
Chapter 17
Concentration Inequalities for Randomly
Permuted Sums

Mélisande Albert

Abstract Initially motivated by the study of the non-asymptotic properties of non-
parametric tests based on permutation methods, concentration inequalities for uni-
formly permuted sums have been largely studied in the literature. Recently, Delyon
et al. proved a new Bernstein-type concentration inequality based on martingale
theory. This work presents a new proof of this inequality based on the fundamental
inequalities for random permutations of Talagrand. The idea is to first obtain a rough
inequality for the square root of the permuted sum, and then, iterate the previous
analysis and plug this first inequality to obtain a general concentration of permuted
sums around their median. Then, concentration inequalities around the mean are
deduced. This method allows us to obtain the Bernstein-type inequality up to con-
stants, and, in particular, to recovers the Gaussian behavior of such permuted sums
under classical conditions encountered in the literature. Then, an application to the
study of the second kind error rate of permutation tests of independence is presented.
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17.1 Introduction and Motivation

This article presents concentration inequalities for randomly permuted sums
defined by

Zn =
n∑

i=1

ai,�(i),

M. Albert (�)
Institut de Mathématiques de Toulouse; UMR5219, Université de Toulouse; CNRS, INSA,
Toulouse, France
e-mail: melisande.albert@insa-toulouse.fr

© Springer Nature Switzerland AG 2019
N. Gozlan et al. (eds.), High Dimensional Probability VIII,
Progress in Probability 74, https://doi.org/10.1007/978-3-030-26391-1_17

341

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26391-1_17&domain=pdf
mailto:melisande.albert@insa-toulouse.fr
https://doi.org/10.1007/978-3-030-26391-1_17


342 M. Albert

where
{
ai,j

}
1≤i,j≤n

are real numbers, and � is a uniformly distributed random
permutation of the set {1, . . . , n}. Initially motivated by hypothesis testing in the
non-parametric framework (see [28] for instance), such sums have been largely
studied from an asymptotic point of view in the literature. A first combinatorial
central limit theorem is proved by Wald and Wolfowitz in [28], in the particular case
when the real numbers ai,j are of a product form bi × cj , under strong assumptions
that have been released for instance by Noether [22]. Then, Hoeffding obtains
stronger results in such product case, and generalizes those results to not necessarily
product type real terms ai,j in [15]. More precisely, he considers

di,j = ai,j − 1

n

n∑

k=1

ak,j − 1

n

n∑

l=1

ai,l + 1

n2

n∑

k,l=1

ak,l. (17.1)

In particular, Var(Zn) = 1
n−1

∑n
i=1 d2

i,j . Then he proves (see [15, Theorem 3])
that, if

lim
n→+∞

1
n

∑
1≤i,j≤n dr

i,j
(

1
n

∑n
i,j=1 d2

i,j

)r/2 = 0, for some r > 2, (17.2)

then the distribution of Zn = ∑n
i=1 ai,�(i) is asymptotically normal, that is, for all

x in R,

lim
n→+∞P

(
Zn − E [Zn] ≤ x

√
Var(Zn)

)
= 1√

2π

∫ x

−∞
e− y2

2 dy.

He also considers a stronger (in the sense that it implies (17.2)), but simpler
condition in [15, Theorem 3], precisely

max1≤i,j≤n

{∣∣di,j

∣∣}
√

1
n

∑n
i,j=1 d2

i,j

−→
n→+∞ 0, (17.3)

under which such an asymptotic Gaussian limit holds. Similar results have been
obtained later, for instance by Motoo [21], under the following Lindeberg-type
condition that is for all ε > 0,

lim
n→+∞

∑

1≤i,j≤n

(
di,j

d

)2

1∣∣∣
di,j
d

∣∣∣>ε
= 0, (17.4)

where d2 = n−1∑
1≤i,j≤n d2

i,j . In particular, Motoo proves in [21] that such
Lindeberg-type condition is weaker than Hoeffding’s ones in the sense that (17.4)
is implied by (17.2) (and thus by (17.3)). A few years later, Hájek [13] proves in
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the product case, that the condition (17.4) is in fact necessary. A simpler proof of
the sufficiency of the Lindeberg-type condition is given by Schneller [25] based on
Stein’s method.

Afterwards, the next step was to study the convergence of the conditional
distribution when the terms ai,j in the general case, or bi × cj in the product case,
are random. Notably, Dwass studies in [10] the limit of the randomly permuted
sum in the product case, where only the cj ’s are random, and proves that the
conditional distribution given the cj ’s converges almost surely (a.s.) to a Gaussian
distribution. Then, Shapiro and Hubert [26] generalized this study to weighted
U -statistics of the form

∑
i �=j bi,j h(Xi,Xj ) where the Xi’s are independent and

identically distributed (i.i.d.) random variables. In a first time, they show some a.s.
asymptotic normality of this statistic. In a second time, they complete Jogdeo’s [17]
work in the deterministic case, proving asymptotic normality of permuted statistics
based on the previous weighted U -statistic. More precisely, they consider the rank
statistic

∑
i �=j bi,j h(XRi ,XRj ), where Ri is the rank of Vi in a sample V1, . . . , Vn of

i.i.d. random variables with a continuous distribution function. In particular, notice
that considering such rank statistics is equivalent to considering uniformly permuted
statistics. In [2], the previous combinatorial central limit theorems is generalized to
permuted sums of non-i.i.d. random variables

∑n
i=1 Yi,�(i), for particular forms of

random variables Yi,j . The main difference with the previous results comes from the
fact that the random variables Yi,j are not necessarily exchangeable.

Hence, the asymptotic behavior of permuted sums has been vastly investigated
in the literature, allowing to deduce good properties for permutation tests based on
such statistics, like the asymptotic size, or the power (see for instance [23] or [2]).
Yet, such results are purely asymptotic, while, in many application fields, such as
neurosciences for instance as described in [2], few exploitable data are available.
Hence, such asymptotic results may not be sufficient. This is why a non-asymptotic
approach is preferred here, leading to concentration inequalities. In the sequel,
unless specified, we will thus drop the index n and denote Z = Zn.

Concentration inequalities have been vastly investigated in the literature, and the
interested reader can refer to the books of Ledoux [18], Massart [19], or the more
recent one of Boucheron et al. [8] for some overall reviews. Yet in many cases,
they provide precise tail bounds for well-behaved functions or sums of independent
random variables. For instance, let us recall the classical Bernstein inequality stated
for instance in [19, Proposition 2.9 and Corollary 2.10].

Theorem 17.1.1 (Bernstein’s Inequality, Massart [19]) Let X1, . . . , Xn be inde-
pendent real valued random variables. Assume that there exists some positive
numbers v and c such that

n∑

i=1

E
[
X2

i

]
≤ v,
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and for all integers k ≥ 3,

n∑

i=1

E
[
(Xi)

k+
]

≤ k!
2

vck−2,

where (·)+ = max{·, 0} denotes the positive part.
Let S =∑n

i=1(Xi − E [Xi ]), then for every positive x,

P
(
S ≥ √

2vx + cx
)

≤ e−x . (17.5)

Moreover, for any positive t ,

P(S ≥ t) ≤ exp

(
− t2

2(v + ct)

)
. (17.6)

Notice that both forms of Bernstein’s inequality appear in the literature. Yet,
due to its form, (17.5) is rather preferred in statistics, even though (17.6) is more
classical.

The work in this article is based on the pioneering work of Talagrand (see [27] for
a review) who investigates the concentration of measure phenomenon for product
measures. Of main interest here, he proves the following inequality for random
permutations in [27, Theorem 5.1].

Theorem 17.1.2 (Talagrand [27]) Denote by Sn the set of all permutations of
{1, . . . , n}. Define for any subset A ⊂ Sn, and permutation τ ∈ Sn,

UA(τ) = {s ∈ {0, 1}n ; ∃σ ∈ A such that ∀1 ≤ i ≤ n, si = 0 �⇒ σ(i) = τ (i)
}
.

Then, consider VA(τ) = ConvexHull (UA(τ)), and

f (A, τ) = min

{
n∑

i=1

v2
i ; v = (vi)1≤i≤n ∈ VA(τ)

}
.

Then, if Pn denotes the uniform distribution on Sn,

∫

Sn

e
1

16 f (A,τ)dPn(τ ) ≤ 1

Pn(A)
.

Therefore, by Markov’s inequality, for all t > 0,

Pn

(
τ ; f (A, τ) ≥ t2

)
≤ e−t2/16

Pn(A)
. (17.7)
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This result on random permutations is fundamental, and is a key point to many
other non-asymptotic works on random permutations. Among them emerges McDi-
armid’s article [20] in which he derives from Talagrand’s inequality, exponential
concentration inequalities around the median for randomly permuted functions
of the observation under Lipschitz-type conditions and applied to randomized
methods for graph coloring. More recently, Adamczak et al. obtained in [4] some
concentration inequality under convex-Lipschitz conditions when studying the
empirical spectral distribution of random matrices. In particular, they prove the
following theorem (precisely [4, Theorem 3.1]).

Theorem 17.1.3 (Adamczak et al. [4]) Consider x1, . . . , xn in [0, 1] and let
ϕ : [0, 1]n → R be an L-Lipschitz convex function. Let � be a uniform random
permutation of the set {1, . . . , n} and denote Y = ϕ

(
x�(1), . . . , x�(n)

)
. Then, there

exists some positive absolute constant c such that, for all t > 0,

P(Y − E [Y ] ≥ t) ≤ 2 exp

(
−ct2

L2

)
.

Yet, the Lipschitz assumptions may be very restrictive and may not be satisfied
by the functions considered in the application fields (see Sect. 17.3.1 for instance).
Hence, the idea is to exploit the attractive form of a sum. Based on Stein’s method,
initially introduced to study the Gaussian behavior of sums of dependent random
variables, Chatterjee studies permuted sums of non-negative numbers in [9]. He
obtains in [9, Proposition 1.1] the following first Bernstein-type concentration
inequality for non-negative terms around the mean.

Theorem 17.1.4 (Chatterjee [9]) Let
{
ai,j

}
1≤i,j≤n

be a collection of numbers

from [0, 1]. Let Z = ∑n
i=1 ai,�(i), where � is drawn from the uniform distribution

over the set of all permutations of {1, . . . , n}. Then, for any t ≥ 0,

P(|Z − E [Z]| ≥ t) ≤ 2 exp

(
− t2

4E [Z] + 2t

)
. (17.8)

Notice that because of the expectation term in the right-hand side of (17.8), the
link with Hoeffding’s combinatorial central limit theorem (for instance) is not so
clear.

In [6, Theorem 4.3], this result is sharpened in the sense that this expectation term
is replaced by a variance term, allowing us to provide a non-asymptotic version of
such combinatorial central limit theorem. This result is moreover generalized to any
real numbers (not necessarily non-negative). More precisely, based on martingale
theory, they prove the following result.
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Theorem 17.1.5 (Bercu et al. [6]) Let
{
ai,j

}
1≤i,j≤n

be an array of real numbers

from [−Ma,Ma]. Let Z = ∑n
i=1 ai,�(i), where � is drawn from the uniform

distribution over the set of all permutations of {1, . . . , n}. Then, for any t > 0,

P(|Z − E [Z]| ≥ t) ≤ 4 exp

(
− t2

16(θ 1
n

∑n
i,j=1 a2

i,j + Mat/3)

)
, (17.9)

where θ = 5

2
ln(3) − 2

3
.

In this work, we obtain a similar result (up to constants) but based on a
completely different approach. Moreover, this approach provides a direct proof for
a concentration inequality of a permuted sum around its median.

The present work is organized as follows. In Sect. 17.2 are formulated the main
results. Section 17.2.1 is devoted to the permuted sums of non-negative numbers.
Based on Talagrand’s result, a first rough concentration inequality for the square
root of permuted sum is obtained in Lemma 17.2.1. Then by iterating the previous
analysis and plugging this first inequality, a general concentration of permuted sums
around their median is obtained in Proposition 17.2.1. Finally, the concentration
inequality of Proposition 17.2.2 around the mean is deduced. In Sect. 17.2.2, the
previous inequalities are generalized to permuted sums of not necessarily non-
negative terms in Theorem 17.2.1. Section 17.3 presents an application to the study
of non-asymptotic properties of a permutation independence test in statistics. In
particular, a sharp control of the critical value of the test is deduced from the
main result. The proofs are detailed in Sect. 17.4. Finally, the Appendix contains
technical results for the non-asymptotic control of the second kind error rate of the
permutation test introduced in Sect. 17.3.

17.2 Bernstein-Type Concentration Inequalities
for Permuted Sums

Let us first introduce some general notation. In the sequel, denote by Sn the set of
permutations of {1, 2, . . . , n}. For all collection of real numbers

{
ai,j

}
1≤i,j≤n

, and
for each τ in Sn, consider the permuted sum

Z(τ) =
n∑

i=1

ai,τ (i).

Let � be a uniform random permutation in Sn, and Z := Z(�). Denote med (Z)

its median, that is which satisfies

P(Z ≥ med (Z)) ≥ 1/2 and P(Z ≤ med (Z)) ≥ 1/2.
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This study is divided in two steps. The first one is restrained to non-negative
terms. The second one extends the previous results to general terms, based on a
trick involving both non-negative and negative parts.

17.2.1 Concentration of Permuted Sums of Non-negative
Numbers

In the present section, consider a non-negative collection of numbers
{
ai,j

}
1≤i,j≤n

.
The proof of the concentration inequality around the median in Proposition 17.2.1
needs a preliminary step which is presented in Lemma 17.2.1. It provides concen-
tration inequality for the square root of the sum. It allows us then by iterating the
same argument, and plugging the obtained inequality to the square root of the sum of

the squares, namely
√∑n

i=1 a2
i,�(i), to be able to sharpen Chatterjee’s concentration

inequality (17.8).

Lemma 17.2.1 Let
{
ai,j

}
1≤i,j≤n

be a collection of non-negative numbers, and �

be a uniform random permutation in Sn. Consider Z = ∑n
i=1 ai,�(i). Then, for all

t > 0,

P

(√
Z ≥ √med (Z) + t

√
max

1≤i,j≤n

{
ai,j

}
)

≤ 2e−t2/16, (17.10)

and

P

(√
Z ≤ √med (Z) − t

√
max

1≤i,j≤n

{
ai,j

}
)

≤ 2e−t2/16. (17.11)

In particular, one obtains the following two-sided concentration for the square root
of a randomly permuted sum of non-negative numbers,

P

(∣∣∣
√

Z −√med (Z)

∣∣∣ > t

√
max

1≤i,j≤n

{
ai,j

}
)

≤ 4e−t2/16.

The idea of the proof is the same that the one of Adamczak et al. in [4,
Theorem 3.1], but with a sum instead of a convex Lipschitz function. In a similar
way, it is based on Talagrand’s inequality for random permutations recalled in
Theorem 17.1.2.

In the following are presented two concentration inequalities in the non-negative
case; the first one around the median, and the second one around the mean. It is well
known that both are equivalent up to constants, but here, both are detailed in order to
give the order of magnitude of the constants. The transition from the median to the
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mean can be obtained thanks to Ledoux’ trick in the proof of [18, Proposition 1.8]
allowing to reduce exponential concentration inequalities around any constant m

(corresponding in our case to med (Z)) to similar inequalities around the mean. This
trick consists in using the exponentially fast decrease around m to upper bound the
difference between m and the mean. Yet, this approach leads to drastic multiplicative
constants (of the order 8e16π as shown in [1]). Better constants can be deduced from
the following lemma.

Lemma 17.2.2 For any real valued random variable X,

|E [X] − med (X)| ≤ √Var(X).

In particular, we obtain the following results.

Proposition 17.2.1 Let
{
ai,j

}
1≤i,j≤n

be a collection of non-negative numbers and

� be a uniform random permutation in Sn. Consider Z = ∑n
i=1 ai,�(i). Then, for

all x > 0,

P

⎛

⎝|Z − med (Z)| >

√√√√med

(
n∑

i=1

a2
i,�(i)

)
x + x max

1≤i,j≤n

{
ai,j

}
⎞

⎠ ≤ 8 exp

(−x

16

)
.

(17.12)

Since in many applications, the concentration around the mean is more adapted,
the following proposition shows that one may obtain a similar behavior around the
mean, at the cost of higher constants.

Proposition 17.2.2 Let
{
ai,j

}
1≤i,j≤n

be a collection of non-negative numbers, and

� be a uniform random permutation in Sn. Consider Z =∑n
i=1 ai,�(i).

Then, for all x > 0,

P

⎛

⎜⎝|Z − E [Z]| ≥ 2

√√√√√

⎛

⎝1

n

n∑

i,j=1

a2
i,j

⎞

⎠ x + max
1≤i,j≤n

{
ai,j

}
x

⎞

⎟⎠ ≤ 8e1/16 exp
(
− x

16

)
.

(17.13)

This concentration inequality is called a Bernstein-type inequality restricted to
non-negative sums, due to its resemblance to the standard Bernstein inequality, as
recalled in Theorem 17.1.1. The main difference here lies in the fact that the random
variables in the sum are not independent. Moreover, this inequality implies a more
popular form of Bernstein’s inequality stated in Corollary 17.2.1.
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Corollary 17.2.1 With the same notation and assumptions as in Proposition 17.2.2,
for all t > 0,

P(|Z − E [Z]| ≥ t) ≤ 8e1/16 exp

⎛

⎝ −t2

16
(

4 1
n

∑n
i,j=1 a2

i,j + 2 max1≤i,j≤n

{
ai,j

}
t
)

⎞

⎠ .

(17.14)

Comment Recall Chatterjee’s result in [9, Proposition 2.1], quoted in Theo-
rem 17.1.4, which can easily be rewritten with our notation, and for a collection
of non-negative numbers not necessarily in [0, 1], by

∀t > 0, P(|Z − E [Z]| ≥ t) ≤ 2 exp

(
−t2

4Ma
1
n

∑n
i,j=1 ai,j + 2Mat

)
,

where Ma denotes the maximum max1≤i,j≤n

{
ai,j

}
. As mentioned in [6], the

inequality in (17.14) is sharper up to constants, because of the quadratic term, since
the inequality

∑n
i,j=1 a2

i,j ≤ Ma

∑n
i,j=1 ai,j always holds.

17.2.2 Concentration of Permuted Sums in the General Case

In this section, the collection of numbers
{
ai,j

}
1≤i,j≤n

is no longer assumed
to be non-negative. The following general concentration inequality for randomly
permuted sums directly derives from Proposition 17.2.2.

Theorem 17.2.1 Let
{
ai,j

}
1≤i,j≤n

be a collection of any real numbers, and � be

a uniform random permutation in Sn. Consider Z = ∑n
i=1 ai,�(i). Then, for all

x > 0,

P

⎛

⎜⎝|Z − E [Z]| ≥ 2

√√√√√2

⎛

⎝ 1

n

n∑

i,j=1

a2
i,j

⎞

⎠ x + 2 max
1≤i,j≤n

{∣∣ai,j

∣∣} x

⎞

⎟⎠ ≤ 16e1/16 exp
(
− x

16

)
.

(17.15)

Once again, the obtained inequality is a Bernstein-type inequality. Moreover,
it is also possible to obtain a more popular form of Bernstein-type inequalities
applying the same trick based on the non-negative and the negative parts from
Corollary 17.2.1.

Corollary 17.2.2 With the same notation as in Theorem 17.2.1, for all t > 0,

P(|Z − E [Z]| ≥ t) ≤ 16e1/16 exp

(
−t2

256
(
Var(Z) + max1≤i,j≤n

{∣∣ai,j

∣∣} t
)
)

.
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Comments One recovers a Gaussian behavior of the centered permuted sum
obtained by Hoeffding in [15, Theorem 3] under the same assumptions. Indeed,
in the proof of Corollary 17.2.2, one obtains the following intermediate result
(see (17.41)), that is

P(|Z − E [Z]| ≥ t) ≤ 16e1/16 exp

⎛

⎝ −t2

64
(

4 1
n

∑n
i,j=1 d2

i,j + max1≤i,j≤n

{∣∣di,j

∣∣} t
)

⎞

⎠ ,

where the di,j ’s are defined in (17.1). Yet, Var(Z) = (n− 1)−1∑n
i,j=1 d2

i,j (see [15,
Theorem 2]). Hence, applying this inequality to

t = x
√

Var(Z) ≥ x

√√√√1

n

n∑

i,j=1

d2
i,j ,

for x > 0 leads to

P
(
|Z − E [Z]| ≥ x

√
Var(Z)

)
≤ 16e1/16 exp

⎛

⎜⎜⎜⎜⎝
−x2

256

(
1 + max1≤i,j≤n{|di,j |}√

1
n

∑n
i,j=1 d2

i,j

x

)

⎞

⎟⎟⎟⎟⎠
,

Hence, under Hoeffding’s simpler condition (17.3), namely

lim
n→+∞

max1≤i,j≤n d2
i,j

1
n

∑n
i,j=1 d2

i,j

= 0,

one recovers, (denoting Z = Zn depending on n),

lim
n→+∞P

(
|Zn − E [Zn]| ≥ x

√
Var(Zn)

)
≤ 16e1/16e−x2/256,

which is a Gaussian tail that is, up to constants, close in spirit to the one obtained
by Hoeffding in [15, Theorem 3].

17.3 Application to Independence Testing

17.3.1 Statistical Motivation

Let X represent a separable set. Given an i.i.d. n-sampleXn = (X1, . . . , Xn), where
each Xi is a couple (X1

i , X
2
i ) in X 2 with distribution P of marginals P 1 and P 2,
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we aim at testing the null hypothesis (H0) “P = (P 1 ⊗ P 2)” against the alternative
(H1) “P �= (P 1 ⊗ P 2)”. The considered test statistic is defined by

T (Xn) = 1

n − 1

⎛

⎝
n∑

i=1

ϕ(X1
i , X

2
i ) − 1

n

n∑

i,j=1

ϕ(X1
i , X

2
j )

⎞

⎠ , (17.16)

where ϕ is a measurable real-valued function on X 2. Denoting for any real-valued
measurable function g on X 2,

EP [g] =
∫

X 2
g
(
x1, x2

)
dP
(
x1, x2

)
and E⊥⊥[g] =

∫

X 2
g
(
x1, x2

)
dP 1

(
x1
)

dP 2
(
x2
)

,

(17.17)

one may notice that, T (Xn) is an unbiased estimator of

E [T (Xn)] = EP [ϕ] − E⊥⊥[ϕ] ,

which is equal to 0 under (H0).
For more details on the choice of the test statistic, the interested reader can

refer to [2] (motivated by synchrony detection in neuroscience for instance). The
particular case where X = [0, 1] and ϕ is a two-dimensional isotropic Haar wavelet
is studied in [1, Chapter 4] and recalled below. More precisely, consider a resolution
scale j in N, a translation k = (k1, k2) in Kj := {0, 1, . . . , 2j − 1}2. Consider the
functions defined for all (x1, x2) in [0, 1]2 by

ϕ0(x
1, x2) = φ(x1)φ(x2), and

⎧
⎨

⎩

ϕ(1,j,k)(x
1, x2) = φj,k1(x

1)ψj,k2(x
2),

ϕ(2,j,k)(x
1, x2) = ψj,k1(x

1)φj,k2(x
2),

ϕ(3,j,k)(x
1, x2) = ψj,k1(x

1)ψj,k2 (x
2),

where φ = 1[0,1) and ψ = 1[0,1/2) − 1[1/2,1) are respectively the one-dimensional
Haar father and Haar mother wavelets and

�j,k(·) = 2j/2�(2j · −k)

denotes the dilated/translated wavelet at scale j in N for � being either φ or ψ .
Notice that Kj corresponds to the set of translations k such that for any 1 ≤ i ≤ 3,
the intersection between the supports of the wavelets ϕ(i,j,k) and [0, 1)2 is not empty.

Then the function ϕ is taken out of the family {ϕδ, δ ∈ }, with

 = {0} ∪ {(i, j, k) ∈ {1, 2, 3} × N × Kj

}
,

which constitutes an orthonormal basis of L2
([0, 1]2

)
. Notice that in this case, the

Lipschitz assumptions of Adamczak et al. (see Theorem 17.1.3) are not satisfied,
since the Haar wavelet functions are not even continuous.
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The critical value of the test is obtained from the permutation approach, inspired
by Hoeffding [16], and Romano [23]. Let � be a uniformly distributed random
permutation of {1, . . . , n} independent of Xn and consider the permuted sample

X�
n = (X�

1 , . . . X�
n ), where ∀1 ≤ i ≤ n, X�

i = (X1
i , X

2
�(i)),

obtained from permuting only the second coordinates. Then, under (H0), the
original sampleXn and the permuted oneX�

n have the same distribution. Hence, the
critical value of the upper-tailed test, denoted by q1−α(Xn), is the (1 − α)-quantile
of the conditional distribution of the permuted statistic T (X�

n ) given the sample
Xn, where the permuted test statistic is equal to

T (X�
n ) = 1

n − 1

⎛

⎝
n∑

i=1

ϕ(X1
i , X

2
�(i)) − 1

n

n∑

i,j=1

ϕ(X1
i , X

2
j )

⎞

⎠ .

More precisely, given Xn, if

T (1)(Xn) ≤ T (2)(Xn) ≤ · · · ≤ T (n!)(Xn)

denote the ordered values of all the permuted test statistic T (Xτ
n), when τ describes

the set of all permutations of {1, . . . , n}, then the critical value is equal to

q1−α(Xn) = T (n!−�n!α�)(Xn). (17.18)

The corresponding test rejects the null hypothesis when T (Xn) > q1−α(Xn), here
denoted by

�α(Xn) = 1T (Xn)>q1−α(Xn). (17.19)

In [2], the asymptotic properties of such test are studied. Based on a combina-
torial central limit theorem in a non-i.i.d. case, the test is proved to be, under mild
conditions, asymptotically of prescribed size, and power equal to one under any rea-
sonable alternatives. Yet, as explained above, such purely asymptotic properties may
be insufficient when applying these tests in neuroscience for instance. Moreover, the
delicate choice of ϕ, generally out of a parametric family {ϕδ}δ (which reduces to
the choice of the parameter δ), is a real question, especially, in neuroscience, where
it has some biological meaning, as mentioned in [2] and [3]. A possible approach
to overcome this issue is to aggregate several tests for different parameters δ, and
reject independence if at least one of them does. In particular, this approach should
give us information on how to choose this parameter. Yet, to do so, non-asymptotic
controls are necessary.

From a non-asymptotic point of view, since the test is non-asymptotically of
prescribed level by construction, remains the non-asymptotic control of the second
kind error rate, that is the probability of wrongly accepting the null hypothesis. In
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the spirit of [11, 12, 24], the idea is to study the uniform separation rates of testing,
in order to study the optimality in the minimax sense (see [5]).

From now on, consider an alternative P satisfying (H1), and an i.i.d. sample
Xn from such distribution P . Assume moreover that the alternative satisfies
EP [ϕ] > E⊥⊥[ϕ], that is E [T (Xn)] > 0. The initial step is to find some
condition on P guaranteeing the control of the second kind error rate, namely
P(�α(Xn) = 0), by a prescribed value β > 0. Intuitively, since the expectation of
the test statistic E [T (Xn)] is equal to zero under the null hypothesis, the test should
be more efficient in rejecting (H0) for large values of this expectation. So, the aim is
to find conditions of the form E [T (Xn)] ≥ s for some threshold s to be determined.
Yet, one of the main difficulties here comes from the randomness of the critical
value. The idea, as in [11], is thus to introduce qα

1−β/2 the (1 − β/2)-quantile of the
critical value q1−α(Xn) and deduce from Chebychev’s inequality (see section “A
First Condition Ensuing from Chebychev’s Inequality” in the Appendix), that the
second kind error rate is controlled by β as soon as

E [T (Xn)] ≥ qα
1−β/2 +

√
2

β
Var(T (Xn)). (17.20)

Usually, the goal in general minimax approaches is to express, for well-chosen
functions ϕ, some distance between the alternative P and the null hypothesis (H0)

in terms of E [T (Xn)] for which minimax lower-bounds are known (see for instance
[11, 12]). The objective is then to control, up to a constant, such distance (and
in particular each term in the right-hand side of (17.20)) by the minimax rate
of independence testing with respect to such distance on well-chosen regularity
subspaces of alternatives, in order to prove the optimality of the method from a
theoretical point of view. The interested reader could refer to the thesis [1, Chapter
4] for more details about this kind of development in the density case. It is not in
the scope of the present article to develop such minimax theory in the general case,
but to provide some general tools providing some sharp control of each term in the
right-hand side of (17.20) which consists in a very first step of this approach. Some
technical computations imply that the variance term can be upper bounded, up to
a multiplicative constant, by n−1(EP

[
ϕ2
]+ E⊥⊥

[
ϕ2
]
) (see Lemma 17.3.1). Hence,

the challenging part relies in the quantile term. At this point, several ideas have been
explored.

17.3.2 Why Concentration Inequalities Are Necessary

A first idea to control the conditional quantile of the permuted test statistic is
based on the non-asymptotic control of the critical value obtained in section
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“Control of the Critical Value Based on Hoeffding’s Approach” in the Appendix
(see Eq. (17.49)), following Hoeffding’s idea (see [16, Theorem 2.1]), that leads to
the condition

E [T (Xn)] ≥ 4√
α

√
2

β

EP

[
ϕ2
]+ E⊥⊥

[
ϕ2
]

n
. (17.21)

The proof of this result is detailed in section “A First Condition Ensuing from
Hoeffding’s Approach” in the Appendix. Yet, this result may not be sharp enough,
especially in α. Indeed, as explained above, the next step consists in aggregating
several tests for different functions ϕ out of a parametric family {ϕδ}δ in a purpose
of adaptivity. Generally, when aggregating tests, as in multiple testing methods,
the multiplicity of the tests has to be taken into account. In particular, the single
prescribed level of each individual test should be corrected. Several corrections
exist, such as the Bonferroni one, which consists in dividing the global desired level
α by the number of tests M . Yet, for such correction, the lower-bound in (17.21)
comes with a cost in

√
M , which is too large to provide optimal rates. Even with

more sophisticated corrections than the Bonferroni one (see, e.g., [11, 12, 24]), the
control by a term of order

√
1/α is too large, since classically in the literature, the

dependence on α should be of the order of
√

ln(1/α). Hence, the bound ensuing
from this first track being not sharp enough, the next idea was to investigate other
non-asymptotic approaches for permuted sums.

Such approaches have also been studied in the literature. For instance, Ho and
Chen [14] obtain non-asymptotic Berry-Esseen type bounds in the Lp-distance
between the cumulative distribution function (c.d.f.) of the standardized permuted
sum of i.i.d. random variables and the c.d.f. of the normal distribution, based
on Stein’s method. In particular, they obtain the rate of convergence to a normal
distribution in Lp-distance under Lindeberg-type conditions. Then, Bolthausen [7]
considers a different approach, also based on Stein’s method allowing to extend
Ho and Chen’s results in the non-identically distributed case. More precisely, he
obtains bounds in the L∞-distance in the non-random case. In particular, in the
deterministic case (which can easily be generalized to random cases), considering
the notation introduced above, he obtains the following non-asymptotic bound:

sup
x∈R

∣∣∣P
(
Z − E [Z] ≤ x

√
Var(Z)

)
− �0,1(x)

∣∣∣ ≤ C

n
√

Var(Z)
3

n∑

i,j=1

∣∣di,j

∣∣3 ,

where C is an absolute constant, and �0,1 denotes the standard normal distribution
function. In particular, when applying this result to answer our motivation by
considering random variables ϕ(X1

i , X
2
j ) instead of the deterministic terms ai,j , and

working conditionally on the sample Xn, the permuted statistic T (X�
n ) corresponds
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to (n − 1)−1(Z − E [Z]). Therefore, the previous inequality implies that, for all t

in R,

P
(
T
(
X�

n

)
> t
∣∣Xn

) ≤
⎡

⎣1 − �0,1

⎛

⎝ t√
Var
(
T
(
X�

n

)∣∣Xn

)

⎞

⎠

⎤

⎦

+ C

n(n − 1)2/3
√

Var
(
T
(
X�

n

)∣∣Xn

)3
∑

i,j

∣∣Di,j

∣∣3 ,

(17.22)

where Di,j is defined by

Di,j = ϕ(X1
i , X

2
j ) − 1

n

n∑

l=1

ϕ(X1
i , X

2
l ) − 1

n

n∑

k=1

ϕ(X1
k ,X

2
j ) + 1

n2

n∑

k,l=1

ϕ(X1
k ,X

2
l ).

Yet, by definition of conditional quantiles, the critical value q1−α(Xn) is the smallest
value of t such that P(T (Xn) > t|Xn) ≤ α. Hence, considering (17.22), one can
easily make the first term of the sum in the right-hand side of the inequality as small
as one wants by choosing t large enough. However, the second term being fixed,
nothing guarantees that the upper-bound in (17.22) can be constrained to be smaller
than α. Thus, this result cannot be applied in order to control non-asymptotically
the critical value. Concentration inequalities seem thus to be adequate here, as
they provide sharp non-asymptotic results, with usually exponentially small controls
which leads to the desired logarithmic dependency in α, as mentioned above.

17.3.3 A Sharp Control of the Conditional Quantile and a New
Condition Guaranteeing a Control of the Second Kind
Error Rate

Sharp controls of the quantiles are provided in the following proposition.

Proposition 17.3.1 Consider the same notation as in Sect. 17.3.1 and let qα
1−β/2 be

the (1 − β/2)-quantile of the conditional quantile q1−α(Xn). Then, there exists two
universal positive constants C′ and c0 such that

q1−α(Xn) ≤ C′

n − 1

⎧
⎨

⎩

√√√√ 1

n

n∑

i,j=1

ϕ2(X1
i , X

2
j )

√
ln
(c0

α

)
+ ‖ϕ‖∞ ln

(c0

α

)
⎫
⎬

⎭ .

(17.23)



356 M. Albert

As a consequence, there exists a universal positive constants C such that

qα
1−β/2 ≤ C

⎧
⎨

⎩

√
2

β
ln
(c0

α

)
⎛

⎝

√
EP

[
ϕ2
]

n
+
√
E⊥⊥

[
ϕ2
]

√
n

⎞

⎠+ ‖ϕ‖∞
n

ln
(c0

α

)
⎫
⎬

⎭ .

(17.24)

Moreover, a control of the variance term is obtained in the following lemma
based on the Cauchy-Schwartz inequality.

Lemma 17.3.1 Let n ≥ 4 and Xn be a sample of n i.i.d. random variables
with distribution P and marginals P 1 and P 2. Let T be the test statistic defined
in (17.16), and EP [·] and E⊥⊥[·] be notation introduced in (17.17). Then, if both
EP

[
ϕ2
]
< +∞ and E⊥⊥

[
ϕ2
]

< +∞,

Var(T (Xn)) ≤ 1

n

(√
EP

[
ϕ2
]+ 2

√
E⊥⊥

[
ϕ2
])2

.

Proposition 17.3.1 and Lemma 17.3.1 both imply that the right-hand side
of (17.20) is upper bounded by

C′′
⎧
⎨

⎩

√
2

β

[
ln
(c0

α

)
+ 1
] (EP

[
ϕ2
]+ E⊥⊥

[
ϕ2
])

n
+ ‖ϕ‖∞

n
ln
(c0

α

)
⎫
⎬

⎭ , (17.25)

where C′′ is a universal constant.
Indeed, the control of qα

1−β/2 is implied by (17.24) combined with the concavity
property of the square-root function. Lemma 17.3.1 directly implies that the
variance term satisfies

Var(T (Xn)) ≤ 8

n

(
EP

[
ϕ2
]

+ E⊥⊥
[
ϕ2
])

,

Finally, if E [T (Xn)] is larger than the quantity in (17.25), then condition (17.20)
is satisfied which directly provides that P(�α(Xn) = 0) ≤ β, that is the second
kind error rate of the test �α is less than or equal to the prescribed value β. One may
notice that this time, the dependence in α is, as expected, of the order of

√
ln(1/α).

17.4 Proofs

17.4.1 Proof of Lemma 17.2.1

Sketch of Proof From now on, fix t > 0. Recall the notation introduced by
Talagrand in Theorem 17.1.2. The main purpose of these notation is to introduce
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some notion of distance between a permutation τ in Sn and a subset A of Sn. To
do so, the idea is to reduce the set of interest to a simpler one, that is [0, 1]n, by
considering

UA(τ) = {s ∈ {0, 1}n ; ∃σ ∈ A such that ∀1 ≤ i ≤ n, si = 0 �⇒ σ(i) = τ (i)
}
.

One may notice that the permutation τ belongs to A if and only if 0 belongs to the
set UA(τ). Hence, the corresponding distance between the permutation τ and the
set A is coded by the distance between 0 and the set UA(τ) and thus defined by

f (A, τ) = min

{
n∑

i=1

v2
i ; v = (vi)1≤i≤n ∈ VA(τ)

}
,

where VA(τ) = ConvexHull (UA(τ)). One may notice in particular that A contains
τ if and only if the distance f (A, τ) = 0.

The global frame of the proof of Lemma 17.2.1 (and also Proposition 17.2.1)
relies on the following steps. The first step consists in proving that

P

(√
Z ≥ √CA + t

√
max

1≤i,j≤n

{
ai,j

}
)

≤ e−t2/16

P(Z ∈ A)
, (17.26)

for some subset A of Sn of the shape A = {σ ∈ Sn ; Z(σ) ≤ CA} for some
constant CA to be chosen later. For this purpose, since Talagrand’s inequality for
random permutations (see Theorem 17.1.2) provides that

P
(
f (A,�) ≥ t2

)
≤ e−t2/16

P(� ∈ A)
,

it is sufficient to prove that

P
(
f (A,�) ≥ t2

)
≥ P

(√
Z ≥ √CA + t

√
max

1≤i,j≤n

{
ai,j

}
)

,

to obtain (17.26). To do so, the idea, as in [4], is to show that the assertion

f (A,�) < t2 implies that
√

Z <
√

CA + t

√
max1≤i,j≤n

{
ai,j

}
, and to conclude by

contraposition.
Then, the two following steps consist in choosing appropriate constants CA

in (17.26) depending on the median of Z, such that both

P
(√

Z ≥ √
CA + t

√
max1≤i,j≤n

{
ai,j

})
and P(Z ∈ A) are greater than 1/2, in

order to control both probabilities

P

(√
Z ≥ √med (Z) + t

√
max

1≤i,j≤n

{
ai,j

}
)

and P

(√
Z ≤ √med (Z) − t

√
max

1≤i,j≤n

{
ai,j

}
)
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respectively in (17.10) and (17.11).

First Step: Preliminary Study Assume f (A,�) < t2. Then, by definition of the
distance f , there exists some s1, . . . , sm in UA(�), and some non-negative weights
p1, . . . , pm satisfying

∑m
j=1 pj = 1 such that

n∑

i=1

⎡

⎢⎣

⎛

⎝
m∑

j=1

pj s
j

i

⎞

⎠
2
⎤

⎥⎦ < t2.

For each 1 ≤ j ≤ m, since sj belongs to UA(�), one may consider a permutation
σj in A associated to sj (that is satisfying s

j
i = 0 �⇒ σj (i) = �(i)). Then, since

the ai,j are non-negative, and from the Cauchy-Schwartz inequality,

Z −
m∑

j=1

pjZ(σj ) =
n∑

i=1

m∑

j=1

pj

(
ai,�(i) − ai,σj (i)

)

=
n∑

i=1

m∑

j=1

pj

(
ai,�(i) − ai,σj (i)

)
s
j

i

≤
n∑

i=1

⎡

⎣

⎛

⎝
m∑

j=1

pj s
j
i

⎞

⎠ ai,�(i)

⎤

⎦

≤

√√√√√
n∑

i=1

⎛

⎝
m∑

j=1

pj s
j
i

⎞

⎠
2√√√√

n∑

i=1

a2
i,�(i)

< t

√
max

1≤i,j≤n

{
ai,j

}√
Z.

Thus, as the σj ’s all belong to A = {σ ; Z(σ) ≤ CA},

Z < CA + t

√
max

1≤i,j≤n

{
ai,j

}√
Z.

Therefore, by solving the second-order polynomial in
√

Z above, one obtains

√
Z <

t

√
max1≤i,j≤n

{
ai,j

}+
√

t2 max1≤i,j≤n

{
ai,j

}+ 4CA

2
≤ t

√
max

1≤i,j≤n

{
ai,j

}+√CA.
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Finally, by contraposition,

P

(√
Z ≥ √CA + t

√
max

1≤i,j≤n

{
ai,j

}
)

≤ P
(
f (A,�) ≥ t2

)
,

which, combined with (17.7) of Theorem 17.1.2 provides (17.26).

Second Step: Proof of (17.10) Taking CA = med (Z) guaranteesP(Z ∈ A) ≥ 1/2
and thus, (17.26) provides (17.10).

Third Step: Proof of (17.11) Taking CA =
(√

med (Z) − t

√
max1≤i,j≤n

{
ai,j

})2

implies

P

(√
Z ≥ √CA + t

√
max

1≤i,j≤n

{
ai,j

}
)

= P
(√

Z ≥ √med (Z)
)

= P(Z ≥ med (Z)) ≥ 1

2
.

So finally, again by (17.26),

P

(√
Z ≤ √med (Z) − t

√
max

1≤i,j≤n

{
ai,j

}
)

= P(Z ∈ A)

≤ e−t2/16

P
(√

Z ≥ √
CA + t

√
max1≤i,j≤n

{
ai,j

})

≤ 2e−t2/16,

which ends the proof of the Lemma.

17.4.2 Proof of Lemma 17.2.2

Let X be any real random variable. Recall that

med (X) ∈ argmin
m∈R

E [|X − m|] .

In particular, thanks to Jensen’s inequality,

|E [X] − med (X)| ≤ E [|X − med (X)|]
≤ E [|X − E [X]|]
≤
√
E
[
(X − E [X])2]

≤ √Var(X). (17.27)
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17.4.3 Proof of Proposition 17.2.1

From now on, fix x > 0, and consider t = x2. This proof is again based
on Talagrand’s inequality for random permutations, combined with (17.10)
in Lemma 17.2.1. It follows exactly the same progression as in the proof of
Lemma 17.2.1; the preliminary step consists in working with subsets A ⊂ Sn

of the form A = {σ ∈ Sn ; Z(σ) ≤ CA} for some constant CA, in order to obtain
for all v > 0,

P

⎛

⎜⎝Z ≥ CA + t

⎛

⎜⎝

√√√√√med

⎛

⎝
n∑

i=1

a2
i,�(i)

⎞

⎠+ v max
1≤i,j≤n

{
ai,j

}
⎞

⎟⎠

⎞

⎟⎠ ≤ e−t2/16

P(Z ∈ A)
+ 2e−v2/16.

(17.28)

The second and third step consist in picking up a well-chosen constant CA and a
well-chosen v > 0 in order to obtain respectively

P

⎛

⎜⎝Z ≥ med (Z) + t

⎛

⎜⎝

√√√√√med

⎛

⎝
n∑

i=1

a2
i,�(i)

⎞

⎠+ (t ∨ C0) max
1≤i,j≤n

{
ai,j

}
⎞

⎟⎠

⎞

⎟⎠ ≤ 4e−t2/16,

(17.29)

and

P

⎛

⎜⎝Z ≤ med (Z) − t

⎛

⎜⎝

√√√√√med

⎛

⎝
n∑

i=1

a2
i,�(i)

⎞

⎠+ (t ∨ C0) max
1≤i,j≤n

{
ai,j

}
⎞

⎟⎠

⎞

⎟⎠ ≤ 4e−t2/16,

(17.30)

where C0 = 4
√

ln(8). The final step combines (17.29) and (17.30) in order to
prove (17.12).

First Step: Preliminary Study Let A = {σ ∈ Sn ; Z(σ) ≤ CA} with CA a
general constant, and fix v > 0. Assume, this time, that both

f (A,�) < t2 and

√√√√
n∑

i=1

a2
i,�(i) <

√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ v max

1≤i,j≤n

{
ai,j

}
.

(17.31)
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Then, as in the preliminary study of the proof of Lemma 17.2.1, from the first
assumption in (17.31), there exists some s1, . . . , sm in UA(�), and some non-
negative weights p1, . . . , pm satisfying

∑m
j=1 pj = 1 such that

n∑

i=1

⎡

⎢⎣

⎛

⎝
m∑

j=1

pj s
j

i

⎞

⎠
2
⎤

⎥⎦ < t2.

For each 1 ≤ j ≤ m, consider σj in A associated to sj , that is a permutation σj

in A satisfying s
j
i = 0 �⇒ σj (i) = �(i). Then, combining the Cauchy-Shwartz

inequality with the second assumption in (17.31) leads to

Z −
m∑

j=1

pjZ(σj ) =
n∑

i=1

m∑

j=1

pj

(
ai,�(i) − ai,σj (i)

)
s
j

i

≤
n∑

i=1

⎡

⎣

⎛

⎝
m∑

j=1

pj s
j
i

⎞

⎠ ai,�(i)

⎤

⎦

≤

√√√√√
n∑

i=1

⎛

⎝
m∑

j=1

pj s
j
i

⎞

⎠
2√√√√

n∑

i=1

a2
i,�(i)

< t

⎛

⎝

√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ v max

1≤i,j≤n

{
ai,j

}
⎞

⎠ .

Notice that here, the reasoning begins exactly as in the proof of Lemma 17.2.1. Yet,
the second assumption in (17.31), which can be controlled using that lemma, allows
us to sharpen the inequality. Thus, as the σj ’s all belong to A = {σ ; Z(σ) ≤ CA},

Z < CA + t

⎛

⎝

√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ v max

1≤i,j≤n

{
ai,j

}
⎞

⎠ . (17.32)

Hence, by contraposition of (17.31) �⇒ (17.32), one obtains

P

⎛

⎝Z ≥ CA + t

⎛

⎝

√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ v max

1≤i,j≤n

{
ai,j

}
⎞

⎠

⎞

⎠

≤ P
(
f (A,�) ≥ t2

)
+P

⎛

⎝

√√√√
n∑

i=1

a2
i,�(i)

≥
√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ v max

1≤i,j≤n

{
ai,j

}
⎞

⎠ ,

and (17.28) follows from Theorem 17.1.2 and (17.10) in Lemma 17.2.1.
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Second Step: Proof of (17.29) Consider CA = med (Z) so that P(Z ∈ A) ≥ 1/2.
Thus, if v = t in (17.28),

P

(
Z ≥ med (Z) + t

⎛

⎝

√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ (t ∨ C0) max

1≤i,j≤n

{
ai,j

}
⎞

⎠
)

≤ P

⎛

⎝Z ≥ med (Z) + t

⎛

⎝

√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ t max

1≤i,j≤n

{
ai,j

}
⎞

⎠

⎞

⎠

≤ 4e−t2/16.

Notice that the maximum with the constant in (t ∨ C0) is not necessary in the case
only a control of the right-tail is wanted.

Third Step: Proof of (17.30) Consider now

CA = med (Z) − t

⎛

⎝

√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ v max

1≤i,j≤n

{
ai,j

}
⎞

⎠ ,

so that

P

⎛

⎜⎝Z ≥ CA + t

⎛

⎜⎝

√√√√√med

⎛

⎝
n∑

i=1

a2
i,�(i)

⎞

⎠+ v max
1≤i,j≤n

{
ai,j

}
⎞

⎟⎠

⎞

⎟⎠ = P(Z ≥ med (Z)) ≥ 1

2
.

Hence, on the one hand, from (17.28),

P(Z ∈ A) ≤ e−t2/16
(

1
2 − 2e−v2/16

) .

Thus, if v = C0 = 4
√

ln(8), then
(

1/2 − 2e−v2/16
)

= 1/4, and P(Z ∈ A) ≤
4e−t2/16.

On the other hand, as (t ∨ C0) ≥ C0 = v,

P(Z ∈ A) ≥ P

⎛

⎜⎝Z ≤ med (Z) − t

⎛

⎜⎝

√√√√√med

⎛

⎝
n∑

i=1

a2
i,�(i)

⎞

⎠+ (t ∨ C0) max
1≤i,j≤n

{
ai,j

}
⎞

⎟⎠

⎞

⎟⎠ ,

which ends the proof of (17.30).
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Fourth Step: Proof of (17.12) Both (17.29) and (17.30) lead to

P

⎛

⎜⎝|Z − med (Z)| > t

⎛

⎜⎝

√√√√√med

⎛

⎝
n∑

i=1

a2
i,�(i)

⎞

⎠+ (t ∨ C0) max
1≤i,j≤n

{
ai,j

}
⎞

⎟⎠

⎞

⎟⎠ ≤ 8e−t2/16.

Thus, on the one hand, if t ≥ C0, that is t ∨ C0 = t , and (17.12) holds. On the other
hand, if t < C0,

P

⎛

⎝|Z − med (Z)| > t

⎛

⎝

√√√√med

(
n∑

i=1

a2
i,�(i)

)
+ t max

1≤i,j≤n

{
ai,j

}
⎞

⎠

⎞

⎠ ≤ 1

≤ eC2
0/16−t2/16 = 8e−t2/16,

which ends the proof of the Proposition by taking x = √
t .

17.4.4 Proof of Proposition 17.2.2

First, for a better readability, let

M = max
1≤i,j≤n

{
ai,j

}
and V = E

[
n∑

i=1

a2
i,�(i)

]
= 1

n

n∑

i,j=1

a2
i,j .

Then, med
(∑n

i=1 a2
i,�(i)

)
≤ 2V since by Markov’s inequality, for all non-negative

random variable X, med (X) ≤ 2E [X]. Indeed,

1

2
≤ P(X ≥ med (X)) ≤ E [X]

med (X)
.

Thus, by Proposition 17.2.1, one obtains that, for all x > 0,

P
(
|Z − med (Z)| ≥ √

2V x + Mx
)

≤ 8e−x/16. (17.33)

The following is based on Lemma 17.2.2, and provides an upper-bound of the
difference between the expectation and the median of Z.

Lemma 17.4.1 With the notation defined above,

|E [Z] − med (Z)| ≤ √
2V .
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Proof (Proof of Lemma 17.4.1) Lemma 17.2.2 implies that

|E [Z] − med (Z)| ≤ √Var(Z).

Let us prove that

Var(Z) ≤ 2V. (17.34)

Indeed,

Var(Z) = E

⎡

⎢⎣

⎛

⎝
n∑

i=1

ai,�(i) − 1

n

n∑

i,j=1

ai,j

⎞

⎠
2
⎤

⎥⎦

= E

⎡

⎢⎣

⎛

⎝
n∑

i,j=1

ai,j

(
1�(i)=j − 1

n

)⎞

⎠
2
⎤

⎥⎦

=
n∑

i,j=1

n∑

k,l=1

ai,j ak,lEi,j,k,l ,

where

Ei,j,k,l = E

[(
1�(i)=j − 1

n

)(
1�(k)=l − 1

n

)]
= E

[
1�(i)=j1�(k)=l

]− 1

n2 .

In particular,

Ei,j,k,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n
− 1

n2 ≤ 1

n
if i = k and j = l,

−1

n2 ≤ 0 if i = k and j �= l or i �= k and j = l,

1

n(n − 1)
− 1

n2 = 1

n2(n − 1)
if i �= k and j �= l.

Therefore, from the Cauchy-Schwarz inequality applied to the second sum below
(of n2(n − 1)2 terms), one obtains

Var(Z) ≤ 1

n

n∑

i,j=1

a2
i,j + 1

n2(n − 1)

∑

i �=k

∑

j �=l

ai,j ak,l

≤ V +
√

n2(n − 1)2

n2(n − 1)

√∑

i �=k

∑

j �=l

a2
i,j a

2
k,l
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Var(Z) ≤ V + 1

n

√∑

i,j

a2
i,j

∑

k,l

a2
k,l

= 2V.

Finally, combining (17.27) and (17.34) ends the proof of Lemma 17.4.1. ��
Therefore, one deduces from Lemma 17.4.1 and Eq. (17.33) that for all x > 0,

P
(
|Z − E [Z]| ≥ √

2V + √
2V x + Mx

)
≤ 8e−x/16. (17.35)

Now, as in [8, Corollary 2.11], introduce h1 : u ∈ R+ �→ 1 + u − √
1 + 2u.

Then, in particular, h1 is non-decreasing, convex, one to one function on R+ with
inverse function h−1

1 : v ∈ R+ �→ v + √
2v. Indeed,

h1

(
h−1

1 (v)
)

= 1 + v + √
2v −

√
1 + 2v + 2

√
2v

= 1 + v + √
2v −

√(
1 + √

2v
)2 = v,

and

h−1
1 (h1(u)) = 1 + u − √

1 + 2u +
√

2 + 2u − 2
√

1 + 2u

= u + 1 − √
1 + 2u +

√
1 − 2

√
1 + 2u + 1 + 2u

= 1 + u − √
1 + 2u +

√(
1 − √

1 + 2u
)2 = u.

Consider a and c defined by a = V/M and c = M2/V , such that ac = M and
a2c = V and thus

√
2V x + Mx = ah−1

1 (cx).

Then, from (17.35),

P
(
|Z − E [Z]| ≥

√
2a2c + ah−1

1 (cx)
)

≤ 8e−x/16.

Let t > 0, and consider the two following cases.
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First Case If t ≥ √
2V = √

2a2c, then define x = 1

c
h1

(
t

a
− √

2c

)
such that

t = √
2a2c + ah−1

1 (cx). Then,

P(|Z − E [Z]| ≥ t) ≤ 8 exp

(
− 1

16c
h1

(
t

a
− √

2c

))
.

Yet, by convexity of h1,

h1

(
t

a
− √

2c

)
≥ 2h1

(
t

2a

)
− h1

(√
2c
)

.

Hence,

P(|Z − E [Z]| ≥ t) ≤ 8 exp

(
1

16c
h1

(√
2c
))

exp

(
− 1

8c
h1

(
t

2a

))
.

Moreover,
√

2c ≤ c + √
2c = h−1

1 (c) , hence

1

16c
h1

(√
2c
)

≤ 1

16
.

So finally in this case,

P(|Z − E [Z]| ≥ t) ≤ 8e1/16 exp

(
− 1

8c
h1

(
t

2a

))
. (17.36)

Second Case If t <
√

2V = √
2a2c,

P(|Z − E [Z]| ≥ t) ≤ 1 = exp

(
1

8c
h1

(
t

2a

))
exp

(
− 1

8c
h1

(
t

2a

))

Moreover, in this case, since
√

2c/2 ≤ h−1
1 (c/4), hence

1

8c
h1

(
t

2a

)
≤ 1

8c
h1

(√
2c

2

)
≤ 1

32
,

and thus

P(|Z − E [Z]| ≥ t) ≤ e1/32 exp

(
− 1

8c
h1

(
t

2a

))
. (17.37)
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Finally, combining (17.36) and (17.37) leads, in all cases, to

P(|Z − E [Z]| ≥ t) ≤ 8e1/16 exp

(
− 1

8c
h1

(
t

2a

))
. (17.38)

Now, in order to obtain the Bernstein-type inequality, let x = 2

c
h1

(
t

2a

)
, then

t = 2ah−1
1

( cx
2

)
= acx + 2

√
a2cx = 2

√
V x + Mx,

and thus for all x > 0,

P
(
|Z − E [Z]| ≥ 2

√
V x + Mx

)
≤ 8e1/16 exp

(
− x

16

)
, (17.39)

which ends the proof of the Proposition.

17.4.5 Proof of Corollary 17.2.1

Consider the same notation as in both Proposition 17.2.2 and its proof. This proof
follows the one of [19, Corollary 2.10]. Notice that for all u ≥ 0,

h1(u) ≥ u2

2(1 + u)
.

Hence, from (17.38) in the proof of Proposition 17.2.2, for all t ≥ 0,

P(|Z − E [Z]| ≥ t) ≤ 8e1/16 exp

(
− 1

8c
h1

(
t

2a

))

≤ 8e1/16 exp

(
− t2

64a2c (1 + t/2a)

)

= 8e1/16 exp

(
− t2

32
(
2a2c + act

)
)

= 8e1/16 exp

(
− t2

32 (V + Mt)

)
.

which ends the proof of the corollary.
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17.4.6 Proof of Theorem 17.2.1

For a better readability, let us introduce a+
i,j = ai,j1ai,j ≥0 (respectively

a−
i,j = −ai,j1ai,j <0), and denote Z+ = ∑n

i=1 a+
i,�(i) (respectively

Z− =∑n
i=1 a−

i,�(i)). Then

Z =
n∑

i=1

ai,�(i) = Z+ − Z−.

Moreover, if v (respectively v+ and v−) denotes 1
n

∑n
i,j=1 a2

i,j (respectively
1
n

∑n
i,j=1(a

+
i,j )

2 and 1
n

∑n
i,j=1(a

−
i,j )

2), then v = v+ + v− and, from the concavity
property of the square root function,

√
2v ≥

√
v+ +

√
v−.

Furthermore, if M+ (respectively M−) denotes max1≤i,j≤n{a+
i,j } (respectively

max1≤i,j≤n{a−
i,j }), then 2M = 2 max1≤i,j≤n

{|ai,j |
} ≥ M+ + M−.

Finally, applying Proposition 17.2.2 to Z+ and Z− which are both sums of non-
negative numbers leads to

P
(
|Z−E [Z] | ≥ 2

√
2vx + 2Mx

)

≤ P
(∣∣Z+ − E

[
Z+]∣∣+ ∣∣Z− − E

[
Z−]∣∣ ≥ 2

√
v+x + M+x + 2

√
v−x + M−x

)

≤ P
(∣∣Z+ − E

[
Z+]∣∣ ≥ 2

√
v+x + M+x

)
+ P

(∣∣Z− − E
[
Z−]∣∣ ≥ 2

√
v−x + M−x

)

≤ 16e1/16 exp
(
− x

16

)
,

which ends the proof of the Theorem.

17.4.7 Proof of Corollary 17.2.2

Consider the same notation as in the proof of Theorem 17.2.1, and let t > 0. Let
M denote the maximum max1≤i,j≤n

{|ai,j |
}
. On the one hand, M+ ≤ M and

M− ≤ M , and on the other hand, v+ ≤ v and v− ≤ v. Therefore, applying
Corollary 17.2.1, one obtains

P(|Z − E [Z]| ≥ t) ≤ P
(∣∣Z+ − E

[
Z+]∣∣+ ∣∣Z− − E

[
Z−]∣∣ ≥ t

)

≤ P
(∣∣Z+ − E

[
Z+]∣∣ ≥ t/2

)+ P
(∣∣Z− − E

[
Z−]∣∣ ≥ t/2

)
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P(|Z − E [Z]| ≥ t) ≤ 8e1/16 exp

(
−(t/2)2

16
(
4v+ + 2M+t/2

)
)

+ 8e1/16 exp

(
−(t/2)2

16
(
4v− + 2M−t/2

)
)

≤ 16e1/16 exp

( −t2

64 (4v + Mt)

)
,

which leads to the following intermediate result

P(|Z − E [Z]| ≥ t) ≤ 16e1/16 exp

⎛

⎝ −t2

64
(

4 1
n

∑n
i,j=1 a2

i,j + max1≤i,j≤n

{∣∣ai,j

∣∣} t
)

⎞

⎠ .

(17.40)

In order to make the variance appear, consider Hoeffding’s centering trick
recalled in (17.1) and introduce

di,j = ai,j − 1

n

n∑

k=1

ak,j − 1

n

n∑

l=1

ai,l+ 1

n2

n∑

k,l=1

ak,l = 1

n2

n∑

k,l=1

(
ai,j − ak,j − ai,l + ak,l

)
.

One may easily verify that for all i0 and j0,
∑n

i=1 di,j0 = ∑n
j=1 di0,j = 0.

Moreover,

n∑

i=1

di,�(i) =
n∑

i=1

ai,�(i) − 1

n

n∑

i,j=1

ai,j = Z −E [Z] and E

[
n∑

i=1

di,�(i)

]
= 1

n

n∑

i,j=1

di,j = 0.

In particular, applying Eq. (17.40) to the permuted sum of the di,j ’s leads to

P(|Z − E [Z]| ≥ t) ≤ 16e1/16 exp

⎛

⎝ −t2

64
(

4 1
n

∑n
i,j=1 d2

i,j + max1≤i,j≤n

{∣∣di,j

∣∣} t
)

⎞

⎠ .

(17.41)

Then, it is sufficient to notice that, on the one hand, from [15, Theorem 2],

Var(Z) = 1

n − 1

n∑

i,j=1

d2
i,j ≥ 1

n

n∑

i,j=1

d2
i,j ,

and on the other hand,

max
1≤i,j≤n

{∣∣di,j

∣∣} ≤ 4 max
1≤i,j≤n

{∣∣ai,j

∣∣} ,

to end the proof of Corollary 17.2.2.
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17.4.8 Proof of Proposition 17.3.1

The proof of Proof of Proposition 17.3.1 is divided into two steps. The first step
consists in controlling the conditional quantile q1−α(Xn) and the second step
provides an upper-bound for qα

1−β/2.

First Step Let us prove (17.23), that is

q1−α(Xn) ≤ C′

n − 1

⎧
⎨

⎩

√√√√ 1

n

n∑

i,j=1

ϕ2(X1
i , X

2
j )

√
ln
(c0

α

)
+ ‖ϕ‖∞ ln

(c0

α

)
⎫
⎬

⎭ .

Introduce Z̃(Xn) =∑n
i=1 ϕ(X1

i , X
2
�(i)). Then, notice that

T �(Xn) = 1

n − 1

(
Z̃(Xn) − E

[
Z̃(Xn)

∣∣∣Xn

])
. (17.42)

Therefore, applying Theorem 17.2.1 to the conditional probability given Xn, one
obtains that there exist universal positive constants c0 and c1 such that, for all x > 0,

P

⎛
⎜⎝
∣∣∣Z̃(Xn) − E

[
Z̃(Xn)

∣∣∣Xn

]∣∣∣ ≥ 2

√√√√√2

⎛

⎝ 1

n

n∑

i,j=1

ϕ2(X1
i , X

2
j )

⎞

⎠ x + 2‖ϕ‖∞x

∣∣∣∣∣∣∣
Xn

⎞
⎟⎠

≤ c0 exp (−c1x) .

In particular, from (17.42), one obtains

P

⎛

⎜⎝
∣∣T (X�

n )
∣∣ ≥ 2

n − 1

⎛

⎜⎝

√√√√√2

⎛

⎝1

n

n∑

i,j=1

ϕ2(X1
i , X

2
j )

⎞

⎠ x + ‖ϕ‖∞x

⎞

⎟⎠

∣∣∣∣∣∣∣
Xn

⎞

⎟⎠

≤ c0 exp (−c1x) .

Yet, by definition of the quantile, q1−α(Xn) is the smallest u such that

P
(∣∣T (X�

n )
∣∣ ≥ u

∣∣Xn

) ≤ α.

Thus taking x such that c0 exp (−c1x) = α, that is x = c−1
1 ln (c0/α), one

obtains (17.23) with C′ = 2 max
{√

2/c1, 1/c1
}

which is a universal positive
constant.

Second Step Let us now control the quantile qα
1−β/2. Since (17.23) is always true,

by definition of qα
1−β/2, one has that qα

1−β/2 is upper bounded by the (1 − β/2)-
quantile of the right-hand side of (17.23). Yet, the only randomness left in the right-



17 Concentration Inequalities for Randomly Permuted Sums 371

hand side of (17.23) comes from the randomness of 1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j ), and thus

it is sufficient to control its (1 − β/2)-quantile.
Besides, applying Markov’s inequality, one obtains for all x > 0,

P

⎛

⎝1

n

n∑

i,j=1

ϕ2(X1
i , X

2
j ) ≥ x

⎞

⎠ ≤
E
[

1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j )
]

x
,

with E
[

1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j )
]

= EP

[
ϕ2
]+ (n − 1)E⊥⊥

[
ϕ2
]
, and thus, taking

x = 2

β

(
EP

[
ϕ2
]

+ (n − 1)E⊥⊥
[
ϕ2
])

,

one has that the (1 − β/2)-quantile of 1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j ) is upper bounded by x,

and thus, the (1 − β/2)-quantile of
√

1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j ) is itself upper bounded

by

√
2

β

(√
EP

[
ϕ2
]+ √

n

√
E⊥⊥

[
ϕ2
])

.

Finally,

qα
1−β/2 ≤ 2C′

n

{√
2

β

(√
EP

[
ϕ2
]+ √

n

√
E⊥⊥

[
ϕ2
])√

ln
(c0

α

)
+ ‖ϕ‖∞ ln

(c0

α

)}
.

which is exactly (17.24) for any constant C ≥ 2C′.

17.5 Proof of Lemma 17.3.1

Let us now prove Lemma 17.3.1. Let n ≥ 4 and Xn be an i.i.d. sample with
distribution P . First notice that one can write

T (Xn) = 1

n(n − 1)

∑

i �=j

(
ϕ(X1

i , X
2
i ) − ϕ(X1

i , X
2
j )
)

.

In particular, one recovers that E [T (Xn)] = EP [ϕ] − E⊥⊥[ϕ].
For a better readability, let us introduce for all i �= j in {1, 2, . . . , n},

Yi = ϕ(X1
i , X

2
i ) − EP [ϕ] and Zi,j = ϕ(X1

i , X
2
j ) − E⊥⊥[ϕ] .
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Then,

E [Yi ] = E
[
Zi,j

] = 0, and

⎧
⎪⎨

⎪⎩

E
[
Y 2

i

]
= VarP (ϕ) ≤ EP

[
ϕ2
]
,

E
[
Z2

i,j

]
= Var⊥⊥(ϕ) ≤ E⊥⊥

[
ϕ2
]
.

(17.43)

One can write

T (Xn) − E [T (Xn)] = 1

n(n − 1)

∑

i �=j

(
Yi − Zi,j

)
,

and thus,

Var(T (Xn)) = E

⎡

⎢⎣

⎛

⎝ 1

n(n − 1)

∑

i �=j

(
Yi − Zi,j

)
⎞

⎠
2
⎤

⎥⎦

= 1

n2(n − 1)2

∑

i �=j

∑

k �=l

E
[(

Yi − Zi,j

) (
Yk − Zk,l

)]

= An − 2Bn + Cn,

with

An = 1

n2

n∑

i,k=1

E [YiYk] ,

Bn = 1

n2(n − 1)

n∑

i=1

∑

k �=l

E
[
YiZk,l

]
,

Cn = 1

n2(n − 1)2

∑

i �=j

∑

k �=l

E
[
Zi,jZk,l

]
,

where each sum is taken for indexes contained in {1, 2, . . . , n}. In particular, since
just an upper-bound of the variance is needed, it is sufficient to write

Var(T (Xn)) ≤ |An| + 2|Bn| + |Cn|, (17.44)

and to study each term separately.
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Study of An Since by construction, the Yi’s are centered, and independent (as the
Xi’s are),

An = 1

n2

⎛

⎝
∑

i

E
[
Y 2

i

]
+
∑

i �=k

E [Yi]E [Yk]

⎞

⎠

= 1

n
E
[
Y 2

1

]
,

and in particular, from (17.43),

|An| ≤ 1

n
EP

[
ϕ2
]
. (17.45)

Study of Bn If i, k and l are all different, using once again the independence of the
Xi’s and a centering argument, then E

[
YiZk,l

] = E [Yi ]E
[
Zk,l

] = 0. Thus

Bn = 1

n2(n − 1)

∑

i �=k

(
E
[
YiZi,k

]+ E
[
YiZk,i

])

= 1

n

(
E
[
Y1Z1,2

]+ E
[
Y1Z2,1

])
.

In particular, applying the Cauchy-Schwartz inequality, and from (17.43), one
obtains

|Bn| ≤ 2

n

√
E
[
Y 2

1

]
E
[
Z2

1,2

]
≤ 2

n

√
EP

[
ϕ2
]
E⊥⊥

[
ϕ2
]
. (17.46)

Study of Cn Still by an independence and a centering argument, if i, j , k and l are
all different, E

[
Zi,jZk,l

] = E
[
Zi,j

]
E
[
Zk,l

] = 0. Thus, if I
[3]
n denotes the set of

triplets (i, j, k) in {1, . . . , n}3 which are all different, one obtains

Cn = 1

n2(n − 1)2

{ ∑

(i,j,k)∈I
[3]
n

(
E
[
Zi,jZi,k

]+ 2E
[
Zi,jZk,i

]+ E
[
Zj,iZk,i

] )

+
∑

i �=j

(
E
[
Z2

i,j

]
+ E

[
Zi,jZj,i

] )}

= n − 2

n(n − 1)

(
E
[
Z1,2Z1,3

]+ 2E
[
Z1,2Z3,1

]+ E
[
Z2,1Z3,1

])

+ 1

n(n − 1)

(
E
[
Z2

1,2

]
+ E

[
Z1,2Z2,1

])
.
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In particular, applying the Cauchy-Schwartz inequality, and using (17.43), each

expectation in the previous equation satisfies E
[
Zi,jZk,l

] ≤ E
[
Z2

1,2

]
≤ E⊥⊥

[
ϕ2
]
,

and thus

|Cn| ≤
(

4(n − 2)

n(n − 1)
+ 2

n(n − 1)

)
E⊥⊥

[
ϕ2
]

≤ 4

n
E⊥⊥

[
ϕ2
]
. (17.47)

Finally, combining (17.44), (17.45), (17.46), and (17.47) leads to

Var(T (Xn)) ≤ 1

n

(√
EP

[
ϕ2
]+ 2

√
E⊥⊥

[
ϕ2
])2

,

which ends the proof of the lemma.
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Appendix: A Non-asymptotic Control of the Second Kind
Error Rates

Consider the notation from Sect. 17.3. Since this section focuses on the study of the
second kind error rate of the test, in all the sequel, the observation is assumed to
satisfy the alternative (H1). Let thus P be an alternative, that is P �= (P 1 ⊗ P 2),
n ≥ 4 and Xn = (Xi, . . . , Xn) be an i.i.d. sample from distribution P . Fix α and β

be two fixed values in (0, 1). Consider T the test statistic introduced in (17.16),
the (random) critical value q1−α(Xn) defined in (17.18), and the corresponding
permutation test defined in (17.19) by

�α(Xn) = 1T (Xn)>q1−α(Xn),

which precisely rejects independence when T (Xn) > q1−α(Xn). Notice that this
test is exactly the upper-tailed test by permutation introduced in [2].

The aim of this section is to provide different conditions on the alternative P

ensuring a control of the second kind error rate by a fixed value β > 0, that is
P(�α(Xn) = 0) ≤ β. The following steps constitute the first steps of a general
study of the separation rates for the previous independence test, and is worked
through in the specific case of continuous real-valued random variables in [1,
Chapter 4].

Recall the notation introduced in (17.17) for a better readability. For all real-
valued measurable function g on X 2, denote respectively

EP [g] = E
[
g(X1

1,X2
1)
]

and E⊥⊥[g] = E
[
g(X1

1,X2
2)
]
,
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the expectations of g(X) under the alternative P , that is if X ∼ P , and under the
null hypothesis (H0), that is if X ∼ (P 1 ⊗ P 2).

Assume the following moment assumption holds, that is

(AMmt,2
)

both EP

[
ϕ2
]

< +∞ and E⊥⊥
[
ϕ2
]

< +∞,

so that all variance and second-order moments exist. Then, the following statements
hold.

1. By Chebychev’s inequality, one has P(�α(Xn) = 0) ≤ β as soon as Condi-
tion (17.20) is satisfied, that is

E [T (Xn)] ≥ qα
1−β/2 +

√
2

β
Var(T (Xn)).

2. On the one hand,

Var(T (Xn)) ≤ 8

n

(
EP

[
ϕ2
]

+ E⊥⊥
[
ϕ2
])

, (17.48)

3. On the other hand, in order to control the quantile qα
1−β/2, let us first upper bound

the conditional quantile, following Hoeffding’s approach based on the Cauchy-
Schwarz inequality, by

q1−α(Xn) ≤
√

1 − α

α
Var
(
T
(
X�

n

)∣∣Xn

)
. (17.49)

4. Markov’s inequality allows us to deduce the following bound for the quantile:

qα
1−β/2 ≤ 2

√
1 − α

α

√
2

β

(
E⊥⊥

[
ϕ2
]+ EP

[
ϕ2
])

n
. (17.50)

5. Finally, combining (17.20), (17.48) and (17.50) ensures that P(�α(Xn) = 0) ≤
β as soon as Condition (17.21) is satisfied, that is

E [T (Xn)] ≥ 4√
α

√
2

β

EP

[
ϕ2
]+ E⊥⊥

[
ϕ2
]

n
.

This section is divided in five subsections, each one of them respectively proving
a point stated above. The first one proves the sufficiency of Condition (17.20) in
order to control the second kind error rate. The second, third and fourth ones provide
respectively upper-bounds of the variance term, the critical value and the quantile
qα

1−β/2. Finally, the fifth one provides the sufficiency of Condition (17.21).
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A First Condition Ensuing from Chebychev’s Inequality

In this section, we prove the sufficiency of a first simple condition, derived from
Chebychev’s inequality in order to control the second error rate. Assume that (17.20)
is satisfied, that is

E [T (Xn)] ≥ qα
1−β/2 +

√
2

β
Var(T (Xn)).

Then,

P(�α(Xn) = 0) = P(T (Xn) ≤ q1−α(Xn)) (17.51)

= P
(
{T (Xn) ≤ q1−α(Xn)} ∩

{
q1−α(Xn) ≤ qα

1−β/2

})

+ P
(
{T (Xn) ≤ q1−α(Xn)} ∩

{
q1−α(Xn) > qα

1−β/2

})

≤ P
(
T (Xn) ≤ qα

1−β/2

)
+ P

(
q1−α(Xn) > qα

1−β/2

)

≤ P
(
T (Xn) ≤ qα

1−β/2

)
+ β

2
, (17.52)

by definition of the quantile qα
1−β/2. Yet, from (17.20) one obtains from Chebychev’s

inequality that

P
(
T (Xn) ≤ qα

1−β/2

)
≤ P

(
T (Xn) ≤ E [T (Xn)] −

√
2

β
Var(T (Xn))

)

≤ P

(
|T (Xn) − E [T (Xn)]| ≥

√
2

β
Var(T (Xn))

)

≤ β

2
. (17.53)

Finally, both (17.52) and (17.53) lead to the desired controlP(�α(Xn) = 0) ≤ β

which ends the proof.

Control of the Variance in the General Case

To upper bound the variance term, we apply Lemma 17.3.1 which directly
implies that

Var(T (Xn)) ≤ 2

n

(
EP

[
ϕ2
]

+ 4E⊥⊥
[
ϕ2
])

,

which directly leads to (17.48).
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Control of the Critical Value Based on Hoeffding’s Approach

This section is devoted to the proof the inequality (17.49), namely

q1−α(Xn) ≤
√

1 − α

α
Var
(
T
(
X�

n

)∣∣Xn

)
.

The proof of this upper-bound follows Hoeffding’s approach in [16], and relies
on a normalizing trick, and the Cauchy-Schwarz inequality. From now on, for a
better readability, denote respectively E∗[·] and Var∗(·) the conditional expectation
and variance given the sample Xn.

As in Hoeffding [16], the first step is to center and normalize the permuted test
statistic. Yet, by construction the permuted test statistic is automatically centered,
that is E∗[T

(
X�

n

)] = 0, as one can notice that

T
(
X�

n

) = 1

n − 1

(
n∑

i=1

ϕ
(
X1

i , X
2
�(i)

)
− E∗

[
n∑

i=1

ϕ
(
X1

i , X
2
�(i)

)])
.

Therefore, just consider the normalizing term

ν(Xn) = Var∗
(
T
(
X�

n

)) = E∗[T
(
X�

n

)2] = 1

n!
∑

τ∈Sn

(
T
(
Xτ

n

))2
.

Two cases appear: either ν(Xn) = 0 or not.
In the first case, the nullity of the conditional variance implies that all the per-

mutations of the test statistic are equal. Hence, for all permutation τ of {1, . . . , n},
one has T (Xτ

n) = T (Xn). Since the centering term E∗
[∑n

i=1 ϕ
(
X1

i , X
2
�(i)

)]
=

n−1∑n
i,j=1 ϕ(X1

i , X
2
j ) is permutation invariant, one obtains the equality of the

permuted sums, that is

n∑

i=1

ϕ
(
X1

i , X
2
τ (i)

)
=

n∑

i=1

ϕ
(
X1

i , X
2
i

)
,

and this for all permutation τ . In particular, the centering term is also equal to∑n
i=1 ϕ

(
X1

i , X
2
i

)
. Indeed, by invariance of the sum (applied in the third equality

below),

1

n

n∑

i,j=1

ϕ
(
X1

i , X
2
j

)
= 1

n

n∑

i,j=1

ϕ
(
X1

i , X
2
j

)
⎡

⎣ 1

(n − 1)!
∑

τ∈Sn

1τ (i)=j

⎤

⎦

= 1

n!
∑

τ∈Sn

n∑

i=1

ϕ
(
X1

i , X
2
τ (i)

)
⎡

⎣
n∑

j=1

1τ (i)=j

⎤

⎦
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1

n

n∑

i,j=1

ϕ
(
X1

i , X
2
j

)
= 1

n!
∑

τ∈Sn

(
n∑

i=1

ϕ
(
X1

i , X
2
i

))

=
n∑

i=1

ϕ
(
X1

i , X
2
i

)
.

Therefore, T (Xn) is equal to zero, and thus, so is q1−α(Xn). Finally, inequal-
ity (17.55) is satisfied since

q1−α(Xn) = 0 ≤ 0 =
√

1 − α

α
Var
(
T
(
X�

n

)∣∣Xn

)
.

Consider now the second case, and assume ν(Xn) > 0. Let us introduce the
(centered and) normalized statistic

T ′(Xn) = 1√
ν(Xn)

(T (Xn)) .

In particular, the new statistic T ′(Xn) satisfies

E∗[T ′(X�
n

)] = 0 and Var∗
(
T ′(X�

n

)) ≤ 1.

One may moreover notice that the normalizing term ν(Xn) is permutation
invariant, that is, for all permutations τ and τ ′ in Sn,

ν
(
Xτ

n

) = ν(Xn) = ν
(
Xτ ′

n

)
.

In particular, since ν(Xn) > 0,

T
(
Xτ

n

) ≤ T
(
Xτ ′

n

)
⇔ T ′(Xτ

n

) ≤ T ′(Xτ ′
n

)
.

Therefore, as the test �α depends only on the comparison of the
{
T
(
Xτ

n

)}
τ∈Sn

,
the test statistic T can be replaced by T ′, and the new critical value becomes

q ′
1−α(Xn) = T ′(n!−�n!α�) (Xn) = T (n!−�n!α�) (Xn)

ν(Xn)
= q1−α(Xn)

ν(Xn)
. (17.54)

Moreover, following the proof of Theorem 2.1. of Hoeffding [16], one can show
(as below) that

q ′
1−α(Xn) ≤

√
1 − α

α
. (17.55)
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Hence, combining (17.55) with (17.54) leads straightforwardly to (17.49).
Finally, remains the proof of (17.55). There are two cases:

First Case If q ′
1−α(Xn) ≤ 0, then (17.55) is satisfied.

Second Case If q ′
1−α(Xn) > 0, then introduce Y = q ′

1−α(Xn) − T ′(X�
n

)
.

First, since by construction, E∗[T ′(X�
n

)] = 0, one directly obtains
E∗[Y ] = q ′

1−α(Xn). Hence,

0 < q ′
1−α(Xn) = E∗[Y ] ≤ E∗[Y1Y>0] ,

and by the Cauchy-Schwarz inequality,

(
q ′

1−α(Xn)
)2 ≤ (

E∗[Y1Y>0]
)2 ≤ E∗[Y 2

]
E∗[1Y>0] ,

Yet, on one hand,

E∗[Y 2
]

= E∗[(q ′
1−α(Xn) − T ′(X�

n

))2]

= (q ′
1−α(Xn)

)2 + E∗[(T ′(X�
n

))2]− 2q ′
1−α(Xn)E

∗[T ′(X�
n

)]

= (q ′
1−α(Xn)

)2 + Var∗
(
T ′(X�

n

))

≤ (q ′
1−α(Xn)

)2 + 1,

since by the normalizing initial step, Var∗
(
T ′(X�

n

)) ≤ 1.
And, on the other hand,

E∗[1Y>0] = E∗[1T ′(′)(X�
n )<q ′

1−α(Xn)

]

= #
{
τ ∈ Sn ; T ′(Xτ

n

)
< T ′(n!−�n!α�)(Xn)

}

n!
≤ (n! − �n!α�) − 1

n! = 1 − �n!α� + 1

n!
< 1 − n!α

n! = 1 − α.

So finally,

(
q ′

1−α(Xn)
)2 ≤ (1 − α)

((
q ′

1−α(Xn)
)2 + 1

)
,

which is equivalent to
(
q ′

1−α(Xn)
)2 ≤ (1−α)/α, and thus ends the proof of (17.55).
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Control of the Quantile of the Critical Value

The control of the conditional quantile allows us to upper bound its own quantile
qα

1−β/2 as stated in (17.50), that is

qα
1−β/2 ≤ 2

√
1 − α

α

√
2

β

(
E⊥⊥

[
ϕ2
]+ EP

[
ϕ2
])

n
.

Indeed, (17.49) ensures that

q1−α(Xn) ≤
√

1 − α

α

√
E
[
T
(
X�

n

)2∣∣∣Xn

]
,

and in particular, the (1 − β/2)-quantile of q1−α(Xn) satisfies

qα
1−β/2 ≤

√
1 − α

α

√
ζ1−β/2, (17.56)

where ζ1−β/2 is the (1 − β/2)-quantile of E
[
T
(
X�

n

)2∣∣∣Xn

]
. Yet, from Markov’s

inequality, for all positive x,

P
(
E
[
T
(
X�

n

)2∣∣∣Xn

]
≥ x

)
≤

E
[
T
(
X�

n

)2]

x
.

In particular, the choice of x = 2E
[
T
(
X�

n

)2]
/β leads to the control of the quantile

ζ1−β/2 ≤
2E
[
T
(
X�

n

)2]

β
. (17.57)

Moreover, noticing that one can write

T
(
X�

n

) = 1

n − 1

n∑

i,j=1

(
1�(i)=j − 1

n

)
ϕ(X1

i , X
2
j ),

the second-order moment in (17.57) can be rewritten

E
[
T
(
X�

n

)2] = 1

(n − 1)2E

⎡

⎢⎣

⎛

⎝
n∑

i,j=1

(
1�(i)=j − 1

n

)
ϕ(X1

i , X
2
j )

⎞

⎠
2
⎤

⎥⎦

= 1

(n − 1)2

n∑

i,j=1

n∑

k,l=1

Ei,j,k,l × E
[
ϕ(X1

i , X
2
j )ϕ(X1

k ,X
2
l )
]
,
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by independence between � and Xn, where

Ei,j,k,l = E

[(
1�(i)=j − 1

n

)(
1�(k)=l − 1

n

)]
= E

[
1�(i)=j1�(k)=l

]− 1

n2 .

On the one hand, for all 1 ≤ i, j, k, l ≤ n, the Cauchy-Schwarz inequality always
ensures

E
[
ϕ(X1

i , X2
j )ϕ(X1

k,X2
l )
]

≤
√
E
[
ϕ2(X1

i
, X2

j
)
]
E
[
ϕ2(X1

k
,X2

l
)
]

≤ E⊥⊥
[
ϕ2
]

+ EP

[
ϕ2
]
,

(17.58)

since for all 1 ≤ i, j ≤ n, E
[
ϕ2(X1

i , X
2
j )
]

≤ E⊥⊥
[
ϕ2
]+ EP

[
ϕ2
]
.

On the other hand, remains to control the sum (n − 1)−2∑n
i,j=1

∑n
k,l=1 Ei,j,k,l .

Three cases appear.

First Case If i �= k and j �= l (occurring [n(n − 1)]2 times), then

Ei,j,k,l = 1

n(n − 1)
− 1

n2
= 1

n2(n − 1)
.

Second Case If [i �= k and j = l] or [i = k and j �= l], then

Ei,j,k,l = 0 − 1/n2 ≤ 0.

Third Case If i = k and j = l (occurring n(n − 1) times), then

Ei,j,k,l = 1

n
− 1

n2
= n − 1

n2
≤ 1

n
.

Therefore,

1

(n − 1)2

n∑

i,j=1

n∑

k,l=1

Ei,j,k,l ≤ 1

(n − 1)2

(
[n(n − 1)]2 × 1

n2(n − 1)
+ n(n − 1) × 1

n

)

≤ 2

n − 1

≤ 4

n
. (17.59)

Finally, both (17.58) and (17.59) imply that

E
[
T
(
X�

n

)2] ≤ 4

n

(
E⊥⊥

[
ϕ2
]

+ EP

[
ϕ2
])

, (17.60)

Therefore, combining (17.56), (17.57) and (17.60) ends the proof of (17.50).
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A First Condition Ensuing from Hoeffding’s Approach

Back to the condition (17.20) derived from Chebychev’s inequality, both (17.48)
and (17.50) imply that

qα
1−β/2 +

√
2

β
Var(T (Xn)) ≤

√
2

β

(
EP

[
ϕ2
]+ E⊥⊥

[
ϕ2
])

n

(
2

√
1 − α

α
+ √

8

)
,

with 2
√

(1 − α)/α + √
8 ≤ 4/

√
α, since

√
1 − α + √

α ≤ √
2. Finally, the right-

hand side of condition (17.20) being upper bounded by

4√
α

√
2

β

(
EP

[
ϕ2
]+ E⊥⊥

[
ϕ2
])

n
,

which is exactly the right-hand side of (17.21), this ensures the sufficiency of
condition 17.21 to control the second kind error rate by β.
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