Chapter 2 )
Moment Estimation Implied Shethie
by the Bobkov-Ledoux Inequality

Witold Bednorz and Grzegorz Glowienko

Abstract In this paper we consider a probability measure on the high dimensional
Euclidean space satisfying Bobkov-Ledoux inequality. Bobkov and Ledoux have
shown in (Probab Theory Related Fields 107(3):383—400, 1997) that such entropy
inequality captures concentration phenomenon of product exponential measure and
implies Poincaré inequality. For this reason any measure satisfying one of those
inequalities shares the same concentration result as the exponential measure. In
this paper using B-L inequality we derive some bounds for exponential Orlicz
norms for any locally Lipschitz function. The result is close to the question posted
by Adamczak and Wolff in (Probab Theory Related Fields 162:531-586, 2015)
regarding moments estimate for locally Lipschitz functions, which is expected to
result from B-L inequality.
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2.1 The Bobkov-Ledoux Inequality

Let u be a probability measure on RY. We assume that 1 satisfies Bobkov-Ledoux
inequality i.e. with fixed D > 0, for any positive, locally Lipschitz function f such
that |V f|eo < f/2 we have

Ent, f> < DE, |V f|3. 2.1

As noticed by Bobkov and Ledoux in [3] this modification of log-Sobolev inequality
is satisfied by product exponential measure, but more importantly, it implies
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subexponential concentration. It is also quite easy to show that it implies Poincaré
inequality. For any smooth function g we may take f = 1 4 €g and € > 0 such that
IV floo < f/2, which allows us to apply (2.1). In the next step divide both sides of
inequality by €2, consider standard Taylor expansion and take limit with e tending
to 0. As a result

D 2
Var,g < EulVels, 2.2)

which is exactly the Poincaré inequality. Finally just notice that any locally Lipschitz
function f such that both f and |V f] are square integrable w.r.t. u may be
approximated in (2.2) by smooth functions. The result means that B-L inequality
(2.1) is stronger than Poincaré inequality (2.2), nevertheless both inequalities imply
concentration phenomenon of product exponential measure, therefore any measure
satisfying one of those inequalities shares the same concentration result. See [3] for
more details regarding this subtle connection.

As we are dealing with big number of constants in the following section, it would
be wise to adopt some useful convention. Therefore, let us denote by D’ numeric
constant which may vary from line to line, but importantly, it is comparable to D
from log-Sobolev inequality (2.1). Similarly let C be constant comparable to 1 and
by C(«) denote one that depends on « only.

In [4] it was noticed by E. Milman that, Poincaré inequality (2.2) implies the
following estimate for p > 1

1f =Euflp < VDIV flallp, (2.3)
with f locally Lipschitz. It is easy to see that above results with the following bound
If =Eufll, < VD pVAllY flsollp-

Adamczak and Wolff has conjectured in [1] that Bobkov-Ledoux inequality (2.1)
imply

Lf =B fllpy <VD'YPIVflally + CPIIY flosllp-

They also proved following weaker form of the conjecture

If = Euflp VD' PV Flallp + CpIIY floolio. (2.4)

Their result is based on tricky modification of given function so that (2.1) could be
used. In our paper we are trying to understand this phenomenon and apply its more
advanced form.
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2.2 Bounds for Moments

In this section we investigate possible estimates for ||g||po, With a given & > 0,
when we know that g% is globally Lipschitz. This bounds will be useful when we
start dealing with the exponential Orlicz norms.

Theorem 2.1 If measure | satisfies (2.1), function g is non-negative, locally
Lipschitz and p > 1, then
for 0 <a <1

1
lgllpe < 20 max {pe [1Ve%loo]| 2., Igllar ap? v/ D[V eIl e

and in case of o0 > 1

1
lgllpe < max {26 pe ||Ve% o] &, 24 gllaas ap> VD'l Vglall o).

Proof Consider g* to be a non-negative Lipschitz function, otherwise estimate is
trivial. Note that in case of p < 2 there is also nothing to prove, therefore we may
take p > 2. For simplicity let us assume that |||Vg%|solloc = 1. If it happens to be

Igl5e <2p[1VE% 0]l o (2.5)

then proof is once again trivial, therefore assume that

181156 > 2P]1V8% 00| o (2.6)

then following the idea of the proof of (2.4) from [1] we define function 7 =
max{g, c}, where ¢ = ||g||,,a/2§c. Obviously, for2 <t < p

IVh*2|og 1 [Vh¥| o
ot /2 = 2 ho

Due to our definition 2 > ¢ and |[VA® |5 < |Vg%|oo, Which gives us

VH%loo _ 21V
~
he lgll%,

Combining above with (2.6) we get

H VA2 H t o 1
het/2 oo ~2p T 27
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Therefore, we may apply (2.1) to the function 2%'/2 and thus by the Aida Stroock
[2] argument i.e.

2/t—1

d 2 2 2/1—1 2o D 2— 2
dt||h°‘||, =t2(Eh°") Ent(h*'/%)? < 2(Eh°") E[h%/27*Vh%|3,

combined with Holder inequality with exponents 7/(+ — 2) and ¢/2 applied to the
last term, gives us

d D _ _ D
5 ”ha”? < ) (Ehat)z/t I(Ehal‘)l 2/I(E|Vha|t2)2/l‘ — 5 Hthab”tz

The moment function (as function of ¢) is non-decreasing, therefore for2 <t < p
we get

IR 15 = 1R 15 < lz)(p = )IVA* L]l 2.7)
Now we have to consider two cases. First suppose that @ < 1 and then
VA2l < @lllVglh® ™, < ac® I Vgall,
and combining this with (2.7), we infer

a?D

IA15 < WAI5+

(p =2 [|Vglall3.
Now observe that ||2% II?, > |g* ||?7 and furthermore
o2 20 o2 1 o2 o2
1A% < c™ +g” Iz < 4||g I + 1187113,

which combined together gives us

3 a’D _
e G < g I3+ 7,7 (p =2 Vel Il (2.8)
Noting that the case of
lgl5e < 208l15: (2.9)

is another trivial part, we assume conversely getting

1 1
1815 = llglza < lelpe = , 18”1
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which together with (2.8) implies that
gl < a*D(p — 2> [|Vglall3. (2.10)

Reminding that ¢* = 27"||g||%, we infer

gl < 24722 D(p — )| Vgl
and rewriting it in simplified form
1 , 1
lgllpa < 2¢av/D'p2(||Vgl2llp. 2.11)

Combining together (2.5), (2.9), and (2.11) implies the result in the case of 0 < o <
1.

Consider now case of o« > 1, following the same reasoning as in previous case,
up to the (2.7) after that Holder inequality is used, we get

VA2l < alllVelah I, < @llVelallpallhll%

Therefore, by (2.7)

2 (A 2D 2
1776 (1 — Il )< 2(p—2)||IVgI2||pa- (2.12)

Again, either (2.9) holds or we have

1 1 1
Il5e = 1115 < * + 118" =, 1l + , 1l = , Iglpe

Since obviously ||h||12U ||g||pa, we get
g — M8 - ooy [
e )2 "~
and combining above with (2.12) gives us
1
lgllpe < av/D'p21|Vglallp. (2.13)

Clearly (2.5), (2.9), and (2.13) cover the case of « > 1, which ends whole proof. B

Next step of the reasoning is to apply previousresult to g = | f —E, f| and combine
it with Poincaré inequality. Let us gather everything together in form of
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Corollary 2.1 If measure u satisfies (2.1), function f is locally Lipschitz and p >
1, thenfor 0 <a < 1

1
a
)
o

1 1
1f = By fllpo < 20 max | po

VIf = Euf1”]
DNV 1]y 0V D19 Pl -

and in case of a > 1

1
a
)
o

1/ = Epf e < max {20 po | [V1f = By f 1]
200/ DIV fla] o0 @02 VD1V £ |

Proof If we fix g = | f — E,, f| then by the Poincaré inequality

If = Euflloa < @V DVD'[IV £l g0

Note also that

[1V8l2] o = 1191121

then applying Theorem 2.1 statement easily follows. ]

2.3 Bounds for Exponential Orlicz Norms

First, let us recall the notion of exponential Orlicz norms. For any o > 0
I fllg@ = inf{s > 0: E,exp(|f|*/s*) <2}.

Obviously, || fllgw) is a norm in case of o > 1 only, otherwise there is a

1
problem with the triangle inequality. Moreover, we have || fllow) = lIlf |°‘||(‘;(1).
Nevertheless, in case of 0 < o < 1 one can use

1
Il f +g||(ﬂ(0l) =lf +g|a”(¢;(1)
1 1
S M+ 181515y < U1 lpay + Mg lpay) @

1 1
= (112 + 181% e < 267 U llp) + N8llgt)-
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It is worth to know that || f[l4() 1s always comparable with sup; ”l{l%‘*. More
precisely, observe that for all k > 1 and a positive g

||g||
< lglke,.

Note that, just by the definition of ||g ||y (), there exists k > 1 for which

||g||’,§
e gl

Let us denote the set of such k > 1 by J(g, o) and note that for any k € J (g, @)

1
(kD)7 k [l gllke < lIgllpe) < 2“(k') ta & lko - (2.14)

Next let M > e be such a constant that (k!)/i > k/M for all k > 1. We have
following crucial observation namely for all k € J(g, )

 lelha
Iglp@ < @M)a '8k 2.15)

o

Therefore, we may use Theorem 2.1 in order to obtain

Corollary 2.2 If u satisfies (2.1) and g is non-negative locally Lipschitz function,
then forany k € J(g,a) incaseof 0 <a <1

gy < @M max {||Vg® oo 2. K lglaas k> =o /D |1V, -

andfor1l <a <2

1
gy < @M= max {[IVgloo| 2 k™ llgllaa 27w k2o /D' 1982 |, }-

Note that set J (g, ) is stable with respect to g — h, where h = max{g, c} i.e. if ¢
is comparable to ||glly(«) there exists C > 1 such that for k € J (g, @)

ka
A1l ih[ke
k! Ck p(a)’

which means that we cannot easily improve the result using the trick.
In the same way as we have established Corollary 2.1 we can deduce the
following result.
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Corollary 2.3 If u satisfies (2.1) and g is locally Lipschitz function, then for any
ke J(g,a)incaseof 0 <a < 1

1
1 o
1 = By ot < @a0)e max{|[V17 =B, f1] |
1 11
ke D'V fla]) , k2 m/D’|||Vf|2||ka].
and for o > 1
| .
1 =Bl < @a0e max {917 = B, f1e] |

ke /D' ||V 11

y 2o ak2 e/ DIV £, )

A simple consequence of the above is

Corollary 2.4 If i satisfies (2.1) and 0 < « < 2, then for any locally Lipschitz
function f

1 = Eu Sl < C@IVIS = Euf 9] |2 + VD19 712 20 ).

The result shows that at least for globally Lipschitz function | f|*, ¢ < 1 the

exponential moment || f — E, flly«) has to bounded, though it is still far from
1

replacement of |||V|f — E, f|%lx|l% by the expected |||Vf|oo||(p(lga).

Note that it is not possible to simply replace the constant C(«) ~ (4M )olc in
Corollary 2.4 by 1 which would be a natural choice for the question. In the next
section we will show another approach which allows to obtain such a result.

2.4 Another Approach

Theorem 2.2 If u satisfies (2.1) and 0 < o < 2, then for any locally Lipschitz
function f

1
If = Euflloe) < [|VIf = Enf1*| | & + C@VD IV £l 2o

1

where C(a) = o (1132)&.

Proof Let g% be a non-negative Lipschitz function, we may assume that

[1V8% oolloo = ]| IVglocg® " lloo < 1.
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Then for any # < 1 and a function 2 = exp(g*#/2) we can apply (2.1), indeed

Vil t 1

|70 = el <

In fact there are three possibilities we should acknowledge.
The first case we should consider is E, exp(g¥) < 2, but then

lgllp@ < 1. (2.16)

1
Otherwise there must exist £, < 1 such that Eexp(g®ts) = 2. Clearly 1/t =
lglly(a)- For simplicity let us denote V (t) = InEexp(g*t), t > 0. It is well known
that V is convex, increasing and V (0) = 0. Now we use (2.1), in order to get for all
t €[0,1]

V(1)
(") < Bave et — Vi, 2.17)
Note that V(0)’ = E, g% Moreover, for 0 < ¢ < 1, we have ! , Sexp(=V(@) <1
so we can rewrite (2.17) in the following form
Vit «
( t”) <Pg LIV 2es™. (2.18)

Since V is convex V(0) = 0 we know that V (¢)/¢ is increasing and also V'(0) =
E, g%. Consequently, integrating (2.18) on [0, ]

V(l*) i k(xtk+1
e ~ i k+ D
Note that V(t,) = 1n2, so
S tk+2

D
In2 < t,E Vg®|2gke.
n2 < tE, g% + Z(k+1), ulVe“lsg

The second case which should be considered is when ¢, is very close to E, g%. If
tE.g% > ) In2, then

1 2 \a
lglow = 1 < ()" lglle- (2.19)

1y
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For the last part of the proof we assume that
o 1
E; g% < 5 In2.

Obviously, we have then

n2 D (k2
< *k E v a2 ko
2 S g kZ_O (k4 1y EulVETI28

Using the Holder inequality, we get
Eu. |Vgc{ |%gk0l — O{ZEH, |Vg|%g(k+2)a_2

2 2
o?||Vglal
2 2 k+2)a—2 (k+2) k+2
<AVl lgliae > = ) “E, gt
”g”(k+2)<x

Therefore,

(k+2)| |Vg|2”(k+2)a t£+2Eﬂg(k+2)a

1
1n2 (2.20)
; ||g||(k+2)a (k+2)!
Now we split all the indices k into two classes.

1 1

(k +2)« (k +2)e
I={k=20: lglk+2e < o b I =k=00 liglwe > b
Matf Matf

where the constant M > 1 will be chosen later. First, we bound summands over the
set I, 1.e.

2

2
kel 811120

(k + 2 1IVER NG 2 thH2E, gk +2e
(k +2)!

2 2102 -2 (k+2)%2 2 2
< max(k + DIVglallfy2os Mk +2) kZIj ks 42y M

k+2
Obviously it is easy to choose M close to 2e so that ), ; M(,]ffzz&ﬂ), < 1. Thus,

we may state our bound over [ in the following form

2

2
kel 1811 +2)a

(k+2IVEI2112 0y t512E, gk +De 2
(k+2)a Ty “ I_Li_gz)y < K2t? Mi’ (2.21)
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11Vel2llke
11
ke 2

where K = max; > . On the set J we do as follows

(k +2)1IVELR NG 2 thH2E, gk +2e
(k +2)!

2

2
kel 1811 +2)0

2 k+2)Velal? (K2R, g k2
<t Mgc max (k+2)er Z * n8

k=0 (k-|—2)§ ey KT
But now
Z t>l:+2Ep,g(k+2)a tf+2EMg(k+2)a )
T L o
o Gkt T (k+2)

Thus, our bound on J is

(k + 211Vl 2 tAH2E, gk +2e

2 ) |
keJ ”g”(k+2)a (k +2)!

2 52
< MoKt

Combining bounds (2.21), (2.22), and (2.20) we get

22 2,2
Do S MoK

but this implies
1

nNe oo
o S (DHEaK"

Note that K is comparable with [||Vg|2|| o2 ) It leads to the formula

1 !
lgllp@ = , <avD'|[Vglll

200 .
o 0(,5,)

Bound (2.16), (2.19), and (2.23) implies that for any positive g

1
1 2 a
lgllp@ < max {[IVe1%] .. (m) Igles /D982l 2o )}

If we now fix g = | f — E,, f| then by the Poincaré inequality

If —Euflla < VDIV fl2lla-

19

(2.22)

(2.23)

(2.24)
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Note also that
11Vl 2o ) = IV Fl2lly 2o )

Thus, by (2.24) we obtain

1

1 2 a
IIf—Eu.f||¢<a><maX{H|V|f—Euf|°‘\ongo,( ) 1f ~Epflla eV DIV f L2l 20 }-

In2

It ends the proof. ]
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