
Chapter 10
Remarks on Superconcentration
and Gamma Calculus: Applications
to Spin Glasses

Kevin Tanguy

Abstract This note is concerned with the so-called superconcentration
phenomenon. It shows that the Bakry-Émery’s Gamma calculus can provide
relevant bound on the variance of function satisfying a inverse, integrated, curvature
criterion. As an illustration, we present some variance bounds for the Free Energy
in different models from Spin Glasses Theory.

10.1 Introduction

Superconcentration phenomenon has been introduced by Chatterjee in [7] and has
given birth to a lot a work (cf. [15] for a survey). Each of these works, used
various ad-hoc methods to improve upon sub-optimal bounds given by classical
concentration of measure (cf. [4, 10]). In this note, we want to show that the
celebrated Gamma calculus from Bakry and Émery’s Theory is relevant to such
improvements. To this task, we introduce an inverse, integrated, �2 criterion which
provides a useful bound on the variance of a particular function. As far as we know,
this criterion seems to be new. We give below a sample of our modest achievement.

Denote by γn the standard Gaussian measure on R
n and by (Pt )t≥0 the standard

Ornstein–Uhlenbeck semigroup. � will stand for the so-called “carré du champ”
operator, associated to the infinitesimal generator L = � − x · ∇ of (Pt )t≥0, and �2
its iterated operator. We refer to Sect. 10.2 for more details about this topic.

Theorem 10.1.1 Let f : R
n → R be a regular function and assume that there

exists ψ : R+ → R such that

(1) for any t ≥ 0,

∫
Rn

�2(Ptf )dγn ≤
∫
Rn

�(Ptf )dγn + ψ(t), (10.1)
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(2)

∫ ∞

0
e−2t

∫ ∞

t

e2sψ(s)dsdt < ∞.

Then the following holds

Varγn(f ) ≤
∣∣∣∣
∫
Rn

∇f dγn

∣∣∣∣
2

+ 4
∫ ∞

0
e−2t

∫ ∞

t

e2sψ(s)dsdt.

with | · | the standard Euclidean norm.

Remark Equation (10.14) can be seen as an inverse, integrated, curvature inequality
for the function f .

As an application of Theorem 10.1.1, we show that some results due to Chatterjee
can be expressed in terms of such criterion. From our point of view, this expression
seems to ease the original scheme of proof and could possibly lead to various
extensions. It also permits to easily recover some known variance bounds in Spin
Glass Theory (cf. [5, 6, 11, 12]). Therefore let us present a short introduction to this
theory.

Most of the time, in Spin Glasses Theory, it is customary to consider a centered
Gaussian field

(
Hn(σ)

)
σ∈{−1,1}n on the discrete cube {−1, 1}n (the map σ �→

Hn(σ) is called the Hamiltonian of the system) and to focus on maxσ∈{−1,1}n Hn(σ )

(or minσ∈{−1,1}n Hn(σ )). In general, this quantity is rather complex and presents
a lack of regularity. Therefore, one focusses on a smooth approximation of the
maximum (or the minimum) called the Free Energy Fn,β . This function is defined
as follow

Fn,β = ± 1

β
log

( ∑
σ∈{−1,1}n

e±βHn(σ )

)

where β > 0 corresponds to (the inverse of) the temperature and its sign depends on
whether you want to study the maximum or the minimum of Hn over the discrete
cube.

For instance, for the Random Energy Model (REM in short), we have

Hn(σ) = √
nXσ , σ ∈ {−1, 1}n

where (Xσ )σ∈{−1,1}n is a sequence of i.i.d. standard Gaussian random variables.
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For the Sherrington and Kirkpatrick’s model (SK model in short), the Hamilto-
nian is more complex,

Hn(σ) = − 1√
n

n∑
i,j=1

Xij σiσj , σ ∈ {−1, 1}n

with (Xij )1≤i,j≤n a sequence of i.i.d. standard Gaussian random variables.
As an application of our methodology (cf. Sect. 10.4), we prove the following

two Propositions.

Proposition 10.1.1 The following holds for the SK model. Let 0 < β < 1
2 , then

Var(Fn,β) ≤ Cβ, n ≥ 1 (10.2)

where Cβ > 0 is a constant depending only on β.

Remark Talagrand obtained (cf. [11, 12]) such upper bound on the variance, for
0 < β < 1, as a consequence of precise (and much harder to prove than
our variance bounds) concentration inequalities for the Free Energy together with
second moment method. As far as we know, it is the first time that such bound is
obtained through semigroups arguments.

The methodology can also be used for the Random Energy Model (REM in short)
(cf. Sect. 10.4 for more details) and provides the following bounds.

Proposition 10.1.2 The following holds in the REM.
High temperature regime: for 0 < β < 1√

2n
, we have

Varγ2n (Fn,β) ≤ n

2n

(
1 − nβ2

1 − 2nβ2

)
, n ≥ 1

with C > 0 a universal constant.

Remark

(1) The preceding bound has to be compared with the results exposed in [6, 7] (be
careful with the different renormalization, in [6] the free energy is Fn,β

n
). In [6],

it is shown that

Varγ2n (Fn,β) ∼ 1

2n
× enβ2

β2 , β <

√
log 2

2
.

The dependance (in n and β) is clearly not optimal in this regime but, as
presented in Proposition 10.1.1, the scheme of proof of our method is robust
enough to treat more complicated models. It seems natural that it can fail to
capture precise behaviour such as the one obtained in [6]. Notice also that in
[6], the authors obtained various (according to the temperature β) asymptotic
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convergence results for the (renormalized) Free Energy. Therefore, their results
only indicate the correct order of the variance of this functional. However, to
our best knowledge, this is the first time that such non-asymptotic bounds on
the variance of the Free energy is obtained for the high temperature regime
temperature.

(2) In [6] the low temperature regime was also investigated. Non-asymptotic
variance bound, in accordance with the convergence results from Bovier et al.,
was already obtained in [7] and is presented and commented in Sect. 10.4
(Proposition 10.4.4) for the sake of completeness.

(3) As we will see latter in this note, it is easier to do the proof (of the preceding
result) with the standard Gaussian measure on R

n and then to perform the
following substitutions

n ←→ 2n and β ←→ √
nβ

to fit the framework of [6].

This note is organized as follows. In Sect. 10.2, we recall some facts about
superconcentration and Gamma calculus. In Sect. 10.3, we will prove our main
results. Finally, in Sect. 10.4, we will give some applications in Spin Glass Theory.

10.2 Framework and Tools

In this section, we briefly recall some notions about superconcentration, Gamma
calculus and interpolation methods by semigroups. General references about these
topics could be, respectively, [1, 7].

10.2.1 Superconcentration

It is well known (cf. [4, 10]), that concentration of measure of phenomenon is
useful in various mathematical contexts. Such phenomenon can be obtained through
functional inequalities. For instance, the standard Gaussian measure, on R

n, γn

satisfies a Poincaré’s inequality:

Proposition 10.2.1 For any function f : R
n → R smooth enough, the following

holds

Varγn(f ) ≤
∫
Rn

|∇f |2dγn (10.3)

where | · | stands for the Euclidean norm.
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Although this inequality holds for a large class of function, it could lead to sub-
optimal bounds. A classical example is the function f (x) = maxi=1,...,n xi . For such
function, Poincaré’s inequality implies that

Varγn(f ) ≤ 1

but it is known that Varγn(f ) ∼ C
log n

for some constant C > 0. In Chatterjee’s ter-
minology, in this Gaussian framework, a function f is said to be superconcentrated
when Poincaré’s inequality (10.3) is sub-optimal.

As we have said in the introduction, this phenomenon has been studied in various
manner: semigroup interpolation [14], Renyi’s representation of order statistics
[3], Optimal Transport [15], Ehrard’s inequality [17],. . . (cf. the Thesis [16] for a
recent survey about superconcentration). In this note, we want to show that some
differential inequalities between the operator � and �2 from Bakry and Émery’s
Theory could provide superconcentration.

10.2.2 Semigroups Interpolation and Gamma Calculus

For more details about semigroups interpolation and � calculus, we refer to [1, 9].
Although our work can easily be extended to a more general framework, we will
focus on a Gaussian setting.

The Ornstein–Uhlenbeck process (Xt)t≥0 is defined as follow:

Xt = e−tX +
√

1 − e−2tY, t ≥ 0,

with X and Y i.i.d. standard Gaussian vectors in R
n. The semigroup (Pt )t≥0, asso-

ciated to this process, acts on a class of smooth function A (due to the integrability
of Gaussian densities, one can choose here for A the class of C∞ functions whose
derivatives are rapidly decreasing) and admits an explicit representation formula:

Ptf (x) =
∫
Rn

f
(
xe−t +

√
1 − e−2t y

)
dγn(y), x ∈ R

n, t ≥ 0

Its infinitesimal generator is given by

L = � − x · ∇

Furthermore, γn is the invariant and reversible measure of (Pt )t≥0. That is to say,
for any function f and g belonging to A,

∫
Rn

Ptf dγn =
∫
Rn

f dγn and
∫
Rn

f Ptgdγn =
∫
Rn

gPtf dγn.
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Now, let us recall some properties satisfied by (Pt )t≥0 which will be useful in the
sequel.

Proposition 10.2.2 The Ornstein–Uhlenbeck semigroup (Pt )t≥0 satisfies the fol-
lowing properties

• Pt (f ) is a solution of the heat equation associated to L

i.e. ∂t (Ptf ) = Pt(Lf ) = L(Ptf ). (10.4)

• (Pt )t≥0 is ergodic, that is to say, for f ∈ A

lim
t→+∞ Pt(f ) =

∫
Rn

f dγn = Eγn[f ] (10.5)

• (Pt )t≥0 commutes with the gradient ∇. More precisely, for any function f ∈ A,

∇Pt (f ) = e−tPt (∇f ), t ≥ 0. (10.6)

• (Pt )t≥0 is a contraction in Lp(γn), for any function f ∈ Lp(γn) and every t ≥ 0,

‖Pt (f )‖p ≤ ‖f ‖p. (10.7)

As it is exposed in [1], it is possible to give a dynamical representation of the
variance of a function f along the semigroup (Pt )t≥0:

Varγn(f ) = 2
∫ ∞

0

∫
Rn

|∇Ps(f )|2dγnds = 2
∫ ∞

0
e−2s

∫
Rn

|Ps(∇f )|2dγnds

(10.8)

10.2.3 Gamma Calculus and Poincaré’s Inequality

Let us introduce the fundamental operator �2 and � from Bakry and Emery’s
Theory. Given an infinitesimal generator L set, for f and g, two smooth functions,

�(f, g) = 1

2

[
L(fg)−f Lg−Lfg

]
and �2(f, g) = 1

2

[
L�(f, g)−�(f, Lg)−�(Lf, g)

]

In the case of the Ornstein–Uhlenbeck’s infinitesimal generator L = � − x · ∇,
it is easily seen that

�(f ) = |∇f |2 and �2(f ) = ‖Hessf ‖2
2 + |∇f |2 (10.9)
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where ‖Hessf ‖2 = ( ∑n
i,j=1

( ∂2f
∂xi∂xj

)2)1/2
is the Hilbert–Schmidt norm of the

tensor of the second derivatives of f .
Now, let us briefly recall how a relationship between � and �2 can be used to

give a elementary proof of Poincaré’s inequality (10.3).
First, notice that the representation formula of the variance (10.8) can be

expressed in terms of �:

Varγn(f ) = 2
∫ ∞

0

∫
Rn

�(Pt f )dγnds. (10.10)

Then, observe that (10.9) implies the celebrated curvature-dimension criterion
CD(1,+∞) (cf. [1])

�2 ≥ �. (10.11)

Set I (t) = ∫
Rn �(Pt f )dγn. It is classical that

I ′(t) = −2
∫
Rn

�2(Ptf )dγn, t ≥ 0

Thus, the inequality (10.11) leads to a differential inequality

∫
Rn

�2(Ptf )dγn ≥
∫
Rn

�(Ptf )dγn ⇔ 2I + I ′ ≤ 0, t ≥ 0 (10.12)

which can be easily integrated between s and t (with 0 ≤ s ≤ t). That is

I (t)e2t ≤ I (s)e2s .

It is now classical to let s → 0 to easily recover Poincaré’s inequality (10.3) for
the measure γn. As we will see in the next section, we will show that a differential
inequality of the form

I ′ ≥ −2(I + ψ), (10.13)

for some function ψ , can be used to obtain relevant bound (with respect to
superconcentration phenomenon) on the variance of the function f (being fixed)
by letting s fixed and t → +∞.

Remark Let us make few remarks.

(1) As it is proved in [1], the integrated curvature dimension inequality (10.12) is,
in fact, equivalent to the Poincaré’s inequality (10.3).

(2) As we will see in the next section, the inequality I ′ ≥ −2(I+ψ) is equivalent to
an inverse, integrated, curvature dimension inequality which seems to be new.
However, notice that the major difference between (10.12) and (10.13) is that
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the first one holds for a large class of function whereas the second is only true
for a particular function f (and ψ depends on f ).

10.3 Inverse, Integrated, Curvature Inequality

In this section, we will use the methodology exposed in the preceding section to
obtain variance bounds for a (fixed) function f satisfying an inverse, integrated,
curvature inequality ICγn(1, ψ).

First, let us state a definition. We want to highlight the fact that this definition will
be stated in a Gaussian framework (Rn, �, γn) with � associated to the infinitesimal
generator L = �−x ·∇ and the Ornstein–Uhlenbeck’s semigroup (Pt )t≥0. The next
definition can be extended, mutatis mutandis, to fit the general framework of [1].

Definition 10.3.1 Let f : R
n → R be a smooth function. We say that f satisfy an

inverse, integrated, curvature criterion with function ψ : R+ → R if

∫
Rn

�2(Ptf )dγn ≤
∫
Rn

�(Ptf )dγn + ψ(t), t ≥ 0 (10.14)

When the previous inequality is satisfied we denote it by f ∈ ICγn(1, ψ).

Remark

(1) Notice, again, that the inequality (10.14) holds, a priori, only for the function
f .

(2) More generally, as it will be needed in the sequel, if μ is a Gaussian measure
we will say that f ∈ ICμ(1, ψ) if Eq. (10.14) is satisfied with μ instead of γn

and with the operators � and �2 associated to the Markov Triple (Rn, L,μ).

Now, let us prove our main result Theorem 10.1.1.

Proof (of Theorem 10.1.1) Assume that f ∈ ICγn(1, ψ) (cf. Eq. (10.14)) holds.
This is equivalent to the following differential inequality:

I ′ ≥ −2(I + ψ), (10.15)

where I (t) = ∫
Rn |∇Ptf |2dγn, t ≥ 0. Set I (t) = K(t)e−2t , inequality (10.15)

becomes

K ′(t) ≥ −2e2tψ(t), t ≥ 0 (10.16)

Now, integrate inequality (10.16) between s and t . That is

K(t) − K(s) ≥ −2
∫ t

s

e2uψ(u)du, for all 0 ≤ s ≤ t .
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Then, let t → ∞, this yields

K(s) ≤ [
lim

t→∞ K(t)
] + 2

∫ ∞

s

e2uψ(u)du, s ≥ 0,

To conclude, observe that

K(t) = I (t)e2t →t→∞
∣∣∣∣
∫
Rn

∇f dγn

∣∣∣∣
2

by ergodicity of (Pt )t≥0. Finally, we have, for every t ≥ 0,

I (t) =
∫
Rn

�(Ptf )dγn ≤ e−2t

(∣∣∣∣
∫
Rn

∇f dγn

∣∣∣∣
2

+ 2
∫ ∞

t

e2sψ(s)ds

)
. (10.17)

It suffices to use the dynamical representation of the variance (10.8) with
elementary calculus to end the proof. ��
Remark This method of interpolation, between t and +∞, has also been used in
[13] in order to obtain Talagrand’s inequality of higher order.

10.3.1 Another Variance Bound

As we will see in the last section, it is sometimes useful to restrict an ICμ(1, ψ),
for some probability measure μ, up to a time T in order to improve the dependance
with respect to some parameter.

In other words, the setting is the following: assume that an ICμ(1, ψ) holds and
that we are able to produce some T > 0 such that the bound of I (T ) (given by
Eq. (10.17)) is particularly nice (with respect to some parameter). Now, we have to
bound the variance in a different manner in order to use the information on I (T ).
To this task, we will prove the next proposition.

Proposition 10.3.1 Let f : R
n → R be a function smooth enough. Then, for any

T > 0

Varγn(f ) ≤ 2T I (0)

1 − e−2T

[
1

log a
− 1

a log a

]

with a = I (0)
I (T )

and I (t) = ∫
Rn �(Pt f )dγn.

Remark This proposition will be used to show that the Free Energy is super-
concentrated for some Spin Glasses models. Although we stated the preceding
Proposition 10.3.1 for the standard Gaussian measure γn, it will also hold (up
to obvious renormalization) for μ the law of a centered Gaussian vector with
covariance matrix M .
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To prove the preceding theorem, we will need two further arguments.
First, we present an inequality due to Cordero-Erausquin and Ledoux [8]. The

proof of this inequality rests on the fact that the Poincaré’s inequality satisfied by γn

implies an exponential decay of the variance along the semigroup (Pt )t≥0.

Lemma 10.3.1 (Cordero-Erausquin–Ledoux) Let f : R
n → R be a function

smooth enough. Then, for any T > 0, the following holds

Varγn(f ) ≤ 2

1 − e−2T

∫ T

0
I (t)dt (10.18)

with I (t) = ∫
Rn �(Ptf )dγn.

Proof For the sake of completeness we give the proof of the preceding Lemma.

Varγn(f ) = Eγn[f 2] − Eγn[(PT f )2] + Eγn[(PT f )2] − Eγn [PT f ]2

= −
∫ T

0

d

ds
Eγn [(Psf )2]ds + Varγn(PT f )

≤ 2
∫ T

0
I (s)ds + e−2T Varγn(f ).

��
Secondly, we will use the fact that the infinitesimal generator (−L) of the

Ornstein–Uhlenbeck process (Xt )t≥0 admits a (discrete) spectral decomposition.
Then, denote by dEλ the spectral resolution of (−L). According to [1], this leads to
a different representation of t �→ I (t). With f : R

n → R being fixed, we have:

I (t) =
∫
Rn

|∇Ptf |2dγn =
∫ ∞

0
λe−2λtdEλ(f ), t ≥ 0

As it is proven in [2] (cf. Corollary 5.6), t �→ I (t) satisfies, with the preceding
representation, an Hölder-type inequality. That is to say, for every T > 0,

Lemma 10.3.2 (Baudoin–Wang)

I (s) ≤ I (0)1−s/T I (T )s/T , 0 ≤ s ≤ T (10.19)

Now, we can prove Proposition 10.3.1 with the help of preceding Lemma.

Proof (of Proposition 10.3.1) First use Lemma 10.3.1 to get

Varγn(f ) ≤ 2

1 − e−2T

∫ T

0
I (t)dt.
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Then, use Lemma 10.3.2. This yields

Varγn(f ) ≤ 2

1 − e−2T

∫ T

0
I (0)1−t/T I (T )t/T dt

= 2I (0)

1 − e−2T

∫ T

0
e− t

T log adt

where a = I (0)
I (T )

≥ 1 and I (t) = ∫
Rn �(Pt f )dγn. Finally, elementary calculus ends

the proof. ��

10.4 Application in Spin Glasses’s Theory

In the remaining of this section, we will show how Theorem 10.1.1 can be used to
provide relevant bounds on the variance of Fn,β . We will focus on the REM and
the SK Model. For the remaining of this note we will denote by fβ , for β > 0, the
following function

fβ(x) = 1

β
log

( n∑
i=1

eβxi
)
, x = (x1, . . . , xn) ∈ R

n

10.4.1 Random Energy Model

In this section we will show how Theorem 10.1.1 is useful to obtain relevant bound
on the variance of the Free Energy Fn,β (with β close to 0) for the REM.

Proposition 10.4.1 For any β > 0, fβ ∈ ICγn(1, ψ) with

ψ(t) = 2β2e−2t I (t)

where, let us recall it, I (t) = ∫
Rn �(Ptfβ)dγn and � is the standard “carré du

champ” operator.

We will need the following Lemma to prove the preceding Proposition.

Lemma 10.4.1 Let (ui)i=1,...,n be a family of functions, with ui : R
n → R for any

i = 1, . . . , n, satisfying the following condition

n∑
i=1

u2
i (x) ≤ 1 for all x ∈ R

n
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Then, for any function v : R
n → R+ and any probability measure μ, we have

n∑
i=1

( ∫
Rn

ui(x)v(x)dμ(x)

)2

≤
( ∫

Rn

vdμ

)2

Proof Consider the vector U = (u1v, . . . , unv) ∈ R
n and recall that | · | stands for

the Euclidean norm. Then, it holds

[ n∑
i=1

(∫
Rn

ui(x)v(x)dμ

)2]1/2

=
∣∣∣∣
∫
Rn

Udμ

∣∣∣∣ ≤
∫
Rn

|U |dμ =
∫
Rn

[ n∑
i=1

u2
i (x)

]1/2

v(x)dμ

≤
∫
Rn

v(x)dμ

where the first upper bound comes from Jensen’s inequality. ��
Now we turn to the proof of Proposition 10.4.1.

Proof (of Proposition 10.4.1) First, observe that the condition ICγn(1, ψ) is equiv-
alent to

∫
Rn

�2
(
Pt (fβ)

)
dγn ≤ (1 + 2β2e−2t )

∫
Rn

�
(
Pt(fβ)

)
dγn, t ≥ 0.

That is (since �2(f ) = ‖Hessf ‖2
2 + |∇f |2 and �(f ) = |∇f |2)

∫
Rn

‖HessPt(fβ)‖2
2dγn ≤ 2β2e−2t

∫
Rn

|∇Pt(fβ)|2dγn, t ≥ 0. (10.20)

Now, observe that, pointwise, Eq.(10.20) is equivalent to (thanks to the commu-
tation property between ∇ and (Pt )t≥0)

n∑
i,j=1

[Pt (∂
2
ij fβ)]2 ≤ 2β2

n∑
i=1

[Pt(∂ifβ)]2, ∀t ≥ 0

Elementary calculus yields, for every i = 1, . . . , n, and every β > 0,

∂ifβ = eβxi∑n
k=1 eβxk

and, for every j = 1, . . . , n,

∂j ∂ifβ = β(∂ifβδij − ∂ifβ∂jfβ).
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Thus, for every t ≥ 0,

n∑
i,j=1

[Pt (∂
2
ij fβ)]2 = β2

n∑
i=1

[
Pt(∂ifβ)

]2−2β

n∑
i=1

Pt(∂ifβ)Pt

[
(∂ifβ)2]+β2

n∑
i,j=1

[
Pt(∂ifβ∂j fβ)

]2
.

First ignore the crossed terms (which are always non positive), then apply
Lemma 10.4.1 to the third term.

Indeed, let i ∈ {1, . . . , n} be fixed and set uj = ∂jfβ and v = ∂ifβ . Thus,
Lemma 10.4.1 implies

n∑
j=1

[
Pt (∂ifβ∂jfβ)

]2 ≤ P 2
t (∂ifβ).

This inequality finally yields,

n∑
i,j=1

[Pt(∂
2
ij fβ)]2 ≤ β2

n∑
i=1

[
Pt (∂ifβ)

]2 + β2
n∑

i,j=1

[
Pt(∂ifβ∂jfβ)

]2 ≤ 2β2
n∑

i=1

[
Pt (∂ifβ)

]2
.

��
Now, the criterion ICγn(1, ψ) can be used gives to provide relevant bound on the

variance of Fn,β as stated in Proposition 10.1.2.

Proof (of Proposition 10.1.2) As mentioned earlier, the proof will be done for the
standard Gaussian measure on R

n and then it will be enough to perform a change of
variable. As it will be useful in the sequel, observe that (by symmetry) the following
holds

∫
Rn

∂ifβdγn = 1

n
, ∀i = 1, . . . , n.

Now, let β > 0 and use Theorem 10.1.1 which implies that

Varγn(Fn,β) ≤ 1

n
+ 4β2

∫ ∞

0
e−2s(1 − e−2s)

n∑
i=1

∫
Rn

P 2
s (∂ifβ)dγnds (10.21)

where we used Fubini’s Theorem and the commutation property between ∇ and Ps .

For the first bound, when β ∈ (
0,

√
2

2 ), it is possible to rewrite (thanks to the
dynamical representation of the variance (10.21)) the integral in the right hand side
as

2β2Varγn(Fn,β) − 4β2
∫ ∞

0
e−4s

n∑
i=1

∫
Rn

P 2
s (∂ifβ)dγnds (10.22)
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Furthermore, by Jensen’s inequality and the invariance of (Pt )t≥0 with respect to
γn, we have

∫
Rn

P 2
s (∂ifβ)dγn ≥

( ∫
Rn

Ps(∂ifβ)dγn

)2

= 1

n2 , ∀i = 1, . . . , n, ∀s > 0

Thus, Varγn(Fn,β) ≤
(

1−β2

1−2β2

)
1
n

.

To conclude, as announced, it is enough to substitute n by 2n and β by
√

nβ to
get the result. ��
Remark Incidentally, the preceding proof can be used to get a lower bound on the
variance of the Free energy. More precisely, it is possible to deduce from (10.21)
and (10.22) the following lower bound

Varγ2n (Fn,β) ≥ n

2n

(1 − nβ2)

(1 − 2β2n)
, for β >

1√
2n

10.4.2 SK Model

In this section we show how some work of Chatterjee (from [7]) can be rewritten
in term of an inverse, integrated, curvature criterion. Then, it allows us to easily
recover a bound, obtained by Talagrand (cf. [11, 12]), on the variance of the Free
Energy for the SK model at high temperature.

First, we need to express the � and �2 operator when γn is replaced by μ the law
of a centered Gaussian vector, in R

n, with covariance matrix M .
Let X be a random Gaussian vector with L(X) = μ and consider Y an

independent copy of X. It is then possible to define the generalized Ornstein–
Uhlenbeck process, which we will still denote by (Xt )t≥0, as follow

Xt = e−tX +
√

1 − e−2tY, t ≥ 0

Similarly, we also denote by (Pt )t≥0 the associated semigroup. Then, it is known
(cf. [7, 14, 16]) that, for any smooth function f : R

n → R,

I (t) =
∫
Rn

�(Ptf )dμ = 2
∫
Rn

e−2t
∑
i,j

Mij (∂if )Pt (∂j f )dμ, t ≥ 0

As we will see latter, it will be more convenient to work with

Ir (t) = 2
∫
Rn

e−2t
∑
i,j

(Mij )
r (∂if )Pt (∂j f )dμ, t ≥ 0

where r is a positive integer. In the rest of this section, we choose f = fβ .
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Proposition 10.4.2 (Chatterjee) Assume that Mij ≥ 0 for all (i, j) ∈ {1, . . . , n}2.
Then, for any t ≥ 0, the following holds

I ′
r (t) ≥ −2

[
Ir (t) + 2β2e−2t Jr+1(t)

]
(10.23)

with Jr(t) = e2t Ir (t).

Remark

(1) In [7], Chatterjee proved that J ′
r (t) ≥ −4β2e−2t Jr+1(t) for any r ∈ N

∗. The
proof is similar the proof of Lemma 10.4.1 with the additional use of Hölder’s
inequality.

(2) In particular, when r = 1, Chatterjee’s proposition amounts of saying that

fβ ∈ ICμ(1, ψ)

with ψ(t) = 2β2e−2t J2(t). Unfortunately, it remains hard to upper bound this
quantity by something relevant.

As observed in the preceding remark, the inverse, integrated, curvature criterion
can not be used in the present form. However, it is possible to recycle the arguments
of Sect. 10.3. That is, use l times, with l ∈ N, the fundamental Theorem of analysis
(on t �→ Ir (t)) together with the inequality (10.23) and let l → +∞. This leads to
a useful bound on the function t �→ Ir (t) for any r ∈ N

∗.

Theorem 10.4.1 (Chatterjee) Assume that Mij ≥ 0 for all (i, j) ∈ {1, . . . , n}2.
Then, for any t ≥ 0, the following holds

Ir (t) ≤ e−2t

n∑
i,j=1

(Mij )
re2β2e−2tMij νiνj , ∀r ≥ 1 (10.24)

where νi = ∫
Rn ∂ifβdμ for all i = 1, . . . , n.

Remark When r = 1, the main step of Chatterjee’s proof is equivalent to show that
fβ ∈ ICμ(1, ψ) with ψ(t) = 2β2e−2t

∑
i,j=1 Mij e

2β2e−2tMij νiνj . The proof of
this result can be found in [7, pp. 108–110] .

Unfortunately, the repeated use of the differential inequality (10.23) degrades the
upper bound on t �→ Ir (t). As we will briefly see in the next subsection, Chatterjee
used Eq. (10.24) only for a fixed T > 0 (large enough). We show, in the next
Proposition, that this bound (for r = 1) is still relevant to recover some work of
Talagrand on the variance of Fn,β , with small β, for the SK model (cf. [11, 12]).

Now, let us prove Proposition 10.1.1.

Proof (of Proposition 10.1.1) First we show that inequality (10.24) leads to a
general upper bound on the variance of Fn,β which might be of independent interest.
Then, we choose M to be the covariance structure of the SK model and proved
inequality (10.2).
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When r = 1, Eq. (10.24) combined with Eq. (10.10) implies that, for any β > 0,

Varμ(Fn,β) ≤ 2
∫ ∞

0
e−2t

n∑
i,j=1

Mij e2β2e−2tMij νiνj dt

≤ 1

2β2

n∑
i,j=1

e2β2Mij νiνj

Following Chatterjee (cf. [7]), choose M to be the covariance structure of the SK
model. That is,

Mσσ ′ =
(

1√
n

n∑
i=1

σiσ
′
i

)2

, ∀σ, σ ′ ∈ {−1, 1}n.

Besides, observe (by symmetry) that, for each σ ∈ {−1, 1}n,

νσ = Eμ

[
∂σ Fn,β

] = 1

2n
.

Thus,

Varμ(Fn,β) ≤ 1

2β2Eσ,σ ′
[
e

2β2
(

1√
n
σiσ

′
i

)2]

where Eσ ′σ stands for the expectation under the product measure induced by the
Rademacher random variables σi, σ

′
i , i = 1, . . . , n.

Finally, if β ∈ (
0, 1

2

)
we have Eσ,σ ′

[
e

2β2
(

1√
n

∑n
i=1 σiσ

′
i

)2]
= C(β). Indeed,

observe first that
∑n

i=1 σiσ
′
i has the same distribution as

∑n
i=1 σi . Then, it is enough

to use Hoeffding’s inequality (cf.[4]), which gives the following deviation inequality

P

(
1√
n

n∑
i=1

σi > t

)
≤ e−t2/2 t ≥ 0,

to conclude. ��

10.4.3 Improvements of Variance Bounds with Respect to the
Parameter β

Let us collect some results of Chatterjee and briefly explain how Proposition 10.3.1
can be used to improve the dependence of the variance bounds with respect to β.
However, the dependance in n will be worse.
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Chatterjee used, in [7], a Theorem of Bernstein about completely monotone
function. As far as we are concerned, the spectral framework exposed in Sect. 10.3
seems to be more natural to work with and provides equivalent results.

The arguments, in order to improve the dependance in β, can be summarize as
follow: choose T such that I (T ) can be bounded by a relevant quantity and apply
Proposition 10.3.1.

Proposition 10.4.3 (Chatterjee) In the SK model the following holds

Varμ(Fn,β) ≤ C1n log(2 + C2β)

log n
, ∀β > 0

with C1, C2 > 0 two numerical constants.

Remark Here T > 0 is chosen such that

Eσ,σ ′
[
Mσσ ′e2β2e−2T Mσσ ′

]
= Cβ, ∀β > 0

where Mσσ ′ = ( 1√
n

∑n
i=1 σiσ

′
i

)2
and Cβ > 0 is a constant that does not depend on

n. That is T = 1
2 log

( 2β2

γ

)
for some sufficiently small constant γ > 0 (cf. [7]).

Proposition 10.4.4 (Chatterjee) In the REM, the following holds for β >

2
√

log 2,

Varμ(Fn,β) ≤ Cβ

where Cβ > 0 is a constant that does not depend on n.

Remark Here T is chosen as T = 1
2 log(2β2) so that I (T ) ≤ n

2n e−2T en and the
upper bound is relevant in the low temperature regime (cf. [6, 7]). Again, notice the
difference of renormalization with Proposition 10.1.2 (one has to replace the number
of random variables n by 2n and the i.i.d. standard Gaussian random variables
(Xi)i=1,...,2n by

√
nXi in the Proposition). In [7], Chatterjee also proved that the

upper bound is tight.
In fact, it also possible to use hypercontractive arguments instead of Theo-

rem 10.4.1 to achieve the upper bound of Proposition 10.4.4. Indeed, one can
use the inequality (10.21) together with hypercontractive estimates of (Pt )t≥0 (cf.
[7, 8, 15, 16]). More precisely, we have

‖Ps(∂ifβ)‖2
2 ≤ ‖∂ifβ‖2

1+e−2s , ∀i = 1, . . . , n, ∀s > 0

It is then standard, cf. Section 4 in [16] for instance, to prove that

∫ ∞

0
e−2s(1 − e−2s)‖∂ifβ‖2

1+e−2s ds ≤ C‖∂ifβ‖2
2[

1 + log ‖∂ifβ‖2
‖∂ifβ‖1

]2
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where C > 0 is a numerical constant. Then, it is elementary to conclude. Notice that
such estimates are already implicit in the celebrated L1/L2 Talagrand’s inequality
(presented in [7, 8] for instance), which one can also be directly used to recover the
content of Proposition 10.4.4.

Acknowledgements I thank M. Ledoux for fruitful discussions on this topic. I also warmly thank
the referee for helpful comments in improving the exposition and the simplification of the proof of
Lemma 10.4.1.
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