
Chapter 4
Iterated Jackknives and Two-Sided
Variance Inequalities

Olivier Bousquet and Christian Houdré

Abstract We consider the variance of a function of n independent random variables
and provide inequalities that generalize previous results obtained for i.i.d. random
variables. In particular we obtain upper and lower bounds on the variance based on
iterated jackknife statistics that can be considered generalizations of the Efron–Stein
inequality.

4.1 Introduction

The properties of functions of n independent random variables, and in particular
the estimation of their moments from the moments of their increments (i.e. when
replacing a random variable by an independent copy) have been thoroughly studied
(see, e.g., [2] for a comprehensive overview). We focus here on the variance
and consider how to refine and generalize known extensions of the Efron–Stein
inequality in the non-symmetric, non-iid case.

But first, let us review some of the existing results. Let X1,X2, . . . , Xn be iid
random variables and let S : Rn → R be a statistic of interest which is symmetric,
i.e., invariant under any permutation of its arguments, and square integrable. The
(original) Efron–Stein inequality [3], states that the jackknife estimates of variance
is biased upwards, i.e., denoting by X̃ an independent copy of X1, . . . , Xn, and
setting Si = S(X1, . . . , Xi−1,Xi+1, . . . , Xn, X̃), i = 1, . . . , n, and Sn+1 = S, then

Var S ≤ EJ1, (4.1)
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where

J1 =
n+1∑

i=1

(Si − S̄)2 = 1

(n + 1)

∑∑

1≤i<j≤n+1

(Si − Sj )
2, (4.2)

and S̄ = ∑n+1
i=1 Si/(n + 1). Beyond the original framework, the inequality (4.1)

has seen many extensions and generalizations with different proofs which are well
described in [2], whose notation we essentially adopt and to which we refer for a
more complete bibliography and many instances of applications. Let us just say that
(4.1) can be seen as the “well known" tensorization property of the variance which
asserts that if X1,X2, . . . , Xn are independent random variables with Xi ∼ μi , then

VarμnS ≤ Eμn

n∑

i=1

Varμi S, (4.3)

where Eμn and Varμn are respectively the expectation and variance with respect to
μn, the joint law of X1,X2, . . . , Xn, while Varμi S is the variance of S with respect
to μi , the law of Xi . In fact, if for each i = 1, 2, . . . , n, X̃i ∼ μ̃i is an independent
copy of Xi , then (4.3) can be rewritten as

VarμnS ≤ 1

2
Eμn

n∑

i=1

Eμi⊗μ̃i
(S − Si)

2

= 1

2
Eμn

n∑

i=1

Eμ̃i
(S − Si)

2, (4.4)

where Si = S(X1, . . . , Xi−1, X̃i , Xi+1, . . . , Xn).
Neither (4.1) nor (4.4), whose proof can be obtained, for example, by induction,

require S to be symmetric. In case S is symmetric, and the random variables are
identically distributed, the right-hand side of (4.4) becomes nEμn⊗μ̃1(S − S1)

2/2
while, via (4.2), the right-hand side of (4.1) becomes

(
n−1

2

)
E(S1 − S2)

2/(n + 1) =
nE(S1 − S2)

2/2, and (4.4) and (4.1) are identical.
Since the jackknife estimate of variance is biased upwards, it is natural to try to

estimate the bias EJ1 −Var S, and such an attempt is already presented in [5] via the
“iterated jackknives”. Let us recall what was meant there: Resampling the jackknife
statistics, introduce for any k = 2, . . . , n, the iterated jackknives J2, J3, . . . , Jn,
leading to both upper and lower bounds on Var S, showing, in particular, that

1

2
EJ2 − 1

6
EJ3 ≤ EJ1 − Var S ≤ 1

2
EJ2. (4.5)
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In [5], the inequalities (4.1) and (4.5) were viewed as statistical versions of
generalized (multivariate) Gaussian Poincaré inequalities previously obtained in [6].
Indeed, setting ∇S := (S − S1, S − S2, . . . , S − Sn), then EJ1 = E‖∇S‖2. If
instead of looking at the vector of first differences, one looks at second and third
ones, then the corresponding norms will lead to (4.5). Throughout the years, it was
asked whether or not an inequality such as (4.5) would have a general version and a
positive answer had been informally given. The aim of the present note is to provide
a synthetic proof of these, removing the iid and symmetry assumptions in (4.5) and
its generalizations, leading to generic inequalities. This could be useful, as these
dormant inequalities seem to have found, in recent times, some new life, e.g., see
[1, 8, 9].

4.2 Iterated Jackknife Bounds

Throughout and unless otherwise noted, X1, . . . , Xn are independent random
variables and S : R

n → R is a Borel function such that ES2(X1, . . . , Xn) <

+∞. Next, and if S is short for S(X1, . . . , Xn), let, for any i = 1, . . . , n,
E

(i) denote the conditional expectation with respect to the σ -field generated by
X1, . . . , Xi−1,Xi+1, . . . , Xn. Hence,

E
(i)S := E(S | X1, . . . , Xi−1,Xi+1, . . . , Xn)

=
∫ +∞

−∞
S(X1, . . . , Xi−1, xi ,Xi+1, . . . , Xn)μi(dxi), (4.6)

where μi is the law of Xi . By convention, E(0) is the identity operator and so
E

(0)S = S. Iterating the above, it is clear that

E
(i)
E

(j)S = E
(j)

E
(i)S = E(S | X1, . . . , Xi−1,Xi+1, . . . , Xj−1,Xj+1, . . . , Xn)

(4.7)

:= E
(i,j)S = E

(j,i)S,

for any i, j = 1, . . . , n and that for i = 0, 1, . . . , n,

E
(i)
E

(0)S = E
(0)

E
(i)S := E

(i,0)S = E
(0,i)S = E

(i)S.

Next, let

Var(i)S := E
(i)(S − E

(i)S)2 = E
(i)S2 − (E(i)S)2,

i = 0, 1, . . . , n, and for any i, j = 0, 1, . . . , n, set

Var(i,j)S := E
(i)Var(j)S − Var(j)

E
(i)S = Var(j,i)S ≥ 0. (4.8)
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where, above, the rightmost equality follows from the commutativity property of
the conditional expectations, as given in (4.7), while the inequality follows from
convexity, and more precisely from the conditional Hölder’s inequality.

Continuing with our notation, for any i = 1, . . . , n, let throughout Ei denote the
conditional expectation with respect to the σ -field generated by X1, . . . , Xi , i.e.,
EiS := E(S | X1, . . . , Xi), while this time E0S = ES.

At this point we also note that although Var(i) is the conditional variance
with respect to the σ -field generated by X1, . . . , Xi−1,Xi+1, . . . , Xn, Var(i,j)

is not the conditional variance with respect to the σ -field generated by
X1, . . . , Xi−1,Xi+1, . . . , Xj−1,Xj+1, . . . , Xn. Indeed,

Var(i,j)S = E
(i,j)(S − E

(i,j)S)2 − Var(i)E(j)S − Var(j)
E

(i)S. (4.9)

Further iterating, for i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n}, then E
(i1) · · ·E(ik ) :=

E
(i1,i2...,ik) is uniquely defined, i.e., the order in which the indices are taken is

irrelevant, in particular E(1,2,...,n)S = ES. Still, iterating, set

Var(i1,i2,...,ik)S := E
(i1)Var(i2,...,ik)S − Var(i2,...,ik )E(i1)S, (4.10)

where again, above, the order in which the indices i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n}
are taken is irrelevant, and further, by convexity, (4.10) is non-negative, i.e.,

Var(i1,i2,...,ik)S ≥ 0.

With the help of the above definitions, and in view of [5], let us now introduce
the iterated jackknives,

Jk :=
∑

1≤i1 �=i2···�=ik≤n

Var(i1,...,ik )S = k!
∑

1≤i1<i2<···<ik≤n

Var(i1,...,ik)S.

Clearly, J1 = ∑n
i=1 Var(i)S and in view of (4.6), (4.3) can just be rewritten as:

VarS ≤ E

n∑

i=1

Var(i)S = EJ1. (4.11)

Still in view of the results of [5], we now intend to prove:

Theorem 4.2.1 For any p = 1, 2, . . . , [n/2],
2p∑

k=1

(−1)k+1

k! EJk ≤ Var S ≤
2p−1∑

k=1

(−1)k+1

k! EJk, (4.12)
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and

Var S =
n∑

k=1

(−1)k+1

k! EJk. (4.13)

Proof The proof of (4.13) is a simple decomposition/induction, while that of (4.12)
further uses convexity. For k = 1, 2, . . . , n, let

Rk =
∑

1≤i1<···<ik≤n

Var(i1,...,ik )(E(1,...,i1−1)S),

with the understanding that for i = 1, E(1,i−1)S = E
(0)S = S. Then, first note that,

ER1 = E

n∑

i1=1

(
(E(1,...,i1−1)S)2 − (E(1,...,i1)S)2

)

= E(S2 − (ES)2) = VarS. (4.14)

Notice further that for 2 ≤ k ≤ n − 1,

ERk = E

∑

1≤i1<···<ik≤n

Var(i1,...,ik )(E(1,...,i1−1)S)

= E

∑

1≤i1<···<ik≤n

(
Var(i2,...,ik )(E(1,...,i1−1)S) − Var(i2,...,ik )(E(1,...,i1)S)

)

= E

∑

1<i2<···<ik≤n

i2−1∑

i1=1

(
Var(i2,...,ik )(E(1,...,i1−1)S) − Var(i2,...,ik)(E(1,...,i1)S)

)

= E

∑

1≤i2<···<ik≤n

(
Var(i2,...,ik )S − Var(i2,...,ik )(E(1,...,i2−1)S)

)

= EJk−1

(k − 1)! − ERk−1. (4.15)

Finally, it is clear that, Rn = Var(1,...,n)S, and so n!ERn = EJn. Combining the last
three identities, gives (4.13). To obtain (4.12), note first that by convexity and for
any 1 ≤ i1 < i2 < · · · < ik ≤ n,

E
(1,...,i1−1)Var(i1,...,ik )S ≥ Var(i1,...,ik )(E(1,...,i1−1)S). (4.16)

Hence, taking expectation and summing givesEJk ≥ k!ERk , which when combined
with (4.15) finishes the proof. �
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Remark 4.2.2

(i) In case S is symmetric, i.e., invariant under any permutation of its arguments,
Jk = n(n − 1) . . . (n − k + 1)Var(1,...,k)S, then EJk = n(n − 1) . . . (n − k +
1)EVar(1,...,k)S, and (4.13) and (4.12) precisely recover corresponding results
in [5].

(ii) The inequalities (4.12) can be viewed as martingale inequalities.
(iii) As in [2] or [1], one could also rewrite (4.12) using only the positive or negative

parts of the involved quantities.
(iv) It is natural to wonder whether or not the above inequalities have �-entropic

versions; this will be explored and presented elsewhere.

Let us now further refine (4.12) providing, in particular, a non-trivial lower bound
on the bias EJ1 − Var S improving upon (4.5). To do so, denote by (i1, . . . , ik) the
complement of the indices (i1, . . . , ik) (i.e., the ordered sequence of elements of the
set {1, . . . , n}\{i1, . . . , ik}, and introduce the following quantities:

Kk := k!
∑

1≤i1<i2<···<ik≤n

Var(i1,...,ik )E(i1,...,ik )S.

It is clear that by Jensen’s inequality and the convexity of Var(i1,...,ik) we have

EKk ≤ EJk .

Theorem 4.2.3 For any p = 1, 2, . . . , [n/2],
2p∑

k=1

(−1)k+1

k! EJk + 1

(2p + 1)!EK2p+1 ≤ Var S ≤
2p−1∑

k=1

(−1)k+1

k! EJk − 1

(2p)!EK2p

(4.17)

Proof The only modification compared to the proof of Theorem 4.2.1 is that instead
of using the bound EJk ≥ k!ERk we use the fact that

EKk ≤ k!ERk ,

which follows from the convexity of Var(i1,...,ik ). �

In particular, from Theorems 4.2.1 and 4.2.3, the following inequalities hold true:

1

2
EK2 ≤ EJ1 − Var S ≤ 1

2
EJ2. (4.18)
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4.3 Relationship with the Hoeffding Decomposition

Let us recall the notion of a Hoeffding decomposition [4] (see [7] Section 2 for
the general non-symmetric non-iid case). Given a function f (X) ∈ L1(P), it is the
unique decomposition

f (X1, . . . , Xn) = Ef (X) +
∑

1≤i≤n

hi(Xi) +
∑

1≤i<j≤n

hij (Xi,Xj ) + . . .

= f0 + f1 + . . . + fn,

such that E(is )hi1,...,ik (Xi1 , . . . , Xik ) = 0 whenever 1 ≤ i1 < . . . < ik ≤ n, s =
1, . . . , k. The term fd is called the Hoeffding term of degree d and these terms form
an orthogonal decomposition of f in L2(P) (provided, of course, f ∈ L2(P)), so
that Varf = ∑n

k=1 Var fk = ∑
I⊂{1,...,n} Eh2

I

The following lemma provides a relationship between the previously introduced
iterated jackknives and the variance of the Hoeffding terms.

Lemma 4.3.1 For any k such that 1 ≤ k ≤ n,

1

k!EJk(f ) =
∑

j≥k

(
j

k

)
Var fj ,

and

1

k!EKk(f ) = Var fk .

Proof Let us rewrite the Hoeffding decomposition of f as f = ∑
I⊂{1,2,...,n} hI . We

have E
(i)hI = 0 whenever i ∈ I , and E

(i)hI = hI otherwise. Hence, Var(i)hI =
E

(i)h2
I if i ∈ I and 0 otherwise. Therefore, EVar(i)S = ∑

i∈I Eh2
I .

Continuing with the same reasoning, we can see that Var(i)E(j)hI = E
(i)h2

I ,
if i ∈ I and j /∈ I and 0 otherwise, thus EVar(i)E(j)S = ∑

i∈I,j /∈I Eh2
I so that

EVar(i,j)S = ∑
{i,j}⊂I Eh2

I and by induction, we get that

EVar(i1,...,ik )S =
∑

{i1,...,ik}⊂I

Eh2
I .

If we now sum over the possible sets of indices, since each term Eh2
I appears

as many times as there are subsets of size k of I , this implies that EJk =
k! ∑|I |≥k

(|I |
k

)
Eh2

I = k! ∑j≥k

(
j
k

)
Var fj and gives the first statement.
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To prove the second statement of the lemma, observe that E
(i1,...,ik )S =∑

I⊂{i1,...,ik} hI so that EVar(i1,...,ik )E(i1,...,ik)S = Eh2
i1,...,ik

, and therefore EKk =
k! ∑|I |=k Eh2

I = k!Var fk . �

It is easily verified that (4.13) can be recovered as a consequence of Lemma 4.3.1.

Also, from Lemma 4.3.1 it is easy to get the following corollary obtained in [1] (as
part of their Theorem 1.8).

Corollary 4.3.2 Let S have Hoeffding decomposition of type S = ES + ∑n
k=d Sk ,

i.e., such that fk = 0, for 1 ≤ k < d , then

Var S ≤ 1

d!EJd . (4.19)

Proof Using the fact that fk = 0, for 1 ≤ k < d , we have

Var S =
n∑

j=d

Var fj ≤
n∑

j=d

(
j

d

)
Var fj = 1

d!EJd,

where the last equality follows from Lemma 4.3.1. �
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