polynomial PDE system of the above
form is said to be completely integrable if it admits an analytic solution for any given
initial condition.M. Janet gave an algebraic characterization of complete integrability
by introducing integrability conditions formulated in terms of factorization of leading
derivatives of the PDEby non-multiplicative variables. These integrability conditions
are stated explicitly in Sect. 5.4.4 as generalization to the polynomial situation of the
integrability conditions formulated above for monomial PDE systems in Sect. 3.3.
M. Janet proved that a linear polynomial PDE system is completely integrable if and
only if every integrability condition is trivially satisfied, as stated in Theorem 5.4.7.

1.1.11 Janet’s Procedure of Reduction of Linear PDE Systems to a Canoni-
cal Form. In order to extend algorithmically the Cauchy–Kowalevsky theorem on
the existence and uniqueness of solutions of initial value problems as presented
in Sect. 2.1.3, M. Janet considered normal forms of linear PDE systems with respect
to a suitable total order on derivatives, satisfying some analytic conditions on coeffi-
cients and a complete integrability condition on the system, as defined in Sect. 5.5.2.
Such normal forms of PDE systems are called canonical by M. Janet.

Procedure 7 is Janet’s method for deciding if a linear PDE system can be trans-
formed into a completely integrable system. If the system cannot be reduced to a
canonical form, the procedure returns the obstructions to such a reduction. Janet’s
procedure depends on a total order on derivatives of unknown functions of the PDE
system. For this purpose, M. Janet introduced a general method to define a total order
on derivatives using a parametrization of a weight order on variables and unknown
functions, as explained in Sect. 5.1.5. The Janet procedure uses a specific weight
order called canonical and defined in Sect. 5.6.2.

The first step of Janet’s method consists in applying autoreduction procedure,
defined in Sect. 5.6.4, in order to reduce any PDE of the system with respect to the
total order on derivatives. Namely, two PDE of the system cannot have the same
leading derivative, and any PDE of the system is reduced with respect to the leading
derivatives of the others PDE, as specified in Procedure 5.
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The second step is the completion procedure, Procedure 6. In it, the set of leading
derivatives of the system defines a complete set of monomials in the sense given
in Sect. 5.3.2.

Having transformed the PDE system to an autoreduced and complete system, one
can look at its integrability conditions. M. Janet showed that this set of integrability
conditions is a finite set of relations that do not contain principal derivatives, as
explained in Sect. 5.4.4. Hence, these integrability conditions are J -normal forms
and uniquely defined. By Theorem 5.4.7, if all of these normal forms are trivial,
then the system is completely integrable. Otherwise, any nontrivial condition in the
set of integrability conditions that contains only unknown functions and variables
imposes a relation on the initial conditions of the system. If there is no such relation,
the procedure is applied again on the PDE system completed by all the integrability
conditions. Note that this procedure depends on the Janet division and on a total
order on the set of derivatives.

By this algorithmic method, M. Janet did generalize in certain cases the Cauchy–
Kowalevsky theorem at the time where the algebraic structures have not been intro-
duced to perform computations with polynomial ideals. This is pioneering work in
the field of formal approaches to analysis of PDE systems. Algorithmic methods for
dealing with polynomial ideals were developed throughout the twentieth century and
extended to a wide range of algebraic structures. In the next subsection, we present
some milestones on these formal themes in mathematics.

1.2 Constructive Methods and Rewriting in Algebra
Through the Twentieth Century

The constructions developed by M. Janet in his formal theory of linear partial differ-
ential equation systems are based on the structure of ideals that he called module of
forms. This notion corresponds to those introduced previously by Hilbert in [43] with
the terminology of algebraic form. Notice that Gunther studied such a structure in
[39]. The axiomatization of the notion of ideal in an arbitrary ring is due to Noether
[68]. As we will explain in this chapter, M. Janet introduced algorithmic methods to
compute a family of generators of an ideal having the involutive property and called
an involutive basis. This property is used to obtain a normal form of linear partial
differential equation systems.

Janet’s computation of involutive bases is based on a refinement of classical poly-
nomial division, called involutive division. He defined a division that is suitable for
reduction of linear partial differential equation systems. Thereafter, other involutive
divisions were studied, in particular, by Thomas [86] and by Pommaret [72]; we refer
to Sect. 4.3 for a discussion on these divisions.

The main purpose is to complete a generating family of an ideal to an involutive
basis with respect to a given involutive division. This completion process is quite
similar to those introduced bymeans of the classical division in the theory of Gröbner
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bases. In fact, involutive bases appear to be particular cases of Gröbner bases. The
principle of completion has been developed independently in rewriting theory, which
proposes a combinatorial approach to equivalence relations motivated by several
computational and decision problems in algebra, computer science, and logic.

1.2.1 Some Milestones in Algebraic Rewriting and Constructive Algebra. The
main results in the work of M. Janet rely on constructive methods in linear algebra
using the principle of computing normal forms by rewriting and the principle of
completion of a generating set of an ideal. These two principles have been developed
through the twentieth century in many algebraic contexts with different formulations
and in several instances. We review below some important milestones in this long
and rich history from T. Seki to the more recent developments.

1683. Seki introduced the notion of resultant and developed the notion of deter-
minant to express the resultant. He also made progress in elimination theory in
the Kai-fukudai-no-hō, see, e.g., [94].

1840. Sylvester studied the resultant of two polynomials in [85] and gave an exam-
ple for two quadratic polynomials.

1882. Kronecker [54] gave the first result in elimination theory using this notion.

1886. Weierstrass proved a fundamental result called preparation theorem on the
factorization of analytic functions by polynomials. As an application, he obtained
a division theorem for rings of convergent series [93].

1890. Hilbert proved that any ideal in a ring of commutative polynomials in a finite
set of variables over a field or over the ring of integers is finitely generated [43].
This is the first formulation of the Hilbert basis theorem, which states that every
polynomial ring over a Noetherian ring is Noetherian.

1913. In a paper on number theory, L. E. Dickson proved a monomial version of
the Hilbert basis theorem by a combinatorial method [17, Lemma A].

1913. In a series of forgotten papers,N.Günther developed algorithmic approaches
for polynomials rings [38–40]. A review of Günther’s theory can be found in [41].

1914. Dehn described the word problem for finitely presented groups [16]. Using
systems of transformations rules, A. Thue studied the problem for finitely pre-
sented semigroups [87]. It was only much later, in 1947, that the problem
for finitely presented monoids was shown to be undecidable, independently by
Post [73] and Markov [64, 65].

1916. Macaulay was one of the pioneers in commutative algebra. In his book
The algebraic theory of modular systems [59], following the fundamental Hilbert
basis theorem, he initiated an algorithmic approach to treat generators of polyno-
mial ideals. In particular, he introduced the notion of H-basis corresponding to a
monomial version of Gröbner bases.
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1920. Janet defended his doctoral thesis [47], which presents a formal study of
systems of partial differential equations following works of Ch. Riquier and É.
Delassus. In particular, he analyzed completely integrable systems and Hilbert
functions of polynomial ideals.

1921. In her seminal paper, Idealtheorie in Ringbereichen [68], Noether laid the
foundation of general commutative ring theory, and gave one of the first general
definitions of a commutative ring. She also formulated the Finite Chain Theorem
[68, Satz I, Satz von der endlichen Kette].

1923. Noether formulated in [69, 70] concepts of elimination theory in the lan-
guage of ideals that she had introduced in [68].

1926. Hermann, a student of Noether [42], initiated purely algorithmic approaches
to ideals, such as the ideal membership problem and primary decomposition ide-
als. Thiswork is a fundamental contribution to the emergence of computer algebra.

1927. Macaulay showed in [60] that the Hilbert function of a polynomial ideal I is
equal to the Hilbert function of the monomial ideal generated by the set of leading
monomials of the elements in I with respect a monomial order. As a consequence,
the coefficients of the Hilbert function of a polynomial ideal are polynomial for
sufficiently big degree.

1937. Based on early works by Ch. Riquier and Janet, in [86] J. M. Thomas refor-
mulated in the algebraic language of B. L. van der Waerden, Moderne Algebra
[89, 90], the theory of normal forms of systems of partial differential equations.

1937. In [32], W. Gröbner exhibited the isomorphism between the ring of polyno-
mials with coefficients in an arbitrary field and the ring of differential operators
with constant coefficients, see Proposition 3.1.2. The identification of these two
rings was used before in the algebraic study of systems of partial differential
equations, but without being explicit.

1942. In a seminal paper on rewriting theory, M. Newman presented rewriting as
a combinatorial approach to study equivalence relations [66]. He proved a funda-
mental rewriting result stating that under a termination hypothesis, the confluence
property is equivalent to local confluence.

1949. In his monographModerne algebraische Geometrie. Die idealtheoretischen
Grundlagen [33], W. Gröbner surveyed algebraic computation on ideal theory
with applications to algebraic geometry.

1962. Shirshov introduced in [83] an algorithmicmethod to compute normal forms
in a free Lie algebra with respect to a family of elements of the Lie algebra
satisfying a confluence property. The method is based on a completion procedure.
He also proved a version of Newman’s lemma for Lie algebras, called composition
lemma, and deduced a constructive proof of the Poincaré–Birkhoff–Witt theorem.
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1964. Hironaka introduced in [44] a division algorithm and proposed the notion of
standard basis, analogous to the notion of Gröbner basis, for rings of power series
in order to solve problems of resolution of singularities in algebraic geometry.

1965. Under the supervision ofW. Gröbner, B. Buchberger developed in his Ph.D.
thesis an algorithmic theory of Gröbner bases for commutative polynomial alge-
bras [7, 8, 10]. Buchberger gave a characterization of Gröbner bases in terms of
S-polynomials as well as an algorithm to compute such bases, with a complete
implementation in the assembler language of the computer ZUSE Z 23 V.

1967. Knuth and Bendix defined in [53] a completion procedure that completes
with respect to a termination a set of equations in an algebraic theory into a
confluent term rewriting system. The procedure is similar to Buchberger’s com-
pletion procedure. We refer the reader to [9] for a historical account of critical
pair/completion procedures.

1972. Grauert introduced in [30] a generalization ofWeierstrass’s preparation divi-
sion theorem in the language of Banach algebras.

1973. Nivat formulated a critical pair lemma for string rewriting systems and
proved that for a terminating rewriting system, the local confluence is decidable
[67].

1976, 1978. Bokut in [5] and Bergman in [4] extended the Gröbner bases and
Buchberger’s algorithm to associative algebras. They obtained the confluence
Newman Lemma for rewriting systems in free associative algebras compatible
with a monomial order, called, respectively, Diamond Lemma for ring theory and
Composition Lemma.

1978. Pommaret introduced in [72] a global involutive division simpler than those
introduced by M. Janet.

1980. Schreyer in his Ph.D. thesis [80] gave a method that computes syzygies in
commutative multivariate polynomial rings using the division algorithm, see [18,
Theorem 15.10].

1980. Huet [45] gave a proof ofNewman’s lemmausing aNoetherianwell-founded
induction method.

1985. Gröbner basis theory was extended to Weyl algebras by A. Galligo in [24],
see also [79].

1997. Gerdt and Blinkov [25, 27] introduced the notion of involutive monomial
division and its axiomatization.

1999, 2002. Faugère developed efficient algorithms for computing Gröbner bases,
algorithm F4 [20], then an algorithm F5 [21].

2005. Gerdt [26] presented and analyzed an efficient involutive algorithm for com-
puting Gröbner bases.

2012. Bächler, Gerdt, Lange-Hegermann, and Robertz algorithmized in [2] the
Thomas decomposition of algebraic and differential systems.
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1.3 Conventions and Notations

The set of nonnegative integers is denoted byN. In this chapter,K[x1, . . . , xn]denotes
the polynomial ring on the variables x1, . . . , xn over a field K of characteristic zero.
For a subset G of K[x1, . . . , xn], we will denote by Id(G) the ideal of K[x1, . . . , xn]
generated by G. A polynomial is either zero or it can be written as a finite sum of
nonzero terms, each term being the product of a scalar in K by a monomial.

1.3.1 Monomials. We denote by M(x1, . . . , xn) the set of monomials in the ring
K[x1, . . . , xn]. For a subset I of {x1, . . . , xn}wewill denote byM(I ) the set ofmono-
mials in M(x1, . . . , xn) whose variables lie in I . A monomial u in M(x1, . . . , xn)
is written as u = xα1

1 · · · xαn
n , were the αi are nonnegative integers. The integer αi

is called the degree of the variable xi in u, it will be also denoted by degi (u). For
α = (α1, . . . ,αn) in N

n , we denote xα = xα1
1 · · · xαn

n and |α| = α1 + · · · + αn .
For a finite subset U ofM(x1, . . . , xn) and 1 � i � n, we denote by degi (U) the

largest degree in the variable xi of the monomials in U , that is

degi (U) = max
(

degi (u) | u ∈ U
)

.

We call the cone of a subset U ofM(x1, . . . , xn) the set of all multiples of monomials
in U , defined by

cone(U) =
⋃

u∈U
uM(x1, . . . , xn) = { uv | u ∈ U , v ∈ M(x1, . . . , xn) }.

1.3.2 Homogeneous Polynomials. A homogenous polynomial in K[x1, . . . , xn] is
a polynomial for which all nonzero terms have the same degree. A homogenous
polynomial is of degree p if all its nonzero terms have degree p. We denote by
K[x1, . . . , xn]p the space of homogeneous polynomials of degree p. The dimension
of this space is given by the formula:

� p
n := dim

(

K[x1, . . . , xn]p
) = (p + 1)(p + 2) · · · (p + n − 1)

1 · 2 · · · · · (n − 1)
.

1.3.3 Monomial Order. Recall that amonomial order onM(x1, . . . , xn) is a relation
� on M(x1, . . . , xn) satisfying the following three conditions:

(i) � is a total order on M(x1, . . . , xn),
(ii) � is compatible with multiplication, that is, if u � u′, then uw � u′w for any

monomial w inM(x1, . . . , xn),
(iii) � is awell-order onM(x1, . . . , xn), that is, every non-empty subset ofM(x1, . . . ,

xn) has a smallest element with respect to �.

The leading term, leading monomial, and leading coefficient of a polynomial f
of K[x1, . . . , xn], with respect to a monomial order �, will be denoted by lt�( f ),
lm�( f ), and lc�( f ), respectively. For a set F of polynomials in K[x1, . . . , xn], we
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will denote by lm�(F) the set of leading monomials of the polynomials in F . For
simplicity, we will use notations lt( f ), lm( f ), lc( f ), and lm(F) if there is no danger
of confusion.

2 Exterior Differential Systems

Motivated by problems in analytical mechanics, Euler (1707–1783) and Lagrange
(1736–1813) initiated the so-called variational calculus, cf. [57], which led to the
problem of solving partial differential equations, PDEs for short. In this section, we
briefly present the evolution of this theory to serve as a guide to M. Janet’s contribu-
tions.We follow the history to introduce material on exterior differential systems and
various PDE problems. For a deeper discussion of the theory of differential equations
and the Pfaff problem, we refer the reader to [22, 92] or [11].

2.1 Pfaff’s Problem

2.1.1 Partial Differential Equations for One Unknown Function. In 1772,Lagrange [56]
considered a PDE of the form

F(x, y,ϕ, p, q) = 0, with p = ∂ϕ

∂x
and q = ∂ϕ

∂y
, (2.1)

i.e., a PDE for one unknown function ϕ of two variables x and y. Lagrange’s method
to solve this PDE can be summarized as follows.

(i) Express the PDE (2.1) in the form

q = F1(x, y,ϕ, p), with p = ∂ϕ

∂x
and q = ∂ϕ

∂y
. (2.2)

(ii) Ignore for the moment that p = ∂ϕ
∂x and consider the 1-form

� = dϕ − pdx − qdy = dϕ − pdx − F1(x, y,ϕ, p)dy,

where p is regarded as some (not yet fixed) function of x, y, and ϕ.
(iii) If there exist functions M and � of x, y, and ϕ satisfying M� = d�, then

�(x, y,ϕ) = C for some constant C . Solving this new equation, we obtain a
solution ϕ = ψ(x, y,C) to Eq. (2.2).

2.1.2 Pfaffian Systems. In 1814–15, Pfaff (1765–1825) [71] studied a PDE for one
unknown function of n variables; this work was then continued by Jacobi (1804–
1851) (cf. [46]). Recall that a PDE of any order is equivalent to a system of first-order
PDEs. Thus, we may only think of systems of first-order PDEs with m unknown
functions
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Fk
(

x1, . . . , xn,ϕ
1, . . . ,ϕm,

∂ϕa

∂xi
(1 � a � m, 1 � i � n)

) = 0, for 1 � k � r.

Introducing new variables pai , the system lives on the space with coordinates
(xi ,ϕa, pai ) and is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Fk(xi ,ϕa, pai ) = 0,

dϕa −
n
∑

i=1

pai dxi = 0,

dx1 ∧ · · · ∧ dxn �= 0.

Note that the last conditionmeans that the variables x1, . . . , xn are independent. Such
a system is called a Pfaffian system. One is interested in the questions whether this
system admits a solution or not, and if there exists a solution, if it is unique under
some conditions. We will refer to these as Pfaff’s problems.
2.1.3 Cauchy–Kowalevsky’s Theorem. Anaive approach toPfaff’s problems,with
applications tomechanics inmind, is the question of the initial conditions. In series of
articles published in 1842, A. Cauchy (1789–1857) studied the system of first-order
PDEs:

∂ϕa

∂t
= fa(t, x1, . . . , xn) +

m
∑

b=1

n
∑

i=1

f ia,b(t, x1, . . . , xn)
∂ϕb

∂xi
, for 1 � a � m,

where fa, f ia,b and ϕ1, . . . ,ϕm are functions of n + 1 variables t, x1, . . . , xn .
Kowalevsky (1850–1891) [91] in 1875 considered systems of PDEs of the following
form: for some ra ∈ Z>0 (1 � a � m),

∂raϕa

∂tra
=

m
∑

b=1

ra−1
∑

j=0
j+|α|�ra

f j,α
a,b (t, x1, . . . , xn)

∂ j+|α|ϕb

∂t j∂xα
,

where f j,α
a,b and ϕ1, . . . ,ϕm are functions of n + 1 variables t, x1, . . . , xn , and

where for a multi-index α = (α1, · · · ,αn) in (Z�0)
n , we set |α| =∑n

i=1 αi and
∂xα = ∂xα1

1 · · · ∂xαn
n . They showed that under the hypothesis of analyticity of the

coefficients, such a system admits a unique analytic local solution satisfying a given
initial condition. This statement is now called the Cauchy–Kowalevsky theorem.

2.1.4 Completely Integrable Systems. A first geometric approach to the above
problem was undertaken over by Frobenius (1849–1917) [23] and independently by
Darboux (1842–1917) [15]. Let X be a differentiable manifold of dimension n. We
consider the Pfaffian system

ωi = 0 1 � i � r,
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where ωi are 1-forms defined on a neighborhood V of a point x in X . Suppose that
the family

{(ωi )y}1�i�r ⊂ T ∗
y X

is linearly independent for all y in V . For 0 � p � n, let us denote by �
p
X (V ) the

space of differentiable p-forms on V . A p-dimensional distribution D on X is a
subbundle of T X with fiber of dimension p. A distributionD is involutive if, for any
vector fields ξ and η taking values in D, the Lie bracket

[ξ, , η] := ξη − ηξ

takes values inD as well. Such a Pfaffian system is said to be completely integrable.
G. Frobenius and G. Darboux showed that the ideal I of

⊕n
p=0 �

p
X (V ), generated

by the 1-forms ω1, . . . ,ωr , is a differential ideal, i.e., d I ⊂ I , if and only if the
distribution D on V defined as the annihilator of ω1, . . . ,ωr is involutive.

2.2 The Cartan–Kähler Theory

Here, we give a brief historically oriented exposition of the so-called Cartan–Kähler
theory. In particular, we will present the notion of system in involution. For the
original treatment by the founders of the theory, we refer the reader to [14, 52],
modern introductions are provided in [6, 62], and a quick survey can be found
in [95, Appendix].

2.2.1 Differential Forms. Grassmann (1809–1877) [29] introduced in 1844 the
first equation-based formulation of the structure of exterior algebra with the anti-
commutativity rule

x ∧ y = −y ∧ x .

Using this setting, Cartan (1869–1951) [11] defined in 1899 the exterior differential
and differential p-forms. He showed that these notions are invariant under arbitrary
coordinate transformation. Thanks to these differential structures, several results
obtained in the nineteenth century were reformulated in a clear manner.

2.2.2 Exterior Differential Systems. An exterior differential system � is a finite
set of homogeneous differential forms, i.e., � ⊂⋃p �

p
X . Cartan [12], in 1901, stud-

ied exterior differential systems generated by 1-forms, i.e., Pfaffian systems. Later,
Kähler (1906–2000) [52] generalizedCartan’s theory to anydifferential ideal I gener-
ated by an exterior differential system. For this reason, the general theory on exterior
differential systems is nowadays called the Cartan–Kähler theory.

In the rest of this subsection, we discuss briefly the existence theorem for such
a system. Since the argument developed here is local and we need the Cauchy–
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Kowalevsky theorem, we assume that all functions are analytic in x1, . . . , xn unless
otherwise stipulated.

2.2.3 Integral Elements. Let � be an exterior differential system on a real analytic
manifold X of dimension n such that the ideal generated by � is a differential ideal.
For 0 � p � n, set� p = � ∩ �

p
X .We fix x in X . For p > 0, a pair (Ep, x), with a p-

dimensional vector subspace Ep ⊂ Tx X , is called an integral p-element if ω|Ep = 0
for any ω in �

p
x := � p ∩ �

p
X,x , where �

p
X,x denotes the space of differential p-

forms defined on a neighborhood of x in X . We denote the set of integral elements
of dimension p by I� p

x .
An integral manifold Y is a submanifold of X whose tangent space TyY at each

point y in Y is an integral element. Since the exterior differential system defined by
� is completely integrable, there exists independent r -functions ϕ1(x), . . . ,ϕr (x),
called integrals of motion or first integrals, defined on a neighborhood V of a point
x ∈ X such that their restrictions on V ∩ Y are constants.

The polar space H(Ep) of an integral element Ep of� at the point x is the vector
subspace of Tx X generated by the vectors ξ ∈ Tx X such that Ep + Rξ is an integral
element of �.

2.2.4 Regular Integral Elements. Let E0 be the real analytic subvariety of X
defined as the zeros of �0 and let U be the subset of smooth points. A point in
E0 is called integral point. A tangent vector ξ in Tx X is called a linear integral ele-
ment if ω(ξ) = 0 for any ω ∈ �1

x with x ∈ U . We define inductively the properties
called “regular” and “ordinary” as follows:

(i) The zeroth-order character is the integer s0 = maxx∈U {dimR�1
x }. A point x ∈

E0 is said to be regular if dimR�1
x = s0, and a linear integral element ξ ∈ Tx X

is called ordinary if x is regular.
(ii) Let E1 = Rξ, where ξ is an ordinary linear integral element. The first-order

character is the integer s1 satisfying s0 + s1 = maxx∈U {dim H(E1)}. The ordi-
nary integral 1-element (E1, x) is said to be regular if dim H(E1) = s0 + s1.
An integral 2-element (E2, x) is called ordinary if it contains at least one regular
linear integral element.

(iii) Assume that all these concepts are defined up to (p − 1)th step and that s0 +
s1 + · · · + sp−1 < n − p + 1.
The pth-order character is the integer sp satisfying

p
∑

i=0

si = max
x∈U

{dim H(Ep)}.

An integral p-element (Ep, x) is said to be regular if

p
∑

i=0

si = dim H(Ep).

The integral p-element (Ep, x) is called ordinary if it contains at least one
regular integral element (Ep−1, x).
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Let h be the smallest positive integer such that
∑h

i=0 si = n − h. Then, there does not
exist an integral (h + 1)-element. The integer h is called the genus of the system �.
For 0 < p � h, one has

p−1
∑

i=0

si � n − p.

2.2.5 Theorem Let 0 < p � h be an integer.

(i) The case
∑p−1

i=0 si = n − p : let (Ep, x) be an ordinary integral p-element and
let Yp−1 be an integral manifold of dimension p − 1 such that (TxYp−1, x)
is a regular integral (p − 1)-element contained in (Ep, x). Then, there exists
a unique integral manifold Yp of dimension p containing Yp−1 such that
TxYp = Ep.

(ii) The case
∑p−1

i=0 si < n − p : let (Ep, x) be an integral p-element and let Yp−1

be an integral manifold of dimension p − 1 such that (TxYp−1, x) is a regular
integral (p − 1)-element contained in (Ep, x). Then, there is a one-to-one cor-

respondence between the set of real analytic functions Cω(Rp, R
n−p−∑p−1

i=0 si )

and the set of p-dimensional integral manifolds Yp containing Yp−1 such that
TxYp = Ep.

This theorem states that a given chain of ordinary integral elements

(E0, x) ⊂ (E1, x) ⊂ · · · ⊂ (Eh, x), dim Ep = p (0 � p � h),

one can inductively find an integral manifold Yp of dimension p such that Y0 = {x},
Yp−1 ⊂ Yp and TxYp = Ep. Notice that to obtain Yp from Yp−1, one applies the
Cauchy–Kowalevsky theorem to the PDE system defined by � p and the choice of
real analytic functions in the above statement provide a datum to define the integral
manifold Yp.

2.2.6 Systems in Involution. In many applications, the exterior differential systems
one considers admit p-independent variables x1, . . . , xp. In such a case, we are
only interested in the p-dimensional integral manifolds among which no additional
relation between x1, . . . , xp is imposed. In general, an exterior differential system �

for n − p unknown functions and p-independent variables x1, . . . , xp is said to be
in involution if it satisfies the two following conditions:

1. its genus is larger than or equal to p,
2. the defining equations of the generic ordinary integral p-element introduce no

linear relation among dx1, . . . , dxp.

2.2.7 Reduced Characters. Consider a familyF of integral elements of dimensions
1, 2, . . . , p − 1 than can be included in an integral p-element at a generic integral
point x ∈ X . Take a local chart with origin x . The reduced polar system H red(Ei ) of
an integral element at x is the polar system of the restriction of the exterior differential
system � to the submanifold
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{x1 = x2 = · · · = xp = 0}.

The integers s ′
0, . . . , s

′
p−1, called the reduced characters, are defined in such a way

that s ′
0 + · · · + s ′

i is the dimension of the reduced polar system H red(Ei ) at a generic
integral element. For convenience, one sets s ′

p = n − p − (s ′
0 + · · · + s ′

p−1).
Let � be an exterior differential system of n − p unknown functions of

p-independent variables such that the ideal generated by � is a differential ideal.
É. Cartan showed that � is a system in involution iff the most general integral
p-element in F depends on s ′

1 + 2s ′
2 + · · · + ps ′

p independent parameters.

2.2.8 Recent Developments. In 1957, Kuranishi (1924 –) [55] considered the prob-
lem of the prolongation of a given exterior differential system and treated what É.
Cartan called total case. Here, M. Kuranishi as well as É. Cartan worked locally in
the analytic category. After an algebraic approach to the integrability was proposed
by Guillemin and Sternberg [34], in 1964, Singer and Sternberg, [84], in 1965 stud-
ied some classes of infinite-dimensional systems which can be treated even in the
C∞-category. In 1970s, with the aid of jet bundles and the Spencer cohomology,
Pommaret (cf. [72]) considered formally integrable involutive differential systems
generalizing the work of M. Janet, in the language of sheaf theory. For other geo-
metric aspects not using sheaf theory, see the books by Griffiths (1938-) [31], and
Bryant et al. [6].

3 Monomial PDE Systems

In this section, we present the method introduced byM. Janet under the name “calcul
inverse de la dérivation” in his monograph [51]. In [51, Chap. I], M. Janet considered
monomial PDE, that is, PDE of the form

∂α1+α2+···+αnϕ

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

= fα1α2...αn (x1, x2, . . . , xn), (3.1)

where ϕ is an unknown function and the fα1α2...αn are analytic functions of several
variables. By an algebraic method, he analyzed the solvability of such an equation,
namely, the existence and the uniqueness of an analytic solution ϕ of the system.
Notice that the analyticity condition guarantees the commutativity of partial differ-
entials operators. This property is crucial for the constructions that M. Janet carried
out in the ring of commutative polynomials. Note that the first example of PDE that
does not admit any solution was found by Lewy in the 1950s in [58].

3.1 Ring of Partial Differential Operators and
Multiplicative Variables

3.1.1 Historical Context. In the beginning of 1890s, following collaboration with
C.Méray (1835–1911), Riquier (1853–1929) initiated his research on finding normal
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forms of systems of (infinitely many) PDEs for finitely many unknown functions of
finitely many independent variables (see [75] and [76] for more details).

In 1894, Tresse [88] showed that such systems can be always reduced to systems
of finitely many PDEs. This is the first result on Noeterianity of a module over a ring
of differential operators. Based on this result, É. Delassus (1868–19..) formalized
and simplified Riquier’s theory. In these works, one already finds an algorithmic
approach for analyzing ideals of the ring K[ ∂

∂x1
, . . . , ∂

∂xn
].

It was Janet (1888–1983) who already in his thesis [47], published in 1920, had
realized that the latter ring is isomorphic to the ring of polynomials with n variables
K[x1, . . . , xn]. At that time, several abstract notions on rings were introduced by
E. Noether in Germany but by M. Janet in France was not familiar with them. It was
only in 1937 that W. Gröbner (1899–1980) proved this isomorphism.

3.1.2 Proposition [32, Sect. 2.] There exists a ring isomorphism

� : K[x1, . . . , xn] −→ K[ ∂

∂x1
, . . . ,

∂

∂xn
],

from the ring of polynomials in n variables x1, . . . , xn with coefficients in an arbitrary
field K to the ring of differential operators with constant coefficients.

3.1.3 Derivations and Monomials. M. Janet considers monomials in the variables
x1, . . . , xn and uses implicitly the isomorphism � of Proposition 3.1.2. To a mono-
mial xα = xα1

1 xα2
2 · · · xαn

n , he associates the differential operator

Dα := �(xα) = ∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

.

In [51, Chap. I], M. Janet considered finite monomial PDE systems. The equations
are of the form (3.1) and since the system has a finitely many equations, the set of
monomials associated to it is finite. The first result of the monograph is a finiteness
result onmonomials stating that a sequence ofmonomials in which none is amultiple
of a preceding one is necessarily finite. M. Janet proved this result by induction on
the number of variables. We can formulate it as follows.

3.1.4 Lemma ([51, Sect. 7]) Let U be a subset ofM(x1, . . . , xn). If, for any mono-
mials u and u′ in U , the monomial u does not divide u′, then the set U is finite.

This result corresponds to Dickson’s Lemma [17], which asserts that every mono-
mial ideal of K[x1, . . . , xn] is finitely generated.

3.1.5 Stability of the Multiplication. M. Janet paid a special attention to families
ofmonomials with the following property. A subset ofmonomialU ofM(x1, . . . , xn)
is called multiplicatively stable if for any monomial u in M(x1, . . . , xn) such that
there exists u′ in U that divides u, one has that u is in U . In other words, the set U is
closed under multiplication by monomials inM(x1, . . . , xn).



20 K. Iohara and P. Malbos

As a consequence of Lemma 3.1.4, if U is a multiplicatively stable subset of
M(x1, . . . , xn), then it contains only finitely many elements that are not multiples of
any other elements in U . Hence, there exists a finite subset U f of U such that for any
u in U , there exists u f in U f such that u f divides u.

3.1.6 Ascending Chain Condition. M. Janet observed another consequence of
Lemma 3.1.4: the ascending chain condition on multiplicatively stable monomial
sets, which he formulated as follows. Any ascending sequence of multiplicatively
stable subsets of M(x1, . . . , xn)

U1 ⊂ U2 ⊂ · · · ⊂ Uk ⊂ · · ·

is finite. This corresponds to the Noetherian property on the set of monomials in
finitely many variables.

3.1.7 Inductive Construction. Let us fix a total order on the variables xn > xn−1 >

· · · > x1. LetU be a finite subset ofM(x1, . . . , xn). Let us define, for every 0 � αn �
degn(U),

[αn] = {u ∈ U | degn(u) = αn }.

The family ([0], . . . , [degn(U)]) forms a partition of U . We define for every 0 �
αn � degn(U)

[αn] = {u ∈ M(x1, . . . , xn−1) | uxαn
n ∈ U }.

We set for every 0 � i � degn(U)

U ′
i =

⋃

0�αn�i

{u ∈ M(x1, . . . , xn−1) | there exists u′ ∈ [αn] such that u′|u }.

Finally, we set

Uk =
{

{ uxkn | u ∈ U ′
k }, if k < degn(U),

{ uxkn | u ∈ U ′
degn(U) }, if k � degn(U),

and M(U) = ⋃

k�0
Uk . By this inductive construction, M. Janet obtains the monomial

ideal generated by U . Indeed, M(U) coincides with the following set of monomial:

{ u ∈ M(x1, . . . , xn) | there exists u′ in Usuch that u′|u }.

3.1.8 Example. Consider the subset U = { x3x22 , x33 x21 } ofM(x1, x2, x3). We have

[0] = ∅, [1] = {x3x22 }, [2] = ∅, [3] = {x33 x21 }.

Hence,
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[0] = ∅, [1] = {x22 }, [2] = ∅, [3] = {x21 }.
The set M(U) is defined using of the following subsets:

U ′
0 = ∅, U ′

1 = {xα1
1 xα2

2 | α2 � 2}, U ′
2 = U ′

1, U ′
3 = {xα1

1 xα2
2 | α1 � 2 ou α2 � 2}.

3.1.9 Janet’s Multiplicative Variables [47, Sect. 7]. Let us fix a total order xn >

xn−1 > · · · > x1 on variables. Let U be a finite subset of M(x1, . . . , xn). For all
1 � i � n, we define the following subset of U :

[αi , . . . ,αn] = {u ∈ U | deg j (u) = α j for all i � j � n}.

That is, [αi , . . . ,αn] contains monomials of U of the form vxαi
i · · · xαn

n , with v in
M(x1, . . . , xi−1). The sets [αi , . . . ,αn] with αi , . . . ,αn in N form a partition of U .
Moreover, for all 1 � i � n − 1, we have [αi ,αi+1, . . . ,αn] ⊆ [αi+1, . . . ,αn] and
the sets [αi , . . . ,αn], where αi ∈ N, form a partition of [αi+1, . . . ,αn].

Given a monomial u in U , the variable xn is said to be multiplicative for u in the
sense of Janet if

degn(u) = degn(U).

For i � n − 1, the variable xi is said to bemultiplicative for u in the sense of Janet if

u ∈ [αi+1, . . . ,αn] and degi (u) = degi ([αi+1, . . . ,αn]).

We will denote by MultUJ (u) the set of multiplicative variables of u in the sense of
Janet with respect to the set U , also called J -multiplicative variables.

Note that, by definition, for any u and u′ in [αi+1, . . . ,αn], we have

{xi+1, . . . , xn} ∩ MultUJ (u) = {xi+1, . . . , xn} ∩ MultUJ (u′).

Accordingly, we will denote this set of multiplicative variables byMultUJ ([αi+1, . . . ,

αn]).
3.1.10 Example. Consider the subset U = {x2x3, x22 , x1} of M(x1, x2, x3) with the
order
x3 > x2 > x1. We have deg3(U) = 1; hence, the variable x3 is J -multiplicative
for x3x2 and not J -multiplicative for x22 and x1.

For α ∈ N, we have [α] = {u ∈ U | deg3(u) = α}, hence

[0] = {x22 , x1}, [1] = {x2x3}.

We have deg2(x
2
2 ) = deg2([0]), deg2(x1) �= deg2([0]) and deg2(x2x3) = deg2([1]),

so the variable x2 is J -multiplicative for x22 and x2x3 and not J -multiplicative for
x1. Further,

[0, 0] = {x1}, [0, 2] = {x22 }, [1, 1] = {x2x3},
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and deg1(x
2
2 ) = deg1([0, 2]), deg1(x1) = deg1([0, 0]) and deg1(x3x2) = deg1([1, 1]),

so the variable x1 is J -multiplicative for x1, x22 and x3x2.

3.1.11 Janet Divisor. Let U be a subset of M(x1, . . . , xn). A monomial u in U is
called Janet divisor of a monomial w in M(x1, . . . , xn) with respect to U , if there
is a decomposition w = uv, where any variable occurring in v is J -multiplicative
with respect to U .

3.1.12 Proposition Let U be a subset of M(x1, . . . , xn) and w be a monomial in
M(x1, . . . , xn). Then w admits in U at most one Janet divisor with respect to U .

Proof If u is a Janet divisor ofw with respect to U , there is a v inM(MultUJ (u)) such
that w = uv. We have degn(v) = degn(w) − degn(u). If degn(w) � degn(U), then
the variable xn isJ -multiplicative and degn(v) = degn(w) − degn(U). If degn(w) <

degn(U), then xn cannot be J -multiplicative and degn(v) = 0.
As a consequence, for any Janet divisors u and u′ of w in U , we have degn(u) =

degn(u
′) and u, u′ ∈ [α] for some α ∈ N.

Suppose now that u and u′ are two distinct Janet divisors of w in U . There exists
1 < k � n such that u, u′ ∈ [αk, . . . ,αn] and degk−1(u) �= degk−1(u

′). Suppose that
degk−1(u) > degk−1(u

′). Then the variable xk−1 cannot be J -multiplicative for u′
with respect to U . It follows that u′ cannot be a Janet divisor of w. This leads to a
contradiction, hence u = u′. �

3.1.13 Complementary Monomials. Let U be a finite subset of M(x1, . . . , xn).
The set of complementary monomials of U is the set of monomials

U� =
⋃

1�i�n

U�(i), (3.2)

where
U�(n) = {xβ

n | 0 � β � degn(U) and [β] = ∅},

and for every 1 � i < n,

U�(i) = { xβ
i x

αi+1
i+1 . . . xαn

n

∣

∣ [αi+1, . . . ,αn] �= ∅,

0 � β < degi ([αi+1, . . . ,αn]), [β,αi+1, . . . ,αn] = ∅ }.

Note that the union in (3.2) is disjoint, since U�(i) ∩ U�( j) = ∅ for i �= j .

3.1.14 Multiplicative Variables of Complementary Monomials. For any mono-

mial u in U�, we define the set �Mult
U�

ofmultiplicative variables for u with respect
to complementary monomials in U� as follows. If the monomial u is in U�(n), we set

�Mult
U�(n)

J (u) = {x1, . . . , xn−1}.
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For 1 � i � n − 1, for any monomial u in U�(i), there exist αi+1, . . . ,αn such that
u ∈ [αi+1, . . . ,αn]. Then

�Mult
U�(i)

J (u) = {x1, . . . , xi−1} ∪ MultUJ ([αi+1, . . . ,αn]).

Finally, for u in U�, there exists a unique 1 � iu � n such that u ∈ U�(iu). Then we
set

�Mult
U�

J (u) = �Mult
U�(iu )

J (u).

3.1.15 Example [51, p. 17]. Consider the subsetU = { x33 x22 x21 , x33 x31 , x3x2x31 ,
x3x2 } of M(x1, x2, x3) with the order x3 > x2 > x1. The following table gives the
multiplicative variables for each monomial:

x33 x
2
2 x

2
1 x3 x2 x1

x33 x
3
1 x3 x1

x3x2x31 x2 x1
x3x2 x2

The sets of complementary monomials are

U�(3) = {1, x23 }, U�(2) = {x33 x2, x3},
U�(1) = {x33 x22 x1, x33 x22 , x33 x21 , x33 x1, x33 , x3x2x21 , x3x2x1}.

The following table gives the multiplicative variables for each monomial:

1, x23 x2 x1
x33 x2 x3 x1
x3 x1

x33 x
2
2 x1, x

3
3 x

2
2 x3 x2

x33 x
2
1 , x3x1, x

3
3 x3

x3x2x21 , x3x2x1 x2

3.2 Completion Procedure

In this subsection, we present the notion of complete system introduced by Janet
in [51]. In particular, we recall the completion procedure that he gave in order to
complete a finite set of monomials.

3.2.1 Complete Systems. Let U be a subset of M(x1, . . . , xn). For a monomial u
in U (resp. in U�), M. Janet defined the involutive cone of u with respect to U (resp.
to U�) as the set of monomials
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coneJ (u,U) = { uv | v ∈ M(MultUJ (u)) }
(resp. cone�

J (u,U) = { uv | v ∈ M(�Mult
U�

J (u)) }).

The involutive cone of the set U is defined by

coneJ (U) =
⋃

u∈U
coneJ (u,U) (resp. cone�

J (U) =
⋃

u∈U�

cone�
J (u,U)).

M. Janet called complete a set ofmonomialsU when cone(U) = coneJ (U). An invo-
lutive cone is called class in Janet’s monograph [51]. The terminology “involutive”
first appeared in the paper [25] by Gerdt and is standard now. We refer the reader to
[63] for a discussion of the relation between this notion and the notion of involutivity
in the work of É. Cartan.

3.2.2 Proposition [51, p. 18] For any finite subset U of M(x1, . . . , xn), we have
the partition

M(x1, . . . , xn) = coneJ (U) � cone�
J (U).

3.2.3 A Proof of Completeness by Induction. Let U be a finite subset of
M(x1, . . . , xn). Consider the partition [0], . . . , [degn(U)] of monomials in U by
their degrees in xn . Let α1 < α2 < · · · < αk be positive integers such that [αi ] is
non-empty. Recall that [αi ] is the set of monomials u in M(x1, . . . , xn−1) such that
uxαi

n is in U . With these notations, the following result gives an inductive method to
prove that a finite set of monomials is complete.

3.2.4 Proposition [51, p. 19]Afinite setU is complete if and only if the two following
conditions are satisfied:

(i) the sets [α1], . . . , [αk] are complete,
(ii) for any 1 � i < k, the set [αi ] is contained in coneJ ([αi + 1]).

As an immediate consequence of this proposition,M. Janet obtained the following
characterization.

3.2.5 Proposition [51, p. 20] A finite subset U ofM(x1, . . . , xn) is complete if and
only if, for any u in U and any x non-multiplicative variable of u with respect to U ,
ux lies in coneJ (U).

3.2.6 Example [51, p. 21]. Consider the subset U = { x5x4, x5x3, x5x2, x24 , x4x3,
x23 } ofM(x1, . . . , x5). The multiplicative variables are given by the following table:

x5x4 x5 x4 x3 x2 x1
x5x3 x5 x3 x2 x1
x5x2 x5 x2 x1
x24 x4 x3 x2 x1
x3x4 x3 x2 x1
x23 x3 x2 x1
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To prove that this set of monomials is complete, we apply Proposition 3.2.5. The
completeness follows from the identities

x5x3 · x4 = x5x4 · x3,
x5x2 · x4 = x5x4 · x2, x5x2 · x3 = x5x3 · x2,

x24 · x5 = x5x4 · x4,
x4x3 · x5 = x5x4 · x3, x4x3 · x4 = x24 · x3,
x23 · x5 = x5x3 · x3, x23 · x4 = x4x3 · x3.

3.2.7 Examples. For every 1 � p � n, the set of monomials of degree p is com-
plete. Any finite set of monomials of degree 1 is complete.

3.2.8 Theorem (Janet’s Completion Lemma, [51, p. 21]) For any finite subset U of
M(x1, . . . , xn) there exists a finite set J (U) satisfying the following three conditions:

(i) J (U) is complete,
(ii) U ⊆ J (U),

(iii) cone(U) = cone(J (U)).

3.2.9 Completion Procedure. From Proposition 3.2.5, M. Janet deduced the com-
pletion procedure Complete(U), Procedure 1, which computes a completion of a
finite subset U of M(x1, . . . , xn) [51, p. 21]. M. Janet did not give a proof of the
fact that this procedure terminates. We will present a proof of the correctness and
termination of this procedure in Sect. 4.2.

Input: U a finite subset of M(x1, . . . , xn)

Output: A finite set J (U) satisfying the conditions of Theorem 3.2.8.

begin
˜U ← U
while exist u ∈ ˜U and x ∈ NMult˜UJ (u) such that ux is not in coneJ (˜U) do

Choose such u and x ,
˜U ← ˜U ∪ {ux}.

end
end

Procedure 1: Complete(U)

3.2.10 Example [51, p. 28]. Consider the subset U = { x3x22 , x33 x21 } of M(x1, x2,
x3) with the order x3 > x2 > x1. The following table gives the multiplicative vari-
ables for each monomial:

x33 x
2
1 x3 x2 x1

x3x22 x2 x1

We complete the set U as follows. The monomial x3x22 · x3 is not in coneJ (U); we
set ˜U ← U ∪ {x23 x22 } and we compute multiplicative variables with respect to ˜U :
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x33 x
2
1 x3 x2 x1

x23 x
2
2 x2 x1

x3x22 x2 x1

The monomial x3x22 · x3 is in coneJ (˜U), but x23 x
2
2 · x3 is not in coneJ (˜U); we set

˜U ← ˜U ∪ {x33 x22 }. The multiplicative variables of this new set of monomials are

x23 x
2
2 x3 x2 x1

x33 x
2
1 x3 x1

x23 x
2
2 x2 x1

x3x22 x2 x1

The monomial x3x21 · x2 is not in coneJ (˜U), the other products are in coneJ (˜U), and
we prove that the system

˜U = { x3x22 , x33 x21 , x33 x22 , x33 x2x21 , x23 x22 }

is complete.

3.3 Inversion of Differentiation

In this subsection, we recall the results of Janet from [51] on the solvability of
monomial PDE systems of the form

(�) Dαϕ = fα(x1, x2, . . . , xn), α ∈ N
n, (3.3)

where ϕ is an unknown function and fα are analytic functions of several variables.
As recalled in Sect. 3.1.1, an infinite set of partial differential equations can be always
reduced to a finite set of such equations. This is a consequence of Dickson’s Lemma,
whose formulation due toM. Janet is given inLemma3.1.4.Accordingly,without loss
of generality, we can assume that the system (�) is finite. Using Proposition 3.1.2,
M. Janet associated to each differential operator Dα amonomial xα inM(x1, . . . , xn).
In this way, to a PDE system (�) in the variables x1, . . . , xn he associated a finite
set lm(�) of monomials. By Theorem 3.2.8, any such set lm(�) of monomials can
be completed to a finite complete set J (lm(�)) having the same cone as lm(�).

3.3.1 Computation of Inversion of Differentiation. Let us now assume that the
set of monomials lm(�) is finite and complete. Since the cone of lm(�) is equal
to the involutive cone of lm(�), each monomial u in lm(�) and non-multiplicative
variable xi in NMultlm(�)

J (u), admits a decomposition

uxi = vw,
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where v is in lm(�) and w belongs to M(Multlm(�)

J (v)). To each such a decompo-
sition, it corresponds a compatibility condition of the PDE system (�), that is, for
u = xα, v = xβ and w = xγ with α,β and γ in N

n ,

∂ fα
∂xi

= Dγ fβ .

Let us denote by (C�) the set of all such compatibility conditions. M. Janet showed
that under the completeness hypothesis this set of compatibility conditions is suffi-
cient for the PDE system (�) to be formally integrable in the sense of [72].

3.3.2 The Space of Initial Conditions. Let us consider the set lm(�)� of comple-
mentary monomials of the finite complete set lm(�). Suppose that the PDE system
(�) satisfies the set (C�) of compatibility conditions. M. Janet associated to each
monomial v = xβ in lm(�)� with β ∈ N

n an analytic function

ϕβ(xi1 , . . . , xikv ),

where {xi1 , . . . , xikv } = �Mult
lm(�)�

J (v). By Proposition 3.2.2, the set of such analytic
functions provides a compatible initial condition. Under these assumptions, M. Janet
proved the following result.

3.3.3 Theorem [51, p. 25] Let (�) be a finite monomial PDE system such that
lm(�) is complete. If (�) satisfies the compatibility conditions (C�), then it admits a
unique solutionwith initial conditions given for any v = xβ in lm(�)� withβ ∈ N

n by

Dβϕ
∣

∣

x j=0 ∀x j∈�NMult
lm(�)�
J (v)

= ϕβ(xi1 , . . . , xikv ),

where {xi1 , . . . , xikv } = �Mult
lm(�)�

J (v).

These initial conditions were called by M. Janet initial conditions. A method to
obtain these initial conditions is illustrated by the two following examples.

3.3.4 Example [51, p. 26]. Consider the following monomial PDE system (�) for
the unknown function ϕ of the variables x1, . . . , x5:

∂2ϕ

∂x5∂x4
= f1(x1, . . . , x5),

∂2ϕ

∂x5∂x3
= f2(x1, . . . , x5),

∂2ϕ

∂x5∂x2
= f3(x1, . . . , x5),

∂2ϕ

∂x24
= f4(x1, . . . , x5),

∂2ϕ

∂x4∂x3
= f5(x1, . . . , x5),

∂2ϕ

∂x23
= f6(x1, . . . , x5).

The set (C�) of compatibility relations of the PDE system (�) is a consequence of
the identities used in Example 3.2.6 to prove the completeness of the system:
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x5x3 · x4 = x5x4 · x3, ∂ f2
∂x2

= ∂ f1
∂x3

,

x5x2 · x4 = x5x4 · x2, x5x2 · x3 = x5x3 · x2, ∂ f3
∂x4

= ∂ f1
∂x2

,
∂ f3
∂x3

= ∂ f2
∂x2

,

x24 · x5 = x5x4 · x4, ∂ f4
∂x5

= ∂ f1
∂x4

,

x4x3 · x5 = x5x4 · x3, x4x3 · x4 = x24 · x3, ∂ f5
∂x5

= ∂ f1
∂x3

,
∂ f5
∂x4

= ∂ f4
∂x3

,

x23 · x5 = x5x3 · x3, x23 · x4 = x4x3 · x3, ∂ f6
∂x5

= ∂ f2
∂x3

,
∂ f6
∂x4

= ∂ f5
∂x3

.

The initial conditions are obtained using themultiplicative variables of the set lm(�)�

of complementary monomials of lm(�). We have

lm(�)�(5) = lm(�)�(4) = lm(�)�(1) = ∅, lm(�)�(3) = {1, x3, x4}, lm(�)�(2) = {x5}.

The multiplicative variables of these monomials are given in the table

1, x3, x4 x1, x2,
x5 x1, x5.

By Theorem 3.3.3, the PDE system (�) always admits a unique solution with any
given initial conditions of the type

∂ϕ

∂x4

∣

∣

∣

∣

x3=x4=x5=0

= ϕ0,0,0,1,0(x1, x2),

∂ϕ

∂x3

∣

∣

∣

∣

x3=x4=x5=0

= ϕ0,0,1,0,0(x1, x2),

ϕ|x3=x4=x5=0 = ϕ0,0,0,0,0(x1, x2),

∂ϕ

∂x5

∣

∣

∣

∣

x2=x3=x4=0

= ϕ0,0,0,0,1(x1, x5).

3.3.5 Example. In a last example, M. Janet considered a monomial PDE system
where the partial derivatives of the left-hand side do not form a complete set of
monomials, namely, the PDE system (�) for one unknown function ϕ of the vari-
ables x1, x2, x3, given by

∂3ϕ

∂x22∂x3
= f1(x1, x2, x3),

∂5ϕ

∂x21∂x
3
3

= f2(x1, x2, x3).

We consider the set of monomials lm(�) = {x3x22 , x33 x21 }. In Example 3.2.10, we
complete lm(�) to the complete set of monomials

J (lm(�)) = { x3x22 , x33 x21 , x33 x22 , x33 x2x21 , x23 x22 }.

The complementary sets of monomials are
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J (lm(�))�(3) = {1}, J (lm(�))�(2) = {x23 x2, x23 , x3x2, x3},
J (lm(�))�(1) = {x33 x2x1, x33 x2, x33 x1, x33}.

The multiplicative variables of these monomials are given in the table

J (lm(�))�(3) x1, x2,
J (lm(�))�(2) x1.
J (lm(�))�(1) x3.

By Theorem 3.3.3, the PDE system (�) admits always a unique solution for any
given initial conditions of the type

ϕ|x3=0 = ϕ0,0,0(x1, x2),
∂ϕ

∂x3

∣

∣

∣

∣

x2=x3=0
= ϕ0,0,1(x1),

∂2ϕ

∂x3∂x2

∣

∣

∣

∣

∣

x2=x3=0

= ϕ0,1,1(x1),

∂2ϕ

∂x23

∣

∣

∣

∣

∣

x2=x3=0

= ϕ0,0,2(x1),
∂3ϕ

∂x23∂x2

∣

∣

∣

∣

∣

x2=x3=0

= ϕ0,1,2(x1),
∂3ϕ

∂x33

∣

∣

∣

∣

∣

x1=x2=0

= ϕ0,0,3(x3),

∂4ϕ

∂x33∂x1

∣

∣

∣

∣

∣

x1=x2=0

= ϕ1,0,3(x3),
∂4ϕ

∂x33∂x2

∣

∣

∣

∣

∣

x1=x2=0

= ϕ0,1,3(x3),
∂5ϕ

∂x33∂x2∂x1

∣

∣

∣

∣

∣

x1=x2=0

= ϕ1,1,3(x3).

4 Monomial Involutive Bases

In this section, we recall a general approach of involutive monomial divisions intro-
duced by Gerdt in [25], see also [27, 28]. In particular, we give the axiomatic
properties of an involutive division. The partition of variables into multiplicative and
non-multiplicative can be deduced from this axiomatics. In this way, we explain how
the notion of multiplicative variable in the sense of Janet can be deduced from a
particular involutive division.

4.1 Involutive Division

4.1.1 Involutive Division. An involutive divisionI on the set ofmonomialsM(x1, . . . , xn)
is definedby a relation |UI inU × M(x1, . . . , xn), for every subsetU ofM(x1, . . . , xn),
satisfying, for all monomials u, u′ in U and v, w inM(x1, . . . , xn), the following six
conditions:

(i) u|UIw implies u|w,
(ii) u|UI u, for all u in U ,

(iii) u|UI uv and u|UI uw if and only if u|UI uvw,
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(iv) if u|UIw and u′|UIw, then u|UI u′ or u′|UI u,
(v) if u|UI u′ and u′|UIw, then u|UIw,

(vi) if U ′ ⊆ U and u ∈ U ′, then u|UIw implies u|U ′
I w.

When there is no danger of confusion, the relation |UI will be also denoted by |I .
4.1.2 Multiplicative Monomial. If u|UIw, by (i) there exists a monomial v such
that w = uv. We say that u is an I-involutive divisor of w, that w is an I-involutive
multiple of u, and that v is I-multiplicative for u with respect to U . When the
monomial uv is not an involutive multiple of u with respect to U , we say that v is
I-non-multiplicative for u with respect to U .

We define in the same way the notion of multiplicative (resp. non-multiplicative)
variable. We denote by MultUI (u) (resp. NMultUI (u)) the set of multiplicative (resp.
non-multiplicative) variables for the division I of a monomial u with respect to U .
We have

MultUI (u) = { x ∈ {x1, . . . , xn}
∣

∣ u|UI ux }

and thus obtain a partition of the set of variables { x1, . . . , xn } into sets of multi-
plicative and non-multiplicative variables. An involutive division I is thus entirely
defined by a partition

{x1, . . . , xn} = MultUI (u) � NMultUI (u),

for any finite subset U of M(x1, . . . , xn) and any u in U , satisfying conditions (iv),
(v) and (vi) of Definition 4.1.1. The involutive division I is then defined by setting
u |UI w ifw = uv and the monomial v belongs toM(MultUI (u)). Conditions (i), (ii),
and (iii) of Definition 4.1.1 are consequences of this definition.

4.1.3 Example. Consider U = {x1, x2} inM(x1, x2) and suppose that I is an invo-
lutive division such that MultUI (x1) = {x1} and MultUI (x2) = {x2}. Then we have

x1 �I x1x2, and x2 �I x1x2.

4.1.4 Autoreduction. A subset U of M(x1, . . . , xn) is said to be autoreduced with
respect to an involutive divisionI, orI-autoreduced, if it does not contain amonomial
I-divisible by another monomial of U .

In particular, by the definition of the involutive division, for any monomials u, u′
in U and any monomial w inM(x1, . . . , xn), we have u|Iw and u′|Iw implies u|Iu′
or u′|Iu. As a consequence, if a set of monomials U is I-autoreduced, then any
monomial in M(x1, . . . , xn) admits at most one I-involutive divisor in U .
4.1.5 Janet Division. We call Janet division the division onM(x1, . . . , xn) given by
the multiplicative variables in the sense of M. Janet defined in Sect. 3.1.9. Explicitly,
for a subset U ofM(x1, . . . , xn) and monomials u in U and w inM(x1, . . . , xn), we
define u|UJ w if u is a Janet divisor of w as defined in Sect. 3.1.11, that is w = uv,
where v ∈ M(MultUJ (u)) and MultUJ (u) is the set of Janet’s multiplicative variables
defined in Sect. 3.1.9.
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By Proposition 3.1.12, for a fixed subset of U , any monomial of M(x1, . . . , xn)
has a unique Janet divisor in U with respect to U . As a consequence, the conditions
(iv) and (v) of Definition4.1.1 hold trivially for Janet division. Now suppose that
U ′ ⊆ U and u is a monomial in U ′. If u|UJ w, then there is a decomposition w = uv

with v ∈ M(MultUJ (u)). As MultUJ (u) ⊆ MultU
′

J (u), this implies that u|U ′
J w. Hence,

the conditions (vi) of Definition4.1.1 holds for Janet division. We have thus proved.

4.1.6 Proposition [27, Proposition 3.6] Janet division is involutive.

4.2 Involutive Completion Procedure

4.2.1 Involutive Set. Let I be an involutive division onM(x1, . . . , xn) and let U be
a set of monomials. The involutive cone of a monomial u in U with respect to the
involutive division I is defined by

coneI(u,U) = { uv
∣

∣ v ∈ M(x1, . . . , xn) and u|UI uv }.

The involutive cone of U with respect to the involutive division I is the following
subset of monomials:

coneI(U) =
⋃

u∈U
coneI(u,U).

Note that the inclusion coneI(U) ⊆ cone(U) holds for any set U . When the set U is
I-autoreduced, this union is disjoint, thanks to involutivity.

A subset U ofM(x1, . . . , xn) is I-involutive if the following equality holds:

cone(U) = coneI(U).

In other words, a set U is I-involutive if any multiple of an element u in U is also
the I-involutive multiple of an element v of U . Note that the monomial v can be
different from the monomial u, as we have seen in Example 3.2.6.

4.2.2 Involutive Completion. A completion of a subset U of M(x1, . . . , xn) with
respect to an involutive division I, or I-completion for short, is a set of monomials
˜U satisfying the following three conditions:

(i) ˜U is involutive,
(ii) U ⊆ ˜U ,

(iii) cone(˜U) = cone(U).

4.2.3 Noetherianity. An involutive division I is said to be Noetherian if all finite
subset U of M(x1, . . . , xn) admits a finite I-completion ˜U .

4.2.4 Proposition [27, Proposition 4.5] Janet division is Noetherian.
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4.2.5 Prolongation. LetU be a subset ofM(x1, . . . , xn). We call prolongation of an
element u of U a multiplication of u by a variable x . Given an involutive division I,
a prolongation ux is multiplicative (resp. non-multiplicative) if x is a multiplicative
(resp. non-multiplicative) variable.

4.2.6 Local Involutivity. A subset U of M(x1, . . . , xn) is locally involutive with
respect to an involutive division I if any non-multiplicative prolongation of an ele-
ment of U admit an involutive divisor in U . That is

∀u ∈ U ∀xi ∈ NMultUI (u) ∃v ∈ U such that v|Iuxi .

4.2.7 Example [27, Example 4.8]. By definition, if U is I-involutive, then it is
locally I-involutive. The converse is false in general. Indeed, consider the involutive
division I onM = M(x1, x2, x3) defined by

MultMI (x1) = {x1, x3}, MultMI (x2) = {x1, x2}, MultMI (x3) = {x2, x3},

with MultMI (1) = {x1, x2, x3} and MultMI (u) is empty for deg(u) � 2. Then the set
{x1, x2, x3} is locally I-involutive, but not I-involutive.
4.2.8 Continuity. An involutive division I is continuous if for any finite subset U
of M(x1, . . . , xn) and any finite sequence (u1, . . . , uk) of elements in U for which
there exists xi j in NMultUI (u j ) such that

uk |Iuk−1xik−1 , . . . , u3|Iu2xi2 , u2|Iu1xi1 ,

it holds that ui �= u j , for any i �= j .
For instance, the involutive division in Example 4.2.7 is not continuous. Indeed,

there exists the following cycle of divisions:

x2|Ix1x2, x1|Ix3x1, x3|Ix2x3, x2|Ix1x2.

4.2.9 From Local to Global Involutivity. Any I-involutive subset U ofM(x1, . . . ,
xn) is locally I-involutive. When the division I is continuous, the converse is also
true. Indeed, suppose that U is locally I-involutive and I is continuous. Let us show
that U is I-involutive.

Given a monomial u in U and a monomial w inM(x1, . . . , xn), we claim that the
monomial uw admits an I-involutive divisor in U . If u|Iuw, the claim is proved.
Otherwise, there exists a non-multiplicative variable xk1 in NMultUI (u) such that
xk1 |w. By local involutivity, themonomial uxk1 admits anI-involutive divisor v1 inU .
If v1|Iuw, the claim is proved. Otherwise, there exists a non-multiplicative variable
xk2 in NMultUI (v1) such that xk2 divides

uw
v1
. By local involutivity, the monomial v1xk2

admits an I-involutive divisor v2 in U .
In this way, we construct a sequence (u, v1, v2, . . .) of monomials in U such that

v1|Iuxk1 , v2|Iv1xk2 , v3|Iv2xk3 , . . .
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By the continuity hypothesis, all monomials v1, v2, . . . are distinct. Moreover, all
these monomials are divisors of uw, which admits a finite set of distinct divisors.
As a consequence, the above sequence is finite. It follows that its last term vk is an
I-involutive monomial of uw. We have thus proved the following result.

4.2.10 Theorem [27, Theorem 4.10] Let I be a continuous involutive division. A
subset of M(x1, . . . , xn) is locally I-involutive if and only if it is I-involutive.

4.2.11 Proposition [27, Corollary 4.11] Janet division is continuous.

Input: U a finite subset of M(x1, . . . , xn)

begin
˜U ← U
while exist u ∈ ˜U and x ∈ NMult˜UI (u) such that ux does not have an I-involutive
divisor in ˜U do

Choose such a u and x corresponding to the smallest monomial ux with respect to
the monomial order �
˜U ← ˜U ∪ {ux}

end
end

Output: ˜U the minimal involutive completion of the set U .

Procedure 2: Involutive completion procedure.

4.2.12 Involutive Completion Procedure. Procedure 2 generalizes Janet’s comple-
tion procedure given in Sect. 3.2.9 to any involutive division. Let us fix a monomial
order � on M(x1, . . . , xn). Given a set of monomials U , the procedure completes
the set U by all possible non-involutives prolongations of monomials in U .

By introducing the notion of constructive involutive division, Gerdt and Blinkov
gave in [27] some conditions on the involutive division I in order to establish the
correctness and the termination of this procedure. A continuous involutive division
I is constructive if for any subset U ofM(x1, . . . , xn) and for any non-multiplicative
prolongation ux of a monomial u in U satisfying the two conditions

(i) ux does not have an I-involutive divisor in U ,
(ii) any non-multiplicative prolongation vy �= ux of a monomial v in U that divides

ux has an I-involutive divisor in U ,
the monomial ux cannot be I-involutively divided by a monomial w in coneI(U)

with respect to U ∪ {w}.
If I is a constructive division, then the completion procedure completes the set

U to an involutive set. We refer the reader to [27, Theorem 4.14] for a proof of the
correctness and termination of the completion procedure under these hypotheses.

4.2.13 Example. An application of this procedure to the set of monomials U =
{ x3x22 , x33 x21 } given by Janet in [51] is presented in Sect. 3.2.10.
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4.3 Others Involutive Approaches

For the analysis of differential systems, several other notions of multiplicative vari-
ables were studied by J. M. Thomas 1937 and J.-F. Pommarret in 1978. Other exam-
ples of involutive divisions can be found in [28].

4.3.1 Thomas Division. In [86], Thomas introduced an involutive division that dif-
fers from that of M. Janet, also used in the analysis of differential systems. The
multiplicative variables in the sense of Thomas’s division for a monomial u with of
a finite subset U of M(x1, . . . , xn) are defined by the rule

xi ∈ MultUT (u) if degi (u) = degi (U).

In particular, we have u|UT w ifw = uv and for all variables xi in v, we have degi (u) =
degi (U). The Thomas division is a Noetherian and continuous involutive division.
We refer the reader to [27] for detailed proofs of these results. Note also that the
Janet division is a refinement of the Thomas division, in the sense that for any finite
set of monomials U and any monomial u in U , the following inclusions hold:

MultUT (u) ⊆ MultUJ (u) and NMultUJ (u) ⊆ NMultUT (u).

4.3.2 Pommaret Division. In [72], Pommaret studied an involutive division that is
defined globally, that is, the multiplicative variables for the Pommaret division do
not depend on a given subset of monomials. In this way, Pommaret’s division can be
defined on an infinite set of monomials.

Fix an order on the variables x1 > x2 > · · · > xn . Given a monomial u =
xα1
1 · · · xαk

k , with αk > 0, the Pommaret multiplicative variables for u are defined
by the rule

x j ∈ MultM(x1,...,xn)
P (u), if j � k, and x j ∈ NMultM(x1,...,xn)

P (u), if j < k.

Set MultM(x1,...,xn)
P (1) = {x1, . . . , xn}. The Pommaret division is a continuous invo-

lutive division that is not Noetherian [27]. The Janet division is a refinement of
the Pommaret division, that is, for an autoreduced finite set of monomials U , the
following inclusions hold for any monomial u in U :

MultUP(u) ⊆ MultUJ (u) and NMultUJ (u) ⊆ NMultUP(u).

Finally, let us remark that the separation of variables into multiplicative and non-
multiplicative ones in the Pommaret division was used first by Janet in [51, Sect. 20].
For this reason, the terminology Pommaret division does not reflect correctly the
history of the theory.We refer the reader to the monograph by Seiler [82, Section3.5]
for a historical account.
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5 Polynomial Partial Differential Equations
Systems

In this section, we extend the results on monomial systems presented in Sect. 3 to
linear (polynomial) systems. All PDE systems are considered in analytic categories,
meaning that all unknown functions, coefficients, and initial conditions are assumed
to be analytic. In the first part, we recall the notion of principal derivative with
respect to an order on derivatives introduced by M. Janet. This notion is used to give
an algebraic characterization of complete integrability conditions of a PDE system.
Then we present a procedure that decides whether a given finite linear PDE system
can be transformed into a completely integrable linear PDE system. Finally, we recall
the algebraic formulation of involutivity introduced by Janet in [51].

5.1 Parametric and Principal Derivatives

5.1.1 Motivations. In [51, Chapter 2], M. Janet first considered the following PDE
for one unknown function on C

n:

∂2ϕ

∂x2n
=

∑

1�i, j<n

ai, j (x)
∂2ϕ

∂xi∂x j
+

∑

1�i<n

ai (x)
∂2ϕ

∂xi∂xn
+

n
∑

r=1

br (x)
∂ϕ

∂xr
+ c(x)ϕ + f (x),

(5.1)
where the functions ai, j (x), ai (x), br (x), c(x) and f (x) are analytic functions in
a neighborhood of a point P = (x01 , . . . , x

0
n ) in C

n . Given two analytic functions
ϕ1 and ϕ2 in a neighborhood UQ of a point Q = (x01 , . . . , x

0
n−1) in C

n−1, M. Janet
studied the problem of the existence of solutions of equation (5.1) with the initial
condition

ϕ|xn=x0n = ϕ1,
∂ϕ

∂xn

∣

∣

∣

∣

xn=x0n

= ϕ2, (5.2)

in a neighborhood of the point Q. In Sect. 5.4.2, we will formulate such condition
for higher order linear PDE systems with several unknown functions, called initial
condition.

5.1.2 Principal and Parametric Derivatives. In order to treat the problems of the
existence and uniqueness of a solution of Eq. (5.1) under the initial condition (5.2),
M. Janet introduced the notions of parametric and principal derivatives defined as
follows. The partial derivatives Dαϕ, with α = (α1, . . . ,αn), of an analytic function
ϕ are determined by

(i) ϕ1 and its derivatives for αn = 0,
(ii) ϕ2 and its derivatives for αn = 1,

in the neighborhoodUQ . These derivatives forαn = 0 andαn = 1 are calledparamet-

ric, while the derivatives for αn � 2, i.e., the derivatives of ∂2ϕ
∂x2n

, are called principal.
Note that the values of the principal derivatives at the point P are entirely given byϕ1
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and ϕ2 and by their derivatives thanks to Eq. (5.1). Note that the notion of parametric
derivative corresponds to a parametrization of the initial conditions of the system.

5.1.3 Janet’s Orders on Derivatives. Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn)

be in N
n . Let ϕ be an analytic function. The derivative Dαϕ is said to be posterior

(resp. anterior) to Dβϕ if

|α| > |β| (resp. |α| < |β|) or |α| = |β| and αn > βn (resp.αn < βn).

Obviously, any derivative of ϕ admits only finitely many anterior derivatives of ϕ.
Using this notion of posteriority, M. Janet showed the existence and uniqueness of
the solution to Eq. (5.1) under the initial conditions (5.2).

In his monograph, M. Janet gave several generalizations of the above notion of
posteriority. Thefirst one corresponds to the degree lexicographic order [51, Sect. 22],
formulated as follows:

(i) for |α| �= |β|, the derivative Dαϕ is called posterior (resp. anterior) to Dβϕ, if
|α| > |β| (resp. |α| < |β|),

(ii) for |α| = |β|, the derivative Dαϕ is called posterior (resp. anterior) to Dβϕ if
the first nonzero difference

αn − βn , αn−1 − βn−1 , . . . , α1 − β1,

is positive (resp. negative).

5.1.4 Generalization. Let us consider the following generalization of equation
(5.1):

Dϕ =
∑

i∈I
ai Diϕ + f, (5.3)

where D and the Di are differential operators such that Diϕ is anterior to Dϕ for all
i in I . The derivative Dϕ and all its derivatives are called principal derivatives of
the Eq. (5.3). All the other derivatives of u are called parametric derivatives of the
Eq. (5.3).

5.1.5 Weight Order. Further generalization of these order relations was given by
M. Janet by introducing the notion of cote, which corresponds to a parametrization of
a weight order defined as follows. Let us fix a positive integer s. We define a weight
matrix

C =
⎡

⎢

⎣

C1,1 . . . Cn,1
...

...

C1,s . . . Cn,s

⎤

⎥

⎦

that associates to each variable xi nonnegative integers Ci,1, . . . ,Ci,s , called the
s-weights of xi . This notion was called cote by Janet in [51, Sect. 22] following the
terminology introduced by Riquier [75]. Ritt used the term mark in [77]. For each
derivative Dαϕ, with α = (α1, . . . ,αn), of an analytic function ϕ, we associate the
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s-weight �(C) = (�1, . . . , �s), where the �k are defined by

�k =
n
∑

i=1

αiCi,k .

Given two monomial partial differential operators Dα and Dβ as in Sect. 5.1.3, we
say that Dαϕ is posterior (resp. anterior) to Dβϕ with respect to the weight matrix
C if

(i) |α| �= |β| and |α| > |β| (resp. |α| < |β|), or
(ii) |α| = |β| and the first nonzero difference

�1 − �′
1, �2 − �′

2 , . . . , �s − �′
s,

is positive (resp. negative).

In thisway,wedefine anorder on the set ofmonomial partial derivatives, calledweight
order. Note that, by setting Ci,k = δi+k,n+1, we recover the Janet order defined in
Sect. 5.1.3.

5.2 First-Order PDE Systems

We consider first the resolution of first-order PDE systems.

5.2.1 Complete Integrability. In [51, Sect. 36], M. Janet considered a first-order
PDE system of the form

(�)
∂ϕ

∂yλ
= fλ(y1, . . . , yh, z1, . . . , zk,ϕ, q1, . . . , qk) (1 � λ � h), (5.4)

where ϕ is an unknown function of the independent variables y1, . . . , yh, z1, . . . , zk ,
with h + k = n and qi = ∂ϕ

∂zi
. It is assumed that the functions fλ are analytic in a

neighborhood of a point P . M. Janet wrote down explicitly the integrability condition
of the PDE systems (�) as the equality

∂

∂yλ

(

∂ϕ

∂yμ

)

= ∂

∂yμ

(

∂ϕ

∂yλ

)

,

for any 1 � λ,μ � h. Differentiating (5.4), we deduce that

∂

∂yλ

(

∂ϕ

∂yμ

)

= ∂ fμ
∂yλ

+ ∂ϕ

∂yλ

∂ fμ
∂ϕ

+
k
∑

i=1

∂ fμ
∂qi

∂2ϕ

∂yλ∂zi
,

= ∂ fμ
∂yλ

+ fλ
∂ fμ
∂ϕ

+
k
∑

i=1

∂ fμ
∂qi

(

∂ fλ
∂zi

+ qi
∂ fλ
∂ϕ

)

+
k
∑

i, j=1

∂ fλ
∂qi

∂ fμ
∂q j

∂2ϕ

∂zi∂z j
.
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Hence, the integrability condition reads

∂

∂yλ

(

∂ϕ

∂yμ

)

− ∂

∂yμ

(

∂ϕ

∂yλ

)

= ∂ fμ
∂yλ

+ fλ
∂ fμ
∂ϕ

+
k
∑

i=1

∂ fμ
∂qi

(

∂ fλ
∂zi

+ qi
∂ fλ
∂ϕ

)

− ∂ fλ
∂yμ

− fμ
∂ fλ
∂ϕ

−
k
∑

i=1

∂ fλ
∂qi

(

∂ fμ
∂zi

+ qi
∂ fμ
∂ϕ

)

= 0,
(5.5)

for any 1 � λ �= μ � h. When the PDE system (�) in (5.4) satisfies relation (5.5),
it is said to be completely integrable.

5.2.2 Theorem Suppose that the PDE system (�) in (5.4) is completely integrable.
Let P be a point in C

n and ϕ(z1, . . . , zk) be an analytic function in the neigh-
borhood of the point π(P), where π : C

n → C
k denotes the canonical projection

(y1, . . . , yh, z1, . . . zk) �→ (z1, . . . , zk). Then, the system (�) admits only one ana-
lytic solution satisfying u = ϕ ◦ π in a neighborhood of the point P.

5.3 Higher Order Finite Linear PDE Systems

In [51, Sect. 39], M. Janet discussed the existence of solutions of a finite linear PDE
system for one unknown function ϕ in which each equation is of the form

(�) Diϕ =
∑

j

ai, j Di, jϕ, i ∈ I. (5.6)

All the functions ai, j are assumed to be analytic in a neighborhood of a point P inC
n .

5.3.1 Principal and Parametric Derivatives. Consider Janet’s order�J on deriva-
tives as the generalization defined in Sect. 5.1.3. We assume that each equation of
the system (�) defined by (5.6) satisfies the following two conditions:

(i) Di, jϕ is anterior to Diϕ, for any i in I ,
(ii) all the Di ’s for i in I are distinct.

We extend the notion of principal derivative introduced in Sect. 5.1.4 for one PDE
equation to a system of the form (5.6) as follows. The derivative Diϕ, for i in I , and
all its derivatives are called principal derivatives of the PDE system (�) in (5.6) with
respect to Janet’s order. Any other derivative of ϕ is called parametric derivative.

5.3.2 Completeness with Respect to Janet’s Order. Fix an order xn > xn−1 >

· · · > x1 on variables. By the isomorphism of Proposition 3.1.2, which identifies
monomial partial differential operators with monomials inM(x1, . . . , xn), we asso-
ciate to the set of operators Di ’s, i in I , defined in Sect. 5.3.1, a set lm�J (�) of
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monomials. By definition, the set lm�J (�) contains the monomials associated to
leading derivatives of the PDE system (�) with respect to Janet’s order.

The PDE system (�) is said to be completewith respect to Janet’s order �J if the
set of monomials lm�J (�) is complete in the sense of Sect. 3.2.1. Procedure 6 is a
completion procedure that transforms a finite linear PDE system into an equivalent
complete linear PDE system.

By definition, the set of principal derivatives corresponds, via the isomorphism of
Proposition 3.1.2, to the multiplicative cone of the monomial set lm�J (�). Hence,
when (�) is complete, the set of principal derivatives corresponds to the involutive
cone of lm�J (�). By Proposition 3.2.2, there is a partition

M(x1, . . . , xn) = coneJ (lm�J (�)) � cone�
J (lm�J (�)).

It follows that the set of parametric derivatives of a complete PDE system (�)

corresponds to the involutive cone of the set of monomials lm�J (�)�.

5.3.3 Initial Conditions. Consider the set lm�J (�)� of complementary monomials
of lm�J (�), as defined in Sect. 3.1.13. To a monomial xβ in lm�J (�)�, with β =
(β1, . . . ,βn) in N

n and

�Mult
lm�J (�)�

J (xβ) = {xi1 , . . . , xikβ },

we associate an arbitrary analytic function

ϕβ(xi1 , . . . , xikβ ).

Using these functions, M. Janet defined an initial condition:

(Cβ) Dβϕ
∣

∣

x j=0 ∀x j∈�NMult
lm�J

(�)�
J (xβ)

= ϕβ(xi1 , . . . , xikβ ).

Then he introduced an initial condition for the Eq. (5.6) with respect to the Janet
order as the set

{Cβ | xβ ∈ lm�J (�)� }. (5.7)

5.3.4 Theorem [51, Sect. 39] If thePDEsystem (�) in (5.6) is completewith respect
to Janet’s order �J , then it admits at most one analytic solution satisfying the initial
condition (5.7).

5.3.5 PDE Systems with Several Unknown Functions. The construction of initial
conditions given in Sect. 5.3.3 for one unknown function can be extended to linear
PDE systems on C

n with several unknown functions using a weight order. Consider
a linear PDE system with m unknown analytic functions ϕ1, . . . ,ϕm of the form

(�) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
ar,sα,βD

βϕs, α ∈ I r , (5.8)
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for 1 � r � m, where I r is a finite subset of N
n and the ar,sα,β are analytic functions.

For such a system, we define a weight order as follows. Fix a positive integer s.
To any variable xi we associate s + 1 weights Ci,0,Ci,1, . . . ,Ci,s by setting Ci,0 = 1
and taking Ci,1, . . . ,Ci,s as defined in Sect. 5.1.5. To each unknown function ϕ j ,
we associate s + 1 weights T ( j)

0 , T ( j)
1 . . . , T ( j)

s . With these data, we define the s + 1
weights �

( j)
0 , �

( j)
1 , . . . , �

( j)
s of the partial derivative Dαϕ j with α = (α1, . . . ,αn)

in N
n by setting

�
( j)
k =

n
∑

i=1

αiCi,k + T ( j)
k (0 � k � s).

We define the notions of anteriority and posteriority on derivatives with respect to
this weight order, denoted by �wo, as it is done in Sect. 5.3.1 for systems with one
unknown function. In particular, we define the notions of principal and parametric
derivatives in a similar way to the case of systems with one unknown function.

Now suppose that the system (5.8) is written in the form

(�) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺woDαϕr

ar,sα,βD
βϕs, α ∈ I r . (5.9)

We can formulate the notion of completeness with respect to the weight order�wo as
in Sect. 5.3.2. Let lm�wo(�,ϕr ) be the set of monomials associated to leading deriva-
tives Dα of all PDE in (�) such thatα belongs to I r . The PDE system (�) is complete
with respect to �wo, if for any 1 � r � m, the set of monomials lm�wo(�,ϕr ) is
complete in the sense of Sect. 3.2.1. Finally, we can formulate, as in (5.7), an initial
condition for the linear PDE system (5.9) with respect to such a weight order:

{Cβ,r | xβ ∈ lm�wo(�,ϕr )�, for 1 � r � m }. (5.10)

5.3.6 Theorem [51, Sect. 40] If the PDE system (�) in (5.9) is complete with
respect to a weight order �wo, then it admits at most one analytic solution satisfying
the initial condition (5.10).

M. Janet asserted that this result could be proved in a way similar to the proof of
Theorem 5.3.4.

5.4 Completely Integrable Higher Order Linear PDE
Systems

In this subsection, we will introduce integrability conditions for higher order lin-
ear PDE systems with several unknown functions. The main result, Theorem 5.4.7,
characterizes algebraically the complete integrability property for complete PDE
systems. It states that, under the completeness property, the complete integrability
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condition is equivalent to all integrability conditions being trivially satisfied. In this
subsection, we will assume that the linear PDE systems are complete. In Sect. 5.6
we will provide Procedure 6 that transforms a linear PDE system of the form (5.9)
into a complete linear PDE system with respect to a weight order.

5.4.1 Formal Solutions. Consider a linear PDE system (�) of the form (5.9) with
unknown functions ϕ1, . . . ,ϕm and independent variables x1, . . . , xn . Assume that
(�) is complete; hence, the set of monomials lm�wo(�,ϕr ) = {xα | α ∈ I r } is com-
plete for all 1 � r � m. For the remaining part of this subsection, we will denote
lm�wo(�,ϕr ) by Ur . Let (coneJ ,�wo(�)) denote the PDE system

�(u)(Dαϕr ) =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺woDαϕr

�(u)
(

ar,sα,βD
βϕs
)

, 1 � r � m,

for α ∈ I r and u ∈ M(Mult(xα,Ur )).
We use the PDE system (coneJ ,�wo(�)) to compute the values of the principal

derivative at a point P0 = (x01 , . . . , x
0
n ) of C

n . We call formal solutions of the PDE
system (�) at the point P0 the elements ϕ1, . . . ,ϕm in C[[x1 − x01 , . . . , xn − x0n ]]
which are solutions of (�). If the system (�) admits an analytic solution, then
these formal solutions are convergent series and give analytic solutions of (�) on a
neighborhood of the point P0.

5.4.2 Initial Conditions. We are interested in condition under which the system
(�) admits a solution for any given initial condition. The initial conditions are
parametrized by the set U�

r of complementary monomials of the set of monomi-
als Ur as in Sect. 5.3.3. Explicitly, for 1 � r � m, to a monomial xβ in U�

r , with β in

N
n and �Mult

U�
r

J (xβ) = {xi1 , . . . , xikr }, we associate an arbitrary analytic function

ϕβ,r (xi1 , . . . , xikr ).

Then by initial condition one means the following data:

(Cβ,r ) Dβϕr
∣

∣

x j=x0j ∀x j∈�NMult
U�
r

J (xβr )
= ϕβ,r (xi1 , . . . , xikr ).

Then, as the initial condition for the system (�) in (5.8), one takes the set

⋃

1�r�m

{Cβ,r | xβr ∈ U�
r }. (5.11)

Note that M. Janet calls degree of generality of the solution of the PDE system (�)

the dimension of the initial conditions of the system, that is

Max
u∈U�

r

∣

∣
�Mult

U�
r

J (u)
∣

∣.
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5.4.3 J -Normal Form. Suppose that the PDE system (�) is complete. Given a lin-
ear equation E among the unknown functions ϕ1, . . . ,ϕm and variables x1, . . . , xn ,
aJ -normal form of E with respect to the system (�) is an equation obtained from E
by the reduction process that replaces principal derivatives by parametric derivatives
by means of a procedure similar to RightReduce given in Procedure 5.

5.4.4 Integrability Conditions. Given 1 � r � m and α ∈ I r , let xi in NMultUr
J

(xα) be a non-multiplicative variable. Apply the partial derivative�(xi ) = ∂
∂xi

to the
equation

Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺woDαϕr

ar,sα,βD
βϕs .

This yields the PDE

�(xi )(D
αϕr ) =

∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺woDαϕr

(

∂ar,sα,β

∂xi
Dβϕs + ar,sα,β�(xi )(D

βϕs)

)

. (5.12)

Using the system (coneJ ,�wo(�)), we can rewrite the PDE (5.12) as a PDE formu-
lated in terms of parametric derivatives and independent variables. The set of mono-
mialsUr being complete, there existsα′ inN

n with xα′
inUr and u inM(MultUr

J (xα′
))

such that xi xα = uxα′
. Then we have �(xi )Dα = �(u)Dα′

and we obtain the
equation

∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺woDαϕr

(

∂ar,sα,β

∂xi
Dβϕs + ar,sα,β�(xi )(D

βϕs)

)

=
∑

(β′,s)∈Nn×{1,2,...,m}
Dβ′

ϕs≺woDα′
ϕr

�(u)(ar,sα′,β′ Dβ′
ϕs).

(5.13)
Using the equations of the system (coneJ ,�wo(�)), we replace all principal deriva-
tives in the equation (5.13) by parametric derivatives and independent variables. The
order �wo being well-founded this process is terminating. Moreover, when the PDE
system (�) is complete this reduction process is confluent in the sense that any trans-
formations of an Eq. (5.13) end with a unique J -normal form. The set of resulting
J -normal forms is denoted by IntCondJ ,�wo(�).

5.4.5 Remarks. Since the system (�) is complete, any Eq. (5.13) is reduced to
a unique normal form. Such a normal form allows us to judge whether a given
integrability condition is trivial or not.

Recall that the parametric derivatives correspond to the initial conditions. Hence,
a nontrivial relation in IntCondJ ,�cwo(�) provides a nontrivial relation among the
initial conditions. In this way, we can decide whether the system (�) is completely
integrable or not.

5.4.6 Completely Integrable Systems. A complete linear PDE system (�) of the
form (5.9) is said to be completely integrable if it admits an analytic solution for any
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given initial condition (5.11). For the geometrical interpretation of this condition, we
refer the reader to Sect. 2.1.4.

5.4.7 Theorem [51, Sect. 42] Let (�) be a complete finite linear PDE system of the
form (5.9). Then the system (�) is completely integrable if and only if every relation
in IntCondJ ,�wo(�) is a trivial identity.

A proof of this result is given in [51, Sect. 43]. Note that the condition in this
theorem is equivalent to asserting that any relation (5.13) is an algebraic consequence
of a PDE equation of the system (coneJ ,�wo(�)).

5.5 Canonical Forms of Linear PDE Systems

In this subsection, we recall from [51] the notion of canonical linear PDE system.
A canonical system is a normal form with respect to a weight order on derivatives,
and such that it satisfies some analytic conditions, allowing to extend the Cauchy–
Kowalevsky theorem given in Sect. 2.1.3. Note that this terminology refers to a notion
of normal form, but it does not correspond to the well-known notion for a rewrit-
ing system meaning both terminating and confluence. In this chapter, we present
canonical systems with respect to a weight order as it has done in Janet’s monograph
[51], but we point out here that this notion can be defined with any total order on
derivatives.

5.5.1 Autoreduced PDE Systems. Let (�) be a finite linear PDE system. Suppose
that a weight order �wo is fixed on the set of unknown functions ϕ1, . . . ,ϕm of (�)

and their derivatives, as defined in Sect. 5.3.5. Suppose also that each equation of the
system (�) can be expressed in the form

(�(α,r)) Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺woDαϕr

a(α,r)
(β,s) D

βϕs,

so that
(�) =

⋃

(α,r)∈I
�(α,r), (5.14)

the union being indexed by a multiset I . The support of the equation (�(α,r)) is
defined by

Supp(�(α,r)) = { (β, s) | a(α,r)
(β,s) �= 0 }.

For 1 � r � m, consider the set of monomials lm�wo(�,ϕr ) corresponding to
leading derivatives, that is, monomial xα such (α, r) belongs to I . The system (�)

is said to be
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(i) J -left-reducedwith respect to�wo if for any (α, r) in I there exist no (α′, r) in I
and nontrivial monomial xγ inM(Mult

lm�wo (�,ϕr )

J (xα′
)) such that xα = xγxα′

;
(ii) J -right-reduced with respect to �wo if, for any (α, r) in I and any (β, s)

in Supp(�(α,r)), there exist no (α′, s) in I and nontrivial monomial xγ in
M(Mult

lm�wo (�,ϕr )

J (xα′
)) such that xβ = xγxα′

;
(iii) J -autoreduced with respect to �wo if it is both J -left-reduced and J -right-

reduced with respect to �wo.

5.5.2 Canonical PDE Systems. A PDE system (�) is said to be J -canonical with
respect a weight order �wo if it satisfies the following five conditions

(i) it consists of finitely many equations, and each equation can be expressed in
the form

Dαϕr =
∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺woDαϕr

a(α,r)
(β,s) D

βϕs,

(ii) the system (�) is J -autoreduced with respect to �wo;
(iii) the system (�) is complete;
(iv) the system (�) is completely integrable;
(v) the coefficients a(α,r)

(β,s) of the equations in (i) and the initial conditions of (�)

are analytic.

Under these assumptions, the system (�) admits a unique analytic solution satisfy-
ing appropriate initial conditions parametrized by complementary monomials as in
Sect. 5.3.3.

5.5.3 Remark. We note that the notion of canonicity proposed by Janet in [51] does
not impose the condition of being J -autoreduced, even if M. Janet did mentioned
this autoreduced property for some simple cases. The autoreduced property implies
the minimality of the system. This fact was formulated by Gerdt and Blinkov in [28]
with the notion of minimal involutive basis.

5.5.4 Example. In [51, Sect. 44], M. Janet studied the following linear PDE system
with one unknown function ϕ:

(�)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p54 = p11,

p53 = p41,

p52 = p31,

p44 = p52,

p43 = p21,

p33 = p42,

where pi, j denotes
∂2ϕ

∂xi∂x j
. In Example 3.2.6, we have shown that the left-hand sides

of the equations of this system form a complete set of monomials. Let us define the
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following weights for the variables:

x1 x2 x3 x4 x5
1 0 1 1 2
0 0 0 1 1

We deduce the following weights for the second derivatives:

p22
p21
p32

p42
p11
p31
p33

p52
p41
p43

p44
p51
p53

p54 p55

0 1 1 2 2 2 3 3 4
0 0 1 0 1 2 1 2 2

As seen in Example 3.3.4, given any four analytic functions

ϕ0(x1, x2), ϕ3(x1, x2), ϕ4(x1, x2), ϕ5(x1, x5),

there exists a unique solution of the PDE system (�). Note that the initial condition
is given by

ϕ|x3=x03 ,x4=x04 ,x5=x05
= ϕ0,0,0,0,0(x1, x2),

∂ϕ

∂x3

∣

∣

∣

∣

x3=x03 ,x4=x04 ,x5=x05

= ϕ0,0,1,0,0(x1, x2),

∂ϕ

∂x4

∣

∣

∣

∣

x3=x03 ,x4=x04 ,x5=x05

= ϕ0,0,0,1,0(x1, x2),

∂ϕ

∂x5

∣

∣

∣

∣

x2=x02 ,x3=x03 ,x4=x04

= ϕ0,0,0,0,1(x1, x5).

We set
A = p54 − p11 x5 x4 x3 x2 x1
B = p53 − p41 x5 x3 x2 x1
C = p52 − p31 x5 x2 x1
D = p44 − p52 x4 x3 x2 x1
E = p43 − p21 x3 x2 x1
F = p33 − p42 x3 x2 x1

where the variables on the right correspond to the multiplicative variables of the first
term. In order to decide if the system (�) is completely integrable it suffices to check
if the terms

B4,C4,C3, D5, E5, E4, F5, F4
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are linear combinations of derivatives of the terms A, B,C, D, E, F with respect
to their multiplicative variables. Here Yi denotes the derivative ∂

∂xi
Y of a term Y .

Finally, we observe that

B4 = A3 − D1 − C1,

C4 = A2 − E1, C3 = B2 − F1,

D5 = A4 − B1 − C5,

E5 = A3 − C1, E4 = D3 + B2,

F5 = B3 − A2 + E1, F4 = E3 − D2 − C2.

As a consequence, the system (�) is completely integrable; hence, it isJ -canonical.

5.6 Reduction of a PDE System to a Canonical Form

In his monograph [51], M. Janet did not talk about the correctness of the procedures
that he introduced in order to reduce a finite linear PDE system to a canonical form.
In this section, we explain how to transform a finite linear PDE system with several
unknown functions by derivation, elimination, and autoreduction, into an equivalent
linear PDE system that is either in canonical form, or an incompatible system. For
linear PDE systems with constant coefficients, the correctness of the procedure can
be verified easily.

5.6.1 Equivalence of PDE System. Janet’s procedure transforms by reduction and
completion a finite linear PDE system into a new PDE system, which is equivalent
to the original one. In his work, M. Janet dit not explain this notion of equivalence
which can be described as follows. Consider two finite linear PDE systems with m
unknown functions and n independent variables,

(�l)

m
∑

j=1

pli, jϕ
j = 0, i ∈ I l ,

for l = 1, 2, where pli, j are linear differential operators. We say that the PDE systems
(�1) and (�2) are equivalent if the sets of solutions of the two systems coincide.
This notion can be also formulated by saying that the D-modules generated by the
families of differentials operators (p1i,1, . . . , p

1
i,m) for i ∈ I 1 and (p2i,1, . . . , p

2
i,m) for

i ∈ I 2 coincide.

5.6.2 A Canonical Weight Order. Consider a finite linear PDE system (�) of m
unknown functions ϕ1, . . . ,ϕm of the independent variables x1, . . . , xn . To these
variables and functions, we associate the following weights:
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x1 x2 . . . xn−1 xn ϕ1 ϕ2 . . . ϕm

1 1 . . . 1 1 0 0 . . . 0
0 0 . . . 0 0 1 2 . . . m
0 0 . . . 0 1 0 0 . . . 0
0 0 . . . 1 0 0 0 . . . 0
...

...
...

...
...

...
...

0 1 . . . 0 0 0 0 . . . 0
1 0 . . . 0 0 0 0 . . . 0

The weight order on monomial partial derivatives defined in Sect. 5.1.5 induced by
this weight system is total. Following M. Janet, this order is called canonical weight
order and is denoted by �cwo.

5.6.3 Combination of Equations. Consider the PDE system (�)with the canonical
weight order �cwo defined in Sect. 5.6.2. We assume that the system (�) is given in
the same form as (5.14) and that each equation of the system is written in the form

(E (α,r)
i ) Dαϕr =

∑

(β,s)∈Nn×{1,2,...,m}
Dβϕs≺cwoDαϕr

a(β,s)
(α,r),i D

βϕs, i ∈ I (α,r).

The leading pair (α, r) of the equation E (α,r)
i will be denoted by ldeg�cwo

(Eα,r
i ).

We will denote by Ldeg�cwo
(�) the subset of N

n × {1, . . . ,m} consisting of leading
pairs of the equations forming the system (�):

Ldeg�cwo
(�) = { ldeg�cwo

(E) | E is an equation of � }.

The canonical weight order �cwo induces a total order on N
n × {1, . . . ,m} denoted

by ≺lp. We will denote by K (α, r, i) the set of pairs (β, s) of running indices in the
sum of the equation E (α,r)

i . Given i and j in I (α,r), we set

(αi, j , ri, j ) = Max
(

(β, s) ∈ K (α, r, i) ∪ K (α, r, j) | a(β,s)
(α,r),i �= a(β,s)

(α,r), j

)

.

We define

b
(αi, j ,ri, j )
(α,r) =

⎧

⎪

⎨

⎪

⎩

a
(αi, j ,ri, j )
(α,r),i , if (αi, j , ri, j ) ∈ K (α, r, i) \ K (α, r, j),

−a
(αi, j ,ri, j )
(α,r),i , if (αi, j , ri, j ) ∈ K (α, r, j) \ K (α, r, i),

a
(αi, j ,ri, j )
(α,r),i − a

(αi, j ,ri, j )
(α,r),i , if (αi, j , ri, j ) ∈ K (α, r, i) ∩ K (α, r, j),

(5.15)
and we denote by E (α,r)

i, j the equation

Dαi, j ϕri, j =
∑

(β,s)∈K (α,r, j)
(β,s)≺lp (αi, j ,ri, j )

c(β,s)
(αi, j ,ri, j ), j

Dβϕs −
∑

(β,s)∈K (α,r,i)
(β,s)≺lp (αi, j ,ri, j )

c(β,s)
(αi, j ,ri, j ),i

Dβϕs, (5.16)
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where, for any k = i, j ,

c(β,s)
(αi, j ,ri, j ),k

= a(β,s)
(α,r),k/b

(αi, j ,ri, j )
(α,r) .

Equation (5.16) corresponds to a combination of the two equations E (α,r)
i and

E (α,r)
j and accordingly it will be denoted by Combine�cwo(E

(α,r)
i , E (α,r)

j ). Proce-
dure 3 adds to a set of PDE equations (�) an equation E by combination.

Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite linear PDE system with unknown functions ϕ1, . . . ,ϕm of independent

variables x1, . . . , xn given in the same form as (5.14) such that the leading derivatives
are different.

- E be a linear PDE in the same form as (5.14).

begin
� ← �

(β, s) ← ldeg�cwo
(E)

if (β, s) /∈ Ldeg�cwo
(�) then

� ← � ∪ {E}
end
else

let E (β,s) be the equation of the system (�) whose leading pair is (β, s).
C ← Combine�cwo (E

(β,s), E)

Add�cwo (�,C)

end
end

Output: � a PDE system equivalent to the system obtained from (�) by adding equation E .

Procedure 3: Add�cwo(�, E)

Note that at each step of the procedure RightReduceJ ,�cwo
the running system �

remains J -left-reduced. Combining this procedure with the procedure
LeftReduceJ ,�cwo we obtain the following autoreduce procedure that transform a
PDE system into a autoreduced PDE system.

5.6.4 Procedure AutoreduceJ ,�cwo(�). Let us fix a canonical weight order �cwo

for ϕ1, . . . ,ϕm and x1, . . . , xn . Let (�) be a finite linear PDE system given in
the same form as (5.14), with unknown functions ϕ1, . . . ,ϕm of the independent
variables x1, . . . , xn . We assume that the leading derivatives of (�) are all differ-
ent. The procedure AutoreduceJ ,�cwo transforms the PDE system (�) into an J -
autoreduced PDE system equivalent to (�), by applying successively the procedures
LeftReduceJ ,�cwo and RightReduceJ ,�cwo

. An algebraic version of this procedure
is given in Procedure 9. Let us remark that the autoreduction procedure given in
Janet’s monographs corresponds to the LeftReduceJ ,�cwo , so does not deal with
right reduction of equations.
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Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite linear PDE system with unknown functions ϕ1, . . . ,ϕm of independent

variables x1, . . . , xn given in the same form as (5.14) such that the leading derivatives
are different.

begin

� ← �

I ← Ldeg�cwo
(�)

Ur ← {xα | (α, r) ∈ I }
while

(

exist (α, r), (α′, r) in I and a non-trivial monomial xγ inM(MultUr
J (xα′

)) such

that xα = xγxα′)
do

� ← � \ {E (α,r)}
Let DγE (α′,r) be the equation obtained from the equation E (α′,r) by applying the
operator Dγ to the two sides.
C ← Combine�cwo (E

(α,r), DγE (α′,r))
Add�cwo (�,C)

end
end

Output: � a J -left-reduced PDE system with respect to �cwo that is equivalent to (�).

Procedure 4: LeftReduceJ ,�cwo(�)

Note that the procedure AutoreduceJ ,�cwo fails if and only if the procedure
Combine�cwo fails. This occurs when the procedureCombine�cwo is applied to equa-

tions E (α,r)
i and E (α,r)

j and some coefficients b
(αi, j ,ri, j )
(α,r) , as defined in (5.15), vanish at

some point of C
n . In particular, the procedure AutoreduceJ ,�cwo does not fail when

all the coefficients are constant. This constraint on the coefficients of the system
concerns only the left reduction and was not discussed in Janet’s monograph. As a
consequence, we have the following result.

5.6.5 Theorem If (�) is a finite linear PDE system with constant coefficients, the
procedure AutoreduceJ ,�cwo terminates and produces a finite autoreduced PDE
system that is equivalent to (�).

5.6.6 Completion Procedure of a PDE System. Consider a finite linear PDE sys-
tem (�) with the canonical weight order �cwo given in Sect. 5.6.2. If the system (�)

is J -autoreduced, then the following procedure CompleteJ ,�cwo
(�) transforms the

system (�) into a finite completeJ -autoreduced linear PDE system.This completion
procedure appears in Janet’s monograph [51] but not in an explicit way.

5.6.7 Completion and Integrability Conditions. In Procedure 6, the set Prr
contains all the obstructions to the completeness of a system. The procedure
CompleteJ ,�cwo

adds to the system the necessary equations in order to eliminate
all these obstructions. The equations added to the system have the form

Dβϕr = Rhs(E (β,r)) − a(δ,r)
(β,r)D

δϕr + a(δ,r)
(β,r)D

γ(Rhs(E (α,r)))
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Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite linear PDE system with unknown functions ϕ1, . . . ,ϕm of independent

variables x1, . . . , xn that is given in the same form as (5.14) and that is J -left reduced
with respect to �cwo.

begin
� ← �

�′ ← �

I ← Ldeg�cwo
(�)

// The canonical weight order �cwo induces a total
// order on the set I of leading pairs denoted by �lp
(δ, t) ← max(I ) with respect to �lp

while �′ �= ∅ do
�′ ← �′ \ {E (δ,t)}
I ← I \ {(δ, t)}
S ← Supp(E (δ,t))

Ur ← {xα | (α, r) ∈ I }
while

(

exist (β, r) in S, (α, r) in I and a non-trivial monomial xγ inM(MultUr
J (xα))

such that xβ = xγxα
)

do

� ← � \ {E (δ,t)}
C ← E (δ,t) − a(β,r)

(δ,t) D
βϕr + a(β,r)

(δ,t) D
γ(Rhs(E (α,r)))

Add�cwo (�,C)

end
end

end

Output: � a J -right-reduced PDE system with respect to �cwo that is equivalent to (�).

Procedure 5: RightReduceJ ,�cwo
(�)

with δ �= β and lead to the definition of a new integrability condition of the form
(5.13) by using the construction given in Sect. 5.4.4.

5.6.8 Janet’s Procedure. Given a finite linear PDE system (�) with the canoni-
cal weight order �cwo defined in Sect. 5.6.2, Janet’s procedure JanetJ ,�cwo either
transforms the system (�) into a PDE system (�) that is J -canonical with respect
to �cwo, or computes an obstruction to the feasibility of such a transformation. In
the first case, the solutions of the J -canonical system (�) are solutions of the initial
system (�). In the second case, the obstruction corresponds to a nontrivial relation
on the initial conditions. We refer the reader to [81] or [78] for a deeper discussion
on this procedure and its implementations.

Applying the procedures AutoreduceJ and CompleteJ successively, the first
step of the procedure consists in reducing the given PDE system (�) to a PDE
system (�) that is J -autoreduced and complete with respect to �cwo.

Then one computes the set IntCondJ ,�cwo(�) of integrability conditions of the
system (�). Recall from Sect. 5.4.4 that this set is a finite set of relations that do
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Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite J -autoreduced linear PDE system with unknown functions ϕ1, . . . ,ϕm of

independent variables x1, . . . , xn given in the same form as (5.14) and whose leading
derivatives are different.

begin
� ← �

� ← ∅
for r = 1, . . . ,m do

while � = ∅ do

I ← Ldeg�cwo
(�)

Ur ← {xα | (α, r) ∈ I }
Prr ← {

∂E
∂x | E ∈ �, x ∈

NMultUr
J (xδ) with (δ, r) = ldeg(E) and xxδ /∈ coneJ (Ur )

}

C ← 0

while Prr �= ∅ and C = 0 do

choose E (β,r) in Prr , whose leading pair (β, r) is minimal with respect to
�cwo.

Prr ← Prr \ {E (β,r)}
C ← E (β,r)

SC ← Supp(C)

while exist (δ, r) in SC , (α, r) in I and xγ inM(MultUr
J (xα)) such that

xδ = xγxα do

C ← C − a(δ,r)
(β,r)D

δϕr + a(δ,r)
(β,r)D

γ(Rhs(E (α,r)))

SC ← Supp(C)

end
end
if C �= 0 then

� ← AutoreduceJ ,�cwo (� ∪ {C})
end
else

� ← �

end
end

end
end

Output: (�) a linear J -autoreduced PDE system equivalent to (�) and that is complete
with respect to �cwo.

Procedure 6: CompleteJ ,�cwo
(�)

not contain principal derivatives. Hence, these integrability conditions are J -normal
forms with respect to (�). Since the system (�) is complete, these normal forms are
unique, and by Theorem 5.4.7, if all of these normal forms are trivial, then the system
(�) is completely integrable. Otherwise, the procedure takes a nontrivial condition
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R in the set IntCondJ ,�cwo(�) and distinguishes two cases. If the relation R is
among functions ϕ1, . . . ,ϕm and variables x1, . . . , xn , then it imposes a relation on
the initial conditions of the system (�). In the other case, the set IntCondJ ,�cwo(�)

contains at least one PDE involving a derivative of one of the functions ϕ1, . . . ,ϕm

and the procedure JanetJ ,�cwo is applied again to the PDE system (�) completed
by all the PDE equations in IntCondJ ,�cwo(�).

5.6.9 Remarks. If the procedure stops at the first loop, that is, if C consists only
of trivial identities, then the system (�) is reducible to the J -canonical form (�)

equivalent to (�).
When the setC contains an integrability condition involving at least one derivative

of the unknown functions, the procedure is applied again to the system (�) ∪ C .
Notice that it could be also possible to recall the procedure on (�) ∪ C , but as done
in Janet’s monograph [51], we choose to restart the procedure on (�) ∪ C in order
to have a PDE system where each equation has a clear meaning, namely, it comes
either from the initial problem or from the integrability condition.

Input:
- A canonical weight order �cwo for ϕ1, . . . ,ϕm and x1, . . . , xn .
- (�) a finite linear PDE system with unknown functions ϕ1, . . . ,ϕm of independent

variables x1, . . . , xn given in the same form as (5.14) and whose leading derivatives
are different.

begin

� ← AutoreduceJ ,�cwo (�)

� ← CompleteJ ,�cwo
(�)

C ← IntCondJ ,�cwo (�)

if C consists only of trivial identities then

return The PDE system (�) is transformable to a J -canonical system (�).
end
if C contains a non-trivial relation R among functions ϕ1, . . . ,ϕm and variables
x1, . . . , xn then

return The PDE system (�) is not reducible to a J -canonical system and the
relation R imposes a non-trivial relation on the initial conditions of the system (�).

end
else

// C contains a non-trivial relation among the functions ϕ1, . . . ,ϕm, the variables
x1, . . . , xn,
// and at least one derivative of one of the functions ϕ1, . . . ,ϕm.
� ← � ∪ {C}
JanetJ ,�cwo (�).

end
end

Output: Complete integrability of the system (�) and its obstructions to be reduced to a
J -canonical form with respect to �cwo.

Procedure 7: JanetJ ,�cwo(�)
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Finally, note that the procedure JanetJ ,�cwo fails on a PDE system (�) if and only
if the procedureAutoreduceJ ,�cwo fails on (�) ∪ C ,whereC consists of the potential
nontrivial relations among the unknown functions and the variables added during
the process, as explained in Sect. 5.6.4. In particular, by Theorem 5.6.5, if (�) is a
finite linear PDE systemwith constant coefficients, the procedureAutoreduceJ ,�cwo

terminates and produces a finite autoreduced PDE system equivalent to (�).

5.6.10 Example. In [51, Sect. 47], M. Janet studied the PDE system

(�)

{

p33 = x2 p11,

p22 = 0,

where pi1...ik denotes the derivative
∂kϕ

∂xi1 . . . ∂xik
of an unknown function ϕ of the

independent variables x1, x2, x3. The set of monomials of the left-hand side of the
system (�) is U = {x23 , x22 }. The set U is not complete. Indeed, for instance the
monomial x3x22 is not in the involutive cone coneJ (U). If we complete the set U by
the monomial x3x22 we obtain a complete set ˜U := U ∪ {x3x22 }. The PDE system (�)

is then equivalent to the PDE system

(�)

⎧

⎪

⎨

⎪

⎩

p33 = x2 p11,

p322 = 0,

p22 = 0.

Note that p322 = ∂x3 p22 = 0. The table of multiplicative variables with respect to
the set ˜U is given by

x23 x3 x2 x1
x3x22 x2 x1
x22 x2 x1

We deduce that there exists only one nontrivial compatibility condition, which reads

p3322 = ∂x3 p322 = ∂2
x2 p33, (x3 · x3x22 = (x2)

2 · x23 )
= ∂2

x2(x2 p11) = 2p211 + x2 p2211 = 2p211 = 0, (p2211 = ∂2
x1 p22 = 0).

Hence, p211 = 0 is a nontrivial relation of the system (�). Hence, the PDE system
(�) is not completely integrable. Then, we consider the new PDE system given by

(�′)

⎧

⎪

⎨

⎪

⎩

p33 = x2 p11,

p22 = 0,

p211 = 0.

The associated set of monomials U ′ = {x23 , x22 , x2x21 } is not complete. It can be com-
pleted to the complete set ˜U ′ := U ′ ∪ {x3x22 , x3x2x21 }. The PDE system (�′) is then
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equivalent to the following PDE system:

(�′)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p33 = x2 p11,

p322 = 0,

p3211 = 0,

p22 = 0,

p221 = 0.

Note that p322 = ∂x3 p22 and p3211 = ∂x3 p211. The multiplicative variables with
respect to the set of monomials U ′ are given by the following table:

x23 x3 x2 x1
x3x22 x2 x1
x3x2x21 x1
x22 x2 x1
x2x21 x1

We deduce that the only nontrivial compatibility relation is

p33211 = ∂x3(p3211) = 0,

= ∂2
x1∂x2(p33) = ∂2

x1∂x2(x2 p11),

= ∂2
x1(p11 + x2 p211) = p1111, since p211 = 0.

We see that p1111 = 0 is a nontrivial relation of the system (�′). Hence, the system
(�′) is not completely integrable. Now consider the new PDE system given by

(�′′)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p33 = x2 p11,

p22 = 0,

p211 = 0,

p1111 = 0.

The associated set of monomials U ′′ = {x23 , x22 , x2x21 , x41 } is not complete. It can
be completed to the set of monomials ˜U ′′ := U ′′ ∪ {x3x22 , x3x2x21 , x3x41 }. The PDE
system (�′′) is seen to be equivalent to the system

(�′′)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

p33 = x2 p11,

p322 = 0,

p31111 = 0,

p22 = 0,

p211 = 0,

p1111 = 0.
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Note that p322 = ∂x2 p22 and p31111 = ∂x3 p1111. All the compatibility conditions are
trivial identities, and by Theorem 5.4.7 we deduce that the PDE (�′′) obtained
from the initial PDE system (�) by adding compatibility conditions is completely
integrable.

5.6.11 Remark. Let us mention that using a procedure similar to the one presented
in this section, Janet in [51, Sect. 48] gave a constructive proof of a result obtained
previously by Tresse [88] asserting that an infinite linear PDE system can be reduced
to a finite linear PDE system.

5.7 Algebra, Geometry, and PDEs

The notion of ideal first appeared in the work of R. Dedekind. It appeared also in a
seminal paper [43] of Hilbert, where he developed the theory of ideals in polynomial
rings. In particular, he proved Noetherianity results, such as the Noetherianity of
the ring of polynomials over a field, a result known now as Hilbert’s basis theorem.
In his works on PDE systems [48–50], M. Janet used the notion of ideal generated
by homogeneous polynomials under the terminology of module of forms, which he
defined as follows. He called form a homogeneous polynomial with several variables
and he defined amodule of forms as an algebraic system satisfying the two following
conditions:

(i) if a form f belongs to the system, then the form h f belongs to the system for
every form h,

(ii) if f and g are two forms of the same order in the system, then the form f + g
belongs to the system.

Finally, in [51, Sect. 51], M. Janet recalls Hilbert’s basis theorem.

5.7.1 Characteristic Functions of Homogeneous Ideals. In [51, Sect. 51],M. Janet
recalled the Hilbert description of the problem of finding the number of indepen-
dent conditions so that a homogenous polynomial of order p belongs to a given
homogeneous ideal. These independent conditions correspond to the independent
linear forms that annihilate all homogeneous polynomials of degree p in the ideal.
Janet recalled from [43] that this number of independent conditions is expressed as
a polynomial in p for sufficiently large p.

Let I be a homogenous ideal of K[x1, . . . , xn] generated by polynomials
f1, . . . , fk . Given a monomial order on M(x1, . . . , xn), we can assume that all the
leading coefficients are equal to 1. For any p � 0, consider the homogeneous com-
ponent of degree p so that I =⊕p Ip, with

Ip := I ∩ K[x1, . . . xn]p.
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Recall that
dim Ip � dim

(

K[x1, . . . , xn]p
) = � p

n .

The number of independent conditions such that a homogeneous polynomial of order
p belongs to the ideal I is given by the difference

χ(p) := � p
n − dim Ip.

This is the number ofmonomials of degree p that cannot be divided by themonomials
lm( f1), . . . , lm( fk). The function χ(p) corresponds to a coefficient of the Hilbert
series of the ideal I and is called the characteristic function of the ideal I , or pos-
tulation by Janet in [51, Sect. 52]. We refer the reader to [18] for the definition of
Hilbert series of polynomial rings and their applications. In Sect. 5.8, we will show
that the function χ(p) is polynomial for sufficiently large p. Finally, note that the set
of monomials that cannot be divided by the monomials lm( f1), . . . , lm( fk) consists
of a finite number of classes of complementary monomials.

5.7.2 Geometric Remark. M. Janet made the following geometric observation
about the characteristic function. Suppose that p is sufficiently large so that the
function χ(p) is polynomial. Let λ − 1 be the degree of the leading term of the
polynomial χ(p). Consider the projective variety V (I ) defined by

V (I ) = {a ∈ P
n−1 | f (a) = 0 for all f in I }.

The integerμ = lc(χ(p))(λ − 1)! corresponds to the degree of the variety V (I ) [43].
If χ(p) = 0 then the variety V (I ) is empty, in the other cases V (I ) is a subvariety
of P

n−1 of dimension λ − 1.

5.7.3 Example [51, Sect. 53]. Consider the monomial ideal I of K[x1, x2, x3] gen-
erated by x21 , x1x2, and x

2
2 . The characteristic function χ(p) of the ideal I is constant

and equal to 3. The unique point that annihilates the ideal I is (0, 0, 1), with multi-
plicity 3. This result is compatible with the fact that the zeros of the ideal J generated
by the polynomials

(x1 − ax3)(x1 − bx3), (x1 − ax3)(x2 − cx3), (x2 − cx3)(x2 − dx3),

consists of the three points

(a, c, 1), (a, d, 1), (b, c, 1).

5.7.4 The Ideal – PDE Dictionary. Let I be a homogeneous ideal ofK[x1, . . . , xn]
generated by a set F = { f1, . . . , fk} of polynomials. For a fixed monomial order
on M(x1, . . . , xn), we set U = lm(F). Consider the ring isomorphism � from
K[x1, . . . , xn] to K[ ∂

∂x1
, . . . , ∂

∂xn
] given in Proposition3.1.2. To each polynomial

f in I , we associate a PDE �( f )ϕ = 0. In this way, the ideal I defines a PDE
system (�(I )). Let λ and μ be the integers associated to the characteristic function
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χ(p) as defined in 5.7.2. The maximal number of arguments of the arbitrary analytic
functions used to define the initial conditions

{Cβ | xβ ∈ U� }

of the PDE system (�(I )), as defined in (5.7), corresponds to λ, explicitly,

λ = max
v∈U�

|�Mult
U�

J (v)|,

where U� denotes the set of complementary monomials of U . Moreover, the number
of arbitrary analytic functions with λ arguments in the initial conditions {Cβ | xβ ∈
U� } is equal to μ, that is

μ = ∣∣ { v ∈ U� such that |�Mult
U�

J (v)| = λ } ∣∣.

Conversely, let (�) be a PDE system with one unknown function ϕ of the inde-
pendent variables x1, . . . , xn . Denote by ldo(�) the set of differential operators asso-
ciated to the principal derivatives of PDE in (�), with respect to Janet’s order on
derivatives defined in Sect. 5.1.3. The isomorphism � associates to any monomial
differential operator ∂|α|

∂x
α1
1 ···∂xαn

n
in ldo(�) a monomial xα1

1 · · · xαn
n inM(x1, . . . , xn).

Denote by I (�) the ideal of K[x1, . . . , xn] generated by �−1(ldo(�)). Note that,
by construction, the ideal I (�) is monomial and for any monomial u in I (�) the
derivative �(u)ϕ is a principal derivative of the PDE system (�) as defined in
Sect. 5.3.1. In [51, Sect. 54], M. Janet called characteristic form any element of the
ideal I (�).

In this way, M. Janet concluded that the degree of generality of the solutions of a
linear PDE system with one unknown function is described by the leading term of
the characteristic function of the ideal of characteristic forms defined in Sect. 5.7.1.

5.7.5 The Particular Case of First-Order Systems. Consider a completely inte-
grable first-order linear PDE system (�). The number λ, defined in Sect. 5.7.4, which
is equal to the maximal number of arguments of the arbitrary functions used to define
the initial conditions of the system (�), is also equal in this case to the cardinality of
the set U� of complementary monomials of the set of monomials U = �−1(ldo(�)).

5.8 Involutive Systems

In this subsection, we recall the algebraic formulation of involutive systems as intro-
duced by M. Janet. This formulation first appeared in its work in [48] and [49]. But
notice that this notion comes from the work of Cartan in [13].
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5.8.1 Characters and Derived Systems. Let I be a proper ideal of K[x1, . . . , xn]
generated by homogeneous polynomials. M. Janet introduced the characters of
the homogeneous component Ip as the nonnegative integers σ1,σ2, . . . ,σn defined
inductively by the formula

dim

⎛

⎝Ip +
⎛

⎝

h
∑

i=1

K[x1, . . . , xn]p−1xi

⎞

⎠

⎞

⎠ = dim(Ip) + σ1 + · · · + σh , 1 � h � n.

Note that the sum σ1 + σ2 + · · · + σn corresponds to the codimension of Ip in
K[x1, . . . , xn]p.

Given a positive integer λ, we set

Jp+λ = K[x1, . . . , xn]λ Ip.

We define the nonnegative integers σ(λ)
1 ,σ(λ)

2 , . . . ,σ(λ)
n by the relations

dim

(

Jp+λ +
(

h
∑

i=1

K[x1, . . . , xn]p+λ−1xi

))

= dim(Jp+λ) + σ
(λ)
1 + · · · + σ

(λ)
h , 1 � h � n.

For λ = 1, M. Janet called Jp+1 the derived system of Ip. Let us mention some
properties of these numbers proved by M. Janet.

5.8.2 Lemma We set σ′
h = σ(1)

h and σ′′
h = σ(2)

h for 1 � h � n. Then,

(i) σ′
1 + σ′

2 + · · · + σ′
n � σ1 + 2σ2 + · · · + nσn.

(ii) Ifσ′
1 + σ′

2 + · · · + σ′
n = σ1 + 2σ2 + · · · + nσn, the two following relations hold:

(a) σ′′
1 + σ′′

2 + · · · + σ′′
n = σ′

1 + 2σ′
2 + · · · + nσ′

n.
(b) σ′

h = σh + σh+1 + · · · + σn.

We refer the reader to [51] for a proof of the relations of Lemma 5.8.2.

5.8.3 Involutive Systems. The homogenous component Ip is said to be in involution
when

σ′
1 + σ′

2 + · · · + σ′
n = σ1 + 2σ2 + · · · + nσn.

Following properties (ii)–(a) of Lemma 5.8.2, if the component Ip is in involution,
then the component Ip+k is in involution for all k � 0.

5.8.4 Proposition [51, Sect. 56 & Sect. 57] The characters of a homogeneous com-
ponent Ip satisfy the two following properties:

(i) σ1 � σ2 � · · · � σn.
(ii) if Ip �= {0}, then σn = 0.
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5.8.5 Polynomiality of Characteristic Functions. Suppose that the homogeneous
component Ip is in involution.We claim that the characteristic functionχ(P) defined
in Sect. 5.7.1 is polynomial for P � p. Indeed, using Lemma 5.8.2, we show by
induction that for any 1 � h < n and any positive integer λ, it holds that

σ(λ)
h =

n−h−1
∑

k=0

(

λ + k − 1

k

)

σh+k .

The codimension of Ip+λ in K[x1, . . . , xn]p+λ is given by

n−1
∑

h=1

σ(λ)
h =

n−1
∑

h=1

n−h−1
∑

k=0

(

λ + k − 1

k

)

σh+k =
n−1
∑

i=1

(

i−1
∑

k=0

(

λ + k − 1

k

)

)

σi

=
n−1
∑

i=1

(

i−1
∑

k=0

(

P − p + k − 1

k

)

)

σi =
n−1
∑

i=1

(

P − p + i − 1

i − 1

)

σi .

This proves the polynomiality of the characteristic function of the ideal I for suffi-
ciently large p.

5.9 Concluding Remarks

Recall that the so-called Cartan–Kähler theory is concernedwith the Pfaffian systems
on a differentiable (or analytic) manifold and its aim is to determine whether a given
system is prolongeable to a completely integrable system or an incompatible system.
The Cartan–Kähler method relies on a geometrical argument, which is to construct
integral submanifolds of the system inductively. Here, a step of the induction is to
find an integral submanifold of dimension i + 1 containing the integral submanifold
of dimension i , and their theory does not allow to deduce whether such step can be
achieved or not.

Janet’s method is, even if it works only locally, completely algebraic and algo-
rithmic so that it partially completes the parts where the Cartan–Kähler theory does
not work.

According to theseworks, there are two seemingly different notions of involutivity,
the one by G. Frobenius, G. Darboux, and É. Cartan and the other by M. Janet. The
fact is that at each step of the induction in the Cartan–Kähler theory, one has to
study a system of PDE. The system is called in involution (compare with those
in Sects. 2.2.6 with Sect. 5.8) if it can be written in a canonical form, as defined
in Sect. 5.5.2, perhaps after a change of coordinates, if necessary. Following Janet’s
algebraic definition of involutivity, several involutive methods were developed for
polynomial and differential systems, [72, 86]. In these approaches, a differential
system is involutive when its non-multiplicative derivatives are consequences of
multiplicative derivatives. In [25, 27], Gerdt gave an algebraic characterization of
involutivity for polynomial systems.Gerdt’s approach is presented in the next section.
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6 Polynomial Involutive Bases

In this section, we present the algebraic definition of involutivity for polynomial
systems given by Gerdt in [25, 27]. In particular, we relate the notion of involutive
basis for a polynomial ideal to the notion of Gröbner basis.

6.1 Involutive Reduction on Polynomials

6.1.1 Involutive Basis. Recall that a monomial ideal I of K[x1, . . . , xn] is an ideal
generated by monomials. An involutive basis of the ideal I with respect to an involu-
tive division I is an involutive set of monomials U that generates I . By the Dickson
Lemma [17], everymonomial ideal I admits a finite set of generators.When the invo-
lutive division I is Noetherian as defined in Sect. 4.2.3, this generating set admits a
finite I-completion that forms an involutive basis of the ideal I . As a consequence,
we deduce the following result.

6.1.2 Proposition Let I be a Noetherian involutive division on M(x1, . . . , xn).
Every monomial ideal of K[x1, . . . , xn] admits an I-involutive basis.

The objective of this section is to show how to extend this result to polynomial
ideals with respect to a monomial order. In the remainder of this subsection, we
assume that a monomial order � is fixed onM(x1, . . . , xn).

6.1.3 Multiplicative Variables for a Polynomial. Let I be an involutive division
onM(x1, . . . , xn). Let F be a set of polynomials from K[x1, . . . , xn], and let f be a
polynomial in F . We define the set of I-multiplicative (resp. I-non-multiplicative)
variables of the polynomial f with respect to F and the monomial order� by setting

MultFI,�( f ) = Mult
lm�(F)

I (lm�( f )) ( resp. NMultFI,�( f ) = NMult
lm�(F)

I (lm�( f )) ).

Note that the I-multiplicative variables depend on the monomial order � used to
determine the leading monomials of the polynomials of F .

6.1.4 Polynomial Reduction. Polynomial division can be described as a rewriting
operation as follows. Given polynomials f and g in K[x1, . . . , xn], we say that f is
reducible modulo g with respect to �, if there is a term λu in f whose monomial u
is divisible by lm�(g) for the usual monomial division. In this case, we denote such

a reduction by f
g�

h, where

h = f − λu

lt�(g)
g.
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For a set G of polynomials of K[x1, . . . , xn], we define a rewriting system cor-

responding to the division modulo G by considering the relation reduction
G�

defined by
G� =

⋃

g∈G

g�
.

We will denote by
G�

−→∗ the reflexive and transitive closure of the relation
G�

.

6.1.5 Involutive Reduction. In a same way, we define a notion of reduction with
respect to an involutive division I on M(x1, . . . , xn). Let g be a polynomial in
K[x1, . . . , xn]. A polynomial f in K[x1, . . . , xn] is said to be I-reducible modulo g
with respect to the monomial order �, if there is a term λu of f , with λ ∈ K − {0}
and u ∈ M(x1, . . . , xn), such that

u = lm�(g)v and v ∈ M(Mult
lm�(G)

I (g)).

Such an I-reduction is denoted by f
g�

I
h, where

h = f − λ

lc�(g)
gv = f − λu

lt�(g)
g.

6.1.6 Involutive Normal Forms. Let G be a set of polynomials of K[x1, . . . , xn].
A polynomial f is said to be I-reducible modulo G with respect to the monomial
order �, if there exists a polynomial g in G such that f is I-reducible modulo g. We

will denote by
G�

I
this reduction relation defined by

G�

I
=
⋃

g∈G

g�

I
.

The polynomial f is said to be in I-irreducible modulo G if it is not I-reducible
modulo G. A I-normal form of a polynomial f is an I-irreducible polynomial h
such that there is a sequence of reductions from f to h:

f
G�

I
f1

G�

I
f2

G�

I
· · · G�

I
h,

The procedure InvReductionI,�( f,G) computes a normal form of f modulo
G with respect to the division I. The proofs of its correctness and termination can
be carried out as in the case of the division procedure for the classical polynomial
division, see for instance [3, Proposition 5.22].
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Input: a polynomial f in K[x1, . . . , xn] and a finite subset G of K[x1, . . . , xn].
begin

h ← f

while exist g in G and a term t of h such that lm�(g)|lm�(G)

I
t

lc�(t) do

choose such a g
h ← h − t

<�(g)
g

end
end

Output: h a I-normal form of the polynomial f with respect to the monomial order �

Procedure 8: InvReductionI,�( f,G)

6.1.7 Remarks. Note that the involutive normal form of a polynomial f is not
unique; in general, it depends on the order in which the reductions are applied. Sup-
pose that for each polynomial f we have a I-normal form with respect to the mono-
mial order�, denoted by nfGI,�( f ). Denote by nfG�( f ) a normal formof a polynomial
f obtained by the classical division procedure. In general, the equality nfG�( f ) =
nfGI,�( f ) does not hold. For example, let G = {x1, x2} and consider the Thomas
division T defined in Sect. 4.3.1. Then nfG�(x1x2) = 0, while nfGT ,�(x1x2) = x1x2
because the monomial x1x2 is a T -irreducible modulo G.

6.1.8 Autoreduction. Recall from Sect. 4.1.4 that a set of monomials U is I-
autoreduced with respect to an involutive division I if it does not contain a monomial
I-divisible by anothermonomial ofU . In that case, everymonomial inM(x1, . . . , xn)
admits at most one I-involutive divisor in U .

A set G of polynomials of K[x1, . . . , xn] is said to be I-autoreduced with respect
to the monomial order �, if it satisfies the two following conditions:

(i) (left I-autoreducibility) the set of leadingmonomials lm�(G) is I-autoreduced,
(ii) (right I-autoreducibility) for any g in G, there is no term λu �= lt�(g) of g, with

λ �= 0 and u ∈ coneI(lm�(G)).

Note that the condition (i), (resp. (ii)) corresponds to the left-reducibility (resp.
right-reducibility) property given in Sect. 5.5.2. Any finite set G of polynomials of
K[x1, . . . , xn] can be transformed by Procedure 9 into a finite I-autoreduced set that
generates the same ideal. The proofs of the correctness and termination are immediate
consequences of the property of involutive division.



1 From Analytical Mechanics Problems to Rewriting Theory … 63

Input: G a finite subset of K[x1, . . . , xn].
begin

H ← G
H ′ ← ∅
while exist h ∈ H and g ∈ H \ {h} such that h is I-reducible modulo g with respect to �
do

choose such a h
H ′ ← H \ {h}
h′ ← nfH

′
I,�(h)

if h′ = 0 then
H ← H ′

end
else

H ← H ′ ∪ {h′}
end

end
end

Output: H an I-autoreduced set generating the same ideal as G does.

Procedure 9: AutoreduceI,�(G)

6.1.9 Proposition [27, Theorem 5.4] Let G be anI-autoreduced set of polynomials
of K[x1, . . . , xn] and f be a polynomial in K[x1, . . . , xn]. Then nfGI,�( f ) = 0 if and
only if the polynomial f can be written in the form

f =
∑

i, j

βi, jgivi, j ,

where gi ∈ G, βi, j ∈ K and vi, j ∈ M(Mult
lm�(G)

I (lm�(gi ))), with lm�(vi, j ) �=
lm�(vi,k) if j �= k.

Proof Suppose that nfGI,�( f ) = 0. Then there exists a sequence of involutive reduc-
tions modulo G,

f = f0
g1

I
f1

g2

I
f2

g3

I
. . .

gk−1

I
fk = 0,

terminating on 0. For any 1 � i � k, we have

fi = fi−1 − λi, j

lc�(gi )
givi, j ,

with vi, j inM(Mult
lm�(G)

I (lm�(gi ))). This shows the equality.
Conversely, suppose that f can be written in the indicated form. Then the leading

monomial lm�( f ) admits an involutive I-divisor in lm�(G). Indeed, the leading
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monomial of the decomposition of f has the form

lm�

⎛

⎝

∑

i, j

givi, j

⎞

⎠ = lm�(gi0)vi0, j0 .

The monomial lm�(gi0) is an involutive divisor of lm�( f ), and by the autore-
duction hypothesis, such a divisor is unique. Hence, the monomial lm�(gi0)vi0, j0
does not divide other monomials of the form lm�(gi )vi, j . We apply the reduction

gi0vi0, j0
gi0�

I
0 to the decomposition. In this way, we define a sequence of reductions

ending on 0. This proves that nfGI,�( f ) = 0. �

6.1.10 Uniqueness and Additivity of Involutive Normal Forms. From decompo-
sition Proposition6.1.9, we deduce two important properties of involutive normal
forms. Let G be an I-autoreduced set of polynomials of K[x1, . . . , xn] and f be
a polynomial. Suppose that h1 = nfGI,�( f ) and h2 = nfGI,�( f ) are two involutive
normal forms of f . From the involutive reduction procedure that computes this two
normal forms, we deduce two decompositions

h1 = f −
∑

i, j

βi, jgivi, j , h2 = f −
∑

i, j

β′
i, jgiv

′
i, j .

As a consequence, h1 − h2 admits a decomposition as in Proposition 6.1.9, hence
nfGI,�(h1 − h2) = 0. The polynomial h1 − h2 being in normal form, we deduce that
h1 = h2. This shows the uniqueness of the involutive normal formmodulo an autore-
duced set of polynomials.

In a same manner, we prove the following additivity formula for any polynomial
f and f ′:

nfGI,�( f + f ′) = nfGI,�( f ) + nfGI,�( f ′).

6.2 Involutive Bases

Fix a monomial order � on M(x1, . . . , xn).

6.2.1 Involutive Bases. Let I be an ideal ofK[x1, . . . , xn]. A subsetG of polynomi-
als in K[x1, . . . , xn] is an I-involutive basis of the ideal I with respect the monomial
order �, if G is I-autoreduced and satisfies the following property:

∀g ∈ G, ∀u ∈ M(x1, . . . , xn), nfGI,�(gu) = 0.

In other words, for any polynomial g in G and any monomial u in M(x1, . . . , xn),
there is a sequence of involutive reductions:
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gu
g1�

I
f1

g2�

I
f2

g3�

I
. . .

gk−1�

I
0,

with gi inG. In particular, we recover the notion of involutive sets ofmonomials given
in Sect. 4.2.1. Indeed, if G is an I-involutive basis, then lm�(G) is an I-involutive
set of monomials of M(x1, . . . , xn).

6.2.2 Proposition Let I be an involutive division on K[x1, . . . , xn] and G be a
J -involutive subset of K[x1, . . . , xn]. A polynomial of K[x1, . . . , xn] is reducible
with respect to G if and only if it is I-reducible modulo G.

Proof Let f be a polynomial in K[x1, . . . , xn]. By the definition of the involutive

reduction, if f is I-reducible modulo G, then it is reducible for the relation
G�

.

Conversely, suppose that f is reducible by a polynomial g in G. That is, there exists
a term λu in f , where λ is a nonzero scalar and u is a monomial in M(x1, . . . , xn)
such that u = lm�(g)v, where v ∈ M(x1, . . . , xn). The set G being involutive, we
have nfGI,�(gv) = 0. By Proposition 6.1.9, the polynomial gv can written in the form

gv =
∑

i, j

βi, jgivi, j ,

where gi ∈ G, βi, j ∈ K, and vi, j ∈ M(Mult
lm�(G)

I (lm�(gi ))). In particular, this
shows that the monomial u admits an involutive divisor in G. �

6.2.3 Uniqueness of Normal Forms. Let us mention an important consequence of
Proposition 6.2.2 given in [27, Theorem 7.1]. Let G be a J -involutive subset of
K[x1, . . . , xn], for any reduction procedure that computes a normal form nfG�( f )
of a polynomial f in K[x1, . . . , xn] and any involutive reduction procedure that
computes an involutive normal form nfGI,�( f ), as a consequence of the uniqueness
of the involutive normal form and Proposition 6.2.2, we have

nfG�( f ) = nfGI,�( f ).

6.2.4 Example. We setU = {x1, x2}. We consider the deglex order induced by x2 >

x1 and theThomasdivisionT . Themonomial x1x2 isT -irreduciblemoduloU .Hence,
it does not admit zero as T -normal form and the set U cannot be an T -involutive
basis of the ideal generated by U . In turn, the set {x1, x2, x1x2} is a T -involutive basis
of the ideal generated by U .

We now consider the Janet division J . We have deg2(U) = 1, [0] = {x1} and
[1] = {x2}. The J -multiplicative variables are given by the table

u MultUJ (u)

x1 x1
x2 x1 x2
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It follows that the monomial x1x2 is not J -reducible by x1 modulo U . However, it
is J -reducible by x2. We conclude that the set U forms a J -involutive basis.

As an immediate consequence of involutive bases, the involutive reduction pro-
cedure provides a decision method of the ideal membership problem, as stated by
the following result.

6.2.5 Proposition [27, Corollary 6.4] Let I be an ideal ofK[x1, . . . , xn], and G be
an I-involutive basis of I with respect to a monomial order �. For any polynomial
f of K[x1, . . . , xn], we have f ∈ I if and only if nfGI,�( f ) = 0.

Proof If nfGI,�( f ) = 0, then the polynomial f can be written in the form Propo-
sition6.1.9. This shows that f belongs to the ideal I . Conversely, suppose that f
belongs to I . Then it can be decomposed in the form

f =
∑

i

higi ,

where hi =∑ j λi, j ui, j ∈ K[x1, . . . , xn]. Since the set G is I-involutive, we have
nfGI,�(ui, jgi ) = 0, for anymonomials ui, j and gi inG. By the linearity of the operator
nfGI,�(−), we see that nfGI,�( f ) = 0. �

6.2.6 Local Involutivity. Gerdt and Blinkov introduced in [27] the notion of local
involutivity for a set of polynomials. A set G of polynomials in K[x1, . . . , xn] is said
to be locally involutive if the following condition holds:

∀g ∈ G, ∀x ∈ NMult
lm�(G)

I (lm�(g)), nfGI,�(gx) = 0.

For a continuous involutive division I, they prove that an I-autoreduced set of
polynomials is involutive if and only if it is locally involutive [27, Theorem 6.5].
This local involutivity criterion is essential for computing the completion of a set
of polynomials into an involutive basis. Note that this result is analogous to the
critical pair lemma in rewriting theory stating that a rewriting system is locally
confluent if and only if all its critical pairs are confluent, see, e.g., [36, 37]. Together
with the Newman Lemma stating that for terminating rewriting, local confluence
and confluence are equivalent properties, this gives a constructive method to prove
confluence in a terminating rewriting system by analyzing the confluence of critical
pairs.

6.2.7 Completion Procedure. For a given monomial order � on M(x1, . . . , xn)
and a continuous and constructive involutive division I, as defined in [27, Definition
4.12], Procedure 10 computes anI-involutive basis of an ideal froma set of generators
of the ideal. We refer the reader to [27, Sect. 8] or [19, Sect. 4.4] for the correctness
of this procedure and conditions for its termination. This procedure is in the same
vein as the completion procedure for rewriting systems by Knuth and Bendix [53],
and completion procedure for commutative polynomials by Buchberger [7].
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Input: F a finite set of polynomials in K[x1, . . . , xn].
begin

F ′ ← AutoreduceI,�(F)

G ← ∅
while G = ∅ do

Pr ← { f x | f ∈ F ′, x ∈ NMultF
′

I,�( f )}
p′ ← 0
while Pr �= ∅ and p′ = 0 do

choose p in Pr such that lm�(p) is minimal with respect to �.
Pr ← Pr \ {p}
p′ ← InvReductionI,�(p, F ′)

end
if p′ �= 0 then

F ′ ← AutoreduceI,�(F ′ ∪ {p′})
end
else

G ← F ′
end

end
end

Output: G an I-involutive basis of the ideal generated by F with respect to the monomial
order �.

Procedure 10: InvolutiveCompletionBasisI,�(F)

6.2.8 Example: Computation of an Involutive Basis. Let I be the ideal of
Q[x1, x2] generated by the set F = { f1, f2}, where the polynomial f1 and f2 are
defined by

f1 = x22 − 2x1x2 + 1,

f2 = x1x2 − 3x21 − 1.

We compute an involutive basis of the ideal I with respect to the Janet division J
and the deglex order induced by x2 > x1. We have lm( f1) = x22 and lm( f2) = x1x2,
hence the following J -reductions

x22
f1

J
2x1x2 − 1, x1x2

f2

J
3x21 + 1.

The polynomial f1 is J -reducible by f2, and we have

f1
f2

J
x22 − 2(3x21 + 1) + 1 = x22 − 6x21 − 1.

Thus, we set f3 = x22 − 6x21 − 1 and we consider the reduction
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x22
f3

J
6x21 + 1.

The set F ′ = { f2, f3} is J -autoreduced and generates the ideal I . Let us compute
the multiplicative variables of the polynomials f2 and f3. We have deg2(F

′) =
deg2({x22 , x1x2}) = 2, [1] = {x1x2} and [2] = {x22 }. Hence, theJ -multiplicative vari-
ables are given by the table

f lm( f ) MultF
′

J ( f )
f2 x1x2 x1
f3 x22 x1 x2

The polynomial f2x2 = x1x22 − 3x21 x2 − x2 is the only non-multiplicative prolon-
gation to consider. This prolongation can be reduced as follows:

f2x2
f3

J
6x31 + x1 − 3x21 x2 − x2

f2

J
− 3x31 − 2x1 − x2.

We set f4 = −3x31 − 2x1 − x2; the associated reduction of f4 is

x31
f4

J
− 2

3
x1 − 1

3
x2,

and we set F ′ = { f2, f3, f4}. We have deg2(F
′) = 2, [0] = {x31}, [1] = {x1x2} and

[2] = {x22 }. Hence, the J -multiplicative variables are given by the table

f lm( f ) MultF
′

J ( f )
f2 x1x2 x1
f3 x22 x1 x2
f4 x31 x1

There are two non-multiplicative prolongations to consider:

f2x2 = x1x
2
2 − 3x21 x2 − x2, f4x2 = −3x31 x2 − 2x1x2 − x22 .

We have lm( f2x2) = x1x22 < lm( f4x2) = x31 x2. Hence, the prolongation f2x2 must
be examined first. We have the following reductions:

f2x2
f3

J
6x31 + x1 − 3x21 x2 − x2

f2

J
− 3x31 − 2x1 − x2

f4

J
0.

Hence, there is no polynomial to add. The other non-multiplicative prolongation is
f4x2, which can be reduced to an J -irreducible polynomial as follows:
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f4x2
f2

J
− 3x31 x2 − 6x21 − x22 − 2

f3

J
− 3x31 x2 − 12x21 − 3

f2

J − 9x41 − 15x21 − 3
f4

J 3x1x2 − 9x21 − 3
f2

J 0.

All the non-multiplicative prolongations are J -reducible to 0; consequently, the set
F ′ is a Janet basis of the ideal I .

6.3 Involutive Bases and Gröbner Bases

In this subsection, we recall the notion of Gröbner basis and we show that any
involutive basis is a Gröbner basis. We fix a monomial order � on M(x1, . . . , xn).

6.3.1 Gröbner Bases. A subset G of K[x1, . . . , xn] is a Gröbner basis with respect
to the monomial order � if it is finite and satisfies one of the following equivalent
conditions:

(i)
G�

is Church-Rosser,

(ii)
G�

is confluent,

(iii)
G�

is locally confluent,

(iv)
G�

has unique normal forms,

(v) f
G�

−→∗ 0, for all polynomial f in Id(G),
(vi) every polynomial f in Id(G) \ {0} is reducible modulo G,
(vii) for any term t in lt�(Id(G)), there is g in G such that lt�(g) divides t ,

(viii) S�(g1, g2)
G�

−→∗ 0 for all g1, g2 in G, where

S�(g1, g2) = μ

lt�(g1)
g1 − μ

lt�(g2)
g2,

with μ = ppcm(lm�(g1), lm�(g2)), is the S-polynomial of g1 and g2 with
respect to the monomial order �,

(xi) any critical pair

μ
μ

lt(g1)
g1

μ
lt(g2)

g2

μ − μ
lt(g1)

g1 μ − μ
lt(g2)

g2
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with μ = ppcm(lm(g1), lm(g2)), of the relation
G�

is confluent.

We refer the reader to [3, Theorem 5.35] for proofs of these equivalences, see also
[35, Section3] [61]. The proofs of the equivalence of conditions (i)–(iv) are classical
results for terminating rewriting systems. Note that condition (viii) corresponds to
the Buchberger criterion [7] and condition (ix) is a formulation of this criterion in
rewriting terms. We refer to [1, Chapter 8] for the rewriting interpretation of the
Buchberger algorithm.

A Gröbner basis of an ideal I of K[x1, . . . , xn] with respect to a monomial order
� is a Gröbner basis with respect to � that generates the ideal I . This can be also be
formulated saying that G is a generating set for I such that Id(lt(G)) = Id(lt(I )).

6.3.2 Involutive Bases and Gröbner Bases. Let I be an ideal of K[x1, . . . , xn].
Suppose that G is an involutive basis of the ideal I with respect to an involutive
division I and the monomial order �. In particular, the set G generates the ideal I .
For every g1 and g2 inG, we consider the S-polynomial S�(g1, g2)with respect to�.
By definition, the polynomial S�(g1, g2) belongs to the ideal I . By the involutivity
of the set G, it follows from Sect. 6.2.3 and Proposition 6.2.5 that we have

nfG(S�(g1, g2)) = nfGI (S�(g1, g2)) = 0.

In this way, G is a Gröbner basis of the ideal I by the Buchberger criterion (viii).
We have thus proved the following result due to V. P. Gerdt and Y. A. Blinkov.

6.3.3 Theorem [27, Corollary 7.2] Let � be a monomial order on M(x1, . . . , xn)
and I be an involutive division on K[x1, . . . , xn]. Any I-involutive basis of an ideal
I of K[x1, . . . , xn] is a Gröbner basis of I .

Since the involutive division used to define involutive bases is a refinement of the
classical division with respect to which the Gröbner bases are defined, the converse
of this result is false in general.
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Chapter 2
Gröbner Bases in D-Modules:
Application to Bernstein-Sato
Polynomials

Rouchdi Bahloul

In this chapter, we introduce Gröbner bases in a particular non-commutative ring and
we show how they can be applied in a geometric context. In Sect. 2, we introduce
the Weyl algebra and we present Gröbner bases in this ring. In Sect. 3, we define
Bernstein-Sato polynomials and ideals, which are objects related to functional anal-
ysis and singularities. In Sect. 4, we present how Gröbner bases can be used for the
computation of Bernstein-Sato ideals. In the final section, we present Bernstein-Sato
polynomials from the point of view adopted in the next chapter.

1 Introduction

Let K be a field of characteristic 0 and f, g ∈ K[x] be two polynomials of one
variable x . One can consider the euclidean division (or division by the degree) of
f by g. This can be done as follows. Let us write f = axd + f ′ and g = bxe + g′
with a, b ∈ K

∗, f ′, g′ ∈ K[x] and deg( f ′) < d and deg(g′) < e. Assume that d ≥ e.
Write

f = a

b
xd−e · bxe + f ′

= a

b
xd−e · (g − g′) + f ′

= a

b
xd−e · g + ( f ′ − a

b
xd−e · g′)

︸ ︷︷ ︸

f1

.
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Now, if deg f1 ≥ deg g then we can restart the process with f1. What we obtain is the
existence of Q, R ∈ K[x] such that f = Q · g + R and deg(R) < deg(g) or R = 0.

If we are given two polynomials f, g ∈ K[x, y] of two variables, we may have
many ways to reduce f by g. For example if f = x4 + xy3 and g = x3 + xy then
we may decide that the “leading” monomial of g is x3 or xy.

f = x(g − xy) + xy3 = xg − x2y + xy3 if the leading monomial is x3

or

f = x4 + y2(g − x3) = y2g + x4 − x3y2 if the leading monomial is xy.

Using the first reduction, the x-degree decreased but the y-degree and the total
degree did not. With the second reduction, the y-degree decreased but the total
degree increased. This shows that we can’t find a canonical way to reduce and we
loose uniqueness in the reduction process.

Moreover,K[x] is a principal domain butK[x, y] is not. Thus, given generators of
an ideal I inK[x, y] and a polynomial f ∈ K[x, y], it is not trivial to decide whether
f belongs to I or not. Gröbner bases theory is a nice tool for solving this problem.
Given an ideal I in K[x1, . . . , xn], a Gröbner basis is a special set of generators
of I . Gröbner bases was initially defined in polynomial rings but the theory can be
extended to some noncommutative algebras.

Now, let us introduce a noncommutative ring by defining the n-th Weyl algebra
An(K) (n ≥ 1 being a fixed integer). Let us consider End(K[x]) the set of K-linear
endomorphims of K[x] := K[x1, . . . , xn]. The Weyl algebra is the subalgebra of
End(K[x]) generated by

S = {x̂i |i = 1, . . . , n} ∪ { ∂

∂xi
| i = 1, . . . , n}

where x̂i : K[x] → K[x], f (x) �→ xi f (x) and ∂
∂xi

denotes the partial derivativewith
respect to xi . One can easily see that An(K) is not commutative, indeed :

(
∂

∂xi
x̂i )( f (x)) = ∂

∂xi
(xi f ) = 1 × f + xi × ∂ f

∂xi
= (̂1 + x̂i

∂

∂xi
)( f (x)).

Thus, in An(K) : ∂
∂xi

x̂i − x̂i
∂

∂xi
=̂1. In this chapter, we shall deal with Gröbner bases

in An(K) and show how we can use them to study Bernstein-Sato polynomials. Let
us introduce them.

Let f = f (x1, . . . , xn) be a polynomial mapping on R
n and assume f to be

positive. For s ∈ C such that the real part 	(s) > 0 we can consider the distribution
f s : indeed for a test function ϕ (that is an infinitely differentiable function on R

n

with a compact support), the integral
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〈 f s,ϕ〉 =
∫

Rn

( f (x))sϕ(x)dx

is well defined since 	(s) > 0. Thus we have a map from {s ∈ C | 	(s) > 0} to the
setD′(Rn) of distributions on R

n . One can show that this map is holomorphic in the
sense that given a test function ϕ, the map s �→ 〈 f s,ϕ〉 ∈ R is holomorphic on the
set of the complex numbers s such that 	(s) > 0. During the international congress
of Mathematics in 1954, I. M. Gelfand asked if we can extend meromorphically this
function to the whole plan C. Two positive answers were given by Bernstein and
Gelfand in [5] and by Atiyah in [1]. These two proofs used Hironaka’s resolution of
singularities. They proved that there is a meromorphic extension and the set of poles
is contained in {−1/N ,−2/N , . . .} where N is some positive integer depending on
f .
In 1972,Bernstein [4] gave another proof of this extensionbyproving the existence

of a functional equation.This proofwas purely algebraic anddid not use the resolution
of singularities. He proved that there exists a non-zero polynomial b(s) ∈ R[s] and
an operator P(s) ∈ An(R)[s] such that

(�) b(s) f s = P(s) f s+1.

Using this identity, one can prove that the poles of the extension are contained in the
set

{λ − k | λ ∈ C, k ∈ N, b(λ) = 0}.

The set of b(s) satisfying the relation above is an ideal. Its monic generator is called
the (global) Bernstein-Sato polynomial of f . Kashiwara proved, using the resolution
of the singularities, that the roots of the Bernstein-Sato polynomial are rational. This
rationality allows one to recover the results of Bernstein, Gelfand, and Atiyah. There
exists a local version of the Bernstein-Sato polynomial and it is directly related to
the singularities of f (see [17]).

Now, when we are given several polynomials or functions f1, . . . , f p then we
can consider a functional equation which generalizes (�) and we get an ideal in
K[s1, . . . , sp] called the Bernstein-Sato ideal. We shall see how Gröbner bases can
be used to compute these ideals and how one can produce a stratification of space
and obtain strata on which the local Bernstein-Sato ideal is constant.

2 Gröbner Bases and Rings of Differential
Operators

In this section, we introduce Gröbner bases in the Weyl algebra. In the introduction
we defined the Weyl Algebra as a subring of End(K[x]). Here we propose two other
ways to define An(K).
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2.1 Rings of Differential Operators

In this text n denotes a positive integer and K denotes a field of characteristic 0. In
the sequel, let R be one of the following rings:

(i) R = K[x] := K[x1, . . . , xn],
(ii) R = K[[x]] := K[[x1, . . . , xn]] (the formal power series ring),

(iii) R = C{x} = C{x1, . . . , xn} (the complex convergent power series ring).

Then we set
D(R) := R〈∂1, . . . , ∂n〉

as the freemodule over R generated by the symbols ∂i with the following commuting
relation:

∂i · a − a · ∂i = ∂a

∂xi

wherea ∈ R and i ∈ {1, . . . , n}.When R = K[x], D(R) is denotedAn(K) and called
the n-th Weyl algebra. Here is another definition for An(K):

An(K) = K〈x1, . . . , xn, ∂1, . . . , ∂n〉

with the following relations

∀i, ∂i · xi − xi · ∂i = 1 ; ∀i = j, ∂i · x j − x j · ∂i = 0.

We leave the next proposition as an exercise.

2.1.1 Proposition. The ring R is a left D(R)-module if we set:

∂i • g(x) := ∂g(x)

∂xi
; a(x) • g(x) := a(x) · g(x)

where a(x) ∈ R ⊂ D(R) and g(x) ∈ R.

Any non-zero element of D(R) has a unique presentation of the form:

P =
∑

β∈Nn

aβ(x)∂β

where ∂β := ∂
β1
1 · · · ∂βn

n , aβ(x) ∈ R. The previous sum is finite.

Proof. The existence is easy an left to the reader. For unicity, we have to prove that
if P ∈ D(R) has two presentations: P = ∑

β∈Nn aβ(x)∂β and P = ∑

β∈Nn bβ(x)∂β ,
then aβ(x) = bβ(x) for any β ∈ N

n . Thus we are reduced to prove that if P is written
P = ∑

β∈Nn aβ(x)∂β and P is zero in D(R) then aβ(x) = 0 for any β. Assume, by
contradiction, that not all the aβ(x) are zero. Take β = (β1, . . . ,βn) such that aβ = 0
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and β1 + · · · + βn is minimal. Then P applied to xβ is equal to aβ(x) · β1! · · · βn!
and it is not zero. �

As a consequence, we have a formal presentation of the form:

P =
∑

α,β∈N n

cα,βxα∂β

where xα := xα1
1 · · · xαn

n and cα,β is an element of K or C. This sum is not always
finite if R = K[[x]] or R = C{x}.

2.2 Orders

As we said, any element of D(R) is a (finite or infinite) combination over K or C of
elements of the form xα∂β . These elements are called monomials.
A monomial order on the monomials

xα∂β := xα1
1 · · · xαn

n ∂
β1
1 · · · ∂βn

n

is an order � such that for any α,β,α′,β′,α′′,β′′ ∈ N
n ,

xα∂β � xα′
∂β′ ⇒ xα+α′′

∂β+β′′ � xα′+α′′
∂β′+β′′

.

The order � is called admissible if:

∀i = 1, . . . , n, xi∂i � 1.

In the next result, we introduce new commutative variables: ξ1, . . . , ξn .

2.2.1 Lemma. (Dickson’s lemma). Let M be a family of monomials of
K[x1, . . . , xn, ξ1, . . . , ξn]. Then there exists a finite subset F of M such that M ⊂ 〈F〉.

This is by noetherianity of K[x, ξ].
2.2.2 Lemma. Let � be a monomial order on the monomials xα,α ∈ N

n. The fol-
lowing facts are equivalent.

1. For any i , xi � 1.
2. Any non-empty set M ⊂ K[x] of monomials admits a minimum.
3. Any decreasing sequence of monomials stops.

Proof. Assume that assertion 1 holds. Let M be a set of monomial. By Dickson’s
lemma, there exists a finite set F in M such that M ⊂ 〈F〉. The set F being finite,
let m0 be its minimum. For any m ∈ M , there is some f ∈ F and a monomial m ′
such that m = m ′ f . Since m0 � f , m ′m0 � m ′ f = m but m ′ � 1 then m ′m0 � m0.
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Finally m � m0. This proves assertion 2.
Assume that assertion 2 holds. Suppose that assertion 3 is not true then we obtain a
set with no minimum which contradicts 2. Thus assertion 3 is proven.
Assume that assertion 3 holds. By contradiction, suppose that there is some i for
which αi ≺ 1. Then multiplying by αi , we get α2

i ≺ αi ≺ 1. This shows that we can
construct a decreasing sequence which never stops and this is a contradiction with
3, thus we proved assertion 1. �

2.2.3 Definition. An admissible order that satisfies one of the equivalent statements
of this lemma is called a well-order.

2.3 Gröbner Bases in An(K)

Let us fix an admissible monomial order � on the monomials xα∂β (α,β ∈ N
n). Let

ξ1, . . . , ξn be commutative indeterminates. Let P be non-zero element of An(K). It
has a unique presentation as:

P =
∑

α,β∈Nn

cα,βxα∂β .

Set xα0∂β0 = max�{xα∂β | cα,β = 0}.
We introduce the following objects:

(i) The leading monomial of P with respect to �: lm�(P) := xα0∂β0 ,
(ii) The leading coefficient of P with respect to �: lc�(P) := cα0,β0 ,

(iii) The leading term of P with respect to �: lt�(P) := lc�(P)lm�(P),
(iv) The initial term of P with respect to �: in�(P) := cα0,β0 xα0ξβ0 .

In the sequel, when no confusion is possible, we shall write lm(P) for lm�(P).
We shall write in a same way lc(P), lt(P) and in(P). Let us remark that since �
is an admissible monomial order, we have in(P Q) = in(P)in(Q) for any non-zero
P, Q ∈ An(K).
Let I be a non-zero left ideal of An(K).

2.3.1 Definition. We define the following set in K[x, ξ]

in(I ) := {in(P) | P ∈ I � {0}} ∪ {0}.

This set is an ideal of K[x, ξ] called the initial ideal of I (with respect to �).

We leave as an exercise the fact that in(I ) is an ideal.

2.3.2 Definition. A Gröbner basis of I w.r.t. � is a finite set G ⊂ I such that

in(I ) = 〈{in(g), g ∈ G}〉.
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By Dickson’s lemma, a Gröbner basis always exists.
Now let us introduce the notion of reduction (or division process).

Reduction
Given P ∈ An(K), G = {P1, . . . , Pm} ⊂ An(K), consider

m = in(P) = cα,βxαξβ and mi = in(Pi ) = ci
α(i),β(i)x

α(i)ξβ(i), for i = 1, . . . , m.

Ifm is divisible by one of themi ’s then am-reduction (here “m” stands formonomial)
of P by G is

P ′ := P − cα,β

ci
α(i),β(i)

xα(i)−α∂β(i)−β · P.

Such a reduction is not unique since we may have several possible Pi ’s for which mi

divides m. The key remark is that since � is admissible, we have:

lm(P ′) ≺ lm(P).

If � is a well-order then any sequence of m-reduction stops. The result of such a
sequence is called a reduction (or a normal form) of P by G with respect to �.

2.3.3 Proposition. Let G = {P1, . . . , Pm} be a Gröbner basis of I . Assume � to be
a well-order. For any P ∈ An(K), we have: P ∈ I if and only if any reduction of P
by G is 0. Furthermore, for P ∈ I , we have

P :=
∑

i

Qi Pi

where for any i , Qi ∈ An(K) and lm(P) � lm(Qi Pi ) if Qi = 0.
This is called a standard representation of P with respect to G (and �).

In the sequel, we shall describe Buchberger’s criterion and Buchberger’s algorithm.
For this purpose, we need to define the S-operator.

2.3.4 Definition. Let P, P ′ ∈ An(K). Set m = in(P) = cα,βxαξβ and m ′ = in(P ′)
= c′

α′,β′ xα′
ξβ′

. The S-operator of P and P ′ is

S(P, P ′) = 1

cα,β
x A−α∂B−β · P − 1

c′
α′,β′

x A−α′
∂B−β′ · P ′

where A = (A1, . . . , An) ∈ N
n , B = (B1, . . . , Bn) ∈ N

n and Ai = max(αi ,α
′
i ) and

Bi = max(βi ,β
′
i ) for any i .

2.3.5 Theorem (Buchberger’s criterion). Suppose that � is a well-order. Let G =
{P1, . . . , Pm} be a set of generators of a left ideal I of An(K). Then G is a�-Gröbner
basis of I if and only if for any (i, j) ∈ {1, . . . , m}, the reduction of S(Pi , Pj ) by G
is 0.
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For the proof and other developments, see [12, 13, 15]. Now, we are able to
describe Buchberger’s algorithm.

2.3.6 Buchberger’s Algorithm. Let G = {P1, . . . , Pm} be a family of generators of
a given left ideal I of An(K).

1. Set G0 = G.
2. Assume G0, . . . , Gk are constructed.

For any P, P ′ ∈ Gk , consider a reduction R(P, P ′) of S(P, P ′) by Gk .
Define Rk = {R(P, P ′) | (P, P ′) ∈ G2

k, R(P, P ′) = 0}.
3. IfRk is empty then the algorithm stops.

IfRk is not empty then define Gk+1 = Gk ∪ Rk and return to step 2.

The algorithm always stops because the order � is a well-order. By Buchberger’s
criterion, the last constructed Gk is a Gröbner basis of I .

2.3.7 Remark. If � is not a well-order, there exists a homogenization process that
enables the construction of a Gröbner basis, see e.g., [12].

2.3.8 Elimination of Variables. In this last paragraph, we give an example of the
use of Gröbner bases, called elimination. We shall do an elimination of the variables
∂1, . . . , ∂n but this can be done for any family of variables. One has only to adapt
the order. Fix any well-order �0. Define the following order � by:

xα∂β ≺ xα′
∂β′ ⇐⇒

{
∑

i βi <
∑

i β′
i

or (
∑

i βi = ∑

i β′
i and xα∂β ≺0 xα′

∂β′
).

2.3.9 Proposition. Let G be a Gröbner basis of a left ideal I ⊂ An(K) then the ideal
I ∩ K[x] ⊂ K[x] is generated by G ∩ K[x]. In fact G ∩ K[x] is a Gröbner basis of
I ∩ K[x] with respect to the restriction of the order � to the monomials of the form
xα.

Proof. Let f ∈ I ∩ K[x]. We have a standard representation

f =
∑

i

Qi Pi

where G = {P1, . . . , Pm}, lm( f ) � lm(Qi Pi ) if Qi = 0. For Qi = 0, the definition
of � implies that Qi , Pi ∈ K[x]. �

To go further: one can generalize the definition of Gröbner bases in K[[x]], C{x}
and D(R)where R = K[[x]] or R = C{x}. We also have a notion of division (which
is not a finite process) and Buchberger’s criterion and algorithm still work. For all
these generalizations, one can refer to [12]. The first paper where Gröbner bases in
the Weyl Algebra appeared is [11]. In [7], the authors defined and used standard
bases in C{x}[∂x ] in the one dimensional case n = 1.
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3 Bernstein-Sato Polynomials and Ideals

3.1 Introduction of the Bernstein-Sato Polynomial of One
Function

First let us consider the polynomial case. Let us fix a non-zero polynomial f ∈
K[x] := K[x1, . . . , xn]. Introduce a new single variable s. Let us denote by D =
An(K). Set L = K[x, 1

f , s] · f s . This is the free module of rank 1 generated by the

symbol f s over K[x, 1
f , s].

We have an action of D[s] on L if we set:

◦ u • (g · f s) = (ug) · f s ,
◦ ∂i • (g · f s) = (

∂g
∂xi

+ sg 1
f ) · f s

where u ∈ K[x, s].
3.1.1 Theorem (see Bernstein [4]).There exists a non-zero polynomialb(s) ∈ K[s]
and there exists P(s) ∈ D[s] such that

b(s) f s = P(s) f s+1.

Here P(s) f s+1 means (P(s) f ) • f s = P(s) • ( f · f s).
Such a polynomial is called a (global) Bernstein-Sato polynomial associated with f .
Themonic Bernstein-Sato polynomial of least degree is called the (global) Bernstein-
Sato polynomial of f , or the (global) b-function of f .We shall denote it by: b f,glob(s)
or b f (s).

These objects can be generalized to other rings. We can take f ∈ R = C{x} or
f ∈ K[[x]]. Then L = R[ 1

f , s] · f s is again a D(R)[s]-module.
The existence of a Bernstein-Sato polynomial in these last cases is proven by
Kashiwara [16] in the case where f ∈ C{x} and by Björk [6] when f ∈ K[[x]].

As we recalled it in the introduction, the existence of a (global) Bernstein-Sato
polynomial is related to the question of Gelfand on meromorphic extensions but the
case when f ∈ C{x} has been the most studied from a geometrical point of view.
Here is a basic result on the link between b f (s) and the geometric properties of the
germ of the analytic variety defined by f .
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3.1.2 Proposition. Take f ∈ C{x}. The following assertions hold.

(i) f is unit of C{x} if and only if b f (s) = 1.
(ii) If f is not a unit then: f is smooth if and only if b f (s) = s + 1.

Proof. (i) If f is invertible then 1
f · f s+1 = 1 · f s . Conversely, assume that

P(s) f s+1 = f s for some P(s) ∈ D(C{x})[s]. Putting s = −1, we obtain:
P(−1) · 1 = f −1. But P(−1) · 1 ∈ C{x} then f −1 ∈ C{x}.

(ii) We shall prove the left-right implication. For the converse, one can refer to [8].
Without loss of generality, we may assume that ∂ f

∂x1
(0) = 0; so ∂ f

∂x1
is a unit.

We have: ∂
∂x1

· f s+1 = (s + 1) ∂ f
∂x1

f s then (
∂ f
∂x1

)−1 ∂
∂x1

· f s+1 = (s + 1) f s .

In 1975, when f ∈ C{x} has an isolated singularity, Malgrange (see [17]) showed a
strong link between the roots of b f (s) and the eigenvalues of the monodromy on the
cohomology of the Milnor fiber.

3.2 Generalization to Several Functions

Here, f = ( f1, . . . , f p) ∈ K[x]p = K[x1, . . . , xn]p is given where f j = 0 for j =
1, . . . , p. We introduce the new indeterminates s1, . . . , sp. Define L = K[x, 1

f1··· f p
,

s1, . . . , sp] · f s as the free module of rank 1. Here f s has to be thought as f s1
1 · · · f

sp
p .

Put D = An(K), then D[s] = D[s1, . . . , sp] acts on L in the following way:

◦ u • (g · f s) := (ug) · f s

◦ ∂i • (g · f s) = (
∂g
∂xi

+ ∑p
j=1 s j

∂ f j

∂xi
f −1

j g) · f s

where u ∈ K[x, s].
Remark that ∂i (g · f s) is nothing but the partial derivation of the product g · f s . A

Bernstein-Sato polynomial associated with f = ( f1, . . . , f p) is a polynomial b(s) ∈
K[s] such that

b(s) f s ∈ D[s] · f s+1.

Here f s+1 := f1 · · · f p · f s .
Bernstein also proved that there exists a non-zero such polynomial. Then we can

define the (global) Bernstein-Sato ideal as the ideal of K[s] of such polynomials
b(s). We will denote it by Bglob( f ). This ideal is not principal in general (see [10]
and also [3]). Now one can generalize these objects to f j ∈ C{x} or f j ∈ K[[x]]. For
f j ∈ C{x}, Sabbah (see [22, 23]) and Bahloul [2] proved the existence of non-zero
Bernstein-Sato polynomials. The Bernstein-Sato ideal obtained here is denoted by
Ban( f ). For f j ∈ K[[x]] the existence of Bernstein-Sato polynomials is still open.
Nevertheless, the Bernstein-Sato ideal here is denoted by Bform( f ).
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3.2.1 Local Bernstein-Sato Ideal

We still consider f = ( f1, . . . , f p) ∈ K[x]p. Take a0 ∈ K
n .

Let us consider the localized ring R = K[x]a0 := { u
v

| u, v ∈ K[x], v(a0) = 0}. Set
Da0 = D(R). We still can consider the following equation

b(s) f s ∈ Da0 [s] f s+1.

The set of such polynomials b(s) is an ideal called the local Bernstein-Sato ideal at
a0, and denoted by Ba0( f ). It is clear that Ba0( f ) = {0} because it contains Bglob( f ).
Here is a proposition on the link between all the different Bernstein-Sato ideals.

3.2.2 Proposition. Take f ∈ C{x}p.

• Assume that f ∈ C[x]p. Take a0 = 0 ∈ K
n then Ba0( f ) = Ban( f ).

• Bform( f ) = {0} and we have Bform( f ) = Ban( f ).

For the proof, one can refer to [8].

3.2.3 Proposition. Take f ∈ K[x]p and assume that K is algebraically closed. We
have

Bglob( f ) =
⋂

a∈Kn

Ba( f ).

Proof. The left-right inclusion is trivial, let us prove the converse one. Take b(s) ∈
∩aBa( f ). Then for any a ∈ K

n , there exist Pa ∈ Da[s] such that b(s) f s = Pa f s+1.
We may write Pa = 1

ha(x)
Qa with Qa ∈ D[s] and h(x) ∈ K[x] such that h(a) = 0.

So we have ha(x)b(s) f s = Qa f s+1.
Consider the ideal H = ∑

a∈Kn K[x]ha . The zero set V (H) is empty. So by
Hilbert’s Nullstellensatz:

√
H = I (V (H)) = I (∅) = K[x] so 1 ∈ H . Therefore

there exist a1, . . . , ad ∈ K
n and u1, . . . , ud ∈ K[x] such that 1 = ∑d

i=1 ui hai . As
a consequence

b(s) f s =
d

∑

1

ui hai b(s) f s = (

d
∑

1

ui Qai ) f s+1

and b(s) is a global Bernstein-Sato polynomial. �

For this result, one can refer to [8] and [19].

3.3 Stratification Results

We still have f ∈ K[x]p but K is not assumed to be algebraically closed.

3.3.1 Lemma. Take ∅ = A ⊂ K
n. There exists an open set U of K

n for the Zariski
topology such that U ∩ A = ∅ and the map U ∩ A � a �→ Ba( f ) is constant.
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Proof. Take a1 ∈ A. If b(s) ∈ Ba1( f ) then we can write

h(x)b(s) f s ∈ D[s] f s+1

where h(x) ∈ K[x] satisfies h(a1) = 0. Thus if we set U1 = K
n

� V (h) then for
any a ∈ U1, Ba1( f ) ⊆ Ba( f ). If for any a ∈ U1 ∩ A we have Ba1( f ) = Ba( f ) then
the proof is done. If not, take a2 ∈ U1 ∩ A such that Ba1( f ) � Ba2( f ). As before,
there exists an open set U2 of K

n such that for any a ∈ U2, Ba2( f ) ⊆ Ba( f ).
If for any a ∈ U2 ∩ A we have Ba2( f ) = Ba( f ) then the proof is done. If not
there is some a3 ∈ U2 ∩ A such that Ba2( f ) � Ba3( f ). Thus we have the following
strict inclusions: Ba1( f ) � Ba2( f ) � Ba3( f ). By noetherianity of K[s] this process
stops. �

3.3.2 Proposition. (i) The set {Ba( f ) | a ∈ K
n} is finite.

(ii) There exists a finite partition of K
n:

K
n =

⊔

j

(U j � Vj )

where U j and Vj are open sets of K
n, such that the map a �→ Ba( f ) is constant

on each U j � Vj .

Notice that the constant maps associated with two different sets U j � Vj may be the
same.

Proof. Assume by contradiction that the set in 1 is infinite. By using the previous
lemma, let U1 be an open set such that the map a �→ Ba( f ) is constant on U1. Let
Z1 := K

n
� U1. We again apply the lemma to Z1 and we obtain an open set U2 such

that the map a �→ Ba( f ) is constant on U2 ∩ Z1.
Set Z2 = Z1 � (U2 ∩ Z1). We have Z2 � Z1. (Indeed, if Z2 = Z1 then we have

a finite number of Ba( f )’s). We continue the construction and we get a strictly
decreasing sequence of Zariski closed sets and this is impossible. So statement 1 is
proven. By the previous construction, we have closed sets:

∅ = Z j0+1 � Z j0 � · · · � Z1 � K
n

and open sets U j ’s such that Z j+1 = Z j � (U j+1 ∩ Z j ) and the map a �→ Ba( f ) is
constant on each U j+1 ∩ Z j . Finally

K
n = (

j0
⊔

j=1

U j+1 ∩ Z j )
⊔

U1

and on each stratum the map a �→ Ba( f ) is constant. �
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4 Computation of Bernstein-Sato Ideals by Using
Gröbner Bases

In this section,we shall recall theMalgrange point of view for definingBernstein-Sato
polynomials. This will be used to give an algorithm for computing Bernstein-Sato
ideals following an idea of Briançon and Maisonobe (see [9]). This section is based
on the joint article with Oaku [3].

Let us recall that a polynomial map f = ( f1, . . . , f p) ∈ K[x]p is given. We still
denote An(K) by D.

4.1 Malgrange Point of View

Let t1, . . . , tp be new variables. Consider the Weyl algebra An+p(K) with variables
x1, . . . , xn, t1, . . . , tp, ∂1, . . . , ∂n, ∂t1 , . . . , ∂tp . We shall denote it D〈t, ∂t 〉.
The ring D〈t, ∂t 〉 act on L = K[x, 1

f1··· f p
, s] f s as follows:

• t j • (g(s) f s) = g(s1, . . . , s j−1, s j + 1, s j+1, . . . , sp) f j f s

• ∂t j • (g(s) f s) = −s jg(s1, . . . , s j−1, s j − 1, s j+1, . . . , sp) f −1
j f s

where g(s) ∈ K[x, 1
f1··· f p

, s].
4.1.1 Remark. We have:

−∂t j t j • (g(s) f s) = −∂t j • (g(s1, . . . , s j−1, s j + 1, s j+1, . . . , sp) f j f s)

= −(−s jg(s) f s)

= s jg(s) f s .

Thanks to this equality, we shall identify D[s] with the subring D[−∂t, t] :=
D[−∂t1 t1, . . . ,−∂tp tp] of D〈t, ∂t 〉.
4.1.2 Lemma. The left ideal I of D〈t, ∂t 〉 (respectively of Da〈t, ∂t 〉) generated by

t j − f j , j = 1, . . . , p; ∂i +
p

∑

j=1

∂ f j

∂xi
∂t j , i = 1, . . . , n

is the annihilating ideal of f s .

Proof. We shall make the proof in the global case, the other case being similar.
The inclusion I ⊂ annD〈t,∂t 〉( f s) is easy an left to the reader. Conversely take P ∈
D〈t, ∂t 〉 such that P · f s = 0. On can write it as
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P =
∑

cα,β,μ,ν xα∂ν
t tμ∂β

with α,β ∈ N
n , μ, ν ∈ N

p and cα,β,μ,ν ∈ K. Using the generators of I , we get P =
P1 + P2 where P1 ∈ I and P2 is written as P2 = ∑

eα,ν xα∂ν
t with eα,ν ∈ K and we

have P2 · f s = 0. But

∑

eα,ν xα∂ν
t · f s =

(

∑

eα,ν(−1)
∑

ν j xα
p

∏

j=1

s j (s j − 1) · · · (s j − (ν j − 1)) f
−ν j
j

)

f s .

The right hand side is an element of L so all the eα,ν’s are zero which proves that
P2 = 0 and P ∈ I . �

Now let us introduce some ideals. We fix some a ∈ K
n .

• I = annD〈t,∂t 〉( f s),
• J = annDa〈t,∂t 〉( f s),
• I1 = I ∩ D[s] := I ∩ D[−∂t t] = annD[s]( f s) (see the remark at the beginning of
this paragraph),

• J1 = J ∩ Da[s] := J ∩ Da[−∂t t] = annDa [s]( f s),
• I2 = (I1 + D[s] f1 · · · f p) ∩ K[x, s],
• J2 = (J1 + Da[s] f1 · · · f p) ∩ K[x]a[s],
• I3 = I2 ∩ K[s],
• J3 = J2 ∩ K[s].
4.1.3 Proposition. I3 = Bglob( f ) and J3 = Ba( f ).

Proof. We make the proof only for I3. It is the same proof for J3. Take b(s) ∈
K[s]. Suppose b(s) ∈ Bglob( f s). By definition, this is equivalent to having b(s) f s ∈
D[s] f1 · · · f p f s which means that there exists some P(s) ∈ D[s] such that b(s) −
P(s) f1 · · · f p ∈ annD[s]( f s) = I1. Since b(s) ∈ K[s], this is equivalent to b(s) ∈
(I1 + D[s] f1 · · · f p) ∩ K[s] = I3. �

By Lemma4.1.2, we have

J = Da〈t, ∂t 〉 · I.

We also have

4.1.4 Proposition. J1 = Da[s] · I1 and J2 = K[x]a[s] · I2.

Proof. Weprove the equality that concerns J1 and I1, the other equality can be proven
in the same way. We have I1 ⊂ J1 then Da[s] · I1 ⊂ J1. Conversely take P ∈ J1. We
can write P = 1

c Q with c ∈ K[x], c(a) = 0, Q ∈ D[s]. By assumption P f s = 0
thus Q f s = cP f s = 0, i.e. Q ∈ I ∩ D[s] = I1. Finally P = 1

c Q ∈ Da[s]I1. �

At this step, we see that the ideals I and J (respectively I1 and J1; and I2 and J2)
have the same generators. The next result shows how to obtain J3.
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4.1.5 Proposition. Let I2 = �1 ∩ · · · ∩ �r be a primary decomposition of I2. Let
σa = {i ∈ {1, . . . , r} | a ∈ V (�i ∩ K[x])}. If σa = ∅ then J3 = K[s] otherwise J3 =
(
⋂

i∈σa

�i ) ∩ K[s].

We ended Sect. 2 by a stratification result from a theoretical point of view. The
following result gives such a stratification more explicitly.

4.1.6 Corollary. We keep the notations of Proposition4.1.5. For any subset σ ⊆
{1, . . . , r}, set

Wσ =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

K
n

�

r
⋃

i=1

V (�i ∩ K[x]) if σ = ∅,

r
⋂

i=1

V (�i ∩ K[x]) if σ = {1, . . . , r},
( r

⋂

i∈σ

V (�i ∩ K[x])
)

�

(

⋃

i /∈σ

V (�i ∩ K[x])
)

otherwise.

Then K
n =

⊔

σ

Wσ is a partition made of constructible sets such that the map a �→
Ba( f ) is constant on each Wσ .

4.2 Algorithmic Point of View

In this subsection, we shall describe how we can obtain generators of the ideals I j

and Jj .

• Computing I2 from I1 and I3 from I2 is done by an elimination of (global) variables
as explained at the end of paragraph 1.

• Computing J3 is done by a primary decomposition of I2. Primary decomposition
can be done by Gröbner bases methods (see e.g., [15]).

It remains two problems:

1. How can we obtain I1 from I?
2. How can we obtain intersection of ideals? (This is necessary for J3.)

4.2.1 Intersection of Ideals. We shall describe it in the polynomial case but this also
works in noncommutative rings. Let L1, L2 be two ideals of K[x] = K[x1, . . . , xn]
given by finite sets of generators. Let z be a new variable then

L1 ∩ L2 =
(

K[x, z]zL1 + K[x, z](1 − z)L2

)

∩ K[x].
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Proof. Only the left-right inclusion is not trivial and needs to be proved. Let f be
an element of the left hand side. Then we can write

f =
∑

ui (x, z)zq1
i (x) +

∑

vi (x, z)(1 − z)q2
i (x)

where ui , vi ∈ K[x, z], q1
i ∈ L1, q2

i ∈ L2. Since f ∈ K[x], we have f = f|z=1 ∈ L1

and f = f|z=0 ∈ L2. �

Now let us discuss the last problem.

4.2.2 Computation of the Annihilator of f s in D[s]. The first existing method for
the computation of I1 from I was given by Oaku and Takayama [21]. We shall use
an easier method found by Briançon and Maisonobe [9].

Let us consider the subring D〈s, ∂t 〉 := D〈−∂t t, ∂t 〉 of D〈t, ∂t 〉. This subring can
also be defined intrinsically as follows: D〈s, ∂t 〉 is the ring

K〈x1, . . . , xn, ∂1, . . . , ∂n, s1, . . . , sp, ∂t1 , . . . , ∂tp 〉

with the following non-trivial commutation relations

∂i xi − xi∂i = 1, s j∂t j − ∂t j s j = ∂t j

We also define the localisation at a: Da〈s, ∂t 〉.
4.2.3 Proposition. The annihilating ideal I ′ of f s in D〈s, ∂t 〉 (respectively in
Da〈s, ∂t 〉) is the left ideal generated by

s j + f j∂t j , j = 1, . . . , p; ∂i +
p

∑

j=1

∂ f j

∂xi
∂t j , i = 1, . . . , n.

The proof is the same as that of Lemma4.1.2. Thanks to that we can answer to the
last problem. Indeed we have

I1 = I ′ ∩ D[s].

As a consequence, in order to compute generators of I1, we can use the elimination
of the variables ∂t1 , . . . , ∂tp . In Sect. 2, we introduced Gröbner bases in D = An(K).
Here we need Gröbner bases in D〈s, ∂t 〉. The only difference will be in the notion
of admissible orders. Here an admissible order shall satisfy

∀i, xi∂i � 1 and ∀ j, s j∂t j � ∂t j .

It is well-known that the computation of Gröbner bases has a double-exponential
complexity with respect to the number of variables (see e.g., Dubé [14]) and this
upper bound is optimal (see Mayr and Meyer [18]) but usually not reached.



2 Gröbner Bases in D-Modules: Application to Bernstein-Sato Polynomials 91

5 b-Function and V -Filtration

In this last section, we want to present Bernstein-Sato polynomials (or b-function)
from another point of view.
In this volume (see [20]), Nakayama and Takayama introduced the b-function in a
particular situation. In this paragraph, we shall make the link between the Bernstein-
Sato polynomial that we introduced in the present chapter and the b-function in
[20]. Let us recall the definition of the b-function as in [20]. Let g be an operator
in A1(K) (we denote by x and ∂ the variables of this ring). Take w = 1. Write
g = ∑

k,l∈N ck,l xk∂l and define

d := ord(−w,w)(g) = max{−k + l | ck,l = 0}.

If d ≥ 0 then set Q = xdg, otherwise set Q = ∂dg. In any case ord(−w,w)(Q) = 0.
There exists a polynomialb(s) ∈ K[s] such that Q = b(x∂) + Q′ whereord(−w,w)

(Q′) ≤ −1. The set of these polynomials b(s) is an ideal of K[s]. The monic gener-
ator of this ideal is called the b-function of g or the indicial polynomial.

Now, let us introduce the V -filtration in A1(K). Set, for k ∈ Z,

Vk(A1(K)) = {P ∈ A1(K) | ord(−w,w)(P) ≤ k}

It is a filtration. Indeed, we have:

• Vk−1(A1(K)) ⊆ Vk(A1(K)) for any k ∈ Z.
• Vk(A1(K)) · Vl(A1(K)) ⊆ Vk+l(A1(K)) for any k, l ∈ Z.

The associated graded ring is

grV (A1(K)) :=
⊕

k∈Z
Vk(A1(K))/Vk−1(A1(K))

and grV (A1(K)) is isomorphic toA1(K). Given P ∈ A1(K)with d = ord(−w,w))(P),
we set σ(P) = σd(P) ∈ grV (A1(K)) as its image in Vd(A1(K))/Vd−1(A1(K)). For
a left ideal I ⊂ A1(K), we define grV (I ) as the ideal of grV (A1(K)) generated by
the σ(P), with P ∈ I . Now, let us go back to the b-function associated with some
g ∈ A1(K). We have:

5.0.1 Proposition. b(s) ∈ K[s] is a b-function of g if and only if b(x∂) ∈
grV (A1(K) · g).

Consequently, bg is the monic generator of grV (A1(K) · g) ∩ K[x∂] with the identi-
fication s = x∂.

Now let us compare this b-function with the Bernstein-Sato polynomial of
f ∈ K[x] := K[x1, . . . , xn]. Let us introduce the Kashiwara-Malgrange V -filtration
in An+1(K) (where t is the new variable). Take P ∈ An+1(K). It can be written as
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P = ∑

cα,μ,β,ν xαtμ∂β∂ν
t where α,β ∈ N

n and μ, ν ∈ N.
Define ordV (P) = max{ν − μ | cα,μ,β,ν = 0}. Then the V -filtration is defined as
before:

Vk(An+1(K)) = {P ∈ An+1(K) | ordV (P) ≤ k}.

In the sameway,we define grV (An+1(K)) and here again it is isomorphic toAn+1(K).
Moreover, we can define σ(P) for P ∈ An+1(K), and grV (I ) for a left ideal I ⊆
An+1(K). The next proposition is similar to Proposition5.0.1.

5.0.2 Proposition. Let I be the annihilator ideal of f s in An+1(K) then

Bglob( f ) = grV (I ) ∩ K[−∂t t],

where we identify s with −∂t t .

Given an arbitrary ideal J in An+1(K), we may consider B(J ) = grV (J ) ∩
K[−∂t t] and may ask whether this ideal is zero or not. When J is holonomic then
B(J ) is not zero, see e.g., the discussion in Chap.5 of [24].

Proof of the proposition. Take b(s) ∈ K[s]. Suppose that b(−∂t t) ∈ grV (I ) ∩
K[−∂t t]. By definition of the graded ideal, this means that b(−∂t t) ∈ I + V−1(An+1

(K)). Since
b(−∂t t) ∈ K[−∂t t] ⊂ V0(An+1(K)),

this is equivalent to having b(−∂t t) ∈ I + V−1(An+1(K)). Using the fact that
t − f ∈ I , this is equivalent to b(−∂t t) = Q + P(−∂t t)t where Q ∈ I and P ∈
An(K)[s]. Again, thanks to the fact that t − f ∈ I this can be rewritten in the fol-
lowing form: b(−∂t t) = Q′ + P(−∂t t) f with Q′ ∈ I and the same P ∈ An(K)[s].
This is equivalent to b(−∂t t) ∈ I ∩ An(K)[−∂t t] + An(K)[−∂t t] f and then to
b(s) f s ∈ An(K)[s] f s+1 by using the fact that s acts as −∂t t . Finally this means
that b(s) ∈ Bglob( f ). �

References

1. M.F. Atiyah, Resolution of singularities and division of distributions. Comm. Pure Appl. Math.
23, 145–150 (1970).

2. R. Bahloul, Démonstration constructive de l’existence de polynômes de Bernstein-Sato pour
plusieurs fonctions analytiques. Compos. Math. 141(1), 175–191 (2005).

3. R. Bahloul, T. Oaku, Local Bernstein-Sato ideals: algorithm and examples. J. Symbolic Com-
put. 45(1), 46–59 (2010).

4. I.N. Bernšteı̆n, Analytic continuation of generalized functions with respect to a parameter.
Funkcional. Anal. i Priložen. 6(4), 26–40 (1972).

5. I.N. Bernšteı̆n, S.I. Gel’fand, Meromorphy of the function Pλ. Funkcional. Anal. i Priložen.
3(1), 84–85 (1969).



2 Gröbner Bases in D-Modules: Application to Bernstein-Sato Polynomials 93

6. J.-E. Björk, Rings of differential operators. North-Holland Mathematical Library, vol. 21
(North-Holland Publishing Co., Amsterdam-New York, 1979).

7. J. Briançon, P.Maisonobe, Idéaux de germes d’opérateurs différentiels à une variable. Enseign.
Math. (2), 30(1–2), 7–38 (1984).

8. J. Briançon, P. Maisonobe, Examen de passage du local au global pour les polynômes de
bernstein-sato. unpublished note, 1990.

9. J. Briançon, P.Maisonobe,Remarques sur l’idéal de bernstein associé à des polynômes. Preprint
Université de Nice Sophia-Antipolis, 2002.

10. J. Briançon, H. Maynadier, équations fonctionnelles généralisées: transversalité et principalité
de l’idéal de Bernstein-Sato. J. Math. Kyoto Univ. 39(2), 215–232 (1999).

11. F.J. Castro-Jiménez, Théorème de Division Pour les Opérateurs Différentiels et Calcul des
Multiples. Ph.D. thesis. Thèse de troisiième cycle, Université Paris 7 (1984).

12. F. J. Castro-Jiménez, M. Granger, Explicit calculations in rings of differential operators, in
Éléments de la théorie des systèmes différentiels géométriques, volume 8 of Sémin. Congr..
(Society of Mathematical, France, Paris, 2004), pp. 89–128.

13. D.A. Cox, J. Little, D. O’Shea, An introduction to computational algebraic geometry and com-
mutative algebra, in Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics,
4th edn. (Springer, Cham, 2015).

14. T.W. Dubé, The structure of polynomial ideals and Gröbner bases. SIAM J. Comput. 19(4),
750–775 (1990).

15. G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra (Springer, Berlin,
2002). With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, With
1 CD-ROM (Windows, Macintosh, and UNIX).

16. M.Kashiwara, B-functions and holonomic systems. Rationality of roots of B-functions. Invent.
Math. 38(1), 33–53 (1976/77).

17. B. Malgrange, Le polynôme de Bernstein d’une singularité isolée. Lecture Notes in Mathe-
matics, vol. 459, 1975, pp. 98–119.

18. E.W. Mayr, A.R. Meyer, The complexity of the word problems for commutative semigroups
and polynomial ideals. Adv. Math. 46(3), 305–329 (1982).

19. Z.Mebkhout, L. Narváez-Macarro. La théorie du polynôme deBernstein-Sato pour les algèbres
de Tate et de Dwork-Monsky-Washnitzer. Ann. Sci. École Norm. Sup. (4) 24(2), 227–256
(1991).

20. H. Nakayama, N. Takayama, Introduction to algorithms for D-modules with quiver D-
modules, in Two Algebraic Byways from Differential Equations (Gröbner Bases and Quivers.
Algorithms and Computation in Mathematics (Springer, Berlin, 2019).

21. T. Oaku, N. Takayama, An algorithm for de Rham cohomology groups of the complement of
an affine variety via D-module computation. J. Pure Appl. Algebra 139(1–3), 201–233 (1999).
Effective methods in algebraic geometry (Saint-Malo, 1998).

22. C. Sabbah, Proximité évanescente. I. La structure polaire d’un D-module. Compositio Math.
62(3), 283–328 (1987).

23. C. Sabbah, Proximité évanescente. II. équations fonctionnelles pour plusieurs fonctions ana-
lytiques. Compositio Math. 64(2), 213–241 (1987).

24. M. Saito, B. Sturmfels, N. Takayama, inGröbner Deformations of Hypergeometric Differential
Equations. Algorithms and Computation in Mathematics, vol. 6 (Springer, Berlin, 2000).



Chapter 3
Introduction to Algorithms for
D-Modules with Quiver D-Modules

Hiromasa Nakayama and Nobuki Takayama

The goal of this expository chapter is to illustrate how to use algorithmic methods
for D-modules to make mathematical experiments for D-modules and cohomology
groups with examples of quiver D-modules. The first section is based on a lecture by
the second author given in the Kobe-Lyon summer school 2015 On Quivers: Compu-
tational Aspects and Geometric Applications. The second author could attend several
interesting lectures of the school and the Sects. 2 and 3 are written by an inspiration
from these lectures and the interesting paper by Khoroshkin and Varchenko [5].

1 Computation of Integration Functors in One
Dimensional Case

We consider D-modules on the one-dimensional spaceC in this section.We illustrate
an algorithm to compute the integration functor π∗ = ∫

π where π : C → {pt} and
de Rham cohomology groups in the case that the D-module is singly generated.
Although the one-dimensional case is special, this case illustrates essential ideas of
general algorithms for the n-dimensional case, see, e.g., [1].

Let K be the field of complex numbers. Let f = ∑m
j=0 f j x j be a polynomial

in one variable x . Define the w degree or order of f by max { j · w | f j �= 0} for
w ∈ Z>0. Putm = ordw( f ),w = (1).We use the subscriptw for ord to be consistent
with the notation for n-variable case. We denote by K[x]k the K vector space of the
polynomials of which degree is less than or equal to k. Multiplying xi to f , we have
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xi f (x) =
m∑

j=0

f j x
j+i .

Then, the polynomial f defines a K-linear map (by the correspondence ei ⇔ xi ) as

K[x]k−m � K
k−m+1 � ei 	→

m∑

j=0

f j e j+i ∈ K
k+1 � K[x]k .

The matrix representation of this map is denoted by Mk( f ) and we call it the
Macaulay-type matrix of the degree k. Here, we regard ei as the row vector and
we multiply Mk( f ) from the right.

1.1 Examples. f (x) = x2 + 1.

e0 	→ 1 · (x2 + 1) = e2 + e0, e1 	→ x · (x2 + 1) = e3 + e1

M3( f ) =
(
1 0 1 0
0 1 0 1

)

Columns are indexed by e0, e1, ...

Macaulay-type matrices constructed from differential operators will give a pre-
sentation of cohomology groups. We denote by D the ring of differential operators
D = K〈x, ∂〉. Generators x and ∂ satisfy the relation ∂x = x∂ + 1. Put w = 1. We
define (−w,w) degree or order by ord(−w,w)(xi∂ j ) = j − i . The differential oper-
ator f = ∑

ci j x i∂ j is called (−w,w) homogeneous when ( j − i)’s are the same
value for all the terms in f .

1.2 Lemma. If we multiply two elements f and g in D which are (−w,w) homo-
geneous, f g is also (−w,w) homogeneous.

This lemma is well known and is used in several works on D-modules. Since this
is an expository paper and this fact is important, we give a proof.

Proof. We have, by the Leibnitz formula,

∂ pxq = xq∂ p + pqxq−1∂ p−1 + p(p − 1)q(q − 1)

2! xq−2∂ p−2 + · · ·

Since ord(−w,w)(xq−i∂ p−i ) = (p − i) − (q − i) = p − q, the lemma is shown in
case that f = ∂ p, g = xq from the Leibnitz formula. General cases are reduced to
this case. �

We denote by Vk theK vector space spanned by xi∂ j , j − i ≤ k. In other words,
Vk is the set of the elements of which (−w,w) order is less than or equal to k. Note
that V−1 ⊆ x D.
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1.3 Lemma. Let g ∈ D be a differential operator of which (−w,w) order is k. For
f ∈ Vm ∩ Dg, there exists q ∈ Vm−k such that

f = qg

Proof. Since f ∈ Dg (a left ideal generated by g), there exists q ′ such that f = q ′g.
Suppose that r = ord(−w,w)(q ′) > m − k and q ′ = q ′

1 + q ′
2, where q ′

1 is (−w,w)

homogeneous with the order r and the order of q ′
2 is less than r . We decompose g in

the same way as g = g1 + g2. Then, we have q ′g = q ′
1g1 + q ′

1g2 + q ′
2g = f . Since

the top degree term is q ′
1g1 which is (−w,w) homogeneous, we have q ′

1g1 = 0. Then
q ′
1 = 0. It is a contradiction. �

1.4 Remark. Analogous lemma holds in the n > 1 variables case. Fix w ∈ R
n
>0. If

the set {g1, . . . , gm} is a (−w,w) Gröbner basis [12, Definition 1.1.3], which is also
called a (−w,w) involutive basis, of a left ideal I of the ring of differential operators
of n variables and f be an element of Vm ∩ I , then there exists qi ∈ Vm−ord(−w,w)(gi )

such that f = ∑m
i=1 qigi . See [10, Theorem 10.6].

For an element f of D, the expression as
∑

ci j x i∂ j (∂’s are collected to the right)
is called the normally ordered expression and is denoted by : f : For example, we
have : ∂x := x∂ + 1.

Fix a natural number k. For g ∈ D such that ord(−w,w)(g) = j , the operator g
induces a K-linear map

K[∂]k− j � ∂i 	→: ∂ig : |x=0 ∈ K[∂]k

The matrix representation of this map is called the Macaulay-type matrix for restric-
tion of degree k and is denoted by Mk(g).

1.5 Examples. g = x∂2 + x∂, ord(−w,w)(g) = j = 1, k = 2.

1 	→ : x∂2 + x∂ : |x=0 = 0

∂ 	→ : ∂g : |x=0 = x∂3 + ∂2 + x∂2 + ∂ |x=0 = ∂2 + ∂

M2(g) =
(
0 0 0
0 1 1

)

Here, the K vector space K[∂]k−1 is regarded as a set of row vectors.

The diagram

C• : 0
ϕm+1→ K

bm
ϕm→ K

bm−1
ϕm−1→ · · · → K

b1 ϕ1→ K
b0 ϕ0→ 0

whereϕi ’s areK-linearmaps is called a complex of vector spaceswhenϕi ◦ ϕi+1 = 0
holds. Define the −i th cohomology group of C• as
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H−i (C•) = Ker ϕi

Imϕi+1

which is a K-vector space.

1.6 Exercise. Let A be a b2 × b1 matrix and B a b1 × b0 matrix with elements inQ
such that AB = 0. Develop a program on a computer algebra system to find a basis
of the Q-vector spaceKer B

Im A .

1.7 Examples. For g = x∂2 + x∂, consider the Macaulay-type matrix for the re-
striction of degree 2. The cohomology groups of the complex

C• : 0 → K
2 M2(g)−→ K

3→0

are H 0(C•) � K
2, H−1(C•) � K.

Let p(x) be a rational function. The action • of D to p is defined by

xi∂ j • p = xi ∂
j p

∂x j

Let g be an element of D. Suppose that the highest (−w,w)- order terms in g is∑m
i=0 ci xi∂r+i , r ≥ 0, we define the indicial polynomial1 of g by the polynomial

in θ = x∂ in (1) below in the proof. Note that ord(−w,w)(θ) = 0 and θ commutes
with itself in D. When the highest (−w,w)-order terms in g is

∑m
i=0 ci xi+r ′

∂i ,
r = −r ′ < 0,we define the indicial polynomial of g by the righthand side polynomial
in θ in

∂r ′
m∑

i=0

ci x
i+r ′

∂i =
m∑

i=0

ci (θ + r ′)(θ + r ′ − 1) · · · (θ − i + 1).

1.8 Theorem. [8]. Suppose that g �= 0 is a given element of D. Define a complex

G• : 0 D/x D
·g

D/x D 0

of K-vector spaces. Let k0 be the maximal integral root of the indicial polynomial of
g, as the ordinary differential operator at x = 0. If there does not exists a nonnegative
integral root, the cohomology groups H−i (G•) are 0. For k ≥ k0, define a complex
of K-vector spaces by

C• : 0 → K
k+1−ord(−w,w)(g) Mk (g)−→ K

k+1→0

1or the characteristic polynomial. It is sometimes called the b-function b(θ) in the theory of D-
modules.



3 Introduction to Algorithms for D-Modules with Quiver D-Modules 99

Then, we have H−i (G•) = H−i (C•).2

This theorem is a special case of the fundamental theorem by Oaku in [8] for
holonomic D-modules on n-dimensional space. The case of n = 1 can be easily
proved as follows.

Proof of Theorem1.8. We prove the case that an integer k0 ≥ 0 exists and r =
ord(−w,w)(g) ≥ 0. The complex G• is rewritten as

G• : 0 → D/x D � f
ϕ	→: f g : |x=0 ∈ D/x D � K[∂] → 0

We will prove that H j (C•) → H j (G•) is an isomorphism. Consider the case H 0.
Take a nonzero element f = ∂i + ∑

j<i c j∂
j of K[∂]k/Im Mk(g) where i ≤ k. If

f ∈ Dg + x D and i ≥ r = ord(−w,w)(g), then, by the Lemma1.3 and Lemma1.13
presented later, there exists q ∈ Vk−r , u ∈ Vk+1 such that f − xu = qg. Therefore,
we have f =: qg : |x=0 ∈ Im Mk(g). It is a contradiction, then we have f /∈ Dg +
x D and consequently it is not in : Dg : |x=0. Since the nonzero element is sent to the
nonzero element, the K-linear map from H 0(C•) to H 0(G•) is injective.

Let b(s) be the indicial polynomial for g. Suppose that b(x∂) ≡ xrg mod V−1.
Suppose k ′ > k0. Applying ∂k ′

to the both sides, we have

b(k ′)∂k ′ + x(· · · ) ≡ ∂k ′
xrg mod V−1+k ′ .

Then, we have
b(k ′)∂k ′ ≡ 0 mod V−1+k ′ + Dg + x D.

It implies the surjectivity.
We have finished with the case H 0. Let us consider the case of H−1.
We prove that the canonicalK-linear map from Ker Mk(g) to Ker ϕ is an isomor-

phism. Let
∑

i≤k−r ci∂
i �= 0 belong to the kernel of Mk(g). In other words, we have

: (
∑

ci∂
i )g : |x=0 = 0. It implies that

∑
ci∂

i is a nonzero element of D/x D which
belongs to the kernel of ϕ. Since the nonzero element is sent to the nonzero element,
it is injective.

In order to prove the surjectivity, we suppose that the highest (−w,w)-order terms
of g are

∑m
i=0 ci xi∂r+i . Applying ∂ j to this sum, we have

∂ jg ≡
m∑

i=0

ci j ( j − 1) · · · ( j − i + 1)∂r+ j mod Vj+r−1 + x D

Suppose that a∂ j + · · · , a �= 0 belongs to the kernel of ϕ. We have

2In other words, C• is a subcomplex of G• and they are quasi-isomorphic for k ≥ k0. Although
we will give an elementary proof here, some part of the proof can be rewitten more cleanly by
understanding in this way.
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: (a∂ j + · · · )g : |x=0 = a(

m∑

i=0

ci j ( j − 1) · · · ( j − i + 1)))∂r+ j + · · · = 0.

On the other hand, the indicial polynomial of g is equal to

xr
m∑

i=0

ci x
i∂r+i =

m∑

i=0

ciθ(θ − 1) · · · (θ − r − i + 1) (1)

Note that we may assume that c0 �= 0 and cm �= 0. When j > k − r , by replacing θ
by j + r wehave ( j + r) · · · ( j + 1)(

∑m
i=0 ci j ( j − 1) · · · ( j − i + 1))) �= 0. There-

fore, a = 0 and hence if ∂ j + · · · belongs to the kernel of ϕ, then j ≤ k − r , which
yields the surjectivity.

The case of r < 0 or of that there exists no integer k0 ≥ 0 can be shown analo-
gously. �

Note that H 0(G•) � M/x M where M = D/Dg, which is called the (0th) restric-
tion module of M . TheK-vector space M/∂M is called the (0th) integration module
of M . The integration module can be constructed by the formal Fourier transform
and the theorem. The formal Fourier transform of xi∂ j ∈ D is defined by (−∂)i x j .
It can be extended on D.

The following Corollary can be obtained by the theorem and by specializing the
Grothendieck–Deligne comparison theorem to the one variable case (see, e.g., [9]).

1.9 Corollary. Let p(x) be a square free polynomial and suppose that

AnnD
1

p
= { f ∈ D | f • (1/p) = 0}

is generated by ĝ ∈ D. Let g be the formal Fourier transform of ĝ. We suppose
that g satisfies the Assumption of Theorem1.8. Then, we have Hi (C \ V (p),C) �
Hi−1(C•).

Proof. The corollary follows from the following standard arguments for D-modules.
By the Grothendieck comparison theorem (the algebraic de Rham versus analytic de
Rham), we have

Hi (C \ V (p)) � Hi−1(F•), F• : 0 → K[x,
1

p
] d−→ K[x,

1

p
]dx → 0

Here,K[x, 1/p] is regarded as a left D-module by the action • of ∂ and d is the exte-
rior differential. In other words, we have K[x, 1/p] � D/Dĝ =: M . This complex
is written as

0 → D ⊗D M
id⊗∂·→ D ⊗D M → 0,

which also we denote by F•. Consider the complex of K-vector spaces
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0 → D/∂D ⊗D D
1⊗·ĝ−→ D/∂D ⊗D D → 0,

which is denoted by Ĝ•. The complex F• is the vertical border complex and the
complex G• is the horizontal border complex of the following double complex.

0 0 0

0 D ⊗ D
1⊗·ĝ

∂·⊗id

D ⊗D D
id⊗id

∂·⊗id

D ⊗ M

id⊗∂·

0

0 D ⊗ D
1⊗·ĝ

id⊗id

D ⊗D D
id⊗id

id⊗id

D ⊗ M 0

0 D/∂D ⊗ D
1⊗·ĝ D/∂D ⊗D D 0

0 0

Then, by the standard theorem of homological algebra we obtain Hi (Ĝ•) � Hi (F•).
From Theorem1.8, we have Hi (Ĝ•) � Hi (C•). �

1.10 Examples. When p(x) = x(1 − x), the formal Fourier transform of the gen-
erator of Ann (1/p) is the g of our running Examples1.5, 1.7. Since xg = x2∂2 +
x2∂ = θ(θ − 1) + xθ, θ = x∂, the indicial polynomial is s(s − 1). Therefore, we
have k0 = 1.

1.11 Exercise. Compute Hi (C \ V (p)) when p(x) = x and p(x) = x(x − 1)
(x − 2).

All statements and algorithms in this section can be generalized to several vari-
able cases. See [8–10], [12, Chap. 5]. Readers can try these algorithms in some
computer algebra systems Macaulay 2, Singular, Risa/Asir [11]. The Chap.7 of the
book [3] contains introductory expositions to use these systems for computations in
D-modules.

1.12 Exercise. Compute Hi (Cn \ V (p),C) for a polynomial p, e.g., p = xy, n =
2, by Risa/Asir. Is the result compatible with geometric conclusion? Hint: S1 × S1

is the deformation retract of C2 \ V (xy).

We close this section with a proof of the following technical lemma.

1.13 Lemma. Let k ≥ 0 be an integer which is larger than or equal to the maximal
integral root of the indicial polynomial b(s) of g ∈ D. For f ∈ Vk ∩ (Dg + x D),
there exists a presentation of f as f = xu + qg, u, q ∈ D, such thatord(−w,w)(xu) ≤
k.
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Proof. Among the presentations f = xu + qg, we take u such that j = ord(−w,w)(u)

is minimal. Suppose j − 1 > k. From the definition of b(s), we have ub(x∂) ≡
0 mod Dg ∩ Vj + Vj−1. It is written as

b(x∂ + j)u ≡ 0 mod Dg ∩ Vj + Vj−1, (2)

because we have the identity (x∂ + j)i x p∂ p+ j = x p∂ p+ j (x∂)i in D for any non-
negative integers i, j, p. Exchanging x and ∂ in b, we have b(∂x + j − 1)u ≡
0 mod Dg ∩ Vj + Vj−1. Since j − 1 > k, the highest order term in xu cancels with
the highest order term in qg. Therefore, we have xu ≡ 0 mod Dg ∩ Vj−1 + Vj−2.
Since b(∂x + j − 1) is of the form b( j − 1) + r x , r ∈ V1, we have 0 ≡ b( j − 1)u +
r xu mod Dg ∩ Vj + Vj−1 by (2). Note that b( j − 1) �= 0 and r xu ≡ 0 mod Dg ∩
Vj + Vj−1. Then, u ≡ 0 mod Dg ∩ Vj + Vj−1 which implies that we can take q and
u such that ord(−w,w)(u) < j . It is a contradiction to the minimality of j . �

2 Quiver D-Modules

We present quiver D-modules introduced by Khoroshkin and Varchenko [5] by spe-
cializing to the two-dimensional case and illustrate how to apply algorithms presented
in the previous section to make mathematical experiments for quiver D-modules.

Let {Li } be a set of linear polynomials in two variables. It defines the hyperplane
arrangementH. The 2-face ofH is denoted by ∅. The 1-faces ofH are V (Li )’s. The
0-faces ofH are the intersections of more than one V (Li )’s. We express a face α of
the arrangement by a set of indices. For example, i j . . . stands for the face defined
by Li = L j = · · · = 0, Lk �= 0 for k /∈ {i, j, . . .}. The edge framing {ξα,β,ωα, fα,β}
is a set of differentials, differential forms, and polynomials attached to faces of H
satisfying the conditions

iξβ,α
(ωβ) = ωα, dim β = dim α + 1 (3)

d fβ,α ∧ ωβ = ωα, dim α = dim β + 1 (4)

where α, β are faces of the arrangement H. The operator iξ is the Lie derivative
which sends a p-form to a p − 1 form with the rule iξc(x, y)d f = c(x, y)ξ f and
iξc(x, y)d f ∧ dg = c(x, y)(ξ f ∧ dg − d f ∧ ξg).

The edge framing can be expressed explicitly as follows. We assume Li = ai x +
bi y + ci . Define

ω∅ = dx ∧ dy

ωi = −bi dx + ai dy

a2
i + b2

i

ωi j ... = 1
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Here, following our notation for a face, we denote ωα by ωi for the 1-face α defined
by Li = 0 and denote ωβ by ωi j ... for the 0-face β defined by Li = L j = · · · = 0,
Lk �= 0 for k /∈ {i, j, . . .}. We define a polynomial fβ,α as

f∅,i = Li

fi,i j ... = −bi x + ai y

a2
i + b2

i

+ ci,i j ...,

where ci,i j ... is chosen so that it vanishes at the point defined by i j . . ..
Finally, we define a differential ξβ,α as

ξi,∅ = ai∂x + bi∂y

a2
i + b2

i

ξi j ...,i = −bi∂x + ai∂y

2.1 Examples. Put

L1 = x, L2 = y, L3 = x + y − 1, L4 = 2x + y − 1.

The (incidence) graph � associated to this arrangement is presented in Fig. 1.

ω∅ ω1 ω2 ω3 ω4 ω12 ω134 ω23 ω24

dx ∧ dy dy −dx 1
2 (−dx + dy) 1

5 (−dx + 2dy) 1 1 1 1

f∅,1 f∅,2 f∅,3 f∅,4

x y x + y − 1 2x + y − 1

f1,12 f1,134 f2,12 f2,23 f2,24
y y − 1 −x −x + 1 −x + 1

2

f3,134 f3,23 f4,24 f4,134
− x

2 + y
2 − 1

2 − x
2 + y

2 + 1
2 − x

5 + 2y
5 + 1

10 − x
5 + 2y

5 − 2
5

Fig. 1 Graph �
∅

1

2

3

4

12

134

23

24
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2.2 Examples. The Risa/Asir package tk_edge2.rr 3 constructs the edge fram-
ing in the two-dimensional case. The script

E=edge_frame2([x,y,x+y-1,2*x+y-1]);

outputs the table above as follows.

[[[[0,0],[0,1],[1,0],[1/2,0]],[x,y,x+y-1,2*x+y-1],[0], // 0-face, 1-face
[[0,1],[0,2,3],[1,2],[1,3]]], // 0-fece by 1-face

[[1,1,1,1],[dy,-dx,-1/2*dx+1/2*dy,-1/5*dx+2/5*dy],[dy*dx]], //omega
[[ y -x 0 0 ]
[ y-1 0 -1/2*x+1/2*y-1/2 -1/5*x+2/5*y-2/5 ]
[ 0 -x+1 -1/2*x+1/2*y+1/2 0 ]
[ 0 -x+1/2 0 -1/5*x+2/5*y+1/10 ], // f (0-face and 1-face)

[ x ]
[ y ]
[ x+y-1 ]
[ 2*x+y-1 ]], // f (1-face and 2-face)
[[0,0,0,0],[dy,-dx,-dx+dy,-dx+2*dy],[dx,dy]], // T_0,T_1,T_2
[0,[dy,-dx,-dx+dy,-dx+2*dy],[dx,dy,1/2*dx+1/2*dy,2/5*dx+1/5*dy]]

//T_i/T_point, // T_empty/T_i
]

We regard the graph � as the bidirected graph; in other words, we regard the
graph � as a quiver. We consider a quiver representation ({Vα}, {Aβα}) of the quiver
satisfying the following condition [5].4 Here, Vα is a vector space associated to the
face α and Aβα is a linear map Aβα : Vα → Vβ .

2.3 Condition. 1.
∑

β Aαβ Aβγ = 0 for any α, γ such that the dimension of the
face α and that of γ differ by 2.

2.
∑

β Aαβ Aβγ = 0 for any α and γ such that the dimension of these faces agree,
α �= γ and there exists δ such that δ is a face of the both of α and γ.

2.4 Examples. We consider the line arrangement defined by L1 = x = 0 and L2 =
y = 0. The incidence graph is Fig. 2

Fig. 2 Graph � (incidence
graph) of xy = 0

3The latest version can be obtained by the command asir_contrib_update(|update=1).
4 Khoroshkin and Varchenko call the quiver representation (see, e.g., [4]) the quiver. We follow
their terminology in the sequel.
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Fig. 3 Representation for �

The condition 2.3 for this graph is

A∅,1A1,12 + A∅,2 A2,12 = 0,

A12,1 A1,∅ + A12,2 A2,∅ = 0,

A2,12 A12,1 + A2,∅ A∅,1 = 0,

A1,12 A12,2 + A1,∅ A∅,2 = 0

The package tk_edge2.rr provides some useful functions. These relations are
automatically generated by the command qrep_cond1() and qrep_cond2().

--> edge_frame2([x,y]);
[[[[0,0]],[x,y],[0],[[0,1]]],[[1],[dy,-dx],[dy*dx]],[[ y -x ],[ x ]
[ y ]],[[0],[dy,-dx],[dx,dy]],[0,[dy,-dx],[dx,dy]]]
// The result is stored in the global variable Edge_frame
--> genQuiver(1); // We assume the dim of V_alpha’s is 1.
[[[[ v_0_0_0 ]],
[[ v_1_0_0 ],[ v_1_1_0 ]],
[[ v_2_0_0 ]]],

[[ [ m01_0_0_0_0 ] [ m01_0_1_0_0 ] ],[ [ m12_0_0_0_0 ] ] [ [ m12_1_0_0_0 ] ]],
[[ [ m21_0_0_0_0 ] [ m21_0_1_0_0 ] ],[ [ m10_0_0_0_0 ] ] [ [ m10_1_0_0_0 ] ]]]
--> qrep_cond1();
[[m12_0_0_0_0*m01_0_0_0_0+m12_1_0_0_0*m01_0_1_0_0],
[m10_0_0_0_0*m21_0_0_0_0+m10_1_0_0_0*m21_0_1_0_0]]

--> qrep_cond2();
[[m10_1_0_0_0*m01_0_0_0_0+m21_0_0_0_0*m12_1_0_0_0],
[m10_0_0_0_0*m01_0_1_0_0+m21_0_1_0_0*m12_0_0_0_0]]

The symbol mij_p_q means that is is a linear map from the p-th i-dimensional
face to the qth j-dimensional face, where p and q are numbered as 0, 1, 2, . . .. Note
that the order of the index p, q is the reverse of the order of the index Aαβ , which
is a linear map from Vβ to Vα, and the index starts from 0, to follow the standard
index convention of programming. See Fig. 3. The symbol mij_p_q_s_t stands
for the (s, t)th element (0 ≤ s, t) of the matrix for mij_p_q. This matrix acts from
the right to the row vector of a basis of Vα for j dimensional face α. The k th element
of the result is the image of the k th basis of Vβ .

The level 0-quiver [5, 3.2] for a given hyperplane arrangement
∏n

i=1 Li = 0 in the
two-dimensional space is defined as follows. The graph �0 consists of the one vertex
∅ and m-loops indexed by i standing for the hyperplane Li = 0. Let us take the index
i of a hyperplane Li = 0 and a zero face γ in Li = 0. We suppose that the linear
map on the i-th loop Ai

∅ : V∅ → V∅ satisfies [Ai
∅,

∑
δ Aδ

∅] = 0where δ ∈ {1, . . . , m}
runs over all δ such that Lδ = 0 contains γ. The heart of [5] is that they construct an
extension of this quiver for �0 to a quiver on the incidence graph �, which they call
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the direct image [5, 3.4]. They prove that it is compatible with the direct image of
D-modules [5, Theorem4.6].

Let D2 = C〈x, y, ∂x , ∂y〉 be the ring of differential operators in two variables
with polynomial coefficient and (Dalg

2 )a the ring of algebraic differential operators
defined at (x, y) = a. In other words, it is Oalg

a 〈∂x , ∂y〉 where Oalg
a = { f/g | f, g ∈

C[x, y], g(a) �= 0}. The quiver D-module for level 0 quiver [5, 4.4, (4.34)] is defined
onC2 \ V (

∏
Li ). Let us define it when the vector space V∅ is one-dimensional space.

We denote by μi ∈ C the linear map Ai
∅ for the loop i . Consider the left ideal Ia

generated by

∂x −
m∑

i=1

μi

∂Li
∂x

Li
and ∂y −

m∑

i=1

μi

∂Li
∂y

Li
(5)

in (Dalg
2 )a where a ∈ X0 = C

2 \ V (
∏

Li ). The level 0-quiver D-module is the sheaf
Dalg

2 /I defined on X0. Note that the function
∏m

i=1 Lμi
i spans the classical solution

space of the D-module.
The quiver D-module for � obtained by taking the direct image of the level 0

quiver is defined on C
2 and can be regarded as a left module D p

2 /Q over the Weyl
algebra D2. The generators for the D2 module Q is given by (4.25) and (4.26) in [5,
4.2] in terms of the quiver ({Vα}, {Aβα}) and the edge framingof the arrangement.Our
package tk_edge2.rr gives these generators by the function eq_type1_i()
for (4.25) and the i-face α and eq_type2_i() for (4.26) and the i-face α. The
function qd2() calls these two functions and merges the results. The command
map(ptomb,base_flatten(qd2())) gives the generators of the submodule
Q as we will see in Example2.5.

2.5 Examples. Let μi , (i = 1, 2, 3) be constants. We consider the direct image
quiver on � = �2 for the level 0-quiver on �0 for the L1L2L3 = 0, L1 = x , L2 = y,
L3 = x + y − 1 with V∅ = C and V i

∅ = μi . The direct image quiver on � = �2 is
illustrated in the Fig. 4. Let Vi be the vector space over the 1-face i , which stands for
Li = 0 and Vi j the vector space over the 0-face i j , which stands for Li = L j = 0.
It follows from the construction method of the direct image quiver [5, 3.2] that we
have Vi = C, Vi j = C and the linear maps Ai∅ and A∅i are μi and id respectively,
and the linear maps Ak�,i and Ai,k� are given by the Fig. 5.

The quiver D-module is computed as follows.

--> load("tk_edge2.rr")$

Fig. 4 A direct image quiver
on the Graph � = �2
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Fig. 5 Ak�,i and Ai,k�

// We will omit this load command in the remaining examples.
--> edge_frame2([x,y,x+y-1])$
--> genQuiver([1,1,1])$

//[dim V for 0-faces, dim V for 1-faces, dim V for 2-faces]
--> Eq=qd2();
[[om_2_0*v_2_0_0*dx-om_1_0*m21_0_0_0_0*v_1_0_0-om_1_2*m21_0_2_0_0*v_1_2_0,
--- snip ]]

--> Eq2=map(ptomb,base_flatten(Eq));
[[dx,-m21_0_0_0_0,0,-m21_0_2_0_0,0,0,0],
[dy,0,-m21_0_1_0_0,-m21_0_2_0_0,0,0,0],
[0,dy,0,0,-m10_0_0_0_0,-m10_0_1_0_0,0],
[0,0,-dx,0,-m10_1_0_0_0,0,-m10_1_2_0_0],
[0,0,0,-dx+dy,0,-m10_2_1_0_0,-m10_2_2_0_0],
[-m12_0_0_0_0,x,0,0,0,0,0],
[-m12_1_0_0_0,0,y,0,0,0,0],
[-m12_2_0_0_0,0,0,x+y-1,0,0,0],
[0,0,m01_0_1_0_0,0,x,0,0],
[0,-m01_0_0_0_0,0,0,y,0,0],
[0,0,0,m01_1_2_0_0,0,x,0],
[0,-m01_1_0_0_0,0,0,0,x+y-1,0],
[0,0,0,-m01_2_2_0_0,0,0,y],
[0,0,m01_2_1_0_0,0,0,0,x+y-1]]

The last output gives the generators of Q of the quiver D-module M = D7
2/Q.

The symboldx stands for∂x and the symboldy stands for∂y . The integrationmodule
M/(∂x M + ∂y M) of the quiver D-module M will be calculated by the computer al-
gebra system Risa/Asir (Example3.2). The main theorem of [5, Theorem4.6] claims
that the integration as the D-module with respect to the variables x, y is the integra-
tion of the left D-module D2/AnnL−μ1

1 L−μ2
2 L−μ3

3 (see, e.g., [9], [12, pp. 233–235]).

2.6 Examples. Let μi , (i = 1, 2, 3) be constants. We start with the level 0-quiver
on �0 for the L1L2L3 = 0, L1 = x , L2 = y, L3 = x − y with V∅ = C and Ai

∅ = μi .
Even when we start with 1-dimensional V∅, the vector space Vα in the direct image
quivermay bemore than 1 dimensional space. The level 1-quiver [5, 3.2] is illustrated
in Fig. 6. We denote by ∅ the 2-face, by i the 1-face Li = 0 of the arrangement. We
define dimVα = 1 for all faces α, Ai∅ = μi , which is a linear map from V∅ to Vi ,
A∅i = id, and A{0}

i = μ j + μk (i, j, k are different), which stands for the linear map
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Fig. 6 A quiver on the graph
�(1)

Fig. 7 A direct image quiver
on the Graph � = �2

for the loop at the vertex i . Note that ∅ � i . This level 1 quiver is the direct image
of the level 0 quiver defined by ({V∅}, {Ai

∅}) such that dimV∅ = 1 and Ai
∅ = μi .

Consider the direct image of the level 1 quiver by following the construction of [5,
3.4]. The direct image quiver is illustrated in the Fig. 7. We denote by {0} the unique
0-face of the arrangement. Let ei be the basis of Vi . We define V{0} is the linear
space spanned by e1 − e2 and e2 − e3 in the 3-dimensional space

∑
Cei , and define

a linear map from V{0} to Vi by Ai{0}(
∑3

j=1 c j e j ) = ci ei , and a linear map from
Vi to V{0} by A{0}i (ei ) = (μ j + μk)ei − μ j e j − μkek where i, j, k are different. The
quiver D-module for this quiver is generated by the output of test_direct1()
in tk_edge2.rr. See Example3.3.

3 Examples—D-Modules on Computer Algebra
Systems

The goal of this section is to explain how to use computer algebra systems to make
mathematical experiments on quiver D-modules. We use the style of Chap.7 of the
book “Dojo” [3], which is a collection of exercises and answers. In the book “Dojo”,
we illustrated computations of D-modules in computer algebra systems Macaulay2,
Singular, and Risa/Asir. In this section, we only explain how to use Risa/Asir, for
which we belong to the developing team.

3.1 Examples. Put D2 = C[x, y]〈∂x , ∂y〉, D1 = C[y]〈∂y〉 and f (x, y) = xy(x +
y − 1). Set I = AnnD2 f μ and M = D2/I . Compute the 0-th integration modules
M/∂x M and M/(∂x M + ∂y M)when μ = −1/7. Note that the 0-th integrationmod-
ule M/(∂x M + ∂y M) is π0∗ M for π : C

2 → {0}.
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The 0th integration module M/∂x M can be obtained by computing the restriction
module M̃/x M̃ for the Fourier transform M̃ of M by the algorithm of Oaku [8,
Theorem 5.7.]. The b-function for modules can be computed by [10, Algorithm.4.6.].
Let N be a submodule of D1 generated by 7y(1 − y)∂y + 4y + 1. We can see the
integration module M/∂x M is isomorphic to

M/∂x M ∼= D1/N

as a left D1-module from the output of our Risa/Asir package below.

--> load("nk_restriction.rr")$
// We will omit this load command in the remaining examples.

--> F=x*y*(x+y-1);
y*xˆ2+(yˆ2-y)*x
--> Ann=ann(F); // annihilating ideal of Fˆs
[2*y*x*dx+(-3*y*x-yˆ2+y)*dy+3*s*x-s, -y*x*dx+(-yˆ2+y)*dy+3*s*y-s,
(xˆ2+(2*y-1)*x)*dx+(-2*y*x-yˆ2+y)*dy]

--> I=base_replace(Ann,[[s,-1/7]]); // substitute s=-1/7 into Ann
[2*y*x*dx+(-3*y*x-yˆ2+y)*dy-3/7*x+1/7, -y*x*dx+(-yˆ2+y)*dy-3/7*y+1/7,
(xˆ2+(2*y-1)*x)*dx+(-2*y*x-yˆ2+y)*dy]

--> M1=nk_restriction.module_integration(I,[x,y],[dx,dy],[1,0]);
bfunction :
7*sˆ2+5*s
[[1,1],[s,1],[7*s+5,1]]
integer roots :
[0,0]

*snip*
[[(-7*yˆ2+7*y)*dy+4*y+1]] // the generator of N

--> nk_restriction.module_integration(M1,[y],[dy],[1]);
-- nd_weyl_gr :0sec(0.00017sec)
-- weyl_minipoly :0sec(0.0006771sec)
bfunction :
7*sˆ2+11*s
[[1,1],[s,1],[7*s+11,1]]
integer roots :
[0,0]
Generators:
[e1]
Relations:
[]
[]

The final output means that there is no relation in the one-dimensional vector space
C

1, which means that M/(∂x M + ∂y M) � C
1, which is isomorphic to the twisted

cohomology group
H 1(C2 \ V (xy(x + y − 1)),L−μ)

where L−μ is the locally constant sheaf defined by f −μ (see, e.g., [12, Theorem
5.5.1, pp. 233–235]).

3.2 Examples. Let M = D7
2/Q be the quiver D-module for xy(x + y − 1) given

in Example2.5. Compute the 0-th integration of M/(∂x M + ∂y M).
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--> Eq=test_direct2();
[[dx,-mu1,0,-mu3,0,0,0],[dy,0,-mu2,-mu3,0,0,0],[0,dy,0,0,-mu2,-mu3,0],
[0,0,-dx,0,mu1,0,-mu3],[0,0,0,-dx+dy,0,mu1,mu2],[-1,x,0,0,0,0,0],
[-1,0,y,0,0,0,0],[-1,0,0,x+y-1,0,0,0],[0,0,-1,0,x,0,0],[0,-1,0,0,y,0,0],
[0,0,0,-1,0,x,0],[0,-1,0,0,0,x+y-1,0],[0,0,0,1,0,0,y],[0,0,1,0,0,0,x+y-1]]

--> Eq2=base_replace(Eq,[[mu1,-1/7],[mu2,-1/7],[mu3,-1/7]])$
// In Risa/Asir, when $ is used instead of ; the return value will not
// be printed.
--> N1=nk_restriction.module_integration(Eq2,[x,y],[dx,dy],[1,0])$
--> N=nk_restriction.module_integration(N1,[y],[dy],[1]);
*snip*

Generators:
[e1,e2,e3,e4,e5,e6,e7]
Relations:
[-220*e1-5*e6,55*e1+5*e2,-5*e2+5*e3,e2-5*e3-e5,e2+e4,-5*e3-e4-e7]

[[0,0,0,0,0,1,1],[0,0,0,0,1,0,-1],[0,0,0,-4,0,0,1],
[0,0,4,0,0,0,1],[0,-4,0,0,0,0,-1],[-44,0,0,0,0,0,1]]

--> length(N[0]);
7
--> matrix_rank(N);
6

The last two outputs mean that the integration module M/(∂x M + ∂y M) is isomor-
phic to the kernel of the matrix standing for N, which is C7/C6. In other words, the
integration module is isomorphic to one-dimensional complex vector space. Note
that the result agrees with that of Example3.1. It is not by accident, because, roughly
speaking, the D-module associated to the direct image of the level 0 quiver defined
by (5) agrees with D2/Ann f μ.

3.3 Examples. In Example3.1, set μ = −1. Compare the integration of D2/Ann f μ

and the quiver D-module for μi = μ = −1.
The computation for the case of the annihilating ideal is as follows:

--> F=x*y*(x+y-1);
y*xˆ2+(yˆ2-y)*x
--> Ann=ann(F)$
--> I=base_replace(Ann, [[s, -1]])$
--> M1=nk_restriction.module_integration(I, [x,y], [dx,dy], [1,0]);
...
[[0,-y*dy-1],[(yˆ2-y)*dy+2*y-1,0]]
--> M2=nk_restriction.module_integration(M1, [y],[dy],[1]);
...
Generators:
[e1,e2,e1*dy,e2*dy]
Relations:
[e2*dy]

[[0,0,0,1]] // one generator in Cˆ4.

The output means that the integration module M/(∂x M + ∂y M) is isomorphic to
C

3. The computation for the quiver D-module is as follows.

--> Eq2=base_replace(Eq,[[mu1,-1],[mu2,-1],[mu3,-1]])$
--> N1=nk_restriction.module_integration(Eq2,[x,y],[dx,dy],[1,0])$
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--> N=nk_restriction.module_integration(N1,[y],[dy],[1])$
--> length(N[0]);
28
--> matrix_rank(N);
25

The output means that the integration is isomorphic to C
28−25 = C

3.

Problem: The case μ = −1 is not strongly nonresonant in the sense of [5]. Is it by
accident that both outputs are C3?

3.4 Examples. In Example2.6, set μ = −1. Compare the integration module of
D2/Ann(xy(x − y))μ and the quiver D-module for μi = μ = −1.

The case of the annihilating ideal is computed as follows:

--> F=x*y*(x-y);
y*xˆ2-yˆ2*x
-->Ann=ann(F);
[(-xˆ2+2*y*x)*dx+(2*y*x-yˆ2)*dy,-x*dx-y*dy+3*s]
--> I=base_replace(Ann, [[s, -1]]);
[(-xˆ2+2*y*x)*dx+(2*y*x-yˆ2)*dy,-x*dx-y*dy-3]
--> M1=module_integration(I, [x,y], [dx,dy], [1,0]);
...
[[0,-y*dy-1],[-y*dy-2,0]]
--> M2=module_integration(M1, [y], [dy], [1]);
...
[[0,0,0,1],[-1,0,0,0]] // 2 dimensional vector space in Cˆ4.

The outputmeans that the integrationmodule isC2. On the other hand, the integration
module of the quiver D-module is computed as follows:

--> Eq=test_direct1()$
--> Eq2=base_replace(Eq,[[mu1,-1],[mu2,-1],[mu3,-1]])$
--> N1=module_integration(Eq2,[x,y],[dx,dy],[1,0])$
--> N=module_integration(N1,[y],[dy],[1]);
...
[[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,-1,0,0,0],
[0,-1,0,0,0,0],[1,0,0,0,0,0]]

--> length(N[0]);
6
--> matrix_rank(N);
6

The output means that the integration of the quiver D-module is 0. Note that this is
a resonant case in the sense of [5].

Finally, we consider an example of a quiver D-module which is not a D-module
associated to a direct image of a level 0 quiver defined by

∏
Lμi

i (see (5)).

3.5 Examples. We consider the arrangement of Example 2.1. Determine all quivers
when dim Vα = 1 for any face α and Aαβ = 0 when dim β < dim α. Choose one
of them and compute the restriction module of the quiver D-module M to x = 0,
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characteristic variety and singular locus of it. Compute also the integration module
M/(∂x M + ∂y M).

We denote Ai∅ by ai , A12,1 and A134,1 by b1 and b2, A12,2 and A23,2 and A24,2 by
c1 and c3 and c4, A134,3 and A23,1 by e2 and e3, A134,4 and A24,4 by f2 and f4. Then
the condition 1 is written as

⎛

⎜
⎜
⎝

b1 c1 0 0
b2 0 e2 f2
0 c3 e3 0
0 c4 0 f4

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

a1

a2

a3

a4

⎞

⎟
⎟
⎠ = 0 (6)

The determinant of the matrix in (6) is (c3e2 f4 + c4e3 f2)b1 + b2c1e3 f4. Sets of
parameters satisfying (6)=0 are quivers satisfying the condition 2.3.

The set of parameters

b1 = 1, b2 = 2, c1 = 3, c3 = 4, e2 = 6, e3 = 7, f2 = 8, f4 = −140/33,

a1 = 1, a2 = −1/3, a3 = 4/21, a4 = −11/28,

satisfies the determinant condition and (6). Let M be the corresponding quiver D-
module. We compute the restriction module M ′ = M/x M by [8, Theorem5.7.]. As
wewill see below, it is isomorphic to M ′ = M/x M ∼= (D1)

4/N as D1-modulewhere
N is generated by

(84∂y, 28,−16, 33), (0, y, 0, 0), (0, 0, y − 1, 0), (0, 0, 0, y − 1).

The characteristic variety and the singular locus of M ′ are V((y2 − y)ξy) and
V(y(y − 1)), respectively, which are computed by [7, p. 494, Algorithm].

--> M = test_e4c();
--> M = map(subst, M, a1, 1);
[[dx,-1,0,-4/21,11/14,0,0,0,0],[dy,0,1/3,-4/21,11/28,0,0,0,0],
--- snip
]]
--> R1=nk_restriction.module_restriction(M, [x,y], [dx,dy], [1,0]);
...
bfunction :
sˆ2+s
[[1,1],[s,1],[s+1,1]]
integer roots :
[-1,0] // Integral roots are used to compute the restriction module.
...
[[0,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0,0],[84*dy,0,28,-16,33,0,0,0,0],
[0,0,0,0,-y+1,0,0,0,0],[0,0,0,y-1,0,0,0,0,0],[0,0,y,0,0,0,0,0,0]]

--> nk_restriction.module_sing_locus(R1, [y,dy]);
CharId: // characteristic variety
[(-yˆ2+y)*dy]
Sat: // singular locus
[-yˆ2+y]

[-yˆ2+y]
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--> M1 = nk_restriction.module_integration(M, [x,y], [dx,dy], [1,0])$
--> M2 = nk_restriction.module_integration(M1, [y], [dy], [1]);
...
bfunction :
sˆ3+3*sˆ2+2*s
[[1,1],[s,1],[s+1,1],[s+2,1]]
integer roots :
[-2,0]
...
[[0,0,0,0,0,0,0,-11,-5],[0,0,0,0,0,0,66,0,-35],[0,0,0,0,0,33,0,0,35],
[0,0,0,0,-33,0,0,0,-70],[0,0,0,11,0,0,0,0,35],[0,0,-22,0,0,0,0,0,15],
[0,33,0,0,0,0,0,0,35],[44,0,0,0,0,0,0,0,5]]

The integrationmodule M/(∂x M + ∂y M) is isomorphic toC9−8 from the last output.

We close this expository paper with some suggestions of research projects.

1. Develop an algorithm and a software package to compute the cohomology groups

H k(Cn \ V (
∏

Li ),L)

where Li ’s are linear forms and L is a locally constant sheaf by utilizing quiver
D-modules and the integration algorithm.

2. Construct a direct image of level 0-quiver which is compatible with the direct
image of D-modules without the restrictive condition like strongly nonresonant
[5, definition after Prop 3.2].

3. Develop a computer algebra system for the path algebra of a given quiver (in the
standard sense). Use this system to find quivers (quiver representations) in the
sense of [5]. The development should be in two steps under the theory of rewriting
systems presented by Malbos in [6]. The first step is to do a rapid prototyping by
a system like CafeOBJ [2]. The second step is to develop a more efficient system,
which may be specialized in good classes of quivers.
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Chapter 4
Noncommutative Gröbner Bases:
Applications and Generalizations

Philippe Malbos

1 Introduction

The aim of this chapter is to provide a summary of the theory of linear rewriting and
the application of this theory to the construction of free resolutions for associative
algebras. In Sect. 2, we present linear polygraphs as an algebraic setting for linear
rewriting without a monomial order, and we review the fundamental notion of linear
polygraphs. In Sect. 3, we recall several historical constructions on linear rewrit-
ing systems for associative algebras, and we show how the confluence properties
are studied in these different approaches. We relate the notion of convergent linear
polygraph with the notion of noncommutative Gröbner basis. In Sect. 4, we describe
an algorithmic way to compute free resolutions for algebras using a method intro-
duced by Anick. Section 5 deals with extension of linear polygraphs, seen as higher
dimensional linear rewriting systems, into polygraphic resolutions for algebras. We
show how to construct such a resolution starting from a convergent presentation. In
the last section, we show how to relate Koszulness for algebras with the property of
confluence.

1.1 Rewriting and Linear Rewriting

1.1.1 Rewriting in computer science. The notion of rewriting system comes from
combinatorial algebra. It was introduced by Thue when he considered systems of
transformation rules for rewriting combinatorial objects such as strings, trees or
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graphs. Its main motivation was to solve the word problem for finitely presented
semigroups by using orientation of relations [64]. Afterwards, the word problem has
been considered in many contexts in algebra and in computer science. Far beyond
the precursor works on this decidability problem on strings, rewriting theory has
been mainly developed in theoretical computer science for equational reasoning in
various situations: theory of programming languages for analysis, verification and
optimization, automated deduction, automated theorem proving… Rewriting theory
is also present in many other computational formalisms such as Petri nets or logi-
cal systems. Depending on the context of application, rewriting theory has numer-
ous variants corresponding to different syntaxes of the formulas being transformed:
string, term, graph, circuit, term modulo, tree, λ-term, higher order term, higher
dimensional term…

1.1.2 Rewriting in algebra. Rewriting appears also on various forms in algebra
for universal algebras (term rewriting in Lawvere theories) [4, 43, 48, 62], monoids
(string rewriting inmonoids) [15, 29, 37],monoidal categories [34], linear structures,
such as algebras of various type: commutative [18, 19, 21], associative [12, 13], Lie
[57], D-modules [51], as well as on topological objects, such as Reidemeister moves,
knots or braids [22].

This chapter focus on various aspects of rewriting in associative algebras. Rewrit-
ing theory gives algorithmic methods to study associative algebras presented by
generators and defining relations. The relations are oriented as rewriting rules pro-
viding linear bases of normal forms with respect the defining relations. In particular,
rewriting methods can be used to provide procedures for decision problems, such as
the word problem, ideal membership, or to compute quadratic bases, e.g. Poincaré–
Birkhoff–Witt bases, Hilbert series, syzygies of presentations, homology groups and
Poincaré series.

1.1.3 We have to be careful when we rewrite over a field. Rewriting rules that
relate elements in a ring or in an algebra need to be compatible with the linear
structure in the following way. For a rewriting rule

f → g

relating two elements of an algebra on a ground field K, then for any scalar λ in K

we would like a rewriting
λ f → λg

and for any other element h of the algebra, we would like a rewriting

f + h → g + h.

Taken together, these two reductions lead to losing termination of rewriting. Indeed, it
that case from the rule f → g, we deduce the reductions − f → −g and
− f + ( f + g) → −g + ( f + g). Finally, we deduce the following reduction:
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g → f.

As a consequence, the system will never terminate. Further to this remark, it is
necessary to adapt the notion of rewriting system to linear situations. In the example
presented above the reduction− f + ( f + g) → −g + ( f + g) appears as the source
of the nontermination problem. In these notes, we will see two possibilities to fix
this problem.

– By choosing an orientation of the rules induced by a monomial order, which is
well founded by definition, see 2.4.1. This is the most commonly used method, in
particular in the noncommutative Gröbner basis theory.

– By using the structure of linear 2-polygraph introduced in [33] and with an appro-
priated notion of reduction, explained in Sect. 2.2.

1.2 Noncommutative Gröbner Bases: Applications and
Generalizations

1.2.1 Gröbner basis theory. Gröbner basis theory for ideals in commutative poly-
nomial rings was introduced by Buchberger in [18]. A subset G of an ideal I in
the polynomial ring K[x] of commutative polynomials is a Gröbner basis of I with
respect to a given monomial order ≺, if the leading term ideal of I is generated by
the set of leading monomials of G, that is

〈 lt≺(I ) 〉 = 〈 lt≺(G) 〉.

Buchberger introduced the notion of S-polynomial to describe the obstructions to
local confluence and gave an algorithm for computation of Gröbner bases [18, 21],
see also [20] for a historical account. Any ideal I of a commutative polynomial
ring K[x] has a finite Gröbner basis. Indeed, the Buchberger algorithm on a finite
family of generators of an ideal I always terminates and returns a Gröbner basis of
the ideal I .

Shirshov introduced in [57] an algorithm to compute a linear basis of a Lie algebra
defined by generators and relations. He used the notion of composition of elements
in a free Lie algebra that corresponds to the notion of S-polynomial in the work
of Buchberger. He gave an algorithm to compute bases in free algebras having the
computational properties of the Gröbner bases. He proved that irreducible elements
for such a basis form a linear basis of the Lie algebra. This result is called now the
composition lemma for Lie algebras.

Subsequently, theGröbner basis theory has been developed for other types of alge-
bras, such as associative algebras by Bokut in [13] and by Bergman in [12]. They
prove Newman’s Lemma for rewriting systems in free associative algebras compati-
ble with amonomial order stating that local confluence and confluence are equivalent
properties. This result was called composition lemma by Bokut and diamond lemma
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for ring theory by Bergman, see also [50, 66]. In general, the Buchberger algorithm
does not terminate for ideals in a noncommutative polynomial ring K〈x〉. Indeed,
its termination would give a decision procedure of the undecidable word problem.
Even if the ideal is finitely generated it may not have a finite Gröbner basis. However,
when K is a field an infinite Gröbner basis can be computed [50, 65]. We survey the
constructions and the results of Bokut and Bergman in Sect. 3.

Note that ideas in the spirit of the Gröbner basis approach appear in several other
works. Let us mention works by Hironaka in [38] and Grauert in [30] that compute
bases of ideals in rings of power series having analogous properties to Gröbner bases
but without a constructive method for computing such bases. In [24], Cohn gave a
method to decide theword problemby a normal formalgorithmbased on a confluence
property. Finally, Janet [41], Thomas [63] and Pommaret [54] developed the notion
of involutive bases that are particular cases of Gröbner bases in the context of partial
differential algebra. We refer the reader to [40] for a historical account on involutives
bases and their applications to algebraic analysis of linear partial differential systems.
Muchmore recently, Gröbner basis theorywas developed in various noncommutative
contexts such as Weyl algebras, see [56], or operads [27].

1.2.2 Computing normal forms. The main purpose of noncommutative Gröbner
basis theory for associative algebras is to compute linear bases. Consider an algebra
A presented by a set of generators X and a set R of defining relations, that is A is the
quotient of the free algebra K〈X〉 by the ideal generated by R. The set of monomials
on X forms a linear basis of the free algebra K〈X〉. One application of the Gröbner
basis theory is to compute a basis of the algebra A in the form of a reduced subset of
monomials. The computation is based on a monomial order on the set of monomials
on X and the confluence property of a rewriting system compatible with this order.
The set of monomials in normal form with respect to a Gröbner basis forms a linear
basis of the algebra A.

The Buchberger algorithm that computes Gröbner bases is the analogue of the
Knuth–Bendix completion procedure in a linear setting. Several frameworks unify
Buchberger andKnuth–Bendix algorithms, in particular a Gröbner basis corresponds
to a confluent and terminating presentation of an algebra, see [20]. This correspon-
dence is well known in the case of associative and commutative algebras, as recalled
in the papers by Bokut [13], Bergman [12], Mora [50]. For a fuller treatment on
noncommutative Gröbner bases for associative algebras, we refer the reader to the
books [16, Chapter 2] and [66] and to [47, Chapter 2] and [8, Chapters 4–5] for
commutative Gröbner bases.

1.2.3 Computation of free resolutions. In homological algebra, constructive meth-
ods based on noncommutative Gröbner bases were developed to compute projective
resolutions for algebras. In particular, Anick and Green constructed small explicit
free resolutions for algebras given by noncommutative Gröbner bases [1–3, 31].
Their constructions provide resolutions to compute homological invariants (homol-
ogy groups, Hilbert and Poincaré series) of algebras presented by generators and
relations given by a Gröbner basis. The chains of these resolutions are given by
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iterated overlaps of the leading terms of the Gröbner basis, and the differentials are
constructed by Noetherian induction.

1.2.4 Linear polygraphs. All the constructions mentioned above rely on a mono-
mial order, that is, a well-founded order of the monomials compatible with the mul-
tiplication. The termination orders in linear polygraphs introduced in [33] are less
restrictive. A linear polygraph is a higher dimensional linear rewriting system for pre-
sentation of an algebra that allows more possibilities of termination orders than those
associated to Gröbner bases using monomial orders. A set-theoretical 2-polygraph
describes a string rewriting system, see [36]. It is defined by a data (�0, �1, �2)

made of a 1-polygraph that is an oriented graph

�0 �1
t0

s0

where�0 and�1 denote, respectively, the sets of 0-cells and 1-cells and s0, t0 denote
the source and target maps, with a cellular extension �2 of the free category �∗

1 , that
is a set of globular 2-cells relating parallel 1-cells:

p

f

g

ϕ q

A2-polygraph corresponds to a string rewriting system,where the rules are described
by the globular 2-cells, see [36].

A linear 2-polygraph corresponds to the same notion for rewriting in a free algebra
or a free algebroid. It is constructed in the same manner as a 2-polygraph, but the
cellular extension is linear in the sense that it is constructed on 1-spheres in the free
1-algebroid over generating 1-cells. Explicitly, we define a linear 2-polygraph as a
triple (�0,�1,�2) such that (�0,�1) is a 1-polygraph and�2 is a cellular extension
of the free algebroid ��

1 generated by the 1-polygraph (�0,�1), that is given by two
maps

��
1 �2

t1

s1

satisfying globular relations s0s1 = s0t1 and t0s1 = t0t1. All the categorical back-
ground will be introduced in Sect. 2. In the free 2-algebroid ��

2, any 2-cell being
invertible, the notion of rewriting step induced by a linear polygraph needs to be
defined with attention. In Sects. 2 and 3, we recall from [33] properties of termina-
tion, confluence and local confluence for linear 2-polygraphs. We state the Newman
lemma for linear 2-polygraphs in Theorem 3.2.11 showing that a terminating left-
monomial linear 2-polygraph is confluent if and only if it is locally confluent. We
give a formulation of a critical branching lemma for linear 2-polygraphs in Theo-
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rem 3.3.7. The formulation of this result differs from the critical branching lemma
for 2-polygraphs in the sense that the termination hypothesis is required, as we will
explain with several examples in Sect. 3.3. Finally, we explain how to recover non-
commutative Gröbner bases as a special case of convergent linear 2-polygraphs in
Sect. 3.6.

1.2.5 Polygraphic resolutions of algebroids. We recall in Sect. 5.1 the notion of
linear syzygies for linear polygraphs. When the linear 2-polygraph is convergent, we
show that all the syzygies can be generated by confluence diagrams induced by the
critical branchings, this is the Squier theorem (Theorem 5.1.6).

In Sect. 5.2, we recall from [33] the notion of polygraphic resolution for an algebra
giving a categorical description of higher dimensional syzygies of its presentations.
A polygraphic resolution for an algebra A is an acyclic polygraphic extension of
a presentation of A. That is a linear ∞-polygraph, which satisfies an acyclicity
condition. Theorem 5.2.6 from [33] shows that any convergent linear 2-polygraph
� extends to an acyclic linear ∞-polygraph, presenting the same algebra and whose
n-cells, for n � 3, are indexed by the critical (n − 1)-fold branchings. From this point
of view, this resolution is similar to Anick’s resolution associated with a Gröbner
basis.

Finally, we show how a polygraphic resolution of an algebra A induces a free
resolution in the category of right modules (resp. left modules, resp. bimodules)
over A.

1.2.6 Confluence and Koszulness. In the last section of these notes, we show how
Anick’s resolution leads to relate the Koszul property for an associative algebra to
the existence of a quadratic Gröbner basis for its ideal of relations. We also show
how to prove this property using convergent linear 2-polygraphs.

In Sect. 6.1, we recall the notion of Koszulness for quadratic algebras and
N -homogeneous algebras. Koszulness for quadratic algebras was introduced by
Priddy [55]. A connected graded algebra A is Koszul if the Tor groups TorA

n,(i)(K, K)

vanish for i �= n, where the grading n is the homological degree and the grading i
corresponds to the internal grading of the algebra. This notion was generalized by
Berger to the case of N -homogeneous algebras [10].

In [2], Anick showed how its resolution can be used to prove Koszulness of a
quadratic algebra. Indeed, if an algebra A admits a presentation whose relations
are defined by a quadratic Gröbner basis, then Anick’s resolution associated to this
Gröbner basis is concentrated in the right bidegree, and thus, the algebra A is Koszul,
see Theorem 6.2.3. For the N -homogeneous case, a Gröbner basis concentrated in
weight N is not enough to imply Koszulness: an extra condition has to be checked
as shown by Berger in [10].

Finally, we present a sufficient polygraphic condition of Koszulness of graded
algebras given in [33]. Using a graded version of Theorem 5.2.9, one shows that an
N -homogeneous algebra having a �N -concentrated polygraphic resolution is Koszul,
Theorem 6.2.7.
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2 Linear Rewriting

In this section, we recall the categorical description of linear rewriting given in [33]
using the notion of linear polygraph. This notion extends to associative algebras
the categorical notion of 2-polygraph used to describe presentations of monoids by
generators and relations. This approach is based on presentations by generators and
relations of higher dimensional categories, independently introduced by Burroni and
Street under the respective names of polygraphs in [23] and computads in [60, 61].
Higher dimensional rewriting has unified several paradigms of rewriting. These notes
concern only rewriting in algebras, for a deeper discussion on categorical description
of string rewriting systems by 2-polygraphs, we refer the reader to [36]. Note that
there is a shift by 1 in the dimension: in these lecture notes the linear 2-polygraphs
are linear 1-polygraphs in [36].

2.1 Linear 2-Polygraphs

2.1.1 Categories. Recall that a (small) category (or 1-category) is a data C made of
a set C0, whose elements are called 0-cells (or objects) of C, for every 0-cells p and
q a set C(p, q), whose elements are called 1-cells (or arrows) of C with source p
and target q, for every 0-cell p a specified 1-cell 1p in C(p, p), called the identity
of p, and for every 0-cells p, q and r a composition map

�
p,q,r
0 : C(p, q) × C(q, r) → C(p, r),

that is associative and such that the identities are local units for this composition.
A monoid M with product · and identity element 1M corresponds to a category M

with only one 0-cell, denoted by ∗, and the 1-cells of M(∗, ∗) are the elements of the
monoid M . The identity arrow 1∗ of M corresponds to the identity element 1M and
the composition of u �0 v of 1-cells in M(∗, ∗) corresponds to the product u · v in the
monoid M . The associativity and unitary properties of the composition, making M
into a category, are induced by the corresponding properties of the product · of the
monoid. In this way, any monoid can be thought of as a one-0-cell category and a
category can be thought of as a ‘monoid with many 0-cells’. In a similar way, the
notion of algebroid describes the concept of associative algebra with many 0-cells.

2.1.2 Algebroids.A1-algebroid over a ground fieldK is a category enriched over the
monoidal category of vector spaces over K with its usual tensor product. Explicitly,
a 1-algebroid A is specified by the following data:

(i) a set A0 of 0-cells, that we will denote by p, q…
(ii) for every 0-cells p and q, a vector space A(p, q), whose elements are the

1-cells of A, with source p and target q, that we will denote by f , g…
(iii) for every 0-cells p, q and r , a linear map
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�0 : A(p, q) ⊗ A(q, r) −→ A(p, r)

called the 0-composition ofA and whose image on f ⊗ g is denoted by f �0 g
or f g. This composition is associative, that is the relation:

( f �0 g) �0 h = f �0 (g �0 h),

holds for any 0-composable 1-cells f , g and h, and unitary, that is, for any
0-cell p, there is a 1-cell 1p such that for any 1-cell f inA(p, q), the following
relation holds:

1p �0 f = f �0 1q = f.

A 1-cell f with source p and target q will be graphically represented by

p
f

q

2.1.3 Remark. An 1-algebra is an 1-algebroid with a single one 0-cell, which can
be identified to an (unital associative) algebras overK.Wewill denote byAlg the cat-
egory of algebras over K. The notion of 1-algebroid was first introduced by Mitchell
as ring with several objects called K-category in [49]; terminology linear category
appears also in the literature. A small Z-category is called a ringoid and a one-0-cell
ringoid is a ring.

2.1.4 One-dimensional polygraphs. An algebroid can be defined by generators
and relations. The generators are described by one-dimensional polygraphs. A 1-
polygraph is a directed graph

�0 �1
t0

s0

given by a set �0 of 0-cells, a set �1 of 1-cells together with two maps s0 and t0
sending a 1-cell x on its source s0(x) and its target t0(x). A 1-polygraph with only
one 0-cell will be identified to a set.

We will denote by�∗
1 the free 1-category generated by the 1-polygraph (�0,�1).

Its set of 0-cells is �0 and for any 0-cells p and q, the elements of the hom-set
�∗

1(p, q) are paths from p to q in the 1-polygraph (�0,�1). The composition is the
concatenation of paths and the identity on a 0-cell p is the empty path with source
and target p. If the 1-polygraph has only one 0-cell, �∗

1 will be identified to the free
monoid on the set �1.

2.1.5 Free 1-algebroid. The free 1-algebroid on a 1-polygraph (�0,�1) is the 1-
algebroid, denoted by ��

1, whose set of 0-cells is �0, and for any 0-cells p and q,
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��
1(p, q) is the free vector space on �∗

1(p, q). In other words, the space ��
1(p, q)

has for basis the set of paths from p to q in the 1-polygraph �. If �0 is reduced to
only one 0-cell, ��

1 is the free algebra with basis �1. The source and target maps s0
and t0 are extended into maps on ��

1, denoted by s0 and t0, in a natural way making
the following two diagrams commutative:

�0 ��
1

s0

�1

s0 ι1

�0 ��
1

t0

�1

t0
ι1

where ι1 denotes the inclusion of 1-cells of �1 in the free algebroid ��
1.

2.1.6 Quivers and path algebras. The terminology directed graph is used in graph
theory. The same notion is also called quiver in representation theory. A linear repre-
sentation of a quiver (�0,�1) is a functor ρ from the free category�∗

1 to the category
Vect of vectors spaces. The path algebra of a quiver (�0,�1) is the category alge-
bra of the free category �∗

1. That is, it is the K-algebra whose underlying space is
spanned by the set of 1-cells in �∗

1 and the product on the basis elements is defined
by u · v = u �0 v if u and v are 0-composable 1-cells in �∗

1 and u · v = 0 otherwise.
When the set �0 is finite, then

∑
p∈�0

1p is the identity of the path algebra. Note
that we can obtain the path algebra of a quiver � from the free 1-algebroid ��

1 by
forgetting the 1-category structure.

2.1.7 Linear 2-polygraph. A cellular extension of the 1-algebroid ��
1 is a set �2

equipped with two maps

��
1 �2

t1

s1

such that, for every α in �2, the pair (s1(α), t1(α)) is a 1-sphere in ��
1, that is, the

following globular relations hold

s0s1(α) = s0t1(α) and t0s1(α) = t0t1(α).

An element of the cellular extension �2 will be graphically represented by a 2-cell
with the following globular shape:

p

f

g

α q
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that relates parallel 1-cells f and g in��
1, also denoted by f α

g or by α : f ⇒ g.

We define a linear 2-polygraph as a triple (�0,�1,�2), where (�0,�1) is a
1-polygraph and �2 is a cellular extension of the free 1-algebroid ��

1:

�0 ��
1

t0

s0

�1
t0

s0 ι1

�2
t1

s1

The elements of �2 are called the 2-cells of �, or the rewriting rules of �.

In the sequel, we will consider polygraphs with one 0-cell denoted ∗.

2.1.8 Presentations of algebras by generators and relations. Given a linear 2-
polygraph �. The algebra presented by � is the quotient algebra of the free algebra
��

1 by the cellular extension �2. That is, it is the algebra A obtained by identifying
in ��

1 all the 1-cells s1(a) and t1(a), for every 2-cell a in ��
2. We denote by f the

image of a 1-cell f of ��
1 through the canonical projection π : ��

1 −→ A. We say
that a linear 2-polygraph � is a presentation of an algebra A if the algebra presented
by � is isomorphic to A. Two linear 2-polygraphs are said to be Tietze equivalent if
they present isomorphic algebras.

2.1.9 First toy example. Here our first toy example that we will use through this
lecture:

� = 〈 ∗ | x, y, z | xyz
γ

x3 + y3 + z3 〉.

The free 1-algebroid generated by �1 = {x, y, z} is the free algebra K〈x, y, z〉. The
algebra presented by the linear 2-polygraph � is the quotient of the free algebra
K〈x, y, z〉 by the ideal generated by the 1-cell xyz − x3 − y3 − z3.

2.1.10 Other toy examples. We will consider the two following Tietze equivalent
linear 2-polygraphs:

� = 〈 ∗ | x, y | x2 β
yx 〉, �′ = 〈 ∗ | x, y | yx

β′
x2 〉.

2.1.11 Two-dimensional algebras.Wedefine a 2-algebra A as an internal 1-category
in the category Alg. Explicitly, it is defined by a diagram

A1

i2

A2

t1

s1 A2 ×A1 A2
�1 (1)
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where A2 ×A1 A2 is the algebra defined by the following pullback diagram in the
category Alg:

A2 ×A1 A2 A2

s1

A2 t1
A1

Elements of the algebraA2 ×A1 A2 are pairs (a, a′) of 1-composable 2-cells a and a′,
that is satisfying t1(a) = s1(a′). The morphisms of algebras s1, t1 and �1 satisfy the
axioms in such a way that Diagram (1) defines a 1-category. Explicitly, the following
diagrams commute in the category Alg:

A1
i2

id

A2

s1

A1

A1
i2

id

A2

t1

A1

A2 ×A1 A2
�1

π1

A2

s1

A2 s1
A1

A2 ×A1 A2
�1

π2

A2

t1

A2 t1
A1

A2 ×A1 A2 ×A1 A2
�1 ×A1 id

id ×A1 �1

A2 ×A1 A2

�1

A2 ×A1 A2 �1
A2

A1 ×A1 A2
i2 ×A1 id

π2

A2 ×A1 A2

�1

A2 ×A1 A1
id ×A1 i2

π1

A2

where π1 and π2 denote, respectively, first and second projections. Note that the
linear structure and the product in the algebra A2 ×A1 A2 are given by

(a, a′) + (b, b′) = (a + b, a′ + b′),
λ(a, a′) = (λa,λa′),

(a, a′)(b, b′) = (ab, a′b′),

for all pair of 1-composable 2-cells (a, a′) and (b, b′) and scalar λ in K.

2.1.12 Notations. For a 1-cell f , the identity 2-cell i2( f ) is denoted by 1 f , or f if
there is no possible confusion. The 1-composite �1(a, a′) of 1-composable 2-cells a
and a′, will be denoted by a �1 a′. Elements of the algebra A1, called 1-cells of A,
are graphically pictured as follows:

∗
f

g

h
or ∗

f

g

h

∗

The elements of A2, called 2-cells of A are graphically represented by
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∗
s1(a)

t1(a)

a ∗

Given 2-cells

∗
f

f ′

a ∗ and ∗
g

g′

b ∗

we denote by ab their product in the algebra A2. The source and target maps s1 and
t1 being morphisms of algebras, we have

s1(ab) = s1(a)s1(b), and t1(ab) = t1(a)t1(b),

and for any scalars λ and μ in K, we have

s1(λa + μb) = λs1(a) + μs1(b), and t1(λa + μb) = λt1(a) + μt1(b).

Hence

∗
f g

f ′g′

ab ∗ ∗
λ f + μg

λ f ′ + μg′

λa + μb∗

Given 1-cells h, f , f ′ and k in A1 and a 2-cell a in A2 such that

∗ h ∗
f

f ′

a ∗ k ∗

we will denote by hak : h f k ⇒ h f ′k the 0-composite 1h �0 a �0 1k .

2.1.13 Properties of 1-composition. Given 1-composable 2-cells:

∗

f

f ′

f ′′

a

a′
∗ and ∗

g

g′

g′′

b

b′
∗
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in A2 �A1 A2, the 1-composition �1 being linear, a �1 a′ + b �1 b′ is a 2-cell from
f + g to f ′ + g′ and we have

(a + b) �1 (a′ + b′) = a �1 a′ + b �1 b′.

and, for any scalar λ in K, λ(a �1 a′) is a 2-cell from λ f to λ f ′′ and we have

(λa) �1 (λa′) = λ(a �1 a′).

Finally, the compatibility with the product induces the following relation:

(a �1 a′)(b �1 b′) = ab �1 a′b′. (2)

Relation (2) corresponds to the exchange law in the 2-algebra A between the
1-composition and the product.

2.1.14 Remarkable identities in a 2-algebra. The following properties hold in a
2-algebra A:

(i) for any 1-composable 2-cells a and a′ in A, we have

a �1 a′ = a + a′ − t1(a), (3)

(ii) any 2-cell a in A is invertible for the �1-composition, and its inverse is given
by

a− = −a + s1(a) + t1(a). (4)

(iii) for any 2-cells a and b in A, we have

ab = as1(b) + t1(a)b − t1(a)s1(b) = s1(a)b + at1(b) − s1(a)t1(b). (5)

Relation (3) is a consequence of the linearity of the 1-composition �1. Indeed, for
any (a, a′) in A2 ×A1 A2, we have

a �1 a′ = (a − s1(a
′) + s1(a

′)) �1 (t1(a) − t1(a) + a′),
= a �1 t1(a) − s1(a

′) �1 t1(a) + s1(a
′) �1 a′,

= a − t1(a) + a′.

2.1.15 Exercise. Show identities (4) and (5).

2.1.16 The free 2-algebra on a linear 2-polygraph. The free 2-algebra over a lin-
ear 2-polygraph � is the 2-algebra, denoted by��

2, defined as follows. In dimension
1, it is the free 1-algebra ��

1 over �1. For dimension 2, we consider the following
diagram in the category of ��

1-bimodule:
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��
1

i2

�M
2

t1

s1

where �M
2 is the ��

1-bimodule
(
��

1 ⊗ K�2 ⊗ ��
1

) ⊕ ��
1 and where the maps s1, t1

and i2 are defined by

s1( f αg) = f s1(α)g, t1( f αg) = f t1(α)g and s1(h) = t1(h) = i2(h) = h,

for all 2-cell α in �2, and 1-cells f , g, h in ��
1. The quotient of the ��

1-bimodule
�M

2 by the equivalence relation generated by

as1(b) + t1(a)b − t1(a)s1(b) ∼ s1(a)b + at1(b) − s1(a)t1(b),

for all a and b in ��
1 ⊗ K�2 ⊗ ��

1, has a structure of algebra, denoted by ��
2, and

whose product is given by

ab = as1(b) + t1(a)b − t1(a)s1(b).

We prove that the source and target maps are compatible with this quotient, so giving
a structure of 2-algebra:

��
1

i2

��
2

t1

s1

2.1.17 Monomials. A monomial in the free 2-algebra ��
2 is a 1-cell of the free

monoid�∗
1 over �1. The set of monomials of��

2, also denoted by�∗
1, forms a linear

basis of the free algebra ��
1. As a consequence, every nonzero 1-cell f of ��

1 can be
uniquely written as a linear combination of pairwise distinct monomials u1, . . . , u p:

f = λ1u1 + . . . + λpu p

with λi ∈ K \ {0}, for all i = 1, . . . , p. The set of monomials
{
u1, . . . , u p

}
will be

called the support of f and denoted by Supp( f ).

2.1.18 2-Monomials. A 2-monomial of a free 2-algebra ��
2 is a 2-cell of ��

2 with
shape uαv, where α is a 2-cell in �2, and u and v are monomials in �∗

1:

∗ u ∗
s1(α)

t1(α)

α ∗ v ∗
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By construction of the free 2-algebra ��
2, and by freeness of ��

1, every non-identity
2-cell a of ��

2 can be written as a linear combination of pairwise distinct 2-
monomials a1, …, ap and of an 1-cell h of ��

1:

a = λ1a1 + . . . + λpap + h. (6)

2.1.19 Exercise. Prove that the decomposition in (6) is unique up to the following
relations:

as1(b) + t1(a)b − t1(a)s1(b) = s1(a)b + at1(b) − s1(a)t1(b), (7)

for all 2-monomials a and b in ��
2.

2.1.20 Monomial linear 2-polygraphs. A linear 2-polygraph � is left-monomial
if, for every 2-cell α of �2, the source s1(α) is a monomial in �∗

1 \ Supp(t1(α)).
Note that a non-left-monomial linear 2-polygraph would produce useless ambiguity
only due to the linear structure.

A linear 2-polygraph � is monomial if it is left-monomial and for every 2-cell α
of �2, t1(α) = 0 holds. A monomial algebra is an algebra admitting a presentation
by a monomial linear 2-polygraph.

2.1.21 Degrees and length. For monomials u and v in�∗
1, we denote by Occv(u) the

number of different occurrences of the monomial v in the monomial u. For instance,
Occx2(x4) = 3 and Occy(x4) = 0. For a subset M of monomials in �∗

1, we denote

OccM(u) =
∑

v∈M

Occv(u).

The length of a monomial u in �∗
1, denoted by �(u), is equal to Occ�1(u).

2.1.22 Exercise. Show that any linear 2-polygraph is Tietze equivalent to a left-
monomial linear 2-polygraph.

2.1.23 Examples. The linear 2-polygraph�given inExample2.1.9 is left-monomial.
The linear 2-polygraph 〈 ∗ | x, y | x2 + y2 ⇒ 2xy 〉 is not left-monomial, but it is
Tietze equivalent to the following left-monomial 2-polygraph:

�′ = 〈 ∗ | x, y | xy α′ 1

2
(x2 + y2) 〉.

The linear 2-polygraphs 〈 ∗ | x | x2 ⇒ 0 〉 and 〈 ∗ | x, y | xy ⇒ 0 〉 are monomials.
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2.2 Linear Rewriting Steps

2.2.1 Elementary 2-cells. Let � be a linear 2-polygraph. An elementary 2-cell of
the free 2-algebra ��

2 is a 2-cell of ��
2 with shape

λ: ∗

s1(a)

t1(a)

a ∗ + ∗ g ∗

where a is a 2-monomial, g is a 1-cell of ��
1 and λ is a nonzero scalar in K.

2.2.2 Example. With the polygraph �′ of Example 2.1.23, the 2-cell

2xα′y + y3 : 2x2y2 ⇒ x3y + xy3 − y3

is elementary and the 2-cell

xα′ + α′y : x2y + xy2 ⇒ 1

2
(x3 + xy2 + x2y + y3)

is not elementary.

2.2.3 Exercise. Show that any 2-cell in a free 2-algebra ��
2 can be decomposed into

a 1-composition of elementary 2-cells of ��
2

2.2.4 Rewriting steps. Let � be a left-monomial linear 2-polygraph. A rewriting
step of � is an elementary 2-cell

λ: ∗

u

f

a ∗ + ∗ g ∗

of ��
2 such that λ is a nonzero scalar and u is not in the support of g.

2.2.5 Examples. For the linear 2-polygraph given in Example 2.1.9, the 2-cell

3xγ − 3xz3 : 3x2yz − 3xz3 3x4 + 3xy3

is a rewriting step. For a linear 2-polygraph having a rule α : u ⇒ f , the 2-cell

−α + (u + f ) : −u + (u + f ) − f + (u + f )
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is not a rewriting step because the monomial u appears in the context u + f .

2.2.6 Exercise, [33, Lemma 3.1.2]. Let � be a left-monomial linear 2-polygraph
and let a be an elementary 2-cell of the 2-algebra ��

2. Show that a can be factorized
in the 2-algebra ��

2 into

a

b c
=

where b and c are either identities of rewriting steps.

2.2.7 Example. Let � be a linear 2-polygraph and let α : u ⇒ v be a 2-cell of �2.
The 2-cell −α + (u + v) and α + (5u + 4v) are not rewriting steps of �. They can
be decomposed, respectively, as follows:

−u + (u + v)

−α + (u + v)

v

−v + (u + v)

α
(1 − 1)u + v

=
u + (5u + 4v)

α + (5u + 4v)

6α + 4v

v + (5u + 4v)

5α + 5v10v

=

2.2.8 Rewriting sequences. A 2-cell a of ��
2 is positive, or a rewriting sequence, if

it is an identity or a 1-composite

f0: a1 : f1: : · · · fk−1: ak : fk

of rewriting steps of �.

2.2.9 Reduced cells. A 1-cell f of ��
1 is called reduced, or irreducible,

with respect to �2, if there is no rewriting step of � with source f . As a conse-
quence, a 1-cell is reduced if and only if it is the zero 1-cell of ��

1, or a linear
combination of reduced monomials in �∗

1. The reduced 1-cells of ��
1 form a vec-

tor subspace of ��
1, denoted by �ir

1 . Since � is left-monomial, the set of reduced
monomials of �∗

1, denoted by �irm
1 , forms a basis of the vector space �ir

1 .
We denote by s1(�) the set of redex of a reduced left-monomial linear 2-polygraph

� defined by
s1(�) = {s1(α) | α in �2}.

In [2], a redex is called an obstruction. The number of possible application of rules
of �2 to a monomial u is Occs1(�)(u).

2.2.10 Reduced linear 2-polygraphs. We say that a linear 2-polygraph � is left-
reduced if, for every 2-cell α in �2, the 1-cell s1(α) is reduced with respect to
�2 \ {α}. We say that � is right-reduced if, for every 2-cell α of �, the 1-cell
t1(α) is reduced. The linear polygraph � is reduced if it is both left-reduced and
right-reduced.
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2.2.11 Exercise. Show that any left-monomial linear 2-polygraph is Tietze equiva-
lent to a reduced left-monomial linear 2-polygraph.

2.2.12 Normal forms. If f is a 1-cell of ��
1, a normal form for f with respect to �2

is a reduced 1-cell g of ��
1 such that there exists a positive 2-cell a : f ⇒ g in ��

2.

2.3 Termination of Linear 2-Polygraphs

We recall the notions of rewrite relation and termination for linear 2-polygraphs
from [33, 3.2]. Let us fix a left-monomial linear 2-polygraph �.

2.3.1 Termination. The rewrite relation of � is the smallest transitive binary rela-
tion on �∗

1, denoted by ≺�, such that

1. the relation ≺� is compatible with �2, that isw ≺� u for every 2-cell α : u ⇒ f
of � and every monomial w in Supp( f ),

2. the relation≺� is compatible with products, that isu′ ≺� u impliesvu′w ≺� vuw

for every monomials u, u′, v and w of �∗
1.

We say that the 2-polygraph � terminates if the rewrite relation ≺� is well
founded, that is, there are no infinite descending chains in �∗

1:

u1 �� u2 �� . . . �� un �� un+1 �� . . .

2.3.2 Example. Consider the linear 2-polygraph� = 〈 ∗ | x, y | xy α x2 + y2 〉.
We have xy �� x2 and xy �� y2. Following compatibility with products, we have

x2y �� xy2 �� x2y.

Hence, the relation ≺� is not well founded, and the polygraph � is not terminating.
Note that we have an infinite sequence of rewriting steps:

x2y
xα

x3 + xy2
x3 + αy

x3 + y3 + x2y . . .

2.3.3 The rewrite relation on 1-cells. The rewrite relation ≺� is extended to the 1-
cells of��

1 by setting, for any 1-cells f and g, g ≺� f if the following two conditions
hold:

1. there exists a monomial in Supp( f ) which is not in Supp(g),
2. for any monomial v in Supp(g)\Supp( f ), there exists a monomial u in

Supp( f )\Supp(g), such that v ≺� u.
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2.3.4 Proposition. The rewrite relation ≺� is well founded on 1-cells if and only if
it is well founded on monomials.

If� terminates, then for every rewriting step a of�, we have t1(a) ≺� s1(a). This
implies that the 2-algebra��

2 contains no infinite sequence of pairwise 1-composable
rewriting steps

f0
a1 f1 · · · fk−1

ak
fk : · · ·

so that every 1-cell of ��
1 admits at least one normal form with respect to �2.

2.4 Monomial Orders

2.4.1 Monomial orders. A total order≺ on the set of monomials�∗
1 is a monomial

order if the following conditions are satisfied:

(i) ≺ is a well-order, that is, there are no infinite descending chains in �∗
1.

u1 � u2 � u3 � . . . � un � un+1 � . . .

(ii) ≺ is compatible with the multiplicative structure on monomials, that is

u ≺ u′ implies vuw ≺ vu′w,

for all monomials u, u′, v and w in �∗
1.

2.4.2 Example. Given a total order relation ≺ on �1, we define the left degree-wise
lexicographic order generated by ≺, or deglex order generated by ≺, as the order
≺deglex on�∗

1 that compare twomonomials first by degree and then lexicographically.
It is defined by

(i) y1 . . . yp ≺deglex x1 . . . xq , if p < q,
(ii) y1 . . . y j−1y j . . . yp ≺deglex y1 . . . y j−1x j . . . x p, if y j ≺ x j .

2.4.3 Exercise. Show that the order ≺deglex is a monomial order.

2.4.4 Exercise. Explain why the pure lexicographic order is not a monomial order.
Show that it is neither a well-order nor compatible with the product of monomials.

2.4.5 Polygraph compatible with a monomial order. A linear 2-polygraph � is
said to be compatible with a monomial order ≺ if for every 2-cell α : u ⇒ f of �2,
then w ≺ u for any monomial w in the support of f . The monomial order ≺ is
thus a well-founded rewrite relation for �. It follows that any linear 2-polygraph
compatible with a monomial order is terminating. The converse is false in general
as we will see in Exercise 2.4.7.
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2.4.6 Example. Consider the linear 2-polygraph� = 〈 ∗ | x, y | x2 α xy − y2 〉.
It is Tietze equivalent to the linear 2-polygraph of Example 2.3.2, but it is terminating.
Indeed, having xy ≺ x2 and y2 ≺ x2, the linear 2-polygraph � is compatible with
the deglex order ≺deglex induced by y ≺ x ; hence, it is terminating. Another way to
prove that � is terminating is to count the number of occurrence of x in monomials.
For any u in�∗

1, let denote by A(u) the number of occurrence of x in u. To prove that
the linear 2-polygraph � terminates, it is sufficient to check that, for every rewriting
step a : s1(a) ⇒ f , we have A(s1(a)) > A(v), for any monomial v in Supp( f ).

2.4.7 Exercise, [33, Ex. 3.2.4]. Show that the linear 2-polygraph� given in Exam-
ple 2.1.9 is terminating. Show that � is not compatible with a monomial order.

2.4.8 Exercise, [12, Ex. 5.2.1]. Examine termination of the linear 2-polygraph
〈 ∗ | x, y | α 〉 in each of the following situations

x2y α yx, yx α x2y, x2y2 α yx, yx α x2y2.

2.4.9 Noetherian induction principle. Let us recall the principle of Noetherian
induction for terminating rewriting systems, see [39] for more details. Let � be
a left-monomial terminating linear 2-polygraph. The principle can be used to prove
by induction a property formulated on the 1-cells of ��

1. Given a property P( f ) of
the 1-cells f of ��

1. In order to show that P( f ) holds for any 1-cell f of ��
1, it

suffices to show that

(i) P( f ) holds for f reduced with respect to �2,
(ii) P( f ) holds under the assumption that P(g) holds for every g ≺ f .

2.4.10 Leading terms.Let��
1 be a free algebra over a set�1 and let≺ be amonomial

order on��
1. For a nonzero 1-cell f of��

1, the leading monomial of f with respect to
≺ is the monomial of f , denoted by lm( f ), such that w ≺ lm( f ), for any monomial
w in the support of f . The leading coefficient of f is the coefficient lc( f ) of lm( f )

in f , and the leading term of f is the 1-cell lt( f ) = lc( f )lm( f ) of ��
1. We also

define lt(0) = lc(0) = lm(0) = 0.
Note that for any 1-cells f and g in��

1,we have f ≺ g if and only if either lm( f ) ≺
lm(g) or (lm( f ) = lm(g) and f − lt( f ) ≺ g − lt(g)). The following property

lt( f g) = lt( f )lt(g),

for any 1-cells f and g is also useful.

2.4.11. Leading polygraph. Given a monomial order ≺ on ��
1 and a nonzero 1-cell

g in ��
1, we define the 2-cell:

αg,≺ : lm(g): : lm(g) − 1

lc(g)
g.
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For any set G of nonzero 1-cells in ��
1, the leading 2-polygraph associated to G with

respect to ≺ is the linear 2-polygraph �(G,≺) whose set of 1-cells is �1 and

�(G,≺)2 = {αg,≺ | g ∈ G}.

By definition, the leading polygraph �(G ≺) is compatible with the monomial
order ≺.

A monomial w in �∗
1 is G-reduced with respect to the monomial order ≺ if it

reduced with respect to �(G,≺)2, that is, there is no factorization w = ulm(g)v,
with u and v monomials in �∗

1 and g in G. A set G of 1-cells is reduced with respect
to the monomial order ≺ if for any 1-cell g in G, any monomial in the support of g
is (G \ {g})-reduced.

3 Convergence in Linear Rewriting Systems

3.1 Ideal of a Linear 2-Polygraph

3.1.1 The ideal of a linear 2-polygraph. Given a linear 2-polygraph �. We denote
by I (�) the two-sided ideal of the free algebra ��

1 generated by the following set of
1-cells

{s1(α) − t1(α) | α ∈ �2}.

The ideal I (�) is made of the linear combinations

p∑

i=1

λi ui (s1(αi ) − t1(αi ))vi ,

for pairwise distinct 2-monomials u1α1v1, . . . , u pαpvp of ��
1, and nonzero scalars

λ1, . . . ,λp. Note that the algebra presented by � is isomorphic to the quotient of the
free algebra ��

1 by the ideal I (�).

3.1.2 Exercise. Let � be a linear 2-polygraph. Given 1-cells f and g in ��
1, show

that the 1-cell f − g belongs to I (�) if and only if there exists a 2-cell a : f ⇒ g
in ��

2.

3.1.3 Suppose that � is a terminating left-monomial linear 2-polygraph. Every 1-
cell f of ��

1 admits at least a normal form f̃ . That is, f̃ is reduced and there exists
a positive 2-cell a : f ⇒ f̃ in ��

2. As a consequence, we have a decomposition
f :=: f̃ + ( f − f̃ ), with f̃ in �ir

1 and f − f̃ in I (�) by Exercise 3.1.2. It follows
that the vector space ��

1 admits the following decomposition:

��
1 = �ir

1 + I (�). (8)
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3.1.4 Example. Note that the decomposition (8) is not direct in general. Indeed,
consider the linear 2-polygraph � from Example 2.1.10. It is terminating thanks to
the deglex order generated by x > y. Consider the two following reduction sequences
reducing the 1-cell x3:

yx2 yβ
y2x

x3

βx

xβ xyx

Thus, the 1-cell

xyx − y2x = (x2 − yx)x − x(x2 − yx) + y(x2 − yx)

is both in �ir
1 and I (�). It follows that the sum �ir

1 + I (�) is not direct. We will
see in the next section a sufficient condition on the linear 2-polygraph � to have a
direct decomposition.

3.2 Confluence and Convergence

3.2.1 Branchings and confluence. Let � be a left-monomial linear 2-polygraph. A
branching of � is a non-ordered pair (a, b) of positive 2-cells of ��

2 with a common
source s1(a) = s1(b). A branching (a, b) is local if both a and b are rewriting steps
of �. A branching (a, b) of � is confluent if there exist positive 2-cells a′ and b′
of � as in the following diagram:

g a′

f

a

b

f ′

h b′

We say that � is confluent (resp. locally confluent) if every branching (resp. local
branching) of � is confluent. An immediate consequence of the confluence property
is that every 1-cell of ��

1 admits at most one normal form.
Under termination hypothesis, we have the following characterization of the con-

fluence.

3.2.2 Proposition. Let � be a terminating left-monomial linear 2-polygraph. The
following conditions are equivalent:

1. � is confluent.
2. Every 1-cell of I (�) admits 0 as a normal form with respect to �2.
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3. The vector space ��
1 admits the direct decomposition ��

1 = �ir
1 ⊕ I (�).

Proof (i) ⇒ (ii). Let f be a 1-cell in the ideal I (�), then there exists a 2-cell
a : f ⇒ 0 in ��

2. The polygraph � being confluent, the 1-cells f and 0 have the
same normal form. Finally, 0 being reduced, this implies that 0 is a normal form
for f .

(ii) ⇒ (iii). Prove that �ir
1 ∩ I (�) = 0. If f is in �ir

1 , then f̂ = f is reduced
and, thus, admits itself as normal form. If f is in I (�), then f̂ = 0 by (ii). Hence
�ir

1 ∩ I (�) = 0.

(iii) ⇒ (i). Given a branching ( f
a

g, f
b

h). Since � terminates, the

1-cells g and h admit normal forms, say g1 and h1, respectively, and there exist
positive 2-cells a1 and b1 in ��

2:

g
a1

g1

f

a

b h
b1

h1

with g1 and h1 reduced. It follows that g1 − h1 is also reduced. Moreover, the 2-cell
(a �1 a1)

− �1 (b � b1) has g1 as source and h1 as target. This implies that g1 − h1 is
also in I (�). As �ir

1 ∩ I (�) = 0, we have g1 − h1 = 0; hence, the branching (a, b)

is confluent. �

3.2.3 Convergence. Wesay that a left-monomial linear 2-polygraph� is convergent
if it terminates, and it is confluent. In that case, every 1-cell f of ��

1 has a unique
normal form, denoted by f̂ , such that f = g holds in � if and only if f̂ = ĝ holds
in ��

1.
As a consequence, if� is a convergent presentationof an algebraA, the assignment

of every 1-cell f of A to the normal form f̂ , defines a section ι : A −→ ��
1 of the

canonical projection π : ��
1 −→ A. The section ι is a linear map, i.e. it satisfies

̂λ f + μg = λ f̂ + μĝ, and it preserves the identities because � terminates.

3.2.4 Exercise. Show that the section ι is not a morphism of algebras in general.

3.2.5 Suppose that � is a convergent linear 2-polygraph. By Proposition 3.2.2, the
following sequence of vector spaces is exact:

0 I (�) ��
1 �ir

1 0.

The vector space �ir
1 admits �irm

1 as a basis, hence �irm
1 forms a linear basis of

the quotient algebra ��
1/I (�). The polygraph � being convergent, any 1-cell of ��

1
has a unique normal form; hence, the product defined by f · g = f̂ g is associative.
Indeed, for any 1-cells f, g and h, we have
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( f · g) · h = f̂ g · h = ̂̂f gh = ̂f ĝh = f · ĝh = f · (g · h).

It follows that this product equips �ir
1 with a structure of algebra in such a way

that �ir
1 is isomorphic to the quotient algebra ��

1/I (�). We have thus proved the
following result.

3.2.6 Theorem ([33, Thm 3.4.2]). Let A be an algebra and � be a convergent
presentation of A. The set �irm

1 of reduced monomials is a linear basis of A. Moreover,
the vector space �ir

1 equipped with the product defined by f · g = f̂ g, for any 1-cells
f and g in �ir

1 , is an algebra isomorphic to A.

3.2.7 Exercise. Compute a linear basis of the algebra presented by

〈 ∗ | x, y | xy = x2〉.

3.2.8 Exercise. Compute a linear basis for the symmetric algebra on k variables
presented by

〈 x1, . . . , xk | xi x j

τi j
x j xi | 1 � i < j � k 〉

and for the skew-polynomial algebra on k variables presented by

〈 x1, . . . , xk | xi x j

τi j
q j

i x j xi | 1 � i < j � k 〉,

where q j
i are scalars in K.

3.2.9 Exercise: Poincaré–Birkhoff–Witt Theorem [13, §1], [12, Thm. 3.1]. Con-
sider an ordered basis x1 ≺ x2 ≺ . . . ≺ xk of a Lie algebra g. Consider the following
ideals of the free tensor algebra T (g) over g:

I = 〈 x j xi − xi x j | 1 � i < j � k 〉,
J = 〈 x j xi − xi x j + [xi , x j ] | 1 � i < j � k 〉.

Show that the symmetric algebra S(g) = T (g)/I and the enveloping algebraU (g) =
T (g)/J are isomorphic as vector spaces.

3.2.10 From local to global confluence. The Newman lemma, also called the dia-
mond lemma, states that for terminating rewriting systems local confluence and
confluence are equivalent properties. This result was proved by Newman in [52] for
abstract rewriting systems. A short and simple proof of this result was given by Huet
in [39] using the principle of Noetherian induction. Let us recall the arguments of
this proof for linear 2-polygraphs.

3.2.11 Theorem (Newman’s Lemma). Let � be a terminating left-monomial
linear 2-polygraph. Then � is confluent if and only if it is locally confluent.
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Proof The proof works as for abstract rewriting systems. One implication is trivial.
Suppose � locally confluent and prove that it is confluent at every 1-cell f of ��

1.
We proceed by Noetherian induction on f using the principle given in 2.4.9. If f is
reduced, the only branching with source f is (1 f , 1 f ) which is confluent.

Suppose that f is a nonreduced 1-cell of ��
1 and such that � is confluent at every

1-cell g ≺ f . Consider a branching (a, b) of�with source f . If a or b is an identity,
then (a, b) is confluent. Otherwise, we prove that the branching (a, b) is confluent by
induction. Since a and b are not identities, they admit decompositions a = a1 �1 a2

and b = b1 �1 b2 where a1 and b1 are rewriting steps, and a2 and b2 are positive
2-cells. By local confluence, the local branching (a1, b1) is confluent. Hence, there
exist positive 2-cells a′

1 and b′
1 as indicated in the following diagram:

f b1a1

g1a2

a′
1

Local
confluence

h1

b′
1

b2

g

a′
2

Induction f ′
1

c

h

b′
2

g′

d

Induction

f ′

We have g1 ≺� f and h1 ≺� f . Then we apply the induction hypothesis on the
branching (a2, a′

1) to get positive 2-cells a′
2 and c, and, then, to the branching

(b′
1 �1 c, b2) to get positive 2-cells d and b′

2, which complete the proof. �

3.2.12 Example, [39]. The requirement of Noetherianity is necessary to prove con-
fluence from local confluence. Indeed, consider the 2-polygraph generated by the
following four 2-cells

g f
b

a

f ′ b′

a′

g′

It is locally confluent but it is not confluent.
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3.3 Critical branching lemma

3.3.1 Local branchings. A case analysis leads to a partition of the local branchings
of a left-monomial linear 2-polygraph � into the following four families, see [33,
3.3.2] for details.

1. Aspherical branchings, for all 2-monomial a : u ⇒ f of ��
2, nonzero scalar λ,

and 1-cell h of ��
1 such that the monomial u is not in the support of h:

λu + h

λa + h

λa + h

λ f + h

2. Additive branchings, for all 2-monomials a : u ⇒ f and b : v ⇒ g of ��
2,

nonzero scalars λ and μ, and 1-cell h of ��
1 such that the monomials u and

v are not in the support of h:

λ f + μv + h

λu + μv + h

λa + μv + h

λu + μb + h λu + μg + h

3. Peiffer branchings, for all 2-monomials a : u ⇒ f and b : v ⇒ g of��
2, nonzero

scalar λ, and 1-cell h of ��
1 such that the monomial uv is not in the support of h:

λ f v + h

λuv + h

λav + h

λub + h λug + h

4. Overlapping branchings, for all 2-monomials a : u ⇒ f and b : u ⇒ g of ��
2

such that the branching (a, b) is neither aspherical nor Peiffer, and all nonzero
scalar λ and 1-cell h of ��

1 such that the monomial u is not in the support of h:

λ f + h

λu + h

λa + h

λb + h
λg + h
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3.3.2 Critical branchings. A critical branching of a left-monomial linear
2-polygraph � is an overlappingbranching, as defined in 3.3.1,withλ = 1 andh = 0,
and that is minimal for the relation on branchings defined by

(a, b) � (waw′, wbw′) for any w and w′ in �∗
1.

By case analysis on the source of critical branchings, they must have one of the
following two shapes:

α

β

α

β

with α, β in �2. When the linear 2-polygraph � is reduced, the first case cannot
occur since, otherwise, the monomial s1(α) would be reducible by β.

3.3.3 Exercise. Let � be a reduced linear 2-polygraph. Show that for any critical
branching

u
v w

α

β

the monomial u, v and w are reduced and cannot be identities or null.

3.3.4 Critical Branching Lemma. By Newman’s lemma 3.2.11, for terminating
rewriting systems, local confluence and confluence are equivalent properties. It turns
out that one can decide whether a rewriting system is convergent by checking local
confluence. For string rewriting systems, that is, 2-polygraphs, the critical branching
lemma states that local confluence is equivalent to the confluence of all critical
branchings, see [36, 3.1.5] for details. For linear 2-polygraphs the critical branching
lemma given in [33] differs from the case of 2-polygraphs. Indeed, in the linear
setting, the termination hypothesis is required.Moreover, nonoverlapping branchings
may be non-confluent as illustrated by the following example in which an additive
branching is nonconfluent.

3.3.5 Example. Some local branchings can be nonconfluent without termination,
even if critical confluence holds. Indeed, consider the linear 2-polygraph

〈 ∗ | x, y | x α y, y
β − x 〉

It has no critical branching, but it has a nonconfluent additive branching:



142 P. Malbos

2y

x + y

α + y

x + β
0

Here another example from [33, Rem. 4.2.4], for instance, the following linear
2-polygraph

〈 ∗ | x, y, z, t | xy α xz, zt
β

2yt 〉

has no critical branching, but it has a nonconfluent additive branching:

4xyt
4αt

4xzt
4xβ

· · ·
2xzt

2xβ

xzt + xβ

xyt + xzt

αt + xzt

xyt + xβ

= xzt + 2xyt

3xyt αt + 2xyt

3αt 3xzt
3xβ

6xyt
6αt

· · ·

3.3.6 If a linear 2-polygraph � is terminating and with any critical branching con-
fluent, we can show that such an additive branching is confluent by Noetherian
induction on the sources of the branchings. Let consider an additive branching
(λu + μv + h,λu + μg + h) as in 3.3.1 and suppose that � is locally confluent at
every g ≺� λu + μv + h. By linearity of the 1-composition, the following equation

(λa + μv + h) �1 (λ f + μb + h) = (λu + μb + h) �1 (λa + μg + h)

holds in the free 2-algebra ��
2:
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λ f + μv + h

a′
1

λ f + μb + h

f ′ a′
2

Inductionλu + μv + h

λa + μv + h

λu + μb + h

= λ f + μg + h

c

d

=

=

k

λu + μg + h

λa + μg + h

b′
1

g′ b′
2

Note that the dotted 2-cells λa + μg + h and λ f + μb + h may be not positive in
general. Indeed, the monomial u can be in the support of g or the monomial v can
be in the support of f , as illustrated in Example 3.3.5. However, those 2-cells are
elementary; hence, there exist, see Exercise 2.2.6, positive 2-cells a′

1, b′
1, c and d that

satisfy

a′
1 = (λ f + μb + h) �1 c and b′

1 = (λa + μg + h) �1 d.

We have f ≺� u and g ≺� v, hence λ f + μg + h ≺� λu + μv + h. Thus, the
branching (c, d) is confluent by induction hypothesis, yielding the positive 2-cells a′

2
and b′

2.
Under terminating hypothesis, all local branching given in 3.3.1 are confluent if

all critical branchings are confluent, see [33, 4.2] for a proof of this result.

3.3.7 Theorem (Critical branching lemma [33, Cor. 4.2.2]). A terminating left-
monomial linear 2-polygraph is locally confluent if and only if all its critical branch-
ings are confluent.

As a consequence of the critical branching lemma and ofNewman’s lemma3.2.11,
a terminating left-monomial linear 2-polygraph is confluent if all its critical branch-
ings are confluent. In particular, a terminating left-monomial 2-polygraph with no
critical branching is convergent.

3.3.8 Example. The linear 2-polygraph given in Example 2.1.9 is terminating, see
Exercise 2.4.7. Moreover, it does not have critical branching; hence, it is convergent.

3.3.9 The Knuth–Bendix completion procedure. Let us recall the completion pro-
cedure introduced in [44] to the setting of linear 2-polygraphs. Let � be a left-
monomial linear 2-polygraph compatible with a monomial order≺ on�∗

1. A Knuth–
Bendix completion of � is a linear 2-polygraph KB(�) obtained by the following
procedure that examines the confluence of the set of critical branchings.

If the procedure stops, it returns a finite convergent left-monomial linear
2-polygraph KB(�). Otherwise, it builds an increasing sequence of left-monomial
linear 2-polygraphs, whose limit is also denoted byKB(�). Note that, if the starting
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Fig. 1 The Knuth–Bendix completion procedure

linear 2-polygraph � is convergent, then the Knuth–Bendix completion of � is �

itself. The linear 2-polygraph KB(�) obtained by this procedure depends on the
order of examination of the critical branchings. Finally, since all the operations of
adding new rules performed by the procedure are Tietze transformations, the linear
2-polygraph KB(�) is Tietze equivalent to � (Fig. 1).

3.3.10 Exercise, [33, Rem. 4.2.4]. Prove that the following linear 2-polygraph has
a nonconfluent Peiffer branching:

〈 ∗ | x, y, z | xy α 2x, yz
β

z 〉.

3.3.11 Weyl algebras. Let K be a field of characteristic zero. The Weyl algebra of
dimension n over K is the algebra presented by the linear 2-polygraph whose 1-cells
are

x1, . . . , xn, ∂1, . . . , ∂n

and with the following 2-cells:

xi x j ⇒ x j xi , ∂i∂ j ⇒ ∂ j∂i , ∂i x j ⇒ x j∂i , for any 1 � i < j � n,

∂i xi ⇒ xi∂i + 1, for any 1 � i � n.
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This polygraph is convergent with the following six families of confluent critical
branchings:

x j xi xk x j xk xi

xi x j xk xk x j xi

xi xk x j xk xi x j

∂ j ∂i ∂k ∂ j ∂k∂i

∂i ∂ j ∂k ∂k∂ j ∂i

∂i ∂k∂ j ∂k∂i ∂ j

x j ∂i xk x j xk∂i

∂i x j xk xk x j ∂i

∂i xk x j xk∂i x j

∂ j ∂i xk ∂ j xk∂i

∂i ∂ j xk xk∂ j ∂i

∂i xk∂ j xk∂i ∂ j

xi ∂i x j + x j xi x j ∂i + x j

∂i x j xk x j xi ∂i + x j

∂i x j xi x j ∂i xi

∂ j ∂i x j ∂ j x j ∂i

∂i ∂ j x j x j ∂ j ∂i + ∂i

∂i x j ∂ j + ∂i x j ∂i ∂ j + ∂i

where 1 � i < j � n.

3.3.12 Exercise. In his seminal paper on the diamond lemma, Bergman points out
that he was first led to the ideas of his paper with the following American Mathe-
matical Monthly Advanced Problem 5082, [12, 2.1].

Let R be a ring in which, if either x + x = 0 or x + x + x = 0, it follows that
x = 0. Suppose that a, b, c and a + b + c are all idempotents in R. Does it follows
that ab = 0?

Solve this problem. [Hints. Consider the following linear 2-polygraph:

� = 〈 ∗ | a, b, c | a2 ⇒ a, b2 ⇒ b, c2 ⇒ c, ba ⇒ −ab − bc − cb − ac − ca 〉.

(1) List all critical branchings of �. (2) Compute a convergent left-monomial linear
2-polygraph KB(�) by applying the Knuth–Bendix completion procedure to �.
(3) List all irreducible monomials with respect to KB(�)2. (4) Conclude that
ab �= 0.]

3.4 Composition Lemma

3.4.1 Compositions in free lie algebras. Shirshov introduced in [57] an algorithm
to compute a linear basis of a Lie algebra defined by generators and relations. He
used the notion of composition of elements in a free Lie algebra that corresponds
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to the notion of S-polynomial in the work of Buchberger [18]. This work remained
unknown outside the USSR and the two theories were developed in parallel. The
algorithm completes a given set of elements in a free algebra by adding all nontrivial
compositions. This algorithm corresponds to the completion algorithm given by
Knuth–Bendix for term rewriting systems [44], and by Buchberger for commutative
polynomials [18]. The Shirshov completion constructs a set that may be infinite,
such that every composition of its elements is trivial. Such a subset is called a Lie
Gröbner–Shirshov basis. The key result in [57] states that the set of irreducible
elements for a Gröbner–Shirshov basis S forms a linear basis of the Lie algebra with
defining relations S. This result is called now the composition-diamond lemma for
Lie algebras. For a recent account of the theory of Gröbner–Shirshov, we refer the
reader to [14].

In this subsection, we summarize without proofs an analogue of Shirshov’s
composition-diamond lemma for associative algebras given by Bokut in [13].

3.4.2 Compositions. Bokut introduced in [13] the notion of composition of elements
of a free associative algebra as follows. Let ��

1 be a free algebra over a set �1 and
let ≺ be a monomial order on ��

1. Given two 1-cells f and g in ��
1 and a monomial

w in �∗
1. There are two kinds of compositions:

(i) if w = lm( f )v = ulm(g) with �(lm( f )) + �(lm(g)) > �(w), for some mono-
mials u and v in �∗

1, then the 1-cell

( f, g)w = 1

lc( f )
f v − 1

lc(g)
ug

is called the intersection composition of f and g with respect to w.
(ii) if w = lm( f ) = ulm(g)v, for some monomials u and v in �∗

1, then the 1-cell

( f, g)w = 1

lc( f )
f − 1

lc(g)
ugv

is called the inclusion composition of f and g with respect to w.

A composition ( f, g)w can also be called an S-polynomial of f and g with respect
tow. A composition ( f, g)w is either zero or satisfy ( f, g)w ≺ w.Moreover, the com-
position ( f, g)w is in the ideal 〈 f, g〉 generated by f and g. Note that a composition
( f, g)w depends on the two polynomials f and g as well as the monomial w. Indeed,
in some cases two polynomials f and g may overlap with different combinations
creating several compositions.

3.4.3 Example. Consider the polynomial f = x2 − xy. With respect to the deglex
order generated by x > y, we have

( f, f )x3 = x3 − xyx − x3 + x2y = x2y − xyx .

Compare with Example 3.1.4.
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3.4.4 Gröbner–Shirshov bases. Let G be a set of nonzero 1-cells in ��
1. Given a

monomialw in�∗
1, a 1-cell h is trivial modulo (G, w) if there exists a decomposition

h =
∑

i∈I

λi uigivi ,

with λi in K \ {0}, ui , vi in �∗
1 and gi in G such that ui lm(gi )vi ≺ w.

A set G of nonzero 1-cells in ��
1 is a Gröbner–Shirshov basis with respect to the

monomial ordering ≺ if every composition ( f, g)w of 1-cells in G is trivial modulo
(G, w). A Gröbner–Shirshov basis G is minimal if there is no inclusion composition
with elements of G. A minimal Gröbner–Shirshov basis G is called closed under
composition in [13]. Finally, a Gröbner–Shirshov basis G is reduced if the set G is
reduced with respect to the monomial order ≺.

3.4.5 Exercise. Let G be a minimal Gröbner–Shirshov basis in a free algebra ��
1.

Suppose that there exists a decomposition

w = u1lm(g1)v1 = u2lm(g2)v2,

with u1, v1, u2, v2 ∈ �∗
1 and g1, g2 ∈ G. Show that u1g1v1 − u2g2v2 is trivial modulo

(G, w).

3.4.6 Theorem (The composition lemma [13, Prop. 1 & Cor. 1]). Let ��
1 be a free

algebra and let ≺ be a monomial order on ��
1. Let G be a set of 1-cells in ��

1 and let
I be the ideal generated by G. The following conditions are equivalent:

(i) G is a Gröbner–Shirshov basis.
(ii) For any f in I , there exists a factorization lm( f ) = ulm(g)v for some u, v

in �∗
1 and g in G.

(iii) The set of G-reduced monomial forms a linear basis of the algebra given by
the quotient of the free algebra ��

1 by the ideal I .

3.5 Reduction Operators

3.5.1 Reduction operators. Another approach of rewriting in associative algebras
was developed by Bergman in [12]. With a functional description of linear rewriting
reductions, he obtained an equivalent result of the composition lemma 3.4.6. Given
��

1 a free algebra over a set �1, he defines a reduction system as a set S of pairs
σ = (wσ, fσ), where wσ is a monomial of ��

1 and fσ is a 1-cell of ��
1. Given σ in

S and two monomials u, v in �∗
1, he considers the K-linear map ruσv : ��

1 −→ ��
1

defined by

ruσv(w) =
{

u fσv if w = uwσv,

w otherwise.
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The endomorphism ruσv is called reduction by σ. Note that this notion of reduction
corresponds to the notion of rewriting step given in 2.2.4.

A 1-cell f in ��
1 is irreducible under S if every reduction by elements of S acts

trivially on f , that is uwσv is not in the support of f , for any σ in S and monomials
u, v in�∗

1 .As in the case of linear 2-polygraphs,we denote by�ir
1 the vector subspace

of ��
1 of all irreducible 1-cells of ��

1.

3.5.2 Reduction-Unique.Bergman introduced the notion of confluence for reduction
systems as follows. A finite sequence of reductions r1, . . . , rn is final on a 1-cell f ,
if the 1-cell rn . . . r1( f ) is irreducible. A 1-cell f of ��

1 is reduction-finite if for
any infinite sequence (rn)n�1 of reductions, ri acts trivially on ri−1 . . . r1( f ) for a
sufficiently large i . A 1-cell f is reduction-unique if it is reduction-finite and if its
images under all final sequences of reduction are the same. This common image is
denoted by rS( f ). A reduction system S is reduction-unique if all 1-cells of ��

1 are
reduction-unique under S.

3.5.3 Exercise, [12, Lemma 1.1].

(1) Show that the set of reduction-unique 1-cells of ��
1 forms a subspace of ��

1
denoted by �ru

1 and that rS : �ru
1 → �irr

1 defines a linear map.
(2) Given monomialsw f ,wg andwh in the support of the 1-cells f , g and h, respec-

tively, such that the product w f wgwh is in �ru
1 . Show that for any finite com-

position of reductions r , then f r(g)h is in �ru
1 and that rS( f r(g)h) = rS( f gh)

holds.

3.5.4 Ambiguities. A 5-tuple (σ, τ , u, v, w) with σ, τ in S and u, v, w monomials
in �∗

1, such that wσ = uv and wτ = vw (resp. σ �= τ , wσ = v and wτ = uvw) is an
overlap ambiguity (resp. inclusion ambiguity) of S. Such an ambiguity is resolvable
if there exist compositions of reductions r and r ′ that satisfy the confluence condition:

r( fσw) = r ′(u fτ )
(
resp. r(u fσw) = r ′( fτ )

)
.

3.5.5 Reduction system compatible with a monomia order. The diamond
lemma obtained by Bergman concern reduction systems compatible with a mono-
mial order. A reduction system S is compatible with a monomial order ≺, if for any
σ = (wσ, fσ) in S, we have w ≺ wσ for any monomial w in the support of fσ .

Given a reduction system compatible with a monomial order ≺. For a monomial
w in �∗

1 , we denote by I≺w the subspace of ��
1 defined by

I≺w = Span
K

(
u(wσ − fσ)v | (wσ, fσ) ∈ S and uwσv ≺ w

)
.

An overlap ambiguity (resp. inclusion ambiguity) (σ, τ , u, v, w) is resolvable rela-
tive to ≺ if

fσw − u fτ ∈ I≺uvw,
(
resp. u fσw − fτ ∈ I≺uvw

)
.
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Let G be a subset of 1-cells of��
1 and let≺ be a monomial order on��

1. We denote
by S(G,≺) the reduction system generated by G with respect to ≺ defined by

S(G,≺) = { (lm( f ), lm( f ) − 1

lc( f )
f ) | f ∈ G }.

3.5.6 Theorem (The Diamond Lemma [12, Thm. 1.2]). Let S be a reduction
system compatible with a monomial order ≺. The following conditions are equiva-
lent:

(i) All the ambiguities of S are resolvable.
(ii) All the ambiguities of S are resolvable relative to ≺.
(iii) S is reduction-unique.

A fourth equivalent condition is given in [12, Thm. 1.2] as follows. Consider the
algebra A given as the quotient of the free algebra ��

1 by the two-side ideal

I (S) = { wσ − fσ | σ ∈ S }.

If the reduction system S is compatible with a monomial order ≺, the confluence
conditions (i)–(iii) above hold if and only if the set �irm

1 of irreducible monomial
under S is a linear basis of the algebra A. In this case, the K-algebra A is isomorphic
to the K-algebra �ir

1 , whose product is given by f · g = rS( f g), for any 1-cells f
and g in �ir

1 .

3.6 Noncommutative Gröbner bases

3.6.1 Noncommutative Gröbner Bases. Let ��
1 be a free algebra over a set �1

and let ≺ be a monomial order on ��
1. A (noncommutative) Gröbner basis of an

ideal I of ��
1 with respect to the monomial order ≺ is a subset G of I such that the

ideal generated by the leading monomials of the 1-cells of I coincides with the ideal
generated by the leading monomials of the 1-cells of G:

〈 lm(I ) 〉 = 〈 lm(G) 〉.

Equivalently, for every 1-cell f in I , there exists g in G with lm( f ) = ulm(g)v,
where u and v are monomials of ��

1.
The two following results show that the notion of noncommutative Gröbner basis

corresponds to the notion of left-monomial convergent linear 2-polygraph compatible
with a monomial order.

3.6.2 Proposition. Let � be a convergent left-monomial linear 2-polygraph, com-
patible with a monomial order ≺ on ��

1. The set of 1-cells {s1(α) − t1(α) | α ∈ �2}
is a Gröbner basis of the ideal I (�) for the monomial order ≺.
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3.6.3 Exercise. Prove Proposition 3.6.2.

3.6.4 Proposition. Let I be an ideal of a free 1-algebra ��
1. LetG be a Gröbner basis

for I with respect to a monomial order ≺. Then the leading 2-polygraph �(G,≺) is
convergent and I (�(G,≺)) = I holds.

Proof Suppose that G is a Gröbner basis of the ideal I with respect to ≺. By defini-
tion, the ideal I (�(G,≺)) is equal to the ideal I generated by G. Prove that the linear
2-polygraph �(G,≺) is convergent. Its termination is a consequence of its com-
patibility with the monomial order ≺. The monomials in �∗

1 reduced with respect
to �(G,≺) are the monomials that cannot be decomposed as ulm(g)v with g in G

and u and v monomials in �∗
1. As a consequence, if a reduced 1-cell f of ��

1 is
contained in the ideal I , its leading monomial must be 0, because G is a Gröbner
basis of I . By Proposition 3.2.2, we deduce that the linear 2-polygraph �(G,≺) is
confluent. �

The following theorem summarizes results obtained in this section. Note that
some equivalences are tautological or reformulations.

3.6.5 Theorem. Let I be an ideal of a free algebra ��
1 over a set �1. Let ≺ be a

monomial order on ��
1. For a subset G of I , the following conditions are equivalent:

(i) The set G is a Gröbner basis with respect to ≺.
(ii) The leading polygraph �(G,≺) is convergent.
(iii) The leading polygraph �(G,≺) is confluent.
(iv) The leading polygraph �(G,≺) is locally confluent.
(v) All the critical branchings of the leading polygraph �(G,≺) are confluent.
(vi) The set G is a Gröbner–Shirshov basis with respect to ≺.
(vii) All the ambiguities of the reduction system S(G,≺) are resolvable.
(viii) All the ambiguities of the reduction system S(G,≺) are resolvable relative

to ≺.
(ix) The reduction system S(G,≺) is reduction-unique.
(x) ��

1 = �ir
1 ⊕ I .

(xi) Every 1-cell of I admits 0 as a normal form with respect to �(G,≺)2.
(xii) For any f in I , there exists a decomposition lm( f ) = ulm(g)v for some u, v

in �∗
1 and g in G.

(xiii) The set of G-reduced monomials forms a linear basis of the algebra given by
the quotient of ��

1 by the ideal I .

3.6.6 Exercise. Prove the equivalences of Theorem 3.6.5.

3.6.7 Example. Consider the linear 2-polygraph � given in Example 2.1.9. For the
deglex order≺deglex inducedby the alphabetic order x ≺ y ≺ z, the leadingmonomial
of f = z3 + y3 + x3 − xyz is z3, so that

�({ f },≺deglex) = 〈 ∗ | x, y, z | z3
α f

xyz − x3 − y3 〉.
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The left-monomial linear 2-polygraph �({ f },≺deglex) is compatible with the mono-
mial order ≺deglex; hence, it is terminating. It is not confluent, because neither of its
two critical branchings is confluent:

xyz2 − x3z − y3z

z4

α f z

zα f zxyz − zx3 − zy3

xyz3 − x3z2 − y3z2
xyα f − x3z2 − y3z2

xyxyz − xy4 − xyx3 − x3z2 − y3z2

z5

α f z2

z2α f
z2xyz − z2x3 − z2y3

In particular, { f } does not form a Gröbner basis of the ideal I (�). We add to the
polygraph �({ f },≺deglex) the following 2-cell:

β : zy3 ⇒ zxyz − zx3 + y3z + x3z − xyz2.

This new rule makes the two previous critical branchings confluent and creates a new
critical branching

z3xyz − z3x3 + z2y3z + z2x3z − z2xyz2

z3y3

z2β

αy3
xyzy3 − x3y3 − y6

which is also confluent. Finally, the convergent linear 2-polygraph 〈 ∗ | x, y, z |
α f ,β 〉 is Tietze equivalent to the initial linear 2-polygraph �({ f },≺deglex). In par-
ticular, the set of 1-cells { f, s1(β) − t1(β)} forms a Gröbner basis of the ideal I (�)

with respect to the order ≺deglex.

3.6.8 Example. The algebra presented by the following linear 2-polygraph:

〈 ∗ | x, y, z | x2 = 0, xy = zx 〉

does not have a finite Gröbner basis on three generators x , y, and z. Indeed, the first
relation is oriented as x2 ⇒ 0 and the orientation xy ⇒ zx induces the addition of
the 2-cells xzn x ⇒ 0, for all integer n � 1. Another way is to orient the relation
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as zx ⇒ xy. But in this case, we need to add the 2-cells xyn x ⇒ 0, for all integer
n � 1.

3.6.9 Exercise. Show that we can compute a Gröbner basis for the algebra given
in Example 3.6.8 with four generators. [Hint. Add a generator t and the relations
xy ⇒ t and zx ⇒ t .]

3.6.10 Exercise. Consider the ideal I generated by the linear 2-polygraph � of
Example 3.1.4.

(1) Show that { xyk x − xyk+1 | k � 0 } is a Gröbner basis of the ideal I with respect
to a monomial order with x � y.

(2) Compute a Gröbner basis for the ideal I reduced to only one element.

4 Anick’s Resolution

In two seminal papers, Anick introduced a method to compute a free resolution for
an algebra starting with a Gröbner basis of its ideal of relations. First, he gave the
construction for monomial algebras in [1] then for associative augmented algebras
in [2]. Resolutions for path algebras using the same method were obtained by Anick
and Green in [3]. For a deeper discussion on the theory of Gröbner bases for path
algebras and how to apply this theory to the construction of free resolutions for path
algebras, we refer the reader to [31]. Let us mention that Anick’s resolution has been
achieved by other methods. In particular, Anick’s resolution for a homogeneous
algebra can be constructed by a deformation of the resolution computed on the
associated monomial algebra, see [26, Section 2.4] for details, see also the Backelin
construction [5]. Anick’s resolution can be also obtained using algebraic Morse
theory with a Morse matching on the bar resolution, see [58, Section 3.2] for details.
Morse theory allows to construct, starting froma chain complex, a newchain complex
such that the homology of the two complexes coincides. This method was applied to
the computation of minimal resolutions starting from Anick’s resolution [42].

Note also that others constructions of free resolutions using convergent rewriting
systems were obtained by several authors [17, 32, 35, 45, 46]. Finally, let us mention
that noncommutative Gröbner bases were developed by Dotsenko and Khoroshkin
for shuffle operads in [27], giving operadic versions of Newman’s lemma and Buch-
berger’s algorithm. Anick’s resolution for shuffle operads was constructed by Dot-
senko and Khoroshkin in [26, 28]. Using this construction, they prove that a shuffle
operad with a quadratic Gröbner basis is Koszul [28].

The nth chains in Anick’s resolution are generated by the n-fold overlaps of the
leading terms of theGröbner basis and the differentials are constructed byNoetherian
induction with respect to the monomial order. The chains defined by Anick are
recalled in Sect. 4.2. The construction of the resolution is given in Sect. 4.3. In the
first part of this section, we briefly recall the definition of the homology of associative
algebras.
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4.1 Homology of an Algebra

4.1.1 Functor Tor. Let us recall the definition of the bifunctor TorR, where R is a
fixed ring. Let M be a left R-module and N be a right R-module. Given a projective
resolution P of the right R-module N :

P : · · · Pn
dn−1

Pn−1 · · · P1
d0

P0
ε

N 0

we associate the deleted complex:

PN : · · · Pn
dn−1

Pn−1 · · · P1
d0

P0 0

obtained by suppressing the module N . Note that, we have not lost any information
in the complex PN , as N = Coker (d0) by exactness of complex P . Then, applying
the functor − ⊗R M , we form a complex of Z-modules denoted by PN ⊗R M :

· · · Pn ⊗R M
dn−1

Pn−1 ⊗R M · · · P1 ⊗R M
d0

P0 ⊗R M 0

where dn−1 denotes the map dn−1 ⊗ IdM .
Wedefined theZ-moduleTorR(M, N ) as the homologyof the complexPN ⊗R M :

TorR
n (N , M) = Hn(PN ⊗R M) = Ker dn−1/Im dn.

In this way, we define a bifunctor TorR with values in the category of Z-modules.
Following the definitions, the functor TorR

0 (N ,−) is naturally equivalent to N ⊗R

− and the functor TorR
n (−, M) is naturally equivalent to − ⊗R M . Indeed, we have

TorR
0 (N , M) = Coker (d0). Furthermore, the functor N ⊗R − is right exact, hence

Coker (d0) = P0 ⊗R M/Im (d0) = P0 ⊗R M/ ker(ε ⊗ IdM) = N ⊗R M.

This proves that
TorR

0 (N , M) = N ⊗R M.

4.1.2 Contracting homotopy. Recall that a method to prove that a complex

· · · Mn+1
dn

Mn
dn−1

Mn−1 · · · M1
d0

M0
ε

N 0

is acyclic is to construct a contracting homotopy, that is, a sequence of morphisms
of abelian groups
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(· · · ) Mn+1 Mn
in+1

Mn−1
in

(· · · ) M1 M0
i1

N
i0

such that

ει0 = IdN , d0ι1 + ι0ε = IdM0 , dnιn+1 + ιndn−1 :=: IdMn ,

for every n � 1.

4.1.3 Homology of an algebra. Let A be an associative algebra over a field K. For
n � 0, the n-th homology space of the algebra A with coefficient in a left A-module
M is defined by

Hn(A, M) = TorA
n (K, M).

In practice, to compute thenth homology spacesHn(A, K), for alln � 0,weconstruct
a free resolution of K, seen as a trivial right-A-module:

F : · · · Fn
dn−1

Fn−1 · · · F1
d0

F0
ε

K 0

and we compute the homology of the complex FK ⊗A K.

4.1.4 Minimal complex. A complex of free right A-modules

· · · −→ Fn+1
dn

Fn
dn−1

Fn−1 −→ · · ·

is minimal if all induced maps dn = dn ⊗ IdK : Fn+1 ⊗A K −→ Fn ⊗A K are zero.
A resolution isminimal if the associated complex isminimal.Note that aminimal free
resolution is one in which each free module has the minimal number of generators
as illustrated in the following example.

4.2 Anick’s Chains

4.2.1 Anick’s chains, [2]. Let � be a reduced left-monomial linear 2-polygraph.
TheAnick n-chainsof the linear 2-polygraph� and their tails are definedby induction
as follows:

– The unique (−1)-chain is the empty monomial, denoted by 1, it is its own tail.
– The 0-chains are the 1-cells in �1, and the tail of 0-chain x in �1 is x itself.
– For n � 1, suppose that the (n − 1)-chains and their tails constructed. An n-chain
is a monomial u in �∗

1 of the form

u = vt
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where the monomials v and t satisfy the following conditions:

(i) v is (n − 1)-chain,
(ii) t is a reduced monomial with respect to �, called the tail of u,
(iii) if r is the tail of v, then Occs1(�)(r t) = 1, and
(iv) the unique reduction on r t is rightmost, that is, given by a 2-cell σ in �

reducing the ending of the monomial r t :

u
v

r

t

σ

We will denote by �n(�) the set of n-chains of the linear 2-polygraph �.

4.2.2 Anick’s chains and overlapping. The linear 2-polygraph � being reduced,
we have the following description of Anick’s chains. A 1-chain u is necessarily in
s1(�). Indeed, a 1-chain is a non-reduced monomial u written as u = xt , where x is
a 1-cell in �1 and t is a monomial reduced with respect to �:

u
x t1

and such that there is only one 2-cell of � that can be applied on the monomial u.
A 2-chains u is the source of a critical branching. Indeed, u = xt1t2, where xt1 is

the source of a 2-cell σ in �2 and there is a rightmost reduction τ reducing t1t2 and
thus overlapping σ:

x t1 t2

σ
τ

Moreover, u is not the source of a critical triple branching, as we have Occs1(�)

(u) = 2. In this way, there is a 1-1 correspondence between �2(�) and the set of
critical branchings of the 2-polygraph �.

For n � 3, an n-chain u corresponds to an n-fold overlapping compiled by
(n − 1) chained critical branchings. Note that it may possible that Occs1(�)(u) > n,
see Example 4.2.5.
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4.2.3 Proposition [2]. Suppose n � 1. If u = xi1 . . . xit is an n-chain, then there
is a unique s � t such that xi1 . . . xis is an (n − 1)-chain. Moreover, xis+1 . . . xit is
reduced.

Indeed, suppose that there is two (n − 1)-chains xi1 . . . xis and xi1 . . . xis′ which
factorize u. By uniqueness of the reduction on the tail, condition (iii) in 4.2.1, nec-
essarily we have s = s ′.

4.2.4 Notation. If u is an n-chain with (n − 1)-chain v and tail t , we will denote
u = v|t . An n-chain will be denoted by x |t1|t2| . . . |tn .
4.2.5 Example, [2]. Let � be a reduced left-monomial linear 2-polygraph with
�1 = {x} and s1(�) = {x3}. The 1-cell x is the unique 0-chain. The monomial
x3 = x |x2 is the unique 1-chain, xx is not a 1-chain because Occ�2(x2) = 0. The
monomial x4 = x3|x is the unique 2-chain. Note that x5 = x3x2 is not a 2-chain
because Occ�2(x2x2) = 2 : on the monomial x5, there are three possible reductions.
Here, x5 links three obstructions, with the first one intersecting with the last; hence,
it forms a critical triple branching:

x x x x x

The monomial x6 = x4|x2 is the unique 3-chain, note that x5 = x4x is not a 3-chain
because Occ�2(xx) = 0. Note that there are 4-obstructions on the 3-chain x6:

x x x x x x

Thus, we have

�0(�) = �1, �1(�) = s1(�), �2(�) = {x4}, �3(�) = {x6}.
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More generally, we show that for any integer n � 0, we have

�2n−1(�) = {x3n}, �2n(�) = {x3n+1}.

4.2.6 Example, [2]. Suppose that �1 = {x, y} and s1(�) = {x2yxy, xyxy2}. Then
we have

�0(�) = {x, y}, �1(�) = {x |xyxy, x |yxy2}, �2(�) = {x |xyxy|y, x |xyxy|xy2},

and �n(�) is empty for n � 3.

4.2.7 Exercise, [1]. Let � be a linear 2-polygraph such that �1 = {x, y, z}. Deter-
mine Anick’s chains in the following situations:

(1) s1(�) = {xyzx, zxy},
(2) s1(�) = {xyzx, xxy}. In this case, show that the number of n-chains equals the

(n + 2)nd Fibonacci number when n � 1.

4.3 Anick’s Resolution

Let � be a convergent reduced left-monomial linear 2-polygraph, compatible with a
monomial order ≺ on ��

1. Let denote by A the algebra presented by �. We define a
section ι : A −→ ��

1 of the canonical projection π : ��
1 −→ A, sending every 1-cell

f of A to the unique normal form f̂ of any representative 1-cell of f in ��
1, as in

3.2.3. In the construction of the following resolution, the convergence hypothesis is
used to guarantee the unicity of this normal form.

4.3.1 Anick’s resolution. Let A[�n(�)] = K[�n(�)] ⊗K A be the free right A-
module over the set of n-chains �n(�). We identify A[�0(�)] to A[�1] and
A[�−1(�)] to A. Anick constructs in [2] a free resolution of right A-modules, which
we will denote by A(�), and defined by

· · · −→ A[�n(�)] dn
A[�n−1(�)] · · · −→ A[�1(�)] d1

A[�1]
d0

A
ε

K −→ 0

where the differentials dn are constructed by induction on n together with the con-
tracting homotopy

ιn : Ker dn−1 −→ A[�n(�)].

The applications dn are morphisms of right A-module and the applications ιn are
linear maps.
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4.3.2 The applications dn and ιn are constructed byNoetherian inductionwith respect
to the monomial order ≺. From the monomial order ≺ on ��

1, we define a partial
order ≺�n on the set of elements u ⊗ t such that u ∈ �n(�) and t ∈ �∗

1 by setting

u ⊗ t ≺�n u′ ⊗ t ′ if and only if ut̂ ≺ u ′̂t ′.

This order is total on the set of n-chains. Indeed, by Proposition 4.2.3, if ut = u′t ′,
then u = u′ and then t = t ′.

Given a linear combination h = ∑l
i=1 λi ui ⊗ ti in A[�n(�)], the leading term

of h with respect to ≺�n is the term uk ⊗ tk such that ui ⊗ ti ≺�n uk ⊗ tk for any
i ∈ {1, . . . , l} \ {k}.

4.3.3 For the first steps of the resolution

A[�1]
d0

A
ι0

ε
K

ι−1

0

we set ι−1 = η : K ↪→ A the embedding of K in A and we define the augmentation
ε : A → K by ε(x) = 0, for all x ∈ �1. Hence A = K ⊕ Ker ε and we have ει−1 =
IdK. Then we set

d0(x ⊗ 1) = 1 ⊗ x,

for all x in �1. For a monomial u in A such that the normal form with respect to �

is written û = x1x2 . . . xk in ��
1, we define

ι0(1 ⊗ u) = x1 ⊗ x2 . . . xk . (9)

Then we extend ι0 to any element of A by linearity. The map ι0 is well defined
by the uniqueness of the normal form due to the convergence of the linear
2-polygraph �.

The exactness, Im d0 = Ker ε, in A is a consequence of the two equalities:

εd0(x ⊗ 1) = 0 and d0ι0 = idKer (ε).

4.3.4 For n � 0, we define the pair (dn, ιn):

A[�n(�)]
dn

A[�n−1(�)]
ιn

dn−1
A[�n−2(�)]

ιn−1

by induction on n. We suppose that the maps dn−1 and ιn−1 : Ker dn−2 −→
A[�n−1(�)], constructed such that the following equalities

dn−2dn−1 = 0 and dn−1ιn−1 = IdKer dn−2
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hold. We define inductively dn on an n-chain u = v|t with tail t by

dn(v|t ⊗ 1) = v ⊗ t − ιn−1dn−1(v ⊗ t). (10)

In the right-hand side of (10), the term v ⊗ t will be the leading term with respect to
≺�n−1 .

4.3.5 Let us define recursively the map

ιn : Ker dn−1 −→ A[�n(�)].

Let h ∈ Ker dn−1 ⊂ A[�n−1(�)]. Denote by un−1 ⊗ t the leading term of h with
respect to ≺�n−1 , that is

h = λun−1 ⊗ t + lower terms,

where λ ∈ K \ {0}. By Proposition 4.2.3, the (n − 1)-chain un−1 can be uniquely
decomposed in

un−1 = un−2|t ′,

where un−2 is an (n − 2)-chain and t ′ is the tail of un−1. By induction, we have

dn−1(un−1 ⊗ 1) = un−2 ⊗ t ′ + lower terms.

As dn−1 is a morphism of right A-modules, we have

dn−1(h) = λdn−1(un−1 ⊗ t) + dn−1(lower terms)

= λun−2 ⊗ t ′t + lower terms.

Suppose that t ′t is reduced, then un−2 ⊗ t ′t remains the leading term of dn−1(h) and
h cannot be in Ker dn−1 thus contradicting the hypothesis. It follows that t ′t can be
reduced, we set

t ′t = v′wv,

where w is the 1-source of the leftmost reduction σ that can be applied on the
monomial t ′t :

un−1

un−2 t ′

v′ w

w2 w1

t

v

σ
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Then un−2v
′w = un−2|t ′|w1 forms an n-chain, it follows that un−2v

′w ⊗ v ∈
A[�n(�)]. We set

ιn(h) = ιn(λun−1 ⊗ t + lower terms)

= λun−2v
′w ⊗ v + ιn(h − λdn(un−2v

′w ⊗ v)). (11)

This is well defined, because h − λdn(un−2v
′w ⊗ v) ≺ h by construction. Indeed

dn(un−2v
′w ⊗ v) = dn(un−2v

′w1w2 ⊗ v) = un−2v
′w2 ⊗ w1v + lower terms

= un−1 ⊗ t + lower terms.

Moreover, dn−1(h − λdn(un−2v
′w ⊗ v)) = 0.

From this construction, we deduce the following result.

4.3.6 Theorem [2, Thm 1.4]. Let A be an algebra presented by a convergent
reduced left-monomial linear 2-polygraph �, compatible with a given monomial
order ≺. The complex of right A-modules A(�) defined by

· · · −→ A[�n(�)] dn
A[�n−1(�)] · · · −→ A[�1(�)] d1

A[�1]
d0

A
ε

K −→ 0

where, for any n � 0, the morphism dn is defined on a n-chain v|t by

dn(v|t ⊗ 1) = v ⊗ t + h,

where lt(h) ≺ v|t ⊗ 1, if h �= 0, is a resolution of the trivial right A-module K.

4.3.7 Example. Let consider the algebra A presented by the linear 2-polygraph �

of Example 2.1.10 and denote by α0 the 2-cell β. It appears one critical branching

xyx

x3

xα0

α0x

y2x

yx2 yα0

We complete the linear 2-polygraph � with the 2-cells

αn : xyn x yn+1x,

for all n > 0. We note that, for any integers n, m � 0, we have a critical branching
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xyn+m+1x αn+m+1

xyn xym x

xynαm

αn ym x

yn+m+2x

yn+1xym x yn+1αm

αn,m

The linear 2-polygraph �′, whose set of 1-cell is �1 and �′
2 = {αn | n � 0} is con-

vergent, compatible with the monomial order ≺ and Tietze equivalent to �. Equiv-
alently, the set {xyn x − yn+1x | n � 0} forms a Gröbner basis for the ideal I (�).
Anick’s 1-chains are of the form x |yn x with n � 0 and Anick’s 2-chains are of the
form x |yn x |ym x with n, m � 0. More generally, for any k � 2, we have

�k(�
′) = {x |yn1 x |yn2 x | . . . |ynk x for n1, . . . , nk � 0},

Let us compute the boundary maps d0, d1, d2 and d3. We have d0(x ⊗ 1) =
x , d0(y ⊗ 1) = y and

d1(x |yn x ⊗ 1) = x ⊗ yn x − ι0d0(x ⊗ yn x),

= x ⊗ yn x − ι0(1 ⊗ xyn x),

= x ⊗ yn x − ι0(1 ⊗ yn+1x),

= x ⊗ yn x − y ⊗ yn x .

The last equality is consequence of the definition of the map ι0 in (9).

d2(x |yn x |ym x ⊗ 1) = x |yn x ⊗ ym x − ι1d1(x |yn x ⊗ ym x),

= x |yn x ⊗ ym x − ι1(x ⊗ yn xym x − y ⊗ yn xym x),

= x |yn x ⊗ ym x − ι1(x ⊗ yn+m+1x − y ⊗ yn+m+1x),

By (11), we have

ι1(x ⊗ yn+m+1x − y ⊗ yn+m+1x) =x |yn+m+1x ⊗ 1 − ι1
(
x ⊗ yn+m+1x

− y ⊗ yn+m+1x − x ⊗ yn+m+1x

+ y ⊗ yn+m+1x
)
.

Hence
d2(x |yn x |ym x ⊗ 1) = x |yn x ⊗ ym x − x |yn+m+1x ⊗ 1.

Finally, we show that

d3(x |yn x |ym x |yk x ⊗ 1) =x |yn x |ym x ⊗ yk x − x |yn x |ym+k+1x ⊗ 1

+ x |yn+m+1x |yk x ⊗ 1.
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4.3.8 Example. Let consider the algebra A given in 4.3.7, but with the presenta-
tion by the linear 2-polygraph �′ of Example 2.1.10, compatible with the deglex
order induced by the alphabetic order x ≺ y. This polygraph does not have critical
branching; thus, the sets of Anick’s n-chains are empty for n � 2. It follows that the
associated Anick’s resolution is

· · · −→ 0 −→ A[y|x] d1 A[x, y] d0 A ε
K −→ 0

with d0(x ⊗ 1) = x , d0(y ⊗ 1) = y and d1(y|x ⊗ 1) = y ⊗ x − x ⊗ x .

4.3.9 Example. Consider the algebra A presented by the linear 2-polygraph � of
Example 2.1.9. With the Gröbner basis computed in 3.6.7:

z3
α f

xyz − x3 − y3 zy3
β

zxyz − zx3 + y3z + x3z − xyz2

Anick’s chains are of the form zn and zn y3, for n � 0, so that Anick’s resolution for
the algebra A with respect to this Gröbner basis is infinite.

4.3.10 Exercise, ([2,Sect. 3]). ComputeAnick’s resolution for the algebra presented
by the linear 2-polygraph 〈 ∗ | x, y | xyxyx ⇒ xyx 〉.

4.4 Anick’s Resolution for a Monomial Algebra

4.4.1 Anick’s chains for a monomial algebra. We construct Anick’s resolution in
the case of a monomial algebra A. Recall from 2.1.20, that such an algebra can be
presented by a monomial linear 2-polygraph�, that is, left-monomial and t1(α) = 0
for all α in �2. Note that such a presentation is always convergent. Suppose that the
polygraph � is reduced. The sets of chains for � are �0(�) = �1, �1(�) = s1(�)

and for any n � 2, �n(�) is the set of n-overlapping x |t1| . . . |tn−1|tn of branchings
of � with x, t1, . . . , tn in �1 and xt1, ti ti+1 in s1(�) for any 1 � i � n − 1. We have

x̂ t1 = 0 and t̂i−1ti = 0, for all 1 � i � n. (12)

Consider the boundary map

dn : A[�n(�)] −→ A[�n−1(�)]

defined by

dn(x |t1| . . . |tn−1|tn ⊗ 1) = x |t1| . . . |tn−1 ⊗ tn − ιn−1dn−1(x |t1| . . . |tn−1 ⊗ tn).

By definition of dn−1, we have
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dn−1(x |t1| . . . |tn−1 ⊗ tn) = x |t1| . . . |tn−2 ⊗ tn−1tn − ιn−2dn−2(x |t1| . . . |tn−2 ⊗ tn−1tn)

Using relation in (12), we have dn−1(x |t1| . . . |tn−1 ⊗ tn) = 0, hence

dn(x |t1| . . . |tn−1|tn ⊗ 1) = x |t1| . . . |tn−1 ⊗ tn.

As a consequence, the map dn ⊗A 1K is zero, for all n � 0. This proves that Anick’s
resolution of a monomial algebras is minimal.

4.4.2 Proposition. Let � be a monomial linear 2-polygraph, and A be the monomial
algebra presented by �. The following statements hold:

(i) Anick’s resolution A(�) is a minimal resolution.
(ii) There is an isomorphism TorA

n (K, K) � K�n−1(�), for all n � 0.

4.5 Computing Homology with Anick’s Resolution

Given an algebra A presented by a convergent reduced left-monomial linear
2-polygraph �, compatible with a monomial order, Anick’s resolutionA(�) gives a
method to compute the homology groups of A with coefficient in a A-module M . In
particular, Anick’s resolution can be used to calculate Poincaré series. In this section,
we give several examples of computations of homology groupswith coefficients inK.

4.5.1 Computing Homology. From the resolution A(�), we compute the complex
A(�) ⊗A K given by

· · · −→ K[�n(�)] dn
K[�n−1(�)] · · · −→ K[�1(�)] d1

K[�1]
d0

K −→ 0

where K[�n(�)] denotes the free vector space on �n(�) and dn denotes the map
dn ⊗ IdK. These maps satisfy dndn+1 = 0, for all n � 0, and we have

H0(A, K) = K, and Hn(A, K) = Ker dn−1/Im dn.

As a first application, we have the following finiteness properties.

4.5.2 Proposition. Let A be an algebra presented by a finite convergent left-
monomial linear 2-polygraph. The following statements hold:

(i) A is of homological type right-FP∞, that is, there exists an infinite length free
finitely generated resolution of the trivial right A-module K.

(ii) For any n � 0, the vector space Hn(A, K) is finitely generated.
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(iii) [2, Lemma 3.1] The algebra A has a Poincaré series

PA(t) =
∞∑

n=0

dimK(Hn(A, K))tn, (13)

with exponential or slower growth, that is, there are constants c1, c2 > 0, such
that

0 � dimK(Hn(A, K)) � c2(c1)
n.

Note that the finiteness conditions (i) and (ii) were obtained by Kobayashi for
monoids. A monoid M is of homological type right-FP∞ over K if the monoid
algebra KM is of homological type right-FP∞. In [45], by constructing a resolution
similar to the Anick resolution, Kobayashi shows that a monoid M having a presen-
tation by a finite convergent rewriting system is of homological type FP∞. Similar
constructions of resolutions of monoids presented by convergent rewriting systems
were also obtained by Brown [17] and by Groves [32]. The different constructions
are based on distinct ways to describe the n-fold critical branchings of a convergent
rewriting system.

4.5.3 Exercise. Prove the conditions (i) and (ii) in Proposition 4.5.2.

4.5.4 Low-dimensional homology. Let us explicit the first terms of the series (13).
In the first dimensions, we have the following complex:

K[�2(�)] d2
K[�1(�)] d1

K[�1] d0
K −→ 0

The map d0 is zero, hence

H1(A, K) = K[�1]/Im d1.

A 1-cell x of �1 in Im d1 comes from a relation with source or target x . It follows
that x is a redundant generator in the presentation. Indeed, a term x ⊗ 1, with x in
�1 appears in Im d1 if and only if x is the source or the target of a 2-cell in �2. Let
α : x ⇒ y1 . . . yk be a 2-cell in �2, whereby hypothesis y1 . . . yk is reduced. Thus,
we have

d1(x |1 ⊗ 1) = x ⊗ 1 − y1 ⊗ y2 . . . yk .

Hence d1(x) = x . Suppose now that x1 . . . xk
α y is a 2-cell in �2. We have

d1(x1|x2 . . . xk ⊗ 1) = x1 ⊗ x2 . . . xk − y ⊗ 1.

Hence d1(x1 . . . xk) = −y. Thus, we have d1 = 0 if and only if the number of gen-
erators is minimal. In this way, dimK H1(A, K) is equal to the minimal number of
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generators for a presentation of the algebra A. For analogous reasons, we show that
dimK H2(A, K) is the minimal required number of the defining relations, see [66,
Sect. 3.9].

4.5.5 Example. Consider the algebra A from Example 4.3.8. Using Anick’s reso-
lution computed in 4.3.8, we deduce the complex

· · · −→ 0 −→ K[y|x] d1
K[x, y] d0

K −→ 0

whose boundary maps d0 and d1 are zero. We deduce

Hn(A, K) =

⎧
⎪⎨

⎪⎩

K if n = 0, 2,

K
2 if n = 1,

0 if n � 3.

4.5.6 Exercise [2, Thm 3.2]. Let A be an algebra admitting a presentation by a
left-monomial reduced linear 2-polygraph compatible with a monomial order and
having no critical branching. Show that Hn(A, K) = 0, for any n � 3. A presentation
without critical branching is called combinatorially free in [2].

4.5.7 Exercise. Show that the Poincaré series of the algebra A presented by the
linear 2-polygraph 〈 ∗ | x, y | x2 ⇒ 0 〉 is

PA(t) = 1 + 2t +
∞∑

k=2

t k .

4.5.8 Exercise. Let B+
3 be the monoid of positive braids on three strands given by

the following Artin presentation:

〈 s, t | sts ⇒ tst 〉.

Compute Anick’s resolution and the Poincaré series of the monoid B+
3 .

4.6 Minimality of Anick’s Resolution

4.6.1 Example. Let A be the algebra presented by the linear 2-polygraph 〈 ∗ | x, y |
x ⇒ y 〉, which is compatible with the deglex order induced by y ≺ x . The Anick
resolution is

0 −→ A[x |1] d1 A[x, y] d0 A ε
K −→ 0
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with
d0(x ⊗ 1) = x, d0(y ⊗ 1) = y, d1(x |1 ⊗ 1) = x ⊗ 1 − 1 ⊗ y.

This resolution is not minimal because d1 �= 0. A minimal resolution for the algebra
A can be constructed from the polygraph 〈 ∗ | x | ∅ 〉 with no 2-cell.

4.6.2 Example. Let consider the algebra A presented by the linear 2-polygraph

� = 〈 ∗ | x, y, z, r, s | xy α s, yz
β

r 〉

compatiblewith the deglex order induced by the alphabetic order s ≺ r ≺ z ≺ y ≺ x .
There is a critical branching:

xr

γxyz

xβ

αz sz

which is confluent by adding the rule xr
γ

sz. The linear 2-polygraph �′ =
〈�1 | α,β, γ 〉 is compatible with the deglex order considered above, convergent
and Tietze equivalent to �. The induced the Anick resolution A(�′) is

· · · −→ 0 −→ A[xy|z] d2
A[x |y, x |r, y|z] d1

A[x, y, z, r, s] d0
A

ε
K −→ 0

with

d1(x |y ⊗ 1) = x ⊗ y − s ⊗ 1, d1(x |r ⊗ 1) = x ⊗ r − s ⊗ z,

d1(y|z ⊗ 1) = y ⊗ z − r ⊗ 1,

and d2(x |y|z ⊗ 1) = xy ⊗ z − xr ⊗ 1. This resolution is not minimal, because the
maps d1 and d2 are non zero. Note that

Hn(A, K) =

⎧
⎪⎨

⎪⎩

K if n = 0,

K
3 if n = 1,

0 if n � 2.

and a minimal resolution for the algebra A can be constructed from the linear
2-polygraph 〈 ∗ | x, y, z | ∅ 〉 which produces the following resolution:

· · · −→ 0 −→ A[x, y, z] d0 A ε
K −→ 0
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4.6.3 Exercise. Consider the linear 2-polygraph

� = 〈 ∗ | x, y, z, r, s | xy α ss, yz
β

sr 〉.

(1) Complete the polygraph � into a convergent polygraph �′.
(2) Show that the Anick resolution of �′ is not minimal.
(3) Compute the homology of the algebra A presented by �.
(4) Compute a minimal Anick’s resolution of the algebra A.

4.6.4 Exercise. Let consider the algebra presented by

〈 ∗ | x, y, z, r, s | xy = ss, yz = rr 〉.

Show that there is no orientation of rules of this presentation giving a convergent
linear 2-polygraph, and thus, there is no minimal Anick’s resolution for this algebra.

4.6.5 Proposition. Let A be an algebra and let � be a left-monomial reduced con-
vergent linear 2-polygraph compatible with a monomial order that presents A. If the
Anick resolution A(�) is minimal, then, for any n � 0, there is an isomorphism of
spaces

Hn(A, K) � K[�n−1(�)].

4.6.6 Exercise. Prove Proposition 4.6.5.

4.6.7 When Anick’s resolution is minimal. We have seen in Proposition 4.4.2 that
the Anick resolutionA(�) is minimal when the presentation is monomial. Following
exercise gives an other situation for which the Anick resolution is minimal.

4.6.8 Exercise. Let � be a left-monomial reduced linear 2-polygraph compatible
with amonomial order. Suppose that� is convergent and quadratic, that is, any 2-cell
in �2 is of the form xi1 xi2 ⇒ yi1 yi2 with xi1 , xi2 , yi1 , yi2 in �1. Show that the Anick
resolution A(�) is minimal.

4.6.9 Exercise. A linear 2-polygraph is cubical if its 2-cells are of the form xi1 xi2 xi3
⇒ yi1 yi2 yi3 . Is the result of Exercise 4.6.8 can be extended to cubical convergent
linear 2-polygraphs?

4.6.10 Exercises. Compute homology spaces of the algebras presented by the fol-
lowing linear 2-polygraphs:

(1) 〈 ∗ | x, y | xy ⇒ yx 〉. 2) 〈 ∗ | x, y | x2 ⇒ 0 〉. (3) 〈 ∗ | x, y | x2 ⇒ y2 〉.
(4) 〈 ∗ | x, y | x2 ⇒ xy 〉. (5) 〈 ∗ | x, y | x2 ⇒ xy − y2 〉. (6) 〈 ∗ | x, y | xyx ⇒ yxy 〉.
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5 Higher Dimensional Linear Rewriting

In this section, we recall the notion of coherent presentation for an algebra as a
presentation of the algebra extended by a family of generating syzygies. We explain
how to generate syzygies when the presentation is convergent. Finally, we recall from
[33] the notion of polygraphic resolution for an algebra as an acyclic polygraphic
extension of a presentation of the algebra.

5.1 Coherent Presentations of Algebras

5.1.1 Linear 3-polygraph. Let � be a linear 2-polygraph. A cellular extension of
the free 2-algebroid ��

2 is a set �3 equipped with maps

��
2 �3

t2

s2

such that, for every F in �3, the pair (s2(F), t2(F)) is a 2-sphere in ��
2, that is,

s1s2(F) = s1t2(F) and t1s2(F) = t1t2(F) hold in ��
2. The elements of �3 are the

3-cells of the cellular extension and graphically represented by

f

s2(F)

t2(F)

F g

A linear 3-polygraph is a data (�0,�1,�2,�3), where (�0,�1,�2) is a linear
2-polygraph and �3 is a cellular extension of the free 2-algebroid ��

2:

�0 ��
1

t0

s0
��

2
t1

s1

�1
t0

s0 ι1

�2
t1

s1 ι2

�3
t2

s2

5.1.2 Three-dimensional algebras. We define a 3-algebra as an internal 2-category
in the category Alg:

A1 A2
t1

s1
A3

t2

s2
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In particular, the algebras A1 and A2 with composition A2 ×A1 A2
�1 A2 form a

2-algebra. The 3-cells can be composed in two different ways:

A3 ×A1 A3
�1 A3 A3 ×A2 A3

�2 A3

by �1, along their 1-dimensional boundary:

∗

f

g

h

∗
a a′

b b′

F

G

�1�−→ ∗

f

h

∗a �1 b a′ �1 b′
F �1 G

by �2, along their 2-dimensional boundary:

∗

f

g

∗a b c
F G �2�−→ ∗

f

g

∗a c
F �2 G

The source and target maps s1, s2 and t1, t2 being morphisms of algebras, the product
of 3-cells F and G satisfies

∗

f

f ′

∗a a′F

g

g′

∗b b′G �−→ ∗

f g

f ′g′

∗ab a′b′FG

These compositions and the product satisfy remarkable properties similar to those
given in 2.1.14 for 2-algebras.

5.1.3 Free 3-algebras.The free 3-algebra over a linear 3-polygraph � is constructed
similarly to the free 2-algebra given in 2.1.16. It is the 3-algebra, denoted by ��

3,
whose underlying 2-algebra is the free 2-algebra��

2, and its 3-cells are all the formal
1-composition,
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2-composition and product of 3-cells of �3, of identities of 2-cells, up to asso-
ciativity, identity, exchange and inverse relations, see [33, 2.1.3] for more details.

5.1.4 Coherent presentations of algebras. A coherent presentation of an algebra
A is a linear 3-polygraph � such that

1. the linear 2-polygraph (�0,�1,�2) is a presentation of A,
2. �3 is a homotopy basis of the free 2-algebra ��

2, that is, a cellular extension

��
2 �3

t2

s2

such that for every 2-sphere (a, b) of the free 2-algebra ��
2, there exists a 3-cell

A in the free 3-algebra ��
3 such that s2(A) = a and t2(A) = b.

5.1.5 Squier’s completion. Let � be a left-monomial linear 2-polygraph. Suppose
that all critical branchings of � are confluent. For every critical branching (a, b) in
�, we choose two positive 2-cells a′ and b′ making the branching confluent:

g a′

F(a,b)f

a

b

f ′

h b′

(14)

For any such a confluent branching, we consider a 3-cell F(a,b) : a �1 a′ � b �1 b′.
The set of such 3-cells

�3 = { F(a,b) | (a, b) is a critical branching }
forms a cellular extension of the free 2-algebra ��

2. The linear 3-polygraph
(�0,�1,�2,�3) is a Squier’s completion of �. When the polygraph is conflu-
ent, there exists such a Squier’s completion. However, the cellular extension �3 is
not unique in general. Indeed, the 3-cells can be directed in the reverse way and
a branching (a, b) can have several possible positive 2-cells a′ and b′ making the
branching confluent.

The following result is a formulation of Squier’s theorem, [59], in the setting of
linear 2-polygraphs.

5.1.6 Theorem (Squier’s Theorem [33, Thm. 4.3.2]). Let A be an algebra and
let � be a convergent left-monomial presentation of A. Any Squier’s completion
of � is a coherent presentation of A.

5.1.7 Linear oriented syzygies. Let � be a presentation of an algebra A. Any non-
trivial 2-sphere (a, b) in the free 2-algebra ��

2 is called a linear oriented 3-syzygy
of the presentation �. If � is extended into a coherent presentation (�,�3) of the
algebraA, the quotient 2-algebra��

2/�3 is aspherical, that is, for any 2-sphere (a, b)
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in ��
2/�3, we have a = b. In other words, the cellular extension �3 forms a gener-

ating set of linear 3-syzygies of the presentation �. Theorem 5.1.6 says that when
the presentation � is convergent, the 3-cells defined by confluence diagrams of the
critical branchings, as in (14), form a family of generator for 3-syzygies.

5.1.8 Exercise. Let {F1, . . . , Fk} be a generating set for linear 3-syzygies of a linear
2-polygraph�. Prove that {F−

1 , . . . , F−
k } is also a generating set for linear 3-syzygies

of �.

5.1.9 Example. The linear 2-polygraph 〈 ∗ | x | x2 α 0 〉 has one critical branch-
ing

x3

αx

xα

F 0

which is confluent. The polygraph being convergent the 3-cell F : αx � xα gener-
ates all linear 3-syzygies of this presentation.

5.1.10 Example. Consider the algebra A presented by the linear 2-polygraph �

given in Example 2.1.9. It does not have critical branching; hence, any Squier’s
completion of � is empty. As a consequence, � can be extended into a coherent
presentation with an empty homotopy basis. That is, there is no 3-syzygy for this
presentation.

The linear 2-polygraph 〈 ∗ | x, y, z | α f ,β 〉 considered in Example 3.6.7 is Tietze
equivalent to �, convergent and compatible with a monomial order. It has three
critical branchings, as shown in Example 3.6.7. It can be extended into a coherent
presentation of A with three generating 3-syzygies.

5.1.11 Exercise. Give an explicit description of the 3-cells of a coherent presentation
on the linear 2-polygraph �′ of Example 5.1.10.

5.1.12 Exercise. Compute a coherent presentation for the algebras presented by the
following linear 2-polygraphs

(1) 〈 ∗ | x, y | xyx ⇒ y2 〉.
(2) 〈 ∗ | x, y, z | yz α − x2, zy

β − λ−1x2 〉, where λ ∈ K \ {0, 1},
see [53, 4.3].

5.1.13 Exercise. Compute aminimal coherent presentation for the algebra presented
by the linear 2-polygraph 〈 ∗ | x | x3 = 0 〉.
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5.2 Polygraphic Resolutions of Algebras

In this subsection, we summarize the notion of polygraphic resolution for algebras
as introduced in [33]. Such a resolution can be computed for an algebra given by a
convergent linear 2-polygraph. The first three steps of the resolution are generated
by the cells of the 2-polygraph. For n � 3, the n-cells are generated by confluences
diagrams induced by n-fold branchings.

5.2.1 Higher dimensional algebras. Let n be a nonzero natural number. An n-
algebra A is an internal (n − 1)-category in the category Alg:

A1 A2
t1

s1
A3

t2

s2
. . . An−1 An

tn−1

sn−1

The elements of the algebra Ak , for 1 � k � n, are the k-cells of the n-algebra A.
A cellular extension of A is a set � equipped with maps

An �
sn

tn

such that, for anyγ in�, the pair (sn(γ), tn(γ)) is ann-sphere ofA, that is, sn−1sn(γ) =
sn−1tn(γ) and tn−1sn(γ) = tn−1tn(γ).

In these notes, we will do not develop the construction of the free k-algebra A[�]
on a pair of a (k − 1)-algebra A and a cellular extension � of it, for k � 3. The
construction is the same as in the case of 2-algebras given in 2.1.5. For more details,
we refer the reader to [33, 2.1.3]. It has the (k − 1)-algebra A as underlying (k − 1)-
algebra and its k-cells are all formal compositions by �i for 1 � i � k and product
of k cells in � and identities of (k − 1)-cells, up to associativity, identity, exchange
and inverse relation.

5.2.2 Linear polygraphs.A linear n-polygraph is a sequence� = (�0,�1, . . . , �n)

made of

(i) a 1-polygraph (�0,�1),
(ii) for any k � 2, a cellular extension �k of the free (k − 1)-algebra

��
k−1 = ��

1[�2] · · · [�k−1],

The elements of �k are called the k-cells of �.

5.2.3 . A linear n-polygraph can be defined explicitly as a diagram
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�0 ��
1

t0

s0
��

2
t1

s1
(· · · )

t2

s2
��

n−1
tn−2

sn−2

�1
t0

s0 ι1

�2
t1

s1 ι2

(· · · )t2

s2

�n−1
tn−2

sn−2 ιn−1

�n
tn−1

sn−1

where the maps sk, t k : ��
k+1 −→ ��

k are the extensions of the source and target
maps sk and tk , defined by the universal property of the free k-algebra ��

k , and such
that, for any 1 � k � n − 1, the following two conditions hold:

(i) there is a structure of k-algebra on the following k-graph:

�0 ��
1

t0

s0
��

2
t1

s1
(· · · )

t2

s2
��

k
tk−1

sk−1

(ii) �k+1 is a cellular extension of the free k-algebra ��
k .

The free n-algebra over a linear n-polygraph � is the n-algebra ��
n =

��
1[�2] · · · [�n]

5.2.4 Polygraphic resolutions of algebras. A polygraphic resolution of an algebra
A is a linear ∞-polygraph � such that

1. the linear 2-polygraph (�0,�1,�2) is a presentation of A,
2. for every n � 2, �n+1 is a homotopy basis of the free n-algebra ��

n , that is a
cellular extension

��
n �n+1

tn

sn

such that for every n-sphere (a, b) of ��
n , there exists an (n + 1)-cell A in the

free (n + 1)-algebra ��
n+1 such that sn(A) = a and tn(A) = b.

As a consequence of this definition, for every n � 2, the quotient n-algebra
��

n/�n+1 of the free n-algebra ��
n by the congruence generated by the (n + 1)-

cells of �n+1 is aspherical, that is, any of its n-sphere γ is trivial: sn(γ) = tn(γ).
A linear ∞-polygraph satisfying this property for all n is said to be acyclic.

5.2.5 Higher dimensional branchings.Let� be a reduced linear 2-polygraph.An n-
fold branching of� is a family (a1, . . . , an) of positive 2-cells of��

2 with a common
source:

g1

g2

f

a1

a2

an

...

gn
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An n-fold branching (a1, . . . , an) is local when a1, . . . , an are rewriting steps.
A local n-fold branching (a1, . . . , an) is aspherical when there is 1 � i � n − 1 such
that (ai , ai+1) is aspherical, (resp. additive) Peiffer when there is 1 � i � n − 1 such
that (ai , ai+1) is (resp. additive) Peiffer. In all the other cases, it is said overlapping.

A critical n-fold branching of � is an overlapping local n-fold branching of �

with a monomial source and that is minimal for the relation on n-fold branchings
defined by

(a1, . . . , an) � (wa1w
′, . . . , wanw

′)

for any monomials w,w′ in �∗
1. For instance, a 3-fold critical branching can have

two different shapes:

a1

a2

a3
or

a1

a2

a3

5.2.6 Theorem [33, Thm. 6.2.4]. Any convergent linear 2-polygraph � extends
to a Tietze equivalent acyclic linear ∞-polygraph whose n-cells, for n � 3, are
indexed by the critical (n − 1)-fold branchings of �.

5.2.7 Example. Consider the algebra A presented by the linear 2-polygraph given
in Example 2.1.9.We have seen in Example 5.1.10 that any Squier’s completion of�
is empty. In particular, the polygraph � can be extended into a coherent presentation
with empty homotopy bases, and as a consequence, into a polygraphic resolution
with an empty set of k-cell, for k � 3:

�0 ��
1

t0

s0
��

2
t1

s1 {0} {0} · · ·

�1
t0

s0 ι1

�2
t1

s1 ι2

∅t2

s2 ι3

5.2.8 A free bimodules resolution. Let � be a linear ∞-polygraph whose under-
lying 2-polygraph is a presentation of an algebra A. For k � 1, we denote by Ae[�k]
the free A-bimodule on �k , given by the linear combinations of f [α]g, where f and
g are 1-cells in A and α is a k-cell in �k .

The mapping of every 1-cell x in �1 to the element [x] in Ae[�1] is uniquely
extended into a derivation, denoted by [·], from ��

1 with values in the A-bimodule
Ae[�1], sending a 1-cell f in ��

1 on the element [ f ] in Ae[�1], defined by linearity
and by induction on the length of monomials as follows:

[1] = 0, [u + v] = [u] + [v], [uv] = [u]v + u[v], [λu] = λ[u],
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for any monomials u and v in ��
1 and scalar λ in K. We extend the bracket notation

to A-bimodules Ae[�k], for k > 1 as follows. The mapping of every k-cell α of �k

to the element [α] in Ae[�k] is extended to any k-cell a of ��
k by induction on the

size of a. For any (k − 1)-cell u, any k-cells a and b in ��
k and scalar λ, we set

[1u] :=: 0, [a + b] :=: [a] + [b], [ab] :=: [a]b + a[b], [λa] :=: λ[a].

To the linear ∞-polygraph �, we associate a complex of A-bimodules

0 ←− A
μ

Ae[�0] δ0 Ae[�1] ←− · · · ←− Ae[�k] δk Ae[�k+1] ←− · · ·

where the boundary maps are defined as follows. The map μ is defined by
μ( f ⊗ g) = f g, for any 1-cells f and g in A. For any triple f [x]g in Ae[�1],
we define

δ0( f [x]g) = f ⊗ xg − f x ⊗ g.

For k � 1, for any triple f [α]g in Ae[�k+1], we define

δk( f [α]g) = f [sk(α)]g − f [tk(α)]g.

By induction on the length of f , we prove that δ0([ f ]) = 1 ⊗ f − f ⊗ 1, for all
1-cell f in ��

1. We have μδ0 = 0, and for any k-cell α in �k with k � 2, we have

δk−1δk[α] = [sk−1sk(α)] + [tk−1sk(α)] − [sk−1tk(α)] − [tk−1tk(α)].

It follows from the globular relations that δk−1δk = 0. Moreover, we prove that the
acyclicity of the polygraph induces the acyclicity of the complex Ae[�].
5.2.9 Theorem [33, Thm. 7.1.3]. If � is a (finite) polygraphic resolution of an
algebra A, then the complex Ae[�] is a (finite) free resolution of the A-bimodule A.

5.2.10 Example. Consider the algebra A presented by the linear 2-polygraph given
in Example 2.1.9. The resolution of A-bimodules induced by the polygraphic reso-
lution of � given in Example 5.2.7 is

0 ←− A
μ

Ae δ0 Ae[x, y, z] δ1 Ae[γ] ←− 0 ←− · · ·

It follows that this algebra is of cohomological dimension 2. Note that the Anick
resolution for the algebraA computedwith the same presentation is of infinite length.

5.2.11 Exercise. Consider the algebra A presented by the linear 2-polygraph

� = 〈 ∗ | x, y | x2 α0 yx 〉.
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(1) Compute the first four steps of a polygraphic resolution of the algebra A starting
with �.

(2) Compare the resolution ofA-bimodules inducedby this resolutionwith theAnick
resolution A(�) computed in Example 4.3.7.

(3) Compute a polygraphic resolution of the algebra A using the presentation
〈 ∗ | x, y | yx ⇒ x2 〉.

Hint. Here the source and the target of a 4-cell

yn+1xym xyk x

yn+1xymαk

≡
yn+1xym+k+1x yn+1αm+k+1

xyn xym xyk x

αn ym xyk x

xyn xymαk

xynαm yk x

xyn xym+k+1x

αn ym+k+1x

xynαm+k+1−xynαm,k

yn+m+k+3x

xyn+m+1xyk x

xyn+m+1αk

xyn+m+k+2x αn+m+k+2

αn,m+k+1

yn+1xym xyk x
yn+1xymαk

yn+1αm yk x

yn+1xym+k+1x yn+1αm+k+1

−yn+1αm,k

xyn xym xyk x

αn ym xyk x

xynαm yk x

yn+m+2xyk x yn+m+2αk

αn+m+1,k

yn+m+k+3x

xyn+m+1xyk x

xyn+m+1αk

αn+m+1yk x

xyn+m+k+2x αn+m+k+2

αn,m yk x

6 Confluence and Koszulness

In this section, we recall the notion of Koszulness for graded associative algebras.
We show how Anick’s resolution leads to relate this property for an algebra to the
existence of a quadratic Gröbner basis for its ideal of relations. Finally, we show
how polygraphic resolutions can be used to prove this property, allowing to relate
Koszulness with polygraphic convergence.
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6.1 Koszulness of Associative Algebras

6.1.1 Koszulness of quadratic algebras. Recall that a connected graded algebra A
is Koszul if the Tor spaces TorA

n,(i)(K, K) vanish for i �= n, where the grading n
is the homological degree and the grading i corresponds to the internal grading
of the algebra A. Koszul algebras were introduced by Priddy [55]. In particular,
Priddy proved that quadratic algebras having a Poincaré–Birkhoff–Witt basis are
Koszul [55]. The property can be also be stated in terms of existence of a linear
minimal graded free resolution of K seen as a A-module, see [53]. Backelin gave
a characterization of the Koszul property in term of lattice [6, 7], and the Backelin
condition was interpreted in terms of confluence by Berger [9], using reduction
operator theory.

6.1.2 Koszulness of N -homogeneous algebras. Koszulness was generalized by
Berger to the case of N -homogeneous algebras [10, Def. 2.10]. A graded N -
homogeneous algebra A, with N � 2, is left-Koszul if the ground field K considered
as a graded left A-module admits a graded projective resolution of the form

0 ←− K ←− P0 ←− P1 ←− P2 ←− · · ·

such that every Pi is generated (as a graded left A-module) by P (�N (i))
i , where �N :

N −→ N is a map defined by

�N (i) =
{

pN if i = 2p,

pN + 1 if i = 2p + 1.

Similarly, one can define the properties right-Koszul and bi-Koszul by considering
projective resolutions of right and bimodules, respectively. The graduation on the
algebra A induces a graduation on the vector spaces TorAn,(i)(K, K). The spaces
TorAn,(i)(K, K) for a left-Koszul (or right-Koszul) algebra A vanish for i �= �N (n).
This property of the Tor groups is an equivalent definition of Koszul algebras, as
Berger proved in [10, Thm. 2.11]. Finally, the following result shows that the Koszul
property corresponds to a limit case.

6.1.3 Proposition ([11, Prop. 2.1]). Let A be an N-homogeneous algebra. The
graded vector space TorA

n,(i)(K, K) always vanish for i < �N (n), for n � 0.

6.2 Confluence and Koszulness

6.2.1 Koszulness of monomial algebras. Given a monomial linear 2-polygraph �

which is quadratic, that is its 2-cells are of the form xi x j ⇒ 0, with xi , x j in�1. Then
the Anick resolution A(�) is concentrated in the diagonal in the following sense.
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The set of 0-chains is �1 and they are of degree 1. The set of 1-chains is s1(�) and
they are of degree 2. More generally, an n-chains x |t1 . . . |tn−1|tn is of degree n + 1.
As a consequence, we have the following result.

6.2.2 Theorem. A quadratic monomial algebra is Koszul.

More generally, the Anick resolution can be used to prove Koszulness of an
algebra whose set of relations forms a quadratic Gröbner basis. In that case, the
Anick resolution is concentrated in the right bidegree. Hence, we have the following
sufficient condition for Koszulness of quadratic algebras.

6.2.3 Theorem [2, Sect. 3]. An algebra presented by a quadratic Gröbner basis is
Koszul.

Another way to prove this result is that the existence of a quadratic Gröbner basis
implies the existence of a Poincaré–Birkhoff–Witt basis of A [31].

6.2.4 Example. The algebra K[x1, . . . , xk] of commutative polynomials on k vari-
ables can be presented by the following linear 2-polygraph:

� = 〈 ∗ | x1, . . . , xk | xi1 xi2

τi1i2 xi2 xi1 , 1 � i1 < i2 � k 〉.

For any triple (i1, i2, i3) such that 1 � i1 < i2 < i3 � k, there is a critical branching
on the monomial xi1 xi2 xi3 which is confluent

xi2 xi1 xi3

xi2τi1i3
xi2 xi3 xi1

τi2i3 xi1

xi1 xi2 xi3

τi1i2 xi3

xi1τi2i3

xi3 xi2 xi1

xi1 xi3 xi2 τi1i3 xi2
xi3 xi1 xi2 xi3τi1i2

It follows that the linear 2-polygraph � is convergent and quadratic; hence, the
algebra K[x1, . . . , xk] is Koszul.
6.2.5 Example, [25]. Dotsenko and Roy Chowdhury show that the algebra A pre-
sented by

〈 ∗ | x, y, z | yx + x2, zy, xz 〉

is Koszul. Their proof in [25] is based on the computation of Anick’s resolution
with respect to the degree-lexicographic ordering induced by the alphabetic order
x > y > z. The three quadratic relations can be completed into the following infinite
Gröbner basis:

xz ⇒ 0, zy ⇒ 0, xyk x ⇒ yk+1x, for k � 0

Using Anick’s resolution they show that the homology of the algebra A is concen-
trated on the diagonal, proving that the algebra A is Koszul.
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6.2.6 A sufficient polygraphic condition. In [33], a graded version of Theorem 5.2.9
is given. For that, a notion of graded linear polygraph is introduced, that generalizes
in higher dimensions the notion of graded presentation for a graded algebra. As
an application, one deduces the following polygraphic condition of Koszulness of
graded algebras.

6.2.7 Theorem [33, Prop. 7.2.2]. Let A be an N-homogeneous algebra. If A
has a �N -concentrated polygraphic resolution, then A is bi-Koszul (resp. left-Koszul,
resp. right-Koszul).

From this sufficient condition, one deduces the following consequence. Suppose
that an algebra A has a polygraphic resolution � such that (�0,�1, . . . , �k−1) is
�N -concentrated, for some k � 3, and such that for some i > �N (k) the number of
(k + 1)-cells in �

(i)
k+1 is strictly less than the number of k-cells in �

(i)
k . Then the

algebra A is not Koszul [33, Prop. 7.2.7].
Theorem6.2.7 can be also used to extend the sufficient condition of Theorem6.2.3

to linear 2-polygraph with an orientation that is not compatible with a monomial
order.

6.2.8 Corollary [33]. Let A be an algebra presented by a quadratic left-monomial
convergent linear 2-polygraph �. Then � can be extended into a �2-concentrated
polygraphic resolution and the algebra A is Koszul.

6.2.9 Exercise. LetA be the algebra presented by 〈 ∗ | x, y | x2 = y2 = xy 〉. Prove
that A is not Koszul. [Hint. Consider the rules xy ⇒ x2 and y2 ⇒ x2, compute a
convergent presentation of A and its set of critical triple branchings.]

6.2.10 Remark. Note that, for an N -homogeneous algebra, that is whose relations
are concentrated in degree N , the existence of a Gröbner basis concentrated in degree
N is not enough to imply Koszulness. Indeed, an extra condition has to be checked
as shown by Berger in [10].

6.2.11 Homogeneous coherent presentations. A coherent �N -concentrated pre-
sentation of an algebra A having an empty homotopy basis can be extended into a
polygraphic resolution with an empty set of k-cells for k � 3, thus a �N -concentrated
polygraphic resolution. Hence, by Theorem 6.2.7, we have the following corollary.

6.2.12 Corollary [33]. If an N-homogeneous algebra has a coherent
�N -concentrated presentation with an empty homotopy basis, then it is Koszul. In
particular, an algebra having a terminating presentation by an N-homogeneous
polygraph without any critical branching is Koszul.

The second statement is a consequence of Squier’s Theorem 5.1.6. Indeed, if �

is a convergent left-monomial linear 2-polygraph, then it can be extended into a
coherent presentation whose homotopy basis is made of generating confluences. In
particular, when the polygraph � has no critical branching, this homotopy basis is
empty, and thus trivially �N -concentrated.
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6.2.13 Example, [33, Ex. 7.2.5]. Consider the algebra A presented by the linear 2-
polygraph given in Example 2.1.9. From the resolution computed in Example 5.2.10,
we have

TorA
0,(0)(K, K) � K, TorA

1,(1)(K, K) � K
3, TorA

2,(3)(K, K) � K,

and TorA
k,(i)(K, K) vanishes for other values of k and i . It follows that the algebra A

is Koszul.

6.2.14 Exercise [53, 4.3]. Show that the algebra presented by the following linear
2-polygraph, see 5.1.12,

〈 ∗ | x, y, z | yz α − x2, zy
β − λ−1x2 〉,

where λ ∈ K \ {0, 1}, is Koszul. In particular, show that TorA
0,(0)(K, K) � K,

TorA
1,(1)(K, K) � K

3, TorA
2,(2)(K, K) � K

2 and TorA
k,(i)(K, K) vanishes otherwise.
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Chapter 5
Introduction to Computational Algebraic
Statistics

Satoshi Aoki

In this paper, we introduce the fundamental notion of a Markov basis, which is one
of the first connections between commutative algebra and statistics. The notion of
a Markov basis is first introduced by Diaconis and Sturmfels [8] for conditional
testing problems on contingency tables by Markov chain Monte Carlo methods. In
this method, we make use of a connected Markov chain over the given conditional
sample space to estimate the p values numerically for various conditional tests. A
Markov basis plays an importance role in this argument, because it guarantees the
connectivity of the chain, which is needed for unbiasedness of the estimate, for
arbitrary conditional sample space. As another important point, a Markov basis is
characterized as generators of the well-specified toric ideals of polynomial rings.
This connection between commutative algebra and statistics is the main result of
[8]. After this first paper, a Markov basis is studied intensively by many researchers
both in commutative algebra and statistics, which yields an attractive field called
computational algebraic statistics. In this paper, we give a review of the Markov
chain Monte Carlo methods for contingency tables and Markov bases, with some
fundamental examples. We also give some computational examples by algebraic
software Macaulay2 [10] and statistical software R. Readers can also find theoretical
details of the problems considered in this paper and various results on the structure
and examples of Markov bases in [4].

1 Conditional Tests for Contingency Tables

A contingency table is a cross-classified table of frequencies. For example, suppose
40 students in some class took examinations of two subjects, Algebra and Statistics.
Suppose that both scores are classified to one of the categories, {Excellent, Good,
Fair}, and are summarized in Table1. This is a typical example of two-way con-
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Table 1 Scores of Algebra
and Statistics for 40 students
(imaginary data)

Alg\Stat Excellent Good Fair Total

Excellent 11 5 2 18

Good 4 9 1 14

Fair 2 3 3 8

Total 17 17 6 40

tingency tables. Since this table has 3 rows and 3 columns, this is called a 3 × 3
contingency table. The two subjects, Algebra and Statistics, are called factors of
the table, and the outcomes (i.e., scores) of each factor, {Excellent, Good, Fair}, are
called levels of each factor. The cells of the I × J contingency table is the I J possible
combinations of outcomes. Three-way, four-way or higher dimensional contingency
tables are defined similarly. For example, adding to the data of Table1, if the scores
of another subject (Geometry, for example) are also given, we have a three-way
contingency table. An I1 × · · · × Im (m-way)contingency table has

∏m
i=1 Ii cells,

where Ii is the number of the levels for the i th factor, i = 1, . . . , m. In statistical data
analysis, the development of methods for analyzing contingency tables began in the
1960s. We refer to [3] for standard textbook in this field.

We begin with simple I × J cases, and will consider generalizations to m-way
cases afterward. In statistical inference, we consider underlying random variables
and statistical models for observed data such as Table1, and treat the observed data
as one realization of the random variables. In the case of Table1, it is natural to deal
with the two-dimensional discrete random variables

(V1, W1), (V2, W2), . . . , (Vn, Wn), (1)

where n is the sample size, (n = 40 for Table1) and (Vk, Wk) is the couple of scores
obtained by the kth student. The randomcouples (Vk , Wk) for k = 1, . . . , n are drawn
independently from the same distribution

P(Vk = i, Wk = j) = θi j , i ∈ [I ], j ∈ [J ], k ∈ [n].

Here we use a notation [r ] = {1, 2, . . . , r} for r ∈ Z�0, where Z�0 is the set of
nonnegative integers. Note that we use appropriate coding such as 1: Excellent, 2:
Good, 3: Fair. The probability θ = (θi j ) satisfies the condition

I∑

i=1

J∑

j=1

θi j = 1,

and is called a parameter. The parameter space

�I J−1 =
⎧
⎨

⎩
(θ11, . . . , θI J ) ∈ R

I J
�0 :

I∑

i=1

J∑

j=1

θi j = 1

⎫
⎬

⎭
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is called an I J − 1 dimensional probability simplex.
To consider the data in the form of a contingency table, we also summarize the

underlying random variable (1) to the form of the contingency tables as

Xi j =
n∑

k=1

1(Vk = i, Wk = j),

for i ∈ [I ], j ∈ [J ], where 1(·) is the indicator function. By this aggregation from
the raw scores to the contingency table, we neglect the order of observations in (1),
that is considered to have no information for estimating the parameter θ. Then the
data x = (xi j ) ∈ Z

I J
�0 is treated as a realization of x = (Xi j ). The distribution of x is

a multinomial distribution given by

p(x) = P(X = x) = n!
I∏

i=1

J∏

j=1

xi j !

I∏

i=1

J∏

j=1

θ
xi j

i j ,

I∑

i=1

J∑

j=1

xi j = n. (2)

We see that the multinomial distribution (2) is derived from the joint probability
function for n individuals under the assumption that each outcome is obtained inde-
pendently.

By summarizing the data in the form of contingency tables for fixed sample size n,
the degree of freedom of the observed frequency x becomes I J − 1. which coincides
the degree of freedom of the parameter θ ∈ �I J−1. Here, we use “degree of freedom”
as the number of elements that are free to vary, that is a well-used terminology in
statistical fields.We can see the probability simplex�I J−1 as an example of statistical
models, called a saturated model. Statistical model is called saturated if the degree
of freedom of the parameter equals to the degree of freedom of data.

The saturatedmodel is also characterized as the statisticalmodel having the param-
eter with the largest degree of freedom. In this sense, the saturated model is the most
complex statistical model. In other words, the saturated model is the statistical model
that fits the observed data perfectly, i.e., fits the data without error. In fact, the param-
eter θ in the saturated model �I J−1 is estimated from the data as

θ̂i j = xi j

n
, i ∈ [I ], j ∈ [J ], (3)

that is also called an empirical probability of data. Because we assume that the data x
is obtained from some probability function such as multinomial distribution (2) with
some randomness, we want to consider more simple statistical model, i.e., a subset
of the saturated model, M ⊂ �I J−1.

In the two-way contingency tables, a natural, representative statistical model is
an independence model.
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1.1 Definition. The independence model for I × J contingency tables is the set

Mindp = {θ ∈ �I J−1 : θi j = θi+θ+ j ,∀i,∀ j}, (4)

where

θi+ =
J∑

j=1

θi j , θ+ j =
I∑

i=1

θi j for i ∈ [I ], j ∈ [J ].

1.2 Remarks. Here we consider that only the sample size n is fixed. However, sev-
eral different situations can be considered for I × J contingency tables. The situation
that we consider here is called a multinomial sampling scheme. For other sampling
schemes such as Poisson, binomial and so on, see Chap.2 of [3] or Chap.4 of [13].
Accordingly, the corresponding independence model Mindp is called in a different
way for other sampling schemes. For example, it is called a common proportions
model for (product of) binomial sampling scheme where the row sums are fixed, and
main effect model for Poisson sampling scheme where no marginal is fixed. Though
there are also little differences between the descriptions of these models, we can
treat these models almost in the same way by considering the conditional probability
function, which we consider afterward. Therefore we restrict our arguments to the
multinomial sampling scheme in this paper.

There are several equivalent descriptions for the independence modelMindp. The
most common parametric description in statistical textbooks is

Mindp = {
θ ∈ �I J−1 : θi j = αiβ j for some (αi ), (β j )

}
. (5)

For other equivalent parametric descriptions or implicit descriptions, see Sect. 1 of
[16], for example.

The meaning of Mindp in Table1 is as follows. If Mindp is true, there are no
relations between the scores of two subjects. Then we can imagine that the scores of
two subjects follow the marginal probability functions for each score respectively,
and are independent, and the discrepancy we observed in Table1 is obtained “by
chance”. However, it is natural to imagine some structure between the two scores
such as “there is a tendency that the students having better scores in Algebra are
likely to have better scores in Statistics”, because these subjects are in the same
mathematical category. In fact, we see relatively large frequencies 11 and 9 in the
diagonals of Table1, which seem to indicate a positive correlation. Therefore one of
the natural questions for Table1 is “Is there some tendency between the two scores
that breaks independence?”. To answer this question, we evaluate the fitting ofMindp

by hypothetical testing.
The hypothetical testing problem that we consider in this paper is as follows.

H0 : θ ∈ Mindp v.s. H1 : θ ∈ �I J−1 \ Mindp.
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Here we call H0 a null hypothesis and H1 an alternative hypothesis. The terms null
model and alternative model are also used. The hypothetical testing in the above form,
i.e., a null model is a subset of a saturated model, M ⊂ �I J−1, and the alternative
model is the complementary set ofM into the saturated model, is called a goodness-
of-fit test ofmodelM. The testing procedures are composed of steps such as choosing
a test statistics, choosing a significance level, and calculating the p value. We see
these steps in order.

Choosing a test statistic. First we have to choose a test statistic to use. In general,
the term statistic means a function of the random variable X = (Xi j ). For example,
(Xi+) and (X+ j ) given by

Xi+ =
J∑

j=1

Xi j , X+ j =
I∑

i=1

Xi j for i ∈ [I ], j ∈ [J ]

are examples of statistics called the row sums and the column sums, respectively.
Other examples of statistics are the row mean X̄i+ = Xi+/J and the column mean
X̄+ j/I for i ∈ [I ], j ∈ [J ]. To perform the hypothetical testing, we first select an
appropriate statistic, called a test statistic, to measure the discrepancy of the observed
data from the null model. One of the common test statistic for the goodness-of-fit
test is a Pearson goodness-of-fit χ2 given by

χ2(X) =
I∑

i=1

J∑

j=1

(Xi j − m̂i j )
2

m̂i j
,

where m̂i j is the fitted value of Xi j under H0, i.e., an estimator of E(Xi j ) = mi j =
nθi j , given by

m̂i j = nθ̂i j = xi+x+ j

n
. (6)

Here we use the maximum likelihood estimate of the parameter under the null model,
θ̂ = (θ̂i j ), given by

θ̂i j = xi+x+ j

n2
, (7)

that is obtained by maximizing the log-likelihood

Const +
I∑

i=1

J∑

j=1

xi j log θi j

under the constraint θ ∈ Mindp. The meaning of this estimate is also clear in a
parametric description (5) since the maximum likelihood estimates of (αi ), (β j ) are
given by

α̂i = xi+
n

, β̂ j = x+ j

n
,
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Table 2 The fitted value under Mindp for Table1

Alg\Stat Excellent Good Fair Total

Excellent 7.65 7.65 2.70 18

Good 5.95 5.95 2.10 14

2–4 Fair 3.40 3.40 1.20 8

Total 17 17 6 40

respectively. The fitted value for Table1 under Mindp is given in Table2.
There are various test statistics other than the Pearson goodness-of-fit χ2 that can

be used in our problem. Another representative is the (twice log) likelihood ratio
given by

2
I∑

i=1

J∑

j=1

Xi j log
Xi j

m̂i j
, (8)

where m̂i j is given by (6). In general, test statistic should be selected by considering
their power, i.e., the probability that the null hypothesis is rejected if the alternative
hypothesis is true. See textbooks such as [14] for the theory of the hypothetical
testing, the optimality of the test statistics, examples and the guidelines for choosing
test statistics for various problems.

Choosing a significance level. Once we choose a test statistic to use, as the Pearson
goodness-of-fit χ2 for example, the hypothetical testing procedure is written by

χ2(xo) � cα ⇒ Reject H0,

where xo is the observed data, and cα is the critical point at the significance level α
satisfying

P(χ2(X) � cα | H0) � α. (9)

The probability of the left hand side of (9) is called a type I error. Equivalently, we
define the p-value by

p = P(χ2(X) � χ2(xo) | H0), (10)

then the testing procedure is written by

p � α ⇒ Reject H0.

The meaning of the p-value for the data xo is the conditional probability that “more
or equally discrepant results are obtained than the observed data if the null hypothesis
is true”. Therefore, if p-value is significantly small, we conclude that null hypothesis
is unrealistic, because it is doubtful that such an extreme result xo is obtained. This is
the idea of the statistical hypothetical testing. In this process, the significance level
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α plays a threshold to decide the p-value is “significantly small” to reject the null
hypothesis. In statistical and scientific literature, it is common to choose α = 0.05
or α = 0.01. Readers can find various topics on p-value in [19].

Calculating the p-value. Once we choose a test statistic and a significance level,
all we have to do is to calculate the p-value given in (10) for observed data xo. The
observed value of the Pearson goodness-of-fit χ2 for Table1 is

χ2(xo) =
3∑

i=1

3∑

j=1

(xo
i j − m̂i j )

2

m̂i j
= (11 − 7.65)2

7.65
+ · · · + (3 − 1.20)2

1.20
= 8.6687,

therefore the p-value for our xo is

p = P(χ2(X) � 8.6687 | H0).

This probability is evaluated based on the probability function of the test statistic
χ2(X) under H0, which we call a null distribution hereafter. Unfortunately, the null
distribution depends on the unknown parameter θ ∈ Mindp and the p-values cannot
be calculated in most cases in principle. One naive idea to evaluate the p-values for
such cases is to calculate its supremum inMindp and perform the test as the form

sup
θ∈Mindp

P(χ2(X) � χ2(xo) | H0) � α ⇒ Reject H0. (11)

However, this idea is hard to implement in general, i.e., it is usually difficult to
evaluate the left-hand side of (11) or to seek tests that are powerful under (11).
Then, what should we do? We consider the following three strategies for calculating
p-values in this paper.

(a) Using the asymptotic distribution of the test statistic.
(b) Exact calculation based on the conditional distribution.
(c) Estimate the p-value by the Monte Carlo method.

The aim of this paper is to introduce strategy (c). We will consider each strategy in
order.

(a) Using the asymptotic distribution of the test statistic. In applications, it is
common to rely on various asymptotic theories for the test statistics. As for the
Pearson goodness-of-fit test χ2 test, the following result is known.

1.3 Theorem. Under the null model Mindp, the Pearson goodness-of-fit χ2(X)

asymptotically follows theχ2 distribution with (I − 1)(J − 1)degree of freedom, i.e.,

lim
n→∞ P(χ2(X) � u) = P(V � u) for u > 0,

where V ∼ χ2
(I−1)(J−1), i.e., V is distributed to the χ2 distribution with (I − 1)(J −

1) degree of freedom.
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This theorem is shown as a consequence of the central limit theorem. In addition,
the same asymptotic distribution is given when we consider the conditional limit,
i.e., consider n → ∞ under the condition that Xi+/n → ai and X+ j/n → b j for
i ∈ [I ], j ∈ [J ] for some fixed 0 < ai , b j < 1. See [5] or [17] for detail. Anyway,
these asymptotic properties are the reason why we call this test as Pearson goodness-
of-fit “χ2 test”. Similarly to the Pearson goodness-of-fit χ2, there are several test
statistics that have the χ2 distribution as the asymptotic distribution. An important
example is the likelihood ratio test statistic, which is given in (8) for our setting.
Moreover, several asymptotic good properties of likelihood ratio test statistics are
known. See [14] for details. Note also that our methods, Markov chain Monte Carlo
methods, canbe applicable for arbitrary typeof test statistics, thoughweonly consider
the Pearson goodness-of-fit χ2 in this paper.

FollowingTheorem1.3, it is easy to evaluate the asymptotic p-value of thePearson
goodness-of-fit χ2 test. For our data, the observed value of test statistic, χ2(xo) =
8.6687, is less than the upper 5 percent point of the χ2 distribution with 4 degrees of
freedom, χ2

4,0.05 = 9.488. Therefore, for the significance level α = 0.05, we cannot
reject the null hypothesis H0, i.e., we cannot say that “the fitting of the modelMindp

to Table1 is poor”. Equivalently, the asymptotic p-value is calculated as the upper
probability of χ2

4, which is 0.0699 and is greater than α = 0.05. Figure1 presents the
probability density function of the χ2

4 distribution. The above results can be obtained
numerically by the following codes of the statistical software R.

> x <- matrix(c(11,5,2,4,9,1,2,3,3), byrow=T, ncol=3, nrow=3)

> x

[,1] [,2] [,3]

[1,] 11 5 2

[2,] 4 9 1

[3,] 2 3 3

> chisq.test(x)

Pearson’s Chi-squared test

data: x

X-squared = 8.6687, df = 4, p-value = 0.06994

> pchisq(8.6687,4, lower.tail=F)

[1] 0.06993543

> qchisq(0.05,4,lower.tail=F) # critical point

[1] 9.487729

As we see above, using asymptotic null distribution is an easy way to evaluate
p-values, and one of the most common approaches in applications. One of the dis-
advantages of strategy (a) is that there might not be a good fit with the asymptotic
distribution. In fact, because sample size is only n = 40 for Table1, it is doubtful that
we can apply the asymptotic result of n → ∞. Besides, it is well known that there are
cases that the fitting of the asymptotic distributions are poor for data with relatively
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Fig. 1 χ2 distribution with
degree of freedom 4. The
vertical solid line indicates
the observed value
χ2(xo) = 8.6687, and the
dotted line indicates the
critical point for the
significance level α = 0.05,
χ2
4,0.05 = 9.488
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large sample sizes. One such case is sparse data case, another one is unbalanced case.
See [11] for these topics.

(b) Exact calculation based on the conditional distribution. If we want to avoid
asymptotic approaches as strategy (a), an alternative choice is to calculate p-values
exactly. For the cases that the null distribution of the test statistics depend on the
unknown parameters, we can formulate the exact methods based on the conditional
probability functions for fixed minimal sufficient statistics under the null model
Mindp. The key notion here is the minimal sufficient statistics.

1.4 Definition. Let X be a discrete random variable with the probability function
p(x) with the parameter θ. The statistic T(X), i.e., a vector or a scalar function ofX,
is called sufficient for θ if the conditional probability function of X for a given T,

p(x | t) = P(X = x | T(X) = t), (12)

does not depend on θ. The sufficient statistic T(X) is minimal if there is no other
sufficient statistics that is a function of T(X).

The meaning of the minimal sufficient statistic is explained as follows. If we know
the value of T, then knowing X provides no further information about the parameter
θ. Therefore for the parameter estimation or hypothetical testing, it is sufficient to
consider themethods based on theminimal sufficient statistic. Theminimal sufficient
statistics for our two-way problem is as follows.

– Under the saturated model θ ∈ �I J−1, a minimal sufficient statistic is the con-
tingency table X. Adding the additional information such as the scores of the
kth student, (Vk, Wk), in (1) gives us no additional information on the estima-
tion of θ. Indeed, under the saturated model, the maximum likelihood estimate
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of the parameter is the empirical probability (3), that is a function of the minimal
sufficient statistic.

– Under the independencemodelMindp , aminimal sufficient statistic is the rowsums
{Xi+, i ∈ [I ]} and the column sums {X+ j , j ∈ [J ]}, as we see below. Indeed, we
have already seen that the maximum likelihood estimate of the parameter under
the independence model is (7), that is a function of the row sums and column sums.
Note that X itself is also the sufficient statistic under the independence model, but
is not minimal.

To see that a given statistic T(X) is sufficient for a parameter θ, a useful way is
to rely on the following theorem.

1.5 Theorem. T(X) is a sufficient statistic for θ if and only if the probability function
of X is factored as

p(x;θ) = h(x)g(T (x);θ), (13)

where g(·) is a function that depends on the parameter θ and h(·) is a function that
does not.

For the case of discrete probability function, this theorem, called a factorization
theorem, is easily (i.e., without measure theories) proved from the definition of the
sufficient statistic. Generally, to obtain such a factorization is easier than to com-
pute explicitly the conditional distribution (12). For example, under the parametric
description θi j = αiβ j , the probability function of the multinomial distribution (2)
is written as

p(x;θ) = n!
∏ ∏

xi j !

(
∏

i

α
xi+
i

) ⎛

⎝
∏

j

β
x+ j

j

⎞

⎠

and we see that T (X) = ({Xi+}, {X+ j }) is a sufficient statistic for the parameter
θ ∈ Mindp.

Here, for later generalization, we introduce a configuration matrix A and express
a minimal sufficient statistic by A as follows. Let the number of the cells of the
contingency table X be ν and treat X as a ν-dimensional column vector. Let T (X)

be a d-dimensional sufficient statistic for the parameter θ ∈ M. For example of
the independence model Mindp for I × J contingency tables, we have ν = I J ,
X = (X11, X12, . . . , X I J )

′ and

T(X) = (X1+, . . . , X I+, X+1, . . . , X+J )
′

and d = I + J . Then we see that T (X) is written as

T (X) = AX (14)



5 Introduction to Computational Algebraic Statistics 195

for d × ν integer matrix A. For the 3 × 3 contingency tables, A is written as follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

Following the sufficiency of T (X) = AX, the conditional probability function for
given T = t does not depend on the parameter. For the case of the independence
model Mindp for two-way contingency tables, it is

h(x) = P(X = x | AX = t, H0) =

⎛

⎜
⎝

∏

i

xi+!
⎞

⎟
⎠

⎛

⎜
⎝

∏

j

x+ j !
⎞

⎟
⎠

n!
∏

i, j

xi j !
, x ∈ Ft,

(16)

where
Ft = {x ∈ Z

ν
�0 : Ax = t}

is the conditional sample space, which is called a t-fiber in the arguments of Markov
bases. The conditional probability function h(x) is called a hypergeometric distri-
bution. Using this conditional probability, the conditional p-value can be defined
by

p = EH0
(g(X) | AX = Axo) =

∑

x∈FAxo

g(x)h(x) (17)

for the observed table xo, where g(x) is the test function

g(x) =
{
1, χ2(x) � χ2(xo),

0, otherwise.

Now calculate the conditional p-value exactly for Table1. For the observed table xo,
i.e., Table1, we consider the independence model Mindp. The configuration matrix
A forMindp is given in (15). The t-fiber including xo, i.e., Axo-fiber, is the set of all
contingency tables that have the same value of the row sums and the column sums
to xo,

FAxo =

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ Z
9
�0 :

x11 x12 x13 18
x21 x22 x23 14
x31 x32 x33 8
17 17 6 40

⎫
⎪⎪⎬

⎪⎪⎭

.
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There are 2366 elements in thisFAxo . For each 2366 elements inFAxo , the conditional
probability is given by

h(x) = (18!14!8!) (17!17!6!)
40!

∏

i, j

1

xi j ! , x ∈ FAxo .

Then we have the exact conditional p-value

p =
∑

x∈FAxo

g(x)h(x) = 0.07035480,

where the test function is

g(x) =
{
1, χ2(x) � 8.6687,
0, otherwise.

As a result, we cannot reject H0 at significance level 0.05, which is the same result
to strategy (a).

1.6 Example. The following toy example should help the reader in understanding
the method. Let consider the 2 × 3 contingency table with the row sums and the
column sums given as follows.

x11 x12 x13 3
x21 x22 x23 2
2 2 1 5

There are 5 elements in the fiber as

F(3,2,2,2,1) =
{

2 1 0
0 1 1

,
2 0 1
0 2 0

,
1 2 0
1 0 1

,
1 1 1
1 1 0

,
0 2 1
2 0 0

}

= {x1, x2, x3, x4, x5}.

The fitted value under the Mindp is
1.2 1.2 0.6
0.8 0.8 0.4

. Then the Pearson goodness-of-fit

χ2 for each element is calculated as

(χ2(x1), χ2(x2), χ2(x3), χ2(x4), χ2(x5)) = (2.917, 5, 2.917, 0.833, 5).

The conditional probabilities

h(x) = 3!2!2!2!
5!

∏

i, j

1

xi j ! = 2

5

∏

i, j

1

xi j !
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for each element are calculated as

(h(x1), h(x2), h(x3), h(x4), h(x5)) = (0.2, 0.1, 0.2, 0.4, 0.1).

Therefore the conditional p-value for x4 is 1.0, that for x1 or x3 is 0.6, and that for
x2 or x5 is 0.2.

1.7 Remarks. We brieflymention the generalization of the abovemethod to general
problems and models. First important point is the existence of the minimal sufficient
statistics in the form of (14). It is known that, for the exponential family, well-known
family of the distribution, minimal sufficient statistics exist, and for a special case
of the exponential family, called the toric model, minimal sufficient statistics of the
form (14) exist. The toric model is relatively new concept arising in the field of
the computational algebraic statistics and is defined from the configuration matrix
A = (ai j ) ∈ Z

d×ν
�0 as follows.

For the j th column vector a j = (a1 j , . . . , ad j ) of A, j ∈ [ν], define the monomial

θa j =
d∏

i=1

θ
ai j

i , j ∈ [ν].

Then the toric model of A is the image of the orthant Rd
>0 under the map

f : R
d → R

ν, θ 
→ 1
∑ν

j=1 θa j
(θa1 , . . . ,θaν ).

See Chap.1.2 of [16] for detail. The toric model specified by the configurationmatrix
A ∈ Z

d×ν
�0 is also written by

MA = {θ = (θi ) ∈ �ν−1 : logθ ∈ rowspan(A)},

where rowspan(A) = image(A′) is the linear space spanned by the rows of A, and

logθ = (log θ1, . . . , log θν)
′,

where ′ is a transpose. In statistical fields, this is called a log-linear model. In fact,
for example of the independence model Mindp of 2 × 3 tables, that is a log-linear
model, the parametric description θi j = αiβ j can be written as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

log θ11
log θ12
log θ13
log θ21
log θ22
log θ23

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

α1

α2

β1

β2

β3

⎞

⎟
⎟
⎟
⎟
⎠

.
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The conditional probability function, i.e., the generalization of the hypergeometric
distribution h(x) in (16) is as follows. For the model specified by the configuration
matrix A, the conditional probability function for given sufficient statistic Axo is

P(X = x | AX = Axo) = C−1
Axo

1
∏

i∈[ν]
xi !

,

where

CAxo =
∑

y∈FAxo

1
∏

i∈[ν]
yi !

(18)

is a normalizing constant. Based on this conditional probability function, we can
calculate the conditional p-values by (17).

Finally, we note an optimality of the method briefly. The conditional procedure
mentioned above is justified if we consider the hypothetical testing to the class of
similar tests and the minimal sufficient statistics is complete. For the class of the
exponential family, it is known that the minimal sufficient statistic is complete. See
Chap.4.3 of [14] for detail.

(c) Estimate the p-value by the Monte Carlo method. The two strategies to eval-
uate p-values we have considered, asymptotic evaluation and exact computation,
have both advantages and disadvantages. The asymptotic evaluations relying on the
asymptotic χ2 distribution are easy to carry out, especially by various packages in
softwares such as R. However, poor fitting to the asymptotic distribution cannot be
ignorable for sparse or unbalanced data even with relatively large sample sizes. The
exact calculation of the conditional p-values is the best method if it is possible to
carry out. In fact, various exact methods and algorithms are considered for problems
of various types of the contingency tables, statistical models and test statistics. See
the survey paper [2] for this field. However, for large size samples, the cardinality
of the fiber |FAxo | can exceed billions, making exact computations difficult to be
carried out. In fact, it is known that the cardinality of a fiber increases exponentially
in the sample size n. (An approximation for the cardinality of a fiber is given by [9].)
For these cases, the Monte Carlo methods can be effective.

The Monte Carlo methods estimate the p-values as follows. To compute the con-
ditional p-value (17), generate samples x1, . . . , xN from the null distribution h(x).
Then the p-value is estimated as p̂ = ∑N

i=1 g(xi )/N , that is an unbiased estimate
of the p-value. We can set N according to the performance of our computer. As
an advantage of the Monte Carlo method, we can also estimate the accuracy, i.e.,
variance of the estimate. For example, a conventional 95% confidence interval of
p, p̂ ± 1.96

√
p̂(1 − p̂)/N , is frequently used. The problem here is how to generate

samples from the null distribution.We consider Markov chain Monte Carlo methods,
often abbreviated as the MCMC methods, in this paper.
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Following MCMC methods setup, we construct an ergodic Markov chain on the
fiber F = FAxo whose stationary distribution is prescribed, given by (16). Let the
elements of F be numbered as

F = {x1, . . . , xs}.

We write the null distribution on F as

π = (π1, . . . ,πs) = (h(x1), . . . , h(xs)).

Here, by standard notation, we treat π as a row vector. We write the transition
probability matrix of the Markov chain {Zt , t ∈ Z�0} over F as Q = (qi j ), i.e., we
define

qi j = P(Zt+1 = x j | Zt = xi ).

Then a probability distribution θ ∈ �s−1 is called a stationary distribution if it sat-
isfies θ = θQ. The stationary distribution uniquely exists if the Markov chain is
irreducible, (i.e., connected in this case) and aperiodic. Therefore for the connected
and aperiodic Markov chain, starting from an arbitrary state Z0 = xi , the distribu-
tion of Zt for large t is close to its stationary distribution. If we can construct a
connected and aperiodic Markov chain with the stationary distribution π, by run-
ning theMarkov chain and discarding a large number t of initial steps (called burn-in
steps), we can treat Zt+1, Zt+2, . . . to be samples from the null distributionπ and use
them to estimate p-values. Then the problem becomes how to construct a connected
and aperiodic Markov chain with the stationary distribution as the null distribution
π over F . Among these conditions, the conditions for the stationary distribution can
be solved easily. Once we construct an arbitrary connected chain over F , we can
modify its stationary distribution to the given null distribution π as follows.

1.8 Theorem (Metropolis-Hastings algorithm). Let π be a probability distribu-
tion on F . Let R = (ri j ) be the transition probability matrix of a connected, ape-
riodic and symmetric Markov chain over F . Then the transition probability matrix
Q = (qi j ) defined by

qi j = ri j min

(

1,
π j

πi

)

, i �= j

qii = 1 −
∑

j �=i

qi j

satisfies π = πQ.

This theorem is a special case of [12]. Though the symmetry assumption (ri j = r ji )
can be removed easily, we only consider symmetric R for simplicity. The proof of this
theorem is easy and is omitted. See [12] or Chap.4.1 of [13], for example. Instead,
we consider the algorithm for data of small size.
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1.9 Example. Consider the small example in Example 1.6. As we have seen, the
fiber is

F = {x1, x2, x3, x4, x5}

and the null distribution is

π = (π1, . . . ,π5) = (h(x1), . . . , h(x5)) = (0.2, 0.1, 0.2, 0.4, 0.1).

Using theMarkov basiswe consider in the next section,we can construct a connected,
aperiodic and symmetric Markov chain with the transition probability matrix

R =

⎛

⎜
⎜
⎜
⎜
⎝

1/2 1/6 1/6 1/6 0
1/6 2/3 0 1/6 0
1/6 0 1/2 1/6 1/6
1/6 1/6 1/6 1/3 1/6
0 0 1/6 1/6 2/3

⎞

⎟
⎟
⎟
⎟
⎠

. (19)

Following Theorem 1.8, we modify the Markov chain to have the transition proba-
bility matrix

Q =

⎛

⎜
⎜
⎜
⎜
⎝

7/12 1/12 1/6 1/6 0
1/6 2/3 0 1/6 0
1/6 0 7/12 1/6 1/12
1/12 1/24 1/12 3/4 1/24
0 0 1/6 1/6 2/3

⎞

⎟
⎟
⎟
⎟
⎠

.

We can check that the eigenvector from the left of Q with the eigenvalue 1 is π. We
can also check that each row vector of QT for large T converges to π.

An important advantage of the Markov chain Monte Carlo method is that it does
not require the explicit evaluation of the normalizing constant of the null distribu-
tion. As is shown in Theorem 1.8, we only need to know π up to a multiplicative
constant, because the normalizing constant, (18) in the general form, canceled in the
ratio π j/πi . With Theorem 1.8, the remaining problem is to construct an arbitrary
connected and aperiodic Markov chain over F , that is solved by the Gröbner basis
theory.

2 Markov Bases and Ideals

As stated in the previous section, the main task for estimating p-values thanks
to MCMC methods is to construct a connected and aperiodic Markov chain over
F = FAxo with stationary distribution given by (16). Here, A ∈ Z

d×ν is a given con-
figuration matrix, xo ∈ Z

ν
�0 is the observed contingency table andFAxo , a Axo-fiber,

is the set of all contingency tables with the same value of the minimal sufficient
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statistics to xo,
FAxo = {x ∈ Z

ν
�0 : Ax = Axo}.

We write the integer kernel of A as

KerZ(A) = Ker(A) ∩ Z
ν = {z ∈ Z

ν : Az = 0}.

An element of KerZ(A) is called a move. Note that x − y ∈ KerZ(A) if and only
if x, y ∈ FAx. Then for a given subset B ⊂ KerZ(A) and t ∈ Z

d
�0, we can define

undirected graph Gt,B = (V, E) by

V = Ft, E = {(x, y) : x − y ∈ B or y − x ∈ B}.

2.1 Definition (AMarkov basis). B ⊂ KerZ(A) is a Markov basis for A if Gt,B is
connected for arbitrary t ∈ Z

d
�0.

Once we obtain a Markov basis B for A, we can construct a connected Markov
chain over FAxo easily as follows. For each state x ∈ FAxo , randomly choose a move
z ∈ B and a sign ε ∈ {−1, 1} and consider x + εz. If x + εz ∈ FAxo , then x + εz is
the next state, otherwise stay at x. Then we have the connected Markov chain over
Axo. We see these arguments in an example.

2.2 Example. Again we consider a small data of Example 1.6, where the fiber is
redisplayed below.

F(3,2,2,2,1) =
{

2 1 0
0 1 1

,
2 0 1
0 2 0

,
1 2 0
1 0 1

,
1 1 1
1 1 0

,
0 2 1
2 0 0

}

= {x1, x2, x3, x4, x5}.

The integer kernel for the configuration matrix

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

(20)

includes moves such as

z1 = 1 −1 0
−1 1 0

, z2 = 1 0 −1
−1 0 1

, z3 = 0 1 −1
0 −1 1

,
2 −1 −1

−2 1 1
, . . . .

From these,we consider some sets ofmoves. Ifwe considerB1 = {z1}, corresponding
undirected graphG(3,2,2,2,1),B1 is given in Fig. 2(a), which is not connected. Therefore
B1 is not a Markov basis. If we consider B2 = {z1, z2}, corresponding undirected
graph G(3,2,2,2,1),B2 is given in Fig. 2(b), which is connected. However, B2 is also
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Fig. 2 Undirected graphs for B1,B2,B3 for t = (3, 2, 2, 2, 1)

not a Markov basis, because there exists t ∈ Z
5
�0 where Gt,B2 is not connected.

An example of such t is t = (1, 1, 0, 1, 1), with the corresponding t-fiber is a two-
element set

F(1,1,0,1,1) =
{

0 1 0
0 0 1

,
0 0 1
0 1 0

}

. (21)

The above example shows that aMarkov basis includes z3 to connect the two elements
above. In fact, B = {z1, z2, z3} is a Markov basis for this A, with the corresponding
undirected graph G(3,2,2,2,1),B3 in Fig. 2(c). The transition probability matrix (19) in
Example 1.9 corresponds to a Markov chain constructed from B3 as “in each step,
choose 3 elements in B3 and its sign {−1, 1} with equal probabilities”.

At first sight, we may feel the cases such as (21) are trivial and may imagine that
“if we only consider the cases with t ∈ Z

d
>0, i.e., cases with strictly positive minimal

sufficient statistics (that may be realistic situations in the actual data analysis), it is
easy to connect the fiber Ft”. However, it is not so. We will see an example where
complicated moves are needed even for the fiber with positive t.

The connection between theMarkov basis and a toric ideal of a polynomial ring by
[8] is as follows. Let K[u] = K[u1, u2, . . . , uν] denote the ring of polynomials in ν
variables over a fieldK. Let a contingency table x ∈ Z

ν
�0 be mapped to themonomial

ux ∈ K[u], and amove, i.e., an element of the integer kernel z = z+ − z− ∈ KerZ(A),
bemapped to the binomialuz+ − uz− ∈ K[u]. For the case of the independencemodel
for the 3 × 3 contingency tables, examples of these correspondences are as follows.

11 5 2
4 9 1 ⇐⇒ u11

11u5
12u2

13u4
21u9

22u23u2
31u3

32u3
33

2 3 3

2 −1 −1
−3 1 2 ⇐⇒ u2

11u22u2
23u31 − u12u13u3

21u33

1 0 −1

The binomial ideal in K[u] generated by the set of binomials corresponding to the
set of moves for A,
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IA =
〈{
uz+ − uz− : z+ − z− ∈ KerZ(A)

}〉
,

is the the toric ideal of configuration A.

2.3 Theorem (Theorem 3.1 of [8]). B = {z1, . . . , zL} ⊂ KerZ(A) is a Markov
basis for A if and only if {uz+

i − uz−
i , i = 1, . . . , L} generates IA.

A proof of Theorem 2.3 is given in the original paper [8]. We can also find more
detailed proof in Chap.4 of [13]. In these proofs, the sufficiency and the necessity
are shown by induction on some integer. In the proof of sufficiency, this integer
represents the number of steps of the chain, and the argument is straightforward. On
the other hand, in the proof of necessity, this integer represents the number of terms
in the expansion that we want to show in the proof, and is not necessarily equal to the
number of steps of the chain. Theorem 2.3 shows a non-trivial result on this point.

To calculate a Markov basis for a given configuration matrix A, we can use the
elimination theory. For this purpose, we also prepare variables v = {v1, . . . , vd}
for the minimal sufficient statistic t and consider the polynomial ring K[v] =
K[v1, . . . , vd ]. The relation t = Ax can be expressed by the homomorphism

ψA : K[u] → K[v]
u j 
→ v

a1 j

1 v
a2 j

2 · · · vad j

d .

Then the toric ideal IA is also expressed as IA = Ker(ψA).Wenowhave the following.

2.4 Corollary (Theorem 3.2 of [8]). Let I ∗
A be the ideal of K[u, v] given by

I ∗
A = 〈−ψA(u j ) + u j , j = 1, . . . , ν

〉 ⊂ K[u, v].

Then we have IA = I ∗
A ∩ K[u].

Corollary 2.4 suggests that we can obtain a generator of IA as its Gröbner basis for
an appropriate term order called an elimination order. For an ideal J ∈ K[u] and a
term order ≺, a set of polynomials {g1, . . . , gs}, g1, . . . , gs ∈ J , is called a Gröbner
basis of I with respect to a term order≺, if {in≺(g1), . . . , in≺(gs)} generates an initial
ideal of J defined by in≺(J ) = 〈{in≺( f ) : 0 �= f ∈ J }〉. Here we write in≺( f ) as
an initial term of f with respect to a term order ≺. For more theories and results on
Gröbner bases, see textbooks such as [6]. The elimination theory is one of the useful
applications of Gröbner bases and is used for our problem as follows. For the reduced
Gröbner basis G∗ of I ∗

A for any term order satisfying {v1, . . . , vd} � {u1, . . . , uν},
G∗ ∩ K[u] is a reduced Gröbner basis of IA. Because the Gröbner basis is a generator
of IA, we can obtain a Markov basis for A as the reduced Gröbner basis in this way.

The computations of Gröbner bases can be carried out by various algebraic soft-
wares such asMacaulay2 [10], SINGULAR [7], CoCoA [18], Risa/Asir [15] and 4ti2
[1]. Here, we show some computations by Macaulay2, because we can also rapidly
use it online at the website.1 We start with a simple example.

1See macaulay2.com for detail on Macaulay2 and Macaulay2 online.



204 S. Aoki

2.5 Example. In Example 2.2, we give a Markov basis for the independence model
for 2 × 3 contingency tables without any proof or calculations. Here we check that
the set of 3 moves

{

z1 = 1 −1 0
−1 1 0

, z2 = 1 0 −1
−1 0 1

, z3 = 0 1 −1
0 −1 1

}

constitute a Markov basis for A given in (20). In other words, we check that the
corresponding toric ideal IA is generated by 3 binomials

{u11u22 − u12u21, u11u23 − u13u21, u12u23 − u13u22}. (22)

Following Corollary 2.4, we prepare the variable v = (v1, . . . , v5) for the row sums
and column sums of x as

x11 x12 x13 v1
x21 x22 x23 v2
v3 v4 v5

and consider the homomorphism

u11 
→ v1v3, u12 
→ v1v4, u13 
→ v1v5,

u21 
→ v2v3, u22 
→ v2v4, u23 
→ v2v5.

Then under the elimination order v � u, compute the reduced Gröbner basis of the
toric ideal

I ∗
A = 〈−v1v3 + u11, −v1v4 + u12, . . . ,−v2v5 + u23〉 .

These calculations are done by Macaulay2 as follows.

i1 : R=QQ[v1,v2,v3,v4,v5,u11,u12,u13,u21,u22,u23,MonomialOrder=>{5,6}]

o1 = R

o1 : PolynomialRing

i2 : I=ideal(-v1*v3+u11,-v1*v4+u12,-v1*v5+u13,-v2*v3+u21,-v2*v4+u22,-v2*v5+u23)

o2 = ideal (- v1*v3 + u11, - v1*v4 + u12, - v1*v5 + u13, - v2*v3 + u21, - v2*v4
--------------------------------------------------------------------------
+ u22, - v2*v5 + u23)

o2 : Ideal of R

i3 : G=gb(I); g=gens(G)

o4 = | u13u22-u12u23 u13u21-u11u23 u12u21-u11u22 v4u23-v5u22 v4u13-v5u12
--------------------------------------------------------------------------
v3u23-v5u21 v3u22-v4u21 v3u13-v5u11 v3u12-v4u11 v1u23-v2u13 v1u22-v2u12
--------------------------------------------------------------------------
v1u21-v2u11 v2v5-u23 v1v5-u13 v2v4-u22 v1v4-u12 v2v3-u21 v1v3-u11 |
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1 18
o4 : Matrix R <--- R

i5 : selectInSubring(1,g)

o5 = | u13u22-u12u23 u13u21-u11u23 u12u21-u11u22 |

1 3
o5 : Matrix R <--- R

Theoutput o4 shows the reducedGröbner basis of I ∗
A under the elimination (reverse

lexicographic) order v � u, and the output o5 shows the reduced Gröbner basis of
IA, which we can use as a Markov basis. We have now checked a Markov basis (22).

From theMarkov basis (22), we may imagine that the set of moves corresponding
to the binomials

{ui j ui ′ j ′ − ui j ′ui ′ j , 1 � i < i ′ � I, 1 � j < j ′ � J }

forms a Markov basis for the independence model of the I × J contingency tables,
which is actually true. This fact is given and proved as Theorem 2.1 of [4], for
example.

Now we are ready to estimate p-value for our original problem of 3 × 3 contin-
gency table in Table1. The Markov basis for this problem is formed by 9 moves of
the above type. Using this Markov basis, we calculate the conditional p-values for
Table1 by the Markov chain Monte Carlo method. For each step of the chain, we
choose an element of the Markov basis randomly, and modify the transition proba-
bility by Theorem 1.8. We start the chain at the observed table xo of Table1, discard
initial 50000 steps as the burn-in steps, and have 100000 samples of the Pearson
goodness-of-fit χ2. Figure3 is a histogram of the sampled Pearson goodness-of-fit

Fig. 3 A histogram of
sampled Pearson χ2

goodness-of-fit for Table1
generated by a Markov chain
Monte Carlo method. The
dotted curve is the
corresponding asymptotic χ2

4
distribution
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Table 3 The upper percentiles for three strategies of Pearson goodness-of-fit χ2 for Table1

90% 95% 99% 99.9%

(a) Asymptotic χ2
4 distribution 7.779 9.488 13.28 18.47

(b) Exact null distribution 7.766 9.353 12.78 17.99

(c) Monte Carlo simulated distribution 7.684 9.287 12.73 18.58

χ2 with the asymptotic χ2
4 distribution. In these 100000 samples, 6681 samples are

larger than or equal to the observed valueχ2(xo) = 8.6687, thenwe have the estimate
p̂ = 0.06681. Therefore we cannot reject H0 at significance level 0.05, which is the
same result to the other strategies (a) and (b). Though the difference from the exact
value p = 0.07035480 from the simulated value is slightly larger than the asymptotic
estimate ( p̂ = 0.0699), we may increase the accuracy of the estimates by increasing
the sample sizes. To compare the three strategies for Table1, we compute the upper
percentiles of 90%, 95%, 99%, 99.9% for (a) asymptotic χ2

4 distribution, (b) exact
conditional distribution, and (c) Monte Carlo simulated distribution in Table3.

Finally, we give an example for which the structure of the Markov basis is com-
plicated. The model we consider is a no three-factor interaction model for three-way
contingency tables. The parametric description of the no three-factor interaction
model is given by

Mn3 = {θ ∈ � : θi jk = αi jβikγ jk for some (αi j ), (βik), (γ jk)}.

This is one of the most important statistical models in the statistical data analysis
of three-way contingency tables. The minimal sufficient statistics for Mn3 is the
two-dimensional marginals

{xi j+}, {xi+k}, {x+ jk},

where we define

xi j+ =
K∑

k=1

xi jk, xi+k =
J∑

j=1

xi jk, x+ jk =
I∑

i=1

xi jk .

We only consider 3 × 3 × 3 case (i.e., I = J = K = 3) here. Then the configuration
matrix A is 27 × 27 matrix written as follows.
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A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For this model we see that the “simplest moves”, i.e., the moves with the minimum
degree, correspond to the binomials of degree 4 such as

u111u122u212u221 − u112u121u211u222, (23)

which is called a basic move. There are 9 suchmoves for the case of 3 × 3 × 3 tables.
Unfortunately, however, the set of these 9 moves does not become a Markov basis.
To see this consider the following example.

2.6 Example. Consider the 3 × 3 × 3 contingency tables with the fixed two-
dimensional marginals

(xi j+) = (xi+k) = (x+ jk) = (2, 1, 1, 1, 2, 1, 1, 1, 2)′. (24)

We write a 3 × 3 × 3 table as follows.

x111 x112 x113
x121 x122 x123
x131 x132 x133

x211 x212 x213
x221 x222 x223
x231 x232 x233

x311 x312 x313
x321 x322 x323
x331 x332 x333

Then the fixed marginals (24) are displayed as

x111x112x113 2
x121x122x123 1
x131x132x133 1
2 1 1 4

x211x212x213 1
x221x222x223 2
x231x232x233 1
1 2 1 4

x311x312x313 1
x321x322x323 1
x331x332x333 2
1 1 2 4

211 4
121 4
112 4
4 4 4 12

where the rightmost table shows the marginal {x+ jk}. There are 18 elements in this
fiber as follows.
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1 :
2 0 0
0 1 0
0 0 1

0 1 0
1 1 0
0 0 1

0 0 1
0 0 1
1 1 0

2 :
2 0 0
0 1 0
0 0 1

0 1 0
1 0 1
0 1 0

0 0 1
0 1 0
1 0 1

3 :
2 0 0
0 1 0
0 0 1

0 1 0
0 1 1
1 0 0

0 0 1
1 0 0
0 1 1

4 :
2 0 0
0 1 0
0 0 1

0 0 1
1 1 0
0 1 0

0 1 0
0 0 1
1 0 1

5 :
2 0 0
0 0 1
0 1 0

0 1 0
1 1 0
0 0 1

0 0 1
0 1 0
1 0 1

6 :
2 0 0
0 0 1
0 1 0

0 0 1
0 2 0
1 0 0

0 1 0
1 0 0
0 0 2

7 :
1 1 0
1 0 0
0 0 1

1 0 0
0 2 0
0 0 1

0 0 1
0 0 1
1 1 0

8 :
1 1 0
1 0 0
0 0 1

1 0 0
0 1 1
0 1 0

0 0 1
0 1 0
1 0 1

9 :
1 1 0
1 0 0
0 0 1

0 0 1
0 2 0
1 0 0

1 0 0
0 0 1
0 1 1

10 :
1 1 0
0 0 1
1 0 0

1 0 0
0 2 0
0 0 1

0 0 1
1 0 0
0 1 1

11 :
1 1 0
0 0 1
1 0 0

0 0 1
1 1 0
0 1 0

1 0 0
0 1 0
0 0 2

12 :
1 0 1
1 0 0
0 1 0

1 0 0
0 2 0
0 0 1

0 1 0
0 0 1
1 0 1

13 :
1 0 1
1 0 0
0 1 0

0 1 0
0 1 1
1 0 0

1 0 0
0 1 0
0 0 2

14 :
1 0 1
0 1 0
1 0 0

1 0 0
0 1 1
0 1 0

0 1 0
1 0 0
0 0 2

15 :
1 0 1
0 1 0
1 0 0

0 1 0
1 1 0
0 0 1

1 0 0
0 0 1
0 1 1

16 :
1 0 1
0 1 0
1 0 0

0 1 0
1 0 1
0 1 0

1 0 0
0 1 0
0 0 2

17 :
0 1 1
1 0 0
1 0 0

1 0 0
0 2 0
0 0 1

1 0 0
0 0 1
0 1 1

18 :
0 1 1
1 0 0
1 0 0

1 0 0
0 1 1
0 1 0

1 0 0
0 1 0
0 0 2

Now consider connecting these elements by the set of 9 basic moves such as (23).
The undirected graph we obtain is Fig. 4. Because this is not connected, the set of the
basic moves is not a Markov basis. This example shows that we need moves such as

u111u122u133u213u221u232 − u113u121u132u211u222u233 (25)

to constitute a Markov basis.
Now calculate a Markov basis by Macaulay2 for this example. Using a, b, c for

the sufficient statistics instead of v, the following is the commands to calculate a
reduced Gröbner basis for this problem.

R = QQ[a11,a12,a13,a21,a22,a23,a31,a32,a33,

b11,b12,b13,b21,b22,b23,b31,b32,b33,

c11,c12,c13,c21,c22,c23,c31,c32,c33,

x111,x112,x113,x121,x122,x123,x131,x132,x133,

x211,x212,x213,x221,x222,x223,x231,x232,x233,

x311,x312,x313,x321,x322,x323,x331,x332,x333,

MonomialOrder=>{27,27}]

I = ideal(x111-a11*b11*c11,x112-a11*b12*c12,x113-a11*b13*c13,

x121-a12*b11*c21,x122-a12*b12*c22,x123-a12*b13*c23,

x131-a13*b11*c31,x132-a13*b12*c32,x133-a13*b13*c33,

x211-a21*b21*c11,x212-a21*b22*c12,x213-a21*b23*c13,

x221-a22*b21*c21,x222-a22*b22*c22,x223-a22*b23*c23,
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Fig. 4 Undirected graph obtained from the set of the basic moves

x231-a23*b21*c31,x232-a23*b22*c32,x233-a23*b23*c33,

x311-a31*b31*c11,x312-a31*b32*c12,x313-a31*b33*c13,

x321-a32*b31*c21,x322-a32*b32*c22,x323-a32*b33*c23,

x331-a33*b31*c31,x332-a33*b32*c32,x333-a33*b33*c33)

G = gb(I); g = gens(G)

selectInSubring(1,g)

Unfortunately, this calculation may be hard to carry out for average PC. In fact, I
could not finish the above calculation within one hour by my slow laptop (with 2.80
GHz CPU, 8.00 GB RAM, running on vmware). Instead, check the calculation for
2 × 3 × 3 cases. With the similar input commands, we have the output instantly in
this case. From the output, we see that there are 1417 elements in the reducedGröbner
basis of I ∗

A, and 15 elements in the reduced Gröbner basis of IA as follows.

i10 : selectInSubring(1,g)

o10 = | x122x133x223x232-x123x132x222x233 x112x133x213x232-x113x132x212x233
-------------------------------------------------------------------------
x121x133x223x231-x123x131x221x233 x121x132x222x231-x122x131x221x232
-------------------------------------------------------------------------
x111x133x213x231-x113x131x211x233 x111x132x212x231-x112x131x211x232
-------------------------------------------------------------------------
x112x123x213x222-x113x122x212x223 x111x123x213x221-x113x121x211x223
-------------------------------------------------------------------------
x111x122x212x221-x112x121x211x222
-------------------------------------------------------------------------
x112x121x133x211x223x232-x111x123x132x212x221x233
-------------------------------------------------------------------------
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x111x122x133x213x221x232-x113x121x132x211x222x233
-------------------------------------------------------------------------
x111x122x133x212x223x231-x112x123x131x211x222x233
-------------------------------------------------------------------------
x113x121x132x212x223x231-x112x123x131x213x221x232
-------------------------------------------------------------------------
x112x121x133x213x222x231-x113x122x131x212x221x233
-------------------------------------------------------------------------
x111x123x132x213x222x231-x113x122x131x211x223x232 |

1 15
o10 : Matrix R <--- R

We see that the set of the basic moves and the degree 6moves such as (25) actually
constitutes a Markov basis for 2 × 3 × 3 cases.

The calculation for 3 × 3 × 3 cases can be carried out by faster software such as
4ti2 [1], that can be also used in Macaulay 2 as follows.

loadPackage "FourTiTwo"
A = matrix "1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;

0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1;
1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1;
1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0;
0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0;
0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0;
0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0;
0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0;
0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0;
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0;
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1"

R = QQ[x111,x112,x113,x121,x122,x123,x131,x132,x133,
x211,x212,x213,x221,x222,x223,x231,x232,x233,
x311,x312,x313,x321,x322,x323,x331,x332,x333]

I = toricMarkov(A,R)
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Fig. 5 Undirected graph obtained from a minimal Markov basis

This calculation is finished within 1 second by my laptop. From the output, we see
that 27 basic moves such as (23) and 54 moves of degree 6 such as (25) constitute
a minimal Markov basis.2 Using this minimal Markov basis, we can construct a
connected Markov chain for this fiber. The corresponding undirected graph is Fig. 5.

Interestingly, for the problems of the larger sizes, the structure of theMarkov basis
becomes more complicated. For example, for the no three-factor interaction model
of 3 × 3 × 4 tables, the set of degree 4, 6, 8 moves becomes a Markov basis, and for
3 × 3 × 5 tables, the set of degree 4, 6, 8, 10 moves becomes a Markov basis. These
results are summarized in Chap.9 of [4].
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Part II
Second Algebraic Byway: Quivers



Chapter 6
Introduction to Representations
of Quivers

Kenji Iohara

The main purpose of this lecture note is to provide a quick introduction to quivers
and their representations. In particular, as there already exists several introductory
and complete texts on quivers, the author tries motivating the reader to develop the
theory by showing several concrete examples.

One of the excellent source for such theory is Gabriel’s Bourbaki Seminar [9].
The reader may find an excellent introduction in the book [21] by Schiffler. The
readers who wish to learn further topics via algebraic approach may consult some
lecture notes by W. Crawley-Boevey which can be found on his webpage: http://
www1.maths.leeds.ac.uk/~pmtwc/.

For more complete description of the theory, one may consult the book [1] of
Assem et al.

For those who are interested in geometric approach to representation theory of
quivers, one may consult Brion’s lecture notes [4].

1 Quivers and Their Representations

In this section, I will introduce basic notions related to quivers and their representa-
tions. Throughout these lectures, we consider vector spaces and linear maps over a
fixed algebraically closed field K.
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1.1 Quivers and Their Representations

1.1.1 Definition. A quiver is a finite directed graph, possibly with multiple arrows
and loops. More precisely, a quiver Q is a quadruple

Q = (Q0, Q1, s, t),

where Q0 and Q1 are finite sets (the set of vertices, resp. arrows), and two maps
s, t : Q1 → Q0 assigning to each arrow its source, resp. target.

Some authors use out and in in place of s and t , for example, ϕ : Vout(ϕ) → Vin(ϕ)

for ϕ ∈ Q1 (cf. [11, 16, 22] in this volume).
We denote the vertices by •, numbers or letters i, j, .... An arrow with source i

and target j will be denoted by α : i → j or i
α−→ j .

Here is an example of quiver:

• •

•

•

1.1.2 Definition. A representation M of a quiver Q consists of a family of vector
spaces Vi (i ∈ Q0), together with a family of linear maps fα : Vs(α) → Vt (α) indexed
by α ∈ Q1.

For example, a representation of the above quiver is just a diagram

i
V1 V2

f1
f2

V3

h

j1
V4

j2

g

where Vi (1 � i � 4) are vector spaces, fr , jr (r = 1, 2), g, h, i are linear maps.

1.1.3 Definition. Given two representations M = ((Vi )i∈Q0 , ( fα)α∈Q1) and N =
((Wi )i∈Q0 , (gα)α∈Q1), a morphism u : M → N is a family of linear maps (ui : Vi →
Wi )i∈Q0 such that the next diagram commutes: ∀α ∈ Q1,
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Ws(α)

Vs(α)

Wt (α)

Vt (α)

us(α) ut (α)

gα

fα

�

For any two morphisms u : L → M and v : M → N , the family of compositions
(vi ui )i∈Q0 defines the composition vu : L → N of morphisms, which is associative
and has the identity element idM := (idVi )i∈Q0 for each M . Hence, we may consider
the category of representations of Q denoted by Rep(Q). One may check that this
is a K-linear abelian category.

1.1.4 Definition. A representation M = ((Vi )i∈Q0 , ( fα)α∈Q1) is said to be finite
dimensional if so are all Vi ’s. In such a case, we set

dim M := (dim Vi )i∈Q0 ∈ Z
Q0 ,

and is called the dimension vector of M .

We denote by (εi )i∈Q0 the standard basis of Z
Q0 : an element n = (ni )i∈Q0 ∈ Z

Q0

is represented as n = ∑
i∈Q0

niεi .
Notice that for every exact sequence of finite dimensional representations

0 → M ′ → M → M ′′ → 0,

one has
dim M = dim M ′ + dim M ′′.

Now, a central problem in quiver theory is as follows:

given a quiver Q and a vector n ∈ (Z�0)
Q0 , describe the set of isomorphism

classes of representations of Q with dimension vector n.

Here are some examples from linear algebra:

1.1.5 Basic examples. (i) The simplest quiver Q = ({•},∅, s, t). In this case, a
representation of Q is nothing but a vector space. Two representations M and N
are isomorphic iff dim M = dim N . Hence, the isomorphism classes of repre-
sentations of Q are parametrized by N.

(ii) The next quiver we consider is the quiver K1: • •
In this case, its representation consists of two vector spaces V, W and a linear
map f : V → W . Hence, two representations M = ( f : V1 → V2) and N =
(g : W1 → W2) are isomorphic iff dim M = dim N , i.e., dim Vi = dim Wi for
i ∈ {1, 2}, and rank( f ) = rank(g).
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(iii) The last quiver we consider is the quiver L1: •
In this case, its representation consists of a vector space V with an endomor-
phism f on it. Hence, two representations (V, f ) and (W, g) are isomorphic
iff there exists an isomorphism u : V → W such that u ◦ f = g ◦ u. Fixing
basis of V and W , this means that the matrix representations of f and g are
conjugate. Hence, the isomorphism classes of L1 are parametrized by Jordan
normal forms.

A naïve simple generalization of (ii) and (iii) provide us nontrivial examples, we
shall see below:

1.1.6 Examples. (i) For r ∈ Z>0, let Kr the r-arrows Kronecker quiver, i.e., a
quiver with vertices i, j and r -arrows α1, ...,αr : i → j .

Kr : i j
α1

αr

A representation of Kr consists of two vector spaces V and W together with r
linear maps fi : V → W (1 � i � r). Hence, the isomorphism classes of rep-
resentations of Kr with dimension vector (m, n) is parametrized by r -tuples of
n × m-matrices up to simultaneous multiplication by invertible n × n-matrices
from the left, and by invertible m × m-matrices from the right.

(ii) For r ∈ Z>0, let Lr be the r-loop with a single vertex • and r -arrows α1, ...,αr :

• α1

αi

αr

The isomorphism classes of representations of Lr with the dimension vector
n ∈ Z>0 are parametrized by r -tuples of n × n-matrices up to simultaneous
conjugation.

1.2 Path Algebras

As the category Rep(Q) is a small abelian category, one may think of relating this
category with a category of left modules over an K-algebra (cf. the Freyd–Mitchell
theorem). This can be realized by introducing

1.2.1 Definition. The path algebra of the quiver Q is the associativeK-algebraKQ
generated by ei (i ∈ Q0) and α ∈ Q1 subject to the relations

e2i = ei , ei e j = 0 (i �= j), et (α)α = αes(α) = α.
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In particular, ei ’s are orthogonal idempotents and
∑

i∈Q0
ei = 1 ∈ KQ. Likewise,

eiα = 0 unless i = t (α) and αe j = 0 unless j = s(α). The reader may see in the
proof of Lemma 1.2.3 how this algebra was introduced.

1.2.2 Remark. The algebra KQ is the algebra generated by paths.
For any arrows α,β, the product βα is zero unless s(β) = t (α). Thus a product of
arrows αlαl−1 · · · α1 is zero unless π = (α1, ...,αl) is a path, i.e., s(α j+1) = t (α j )

for 0 < j < l. We set s(π) = s(α1), t (π) = t (αl) and l(π) = l (the length of the
path). For any i ∈ Q0, view ei as a path of length 0.
Now, it is evident that the algebra with basis the set of all paths whose multiplication
is given by the concatenation of paths is isomorphic to KQop, the opposite algebra
of KQ.

1.2.3 Lemma. For any quiver Q, the category of the left KQ-modules and the
category Rep(Q) are equivalent.

Proof. (Sketch) Indeed, for any left KQ-module V , the family ((Vi := ei V )i∈Q0 ,

(α)α∈Q1) naturally has a structure of representation of Q. Conversely, for any rep-
resentation M = ((Vi )i∈Q0 , ( fα)α∈Q1), V := ⊕

i∈Q0
Vi has a KQ-module structure,

where the actions of ei and α are given by the compositions V � Vi ↪→ V and

V � Vs(α)

fα−→ Vt (α) ↪→ V , respectively.
For a complete proof, see, e.g., [21]. �

Let us construct simple representations of a quiver Q = (Q0, Q1, s, t). For any
i ∈ Q0, let S(i) be the representation of Q defined by

S(i) j :=
{
K j = i,

0 j �= i,
( j ∈ Q0), fα := 0 (α ∈ Q1).

Clearly, S(i) is simple with dimension vector εi . These representations exhaust all
simple representations, if KQ is finite dimensional:

1.2.4 Proposition. Assume that Q has no oriented cycle. Then, any simple repre-
sentation of Q is isomorphic to S(i) for a unique i ∈ Q0.

Let KQ>0 be the ideal of KQ generated by the paths of positive length. It can be
checked that KQ = KQ>0 ⊕ ⊕

i∈Q0
Kei as vector space.

Proof. Consider a simple KQ-module M . Then, as M �= KQ>0M = {0}, M may
be viewed as a module over the algebra

KQ/KQ>0
∼=

⊕

i∈Q0

Kei
∼=

∏

i∈Q0

K.

As a consequence, each subspace ei M is a KQ-submodule of M . �



220 K. Iohara

The condition that Q has no oriented cycle is essential. For example, the irre-
ducible representations of 1-loop L1 are exactly the spaces S(λ) := K[X ]/(X −
λ)K[X ] with λ ∈ K, viewed as KL1 = K[X ]-modules.

A particular feature of KQ is that it is a (left) hereditary algebra, i.e., any
submodule of a projective KQ-module is projective. To show this, it is sufficient
to see that its global dimension is at most 1. For i ∈ Q0, set P(i) := KQei . As∑

i∈Q0
ei = 1 ∈ KQ, one sees that P(i) is a projectiveKQ-module. The next propo-

sition is known as the standard resolution:

1.2.5 Proposition. For any left KQ-module M, the next sequence is exact:

0 −→
⊕

α∈Q1

P(t (α)) ⊗K es(α)M
u−→

⊕

i∈Q0

P(i) ⊗K ei M
v−→ M −→ 0,

where the maps u and v are defined as follows:

u(a ⊗ m) := aα ⊗ m − a ⊗ αm (a ∈ P(t (α)), m ∈ es(α)M),

v(a ⊗ m) := a.m (a ∈ P(i), m ∈ ei M).

Here, the left KQ-module structure on P(i) ⊗K ei M is defined by a(b ⊗ m) :=
ab ⊗ m for a ∈ KQ, b ∈ P(i) and m ∈ ei M.

For algebras of finite global dimension, see, e.g., [10].

1.3 Examples and Exercises

Proposition 1.2.4 shows that the classification of simple representations of the quiver
Q with no oriented cycle is too simple. By the Krull–Remak–Schmidt theorem, any
finite-dimensional representations decomposes into a direct sum of indecomposable
representations. Hence, an interesting question is to classify indecomposable repre-
sentations up to isomorphism. Now, we work on some examples.

1.3.1 Example. (First) Let us rework on the quiver K1 : • •
Recall that its representation is nothing but a linear map f : V → W between

two vector spaces V and W . This representation has the isotypic decomposition:

V
f

W = Ker f 0 ⊕ Coim f 1 Im f ⊕ 0 Coker f,

where the indecomposable component of the each summand in the right hand side is

K 0 ,
K K

1 , 0 K
,

respectively. We remark that the dimension vectors of these representations are
ε1, ε1 + ε2 and ε2, respectively.
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1.3.2 Exercise. Determine the isomorphism classes of the indecomposable repre-
sentations of the quiver • • • . What happens if we change the
orientation ?

1.3.3 Example. (Second) Consider the quiver Sr consisting of r + 1 vertices
0, 1, ..., r , and r arrows with sources 1, 2, ..., r and common target 0, for example

S4 : 1 0 3

2

4

A representation M of Sr consists of r + 1 vector spaces V1, ..., Vr , W together with
r linear maps fi : Vi → W . Consider the isomorphism classes of indecomposable
representations with dimension vector 2ε0 + ∑r

i=1 εi . We may assume that every fi

is injective, since otherwise such a representation decomposes into a direct sum of
(at least) two representations.

1.3.4 Exercise. For r = 3, check that there is only 1 isomorphism class of indecom-
posable representations with such dimension vector.

1.3.5 Example. (Third) But, for r � 4, this is no longer true. Indeed, the isomor-
phism classes of such representations are in bijection with the PGL2(K)-orbits of
P
1(K) × · · · × P

1(K) (r copies of the projective line). Let us analyze the case of
r = 4 in detail.

Suppose that Im fi �= Im f j for i �= j . By an appropriate base change of K2, we
can assume that there existsλ ∈ K \ {0, 1} such that the image of each fi is generated
by the vector given on each arrow:

K
(1, 0)

K
2

(0, 1)
K

(1, 1)

K

(1,λ)

K

Suppose that, at least three of fi ’s (1 � i � 4) have the same image. It can be
seen that such a representation is no more indecomposable. Hence, we may assume
that two of fi ’s have the same image and other two have the different images.
(There are

(4
2

) = 6 such possibilities.) Hence, consider the case λ = ∞ ∈ P
1(K).

There exists a basis {x, y} of K2 such that Im f1 = Kx, Im f2 = K(x + y) and
Im f3 = Im f4 = Ky. In such a case, there is an indecomposable sub-representation
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of dimension vector ε0 + ε3 + ε4 and its quotient is an indecomposable representa-
tion of dimension vector ε0 + ε1 + ε2:

KK

0

0

K

K Kx
Ky K

K

K

sub

K K

K

0

0

Thus, the isomorphism classes of the indecomposable representations of dimension
vector 2ε0 + ∑4

i=1 εi are parametrized by (P1(K) \ {3 pts}) ∪ {6 pts}.
In general, the classification of isomorphism classes of representations of the

quiver Sr with dimension vector nε0 + m
∑r

i=1 εi is the same as the classification
problem of r-subspaces of dimension m in K

n .

1.3.6 Exercise. Here, we consider the quiver Q:

0

1

2

(i) Determine the isomorphism classes of indecomposable representations of Q
with dimension vector

∑2
i=0 εi . (One should find

K

1

K

1

K
λ

for some λ ∈ K, and two representations at the bottom of the diagram:

0

K

0

K

1
K

0

K
1

K

0

K
1

K

0
K

1

K
1

0

K

0

Thus, the isomorphism classes of the indecomposable representations of dimen-
sion vector

∑2
i=0 εi are parametrized by K

∗ ∪ {3 pts}.)
(ii) The same question with dimension vector 2ε0 + ε1 + ε2.

(Up to isomorphism, there only is 1 indecomposable representation

K
2

f

K

1

Kg

where the maps f and g satisfies Ker f �= Ker g.)
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Work out the same questions for the quiver

0

1

2

For information, see, e.g., the Bourbaki seminar of Gabriel [9].

1.3.7 Exercise. Let l ∈ Z>1. We consider the cyclic quiver Q with l + 1 nodes:

1 2 l − 1 l

0

Classify the isomorphism classes of the indecomposable representations with
dimension vector

∑l
i=0 εi . In particular, check that there are simple representations

among them.

1.3.8 Exercise. Here, we consider the indecomposable representations of the 2-
arrow Kronecker quiver K2:

0 1

(i) Show that the isomorphism classes of indecomposable representations of dimen-
sion vector n(ε0 + ε1) for n ∈ Z>0 are parametrized by P

1(K).
(ii) For n ∈ Z�0 and r ∈ Z>0, let f, g : Kn → K

n+r be the linear maps defined by

f (x1, x2, ..., xn) := (x1, x2, ..., xn, 0, ..., 0),

g(x1, x2, ..., xn) := (0, ..., 0, x1, x2, ..., xn).

Show that the representation of K2 defined by the linear maps f and g is inde-
composable if and only if r = 1.

(iii) For n ∈ Z�0, find an indecomposable representation of K2 whose dimension
vector is (n + 1)ε0 + nε1.

Indeed, it turns out that these representations of K2 exhaust the isomorphism classes
of indecomposable representations. (See, e.g., Kronecker’s original paper [18], or
Dieudonné’s simplified version [5] or Benson’s book [2], for detail.)

(iv) What can one say for the next quiver?
0 1

(v) Compare the results for these two quivers.

2 Classification of Indecomposable
Representations

In this section, we assume that the underlying non-oriented graph of a quiver Q is
connected unless otherwise stated.
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2.1 Type of Representations

A quiver Q is called of finite type if Q admits only finitely many indecomposable
representations, up to isomorphism. For example, the quiver K1 considered in the
previous section is of finite type. More generally, we will see that the quiver

1 2 n

is of finite type, which is called of type An .
If the category Rep(Q) admits a full embedding of the category Rep(L2), the

quiver Q is calledwild by the next reason. Indeed, the path algebraKL2 is isomorphic
to the tensor algebraK〈X, Y 〉 := T (KX ⊕ KY ) overK. For anyK-algebra A of finite
type with generators a1, a2, ..., an , one can define a fully faithful functor

F : Mod f
A −→ Mod f

K〈X,Y 〉,

whereModfA signifies the category ofK-finite dimensional left A-modules, by setting
F(M) = Mn+2 and the action of X and Y are given by

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

...
. . . 1

0 · · · · · · · · · · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · · · · · · · · · · 0
1

. . .
...

a1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 · · · 0 an 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This means a complete classification of the representations of the quiver L2 implies,
thus, a complete classification of K-finite dimensional representations of all K-
algebras of finite type, which is somehow hopeless. If the quiver Q is neither of
finite type nor wild, it is said to be tame.

2.2 Tits Form

For n = (ni )i∈Q0 ∈ (Z�0)
Q0 , it is clear that the set of representations of Q of dimen-

sion vector n is in bijective correspondence with the representation space

RepQ(n) :=
⊕

ϕ∈Q1

HomK(Kns(ϕ) ,Knt (ϕ) ).

By definition, the representations of Q corresponding to two elements ( fα)α∈Q1 and
(hα)α∈Q1 are isomorphic if and only if they lie in the same G(n)-orbit, where the
G(n) := ∏

i∈Q0
GL(K, ni )-action on Rep(Q, n) is given by
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(gi )i∈Q0 .(ϕα)α∈Q1 := (gt (α)ϕαg−1
s(α))α∈Q1 ,

for gi ∈ GL(ni ,K) and ϕα ∈ HomK(Kns(ϕ) ,Knt (ϕ) ). Clearly, this action induces an
action of PG(n) := G(n)/K∗ ∏

i∈Q0
idKni -action on RepQ(n). As K is infinite by

assumption, if dim PG(n) < dim RepQ(n), i.e.,

qQ(n) :=
∑

i∈Q0

n2
i −

∑

α∈Q1

ns(α)nt (α) � 0,

there are infinitely many PG(n)-orbits on RepQ(n), hence infinitely many isomor-
phism classes of representations of Q of dimension vector nwhich implies that there
are infinitely many isomorphism classes of finite dimensional indecomposable rep-
resentations of Q.
The quadratic formqQ is called theTits form associated to Q.We remark that this does
not depend on a choice of Q1, i.e., it depends only on the underlying non-oriented
graph, say |Q|. The Cartan matrix CQ describes the polarization of qQ :

(m, n)Q = qQ(m + n) − qQ(m) − qQ(n) = mCQnT .

The components of CQ = (ci, j )i, j∈Q0 have an expression in terms of |Q|:

ci, j =
{
2 − 2 · �{loops in i} i = j,

−�{edges connecting i and j} i �= j.

2.2.1 Lemma (cf. [15]). Let Q be a quiver whose underlying non-oriented graph
|Q| is connected, q be its Tits form and C be its Cartan matrix.

1. q is positive definite iff |Q| is a Dynkin diagram of type Al (l � 1), Dl (l �
4), E6, E7 or E8.

2. q is positive semi-definite iff either Q is the 1-loop L1 (which is also called of type
Ã0) or |Q| is an extended Dynkin diagram of type Ãl (l � 1), D̃l (l � 4), Ẽ6, Ẽ7

or Ẽ8. In this case, rank C = �Q0 − 1 and

{m ∈ (Z�0)
Q0 |CmT � 0} = {m ∈ (Z�0)

Q0 |CmT = 0}
={m ∈ (Z�0)

Q0 |qQ(m) = 0} = Z�0δQ,

for a unique δQ ∈ (Z�0)
Q0 \ {0}.

3. q is indefinite iff CmT � 0T for m ∈ (Z�0)
Q0 implies m = 0, and there exists

an m ∈ (Z�0)
Q0 such that mT > 0T and CmT < 0T .

Here, mT > 0T (resp. mT � 0T ) means that mi > 0 (resp. mi � 0) for any i ∈ Q0.

Here are the diagrams:
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Dynkin diagrams (l nodes)

Al (l � 1) • • • •

Dl (l � 4) • • •
•

•

E6 • • •

•

• •

E7 • • •

•

• • •

E8 • • •

•

• • • •
Extended Dynkin diagrams (l + 1 nodes)

Ãl (l � 2) • • • •
•

Ã1 • •

D̃l (l � 4)

•

•
• •

•

•

Ẽ6 • • •
•
•

• •

Ẽ7 • • • •
•

• • •

Ẽ8 • • •
•

• • • • •
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We remark that the underlying non-oriented graphs of the quivers K1 = S1, K2,

S2, S3 and S4 are A2, Ã1, A3, D4 and D̃4, respectively.
For n ∈ (Z�0)

Q0 , we denote by R(Q, n) the set of isomorphism classes of the rep-
resentations of Q of dimension vector n, which is the same as the set of PG(n)-orbits
on RepQ(n). We also denote the subset of R(Q, n) consisting of the indecomposable
representations by R(Q, n)ind.

2.3 Main Theorem

For i ∈ Q0, let ri ∈ GL(ZQ0) be the reflection defined by

ri (m) = m − (m, εi )Qεi

for m ∈ Z
Q0 . The subgroup W � GL(ZQ0) generated by {ri }i∈Q0 is called the Weyl

group of |Q|. Set

� = {εi }i∈Q0 and KQ := {m ∈ (Z�0)
Q0 |(m, εi )Q � 0 ∀ i ∈ Q0}.

An element of the set �+(Q)re := W.� ∩ (Z�0)
Q0 is called a positive real root, and

an element of the set �+(Q)im := W.KQ is called a positive imaginary root. An
element of �+(Q) := �+(Q)re ∪ �+(Q)im is just called a positive root. For detail,
see, e.g., [15].

When |Q| is a Dynkin diagram, it is clear that �+(Q)im = ∅, hence we have
�+(Q) = �+(Q)re in this case. We also have �+(Q) = {m ∈ (Z�0)

Q0 |qQ(m) =
1}. When |Q| is an extended Dynkin diagram, it is well-known (cf. [15]) that
�+(Q)im = Z>0δQ where δQ is defined in Lemma 2.2.1 and �+(Q)re = {m ∈
(Z�0)

Q0 |qQ(m) = 1}.
2.3.1 Theorem. (cf. [8, 9]). Assume that Q is a quiver whose underlying non-
oriented graph |Q| is connected.

1. Q is of finite type iff |Q| is a Dynkin diagram of type
Al (l � 1), Dl (l � 4), E6, E7 or E8.

2. In this case, the map dim induces a bijection between the set of isomorphism
classes of the indecomposable representations of Q and �+(Q).

The original proof of this theorem due to Gabriel [8] is rather direct computations.
For more conceptual proof, see, e.g., [3] where the authors introduced the so-called
reflection functor. Another algebraic proof is given in a lecture note by W. Crawley-
Boevey mentioned at the beginning of this lecture. A proof using tilting theory can
be found in [1]. A geometric proof can be found in [4].

2.3.2 Theorem. (cf. [7, 19]). Assume that Q is a quiver whose underlying non-
oriented graph |Q| is connected.
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1. Q is tame iff either Q is of type Ã0 or |Q| is an extended Dynkin diagram of type
Ãl (l � 1), D̃l (l � 4), Ẽ6, Ẽ7 or Ẽ8.

2. In this case, {m ∈ (Z�0)
Q0 |R(Q,m)ind �= ∅} = �+(Q).

3. Moreover, one has �R(Q,m)ind = 1 for any m ∈ �+(Q)re, and �R(Q,m)ind =
∞ for any m ∈ �+(Q)im.

By this theorem, Q is often said to be affine when it is tame and not of type Ã0.
For the representation theory of tame quivers, see, e.g., [6, 20].

V. G. Kac obtained a generalization of these results to graphs with no loop, i.e.,
those corresponding to symmetrizable Kac–Moody algebras:

2.3.3 Theorem (cf. [12, 13]). Assume that Q is a quiver whose underlying non-
oriented graph |Q| contains no loop.

1. {m ∈ (Z�0)
Q0 |R(Q,m)ind �= ∅} = �+(Q).

2. If m ∈ �+(Q)re, then �R(Q,m)ind = 1.
3. If m ∈ �+(Q)im, the number of parameters of RepQ(m)ind is

1 − qQ(m), where RepQ(m)ind ⊂ RepQ(m) signifies the subset of indecompos-
able representations.

For d ∈ Z>0, let RepQ(m)
(d)
ind be the subset of indecomposable representations M

with dim End(M) = d. Then, the dimension of the orbit of ( fα)α∈Q1 ∈ RepQ(m)
(d)
ind

is dim PG(m) − d which implies

dim RepQ(m)
(d)
ind − d =(dim PG(m) − d) + 1 − (dim G(m) − dim RepQ(m)

(d)
ind)

�(dim PG(m) − d) + 1 − qQ(m).

Thus, the third statement of the above theorem asserts that {dim RepQ(m)
(d)
ind}d>0

attains the maximal possible dimension, i.e., dim RepQ(m).
For detail, the reader may consult the articles [14] by Kac, and by Kraft and

Riedtmann [17] where some incorrect original statements were rectified.
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Chapter 7
Introduction to Quiver Varieties

Yoshiyuki Kimura

1 Introduction

Quiver representations and Kac–Moody Lie algebras. The interaction between
quiver representations and Kac–Moody Lie algebras has an origin in Gabriel’s the-
orem. Gabriel [15] classified the quivers which are finite representation types and
showed the existence of the bijection between the set of isomorphism classes of
indecomposable representations of Dynkin quivers Q and the set of positive roots
of the corresponding simply laced Lie algebra gQ via dimension vectors. Bernšteı̆n–
Gel’fand–Ponomarev [2] gave a proof of Gabriel’s theorem using reflection functors
and Coxeter functors. Using the theory of species introduced by Gabriel [16], Dlab–
Ringel [11] extendedGabriel’s theorem to finite dimensional hereditary algebras over
arbitrary fields. The classification of the indecomposable representations of affine
quivers was studied by Weierstrass, Kronecker, Gel’fand–Ponomarev, Donovan–
Freislich, Nazarova and Dlab–Ringel [12]. Kac [24, 25] generalized Gabriel’s the-
orem for arbitrary quiver and related it to the symmetric Kac–Moody Lie algebras.
In particular, Kac introduced the counting polynomials of absolutely indecompos-
able representations over finite fields and proposed the constant term conjecture [26,
Conjecture 1] which relates to multiplicities of the corresponding Lie algebras and
the positivity conjecture [26, Conjecture 2].

Hall algebras and canonical bases. Ringel [52] studied the Hall algebras of the
abelian categories of quiver representations (or hereditary algebras) over finite fields
and related them to the Drinfeld–Jimbo quantized enveloping algebras. Using the
Grothendieck’s function-sheaf dictionary, Lusztig geometrizedRingel’s construction
and invented the theory of canonical bases using perverse sheaves on the varieties
of quiver representations [31]. Lusztig also studied the conormal variety of the vari-
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eties of quiver representations [32, Sect. 8] in finite representation types. In general,
Lusztig [33] gave an estimate of singular support (or characteristic varieties) of the
class of perverse sheaves arising in the theory of canonical bases and studied an
inductive structure on the set of irreducible components of the representation variety
of preprojective algebras, called Lusztig quiver varieties. He also gave a conjecture
[33, 13.7 (b)] on existence and uniqueness of the bijection between the set of irre-
ducible components of Lusztig quiver varieties and the class of perverse sheaves
arising in the theory of canonical basis. Kashiwara–Saito [27] proved that the induc-
tive structure on the set of irreducible components of Lusztig quiver varieties give
rise to the crystal structure of the canonical base of quantized universal enveloping
algebra, in fact they proved the existence of a bijection between the canonical base
and the set of irreducible components of Lusztig quiver varieties.

Moduli spaces of instantons on ALE spaces. Kronheimer [29] gave a descrip-
tion of a particular family of 4-dimensional non-compact complete hyper-Kähler 4-
manifolds, the so-calledALE1 spaces (or theALE gravitational instantons), as hyper-
Kähler quotient via the McKay correspondence. In fact, Kronheimer constructed the
simple singularity C

2/�, its semi-universal deformation, and simultaneous resolu-
tion that was constructed by Brieskorn–Slodowy using an entirely different method
(see also Cassens–Slodowy [3]). Kronheimer and Nakajima [30] (see also Nakajima
[46]) gave the ADHM2 description of instantons (or sheaves) on ALE spaces. Naka-
jima [39] introduced quiver varieties as a generalization of ADHM descriptions of
the moduli spaces of instantons on ALE spaces to arbitrary quiver.

Quiver varieties and Representation theory. Nakajima [39, 41] gave a geometric
construction of integrable highest weight representations of the symmetric Kac–
Moody Lie algebras on constructible functions or Borel–Moore homologies of the
Lagrangian quiver varieties. He also studied the representation theory of quantum
affine algebras [43, 45, 48] using equivariant K -theory of the quiver varieties and
perverse sheaves on (graded and cyclic) quiver varieties. Hausel [21] studied the
formula of the Betti numbers of quiver varieties and proved Kac’s constant term
conjecture. As a generalization of Bernšteı̆n–Gel’fand–Ponomarev reflection func-
tors, the reflection functors of quiver varieties are also studied by Nakajima [39, 44],
Crawley–Boevey–Holland [9], Lusztig [34] and also Maffei [35]. The Weyl group
action on quiver varieties and its isotypical decomposition of the cohomology groups
is used for the proof of Kac’s positivity conjecture by Hausel–Letellier–Rodriguez–
Villegas [22].

Plan of the chapter. The plan of the chapter is as follows. In this chapter, wewill give
gentle introduction of quiver varieties, that is we do not treat the applications of the
quiver varieties to representation theory. In thefirst part,we treat the theory of stability
for quiver representations. In the second part, we explain about preprojective algebras
and quiver varieties as framed moduli spaces of representations of preprojective

1ALE stands for asymptotically locally Euclidean.
2ADHM stands for Atiyah–Drinfeld–Hitchin–Manin.
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algebras. For the applications of the quiver varieties to representation theory, see
Nakajima [40, 42], Ginzburg [20], and Schiffmann [55].

2 Moduli Spaces of Quiver Representations

In this section, we will introduce the notion of (semi)stability for quiver represen-
tations and its basic properties. We follow an approach due to King [28, Definition
1.1] and Rudakov [54].

2.1 Quivers and Their Representations

2.1.1 Definition. Aquiver Q is a directedgraph, that is a quadruple (Q0, Q1, out, in),
where Q0 is a set of vertices and Q1 is a set of arrows and out : Q1 → Q0 is a map
which assigns the outgoing vertex and in : Q1 → Q0 is a map which assigns the
incoming vertex.

In this chapter, we assume that a quiver is finite, that is the set Q0 of vertices and
the set Q1 of edges are finite sets. Let C be the field of complex numbers and we fix
it as a base field for simplicity.

2.1.2 Definition. Let Q be a quiver.

(i) A quiver representation (B, V ) over C is a pair which consists of a Q0-graded
vector space V = ⊕

i∈Q0
Vi over C and a Q1-tuple of C-linear maps

B =
⊕

h∈Q1

Bh ∈
⊕

h∈Q1

HomC

(
Vout(h), Vin(h)

)
.

(ii) A homomorphism between quiver representations
(
B1, V 1

)
and

(
B2, V 2

)
is a

Q0-tuple of homomorphisms ofC-vector spacesϕ = (ϕi )i∈Q0
with B2

hϕout(h) =
ϕin(h) B1

h for h ∈ Q1, that is a Q0-tuple of homomorphisms of the C-vector
spaces ϕi : V 1

i → V 2
i such that the following diagram commutes for each h ∈

Q1:

V 1
out(h)

ϕout(h)

B1
h

�

V 1
in(h)

ϕin(h)

V 2
out(h) B2

h

V 2
out(h)

2.1.3 Definition. Let Q be a quiver and (B, V ) be a quiver representation over C.
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(i) A Q0-graded subspace V ′ = ⊕
i∈Q0

V ′
i of V is called B-adapted if Bh V ′

out(h) ⊂
V ′
in(h) for all h ∈ Q1.

(ii) Let V ′ be a B-adapted Q0-graded subspace of V .
(
B|V ′ , V ′) (resp.

(
B|V/V ′ ,

V/V ′)) is called a subrepresentation (resp. quotient representation) of (B, V ),
where (B|V ′)h : V ′

out(h) → V ′
in(h) (resp.

(
B|V/V ′

)
h : (

V/V ′)
out(h)

→
(
V/V ′)

in(h)
) is the induced linear map from

Vout(h)

Bh−→ Vin(h) � Vin(h)/V ′
in(h).

Since the structure of the representations on V ′ and V/V ′ is uniquely determined
by the restriction, hence V ′ (resp. V/V ′) is called subrepresentation (resp. quotient)
representation.More generally, for a quiver representation (B, V )of Q and afiltration

0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V � = V,

of B-adapted vector spaces, we consider the canonical induced structure of the rep-
resentations

(
B|V i /V i−1 , V i/V i−1

)
on V i/V i−1 (1 � i � �).

2.1.4 Examples. For quiver representations
(
B1, V 1

)
,
(
B2, V 2

)
and a homomor-

phism ϕ between them, the Q0-graded subspaces
⊕

i∈Q0
Ker (ϕi ) ⊂ V 1 (resp.

⊕
i∈Q0

Im (ϕi ) ⊂ V 2) is B1 (resp. B2)-adapted. So the subrepresentation Ker (ϕ) :=
(

B1|⊕
i∈Q0

Ker(ϕi ),
⊕

i∈Q0
Ker (ϕi )

)
(resp. Im (ϕ) :=

(
B2|⊕

i∈Q0
Im(ϕi ),

⊕
i∈Q0

Im

(ϕi ))) of
(
B1, V 1

)
(resp.

(
B2, V 2

)
) is canonically defined.

Letmod (CQ) be the category of finite dimensional representations of the quiver
Q, that is each vector space Vi is finite dimensional. It is well-known thatmod (CQ)

is a C-linear abelian category (see also Iohara [23, Sect. 2] in the same volume for
more details).

Let Z
Q0
�0 and Z

Q0 be the abelian monoid (resp. the abelian group) of maps Q0 →
Z�0 (resp. Q0 → Z) whose addition is given by its the addition of the value of maps.
For i ∈ Q0, let αi ∈ Z

Q0
�0 ⊂ Z

Q0 be the map defined by αi : j �→ δi, j (i, j ∈ Q0),
where δi, j is the Kronecker’s delta.

2.1.5 Definition. (dimension vector) Let Q = (Q0, Q1) be a quiver and (B, V ) a
quiver representation over C. We define the dimension vector dim (B, V ) ∈ Z

Q0
�0 ⊂

Z
Q0 as the map by dim (B, V ) : i �→ dimC Vi , that is

dim (B, V ) =
∑

i∈Q0

(dimC Vi )αi .

This induces a (surjective) group homomorphism dim : K0 (mod (CQ)) → Z
Q0 ,

where K0 (mod (CQ)) is the Grothendieck group of the abelian categorymod (CQ)

of representations of the quiver Q over C, that is the abelian group which is gener-
ated by [(B, V )] for all objects (B, V ) of mod (CQ), with a relation

[(
B1, V 1

)] −
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[(
B2, V 2

)] + [(
B3, V 3

)]
for each short exact sequence 0 → (

B1, V 1
) →(

B2, V 2
) → (

B3, V 3
) → 0 in mod (CQ).

We introduce a quadratic form and bilinear forms on Z
Q0 .

2.1.6 Definition. (i) For v ∈ Z
Q0 , we define the Tits form as follows:

qQ (v) =
∑

i∈Q0

v2
i −

∑

h∈Q1

vout(h)vin(h).

(ii) For v1, v2 ∈ Z
Q0 , we define the Euler–Ringel form and the symmetric bilinear

form associated with the Tits form as follows:

〈
v1, v2

〉
Q =

∑

i∈Q0

v1
i v

2
i −

∑

h∈Q1

v1
out(h)v

2
in(h),

(
v1, v2

) = 〈
v1, v2

〉
Q + 〈

v2, v1
〉
Q .

We note that qQ (v) does not depend on a choice of orientation and 〈v, v〉Q =
qQ (v) and (

v1, v2
) = qQ

(
v1 + v2

) − qQ
(
v1

) − qQ
(
v2

)
.

Using the standard Ringel resolution of the path algebra, we obtain the description
of the homomorphism spaces and the extension spaces.

2.1.7 Exercise. For quiver representations
(
B1, V 1

)
and

(
B2, V 2

)
, we define the

linear map dB1,B2 : L
(
V 1, V 2

) → EQ
(
V 1, V 2

)
by

dB1,B2

({ϕi }i∈Q0

) := {
B2

hϕout(h) − ϕin(h) B1
h

}
h∈Q1

,

where

L
(
V 1, V 2) :=

⊕

i∈Q0

HomC

(
V 1

i , V 2
i

)
,

EQ
(
V 1, V 2

) :=
⊕

h∈Q1

HomC

(
V 1
out(h), V 2

in(h)

)
.

Show that

Ker
(
dB1,B2

) = HomQ
((

B1, V 1
)
,
(
B2, V 2

))
,

Coker
(
dB1,B2

) 	 Ext1
((

B1, V 1
)
,
(
B2, V 2

))
.
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2.2 Stability Conditions for Quiver Representations

Mumford introduced the concept of stability to construct the moduli spaces of vector
bundles on algebraic curves. Rudakov [54] introduced an axiomatic approach to the
stability on an abelian category also motivated by the work of King [28] for the
category of quiver representations. Though the following treatment in Rudakov [54]
does make sense for an (essentially small) abelian category A such that all objects
have finite length, we restrict ourselves to the case A = mod (CQ) for simplicity.
The following definition reduces to (a special case of) the Rudakov stability [54,
Definition 3.1].

2.2.1 Definition. Fix a Q0-tuple of real numbers ζR = (
ζR,i

)
i∈Q0

∈ R
Q0 = HomZ

(
Z

Q0 , R
)
, called the stability parameter. For a non-zero representation (B, V ), we

set

〈ζR, dimV 〉 :=
∑

i∈Q0

ζR,i dim Vi ,

θζR (B, V ) = θζR (V ) := 〈ζR, dimV 〉
〈1, dimV 〉 =

∑
i∈Q0

ζR,i dim Vi
∑

i∈Q0
dim Vi

,

where 1 = (1)i∈Q0
∈ R

Q0 = HomZ

(
Z

Q0 , R
)
. θζR (B, V ) is called the slope of the

quiver representation (B, V ).

(i) A non-zero representation (B, V ) is said to be ζR-semistable if, for any subrep-
resentation

(
B ′, V ′) of (B, V ), we have θζR

(
B ′, V ′) � θζR (B, V ).

(ii) A non-zero representation (B, V ) is said to be ζR-stable if θζR

(
B ′, V ′) <

θζR (B, V ) for any non-zero proper subrepresentation
(
B ′, V ′) of (B, V ).

2.2.2 Exercise. Two stability parameters ζR and ζ ′
R
are said to be equivalent if (B, V )

is ζR-stable if and only if (B, V ) is ζ ′
R
-stable for any quiver representation (B, V ).

(i) For a ∈ R with a > 0, show that ζR and aζR = (
aζR,i

)
i∈Q0

∈ R
Q0 are equiva-

lent.
(ii) For b ∈ R, show that ζR and ζR + b = (

ζR,i + b
) ∈ R

Q0 are equivalent.

2.2.3 Examples. (i) We consider a “trivial” stability 0 = (0) ∈ R
Q0 . By its defini-

tion, all representations are 0-semistable and 0-stable representations are simple
representations.

(ii) We consider the (generalized) Kronecker quiver Kr with two vertices 1 and
2 with r -arrows from 1 to 2. It can be shown that that any (semi)stability is
equivalent to the (semi)stability with respect to either (0, 0), (1, 0) or (0, 1).

(iii) Let Q be an acyclic affine quiver, that is a quiver which does not contain
oriented cycles and the underlying graph is affine (or Euclidean). Let δ ∈ Z

Q0
�0

be the minimal imaginary root, that is an element δ ∈ Z
Q0
�0 with rad

(
qQ

) =
{
v ∈ Z

Q0 | (
v, v′) = 0 ∀v′ ∈ Z

Q0
} = Zδ.

The defect ∂Q ∈ HomZ

(
Z

Q0 , Z
)
is defined by
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∂Q (B, V ) = 〈δ, dim (B, V )〉Q = −〈dim (B, V ) , δ〉Q .

It is introduced by Dlab–Ringel [12] for the study of the classification of inde-
composable representations of affine (tame) quivers. In fact, the category of
∂-semistable representation with slope 0 characterizes the category of “regular
representations” in the sense of Bernšteı̆n–Gel’fand–Ponomarev [2].

2.2.4 Exercise. (i) Let Q be the linear quiver 1 → 2 → 3 → · · · → n. Let ζR ∈
R

Q0 with 〈ζR,αk〉 = −k for 1 � k � n. Show that every indecomposable rep-
resentation of Q is ζR-stable and ζR-semistables are direct sums of an indecom-
posable representation.

(ii) Let K = K2 be the Kronecker quiver. Show that dim (B, V ) is proportional to
either (k, k + 1), (1, 1) or (k + 1, k) for k ∈ Z�0 if (B, V ) is a (1, 0)-semistable.

The following lemma, called see-saw property, is elementary but a crucial ingre-
dient for the study of stability for quiver representations.

2.2.5 Lemma. Let 0 → (
B ′, V ′) → (B, V ) → (

B ′′, V ′′) → 0 be a short exact
sequence of quiver representations. Then we have the following:

(i) θζR

(
B ′, V ′) � θζR (B, V ) if and only if θζR

(
B ′, V ′) � θζR

(
B ′′, V ′′) if and only

if θζR (B, V ) � θζR

(
B ′′, V ′′).

(ii) min
(
θζR

(
B ′, V ′) , θζR

(
B ′′, V ′′)) � θζR (B, V ) � max

(
θζR

(
B ′, V ′) , θζR(

B ′′, V ′′)).

2.2.6 Exercise. Prove Lemma 2.2.5.

2.3 Harder–Narasimhan Filtration

Harder and Narasimhan introduced a “functorial” filtration of vector bundles on a
Riemann surface for the study of cohomology groups of moduli spaces. In fact, they
provide a recursive algorithm to compute the Betti numbers of moduli spaces using
the filtration.

2.3.1 Proposition. Let ζR ∈ R
Q0 and

(
B1, V 1

)
and

(
B2, V 2

)
are ζR-semistable

representations with θζR

(
B1, V 1

)
> θζR

(
B2, V 2

)
. Then every homomorphism ϕ :(

B1, V 1
) → (

B2, V 2
)

is zero.

Proof Let ϕ be a non-zero homomorphism, so Im (ϕ) is non-zero. We consider the
following short exact sequence:

0 → Ker (ϕ) → (
B1, V 1

) → Im (ϕ) → 0.

Assume that Ker (ϕ) is non-zero. Since
(
B1, V 1

)
and

(
B2, V 2

)
are ζR-semistable,

we have θζR (Ker (ϕ)) � θζR

(
B1, V 1

)
and θζR (Im (ϕ)) � θζR

(
B2, V 2

)
. But, by the
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see-saw property, we obtain that θζR

(
B1, V 1

)
� θζR (Im (ϕ)). This contradicts the

assumption θζR

(
B1, V 1

)
> θζR

(
B2, V 2

)
. Hence we obtain that Ker (ϕ) is zero. Next

we assume that ϕ is injective, then the condition θζR

(
B1, V 1

)
> θζR

(
B2, V 2

)
also

contradicts the assumption that
(
B2, V 2

)
is a ζR-semistable representation. Hence

we obtain the claim. �

2.3.2 Definition. Let ζR ∈ R
Q0 and (B, V ) a non-zero quiver representation.Amax-

imal destabilizing subrepresentation, or strongly contradicting semistability subrep-
resentation, (with respect to the stability parameter ζR ∈ R

Q0 ) is a non-zero B-
adapted subspace W of V which satisfying the following conditions:

(i) The slope (B|W , W ) is maximal for all subrepresentations of (B, V ), that is, for
a non-zero B-adapted subspace W ′ of V , we have θζR

(
W ′) � θζR (W ),

(ii) (B|W , W ) is maximal among all subrepresentations of (B, V ) of the maximal
slope, that is if θζR

(
W ′) = θζR (W ), we have W ′ ⊂ W .

2.3.3 Proposition. Let ζR ∈ R
Q0 and (B, V ) a non-zero quiver representation.

(i) A maximal destabilizing subrepresentation exists and it is unique.
(ii) A maximal destabilizing subrepresentation is ζR-semistable.

Proof (i) We prove the existence by induction on dimension vector.
Existence is clear since the set of dimension vectors of sub representations and

their slopes are finite. Hence it suffices for us to prove the uniqueness of subrepresen-
tation which satisfies the above conditions. By its definition, this subrepresentation
is ζ-semistable.

Let θ = max
{
θζ

(
B ′, V ′) | (

B ′, V ′) ⊂ (B, V )
}
and let

(
B1, V 1

)
and

(
B2, V 2

)

be subrepresentations which satisfy the conditions. We consider the short exact
sequence:

0 → V 1 ∩ V 2 → V 1 ⊕ V 2 → V 1 + V 2 → 0.

Since
(
B1, V 1

)
and

(
B2, V 2

)
are semistable with θ = θζR

(
B1, V 1

) = θζR(
B2, V 2

)
, it can be shown that

(
B1 ⊕ B2, V 1 ⊕ V 2

)
is also semistable with θ =

θζR

(
B1, V 1

) = θζR

(
B2, V 2

)
, thenwehave θζR

(
V 1 ∩ V 2

) ≤ θ = θζR

(
V 1 ⊕ V 2

)
. By

the see-saw property, we have θ � θζR

(
V 1 + V 2

)
. By the maximality of slope, we

have θζR

(
V 1 + V 2

) = θ. By the maximality of dimension, we have V 1 = V 2.
(ii) It follows from the definition of maximal destabilizing subrepresentation. �

2.3.4 Definition. Let ζR ∈ R
Q0 and (B, V ) a non-zero quiver representation. A

Harder–Narasimhan filtration for (B, V ) (with respect to the stability parameter
ζR) is a filtration of B-adapted Q0-graded vector spaces

0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V � = V

satisfying the following properties:

(i) The subquotients
(
B|V i /V i−1 , V i/V i−1

)
(1 � i � �) are ζR-semistable,

(ii) θζR

(
B|V 1 , V 1

)
> θζR

(
B|V 2/V 1 , V 2/V 1

)
> · · · > θζR

(
B|V �/V �−1 , V �/V �−1

)
.
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2.3.5 Theorem. Let ζR ∈ R
Q0 and (B, V ) a non-zero quiver representation. Then

(B, V ) has a unique Harder–Narasimhan filtration with respect to the stability
parameter ζR.

Proof We prove the existence of a Harder–Narasimhan filtration. Let V 1 ⊂ V be
the maximal destabilizing subrepresentation. By the induction on dimension, we can
assume that

(
B|V/V 1 , V/V 1

)
has a Harder–Narasimhan filtration

0 = W 0 ⊂ W 1 ⊂ · · · ⊂ W � = V/V 1.

Let V i+1 be the pre-image of W i for the projection V � V/V 1. Hence it suffices for
us to prove that θζR

(
V 1

)
> θζR

(
V 2/V 1

)
. If this does not hold, we have θζR

(
V 1

)
�

θζR

(
V 2/V 1

)
. By the see-saw property, we would obtain θζR

(
V 1

)
� θζR

(
V 2

)
con-

tradicting the maximality of V 1. Hence we have θζR

(
V 1

)
> θζR

(
V 2/V 1

)
and obtain

a Harder–Narasimhan filtration.
We prove the uniqueness of Harder–Narasimhan filtration by the induction on the

dimension of (B, V ). Let 0 = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V � = V be a filtration satis-
fying stated conditions and suppose that we have another filtration 0 = W 0 ⊂ W 1 ⊂
· · · ⊂ W m = V with the stated properties. Without losing any generality, we assume
that θζR

(
W 1

)
� θζR

(
V 1

)
. Let n be the smallest integer such that W 1 ⊂ V n . If n > 1,

then the composition W 1 ⊂ V n � V n/V n−1 is non-zero. On the other hand, by the
assumption, we have θζR

(
W 1

)
� θζR

(
V 1

)
> θζR

(
V n/V n−1

)
. By Proposition 2.3.1,

this must be zero. Hence we obtain that n = 1. Then W 1 is a subspace of V 1. By
the semistability of V 1, we have θζR

(
W 1

) = θζR

(
V 1

)
. Then changing the role of

V 1 and W 1, we obtain that V 1 = W 1. By the induction hypothesis on the dimen-
sion vector, we have the claim for

(
B|V/V 1 , V/V 1

)
, hence we obtain the claim for

(B, V ). �

2.3.6 Exercise. Fix ζR ∈ R
Q0 . For θ ∈ R and a representation (B, V ), we define

(B, V ) (θ) = (
B|V k , V k

)

if θζR

(
B|V k/V k−1 , V k/V k−1

)
� θ > θζR

(
B|V k+1/V k , V k+1/V k

)
, where

0 = V 0
� V 1

� V 2
� · · · � V � = V

is the Harder–Narasimhan filtration of (B, V ).

(i) For θ ∈ R, for any homomorphism ϕ : (
B1, V 1

) → (
B2, V 2

)
, show that

ϕ
((

B1, V 1
)(θ)

)
⊂ (

B2, V 2
)(θ)

.

(ii) Given ζR ∈ R
Q0 and θ ∈ R, we define Tθ as the class of all representations

(B, V ) with (B, V )(θ) = (B, V ) and we define Fθ be the class of all repre-
sentations (B, V ) with (B, V )(θ) = 0. Show that (Tθ,Fθ) is a torsion pair in
mod (CQ), that is HomQ (T, F) = 0 for T ∈ Tθ and F ∈ Fθ, and Tθ and Fθ

are maximal with respect to the vanishing conditions.
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(iii) For θ1 < θ2, show that Tθ2 ⊂ Tθ2 and Fθ2 ⊃ Fθ2 .

2.4 Jordan–Hölder Filtration

We study the full subcategory which consists of semistable representations of a fixed
slope.

2.4.1 Proposition. For ζR ∈ R
I and θ ∈ R, let RζR,θ be the full subcategory of

mod (CQ) which consists of ζR-semistable representations with θζR (B, V ) = θ and
the zero object.

(i) Assume that
0 → (

B ′, V ′) → (B, V ) → (
B ′′, V ′′) → 0

is an exact sequence of non-zero representations of Q over C with

θζR (B, V ) = θζR

(
B ′, V ′) = θζR

(
B ′′, V ′′) = θ.

(B, V ) is ζR-semistable if and only if
(
B ′, V ′) and

(
B ′′, V ′′) are ζR-semistable.

(ii) RζR,θ is a weakly Serre subcategory of mod (CQ), that is closed under exten-
sions, kernels and cokernels. In particular, RζR,θ is an abelian subcategory of
mod (CQ).

Proof (i) First, we assume that
(
B ′, V ′) and

(
B ′′, V ′′) are ζR-semistable represen-

tations with θζR

(
B ′, V ′) = θζR

(
B ′′, V ′′) = θζR (B, V ) = θ and show that (B, V ) is

ζR-semistable. Let W ⊂ V be a B-adapted Q0-graded subspace. We consider the
following canonical exact sequence of Q0-graded vector spaces:

0 → W ∩ V ′ → W → (
W + V ′) /V ′ → 0.

We note that W ∩ V ′ is a B ′-adapted Q0-graded vector space and
(
W + V ′) /V ′ is a

B ′′-adapted Q0-graded subspace of V ′′ = V/V ′ and we regard them as quiver repre-
sentations. Since

(
B ′, V ′) and

(
B ′′, V ′′) are ζR-semistable, we have θζR

(
W ∩ V ′) �

θζR

(
V ′) and θζR

((
W + V ′) /V ′) � θζR

(
V ′′), then we obtain that

θζR (W ) � max
(
θζR

(
W ∩ V ′) , θζR

((
W + V ′) /V ′))

� max
(
θζR

(
V ′) , θζR

(
V ′′)) = θζR (V ) ,

that is (B, V ) is ζR-semistable. Next we assume that (B, V ) is ζR-semistable with

θζR

(
B ′, V ′) = θζR

(
B ′′, V ′′) = θζR (B, V ) = θ.

Let W ′ ⊂ V ′ be a B ′ = B|V ′-adapted Q0-graded subspace, then it is also a B-adapted
Q0-graded subspace of V . Then we obtain
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θζR

(
W ′′) � θζR (V ) = θζR

(
V ′′) ,

that is
(
B ′′, V ′′) is ζR-semistable. Let W ′′ ⊂ V ′′ be a B ′′ = B|V ′′ -adapted Q0-graded

subspace and W ⊂ V be the inverse image for the projection V → V ′′, that is we
have the following exact sequence of Q0-graded vector spaces:

0 → V ′ → W → W ′′ → 0,

we note that W is a B-adapted Q0-graded subspace of V . Since (B, V ) is ζR-
semistable, we have θζR (W ) � θζR (V ) = θζR

(
V ′), hence we obtain

θζR

(
W ′′) � θζR (W ) � θζR (V ) = θζR

(
V ′′) ,

that is
(
B ′′, V ′′) is ζR-semistable.

(ii) By the see-saw property and (a), it is clear that RζR,θ is closed under
extensions. So it suffices for us to prove that it is closed under kernels and cok-
ernels for homomorphisms between semistable representations. For a homomor-
phism ϕ : (

B1, V 1
) → (

B2, V 2
)
, we consider the following canonical short exact

sequences (inmod (CQ)):

0 → Ker (ϕ) → (
B1, V 1

) → Im (ϕ) → 0,

0 → Im (ϕ) → (
B2, V 2) → Coker (ϕ) → 0.

Since
(
B1, V 1

)
and

(
B2, V 2

)
are ζR-semistable, we have

θζR (Ker (ϕ)) � θζR

(
B1, V 1

)
� θζR (Im (ϕ)) ,

θζR (Im (ϕ)) � θζR

(
B2, V 2

)
� θζR (Coker (ϕ)) ,

then we obtain that θζR

(
B1, V 1

)
� θζR (Im (ϕ)) � θζR

(
B2, V 2

)
. By the assumption

θζR

(
B1, V 1

) = θζR

(
B2, V 2

) = θ,

we have θζR (Im (ϕ)) = θ and hence we obtain θζR (Ker (ϕ)) = θζR (Coker (ϕ)) = θ
by the see-saw property. So the claim that Ker (ϕ) ∈ RζR,θ and Coker (ϕ) ∈ RζR,θ

follows from (1). �

2.4.2 Remark. It is clear that the simple objects in RζR,θ are the stable represen-
tations with θζR = θ. Since stable representation is not necessarily a simple object
in mod (CQ) in general, the category RζR,θ is not closed under arbitrary sub rep-
resentations and quotient representations, hence RζR,θ is not a Serre subcategory in
general.

SinceRζR,θ is an abelian category such that all representations have finite length,
we obtain the following Jordan–Hölder theorem for RζR,θ.
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2.4.3 Definition. Let ζR ∈ R
Q0 and (B, V ) a ζR-semistable quiver representation

with θζR (B, V ) = θ. A Jordan–Hölder filtration of (B, V ) is a filtration

0 = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V � = V

of B-adapted Q0-graded subspaces of V satisfying the following conditions:

(i) each subquotient
(
B|V i /V i−1 , V i/V i−1

)
is ζR-stable for 1 � i � �,

(ii) θζR

(
B|V 1 , V 1

) = θζR

(
B|V 2 , V 2

) = · · · = θζR (B, V ) = θ for 1 � i � �.

If we consider the direct sum of two stable representation with the same slope, it
can be seen that a Jordan–Hölder filtration need not be unique.

2.4.4 Theorem. Let ζR ∈ R
Q0 . Let (B, V ) be a ζR-semistable quiver representation.

Then there exists a Jordan–Hölder filtration of (B, V ) and the semisimplification or
the graded quotient

gr J H
ζR

(B, V ) :=
�⊕

i=1

(
B|V i /V i−1 , V i/V i−1

)

does not depend on the choice of the Jordan–Hölder filtration of (B, V ).

Proof If we consider any filtration of (B, V ) with the same slope, then its max-
imal refinement of it yields a Jordan–Hölder filtration by construction. We prove
the uniqueness of the graded quotient by the induction of the length of Jordan–
Hölder filtrations. Let 0 = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V � = V and 0 = W 0 ⊂ W 1 ⊂
W 2 ⊂ · · · ⊂ W m = V be Jordan–Hölder filtration of (B, V ). Let n1 be the natu-
ral number such that W 1 ⊂ V n1 and W 1 �⊂ V n1−1. Let us consider the nontriv-
ial composite homomorphism W 1 → V n1 � V n1/V n1−1. Since

(
B|W 1 , W 1

)
and(

B|V n1 /V n1−1 , V n1/V n1−1
)
are ζR-stable with same slope, we obtain

(
B|W 1 , W 1

) 	(
B|V n1 /V n1−1 , V n1/V n1−1

)
and the canonical short exact sequence of quiver represen-

tations

0 → (
B|V n1−1 , V n1−1

) → (
B|V n1 , V n1

) → (
B|V n1 /V n1−1 , V n1/V n1−1

) → 0

splits. Then the following filtration 0 = U 0 ⊂ U 1 ⊂ U 2 ⊂ · · · ⊂ U � = V

U i =

⎧
⎪⎨

⎪⎩

0 i = 0

W 1 ⊕ U i−1 1 � i � n1

V i i > n1

is a Jordan–Hölder filtration of (B, V ).
By the non-zero homomorphism W 1 → V n1 � V n1/V n1−1, it can be shown that

the above short exact sequence splits as quiver representations. That is

(
B|V n1 , V n1

) 	 (
B|V n1−1 , V n1−1) ⊕ (

B|W 1 , W 1) .
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We see that
�⊕

i=1

U i/U i−1 	
�⊕

i=1

V i/V i−1.

Since the filtrations
(
W j

)
1� j�m and

(
U i

)
1�i��

have the same first term, so that
(
W j/W 1

)
2� j�m and

(
U i/W 1

)
2�i��

induce two Jordan–Hölder filtrations of
(
B|V/W 1 , V/W 1

)
. By the induction on the length of filtrations, we obtain the isomor-

phism between graded quotients of the Jordan–Hölder filtrations
(
W j/W 1

)
2� j�m

and
(
U i/W 1

)
2�i��

. Hence we obtain the claim. �

2.4.5 Definition. (i) Let ζR ∈ R
Q0 . ζR-semistable quiver representations

(
B1, V 1

)

and
(
B2, V 2

)
with θζR (B, V ) = θ are said to be S-equivalent 3 if gr J H

(
B1, V 1

)

	 gr J H
(
B2, V 2

)
.

(ii) A semistable representation (B, V ) is said to be ζR-polystable if (B, V ) is
a finite direct sum of ζR-stable with same slope, that is we have (B, V ) 	⊕r

j=1

(
B j , V j

)
with

(
B j , V j

)
is ζR-stable with θζR

(
B1, V 1

) = · · · = θζR

(Br , V r ).

2.4.6 Remark. (i) Let ζR ∈ R
Q0 and (B, V ) a ζR-semistable quiver representation.

Then gr J H (B, V ) is ζR-polystable and (B, V ) is S-equivalent to gr J H (B, V ).
(ii) A ζR-stable quiver representation

(
B1, V 1

)
is S-equivalent to

(
B2, V 2

)
if and

only if
(
B1, V 1

)
is isomorphic to

(
B2, V 2

)
.

2.5 Moduli Space of Quiver Representations

For a Q0-graded vector space V , we set EQ (V ) = EQ (V, V ) and consider the
G (V ) = ∏

i∈Q0
GL (Vi )-action by base change, that is we consider the G (V )-action

defined as follows:
g · B =

(
gin(h) Bhg

−1
out(h)

)

h∈Q1

.

The diagonal of non-zero scaler matrices acts trivially on EQ (V ). So we consider
the action of the quotient group PG (V ) = G (V ) /Gm .

2.5.1 Theorem ([28]).For ζR ∈ R
Q0 andv ∈ Z

Q0
�0, we set RζR−ss

Q (v) (resp. RζR−s
Q (v))

be the subset which consists of ζR-semistable (resp. ζR-stable) representations of the
quiver with dimension vector v.

(i) The set of S-equivalence classes RζR
Q (v) := RζR−ss

Q (v) / ∼S of ζR-semistable
representations has the structure of (the C-valued point of) quasi-projective
scheme over C, where ∼S is equivalence relation defined by S-equivalence. In
fact, RζR

Q (v) is a coarse moduli space of ζR-semistable representations modulo
S-equivalence.

3S stands for Seshadri.



244 Y. Kimura

(ii) Let RζR−reg
Q (v) := RζR−s

Q (v) / ∼ be the subset of RζR
Q (v) which consists of

isomorphism classes of ζR-stable representations, where ∼ is the equivalence
relation defined by isomorphisms. ThenRζR−reg

Q (v) is a (possible empty) smooth

(Zariski) open subvariety of RζR
Q (v). In fact, RζR−reg

Q (v) is a fine moduli space
of ζR-stable representations with

dimK R
ζR−reg
Q (v) = 1 − qQ (v) ,

where qQ (v) is the Tits form (if it is not empty).
(iii) We have a canonical projective morphism:

π : RζR
Q (v) → R0

Q (v)

which assigns the semisimplification with respect to the trivial stability 0, that
is we have

π
([
gr J H

ζR
(B, V )

]) = [
gr J H

0 (B, V )
]
.

It is known thatR0
Q (v) 	 Spec�

(
EQ (V ) ,OEQ (V )

)PG(V )
. If Q is acyclic, that is

there exist no oriented cycles, then it is known that R0
Q (v) = pt, hence RζR

Q (v) is
projective.

2.6 Ice Quivers and Framed Moduli

In this section, we introduce framed representations of quivers and its moduli spaces
following Nakajima [40, Sect. 3], [47, 1(ii)], see also Reineke [49] and Engel–
Reineke [14]. A framed representations can be considered as a representation of
“ice” quivers, that is a quiver with some “frozen” vertices.

2.6.1 Definition. An ice quiver is a pair
(

Q̃, F
)
where Q̃ is a (finite) quiver and

F = F0 is a subset of Q0. The subset F is called the set of frozen vertices.

For simplicity, we assume that there are no arrows h ∈ Q̃1 with out (h) , in (h) ∈
F0. Let Q be the fullsubquiver on Q̃0 \ F0 and F1 := Q̃1 \ Q1. By the assumption
on F , we have the following decomposition:

F1 = F in
1 � Fout

1 ,

F in
1 = {h ∈ F1 | in (h) ∈ Q0} = {h ∈ F1 | out (h) ∈ F0} ,

Fout
1 = {h ∈ F1 | out (h) ∈ Q0} = {h ∈ F1 | in (h) ∈ F0} .

So we have the decomposition:
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E(Q̃,F) (V, W ) = EQ (V ) ⊕ LF in
1

(W, V ) ⊕ LFout
1

(V, W ) ,

LF in
1

(W, V ) =
⊕

h∈F in
1

HomC

(
Wout(h), Vin(h)

)
,

LFout
1

(V, W ) =
⊕

h∈Fout
1

HomC

(
Vout(h), Win(h)

)
.

With respect to the above decomposition, we denote by (B, a, b) ∈ E(Q̃,F) (V, W ).
Following Crawley–Boevey [6, Introduction], we introduce the “deframing”

quiver QF (w) associated with an ice quiver
(

Q̃, F
)
and w ∈ Z

F0
�0.

QF (w) = Q0 ∪ {∞} ,

QF (w) = Q1 ∪ {
h ( j) : ∞ → in (h) | h ∈ F in

1 , 1 � j � wout(h)

}

∪ {
h ( j) : out (h) → ∞ | h ∈ Fout

1 , 1 � j � win(h)

}
.

The following proposition can be easily checked.

2.6.2 Proposition. Let V be a Q0-graded vector space and Ṽ be an associated
Q0 ∪ {∞}-graded vector space with dim Ṽ∞ = 1. For an F0-graded vector space
W with dimW = w, fixing a basis of W yields a G (V )-equivariant isomorphism:

E(Q̃,F) (V, W ) 	 EQF (w)

(
Ṽ

)
.

Using the above proposition, for ζ̃R = (ζR, ζ∞) ∈ R
Q0∪{∞}, we set

ζ̃R (V, W ) := 〈ζR, V 〉 + ζ∞
(
1 − δW,0

)
,

θζ̃R
(V, W ) := ζ̃R (V, W )

1 − δW,0 + ∑
i∈Q0

dim Vi
,

where δw,0 is 1 if W = 0 and 0 otherwise, as in the case of (unframed) quiver
representations.

2.6.3 Definition. (i) A subspace V ′ of V is called a submodule of (B, a, b) of type
out if V ′ is a B-adapted subspace such that V ′

out(h) ⊂ Ker (bh) for h ∈ Fout
1 .

(ii) A subspace V ′ of V is called a submodule of (B, a, b) of type in if V ′ is a
B-adapted subspace such that V ′

in(h) ⊃ Im (ah) for h ∈ F in
1 .

In the first case, the subspace V ′ can be considered as an unframed representa-
tion (B, 0, 0) |(V ′,0) in E(Q̃,F) (V, 0) and we can consider a framed quotient repre-

sentation (B, a, b) |(V/V ′,W ) in E(Q̃,F)

(
V/V ′, W

)
. Similarly, the subspace V ′ can

be considered as a framed representation (B, a, b) |(V ′,W ) in E(Q̃,F)

(
V ′, W

)
and

(B, 0, 0) |(V/V ′,W ) ∈ E(Q̃,F)

(
V/V ′, 0

)
.
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2.6.4 Definition. (i) A module (B, a, b) ∈ EQ̃ (V, W ) is said to be ζ̃R-semistable
if we have θζ̃R

(
V ′, δW

)
� θζ̃R

(V, W ) for any non-zero submodule
(
V ′, δW

)
of

(B, a, b), where we mean δW is either 0 or W .
(ii) A module (B, a, b) ∈ EQ̃ (V, W ) is said to be ζ̃R-stable if it is ζ̃R-semistable

and the strict inequalities hold unless
(
V ′, δW

) = (V, W ).

(iii) Amodule (B, a, b) ∈ EQ̃ (V, W ) is said to be ζ̃R-polystable if it is a direct sum

of ζ̃R-stable modules with the same slope.

We have the following see-saw property for framed representations

2.6.5 Proposition. Let
(
V ′, δW

)
be a submodule of (B, a, b)and (V, W ) /

(
V ′, δW

)

be its quotient. Then the following conditions are equivalent:

(i) θζ̃R

(
V ′, δW

)
� (resp. �,=) θζ̃R

(V, W ),

(ii) θζ̃R
(V, W ) � (resp. �,=) θζ̃R

(
(V, W ) /

(
V ′, δW

))
,

(iii) θζ̃R

(
V ′, δW

)
� (resp. �,=) θζ̃R

(
(V, W ) /

(
V ′, δW

))
.

For ζR ∈ R
Q0 , we set ζR,∞ := − ∑

i∈Q0
ζR,i and consider the corresponding sta-

bility condition ζ̃R. The definition of ζ̃R-semistable (resp. ζ̃R-stable) representation
can be phrased explicitly in the following way.

2.6.6 Definition. (i) A module (B, a, b) ∈ EQ̃ (V, W ) is said to be ζ̃R-semistable
if the following two conditions are satisfied:

(a) For any B-adapted subspace S of V such that Sout(h) ⊂ Ker (bh) for h ∈ Fout
1 ,

we have 〈ζR, dimS〉 � 0.
(b) For any B-adapted subspace T of V such that Tin(h) ⊃ Im (ah) for h ∈ F in

1 ,
we have 〈ζR, dimT 〉 � 〈ζR, dimV 〉.

(ii) A ζ̃R-semistable module (B, a, b) is said to be ζ̃R-stable if the strict inequalities
hold unless S = 0 or T = V .

As in unframed case, we can introduce Harder–Narasimhan filtrations, Jordan–
Holder filtrations, and S-equivalence.

In the following we restrict ourselves to the special case of the stability parameter
ζR ∈ R

Q0 with ζR,i > 0 for i ∈ Q0. For simplicity, we also assume that Q has no
edge loops. We study the G (V )-action on E(Q̃,F) (V, W ).

2.6.7 Exercise. For ζR ∈ R
Q0 with ζi > 0 for i ∈ Q0. Show that (B, a, b) is ζ̃R-

semistable if and only if (B, a, b) is ζ̃R-stable.

2.6.8 Theorem. For ζR ∈ R
Q0 andv ∈ Z

Q0
� , we set R ζ̃R−ss

(Q̃,F)
(v,w)and R ζ̃R−s

(Q̃,F)
(v,w)

be the subset which consists of ζ̃-semistable (resp. ζ̃-stable) representations of the

quiver with dimension vector (v,w) such that R ζ̃R−ss

(Q̃,F)
(v,w) = R ζ̃R−s

(Q̃,F)
(v,w).
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(i) The set of S-equivalence classes Rζ̃R

(Q̃,F)
(v,w) := R ζ̃R−ss

(Q̃,F)
(v,w) / ∼S has the

structure of (the C-valued point of) quasi-projective scheme over C. In fact,

R
ζ̃R

(Q̃,F)
(v,w) is a fine moduli space of ζ̃R-stable representations with

dimK R
ζ̃R

(Q̃,F)
(v,w) =

∑

h∈F1
in(h)

wout(h)vin(h) +
∑

h∈F1
out(h)

vout(h)win(h) − qQ (v) .

(ii) We have a canonical projective morphism:

π : Rζ̃R

(Q̃,F)
(v,w) → R0̃

(Q̃,F)
(v,w) .

If Q is acyclic and F1 = F1
out, then it is known thatR

0̃
(Q̃,F)

(v,w) = pt, so it can

be shown R
ζ̃R

(Q̃,F)
(v,w) is projective.

3 The Preprojective Algebra of a Quiver

The preprojective algebra is an associative algebra associated with a hereditary alge-
bra, that is an algebra whose global dimension is (less than) one. Gel’fand and
Ponomarev [19] introduced the preprojective algebra associated with a path algebra
of a tree quiver, that is a quiver whose underlying graph is a tree in order to study
the preprojective representations of a tree quiver. Dlab–Ringel [13] extended their
construction to the more general setting of a valued graph or a species of modulated
graph.

3.1 Reflection Functor for Quiver Representation

Bernšteı̆n–Gel’fand–Ponomarev [2] have introduced so-called reflection functors to
compare representations of quivers with different orientation, but also they con-
structed indecomposable representations inductively using the so-called Coxeter
functors. In particular, they give a conceptual proof of Gabriel’s theorem on the
classification of indecomposable representation of quiver representations.

For a quiver Q and a vertex k ∈ Q0, we set

Qk,out := {h ∈ Q1 | out (h) = k} ,

Qk,in := {h ∈ Q1 | in (h) = k} .
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3.1.1 Definition. Let Q be a quiver and (B, V ) be a quiver representation overC. For
a loop-free vertex k ∈ Q0, let Sk be the 1-dimensional simple module corresponds
to k.

(i) Let sock (B, V ) be the sum of all subrepresentation of (B, V ) which are iso-
morphic to Sk . (If there is no such submodule, then let sock (B, V ) = 0.) It is
called the k-socle of (B, V ).

(ii) Let topk (B, V ) = (B, V ) /radk (B, V ), where radk (B, V ) is the intersection
of all representations of (B, V ) whose quotient are isomorphic to Sk . If there is
no such subrepresentation, then let topk (B, V ) = 0 and radk (B, V ) = (B, V ).
It is called the k-top of (B, V ).

3.1.2 Exercise. Let Q be a quiver and (B, V ) be a representation of quiver Q over
C.

(i) Show that we have

(sock (B, V ))i =
{
0 i �= k,

Ker
(
Bk,out

) = ⋂
h∈Qk,out

Ker (Bh) i = k,

where Vk,out = ⊕
h∈Qk,out

Vin(h), Bk,out = ⊕h∈Qk,out Bh : Vk → Vk,out.
(ii) Show that we have

(radk (B, V ))i =
{

Vi i �= k,

Im
(
Bk,in

) = ∑
h∈Qk,in

Im (Bh) i = k,

where Vk,in = ⊕
h∈Qk,in

Vout(h), Bk,in = ∑
h∈Qk,in

Bh : Vk,in → Vk .
In particular, we have

(
topk (B, V )

)
i =

{
0 i �= k,

Coker
(
Bk,in

)
i = k.

3.1.3 Definition. Let Q be a quiver. For k ∈ Q0, letmod (CQ)+k (resp.mod (CQ)−k )
be the full subcategory which consists of representations (B, V ) with HomQ

((B, V ) , Sk) = 0 (resp. HomQ (Sk, (B, V )) = 0).

3.1.4 Proposition. Let Q be a quiver. For a quiver representations (B, V ) and k ∈
Q0, the following are equivalent:

(i) HomQ ((B, V ) , Sk) = 0 (resp. HomQ (Sk, (B, V )) = 0),
(ii) topk (B, V ) = 0 (resp. sock (B, V ) = 0).

3.1.5 Definition. Let Q = (Q0, Q1, out, in) be a quiver. k ∈ Q0 is called a sink
(resp. source) if Qk,out = ∅ (resp. Qk,in = ∅).
3.1.6 Exercise. Let Q be a finite connected quiver with Q0 with n = #Q0. Show
that the following are equivalent:



7 Introduction to Quiver Varieties 249

(i) k is a sink (resp. source) in Q0,
(ii) The simple module Sk is a projective (resp. injective) module.

3.1.1 Definition (Bernšteı̆n–Gel’fand–Ponomarev reflection functors). Let Q be
a quiver. For a vertex k ∈ Q0, we define a new quiver σk Q by (σk Q)0 = Q0 and

(σk Q)1 = {h ∈ Q1 | k /∈ {out (h) , in (h)}} ∪ {
h∗ | k ∈ {out (h) , in (h)}} ,

where h∗ is an arrow with out (h∗) = in (h) and in (h∗) = out (h).

(i) Let k be a sink in Q. We define a reflection functor S+
k : mod (CQ) →

mod (Cσk Q) between the categories of finite dimensional representation of
Q and σk Q over C as follows: For a representation (B, V ) of Q, we define a
representation S+

k (B, V ) = (
B ′, V ′) of σk Q:

(a) Let V ′
i = Vi for i �= k and

V ′
k = Ker

(
Bk,in : Vk,in → Vk

)
.

(b) Let B ′
h = Bh for all arrows h ∈ Q1 ∩ (σk Q)1 and

Bh∗ : V ′
k = Ker

(
Bk,in : Vk,in → Vk

)
↪→ Vk,in → Vout(h) = V ′

in(h∗),

where Vk,in → Vout(h) is the canonical projection to the direct summand.

For a homomorphism ϕ = (ϕi ) : (
B1, V 1

) → (
B2, V 2

)
in mod (CQ), we

define a homomorphism S+
k (ϕ) = ϕ′ : S+

k

(
B1, V 1

) → S+
k

(
B2, V 2

)
in

mod (Cσk Q) as follows:

(a) For i �= k, we set ϕ′
i = ϕi ;

(b) Let ϕ′
k : (

V 1
k

)′ → (
V 2

k

)′
be the linear map which makes the following dia-

gram commutes:

(
V 1

k

)′

ϕ′
k

V 1
k,in

B1
k,in

⊕
h∈Qk,in

ϕout(h)

V 1
k

ϕi

(
V 2

k

)′
V 2

k,in

B2
k,in

V 2
k

(ii) Let k ∈ Q0 be a source in Q. We define a reflection functor S−
k : mod (CQ) →

mod (Cσk Q) between the categories of finite dimensional representation of Q
and σi Q over C as follows:
For a representation (B, V ) of a quiver Q, we define a representation S−

k
(B, V ) = (

B ′, V ′) of the quiver σk Q by

(a) Let V ′
i = Vi for i �= k and we set
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V ′
k = Coker

(
Bk,out : Vk → Vk,out

)
.

(b) Let B ′
h = Bh for all arrows h ∈ Q1 ∩ (σk Q)1 and Bh∗ be the following com-

posite of the linear maps

V ′
out(h∗) = V in(h) ↪→ Vk,out � Coker

(
Bk,out : Vk → Vk,out

)
,

where Vin(h) ↪→ Vk,out be the canonical inclusion as a direct summand.

For a homomorphism ϕ = (ϕi ) : (
B1, V 1

) → (
B2, V 2

)
in mod (CQ), we

define a homomorphism S−
k (ϕ) = ϕ′ : S−

k

(
B1, V 1

) → S−
k

(
B2, V 2

)
in

mod (Cσk Q) as follows:

(a) For i �= k, we set ϕ′
i = ϕi ;

(b) Let ϕ′
k : (

V 1
k

)′ → (
V 2

k

)′
be the linear map which makes the following dia-

gram commutes:

V 1
k

ϕk

V 1
k,out

⊕
h∈Qk,out

ϕin

(
V 1

k

)′

ϕ′
k

V 2
k V 2

k,out

(
V 2

k

)′

3.1.7 Exercise. Show that above assignments define functors.

The following is clear from the definition of reflection functors and Exercise 3.1.6.

3.1.8 Proposition. Let Q be a quiver and (B, V ) a representation of Q.

(i) For a sink k ∈ Q0 for Q, we have a natural (split) short exact sequence:

0 → S−
k S+

k (B, V ) → (B, V ) → topk (B, V ) → 0,

where εk : S−
k S+

k (B, V ) → (B, V ) is the canonical homomorphism defined by
(εk)i = idVi for i �= k and

(εk)k : (
S−

k S+
k (B, V )

)
k = Coker

(
Ker

(
Bk,in : Vk,in → Vk

)
↪→ Vk,in

)

	 Im
(
Bk,in : Vk,in → Vk

)
↪→ Vk .

(ii) For a source k ∈ Q0 for Q, we have a natural (split) short exact sequence:

0 → sock (B, V ) → (B, V ) → S+
k S−

k (B, V ) → 0,

where ε∗
k : (B, V ) → S+

k S−
k (B, V ) is the canonical homomorphism defined

by
(
ε∗

k

)
i = idVi for i �= k and
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(
ε∗

k

)
k : Vk → Im

(
Bk,out

)

	 Ker
(
Vk,out � Coker

(
Bk,out : Vk → Vk,out

)) = (
S+

k S−
k (B, V )

)
k .

In fact, it can be shown that the pair of functors
(
S−

k , S+
k

)
is an adjoint pair.

Summarizing the above proposition, we obtain the following dichotomy for the
application of reflection functors on indecomposable representation.

3.1.9 Corollary. Let Q be a quiver.

(i) For a sink k for Q and (B, V ) an indecomposable representation of Q over C.
We have the following two possible cases:

(a) S+
k (B, V ) = 0 if and only if (B, V ) ∼= Sk,

(b) S+
k (B, V ) is indecomposable if and only if S−

k S+
k (B, V ) ∼= (B, V ) and we

have
dim S+

k (B, V ) = dim (B, V ) − (αk, dim (B, V )) .

(ii) For a source k for Q and (B, V ) an indecomposable representation of Q over
C. We have the following two possible cases:

(a) S−
k (B, V ) = 0 if and only if (B, V ) ∼= Sk,

(b) S−
k (B, V ) is indecomposable if and only if S+

k S−
k (B, V ) ∼= (B, V ) and we

have
dimS−

k (B, V ) = dim (B, V ) − (αk, dim (B, V )) .

As a corollary of the above result, we obtain the following method to construct
indecomposable representation.

We study composite of reflection functors associated with acyclic quiver Q.

3.1.10 Definition. Let r � 1 and a sequence k = (k1, · · · , kr ) ∈ Qr
0 is called a sink

(resp. source) admissible sequence if k j is a sink (resp. source) in σk j−1 · · · σk1 Q for
1 � j � r .

3.1.11 Corollary. Let Q be a finite connected quiver and k = (k1, k2, · · · , k�) ∈ Q�
0

be a sink-admissible sequence (resp. source-admissible sequence).

(i) For 1 � j � �, let Sk j ∈ mod
(
Cσk j−1 . . . σk1 Q

)
. Then S−

k1
· · · S−

k j−1

(
Sk j

)
(resp.

S+
k1

· · · S+
k j−1

(
Sk j

)
) is either 0 or an indecomposable representation in mod

(CQ).
(ii) Let (B, V ) be an indecomposable representation of Q over C with S+

k�
· · · S+

k1
(B, V ) = 0 (resp. S−

k�
· · · S−

k1 (B, V ) = 0). Then we have

(B, V ) ∼= S−
k1

· · · S−
k j−1

(
Sk j

)
(resp. (B, V ) ∼= S+

k1
· · · S+

k j−1

(
Sk j

)
),

for some 1 � j � �.

3.1.12 Exercise. Let Q be a quiver with n = #Q0.
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(i) Atotal order (i1, i2, · · · , in)on Q0 is called sink (resp. source) admissible order-
ing if (i1, i2, · · · , in) ∈ Qn

0 is a sink (resp. source) admissible sequence. Show
that (i1, i2, · · · , in) is a sink-admissible sequence if and only (in, in−1, . . . , i1)
is a source-admissible sequence.

(ii) Show that Q is acyclic, that is there exist no oriented cycles if and only if there
exists a sink (resp. source) admissible ordering.

(iii) Let (i1, . . . , in) be an admissible ordering on Q0. Show that σin . . . σi1 Q =
σi1 . . . σin Q = Q.

In the following section, we assume that Q is acyclic.

3.1.13 Definition. Let Q be a connected acyclic quiver. Let (i1, . . . , in) be an sink
admissible order on Q0. The Coxeter functors with respect to this order is the com-
posites of reflection functors:

C+ := S+
in

. . . S+
i1

: mod (CQ) → mod (CQ) ,

C− := S−
i1

. . . S−
in

: mod (CQ) → mod (CQ) .

For r ∈ Z, we define

Cr =

⎧
⎪⎨

⎪⎩

(
C+)r

r > 0,

id r = 0,
(
C−)−r

r < 0.

3.1.14 Exercise. (i) For 1 � k � n, let

Pik = S−
i1

. . . S−
ik−1

(
Sik

)
,

Iik = S+
in

. . . S+
ik+1

(
Sik

)
.

Show that Pik is a projective indecomposable representation with topik

(
Pik

) =
Sik and Iik is an injective indecomposable representation with socik

(
Iik

) = Sik .
(ii) For an indecomposable representation (B, V ), show that C+ (B, V ) = 0 (resp.

C− (B, V ) = 0) is equivalent to (B, V ) is isomorphic to some Pi (resp. Ii ) with
i ∈ Q0.

3.1.15 Definition. Let (B, V ) be an indecomposable representation.

(i) (B, V ) is called preprojective if (B, V ) 	 Cr P (i) for r ∈ Z�0,
(ii) (B, V ) is called preinjective if (B, V ) 	 Cr I (i) for r ∈ Z�0,

(iii) (B, V ) is called regular if Cr (B, V ) �= 0 for r ∈ Z.

3.1.16 Exercise. Show that (B, V ) is preprojective (resp. preinjective) if and only
if Cr (B, V ) = 0 (resp. C−r (B, V ) = 0) for some r > 0.
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3.2 Preprojective Algebra

In this subsection, we introduce the preprojective algebra � = �Q associated with
a quiver Q. For a quiver whose underlying graph is a tree, Gel’fand–Ponomarev
[19] introduced the preprojective algebra (they called it “model algebra”) for the
study of preprojective representations of quiver Q. In fact, the aim of Gel’fand and
Ponomarev was to construct an algebra � with the following properties:

(i) � contains CQ as a subalgebra,
(ii) As a left CQ-module, � decomposes as a multiplicity-free direct sum of the

all indecomposable preprojective CQ-modules.

Later Dlab–Ringel [13] generalized the construction of preprojective algebra to the
setting of species and extended the result. Also the result is also implicitly given
in the work by Riedtmann in quiver case. Though there may exist several isomor-
phism classes of algebras�with the above properties. It is called “the” preprojective
algebra.

Baer–Geigle–Lenzing [1] proposed another definition of the preprojective algebra
as an orbit algebra associated with the inverse τ− of the Auslander–Reiten transla-
tion. By Brenner–Butler and Gabriel’s result, if the underlying graph of Q is a tree,
the Auslander–Reiten translation can be identified with the Coxeter functors, so
Gel’fand–Ponomarev’s definition of the preprojective algebra can be identified with
the Baer–Geigle–Lenzing construction. For more details, see Ringel [53, Sect. 6] and
also Crawley–Boevey [4].

3.2.1 Definition. Let Q be a quiver and Q = (
Q0, H = Q1 � Q∗

1, outQ, intQ

)
be its

double which is the quiver obtained by adding opposite arrow h∗ : in (h) → out (h)

for each arrow h : out (h) → in (h). We extend ∗: Q1 → Q∗
1 to an involution

∗: H → H with ∗ (h∗) = h.
We define a function εQ : H → {±1} given by

εQ (h) =
{
1 h ∈ Q1,

−1 h∗ ∈ Q1

and we consider an element

μ :=
∑

h∈H

εQ (h) hh∗.

The algebra � = �Q := CQ/ 〈μ〉 is called the preprojective algebra of Q.

Since out (h∗) = in (h), the algebra �Q is also defined as a factor algebra by the
following elements

μi =
∑

h∈Hin,i

εQ (h) hh∗ =
∑

h∈Qin,i

hh∗ −
∑

h∈Qout,i

h∗h.
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3.2.2 Exercise. (i) Show that the isomorphism class of the algebra � does not
depend on a choice of orientation of Q.

(ii) Let μ′ = ∑
h∈Q1

hh∗ and �′ = CQ/
〈
μ′〉. Show that � 	 �′ if Q is a tree

(iii) Let Q be the following affine quiver of type A(1)
2 .

2

1 3

Show that � and �′ are not isomorphic.

The following is due to Gel’fand–Ponomarev (see also Dlab–Ringel [13]).

3.2.3 Theorem Let Q be a quiver whose underlying graph is a tree.

(i) �Q is isomorphic to to the multiplicity-free direct sum of all preprojective
modules as a left CQ-module, that is we have

�Q 	
⊕

r�0

C−r (CQ)

as a left CQ-module.
(ii) dimK �Q < ∞ if and only if Q is a Dynkin quiver.

3.2.4 Remarks

(i) In fact, we have�′ = CQ/
〈
μ′〉 	 ⊕

r�0 C−r (CQ) in general, see [53, Sect. 6].
(ii) In general, we have

�Q 	
⊕

r�0

τ−r (CQ)

as a left CQ-module, where τ−1 (B, V ) = Ext1
CQ (D (CQ) , (B, V )) is the

“inverse” of the Auslander–Reiten translation. For more details, see [53, The-
orem A]. The right hand side is the preprojective algebra which has introduced
by Baer–Geigle–Lenzing.

(iii) The Coxeter functor and the Auslander–Reiten translation are identified after
twisting the sign. For more detail, see Gabriel [17, 5.5].



7 Introduction to Quiver Varieties 255

3.3 2-Calabi–Yau Property and the Crawley–Boevey
Formula

The following Ext1-symmetry of the preprojective algebra is called the 2-Calabi–Yau
properties.

3.3.1 Theorem ([18,Theorem 3]). For a quiver Q without loops, let � = �Q be the
associated preprojective algebra. For finite dimensional �-modules M1 = (

B1, V 1
)

and M2 = (
B2, V 2

)
, there is a functorial isomorphism:

Ext1�
(
M1, M2

) 	 DExt1
(
M2, M1

)
,

where D = HomC (−, C) be the standard duality for the vector space over C.

The above is proved by the analysis of (the truncation of) the bimodule projective
resolution of the preprojective algebra �.

3.3.2 Proposition ([18, Lemma 8.1.1]). Let � = �Q be the associated preprojec-
tive algebra. Let P be the CI -bimodule spanned by the relations {μi }i∈I . Then

�• : � ⊗CI P ⊗CI �
d1−→ � ⊗CI CH ⊗CI �

d0−→ � ⊗CI CI ⊗CI � → � → 0

is the the beginning of the bimodule projective resolution of the preprojective algebra
�, where the map � ⊗CI CI ⊗CI � → � is give by the multiplication in �, the map

� ⊗CI CH ⊗CI �
d0−→ � ⊗CI CI ⊗CI � is given by

d0 (1 ⊗ h ⊗ 1) = h ⊗ eout(h) ⊗ 1 − 1 ⊗ ein(h) ⊗ h

for h ∈ H and the map � ⊗CI P ⊗CI �
d1−→ � ⊗CI CH ⊗CI � is given by

d1 (1 ⊗ μi ⊗ 1) =
∑

h∈Hout,i

ε (h)
(
h ⊗ h∗ ⊗ 1 + 1 ⊗ h ⊗ h∗) .

For finite dimensional�-modules M1 = (
B1, V 1

)
and M2 = (

B2, V 2
)
, applying

Hom�

(− ⊗� M1, M2
)
to P•, we obtain the following complex:

0 → L
(
V 1, V 2

) d0
M1 ,M2−−−→ E

(
V 1, V 2

) d1
M1 ,M2−−−→ L

(
V 1, V 2

)
,

where

d0
M1,M2 : (ϕi )i∈I �→ (

B2
hϕout(h) − ϕin(h) B1

h

)
h∈H ,

d1
M1,M2 : (Ch)h∈H �→

⎛

⎝
∑

h∈Hout,i

ε (h)
(
Ch B1

h∗ + B2
h Ch∗

)
⎞

⎠

i∈I

.
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3.3.3 Exercise. (i) Show that Ker
(

d0
M1,M2

)
= Hom

(
M1, M2

)
and

Ker
(
d1

M1,M2

)
/Im

(
d0

M1,M2

) 	 Ext1�
(
M1, M2

)
.

(ii) Show that the skew-symmetric bilinear form ωE : E
(
V 1, V 2

) × E
(
V 1, V 2

) →
C defined by

ωE
(
C1, C2) =

∑

i∈I

Tr

⎛

⎝
∑

h∈Hout,i

ε (h) C1
hC2

h∗

⎞

⎠

induces a non-degenerate pairing between Ext1�
(
M1, M2

)
and Ext1�

(
M2, M1

)

under the identification Ker
(

d1
M1,M2

)
/Im

(
d0

M1,M2

)
	 Ext1�

(
M1, M2

)
.

(iii) Show that the bilinear map ωL : L
(
V 1, V 2

) × L
(
V 2, V 1

) → C defined by

ωL
(
ϕ1,ϕ2

) =
∑

i∈I

Tr
(
ϕ1

i ϕ
2
i

)

induces a non-degenerate pairing between Coker
(

d1
M1,M2

)
and Hom�

(
M2, M1

)
.

The following formula can be shown easily from the above proposition.

3.3.4 Proposition (Crawley–Boevey [5, Lemma 1.1]). We have the following for-
mula:
(

dimM1, dimM2
)

= dimHom�

(
M1, M2

)
+ dimHom�

(
M2, M1

)
− dim Ext1�

(
M1, M2

)
.

The Crawley–Boevey formula gives a module-theoretic interpretation of the sym-
metric bilinear form on the root lattice.

3.3.5 Exercise. Assume that Q is non-Dynkin. Show that P• is the bimodule pro-
jective resolution of � and

(
dimM1, dimM2

)
= dimHom�

(
M1, M2

)
− dim Ext1�

(
M1, M2

)
+ dim Ext2�

(
M1, M2

)
.

3.4 McKay Correspodence

In this subsection, we study the McKay correspondence and its relation to the pre-
projective algebra.

Let � be a finite group. Since we work over a field of characteristic 0, the
group algebra C� of � over C is semisimple. We consider the natural paring
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[ , ] : K0 (C�) ⊗ K0 (C�) → Z defined by [ρ1, ρ2] = dimHom� (ρ1, ρ2) for rep-
resentations ρ1, ρ2 of �.

3.4.1 Definition (McKay quiver). Let ρ be a finite dimensional representation of
� and I be a set of representatives of isomorphism classes of simple representations
of � over C. The McKay quiver of (�, ρ) is the quiver

(
Irr�, Qρ

)
with

#
{
h ∈ (

Qρ

)
1 | out(h)=i,

in(h)= j

} = dimHom
(
ρ j , ρ ⊗ ρi

)
,

where Irr� be the set of a representatives of irreducible representation of � over C

and ρi , ρ j ∈ Irr�.

3.4.2 Exercise. Let� be a subgroup of SL2 (C) = Sp (ρ,ω)where ω is the standard
symplectic (volume) formω = dx ∧ dy and ρ : � → SL2 (C) be the inclusion. Show
that

dim Hom
(
ρ j , ρ ⊗ ρi

) = dimHom
(
ρi , ρ ⊗ ρ j

)

for i, j ∈ I .

Let us consider the symmetric affine Lie algebra of type A(1)
n , D(1)

n , E (1)
n and the

corresponding Cartan matrix. Let 0 ∈ I be the vertex corresponds to the negative
of the highest root of the corresponding finite dimensional simple Lie algebra of
type ADE and I0 := I \ {0} be the corresponding subset for the simple Lie algebra.
Let δ ∈ Z

I
�0 be the minimal imaginary root, that is the vector in the kernel of the

Cartan matrix for the affine Lie algebra whose 0-component is 1. The following is
the observation given by McKay.

3.4.3 Theorem (McKay). Let ρ0, ρ1, · · · , ρn be the isomorphism classes of irre-
ducible representations of � with ρ0 the trivial representation. Let C be the virtual
representation

0∧
ρ −

1∧
ρ +

2∧
ρ = 2ρ0 − ρ

and we set the corresponding bilinear form:

(
ρi , ρ j

) := 2
[
ρi ⊗ ρ0 : ρ j

] − [
ρi ⊗ ρ : ρ j

]

Then ( , ) is symmetric and the lattice (K0 (C�) , ( , )) is isomorphic to the root
lattice of an affine root system for ĝ. We call it the McKay lattice.

Since (ρi , ρi ) = 2, we have (ρ, ρ) ∈ 2Z for any representation ρ of �.

3.4.4 Exercise. Show the following results.

(i) We have (ρ, ρ) � 0 for ρ ∈ K0 (C�),
(ii) (ρ, ρ) = 0 if and only if ρ = n (C�), where C� = ∑

i∈Irr� (dim ρi ) ρi ∈ K0

(C�) is the (left) regular representation.
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In the McKay lattice, the set {ρi }i∈I is identified with the set of simple roots of
the affine root system for ĝ, and it is known that the set {v ∈ K0 (C�) | (v, v) = 2}
is identified with the set of real roots for ĝ and {v ∈ K0 (C�) | (v, v) = 0} \ {0} is
identified with the set {nδ | n ∈ Z \ {0}} of imaginary roots of ĝ.

3.4.5 Examples. We consider the case when � is of type An , that is we consider the
following subgroup

� = Z/ (n + 1) Z =
{(

γk 0
0 γ−k

)∣
∣
∣
∣0 � k � n

}

,

where γ = exp

(
2π

√−1

n + 1

)

. The irreducible representations ρk of � are given by the

following group homomorphism defined by

ρk

(
γ 0
0 γ−1

)

= γk (0 � k � n)

and we have ρ = ρ1 ⊕ ρn . Then we obtain ρ ⊗ ρk = ρk−1 ⊕ ρk+1 where suffix is
understood in Z/ (n + 1) Z. Hence we obtain the Cartan matrix of type A(1)

n .

We study the skew group algebra (or smash product) of path algebras and prepro-
jective algebras for finite groups following Demonet [10].

3.4.6 Definition. LetC be the field of complex numbers and � be a finite group. Let
A be a C-algebra and we consider a �-action on A, that is a group homomorphism
� → Autalg/C (A). We define a skew group algebra A#� by A ⊗C C� as C-vector
space and contains A and C� as C-subalgebras with the following relations:

(
a1 ⊗ γ1

) (
a2 ⊗ γ2

) := a1γ1
(
a2

) ⊗ γ1γ2,

where γ1
(
a2

)
be the image of a2 under the action of γ1.

3.4.7 Exercise. (i) Let etriv = 1

|�|
∑

γ∈� γ ∈ C�. Then show that e2triv = etriv.

(ii) We consider the algebra embedding C� ↪→ A#� given by γ �→ 1 ⊗ γ. The
subspace etriv (A#�) etriv is called the spherical subalgebra (with a unit etriv).
Show that the map a �→ aetriv gives an isomorphism A� = {a ∈ A | γ (a) = a}
∼−→ etriv (A#�) etriv as unital algebras.

(iii) Show that A� 	 Z (A#�), where Z (A#�) is the center of A#�.

We study the finite group actions on special classes of algebras, path algebras and
preprojective algebras. We put an assumption on an action of � on the algebras.

3.4.8 Assumption. Let Q = (Q0, Q1) be a quiver. Consider an action of � which
permutes the set of primitive idempotents {ei | i ∈ Q0} and stabilizes the vector
spacesCQ1 spanned by edges Q1, that iswe have a pair of actionsσ = (σ0,σ1)where
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σ0 : � → AutSet (Q0) andσ1 : � → GL (CQ1)withσ1 (h) = eσ0(in(h))σ1 (h) eσ0(out(h))

for h ∈ Q1.

We note that, by [50, Proposition 2.1], without loss of generality, we can assume
this assumption if A is finite dimensional. This assumption is general than considering
a �-action which compatibly permutes Q0 and Q1.

Following Demonet [10], we introduce a generalized McKay quiver Q (�,σ)

associated with the group action σ : � → Aut (CQ).
Let Ĩ be a set of representatives of classes of Q0 under the group action ρ0 : � →

Aut (Q0). For i ∈ Q0, let �i = Stab� (i) be the stabilizer of � which fixes ei . Let
Oı = Oi be the orbit ı of i ∈ Q0 under the �-action. For (ı, j) ∈ Ĩ 2, we we consider
the diagonal �-action onOı × Oj . Let Fı,j be a set of representatives of the classes
of this action. For i, j ∈ Q0, we denote CQ1 (i, j) be the vector space spanned
by the Q1 (i, j) = {h ∈ Q1 | out (h) = i, in (h) = j}. We consider �i × � j module
structure on CQ1 (i, j). For i ′ ∈ Oı , we choose γi ′ ∈ � such that σ0 (γi ′)

(
i ′) = i .

We note that �i ′ = γ−1
i ′ �iγi ′ .

3.4.9 Definition (Generalized McKay quiver). Let Q (�,σ) be the quiver defined
by

Q (�, ρ)0 =
{
(ı, ρ) | ı ∈ Ĩ , ρ ∈ Irr (�i )

}
,

where Irr (�i ) is a set of representatives of isomorphism classes of irreducible rep-
resentations of �i and Q (�,σ)1 be a basis of

⊕

(i ′, j ′)∈Fı,j

Hom�i ∩� j

((
ρ1

)γi ′ |�i ∩� j ,
(
ρ2

)γ j ′ |�i ∩� j ⊗C CQ1 (i, j)
)

for
(
i, ρ1

)
,
(

j, ρ2
) ∈ Q (�,σ)0, where

(
ρ1

)γi ′ (γ) = ρ1
(
γi ′γγ−1

i ′
)

(resp.
(
ρ2

)γ j ′

(γ) = ρ2
(
γ j ′γγ−1

j ′

)
) for γ ∈ �i ′ = γ−1

i ′ �iγi ′ (resp. γ ∈ � j ′ = γ−1
j ′ � jγ j ′ ). We note

that this does not depend on the choice of γi ′ and γ j ′ .

3.4.10 Examples. Let Q be a quiver which consists of a single vertex and m edge-
loops. By the assumption, we consider a group homomorphism ρ : � → C

m . Then
the quiver Q (�, ρ) is the (usual) McKay quiver.

The following is proved by Reiten–Riedtmann [50] in cyclic group case and by
Demonet [10] in general.

3.4.11 Theorem (Demonet [10, Theorem 1]). We have an equivalence of cate-
gories:

mod (CQ (�,σ)) 	 mod (CQ#�) .

Let us choose Ĩ a set of representatives of �-orbits of Q0 and let eĨ = ∑
i∈ Ĩ ei ∈

CQ. Then this idempotent. Then (CQ0) #� isMorita equivalent to eĨ ((CQ0) #�) eĨ .
We have
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eĨ ((CQ0) #�) eĨ 	
∏

i∈ Ĩ

C [�i ] .

So let us choose a primitive idempotent ẽiρ ∈ C [�i ] associated with ρ ∈ Irr�i , that
is ρ 	 C [�i ] ẽiρ. Let us consider the following idempotent

ẽ =
∑

i∈ Ĩ

∑

ρ∈Irr(�i )

ẽiρ.

So we have eĨ ẽeĨ = ẽ and it induces a Morita equivalence between eĨ (CQ0#�) eĨ
and

ẽeĨ (CQ0#�) eĨ ẽ = ẽ (CQ0#�) ẽ = CQ (�,σ)0 .

The computation of ẽ (CQ1#�) ẽ yields a Morita equivalence between CQ (�,σ) =
ẽ (CQ#�) ẽ and CQ#�.

3.4.12 Theorem (Demonet [10, Theorem 2]). Let ρ : � → CQ be an action which
permutes Q0 and stabilizes the linear subspace CQ1. If ρ (γ) (μ) = μ for all γ ∈ �,
then Q (�, ρ) 	 Q′ for some quiver Q′ and we have a Morita equivalence

mod
(
�Q#�

) 	 mod
(
�Q′

)
,

in fact we have ẽ
(
�Q#�

)
ẽ 	 �Q′ .

In the special case where Q is the quiver with a single vertex with 2 edge loops,
then Q′ is an affine quiver and we obtain the algebraic McKay correspondence due
to Lenzing, Reiten–van den Bergh [51] and Crawley–Boevey–Holland [9, Theorem
3.4].

3.5 Moment Map and Hamiltonian Reduction

In this section, we study an algebraic (holomorphic) Hamiltonian reduction for repre-
sentations of reductive groups. For more details, see Cassens–Slodowy [3, Sect. 3],
Ginzburg [20, Sect. 4] (see also Yamakawa [56, Sect. 2] in this volume for more
details).

3.5.1 Definition. Let M be a smooth algebraic variety (or complex manifold). An
algebraic (holomorphic) 2-form ω ∈ �2 (M) is called a symplectic form, if

(i) ω is closed 2-form, that is dω = 0,
(ii) ω is non-degenerate on TpM for p ∈ M.

A pair (M,ω) with above ω is called an algebraic (holomorphic) symplectic variety
(manifold).
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3.5.2 Examples. Let N be a smooth algebraic variety (or complex manifold). Then
the cotangent bundle M = T ∗N has canonical 1-form α and canonical 2-form ω =
−dα.

Let M be a smooth algebraic variety with a regular G-action. Let g be the Lie
algebra of G. For the regular G-action, we have an “infinitesimal” g-action g →
� (M, T M) , ξ �→ ξM

Let G be a connected reductive group, g = Lie G be its Lie algebra. Let N be a
finite dimensional vector space, then it can be shown that T ∗N 	 N × N∗ and the
canonical symplectic form ω is given by

ω
((

n1, ν1
)
,
(
n2, ν2

)) = 〈
ν2, n1

〉 − 〈
ν1, n2

〉
.

3.5.3 Proposition. Let G be an algebraic group and N be a representation of G.

(i) The cotangent lift of the G-action on N is algebraic symplectic with respect to
the canonical 2-form ω on M.

(ii) The action has an algebraic moment map μ : M → g∗, that is a G-equivariant
algebraic morphism given by

〈μ (n, ν) , ξ〉 = (
iξMα

)
(n,ν)

,

where the infinitesimal action ξM ∈ � (M,�) for ξ ∈ g is defined by

(ξM) ( f ) = d

dt

∣
∣
∣
∣
t=0

(exp (−tξ) · f )

for f ∈ OM.
(iii) Fix ξ ∈ (g∗)G. A point (n, ν) ∈ μ−1 (ξ) is a regular point of μ−1 (ξ) if and

only if G-action on (n, ν) is locally trivial, that is the stabilizer G(n,ν) is a finite
group.

(iv) If (n, ν) ∈ M is a smooth point, then there exists a canonical symplectic form
on the vector space Tp

(
μ−1 (ξ)

)
/g induced by the non-degenerate bilinear

form ω(n,ν) on T(n,ν)M.

Proof (iii) For (n, ν) ∈ M = T ∗N = N ⊕ N∗, let G(n,ν) = StabG (n, ν) ⊂ G be the
stabilizer of G at (n, ν). For ξ ∈ g, (ξM)(n,ν) ∈ T(n,ν)M be the tangent vector for the
generating vector field ξM on M. We also regard ξ ∈ g as a linear function on g∗. By
the moment map equation, we have

〈
d(n,ν)μ (v) , ξ

〉 = d(n,ν) (〈μ (v) , ξ〉)
= ω

(
(ξM)(n,ν) , v

)
.

By the moment map equation, we obtain G(n,ν) is a finite group if and only if
Lie G(n,ν) = 0 if and only (ξM)(n,ν) �= 0 for any ξ �= 0. Since ω is non-degenerate,
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it is equivalent to non-existence of non-zero ξ such that
〈
d(n,ν)μ (v) , ξ

〉 = 0. Hence
d(n,ν)μ is surjective, so (n, ν) is a smooth point.

(iv) It is clear from the moment map equation. �

Let Q be a (finite) quiver (without edge loops). The reductive algebraic group
G(V ) = ∏

i∈Q0
GL (Vi ) acts on EQ (V, V ) by

(g, x) �→
(
gin(h)xg−1

out(h)

)
,

so the infinitesimal action of the associated Lie algebra g(V ) = ⊕
i∈Q0

gl (Vi ) on
EQ (V, V ) is given by

(ξ, x) �→ (
ξin(h)xh − xhξout(h)

)
.

Let ω be the G(V )-invariant symplectic form on

E (V ) = EQ (V, V ) ⊕ EQop (V, V )

is defined by
ω

(
B1, B2

) =
∑

h∈H

ε (h) B1
h B2

h∗ .

If we identify the dual of the Lie algebra g(V ) with g(V ) by the trace form on
g(V ), the moment map associated with the above G(V )-action on the symplectic
variety (E (V ) ,ω) vanishing at the origin is given by μ = (μi )i∈I : E (V ) → g(V ),
where

μi (B) =
∑

h∈Hin,i

ε (h) Bh Bh∗

=
∑

h∈Qin,i

Bh Bh∗ −
∑

h∈Qout,i

Bh Bh∗

3.6 Quiver Varieties

In this subsection, we introduce quiver varieties using algebraic Hamiltonian reduc-
tion.

For Q0-graded vector spaces V , W , let

M (V, W ) = EQ (V, V ) ⊕ L (W, V ) ⊕ L (V, W )

= EQ (V, V ) ⊕ EQop (V, V ) ⊕ L (W, V ) ⊕ L (V, W ) .
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The components of an element of M (V, W ) will be denoted by (B, a, b) or
(B, C, a, b) respectively. Since M (V, W ) is identified with the cotangent bundle of
EQ (V, V ) ⊕ L (W, V ), so it has a natural holomorphic symplectic form given by

ω
((

B1, a1, b1) ,
(
B2, a2, b2)) = tr

(
εB1B2) + tr

(
a1b2 − a2b1) ,

where
(
B1, a1, b1

) ∈ M (V, W ) ,
(
B2, a2, b2

) ∈ M (V, W ) and

εB1B2 =
∑

h∈Qi,in

ε (h) B1
h B2

h
∈ L

(
V 1, V 2

)

a1b2 =
∑

i∈Q0

a1
i b2

i ∈ L
(
V 1, V 2

)
,

a2b1 =
∑

i∈Q0

a2
i b1

i ∈ L
(
V 1, V 2

)

Let G(V ) = ∏
i∈Q0

GL (Vi ) be the product of general linear group and it acts on
M (V, W ) by

g · (B, a, b) = (
gBg−1, ga, bg−1)

and it can be checked that G(V ) preserves the symplectic form ω.
For ζ = (ζR, ζC) with ζC ∈ C

Q0 and ζR ∈ R
Q0 , we introduce quiver varieties

Mζ (v,w) and M
reg
ζ (v,w).

For (B, a, b) ∈ μ−1 (ζC), we can consider the following complex:

L (V, V )
ι−→ E (V, V ) ⊕ L (W, V ) ⊕ L (V, W )

dμ−→ L (V, V )

where

ι (ξ) = (ξB − Bξ, ξa,−bξ)

dμ (C, c, d) = εC B + εBC + cb + ad

The following can be shown using the geometric invariant theory and the Hamil-
tonian reduction.

3.6.1 Proposition. Let (B, a, b) be ζR-stable representation. Then we have follow-
ing:

(i) the stabilizer of (B, a, b) is trivial,
(ii) the differential dμ of μ at (B, a, b) is surjective.

Proof (i) By the geometric invariant theory, it can be shown that stabilizer of a
stable representation is finite. It is also well-known that the stabilizer of a quiver
representation is connected, so we obtain that the stabilizer of (B, a, b) is trivial.
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(ii) By Proposition 3.5.3 (3), a point (B, a, b) is a regular for μ if and only if the
stabilizer of (B, a, b) in G is finite. So we obtain the claim by the assumption that
(B, a, b) is ζR-stable. �
3.6.2 Theorem. Let Q be a finite quiver without edge loops. For ζ = (ζR, ζC) with
ζC ∈ C

Q0 and ζR ∈ R
Q0 , we set Mζ (v,w) (resp. Mreg

ζ (v,w)) be the set which
consists of ζR-semistable (resp. ζR-stable) representations of the quiver satisfying
μ (B, a, b) = μC for dimension vector (v,w), that is

Mζ (v,w) = (
μ−1 (ζC) ∩ MζR−sst (v,w)

)
//G (V ) ,

M
reg
ζ (v,w) = (

μ−1 (ζC) ∩ MζR−st (v,w)
)
/G (V ) ,

where MζR−sst (v,w) (resp. MζR−st (v,w)) is the subset of M (v,w) which consists
of ζR-semistable (resp. ζR-stable) representations and // means the S-equivalence
defined by Jordan–Hölder filtrations of the ζR-semistable representations.

There is a canonical projective morphism Mζ (v,w) → M(0,ζC) (v,w) which
assigns the graded quotient of a Jordan–Hölder filtration with respect to0-semistabity.

We study the sufficient condition forMreg
ζ (v,w) = Mζ (v,w).

For a quiver Q, let

	′ := {
β ∈ Z

Q0 \ {0}∣∣qQ (β) � 1
}
.

and 	′+ := 	′ ∩ Z
Q0
�0, then it is well known that 	′ coincides with the set of roots

for the corresponding Cartan matrix of Dynkin or affine type.
For a fixed v ∈ Z�0, let

	′
+ (v) := {

β ∈ 	′
+
∣
∣β � v

}
.

3.6.3 Definition. For agivendimensionvectorv ∈ Z
I
�0,ζ = (

ζR, ζC

) ∈ (R ⊕ C)Q0

is said to be v-generic (or v-regular) if

ζ ∈ (R ⊕ C)Q0 \
⋃

θ∈	′+(v)

(R ⊕ C) ⊗ β⊥,

where β⊥ = {
x = (xi )i∈I ∈ R

I
∣
∣∑

i∈I xiβi = 0
}
for β = ∑

βiαi ∈ 	′+ (v).

3.6.4 Examples. It can be checked that (ζR, 0) is v-generic for all v ∈ Z
I
�0 if ζR,i =

1 for i ∈ I .

3.6.5 Theorem (Demonet [39, Theorem 2]). Let ζ = (
ζR, ζC

)
be v-generic. Then

the regular locus Mreg (v,w) coincides with M (v,w). In fact, M (v,w) is smooth
and it has a canonical symplectic structure induced by the Hamiltonian reduction
with

dimM (v,w) = 2
∑

i∈Q0

viwi − 2qQ (v) .
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Crawley–Boevey [6–8] studied connectedness and the normality and the irre-
ducibility of the quiver varieties.

3.7 Nilpotent Orbit and Springer Resolution

In this subsection, we study an example of the quiver varieties of type An in special
cases. For more general quiver varieties of type A, Nakajima [39, Conjecture 8.6]
conjectured that it is isomorphic to intersection of a Slodowy slice and a nilpotent
orbit and Maffei [36] proved the conjecture. The identification of slices in affine
Grassmannian of type A with quiver varieties of type A was found by Mirković–
Vybornov [37, 38]. See also Yamakawa [56, 5.1] for the description of coadjoint
orbits of type A by quiver varieties of type A.

3.7.1 Definition. Let w � 0 be a positive integer.

(i) A composition r ofw is a sequenceof (strictly) positive integers r = [r1, · · · , r�]
such that

∑�
i=1 ri = w.

(ii) A composition r is called a partition if r1 � · · · � r�.
(iii) For a partition r , we define the dual partition r∨ = [

r∨
1 , · · · , r∨

n

]
by

r∨
i = #

{
1 � j ≤ � | r j � i

}
.

For a given positive integer r , we define the following r × r matrix, called an
elementary Jordan block of type r , by

J0 (r) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

... 0
. . .

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ End
(
C

r
)
.

J0 (r) is a nilpotent endomorphism of C
r .

For a given partition r = (r1, · · · , r�), we consider J0 (r) = J0 (r1) ⊕ J0 (r2) ⊕
· · · ⊕ J0 (r�) which is the matrix defined by

J0 (r) =

⎛

⎜
⎜
⎜
⎝

J0 (r1) 0 · · · 0
0 J0 (r2) · · · 0
...

...
. . .

...

0 0 · · · J0 (r�)

⎞

⎟
⎟
⎟
⎠

.

Then J0 (r) is a nilpotent endomorphism of C
r1+r2+···+r� = C

w. It is well-known
that any nilpotent endomorphism of C

w is conjugate to J0 (r) for some (unique)
partition r in normal Jordan block form.
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Let
Or = OJ0(r) = GL (w) · J0 (r) = {

gJ0 (r) g−1 | g ∈ GL (w)
}

be the GL (w)-conjugacy class which contains J0 (r).

3.7.2 Definition. (dominance order) For partitions r, r ′ ofw, we define r � r ′ and
say that r dominates r ′ if the following condition holds:

j∑

k=1

rk �
j∑

k=1

r ′
k

for 1 � j � w. The partial order � is called the dominance order.

3.7.3 Exercise. For two given partitions r and r ′ ofw. The following are equivalent:

(i) r � r ′
(ii)

∑
k> j r∨

k �
∑

k> j r
′∨
k for all 1 � j � w.

3.7.4 Proposition. (i) Let X ∈ End (Cw) be a nilpotent endomorphism.
(ii) Let Or and Or ′ be the nilpotent orbits in End (Cw) corresponding to r and r ′.

3.7.5 Exercise. (i) Prove that r � r ′ if and only if Or ⊃ Or ′ .
(ii) Let r = (r1, · · · , r�) be a partition of w and r∨ = (

r∨
1 , · · · , r∨

n

)
be its dual.

Then show that

dimOr = w2 −
�∑

i, j=1

min
(
ri , r j

)

= w2 −
n∑

i=1

(
r∨

i

)2 = 2
∑

i< j

r∨
i r∨

j .

Let W be the C-vector space with dimC W = w and

J = J0 (r) = J0 (r1) ⊕ J0 (r2) ⊕ · · · ⊕ J0 (r�) ∈ EndC (W )

be the nilpotent Jordan normal form associated with r = (r1, · · · , r�) and Or ⊂
EndC (W ) be the Zariski closure of associated nilpotent conjugacy class. We note
that dim Ker

(
J i

) = ∑
1�k�i r∨

k and dim Im
(
J i

) = ∑
k> j r∨

k .

3.7.6 Exercise. (i) LetFl (v1, · · · , vn;w) be the n-step flag variety parametrizing
flags

0 ⊂ W n ⊂ W n−1 ⊂ · · · ⊂ W 1 ⊂ W

with dim W j = v j (1 � j � n). Then show that

T ∗Fl (v1, · · · , vn;w)

= {
(W •, J ) ∈ Fl (v1, · · · , vn;w) × EndC (W ) | J W j ⊂ W j−1 (1 � j � n)

}
.
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(ii) Show that the second projection pr2 : T ∗Fl (v1, · · · , vn;w) → EndC (W ) is a
resolution of singularity of its image Im

(
pr2

) = Or .

We consider an quiver Q of type An and dimension vectors v = (v1, · · · , vn) and
w = (w, 0, · · · , 0) with the following condition:

w − v1 � v1 − v2 � · · · � vn−1 − vn � vn.

So we consider the following diagram:

V1

B21

b

V2

B32

B12

· · ·
B23

Vn−1 Vn

W1

a

Let � : M (V, W ) → EndC (W ) be the morphism defined by (B, a, b) �→ ba. By
the construction, the morphism � is GL (V1)-invariant. Then we obtain a morphism

�0 : M0 (V, W ) → EndC (W )

which is G (W ) = GL (W1)-equivariant.

3.7.7 Exercise. Show that the following are equivalent:

(i) B j, j+1 are injective for 1 � j � n − 1 and b is injective.
(ii) A data (B, a, b) is (semi)stable.

3.7.8 Theorem. Assume that ζR,i > 0 for 1 � i � n and ζC = 0. Then we have the
following commutative diagram whose horizontal morphisms are isomorphisms:

MζR,0 (v,w)

π

T ∗Fl (v1, · · · , vn;w)

pr2

M0,0 (v,w) Or

,

where the lower horizontal morphism is induced by � and the upper horizontal
morphism is given by (B, a, b) → (W •, ba), where

W j = Im
(
bB1,2 · · · B j, j+1

)
(0 � j � n − 1)

and we also have M
reg
0,0 (v,w) 	 Or .
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Chapter 8
On Additive Deligne–Simpson Problems

Kazuki Hiroe

In this note, we explain the additive Deligne–Simpson problem and its generalization
for differential equations with unramified irregular singularities. A correspondence
between spaces of solutions of these additive Deligne–Simpson problems and quiver
varieties is given. As an application, the geometry of moduli spaces of meromorphic
connections with unramified irregular singularities is discussed, for example, the
non-emptiness of the smooth parts of moduli spaces and their connectedness. The
detail of this note can also be found in [17].

1 Deligne–Simpson Problem and Riemann–Hilbert
Problem

The Deligne–Simpson problem is the following problem:
Give a necessary and sufficient condition for the choice of the conjugacy classes

C j ∈ GL(n, C) so that there exist irreducible tuples of matrices M j ∈ C j satisfying

M0 · · · Mp = I.

Here, we say that a tuple (M0, . . . , Mp) of n × n matrices is irreducible if it has
no nontrivial simultaneous invariant subspace of C

n , namely, if there exists a proper
subspace W ⊂ C

n such that Mi W ⊂ W for all i = 0, . . . , p, then W = {0}.
This problem was stated by P. Deligne and C. Simpson and Simpson obtained

a necessary and sufficient condition under some restrictions in [31]. After that,
V. Kostov studied this problem deeply and obtained many important results, see
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his survey paper [26]. The name of the Deligne–Simpson problem was given by
Kostov.

In the series of works, Kostov introduced an additive analogy of the Deligne–
Simpson problem, so-called additive Deligne–Simpson problem: Give a necessary
and sufficient condition for the choice of the conjugacy classes C j ∈ M(n, C) so that
there exist irreducible tuples of matrices A j ∈ C j satisfying

A0 + · · · + Ap = 0.

The original Deligne–Simpson problem and the additive one have the following
realizations as problems of monodromy and differential equations:

A tuple (M0, . . . , Mp) ∈ GL (n, C)p+1 satisfying

M0 · · · Mp = I

defines a linear representation

ρ : π1(P
1\{a0, . . . , ap}, z0) −→ GL (n, C)

recalling that

π1(P
1\{a0, . . . , ap}, z0) ∼= 〈γ0, . . . , γp | γ0 · · · γp = id〉

where γi is a suitable closed path in P
1\{a0, . . . , ap} encircling ai with the base point

z0 and ρ(γi ) = Mi for each i = 0, . . . , p.

ap

ap− 1
a0

z0
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Thus, the Deligne–Simpson problem can be seen as the problem asking the exis-
tence of irreducible monodromy representation with the prescribed local isomorphic
classes of local monodromy.

On the other hand, from a tuple (A0, . . . , Ap) ∈ M(n, C) satisfying

A0 + · · · + Ap = 0,

we can consider the system of linear differential equations,

d

dz
Y =

p∑

i=1

Ai

z − ai
Y

called Fuchsian system of differential equations whose singular points are at
a1, . . . , ap ∈ C and a0 := ∞. Here Ai is called residue matrix at the singular point
x = ai for each i = 0, . . . , p. Thus, the additive Deligne–Simpson problem asks the
existence of irreducible Fuchsian differential equations with the prescribed conju-
gacy classes of residue matrices Ai , i = 0, . . . , p.

Under these realizations, we can relate the Deligne–Simpson problem and the
additive one through the Riemann–Hilbert correspondence as follows. There are
many good references for Fuchsian differential equations and the Riemann–Hilbert
problems, see, for example, [1, 15, 29, 30, 33, 34]. Let us consider a Fuchsian system

d

dz
Y =

p∑

i=1

Ai

z − ai
Y.

Fix a base point z0 ∈ P
1\{a0, . . . , ap} and a basis v1, . . . , vn ∈ C

n as a vector
space. Then there is a unique collection Y1(z), . . . , Yn(z) of solutions defined
around z0 with Yi (z0) = vi and det (Y1(z) · · · Yn(z)) 	= 0. The square matrix F(z) :=
(Y1(z) · · · Yn(z)) can be analytically continued on P

1\{a0, . . . , ap} as multivalued
matrix function, which is called fundamental matrix of solutions. Then the funda-
mental matrix defines a tuple of matrices (M0, . . . , Mp) ∈ GL (n, C) as follows. For
a closed path γ in P

1\{a0, . . . , ap}with the base point z0, let Fγ(z) defined around z0
be the analytic continuation of F(z) along γ. Then, we define the local monodromy
matrix

Mi := Fγi (z)
−1F(z)

for each i = 0, . . . , p. Here, it is easy to see that Mi are constant matrices. The
product of paths induces the multiplication of monodromy matrices. Thus

M0 · · · Mp = Fγ0···γp (z)
−1F(z) = Fid(z)

−1F(z) = I.

Moreover if Ai are good enough, we can relate conjugacy classes of Ai and that of
Mi . For example, let us assume that eigenvalues of Ai have no integer differences for
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each i = 0, . . . , p. Then the general theory of regular singular points of differential
equations shows that exp (2π

√−1Ai ) is conjugate with Mi for each i = 0, . . . , p.
Furthermore, we can find a Fuchsian system from an irreducible monodromy

representation conversely.

1.1 Theorem (Bolibruch [8], Kostov [25]). For an irreducible representation

ρ : π1(P
1\{a0, . . . , ap}, z0) → GL (n, C),

there exists a Fuchsian differential equation

d

dz
Y =

p∑

i=1

Ai

z − ai
Y

whose monodromy matrices (M0, . . . , Mp) defines the representation isomorphic to
ρ.

Thus we may say that the original Deligne–Simpson problem and its additive
analogue are related under the Riemann–Hilbert correspondence explained as above.

1.2 Remark. As we saw above, monodromy representations and Fuchsian differ-
ential equations are related through the Riemann–Hilbert correspondence. How-
ever, solutions of the Deligne–Simpson problem do not provide that of the additive
Deligne–Simpson problem directly, vice versa. For instance, we should note that the
irreducibility the tuple (A0, . . . , Ap) ∈ M(n, C)p+1 does not imply the irreducibility
of the tuple of monodromy matrices (M0, . . . , Mp) of the Fuchsian equation

d

dz
Y =

p∑

i=1

Ai

z − ai
Y

in general. Also, the conjugacy classes of Mi are not determined from those of Ai in
general except the good case as we explained above.

2 Additive Deligne–Simpson Problem

In this note, we shall discuss the additive Deligne–Simpson problem and its general-
ization. For the original Deligne–Simpson problem called “multiplicative” Deligne–
Simpson problem in distinction from the additive one, and its generalizations, we
refer Simpson’s pioneering paper [31], Kostov’s paper [26], the paper of Crawley-
Boevey and Shaw [12], and Boalch’s paper [7].

As we saw in the previous section, the additive Deligne–Simpson problem can
be seen as the problem finding an irreducible Fuchsian system with the prescribed
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conjugacy classes of residue matrices. Thus, it may be natural to consider similar
problems for non-Fuchsian differential equations. In this note, we shall generalize the
additiveDeligne–Simpson problem for differential equationswith atmost unramified
irregular singularities on the Riemann sphere and give a necessary and sufficient
condition for the solvability of the problem.

To do so, we first give the definition of the generalization of the additive Deligne–
Simpson problem for differential equations with at most unramified irregular sin-
gularities on the Riemann sphere. Also, we recall moduli spaces of meromorphic
connections on trivial vector bundles over the Riemann sphere and moreover see that
the additive Deligne–Simpson problem is related to the non-emptiness problem of
the moduli spaces.

2.1 A Generalization of the Additive Deligne–Simpson
Problem

As we saw in the previous section, the original additive Deligne–Simpson problem
for Fuchsian differential equations consists of a collection of conjugacy classes of
M(n, C). The counterparts for irregular singular cases of the conjugacy classes are
Hukuhara–Turrittin–Levelt normal forms of M(n, C((z))). We shall recall the defini-
tion of Hukuhara–Turrittin–Levelt normal forms and give a definition of the additive
Deligne–Simpson problem for differential equations with at most unramified irreg-
ular singularities.

Let us consider a differential equation

d

dz
Y = AY, (A ∈ M(n, C((z)))).

For X ∈ GL(n, C((z))), we define a new differential equation d
dz Ỹ = BỸ by

B := X AX−1 + (
d

dz
X)X−1.

We write B =: X [A] and call this operation the gauge transform of A by X . Let
C((t)) be a finite field extension of C((z)), namely, there exists r ∈ Z≥1 such that
tr = z. Then the differential equation d

dz Y = AY over C((z)) defines the differential

equation d
dt Z = AZ over C((t)) where A := r tr−1AZ .

2.1.1 Definition (HTL normal form). By Hukuhara–Turrittin–Levelt normal form
or HTL normal form for short, we mean an element in M(n, C((t))) of the form as a
block diagonal matrix
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diag
(

q1(t
−1)In1 + R1t−1, . . . , qm (t−1)Inm + Rmt−1

)
:=

⎛

⎜⎜⎝

q1(t
−1)In1 + R1t−1

. . .

qm (t−1)Inm + Rmt−1

⎞

⎟⎟⎠

where tr = z, qi (s) ∈ s2C[s] satisfying qi 	= q j if i 	= j , and Ri ∈ M(ni , C). In
particular when r = 1, the normal form is said to be unramified.

Let us define Rest=0(
∑∞

i=−∞ Ai t i ) := A−1. For an HTL normal form H ∈ M(n,

C((t))), we call Hirr := H − Rest=0(H)t−1 the irregular part of H . The following is
a fundamental fact of the local formal theory of differential equations with irregular
singularity.

2.1.2 Theorem (Hukuhara–Turrittin–Levelt, see [36], for instance). For any
A ∈ M(n, C((z))), there exists a field extension C((t)) ⊃ C((z)) with tr = z, r ∈ Z≥1

and X ∈ GL(n, C((t))) such that X [A] is an HTL normal form in M(n, C((t))).

We call this X [A] a normal form of A.

2.1.3 Remark. We note that if two HTL normal forms H ∈ M(n, C((t))) and H ′ ∈
M(n, C((t ′))) (C((z)) ⊂ C((t)) ⊂ C((t ′))) are normal forms of an A ∈ M(n, C((z))),
then there exists g ∈ GL(n, C) such that g−1Hirrg = H ′

irr and g−1

exp(2π
√−1kRest=0(H))g = exp(2π

√−1kRest ′=0(H ′)) for some integer k ≥ 1,
see [3] for instance.

To define our generalized additive Deligne–Simpson problem for differential
equations with at most unramified irregular singularities, we shall introduce coad-
joint orbits of unramified HTL normal forms which play the same role as conjugacy
classes in M(n, C) in the original additive Deligne–Simpson problem.

Let us consider an unramified HTL normal form

B = diag
(
q1(z

−1)In1 + R1z−1, . . . , qm(z−1)Inm + Rm z−1
)

with the pole order
k := maxi=1,...,m{deg

C[z−1]qi (z
−1)}.

We shall consider an orbit of B under the following group action. Let Gk :=
GL(n, C[[z]]/zk

C[[z]]) which can be identified with

{
A0 + A1z + · · · + Ak−1zk−1 ∈

k−1∑

i=0

M(n, C)zi

∣∣∣∣ A0 ∈ GL(n, C)

}
.

Also define
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gk := M(n, C[[z]]/zk
C[[z]])

∼=
{

A0 + A1z + · · · + Ak−1zk−1

∣∣∣∣ Ai ∈ M(n, C), i = 0, 1, . . . , k − 1

}
.

The groupGk acts ongk by the adjoint actionAd(g)X := gXg−1 for g ∈ Gk, X ∈ gk .
The dual vector space g∗

k is identified with

M(n, z−k
C[[z]]/C[[z]]) ∼=

{
Ak

zk
+ · · · + A1

z

∣∣∣∣ Ai ∈ M(n, C), i = 1, . . . , k

}

by the bilinear form

gk × g∗
k � (A, B) �→ Res(tr(AB)) ∈ C.

Regarding B as an element of g∗
k , we define the orbit of B under the coadjoint

action of Gk .

2.1.4 Definition (truncated orbit). Let us regard B as an element of g∗
k . Then

OB := {Ad∗(g)B | g ∈ Gk}

is called the truncated orbit of B.

2.1.5 Remark. If another HTL normal form B ′ ∈ g∗
k is in OB , then there exists

g ∈ GL(n, C) such that g−1B ′g = B as in Remark 2.1.3. See Proposition 5 in [37]
for the proof.

Let usmention a relationship betweenOB and normal forms of M(n, C((z))) under
gauge transformations. Let ι : M(n, C((z))) → M(n, C((z))/C[[z]]) be the natural
projection. Under the generic condition as we see below, B can be a normal form of
A ∈ M(n, z−k

C[[z]]) with ι(A) ∈ OB .

2.1.6 Proposition. For an HTL normal form

B = diag
(
q1(z

−1)In1 + R1z−1, . . . , qm(z−1)Inm + Rm z−1
)

of the pole order k, we assume that differences of any pairs of distinct eigenvalues
of Ri never be integers for each i = 1, . . . , m. Then for any A ∈ M(n, z−k

C[[z]])
with ι(A) ∈ OB, there exists X ∈ GL(n, C((z))) such that X [A] = B, namely, B is
a normal form of A.

This follows from the following fundamental facts.

2.1.7 Lemma (see Lemma 1 in 6.2 in [3] for instance). Suppose k > 1. Let us
consider
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C = diag(λ1 Im1 , . . . ,λl Iml )z
−k +

∞∑

i=−k+1

Ci z
i ∈ M(m, C((z)))

for distinct λ1, . . . ,λl ∈ C. Then there exists X ∈ GL(m, C[[z]]) such that

X [C] = diag

(
λ1 Im1 z

−k +
∞∑

i=−k+1

C (1)
i zi , . . . ,λl Iml z

−k +
∞∑

i=−k+1

C (l)
i zi

)

where C ( j)
i ∈ M(m j , C) for j = 1, . . . , l, i = −k + 1,−k + 2, . . ..

2.1.8 Lemma (see Theorem 1 in 3.3 in [3] for instance). Let us consider C =∑∞
i=−1 Ci zi in M(m, C((z))) and suppose that no two distinct eigenvalues of C−1

differ by an integer. Then there exists X ∈ GL(m, C[[z]]) such that X [C] = C−1z−1.

Proof of Proposition 2.1.6 Since ι(A) ∈ OB , there exists X̃ ∈ GL(n, C[[z]]) such that

X̃ [A] − B = B0 + B1z + B2z2 + · · · ∈ M(n, C[[z]]).

Using Lemma 2.1.7 repeatedly, we may assume that

Bi = diag(B(1)
i , . . . , B(m)

i )

with B( j)
i ∈ M(n j , C) for i = 0, 1, . . .. Since no two eigenvalues of Ri differ by an

integer, there exists xi ∈ GL(ni , C[[z]]) such that xi [Ri z−1 + B(i)
0 + B(i)

1 z + · · · ] =
Ri z−1 for each i = 1, . . . , m by Lemma 2.1.8. Noting that x := diag(x1, . . . , xm)

commutes with
Birr = diag

(
q1(z

−1)In1 , . . . , qm(z−1)Inm

)
,

we have x X̃ [A] = B. �
Now we are ready to define a generalization of the additive Deligne–Simpson

problem for differential equations with unramified irregular singularities. Let us
consider a differential equation

d

dz
Y =
⎛

⎝
p∑

i=1

ki∑

j=1

Ai, j

(z − ai ) j
+
∑

2≤ j≤k0

A0, j z
j−2

⎞

⎠ Y.

This equation has a singular point at x = ai with pole order ki for each i = 1, . . . , p.
Moreover x = a0 = ∞ is a singular point of pole order k0 as well. To see this, set
z0 = 1

z . Since
d
dz = −z20

d
dz0

, this differential equation can be written by

d

dz0
Ỹ =
⎛

⎝−
k0∑

j=1

A0, j

z j
0

+ A0 + A1z0 + A2z20 · · ·
⎞

⎠ Ỹ



8 On Additive Deligne–Simpson Problems 279

where A0,1 := −∑p
i=1 Ai,1.

Let us denote the principal term at the singular point ai by

Ai (zi ) :=
ki∑

j=1

Ai, j z
− j
i

for each i = 0, . . . , p. Here zi := z − ai , i = 1, . . . , p, z0 := 1
z . This differential

equation is said to be irreducible if the collection of the matrices (Ai, j )0≤i≤p,
1≤ j≤ki

is

irreducible.

2.1.9 Definition (additive Deligne–Simpson problem). Let us take ki ∈ Z≥1 and
unramified HTL normal forms Bi ∈ g∗

ki
for i = 0, 1, . . . , p. Then a solution of the

additive Deligne–Simpson problem for the collection of the unramified HTL normal
forms (B0, B1, . . . , Bp) is an irreducible differential equation

d

dz
Y =
⎛

⎝
p∑

i=1

ki∑

j=1

Ai, j

(z − ai ) j
+
∑

2≤ j≤k0

A0, j z
j−2

⎞

⎠ Y

such that the principal term at each singular point ai , i = 0, 1, . . . , p satisfies

Ai (z) ∈ OBi .

2.1.10 Remark. Let us note that if k0 = k1 = · · · = kp = 1, then Gki = GL(n, C)

and g∗
ki

= M(n, C). Thus, the truncated orbits OBi are just conjugacy classes of
M(n, C)z−1. Therefore, the additive Deligne–Simpson problem in Definition 2.1.9
contains the original additive Deligne–Simpson problem for Fuchsian differential
equations.

2.2 Moduli Spaces of Meromorphic Connections and
Additive Deligne–Simpson Problem

In this section, we quickly recall the definition of moduli spaces of meromorphic
connections on trivial vector bundles over the Riemann sphere following [6]. The
detailed treatment can be found in the original paper by Boalch [6] and we also refer
[19] and their references. The solvability of the additive Deligne–Simpson problems
can be seen as the problem determining the necessary and sufficient condition of the
non-emptiness of the moduli spaces.

Let us recall the notion of meromorphic connections and see their relationship
with differential equations. For f =∑∞

i>−∞ ai zi ∈ C((z)), the order is

ord( f ) := min{i | ai 	= 0}.
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If f = 0, we formally put ord( f ) = ∞. For a meromorphic function f locally
defined near a ∈ P

1, we denote the germ of f at a by fa . Wemay see fa ∈ C((za)) by
setting za = z − a if a ∈ C and za = 1/z if a = ∞, where we take z as the standard
coordinate of C. Then define

orda( f ) := ord( fa).

For a meromorphic 1-form ω defined on P
1, the order orda(ω) can be defined as fol-

lows. SetU1 = P
1\{∞} andU2 = P

1\{0}. Let zi be coordinates ofUi , i = 1, 2, such
that z1(0) = z2(∞) = 0 and z2 = 1/z1 in U1 ∩ U2. Then there exist meromorphic
functions fi on Ui such that

ω = fi dzi

on Ui for i = 1, 2. Then define

orda(ω) := orda( fi )

for a ∈ Ui , i = 1, 2.
Let us fix a collection of points a0, . . . , ap ∈ P

1 and set S := k0a0 + · · · + kpap

as an effective divisor with k0, . . . , kp > 0. For a ∈ P
1 let S(a) be the coefficient of

a in S, i.e.,

S(a) :=
{

ki if a = ai for i = 0, . . . , p,

0 otherwise.

For an open set U ⊂ P
1, we define �S(U ) to be the set of all meromorphic 1-forms

ω on U satisfying orda(ω) ≥ −S(a) for any a ∈ U . This correspondence defines the
sheaf �S by the natural restriction mappings.

Let E be a locally free sheaf of rank n on P
1, namely a sheaf of modules over the

sheaf O of holomorphic functions on P
1 satisfying that for any a ∈ P

1 there exists
an open neighbourhood V ⊂ P

1 such that E |V
∼= On|V . We may sometimes regard

E as a holomorphic vector bundle over P
1.

2.2.1 Definition (Meromorphic connection). A meromorphic connection is a pair
(E,∇) of a locally free sheaf E and a morphism ∇ : E → E ⊗ �S of sheaves of
C-vector spaces satisfying

∇( f s) = d f ⊗ s + f ⊗ ∇(s)

for all f ∈ O(U ), s ∈ E(U ) and open subsets U ⊂ P
1.

Let U ⊂ P
1 be an open subset which gives a local trivialization of E and z a

local coordinate of U . Then if we fix an identification E |U ∼= On|U , we can write
∇ = d − A dz by A ∈ M(n,M(U )) on U . Note that if we write ∇ = d − A′ dz by
another identification E |U ∼= On|U , then A′ can be obtained by a holomorphic gauge
transformation of A, namely, there exists X ∈ GL(n,O(U )) such that
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A′ = X [A].

Thus, wemay say that (E,∇) defines a holomorphic gauge equivalent class of a local
differential equation

d

dz
Y = AY

on U ⊂ P
1.

In particular, suppose thatE is trivial, i.e.,E ∼= On and setU1 = P
1\{∞} andU2 =

P
1\{0} as before. Then if we fix a trivialization E ∼= On , we have∇ = d − A(z1)dz1

onU1 with A(z1) = (αi, j (z1))i, j=1,...,n ∈ M(n, C(z)) satisfying orda(αi, j ) ≥ −S(a)

for all a ∈ U1. Similarly on U2 we have ∇ = d − B(z2)dz2. Since E is trivial,

A(z1)dz1 = B(z2)dz2 on U1 ∩ U2.

Namely,

B(z2) = − A(1/z2)

z22
.

This is nothing but the coordinate exchange ζ = 1
z for a differential equation

d

dz
Y = A(z)Y �−→ −ζ2

d

dζ
Y = A(1/ζ)Y.

Thus, a meromorphic connection (E,∇) with a trivial bundle E on P
1 corre-

sponds to ameromorphic differential equation d
dz Y = AY with A = (αi, j )i, j=1,...,n ∈

M(n, C(z)) satisfying orda(αi, j dz) ≥ −S(a) for all a ∈ P
1, and vice versa. This

correspondence is unique up to the choice of E ∼= On , i.e., GL(n, C)-action.
Let S = k0a0 + . . . + kpap be an effective divisor on P

1 as before. Define a set
of meromorphic connections on P

1

Triv(n)
S :=
{
(On,∇)

∣∣∣∣∇ : On → On ⊗ �S

}
.

We say (On,∇) ∈ Triv(n)
S is stable if there exists no nontrivial proper subspace W ⊂

C
n such that the subbundle W := W ⊗ O ⊂ C

n ⊗ O = On is closed under ∇, i.e.,

∇(W) ⊂ W ⊗ �S.

Let B = (B0, . . . , Bp) ∈ M(n, C((z)))p+1 be a collection of HTL normal forms
satisfying ord(Bi ) = −ki for all i = 0, . . . , p. We write∇|ai ∈ OBi for a connection
(On,∇) if there exists Aai ∈ M(n, C((zai ))) such that∇ = d − Aai dzai and ι(Aai ) ∈
OBi where zai is a local coordinate of P

1 vanishing at ai and ι : M(n, C((zai ))) →
M(n, C((zai ))/C[[zai ]]) is the natural projection.
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Then, the moduli space of stable meromorphic connections on trivial bundles is

M(B) :=
{
(On,∇) ∈ Triv(n)

S

∣∣∣∣
(On,∇) : stable,

∇|ai ∈ OBi for all i = 0, . . . , p

}/
GL(n, C).

Here GL(n, C) = GL(n,O(P1)) acts on Triv(n)
S as the holomorphic gauge transfor-

mation.
Möbius transformation may allow us to suppose a0 = ∞ ∈ P

1. Then we can
identify (On,∇) in Trivn

S with a meromorphic differential equation defined on P
1,

d

dz
Y =
(

p∑

i=1

ki∑

ν=1

A(i)
ν

(z − ai )ν
+
∑

2≤ν≤k0

A(0)
ν zν−2

)
Y

up to GL(n, C)-action, i.e.,

d

dz
Y = A(z)Y �−→ d

dz
Y ′ = gA(z)g−1Y ′ (g ∈ GL(n, C)).

The stability of (On,∇) corresponds to the irreducibility of the differential equation.
Thus,we can regardM(B) as the followingmoduli space ofmeromorphic differential
equations on P

1:
⎧
⎪⎨

⎪⎩
d

dz
Y =
⎛

⎝
p∑

i=1

ki∑

ν=1

A(i)
ν

(z − ai )
ν +
∑

2≤ν≤k0

A(0)
ν zν−2

⎞

⎠ Y

∣∣∣∣

irreducible,
∑ki

ν=1
A(i)

ν
zν ∈ OBi ,

i = 0, . . . , p

⎫
⎪⎬

⎪⎭

/
GL(n, C).

Thus, the solvability of the additive Deligne–Simpson problem is rephrased as the
non-emptiness of the moduli space.

2.2.2 Proposition. There is a solution of the additive Deligne–Simpson problem for
B if and only if M(B) 	= ∅.

Furthermore, forgetting the location of the singular points, we may regardM(B)

as a subspace of the orbit space
∏p

i=0 OBi ,

M(B) =
{

A = (Ai (z))0≤i≤p ∈
p∏

i=0

OBi

∣∣∣∣
A is irreducible ,∑p
i=0 Res (Ai (z)) = 0

}/
GL(n, C)

which is free from locations of ai in P
1. Here

Res (

k∑

j=1

A j z
− j ) := A1

andwe say thatA = (
∑ki

j=1 Ai, j z−1)0≤i≤p is irreducible if (Ai, j ) 0≤i≤p
1≤ j≤ki

is irreducible.
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3 A Review of Representations of Quivers

In [10], Crawley-Boevey determined a necessary and sufficient condition of the exis-
tence of solutions of the additive Deligne–Simpson problem for Fuchsian systems.
In that paper, Crawley-Boevey found a realization of a moduli space of Fuchsian
systems as a quiver variety and determined the condition for the non-emptiness of
the moduli space from the theory of quiver varieties. To recall his theory and gener-
alize it to our problems for unramified differential equations, let us give a review of
known results of the representation theory of quivers and theory of quiver varieties.
We refer original papers for the general theory by Nakajima [28], Crawley-Boevey
and Holland [11], Crawley-Boevey [9] and their references.

3.1 Representations of Quivers and Quiver Varieties

Here we recall the definition of representations of quivers and introduce quiver vari-
eties. See also [23] in this book.

3.1.1 Quivers. A quiver Q = (Q0, Q1, s, t) is the quadruple consisting of Q0, the
set of vertices, and Q1, the set of arrows connecting vertices in Q0, and two maps
s, t : Q1 → Q0, which associate to each arrow ρ ∈ Q1 its source s(ρ) ∈ Q0 and its
target t (ρ) ∈ Q0 respectively.

3.1.2 Representations of Quivers. Let Q be a finite quiver, i.e., Q0 and Q1 are finite
sets. A representation M of Q is defined by the following data:

(i) To each vertex a in Q0, a finite- dimensional C- vector space Ma is attached.
(ii) To each arrow ρ : a → b in Q1, a C-linear map ψρ : Ma → Mb is attached.

We denote the representation by M = (Ma,ψα)a∈Q0,α∈Q1 . The collection of inte-
gers defined by dim M = (dimCMa)a∈Q0 is called the dimension vector of M .

For a fixed vector α ∈ (Z≥0)
Q0 , the representation space is

RepQ(V,α) =
⊕

ρ∈Q1

HomC(Vs(ρ), Vt (ρ)),

where V = (Va)a∈Q0 is a collection of finite dimensional C-vector spaces with
dimCVa = αa . If Va = C

αa for all a ∈ Q0, we simply write

RepQ(α) =
⊕

ρ∈Q1

HomC(Cαs(ρ) , C
αt (ρ) ).

The space RepQ(V,α) has an action of
∏

a∈Q0
GL(Va). For (ψρ)ρ∈Q1 ∈ RepQ

(V,α) and g = (ga) ∈∏a∈Q0
GL(Va), then g · (ψρ)ρ∈Q1 ∈ RepQ(V,α) consists of

ψ′
ρ = gt (ρ)ψρg

−1
s(ρ) in HomC(Vs(ρ), Vt (ρ)).
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Let M = (Ma,ψ
M
ρ )a∈Q0,ρ∈Q1 and N = (Na,ψ

N
ρ )a∈Q0,ρ∈Q1 be representations of

a quiver Q. Then N is called the subrepresentation of M if we have the following:

1. For each a ∈ Q0, Na ⊂ Ma .
2. For each ρ : a → b ∈ Q1, ψM

ρ |Na = ψN
ρ .

In this case, we denote N ⊂ M . Moreover, if

(3) there exists a direct sum decomposition Ma = Na ⊕ N ′
a for each a ∈ Q0,

(4) for each ρ : a → b ∈ Q1, we have ψM
ρ |N ′

a
⊂ N

′
b,

then we say M has a direct sum decomposition M = N ⊕ N ′ where N ′ = (N ′
a,ψ

M
ρ

|N ′
a
)a∈Q0,ρ∈Q1 .
The representation M is said to be irreducible if M has no subrepresentations other

than M and {0}. Here {0} is the representation of Q which consists of zero vector
spaces and zero linearmaps. On the other hand, if any direct sumdecomposition M =
N ⊕ N ′ satisfies either N = {0} or N ′ = {0}, then M is said to be indecomposable.

Let us recall the notion of double quiver associated to a quiver.

3.1.3 Double of a Quiver. Let Q = (Q0, Q1) be a finite quiver. Then the double
quiver Q of Q is the quiver obtained by adjoining the reverse arrow ρ∗ : b → a
to each arrow ρ : a → b. Namely, Q = (Q0 = Q0, Q1 = Q1 ∪ Q∗

1) where Q∗
1 =

{ρ∗ : t (ρ) → s(ρ) | ρ ∈ Q1}.
Here we note that the representation space RepQ(α) of the double quiver Q can

be regarded as the cotangent bundle of RepQ(α), namely,

RepQ(α) ∼= RepQ(α) ⊕ RepQ(α)∗ ∼= T ∗RepQ(α),

since we have the identification

HomC(Cαs(ρ) , C
αt (ρ) )∗ ∼= HomC(Cαs(ρ∗) , C

αt (ρ∗) )

for each ρ ∈ Q1. Then, we can regard RepQ(α) ∼= T ∗RepQ(α) as a symplectic
manifold with the canonical symplectic form

ω(x, y) :=
∑

ρ∈Q1

(tr(xρyρ∗) − tr(xρ∗ yρ))

for x, y ∈ T ∗RepQ(α), which is invariant under the action of

GL(α) :=
∏

a∈Q0

GL(αa, C).

Thenwe define amoment map of the symplectic manifold RepQ(α)with the GL(α)-
action as follows: The map

μα : RepQ(α) → Lie GL(α) :=
∏

a∈Q0

M(αa, C)
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is defined by
μα(x)a =

∑

ρ∈Q1
t (ρ)=a

xρxρ∗ −
∑

ρ∈Q1
s(ρ)=a

xρ∗ xρ,

for x = (xρ)ρ∈Q1
∈ RepQ(α).

Then the quiver variety is defined as the symplectic reduction of RepQ(α) by the
moment map μα.

3.1.4 Quiver Variety. Let us take a collection of complex numbers λ = (λa)a∈Q0 ∈
C

Q0 and regard λ = (λa Iαa )a∈Q0 ∈∏a∈Q0
M(αa, C). Then the quiver variety is the

symplectic reduction
Mλ(Q,α) := μ−1

α (λ)/GL(α).

This variety might have singularities. Thus, let us consider the (possibly empty)
subspace

μ−1
α (λ)irr := {x ∈ μ−1

α (λ) | x is irreducible}.

Then the action of GL(α)/C
× on this space is proper and moreover free (see King

[24]). Thus the quotient space

M
reg
λ (Q,α) := μ−1

α (λ)irr/GL(α)

can be seen as a complex manifold with the symplectic structure, i.e., a complex
symplectic manifold. We call this manifold a quiver variety too.

3.2 Crawley-Boevey’s Theorems for the Geometry of
Quiver Varieties

The regular part Mreg
λ (Q,α) may be empty as we noted above. Thus we recall a

necessary and sufficient condition for the non-emptiness of Mreg
λ (Q,α) given by

Crawley-Boevey in [9].
First, let us introduce the root system of a quiver Q (cf. [20]). Let Q be a finite

quiver. From the Euler form

〈α,β〉 :=
∑

a∈Q0

αaβa −
∑

ρ∈Q1

αs(ρ)βt (ρ),

a symmetric bilinear form and quadratic form are defined by

(α,β) := 〈α,β〉 + 〈β,α〉,
q(α) := 1

2
(α,α)

and set p(α) := 1 − q(α). Here α,β ∈ Z
Q0 .
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For each vertex a ∈ Q0, define εa ∈ Z
Q0 (a ∈ Q0) so that (εa)a = 1, (εa)b = 0,

(b ∈ Q0\{a}). We call εa a fundamental root if the vertex a has no edge-loop, i.e.,
there is no arrow ρ such that s(ρ) = t (ρ) = a. Denote by � the set of fundamental
roots. For a fundamental root εa, define the fundamental reflection sa by

sa(α) := α − (α, εa)εa for α ∈ Z
Q0 .

The group W ⊂ AutZQ0 generated by all fundamental reflections is called Weyl
group of the quiver Q. Note that the bilinear form ( , ) is W -invariant. Similarly we
can define the reflection ra : C

Q0 → C
Q0 by

ra(λ)b := λb − (εa, εb)λa

for λ ∈ C
Q0 and a, b ∈ Q0. Define the set of real roots by

�re :=
⋃

w∈W

w(�).

For an element α = (αa)a∈Q0 ∈ Z
Q0 the support of α is the set of εa such that

αa 	= 0, and denoted by supp (α). We say the support of α is connected if the
subquiver consisting of the set of vertices a satisfying εa ∈ supp (α) and all arrows
joining these vertices, is connected. Define the fundamental set F ⊂ Z

Q0 by

F := {α ∈ (Z≥0)
Q0\{0} | (α, ε) ≤ 0 for all ε ∈ �, support of α is connected

}
.

Then define the set of imaginary roots by

�im :=
⋃

w∈W

w(F ∪ −F).

Then the root system is
� = �re ∪ �im.

Elements in �+ := � ∩ (Z≥0)
Q0 are called positive roots.

Nowwe are ready to see Crawley-Boevey’s theorem. For a fixed λ = (λa) ∈ C
Q0 ,

the set �λ consists of the positive roots satisfying

(i) λ · α =∑a∈Q0
λaαa = 0,

(ii) if there exists a decompositionα = β1 + β2 + · · · + βr (r ≥ 2),withβi ∈ �+
and λ · βi = 0, then p(α) > p(β1) + p(β2) + · · · + p(βr).

3.2.1 Theorem (Crawley-Boevey. Theorem 1.2 in [9]). Let Q be a finite quiver
and Q the double of Q. Let us fix a dimension vector α ∈ (Z≥0)

Q0 and λ ∈ C
Q0 .

Then μ−1
α (λ)irr 	= ∅ if and only if α ∈ �λ. Furthermore, in this case μ−1

α (λ) is an
irreducible algebraic variety and μ−1

α (λ)irr is dense in μ−1
α (λ).
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This provides the following geometric properties of quiver varieties:

3.2.2 Theorem (Crawley-Boevey Corollary 1.4 in [9]). If α ∈ �λ then the quiver
variety Mλ(Q,α) is reduced and irreducible algebraic variety of dimension 2p(α).

Combining these results, we have the following non-emptiness condition of reg-
ular parts of quiver varieties.

3.2.3 Corollary. (Crawley-Boevey [9]). The regular part of quiver varietyMreg
λ (Q,α)

is nonempty if and only if α ∈ �λ. Furthermore in this case, it is a connected sym-
plectic complex manifold of dimension 2p(α).

4 A Review of Fuchsian Cases

A necessary and sufficient condition for the existence of a solution of the addi-
tive Deligne–Simpson problem for Fuchsian differential equations is determined
by Crawley-Boevey in [10]. The strategy is as follows. For the additive Deligne–
Simpson problem for C = (C0, C1, . . . , C p), a collection of conjugacy classes in
M(n, C), it is shown that there exists a quiver Q, dimension vector α, and complex
parameter λ such that the quiver variety M

reg
λ (Q,α) is isomorphic to the moduli

spaceM(C). Thus, Theorem 3.2.1 determines the non-emptiness condition ofM(C)

which is equivalent to the solvability of the additive Deligne–Simpson problem. We
shall recall this correspondence between M(C) and M

reg
λ (Q,α).

First we construct a representation of a quiver from a conjugacy class C of
M(n, C). Let us choose complex numbers ξ1, . . . , ξd so that

d∏

i=1

(A − ξi In) = 0 (1)

for all A ∈ C . The minimal polynomial of C is an example of this equation. Set

mk := rank
k∏

i=1

(A − ξi In)

for k = 1, . . . , d. Then let us note that these ξ1, . . . , ξd and m1, . . . , md characterize
C . Namely B ∈ M(n, C) is contained in C if and only if B satisfies

rank
k∏

i=1

(B − ξi In) = mk

for all k = 1, . . . , d. This observation leads us to the following correspondence
between the elements in C and some representations of a quiver.
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4.0.1 Proposition (see Crawley-Boevey [10] and also Lemma A.5 in [19]). Let
us fix a conjugacy class C of M(n, C) and choose ξ1, . . . , ξd ∈ C so that the equation
(1) holds for all A ∈ C. Set mk := rank

∏k
i=1(A − ξi In) for k = 1, . . . , d − 1 and

A ∈ C, also set m0 := n and m := (mi )i=0,...,d−1. Define a quiver Q as below.

0 1 d − 1

ρ1 ρ2 ρd−1

Also define a subspace of RepQ(m) by

Z :=
{

x = (xρ) ∈ RepQ(m)

∣∣∣ μm(x)i = (ξi − ξi+1)Imi for all i = 1, . . . , d − 1,
xρ : injective, xρ∗ : surjective for all ρ ∈ Q1, ρ

∗ ∈ Q∗
1

}
.

Then

�ξ : {A ∈ C} −→ Z/

d−1∏

i=1

GL(mi , C)

defined below is bijective. For A ∈ C, we define (Ma,ψρ)a∈Q0,ρ∈Q1
, a representation

of Q as follows:

M0 := C
n, Mk := Im

k∏

i=1

(A − ξi In) for all k = 1, . . . , d − 1,

ψρi : Mi ↪→ Mi−1 : inclusion, ψρ∗
i
= (A − ξi )|Mi−1 .

Then �ξ(A) is the projection of (Ma,ψρ). The inverse map is given by

(xρ)ρ∈Q1
�→ xρ1 xρ∗

1
+ ξ1.

Furthermore for any x = (xρ)ρ∈Q1
∈ Z and any subspace S ⊂ C

n invariant under
xρ1 xρ∗

1
+ ξ1, there exists a subrepresentation y of x such that x = 0 (resp. N = M)

if and only if S = 0 (resp. S = C
n).

Let C := (C0, C1, . . . , C p) be a collection of conjugacy classes in M(n, C). As
we noted before, a conjugacy class C can be seen as a truncated orbit of an HTL
normal form of the case k = 1. Thus

M(C) :=
{

(Ai )i=0,1,...,p ∈
p∏

i=0

Ci

∣∣∣∣
(Ai )i=0,...,p is irreducible,∑p

i=0 Ai = 0

}/
GL(n, C)

is a moduli space of Fuchsian differential equations or equivalently that of mero-
morphic connections defined in Sect. 2.2. Crawely–Boevey obtained a realization of
M(C) as a quiver variety.
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4.0.2 Theorem (Crawley-Boevey [10]). Let C0, . . . , C p be conjugacy classes of
M(n, C). For i = 0, . . . , p, choose ξ[i,1], . . . , ξ[i,di ] ∈ C so that

di∏

j=1

(Ai − ξ[i, j] In) = 0

for all Ai ∈ Ci . Let ξ = ({ξ[i,1], . . . , ξ[i,di ]})0≤i≤p be the collection of ordered sets
{ξ[i,1], . . . , ξ[i,di ]}. Set m0 := n and m[i, j] := rank

∏ j
k=1(Ai − ξ[i,k] In) for j = 1, . . . ,

di − 1. Consider the following quiver Q.

0

[0, 1] [0, 2] [0, d0 − 1]

[1, 1] [1, 2] [1, d1 − 1]

[p, 1] [p, 2] [p, dp − 1]

Define α = (αa)a∈Q0 ∈ (Z≥0)
Q0 by α0 := m0 and α[i, j] := m[i, j] for i = 0, . . . , p,

j = 1, . . . , di − 1. Define λ = (λa)a∈Q0 ∈ C
Q0 by λ0 := −∑p

i=0 ξ[i,1] and λ[i, j] :=
ξ[i, j] − ξ[i, j+1] for i = 0, . . . , p, j = 1, . . . , di − 1.

Then there exists a bijection

�ξ : M(C) −→ M
reg
λ (Q,α).

Thus, Theorem 3.2.1 solves additive Deligne–Simpson problem.

4.0.3 Theorem (Crawley-Boevey [10]). Let C0, . . . , C p be conjugacy classes of
M(n, C). Let us choose the quiver Q, α ∈ (Z≥0)

Q0 and λ ∈ C
Q0 as Theorem 4.0.2.

Then the additive Deligne–Simpson problem for C0, . . . , C p has a solution if and
only if α ∈ �λ.

5 Moduli Spaces of Meromorphic Connections and
Quiver Varieties

In the previous section, we saw that moduli spaces of Fuchisan differential equa-
tions are isomorphic to quiver varieties and moreover the solvability of the addi-
tive Deligne–Simpson problem for Fuchsian differential equations is determined
through these isomorphisms. In this section, we shall give a generalization of this
correspondence. Namely, we shall consider a collection of HTL normal forms
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B = (B0, B1, . . . , Bp), and give a correspondence between the moduli spaceM(B)

and a quiver variety. This is first done by Boalch in [5] when the orders of HTL
normal forms ki = −ord(Bi ) for i = 0, . . . , p satisfy

k0 ≤ 3 and k1 = · · · = kp = 1.

This result is generalized for arbitrary k0 by Yamakawa and the author in [19]. Thus,
we could obtain isomorphisms between moduli spaces of connections and quiver
varieties if the number of irregular singular points are at most 1. However in Intro-
duction of [5], Boalch suggested that moduli spaces of meromorphic connections
with more than two unramified irregular singular points might not be isomorphic to
quiver varieties and gave an example.

Therefore, itmay not be expected to obtain isomorphisms between arbitraryM(B)

and quiver varieties. Based on these previous results, for an arbitrary M(B), we
shall construct an injective map fromM(B) into a quiver variety which becomes an
isomorphism if and only if the number of unramified irregular singular points are
less than or equal to one.

5.1 A Preliminary Example: Differential Equations with
Poles of Order 2 and Representations of Quivers

Before going to general cases, let us see what happens if there are many irregular
singular points by the first nontrivial case k0 = k1 = · · · = kp = 2.

Let B ∈ g∗
2 be an HTL normal form,

B = diag
(
c1 In1 z

−2 + R1z−1, . . . , cm Inm z−2 + Rm z−1
)
.

Here Ri ∈ M(ni , C) and ci ∈ C, i = 0, . . . , p satisfying ci 	= c j if i 	= j .
Let us put Birr := diag

(
c1 In1 , . . . , cm Inm

)
and denote by V (ci ) ⊂ C

n the
eigenspace of Birr for each eigenvalue ci , i = 1, . . . , m. For each X ∈ M(n, C),
Xi, j denotes the HomC(V (c j ), V (ci ))-component of X .

Then for the G2 = GL(n, C[[z]]/z2C[[z]])-orbit of B, denoted by OB , we have
the following lemma which is a direct consequence of the splitting lemma (see the
Sect. 3.2 in [4] or Sect. 2.3 in [19] for example) .

5.1.1 Lemma. Let B ∈ g∗
2 be the HTL normal form as above. Then OB consists of

A(x) =
2∑

i=1

Ai x
−i ∈ g∗

2

satisfying that there exists G ∈ GL(n, C) such that
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G−1A2G = Birr and (G−1A1G)i,i ∈ CRi

where CRi are conjugacy classes of Ri for i = 1, . . . , m. Moreover if G(1), G(2) ∈
GL(n, C) satisfy (G(i))−1A2G(i) = Birr, i = 1, 2, then (G(2))−1G(1) =
diag(h1, . . . , hm) where hi ∈ GL(ni , C) for i = 1, . . . , m.

Proof For A = A2z−2 + A1z−1 ∈ OB , there existsG = G[0] + G[1]z ∈ G2 such that
G−1AG = B. Namely

(A2z−2 + A1z−1)(G[0] + G[1]z) = (G[0] + G[1]z)(Birrz
−2 + Bresz

−1)

in g∗
2 = M(n, z−2

C[[z]]/C[[z]]). Here Bresz−1 := B − Birrz−2. Thus, comparing the
coefficients of z−2 and z−1, we have G−1

[0] A2G[0] = Birr and

G−1
[0] A2G[1] + G−1

[0] A1G[0] = G−1
[0] G[1] Birr + Bres.

Namely,
G−1

[0] A1G[0] − Bres = G−1
[0] G[1] Birr − BirrG

−1
[0] G[1].

Recall that Birr = diag(c1 In1 , . . . , cm Inm ). Thus (G−1
[0] G[1] Birr − BirrG

−1
[0] G[1])i,i are

zero maps for i = 1, . . . , m. This means that (G−1
[0] A1G[0]) = Ri for i =

1, . . . , m. �

From this lemma, we have the following one-to-one correspondence.

OB −→
{
(G, A1) ∈ GL(n, C) × M(n, C)

∣∣∣∣
(G−1A1G)i,i ∈ CRi
for all i = 1, . . . , m

}
/

m∏

i=1

GL(ni , C). (2)

Here
∏m

i=1 GL(ni , C) acts on GL(n, C) × M(n, C) by

∏m
i=1 GL(ni , C) × (GL(n, C) × M(n, C)) −→ GL(n, C) × M(n, C)

((h1, . . . , hm), (G, A)) �−→ (Gh, A),

where h := diag(h1, . . . , hm). The inverse map is induced by sending (G, A1) to

G BirrG
−1x−2 + A1x−1

in OB .

5.1.2 Remark. Let us recall that T ∗GL(n, C) ∼= GL(n, C) × M(n, C). Then the
above correspondence can be seen as a special case of the identification of Gk-orbits
of HTL normal forms and a symplectic reductions of the extended orbits given by
Boalch (see Lemma 2.3 in [6]).

Note that under the above identification, the adjoint action of GL(n, C) on OB

induces the following GL(n, C)-action on GL(n, C) × M(n, C),
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GL(n, C) × (GL(n, C) × M(n, C)) −→ GL(n, C) × M(n, C)

(g, (G, A)) �−→ (g−1G, g−1Ag)
. (3)

Under the above observation, let us consider the relation between M(B) and a
quiver variety. Let B0, . . . , Bp ∈ g∗

2 be HTL normal forms written by

Bi = diag
(
c[i,1] In[i,1] z

−2 + R[i,1]z−1, . . . , c[i,mi ] In[i,mi ] z
−2 + R[i,mi ]z

−1
)
.

Let V (c[i, j]) ⊂ C
n be the eigenspace of (Bi )irr for each c[i, j], i = 0, . . . , p,

j = 1, . . . , mi . Let X [i, j],[i ′ j ′] be the HomC(V (c[i ′, j ′]), V (c[i, j]))-component of X ∈
M(n, C). We may write X = (X [i, j],[i ′ j ′]

)
1≤ j≤mi
1≤ j ′≤mi ′

.

First let us consider the moduli space M(B) without the irreducibility

M(B) :=
{

(Ai (z))i=0,...,p ∈
p∏

i=0

OBi

∣∣∣∣
p∑

i=0

ResAi (z) = 0

}
/
GL(n, C).

5.1.3 Proposition. The moduli space M(B) is isomorphic to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Gi , Ai )i=0,...,p ∈
p∏

i=0

GL(n,C) × M(n,C)

∣∣∣∣

(i) (G−1
i Ai Gi ) j, j ∈ CR[i, j]

for all i = 0, . . . , p and
j = 1, . . . , mi

(ii)
∑p

i=0 Ai = 0
(iii) G0 = In

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

/ p∏

i=0

mi∏

j=1

GL(n[i, j],C).

Here the action of
∏p

i=0

∏mi
j=1 GL(n[i, j], C) is defined by h · (Gi , Ai )i=0,...,p :=

(G ′
i , A′

i )i=0,...,p such that

G ′
i = h−1

0 Gi hi , A′
i := h−1

0 Ai h0, i = 0, . . . , p

for h = (hi ) ∈∏p
i=0

∏mi
j=1 GL(n[i, j], C) and (Gi , Ai )i=0,...,p ∈∏p

i=0 GL(n, C) ×
M(n, C).

Proof Let us consider
(∏p

i=0 OBi

)
/GL(n, C), where GL(n, C) acts diagonally. Let

(A(i)
2 z−2 + A(i)z−1)i=0,...,p and ( Ã(i)

2 z−2 + Ã(i)z−1)i=0,...,p

be representatives of X and X̃ in
(∏p

i=0 OBi

)
/GL(n, C) respectively. By the action

of GL(n, C), we can assume A(0)
2 = Ã(0)

2 = (B0)irr.
Then X = X̃ , if andonly if there existsh ∈ H0 :=∏m0

i=1 GL(n[0,i], C) ⊂ GL(n, C)

such that Ã(i)
j = h−1A(i)

j h for i = 0, . . . , p and j = 1, 2 since the stabilizer of (B0)irr

in GL(n, C) is H0. Thus sending X ∈ (∏p
i=0 OBi

)
/GL(n, C) to
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((In, A(0)
1 ), (G(1), A(1)

1 ), . . . , (G(p), A(p)

1 )) ∈
p∏

i=0

GL(n, C) × M(n, C)

such that G(i), i = 1, . . . , p are chosen form A(i)
2 z−2 + A(i)

1 z−1 ∈ OBi as in Lemma
5.1.1, we have a bijection from

(∏p
i=0 OBi

)
/GL(n, C) to

⎧
⎪⎪⎨

⎪⎪⎩
(Gi , Ai )i=0,...,p ∈

p∏

i=0

GL(n,C) × M(n,C)

∣∣∣∣

(i) (G−1
i Ai Gi ) j, j ∈ CR[i, j]

for all i = 0, . . . , p and
j = 1, . . . , mi

(iii) G0 = In

⎫
⎪⎪⎬

⎪⎪⎭

/ p∏

i=0

mi∏

j=1

GL(n[i, j],C).

Here we note that from (3) and the above construction, the adjoint action of H0 on(∏p
i=0 OBi

)
induces

h · (Gi , Ai )i=0,...,p := ((In, h−1A0h), (h−1G1, h−1A1h), . . . , (h−1G p, h−1 Aph))
)

for h ∈ H0 and (Gi , Ai )i=0,...,p ∈∏p
i=0 GL(n, C) × M(n, C).

Finally, we notice that the condition
∑p

i=0 ResAi (z) = 0 corresponds to (ii)∑p
i=0 Ai = 0. Then we have the required bijection. �

We shall give a realization ofM(B) as a representation space of a quiver as follows.
Step 1.

Let us consider the quiver Q(1) defined as follows. The set of vertices is

Q(1)
0 := {0, . . . , p}.

The set of arrows is

Q(1)
1 :=
{
ρ[0]

[i] : 0 → i

∣∣∣∣ i = 1, . . . , p

}
.

0

1

2

p

Fix a dimension vector α(1) := (αi )i=0,...,p so that αi := n for all i = 0, . . . , p.
Then we have a bijection,
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{
(Gi , Ai )i=0,...,p ∈

p∏

i=0

GL(n,C) × M(n,C)

∣∣∣∣G0 = In ,

p∑

i=0

Ai = 0

}
−→

{
x = (xρ)ρ∈Q(1)

1
∈ Rep

Q(1) (α
(1))

∣∣∣∣
x
ρ[0]
[i]

∈ GL(n,C)

for all i = 1, . . . , p

}

by setting xρ[0]
[i]

:= G−1
i and x(ρ[0]

[i] )∗
:= Ai Gi for all i = 1, . . . , p. Let us note that from

x = (xρ) in the target space, setting

Gi := x−1
ρ[0]

[i]
, Ai := x(ρ[0]

[i] )∗
xρ[0]

[i]

for i = 1, . . . , p and

A0 := −
∑

i=1p

x(ρ[0]
[i] )∗

xρ[0]
[i]

= μα(1) (x)0,

we obtain the inverse map.
Step 2.

In Step 1, we could associate representations of a quiver to

(Gi , Ai )i=0,...,p ∈
p∏

i=0

GL(n, C) × M(n, C)

satisfying the conditions (ii)
∑p

i=0 Ai = 0 and (iii) G0 = I . However to obtain the
one-to-one correspondencewithM(B),weneedonemore condition (i) (G−1

i Ai Gi ) j, j

∈ CR[i, j] for i = 0, . . . , p, j = 1, . . . , mi . Let us recall that

G−1
i Ai Gi = xρ[0]

[i]
x(ρ[0]

[i] )∗
= μα(1) (x)i

for i = 1, . . . , p and

G−1
0 A0G0 = A0 = −

p∑

i=0

Ai = −
∑

i=1p

x(ρ[0]
[i] )∗

xρ[0]
[i]

= μα(1) (x)0

for (Gi , Ai )i=0,...,p in the domain of the isomorphism in Step 1 and its image x ∈
RepQ(1) (α(1)). To obtain block diagonal components (G−1

i Ai Gi ) j, j as images of the
moment map, we shall break up the vertex
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i
into

[i, 1]
[i, 2]

[i, mi ]

for each i = 0, . . . , p and define the following quiver Q(2):

[0, 2]

[0, m0]

[0, 1]

[1, 1]
[1, 2]

[1, m1]

[p, 2]
[p, 1]

[p, m p]

Namely, the set of vertices is

Q(2)
0 := {[i, j] | i = 0, . . . , p, j = 1, . . . , mi }.

The set of arrows is

Q(2)
1 :=
⎧
⎨

⎩ρ
[0, j]
[i, j ′] : [0, j] → [i, j ′]

∣∣∣∣
j = 1, . . . , m0,

i = 1, . . . , p,

j ′ = 1, . . . , mi

⎫
⎬

⎭ .

Define α(2) = (α(2)
a )a∈Q0 ∈ Z

Q0 by α(2)
[i, j] := dimCV (c[i, j]), i = 0, . . . , p, j =

1, . . . , mi . Then we have a bijection fromM(B) to an open subset of RepQ(2) (α(2))/

GL(α(2)).

5.1.4 Proposition. We use the same notation as above. Then there exists a bijection

� : M(B) −→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = (xρ)ρ∈Q(2)
1

∈ Rep
Q(2) (α

(2))

∣∣∣∣

det

(
x
ρ
[0, j]
[i, j ′ ]

)

1≤ j≤m0
1≤ j ′≤mi

	= 0

for all i = 1, . . . , p,

μα(2) (x)[i, j] ∈ CR[i, j] , [i, j] ∈ Q(2)
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
/GL(α(2)).
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Proof It suffices to show that there is a bijection from

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Gi , Ai )i=0,...,p ∈
p∏

i=0

GL(n,C) × M(n,C)

∣∣∣∣

(i) (G−1
i Ai Gi ) j, j ∈ CR[i, j]

for all i = 0, . . . , p and
j = 1, . . . , mi

(ii)
∑p

i=0 Ai = 0
(iii) G0 = In

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

/ p∏

i=0

mi∏

j=1

GL(n[i, j],C)

to the target space of the above map. Let (Gi , Ai )i=0,...,p be a representative of an
element in this space. Then we define x ∈ RepQ(2) (α(2)) as follows:

xρ
[0, j]
[i, j ′ ]

= (G−1
i )[i, j ′],[0, j], x(

ρ
[0, j]
[i, j ′ ]
)∗ = (Ai Gi )[0, j],[i, j ′] ,

for j = 1, . . . , m0, i = 1, . . . , p, j ′ = 1, . . . , mi . Then

μα(2)(x)[i, j ′] =
m0∑

j=1

xρ
[0, j]
[i, j ′ ]

x(
ρ

[0, j]
[i, j ′ ]
)∗ = (G−1

i Ai Gi ) j ′, j ′ ∈ CR[i, j ′ ]

for i = 1, . . . , p and j ′ = 1, . . . , mi . Also

μα(2)(x)[0, j] = −
p∑

i=1

mi∑

j ′=1

x(
ρ

[0, j]
[i, j ′ ]
)∗ xρ

[0, j]
[i, j ′ ]

= −
p∑

i=1

(Ai ) j, j = (A0) j, j ∈ CR[0, j]

for j = 1, . . . , m0. Since this correspondence is
∏p

i=0

∏mi
j=1 GL(n[i, j], C) ∼=

GL(α(2))-equivariant, we have the well-defined map. The inverse maps can be
defined as we saw in Step 1. Thus it is bijective. �

Now we are ready to considerM(B). Let us note that the irreducibility of differ-
ential equations does not coincide with the irreducibility of representations of quiver
under the bijection in Proposition 5.1.4. Indeed, x ∈ RepQ(2) (α(2)) without the con-

dition det
(

xρ
[0, j]
[i, j ′ ]

)
1≤ j≤m0
1≤ j ′≤mi

	= 0 never correspond to any elements inM(B). Thus, we

shall introduce a weaker condition which is called L-irreducibility in this note.
Let us define a sublattice L̃ of Z

Q(2)
0 by

L̃ :=
⎧
⎨

⎩β = (βa)a∈Q(2)
0

∈ Z
Q(2)

0

∣∣∣∣
m0∑

j=1

β[0, j] =
mi∑

j=1

β[i, j] for all i = 1, . . . , p

⎫
⎬

⎭

5.1.5 Definition (L̃-irreducible). An element in
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⎧
⎪⎪⎨

⎪⎪⎩

x = (xρ)ρ∈Q(2)
1

∈ RepQ(2) (α
(2))

∣∣∣∣

det
(

xρ
[0, j]
[i, j ′ ]

)
1≤ j≤m0
1≤ j ′≤mi

	= 0

for all i = 1, . . . , p,

μα(2)(x)[i, j] ∈ CR[i, j] , [i, j] ∈ Q(2)
0

⎫
⎪⎪⎬

⎪⎪⎭
/GL(α)

is said to be L̃-irreducible, if it has no proper subrepresentation y with the dimension
vector dim(y) ∈ L̃ other than {0}.

Then, we can show that this L̃-irreducibility of representations coincides with the
irreducibility of differential equations.

5.1.6 Proposition. Let A ∈ M(B) and x ∈ RepQ(2) (α(2)) be the corresponding ele-

ments under the map� in Proposition 5.1.4. If A is irreducible, then x is L̃-irreducible
and vice versa.

Proof Suppose thatA has a nontrivial invariant subspaceW � C
n , i.e.,W is invariant

under all A(i)
j . Set W (i) := (xρ

[0, j]
[i, j ′ ]

)1≤ j≤m0
1≤ j ′≤mi

W ∼= W for i = 1, . . . , p and W (0) := W .

Also set

Ṽ[i, j] := W (i) ∩ V (c[i, j]), x̃ρ
[0, j]
[i, j ′ ]

=xρ
[0, j]
[i, j ′ ]

|W (0) ,

x̃(
ρ

[0, j]
[i, j ′ ]
)∗ = x(

ρ
[0, j]
[i, j ′ ]
)∗ |W (i) .

Then x̃ = (Ṽa, x̃ρ)a∈Q(2)
0 ,ρ∈Q(2)

1
defines a subrepresentation of x . Since W is A(i)

2 -

invariant, W (i) is G−1
i A(i)

2 Gi = (Bi )irr- invariant. Thus we have W (i) = ⊕mi
j=1Ṽ[i, j],

which shows that
∑m0

j=1 dimCṼ[0, j] = · · · =∑m p

j=1 dimCṼ[p, j]. Finally we need to

check that x̃
(ρ

[0, j]
[i, j ′ ])

∗(Ṽ[i, j ′]) ⊂ Ṽ[0, j]. To show this, it suffices to see that (x̃
(ρ

[0, j]
[i, j ′ ])

∗)1≤ j≤m0
1≤ j ′≤mi

W (i) ⊂ W , which follows from the fact that

(x̃
(ρ

[0, j]
[i, j ′ ])

∗)1≤ j≤m0
1≤ j ′≤mi

W (i) = (x
(ρ

[0, j]
[i, j ′ ])

∗)1≤ j≤m0
1≤ j ′≤mi

W (i)

= (x
(ρ

[0, j]
[i, j ′ ])

∗)1≤ j≤m0
1≤ j ′≤mi

(xρ
[0, j]
[i, j ′ ]

)1≤ j≤m0
1≤ j ′≤mi

W

= A(i)
1 W ⊂ W.

Conversely, suppose that x has a nontrivial proper subrepresentation x̃ = (Ṽa, x̃ρ)

satisfying
∑m0

j=1 dimCṼ[0, j] = · · · =∑m p

j=1 dimCṼ[p, j]. Then W =⊕m(0)

j=1 Ṽ[0, j] is an
A-invariant subspace. Indeed W is (A(0)

1 , A(0)
2 )-invariant. Also for i = 1, . . . , p, set

W (i) := (xρ
[0, j]
[i, j ′ ]

)1≤ j≤m0
1≤ j ′≤mi

W ⊂ ⊕mi
j=1Ṽ[i, j]. Then we have

mi∑

j=1

dimCṼ[i, j] =
m0∑

j=1

dimCṼ[0, j] = dimCW = dimCW (i),
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which implies that W (i) = ⊕mi
j=1Ṽ[i, j]. Thus since

(xρ
[0, j]
[i, j ′ ]

)1≤ j≤m0
1≤ j ′≤mi

(x
(ρ

[0, j]
[i, j ′ ])

∗)1≤ j≤m0
1≤ j ′≤mi

= G−1
i A(i)

1 Gi ,

W (i) is G−1
i A(i)

1 Gi -invariant, which shows that W = Gi W (i) is (A(i)
1 , A(i)

2 )-invariant
for each i = 1, . . . , p. �

Finally let us give a realization ofM(B) as a subset of a quiver varietyMλ(Q,α)

defined as below. The final step is to describe the conjugacy classes CR[i, j] as repre-
sentations of quivers by Theorem 4.0.1. And glue these quivers to Q(2).

For each i = 0, . . . , p and j = 1, . . . , mi , we choose ξ[i, j,k] ∈ C, k = 1, . . . , e[i, j]
so that

e[i, j]∏

k=1

(R[i, j] − ξ[i, j,k] In[i, j]) = 0.

Then let us define a quiver Q[i, j] for each [i, j] as follows:

Q[i, j]
0 := {[i, j, k] | 0 ≤ k ≤ e[i, j]−1}

Q[i, j]
1 := {ρ[i, j,k] : [i, j, k] → [i, j, k − 1] | 1 ≤ k ≤ e[i, j] − 1}

Set α[i, j] := (α[i, j,k])0≤k≤e[i, j]−1 by

α[i, j,0] = n[i, j], α[i, j,k] :=rank
k∏

l=1

(R[i, j] − ξ[i, j,l] In[i, j]), k = 1, . . . , e[i, j] − 1.

Then for each ξ[i, j] := (ξ[i, j,1], . . . , ξ[i, j,e[i, j]]), we have the isomorphism

�ξ[i, j] : CR[i, j] → Z[i, j]/
e[i, j]−1∏

k=1

GL(α[i, j,k], C)

by Theorem 4.0.1. Here

Z[i, j] :=

⎧
⎪⎪⎨

⎪⎪⎩
(xρ) ∈ RepQ[i, j](α

[i, j])
∣∣∣∣

μα
[i, j]
k

= (ξ[i, j,k] − ξ[i, j,k+1])Iα[i, j,k]
for all i = 1, . . . , e[i, j] − 1,

xρ : injective, xρ∗ : surjective
for all ρ ∈ Q[i, j]

1 , ρ∗ ∈ (Q[i, j]
1 )∗

⎫
⎪⎪⎬

⎪⎪⎭
.

At last, let us glue Q[i, j] to Q(2) by identifying [i, j, 0] ∈ Q[i, j]
0 with [i, j] ∈ Q(2)

0 .
Namely, the quiver Q is defined by the set of vertices
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Q0 := Q(2)
0 �
⎧
⎨

⎩[i, j, k]
∣∣∣∣

i = 0, . . . , p,

j = 1, . . . , mi ,

k = 1, . . . , e[i, j] − 1

⎫
⎬

⎭

and the set of arrows

Q1 :=Q(2)
1

⊔
⎧
⎨

⎩ρ[i, j,k] : [i, j, k] → [i, j, k − 1]
∣∣∣∣

i = 0, . . . , p,

j = 1, . . . , mi ,

k = 1, . . . , e[i, j] − 1

⎫
⎬

⎭ .

Here we set [i, j, 0] := [i, j].

[0, 2]

[0, m0]

[0, 1]

[1, 1]

[1, 2]

[1, m1]

[p, 2]

[p, 1]

[p, m p]

[0, 1, 1] [0, 1, 2]

[0, 2, 1] [0, 2, 2]

[0, m0, 1] [0, m0, 2]

[1, 1, 1]

[1, 2, 1]

[1, m1, 1]
[p, 1, 1]

[p, 2, 1]

[p, m p, 1]

Define the dimension vector α = (αa)a∈Q0 by

α[i, j] := n[i, j] α[i, j,k] := rank
k∏

l=1

(R[i, j] − ξ[i, j,l] In[i, j]).

Also define λ = (λa)a∈Q0 ∈ C
Q0 by

λ[i, j] := −ξ[i, j,1] λ[i, j,k] := ξ[i, j,k] − ξ[i, j,k+1]

where ξ[i, j,e[i, j]] := 0. Thenwe can consider a sublatticeL ⊂ Z
Q0 defined by the same

relation as L̃ ⊂ Z
Q(2)

0 .

L :=
⎧
⎨

⎩β = (βa)a∈Q0 ∈ Z
Q0

∣∣∣∣
m0∑

j=1

β[0, j] =
mi∑

j=1

β[i, j] for all i = 1, . . . , p

⎫
⎬

⎭ ⊂ Z
Q0
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Note thatα ∈ L. Then, we define a subset of the quiver varietyMλ(Q,α) as follows:

Mλ(Q,α)dif := μ−1
α (λ)dif/GL(α)

where

μ−1
α (λ)dif :=

{
x ∈ μ−1

α (λ)

∣∣∣∣
x is L − irreducible,
det (xρ

[0, j]
[i, j ′ ]

)1≤ j≤m0
1≤ j ′≤mi

	= 0, i = 1, . . . , p

}
.

Here L-irreducibility is defined as in Definition 5.1.5. Then, from Proposition 4.0.1,
5.1.4, and 5.1.6, we obtain the following identification.

5.1.7 Theorem[17]. We have a bijection

M(B) −→ Mλ(Q,α)dif.

Proof By the isomorphism �ξ[i, j] : CR[i, j] → Z[i, j]/
∏e[i, j]−1

k=1 GL(α[i, j,k], C) for each

[i, j] ∈ Q(2)
0 , we can identify

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = (xρ)ρ∈Q(2)
1

∈ RepQ(2) (α
(2))

∣∣∣∣

x is L̃–irreducible,
det
(

xρ
[0, j]
[i, j ′ ]

)
1≤ j≤m0
1≤ j ′≤mi

	= 0

for all i = 1, . . . , p,

μα(2)(x)[i, j] ∈ CR[i, j] , [i, j] ∈ Q(2)
0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

/GL(α)

and {
x ∈ μ−1

α (λ)diff
∣∣∣∣ xρ[i, j,k] : injective, x(ρ[i, j,k])

∗ : surjective
}

.

Then from Proposition 4.0.1, 5.1.4, and 5.1.6, it suffices to see that x ∈ μ−1
α (λ)dif

implies that xρ[i, j,k] are injective and x(ρ[i, j,k])
∗ are surjective. This can be checked

similarly to the proof of Theorem 1 in [10]. Indeed, if there exists xρ[i, j,k] which is
not injective, then there exists a nonzero element v ∈ Ker(xρ[i, j,k]). Set vk := v and
vl+1 := ψ(ρ[i, j,l+1])

∗(vl) for l ≤ k. Then the relation

xρ[i, j,l+1] x(ρ[i, j,l+1])
∗ − x(ρ[i, j,l])

∗ xρ[i, j,l] = λ[i, j,l]

shows that xρ[i, j,l+1](vl+1) is a multiple of vl for l ≥ k. Thus vl , l ≤ k, span a subrepre-
sentation of x , which contradicts to theL-irreducibility of x . A dual argument shows
that x(ρ[i, j,k])

∗ are surjective. �

5.1.8 Remark. In the above theorem, we obtain an isomorphism between the mod-
uli space of meromorphic connections M(B) and the subset Mλ(Q,α)dif of the
quiver variety. However we should notice that Mλ(Q,α)dif does not coincide with
M

reg
λ (Q,α) since we imposed
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det (xρ
[0, j]
[i, j ′ ]

)1≤ j≤m0,
1≤ j ′≤mi

	= 0

and the L-irreducibility does not coincide with the irreducibility in general. Thus
Crawley-Boevey’s theorem (see Theorem 3.2.1) is not applicable directly to our
case.

5.2 Truncated Orbits and Representations of Quivers

Let us go to general cases. First recall the description of truncated orbits OB of
arbitrary orders k as quiver varieties. The description which will be given in this
section was obtained by Boalch in [5] when k ≤ 3 and conjectured for arbitrary k
and finally settled in the paper by Yamakawa and the author [19]. More detailed
treatment of the materials in this section can be found in the article [38] in this book.

Fix k > 1 and B =∑k
i=1 Bi z−i ∈ g∗

k , an HTL normal form written by

B = diag
(
q1(z

−1)In1 + R1z−1, . . . , qm(z−1)Inm + Rm z−1)

where Ri ∈ M(ni , C), qi (z−1) ∈ z−2
C[z−1], i = 1, . . . , m and qi 	= q j if i 	= j . To

a pair ( j, j ′), 1 ≤ j 	= j ′ ≤ m, we attach an integer

d( j, j ′) := deg
C[x](q j (x) − q j ′(x)) − 2. (4)

Moreover we set d( j, j) := −1 for the latter use.
Let
⊕m(s)

j=1 V〈s, j〉 be the decomposition of C
n as simultaneous invariant spaces of

{Bs+1, Bs+2, . . . , Bk}

for s = 1, . . . , k − 1. Especially we write Vj := V〈1, j〉 for j = 1, . . . , m = m(1).
Let X j, j ′ be the HomC(Vj ′ , Vj )-component of X ∈ M(n, C). For a power series

with matrix coefficients g(z) =∑∞
i=r gi zi ∈ M(n, C((z))), write (g(z)) j, j ′ :=∑∞

i=r (gi ) j, j ′ zi , 1 ≤ j, j ′ ≤ m. We denote the HomC(Vj , C
n)-component of X ∈

M(n, C) by X∗, j for each i = 1, . . . , m. Similarly X j,∗ denote the HomC(Cn, Vj )-
component. We sometimes use the notation

X = (X j, j ′)1≤ j, j ′≤m = (X∗, j ′)1≤ j ′≤m = (X j,∗)1≤ j≤m .

Let πs : Js = {1, . . . , m(s)} → Js+1 = {1, . . . , m(s + 1)} be the natural surjec-
tion such that V〈s, j〉 ⊂ V〈s+1,πs ( j)〉. Define the total ordering {1 < 2 < · · · < m} on
J1 and also define total orderings on Js , s = 2, . . . , k − 1, so that

if j1 < j2, then πs( j1) ≤ πs( j2), j1, j2 ∈ Js .
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Let us define the subgroup of Gk by

Go
k :=
{

k−1∑

i=0

Ai z
i ∈ Gk

∣∣∣∣ A0 = In

}
.

Similarly define the subspace go
k := zgk = M

(
n, zC[[z]]/zk

C[[z]]) of gk , which
can be identified with {

k−1∑

i=0

Ai z
i ∈ gk

∣∣∣∣ A0 = 0

}
.

Then the dual space (go
k)

∗ can be identified with

{
k−1∑

i=0

Ai z
−i−1 ∈ g∗

k

∣∣∣∣ A0 = 0

}
.

For A =∑k
i=1 Ai z−i ∈ g∗

k , set Airr :=∑k
i=2 Ai z−i and Ares := A1. Then we define

the following two orbits

Oo
B := {gBg−1 | g ∈ Go

k} ⊂ g∗
k ,

OBirr := {gBirrg
−1 | g ∈ Go

k} ⊂ (go
k)

∗.

Let us define the subgroup H ⊂ GL(n, C) by

H = {h = diag(h1, . . . , hm) | hi ∈ GL(ni , C), i = 1, . . . , m} .

The following proposition links Oo
B with OB .

5.2.1 Proposition (cf. Lemmas 2.2 and 2.4 in [6]). Set

AdH (Oo
B) := {h Ah−1 ∈ g∗

k | h ∈ H, A ∈ Oo
B

}
.

Then we have a bijection

GL(n, C) ×H AdH (Oo
B)

∼→ OB

(g, A) �−→ gAg−1 .

HereGL(n, C) ×H AdH (Oo
B) = (GL(n, C) × AdH (Oo

B)
)
/ ∼, the equivalence rela-

tion ∼ is defined by (g, A) ∼ (gh−1, h Ah−1) for h ∈ H.

According to the ordering on each Js , s = 1, . . . , k − 1, let us define parabolic
subalgebras of M(n, C) as follows:
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p(s)+ :=
⊕

j1, j2∈Ji ,
j1≥ j2

HomC(V〈s, j1〉, V〈s, j2〉),

p(s)− :=
⊕

j1, j2∈Ji ,
j1≤ j2

HomC(V〈s, j1〉, V〈s, j2〉),

and similarly nilpotent subalgebras

u(s)+ :=
⊕

j1, j2∈Ji ,
j1> j2

HomC(V〈s, j1〉, V〈s, j2〉),

u(s)− :=
⊕

j1, j2∈Ji ,
j1< j2

HomC(V〈s, j1〉, V〈s, j2〉),

for s = 1, . . . , k − 1. Note that p(s)± = h(s) ⊕ u(s)± where

h(s) :=
⊕

j∈Ji

End C(V〈s, j〉).

Let us define subsets of Go
k ,

P±
k :=
{

k−1∑

i=0

Pi z
i ∈ Go

k

∣∣∣∣ Pi ∈ p±
i+1, i = 1, . . . , k − 1

}
,

U±
k :=
{

k−1∑

i=0

Ui z
i ∈ Go

k

∣∣∣∣Ui ∈ u±
i+1, i = 1, . . . , k − 1

}
,

and subspaces of go
k and (go

k)
∗,

U±
k :=
{

k−1∑

i=1

Ui z
i

∣∣∣∣Ui ∈ u±
i+1, i = 1, . . . , k − 1

}
,

(U∓
k )∗ :=
{

k−1∑

i=1

Ui z
−i−1

∣∣∣∣Ui ∈ u±
i+1, i = 1, . . . , k − 1

}
.

Here, we put p±
k := M(n, C) and u±

k := {0}. Let us note that P±
k are subgroups of

Go
k but U±

k are not closed under the multiplication.

5.2.2 Lemma (Lemma 3.5 in [19]). For any g ∈ Go
k, there uniquely exist u− ∈ U−

k
and p+ ∈ P+

k such that g = u− p+.

For A ∈ OBirr , take g ∈ Go
k so that g−1Ag = Birr and decompose g = u− p+ as

above. Note that u− does not depend on the choice of g because the stabilizer of Birr
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is contained in P+
k . Thus u− is uniquely determined by A ∈ OBirr . Then let us put

Q = u− − In , A′ = u−1
− A and P = A′|(U−

k )∗ .

5.2.3 Proposition (Theorem 3.6 in [19]). The map

� : OBirr −→ U−
k × (U−

k )∗
A �−→ (Q, P)

is bijective.

Now we can define a quiver Q as follows. The set of vertices is

Q0 := {0} ∪ {1, . . . , m}.

The set of arrows is

Q1 :=
{
ρ

[ j]
i,i ′ : i → i ′

∣∣∣∣
1 ≤ i < i ′ ≤ m,

1 ≤ j ≤ d(i, i ′)

}
∪ {ρi : 0 → i | i = 1, . . . , m} .

Fix the dimension vector α = (αa)a∈Q0 defined by α0 =: n and αi := dimCVi , i =
1, . . . , m.

Let us construct a map from AdH (Oo
B) to the representation space of Q. For

A ∈ Oo
B ′ , B ′ ∈ AdH (B), we set (Q, P) = �(Airr) and define the representation xA ∈

RepQ(α) as follows:

(xA)ρ[ j]
i,i ′

:= P [ j]
i,i ′ , (xA)

(ρ
[ j]
i,i ′ )

∗ := Q[ j]
i ′,i ,

(xA)ρi := (In)i,∗, (xA)ρ∗
i
:= (Ares)∗,i ,

for i, i ′ = 1, . . . , m. Here we set P =∑k−2
i=1 P [i]z−i−1 and Q =∑k−2

i=1 Q[i]zi .

5.2.4 Proposition (Proposition 4.16 in [17]). The following map is bijective,

�̃ : AdH (Oo
B) −→

{
x ∈ RepQ(α)

∣∣∣∣
(ψρi )1≤i≤m = In, μα(x)i ∈ CRi

for i = 1, . . . , m

}
,

which is defined by �̃(A) := xA for A ∈ AdH (Oo
B) as above. Moreover, �̃ preserves

H-actions, i.e., �̃(h Ah−1) = h · xA for all h ∈ H.

Finally, we can obtain a correspondence between OB and representations of Q.

5.2.5 Proposition. There exists a bijection

OB ∼= GL(n, C) ×H AdH (Oo
B ) −→

{
x ∈ RepQ(α)

∣∣∣∣
det (xρi )1≤i≤m 	= 0, μα(x)i ∈ CRi
for i = 1, . . . , m

}
/

m∏

i=1

GL(αi , C).
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Proof Let us define a map � from GL(n, C) × AdH (Oo
B) to

{
x ∈ RepQ(α)

∣∣∣∣
det (xρi )1≤i≤m 	= 0, μα(x)i ∈ CRi

for i = 1, . . . , m

}
.

For (g, A) ∈ GL(n, C) × AdH (Oo
B), x = �((g, A)) = is defined as follows:

xρ
[ j]
i,i ′

= P [ j]
i,i ′ , x

(ρ
[ j]
i,i ′ )

∗ = Q[ j]
i ′,i ,

xρi = (g−1)i,∗, xρ∗
i
= ((gA)res)∗,i ,

where (Q, P) = �(Airr) and write P =∑k−2
i=1 P [i]z−i−1, Q =∑k−2

i=1 Q[i]zi . Propo-
sition 5.2.4 shows that this map is bijective. Moreover, we can directly check that
this map preserves H -actions. Thus we are done. �

For example, let us consider an HTL normal form B =∑4
i=1 Bi z−i such that

B4 = diag (a(4)
1 , a(4)

2 , a(4)
2 , a(4)

2 ), B3 = diag (∗, a(3)
1 , a(3)

2 , a(3)
2 ),

B2 = diag (∗, ∗, a(2)
1 , a(2)

2 ), B1 = diag (∗, ∗, ∗, ∗),

where a(i)
1 	= a(i)

2 . Then the corresponding quiver is as follows.

1

2

3

4

0

5.3 Quivers Associated with Differential Equations

Now we are ready to consider a correspondence between moduli spaces M(B) of
arbitrary ki and subsets of quiver varieties Mλ(Q,α) as we saw in Sect. 5.1 under
the restriction k0 = · · · = kp = 2.

For i = 0, . . . , p, let us fix a collection of nonzero positive integers ki and HTL
normal forms Bi =∑ki

j=1 B(i)
j z− j ∈ g∗

ki
. Then write

Bi = diag
(

q[i,1](z−1)In[i,1] + R[i,1]z−1, . . . , q[i,mi ](z
−1)In[i,mi ] + R[i,mi ]z

−1
)
for i = 0, . . . , p
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where q[i, j](z−1) ∈ z−2
C[z−1] satisfying q[i, j] 	= q[i, j ′] if j 	= j ′ and R[i, j] ∈

M(n[i, j], C).
For each i = 0, . . . , p, decomposeC

n =⊕mi (s)
j=1 V (i)

〈s, j〉 as simultaneous (B(i)
s+1, . . . ,

B(i)
ki

)-invariant subspaces. In particular we write V[i, j] := V (i)
〈1, j〉 for i = 0, . . . , p and

j = 1, . . . , mi . Here we note mi (1) = mi .
For each pair j, j ′ ∈ {1, . . . , mi }, attach the integer di ( j, j ′) defined by

di ( j, j ′) := deg
C[z−1](q[i, j](z−1) − q[i, j ′](z−1)) − 2

if j 	= j ′ or di ( j, j ′) := −1 if j = j ′. Set Iirr := {i ∈ {0, . . . , p} | mi > 1} ∪ {0} and
Ireg := {0, . . . , p}\Iirr.

5.3.1 Remark. Suppose that mi = 1 for some i ∈ {0, . . . , p}. Then the truncated
orbit of the normal form Bi is trivial, namely OBi

∼= CR[i,1] . Thus, Iirr can be seen
as the set of singular points at which truncated orbits are nontrivial and we add the
point 0 as a “base point” to Iirr.

Now consider the following quiver Qirr. Let us define

Qirr
0 := {[i, j] | i ∈ Iirr, j = 1, . . . , mi } .

As we saw in Sect. 4, we shall associate conjugacy classes of residue matrices of
HTL normal forms to representations of quivers. For each R[i, j], i = 0, . . . , p and
j = 1, . . . , mi , let us choose ξ

[i, j]
1 , . . . , ξ

[i, j]
e[i, j] ∈ C so that

e[i, j]∏

k=1

(R[i, j] − ξ
[i, j]
k ) = 0.

Set

Qleg
0 :=
⎧
⎨

⎩[i, j, k]
∣∣∣∣

i = 0, . . . , p,

j = 1, . . . , m(i),

k = 1, . . . , e[i, j] − 1

⎫
⎬

⎭ .

Then the set of vertices is

Q0 := Qirr
0 � Qleg

0 .

Also define
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Q0→iirr
1 :=

⎧
⎨

⎩ρ
[0, j]
[i, j ′] : [0, j] → [i, j ′]

∣∣∣∣
j = 1, . . . , m0,

i ∈ Iirr\{0},
j = 1, . . . , mi

⎫
⎬

⎭ ,

Q Bi
1 :=
⎧
⎨

⎩ρ
[k]
[i, j],[i, j ′] : [i, j] → [i, j ′]

∣∣∣∣
i ∈ Iirr,
1 ≤ j < j ′ ≤ mi ,

1 ≤ k ≤ di ( j, j ′)

⎫
⎬

⎭ ,

Q
legi
1 :=
{
ρ[i, j,k] : [i, j, k] → [i, j, k − 1]

∣∣∣∣
j = 1, . . . , mi ,

k = 2, . . . , e[i, j] − 1

}
,

Q
legi →Bi

1 := {ρ[i, j,1] : [i, j, 1] → [i, j] | j = 1, . . . , mi
}
,

Q
legi →0
1 :=

{
ρ[i,1,1]

[0, j] : [i, 1, 1] → [0, j] | i ∈ Ireg, j = 1, . . . , m0

}
.

The set of arrows is

Q1 := Q0→Iirr
1 �

⊔

i∈Iirr

(
Q Bi

1 � Q
legi →Bi

1 � Q
legi
1

)

�
⊔

i∈Ireg

(
Q

legi →0
1 � Q

legi
1

)
.

For example, let us consider the following: B = (B0, B1, B2).

B(0) =

⎛

⎜⎜⎜⎝

a(0)
4

a(0)
4

a(0)
4

b(0)
4

⎞

⎟⎟⎟⎠ z−4 +

⎛

⎜⎜⎜⎝

a(0)
3

a(0)
3

b(0)
3

c(0)
3

⎞

⎟⎟⎟⎠ z−3

+

⎛

⎜⎜⎜⎝

a(0)
2

b(0)
2

c(0)
2

d(0)
2

⎞

⎟⎟⎟⎠ z−2 +

⎛

⎜⎜⎝

ξ[0,1]
1

ξ[0,2]
1

ξ[0,3]
1

ξ[0,4]
1

⎞

⎟⎟⎠ z−1,

B1 =

⎛

⎜⎜⎜⎝

a(1)
2

a(1)
2

a(1)
2

b(1)
2

⎞

⎟⎟⎟⎠ z−2 +

⎛

⎜⎜⎝

ξ[1,1]
1

ξ[1,1]
2

ξ[1,1]
3

ξ[1,2]
1

⎞

⎟⎟⎠ z−1,

B2 =

⎛

⎜⎜⎝

ξ[2,1]
1

ξ[2,1]
2

ξ[2,1]
3

ξ[2,1]
4

⎞

⎟⎟⎠ z−1.
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Here any distinct two of {a(i)
j , b(i)

j , c(i)
j , d(i)

j } stand for distinct complex numbers and

ξ
[i, j]
k 	= ξ

[i, j]
k ′ if k 	= k ′.

Then, we can associate the following quiver to this B.:

[0, 3]

[0, 4]

[0, 1]

[0, 2]
[1, 1]

[1, 2]

[1, 1, 1][1, 1, 2]

[2, 1, 1][2, 1, 2][2, 1, 3]

Define the dimension vector α = (αa)a∈Q0 by

α[i, j] := n[i, j], α[i, j,k] := rank
k∏

l=1

(R[i, j] − ξ
[i, j]
l ).

Also define λ = (λa)a∈Q0 by

λ[i, j] := −ξ
[i, j]
1 , for i ∈ Iirr\{0}, j = 1, . . . , mi ,

λ[0, j] := −ξ
[0, j]
1 −
∑

i∈Ireg

ξ[i,1]
1 for j = 1, . . . , m0,

λ[i, j,k] := ξ
[i, j]
k − ξ

[i, j]
k+1 for

i = 0, . . . , p, j = 1, . . . , mi ,

k = 1, . . . , e[i, j] − 1.

Define a sublattice of Z
Q0 ,

L :=
⎧
⎨

⎩β ∈ Z
Q0

∣∣∣∣
m(0)∑

j=1

β[0, j] =
m(i)∑

j=1

β[i, j] for all i ∈ Iirr\{0}
⎫
⎬

⎭ .

Set L+ := L ∩ (Z≥0)
Q0 .

5.3.2 Definition (L-irreducible). If x ∈ RepQ(α) has no nontrivial proper subrep-
resentation {0} 	= y � x with dim y ∈ L, then x is said to be L-irreducible.

Then we define a subset of the quiver varietyMλ(Q,α) as follows:
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Mλ(Q,α)dif := μ−1
α (λ)dif/GL(α)

where

μ−1
α (λ)dif :=

{
x ∈ μ−1

α (λ)

∣∣∣∣
x is L − irreducible,
det (xρ

[0, j]
[i, j ′ ]

)1≤ j≤m0
1≤ j ′≤mi

	= 0, i ∈ Iirr\{0}
}

.

Also define

μ−1
α (λ)det :=

{
x ∈ μ−1

α (λ)

∣∣∣∣ det (xρ
[0, j]
[i, j ′ ]

)1≤ j≤m0
1≤ j ′≤mi

	= 0, i ∈ Iirr\{0}
}

for the latter use.

5.3.3 Theorem (Theorem 4.23 in [17]). We have a bijection

�ξ : M(B) −→ Mλ(Q,α)dif.

6 Geometry of Moduli Spaces of Meromorphic
Connections

We have seen that the moduli space of meromorphic connections M(B) is isomor-
phic to a subset Mλ(Q,α)dif of the quiver variety Mλ(Q,α). We shall give some
results for geometry ofMλ(Q,α)dif and the necessary and sufficient condition of the
solvability of our generalized additive Deligne–Simpson problem as a corollary of
these results. These results are generalizations of previous works byCrawley-Boevey
[10], Boalch [5], Yamakawa and the author [19]. The strategy to prove these results
shall be given in the latter sections.

Althoughwe definedMλ(Q,α)dif as just a quotient space, the next theorem shows
that there exists an open embedding into a smooth variety M

reg
λ′ (Q,α).

6.0.1 Theorem (Theorem 5.14 in [17]). If M(B) is nonempty, there exist λ′ ∈ C
Q0

and the injection

� : M(B) ∼= Mλ(Q,α)dif ↪→ M
reg
λ′ (Q,α)

whose image is
(
μ−1

α (λ′)det ∩ μ−1
α (λ′)irr

)
/GL(α).

This embedding theorem and the irreducibility ofMλ′(Q,α) shows the connect-
edness ofM(B) ∼= Mλ(Q,α)dif.

6.0.2 Theorem (Corollary 5.15 in [17]). If M(B) ∼= Mλ(Q,α)dif is nonempty,
then
M(B) ∼= Mλ(Q,α)dif has a structure of connected complex manifold.
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Proof The intersection
(
μ−1

α (λ′)det ∩ μ−1
α (λ′)irr

)
is an open subset of μ−1

α (λ′) which
is irreducible space by Theorem 1.2 in [9]. Because μ−1

α (λ′)irr is open by [24]
and μ−1

α (λ′)det is defined by the open condition det (xρ
[0, j]
[i, j ′ ]

)1≤ j≤m0
1≤ j ′≤mi

	= 0, i ∈ Iirr\{0}.
Recalling that every nonempty open subset of an irreducible space is connected, we
are done. �

A necessary and sufficient condition for the non-emptiness of M(B) ∼= Mλ

(Q,α)dif is obtained as follows.

6.0.3 Theorem (Corollary 7.13 in [17]). The moduli space M(B) ∼= Mλ(Q,α)dif

is nonempty if and only if the following are satisfied:

1. α is a positive root of Q and α · λ =∑a∈Q0
αaλa = 0,

2. for any decomposition α = β1 + · · · + βr where βi ∈ L+ are positive roots of
Q satisfying βi · λ = 0, we have

p(α) > p(β1) + · · · + p(βr).

Then this theorem and Proposition 2.2.2 gives the necessary and sufficient con-
dition for the solvability of the additive Deligne–Simpson problem.

Let �̃λ be the set of positive roots of Q satisfying the conditions 1 and 2 in
Theorem 6.0.3.

6.0.4 Theorem (Theorem 7.12 in [17]). Let us consider the additive Deligne–
Simpson problem for k0, . . . , kp and the HTL normal forms Bi ∈ g∗

ki
for i = 0, . . . , p.

Then the problem has a solution if and only if α ∈ �̃λ.

7 Outline of the Proofs of the Main Theorems

The remaining of this note is devoted to give an outline of the proofs of Theorems
6.0.1 and 6.0.3.

7.1 A Review of Middle Convolutions

Let us give a review of middle convolutions on differential equations with irregular
singular points. The middle convolution is originally defined by N. Katz in [21]
and reformulated as an operation on Fuchsian systems by Dettweiler–Reiter [14],
see also [13] and Völklein’s paper [35]. There are several studies to generalize the
middle convolution to non-Fuchsian differential equations, see [2, 22, 32, 37] for
example. Among them, we shall give a review ofmiddle convolutions following [37].
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FromA = (
∑ki

j=1 A(i)
j z− j )0≤i≤p ∈∏p

i=0 OBi , let us construct a 5-tuple (V, W, T,

Q, P) consisting of C-vector spaces V , W and T ∈ EndC(W ), Q ∈ HomC(W, V ),
P ∈ HomC(V, W ). Set V := C

n and Ŵi := V ⊕ki for i = 0, . . . , p. Then define

Q̂i := (A(i)
ki

, A(i)
ki −1, . . . , A(i)

1 ) ∈ HomC(Ŵi , V ),

P̂i :=

⎛

⎜⎜⎜⎝

0
...

0
IdV

⎞

⎟⎟⎟⎠ ∈ HomC(V, Ŵi ), N̂i :=

⎛

⎜⎜⎜⎜⎝

0 IdV 0

0
. . .

. . . IdV

0 0

⎞

⎟⎟⎟⎟⎠
∈ EndC(Ŵi ).

Setting

Ŵ :=
p⊕

i=0

Ŵi ,

T̂ := (N̂i )0≤i≤p ∈
p⊕

i=0

EndC(Ŵi ) ⊂ EndC(Ŵ ),

Q̂ := (Q̂i )0≤i≤p ∈
p⊕

i=0

HomC(Ŵi , V ) = HomC(Ŵ , V ),

P̂ := (P̂i )0≤i≤p ∈
p⊕

i=0

HomC(V, Ŵi ) = HomC(V, Ŵ ),

we have a 5-tuple (V, Ŵ , T̂ , Q̂, P̂). Further setting

Âi :=

⎛

⎜⎜⎜⎜⎜⎝

A(i)
ki

A(i)
ki −1 · · · A(i)

1

A(i)
ki

. . .
...

. . . A(i)
ki −1

0 A(i)
ki

⎞

⎟⎟⎟⎟⎟⎠
∈ EndC(Ŵi ),

we define Wi := Ŵi/Ker Âi and W :=⊕p
i=0 Wi . Then T, Q, P are themaps induced

from T̂ , Q̂, P̂ respectively.

7.1.1 Definition (Yamakawa [37]). The 5-tuple (V, W, T, Q, P) given above is
called the canonical datum for A ∈∏p

i=0 OBi .

Fix t ∈ {0, . . . , p}, take a polynomial pt (z−1) =∑kt
j=1 p(t)

j z− j ∈ z−1
C[z−1] and

define anoperation, calledaddition, as follows. For an elementA = (Ai (x−1))0≤i≤p ∈∏p
i=0 OBi , we define Add

(t)
pt (z−1)

(A) := (A′
i (z

−1))0≤i≤p by
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A′
i (z

−1) :=
{

Ai (z−1) if i 	= t,

At (z−1) − pt (x−1) if i = t.

Then Add(t)
pt (x−1)

(A) ∈∏p
i=0 OB ′

i
where

B ′
i :=
{

Bi if i 	= t,

Bt − pt (z−1) if i = t.

Set
Ji := {[i, j] | j = 1, . . . , mi }

for i = 0, . . . , p and

J :=
p∏

i=0

Ji .

Then let us define

Addi :=
p∏

i=0

Add(i)

q[i, ji ](z−1)+ξ
[i, ji ]
1 z−1

,

for i = ([i, ji ])0≤i≤p ∈ J . Here we use the notation
∏

i∈{a,b,...,} fi = fa ◦ fb ◦ · · ·
and note that the operators Ad(i)

q[i, ji ](z−1)+ξ
[i, ji ]
1 z−1

for i ∈ 0, . . . , p are commutative.

Take A = (Ai (z−1))0≤i≤p ∈∏p
i=0 OBi satisfying

∑p
i=0 ResAi (z−1) = 0. Sup-

pose that we can choose i ∈ J so that

ξi :=
p∑

i=0

ξ
[i, ji ]
1 	= 0.

Let (V, W, T, Q, P) be the canonical datum of Addi(A). Following Example 3 in
[37], we construct a new 5-tuple (V ′, W, T, Q′, P ′) as follows. Note that Q P =
−ξiIdV . Thus Q and P are surjective and injective, respectively. Let us set V ′ :=
Coker P and Q′ : W → V ′, the natural projection. Then, we have the split exact
sequence

0 −→ V
P−→ W

Q′−→ V ′ −→ 0

with the left splitting (−ξ−1
i Q)P = IdV . Then from the splitting, we can define

P ′ : V ′ → W be the injection such that Q′(ξ−1
i P ′) = IdV ′ . Then we have a 5-tuple

(V ′, W, T, Q′, P ′).
Next we set Q′

i (resp. P ′
i ) to be the HomC(Wi , V ) (resp. HomC(V, Wi )) compo-

nent of Q′ (resp. P ′). Also set Ni to be the EndC(Wi )-component of T . Define

(A′)(i)j := Q′
i N j−1

i P ′
i
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and A′ := (A′
i (z

−1))0≤i≤p where A′
i (z

−1) :=∑ki
j=1(A′)(i)j z− j . We note that

p∑

i=0

(A′)(i)1 = Q′ P ′ = ξiIdV ′ .

Finally, let us set
A′′ := Add−1

i ◦ Add(0)
2ξiz−1(A′).

Then A′′ = (A′′
i (x−1))0≤i≤p satisfies that

∑p
i=0 ResA′′

i (x−1) = 0. Let us denote A′′
by mci(A) and call the operator mci the middle convolution at i.

Then we can see that the middle convolution gives an analogue of reflection
functors on Mλ(Q,α)dif by translating the computations by Yamakawa in [37] to
our setting.

7.1.2 Proposition (Proposition 5.5 in [17]). Let ξ and Mλ(Q,α)dif be same as in
Theorem 5.3.3. Suppose that we can choose i = ([i, ji ])0≤i≤p ∈ J so that

λi :=
∑

i∈Iirr

λ[i, ji ] = −ξi 	= 0.

Define mci(α) := (α′
a)a∈Q0 ∈ Z

Q0 and mci(λ) := (λ′
a)a∈Q0 ∈ C

Q0 by

α′
[i, j] :=
{

α[i, j] if j 	= ji ,

α[i, ji ] + ni if j = ji ,

α′
[i, j,k] := α[i, j,k],

λ′
[i, j] :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ[i, ji ] if [i, j] = [i, ji ] and i 	= 0,

λ[0, j0] − 2λi if [i, j] = [0, j0],
λ[i, j] + (di ( j, ji ) + 2)λi if i 	= 0 and j 	= mi ,

λ[0, j] + d0( j, j0)λi if i = 0 and j 	= m0,

λ′
[i, j,k] :=

{
λ[i, j,k] if [i, j, k] 	= [i, ji , 1],
λ[i, ji ,1] + λi.

Here

ni :=
∑

i∈Iirr

m(i)∑

j=1

(di ( j, ji ) + 1)α[i, j] +
∑

i∈Iirr

((n − α[i, ji ]) + α[i, ji ,1]) +
∑

i∈Ireg

α[i,1,1] − 2n.

Then there exists a bijection

mci : Mλ(Q,α)dif −→ Mmci(λ)(Q,mci(α))dif.
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Let us see that mci(α) is obtained by a reflection. For i = ([i, ji ])0≤i≤p ∈ J , let
us define εi ∈ Z

Q0 by

(εi)a :=
{
1 if a = [i, ji ], i ∈ Iirr,

0 otherwise.

We note that εi for i ∈ J are positive real roots of Q. Let us define

si(β) := β − (β, εi)εi

for i ∈ J and β ∈ Z
Q0 .

Let us see this reflection si can be obtained by a product of simple reflections.

7.1.3 Lemma. Let us take i = ([i, ji ])0≤i≤p ∈ J . Then we have

⎛

⎝
∏

i∈Iirr\{0}
s[i, ji ]

⎞

⎠ ◦ s[0, j0] ◦
⎛

⎝
∏

i∈Iirr\{0}
s[i, ji ]

⎞

⎠ (β) = si(β)

for any β ∈ Z
Q0 .

Proof Set r :=∏i∈Iirr\{0} s[i, ji ] for short. Note that r is an involution and εi =
r(ε[0, j0]). Then

r ◦ s[0, j0] ◦ r(β) = r(r(β) − (r(β), ε[0, j0])ε[0, j0])

= r2(β) − (β, r−1(ε[0, j0]))r(ε[0, j0])
= β − (β, r(ε[0, j0]))r(ε[0, j0])
= β − (β, εi)εi

= si(β). �

This lemma tells us that mci can be regarded as a reflection and a product of
simple reflections as follow.

7.1.4 Proposition. Retain the notation in Proposition 7.1.2. Then we have

mci(α) = si(α)

=
⎛

⎝
∏

i∈Iirr\{0}
s[i, ji ]

⎞

⎠ ◦ s[0, j0] ◦
⎛

⎝
∏

i∈Iirr\{0}
s[i, ji ]

⎞

⎠ (α).

Proof From the definition of mci(α) given in Proposition 7.1.2, it suffices to show

ni = −(α, εi).

Indeed
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(α, εi) =
∑

i∈Iirr

(α, ε[i, ji ])

=
∑

i∈Iirr\{0}

⎛

⎜⎜⎝2α[i, ji ] −
∑

1≤ j≤mi
j 	= ji

di ( j, ji )α[i, j] − α[i, ji ,1] −
m0∑

j=1

α[0, j]

⎞

⎟⎟⎠

+ 2α[0, j0] −
∑

1≤ j≤m0
j 	= j0

d0( j, j0)α[0, j] − α[0, j0,1] −
∑

i∈Iirr\{0}

mi∑

j=1

α[i, j]

−
∑

i∈Iregα[i,1,1]

α[i, j].

Recalling that di ( j, j) = −1 and
∑mi

j=1 α[i, j] = n, we can continue the above com-
putation,

(α, εi) = −
∑

i∈Iirr

⎛

⎝
mi∑

j=1

(di ( j, ji )α[i, j]) + (n − α[i, ji ]) + α[i, ji ,1]

⎞

⎠

−
∑

i∈Ireg

α[i,1,1] − (#Iirr − 2)n

= −
∑

i∈Iirr

⎛

⎝
mi∑

j=1

(di ( j, ji + 1)α[i, j]) + (n − α[i, ji ]) + α[i, ji ,1]

⎞

⎠

−
∑

i∈Ireg

α[i,1,1] + 2n

= −ni. �

7.2 Irreducibility and L-Irreducibility

The L-irreducibility is a weaker condition than the usual irreducibility. We shall
show that if we shift the parameter λ by using the operation Add, then these two
irreducibility can be identical.

Fix i0 ∈ Iirr\{0} and define an operation on

S :=
⎧
⎨

⎩(β, ν) ∈ L × C
Q0

∣∣∣∣β · ν =
∑

a∈Q0

βaνa = 0

⎫
⎬

⎭

as an analogueofAdd(i0)
z−1 ◦ Add(0)

−z−1 as follows.Let us define z(i0) = (z(i0)
a )a∈Q0 ∈ C

Q0

by
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z(i0)
[i, j] =

⎧
⎪⎨

⎪⎩

1 if i = i0,

−1 if i = 0,

0 otherwise,

z(i0)
[i, j,k] = 0.

Then let us define
add(i0)

γ : S −→ S
(β, ν) �−→ (β, ν + γz(i0))

for i0 ∈ Iirr\{0} and γ ∈ C.
For ν ∈ C

Q0 , let R+
ν be the set of positive rootsβ of Q satisfyingβ · ν = 0.Denote

L ∩ R+
ν by R̃+

ν . The subset �ν of R+
ν consists of β satisfying that p(β) >

∑
t p(βt)

for any decompositionβ = β1 + · · · + βr with r ≥ 2 andβt ∈ R+
ν . Similarly define

�̃ν consisting of β ∈ R̃+
ν satisfying that β · ν = 0 and p(β) >

∑
t p(βt) for any

decomposition β = β1 + · · · + βr with r ≥ 2 and βt ∈ R̃+
ν .

If β,β′ ∈ (Z≥0)
Q0 satisfy that β′

a ≤ βa for all a ∈ Q0, then we write β′ ≤ β.

7.2.1 Lemma. Fix (β, ν) ∈ S. There exist γi ∈ C for i ∈ Iirr\{0} such that

ν ′ = ν +
∑

i∈Iirr\{0}
γi z

(i)

satisfies the following. If β′ ∈ (Z≥0)
Q0 satisfies that β′ ≤ β and β′ · ν ′ = 0, then

β′ ∈ L.

Proof Let Fβ be the set of all elements β′ in (Z≥0)
Q0 satisfying β′ ≤ β and β′ /∈ L.

Note that Fβ is a finite set. Define a closed subset of C
Q0 by

Vβ :=
⋃

β′∈Fβ

{η ∈ C
Q0 | β′ · η = 0}.

Namely, if ν /∈ Vβ, then β′ · ν = 0 and β′ ≤ β imply β′ ∈ L. Thus let us suppose
ν ∈ Vβ. Consider the affine space Wν := {ν +∑i∈Iirr\{0} ti z(i) | ti ∈ C}. Then Wν ∩
{η ∈ C

Q0 | β′ · η = 0} is a proper closed subset of Wμ for anyβ′ ∈ Fβ. Indeed, since

β′ /∈ L there exists i0 ∈ Iirr\{0} such that∑m(0)

j=1 β′
[0, j] 	=∑m(i0)

j=1 β′
[i0, j]. Then the line

{ν + t z(i0) | t ∈ C} ⊂ Wν is not contained in the hyperplane {η ∈ C
Q0 | β′ · η = 0}.

Thus dim Wν > dim
(
Wν ∩ {η ∈ C

Q0 | β′ · η = 0}) for any β′ ∈ Fβ since Wμ is an
irreducible algebraic set. This shows the inequality

dim Wν ∩ Vβ = maxβ′∈Fβ

{
dim
(
Wν ∩ {η ∈ C

Q0 | β′ · η = 0})} < dim Wν .

Hence, there exists ν ′ ∈ Wν which is not contained in Vβ as required. �

This connects �ν and �̃ν ′ as follows.
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7.2.2 Proposition. For any β ∈ �̃ν , there exist γi ∈ C for i ∈ Iirr\{0} such that

β ∈ �ν+∑i∈Iirr\{0} γi z(i) .

Proof For β ∈ �̃ν , let us choose γi as in Lemma 7.2.1 and set ν ′ = ν +∑
i∈Iirr\{0} γi z(i). Then Lemma 7.2.1 shows that β ∈ �ν ′ . �

Then we can show a direction of the statement of Theorem 6.0.3.

7.2.3 Theorem. If μ−1
α (λ)dif 	= ∅, then α ∈ �̃λ.

Proof Let us suppose that there exists anL-irreducible representation x ∈ μ−1
α (λ)det.

Choose γi ∈ C for i ∈ Iirr\{0} as in Lemma 7.2.1 and put λ′ = λ +∑i∈Iirr\{0} γi z(i).

Then the operation
∏

i∈Iirr\{0} add
(i)
γi

sends x to the L-irreducible element x ′ ∈
μ−1

α (λ′)det. However, Lemma 7.2.1 shows that if an element in μ−1
α (λ′) is L-

irreducible, then it is irreducible. Thus x ′ is irreducible, which shows α ∈ L ∩ �λ′

by Crawley-Boevey’s result (see Theorem 3.2.1). Hence α ∈ L ∩ �λ′ ⊂ �̃λ′ =
�̃λ. �

Finally with the lemma below, we can give a proof of Theorem 6.0.1.

7.2.4 Lemma. Suppose that μ−1
α (λ)dif 	= ∅. Fix i0 ∈ Iirr and γ ∈ C. Then there exists

a GL(α)-equivariant analytic bijection

add(i0)
γ : μ−1

α (λ)dif −→ μ−1
α (λ + γz(i0))dif.

Proof The required map is obtained by �ξ′ ◦ Add(i0)
−γz−1 ◦ Add(0)

γz−1 ◦ �−1
ξ with suit-

able ξ and ξ′. Thus it follows that the map preserves the L-irreducibility since Add
preserves the irreducibility of differential equations.

Wecandirectly check that for x ∈ μ−1
α (λ)dif, its image x ′ := add(i0)

γ (x) ∈ μ−1
α (λ +

γz(i0)) is written as follows. Set

xρi0
:=
(

xρ
[0, j]
[i0 , j ′ ]

)

1≤ j≤m0
1≤ j ′≤mi0

, xρ∗
i0

:=
(

x
(ρ

[0, j]
[i0 , j ′ ])

∗

)

1≤ j≤m0
1≤ j ′≤mi0

.

Then
x ′

(ρ
[0, j]
[i0 , j ′ ])

∗ =
(

xρ∗
i0

+ γ · x−1
ρi0

)

[0, j],[i0, j ′]

for 1 ≤ j ≤ m0 and 1 ≤ j ′ ≤ mi0 and

x ′
ρ = xρ

for the remaining ρ ∈ Q1, which tells us that the map is analytic. �
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Proof of Theorem 6.0.1 Let us choose λ′ as in the proof of Theorem 7.2.3. Then

μ−1
α (λ′)dif = μ−1

α (λ)irr

by Lemma 7.2.1. Thus lemma 7.2.4 shows that

M(B) ∼= Mλ(Q,α)dif

∼= Mλ′(Q,α)dif = (μ−1
α (λ′)det ∩ μ−1

α (λ′)irr
)
/GL(α) ⊂ M

reg
λ′ (Q,α). �

7.3 L-Fundamental Set

What is left to be proved is the converse of Theorem 7.2.3. Namely if α ∈ �̃λ, then
we want to show that μ−1

α (λ)dif 	= ∅. We shall give an outline of the proof of this
statement only whenα is an element in an analogue of the fundamental set F . As we
see in the proof ofKac’s theorem for the existence of indecomposable representations
of quivers [20], we can show that the middle convolution which plays a role of the
reflection functor enable us to reduce the argument to the case α ∈ F̃ or α = εi for
some i ∈ J , see [17].

7.3.1 Definition (L-fundamental set). Let us define the subset of L by

F̃ :=
{
β ∈ L+\{0}

∣∣∣∣
(β, εa) ≤ 0 for all a ∈ J ∪ Qleg

0 ,

support of β is connected

}

and call L-fundamental set.

This F̃ may be regarded as an analogue of the fundamental set of imaginary roots
in L. However, L is just a sublattice of Z

Q0 and it does not necessarily have the
structure of a Kac–Moody root lattice. Thus we shall give a lift ofL to a Kac–Moody
root lattice. This lift enable us to treat elements in F̃ as in the fundamental set of the
imaginary roots.

Let us note that L is generated by

{
εa | a ∈ J ∪ Qleg

0

}
.

Then we can verify that

(εi, εi′) = 2 −
∑

0≤i≤p
ji 	= j ′

i

(di ( ji , j ′
i ) + 2), (5)

(εi, ε[i, j,k]) =
{

−1 if j = ji and k = 1,

0 otherwise,
(6)
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(ε[i, j,k], ε[i ′, j ′,k′]) =

⎧
⎪⎨

⎪⎩

2 if [i, j, k] = [i ′, j ′, k ′],
−1 if (i, j) = (i ′, j ′) and |k − k ′| = 1,

0 otherwise,

(7)

Cf. Sect. 3.2 in [16]. Here i = ([i, ji ])0≤i≤p, i′ = ([i, j ′
i ])0≤i≤p ∈ J . Thus, we con-

sider the new lattice M generated by the set of indeterminate

C :=
{

ca | a ∈ J ∪ Qleg
0

}
,

namely all ca ∈ C have no relations, and define a symmetric bilinear form ( , ) on
M in accordance with Eqs. (5), (6) and (7).

We can attach M to a diagram, called Dynkin diagram, regarding elements in
C as vertices and connecting c, c′ ∈ C by |(c, c′)| edges if c 	= c′. We say c, c′ ∈
C are connected if there exists a sequence c0 = c, c1, . . . , cr = c′ in C such that
(ci−1, ci ) 	= 0 for all i = 1, . . . , r . Then we may define Dynkin diagram of γ ∈ M
which is a subdiagram obtained by connecting the vertices in supp(β) in the same
manner.

Also we can define reflections sa on M by

sa(γ) := γ − (γ, ca)ca

for a ∈ J ∪ Qleg
0 and γ ∈ M. Let us denote the set of all positive elements inM by

M+.
Then the inclusion L ↪→ Z

Q0 induces

	 : M −→ Z
Q0

where for γ =∑c∈C γcc ∈ M, the image 	(γ) = (βa)a∈Q0 is given by

β[i, j] :=
∑

{i=([i, ji ])∈J | ji = j}
γci ,

β[i, j,k] := γc[i, j,k] .

7.3.2 Proposition (Theorem 3.6 in [16]). We have the following.

1. We have (γ, γ′) = (	(γ),	(γ′)) for any γ, γ′ ∈ M.
2. The image of 	 is L.
3. The map 	 is injective if and only if

#{i ∈ {0, . . . , p} | mi > 1, i = 0, . . . , p} ≤ 1.

4. For γ ∈ M and a ∈ J ∪ Qleg
0 , we have

	(sa(γ)) = sa(	(γ)).
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From this proposition,M can be seen as a “lift” ofL to a Kac–Moody root lattice
in which si for i ∈ J are simple reflections.

The kernel of 	 is a big space in general. Thus if we consider the inverse
image of an element β ∈ L, it is convenient to restrict 	 to some smaller space as
follows. Fix β ∈ L. Define Jβ := {([i, ji ])i=0,...,p ∈ J | β[i, ji ] 	= 0 for all i ∈ Iirr},
Qleg

0 (β) := supp(β) ∩ Qleg
0 , and a sublattice Mβ :=∑{a∈Jβ∪Qleg

0 (β)} Zca . Denote

the set of all positive elements inMβ byM+
β .Wewrite the restriction of	 onMβ by

	β. The following lemma shows that if β ∈ L+, then 	−1
β (β) ∩ M+

β 	= ∅. Namely,
there exist at least one positive element in the inverse image of a positive element
in L.

7.3.3 Lemma (Lemma 3 in [18]). Take β ∈ L+\{0} and set

mi := max{ j ∈ {1, . . . , mi } | β[i, j] 	= 0},
mi := min{ j ∈ {1, . . . , mi } | β[i, j] 	= 0},

for i ∈ Iirr. Further set i := ([i, mi ])0≤i≤p and i := ([i, mi ])0≤i≤p where we put mi =
mi := 1 for i ∈ Ireg.

Then there exists β̃ ∈ M+
β such that 	(β̃) = β and β̃ci

· β̃ci 	= 0.

For the support of this positive element β̃, we can show the following.

7.3.4 Proposition (Theorem 9 in [18]). Let us consider β ∈ F̃ . Then if q(β) < 0,
the support of β̃ is connected. If q(β) = 0, then the Dynkin diagram of the support
of β̃ is one of the following.

Now let us give a strategy to show that if β ∈ �̃ν ∩ F̃ , then μ−1
β (ν)dif 	= ∅.

We consider first the wild case, i.e., q(β) < 0.

7.3.5 Proposition. Letβ = γ1 + · · · + γr ∈ F̃ with q(β) < 0, r ≥ 2andγ1, . . . ,γr

∈ L+\{0} then q(β) < q(γ1) + · · · + q(γr).

Proof For the above γ1, . . . ,γr , take γ̃1, . . . , γ̃r ∈ M+\{0} as in Lemma 7.3.3 and
define β̃ = γ̃1 + · · · + γ̃r . Then β̃ satisfies conditions in Lemma 7.3.3. Thus, the
support of β̃ is connected from Proposition 7.3.4. Recall that (β̃, ca) ≤ 0 for all
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a ∈ J ∪ Qleg
0 and the assumptionq(β) < 0.Then the standard argument (seeLemma

2 in [27] for example) shows that q(β) = (β̃, γ̃) <
∑r

i=1(γ̃i , γ̃i ) =∑r
i=1 q(γi ). �

Let us fix β ∈ F̃ with q(β) < 0. Define a nonempty open subset of RepQ(β) by

RepQ(β)det :=
{

x ∈ RepQ(β)

∣∣∣∣ det
(

xρ
[0, j]
[i, j ′ ]

)
1≤ j≤m0
1≤ j ′≤mi

	= 0, i ∈ Iirr\{0}
}

.

7.3.6 Lemma. If x ∈ RepQ(β)det is decomposed as x = x1 ⊕ · · · ⊕ xr in RepQ(β),
then dim xi ∈ L+ for all i = 1, . . . , r .

Proof Since x ∈ RepQ(β)det, subrepresentations xt withγt = dim xt for t = 1, . . . , r
satisfy
∑m0

j=1(γt)[0, j] ≤∑mi
j=1(γt)[i, j] for all i ∈ Iirr\{0}. If there exists “<” among

these inequalities, then β = γ1 + · · · + γr /∈ L+ which contradicts to the assump-
tion β ∈ F̃ ⊂ L+. Thus γt ∈ L+ for all t = 1, . . . , r . �

Let us recall the notion of generic decomposition. A decomposition β = γ1 +
· · · + γr , γt ∈ (Z≥0)

Q0\{0}, is called the generic decomposition if

Ind(Q;γ1, . . . , γr ) =
{

x1 ⊕ · · · ⊕ xr ∈ RepQ(β)

∣∣∣∣
dim xt = γt and xt are

indecomposable for t = 1, . . . , r

}

contains a nonempty open dense subset of RepQ(β). It is known that the generic
decomposition uniquely exists for any β′ ∈ (Z≥0)

Q0\{0}, see Proposition 2.7 in [27]
for example.

7.3.7 Proposition. Let us take β ∈ F̃ with q(β) < 0. If β = γ1 + · · · + γr is the
generic decomposition of β ∈ F̃ , then r = 1.

Proof If β = γ1 + · · · + γr is the generic decomposition, then

Ind(Q;γ1, . . . ,γr) ∩ RepQ(β)det 	= ∅.

Thus γi ∈ L+ for i = 1, . . . , r by Lemma 7.3.6. Then Proposition 7.3.5 shows that
q(β) < q(γ1) + · · · + q(γr) if r ≥ 2. This contradicts to that β = γ1 + · · · + γr is
the generic decomposition by the standard argument, see Theorem 3.3 in [27] for
example. Thus r = 1. �

7.3.8 Corollary. If β ∈ F̃ and q(β) < 0, then β is a positive root of Q.

Proof Proposition 7.3.7 shows that RepQ(β) contains a indecomposable represen-
tation. Then Kac’s theorem (Theorem 1.10 in [20]) tells us that β is a positive root
of Q. �

7.3.9 Corollary. Let us take β ∈ �̃ν and suppose that β ∈ F̃ and q(β) < 0. Then
μ−1

β (ν)dif 	= ∅.
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Proof Let us take ν ′ as in Lemma 7.2.1 and show thatμ−1
β (ν ′)dif 	= ∅. Let us note that∑mi

j=1 β[i, j] ≥ 1 for all i ∈ Iirr since supp(β) is connected. Then Proposition 7.3.7
shows that the subset Z of RepQ(β) consisting of all indecomposable representations
is a dense subset. Thus Z ∩ RepQ(β)det 	= ∅. Then Theorem 3.3 in [9] shows that
μ−1

β (ν ′)det 	= ∅. Moreover Theorem 1.2 in [9] says that the set of all irreducible

representations in the irreducible topological set μ−1
β (ν ′) is a dense subset. Here we

note that β ∈ �ν ′ . Thus, the nonempty open subset ν−1
β (ν ′)det contains a irreducible

representation x . Thus μ−1
β (ν ′)dif 	= ∅ which shows that μ−1

β (ν)dif 	= ∅. �

For the tame case, i.e., q(β) = 0, by using the classification given in Proposition
7.3.4, we can show the non-emptiness. Thus we obtain the following.

7.3.10 Theorem (Theorem 6.21 in [17]). For β ∈ �̃ν ∩ F̃ , we have μ−1
β (ν)dif 	= ∅.
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Chapter 9
Applications of Quiver Varieties to
Moduli Spaces of Connections on P

1

Daisuke Yamakawa

1 Introduction

The aim of this lecture is to explain the main result of [13], which affirmatively
solves Boalch’s conjecture (proposed in [3]) on some relationship between mero-
morphic connections on the Riemann sphere P

1 and the quiver varieties introduced
by Nakajima [18].

Such a relationship was first found by Crawley-Boevey. Let O0, O1, . . . , Om be
conjugacy classes of n × n matrices. We say an element (Ai )

m
i=0 of the direct product

O :=∏m
i=0 Oi to be stable if there is no non-zero proper vector subspace of C

n

preserved by all Ai . Let Os ⊂ O be the open subset consisting of all stable points
and put

Ms =
{

(Ai )
m
i=0 ∈ Os |

m∑

i=0

Ai = 0

}

/GL(n, C),

where GL(n, C) acts on Os by simultaneous conjugation. In [8], he constructed a
bijection betweenMs and a quiver variety associated to a “star-shaped” quiver. The
spaceMs is sometimes called a residue manifold from the following reason: Fixing
(m + 1) points t0, t1, . . . , tm on the complex plane C, associate to each (Ai )

m
i=0 ∈

Mn(C)m+1 the logarithmic connection

d −
m∑

i=0

Ai

x − ti
dx
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on the trivial vector bundle O⊕n
P1 over the Riemann sphere P

1 = C ∪ {∞}. It is non-
singular away from {t0, t1, . . . , tm} if and only if∑m

i=0 Ai = 0. Since every automor-
phism ofO⊕n

P1 is given by an element of GL(n, C), the spaceMs may be embedded
into the set of gauge equivalence classes of logarithmic connections on O⊕n

P1 holo-
morphic away from {t0, t1, . . . , tm}.

One can check that the spaceMs is theHamiltonian reduction of Os by the action
of GL(n, C), so has a structure of complex symplectic manifold, and that Crawley-
Boevey’s bijection is in fact an isomorphism of complex symplectic manifolds.

The residue manifolds are contained in a larger class of complex symplectic man-
ifolds, called the polar-parts manifolds (named by Boalch in his thesis). Roughly
speaking, they are obtained by the Hamiltonian reduction of some complex symplec-
tic manifolds Os contained in Mn(C[z−1])m+1, and may be embedded into the set of
gauge equivalence classes of meromorphic connections on O⊕n

P1 holomorphic away
from {t0, t1, . . . , tm} with prescribed pole order at each ti . Based on his study on the
geometric structure of polar-parts manifolds (see [2]), Boalch extended Crawley-
Boevey’s result to some class of polar-parts manifolds in [3, 4] and conjectured that
a further extension is possible (see [3, Appendix C]).

The organization of this lecture is as follows. In Sect. 2, we review the Hamil-
tonian geometry, especially the Hamiltonian reduction procedure. In Sects. 3 and 4,
following [2, 3] we introduce the main objects of this lecture: the open/closed quiver
varieties and the polar-parts manifolds. The relationship between polar-parts man-
ifolds and meromorphic connections on P

1 is explained in Sect. 4, II. In Sect. 5 we
review the theorem of Crawley-Boevey [8] on the residue manifolds and star-shaped
quiver varieties. Section6 is devoted to prove the main result of [13] (the proof given
here is a slight modification of the original one).

2 Hamiltonian Geometry

In this section we introduce the notions of Hamiltonian space and Hamiltonian re-
duction.

2.1 Hamiltonian Spaces

Let G be a complex algebraic group with Lie algebra g. A G-action on a complex
manifold M is an abstract group action ofG on M such that the actionmapG × M →
M , (g, p) �→ g · p is holomorphic. If G acts on a complex manifold M , each ξ ∈ g
defines the fundamental vector field ξM :

ξM,p = d

dt
exp(tξ) · p

∣
∣
∣
∣
t=0

(p ∈ M).
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Note that for each p ∈ M the map

ϕp : g → Tp M; ξ �→ ξM,p

is exactly the differential of the evaluation map g �→ g · p at the identity, so its kernel

gp := Kerϕp = { ξ ∈ g | ξM,p = 0
}

coincides with the Lie algebra of the stabilizer G p of p and the image

gM,p := Imϕp = { ξM,p | ξ ∈ g
}

coincides with the tangent space Tp(G · p) of the orbit of p.
For g ∈ G, we denote by Adg ∈ Aut(g) (resp. Ad∗

g ∈ Aut(g∗)) the adjoint (resp.
coadjoint) action of g.

Recall that a (complex) symplectic form on a complex manifold M is a closed
holomorphic two-form ω on M such that for any p ∈ M the bilinear form ωp :
Tp M × Tp M → C on the (holomorphic) tangent space is non-degenerate. For each
p ∈ M , a symplectic form ω defines an isomorphism

ω�
p : Tp M


−→ T ∗
p M; v �→ ι(v)ωp = ωp(v, · ).

For a vector subspace W ⊂ Tp M , the preimage under ω�
p of the annihilator

W ⊥ := {α ∈ T ∗
p M | α|W = 0

}

is denoted by W ω:

W ω = { v ∈ Tp M | ωp(v,w) = 0 (w ∈ W )
}
.

A complex manifold M equipped with a symplectic form ω is called a (com-
plex) symplectic manifold, which we denote by (M,ω) when we want to emphasize
the symplectic form. A biholomorphism M → N between symplectic manifolds is
called a symplectomorphism if the pull-back of the symplectic form on N coincides
with that on M . AG-action on a complex symplecticmanifold is said to be symplectic
if the symplectic form is G-invariant.

2.1.1 Definition. Let (M,ω) be a complex symplectic manifold equipped with a
symplectic G-action. A G-equivariant holomorphic map μ : M → g∗ (where G acts
on g∗ by the coadjoint action) is called a moment map if it satisfies

d〈μ, ξ〉 = ιξM ω = ω(ξM , · ), ξ ∈ g.

If a moment map exists, the action is said to be Hamiltonian. A complex symplectic
manifold M equipped with a Hamiltonian G-action and a moment map is called a
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(complex) Hamiltonian G-space, which we denote by (M,ω,μ) when we want to
emphasize the symplectic form ω and moment map μ. A G-equivariant symplec-
tomorphism M → N between Hamiltonian G-spaces is called an isomorphism of
Hamiltonian G-spaces if the pull-backs of the symplectic form and moment map for
N coincide with those for M .

Note that if μ1,μ2 : M → g∗ are two moment maps for a Hamiltonian G-action,
then the difference μ1 − μ2 is locally constant with values in (g∗)G .

If G is a complex reductive group, then g has a non-degenerate Ad-invariant
symmetric bilinear form. Using it we frequently identify g∗ with g, so that moment
maps take values in g. For instance, if G is a general linear group, we identify g∗
with g using the trace pairing (X, Y ) = tr(XY ).

2.1.2 Exercise. (1) Let (M,ω,μ) be aHamiltonian G-space, H a complex algebraic
group with Lie algebra h and ρ : H → G be a homomorphism (of complex algebraic
groups). Let H act on M through ρ. Show that (M,ω, ρ∗ ◦ μ) is a Hamiltonian H -
space, where ρ∗ : g∗ → h∗ is the map induced from ρ.

(2) Let (M,ω,μ) be a Hamiltonian G-space and K a closed normal subgroup of
G with Lie algebra k. Suppose that K acts trivially on M and μ(M) ⊂ (g/k)∗. Show
that (M,ω,μ) is a Hamiltonian G/K -space with respect to the induced action of
G/K .

(3) For i = 1, 2, let Gi be a complex algebraic group and (Mi ,ωi ,μi ) a Hamilto-
nian Gi -space. Let πi : M1 × M2 → Mi , i = 1, 2, be the projections. Show that the
triple

(M1 × M2,π
∗
1ω1 + π∗

2ω2, (π
∗
1μ1,π

∗
2μ2))

is a Hamiltonian G1 × G2-space, and that if G1 = G2 = G, the triple

(M1 × M2,π
∗
1ω1 + π∗

2ω2,π
∗
1μ1 + π∗

2μ2)

is a Hamiltonian G-space with respect to the diagonal action of G.

The most familiar example of Hamiltonian spaces is a coadjoint orbit.

2.1.3 Examples (Coadjoint orbits). Let O ⊂ g∗ be a G-coadjoint orbit (it is a
complex submanifold of g∗ since G is algebraic, see e.g., [6, Proposition 1.8]). It is
an easy exercise to show that the following two-form ω is well-defined, G-invariant
and symplectic:

ωα(ξO |α, ηO |α) = 〈α, [ξ, η]〉 (α ∈ O, ξ, η ∈ g).

This is called the Kirillov–Kostant–Souriau symplectic form. Let us show that the
inclusion map ι : O ↪→ g∗ is a moment map. Clearly it is equivariant. Also, for
ξ, η ∈ g and α ∈ O , we have
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(ι(ξO)ω)α(ηO |α) = ωα(ξO |α, ηO |α) = 〈α, [ξ, η]〉
= d

dt
〈α, Adexp(−tη)(ξ)〉

∣
∣
∣
∣
t=0

= d

dt
〈 Ad∗

exp(tη)(α), ξ〉
∣
∣
∣
∣
t=0

= 〈ηO |α, ξ〉.

Since g → TαO , η �→ ηO |α is surjective, the above shows that ι is a moment map.
Hence (O,ω, ι) is a Hamiltonian G-space.

The following well-known fact enables us to construct many examples of Hamil-
tonian spaces.

2.1.4 Proposition. Let M be a complex manifold equipped with a G-action and θ
be a G-invariant holomorphic one-form on M such that dθ is symplectic. Define a
map μ : M → g∗ by

〈μ, ξ〉 = −θ(ξM) (ξ ∈ g).

Then (M, dθ,μ) is a Hamiltonian G-space.

Proof. Cartan’s formula implies

d〈μ, ξ〉 = −dιξM θ = (ιξM d − LξM )θ,

where LξM is the Lie derivation. Since θ is G-invariant, we have LξM θ = 0. �

2.1.5 Examples (Cotangent bundles).Recall that the cotangent bundle T ∗ X of any
complex manifold X has a canonical symplectic form. This is defined by ω = −dθX ,
where θX is the canonical one-form:

(θX )α(v) = 〈α,π∗(v)〉, α ∈ T ∗ X, v ∈ Tα(T ∗ X).

(π : T ∗ X → X is the projection.) If G acts on X , the one-form θX is invariant under
the induced G-action on T ∗ X . Hence the above proposition shows that the map
μ : T ∗ X → g∗ defined by 〈μ, ξ〉 = θX (ξT ∗ X ) (ξ ∈ g) is a moment map and the triple
(T ∗ X,ω,μ) is a Hamiltonian G-space.

2.1.6 Exercise. Let V, W be finite-dimensional complex vector spaces and put X =
Hom(W, V ). The group G := GL(V ) × GL(W ) acts on X by

(g, h) · Q = gQh−1, (g, h) ∈ G, Q ∈ X.

Since X is a vector space, the cotangent bundle T ∗ X may be identified with the direct
sum X ⊕ X∗ of X with its dual X∗. Moreover, the bilinear form

Hom(W, V ) × Hom(V, W ) → C; (Q, P) �→ tr(Q P)
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is non-degenerate and so we may identify X∗ with Hom(W, V ). Show that θX and
ω = −dθX are then expressed as

θX = tr(Pd Q), ω = tr(d Q ∧ d P),

where Q : X ⊕ X∗ → X is the first projection regarded as a Hom(W, V )-valued
function on T ∗ X , and P : X ⊕ X∗ → X∗ is the second projection (regarded as a
Hom(V, W )-valued function similarly). Also show that themomentmapμ : T ∗ X →
g = gl(V ) ⊕ gl(W ) for the induced G-action

(g, h) · (Q, P) = (gQh−1, h Pg−1), (g, h) ∈ G, (Q, P) ∈ T ∗ X.

with μ(0, 0) = 0 is given by

μ(Q, P) = (Q P,−P Q), (Q, P) ∈ X ⊕ X∗.

2.1.7 Examples (Cotangent bundles of Lie groups). Consider the cotangent bun-
dle T ∗G of a complex algebraic group G. We identify it with the trivial vector bundle
G × g∗ = G × T ∗

e G using the isomorphism

G × g∗ → T ∗G; (g,α) �→ L∗
g−1α,

where Lg−1 : G → G is the left translation by g−1: Lg−1(a) := g−1a. Let us first
calculate the canonical symplectic form on T ∗G. The canonical one-form θG is
described as

(θG)(g,α)(v,β) = 〈L∗
g−1α, v〉 = 〈α, (Lg−1)∗v〉,

(g,α) ∈ T ∗G, (v,β) ∈ TgG ⊕ g∗ = T(g,α)(T
∗G).

Recall the Maurer–Cartan form � on G; it is the g-valued one-form on G defined
by �g(v) = (Lg−1)∗v (g ∈ G, v ∈ TgG). Using it we can write

θG = 〈α,π∗�〉,

where α : G × g∗ → g∗ is the second projection regarded as a g∗-valued function on
T ∗G. Hence

ω = −dθG = −〈dα ∧ π∗�〉 − 〈α,π∗d�〉
= −〈dα ∧ π∗�〉 + 1

2
〈α,π∗[� ∧ �]〉,

where we have used the Maurer–Cartan equation: d� = −[� ∧ �]/2. The product
G × G acts on G by the left and right translations:
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(G × G) × G → G; (a, b, g) �→ La R−1
b (g) = agb−1.

The induced action on T ∗G = G × g∗ is given by

(G × G) × T ∗G → T ∗G; (a, b, g,α) �→ (agb−1, L∗
b−1 R∗

bα) = (agb−1,Ad∗
b(α)).

2.1.8 Exercise. Show that the map

μ : T ∗G → g∗ ⊕ g∗; μ(g,α) = (Ad∗
g(α),−α)

is a moment map for the G × G-action.

2.2 Hamiltonian Reduction

Let G be a complex algebraic group with Lie algebra g and (M,ω,μ) be a Hamil-
tonian G-space.

2.2.1 Proposition. For any p ∈ M, the following equalities hold:

Ker(dμ)p = gω
M,p, (Im(dμ)p)

⊥ = gp,

where S⊥ := { ξ ∈ g | 〈α, ξ〉 = 0 (α ∈ S) } for S ⊂ g∗.

Proof. Let p ∈ M . By the definition of the moment map, we have

ωp(ξM , v) = 〈dμ(v), ξ〉

for v ∈ Tp M and ξ ∈ g. Therefore v ∈ Ker(dμ)p if and only if ωp(ξM , v) = 0 for
all ξ ∈ g, or equivalently v ∈ gω

M,p. Also, ξ ∈ gp (i.e., ξM |p = 0) if and only if
〈dμ(v), ξ〉 = 0 for all v ∈ Tp M , or equivalently ξ ∈ (Im(dμ)x )

⊥. �

Note that for any α ∈ g∗ the level set μ−1(α) is preserved by the action of the
stabilizer Gα of α for the coadjoint action (because μ is equivariant).

2.2.2 Corollary. Take α ∈ g∗ and suppose that Gα acts freely on μ−1(α). Then
μ−1(α) is a complex submanifold of codimension dim G.

Proof. The equivariance of moment map implies that the stabilizer G p of any p ∈
M is contained in Gμ(p). Therefore the assumption implies that G p = {1} for all
p ∈ μ−1(α), which together with Proposition 2.2.1 shows that μ−1(α) is a complex
submanifold of codimension dim G. �

Recall that a G-action on a complex manifold M is said to be proper if the map
G × M → M × M , (g, p) �→ (g · p, p) is a proper map of topological spaces. See
e.g., [10, Appendix B] for basic properties of proper actions. If a G-action on M is
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proper, then its restriction to any closed subgroup H ⊂ G is a proper H -action on
M , and its restriction to any G-invariant subset N ⊂ M is a proper G-action on N .

2.2.3 Theorem (Marsden–Weinstein [17]). Take α ∈ g∗ and suppose that the Gα-
action on μ−1(α) is free and proper (so in particular μ−1(α) is a complex submani-
fold). Then the following hold:

(1) The orbit space μ−1(α)/Gα has a unique structure of complex manifold such
that the quotient map π : μ−1(α) → μ−1(α)/Gα is a principal Gα-bundle.

(2) There exists a unique symplectic form ω on μ−1(α)/Gα such that

π∗ω = ω|μ−1(α).

Proof. Assertion (1) follows from a general fact on proper actions, see e.g., [10,
Corollary B.32].

Let us prove assertion (2). The uniqueness is clear since π is a submersion. To
show the existence, for simplicity, put Zα = μ−1(α) and Mα = Zα/Gα. For p ∈
Mα and v,w ∈ Tp Mα, take any p̃ ∈ Zα, ṽ, w̃ ∈ Tp̃ Zα with π( p̃) = p, π∗(ṽ) = v,
π∗(w̃) = w and put

ω p(v,w) = ω p̃(ṽ, w̃).

We must check that the right hand side does not depend on the choice of p̃, ṽ, w̃.
Let p̃′, ṽ′, w̃′ be another choice. Then there is g ∈ Gα such that p̃′ = g · p̃, and the
invariance of ω implies

ω p̃′(ṽ′, w̃′) = ω p̃(g
−1
∗ ṽ′, g−1

∗ w̃′).

Since π∗(g−1∗ ṽ′) = v = π∗(ṽ), we have

g−1
∗ ṽ′ − ṽ ∈ Ker(π∗) p̃ = Tp̃(Gα · p̃).

Similarly g−1∗ w̃′ − w̃ ∈ Tp̃(Gα · p̃). Thus we can take ξ, η ∈ gα = LieGα so that

ξM, p̃ = g−1
∗ ṽ′ − ṽ, ηM, p̃ = g−1

∗ w̃′ − w̃.

Then

ω p̃(g
−1
∗ ṽ′, g−1

∗ w̃′) − ω p̃(ṽ, w̃) = ω p̃(ξM , g−1
∗ w̃′) + ω p̃(ṽ, ηM)

= 〈dμ(g−1
∗ w̃′), ξ〉 − 〈dμ(ṽ), η〉.

The two terms on the most right hand side are both zero because ṽ, g−1∗ w̃′ are con-
tained in Tp̃ Zα = Ker(dμ) p̃. Therefore ω p is a well-defined bilinear form on Tp Mα.
Using local trivializations of the principal bundle Zα → Mα, one can easily check
that ω p, p ∈ Mα define a holomorphic two-form ω on Mα satisfying π∗ω = ω|Zα

.
Sinceω is closed andπ is a submersion,ω is also closed. To check the non-degeneracy
of ω, take any p ∈ Mα, v ∈ Tp Mα and suppose
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ω p(v,w) = 0 (w ∈ Tp Mα).

If we take p̃ ∈ Zα, ṽ ∈ Tp̃ Zα as above, then it implies

ω p̃(ṽ, w̃) = 0 (w̃ ∈ Tp̃ Zα).

By Proposition 2.2.1, we thus obtain ṽ ∈ (Tp̃ Zα)ω = Ker(dμ)ωp̃ = gM, p̃, so we can
take ξ ∈ g so that ξM, p̃ = ṽ. Since ṽ ∈ Tp̃ Zα, we have

0 = (dμ) p̃(ṽ) = (dμ) p̃(ξM) = ξg∗,α,

i.e., ξ ∈ gα. Hence ṽ is tangent to the Gα-orbit and v = π∗(ṽ) = 0. �

Theorem 2.2.3 can be extended as follows:

2.2.4 Theorem. Let G, H be complex algebraic groups with Lie algebras g, h,
respectively, and (M,ω,μ) be a Hamiltonian G × H-space with moment map
μ = (μG,μH ) : M → g∗ ⊕ h∗. Take α ∈ g∗ and suppose that the Gα-action on
μ−1

G (α) is free and proper. Then the orbit space μ−1
G (α)/Gα has a unique struc-

ture (ω,μH ) of Hamiltonian H-space for the induced H-action such that

π∗ω = ω|μ−1
G (α), π∗μH = μH |μ−1

G (α).

2.2.5 Exercise. Prove Theorem 2.2.4.

2.2.6 Definition. For a Hamiltonian G × H -space M with moment map (μG,μH ),
the (topological) orbit space μ−1

G (α)/Gα equipped with the induced H -action and
the map μH : μ−1

G (α)/Gα → h∗ induced from μH is denoted by M//α G and called
the Hamiltonian reduction of M by G at the level α. When the Gα-action on μ−1

G (α)

is free and proper, we regard M//α G as a Hamiltonian H -space using Theorem 2.2.4.

2.2.7 Examples. Recall that the cotangent bundle T ∗G 
 G × g∗ is a Hamiltonian
G × G-space, see Example 2.1.7. Note that the two G-actions on T ∗G are both free
and proper. Take any α ∈ g∗ and consider the Hamiltonian reduction T ∗G//α G by
the left translation:

T ∗G//α G = { (g,β) ∈ G × g∗ |Ad∗
g(β) = α

}
/Gα ⊂ G/Gα × g∗.

Let O be the G-coadjoint orbit of −α. Then the map

T ∗G//α G → O; [g,β] �→ −β

is a biholomorphism intertwining the G-moment maps. Since the G-action on O is
transitive, the symplectic form is characterized by the moment map. Hence the above
map is an isomorphism of Hamiltonian G-spaces.
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2.2.8 Exercise. In the situation of Theorem 2.2.4, let O ⊂ g∗ be the G-coadjoint
orbit of−α. We let H act on O trivially (so the zero map O → h∗ is a moment map)
and endow the direct product M × O with a Hamiltonian G × H -structure. Show
that the map

M//α G → (M × O)//G; [p] �→ [p,−α]

is an isomorphism of Hamiltonian H -spaces. This is called the shifting trick.

2.2.9 Exercise. Let (M,ω,μ) be a Hamiltonian G-space. Let G act on T ∗G by the
right translation. Show that the diagonal G-action on T ∗G × M is free and proper,
and the map

M → (T ∗G × M)//G; p �→ [1,μ(p), p]

is an isomorphism of Hamiltonian G-spaces, where G acts on (T ∗G × M)//G by
a · [g,β, p] = [ag,β, p].
2.2.10 Exercise. Let M be a Hamiltonian G × H -space with moment map μ =
(μG,μH ). Take (α,β) ∈ g∗ ⊕ h∗ andput Mα = M//α G, Mβ = M//β H . Then Mα//β H ,
Mβ//α G make sense as topological spaces. Show that there are natural homeomor-
phisms

Mα//β H 
 M//(α,β)(G × H) 
 Mβ//α G

and they are isomorphisms of symplectic manifolds if the Gα × Hβ-action on
μ−1(α,β) is free and proper.

3 Quiver Varieties

Roughly speaking, a quiver variety is defined as the Hamiltonian reduction of the
cotangent bundle of the vector space of representations of a quiver with prescribed
dimension vector by the action of base changes at all vertices (at some level). In
this lecture it is useful to consider also the Hamiltonian reduction by the action of
base changes on some prescribed subset of vertices. Then we obtain an open quiver
variety.

3.1 Open/Closed Quiver Varieties

Recall that a quiver is a (finite) directed graph. For a quiver Q, we denote

– the set of vertices by Q0,
– the set of arrows by Q1,
– the map taking the source vertex by s : Q1 → Q0,
– the map taking the target vertex by t : Q1 → Q0.
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For n = (n p)p∈Q0 ∈ Z
Q0
�0, let

V n =
⊕

p∈Q0

V n
p , V n

p = C
n p

be the standard Q0-graded C-vector space with dimension vector n. Set

RepQ(n) =
⊕

a∈Q1

Hom(V n
s(a), V n

t (a)).

The complex reductive group

GL(n) :=
∏

p∈Q0

GL(V n
p )

with Lie algebra gl(n) :=⊕p∈Q0
gl(V n

p ) acts on RepQ(n) by base change, and the
orbit space RepQ(n)/GL(n) parameterizes the isomorphism classes of representa-
tions of Q with dimension vector n (see [14] for basic notions in the representation
theory of quivers). Since each piece Hom(V n

s(a), V n
t (a)) is dual to Hom(V n

t (a), V n
s(a)),

we have an identification
T ∗RepQ(n) 
 RepQ(n),

where Q is the double of Q, the quiver obtained by adjoining a reverse arrowa∗ : q →
p for each arrow a : p → q in Q. It is useful to extend the map a �→ a∗ to an
involution ∗ of Q1 in the obvious way and define a map ε : Q1 → {±1} by ε|Q1 = 1,
ε|Q∗

1
= −1. The symplectic form on T ∗RepQ(n) = RepQ(n) is expressed as

ω =
∑

a∈Q1

tr(d�a ∧ d�a∗) = 1

2

∑

a∈Q1

ε(a)tr(d�a ∧ d�a∗),

where �a : RepQ(n) → Hom(V n
s(a), V n

t (a)) (a ∈ Q1) is the projection regarded as a
Hom(V n

s(a), V n
t (a))-valued function. Example 2.1.5 and Exercise 2.1.2, (3) show that

the map

μ = (μp)p∈Q0 : RepQ(n) → gl(n); μp : � = (�a)a∈Q1
�→

∑

a∈Q1
t (a)=p

ε(a)�a�a∗ ,

is a moment map for the induced GL(n)-action, where we identify each gl(V n
p ) with

its dual using the trace pairing.
Now choose a subset I of Q0 and say the vertices in I to be closed and the

others to be open. We put nI = (n p)p∈I ∈ Z
I , and for a Q0-graded vector space

V =⊕p∈Q0
Vp, set VI =⊕p∈I Vp (which is an I -graded vector space). According

to the decomposition Q0 = I � I c, the group GL(n) and its Lie algebra gl(n) are
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decomposed as

GL(n) = GL(nI ) × GL(nI c), gl(n) = gl(nI ) ⊕ gl(nI c).

We denote by μ = (μI ,μI c) the according decomposition of the moment map and
consider the Hamiltonian GL(nI )-space (RepQ(n),ω,μI ).

In what follows we assume nI �= 0 (otherwise the group GL(nI ) is trivial). Let
J ⊂ I be the support of nI and

J = J1 � J2 � · · · � Jk

be the decomposition into the connected components. For i = 1, 2, . . . , k, define a
subquiver Q(i) of Q with Q(i)

0 = Ji ∪ J c by

Q(i)
1 = { a ∈ Q1 | (s(a), t (a)) ∈ J 2

i ∪ (Ji × J c) ∪ (J c × Ji )
}
.

Let Q′ be the maximal subquiver of Q with vertices J c. Then we have a decompo-
sition

RepQ(n) = RepQ
′(nJ c) ×

k∏

i=1

Rep
Q

(i) (nJi ∪J c). (1)

Observe that GL(nI ) = GL(nJ ) =∏i GL(nJi ) acts on RepQ
′(nJ c) trivially and on

each Rep
Q

(i) (nJi ∪J c) through the projection GL(nJ ) → GL(nJi ). In fact, the above
describes theHamiltonianGL(nI )-spaceRepQ(n) as the direct product of theHamil-
tonian {1}-space RepQ

′(nJ c) and the Hamiltonian GL(nJi )-spaces RepQ
(i) (nJi ∪J c).

The kernel of the GL(nI )-action (the subgroup consisting of all elements acting
trivially) can be easily described as follows:

3.1.1 Proposition. Assume that the support of nI is connected.
(1) If some p ∈ I and q ∈ I c are connected by arrow in Q and both contained in

the support of n, then the GL(nI )-action on RepQ(n) is effective.
(2) Otherwise, the kernel of the action is the image K of the map

C
× → GL(nI ); c �→ (c IdV n

p
)p∈I

and the image of μI is contained in (LieK )⊥.

If the support of nI is disconnected, the kernel of the GL(nI )-action is equal
to the product

∏k
i=1 Ki , where Ki is the kernel of the GL(nJi )-action on the factor

Rep
Q

(i) (nJi ∪J c) of the decomposition (1).

3.1.2 Exercise. Prove the above proposition.

We want to take the Hamiltonian reduction of (RepQ(n),ω,μI ) to get a Hamil-
tonian GL(nI c)-space. However, the action on a level set of the moment map is not
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proper in general. So we will choose some nice GL(nI )-invariant open subset of
(RepQ(n),ω,μI ) on which the action is proper.

3.1.3 Definition. For�=(�a)a∈Q1
∈ RepQ(n), a Q0-graded subspaceW =⊕p∈Q0

Wp of V is said to be �-invariant if �a(Ws(a)) ⊂ Wt (a) holds for any a ∈ Q1.
When the support of nI is connected, a point � = (�a)a∈Q1

∈ RepQ(n) is said
to be stable for the action of GL(nI ) (or GL(nI )-stable for short) if there exists no
non-zero proper I -graded subspace W =⊕p∈I Wp of V n

I satisfying at least one of
the following two conditions:

(S1) The Q0-graded subspace W̃ ⊂ V n with W̃I = W , W̃I c = {0} is �-invariant.
(S2) The Q0-graded subspace W̃ ⊂ V n with W̃I = W , W̃I c = V n

I c is �-invariant.

When the support of nI is disconnected, � = (�a)a∈Q1
∈ RepQ(n) is said to be

GL(nI )-stable if its Rep
Q

(i) (nJi ∪J c)-component �( j) with respect to the decomposi-
tion (1) is GL(nI )-stable for any i ∈ {1, 2, . . . , k}.
3.1.4 Remark. The above stability condition comes from Mumford’s geometric
invariant theory. See [15] and references therein for stability conditions on the rep-
resentation spaces of quivers.

It is clear from the definition that if a point � ∈ RepQ(n) is GL(nI )-stable, then
it is GL(nJ )-stable for any J ⊂ I .

For a GL(nI )-invariant subset Z of RepQ(n), we denote by Zs,I the set consisting
of all GL(nI )-stable points in Z . It is a GL(nI )-open subset of Z .

3.1.5 Proposition. Let K ⊂ GL(nI )be the kernel of theGL(nI )-action onRepQ(n).
Then the induced GL(nI )/K -action on RepQ(n)s,I is free and proper.

Proof. We may assume that the support J of nI is connected. To check that the
GL(nI )/K -action on RepQ(n)s,I is free, take any � ∈ RepQ(n)s,I and suppose that
it is fixed by some g = (gp) ∈ GL(nI ). If K is non-trivial, choose any p ∈ J and let
λ be an eigenvalue of gp. If K is trivial, put λ = 1. Then define a non-zero I -graded
subspace W =⊕Wp of V n

I by

Wp =
{
Ker(gp − λ IdV n

p
) (p ∈ J ),

V n
p = {0} (p ∈ I \ J ).

One can easily check that W satisfies (S2). Hence W = V n
I , which implies g ∈ K .

Next we show that the GL(nI )/K -action is proper. It suffices to show that for

g(n) ∈ GL(nI ), �(n) ∈ RepQ(n)s,I (n = 1, 2, . . . ),

if both �(n) and �̃(n) := g(n) · �(n) converge as n → ∞ in RepQ(n)s,I , then
(g(n))∞n=1 has a convergent subsequence. Recall that any invertible matrix can be
expressed as the product of a unitary matrix and a Hermitian matrix with positive
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eigenvalues. Since every Hermitian matrix is diagonalizable by a unitary matrix, we
can write

g(n) = u(n)h(n)v(n),

where u(n), v(n) are tuples of unitary matrices and h(n) is a tuple of diagonal matri-
ces with positive diagonal entries. Since unitary groups are compact, we may assume
that u(n), v(n) converge (replacing them with subsequences if necessary). We then
replace �(n) and �̃(n) with v(n) · �(n) and u(n)−1 · �̃(n), respectively, so that
�̃(n) = h(n) · �(n). Let us show that the sequence in GL(nI )/K represented by
(h(n))∞n=1 has a convergent subsequence. Put

J = { (p, i) ∈ J × Z>0 | i � n p
}
.

Write h(n) = (h p(n))p∈I and

h p(n) = diag(h p;1(n), h p;2(n), . . . , h p;n p (n)) (p ∈ J ).

Since h p;i (n) ∈ R>0, we may assume that all the sequences

(h p;i (n))∞n=1, (hq; j (n)/h p;i (n))∞n=1, (p, i), (q, j) ∈ J

have limits in [0,∞]. Now we divide into two cases.
First, consider the case where K = {1}. Set

J0 =
{

(p, i) ∈ J | lim
n→∞ h p;i (n) = 0

}
.

For (p, i) ∈ J let ep;i ∈ V n
p be the i-th coordinate vector, and put

W =
⊕

(p,i)∈J0

Cep,i ⊂ V n
J ,

which we regard as an I -graded subspace of V n
I in the obvious way. We claim that

W satisfies (S1) for � := limn→∞ �(n). For an arrow a connecting vertices in J ,
write

�a(n) = (�a;i j (n))
1�i�nt (a)

1� j�ns(a)
, �̃a(n) = (�̃a;i j (n))

1�i�nt (a)

1� j�ns(a)
.

Then we have

�̃a;i j (n) = ht (a);i (n)

hs(a); j (n)
�a;i j (n).

If (s(a), j) ∈ J0 and (t (a), i) /∈ J0, then we must have limn→∞ �a;i j (n) = 0 be-
cause the left hand side converges by the assumption. It follows that �a(Ws(a)) ⊂
Wt (a), where�a := limn→∞ �a(n). For an arrow a with s(a) ∈ J and t (a) /∈ I , write
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�a(n) = (�a;1(n), . . . , �a;ns(a)
(n)), �a;i (n) ∈ V n

t (a),

and similarly for �̃a . Then we have

�̃a;i (n) = hs(a);i (n)−1�a;i (n).

If (s(a), i) ∈ J0, then we must have limn→∞ �a;i (n) = 0. Hence �a(Ws(a)) = {0}.
Therefore W satisfies (S1). Since K = {1}, Proposition 3.1.1 shows that there exists
an arrow a with s(a) ∈ J , t (a) ∈ I c and nt (a) �= 0. Therefore the stability condition
implies W = {0}, i.e., J0 = ∅. If we set

J<∞ =
{

(p, i) ∈ J | lim
n→∞ h p;i (n) < ∞

}
, W ′ =

⊕

(p,i)∈J<∞

Cep,i ,

then a similar argument shows that W ′ satisfies (S2) and hence that W ′ = V n
I , i.e.,

J<∞ = J . Hence h(n) has a limit in GL(nI ).
Next consider the case where K �= {1}. For (p, i), (q, j) ∈ J , write (p, i) ∼

(q, j) if limn→∞ hq, j (n)/h p,i (n) ∈ (0,∞). Then ∼ is an equivalence condition.
Furthermore, the following total ordering � on J /∼ is well-defined:

[p, i] � [q, j] def⇐⇒ lim
n→∞ hq, j (n)/h p,i (n) > 0.

Let [p0, i0] ∈ J /∼ be the minimal element and set

W =
⊕

(p,i)∈[p0,i0]
Cep,i ⊂ V n

I .

Then �a(Ws(a)) ⊂ Wt (a) for any arrow a connecting vertices in J because if
(s(a), j) ∈ [p0, i0] and (t (a), i) /∈ [p0, i0] then �a;i j (n) must tend to zero. Further-
more, since K �= {1}, Proposition 3.1.1 shows that any vertex in I c connected to
a vertex in J by an arrow does not support n. Hence W satisfies both (S1) and
(S2). Note that W is non-zero by the construction. Therefore the stability condition
implies W = V n

I , i.e., limn→∞ hq, j (n)/h p,i (n) ∈ (0,∞) for all (p, i), (q, j) ∈ J .
Therefore we can find a sequence (cn)

∞
n=1 in C

× so that cnh(n) = (cnh p(n))p∈I has
a limit in GL(nI ). �

3.1.6 Exercise. Assume that the support of nI is connected and that the kernel K is
trivial. Define a quiver Q′ with vertices I � {∞} by
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#
{

a ∈ Q′
1 | a : p → q

} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

# { a ∈ Q1 | a : p → q } (p, q ∈ I ),
∑

a∈Q1
s(a)=p,t (a)∈I c

n pnt (a) (p ∈ I, q = ∞),

∑

a∈Q1
s(a)∈I c ,t (a)=q

ns(a)nq (p = ∞, q ∈ I ),

∑

a∈Q1
s(a),t (a)∈I c

ns(a)nt (a) (p, q = ∞).

Also define n′ = (n′
p) ∈ Z

Q′
0

�0 by

n′
p = n p (p ∈ I ), n′

∞ = 1.

Then we may identify GL(n′)/C
× with GL(nI ). Show that there exists an isomor-

phism
RepQ(n)


−→ RepQ
′(n′)

of Hamiltonian GL(nI )-spaces intertwining the GL(nI )-stability and GL(n′)-
stability conditions.

Note that the center gl(nI )
GL(nI ) coincides with the image of the map

C
I → gl(nI ); (λp)p∈I �→ (λp IdV n

p
)p∈I .

Let ζ ∈ C
I . We use the same letter ζ for its image under the above map.

Proposition 3.1.5 and Theorem 2.2.4 imply that μ−1
I (ζ)s,I is non-empty, its orbit

space
Ms

Q,I (n, ζ) := μ−1
I (ζ)s,I /GL(nI ) = RepQ(n)s,I //ζ(GL(nI )/K )

is a Hamiltonian GL(nI c)-space.

3.1.7 Definition. The space Ms
Q,I (n, ζ) is called a quiver variety. It is sometimes

called an open quiver variety (with I c open) if I �= Q0, and a closed quiver variety
if I = Q0. The closed quiver variety is simply denoted by Ms

Q(n, ζ).

3.2 Closing, Gluing and Blowing Up

We introduce some basic operations on quivers with open/closed vertices following
[3]. Suppose that an open quiver variety Ms

Q,I (n, ζ) is given.

(i) Closing vertices. For a subset J of I c, letMs
Q,I (n, ζ)s,J be the set consisting of

all [B] ∈ Ms
Q,I (n, ζ) such that some (and hence any) representative B ∈ RepQ(n)s,I

is GL(nI∪J )-stable. Then the following is clear.
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3.2.1 Proposition. For any ζ ′ ∈ C
J , the orbit space Ms

Q,I (n, ζ)s,J //ζ ′GL(nJ ) has a
structure of Hamiltonian GL(n(I∪J )c)-space and naturally isomorphic to the quiver
variety Ms

Q,I∪J (n, ζ ⊕ ζ ′).

In particular, we have

Ms
Q,I (n, ζ)s,J //ζ ′GL(nJ ) 
 Ms

Q,I∪J (n, ζ ⊕ ζ ′) 
 Ms
Q,J (n, ζ ′)s,I //ζGL(nI ).

(ii) Gluing open vertices. Given two open vertices p, q ∈ I c with n p = nq , we
have the diagonal subgroup

G = { g ∈ GL(nI c) | gp = gq
} ⊂ GL(nI c).

If we restrict the action of GL(nI c) on Ms
Q,I (n, ζ) to that of G, then the resulting

Hamiltonian G-space may be regarded as a quiver variety for the quiver obtained by
“gluing” p and q together. The precise statement is as follows.

Let ϕ : Q → Q′ be a morphism of quivers, i.e., a pair of maps ϕ0 : Q0 → Q′
0 and

ϕ1 : Q1 → Q′
1 such that s ◦ ϕ1 = ϕ0 ◦ s, t ◦ ϕ1 = ϕ0 ◦ t . The morphism ϕ is called

a gluing if ϕ0 is surjective and ϕ1 is bijective (then Q′ may be viewed as the quiver
obtained by an iteration of “gluing” some vertices in Q together).

Let ϕ : Q → Q′ be a gluing and suppose that the glued vertices are all open, i.e.,
ϕ−1
0 (ϕ0(I )) = I . Take I ′ := ϕ0(I ) to be the set of closed vertices for Q′. Then ϕ0

restricts to a bijection I → I ′. Let (ϕ0)∗ : C
I → C

I ′
be the induced isomorphism.

Also let ϕ∗
0 : Z

Q′
0 → Z

Q0 be the injection induced from ϕ0.

3.2.2 Proposition. Suppose that n ∈ Imϕ∗
0, i.e., n p = nq if ϕ0(p) = ϕ0(q). Take

n′ ∈ (ϕ∗
0)

−1(n) and put ζ ′ = (ϕ0)∗(ζ). Let GL(n′
(I ′)c) act on the quiver variety

Ms
Q,I (n, ζ) through the diagonal embeddings

GL(n′
q , C) ↪→

∏

p∈ϕ−1
0 (q)

GL(n p, C), q ∈ (I ′)c.

Then there exists a canonical isomorphism

Ms
Q,I (n, ζ) 
 Ms

Q′,I ′(n′, ζ ′)

of Hamiltonian GL(n′
(I ′)c)-spaces.

Proof. Observe that ϕ1 induces a linear isomorphism RepQ(n)

−→ RepQ

′(n′) pre-
serving the symplectic structure. Exercise 2.1.2, (3) shows that it is an isomorphismof
Hamiltonian GL(n′

I ′)-spaces, and since ϕ−1
0 (ϕ0(I )) = I , it intertwines the GL(nI )-

stability on RepQ(n) and the GL(n′
I ′)-stability on RepQ

′(n′). Hence it induces the
desired isomorphism. �

We mainly use this fact in the following situation. Suppose we are given some
open quiver varieties Ms

Q( j),I j
(n( j), ζ( j)), j = 1, 2, . . . , k and injections ι j : � ↪→
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I c
j , j = 1, 2, . . . , k from a common finite set � to the sets of open vertices such that

n(1)
ι1(λ) = n(2)

ι2(λ) = · · · = n(k)

ιk (λ), λ ∈ �.

Consider the “direct sum” Q̃ :=⊔k
j=1 Q( j) of the quivers (obtained by taking the

disjoint union of the vertex/arrow sets), and glue the k vertices ι1(λ), ι2(λ) . . . , ιk(λ)

in Q̃ all together for each λ ∈ �. Then we obtain a new quiver Q (which we also
denote by

⋃
� Q( j)) with the vertices labeled by

Q0 = � �
k⊔

j=1

(Q( j)
0 \ ι j (�)).

The obvious morphismϕ : Q̃ → Q sending ι j (λ) to λ is a gluing. By the assumption
there exists n ∈ Z

Q0 such that ϕ∗
0(n) = ⊕ jn( j). By Proposition 3.2.2 we thus obtain

an isomorphism

k∏

j=1

Ms
Q( j),I j

(n( j), ζ( j)) = MQ̃,� j I j
(⊕ jn( j),⊕ jζ

( j)) 
 Ms
Q,I (n, ζ)

of Hamiltonian GL(n)-spaces, where I := ϕ0(� j I j ) and ζ := (ϕ0)∗(⊕ jζ
( j)).

(iii) Blowing up open vertices. Given a decomposition n p =∑k
i=1 n′

i of n p into
smaller positive integers for some open vertex p ∈ I c, we have the block-diagonal
subgroup

G =
∏

q∈I c\{p}
GL(nq) ×

k∏

i=1

GL(n′
i ) ⊂ GL(nI c).

If we restrict the action of GL(nI c) on Ms
Q,I (n, ζ) to that of G, then the resulting

Hamiltonian G-space may be regarded as a quiver variety for the quiver obtained by
“blowing up” p into k vertices. The precise statement is as follows.

A morphism ϕ : Q′ → Q of quivers is called a blow-up if ϕ0 is surjective and for
each p, q ∈ Q′

0 the restriction

{
a ∈ Q′

1 | s(a) = p, t (a) = q
} ϕ1−→ { b ∈ Q1 | s(b) = ϕ0(p), t (b) = ϕ0(q) }

is bijective (then Q′ may be viewed as the quiver obtained by “blowing up” some
vertices in Q). For a blow-upϕ : Q′ → Q, we define a surjectivemap (ϕ0)∗ : Z

Q′
0 →

Z
Q0 by

(ϕ0)∗(n′) = n, n p =
∑

q∈ϕ−1
0 (p)

n′
q .
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If n′ ∈ Z
Q′

0
�0 and n = (ϕ0)∗(n′), for each p ∈ Q0 we may identify V n

p with the di-

rect sum
⊕

q∈ϕ−1
0 (p) V n′

q . Accordingly for each p ∈ Q0 we may regard
∏

q∈ϕ−1
0 (p)

GL(n′
q , C) as a block-diagonal subgroup of GL(n p, C); in particular GL(n′

ϕ−1
0 (J )

) ⊂
GL(nJ ) for any J ⊂ Q0.

Let ϕ : Q′ → Q be a blow-up and suppose that the “blown-up” vertices are all
open, i.e., I ′ := ϕ−1

0 (I )
ϕ0−→ I is bijective. Then ϕ0 induces a bijection ϕ∗

0 : C
I →

C
I ′
.

3.2.3 Proposition. Take n′ ∈ (ϕ0)
−1∗ (n) and put ζ ′ = ϕ∗

0(ζ). Let GL(n′
(I ′)c) act on

Ms
Q,I (n, ζ) through the inclusion GL(n′

(I ′)c) ⊂ GL(nI c). Then there is a natural
isomorphism

Ms
Q,I (n, ζ) 
 Ms

Q′,I ′(n′, ζ ′)

of Hamiltonian GL(n′
(I ′)c)-spaces.

As a typical example of blow-ups, consider an arbitrary quiver Q and a finite set�.
Take any vertex p0 ∈ Q0 and define a new quiver Q′ with vertices � � (Q0 \ {p0})
by

#
{

a ∈ Q′
1 | a : p → q

} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

# { a ∈ Q1 | a : p → q } (p, q ∈ Q0 \ {p0}),
# { a ∈ Q1 | a : p → p0 } (p ∈ Q0 \ {p0}, q ∈ �),

# { a ∈ Q1 | a : p0 → q } (p ∈ �, q ∈ Q0 \ {p0}),
0 (p, q ∈ �).

Then there exists a blow-up ϕ : Q′ → Q, which we call the blow-up of Q at p0 by
�.

For instance, if Q is the quiver with two vertices 0,∞ and one arrow 0 → ∞, its
blow-up at 0 by {1, 2} is given as follows.

∞

1

2
If we further blow-up it at ∞ by {3, 4}, then we obtain the following quiver.

1

2

3

4

3

2

1

4

=
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4 Polar-Parts Manifolds

In this section we define the polar-parts manifolds and explain their relation to mero-
morphic connections on the Riemann sphere.

4.1 Definition

From now on, we fix n ∈ Z>0 and put G = GL(n, C), g = gl(n, C). Consider the
infinite-dimensional complex Lie algebras

g[[z]] := g ⊗C C[[z]], g[z−1] := g ⊗C C[z−1].

Both are contained in the larger Lie algebra g((z)) := g ⊗C C((z)), which may be
identified with the matrix ring Mn(C((z))) over C((z)) (as a complex vector space) in
the obvious way. We have a bilinear form

g[[z]] × g[z−1] → C; (X, A) �→ res
z=0

tr

(

X A
dz

z

)

,

where resz=0 : C((z))dz → C is the formal residue (taking the coefficient of dz/z).
It enables us to embed g[z−1] into the dual vector space of g[[z]]. Heuristically g[[z]]
is the Lie algebra of the infinite-dimensional group

G[[z]] := { g(z) ∈ Mn(C[[z]]) | det g(0) �= 0 } ,

and the adjoint action of G[[z]] is given by the conjugation of matrices over C[[z]]:

Adg(X) = gXg−1, g ∈ G[[z]], X ∈ g[[z]].

Through the bilinear form, it induces the “coadjoint action” ofG[[z]] on g[z−1], which
is explicitly given by

Ad∗
g(A) = (gAg−1)�0, g ∈ G[[z]], A ∈ g[z−1],

where ( · )�0 : g((z)) = zg[[z]] ⊕ g[z−1] → g[z−1] is the map forgetting the zg[[z]]-
part. If we write

g =
∑

j�0

g j z
j , g−1 =

∑

j�0

g′
j z

j , A =
∑

j�0

A j z
− j ,

then
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Ad∗
g(A) =

∑

k�0

⎛

⎝
∑

i, j�0

gi Ai+ j+kg
′
j

⎞

⎠ z−k .

In particular, the coadjoint action preserves the degree in z−1. So for each r ∈ Z�0

the action preserves the subspace

g∗
r+1 :=

r∑

j=0

z− jg ⊂ g[z−1],

on which it reduces to an action of the complex algebraic group

Gr+1 := { g(z) ∈ Mn(C[[z]]/(zr+1)) | det g(0) �= 0
}
.

Observe that its Lie algebra may be identified with the quotient Lie algebra gr+1 :=
g[[z]]/zr+1g[[z]], which is dual to g∗

r+1 via the bilinear form on g[[z]]. So the induced
action of Gr+1 is the coadjoint action.

In what follows a G[[z]]-coadjoint orbit always means an orbit for the G[[z]]-
action on g[z−1]. The above observation shows that any G[[z]]-coadjoint orbit is a
finite-dimensional complex symplectic manifold.

Now let O0, O1, . . . , Om ⊂ g[z−1] be G[[z]]-coadjoint orbits. The general linear
group G acts on each Oi by conjugation. It is Hamiltonian since the action is induced
from the natural embedding G ↪→ G[[z]] (with the image consisting of constant
matrices). A moment map is given by the restriction to Oi of the map π0 : g[z−1] →
g 
 g∗ taking the constant term. Hence the G-action on the direct product O :=∏m

i=0 Oi defined by the simultaneous conjugation is Hamiltonian with moment map

μ : O → g 
 g∗; (Ai )
m
i=0 �→

m∑

i=0

π0(Ai ).

We are interested in the Hamiltonian reduction of O by G at the level 0. Observe
first that the center C

× ⊂ G acts trivially on O and the level set μ−1(0) is empty un-
less

∑m
i=0 trπ0(Oi ) = 0 (the map tr ◦ π0 : g[z−1] → C is G[[z]]-invariant and hence

trπ0(Oi ) ∈ C makes sense). Therefore if μ−1(0) is non-empty then the map μ takes
values in the dual of the Lie algebra of G/C

× and is a moment map for the induced
G/C

×-action.
As in the case of quiver varieties we need a stability condition.

4.1.1 Definition. A tuple (Ai )
m
i=0 ∈ g[z−1]m+1, Ai =∑ j�0 Ai, j z− j is said to be

stable if there exists no non-zero proper vector subspace of C
n preserved by all Ai, j .

For a G-invariant subset Z ⊂ g[z−1]m+1, we denote by Zs the set consisting of
all stable points in Z . It is a G-invariant open subset of Z .

4.1.2 Proposition. The G/C
×-action on Os is free and proper.
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4.1.3 Exercise. Deduce the above proposition from Proposition 3.1.5.

Therefore Theorem 2.2.3 shows that if μ−1(0)s is non-empty, its orbit space

Ms(O0, O1, . . . , Om) := μ−1(0)s/G = Os//(G/C
×)

has a symplectic structure.

4.1.4 Definition. The complex symplectic manifoldMs(O0, O1, . . . , Om) is called
the polar-parts manifold associated to O0, O1, . . . , Om .

4.2 Relation to Stable Meromorphic Connections on P
1

Let � be a compact Riemann surface and D ⊂ � a finite subset. Define �1
�(∗D) to

be the sheaf of germs of meromorphic one-forms on � holomorphic away from D.

4.2.1 Definition. Let V be a holomorphic vector bundle on �, i.e., a locally free
O�-module. A meromorphic connection on V with poles on D is a morphism

∇ : V → �1
�(∗D) ⊗O�

V

of sheaves of vector spaces satisfying the Leibniz rule:

∇( f v) = d f ⊗ v + f ∇(v) ( f ∈ O�, v ∈ V).

A pair (V,∇) of such V and ∇ is called a meromorphic connection on (�, D). The
rank, degree of (V,∇) are those of V .

Two meromorphic connections (V,∇), (V ′,∇′) on (�, D) are said to be isomor-

phic if there exists an isomorphism ϕ : V 
−→ V ′ such that ϕ ◦ ∇ = ∇′ ◦ ϕ.

Meromorphic connections have a natural notion of stability:

4.2.2 Definition. Let (V,∇) be a meromorphic connection on (�, D). A subbundle
W ⊂ V is said to be ∇-invariant if it satisfies

∇(W) ⊂ �1
�(∗D) ⊗O�

W.

The meromorphic connection (V,∇) is said to be stable if the inequality

degW
rankW <

degV
rankV

holds for any non-zero proper ∇-invariant subbundle W ⊂ V .
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Take (m + 1) mutually distinct points t0, t1, . . . , tm on the complex plane C and
put D = {t0, t1, . . . , tm}. For each (Ai )

m
i=0 ∈ g[z−1]m+1, write Ai =∑ Ai, j z− j and

define a g-valued meromorphic one-form A on the Riemann sphere P
1 = C ∪ {∞}

by

A =
m∑

i=0

∑

j�0

Ai, j

(x − ti ) j+1
dx .

Then ∇ := d − A is a meromorphic connection on the trivial vector bundle O⊕n
P1 ,

and it has no pole at ∞ if and only if

m∑

i=0

π0(Ai ) =
m∑

i=0

Ai,0 = 0.

Since any automorphism of O⊕n
P1 is given by an element of G = GL(n, C), two

connections (O⊕n
P1 , d − A), (O⊕n

P1 , d − A′) associated to (Ai ), (A′
i ) ∈ g[z−1]m+1, re-

spectively, are isomorphic if and only if there is g ∈ G such that gAig
−1 = A′

i for
all i . Furthermore one can show the following:

4.2.3 Proposition. Take (Ai )
m
i=0 ∈ g[z−1]m+1 and let ∇ = d − A be the associated

meromorphic connection on O⊕n
P1 . Then (Ai ) is stable if and only if (O⊕n

P1 ,∇) is
stable.

Proof. Since any line bundle on P
1 of negative degree has no global section, the

trivial bundleO⊕n
P1 has no subbundle of positive degree and any subbundle of degree

0 is trivial. Hence a meromorphic connection (O⊕n
P1 ,∇) is stable if and only if there

is no non-zero proper ∇-invariant trivial subbundle. Since any trivial subbundle of
O⊕n

P1 is of the form OP1 ⊗ W for some vector subspace W ⊂ C
n , the stability for

(O⊕n
P1 ,∇) is equivalent to that for (Ai ). �
Hence the polar-parts manifolds Ms(O0, . . . , Om) are embedded into the set of

isomorphism classes of stable meromorphic connections on (P1, D) of rank n whose
underlying bundle is trivial.

In terms of meromorphic connections the condition Ai ∈ Oi is rephrased as fol-
lows. Let (V,∇) be a meromorphic connection on (P1, D) of rank n. For each
i = 0, 1, . . . , m, take a trivialization ψi : V|Ui


−→ O⊕n
Ui

on a small neighborhood Ui

of ti and define Ai =∑ j�0 Ai, j z− j ∈ g[z−1] by the condition

ψi ◦ ∇ ◦ ψ−1
i +

∑

j�0

Ai, j

(x − ti ) j+1
dx is a holomorphic connection on O⊕n

Ui
.

One can check that the G[[z]]-orbit of each Ai is independent of the choice of ψi

(though Ai itself is not). Furthermore, if two meromorphic connections (V,∇),
(V ′,∇′) are isomorphic then the associated G[[z]]-orbits coincide for each i . There-
fore the condition Ai ∈ Oi makes sense for all isomorphism classes of meromorphic
connections on (P1, D) of rank n.
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Let Ms
(O0, . . . , Om) be the set of isomorphism classes of stable meromor-

phic connections (V,∇) on (P1, D) of rank n and degree 0 such that each Ai is
contained in Oi . Using the above embedding we may regard the polar-parts mani-
fold Ms(O0, . . . , Om) as a subset of Ms

(O0, . . . , Om). It is an open subset, and if
Ms(O0, . . . , Om) �= ∅ and Ms

(O0, . . . , Om) is connected, then Ms(O0, . . . , Om)

is furthermore dense (see [19, Theorem 5.3]).

5 Residue Manifolds and Star-Shaped Quiver
Varieties

The space Ms(O0, . . . , Om) is called a residue manifold if deg1/z(Oi ) = 0 for all
i , i.e., all Oi are G-coadjoint orbits. Crawley-Boevey [8] found that every residue
manifold is isomorphic to a quiver variety associated to a “star-shaped” quiver, which
we explain in this section.

5.1 Coadjoint Orbits of Type A and Quiver Varieties

We first relate G-coadjoint orbits with quivers of type A.

5.1.1 Definition. A marking of a matrix A ∈ g (or its conjugacy class O) is an
ordered tuple (λ1,λ2, . . . ,λd) of complex numbers such that

d∏

j=1

(A − λ j In) = 0.

Let O ⊂ g∗ = g be a G-coadjoint orbit. Fix a marking (λ1,λ2, . . . ,λd) of O .
Define a quiver Q with vertices Q0 = { 0, 1, . . . , d − 1 } by drawing one arrow from
each k ∈ Q0 (k � 1) to k − 1, and choose I = {1, . . . , d − 1} ⊂ Q0 as the closed
vertices. In the following picture of Q the closed vertices are painted black.

1 2 d − 10

Define n = (nk) ∈ Z
Q0
�0 by

n0 = n, nk = rank
k∏

j=1

(A − λ j In) (k ∈ I ),
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where A is an arbitrary element of O , and consider the Hamiltonian GL(n)-space
RepQ(n). By the definition of Q, a point � in RepQ(n) is a tuple consisting of linear
maps

�k−1,k : V n
k → V n

k−1, �k,k−1 : V n
k−1 → V n

k (k ∈ I ).

The moment map μI = (μk)k∈I for the GL(nI )-action is given by

μk(�) = �l,k+1�k+1,l − �k,k−1�k−1,k (k ∈ I ),

where we use the convention �d−1,d = 0, �d,d−1 = 0. Also the moment map for the
action of GL(V n

0 ) = G is μ0(�) = �0,1�1,0.

5.1.2 Proposition. Define ζ = (ζk) ∈ C
I by ζk = λk − λk+1. Then the G-moment

map
μ̄0 + λ1 In : Ms

Q,Q0\{0}(n, ζ) → g

induces a G-equivariant isomorphism Ms
Q,Q0\{0}(n, ζ)


−→ O of symplectic mani-
folds.

We first construct a map from O to the quiver variety Ms
Q,Q0\{0}(n, ζ). Suppose

we are given an element A ∈ O . For each k ∈ I , taking a basis we identify the vector
space

∏k
j=1(A − λk In) with V n

k . We have the inclusion map �k−1,k : V n
k → V n

k−1
and the surjection �k,k−1 : V n

k−1 → V n
k induced from A|V n

k−1
− λk IdV n

k−1
. They gives

a point � in RepQ(n).

5.1.3 Lemma. μI (�) = ζ.

Proof. By the definition we have

�k−1,k�k,k−1 = A|V n
k−1

− λk IdV n
k−1

, �k,k−1�k−1,k = A|V n
k

− λk IdV n
k

(2)

for k ∈ I . Since A|V n
d−1

= λd IdV n
d−1

, the assertion follows. �

Furthermore, since �k−1,k is injective and �k,k−1 is surjective for any k ∈ I , the
following lemma shows that the point � is stable for the GL(nI )-action.

5.1.4 Lemma. A point � ∈ μ−1
I (ζ) isGL(nI )-stable if and only if �k−1,k is injective

and �k,k−1 is surjective for any k ∈ I .

Proof. Suppose that �k−1,k is injective and �k,k−1 is surjective for any k ∈ I . If
an I -graded subspace W ⊂ V n

I satisfies condition (S1), then the injectivity of each
�k−1,k implies

0 � dim W1 � dim W2 � · · · � dim Wd−1,

and hence W = {0}. If an I -graded subspace W ⊂ V n
I satisfies condition (S2), then

each �k,k−1 induces a surjection V n
k−1/Wk−1 → V n

k /Wk , which implies
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0 � codimW1 � codimW2 � · · · � codimWd−1,

and hence W = V n
I . Therefore � is GL(nI )-stable.

Conversely, suppose that� ∈ μ−1
I (ζ) is GL(nI )-stable. For k, l ∈ Q0 with k < l,

we put

�k,l = �k,k+1�k+1,k+2 · · ·�l−1,l , �l,k = �l,l−1�l−1,l−2 · · · �k+1,k .

By induction one can then deduce the following relations from the equality μI (�) =
ζ:

�0,k+1�k+1,k =
⎛

⎝�0,1�1,0 +
k∑

j=1

ζ j IdV n
0

⎞

⎠�0,k (k ∈ I ), (3)

�k,k+1�k+1,0 = �k,0

⎛

⎝�0,1�1,0 +
k∑

j=1

ζ j IdV n
0

⎞

⎠ (k ∈ I ). (4)

Now define two I -graded subspaces W, W ′ ⊂ V n
I by

Wk = Ker�0,k, W ′
k = Im�k,0 (k ∈ I ).

Then relation (3) implies that W satisfies condition (S1), and (4) implies that W ′
satisfies condition (S2). Since n > 0, the stability of � implies W = {0}, W ′ = V n

I .
Hence each �k−1,k is injective and each �k,k−1 is surjective. �

Thus we obtain a map

O → Ms
Q,Q0\{0}(n, ζ); A �→ [�],

and μ0(�) = �0,1�1,0 = A − λ1 In by the definition.
Conversely, for � ∈ μ−1

I (ζ)s,I , consider the element

A := μ0(�) + λ1 In = �0,1�1,0 + λ1 In ∈ g.

Put Vk = Im�0,k ⊂ C
n (k ∈ I ) and Vd = {0}. Then relation (3) together with

Lemma 5.1.4 implies that each Vk is an A-invariant subspace of dimension nk and

(A − λk+1 In)(Vk) = Vk+1 (k ∈ I ).

Also we have Im(A − λ1 In) = Im(�0,1�1,0) = V1. Thus we obtain

d∏

j=1

(A − λ j In) = 0, rank
k∏

j=1

(A − λ j In) = nk (k ∈ I ),
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which uniquely determines the conjugacy class of A (we leave the proof of this fact
as an exercise; see Exercise 5.1.5). On the other hand any element of O also satisfies
the above. Hence A ∈ O .

5.1.5 Exercise. Let (λ1,λ2, . . . ,λd) be a marking of a matrix A ∈ g and set

n0 = n, nk = rank
k∏

j=1

(A − λ j In) (k = 1, 2, . . . , d).

Fix an eigenvalue λ of A, and let W ⊂ C
n be the generalized λ-eigenspace of A.

Take a Jordan normal form N of the nilpotent endomorphism A|W − λ IdW . Write
{ k | λk = λ } = {k1 < · · · < kl}. Then show that N has no Jordan block of size > l,
and for j = 1, 2, . . . , l, the number of Jordan blocks in N of size � j is equal to
nk j −1 − nk j .

5.1.6 Exercise. Take [�] ∈ Ms
Q,Q0\{0}(n, ζ) and let A ∈ O be the corresponding

element under the isomorphism given in Proposition 5.1.2.
(1) Show that if W ⊂ V n is a �-invariant Q0-graded subspace then W0 ⊂ C

n

is A-invariant, and that W = {0} (resp. W = V n) if and only if W0 = {0} (resp.
W0 = C

n).
(2) Show that if V ⊂ C

n is A-invariant, then the Q0-graded subspace

W =
⊕

k∈Q0

Wk, Wk :=
{

V (k = 0),

�k,0(V ) (k �= 0)

is �-invariant, and W = {0} (resp. W = V n) if and only if V = {0} (resp. V = C
n).

5.2 Residue Manifolds and Star-Shaped Quiver Varieties

Let O0, O1, . . . , Om ⊂ g be G-coadjoint orbits and consider the associated residue
manifold. For each i = 0, 1, . . . , m, take amarking (ξi

1, . . . , ξ
i
di
) of Oi . Let Q(i), n(i),

ζ(i) be as in Proposition 5.1.2 for Oi and write Q(i)
0 = { [i, 0], [i, 1], . . . , [i, di − 1] },

so the map

Ms
Q(i),Q(i)

0 \{[i,0]}(n
(i), ζ(i)) → Oi ; [�] �→ μ[i,0](�) + ξi

0 In

induces an isomorphismMs
Q(i),Q(i)

0 \{[i,0]}(n
(i), ζ(i)) 
 Oi . Recall that the residueman-

ifold is the Hamiltonian reduction of Os = (
∏m

i=0 Oi )
s by G. So let us describe the

Hamiltonian G-space O as a quiver variety using the gluing method mentioned just
after Proposition 3.2.2. Glue the open vertices [i, 0], i = 0, 1, . . . , m in the direct
sum Q̃ :=⊔m

i=0 Oi all together and denote the resulting vertex by 0. Then we obtain
the following star-shaped quiver Q =⋃0 Q(i) with closed vertices I = Q0 \ {0}.
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0

[0, 1] [0, 2] [0, d0 − 1]

[m, dm − 1][m, 2][m, 1]

[1, 1] [1, 2] [1, d1 − 1]

The obvious morphism ϕ : Q̃ → Q is a gluing, and since n(i)
[i,0] = n for all

i = 0, 1, . . . , m there exists a unique n ∈ Z
Q0
�0 such that ϕ∗

0(n) = ⊕in(i). Set ζ =
(ϕ0)∗(⊕iζ

(i)) ∈ C
I , i.e.,

ζ = (ζ[i, j]), ζ[i, j] = ξi
j − ξi

j+1.

Then Proposition 3.2.2 implies that the G-moment map

Ms
Q,I (n, ζ) → g; [�] �→ μ0(�) +

m∑

i=0

ξi
1 In (5)

induces a G-equivariant symplectomorphism fromMs
Q,I (n, ζ) to O.

5.2.1 Lemma. The above isomorphism maps Os onto Ms
Q,I (n, ζ)s,0.

Proof. Each � ∈ RepQ(n) consists of linear maps

�
(i)
j, j−1 : V n

[i, j−1] → V n
[i, j], �

(i)
j−1, j : V n

[i, j] → V n
[i, j−1]

(i = 0, 1, . . . , m, j = 1, . . . , di − 1),

where we have used the convention V n
[i,0] ≡ V n

0 (i = 0, 1, . . . , m). For [�] ∈ Ms
Q,I

(n, ζ), the corresponding point (Ai )
m
i=0 ∈∏m

i=0 Oi is given by Ai = �
(i)
0,1�

(i)
1,0 +

ξi
1 IdV n

0
. First, suppose that � is GL(n)-stable and that a subspace W0 ⊂ C

n = V n
0 is

preserved by all Ai . Then we extend it to a Q0-graded subspace W ⊂ V n by

W[i, j] = (�
(i)
j, j−1 · · · �(i)

2,1�
(i)
1,0)(W0), [i, j] ∈ I.

Then relation (4) shows that W is �-invariant, and hence it is {0} or V n since �

is stable. In particular W0 = {0} or W0 = C
n . Therefore (Ai ) is stable. Conversely,

suppose that (Ai ) is stable and that a Q0-graded subspace W ⊂ V n is �-invariant.
Then W0 ⊂ V n

0 is preserved by all Ai = �
(i)
0,1�

(i)
1,0 + ξi

1 IdV n
0
, and hence W0 = {0}
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or W0 = V n
0 since (Ai ) is stable. If W0 = {0}, the GL(nI )-stability of � implies

WI = {0}, so W = {0}. Similarly, if W0 = V n
0 , the GL(nI )-stability of � implies

WI = V n
I , so W = V n. Therefore � is GL(n)-stable. �

Note that under the isomorphism (5) the moment map O → g, (Ai ) �→∑
Ai

corresponds to the map μ0 +∑ ξi
1 In . Hence the following holds:

5.2.2 Theorem (Crawley-Boevey [8]). Define ζ ∈ C
Q0 by

ζ0 = −
m∑

i=0

ξi
1, ζ[i, j] = ξi

j − ξi
j+1.

Then Ms(O0, . . . , Om) 
 Ms
Q(n, ζ).

6 Higher Order Pole Case

In the previous section we see that any G-coadjoint orbit can be described as an open
quiver variety of type A. In fact, even in the higher order pole case, some good class
of G[[z]]-coadjoint orbits is related to quivers. Using this fact we can describe some
class of polar-parts manifolds as quiver varieties, extending Theorem 5.2.2.

6.1 Normal Forms and G[[z]]0-Coadjoint Orbits

First, we introduce a good class of G[[z]]-coadjoint orbits. Let t ⊂ g be the standard
maximal torus.

6.1.1 Definition. A(n unramified) irregular type is an element � of z−1t[z−1].
A normal form with irregular type � is an element of g[z−1] of the form

δ� + L ,

where δ = δz is the degree operator δ(Czi ) = iCzi (C ∈ g) and L is an element of g
satisfying [�(z), L] ≡ 0. L is called the matrix of exponents of formal monodromy.

An irregular type � is a diagonal matrix with entries in z−1
C[z−1]. So we can

write
�(z) =

⊕

λ∈z−1C[z−1]
λ(z) IdVλ

(6)

for some vector space decomposition C
n =⊕λ Vλ. Note that
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{ L ∈ g | [�(z), L] ≡ 0 } =
⊕

λ∈z−1C[z−1]
gl(Vλ).

6.1.2 Remark. Note that the system of linear ordinary differential equations

z
dv

dz
= (δ� + L)v

has the fundamental matrix e�zL . The classical Hukuhara–Turrittin–Levelt theory
shows that any system of linear ordinary differential equations

z
dv

dz
= A(z)v, A(z) ∈ g((z))

with formal Laurent series coefficients has a fundamental matrix of the form

g(w)e�(w)wL ,

where z = wr for some r ∈ Z>0, g(w) ∈ G((w)) and δw� + L ∈ g[w−1] is a normal
form (see e.g., [1]). In particular, one has

rg−1Ag − g−1δwg = δw� + L .

For any r ∈ Z�0 a generic element in g∗
r+1 is equivalent to some normal form

under the G[[z]]-coadjoint action.
6.1.3 Proposition. Let A =∑r

j=0 A j z− j ∈ g[z−1]. Assume that the top coefficient
Ar is regular semisimple. Then the G[[z]]-coadjoint orbit of A contains a normal
form.

This is a corollary of the following “block-diagonalization” theorem:

6.1.4 Theorem. Let A =∑r
j=−∞ A j z− j ∈ g((z)), r > 0 with Ar semisimple and

put h = Ker adAr . Then there exists g(z) ∈ G[[z]] with g(0) = 1 such that g[A] :=
gAg−1 + (δg)g−1 ∈ h((z)).

Note that the centralizer Ker adT of any semisimple element T ∈ g is the direct
sum

⊕
gl(Wi ), where Wi are the eigenspaces of T . If T is regular semisimple then

the centralizer is a maximal torus, so Proposition 6.1.3 follows from Theorem 6.1.4.

Proof. Observe first that for any X1 ∈ g the gauge transform

A(1) =
r∑

j=−∞
A(1)

j z− j := eX1z[A]

satisfies
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A(1)
r = Ar , A(1)

r−1 = [X1, Ar ] + Ar−1.

Since Ar is semisimple, the Lie algebra g has the decomposition

g = h ⊕ Im adAr .

Hence there exists a unique X1 ∈ Im adAr such that A(1)
r−1 ∈ h. Next, for X2 ∈ g the

gauge transform

A(2) =
r∑

j=−∞
A(2)

j z− j := eX2z2 [A(1)]

satisfies

A(2)
r = A(1)

r = Ar , A(2)
r−1 = A(1)

r−1 ∈ h, A(2)
r−2 = [X2, Ar ] + A(1)

r−2.

Hence there exists a unique X2 ∈ Im adAr such that A(2)
r−2 ∈ h. Iterating this argument,

we can find Xk ∈ Im adAr (k = 1, 2, . . . ) such that if we set

A(0) = A, A(k) =
r∑

j=−∞
A(k)

j z− j = eXk zk [A(k−1)] (k > 0)

inductively, then
A(k)

r− j ∈ h ( j = 0, 1, . . . , k).

We leave the rest of the proof as an exercise, see below. �

6.1.5 Exercise. Complete the above proof by showing that

g(z) := lim
k→∞ eXk zk · · · eX2z2eX1z ∈ G[[z]]

is well-defined and satisfies

g(0) = 1, g[A] =
∞∑

j=0

A( j)
r− j z

j−r ∈ h((z)).

To examine the structure of G[[z]]-coadjoint orbits containing normal forms, we
introduce the following subgroup:

G[[z]]0 := { g(z) ∈ G[[z]] | g(0) = 1 }.

Heuristically the Lie algebra of G[[z]]0 is zg[[z]] ⊂ g[[z]]. We have a semi-direct prod-
uct decomposition G[[z]] = G � G[[z]]0, which induces a direct sum decomposition
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g[[z]] = g ⊕ zg[[z]]

(as vector spaces), and accordingly,

g[z−1] = g ⊕ z−1g[z−1].

Note that the first projection g[z−1] → g coincides with the map π0. Let πirr : g[z−1]
→ z−1g[z−1] be the second projection. The adjoint action of G[[z]]0 is just the re-
striction of that of G[[z]], and the induced “coadjoint action” on z−1g[z−1] is given
by

Ad�

b(B) := πirr(Ad
∗
b(B)) (b ∈ G[[z]]0, B ∈ z−1g[z−1]),

where Ad∗
b on the right hand side is the G[[z]]-coadjoint action by b. Note that if

deg1/z(B) = 1 then Ad�

b(B) = B for all b ∈ G[[z]]0.
Suppose that a normal form δ� + L ∈ g[z−1] is given. Then consider first the

G[[z]]0-coadjoint orbit OB through δ�. If deg1/z(�) = r , then OB is contained in
the finite-dimensional vector space

b∗
r+1 := { B ∈ g∗

r+1 | π0(B) = 0
}

dual to the Lie algebra br+1 := { Y ∈ gr+1 | Y (0) = 0 }. The action of G[[z]]0 on b∗
r+1

reduces to the coadjoint action of the algebraic group

Br+1 := { b ∈ Gr+1 | b(0) = 1 }

as in the case of G[[z]]-coadjoint orbits. In particular it is a (finite-dimensional)
complex symplectic manifold. In fact, using the following proposition one can check
that it is affine:

6.1.6 Proposition. (1) If an element B of OB lies in z−1t′[z−1] for some maximal
torus t′, then B = δ�.

(2) Write � =∑r
j=1 � j z− j . Then the stabilizer (Br+1)δ� of δ� coincides with

the subset
⎧
⎨

⎩

r∑

j=0

b j z
j ∈ Br+1 | b j ∈

⋂

i> j

Ker ad�i ( j = 1, 2, . . . , r − 1)

⎫
⎬

⎭
.

Proof. Suppose that B = Ad�

b(δ�) ∈ OB lies in z−1t′[z−1].Write B =∑r
j=1 B j z− j ,

b =∑r
j=0 b j z j . Then

k∑

j=0

Br−k+ j b j =
k∑

j=0

(k − j − r)b j�r−k+ j (k = 0, . . . , r − 1).
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Looking at the equality for k = 0, we obtain Br = −r�r (because b0 = 1). Next
look at the equality for k = 1:

Br−1 + Br b1 = (1 − r)�r−1 − rb1�r ,

or equivalently

Br−1 − (1 − r)�r−1 = Br b1 − rb1�r = [−r�r , b1].

The left hand side lies in Ker ad�r while the right hand side lies in Im ad�r . Since
�r is semisimple, we have

g = Ker ad�r ⊕ Im ad�r .

Hence Br−1 = (1 − r)�r−1 and [�r , b1] = 0. Further looking at the equality for
k = 2 and using the decomposition

g = (Ker ad�r ∩ Ker ad�r−1) ⊕ Im
(
ad�r−1 |Ker ad�r

)⊕ Im ad�r ,

we obtain Br−2 = (2 − r)�r−1 and [�r−1, b1] = [�r , b2] = 0. Iterating this argu-
ment yields B = δ� and b j ∈⋂i> j Ker ad�i , j = 1, . . . , r − 1. �

6.1.7 Examples. If deg1/z(�) = 2, for b = 1 + b1z + b2z2 we have

Ad�

b(δ�) = −2�2z−2 − (�1 + 2[b1,�2])z−1.

Hence

OB = {−2�2z−2 − (�1 + 2[X,�2])z−1 | X ∈ g
} 
 Im ad�2 .

Define
H = { h ∈ G | h�h−1 = � } ⊂ G

and let h be the Lie algebra of H . Using expression (6), we have

H =
∏

λ∈z−1C[z−1]
GL(Vλ), h =

⊕

λ∈z−1C[z−1]
gl(Vλ).

In particular we may identify h∗ with h using the restriction of the pairing on g.
Let H act on OB by h : B �→ h Bh−1; it is well-defined because if h ∈ H and
B = Ad�

b(δ�) ∈ OB (where b ∈ G[[z]]0) then hbh−1 ∈ G[[z]]0 and

h Bh−1 = h Ad�

b(δ�)h−1 = Ad�

hbh−1(hδ�h−1) = Ad�

hbh−1(δ�) ∈ OB .
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Note that L ∈ h by the definition of normal form. The following fact due toBoalch [2]
relates the G[[z]]-coadjoint orbit of δ� + L to OB :

6.1.8 Proposition. (1) The H-action on OB is Hamiltonian with a moment map
μH : OB → h satisfying μH (δ�) = 0.

(2) Endow T ∗G with a Hamiltonian H × G-structure by restricting the action of
G × G to the subgroup H × G. Then the map

ϕ : T ∗G × OB → g[z−1]; (u, R, B) �→ u−1Bu − R

induces an isomorphism of Hamiltonian G-spaces from the Hamiltonian reduction

(T ∗G × OB)//−L H

to the G[[z]]-coadjoint orbit O of δ� + L.

Proof. Let deg1/z(�) = r . By Example 2.2.7, the Br+1-coadjoint orbit OB is isomor-
phic to theHamiltonian reduction T ∗ Br+1//−δ� Br+1 by the left translation at the level
−δ�. Furthermore, one can observe that T ∗ Br+1 is isomorphic to the Hamiltonian
reduction T ∗Gr+1//G by the right translation. Thus we obtain an isomorphism

χ : T ∗Gr+1//(0,−δ�)(G × Br+1)

−→ OB; [g, A] �→ −g(0)A g(0)−1

of symplecticmanifolds. Let H act onT ∗Gr+1 by the left translation.Then it descends
to an action on T ∗Gr+1//(0,−δ�)(G × Br+1) because H normalizes (Br+1)δ�, and the
above isomorphism is equivariant. Since the H -action on T ∗Gr+1 is Hamiltonian the
induced action on the Hamiltonian reduction is also Hamiltonian; a moment map is
given by

T ∗Gr+1//(0,−δ�)(G × Br+1) → h; [g, A] �→ (Ad∗
g A)|h,

where ( · )|h : g → h is the transpose of the inclusion h ↪→ g (with respect to the
pairings). Therefore assertion (1) follows.

Let Z ⊂ T ∗Gr+1 be the level set of the moment map for the G × Br+1-action:

Z = { (g, A) ∈ T ∗Gr+1 | πirr(Ad
∗
g A) = −δ�, π0(A) = 0

}
.

Put H̃ = H(Br+1)δ� ⊂ Gr+1, and define an action of G × H̃ on T ∗G × Z by

(p, h) : (u, R, g, A) �→ (h(0)u, R, hg p−1, p Ap−1).

Note that the subgroup G × (Br+1)δ� trivially acts on the first factor T ∗G and the
orbit space (T ∗G × Z)/(G × (Br+1)δ�) is isomorphic to T ∗G × OB via χ. Also the
G × H̃ -invariant map

ϕ̃ : T ∗G × Z → g∗
r+1; (u, R, g, A) �→ −u−1g(0)A g(0)−1u − R
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descends to ϕ, and the map

ν : T ∗G × Z → h; (u, R, g, A) �→ π0(Ad
∗
g A)|h + (u Ru−1)|h

descends to the moment map of T ∗G × OB for the H -action.

6.1.9 Claim. Any non-empty fiber of ϕ̃ is a single G × H̃ -orbit and ϕ̃ maps the
level set ν−1(−L) onto O .

Note that the orbit space ν−1(−L)/(G × HL(Br+1)δ�) is biholomorphic to the
Hamiltonian reduction (T ∗G × OB)//−L H . From the claim we thus obtain a biholo-
morphism (T ∗G × OB)//−L H


−→ O . By a direct calculation one can check that it
intertwines the Hamiltonian G-structures. We leave it as an exercise.

We show the claim. Suppose that (u, R, g, A), (ũ, R̃, g̃, Ã) ∈ T ∗G × Z are con-
tained in a common fiber of ϕ̃. Define

B = −g(0)A g(0)−1, B̃ = −g̃(0) Ã g̃(0)−1 ∈ OB .

Then we have R = R̃ and u−1Bu = ũ−1 B̃ũ. So h0 := ũu−1 ∈ G satisfies h0Bh−1
0 =

B̃. Since G normalizes Br+1 we have h0δ�h−1
0 ∈ OB , which together with

Proposition 6.1.6, (1) implies h0 ∈ H . Put p = g̃(0)−1h0 g(0) ∈ G. Then

p Ap−1 = g̃(0)−1h0Bh−1
0 g̃(0)−1 = Ã,

and hence

(p, h0) · (u, R, g, A) = (ũ, R, h0g p−1, Ã) = (ũ, R, bg̃, Ã),

where
b := h0g p−1g̃−1 = h0(g g(0)−1)h−1

0 (g̃ g̃(0)−1)−1 ∈ Br+1.

We have

Ad�

b(δ�) = Ad�

h0(g g(0)−1)h−1
0

(B̃) = Ad�

h0(g g(0)−1)
(B) = Ad�

h0
(δ�) = δ�,

i.e., b ∈ (Br+1)δ�. Hence (u, R, g, A), (ũ, R̃, g̃, Ã) are contained in a common orbit.
Finally, for any g ∈ Gr+1 the element

(g(0)−1,−π0(Ad
∗
g(δ� + L)), g−1,−πirr(Ad

∗
gδ�)) ∈ T ∗G × Z

lies in ν−1(−L) and is mapped to Ad∗
g(δ� + L) by ϕ̃. �
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6.2 Triangular Decomposition of G[[z]]0-Coadjoint Orbits

We still fix a normal form δ� + L ∈ g[z−1] and retain the notation used in the
previous section. We will show that the G[[z]]0-coadjoint orbit OB is equivariantly
symplectomorphic to the representation space RepQ(n) for some Q and n.

Write � = diag(λ1,λ2, . . . ,λn), λi ∈ z−1
C[z−1]. Without loss of generality we

may assume that � satisfies the following condition:

i < j < k =⇒ deg1/z(λi − λ j ) � deg1/z(λi − λk), (7)

where we use the convention deg1/z(0) = −∞. If one writes

� =
r∑

j=1

� j z
− j , � j ∈ t,

then the condition says that for any k ∈ {1, 2, . . . , r}, one has

r∑

j=k

� j z
− j =

⎛

⎜
⎜
⎜
⎝

σ1(z) Im1 0
σ2(z) Im2

. . .

0 σl(z) Iml

⎞

⎟
⎟
⎟
⎠

for some σ1,σ2, . . . ,σl ∈ z−k
C[z−1] and m1, m2, . . . , ml ∈ Z>0 with

∑
mi = n.

6.2.1 Exercise. Show that for any irregular type� there exists a permutation matrix
P such that P�P−1 satisfies the above condition.

Let G ′ be the centralizer of �r and g′ its Lie algebra. By condition (7), we may
write

G ′ = { g = diag(g1, g2, . . . , gl) | gi ∈ GL(ni , C) } ⊂ G,

where n1, n2, . . . , nl are the multiplicities of the eigenvalues of �r . Using the block
triangular decomposition

g = g′ ⊕ u+ ⊕ u−,

define

U± =
{

r−1∑

i=1

Xi z
i | Xi ∈ u± (1 � i < r)

}

⊂ br , U± = exp(U±),

b′
r =

{
r−1∑

i=1

Xi z
i | Xi ∈ g′ (1 � i < r)

}

⊂ br , B ′
r = exp(b′

r ).
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Observe that if we write Br = Br (n), br = br (n) to emphasize the size of matri-
ces, then we have B ′

r =∏l
i=1 Br (ni ), b′

r =⊕l
i=1 br (ni ) according to the eigenspace

decomposition for �r .

6.2.2 Lemma. Any b ∈ Br is uniquely decomposed as b = u−u+b′, where u± ∈ U±
and b′ ∈ B ′

r .

Proof. Write b = eX , b′ = eX ′
, u± = eY± and

X =
r−1∑

i=1

Xi z
i , X ′ =

r−1∑

i=1

X ′
i z

i , Y± =
r−1∑

i=1

Y ±
i zi .

Then the equality b = u−u+b′ may be written as

Xi = Y −
i + Y +

i + X ′
i + Ri (i = 1, 2, . . . , r − 1),

where Ri ∈ g is some noncommutative polynomial expression of X j , X ′
j , Y ±

j , j < i .
Thanks to the triangular decomposition, the above equalities uniquely determine
Y ±

i , X ′
i inductively. �

Note that any element in Br+1 of the form eXzr
, X ∈ g acts trivially on OB . Hence

the coadjoint action on OB reduces to an action of Br .

6.2.3 Proposition. For each B ∈ OB take any b ∈ Br so that Ad�

b(δ�) = B and
decompose b = u−u+b′ using the previous lemma. Put �′ = � − �r z−r and let O ′

B
be the B ′

r -coadjoint orbit of δ�′. Define

B ′ = Ad�

b′(δ�′) ∈ (b′
r )

∗, Y = Ad�

u−1−
(B) − Ad�

b′(δ�) ∈ b∗
r .

Then Y ∈ U∗− ⊂ b∗
r and the following is a well-defined symplectomorphism:

OB → T ∗U− × O ′
B; B �→ (u−, Y, B ′).

Furthermore, if we let H act on U+, O ′
B by conjugation, then the above map is

H-equivariant.

Proof. Proposition 6.1.6 implies (Br )δ� ⊂ B ′
r . Hence u±, Ad�

b′(δ�) and B ′ =
Ad�

b′(δ�) + r�r z−r are all independent of the choice of b. Put

B = B ′ − r�r z−r = Ad�

b′(δ�), Y = Y + B = Ad�

u−1−
(B) = Ad�

u+(B).

Since B has coefficients in g′ and u+ − 1 has coefficients in u+, we see that Y =
Ad�

u+(B) − B has coefficients in u+, i.e., Y ∈ U∗−. We will construct an inverse

of the map B �→ (u−, Y, B ′). Given (u−, Y, B ′) ∈ T ∗U− × O ′
B , put B, Y as above

and we claim that there exists a unique u+ ∈ U+ such that Y = Ad�
u+(δ�). Then
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B := Ad�
u−(Y ) is contained in OB and the map (u−, Y, B ′) �→ B gives an inverse.

To find such u+, we have to solve the system of equations

k∑

j=0

Y r−k+ j u
+
j =

k∑

j=0

u+
j Br−k+ j (k = 0, 1, . . . , r − 1),

where we write u+ =∑ u+
j z j , Y =∑ Y j z− j , e.t.c. The equation for k = 1 reads

Y r−1 − Br−1 = u+
1 Br − Y r u+

1 = [u+
1 ,−r�r ].

Since the left hand side is equal to Yr−1 and hence lies in u+, there exists a unique
u+
1 ∈ u+ satisfying the equality. Next the equation for k = 2 reads

Y r−2 − Br−2 + Y r−1u+
1 − u+

1 Br−1 = [u+
2 ,−r�r ].

Since the left hand side is contained in u+, there exists a unique u+
2 ∈ u+ satisfying

the equality. Iterating this argument, we see the unique existence of u+ ∈ U+ with
Y = Ad�

u+(δ�).
Finallywe show that themap B �→ (u−, Y, B ′) preserves the symplectic structure.

The pull-back of the symplectic form on OB via the map

Br → OB; b �→ B = Ad�

b(δ�)

is described as

ω = (B, db b−1 ∧ db b−1) = (δ�, b−1db ∧ b−1db),

where ( · , · ) is the dual pairing between b∗
r+1 and br+1 (so in the above we take

any lift of b−1db ∈ br to br+1). In terms of the decomposition b = u−v, u− ∈ U−,
v ∈ U+ B ′

r , we can express the Maurer–Cartan form b−1db as

b−1db = v−1(u−1
− du−)v + v−1dv,

and accordingly,

ω = (δ�, v−1(u−1
− du−) ∧ (u−1

− du−)v) + (δ�, v−1(u−1
− du−) ∧ dv)

+ (δ�, v−1dv ∧ v−1(u−1
− du−)v] + (δ�, v−1dv ∧ v−1dv)

= (Y , u−1
− du− ∧ u−1

− du−) + (Y , u−1
− du− ∧ dv v−1)

+ (Y , dv ∧ v−1u−1
− du−) + (δ�, v−1dv ∧ v−1dv).

On the other hand, the symplectic form −d resz=0 tr(Y u−1
− du−) on T ∗U− is equal to

−d(Y , u−1
− du−) because B u−1

− du− is strictly block upper-triangular and is traceless.
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Since Y = Ad�
v(δ�) under the pull-back via the map b = u−v �→ B �→ (u−, Y, B ′),

we have

d(Y , u−1
− du−) = (dY ∧ u−1

− du−) − (Y , u−1
− du− ∧ u−1

− du−)

= −(Y , u−1
− du− ∧ dv v−1) − (Y , dv v−1 ∧ u−1

− du−)

− (Y , u−1
− du− ∧ u−1

− du−).

Hence
ω = −d(Y, u−1

− du−) + (δ�, v−1dv ∧ v−1dv).

Also, in terms of the decomposition v = u+b′, u+ ∈ U+, b′ ∈ B ′
r we have

v−1dv = (b′)−1(u−1
+ du+)b′ + (b′)−1db′.

Since (b′)−1(u−1
+ du+)b′ is strictly block upper-triangular, we obtain

(δ�, v−1dv ∧ v−1dv) = (δ�, (b′)−1db′ ∧ (b′)−1db′),

which is the symplectic form on O ′
B because (b′)−1db′ commutes with�r and hence

tr[�r (b′)−1db′ ∧ (b′)−1db′] = 0.

We are done. �

Note that we have a decomposition O ′
B =∏l

i=1 O(i)
B , where O(i)

B is the Br (ni )-
coadjoint orbit through the i-th block of δ�′. Since δ�′ has degree less than r , we
can recursively apply the above proposition.

Let us consider the Hamiltonian H -structure on T ∗U−. Recalling expression (6),
set

� = {λ ∈ z−1
C[z−1] | Vλ �= {0} } .

We have the surjective map {1, 2, . . . , n} → �, i �→ λi taking the diagonal entries
of�. Condition (7) implies that for each λ ∈ � the subspace Vλ ⊂ C

n is canonically
identified with C

nλ , where nλ := dim Vλ, and that � has a total ordering such that
λi � λ j (i < j). Under this identification we have H =∏λ∈� GL(nλ, C).

6.2.4 Proposition. Define a quiver Q with vertices � by drawing (r − 1) arrows
from λ to λ′ for each λ,λ′ ∈ � with λ < λ′, deg1/z(λ − λ′) = r . Put n� = (nλ)λ∈� ,
so GL(n) = H. Then there exists an isomorphism of Hamiltonian H-spaces

T ∗U−

−→ RepQ(n).

Proof. The biholomorphism U−

−→ U−, u− �→ u− − 1 induces an isomorphism

T ∗U−

−→ T ∗U− 
 U− × U∗− of Hamiltonian H -spaces. Taking the blocks of
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coefficients yields a linear isomorphism T ∗U−

−→ RepQ(n) of Hamiltonian H -

spaces. �

The map from � onto the set of eigenvalues of �r taking the coefficient in de-
gree r induces a decomposition � =⊔l

i=1 �i (into fibers of the map). If we apply
Propositions 6.2.3 and 6.2.4 to each O(i)

B , then we obtain an isomorphism

O(i)
B 
 Rep

Q
(i) (n(i)) × (O(i)

B )′,

where n(i) = n�i and Q(i) is the quiver with vertices �i obtained by drawing (r −
2) arrows from λ to λ′ for each λ,λ′ ∈ �i with λ < λ′, deg1/z(λ − λ′) = r − 1.
Iterating this argument, we obtain the following theorem conjectured by Boalch [3]:

6.2.5 Theorem ([13]). Define a quiver Q(�) with vertices � by

#
{

a ∈ Q(�)1 | a : λ → λ′ } =
{
deg1/z(λ − λ′) − 1 (λ < λ′),
0 (λ � λ′).

Then the iterative application of Propositions 6.2.3 and 6.2.4 yields an isomorphism
of Hamiltonian H -spaces

OB

−→ RepQ(�)(n).

6.2.6 Example. (1) If deg1/z(�) = 1, then Q(�) has no arrow and the vertices are
parameterized by the eigenvalues of �1.

(2) If deg1/z(�) = 2, then any two vertices in Q(�) are connected by at most one
arrow, and the vertices are parameterized by the joint eigenvalues of (�1,�2). Two
joint eigenvalues (λ1,λ2), (λ′

1,λ
′
2) are connected by an arrow if and only if λ2 �= λ′

2.
For instance, if

� = diag(0,λ1z−1 + λ2z−2,λ′
1z−1 + λ′

2z−2)

with λ′
2(λ2 − λ′

2) �= 0, then the quiver Q(�) is one of the following three.

(0, 0)

(λ1, λ2) (λ1, λ2)

(0, 0) (λ1, λ2) (0, 0) (λ1, λ2) (λ1, λ2)

The first case occurs when λ2 = λ1 = 0, the second case occurs when λ2 = 0 and
λ1 �= 0, and the third case occurs when λ2 �= 0. See [3, 5] for more examples.

Using the isomorphism OB

−→ RepQ(�)(n) the subspaces of C

n preserved by all
the coefficients of given B ∈ OB are characterized as follows:
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6.2.7 Proposition. Take B =∑r
i=1 Bi z−i ∈ OB and let � ∈ RepQ(�)(n) be the cor-

responding element under the isomorphism given in Theorem 6.2.5. Then a subspace
W ⊂ C

n is preserved by all Bi if and only if it is homogeneous with respect to the
decomposition C

n =⊕p∈Q(�)0
V n

p and �-invariant as a Q(�)0-graded subspace
of V n.

This follows from the following lemma:

6.2.8 Lemma. Take B =∑r
i=1 Bi z−i ∈ OB and let (u−, Y, B ′) ∈ T ∗U− × O ′

B be
the corresponding element under the isomorphism given in Proposition 6.2.3. Then
a subspace W ⊂ C

n is preserved by all Bi if and only if it is �r -invariant and
preserved by all the coefficients of u−, Y , B ′.

Proof. We follow the notation used in the proof of Proposition 6.2.3. Suppose that
a subspace W ⊂ C

n is preserved by all Bi . Since Br = −r�r , it is �r -invariant. To
show that it is preserved by all the coefficients of u−, Y , B ′, look at the equality
B = Ad�

u−(Y ):

k∑

j=0

Br−k+ j u
−
j =

k∑

j=0

u−
j Y r−k+ j (k = 0, 1, . . . , r − 1).

The equality for k = 0 implies that W is preserved by Y r = Br . The equality for
k = 1 reads

Br−1 = Y r−1 + u−
1 Y r − Br u−

1 = Yr−1 + Br−1 + [u−
1 , Br ].

Since W is �r -invariant and the terms on the right hand side are contained in u+, g′,
u−, respectively, we see that W is preserved by Yr−1, Br−1 and u−

1 . Next the equality
for k = 2 reads

Br−2 − u−
1 Y r−1 + Br−1u−

1 = Yr−2 + Br−2 + [u−
2 , Br ].

Since W is preserved by the left hand side and the right hand side respects the
decomposition g = u+ ⊕ g′ ⊕ u−, we see that W is preserved by Yr−2, Br−2 and u−

2 .
Iterating this argument we finally see that W satisfies the desired condition. �

6.3 Polar-Parts Manifolds and Quiver Varieties

Let O0 ≡ O be the G[[z]]-coadjoint orbit through a normal form δ� + L and
O1, O2, . . . , Om be G-coadjoint orbits. We describe the polar-parts manifold
Ms(O0, . . . , Om) for such O0, . . . , Om as a quiver variety.

Put O rs =∏m
i=1 Oi . Then Proposition 6.1.8 enables us to describe the product

O = O × O rs as
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O 
 ((T ∗G × OB)//−L H
)× O rs 
 (T ∗G × OB × O rs) //−L H,

where nirr := (nλ)λ∈� . Using the shifting trick we thus obtain

O 
 (T ∗G × OB × O rs × O fm) //H,

where O fm is the H -coadjoint orbit of L . The isomorphism is defined by

(
T ∗G × OB × O rs × O fm

)
//H → O; [u, R, B, Ars, S] �→ (u−1Bu − R, Ars),

and the H × G-action on T ∗G × OB × O rs × O fm is given by

(h, g) · (u, R, B, Ars, S) = (hug−1,Ad∗
g R, h Bh−1,Ad∗

h S).

Now Exercises 2.2.9 and 2.2.10 imply that there are homeomorphisms

O// G 
 (T ∗G × OB × O rs × O fm
)
// H × G


 (OB × O rs × O fm
)
//H,

where on the most right hand side H acts on O rs as the restriction of the G-action to
H . The map is explicitly given by

(
OB × O rs × O fm

)
//H → O// G; [B, (Ai )

m
i=1, S] �→ [B −

m∑

i=1

Ai , (Ai )
m
i=1].

So the following is clear:

6.3.1 Proposition. A point [B, (Ai )
m
i=1, S] ∈ (OB × Ors × O fm

)
//H corresponds

to a point of Os//G if and only if it satisfies the following condition: there is no
non-zero proper subspace V of C

n preserved by S, Ai , i = 1, . . . , m and all the
coefficients of B.

Let
(
OB × O rs × O fm

)s
be the subset of all elements satisfying the above con-

dition. Then the H -action on
(
OB × O rs × O fm

)s
reduces to the action of H/C

×
which is free and proper, and the above map induces a symplectomorphism

Ms(O0, O1, . . . , Om) 
 (OB × O rs × O fm
)s

//H.

Let us describe theHamiltonian H -space OB × O rs × O fm as an open quiver variety.
First, for each i = 1, 2, . . . , m take amarking (ξi

1, . . . , ξ
i
di
) of Oi and let Q(i), n(i),ζ(i)

be as inProposition5.1.2 for Oi . Then the arguments inSect. 5, II show that theHamil-
tonian G-space O rs is isomorphic to the open quiver varietyMs

Qrs,Qrs
0 \{0}(n

rs, ζrs) for

the star-shaped quiver Qrs with m legs obtained from Q(i), i = 1, 2, . . . , m by glu-
ing, where the moment map of Ms

Qrs,Qrs
0 \{0}(n

rs, ζrs) is shifted by −∑m
i=1 ξi

1 In . To
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restrict the action to H , let ϕ : Q̃rs → Qrs be the blow-up of Qrs at the central vertex
0 by Q(�)0 = �. Then Proposition 3.2.3 implies that

Ms
Qrs,Qrs

0 \{0}(n
rs, ζrs) 
 Ms

Q̃rs,Q̃rs
0 \�(̃nrs, ζ̃

rs
)

as Hamiltonian H -spaces, where ζ̃
rs := ϕ∗

0(ζ) and ñrs = (̃nrs
p ) is defined by

ñrs
λ = nλ (λ ∈ �), ñrs

p = nrs
p (p ∈ Q′

0 \ � = Qrs
0 \ {0}).

6.3.2 Examples. The following quiver is an example of Q̃rs with � = {λ1,λ2,λ3}
and m = 2.

λ3
[2, 2]

[1, 3][1, 2][1, 1]

[2, 1]

λ2

λ1

Next, since H =∏λ∈� GL(nλ, C) we have O fm =∏λ∈� Oλ, where Oλ is the
GL(nλ, C)-coadjoint orbit through the gl(nλ, C)-component of L . For each λ ∈ �,
take a marking (ξλ

1 , . . . , ξλ
dλ

) of Oλ and let Q(λ), n(λ), ζ(λ) be as in Proposition 5.1.2
for Oλ. We embed � into the vertex set of the direct sum Qfm :=⊔λ∈� Q(λ) by
sending each λ to the unique open vertex of Q(λ). Then

O fm 
 Ms
Qfm,Qfm

0 \�(nfm, ζfm),

where nfm := ⊕λn(λ), ζfm := ⊕λζ
(λ), and the moment map of the Hamiltonian H -

space Ms
Qfm,Qfm

0 \�(nfm, ζfm) is shifted by −(ξλ
1 )λ∈� ∈ C

� . By Theorem 6.2.5, we

have OB 
 RepQ(�)(n
irr) as Hamiltonian H -spaces, where nirr = (nλ)λ∈� . Thus we

obtain

OB × O rs × O fm


 RepQ(�)(n
irr) × Ms

Qfm,Qfm
0 \�(nfm, ζfm) × Ms

Q̃rs,Q̃rs
0 \�(̃nrs, ζ̃

rs
).

Finally, put
Q = (Q(�) ∪� Qfm) ∪� Q̃rs.

6.3.3 Examples. The following quiver is an example of Q(�) ∪� Qfm with Q(�)

a triangle.
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If Q̃rs is as in the previous example, then
(
Q(�) ∪� Qfm

) ∪� Q̃rs becomes the
following quiver.

Since nfm
� = ñrs

� = nirr , there exists a unique n ∈ Z
Q0 such that

n� = nirr, nQfm
0

= nfm, nQ̃rs
0

= ñrs.

Therefore Proposition 3.2.2 implies that

OB × O rs × O fm 
 Ms
Q,Q0\�(n, ζfm ⊕ ζ̃

rs
),

where the moment map of the Hamiltonian H -space Ms
Q,Q0\�(n, ζfm ⊕ ζ̃

rs
) is

shifted by

−ζ irr = −(ζλ) ∈ C
�, ζλ := −ξλ

1 −
m∑

i=1

ξi
1.

6.3.4 Lemma. The above isomorphism maps
(
OB × O rs × O fm

)s
onto theGL(n�)-

stable locus Ms
Q,Q0\�(n, ζfm ⊕ ζ̃

rs
)s,� .

Proof. Take (B, (Ai ), S) ∈ OB × O rs × O fm and let [�] ∈ Ms
Q,Q0\�(n, ζfm ⊕ ζ̃

rs
)

be the corresponding point. First suppose that (B, (Ai ), S) lies in O rs × O fm and
let W ⊂ V n be a �-invariant Q0-graded subspace. Then Proposition 6.2.7 implies
that W� ⊂ C

n is preserved by all the coefficients of B. Also, by Exercise 5.1.6 it is
preserved by S and all Ai . Hence W� = {0} or W� = C

n , which implies W = {0} or
W = V n by Exercise 5.1.6 again. Next suppose that [�] lies in Ms

Q,Q0\�(n, ζfm ⊕
ζ̃
rs
)s,� and let V ⊂ C

n be a subspace preserved by S, all Ai and all the coefficients
of B. Then Proposition 6.2.7 shows that V is homogeneous with respect to the
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decomposition C
n =⊕λ∈� C

nλ and preserved by the RepQ(�)(n
irr)-component of

� as a �-graded subspace of V n
� . Furthermore, since V is preserved by S and all Ai ,

Exercise 5.1.6 implies that V extends to a�-invariant Q0-graded subspace W ⊂ V n.
By the stability we have W = {0} or W = V n, in particular V = {0} or V = C

n . �

Thus we obtain the following, which is the main theorem in this lecture:

6.3.5 Theorem ([13]). Set ζ = ζ irr ⊕ ζfm ⊕ ζ̃
rs ∈ C

Q0 . Then there exists a sym-
plectomorphism

Ms(O0, O1, . . . , Om)

−→ Ms

Q(n, ζ).

6.3.6 Remark. The theorem in the case of deg1/z(O0) = 1 was first pointed out by
Boalch in [4, Exercise 3]. He then proved the case of deg1/z(O0) � 2 in [3, 5].

6.4 Further Directions

The problem asking when the polar-parts manifold Ms(O0, O1, . . . , Om) is non-
empty is called the (generalized) additive Deligne–Simpson problem, originally pro-
posed by Kostov for residue manifolds (see [16]). Theorem 6.3.5 gives an answer to
this problemwhen O0 has a normal form and deg1/z(Oi ) = 0 for i � 1, sincewe have
a necessary and sufficient condition for the emptiness of quiver variety Ms

Q(n, ζ)

(obtained by Crawley-Boevey; see [7]).
To solve the generalized additive Deligne–Simpson problem when every Oi has a

normal form (without any assumption for pole order), Hiroe described the polar-parts
manifold as an analogue of quiver variety. The idea is as follows (for further details,
see [12]).

Recall that if O0 has a normal form we have an isomorphism

O 
 (T ∗G × OB × O rs × O fm
)
//H,

which holds without any assumption for Oi , i � 1. Now assume further that Oi has
a normal form δ�i + Li for i � 1. Then Proposition 6.1.8 and the shifting trick
implies

Oi 
 (T ∗G × O(i)
B × O fm

i )//Hi (i = 1, 2, . . . , m),

where the definitions of O(i)
B , O fm

i , Hi are similar to those of O(0)
B := OB , O fm

0 :=
O fm, H0 := H . Thus we obtain

O 

{

(T ∗G)m+1 ×
m∏

i=0

O(i)
B ×

m∏

i=0

O fm
i

}

//

m∏

i=0

Hi ,

which induces a homeomorphism
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O//G 

{

(T ∗G)m ×
m∏

i=0

O(i)
B ×

m∏

i=0

O fm
i

}

//

m∏

i=0

Hi

thanks to Exercises 2.2.9 and 2.2.10. Since G = GLn(C), we have an open embed-
ding T ∗G ↪→ T ∗g of Hamiltonian G × G-spaces. Observe that T ∗g is the vector
space of representations of the double of the quiver • → • with dimension vector
(n, n). Also each O(i)

B is a vector space of representations of some double quiver and
each O fm

i is an Hi -coadjoint orbit. Therefore we can embed O//G as an open subset
into the Hamiltonian reduction

RepQ(n)//ζGL(n)

for some Q, n, ζ. Unfortunately the image ofMs(O0, O1, . . . , Om) under this em-
bedding does not coincidewith the quiver varietyMs

Q(n, ζ) in general. Nevertheless,
in [11] Hiroe successfully obtained a necessary and sufficient condition on Q, n, ζ
for the emptiness of Ms(O0, O1, . . . , Om).

On the other hand, the polar-parts manifolds lead us to a generalization of quiver
varieties.

Each finite graph with no edge-loop (an edge joining a vertex with itself) defines
a symmetric Kac–Moody Lie algebra, and vice versa. Thus to each quiver variety
Ms

Q(n, ζ) with Q having no edge-loop we can associate a symmetric Kac–Moody
Lie algebra. An important issue in geometric representation theory is to find a nice
generalization of quiver varieties related to symmetrizable (possibly non-symmetric)
Kac–Moody Lie algebras.

Motivated by this problem, the author introduced the notion of quiver variety
with multiplicities [20], which generalizes quiver variety and relates to some class
of symmetrizable Kac–Moody Lie algebras. A remarkable fact is that some polar-
partsmanifolds having several higher order polesmay be described as quiver varieties
withmultiplicities. Recently, the author’s definitionwas improved byGeiss–Leclerc–
Schröer so that all symmetrizable Kac–Moody Lie algebras appear (see [9]).
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