
Chapter 9
Geometry of �n

p -Balls: Classical Results
and Recent Developments

Joscha Prochno, Christoph Thäle, and Nicola Turchi

Abstract In this article we first review some by-now classical results about the
geometry of �p-balls B

n
p in R

n and provide modern probabilistic arguments for
them. We also present some more recent developments including a central limit
theorem and a large deviations principle for the q-norm of a random point in B

n
p.

We discuss their relation to the classical results and give hints to various extensions
that are available in the existing literature.
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9.1 Introduction

The geometry of the classical �p sequence spaces and their finite-dimensional
versions is nowadays quite well understood. It has turned out that it is often a
probabilistic point of view that shed (new) light on various geometric aspects and
characteristics of these spaces and, in particular, their unit balls. In this survey we
want to take a fresh look at some of the classical results and also on some more
recent developments. The probabilistic approach to study the geometry of �n

p-balls
will be an asymptotic one. In particular, our aim is to demonstrate the usage of
various limit theorems from probability theory, such as laws of large numbers,
central limit theorems or large deviation principles. While the law of large numbers
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and the central limit theorem are already part of the—by now—classical theory (see,
e.g., [21, 23, 24]), the latter approach via large deviation principles was introduced
only recently in the theory of asymptotic geometric analysis by Gantert et al. in [9].
Most of the results we present below are not new and we shall always give precise
references to the original papers. On the other hand, we provide detailed arguments
at those places where we present generalizations of existing results that cannot be
found somewhere else. For some of the other results the arguments are occasionally
sketched as well.

Our text is structured as follows. In Sect. 9.2 we collect some preliminary
material. In particular, we introduce our notation (Sect. 9.2.1), the class of �n

p-
balls (Sect. 9.2.2), and also rephrase some background material on Grassmannian
manifolds (Sect. 9.2.3) and large deviation theory (Sect. 9.2.4). In Sect. 9.3 we
introduce a number of probability measures that can be considered in connection
with a convex body. We do this for the case of �n

p-balls (Sect. 9.3.1), but also more
generally for symmetric convex bodies (Sect. 9.3.2). The usage of the central limit
theorem and the law of large numbers in the context of �n

p-balls is demonstrated
in Sect. 9.4. We rephrase there some more classical results of Schechtman and
Schmuckenschläger (Sect. 9.4.1) and also consider some more recent developments
(Sect. 9.4.2) including applications of the multivariate central limit theorem. We also
take there an outlook to the matrix-valued set-up. The final Sect. 9.5 is concerned
with various aspects of large deviations. We start with the classical concentration
inequalities of Schechtman and Zinn (Sect. 9.5.1) and then describe large deviation
principles for random projections of �n

p-balls (Sect. 9.5.2).

9.2 Preliminaries

In this section we shall provide the basics from both asymptotic geometric analysis
and probability theory that are used throughout this survey article. The reader may
also consult [3, 5–7, 14] for detailed expositions and additional explanations when
necessary.

9.2.1 Notation

We shall denote with N = {1, 2, . . .}, R and R
+ the set of natural, real and real non-

negative numbers, respectively. Given n ∈ N, let Rn be the n-dimensional vector
space on the real numbers, equipped with the standard inner product denoted by
〈· , ·〉. We write B(Rn) for the σ -field of all Borel subsets of Rn. Analogously, for a
subset S ⊆ R

n, we denote by B(S) := {A∩S : A ∈ B(Rn)} the corresponding trace
σ -field of B(Rn). Given a set A, we write #A for its cardinality. For a set A ⊆ R

n,
we shall write 1A : Rn → {0, 1} for the indicator function of A. Given A ∈ B(Rn),
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we write |A| for its n-dimensional Lebesgue measure and frequently refer to this as
the volume of A.

Given sets I ⊆ R
+ and A ⊆ R

n, we define the set IA as follows,

IA := {rx ∈ R
n : r ∈ I, x ∈ A}.

If I = {r}, we also write rA instead of {r}A. Note that R+A is usually called the
cone spanned by A.

We say that K ⊆ R
n is a convex body if it is a convex, compact set with non-

empty interior. We indicate with ∂K its boundary.
Fix now a probability space (�,F , P). We will always assume that our random

variables live in this probability space. Given a random variable X : � → R
n and a

probability measure Q on R
n, we write X ∼ Q to indicate that Q is the probability

distribution of X, namely, for any A ∈ B(Rn),

P(X ∈ A) =
∫
Rn

1A(x) dQ(x).

We write E and Var to denote the expectation and the variance with respect to the
probability P, respectively.

Given a sequence of random variables (Xn)n∈N and a random variable Y we write

Xn
d−−−→

n→∞ Y, Xn
P−−−→

n→∞ Y, Xn
a.s.−−−→

n→∞ Y,

to indicate that (Xn)n∈N converges to Y in distribution, probability or almost surely,
respectively, as n → ∞.

We write N ∼ N (0,�) and say that N is a centred Gaussian random vector in
R

n with covariance matrix �, i.e., its density function w.r.t. the Lebesgue measure
is given by

f (x) = 1√
(2π)n det �

exp
(
−1

2

〈
x,�−1x

〉)
, x ∈ R

n.

For α, θ > 0, we write X ∼ 
(α, ϑ) (resp. X ∼ β(α, ϑ)) and say that X has
a Gamma distribution (resp. a Beta distribution) with parameters α and ϑ if the
probability density function of X w.r.t. to the Lebesgue measure is proportional to
x �→ xα−1e−ϑx1[0,∞)(x) (resp. x �→ xα−1(1 − x)ϑ−11[0,1](x)). We also say that X

has a uniform distribution on [0, 1] if X ∼ Unif([0, 1]) := β(1, 1) or an exponential
distribution with parameter 1 if X ∼ exp(ϑ) := 
(1, ϑ).
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The following properties of the aforementioned distributions are of interest and
easy to verify by direct computation:

if X ∼ 
(α, ϑ) and Y ∼ 
(α̃, ϑ) are independent, then
X

X + Y
∼ β(α, α̃) ,

(9.1)

if X ∼ Unif([0, 1]), then Xk ∼ β(1/k, 1) , (9.2)

for any α, α̃, ϑ, k ∈ (0,∞).
Given a real sequence (an)n∈N, we write an ≡ a if an = a for every n ∈ N. If

(bn)n∈N is a positive sequence, we write an = O(bn) if there exists C ∈ (0,∞)

such that |an| ≤ Cbn for every n ∈ N, and an = o(bn) if limn→∞(an/bn) = 0.

9.2.2 The �n
p-Balls

For n ∈ N, let x = (x1, . . . , xn) ∈ R
n and define the p-norm of x via

‖x‖p :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( n∑
i=1

|xi |p
)1/p

if p ∈ [1,∞),

max
1≤i≤n

|xi | if p = ∞.

The unit ball Bn
p and sphere Sn−1

p with respect to this norm are defined as

B
n
p := {x ∈ R

n : ‖x‖p ≤ 1} and S
n−1
p := {x ∈ R

n : ‖x‖p = 1} = ∂Bn
p.

As usual, we shall write �n
p for the Banach space (Rn, ‖·‖p). The exact value of |Bn

p|
is known since Dirichlet [8] and is given by

|Bn
p| = (2
(1 + 1/p))n


(1 + n/p)
.

The interested reader may consult [19] for a modern computation. The volume-
normalized ball shall be denoted by D

n
p and is given by

D
n
p = B

n
p

|Bn
p |1/n

.

For convenience, in what follows we will use the convention that in the case p = ∞,
1/p := 0. It is worth noticing that the restriction on the domain of p is due to the
fact that an analogous definition of ‖·‖p for p < 1 does only result in a quasi-norm,
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meaning that the triangle inequality does not hold. As a consequence, Bn
p is convex

if and only if p ≥ 1. Although a priori many arguments of this survey do not rely
on ‖·‖p being a norm, we restrict our presentation to the case p ≥ 1, since it is
necessary in some of the theorems.

9.2.3 Grassmannian Manifolds

The group of (n × n)-orthogonal matrices is denoted by O(n) and we let SO(n) be
the subgroup of orthogonal n × n matrices with determinant 1. As subsets of Rn2

,
O(n) and SO(n) can be equipped with the trace σ -field of B(Rn2

). Moreover, both
compact groups O(n) and SO(n) carry a unique Haar probability measure which
we denote by η and η̃, respectively. Since O(n) consists of two copies of SO(n), the
measure η can easily be derived from η̃ and vice versa. Given k ∈ {0, 1, . . . , n}, we
use the symbol Gn

k to denote the Grassmannian of k-dimensional linear subspaces
of Rn. We supply G

n
k with the metric

d(E,F ) := max
{

sup
x∈BE

inf
y∈BF

‖x − y‖2, sup
y∈BF

inf
x∈BE

‖x − y‖2

}
, E, F ∈ G

n
k,

where BE and BF stand for the Euclidean unit balls in E and F , respectively. The
Borel σ -field on G

n
k induced by this metric is denoted by B(Gn

k) and we supply the
arising measurable space Gn

k with the unique Haar probability measure ηn
k . It can be

identified with the image measure of the Haar probability measure η̃ on SO(n) under
the mapping SO(n) → G

n
k, T �→ T E0 with E0 := span({e1, . . . , ek}). Here, we

write e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) ∈ R
n for

the standard orthonormal basis in R
n and span({e1, . . . , ek}) ∈ G

n
k , k ∈ {1, . . . , n},

for the k-dimensional linear subspace spanned by the first k vectors of this basis.

9.2.4 Large Deviation Principles

Consider a sequence (Xn)n∈N of i.i.d. integrable real random variables and let

Sn := 1

n

n∑
i=1

Xi

be the empirical average of the first n random variables of the sequence. It is well
known that the law of large numbers provides the asymptotic behaviour of Sn, as n

tends to infinity. In particular, the strong law of large numbers says that

Sn
a.s.−−−→

n→∞ E[X1].
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If X1 has also positive and finite variance, then the classical central limit theorem
states that the fluctuations of Sn around E[X1] are normal and of scale 1/

√
n. More

precisely,

√
n(Sn − E[X1]) d−−−→

n→∞ N (0, Var[X1]).

One of the important features of the central limit theorem is its universality, i.e., that
the limiting distribution is normal independently of the precise distribution of the
summands X1,X2, . . .. This allows to have a good estimate for probabilities of the
kind

P(Sn > x), x ∈ R,

when n is large, but fixed. However, such estimate can be quite imprecise if x is
much larger than E[X1]. Moreover, it does not provide any rate of convergence for
such tail probabilities as n tends to infinity for fixed x.

In typical situations, if Sn arises as a sum of n independent random variables
X1, . . . , Xn with finite exponential moments, say, one has that

P(Sn > x) ≈ e−nI(x), x > E[X1]

if n → ∞, where I is the so-called rate function. Here ≈ expresses an asymptotic
equivalence up to sub-exponential functions of n. For concreteness, let us consider
two examples. If P(X1 = 1) = P(X1 = 0) = 1/2, then

I(x) =
{

x log x + (1 − x) log(1 − x) + log 2 if x ∈ [0, 1],
+∞ otherwise,

which describes the upper large deviations. If on the other hand X1 ∼ N (0, σ 2),
then the rate function is given by

I(x) = x2

2σ 2
, x ∈ R.

Contrarily to the universality shown in the central limit theorem, these two examples
already underline that the function I and thus the decay of the tail probabilities is
much more sensitive and specific to the distribution of X1.

The study of the atypical situations (in contrast to the typical ones described in
the laws of large numbers and the central limit theorem) is called Large Deviations
Theory. The concept expressed heuristically in the examples above can be made
formal in the following way. Let X := (Xn)n∈N be a sequence of random vectors
taking values in R

d . Further, let s : N → [0,∞] be a non-negative sequence such
that s(n) ↑ ∞ and assume that I : Rd → [0,∞] is a lower semi-continuous
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function, i.e., all of its lower level sets {x ∈ R
d : I(x) ≤ �}, � ∈ [0,∞], are

closed. We say that X satisfies a large deviation principle (or simply LDP) with
speed s(n) and rate function I if and only if

− inf
x∈A◦ I(x) ≤ lim inf

n→∞
1

s(n)
log P(Xn ∈ A) ≤ lim sup

n→∞
1

s(n)
log P(Xn ∈ A) ≤ − inf

x∈A

I(x)

for all A ∈ B(Rd). Moreover, I is said to be a good rate function if all of its lower
level sets are compact. The latter property is essential to guarantee the so-called
exponential tightness of the sequence of measures.

The following result, known as Cramér’s Theorem, guarantees an LDP for the
empirical average of a sequence of i.i.d. random vectors, provided that their common
distribution is sufficiently nice (see, e.g. [14, Theorem 27.5]).

Theorem 9.2.1 (Cramér’s Theorem) Let (Xn)n∈N be a sequence of i.i.d. random
vectors in R

d such that the cumulant generating function of X1,

�(u) := log E
[
exp X1u

]
, u ∈ R

d,

is finite in a neighbourhood of 0 ∈ R
d . Let S := ( 1

n

∑n
i=1 Xi)n∈N be the sequence

of the sample means. Then S satisfies an LDP with speed n and good rate function
I = �∗, where

�∗(x) := sup
u∈Rd

(
xu − �(u)

)
, x ∈ R

d,

is the Fenchel-Legendre transform of �.

Cramér’s Theorem is a fundamental tool that allows to prove an LDP if the
random variables of interest can be transformed into a sum of independent random
variables.

Sometimes there is the need to ‘transport’ a large deviation principle from one
space to another by means of a continuous function. This can be done with a
device known as the contraction principle and we refer to [6, Theorem 4.2.1] or
[14, Theorem 27.11(i)].

Proposition 9.2.2 (Contraction Principle) Let d1, d2 ∈ N and let F : Rd1 → R
d2

be a continuous function. Further, let X := (Xn)n∈N be a sequence of Rd1-valued
random vectors that satisfies an LDP with speed s(n) and rate function IX. Then the
sequence Y := (F (Xn))n∈N of Rd2-valued random vectors satisfies an LDP with the
same speed and with good rate function IY = IX ◦ F−1, i.e., IY(y) := inf{IX(x) :
F(x) = y}, y ∈ R

d2 , with the convention that IY(y) = +∞ if F−1({y}) = ∅.

While this form of the contraction principle is sufficient to analyse the large
deviation behavior for one-dimensional random projections of �n

p-balls, a refinement
to treat the higher-dimensional cases is needed. To handle this situation, the classical
contraction principle can be extended to allow a dependency on n of the continuous
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function F . We refer the interested reader to [6, Corollary 4.2.21] for the precise
statement.

9.3 Probability Measures on Convex Bodies

There is a variety of probability measures that can be defined on the family of �n
p-

balls or spheres. We shall present some of them and their key properties below.

9.3.1 Probability Measures on an �n
p -Ball

One can endow B
n
p with a natural volume probability measure. This is defined as

follows,

νn
p(A) := |A ∩ B

n
p|

|Bn
p | , (9.3)

for any A ∈ B(Rn). We also refer to νn
p as the uniform distribution on B

n
p .

As far as S
n−1
p is concerned, there are two probability measures that are of

particular interest. The first is the so-called surface measure, which we denote by
σn

p , and which is defined as the normalised (n−1)-dimensional Hausdorff measure.
The second, μn

p, is the so-called cone (probability) measure and is defined via

μn
p(A) := |[0, 1]A|

|Bn
p| , A ∈ B(Sn−1

p ). (9.4)

In other words, μn
p(A) is the normalised volume of the cone that intersects Sn−1

p in
A, intersected with B

n
p . The cone measure is known to be the unique measure that

satisfies the following polar integration formula for any integrable function f on R
n

(see, e.g., [18, Proposition 1])

∫
Rn

f (x) dx = n |Bn
p|
∫ ∞

0
rn−1

∫
S

n−1
p

f (rz) dμn
p(z) dr. (9.5)

In particular, whenever f is p-radial, i.e., there exists a function g defined on R
+

such that f (x) = g(‖x‖p), then

∫
Rn

g(‖x‖p) dx = n |Bn
p|
∫ ∞

0
rn−1g(r) dr. (9.6)
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The relation between σn
p and μn

p has been deeply investigated. It is known, for
example, that they coincide whenever p ∈ {1, 2,∞} (see, e.g., [20]). In the other
cases, Naor [17] provided a bound on the total variation distance of these two
measures.

Proposition 9.3.1 Let σn
p and μn

p be the surface probability and cone probability

measure on S
n−1
p , respectively. Then

dTV(σn
p , μn

p) := sup
{
|σn

p (A) − μn
p(A)| : A ∈ B(Sn−1

p )
}

≤ C
(

1 − 1

p

)∣∣∣∣1 − 2

p

∣∣∣∣
√

np

n + p
,

where C ∈ (0,∞) is an absolute constant.

In particular, the above proposition ensures that for p fixed, such a distance
decreases to 0 not slower than n−1/2.

An important feature of the cone measure is described by the following proba-
bilistic representation, due to Schechtman and Zinn [22] (independently discovered
by Rachev and Rüschendorf [20]). We will below present a proof in a more general
set-up.

Theorem 9.3.2 Let n ∈ N and p ∈ [1,∞]. Let (Zi)i∈N be independent and
p-generalized Gaussian random variables, meaning absolutely continuous w.r.t. to
the Lebesgue measure on R with density

fp(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1

2p1/p
(1 + 1/p)
e−|x|p/p if p ∈ [1,∞) ,

1

2
1[0,1](|x|) if p = ∞.

(9.7)

Consider the random vector Z := (Z1, . . . , Zn) ∈ R
n and let U ∼ Unif([0, 1]) be

independent of Z1, . . . , Zn. Then

Z

‖Z‖p

∼ μn
p and U1/n Z

‖Z‖p

∼ νn
p.

Moreover, Z/‖Z‖p is independent of ‖Z‖p.

It is worth noticing that in [22] the density used by the authors for Z1 is actually
proportional to x �→ exp(−|x|p). As will become clear later, this difference is
irrelevant as far as the conclusion of the theorem is concerned.

Indeed, although the statement of Theorem 9.3.2 reflects the focus of this survey
on the �n

p-balls and the literature on the topic, its result is not strictly dependent on
the particular choice of fp in Eq. (9.7). In fact, it is not even a prerogative of the
�n
p-balls, as subsequently explained in Proposition 9.3.3.
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9.3.2 The Cone Measure on a Symmetric Convex Body

Consider a symmetric convex body K ⊆ R
n, meaning that if x ∈ K then also

−x ∈ K . Define the functional ‖·‖K : Rn → [0,∞) by

‖x‖K := inf{r > 0 : x ∈ rK}.

The functional ‖·‖K is known as the Minkowski functional associated with K and,
under the aforementioned conditions on K , defines a norm on R

n. We will also
say that ‖x‖K is the K-norm of the vector x ∈ R

n. Whenever a function on R
n is

dependent only on ‖·‖K , we say that it is a K-radial function. Analogously, we call
a probability measure K-radial when its distribution function is K-radial. We will
also write p-radial meaning B

n
p-radial.

In analogy with Eqs. (9.3) and (9.4), it is possible to define a uniform probability
measure νK on K and a cone measure μK on ∂K , respectively, as

νK(A) := |A ∩ K|
|K| and μK(B) := |[0, 1]B|

|K| ,

for any A ∈ B(Rn) and B ∈ B(∂K).
Note that μK , as a ratio of volumes, is invariant under a simultaneous transforma-

tion of both the numerator and the denominator. In particular, for any I ∈ B(R+),
such that |I | > 0, it holds

μK(B) = |IB|
|I∂K| , (9.8)

for any B ∈ B(∂K) (note that K = [0, 1]∂K). This fact will be used in the proof of
the following generalization of Theorem 9.3.2 to arbitrary symmetric convex bodies.

Proposition 9.3.3 Let K ⊆ R
n be a symmetric convex body. Suppose that

there exists a continuous function f : [0,∞) → [0,∞) with the property∫
Rn f (‖x‖K) dx = 1 such that the distribution of a random vector Z on R

n is
given by

P(Z ∈ A) =
∫

A

f (‖x‖K) dx,

for any A ∈ B(Rn). Also, let U ∼ Unif([0, 1]) be independent of Z. Then,

Z

‖Z‖K

∼ μK and U1/n Z

‖Z‖K

∼ νK. (9.9)

In addition, Z/‖Z‖K is independent of ‖Z‖K .
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The proof of Proposition 9.3.3 is based on the following polar integration
formula, which generalizes Eq. (9.5). It says that for measurable functions h : Rn →
[0,∞),

∫
Rn

h(x) dx = n|K|
∫ ∞

0
rn−1

∫
∂K

h(rz) dμK(z) dr. (9.10)

By the usual measure-theoretic standard procedure to prove Eq. (9.10) it is sufficient
to consider functions h of the form h(x) = 1A(x), where A = (a, b)E with 0 <

a < b < ∞ and E a Borel subset of ∂K . However, in this case, the left-hand side is
just |A|, while for the right-hand side we obtain, by definition of the cone measure
μK ,

n|K|
∫ ∞

0
rn−11(a,b)(r)

∫
∂K

1E(z) dμK(z) dr = n|K|
∫ b

a

rn−1 dr
|[0, 1]E|

|K|
= (bn − an)|[0, 1]E|,

which is clearly also equal to |A|.
Proof of Proposition 9.3.3 Let ϕ : R

n → R and ψ : R → R be non-negative
measurable functions. Applying the polar integration formula, Eq. (9.10), yields

E
[
ϕ
( Z

‖Z‖K

)
ψ(‖Z‖K)

]
=
∫
Rn

ϕ
( x

‖x‖K

)
ψ(‖x‖K)f (‖x‖K) dx

= n|K|
∫ ∞

0
ψ(r)f (r)rn−1 dr

∫
∂K

ϕ(z) dμK(z).

By the product structure of the last expression this first shows the independence of
Z/‖Z‖K and ‖Z‖K . Moreover, choosing ψ ≡ 1 we see that

E ϕ
( Z

‖Z‖K

)
= n|K|

∫ ∞

0
f (r)rn−1 dr

∫
∂K

ϕ(z) dμK(z) =
∫

∂K

ϕ(z) dμK(z)

by definition of f . This proves that Z/‖Z‖K ∼ μK . That U1/n Z
‖Z‖K

∼ νK finally

follows from the fact that U1/n ∼ β(n, 1), which has density r �→ nrn−1 for r ∈
(0, 1). ��

The main reason why the theory treated in this survey is restricted to �n
p-balls,

and not to more general convex bodies K , is that �n
p-balls are a class of convex

bodies whose Minkowski functional is of the form

‖x‖K = F
( n∑

i=1

fi(xi)
)

(9.11)
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for certain functions f1, . . . , fn and invertible positive function F . This is necessary
for Z to have independent coordinates. Indeed, in this case one can assign a joint
density on Z that factorizes into its components, like for example (omitting the
normalizing constant),

e−F−1(‖x‖K) = e−∑n
i=1 fi(xi) =

n∏
i=1

e−fi(xi),

which ensures the independence of the coordinates Zi of Z.
Already for slightly more complicated convex bodies than �n

p-balls, Eq. (9.11) no
longer holds. For example, considering the convex body defined as

B
2
1,2 := {x ∈ R

2 : |x1| + x2
2 ≤ 1}.

It can be computed that ‖x‖
B

2
1,2

= |x1|/2 +
√

x2
1/4 + x2

2 , which is not of the form

(9.11).
On the other hand, the coordinate-wise representation of the density of Z in

the precise form given by Eq. (9.7), is also convenient to explicitly compute the
distribution of some functionals of Z, as we will see in the following section.

9.3.3 A Different Probabilistic Representation for p-Radial
Probability Measures

Another probabilistic representation for a p-symmetric probability measure on B
n
p

has been given by Barthe et al. [4] in the following way,

Theorem 9.3.4 Let Z be a random vector in R
n defined as in Theorem 9.3.2.

Let W be a non-negative random variable with probability distribution PW and
independent of Z. Then

Z

(Zp + W)1/p
∼ PW({0}) μn

p + HW(·) νn
p,

where HW : Bn
p → R, HW(x) = h(x), with

h(r) = 1


(1 + n/p)(1 − rp)1+n/p

∫
(0,∞)

sn/pesrp/(rp−1) dPW(s).

Remark Note that all the distributions obtainable from Theorem 9.3.4 are p-radial,
especially the p-norm of Z/(Zp + W)1/p is

R =
( Zp

Zp + W

)1/p

.
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Moreover, some particular choices of W in Theorem 9.3.4 lead to interesting
distributions:

1. When W ≡ 0 we recover the cone measure of Theorem 9.3.2;
2. For α > 0, choosing W ∼ 
(α, 1) results in the density proportional to x �→

(1 − xp)α−1 for x ≤ 1.
3. As a particular case of the previous one, when W ∼ exp(1) = 
(1, 1), then

HW ≡ 1 and

Z

(‖Z‖p
p + W)1/p

∼ νn
p.

This is not in contrast with Theorem 9.3.2. Indeed, it is easy to compute that

‖Z‖p
p ∼ 
(n/p, 1).

In view of the properties (9.1) and (9.2), this implies

‖Z‖p
p

‖Z‖p
p + W

∼ β(n/p, 1) ∼ Up/n.

As a consequence of this fact, the orthogonal projection of the cone measure
μ

n+p
p on ∂B

n+p
p onto the first n coordinates is νn

p. Indeed, if W =∑n+p
i=n+1|Zi |p,

then W ∼ exp(1), while

Z

(‖Z‖p
p + W)1/p

= (Z1, . . . , Zn)

(
∑n+p

i=1 |Zi |p)1/p

is the required projection. We refer to [4, Corollaries 3-4] for more details in this
direction.

9.4 Central Limit Theorems and Laws of Large Numbers

The law of large numbers and the central limit theorem are arguably among the most
prominent limit theorems in probability theory. Thanks to the probabilistic represen-
tation for the various geometric measures on �n

p-balls described in Sect. 9.3.1, both
of these limit theorems can successfully applied to deduce information about the
geometry of �n

p-balls. This—by now classical—approach will be described here,
but we will also consider some more recent developments in this direction as well
as several generalizations of known results.
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9.4.1 Classical Results: Limit Theorems à la
Schechtman-Schmuckenschläger

The following result on the absolute moments of a p-generalized Gaussian random
variable is easy to derive by direct computation, and therefore we omit its proof,
which the reader can find in [13, Lemma 4.1]

Lemma 9.4.1 Let p ∈ (0,∞] and let Z0 be a p-generalized Gaussian random
variable (i.e., its density is given by Eq. (9.7)). Then, for any q ∈ [0,∞],

E
[|Z0|q

] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pq/p

q + 1



(
1 + q+1

p

)


(
1 + 1

p

) =: Mp(q) if p < ∞,

1

q + 1
=: M∞(q) if p = ∞.

For convenience, we will also indicate mp,q := Mp(q)1/q and

Cp(q, r) := Cov(|Z0|q, |Z0|r ) = Mp(q + r) − Mp(q)Mp(r).

We use the convention that M∞(∞) = C∞(∞,∞) = C∞(∞, q) = 0. The next
theorem is a version of the central limit theorem in [24, Proposition 2.4].

Theorem 9.4.2 Let 0 < p, q < ∞, p �= q and X ∼ νn
p. Then

√
n
(
n1/p−1/q

‖X‖q

mp,q

− 1
)

d−−−→
n→∞ N,

where N ∼ N (0, σ 2
p,q

)
and

σ 2
p,q := Cp(q, q)

q2Mp(q)2
− 2Cp(p, q)

pqMp(q)
+ Cp(p, p)

p2

Note that, since Mp(p) = 1, then σ 2
p,p = 0. In fact, in such a case

√
n(‖X‖p − 1)

d−−−→
n→∞ 0,

and a different normalization than
√

n is needed to obtain a non-degenerate limit
distribution. Moreover, σ 2

p,q > 0 whenever p �= q .
For our purposes, it is convenient to define the following quantities

kp,n := n1/p|Bn
p|1/n, kq,n := n1/q |Bn

q |1/n
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and

Ap,q,n := kp,n

mp,qkq,n

.

It is easy to verify with Sterling’s approximation that, for any p, q > 0, Ap,q,n =
Ap,q + O(1/n) for Ap,q ∈ (0,∞), as n → ∞.

With this definition in mind, we exploit Theorem 9.4.2 to prove a result on the
volume of the intersection of �n

p-balls. This can be regarded as a generalization of the
main results in Schechtman and Schmuckenschläger [21], and Schmuckenschläger
[23, 24].

Corollary 9.4.3 Let 0 < p, q < ∞ and p �= q . Let r ∈ [0, 1] and (tn)n∈N ⊆ R
+

be such that

lim
n→∞

√
n(tnAp,q − 1) = �−1

p,q(r),

where �p,q : [−∞,+∞] → [0, 1] is the distribution function of N ∼ N (0, σ 2
p,q )

and σ 2
p,q is defined in Theorem 9.4.2, i.e.,

�p,q(x) := 1√
2πσ 2

p,q

∫ x

−∞
e−s2/(2σ 2

p,q) ds.

Then

lim
n→∞

∣∣Dn
p ∩ tnD

n
q

∣∣ = r.

In particular, when tn ≡ t , then

lim
n→∞

∣∣Dn
p ∩ t Dn

q

∣∣ =
⎧⎪⎪⎨
⎪⎪⎩

0 if t < 1/Ap,q,

1/2 if t = 1/Ap,q,

1 if t > 1/Ap,q.

Proof First of all, note that, since Ap,q,n = Ap,q + O(1/n), then

lim
n→∞

√
n(tnAp,q,n − 1) = lim

n→∞
√

n(tnAp,q − 1),

provided that the latter exists in [−∞,∞], as per assumption. In particular, taking
the limit on both sides of the following equality,

P
(‖X‖q ≤ tnkp,nk

−1
q,nn

1/p−1/q
) = P

(√
n(n1/p−1/qm−1

p,q‖X‖q−1) ≤ √
n(tnAp,q,n−1)

)
,
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we get, because of Theorem 9.4.2,

lim
n→∞ P

(‖X‖q ≤ tnkp,nk
−1
q,nn

1/p−1/q
) = P

(
N ≤ �−1

p,q(r)
) = r.

On the other hand, it is true that the following chain of equalities hold:

P
(‖X‖q ≤ tnkp,nk

−1
q,nn1/p−1/q

) = |z ∈ B
n
p : z ∈ tnkp,nk

−1
q,nn1/p−1/q

B
n
q |

|Bn
p|

= ∣∣z ∈ |Bn
p|−1/n

B
n
p : z ∈ tnkp,nk

−1
q,nn1/p−1/q |Bn

p|−1/n
B

n
q

∣∣
= |z ∈ D

n
p : z ∈ tnD

n
q |

= |Dn
p ∩ tnD

n
q |,

which concludes the main part of proof. For the last observation, note that for any t

constant, either
√

n(tAp,q − 1) ≡ 0 or it diverges. ��

9.4.2 Recent Developments

9.4.2.1 The Multivariate CLT

We present here a multivariate central limit theorem that recently appeared in [13]. It
constitutes the multivariate generalization of Theorem 9.4.2. Similar to the classical
results of Schechtman and Schmuckenschläger [21], and Schmuckenschläger [23,
24] this was used to study intersections of (this time multiple) �n

p-balls. In part 1, we
replace the original assumption X ∼ νn

p of [13] to a more general one, that appears
naturally from the proof. Part 2 is substantially different and cannot be generalized
with the same assumption.

Theorem 9.4.4 Let n, k ∈ N and p ∈ [1,∞].
1. Let X be a continuous p-radial random vector in R

n such that

√
n
(
1 − ‖X‖p

) P−−−→
n→∞ 0. (9.12)

Fix a k-tuple (q1, . . . , qk) ∈ ([1,∞) \ {p})k . We have the multivariate central
limit theorem

√
n
(
n1/p−1/q1

‖X‖q1

mp,q1

− 1, . . . , n1/p−1/qk
‖X‖qk

mp,qk

− 1
)

d−−−→
n→∞ N,
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where N = (N1, . . . , Nk) ∼ N (0,�), with covariance matrix � = (ci,j )
k
i,j=1

whose entries are given by

ci,j :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

qiqj

(

( 1

p
)
(

qi+qj+1
p

)


(
qi+1

p
)
(

qj +1
p

)
− 1

)
− 1

p
if p < ∞,

1

qi + qj + 1
if p = ∞.

(9.13)

2. Let X ∼ νn
p. If p < ∞, then we have the non-central limit theorem

n1/p

(p log n)1/p−1 ‖X‖∞ − A
(p)
n

d−−−→
n→∞ G,

where

A
(p)
n := p log n − 1 − p

p
log(p log n) + log(p1/p
(1 + 1/p))

and G is a Gumbel random variable with distribution function R � t �→ e−e−t
.

Remark Note that the assumptions of Theorem 9.4.4 include the cases X ∼ νn
p and

X ∼ μn
p. In fact, condition (9.12) is just the quantitative version of the following

concept: to have Gaussian fluctuations it is necessary that the bigger n gets, the more
the distribution of X is concentrated in near ∂Bn

p. It is relevant to note that (9.12)
also keeps open the possibility for a non-trivial limit distribution when rescaling
(1 − ‖X‖p) with a sequence that grows faster than

√
n. This would yield a limit-

theorem for ‖X‖p. For example, when X ∼ νn
p, we already noted that ‖X‖p

d=
U1/n, so that

n(1 − ‖X‖p)
d−−−→

n→∞ E ∼ exp(1).

On the other hand, when X ∼ μn
p, then 1 − ‖X‖p ≡ 0.

Proof We only give a proof for the first part of the theorem, the second one can be
found in [13].

Let first p ∈ [1,∞). Consider a sequence of independent p-generalized
Gaussian random variables (Zj )j∈N, also independent from every X. Set Z =
(Z1, . . . , Zn). For any n ∈ N and i ∈ {1, . . . , k}, consider the random variables

ξ(i)
n := 1√

n

n∑
j=1

(|Zj |qi − Mp(qi)
)

and ηn := 1√
n

n∑
j=1

(|Zj |p − 1
)
.



138 J. Prochno et al.

According to the classical multivariate central limit theorem, we get

(ξ (1)
n , . . . , ξ (k)

n , ηn)
d−−−→

n→∞ (ξ (1), . . . , ξ (k), η) ∼ N (0, �̃)

with covariance matrix given by

�̃ =

⎛
⎜⎜⎜⎜⎜⎝

Cp(q1, q1) · · · Cp(q1, qk) Cp(q1, p)
...

. . .
...

...

Cp(qk, q1) · · · Cp(qk, qk) Cp(qk, p)

Cp(p, q1) · · · Cp(p, qk) Cp(p, p)

⎞
⎟⎟⎟⎟⎟⎠

Using Theorem 9.3.2 and the aforementioned definitions we can write, for i ∈
{1, . . . , k},

‖X‖qi

d= X‖Z‖qi

‖Z‖p

= ‖X‖p

(nMp(qi) + √
nξ

(i)
n )1/qi

(n + √
nηn)1/p

= ‖X‖p

(nMp(qi))
1/qi

n1/p
Fi

( ξ
(i)
n√
n

,
ηn√
n

)

= ‖X‖p n1/qi−1/pmp,qFi

(ξ
(i)
n√
n

,
ηn√
n

)

= (‖X‖p − 1)n1/qi−1/pmp,qFi

(ξ
(i)
n√
n

,
ηn√
n

)
+ n1/qi−1/pmp,qFi

(ξ
(i)
n√
n

,
ηn√
n

)

where we defined the function Fi : R × (R \ {−1}) → R as

Fi(x, y) := (1 + x/Mp(qi))
1/qi

(1 + y)1/p
.

Note that Fi is continuously differentiable around (0, 0) with Taylor expansion
given by

Fi(x, y) = 1 + x

qiMp(qi)
− y

p
+ O(x2 + y2).

Since, for the law of large numbers, ξ
(i)
n /

√
n

a.s.−−−→
n→∞ 0 and ηn/

√
n

a.s.−−−→
n→∞ 0, the

previous equation means that there exists a random variable C, independent of n,
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such that

∣∣∣Fi

(ξ
(i)
n√
n

,
ηn√
n

)
−
(

1 + 1

qiMp(qi)

ξ
(i)
n√
n

− 1

p

ηn√
n

)∣∣∣ ≤ C
(ξ

(i)
n )2 + η2

n

n
.

In particular,

√
n(‖X‖p − 1)

(
1 + 1

qiMp(qi )

ξ
(i)
n√
n

− 1

p

ηn√
n

− C
(ξ

(i)
n )2 + η2

n

n

)

+
( 1

qiMp(qi )
ξ (i)
n − 1

p
ηn − C

(ξ
(i)
n )2 + η2

n√
n

)

≤ √
n
(
n1/p−1/qi

‖X‖qi

mp,qi

− 1
)

≤ √
n(‖X‖p − 1)

(
1 + 1

qiMp(qi)

ξ
(i)
n√
n

− 1

p

ηn√
n

+ C
(ξ

(i)
n )2 + η2

n

n

)

+
( 1

qiMp(qi)
ξ (i)
n − 1

p
ηn + C

(ξ
(i)
n )2 + η2

n√
n

)

Note that the first summand of both bounding expressions tends to 0 in distribution
by assumption (9.12), while the second converges in distribution to 1

qiMp(qi)
ξ (i) −

1
p
η. This implies that

√
n
(
n1/p−1/qi

‖X‖qi

mp,qi

− 1
)

d−−−→
n→∞

1

qiMp(qi)
ξ (i) − 1

p
η =: Ni,

where Ni is a centered Gaussian random variable. To obtain the final multivariate
central limit theorem, we only have to compute the covariance matrix �. For
{i, j } ⊆ {1, . . . , k}, its entries are given by

ci,j = Cov
( ξ(i)

qiMp(qi)
− η

p
,

ξ(j)

qjMp(qj )
− η

p

)

= Cov(ξ (i), ξ (j))

qiqjMp(qi)Mp(qj )
− 1

p

(Cov(ξ (i), η)

qiMp(qi)
+ Cov(η, ξ (j))

qjMp(qj )

)
+ Cov(η, η)

p2

= Cp(qi, qj )

qiqjMp(qi)Mp(qj )
− 1

p

(Cp(qi, p)

qiMp(qi)
+ Cp(qj , p)

qjMp(qj )

)
+ Cp(p, p)

p2 ,

and this can be made explicit to get Eq. (9.13). The remaining case of p = ∞ can be
repeated using the aforementioned conventions on the quantities M∞ and C∞. ��
Remark From the proof is evident that in the case when

√
n(X − 1) converges in

distribution to a random variable F , independence yields, for every i ∈ {1, . . . , k},
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the convergence in distribution

√
n
(
n1/p−1/qi

‖X‖qi

mp,qi

− 1
)

d−−−→
n→∞ F + Ni

in which case the limiting random variable is not normal in general. Analogously, if
there exists a sequence (an)n∈N, an = o(

√
n) and a random variable F such that

an(‖X‖p − 1)
d−−−→

n→∞ F,

then the previous proof, with just a change of normalization, yields the limit theorem

an

(
n1/p−1/q

‖X‖q

mp,q

− 1
)

d−−−→
n→∞ F

for every q ∈ [1,∞), as n → ∞.

In analogy to Corollary 9.4.3, one can prove in a similar way the following result
concerning the simultaneous intersection of several dilated �p-balls. In particular,
we emphasize that the volume of the simultaneous intersection of three balls Dn

p ∩
t1D

n
q1

∩ t2Dq2 is not equal to 1/4 if these balls are in ‘critical’ position, as one might
conjecture in view of Corollary 9.4.3.

Corollary 9.4.5 Let n, k ∈ N and p ∈ [1,∞]. Fix a k-uple (q1, . . . , qk) ∈
([1,∞) \ {p})k . Let t1, . . . , tk be positive constants and define the sets I� := {i ∈
{1, . . . , k} : Ap,qi ti � 1}, where � is one of the symbols >, = or <. Then,

lim
n→∞|Dn

p∩t1D
n
q1

∩· · ·∩tkD
n
qk

| =

⎧⎪⎪⎨
⎪⎪⎩

1 if #I> = k,

P(Ni ≤ 0 : i ∈ I=) if #I= ≥ 1 and #I< = 0,

0 if #I< ≥ 1,

where N = (N1, . . . , Nk) is as in Theorem 9.4.4.

9.4.2.2 Outlook: The Non-commutative Setting

Very recently, Kabluchko et al. obtained in [11] a non-commutative analogue of the
classical result by Schechtman and Schmuckenschläger [21]. Instead of considering
the family of �n

p-balls, they studied the volumetric properties of unit balls in classes
of classical matrix ensembles.

More precisely, we let β ∈ {1, 2, 4} and consider the collection Hn(Fβ) of all
self-adjoint n × n matrices with entries from the (skew) field Fβ , where F1 = R,
F2 = C or F4 = H (the set of Hamiltonian quaternions). By λ1(A), . . . , λn(A) we
denote the (real) eigenvalues of a matrix A from Hn(Fβ) and consider the following
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matrix analogues of the classical �n
p-balls discussed above:

B
n
p,β :=

{
A ∈ Hn(Fβ) :

n∑
j=1

|λj (A)|p ≤ 1
}
, β ∈ {1, 2, 4} and p ∈ [1,∞],

where we interpret the sum in brackets as max{λj (A) : j = 1, . . . , n} if p = ∞.
As in the case of the classical �n

p-balls we denote by D
n
p,β , β ∈ {1, 2, 4} the volume

normalized versions of these matrix unit balls. Here the volume can be identified
with the (β n(n−1)

2 + βn)-dimensional Hausdorff measure on Hn(Fβ).

Theorem 9.4.6 Let 1 ≤ p, q < ∞ with p �= q and β ∈ {1, 2, 4}. Then

lim
n→∞|Dn

p,β ∩ t Dn
q,β | =

⎧⎨
⎩

0 if t < e
1

2p
− 1

2q
( 2p

p+q

)1/q
,

1 if t > e
1

2p
− 1

2q
( 2p

p+q

)1/q
.

To obtain this result, one first needs to study the asymptotic volume of the unit
balls of Hn(Fβ). This is done by resorting to ideas from the theory of logarithmic
potentials with external fields. The second ingredient is a weak law of large numbers
for the eigenvalues of a matrix chosen uniformly at random from B

n
p,β . For details

we refer the interested reader to [11].

9.5 Large Deviations vs. Large Deviation Principles

The final section is devoted to large deviations and large deviation principles for
geometric characteristics of �n

p-balls. We start by presenting some classical results
on large deviations related to the geometry of �n

p-balls due to Schechtman and Zinn.
Its LDP counterpart has entered the stage of asymptotic geometry analysis only
recently in [13]. We then continue by presenting a large deviation principle for one-
dimensional random projections of �n

p-balls of Gantert et al. [9]. Finally, we present
a similar result for higher-dimensional projections as well.

9.5.1 Classical Results: Large Deviations à la
Schechtman-Zinn

We start by rephrasing the large deviation inequality of Schechtman and Zinn [22].
It is concerned with the �q -norm of a random vector in an �n

p-balls. The proof that
we present follows the argument of [17].
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Theorem 9.5.1 Let 1 ≤ p < q ≤ ∞ and X ∼ νn
p or X ∼ μn

p. Then there exists a
constant c ∈ (0,∞), depending only on p and q , such that

P(n1/p−1/q‖X‖q > z) ≤ exp(−c np/qzp),

for every z > 1/c.

Proof We sketch the proof for the case that X ∼ μn
p. Let Z1, . . . , Zn be

p-generalized Gaussian random variables and put Sr := |Z1|r + . . . + |Zn|r for
r ≥ 1. Now observe that by the exponential Markov inequality and Theorem 9.3.2,
for t > 0,

P(n1/p−1/q‖X‖q > z) = P
(S

p/q
q

Sp

>
zp

n1−p/q

)

≤ exp
(
− tzp

n1−p/q

)
E exp

(
t
S

p/q
q

Sp

)

≤ exp
(
− tzp

n1−p/q

)
E exp

(
t
S

p/q
q

E Sp

)
,

where we also used the independence property in Theorem 9.3.2 in the last step.
Next, we observe that E Sp = n by Lemma 9.4.1. Moreover from [17, Corollary 3]
it is known that there exists a constant c ∈ (0,∞) only depending on p and q such
that

E exp
(
tS

p/q
q

) ≤ n1−p/q
(
1 − ct

)−np/q

as long as 0 < t < 1/c. Thus, choosing t = n
c

− n
zp we arrive at

P(n1/p−1/q‖X‖q > z) ≤ n1−p/q
(ezp

c

)np/q

exp(−cnp/qzp).

This implies the result. ��

9.5.2 Recent Developments

9.5.2.1 The LDP Counterpart to Schechtman-Zinn

After having presented the classical Schechtman-Zinn large deviation inequality, we
turn now to a LDP counterpart. The next result is a summary of the results presented
in from [13, Theorems from 1.2 to 1.5]. The speed and the rate function in its part 4
resembles the right hand side of the inequality in Theorem 9.5.1.
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Theorem 9.5.2 Let n ∈ N, p ∈ [1,∞], q ∈ [1,∞) and X ∼ νn
p. Define the

sequence

‖X‖ := (n1/p−1/qX)n∈N.

1. If q < p < ∞, then ‖X‖ satisfies an LDP with speed n and good rate function

I‖X‖(x) =
{

inf{I1(x1) + I2(x2) : x = x1x2, x1 ≥ 0, x2 ≥ 0} if x ≥ 0,

+∞ otherwise.

Here

I1(x) =
{

− log(x) if x ∈ (0, 1],
+∞ otherwise,

(9.14)

and

I2(x) =
{

inf{�∗(y, z) : x = y1/qz−1/p, y ≥ 0, z ≥ 0} if x ≥ 0

+∞ otherwise,

where �∗ is the Fenchel-Legendre transform of the function

�(t1, t2) := log
∫ +∞

0

1

p1/p
(1 + 1/p)
et1sq+(t2−1/p)sp

ds, (t1, t2) ∈ R ×
(
−∞,

1

p

)
.

2. If q < p = ∞, then ‖X‖ satisfies an LDP with speed n and good rate function

I‖X‖(x) =
{

�∗(x) if x ≥ 0,

+∞ otherwise,

where �∗ is the Fenchel-Legendre transform of the function

�(t) :=
∫ 1

0
etsq

ds, t ∈ R.

3. If p = q , then ‖X‖ satisfies an LDP with speed n and good rate function I1
defined in Eq. (9.14).

4. If p < q , then ‖X‖ satisfies an LDP with speed np/q and good rate function

I‖X‖(x) =

⎧⎪⎨
⎪⎩

1

p

(
xq − m

q
p,q

)p/q
if x ≥ mp,q,

+∞ otherwise.
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9.5.2.2 LDPs for Projections of �n
p-Balls: One-Dimensional Projections

We turn now to a different type of large deviation principles. More precisely,
we consider random projections of points uniformly distributed in an �n

p-ball
or distributed according to the corresponding cone probability measure onto a
uniform random direction. The following result is a summary of from [9, Theorems
2.2,2.3]. The proof of the first part follows rather directly from Cramér’s theorem
(Theorem 9.2.1) and the contraction principle (Proposition 9.2.2), the second part is
based on large deviation theory for sums of stretched exponentials.

Theorem 9.5.3 Let n ∈ N and p ∈ [1,∞). Let X ∼ νn
p or X ∼ μn

p and � ∼ σn
2

be independent random vectors. Consider the sequence

W := (n1/p−1/2X�)n∈N.

1. If p ≥ 2, then W satisfies an LDP with speed n and good rate function

IW(w) = inf{�∗(τ0, τ1, τ2) : w = τ
−1/2
0 τ1τ

−1/p

2 , τ0 > 0, τ1 ∈ R, τ2 > 0},

where �∗ is the Fenchel-Legendre transform of

�(t0, t1, t2) := log
∫
R

∫
R

et0z
2+t1zy+t2|z|pf2(z)fp(y) dz dy, t0, t1, t2 ∈ R.

2. If p < 2, then W satisfies an LDP with speed n2p/(2+p) and good rate function

IW(w) = 2 + p

2p
|w|2p/(2+p).

Proof Let us sketch the proof for the case that p > 2, by leaving out any technical
details. For this, let Z1, . . . , Zn be p-generalized Gaussian random variables,
G1, . . . ,Gn be Gaussian random variables and U be a uniform random variable over
[0, 1]. Also assume that all the aforementioned random variables are independent.
Also put Z := (Z1, . . . , Zn) and G := (G1, . . . ,Gn). When X ∼ μn

p, by
Theorem 9.3.2, we can state that for each n ∈ N the target random variable
n1/p−1/2X� has the same distribution as

n1/p−1/2

n∑
i=1

GiZi

‖G‖2‖Z‖p

=
1
n

n∑
i=1

GiZi

(
1
n

n∑
i=1

|Gi |2
)1/2(

1
n

n∑
i=1

|Zi |p
)1/p

. (9.15)
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Note that � is finite whenever p < 2, t0 < 1/2, t1 ∈ R and t2 < 1/p. Then,
Cramér’s theorem (Theorem 9.2.1) shows that the R3-valued sum

1

n

n∑
i=1

(|Gi |2,GiZi, |Zi |p
)

satisfies an LDP with speed n and rate function �∗. Applying the contraction
principle (Proposition 9.2.2) to the function F(x, y, z) = x−1/2yz−1/p yields the
LDP for W with speed n and the desired rate function IW. Once the LDP is
proven for the cone measure, it can be pushed to the case of the uniform measure.
By Theorem 9.3.2, multiplying the expression in Eq. (9.15) by U1/n, we obtain a
random variable distributed according to νn

p. It is proven in [9, Lemma 3.2] that

multiplying by U1/n every element of the sequence W, we obtain a new sequence
of random variables that also satisfies an LDP with the same speed and the same
rate function as W. On the other hand, when p < 2, �(t0, t1, t2) = ∞ for any
t1 �= 0, hence suggesting that in this case the LDP could only occur at a lower speed
than n. ��

9.5.2.3 LDPs for Projections of �n
p-Balls: The Grassmannian Setting

Finally, let us discuss projections to higher dimensional subspaces, generalizing
thereby the set-up from the previous section. We adopt the Grassmannian setting and
consider the 2-norm of the projection to a uniformly distributed random subspace
in the Grassmannian G

k
n of k-dimensional subspaces of R

n of a point uniformly
distributed in the �n

p-unit ball. Since we are interested in the asymptotic regime
where n → ∞, we also allow the subspace dimension k to vary with n. However, in
order to keep our notation transparent, we shall nevertheless write k instead of k(n).
The next result is the collection of [1, Theorems 1.1,1.2].

Theorem 9.5.4 Let n ∈ N. Fix p ∈ [1,∞] and a sequence k = k(n) ∈
{1, . . . , n − 1} such that the limit λ := limn→∞(k/n) exists. Let PEX be the
orthogonal projection of a random vector X ∼ νn

p onto a random independent
linear subspace E ∼ ηn

k . Consider the sequence

‖PEX‖ := (n1/p−1/2‖PEX‖2)n∈N.
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1. If p ≥ 2, then ‖PEX‖ satisfies an LDP with speed n and good rate function

I‖PEX‖(y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
x>y

[λ
2

log
(λx2

y2

)
+ 1 − λ

2
log
( 1 − λ

1 − y2x−2

)
+ Jp(x)

]
if y > 0,

Jp(0) if y = 0, λ ∈ (0, 1],
inf
x≥0

Jp(x) if y = 0, λ = 0,

+∞ if y < 0 ,

where we use the convention 0 log 0 := 0 and for p �= ∞ we have

Jp(y) := inf
x1,x2>0

x
1/2
1 x

−1/p

2 =y

I∗
p(x1, x2), y ∈ R ,

and I∗
p(x1, x2) is the Fenchel-Legendre transform of

Ip(t1, t2) := log
∫
R

et1x
2+t2|x|pfp(x) dx, (t1, t2) ∈ R ×

(
−∞,

1

p

)
.

For p = ∞, we write J∞(y) := I∗∞(y2) with I∗∞ being the Fenchel-Legendre

transform of I∞(t) := log
∫ 1

0 etx2
dx.

2. If p < 2 and λ > 0, then ‖PEX‖ satisfies and LDP with speed np/2 and good
rate function

I‖PEX‖(y) :=

⎧⎪⎨
⎪⎩

1

p

(y2

λ
− m

)p/2
if y ≥ √λmp ,

+∞ otherwise,

where mp := pp/2
(1 + 3/p)/(3
(1 + 1/p)).

Let us emphasize that the proof of this theorem is in some sense similar to its one-
dimensional counterpart that we have discussed in the previous section. However,
there are a number of technicalities that need to be overcome when projections
to high-dimensional subspaces are considered. Among others, one needs a new
probabilistic representation of the target random variables. In fact, the previous
theorem heavily relies on the following probabilistic representation, proved in [1,
Theorem 3.1] for the case X ∼ ν

p
n . We shall give a proof here for a more general

set-up, which might be of independent interest.

Theorem 9.5.5 Let n ∈ N, k ∈ {1, . . . , n} and p ∈ [1,∞]. Let X be a continuous
p-radial random vector in R

n and E ∼ ηn
k be a random k-dimensional linear

subspace. Let Z = (Z1, . . . , Zn) and G = (G1, . . . ,Gn) having i.i.d. coordinates,
distributed according to the densities fp and f2, respectively. Moreover, let X, E,
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Z and G be independent. Then

‖PEX‖2
d= ‖X‖p

‖Z‖2

‖Z‖p

‖(G1, . . . ,Gk)‖2

‖G‖2
.

Proof Fix a vector x ∈ R
n. By construction of the Haar measure ηn

k on G
n
k and

uniqueness of the Haar measure η on O(n), we have that, for any t ∈ R,

ηn
k (E ∈ G

n
k : ‖PEx‖2 ≥ t) = η(T ∈ O(n) : ‖PT E0x‖2 ≥ t)

= η(T ∈ O(n) : ‖PE0T x‖2 ≥ t)

= η
(
T ∈ O(n) : ‖x‖2

∥∥PE0T (x/‖x‖2)
∥∥

2 ≥ t
)
,

where E0 := span({e1, . . . , ek}). Again, by the uniqueness of the Haar measure σn
2

on S
n−1
2 , T (x/‖x‖2) ∼ σn

2 , provided that T ∈ O(n) has distribution η. Thus,

η
(
T ∈ O(n) : ‖x‖2

∥∥∥PE0T
( x

‖x‖2

)∥∥∥
2

≥ t
)

= σn
2 (u ∈ S

n−1
2 : ‖x‖2‖PE0u‖2 ≥ t) .

By Theorem 9.3.2, G/‖G‖2 ∼ σn
2 . Thus,

σn
2 (u ∈ S

n−1
2 : ‖x‖2‖PE0T u‖2 ≥ t) = P

(
‖x‖2

‖PE0G‖2

‖G‖2
≥ t
)
.

Therefore, if E ∈ G
n
k is a random subspace independent of X having distribution

ηn
k , and G is a standard Gaussian random vector in R

n that is independent of X and
E, we have that

P(X,E)

(
(x, F ) ∈ R

n × G
n
k : ‖PF x‖2 ≥ t

) = P(X,G)

(
(x, g) ∈ R

n × R
n : ‖x‖2

‖PE0g‖2

‖g‖2
≥ t
)
.

Here, P(X,E) denotes the joint distribution of the random vector (X,E) ∈ R
n ×G

n
k ,

while P(X,G) stands for that of (X,G) ∈ R
n × R

n. By Proposition 9.3.3, X has the
same distribution as XZ/Z. Therefore,

P(X,G)

(
(x, g) ∈ R

n × R
n : ‖x‖2

‖PE0 g‖2

‖g‖2
≥ t
)

= P(X,Z,G)

(
(x, z, g) ∈ R

n × R
n × R

n : ‖x‖p

‖z‖2

‖z‖p

‖PE0g‖2

‖g‖2
≥ t
)

with P(X,Z,G) being the joint distribution of the random vector (X,Z,G) ∈ R
n ×

R
n × R

n. Consequently, we conclude that the two random variables ‖PEX‖2 and

‖X‖p
‖Z‖2‖Z‖p

‖PE0G‖2
‖G‖2

have the same distribution. ��
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Remark Let us remark that in his PhD thesis, Kim [15] was recently able to extend
the results from [1] and [9] to more general classes of random vectors under an
asymptotic thin-shell-type condition in the spirit of [2] (see [15, Assumption 5.1.2]).
For instance, this condition is satisfied by random vectors chosen uniformly at
random from an Orlicz ball.

9.5.2.4 Outlook: The Non-commutative Setting

The body of research on large deviation principles in asymptotic geometric analysis,
which we have just described above, is complemented by another paper of Kim and
Ramanan [16], in which they proved an LDP for the empirical measure of an n1/p

multiple of a point drawn from an �n
p-sphere with respect to the cone or surface

measure. The rate function identified is essentially the so-called relative entropy
perturbed by some p-th moment penalty (see [16, Equation (3.4)]).

While this result is again in the commutative setting of the �n
p-balls, Kabluchko

et al. [12] recently studied principles of large deviations in the non-commutative
framework of self-adjoint and classical Schatten p-classes. The self-adjoint setting
is the one of the classical matrix ensembles which has already been introduced in
Sect. 9.4.2.2 (to avoid introducing further notation, for the case of Schatten trace
classes we refer the reader to [12] directly). In the spirit of [16], they proved a
so-called Sanov-type large deviations principles for the spectral measure of n1/p

multiples of random matrices chosen uniformly (or with respect to the cone measure
on the boundary) from the unit balls of self-adjoint and non self-adjoint Schatten p-
classes where 0 < p ≤ +∞. The good rate function identified and the speed are
quite different in the non-commutative setting and the rate is essentially given by the
logarithmic energy (which is the negative of Voiculescu’s free entropy introduced
in [25]). Interestingly also a perturbation by a constant connected to the famous
Ullman distribution appears. This constant already made an appearance in the recent
works [10, 11], where the precise asymptotic volume of unit balls in classical matrix
ensembles and Schatten trace classes were computed using ideas from the theory of
logarithmic potentials with external fields.

The main result of [12] for the self-adjoint case is the following theorem, where
we denote by M(R) the space of Borel probability measures on R equipped with
the topology of weak convergence. On this topological space we consider the Borel
σ -algebra, denoted by B(M(R)).

Theorem 9.5.6 Fix p ∈ (0,∞) and β ∈ {1, 2, 4}. For every n ∈ N, let Zn be a
random matrix chosen according to the uniform distribution on B

n
p,β or the cone

measure on its boundary. Then the sequence of random probability measures

μn = 1

n

n∑
i=1

δn1/pλi(Zn)
, n ∈ N,
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satisfies an LDP on M(R) with speed n2 and good rate function I : M(R) →
[0,+∞] defined by

I(μ) =
⎧⎨
⎩

− β
2

∫
R

∫
R

log|x − y| μ(dx) μ(dy) + β
2p

log
( √

πp
(
p
2 )

2p
√

e
(
p+1

2 )

)
if
∫
R
|x|pμ(dx) ≤ 1,

+∞ if
∫
R
|x|pμ(dx) > 1.

Let us note that the case p = +∞ as well as the case of Schatten trace classes is also
covered in that paper (see [12, Theorems 1.3 and 1.5]). The proof of Theorem 9.5.6
requires to control simultaneously the deviations of the empirical measures and
their p-th moments towards arbitrary small balls in the product topology of the
weak topology on the space of probability measures and the standard topology
on R. It is then completed by proving exponential tightness. Moreover, they also
use the probabilistic representation for random points in the unit balls of classical
matrix ensembles which they have recently obtained in [10]. We close this survey
by saying that as a consequence of the LDP in Theorem 9.5.6, they obtained that
the spectral measure of n1/pZn converges weakly almost surely to a non-random
limiting measure given by the Ullman distribution, as n → ∞ (see [12, Corollary
1.4] for the self-adjoint case and [12, Corollary 1.6] for the non-self-adjoint case).
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