Chapter 3 Polar Isoperimetry. I: The Case of the Plane

Sergey G. Bobkov, Nathael Gozlan, Cyril Roberto, and Paul-Marie Samson

Abstract This is the first part of the notes with preliminary remarks on the plane isoperimetric inequality and its applications to the Poincaré and Sobolev-type inequalities in dimension one. Links with informational quantities of Rényi and Fisher are briefly discussed.

Keywords Isoperimetry · Sobolev-type inequalities · Rényi divergence power · Relative Fisher information

3.1 Isoperimetry on the Plane and the Upper Half-Plane

The paper by Diaz et al. [\[4\]](#page-9-0) contains the following interesting Sobolev-type inequality in dimension one.

Proposition 3.1.1 *For any smooth real-valued function* ^f *on* [0, ¹]*,*

$$
\int_0^1 \sqrt{f(x)^2 + \frac{1}{\pi^2} f'(x)^2} dx \ge \left(\int_0^1 f(x)^2 dx\right)^{1/2}.
$$
 (3.1)

S. G. Bobkov (\boxtimes)

N. Gozlan Université Paris Descartes, MAP5, UMR 8145, Paris Cedex, France e-mail: natael.gozlan@parisdescartes.fr

C. Roberto Université Paris Nanterre, MODAL'X, EA 3454, Nanterre, France e-mail: croberto@math.cnrs.fr

P.-M. Samson LAMA, Univ Gustave Eiffel, UPEM, Univ Paris Est Creteil, CNRS, F-77447, Marne-la-Vallée, France e-mail: paul-marie.samson@univ-mlv.fr

© Springer Nature Switzerland AG 2019

School of Mathematics, University of Minnesota, Minneapolis, MN, USA e-mail: bobkov@math.umn.edu

N. Gozlan et al. (eds.), *High Dimensional Probability VIII*, Progress in Probability 74, https://doi.org/10.1007/978-3-030-26391-1_3

More precisely, this paper mentions without proof that (3.1) is a consequence of the isoperimetric inequality on the plane \mathbb{R}^2 . Let us give an argument, which is actually based on the isoperimetric inequality

$$
\mu^+(A) \ge \sqrt{2\pi} \left(\mu(A) \right)^{1/2}, \qquad A \subset \mathbb{R}_+^2 \quad (A \text{ is Borel}), \tag{3.2}
$$

in the upper half-plane $\mathbb{R}^2_+ = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \ge 0\}$. Here, μ denotes the Lebesgue measure restricted to this half-plane, which generates the corresponding notion of the perimeter

$$
\mu^+(A) = \liminf_{\varepsilon \to 0} \frac{\mu(A + \varepsilon B_2) - \mu(A)}{\varepsilon}
$$

(cf. e.g. [\[2\]](#page-9-1))*.*

Inequality [\(3.2\)](#page-1-0) follows from the Brunn-Minkowski inequality in \mathbb{R}^2

$$
\mu(A+B)^{1/2} \ge \mu(A)^{1/2} + \mu(B)^{1/2}
$$

along the same arguments as in the case of its application to the usual isoperimetric inequality. Indeed, applying it with a Borel set $A \subset \mathbb{R}^2_+$ and $B = \varepsilon B_2$ ($\varepsilon > 0$), we get

$$
\mu(A + \varepsilon B_2) \ge \left[\mu(A)^{1/2} + \mu(\varepsilon B_2)^{1/2} \right]^2
$$

= $\left[\mu(A)^{1/2} + \left(\frac{\pi}{2} \right)^{1/2} \varepsilon \right]^2$
= $\mu(A) + \sqrt{2\pi} (\mu(A))^{1/2} \varepsilon + O(\varepsilon^2),$

and therefore [\(3.2\)](#page-1-0) from the definition of the perimeter.

The relation (3.2) is sharp and is attained for the upper semi-discs

$$
A_{\rho} = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \le \rho^2, x_2 \ge 0\}, \qquad \rho > 0.
$$

In this case, $\mu(A_{\rho}) = \frac{1}{2} \pi \rho^2$ is the area size between the upper part of the circle $x_1^2 + x_2^2 = \rho^2$ and the x_1 -axis $x_2 = 0$, while the μ -perimeter is just the length of the half-circle $\mu^+(A_\rho) = \pi \rho$.

To derive (3.1) , one may assume that the function f is non-negative and is not identically zero on [0, 1]. Then we associate with it the set in \mathbb{R}^2_+ described in polar coordinates as

$$
A = \{(x_1, x_2) : 0 \le r \le f(t), \ 0 \le t \le 1\}
$$

with $x_1 = r \cos(\pi t)$, $x_2 = r \sin(\pi t)$. Integration in polar coordinates indicates that, for any non-negative Borel function u on \mathbb{R}^2 .

$$
\iint_{\mathbb{R}^2} u(x_1, x_2) \, dx_1 \, dx_2 = \pi \int_{-1}^1 \left[\int_0^\infty u(r \cos(\pi t), r \sin(\pi t)) \, r \, dr \right] dt. \tag{3.3}
$$

Applying it to the indicator function $u = 1_A$, we get

$$
\mu(A) = \frac{\pi}{2} \int_0^1 f(t)^2 dt.
$$

On the other hand, $\mu^+(A)$ represents the length of the curve $C = \{(x_1(t), x_2(t))$: $0 \le t \le 1$ } parameterized by

$$
x_1(t) = f(t)\cos(\pi t),
$$
 $x_2(t) = f(t)\sin(\pi t).$

Since

$$
x'_1(t)^2 + x'_2(t)^2 = f'(t)^2 + \pi^2 f(t)^2,
$$

we find that

$$
\mu^+(A) = \int_0^1 \sqrt{x_1'(t)^2 + x_2'(t)^2} dt = \int_0^1 \sqrt{f'(t)^2 + \pi^2 f(t)^2} dt.
$$

As a result, the isoperimetric inequality [\(3.2\)](#page-1-0) takes the form

$$
\int_0^1 \sqrt{f'(t)^2 + \pi^2 f(t)^2} dt \ge \sqrt{2\pi} \left(\frac{\pi}{2} \int_0^1 f(t)^2 dt\right)^{1/2}.
$$

which is the same as [\(3.1\)](#page-0-0). Note that the condition $f \ge 0$ may easily be removed in the resulting inequality. \Box

One can reverse the argument and obtain the isoperimetric inequality (3.2) on the basis of (3.1) for the class of star-shaped sets in the upper half-plane.

The same argument may be used on the basis of the classical isoperimetric inequality

$$
\mu^{+}(A) \ge \sqrt{4\pi} \left(\mu(A)\right)^{1/2} \qquad (A \text{ is Borel}) \tag{3.4}
$$

in the whole plane \mathbb{R}^2 with respect to the Lebesgue measure μ . It is attained for the discs

$$
A_{\rho} = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \le \rho^2\}, \qquad \rho > 0,
$$

in which case $\mu(A_{\rho}) = \pi \rho^2$ and $\mu^+(A_{\rho}) = 2\pi \rho$.

Starting from a smooth non-negative function f on $[-1, 1]$ such that $f(-1) =$ $f(1)$, one may consider the star-shaped region

$$
A = \{(x_1, x_2) : 0 \le r \le f(t), -1 \le t \le 1\}, \qquad x_1 = r \cos(\pi t), \ x_2 = r \sin(\pi t),
$$

enclosed by the curve $C = \{(x_1(t), x_2(t)) : -1 \le t \le 1\}$ with the same functions $x_1(t) = f(t) \cos(\pi t), x_2(t) = f(t) \sin(\pi t)$. Integration in polar coordinates [\(3.3\)](#page-2-0) then yields a similar formula as before,

$$
\mu(A) = \frac{\pi}{2} \int_{-1}^{1} f(t)^2 dt,
$$

and also the perimeter $\mu^+(A)$ represents the length of C, i.e.,

$$
\mu^+(A) = \int_{-1}^1 \sqrt{x_1'(t)^2 + x_2'(t)^2} dt = \int_{-1}^1 \sqrt{f'(t)^2 + \pi^2 f(t)^2} dt.
$$

As a result, the isoperimetric inequality [\(3.4\)](#page-2-1) takes the form

$$
\int_{-1}^{1} \sqrt{f'(t)^2 + \pi^2 f(t)^2} dt \ge \sqrt{4\pi} \left(\frac{\pi}{2} \int_{-1}^{1} f(t)^2 dt\right)^{1/2},
$$

or equivalently,

$$
\frac{1}{2} \int_{-1}^{1} \sqrt{\frac{1}{\pi^2} f'(t)^2 + f(t)^2} dt \ge \left(\frac{1}{2} \int_{-1}^{1} f(t)^2 dt\right)^{1/2}.
$$
 (3.5)

To compare with (3.1) , let us restate (3.5) on the unit interval [0, 1] by making the substitution $f(t) = u(\frac{1+t}{2})$. Then it becomes

$$
\frac{1}{2}\int_{-1}^1 \sqrt{\frac{1}{4\pi^2}u'\left(\frac{1+t}{2}\right)^2 + u\left(\frac{1+t}{2}\right)^2} dt \ge \left(\frac{1}{2}\int_{-1}^1 u\left(\frac{1+t}{2}\right)^2 dt\right)^{1/2}.
$$

Changing $x = \frac{1+t}{2}$, replacing u again with f, and removing the unnecessary condition $f \geq 0$, we arrive at:

Proposition 3.1.2 *For any smooth real-valued function* ^f *on* [0, ¹] *such that* $f(0) = f(1)$,

$$
\int_0^1 \sqrt{f(x)^2 + \frac{1}{4\pi^2} f'(x)^2} \, dx \, \ge \, \left(\int_0^1 f(x)^2 \, dx \right)^{1/2} . \tag{3.6}
$$

As we can see, an additional condition $f(0) = f(1)$ allows one to improve the coefficient in front of the derivative, in comparison with [\(3.1\)](#page-0-0). It should also be clear that (3.6) represents an equivalent form of the isoperimetric inequality (3.4) for the class of star-shaped regions.

3.2 Relationship with Poincaré-type Inequalities

It would be interesting to compare Propositions [3.1.1](#page-0-1)[–3.1.2](#page-3-2) with other popular Sobolev-type inequalities such as the Poincaré-type and logarithmic Sobolev inequalities. Starting from (3.1) and (3.6) , a simple variational argument yields:

Corollary 3.2.1 *For any smooth real-valued function* ^f *on* [0, ¹]*,*

$$
\text{Var}_{\mu}(f) \le \frac{1}{\pi^2} \int_0^1 f'(x)^2 dx,
$$
\n(3.7)

where the variance is understood with respect to the uniform probability measure $d\mu(x) = dx$ *on the unit segment. Moreover, if* $f(0) = f(1)$ *, then*

$$
\text{Var}_{\mu}(f) \le \frac{1}{4\pi^2} \int_0^1 f'(x)^2 dx. \tag{3.8}
$$

The constants $\frac{1}{\pi^2}$ and $\frac{1}{4\pi^2}$ in [\(3.7\)](#page-4-0)–[\(3.8\)](#page-4-1) are optimal and are respectively attained for the functions $\hat{f}(x) = \cos(\pi x)$ and $f(x) = \sin(2\pi x)$ (cf. also [\[1\]](#page-9-2)).

For the proof, let us note that an analytic inequality of the form

$$
\int_0^1 \sqrt{f(x)^2 + cf'(x)^2} \, dx \, \ge \, \left(\int_0^1 f(x)^2 \, dx \right)^{1/2} \tag{3.9}
$$

with a constant $c > 0$ becomes equality for $f = 1$. So, one may apply it to $f_{\varepsilon} =$ $1 + \varepsilon f$, and letting $\varepsilon \to 0$, one may compare the coefficients in front of the powers of ε on both sides. First,

$$
\int_0^1 f_{\varepsilon}(x)^2 dx = 1 + 2\varepsilon \int_0^1 f(x) dx + \varepsilon^2 \int_0^1 f(x)^2 dx,
$$

so, by Taylor's expansion, as $\varepsilon \to 0$,

$$
\left(\int_0^1 f_{\varepsilon}(x)^2 dx\right)^{1/2} = 1 + \varepsilon \int_0^1 f(x) dx + \frac{\varepsilon^2}{2} \int_0^1 f(x)^2 dx
$$

$$
- \frac{1}{8} \left(2\varepsilon \int_0^1 f(x) dx + \varepsilon^2 \int_0^1 f(x)^2 dx\right)^2 + O(\varepsilon^3)
$$

$$
= 1 + \varepsilon \int_0^1 f(x) dx + \frac{\varepsilon^2}{2} \int_0^1 f(x)^2 dx - \frac{\varepsilon^2}{2} \left(\int_0^1 f(x) dx\right)^2 + O(\varepsilon^3).
$$

Ч

On the other hand, since

$$
f_{\varepsilon}(x)^{2} + cf'_{\varepsilon}(x)^{2} = 1 + 2\varepsilon f(x) + \varepsilon^{2} (f(x)^{2} + cf'(x)^{2}),
$$

we have

$$
(f_{\varepsilon}(x)^{2} + cf'_{\varepsilon}(x)^{2})^{1/2} = 1 + \varepsilon f(x) + \frac{\varepsilon^{2}}{2} \left(f(x)^{2} + cf'(x)^{2} \right)
$$

$$
-\frac{1}{8} \left(2\varepsilon f(x) + \varepsilon^{2} \left(f(x)^{2} + cf'(x)^{2} \right) \right)^{2} + O(\varepsilon^{3})
$$

$$
= 1 + \varepsilon f(x) + \frac{c\varepsilon^{2}}{2} f'(x)^{2} + O(\varepsilon^{3}).
$$

Hence

$$
\int_0^1 (f_{\varepsilon}(x)^2 + cf'_{\varepsilon}(x)^2)^{1/2} dx = 1 + \varepsilon \int_0^1 f(x) dx + \frac{c\varepsilon^2}{2} \int f'(x)^2 dx + O(\varepsilon^3).
$$

Inserting both expansions in (3.9) , we see that the linear coefficients coincide, while comparing the quadratic terms leads to the Poincaré-type inequality

$$
c \int f'(x)^2 dx \ge \int_0^1 f(x)^2 dx - \Big(\int_0^1 f(x) dx\Big)^2.
$$

Thus, the isoperimetric inequality on the upper half-plane implies the Poincarétype inequality (3.7) on [0, 1], while the isoperimetric inequality on the whole plane implies the restricted Poincaré-type inequality [\(3.8\)](#page-4-1), with optimal constants in both cases.

3.3 Sobolev Inequalities

If f is non-negative, then $f(x) = 0 \Rightarrow f'(x) = 0$ and thus $f(x)^2 + cf'(x)^2 = 0$. Hence, applying Cauchy's inequality, from [\(3.9\)](#page-4-2) we get

$$
\int_0^1 f(x)^2 dx \le \left(\int_0^1 \sqrt{f(x)} \sqrt{f(x) + c \frac{f'(x)^2}{f(x)}} 1_{\{f(x) > 0\}} dx \right)^2
$$

$$
\le \int_0^1 f(x) dx \left(\int_0^1 f(x) dx + c \int_0^1 \frac{f'(x)^2}{f(x)} 1_{\{f(x) > 0\}} dx \right).
$$

Therefore, Propositions [3.1.1–](#page-0-1)[3.1.2](#page-3-2) also yield:

Proposition 3.3.1 *For any non-negative smooth function* ^f *on* [0, ¹] *with* $\int_0^1 f(x) dx = 1$,

$$
\text{Var}_{\mu}(f) \le \frac{1}{\pi^2} \int_0^1 \frac{f'(x)^2}{f(x)} \, 1_{\{f(x) > 0\}} \, dx,\tag{3.10}
$$

where the variance is with respect to the uniform probability measure μ *on the unit segment. Moreover, if* $f(0) = f(1)$ *, then*

$$
\text{Var}_{\mu}(f) \le \frac{1}{4\pi^2} \int_0^1 \frac{f'(x)^2}{f(x)} \, 1_{\{f(x) > 0\}} \, dx. \tag{3.11}
$$

Recall that there is a general relation between the entropy functional

$$
Ent_{\mu}(f) = \int f \log f \, d\mu - \int f \, d\mu \, \log \int f \, d\mu \qquad (f \ge 0)
$$

and the variance, namely

$$
Ent_{\mu}(f) \int f d\mu \leq Var_{\mu}(f). \tag{3.12}
$$

It is rather elementary; assume by homogeneity that $\int f d\mu = 1$. Since $\log t \leq t - 1$ and therefore t $\log t \leq t(t-1)$ for all $t \geq 0$, we have

$$
f(x)\log f(x) \le f(x)^2 - f(x).
$$

After integration it yields [\(3.12\)](#page-6-0)*.*

Using the latter in (3.10) – (3.11) , we arrive at the logarithmic Sobolev inequalities*.*

Corollary 3.3.2 *For any non-negative smooth function* ^f *on* [0, ¹]*, with respect to the uniform probability measure* μ *on the unit segment we have*

$$
\operatorname{Ent}_{\mu}(f) \le \frac{1}{\pi^2} \int_0^1 \frac{f'(x)^2}{f(x)} 1_{\{f(x) > 0\}} dx. \tag{3.13}
$$

Moreover, if $f(0) = f(1)$ *, then*

$$
\operatorname{Ent}_{\mu}(f) \le \frac{1}{4\pi^2} \int_0^1 \frac{f'(x)^2}{f(x)} \, 1_{\{f(x) > 0\}} \, dx. \tag{3.14}
$$

Replacing here f by $(1 + \varepsilon f)^2$ and letting $\varepsilon \to 0$, we return to the Poincaré-type inequalities (3.7) and (3.8) with an extra factor of 2. The best constant in (3.13) is however $\frac{1}{2\pi^2}$ and in [\(3.14\)](#page-6-4) is $\frac{1}{8\pi^2}$ [\[1,](#page-9-2) Proposition 5.7.5]. On the other hand, the inequalities (3.10) – (3.11) are much stronger than (3.13) – (3.14) .

3.4 Informational Quantities and Distances

The inequalities (3.13) – (3.14) may be stated equivalently in terms of informational distances to the uniform measure μ on the unit segment. Let us recall that, for random elements X and Z in an abstract measurable space Ω with distributions ν and μ respectively, the Rényi divergence power or the Tsallis distance from ν to μ of order $\alpha > 0$ is defined by

$$
T_{\alpha}(X||Z) = T_{\alpha}(v||\mu) = \frac{1}{\alpha - 1} \left[\int \left(\frac{p}{q}\right)^{\alpha} p \, d\lambda - 1 \right] = \frac{1}{\alpha - 1} \left[\int f^{\alpha} \, d\mu - 1 \right],
$$

where p and q are densities of v and μ with respect to some (any) σ -finite dominating measure λ on Ω , with $f = p/q$ being the density of v with respect to μ (the definition does not depend on the choice of λ). If $\alpha = 1$, we arrive at the Kullback–Leibler distance or an informational divergence

$$
T_1(X||Z) = D(X||Z) = \int p \log \frac{p}{q} d\lambda = \int f \log f d\mu,
$$

which is the same as $Ent_{\mu}(f)$. For $\alpha = 2$ the Tsallis T₂-distance is the same as the χ^2 -distance. If $\alpha \geq 1$, necessarily $T_{\alpha}(X||Z) = \infty$ as long as v is not absolutely continuous with respect to μ . In any case, the function $\alpha \to T_\alpha$ is non-decreasing; we refer an interested reader to the survey [\[6\]](#page-10-0) (cf. also [\[3\]](#page-9-3)).

In the case of the real line $\Omega = \mathbb{R}$, and when the densities p and q are absolutely continuous, the relative Fisher information or the Fisher information distance from ν to μ is defined by

$$
I(X||Z) = I(v||\mu) = \int_{-\infty}^{\infty} \left(\frac{p'}{p} - \frac{q'}{q}\right)^2 p \, d\lambda = \int_{-\infty}^{\infty} \frac{f'^2}{f} \, d\mu,
$$

still assuming that the probability measure ν is absolutely continuous with respect to μ and has density $f = p/q$. This definition is commonly used when q is supported and is positive on an interval $\Delta \subset \mathbb{R}$, finite or not, with the above integration restricted to Δ . With these notations, Proposition [3.3.1](#page-6-5) corresponds to the order $\alpha = 2$ and therefore takes the form

$$
T_2(X||Z) \le \frac{1}{\pi^2} I(X||Z), \qquad T_2(X||Z) \le \frac{1}{4\pi^2} I(X||Z), \tag{3.15}
$$

holding true for an arbitrary random variable X with values in $[0, 1]$. Here the random variable Z has a uniform distribution μ on [0, 1], and we use an additional constraint $f(0) = f(1)$ in the second relation.

There is also another non-distance formulation of (3.15) in terms of classical informational quantities such as the Rényi entropy power and the Fisher information

$$
N_{\alpha}(X) = \left(\int_{-\infty}^{\infty} p(x)^{\alpha} dx\right)^{-\frac{2}{\alpha-1}}, \qquad I(X) = \int_{-\infty}^{\infty} \frac{p'(x)^2}{p(x)} dx.
$$

Here the case $\alpha = 2$ defines the quadratic Rényi entropy power $N_2(X)$. If μ is supported and has an absolutely continuous positive density q on the interval $\Delta \subset$ R, one may also define the restricted Fisher information

$$
I_0(X) = \int_{\Delta} \frac{p'(x)^2}{p(x)} dx.
$$

For example, if Z is uniformly distributed in the unit interval, so that $q(x) = 1$ for $0 < x < 1$, we have $I(Z) = \infty$, while $I_0(Z) = 0$. In this case, if X has values in $[0, 1]$, we have

$$
T_2(X||Z) = \int_0^1 p(x)^2 dx - 1 = N_2(X)^{-1/2} - 1, \qquad I(X||Z) = I_0(X).
$$

Hence, the first inequality in (3.15) may be written as the following.

Corollary 3.4.1 *For any random variable* ^X *with values in* [0, ¹]*, having there an absolutely continuous density, we have*

$$
N_2(X)\left(1+\frac{1}{\pi^2}I_0(X)\right)^2 \ge 1.
$$
\n(3.16)

This relation is analogous to the well-known isoperimetric inequality for entropies,

$$
N(X) I(X) \geq 2\pi e,
$$

where $N(X) = N_1(X) = e^{2h(X)}$ is the entropy power, corresponding to the Shannon differential entropy

$$
h(X) = -\int_{-\infty}^{\infty} p(x) \log p(x) dx.
$$

The functional $I_0(X)$ may be replaced with $I(X)$ in [\(3.16\)](#page-8-0) (since $I_0 \leq I$), and then one may remove the assumption on the values of X . Moreover, with the functional $I(X)$, this inequality may be considerably strengthened. Indeed, the

relation $N_2(X)(1 + \frac{1}{\pi^2}I(X))^2 \ge 1$ is not 0-homogeneous with respect to X, and therefore it admits a self-refinement when applying it to the random variables λX , $\lambda > 0$. Optimizing over this parameter, we will obtain an equivalent 0-homogeneous relation

$$
N_2(X)I(X) \ge c,\t\t(3.17)
$$

with $c = \pi/4$. But, it is obviously true that with $c = 1$. To see this, first note that, by the Cauchy inequality, for all $x \in \mathbb{R}$,

$$
p(x) = \int_{-\infty}^{x} p'(y) dy \le \int_{p(y)>0} |p'(y)| dy = \int_{p(y)>0} \frac{|p'(y)|}{\sqrt{p(y)}} \sqrt{p(y)} dy
$$

$$
\le \left(\int_{p(y)>0} \frac{p'(y)^2}{p(y)} dy\right)^{1/2} \left(\int_{p(y)>0} p(y) dy\right)^{1/2} = \sqrt{I(X)}.
$$

Therefore,

$$
\int_{-\infty}^{\infty} p(x)^2 dx \le \sqrt{I(X)},
$$

that is, $N_2(X)I(X) \geq 1$.

Observe that another inequality involving the quadratic Rényi entropy power $N_2(X)$ and some generalisation of Fisher information can be extracted from [\[5\]](#page-10-1), namely for all $1 \leq q < \infty$, $N_2(X)^q \int |p'|^q p \geq C_q$ for an optimal constant C_q . However it's unclear how to related this inequality to [\(3.17\)](#page-9-4).

Acknowledgements Research was partially supported by the NSF grant DMS-1855575 and by the Bézout Labex, funded by ANR, reference ANR-10-LABX-58, the Labex MME-DII funded by ANR, reference ANR-11-LBX-0023-01, and the ANR Large Stochastic Dynamic, funded by ANR, reference ANR-15-CE40-0020-03-LSD.

References

- 1. D. Bakry, I. Gentil, M. Ledoux, Analysis and geometry of Markov diffusion operators, in *Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences)*, vol. 348 (Springer, Cham, 2014), p. xx+552
- 2. Yu.D. Burago, V.A. Zalgaller, Geometric inequalities, in *Translated from the Russian by A. B. Sosinskii. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer Series in Soviet Mathematics, vol. 285 (Springer, Berlin, 1988), p. xiv+331
- 3. A. Dembo, T.M. Cover, J.A. Thomas, Information-theoretic inequalities. IEEE Trans. Inform. Theory **37**(6), 1501–1518 (1991)
- 4. A. Diaz, N. Harman, S. Howe, D. Thompson, Isoperimetric problems in sectors with density. Adv. Geom. **12**(4), 589–619 (2012)
- 5. E. Lutwak, D. Yang, G. Zhang, Cramer-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information. IEEE Trans. Inform. Theory **51**(2), 473–478 (2005)
- 6. T. van Erven, P. Harremoës, Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inform. Theory **60**(7), 3797–3820 (2014)