
Chapter 2
Moment Estimation Implied
by the Bobkov-Ledoux Inequality

Witold Bednorz and Grzegorz Głowienko

Abstract In this paper we consider a probability measure on the high dimensional
Euclidean space satisfying Bobkov-Ledoux inequality. Bobkov and Ledoux have
shown in (Probab Theory Related Fields 107(3):383–400, 1997) that such entropy
inequality captures concentration phenomenon of product exponential measure and
implies Poincaré inequality. For this reason any measure satisfying one of those
inequalities shares the same concentration result as the exponential measure. In
this paper using B-L inequality we derive some bounds for exponential Orlicz
norms for any locally Lipschitz function. The result is close to the question posted
by Adamczak and Wolff in (Probab Theory Related Fields 162:531–586, 2015)
regarding moments estimate for locally Lipschitz functions, which is expected to
result from B-L inequality.
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2.1 The Bobkov-Ledoux Inequality

Let μ be a probability measure on R
d . We assume that μ satisfies Bobkov-Ledoux

inequality i.e. with fixed D > 0, for any positive, locally Lipschitz function f such
that |∇f |∞ � f/2 we have

Entμf 2 � DEμ|∇f |22. (2.1)

As noticed by Bobkov and Ledoux in [3] this modification of log-Sobolev inequality
is satisfied by product exponential measure, but more importantly, it implies
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subexponential concentration. It is also quite easy to show that it implies Poincaré
inequality. For any smooth function g we may take f = 1 + εg and ε > 0 such that
|∇f |∞ � f/2, which allows us to apply (2.1). In the next step divide both sides of
inequality by ε2, consider standard Taylor expansion and take limit with ε tending
to 0. As a result

Varμg � D

2
Eμ|∇g|22, (2.2)

which is exactly the Poincaré inequality. Finally just notice that any locally Lipschitz
function f such that both f and |∇f |2 are square integrable w.r.t. μ may be
approximated in (2.2) by smooth functions. The result means that B-L inequality
(2.1) is stronger than Poincaré inequality (2.2), nevertheless both inequalities imply
concentration phenomenon of product exponential measure, therefore any measure
satisfying one of those inequalities shares the same concentration result. See [3] for
more details regarding this subtle connection.

As we are dealing with big number of constants in the following section, it would
be wise to adopt some useful convention. Therefore, let us denote by D′ numeric
constant which may vary from line to line, but importantly, it is comparable to D

from log-Sobolev inequality (2.1). Similarly let C be constant comparable to 1 and
by C(α) denote one that depends on α only.

In [4] it was noticed by E. Milman that, Poincaré inequality (2.2) implies the
following estimate for p � 1

‖f − Eμf ‖p �
√

D′p‖|∇f |2‖p, (2.3)

with f locally Lipschitz. It is easy to see that above results with the following bound

‖f − Eμf ‖p �
√

D′p
√

d‖|∇f |∞‖p.

Adamczak and Wolff has conjectured in [1] that Bobkov-Ledoux inequality (2.1)
imply

‖f − Eμf ‖p �
√

D′√p‖|∇f |2‖p + Cp‖|∇f |∞‖p.

They also proved following weaker form of the conjecture

‖f − Eμf ‖p �
√

D′√p‖|∇f |2‖p + Cp‖|∇f |∞‖∞. (2.4)

Their result is based on tricky modification of given function so that (2.1) could be
used. In our paper we are trying to understand this phenomenon and apply its more
advanced form.
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2.2 Bounds for Moments

In this section we investigate possible estimates for ‖g‖pα , with a given α > 0,
when we know that gα is globally Lipschitz. This bounds will be useful when we
start dealing with the exponential Orlicz norms.

Theorem 2.1 If measure μ satisfies (2.1), function g is non-negative, locally
Lipschitz and p � 1, then
for 0 < α � 1

‖g‖pα � 2
1
α max

{
p

1
α

∥
∥|∇gα|∞

∥
∥

1
α∞, ‖g‖2α, αp

1
2
√

D′‖|∇g|2‖pα

}

and in case of α > 1

‖g‖pα � max
{
2

1
α p

1
α

∥
∥|∇gα|∞

∥
∥

1
α∞, 2

1
α ‖g‖2α, αp

1
2
√

D′‖|∇g|2‖pα

}
.

Proof Consider gα to be a non-negative Lipschitz function, otherwise estimate is
trivial. Note that in case of p � 2 there is also nothing to prove, therefore we may
take p > 2. For simplicity let us assume that ‖|∇gα|∞‖∞ = 1. If it happens to be

‖g‖α
pα � 2p

∥
∥|∇gα|∞

∥
∥∞ (2.5)

then proof is once again trivial, therefore assume that

‖g‖α
pα > 2p

∥
∥|∇gα|∞

∥
∥∞, (2.6)

then following the idea of the proof of (2.4) from [1] we define function h =
max{g, c}, where c = ‖g‖pα/2

1
α . Obviously, for 2 � t � p

|∇hαt/2|∞
hαt/2 = t

2

|∇hα|∞
hα

.

Due to our definition h � c and |∇hα|∞ � |∇gα|∞, which gives us

|∇hα|∞
hα

� 2|∇gα|∞
‖g‖α

pα

.

Combining above with (2.6) we get

∥
∥
∥
|∇hαt/2|∞

hαt/2

∥
∥
∥∞ � t

2p
� 1

2
.
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Therefore, we may apply (2.1) to the function hαt/2 and thus by the Aida Stroock
[2] argument i.e.

d

dt
‖hα‖2

t = 2

t2

(
Ehαt

)2/t−1Ent(hαt/2)2 � D

2

(
Ehαt

)2/t−1E|hαt/2−α∇hα|22,

combined with Hölder inequality with exponents t/(t − 2) and t/2 applied to the
last term, gives us

d

dt
‖hα‖2

t � D

2

(
Ehαt

)2/t−1(Ehαt
)1−2/t(E|∇hα|t2

)2/t = D

2

∥
∥|∇hα|2

∥
∥2

t
.

The moment function (as function of t) is non-decreasing, therefore for 2 � t � p

we get

‖hα‖2
p − ‖hα‖2

2 � D

2
(p − 2)‖|∇hα|2‖2

p. (2.7)

Now we have to consider two cases. First suppose that α � 1 and then

‖|∇hα|2‖p � α‖|∇g|2hα−1‖p � αcα−1‖|∇g|2‖p

and combining this with (2.7), we infer

‖hα‖2
p � ‖hα‖2

2 + α2D

2
(p − 2)c2α−2‖|∇g|2‖2

p.

Now observe that ‖hα‖2
p � ‖gα‖2

p and furthermore

‖hα‖2
2 � c2α + ‖gα‖2

2 � 1

4
‖gα‖2

p + ‖gα‖2
2,

which combined together gives us

3

4
‖gα‖2

p � ‖gα‖2
2 + α2D

2
(p − 2)c2α−2‖|∇g|2‖2

p. (2.8)

Noting that the case of

‖g‖α
pα � 2‖g‖α

2α, (2.9)

is another trivial part, we assume conversely getting

‖gα‖2
2 = ‖g‖2α

2α � 1

4
‖g‖2α

pα = 1

4
‖gα‖2

p



2 Moment Estimation Implied by the Bobkov-Ledoux Inequality 13

which together with (2.8) implies that

‖g‖2α
pα � α2D(p − 2)c2α−2‖|∇g|2‖2

p. (2.10)

Reminding that cα = 2−1‖g‖α
pα we infer

‖g‖2
pα � 2

2
α
−2α2D(p − 2)‖|∇g|2‖2

p

and rewriting it in simplified form

‖g‖pα � 2
1
α α

√
D′p

1
2 ‖|∇g|2‖p. (2.11)

Combining together (2.5), (2.9), and (2.11) implies the result in the case of 0 < α �
1.

Consider now case of α > 1, following the same reasoning as in previous case,
up to the (2.7) after that Hölder inequality is used, we get

‖|∇hα|2‖p � α‖|∇g|2hα−1‖p � α‖|∇g|2‖pα‖h‖α−1
pα .

Therefore, by (2.7)

‖h‖2
pα(1 − ‖h‖2α

2α

‖h‖2α
pα

) � α2 D

2
(p − 2)‖|∇g|2‖2

pα. (2.12)

Again, either (2.9) holds or we have

‖h‖2α
2α = ‖hα‖2

2 � c2α + ‖gα‖2
2 = 1

4
‖gα‖2

p + 1

4
‖gα‖2

p = 1

2
‖g‖2α

pα.

Since obviously ‖h‖2α
pα � ‖g‖2α

pα , we get

‖h‖2
pα(1 − ‖h‖2α

2α

‖h‖2α
pα

) � 2−1‖g‖2
pα

and combining above with (2.12) gives us

‖g‖pα � α
√

D′p
1
2 ‖|∇g|2‖p. (2.13)

Clearly (2.5), (2.9), and (2.13) cover the case of α > 1, which ends whole proof. �
Next step of the reasoning is to apply previous result to g = |f −Eμf | and combine
it with Poincaré inequality. Let us gather everything together in form of
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Corollary 2.1 If measure μ satisfies (2.1), function f is locally Lipschitz and p �
1, then for 0 < α � 1

‖f − Eμf ‖pα � 2
1
α max

{
p

1
α

∥∥
∥
∣∣∇|f − Eμf |α∣∣∞

∥∥
∥

1
α

∞,

√
D′∥∥|∇f |2

∥
∥

2, αp
1
2
√

D′∥∥|∇f |2
∥
∥

pα

}
.

and in case of α > 1

‖f − Eμf ‖pα � max
{

2
1
α p

1
α

∥
∥
∥
∣
∣∇|f − Eμf |α∣

∣∞
∥
∥
∥

1
α

∞,

2
1
α α

√
D′∥∥|∇f |2

∥
∥

2α
, αp

1
2
√

D′∥∥|∇f |2
∥
∥

pα

}
.

Proof If we fix g = |f − Eμf | then by the Poincaré inequality

‖f − Eμf ‖2α � (α ∨ 1)
√

D′∥∥|∇f |2
∥
∥

2(α∨1)
.

Note also that

∥∥|∇g|2
∥∥

pα
= ∥∥|∇f |2

∥∥
pα

,

then applying Theorem 2.1 statement easily follows. �

2.3 Bounds for Exponential Orlicz Norms

First, let us recall the notion of exponential Orlicz norms. For any α > 0

‖f ‖ϕ(α) = inf{s > 0 : Eμ exp(|f |α/sα) � 2}.

Obviously, ‖f ‖ϕ(α) is a norm in case of α � 1 only, otherwise there is a

problem with the triangle inequality. Moreover, we have ‖f ‖ϕ(α) = ‖|f |α‖
1
α

ϕ(1).
Nevertheless, in case of 0 < α < 1 one can use

‖f + g‖ϕ(α) = ‖|f + g|α‖
1
α

ϕ(1)

� ‖|f |α + |g|α‖
1
α

ϕ(1) � (‖|f |α‖ϕ(1) + ‖|g|α‖ϕ(1))
1
α

= (‖f ‖α
ϕ(α) + ‖g‖α

ϕ(α))
1
α � 2

1
α −1(‖f ‖ϕ(α) + ‖g‖ϕ(α)).
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It is worth to know that ‖f ‖ϕ(α) is always comparable with supk�1
‖f ‖kα

k1/α . More
precisely, observe that for all k � 1 and a positive g

‖g‖kα
kα

k! � ‖g‖kα
ϕ(α).

Note that, just by the definition of ‖g‖ϕ(α), there exists k � 1 for which

‖g‖kα
kα

k! � 2−k‖g‖kα
ϕ(α).

Let us denote the set of such k � 1 by J (g, α) and note that for any k ∈ J (g, α)

(k!)− 1
kα ‖g‖kα � ‖g‖ϕ(α) � 2

1
α (k!)− 1

kα ‖g‖kα. (2.14)

Next let M � e be such a constant that (k!) 1
k � k/M for all k � 1. We have

following crucial observation namely for all k ∈ J (g, α)

‖g‖ϕ(α) � (2M)
1
α
‖g‖kα

k
1
α

. (2.15)

Therefore, we may use Theorem 2.1 in order to obtain

Corollary 2.2 If μ satisfies (2.1) and g is non-negative locally Lipschitz function,
then for any k ∈ J (g, α) in case of 0 < α � 1

‖g‖ϕ(α) � (4M)
1
α max

{∥
∥|∇gα|∞

∥
∥

1
α∞, k− 1

α ‖g‖2α, αk
1
2 − 1

α

√
D′∥∥|∇g|2

∥
∥

kα

}
.

and for 1 < α � 2

‖g‖ϕ(α) � (4M)
1
α max

{∥
∥|∇gα|∞

∥
∥

1
α∞, k− 1

α ‖g‖2α, 2− 1
α αk

1
2 − 1

α

√
D′∥∥|∇g|2

∥
∥

kα

}
.

Note that set J (g, α) is stable with respect to g 	→ h, where h = max{g, c} i.e. if c

is comparable to ‖g‖ϕ(α) there exists C � 1 such that for k ∈ J (g, α)

‖h‖kα
kα

k! � 1

Ck
‖h‖kα

ϕ(α),

which means that we cannot easily improve the result using the trick.
In the same way as we have established Corollary 2.1 we can deduce the

following result.
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Corollary 2.3 If μ satisfies (2.1) and g is locally Lipschitz function, then for any
k ∈ J (g, α) in case of 0 < α � 1

‖f − Eμf ‖ϕ(α) � (4M)
1
α max

{∥∥
∥
∣∣∇|f − Eμf |α∣∣∞

∥∥
∥

1
α

∞,

k− 1
α

√
D′∥∥|∇f |2

∥
∥

2, αk
1
2 − 1

α

√
D′∥∥|∇f |2

∥
∥

kα

}
.

and for α > 1

‖f − Eμf ‖ϕ(α) � (4M)
1
α max

{∥
∥
∥
∣
∣∇|f − Eμf |α∣

∣∞
∥
∥
∥

1
α

∞,

k− 1
α

√
D′∥∥|∇f |2

∥
∥

2, 2− 1
α αk

1
2 − 1

α

√
D′∥∥|∇f |2

∥
∥

kα

}
.

A simple consequence of the above is

Corollary 2.4 If μ satisfies (2.1) and 0 < α � 2, then for any locally Lipschitz
function f

‖f − Eμf ‖ϕ(α) � C(α)
(∥∥

∣
∣∇|f − Eμf |α∣

∣∞
∥
∥

1
α∞ + √

D′∥∥|∇f |2
∥
∥

ϕ( 2α
2−α )

)
.

The result shows that at least for globally Lipschitz function |f |α, α � 1 the
exponential moment ‖f − Eμf ‖ϕ(α) has to bounded, though it is still far from

replacement of ‖|∇|f − Eμf |α|∞‖
1
α∞ by the expected ‖|∇f |∞‖ϕ( α

1−α ).

Note that it is not possible to simply replace the constant C(α) ∼ (4M)
1
α in

Corollary 2.4 by 1 which would be a natural choice for the question. In the next
section we will show another approach which allows to obtain such a result.

2.4 Another Approach

Theorem 2.2 If μ satisfies (2.1) and 0 < α � 2, then for any locally Lipschitz
function f

‖f − Eμf ‖ϕ(α) �
∥
∥
∣
∣∇|f − Eμf |α∣

∣∞
∥
∥

1
α∞ + C(α)

√
D′∥∥|∇f |2

∥
∥

ϕ( 2α
2−α )

where C(α) = α
(

2
ln 2

) 1
α

.

Proof Let gα be a non-negative Lipschitz function, we may assume that

∥
∥|∇gα|∞‖∞ = α

∥
∥|∇g|∞gα−1‖∞ � 1.
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Then for any t � 1 and a function h = exp(gαt/2) we can apply (2.1), indeed

∥∥
∥
|∇h|∞

h

∥∥
∥∞ = t

2

∥∥|∇gα|∞
∥∥∞ � 1

2

In fact there are three possibilities we should acknowledge.
The first case we should consider is Eμ exp(gα) � 2, but then

‖g‖ϕ(α) � 1. (2.16)

Otherwise there must exist t∗ � 1 such that E exp(gαt∗) = 2. Clearly 1/t
1
α∗ =

‖g‖ϕ(α). For simplicity let us denote V (t) = ln E exp(gαt), t � 0. It is well known
that V is convex, increasing and V (0) = 0. Now we use (2.1), in order to get for all
t ∈ [0, 1]

(V (t)

t

)′
� D

4
Eμ|∇gα|22 exp(gαt − V (t)). (2.17)

Note that V (0)′ = Eμgα . Moreover, for 0 � t � t∗ we have 1
2 � exp(−V (t)) � 1,

so we can rewrite (2.17) in the following form

(V (t)

t

)′
� D

4
Eμ|∇gα|22egαt . (2.18)

Since V is convex V (0) = 0 we know that V (t)/t is increasing and also V ′(0) =
Eμgα . Consequently, integrating (2.18) on [0, t∗]

V (t∗)
t∗

− Eμgα � D

4

∞∑

k=0

Eμ|∇gα|22
gkαtk+1∗
(k + 1)! .

Note that V (t∗) = ln 2, so

ln 2 � t∗Eμgα + D

4

∞∑

k=0

tk+2∗
(k + 1)!Eμ|∇gα|22gkα.

The second case which should be considered is when t∗ is very close to Eμgα . If
t∗Eμgα > 1

2 ln 2, then

‖g‖ϕ(α) = 1

t
1
α∗
�

( 2

ln 2

) 1
α ‖g‖α. (2.19)
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For the last part of the proof we assume that

t∗Eμgα � 1

2
ln 2.

Obviously, we have then

ln 2

2
� D

4

∞∑

k=0

tk+2∗
(k + 1)!Eμ|∇gα|22gkα.

Using the Hölder inequality, we get

Eμ|∇gα|22gkα = α2Eμ|∇g|22g(k+2)α−2

� α2‖|∇g|2‖2
(k+2)α‖g‖(k+2)α−2

(k+2)α = α2‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

Eμg(k+2)α.

Therefore,

1

2
ln 2 � Dα2

4

∞∑

k=0

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg(k+2)α

(k + 2)! . (2.20)

Now we split all the indices k into two classes.

I = {k � 0 : ‖g‖(k+2)α � (k + 2)
1
α

M
1
α t

1
α∗

}, J = {k � 0 : ‖g‖(k+2)α >
(k + 2)

1
α

M
1
α t

1
α∗

},

where the constant M � 1 will be chosen later. First, we bound summands over the
set I , i.e.

∑

k∈I

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg(k+2)α

(k + 2)!

� max
k�0

(k + 2)‖|∇g|2‖2
(k+2)αt2∗M2(k + 2)−

2
α

∑

k∈I

(k + 2)k+2

Mk+2(k + 2)! t
2
α∗ M

2
α .

Obviously it is easy to choose M close to 2e so that
∑

k∈I
(k+2)k+2

Mk+2(k+2)! � 1. Thus,
we may state our bound over I in the following form

∑

k∈I

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg(k+2)α

(k + 2)! � K2t
2
α∗ M

2
α , (2.21)
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where K = maxk�1
‖|∇g|2‖kα

k
1
α − 1

2
. On the set J we do as follows

∑

k∈J

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg(k+2)α

(k + 2)!

� t
2
α∗ M

2
α max

k�0

(k + 2)‖|∇g|2‖2
(k+2)α

(k + 2)
2
α

∑

k∈J

tk+2∗ Eμg(k+2)α

(k + 2)! .

But now

∑

k∈J

tk+2∗ Eμg(k+2)α

(k + 2)! �
∑

k�0

tk+2∗ Eμg(k+2)α

(k + 2)! � eV (t∗) − 1 = 1.

Thus, our bound on J is

∑

k∈J

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg(k+2)α

(k + 2)! � M
2
α K2t

2
α∗ . (2.22)

Combining bounds (2.21), (2.22), and (2.20) we get

2 ln 2

Dα2
� M

2
α K2t

2
α∗

but this implies

1

t∗
� (D′)

α
2 ααKα.

Note that K is comparable with ‖|∇g|2‖ϕ( 2α
2−α

). It leads to the formula

‖g‖ϕ(α) = 1

t
1
α∗
� α

√
D′‖|∇g|2‖ϕ( 2α

2−α )
. (2.23)

Bound (2.16), (2.19), and (2.23) implies that for any positive g

‖g‖ϕ(α) � max
{∥∥|∇gα|

1
α∞

∥
∥∞,

(
2

ln 2

) 1
α ‖g‖α, α

√
D′‖|∇g|2‖ϕ( 2α

2−α )

}
. (2.24)

If we now fix g = |f − Eμf | then by the Poincaré inequality

‖f − Eμf ‖α �
√

D′‖|∇f |2‖2.
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Note also that

‖|∇g|2‖ϕ( 2α
2−α

) = ‖|∇f |2‖ϕ( 2α
2−α

).

Thus, by (2.24) we obtain

‖f −Eμf ‖ϕ(α) � max
{∥∥

∣
∣∇|f −Eμf |α∣

∣∞
∥
∥

1
α∞,

(
2

ln 2

) 1
α ‖f −Eμf ‖α, α

√
D′‖|∇f |2‖ϕ( 2α

2−α
)

}
.

It ends the proof. �
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