
Chapter 7
Rearrangement and Prékopa–Leindler
Type Inequalities

James Melbourne

Abstract We investigate the interactions of functional rearrangements with
Prékopa–Leindler type inequalities. It is shown that certain set theoretic
rearrangement inequalities can be lifted to functional analogs, thus demonstrating
that several important integral inequalities tighten on functional rearrangement
about “isoperimetric” sets with respect to a relevant measure. Applications to the
Borell–Brascamp–Lieb, Borell–Ehrhard, and the recent polar Prékopa–Leindler
inequalities are demonstrated. It is also proven that an integrated form of the
Gaussian log-Sobolev inequality sharpens on rearrangement.

7.1 Introduction

The Prékopa–Leindler inequality (PLI) stated below has become a useful tool in the
study of log-concave distributions in probability and statistics, particularly in high
dimension, and a point of interest and unification between probabilists and convex
geometers.

Theorem 7.1.1 (Prékopa–Leindler) For f, g : Rd → [0,∞) Borel measurable
and t ∈ (0, 1), define

f�g(z) := sup
(1−t )x+ty=z

f 1−t (x)gt (y)
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then

∫
Rd

f�g(z)dz ≥
(∫

Rd

g(z)dz

)1−t (∫
Rd

h(z)dz

)t

.

The inequality can be motivated from a convex geometric perspective as a
functional generalization of the dimension free statement of the Brunn–Minkowski
inequality (BMI), which we recall as the fact that for A,B compact in R

d and | · |d
the d-dimensional Lebesgue volume,

|(1 − t)A + tB|d ≥ |A|1−t
d |B|td .

Indeed, by taking f = 1A and g = 1B , we have f�g = 1(1−t )A+tB. PLI implies
that integration preserves the inequality and the result follows.

The BMI has an elegant qualitative formulation; the volume of sum-sets
decreases on spherical symmetrization. More explicitly, if A and B are compact
sets, with A∗ and B∗ Euclidean balls satisfying |A∗|d = |A|d , |B∗|d = |B|d , then

|A + B|d ≥ |A∗ + B∗|d . (7.1)

Our first main result (Theorem 7.3.1) contains a functional generalization of
(7.1). We will show PLI “sharpens” on rearrangement in the sense that

∫
f�g(z)dz ≥

∫
f ∗�g∗(z)dz, (7.2)

where ∗ denotes a functional rearrangement to be defined below. In fact we will
prove that for ψ increasing,

∫
ψ(f�g(z))dz ≥

∫
ψ(f ∗�g∗(z))dz. (7.3)

Our methods are reasonably general and Theorem 7.4.6 will give a class of set
theoretic inequalities that admit functional generalization in the sense of (7.3). As
a consequence, we will show that analogs of (7.3) can be given to sharpen not only
the PLI, but the Borell–Brascamp–Lieb inequalities [15, 18], the Borell–Ehrhard
inequality in the Gaussian setting [16, 24], and a recent Polar Prékopa–Leindler [1].

These results can also be motivated from an information theoretic perspective,
where the BMI can be considered a Rényi entropy power inequality. There has
been considerable recent work (see [6, 7, 10, 29, 31, 33, 45]) developing Rényi
entropy [46] generalizations of the classical entropy power inequality (EPI) of
Shannon–Stam [47, 48]. One should compare the sharpening of PLI here to [50],
where Madiman and Wang show that while spherically symmetric decreasing
rearrangements of random variables preserve their Rényi entropy, they decrease the
Rényi entropy of independent sums of random variables. One information theoretic
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application of the rearrangement result is the reduction of Rényi generalizations of
the EPI to the spherically symmetric case, see for example [39] where the Madiman–
Wang result is used to sharpen the Rényi EPI put forth in [40]. See [36] to find an
extension and application of [50] for the ∞-Rényi entropy. It should be mentioned
that the connections between BMI and entropy power inequalities are not new. The
analogy between the two inequalities was first observed in [21], and a unified proof
was given in [23] drawing on the work of [4, 17, 34]. The reader is directed to
[35] where a further development of Rényi entropy power inequalities and their
connections to convex geometry are given.

In the Gaussian case, the strict convexity of the potential gives a result stronger
than PLI, and we are able to adapt the rearrangement ideas to approach the Gaussian
log-Sobolev inequality. We show in Theorem 7.6.5 that for the Gaussian measure,
the “integrated” log-Sobolev inequality derived in [8] by Bobkov and Ledoux, and
understood as reverse hypercontractivity of the Hamilton–Jacobi equations in [12],
sharpens on half space rearrangement.

An alternative motivation for this investigation is the Brascamp–Lieb–Barthe
inequality’s relationship to the Brascamp–Lieb–Luttinger rearrangement inequali-
ties [19]. The Brascamp–Lieb inequality [18] enjoys the Brascamp–Lieb–Luttinger
inequality as a rearrangement analog. In [2] Barthe used an optimal transport
argument to prove Brascamp–Lieb and simultaneously demonstrated a dual inequal-
ity that includes PLI as a special case. It is natural to ask for a rearrangement
inequality analog of Barthe’s result, to provide a dual to the Brascamp–Lieb–
Luttinger rearrangement inequality. This work represents a confirmation of such
an inequality in the special case corresponding to PLI.

The paper is organized in the following manner; in Sect. 7.2, we will give
definitions and background on a notion of rearrangement. In Sect. 7.3, we give a
rearrangement inequality for PLI, before giving a general version in Sect. 7.4. In
Sect. 7.5, we give applications of the theorem derived in Sect. 7.4 to special cases.
In Sect. 7.6, we give a sharpening of an integrated Gaussian log-Sobolev inequality
via half-space rearrangement. Finally, in Sect. 7.7, we discuss connections with the
work of Barthe and Brascamp-Lieb-Luttinger closing with an open problem.

7.2 Preliminaries

For a set A, we will use the notation 1A to denote the indicator function of A, taking
the value 1 on A, and 0 elsewhere. For x ∈ R

d , |x| will denote the usual Euclidean
norm. We use Q+ to denote the non-negative rational numbers. We use γd to denote
both the standard Gaussian measure on R

d and its density function

γd(x) = e−|x|2/2

(2π)
d
2

.
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When d = 1, and there is no risk of confusion, we will omit the subscript and write
γ . We denote the Gaussian distribution function

�(x) =
∫ x

−∞
γ (y)dy

and its inverse �−1.

7.2.1 Spherically Symmetric Decreasing Rearrangements

Given a nonempty measurable set A ⊆ R
d , we define its spherically symmetric

rearrangement A∗ to be the origin centered ball of equal volume,

A∗ :=
{
x : |x| < (|A|d/ωd)

1
d

}
,

where ωd is the volume of the d-dimensional unit ball, with the understanding that
A∗ = ∅ in the case that |A|d = 0 and A∗ = R

d when |A|d = ∞.
We can extend this notion of symmetrization to functions via the layer-cake

decomposition of a non-negative function f ,

f (x) =
∫ f (x)

0
1dt =

∫ ∞

0
1{y:f (y)>t}(x)dt.

Definition 7.2.1 For a measurable non-negative function f , define its decreasing
symmetric rearrangement f ∗ by

f ∗(x) :=
∫ ∞

0
1{y:f (y)>t}∗(x)dt. (7.4)

Note that decreasing is used here in the non-strict sense, synonymous with non-
increasing.

Proposition 7.2.2 f ∗ is characterized by the equality

{f ∗ > λ} = {f > λ}∗. (7.5)

The proof will be given in greater generality in the following section.

Corollary 7.2.3 f ∗ is lower semi-continuous, spherically symmetric and non-
increasing in the sense that |x| ≤ |y| implies f ∗(x) ≥ f ∗(y).

Proof f ∗ has open super level sets by Eq. (7.5) and is thus lower semi-continuous.
To prove non-increasingness observe that using the characterization above f ∗(y) >

λ iff y ∈ {f > λ}∗ which implies by |x| ≤ |y| that x ∈ {f > λ}∗, and thus
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f ∗(x) > λ. Applying this to λn increasing to f ∗(y) yields our result. Observe that
this implies spherical symmetry by applying the preceding argument in the opposite
direction f (x) = f (y) when |x| = |y|. 	


7.2.2 More General Rearrangements

Definition 7.2.4 For Polish measure spaces (M,μ) and (N, α), with Borel σ -
algebra, we will call a set map from the Borel σ -algebra of M to the Borel σ -algebra
of N a rearrangement when it satisfies the following,

1. ∗(A) is an open set satisfying α(∗(A)) = μ(A)

2. μ(A) ≤ μ(B) implies ∗(A) ⊆ ∗(B)

3. For a sequence Ai ⊆ Ai+1, ∗(∪∞
i=1Ai) = ∪∞

i=1 ∗ (Ai).

Notice that in 3, ∪j ∗ (Aj) ⊆ ∗(∪jAj ) holds from 2, so the assumption is only
∪j ∗ (Aj) ⊇ ∗(∪jAj ). For brevity of notation, we write A∗ = ∗(A) and note the
following extension to functions.

Definition 7.2.5 For a rearrangement ∗ and Borel measurable f : M → [0,∞)

define f ∗ : N → [0,∞),

f ∗(x) :=
∫ ∞

0
1{f >t}∗(x)dt.

Rearrangement is in general non-linear, however, we do have linear behavior in
the following special case.

Lemma 7.2.6 For a simple function s, expressed as s = ∑n
i=1 ai1Ai with ai > 0

and Ai � Ai−1,

s∗ =
n∑

i=1

ai1A∗
i
.

Proof Let us give more explicit formulas for both quantities.

n∑
i=1

ai1A∗
i
(z) =

mz∑
i=1

ai

where mz = max{i : z ∈ A∗
i }, and the formula

s∗(z) = sup{t : z ∈ {s > t}∗},
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which holds not just for simple functions but general f . If z ∈ A∗
mz

with mz

maximal, then for t <
∑mz

i=1 ai , Amz ⊆ {s > t}, which in turn gives A∗
mz

⊆ {s >

t}∗. Thus z ∈ {s > t}∗ for all t <
∑mz

i=1 ai and we have

s∗(z) = sup
t

{z ∈ {s > t}∗} ≥
mz∑
i=1

ai =
n∑

i=1

ai1A∗
i
(z).

For the reverse inequality, assume s∗(z) > 0 (else there is nothing to prove) and take
t such that z ∈ {s > t}∗. Since {s > t} = Akt where kt = min{j : ∑j

i=1 ai > t},
we have {s > t}∗ = A∗

kt
. This implies that

∑
i=1 ai1A∗

i
(z) ≥ ∑kt

i=1 ai > t . Taking
the supremum in t ,

n∑
i=1

ai1A∗
i
(z) ≥ s∗(z).

	

Proposition 7.2.7 f ∗ is characterized by the equality

{f ∗ > λ} = {f > λ}∗. (7.6)

In particular f ∗ is lower semi-continuous, and equi-measureable with f in that
μ{f > λ} = α{f ∗ > λ}.
Proof First we prove the equality (7.6). Since f ∗(x) > λ implies

∫ ∞
0 1{f >t}∗(x)

dt > λ, which in turn, by the monotonicity of 1{f>t}∗ implies the existence of
t > λ such that x ∈ {f > t}∗. From this it follows that

{f ∗ > λ} ⊆ {f > λ}∗.

For the converse, first assume that f = s is a simple function, expressed as

s =
n∑

i=1

ai1Ai

with ai > 0 and Ai � Ai−1. By Lemma 7.2.6

s∗ =
n∑

i=1

ai1A∗
i
.

Since {s > λ} = Ak where k = min{j : ∑j
i=1 ai > λ}, z ∈ {s > λ}∗ = A∗

k

implies s∗(z) = ∑n
i=1 ai1A∗

i
(z) ≥ ∑k

i=1 ai > λ. Thus {s > λ}∗ ⊆ {s∗ > λ} holds
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for simple functions. Now take sn to be a sequence of increasing simple functions
approximating f pointwise and uniformly on sets where f is bounded. Then

{f > λ}∗ =
( ∞⋃

n=1

{sn > λ}
)∗

=
∞⋃

n=1

{sn > λ}∗ =
∞⋃

n=1

{s∗
n > λ}.

where the first equality is from the assumption of increasingness of the simple
functions, the second is from Definition 7.2.4 item 3, and the third follows from the
characterization just proven for simple functions. Since f1 ≤ f2, implies f ∗

1 ≤ f ∗
2

it follows that ∪{s∗
n > λ} ⊆ {f ∗ > λ}, so that {f > λ}∗ ⊆ {f ∗ > λ}.

If g is another function satisfying {g > λ} = {f > λ}∗ for all λ, then

g(z) =
∫ ∞

0
1{g>λ}dλ =

∫ ∞

0
1{f >λ}∗dλ =

∫ ∞

0
1{f ∗>λ}dλ = f ∗(z).

The fact that f is lower semi-continuous follows from item (1) of our definition,
that A∗ is open. Equimeasurability is given by α{f ∗ > λ} = α{f > λ}∗ = μ

{f > λ}. 	

Proposition 7.2.8 For an open convex set K ⊆ R

d with closure containing the
origin. The set map ∗K defined by

A∗K :=
( |A|d

|K|d
) 1

d

K,

is a rearrangement with (M,μ) = (N, α) = (Rd, | · |d).

Proof It is immediate that A∗K is open and the homogeneity of the Lebesgue
measure ensures that |A∗K |d = |A|d , hence (1) follows. To prove (2), note that
for 0 < |A| ≤ |B|, by the definition of ∗K , A∗K = tK and B∗K = sK for some
0 < t ≤ s. Let x = tk for k ∈ K and kn a sequence in K converging to 0. Then

x = s

(
t

s

(
k −

( s

t
− 1

)
kn

)
+

(
1 − t

s

)
kn

)
.

By K open, k−( s
t
−1)kn belongs to K for large n, and when this holds, by convexity

( t
s
(k − ( s

t
− 1)kn) + (1 − t

s
)kn) ∈ K . It follows that x ∈ sK , as such, A∗K ⊆ B∗K .

The continuity condition in (3) holds, since both sets are origin symmetric balls of
the same volume. 	


Observe that the qualitative statement of Brunn–Minkowski (7.1), for Borel A,B

|A + B|d ≥ |A∗K + B∗K |d, (7.7)

is preserved. In the following section, we will extend this qualitative result to the
functional setting.



78 J. Melbourne

Proposition 7.2.9 For a fixed coordinate i, the set function ∗ defined on a Polish
space M with probability measure μ and (N, α) = (Rd , γd) by

A∗ = {x : xi < �−1(μ(A))}

is a rearrangement.

Proof A∗ is open by definition, and γd(A∗) = �(�−1(μ(A))) = μ(A). Conditions
(2) and (3) follow from the monotonicity and continuity of �. 	


We will not pursue examples in discrete spaces here. We direct the interested
reader to [37, 38] for recent information theoretic work regarding rearrangement on
discrete spaces and [25, 26, 44] for discrete PLI investigations.

7.3 Rearrangement and Prékopa–Leindler

We begin with a special case of a more general result to build some intuition for the
abstractions to follow. For f, g : Rd → [0,∞) and t ∈ [0, 1] recall

f�g(z) = sup
(1−t )x+ty=z

f 1−t (x)gt (y). (7.8)

Theorem 7.3.1 For f, g : R
d → [0,∞) Borel, t ∈ (0, 1), and ∗ denoting a

rearrangement to a fixed open convex set with closure containing the origin,

∫
Rd

f�g(z)dz ≥
∫
Rd

f ∗�g∗(z)dz ≥
(∫

f dz

)1−t (∫
gdz

)t

. (7.9)

What is more, when ψ is a non-negative and non-decreasing function

∫
Rd

ψ(f�g)(z)dz ≥
∫
Rd

ψ(f ∗�g∗)(z)dz. (7.10)

The universal measurability of f�g will follow from the proof, which gives the
universal measurability of ψ(f�g) as a consequence.

Proof For λ ∈ (0,∞), define

S0 = S0(λ) = {s ∈ Q
2+ : s1−t

1 st
2 > λ}. (7.11)

Observe,

{f�g > λ} =
⋃

s∈S0(λ)

(1 − t){f > s1} + t{g > s2}. (7.12)
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Indeed, it is routine to check that z ∈ ∪s∈S0(1 − t){f > s1} + t{g > s2} implies
f�g(z) > λ. Conversely, if f�g(z) > λ, then there exists a pair of x and y

such that (1 − t)x + ty = z and f 1−t (x)gt (y) > λ. By the continuity of the map
(u, v) 
→ u1−t vt , there exists (s1, s2) rational satisfying s1 < f (x), s2 < g(y), and
s1−t

1 st
2 > λ, which proves the claim.

Let us remark that the sum of Borel sets is universally measurable,1 and
hence {f�g > λ} is as well. This shows we are well justified in our notation∫
Rd f�g(z)dz. By Brunn–Minkowski and the characterizing property of rearrange-

ments on super level sets

|(1 − t){f > s1} + t{g > s2}| ≥ |(1 − t){f > s1}∗ + t{g > s2}∗| (7.13)

= |(1 − t){f ∗ > s1} + t{g∗ > s2}|. (7.14)

Now applying (7.12) to f ∗�g∗ and observing that

(1 − t){f ∗ > s1} + t{g∗ > s2}

is an origin centered ball in R
d for every s ∈ S0(λ), we see that

|{f ∗�g∗ > λ}| =
∣∣∣∣∣∣

⋃
s∈S0(λ)

(1 − t){f ∗ > s1} + t{g∗ > s2}
∣∣∣∣∣∣

= sup
s∈S0

∣∣(1 − t){f ∗ > s1} + t{g∗ > s2}
∣∣ .

Using (7.13),

∣∣(1 − t){f ∗ > s1} + t{g∗ > s2}
∣∣ ≤

∣∣∣∣∣∣
⋃

s∈S0(λ)

(1 − t){f > s1} + t{g > s2}
∣∣∣∣∣∣ .

Thus it follows that

|{f�g > λ}| ≥ |{f ∗�g∗ > λ}|. (7.15)

Using the layer-cake decomposition of the integral,
∫
Rd

ψ(f�g)(z)dz =
∫ ∞

0
|{ψ(f�g) > t}|dt.

Notice that by the non-decreasingness, ψ−1(λ,∞) is an interval of the form [x,∞)

or (x,∞) for a non-negative x. From this, we can use (7.15) (and continuity of

1This follows from the fact that Borel sets are analytic, see [28], and analytic sets are closed under
summation and universally measurable.



80 J. Melbourne

measure if the interval is closed) to obtain (7.10). To recover (7.9), note that the first
inequality follows from setting ψ(x) = x, while the second is the application of PLI
to f ∗ and g∗ combined with the equimeasurability of the rearrangements ensuring∫

f ∗ = ∫
f and

∫
g∗ = ∫

g. 	


7.4 Functional Lifting of Rearrangements

In this section we show that in a general setting, certain set theoretic rearrangement
inequalities can be extended to functional analogs, extending the rearrangement
inequality proven for PLI in the previous section to more general operations than
� in (7.8). Let us make precise the set theoretic rearrangement inequality we will
generalize.

Definition 7.4.1 Let m : Mn → M and η : Nn → N be such that
m(A1, . . . , An) = {x = m(a1, . . . , an) : ai ∈ Ai} and η(B1, . . . , Bn) =
{y = η(b1, . . . , bn) : bi ∈ Bi} are universally measurable for Ai and Bj Borel.
Suppose further that {η(A∗

1, . . . , A
∗
n)}A indexed on n-tuples of Borel sets is totally

ordered in the sense that for any Borel A1, . . . , An and A′
1, . . . , A

′
n we have either

η(A∗
1, . . . , A

∗
n) ⊆ η(A′∗

1, . . . , A
′∗
n) or η(A∗

1, . . . , A
∗
n) ⊇ η(A′∗

1, . . . , A
′∗
n) we say

that ∗ satisfies a set theoretic rearrangement inequality when the following holds

μ(m(A1, . . . , An)) ≥ α(η(A∗
1, . . . , A

∗
n)).

We will focus on two main examples, the rearrangement to convex sets in
Euclidean space and rearrangement to half-spaces in Gaussian space.

Proposition 7.4.2 When (M,m,μ) = (N, η, α) = (Rd,mt , dx), and t =
(t1, . . . , tn) ∈ R

n, defines a map mt by vector space operations,

x = (x1, . . . , xn) 
→
n∑

i=1

tixi, (7.16)

then the ∗K rearrangement, as in Sect. 7.2 for K open, convex, and symmetric,
satisfies a set theoretic rearrangement inequality. If the ti are assumed positive, ∗K

satisfies a set theoretic rearrangement without symmetry if 0 belongs to the closure
of K .

Proof Take Bi = sgn(ti)Ai so that t1A1 + · · · + tnAn = |t1|B1 + · · · + |tn|Bn.
Using the symmetry and convexity of K and the definition of our rearrangement as
a scaling of K , it follows that

t1A
∗
1 + · · · + tnA

∗
n =

(
n∑

i=1

|ti ||Ai| 1
d

)
K
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and hence, the images of mt are totally ordered. Brunn–Minkowski implies that

||t1|B1 + · · · + |tn|Bn| ≥ ||t1|B∗
1 + · · · + |tn|B∗

n |.

It follows that

|t1A1 + · · · + tnAn| ≥ |t1A∗
1 + · · · + A∗

n|.

When ti are positive, the proof is similar and simpler. 	

Proposition 7.4.3 When (M,m,μ) is a centered Gaussian measure on a Banach
space M and m defined as x = (x1, . . . , xn) 
→ ∑

i tixi for ti > 0,
∑

i ti = 1,
and (N, η, α) with N = R

d , η defined by y 
→ ∑
i tiyi and α = γd the half-

space rearrangement from Proposition 7.2.9 yields a set theoretic rearrangement
inequality.

This is the content of the Borell–Ehrhard theorem, which we will discuss in more
detail in Sect. 7.5.2. Now let us generalize the geometric mean used in PLI.

Definition 7.4.4 For 0 < T ≤ ∞, a function M : [0, T )n → [0,∞] is continuous
coordinate increasing when

1. x, y ∈ R
n satisfying xi > yi for all i, necessarily satisfy M(x) > M(y)

2. M(x) = 0 when
∏

i xi = 0
3. M(x) = supy<x M(y) with the convention that supy<x M(y) = 0 when {y <

x} is empty.

By convention, in the case that T is finite, we extend M to [0, T ]n by M(x) =
supy<x M(y). It should also be assumed, all M that follow are defined to be zero
on {x : ∏

i xi = 0}.

7.4.1 Examples

1. For t = (t1, . . . , tn) with ti > 0 and p ∈ [−∞, 0) ∪ (0,∞] take for u ∈ [0,∞)n

Mt
p(u) = (

t1u
p

1 + · · · + tnu
p
n

) 1
p . (7.17)

with Mt−∞(u) = mini ui and Mt∞(u) = maxi ui

2. For t = (t1, · · · , tn) with ti > 0 and u ∈ [0,∞)n,

Mt
0(u) =

∏
u

ti
i . (7.18)

Note that in the case that
∑

i ti = 1, Mt
0 is the limiting case of the previous

example.
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3. Define for ti > 0 and u ∈ (0, 1)n,

Mt
�(u) = �(t1�

−1(u1) + · · · + tn�
−1(un))

Now let us define the functional operation our set theoretic rearrangement
inequalities may be generalized to.

Definition 7.4.5 For M, a continuous coordinate increasing function, f = {fi}ni=1
with fi : M → [0, T ) and m : Mn → M define

�M,mf (z) := sup
m(x)=z

M(f1(x1), . . . , fn(xn)).

Let us further denote for a rearrangement ∗ satisfying a set theoretic rearrangement
inequality, f∗ = {f ∗

i }ni=1, so that

�M,ηf∗(w) = sup
η(y)=w

M(f ∗
1 (y1), . . . , f

∗
n (yn)).

When there is no risk of ambiguity we will suppress the notation for the mapping m

and write �Mf in place of �M,mf .

Notice that Theorem 7.3.1 was the case that m(x, y) = η(x, y) = (1 − t)x + ty

and M is the geometric mean as in (7.18).

Theorem 7.4.6 A set theoretic rearrangement inequality,

μ(m(A1, . . . , An)) ≥ α(η(A∗
1, . . . , A

∗
n))

can be extended to functions in the sense that for f = {fi}ni=1, with fi Borel
measurable from M to [0,∞), M a continuous coordinate increasing function,
and a non-negative non-decreasing ψ ,

∫
ψ(�M,mf )dμ ≥

∫
ψ(�M,ηf∗)dα.

Proof For λ > 0, write

SM(λ) = {q ∈ Q
n+ : M(q) > λ}.

We will prove μ(�Mf > λ) ≥ α(�Mf∗ > λ). First observe that by arguments
similar to the proof of Theorem 7.3.1

{�Mf > λ} =
⋃

q∈SM(λ)

m({f1 > q1}, . . . , {fn > qn}). (7.19)
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Indeed, suppose �Mf (z) > λ. This implies the existence of some x such that
m(x) = z and M(f1(x1), . . . , fn(xn)) > λ. By the continuity of M, there exists
q ∈ SM(λ) such that M(q1, . . . , qn) > λ and f (xi) > qi . The opposite direction
is immediate. Observe that by our measurability assumptions on m and (7.19),
the superlevel sets of �M,mf are universally measurable. Since ψ is necessarily
Borel measurable by its monotonicity, its composition with �M,mf is indeed
universally measurable. Analogously, (note that f ∗

i are Borel measurable, by lower
semi-continuity),

{�Mf∗ > λ} =
⋃

q∈SM(λ)

η({f ∗
1 > q1}, . . . , {f ∗

n > qn}). (7.20)

This gives

μ{�Mf > λ} = μ

⎛
⎝ ⋃

q∈SM(λ)

m({f1 > q1}, . . . , {fn > qn})
⎞
⎠ .

≥ sup
q∈SM(λ)

μ(m({f1 > q1}, . . . , {fn > qn}))

≥ sup
q∈SM(λ)

α(η({f1 > q1}∗, . . . , {fn > qn}∗))

= α

⎛
⎝ ⋃

q∈SM(λ)

η({f ∗
1 > q1}, . . . , {f ∗

n > qn})
⎞
⎠

= α{�Mf∗ > λ}.

The first inequality is obvious, the second is by the assumed set theoretic rear-
rangement inequality, and the following equality is by the assumption of total
orderedness. The last equality is the from (7.20). 	


7.5 Applications

7.5.1 Borell–Brascamp–Lieb Type Inequalities

In the case that λ ∈ (0, 1) and −∞ ≤ p ≤ ∞, we recall from example (1) the
following continuous coordinate increasing function,

M(u, v) = Mλ
p(u, v) =

{
((1 − λ)up + λvp)

1
p if uv �= 0

0 if uv = 0.
(7.21)
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The Borell–Brascamp–Lieb inequality generalizes the PLI with the understanding
that Mλ

0(u, v) = u1−λvλ. Note that Mλ∞(u, v) = max{u, v} and Mλ−∞(u, v) =
min{u, v} as defined in Eq. (7.17). If we define f�Mλ

p
g using m(x, y) = (1−λ)x+

λy as in Definition 7.4.5, we can state the inequality as the following.

Theorem 7.5.1 (Borell–Brascamp–Lieb [15, 18]) For λ ∈ (0, 1) and Borel
functions f, g : Rn → [0,∞),

∫
f�Mλ

p
g(x) dx ≥ Mλ

p/(np+1)

(∫
f (x)dx,

∫
g(x)dx

)

when p ≥ −1/n.

We present the following sharpening.

Theorem 7.5.2 For Borel functions f, g : Rn → [0,∞) and ∗ a rearrangement to
a convex set,

∫
f�Mλ

p
g(x) dx ≥

∫
f ∗�Mλ

p
g∗(x) dx

≥ Mλ
p/(np+1)

(∫
f (x)dx,

∫
g(x)dx

)

when p ≥ −1/n.

Proof As described in Proposition 7.4.2, the Brunn–Minkowski inequality shows
that the usual Lebesgue measure with the map (x, y) 
→ (1 −λ)x + ty) satisfy a set
theoretic rearrangement inequality. The result then follows from Theorem 7.4.6. 	


7.5.2 The Gaussian Case

For simplicity we restrict ourselves to the R
d case and employ the rearrangement ∗

from the Gaussian measure space (Rd, γd) to (R, γ1), by

A∗ = {x ∈ R : x < t}

where t = �−1(γd(A)) is chosen to satisfy γd(A) = γ (A∗). A functional half-space
rearrangement by

f ∗(x) =
∫ ∞

0
1{f >t}∗(x)dt.
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The Borell–Ehrhard’s inequality [16, 24] is usually stated as the assertion that
t ∈ (0, 1), A,B Borel in R

d imply

γd((1 − t)A + tB) ≥ �((1 − t)�−1(μ(A)) + t�−1(μ(B))).

It can be equivalently formulated in our terminology and notation .

Theorem 7.5.3 (Borell–Ehrhard [16, 24]) For t ∈ (0, 1), m(x, y) = (1−t)x+ty,
η(u, v) = (1−t)u+tv, and ∗ our halfspace rearrangement from (Rd , γd) to (R, γ ),
satisfy a the set theoretic rearrangement inequality, explicitly for Borel A and B

γd((1 − t)A + tB) ≥ γ ((1 − t)A∗ + tB∗).

We will extend Theorem 7.5.3 to a functional inequality by Theorem 7.4.6.
However, it should be mentioned that the semigroup proof of Borell actually gave
a functional inequality already. The argument was streamlined by Barthe and Huet,
and it is their generalization below that we will sharpen.

Theorem 7.5.4 (Barthe–Huet [3]) Fix a set I ⊆ {1, 2, . . . , n} and positive
numbers λ1, . . . , λn satisfying

∑
λi ≥ 1 and λj − ∑

i �=j λi ≤ 1 for j /∈ I . Then for

Borel f1, . . . , fn from R
d to [0, 1] such that �−1 ◦ fi is concave for i ∈ I , and a

Borel h satisfying h(
∑

i λixi) ≥ �(
∑

i λi�
−1(fi(xi))), then

∫
hdγd ≥ �

(
λ1�

−1
(∫

f1dγd

)
+ · · · + λn�

−1
(∫

fndγd

))
.

A consequence of Theorem 7.5.4 (and actually proven equivalent to Theo-
rem 7.5.4 in the same paper) is the following.

Corollary 7.5.5 Fix a set I ⊆ {1, 2, . . . , n} and set of positive numbers λ1, . . . , λn

satisfying
∑

λi ≥ 1 and λj − ∑
i �=j λi ≤ 1 for j /∈ I . Then for Borel Aj ,

γd(λ1A1 + · · · + λnAn) ≥ �(λ1�
−1(γd(A1)) + · · · + λn�

−1(γd(An)))

= γ (λ1A
∗
1 + · · · + λnA

∗
n)

holds, provided Ai are convex when i ∈ I .

Strictly speaking, unless I is empty, the half-line rearrangement does not yield a
set theoretic rearrangement inequality with the maps mλ(x) = λ1x1 + · · · + λnxn

and ηλ(y) = λ1y1+· · ·+λnyn. However the proof of Theorem 7.4.6 can be adapted
to achieve the following refinement of Barthe-Huet.
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Theorem 7.5.6 For Borel f1, . . . , fn from R
d to [0, 1] such that �−1◦fi is concave

for i ∈ I and

∫
�Mλ

�
f dγd ≥

∫
�Mλ

�
f∗dγ

≥ Mλ
�

(∫
f ∗

1 dγ, . . . ,

∫
f ∗

n dγ

)

= Mλ
�

(∫
f1dγ, . . . ,

∫
fndγ

)
.

In analyzing the proof of Theorem 7.5.6, a loosening of the hypothesis can be
achieved, requiring only that for i ∈ I , fi is quasi-concave and �−1 ◦ f ∗

i concave.

Proof Once it is observed that �−1 ◦ fi concave ensures {fi > qi} is a convex set,
so that one can apply Corollary 7.5.5, the first inequality can be derived following
the proof of Theorem 7.4.6. The equality is immediate as well, following from
our definition of rearrangement. Thus, to prove the result, we need only justify
the second inequality, which follows from Theorem 7.5.4 once we know that the
concavity of �−1 ◦ fi implies the concavity of �−1 ◦ f ∗

i as well. For this, we prove
a general result below. 	

Definition 7.5.7 For a fixed t ∈ (0, 1) and a convex set K we will call f : K → R,
�t -concave when there exists a continuous coordinate increasing function �t such
that

f ((1 − t)x1 + tx2) ≥ �t(f (x1), f (x2)).

Notice that the concavity of �−1 ◦ f is equivalent to the statement that f is �t -
concave with �t(u1, u2) = Mt

�(u1, u2) = �((1 − t)�−1(u1) + t�−1(u2)) for
t ∈ (0, 1).

Proposition 7.5.8 Suppose that f, g, h are Borel functions on a space (M,μ)

satisfying

h((1 − t)x + ty) ≥ �t(f (x), g(y)) (7.22)

for x, y ∈ M , and that ∗ is a rearrangement from (M,μ) to a space (N, α)

satisfying

μ((1 − t)A + tB) ≥ α((1 − t)A∗ + tB∗). (7.23)

Additionally assume that the space of rearranged sets has a total ordering that
respects Minkowski summation in the sense that (1 − t)A∗ + tB∗ and C∗ satisfy
either

(1 − t)A∗ + tB∗ ⊆ C∗ or (1 − t)A∗ + tB∗ ⊇ C∗ (7.24)
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then

h∗((1 − t)x + ty) ≥ �t(f
∗(x), g∗(y)) (7.25)

holds for x, y ∈ N .

Note that Theorem 7.5.6 follows from the proposition by taking f = g = h and
�t = Mt

�. Indeed, since the half-line rearrangement satisfies (7.24), as half-lines
are stable under convex combination, it follows that f ∗ to be Mt

�-concave if f is.

Proof Observe that inequality (7.22) can be equivalently stated as λi ∈ R implies

(1 − t){f > λ1} + t{g > λ2} ⊆ {h > �t(λ1, λ2)}. (7.26)

which can be easily verified using our assumptions of continuity and monotonicity.
Indeed, if (7.22) holds, then for z = (1−t)x+ty for x ∈ {f > λ1} and y ∈ {g > λ2}
we have h(z) ≥ �t(f (x), g(y)) > �t(λ1, λ2). For the converse, given x, y take
λ1 < f (x) and λ2 < g(y), then z = (1 − t)x + ty ∈ (1 − t){f > λ1} + t{g >

λ2}. By (7.26), h(z) > �t(f (x), g(y)), and by the continuity assumption on �t ,
�t(f (x), g(y)) = supλ �t(λ1, λ2) ≤ h(z). Thus we will prove (1 − t){f ∗ > λ1} +
t{g∗ > λ2} ⊆ {h∗ > �t(λ1, λ2)}, or equivalently

(1 − t){f > λ1}∗ + t{g > λ2}∗ ⊆ {h > �t (λ1, λ2)}∗.

By (7.24), it is enough to show

α((1 − t){f > λ1}∗ + t{g > λ2}∗) ≤ α({h > �t(λ1, λ2)}∗).

By our assumptions (7.23) and (7.26),

α((1 − t){f > λ1}∗ + t{g > λ2}∗) ≤ μ((1 − t){f > λ1} + t{g > λ2})
≤ μ({h > �t(λ1, λ2)}).

Our result follows since

μ({h > �t(λ1, λ2)}) = α({h > �t(λ1, λ2)}∗).

	

Observe that Proposition 7.5.8 gives another proof of Theorem 7.3.1. Indeed,

since f�g((1 − t)x + ty) ≥ f 1−t (x)gt (y) holds for all x, y, (f�g)∗((1 − t)x +
ty)) ≥ (f ∗)1−t (x)(g∗)t (y) holds as well. This implies (f�g)∗ ≥ f ∗�g∗ and
hence

|{f�g > λ}| = ∣∣{(f�g)∗ > λ
}∣∣ ≥ ∣∣{f ∗�g∗ > λ

}∣∣ .
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Let us also point out the corollary obtained by taking f = g = h, as it is of
interest independent of the application to Theorem 7.5.6.

Corollary 7.5.9 If f : Rd → [0,∞) is �t -concave, and ∗ implies f ∗ is as well.

It follows immediately that the class of d-dimensional s-concave measures is stable
under (convex set) rearrangement. See [11, 13] for background and [30, 32] for
recent connections between s-concave measures and information theory.

7.5.3 Polar Prékopa–Leindler

For fixed t, λ ∈ (0, 1), define M : [0,∞)2 → [0,∞) by

M(u, v) = min
{
u

1−t
1−λ , v

t
λ

}
,

and for x, y ∈ R
d define m(x, y) = (1 − t)x + ty so that

f�Mg(z) = sup
m(x,y)=z

min
{
f (x)

1−t
1−λ , g(y)

t
λ

}
.

We can state the recent polar analog of Prékopa–Leindler due to Artstein-Avidan,
Florentin, and Segal.

Theorem 7.5.10 (Artstein-Avidan et al. [1]) For f, g : Rd → [0,∞) Borel, and
μ log-concave

∫
f�Mg(x)dμ(x) ≥ Mλ−1

(∫
f (x)dμ(x),

∫
g(x)dμ(x)

)
.

In the case that μ is Lebesgue (with ∗ rearrangement to a convex set) or Gaussian
(with ∗ rearrangement to a half-space), and η(x, y) = (1 − t)x + ty, this can be
sharpened to the following.

Theorem 7.5.11 For f, g : Rd → [0,∞) Borel, and μ either Gaussian, with ∗ the
half space rearrangement, or Lebesgue with ∗ a convex set rearrangement, then

∫
f�Mgdμ ≥

∫
f ∗�Mg∗dμ

≥ Mλ−1

(∫
f dμ,

∫
gdμ

)
.

Proof As we have seen, the map (x, y) 
→ (1 − t)x + ty satisfies a set theoretic
rearrangement inequality by Brunn–Minkowski with respect to Lebesgue measure
and rearrangement to a convex set, and by Borell–Ehrhard with respect to Gaussian



7 Rearrangement and Prékopa–Leindler Type Inequalities 89

measure and rearrangement to a halfspace. The map M(u, v) = min{u 1−t
1−λ , v

t
λ } is

clearly continuous and coordinate increasing for λ, t ∈ (0, 1). Thus in both cases,
Gaussian and Lebesgue, we can invoke Theorem 7.4.6 to obtain the first inequality.
The second inequality is obtained from the application of Theorem 7.5.10 to f ∗ and
g∗, and the equimeasurability of rearrangements. 	


7.6 Gaussian Log-Sobolev Inequality

For a probability measure μ define the entropy functional2 for a non-negative f by

Hμ(f ) =
∫

f log f dμ −
∫

f dμ log
∫

f dμ.

One formulation of the Gaussian log-Sobolev inequality is the following.

Theorem 7.6.1 (Gaussian Log-Sobolev) For positive smooth f ,

Hγd (f ) ≤ 1

2

∫ |∇f |2
f

dγd.

In this form the inequality is due to Gross [27]. Carlen [20] showed it to be
equivalent to the earlier information theoretic Blachman–Stam inequality [5, 48].
The Gaussian log-Sobolev inequality was shown to be a consequence of a strength-
ened PLI for strongly log-concave measures by Bobkov–Ledoux [8], and it is this
perspective that we now develop to motivate the main result of this section, a
rearrangement sharpening of an integrated Gaussian log-Sobolev inequality. In this
direction, let us recall that the PLI can be easily extended to the log-concave case.

Theorem 7.6.2 (Log-Concave PLI) For measure μ with density ϕ satisfying

ϕ((1 − t)x + ty) ≥ ϕ1−t (x)ϕt (y),

the inequality for non-negative functions u, v,w

u((1 − t)x + ty) ≥ v1−t (x)wt (y)

implies

∫
udμ ≥

(∫
vdμ

)1−t (∫
wdμ

)t

. (7.27)

2Note that when f = dν
dμ

is the density function of a probability measure ν with respect to μ,
Hμ(f ) is the Kullback–Liebler divergence D(ν||μ) or relative entropy [22].
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Proof Observing that the functions ũ(z) = u(z)ϕ(z), ṽ(z) = v(z)ϕ(z), and w̃(z) =
w(z)ϕ(z) satisfy

ũ((1 − t)x + ty) ≥ ṽ1−t (x)w̃t (y)

so that applying the ordinary PLI, we have

∫
ũ(z)dz ≥

(∫
ṽ(z)dz

)1−t (∫
w̃(z)dz

)t

,

which is exactly (7.27). 	

The log-concave case corresponds to the case when the measure is given by

a density corresponding to a convex potential, that is, ϕ(x) = e−V (x) with V is
convex. For the Gaussian measure something stronger is true. In this case, V satisfies

V ((1 − t)x + ty) ≤ (1 − t)V (x) + tV (y) − t (1 − t)|x − y|2/2. (7.28)

Note that in the case that V is smooth, log-concavity is exactly V ′′ ≥ 0d in the
sense of positive semi-definite matrices, while (7.28) is V ′′ ≥ Id . Under these
assumptions, Theorem 7.6.2 admits the following strengthening.

Theorem 7.6.3 (Curved Prékopa–Leindler) For t ∈ (0, 1), μ strongly log-
concave in the sense of (7.28), and u, v,w : Rd → [0,∞) satisfying

u((1 − t)x + ty) ≥ e−t (1−t )|x−y|2/2v1−t (x)wt (y),

for all x, y ∈ R
d , then

∫
udμ ≥

(∫
v dμ

)1−t (∫
wdμ

)t

.

Proof The proof follows again from applying the Euclidean PLI to ũ(z) =
u(z)ϕ(z), ṽ(z) = v(z)ϕ(z). 	


Following arguments of Bobkov–Ledoux [8] we pursue a specialization of The-
orem 7.6.3 to a single function, revealing a log-Sobolev inequality as a consequence
of a strengthened PLI. For a fixed t ∈ (0, 1), and a strongly log-concave probability

measure μ, and f , take w = f
1
t , v = 1, then for any u, satisfying

u((1 − t)x + ty) ≥ e−t (1−t )|x−y|2/2f (y)

we have from Theorem 7.6.3

∫
u dμ ≥

(∫
f

1
t dμ

)t

.
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With the interest of determining the optimal such u achievable through the methods
of PLI, it is natural to consider

u(z) = sup
{(x,y):(1−t )x+ty=z}

e−t (1−t )|x−y|2/2f (y).

Writing λ = 1−t
t

, note that the constraint on x, y is equivalent to y = z + λ(z − x),
so that the u(z) above can be expressed as Qλf (z) in the following definition.

Definition 7.6.4 For λ ∈ (0,∞) and f non-negative and Borel measurable, define

Qλf (z) = sup
w

f (z + λw)e−λ|w|2/2

= sup
w

f (z + w)e−|w|2/2λ.

Writing ‖f ‖p = (∫ |f |pdμ
) 1

p we can collect the above as the following.

Theorem 7.6.5 (Integrated Log-Sobolev) For μ a strongly log-concave probabil-
ity measure, λ ∈ (0,∞) and f non-negative and Borel measurable,

‖Qλf ‖1 ≥ ‖f ‖1+λ.

The log-Sobolev inequality for strongly log-concave probability measures can be
recovered as a corollary.

Corollary 7.6.6 (Log-Sobolev Inequality) For μ strongly log-concave probability
measure, and f a positive smooth function

Hμ(f ) ≤ 1

2

∫ |∇f |2
f

dμ

A proof is given in [8] where the expressions are given in terms of f 2 rather than
f . It follows as a limiting case of Theorem 7.6.5 with λ → 0.

Sketch of Proof For smooth positive functions constant outside of a compact set,
one observes that equality holds when λ = 0. Then the Taylor series expansion,

‖f ‖1+λ = ‖f ‖1 + λHμ(f ) + o(λ)

and a derived inequality

‖Qλf ‖1 ≤ ‖f ‖1 + λ

2

∫ |∇f |2
f

dμ + o(λ)

deliver the conclusion. A limiting argument gives the result for general functions.
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To state our main result of the section, let μ = γd a standard Gaussian and ∗ be
the half-space rearrangement of a set under γd , as in Proposition 7.4.3.

Theorem 7.6.7 For non-negative Borel f and λ, s > 0,

γd({Qλf > s}) ≥ γ ({Qλf
∗ > s})

where f ∗ is the Gaussian half-line rearrangement of f .

It will be a consequence of the proof that Qλf is universally measurable.

Proof We first express {Qλf > s} as the union of simpler sets. Denoting

S = S(s, q1, q2) = {q = (q1, q2) ∈ Q
2+ : q1q2 > s},

it is straight forward to verify

{Qλf > s} =
⋃
q∈S

(
{x ∈ R

d : f (x) > q1} +
{

y ∈ R
d : |y| <

√
2λ ln

1

q2

})
.

(7.29)

Indeed, for z belonging to the union, there exists rational qi , and x, y satisfying

f (x) > q1, |y| <
√

2λ ln 1
q2

, and x + y = z. Taking w = −x = y − z,

f (w)e−|w|2/2λ > q1q2 > s,

so that z ∈ {Qλf > s}. Conversely if there exists a w such that f (z+w)e−|w|2/2λ >

s then by continuity there exist rational qi satisfying f (z+w) > q1, e−|w|2/2λ > q2,
and q1q2 > s. Taking x = z + w and y = −w we see that (q1, q2) ∈ S and

z ∈ {f > q1} +
{

|y| <

√
2λ ln

1

q2

}
.

Notice that this gives {Qλf > s} as a countable union of Minkowski sums of
analytic sets. Since analytic sets are closed under such operations, {Qλf > s} is
an analytic set as well, and the universal measurability of Qtf follows.

Applying the Gaussian isoperimetric inequality [14, 49], which in our preferred
formulation states that γd(A + Bd) ≥ γ (A∗ + B1) where Bd and B1 are origin
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symmetric Euclidean balls of equal radius (in R
d and R respectively), we have

γd({Qλf > s}) = γd

⎛
⎝⋃

q∈S

{f > q1} +
{

w ∈ R
d : |w| <

√
2λ ln

1

q2

}⎞
⎠

≥ sup
q∈S

γd

(
{f > q1} +

{
w ∈ R

d : |w| <

√
2λ ln

1

q2

})

≥ sup
q∈S

γ

(
{f > q1}∗ +

{
w ∈ R : |w| <

√
2λ ln

1

q2

})
.

But {f > q1}∗ = {f ∗ > q1} is a half-line and hence the sets {f ∗ > q1} +{
|w| <

√
2λ ln 1

q2

}
, indexed by S(λ, q1, q2), are totally ordered. Thus,

sup
q∈S

γ

(
{f > q1}∗ +

{
|w| <

√
2λ ln

1

q2

})
= γ

⎛
⎝⋃

q∈S

{f ∗ > q1} +
{

|w| <

√
2λ ln

1

q2

}⎞
⎠ .

Applying (7.29),

γ

⎛
⎝⋃

q∈S

{f ∗ > q1} +
{

|w| <

√
2λ ln

1

q2

}⎞
⎠ = γ ({Qλf

∗ > λ}),

and our theorem follows. 	

As an immediate consequence, we have a sharpening of Theorem 7.6.5.

Corollary 7.6.8 For f non-negative and Borel, and norms taken with respect to γ ,

∫
Qλf dγ ≥

∫
Qλf

∗dγ ≥ ‖f ∗‖1+λ = ‖f ‖1+λ.

Proof The first inequality is a consequence of Theorem 7.6.7, while the second is
from Theorem 7.6.5. 	


We also direct the reader to the articles [41, 42] of Martín and Milman, whose
work on symmetrization, isoperimetry, and log-Sobolev inequalities the author
learned of during the revision of this paper.
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7.7 Barthe, Brascamp, Lieb and Rearrangement

The Brascamp–Lieb inequality is the following.

Theorem 7.7.1 (Brascamp–Lieb [17]) For natural numbers n ≤ m, and {ni}mi=1
with ni ≤ n and {ci}mi=1 a sequence of positive numbers such that

∑m
i=1 cini = n

then for surjective linear maps Bi : Rn → R
ni , with ∩i ker(Bi) = 0 and transposes

denoted B ′
i satisfy the following,

∫
Rn

m∏
i=1

f
ci

i (Bix)dx ≤ C−1/2
∏(∫

R
ni

fi

)ci

for fi : Rni → [0,∞) integrable, and

C = inf

{
det(

∑
i=1 ciB

′
iAiBi)∏

detci Ai

: Ai positive definite

}
.

The theorem enjoys a qualitative analog in the case that ni = d , so that n = md and
x ∈ R

n can be expressed as x = (x1, . . . , xm) for xj ∈ R
d and Bi are of the form

Bix =
m∑

j=1

Bij xj . (7.30)

Theorem 7.7.2 (Brascamp et al. [19]) For Bi satisfying (7.30),

∫
Rn

m∏
i=1

fi(Bix)dx ≤
∫
Rn

m∏
i=1

f ∗
i (Bix)dx,

where ∗ represents the spherically symmetric decreasing rearrangement.

Notice that when Theorem 7.7.2 applies, it gives an intermediary inequality to
Theorem 7.7.1. Indeed, since (f ci )∗ = (f ∗)ci , applying first Theorem 7.7.2, and
then 7.7.1, gives

∫
Rn

m∏
i=1

f ci (Bix)dx ≤
∫
Rn

m∏
i=1

(f ∗)ci (Bix)dx

≤ C−1/2
m∏

i=1

(∫
R

ni

f

)ci

.

Barthe gave the following reversal of Brascamp–Lieb, which serves as a dual
inequality.
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Theorem 7.7.3 (Barthe [2]) For n, m, {ni}mi=1, {ci}mi=1, Bi , and C as in Theo-
rem 7.7.1 then the inequality

C1/2
m∏

i=1

(∫
R

ni

fi

)ci

≤
∫
Rn

sup

{
m∏

i=1

f
ci

i (yi) :
∑

i

ciB
′
iyi = x

}
dx,

holds for fi : Rni → [0,∞) integrable.

Taking m = 2, c1 = (1 − t), c2 = t and ni = n and Bi to be the identity map
yields C = 1 and we recover the Prekopa–Liendler inequality. We ask if further
extensions of our work here exist.

Question 7.7.4 Suppose that Bi are of the form (7.30), and fi : R
d → [0,∞),

when is it true that

∫
Rn

sup

{
m∏

i=1

fi(yi) :
∑

i

B ′
iyi = x

}
dx ≥

∫
Rn

sup

{
m∏

i=1

f ∗
i (yi) :

∑
i

B ′
iyi = x

}
dx

(7.31)

holds?

The results presented here verify the inequality for general Borel fi in the case
that Bi are scalar multiples of the identity. Note that the case fi = 1Ai asks if the
following generalization of BMI holds

∣∣∣∣∣
∑

i

B ′
iAi

∣∣∣∣∣
n

≥
∣∣∣∣∣
∑

i

B ′
iA

∗
i

∣∣∣∣∣
n

, (7.32)

where

∑
i

B ′
iAi =

{
z =

∑
i

B ′
ixi : xi ∈ Ai

}
.

In the case that B ′
i : R → R

d , inequality (7.32) was proven by Zamir and Feder
[51].
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