Chapter 12 )
Uniform-in-Bandwidth Functional Limit Crehie
Laws for Multivariate Empirical

Processes

Paul Deheuvels

Abstract We provide uniform-in-bandwidth functional limit laws for multivariate
local empirical processes. Statistical applications to kernel density estimation are
given to motivate these results.
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12.1 Introduction and Motivation

We establish uniform-in-bandwidth functional limit laws for local empirical pro-
cesses in RY. Our main result, stated in Theorem 12.2.1, is motivated by statistical
applications presented in Theorem 12.1.1. Let X* = (X, Y) € R*! with X :=
(X(1),...,X(d) €e R and Y € R, denote a random vector [rv], with continuous
density gx vy (-, -) on RI*t! — R4 x R, and support in J x L, where J and L are
bounded open subsets of R? and R, respectively. Under these assumptions, the
marginal density f(-) of X is continuous on R?, with f(x) = 0 forx ¢ J, and

fx) = / gx.y(x,y)dy for xe RY. (12.1)
L

Let K denote a family of kernels on R, namely, of mappings K : RY — R,
fulfilling conditions (K.1)-(K.4) below. For u := (u1,...,uq4) € R? and v :=
(w1, ...,v4) € RY, we write u < v when uj < vjforj =1,...,d. When
this condition holds, we set (u, v] := Hle(u j»vjl, and define likewise, with
obvious notation, [u, v] and (u, v). In general, by an interval in [r, s1¢ will be
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meant a product of d subintervals of [r, s]. We set 0 := (0,...,0) € R4 and
1:=(,...,1) € R4, and adopt a similar notation for oo := (oo, ..., 00).

(K.1) There existan A < o0, such that, for each K € I, K(t) = 0 when [t| > A
(with | - | denoting the Euclidian norm in RY);

(K.2) Thereexists a B < oo such that each K € K has a Hardy-Krause variation
Vuk (K) in Rd, fulfilling Vuk (K) < B (see Sect. 12.2.3 below for details);

(K.3) Each K(t) € K is aright-continuous function of t = (71, ..., t3);

(K.4) ForallK e K, fRd K(t)dt = 1 (where dt denotes Lebesgue measure).

Let ¥ : R — R denote a right-continuous function of bounded variation ||dy/ ||,
on L. We will denote by ||dy|| := ||dy||r the total variation of ¢ on R. In most of
our examples, ¢ will be a linear combination of the identity mapping, Z(y) = y,
and of the unit function, II(y) = 1, for y € R. Consider a sequence of independent
and identically distributed [iid] random replice X;" = X;,Y),i =1,2,..., of
X* = (X, Y). Introduce the kernel statistic indexed by K € IC,

Fomnr®) = o)~ Y g OK (7 (X %) for xeRY, (122)

i=1

where i > 0 is a bandwidth parameter. In particular, f,.5.K(X) := fi.n:n:K(X) is
the Parzen-Rosenblatt [29, 30] kernel estimator of f(x), which, under (K.1)—(K .4),
fulfills fRd fﬂ;n;h;K(X)dX =1.

Letl := 1_[7:1[”/"”/'] C Jwith —00 < u; <vj <ooforj=1,...,d be
such that f(x) > O for all x € I. The conditional expectation (or regression) of
¥ (Y), given that X = X, is continuous over X € I, and defined by

_fe® _ fy
F0 T fu)

= fEX) /Lllf(y)gx,y(X, y)dy for x €1,

my (x) == EW((Y)[X =x) (12.3)

where, for each measurable ¢ : R — R, rendering meaningful the expression below,
we set

So(X) :=/L¢(y)gx,y(x, y)dy for xelL (12.4)

In view of (12.1) and (12.4), for ¢ = 1I, (12.4) reduces to f(x) = f(x). Under the
above assumptions, the conditional variance of ¥ (Y), given X = X, is continuous
over x € I, and given by

2 (%) 1= Var (Y (1)|X = x) (12.5)

1
T f®) /L (U () — my ) gx.r(x, y)dy for x € L.
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The kernel estimator of the regression function my, (x) = E(y (Y)|X = x) [25, 40],
is then defined, for x € I, by

S K (X)
o when  fir..p.k(X) > 0,
mw;n;h;K(X) =1 fmnk(X) St (12.6)

Yi=n"'3" Y, when frunkXx) <0.

Introduce, whenever properly defined, the centering factor

E(v (KR X —x)))

E(K(h—l/d(X B x))) (12.7)

E (mw;n;h;K(X)) =

Remark 12.1.1 Under (K.1)~(K .4), forx € I, we have E ( f,:4:k (X)) = f(x) and
E (ml/,;n;h;K(x)) — my(x), as h — 0. (see, e.g., [9]). Thus, in the study of the
consistency of fy. ;K (X) and 1y, ;K (X), we will limit ourselves to the evaluation
of the limiting behavior of the random components f,.p.x(x) — E ( S h;K(x)) and
Myin K (X) — B (my:k (X)) of the estimators.

Let 0 < ay < by, for n > 1, be sequences of real constants, and set log, x :=
log(x V e) for x € R. We have the following theorem.

Theorem 12.1.1 Assume (K.1)-(K.4), and let 0 < a, < b, be such that, as
n— oo,

na,/logn - oo and b, — 0. (12.8)

Then, with 'H,, := [ay, b, ], we have, as n — 00,

nh 1/2
{210g (1/h)} su;I)i T K (X) (12.9)
+ Xe
) = op(l),

nh 1/2
{210g (1/h)} Sull’i Meyin; K (X) (12.10)
+ X€
) = op(1).

sup ( sup
Kel \heH,

12
—E (funx®) | - {sup s K(t)zdt}

xel

and

sup ( sup
Kel \heH,

_ o2 (%) 12
-E (m¢;n;h;K(X)) ] - {sup }/j(x) /Rd K(t)zdt}

xel
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Remark 12.1.2
1°) When K = {K} andd = 1, (12.9) in Theorem 12.1.1 reduces to Theorem 2 of

Deheuvels and Ouadah [10]. This property does not hold for an arbitrary f(-),
when (12.8) is not fulfilled (see Remark 1 in [10]).

2°) By Theorem 12.1.1, taken with X = {K} and &, := a, = b, the condition

3°)

4°)

h, -0 and nh,/logn — oo, (12.11)

implies that, as n — oo,

nh, 1/2
{ZIOg (a/h )} U 2 { fo K (%) — E (fony k(0) ) (12.12)
+ n xe

P 1/2
— {sup fx) K(t)zdt} ,
R4

xel

and

nh, |2 _
E{my ik X) = E (mynon,: 12.13
{210g+(1/h,,)} SUP £{m iy K (%) (mymn,k(0)} - (12.13)

5 1/2
P Uw(x) 2
- !i‘iﬁ’ Fo0 Jpa WO

The limiting statement (12.12) is due to Deheuvels [8] for d = 1, and [6]
for d > 1 (see, e.g., Deheuvels and Einmahl [5], Deheuvels and Mason [9]).
Earlier, Silverman [32] had established (12.12) for d = 1, under more stringent
assumptions. Equation (12.13) is a particular case of Theorem 1.1 in Deheuvels
and Mason [9] for d = 1, and of Theorem 1.2 in Deheuvels [7] for d > 2. The
case where the rv Y has an unbounded support, will be considered elsewhere.
The conclusion of Theorem 12.1.1 remains valid when a,, < b,, are random
sequences such that (12.8) holds in probability. As follows from the results of
Deheuvels and Mason [8] and Deheuvels [5], additional conditions are required
to obtain an almost sure [a.s.] version of this theorem.

The properties of the estimators (12.2) and (12.6) have been extensively
investigated since the seminal work of Rosenblatt [30], Parzen [29], Nadaraya
[25] and Watson [40]. To allow data-dependent bandwidths, several authors
(see, e.g., Mason et al. [24], Nolan and Marron [27], Deheuvels [4], Deheuvels
and Mason [9]) have provided uniform-in-bandwidth limit laws for f, 5 (-), in
the spirit of (12.9) and (12.10). Einmahl and Mason [16, 17] initiated the use
of empirical processes indexed by functions to investigate this problem. For
example, Theorem 1 of [17] shows that, for each » > 0,

nh 1/2
lim sup ( sup { } (12.14)
n— 00 rl(:lgn <h<1 10g(1/h) \ loglogn

up | foink(®) — E (S ) 1) =1 K (U, 1) < o0,

xel
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a.s. for some (1, r). We refer to Mason [22], Mason and Swanepoel [23],
Dony [11, 13], Dony and Einmahl [12, 13], Dony et al. [15], Mason [21],
Viallon [38], Varron [36, 37] and van Keilegom and Varron [35], for details
on this methodology. In particular, an adaptation of the arguments of [16, 17]
should allow us to prove that, under (12.8), as n — 0o

sup | fumk®) — E (funk®)|  (12.15)

xel

{ nh }1/2
sup
heH, 210g+(1/h)

— {sup f(x) K(t)zdt} = op(1).
Rd

xel

It is not clear whether a proof of (12.9) (which is a stronger statement
that (12.15)) can be achieved or not by these methods. Here, we make use
of a different argument, based on the ideas of Deheuvels and Mason [8]
and Deheuvels [5]. Further references are that of Dony and Mason [14] and
Mason [20].

An outline of the remainder of our paper is as follows. We establish, in
Theorem 12.2.1 below, a functional limit law for multivariate increments of a non-
uniform empirical process (which is new, even for d = 1). To prove this theorem,
we rely on classical arguments, to obtain, in the forthcoming Sect. 12.3.1, rough
upper bounds for the modulus of continuity of multivariate empirical processes.
Our proof then reduces to show that, for each fixed M > 1, the N := M properly
rescaled increments of the multivariate empirical process over sets of the form
1—[7:1(/;};’ k";[r 1], cluster onto the unit ball of R¥. To establish this property, we
extend arguments of Deheuvels and Ouadah [10] to an dimension-free framework.
The proof of Theorem 12.1.1 given Theorem 12.2.1 is captured in Sect. 12.2.4
below. The proofs being quite lengthy, we limit ourselves to the main arguments.

12.2 Functional Limit Laws

12.2.1 Main Result

For d > 1, let (B([0, 119),U) denote the set B([0, 11¢) of bounded functions
on [0, 1]¢, endowed with the topology U, induced by the sup-norm |g| :=
SUp yepo,13¢ [g(W)]. Let AC([O, 11%) denote the set of absolutely continuous (with
respect to the Lebesgue measure) functions on [0, 114, and set ACy([0, 119) :=
{g € AC([O, 119) - g(0) = 0}, with 0 := (0,...,0) € R?. Foreach ¢ > 0
and g € B([O0, 11%), set Ne(g) = {¢ € B([0, l]d) o —gll < s}, and for each
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A C [0, 114, set A® := UgeAj\/g(g), with the convention that | J,(-) := . Define
the sup-norm Hausdorff set-distance of A, B € B([0, 1]d) by
A(A,B) :=inf{0 > 0: A C B and B C A%},
whenever such a 0 exists, and
A(A, B) := o0 otherwise.

Let g denote the Lebesgue derivative of g € AC([O, 1]d), and consider the Hilbert
norm, defined on B([O, 1]d) by

12
glm = {/ g(t)zdt} when g € ACy([0, 119),
(0,114
lglm := oo otherwise.

Set Sg = {g € B([0, 119) - lglm < 1}. For d = 1, we will use this notation
with subscripts omitted, and write, e.g., S for S;. The following relations follow
readily from the Schwarz inequality and the definitions of | - |y and S,. For any
¥ € B([0, 11%), we have

¥l <|¥lm and sup [Ig]l = 1. (12.16)
g€Sy

Letting X := Xy, X5, ... be as in Sect. 12.1, we denote the distribution function
[df] of X by F(x) := P(X < x) for x € R4, Here, we write x < y, for x =
(x(1),...,x(d) e RYandy = (y(1), ..., y(d)) € R%, whenever x(j) < y(j) for
j=1,...,d. Denote the empirical df based upon X1, ..., X, by

F,(x):=n"'#{X; <x:1<i<n} for xeR? (12.17)

where # denotes cardinality. Introduce the empirical process
an(x) :=n'?(F,(x) — F(x)) for xeRY. (12.18)
LetI C J, withI = H?Zl[uj,vj], and —o00 < uj <vj <ooforj=1,...,d,
be as in Sect. 12.1. We assume that the density f(-) of X is defined and continuous

on J, and bounded away from O on I C J. For a > 0, and x € I, we consider the
increment functions

Un(a; x; u) = {a,(x + a'/%) — a,(x)}/V/ f (%), (12.19)

for u e [0, 1]d,



12 Functional Limit Laws 207

and set, foreacha > 0,and L C 1,

Foan =] U@ oy (12.20)
V2alog, (1/a)
Our main theorem may now be stated as follows.
Theorem 12.2.1 Let 0 < a, < b, be such that, asn — oo,
b, - 0 and na,/logn — oo. (12.21)
Then, with H,, = [ay,, b, ], we have, as n — o0,
sup A (Fia:1, Sa) = op(1). (12.22)

aeH,

Remark 12.2.1

1°) It will become obvious from our proofs that the conclusion of Theorem 12.2.1
remains valid if, in the definition (12.19) of v(a; X; u), u is assumed to vary
in [—é, é] (or in any specified bounded interval [r, s], with r < ) instead of
[0, 1].

2°) To our best knowledge, the only version of Theorem 12.2.1 available up to now
correspond to d = 1, and under the assumption that X uniformly distributed on
(0, 1) (see, e.g., Theorem 1(1) of Deheuvels and Ouadah [10]). When a,, = b,
the problem has been considered by Deheuvels and Mason [8] and Deheuvels
[5D for d = 1, and by Mason [21] for d > 1. We note that the methods
of [10] cannot be extended to d > 2, since the proofs rely on invariance
principles for empirical processes, which are not presently available with the
proper approximation rates.

The proof of Theorem 12.2.1 is postponed until Sect. 12.3. In the forthcoming
Sect. 12.2.4, we shall provide a proof of Theorem 12.1.1 given Theorem 12.2.1.

12.2.2 A Limit Law for Local Empirical Processes Indexed
by Functions

Let K denote a class of measurable functions defined on R?, with support in

d
[—é, é] , and fulfilling (K.1)—(K.3). Following (2.3)—(2.4) in Mason [21], for
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eachn > 1,h > 0 and x € R4, denote the local empirical process at x indexed
by K € K by

Ey(h; x; K) := (nh)~1/? Z {K(h—l/d(x -X;) (12.23)
i=1

~EK(h ! (x— X))}
= Vnh { funk® = E (frnk®)]

and set, forx € I,

En(a; x; K)

Lp(a;x; K) = .
WX = tog, (1a)f 0

(12.24)

Remark 12.2.2 Mason [21] make use of different conditions imposed upon K. He
assumes, namely that

lim sup / [K(x+t) — Kx)]?dx =0,
1t >0 ke Jrd

lim sup [ [K(ix) — Kx)]*dx =0,
A‘)lKEIC Rd

12.2.3 Properties of Kernels

We discuss here (K.1)~(K.4). In (K.1), the choice of the interval [—A, A]? ¢ R¢
supporting the kernels K € I, is a matter of convenience, so that we will work,
without loss of generality, under the following variant of this assumption, for some

1
0<e<2.

(K.1)* EachK € K is such that K(t) = 0 forall t € I, := [¢, 1 — €]%.

The condition (K.2), requires each K € K to be of Hardy-Krause bounded
variation. For functions of several variables, this notion is involved (see, e.g., Adams
and Clarkson [1, 3], Niederreiter [26]), and some details must be given. The most
common forms of variation [18, 19, 39], are as follows (see, e.g., Niederreiter [26,
p- 22]). Set Iy = [0, 1]d, and,forl <k <landl <i; <... < i, <d,definea
face of Ip, by Io(iy, ..., ix) :={t=(t1,...,tqg) €lp :t; = 1for j & {i1, ..., ix}}.
By an interval J < I, will be meant a product of d subintervals of [0, 1]. Denote
the lower endpoint of 7 by t(J). For any function « defined on Iy, let A(x; J)
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denote the alternating sum of values of k at vertices of J, where k(t(J)) has
coefficient 1. The Vitali variation of k on I is then given by

Wy To) i= sup Y |AGe DI,
P 7Py

where the supremum is taken over all partitions P (Ip) of Iy into subintervals J <
Iy. The Hardy-Krause variation of k on I is, in turn, defined by

d

VHK(K;IO):Z{ > vv(x;lo(n,...,ik))},

k=1 " 1<ij<..<ip<d

which sums, over all faces Ip(iy, ..., ix) of Iy, the Vitali variation of the restriction
of k to Ip(iy, ..., ix). For d = 1, the Vitali and Hardy-Krause variations coincide
with the usual fotal variation. In these definitions, we may replace Iy by other
intervals of RY, via book-keeping arguments. In particular, we set, in (K.2),
Vi (k) == Vuk (k; R?) := sup,,~ Vik (5 [-m, m]9).

Subject to the existence of continuous partial derivatives of k, the Vitali and
Hardy-Krause variations of ¥ on Iy are given, respectively, by

3%k (t)
W(k; Ip) = dt,
V(K 0) /;0 3t1 Ce 3td
d k
ki (t)
0% 1 Ig) = dt;, ...dt ¢.
K (k5 Io) Z { Z /Io(il w |0t ot ih 1k}

k=1 " 1<ij<..<ip=<d® OV

In this case, an induction on d allows us to write, foreach0 <u <v <1,

d
K(V) - K(U) - Z { Z x/tEI()(il wenik), U<t<vV (1225)

k=1 " 1<ij<..<ip<d

%k (t)
— 1)k dt;, ...de, b,
=D 8l,'1 ... 01 ' i

In general, subject to Vyk(k; Ip) < oo, the totally bounded Lebesgue-Stieltjes
signed measure v = dk(-), associated with k and supported by Iy, is defined by
setting, for each continuous function ¢ on I,

d

t)dic(t) = I 12.26
/IO¢() #(t) Z{ 2. Pt (1220

k=1 ‘1<ij<..<ix<d' ~ 7

> (—1)k—d¢(t(J)>A(x;J)}.
T ePy(it,....ik))
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Here, we set [P(Io(i1, ..., ix))| — 0, when the supremum vertice length of the
intervals J € P(o(i1, ..., ir)) tends to 0. The kernel functions we consider have
simple expressions in terms of v = dk. When « is right-continuous, with «(t) = 0
fort ¢ I, = [e, 1 — €]?, k(0) = k(1) = 0, so that, by (12.26),

k@) = —v((t, 1) = v((0,t]) for telo. (12.27)

Observe that v = dk (-) in (12.27) is a totally bounded signed measure with support
in L. Letting v = v — v_ denote the Hahn-Jordan decomposition of v into the
difference of nonnegative bounded measures with supports in I, C Iy, we infer
from (12.27) that these component measures fulfill

k(0) = —v((0,1]) = —v(p) = —v{s) =v_I) —v4(I) =0,

sothat 0 < vi(I;) = v_(I;) < oo. Following Bouleau [2] (see, e.g., p. 166 in
Pages and Xiao [28]), we define the measure variation of k on Iy, by

Wk Io) = |ldkllm == [v[(To) := v+ (To) + v— (o). (12.28)
The above-defined variations are related through the inequalities
Wk Io) < Vulk: Io) < Vak(e: To) < 27 — DVu(x; To), (12.29)

where 29 — 1 stands for the number of faces Io(i1, ..., ix) of Ip. In view of (12.29),
under (K.1)*~(K.3), the assumption (K.2) is equivalent to:

(K.2)* There exists a B* < 0o such that each K € K has a measure variation in
I fulfilling VM (K; Ip) < B*.

Armed with these arguments, we establish, in Lemma 12.2.1 below, a useful
integration by parts formula. We consider nonnegative bounded measures u;, i =
1,2 and v;, i = 1,2, with supports in Ic := [e, 1 — e]d, and such that pu (L) =
mr(Le), and v (L) = va(Ie). Set, for0 <s <t <1,

MiGs.0 = {1 = o} () and M) = fv1 = w2} (5.

By (12.27), taken with v = d{—Ma(t, 1)} and k(t) = —Max(t, 1), we see that v| —
vy = d{—Ma(t, 1)} coincides with the Lebesgue-Stieltjes measure v induced by
—Mo(t, 1). Likewise, by (12.27), taken with v = dM> (0, t) and «(t) = M;(0, t),
we see that u; — u, = dM; (0, t) coincides with the Lebesgue-Stieltjes measure v
induced by M (0, t).
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Lemma 12.2.1 Under the assumptions above, we have the integration by parts
formula

M, (0, )dMa (t, 1) = f Mo (t, 1)dM, (0, ©). (12.30)
) Ip

Proof We limit ourselves to the case where M (0, t) and M»(t, 1) have continuous
partial derivatives of order d over t € R?. The proof in the general case is achieved
by a smoothing argument which we omit. Observe that, for all 1 < k < d and
1<ii<...<iy <d,wehave My(t,1) =0 fort € Ip(iy, ..., ir). Therefore, we
may rewrite (12.25) into

d
Ma(t, 1) = (—1)”’/ M D) (12.31)

sely, t<s<1 ds1...084

By a similar argument, with the formal replacement of Mj(t, 1) by M; (0, t), we
may rewrite (12.25) into

99M; (0,
M (0, t) = f 109 4 (12.32)
selp, 0<s<t 051 ...054

This shows that the signed measures w; — ny = dM;(0,t) and —{v; — v2} =
dM,(t, 1) are absolutely continuous with respect to the Lebesgue measure in RY,
with densities given, respectively, by

dM;(0,8)  37M;(0, 1)

m(t) :=
© dt daty ... oty

and
Mot D) _ 9 Ma(t, 1)

t) =
n(t) dt dty ...0tg

Set Mj.o(t) = m(t), My.o(t) = n(t), and, for 1 < k < d,

11 173
M, (1) =/ / m(s)dsy . ..dsg
0 0

and

1 1
M2;k(t)=/ / n(s)ds; .. .ds.
11 179

Qbserve that Mp.4(t) = M1(0, t), Ma.4(t) = Ma(t, 1), and, for 1 < k < d,
dile;k(t) = Mj.;_(t) and d‘ikMz;k(t) = —M,.;_((t). In addition, for I < k < d,
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M;i.x(t) = 0 when #x = 0 and My.x(t) = 0 when # = 1. We may therefore write
the chain of equalities

M; (0, t)dMa(t, 1) = (—1)¢ / M. (t)n(t)dt
[0,114 [0,1]4

= (—1)'1[ M. (OMp;o(t)dt = (—1)'1/ M. (t) a{;l My 1 (t)dt
[0,1]4 (0,114

=1
= [ [ MaoMao]
[0,1]‘1’1 Hh=

1
= | MiaOMa 0dn Jas . dig
0

= (! / Mg 1 (M (Hdt = . .. = / M0 ()M (t)dt
[0,13¢ [0,13¢

[ Musmmd= / Mo (t, M, (0, 1),
[0,114 [0,114

which is (12.30). O

Remark 12.2.3 The version of (12.30) corresponding to d = 1, is readily checked,
when m(-) and n(-) are continuous on [0, 1]. We obtain the relations

[ s e ] ]
AL ol ] - |

12.2.4 Proof of Theorem 12.1.1

For each K € I, set IN((u) K(—u), and let K= {IN( K € K}. Following the
arguments pp. 1278-1281 of [8], we may reduce the proof of (12.9) to the case
where K fulfills (K.1)*~(K. 2)* and (K.3), so that K(u) = K(—u) = 0 foru ¢
(0, ?. In view of (12.27), let dK( ) be the Lebesgue-Stieltjes measure induced by
K, insucha way that

—K@t) = / dK(u).
1]
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Let ip > 0 be so small that I—l—h(l)/d[O, 11¢ ¢ J. By an application of Lemma 12.2.1,

and making use of the definition (12.19) of v, (h; x; u), we see that, for each x € I,
and 0 < h < hy,

nh 1/2
{210g (1/h)} (fo.n®) = E (fan (%)) (12.33)
+

/ o d{a,(x + hY4a) — a,(x))
= K(u)
[0,17¢ V2hlog, (1/h)
1/d N
:_/ ap(x+ h'/%) — a,(x) &)
(0,134 V2hlog (1/h)

up(hsxsw) o~
__ dK ().
VI /lo,ud J2nlog, (1/m)

We will need the following analytical result (see, e.g., Lemma 1 in [10]). Let M
denote a subset of B([0, 1]1¢), such that Sy € M C B([0, 1]%), and let 7 denote a
non-empty class of mappings ® : M — R, continuous with respect to the uniform
topology on M. We assume that 7 has the following equicontinuity property. For
each € > 0, there exists an n(€) > 0 such that, for each ¢ € M and g € Sy, we
have

¢ —gll <nle) = GS)UI;|®(¢) -0 <e. (12.34)

Lemma 12.2.2 Under the assumptions above, for each € > 0, there exists a { (&) >
0, such that, for any F C M, we have

A(F,S) < ¢(e) = sup |sup O(¢p) — sup O(g)| < &. (12.35)
OcT |peF 8€Sq

Consider an arbitrary ® € 7. By compactness of S; and continuity of ®, there
exists a gg € Sy such that ©(ge) = SUPges, ®(g). Letting n(e) be as in (12.34),
we see that, for each ¢ > 0, and ¢ € M such that |¢p — ge| < n(e), we have
supg7 |©(¢) — O(go)| < &. In view of the implication A(F,Sy) < n(e) =
Sq € F1&) we see that A(F, Sy) < n(e) implies the existence of a ¢pg € F such
that ||[¢pe — gell < n(e). By an application of (12.34), we obtain therefore, that,
whenever A(F, Sy) < n(e),

VO €T : sup O(¢) — sup O(g) > O(pe) — O(ge) > —e. (12.36)
peF g€Sa
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Consider now the assumption

(H) : Vn>0,3¢eMﬂSz:sug_!@(d))—sugp@(g)}28}.
Oc g€Sq

Under (H), there exists a sequence (¢, ®,) € (M N S}/", T,n=12,...,

such that ¢, € M NS)/", and ©,(¢n) = supyes, Ou(g) + ¢, forall n > 1. The

condition ¢, € S}/ " implies the existence, for each n > 1, of a ¥, € S, such that
l¢n — ¥ull < 1/n. The compactness of S implies the existence of a convergent
subsequence V¥, — ¥ € Sy as k — oo. Since then, ||¢,, — V|| = 0, as k — oo,
an application of (12.34) shows that, as k — 00, supgc7 |®(¢nk) - @(1//)| — 0.
This entails that, for all k sufficiently large,

Oni () < On () + & < sup Op, (g) + &,
g€Sy

which contradicts (H). The impossibility of (H) implies the existence of an nj(g)

such that whenever F € M fulfills A(F, Sy) < n1(¢), and hence, F C Sg'(g), we
have

VO e T : sup O(p) — sup O(g) <e. (12.37)
peF g€Sy

The conclusion (12.35) follows from (12.36) to (12.37), with {(g) := n(e) A n1(e).
O
Example 12.2.1

1°) Let M = B([0,119), and T = {Op}, with Op(g) := |gll. Since
supgeT |O(@) — O(g)| = [I¢ — gll, we see that (12.34) holds with n(e) = ¢,
so that the assumptions of Lemma 12.2.2 are fulfilled.

2°) Let K, where K fulfill (K.1)*~(K.2)*—(K.3), and choose M as the set of
all bounded measurable functions on [0, 1]¢. The inclusions S; € M C
B([0, 119) are then straightforward. Consider the functionals

g € BVouk (10, 11%) — Ok (g) = /[0 L g)dK (u),

for K € K. In view of the obvious inequality, for g1, g2 € BVy([0, 1]d),

1Ok (g1) — Ok (g2)| < llg1 — &Il x Vm(K, Ip) < B*|Ig1 — g1l

we see that (12.34) is fulfilled, with n(e) = ¢/B*.
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By a rectangle in R? will be meant a product of d subintervals of R. Below, we
will denote by |A| the Lebesgue measure of a measurable A C R, Since f(-) is
continuous on J D I, for each 0 < € < v := infyer +/f(X), we may partition the
rectangle IintoI = I; U ... U Iy, where Iy, ..., Iy C I are disjoint rectangles in
R4 such that, forj=1,...,M,|I;| > 0and

mj = sup\/f(x)z inlf\/f(x)>mj—62v—e>0.
xel;

XEIj

Bysetting L =1;,forj =1,..., M, and a = hin (12.20), we may therefore write,

foreach j =1,..., M and 0 < h < hy, the relations
up(h; x;0) &
sup [{m; —/ f(x) / dK(u) (12.38)
xel; ! ! } [0,11¢ \/Zhlog_,,_(l/h)

<eqy sup gl / [dKw)| =¢q sup gl ¢ K],
8€Fmm1; [0,114 g€ Fnm1;

where ||[dK| < oo denotes the total variation of K(-) on R?. Set now ®(g) =
©o(g) := ligll and F = Fp;p:1;. In view of (12.16) and (12.20), and by a repeated
application of Theorem 12.2.1 with the formal replacement of I by I;, for j =
1,..., M, we infer from (12.22) that, whenever H,, = [a,, b,] fulfills (12.21), we
have, as n — o0,

sup
heH,

sup [|gll — sup [lgll| = sup
ge]'—n;h;lf gESd /’lGH,«,

sup IIgII—l‘ — op(1). (12.39)
gE]:n:h;Ij

We infer readily from (12.38) and (12.39) that, as n — oo,

]P’( max sup { p + {210;’21 o }1/2 (Fun®) —E (fur(x)) }
- )flelllj { D! /[o,l]d \/;Ziggj(r/)h) dﬁ(u)} = ZE”dK”)
=g gl b= vreo)
/[O’“d \/;Zizgj(;l/)h) AR (u) } > 26||dK||> - 0. (12.40)
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Set now

O(g) = O1(g) ===+ /[O » gwK()du.

We may rewrite (12.40) into

]P( max  sup
I<j=<M heH,

nh 1/2
{jggi{Zlog_’_(l/h)} (fnh(X)—E(fnh(x))) }

—mj sup O(g)
gE-Fn;h;Ij

> 2e||dK||> - 0. (12.41)

After integrating by parts, we combine the definition of S; with the Schwarz
inequality, to obtain that

sup ©(g) = sup { s / g(u)df((u)} (12.42)
8€Sy g€Sy (0,114

- 172
= sup { :t/ g(u)K(u)du} = {/ K(u)zdu} .
g€Sy [0,1]4 [0,1]4

For j = 1,...,M, set 7 = Fypx;. In view of (12.16)~(12.20), and by an
application of Theorem 12.2.1, with I = I;, for j = 1,..., M, we infer
from (12.22) that, whenever H,, = [a,, b, ] fulfills (12.21), we have, as n — o0,

max sup sup ©O(g) — sup O(g)
I<j<M peyy, g€ nm1; 8€S4
1/2
= max sup sup O(g) — {/ K(u)zdu} =op(1).
lS/SMhEHn gefn:h:lj [0’1]d

This, when combined with (12.41), implies that, as n — oo,
]P’( sup
heH,

1/2
_{ sup\/f(x)} {/ K(u)zdu}
xel [0,1]4

Since € € (0, ko] in (12.43) may be chosen arbitrarily small, we infer (12.9)
from (12.43). This, together with routine arguments completes the proof of (12.9),
given Theorem 12.2.1.

h 12
{ sup {210; Wn } (fan ) — E(fun(x))) } (12.43)
xe +

>e+ 26||dK||) — 0.
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12.3 Proof of Theorem 12.2.1

12.3.1 A Bound for the Oscillation Modulus

In Proposition 12.3.1 below, we establish a rough bound for the oscillation modulus
of the multivariate empirical process. This result will be instrumental in the proof
of Theorem 12.2.1. We will work under the assumption that the support of the
distribution of X is equal to [0, 1]d , and that the density f(-) of X is continuous and
bounded away from O on [0, 11¢. This implies the existence of constants Cq, C,
such that

0<Ci<f(x)<Cy<oo for xel0, 1], (12.44)
The assumption that flo 1 f(x)dx = 1, implies that C, C> in (12.44) fulfill

0<Ci<1=<(Cy<o0. (12.45)

Moreover, we may extend the definition of f(-) to Rd = [—o00, oo]d, by setting
fx)=0 for x¢][O0, l]d. (12.46)

This entails that the distribution function [df] F(x) = P(X < x) of X =
X),...,X@) e R?, is continuoqs on Rd. Foreach j = 1,...,d, set xU1 .=
(X1s ey Xjm1, Xj4 1, - . Xg) and dxV) :=dxy .. dxj_idxjqy ... dxq. As follows
from (12.44)—(12.46),_f0r each j = 1,...,d, the j-th coordinate X (j) of X has a
continuous density £1/1(-) on [0, 1], fulfilling, for all x; € [0, 1],

xlilg[0, 174!

Cr < Yk :/ Fx)dx < c,. (12.47)

This, in turn, implies that for each j = 1,...,d, the j-th marginal df of F(.),
denoted by FUUl(x) := P(X(j) < x), x € R, is continuous on R, and such that
U(j) = FUNX(j)) is uniformly distributed on [0, 1]. For j = 1,...,d, let
oUl) = inf{x : FUl(x) > 1},0 < ¢t < 1, QU1 (0) := inf{x : FUl(x) > 0},
QU(1) := sup{x : FUl(x) < 1}, denote the quantile function pertaining to FU/1(.).
For j = 1,...,d, we have, almost surely [a.s.], X(j) = QUI(U(})). Without
loss of generality, will therefore work on the set of probability 1 on which these
relations hold. It is noteworthy that, unless f(x) = ]_[;{=1 fUl(x;) for all x =
(x1,...,xq) €[0,1]%, the components U(1), ..., U(d) of U:={U(1),...,U(d))
are not independent. Their joint df, C(u) := P(U < u), u € R4, is the copula
function of F(-) (see, e.g., Schweizer and Wolff [31]). We have the reciprocal
relations

Fx) = C(FU ), ..., F¥0y) for x=(x1,...,x4) € R, (12.48)
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and

C) =F QM uy), ..., 09 uy) for u= (ui,...,uq) €[0,11¢. (12.49)
We_: infer from (12.47) that, foreach j = 1, ..., d, the j-th quantile density function
qV@) == & 0UN1), 1 € (0, 1), is defined and continuous on (0, 1), and fulfills, for

O0<t<l,

1 b
fi@Ulm) ~ ¢

The relations (12.44), (12.47)—(12.50), readily imply that the copula function C(-)

1 . d )
0 < gl = Ul = : 12.50
<C2_q @) dtQ @) 00 ( )

has a density c¢(-) on (0, 14, fulfilling the relations, for x = (x1, ..., x4) € (O, 1)d
andu = (uy, ..., uq) € (0, )¢
d
0<C < fx)= F(xq,...,xq)
0x1...0xg

d
= c(FM(xy), ..., Fi¥(xy)) ]—[ fUlx;) < Cy <00, (12.51)
j=1
ad

C
0 < = Cuy, ...,
= Cg = duy...oug (11 ua)

d
, C
= @M, ... 0Mwan [T gV wj) < 5 <00 (1252)
j=1 1

Letnow X; = (X;(1), ..., X;(d)),i > 1, be iid random copies of X, and set U; =
U; (1), ..., Ui(d)) := (F(X;(1)), ..., Fl9(X;(d))), i > 1. In agreement with
the notation of Sect. 12.2.1, the empirical df’s based, respectively, upon Uy, ..., U,
and X1, ..., X,,, are denoted by

C,(u) := nil#{U,' <u:l<i<n}, ueRd,
and
F,(x) := nil#{X,' <x:1<i<n}, x € R4,

The corresponding empirical processes are denoted by

() == n'2{C,(w) — C)}, ueR’

and 4
apr(x) == n'? {F,(x) —Fx)}, xeR"
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Denote the set of all rectangles in [0, 1]¢ by Ry. The empirical measures indexed
by R4, based, respectively, upon Uy, ..., U, and X1, ..., X,,, are denoted by

ppc(D) =n"'#{U;el:1<i<n}, IeRy,

and
ppp(D=n""#{X;el:1<i<n}, IeRy,

with expectations, given, respectively, by

uc(l) = /c(u)du and ur(l) = / fx)dx for [ e€Ry.
I 1
The corresponding empirical processes indexed by R, are denoted by

an.c(D) :=n'"* {upc) — pe)}  for IeRy,

and
anx (1) :==n"?{p, v (1) — pp()}  for I eRy.

For 0 < u,v < 1, consider the modulus of continuity of a,.c and a,.r, defined,
respectively, by

wp:c(v) = sup{|an;c(t+ vl)| : I € Ry, (12.53)
te[0, 119 t+ vl C 0, 1]”’},
wp;F(u) = sup {|an;]F(X+ ul)| 11 € Ry, x € Rd}- (12.54)

Recall the definition (12.44) of the constant C».
Lemma 12.3.1 Forall 0 < u < 1/C3, we have the inequality

wn;F(”) =< U)n;(C(C2u)- (12.55)
Proof Denote by R the set of all closed rectangles of R,. Since (12.55) is trivial

for u = 0, we assume that 0 < u < 1, and set, for x := (xq, ..., x4) € [0, 1]‘1 and
[:= 1’[321 [vj,2z;] €10, 119, 1 € Ry, such thatx + ul € [0, 1]%,

d
x+ul = [Jlrj. %), ;0. %] € [0, 119, (12.56)
j=1
where, for j = 1,...,d, rj(u, x) and s; (u, X) are such that

O0<rj(u,x):=x;+uy; <sju,x):=x;+uz; <1, (12.57)
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and
0<sju,x)—rju,x)=u(z; —yj) <u<l (12.58)

It is noteworthy that the mappings F and Q, defined by

x = (x(1),...,x(d)) €[0,1]¢ (12.59)
— Fx) = (FM (1)), ..., Fl9 @) € [0, 119,
u= w(),...,ud)el[0,1¢ (12.60)

— Q) := (0" (1)), ..., 0" w(@a)) € [0, 1%

are continuous mappings of [0, 174 onto itself, fulfilling F o @ = Qo F = 1,
where [ denotes identity. Therefore, for each i > 1, and I € Ry, the event
{Xi; € x + ul} is identical to the event {F(X;) = U; € F(x + ul)}. Now we
infer from (12.56), (12.57)—(12.58) and (12.59)—(12.60), that, with x, # and I as
above,

QL

Fectul) =] [F'fl(rj (w, %)), FY)(s; (u, x))] —t+ v,
j=1

where t € [0, l]d, v € (0,1]and J € R, are such that

t= (F[l](rl w.x)), .... F90, @, x))) ,

vJ =

—e

~
I
—

[0, FUl(s;(u, %)) — FUl(rj(u, x))] :
with

v:=Cwm and J:= l_ll Cout
j=

d . .
[OmewJ»—ﬂwnwmq_
By (12.47) and (12.57)—(12.58), we see that, for j = 1,...,dand 0 < u < 1,

0 < FUl(sj(u, %)) — FY1(rj (u, %))

< : sup f'f'(x)} (sj(u, %) —rj(u,x)) < Cou.

0<x<l1

Thus, we see that J C [0, 1]d, whereas the inequality 0 < v < 1 is implied by
the assumption 0 < u < 1/C,. By all this, whenever x € [0, 1]‘1, I € R4 and
0 < u < 1/Cy are such that x + ul C [0, 1]%, then F(x 4+ ul) C [0, 1]% is of the
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form t + vJ, for some t € [0, 1]d, J € Rg,and 0 < v = Cou < 1. In view of
the definitions (12.53)—(12.54) of w,.r(-) and wy.c(-), and, making use of a similar
argument for non-closed rectangles of R¢, we readily obtain (12.55). O

The following fact is a special case of Theorem 1.5 in Stute [34].

Fact 12.3.1 Foreach(0 < § < é, there exist constants 0 < c1(8), c2(8) < oo and
C3(8) > 0, such that, for all

d<c)8) and 0<t<ci(5) e
u C an < C B
=G = TN 210g(1/ud)
we have
P O (2) > t\/ sup c(x) | < C3(8)ud1=9=1), (12.61)
\/zud log., (1/ud) xel[0,1]¢

Lemma 12.3.2 There exist constants ¢3 > 0, c4 > 0, C4 > 0 and Cs > 0, such
that, whenever 0 < a, < b, < oo fulfill

nad

n > d b, <cy, 12.62
log(1/ad) = c3 an n < C4 ( )

we have, with H, = [a,, b, ], asn — oo,

P sup wn;(C(a)

> Cy | < Csb™. (12.63)
aeHy \/Zad log, (1/a4)

Proof First, we observe that, for any % <A <landh? < 1/e, log+(1/hd) =
log(1/h?) <log, (1/(Ah)4) = log(1/(xh)?), and, therefore,

U)n;(C()\h)
20 log, (1/(uhy)

onct) - Vlog(/hhy 2w (h)
= V2hdlog(1/h?) /A log(1/(h)4) T~ /2hdlog(1/hd)

(12.64)
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Let now 0 < @ < 1 be such that a9 < 1/e and select any N > 0. By a repeated
application of (12.64) for h = 27kgfork =0,..., N, we readily obtain that, for
each N > 0,

wp;c(h)

Ay =P sup : > 21442 [ qup ex) | (12.65)
2N-la<h<a \/Zhd log, (1/hd) xe[0, 114
N —d/2
2 .c(h
P U sup i (h) >2 | sup c(x)
k=0 | 27* 'ash=27*a \/Zhd log, (1/h9) xe[0,1]4
N 27412, (32 %a)
=< ZP sup ’ >2 [ sup c(x)
= \lax \/2(A2—ka)d log, (1/(A2~*a)d) xel0,11¢
N
27k
SZ omc(27"a) >2 [ sup c(x)
\/2(2 ka)log, (1/(2~*a)) xel0, 1}
Letnow O < a < 1and N > 0 be such that
n(2=Na)d

d 1 )
a® =ca(y) A{l/e} and 2 < Cl(4)\/210g(1/((2Na)")) ‘

By combining (12.65) with a repeated application of Fact 12.3.1, taken with § = }1,
t =2 (sothat (1 —8)t*—1=2)andu = 2 kafork=0,...,N,we readily obtain
that

N

Ay < C3(}) Z (2 "a) (12.66)

oo
k
= G(a Y (27) = des(ha®,

k=0
where we have used the fact that, independently of d > 1,
o0
1
Z (2—2d) <4
—2d = 3
k=0 -2
We now set a = b, and choose N > 0 in such a way that

27N-lg < g, <27 Vg, (12.67)
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sothata, <2 Va < 2a,.Next, we observe that the function () := t/log(1/1) is
increasing on (0, e]. Thus, if we assume that (an)d < e, we obtain that (2an)d <e,
and (a,)? < 27Va)? < e. We get therefore

n

na? - n(2 Na)d
2log(1/agd) = 2log(1/(2"Na)d))

By setting H, = [ay, b,], we infer from (12.65)—(12.67) that, whenever a, < b,
fulfill
nafll 4

bd < Cz(}t) A {L/e} A ’2—%} and 2log(1/a%) = ah?’
n 4

we have
Plsp =~ “C@ Lo | g e (12.68)
acH, \/Zad log, (1/a%) xe[0, 114
<Ay < 3C3()b".
Recalling (12.52), we set

Cy = 21+1/dC;/2C1_d/2 > 21+1/d\/ sup  c(x).
xe[0,114

We therefore infer from (12.68) that (12.63) holds under (12.62), when the constants
3, ¢4 and Cs are defined by

3 = 8/c1(})*,
cai= (e A {1/eb A [2*%})1/[1,

and Cs := 3C3(}). O

Proposition 12.3.1 There exist constants cs > 0, ¢ > 0, C¢ > 0 and C7 > 0,
such that, whenever 0 < a, < b, < oo fulfill

d

nag
> d b, <cg,
log(1/ady = 4 Im =16

we have, with H,, = [a,, by], asn — o0,

P| sup on¥ (@) > Co | < C702°. (12.69)
acH, \/Zad log . (1/a4)
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Proof We infer from (12.44) and (12.45) that 0 < 1/C, < 1. Thus, by (12.55), we
have, forall0 <a < {1/C} A1 =1/C>,

onr@ n:c(C2a) e {log(l/(Cza)d) }”2
J2adlog, (1/ad) | [2(Cra)? log, (1/(Caa)) log(1/a)
_ wnc(C2a) cir {1 1og<1/cz)}”2
J2(Caa) log, (1/(Cra)?) log(1/a)
- wp;c(Cra) el

- \/2(c2a)d log, (1/(Cra)?)

12.3.2 Basic Arguments

For convenience, in the proof of Theorem 12.2.1 below, we will set I := Iy :=
[0, 1]¢. The adaptation of our arguments to a general I is readily achieved, at the
price of heavier notation. Letting '(-) and F,,(-) be as in Sect. 12.2.1, we denote by
dFF,(-) (resp. dF(-)) the empirical (resp. underlying) measure pertaining to {X; :
1 <i < n}, and write da, () = n'/2(dF,(-) — dF(-)), where a,(-) is as in (12.18).
For N > 1, we denote by By := {z € R¥ : ||z| < 1} the unit ball of the Euclidian
norm ||z| := (z/z)l/2 in RY. For each z € R and ¢ > 0, we set N:(z) := {y €
RV : |y—z| < ¢}, and foreach E C RN, E? := | J,. N:(z). Forany E, F C RV,
we write

A(E,F):=inf{6 > 0: E C F? and F C EY},
whenever such a 0 exists, and

A(E, F) := oo otherwise.

Fix an integer M > 1, and select an 0 < ap < 1 such that, for all 0 < a < ap
and x € Iy = [0, 1]d, we have x + a'/9Iy C J. Leti := (iy, ..., iq) € N be such
that0 <i< (M —1) x 1, where 0 := (0,...,0) e R?and1:=(1,...,1) € R9.
Consider the array of N := M 4 random variables, defined, for 0 < i < M—-1)x1,
by

Zn;x;i(a) = JN

- day(t).  (12.70)
V2af (x)log, (1/a) Jxt(a/m)ditly)
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For each x € Ip and 0 < a < ay, denote by Z,,.x(a) € R" the random vector of R
obtained by sorting the array {Z,.x.i(a) : 0 <1i < (M — 1) x 1} in lexicographic
order. Foreach0 <a <apand 0 < A < 1 set

I(a; 1) = {x elp:x= Ajal/d forsome je Nd} .
Consider the set defined by
Ena:N) = {Zpx(a) 1 x € I(a; 1)}
We note for further use that, forO <a <agpand0 < A < 1,
#la; ) =#jeN :0<j<|(1/(a)] x 1} <2907%.
Observe that, for each x € I, there exists a X = X(x) € I(a; A) such that
X <x <X+ 11,

We will show that Theorem 12.1.1 is equivalent to the following statement.

Theorem 12.3.1 Set H,, = [an, by, where 0 < a, < b, fulfill, as n — oo,
b, - 0 and na,/logn — oo. (12.71)

Then, for each N = M >1and0 < A < 1, we have, as n — 00,

sup A (gn;a;N()L), BN) = op(1). (12.72)
aceH,

Proof of Theorem 12.3.1 To prove Theorem 12.1.1, we use of a discretization
argument due to Deheuvels and Ouadah [10]. For each 0 < p < 1 and H,, =
[ana bn], Set

Hu(p) = {pmbn € lan, byl :m € N} .

We note that H,(p) is never void, as long as 0 < a, < b,. Given this notation,
the proof of Theorem 12.1.1 reduces to show that, under (12.21), we have, for each
0<p<l,

sup A (Fuia:r. Sa) = op(1). (12.73)
acHu(p)

The details of this argument are given in [10] for d = 1. However, it is easy to see
that the same methods apply to an arbitrary d > 1, so that we omit details.
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In a second step, we show that Theorem 12.1.1 is equivalent to Theorem 12.3.1.
In view of the above preliminaries, this amounts to show that, under (12.71), the
property that the assertion (12.73) holds for each 0 < p < 1, is equivalent to the
property that, foreach0 < p < l and N = M >1,asn — oo,

sup A (Ewasn, By) = op(1). (12.74)
acHu(p)

To show the equivalence between (12.73) and (12.74), we follow the discretization
method used by Strassen [33] to establish his law of the iterated logarithm. The
corresponding details are given in the forthcoming Sect. 12.3.4 for d = 1. Their
extension to an arbitrary d > 1 is mostly a matter of book-keeping, with tedious
notation for higher dimensions. We will therefore limit ourselves to the essential
part of the argument. Consider the modulus of continuity of a,(-), defined, for 0 <
h <1,by

wp (h) := sup
ReR

) (12.75)

/ dan(x)
n/dR

where R denotes the set of all rectangles in I = [0, 1]‘1. Given these preliminaries,
the proof of the equivalence between (12.73) and (12.74) boils down to show that,
under (12.72), for each & > 0, there exists an N = M 4 guch that

wn(a/M)
P (aselgt)n \/2a log., (1/a) > s) — 0. (12.76)

This, in turn, will follow directly from Proposition 12.3.1 in the sequel. Given the
above arguments, the proof of the equivalence between Theorems 12.1.1 and 12.3.1
is now complete.

It remains to show that (12.74) holds for each choice of 0 < p < 1l and N =
M4 > 1. This property turns out to be a consequence of the limiting results (12.77)
and (12.78) below, which must hold, for each choice of ¢ > 0,0 < p < 1 and
N = M¢. In the first place, we have, under (12.72),

> P (& ey EBY) = 0. (12.77)
k:pkb,eH,

In the second place, we have, foreach 0 < ||z|| < 1,

> P@Eye&, oy Y EN(@) > 0. (12.78)
k:pkb,eH,

The only remaining part of our proof is to obtain the appropriate probabilistic
bounds allowing us to establish (12.77) and (12.78). Here, we use a simple trick.
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Since the probabilities in (12.77) and (12.78) evaluate deviations of centered and
rescaled multinomial random vectors in RV for a specified N > 1, we may
construct these multinomial laws in a space of arbitrary dimension d. This allows us
to make use of the probabilistic inequalities obtained by Deheuvels and Ouadah [10]
for d = 1. We note that the latter inequalities rely on strong invariance principles
whose extension in higher dimensions is not presently available. Fortunately, the use
of multinomial distributions allows us to avoid this technical difficulty. The proof
of (12.77) and (12.78), follows directly from the forthcoming Propositions 12.3.2
and 12.3.3. In view of these arguments, the proofs of Theorems 12.1.1 and 12.3.1 is
now completed. O

In the remainder of our paper, we outline the proofs of the key properties (12.76)—
(12.78), on which rely the above-given proofs of Theorems 12.1.1 and 12.3.1.

12.3.3 Multinomial Inequalities

Let N > 1 be an integer which will be specified later on. Let p := (p1,..., pn) €
RY fulfill p; > 0for j = 1,....,N and pyy1 == 1 —|p| := 1 = Y0 p; >
0. For each n > 1, we denote the fact that the random vector Z,,p.:ny =

(Zn;p:1s oo Zn;p:N) € RV follows a multinomial distribution with parameters n
and p, by Z,; . y 4 Mult(z; p). This holds whenever, for any N-uple of nonnegative
integers k := (ky,...,ky), such that kyy1 :=n — |k| :=n — Z;v:l kj =0, we
have
— 1) — n! ki kN1
PZupn =0) = gt PV PR

Foreaché = (61,...,8Nn) € RY, set 8] := Z?[:l d;, and consider
Dy = {5 = (81, 0N €RY 18, =0, j=1,... N; |5|=N}. (12.79)

Whenever § € Dy, set

0 < dmin := min §; <1 < dpax 1= max 4. (12.80)
1<j<N 1<j<N

We will set p = ad/N forsome 0 < a < 1, so that [p| = aN~'|§| =a < 1, and
consider the random vector

«/N Zn;aS/N;l —nady/N

m : cRV. 12.81
;n,a,s \/Zna 10g+(1/a) . | |
Zn:as)N:N — nady/N



228 P. Deheuvels

Denote by By := {z € R" : ||z|| < 1}, the unit ball of the Euclidian norm ||z|| :=
(z’z)l/2 in RV Let, foreachz € RV and e > 0, N, (z) :={y e RY : |y —z| < ¢},
and set, for each A € RN, A® := Uze AJ\/:E(z). We will need the following two
propositions.

Proposition 12.3.2 There exists a constant Co such that the following holds. For

each 0 < ¢ < 1, there exist constants 0 < ap(¢) < 1/e and 0 < cp(e) < oo,

together with an no(e) < oo, such that, for all n > ny(e) and a > 0 fulfilling
na/logn > co(e) and a < ap(e), (12.82)

and for all N > 1 and & € Dy fulfilling

1+ Lo
Vmin > | +28 , (12.83)
we have
P (& p:0:5 & By) < Coa' T/GN). (12.84)

The proof of Proposition 12.3.2 is captured in Sects. 12.3.4 and 12.3.5 below.

For the next proposition, we will need the following additional notation. We
consider a sequence 8(k) = (81(k),...,dn(k)) € Dy, k = 1,..., K, and set
ptk) = (p1k), ..., pn(k)) := ad(k)/N,fork =1,...,Kand0 <a < 1/K, so
that Y8, [p(k)| = aN~" K| 18] = Ka < 1. Given {§(k) : k = 1,..., K}, we
consider a sequence of random vectors

®) ® N
Ly on = (2 e 2o o) ERY. k=1, K,

such that, with obvious notation,

1
@) e T ) £ Mult(n p(). ... p(K)).
In view of (12.81), we consider the random vectors, fork =1, ..., K,
k
JN Zy i — 101 (K)
e : e RV, (12.85)

$oasth) \/2na log, (1/a) | '
w iy — PN (K)

Proposition 12.3.3 Fix any z € By such that 0 < ||z|| < 1. For each ¢ such that

1 1
O<e< Izl ¢ A ,
2 2N
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there exist an ay (e, z), together with ny(e) < 0o and ca(€) depending upon € only,
such that the following holds. For each §(1),...,8(K) € Dy, and ay, ..., ax,
whenever

K

1
nzm). o@En logn<an..a w9, Ya<, (1280
k=1
we have, for all 81, . .., 8k, fulfilling
! >1—-N d ! <1+N (12.87)
>1—Ne an < e, .
\/6 max \/amm
K K e
P (ﬂ {Cr(f)ak;am ¢N9N£(Z)}) = 2exp (_}x Zak_S/ ) - (12.88)
k=1 k=1

The proof of Proposition 12.3.3 is postponed until Sect. 12.3.6.

12.3.4 Outer Bounds

Let Uy, Us, ... beiid rv’s with a uniform (0, 1) distribution. Forn > 1 and r € R,
denote by U, (r) := nil#{Ui <t :1 < i < n} the empirical df based upon
Ui, ..., U, and by o, (1) := nl/z(an (t) — t), the uniform empirical process. For
n>1,a>0,re[0,1]and u € R, set

E(a; t;u) = oyt + au) — ay, (1). (12.89)

The following fact is Proposition 2 of Deheuvels and Ouadah [10].

Fact 12.3.2 There exists a constant Co such that the following holds. For each 0 <
& < 1, there exist constants 0 < aj(e) < 1/eand 0 < c1(g) < 00, together with an
ni1(e) < oo, such that, for alln > ni(e) and a > 0 fulfilling

na/logn > c1(¢) and a <aj(e), (12.90)

we have, forallt € [0, 1 — a],

énlast;-) ¢ lte
P (/2a log., (1/a) s ) < Cral't®. (12.91)
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The following lemmas are oriented towards the proof of Proposition 12.3.2.

Lemma 12.3.3 Forany g € B([0,1]) and 0 < 5,t < 1, we have

lg(t) — g(s)| < Iglmy/It — 5|, (12.92)

and, forany0 <t <t +h <1, we have

sup |g(t + hu) — g(t) —u(g(t +h) —g())| < IgIH\/ h, (12.93)

0<u<l

Proof When g & ACy([0, 1]), |g|lm = oo and (12.92)—(12.93) are trivial. Therefore,
we limit ourselves to g € ACp[0, 1]. The Schwarz inequality enables us to write the

relations
t t t
/g(u)du /du /g(u)2du
N N s

which yield (12.92).
For g € ACy([0, 1]), the function ¢ (u) := g(t +hu) —g() —u(g(t +h)—g(t)),
for 0 < u < 1, is such that

1/2 1/2

< < lgluy/It = s|,

1g(1) — g(s)| =

1
¢(0)=¢(1)=/0 dw)du = 0.

Moreover, setting ¥ (1) := hg(t + hu), for 0 < u < 1, we get

1
Gu) = hg(t + hu) — (gt +h) — g(1)) = Y (w) _/o Y (ndt.

Observe that
/ dw)du = / V() du — {/ I/I(Z‘)dt}
/ Y (u)du = h / §(5)%ds < higlg.
An easy argument shows that the supremum of |¢(c)| = | foc ¢(u)du| subject to the

constraints 0 < ¢ < 1, 9(0) = 0, [l ¢(u)du = 0 and [ ¢(u)*du < A, is equal
to é\/)\., and reached when ¢ = é and ¢(u) = VA, 0 < u < ;, o) = —/A,

; < u < 1. Since ¢ = ¢ fulfills these conditions with A := h|g|H2ﬂ, it follows that

the maximal possible value of ¢ on [0, 1] is less than or equal to | g|H\/ ;h We so
obtain (12.93). O
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Fix N > 1, apd let Dy be as in (12.79). For any § = (61, ...,6y) € Dy, set
tj(8) = N1 Zlﬁ:l 8;,for j =0,..., N, with the convention that } (-) := 0. As
in (12.80), set 8pmin = minj<;<y §;, and dypax = max;<;<y 6;. Consider the linear
maps Py:s(-) and Qp.5(-), defined by

g € B[O, 1] (12.94)

Y (818 — 8108
— Pr:s(g) = : eRY,

¥ (g tn @) — gy 1))

z=| : | eRY = Qy() € ACIO, 1], (12.95)

N

where we define Oy 5(z) forz = (z1,...,2N) € RN, by setting zg = 0, Zw(-) =0,
and,fork=1,..., N,

= /s N
Qn,s(@)(1) = ;\/A’, 2+ = t_1(8)) (12.96)
when t;,_1(8) <t < 1(3).

Lemma 12.3.4 For N > 1,8 € Dy, z € R and g € B([0, 1]), we have

Pn.s(Qn.5(2) = z; (12.97)
|On.s(Pr.s(8) —g|| < @N)?Igly/Smar: (12.98)
1Pyl < lglu and 19y s@lu = lzli; (12.99)
P3N < 2NIIg//8 min: (12.100)
PnsS) =By :={teRV :tt<1) (12.101)
On 5(By) CS C Qy s(By)onar/@N) (12.102)

Proof By (12.96), On s(@)(t;(8) — Ons@)(t;j-1(8)) = Zj\/5j/N for j =
1,..., N. Thus, by (12.94), we have Py 5(Qn 5(z)) = z, which is (12.97). Since
lglm = oo when g ¢ ACy([0, 1]), there is no loss of generality to assume
in our proofs of (12.98)—(12.99) that g € ACy([0, 1]). To establish (12.98) we
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observe that, for j = 0,..., N, Ons(Pn(g)(t;(8)) = g(t;(8)), so that, by
applying (12.93),for j =1,..., N, withh =§;/N, we get

5‘
g (t,-l(a) + ul\f,) — g(tj—1(8))

o)+ °) < gl \/(Sf
— i — ma ,
8\t N) 8\ S PRV 2N

which yields (12.98). To establish the first half of (12.99), we select a g €
ACpo[0,1] and set z = (z21,...,24) = Pn.s(g). It follows from (12.94) that

Zj = \/é\j (g(tj(8)) — g(tj—1(8))), for j = 1,...,d. Making use of the Schwarz

inequality, we get, in turn,

|On.s(Pn.s(g) —g| < max ( sup
1<j=N \ 0<u<1

N N . 2
2 oty 2 _ 1 @) .
IPns@IP =22=3 5 =N} &(w)du
Jj t

j=1 =1 j-1(8)

N zj(S) 1;(8) 1
Z / ([ swian) = [ swidn =g,
j=1 1j-1(8) 1j-1(8) 0

as sought. Next, we choose az € R¥, and set g = Qp.s(z). We infer from (12.96)
that, for j =1,..., N,

N
g = Zj\/a- for t;_1(8) <t =<1;(9),
J

whence

1, Nz2

N N
1On.s@) = Z/ Tdu=Y"2 = |zl

j=1 tj—1(8) 6] j=1

which yields the second half of (12.99). To establish (12.100), we infer from (12.94)
that, for an arbitrary g € B([0, 1]),

d
IPxs (@I = Z | (s1;6)) g(tj-1(8)))°

j= 1

n 2
I _@2Ngl
<ANIgIPY_ o < :
i—1 J

) min
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To establish (12.101), we first infer from (12.99) that Py 5(g) € By foreach g € S,
so that Py s(S) € By. Conversely, by (12.99), for any z € By, we have g :=
On.s(z) € S. This, in turn, implies, via (12.97), that Py s(g) = z, whence By C
Pn.s(S). We so obtain (12.101). Next, we infer from (12.99) that, for each z €
By, Ons(z) € S. This, in turn, implies that Qy s(Bx) < S. Finally, we infer
from (12.98) and (12.99) that, for each g € S, we have 'y := Py s(g) € By and
1985 — gll < @N)"'2gliv/8max < (2N)™"/2\/8max. This completes the
proof of (12.102). |

Armed with Fact 12.3.1 and Lemmas 12.3.3-12.3.4, we recall (12.79), (12.89),
(1291),and fixan N > 1.Forn > 1,0 <a < 1,1 € [0,1 —a] and § € Dy, we set

Zy.5(a; 1) = Py.s ( ﬂill(z;f(f/a)) e RV, (12.103)

By combining (12.89) with (12.94) and (12.103), we observe that
VN

V2nalog, (1/a)

{an(t +at1(8)) — an(t + ato(8))} /v/é1

zy5(ast) = (12.104)

X N
{an (1 + atn (8)) — an(t + atny—1(8)} /v/SN

Set, for convenience,

VN
J2alog, (1/a)

an(t +at1(8)) — an(t +ato(8))

zsait) = (12.105)

X

on(t + aty(8)) — an(t +aty-1(8))

Recall the definition (12.81) of ¢,.4:s. In view of (12.105), we may write, for each
0<a<1landt € [0, 1 — a], the distributional equality

d
Cniazs = 2, 5(as 1). (12.106)
We infer from (12.104) and (12.105) the inequality
12} 5(as Ol < 7,55 O1/v/min - (12.107)

Below, we let Co, n1(+), c1(-) and a; () be as in Fact 12.3.2.
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Lemma 12.3.5 Foreach0 < ¢ < 1, and for alln > ni(¢) and a > 0 fulfilling
na/logn > c1(¢) and a <aj(e), (12.108)
we have, forallt € [0, 1 — a],

P (2,.5(a; 1) & BY) < Caa'+(EVnin)/@N) (12.109)

Proof By (12.100), for any ¢ € B([0, 1]), g € Sand € > 0, we have the implication
I — gl <€ = [Pn.s(@) — Pns@l = IPn.s@ — 9l < 2Ne//8min,
which is equivalent to the implication

1PN.5($) = Pr (@)l > 2Ne/\dmin = Il¢ —gll > €. (12.110)

We recall from (12.101) that Py s(S) = By. Thus, by setting z = Py 5(g)
in (12.110), and letting g vary in S we obtain the implication

[1Py.s@ — 21l > 2Ne/V/bmin : V2 eBy| = [lo =gl =€ :vges),
which may be rewritten into
’PN,6(¢) g BN/ V8 min ] = {¢ ¢ Sf}. (12.111)
Recalling the definition (12.103) of z, s(a; t), by setting ¢ = 2Ne€//8min and ¢ =

&i(as t; ~)/\/2a log, (1/a) in (12.111), we conclude our proof by an application of
Fact 12.3.2. O

12.3.5 Proof of Proposition 12.3.2

Fix an 0 < ¢ < 1. In view of (12.106) and (12.33), whenever

1+ e
V8min > 1+2 : (12.112)
&

we have, for0 <a <land0 <t <1—a,

P (¢pa:s €BY) =P (18005l > 1 +¢) (12.113)

= P(Iz} 5@ 0l > 1+&) < P (Jzuss (@ D]l > (1 +)v/8 min)

2
=P (Izss(@ 0l > 1+ Je) = P (zusai 1) ¢ BY?).
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The assumption that 0 < ¢ < 1, when combined with (12.112) implies that

3 1

\/6min24>2-

By an application of Lemma 12.3.5 with the formal replacement of € by £/2, we see
that, for all n > ng(¢) :=n1(¢/2) and a > 0 fulfilling

na/logn > co(e) :=c1(¢/2) and a <ap(e) :=aj(e/2), (12.114)
we have, forall r € [0, 1 — a],
P (zn,s(a; 1 ¢ B’;“v”) < CoaHEVBnin)/4N) < o q1+e/BN) (12.115)

By (12.113), this yields (12.84), with Cy := C3, and completes the proof of
Proposition 12.3.2. O

12.3.6 Inner Bounds

The following fact is a version of Proposition 3 of Deheuvels and Ouadah [10],
taken with |Z| = YK, a.

Fact 12.3.3 Foreachg € Ssuchthat0 < |glg < 1,and0 < ¢ < élng, there exist
an ax (g, g), together with na(e) < oo and cy(¢), depending upon ¢ only, such that
the following holds. Let, for K > 1, t1,...,tx € [0,1], and 0 < ay,...,ar < 1,
be such that the intervals (ty., ty + a), k = 1, ..., K, are disjoint and in [0, 1], with
Z,{;l ay < é Then, whenever

n>nye), cae)nllogn <ai...,ag < ax(e, g), (12.116)
we have
P K Enlar; ti; +) ¢ Na(g) < 2exp _1 ia1*€/2 (12.117)
il V2ailog, (1/ax) ’ B ! k=1 ‘ | .

Fix any z € By, such that 0 < ||z|]| < 1, and set g := Qp:5(z). Fix a > 0 and
t € 10,1 —al], and set, as in (12.103),

&(as t;-)

= J2alog, (1/a) and 7, 5(a; 1) = Py s (¢) € RY. (12.118)
+
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As follows from (12.99) and (12.99), we have Py.s5(g) = z and
0<lglm=llzl <L
Therefore, we infer from the linearity of Py.s and (12.100) that

IZn,5(a; 1) —zll = |Pn.s (@) — Pnvs (@] = [Pn.s (@ — 9|

En(ait;)
J2alog, (1/a) S|

2N

¢ —gll = o

2N
=<
\/amin

We have therefore the implication, for an arbitrary ¢ > 0,

Eula; t; ) 2Ne
—g| <& = lznsa;t) —z|| <
\/Za 10g+(1/a) \/smin
which is readily shown to be equivalent to
2Ne Enla; t; )
Zn,5(a; t) — z|| > } - dN:(g)y - (12.119)
{ " V8 min J2alog, (1/a) = 7°

Recalling (12.104), and the definition (12.105) of zzs(a;t), set, for § =
(B1, ..., 8N),

71 Vi y1/+/81
z=| |, zZysan) =] : and  z,5(a;1) =

N YN YN/A/N
By combining the triangle inequality with ||z]| < 1, we see that

1/2

N
Izn5(a: 1) =zl = Y " (vj//8; — ) (12.120)
j=1

1/2 1/2

N N
S GilEi =V Y =D @8 —2)?
j=1 j=1

1 % oo o _ 1 1 _
Z \/amax ||Zn’8(a’ t) Z” ”Z” {(1 \/8 max) v (\/a min 1)}

1 " S _ _ 1 1 B
% S s (@0 =2 Kl wmax>v(¢6mm 1>}

v
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Thus, if we assume that

>1— Ng and <1+ Nsg, (12.121)

1 1
«/5 max N «/5min
we infer from (12.120) that

I2n,5(a; 1) — 2| = Iz, 5(a; 1) —zll + Ne.

1
“/5 max

This, when combined with (12.119), shows that

% o 8 max &nla; t; )
||Zn,8(a’ t) —z| > 3N8\/ S C {\/2a10g+(1/a) ¢./\/;;(g)} . (12.122)

In view of (12.106), we infer from (12.122) the relation

6min

K

)
N1z, s — 2l > 3Ns\/ mx (12.123)
k=1

5

k=1

N

! &nag; t; +)

N,
J2alog, (1/a) © }

Now, we infer from (12.121) that, whenever Ne < ;,

& max 1+ Ne¢
< <3
Smin 1 —Ng —

Thus, by (12.123), we have

K
P (ﬂ ’”Cfﬁk;sk > 9N5}> (12.124)
k=1
K
<P ﬂ &n(ar; tx; +) g Nt ) < 2exp (-] Za;fe/z .
=1 \/2ak log, (1/ai) P

The remainder of the proof is given by routine arguments which we omit. O



238 P. Deheuvels

References

1. C.R. Adams, J.A. Clarkson, On definitions of bounded variation for functions of two variables.
Trans. Am. Math. Soc. 35, 824-854 (1933)

2. N. Bouleau, On effective computation of expectations in large or infinite dimensions.
J. Comput. Appl. Math. 31, 23-34 (1990)

3. JLA. Clarkson, C. Raymond Adams, Properties of functions f(x,y) of bounded variation.
Trans. Am. Math. Soc. 36, 711-730 (1933)

4. P. Deheuvels, Laws of the iterated logarithm for density estimators, in Nonparametric
Functional Estimation and Related Topics (Kluwer, Dordrecht, 1991), pp. 19-29

5. P. Deheuvels, Functional laws of the iterated logarithm for large increments of empirical and
quantile processes. Stoch. Process. Appl. 43, 133-163 (1992)

6. P. Deheuvels, One bootstrap suffices to generate sharp uniform bounds in functional estimation.
Kybernetika 47, 855-865 (2011)

7. P. Deheuvels, J.H.J. Einmahl, Functional limit laws for the increments of Kaplan-Meier
product-limit processes and applications. Ann. Probab. 28, 1301-1335 (2000)

8. P. Deheuvels, D.M. Mason, Functional laws of the iterated logarithm for the increments of
empirical and quantile processes. Ann. Probab. 20, 1248-1287 (1992)

9. P. Deheuvels, D.M. Mason, General asymptotic confidence bands based on kernel-type
function estimators. Stat. Infer. Stoch. Process 7, 225-277 (2004)

10. P. Deheuvels, S. Ouadah, Uniform-in-bandwidth functional limit laws. J. Theor. Probab. 26(3),
697-721 (2013)

11.J. Dony, Nonparametric regression estimation-An empirical process approach to uniform
in bandwidth consistency of kernel-type estimators and conditional U-statistics. Doctoral
Dissertation. Vrije Universiteit Brussel, Brussels, 2008

12. J. Dony, U. Einmahl, Weighted uniform consistency of kernel density estimators with general
bandwidth sequences. Electron. J. Probab. 11, 844-859 (2006)

13. J. Dony, U. Einmahl, Uniform in bandwidth consistency of kernel-type estimators at a fixed
point. Inst. Math. Stat. Collect. 5, 308-325 (2009)

14. J. Dony, D.M. Mason, Uniform in bandwidth consistency of conditional U -statistics. Bernoulli
14(4), 1108-1133 (2008)

15. J. Dony, U. Einmahl, D.M. Mason, Uniform in bandwidth consistency of local polynomial
regression function estimators. Aust. J. Stat. 35, 105-120 (2006)

16. U. Einmahl, D.M. Mason, An empirical process approach to the uniform consistency of kernel-
type function estimators. J. Theor. Probab. 13, 1-37 (2000)

17. U. Einmahl, D.M. Mason, Uniform in bandwidth consistency of kernel-type function estima-
tors. Ann. Stat. 33, 1380-1403 (2005)

18. G.H. Hardy, On double Fourier series, and especially those which represent the double zeta-
function with real and incommensurable parameters. Q. J. Math. 37, 53—-89 (1905)

19. M. Krause, Uber Mittelwertsitze in Gebiete der Doppelsummen und Doppelintegrale.
Leipziger Ber. 55, 239-263 (1903)

20. D.M. Mason, A strong limit theorem for the oscillation modulus of the uniform empirical
process. Stoch. Process. Appl. 17, 127-136 (1984)

21. D.M. Mason, A uniform functional law of the logarithm for the local empirical process. Ann.
Probab. 32, 1391-1418 (2004)

22. D.M. Mason, Proving consistency of non-standard kernel estimators. Stat. Infer. Stoch.
Process. 20(2), 151-176 (2012)

23. D.M. Mason, J. Swanepoel, A general result on the uniform in bandwidth consistency of
kernel-type function estimators. Test 20, 72-94 (2011)

24. D.M. Mason, G.R. Shorack, J.A. Wellner, Strong limit theorems for oscillation moduli of the
empirical process. Z. Wahrscheinlichkeitstheorie und Verwandte Geb. 65, 93-97 (1983)

25. E.A. Nadaraya, On estimating regression. Theor. Probab. Appl. 9, 141-142 (1964)



26

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Functional Limit Laws 239

. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF
Regional Conference Series in Applied Mathematics, vol. 63 (SIAM, Philadelphia, 1992)

D. Nolan, J.S. Marron, Uniform consistency and location adaptive delta-sequence estimators.
Probab. Theory Relat. Fields 80, 619-632 (1989)

G. Pages, Y.-J. Xiao, Sequences with low discrepancy and pseudo-random numbers: theoretical
results and numerical tests. J. Stat. Comput. Simul. 56, 163-188 (1997)

E. Parzen, On the estimation of a probability density function and mode. Ann. Math. Stat. 33,
1065-1076 (1962)

M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math.
Stat. 27, 832-837 (1956)

B. Schweizer, E.F. Wolff, On nonparametric measure of dependence for random variables.
Ann. Stat. 6, 177-184 (1981)

B. Silverman, Weak and strong consistency of the kernel estimate of a density and its
derivatives. Ann. Stat. 6, 177-184 (1978) (Addendum: (1980). 8, 1175-1176)

V. Strassen, An invariance principle for the law of the iterated logarithm. Z. Wahrschein-
lichkeitstheorie und Verwandte Geb. 3, 211-226 (1964)

W. Stute, The oscillation behavior of empirical processes: the multivariate case. Ann. Probab.
12, 361-379 (1984)

I. van Keilegom, D. Varron, Uniform in bandwidth exact rates for a class of kernel estimators.
Ann. Inst. Stat. Math. 63(6), 1077-1102 (2011)

D. Varron, Lois fonctionnelles uniforme du logarithme itéré pour les accroissements du
processus empirique généralisé, in Lois limites de type Chung-Mogulskii pour le processus
empirique uniforme local. Doctoral Dissertation, Université Pierre et Marie Curie, Paris, Dec.
17,2004

D. Varron, A limited in bandwidth uniformity for the functional limit law of the increments of
the empirical process. Electron. J. Stat. 2, 1043-1064 (2008)

V. Viallon, Functional limit laws for the increments of the quantile process with applications.
Electron. J. Stat. 1, 496-518 (2007)

G. Vitali, Sui gruppi di punti e sulle funzioni di variabili reali. Atti Accad. Sci. Torino. 43,
229-246 (1908)

G.S. Watson, Smooth regression analysis. Sankhya Indian J. Stat. A 26, 359-372 (1964)



	12 Uniform-in-Bandwidth Functional Limit Laws for Multivariate Empirical Processes
	12.1 Introduction and Motivation
	12.2 Functional Limit Laws
	12.2.1 Main Result
	12.2.2 A Limit Law for Local Empirical Processes Indexed by Functions
	12.2.3 Properties of Kernels
	12.2.4 Proof of Theorem 12.1.1

	12.3 Proof of Theorem 12.2.1
	12.3.1 A Bound for the Oscillation Modulus
	12.3.2 Basic Arguments
	12.3.3 Multinomial Inequalities
	12.3.4 Outer Bounds
	12.3.5 Proof of Proposition 12.3.2
	12.3.6 Inner Bounds

	References


