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Uncertainty Quantification for Matrix
Compressed Sensing and Quantum
Tomography Problems
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Abstract We construct minimax optimal non-asymptotic confidence sets for low
rank matrix recovery algorithms such as the Matrix Lasso or Dantzig selector. These
are employed to devise adaptive sequential sampling procedures that guarantee
recovery of the true matrix in Frobenius norm after a data-driven stopping time
n̂ for the number of measurements that have to be taken. With high probability, this
stopping time is minimax optimal. We detail applications to quantum tomography
problems where measurements arise from Pauli observables. We also give a
theoretical construction of a confidence set for the density matrix of a quantum
state that has optimal diameter in nuclear norm. The non-asymptotic properties of
our confidence sets are further investigated in a simulation study.
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18.1 Introduction

18.1.1 Uncertainty Quantification in Compressed Sensing

Compressed sensing and related convex relaxation algorithms have had a profound
impact on high-dimensional statistical modelling in recent years. They provide
efficient recovery of low-dimensional objects that sit within a high-dimensional
ill-posed system of linear equations. Prototypical low-dimensional structures are
described by sparsity and low rank hypotheses. The statistical analysis of such
algorithms has mostly been concerned with recovery rates, or with the closely
related question of how many measurements are sufficient to reach a prescribed
recovery level—some key references are Refs. [3, 5–7, 16, 24, 25, 33].

A statistical question of fundamental importance that has escaped a clear answer
so far is the question of uncertainty quantification: Can we tell from the observations
how well the algorithm has worked? In technical terms: can we report confidence
sets for the unknown parameter? Or, in the sequential sampling setting, can we
give data-driven rules that ensure recovery of the true parameter at a given
precision? Answers to this question are of great importance in various applications
of compressed sensing. For one-dimensional subproblems, such as projection onto
a fixed coordinate of the parameter vector, recent advances have provided some
useful confidence intervals (see Refs. [8, 9, 22, 36]), but our understanding of valid
inference procedures for the entire parameter remains limited.

Whereas the ‘estimation theory’ for compressed sensing is quite similar for
sparsity and low rank constraints, this is not so for the theory of confidence sets.
On the one hand, if one is interested in inference on the full parameter, sparsity
conditions induce information theoretic barriers, as shown in Ref. [30]: unless one is
willing to make additional signal strength assumptions (inspired by the literature on
nonparametric confidence sets, such as Refs. [13, 19]), a uniformly valid confidence
set for the unknown parameter vector θ cannot have a better performance than
1/

√
n in quadratic loss. This significantly falls short of the optimal recovery rates

(k log p)/n for the most interesting sparsity levels k. On the other hand, and perhaps
surprisingly, we will show in this article that the low-rank constraint is naturally
compatible with certain risk estimation approaches to confidence sets. This will
be seen to be true for general sub-Gaussian sensing matrices, but also for sensing
matrices arising from Pauli observables, as is specifically relevant in quantum state
tomography problems (see the next section). In the latter case it will be helpful to
enforce the additional ‘quantum state shape constraint’ on the unknown matrix to
obtain optimal results. One can conclude that, in contrast to ‘sparse models’, no
signal strength assumptions are necessary for the existence of adaptive confidence
statements in low rank recovery problems. Our findings are confirmed in a simple
simulation study, see Sect. 18.4.

The honest non-asymptotic confidence sets we will derive below can be used
for the construction of adaptive sampling procedures: An experimenter wants to
know—at least with a prescribed probability of 1 − α—that the matrix recovery
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algorithm, the ‘estimator’, has produced an output θ̃ that is close to the ‘true state’
θ . The sequential protocol advocated here—which is related to ‘active learning
algorithms’ from machine learning, e.g., Ref. [29]—should tell the experimenter
whether a new batch of measurements has to be taken to decrease the recovery
error, or whether the collected observations are already sufficient. The data-driven
stopping time for this protocol should not exceed the minimax optimal stopping
time, again with high probability. We shall show that for Pauli and sub-Gaussian
sensing ensembles, such algorithms exist under mild assumptions on the true matrix
θ . These assumptions are in particular always satisfied under the ‘quantum shape
constraint’ that naturally arises in quantum tomography problems.

Our results depend on the choice of the Frobenius norm and the Hilbert space
geometry induced by it. For other natural matrix norms, such as for instance the
trace-(nuclear) norm, the theory is more difficult. We show as a first step that at
least theoretically a trace-norm optimal confidence set can be constructed for the
unknown quantum state (Theorem 18.4)—this suggests interesting directions for
future research.

18.1.2 Application to Quantum State Estimation

This work was partly motivated by a problem arising in present-day physics
experiments that aim at estimating quantum states. Conceptually, a quantum
mechanical experiment involves two stages (c.f. Fig. 18.1): A source (or preparation
procedure) that emits quantum mechanical systems with unknown properties, and
a measurement device that interacts with incoming quantum systems and produces
real-valued measurement outcomes, e.g. by pointing a dial to a value on a scale.
Quantum mechanics stipulates that both stages are completely described by certain
matrices.

The properties of the source are represented by a positive semi-definite unit
trace matrix θ , the quantum state, also referred to as density matrix. In turn, the
measurement device is modelled by a Hermitian matrix X, which is referred to as
an observable in physics jargon. A key axiom of the quantum mechanical formalism

Fig. 18.1 Caricature of a quantum mechanical experiment. With every source of quantum
systems, one associates a density matrix θ . Observations systems are performed by measurement
devices, which interact with incoming systems and produce real-valued outcomes. Each such
devices is modelled mathematically by a Hermitian matrix X, referred to as an observable
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states that if the measurement X is repeatedly performed on systems emitted by the
source that is preparing θ , then the real-valued measurement outcomes will fluctuate
randomly with expected value

〈X, θ〉F = tr(Xθ) (18.1)

(referred to as expectation value in the quantum physics literature). The precise
way in which physical properties are represented by these matrices is immaterial
to our discussion (cf. any textbook, e.g. Ref. [32]). We merely note that, while
in principle any Hermitian X can be measured by some physical apparatus, the
required experimental procedures are prohibitively complicated for all but a few
highly structured matrices. This motivates the introduction of Pauli designs below,
which correspond to fairly tractable ‘spin parity measurements’.

The quantum state estimation or quantum state tomography1 problem is to
estimate an unknown density matrix θ from the measurement of a collection of
observables X1, . . . , Xn. This task is of particular importance to the young field
of quantum information science [31]. There, the sources might be a carefully
engineered component used for technological applications such as quantum key
distribution or quantum computing. In this context, quantum state estimation is
the process of characterising the components one has built—clearly an important
capability for any technology.

A major challenge lies in the fact that relevant instances are described by
d × d-matrices for fairly large dimensions d ranging from 100 to 10,000 in
presently performed experiments [18]. Such high-dimensional estimation problems
can benefit substantially from structural properties of the objects to be recovered.
Fortunately, the density matrices occurring in quantum information experiments
are typically well-approximated by matrices of low rank r � d . In fact, in the
practically most important applications, one usually even aims at preparing a state
of rank one—a so-called pure quantum state. While environmental noise will drive
the actual state away from the perfect rank-one case, the error will usually be small.

As a result, quantum physicists have early on shown an interest in low-rank
matrix recovery methods [12, 15–17, 28]. Initial works [15, 16] focused on the
minimal number n of observables X1, . . . , Xn required for reconstructing a rank-
r density matrix θ in the noiseless case, i.e. under the idealised assumption
that the expectation values tr(θXi) are known exactly. The practically highly
relevant problem of quantifying the uncertainty of an estimate θ̂ arising from noisy
observations on low-rank states was addressed only later [12] and remains less well
understood.

1 The term ‘tomography’ goes back to the use of Radon transforms in early schemes for estimating
quantum states of electromagnetic fields [1, 27]. It has become synonymous with ‘quantum
density matrix estimation’, even though current methods applied to quantum systems with a finite
dimension d have no technical connection to classical tomographic reconstruction algorithms.
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More concretely, the basic approach taken in Ref. [12] for uncertainty quantifi-
cation is similar to the one pursued in the present paper. In a first step, one uses
a Matrix Lasso or Dantzig Selector to construct an estimate. Then, a confidence
region is obtained by comparing predictions derived from the initial estimate to new
samples. However, Ref. [12] suffers from two demerits. First, and most importantly,
the performance analysis of the scheme relies on a bound on the rank r of the
unknown true θ . Such a bound is not available in practice. Second, the dependence
of the rate on r is not tight. Both of these demerits will be addressed here.

We close this section pointing to more broadly related works. Uncertainty
quantification in quantum state tomography in general has been treated by numerous
authors—a highly incomplete list is Refs. [2, 4, 10, 34, 35]. However, the concept of
dimension reduction for low-rank states does not feature explicitly in these papers.
This contrasts with Ref. [17], where the authors propose model selection techniques
based on information criteria to arrive at low-rank estimates. The use of general-
purpose methods—like maximum likelihood estimation and the Akaike Information
Criterion—in Ref. [17] means that it is applicable to very general experimental
designs. In contrast to this, the present paper relies on compressed sensing ideas to
arrive at rigorous a priori guarantees on statistical and computational performance.
Also, it remains non-obvious how such model selection steps can be transformed
into ‘post-model selection’ confidence sets—typically such constructions result in
sub-optimal signal strength conditions that ensure model selection consistency (see
Ref. [26] and also the discussion after Theorem 2 in Ref. [30]). Our confidence pro-
cedures never estimate the unknown rank of the quantum state—not even implicitly.
Rather, they estimate the performance of a dimension-reduction technique directly
based on sample splitting.

18.2 Matrix Compressed Sensing

We consider inference on a d × d matrix θ that is symmetric, or, if it consists of
possibly complex entries, assumed to be Hermitian (that is θ = θ∗ where θ∗ is
the conjugate transpose of θ ). Denote by Md (K) the space of d × d matrices with
entries in K = C or K = R. We write ‖·‖F for the usual Frobenius norm on Md (K)

arising from the inner product tr(AB) = 〈A,B〉F . Moreover let Hd(C) be the set of
all Hermitian matrices, and Hd(R) for the set of all symmetric d × d matrices with
real entries. The norm symbol ‖ ·‖ without subindex denotes the standard Euclidean
norm on R

n or on C
n arising from the Euclidean inner product 〈·, ·〉.

We denote the usual operator norm on Md (C) by ‖ · ‖op. For M ∈ Md (C) let
(λ2

k : k = 1, . . . , d) be the eigenvalues of MT M (which are all real-valued and
positive). The l1-Schatten, trace, or nuclear norm of M is defined as

‖M‖S1 =
∑

j≤d

|λj |.
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Note that for any matrix M of rank 1 ≤ r ≤ d the following inequalities are easily
shown,

‖M‖F ≤ ‖M‖S1 ≤ √
r‖M‖F . (18.2)

We will consider parameter subspaces of Hd(C) described by low rank con-
straints on θ , and denote by R(k) the space of all Hermitian d × d matrices that
have rank at most k, k ≤ d . In quantum tomography applications, we may assume
an additional ‘shape constraint’, namely that θ is a density matrix of a quantum
state, and hence contained in state space

�+ = {θ ∈ Hd(C) : tr(θ) = 1, θ 
 0},

where θ 
 0 means that θ is positive semi-definite. In fact, in most situations, we
will only require the bound ‖θ‖S1 ≤ 1 which trivially holds for any θ in �+.

We have at hand measurements arising from inner products 〈Xi, θ〉F =
tr(Xiθ), i = 1, . . . , n, of θ with d × d (random) matrices Xi . This measurement
process is further subject to independent additive noise ε. Formally, the
measurement model is

Yi = tr(Xiθ) + εi, i = 1, . . . , n, (18.3)

where the εi’s and Xi ’s are independent of each other. We write Y = (Y1, . . . , Yn)
T ,

and for probability statements under the law of Y,X, ε given fixed θ we will use
the symbol Pθ . Unless mentioned otherwise we will make the basic assumption of
Gaussian noise

ε = (ε1, . . . , εn)
T ∼ N(0, σ 2In),

where σ > 0 is known. See Remark 18.6 for some discussion of the unknown
variance case. In the context of quantum mechanics, the inner product tr(Xiθ) gives
the expected value of the observable Xi when measured on a system in state θ (cf.
Sect. 18.1.2). A class of physically realistic measurements (correlations among spin-
1/2 particles) is described by Xi ’s drawn from the Pauli basis. Our main results also
hold for measurement processes of this type. Before we describe this in Sect. 18.2.2,
let us first discuss our assumptions on the matrices Xi .

18.2.1 Sensing Matrices and the RIP

When θ ∈ Md (R), we shall restrict to design matrices Xi that have real-valued
entries, too, and when θ ∈ Hd(C) we shall consider designs where Xi ∈ Hd(C).
This way, in either case, the measurements tr(Xiθ)’s and hence the Yi’s are all
real-valued. More concretely, the sensing matrices Xi that we shall consider are
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described in the following assumption, which encompasses both a prototypical
compressed sensing setting—where we can think of the matrices Xi as i.i.d. draws
from a Gaussian ensemble (Xm,k) ∼iid N(0, 1)—as well as the ‘random sampling
from a basis ofMd (C)’ scenario. The systematic study of the latter has been initiated
by quantum physicists [15, 28], as it contains, in particular, the case of Pauli basis
measurements [12, 16] frequently employed in quantum tomography problems.
Note that in Part (a) the design matrices are not Hermitian but our results can
easily be generalised to symmetrised sub-Gaussian ensembles (as those considered
in Ref. [24]).

Condition 18.1

(a) θ ∈ Hd(R), ‘isotropic’ sub-Gaussian design: The random variables (Xi
m,k),

1 ≤ m, k ≤ d, i = 1, . . . , n, generating the entries of the random matrix Xi

are i.i.d. distributed across all indices i,m, k with mean zero and unit variance.
Moreover, for every θ ∈ Md (R) such that ‖θ‖F ≤ 1, the real random variables
Zi = tr(Xiθ) are sub-Gaussian: for some fixed constants τi > 0 independent
of θ ,

EeλZi ≤ τ1e
λ2τ 2

2 ∀λ ∈ R.

(b) θ ∈ Hd(C), random sampling from a basis (‘Pauli design’): Let
{E1, . . . , Ed2} ⊂ Hd(C) be a basis of Md (C) that is orthonormal for the scalar
product 〈·, ·〉F and such that the operator norms satisfy, for all i = 1, . . . , d2,

‖Ei‖op ≤ K√
d

,

for some universal ‘coherence’ constant K . [In the Pauli basis case we have
K = 1.] Assume the Xi , i = 1, . . . , n, are draws from the finite family E =
{dEi : i = 1, . . . , d2} sampled uniformly at random.

The above examples all obey the matrix restricted isometry property, that we
describe now. Note first that if X : Rd×d → R

n is the linear ‘sampling’ operator

X : θ �→ X θ = (tr(X1θ), . . . , tr(Xnθ))T , (18.4)

so that we can write the model equation (18.3) as Y = X θ + ε, then in the above
examples we have the ‘expected isometry’

E
1

n
‖X θ‖2 = ‖θ‖2

F .
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Indeed, in the isotropic design case we have

1

n
E‖X θ‖2 = 1

n

n∑

i=1

E

(
∑

m

∑

k

Xi
m,kθm,k

)2

=
∑

m

∑

k

EX2
m,kθ

2
m,k = ‖θ‖2

F ,

(18.5)

and in the ‘basis case’ we have, from Parseval’s identity and since the Xi ’s are
sampled uniformly at random from the basis,

1

n
E‖X θ‖2 = d2

n

n∑

i=1

d2∑

j=1

Pr(Xi = Ej)|〈Ej , θ〉F |2 = ‖θ‖2
F . (18.6)

The restricted isometry property (RIP) then requires that this ‘expected isometry’
actually holds, up to constants and with probability ≥ 1 − δ, for a given realisation
of the sampling operator, and for all d × d matrices θ of rank at most k:

sup
θ∈R(k)

∣∣∣∣∣

1
n
‖X θ‖2 − ‖θ‖2

F

‖θ‖2
F

∣∣∣∣∣ ≤ τn(k), (18.7)

where τn(k) are some constants that may depend, among other things, on the rank
k and the ‘exceptional probability’ δ. For the above examples of isotropic and Pauli
basis design inequality (18.7) can be shown to hold with

τ 2
n (k) = c2 kd · logd

n
, (18.8)

where

logx := (log x)η,

for some η > 0 denotes a ‘polylog function’, and where c = c(δ) is a constant. See
Refs. [6, 28] for these results, where it is also shown that c(δ) can be taken to be at
least O(1/δ2) as δ → 0 (sufficient for our purposes below).

18.2.2 Quantum Measurements

Here, we introduce a paradigmatic set of quantum measurements that is frequently
used in both theoretical and practical treatments of quantum state estimation (e.g.
[16, 18]). For a more general account, we refer to standard textbooks [20, 31]. The
purpose of this section is to motivate the ‘Pauli design’ case (Condition 18.1(b) of
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the main theorem, as well as the approximate Gaussian noise model. Beyond this,
the technical details presented here will not be used.

18.2.2.1 Pauli Spin Measurements on Multiple Particles

We start by describing ‘spin measurements’ on a single ‘spin-1/2 particle’. Such a
measurement corresponds to the situation of having d = 2. Without worrying about
the physical significance, we accept as fact that on such particles, one may measure
one of three properties, referred to as the ‘spin along the x, y, or z-axis’ of R

3.
Each of these measurements may yield one of two outcomes, denoted by +1 and
−1 respectively.

The mathematical description of these measurements is derived from the Pauli
matrices

σ 1 =
[

0 1
1 0

]
, σ 2 =

[
0 −i

i 0

]
, σ 3 =

[
1 0
0 −1

]
(18.9)

in the following way. Recall that the Pauli matrices have eigenvalues ±1. For x ∈
{1, 2, 3} and j ∈ {+1,−1}, we write ψx

j for the normalised eigenvector of σx with
eigenvalue j . The spectral decomposition of each Pauli spin matrix can hence be
expressed as

σx = πx+ − πx−, (18.10)

with

πx± = ψx±(ψ
y
±)∗ (18.11)

denoting the projectors onto the eigenspaces. Now, a physical measurement of the
‘spin along direction x’ on a system in state θ will give rise to a {−1, 1}-valued
random variable Cx with

P(Cx = j) = tr
(
πx

j θ
)

, (18.12)

where θ ∈ H2(C). Using Eq. (18.10), this is equivalent to stating that the expected
value of Cx is given by

E(Cx) = tr
(
σxθ

)
. (18.13)

Next, we consider the case of joint spin measurements on a collection of N

particles. For each, one has to decide on an axis for the spin measurement. Thus,
the joint measurement setting is now described by a word x = (x1, . . . , xN) ∈
{1, 2, 3}N . The axioms of quantum mechanics posit that the joint state θ of the N

particles acts on the tensor product space (C2)⊗N , so that θ ∈ H2N (C).
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Likewise, the measurement outcome is a word j = (j1, . . . , jN ) ∈ {1,−1}N ,
with ji the value of the spin along axis xi of particle i = 1, . . . , N . As above, this
prescription gives rise to a {1,−1}N -valued random variable Cx . Again, the axioms
of quantum mechanics imply that the distribution of Cx is given by

P(Cx = j) = tr
(
(π

x1
j1

⊗ · · · ⊗ π
xN

jN
)θ

)
. (18.14)

Note that the components of the random vector Cx are not necessarily independent,
as θ will generally not factorise

It is often convenient to express the information in Eq. (18.14) in a way that
involves tensor products of Pauli matrices, rather than their spectral projections. In
other words, we seek a generalisation of Eq. (18.13) to N particles. As a first step
toward this goal, let

χ(j) =
{−1 number of − 1 elements in j is odd

1 number of − 1 elements in j is even
(18.15)

be the parity function. Then one easily verifies

tr((σ x1 ⊗ · · · ⊗ σxN )θ) =
∑

j∈{1,−1}N
χ(j) tr

(
θ(π

x1
j1

⊗ · · · ⊗ π
xN

jN
)
)

= E
(
χ(Cx)

)
.

(18.16)

In this sense, the tensor product σx1 ⊗ · · · ⊗ σxN describes a measurement of the
parity of the spins along the respective directions given by x.

In fact, the entire distribution of Cx can be expressed in terms of tensor products
of Pauli matrices and suitable parity functions. To this end, we extend the definitions
above. Write

σ 0 =
[

1 0
0 1

]
(18.17)

for the identity matrix in M2(C). For every subset S of {1, . . . , N}, define the ‘parity
function restricted to S’ via

χS(j) =
{−1 number of − 1 elements ji for i ∈ S is odd

1 number of − 1 elements ji for i ∈ S is even.
(18.18)

Lastly, for S ⊂ {1, . . . , N} and x ∈ {1, 2, 3}N , the restriction of x to S is

xS
i =

{
xi i ∈ S

0 i �∈ S.
(18.19)
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Then for every such x, S one verifies the identity

tr((σ xS
1 ⊗ · · · ⊗ σxS

N )θ) = E
(
χS(Cx)

)
. (18.20)

In other words, the distribution of Cx contains enough information to compute the

expectation value of all observables (σ xS
1 ⊗ · · · ⊗ σxS

N ) that can be obtained by
replacing the Pauli matrices on an arbitrary subset S of particles by the identity σ 0.
The converse is also true: the set of all such expectation values allows one to recover
the distribution of Cx . The explicit formula reads

P(Cx = j) = 1

2N

∑

S⊂{1,...,N}
χS(j)E

(
χS(Cx)

) = 1

2N

∑

S∈{1,...,N}
χS(j) tr

(
θ(σ xS

1 ⊗ · · · ⊗ σxS
N )

)

(18.21)

and can be verified by direct computation.2

In this sense, the information obtainable from joint spin measurements on N

particles can be encoded in the 4N real numbers

2−N/2 tr((σ y1 ⊗ · · · ⊗ σyN )θ), y ∈ {0, 1, 2, 3}N. (18.22)

Indeed, every such y arises as y = xS for some (generally non-unique) combination
of x and S. This representation is particularly convenient from a mathematical point
of view, as the collection of matrices

Ey := 2−N/2σy1 ⊗ · · · ⊗ σyN , y ∈ {0, 1, 2, 3}N (18.23)

forms an ortho-normal basis with respect to the 〈·, ·〉F inner product. Thus the terms
in Eq. (18.22) are just the coefficients of a basis expansion of the density matrix θ .3

From now on, we will use Eq. (18.22) as our model for quantum tomographic
measurements. Note that the Ey satisfy Condition 18.1(b) with coherence constant
K = 1 and d = 2N .

2 A more insightful way of proving the first identity is to realise that E
(
χS(Cx)

)
is effectively a

Fourier coefficient (over the group Z
N
2 ) of the distribution function of the {−1, 1}N -valued random

variable Cx (e.g., [11]). Equation (18.21) is then nothing but an inverse Fourier transform.
3We note that quantum mechanics allows to design measurement devices that directly probe the
observable of σy1 ⊗· · ·⊗σyN , without first measuring the spin of every particle and then computing
a parity function. In fact, the ability to perform such correlation measurements is crucial for
quantum error correction protocols [31]. For practical reasons these setups are used less commonly
in tomography experiments, though.
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18.2.2.2 Bernoulli Errors and Pauli Observables

In the model (18.3) under Condition 18.1(b) we wish to approximate d · tr(Eyθ) for
a fixed observable Ey (we fix the random values of the Xi ’s here) and for d = 2N .
If y = xS for some setting x and subset S, then the parity function By := χS(Cx)

has expected value 2N/2 · tr(Eyθ) = √
d · tr(Eyθ) (see Eqs. (18.20) and (18.23)),

and itself is a Bernoulli variable taking values {1,−1} with

p = P(By = 1) = 1 + √
dtr(Eyθ)

2
.

Note that

√
d|tr(Eyθ)| ≤ √

d‖Ey‖op‖θ‖S1 ≤ 1,

so indeed p ∈ [0, 1] and the variance satisfies

VarBy = 1 − d · tr(Eyθ)2 ≤ 1.

This is the error model considered in Ref. [12].
In order to estimate all Yi , i = 1, . . . , n, for given Ei := Ey , a total number nT

of identical preparations of the quantum state θ are being performed, divided into
batches of T Bernoulli variables Bi,j := B

y
j , j = 1, . . . , T . The measurements of

the sampling model Eq. (18.3) are thus

Yi =
√

d

T

T∑

j=1

Bi,j = d · tr(Eiθ) + εi

where

εi =
√

d

T

T∑

j=1

(Bi,j − EBi,j )

is the effective error arising from the measurement procedure making use of T

preparations to estimate each quantum mechanical expectation value. Now note that

|εi | ≤ 2
√

d, Eε2
i ≤ d

T
Var(Bi,1) ≤ d

T
. (18.24)

We see that since the εi’s are themselves sums of independent random variables,
an approximate Gaussian error model with variance σ 2 will be roughly appropriate.
If T ≥ n then σ 2 = Eε2

1 is no greater than d/n, and if in addition T ≥ d2 then
all results in Sect. 18.3 below can be proved for this Bernoulli noise model too, see
Remarks 18.5 and 18.6 for details.
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18.2.3 Minimax Estimation Under the RIP

Assuming the matrix RIP to hold and Gaussian noise ε, one can show that the
minimax risk for recovering a Hermitian rank k matrix is

inf
θ̂

sup
θ∈R(k)

Eθ‖θ̂ − θ‖2
F � σ 2 dk

n
, (18.25)

where � denotes two-sided inequality up to universal constants.
For the upper bound one can use the nuclear norm minimisation procedure or

matrix Dantzig selector from Candès and Plan [6], and needs n to be large enough
so that the matrix RIP holds with τn(k) < c0 where c0 is a small enough numerical
constant. Such an estimator θ̃ then satisfies, for every θ ∈ R(k) and those n ∈ N for
which τn(k) < c0,

‖θ̃ − θ‖2
F ≤ D(δ)σ 2 kd

n
, (18.26)

with probability greater than 1 − 2δ, and with the constant D(δ) depending on δ

and also on c0 (suppressed in the notation). Note that the results in Ref. [6] use a
different scaling in sample size in their Theorem 2.4, but eq. (II.7) in that reference
explains that this is just a question of renormalisation. The same result holds for
randomly sampled ‘Pauli bases’, see Ref. [28] (and take note of the slightly different
normalisation in the notation there, too), and also for the Bernoulli noise model from
Sect. 18.2.2.2, see Ref. [12].

A key interpretation for quantum tomography applications is that, instead of
having to measure all n = d2 basis coefficients tr(Eiθ), i = 1, . . . , d2, a number

n ≈ kdlogd

of randomly chosen basis measurements is sufficient to reconstruct θ in Frobenius
norm loss (up to a small error). In situations where d is large compared to k such a
gain can be crucial.

Remark 18.1 (Uniqueness) It is worth noting that in the absence of errors, so when
Y0 = X θ0 in terms of the sampling operator of Eq. (18.4), the quantum shape
constraint ensures that under a suitable RIP condition, only the single matrix θ0 is
compatible with the data. More specifically, let Y0 = X θ0 for some θ0 ∈ �+ of rank
k, and assume that X satisfies RIP with τn(4k) <

√
2 − 1. Then

{θ ∈ �+ : X θ = Y0} = {θ0}. (18.27)
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This is a direct consequence of Theorem 3.2 in Ref. [33], which states that if RIP is
satisfied with τn(4k) <

√
2 − 1 and Y0 = X θ0, the unique solution of

argmin ‖θ‖S1

subject to X θ = Y0 (18.28)

is given by θ0. If θ0 ∈ �+, then the minimisation can be replaced by (compare also
Ref. [23]).

argmin tr(θ)

subject to X θ = Y0, θ ≥ 0, (18.29)

giving rise to the above remark. This observation further signifies the role played by
the quantum shape constraint.

18.3 Uncertainty Quantification for Low-Rank Matrix
Recovery

We now turn to the problem of quantifying the uncertainty of estimators θ̃ that
satisfy the risk bound (18.26). In fact the confidence sets we construct could be
used for any estimator of θ , but the conclusions are most interesting when used for
minimax optimal estimators θ̃ . For the main flow of ideas we shall assume ε =
(ε1, . . . , εn)

T ∼ N(0, σ 2In) but the results hold for the Bernoulli measurement
model from Sect. 18.2.2.2 as well—this is summarised in Remark 18.5.

From a statistical point of view, we phrase the problem at hand as the one
of constructing a confidence set for θ : a data-driven subset Cn of Md (C) that is
‘centred’ at θ̃ and that satisfies

Pθ (θ ∈ Cn) ≥ 1 − α, 0 < α < 1,

for a chosen ‘coverage’ or significance level 1 − α, and such that the Frobenius
norm diameter |Cn|F reflects the accuracy of estimation, that is, it satisfies, with
high probability,

|Cn|2F ≈ ‖θ̃ − θ‖2
F .

In particular such a confidence set provides, through its diameter |Cn|F , a data-
driven estimate of how well the algorithm has recovered the true matrix θ in
Frobenius-norm loss, and in this sense provides a quantification of the uncertainty
in the estimate.
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In the situation of an experimentalist this can be used to decide sequentially
whether more measurements should be taken (to improve the recovery rate), or
whether a satisfactory performance has been reached. Concretely, if for some ε > 0
a recovery level ‖θ̃ − θ‖F ≤ ε is desired for an estimator θ̃ , then assuming θ̃

satisfies the minimax optimal risk bound dk/n from (18.26), we expect to need,
ignoring constants,

dk

n
< ε2 and hence at least n >

dk

ε2

measurements. Note that we also need the RIP to hold with τn(k) from (18.8)
less than a small constant c0, which requires the same number of measurements,
increased by a further poly-log factor of d (and independently of σ ).

Since the rank k of θ remains unknown after estimation we cannot obviously
guarantee that the recovery level ε has been reached after a given number of
measurements. A confidence set Cn for θ̃ provides such certificates with high
probability, by checking whether |Cn|F ≤ ε, and by continuing to take further
measurements if not. The main goal is then to prove that a sequential procedure
based on Cn does not require more than approximately

n >
dklogd

ε2

samples (with high probability). We construct confidence procedures in the follow-
ing subsections that work with at most as many measurements, for the designs from
Condition 18.1.

18.3.1 Adaptive Sequential Sampling

Before we describe our confidence procedures, let us make the following definition,
where we recall that R(k) denotes the set of d × d Hermitian matrices of rank at
most k ≤ d .

Definition 18.1 Let ε > 0, δ > 0 be given constants. An algorithm A returning
a d × d matrix θ̂ after n̂ ∈ N measurements in model (18.3) is called an (ε, δ)—
adaptive sampling procedure if, with Pθ -probability greater than 1−δ, the following
properties hold for every θ ∈ R(k) and every 1 ≤ k ≤ d:

‖θ̂ − θ‖F ≤ ε, (18.30)

and, for positive constants C(δ), γ, the stopping time n̂ satisfies

n̂ ≤ C(δ)
kd(log d)γ

ε2 . (18.31)
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Such an algorithm provides recovery at given accuracy level ε with n̂ measure-
ments of minimax optimal order of magnitude (up to a poly-log factor), and with
probability greater than 1 − δ. The sampling algorithm is adaptive since it does not
require the knowledge of k, and since the number of measurements required depends
only on k and not on the ‘worst case’ rank d .

The construction of non-asymptotic confidence sets Cn for θ at any sample size
n in the next subsections will imply that such algorithms exist for low rank matrix
recovery problems. The main idea is to check sequentially, for a geometrically
increasing number 2m of samples, m = 1, 2, . . . , if the diameter |C2m |F of a
confidence set exceeds ε. If this is not the case, the algorithm terminates. Otherwise
one takes 2m+1 additional measurements and evaluates the diameter |C2m+1 |F . A
precise description of the algorithm is given in the proof of the following theorem,
which we detail for the case of ‘Pauli’ designs. The isotropic design case is discussed
in Remark 18.9.

Theorem 18.1 Consider observations in the model (18.3) under Condition 18.1(b)
with θ ∈ �+. Then an adaptive sampling algorithm in the sense of Definition 18.1
exists for any ε, δ > 0.

Remark 18.2 (Dependence in σ of Definition 18.1 and Theorem 18.1) Defini-
tion 18.1 and Theorem 18.1 are stated for the case where the standard deviation of
the noise σ is assumed to be bounded by an absolute constant. It is straight-forward
to modify the proofs to obtain a version where the dependency of the constants on
the variance is explicit. Indeed, under Condition 1(a), Theorem 18.1 continues to
hold if Eq. (18.31) is replaced by

n̂ ≤ C(δ)
σ 2kd(log d)γ

ε2 .

For the ‘Pauli design case’—Condition 1(b)—Eq. (18.31) can be modified to

n̂ ≤ C(δ)
(σ 2kd(log d)γ

ε2 ∨ d(log d)γ

ε2

)
.

Remark 18.3 (Necessity of the Quantum Shape Constraint) Note that the assump-
tion θ ∈ �+ in the previous theorem is necessary (in the case of Pauli design):
Else the example of θ = 0 or θ = Ei—where Ei is an arbitrary element of the
Pauli basis—demonstrates that the number of measurements has to be at least of
order d2: otherwise with positive probability, Ei is not drawn at a fixed sample size.
On this event, both the measurements and θ̂ coincide under the laws P0 and PEi ,
so we cannot have ‖θ̂ − 0‖F < ε and ‖θ̂ − Ei‖F < ε simultaneously for every
ε > 0, disproving existence of an adaptive sampling algorithm. In fact, the crucial
condition for Theorem 18.1 to work is that the nuclear norms ‖θ‖S1 are bounded by
an absolute constant (here = 1), which is violated by ‖Ei‖S1 = √

d .
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18.3.2 A Non-asymptotic Confidence Set Based on Unbiased
Risk Estimation and Sample-Splitting

We suppose that we have two samples at hand, the first being used to construct an
estimator θ̃ , such as the one from (18.26). We freeze θ̃ and the first sample in what
follows and all probabilistic statements are under the distribution Pθ of the second
sample Y,X of size n ∈ N, conditional on the value of θ̃ . We define the following
residual sum of squares statistic (recalling that σ 2 is known):

r̂n = 1

n
‖Y − X θ̃‖2

F − σ 2,

which satisfies Eθ r̂n = ‖θ − θ̃‖2
F as is easily seen (see the proof of Theorem 18.2

below). Given α > 0, let ξα,σ be quantile constants such that

Pr

(
n∑

i=1

(ε2
i − 1) > ξα,σ

√
n

)
= α (18.32)

(these constants converge to the quantiles of a fixed normal distribution as n → ∞),
let zα = log(3/α) and, for z ≥ 0 a fixed constant to be chosen, define the confidence
set

Cn =
{
v ∈ Hd(C) : ‖v − θ̃‖2

F ≤ 2

(
r̂n + z

d

n
+ z̄ + ξα/3,σ√

n

)}
, (18.33)

where

z̄2 = z̄2(α, d, n, σ, v) = zα/3σ
2 max(3‖v − θ̃‖2

F , 4zd/n).

Note that in the ‘quantum shape constraint’ case we can always bound ‖v− θ̃‖F ≤ 2
which gives a confidence set that is easier to compute and of only marginally larger
overall diameter. In many important situations, however, the quantity z̄/

√
n is of

smaller order than 1/
√

n, and the more complicated expression above is preferable.
It is not difficult to see (using that x2 � y + x/

√
n implies x2 � y + 1/n) that

the square Frobenius norm diameter of this confidence set is, with high probability,
of order

|Cn|2F � ‖θ̃ − θ‖2
F + zd + zα/3

n
+ ξα/3,σ√

n
. (18.34)

Whenever d ≥ √
n—so as long as at most n ≤ d2 measurements have been taken—

the deviation terms are of smaller order than kd/n, and hence Cn has minimax
optimal expected squared diameter whenever the estimator θ̃ is minimax optimal as
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in (18.26). Improvements for d <
√

n, corresponding to n > d2 measurements, will
be discussed in the next subsections.

The following result shows that Cn is an honest confidence set for arbitrary d ×d

matrices (without any rank constraint). Note that the result is non-asymptotic—it
holds for every n ∈ N.

Theorem 18.2 Let θ ∈ Hd(C) be arbitrary and let Pθ be the distribution of Y,X

from model (18.3).

(a) Assume Condition 18.1(a) and let Cn be given by (18.33) with z = 0. We then
have for every n ∈ N that

Pθ (θ ∈ Cn) ≥ 1 − 2α

3
− 2e−cn

where c is a numerical constant. In the case of standard Gaussian design, c =
1/24 is admissible.

(b) Assume Condition 18.1(b), let Cn be given by (18.33) with z > 0 and assume
also that θ ∈ �+ and θ̃ ∈ �+ (that is, both satisfy the ‘quantum shape
constraint’). Then for every n ∈ N,

Pθ (θ ∈ Cn) ≥ 1 − 2α

3
− 2e−C(K)z

where, for K the coherence constant of the basis,

C(K) = 1

(16 + 8/3)K2 .

In Part (a), if we want to control the coverage probability at level 1 − α, n needs
to be large enough so that the third deviation term is controlled at level α/3. In the
Gaussian design case with α = 0.05, n ≥ 100 is sufficient, for smaller sample
sizes one can reduce the coverage level. The bound in (b) is entirely non-asymptotic
(using the quantum constraint) for suitable choices of z. Also note that the quantile
constants z, zα, ξα all scale at least as O(log(1/α)) in the desired coverage level
α → 0.

Remark 18.4 (Dependence of the Confidence Set’s Diameter on K (Pauli Design)
and σ ) Note that in the case of the Pauli design from Condition 1(b), the confidence
set’s diameter depends on K only through the potential dependence of ‖θ − θ̃‖2

F

on K—the constants involved in the construction of C̃n and on the bound on its
diameter do not depend on K . On the other hand, the coverage probability of the
confidence set depends on K , see Theorem 18.2, (b).

In this paper we assume that σ is a universal constant, and so as such it does not
appear in Eqs. (18.33) and (18.34). It can however be interesting to investigate the
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dependence in σ . In the case of isotropic design from Condition 1(a), we could set

Cn =
{
v ∈ Hd(C) : ‖v − θ̃‖2

F ≤ 2

(
r̂n + zcσ 2 d

n
+ σ 2 z̄ + ξα/3,σ√

n

)}
,

(where σ 2 could be replaced by twice the plug-in estimator of σ 2, using θ̂ ) and one
would get

Eθ |Cn|2F � ‖θ̃ − θ‖2
F + σ 2 zd + zα/3

n
+ σ 2 ξα/3,σ√

n
,

and Theorem 18.2 also holds by introducing minor changes in the proof. In the case
of the Pauli design from Condition 1(b), we could set

Cn =
{
v ∈ Hd(C) : ‖v − θ̃‖2

F ≤ 2

(
r̂n + zc

d

n
+ σ 2 z̄ + ξα/3,σ√

n

)}
,

(where σ 2 could be replaced by twice the plug-in estimator of σ 2, using θ̂ ) and one
would get

Eθ |Cn|2F � ‖θ̃ − θ‖2
F + zd + zα/3

n
+ σ 2 ξα/3,σ√

n
,

and Theorem 18.2 also holds by introducing minor changes in the proof. In this case
we do not get a full dependence in σ as in the isotropic design case from Condition
1(a). However if k2d � n, we could also obtain a result similar to the one for the
Gaussian design, using part (c) of Lemma 18.1.

Remark 18.5 (Bernoulli Noise) Theorem 18.2(b) holds as well for the Bernoulli
measurement model from Sect. 18.2.2.2 with T ≥ d2, with slightly different
constants in the construction of Cn and the coverage probabilities. See Remark 18.10
after the proof of Theorem 18.2(b) below. The modified quantile constants z, zα, ξα

still scale as O(
√

1/α) in the desired coverage level α → 0, and hence the adaptive
sampling Theorem 18.1 holds for such noise too, if the number T of preparations of
the quantum state exceeds d2.

Remark 18.6 (Unknown Variance) The above confidence set Cn can be constructed
with r̃n = 1

n
‖Y −X θ̃‖2 replacing r̂n—so without requiring knowledge of σ—if an a

priori bound σ 2 ≤ vd/n is available, with v a known constant. An example of such
a situation was discussed at the end of Sect. 18.2.2.2 above in quantum tomography
problems: when T ≥ n, the constant z should be increased by v in the construction
of Cn, and the coverage proof goes through as well by compensating for the centring
at Eε2

i = σ 2 by the additional deviation constant v.

Remark 18.7 (Anisotropic Design Instead of Condition 1(a)) It is also interesting to
consider the case of anisotropic design. This case is not very different, when it comes
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to confidence sets, than isotropic design, as long as the variance-covariance matrix
of the anisotropic sub-Gaussian design is such that the ratio of its largest eigenvalue
with the smallest eigenvalue is bounded. Lemma 18.1(a), which quantifies the effect
of the design, would change as follows: There exist constants c−, c+, c > 0 that
depend only on the variance-covariance matrix of the anisotropic sub-Gaussian
design and that are such that

Pr

(
c−‖ϑ‖2

F ≤ 1

n
‖Xϑ‖2 ≤ c+‖ϑ‖2

F

)
≥ 1 − 2e−cn.

Using this instead of the inequality in Lemma 18.1(a) in the proof of Theorem 18.2,
part (a) leads to a similar result as Theorem 18.2, part (a).

18.3.3 Improvements When d ≤ √
n

The confidence set from Theorem 18.2 is optimal whenever the desired performance
of ‖θ − θ̃‖2

F is no better than of order 1/
√

n. From a minimax point of view we
expect ‖θ−θ̃‖2

F to be of order kd/n for low rank θ ∈ R(k). In absence of knowledge
about k ≥ 1 the confidence set from Theorem 18.2 can hence be guaranteed to
be optimal whenever d ≥ √

n, corresponding to the important regime n ≤ d2

for sequential sampling algorithms. Refinements for measurement scales n ≥ d2

are also of interest—we present two optimal approaches in this subsection for the
designs from Condition 18.1.

18.3.3.1 Isotropic Design and U -Statistics

Consider first isotropic i.i.d design from Condition 18.1(a), and an estimator θ̃ based
on an initial sample of size n (all statements that follow are conditional on that
sample). Collect another n samples to perform the uncertainty quantification step.
Define the U -statistic

R̂n = 2

n(n − 1)

∑

i<j

∑

m,k

(YiX
i
m,k − θ̃m,k)(YjX

j
m,k − θ̃m,k) (18.35)

whose Eθ -expectation, conditional on θ̃ , equals ‖θ − θ̃‖2
F in view of

EYiX
i
m,k = E

∑

m′,k′
Xi

m′,k′Xi
m,kθm′,k′ = θm,k.
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Define

Cn =
{
v ∈ Hd(R) : ‖v − θ̃‖2

F ≤ R̂n + zα,n

}
(18.36)

where

zα,n = C1‖θ − θ̃‖F√
n

+ C2d

n

and C1 ≥ ζ1‖θ‖F , C2 ≥ ζ2‖θ‖2
F with ζi constants depending on α, σ . Note that if

θ ∈ �+ then ‖θ‖F ≤ 1 can be used as an upper bound. In practice the constants
ζi can be calibrated by Monte Carlo simulations (see the implementation section
below), or chosen based on concentration inequalities for U -statistics (see Ref. [14],
Theorem 4.4.8). This confidence set has expected diameter

Eθ |Cn|2F � ‖θ̃ − θ‖2
F + C1 + C2d

n
,

and hence is compatible with any minimax recover rate ‖θ̃ − θ‖2
F � kd/n

from (18.26), where k ≥ 1 is now arbitrary. For suitable choices of ζi we now
show that Cn also has non-asymptotic coverage.

Theorem 18.3 Assume Condition 18.1(a), and let Cn be as in (18.36). For every
α > 0 we can choose ζi(α) = O(

√
1/α), i = 1, 2, large enough so that for every

n ∈ N we have

Pθ (θ ∈ Cn) ≥ 1 − α.

Remark 18.8 (Dependence of the Confidence Set’s Diameter on σ ) As what was
noted in Remark 18.4, Theorem 18.3 does not make explicit the dependence on σ ,
which is assumed to be (bounded by) an universal constant. In order to take the

dependence on σ into account, we could replace zα,n in Eq. (18.36) by C1‖θ−θ̃‖F√
n

+
σ 2 C2d

n
(where σ 2 could be replaced by twice the plug-in estimator of σ 2, using θ̂ ),

and we would get

Eθ |Cn|2F � ‖θ̃ − θ‖2
F + σ 2 C1 + C2d

n
,

and Theorem 18.3 also holds by introducing minor changes in the proof.

18.3.3.2 Re-averaging Basis Elements When d ≤ √
n

Consider the setting of Condition 18.1(b) where we sample uniformly at random
from a (scaled) basis {dE1, . . . , dEd2} of Md (C). When d ≤ √

n we are taking
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n ≥ d2 measurements, and there is no need to sample at random from the basis as we
can measure each individual coefficient, possibly even multiple times. Repeatedly
sampling a basis coefficient tr(Ekθ) leads to a reduction of the variance of the
measurement by averaging. More precisely, when taking n = md2 measurements
for some (for simplicity integer) m ≥ 1, and if (Yk,l : l = 1, . . . ,m) are the
measurements Yi corresponding to the basis element Ek, k ∈ {1, . . . , d2}, we can
form averaged measurements

Zk = 1√
m

m∑

l=1

Yk,l = √
md〈Ek, θ〉F + εk, εk = 1√

m

m∑

l=1

εl ∼ N(0, σ 2).

We can then define the new measurement vector Z̃ = (Z̃1, . . . , Z̃d2)T (using also
m = n/d2)

Z̃k = Zk − √
n〈θ̃ , Ek〉 = √

n〈Ek, θ − θ̃〉F + εk, k = 1, . . . , d2

and the statistic

R̂n = 1

n
‖Z̃‖2

Rd2 − σ 2d2

n

which estimates ‖θ − θ̃‖2
F with precision

R̂n − ‖θ − θ̃‖2
F = 2√

n

d2∑

k=1

εk〈Ek, θ − θ̃〉F + 1

n

d2∑

k=1

(ε2
k − Eε2)

= OP

(
σ‖θ − θ̃‖F√

n
+ σ 2d

n

)
.

Hence, for zα the quantiles of a N(0, 1) distribution and ξα,σ as in (18.32) with d2

replacing n there, we can define a confidence set

C̄n =
{

v ∈ Hd(C) : ‖v − θ̃‖2
F ≤ R̂n + zα/2σ‖θ − θ̃‖F√

n
+ ξα/2,σ d

n

}
(18.37)

which has non-asymptotic coverage

Pθ (θ ∈ C̄n) ≥ 1 − α

for every n ∈ N, by similar (in fact, since Lemma 18.1 is not needed, simpler)
arguments as in the proof of Theorem 18.2 below. The expected diameter of C̄n is
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by construction

Eθ |C̄n|2F � ‖θ − θ̃‖2
F + σ 2d

n
, (18.38)

now compatible with any rate of recovery kd/n, 1 ≤ k ≤ d .

18.3.4 A Confidence Set in Trace Norm Under Quantum
Shape Constraints

The confidence sets from the previous subsections are all valid in the sense that they
contain information about the recovery of θ by θ̃ in Frobenius norm ‖ · ‖F . It is of
interest to obtain results in stronger norms, such as for instance the nuclear norm
‖ · ‖S1 , which is particularly meaningful for quantum tomography problems since
it then corresponds to the total variation distance on the set of ‘probability density
matrices’. In fact, since

1

2
‖θ − θ̃‖S1 = sup

‖X‖op=1
tr

(
X(θ − θ̃ )

)
, (18.39)

the nuclear norm has a clear interpretation in terms of the maximum probability
with which two quantum states can be distinguished by arbitrary measurements.

The absence of the ‘Hilbert space geometry’ induced by the relationship of the
Frobenius norm to the inner product 〈·, ·〉F makes this problem significantly harder,
both technically and from an information-theoretic point of view. In particular it
appears that the quantum shape constraint θ ∈ �+ is crucial to obtain any results
whatsoever, and for the theoretical results presented here it will be more convenient
to perform an asymptotic analysis where min(n, d) → ∞ (with o,O-notation to be
understood accordingly).

Instead of Condition 18.1 we shall now consider any design (X1, . . . , Xn) in
model (18.3) that satisfies the matrix RIP (18.7) with

τn(k) = c

√

kd
log(d)

n
. (18.40)

As discussed above, this covers in particular the designs from Condition 18.1. We
shall still use the convention discussed before Condition 18.1 that θ and the matrices
Xi are such that tr(Xiθ) is always real-valued.
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In contrast to the results from the previous section we shall now assume a
minimal low rank constraint on the parameter space:

Condition 18.2 θ ∈ R+(k) := R(k) ∩ �+ for some k satisfying

k

√
dlogd

n
= o(1),

This in particular implies that the RIP holds with τn(k) = o(1). Given this minimal
rank constraint θ ∈ R+(k), we now show that it is possible to construct a confidence
set Cn that adapts to any low rank 1 ≤ k0 < k. Here we may choose k = d but note
that this forces n � d2 (for Condition 18.2 to hold with k = d).

We assume that there exists an estimator θ̃Pilot that satisfies, uniformly in R(k0)

for any k0 ≤ k and for n large enough,

‖θ̃Pilot − θ‖2
F ≤ Dσ 2 k0d

n
:= r2

n(k0)

4
(18.41)

where D = D(δ) depends on δ, and where so-defined rn will be used frequently
below. Such estimators exist as has already been discussed before (18.26). We shall
in fact require a little more, namely the following oracle inequality: for any k and
any matrix S of rank k ≤ d , with high probability and for n large enough,

‖θ̃Pilot − θ‖F � ‖θ − S‖F + rn(k), (18.42)

which in fact implies (18.41). Such inequalities exist assuming the RIP and
Condition 18.2, see, e.g., Theorem 2.8 in Ref. [6]. Starting from θ̃Pilot one can
construct (see Theorem 18.5 below) an estimator that recovers θ ∈ R(k) in nuclear
norm at rate k

√
d/n, which is again optimal from a minimax point of view, even

under the quantum constraint (as discussed, e.g., in Ref. [24]). We now construct an
adaptive confidence set for θ centred at a suitable projection of θ̃Pilot onto �+.

In the proof of Theorem 18.4 below we will construct estimated eigenvalues
(λ̂j , j = 1, . . . , d) of θ (see after Lemma 18.3). Given those eigenvalues and θ̃Pilot,
we choose k̂ to equal the smallest integer ≤ d such that there exists a rank k̂ matrix
θ̃ ′ for which

‖θ̃ ′ − θ̃Pilot‖F ≤ rn(k̂) and 1 −
∑

J≤k̂

λ̂J ≤ 2k̂
√

d/n

is satisfied. Such k̂ exists with high probability (since the inequalities are satisfied for
the true θ and λj ’s, as our proofs imply). Define next ϑ̂ to be the 〈·, ·〉F -projection
of θ̃Pilot onto

R+(2k̂) := R(2k̂) ∩ �+
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and note that, since 2k̂ ≥ k̂,

‖θ̃Pilot − ϑ̂‖F = ‖θ̃Pilot − R+(2k̂)‖F ≤ ‖θ̃Pilot − θ̃ ′‖F ≤ rn(k̂). (18.43)

Finally define, for C a constant chosen below,

Cn =
{
v ∈ �+ : ‖v − ϑ̂‖S1 ≤ C

√
k̂rn(k̂)

}
. (18.44)

Theorem 18.4 Assume Condition 18.2 for some 1 ≤ k ≤ d , and let δ > 0 be given.
Assume that with probability greater than 1 − 2δ/3, (a) the RIP (18.7) holds with
τn(k) as in (18.40) and (b) there exists an estimator θ̃Pilot for which (18.42) holds.
Then we can choose C = C(δ) large enough so that, for Cn as in the last display,

lim inf
min(n,d)→∞ inf

θ∈R+(k)
Pθ (θ ∈ Cn) ≥ 1 − δ.

Moreover, uniformly in R+(k0), 1 ≤ k0 ≤ k, and with Pθ -probability greater than
1 − δ,

|Cn|S1 �
√

k0rn(k0).

Theorem 18.4 should mainly serve the purpose of illustrating that the quantum
shape constraint allows for the construction of an optimal trace norm confidence
set that adapts to the unknown low rank structure. Implementation of Cn is not
straightforward so Theorem 18.4 is mostly of theoretical interest. Let us also observe
that in full generality a result like Theorem 18.4 cannot be proved without the
quantum shape constraint. This follows from a careful study of certain hypothesis
testing problems (combined with lower bound techniques for confidence sets as in
Refs. [19, 30]). Precise results are subject of current research and will be reported
elsewhere.

18.4 Simulation Experiments

In order to illustrate the methods from this paper, we present some numerical
simulations. The setting of the experiments is as follows: A random matrix η ∈
Md (C) of norm ‖η‖F = R1/2 is generated according to two distinct procedures that
we will specify later, and the observations are

Ȳi = tr(Xiη) + εi.

where the εi are i.i.d. Gaussian of mean 0 and variance 1. The observations are
reparametrised so that η represents the ‘estimation error’ θ − θ̂ , and we investigate
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how well the statistics

r̂n = 1

n
‖Ȳ‖ − 1 and R̂n = 2

n(n − 1)

∑

i<j

∑

m,k

ȲiX
i
m,kȲjX

j
m,k

estimate the ‘accuracy of estimation’ ‖η‖2
F = ‖θ − θ̂‖2

F , conditional on the
value of θ̂ . We will choose η in order to illustrate two extreme cases: a first one
where the nuclear norm ‖η‖S1 is ‘small’, corresponding to a situation where the
quantum constraint is fulfilled; and a second one where the nuclear norm is large,
corresponding to a situation where the quantum constraint is not fulfilled. More
precisely we generate the parameter η in two ways:

• ‘Random Dirac’ case: set a single entry (with position chosen at random on the
diagonal) of η to R1/2, and all the other coordinates equal to 0.

• ‘Random Pauli’ case: Set η equal to a Pauli basis element chosen uniformly at
random and then multiplied by R1/2.

The designs that we consider are the Gaussian design, and the Pauli design,
described in Condition 1. We perform experiments with d = 32, R ∈ {0.1, 1} and

n ∈ {100, 200, 500, 1000, 2000, 5000}.

Note that d2 = 1024, so that the first four choices of n correspond to the important
regime n < d2. Our results are plotted as a function of the number n of samples in
Figs. 18.2, 18.3, 18.4, and 18.5. The solid red and blue curves are the median errors
of the normalised estimation errors

√
R̂n − R

R1/2
, and

√
r̂n − R

R1/2
,

after 1000 iterations, and the dotted lines are respectively, the (two-sided) 90%
quantiles. We also report (see Tables 18.1, 18.2, 18.3, and 18.4) how well the
confidence sets based on these estimates of the norm perform in terms of coverage
probabilities, and of diameters. The diameters are computed as

(
R̂n + CUStatd

n
+ C′

UStatR̂
1/2
n√

n

)1/2

,

for the U-Statistic approach and

(
r̂n + CRSS√

n
+ C′

RSSr̂
1/2
n√

n

)1/2

,
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Fig. 18.2 Gaussian design, and random Dirac (a single entry, chosen at random, is non-zero on
the diagonal) η, with R = 0.1 (left picture) and R = 1 (right picture)
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Fig. 18.3 Gaussian design, and random Pauli η, with R = 0.1 (left picture) and R = 1 (right
picture)
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Fig. 18.4 Pauli design, and random Dirac (a single entry, chosen at random, is non-zero on the
diagonal) η, with R = 0.1 (left picture) and R = 1 (right picture)
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Fig. 18.5 Pauli design, and random Pauli η, with R = 0.1 (left picture) and R = 1 (right picture)
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Table 18.1 Gaussian design, and random Dirac (a single entry, chosen at random, is non-zero on
the diagonal) η, with R = 0.1 (left table) and R = 1 (right table)

R = 0.1 R = 1

n 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

Coverage U-Stat 0.97 0.98 0.99 1.00 1.00 1.00 0.93 0.96 0.97 0.98 0.98 0.98

Diameter U-Stat 1.10 0.64 0.34 0.24 0.18 0.14 2.43 1.84 1.44 1.27 1.17 1.10

Coverage RSS 0.97 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99

Diameter RSS 0.38 0.31 0.23 0.19 0.16 0.14 1.69 1.49 1.32 1.22 1.16 1.10

Table 18.2 Gaussian design, and random Pauli η, with R = 0.1 (left table) and R = 1 (right
table)

R = 0.1 R = 1

n 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

Coverage U-Stat 0.98 0.98 0.99 0.99 1.0 1.0 0.93 0.95 0.97 0.98 0.98 0.98

Diameter U-Stat 1.10 0.62 0.34 0.24 0.18 0.14 2.40 1.83 1.43 1.27 1.18 1.10

Coverage RSS 0.98 0.98 0.97 0.97 0.97 0.97 0.99 0.99 0.99 0.99 1.00 1.00

Diameter RSS 0.39 0.31 0.23 0.19 0.17 0.14 1.71 1.49 1.31 1.22 1.16 1.10

Table 18.3 Pauli design, and random Dirac (a single entry, chosen at random, is non-zero on the
diagonal) η, with R = 0.1 (left table) and R = 1 (right table)

R = 0.1 R = 1

n 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

Coverage U-Stat 0.97 0.98 0.98 0.99 0.98 0.98 0.85 0.54 0.69 0.69 0.70 0.71

Diameter U-Stat 1.10 0.63 0.34 0.24 0.18 0.14 2.28 1.87 1.43 1.26 1.18 1.10

Coverage RSS 0.96 0.96 0.96 0.96 0.97 0.97 0.88 0.89 0.88 0.88 0.88 0.88

Diameter RSS 0.39 0.29 0.23 0.19 0.16 0.14 1.70 1.50 1.30 1.21 1.16 1.10

Table 18.4 Pauli design, and random Pauli η, with R = 0.1 (left table) and R = 1 (right table)

R = 0.1 R = 1

n 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

Coverage U-Stat 0.97 0.97 0.96 0.86 0.65 0.58 0.82 0.22 0.25 0.27 0.30 0.37

Diameter U-Stat 1.09 0.57 0.34 0.25 0.18 0.15 2.45 2.09 1.33 1.38 1.19 1.09

Coverage RSS 0.93 0.86 0.77 0.77 0.77 0.77 0.12 0.19 0.40 0.63 0.56 0.53

Diameter RSS 0.38 0.29 0.22 0.19 0.16 0.14 1.71 1.56 1.31 1.26 1.14 1.08
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for the RSS approach, where we have chosen CUStat = 2.5, CRSS = 1 and C′
UStat =

CRSS = 6 for all experiments—calibrated to a 95% coverage level.
From these numerical results, several observations can be made:

• In Gaussian random designs, the results are insensitive to the nature of η (see
Figs. 18.2 and 18.3 and Tables 18.1 and 18.2). This is not surprising since the
Gaussian design is ‘isotropic’.

• For Pauli designs with the quantum constraint (see Fig. 18.4 and Table 18.3) the
RSS method works quite well even for small sample sizes. But the U-Stat method
is not very reliable—indeed we see no empirical evidence that Theorem 18.3
should also hold true for Pauli design.

• For Pauli design and when the quantum shape constraint is not satisfied
our methods cease to provide reliable results (see Fig. 18.5 and in particular
Table 18.4). Indeed, when the matrix η is chosen itself as a random Pauli (which
is the hardest signal to detect under Pauli design) both the RSS and the U-Stat
approach perform poorly. The confidence set are not honest anymore, which is
in line with the theoretical limitations we observe in Theorem 18.2. Figure 18.5
illustrates that the methods do not detect the signal, since the norm of η is largely
under-evaluated for small sample sizes. These limitations are less pronounced
when n ≥ d2. In this case one could use alternatively the re-averaging approach
from Sect. 18.3.3.2 (not investigated in the simulations) to obtain honest results
without the quantum shape constraint.

18.5 Proofs

18.5.1 Proof of Theorem 18.1

Proof Before we define the algorithm and prove the result, a few preparatory
remarks are required: Our sequential procedure will be implemented in m =
1, 2, . . . , T potential steps, in each of which 2 ·2m = 2m+1 measurements are taken.
The arguments below will show that we can restrict the search to at most

T = O(log(d/ε))

steps. We also note that from the discussion after (18.7)—in particular since c =
c(δ) from (18.8) is O(1/δ2)—a simple union bound over m ≤ T implies that the
RIP holds with probability ≥ 1 − δ′, some δ′ > 0, simultaneously for every m ≤ T

satisfying 2m ≥ c′kdlogd , and with τ2m(k) < c0, where c′ is a constant that depends
on δ′, c0 only. The maximum over T = O(log(d/ε)) terms is absorbed in a slightly
enlarged poly-log term. Hence, simultaneously for all such sample sizes 2m,m ≤ T ,
a nuclear norm regulariser exists that achieves the optimal rate from (18.26) with
n = 2m and for every k ≤ d , with probability greater than 1 − δ/3. Projecting this
estimator onto �+ changes the Frobenius error only by a universal multiplicative
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constant (arguing as in (18.43) below), and we denote by θ̃2m ∈ �+ the resulting
estimator computed from a sample of size 2m.

We now describe the algorithm at the m-th step: Split the 2m+1 observations into
two halves and use the first subsample to construct θ̃2m ∈ �+ satisfying (18.26)
with Pθ -probability ≥ 1 − δ/3. Then use the other 2m observations to construct a
confidence set C2m for θ centred at θ̃2m : if 2m < d2 we take C2m from (18.33) and
if 2m ≥ d2 we take C2m from (18.37)—in both cases of non-asymptotic coverage
at least 1 − α, α = δ/(3T ). If |C2m|F ≤ ε we terminate the procedure (m =
m̂, n̂ = 2m̂+1, θ̂ = θ̃2m̂), but if |C2m |F > ε we repeat the above procedure with
2 ·2m+1 = 2m+1+1 new measurements, etc., until the algorithm terminates, in which
case we have used

∑

m≤m̂

2m+1 � 2m̂ ≈ n̂

measurements in total.
To analyse this algorithm, recall that the quantile constants z, zα, ξα appearing in

the confidence sets (18.33) and (18.37) for our choice of α = δ/(3T ) grow at most
as O(log(1/α)) = O(log T ) = o(logd). In particular in view of (18.26) and (18.34)
or (18.38) the algorithm necessarily stops at a ‘maximal sample size’ n = 2T +1 in
which the squared Frobenius risk of the maximal model (k = d) is controlled at
level ε. Such T ∈ N is O(log(d/ε)) and depends on σ, d, ε, δ, hence can be chosen
by the experimenter.

To prove that this algorithms works we show that the event

{
‖θ̂ − θ‖2

F > ε2
}

∪
{
n̂ >

C(δ)kd(log d)γ

ε2

}
= A1 ∪ A2

has probability at most 2δ/3 for large enough C(δ), γ . By the union bound it suffices
to bound the probability of each event separately by δ/3. For the first: Since n̂ has
been selected we know |Cn̂|F ≤ ε and since θ̂ = θ̃n̂ the event A1 can only happen
when θ /∈ Cn̂. Therefore

Pθ (A1) ≤ Pθ (θ /∈ Cn̂) ≤
T∑

m=1

Pθ (θ /∈ C2m) ≤ δ
T

3T
= δ

3
.

For A2, whenever θ ∈ R(k) and for all m ≤ T for which 2m ≥ c′kdlogd , we have,
as discussed above, from (18.34) or (18.38) and (18.26) that

Eθ |C2m |2F ≤ D′ kd log T

2m
,

where D′ is a constant. In the last inequality the expectation is taken under the
distribution of the sample used for the construction of C2m , and it holds on the event
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on which θ̃2m realises the risk bound (18.26). Then let C(δ), γ be large enough so
that C(δ)kd(log d)γ /ε2 ≥ c′kdlogd and let m0 ∈ N be the smallest integer such
that

2m0 >
C(δ)kd(log d)γ

ε2
.

Then, for C(δ) large enough and since T = O(log(d/ε),

Pθ

(
n̂ >

C(δ)kd(log d)γ

ε2

)
≤ Pθ

(
|C2m0 |2F > ε2

)
≤ Eθ |C2m0 |2F

ε2
≤ D′ log T

C(δ)(log d)γ
< δ/3,

by Markov’s inequality, completing the proof. �
Remark 18.9 (Isotropic Sampling) The proof above works analogously for
isotropic designs as defined in Condition 18.1a). When 2m ≥ d2, we replace
the confidence set (18.37) in the above proof by the confidence set from (18.36).
Assuming also that ‖θ‖F ≤ M for some fixed constant M , we can construct a
similar upper bound for T and the above proof applies directly (with T of slighter
larger but still small enough order). Instead of assuming an upper bound on ‖θ‖F

one can simply continue using the confidence set (18.33) also when 2m ≥ d2, in
which case one has the slightly worse bound

n̂ ≤ C(δ) max

(
kdlogd

ε2 ,
1

ε4

)

for the number of measurements required.

18.5.2 Proof of Theorem 18.2

Proof By Lemma 18.1 below with ϑ = θ̃ − θ the Pθ -probability of the complement
of the event

E =
{∣∣∣∣

1

n
‖X (θ̃ − θ)‖2 − ‖θ̃ − θ‖2

F

∣∣∣∣ ≤ max

(
‖θ − θ̃‖2

F

2
,
zd

n

)}

is bounded by the deviation terms 2e−cn and 2e−C(K)z, respectively (note z = 0 in
Case (a)). We restrict to this event in what follows. We can decompose

r̂n = 1

n
‖X (θ̃ − θ)‖2 + 2

n
〈ε,X (θ − θ̃ )〉 + 1

n

n∑

i=1

(ε2
i − Eε2

i ) = A + B + C.
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Since P(Y + Z < 0) ≤ P(Y < 0) + P(Z < 0) for any random variables Y,Z we
can bound the probability

Pθ (θ /∈ Cn, E) = Pθ

({
1

2
‖θ − θ̃‖2

F > A + B + C + zd

n
+ z̄ + ξα/3,σ√

n

}
, E

)

by the sum of the following probabilities

I := Pθ

({
1

2
‖θ − θ̃‖2

F >
1

n
‖X (θ̃ − θ)‖2 + zd

n

}
, E

)
,

II := Pθ

({
− 1√

n
〈ε,X (θ − θ̃ )〉 > z̄

}
, E

)
,

III := Pθ

(
− 1√

n

n∑

i=1

(ε2
i − Eε2

i ) > ξα/3,σ

)
.

The first probability I is bounded by

Pθ

({
− 1

n
‖X (θ̃ − θ)‖2 + ‖θ − θ̃‖2

F >
1

2
‖θ − θ̃‖2

F + zd

n

}
, E

)

≤ Pθ

({∣∣∣∣
1

n
‖X (θ̃ − θ)‖2 − ‖θ̃ − θ‖2

F

∣∣∣∣ > max

(
‖θ − θ̃‖2

F

2
,
zd

n

)}
, E

)
= 0

About term II : Conditional on X the variable 1√
n
〈ε,X (θ − θ̃ )〉 is centred Gaussian

with variance (σ 2/n)‖X (θ − θ̃ )‖2. The standard Gaussian tail bound then gives by
definition of z̄, and conditional on X ,

≤ exp{−z̄2/2(σ 2/n)‖X (θ − θ̃ )‖2}

= exp

{
−zα/3 max(3‖θ − θ̃‖2

F , 4zd/n)

2‖X (θ − θ̃ )‖2/n

}
≤ exp{−zα/3} = α/3

since, on the event E ,

max(3‖θ − θ̃‖2
F , 4zd/n) ≥ (2/n)‖X (θ − θ̃ )‖2.

The overall bound for II follows from integrating the last but one inequality over
the distribution of X. Term III is bounded by α/3 by definition of ξα,σ . �
Remark 18.10 (Modification of the Proof for Bernoulli Errors) If instead of Gaus-
sian errors we work with the error model from Sect. 18.2.2.2, we require a modified
treatment of the terms II, III in the above proof. For the pure noise term III
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we modify the quantile constants slightly to ξα,σ = √
(1/α). If the number T of

preparations satisfies T ≥ 4d2 then Chebyshev’s inequality and (18.24) give

Pθ

(∣∣∣∣∣
1√
n

n∑

i=1

(ε2
i − Eε2

i )

∣∣∣∣∣ > ξα/3,σ

)
≤ α

3n

n∑

i=1

Eε4
i ≤ α

3

4d2

T
≤ α

3
.

For the ‘cross term’ we have likewise with zα = √
1/α and ai = (X (θ − θ̃ ))i that,

on the event E ,

Pε

({
− 1√

n
〈ε,X (θ − θ̃ )〉 > z̄

}
, E

)
≤ 1

nz̄2
Eε

(
n∑

i=1

εiai1E

)2

≤ d

T z̄2

‖X (θ − θ̃ )‖2

n
1E ≤ α/3,

just as at the end of the proof of Theorem 18.2, so that coverage follows from
integrating the last inequality w.r.t. the distribution of X. The scaling T ≈ d2 is
similar to the one discussed in Theorem 3 in Ref. [12].

Lemma 18.1

(a) For isotropic design from Condition 18.1(a) and any fixed matrix ϑ ∈ Hd(C)

we have, for every n ∈ N,

Pr

(∣∣∣∣
1

n
‖Xϑ‖2 − ‖ϑ‖2

F

∣∣∣∣ >
‖ϑ‖2

F

2

)
≤ 2e−cn.

In the standard Gaussian design case we can take c = 1/24.
(b) In the ‘Pauli basis’ case from Condition 18.1(b) we have for any fixed matrix

ϑ ∈ Hd(C) satisfying the Schatten-1-norm bound ‖ϑ‖S1 ≤ 2 and every n ∈ N,

Pr

(∣∣∣∣
1

n
‖Xϑ‖2 − ‖ϑ‖2

F

∣∣∣∣ > max

(
‖ϑ‖2

F

2
, z

d

n

))
≤ 2 exp {−C(K)z}

where C(K) = 1/[(16 + 8/3)K2], and where K is the coherence constant of
the basis.

(c) In the ‘Pauli basis’ case from Condition 18.1(b) we have for any fixed matrix
ϑ ∈ Hd(C) such that the rank of ϑ is smaller than 2k and every n ∈ N,

Pr

(∣∣∣∣
1

n
‖Xϑ‖2 − ‖ϑ‖2

F

∣∣∣∣ > max

(
‖ϑ‖2

F

2
, z

d

n

))
≤ 2 exp

{
− n

17K2k2d

}
.

Proof We first prove the isotropic case. From (18.5) we see

Pr

(∣∣∣∣
1

n
‖Xϑ‖2 − ‖ϑ‖2

F

∣∣∣∣ > ‖ϑ‖2
F /2

)
= Pr

(∣∣∣∣∣

n∑

i=1

(Z2
i − EZ2

1)/‖ϑ‖2
F

∣∣∣∣∣ > n/2

)
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where the Zi/‖ϑ‖F are sub-Gaussian random variables. Then the Z2
i /‖ϑ‖2

F are
sub-exponential and we can apply Bernstein’s inequality (Prop. 4.1.8 in Ref. [14])
to the last probability. We give the details for the Gaussian case and derive explicit
constants. In this case gi := Zi/‖ϑ‖F ∼ N(0, 1) so the last probability is bounded,
using Theorem 4.1.9 in Ref. [14], by

Pr

(∣∣∣∣∣

n∑

i=1

(g2
i − 1)

∣∣∣∣∣ >
n

2

)
≤ 2 exp

{
− n2/4

4n + 2n

}
,

and the result follows.
Under Condition 18.1(b), if we write D = max(n‖ϑ‖2

F /2, zd) we can reduce
likewise to bound the probability in question by

Pr

(∣∣∣∣∣

n∑

i=1

(Yi − EY1)

∣∣∣∣∣ > D

)

where the Yi = |tr(Xiϑ)|2 are i.i.d. bounded random variables. Using ‖Ei‖op ≤
K/

√
d from Condition 18.1(b) and the quantum constraint ‖ϑ‖F ≤ ‖ϑ‖S1 ≤ 2 we

can bound

|Yi | ≤ d2 max
i

‖Ei‖2
op‖ϑ‖2

S1
≤ 4K2d := U

as well as

EY 2
i ≤ UE|Yi | ≤ 4K2d‖ϑ‖2

F := s2.

Bernstein’s inequality for bounded variables (e.g., Theorem 4.1.7 in Ref. [14])
applies to give the bound

2 exp

{
− D2

2ns2 + 2
3UD

}
≤ 2 exp {−C(K)z} ,

after some basic computations, by distinguishing the two regimes of D =
n‖ϑ‖2

F /2 ≥ zd and D = zd ≥ n‖ϑ‖2
F /2.

Finally for (c), using the same reasoning as above and using ‖Ei‖op ≤ K/
√

d

from Condition 18.1(b) and the fact that the estimator is also of rank less than k, we
have ‖ϑ‖F ≤ ‖ϑ‖S1 ≤ √

2k‖ϑ‖F we can bound

|Yi | ≤ d2 max
i

‖Ei‖2
op‖ϑ‖2

S1
≤ 2K2kd‖ϑ‖2

F := Ũ
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as well as

EY 2
i ≤ ŨE|Yi | ≤ 2K2dk2‖ϑ‖4

F := s̃2.

Bernstein’s inequality for bounded variables (e.g., Theorem 4.1.7 in Ref. [14])
applies to give the bound

2 exp

{
− D2

2ns̃2 + 2
3 ŨD

}
≤ 2 exp

{
− n

17K2k2d

}
,

after some basic computations. �

18.5.3 Proof of Theorem 18.3

Proof Since Eθ R̂n = ‖θ − θ̃‖2
F we have from Chebyshev’s inequality

Pθ (θ /∈ Cn) ≤ Pθ

(
|R̂n − ER̂n| > zα,n

)

≤ Varθ (R̂n − ER̂n)

z2
αn

.

Now Un = R̂n − Eθ R̂n is a centred U-statistic and has Hoeffding decomposition
Un = 2Ln + Dn where

Ln = 1

n

n∑

i=1

∑

m,k

(YiX
i
m,k − Eθ [YiX

i
m,k])(�m,k − �̃m,k)

is the linear part and

Dn = 2

n(n − 1)

∑

i<j

∑

m,k

(YiX
i
m,k − Eθ [YiX

i
m,k])(YjX

i
m,k − E[YjX

i
m,k])

the degenerate part. We note that Ln and Dn are orthogonal in L2(Pθ ).
The linear part can be decomposed into

Ln = L(1)
n + L(2)

n

where

L(1)
n = 1

n

n∑

i=1

∑

m,k

⎛

⎝
∑

m′,k′
Xi

m′,k′Xi
m,k�m′,k′ − �m,k

⎞

⎠ (�m,k − �̃m,k)
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and

L(2)
n = 1

n

n∑

i=1

εi

∑

m,k

Xi
m,k(�m,k − �̃m,k).

Now by the i.i.d. assumption we have

Varθ (L(2)
n ) = σ 2 ‖θ̃ − θ‖2

F

n
.

Moreover, by transposing the indices m, k and m′, k′ in an arbitrary way into single
indices M = 1, . . . , d2,K = 1, . . . , d2, d2 = p, respectively, basic computations
given before eq. (28) in Ref. [30] imply that the variance of the second term is
bounded by

Varθ (L(1)
n ) ≤ c‖θ − θ̃‖2

F ‖θ‖2
F

n

where c is a constant that depends only on EX4
1,1 (which is finite since the X1,1 are

sub-Gaussian in view of Condition 18.1(a)). Moreover, the degenerate term satisfies

Varθ (Dn) ≤ c
d

n2
‖θ‖4

F

in view of standard U -statistic computations leading to eq. (6.6) in Ref. [21], with
d2 = p, and using the same transposition of indices as before. This proves coverage
by choosing the constants in the definition of zα,n large enough. �

18.5.4 Proof of Theorem 18.4

We prove the result for symmetric matrices with real entries—the case of Hermitian
matrices requires only minor (mostly notational) adaptations.

Given the estimator θ̃Pilot, we can easily transform it into another estimator θ̃ for
which the following is true.

Theorem 18.5 There exists an estimator θ̃ that satisfies, uniformly in θ ∈ R(k), for
any k ≤ d and with Pθ -probability greater than 1 − 2δ/3,

‖θ̃ − θ‖F ≤ rn(k),

as well as,

θ̃ ∈ R(k),
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and then also

‖θ̃ − θ‖S1 ≤ √
2krn(k).

Proof Let θ̃Pilot and let θ̃ be the element of R(d) with smallest rank k′ such that

‖θ̃Pilot − θ̃‖2
F ≤ r2

n(k′)
4

.

Such θ̃ exists and has rank ≤ k, with probability ≥ 1−2δ/3, since θ ∈ R(k) satisfies
the above inequality in view of (18.41). The ‖ · ‖2

F -loss of θ̃ is no larger than rn(k)

by the triangle inequality

‖θ̃ − θ‖F ≤ ‖θ̃ − θ̃Pilot‖F + ‖θ̃Pilot − θ‖F ,

and this completes the proof of the third claim in view of (18.2). �
The rest of the proof consists of three steps: The first establishes some auxiliary

empirical process type results, which are then used in the second step to construct
a sufficiently good simultaneous estimate of the eigenvalues of θ . In Step III the
coverage of the confidence set is established.

18.5.4.1 Step I

Let θ ∈ R+(k) = R(k) ∩ �+ and let θ̃ be the estimator from Theorem 18.5. Then
with probability ≥ 1 − 2δ/3, and if η = θ̃ − θ , we have

‖η‖2
F ≤ r2

n(k) ∀θ ∈ R+(k), (18.45)

and that

η ∈ R(2k).

For the rest of the proof we restrict in what follows to the event of probability greater
than or equal to 1 − 2δ/3 described by (a) and (b) in the hypothesis of the theorem.

Write Y ′
i = Yi − tr(Xi θ̃) for the ‘new observations’

Y ′
i = tr(Xiη) + εi, i = 1, . . . , n.

For any d × d ′ matrix V we set

γ̃η(V ) = V T

(
1

n

n∑

i=1

XiY ′
i

)
V
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which estimates

γη(V ) = V T ηV.

Let now U be any unit vector in R
d . Then in the above notation (d ′ = 1) we can

write

γ̃η(U) = 1

n

n∑

i=1

∑

m,m′≤d

UmUm′Xi
m,m′Y ′

i

= 1

n

n∑

i=1

∑

m,m′≤d

UmUm′Xi
m,m′(tr(Xiη) + εi)

= 1

n

n∑

i=1

∑

m,m′≤d

UmUm′Xi
m,m′

⎛

⎝
∑

k,k′≤d

Xi
k,k′ηk,k′ + εi

⎞

⎠ .

If U denotes the d × d matrix UUT , the last quantity can be written as

1

n
〈XU,Xη〉 + 1

n
〈XU, ε〉.

We can hence bound, for S = {U ∈ R
d : ‖U‖2 = 1}

sup
η∈R(2k),‖η‖F ≤rn(k),U∈S

|γ̃η(U) − γη(U)|

≤ sup
η∈R(2k),‖η‖F ≤rn(k),U∈S

∣∣∣∣
1

n
〈XU,Xη〉 − 〈U, η〉

∣∣∣∣ + sup
U∈S

∣∣∣∣
1

n
〈XU, ε〉

∣∣∣∣ .

Lemma 18.2 The right hand side on the last inequality is, with probability greater
than 1 − δ, of order

vn := O

(
rn(k)τn(k) +

√
d

n

)
.

Proof The first term in the bound corresponds to the first supremum on the right
hand side of the last inequality, and follows directly from the matrix RIP (and
Lemma 18.4). For the second term we argue conditionally on the values of X and
on the event for which the matrix RIP is satisfied. We bound the supremum of the
Gaussian process

Gε(U) := 1√
n

〈XU, ε〉 ∼ N(0, ‖XU‖2/n)
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indexed by elements U of the unit sphere S of Rd , which satisfies the metric entropy
bound

log N(δ,S, ‖ · ‖) � d log(A/δ)

by a standard covering argument. Moreover U = UUT ∈ R(1) and hence for any
pair of vectors U, Ū ∈ S we have that U − Ū ∈ R(2). From the RIP we deduce for
every fixed U, Ū ∈ S that

1

n
‖XU − X Ū‖2 = ‖U − Ū‖2

F

(
1 +

1
n
‖X (U − Ū)‖2 − ‖U − Ū‖2

F

‖U − Ū‖2
F

)

≤ (1 + τn(2))‖U − Ū‖2
F ≤ C‖U − Ū‖2

since τn(2) = O(1) and since

‖U−Ū‖2
F =

∑

m,m′
(UmUm′ −ŪmŪm′ )2 =

∑

m,m′
(UmUm′ −UmŪm′ +UmŪm′ −ŪmŪm′ )2 ≤ 2‖U−Ū‖2.

Hence any δ-covering of S in ‖ · ‖ induces a δ/C covering of S in the intrinsic
covariance dGε of the (conditional on X ) Gaussian process Gε, i.e.,

log N(δ,S, dGε ) � d log(A′/δ)

with constants independent of X. By Dudley’s metric entropy bound (e.g., Ref. [14])
applied to the conditional Gaussian process we have for d > 0 some constant

E sup
U∈S

|Gε(U)| �
∫ d

0

√
log N(δ,S, dGε )dδ �

√
d

and hence we deduce that

Eε sup
U∈S

1

n
|〈XU, ε〉| = Eε

1√
n

sup
U∈S

|Gε(U)| �
√

d

n
(18.46)

with constants independent of X, so that the result follows from applying Markov’s
inequality. �

18.5.4.2 Step II

Define the estimator

θ̂ ′ = θ̃ + 1

n

n∑

i=1

XiY ′
i = θ̃ + γ̃η(Id ).
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Then we can write, using UT γ̃η(Id)U = γ̃η(U),

UT θ̂ ′U − UT θU = UT (θ̃ + γ̃η(Id ))U − UT (θ̃ + η)U

= γ̃η(U) − γη(U),

and from the previous lemma we conclude, for any unit vector U that with
probability ≥ 1 − δ,

|UT θ̂ ′U − UT θU | ≤ vn.

Let now θ̂ be any symmetric positive definite matrix such that

|UT θ̂U − UT θ̂ ′U | ≤ vn.

Such a matrix exists, for instance θ ∈ R+(k), and by the triangle inequality we also
have

|UT θ̂U − UT θU | ≤ 2vn. (18.47)

Lemma 18.3 Let M be a symmetric positive definite d ×d matrix with eigenvalues
λj ’s ordered such that λ1 ≥ λ2 ≥ . . . ≥ λd . For any j ≤ d consider an arbitrary
collection of j orthonormal vectors Vj = (V ι : 1 ≤ ι ≤ j) in R

d . Then we have

(a) λj+1 ≤ sup
U∈S,U⊥span(Vj)

UT MU,

and

(b)
∑

ι≤j

λι ≥
∑

ι≤j

(V ι)T MV ι.

Let R̂ be the rotation that diagonalises θ̂ such that R̂T θ̂ R̂ = diag(λ̂j : j =
1, . . . , d) ordered such that λ̂j ≥ λ̂j+1 ∀j . Moreover let R be the rotation that does
the same for θ and its eigenvalues λj . We apply the previous lemma with M = θ̂ and
V equal to the column vectors rι : ι ≤ l − 1 of R to obtain, for any fixed l ≤ j ≤ d ,

λ̂l ≤ sup
U∈S,U⊥span(rι,ι≤l−1)

UT θ̂U, (18.48)

and also that

∑

l≤j

λ̂l ≥
∑

l≤j

rT
l θ̂rl . (18.49)
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From (18.47) we deduce, that

λ̂l ≤ sup
U∈S,U⊥span(rι,ι≤j−1)

UT θU + 2vn = λj + 2vn ∀ l ≤ j,

as well as

∑

l≤j

λ̂l ≥
∑

l≤j

rT
l θrl − 2jvn =

∑

l≤j

λl − 2jvn,

with probability ≥ 1 − δ. Combining these bounds we obtain

∣∣∣∣∣∣

∑

l≤j

λ̂l −
∑

l≤j

λl

∣∣∣∣∣∣
≤ 2jvn, j ≤ d. (18.50)

18.5.4.3 Step III

We show that the confidence sets covers the true parameter on the event of
probability ≥ 1 − δ on which Steps I and II are valid, and for the constant C chosen
large enough.

Let � = �
R+(2k̂)

be the projection operator onto R+(2k̂). We have

‖ϑ̂ − θ‖S1 ≤ ‖ϑ̂ − �θ‖S1 + ‖�θ − θ‖S1 .

We have, using (18.50) and Lemma 18.5 below

‖�θ − θ‖S1 =
∑

J>2k̂

λJ = 1 −
∑

J≤2k̂

λJ

≤ 1 −
∑

J≤2k̂

λ̂J + 4k̂vn

≤ 6vnk̂ ≤ (C/2)

√
k̂rn(k̂)

for C large enough.
Moreover, using the oracle inequality (18.42) with S = �θ and (18.43),

‖ϑ̂ − �θ‖S1 ≤
√

4k̂‖ϑ̂ − �θ‖F

≤
√

4k̂(‖ϑ̂ − θ‖F + ‖�θ − θ‖F )

≤
√

4k̂(‖ϑ̂ − θ̃Pilot‖F + ‖θ̃Pilot − θ‖F + ‖�θ − θ‖F )

�
√

k̂(rn(k̂) + ‖�θ − θ‖F ).
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We finally deal with the approximation error: Note

‖�θ − θ‖2
F =

∑

l>2k̂

λ2
l ≤ max

l>2k̂

|λl |
∑

l>2k̂

|λl |.

By (18.50) we know that

∑

l>k̂

λl = 1 −
∑

l≤k̂

λl ≤ 1 −
∑

l≤k̂

λ̂l + 2vnk̂ ≤ 4vnk̂.

Hence out of the λl’s with indices l > k̂ there have to be less than k̂ coefficients
which exceed 4vn. Since the eigenvalues are ordered this implies that the λl ’s with
indices l > 2k̂ are all less than or equal to 4vn, and hence the quantity in the last
but one display is bounded by (since k̂ < 2k̂), using again (18.50) and the definition
of k̂,

4vn

⎛

⎝1 −
∑

l≤k̂

|λl |
⎞

⎠ � vn

⎛

⎝1 −
∑

l≤k̂

|λ̂l |
⎞

⎠ + k̂v2
n � v2

nk̂ �
√

k̂rn(k̂).

Overall we get the bound

‖ϑ̂ − �θ‖S1 � k̂vn � (C/2)

√
k̂rn(k̂)

for C large enough, which completes the proof of coverage of Cn by collecting the
above bounds. The diameter bound follows from k̂ ≤ k (in view of the defining
inequalities of k̂ being satisfied, for instance, for θ̃ ′ = θ , whenever θ ∈ R+(k0).)

18.6 Auxiliary Results

18.6.1 Proof of Lemma 18.3

(a) Consider the subspaces E = span((V ι)ι≤j )
⊥ and F = span((eι)ι≤j+1) of Rd ,

where the eι’s are the eigenvectors of the d × d matrix M corresponding to
eigenvalues λj . Since dim(E) + dim(F ) = (d − j) + j + 1 = d + 1, we know
that E

⋂
F is not empty and there is a vectorial sub-space of dimension 1 in

the intersection. Take U ∈ E
⋂

F such that ‖U‖ = 1. Since U ∈ F , it can be
written as

U =
j+1∑

ι=1

uιeι
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for some coefficients uι. Since the eι’s are orthogonal eigenvectors of the
symmetric matrix M we necessarily have

MU =
j+1∑

ι=1

λιuιeι,

and thus

UT MU =
j+1∑

ι=1

λιu
2
ι .

Since the λι’s are all non-negative and ordered in decreasing absolute value, one
has

UT MU =
j+1∑

ι=1

λιu
2
ι ≥ λj+1

j+1∑

ι=1

u2
ι = λj+1‖U‖2 = λj+1.

Taking the supremum in U yields the result.
(b) For each ι ≤ j , let us write the decomposition of V ι on the basis of eigenvectors

(el : l ≤ d) of M as

V ι =
∑

l≤d

vι
l el .

Since the (el) are the eigenvectors of M we have

∑

ι≤j

(V ι)T MV ι =
∑

ι≤j

d∑

l=1

λl(v
ι
l )

2,

where
∑d

l=1(v
ι
l )

2 = 1 and
∑

ι≤j (v
ι
l )

2 ≤ 1, since the V ι are orthonormal. The
last expression is maximised in (vι

l )ι≤j,1≤l≤d and under these constraints, when
vι
ι = 1 and vι

l = 0 if ι �= l (since the (λι) are in decreasing order), and this gives

∑

ι≤j

(V ι)T MV ι ≤
∑

ι≤j

λι.
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18.6.2 Some Further Lemmas

Lemma 18.4 Under the RIP (18.7) we have for every 1 ≤ k ≤ d that, with
probability at least 1 − δ,

sup
A,B∈R(k)

∣∣∣∣∣

1
n
〈XA,XB〉 − 〈A,B〉F

‖A‖F ‖B‖F

∣∣∣∣∣ ≤ 10τn(k). (18.51)

Proof The matrix RIP can be written as

sup
A∈R(k)

∣∣∣∣
〈XA,XA〉
n〈A,A〉F − 1

∣∣∣∣ = |〈A, (n−1M − I)A〉F |
〈A,A〉F ≤ τn(k), (18.52)

for a suitable M ∈ Hd2(C). The above bound then follows from applying the
Cauchy-Schwarz inequality to

1

n
〈XA,XB〉 − 〈A,B〉F = 〈A, (n−1M − I)B〉F . (18.53)

�
The following lemma can be proved by basic linear algebra, and is left to the

reader.

Lemma 18.5 Let M ≥ 0 with positive eigenvalues (λj )j ordered in decreasing
order. Denote with �R+(j−1) the projection onto R+(j − 1) = R(j − 1) ∩ �+.
Then for any 2 ≤ j ≤ d we have

∑

j ′≥j

λj ′ = ‖M − �R+(j−1)M‖S1 .

Acknowledgements The work of A. Carpentier was done when she was in Cambridge and
is partially supported by the Deutsche Forschungsgemeinschaft (DFG) Emmy Noether grant
MuSyAD (CA 1488/1-1), by the DFG-314838170, GRK 2297 MathCoRe, by the DFG GRK 2433
DAEDALUS (384950143/GRK2433), and by the DFG CRC 1294 ‘Data Assimilation’, Project
A03, and by the UFA-DFH through the French-German Doktorandenkolleg CDFA 01-18. D. Gross
acknowledges support by the DFG (SPP1798 CoSIP), Germany’s Excellence Strategy—Cluster
of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769,
and the ARO under contract W911NF-14-1-0098 (Quantum Characterization, Verification, and
Validation). J. Eisert was supported by the DFG, CRC 183, Project B01, by the DFG GRK
DAEDALUS, the DFG SPP1798 CoSIP, the ERC, and the Templeton Foundation.



18 Uncertainty Quantification for Matrix Compressed Sensing and Quantum. . . 429

References

1. L. Artiles, R. Gill, M. Guta, An invitation to quantum tomography. J. R. Stat. Soc. 67, 109
(2005)

2. K. Audenaert, S. Scheel, Quantum tomographic reconstruction with error bars: a Kalman filter
approach. New J. Phys. 11(2), 023028 (2009)

3. P.J. Bickel, Y. Ritov, A.B. Tsybakov, Simultaneous analysis of lasso and Dantzig selector. Ann.
Stat. 37(4), 1705–1732 (2009)

4. R. Blume-Kohout, Robust error bars for quantum tomography (2012). arXiv:1202.5270
5. P. Bühlmann, S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory and

Applications (Springer, Berlin, 2011)
6. E.J. Candès, Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal

number of noisy random measurements. IEEE Trans. Inform. Theory 57(4), 2342–2359 (2011)
7. E.J. Candès, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n.

Ann. Stat. 35(6), 2313–2351 (2007)
8. A. Carpentier, A. Kim, An iterative hard thresholding estimator for low rank matrix recovery

with explicit limiting distribution (2015). arxiv preprint 1502.04654
9. A. Carpentier, O. Klopp, M. Löffler, R. Nickl, et al., Adaptive confidence sets for matrix

completion. Bernoulli 24(4A), 2429–2460 (2018)
10. M. Christandl, R. Renner, Reliable quantum state tomography. Phys. Rev. Lett. 109, 120403

(2012)
11. R. De Wolf, A brief introduction to Fourier analysis on the Boolean cube. Theory Comput.

Libr. Grad. Surv. 1, 1–20 (2008)
12. S.T. Flammia, D. Gross, Y.-K. Liu, J. Eisert, Quantum tomography via compressed sensing:

error bounds, sample complexity and efficient estimators. New J. Phys. 14(9), 095022 (2012)
13. E. Giné, R. Nickl, Confidence bands in density estimation. Ann. Stat. 38, 1122–1170 (2010)
14. E. Giné, R. Nickl, Mathematical Foundations of Infinite-Dimensional Statistical Models

(Cambridge University Press, Cambridge, 2015)
15. D. Gross, Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf.

Theory 57(3), 1548–1566 (2011)
16. D. Gross, Y.-K. Liu, S.T. Flammia, S. Becker, J. Eisert, Quantum state tomography via

compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010)
17. M. Guta, T. Kypraios, I. Dryden, Rank-based model selection for multiple ions quantum

tomography. New J. Phys. 14, 105002 (2012)
18. H. Haeffner, W. Haensel, C.F. Roos, J. Benhelm, D.C. al kar, M. Chwalla, T. Koerber, U.D.

Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Scalable multi-particle
entanglement of trapped ions. Nature 438, 643 (2005)

19. M. Hoffmann, R. Nickl, On adaptive inference and confidence bands. Ann. Stat. 39, 2382–2409
(2011)

20. A.S. Holevo, Statistical Structure of Quantum Theory (Springer, Berlin, 2001)
21. Y.I. Ingster, A.B. Tsybakov, N. Verzelen, Detection boundary in sparse regression. Electron. J.

Stat. 4, 1476–1526 (2010)
22. A. Javanmard, A. Montanari, Confidence intervals and hypothesis testing for high-dimensional

regression. J. Mach. Learn. Res. 15(1), 2869–2909 (2014)
23. A. Kalev, R.L. Kosut, I.H. Deutsch, Informationally complete measurements from compressed

sensing methodology. arXiv:1502.00536
24. V. Koltchinskii, Von Neumann entropy penalization and low-rank matrix estimation. Ann. Stat.

39(6), 2936–2973 (2011)
25. V. Koltchinskii, K. Lounici, A.B. Tsybakov, Nuclear-norm penalization and optimal rates for

noisy low-rank matrix completion. Ann. Stat. 39(5), 2302–2329 (2011)
26. H. Leeb, B.M. Pötscher, Can one estimate the conditional distribution of post-model-selection

estimators? Ann. Stat. 34(5), 2554–2591 (2006)



430 A. Carpentier et al.

27. U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cam-
bridge, 2005)

28. Y.-K. Liu, Universal low-rank matrix recovery from Pauli measurements. Adv. Neural Inf.
Process. Syst. 24, 1638–1646 (2011)

29. V. Mnih, C. Szepesvári, J.Y. Audibert, Empirical bernstein stopping, in Proceedings of the 25th
International Conference on Machine Learning (ACM, New York, 2008), pp. 672–679

30. R. Nickl, S. van de Geer, Confidence sets in sparse regression. Ann. Stat. 41(6), 2852–2876
(2013)

31. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge
University Press, Cambridge, 2000)

32. A. Peres, Quantum Theory (Springer, Berlin, 1995)
33. B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization. SIAM Rev. 52, 471 (2010)
34. J. Shang, H.K. Ng, A. Sehrawat, X. Li, B.-G. Englert, Optimal error regions for quantum state

estimation. New J. Phys. 15(12), 123026 (2013)
35. K. Temme, F. Verstraete, Quantum chi-squared and goodness of fit testing. J. Math. Phys.

56(1), 012202 (2015)
36. S. van de Geer, P. Bühlmann, Y. Ritov, R. Dezeure, On asymptotically optimal confidence

regions and tests for high-dimensional models. Ann. Stat. 42(3), 1166–1202 (2014)


	18 Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography Problems
	18.1 Introduction
	18.1.1 Uncertainty Quantification in Compressed Sensing
	18.1.2 Application to Quantum State Estimation

	18.2 Matrix Compressed Sensing
	18.2.1 Sensing Matrices and the RIP
	18.2.2 Quantum Measurements
	18.2.2.1 Pauli Spin Measurements on Multiple Particles
	18.2.2.2 Bernoulli Errors and Pauli Observables

	18.2.3 Minimax Estimation Under the RIP

	18.3 Uncertainty Quantification for Low-Rank Matrix Recovery
	18.3.1 Adaptive Sequential Sampling
	18.3.2 A Non-asymptotic Confidence Set Based on Unbiased Risk Estimation and Sample-Splitting
	18.3.3 Improvements When d ≤n
	18.3.3.1 Isotropic Design and U-Statistics
	18.3.3.2 Re-averaging Basis Elements When d ≤n

	18.3.4 A Confidence Set in Trace Norm Under Quantum Shape Constraints

	18.4 Simulation Experiments
	18.5 Proofs
	18.5.1 Proof of Theorem 18.1
	18.5.2 Proof of Theorem 18.2
	18.5.3 Proof of Theorem 18.3
	18.5.4 Proof of Theorem 18.4
	18.5.4.1 Step I
	18.5.4.2 Step II
	18.5.4.3 Step III


	18.6 Auxiliary Results
	18.6.1 Proof of Lemma 18.3
	18.6.2 Some Further Lemmas

	References


