
Chapter 3
Polar Isoperimetry. I: The Case
of the Plane

Sergey G. Bobkov, Nathael Gozlan, Cyril Roberto, and Paul-Marie Samson

Abstract This is the first part of the notes with preliminary remarks on the plane
isoperimetric inequality and its applications to the Poincaré and Sobolev-type
inequalities in dimension one. Links with informational quantities of Rényi and
Fisher are briefly discussed.
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3.1 Isoperimetry on the Plane and the Upper Half-Plane

The paper by Diaz et al. [4] contains the following interesting Sobolev-type
inequality in dimension one.

Proposition 3.1.1 For any smooth real-valued function f on [0, 1],
∫ 1

0

√
f (x)2 + 1

π2
f ′(x)2 dx ≥

( ∫ 1

0
f (x)2 dx

)1/2
. (3.1)
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More precisely, this paper mentions without proof that (3.1) is a consequence
of the isoperimetric inequality on the plane R

2. Let us give an argument, which is
actually based on the isoperimetric inequality

μ+(A) ≥ √
2π (μ(A))1/2, A ⊂ R

2+ (A is Borel), (3.2)

in the upper half-plane R
2+ = {(x1, x2) ∈ R

2 : x2 ≥ 0}. Here, μ denotes the
Lebesgue measure restricted to this half-plane, which generates the corresponding
notion of the perimeter

μ+(A) = lim inf
ε→0

μ(A + εB2) − μ(A)

ε

(cf. e.g. [2]).
Inequality (3.2) follows from the Brunn-Minkowski inequality in R

2

μ(A + B)1/2 ≥ μ(A)1/2 + μ(B)1/2

along the same arguments as in the case of its application to the usual isoperimetric
inequality. Indeed, applying it with a Borel set A ⊂ R

2+ and B = εB2 (ε > 0), we
get

μ(A + εB2) ≥ [
μ(A)1/2 + μ(εB2)

1/2]2

=
[
μ(A)1/2 +

(π

2

)1/2
ε
]2

= μ(A) + √
2π (μ(A))1/2ε + O(ε2),

and therefore (3.2) from the definition of the perimeter.
The relation (3.2) is sharp and is attained for the upper semi-discs

Aρ = {(x1, x2) ∈ R
2 : x2

1 + x2
2 ≤ ρ2, x2 ≥ 0}, ρ > 0.

In this case, μ(Aρ) = 1
2 πρ2 is the area size between the upper part of the circle

x2
1 + x2

2 = ρ2 and the x1-axis x2 = 0, while the μ-perimeter is just the length of the
half-circle μ+(Aρ) = πρ.

To derive (3.1), one may assume that the function f is non-negative and is not
identically zero on [0, 1]. Then we associate with it the set in R

2+ described in polar
coordinates as

A = {(x1, x2) : 0 ≤ r ≤ f (t), 0 ≤ t ≤ 1}
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with x1 = r cos(πt), x2 = r sin(πt). Integration in polar coordinates indicates that,
for any non-negative Borel function u on R

2,

∫∫
R2

u(x1, x2) dx1 dx2 = π

∫ 1

−1

[∫ ∞

0
u
(
r cos(πt), r sin(πt)

)
rdr

]
dt. (3.3)

Applying it to the indicator function u = 1A, we get

μ(A) = π

2

∫ 1

0
f (t)2 dt.

On the other hand, μ+(A) represents the length of the curve C = {(x1(t), x2(t)) :
0 ≤ t ≤ 1} parameterized by

x1(t) = f (t) cos(πt), x2(t) = f (t) sin(πt).

Since

x ′
1(t)

2 + x ′
2(t)

2 = f ′(t)2 + π2f (t)2,

we find that

μ+(A) =
∫ 1

0

√
x ′

1(t)
2 + x ′

2(t)
2 dt =

∫ 1

0

√
f ′(t)2 + π2f (t)2 dt.

As a result, the isoperimetric inequality (3.2) takes the form

∫ 1

0

√
f ′(t)2 + π2f (t)2 dt ≥ √

2π
(π

2

∫ 1

0
f (t)2 dt

)1/2
.

which is the same as (3.1). Note that the condition f ≥ 0 may easily be removed in
the resulting inequality. 
�

One can reverse the argument and obtain the isoperimetric inequality (3.2) on the
basis of (3.1) for the class of star-shaped sets in the upper half-plane.

The same argument may be used on the basis of the classical isoperimetric
inequality

μ+(A) ≥ √
4π (μ(A))1/2 (A is Borel) (3.4)

in the whole plane R2 with respect to the Lebesgue measure μ. It is attained for the
discs

Aρ = {(x1, x2) ∈ R
2 : x2

1 + x2
2 ≤ ρ2}, ρ > 0,

in which case μ(Aρ) = πρ2 and μ+(Aρ) = 2πρ.
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Starting from a smooth non-negative function f on [−1, 1] such that f (−1) =
f (1), one may consider the star-shaped region

A = {(x1, x2) : 0 ≤ r ≤ f (t), −1 ≤ t ≤ 1}, x1 = r cos(πt), x2 = r sin(πt),

enclosed by the curve C = {(x1(t), x2(t)) : −1 ≤ t ≤ 1} with the same functions
x1(t) = f (t) cos(πt), x2(t) = f (t) sin(πt). Integration in polar coordinates (3.3)
then yields a similar formula as before,

μ(A) = π

2

∫ 1

−1
f (t)2 dt,

and also the perimeter μ+(A) represents the length of C, i.e.,

μ+(A) =
∫ 1

−1

√
x ′

1(t)
2 + x ′

2(t)
2 dt =

∫ 1

−1

√
f ′(t)2 + π2f (t)2 dt.

As a result, the isoperimetric inequality (3.4) takes the form

∫ 1

−1

√
f ′(t)2 + π2f (t)2 dt ≥ √

4π
(π

2

∫ 1

−1
f (t)2 dt

)1/2
,

or equivalently,

1

2

∫ 1

−1

√
1

π2 f ′(t)2 + f (t)2 dt ≥
(1

2

∫ 1

−1
f (t)2 dt

)1/2
. (3.5)

To compare with (3.1), let us restate (3.5) on the unit interval [0, 1] by making
the substitution f (t) = u( 1+t

2 ). Then it becomes

1

2

∫ 1

−1

√
1

4π2 u′
(1 + t

2

)2 + u
(1 + t

2

)2
dt ≥

(
1

2

∫ 1

−1
u
(1 + t

2

)2
dt

)1/2

.

Changing x = 1+t
2 , replacing u again with f , and removing the unnecessary

condition f ≥ 0, we arrive at:

Proposition 3.1.2 For any smooth real-valued function f on [0, 1] such that
f (0) = f (1),

∫ 1

0

√
f (x)2 + 1

4π2 f ′(x)2 dx ≥
( ∫ 1

0
f (x)2 dx

)1/2
. (3.6)

As we can see, an additional condition f (0) = f (1) allows one to improve the
coefficient in front of the derivative, in comparison with (3.1). It should also be clear
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that (3.6) represents an equivalent form of the isoperimetric inequality (3.4) for the
class of star-shaped regions.

3.2 Relationship with Poincaré-type Inequalities

It would be interesting to compare Propositions 3.1.1–3.1.2 with other popu-
lar Sobolev-type inequalities such as the Poincaré-type and logarithmic Sobolev
inequalities. Starting from (3.1) and (3.6), a simple variational argument yields:

Corollary 3.2.1 For any smooth real-valued function f on [0, 1],

Varμ(f ) ≤ 1

π2

∫ 1

0
f ′(x)2 dx, (3.7)

where the variance is understood with respect to the uniform probability measure
dμ(x) = dx on the unit segment. Moreover, if f (0) = f (1), then

Varμ(f ) ≤ 1

4π2

∫ 1

0
f ′(x)2 dx. (3.8)

The constants 1
π2 and 1

4π2 in (3.7)–(3.8) are optimal and are respectively attained
for the functions f (x) = cos(πx) and f (x) = sin(2πx) (cf. also [1]).

For the proof, let us note that an analytic inequality of the form

∫ 1

0

√
f (x)2 + cf ′(x)2 dx ≥

( ∫ 1

0
f (x)2 dx

)1/2
(3.9)

with a constant c > 0 becomes equality for f = 1. So, one may apply it to fε =
1 + εf , and letting ε → 0, one may compare the coefficients in front of the powers
of ε on both sides. First,

∫ 1

0
fε(x)2 dx = 1 + 2ε

∫ 1

0
f (x) dx + ε2

∫ 1

0
f (x)2 dx,

so, by Taylor’s expansion, as ε → 0,

( ∫ 1

0
fε(x)2 dx

)1/2 = 1 + ε

∫ 1

0
f (x) dx + ε2

2

∫ 1

0
f (x)2 dx

−1

8

(
2ε

∫ 1

0
f (x) dx + ε2

∫ 1

0
f (x)2 dx

)2 + O(ε3)

= 1 + ε

∫ 1

0
f (x) dx + ε2

2

∫ 1

0
f (x)2 dx − ε2

2

( ∫ 1

0
f (x) dx

)2 + O(ε3).
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On the other hand, since

fε(x)2 + cf ′
ε(x)2 = 1 + 2εf (x) + ε2 (

f (x)2 + cf ′(x)2),
we have

(
fε(x)2 + cf ′

ε(x)2)1/2 = 1 + εf (x) + ε2

2

(
f (x)2 + cf ′(x)2)

−1

8

(
2εf (x) + ε2 (

f (x)2 + cf ′(x)2))2 + O(ε3)

= 1 + εf (x) + cε2

2
f ′(x)2 + O(ε3).

Hence

∫ 1

0

(
fε(x)2 + cf ′

ε(x)2)1/2
dx = 1 + ε

∫ 1

0
f (x) dx + cε2

2

∫
f ′(x)2 dx + O(ε3).

Inserting both expansions in (3.9), we see that the linear coefficients coincide, while
comparing the quadratic terms leads to the Poincaré-type inequality

c

∫
f ′(x)2 dx ≥

∫ 1

0
f (x)2 dx −

( ∫ 1

0
f (x) dx

)2
.


�
Thus, the isoperimetric inequality on the upper half-plane implies the Poincaré-

type inequality (3.7) on [0, 1], while the isoperimetric inequality on the whole plane
implies the restricted Poincaré-type inequality (3.8), with optimal constants in both
cases.

3.3 Sobolev Inequalities

If f is non-negative, then f (x) = 0 ⇒ f ′(x) = 0 and thus f (x)2 + cf ′(x)2 = 0.
Hence, applying Cauchy’s inequality, from (3.9) we get

∫ 1

0
f (x)2 dx ≤

( ∫ 1

0

√
f (x)

√
f (x) + c

f ′(x)2

f (x)
1{f (x)>0} dx

)2

≤
∫ 1

0
f (x) dx

( ∫ 1

0
f (x) dx + c

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx

)
.
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Therefore, Propositions 3.1.1–3.1.2 also yield:

Proposition 3.3.1 For any non-negative smooth function f on [0, 1] with∫ 1
0 f (x) dx = 1,

Varμ(f ) ≤ 1

π2

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx, (3.10)

where the variance is with respect to the uniform probability measure μ on the unit
segment. Moreover, if f (0) = f (1), then

Varμ(f ) ≤ 1

4π2

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx. (3.11)

Recall that there is a general relation between the entropy functional

Entμ(f ) =
∫

f log f dμ −
∫

f dμ log
∫

f dμ (f ≥ 0)

and the variance, namely

Entμ(f )

∫
f dμ ≤ Varμ(f ). (3.12)

It is rather elementary; assume by homogeneity that
∫

f dμ = 1. Since log t ≤ t −1
and therefore t log t ≤ t (t − 1) for all t ≥ 0, we have

f (x) log f (x) ≤ f (x)2 − f (x).

After integration it yields (3.12).
Using the latter in (3.10)–(3.11), we arrive at the logarithmic Sobolev inequali-

ties.

Corollary 3.3.2 For any non-negative smooth function f on [0, 1], with respect to
the uniform probability measure μ on the unit segment we have

Entμ(f ) ≤ 1

π2

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx. (3.13)

Moreover, if f (0) = f (1), then

Entμ(f ) ≤ 1

4π2

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx. (3.14)
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Replacing here f by (1 + εf )2 and letting ε → 0, we return to the Poincaré-type
inequalities (3.7) and (3.8) with an extra factor of 2. The best constant in (3.13)
is however 1

2π2 and in (3.14) is 1
8π2 [1, Proposition 5.7.5]. On the other hand, the

inequalities (3.10)–(3.11) are much stronger than (3.13)–(3.14).

3.4 Informational Quantities and Distances

The inequalities (3.13)–(3.14) may be stated equivalently in terms of informational
distances to the uniform measure μ on the unit segment. Let us recall that, for
random elements X and Z in an abstract measurable space Ω with distributions
ν and μ respectively, the Rényi divergence power or the Tsallis distance from ν to
μ of order α > 0 is defined by

Tα(X||Z) = Tα(ν||μ) = 1

α − 1

[ ∫ (p

q

)α

p dλ − 1

]
= 1

α − 1

[ ∫
f α dμ − 1

]
,

where p and q are densities of ν and μ with respect to some (any) σ -finite
dominating measure λ on Ω , with f = p/q being the density of ν with respect
to μ (the definition does not depend on the choice of λ). If α = 1, we arrive at the
Kullback–Leibler distance or an informational divergence

T1(X||Z) = D(X||Z) =
∫

p log
p

q
dλ =

∫
f log f dμ,

which is the same as Entμ(f ). For α = 2 the Tsallis T2-distance is the same as the
χ2-distance. If α ≥ 1, necessarily Tα(X||Z) = ∞ as long as ν is not absolutely
continuous with respect to μ. In any case, the function α → Tα is non-decreasing;
we refer an interested reader to the survey [6] (cf. also [3]).

In the case of the real line Ω = R, and when the densities p and q are absolutely
continuous, the relative Fisher information or the Fisher information distance from
ν to μ is defined by

I (X||Z) = I (ν||μ) =
∫ ∞

−∞

(p′

p
− q ′

q

)2
p dλ =

∫ ∞

−∞
f ′2

f
dμ,

still assuming that the probability measure ν is absolutely continuous with respect to
μ and has density f = p/q . This definition is commonly used when q is supported
and is positive on an interval Δ ⊂ R, finite or not, with the above integration
restricted to Δ. With these notations, Proposition 3.3.1 corresponds to the order
α = 2 and therefore takes the form

T2(X||Z) ≤ 1

π2 I (X||Z), T2(X||Z) ≤ 1

4π2 I (X||Z), (3.15)
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holding true for an arbitrary random variable X with values in [0, 1]. Here the
random variable Z has a uniform distribution μ on [0, 1], and we use an additional
constraint f (0) = f (1) in the second relation.

There is also another non-distance formulation of (3.15) in terms of classical
informational quantities such as the Rényi entropy power and the Fisher information

Nα(X) =
( ∫ ∞

−∞
p(x)α dx

)− 2
α−1

, I (X) =
∫ ∞

−∞
p′(x)2

p(x)
dx.

Here the case α = 2 defines the quadratic Rényi entropy power N2(X). If μ is
supported and has an absolutely continuous positive density q on the interval Δ ⊂
R, one may also define the restricted Fisher information

I0(X) =
∫

Δ

p′(x)2

p(x)
dx.

For example, if Z is uniformly distributed in the unit interval, so that q(x) = 1 for
0 < x < 1, we have I (Z) = ∞, while I0(Z) = 0. In this case, if X has values in
[0, 1], we have

T2(X||Z) =
∫ 1

0
p(x)2 dx − 1 = N2(X)−1/2 − 1, I (X||Z) = I0(X).

Hence, the first inequality in (3.15) may be written as the following.

Corollary 3.4.1 For any random variable X with values in [0, 1], having there an
absolutely continuous density, we have

N2(X)
(

1 + 1

π2
I0(X)

)2 ≥ 1. (3.16)

This relation is analogous to the well-known isoperimetric inequality for
entropies,

N(X) I (X) ≥ 2πe,

where N(X) = N1(X) = e2h(X) is the entropy power, corresponding to the Shannon
differential entropy

h(X) = −
∫ ∞

−∞
p(x) log p(x) dx.

The functional I0(X) may be replaced with I (X) in (3.16) (since I0 ≤ I ),
and then one may remove the assumption on the values of X. Moreover, with
the functional I (X), this inequality may be considerably strengthened. Indeed, the
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relation N2(X)(1 + 1
π2 I (X))2 ≥ 1 is not 0-homogeneous with respect to X, and

therefore it admits a self-refinement when applying it to the random variables λX,
λ > 0. Optimizing over this parameter, we will obtain an equivalent 0-homogeneous
relation

N2(X)I (X) ≥ c, (3.17)

with c = π/4. But, it is obviously true that with c = 1. To see this, first note that,
by the Cauchy inequality, for all x ∈ R,

p(x) =
∫ x

−∞
p′(y) dy ≤

∫
p(y)>0

|p′(y)| dy =
∫

p(y)>0

|p′(y)|√
p(y)

√
p(y) dy

≤
( ∫

p(y)>0

p′(y)2

p(y)
dy

)1/2 ( ∫
p(y)>0

p(y) dy

)1/2

= √
I (X).

Therefore,

∫ ∞

−∞
p(x)2 dx ≤ √

I (X),

that is, N2(X)I (X) ≥ 1.
Observe that another inequality involving the quadratic Rényi entropy power

N2(X) and some generalisation of Fisher information can be extracted from [5],
namely for all 1 ≤ q < ∞, N2(X)q

∫ |p′|qp ≥ Cq for an optimal constant Cq .
However it’s unclear how to related this inequality to (3.17).
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