
Chapter 14
Exchangeable Pairs on Wiener Chaos

Ivan Nourdin and Guangqu Zheng

Dedicated to the memory of Charles Stein, in remembrance of
his beautiful mind and of his inspiring, creative, very original
and deep mathematical ideas, which will, for sure, survive him
for a long time.

Abstract Nourdin and Peccati (Probab Theory Relat Fields 145(1):75–118, 2009)
combined the Malliavin calculus and Stein’s method of normal approximation to
associate a rate of convergence to the celebrated fourth moment theorem of Nualart
and Peccati (Ann Probab 33(1):177–193, 2005). Their analysis, known as the
Malliavin-Stein method nowadays, has found many applications towards stochastic
geometry, statistical physics and zeros of random polynomials, to name a few. In
this article, we further explore the relation between these two fields of mathematics.
In particular, we construct exchangeable pairs of Brownian motions and we discover
a natural link between Malliavin operators and these exchangeable pairs. By
combining our findings with E. Meckes’ infinitesimal version of exchangeable pairs,
we can give another proof of the quantitative fourth moment theorem. Finally, we
extend our result to the multidimensional case.

Keywords Stein’s method · Exchangeable pairs · Brownian motion ·
Malliavin calculus

14.1 Introduction

At the beginning of the 1970s, Charles Stein, one of the most famous statisticians
of the time, introduced in [24] a new revolutionary method for establishing
probabilistic approximations (now known as Stein’s method), which is based on
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the breakthrough application of characterizing differential operators. The impact
of Stein’s method and its ramifications during the last 40 years is immense (see
for instance the monograph [3]), and touches fields as diverse as combinatorics,
statistics, concentration and functional inequalities, as well as mathematical physics
and random matrix theory.

Introduced by Malliavin [7], Malliavin calculus can be roughly described as an
infinite-dimensional differential calculus whose operators act on sets of random
objects associated with Gaussian or more general noises. In 2009, Nourdin and
Peccati [14] combined the Malliavin calculus and Stein’s method for the first
time, thus virtually creating a new domain of research, which is now commonly
known as the Malliavin-Stein method. The success of their method relies crucially
on the existence of integration-by-parts formulae on both sides: on one side, the
Stein’s lemma is built on the Gaussian integration-by-parts formula and it is one of
the cornerstones of the Stein’s method; on the other side, the integration-by-parts
formula on Gaussian space is one of the main tools in Malliavin calculus. Interested
readers can refer to the constantly updated website [13] and the monograph [15] for
a detailed overview of this active field of research.

A prominent example of applying Malliavin-Stein method is the obtention (see
also (14.1) below) of a Berry-Esseen’s type rate of convergence associated to the
celebrated fourth moment theorem [19] of Nualart and Peccati, according to which
a standardized sequence of multiple Wiener-Itô integrals converges in law to a
standard Gaussian random variable if and only if its fourth moment converges to 3.

Theorem 14.1.1

(i) (Nualart, Peccati [19]) Let (Fn) be a sequence of multiple Wiener-Itô integrals
of order p, for some fixed p � 1. Assume that E[F 2

n ] → σ 2 > 0 as n → ∞.
Then, as n → ∞, we have the following equivalence:

Fn
law→ N(0, σ 2) ⇐⇒ E[F 4

n ] → 3σ 4.

(ii) (Nourdin, Peccati [14, 15]) Let F be any multiple Wiener-Itô integral of order
p � 1, such that E[F 2] = σ 2 > 0. Then, with N ∼ N(0, σ 2) and dT V standing
for the total variation distance,

dT V (F,N) � 2

σ 2

√
p − 1

3p

√
E[F 4] − 3σ 4.

Of course, (ii) was obtained several years after (i), and (ii) implies ‘⇐’ in
(i). Nualart and Peccati’s fourth moment theorem has been the starting point of a
number of applications and generalizations by dozens of authors. These collective
efforts have allowed one to break several long-standing deadlocks in several
domains, ranging from stochastic geometry (see e.g. [6, 21, 23]) to statistical physics
(see e.g. [8–10]), and zeros of random polynomials (see e.g. [1, 2, 4]), to name a few.
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At the time of writing, more than two hundred papers have been written, which use
in one way or the other the Malliavin-Stein method (see again the webpage [13]).

Malliavin-Stein method has become a popular tool, especially within the Malli-
avin calculus community. Nevertheless, and despite its success, it is less used by
researchers who are not specialists of the Malliavin calculus. A possible explanation
is that it requires a certain investment before one is in a position to be able to use it,
and doing this investment may refrain people who are not originally trained in the
Gaussian analysis. This paper takes its root from this observation.

During our attempt to make the proof of Theorem 14.1.1(ii) more accessible
to readers having no background on Malliavin calculus, we discover the following
interesting fact for exchangeable pairs of multiple Wiener-Itô integrals. When p � 1
is an integer and f belongs to L2([0, 1]p), we write IB

p (f ) to indicate the multiple
Wiener-Itô integral of f with respect to Brownian motion B, see Sect. 14.2 for the
precise meaning.

Proposition 14.1.2 Let (B,Bt )t�0 be a family of exchangeable pairs of Brownian
motions (that is, B is a Brownian motion on [0, 1] and, for each t , one has

(B,Bt )
law= (Bt , B)). Assume moreover that

(a) for any integer p � 1 and any f ∈ L2([0, 1]p),

lim
t↓0

1

t
E
[
IBt

p (f ) − IB
p (f )

∣∣σ {B}
]

= −p IB
p (f ) in L2(�).

Then, for any integer p � 1 and any f ∈ L2([0, 1]p),

(b) lim
t↓0

1

t
E
[(

IBt

p (f ) − IB
p (f )

)2|σ {B}
]

= 2p2
∫ 1

0
IB
p−1(f (x, ·))2dx in L2(�);

(c) lim
t↓0

1

t
E
[(

IBt

p (f ) − IB
p (f )

)4] = 0.

Why is this proposition interesting? Because, as it turns out, it combines perfectly
well with the following result, which represents the main ingredient from Stein’s
method we will rely on and which corresponds to a slight modification of a theorem
originally due to Elizabeth Meckes (see [11, Theorem 2.1]).

Theorem 14.1.3 (Meckes [11]) Let F and a family of random variables (Ft )t�0

be defined on a common probability space (�,F , P ) such that Ft
law= F for every

t � 0. Assume that F ∈ L3(�,G, P ) for some σ -algebra G ⊂ F and that in
L1(�),

(a) lim
t↓0

1

t
E[Ft − F |G] = −λF for some λ > 0,

(b) lim
t↓0

1

t
E[(Ft − F)2|G] = (2λ + S)Var(F ) for some random variable S,

(c) lim
t↓0

1

t
(Ft − F)3 = 0.
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Then, with N ∼ N(0, Var(F )),

dT V (F,N) � E|S|
λ

.

To see how to combine Proposition 14.1.2 with Theorem 14.1.3 (see also
point(ii) in Remark 14.5.1), consider indeed a multiple Wiener-Itô integral of the
form F = IB

p (f ), with σ 2 = E[F 2] > 0. Assume moreover that we have at
our disposal a family {(B,Bt )}t�0 of exchangeable pairs of Brownian motions,
satisfying the assumption (a) in Proposition 14.1.2. Then, putting Proposition 14.1.2
and Theorem 14.1.3 together immediately yields that

dT V (F,N) � 2

σ 2 E

[∣∣∣∣p
∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

∣∣∣∣
]

. (14.1)

Finally, to obtain the inequality stated Theorem 14.1.1(ii) from (14.1), it remains to
‘play’ cleverly with the (elementary) product formula (14.7), see Proposition 14.7.1
for the details.

To conclude our elementary proof of Theorem 14.1.1(ii), we are thus left to
construct the family {(B,Bt )}t>0. Actually, we will offer two constructions with
different motivations: the first one is inspired by Mehler’s formula from Gaussian
analysis, whereas the second one is more in the spirit of the so-called Gibbs
sampling procedure within Stein’s method (see e.g. [5, A.2]).

For the first construction, we consider two independent Brownian motions on
[0, 1] defined on the same probability space (�,F , P ), namely B and B̂ . We
interpolate between them by considering, for any t � 0,

Bt = e−tB +
√

1 − e−2t B̂.

It is then easy and straightforward to check that, for any t � 0, this new Brownian
motion Bt , together with B, forms an exchangeable pair (see Lemma 14.3.1). More-
over, we will compute below (see (14.10)) that E

[
IBt

p (f )
∣∣σ {B}] = e−pt IB

p (f )

for any p � 1 and any f ∈ L2([0, 1]p), from which (a) in Proposition 14.1.2
immediately follows.

For the second construction, we consider two independent Gaussian white noise
W and W ′ on [0, 1] with Lebesgue intensity measure. For each n ∈ N, we introduce
a uniform partition {�1, . . . ,�n} and a uniformly distributed index In ∼ U{1,...,n},
independent of W and W ′. For every Borel set A ⊂ [0, 1], we define Wn(A) =
W ′(A ∩ �In) + W(A \ �In). This will give us a new Gaussian white noise Wn,
which will form an exchangeable pair with W . This construction is a particular
Gibbs sampling procedure. The analogue of (a) in Proposition 14.1.2 is satisfied,
namely, if f ∈ L2([0, 1]p), F = IW

p (f ) is the pth multiple integral with respect to

W and F (n) = IWn

p (f ), we have

nE
[
F (n) − F

∣∣σ {W }]→ −pF in L2(�) as n → ∞.



14 Exchangeable Pairs on Wiener Chaos 281

To apply Theorem 14.1.3 in this setting, we only need to replace 1
t

by n and replace
Ft by F (n). To get the exchangeable pairs (B,Bn) of Brownian motions in this
setting, it suffices to consider B(t) = W([0, t]) and Bn(t) = Wn([0, t]), t ∈ [0, 1].
See Sect. 14.4 for more precise statements.

Finally, we discuss the extension of our exchangeable pair approach on Wiener
chaos to the multidimensional case. Here again, it works perfectly well, and it
allows us to recover the (known) rate of convergence associated with the remarkable
Peccati-Tudor theorem [20]. This latter represents a multidimensional counterpart
of the fourth moment theorem Theorem 14.1.1(i), exhibiting conditions involving
only the second and fourth moments that ensure a central limit theorem for random
vectors with chaotic components.

Theorem 14.1.4 (Peccati, Tudor [20]) Fix d � 2 and p1, . . . , pd � 1. For each
k ∈ {1, . . . , d}, let (F k

n )n�1 be a sequence of multiple Wiener-Itô integrals of order
pk . Assume that E[Fk

n F l
n] → σkl as n → ∞ for each pair (k, l) ∈ {1, . . . , d}2,

with � = (σkl)1�k,l�d non-negative definite. Then, as n → ∞,

Fn = (F 1
n , . . . , Fd

n )
law→ N ∼ N(0, �) ⇐⇒ E[(Fk

n )4] → 3σ 2
kk for all k ∈ {1, . . . , d}.

(14.2)

In [16], it is shown that the right-hand side of (14.2) is also equivalent to

E[‖Fn‖4] → E[‖N‖4] as n → ∞, (14.3)

where ‖ · ‖ stands for the usual Euclidean �2-norm of R
d . Combining the main

findings of [17] and [16] yields the following quantitative version associated
to Theorem 14.1.4, which we are able to recover by means of our elementary
exchangeable approach.

Theorem 14.1.5 (Nourdin, Peccati, Réveillac, Rosiński [16, 17]) Let F =
(F 1, . . . , F d) be a vector composed of multiple Wiener-Itô integrals Fk , 1 � k � d .
Assume that the covariance matrix � of F is invertible. Then, with N ∼ N(0,�),

dW(F,N) � ‖�‖
1
2
op‖�−1‖op

√
E[‖F‖4] − E[‖N‖4], (14.4)

where dW denotes the Wasserstein distance and ‖·‖op the operator norm of a matrix.

The currently available proof of (14.4) relies on two main ingredients: (1) simple
manipulations involving the product formula (14.7) and implying that

d∑
i,j=1

Var
(
pj

∫ 1

0
Ipi−1(fi(x, ·))Ipj −1(fj (x, ·))dx

)
� E[‖F‖4] − E[‖N‖4],
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(see [16, Theorem 4.3] for the details) and (2) the following inequality shown in
[17, Corollary 3.6] by means of the Malliavin operators D, δ and L:

dW (F,N) � ‖�‖
1
2
op‖�−1‖op

√√√√√ d∑
i,j=1

Var
(
pj

∫ 1

0
Ipi−1(fi (x, ·))Ipj −1(fj (x, ·))dx

)
.

(14.5)

Here, in the spirit of what we have done in dimension one, we also apply our
elementary exchangeable pairs approach to prove (14.5), with slightly different
constants.

The rest of the paper is organized as follows. Section 14.2 contains preliminary
knowledge on multiple Wiener-Itô integrals. In Sect. 14.3 (resp. 14.4), we present
our first (resp. second) construction of exchangeable pairs of Brownian motions,
and we give the main associated properties. Section 14.5 is devoted to the proof of
Proposition 14.1.2, whereas in Sect. 14.6 we offer a simple proof of Meckes’ Theo-
rem 14.1.3. Our new, elementary proof of Theorem 14.1.1(ii) is given in Sect. 14.7.
In Sect. 14.8, we further investigate the connections between our exchangeable pairs
and the Malliavin operators. Finally, we discuss the extension of our approach to the
multidimensional case in Sect. 14.9.

14.2 Multiple Wiener-Itô Integrals: Definition and
Elementary Properties

In this subsection, we recall the definition of multiple Wiener-Itô integrals, and
then we give a few soft properties that will be needed for our new proof of
Theorem 14.1.1(ii). We refer to the classical monograph [18] for the details and
missing proofs.

Let f : [0, 1]p → R be a square-integrable function, with p � 1 a given integer.
The pth multiple Wiener-Itô integral of f with respect to the Brownian motion
B = (B(x)

)
x∈[0,1] is formally written as

∫
[0,1]p

f (x1, . . . , xp)dB(x1) . . . dB(xp). (14.6)

To give a precise meaning to (14.6), Itô’s crucial idea from the fifties was to
first define (14.6) for elementary functions that vanish on diagonals, and then to
approximate any f in L2([0, 1]p) by such elementary functions.

Consider the diagonal set of [0, 1]p, that is, D = {(t1, . . . , tp) ∈ [0, 1]p : ∃i �=
j, ti = tj }. Let Ep be the vector space formed by the set of elementary functions on
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[0, 1]p that vanish over D, that is, the set of those functions f of the form

f (x1, . . . , xp) =
k∑

i1,...,ip=1

βi1...ip 1[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

where k � 1 and 0 = τ0 < τ1 < . . . < τk, and the coefficients βi1...ip are zero if any
two of the indices i1, . . . , ip are equal. For f ∈ Ep, we define (without ambiguity
with respect to the choice of the representation of f )

IB
p (f ) =

k∑
i1,...,ip=1

βi1...ip (B(τi1) − B(τi1−1)) . . . (B(τip ) − B(τip−1)).

We also define the symmetrization f̃ of f by

f̃ (x1, . . . , xp) = 1

p!
∑

σ∈Sp

f (xσ(1), . . . , xσ(p)),

where Sp stands for the set of all permutations of {1, . . . , p}. The following
elementary properties are immediate and easy to prove.

1. If f ∈ Ep, then IB
p (f ) = IB

p (f̃ ).

2. If f ∈ Ep and g ∈ Eq , then E[IB
p (f )] = 0 and

E[IB
p (f )IB

q (g)] =
{

0 if p �= q

p!〈f̃ , g̃〉L2([0,1]p) if p = q
.

3. The space Ep is dense in L2([0, 1]p). In other words, to each f ∈ L2([0, 1]p)

one can associate a sequence (fn)n�1 ⊂ Ep such that ‖f − fn‖L2([0,1]p) → 0 as
n → ∞.

4. Since

E
[
(IB

p (fn) − IB
p (fm))2] = p!‖f̃n − f̃m‖2

L2([0,1]p)

≤ p!‖fn − fm‖2
L2([0,1]p)

→ 0

as n,m → ∞ for f and (fn)n�1 as in the previous point 3, we deduce that the
sequence (Ip(fn))n�1 is Cauchy in L2(�) and, as such, it admits a limit denoted
by IB

p (f ). It is easy to check that IB
p (f ) only depends on f , not on the particular

choice of the approximating sequence (fn)n�1, and that points 1 to 3 continue to
hold for general f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q).

We will also crucially rely on the following product formula, whose proof is
elementary and can be made by induction. See, e.g., [18, Proposition 1.1.3].
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5. For any p, q � 1, and if f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q) are symmetric,
then

IB
p (f )IB

q (g) =
p∧q∑
r=0

r!
(

p

r

)(
q

r

)
IB
p+q−2r (f ⊗r g), (14.7)

where f ⊗r g stands for the rth-contraction of f and g, defined as an element of
L2([0, 1]p+q−2r) by

(f ⊗r g)(x1, . . . , xp+q−2r )

=
∫

[0,1]r
f (x1, . . . , xp−r , u1, . . . , ur )g(xp−r+1, . . . , xp+q−2r , u1, . . . , ur )du1 . . . dur .

Product formula (14.7) has a nice consequence, the inequality (14.8) below. It is a
very particular case of a more general phenomenon satisfied by multiple Wiener-Itô
integrals, the hypercontractivity property.

6. For any p � 1, there exists a constant c4,p > 0 such that, for any (symmetric)
f ∈ L2([0, 1]p),

E
[
IB
p (f )4] � c4,p E

[
IB
p (f )2]2 . (14.8)

Indeed, thanks to (14.7) one can write IB
p (f )2 =

p∑
r=0

r!
(

p

r

)2

IB
2p−2r (f ⊗r f ) so

that

E[IB
p (f )4] =

p∑
r=0

r!2
(

p

r

)4

(2p − 2r)!‖f ⊗̃rf ‖2
L2([0,1]2p−2r )

.

The conclusion (14.8) follows by observing that

p!2‖f ⊗̃rf ‖2
L2([0,1]2p−2r )

� p!2‖f ⊗r f ‖2
L2([0,1]2p−2r )

� p!2‖f ‖4
L2([0,1]p)

= E[IB
p (f )2]2.

Furthermore, for each n � 2, using (14.7) and induction, one can show that, with
c2n,p a constant depending only on p but not on f ,

E
[
IB
p (f )2n] � c2n,p E

[
IB
p (f )2]2n−1

.

So for any r > 2, there exists an absolute constant cr,p depending only on p, r

(but not on f ) such that

E
[|IB

p (f )|r] � cr,p E
[
IB
p (f )2]r/2

. (14.9)



14 Exchangeable Pairs on Wiener Chaos 285

14.3 Exchangeable Pair of Brownian Motions: A First
Construction

As anticipated in the introduction, for this construction we consider two independent
Brownian motions on [0, 1] defined on the same probability space (�,F , P ),
namely B and B̂ , and we interpolate between them by considering, for any t � 0,
Bt = e−tB + √

1 − e−2t B̂.

Lemma 14.3.1 For each t � 0, the pair (B,Bt ) is exchangeable, that is,

(B,Bt )
law= (Bt , B). In particular, Bt is a Brownian motion.

Proof Clearly, the bi-dimensional process (B,Bt ) is Gaussian and centered. More-
over, for any x, y ∈ [0, 1],
E[Bt(x)Bt (y)] = e−2tE[B(x)B(y)] + (1 − e−2t )E[B̂(x)B̂(y)] = E[B(x)B(y)]
E[B(x)Bt (y)] = e−tE[B(x)B(y)] = E[Bt(x)B(y)].

The desired conclusion follows. ��
We can now state that, as written in the introduction, our exchangeable pair

indeed satisfies the crucial property (a) of Proposition 14.1.2.

Theorem 14.3.2 Let p � 1 be an integer, and consider a kernel f ∈ L2([0, 1]p).
Set F = IB

p (f ) and Ft = IBt

p (f ), t � 0. Then,

E
[
Ft

∣∣σ {B}] = e−pt F. (14.10)

In particular, convergence (a) in Proposition 14.1.2 takes place:

lim
t↓0

1

t
E
[
IBt

p (f ) − IB
p (f )

∣∣σ {B}
]

= −p IB
p (f ) in L2(�). (14.11)

Proof Consider first the case where f ∈ Ep, that is, f has the form

f (x1, . . . , xp) =
k∑

i1,...,ip=1

βi1...ip 1[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

with k � 1 and 0 = τ0 < τ1 < . . . < τk , and the coefficients βi1...ip are zero if any
two of the indices i1, . . . , ip are equal. We then have

Ft =
k∑

i1,...,ip=1

βi1...ip (Bt (τi1 ) − Bt(τi1−1)) . . . (Bt(τip ) − Bt(τip−1))

=
k∑

i1,...,ip=1

βi1...ip

[
e−t (B(τi1 ) − B(τi1−1)) +

√
1 − e−2t (B̂(τi1 ) − B̂(τi1−1))

]

× . . . × [e−t (B(τi1 ) − B(τi1−1)) +
√

1 − e−2t (B̂(τip ) − B̂(τip−1))
]
.
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Expanding and integrating with respect to B̂ yields (14.10) for elementary f .
Thanks to point 4 in Sect. 14.2, we can extend it to any f ∈ L2([0, 1]p). Indeed,
given a general kernel f ∈ L2([0, 1]p), there exists a sequence {gm,m � 1} of
simple functions such that ‖gm − f ‖L2([0,1]p) → 0, as m → +∞; and this implies

E
{[IBt

p (f ) − IBt

p (gm)]2
} = p!‖gm − f ‖2

L2([0,1]p)
→ 0, as m → +∞. Since the

conditional expectation E
[ · |σ {B}] is a bounded linear operator in L2(�), we have

E
[
IBt

p (f )|σ {B}] = L2-limm→+∞E
[
IBt

p (gm)|σ {B}] = L2-limm→+∞e−pt IB
p (gm) = IB

p (f ) .

This concludes the proof of (14.10). We then deduce that

1

t
E
[
Ft − F

∣∣σ {B}] = e−pt − 1

t
F,

from which (14.11) now follows immediately, as F ∈ L2(�) and
e−pt − 1

t
→ −p

when t ↓ 0. ��

14.4 Exchangeable Pair of Brownian Motions: A Second
Construction

In this section, we present yet another construction of exchangeable pairs via
Gaussian white noise. We believe it is of independent interest, as such a construction
can be similarly carried out for other additive noises. This part may be skipped in a
first reading, as it is not used in other sections. And we assume that the readers are
familiar with the multiple Wiener-Itô integrals with respect to the Gaussian white
noise, and refer to [18, pp. 8–13] for all missing details.

Let W be a Gaussian white noise on [0, 1] with Lebesgue intensity measure ν,
that is, W is a centred Gaussian process indexed by Borel subsets of [0, 1] such
that for any Borel sets A,B ⊂ [0, 1], W(A) ∼ N

(
0, ν(A)

)
and E

[
W(A)W(B)

] =
ν(A ∩ B). We denote by G := σ {W } the σ -algebra generated by

{
W(A): A Borel

subset of [0, 1]}. Now let W ′ be an independent copy of W (denote by G′ = σ {W ′}
the σ -algebra generated by W ′) and In be a uniform random variable over {1, . . . , n}
for each n ∈ N such that In, W,W ′ are independent. For each fixed n ∈ N, we
consider the partition [0, 1] = ⋃n

j=1 �j with �1 = [0, 1
n
], �2 = ( 1

n
, 2

n
], . . . ,

�n = (1 − 1
n
, 1].

Definition 14.4.1 Set Wn(A) := W ′(A ∩ �In

) + W
(
A \ �In

)
for any Borel set

A ⊂ [0, 1].
Remark 14.4.2 One can first treat W as the superposition of

{
W |�j , j = 1, . . . , n

}
,

where W |�j denotes the Gaussian white noise on �j . Then according to In = j ,
we (only) replace W |�j by an independent copy W ′|�j so that we get Wn. This
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is nothing else but a particular Gibbs sampling procedure (see [5, A.2]), hence
heuristically speaking, the new process Wn shall form an exchangeable pair with W .

Lemma 14.4.3 W and Wn form an exchangeable pair with W , that is, (W,Wn)
law=

(Wn,W). In particular, Wn is a Gaussian white noise on [0, 1] with Lebesgue
intensity measure.

Proof Let us first consider m mutually disjoint Borel sets A1, . . . , Am ⊂ [0, 1].
Given D1,D2 Borel subsets of Rm, we have

P
((

W(A1), . . . ,W(Am)
) ∈ D1 ,

(
Wn(A1), . . . ,W

n(Am)
) ∈ D2

)

=
n∑

v=1

P
((

W(A1), . . . ,W(Am)
) ∈ D1 ,

(
Wn(A1), . . . ,W

n(Am)
) ∈ D2 , In = v

)

= 1

n

n∑
v=1

P
(
g(Xv, Yv) ∈ D1, g(X′

v, Yv) ∈ D2

)
,

where for each v ∈ {1, . . . , n},
• Xv := (W(A1 ∩ �v), . . . ,W(Am ∩ �v)

)
, X′

v := (W ′(A1 ∩ �v), . . . ,W
′(Am ∩

�v)
)
,

• Yv := (
W(A1 \ �v), . . . ,W(Am \ �v)

)
, and g is a function from R

2m to
R

m given by (x1, . . . , xm, y1, . . . , ym) �→ g
(
x1, . . . , xm, y1, . . . , ym

) = (
x1 +

y1, . . . , xm + ym

)
It is clear that for each v ∈ {1, . . . , n}, Xv,X

′
v and Yv are independent, therefore

g(Xv, Yv) and g(X′
v, Yv) form an exchangeable pair. It follows from the above

equalities that

P
((

W(A1), . . . ,W(Am)
) ∈ D1 ,

(
Wn(A1), . . . ,W

n(Am)
) ∈ D2

)

= 1

n

n∑
v=1

P
(
g(X′

v, Yv) ∈ D1, g(Xv, Yv) ∈ D2

)

= P
((

Wn(A1), . . . ,W
n(Am)

) ∈ D1 ,
(
W(A1), . . . ,W(Am)

) ∈ D2

)
.

This proves the exchangeability of
(
W(A1), . . . ,W(Am)

)
and

(
Wn(A1), . . . ,

Wn(Am)
)
.

Now let B1, . . . , Bm be Borel subsets of [0, 1], then one can find mutually
disjoint Borel sets A1, . . . , Ap (for some p ∈ N) such that each Bj is
a union of some of Ai’s. Therefore we can find some measurable φ :
R

p → R
m such that

(
W(B1), . . . ,W(Bm)

) = φ
(
W(A1), . . . ,W(Ap)

)
.

Accordingly,
(
Wn(B1), . . . ,W

n(Bm)
) = φ

(
Wn(A1), . . . ,W

n(Ap)
)
, hence
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(
W(B1), . . . ,W(Bm)

)
and

(
Wn(B1), . . . ,W

n(Bm)
)

are exchangeable. Now our
proof is complete. ��
Remark 14.4.4 For each t ∈ [0, 1], we set B(t) := W([0, t]) and Bn(t) :=
Wn([0, t]). Modulo continuous modifications, one can see from Lemma 14.4.3 that
B, Bn are two Brownian motions that form an exchangeable pair. An important
difference between this construction and the previous one is that (B,Bt ) is bi-
dimensional Gaussian process whereas B, Bn are not jointly Gaussian.

Before we state the analogous result to Theorem 14.3.2, we briefly recall the
construction of multiple Wiener-Itô integrals in white noise setting.

1. For each p ∈ N, we denote by Ep the set of simple functions of the form

f
(
t1, . . . , tp

) =
m∑

i1,...,ip=1

βi1...ip 1Ai1×...×Aip

(
t1, . . . , tp

)
, (14.12)

where m ∈ N, A1, . . . , Am are pair-wise disjoint Borel subsets of [0, 1], and
the coefficients βi1...ip are zero if any two of the indices i1, . . . ip are equal. It is
known that Ep is dense in L2([0, 1]p).

2. For f given as in (14.12), the pth multiple integral with respect to W is defined as

IW
p (f ) :=

m∑
i1,...,ip=1

βi1...ipW(Ai1) . . .W(Aip ) ,

and one can extend IW
p to L2([0, 1]p) via usual approximation argument. Note

IW
p (f ) is nothing else but IB

p (f ) with the Brownian motion B constructed in
Remark 14.4.4.

Theorem 14.4.5 If F = IW
p (f ) for some symmetric f ∈ L2([0, 1]p) and we set

F (n) := IWn

p (f ), then in L2(�,G, P ) and as n → +∞, nE
[
F (n)−F

∣∣G]→ −pF .

Proof First we consider the case where f ∈ Ep, we assume moreover that
F = ∏p

j=1 W(Aj) with A1, . . . , Ap mutually disjoint Borel subsets of [0, 1], and

accordingly we define F (n) = ∏p
j=1 Wn(Aj). Then, (we write [p] = {1, . . . , p},

Av = A ∩ �v for any A ⊂ [0, 1] and v ∈ {1, . . . , n})

n E
[
F(n)

∣∣G] = n E

⎧⎨
⎩

n∑
v=1

1{In=v}
p∏

j=1

[
W ′(Av

j ) + W(Aj \ �v)
] ∣∣G

⎫⎬
⎭

=
n∑

v=1

E

⎧⎨
⎩

p∏
j=1

[
W ′(Av

j ) + W(Aj \ �v)
] ∣∣G

⎫⎬
⎭ =

n∑
v=1

p∏
j=1

W
(
Aj \ �v

)
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=
n∑

v=1

{ ⎛⎝ p∏
j=1

W(Aj )

⎞
⎠−

p∑
k=1

W(Av
k)

⎛
⎝ ∏

j∈[p]\{k}
W(Aj )

⎞
⎠

+
p∑

�=2

(−1)�
∑

k1,...,k�∈[p]
all distinct

⎛
⎝ ∏

j∈[p]\{k1,...,k�}
W(Aj )

⎞
⎠W

(
Av

k1

) · · · W
(
Av

k�

) }

= n F − p F + Rn(F) ,

where Rn(F) =
p∑

�=2

(−1)�
∑

k1,...,k�∈[p]
all distinct

⎛
⎝ ∏

j∈[p]\{k1,...,k�}
W(Aj )

⎞
⎠ n∑

v=1

W
(
Av

k1

) · · · W
(
Av

k�

)
.

Then Rn(F ) converges in L2(�,G, P ) to 0, due to the fact that
∑n

v=1
∏q

i=1 W(Av
ki

)

converges in L2(�) to 0, as n → +∞, if q � 2 and all ki’s are distinct numbers.
This proves our theorem when f ∈ Ep.

By the above computation, we can see that if F = IW
p (f ) with f given in

(14.12), then

Rn(F ) =
m∑

i1,...,ip=1

βi1i2...ip

p∑
�=2

(−1)�
p∑

k1,...,k�=1
all distinct

⎛
⎝ ∏

j∈[p]\{k1 ,...,k�}
W(Aij )

⎞
⎠ n∑

v=1

W
(
Av

ik1

)···W(Av
ik�

)
.

Therefore, using Wiener-Itô isometry, we can first write
∥∥Rn(F )

∥∥2
L2(�)

as

p!
m∑

i1,...,ip=1

(
βi1i2 ...ip

)2 n∑
v=1

∥∥∥∥
p∑

�=2

(−1)�
∑

k1,...,k�∈[p]
all distinct

⎛
⎝ ∏

j∈[p]\{k1,...,k�}
W(Aij )

⎞
⎠W

(
Av

ik1

) · · · W
(
Av

ik�

)∥∥∥∥
2

L2(�)

,

and then using the elementary inequality (a1 + . . . + am)β � mβ−1∑m
i=1 |ai |β for

ai ∈ R, β > 1, m ∈ N, we have

∥∥∥∥
p∑

�=2

(−1)�
∑

k1,...,k�∈[p]
all distinct

⎛
⎝ ∏

j∈[p]\{k1,...,k�}
W(Aij )

⎞
⎠W

(
Av

ik1

) · · · W
(
Av

ik�

)∥∥∥∥
2

L2(�)

� 1

p∑
�=2

∑
k1,...,k�∈[p]

all distinct

∥∥∥∥
⎛
⎝ ∏

j∈[p]\{k1,...,k�}
W(Aij )

⎞
⎠W

(
Av

ik1

) · · · W
(
Av

ik�

)∥∥∥∥
2

L2(�)



290 I. Nourdin and G. Zheng

= 1

p∑
�=2

∑
k1,...,k�∈[p]

all distinct

⎛
⎝ ∏

j∈[p]\{k1,...,k�}
ν(Aij )

⎞
⎠ ν
(
Av

ik1

) · · · ν(Av
ik�

)

� 2

∑
k1,k2∈[p]

k1 �=k2

⎛
⎝ ∏

j∈[p]\{k1,k2}
ν(Aij )

⎞
⎠ ν
(
Av

ik1

)
ν
(
Av

ik2

)

where 1,2 (and 3 in the following) are some absolute constants that do
not depend on n or F . Note now for k1 �= k2,

∑n
v=1 ν

(
Av

ik1

) · ν
(
Av

ik2

)
�

ν
(
Aik1

)∑n
v=1 ν

(
Av

ik2

) = ν
(
Aik1

) · ν(Aik2

)
, thus,

∥∥Rn(F )
∥∥2

L2(�)
� p!

m∑
i1,...,ip=1

(
βi1i2...ip

)2
2

∑
k1,k2∈[p]

k1 �=k2

⎛
⎝ ∏

j∈[p]\{k1,k2}
ν(Aij )

⎞
⎠ ν
(
Aik1

)
ν
(
Aik2

)

� p!
m∑

i1,...,ip=1

(
βi1i2...ip

)2
3

∏
j∈[p]

ν(Aij ) = 3 · ‖F
∥∥2

L2(�)
.

Since
{
IW
p (f ) : f ∈ Ep

}
is dense in the pth Wiener chaos Hp, Rn : Hp → L2(�)

is a bounded linear operator with operator norm ‖Rn‖op �
√

3 for each n ∈ N.
Note the linearity follows from its definition Rn(F ) := nE

[
F (n) − F

∣∣G] + pF ,
F ∈ Hp.

Now we define

Cp :=
{

F ∈ Hp : R∞(F ) := lim
n→+∞ Rn(F ) is well defined in L2(�)

}
.

It is easy to see that Cp is a dense linear subspace of Hp and for each f ∈ Ep,
IW
p (f ) ∈ Cp and R∞(IW

p (f )) = 0. As

sup
n∈N

‖Rn‖op �
√

3 < +∞ ,

R∞ has a unique extension to Hp and by density of
{
IW
p (f ) : f ∈ Ep

}
in Hp,

R∞(F ) = 0 for each F ∈ Hp. In other words, for any F ∈ Hp, nE
[
F (n) − F

∣∣G]
converges in L2(�) to −pF , as n → +∞. ��
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14.5 Proof of Proposition 14.1.2

We now give the proof of Proposition 14.1.2, which has been stated in the
introduction. We restate it for the convenience of the reader.

Proposition 14.1.2 Let (B,Bt )t�0 be a family of exchangeable pairs of Brownian
motions (that is, B is a Brownian motion on [0, 1] and, for each t , one has

(B,Bt )
law= (Bt , B)). Assume moreover that

(a) for any integer p � 1 and any f ∈ L2([0, 1]p),

lim
t↓0

1

t
E
[
IBt

p (f ) − IB
p (f )

∣∣σ {B}
]

= −p IB
p (f ) in L2(�).

Then, for any integer p � 1 and any f ∈ L2([0, 1]p),

(b) lim
t↓0

1

t
E
[(

IBt

p (f ) − IB
p (f )

)2|σ {B}
]

= 2p2
∫ 1

0
IB
p−1(f (x, ·))2dx in L2(�);

(c) lim
t↓0

1

t
E
[(

IBt

p (f ) − IB
p (f )

)4] = 0.

Proof We first concentrate on the proof of (b). Fix p � 1 and f ∈ L2([0, 1]p), and
set F = IB

p (f ) and Ft = IBt

p (f ). First, we observe that

1

t
E
[
(Ft − F)2

∣∣σ {B}] = 1

t
E
[
F 2

t − F 2
∣∣σ {B}]− 2

t
F E

[
Ft − F

∣∣σ {B}].
Also, as an immediate consequence of the product formula (14.7) and the definition
of f ⊗r f , we have

p2
∫ 1

0
IB
p−1(f (x, ·))2dx =

p∑
r=1

rr!
(

p

r

)2

IB
2p−2r (f ⊗r f ).

Given (a) and the previous two identities, in order to prove (b) we are thus left to
check that

lim
t↓0

1

t
E
[
F 2

t − F 2
∣∣σ {B}] = −2p F 2 + 2

p∑
r=1

rr!
(

p

r

)2

IB
2p−2r (f ⊗r f ) in L2(�).

(14.13)

The product formula (14.7) used for multiple integrals with respect to Bt (resp. B)
yields

F 2
t =

p∑
r=0

r!
(

p

r

)2

IBt

2p−2r (f ⊗r f )
(

resp. F 2 =
p∑

r=0

r!
(

p

r

)2

IB
2p−2r (f ⊗r f )

)
.
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Hence it follows from (a) that

1

t
E
[
F 2

t − F 2
∣∣σ {B}] =

p−1∑
r=0

r!
(

p

r

)2 1

t
E[IBt

2p−2r (f ⊗r f ) − IB
2p−2r (f ⊗r f )|σ {B}]

−→
p−1∑
r=0

r!
(

p

r

)2

(2r − 2p)IB
2p−2r (f ⊗r f )

= −2p(F 2 − E[F 2]) + 2
p−1∑
r=1

rr!
(

p

r

)2

IB
2p−2r (f ⊗r f ),

which is exactly (14.13). The proof of (b) is complete.
Let us now turn to the proof of (c). Fix p � 1 and f ∈ L2([0, 1]p), and set

F = IB
p (f ) and Ft = IBt

p (f ), t � 0. We claim that the pair (F, Ft ) is exchangeable
for each t . Indeed, thanks to point 4 in Sect. 14.2, we first observe that it is enough
to check this claim when f belongs to Ep, that is, when f has the form

f (x1, . . . , xp) =
k∑

i1,...,ip=1

βi1...ip 1[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

with k � 1 and 0 = τ0 < τ1 < . . . < τk , and the coefficients βi1...ip are zero if any
two of the indices i1, . . . , ip are equal. But, for such an f , one has

F = IB
p (f ) =

k∑
i1,...,ip=1

βi1...ip (B(τi1 ) − B(τi1−1)) . . . (B(τip ) − B(τip−1))

Ft = IBt

p (f ) =
k∑

i1,...,ip=1

βi1...ip (Bt (τi1) − Bt (τi1−1)) . . . (Bt (τip ) − Bt(τip−1)),

and the exchangeability of (F, Ft ) follows immediately from those of (B,Bt ). Since
the pair (F, Ft ) is exchangeable, we can write

E
[
(Ft − F)4] = E

[
F 4

t + F 4 − 4F 3
t F − 4F 3Ft + 6F 2

t F 2]
= 2E[F 4] − 8E

[
F 3Ft

]+ 6E
[
F 2F 2

t

]
by exchangeability;

= 4E
[
F 3(Ft − F)

]+ 6E
[
F 2(Ft − F)2] after rearrangement;

= 4E
[
F 3E[(Ft − F)|σ {B}]]+ 6E

[
F 2E[(Ft − F)2|σ {B}]].
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Dividing by t and taking the limit t ↓ 0 into the previous identity, we deduce, thanks
to (a) and (b) as well, that

lim
t↓0

1

t
E
[(

Ft − F
)4] = −4pE[F 4] + 12p2 E

[
F 2
∫ 1

0
IB
p−1(f (x, ·))2dx

]
.

(14.14)

In particular, it appears that the limit of 1
t
E
[
(Ft − F)4

]
is always the same,

irrespective of the choice of our exchangeable pair of Brownian motions (B,Bt )

satisfying (a). To compute it, we can then choose the pair (B,Bt ) we want, for
instance, the pair constructed in Sect. 14.3. This is why, starting from now and for
the rest of the proof, (B,Bt ) refers to the pair defined in Sect. 14.3 (which satisfies
(a), that is, (14.11)). What we gain by considering this particular pair is that it
satisfies a hypercontractivity-type inequality. More precisely, there exists cp > 0
(only depending on p) such that, for all t � 0,

E[(Ft − F)4] � cp E[(Ft − F)2]2. (14.15)

Indeed, going back to the definition of multiple Wiener-Itô integrals as given in
Sect. 14.2 (first for elementary functions and then by approximation for the general
case), we see that Ft − F is a multiple Wiener-Itô integral of order p with respect
to the two-sided Brownian motion B = (B(s))s∈[−1,1], defined as

B(s) = B(s)1[0,1](s) + B̂(−s)1[−1,0](s).

But product formula (14.7) is also true for a two-sided Brownian motion, so the
claim (14.15) follows from (14.8) applied to B . On the other hand, it follows from
(b) that 1

t
E
[
(Ft − F)2

]
converges to a finite number, as t ↓ 0. Hence, combining

this fact with (14.15) yields

1

t
E
[(

Ft − F
)4] � cp t

(
1

t
E
[(

Ft − F
)2])2

→ 0 ,

as t ↓ 0. ��
Remark 14.5.1

(i) A byproduct of (14.14) in the previous proof is that

1

3

(
E[F 4] − 3σ 4) = E

[
F 2
(

p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

)]
. (14.16)

Note (14.16) was originally obtained by chain rule, see [15, equation (5.2.9)].
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(ii) As a consequence of (c) in Proposition 14.1.2, we have limt↓0
1
t
E
[|IBt

p (f ) −
IB
p (f )|3] = 0. Indeed,

1

t
E

[
|IBt

p (f ) − IB
p (f )|3

]
�
(

1

t
E

[(
IBt

p (f ) − IB
p (f )

)2]) 1
2
(

1

t
E

[(
IBt

p (f ) − IB
p (f )

)4]) 1
2

→ 0 , as t ↓ 0.

(iii) For any r > 2, in view of (14.9) and (14.15), there exists an absolute constant
cr,p depending only on p, r (but not on f ) such that

E
[|IB

p (f ) − IBt

p (f )|r] � cr,p E
[(

IB
p (f ) − IBt

p (f )
)2]r/2

.

Moreover, if F ∈ L2(�, σ {B}, P ) admits a finite chaos expansion, say, (for
some p ∈ N) F = E[F ] + ∑p

q=1 IB
q (fq), and we set Ft = E[F ] +∑p

q=1 IBt

q (fq), then there exists some absolute constant Cr,p that only depends
on p and r such that

E
[|F − Ft |r

]
� Cr,p E

[(
F − Ft

)2]r/2
.

14.6 Proof of E. Meckes’ Theorem 14.1.3

In this section, for sake of completeness and because our version slightly differs
from the original one given in [11, Theorem 2.1], we provide a proof of Theo-
rem 14.1.3, which we restate here for convenience.

Theorem 14.1.3 (Meckes [11]) Let F and a family of random variables (Ft )t�0

be defined on a common probability space (�,F , P ) such that Ft
law= F for every

t � 0. Assume that F ∈ L3(�,G, P ) for some σ -algebra G ⊂ F and that in
L1(�),

(a) lim
t↓0

1

t
E[Ft − F |G] = −λF for some λ > 0,

(b) lim
t↓0

1

t
E[(Ft − F)2|G] = (2λ + S)Var(F ) for some random variable S,

(c) lim
t↓0

1

t
(Ft − F)3 = 0.

Then, with N ∼ N(0, Var(F )),

dT V (F,N) � E|S|
λ

.
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Proof Without loss of generality, we may and will assume that Var(F ) = 1. It is
known that

dT V (F,N) = 1

2
sup E

[
ϕ(F ) − ϕ(N)

]
, (14.17)

where the supremum runs over all smooth functions ϕ : R → R with compact
support and such that ‖ϕ‖∞ � 1. For such a ϕ, recall (see, e.g. [3, Lemma 2.4]) that

g(x) = ex2/2
∫ x

−∞
(
ϕ(y) − E[ϕ(N)])e−y2/2 dy , x ∈ R,

satisfies

g′(x) − xg(x) = ϕ(x) − E[ϕ(N)] (14.18)

as well as ‖g‖∞ �
√

2π , ‖g′‖∞ � 4 and ‖g′′‖∞ � 2‖ϕ′‖∞ < +∞. In what
follows, we fix such a pair (ϕ, g) of functions. Let G be a differentiable function

such that G′ = g, then due to Ft
law= F , it follows from the Taylor formula in

mean-value form that

0 = E
[
G(Ft ) − G(F)

] = E
[
g(F )(Ft − F)

]+ 1

2
E
[
g′(F )(Ft − F)2]+ E[R] ,

with remainder R bounded by 1
6‖g′′‖∞ |Ft − F |3.

By assumption (c) and as t ↓ 0,

∣∣∣∣1t E[R]
∣∣∣∣ � 1

6
‖g′′‖∞

1

t
E
[|Ft − F |3]→ 0.

Therefore as t ↓ 0, assumptions (a) and (b) imply that

λE
[
g′(F ) − Fg(F)

]+ 1

2
E
[
g′(F )S

] = 0.

Plugging this into Stein’s equation (14.18) and then using (14.17), we deduce the
desired conclusion, namely,

dT V (F,N) � 1

2

‖g′‖∞
2λ

E|S| � E|S|
λ

. ��

Remark 14.6.1 Unlike the original Meckes’ theorem, we do not assume the

exchangeability condition (Ft , F )
law= (F, Ft ) in our Theorem 14.1.3. Our

consideration is motivated by Röllin [22].
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14.7 Quantitative Fourth Moment Theorem Revisited via
Exchangeable Pairs

We give an elementary proof to the quantitative fourth moment theorem, that is,
we explain how to prove the inequality of Theorem 14.1.1(ii) by means of our
exchangeable pairs approach. For sake of convenience, let us restate this inequality:
for any multiple Wiener-Itô integral F of order p � 1 such that E[F 2] = σ 2 > 0,
we have, with N ∼ N(0, σ 2),

dT V (F,N) � 2

σ 2

√
p − 1

3p

√
E[F 4] − 3σ 4. (14.19)

To prove (14.19), we consider, for instance, the exchangeable pairs of Brownian
motions {(B,Bt )}t>0 constructed in Sect. 14.3. We deduce, by combining Proposi-
tion 14.1.2 with Theorem 14.1.3 and Remark 14.5.1-(ii), that

dT V (F,N) � 2

σ 2
E

[∣∣∣∣p
∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

∣∣∣∣
]

. (14.20)

To deduce (14.19) from (14.20), we are thus left to prove the following result.

Proposition 14.7.1 Let p � 1 and consider a symmetric function f ∈ L2([0, 1]p).
Set F = IB

p (f ) and σ 2 = E[F 2]. Then

E

[(
p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

)2]
� p − 1

3p

(
E[F 4] − 3σ 4).

Proof Using the product formula (14.7), we can write

F 2 =
p∑

r=0

r!
(

p

r

)2

IB
2p−2r (f ⊗r f ) = σ 2 +

p−1∑
r=0

r!
(

p

r

)2

IB
2p−2r (f ⊗r f ),

as well as

p

∫ 1

0
IB
p−1(f (x, ·))2dx = p

p−1∑
r=0

r!
(

p − 1

r

)2

IB
2p−2r−2

(∫ 1

0
f (x, ·) ⊗r f (x, ·)dx

)

= p

p∑
r=1

(r − 1)!
(

p − 1

r − 1

)2

IB
2p−2r (f ⊗r f ) = σ 2 +

p−1∑
r=1

r

p
r!
(

p

r

)2

IB
2p−2r (f ⊗r f ) .



14 Exchangeable Pairs on Wiener Chaos 297

Hence, by the isometry property (point 2 in Sect. 14.2),

E

[(
p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

)2
]

=
p−1∑
r=1

r2

p2
r!2
(

p

r

)4

(2p − 2r)!‖f ⊗̃rf ‖2
L2([0,1]2p−2r )

.

On the other hand, one has from (14.16) and the isometry property again that

1

3

(
E[F 4] − 3σ 4) = E

[
F 2
(

p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

)]

= 1

3

(
E[F 4] − 3σ 4) =

p−1∑
r=1

r

p
r!2
(

p

r

)4

(2p − 2r)!‖f ⊗̃rf ‖2
L2([0,1]2p−2r )

.

The desired conclusion follows. ��

14.8 Connections with Malliavin Operators

Our main goal in this paper is to provide an elementary proof of Theorem 14.1.1(ii).
Nevertheless, in this section we further investigate the connections we have found
between our exchangeable pair approach and the operators of Malliavin calculus.
This part may be skipped in a first reading, as it is not used in other sections. It
is directed to readers who are already familiar with Malliavin calculus. We use
classical notation and so do not introduce them in order to save place. We refer
to [18] for any missing detail.

In this section, to stay on the safe side we only consider random variables F

belonging to

A :=
⋃
p∈N

⊕
r�p

Hr , (14.21)

where Hr is the rth chaos associated to the Brownian motion B. In other words,
we only consider random variables that are σ {B}-measurable and that admit a finite
chaotic expansion. Note that A is an algebra (in view of product formula) that is
dense in L2

(
�,σ {B}, P ).

As is well-known, any σ {B}-measurable random variable F can be written
F = ψF (B) for some measurable mapping ψF : RR+ → R determined P ◦ B−1

almost surely. For such an F , we can then define Ft = ψF (Bt ), with Bt defined
in Sect. 14.3. Another equivalent description of Ft is to define it as Ft = E[F ] +∑p

r=1 IBt

r (fr ), if the family (fr )1�r�p is such that F = E[F ] +∑p

r=1 IB
r (fr ).

Our main findings are summarized in the statement below.
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Proposition 14.8.1 Consider F,G ∈ A, and define Ft ,Gt for each t ∈ R+ as is
done above. Then, in L2(�),

(a) lim
t↓0

1

t
E
[
Ft − F

∣∣σ {B}
]

= LF ,

(b) lim
t↓0

1

t
E
[(

Ft − F
)
(Gt −G)|σ {B}

]
=L(FG) − FLG − GLF = 2 〈DF,DG〉.

Proof The proof of (a) is an immediate consequence of (14.11), the linearity of
conditional expectation, and the fact that LIB

r (fr ) = −r IB
r (fr ) by definition of

L. Let us now turn to the proof of (b). Using elementary algebra and then (a), we
deduce that, as t ↓ 0 and in L2(�),

1

t
E
[
(Ft − F)(Gt − G)

∣∣σ {B}]
= 1

t
E
[
FtGt − FG

∣∣σ {B}]− 1

t
F E

[
Gt − G

∣∣σ {W }]− 1

t
G E

[
Ft − F

∣∣σ {B}]
→ L(FG) − FLG − GLF .

Using L = −δD, D(FG) = FDG + GDF (Leibniz rule) and δ(FDG) =
Fδ(DG)−〈DF,DG〉 (see [18, Proposition 1.3.3]), it is easy to check that L(FG)−
FLG−GLF = 2〈DF,DG〉, which concludes the proof of Proposition 14.8.1. ��
Remark 14.8.2 The expression appearing in the right-hand side of (b) is nothing
else but 2 �(F,G), the (doubled) carré du champ operator.

To conclude this section, we show how our approach allows to recover the
diffusion property of the Ornstein-Uhlenbeck operator.

Proposition 14.8.3 Fix d ∈ N, let F = (F1, . . . , Fd ) ∈ Ad (with A given in
(14.21)), and � : Rd → R be a polynomial function. Then

L�(F) =
d∑

j=1

∂j�(F)LFj +
d∑

i,j=1

∂ij�(F )〈DFi,DFj 〉 . (14.22)

Proof We first define Ft = (F1,t , . . . , Fd,t ) as explained in the beginning of the
present section. Using classical multi-index notations, Taylor formula yields that

�(Ft ) − �(F ) =
d∑

j=1

∂j�(F )
(
Fj,t − Fj

)+ 1

2

d∑
i,j=1

∂i,j�(F )
(
Fj,t − Fj

)(
Fi,t − Fi

)

+
∑
|β|=3

3

β1! . . . βd ! (Ft − F)β
∫ 1

0
(1 − s)k

(
∂

β1
1 . . . ∂

βd

d �
)(

F + s(Ft − F)
)
ds .

(14.23)
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In view of the previous proposition, the only difficulty in establishing (14.22)
is about controlling the last term in (14.23) while passing t ↓ 0. Note first(
∂

β1
1 . . . ∂

βd

d �
)(

F + s(Ft − F)
)

is polynomial in F and (Ft − F), so our problem
reduces to show

lim
t↓0

1

t
E
[|Fα(Ft − F)β |] = 0 , (14.24)

for α = (α1, . . . , αd ), β = (β1, . . . , βd) ∈ (N ∪ {0})d with |β| � 3.
Indeed, (assume βj > 0 for each j )

1

t
E
[|F α(Ft − F)β |] � 1

t
E
[|F α |2]1/2

E
[|(Ft − F)β |2]1/2 by Cauchy-Schwarz inequality;

� E
[|F α|2]1/2 1

t

⎛
⎝ d∏

j=1

E
[
(Fj,t − Fj )

2|β|] βj
|β|

⎞
⎠

1/2

by Hölder inequality;

� C E
[|F α |2]1/2

t
|β|
2 −1

⎛
⎝ d∏

j=1

1

tβj
E
[
(Fj,t − Fj )

2
]βj

⎞
⎠

1/2

,

where the last inequality follows from point-(iii) in Remark 14.5.1 with C > 0
independent of t . Since Fα ∈ A and |β| � 3, (14.24) follows immediately from the
above inequalities. ��

14.9 Peccati-Tudor Theorem Revisited Too

In this section, we combine a multivariate version of Meckes’ abstract exchangeable
pairs [12] with our results from Sect. 14.3 to prove (14.5), thus leading to a fully
elementary proof of Theorem 14.1.5 as well.

First, we recall the following multivariate version of Meckes’ theorem (see [12,
Theorem 4]). Unlike in the one-dimensional case, it seems inevitable to impose the
exchangeability condition in the following proposition, as we read from its proof in
[12].

Proposition 14.9.1 For each t > 0, let (F, Ft ) be an exchangeable pair of centered
d-dimensional random vectors defined on a common probability space. Let G be a
σ -algebra that contains σ {F }. Assume that � ∈ R

d×d is an invertible deterministic
matrix and � is a symmetric, non-negative definite deterministic matrix such that

(a) lim
t↓0

1

t
E
[
Ft − F |G] = −�F in L1(�),

(b) lim
t↓0

1

t
E
[
(Ft − F)(Ft − F)T |G] = 2�� + S in L1(�, ‖ · ‖HS) for some matrix

S = S(F ), and with ‖ · ‖HS the Hilbert-Schmidt norm
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(c) lim
t↓0

d∑
i=1

1

t
E
[|Fi,t − Fi |3

] = 0, where Fi,t (resp. Fi) stands for the ith coordi-

nate of Ft (resp. F ).

Then, with N ∼ Nd(0,�),

(1) for g ∈ C2(Rd),

∣∣E[g(F )] − E[g(N)]∣∣ � ‖�−1‖op
√

d M2(g)

4
E

⎡
⎢⎣
√√√√√ d∑

i,j=1

S2
ij

⎤
⎥⎦ ,

where M2(g) := supx∈Rd

∥∥D2g(x)
∥∥

op with ‖ · ‖op the operator norm.
(2) if, in addition, � is positive definite, then

dW(F,N) � ‖�−1‖op‖�−1/2‖op√
2π

E

⎡
⎢⎣
√√√√√ d∑

i,j=1

S2
ij

⎤
⎥⎦ .

Remark 14.9.2 Constant in (2) is different from Meckes’ paper [12]. We took this
better constant from Christian Döbler’s dissertation [5], see page 114 therein.

By combining the previous proposition with our exchangeable pairs, we get the
following result, whose point 2 corresponds to (14.5).

Theorem 14.9.3 Fix d � 2 and 1 � p1 � . . . � pd . Consider a vector F :=(
IB
p1

(f1), . . . , I
B
pd

(fd)
)

with fi ∈ L2
([0, 1]pi

)
symmetric for each i ∈ {1, . . . , d}.

Let � = (σij ) be the covariance matrix of F , and N ∼ Nd(0,�). Then

(1) for g ∈ C2(Rd),

∣∣∣E[g(F )] − E[g(N)]
∣∣∣ �

√
d M2(g)

2p1

√√√√√ d∑
i,j=1

Var
(
pipj

∫ 1

0
Ipi−1(fi (x, ·))Ipj −1(fj (x, ·))dx

)
,

where M2(g) := supx∈Rd

∥∥D2g(x)
∥∥

op.
(2) if in addition, � is positive definite, then

dW(F,N) � 2‖�−1/2‖op

q1
√

2π

√√√√√ d∑
i,j=1

Var
(
pipj

∫ 1

0
Ipi−1(fi (x, ·))Ipj −1(fj (x, ·))dx

)
.
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Proof We consider Ft = (IBt

p1
(f1), . . . , I

Bt

pd
(fd)

)
, where Bt is the Brownian motion

constructed in Sect. 14.3. We deduce from (14.10) that

1

t
E
[
Ft − F |σ {B}] =

(
e−p1t − 1

t
IBt

p1
(f1), . . . ,

e−pdt − 1

t
IBt

pd
(fd)

)

implying in turn that, in L2(�) and as t ↓ 0,

1

t
E
[
Ft − F |σ {B}]→ −�F,

with � = diag(p1, . . . , pd) (in particular, ‖�−1‖op = p−1
1 ). That is, assumption

(a) in Proposition 14.9.1 is satisfied (with G = σ {B}). That assumption (c) in
Proposition 14.9.1 is satisfied as well follows from Proposition 14.1.2(c). Let us
finally check that assumption (b) in Proposition 14.9.1 takes place too. First, using
the product formula (14.7) for multiple integrals with respect to Bt (resp. B) yields

FiFj =
pi∧pj∑
r=0

r!
(

pi

r

)(
pj

r

)
IB
pi+pj −2r

(
fi ⊗r fj

)

Fi,t Fj,t =
pi∧pj∑
r=0

r!
(

pi

r

)(
pj

r

)
IBt

pi+pj −2r

(
fi ⊗r fj

)
.

Hence, using (14.11) for passing to the limit,

1

t
E
[
(Fi,t − Fi)(Fj,t − Fj )

∣∣σ {B}]− 1

t
E
[
Fi,tFj,t − FiFj

∣∣σ {B}]
= −1

t
Fi E

[
Fj,t − Fj |σ {B}]− 1

t
Fj E

[
Fi,t − Fi

∣∣σ {B}]

→ (pi + pj )FiFj =
pi∧pj∑
r=0

r!
(
pi

r

)(
pj

r

)
(p + q)IB

pi+pj −2r

(
fi ⊗r fj

)
as t ↓ 0.

Now, note in L2(�),

1

t
E
[
Fi,tFj,t − FiFj

∣∣σ {B}]

=
pi∧pj∑
r=0

r!
(

pi

r

)(
pj

r

)
1

t
E
[
IBt

pi+pj −2r

(
fi ⊗r fj

)− IB
pi+pj −2r

(
fi ⊗r fj

)∣∣σ {B}
]

→
pi∧pj∑
r=0

r!
(

pi

r

)(
pj

r

)
(2r − pi − pj )I

B
pi+pj −2r

(
fi ⊗r fj

)
, as t ↓ 0, by (14.11) .
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Thus, as t ↓ 0,

1

t
E
[
(Fi,t − Fi)(Fj,t − Fj )

∣∣σ {B}] → 2

pi∧pj∑
r=1

r!r
(

pi

r

)(
pj

r

)
IB
pi+pj −2r

(
fi ⊗r fj

)

= 2pipj

∫ 1

0
IB
pi−1(fi(x, ·))IB

pj −1(fj (x, ·))dx ,

where the last equality follows from a straightforward application of the product
formula (14.7). As a result, if we set

Sij = 2pipj

∫ 1

0
Ipi−1(fi(x, ·))Ipj −1(fj (x, ·))dx − 2piσij

for each i, j ∈ {1, . . . , d}, then assumption (b) in Proposition 14.9.1 turns out
to be satisfied as well. By the isometry property (point 2 in Sect. 14.2), it is
straightforward to check that

pj

∫ 1

0
E
[
Ipi−1(fi(x, ·))Ipj −1(fj (x, ·))

]
dx = σij .

Therefore,

E

⎡
⎢⎣
√√√√√ d∑

i,j=1

S2
ij

⎤
⎥⎦ �

√√√√√ d∑
i,j=1

E
[
S2

ij

] = 2

√√√√√ d∑
i,j=1

Var
(
pipj

∫ 1

0
Ipi−1(fi (x, ·))Ipj −1(fj (x, ·))dx

)
.

Hence the desired results in (1) and (2) follow from Proposition 14.9.1. ��
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