
Chapter 16
Pointwise Properties of Martingales
with Values in Banach Function Spaces

Mark Veraar and Ivan Yaroslavtsev

Abstract In this paper we consider local martingales with values in a UMD Banach
function space. We prove that such martingales have a version which is a martingale
field. Moreover, a new Burkholder–Davis–Gundy type inequality is obtained.
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16.1 Introduction

The discrete Burkholder–Davis–Gundy inequality (see [3, Theorem 3.2]) states that
for any p ∈ (1,∞) and martingales difference sequence (dj )

n
j=1 in Lp(�) one has

∥
∥
∥

n
∑

j=1

dj

∥
∥
∥

Lp(�)
�p

∥
∥
∥

( n
∑

j=1

|dj |2
)1/2∥∥

∥
Lp(�)

. (16.1)

Moreover, there is the extension to continuous-time local martingales M (see [13,
Theorem 26.12]) which states that for every p ∈ [1,∞),

∥
∥ sup

t∈[0,∞)

|Mt |
∥
∥

Lp(�)
�p

∥
∥[M]1/2∞

∥
∥

Lp(�)
. (16.2)

Here t �→ [M]t denotes the quadratic variation process of M .
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In the case X is a UMD Banach function space the following variant of (16.1)
holds (see [24, Theorem 3]): for any p ∈ (1,∞) and martingales difference
sequence (dj )

n
j=1 in Lp(�; X) one has

∥
∥
∥

n
∑

j=1

dj

∥
∥
∥

Lp(�;X)
�p

∥
∥
∥

( n
∑

j=1

|dj |2
)1/2∥∥

∥
Lp(�;X)

. (16.3)

Moreover, the validity of the estimate also characterizes the UMD property.
It is a natural question whether (16.2) has a vector-valued analogue as well. The

main result of this paper states that this is indeed the case:

Theorem 16.1.1 Let X be a UMD Banach function space over a σ -finite measure
space (S,�,μ). Assume that N : R+ × � × S → R is such that N |[0,t ]×�×S is
B([0, t]) ⊗ Ft ⊗ �-measurable for all t ≥ 0 and such that for almost all s ∈ S,
N(·, ·, s) is a martingale with respect to (Ft )t≥0 and N(0, ·, s) = 0. Then for all
p ∈ (1,∞),

∥
∥ sup

t≥0
|N(t, ·, ·)|∥∥

Lp(�;X)
�p,X sup

t≥0

∥
∥N(t, ·, ·)∥∥

Lp(�;X)
�p,X ‖[N]1/2∞ ‖Lp(�;X).

(16.4)

where [N] denotes the quadratic variation process of N .

By standard methods we can extend Theorem 16.1.1 to spaces X which are
isomorphic to a closed subspace of a Banach function space (e.g. Sobolev and Besov
spaces, etc.)

The two-sided estimate (16.4) can for instance be used to obtain two-sided
estimates for stochastic integrals for processes with values in infinite dimensions
(see [25] and [26]). In particular, applying it with N(t, ·, s) = ∫ t

0 �(·, s) dW implies
the following maximal estimate for the stochastic integral

∥
∥
∥s �→ sup

t≥0

∣
∣
∣

∫ t

0
�(·, s) dW

∣
∣
∣

∥
∥
∥

Lp(�;X)

�p,X sup
t≥0

∥
∥
∥s �→

∫ t

0
�(·, s) dW

∥
∥
∥

Lp(�;X)
(16.5)

�p,X

∥
∥
∥s �→

( ∫ ∞

0
�2(t, s) dt

)1/2∥∥
∥

Lp(�;X)
,

where W is a Brownian motion and � : R+ × � × S → R is a progressively
measurable process such that the right-hand side of (16.5) is finite. The second norm
equivalence was obtained in [25]. The norm equivalence with the left-hand side is
new in this generality. The case where X is an Lq -space was recently obtained in
[1] using different methods.
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It is worth noticing that the second equivalence of (16.4) in the case of X = Lq

was obtained by Marinelli in [18] for some range of 1 < p, q < ∞ by using an
interpolation method.

The UMD property is necessary in Theorem 16.1.1 by necessity of the UMD
property in (16.3) and the fact that any discrete martingale can be transformed to a
continuous-time one. Also in the case of continuous martingales, the UMD property
is necessary in Theorem 16.1.1. Indeed, applying (16.5) with W replaced by an
independent Brownian motion W̃ we obtain

∥
∥
∥

∫ ∞

0
� dW

∥
∥
∥

Lp(�;X)
�p,X

∥
∥
∥

∫ ∞

0
� dW̃

∥
∥
∥

Lp(�;X)
,

for all predictable step processes �. The latter holds implies that X is a UMD
Banach space (see [10, Theorem 1]).

In the special case that X = R the above reduces to (16.2). In the proof of
Theorem 16.1.1 the UMD property is applied several times:

• The boundedness of the lattice maximal function (see [2, 9, 24]).
• The X-valued Meyer–Yoeurp decomposition of a martingale (see Lemma 16.2.1).
• The square-function estimate (16.3) (see [24]).

It remains open whether there exists a predictable expression for the right-hand
side of (16.4). One would expect that one needs simply to replace [N] by its
predictable compensator, the predictable quadratic variation 〈N〉. Unfortunately,
this does not hold true already in the scalar-valued case: if M is a real-valued
martingale, then

E|M|pt �p E〈M〉
p
2
t , t ≥ 0, p < 2,

E|M|pt �p E〈M〉
p
2
t , t ≥ 0, p > 2,

where both inequalities are known not to be sharp (see [3, p. 40], [19, p. 297],
and [21]). The question of finding such a predictable right-hand side in (16.4)
was answered only in the case X = Lq for 1 < q < ∞ by Dirsken and the
second author (see [7]). The key tool exploited there was the so-called Burkholder-
Rosenthal inequalities, which are of the following form:

E‖MN‖p
�p,X

∣
∣
∣
∣
∣
∣(Mn)0≤n≤N

∣
∣
∣
∣
∣
∣
p

p,X
,

where (Mn)0≤n≤N is an X-valued martingale, |||·|||p,X is a certain norm defined on
the space of X-valued Lp-martingales which depends only on predictable moments
of the corresponding martingale. Therefore using approach of [7] one can reduce
the problem of continuous-time martingales to discrete-time martingales. However,
the Burkholder-Rosenthal inequalities are explored only in the case X = Lq .
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Thanks to (16.2) the following natural question arises: can one generalize (16.4)
to the case p = 1, i.e. whether

∥
∥ sup

t≥0
|N(t, ·, ·)|∥∥

L1(�;X)
�p,X ‖[N]1/2∞ ‖L1(�;X) (16.6)

holds true? Unfortunately the outlined earlier techniques cannot be applied in the
case p = 1. Moreover, the obtained estimates cannot be simply extrapolated to the
case p = 1 since those contain the UMDp constant, which is known to have infinite
limit as p → 1. Therefore (16.6) remains an open problem. Note that in the case of
a continuous martingale M inequalities (16.4) can be extended to the case p ∈ (0, 1]
due to the classical Lenglart approach (see Corollary 16.4.4).

16.2 Preliminaries

Throughout the paper any filtration satisfies the usual conditions (see [12, Defi-
nition 1.1.2 and 1.1.3]), unless the underlying martingale is continuous (then the
corresponding filtration can be assumed general).

A Banach space X is called a UMD space if for some (or equivalently, for all)
p ∈ (1,∞) there exists a constant β > 0 such that for every n ≥ 1, every
martingale difference sequence (dj )

n
j=1 in Lp(�; X), and every {−1, 1}-valued

sequence (εj )
n
j=1 we have

(

E

∥
∥
∥

n
∑

j=1

εjdj

∥
∥
∥

p) 1
p ≤ β

(

E

∥
∥
∥

n
∑

j=1

dj

∥
∥
∥

p) 1
p
.

The above class of spaces was extensively studied by Burkholder (see [4]). UMD
spaces are always reflexive. Examples of UMD space include the reflexive range
of Lq -spaces, Besov spaces, Sobolev, and Musielak-Orlicz spaces. Example of
spaces without the UMD property include all nonreflexive spaces, e.g. L1(0, 1) and
C([0, 1]). For details on UMD Banach spaces we refer the reader to [5, 11, 22, 24].

The following lemma follows from [27, Theorem 3.1].

Lemma 16.2.1 (Meyer-Yoeurp Decomposition) Let X be a UMD space and p ∈
(1,∞). Let M : R+×� → X be an Lp-martingale that takes values in some closed
subspace X0 of X. Then there exists a unique decomposition M = Md +Mc, where
Mc is continuous, Md is purely discontinuous and starts at zero, and Md and Mc

are Lp-martingales with values in X0 ⊆ X. Moreover, the following norm estimates
hold for every t ∈ [0,∞),

‖Md(t)‖Lp(�;X) ≤ βp,X‖M(t)‖Lp(�;X),

‖Mc(t)‖Lp(�;X) ≤ βp,X‖M(t)‖Lp(�;X).
(16.7)
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Furthermore, if A
p,d
X and A

p,c
X are the corresponding linear operators that map M

to Md and Mc respectively, then

A
p,d
X = A

p,d

R
⊗ IdX,

A
c,d
X = A

c,d
R

⊗ IdX.

Recall that for a given measure space (S,�,μ), the linear space of all real-valued
measurable functions is denoted by L0(S).

Definition 16.2.2 Let (S,�,μ) be a measure space. Let n : L0(S) → [0,∞] be a
function which satisfies the following properties:

(i) n(x) = 0 if and only if x = 0,
(ii) for all x, y ∈ L0(S) and λ ∈ R, n(λx) = |λ|n(x) and n(x + y) ≤ n(x)+n(y),

(iii) if x ∈ L0(S), y ∈ L0(S), and |x| ≤ |y|, then n(x) ≤ n(y),
(iv) if 0 ≤ xn ↑ x with (xn)

∞
n=1 a sequence in L0(S) and x ∈ L0(S), then n(x) =

supn∈N n(xn).

Let X denote the space of all x ∈ L0(S) for which ‖x‖ := n(x) < ∞. Then X

is called the normed function space associated to n. It is called a Banach function
space when (X, ‖ · ‖X) is complete.

We refer the reader to [31, Chapter 15] for details on Banach function spaces.

Remark 16.2.3 Let X be a Banach function space over a measure space (S,�,μ).
Then X is continuously embedded into L0(S) endowed with the topology of
convergence in measure on sets of finite measure. Indeed, assume xn → x in X and
let A ∈ � be of finite measure. We claim that 1Axn → 1Ax in measure. For this it
suffices to show that every subsequence of (xn)n≥1 has a further subsequence which
convergences a.e. to x. Let (xnk )k≥1 be a subsequence. Choose a subsubsequence
(1Axnk	

)	≥1 =: (y	)	≥1 such that
∑∞

	=1 ‖y	 −x‖ < ∞. Then by [31, Exercise 64.1]
∑∞

	=1 |y	 − x| converges in X. In particular,
∑∞

	=1 |y	 − x| < ∞ a.e. Therefore,
y	 → x a.e. as desired.

Given a Banach function space X over a measure space S and Banach space E,
let X(E) denote the space of all strongly measurable functions f : S → E with
‖f ‖X(E) := ∥

∥s �→ ‖f (s)‖E

∥
∥

X
∈ X. The space X(E) becomes a Banach space

when equipped with the norm ‖f ‖X(E).
A Banach function space has the UMD property if and only if (16.3) holds for

some (or equivalently, for all) p ∈ (1,∞) (see [24]). A broad class of Banach
function spaces with UMD is given by the reflexive Lorentz–Zygmund spaces (see
[6]) and the reflexive Musielak–Orlicz spaces (see [17]).

Definition 16.2.4 N : R+ ×�×S → R is called a (continuous) (local) martingale
field if N |[0,t ]×�×S is B([0, t]) ⊗ Ft ⊗ �-measurable for all t ≥ 0 and N(·, ·, s) is
a (continuous) (local) martingale with respect to (Ft )t≥0 for almost all s ∈ S.
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Let X be a Banach space, I ⊂ R be a closed interval (perhaps, infinite). A
function f : I → X is called càdlàg (an acronym for the French phrase “continue
à droite, limite à gauche”) if f is right continuous and has limits from the left-hand
side. We define a Skorohod space D(I ; X) as a linear space consisting of all càdlàg
functions f : I → X. We denote the linear space of all bounded càdlàg functions
f : I → X by Db(I ; X).

Lemma 16.2.5 Db(I ; X) equipped with the norm ‖ · ‖∞ is a Banach space.

Proof The proof is analogous to the proof of the same statement for continuous
functions. ��

Let X be a Banach space, τ be a stopping time, V : R+ × � → X be a càdlàg
process. Then we define �Vτ : � → X as follows

�Vτ := Vτ − lim
ε→0

V(τ−ε)∨0.

16.3 Lattice Doob’s Maximal Inequality

Doob’s maximal Lp-inequality immediately implies that for martingale fields

∥
∥ sup

t≥0
‖N(t, ·)‖X

∥
∥

Lp(�)
≤ p

p − 1
sup
t≥0

‖N(t)‖Lp(�;X), 1 < p < ∞.

In the next lemma we prove a stronger version of Doob’s maximal Lp-inequality. As
a consequence in Theorem 16.3.2 we will obtain the same result in a more general
setting.

Lemma 16.3.1 Let X be a UMD Banach function space and let p ∈ (1,∞). Let
N be a càdlàg martingale field with values in a finite dimensional subspace of X.
Then for all T > 0,

∥
∥ sup

t∈[0,T ]
|N(t, ·)|∥∥

Lp(�;X)
�p,X sup

t∈[0,T ]
‖N(t)‖Lp(�;X)

whenever one of the expression is finite.

Proof Clearly, the left-hand side dominates the right-hand side. Therefore, we can
assume the right-hand side is finite and in this case we have

‖N(T )‖Lp(�;X) = sup
t∈[0,T ]

‖N(t)‖Lp(�;X) < ∞.

Since N takes values in a finite dimensional subspace it follows from Doob’s Lp-
inequality (applied coordinatewise) that the left-hand side is finite.
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Since N is a càdlàg martingale field and by Definition 16.2.2(iv) we have that

lim
n→∞

∥
∥ sup

0≤j≤n

|N(jT/n, ·)|∥∥
Lp(�;X)

= ∥
∥ sup

t∈[0,T ]
|N(t, ·)|∥∥

Lp(�;X)
.

Set Mj = NjT/n for j ∈ {0, . . . , n} and Mj = Mn for j > n. It remains to prove

∥
∥ sup

0≤j≤n

|Mj(·)|
∥
∥

Lp(�;X)
≤ Cp,X‖Mn‖Lp(�;X).

If (Mj )
n
j=0 is a Paley–Walsh martingale (see [11, Definition 3.1.8 and Proposition

3.1.10]), this estimate follows from the boundedness of the dyadic lattice maximal
operator [24, pp. 199–200 and Theorem 3]. In the general case one can replace �

by a divisible probability space and approximate (Mj ) by Paley-Walsh martingales
in a similar way as in [11, Corollary 3.6.7]. ��
Theorem 16.3.2 (Doob’s Maximal Lp-Inequality) Let X be a UMD Banach
function space over a σ -finite measure space and let p ∈ (1,∞). Let M : R+×� →
X be a martingale such that

1. for all t ≥ 0, M(t) ∈ Lp(�; X);
2. for a.a ω ∈ �, M(·, ω) is in D([0,∞); X).

Then there exists a martingale field N ∈ Lp(�; X(Db([0,∞)))) such that for
a.a. ω ∈ �, all t ≥ 0 and a.a. s ∈ S, N(t, ω, s) = M(t, ω)(s) and

∥
∥ sup

t≥0
|N(t, ·)|∥∥

Lp(�;X)
�p,X sup

t≥0
‖M(t, ·)‖Lp(�;X). (16.8)

Moreover, if M is continuous, then N can be chosen to be continuous as well.

Proof We first consider the case where M becomes constant after some time T > 0.
Then

sup
t≥0

‖M(t, ·)‖Lp(�;X) = ‖M(T )‖Lp(�;X).

Let (ξn)n≥1 be simple random variables such that ξn → M(T ) in Lp(�; X). Let
Mn(t) = E(ξn|Ft ) for t ≥ 0. Then by Lemma 16.3.1

∥
∥ sup

t≥0
|Nn(t, ·) − Nm(t, ·)|∥∥

Lp(�;X)
�p,X

∥
∥|Mn(T , ·) − Mm(T , ·)|∥∥

Lp(�;X)
→ 0

as n,m → ∞. Therefore, (Nn)n≥1 is a Cauchy sequence and hence converges to
some N from the space Lp(�; X(Db([0,∞)))). Clearly, N(t, ·) = M(t) and (16.8)
holds in the special case that M becomes constant after T > 0.

In the case M is general, for each T > 0 we can set MT (t) = M(t ∧ T ). Then
for each T > 0 we obtain a martingale field NT as required. Since NT1 = NT2 on
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[0, T1 ∧ T2], we can define a martingale field N by setting N(t, ·) = NT (t, ·) on
[0, T ]. Finally, we note that

lim
T →∞ sup

t≥0
‖MT (t)‖Lp(�;X) = sup

t≥0
‖M(t)‖Lp(�;X).

Moreover, by Definition 16.2.2(iv) we have

lim
T →∞

∥
∥ sup

t≥0
|NT (t, ·)|∥∥

Lp(�;X)
= ∥

∥ sup
t≥0

|N(t, ·)|∥∥
Lp(�;X)

,

Therefore the general case of (16.8) follows by taking limits.
Now let M be continuous, and let (Mn)n≥1 be as before. By the same argument

as in the first part of the proof we can assume that there exists T > 0 such that
Mt = Mt∧T for all t ≥ 0. By Lemma 16.2.1 there exists a unique decomposition
Mn = Mc

n +Md
n such that Md

n is purely discontinuous and starts at zero and Mc
n has

continuous paths a.s. Then by (16.7)

‖M(T ) − Mc
n(T )‖Lp(�;X) ≤ βp,X‖M(T ) − Mn(T )‖Lp(�;X) → 0.

Since Mc
n takes values in a finite dimensional subspace of X we can define a

martingale field Nn by Nn(t, ω, s) = Mc
n(t, ω)(s). Now by Lemma 16.3.1

∥
∥ sup

0≤t≤T

|Nn(t, ·) − Nm(t, ·)|∥∥
Lp(�;X)

�p,X

∥
∥|Mc

n(T , ·) − Mc
m(T , ·)|∥∥

Lp(�;X)
→ 0.

Therefore, (Nn)n≥1 is a Cauchy sequence and hence converges to some N from the
space Lp(�; X(Cb([0,∞)))). Analogously to the first part of the proof, N(t, ·) =
M(t) for all t ≥ 0. ��
Remark 16.3.3 Note that due to the construction of N we have that �Mτ(s) =
�N(·, s)τ for any stopping time τ and almost any s ∈ S. Indeed, let (Mn)n≥1 and
(Nn)n≥1 be as in the proof of Theorem 16.3.2. Then on the one hand

‖�Mτ − �(Mn)τ‖Lp(�;X) ≤ ∥
∥ sup

0≤t≤T

‖M(t) − Mn(t)‖X

∥
∥

Lp(�)

�p ‖M(T ) − Mn(T )‖Lp(�;X) → 0, n → ∞.

On the other hand

‖�Nτ − �(Nn)τ‖Lp(�;X) ≤ ∥
∥ sup

0≤t≤T

|N(t) − Nn(t)|
∥
∥

Lp(�;X)

�p,X

∥
∥|N(T ) − Nn(T )|∥∥

Lp(�;X)
→ 0, n → ∞.
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Since ‖Mn(t) − Nn(t, ·)‖Lp(�;X) = 0 for all n ≥ 0, we have that by the
limiting argument ‖�Mτ − �Nτ (·)‖Lp(�;X) = 0, so the desired follows from
Definition 16.2.2(i).

One could hope there is a more elementary approach to derive continuity of N

in the case M is continuous: if the filtration F̃ := (F̃t )t≥0 is generated by M , then
M(s) is F̃-adapted for a.e. s ∈ S, and one might expect that M has a continuous
version. Unfortunately, this is not true in general as follows from the next example.

Example 16.3.4 There exists a continuous martingale M : R+×� → R, a filtration
F̃ = (F̃t )t≥0 generated by M and all P-null sets, and a purely discontinuous nonzero
F̃-martingale N : R+ × � → R. Let W : R+ × � → R be a Brownian motion,
L : R+ × � → R be a Poisson process such that W and L are independent. Let
F = (Ft )t≥0 be the filtration generated by W and L. Let σ be an F-stopping time
defined as follows

σ = inf{u ≥ 0 : �Lu �= 0}.

Let us define

M :=
∫

1[0,σ ] dW = Wσ .

Then M is a martingale. Let F̃ := (F̃t )t≥0 be generated by M . Note that F̃t ⊂ Ft

for any t ≥ 0. Define a random variable

τ = inf{t ≥ 0 : ∃u ∈ [0, t) such that M is a constant on [u, t]}.

Then τ = σ a.s. Moreover, τ is a F̃-stopping time since for each u ≥ 0

P{τ = u} = P{σ = u} = P{�Lσ
u �= 1} ≤ P{�Lu �= 1} = 0,

and hence

{τ ≤ u} = {τ < u} ∪ {τ = u} ⊂ F̃u.

Therefore N : R+ × � → R defined by

Nt := 1[τ,∞)(t) − t ∧ τ t ≥ 0,

is an F̃-martingale since it is F̃-measurable and since Nt = (Lt − t)σ a.s. for each
t ≥ 0, hence for each u ∈ [0, t]

E(Nt |F̃u) = E(E(Nt |Fu)|F̃u) = E(E((Lt − t)σ |Fu)|F̃u) = (Lu − u)σ = Nu
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due to the fact that t �→ Lt − t is an F̃-measurable F-martingale (see [15, Problem
1.3.4]). But (Nt )t≥0 is not continuous since (Lt )t≥0 is not continuous.

16.4 Main Result

Theorem 16.1.1 will be a consequence of the following more general result.

Theorem 16.4.1 Let X be a UMD Banach function space over a σ -finite measure
space (S,�,μ) and let p ∈ (1,∞). Let M : R+×� → X be a local Lp-martingale
with respect to (Ft )t≥0 and assume M(0, ·) = 0. Then there exists a mapping N :
R+ × � × S → R such that

1. for all t ≥ 0 and a.a. ω ∈ �, N(t, ω, ·) = M(t, ω),
2. N is a local martingale field,
3. the following estimate holds

∥
∥ sup

t≥0
|N(t, ·, ·)|∥∥

Lp(�;X)
�p,X

∥
∥ sup

t≥0
‖M(t, ·)‖X

∥
∥

Lp(�)
�p,X ‖[N]1/2∞ ‖Lp(�;X).

(16.9)

To prove Theorem 16.4.1 we first prove a completeness result.

Proposition 16.4.2 Let X be a Banach function space over a σ -finite measure
space S, 1 ≤ p < ∞. Let

MQp(X) := {N : R+ × � × S → R : N is a martingale field,

N(0, ·, s) = 0 ∀s ∈ S, and ‖N‖MQp(X) < ∞},

where ‖N‖MQp(X) := ‖[N]1/2∞ ‖Lp(�;X). Then (MQp(X), ‖ · ‖MQp(X)) is a Banach
space. Moreover, if Nn → N in MQp, then there exists a subsequence (Nnk )k≥1
such that pointwise a.e. in S, we have Nnk → N in L1(�;Db([0,∞))).

Proof Let us first check that MQp(X) is a normed vector space. For this only the
triangle inequality requires some comments. By the well-known estimate for local
martingales M,N (see [13, Theorem 26.6(iii)]) we have that a.s.

[M + N]t = [M]t + 2[M,N]t + [N]t
≤ [M]t + 2[M]1/2

t [N]1/2
t + [N]t = ([M]1/2

t + [N]1/2
t

)2
,

(16.10)

Therefore, [M + N]1/2
t ≤ [M]1/2

t + [N]1/2
t a.s. for all t ∈ [0,∞].

Let (Nk)k≥1 be such that
∑

k≥1 ‖Nk‖MQp(X) < ∞. It suffices to show that
∑

k≥1 Nk converges in MQp(X). Observe that by monotone convergence in � and
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Jensen’s inequality applied to ‖ · ‖X for any n > m ≥ 1 we have

∥
∥
∥

n
∑

k=m+1

E[Nk]1/2∞
∥
∥
∥

X

=
∥
∥
∥

n
∑

k=1

E[Nk]1/2∞ −
m

∑

k=1

E[Nk]1/2∞
∥
∥
∥

X

=
∥
∥
∥E

n
∑

k=m+1

[Nk]1/2∞
∥
∥
∥

X
≤ E

∥
∥
∥

n
∑

k=m+1

[Nk]1/2∞
∥
∥
∥

X
(16.11)

=
∥
∥
∥

n∑

k=m+1

[Nk]1/2∞
∥
∥
∥

L1(�;X)
≤

∥
∥
∥

n∑

k=m+1

[Nk]1/2∞
∥
∥
∥

Lp(�;X)

≤
n

∑

k=m+1

∥
∥
∥[Nk]1/2∞

∥
∥
∥

Lp(�;X)
→ 0, m, n → ∞,

where the latter holds due to the fact that
∑

k≥1

∥
∥
∥[Nk]1/2∞

∥
∥
∥

Lp(�;X)
< ∞. Thus

∑n
k=1 E[Nk]1/2∞ converges in X as n → ∞, where the corresponding limit coincides

with its pointwise limit
∑

k≥1 E[Nk]1/2∞ by Remark 16.2.3. Therefore, since any
element of X is finite a.s. by Definition 16.2.2, we can find S0 ∈ � such that
μ(Sc

0) = 0 and pointwise in S0, we have
∑

k≥1 E[Nk]1/2∞ < ∞. Fix s ∈ S0. In

particular, we find that
∑

k≥1[Nk]1/2∞ converges in L1(�). Moreover, since by the

scalar Burkholder-Davis-Gundy inequalities E supt≥0 |Nk(t, ·, s)| � E[Nk(s)]1/2∞ ,
we also obtain that

N(·, s) :=
∑

k≥1

Nk(·, s) converges in L1(�;Db([0,∞)). (16.12)

Let N(·, s) = 0 for s /∈ S0. Then N defines a martingale field. Moreover, by the
scalar Burkholder-Davis-Gundy inequalities

lim
m→∞

[ m
∑

k=n

Nk(·, s)
]1/2

∞ =
[ ∞
∑

k=n

Nk(·, s)
]1/2

∞

in L1(�). Therefore, by considering an a.s. convergent subsequence and by (16.10)
we obtain

[ ∞
∑

k=n

Nk(·, s)
]1/2

∞ ≤
∞
∑

k=n

[Nk(·, s)]1/2∞ . (16.13)

It remains to prove that N ∈ MQp(X) and N = ∑

k≥1 Nk with convergence in
MQp(X). Let ε > 0. Choose n ∈ N such that

∑

k≥n+1 ‖Nk‖MQp(X) < ε. It follows
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from (16.11) that E
∥
∥

∑

k≥1[Nk]1/2∞
∥
∥

X
< ∞, so

∑

k≥1[Nk]1/2∞ a.s. converges in X.
Now by (16.13), the triangle inequality and Fatou’s lemma, we obtain

∥
∥
∥

[ ∑

k≥n+1

Nk

]1/2

∞

∥
∥
∥

Lp(�;X)
≤

∥
∥
∥

∞
∑

k=n+1

[Nk]1/2∞
∥
∥
∥

Lp(�;X)

≤
∞
∑

k=n+1

∥
∥
∥[Nk]1/2∞

∥
∥
∥

Lp(�;X)

≤ lim inf
m→∞

m
∑

k=n+1

∥
∥
∥[Nk]1/2∞

∥
∥
∥

Lp(�;X)
< εp.

Therefore, N ∈ MQp(X) and ‖N − ∑n
k=1 Nk‖MQp(X) < ε.

For the proof of the final assertion assume that Nn → N in MQp(X). Choose a
subsequence (Nnk )k≥1 such that ‖Nnk − N‖MQp(X) ≤ 2−k . Then

∑

k≥1 ‖Nnk −
N‖MQp(X) < ∞ and hence by (16.12) we see that pointwise a.e. in S, the
series

∑

k≥1(Nnk − N) converges in L1(�;Db([0,∞))). Therefore, Nnk → N

in L1(�;Db([0,∞); X)) as required. ��
For the proof of Theorem 16.4.1 we will need the following lemma presented in

[8, Théorème 2].

Lemma 16.4.3 Let 1 < p < ∞, M : R+ × � → R be an Lp-martingales. Let
T > 0. For each n ≥ 1 define

Rn :=
n∑

k=1

∣
∣MT k

n
− MT (k−1)

n

∣
∣
2
.

Then Rn converges to [M]T in Lp/2.

Proof of Theorem 16.4.1 The existence of the local martingale field N together with
the first estimate in (16.9) follows from Theorem 16.3.2. It remains to prove

∥
∥ sup

t≥0
‖M(t, ·)‖X

∥
∥

Lp(�)
�p,X ‖[N]1/2∞ ‖Lp(�;X). (16.14)

Due to Definition 16.2.2(iv) it suffices to prove the above norm equivalence in the
case M and N becomes constant after some fixed time T .

Step 1: The Finite Dimensional Case Assume that M takes values in a finite
dimensional subspace Y of X and that the right hand side of (16.14) is finite. Then
we can write N(t, s) = M(t)(s) = ∑n

j=1 Mj(t)xj (s), where each Mj is a scalar-
valued martingale with Mj(T ) ∈ Lp(�) and x1, . . . , xn ∈ X form a basis of Y .
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Note that for any c1, . . . , cn ∈ Lp(�) we have that

∥
∥
∥

n∑

j=1

cjxj

∥
∥
∥

Lp(�;X)
�p,Y

n∑

j=1

‖cj‖Lp(�). (16.15)

Fix m ≥ 1. Then by (16.3) and Doob’s maximal inequality

∥
∥ sup

t≥0
‖M(t, ·)‖X

∥
∥

Lp(�)
�p ‖M(T, ·)‖Lp(�;X)

=
∥
∥
∥

m
∑

i=1

MT i
m

− MT (i−1)
m

∥
∥
∥

Lp(�;X)

�p,X

∥
∥
∥

( m
∑

i=1

∣
∣MT i

m
− MT (i−1)

m

∣
∣
2
) 1

2
∥
∥
∥

Lp(�;X)
,

(16.16)

and by (16.15) and Lemma 16.4.3 the right hand side of (16.16) converges to

‖[M]1/2∞ ‖Lp(�;X) = ‖[N]1/2∞ ‖Lp(�;X).

Step 2: Reduction to the Case Where M Takes Values in a Finite Dimensional
Subspace of X Let M(T ) ∈ Lp(�; X). Then we can find simple functions (ξn)n≥1
in Lp(�; X) such that ξn → M(T ). Let Mn(t) = E(ξn|Ft ) for all t ≥ 0 and n ≥ 1,
(Nn)n≥1 be the corresponding martingale fields. Then each Mn takes values in a
finite dimensional subspace Xn ⊆ X, and hence by Step 1

∥
∥ sup

t≥0
‖Mn(t, ·) − Mm(t, ·)‖X

∥
∥

Lp(�)
�p,X ‖[Nn − Nm]1/2∞ ‖Lp(�;X)

for any m,n ≥ 1. Therefore since (ξn)n≥1 is Cauchy in Lp(�; X), (Nn)n≥1
converges to some N in MQp(X) by the first part of Proposition 16.4.2.

Let us show that N is the desired local martingale field. Fix t ≥ 0. We need
to show that N(·, t, ·) = Mt a.s. on �. First notice that by the second part of
Proposition 16.4.2 there exists a subsequence of (Nn)n≥1 which we will denote by
(Nn)n≥1 as well such that Nn(·, t, σ ) → N(·, t, σ ) in L1(�) for a.e. σ ∈ S. On the
other hand by Jensen’s inequality

∥
∥
E|Nn(·, t, ·) − Mt |

∥
∥
X

= ∥
∥
E|Mn(t) − M(t)|∥∥

X
≤ E‖Mn(t) − M(t)‖X → 0, n → ∞.

Hence Nn(·, t, ·) → Mt in X(L1(�)), and thus by Remark 16.2.3 in L0(S; L1(�)).
Therefore we can find a subsequence of (Nn)n≥1 (which we will again denote by
(Nn)n≥1) such that Nn(·, t, σ ) → Mt(σ) in L1(�) for a.e. σ ∈ S (here we use
the fact that μ is σ -finite), so N(·, t, ·) = Mt a.s. on � × S, and consequently by
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Definition 16.2.2(iii), N(ω, t, ·) = Mt(ω) for a.a. ω ∈ �. Thus (16.14) follows by
letting n → ∞.

Step 3: Reduction to the Case Where the Left-Hand Side of (16.14) is Finite
Assume that the left-hand side of (16.14) is infinite, but the right-hand side is finite.
Since M is a local Lp-martingale we can find a sequence of stopping times (τn)n≥1
such that τn ↑ ∞ and ‖Mτn

T ‖Lp(�;X) < ∞ for each n ≥ 1. By the monotone
convergence theorem and Definition 16.2.2(iv)

‖[N]1/2∞ ‖Lp(�;X) = lim
n→∞ ‖[Nτn ]1/2∞ ‖Lp(�;X) �p,X lim sup

n→∞
‖Mτn

T ‖Lp(�;X)

= lim
n→∞ ‖Mτn

T ‖Lp(�;X) = lim
n→∞

∥
∥
∥ sup

0≤t≤T

‖Mτn
t ‖X

∥
∥
∥

Lp(�)

=
∥
∥
∥ sup

0≤t≤T

‖Mt‖X

∥
∥
∥

Lp(�)
= ∞

and hence the right-hand side of (16.14) is infinite as well. ��
We use an extrapolation argument to extend part of Theorem 16.4.1 to p ∈ (0, 1]

in the continuous-path case.

Corollary 16.4.4 Let X be a UMD Banach function space over a σ -finite measure
space and let p ∈ (0,∞). Let M be a continuous local martingale M : R+ ×
� → X with M(0, ·) = 0. Then there exists a continuous local martingale field
N : R+ × � × S → R such that for a.a. ω ∈ �, all t ≥ 0, and a.a. s ∈ S,
N(t, ω, ·) = M(t, ω)(s) and

∥
∥ sup

t≥0
‖M(t, ·)‖X

∥
∥

Lp(�)
�p,X

∥
∥[N]1/2∞

∥
∥

Lp(�;X)
. (16.17)

Proof By a stopping time argument we can reduce to the case where ‖M(t, ω)‖X

is uniformly bounded in t ∈ R+ and ω ∈ � and M becomes constant after a
fixed time T . Now the existence of N follows from Theorem 16.4.1 and it remains
to prove (16.17) for p ∈ (0, 1]. For this we can use a classical argument due to
Lenglart. Indeed, for both estimates we can apply [16] or [23, Proposition IV.4.7] to
the continuous increasing processes Y,Z : R+ × � → R+ given by

Yu = E sup
t∈[0,u]

‖M(t, ·)‖X,

Zu = ‖s �→ [N(·, ·, s)]1/2
u ‖X,
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where q ∈ (1,∞) is a fixed number. Then by (16.9) for any bounded stopping time
τ , we have

EY q
τ = sup

t≥0
‖M(t ∧ τ, ·)‖q

X �q,X E‖s �→ [N(· ∧ τ, ·, s)]1/2∞ ‖q

X

(∗)= E‖s �→ [N(·, ·, s)]1/2
τ ‖q

X = EZq
τ ,

where we used [13, Theorem 17.5] in (∗). Now (16.17) for p ∈ (0, q) follows from
[16] or [23, Proposition IV.4.7]. ��

As we saw in Theorem 16.3.2, continuity of M implies pointwise continuity of
the corresponding martingale field N . The following corollaries of Theorem 16.4.1
are devoted to proving the same type of assertions concerning pure discontinuity,
quasi-left continuity, and having accessible jumps.

Let τ be a stopping time. Then τ is called predictable if there exists a sequence
of stopping times (τn)n≥1 such that τn < τ a.s. on {τ > 0} for each n ≥ 1 and
τn ↗ τ a.s. A càdlàg process V : R+ × � → X is called to have accessible
jumps if there exists a sequence of predictable stopping times (τn)n≥1 such that
{t ∈ R+ : �V �= 0} ⊂ {τ1, . . . , τn, . . .} a.s.

Corollary 16.4.5 Let X be a UMD function space over a measure space (S,�,μ),
1 < p < ∞, M : R+ × � → X be a purely discontinuous Lp-martingale with
accessible jumps. Let N be the corresponding martingale field. Then N(·, s) is a
purely discontinuous martingale with accessible jumps for a.e. s ∈ S.

For the proof we will need the following lemma taken from [7, Subsection 5.3].

Lemma 16.4.6 Let X be a Banach space, 1 ≤ p < ∞, M : R+ × � → X be
an Lp-martingale, τ be a predictable stopping time. Then (�Mτ 1[0,t ](τ ))t≥0 is an
Lp-martingale as well.

Proof of Corollary 16.4.5 Without loss of generality we can assume that there exists
T ≥ 0 such that Mt = MT for all t ≥ T , and that M0 = 0. Since M has accessible
jumps, there exists a sequence of predictable stopping times (τn)n≥1 such that a.s.

{t ∈ R+ : �M �= 0} ⊂ {τ1, . . . , τn, . . .}.

For each m ≥ 1 define a process Mm : R+ × � → X in the following way:

Mm(t) :=
m

∑

n=1

�Mτn1[0,t ](τn), t ≥ 0.

Note that Mm is a purely discontinuous Lp-martingale with accessible jumps by
Lemma 16.4.6. Let Nm be the corresponding martingale field. Then Nm(·, s) is a
purely discontinuous martingale with accessible jumps for almost any s ∈ S due
to Remark 16.3.3. Moreover, for any m ≥ 	 ≥ 1 and any t ≥ 0 we have that a.s.
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[Nm(·, s)]t ≥ [N	(·, s)]t . Define F : R+ × � × S → R+ ∪ {+∞} in the following
way:

F(t, ·, s) := lim
m→∞[Nm(·, s)]t , s ∈ S, t ≥ 0.

Note that F(·, ·, s) is a.s. finite for almost any s ∈ S. Indeed, by Theorem 16.4.1
and [27, Theorem 4.2] we have that for any m ≥ 1

∥
∥[Nm]1/2∞

∥
∥

Lp(�;X)
�p,X ‖Mm(T , ·)‖Lp(�;X) ≤ βp,X‖M(T, ·)‖Lp(�;X),

so by Definition 16.2.2(iv), F(·, ·, s) is a.s. finite for almost any s ∈ S and

∥
∥F

1/2∞
∥
∥

Lp(�;X)
= ∥

∥F
1/2
T

∥
∥

Lp(�;X)
= lim

m→∞
∥
∥[Nm]1/2

T

∥
∥

Lp(�;X)

�p,X lim sup
m→∞

‖Mm(T , ·)‖Lp(�;X) �p,X ‖M(T, ·)‖Lp(�;X).

Moreover, for almost any s ∈ S we have that F(·, ·, s) is pure jump and

{t ∈ R+ : �F �= 0} ⊂ {τ1, . . . , τn, . . .}.

Therefore to this end it suffices to show that F(s) = [N(s)] a.s. on � for a.e. s ∈ S.
Note that by Definition 16.2.2(iv),

∥
∥(F − [Nm])1/2(∞)

∥
∥

Lp(�;X)
→ 0, m → ∞ (16.18)

so by Theorem 16.4.1 (Mm(T ))m≥1 is a Cauchy sequence in Lp(�; X). Let ξ be
its limit, M0 : R+ × � → X be a martingale such that M0(t) = E(ξ |Ft ) for all
t ≥ 0. Then by [27, Proposition 2.14] M0 is purely discontinuous. Moreover, for
any stopping time τ a.s.

�M0
τ = lim

m→∞ �Mm
τ = lim

m→∞ �Mτ 1{τ1,...,τm}(τ ) = �Mτ ,

where the latter holds since the set {τ1, . . . , τn, . . .} exhausts the jump times of M .
Therefore M = M0 since both M and M0 are purely discontinuous with the same
jumps, and hence [N] = F (where F(s) = [M0(s)] by (16.18)). Consequently
N(·, ·, s) is purely discontinuous with accessible jumps for almost all s ∈ S. ��
Remark 16.4.7 Note that the proof of Corollary 16.4.5 also implies that Mm

t → Mt

in Lp(�; X) for each t ≥ 0.

A càdlàg process V : R+ × � → X is called quasi-left continuous if �Vτ = 0
a.s. for any predictable stopping time τ .

Corollary 16.4.8 Let X be a UMD function space over a measure space (S,�,μ),
1 < p < ∞, M : R+ × � → X be a purely discontinuous quasi-left continuous
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Lp-martingale. Let N be the corresponding martingale field. Then N(·, s) is a
purely discontinuous quasi-left continuous martingale for a.e. s ∈ S.

The proof will exploit the random measure theory. Let (J,J ) be a measurable
space. Then a family μ = {μ(ω; dt, dx), ω ∈ �} of nonnegative measures on
(R+ × J ;B(R+) ⊗ J ) is called a random measure. A random measure μ is called
integer-valued if it takes values in N ∪ {∞}, i.e. for each A ∈ B(R+) ⊗ F ⊗ J one
has that μ(A) ∈ N ∪ {∞} a.s., and if μ({t} × J ) ∈ {0, 1} a.s. for all t ≥ 0.

Let X be a Banach space, μ be a random measure, F : R+ × � × J → X be
such that

∫

R+×J ‖F‖ dμ < ∞ a.s. Then the integral process ((F � μ)t )t≥0 of the
form

(F � μ)t :=
∫

R+×J

F (s, ·, x)1[0,t ](s)μ(·; ds, dx), t ≥ 0,

is a.s. well-defined.
Any integer-valued optional P ⊗ J -σ -finite random measure μ has a compen-

sator: a unique predictable P ⊗ J -σ -finite random measure ν such that E(W �

μ)∞ = E(W � ν)∞ for each P ⊗ J -measurable real-valued nonnegative W (see
[12, Theorem II.1.8]). For any optional P ⊗ J -σ -finite measure μ we define the
associated compensated random measure by μ̄ = μ − ν.

Recall that P denotes the predictable σ -algebra on R+ ×� (see [13] for details).
For each P ⊗ J -strongly-measurable F : R+ × � × J → X such that E(‖F‖ �

μ)∞ < ∞ (or, equivalently,E(‖F‖�ν)∞ < ∞, see the definition of a compensator
above) we can define a process F � μ̄ by F � μ − F � ν. Then this process is a
purely discontinuous local martingale. We will omit here some technicalities for the
convenience of the reader and refer the reader to [12, Chapter II.1], [7, Subsection
5.4–5.5], and [14, 19, 20] for more details on random measures.

Proof of Corollary 16.4.8 Without loss of generality we can assume that there exists
T ≥ 0 such that Mt = MT for all t ≥ T , and that M0 = 0. Let μ be a random
measure defined on R+ × X in the following way

μ(A × B) =
∑

t≥0

1A(t)1B\{0}(�Mt),

where A ⊂ R+ is a Borel set, and B ⊂ X is a ball. For each k, 	 ≥ 1 we define a
stopping time τk,	 as follows

τk,	 = inf{t ∈ R+ : #{u ∈ [0, t] : ‖�Mu‖X ∈ [1/k, k]} = 	}.

Since M has càdlàg trajectories, τk,	 is a.s. well-defined and takes its values in
[0,∞]. Moreover, τk,	 → ∞ for each k ≥ 1 a.s. as 	 → ∞, so we can find a
subsequence (τkn,	n)n≥1 such that kn ≥ n for each n ≥ 1 and infm≥n τkm,	m → ∞
a.s. as n → ∞. Define τn = infm≥n τkm,	m and define Mn := (1[0,τn]1Bn) � μ̄,
where μ̄ = μ − ν is such that ν is a compensator of μ and Bn = {x ∈ X : ‖x‖ ∈
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[1/n, n]}. Then Mn is a purely discontinuous quasi-left continuous martingale by
[7]. Moreover, a.s.

�Mn
t = �Mt1[0,τn](t)1[1/n,n](‖�Mt‖), t ≥ 0.

so by [27] Mn is an Lp-martingale (due to the weak differential subordination of
purely discontinuous martingales).

The rest of the proof is analogous to the proof of Corollary 16.4.5 and uses the
fact that τn → ∞ monotonically a.s. ��

Let X be a Banach space. A local martingale M : R+ × � → X is called to
have the canonical decomposition if there exist local martingales Mc,Mq,Ma :
R+ × � → X such that Mc is continuous, Mq and Ma are purely discontinuous,
Mq is quasi-left continuous, Ma has accessible jumps, Mc

0 = M
q
0 = 0, and M =

Mc + Mq + Ma . Existence of such a decomposition was first shown in the real-
valued case by Yoeurp in [30], and recently such an existence was obtained in the
UMD space case (see [27, 28]).

Remark 16.4.9 Note that if a local martingale M has some canonical decomposi-
tion, then this decomposition is unique (see [13, 27, 28, 30]).

Corollary 16.4.10 Let X be a UMD Banach function space, 1 < p < ∞, M :
R+ × � → X be an Lp-martingale. Let N be the corresponding martingale field.
Let M = Mc + Mq + Ma be the canonical decomposition, Nc, Nq , and Na be
the corresponding martingale fields. Then N(s) = Nc(s) + Nq(s) + Na(s) is the
canonical decomposition of N(s) for a.e. s ∈ S. In particular, if M0 = 0 a.s., then M

is continuous, purely discontinuous quasi-left continuous, or purely discontinuous
with accessible jumps if and only if N(s) is so for a.e. s ∈ S.

Proof The first part follows from Theorem 16.3.2, Corollaries 16.4.5 and 16.4.8
and the fact that N(s) = Nc(s)+Nq(s)+Na(s) is then a canonical decomposition
of a local martingale N(s) which is unique due to Remark 16.4.9. Let us show the
second part. One direction follows from Theorem 16.3.2, Corollaries 16.4.5 and
16.4.8. For the other direction assume that N(s) is continuous for a.e. s ∈ S. Let
M = Mc + Mq + Ma be the canonical decomposition, Nc, Nq , and Na be the
corresponding martingale fields of Mc, Mq , and Ma . Then by the first part of the
theorem and the uniqueness of the canonical decomposition (see Remark 16.4.9)
we have that for a.e. s ∈ S, Nq(s) = Na(s) = 0, so Mq = Ma = 0, and hence
M is continuous. The proof for the case of pointwise purely discontinuous quasi-
left continuous N or pointwise purely discontinuous N with accessible jumps is
similar. ��
Remark 16.4.11 It remains open whether the first two-sided estimate in (16.9) can
be extended to p = 1. Recently, in [29] the second author has extended the second
two-sided estimate in (16.9) to arbitrary UMD Banach spaces and to p ∈ [1,∞).
Here the quadratic variation has to be replaced by a generalized square function.
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