
Chapter 6
Higher Order Concentration in Presence
of Poincaré-Type Inequalities

Friedrich Götze and Holger Sambale

Abstract We show sharpened forms of the concentration of measure phenomenon
typically centered at stochastic expansions of order d − 1 for any d ∈ N. Here we
focus on differentiable functions on the Euclidean space in presence of a Poincaré-
type inequality. The bounds are based on d-th order derivatives.
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6.1 Introduction

In this note, we study higher order versions of the concentration of measure
phenomenon. Instead of the classical problem of deviations of f around the mean
Ef , we study potentially smaller fluctuations of f̃d := f −Ef −f1−. . .−fd , where
f1, . . . , fd are “lower order terms” of f with respect to a suitable decomposition,
such as a Taylor-type decomposition of f . In order to study the concentration of f̃d

around 0, which we call higher order concentration of measure, we use derivatives
up to order d .

Previous work includes Adamczak and Wolff [2], who exploited certain Sobolev-
type inequalities or subGaussian tail conditions to derive exponential tail inequali-
ties for functions with bounded higher-order derivatives (evaluated in terms of some
tensor-product matrix norms). This approach was continued by Adamczak, Bednorz
and Wolff for measures satisfying modified logarithmic Sobolev inequalities in [3].
While in [2], concentration around the mean is studied, the idea of sharpening con-
centration inequalities for Gaussian and related measures by requiring orthogonality

F. Götze (�) · H. Sambale
Faculty of Mathematics, Bielefeld University, Bielefeld, Germany
e-mail: goetze@math.uni-bielefeld.de; hsambale@math.uni-bielefeld.de

© Springer Nature Switzerland AG 2019
N. Gozlan et al. (eds.), High Dimensional Probability VIII,
Progress in Probability 74, https://doi.org/10.1007/978-3-030-26391-1_6

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26391-1_6&domain=pdf
mailto:goetze@math.uni-bielefeld.de
mailto:hsambale@math.uni-bielefeld.de
https://doi.org/10.1007/978-3-030-26391-1_6


56 F. Götze and H. Sambale

to linear functions also appears in Wolff [16] as well as in Cordero-Erausquin et
al. [9]. For a detailed overview of the concentration of measure phenomenon, see
[8, 14].

Our research started with second order results for functions on the n-sphere
orthogonal to linear functions [6], with an approach which has been extended in
[10] for measures satisfying logarithmic Sobolev inequalities. This includes discrete
models as well as differentiable functions on open subsets of Rn. These results were
extended to arbitrary higher orders in [7].

While in [7], measures satisfying a logarithmic Sobolev inequality were con-
sidered, the aim of this note is to prove similar results for measures satisfying a
Poincaré-type inequality, i.e. a weaker assumption. To this end, let us recall that a
Borel probability measure μ on an open set G ⊂ R

n is said to satisfy a Poincaré-
type inequality with constant σ 2 > 0 if for any bounded smooth function f on G

with gradient ∇f ,

Varμ(f ) ≤ σ 2
∫

|∇f |2 dμ. (6.1)

Here, Varμ(f ) = ∫
f 2 dμ − (

∫
f dμ)2 denotes the variance. When considering σ

instead of σ 2 itself, we will always assume it to be positive.
Given a function f ∈ Cd(G), we define f (d) to be the (hyper-) matrix whose

entries

f
(d)
i1...id

(x) = ∂i1...id f (x), d = 1, 2, . . . (6.2)

represent the d-fold (continuous) partial derivatives of f at x ∈ G. By considering
f (d)(x) as a symmetric multilinear d-form, we define operator-type norms by

|f (d)(x)|Op = sup
{
f (d)(x)[v1, . . . , vd ] : |v1| = . . . |vd | = 1

}
. (6.3)

For instance, |f (1)(x)|Op is the Euclidean norm of the gradient ∇f (x), and
|f (2)(x)|Op is the operator norm of the Hessian f ′′(x). Furthermore, we will use
the short-hand notation

‖f (d)‖Op,p =
(∫

G

|f (d)|pOp dμ

)1/p

, p ∈ (0,∞]. (6.4)

For p = ∞, the right-hand side has to be read as the L∞-norm of |f (d)|Op.
We now have the following:

Theorem 6.1.1 Let μ be a probability measure on an open set G ⊂ R
n satisfying a

Poincaré-type inequality with constant σ 2 > 0, and let f : G → R be a Cd -smooth
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function with
∫
G f dμ = 0. Assuming the conditions

‖f (k)‖Op,2 ≤ σd−k ∀k = 1, . . . , d − 1, (6.5)

‖f (d)‖Op,∞ ≤ 1, (6.6)

there exists some universal constant c > 0 such that
∫

G

exp
( c

σ
|f |1/d

)
dμ ≤ 2.

Here, a possible choice is c = 1/(12e). Comparing Theorem 6.1.1 to its analogue
in presence of a logarithmic Sobolev inequality, i.e. Theorem 1.6 in [7], we see that
under the same assumptions (6.5) and (6.6), logarithmic Sobolev inequalities yield
exponential moment bounds for |f |2/d , whereas Poincaré-type inequalities provide
exponential moments for |f |1/d only. This corresponds to the well-known behaviour
in case of d = 1.

If f has centered partial derivatives of order up to d − 1, it is possible to replace
(6.5) by a somewhat simpler condition. To this end, we need to involve Hilbert–
Schmidt-type norms |f (d)(x)|HS defined as the Euclidean norm of f (d)(x) ∈ R

nd
.

Similarly to (6.4), ‖f (d)‖HS,2 then denotes the L2-norm of |f (d)|HS. In detail:

Theorem 6.1.2 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a Poincaré-type inequality with constant σ 2, and let f : G → R be a Cd -smooth
function such that

∫
G

f dμ = 0 and
∫

G

∂i1...ik f dμ = 0

for all k = 1, . . . , d − 1 and 1 ≤ i1, . . . , ik ≤ n. Assuming that

‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1,

there exists some universal constant c > 0 such that
∫

G

exp
( c

σ
|f |1/d

)
dμ ≤ 2.

Here again, a possible choice is c = 1/(12e).
By Chebyshev’s inequality, Theorem 6.1.1 immediately yields

μ(|f | ≥ t) ≤ 2e−ct1/d /σ

for any t ≥ 0. For small values of t , it is possible to obtain refined tail estimates in
the spirit of Adamczak [1], Theorem 7, or Adamczak and Wolff [2], Theorem 3.3
(with γ = 1 using their notation), by analyzing the proof of Theorem 6.1.1:
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Corollary 6.1.3 Let μ be a probability measure on an open set G ⊂ R
n satisfying a

Poincaré-type inequality with constant σ 2 > 0, and let f : G → R be a Cd -smooth
function with

∫
G f dμ = 0. For any t ≥ 0, set

ηf (t) := min
( √

2t1/d

σ‖f (d)‖1/d

Op,∞
, min
k=1,...,d−1

√
2t1/k

σ‖f (k)‖1/k

Op,2

)
.

Then,

μ(|f | ≥ t) ≤ e2 exp(−ηf (t)/(de)).

As a generalization of these bounds, we may consider measures satisfying
weighted Poincaré-type inequalities. Recall that a Borel probability measure μ on
an open set G ⊂ R

n is said to satisfy a weighted Poincaré-type inequality if for any
bounded smooth function f on G with gradient ∇f ,

Varμ(f ) ≤
∫

|∇f |2w2 dμ, (6.7)

where w : G → [0,∞) is some measurable function. Examples include Cauchy
measures and Beta distributions. For a detailed discussion see Bobkov and Ledoux
[5].

In these cases we cannot expect exponential integrability as in Theorem 6.1.1 any
more, since distributions satisfying (6.7) may have a slow, say, polynomial, decay at
infinity. Nevertheless, it is still possible to obtain higher order concentration results
by controlling the Lp-norms of f and its derivatives. In detail:

Proposition 6.1.4 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a weighted Poincaré-type inequality (6.7), and let f : G → R be a Cd -smooth
function with

∫
G

f dμ = 0. Then, for any p ≥ 2,

‖f ‖p ≤
d−1∑
k=1

(2
k−2

2 p‖w‖2kp)k ‖f (k)‖Op,2 + (2
d−2

2 p)d‖w‖d−1
2d−1p

‖w|f (d)|Op‖2d−1p

≤
d−1∑
k=1

(2
k−2

2 p‖w‖2kp)k ‖f (k)‖Op,2 + (2
d−2

2 p‖w‖2dp)d ‖f (d)‖Op,2dp.

Proposition 6.1.4 should be compared to (6.15) from the proof of Theorem 6.1.1
in Sect. 6.2. In particular, if the weight function w is bounded by some real number
σ > 0, μ clearly satisfies a Poincaré-type inequality (6.1) with constant σ 2. In this
case, Proposition 6.1.4 implies a slightly weaker version of (6.15), and it is possible
to derive Theorem 6.1.1 again though with a somewhat weaker constant c = cd > 0.
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Suitable conditions on the weight function w may still yield exponential-type
tails at least in certain intervals. For instance, the following higher order analogue
of Corollary 4.2 in [5] holds:

Corollary 6.1.5 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a weighted Poincaré-type inequality (6.7), and let f : G → R be a Cd -smooth
function with

∫
G f dμ = 0 and such that (6.5) (with σ 2 = 1) and (6.6) from

Theorem 6.1.1 hold. Assume ‖w‖2dp ≤ C for some p ≥ 2 and some C ≥ 2−(d−1)/2.

Then, for any 0 ≤ t ≤ (2
d+5

2 Cep)d ,

μ(|f | ≥ t) ≤ ed/e exp(−dt1/d/(2
d+5

2 Ce)).

Hence, we obtain exponential-type tail bounds on an interval of length propor-

tional to pd . Note that if t > (2
d+5

2 Cep)d , we may still give bounds on μ(|f | ≥ t)

by taking (6.23) for q = p from the proof of Corollary 6.1.5. We omit details at
this point. The assumption C ≥ 2−(d−1)/2 is needed for technical reasons. In fact, it

guarantees that the quantities (2
k−1

2 C)k , k ≤ d − 1, are bounded by (2
d−1

2 C)d . For
d = 1 it can be removed. It is possible to adapt the proof for 0 < C < 2−(d−1)/2

and obtain similar bounds.
For d = 1, Corollary 6.1.5 gives back a version of Corollary 4.2 from [5] up

to constants, though with a boundedness condition on ‖w‖2p rather than ‖w‖p .
This may be adjusted by working with the first inequality from Proposition 6.1.4,
in which case we directly get back the [5] result. In the same way, it is possible to
derive a result similar to Corollary 6.1.5 which requires bounds on ‖w‖2d−1p. We
have chosen to work with the second inequality from Proposition 6.1.4 instead (and
thus need bounds on ‖w‖2dp) since this is technically slightly more convenient.

Under stronger moment conditions on the weight function w, e. g.
∫

ew2/αdμ ≤
2 for some α > 0, it is possible to obtain exponential-type tail bounds even on the
whole positive half-line, cf. Corollary 4.3 in [5].

Outline In Sect. 6.2, we give the proofs of the results stated above. In Sect. 6.3,
we provide some applications, including homogeneous multilinear polynomials of
order d and linear eigenvalue statistics in random matrix theory.

6.2 Proofs

Given a continuous function on an open subset G ⊂ R
n, the equality

|∇f (x)| = lim sup
x→y

|f (x) − f (y)|
|x − y| , x ∈ G, (6.8)



60 F. Götze and H. Sambale

may be used as definition of the generalized modulus of the gradient of f . The
function |∇f | is Borel measurable, and if f is differentiable at x, the generalized
modulus of the gradient agrees with the Euclidean norm of the usual gradient. This
operator preserves many identities from calculus in form of inequalities, such as a
“chain rule inequality”

|∇T (f )| ≤ |T ′(f )||∇f |, (6.9)

where |T ′| is understood according to (6.8) again.
As shown in [7], Lemma 4.1, using the generalized modulus of the gradient, the

operator norms of the derivatives of consecutive orders are related as follows:

Lemma 6.2.1 Given a Cd -smooth function f : G → R, d ∈ N, at all points x ∈ G,

|∇|f (d−1)(x)|Op| ≤ |f (d)(x)|Op.

Proof Indeed, for any h ∈ R
n, by the triangle inequality,

∣∣ |f (d−1)(x + h)|Op − |f (d−1)(x)|Op
∣∣ ≤ |f (d−1)(x + h) − f (d−1)(x)|Op

= sup{(f (d−1)(x + h) − f (d−1)(x))[v1, . . . , vd−1] : v1, . . . , vd−1 ∈ Sn−1},

while, by the Taylor expansion,

(f (d−1)(x + h) − f (d−1)(x))[v1, . . . , vd−1] = f (d)(x)[v1, . . . , vd−1, h] + o(|h|)

as h → 0. Here, the o-term can be bounded by a quantity which is independent of
v1, . . . , vd−1 ∈ Sn−1. As a consequence,

lim sup
h→0

| |f (d−1)(x + h)|Op − |f (d−1)(x)|Op|
|h|

≤ sup{f (d)(x)[v1, . . . , vd−1, vd ] : v1, . . . , vd ∈ Sn−1} = |f (d)(x)|Op.

�
Following the scheme of proof developed in [7], we moreover need to establish a

recursion for the Lp-norms of the derivatives of f of consecutive orders. To this end,
we recall a classical result on the moments of Lipschitz functions in the presence of
Poincaré-type inequalities. Here, similarly to (6.4), we write

‖∇g‖Op,p =
(∫

G

|∇g|p dμ

)1/p

, p ∈ (0,∞],

for any locally Lipschitz function g on G with generalized modulus of gradient
|∇g|. In detail:
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Lemma 6.2.2 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a Poincaré-type inequality with constant σ 2 > 0, and let g : G → R be locally
Lipschitz with

∫
G gdμ = 0. Then, for any p ≥ 2,

∫
G

|g|pdμ ≤
( σp√

2

)p
∫

G

|∇g|pdμ. (6.10)

In particular, for any g : G → R locally Lipschitz,

‖g‖p ≤ ‖g‖2 + σp√
2

‖∇g‖p. (6.11)

Note that in (6.11), g is not required to have mean 0. For the reader’s convenience,
let us briefly recall the proof.

Proof By standard arguments, we may assume g to be C1-smooth and bounded.
Moreover, by the subadditivity property of the variance functional, the Poincaré-
type inequality for the probability measure μ on G is extended to the same relation
on G × G, i.e.

Varμ2(u) ≤ σ 2
∫∫

|∇u(x, y)|2dμ(x)dμ(y) (6.12)

for the product measure μ2 = μ⊗μ. Here, for any C1-smooth function u = u(x, y),
the modulus of the gradient is given by

|∇u(x, y)|2 = |∇xu(x, y)|2 + |∇yu(x, y)|2.

Now consider the function

u(x, y) = |g(x) − g(y)| p
2 sign(g(x) − g(y)),

which is C1-smooth for p > 2 with modulus of gradient

|∇u(x, y)| = p

2
|g(x) − g(y)| p

2 −1
√

|∇g(x)|2 + |∇g(y)|2.

Since u has a symmetric distribution under μ2, applying (6.12) together with
Hölder’s inequality yields

1

σ 2

∫∫
|g(x) − g(y)|pdμ2(x, y)

≤ p2

4

∫∫
|g(x) − g(y)|p−2(|∇g(x)|2 + |∇g(y)|2)

dμ2(x, y)

≤ p2

4

( ∫∫
|g(x) − g(y)|pdμ2(x, y)

) p−2
p

( ∫∫ (|∇g(x)|2 + |∇g(y)|2) p
2 dμ2(x, y)

) 2
p
.
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By Jensen’s inequality, the last integral may be bounded by

2
p
2 −1

∫∫
(|∇g(x)|p + |∇g(y)|p)dμ2(x, y) = 2

p
2

∫
|∇g|pdμ.

Consequently,

( ∫∫
|g(x) − g(y)|pdμ2(x, y)

) 2
p ≤ σ 2p2

2

( ∫
|∇g|pdμ

) 2
p
,

or, equivalently,

∫∫
|g(x) − g(y)|pdμ2(x, y) ≤

( σp√
2

)p
∫

|∇g|pdμ.

In particular, the latter inequality shows that any locally Lipschitz function g such
that the right-hand side is finite is integrable (if g is unbounded, we may perform a
simple truncation argument). If

∫
gdμ = 0, it follows from Jensen’s inequality that

the left integral can be bounded below by
∫ |g|pdμ, which proves (6.10). To see

(6.11), it remains to note that by the triangle inequality,

∥∥∥g −
∫

gdμ

∥∥∥
p

≥ ‖g‖p −
∣∣∣
∫

gdμ

∣∣∣ ≥ ‖g‖p − ‖g‖2.

�
Combining Lemma 6.2.1 and (6.11), we are able to prove Theorem 6.1.1. Recall

that if a relation of the form

‖f ‖k ≤ γ k (k ∈ N) (6.13)

holds true with some constant γ > 0, then f has sub-exponential tails, i.e.
∫

e c|f |dμ

≤ 2 for some constant c = c(γ ) > 0, e. g. c = 1
2γ e . Indeed, using k! ≥ ( k

e )k , we
have

∫
exp(c|f |)dμ = 1 +

∞∑
k=1

ck

∫ |f |kdμ

k! ≤ 1 +
∞∑

k=1

(cγ )k
kk

k! ≤ 1 +
∞∑

k=1

(cγ e)k = 2.

Proof of Theorem 6.1.1 Using (6.11) with f replaced by |f (k−1)|Op, 2 ≤ k ≤ d ,
we get

‖f (k−1)‖Op,p ≤ ‖f (k−1)‖Op,2 + σp√
2

‖∇|f (k−1)|Op‖p

≤ ‖f (k−1)‖Op,2 + σp√
2

‖f (k)‖Op,p,

(6.14)
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where Lemma 6.2.1 was applied on the last step. Consequently, using (6.10) and
then (6.14) iteratively,

‖f ‖p ≤
d−1∑
k=1

( σp√
2

)k ‖f (k)‖Op,2 +
( σp√

2

)d ‖f (d)‖Op,p. (6.15)

Since ‖f (k)‖Op,2 ≤ σd−k for all k = 1, . . . , d − 1 and ‖f (d)‖Op,∞ ≤ 1 by
assumption, we obtain

‖f ‖p ≤ σd

d∑
k=1

(p/
√

2)k ≤ 1

1 − (p/
√

2)−1
(σp/

√
2)d ≤ 4 (σp/

√
2)d

(6.16)

and therefore ‖f ‖p ≤ (3σp)d for all p ≥ 2. Moreover, ‖f ‖p ≤ ‖f ‖2 ≤ (6σ)d for
p < 2. It follows that

‖|f |1/d‖k = ‖f ‖1/d

k/d ≤ γ k

for all k ∈ N, i.e. (6.13) holds with γ = 6σ (and |f |1/d in place of f ). This yields
the assertion of the theorem. �
Proof of Theorem 6.1.2 Starting as in the proof of Theorem 6.1.1, we arrive at

‖f ‖p ≤
d−1∑
k=1

(σp/
√

2)k ‖f (k)‖HS,2 + (σp/
√

2)d ‖f (d)‖Op,p, (6.17)

where we used that operator norms are dominated by Hilbert–Schmidt norms.
Moreover, since

∫
G

∂i1...ik f dμ = 0, by the Poincaré-type inequality,

∫
G

(∂i1...ik f )2 dμ ≤ σ 2
n∑

j=1

∫
G

(∂i1...ikj f )2 dμ

whenever 1 ≤ i1, . . . , ik ≤ n, k ≤ d − 1. Summing over all 1 ≤ i1, . . . , ik ≤ n, we
get

‖f (k)‖2
HS,2 =

∫
G

|f (k)|2HS dμ ≤ σ 2
∫

G

|f (k+1)|2HS dμ = σ 2 ‖f (k+1)‖2
HS,2.

(6.18)
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Using (6.18) in (6.17) and iterating, we thus obtain

‖f ‖p ≤
d−1∑
k=1

σd(p/
√

2)k ‖f (d)‖HS,2 + (σp/
√

2)d ‖f (d)‖Op,p.

Noting that ‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1, we arrive at (6.16), from where
we may proceed as in the proof of Theorem 6.1.1. �
Proof of Corollary 6.1.3 First note that by Chebyshev’s inequality, for any p ≥ 1

μ(|f | ≥ e‖f ‖p) ≤ e−p. (6.19)

Moreover, if p ≥ 2, it follows from (6.15) that

e‖f ‖p ≤ e
( d−1∑

k=1

(σp/
√

2)k ‖f (k)‖Op,2 + (σp/
√

2)d ‖f (d)‖Op,∞
)
.

Assuming ηf (t) ≥ 2, we therefore arrive at

e‖f ‖ηf (t) ≤ e
( d−1∑

k=1

t + t
) = (de)t.

Hence, applying (6.19) to p = ηf (t) (if p ≥ 2) yields

μ(|f | ≥ (de)t) ≤ μ(|f | ≥ e‖f ‖ηf (t)) ≤ exp(−ηf (t)).

Using a trivial estimate provided that p = ηf (t) < 2, we obtain

μ(|f | ≥ (de)t) ≤ e2 exp(−ηf (t))

for all t ≥ 0. The proof now easily follows by rescaling f by de and using that
ηdef (t) ≥ ηf (t)/(de). �

In order to prove Proposition 6.1.4, we have to adapt the first steps of the proof
of Theorem 6.1.1. First, we have the following generalization of Lemma 6.2.2 (in
fact, this is a version of Theorem 4.1 in [5]):

Lemma 6.2.3 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a weighted Poincaré-type inequality (6.7), and let g : G → R be locally Lipschitz
with

∫
G gdμ = 0. Then, for any p ≥ 2,

∫
G

|g|pdμ ≤
( p√

2

)p
∫

G

|∇g|pwp dμ. (6.20)
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In particular, for any g : G → R locally Lipschitz,

‖g‖p ≤ ‖g‖2 + p√
2

‖w|∇g|‖p. (6.21)

The proof of Lemma 6.2.3 uses similar arguments as the proof of Lemma 6.2.2,
and we therefore omit it. In particular, by Hölder’s inequality, (6.21) implies

‖g‖p ≤ ‖g‖2 + p√
2

‖w‖2p‖∇g‖2p. (6.22)

Starting with (6.20)–(6.22) and iterating as in (6.14) and (6.15), we obtain

‖f ‖p ≤
d−1∑
k=1

2(k
2)

(p‖w‖2kp√
2

)k ‖f (k)‖Op,2+2(d
2)

(p‖w‖2d−1p√
2

)d ‖w|f (d)|Op‖2d−1p,

hence we easily arrive at the conclusions of Proposition 6.1.4. Again, we omit the
details.

Finally, the proof of Corollary 6.1.5 is similar to the proof of Corollary 4.2 in [5].

Proof of Corollary 6.1.5 First let 2 ≤ q ≤ p. Using the assumptions and
Proposition 6.1.4, we arrive at

‖f ‖q ≤
d−1∑
k=1

(2
k−2

2 qC)k + (2
d−2

2 qC)d

and hence

‖f ‖q ≤ 4 (2
d−1

2 Cq)d ≤ (2
d+3

2 Cq)d

(this follows as in (6.16), substituting σ by 2
d−1

2 C ≥ 1). Moreover, if 0 < q ≤ 2,
we have

‖f ‖q ≤ ‖f ‖2 ≤ (2
d+5

2 C)d .

Since the function q �→ ed/eqdq , q > 0, is minimized at q = 1/e with minimum

value 1, it follows that E|f |q ≤ ed/e (2
d+5

2 Cq)dq for all 0 < q ≤ p. Therefore, for
any t > 0 and any 0 < q ≤ p,

μ(|f | ≥ t) ≤ E|f |q
tq

≤ ed/e
(

(2
d+5

2 Cq)d

t

)q

. (6.23)

Now set s = t1/d/(2
d+5

2 C) and write μ(|f | ≥ t) ≤ ed/e e−ϕ(q) with ϕ(q) =
dq(log(s) − log(q)). It is easy to check that ϕ is a concave function on (0,∞)
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which attains its maximum at q0 = s/e with ϕ(q0) = ds/e = dt1/d/(2
d+5

2 Ce).

Noting that q0 ≤ p is equivalent with t ≤ (2
d+5

2 Cep)d completes the proof. �

6.3 Applications

Let X1, . . . , Xn be independent random variables with distributions satisfying a
Poincaré-type inequality (6.1) with common constant σ 2 > 0. For real numbers
ai1...id , i1 < . . . < id , consider the function

f (X1, . . . , Xn) :=
∑

i1<...<id

ai1...id Xi1 · · · Xid , (6.24)

which is a homogeneous multilinear polynomial of order d . For any i1 < . . . < id
and any permutation σ ∈ Sd , set aσ(i1)...σ (id ) ≡ ai1...id . Moreover, set ai1...id =
0 whenever the indexes i1, . . . , id are not pairwise different. This gives rise to a
hypermatrix A = (ai1...id ) ∈ R

nd
, whose Euclidean norm we denote by ‖A‖HS.

Moreover, set ‖A‖∞ := maxi1<...<id |ai1...id |.
As a first example, we may apply our results to functions of type (6.24). Here it

is convenient to assume for the random variables Xi to have mean zero:

Proposition 6.3.1 Let X1, . . . , Xn be independent random variables with distribu-
tions satisfying a Poincaré-type inequality (6.1) with common constant σ 2 > 0.
Assume EXi = 0 for all i = 1, . . . , n. Let d ∈ N, and consider a function f of type
(6.24). Then,

E exp
( c

σ‖A‖1/d

HS

|f |1/d
)

≤ 2.

Here, E denotes the expectation with respect to the random variables X1, . . . , Xn,
and c is the absolute constant appearing in Theorem 6.1.2. In particular,

E exp
( c

σn1/2‖A‖1/d∞
|f |1/d

)
≤ 2.

Moreover, if EX2
i = 1 for all i = 1, . . . , n,

P(|f − Ef | ≥ t) ≤ e2 exp
(

−
√

2

σde
min

( t

‖A‖HS
,

t1/d

‖A‖1/d

HS

))

≤ e 2 exp
(

−
√

2

σde
min

( t

nd/2‖A‖∞
,

t1/d

n1/2‖A‖1/d∞

))
.
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Proposition 6.3.1 follows immediately from Theorem 6.1.2 and Corollary 6.1.3.
Note that for non-centered random variables X1, . . . , Xn, applying Proposition 6.3.1
to the random variables Xi − EXi means removing certain “lower order” terms in
(6.24), which is in accordance with the ideas sketched in the introduction.

We may furthermore apply our results in the context of random matrix theory.
Here we extend an example on second order concentration bounds for linear eigen-
value statistics in presence of a logarithmic Sobolev inequality [10], Proposition
1.10, to the situation where only a Poincaré-type inequality is available.

Indeed, let {ξjk, 1 ≤ j ≤ k ≤ N} be a family of independent random variables
on some probability space. Assume that the distributions of the ξjk’s all satisfy
a (one-dimensional) Poincaré-type inequality (6.1) with common constant σ 2. Put
ξjk = ξkj for 1 ≤ k < j ≤ N and consider a symmetric N × N random matrix
	 = (ξjk/

√
N)1≤j,k≤N and denote by μ(N) the joint distribution of its ordered

eigenvalues λ1 ≤ . . . ≤ λN on R
N (in fact, λ1 < . . . < λN a.s.). Recall that by a

simple argument using the Hoffman–Wielandt theorem, μ(N) satisfies a Poincaré-
type inequality with constant

σ 2
N = 2σ 2

N
(6.25)

(see for instance Bobkov and Götze [4]). Note that similar observations also hold
for Hermitian random matrices.

Considering the probability space (RN,BN ,μ(N)), if f : R → R is a C1-smooth
function, it is well-known that asymptotic normality

SN =
N∑

j=1

(f (λj ) − Ef (λj )) ⇒ N (0, σ 2
f ) (6.26)

holds for the self-normalized linear eigenvalue statistics SN . Here, “⇒” denotes
weak convergence, E means taking the expectation with respect to μ(N) and
N (0, σ 2

f ) denotes a normal distribution with mean zero and variance σ 2
f depending

on f . This result was established by Johansson [12] for the case of β-ensembles
and, for general Wigner matrices, by Khorunzhy et al. [13] as well as Sinai and
Soshnikov [15]. Concentration of measure results have been studied by Guionnet
and Zeitouni [11], in particular proving fluctuations of order OP(1). Our results
yield a second order concentration bound:

Proposition 6.3.2 Let μ(N) be the joint distribution of the ordered eigenvalues of
	. Let f : R → R be a C2-smooth function with f ′(λj ) ∈ L1(μ(N)) and bounded
second derivatives, and let

S̃N := SN −
N∑

j=1

(λj − E(λj ))Ef ′(λj )
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with SN as in (6.26). Then, we have

E exp
( cN1/4

√
2σ‖f ′′‖1/2∞

|S̃N |1/2
)

≤ 2,

where c > 0 is the absolute constant from Theorem 6.1.2.

Since S̃N is “centered” in the sense of Theorem 6.1.2, Proposition 6.3.2
immediately follows from elementary calculus, using (6.25). Note that in view of
the self-normalizing property of SN , the fluctuation result for S̃N is of the next
order, although the scaling is of order

√
N only. Comparing Proposition 6.3.2 to

[10], Proposition 1.10, we see that we essentially arrive at the same result though
for |S̃N |1/2 instead of |S̃N | due to the assumption of a Poincaré-type inequality.

Using Corollary 6.1.3, we can in fact slightly sharpen the results on the tail
behavior of SN . Indeed, an easy calculation yields

μN(|SN | ≥ t) ≤ e 2 exp
(

− 1

σde
min

( tN1/2

(
∫ ∑

i (f
′(λi))2dμN)1/2 ,

t1/2N1/4

‖f ′′‖1/2∞

))

for any t ≥ 0. Similar results may be obtained for higher orders d ≥ 3.
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