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Preface

The history of the High-Dimensional Probability (HDP) conferences dates back to
the 1975 International Conference on Probability in Banach Spaces in Oberwolfach,
Germany. After eight Probability in Banach Spaces meetings, in 1994 it was
decided to give the series its current name: the International Conference on High-
Dimensional Probability.

The present volume is an outgrowth of the Eighth High-Dimensional Probability
Conference (HDP VIII), which was held at the Casa Matemática Oaxaca (Mexico)
from May 28th to June 2nd, 2017. The scope and quality of the talks and contributed
papers amply demonstrate that, now more than ever, high-dimensional probability
is a very active area of mathematical research.

High-Dimensional Probability has its roots in the investigation of limit theorems
for random vectors and regularity of stochastic processes. It was initially motivated
by the study of necessary and sufficient conditions for the boundedness and
continuity of trajectories of Gaussian processes and the extension of classical limit
theorems, such as laws of large numbers, laws of the iterated logarithm and central
limit theorems, to Hilbert and Banach space-valued random variables and empirical
processes.

This resulted in the creation of powerful new tools: the methods of high-
dimensional probability and especially its offshoots, the concentration of measure
phenomenon and generic chaining techniques, were found to have a number of
applications in various areas of mathematics, as well as statistics and computer
science. These include random matrix theory, convex geometry, asymptotic geomet-
ric analysis, nonparametric statistics, empirical process theory, statistical learning
theory, compressed sensing, strong and weak approximations, distribution function
estimation in high dimensions, combinatorial optimization, random graph theory,
stochastic analysis in infinite dimensions, and information and coding theory.

In recent years there has been substantial progress in the area. In particu-
lar, numerous important results have been obtained concerning the connections
between various functional inequalities related to the concentration of measure
phenomenon, application of generic chaining methods to study the suprema of
stochastic processes and norms of random matrices, Malliavin–Stein theory of
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vi Preface

Gaussian approximation, various stochastic inequalities and their applications in
high-dimensional statistics and computer science. This breadth is duly reflected by
the diverse contributions in the present volume.

The majority of the papers gathered here were presented at HDP VIII. The
conference participants wish to express their gratitude for the support provided
by the BIRS-affiliated mathematics research center Casa Matemática Oaxaca. In
addition, the editors wish to thank Springer-Verlag for publishing the proceedings.

The book begins with a dedication to our departed and esteemed colleague,
Jørgen Hoffmann-Jørgensen, whom we lost in 2017. This is followed by a collection
of contributed papers that are divided into four general areas: inequalities and
convexity, limit theorems, stochastic processes, and high-dimensional statistics. To
give readers an idea of their scope, in the following we briefly describe them by
subject area and in the order they appear in this volume.

Dedication to Jørgen Hoffmann-Jørgensen (1942–2017)

• Jørgen Hoffmann-Jørgensen, by M. B. Marcus, G. Peskir and J. Rosiński.
This paper honors the memory, scientific career and achievements of Jørgen
Hoffmann-Jørgensen.

Inequalities and Convexity

• Moment estimation implied by the Bobkov-Ledoux inequality, by W. Bednorz and
G. Głowienko. The authors derive general bounds for exponential Orlicz norms
of locally Lipschitz functions using the Bobkov-Ledoux entropic form of the
Poincaré inequality.

• Polar isoperimetry I—the case of the plane, by S. G. Bobkov, N. Gozlan,
C. Roberto and P.-M. Samson. This is the first part of a lecture notes series
and offers preliminary remarks on the plane isoperimetric inequality and its
applications to the Poincaré and Sobolev type inequalities in dimension one.

• Iterated Jackknives and two-sided variance inequalities, by O. Bousquet and
C. Houdré. The authors revisit selected classical variance inequalities, such as
the Efron–Stein inequality, and present refined versions.

• A probabilistic characterization of negative definite functions, by F. Gao. The
author proves using Fourier transform tools that a continuous function f on R

n

is negative definite if and only if it is polynomially bounded and satisfies the
inequality

Ef (X − Y ) ≤ Ef (X + Y )

for all i.i.d. random vectors X and Y in R
n.

• Higher order concentration in presence of Poincaré type inequalities, by F. Götze
and H. Sambale. The authors obtain sharpened forms of the concentration
of measure phenomenon that typically apply to differentiable functions with
centered derivatives up to the order d − 1 and bounded derivatives of order d .
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• Rearrangement and Prékopa–Leindler type inequalities, by J. Melbourne. The
author obtains rearrangement sharpenings of several classical Prékopa–Leindler
type functional inequalities.

• Generalized semimodularity: order statistics, by I. Pinelis. The author
introduces a notion of generalized n-semimodularity, which extends that of
(sub/super)modularity, and derives applications to correlation inequalities for
order statistics.

• Geometry of �np-balls: Classical results and recent developments, by J. Prochno,
C. Thäle and N. Turchi. The paper presents a survey of asymptotic theorems for
uniform measures on �np-balls and cone measures on �np-spheres.

• Remarks on superconcentration and Gamma calculus. Applications to spin
glasses, by K. Tanguy. This paper explores applications of Bakry-Emery Γ2
calculus to refined variant inequalities for several spin systems models.

Limit Theorems

• Asymptotic behavior of Renyi entropy in the central limit theorem, by
S. G. Bobkov and A. Marsiglietti. The authors explore the asymptotic behavior
and monotonicity of Renyi entropy along convolutions in the central limit
theorem.

• Uniform-in-bandwidth functional limit laws for multivariate empirical processes,
by P. Deheuvels. The author provides uniform-in-bandwidth functional limit laws
for multivariate local empirical processes, with statistical applications to kernel
density estimation.

• Universality of limiting spectral distribution under projective criteria, by
F. Merlevède and M. Peligrad. The authors study the limiting empirical spectral
distribution of an n × n symmetric matrix with dependent entries. For a class of
generalized martingales, they show that the asymptotic behavior of the empirical
spectral distribution depends only on the covariance structure.

• Exchangeable pairs on Wiener chaos, by I. Nourdin and G. Zheng. In this paper,
the authors propose a new proof of a quantitative form of the fourth moment
theorem in Gaussian approximation based on the construction of exchangeable
pairs of Brownian motions.

Stochastic Processes

• Permanental processes with kernels that are equivalent to a symmetric matrix,
by M. B. Marcus and J. Rosen. The authors consider α-permanental processes
whose kernel is of the form

ũ(x, y) = u(x, y)+ f (y), x, y ∈ S,

where u is symmetric and f has some good properties. In turn, they define con-
ditions that determine whether the kernel ũ is symmetrizable or asymptotically
symmetrizable.

• Pointwise properties of martingales with values in Banach function spaces,
by M. Veraar and I. Yaroslavtsev. In this paper, the authors consider local
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martingales with values in a UMD Banach function space and prove that
such martingales have a version which is a martingale field. Moreover, a new
Burkholder–Davis–Gundy type inequality is obtained.

High-Dimensional Statistics

• Concentration inequalities for randomly permuted sums, by M. Albert. The
author proves a deviation inequality for random permutations and uses it to
analyze the second kind error rate in a test of independence.

• Uncertainty quantification for matrix compressed sensing and quantum tomog-
raphy problems, by A. Carpentier, J. Eisert, D. Gross and R. Nickl. The authors
construct minimax optimal non-asymptotic confidence sets for low-rank matrix
recovery algorithms such as the Matrix Lasso and Dantzig selector.

• Uniform-in-bandwidth estimation of the gradient lines of a density, by D. Mason
and B. Pelletier. This paper exploits non parametric statistical techniques to
estimate the gradient flow of a stochastic differential equation. The results can
be of interest in clustering applications or the analysis of stochastic gradient
schemes.

Paris, France Nathael Gozlan
Warsaw, Poland Rafał Latała
Palaiseau, France Karim Lounici
Newark, DE, USA Mokshay Madiman
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Jørgen Hoffmann-Jørgensen (1942–2017)

Michael B. Marcus, Goran Peskir, and Jan Rosiński

Jørgen Hoffmann-Jørgensen, docent emeritus in the Department of Mathematics at
Aarhus University, Denmark, died on the 8th of December 2017. He was 75 years
old. He is survived by Karen, his wife of fifty years, his mother Ingeborg, his brother
Bent and his niece Dorthe.

He was a devoted teacher and advisor, a wonderful, friendly person, and a very
fine and prolific mathematician. His ties to Aarhus are legendary. Jørgen received his
magister scientiarum degree from the Institute of Mathematics at Aarhus University
in 1966. He began his research and teaching there in the previous year and continued
through the academic ranks, becoming docent in 1988.

With a stroke of good luck he began his career as a probabilist under the most
auspicious circumstances. Kiyoshi Itô was a professor at Aarhus from 1966 to 1969.
Ron Getoor, who had been with Itô at Princeton, came to Aarhus as a visiting
professor in the spring semester of 1969. Jørgen began his research career in the
presence of these outstanding probabilists. He often commented that, more than any
other mathematician, Itô had the greatest influence on his work.

There was widespread interest in sums of independent Banach space valued
random variables at that time. The famous paper of Itô and Nisio, ‘On the
convergence of sums of independent Banach space valued random variables’,
appeared in 1968. Jean-Pierre Kahane’s book, ‘Some random series of functions’

M. B. Marcus
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2 M. B. Marcus et al.

(first edition), mostly dealing with random Fourier series, also came out in 1968.
Functional analysts in the circle of Laurent Schwartz were using properties of sums
of independent Banach space valued random variables to classify Banach spaces.

Engaged in this work, Jørgen published his most cited papers, ‘Sums of
independent Banach space valued random variables’, as a publication of the Institute
of Mathematics in Aarhus in 1972, and a paper with the same title, in Studia
Mathematica in 1974 (cf. [9]). The two papers overlap but each has material that
is not in the other. They contain the important and very useful relationship, between
the norm of the maximal term in a series and the norm of the series, that is now
commonly referred to as ‘Hoffmann-Jørgensen’s inequality’.

Continuing in this study, Jørgen collaborated on two important papers; with
Gilles Pisier on the law of large numbers and the central limit theorem in Banach
spaces [12], and with Richard Dudley and Larry Shepp on the lower tails of
Gaussian seminorms [13]. He returned repeatedly to the topics of these and his
other early papers, examining them in more general and abstract spaces. In this vein
Jørgen reexamined the concept of weak convergence from a new perspective that
completely changed the paradigm of its applications in statistics. He formulated his
new definition of weak convergence in the 1980s1. This is now referred to as ‘weak
convergence in Hoffmann-Jørgensen’s sense’.

Jørgen remained an active researcher throughout his life. He was completing a
paper with Andreas Basse-O’Connor and Jan Rosiński on the extension of the Itô-
Nisio theorem to non-separable Banach spaces, when he died.

Jørgen was also a very fine teacher and advisor with great concern for his
students. He wrote 10 sets of lecture notes for his courses, 2,620 pages in total, and
a monumental 1,184 page, two volume, ‘Probability with a view toward Statistics’,
published by Chapman and Hall in 1994. He was the principal advisor of seven
Ph.D. students.

Reflecting the interest in sums of independent Banach space valued random
variables, and the related field of Gaussian processes in Europe, Laurent Schwarz
and Jacques Neveu organized an auspicious conference on Gaussian Processes in
Strasbourg in 1973. This stimulated research and collaborations that continue to
this day. The Strasbourg conference was followed, every two or three years, by
nine conferences on Probability in Banach Spaces and eight conferences on High
Dimensional Probability. The last one was in Oaxaca, Mexico in 2017. The change
in the conference name reflected a broadening of the interests of the participants.

Jørgen was one of a core group, many of whom attended the 1973 conference,
who took part in all or most of the eighteen conferences throughout their careers,
and often were the conference organizers and editors of the conference proceedings.
Most significantly, Jørgen was the principal organizer of three of these conferences
in the beautiful, serene, conference center in Sandbjerg, Denmark in 1986, 1993
and 2002, and was an editor of the proceedings of these conferences. Moreover, his

1Some authors have claimed, as we did in [14], that this definition was introduced in Jørgen’s paper
Probability in Banach space [10] in 1977. However, after a careful reading of this paper, we do not
think that this is correct.
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influence on the study of probability in Europe extended beyond these activities. In
total, Jørgen served on the conference committees of eighteen meetings in Croatia,
Denmark, Italy, France and Germany. Jørgen also served as an editor of the Journal
of Theoretical Probability.

Jørgen was one of the mathematicians at Aarhus University who made Aarhus
a focal point for generations of probabilists. But it was not only the research that
brought them to Aarhus. Just as important was Jørgen’s warmth and wit and not
least of all the wonderful hospitality he and his wife Karen extended to all of them.
Who can forget the fabulous Danish meals at their house, and then, sitting around
after dinner, exchanging mathematical gossip and arguing politics, with the mating
calls of hump backed whales playing in the background2.

We now present some of Jørgen’s better known results. This is not an attempt to
place him in the history of probability but merely to mention some of his work that
has been important to us and to give the reader a glimpse of his achievements.

Hoffmann-Jørgensen’s Inequality Let (Xn) be a sequence of independent sym-
metric random variables with values in a Banach space E with norm ‖ ·‖. We define

Sn =
n
∑

j=1

Xj, N = sup
n
‖Xn‖, M = sup

n
‖Sn‖.

Hoffmann-Jørgensen’s inequality states that

P(M ≥ 2t + s) ≤ 2P(N ≥ s)+ 8P2(M ≥ t) (1.1)

for all t, s > 0.
Note that since probabilities are less than 1 and the last term in this inequality

is a square it suggests that if M has sufficient regularity the distribution of M is
controlled by the distribution of N . This is a remarkable result.

Jørgen gives this inequality in his famous paper [9]. He does not highlight it. It
simply appears in the proof of his Theorem 3.1 which is:

Theorem 1 Let (Xn) be a sequence of independent E-valued random variables
such that

P(M <∞) = 1 and E(Np) <∞

for some 0 < p <∞. Then E(Mp) <∞.

2The material up to this point has appeared in [14].
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This is how he uses the inequality to prove this theorem. Assume that the
elements of (Xn) are symmetric and let R(t) = P(M ≥ t) and Q(t) = P(N ≥ t)

for t ≥ 0. Using the relationship

E(Mp) =
∫ ∞

0
pxp−1R(x)dx,

and similarly for N and Q, it follows from (1.1) that for A > 0

∫ A

0
pxp−1R(x)dx = p 3p

∫ A/3

0
pxp−1R(3x)dx (1.2)

≤ 2p 3p

∫ A/3

0
pxp−1Q(x)dx + 8p 3p

∫ A/3

0
pxp−1R2(x)dx

≤ 2p 3pE(Np)+ 8p 3p

∫ A/3

0
pxp−1R2(x)dx.

Choose t0 > 0 such that R(t0) < (16p3p)−1. The condition that P(M < ∞) = 1
implies that t0 <∞. Then choose A > 3t0. Note that

∫ A/3

0
pxp−1R2(x)dx =

∫ t0

0
pxp−1R2(x)dx +

∫ A/3

t0

pxp−1R2(x)dx

≤ t
p

0 + R(t0)

∫ A/3

t0

pxp−1R(x)dx. (1.3)

Combining (1.2) and (1.3) we get

∫ A

0
pxp−1R(x)dx ≤ 2p 3pE(Np)+ t

p
0 +

1

2

∫ A/3

0
pxp−1R(x)dx. (1.4)

It follows from (1.4) that when the elements of (Xn) are symmetric and E(Np) <

∞, then E(Mp) <∞. Eliminating the condition that (Xn) is symmetric is routine.

Inequalities for sums of independent random variables that relate the sum to
the supremum of the individual terms are often referred to as Hoffmann-Jørgensen
type inequalities. Jørgen’s original inequality has been generalized and extended.
Many of these results are surveyed in [5] which obtains Hoffmann-Jørgensen type
inequalities for U statistics. See [4] for a more recent treatment of Hoffmann-
Jørgensen type inequalities in statistics.

Weak Convergence in Hoffmann-Jørgensen’s Sense The classic concept of
convergence in distribution, dating back to de Moivre’s central limit theorem in
1737, admits the following well-known characterisation, traditionally referred to as
weak convergence (cf. [3]).
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Let (�,F ,P) be a probability space, let S be a metric (topological) space, and let
B(S) be the Borel σ -algebra on S. Let X1,X2, . . . and X be measurable functions
from � to S with respect to F and B(S). If

lim
n→∞Ef (Xn) = Ef (X) (1.5)

for every bounded continuous function f : S → R, then we say that Xn converges
weakly to X, and following Jørgen’s notation, write

Xn
∼→ X (1.6)

as n→∞. The expectation E in (1.5) is defined as the (Lebesgue-Stieltjes) integral
with respect to the (σ -additive) probability measure P.

The state space S in classical examples is finite dimensional, e.g. R or Rn for
n ≥ 2. The main motivation for Jørgen’s reconsideration of (1.5) and (1.6) comes
from the empirical processes theory. Recall that the empirical distribution function
is given by

Fn(t, ω) := 1

n

n
∑

i=1

I (ξi (ω) ≤ t) (1.7)

for n ≥ 1, t ∈ [0, 1] and ω ∈ �, where ξ1, ξ2, . . . are independent and identically
distributed random variables on � taking values in [0, 1] and having the common
distribution function F . In this setting, motivated by the classical central limit
theorem, one forms the empirical process

Xn(t, ω) := √n
(

Fn(t, ω)−F(t)
)

(1.8)

and aims to establish that Xn converges ‘weakly’ to a limiting process X (of a
Brownian bridge type) as n → ∞. A substantial difficulty arises immediately
because the mapping Xn : � → S is not measurable when S is taken to be the
set of all right-continuous functions x : [0, 1] → R with left-limits, equipped with
the supremum norm ‖x‖∞ = sup t∈[0,1] |x(t)| as a natural choice.

Skorokhod solved this measurability problem in 1956 by creating a different
metric on S, for which the Borel σ -algebra coincides with the cylinder σ -algebra,
so that each Xn is measurable. For more general empirical processes

Xn(f, ω) := √n
(1

n

n
∑

i=1

f (Xi(ω))−Ef (X1)
)

(1.9)

indexed by f belonging to a family of functions, there is no obvious way to
extend the Skorokhod approach. Jørgen solved this measurability problem in the
most elegant way by simply replacing the first expectation E in (1.5) by the outer



6 M. B. Marcus et al.

expectation E∗, which is defined by

E∗Y = inf {EZ | Z ≥ Y is measurable } (1.10)

where Y is any (not necessarily measurable) function from � to R, and leaving
the second expectation E in (1.5) unchanged (upon assuming that the limit X is
measurable).

This definition of weak convergence in Hoffmann-Jørgensen’s sense is given for
the first time in his monograph [11, page 149]. Although [11] was published in
1991, a draft of the monograph was available in Aarhus and elsewhere since 1984.
Furthermore, the first paper [1] which uses Jørgen’s new definition was published in
1985. Jørgen’s definition of weak convergence became standard soon afterwards. It
continues to be widely used.

It is now known that replacing the first E in (1.5) by E∗ is equivalent to replacing
it by EQ where Q is any finitely additive extension of P from F to 2� (see
Theorem 4 in [2] for details). This revealing equivalence just adds to both simplicity
and depth of Jørgen’s thought when opting for E∗ in his celebrated definition.

Hoffmann-Jørgensen’s Work on Measure Theory As measure theory matured,
difficult measurability problems arose in various areas of mathematics that could not
be solved in general measure spaces. Consequently, new classes of measure spaces
were introduced, such as analytic spaces, also called Souslin spaces, defined by
Lusin and Souslin and further developed by Sierpiński, Kuratowski and others. For
many years analytic spaces received little attention until important applications were
found in potential theory by Choquet and group representation theory by Mackey.
Analytic spaces were also found to be important in the theory of convex sets, and
other branches of mathematics.

Stimulated by these developments, Jørgen undertook a deep study of analytic
spaces early in his academic career, resulting in his monograph ‘The Theory
of Analytic Spaces’ [7]. This monograph contains many original, and carefully
presented results, that are hard to find elsewhere. For example, from Jørgen’s Section
Theorem, [7, Theorem 1, page 84], one can derive all of the most commonly used
section and selection theorems in the literature.

The final chapter of the monograph is devoted to locally convex vector spaces,
where it is shown that all of the locally convex spaces that are of interest to
researchers are analytic spaces. As Jørgen wrote “The importance of analytic spaces
lies in the fact that even though the category is sufficiently small to exclude all
pathological examples . . . , it is sufficiently large to include all (or almost all)
interesting and important examples of topological measure spaces.”

In one of his first papers [6] listed in Mathematical Reviews and Zentralblatt,
Jørgen investigates extensions of regenerative events to continuous state spaces, a
problem proposed to him by P.-A. Meyer. In his subsequent paper [8], he makes the
surprising observation that the existence of a measurable modification of a stochastic
process depends only on its 2-dimensional marginal distributions. He then gives
necessary and sufficient conditions for the existence of such a modification for the
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process (Xt )t∈T with values in a complete separable metric space K , expressed in
terms of the kernel

Q(s, t, A) = P((Xs,Xt ) ∈ A)

where T is a separable metric space, s, t ∈ T , and A ∈ B(K2). Jørgen’s interest in
measure theory aspects of probability continued throughout his career.
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Chapter 2
Moment Estimation Implied
by the Bobkov-Ledoux Inequality

Witold Bednorz and Grzegorz Głowienko

Abstract In this paper we consider a probability measure on the high dimensional
Euclidean space satisfying Bobkov-Ledoux inequality. Bobkov and Ledoux have
shown in (Probab Theory Related Fields 107(3):383–400, 1997) that such entropy
inequality captures concentration phenomenon of product exponential measure and
implies Poincaré inequality. For this reason any measure satisfying one of those
inequalities shares the same concentration result as the exponential measure. In
this paper using B-L inequality we derive some bounds for exponential Orlicz
norms for any locally Lipschitz function. The result is close to the question posted
by Adamczak and Wolff in (Probab Theory Related Fields 162:531–586, 2015)
regarding moments estimate for locally Lipschitz functions, which is expected to
result from B-L inequality.

Keywords Concentration of measure · Poincaré inequality · Sobolev inequality

Subject Classification 60E15, 46N30

2.1 The Bobkov-Ledoux Inequality

Let μ be a probability measure on R
d . We assume that μ satisfies Bobkov-Ledoux

inequality i.e. with fixed D > 0, for any positive, locally Lipschitz function f such
that |∇f |∞ � f/2 we have

Entμf 2 � DEμ|∇f |22. (2.1)

As noticed by Bobkov and Ledoux in [3] this modification of log-Sobolev inequality
is satisfied by product exponential measure, but more importantly, it implies
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subexponential concentration. It is also quite easy to show that it implies Poincaré
inequality. For any smooth function g we may take f = 1+ εg and ε > 0 such that
|∇f |∞ � f/2, which allows us to apply (2.1). In the next step divide both sides of
inequality by ε2, consider standard Taylor expansion and take limit with ε tending
to 0. As a result

Varμg � D

2
Eμ|∇g|22, (2.2)

which is exactly the Poincaré inequality. Finally just notice that any locally Lipschitz
function f such that both f and |∇f |2 are square integrable w.r.t. μ may be
approximated in (2.2) by smooth functions. The result means that B-L inequality
(2.1) is stronger than Poincaré inequality (2.2), nevertheless both inequalities imply
concentration phenomenon of product exponential measure, therefore any measure
satisfying one of those inequalities shares the same concentration result. See [3] for
more details regarding this subtle connection.

As we are dealing with big number of constants in the following section, it would
be wise to adopt some useful convention. Therefore, let us denote by D′ numeric
constant which may vary from line to line, but importantly, it is comparable to D

from log-Sobolev inequality (2.1). Similarly let C be constant comparable to 1 and
by C(α) denote one that depends on α only.

In [4] it was noticed by E. Milman that, Poincaré inequality (2.2) implies the
following estimate for p � 1

‖f − Eμf ‖p �
√
D′p‖|∇f |2‖p, (2.3)

with f locally Lipschitz. It is easy to see that above results with the following bound

‖f − Eμf ‖p �
√
D′p

√
d‖|∇f |∞‖p.

Adamczak and Wolff has conjectured in [1] that Bobkov-Ledoux inequality (2.1)
imply

‖f − Eμf ‖p �
√
D′√p‖|∇f |2‖p + Cp‖|∇f |∞‖p.

They also proved following weaker form of the conjecture

‖f − Eμf ‖p �
√
D′√p‖|∇f |2‖p + Cp‖|∇f |∞‖∞. (2.4)

Their result is based on tricky modification of given function so that (2.1) could be
used. In our paper we are trying to understand this phenomenon and apply its more
advanced form.
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2.2 Bounds for Moments

In this section we investigate possible estimates for ‖g‖pα , with a given α > 0,
when we know that gα is globally Lipschitz. This bounds will be useful when we
start dealing with the exponential Orlicz norms.

Theorem 2.1 If measure μ satisfies (2.1), function g is non-negative, locally
Lipschitz and p � 1, then
for 0 < α � 1

‖g‖pα � 2
1
α max

{

p
1
α

∥

∥|∇gα|∞
∥

∥

1
α∞, ‖g‖2α, αp

1
2
√
D′‖|∇g|2‖pα

}

and in case of α > 1

‖g‖pα � max
{

2
1
α p

1
α

∥

∥|∇gα|∞
∥

∥

1
α∞, 2

1
α ‖g‖2α, αp

1
2
√
D′‖|∇g|2‖pα

}

.

Proof Consider gα to be a non-negative Lipschitz function, otherwise estimate is
trivial. Note that in case of p � 2 there is also nothing to prove, therefore we may
take p > 2. For simplicity let us assume that ‖|∇gα|∞‖∞ = 1. If it happens to be

‖g‖αpα � 2p
∥

∥|∇gα|∞
∥

∥∞ (2.5)

then proof is once again trivial, therefore assume that

‖g‖αpα > 2p
∥

∥|∇gα|∞
∥

∥∞, (2.6)

then following the idea of the proof of (2.4) from [1] we define function h =
max{g, c}, where c = ‖g‖pα/2

1
α . Obviously, for 2 � t � p

|∇hαt/2|∞
hαt/2 = t

2

|∇hα|∞
hα

.

Due to our definition h � c and |∇hα|∞ � |∇gα|∞, which gives us

|∇hα|∞
hα

� 2|∇gα|∞
‖g‖αpα

.

Combining above with (2.6) we get

∥

∥

∥

|∇hαt/2|∞
hαt/2

∥

∥

∥∞ � t

2p
� 1

2
.
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Therefore, we may apply (2.1) to the function hαt/2 and thus by the Aida Stroock
[2] argument i.e.

d

dt
‖hα‖2

t =
2

t2

(

Ehαt
)2/t−1Ent(hαt/2)2 � D

2

(

Ehαt
)2/t−1E|hαt/2−α∇hα|22,

combined with Hölder inequality with exponents t/(t − 2) and t/2 applied to the
last term, gives us

d

dt
‖hα‖2

t � D

2

(

Ehαt
)2/t−1(Ehαt

)1−2/t(E|∇hα|t2
)2/t = D

2

∥

∥|∇hα|2
∥

∥

2
t
.

The moment function (as function of t) is non-decreasing, therefore for 2 � t � p

we get

‖hα‖2
p − ‖hα‖2

2 � D

2
(p − 2)‖|∇hα|2‖2

p. (2.7)

Now we have to consider two cases. First suppose that α � 1 and then

‖|∇hα|2‖p � α‖|∇g|2hα−1‖p � αcα−1‖|∇g|2‖p
and combining this with (2.7), we infer

‖hα‖2
p � ‖hα‖2

2 +
α2D

2
(p − 2)c2α−2‖|∇g|2‖2

p.

Now observe that ‖hα‖2
p � ‖gα‖2

p and furthermore

‖hα‖2
2 � c2α + ‖gα‖2

2 � 1

4
‖gα‖2

p + ‖gα‖2
2,

which combined together gives us

3

4
‖gα‖2

p � ‖gα‖2
2 +

α2D

2
(p − 2)c2α−2‖|∇g|2‖2

p. (2.8)

Noting that the case of

‖g‖αpα � 2‖g‖α2α, (2.9)

is another trivial part, we assume conversely getting

‖gα‖2
2 = ‖g‖2α

2α � 1

4
‖g‖2α

pα =
1

4
‖gα‖2

p
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which together with (2.8) implies that

‖g‖2α
pα � α2D(p − 2)c2α−2‖|∇g|2‖2

p. (2.10)

Reminding that cα = 2−1‖g‖αpα we infer

‖g‖2
pα � 2

2
α
−2α2D(p − 2)‖|∇g|2‖2

p

and rewriting it in simplified form

‖g‖pα � 2
1
α α
√
D′p

1
2 ‖|∇g|2‖p. (2.11)

Combining together (2.5), (2.9), and (2.11) implies the result in the case of 0 < α �
1.

Consider now case of α > 1, following the same reasoning as in previous case,
up to the (2.7) after that Hölder inequality is used, we get

‖|∇hα|2‖p � α‖|∇g|2hα−1‖p � α‖|∇g|2‖pα‖h‖α−1
pα .

Therefore, by (2.7)

‖h‖2
pα(1−

‖h‖2α
2α

‖h‖2α
pα

) � α2 D

2
(p − 2)‖|∇g|2‖2

pα. (2.12)

Again, either (2.9) holds or we have

‖h‖2α
2α = ‖hα‖2

2 � c2α + ‖gα‖2
2 =

1

4
‖gα‖2

p +
1

4
‖gα‖2

p =
1

2
‖g‖2α

pα.

Since obviously ‖h‖2α
pα � ‖g‖2α

pα , we get

‖h‖2
pα(1−

‖h‖2α
2α

‖h‖2α
pα

) � 2−1‖g‖2
pα

and combining above with (2.12) gives us

‖g‖pα � α
√
D′p

1
2 ‖|∇g|2‖p. (2.13)

Clearly (2.5), (2.9), and (2.13) cover the case of α > 1, which ends whole proof. �
Next step of the reasoning is to apply previous result to g = |f −Eμf | and combine
it with Poincaré inequality. Let us gather everything together in form of
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Corollary 2.1 If measure μ satisfies (2.1), function f is locally Lipschitz and p �
1, then for 0 < α � 1

‖f − Eμf ‖pα � 2
1
α max

{

p
1
α

∥

∥

∥

∣

∣∇|f − Eμf |α
∣

∣∞
∥

∥

∥

1
α

∞,

√
D′∥∥|∇f |2

∥

∥

2, αp
1
2
√
D′∥∥|∇f |2

∥

∥

pα

}

.

and in case of α > 1

‖f − Eμf ‖pα � max
{

2
1
α p

1
α

∥

∥

∥

∣

∣∇|f − Eμf |α
∣

∣∞
∥

∥

∥

1
α

∞,

2
1
α α
√
D′∥∥|∇f |2

∥

∥

2α, αp
1
2
√
D′∥∥|∇f |2

∥

∥

pα

}

.

Proof If we fix g = |f − Eμf | then by the Poincaré inequality

‖f − Eμf ‖2α � (α ∨ 1)
√
D′∥∥|∇f |2

∥

∥

2(α∨1).

Note also that

∥

∥|∇g|2
∥

∥

pα
= ∥∥|∇f |2

∥

∥

pα
,

then applying Theorem 2.1 statement easily follows. �

2.3 Bounds for Exponential Orlicz Norms

First, let us recall the notion of exponential Orlicz norms. For any α > 0

‖f ‖ϕ(α) = inf{s > 0 : Eμ exp(|f |α/sα) � 2}.

Obviously, ‖f ‖ϕ(α) is a norm in case of α � 1 only, otherwise there is a

problem with the triangle inequality. Moreover, we have ‖f ‖ϕ(α) = ‖|f |α‖
1
α

ϕ(1).
Nevertheless, in case of 0 < α < 1 one can use

‖f + g‖ϕ(α) = ‖|f + g|α‖
1
α

ϕ(1)

� ‖|f |α + |g|α‖
1
α

ϕ(1) � (‖|f |α‖ϕ(1) + ‖|g|α‖ϕ(1)) 1
α

= (‖f ‖αϕ(α) + ‖g‖αϕ(α))
1
α � 2

1
α−1(‖f ‖ϕ(α) + ‖g‖ϕ(α)).
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It is worth to know that ‖f ‖ϕ(α) is always comparable with supk�1
‖f ‖kα
k1/α . More

precisely, observe that for all k � 1 and a positive g

‖g‖kαkα
k! � ‖g‖kαϕ(α).

Note that, just by the definition of ‖g‖ϕ(α), there exists k � 1 for which

‖g‖kαkα
k! � 2−k‖g‖kαϕ(α).

Let us denote the set of such k � 1 by J (g, α) and note that for any k ∈ J (g, α)

(k!)− 1
kα ‖g‖kα � ‖g‖ϕ(α) � 2

1
α (k!)− 1

kα ‖g‖kα. (2.14)

Next let M � e be such a constant that (k!) 1
k � k/M for all k � 1. We have

following crucial observation namely for all k ∈ J (g, α)

‖g‖ϕ(α) � (2M)
1
α
‖g‖kα
k

1
α

. (2.15)

Therefore, we may use Theorem 2.1 in order to obtain

Corollary 2.2 If μ satisfies (2.1) and g is non-negative locally Lipschitz function,
then for any k ∈ J (g, α) in case of 0 < α � 1

‖g‖ϕ(α) � (4M)
1
α max

{

∥

∥|∇gα|∞
∥

∥

1
α∞, k−

1
α ‖g‖2α, αk

1
2− 1

α

√
D′∥∥|∇g|2

∥

∥

kα

}

.

and for 1 < α � 2

‖g‖ϕ(α) � (4M)
1
α max

{

∥

∥|∇gα|∞
∥

∥

1
α∞, k−

1
α ‖g‖2α, 2−

1
α αk

1
2− 1

α

√
D′∥∥|∇g|2

∥

∥

kα

}

.

Note that set J (g, α) is stable with respect to g �→ h, where h = max{g, c} i.e. if c
is comparable to ‖g‖ϕ(α) there exists C � 1 such that for k ∈ J (g, α)

‖h‖kαkα
k! � 1

Ck
‖h‖kαϕ(α),

which means that we cannot easily improve the result using the trick.
In the same way as we have established Corollary 2.1 we can deduce the

following result.



16 W. Bednorz and G. Głowienko

Corollary 2.3 If μ satisfies (2.1) and g is locally Lipschitz function, then for any
k ∈ J (g, α) in case of 0 < α � 1

‖f − Eμf ‖ϕ(α) � (4M)
1
α max

{∥

∥

∥

∣

∣∇|f − Eμf |α
∣

∣∞
∥

∥

∥

1
α

∞,

k−
1
α

√
D′∥∥|∇f |2

∥

∥

2, αk
1
2− 1

α

√
D′∥∥|∇f |2

∥

∥

kα

}

.

and for α > 1

‖f − Eμf ‖ϕ(α) � (4M)
1
α max

{∥

∥

∥

∣

∣∇|f − Eμf |α
∣

∣∞
∥

∥

∥

1
α

∞,

k−
1
α

√
D′∥∥|∇f |2

∥

∥

2, 2−
1
α αk

1
2− 1

α

√
D′∥∥|∇f |2

∥

∥

kα

}

.

A simple consequence of the above is

Corollary 2.4 If μ satisfies (2.1) and 0 < α � 2, then for any locally Lipschitz
function f

‖f − Eμf ‖ϕ(α) � C(α)
(∥

∥

∣

∣∇|f − Eμf |α
∣

∣∞
∥

∥

1
α∞ +√D′∥∥|∇f |2

∥

∥

ϕ( 2α
2−α )

)

.

The result shows that at least for globally Lipschitz function |f |α, α � 1 the
exponential moment ‖f − Eμf ‖ϕ(α) has to bounded, though it is still far from

replacement of ‖|∇|f − Eμf |α|∞‖
1
α∞ by the expected ‖|∇f |∞‖ϕ( α

1−α )
.

Note that it is not possible to simply replace the constant C(α) ∼ (4M)
1
α in

Corollary 2.4 by 1 which would be a natural choice for the question. In the next
section we will show another approach which allows to obtain such a result.

2.4 Another Approach

Theorem 2.2 If μ satisfies (2.1) and 0 < α � 2, then for any locally Lipschitz
function f

‖f − Eμf ‖ϕ(α) �
∥

∥

∣

∣∇|f − Eμf |α
∣

∣∞
∥

∥

1
α∞ + C(α)

√
D′∥∥|∇f |2

∥

∥

ϕ( 2α
2−α )

where C(α) = α
(

2
ln 2

) 1
α

.

Proof Let gα be a non-negative Lipschitz function, we may assume that

∥

∥|∇gα|∞‖∞ = α
∥

∥|∇g|∞gα−1‖∞ � 1.
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Then for any t � 1 and a function h = exp(gαt/2) we can apply (2.1), indeed

∥

∥

∥

|∇h|∞
h

∥

∥

∥∞ = t

2

∥

∥|∇gα|∞
∥

∥∞ � 1

2

In fact there are three possibilities we should acknowledge.
The first case we should consider is Eμ exp(gα) � 2, but then

‖g‖ϕ(α) � 1. (2.16)

Otherwise there must exist t∗ � 1 such that E exp(gαt∗) = 2. Clearly 1/t
1
α∗ =

‖g‖ϕ(α). For simplicity let us denote V (t) = ln E exp(gαt), t � 0. It is well known
that V is convex, increasing and V (0) = 0. Now we use (2.1), in order to get for all
t ∈ [0, 1]

(V (t)

t

)′
� D

4
Eμ|∇gα|22 exp(gαt − V (t)). (2.17)

Note that V (0)′ = Eμg
α . Moreover, for 0 � t � t∗ we have 1

2 � exp(−V (t)) � 1,
so we can rewrite (2.17) in the following form

(V (t)

t

)′
� D

4
Eμ|∇gα|22eg

αt . (2.18)

Since V is convex V (0) = 0 we know that V (t)/t is increasing and also V ′(0) =
Eμg

α . Consequently, integrating (2.18) on [0, t∗]

V (t∗)
t∗

− Eμg
α � D

4

∞
∑

k=0

Eμ|∇gα|22
gkαtk+1∗
(k + 1)! .

Note that V (t∗) = ln 2, so

ln 2 � t∗Eμg
α + D

4

∞
∑

k=0

tk+2∗
(k + 1)!Eμ|∇gα|22gkα.

The second case which should be considered is when t∗ is very close to Eμg
α . If

t∗Eμg
α > 1

2 ln 2, then

‖g‖ϕ(α) = 1

t
1
α∗
�
( 2

ln 2

) 1
α ‖g‖α. (2.19)
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For the last part of the proof we assume that

t∗Eμg
α � 1

2
ln 2.

Obviously, we have then

ln 2

2
� D

4

∞
∑

k=0

tk+2∗
(k + 1)!Eμ|∇gα|22gkα.

Using the Hölder inequality, we get

Eμ|∇gα|22gkα = α2Eμ|∇g|22g(k+2)α−2

� α2‖|∇g|2‖2
(k+2)α‖g‖(k+2)α−2

(k+2)α = α2‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

Eμg
(k+2)α.

Therefore,

1

2
ln 2 � Dα2

4

∞
∑

k=0

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg
(k+2)α

(k + 2)! . (2.20)

Now we split all the indices k into two classes.

I = {k � 0 : ‖g‖(k+2)α � (k + 2)
1
α

M
1
α t

1
α∗
}, J = {k � 0 : ‖g‖(k+2)α >

(k + 2)
1
α

M
1
α t

1
α∗
},

where the constant M � 1 will be chosen later. First, we bound summands over the
set I , i.e.

∑

k∈I

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg
(k+2)α

(k + 2)!

� max
k�0

(k + 2)‖|∇g|2‖2
(k+2)αt

2∗M2(k + 2)−
2
α

∑

k∈I

(k + 2)k+2

Mk+2(k + 2)! t
2
α∗ M

2
α .

Obviously it is easy to choose M close to 2e so that
∑

k∈I
(k+2)k+2

Mk+2(k+2)! � 1. Thus,
we may state our bound over I in the following form

∑

k∈I

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg
(k+2)α

(k + 2)! � K2t
2
α∗ M

2
α , (2.21)
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where K = maxk�1
‖|∇g|2‖kα
k

1
α − 1

2
. On the set J we do as follows

∑

k∈J

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg
(k+2)α

(k + 2)!

� t
2
α∗ M

2
α max

k�0

(k + 2)‖|∇g|2‖2
(k+2)α

(k + 2)
2
α

∑

k∈J

tk+2∗ Eμg
(k+2)α

(k + 2)! .

But now

∑

k∈J

tk+2∗ Eμg
(k+2)α

(k + 2)! �
∑

k�0

tk+2∗ Eμg
(k+2)α

(k + 2)! � eV (t∗) − 1 = 1.

Thus, our bound on J is

∑

k∈J

(k + 2)‖|∇g|2‖2
(k+2)α

‖g‖2
(k+2)α

tk+2∗ Eμg
(k+2)α

(k + 2)! � M
2
α K2t

2
α∗ . (2.22)

Combining bounds (2.21), (2.22), and (2.20) we get

2 ln 2

Dα2
� M

2
α K2t

2
α∗

but this implies

1

t∗
� (D′)

α
2 ααKα.

Note that K is comparable with ‖|∇g|2‖ϕ( 2α
2−α

). It leads to the formula

‖g‖ϕ(α) = 1

t
1
α∗
� α

√
D′‖|∇g|2‖ϕ( 2α

2−α )
. (2.23)

Bound (2.16), (2.19), and (2.23) implies that for any positive g

‖g‖ϕ(α) � max
{∥

∥|∇gα|
1
α∞
∥

∥∞,

(

2

ln 2

) 1
α ‖g‖α, α

√
D′‖|∇g|2‖ϕ( 2α

2−α )

}

. (2.24)

If we now fix g = |f − Eμf | then by the Poincaré inequality

‖f − Eμf ‖α �
√
D′‖|∇f |2‖2.
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Note also that

‖|∇g|2‖ϕ( 2α
2−α

) = ‖|∇f |2‖ϕ( 2α
2−α

).

Thus, by (2.24) we obtain

‖f−Eμf ‖ϕ(α) � max
{∥

∥

∣

∣∇|f−Eμf |α
∣

∣∞
∥

∥

1
α∞,

(

2

ln 2

) 1
α ‖f−Eμf ‖α, α

√
D′‖|∇f |2‖ϕ( 2α

2−α
)

}

.

It ends the proof. �
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Chapter 3
Polar Isoperimetry. I: The Case
of the Plane

Sergey G. Bobkov, Nathael Gozlan, Cyril Roberto, and Paul-Marie Samson

Abstract This is the first part of the notes with preliminary remarks on the plane
isoperimetric inequality and its applications to the Poincaré and Sobolev-type
inequalities in dimension one. Links with informational quantities of Rényi and
Fisher are briefly discussed.

Keywords Isoperimetry · Sobolev-type inequalities · Rényi divergence power ·
Relative Fisher information

3.1 Isoperimetry on the Plane and the Upper Half-Plane

The paper by Diaz et al. [4] contains the following interesting Sobolev-type
inequality in dimension one.

Proposition 3.1.1 For any smooth real-valued function f on [0, 1],
∫ 1

0

√

f (x)2 + 1

π2
f ′(x)2 dx ≥

(

∫ 1

0
f (x)2 dx

)1/2
. (3.1)
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More precisely, this paper mentions without proof that (3.1) is a consequence
of the isoperimetric inequality on the plane R

2. Let us give an argument, which is
actually based on the isoperimetric inequality

μ+(A) ≥ √
2π (μ(A))1/2, A ⊂ R

2+ (A is Borel), (3.2)

in the upper half-plane R
2+ = {(x1, x2) ∈ R

2 : x2 ≥ 0}. Here, μ denotes the
Lebesgue measure restricted to this half-plane, which generates the corresponding
notion of the perimeter

μ+(A) = lim inf
ε→0

μ(A+ εB2)− μ(A)

ε

(cf. e.g. [2]).
Inequality (3.2) follows from the Brunn-Minkowski inequality in R

2

μ(A+ B)1/2 ≥ μ(A)1/2 + μ(B)1/2

along the same arguments as in the case of its application to the usual isoperimetric
inequality. Indeed, applying it with a Borel set A ⊂ R

2+ and B = εB2 (ε > 0), we
get

μ(A+ εB2) ≥
[

μ(A)1/2 + μ(εB2)
1/2]2

=
[

μ(A)1/2 +
(π

2

)1/2
ε
]2

= μ(A)+ √
2π (μ(A))1/2ε +O(ε2),

and therefore (3.2) from the definition of the perimeter.
The relation (3.2) is sharp and is attained for the upper semi-discs

Aρ = {(x1, x2) ∈ R
2 : x2

1 + x2
2 ≤ ρ2, x2 ≥ 0}, ρ > 0.

In this case, μ(Aρ) = 1
2 πρ2 is the area size between the upper part of the circle

x2
1 + x2

2 = ρ2 and the x1-axis x2 = 0, while the μ-perimeter is just the length of the
half-circle μ+(Aρ) = πρ.

To derive (3.1), one may assume that the function f is non-negative and is not
identically zero on [0, 1]. Then we associate with it the set in R

2+ described in polar
coordinates as

A = {(x1, x2) : 0 ≤ r ≤ f (t), 0 ≤ t ≤ 1}
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with x1 = r cos(πt), x2 = r sin(πt). Integration in polar coordinates indicates that,
for any non-negative Borel function u on R

2,

∫∫

R2
u(x1, x2) dx1 dx2 = π

∫ 1

−1

[∫ ∞

0
u
(

r cos(πt), r sin(πt)
)

rdr

]

dt. (3.3)

Applying it to the indicator function u = 1A, we get

μ(A) = π

2

∫ 1

0
f (t)2 dt.

On the other hand, μ+(A) represents the length of the curve C = {(x1(t), x2(t)) :
0 ≤ t ≤ 1} parameterized by

x1(t) = f (t) cos(πt), x2(t) = f (t) sin(πt).

Since

x ′1(t)2 + x ′2(t)2 = f ′(t)2 + π2f (t)2,

we find that

μ+(A) =
∫ 1

0

√

x ′1(t)2 + x ′2(t)2 dt =
∫ 1

0

√

f ′(t)2 + π2f (t)2 dt.

As a result, the isoperimetric inequality (3.2) takes the form

∫ 1

0

√

f ′(t)2 + π2f (t)2 dt ≥ √
2π
(π

2

∫ 1

0
f (t)2 dt

)1/2
.

which is the same as (3.1). Note that the condition f ≥ 0 may easily be removed in
the resulting inequality. ��

One can reverse the argument and obtain the isoperimetric inequality (3.2) on the
basis of (3.1) for the class of star-shaped sets in the upper half-plane.

The same argument may be used on the basis of the classical isoperimetric
inequality

μ+(A) ≥ √4π (μ(A))1/2 (A is Borel) (3.4)

in the whole plane R2 with respect to the Lebesgue measure μ. It is attained for the
discs

Aρ = {(x1, x2) ∈ R
2 : x2

1 + x2
2 ≤ ρ2}, ρ > 0,

in which case μ(Aρ) = πρ2 and μ+(Aρ) = 2πρ.
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Starting from a smooth non-negative function f on [−1, 1] such that f (−1) =
f (1), one may consider the star-shaped region

A = {(x1, x2) : 0 ≤ r ≤ f (t), −1 ≤ t ≤ 1}, x1 = r cos(πt), x2 = r sin(πt),

enclosed by the curve C = {(x1(t), x2(t)) : −1 ≤ t ≤ 1} with the same functions
x1(t) = f (t) cos(πt), x2(t) = f (t) sin(πt). Integration in polar coordinates (3.3)
then yields a similar formula as before,

μ(A) = π

2

∫ 1

−1
f (t)2 dt,

and also the perimeter μ+(A) represents the length of C, i.e.,

μ+(A) =
∫ 1

−1

√

x ′1(t)2 + x ′2(t)2 dt =
∫ 1

−1

√

f ′(t)2 + π2f (t)2 dt.

As a result, the isoperimetric inequality (3.4) takes the form

∫ 1

−1

√

f ′(t)2 + π2f (t)2 dt ≥ √
4π
(π

2

∫ 1

−1
f (t)2 dt

)1/2
,

or equivalently,

1

2

∫ 1

−1

√

1

π2 f ′(t)2 + f (t)2 dt ≥
(1

2

∫ 1

−1
f (t)2 dt

)1/2
. (3.5)

To compare with (3.1), let us restate (3.5) on the unit interval [0, 1] by making
the substitution f (t) = u( 1+t

2 ). Then it becomes

1

2

∫ 1

−1

√

1

4π2 u′
(1+ t

2

)2 + u
(1+ t

2

)2
dt ≥

(

1

2

∫ 1

−1
u
(1+ t

2

)2
dt

)1/2

.

Changing x = 1+t
2 , replacing u again with f , and removing the unnecessary

condition f ≥ 0, we arrive at:

Proposition 3.1.2 For any smooth real-valued function f on [0, 1] such that
f (0) = f (1),

∫ 1

0

√

f (x)2 + 1

4π2 f ′(x)2 dx ≥
(

∫ 1

0
f (x)2 dx

)1/2
. (3.6)

As we can see, an additional condition f (0) = f (1) allows one to improve the
coefficient in front of the derivative, in comparison with (3.1). It should also be clear
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that (3.6) represents an equivalent form of the isoperimetric inequality (3.4) for the
class of star-shaped regions.

3.2 Relationship with Poincaré-type Inequalities

It would be interesting to compare Propositions 3.1.1–3.1.2 with other popu-
lar Sobolev-type inequalities such as the Poincaré-type and logarithmic Sobolev
inequalities. Starting from (3.1) and (3.6), a simple variational argument yields:

Corollary 3.2.1 For any smooth real-valued function f on [0, 1],

Varμ(f ) ≤ 1

π2

∫ 1

0
f ′(x)2 dx, (3.7)

where the variance is understood with respect to the uniform probability measure
dμ(x) = dx on the unit segment. Moreover, if f (0) = f (1), then

Varμ(f ) ≤ 1

4π2

∫ 1

0
f ′(x)2 dx. (3.8)

The constants 1
π2 and 1

4π2 in (3.7)–(3.8) are optimal and are respectively attained
for the functions f (x) = cos(πx) and f (x) = sin(2πx) (cf. also [1]).

For the proof, let us note that an analytic inequality of the form

∫ 1

0

√

f (x)2 + cf ′(x)2 dx ≥
(

∫ 1

0
f (x)2 dx

)1/2
(3.9)

with a constant c > 0 becomes equality for f = 1. So, one may apply it to fε =
1+ εf , and letting ε → 0, one may compare the coefficients in front of the powers
of ε on both sides. First,

∫ 1

0
fε(x)

2 dx = 1+ 2ε
∫ 1

0
f (x) dx + ε2

∫ 1

0
f (x)2 dx,

so, by Taylor’s expansion, as ε → 0,

(

∫ 1

0
fε(x)

2 dx
)1/2 = 1+ ε

∫ 1

0
f (x) dx + ε2

2

∫ 1

0
f (x)2 dx

−1

8

(

2ε
∫ 1

0
f (x) dx + ε2

∫ 1

0
f (x)2 dx

)2 +O(ε3)

= 1+ ε

∫ 1

0
f (x) dx + ε2

2

∫ 1

0
f (x)2 dx − ε2

2

(

∫ 1

0
f (x) dx

)2 +O(ε3).
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On the other hand, since

fε(x)
2 + cf ′ε(x)2 = 1+ 2εf (x)+ ε2 (f (x)2 + cf ′(x)2),

we have

(

fε(x)
2 + cf ′ε(x)2)1/2 = 1+ εf (x)+ ε2

2

(

f (x)2 + cf ′(x)2)

−1

8

(

2εf (x)+ ε2 (f (x)2 + cf ′(x)2)
)2 +O(ε3)

= 1+ εf (x)+ cε2

2
f ′(x)2 +O(ε3).

Hence

∫ 1

0

(

fε(x)
2 + cf ′ε(x)2)1/2

dx = 1+ ε

∫ 1

0
f (x) dx + cε2

2

∫

f ′(x)2 dx +O(ε3).

Inserting both expansions in (3.9), we see that the linear coefficients coincide, while
comparing the quadratic terms leads to the Poincaré-type inequality

c

∫

f ′(x)2 dx ≥
∫ 1

0
f (x)2 dx −

(

∫ 1

0
f (x) dx

)2
.

��
Thus, the isoperimetric inequality on the upper half-plane implies the Poincaré-

type inequality (3.7) on [0, 1], while the isoperimetric inequality on the whole plane
implies the restricted Poincaré-type inequality (3.8), with optimal constants in both
cases.

3.3 Sobolev Inequalities

If f is non-negative, then f (x) = 0 ⇒ f ′(x) = 0 and thus f (x)2 + cf ′(x)2 = 0.
Hence, applying Cauchy’s inequality, from (3.9) we get

∫ 1

0
f (x)2 dx ≤

(∫ 1

0

√

f (x)

√

f (x)+ c
f ′(x)2

f (x)
1{f (x)>0} dx

)2

≤
∫ 1

0
f (x) dx

(

∫ 1

0
f (x) dx + c

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx

)

.
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Therefore, Propositions 3.1.1–3.1.2 also yield:

Proposition 3.3.1 For any non-negative smooth function f on [0, 1] with
∫ 1

0 f (x) dx = 1,

Varμ(f ) ≤ 1

π2

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx, (3.10)

where the variance is with respect to the uniform probability measure μ on the unit
segment. Moreover, if f (0) = f (1), then

Varμ(f ) ≤ 1

4π2

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx. (3.11)

Recall that there is a general relation between the entropy functional

Entμ(f ) =
∫

f log f dμ−
∫

f dμ log
∫

f dμ (f ≥ 0)

and the variance, namely

Entμ(f )

∫

f dμ ≤ Varμ(f ). (3.12)

It is rather elementary; assume by homogeneity that
∫

f dμ = 1. Since log t ≤ t−1
and therefore t log t ≤ t (t − 1) for all t ≥ 0, we have

f (x) logf (x) ≤ f (x)2 − f (x).

After integration it yields (3.12).
Using the latter in (3.10)–(3.11), we arrive at the logarithmic Sobolev inequali-

ties.

Corollary 3.3.2 For any non-negative smooth function f on [0, 1], with respect to
the uniform probability measure μ on the unit segment we have

Entμ(f ) ≤ 1

π2

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx. (3.13)

Moreover, if f (0) = f (1), then

Entμ(f ) ≤ 1

4π2

∫ 1

0

f ′(x)2

f (x)
1{f (x)>0} dx. (3.14)
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Replacing here f by (1+ εf )2 and letting ε → 0, we return to the Poincaré-type
inequalities (3.7) and (3.8) with an extra factor of 2. The best constant in (3.13)
is however 1

2π2 and in (3.14) is 1
8π2 [1, Proposition 5.7.5]. On the other hand, the

inequalities (3.10)–(3.11) are much stronger than (3.13)–(3.14).

3.4 Informational Quantities and Distances

The inequalities (3.13)–(3.14) may be stated equivalently in terms of informational
distances to the uniform measure μ on the unit segment. Let us recall that, for
random elements X and Z in an abstract measurable space Ω with distributions
ν and μ respectively, the Rényi divergence power or the Tsallis distance from ν to
μ of order α > 0 is defined by

Tα(X||Z) = Tα(ν||μ) = 1

α − 1

[ ∫

(p

q

)α

p dλ− 1

]

= 1

α − 1

[ ∫

f α dμ− 1

]

,

where p and q are densities of ν and μ with respect to some (any) σ -finite
dominating measure λ on Ω , with f = p/q being the density of ν with respect
to μ (the definition does not depend on the choice of λ). If α = 1, we arrive at the
Kullback–Leibler distance or an informational divergence

T1(X||Z) = D(X||Z) =
∫

p log
p

q
dλ =

∫

f log f dμ,

which is the same as Entμ(f ). For α = 2 the Tsallis T2-distance is the same as the
χ2-distance. If α ≥ 1, necessarily Tα(X||Z) = ∞ as long as ν is not absolutely
continuous with respect to μ. In any case, the function α → Tα is non-decreasing;
we refer an interested reader to the survey [6] (cf. also [3]).

In the case of the real line Ω = R, and when the densities p and q are absolutely
continuous, the relative Fisher information or the Fisher information distance from
ν to μ is defined by

I (X||Z) = I (ν||μ) =
∫ ∞

−∞

(p′

p
− q ′

q

)2
p dλ =

∫ ∞

−∞
f ′2

f
dμ,

still assuming that the probability measure ν is absolutely continuous with respect to
μ and has density f = p/q . This definition is commonly used when q is supported
and is positive on an interval Δ ⊂ R, finite or not, with the above integration
restricted to Δ. With these notations, Proposition 3.3.1 corresponds to the order
α = 2 and therefore takes the form

T2(X||Z) ≤ 1

π2 I (X||Z), T2(X||Z) ≤ 1

4π2 I (X||Z), (3.15)
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holding true for an arbitrary random variable X with values in [0, 1]. Here the
random variable Z has a uniform distribution μ on [0, 1], and we use an additional
constraint f (0) = f (1) in the second relation.

There is also another non-distance formulation of (3.15) in terms of classical
informational quantities such as the Rényi entropy power and the Fisher information

Nα(X) =
(

∫ ∞

−∞
p(x)α dx

)− 2
α−1

, I (X) =
∫ ∞

−∞
p′(x)2

p(x)
dx.

Here the case α = 2 defines the quadratic Rényi entropy power N2(X). If μ is
supported and has an absolutely continuous positive density q on the interval Δ ⊂
R, one may also define the restricted Fisher information

I0(X) =
∫

Δ

p′(x)2

p(x)
dx.

For example, if Z is uniformly distributed in the unit interval, so that q(x) = 1 for
0 < x < 1, we have I (Z) = ∞, while I0(Z) = 0. In this case, if X has values in
[0, 1], we have

T2(X||Z) =
∫ 1

0
p(x)2 dx − 1 = N2(X)−1/2 − 1, I (X||Z) = I0(X).

Hence, the first inequality in (3.15) may be written as the following.

Corollary 3.4.1 For any random variable X with values in [0, 1], having there an
absolutely continuous density, we have

N2(X)
(

1+ 1

π2
I0(X)

)2 ≥ 1. (3.16)

This relation is analogous to the well-known isoperimetric inequality for
entropies,

N(X) I (X) ≥ 2πe,

where N(X) = N1(X) = e2h(X) is the entropy power, corresponding to the Shannon
differential entropy

h(X) = −
∫ ∞

−∞
p(x) logp(x) dx.

The functional I0(X) may be replaced with I (X) in (3.16) (since I0 ≤ I ),
and then one may remove the assumption on the values of X. Moreover, with
the functional I (X), this inequality may be considerably strengthened. Indeed, the
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relation N2(X)(1 + 1
π2 I (X))2 ≥ 1 is not 0-homogeneous with respect to X, and

therefore it admits a self-refinement when applying it to the random variables λX,
λ > 0. Optimizing over this parameter, we will obtain an equivalent 0-homogeneous
relation

N2(X)I (X) ≥ c, (3.17)

with c = π/4. But, it is obviously true that with c = 1. To see this, first note that,
by the Cauchy inequality, for all x ∈ R,

p(x) =
∫ x

−∞
p′(y) dy ≤

∫

p(y)>0
|p′(y)| dy =

∫

p(y)>0

|p′(y)|√
p(y)

√

p(y) dy

≤
(∫

p(y)>0

p′(y)2

p(y)
dy

)1/2 (∫

p(y)>0
p(y) dy

)1/2

= √

I (X).

Therefore,

∫ ∞

−∞
p(x)2 dx ≤ √I (X),

that is, N2(X)I (X) ≥ 1.
Observe that another inequality involving the quadratic Rényi entropy power

N2(X) and some generalisation of Fisher information can be extracted from [5],
namely for all 1 ≤ q < ∞, N2(X)q

∫ |p′|qp ≥ Cq for an optimal constant Cq .
However it’s unclear how to related this inequality to (3.17).
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Chapter 4
Iterated Jackknives and Two-Sided
Variance Inequalities

Olivier Bousquet and Christian Houdré

Abstract We consider the variance of a function of n independent random variables
and provide inequalities that generalize previous results obtained for i.i.d. random
variables. In particular we obtain upper and lower bounds on the variance based on
iterated jackknife statistics that can be considered generalizations of the Efron–Stein
inequality.

4.1 Introduction

The properties of functions of n independent random variables, and in particular
the estimation of their moments from the moments of their increments (i.e. when
replacing a random variable by an independent copy) have been thoroughly studied
(see, e.g., [2] for a comprehensive overview). We focus here on the variance
and consider how to refine and generalize known extensions of the Efron–Stein
inequality in the non-symmetric, non-iid case.

But first, let us review some of the existing results. Let X1,X2, . . . , Xn be iid
random variables and let S : Rn → R be a statistic of interest which is symmetric,
i.e., invariant under any permutation of its arguments, and square integrable. The
(original) Efron–Stein inequality [3], states that the jackknife estimates of variance
is biased upwards, i.e., denoting by X̃ an independent copy of X1, . . . , Xn, and
setting Si = S(X1, . . . , Xi−1,Xi+1, . . . , Xn, X̃), i = 1, . . . , n, and Sn+1 = S, then

Var S ≤ EJ1, (4.1)
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where

J1 =
n+1
∑

i=1

(Si − S̄)2 = 1

(n+ 1)

∑∑

1≤i<j≤n+1

(Si − Sj )
2, (4.2)

and S̄ = ∑n+1
i=1 Si/(n + 1). Beyond the original framework, the inequality (4.1)

has seen many extensions and generalizations with different proofs which are well
described in [2], whose notation we essentially adopt and to which we refer for a
more complete bibliography and many instances of applications. Let us just say that
(4.1) can be seen as the “well known" tensorization property of the variance which
asserts that if X1,X2, . . . , Xn are independent random variables with Xi ∼ μi , then

VarμnS ≤ Eμn

n
∑

i=1

Varμi S, (4.3)

where Eμn and Varμn are respectively the expectation and variance with respect to
μn, the joint law of X1,X2, . . . , Xn, while Varμi S is the variance of S with respect
to μi , the law of Xi . In fact, if for each i = 1, 2, . . . , n, X̃i ∼ μ̃i is an independent
copy of Xi , then (4.3) can be rewritten as

VarμnS ≤ 1

2
Eμn

n
∑

i=1

Eμi⊗μ̃i
(S − Si)

2

= 1

2
Eμn

n
∑

i=1

Eμ̃i
(S − Si)

2, (4.4)

where Si = S(X1, . . . , Xi−1, X̃i , Xi+1, . . . , Xn).
Neither (4.1) nor (4.4), whose proof can be obtained, for example, by induction,

require S to be symmetric. In case S is symmetric, and the random variables are
identically distributed, the right-hand side of (4.4) becomes nEμn⊗μ̃1(S − S1)

2/2
while, via (4.2), the right-hand side of (4.1) becomes

(

n−1
2

)

E(S1 − S2)
2/(n + 1) =

nE(S1 − S2)
2/2, and (4.4) and (4.1) are identical.

Since the jackknife estimate of variance is biased upwards, it is natural to try to
estimate the bias EJ1−Var S, and such an attempt is already presented in [5] via the
“iterated jackknives”. Let us recall what was meant there: Resampling the jackknife
statistics, introduce for any k = 2, . . . , n, the iterated jackknives J2, J3, . . . , Jn,
leading to both upper and lower bounds on Var S, showing, in particular, that

1

2
EJ2 − 1

6
EJ3 ≤ EJ1 − Var S ≤ 1

2
EJ2. (4.5)
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In [5], the inequalities (4.1) and (4.5) were viewed as statistical versions of
generalized (multivariate) Gaussian Poincaré inequalities previously obtained in [6].
Indeed, setting ∇S := (S − S1, S − S2, . . . , S − Sn), then EJ1 = E‖∇S‖2. If
instead of looking at the vector of first differences, one looks at second and third
ones, then the corresponding norms will lead to (4.5). Throughout the years, it was
asked whether or not an inequality such as (4.5) would have a general version and a
positive answer had been informally given. The aim of the present note is to provide
a synthetic proof of these, removing the iid and symmetry assumptions in (4.5) and
its generalizations, leading to generic inequalities. This could be useful, as these
dormant inequalities seem to have found, in recent times, some new life, e.g., see
[1, 8, 9].

4.2 Iterated Jackknife Bounds

Throughout and unless otherwise noted, X1, . . . , Xn are independent random
variables and S : R

n → R is a Borel function such that ES2(X1, . . . , Xn) <

+∞. Next, and if S is short for S(X1, . . . , Xn), let, for any i = 1, . . . , n,
E
(i) denote the conditional expectation with respect to the σ -field generated by

X1, . . . , Xi−1,Xi+1, . . . , Xn. Hence,

E
(i)S := E(S | X1, . . . , Xi−1,Xi+1, . . . , Xn)

=
∫ +∞

−∞
S(X1, . . . , Xi−1, xi ,Xi+1, . . . , Xn)μi(dxi), (4.6)

where μi is the law of Xi . By convention, E(0) is the identity operator and so
E
(0)S = S. Iterating the above, it is clear that

E
(i)
E
(j)S = E

(j)
E
(i)S = E(S | X1, . . . , Xi−1,Xi+1, . . . , Xj−1,Xj+1, . . . , Xn)

(4.7)

:= E
(i,j)S = E

(j,i)S,

for any i, j = 1, . . . , n and that for i = 0, 1, . . . , n,

E
(i)
E
(0)S = E

(0)
E
(i)S := E

(i,0)S = E
(0,i)S = E

(i)S.

Next, let

Var(i)S := E
(i)(S − E

(i)S)2 = E
(i)S2 − (E(i)S)2,

i = 0, 1, . . . , n, and for any i, j = 0, 1, . . . , n, set

Var(i,j)S := E
(i)Var(j)S − Var(j)E(i)S = Var(j,i)S ≥ 0. (4.8)
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where, above, the rightmost equality follows from the commutativity property of
the conditional expectations, as given in (4.7), while the inequality follows from
convexity, and more precisely from the conditional Hölder’s inequality.

Continuing with our notation, for any i = 1, . . . , n, let throughout Ei denote the
conditional expectation with respect to the σ -field generated by X1, . . . , Xi , i.e.,
EiS := E(S | X1, . . . , Xi), while this time E0S = ES.

At this point we also note that although Var(i) is the conditional variance
with respect to the σ -field generated by X1, . . . , Xi−1,Xi+1, . . . , Xn, Var(i,j)

is not the conditional variance with respect to the σ -field generated by
X1, . . . , Xi−1,Xi+1, . . . , Xj−1,Xj+1, . . . , Xn. Indeed,

Var(i,j)S = E
(i,j)(S − E

(i,j)S)2 − Var(i)E(j)S − Var(j)E(i)S. (4.9)

Further iterating, for i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n}, then E
(i1) · · ·E(ik ) :=

E
(i1,i2...,ik) is uniquely defined, i.e., the order in which the indices are taken is

irrelevant, in particular E(1,2,...,n)S = ES. Still, iterating, set

Var(i1,i2,...,ik)S := E
(i1)Var(i2,...,ik)S − Var(i2,...,ik )E(i1)S, (4.10)

where again, above, the order in which the indices i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n}
are taken is irrelevant, and further, by convexity, (4.10) is non-negative, i.e.,

Var(i1,i2,...,ik)S ≥ 0.

With the help of the above definitions, and in view of [5], let us now introduce
the iterated jackknives,

Jk :=
∑

1≤i1 �=i2···�=ik≤n

Var(i1,...,ik )S = k!
∑

1≤i1<i2<···<ik≤n

Var(i1,...,ik)S.

Clearly, J1 =∑n
i=1 Var(i)S and in view of (4.6), (4.3) can just be rewritten as:

VarS ≤ E

n
∑

i=1

Var(i)S = EJ1. (4.11)

Still in view of the results of [5], we now intend to prove:

Theorem 4.2.1 For any p = 1, 2, . . . , [n/2],
2p
∑

k=1

(−1)k+1

k! EJk ≤ Var S ≤
2p−1
∑

k=1

(−1)k+1

k! EJk, (4.12)
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and

Var S =
n
∑

k=1

(−1)k+1

k! EJk. (4.13)

Proof The proof of (4.13) is a simple decomposition/induction, while that of (4.12)
further uses convexity. For k = 1, 2, . . . , n, let

Rk =
∑

1≤i1<···<ik≤n

Var(i1,...,ik )(E(1,...,i1−1)S),

with the understanding that for i = 1, E(1,i−1)S = E
(0)S = S. Then, first note that,

ER1 = E

n
∑

i1=1

(

(E(1,...,i1−1)S)2 − (E(1,...,i1)S)2
)

= E(S2 − (ES)2) = VarS. (4.14)

Notice further that for 2 ≤ k ≤ n− 1,

ERk = E

∑

1≤i1<···<ik≤n

Var(i1,...,ik )(E(1,...,i1−1)S)

= E

∑

1≤i1<···<ik≤n

(

Var(i2,...,ik )(E(1,...,i1−1)S)− Var(i2,...,ik )(E(1,...,i1)S)
)

= E

∑

1<i2<···<ik≤n

i2−1
∑

i1=1

(

Var(i2,...,ik )(E(1,...,i1−1)S)− Var(i2,...,ik)(E(1,...,i1)S)
)

= E

∑

1≤i2<···<ik≤n

(

Var(i2,...,ik )S − Var(i2,...,ik )(E(1,...,i2−1)S)
)

= EJk−1

(k − 1)! − ERk−1. (4.15)

Finally, it is clear that, Rn = Var(1,...,n)S, and so n!ERn = EJn. Combining the last
three identities, gives (4.13). To obtain (4.12), note first that by convexity and for
any 1 ≤ i1 < i2 < · · · < ik ≤ n,

E
(1,...,i1−1)Var(i1,...,ik )S ≥ Var(i1,...,ik )(E(1,...,i1−1)S). (4.16)

Hence, taking expectation and summing givesEJk ≥ k!ERk , which when combined
with (4.15) finishes the proof. ��
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Remark 4.2.2

(i) In case S is symmetric, i.e., invariant under any permutation of its arguments,
Jk = n(n − 1) . . . (n − k + 1)Var(1,...,k)S, then EJk = n(n − 1) . . . (n − k +
1)EVar(1,...,k)S, and (4.13) and (4.12) precisely recover corresponding results
in [5].

(ii) The inequalities (4.12) can be viewed as martingale inequalities.
(iii) As in [2] or [1], one could also rewrite (4.12) using only the positive or negative

parts of the involved quantities.
(iv) It is natural to wonder whether or not the above inequalities have �-entropic

versions; this will be explored and presented elsewhere.

Let us now further refine (4.12) providing, in particular, a non-trivial lower bound
on the bias EJ1 − Var S improving upon (4.5). To do so, denote by (i1, . . . , ik) the
complement of the indices (i1, . . . , ik) (i.e., the ordered sequence of elements of the
set {1, . . . , n}\{i1, . . . , ik}, and introduce the following quantities:

Kk := k!
∑

1≤i1<i2<···<ik≤n

Var(i1,...,ik )E(i1,...,ik )S.

It is clear that by Jensen’s inequality and the convexity of Var(i1,...,ik) we have

EKk ≤ EJk .

Theorem 4.2.3 For any p = 1, 2, . . . , [n/2],
2p
∑

k=1

(−1)k+1

k! EJk + 1

(2p + 1)!EK2p+1 ≤ Var S ≤
2p−1
∑

k=1

(−1)k+1

k! EJk − 1

(2p)!EK2p

(4.17)

Proof The only modification compared to the proof of Theorem 4.2.1 is that instead
of using the bound EJk ≥ k!ERk we use the fact that

EKk ≤ k!ERk ,

which follows from the convexity of Var(i1,...,ik ). ��
In particular, from Theorems 4.2.1 and 4.2.3, the following inequalities hold true:

1

2
EK2 ≤ EJ1 − Var S ≤ 1

2
EJ2. (4.18)
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4.3 Relationship with the Hoeffding Decomposition

Let us recall the notion of a Hoeffding decomposition [4] (see [7] Section 2 for
the general non-symmetric non-iid case). Given a function f (X) ∈ L1(P), it is the
unique decomposition

f (X1, . . . , Xn) = Ef (X)+
∑

1≤i≤n

hi(Xi)+
∑

1≤i<j≤n

hij (Xi,Xj )+ . . .

= f0 + f1 + . . .+ fn,

such that E(is )hi1,...,ik (Xi1 , . . . , Xik ) = 0 whenever 1 ≤ i1 < . . . < ik ≤ n, s =
1, . . . , k. The term fd is called the Hoeffding term of degree d and these terms form
an orthogonal decomposition of f in L2(P) (provided, of course, f ∈ L2(P)), so
that Varf =∑n

k=1 Var fk =∑I⊂{1,...,n} Eh2
I

The following lemma provides a relationship between the previously introduced
iterated jackknives and the variance of the Hoeffding terms.

Lemma 4.3.1 For any k such that 1 ≤ k ≤ n,

1

k!EJk(f ) =
∑

j≥k

(

j

k

)

Var fj ,

and

1

k!EKk(f ) = Varfk .

Proof Let us rewrite the Hoeffding decomposition of f as f =∑I⊂{1,2,...,n} hI . We

have E
(i)hI = 0 whenever i ∈ I , and E

(i)hI = hI otherwise. Hence, Var(i)hI =
E
(i)h2

I if i ∈ I and 0 otherwise. Therefore, EVar(i)S =∑i∈I Eh2
I .

Continuing with the same reasoning, we can see that Var(i)E(j)hI = E
(i)h2

I ,
if i ∈ I and j /∈ I and 0 otherwise, thus EVar(i)E(j)S = ∑

i∈I,j /∈I Eh2
I so that

EVar(i,j)S =∑{i,j}⊂I Eh
2
I and by induction, we get that

EVar(i1,...,ik )S =
∑

{i1,...,ik}⊂I

Eh2
I .

If we now sum over the possible sets of indices, since each term Eh2
I appears

as many times as there are subsets of size k of I , this implies that EJk =
k!∑|I |≥k

(|I |
k

)

Eh2
I = k!∑j≥k

(

j
k

)

Var fj and gives the first statement.
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To prove the second statement of the lemma, observe that E
(i1,...,ik )S =

∑

I⊂{i1,...,ik} hI so that EVar(i1,...,ik )E(i1,...,ik)S = Eh2
i1,...,ik

, and therefore EKk =
k!∑|I |=k Eh

2
I = k!Var fk . ��

It is easily verified that (4.13) can be recovered as a consequence of Lemma 4.3.1.
Also, from Lemma 4.3.1 it is easy to get the following corollary obtained in [1] (as
part of their Theorem 1.8).

Corollary 4.3.2 Let S have Hoeffding decomposition of type S = ES +∑n
k=d Sk ,

i.e., such that fk = 0, for 1 ≤ k < d , then

Var S ≤ 1

d!EJd . (4.19)

Proof Using the fact that fk = 0, for 1 ≤ k < d , we have

Var S =
n
∑

j=d

Var fj ≤
n
∑

j=d

(

j

d

)

Var fj = 1

d!EJd,

where the last equality follows from Lemma 4.3.1. ��
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Chapter 5
A Probabilistic Characterization
of Negative Definite Functions

Fuchang Gao

Abstract It is proved that a continuous function f on R
n is negative definite if

and only if it is polynomially bounded and satisfies the inequality Ef (X − Y ) ≤
Ef (X + Y ) for all i.i.d. random vectors X and Y in R

n. The proof uses Fourier
transforms of tempered distributions. The “only if” part has been proved earlier
by Lifshits et al. (A probabilistic inequality related to negative definite functions.
Progress in probability, vol. 66 (Springer, Basel, 2013), pp. 73–80).

Keywords Negative definite function · Lévy–Khintchine representation · Fourier
inversion theorem · Polynomially bounded

2010 Mathematics Subject Classification Primary: 60E15, 42A82; Secondary:
42B10, 60E10

5.1 Introduction

A real-valued function f on R
n is said to be negative definite if for every sequence

of vectors x1, x2, . . . , xm in R
n, the matrix

(f (xi)+ f (xj )− f (xi − xj ))1≤i,j≤m (5.1)

is positive definite [3]; or equivalently [8], for every sequence of vectors
x1, x2, . . . , xm in R

n, and every sequence of real numbers ρ1, ρ2, . . . , ρm satisfying
∑m

i=1 ρi = 0, the following inequality holds

m
∑

i=1

m
∑

j=1

f (xi − xj )ρiρj ≤ 0. (5.2)
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The conditions (5.1) and (5.2) are difficult to check in general. If in addition f is
continuous, then by the well known Lévy–Khintchine representation (cf. [7]), f can
be uniquely expressed as

f (ξ) = f (0)+ 〈Qξ, ξ〉 +
∫

Rn\{0}
(1− cos 〈u, ξ〉) dν(u), (5.3)

where Q is a positive semidefinite matrix, and dν is a Borel measure on R
n \ {0}

satisfying

∫

Rn\{0}
min{‖u‖2, 1}dν(u) <∞,

where and in the rest of the paper, ‖ · ‖ means the Euclidean norm.
Negative definite functions have many applications in potential theory, statistics,

and the theory of probability. For example, they are closely related to Lévy
processes. The purpose of this paper is to provide a probabilistic characterization of
negative definite functions. This study is motivated by a recent work of Lifshits et
al. [5], in which it was proved that if f is a continuous real-valued negative definite
function on R

n, then the inequality

Ef (X − Y ) ≤ Ef (X + Y ) (5.4)

holds for all i.i.d. random vectors X and Y in R
n. (Here and throughout the paper,

A ≤ B means either A ≤ B < ∞, or B = +∞.) The main idea of the proof of
[5] is as follows: If f is a continuous negative definite function on R

n, then by the
Lévy–Khintchine representation (5.3) we can write

f (X + Y )− f (X − Y ) = 4 〈QX,Y 〉 + 2
∫

Rn\{0}
(sin 〈u,X〉 sin 〈u, Y 〉)dν(u).

Taking expectation and using Fubini’s Theorem, one obtains the desired inequality
(5.4). What seems to be a bit surprising is that under some growth rate assumptions
on f , the validity of the inequality (5.4) for all i.i.d. random vectors X and Y in R

n

also implies that f is negative definite. This is the main contribution of the current
paper. The proof uses Fourier transforms of tempered distributions.

Inequalities relating X + Y and X − Y have attracted interest from different
communities. We refer interested readers to a recent article of Li and Madiman [4]
in which inequalities on small ball probabilities of X+Y and X−Y were established,
where X and Y are i.i.d. random variables taking values in an abelian topological
group.
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5.2 Statement of Results

A function f on R
n is said to be polynomially bounded if there exist a positive

constant C and a positive integer k such that |f (x)| ≤ C‖x‖k for all ‖x‖ ≥ 1.
The main result of this paper is the following characterization of negative definite
functions on R

n.

Theorem 5.1 If f is a negative definite function on R
n, then the inequality Ef (X−

Y ) ≤ Ef (X+Y ) holds for all i.i.d. random vectors X and Y that take finitely many
values in R

n. If f is a continuous function on R
n, then f is negative definite if and

only if f is polynomially bounded and satisfies Ef (X − Y ) ≤ Ef (X + Y ) for all
i.i.d. random vectors X and Y in R

n.

Remark 5.2 In Theorem 5.1 and throughout the rest of the paper, Ef (X − Y ) ≤
Ef (X + Y ) means either Ef (X − Y ) ≤ Ef (X + Y ) <∞ or Ef (X + Y ) = ∞.

In applications, one may need an inequality Ef (X − Y ) ≤ Ef (X + Y ) for
functions f which have a singularity at 0. Note that if f has singularity at 0, the
matrix (f (xi)+f (xj )−f (xi−xj )) makes no sense, while the expectation Ef (X−
Y )− Ef (X + Y ) may still make sense for continuous random variables. From the
proof of Theorem 5.1 the following result can be easily observed:

Proposition 5.3 Let f be continuous everywhere except at its unique singular point
at 0. Suppose f is polynomially bounded. If the Fourier transform of f is negative
(i.e., as a linear functional on the space of Schwartz test functions, the Fourier
transform ̂f maps every positive Schwartz test function into a non-positive number),
then, Ef (X − Y ) ≤ Ef (X + Y ) for all i.i.d. random vectors X and Y .

Note that the negativity of ̂f is related to the negative definiteness of the
generalized function f , cf. [2]. As an example, we consider the function f (x) =
−‖x‖−β on R

n \ {0}, where 0 < β < n. A direct computation shows that its Fourier
transform is negative:

̂f (ξ) = −πn/22n−βΓ (
n−β

2 )

Γ (
β
2 )

‖ξ‖β−n < 0.

Thus, by Proposition 5.3, for all i.i.d. random vectors X and Y in R
n,

E‖X + Y‖−β ≤ E‖X − Y‖−β. (5.5)

Note that the function ‖x‖−β does not have a Lévy–Khintchine representation, but
it has the following Fourier transform representation:

‖x‖−β =
Γ
(

n−β
2

)

2βπn/2Γ (
β
2 )

∫

Rn

cos 〈x, ξ〉 ‖ξ‖β−ndξ,
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from which (5.5) can be easily derived. (Note that the integral converges when 0 <

β < n.)
Theorem 5.1 should be compared with the following characterization of func-

tions satisfying inequality (5.4) for all i.i.d. random vectors:

Theorem 5.4 The inequality Ef (X− Y ) ≤ Ef (X+ Y ) holds for all i.i.d. random
vectors X and Y that take finitely many values in R

n if and only if for every sequence
of vectors x1, x2, . . . , xm in R

n, the matrix

(f (xi + xj )− f (xi − xj ))1≤i,j≤m (5.6)

is positive definite. If f is continuous, then the inequality Ef (X−Y ) ≤ Ef (X+Y )

holds for all i.i.d. random vectors X and Y in R
n if and only if the matrices in (5.6)

are positive definite.

As we will see in the proof that Theorem 5.4 remains valid if the continuity of
f is replaced by local integrability of f (X + Y ) and f (X − Y ). Also note that
the matrix (f (xi + xj )− f (xi − xj )) in Theorem 5.4 has some similarity with the
matrix (f (xi)+ f (xj )− f (xi − xj )) in (5.1) by which negative definite functions
are defined. Because by Lévy–Khintchine representation every continuous function
satisfying (5.1) is polynomially bounded, one might wonder if the requirement of
polynomial boundedness in Theorem 5.1 is redundant. The following theorem says
that it is not the case.

Theorem 5.5 For all i.i.d. random variables X and Y in R,

Ee|X−Y | ≤ Ee|X+Y |;

while the function e|x| is not a negative definite function on R.

5.3 Proofs

We first prove Theorem 5.4, one of the properties proved in the proof of Theorem 5.4
will be used in the proof of Theorem 5.1.

Proof of Theorem 5.4 Suppose Ef (X + Y ) ≥ Ef (X − Y ) for all i.i.d. random
vectors X and Y that take finitely many values in R

n. We first show that f is an
even function. Indeed, for any fixed y ∈ R

n, let X and Y be i.i.d. random vectors
such that P(X = y) = p and P(X = 0) = 1− p. Then

Ef (X + Y)− Ef (X − Y) = [p2f (2y) + 2p(1 − p)f (y)+ (1− p)2f (0)]
− [p2f (0) + (1− p)2f (0) + p(1 − p)f (y) + p(1− p)f (−y)]

= p[p(f (2y) − f (0)) + (1 − p)(f (y) − f (−y))].
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Because Ef (X + Y ) ≥ Ef (X − Y ), we obtain

p(f (2y)− f (0))+ (1− p)(f (y)− f (−y)) ≥ 0.

Letting p → 0+, we obtain f (y) ≥ f (−y). Since y is arbitrary, we also have
f (−y) ≥ f (y). Hence f (−y) = f (y) for all y ∈ R

n, and therefore f is even.
Next, we show that the matrix (f (xi + xj )− f (xi − xj )) is positive definite for

every sequence of vectors x1, x2, . . . , xm in R
n. Take any sequence of real numbers

ρ1, ρ2, . . . , ρm that are not all 0. Without loss of generality, we assume
∑m

i=1 |ρi | =
1. Let X and Y be i.i.d. random vectors such that

P(X = sign(ρi)xi) = |ρi |.

Then, by using the fact that f is an even function in the second equality below, we
have

0 ≤ Ef (X + Y )− Ef (X − Y )

=
m
∑

i=1

m
∑

j=1

[f (sign(ρi)xi + sign(ρj )xj )− f (sign(ρi)xi − sign(ρj )xj )]|ρi ||ρj |

=
∑

ρiρj≥0

[f (xi + xj )− f (xi − xj )]ρiρj −
∑

ρiρj<0

[f (xi − xj )− f (xi + xj )]ρiρj

=
m
∑

i=1

m
∑

j=1

[f (xi + xj )− f (xi − xj )]ρiρj .

Hence, the matrix (f (xi + xj )− f (xi − xj )) is positive definite. (This method has
been used in the proof of Theorem 2.3 of [1].)

On the other hand, suppose the matrix (f (xi + xj ) − f (xi − xj )) is positive
definite for every sequence of vectors x1, x2, . . . , xm. For every pair of i.i.d. random
vectors X and Y that take finitely many values in R

n, suppose
∑k

i=1 P(X = zi) = 1.
By letting m = k, xi = zi , and ρi = P(X = xi) for 1 ≤ i ≤ m, we have

Ef (X + Y )− Ef (X − Y ) =
m
∑

i=1

m
∑

j=1

[f (xi + xj )− f (xi − xj )]ρiρj ≥ 0.

This finishes the proof of the first statement in Theorem 5.4.
For the second statement in Theorem 5.4, we only need to prove the “if” part.

Since the matrix (f (xi + xj ) − f (xi − xj ))1≤i,j≤m is positive definite for every
sequence of vectors x1, x2, . . . , xm, by choosing m = 1, we see that f (x) ≥ f (0)
for all x ∈ R

n. By otherwise replacing f (x) by f (x)− f (0), we can now assume
f ≥ 0.
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Let X,Y be i.i.d. continuous random vectors in R
n. Fix a large number M . We

partition [−M,M]n into M2n small cubes of side length 2/M . Let x1, x2, . . . xm be
the center of these small cubes. Thus, [−M,M]n = ∪m

i=1(xi + [−1/M, 1/M]n).
Let ρi = P(X ∈ xi + [−1/M, 1/M]n). If Ef (X + Y ) < ∞, then by the “if” part
of the first statement in Theorem 5.4, we have

lim sup
M→∞

m
∑

i=1

m
∑

j=1

f (xi − xj )ρiρj ≤ lim sup
M→∞

m
∑

i=1

m
∑

j=1

f (xi + xj )ρiρj = Ef (X + Y ),

which implies that Ef (X − Y ) ≤ Ef (X + Y ).

Proof of Theorem 5.1 Suppose f is negative definite on R
n. Then, by definition,

the matrix (f (xi)+ f (xj ) − f (xi − xj )) is positive definite for every sequence of
vectors x1, x2, . . . , xm. In particular, it implies that the matrix is symmetric. So, we
have f (xi − xj ) = f (xj − xi), and hence f is an even function.

We prove that for any i.i.d. random vectors X and Y that take finitely many values
in R

n, the inequality Ef (X − Y )− Ef (X + Y ) ≤ 0 holds.
Suppose P(X = xi) > 0, 1 ≤ i ≤ m and

∑m
i=1 P(X = xi) = 1. Denote

T = {x1, x2, . . . , xm} ∪ {−x1,−x2, . . . ,−xm},

and relabel it as {z1, z2, . . . , zk}. Because f is an even function, we have

Ef (X − Y )− Ef (X + Y )

= 1

2

∑

x∈T

∑

y∈T
f (x − y)[P(X = x)− P(X = −x)][P(Y = y)− P(Y = −y)]

= 1

2

k
∑

i=1

k
∑

j=1

f (zi − zj )[P(X = zi)− P(X = −zi)][P(Y = zj )− P(Y = −zj )].

(5.7)

Let ρi = P(X = zi)− P(X = −zi). Because

m
∑

i=1

ρi =
k
∑

i=1

[P(X = zi)− P(X = −zi)] = 1− 1 = 0,

the right-hand side of (5.7) is non-positive by (5.2). This proves the first statement
of Theorem 5.1.

Now, we assume that f is a continuous function on R
n. Because a continuous

negative definite function is necessarily polynomial bounded, we only need to
prove the validity of the inequality. Just as in the proof of second statement of
Theorem 5.4, the “only if” part of the second statement of Theorem 5.1 follows by
approximating continuous random vectors using random vectors that take finitely
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many values in R
n, and taking limit. It is also a simple application of Lévy–

Khintchine representation Theorem as we discussed in the introduction. Thus, we
only need to prove the “if” part.

Note that for every continuous function f that is polynomially bounded, and
every x ∈ R

n, we have

f (x) = lim
σ→0

∫

Rn

f (x + u)Gσ (u)du, (5.8)

where

Gσ (u) = 1

(
√

2πσ)n
e
− 1

2σ2 ‖u‖2
.

This is an elementary fact in approximation of unit (cf. Theorem 6.32 in [6]), and
can be easily proved. Indeed, because f is continuous at x, for any ε > 0, there
exists 0 < δ < 1 such that for every ‖u‖ < δ, we have |f (x + u)− f (x)| ≤ ε. Let
M(x) = supδ<‖u‖≤1+‖x‖ |f (x + u)|. Then,

∣

∣

∣

∣

∫

Rn

f (x + u)Gσ (u)du− f (x)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn

[f (x + u)− f (x)]Gσ(u)du

∣

∣

∣

∣

≤
∫

‖u‖≤δ

εGσ (u)du+
∫

‖u‖>δ

|f (x)|Gσ(u)du

+
∫

δ<|u‖≤1+‖x‖
|f (x + u)|Gσ(u)du+

∫

‖u‖>1+‖x‖
|f (x + u)|Gσ(u)du

≤ε + (|f (x)| +M(x))

∫

‖u‖>δ

Gσ (u)du+
∫

‖u‖>1+‖x‖
C(2‖u‖)kGσ (u)du.

(5.9)

It is easy to check that the last two terms on the right-hand side go to 0 as σ → 0.
Now, we use expression (5.8) to show that if f is polynomially bounded and

satisfies the inequality (5.4) for all i.i.d. random vectors X and Y , then f is
negatively definite; or equivalently, for every sequence of vectors x1, x2, . . . , xm
in R

n, and every sequence of real numbers ρ1, ρ2, . . . , ρm, with
∑m

i=1 ρi = 0, we
have

Σ :=
m
∑

i=1

m
∑

j=1

f (xi − xj )ρiρj ≤ 0. (5.10)

We claim that we only need to consider the case when m ≥ n and

span{x1, x2, . . . , xm} = R
n. (5.11)
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Indeed, if (5.10) has been proved under the assumption (5.11). For any sequence
x1, x2, . . . , xm in R

n, if span{x1, x2, . . . , xm} �= R
n, we can find some extra vectors

xm+1, xm+2 . . . , xm+s , such that

span{x1, x2, . . . , xm+s} = R
n.

By choosing ρm+1 = · · · = ρm+s = 0, we have

m
∑

i=1

m
∑

j=1

f (xi − xj )ρiρj =
m+s
∑

i=1

m+s
∑

j=1

f (xi − xj )ρiρj ≤ 0.

This means that the inequality (5.10) continues to hold without the assumption
(5.11).

To prove (5.10) under the assumption (5.11), without loss of generality, we can
assume

∑m
i=1 |ρi | = 1. By using (5.8), we can write

Σ = lim
σ→0

∫

Rn

⎡

⎣

m
∑

i=1

m
∑

j=1

f (xi − xj + u)ρiρj

⎤

⎦Gσ (u)du.

Since f is a tempered distribution, and Gσ is a Schwartz test function, by Parseval
identity [9] and the fact that f is even (which was proved in the first paragraph of
the proof of Theorem 5.4), we have

∫

Rn

f (xi − xj + u)Gσ (u)du = 1

(2π)n

∫

Rn

̂f (ξ) cos
〈

xi − xj , ξ
〉

e−
σ2
2 ‖ξ‖2

dξ.

Thus,

Σ = lim
σ→0

1

(2π)n

∫

Rn

̂f (ξ)

⎡

⎣

m
∑

i=1

m
∑

j=1

cos
〈

xi − xj , ξ
〉

ρiρj

⎤

⎦ e−
σ2
2 ‖ξ‖2

dξ

= lim
σ→0

1

(2π)n

∫

Rn

̂f (ξ)

⎡

⎣

m
∑

i=1

m
∑

j=1

[cos 〈xi, ξ 〉 cos
〈

xj , ξ
〉+ sin 〈xi , ξ 〉 sin

〈

xj , ξ
〉]ρiρj

⎤

⎦ e−
σ2
2 ‖ξ‖2

dξ

= lim
σ→0

1

(2π)n

∫

Rn

̂f (ξ)

⎡

⎣

(

m
∑

i=1

cos 〈xi , ξ 〉ρi

)2

+
(

m
∑

i=1

sin 〈xi, ξ 〉ρi

)2
⎤

⎦ e−
σ2
2 ‖ξ‖2

dξ

= lim
σ→0

1

(2π)n

∫

Rn

̂f (ξ)

⎡

⎣

(

m
∑

i=1

ρi(1− cos 〈xi , ξ 〉)
)2

+
(

m
∑

i=1

ρi sin 〈xi, ξ 〉
)2
⎤

⎦ e−
σ2
2 ‖ξ‖2

dξ,

where in the last equality we used the fact that
∑m

i=1 ρi = 0.
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On the other hand, if X and Y are i.i.d. random vectors with a density g which
is a Schwartz test function, then Parseval identity together with the fact that f is an
even function gives

Ef (X − Y )− Ef (X + Y ) = 1

2(2π)n

∫

Rn

̂f (ξ)|̂g(ξ)− ĝ(−ξ)|2dξ. (5.12)

Indeed,

Ef (X − Y )− Ef (X + Y ) =
∫

Rn

[∫

Rn

[f (x − y) − f (x + y)]g(x)dx
]

g(y)dy

=
∫

Rn

[

1

(2π)n

∫

Rn

̂f (ξ)(e−〈y,ξ 〉i − e〈y,ξ 〉i )̂g(ξ )dξ
]

g(y)dy

= 1

(2π)n

∫

Rn

̂f (ξ) (ĝ(ξ )− ĝ(−ξ)) ĝ(ξ )dξ. (5.13)

Since f is even, so is ̂f . By changing variable ξ to −ξ , we can rewrite (5.13) as

Ef (X − Y )− Ef (X + Y ) = − 1

(2π)n

∫

Rn

̂f (ξ)[ĝ(ξ)− ĝ(−ξ)]ĝ(−ξ)dξ.

(5.14)

Averaging (5.13) and (5.14), we obtain (5.12).
In particular, if we define a random vector W such that

P(W = sign(ρi)xi) = |ρi |, i = 1, 2, . . . ,m,

and let X and Y be i.i.d. random vectors with the same distribution as W + σ√
2
Z,

where Z is a standard centered Gaussian random vector independent of W , then it
is straightforward to check that the density function g of X and Y is a Schwartz test
function:

g(x) =
m
∑

i=1

|ρi | 1

(
√
πσ)n

e
− 1

σ2 ‖x−sign(ρi)xi‖2
.

Thus,

ĝ(ξ) =
m
∑

i=1

|ρi |e− σ2
4 ‖ξ‖2

e−i〈sign(ρi)xi ,ξ 〉,
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which implies that

ĝ(ξ)− ĝ(−ξ) = −2i
m
∑

i=1

e−
σ2
4 ‖ξ‖2

ρi sin 〈xi, ξ〉 .v

Thus,

|̂g(ξ)− ĝ(−ξ)|2 = 4

(

m
∑

i=1

ρi sin 〈xi, ξ〉
)2

e−
σ2
2 ‖ξ‖2

.

Thus, by using the expression (5.12), we have

1

(2π)n

∫

Rn

̂f (ξ)

(

m
∑

i=1

ρi sin 〈xi , ξ 〉
)2

e−
σ2
2 ‖ξ‖2

dξ = Ef (X − Y )− Ef (X + Y ) ≤ 0.

(5.15)

Next, we will use a similar method to show that

1

(2π)n

∫

Rn

̂f (ξ)

(

m
∑

i=1

ρi(1− cos 〈xi, ξ〉)
)2

e−
σ2
2 ‖ξ‖2

dξ ≤ 0,

from which Theorem 5.1 follows.
For c > 0, define

T (c; t) = tanh(c(t1 + t2 + · · · + tn))

m
∑

i=1

ρi(1− cos 〈xi, t〉)e− σ2
8 ‖t‖2

.

Because limc→∞ | tanh(c(t1+ t2+· · ·+ tn))| = 1 except on {t1+ t2+· · ·+ tn = 0}
which has measure 0, it suffices to show that for each c > 0,

∫

Rn

̂f (ξ)T 2(c; ξ)e− σ2
4 ‖ξ‖2

dξ ≤ 0. (5.16)

For notational simplicity, for fixed c, we denote T (c; t) simply by T (t). Let ̂T
be the Fourier transform of T (t). Since T (t) is odd and continuously differentiable,
the cosine term does not appear. Integrating by parts and using the fact that T (t) is
a Schwartz test function, we obtain

̂T (y) = −i

∫

Rn

T (t) sin 〈y, t〉 dt1dt2 · · · dtn

= (−1)n+1i

y2
1y

2
2 · · · y2

n

∫

Rn

∂2nT (t)

∂t2
1 ∂t

2
2 · · · ∂t2

n

sin 〈y, t〉 dt1dt2 · · · dtn. (5.17)
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In particular, this implies that îT is a real-valued absolutely integrable function on
R

n, and there exists a positive constant λ such that λ|̂T (ξ)| is a probability density.
Let W be a random vector with density function λ|̂T |. Let X and Y be i.i.d.

random variables having the same distribution as sign(îT (W))W + σ
2 Z, where Z is

a standard centered Gaussian random vector. Then, the density function g of X and
Y is a Schwartz test function:

g(x) =
∫

Rn

(
√

2)n

(
√
πσ)n

e
− 2

σ2 ‖x−sign(îT (t))t‖2
λ|̂T (t)|dt.

Furthermore,

ĝ(ξ) =
∫

Rn

e−
σ2
8 ‖ξ‖2

e−i〈sign(îT (t))t,ξ〉λ|̂T (t)|dt,

which implies that

ĝ(ξ)− ĝ(−ξ) = 2λe−
σ2
8 ‖ξ‖2

∫

Rn

̂T (t) sin 〈t, ξ〉 dt. (5.18)

Because both T and îT are absolutely integrable in R
n, by using Fourier inversion

theorem, we have

∫

Rn

̂T (t) sin 〈t, ξ〉 dt = (2π)nT (−ξ) = −(2π)nT (ξ).

Plugging into (5.18), we obtain

|̂g(ξ)− ĝ(−ξ)|2 = 4(2π)2nλ2T 2(ξ)e−
σ2
4 ‖ξ‖2

.

Thus, by using (5.12) in the second equality below, we have

∫

Rn

̂f (ξ)T 2(ξ)e−
σ2
4 ‖ξ‖2

dξ = 1

4(2π)2nλ2

∫

Rn

̂f (ξ)|̂g(ξ)− ĝ(−ξ)|2dξ

= 1

2λ2(2π)n
[Ef (X − Y )− Ef (X + Y )]

≤0.

This finishes the proof of (5.16), and therefore the proof Theorem 5.1 as well.

Remark 5.6 If f is not polynomially bounded, (5.17) fails, and consequently,
λ|̂T (ξ)| may no longer be a probability density for any λ.

Proof of Theorem 5.5 By applying Theorem 5.4, we only need to show that for
every sequence of real numbers x1, x2, . . . , xm, the matrix (e|xi+xj | − e|xi−xj |)
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is positive definite. By Sylvester’s criterion, we only need to show that all its
leading principal minors are non-negative, or equivalently, for every sequence of
real numbers z1, z2, . . . , zk , the determinant det(e|zi+zj | − e|zi−zj |) is non-negative,
which can be directly verified as

det((e|zi+zj | − e|zi−zj |)1≤i,j≤m) =
m
∏

i=1

(sign(zi))
2
∣

∣

∣e
2|zi | − e2|zi−1|

∣

∣

∣ ,

where we set z0 = 0. Alternatively, we notice that (e|xi+xj | − e|xi−xj |)1≤i,j≤m is the
Gram matrix of the system of functions gi(·), 1 ≤ i ≤ m, on L2(R), where

gi(t) = 2 sgn(xi)e|xi |−t1[0,|xi |](t).

Hence, the matrix (e|xi+xj | − e|xi−xj |) is positive definite.
The function f (x) = e|x| is not negative definite because any continuous

negative definite function is necessarily polynomially bounded. We can also see that
from the definition of negative definiteness. Indeed, the matrix (f (xi) + f (xj ) −
f (xi − xj ))1≤i,j≤n in the definition (5.1) is not positive definite. For example, by
choosing x1 = − ln 4 and x2 = ln 4, the corresponding matrix

(

f (x1)+ f (x1)− f (x1 − x1) f (x1)+ f (x2)− f (x1 − x2)

f (x2)+ f (x1)− f (x2 − x1) f (x2)+ f (x2)− f (x2 − x2)

)

=
(

7 −8
−8 7

)

is clearly not positive definite.
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Chapter 6
Higher Order Concentration in Presence
of Poincaré-Type Inequalities

Friedrich Götze and Holger Sambale

Abstract We show sharpened forms of the concentration of measure phenomenon
typically centered at stochastic expansions of order d − 1 for any d ∈ N. Here we
focus on differentiable functions on the Euclidean space in presence of a Poincaré-
type inequality. The bounds are based on d-th order derivatives.

Keywords Concentration of measure phenomenon · Poincaré inequalities

1991 Mathematics Subject Classification Primary 60E15, 60F10; Secondary
60B20

6.1 Introduction

In this note, we study higher order versions of the concentration of measure
phenomenon. Instead of the classical problem of deviations of f around the mean
Ef , we study potentially smaller fluctuations of f̃d := f−Ef−f1−. . .−fd , where
f1, . . . , fd are “lower order terms” of f with respect to a suitable decomposition,
such as a Taylor-type decomposition of f . In order to study the concentration of f̃d

around 0, which we call higher order concentration of measure, we use derivatives
up to order d .

Previous work includes Adamczak and Wolff [2], who exploited certain Sobolev-
type inequalities or subGaussian tail conditions to derive exponential tail inequali-
ties for functions with bounded higher-order derivatives (evaluated in terms of some
tensor-product matrix norms). This approach was continued by Adamczak, Bednorz
and Wolff for measures satisfying modified logarithmic Sobolev inequalities in [3].
While in [2], concentration around the mean is studied, the idea of sharpening con-
centration inequalities for Gaussian and related measures by requiring orthogonality
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to linear functions also appears in Wolff [16] as well as in Cordero-Erausquin et
al. [9]. For a detailed overview of the concentration of measure phenomenon, see
[8, 14].

Our research started with second order results for functions on the n-sphere
orthogonal to linear functions [6], with an approach which has been extended in
[10] for measures satisfying logarithmic Sobolev inequalities. This includes discrete
models as well as differentiable functions on open subsets of Rn. These results were
extended to arbitrary higher orders in [7].

While in [7], measures satisfying a logarithmic Sobolev inequality were con-
sidered, the aim of this note is to prove similar results for measures satisfying a
Poincaré-type inequality, i.e. a weaker assumption. To this end, let us recall that a
Borel probability measure μ on an open set G ⊂ R

n is said to satisfy a Poincaré-
type inequality with constant σ 2 > 0 if for any bounded smooth function f on G

with gradient ∇f ,

Varμ(f ) ≤ σ 2
∫

|∇f |2 dμ. (6.1)

Here, Varμ(f ) = ∫

f 2 dμ − (
∫

f dμ)2 denotes the variance. When considering σ

instead of σ 2 itself, we will always assume it to be positive.
Given a function f ∈ Cd(G), we define f (d) to be the (hyper-) matrix whose

entries

f
(d)
i1...id

(x) = ∂i1...id f (x), d = 1, 2, . . . (6.2)

represent the d-fold (continuous) partial derivatives of f at x ∈ G. By considering
f (d)(x) as a symmetric multilinear d-form, we define operator-type norms by

|f (d)(x)|Op = sup
{

f (d)(x)[v1, . . . , vd ] : |v1| = . . . |vd | = 1
}

. (6.3)

For instance, |f (1)(x)|Op is the Euclidean norm of the gradient ∇f (x), and
|f (2)(x)|Op is the operator norm of the Hessian f ′′(x). Furthermore, we will use
the short-hand notation

‖f (d)‖Op,p =
(∫

G

|f (d)|pOp dμ

)1/p

, p ∈ (0,∞]. (6.4)

For p = ∞, the right-hand side has to be read as the L∞-norm of |f (d)|Op.
We now have the following:

Theorem 6.1.1 Let μ be a probability measure on an open set G ⊂ R
n satisfying a

Poincaré-type inequality with constant σ 2 > 0, and let f : G → R be a Cd -smooth
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function with
∫

G f dμ = 0. Assuming the conditions

‖f (k)‖Op,2 ≤ σd−k ∀k = 1, . . . , d − 1, (6.5)

‖f (d)‖Op,∞ ≤ 1, (6.6)

there exists some universal constant c > 0 such that
∫

G

exp
( c

σ
|f |1/d

)

dμ ≤ 2.

Here, a possible choice is c = 1/(12e). Comparing Theorem 6.1.1 to its analogue
in presence of a logarithmic Sobolev inequality, i.e. Theorem 1.6 in [7], we see that
under the same assumptions (6.5) and (6.6), logarithmic Sobolev inequalities yield
exponential moment bounds for |f |2/d , whereas Poincaré-type inequalities provide
exponential moments for |f |1/d only. This corresponds to the well-known behaviour
in case of d = 1.

If f has centered partial derivatives of order up to d − 1, it is possible to replace
(6.5) by a somewhat simpler condition. To this end, we need to involve Hilbert–
Schmidt-type norms |f (d)(x)|HS defined as the Euclidean norm of f (d)(x) ∈ R

nd .
Similarly to (6.4), ‖f (d)‖HS,2 then denotes the L2-norm of |f (d)|HS. In detail:

Theorem 6.1.2 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a Poincaré-type inequality with constant σ 2, and let f : G → R be a Cd -smooth
function such that

∫

G

f dμ = 0 and
∫

G

∂i1...ik f dμ = 0

for all k = 1, . . . , d − 1 and 1 ≤ i1, . . . , ik ≤ n. Assuming that

‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1,

there exists some universal constant c > 0 such that
∫

G

exp
( c

σ
|f |1/d

)

dμ ≤ 2.

Here again, a possible choice is c = 1/(12e).
By Chebyshev’s inequality, Theorem 6.1.1 immediately yields

μ(|f | ≥ t) ≤ 2e−ct1/d /σ

for any t ≥ 0. For small values of t , it is possible to obtain refined tail estimates in
the spirit of Adamczak [1], Theorem 7, or Adamczak and Wolff [2], Theorem 3.3
(with γ = 1 using their notation), by analyzing the proof of Theorem 6.1.1:
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Corollary 6.1.3 Let μ be a probability measure on an open set G ⊂ R
n satisfying a

Poincaré-type inequality with constant σ 2 > 0, and let f : G → R be a Cd -smooth
function with

∫

G f dμ = 0. For any t ≥ 0, set

ηf (t) := min
(

√
2t1/d

σ‖f (d)‖1/d
Op,∞

, min
k=1,...,d−1

√
2t1/k

σ‖f (k)‖1/k
Op,2

)

.

Then,

μ(|f | ≥ t) ≤ e2 exp(−ηf (t)/(de)).

As a generalization of these bounds, we may consider measures satisfying
weighted Poincaré-type inequalities. Recall that a Borel probability measure μ on
an open set G ⊂ R

n is said to satisfy a weighted Poincaré-type inequality if for any
bounded smooth function f on G with gradient ∇f ,

Varμ(f ) ≤
∫

|∇f |2w2 dμ, (6.7)

where w : G → [0,∞) is some measurable function. Examples include Cauchy
measures and Beta distributions. For a detailed discussion see Bobkov and Ledoux
[5].

In these cases we cannot expect exponential integrability as in Theorem 6.1.1 any
more, since distributions satisfying (6.7) may have a slow, say, polynomial, decay at
infinity. Nevertheless, it is still possible to obtain higher order concentration results
by controlling the Lp-norms of f and its derivatives. In detail:

Proposition 6.1.4 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a weighted Poincaré-type inequality (6.7), and let f : G → R be a Cd -smooth
function with

∫

G
f dμ = 0. Then, for any p ≥ 2,

‖f ‖p ≤
d−1
∑

k=1

(2
k−2

2 p‖w‖2kp)
k ‖f (k)‖Op,2 + (2

d−2
2 p)d‖w‖d−1

2d−1p
‖w|f (d)|Op‖2d−1p

≤
d−1
∑

k=1

(2
k−2

2 p‖w‖2kp)
k ‖f (k)‖Op,2 + (2

d−2
2 p‖w‖2dp)

d ‖f (d)‖Op,2dp.

Proposition 6.1.4 should be compared to (6.15) from the proof of Theorem 6.1.1
in Sect. 6.2. In particular, if the weight function w is bounded by some real number
σ > 0, μ clearly satisfies a Poincaré-type inequality (6.1) with constant σ 2. In this
case, Proposition 6.1.4 implies a slightly weaker version of (6.15), and it is possible
to derive Theorem 6.1.1 again though with a somewhat weaker constant c = cd > 0.
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Suitable conditions on the weight function w may still yield exponential-type
tails at least in certain intervals. For instance, the following higher order analogue
of Corollary 4.2 in [5] holds:

Corollary 6.1.5 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a weighted Poincaré-type inequality (6.7), and let f : G → R be a Cd -smooth
function with

∫

G f dμ = 0 and such that (6.5) (with σ 2 = 1) and (6.6) from
Theorem 6.1.1 hold. Assume ‖w‖2dp ≤ C for some p ≥ 2 and some C ≥ 2−(d−1)/2.

Then, for any 0 ≤ t ≤ (2
d+5

2 Cep)d ,

μ(|f | ≥ t) ≤ ed/e exp(−dt1/d/(2
d+5

2 Ce)).

Hence, we obtain exponential-type tail bounds on an interval of length propor-

tional to pd . Note that if t > (2
d+5

2 Cep)d , we may still give bounds on μ(|f | ≥ t)

by taking (6.23) for q = p from the proof of Corollary 6.1.5. We omit details at
this point. The assumption C ≥ 2−(d−1)/2 is needed for technical reasons. In fact, it

guarantees that the quantities (2
k−1

2 C)k , k ≤ d − 1, are bounded by (2
d−1

2 C)d . For
d = 1 it can be removed. It is possible to adapt the proof for 0 < C < 2−(d−1)/2

and obtain similar bounds.
For d = 1, Corollary 6.1.5 gives back a version of Corollary 4.2 from [5] up

to constants, though with a boundedness condition on ‖w‖2p rather than ‖w‖p .
This may be adjusted by working with the first inequality from Proposition 6.1.4,
in which case we directly get back the [5] result. In the same way, it is possible to
derive a result similar to Corollary 6.1.5 which requires bounds on ‖w‖2d−1p. We
have chosen to work with the second inequality from Proposition 6.1.4 instead (and
thus need bounds on ‖w‖2dp) since this is technically slightly more convenient.

Under stronger moment conditions on the weight function w, e. g.
∫

ew2/αdμ ≤
2 for some α > 0, it is possible to obtain exponential-type tail bounds even on the
whole positive half-line, cf. Corollary 4.3 in [5].

Outline In Sect. 6.2, we give the proofs of the results stated above. In Sect. 6.3,
we provide some applications, including homogeneous multilinear polynomials of
order d and linear eigenvalue statistics in random matrix theory.

6.2 Proofs

Given a continuous function on an open subset G ⊂ R
n, the equality

|∇f (x)| = lim sup
x→y

|f (x)− f (y)|
|x − y| , x ∈ G, (6.8)
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may be used as definition of the generalized modulus of the gradient of f . The
function |∇f | is Borel measurable, and if f is differentiable at x, the generalized
modulus of the gradient agrees with the Euclidean norm of the usual gradient. This
operator preserves many identities from calculus in form of inequalities, such as a
“chain rule inequality”

|∇T (f )| ≤ |T ′(f )||∇f |, (6.9)

where |T ′| is understood according to (6.8) again.
As shown in [7], Lemma 4.1, using the generalized modulus of the gradient, the

operator norms of the derivatives of consecutive orders are related as follows:

Lemma 6.2.1 Given a Cd -smooth function f : G→ R, d ∈ N, at all points x ∈ G,

|∇|f (d−1)(x)|Op| ≤ |f (d)(x)|Op.

Proof Indeed, for any h ∈ R
n, by the triangle inequality,

∣

∣ |f (d−1)(x + h)|Op − |f (d−1)(x)|Op
∣

∣ ≤ |f (d−1)(x + h)− f (d−1)(x)|Op

= sup{(f (d−1)(x + h)− f (d−1)(x))[v1, . . . , vd−1] : v1, . . . , vd−1 ∈ Sn−1},

while, by the Taylor expansion,

(f (d−1)(x + h)− f (d−1)(x))[v1, . . . , vd−1] = f (d)(x)[v1, . . . , vd−1, h] + o(|h|)

as h → 0. Here, the o-term can be bounded by a quantity which is independent of
v1, . . . , vd−1 ∈ Sn−1. As a consequence,

lim sup
h→0

| |f (d−1)(x + h)|Op − |f (d−1)(x)|Op|
|h|

≤ sup{f (d)(x)[v1, . . . , vd−1, vd ] : v1, . . . , vd ∈ Sn−1} = |f (d)(x)|Op.

��
Following the scheme of proof developed in [7], we moreover need to establish a

recursion for the Lp-norms of the derivatives of f of consecutive orders. To this end,
we recall a classical result on the moments of Lipschitz functions in the presence of
Poincaré-type inequalities. Here, similarly to (6.4), we write

‖∇g‖Op,p =
(∫

G

|∇g|p dμ

)1/p

, p ∈ (0,∞],

for any locally Lipschitz function g on G with generalized modulus of gradient
|∇g|. In detail:
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Lemma 6.2.2 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a Poincaré-type inequality with constant σ 2 > 0, and let g : G → R be locally
Lipschitz with

∫

G gdμ = 0. Then, for any p ≥ 2,

∫

G

|g|pdμ ≤
( σp√

2

)p
∫

G

|∇g|pdμ. (6.10)

In particular, for any g : G→ R locally Lipschitz,

‖g‖p ≤ ‖g‖2 + σp√
2
‖∇g‖p. (6.11)

Note that in (6.11), g is not required to have mean 0. For the reader’s convenience,
let us briefly recall the proof.

Proof By standard arguments, we may assume g to be C1-smooth and bounded.
Moreover, by the subadditivity property of the variance functional, the Poincaré-
type inequality for the probability measure μ on G is extended to the same relation
on G×G, i.e.

Varμ2(u) ≤ σ 2
∫∫

|∇u(x, y)|2dμ(x)dμ(y) (6.12)

for the product measure μ2 = μ⊗μ. Here, for any C1-smooth function u = u(x, y),
the modulus of the gradient is given by

|∇u(x, y)|2 = |∇xu(x, y)|2 + |∇yu(x, y)|2.

Now consider the function

u(x, y) = |g(x)− g(y)| p2 sign(g(x)− g(y)),

which is C1-smooth for p > 2 with modulus of gradient

|∇u(x, y)| = p

2
|g(x)− g(y)| p2−1

√

|∇g(x)|2 + |∇g(y)|2.

Since u has a symmetric distribution under μ2, applying (6.12) together with
Hölder’s inequality yields

1

σ 2

∫∫

|g(x)− g(y)|pdμ2(x, y)

≤ p2

4

∫∫

|g(x)− g(y)|p−2(|∇g(x)|2 + |∇g(y)|2)dμ2(x, y)

≤ p2

4

(

∫∫

|g(x) − g(y)|pdμ2(x, y)
)

p−2
p
(

∫∫

(|∇g(x)|2 + |∇g(y)|2) p2 dμ2(x, y)
) 2

p
.
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By Jensen’s inequality, the last integral may be bounded by

2
p
2−1

∫∫

(|∇g(x)|p + |∇g(y)|p)dμ2(x, y) = 2
p
2

∫

|∇g|pdμ.

Consequently,

(

∫∫

|g(x)− g(y)|pdμ2(x, y)
) 2

p ≤ σ 2p2

2

(

∫

|∇g|pdμ
) 2

p
,

or, equivalently,

∫∫

|g(x)− g(y)|pdμ2(x, y) ≤
( σp√

2

)p
∫

|∇g|pdμ.

In particular, the latter inequality shows that any locally Lipschitz function g such
that the right-hand side is finite is integrable (if g is unbounded, we may perform a
simple truncation argument). If

∫

gdμ = 0, it follows from Jensen’s inequality that
the left integral can be bounded below by

∫ |g|pdμ, which proves (6.10). To see
(6.11), it remains to note that by the triangle inequality,

∥

∥

∥g −
∫

gdμ

∥

∥

∥

p
≥ ‖g‖p −

∣

∣

∣

∫

gdμ

∣

∣

∣ ≥ ‖g‖p − ‖g‖2.

��
Combining Lemma 6.2.1 and (6.11), we are able to prove Theorem 6.1.1. Recall

that if a relation of the form

‖f ‖k ≤ γ k (k ∈ N) (6.13)

holds true with some constant γ > 0, then f has sub-exponential tails, i.e.
∫

e c|f |dμ
≤ 2 for some constant c = c(γ ) > 0, e. g. c = 1

2γ e . Indeed, using k! ≥ ( ke )
k , we

have

∫

exp(c|f |)dμ = 1+
∞
∑

k=1

ck
∫ |f |kdμ

k! ≤ 1+
∞
∑

k=1

(cγ )k
kk

k! ≤ 1+
∞
∑

k=1

(cγ e)k = 2.

Proof of Theorem 6.1.1 Using (6.11) with f replaced by |f (k−1)|Op, 2 ≤ k ≤ d ,
we get

‖f (k−1)‖Op,p ≤ ‖f (k−1)‖Op,2 + σp√
2
‖∇|f (k−1)|Op‖p

≤ ‖f (k−1)‖Op,2 + σp√
2
‖f (k)‖Op,p,

(6.14)



6 Higher Order Concentration in Presence of Poincaré-Type Inequalities 63

where Lemma 6.2.1 was applied on the last step. Consequently, using (6.10) and
then (6.14) iteratively,

‖f ‖p ≤
d−1
∑

k=1

( σp√
2

)k ‖f (k)‖Op,2 +
( σp√

2

)d ‖f (d)‖Op,p. (6.15)

Since ‖f (k)‖Op,2 ≤ σd−k for all k = 1, . . . , d − 1 and ‖f (d)‖Op,∞ ≤ 1 by
assumption, we obtain

‖f ‖p ≤ σd

d
∑

k=1

(p/
√

2)k ≤ 1

1− (p/
√

2)−1
(σp/

√
2)d ≤ 4 (σp/

√
2)d

(6.16)

and therefore ‖f ‖p ≤ (3σp)d for all p ≥ 2. Moreover, ‖f ‖p ≤ ‖f ‖2 ≤ (6σ)d for
p < 2. It follows that

‖|f |1/d‖k = ‖f ‖1/d
k/d ≤ γ k

for all k ∈ N, i.e. (6.13) holds with γ = 6σ (and |f |1/d in place of f ). This yields
the assertion of the theorem. ��
Proof of Theorem 6.1.2 Starting as in the proof of Theorem 6.1.1, we arrive at

‖f ‖p ≤
d−1
∑

k=1

(σp/
√

2)k ‖f (k)‖HS,2 + (σp/
√

2)d ‖f (d)‖Op,p, (6.17)

where we used that operator norms are dominated by Hilbert–Schmidt norms.
Moreover, since

∫

G
∂i1...ik f dμ = 0, by the Poincaré-type inequality,

∫

G

(∂i1...ik f )2 dμ ≤ σ 2
n
∑

j=1

∫

G

(∂i1...ikj f )2 dμ

whenever 1 ≤ i1, . . . , ik ≤ n, k ≤ d − 1. Summing over all 1 ≤ i1, . . . , ik ≤ n, we
get

‖f (k)‖2
HS,2 =

∫

G

|f (k)|2HS dμ ≤ σ 2
∫

G

|f (k+1)|2HS dμ = σ 2 ‖f (k+1)‖2
HS,2.

(6.18)
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Using (6.18) in (6.17) and iterating, we thus obtain

‖f ‖p ≤
d−1
∑

k=1

σd(p/
√

2)k ‖f (d)‖HS,2 + (σp/
√

2)d ‖f (d)‖Op,p.

Noting that ‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1, we arrive at (6.16), from where
we may proceed as in the proof of Theorem 6.1.1. ��
Proof of Corollary 6.1.3 First note that by Chebyshev’s inequality, for any p ≥ 1

μ(|f | ≥ e‖f ‖p) ≤ e−p. (6.19)

Moreover, if p ≥ 2, it follows from (6.15) that

e‖f ‖p ≤ e
(

d−1
∑

k=1

(σp/
√

2)k ‖f (k)‖Op,2 + (σp/
√

2)d ‖f (d)‖Op,∞
)

.

Assuming ηf (t) ≥ 2, we therefore arrive at

e‖f ‖ηf (t) ≤ e
(

d−1
∑

k=1

t + t
) = (de)t.

Hence, applying (6.19) to p = ηf (t) (if p ≥ 2) yields

μ(|f | ≥ (de)t) ≤ μ(|f | ≥ e‖f ‖ηf (t)) ≤ exp(−ηf (t)).

Using a trivial estimate provided that p = ηf (t) < 2, we obtain

μ(|f | ≥ (de)t) ≤ e2 exp(−ηf (t))

for all t ≥ 0. The proof now easily follows by rescaling f by de and using that
ηdef (t) ≥ ηf (t)/(de). ��

In order to prove Proposition 6.1.4, we have to adapt the first steps of the proof
of Theorem 6.1.1. First, we have the following generalization of Lemma 6.2.2 (in
fact, this is a version of Theorem 4.1 in [5]):

Lemma 6.2.3 Let μ be a probability measure on an open set G ⊂ R
n satisfying

a weighted Poincaré-type inequality (6.7), and let g : G → R be locally Lipschitz
with

∫

G gdμ = 0. Then, for any p ≥ 2,

∫

G

|g|pdμ ≤
( p√

2

)p
∫

G

|∇g|pwp dμ. (6.20)
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In particular, for any g : G→ R locally Lipschitz,

‖g‖p ≤ ‖g‖2 + p√
2
‖w|∇g|‖p. (6.21)

The proof of Lemma 6.2.3 uses similar arguments as the proof of Lemma 6.2.2,
and we therefore omit it. In particular, by Hölder’s inequality, (6.21) implies

‖g‖p ≤ ‖g‖2 + p√
2
‖w‖2p‖∇g‖2p. (6.22)

Starting with (6.20)–(6.22) and iterating as in (6.14) and (6.15), we obtain

‖f ‖p ≤
d−1
∑

k=1

2(
k
2)
(p‖w‖2kp√

2

)k ‖f (k)‖Op,2+2(
d
2)
(p‖w‖2d−1p√

2

)d ‖w|f (d)|Op‖2d−1p,

hence we easily arrive at the conclusions of Proposition 6.1.4. Again, we omit the
details.

Finally, the proof of Corollary 6.1.5 is similar to the proof of Corollary 4.2 in [5].

Proof of Corollary 6.1.5 First let 2 ≤ q ≤ p. Using the assumptions and
Proposition 6.1.4, we arrive at

‖f ‖q ≤
d−1
∑

k=1

(2
k−2

2 qC)k + (2
d−2

2 qC)d

and hence

‖f ‖q ≤ 4 (2
d−1

2 Cq)d ≤ (2
d+3

2 Cq)d

(this follows as in (6.16), substituting σ by 2
d−1

2 C ≥ 1). Moreover, if 0 < q ≤ 2,
we have

‖f ‖q ≤ ‖f ‖2 ≤ (2
d+5

2 C)d .

Since the function q �→ ed/eqdq , q > 0, is minimized at q = 1/e with minimum

value 1, it follows that E|f |q ≤ ed/e (2
d+5

2 Cq)dq for all 0 < q ≤ p. Therefore, for
any t > 0 and any 0 < q ≤ p,

μ(|f | ≥ t) ≤ E|f |q
tq

≤ ed/e
(

(2
d+5

2 Cq)d

t

)q

. (6.23)

Now set s = t1/d/(2
d+5

2 C) and write μ(|f | ≥ t) ≤ ed/e e−ϕ(q) with ϕ(q) =
dq(log(s) − log(q)). It is easy to check that ϕ is a concave function on (0,∞)
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which attains its maximum at q0 = s/e with ϕ(q0) = ds/e = dt1/d/(2
d+5

2 Ce).

Noting that q0 ≤ p is equivalent with t ≤ (2
d+5

2 Cep)d completes the proof. ��

6.3 Applications

Let X1, . . . , Xn be independent random variables with distributions satisfying a
Poincaré-type inequality (6.1) with common constant σ 2 > 0. For real numbers
ai1...id , i1 < . . . < id , consider the function

f (X1, . . . , Xn) :=
∑

i1<...<id

ai1...idXi1 · · ·Xid , (6.24)

which is a homogeneous multilinear polynomial of order d . For any i1 < . . . < id
and any permutation σ ∈ Sd , set aσ(i1)...σ (id ) ≡ ai1...id . Moreover, set ai1...id =
0 whenever the indexes i1, . . . , id are not pairwise different. This gives rise to a
hypermatrix A = (ai1...id ) ∈ R

nd , whose Euclidean norm we denote by ‖A‖HS.
Moreover, set ‖A‖∞ := maxi1<...<id |ai1...id |.

As a first example, we may apply our results to functions of type (6.24). Here it
is convenient to assume for the random variables Xi to have mean zero:

Proposition 6.3.1 Let X1, . . . , Xn be independent random variables with distribu-
tions satisfying a Poincaré-type inequality (6.1) with common constant σ 2 > 0.
Assume EXi = 0 for all i = 1, . . . , n. Let d ∈ N, and consider a function f of type
(6.24). Then,

E exp
( c

σ‖A‖1/d
HS

|f |1/d
)

≤ 2.

Here, E denotes the expectation with respect to the random variables X1, . . . , Xn,
and c is the absolute constant appearing in Theorem 6.1.2. In particular,

E exp
( c

σn1/2‖A‖1/d∞
|f |1/d

)

≤ 2.

Moreover, if EX2
i = 1 for all i = 1, . . . , n,

P(|f − Ef | ≥ t) ≤ e 2 exp
(

−
√

2

σde
min

( t

‖A‖HS
,

t1/d

‖A‖1/d
HS

))

≤ e2 exp
(

−
√

2

σde
min

( t

nd/2‖A‖∞ ,
t1/d

n1/2‖A‖1/d∞

))

.
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Proposition 6.3.1 follows immediately from Theorem 6.1.2 and Corollary 6.1.3.
Note that for non-centered random variables X1, . . . , Xn, applying Proposition 6.3.1
to the random variables Xi − EXi means removing certain “lower order” terms in
(6.24), which is in accordance with the ideas sketched in the introduction.

We may furthermore apply our results in the context of random matrix theory.
Here we extend an example on second order concentration bounds for linear eigen-
value statistics in presence of a logarithmic Sobolev inequality [10], Proposition
1.10, to the situation where only a Poincaré-type inequality is available.

Indeed, let {ξjk, 1 ≤ j ≤ k ≤ N} be a family of independent random variables
on some probability space. Assume that the distributions of the ξjk’s all satisfy
a (one-dimensional) Poincaré-type inequality (6.1) with common constant σ 2. Put
ξjk = ξkj for 1 ≤ k < j ≤ N and consider a symmetric N × N random matrix
� = (ξjk/

√
N)1≤j,k≤N and denote by μ(N) the joint distribution of its ordered

eigenvalues λ1 ≤ . . . ≤ λN on R
N (in fact, λ1 < . . . < λN a.s.). Recall that by a

simple argument using the Hoffman–Wielandt theorem, μ(N) satisfies a Poincaré-
type inequality with constant

σ 2
N = 2σ 2

N
(6.25)

(see for instance Bobkov and Götze [4]). Note that similar observations also hold
for Hermitian random matrices.

Considering the probability space (RN,BN ,μ(N)), if f : R→ R is a C1-smooth
function, it is well-known that asymptotic normality

SN =
N
∑

j=1

(f (λj )− Ef (λj ))⇒ N (0, σ 2
f ) (6.26)

holds for the self-normalized linear eigenvalue statistics SN . Here, “⇒” denotes
weak convergence, E means taking the expectation with respect to μ(N) and
N (0, σ 2

f ) denotes a normal distribution with mean zero and variance σ 2
f depending

on f . This result was established by Johansson [12] for the case of β-ensembles
and, for general Wigner matrices, by Khorunzhy et al. [13] as well as Sinai and
Soshnikov [15]. Concentration of measure results have been studied by Guionnet
and Zeitouni [11], in particular proving fluctuations of order OP(1). Our results
yield a second order concentration bound:

Proposition 6.3.2 Let μ(N) be the joint distribution of the ordered eigenvalues of
�. Let f : R → R be a C2-smooth function with f ′(λj ) ∈ L1(μ(N)) and bounded
second derivatives, and let

S̃N := SN −
N
∑

j=1

(λj − E(λj ))Ef
′(λj )
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with SN as in (6.26). Then, we have

E exp
( cN1/4

√
2σ‖f ′′‖1/2∞

|S̃N |1/2
)

≤ 2,

where c > 0 is the absolute constant from Theorem 6.1.2.

Since S̃N is “centered” in the sense of Theorem 6.1.2, Proposition 6.3.2
immediately follows from elementary calculus, using (6.25). Note that in view of
the self-normalizing property of SN , the fluctuation result for S̃N is of the next
order, although the scaling is of order

√
N only. Comparing Proposition 6.3.2 to

[10], Proposition 1.10, we see that we essentially arrive at the same result though
for |S̃N |1/2 instead of |S̃N | due to the assumption of a Poincaré-type inequality.

Using Corollary 6.1.3, we can in fact slightly sharpen the results on the tail
behavior of SN . Indeed, an easy calculation yields

μN(|SN | ≥ t) ≤ e2 exp
(

− 1

σde
min

( tN1/2

(
∫ ∑

i (f
′(λi))2dμN)1/2 ,

t1/2N1/4

‖f ′′‖1/2∞

))

for any t ≥ 0. Similar results may be obtained for higher orders d ≥ 3.
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Chapter 7
Rearrangement and Prékopa–Leindler
Type Inequalities

James Melbourne

Abstract We investigate the interactions of functional rearrangements with
Prékopa–Leindler type inequalities. It is shown that certain set theoretic
rearrangement inequalities can be lifted to functional analogs, thus demonstrating
that several important integral inequalities tighten on functional rearrangement
about “isoperimetric” sets with respect to a relevant measure. Applications to the
Borell–Brascamp–Lieb, Borell–Ehrhard, and the recent polar Prékopa–Leindler
inequalities are demonstrated. It is also proven that an integrated form of the
Gaussian log-Sobolev inequality sharpens on rearrangement.

7.1 Introduction

The Prékopa–Leindler inequality (PLI) stated below has become a useful tool in the
study of log-concave distributions in probability and statistics, particularly in high
dimension, and a point of interest and unification between probabilists and convex
geometers.

Theorem 7.1.1 (Prékopa–Leindler) For f, g : Rd → [0,∞) Borel measurable
and t ∈ (0, 1), define

f�g(z) := sup
(1−t )x+ty=z

f 1−t (x)gt (y)

A portion of this work relevant to information theory was announced at 56th Annual Allerton
Conference on Communication, Control, and Computing [43].
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then

∫

Rd

f�g(z)dz ≥
(∫

Rd

g(z)dz

)1−t (∫

Rd

h(z)dz

)t

.

The inequality can be motivated from a convex geometric perspective as a
functional generalization of the dimension free statement of the Brunn–Minkowski
inequality (BMI), which we recall as the fact that for A,B compact in R

d and | · |d
the d-dimensional Lebesgue volume,

|(1− t)A+ tB|d ≥ |A|1−t
d |B|td .

Indeed, by taking f = 1A and g = 1B , we have f�g = 1(1−t )A+tB. PLI implies
that integration preserves the inequality and the result follows.

The BMI has an elegant qualitative formulation; the volume of sum-sets
decreases on spherical symmetrization. More explicitly, if A and B are compact
sets, with A∗ and B∗ Euclidean balls satisfying |A∗|d = |A|d , |B∗|d = |B|d , then

|A+ B|d ≥ |A∗ + B∗|d . (7.1)

Our first main result (Theorem 7.3.1) contains a functional generalization of
(7.1). We will show PLI “sharpens” on rearrangement in the sense that

∫

f�g(z)dz ≥
∫

f ∗�g∗(z)dz, (7.2)

where ∗ denotes a functional rearrangement to be defined below. In fact we will
prove that for ψ increasing,

∫

ψ(f�g(z))dz ≥
∫

ψ(f ∗�g∗(z))dz. (7.3)

Our methods are reasonably general and Theorem 7.4.6 will give a class of set
theoretic inequalities that admit functional generalization in the sense of (7.3). As
a consequence, we will show that analogs of (7.3) can be given to sharpen not only
the PLI, but the Borell–Brascamp–Lieb inequalities [15, 18], the Borell–Ehrhard
inequality in the Gaussian setting [16, 24], and a recent Polar Prékopa–Leindler [1].

These results can also be motivated from an information theoretic perspective,
where the BMI can be considered a Rényi entropy power inequality. There has
been considerable recent work (see [6, 7, 10, 29, 31, 33, 45]) developing Rényi
entropy [46] generalizations of the classical entropy power inequality (EPI) of
Shannon–Stam [47, 48]. One should compare the sharpening of PLI here to [50],
where Madiman and Wang show that while spherically symmetric decreasing
rearrangements of random variables preserve their Rényi entropy, they decrease the
Rényi entropy of independent sums of random variables. One information theoretic
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application of the rearrangement result is the reduction of Rényi generalizations of
the EPI to the spherically symmetric case, see for example [39] where the Madiman–
Wang result is used to sharpen the Rényi EPI put forth in [40]. See [36] to find an
extension and application of [50] for the ∞-Rényi entropy. It should be mentioned
that the connections between BMI and entropy power inequalities are not new. The
analogy between the two inequalities was first observed in [21], and a unified proof
was given in [23] drawing on the work of [4, 17, 34]. The reader is directed to
[35] where a further development of Rényi entropy power inequalities and their
connections to convex geometry are given.

In the Gaussian case, the strict convexity of the potential gives a result stronger
than PLI, and we are able to adapt the rearrangement ideas to approach the Gaussian
log-Sobolev inequality. We show in Theorem 7.6.5 that for the Gaussian measure,
the “integrated” log-Sobolev inequality derived in [8] by Bobkov and Ledoux, and
understood as reverse hypercontractivity of the Hamilton–Jacobi equations in [12],
sharpens on half space rearrangement.

An alternative motivation for this investigation is the Brascamp–Lieb–Barthe
inequality’s relationship to the Brascamp–Lieb–Luttinger rearrangement inequali-
ties [19]. The Brascamp–Lieb inequality [18] enjoys the Brascamp–Lieb–Luttinger
inequality as a rearrangement analog. In [2] Barthe used an optimal transport
argument to prove Brascamp–Lieb and simultaneously demonstrated a dual inequal-
ity that includes PLI as a special case. It is natural to ask for a rearrangement
inequality analog of Barthe’s result, to provide a dual to the Brascamp–Lieb–
Luttinger rearrangement inequality. This work represents a confirmation of such
an inequality in the special case corresponding to PLI.

The paper is organized in the following manner; in Sect. 7.2, we will give
definitions and background on a notion of rearrangement. In Sect. 7.3, we give a
rearrangement inequality for PLI, before giving a general version in Sect. 7.4. In
Sect. 7.5, we give applications of the theorem derived in Sect. 7.4 to special cases.
In Sect. 7.6, we give a sharpening of an integrated Gaussian log-Sobolev inequality
via half-space rearrangement. Finally, in Sect. 7.7, we discuss connections with the
work of Barthe and Brascamp-Lieb-Luttinger closing with an open problem.

7.2 Preliminaries

For a set A, we will use the notation 1A to denote the indicator function of A, taking
the value 1 on A, and 0 elsewhere. For x ∈ R

d , |x| will denote the usual Euclidean
norm. We use Q+ to denote the non-negative rational numbers. We use γd to denote
both the standard Gaussian measure on R

d and its density function

γd(x) = e−|x|2/2

(2π)
d
2

.



74 J. Melbourne

When d = 1, and there is no risk of confusion, we will omit the subscript and write
γ . We denote the Gaussian distribution function

�(x) =
∫ x

−∞
γ (y)dy

and its inverse �−1.

7.2.1 Spherically Symmetric Decreasing Rearrangements

Given a nonempty measurable set A ⊆ R
d , we define its spherically symmetric

rearrangement A∗ to be the origin centered ball of equal volume,

A∗ :=
{

x : |x| < (|A|d/ωd)
1
d

}

,

where ωd is the volume of the d-dimensional unit ball, with the understanding that
A∗ = ∅ in the case that |A|d = 0 and A∗ = R

d when |A|d = ∞.
We can extend this notion of symmetrization to functions via the layer-cake

decomposition of a non-negative function f ,

f (x) =
∫ f (x)

0
1dt =

∫ ∞

0
1{y:f (y)>t}(x)dt.

Definition 7.2.1 For a measurable non-negative function f , define its decreasing
symmetric rearrangement f ∗ by

f ∗(x) :=
∫ ∞

0
1{y:f (y)>t}∗(x)dt. (7.4)

Note that decreasing is used here in the non-strict sense, synonymous with non-
increasing.

Proposition 7.2.2 f ∗ is characterized by the equality

{f ∗ > λ} = {f > λ}∗. (7.5)

The proof will be given in greater generality in the following section.

Corollary 7.2.3 f ∗ is lower semi-continuous, spherically symmetric and non-
increasing in the sense that |x| ≤ |y| implies f ∗(x) ≥ f ∗(y).

Proof f ∗ has open super level sets by Eq. (7.5) and is thus lower semi-continuous.
To prove non-increasingness observe that using the characterization above f ∗(y) >
λ iff y ∈ {f > λ}∗ which implies by |x| ≤ |y| that x ∈ {f > λ}∗, and thus
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f ∗(x) > λ. Applying this to λn increasing to f ∗(y) yields our result. Observe that
this implies spherical symmetry by applying the preceding argument in the opposite
direction f (x) = f (y) when |x| = |y|. ��

7.2.2 More General Rearrangements

Definition 7.2.4 For Polish measure spaces (M,μ) and (N, α), with Borel σ -
algebra, we will call a set map from the Borel σ -algebra of M to the Borel σ -algebra
of N a rearrangement when it satisfies the following,

1. ∗(A) is an open set satisfying α(∗(A)) = μ(A)

2. μ(A) ≤ μ(B) implies ∗(A) ⊆ ∗(B)

3. For a sequence Ai ⊆ Ai+1, ∗(∪∞i=1Ai) = ∪∞i=1 ∗ (Ai).

Notice that in 3, ∪j ∗ (Aj) ⊆ ∗(∪jAj ) holds from 2, so the assumption is only
∪j ∗ (Aj) ⊇ ∗(∪jAj ). For brevity of notation, we write A∗ = ∗(A) and note the
following extension to functions.

Definition 7.2.5 For a rearrangement ∗ and Borel measurable f : M → [0,∞)

define f ∗ : N → [0,∞),

f ∗(x) :=
∫ ∞

0
1{f>t}∗(x)dt.

Rearrangement is in general non-linear, however, we do have linear behavior in
the following special case.

Lemma 7.2.6 For a simple function s, expressed as s = ∑n
i=1 ai1Ai with ai > 0

and Ai � Ai−1,

s∗ =
n
∑

i=1

ai1A∗i .

Proof Let us give more explicit formulas for both quantities.

n
∑

i=1

ai1A∗i (z) =
mz
∑

i=1

ai

where mz = max{i : z ∈ A∗i }, and the formula

s∗(z) = sup{t : z ∈ {s > t}∗},
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which holds not just for simple functions but general f . If z ∈ A∗mz
with mz

maximal, then for t <
∑mz

i=1 ai , Amz ⊆ {s > t}, which in turn gives A∗mz
⊆ {s >

t}∗. Thus z ∈ {s > t}∗ for all t <
∑mz

i=1 ai and we have

s∗(z) = sup
t
{z ∈ {s > t}∗} ≥

mz
∑

i=1

ai =
n
∑

i=1

ai1A∗i (z).

For the reverse inequality, assume s∗(z) > 0 (else there is nothing to prove) and take
t such that z ∈ {s > t}∗. Since {s > t} = Akt where kt = min{j : ∑j

i=1 ai > t},
we have {s > t}∗ = A∗kt . This implies that

∑

i=1 ai1A∗i (z) ≥
∑kt

i=1 ai > t . Taking
the supremum in t ,

n
∑

i=1

ai1A∗i (z) ≥ s∗(z).

��
Proposition 7.2.7 f ∗ is characterized by the equality

{f ∗ > λ} = {f > λ}∗. (7.6)

In particular f ∗ is lower semi-continuous, and equi-measureable with f in that
μ{f > λ} = α{f ∗ > λ}.
Proof First we prove the equality (7.6). Since f ∗(x) > λ implies

∫∞
0 1{f>t}∗(x)

dt > λ, which in turn, by the monotonicity of 1{f>t}∗ implies the existence of
t > λ such that x ∈ {f > t}∗. From this it follows that

{f ∗ > λ} ⊆ {f > λ}∗.

For the converse, first assume that f = s is a simple function, expressed as

s =
n
∑

i=1

ai1Ai

with ai > 0 and Ai � Ai−1. By Lemma 7.2.6

s∗ =
n
∑

i=1

ai1A∗i .

Since {s > λ} = Ak where k = min{j : ∑j
i=1 ai > λ}, z ∈ {s > λ}∗ = A∗k

implies s∗(z) = ∑n
i=1 ai1A∗i (z) ≥

∑k
i=1 ai > λ. Thus {s > λ}∗ ⊆ {s∗ > λ} holds
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for simple functions. Now take sn to be a sequence of increasing simple functions
approximating f pointwise and uniformly on sets where f is bounded. Then

{f > λ}∗ =
( ∞
⋃

n=1

{sn > λ}
)∗

=
∞
⋃

n=1

{sn > λ}∗ =
∞
⋃

n=1

{s∗n > λ}.

where the first equality is from the assumption of increasingness of the simple
functions, the second is from Definition 7.2.4 item 3, and the third follows from the
characterization just proven for simple functions. Since f1 ≤ f2, implies f ∗1 ≤ f ∗2
it follows that ∪{s∗n > λ} ⊆ {f ∗ > λ}, so that {f > λ}∗ ⊆ {f ∗ > λ}.

If g is another function satisfying {g > λ} = {f > λ}∗ for all λ, then

g(z) =
∫ ∞

0
1{g>λ}dλ =

∫ ∞

0
1{f>λ}∗dλ =

∫ ∞

0
1{f ∗>λ}dλ = f ∗(z).

The fact that f is lower semi-continuous follows from item (1) of our definition,
that A∗ is open. Equimeasurability is given by α{f ∗ > λ} = α{f > λ}∗ = μ

{f > λ}. ��
Proposition 7.2.8 For an open convex set K ⊆ R

d with closure containing the
origin. The set map ∗K defined by

A∗K :=
( |A|d
|K|d

) 1
d

K,

is a rearrangement with (M,μ) = (N, α) = (Rd, | · |d).
Proof It is immediate that A∗K is open and the homogeneity of the Lebesgue
measure ensures that |A∗K |d = |A|d , hence (1) follows. To prove (2), note that
for 0 < |A| ≤ |B|, by the definition of ∗K , A∗K = tK and B∗K = sK for some
0 < t ≤ s. Let x = tk for k ∈ K and kn a sequence in K converging to 0. Then

x = s

(

t

s

(

k −
( s

t
− 1

)

kn

)

+
(

1− t

s

)

kn

)

.

By K open, k−( s
t
−1)kn belongs to K for large n, and when this holds, by convexity

( t
s
(k − ( s

t
− 1)kn)+ (1− t

s
)kn) ∈ K . It follows that x ∈ sK , as such, A∗K ⊆ B∗K .

The continuity condition in (3) holds, since both sets are origin symmetric balls of
the same volume. ��

Observe that the qualitative statement of Brunn–Minkowski (7.1), for Borel A,B

|A+ B|d ≥ |A∗K + B∗K |d, (7.7)

is preserved. In the following section, we will extend this qualitative result to the
functional setting.



78 J. Melbourne

Proposition 7.2.9 For a fixed coordinate i, the set function ∗ defined on a Polish
space M with probability measure μ and (N, α) = (Rd , γd) by

A∗ = {x : xi < �−1(μ(A))}

is a rearrangement.

Proof A∗ is open by definition, and γd(A
∗) = �(�−1(μ(A))) = μ(A). Conditions

(2) and (3) follow from the monotonicity and continuity of �. ��
We will not pursue examples in discrete spaces here. We direct the interested

reader to [37, 38] for recent information theoretic work regarding rearrangement on
discrete spaces and [25, 26, 44] for discrete PLI investigations.

7.3 Rearrangement and Prékopa–Leindler

We begin with a special case of a more general result to build some intuition for the
abstractions to follow. For f, g : Rd → [0,∞) and t ∈ [0, 1] recall

f�g(z) = sup
(1−t )x+ty=z

f 1−t (x)gt (y). (7.8)

Theorem 7.3.1 For f, g : R
d → [0,∞) Borel, t ∈ (0, 1), and ∗ denoting a

rearrangement to a fixed open convex set with closure containing the origin,

∫

Rd

f�g(z)dz ≥
∫

Rd

f ∗�g∗(z)dz ≥
(∫

f dz

)1−t (∫

gdz

)t

. (7.9)

What is more, when ψ is a non-negative and non-decreasing function

∫

Rd

ψ(f�g)(z)dz ≥
∫

Rd

ψ(f ∗�g∗)(z)dz. (7.10)

The universal measurability of f�g will follow from the proof, which gives the
universal measurability of ψ(f�g) as a consequence.

Proof For λ ∈ (0,∞), define

S0 = S0(λ) = {s ∈ Q
2+ : s1−t

1 st2 > λ}. (7.11)

Observe,

{f�g > λ} =
⋃

s∈S0(λ)

(1− t){f > s1} + t{g > s2}. (7.12)



7 Rearrangement and Prékopa–Leindler Type Inequalities 79

Indeed, it is routine to check that z ∈ ∪s∈S0(1 − t){f > s1} + t{g > s2} implies
f�g(z) > λ. Conversely, if f�g(z) > λ, then there exists a pair of x and y

such that (1 − t)x + ty = z and f 1−t (x)gt (y) > λ. By the continuity of the map
(u, v) �→ u1−t vt , there exists (s1, s2) rational satisfying s1 < f (x), s2 < g(y), and
s1−t

1 st2 > λ, which proves the claim.
Let us remark that the sum of Borel sets is universally measurable,1 and

hence {f�g > λ} is as well. This shows we are well justified in our notation
∫

Rd f�g(z)dz. By Brunn–Minkowski and the characterizing property of rearrange-
ments on super level sets

|(1− t){f > s1} + t{g > s2}| ≥ |(1− t){f > s1}∗ + t{g > s2}∗| (7.13)

= |(1− t){f ∗ > s1} + t{g∗ > s2}|. (7.14)

Now applying (7.12) to f ∗�g∗ and observing that

(1− t){f ∗ > s1} + t{g∗ > s2}

is an origin centered ball in R
d for every s ∈ S0(λ), we see that

|{f ∗�g∗ > λ}| =
∣

∣

∣

∣

∣

∣

⋃

s∈S0(λ)

(1− t){f ∗ > s1} + t{g∗ > s2}
∣

∣

∣

∣

∣

∣

= sup
s∈S0

∣

∣(1− t){f ∗ > s1} + t{g∗ > s2}
∣

∣ .

Using (7.13),

∣

∣(1− t){f ∗ > s1} + t{g∗ > s2}
∣

∣ ≤
∣

∣

∣

∣

∣

∣

⋃

s∈S0(λ)

(1− t){f > s1} + t{g > s2}
∣

∣

∣

∣

∣

∣

.

Thus it follows that

|{f�g > λ}| ≥ |{f ∗�g∗ > λ}|. (7.15)

Using the layer-cake decomposition of the integral,
∫

Rd

ψ(f�g)(z)dz =
∫ ∞

0
|{ψ(f�g) > t}|dt.

Notice that by the non-decreasingness, ψ−1(λ,∞) is an interval of the form [x,∞)

or (x,∞) for a non-negative x. From this, we can use (7.15) (and continuity of

1This follows from the fact that Borel sets are analytic, see [28], and analytic sets are closed under
summation and universally measurable.
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measure if the interval is closed) to obtain (7.10). To recover (7.9), note that the first
inequality follows from setting ψ(x) = x, while the second is the application of PLI
to f ∗ and g∗ combined with the equimeasurability of the rearrangements ensuring
∫

f ∗ = ∫ f and
∫

g∗ = ∫ g. ��

7.4 Functional Lifting of Rearrangements

In this section we show that in a general setting, certain set theoretic rearrangement
inequalities can be extended to functional analogs, extending the rearrangement
inequality proven for PLI in the previous section to more general operations than
� in (7.8). Let us make precise the set theoretic rearrangement inequality we will
generalize.

Definition 7.4.1 Let m : Mn → M and η : Nn → N be such that
m(A1, . . . , An) = {x = m(a1, . . . , an) : ai ∈ Ai} and η(B1, . . . , Bn) =
{y = η(b1, . . . , bn) : bi ∈ Bi} are universally measurable for Ai and Bj Borel.
Suppose further that {η(A∗1, . . . , A∗n)}A indexed on n-tuples of Borel sets is totally
ordered in the sense that for any Borel A1, . . . , An and A′1, . . . , A′n we have either
η(A∗1, . . . , A∗n) ⊆ η(A′∗1, . . . , A′

∗
n) or η(A∗1, . . . , A∗n) ⊇ η(A′∗1, . . . , A′

∗
n) we say

that ∗ satisfies a set theoretic rearrangement inequality when the following holds

μ(m(A1, . . . , An)) ≥ α(η(A∗1, . . . , A∗n)).

We will focus on two main examples, the rearrangement to convex sets in
Euclidean space and rearrangement to half-spaces in Gaussian space.

Proposition 7.4.2 When (M,m,μ) = (N, η, α) = (Rd,mt , dx), and t =
(t1, . . . , tn) ∈ R

n, defines a map mt by vector space operations,

x = (x1, . . . , xn) �→
n
∑

i=1

tixi, (7.16)

then the ∗K rearrangement, as in Sect. 7.2 for K open, convex, and symmetric,
satisfies a set theoretic rearrangement inequality. If the ti are assumed positive, ∗K
satisfies a set theoretic rearrangement without symmetry if 0 belongs to the closure
of K .

Proof Take Bi = sgn(ti)Ai so that t1A1 + · · · + tnAn = |t1|B1 + · · · + |tn|Bn.
Using the symmetry and convexity of K and the definition of our rearrangement as
a scaling of K , it follows that

t1A
∗
1 + · · · + tnA

∗
n =

(

n
∑

i=1

|ti ||Ai| 1
d

)

K
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and hence, the images of mt are totally ordered. Brunn–Minkowski implies that

||t1|B1 + · · · + |tn|Bn| ≥ ||t1|B∗1 + · · · + |tn|B∗n |.

It follows that

|t1A1 + · · · + tnAn| ≥ |t1A∗1 + · · · + A∗n|.

When ti are positive, the proof is similar and simpler. ��
Proposition 7.4.3 When (M,m,μ) is a centered Gaussian measure on a Banach
space M and m defined as x = (x1, . . . , xn) �→ ∑

i tixi for ti > 0,
∑

i ti = 1,
and (N, η, α) with N = R

d , η defined by y �→ ∑

i tiyi and α = γd the half-
space rearrangement from Proposition 7.2.9 yields a set theoretic rearrangement
inequality.

This is the content of the Borell–Ehrhard theorem, which we will discuss in more
detail in Sect. 7.5.2. Now let us generalize the geometric mean used in PLI.

Definition 7.4.4 For 0 < T ≤ ∞, a function M : [0, T )n → [0,∞] is continuous
coordinate increasing when

1. x, y ∈ R
n satisfying xi > yi for all i, necessarily satisfy M(x) > M(y)

2. M(x) = 0 when
∏

i xi = 0
3. M(x) = supy<x M(y) with the convention that supy<x M(y) = 0 when {y <

x} is empty.

By convention, in the case that T is finite, we extend M to [0, T ]n by M(x) =
supy<x M(y). It should also be assumed, all M that follow are defined to be zero
on {x :∏i xi = 0}.

7.4.1 Examples

1. For t = (t1, . . . , tn) with ti > 0 and p ∈ [−∞, 0)∪ (0,∞] take for u ∈ [0,∞)n

Mt
p(u) =

(

t1u
p

1 + · · · + tnu
p
n

)
1
p . (7.17)

with Mt−∞(u) = mini ui and Mt∞(u) = maxi ui

2. For t = (t1, · · · , tn) with ti > 0 and u ∈ [0,∞)n,

Mt
0(u) =

∏

u
ti
i . (7.18)

Note that in the case that
∑

i ti = 1, Mt
0 is the limiting case of the previous

example.
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3. Define for ti > 0 and u ∈ (0, 1)n,

Mt
�(u) = �(t1�

−1(u1)+ · · · + tn�
−1(un))

Now let us define the functional operation our set theoretic rearrangement
inequalities may be generalized to.

Definition 7.4.5 For M, a continuous coordinate increasing function, f = {fi}ni=1
with fi : M → [0, T ) and m : Mn → M define

�M,mf (z) := sup
m(x)=z

M(f1(x1), . . . , fn(xn)).

Let us further denote for a rearrangement ∗ satisfying a set theoretic rearrangement
inequality, f∗ = {f ∗i }ni=1, so that

�M,ηf∗(w) = sup
η(y)=w

M(f ∗1 (y1), . . . , f
∗
n (yn)).

When there is no risk of ambiguity we will suppress the notation for the mapping m

and write �Mf in place of �M,mf .

Notice that Theorem 7.3.1 was the case that m(x, y) = η(x, y) = (1− t)x + ty

and M is the geometric mean as in (7.18).

Theorem 7.4.6 A set theoretic rearrangement inequality,

μ(m(A1, . . . , An)) ≥ α(η(A∗1, . . . , A∗n))

can be extended to functions in the sense that for f = {fi}ni=1, with fi Borel
measurable from M to [0,∞), M a continuous coordinate increasing function,
and a non-negative non-decreasing ψ ,

∫

ψ(�M,mf )dμ ≥
∫

ψ(�M,ηf∗)dα.

Proof For λ > 0, write

SM(λ) = {q ∈ Q
n+ :M(q) > λ}.

We will prove μ(�Mf > λ) ≥ α(�Mf∗ > λ). First observe that by arguments
similar to the proof of Theorem 7.3.1

{�Mf > λ} =
⋃

q∈SM(λ)

m({f1 > q1}, . . . , {fn > qn}). (7.19)
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Indeed, suppose �Mf (z) > λ. This implies the existence of some x such that
m(x) = z and M(f1(x1), . . . , fn(xn)) > λ. By the continuity of M, there exists
q ∈ SM(λ) such that M(q1, . . . , qn) > λ and f (xi) > qi . The opposite direction
is immediate. Observe that by our measurability assumptions on m and (7.19),
the superlevel sets of �M,mf are universally measurable. Since ψ is necessarily
Borel measurable by its monotonicity, its composition with �M,mf is indeed
universally measurable. Analogously, (note that f ∗i are Borel measurable, by lower
semi-continuity),

{�Mf∗ > λ} =
⋃

q∈SM(λ)

η({f ∗1 > q1}, . . . , {f ∗n > qn}). (7.20)

This gives

μ{�Mf > λ} = μ

⎛

⎝

⋃

q∈SM(λ)

m({f1 > q1}, . . . , {fn > qn})
⎞

⎠ .

≥ sup
q∈SM(λ)

μ(m({f1 > q1}, . . . , {fn > qn}))

≥ sup
q∈SM(λ)

α(η({f1 > q1}∗, . . . , {fn > qn}∗))

= α

⎛

⎝

⋃

q∈SM(λ)

η({f ∗1 > q1}, . . . , {f ∗n > qn})
⎞

⎠

= α{�Mf∗ > λ}.

The first inequality is obvious, the second is by the assumed set theoretic rear-
rangement inequality, and the following equality is by the assumption of total
orderedness. The last equality is the from (7.20). ��

7.5 Applications

7.5.1 Borell–Brascamp–Lieb Type Inequalities

In the case that λ ∈ (0, 1) and −∞ ≤ p ≤ ∞, we recall from example (1) the
following continuous coordinate increasing function,

M(u, v) =Mλ
p(u, v) =

{

((1− λ)up + λvp)
1
p if uv �= 0

0 if uv = 0.
(7.21)
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The Borell–Brascamp–Lieb inequality generalizes the PLI with the understanding
that Mλ

0(u, v) = u1−λvλ. Note that Mλ∞(u, v) = max{u, v} and Mλ−∞(u, v) =
min{u, v} as defined in Eq. (7.17). If we define f�Mλ

p
g using m(x, y) = (1−λ)x+

λy as in Definition 7.4.5, we can state the inequality as the following.

Theorem 7.5.1 (Borell–Brascamp–Lieb [15, 18]) For λ ∈ (0, 1) and Borel
functions f, g : Rn → [0,∞),

∫

f�Mλ
p
g(x) dx ≥Mλ

p/(np+1)

(∫

f (x)dx,

∫

g(x)dx

)

when p ≥ −1/n.

We present the following sharpening.

Theorem 7.5.2 For Borel functions f, g : Rn → [0,∞) and ∗ a rearrangement to
a convex set,

∫

f�Mλ
p
g(x) dx ≥

∫

f ∗�Mλ
p
g∗(x) dx

≥Mλ
p/(np+1)

(∫

f (x)dx,

∫

g(x)dx

)

when p ≥ −1/n.

Proof As described in Proposition 7.4.2, the Brunn–Minkowski inequality shows
that the usual Lebesgue measure with the map (x, y) �→ (1−λ)x+ ty) satisfy a set
theoretic rearrangement inequality. The result then follows from Theorem 7.4.6. ��

7.5.2 The Gaussian Case

For simplicity we restrict ourselves to the R
d case and employ the rearrangement ∗

from the Gaussian measure space (Rd, γd) to (R, γ1), by

A∗ = {x ∈ R : x < t}

where t = �−1(γd(A)) is chosen to satisfy γd(A) = γ (A∗). A functional half-space
rearrangement by

f ∗(x) =
∫ ∞

0
1{f>t}∗(x)dt.
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The Borell–Ehrhard’s inequality [16, 24] is usually stated as the assertion that
t ∈ (0, 1), A,B Borel in R

d imply

γd((1− t)A+ tB) ≥ �((1− t)�−1(μ(A))+ t�−1(μ(B))).

It can be equivalently formulated in our terminology and notation .

Theorem 7.5.3 (Borell–Ehrhard [16, 24]) For t ∈ (0, 1), m(x, y) = (1−t)x+ty,
η(u, v) = (1−t)u+tv, and ∗ our halfspace rearrangement from (Rd , γd) to (R, γ ),
satisfy a the set theoretic rearrangement inequality, explicitly for Borel A and B

γd((1− t)A+ tB) ≥ γ ((1− t)A∗ + tB∗).

We will extend Theorem 7.5.3 to a functional inequality by Theorem 7.4.6.
However, it should be mentioned that the semigroup proof of Borell actually gave
a functional inequality already. The argument was streamlined by Barthe and Huet,
and it is their generalization below that we will sharpen.

Theorem 7.5.4 (Barthe–Huet [3]) Fix a set I ⊆ {1, 2, . . . , n} and positive
numbers λ1, . . . , λn satisfying

∑

λi ≥ 1 and λj −∑i �=j λi ≤ 1 for j /∈ I . Then for

Borel f1, . . . , fn from R
d to [0, 1] such that �−1 ◦ fi is concave for i ∈ I , and a

Borel h satisfying h(
∑

i λixi) ≥ �(
∑

i λi�
−1(fi(xi))), then

∫

hdγd ≥ �

(

λ1�
−1
(∫

f1dγd

)

+ · · · + λn�
−1
(∫

fndγd

))

.

A consequence of Theorem 7.5.4 (and actually proven equivalent to Theo-
rem 7.5.4 in the same paper) is the following.

Corollary 7.5.5 Fix a set I ⊆ {1, 2, . . . , n} and set of positive numbers λ1, . . . , λn

satisfying
∑

λi ≥ 1 and λj −∑i �=j λi ≤ 1 for j /∈ I . Then for Borel Aj ,

γd(λ1A1 + · · · + λnAn) ≥ �(λ1�
−1(γd(A1))+ · · · + λn�

−1(γd(An)))

= γ (λ1A
∗
1 + · · · + λnA

∗
n)

holds, provided Ai are convex when i ∈ I .

Strictly speaking, unless I is empty, the half-line rearrangement does not yield a
set theoretic rearrangement inequality with the maps mλ(x) = λ1x1 + · · · + λnxn
and ηλ(y) = λ1y1+· · ·+λnyn. However the proof of Theorem 7.4.6 can be adapted
to achieve the following refinement of Barthe-Huet.
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Theorem 7.5.6 For Borel f1, . . . , fn from R
d to [0, 1] such that �−1◦fi is concave

for i ∈ I and

∫

�Mλ
�
f dγd ≥

∫

�Mλ
�
f∗dγ

≥Mλ
�

(∫

f ∗1 dγ, . . . ,

∫

f ∗n dγ
)

=Mλ
�

(∫

f1dγ, . . . ,

∫

fndγ

)

.

In analyzing the proof of Theorem 7.5.6, a loosening of the hypothesis can be
achieved, requiring only that for i ∈ I , fi is quasi-concave and �−1 ◦ f ∗i concave.

Proof Once it is observed that �−1 ◦ fi concave ensures {fi > qi} is a convex set,
so that one can apply Corollary 7.5.5, the first inequality can be derived following
the proof of Theorem 7.4.6. The equality is immediate as well, following from
our definition of rearrangement. Thus, to prove the result, we need only justify
the second inequality, which follows from Theorem 7.5.4 once we know that the
concavity of �−1 ◦ fi implies the concavity of �−1 ◦ f ∗i as well. For this, we prove
a general result below. ��
Definition 7.5.7 For a fixed t ∈ (0, 1) and a convex set K we will call f : K → R,
�t -concave when there exists a continuous coordinate increasing function �t such
that

f ((1− t)x1 + tx2) ≥ �t(f (x1), f (x2)).

Notice that the concavity of �−1 ◦ f is equivalent to the statement that f is �t -
concave with �t(u1, u2) = Mt

�(u1, u2) = �((1 − t)�−1(u1) + t�−1(u2)) for
t ∈ (0, 1).

Proposition 7.5.8 Suppose that f, g, h are Borel functions on a space (M,μ)

satisfying

h((1 − t)x + ty) ≥ �t(f (x), g(y)) (7.22)

for x, y ∈ M , and that ∗ is a rearrangement from (M,μ) to a space (N, α)

satisfying

μ((1− t)A+ tB) ≥ α((1 − t)A∗ + tB∗). (7.23)

Additionally assume that the space of rearranged sets has a total ordering that
respects Minkowski summation in the sense that (1 − t)A∗ + tB∗ and C∗ satisfy
either

(1− t)A∗ + tB∗ ⊆ C∗ or (1− t)A∗ + tB∗ ⊇ C∗ (7.24)
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then

h∗((1− t)x + ty) ≥ �t(f
∗(x), g∗(y)) (7.25)

holds for x, y ∈ N .

Note that Theorem 7.5.6 follows from the proposition by taking f = g = h and
�t = Mt

�. Indeed, since the half-line rearrangement satisfies (7.24), as half-lines
are stable under convex combination, it follows that f ∗ to be Mt

�-concave if f is.

Proof Observe that inequality (7.22) can be equivalently stated as λi ∈ R implies

(1− t){f > λ1} + t{g > λ2} ⊆ {h > �t(λ1, λ2)}. (7.26)

which can be easily verified using our assumptions of continuity and monotonicity.
Indeed, if (7.22) holds, then for z = (1−t)x+ty for x ∈ {f > λ1} and y ∈ {g > λ2}
we have h(z) ≥ �t(f (x), g(y)) > �t(λ1, λ2). For the converse, given x, y take
λ1 < f (x) and λ2 < g(y), then z = (1 − t)x + ty ∈ (1 − t){f > λ1} + t{g >

λ2}. By (7.26), h(z) > �t(f (x), g(y)), and by the continuity assumption on �t ,
�t(f (x), g(y)) = supλ �t(λ1, λ2) ≤ h(z). Thus we will prove (1− t){f ∗ > λ1} +
t{g∗ > λ2} ⊆ {h∗ > �t(λ1, λ2)}, or equivalently

(1− t){f > λ1}∗ + t{g > λ2}∗ ⊆ {h > �t (λ1, λ2)}∗.

By (7.24), it is enough to show

α((1 − t){f > λ1}∗ + t{g > λ2}∗) ≤ α({h > �t(λ1, λ2)}∗).

By our assumptions (7.23) and (7.26),

α((1 − t){f > λ1}∗ + t{g > λ2}∗) ≤ μ((1− t){f > λ1} + t{g > λ2})
≤ μ({h > �t(λ1, λ2)}).

Our result follows since

μ({h > �t(λ1, λ2)}) = α({h > �t(λ1, λ2)}∗).

��
Observe that Proposition 7.5.8 gives another proof of Theorem 7.3.1. Indeed,

since f�g((1 − t)x + ty) ≥ f 1−t (x)gt (y) holds for all x, y, (f�g)∗((1 − t)x +
ty)) ≥ (f ∗)1−t (x)(g∗)t (y) holds as well. This implies (f�g)∗ ≥ f ∗�g∗ and
hence

|{f�g > λ}| = ∣∣{(f�g)∗ > λ
}∣

∣ ≥ ∣∣{f ∗�g∗ > λ
}∣

∣ .
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Let us also point out the corollary obtained by taking f = g = h, as it is of
interest independent of the application to Theorem 7.5.6.

Corollary 7.5.9 If f : Rd → [0,∞) is �t -concave, and ∗ implies f ∗ is as well.

It follows immediately that the class of d-dimensional s-concave measures is stable
under (convex set) rearrangement. See [11, 13] for background and [30, 32] for
recent connections between s-concave measures and information theory.

7.5.3 Polar Prékopa–Leindler

For fixed t, λ ∈ (0, 1), define M : [0,∞)2 → [0,∞) by

M(u, v) = min
{

u
1−t
1−λ , v

t
λ

}

,

and for x, y ∈ R
d define m(x, y) = (1− t)x + ty so that

f�Mg(z) = sup
m(x,y)=z

min
{

f (x)
1−t
1−λ , g(y)

t
λ

}

.

We can state the recent polar analog of Prékopa–Leindler due to Artstein-Avidan,
Florentin, and Segal.

Theorem 7.5.10 (Artstein-Avidan et al. [1]) For f, g : Rd → [0,∞) Borel, and
μ log-concave

∫

f�Mg(x)dμ(x) ≥Mλ−1

(∫

f (x)dμ(x),

∫

g(x)dμ(x)

)

.

In the case that μ is Lebesgue (with ∗ rearrangement to a convex set) or Gaussian
(with ∗ rearrangement to a half-space), and η(x, y) = (1 − t)x + ty, this can be
sharpened to the following.

Theorem 7.5.11 For f, g : Rd → [0,∞) Borel, and μ either Gaussian, with ∗ the
half space rearrangement, or Lebesgue with ∗ a convex set rearrangement, then

∫

f�Mgdμ ≥
∫

f ∗�Mg∗dμ

≥Mλ−1

(∫

f dμ,

∫

gdμ

)

.

Proof As we have seen, the map (x, y) �→ (1 − t)x + ty satisfies a set theoretic
rearrangement inequality by Brunn–Minkowski with respect to Lebesgue measure
and rearrangement to a convex set, and by Borell–Ehrhard with respect to Gaussian
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measure and rearrangement to a halfspace. The map M(u, v) = min{u 1−t
1−λ , v

t
λ } is

clearly continuous and coordinate increasing for λ, t ∈ (0, 1). Thus in both cases,
Gaussian and Lebesgue, we can invoke Theorem 7.4.6 to obtain the first inequality.
The second inequality is obtained from the application of Theorem 7.5.10 to f ∗ and
g∗, and the equimeasurability of rearrangements. ��

7.6 Gaussian Log-Sobolev Inequality

For a probability measure μ define the entropy functional2 for a non-negative f by

Hμ(f ) =
∫

f log f dμ−
∫

f dμ log
∫

f dμ.

One formulation of the Gaussian log-Sobolev inequality is the following.

Theorem 7.6.1 (Gaussian Log-Sobolev) For positive smooth f ,

Hγd (f ) ≤ 1

2

∫ |∇f |2
f

dγd.

In this form the inequality is due to Gross [27]. Carlen [20] showed it to be
equivalent to the earlier information theoretic Blachman–Stam inequality [5, 48].
The Gaussian log-Sobolev inequality was shown to be a consequence of a strength-
ened PLI for strongly log-concave measures by Bobkov–Ledoux [8], and it is this
perspective that we now develop to motivate the main result of this section, a
rearrangement sharpening of an integrated Gaussian log-Sobolev inequality. In this
direction, let us recall that the PLI can be easily extended to the log-concave case.

Theorem 7.6.2 (Log-Concave PLI) For measure μ with density ϕ satisfying

ϕ((1− t)x + ty) ≥ ϕ1−t (x)ϕt (y),

the inequality for non-negative functions u, v,w

u((1− t)x + ty) ≥ v1−t (x)wt (y)

implies

∫

udμ ≥
(∫

vdμ

)1−t (∫

wdμ

)t

. (7.27)

2Note that when f = dν
dμ

is the density function of a probability measure ν with respect to μ,
Hμ(f ) is the Kullback–Liebler divergence D(ν||μ) or relative entropy [22].
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Proof Observing that the functions ũ(z) = u(z)ϕ(z), ṽ(z) = v(z)ϕ(z), and w̃(z) =
w(z)ϕ(z) satisfy

ũ((1− t)x + ty) ≥ ṽ1−t (x)w̃t (y)

so that applying the ordinary PLI, we have

∫

ũ(z)dz ≥
(∫

ṽ(z)dz

)1−t (∫

w̃(z)dz

)t

,

which is exactly (7.27). ��
The log-concave case corresponds to the case when the measure is given by

a density corresponding to a convex potential, that is, ϕ(x) = e−V (x) with V is
convex. For the Gaussian measure something stronger is true. In this case, V satisfies

V ((1− t)x + ty) ≤ (1− t)V (x)+ tV (y)− t (1− t)|x − y|2/2. (7.28)

Note that in the case that V is smooth, log-concavity is exactly V ′′ ≥ 0d in the
sense of positive semi-definite matrices, while (7.28) is V ′′ ≥ Id . Under these
assumptions, Theorem 7.6.2 admits the following strengthening.

Theorem 7.6.3 (Curved Prékopa–Leindler) For t ∈ (0, 1), μ strongly log-
concave in the sense of (7.28), and u, v,w : Rd → [0,∞) satisfying

u((1− t)x + ty) ≥ e−t (1−t )|x−y|2/2v1−t (x)wt (y),

for all x, y ∈ R
d , then

∫

udμ ≥
(∫

v dμ

)1−t (∫

wdμ

)t

.

Proof The proof follows again from applying the Euclidean PLI to ũ(z) =
u(z)ϕ(z), ṽ(z) = v(z)ϕ(z). ��

Following arguments of Bobkov–Ledoux [8] we pursue a specialization of The-
orem 7.6.3 to a single function, revealing a log-Sobolev inequality as a consequence
of a strengthened PLI. For a fixed t ∈ (0, 1), and a strongly log-concave probability

measure μ, and f , take w = f
1
t , v = 1, then for any u, satisfying

u((1− t)x + ty) ≥ e−t (1−t )|x−y|2/2f (y)

we have from Theorem 7.6.3

∫

u dμ ≥
(∫

f
1
t dμ

)t

.
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With the interest of determining the optimal such u achievable through the methods
of PLI, it is natural to consider

u(z) = sup
{(x,y):(1−t )x+ty=z}

e−t (1−t )|x−y|2/2f (y).

Writing λ = 1−t
t

, note that the constraint on x, y is equivalent to y = z+ λ(z− x),
so that the u(z) above can be expressed as Qλf (z) in the following definition.

Definition 7.6.4 For λ ∈ (0,∞) and f non-negative and Borel measurable, define

Qλf (z) = sup
w

f (z+ λw)e−λ|w|2/2

= sup
w

f (z+w)e−|w|2/2λ.

Writing ‖f ‖p =
(∫ |f |pdμ) 1

p we can collect the above as the following.

Theorem 7.6.5 (Integrated Log-Sobolev) For μ a strongly log-concave probabil-
ity measure, λ ∈ (0,∞) and f non-negative and Borel measurable,

‖Qλf ‖1 ≥ ‖f ‖1+λ.

The log-Sobolev inequality for strongly log-concave probability measures can be
recovered as a corollary.

Corollary 7.6.6 (Log-Sobolev Inequality) For μ strongly log-concave probability
measure, and f a positive smooth function

Hμ(f ) ≤ 1

2

∫ |∇f |2
f

dμ

A proof is given in [8] where the expressions are given in terms of f 2 rather than
f . It follows as a limiting case of Theorem 7.6.5 with λ→ 0.

Sketch of Proof For smooth positive functions constant outside of a compact set,
one observes that equality holds when λ = 0. Then the Taylor series expansion,

‖f ‖1+λ = ‖f ‖1 + λHμ(f )+ o(λ)

and a derived inequality

‖Qλf ‖1 ≤ ‖f ‖1 + λ

2

∫ |∇f |2
f

dμ+ o(λ)

deliver the conclusion. A limiting argument gives the result for general functions.
��
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To state our main result of the section, let μ = γd a standard Gaussian and ∗ be
the half-space rearrangement of a set under γd , as in Proposition 7.4.3.

Theorem 7.6.7 For non-negative Borel f and λ, s > 0,

γd({Qλf > s}) ≥ γ ({Qλf
∗ > s})

where f ∗ is the Gaussian half-line rearrangement of f .

It will be a consequence of the proof that Qλf is universally measurable.

Proof We first express {Qλf > s} as the union of simpler sets. Denoting

S = S(s, q1, q2) = {q = (q1, q2) ∈ Q
2+ : q1q2 > s},

it is straight forward to verify

{Qλf > s} =
⋃

q∈S

(

{x ∈ R
d : f (x) > q1} +

{

y ∈ R
d : |y| <

√

2λ ln
1

q2

})

.

(7.29)

Indeed, for z belonging to the union, there exists rational qi , and x, y satisfying

f (x) > q1, |y| <
√

2λ ln 1
q2

, and x + y = z. Taking w = −x = y − z,

f (w)e−|w|2/2λ > q1q2 > s,

so that z ∈ {Qλf > s}. Conversely if there exists a w such that f (z+w)e−|w|2/2λ >

s then by continuity there exist rational qi satisfying f (z+w) > q1, e−|w|2/2λ > q2,
and q1q2 > s. Taking x = z+ w and y = −w we see that (q1, q2) ∈ S and

z ∈ {f > q1} +
{

|y| <
√

2λ ln
1

q2

}

.

Notice that this gives {Qλf > s} as a countable union of Minkowski sums of
analytic sets. Since analytic sets are closed under such operations, {Qλf > s} is
an analytic set as well, and the universal measurability of Qtf follows.

Applying the Gaussian isoperimetric inequality [14, 49], which in our preferred
formulation states that γd(A + Bd) ≥ γ (A∗ + B1) where Bd and B1 are origin
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symmetric Euclidean balls of equal radius (in R
d and R respectively), we have

γd({Qλf > s}) = γd

⎛

⎝

⋃

q∈S
{f > q1} +

{

w ∈ R
d : |w| <

√

2λ ln
1

q2

}

⎞

⎠

≥ sup
q∈S

γd

(

{f > q1} +
{

w ∈ R
d : |w| <

√

2λ ln
1

q2

})

≥ sup
q∈S

γ

(

{f > q1}∗ +
{

w ∈ R : |w| <
√

2λ ln
1

q2

})

.

But {f > q1}∗ = {f ∗ > q1} is a half-line and hence the sets {f ∗ > q1} +
{

|w| <
√

2λ ln 1
q2

}

, indexed by S(λ, q1, q2), are totally ordered. Thus,

sup
q∈S

γ

(

{f > q1}∗ +
{

|w| <
√

2λ ln
1

q2

})

= γ

⎛

⎝

⋃

q∈S
{f ∗ > q1} +

{

|w| <
√

2λ ln
1

q2

}

⎞

⎠ .

Applying (7.29),

γ

⎛

⎝

⋃

q∈S
{f ∗ > q1} +

{

|w| <
√

2λ ln
1

q2

}

⎞

⎠ = γ ({Qλf
∗ > λ}),

and our theorem follows. ��
As an immediate consequence, we have a sharpening of Theorem 7.6.5.

Corollary 7.6.8 For f non-negative and Borel, and norms taken with respect to γ ,

∫

Qλf dγ ≥
∫

Qλf
∗dγ ≥ ‖f ∗‖1+λ = ‖f ‖1+λ.

Proof The first inequality is a consequence of Theorem 7.6.7, while the second is
from Theorem 7.6.5. ��

We also direct the reader to the articles [41, 42] of Martín and Milman, whose
work on symmetrization, isoperimetry, and log-Sobolev inequalities the author
learned of during the revision of this paper.
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7.7 Barthe, Brascamp, Lieb and Rearrangement

The Brascamp–Lieb inequality is the following.

Theorem 7.7.1 (Brascamp–Lieb [17]) For natural numbers n ≤ m, and {ni}mi=1
with ni ≤ n and {ci}mi=1 a sequence of positive numbers such that

∑m
i=1 cini = n

then for surjective linear maps Bi : Rn → R
ni , with ∩i ker(Bi) = 0 and transposes

denoted B ′i satisfy the following,

∫

Rn

m
∏

i=1

f
ci
i (Bix)dx ≤ C−1/2

∏

(∫

R
ni

fi

)ci

for fi : Rni → [0,∞) integrable, and

C = inf

{

det(
∑

i=1 ciB
′
iAiBi)

∏

detci Ai

: Ai positive definite

}

.

The theorem enjoys a qualitative analog in the case that ni = d , so that n = md and
x ∈ R

n can be expressed as x = (x1, . . . , xm) for xj ∈ R
d and Bi are of the form

Bix =
m
∑

j=1

Bij xj . (7.30)

Theorem 7.7.2 (Brascamp et al. [19]) For Bi satisfying (7.30),

∫

Rn

m
∏

i=1

fi(Bix)dx ≤
∫

Rn

m
∏

i=1

f ∗i (Bix)dx,

where ∗ represents the spherically symmetric decreasing rearrangement.

Notice that when Theorem 7.7.2 applies, it gives an intermediary inequality to
Theorem 7.7.1. Indeed, since (f ci )∗ = (f ∗)ci , applying first Theorem 7.7.2, and
then 7.7.1, gives

∫

Rn

m
∏

i=1

f ci (Bix)dx ≤
∫

Rn

m
∏

i=1

(f ∗)ci (Bix)dx

≤ C−1/2
m
∏

i=1

(∫

R
ni

f

)ci

.

Barthe gave the following reversal of Brascamp–Lieb, which serves as a dual
inequality.
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Theorem 7.7.3 (Barthe [2]) For n, m, {ni}mi=1, {ci}mi=1, Bi , and C as in Theo-
rem 7.7.1 then the inequality

C1/2
m
∏

i=1

(∫

R
ni

fi

)ci

≤
∫

Rn

sup

{

m
∏

i=1

f
ci
i (yi) :

∑

i

ciB
′
iyi = x

}

dx,

holds for fi : Rni → [0,∞) integrable.

Taking m = 2, c1 = (1 − t), c2 = t and ni = n and Bi to be the identity map
yields C = 1 and we recover the Prekopa–Liendler inequality. We ask if further
extensions of our work here exist.

Question 7.7.4 Suppose that Bi are of the form (7.30), and fi : Rd → [0,∞),
when is it true that

∫

Rn

sup

{

m
∏

i=1

fi(yi) :
∑

i

B ′iyi = x

}

dx ≥
∫

Rn

sup

{

m
∏

i=1

f ∗i (yi) :
∑

i

B ′iyi = x

}

dx

(7.31)

holds?

The results presented here verify the inequality for general Borel fi in the case
that Bi are scalar multiples of the identity. Note that the case fi = 1Ai asks if the
following generalization of BMI holds

∣

∣

∣

∣

∣

∑

i

B ′iAi

∣

∣

∣

∣

∣

n

≥
∣

∣

∣

∣

∣

∑

i

B ′iA∗i

∣

∣

∣

∣

∣

n

, (7.32)

where

∑

i

B ′iAi =
{

z =
∑

i

B ′ixi : xi ∈ Ai

}

.

In the case that B ′i : R → R
d , inequality (7.32) was proven by Zamir and Feder

[51].
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Chapter 8
Generalized Semimodularity: Order
Statistics

Iosif Pinelis

Abstract A notion of generalized n-semimodularity is introduced, which extends
that of (sub/super)modularity in four ways at once. The main result of this paper,
stating that every generalized (n : 2)-semimodular function on the nth Cartesian
power of a distributive lattice is generalized n-semimodular, may be considered
a multi/infinite-dimensional analogue of the well-known Muirhead lemma in the
theory of Schur majorization. This result is also similar to a discretized version
of the well-known theorem due to Lorentz, which latter was given only for
additive-type functions. Illustrations of our main result are presented for counts
of combinations of faces of a polytope; one-sided potentials; multiadditive forms,
including multilinear ones—in particular, permanents of rectangular matrices and
elementary symmetric functions; and association inequalities for order statistics.
Based on an extension of the FKG inequality due to Rinott & Saks and Aharoni &
Keich, applications to correlation inequalities for order statistics are given as well.

Keywords Semimodularity · Submodularity · Supermodularity · FKG-type
inequalities · Association inequalities · Correlation inequalities

2010 Mathematics Subject Classification Primary 06D99, 26D15, 26D20,
60E15; Secondary 05A20, 05B35, 06A07, 60C05, 62H05, 62H10, 82D99, 90C27

8.1 Summary and Discussion

As pointed out e.g. in [3, 4], the notion of submodularity has become useful in
various areas: combinatorial optimization, with many applications in operations
research; machine learning; computer vision; electrical networks; signal processing;
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several areas of theoretical computer science, such as matroid theory; economics.
One may also note the use of this notion in potential theory [6], as a capacity is a
submodular function.

Let L be any distributive lattice; for definitions and facts pertaining to lattices,
see e.g. [10].

A function λ : L→ R is called submodular if

λ(f )+ λ(g) ≥ λ(f ∨ g)+ λ(f ∧ g) (8.1)

for all f and g in L. A function λ is called supermodular if the function −λ is
submodular, and λ is called modular if it is both submodular and supermodular.
See e.g. [4, 9, 18, 19, 24, 25]. Let us say that a function μ is log-submodular if
lnμ is submodular. The log-submodularity condition and the corresponding log-
supermodularity condition were referred to in Karlin and Rinott [13, 14] as the
multivariate total positivity of order 2 (MTP2) and the multivariate reverse rule of
order 2 (MRR2), respectively. As noted by Choquet [6, §14.3], a nondecreasing
function λ is alternating of order 2 iff it satisfies inequality (8.1), that is, λ is
submodular; it was also shown in [6] that the classical Newtonian capacity is such a
function.

The log-supermodularity condition is the condition under which the famous
Fortuin–Kasteleyn–Ginibre (FKG) correlation inequality [8] holds. Therefore, using
inequality (8.17) together with the FKG inequality and its generalizations, we will
be able to obtain the corresponding applications, in Corollaries 8.2.11 and 8.2.12.

More generally, let R be any set, endowed with a transitive relation ��, so that
for any a, b, c in R one has the implication a �� b & b �� c "⇒ a �� c. For any
natural n, let us say that a function � : Ln → R is generalized n-semimodular if

�(f1, . . . , fn)���(fn:1, . . . , fn:n)

for all f = (f1, . . . , fn) ∈ Ln, where fn:1, . . . , fn:n are the “order statistics” for f
defined by the formula

fn:j =
∧
{
∨

i∈J
fi : J ∈

([n]
j

)

}

(8.2)

for j ∈ [n] := 1, n, with
([n]
j

)

denoting the set of all subsets J of the set [n] such

that the cardinality of J is j . Here and in the sequel we use the notation α, β :=
{j ∈ Z : α ≤ j ≤ β}. In particular, fn:1 = f1 ∧ · · · ∧ fn and fn:n = f1 ∨ · · · ∨ fn.

For any function λ : L → R, let the function �λ : L2 → R be given by the
formula�λ(f, g) := λ(f )+λ(g) for f and g in L. Then, obviously,λ is submodular
or supermodular or modular if and only if �λ is generalized 2-semimodular with the
relation “��” being “≥” or “≤” or “=”, respectively.

Thus, the notion of generalized n-semimodularity extends that of (sub/super)mo-
dularity in four ways at once: (1) the function � may be a function of any natural
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number n of arguments, whereas λ is a function of only one argument; (2) in contrast
with a general form of dependence of �(f1, . . . , fn) on f1, . . . , fn, the function �λ

of two arguments is of the special form, linear in λ(f ) and λ(g); (3) whereas the
values of λ are real numbers, those of � may be in any set R; and (iv) we now
have an arbitrary transitive relation �� over R instead of one of the three particular
relations “≥” or “≤” or “=” over R.

For any k ∈ [n], let us say that a function � : Ln → R is generalized
(n : k)-semimodular if for each j ∈ 0, n− k and each (n − k)-tuple (fi : i ∈
[n] \ j + 1, j + k) ∈ Ln−k the function Lk # (fj+1, . . . , fj+k) �→ �(f1, . . . , fn)

is generalized k-semimodular. In particular, � is generalized (n : n)-semimodular if
and only if it is generalized n-semimodular.

Whenever the relation “��” is denoted as “≥” or “≤” or “=”, let us replace
“semi” in the above definitions by “sub”, “super”, and “”, respectively. For instance,
“generalized n-modular” will stand for “generalized n-semimodular” with the
relation “��” being “=”.

The main result of this note is

Theorem 8.1.1 Again, let L be any distributive lattice. If a function � : Ln → R
is generalized (n : 2)-semimodular, then it is generalized n-semimodular.

The necessary proofs will be given in Sect. 8.3.
As will be seen from the proof of Theorem 8.1.1, the condition that the function

� be generalized (n : 2)-semimodular can be relaxed to the following: for each j ∈
1, n− 1 and each f = (f1, . . . , fn) ∈ Ln such that f1 ≤ · · · ≤ fj , one has
L(f1, . . . , fn)�� L(f1, . . . , fj−1, fj ∧ fj+1, fj ∨ fj+1, fj+2, . . . , fn).

Remark 8.1.2 Theorem 8.1.1 will not hold in general if the lattice L is not assumed
to be distributive. For instance, let L be defined by the set [5] = {1, 2, 3, 4, 5} with
the partial order being the subset of the natural order≤ on the set [5] with elements
2, 3, 4 now considered non-comparable with one another, so that the resulting order
relation is the set {(f, f ) : f ∈ [5]} ∪ {(1, 2), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5),
(1, 5)}; then, in particular, 2 ∧ 3 = 1 and 2 ∨ 3 = 5. This lattice is one of
the simplest examples of non-distributive lattices. It is isomorphic to the diamond
lattice M3—see e.g. [10, p. 110]. Let n = 3, R = R, and define the function
� : L3 → R by the formula �(f1, f2, f3) := 12f1f2 + 3f2f3 + 5f1f3 for all
f = (f1, f2, f3) ∈ L3. Then one can verify directly—by a straightforward but
tedious calculation consisting in checking 2×53 = 250 inequalities, two inequalities
for each f = (f1, f2, f3) ∈ [5]3— that this function � is generalized (3 : 2)-
submodular. However, � is not generalized 3-submodular, because for f = (2, 3, 4)
one has (f3:1, f3:2, f3:3) = (1, 5, 5) and �(f1, f2, f3) = �(2, 3, 4) = 148 �≥
160 = �(1, 5, 5) = �(f3:1, f3:2, f3:3). ��
Remark 8.1.3 A well-known fact, which will be crucial in the proof of Theo-
rem 8.1.1, is the representation theorem due to Birkhoff and Stone stating that any
distributive lattice L is isomorphic to a lattice of subsets of (and hence to a lattice of
nonnegative real-valued functions on) a certain set S, depending on L (see e.g. [10,
Theorem 119]). For such a lattice of functions, the “order statistics” fn:1, . . . , fn:n
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are uniquely determined by the condition that

fn:1(s) ≤ · · · ≤ fn:n(s) and {{fn:1(s), . . . , fn:n(s)}} = {{f1(s), . . . , fn(s)}}
(8.3)

for each s ∈ S, where the double braces are used to denote multisets, with
appropriate multiplicities. To quickly see why this is true, one may reason as
follows: Let us now use condition (8.3) to define fn:1, . . . , fn:n . Note that the value
of the right-hand side (rhs) of (8.2) at any point s ∈ S is invariant with respect to
all permutations of the values f1(s), . . . , fn(s). So, the value of the rhs of (8.2) at
s will not change if one replaces there f1, . . . , fn by fn:1, . . . , fn:n, and this value
will equal fn:j (s). Thus, the definition of fn:1, . . . , fn:n by means of formula (8.3) is
equivalent to the one given by (8.2), if the lattice L is already a lattice of real-valued
functions on S. Moreover, it is clear now that, if the lattice L is distributive, then
definition (8.2) can be rewritten in the dual form, as

fn:j =
∨
{
∧

i∈J
fi : J ∈

( [n]
n+ 1− j

)

}

(8.4)

for all j ∈ [n].
On the other hand, it can be seen that, if L is not distributive, then this duality can

be lost and each of the definitions (8.2) and (8.4) of fn:j can be rather unnaturally
skewed up or down. For instance, in the counterexample given in Remark 8.1.2, for
f = (2, 3, 4) we had (f3:1, f3:2, f3:3) = (1, 5, 5) according to definition (8.2), but
we would have (f3:1, f3:2, f3:3) = (1, 1, 5) according to (8.4).

However, one may note that the right-hand side of (8.4) is always ≤ than that of
(8.2); this follows because for any J ∈ ( [n]

n+1−j

)

and any K ∈ ([n]
j

)

there is some
k ∈ J ∩K , and then

∧

i∈J fi ≤ fk ≤ ∨i∈K fi . ��
In view of the lattice representation theorem cited in Remark 8.1.3, Theo-

rem 8.1.1 may be considered a multi/infinite-dimensional analogue of the well-
known Muirhead lemma in the theory of Schur majorization (cf. e.g. [17, Lemma
2.B.1, p. 32]), which may be stated as follows: for vectors x and y in R

n such that
x ≺ y (that is, x is majorized by y), there exist finitely many vectors x0, . . . , xm
in R

n such that x = x0 ≺ · · · ≺ xm = y and for each j ∈ 0,m− 1 the vectors
xj and xj+1 differ only in two coordinates. However, no direct multi-dimensional
extension of the Muirhead lemma seems to exist, even in two dimensions (see e.g.
[20, p. 11]).

For functions that are “infinite-dimensional” counterparts of the “m-
dimensional” function � : Lm → R given by the formula of the additive form

�(g1, . . . , gm) =
m
∑

j=1

λj (gj ), (8.5)
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Lorentz [16] obtained a result similar to Theorem 8.1.1; for readers’ convenience, let
us reproduce it here: For each j ∈ [n], let f ∗j denote the equimeasurable decreasing
rearrangement [11] of a function fj : (0, 1) → R. Let a real-valued expression
�(x, u1, . . . , un) be continuous in (x, u1, . . . , un) ∈ (0, 1)×[0,∞)×· · ·×[0,∞).
Then the inequality

∫ 1

0
�(x, f1(x), . . . , fn(x)) dx ≤

∫ 1

0
�(x, f ∗1 (x), . . . , f ∗n (x)) dx (8.6)

holds for all bounded positive measurable functions f1, . . . , fn from (0, 1) to R if
and only if the following two conditions hold:

�(ui + h, uj + h)−�(ui + h, uj )−�(ui, uj + h)+�(ui, uj ) ≥ 0 (8.7)

and

∫ δ

0

[

�(x−t, ui+h)−�(x−t, ui)−�(x+t, ui+h)+�(x+t, ui)
]

dt ≥ 0 (8.8)

for all h > 0, x ∈ (0, 1), δ ∈ (0, x ∧ (1 − x)), (u1, . . . , un) ∈ [0,∞)n, and i, j in
[n] such that i < j ; here, in each of inequalities (8.7) and (8.8), the arguments of �
that are the same for all the four instances of � are omitted, for brevity.

To establish the connection between Lorentz’s result and our Theorem 8.1.1,
suppose e.g. that each of the functions f1, . . . , fn in [16] is a step function, constant
on each of the intervals (

j−1
m

,
j
m
] for j ∈ [m], and then let gj (s) := fs(

j
m
) for

j ∈ [m] and s ∈ S := [n]. In fact, in the proof in [16] the result is first established
for such step functions f1, . . . , fn. It is also shown in [16] that, for such “infinite-
dimensional” counterparts of the functions given by the “additive” formula (8.5),
the sufficient condition is also necessary. In turn, as pointed out in [16], the result
there generalizes an inequality in [23]. Another proof of a special case of the result
in [16] was given in [5].

8.2 Illustrations and Applications

8.2.1 A General Construction of Generalized n-Submodular
Functions from Submodular Ones

Recall here some basics of majorization theory [17]. For x = (x1, . . . , xn) and
y = (y1, . . . , yn) in R

n, write x ≺ y if x1 + · · · + xn = y1 + · · · + yn and
xn : 1 + · · · + xn : k ≥ yn : 1 + · · · + yn : k for all k ∈ [n]. For any D ⊆ R

n, a function
F : D → R is called Schur-concave if for any x and y in D such that x ≺ y one
has F(x) ≥ F(y). If D = In for some open interval I ⊆ R and the function
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F is continuously differentiable then, by Schur’s theorem [17, Theorem A.4], F is
Schur-concave iff ( ∂F

∂xi
− ∂F

∂xj
)(xi − xj ) ≤ 0 for all x = (x1, . . . , xn) ∈ D.

Proposition 8.2.1 Suppose that a real-valued function λ defined on a distribu-
tive lattice L is submodular and nondecreasing, and a function R

n # x =
(x1, . . . , xn) → F(x1, . . . , xn) is nondecreasing in each of its n arguments and
Schur-concave. Then the function � = �λ,F : Ln → R defined by the formula

�(f1, . . . , fn) := �λ,F (f1, . . . , fn) := F(λ(f1), . . . , λ(fn)) (8.9)

for (f1, . . . , fn) ∈ Ln is generalized (n : 2)-submodular and hence generalized n-
submodular.

A rather general construction of submodular functions on rings of sets is provided
by [6, §23.2], which implies that ∪-homomorpisms preserve the property of being
alternating of a given order, and the proposition at the end of [6, §23.1], which
describes general ∪-homomorpisms as maps of the form

S ⊇ A �→ G(A) := {t ∈ T : (s, t) ∈ G for some s ∈ A},

where S and T are sets and G ⊆ S × T ; in the case when G is (the graph of) a
map, the above notation G(A) is of course consistent with that for the image of a
set A under the map G; according to the definition in the beginning of [6, §23],
a ∪-homomorpism is a map ϕ of set rings defined by the condition ϕ(A ∪ B) =
ϕ(A) ∪ ϕ(B) for all relevant sets A and B.

Therefore and because an additive function on a ring of sets is modular and hence
submodular, we conclude that functions of the form

A �→ μ(G(A)) (8.10)

are submodular, where μ is a measure or, more generally, an additive function (say
on a discrete set, to avoid matters of measurability). From this observation, one
can immediately obtain any number of corollaries of Proposition 8.2.1 such as the
following:

Corollary 8.2.2 Let P be a polytope of dimension d . For each α ∈ 0, d , let Fα

denote the set of all α-faces (that is, faces of dimension α) of P . For any distinct
α, β, γ in 0, d , let G = Gα,β,γ be the set of all pairs

(

fα, (fβ, fγ )
) ∈ Fα ×

(Fβ × Fγ ) such that fα ∩ fβ �= ∅, fα ∩ fγ �= ∅, and fβ ∩ fγ �= ∅. Let L be a
lattice of subsets of Fα . Let a function R

n # x = (x1, . . . , xn) → F(x1, . . . , xn)

be nondecreasing in each of its n arguments and Schur-concave. Then the function
� = �α,β,γ : Ln → R defined by the formula

�(A1, . . . , An) := F(cardG(A1), . . . , cardG(An))

for (A1, . . . , An) ∈ Ln is generalized (n : 2)-submodular and hence generalized
n-submodular.
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For readers’ convenience, here is a direct verification of the fact that maps of the
form (8.10) are submodular: noting that G(A∪B) = G(A)∪G(B) and G(A∩B) ⊆
G(A) ∩G(B) and using the additivity of μ, we have

μ(G(A∪B))+μ(G(A∩B)) ≤ μ(G(A)∪G(B))+μ(G(A)∩G(B)) = μ(G(A))+μ(G(B))

for all relevant sets A and B.

8.2.2 Generalized One-Sided Potential

Let here L be the lattice of all measurable real-valued functions on a measure space
(S,�,μ), with the pointwise lattice operations ∨ and ∧. Consider the function
� : Ln → R given by the formula

�(f1, . . . , fn) := �ϕ,ψ(f1, . . . , fn) :=
n
∑

j,k=1

�(fj − fk) (8.11)

for all f = (f1, . . . , fn) ∈ Ln, where

�(g) := ψ
(

∫

S

(ϕ ◦ g) d μ
)

(8.12)

for all g ∈ L, ϕ : R → [0,∞] is a nondecreasing or nonincreasing function, and
ψ : [0,∞] → (−∞,∞] is a concave function. Thus, the function � = �ϕ,ψ may
be referred to as a generalized one-sided potential, since the function ϕ is assumed
to be monotonic.

Proposition 8.2.3 The function � = �ϕ,ψ defined by formula (8.11) is generalized
(n : 2)-submodular and hence generalized n-submodular.

8.2.3 Symmetric Sums of Nonnegative Multiadditive Functions

Let k be a natural number. Let L be a sublattice of the lattice R
S of all real-valued

functions on a set S. Let us say that the lattice L is complementable if f \ g :=
f − f ∧ g ∈ L for any f and g in L, so that f = f ∧ g + f \ g. Assuming that L
is complementable, let us say that a function m : L→ R is additive if

m(f ) = m(f ∧ g)+m(f \ g)

for all f and g in L; further, let us say that a function m : Lk → R is multiadditive
or, more specifically, k-additive if m is additive in each of its k arguments, that
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is, if for each j ∈ [k] and each (k − 1)-tuple (fi : i ∈ [k] \ {j }) the function
L # fj �→ m(f1, . . . , fk) is additive.

To state the main result of this subsection, we shall need the following notation:
for any set J , let �J

k denote the set of all k-permutations of J , that is, the set of all
injective maps of the set [k] to J .

Proposition 8.2.4 Suppose that k and n are natural numbers such that k ≤ n, L is
a complementable sublattice of RS , and m : Lk → R is a nonnegative multiadditive
function. Then the function �m : Ln → R defined by the formula

�m(f1, . . . , fn) :=
∑

π∈�[n]
k

m(fπ(1), . . . , fπ(k)) (8.13)

for (f1, . . . , fn) ∈ Ln is generalized (n : 2)-submodular and hence generalized n-
submodular.

Formula (8.13) can be rewritten in the following symmetrized form:

�m(f1, . . . , fn) = k!
∑

I∈([n]k )
m(fI ), (8.14)

where, for I = {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ n,

m(fI ) := m(fi1 , . . . , fik ) :=
1

k!
∑

π∈�I
k

m(fπ(1), . . . , fπ(k)); (8.15)

note that the so-defined function m : Lk → R is multiadditive and nonnega-
tive, given that m is so. Also, m is permutation-symmetric in the sense that
m(fπ(1), . . . , fπ(k)) = m(f1, . . . , fk) for all (f1, . . . , fk) ∈ Lk and all permuta-
tions π ∈ �

[k]
k .

Example 8.2.5 If V is a vector sublattice of the lattice RS and L is the lattice of all
nonnegative functions in V then, clearly, L is complementable and the restriction to
Lk of any multilinear function from V k to R is multiadditive.

In particular, if μ is a measure on a σ -algebra � over S, V is a vector sublattice of
Lk(S,�,μ), and L is the lattice of all nonnegative functions in V , then the function
m : Lk → R given by the formula

m(f1, . . . , fk) :=
∫

S

f1 · · ·fk dμ

for (f1, . . . , fk) ∈ Lk is multiadditive.
So, by Proposition 8.2.4, the functions �m corresponding to the functions m

presented above in this example are generalized (n : 2)-submodular and hence
generalized n-submodular.
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Let now B = (bi,j ) be a d × p matrix with d ≤ p and nonnegative entries bi,j .
The permanent of B is defined by the formula

permB :=
∑

J∈([p]d )
permB·J ,

where B·J the square submatrix of B consisting of the columns of B with column
indices in the set J ∈ ([p]

d

)

; and for a square d × d matrix B = (bi,j ),

permB :=
∑

π∈�[d]
d

b1,π(1) · · · bd,π(d).

So, permB is a multilinear function of the d-tuple (b1,·, . . . , bd,·) of the rows of B.
Also, if d = p, then permB is a multilinear function of the d-tuple (b·,1, . . . , b·,d)
of the columns of B. If d ≥ p, then permB may be defined by the requirement that
the permanent be invariant with respect to transposition.

Thus, from Proposition 8.2.4 we immediately obtain

Corollary 8.2.6 Assuming that the entries bi,j of the d × p matrix B are nonnega-
tive, permB is a generalized d-submodular function of the d-tuple (b1, ·, . . . , bd, ·)
of its rows and a generalized p-submodular function of the p-tuple (b·, 1, . . . , b·, p)
of its columns (with respect to the standard lattice structures on R

1×p and R
d×1,

respectively):

perm

⎛

⎜

⎝

bd : 1, ·
...

bd : d, ·

⎞

⎟

⎠
≤ perm

⎛

⎜

⎝

b1, ·
...

bd, ·

⎞

⎟

⎠
[= permB],

perm(b·, p :1, . . . , b·, p : ) ≤ perm(b·, 1, . . . , b·, p)[= permB].

Note that the condition d ≤ p is not needed or assumed in Corollary 8.2.6.
Yet another way in which multilinear and hence multiadditive functions may

arise is via the elementary symmetric polynomials. Let n be any natural number,
and let k ∈ [n]. The elementary symmetric polynomials are defined by the formula

ek(x1, . . . , xn) :=
∑

J∈([n]k )

∏

j∈J
xj .

In particular, e1(x1, . . . , xn) :=∑j∈[n] xj and en(x1, . . . , xn) :=∏j∈[n] xj .
Let f = (f1, . . . , fn) be the vector of measurable functions f1, . . . , fn defined

on a measure space (S,�,μ) with values in the interval [0,∞). Then it is not hard
to see that the “order statistics” are nonnegative measurable functions as well. As
usual, let μ(h) := ∫

S
h d μ.
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If the measure μ is a probability measure, then the functions f1, . . . , fn are
called random variables (r.v.’s) and, in this case, fn:1, . . . , fn:n will indeed be what
is commonly referred to as the order statistics based on the “random sample”
f = (f1, . . . , fn); cf. e.g. [7]. In contrast with settings common in statistics, in
general we do not impose any conditions on the joint or individual distributions of
the r.v.’s f1, . . . , fn—except that these r.v.’s be nonnegative.

Then we have the following.

Corollary 8.2.7

ek
(

μ(f1), . . . , μ(fn)
) ≥ ek

(

μ(fn:1), . . . , μ(fn:n)
)

. (8.16)

In particular,

μ(f1) · · ·μ(fn) ≥ μ(fn:1) · · ·μ(fn:n). (8.17)

This follows immediately from Proposition 8.2.4 and formula (8.14), since the prod-
uct μ(f1) · · ·μ(fk) is clearly multilinear and hence multiadditive in (f1, . . . , fk).

To deal with cases when some of the μ(fj )’s (or the μ(fn:j )’s) equal 0 and
other ones equal ∞, let us assume here the convention 0 · ∞ := 0. One may note
that, if the nonnegative functions f1, . . . , fn are scalar multiples of one another or,
more generally, if fπ(1) ≤ · · · ≤ fπ(n) for some permutation π of the set [n], then
inequality (8.16) turns into the equality.

As mentioned above, in Corollary 8.2.7 it is not assumed that f1, . . . , fn are
independent r.v.’s. However, if μ is a probability measure and the r.v.’s f1, . . . , fn

are independent (but not necessarily identically distributed), then μ(f1) · · ·μ(fn) =
μ(f1 · · · fn) = μ(fn:1 · · · fn:n) by the second part of (8.3), and so, (8.17) can
then be rewritten as the following positive-association-type inequality for the order
statistics:

μ(fn:1 · · ·fn:n) ≥ μ(fn:1) · · ·μ(fn:n). (8.18)

Let now ψ be any monotone (that is, either nondecreasing or nonincreasing)
function from [0,∞] to [0,∞]. For f = (f1, . . . , fn) as before, let

ψ • f := (ψ ◦ f1, . . . , ψ ◦ fn).

Then for j ∈ [n] one has (ψ•f )n:j = ψ◦fn:j if ψ is nondecreasing and (ψ•f )n:j =
ψ ◦ fn:n+1−j if ψ is nonincreasing. Thus, we have the following ostensibly more
general forms of (8.17) and (8.18):

Corollary 8.2.8

μ(ψ ◦ f1) · · ·μ(ψ ◦ fn) ≥ μ
(

(ψ • f )n:1) · · ·μ((ψ • f )n:n
)

. (8.19)
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If μ is a probability measure and the r.v.’s f1, . . . , fn are independent, then

μ
(

(ψ • f )n:1 · · · (ψ • f )n:n
) ≥ μ

(

(ψ • f )n:1
) · · ·μ((ψ • f )n:n

)

. (8.20)

The property of the order statistics fn:1, · · · , fn:n given by inequality (8.20) may
be called the diagonal positive orthant dependence—cf. e.g. Definition 2.3 in [12]
of the negative orthant dependence.

Immediately from Theorem 8.1.1 or from inequality (8.19) in Corollary 8.2.8,
one obtains

Corollary 8.2.9 Take any p ∈ R \ {0}. Then

μ(f
p

1 )r · · ·μ(f
p
n )r ≥ μ(f

p

n:1)
r · · ·μ(f

p
n:n)r (8.21)

for any r ∈ (0,∞), and

μ(f
p
1 )r · · ·μ(f

p
n )r ≤ μ(f

p
n:1)

r · · ·μ(f
p
n:n)r (8.22)

for any r ∈ (−∞, 0). Here we use the conventions 0t := ∞ and ∞t := 0 for
t ∈ (−∞, 0). We also the following conventions: 0 · ∞ := 0 concerning (8.21) and
0 · ∞ := ∞ concerning (8.22).

Consider now the special case of Corollary 8.2.9 with r = 1/p. Letting
then p → ∞, we see that (8.21) will hold with the μ(f

p
j )r ’s and μ(f

p
n:j )r ’s

replaced there by μ-ess sup fj and μ-ess sup fn:j , respectively, where μ-ess sup
denotes the essential supremum with respect to measure μ. This follows because
μ(hp)1/p −→

p→∞ μ-ess sup h. Similarly, letting p → −∞, we see that (8.22)

will hold with the μ(f
p
j )r ’s and μ(f

p
n:j )r ’s replaced there by μ-ess inffj and

μ-ess inf fn:j , respectively, where μ-ess inf denotes the essential infimum with
respect to μ. Moreover, considering (say) the counting measures μ on finite subsets
of the set S and noting that suph = supS h coincides with the limit of the net
(maxJ h) over the filter of all finite subsets J of S, we conclude that (8.21) will hold
with the μ(f

p
j )r ’s and μ(f

p
n:j )r ’s replaced there by supfj and sup fn:j , respectively.

(

The statement about the limit can be spelled out as follows: supS h ≥ maxJ h for
all finite J ⊆ S, and for each real c such that c < suph there is some finite set
Jc ⊆ S such that for all finite sets J such that Jc ⊆ J ⊆ S one has maxJ h > c.

)

Similarly, (8.22) will hold with the μ(f
p
j )r ’s and μ(f

p
n:j )r ’s replaced there by inffj

and inf fn:j , respectively. Thus, we have

Corollary 8.2.10

(sup f1) · · · (sup fn) ≥ (sup fn:1) · · · (sup fn:n) (8.23)

and

(inf f1) · · · (inf fn) ≤ (inf fn:1) · · · (inf fn:n). (8.24)
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Here we use the following conventions: 0·∞ := 0 concerning (8.23) and 0·∞ := ∞
concerning (8.24).

Alternatively, one can obtain (8.23) and (8.24) directly from Theorem 8.1.1.
Also, of course there is no need to assume in Corollary 8.2.10 that the functions

f1, . . . , fn are measurable.
The special cases of inequalities (8.22) and (8.24) for n = 2 mean that the

functions h �→ μ(hp)r and h �→ infh are log-supermodular functions on the
distributive lattice (say L�) of all nonnegative �-measurable functions on S and
on the distributive lattice (say L) of all nonnegative functions on S, respectively.

At this point, let us recall the famous Fortuin–Kasteleyn–Ginibre (FKG) correla-
tion inequality [8], which states that for any log-supermodular function ν on a finite
distributive lattice L and any nondecreasing functions F and G on L we have

ν(FG)ν(1) ≥ ν(F )ν(G),

where ν(F ) :=∑f∈L ν(f ).
Then we immediately obtain

Corollary 8.2.11 Let L◦� be any finite sub-lattice of the lattice L� , and let F and
G be nondecreasing functions from L◦� to R. Then

(
∑

h∈L◦�
F (h)G(h)μ(h)r

)(
∑

h∈L◦�
μ(h)r

)

≥
(
∑

h∈L◦�
F (h)μ(h)r

)(
∑

h∈L◦�
G(h)μ(h)r

)

for any r ∈ (−∞, 0). Similarly, let L◦ be any finite sub-lattice of the lattice L, and
let F and G be nondecreasing functions from L◦ to R. Then

(
∑

h∈L◦�
F (h)G(h) infh

)(
∑

h∈L◦�
inf h

)

≥
(
∑

h∈L◦�
F (h) infh

)(
∑

h∈L◦�
G(h) infh

)

.

As shown by Ahlswede and Daykin [2, pp. 288–289], their inequality [2,
Theorem 1] almost immediately implies, and is in a sense sharper than, the FKG
inequality. Furthermore, Rinott and Saks [21, 22] and Aharoni and Keich [1]
independently obtained a more general inequality “for n-tuples of nonnegative
functions on a distributive lattice, of which the Ahlswede–Daykin inequality is the
case n = 2.” More specifically, in notation closer to that used in the present paper,
[1, Theorem 1.1] states the following:

Let α1, . . . , αn, β1, . . . , βn be nonnegative functions defined on a distributive
lattice L such that

n
∏

j=1

αj (fj ) ≤
n
∏

j=1

βj (fn:j )
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for all f1, . . . , fn in L. Then for any finite subsets F1, . . . , Fn of L

n
∏

j=1

∑

fj∈Fj

αj (fj ) ≤
n
∏

j=1

∑

gj∈Fn:j
βj (gj ),

where

Fn:j := {fn:j : f = (f1, . . . , fn) ∈ F1 × · · · × Fn}.

Note that the definition of the “order statistics” used in [1] is different from (8.2) in
that their “order statistics” go in the descending, rather than ascending, order; also,
the term “order statistics” is not used in [1].

In view of this result of [1] and our Corollaries 8.2.9 and 8.2.10, one imme-
diately obtains the following statement, which generalizes and strengthens Corol-
lary 8.2.11:

Corollary 8.2.12 Let F1, . . . ,Fn be any finite subsets of the lattice L� . For each
j ∈ [n], let

Fn:j := {fn:j : f = (f1, . . . , fn) ∈ F1 × · · · × Fn}.

Then

n
∏

j=1

∑

fj∈Fj

μ(fj )
r ≤

n
∏

j=1

∑

hj∈Fn:j
μ(hj )

r (8.25)

for any r ∈ (−∞, 0).
Similarly, let now F1, . . . ,Fn be any finite subsets of the lattice L. Then

n
∏

j=1

∑

fj∈Fj

inf fj ≤
n
∏

j=1

∑

hj∈Fn:j

infhj .

Comparing inequalities (8.21) and (8.22) in Corollary 8.2.9 or inequalities (8.23)
and (8.24) in Corollary 8.2.10, one may wonder whether the FKG-type inequalities
stated in Corollaries 8.2.11 and 8.2.12 for the functions h �→ μ(h)r with r < 0
and h �→ infh admit of the corresponding reverse analogues for the functions h �→
μ(h)r with r > 0 and h �→ suph. However, it is not hard to see that such FKG-type
inequalities are not reversible in this sense, a reason being that the sets Fn:j may be
much larger than the sets Fj .

E.g., suppose that n = 2, S = R, μ is a Borel probability measure on R, 0 <

ε < δ < 1, N is a natural number, F1 is the set of N pairwise distinct constant
functions f1, . . . , fN on R such that 1 − ε < fj < 1 + ε for all j ∈ [n], and
F2 = {g1, . . . , gN }, where gj := (1 − δ)1(−∞,j ] + (1 + δ)1(j,∞) and 1A denotes
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the indicator of a set A. Then it is easy to see that each of the sets F2:1 and F2:2 is
of cardinality N2. So, letting δ ↓ 0 (so that ε ↓ 0 as well), we see that, for any real
r , the right-hand side of (8.25) goes to N4 whereas its left-hand side goes to N2,
which is much less than N4 if N is large.

Example 8.2.13 Closely related to Example 8.2.5 is as follows. Suppose that (S,�)

is a measurable space, μ is a measure on the product σ -algebra �⊗k , and L is a
subring of �. Then L is complementable and the function m : Lk → R given by the
formula

m(A1, . . . , Ak) := μ(A1 × · · · × Ak) (8.26)

for (A1, . . . , Ak) ∈ Lk is multiadditive.
A particular case of formula (8.26) is

m(A1, . . . , Ak) := card
(

G ∩ (A1 × · · · ×Ak)
)

, (8.27)

where card stands for the cardinality and G is an arbitrary subset of Sk . If G is
symmetric in the sense that (s1, . . . , sk) ∈ G iff (sπ(1), . . . , sπ(k)) ∈ G for all
permutationsπ of the set [k], then G represents the set (say E) of all hyperedges of a
k-uniform hypergraph over S, in the sense that (s1, . . . , sk) ∈ G iff {s1, . . . , sk} ∈ E.

We now have another immediate corollary of Proposition 8.2.4:

Corollary 8.2.14 Suppose that k and n are natural numbers such that k ≤ n,
(S,�) is a measurable space, μ is a measure on the product σ -algebra �⊗k , and
L is a subring of �. Then

∑

π∈�[n]
k

μ(An :π(1) × · · · ×An :π(k)) ≤
∑

π∈�[n]
k

μ(Aπ(1) × · · · ×Aπ(k)) (8.28)

for all (A1, . . . , An) ∈ Ln.

8.3 Proofs

One may note that formula (8.31) in the proof of Theorem 8.1.1 below defines a
step similar to a step in the process of the so-called insertion search (cf. e.g. [15,
Section 5.2.1] (also called the sifting or sinking technique)—except that here we
do the pointwise comparison of functions (rather than numbers) and therefore we
do not stop when the right place of the value fn+1(s) of the “new” function fn+1
among the already ordered values fn:1(s), . . . , fn:n(s) at a particular point s ∈ S has
been found, because this place will in general depend on s. So, the proof that (8.31)
implies (8.34) may be considered as (something a bit more than) a rigorous proof
of the validity of the insertion search algorithm, avoiding such informal, undefined
terms as swap, moving, and interleaving.
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Proof of Theorem 8.1.1 Let us prove the theorem by induction in n. For n = 1, the
result is trivial. To make the induction step, it suffices to prove the following: For
any natural n ≥ 2, if the function � : Ln → R is generalized (n : 2)-semimodular
and the function Ln−1 # (f1, . . . , fn−1) �→ �(f1, . . . , fn) is generalized (n − 1)-
semimodular for each fn ∈ L, then � is generalized n-semimodular. Thus, we are
assuming that the function � : Ln → R is generalized (n : 2)-semimodular and

�(f1, . . . , fn)���(fn−1:1, . . . , fn−1:n−1, fn) (8.29)

for all (f1, . . . , fn) ∈ Ln, where fn−1:1, . . . , fn−1:n−1 are the “order statistics”
based on (f1, . . . , fn−1).

Take indeed any (f1, . . . , fn) ∈ Ln. Define the rectangular array of functions
(gk,j : k ∈ 0, n− 1, j ∈ [n]) recursively, as follows:

(g0,1, . . . , g0,n−1, g0,n) := (fn−1:1, . . . , fn−1:n−1, fn) (8.30)

and, for k ∈ 1, n− 1 and j ∈ [n],

gk,j :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

gk−1,j if j ∈ 1, n− k − 1 ∪ n− k + 2, n,

gk−1,n−k ∧ gk−1,n−k+1 if j = n− k,

gk−1,n−k ∨ gk−1,n−k+1 if j = n− k + 1.

(8.31)

By (8.29) and (8.30),

�(f1, . . . , fn)���(g0,1, . . . , g0,n−1, g0,n). (8.32)

Moreover, for each k ∈ 1, n− 1,

�(gk−1,1, . . . , gk−1,n)���(gk,1, . . . , gk,n), (8.33)

since � is generalized (n : 2)-semimodular.
It follows from (8.32) and (8.33) that

�(f1, . . . , fn)���(gn−1,1, . . . , gn−1,n).

It remains to verify the identity

(gn−1,1, . . . , gn−1,n)
(?)= (fn:1, . . . , fn:n). (8.34)

In accordance with Remark 8.1.3, we may and shall assume that the distributive
lattice L is a lattice of nonnegative real-valued functions on a set S, so that (8.3)
holds for each s ∈ S.
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In the remainder of the proof, fix any s ∈ S. Then

{{g0,1(s), . . . , g0,n(s)}} = {{f1(s), . . . , fn(s)}},

by (8.30) and the second part of (8.3) used with n − 1 in place of n; also, for each
k ∈ 1, n− 1,

{{gk,1(s), . . . , gk,n(s)} = {{gk−1,1(s), . . . , gk−1,n(s)}},

by (8.31). So,

{{gn−1,1(s), . . . , gn−1,n(s)}} = {{f1(s), . . . , fn(s)}}.

Therefore, to complete the proof of (8.34) and thus that of Theorem 8.1.1, it
remains to show that

gn−1,1(s)
(?)≤ · · · (?)≤ gn−1,n(s), (8.35)

which will follow immediately from

Lemma 8.3.1 For each k ∈ 1, n− 1, the following assertion is true for all s ∈ S:

gk,j (s) ≤ gk,j+1(s) for all j ∈ 1, n− k − 2 ∪ n− k, n− 1;
also, gk,n−k−1(s) ≤ gk,n−k+1(s) if k ≤ n− 2.

(Ak)

Indeed, (8.35) is the first clause in assertion (Ak) with k = n − 1. Thus, what
finally remains to prove Theorem 8.1.1 is to present the following.

Proof of Lemma 8.3.1 For simplicity, let us be dropping (s)—thus writing
gk,j , fn, . . . in place of gk,j (s), fn(s), . . . . We shall prove Lemma 8.3.1 by
induction in k ∈ 1, n− 1. Assertion (A1) means that g1,1 ≤ · · · ≤ g1,n−2,
g1,n−1 ≤ g1,n, and g1,n−2 ≤ g1,n if 1 ≤ n − 2. So, in view of (8.31)
and (8.30), (A1) can be rewritten as follows: fn−1:1 ≤ · · · ≤ fn−1:n−2,
fn−1:n−1∧fn ≤ fn−1:n−1∨fn, and fn−1:n−2 ≤ fn−1:n−1∨fn; all these inequalities
are obvious. So, (A1) holds.

Take now any k ∈ 2, n− 1 and suppose that (Ak−1) holds. We need to show that
then (Ak) holds.

For all j ∈ 1, n− k − 2 ∪ n− k + 2, n− 1, we have j + 1 ∈ 1, n− k − 1 ∪
n− k + 2, n, whence, by (8.31) and the first clause of (Ak−1), gk,j = gk−1,j ≤
gk−1,j+1 = gk,j+1. So,

gk,j ≤ gk,j+1 for j ∈ 1, n− k − 2 ∪ n− k + 2, n− 1. (8.36)

If j = n − k then, by (8.31), gk,j = gk−1,n−k ∧ gk−1,n−k+1 ≤ gk−1,n−k ∨
gk−1,n−k+1 = gk,j+1.
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If j = n − k + 1 then the condition k ∈ 2, n− 1 implies j ≤ n − 1, and so, by
(8.31) and the second and first clauses of (Ak−1), gk,j = gk−1,n−k ∨ gk−1,n−k+1 ≤
gk−1,n−k+2 = gk−1,j+1 = gk,j+1.

Thus, in view of (8.36), the first clause of (Ak) holds. Also, if k ≤ n − 2 then,
by (8.31) and the first clause of (Ak−1), gk,n−k−1 = gk−1,n−k−1 ≤ gk−1,n−k ≤
gk−1,n−k ∨ gk−1,n−k+1 = gk,n−k+1, so that the second clause of (Ak) holds as well.
This completes the proof of Lemma 8.3.1. ��

Thus, Theorem 8.1.1 is proved. ��
Proof of Proposition 8.2.1 Take any (f1, . . . , fn) ∈ Ln. Corollary B.3 in [17] states
that x ≺ y iff x is in the convex hull of the set of all points obtained by permuting
the coordinates of the vector y. Also, since the function λ is nondecreasing, we
have λ(f1 ∨ f2) ≥ λ(f1) ∨ λ(f2). For any real a, b, c such that c ≥ a ∨ b, we
have (a, b) = (1 − t)(a + b − c, c) + t (c, a + b − c) for t = c−b

2c−a−b
∈ [0, 1] if

c > (a + b)/2 and for any t ∈ [0, 1] otherwise (that is, if a = b = c). So, the point
(a, b) is a convex combination of points (a + b − c, c) and (c, a + b − c). Using
this fact for a = λ(f1), b = λ(f2), c = λ(f1 ∨ f2), we see that

(λ(f1), . . . , λ(fn)) ≺ (λ(f1)+ λ(f2)− λ(f1 ∨ f2), λ(f1 ∨ f2), λ(f3), . . . , λ(fn)).

Also, λ(f1∧f2) ≤ λ(f1)+λ(f2)−λ(f1∨f2), by the submodularity of λ. Therefore
and because F is nondecreasing (in each of its n arguments) and Schur-concave, we
conclude that

F(λ(f1 ∧ f2), λ(f1 ∨ f2), λ(f3), . . . , λ(fn))

≤ F(λ(f1)+ λ(f2)− λ(f1 ∨ f2), λ(f1 ∨ f2), λ(f3), . . . , λ(fn))

≤ F(λ(f1), . . . , λ(fn)).

Quite similarly,

F(λ(f1), . . . , λ(fi−1), λ(fi ∧ fi+1), λ(fi ∨ fi+1), λ(fi+2), . . . , λ(fn))

≤ F(λ(f1), . . . , λ(fn))

for all i ∈ 1, n− 1, so that the function F is indeed generalized (n : 2)-submodular
and hence, by Theorem 8.1.1, generalized n-submodular. ��
Proof of Proposition 8.2.3 In view of Theorem 8.1.1, it is enough to show that the
function � = �ϕ,ψ is generalized (n : 2)-submodular. Without loss of generality
(w.l.o.g.), we may and shall assume that the function ϕ is nondecreasing, since
�ϕ−,ψ = �ϕ,ψ , where ϕ−(u) := ϕ(−u) for all real u. Also, w.l.o.g. ψ(0) = 0
and hence �(0) = 0.

Take any f = (f1, . . . , fn) ∈ Ln. Then, letting

�̃(g) := �(g)+�(−g) (8.37)
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for g ∈ L, one has

�(f1, f2, f3, . . . , fn) = �̃(f1 − f2)+
n
∑

j=3

(

�̃(gj )+ �̃(hj )
)+ R, (8.38)

where gj := f1 − fj , hj := f2 − fj , and R := ∑n
3≤j<k≤n �̃(fj − fk). Since

f1 ∧ f2 − f1 ∨ f2 = −|f1 − f2|, one similarly has

�(f1 ∧ f2, f1 ∨ f2, f3, . . . , fn) =�̃(|f1 − f2|)+
n
∑

j=3

(

�̃(gj ∧ hj )+ �̃(gj ∨ hj )
)+ R.

(8.39)

Next,

�̃(f1 − f2) = ψ
(

∫

S

ϕ ◦ (f1 − f2) dμ
)

+ ψ
(

∫

S

ϕ ◦ (f2 − f1) dμ
)

, (8.40)

�̃(|f1 − f2|) = ψ
(

∫

S

ϕ ◦ |f1 − f2| dμ
)

+ ψ
(

∫

S

ϕ ◦ (−|f2 − f1|) dμ
)

,

(8.41)

ϕ ◦ (f1 − f2)+ ϕ ◦ (f2 − f1) = ϕ ◦ |f1 − f2| + ϕ ◦ (−|f1 − f2|) and hence

∫

S

ϕ ◦ (f1 − f2) dμ+
∫

S

ϕ ◦ (f2 − f1) dμ=
∫

S

ϕ ◦ |f1 − f2| dμ+
∫

S

ϕ ◦ (−|f2 − f1|) dμ.

(8.42)

Also, since ϕ is nondecreasing, ϕ ◦ (f1 − f2) ∨ ϕ ◦ (f2 − f1) ≤ ϕ ◦ |f1 − f2| and
hence
∫

S

ϕ ◦ (f1 − f2) dμ ∨
∫

S

ϕ ◦ (f2 − f1) dμ ≤
∫

S

ϕ ◦ |f1 − f2| dμ. (8.43)

Since the function ψ is convex, it follows from (8.40)–(8.43) that

�̃(f1 − f2) ≤ �̃(|f1 − f2|). (8.44)

Further, take any j ∈ 3, n. Then ϕ ◦ gj + ϕ ◦ hj = ϕ ◦ (gj ∧hj )+ ϕ ◦ (gj ∨hj ).
So,

∫

S

(ϕ ◦ gj ) d μ+
∫

S

(ϕ ◦ hj ) d μ =
∫

S

ϕ ◦ (gj ∧ hj ) dμ+
∫

S

ϕ ◦ (gj ∨ hj ) dμ.

Moreover, since ϕ is nondecreasing,
∫

S
ϕ ◦ (gj ∨ hj ) dμ is no less than each of the

integrals
∫

S
(ϕ ◦ gj ) dμ and

∫

S
(ϕ ◦ hj ) dμ. So, in view of (8.12) and the convexity
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of the function ψ , one has �(gj )+�(hj ) ≤ �(gj ∧ hj )+�(gj ∨ hj ). Similarly,
because

∫

S
ϕ ◦ (−(gj ∧hj )) dμ is no less than each of the integrals

∫

S
ϕ ◦ (−gj) d μ

and
∫

S
ϕ◦(−hj ) dμ, one has �(−gj )+�(−hj ) ≤ �(−(gj∧hj ))+�(−(gj∨hj )).

So, by (8.37), �̃(gj )+ �̃(hj ) ≤ �̃(gj ∧ hj )+ �̃(gj ∨ hj ).
Therefore, by (8.38), (8.39), and (8.44), �(f1, f2, f3, . . . , fn) ≤ �(f1 ∧

f2, f1 ∨ f2, f3, . . . , fn). Similarly, �(f1, . . . , fj−1, fj , fj+1, fj+2, . . . , fn) ≤
�(f1, . . . , fj−1, fj ∧ fj+1, fj ∨ fj+1, fj+2, . . . , fn) for all j ∈ 1, n− 1.

Thus, the function � is generalized (n : 2)-supermodular, and so, by Theo-
rem 8.1.1, it is generalized n-supermodular. ��
Proof of Proposition 8.2.4 Fix any (f1, . . . , fn) ∈ Ln. Then, in view of the
permutation symmetry of m defined by (8.15),

1

k! �m(f1, . . . , fn) = λ2(fn−1, fn)+ λ1(fn−1)+ λ1(fn)+ λ0, (8.45)

where

λ2(f, g) :=
∑

1≤i1<···<ik−2≤n−2

m(fi1 , . . . , fik−2 , f, g),

λ1(f ) :=
∑

1≤i1<···<ik−1≤n−2

m(fi1 , . . . , fik−1 , f ),

λ0 :=
∑

1≤i1<···<ik≤n−2

m(fi1 , . . . , fik ),

Similarly,

1

k! �m(f1, . . . , fn−2, fn−1 ∧ fn, fn−1 ∨ fn) = λ2(fn−1 ∧ fn, fn−1 ∨ fn)

+ λ1(fn−1 ∧ fn)+ λ1(fn−1 ∨ fn)+ λ0. (8.46)

Note that the function λ2 : L2 → R is 2-additive and permutation-symmetric,
and the function λ1 : L2 → R is additive. Take any f and g in L. Then (f ∨g)∧f =
f and (f ∨ g) \ f = g \ f . So, by the additivity of λ1 we have λ1(f ∨ g) =
λ1(f )+ λ1(g \ f ), whereas λ1(f ∧ g)+ λ1(g \ f ) = λ1(g). So,

λ1(f ∧g)+λ1(f ∨g) = λ1(f ∧g)+λ1(f )+λ1(g\f ) = λ1(f )+λ1(g). (8.47)
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By the 2-additivity and permutation symmetry of λ2 and because the function λ2 is
2-additive, permutation-symmetric, and nonnegative, we have

λ2(f ∧ g, f ∨ g) = λ2(f ∧ g, f \ g)+ λ2(f ∧ g, g)

= λ2(f ∧ g, f \ g)+ λ2(f, g)− λ2(f \ g, g)
= λ2(f ∧ g, f \ g)+ λ2(f, g)− λ2(f \ g, g ∧ f )− λ2(f \ g, g \ f )

= λ2(f, g)− λ2(f \ g, g \ f )

≤ λ2(f, g).

(8.48)

It follows from (8.45), (8.46), (8.47), and (8.48) (with f = fn−1 and g = fn) that

�m(f1, . . . , fn−2, fn−1 ∧ fn, fn−1 ∨ fn) ≤ �m(f1, . . . , fn).

Therefore, being permutation-symmetric, the function �m is indeed generalized
(n : 2)-submodular. Hence, by Theorem 8.1.1, �m is generalized n-submodular. ��
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Chapter 9
Geometry of �n

p -Balls: Classical Results
and Recent Developments

Joscha Prochno, Christoph Thäle, and Nicola Turchi

Abstract In this article we first review some by-now classical results about the
geometry of �p-balls B

n
p in R

n and provide modern probabilistic arguments for
them. We also present some more recent developments including a central limit
theorem and a large deviations principle for the q-norm of a random point in B

n
p.

We discuss their relation to the classical results and give hints to various extensions
that are available in the existing literature.

Keywords Asymptotic geometric analysis · �np-Balls · Central limit theorem ·
Law of large numbers · Large deviations · Polar integration formula

2010 Mathematics Subject Classification 46B06, 47B10, 60B20, 60F10

9.1 Introduction

The geometry of the classical �p sequence spaces and their finite-dimensional
versions is nowadays quite well understood. It has turned out that it is often a
probabilistic point of view that shed (new) light on various geometric aspects and
characteristics of these spaces and, in particular, their unit balls. In this survey we
want to take a fresh look at some of the classical results and also on some more
recent developments. The probabilistic approach to study the geometry of �np-balls
will be an asymptotic one. In particular, our aim is to demonstrate the usage of
various limit theorems from probability theory, such as laws of large numbers,
central limit theorems or large deviation principles. While the law of large numbers
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and the central limit theorem are already part of the—by now—classical theory (see,
e.g., [21, 23, 24]), the latter approach via large deviation principles was introduced
only recently in the theory of asymptotic geometric analysis by Gantert et al. in [9].
Most of the results we present below are not new and we shall always give precise
references to the original papers. On the other hand, we provide detailed arguments
at those places where we present generalizations of existing results that cannot be
found somewhere else. For some of the other results the arguments are occasionally
sketched as well.

Our text is structured as follows. In Sect. 9.2 we collect some preliminary
material. In particular, we introduce our notation (Sect. 9.2.1), the class of �np-
balls (Sect. 9.2.2), and also rephrase some background material on Grassmannian
manifolds (Sect. 9.2.3) and large deviation theory (Sect. 9.2.4). In Sect. 9.3 we
introduce a number of probability measures that can be considered in connection
with a convex body. We do this for the case of �np-balls (Sect. 9.3.1), but also more
generally for symmetric convex bodies (Sect. 9.3.2). The usage of the central limit
theorem and the law of large numbers in the context of �np-balls is demonstrated
in Sect. 9.4. We rephrase there some more classical results of Schechtman and
Schmuckenschläger (Sect. 9.4.1) and also consider some more recent developments
(Sect. 9.4.2) including applications of the multivariate central limit theorem. We also
take there an outlook to the matrix-valued set-up. The final Sect. 9.5 is concerned
with various aspects of large deviations. We start with the classical concentration
inequalities of Schechtman and Zinn (Sect. 9.5.1) and then describe large deviation
principles for random projections of �np-balls (Sect. 9.5.2).

9.2 Preliminaries

In this section we shall provide the basics from both asymptotic geometric analysis
and probability theory that are used throughout this survey article. The reader may
also consult [3, 5–7, 14] for detailed expositions and additional explanations when
necessary.

9.2.1 Notation

We shall denote with N = {1, 2, . . .}, R and R
+ the set of natural, real and real non-

negative numbers, respectively. Given n ∈ N, let Rn be the n-dimensional vector
space on the real numbers, equipped with the standard inner product denoted by
〈· , ·〉. We write B(Rn) for the σ -field of all Borel subsets of Rn. Analogously, for a
subset S ⊆ R

n, we denote by B(S) := {A∩S : A ∈ B(Rn)} the corresponding trace
σ -field of B(Rn). Given a set A, we write #A for its cardinality. For a set A ⊆ R

n,
we shall write 1A : Rn → {0, 1} for the indicator function of A. Given A ∈ B(Rn),
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we write |A| for its n-dimensional Lebesgue measure and frequently refer to this as
the volume of A.

Given sets I ⊆ R
+ and A ⊆ R

n, we define the set IA as follows,

IA := {rx ∈ R
n : r ∈ I, x ∈ A}.

If I = {r}, we also write rA instead of {r}A. Note that R+A is usually called the
cone spanned by A.

We say that K ⊆ R
n is a convex body if it is a convex, compact set with non-

empty interior. We indicate with ∂K its boundary.
Fix now a probability space (�,F ,P). We will always assume that our random

variables live in this probability space. Given a random variable X : �→ R
n and a

probability measure Q on R
n, we write X ∼ Q to indicate that Q is the probability

distribution of X, namely, for any A ∈ B(Rn),

P(X ∈ A) =
∫

Rn

1A(x) dQ(x).

We write E and Var to denote the expectation and the variance with respect to the
probability P, respectively.

Given a sequence of random variables (Xn)n∈N and a random variable Y we write

Xn
d−−−→

n→∞ Y, Xn
P−−−→

n→∞ Y, Xn
a.s.−−−→

n→∞ Y,

to indicate that (Xn)n∈N converges to Y in distribution, probability or almost surely,
respectively, as n→∞.

We write N ∼ N (0,�) and say that N is a centred Gaussian random vector in
R

n with covariance matrix �, i.e., its density function w.r.t. the Lebesgue measure
is given by

f (x) = 1√
(2π)n det�

exp
(

−1

2

〈

x,�−1x
〉

)

, x ∈ R
n.

For α, θ > 0, we write X ∼ !(α, ϑ) (resp. X ∼ β(α, ϑ)) and say that X has
a Gamma distribution (resp. a Beta distribution) with parameters α and ϑ if the
probability density function of X w.r.t. to the Lebesgue measure is proportional to
x �→ xα−1e−ϑx1[0,∞)(x) (resp. x �→ xα−1(1− x)ϑ−11[0,1](x)). We also say that X
has a uniform distribution on [0, 1] if X ∼ Unif([0, 1]) := β(1, 1) or an exponential
distribution with parameter 1 if X ∼ exp(ϑ) := !(1, ϑ).
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The following properties of the aforementioned distributions are of interest and
easy to verify by direct computation:

if X ∼ !(α, ϑ) and Y ∼ !(α̃, ϑ) are independent, then
X

X + Y
∼ β(α, α̃) ,

(9.1)

if X ∼ Unif([0, 1]), then Xk ∼ β(1/k, 1) , (9.2)

for any α, α̃, ϑ, k ∈ (0,∞).
Given a real sequence (an)n∈N, we write an ≡ a if an = a for every n ∈ N. If

(bn)n∈N is a positive sequence, we write an = O(bn) if there exists C ∈ (0,∞)

such that |an| ≤ Cbn for every n ∈ N, and an = o(bn) if limn→∞(an/bn) = 0.

9.2.2 The �n
p-Balls

For n ∈ N, let x = (x1, . . . , xn) ∈ R
n and define the p-norm of x via

‖x‖p :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(
n
∑

i=1

|xi |p
)1/p

if p ∈ [1,∞),

max
1≤i≤n

|xi | if p = ∞.

The unit ball Bn
p and sphere Sn−1

p with respect to this norm are defined as

B
n
p := {x ∈ R

n : ‖x‖p ≤ 1} and S
n−1
p := {x ∈ R

n : ‖x‖p = 1} = ∂Bn
p.

As usual, we shall write �np for the Banach space (Rn, ‖·‖p). The exact value of |Bn
p|

is known since Dirichlet [8] and is given by

|Bn
p| =

(2!(1+ 1/p))n

!(1+ n/p)
.

The interested reader may consult [19] for a modern computation. The volume-
normalized ball shall be denoted by D

n
p and is given by

D
n
p =

B
n
p

|Bn
p |1/n

.

For convenience, in what follows we will use the convention that in the case p = ∞,
1/p := 0. It is worth noticing that the restriction on the domain of p is due to the
fact that an analogous definition of ‖·‖p for p < 1 does only result in a quasi-norm,
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meaning that the triangle inequality does not hold. As a consequence, Bn
p is convex

if and only if p ≥ 1. Although a priori many arguments of this survey do not rely
on ‖·‖p being a norm, we restrict our presentation to the case p ≥ 1, since it is
necessary in some of the theorems.

9.2.3 Grassmannian Manifolds

The group of (n× n)-orthogonal matrices is denoted by O(n) and we let SO(n) be
the subgroup of orthogonal n × n matrices with determinant 1. As subsets of Rn2

,
O(n) and SO(n) can be equipped with the trace σ -field of B(Rn2

). Moreover, both
compact groups O(n) and SO(n) carry a unique Haar probability measure which
we denote by η and η̃, respectively. Since O(n) consists of two copies of SO(n), the
measure η can easily be derived from η̃ and vice versa. Given k ∈ {0, 1, . . . , n}, we
use the symbol Gn

k to denote the Grassmannian of k-dimensional linear subspaces
of Rn. We supply G

n
k with the metric

d(E,F ) := max
{

sup
x∈BE

inf
y∈BF

‖x − y‖2, sup
y∈BF

inf
x∈BE

‖x − y‖2

}

, E, F ∈ G
n
k,

where BE and BF stand for the Euclidean unit balls in E and F , respectively. The
Borel σ -field on G

n
k induced by this metric is denoted by B(Gn

k) and we supply the
arising measurable space Gn

k with the unique Haar probability measure ηn
k . It can be

identified with the image measure of the Haar probability measure η̃ on SO(n) under
the mapping SO(n) → G

n
k, T �→ T E0 with E0 := span({e1, . . . , ek}). Here, we

write e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) ∈ R
n for

the standard orthonormal basis in R
n and span({e1, . . . , ek}) ∈ G

n
k , k ∈ {1, . . . , n},

for the k-dimensional linear subspace spanned by the first k vectors of this basis.

9.2.4 Large Deviation Principles

Consider a sequence (Xn)n∈N of i.i.d. integrable real random variables and let

Sn := 1

n

n
∑

i=1

Xi

be the empirical average of the first n random variables of the sequence. It is well
known that the law of large numbers provides the asymptotic behaviour of Sn, as n

tends to infinity. In particular, the strong law of large numbers says that

Sn
a.s.−−−→

n→∞ E[X1].
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If X1 has also positive and finite variance, then the classical central limit theorem
states that the fluctuations of Sn around E[X1] are normal and of scale 1/

√
n. More

precisely,

√
n(Sn − E[X1]) d−−−→

n→∞ N (0,Var[X1]).

One of the important features of the central limit theorem is its universality, i.e., that
the limiting distribution is normal independently of the precise distribution of the
summands X1,X2, . . .. This allows to have a good estimate for probabilities of the
kind

P(Sn > x), x ∈ R,

when n is large, but fixed. However, such estimate can be quite imprecise if x is
much larger than E[X1]. Moreover, it does not provide any rate of convergence for
such tail probabilities as n tends to infinity for fixed x.

In typical situations, if Sn arises as a sum of n independent random variables
X1, . . . , Xn with finite exponential moments, say, one has that

P(Sn > x) ≈ e−nI(x), x > E[X1]

if n → ∞, where I is the so-called rate function. Here ≈ expresses an asymptotic
equivalence up to sub-exponential functions of n. For concreteness, let us consider
two examples. If P(X1 = 1) = P(X1 = 0) = 1/2, then

I(x) =
{

x log x + (1− x) log(1− x)+ log 2 if x ∈ [0, 1],
+∞ otherwise,

which describes the upper large deviations. If on the other hand X1 ∼ N (0, σ 2),
then the rate function is given by

I(x) = x2

2σ 2
, x ∈ R.

Contrarily to the universality shown in the central limit theorem, these two examples
already underline that the function I and thus the decay of the tail probabilities is
much more sensitive and specific to the distribution of X1.

The study of the atypical situations (in contrast to the typical ones described in
the laws of large numbers and the central limit theorem) is called Large Deviations
Theory. The concept expressed heuristically in the examples above can be made
formal in the following way. Let X := (Xn)n∈N be a sequence of random vectors
taking values in R

d . Further, let s : N → [0,∞] be a non-negative sequence such
that s(n) ↑ ∞ and assume that I : Rd → [0,∞] is a lower semi-continuous
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function, i.e., all of its lower level sets {x ∈ R
d : I(x) ≤ �}, � ∈ [0,∞], are

closed. We say that X satisfies a large deviation principle (or simply LDP) with
speed s(n) and rate function I if and only if

− inf
x∈A◦ I(x) ≤ lim inf

n→∞
1

s(n)
log P(Xn ∈ A) ≤ lim sup

n→∞
1

s(n)
log P(Xn ∈ A) ≤ − inf

x∈A
I(x)

for all A ∈ B(Rd). Moreover, I is said to be a good rate function if all of its lower
level sets are compact. The latter property is essential to guarantee the so-called
exponential tightness of the sequence of measures.

The following result, known as Cramér’s Theorem, guarantees an LDP for the
empirical average of a sequence of i.i.d. random vectors, provided that their common
distribution is sufficiently nice (see, e.g. [14, Theorem 27.5]).

Theorem 9.2.1 (Cramér’s Theorem) Let (Xn)n∈N be a sequence of i.i.d. random
vectors in R

d such that the cumulant generating function of X1,

�(u) := log E
[

expX1u
]

, u ∈ R
d,

is finite in a neighbourhood of 0 ∈ R
d . Let S := ( 1

n

∑n
i=1 Xi)n∈N be the sequence

of the sample means. Then S satisfies an LDP with speed n and good rate function
I = �∗, where

�∗(x) := sup
u∈Rd

(

xu−�(u)
)

, x ∈ R
d,

is the Fenchel-Legendre transform of �.

Cramér’s Theorem is a fundamental tool that allows to prove an LDP if the
random variables of interest can be transformed into a sum of independent random
variables.

Sometimes there is the need to ‘transport’ a large deviation principle from one
space to another by means of a continuous function. This can be done with a
device known as the contraction principle and we refer to [6, Theorem 4.2.1] or
[14, Theorem 27.11(i)].

Proposition 9.2.2 (Contraction Principle) Let d1, d2 ∈ N and let F : Rd1 → R
d2

be a continuous function. Further, let X := (Xn)n∈N be a sequence of Rd1-valued
random vectors that satisfies an LDP with speed s(n) and rate function IX. Then the
sequence Y := (F (Xn))n∈N of Rd2-valued random vectors satisfies an LDP with the
same speed and with good rate function IY = IX ◦ F−1, i.e., IY(y) := inf{IX(x) :
F(x) = y}, y ∈ R

d2 , with the convention that IY(y) = +∞ if F−1({y}) = ∅.

While this form of the contraction principle is sufficient to analyse the large
deviation behavior for one-dimensional random projections of �np-balls, a refinement
to treat the higher-dimensional cases is needed. To handle this situation, the classical
contraction principle can be extended to allow a dependency on n of the continuous
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function F . We refer the interested reader to [6, Corollary 4.2.21] for the precise
statement.

9.3 Probability Measures on Convex Bodies

There is a variety of probability measures that can be defined on the family of �np-
balls or spheres. We shall present some of them and their key properties below.

9.3.1 Probability Measures on an �n
p -Ball

One can endow B
n
p with a natural volume probability measure. This is defined as

follows,

νn
p(A) := |A ∩ B

n
p|

|Bn
p |

, (9.3)

for any A ∈ B(Rn). We also refer to νn
p as the uniform distribution on B

n
p .

As far as S
n−1
p is concerned, there are two probability measures that are of

particular interest. The first is the so-called surface measure, which we denote by
σn
p , and which is defined as the normalised (n−1)-dimensional Hausdorff measure.

The second, μn
p, is the so-called cone (probability) measure and is defined via

μn
p(A) := |[0, 1]A|

|Bn
p|

, A ∈ B(Sn−1
p ). (9.4)

In other words, μn
p(A) is the normalised volume of the cone that intersects Sn−1

p in
A, intersected with B

n
p . The cone measure is known to be the unique measure that

satisfies the following polar integration formula for any integrable function f on R
n

(see, e.g., [18, Proposition 1])

∫

Rn

f (x) dx = n |Bn
p|
∫ ∞

0
rn−1

∫

S
n−1
p

f (rz) dμn
p(z) dr. (9.5)

In particular, whenever f is p-radial, i.e., there exists a function g defined on R
+

such that f (x) = g(‖x‖p), then

∫

Rn

g(‖x‖p) dx = n |Bn
p|
∫ ∞

0
rn−1g(r) dr. (9.6)
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The relation between σn
p and μn

p has been deeply investigated. It is known, for
example, that they coincide whenever p ∈ {1, 2,∞} (see, e.g., [20]). In the other
cases, Naor [17] provided a bound on the total variation distance of these two
measures.

Proposition 9.3.1 Let σn
p and μn

p be the surface probability and cone probability

measure on S
n−1
p , respectively. Then

dTV(σn
p , μ

n
p) := sup

{

|σn
p (A)− μn

p(A)| : A ∈ B(Sn−1
p )

}

≤ C
(

1− 1

p

)

∣

∣

∣

∣

1− 2

p

∣

∣

∣

∣

√
np

n+ p
,

where C ∈ (0,∞) is an absolute constant.

In particular, the above proposition ensures that for p fixed, such a distance
decreases to 0 not slower than n−1/2.

An important feature of the cone measure is described by the following proba-
bilistic representation, due to Schechtman and Zinn [22] (independently discovered
by Rachev and Rüschendorf [20]). We will below present a proof in a more general
set-up.

Theorem 9.3.2 Let n ∈ N and p ∈ [1,∞]. Let (Zi)i∈N be independent and
p-generalized Gaussian random variables, meaning absolutely continuous w.r.t. to
the Lebesgue measure on R with density

fp(x) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2p1/p!(1 + 1/p)
e−|x|p/p if p ∈ [1,∞) ,

1

2
1[0,1](|x|) if p =∞.

(9.7)

Consider the random vector Z := (Z1, . . . , Zn) ∈ R
n and let U ∼ Unif([0, 1]) be

independent of Z1, . . . , Zn. Then

Z

‖Z‖p
∼ μn

p and U1/n Z

‖Z‖p
∼ νn

p.

Moreover, Z/‖Z‖p is independent of ‖Z‖p.

It is worth noticing that in [22] the density used by the authors for Z1 is actually
proportional to x �→ exp(−|x|p). As will become clear later, this difference is
irrelevant as far as the conclusion of the theorem is concerned.

Indeed, although the statement of Theorem 9.3.2 reflects the focus of this survey
on the �np-balls and the literature on the topic, its result is not strictly dependent on
the particular choice of fp in Eq. (9.7). In fact, it is not even a prerogative of the
�np-balls, as subsequently explained in Proposition 9.3.3.
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9.3.2 The Cone Measure on a Symmetric Convex Body

Consider a symmetric convex body K ⊆ R
n, meaning that if x ∈ K then also

−x ∈ K . Define the functional ‖·‖K : Rn → [0,∞) by

‖x‖K := inf{r > 0 : x ∈ rK}.

The functional ‖·‖K is known as the Minkowski functional associated with K and,
under the aforementioned conditions on K , defines a norm on R

n. We will also
say that ‖x‖K is the K-norm of the vector x ∈ R

n. Whenever a function on R
n is

dependent only on ‖·‖K , we say that it is a K-radial function. Analogously, we call
a probability measure K-radial when its distribution function is K-radial. We will
also write p-radial meaning B

n
p-radial.

In analogy with Eqs. (9.3) and (9.4), it is possible to define a uniform probability
measure νK on K and a cone measure μK on ∂K , respectively, as

νK(A) := |A ∩K|
|K| and μK(B) := |[0, 1]B|

|K| ,

for any A ∈ B(Rn) and B ∈ B(∂K).
Note that μK , as a ratio of volumes, is invariant under a simultaneous transforma-

tion of both the numerator and the denominator. In particular, for any I ∈ B(R+),
such that |I | > 0, it holds

μK(B) = |IB|
|I∂K| , (9.8)

for any B ∈ B(∂K) (note that K = [0, 1]∂K). This fact will be used in the proof of
the following generalization of Theorem 9.3.2 to arbitrary symmetric convex bodies.

Proposition 9.3.3 Let K ⊆ R
n be a symmetric convex body. Suppose that

there exists a continuous function f : [0,∞) → [0,∞) with the property
∫

Rn f (‖x‖K) dx = 1 such that the distribution of a random vector Z on R
n is

given by

P(Z ∈ A) =
∫

A

f (‖x‖K) dx,

for any A ∈ B(Rn). Also, let U ∼ Unif([0, 1]) be independent of Z. Then,

Z

‖Z‖K
∼ μK and U1/n Z

‖Z‖K
∼ νK. (9.9)

In addition, Z/‖Z‖K is independent of ‖Z‖K .



9 Geometry of �np -Balls: Classical Results and Recent Developments 131

The proof of Proposition 9.3.3 is based on the following polar integration
formula, which generalizes Eq. (9.5). It says that for measurable functions h : Rn →
[0,∞),

∫

Rn

h(x) dx = n|K|
∫ ∞

0
rn−1

∫

∂K

h(rz) dμK(z) dr. (9.10)

By the usual measure-theoretic standard procedure to prove Eq. (9.10) it is sufficient
to consider functions h of the form h(x) = 1A(x), where A = (a, b)E with 0 <

a < b <∞ and E a Borel subset of ∂K . However, in this case, the left-hand side is
just |A|, while for the right-hand side we obtain, by definition of the cone measure
μK ,

n|K|
∫ ∞

0
rn−11(a,b)(r)

∫

∂K

1E(z) dμK(z) dr = n|K|
∫ b

a

rn−1 dr
|[0, 1]E|
|K|

= (bn − an)|[0, 1]E|,

which is clearly also equal to |A|.
Proof of Proposition 9.3.3 Let ϕ : Rn → R and ψ : R → R be non-negative
measurable functions. Applying the polar integration formula, Eq. (9.10), yields

E
[

ϕ
( Z

‖Z‖K
)

ψ(‖Z‖K)
]

=
∫

Rn

ϕ
( x

‖x‖K
)

ψ(‖x‖K)f (‖x‖K) dx

= n|K|
∫ ∞

0
ψ(r)f (r)rn−1 dr

∫

∂K

ϕ(z) dμK(z).

By the product structure of the last expression this first shows the independence of
Z/‖Z‖K and ‖Z‖K . Moreover, choosing ψ ≡ 1 we see that

Eϕ
( Z

‖Z‖K
)

= n|K|
∫ ∞

0
f (r)rn−1 dr

∫

∂K

ϕ(z) dμK(z) =
∫

∂K

ϕ(z) dμK(z)

by definition of f . This proves that Z/‖Z‖K ∼ μK . That U1/n Z
‖Z‖K ∼ νK finally

follows from the fact that U1/n ∼ β(n, 1), which has density r �→ nrn−1 for r ∈
(0, 1). ��

The main reason why the theory treated in this survey is restricted to �np-balls,
and not to more general convex bodies K , is that �np-balls are a class of convex
bodies whose Minkowski functional is of the form

‖x‖K = F
(

n
∑

i=1

fi(xi)
)

(9.11)
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for certain functions f1, . . . , fn and invertible positive function F . This is necessary
for Z to have independent coordinates. Indeed, in this case one can assign a joint
density on Z that factorizes into its components, like for example (omitting the
normalizing constant),

e−F−1(‖x‖K) = e−
∑n

i=1 fi(xi) =
n
∏

i=1

e−fi(xi),

which ensures the independence of the coordinates Zi of Z.
Already for slightly more complicated convex bodies than �np-balls, Eq. (9.11) no

longer holds. For example, considering the convex body defined as

B
2
1,2 := {x ∈ R

2 : |x1| + x2
2 ≤ 1}.

It can be computed that ‖x‖
B

2
1,2
= |x1|/2 +

√

x2
1/4+ x2

2 , which is not of the form

(9.11).
On the other hand, the coordinate-wise representation of the density of Z in

the precise form given by Eq. (9.7), is also convenient to explicitly compute the
distribution of some functionals of Z, as we will see in the following section.

9.3.3 A Different Probabilistic Representation for p-Radial
Probability Measures

Another probabilistic representation for a p-symmetric probability measure on B
n
p

has been given by Barthe et al. [4] in the following way,

Theorem 9.3.4 Let Z be a random vector in R
n defined as in Theorem 9.3.2.

Let W be a non-negative random variable with probability distribution PW and
independent of Z. Then

Z

(Zp +W)1/p ∼ PW({0}) μn
p + HW(·) νn

p,

where HW : Bn
p → R, HW(x) = h(x), with

h(r) = 1

!(1 + n/p)(1 − rp)1+n/p

∫

(0,∞)

sn/pesr
p/(rp−1) dPW(s).

Remark Note that all the distributions obtainable from Theorem 9.3.4 are p-radial,
especially the p-norm of Z/(Zp +W)1/p is

R =
( Zp

Zp +W

)1/p
.
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Moreover, some particular choices of W in Theorem 9.3.4 lead to interesting
distributions:

1. When W ≡ 0 we recover the cone measure of Theorem 9.3.2;
2. For α > 0, choosing W ∼ !(α, 1) results in the density proportional to x �→

(1− xp)α−1 for x ≤ 1.
3. As a particular case of the previous one, when W ∼ exp(1) = !(1, 1), then

HW ≡ 1 and

Z

(‖Z‖pp +W)1/p
∼ νn

p.

This is not in contrast with Theorem 9.3.2. Indeed, it is easy to compute that

‖Z‖pp ∼ !(n/p, 1).

In view of the properties (9.1) and (9.2), this implies

‖Z‖pp
‖Z‖pp +W

∼ β(n/p, 1) ∼ Up/n.

As a consequence of this fact, the orthogonal projection of the cone measure
μ

n+p
p on ∂B

n+p
p onto the first n coordinates is νn

p. Indeed, if W =∑n+p
i=n+1|Zi |p,

then W ∼ exp(1), while

Z

(‖Z‖pp +W)1/p
= (Z1, . . . , Zn)

(
∑n+p

i=1 |Zi |p)1/p

is the required projection. We refer to [4, Corollaries 3-4] for more details in this
direction.

9.4 Central Limit Theorems and Laws of Large Numbers

The law of large numbers and the central limit theorem are arguably among the most
prominent limit theorems in probability theory. Thanks to the probabilistic represen-
tation for the various geometric measures on �np-balls described in Sect. 9.3.1, both
of these limit theorems can successfully applied to deduce information about the
geometry of �np-balls. This—by now classical—approach will be described here,
but we will also consider some more recent developments in this direction as well
as several generalizations of known results.
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9.4.1 Classical Results: Limit Theorems à la
Schechtman-Schmuckenschläger

The following result on the absolute moments of a p-generalized Gaussian random
variable is easy to derive by direct computation, and therefore we omit its proof,
which the reader can find in [13, Lemma 4.1]

Lemma 9.4.1 Let p ∈ (0,∞] and let Z0 be a p-generalized Gaussian random
variable (i.e., its density is given by Eq. (9.7)). Then, for any q ∈ [0,∞],

E
[|Z0|q

] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

pq/p

q + 1

!
(

1+ q+1
p

)

!
(

1+ 1
p

) =:Mp(q) if p <∞,

1

q + 1
=: M∞(q) if p = ∞.

For convenience, we will also indicate mp,q := Mp(q)
1/q and

Cp(q, r) := Cov(|Z0|q, |Z0|r ) =Mp(q + r)−Mp(q)Mp(r).

We use the convention that M∞(∞) = C∞(∞,∞) = C∞(∞, q) = 0. The next
theorem is a version of the central limit theorem in [24, Proposition 2.4].

Theorem 9.4.2 Let 0 < p, q <∞, p �= q and X ∼ νn
p. Then

√
n
(

n1/p−1/q ‖X‖q
mp,q

− 1
)

d−−−→
n→∞ N,

where N ∼ N
(

0, σ 2
p,q

)

and

σ 2
p,q := Cp(q, q)

q2Mp(q)2
− 2Cp(p, q)

pqMp(q)
+ Cp(p, p)

p2

Note that, since Mp(p) = 1, then σ 2
p,p = 0. In fact, in such a case

√
n(‖X‖p − 1)

d−−−→
n→∞ 0,

and a different normalization than
√
n is needed to obtain a non-degenerate limit

distribution. Moreover, σ 2
p,q > 0 whenever p �= q .

For our purposes, it is convenient to define the following quantities

kp,n := n1/p|Bn
p|1/n, kq,n := n1/q |Bn

q |1/n
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and

Ap,q,n := kp,n

mp,qkq,n
.

It is easy to verify with Sterling’s approximation that, for any p, q > 0, Ap,q,n =
Ap,q +O(1/n) for Ap,q ∈ (0,∞), as n →∞.

With this definition in mind, we exploit Theorem 9.4.2 to prove a result on the
volume of the intersection of �np-balls. This can be regarded as a generalization of the
main results in Schechtman and Schmuckenschläger [21], and Schmuckenschläger
[23, 24].

Corollary 9.4.3 Let 0 < p, q < ∞ and p �= q . Let r ∈ [0, 1] and (tn)n∈N ⊆ R
+

be such that

lim
n→∞

√
n(tnAp,q − 1) = �−1

p,q(r),

where �p,q : [−∞,+∞] → [0, 1] is the distribution function of N ∼ N (0, σ 2
p,q )

and σ 2
p,q is defined in Theorem 9.4.2, i.e.,

�p,q(x) := 1
√

2πσ 2
p,q

∫ x

−∞
e−s2/(2σ 2

p,q) ds.

Then

lim
n→∞

∣

∣D
n
p ∩ tnD

n
q

∣

∣ = r.

In particular, when tn ≡ t , then

lim
n→∞

∣

∣D
n
p ∩ t Dn

q

∣

∣ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if t < 1/Ap,q,

1/2 if t = 1/Ap,q,

1 if t > 1/Ap,q.

Proof First of all, note that, since Ap,q,n = Ap,q +O(1/n), then

lim
n→∞

√
n(tnAp,q,n − 1) = lim

n→∞
√
n(tnAp,q − 1),

provided that the latter exists in [−∞,∞], as per assumption. In particular, taking
the limit on both sides of the following equality,

P
(‖X‖q ≤ tnkp,nk

−1
q,nn

1/p−1/q) = P
(√

n(n1/p−1/qm−1
p,q‖X‖q−1) ≤ √n(tnAp,q,n−1)

)

,
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we get, because of Theorem 9.4.2,

lim
n→∞P

(‖X‖q ≤ tnkp,nk
−1
q,nn

1/p−1/q) = P
(

N ≤ �−1
p,q(r)

) = r.

On the other hand, it is true that the following chain of equalities hold:

P
(‖X‖q ≤ tnkp,nk

−1
q,nn

1/p−1/q) = |z ∈ B
n
p : z ∈ tnkp,nk

−1
q,nn

1/p−1/q
B
n
q |

|Bn
p|

= ∣∣z ∈ |Bn
p|−1/n

B
n
p : z ∈ tnkp,nk

−1
q,nn

1/p−1/q |Bn
p|−1/n

B
n
q

∣

∣

= |z ∈ D
n
p : z ∈ tnD

n
q |

= |Dn
p ∩ tnD

n
q |,

which concludes the main part of proof. For the last observation, note that for any t

constant, either
√
n(tAp,q − 1) ≡ 0 or it diverges. ��

9.4.2 Recent Developments

9.4.2.1 The Multivariate CLT

We present here a multivariate central limit theorem that recently appeared in [13]. It
constitutes the multivariate generalization of Theorem 9.4.2. Similar to the classical
results of Schechtman and Schmuckenschläger [21], and Schmuckenschläger [23,
24] this was used to study intersections of (this time multiple) �np-balls. In part 1, we
replace the original assumption X ∼ νn

p of [13] to a more general one, that appears
naturally from the proof. Part 2 is substantially different and cannot be generalized
with the same assumption.

Theorem 9.4.4 Let n, k ∈ N and p ∈ [1,∞].
1. Let X be a continuous p-radial random vector in R

n such that

√
n
(

1− ‖X‖p
) P−−−→

n→∞ 0. (9.12)

Fix a k-tuple (q1, . . . , qk) ∈ ([1,∞) \ {p})k . We have the multivariate central
limit theorem

√
n
(

n1/p−1/q1
‖X‖q1

mp,q1

− 1, . . . , n1/p−1/qk
‖X‖qk
mp,qk

− 1
)

d−−−→
n→∞ N,
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where N = (N1, . . . , Nk) ∼ N (0,�), with covariance matrix � = (ci,j )
k
i,j=1

whose entries are given by

ci,j :=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

qiqj

(

!( 1
p
)!(

qi+qj+1
p

)

!(
qi+1
p

)!(
qj+1
p

)
− 1

)

− 1

p
if p <∞,

1

qi + qj + 1
if p = ∞.

(9.13)

2. Let X ∼ νn
p. If p <∞, then we have the non-central limit theorem

n1/p

(p logn)1/p−1 ‖X‖∞ − A
(p)
n

d−−−→
n→∞ G,

where

A
(p)
n := p logn− 1− p

p
log(p logn)+ log(p1/p!(1+ 1/p))

and G is a Gumbel random variable with distribution function R # t �→ e−e−t
.

Remark Note that the assumptions of Theorem 9.4.4 include the cases X ∼ νn
p and

X ∼ μn
p. In fact, condition (9.12) is just the quantitative version of the following

concept: to have Gaussian fluctuations it is necessary that the bigger n gets, the more
the distribution of X is concentrated in near ∂Bn

p. It is relevant to note that (9.12)
also keeps open the possibility for a non-trivial limit distribution when rescaling
(1 − ‖X‖p) with a sequence that grows faster than

√
n. This would yield a limit-

theorem for ‖X‖p. For example, when X ∼ νn
p, we already noted that ‖X‖p d=

U1/n, so that

n(1 − ‖X‖p) d−−−→
n→∞ E ∼ exp(1).

On the other hand, when X ∼ μn
p, then 1− ‖X‖p ≡ 0.

Proof We only give a proof for the first part of the theorem, the second one can be
found in [13].

Let first p ∈ [1,∞). Consider a sequence of independent p-generalized
Gaussian random variables (Zj )j∈N, also independent from every X. Set Z =
(Z1, . . . , Zn). For any n ∈ N and i ∈ {1, . . . , k}, consider the random variables

ξ(i)
n := 1√

n

n
∑

j=1

(|Zj |qi −Mp(qi)
)

and ηn := 1√
n

n
∑

j=1

(|Zj |p − 1
)

.
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According to the classical multivariate central limit theorem, we get

(ξ (1)
n , . . . , ξ (k)

n , ηn)
d−−−→

n→∞ (ξ (1), . . . , ξ (k), η) ∼ N (0,˜�)

with covariance matrix given by

˜� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Cp(q1, q1) · · · Cp(q1, qk) Cp(q1, p)
...

. . .
...

...

Cp(qk, q1) · · · Cp(qk, qk) Cp(qk, p)

Cp(p, q1) · · · Cp(p, qk) Cp(p, p)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Using Theorem 9.3.2 and the aforementioned definitions we can write, for i ∈
{1, . . . , k},

‖X‖qi d= X‖Z‖qi
‖Z‖p

= ‖X‖p
(nMp(qi)+√nξ

(i)
n )1/qi

(n+√nηn)1/p

= ‖X‖p
(nMp(qi))

1/qi

n1/p Fi

( ξ
(i)
n√
n
,
ηn√
n

)

= ‖X‖p n1/qi−1/pmp,qFi

(ξ
(i)
n√
n
,
ηn√
n

)

= (‖X‖p − 1)n1/qi−1/pmp,qFi

(ξ
(i)
n√
n
,
ηn√
n

)

+ n1/qi−1/pmp,qFi

(ξ
(i)
n√
n
,
ηn√
n

)

where we defined the function Fi : R× (R \ {−1})→ R as

Fi(x, y) := (1+ x/Mp(qi))
1/qi

(1+ y)1/p .

Note that Fi is continuously differentiable around (0, 0) with Taylor expansion
given by

Fi(x, y) = 1+ x

qiMp(qi)
− y

p
+O(x2 + y2).

Since, for the law of large numbers, ξ(i)
n /

√
n

a.s.−−−→
n→∞ 0 and ηn/

√
n

a.s.−−−→
n→∞ 0, the

previous equation means that there exists a random variable C, independent of n,
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such that

∣

∣

∣Fi

(ξ
(i)
n√
n
,
ηn√
n

)

−
(

1+ 1

qiMp(qi)

ξ
(i)
n√
n
− 1

p

ηn√
n

)∣

∣

∣ ≤ C
(ξ

(i)
n )2 + η2

n

n
.

In particular,

√
n(‖X‖p − 1)

(

1+ 1

qiMp(qi )

ξ
(i)
n√
n
− 1

p

ηn√
n
− C

(ξ
(i)
n )2 + η2

n

n

)

+
( 1

qiMp(qi )
ξ (i)
n − 1

p
ηn − C

(ξ
(i)
n )2 + η2

n√
n

)

≤ √n
(

n1/p−1/qi
‖X‖qi
mp,qi

− 1
)

≤ √n(‖X‖p − 1)
(

1+ 1

qiMp(qi)

ξ
(i)
n√
n
− 1

p

ηn√
n
+ C

(ξ
(i)
n )2 + η2

n

n

)

+
( 1

qiMp(qi)
ξ (i)
n − 1

p
ηn + C

(ξ
(i)
n )2 + η2

n√
n

)

Note that the first summand of both bounding expressions tends to 0 in distribution
by assumption (9.12), while the second converges in distribution to 1

qiMp(qi)
ξ (i) −

1
p
η. This implies that

√
n
(

n1/p−1/qi
‖X‖qi
mp,qi

− 1
)

d−−−→
n→∞

1

qiMp(qi)
ξ (i) − 1

p
η =: Ni,

where Ni is a centered Gaussian random variable. To obtain the final multivariate
central limit theorem, we only have to compute the covariance matrix �. For
{i, j } ⊆ {1, . . . , k}, its entries are given by

ci,j = Cov
( ξ(i)

qiMp(qi)
− η

p
,

ξ(j)

qjMp(qj )
− η

p

)

= Cov(ξ (i), ξ (j))

qiqjMp(qi)Mp(qj )
− 1

p

(Cov(ξ (i), η)

qiMp(qi)
+ Cov(η, ξ (j))

qjMp(qj )

)

+ Cov(η, η)
p2

= Cp(qi, qj )

qiqjMp(qi)Mp(qj )
− 1

p

(Cp(qi, p)

qiMp(qi)
+ Cp(qj , p)

qjMp(qj )

)

+ Cp(p, p)

p2 ,

and this can be made explicit to get Eq. (9.13). The remaining case of p = ∞ can be
repeated using the aforementioned conventions on the quantities M∞ and C∞. ��
Remark From the proof is evident that in the case when

√
n(X − 1) converges in

distribution to a random variable F , independence yields, for every i ∈ {1, . . . , k},
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the convergence in distribution

√
n
(

n1/p−1/qi
‖X‖qi
mp,qi

− 1
)

d−−−→
n→∞ F +Ni

in which case the limiting random variable is not normal in general. Analogously, if
there exists a sequence (an)n∈N, an = o(

√
n) and a random variable F such that

an(‖X‖p − 1)
d−−−→

n→∞ F,

then the previous proof, with just a change of normalization, yields the limit theorem

an

(

n1/p−1/q ‖X‖q
mp,q

− 1
)

d−−−→
n→∞ F

for every q ∈ [1,∞), as n→∞.

In analogy to Corollary 9.4.3, one can prove in a similar way the following result
concerning the simultaneous intersection of several dilated �p-balls. In particular,
we emphasize that the volume of the simultaneous intersection of three balls Dn

p ∩
t1D

n
q1
∩ t2Dq2 is not equal to 1/4 if these balls are in ‘critical’ position, as one might

conjecture in view of Corollary 9.4.3.

Corollary 9.4.5 Let n, k ∈ N and p ∈ [1,∞]. Fix a k-uple (q1, . . . , qk) ∈
([1,∞) \ {p})k . Let t1, . . . , tk be positive constants and define the sets I# := {i ∈
{1, . . . , k} : Ap,qi ti # 1}, where # is one of the symbols >, = or <. Then,

lim
n→∞|D

n
p∩t1Dn

q1
∩· · ·∩tkDn

qk
| =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if #I> = k,

P(Ni ≤ 0 : i ∈ I=) if #I= ≥ 1 and #I< = 0,

0 if #I< ≥ 1,

where N = (N1, . . . , Nk) is as in Theorem 9.4.4.

9.4.2.2 Outlook: The Non-commutative Setting

Very recently, Kabluchko et al. obtained in [11] a non-commutative analogue of the
classical result by Schechtman and Schmuckenschläger [21]. Instead of considering
the family of �np-balls, they studied the volumetric properties of unit balls in classes
of classical matrix ensembles.

More precisely, we let β ∈ {1, 2, 4} and consider the collection Hn(Fβ) of all
self-adjoint n × n matrices with entries from the (skew) field Fβ , where F1 = R,
F2 = C or F4 = H (the set of Hamiltonian quaternions). By λ1(A), . . . , λn(A) we
denote the (real) eigenvalues of a matrix A from Hn(Fβ) and consider the following
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matrix analogues of the classical �np-balls discussed above:

B
n
p,β :=

{

A ∈Hn(Fβ) :
n
∑

j=1

|λj (A)|p ≤ 1
}

, β ∈ {1, 2, 4} and p ∈ [1,∞],

where we interpret the sum in brackets as max{λj (A) : j = 1, . . . , n} if p = ∞.
As in the case of the classical �np-balls we denote by D

n
p,β , β ∈ {1, 2, 4} the volume

normalized versions of these matrix unit balls. Here the volume can be identified
with the (β n(n−1)

2 + βn)-dimensional Hausdorff measure on Hn(Fβ).

Theorem 9.4.6 Let 1 ≤ p, q <∞ with p �= q and β ∈ {1, 2, 4}. Then

lim
n→∞|D

n
p,β ∩ t Dn

q,β | =
⎧

⎨

⎩

0 if t < e
1

2p− 1
2q
( 2p
p+q

)1/q
,

1 if t > e
1

2p− 1
2q
( 2p
p+q

)1/q
.

To obtain this result, one first needs to study the asymptotic volume of the unit
balls of Hn(Fβ). This is done by resorting to ideas from the theory of logarithmic
potentials with external fields. The second ingredient is a weak law of large numbers
for the eigenvalues of a matrix chosen uniformly at random from B

n
p,β . For details

we refer the interested reader to [11].

9.5 Large Deviations vs. Large Deviation Principles

The final section is devoted to large deviations and large deviation principles for
geometric characteristics of �np-balls. We start by presenting some classical results
on large deviations related to the geometry of �np-balls due to Schechtman and Zinn.
Its LDP counterpart has entered the stage of asymptotic geometry analysis only
recently in [13]. We then continue by presenting a large deviation principle for one-
dimensional random projections of �np-balls of Gantert et al. [9]. Finally, we present
a similar result for higher-dimensional projections as well.

9.5.1 Classical Results: Large Deviations à la
Schechtman-Zinn

We start by rephrasing the large deviation inequality of Schechtman and Zinn [22].
It is concerned with the �q -norm of a random vector in an �np-balls. The proof that
we present follows the argument of [17].
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Theorem 9.5.1 Let 1 ≤ p < q ≤ ∞ and X ∼ νn
p or X ∼ μn

p. Then there exists a
constant c ∈ (0,∞), depending only on p and q , such that

P(n1/p−1/q‖X‖q > z) ≤ exp(−c np/qzp),

for every z > 1/c.

Proof We sketch the proof for the case that X ∼ μn
p. Let Z1, . . . , Zn be

p-generalized Gaussian random variables and put Sr := |Z1|r + . . . + |Zn|r for
r ≥ 1. Now observe that by the exponential Markov inequality and Theorem 9.3.2,
for t > 0,

P(n1/p−1/q‖X‖q > z) = P
(S

p/q
q

Sp

>
zp

n1−p/q

)

≤ exp
(

− tzp

n1−p/q

)

E exp
(

t
S
p/q
q

Sp

)

≤ exp
(

− tzp

n1−p/q

)

E exp
(

t
S
p/q
q

E Sp

)

,

where we also used the independence property in Theorem 9.3.2 in the last step.
Next, we observe that E Sp = n by Lemma 9.4.1. Moreover from [17, Corollary 3]
it is known that there exists a constant c ∈ (0,∞) only depending on p and q such
that

E exp
(

tS
p/q
q

) ≤ n1−p/q
(

1− ct
)−np/q

as long as 0 < t < 1/c. Thus, choosing t = n
c
− n

zp
we arrive at

P(n1/p−1/q‖X‖q > z) ≤ n1−p/q
(ezp

c

)np/q

exp(−cnp/qzp).

This implies the result. ��

9.5.2 Recent Developments

9.5.2.1 The LDP Counterpart to Schechtman-Zinn

After having presented the classical Schechtman-Zinn large deviation inequality, we
turn now to a LDP counterpart. The next result is a summary of the results presented
in from [13, Theorems from 1.2 to 1.5]. The speed and the rate function in its part 4
resembles the right hand side of the inequality in Theorem 9.5.1.
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Theorem 9.5.2 Let n ∈ N, p ∈ [1,∞], q ∈ [1,∞) and X ∼ νn
p. Define the

sequence

‖X‖ := (n1/p−1/qX)n∈N.

1. If q < p <∞, then ‖X‖ satisfies an LDP with speed n and good rate function

I‖X‖(x) =
{

inf{I1(x1)+ I2(x2) : x = x1x2, x1 ≥ 0, x2 ≥ 0} if x ≥ 0,

+∞ otherwise.

Here

I1(x) =
{

− log(x) if x ∈ (0, 1],
+∞ otherwise,

(9.14)

and

I2(x) =
{

inf{�∗(y, z) : x = y1/qz−1/p, y ≥ 0, z ≥ 0} if x ≥ 0

+∞ otherwise,

where �∗ is the Fenchel-Legendre transform of the function

�(t1, t2) := log
∫ +∞

0

1

p1/p!(1+ 1/p)
et1s

q+(t2−1/p)sp ds, (t1, t2) ∈ R×
(

−∞,
1

p

)

.

2. If q < p = ∞, then ‖X‖ satisfies an LDP with speed n and good rate function

I‖X‖(x) =
{

�∗(x) if x ≥ 0,

+∞ otherwise,

where �∗ is the Fenchel-Legendre transform of the function

�(t) :=
∫ 1

0
ets

q

ds, t ∈ R.

3. If p = q , then ‖X‖ satisfies an LDP with speed n and good rate function I1
defined in Eq. (9.14).

4. If p < q , then ‖X‖ satisfies an LDP with speed np/q and good rate function

I‖X‖(x) =

⎧

⎪

⎨

⎪

⎩

1

p

(

xq −m
q
p,q

)p/q
if x ≥ mp,q,

+∞ otherwise.
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9.5.2.2 LDPs for Projections of �n
p-Balls: One-Dimensional Projections

We turn now to a different type of large deviation principles. More precisely,
we consider random projections of points uniformly distributed in an �np-ball
or distributed according to the corresponding cone probability measure onto a
uniform random direction. The following result is a summary of from [9, Theorems
2.2,2.3]. The proof of the first part follows rather directly from Cramér’s theorem
(Theorem 9.2.1) and the contraction principle (Proposition 9.2.2), the second part is
based on large deviation theory for sums of stretched exponentials.

Theorem 9.5.3 Let n ∈ N and p ∈ [1,∞). Let X ∼ νnp or X ∼ μn
p and $ ∼ σn

2
be independent random vectors. Consider the sequence

W := (n1/p−1/2X$)n∈N.

1. If p ≥ 2, then W satisfies an LDP with speed n and good rate function

IW(w) = inf{�∗(τ0, τ1, τ2) : w = τ
−1/2
0 τ1τ

−1/p
2 , τ0 > 0, τ1 ∈ R, τ2 > 0},

where �∗ is the Fenchel-Legendre transform of

�(t0, t1, t2) := log
∫

R

∫

R

et0z
2+t1zy+t2|z|pf2(z)fp(y) dz dy, t0, t1, t2 ∈ R.

2. If p < 2, then W satisfies an LDP with speed n2p/(2+p) and good rate function

IW(w) = 2+ p

2p
|w|2p/(2+p).

Proof Let us sketch the proof for the case that p > 2, by leaving out any technical
details. For this, let Z1, . . . , Zn be p-generalized Gaussian random variables,
G1, . . . ,Gn be Gaussian random variables and U be a uniform random variable over
[0, 1]. Also assume that all the aforementioned random variables are independent.
Also put Z := (Z1, . . . , Zn) and G := (G1, . . . ,Gn). When X ∼ μn

p, by
Theorem 9.3.2, we can state that for each n ∈ N the target random variable
n1/p−1/2X$ has the same distribution as

n1/p−1/2

n
∑

i=1
GiZi

‖G‖2‖Z‖p
=

1
n

n
∑

i=1
GiZi

(

1
n

n
∑

i=1
|Gi |2

)1/2(
1
n

n
∑

i=1
|Zi |p

)1/p
. (9.15)
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Note that � is finite whenever p < 2, t0 < 1/2, t1 ∈ R and t2 < 1/p. Then,
Cramér’s theorem (Theorem 9.2.1) shows that the R3-valued sum

1

n

n
∑

i=1

(|Gi |2,GiZi, |Zi |p
)

satisfies an LDP with speed n and rate function �∗. Applying the contraction
principle (Proposition 9.2.2) to the function F(x, y, z) = x−1/2yz−1/p yields the
LDP for W with speed n and the desired rate function IW. Once the LDP is
proven for the cone measure, it can be pushed to the case of the uniform measure.
By Theorem 9.3.2, multiplying the expression in Eq. (9.15) by U1/n, we obtain a
random variable distributed according to νn

p. It is proven in [9, Lemma 3.2] that

multiplying by U1/n every element of the sequence W, we obtain a new sequence
of random variables that also satisfies an LDP with the same speed and the same
rate function as W. On the other hand, when p < 2, �(t0, t1, t2) = ∞ for any
t1 �= 0, hence suggesting that in this case the LDP could only occur at a lower speed
than n. ��

9.5.2.3 LDPs for Projections of �n
p-Balls: The Grassmannian Setting

Finally, let us discuss projections to higher dimensional subspaces, generalizing
thereby the set-up from the previous section. We adopt the Grassmannian setting and
consider the 2-norm of the projection to a uniformly distributed random subspace
in the Grassmannian G

k
n of k-dimensional subspaces of R

n of a point uniformly
distributed in the �np-unit ball. Since we are interested in the asymptotic regime
where n→∞, we also allow the subspace dimension k to vary with n. However, in
order to keep our notation transparent, we shall nevertheless write k instead of k(n).
The next result is the collection of [1, Theorems 1.1,1.2].

Theorem 9.5.4 Let n ∈ N. Fix p ∈ [1,∞] and a sequence k = k(n) ∈
{1, . . . , n − 1} such that the limit λ := limn→∞(k/n) exists. Let PEX be the
orthogonal projection of a random vector X ∼ νn

p onto a random independent
linear subspace E ∼ ηn

k . Consider the sequence

‖PEX‖ := (n1/p−1/2‖PEX‖2)n∈N.
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1. If p ≥ 2, then ‖PEX‖ satisfies an LDP with speed n and good rate function

I‖PEX‖(y) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

inf
x>y

[λ

2
log
(λx2

y2

)

+ 1− λ

2
log
( 1− λ

1− y2x−2

)

+ Jp(x)
]

if y > 0,

Jp(0) if y = 0, λ ∈ (0, 1],
inf
x≥0

Jp(x) if y = 0, λ = 0,

+∞ if y < 0 ,

where we use the convention 0 log 0 := 0 and for p �= ∞ we have

Jp(y) := inf
x1,x2>0

x
1/2
1 x

−1/p
2 =y

I∗p(x1, x2), y ∈ R ,

and I∗p(x1, x2) is the Fenchel-Legendre transform of

Ip(t1, t2) := log
∫

R

et1x
2+t2|x|pfp(x) dx, (t1, t2) ∈ R×

(

−∞,
1

p

)

.

For p = ∞, we write J∞(y) := I∗∞(y2) with I∗∞ being the Fenchel-Legendre

transform of I∞(t) := log
∫ 1

0 etx
2

dx.
2. If p < 2 and λ > 0, then ‖PEX‖ satisfies and LDP with speed np/2 and good

rate function

I‖PEX‖(y) :=

⎧

⎪

⎨

⎪

⎩

1

p

(y2

λ
−m

)p/2
if y ≥ √λmp ,

+∞ otherwise,

where mp := pp/2!(1 + 3/p)/(3!(1+ 1/p)).

Let us emphasize that the proof of this theorem is in some sense similar to its one-
dimensional counterpart that we have discussed in the previous section. However,
there are a number of technicalities that need to be overcome when projections
to high-dimensional subspaces are considered. Among others, one needs a new
probabilistic representation of the target random variables. In fact, the previous
theorem heavily relies on the following probabilistic representation, proved in [1,
Theorem 3.1] for the case X ∼ ν

p
n . We shall give a proof here for a more general

set-up, which might be of independent interest.

Theorem 9.5.5 Let n ∈ N, k ∈ {1, . . . , n} and p ∈ [1,∞]. Let X be a continuous
p-radial random vector in R

n and E ∼ ηn
k be a random k-dimensional linear

subspace. Let Z = (Z1, . . . , Zn) and G = (G1, . . . ,Gn) having i.i.d. coordinates,
distributed according to the densities fp and f2, respectively. Moreover, let X, E,
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Z and G be independent. Then

‖PEX‖2
d= ‖X‖p

‖Z‖2

‖Z‖p
‖(G1, . . . ,Gk)‖2

‖G‖2
.

Proof Fix a vector x ∈ R
n. By construction of the Haar measure ηn

k on G
n
k and

uniqueness of the Haar measure η on O(n), we have that, for any t ∈ R,

ηn
k (E ∈ G

n
k : ‖PEx‖2 ≥ t) = η(T ∈ O(n) : ‖PTE0x‖2 ≥ t)

= η(T ∈ O(n) : ‖PE0T x‖2 ≥ t)

= η
(

T ∈ O(n) : ‖x‖2

∥

∥PE0T (x/‖x‖2)
∥

∥

2 ≥ t
)

,

where E0 := span({e1, . . . , ek}). Again, by the uniqueness of the Haar measure σn
2

on S
n−1
2 , T (x/‖x‖2) ∼ σn

2 , provided that T ∈ O(n) has distribution η. Thus,

η
(

T ∈ O(n) : ‖x‖2

∥

∥

∥PE0T
( x

‖x‖2

)∥

∥

∥

2
≥ t
)

= σn
2 (u ∈ S

n−1
2 : ‖x‖2‖PE0u‖2 ≥ t) .

By Theorem 9.3.2, G/‖G‖2 ∼ σn
2 . Thus,

σn
2 (u ∈ S

n−1
2 : ‖x‖2‖PE0T u‖2 ≥ t) = P

(

‖x‖2
‖PE0G‖2

‖G‖2
≥ t
)

.

Therefore, if E ∈ G
n
k is a random subspace independent of X having distribution

ηn
k , and G is a standard Gaussian random vector in R

n that is independent of X and
E, we have that

P(X,E)

(

(x, F ) ∈ R
n ×G

n
k : ‖PF x‖2 ≥ t

) = P(X,G)

(

(x, g) ∈ R
n × R

n : ‖x‖2
‖PE0g‖2

‖g‖2
≥ t
)

.

Here, P(X,E) denotes the joint distribution of the random vector (X,E) ∈ R
n×G

n
k ,

while P(X,G) stands for that of (X,G) ∈ R
n × R

n. By Proposition 9.3.3, X has the
same distribution as XZ/Z. Therefore,

P(X,G)

(

(x, g) ∈ R
n × R

n : ‖x‖2
‖PE0g‖2

‖g‖2
≥ t
)

= P(X,Z,G)

(

(x, z, g) ∈ R
n ×R

n × R
n : ‖x‖p

‖z‖2

‖z‖p
‖PE0g‖2

‖g‖2
≥ t
)

with P(X,Z,G) being the joint distribution of the random vector (X,Z,G) ∈ R
n ×

R
n × R

n. Consequently, we conclude that the two random variables ‖PEX‖2 and

‖X‖p ‖Z‖2‖Z‖p
‖PE0G‖2
‖G‖2

have the same distribution. ��
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Remark Let us remark that in his PhD thesis, Kim [15] was recently able to extend
the results from [1] and [9] to more general classes of random vectors under an
asymptotic thin-shell-type condition in the spirit of [2] (see [15, Assumption 5.1.2]).
For instance, this condition is satisfied by random vectors chosen uniformly at
random from an Orlicz ball.

9.5.2.4 Outlook: The Non-commutative Setting

The body of research on large deviation principles in asymptotic geometric analysis,
which we have just described above, is complemented by another paper of Kim and
Ramanan [16], in which they proved an LDP for the empirical measure of an n1/p

multiple of a point drawn from an �np-sphere with respect to the cone or surface
measure. The rate function identified is essentially the so-called relative entropy
perturbed by some p-th moment penalty (see [16, Equation (3.4)]).

While this result is again in the commutative setting of the �np-balls, Kabluchko
et al. [12] recently studied principles of large deviations in the non-commutative
framework of self-adjoint and classical Schatten p-classes. The self-adjoint setting
is the one of the classical matrix ensembles which has already been introduced in
Sect. 9.4.2.2 (to avoid introducing further notation, for the case of Schatten trace
classes we refer the reader to [12] directly). In the spirit of [16], they proved a
so-called Sanov-type large deviations principles for the spectral measure of n1/p

multiples of random matrices chosen uniformly (or with respect to the cone measure
on the boundary) from the unit balls of self-adjoint and non self-adjoint Schatten p-
classes where 0 < p ≤ +∞. The good rate function identified and the speed are
quite different in the non-commutative setting and the rate is essentially given by the
logarithmic energy (which is the negative of Voiculescu’s free entropy introduced
in [25]). Interestingly also a perturbation by a constant connected to the famous
Ullman distribution appears. This constant already made an appearance in the recent
works [10, 11], where the precise asymptotic volume of unit balls in classical matrix
ensembles and Schatten trace classes were computed using ideas from the theory of
logarithmic potentials with external fields.

The main result of [12] for the self-adjoint case is the following theorem, where
we denote by M(R) the space of Borel probability measures on R equipped with
the topology of weak convergence. On this topological space we consider the Borel
σ -algebra, denoted by B(M(R)).

Theorem 9.5.6 Fix p ∈ (0,∞) and β ∈ {1, 2, 4}. For every n ∈ N, let Zn be a
random matrix chosen according to the uniform distribution on B

n
p,β or the cone

measure on its boundary. Then the sequence of random probability measures

μn = 1

n

n
∑

i=1

δn1/pλi(Zn)
, n ∈ N,
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satisfies an LDP on M(R) with speed n2 and good rate function I : M(R) →
[0,+∞] defined by

I(μ) =
⎧

⎨

⎩

− β
2

∫

R

∫

R
log|x − y|μ(dx)μ(dy)+ β

2p log
( √

πp!(
p
2 )

2p
√
e!(

p+1
2 )

)

if
∫

R
|x|pμ(dx) ≤ 1,

+∞ if
∫

R
|x|pμ(dx) > 1.

Let us note that the case p = +∞ as well as the case of Schatten trace classes is also
covered in that paper (see [12, Theorems 1.3 and 1.5]). The proof of Theorem 9.5.6
requires to control simultaneously the deviations of the empirical measures and
their p-th moments towards arbitrary small balls in the product topology of the
weak topology on the space of probability measures and the standard topology
on R. It is then completed by proving exponential tightness. Moreover, they also
use the probabilistic representation for random points in the unit balls of classical
matrix ensembles which they have recently obtained in [10]. We close this survey
by saying that as a consequence of the LDP in Theorem 9.5.6, they obtained that
the spectral measure of n1/pZn converges weakly almost surely to a non-random
limiting measure given by the Ullman distribution, as n → ∞ (see [12, Corollary
1.4] for the self-adjoint case and [12, Corollary 1.6] for the non-self-adjoint case).
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Chapter 10
Remarks on Superconcentration
and Gamma Calculus: Applications
to Spin Glasses

Kevin Tanguy

Abstract This note is concerned with the so-called superconcentration
phenomenon. It shows that the Bakry-Émery’s Gamma calculus can provide
relevant bound on the variance of function satisfying a inverse, integrated, curvature
criterion. As an illustration, we present some variance bounds for the Free Energy
in different models from Spin Glasses Theory.

10.1 Introduction

Superconcentration phenomenon has been introduced by Chatterjee in [7] and has
given birth to a lot a work (cf. [15] for a survey). Each of these works, used
various ad-hoc methods to improve upon sub-optimal bounds given by classical
concentration of measure (cf. [4, 10]). In this note, we want to show that the
celebrated Gamma calculus from Bakry and Émery’s Theory is relevant to such
improvements. To this task, we introduce an inverse, integrated, !2 criterion which
provides a useful bound on the variance of a particular function. As far as we know,
this criterion seems to be new. We give below a sample of our modest achievement.

Denote by γn the standard Gaussian measure on R
n and by (Pt )t≥0 the standard

Ornstein–Uhlenbeck semigroup. ! will stand for the so-called “carré du champ”
operator, associated to the infinitesimal generator L = &− x · ∇ of (Pt )t≥0, and !2
its iterated operator. We refer to Sect. 10.2 for more details about this topic.

Theorem 10.1.1 Let f : R
n → R be a regular function and assume that there

exists ψ : R+ → R such that

(1) for any t ≥ 0,

∫

Rn

!2(Ptf )dγn ≤
∫

Rn

!(Ptf )dγn + ψ(t), (10.1)
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(2)

∫ ∞

0
e−2t

∫ ∞

t

e2sψ(s)dsdt <∞.

Then the following holds

Varγn(f ) ≤
∣

∣

∣

∣

∫

Rn

∇f dγn

∣

∣

∣

∣

2

+ 4
∫ ∞

0
e−2t

∫ ∞

t

e2sψ(s)dsdt.

with | · | the standard Euclidean norm.

Remark Equation (10.14) can be seen as an inverse, integrated, curvature inequality
for the function f .

As an application of Theorem 10.1.1, we show that some results due to Chatterjee
can be expressed in terms of such criterion. From our point of view, this expression
seems to ease the original scheme of proof and could possibly lead to various
extensions. It also permits to easily recover some known variance bounds in Spin
Glass Theory (cf. [5, 6, 11, 12]). Therefore let us present a short introduction to this
theory.

Most of the time, in Spin Glasses Theory, it is customary to consider a centered
Gaussian field

(

Hn(σ)
)

σ∈{−1,1}n on the discrete cube {−1, 1}n (the map σ �→
Hn(σ) is called the Hamiltonian of the system) and to focus on maxσ∈{−1,1}n Hn(σ )

(or minσ∈{−1,1}n Hn(σ )). In general, this quantity is rather complex and presents
a lack of regularity. Therefore, one focusses on a smooth approximation of the
maximum (or the minimum) called the Free Energy Fn,β . This function is defined
as follow

Fn,β = ± 1

β
log

(

∑

σ∈{−1,1}n
e±βHn(σ )

)

where β > 0 corresponds to (the inverse of) the temperature and its sign depends on
whether you want to study the maximum or the minimum of Hn over the discrete
cube.

For instance, for the Random Energy Model (REM in short), we have

Hn(σ) = √nXσ , σ ∈ {−1, 1}n

where (Xσ )σ∈{−1,1}n is a sequence of i.i.d. standard Gaussian random variables.
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For the Sherrington and Kirkpatrick’s model (SK model in short), the Hamilto-
nian is more complex,

Hn(σ) = − 1√
n

n
∑

i,j=1

Xij σiσj , σ ∈ {−1, 1}n

with (Xij )1≤i,j≤n a sequence of i.i.d. standard Gaussian random variables.
As an application of our methodology (cf. Sect. 10.4), we prove the following

two Propositions.

Proposition 10.1.1 The following holds for the SK model. Let 0 < β < 1
2 , then

Var(Fn,β) ≤ Cβ, n ≥ 1 (10.2)

where Cβ > 0 is a constant depending only on β.

Remark Talagrand obtained (cf. [11, 12]) such upper bound on the variance, for
0 < β < 1, as a consequence of precise (and much harder to prove than
our variance bounds) concentration inequalities for the Free Energy together with
second moment method. As far as we know, it is the first time that such bound is
obtained through semigroups arguments.

The methodology can also be used for the Random Energy Model (REM in short)
(cf. Sect. 10.4 for more details) and provides the following bounds.

Proposition 10.1.2 The following holds in the REM.
High temperature regime: for 0 < β < 1√

2n
, we have

Varγ2n (Fn,β) ≤ n

2n

(

1− nβ2

1− 2nβ2

)

, n ≥ 1

with C > 0 a universal constant.

Remark

(1) The preceding bound has to be compared with the results exposed in [6, 7] (be
careful with the different renormalization, in [6] the free energy is Fn,β

n
). In [6],

it is shown that

Varγ2n (Fn,β) ∼ 1

2n
× enβ

2

β2 , β <

√

log 2

2
.

The dependance (in n and β) is clearly not optimal in this regime but, as
presented in Proposition 10.1.1, the scheme of proof of our method is robust
enough to treat more complicated models. It seems natural that it can fail to
capture precise behaviour such as the one obtained in [6]. Notice also that in
[6], the authors obtained various (according to the temperature β) asymptotic
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convergence results for the (renormalized) Free Energy. Therefore, their results
only indicate the correct order of the variance of this functional. However, to
our best knowledge, this is the first time that such non-asymptotic bounds on
the variance of the Free energy is obtained for the high temperature regime
temperature.

(2) In [6] the low temperature regime was also investigated. Non-asymptotic
variance bound, in accordance with the convergence results from Bovier et al.,
was already obtained in [7] and is presented and commented in Sect. 10.4
(Proposition 10.4.4) for the sake of completeness.

(3) As we will see latter in this note, it is easier to do the proof (of the preceding
result) with the standard Gaussian measure on R

n and then to perform the
following substitutions

n←→ 2n and β ←→√
nβ

to fit the framework of [6].

This note is organized as follows. In Sect. 10.2, we recall some facts about
superconcentration and Gamma calculus. In Sect. 10.3, we will prove our main
results. Finally, in Sect. 10.4, we will give some applications in Spin Glass Theory.

10.2 Framework and Tools

In this section, we briefly recall some notions about superconcentration, Gamma
calculus and interpolation methods by semigroups. General references about these
topics could be, respectively, [1, 7].

10.2.1 Superconcentration

It is well known (cf. [4, 10]), that concentration of measure of phenomenon is
useful in various mathematical contexts. Such phenomenon can be obtained through
functional inequalities. For instance, the standard Gaussian measure, on R

n, γn
satisfies a Poincaré’s inequality:

Proposition 10.2.1 For any function f : R
n → R smooth enough, the following

holds

Varγn(f ) ≤
∫

Rn

|∇f |2dγn (10.3)

where | · | stands for the Euclidean norm.
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Although this inequality holds for a large class of function, it could lead to sub-
optimal bounds. A classical example is the function f (x) = maxi=1,...,n xi . For such
function, Poincaré’s inequality implies that

Varγn(f ) ≤ 1

but it is known that Varγn(f ) ∼ C
logn

for some constant C > 0. In Chatterjee’s ter-
minology, in this Gaussian framework, a function f is said to be superconcentrated
when Poincaré’s inequality (10.3) is sub-optimal.

As we have said in the introduction, this phenomenon has been studied in various
manner: semigroup interpolation [14], Renyi’s representation of order statistics
[3], Optimal Transport [15], Ehrard’s inequality [17],. . . (cf. the Thesis [16] for a
recent survey about superconcentration). In this note, we want to show that some
differential inequalities between the operator ! and !2 from Bakry and Émery’s
Theory could provide superconcentration.

10.2.2 Semigroups Interpolation and Gamma Calculus

For more details about semigroups interpolation and ! calculus, we refer to [1, 9].
Although our work can easily be extended to a more general framework, we will
focus on a Gaussian setting.

The Ornstein–Uhlenbeck process (Xt)t≥0 is defined as follow:

Xt = e−tX +
√

1− e−2tY, t ≥ 0,

with X and Y i.i.d. standard Gaussian vectors in R
n. The semigroup (Pt )t≥0, asso-

ciated to this process, acts on a class of smooth function A (due to the integrability
of Gaussian densities, one can choose here for A the class of C∞ functions whose
derivatives are rapidly decreasing) and admits an explicit representation formula:

Ptf (x) =
∫

Rn

f
(

xe−t +
√

1− e−2t y
)

dγn(y), x ∈ R
n, t ≥ 0

Its infinitesimal generator is given by

L = &− x · ∇

Furthermore, γn is the invariant and reversible measure of (Pt )t≥0. That is to say,
for any function f and g belonging to A,

∫

Rn

Ptf dγn =
∫

Rn

f dγn and
∫

Rn

f Ptgdγn =
∫

Rn

gPtf dγn.
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Now, let us recall some properties satisfied by (Pt )t≥0 which will be useful in the
sequel.

Proposition 10.2.2 The Ornstein–Uhlenbeck semigroup (Pt )t≥0 satisfies the fol-
lowing properties

• Pt (f ) is a solution of the heat equation associated to L

i.e. ∂t (Ptf ) = Pt(Lf ) = L(Ptf ). (10.4)

• (Pt )t≥0 is ergodic, that is to say, for f ∈ A

lim
t→+∞Pt(f ) =

∫

Rn

f dγn = Eγn[f ] (10.5)

• (Pt )t≥0 commutes with the gradient ∇. More precisely, for any function f ∈ A,

∇Pt (f ) = e−tPt (∇f ), t ≥ 0. (10.6)

• (Pt )t≥0 is a contraction in Lp(γn), for any function f ∈ Lp(γn) and every t ≥ 0,

‖Pt (f )‖p ≤ ‖f ‖p. (10.7)

As it is exposed in [1], it is possible to give a dynamical representation of the
variance of a function f along the semigroup (Pt )t≥0:

Varγn(f ) = 2
∫ ∞

0

∫

Rn

|∇Ps(f )|2dγnds = 2
∫ ∞

0
e−2s

∫

Rn

|Ps(∇f )|2dγnds
(10.8)

10.2.3 Gamma Calculus and Poincaré’s Inequality

Let us introduce the fundamental operator !2 and ! from Bakry and Emery’s
Theory. Given an infinitesimal generator L set, for f and g, two smooth functions,

!(f, g) = 1

2

[

L(fg)−fLg−Lfg
]

and !2(f, g) = 1

2

[

L!(f, g)−!(f, Lg)−!(Lf, g)
]

In the case of the Ornstein–Uhlenbeck’s infinitesimal generator L = &− x · ∇,
it is easily seen that

!(f ) = |∇f |2 and !2(f ) = ‖Hessf ‖2
2 + |∇f |2 (10.9)
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where ‖Hessf ‖2 = (∑n
i,j=1

( ∂2f
∂xi∂xj

)2)1/2
is the Hilbert–Schmidt norm of the

tensor of the second derivatives of f .
Now, let us briefly recall how a relationship between ! and !2 can be used to

give a elementary proof of Poincaré’s inequality (10.3).
First, notice that the representation formula of the variance (10.8) can be

expressed in terms of !:

Varγn(f ) = 2
∫ ∞

0

∫

Rn

!(Pt f )dγnds. (10.10)

Then, observe that (10.9) implies the celebrated curvature-dimension criterion
CD(1,+∞) (cf. [1])

!2 ≥ !. (10.11)

Set I (t) = ∫
Rn !(Pt f )dγn. It is classical that

I ′(t) = −2
∫

Rn

!2(Ptf )dγn, t ≥ 0

Thus, the inequality (10.11) leads to a differential inequality

∫

Rn

!2(Ptf )dγn ≥
∫

Rn

!(Ptf )dγn ⇔ 2I + I ′ ≤ 0, t ≥ 0 (10.12)

which can be easily integrated between s and t (with 0 ≤ s ≤ t). That is

I (t)e2t ≤ I (s)e2s .

It is now classical to let s → 0 to easily recover Poincaré’s inequality (10.3) for
the measure γn. As we will see in the next section, we will show that a differential
inequality of the form

I ′ ≥ −2(I + ψ), (10.13)

for some function ψ , can be used to obtain relevant bound (with respect to
superconcentration phenomenon) on the variance of the function f (being fixed)
by letting s fixed and t → +∞.

Remark Let us make few remarks.

(1) As it is proved in [1], the integrated curvature dimension inequality (10.12) is,
in fact, equivalent to the Poincaré’s inequality (10.3).

(2) As we will see in the next section, the inequality I ′ ≥ −2(I+ψ) is equivalent to
an inverse, integrated, curvature dimension inequality which seems to be new.
However, notice that the major difference between (10.12) and (10.13) is that
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the first one holds for a large class of function whereas the second is only true
for a particular function f (and ψ depends on f ).

10.3 Inverse, Integrated, Curvature Inequality

In this section, we will use the methodology exposed in the preceding section to
obtain variance bounds for a (fixed) function f satisfying an inverse, integrated,
curvature inequality ICγn(1, ψ).

First, let us state a definition. We want to highlight the fact that this definition will
be stated in a Gaussian framework (Rn, !, γn) with ! associated to the infinitesimal
generator L = &−x ·∇ and the Ornstein–Uhlenbeck’s semigroup (Pt )t≥0. The next
definition can be extended, mutatis mutandis, to fit the general framework of [1].

Definition 10.3.1 Let f : Rn → R be a smooth function. We say that f satisfy an
inverse, integrated, curvature criterion with function ψ : R+ → R if

∫

Rn

!2(Ptf )dγn ≤
∫

Rn

!(Ptf )dγn + ψ(t), t ≥ 0 (10.14)

When the previous inequality is satisfied we denote it by f ∈ ICγn(1, ψ).

Remark

(1) Notice, again, that the inequality (10.14) holds, a priori, only for the function
f .

(2) More generally, as it will be needed in the sequel, if μ is a Gaussian measure
we will say that f ∈ ICμ(1, ψ) if Eq. (10.14) is satisfied with μ instead of γn
and with the operators ! and !2 associated to the Markov Triple (Rn, L,μ).

Now, let us prove our main result Theorem 10.1.1.

Proof (of Theorem 10.1.1) Assume that f ∈ ICγn(1, ψ) (cf. Eq. (10.14)) holds.
This is equivalent to the following differential inequality:

I ′ ≥ −2(I + ψ), (10.15)

where I (t) = ∫

Rn |∇Ptf |2dγn, t ≥ 0. Set I (t) = K(t)e−2t , inequality (10.15)
becomes

K ′(t) ≥ −2e2tψ(t), t ≥ 0 (10.16)

Now, integrate inequality (10.16) between s and t . That is

K(t)−K(s) ≥ −2
∫ t

s

e2uψ(u)du, for all 0 ≤ s ≤ t .
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Then, let t →∞, this yields

K(s) ≤ [ lim
t→∞K(t)

]+ 2
∫ ∞

s

e2uψ(u)du, s ≥ 0,

To conclude, observe that

K(t) = I (t)e2t →t→∞
∣

∣

∣

∣

∫

Rn

∇f dγn

∣

∣

∣

∣

2

by ergodicity of (Pt )t≥0. Finally, we have, for every t ≥ 0,

I (t) =
∫

Rn

!(Ptf )dγn ≤ e−2t
(∣

∣

∣

∣

∫

Rn

∇f dγn

∣

∣

∣

∣

2

+ 2
∫ ∞

t

e2sψ(s)ds

)

. (10.17)

It suffices to use the dynamical representation of the variance (10.8) with
elementary calculus to end the proof. ��
Remark This method of interpolation, between t and +∞, has also been used in
[13] in order to obtain Talagrand’s inequality of higher order.

10.3.1 Another Variance Bound

As we will see in the last section, it is sometimes useful to restrict an ICμ(1, ψ),
for some probability measure μ, up to a time T in order to improve the dependance
with respect to some parameter.

In other words, the setting is the following: assume that an ICμ(1, ψ) holds and
that we are able to produce some T > 0 such that the bound of I (T ) (given by
Eq. (10.17)) is particularly nice (with respect to some parameter). Now, we have to
bound the variance in a different manner in order to use the information on I (T ).
To this task, we will prove the next proposition.

Proposition 10.3.1 Let f : Rn → R be a function smooth enough. Then, for any
T > 0

Varγn(f ) ≤ 2T I (0)

1− e−2T

[

1

log a
− 1

a log a

]

with a = I (0)
I (T )

and I (t) = ∫
Rn !(Pt f )dγn.

Remark This proposition will be used to show that the Free Energy is super-
concentrated for some Spin Glasses models. Although we stated the preceding
Proposition 10.3.1 for the standard Gaussian measure γn, it will also hold (up
to obvious renormalization) for μ the law of a centered Gaussian vector with
covariance matrix M .
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To prove the preceding theorem, we will need two further arguments.
First, we present an inequality due to Cordero-Erausquin and Ledoux [8]. The

proof of this inequality rests on the fact that the Poincaré’s inequality satisfied by γn
implies an exponential decay of the variance along the semigroup (Pt )t≥0.

Lemma 10.3.1 (Cordero-Erausquin–Ledoux) Let f : R
n → R be a function

smooth enough. Then, for any T > 0, the following holds

Varγn(f ) ≤ 2

1− e−2T

∫ T

0
I (t)dt (10.18)

with I (t) = ∫
Rn !(Ptf )dγn.

Proof For the sake of completeness we give the proof of the preceding Lemma.

Varγn(f ) = Eγn[f 2] − Eγn[(PT f )2] + Eγn[(PT f )2] − Eγn [PT f ]2

= −
∫ T

0

d

ds
Eγn [(Psf )2]ds + Varγn(PT f )

≤ 2
∫ T

0
I (s)ds + e−2T Varγn(f ).

��
Secondly, we will use the fact that the infinitesimal generator (−L) of the

Ornstein–Uhlenbeck process (Xt )t≥0 admits a (discrete) spectral decomposition.
Then, denote by dEλ the spectral resolution of (−L). According to [1], this leads to
a different representation of t �→ I (t). With f : Rn → R being fixed, we have:

I (t) =
∫

Rn

|∇Ptf |2dγn =
∫ ∞

0
λe−2λtdEλ(f ), t ≥ 0

As it is proven in [2] (cf. Corollary 5.6), t �→ I (t) satisfies, with the preceding
representation, an Hölder-type inequality. That is to say, for every T > 0,

Lemma 10.3.2 (Baudoin–Wang)

I (s) ≤ I (0)1−s/T I (T )s/T , 0 ≤ s ≤ T (10.19)

Now, we can prove Proposition 10.3.1 with the help of preceding Lemma.

Proof (of Proposition 10.3.1) First use Lemma 10.3.1 to get

Varγn(f ) ≤ 2

1− e−2T

∫ T

0
I (t)dt.
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Then, use Lemma 10.3.2. This yields

Varγn(f ) ≤ 2

1− e−2T

∫ T

0
I (0)1−t/T I (T )t/T dt

= 2I (0)

1− e−2T

∫ T

0
e−

t
T log adt

where a = I (0)
I (T )

≥ 1 and I (t) = ∫
Rn !(Pt f )dγn. Finally, elementary calculus ends

the proof. ��

10.4 Application in Spin Glasses’s Theory

In the remaining of this section, we will show how Theorem 10.1.1 can be used to
provide relevant bounds on the variance of Fn,β . We will focus on the REM and
the SK Model. For the remaining of this note we will denote by fβ , for β > 0, the
following function

fβ(x) = 1

β
log
(

n
∑

i=1

eβxi
)

, x = (x1, . . . , xn) ∈ R
n

10.4.1 Random Energy Model

In this section we will show how Theorem 10.1.1 is useful to obtain relevant bound
on the variance of the Free Energy Fn,β (with β close to 0) for the REM.

Proposition 10.4.1 For any β > 0, fβ ∈ ICγn(1, ψ) with

ψ(t) = 2β2e−2t I (t)

where, let us recall it, I (t) = ∫

Rn !(Ptfβ)dγn and ! is the standard “carré du
champ” operator.

We will need the following Lemma to prove the preceding Proposition.

Lemma 10.4.1 Let (ui)i=1,...,n be a family of functions, with ui : Rn → R for any
i = 1, . . . , n, satisfying the following condition

n
∑

i=1

u2
i (x) ≤ 1 for all x ∈ R

n
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Then, for any function v : Rn → R+ and any probability measure μ, we have

n
∑

i=1

(∫

Rn

ui(x)v(x)dμ(x)

)2

≤
(∫

Rn

vdμ

)2

Proof Consider the vector U = (u1v, . . . , unv) ∈ R
n and recall that | · | stands for

the Euclidean norm. Then, it holds

[ n
∑

i=1

(∫

Rn

ui(x)v(x)dμ

)2]1/2

=
∣

∣

∣

∣

∫

Rn

Udμ

∣

∣

∣

∣

≤
∫

Rn

|U |dμ =
∫

Rn

[ n
∑

i=1

u2
i (x)

]1/2

v(x)dμ

≤
∫

Rn

v(x)dμ

where the first upper bound comes from Jensen’s inequality. ��
Now we turn to the proof of Proposition 10.4.1.

Proof (of Proposition 10.4.1) First, observe that the condition ICγn(1, ψ) is equiv-
alent to

∫

Rn

!2
(

Pt (fβ)
)

dγn ≤ (1+ 2β2e−2t )

∫

Rn

!
(

Pt(fβ)
)

dγn, t ≥ 0.

That is (since !2(f ) = ‖Hessf ‖2
2 + |∇f |2 and !(f ) = |∇f |2)

∫

Rn

‖HessPt(fβ)‖2
2dγn ≤ 2β2e−2t

∫

Rn

|∇Pt(fβ)|2dγn, t ≥ 0. (10.20)

Now, observe that, pointwise, Eq.(10.20) is equivalent to (thanks to the commu-
tation property between ∇ and (Pt )t≥0)

n
∑

i,j=1

[Pt (∂
2
ij fβ)]2 ≤ 2β2

n
∑

i=1

[Pt(∂ifβ)]2, ∀t ≥ 0

Elementary calculus yields, for every i = 1, . . . , n, and every β > 0,

∂ifβ = eβxi
∑n

k=1 e
βxk

and, for every j = 1, . . . , n,

∂j ∂ifβ = β(∂ifβδij − ∂ifβ∂jfβ).
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Thus, for every t ≥ 0,

n
∑

i,j=1

[Pt (∂
2
ij fβ)]2 = β2

n
∑

i=1

[

Pt(∂ifβ)
]2−2β

n
∑

i=1

Pt(∂ifβ)Pt

[

(∂ifβ)
2]+β2

n
∑

i,j=1

[

Pt(∂ifβ∂j fβ)
]2
.

First ignore the crossed terms (which are always non positive), then apply
Lemma 10.4.1 to the third term.

Indeed, let i ∈ {1, . . . , n} be fixed and set uj = ∂jfβ and v = ∂ifβ . Thus,
Lemma 10.4.1 implies

n
∑

j=1

[

Pt (∂ifβ∂jfβ)
]2 ≤ P 2

t (∂ifβ).

This inequality finally yields,

n
∑

i,j=1

[Pt(∂
2
ij fβ)]2 ≤ β2

n
∑

i=1

[

Pt (∂ifβ)
]2 + β2

n
∑

i,j=1

[

Pt(∂ifβ∂jfβ)
]2 ≤ 2β2

n
∑

i=1

[

Pt (∂ifβ)
]2
.

��
Now, the criterion ICγn(1, ψ) can be used gives to provide relevant bound on the

variance of Fn,β as stated in Proposition 10.1.2.

Proof (of Proposition 10.1.2) As mentioned earlier, the proof will be done for the
standard Gaussian measure on R

n and then it will be enough to perform a change of
variable. As it will be useful in the sequel, observe that (by symmetry) the following
holds

∫

Rn

∂ifβdγn = 1

n
, ∀i = 1, . . . , n.

Now, let β > 0 and use Theorem 10.1.1 which implies that

Varγn(Fn,β) ≤ 1

n
+ 4β2

∫ ∞

0
e−2s(1− e−2s)

n
∑

i=1

∫

Rn

P 2
s (∂ifβ)dγnds (10.21)

where we used Fubini’s Theorem and the commutation property between ∇ and Ps .

For the first bound, when β ∈ (

0,
√

2
2 ), it is possible to rewrite (thanks to the

dynamical representation of the variance (10.21)) the integral in the right hand side
as

2β2Varγn(Fn,β)− 4β2
∫ ∞

0
e−4s

n
∑

i=1

∫

Rn

P 2
s (∂ifβ)dγnds (10.22)
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Furthermore, by Jensen’s inequality and the invariance of (Pt )t≥0 with respect to
γn, we have

∫

Rn

P 2
s (∂ifβ)dγn ≥

(∫

Rn

Ps(∂ifβ)dγn

)2

= 1

n2 , ∀i = 1, . . . , n, ∀s > 0

Thus, Varγn(Fn,β) ≤
(

1−β2

1−2β2

)

1
n

.

To conclude, as announced, it is enough to substitute n by 2n and β by
√
nβ to

get the result. ��
Remark Incidentally, the preceding proof can be used to get a lower bound on the
variance of the Free energy. More precisely, it is possible to deduce from (10.21)
and (10.22) the following lower bound

Varγ2n (Fn,β) ≥ n

2n

(1− nβ2)

(1− 2β2n)
, for β >

1√
2n

10.4.2 SK Model

In this section we show how some work of Chatterjee (from [7]) can be rewritten
in term of an inverse, integrated, curvature criterion. Then, it allows us to easily
recover a bound, obtained by Talagrand (cf. [11, 12]), on the variance of the Free
Energy for the SK model at high temperature.

First, we need to express the ! and !2 operator when γn is replaced by μ the law
of a centered Gaussian vector, in R

n, with covariance matrix M .
Let X be a random Gaussian vector with L(X) = μ and consider Y an

independent copy of X. It is then possible to define the generalized Ornstein–
Uhlenbeck process, which we will still denote by (Xt )t≥0, as follow

Xt = e−tX +
√

1− e−2tY, t ≥ 0

Similarly, we also denote by (Pt )t≥0 the associated semigroup. Then, it is known
(cf. [7, 14, 16]) that, for any smooth function f : Rn → R,

I (t) =
∫

Rn

!(Ptf )dμ = 2
∫

Rn

e−2t
∑

i,j

Mij (∂if )Pt (∂j f )dμ, t ≥ 0

As we will see latter, it will be more convenient to work with

Ir (t) = 2
∫

Rn

e−2t
∑

i,j

(Mij )
r (∂if )Pt (∂j f )dμ, t ≥ 0

where r is a positive integer. In the rest of this section, we choose f = fβ .
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Proposition 10.4.2 (Chatterjee) Assume that Mij ≥ 0 for all (i, j) ∈ {1, . . . , n}2.
Then, for any t ≥ 0, the following holds

I ′r (t) ≥ −2
[

Ir (t)+ 2β2e−2t Jr+1(t)
]

(10.23)

with Jr(t) = e2t Ir (t).

Remark

(1) In [7], Chatterjee proved that J ′r (t) ≥ −4β2e−2t Jr+1(t) for any r ∈ N
∗. The

proof is similar the proof of Lemma 10.4.1 with the additional use of Hölder’s
inequality.

(2) In particular, when r = 1, Chatterjee’s proposition amounts of saying that

fβ ∈ ICμ(1, ψ)

with ψ(t) = 2β2e−2t J2(t). Unfortunately, it remains hard to upper bound this
quantity by something relevant.

As observed in the preceding remark, the inverse, integrated, curvature criterion
can not be used in the present form. However, it is possible to recycle the arguments
of Sect. 10.3. That is, use l times, with l ∈ N, the fundamental Theorem of analysis
(on t �→ Ir (t)) together with the inequality (10.23) and let l → +∞. This leads to
a useful bound on the function t �→ Ir (t) for any r ∈ N

∗.

Theorem 10.4.1 (Chatterjee) Assume that Mij ≥ 0 for all (i, j) ∈ {1, . . . , n}2.
Then, for any t ≥ 0, the following holds

Ir (t) ≤ e−2t
n
∑

i,j=1

(Mij )
re2β2e−2tMij νiνj , ∀r ≥ 1 (10.24)

where νi =
∫

Rn ∂ifβdμ for all i = 1, . . . , n.

Remark When r = 1, the main step of Chatterjee’s proof is equivalent to show that
fβ ∈ ICμ(1, ψ) with ψ(t) = 2β2e−2t ∑

i,j=1 Mij e
2β2e−2tMij νiνj . The proof of

this result can be found in [7, pp. 108–110] .

Unfortunately, the repeated use of the differential inequality (10.23) degrades the
upper bound on t �→ Ir (t). As we will briefly see in the next subsection, Chatterjee
used Eq. (10.24) only for a fixed T > 0 (large enough). We show, in the next
Proposition, that this bound (for r = 1) is still relevant to recover some work of
Talagrand on the variance of Fn,β , with small β, for the SK model (cf. [11, 12]).

Now, let us prove Proposition 10.1.1.

Proof (of Proposition 10.1.1) First we show that inequality (10.24) leads to a
general upper bound on the variance of Fn,β which might be of independent interest.
Then, we choose M to be the covariance structure of the SK model and proved
inequality (10.2).
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When r = 1, Eq. (10.24) combined with Eq. (10.10) implies that, for any β > 0,

Varμ(Fn,β) ≤ 2
∫ ∞

0
e−2t

n
∑

i,j=1

Mij e
2β2e−2tMij νiνj dt

≤ 1

2β2

n
∑

i,j=1

e2β2Mij νiνj

Following Chatterjee (cf. [7]), choose M to be the covariance structure of the SK
model. That is,

Mσσ ′ =
(

1√
n

n
∑

i=1

σiσ
′
i

)2

, ∀σ, σ ′ ∈ {−1, 1}n.

Besides, observe (by symmetry) that, for each σ ∈ {−1, 1}n,

νσ = Eμ

[

∂σFn,β

] = 1

2n
.

Thus,

Varμ(Fn,β) ≤ 1

2β2Eσ,σ ′
[

e
2β2
(

1√
n
σiσ

′
i

)2]

where Eσ ′σ stands for the expectation under the product measure induced by the
Rademacher random variables σi, σ

′
i , i = 1, . . . , n.

Finally, if β ∈ (

0, 1
2

)

we have Eσ,σ ′
[

e
2β2
(

1√
n

∑n
i=1 σiσ

′
i

)2]

= C(β). Indeed,

observe first that
∑n

i=1 σiσ
′
i has the same distribution as

∑n
i=1 σi . Then, it is enough

to use Hoeffding’s inequality (cf.[4]), which gives the following deviation inequality

P

(

1√
n

n
∑

i=1

σi > t

)

≤ e−t2/2 t ≥ 0,

to conclude. ��

10.4.3 Improvements of Variance Bounds with Respect to the
Parameter β

Let us collect some results of Chatterjee and briefly explain how Proposition 10.3.1
can be used to improve the dependence of the variance bounds with respect to β.
However, the dependance in n will be worse.
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Chatterjee used, in [7], a Theorem of Bernstein about completely monotone
function. As far as we are concerned, the spectral framework exposed in Sect. 10.3
seems to be more natural to work with and provides equivalent results.

The arguments, in order to improve the dependance in β, can be summarize as
follow: choose T such that I (T ) can be bounded by a relevant quantity and apply
Proposition 10.3.1.

Proposition 10.4.3 (Chatterjee) In the SK model the following holds

Varμ(Fn,β) ≤ C1n log(2+ C2β)

logn
, ∀β > 0

with C1, C2 > 0 two numerical constants.

Remark Here T > 0 is chosen such that

Eσ,σ ′
[

Mσσ ′e
2β2e−2T Mσσ ′

]

= Cβ, ∀β > 0

where Mσσ ′ =
( 1√

n

∑n
i=1 σiσ

′
i

)2
and Cβ > 0 is a constant that does not depend on

n. That is T = 1
2 log

( 2β2

γ

)

for some sufficiently small constant γ > 0 (cf. [7]).

Proposition 10.4.4 (Chatterjee) In the REM, the following holds for β >

2
√

log 2,

Varμ(Fn,β) ≤ Cβ

where Cβ > 0 is a constant that does not depend on n.

Remark Here T is chosen as T = 1
2 log(2β2) so that I (T ) ≤ n

2n e
−2T en and the

upper bound is relevant in the low temperature regime (cf. [6, 7]). Again, notice the
difference of renormalization with Proposition 10.1.2 (one has to replace the number
of random variables n by 2n and the i.i.d. standard Gaussian random variables
(Xi)i=1,...,2n by

√
nXi in the Proposition). In [7], Chatterjee also proved that the

upper bound is tight.
In fact, it also possible to use hypercontractive arguments instead of Theo-

rem 10.4.1 to achieve the upper bound of Proposition 10.4.4. Indeed, one can
use the inequality (10.21) together with hypercontractive estimates of (Pt )t≥0 (cf.
[7, 8, 15, 16]). More precisely, we have

‖Ps(∂ifβ)‖2
2 ≤ ‖∂ifβ‖2

1+e−2s , ∀i = 1, . . . , n, ∀s > 0

It is then standard, cf. Section 4 in [16] for instance, to prove that

∫ ∞

0
e−2s(1− e−2s)‖∂ifβ‖2

1+e−2s ds ≤ C‖∂ifβ‖2
2

[

1+ log ‖∂ifβ‖2
‖∂ifβ‖1

]2
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where C > 0 is a numerical constant. Then, it is elementary to conclude. Notice that
such estimates are already implicit in the celebrated L1/L2 Talagrand’s inequality
(presented in [7, 8] for instance), which one can also be directly used to recover the
content of Proposition 10.4.4.

Acknowledgements I thank M. Ledoux for fruitful discussions on this topic. I also warmly thank
the referee for helpful comments in improving the exposition and the simplification of the proof of
Lemma 10.4.1.
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Chapter 11
Asymptotic Behavior of Rényi Entropy
in the Central Limit Theorem

Sergey G. Bobkov and Arnaud Marsiglietti

Abstract We explore an asymptotic behavior of Rényi entropy along convolu-
tions in the central limit theorem with respect to the increasing number of i.i.d.
summands. In particular, the problem of monotonicity is addressed under suitable
moment hypotheses.

Keywords Rényi entropy · Central limit theorem

2010 Mathematics Subject Classification Primary 60E, 60F

11.1 Introduction

Given a (continuous) random variable X with density p, the associated Rényi
entropy and Rényi entropy power of index r (1 < r <∞) are defined by

hr(X) = − 1

r − 1
log
∫ ∞
−∞

p(x)r dx, Nr (X) = e2hr (X) =
(∫ ∞

−∞
p(x)r dx

)− 2
r−1

.

Being translation invariant and homogeneous of order 2, the functional Nr is similar
to the variance and is often interpreted as measure of uncertainty hidden in the
distribution of X. Another representation

Nr(X)−
1
2 = (

Ep(X)r−1)
1

r−1
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shows that Nr is non-increasing in r , so that 0 ≤ N∞ ≤ Nr ≤ N1 ≤ ∞. Here, for
the extreme indexes, the Rényi entropy power is defined by the monotonicity,

N∞(X) = lim
r↑∞Nr(X) = ‖p‖−2∞ , N1(X) = lim

r↓1
Nr(X) = e2h1(X),

where ‖p‖∞ is the essential supremum of p(x). In the case r = 1, we arrive at the
Shannon differential entropy h1(X) = h(X) = − ∫ p(x) logp(x) dx with entropy
power N1 = N = e2h (provided that Nr(X) > 0 for some r > 1).

Much of the analysis about the Shannon and Rényi entropies is focused on the
behavior of these functionals on convolutions, i.e., for sums Sn = X1 + · · · +Xn of
independent random variables (including a multidimensional setting). First, let us
recall a fundamental entropy power inequality, which may be written in terms of the
normalized sums Zn = Sn/

√
n as

N(Zn) ≥ 1

n

n
∑

k=1

N(Xk). (11.1)

There are also some extensions of this relation to the Rényi case (cf. [4, 5, 9, 10]).
When Xk’s are independent and identically distributed (i.i.d.), with mean zero

and variance one, the central limit theorem (CLT) asserts that Zn ⇒ Z with weak
convergence in distribution to the Gaussian limit Z ∼ N(0, 1). In this case, the
right-hand side of (11.1) is constant, while the sequence on the left is monotone, as
was shown by Artstein, Ball, Barthe and Naor [1], cf. also [12] (the inequality (11.1)
itself ensures that N(Zn) are non-decreasing along the values n = 2l). Moreover,
by another important result due to Barron [2], we have the entropic CLT: N(Zn) are
convergent to the entropy power N(Z), as long as N(Zn0) > 0 for some n0.

These results give rise to a number of natural questions about an asymptotic
behavior of the Rényi entropy powers Nr(Zn). In particular, when do they converge
to Nr(Z), and if so, what is the rate of convergence? Is the monotonicity still true?
As we will see, such questions may be studied, at least partially, under suitable
moment assumptions.

Let us state a few observations in these directions, assuming throughout that
X,X1,X2, . . . are i.i.d. random variables with EX = 0 and Var(X) = 1. Put βs =
E |X|s for real s ≥ 2. In order to describe necessary and sufficient conditions for
the convergence of the Rényi entropies in the CLT, we also introduce the common
characteristic function

f (t) = E eitX (t ∈ R).

Theorem 11.1.1 Given 1 < r ≤ ∞, we have the convergence Nr(Zn) → Nr(Z)

or equivalently hr(Zn)→ hr(Z) as n→∞, if and only if

∫ ∞

−∞
|f (t)|ν dt <∞ f or some ν ≥ 1. (11.2)
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Equivalently, this holds if and only if Zn have bounded densities for all (some) n

large enough.

This characterization coincides with the one for the uniform local limit theorem
due to Gnedenko, cf. [11]. Since (11.2) is equivalent to the property that Zn have
bounded and hence bounded Ck-smooth densities for any fixed k and all n large
enough, it is often referred to as the smoothing condition. In general, (11.2) is
stronger than what is needed in the entropic case r = 1. In this connection, let
us note that there is still no explicit description such as (11.2) for the validity of the
entropic CLT in terms of the characteristic function f (t).

Once (11.2) is fulfilled, one may ask about the rate of convergence in Theo-
rem 11.1.1, which may be guaranteed assuming that the absolute moment βs is finite
for some s > 2. Moreover, in this case one may obtain asymptotic expansions for
Nr(Zn) in powers of 1/n similarly to the entropic expansions derived in [8]. They
involve the moments of X up to order m = [s], or equivalently—the cumulants

γk = i−k (log f )(k)(0), k = 1, . . . ,m.

In the Gaussian case X ∼ N(0, 1), all cumulants are vanishing, starting with k = 2.
In the general case, they indicate how close a given distribution to the normal. As
for the asymptotic behavior of Rényi’s entropies, it turns out that a special role is
played by the quantity

b = b(r) = −1

r

[

2− r

12
γ 2

3 +
r − 1

8
γ4

]

.

Here, γ3 = EX3 and γ4 = EX4 − 3, while for the extreme indexes, one may just
put

b(1) = lim
r→1

b(r) = − 1

12
γ 2

3 , b(∞) = lim
r→∞ b(r) = 1

12
γ 2

3 −
1

8
γ4.

This can be seen from the following assertion.

Theorem 11.1.2 Suppose that the smoothing condition (11.2) is fulfilled. If βs is
finite for 2 ≤ s < 4, then for any 1 < r <∞,

hr(Zn) = hr(Z)+ o(n−
s−2

2 ), Nr(Zn) = Nr(Z)+ o(n−
s−2

2 ). (11.3)

Moreover, in case 4 ≤ s < 6,

hr(Zn) = hr(Z)+ b n−1 + o(n−
s−2

2 ), (11.4)

Nr(Zn) = Nr(Z)
(

1+ 2b n−1)+ o(n−
s−2

2 ).
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This assertion remains valid in the entropic case r = 1 as well (with a slight
logarithmic improvement in the remainder o-term, cf. [8]). In case s = 6, the
remainder term may be improved to O(n−2), and in fact, one may add quadratic
terms to get an expansion

hr(Zn) = hr(Z)+ b n−1 + b2n
−2 + o(n−2) (11.5)

with some functional b2 = b2(r) depending also on γ5 and γ6. Regardless of its
value, one may therefore conclude about an eventual monotonicity of Nr(Zn) based
on the sign of b. Moreover, the above expansions continue to hold for r = ∞, so
that this case may be included as well.

Theorem 11.1.3 Suppose that the smoothing condition (11.2) is fulfilled, and let β6
be finite. Given 1 < r ≤ ∞, there exists n0 ≥ 1 such that the sequence Nr(Zn) is
increasing for n ≥ n0, whenever b(r) < 0, that is, if

2− r

3
γ 2

3 +
r − 1

2
γ4 > 0 (1 < r <∞), γ4 >

2

3
γ 2

3 (r = ∞).

This sequence is decreasing for n ≥ n0, if b(r) > 0.

In particular, under the last condition γ4 > 2
3 γ 2

3 , the sequence Nr(Zn) is

eventually increasing for any fixed r ≥ 1. For example, this holds for X = ξ−α√
α

,

where the random variable ξ has a Gamma distribution with α degrees of freedom
(in which case γ3 = 2/

√
α and γ4 = 6/α).

On the other hand, if X is uniformly distributed in the interval (−√3,
√

3), then
γ3 = 0, γ4 = −6/5, so Nr(Zn) is eventually decreasing for any r > 1, although the
opposite property takes place for r = 1.

The paper is organized as follows. We start with the proof of Theorem 11.1.1
(Sect. 11.2), and then collect together basic results on Edgeworth expansions for
densities pn of Zn (Sect. 11.3). They are used in Sects. 11.4–11.5 to construct a
formal asymptotic expansion for Lr -norms of pn in powers of 1/n up to order
[m−2

2 ] with remainder term as in (11.3)–(11.4). One particular case, where the
first moments of X agree with those of Z ∼ N(0, 1), is discussed separately in
Sect. 11.6, while the range 4 ≤ s ≤ 8 in such expansion is treated in Sect. 11.7. The
transition to the Rényi entropy is performed in Sect. 11.8, where Theorem 11.1.2 is
proved. Some comparison with the entropic CLT is given in Sect. 11.9, with remarks
leading to Theorem 11.1.3 for finite r . Finally, the index r = ∞ is treated separately
in Sect. 11.10. We refer to [6] for an extended version of the article where more
computational details are provided.
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11.2 Proof of Theorem 11.1.1

From now on, let X,X1,X2, . . . be i.i.d. random variables with EX = 0 and
Var(X) = 1, for which we define the normalized sums

Zn = X1 + · · · +Xn√
n

, n = 1, 2, . . .

First, let us recall Gnedenko’s uniform local limit theorem. Assuming the
smoothing condition (11.2), it asserts that, for all n large enough, the random
variables Zn have bounded densities pn, and moreover, in that case as n→∞,

sup
x
|pn(x)− ϕ(x)| → 0. (11.6)

Here, as usual,

ϕ(x) = 1√
2π

e−x2/2 (x ∈ R)

denotes the density of the standard normal random variable Z. Clearly, the property
(11.6) is also necessary for the uniform boundedness of pn’s.

Let us explain the equivalence of the two conditions—in terms of the character-
istic function as in (11.2), and in terms of densities (via the existence of a bounded
density). Since |f (t)| ≤ 1 for all t , the property (11.2) is getting weaker for growing
ν, so it is sufficient to consider integer values of ν. Since Zn has characteristic
function

fn(t) = E eitZn = f (t/
√
n)n,

(11.2) implies that Zn has a bounded, continuous density pn for n = ν, by the
Fourier inversion formula. Hence the same is true for all n ≥ ν, by the convolution
character of the distributions of Zn. Conversely, suppose that Zn has a bounded
density pn for n = n0. This implies that pn ∈ Lr(R) for any r ≥ 1, with norm

‖pn‖r =
(∫ ∞

−∞
pn(x)

r dx

)1/r

,

and in particular pn ∈ L2(R). By Plancherel’s theorem, the characteristic function
fn is also in L2(R). But this means that (11.2) is fulfilled with ν = 2n0.

Also note that, under the condition (11.2), we have fν(t) → 0 as t → ∞
(the Riemann-Lebesgue lemma), and thus f (t) → 0. Hence, (11.2) represents
a sharpening of the Cramér condition lim supt→∞ |f (t)| < 1, which is used to
establish a number of asymptotic results related to the CLT. In particular, using
the Fourier inversion formula, one can easily obtain (11.6) and actually a sharper
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statement such as

sup
x

(1+ x2) |pn(x)− ϕ(x)| → 0 (n→∞). (11.7)

Proof of Theorem 11.1.1 First, let r = ∞. As explained, the smoothing condition
(11.2) implies the uniform local limit theorem (11.6). In turn, the latter yields
‖pn‖∞ → ‖ϕ‖∞, that is, N∞(Zn) → N∞(Z) as n → ∞. Conversely, this
convergence ensures that N∞(Zn) > 0 for all n large enough, that is, ‖pn‖∞ <∞.
As was also emphasized, this implies (11.2).

Now, let 1 < r < ∞. If Nr(Zn) → Nr(Z) as n → ∞, then Nr(Zn) > 0 for
all n large enough, say n ≥ n0. Equivalently, for such n, Zn have densities pn with
‖pn‖r < ∞. If r ≥ 2, then ‖pn‖2 ≤ 1 + ‖pn‖r < ∞, so that pn and therefore fn

are in L2(R). This means that (11.2) is fulfilled for ν = 2n0. In the case 1 < r < 2,
one may apply the Hausdorff-Young inequality

‖û‖r ′ ≤ ‖u‖r , where û(t) =
∫ ∞

−∞
e2πitx u(x) dx, r ′ = r

r − 1
.

It implies that ‖fn‖r ′ ≤
√

2π ‖pn‖r < ∞, which means that (11.2) is fulfilled for
ν = r ′n0.

Thus, the smoothing condition (11.2) is indeed necessary. To argue in the other
direction, we apply the uniform local limit theorem: For all n ≥ n0 large enough,
Zn have densities pn, bounded by a constant M and moreover, the relation (11.6)
holds true, i.e.,

sup
x

∣

∣pn(x)
r − ϕ(x)r

∣

∣ ≤ εn → 0 (n→∞). (11.8)

For a given ε > 0, applying the usual central limit theorem, one may pick up T > 0
such that

P{|Zn| > T } + P{|Z| > T } < ε, n ≥ n1 ≥ n0.

Hence
∫

|x|>T

pn(x)
r dx ≤ Mr−1

∫

|x|>T

pn(x) dx = Mr−1
P{|Zn| > T } < Mr−1ε,

and similarly for ϕ(x). Hence

∣

∣

∣

∣

∫

|x|>T

pn(x)
r dx −

∫

|x|>T

ϕ(x)r dx

∣

∣

∣

∣

< Mr−1ε. (11.9)
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On the other hand, by (11.8),

∣

∣

∣

∣

∫

|x|≤T

pn(x)
r dx−

∫

|x|≤T

ϕ(x)r dx

∣

∣

∣

∣

≤
∫

|x|≤T

|pn(x)
r−ϕ(x)r | dx ≤ 2T εn ≤ ε,

where the last inequality holds for all n ≥ n2 with some n2 ≥ n1. Together with
(11.9), we get

∣

∣ ‖pn‖rr − ‖ϕ‖rr
∣

∣ < (Mr−1 + 1) ε, n ≥ n2.

That is, ‖pn‖rr → ‖ϕ‖rr as n→∞, thus proving the theorem. ��

11.3 Limit Theorems About Edgeworth Expansions

As is well-known, in case of the finite 3-rd absolute moment β3 = E |X|3, and
assuming the smoothness condition (11.2), the local limit theorems (11.6)–(11.7)
can be sharpened to

sup
x

(1+ |x|3) |pn(x)− ϕ(x)| = o
( 1√

n

)

(n→∞). (11.10)

Here, the rate cannot be improved in general. However, under higher order moment
assumptions, the limit normal density may slightly be modified, which leads to the
sharpening of the right-hand side of (11.10). Namely, if βm = E |X|m is finite for
an integer m ≥ 2, one may introduce the cumulants

γk = i−k (log f )(k)(0), k = 1, . . . ,m.

They represent certain polynomials in the moments αi = EXi up to order k, namely,

γk = k!
∑

(−1)j−1 (j − 1)! 1

r1! . . . rk !
(α1

1!
)r1

. . .
(αk

k!
)rk

,

where j = r1 + · · · + rk and where the summation is running over all tuples
(r1, . . . , rk) of non-negative integers such that r1 + 2r2 + · · · + krk = k.

For example, with our moment assumptions EX = 0, Var(X) = 1, we have
γ1 = 0, γ2 = 1, γ3 = α3, γ4 = α4 − 3.

Definition 11.3.1 An Edgeworth correction of the standard normal law of order m
for the distribution of Zn is a finite signed measure νm with density

ϕm(x) = ϕ(x)+ ϕ(x)

m−2
∑

k=1

Qk(x) n
−k/2, (11.11)
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where

Qk(x) =
∑ 1

r1! . . . rk!
(γ3

3!
)r1

. . .
( γk+2

(k + 2)!
)rk

Hk+2j (x). (11.12)

Here, the summation is running over all collections of non-negative integers
r1, . . . , rk such that r1 + 2r2 + · · · + krk = k, with notation j = r1 + · · · + rk .

As usual, Hk denotes the Chebyshev-Hermite polynomial of degree k with
leading term xk. The polynomial Qk in (11.11) has degree at most 3(m − 2) in
the variable x. The index m for ϕm indicates that the cumulants up to γm participate
in the construction. The sum in (11.11) may also be viewed as a polynomial in 1/

√
n

of degree at most m− 2.
For example, ϕ2 = ϕ, and there are no terms in the sum (11.11). For m =

3, 4, 5, 6, in (11.12) we correspondingly have

Q1(x) = γ3

3! H3(x),

Q2(x) =
γ 2

3

2! 3!2 H6(x)+ γ4

4! H4(x),

Q3(x) =
γ 3

3

3!4 H9(x) + γ3γ4

3! 4! H7(x)+ γ5

5! H5(x),

Q4(x) =
γ 4

3

4! 3!4 H12(x) +
γ 2

3 γ4

2! 3!2 4! H10(x)+ γ3γ5

3! 5! H8(x)+
γ 2

4

2! 4!2 H8(x)+ γ6

6! H6(x).

Moreover, if the first m− 1 moments of X coincide with those of Z ∼ N(0, 1),
then the first m− 1 cumulants of X are vanishing, and (11.11) is simplified to

ϕm(x) = ϕ(x)
(

1+ γm

m! Hm(x) n−
m−2

2

)

, γm = EXm − EZm. (11.13)

The following observation, generalizing and refining the non-uniform local limit
theorems (11.7) and (11.10), is due to Petrov [14], cf. also [3, 15]. From now on, we
always assume that the smoothing condition (11.2) is fulfilled.

Lemma 11.3.2 If βm <∞ for an integer m ≥ 2, then as n →∞

sup
x

(1+ |x|m) |pn(x)− ϕm(x)| = o
(

n−
m−2

2
)

. (11.14)

Without the polynomial weight 1+ |x|m, a similar result was earlier obtained by
Gnedenko. However, in some applications the appearance of this weight turns out
to be crucial.
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If m ≥ 3, one may also take ϕm−1 as an approximation of pn, and then (11.14)
together with Definition 11.3.1 imply that

sup
x

(1+ |x|m) |pn(x)− ϕm−1(x)| = O
(

n−
m−2

2
)

. (11.15)

A further generalization was given in [7] to employ the case of fractional
moments.

Lemma 11.3.3 Let βs < ∞ for some real s ≥ 2, and m = [s]. Then uniformly
over all x, as n →∞,

(1+|x|s) (pn(x)−ϕm(x)) = o
(

n−
s−2

2
)+ (1+|x|s−m)

(

O
(

n−
m−1

2
)+o

(

n−(s−2))
)

.

In particular, for some constant α > 0 depending on s,

sup
|x|≤nα

(1+ |x|s) |pn(x)− ϕm(x)| = o
(

n−
s−2

2
)

. (11.16)

Thus, (11.16) extends (11.14) when taking the supremum over relatively large
interval.

There are also similar results about the distribution functions Fn(x) = P{Zn ≤
x}, which may be approximated by

�m(x) = νm((−∞, x]) =
∫ x

−∞
ϕm(y) dy = �(x)− ϕ(x)

m−2
∑

k=1

Rk(x) n
−k/2,

(11.17)

where

Rk(x) =
∑ 1

r1! . . . rk!
(γ3

3!
)r1

. . .
( γk+2

(k + 2)!
)rk

Hk+2j−1(x)

with summation as in Definition 11.3.1. The next result is due to Osipov and Petrov
[13].

Lemma 11.3.4 Suppose that βs < ∞ for some real s ≥ 2, and let m = [s]. Then,
as n →∞,

sup
x

(1+ |x|s) |Fn(x)−�m(x)| = o
(

n−
s−2

2
)

.

In particular, when s = m ≥ 3 is integer, we have

sup
x

(1+ |x|s) |Fn(x)−�m−1(x)| = O
(

n−
s−2

2
)

.
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This statement holds under the weaker assumption in comparison with (11.2):
nothing should be required in case 2 ≤ s < 3, while for s ≥ 3 the Cramér condition
is sufficient.

Remark 11.3.5 Since the densities pn can properly be approximated by the func-
tions ϕm, it makes sense to isolate the leading term in the sum (11.11), by rewriting
the definition as

ϕm(x) = ϕ(x)+ ϕ(x)
γk+2

(k + 2)! Hk+2(x) n
−k/2 + ϕ(x)

m−2
∑

j=k+1

Qj(x) n
−j/2

(11.18)

for some unique 1 ≤ k ≤ m − 2. The value of k is the maximal one in the interval
[1,m − 2] such that γ3 = · · · = γk+1 = 0, which means that the first moments of
X up to order k + 1 coincide with those of Z ∼ N(0, 1). In this case, necessarily
γk+2 = EXk+2 − EZk+2.

Of course, if m = 2, there are no terms on the right-hand side of (11.18) except
for ϕ.

11.4 Approximation for Lr -Norm of Densities pn

Lemmas 11.3.2–11.3.4 can be applied to explore an asymptotic behavior of the
functionals

I (p) = ‖p‖rr =
∫ ∞

−∞
p(x)r dx (r > 1)

with p = pn. Since the densities pn are approximated by ϕm, we may expect that
I (pn) ∼ I (ϕm) for large n. However, ϕm do not need to be positive on the whole
real line, and it is more natural to consider the integrals

IT (p) =
∫

|x|≤T

p(x)r dx, T > 0,

over relatively long intervals. Actually, one may take T = Tn =
√

(s − 2) logn

(s > 2). We have with some constants depending on the first m absolute moments
of X that

m−2
∑

k=1

|Qk(x)| n−k/2 ≤ C (1+ |x|)3(m−2) 1√
n
≤ C′ (log n)3(m−2)/2

√
n

≤ 1

2
, |x| ≤ Tn,
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for all n large enough in the last inequality. Hence, by Definition 11.3.1, for all n
large enough,

|ϕm(x)− ϕ(x)| ≤ 1

2
ϕ(x), |x| ≤ Tn, (11.19)

so ϕm is positive on [−Tn, Tn]. On these intervals and for large n, consider the
functions

εn(x) = pn(x)− ϕm(x)

ϕm(x)
.

By (11.16) and (11.19), for |x| ≤ Tn, we have

|εn(x)| ≤ 2δn
n− s−2

2

ϕ(x)
≤ 2

√
2πδn,

for some positive sequence δn → 0. Thus, for large n, pn(x) = ϕm(x)(1 + εn(x))

with |εn(x)| ≤ 1
2 . Hence, by Taylor’s formula, and using (11.19) together with the

non-uniform bound (11.16), we get

|pn(x)
r − ϕm(x)r | ≤ c ϕ(x)r |εn(x)|

≤ 2c ϕ(x)r−1 |pn(x)− ϕm(x)| ≤ δn
ϕ(x)r−1

1+ |x|s n−
s−2

2

with some constant c which does not depend on x and n ≥ n0 and some positive
sequence δn → 0. After integration over [−Tn, Tn], this gives

IT (pn) = IT (ϕm)+ o(n−
s−2

2 ). (11.20)

In case s = m ≥ 3 is integer, by a similar argument based on (11.15), we also have

IT (pn) = IT (ϕm−1)+O(n−
s−2

2 ). (11.21)

The remaining part of the integral,

JT (p) =
∫

|x|>T

p(x)r dx,

can be shown to be sufficiently small for p = pn on the basis of Lemma 11.3.4.
Indeed, first

P{|Z| > Tn} ≤ 1

Tn

e−T 2
n /2 = o

(

n−
s−2

2
)

, Z ∼ N(0, 1).
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On the other hand, by Definition 11.3.1, using polynomial bounds |Qk(x)| ≤ ck (1+
|x|N) with N = 3(m−2) and some constants ck which do not depend on x, we have

|ϕm(x)| ≤ ϕ(x)+ c√
n
(1+ |x|N) ϕ(x)

with some c independent of x and n. In addition,

∫

|x|>Tn

|x|N ϕ(x) dx ≤ c′N (1+ T N
n ) e−T 2

n /2 ≤ c′′N log(n)
N
2 n−

s−2
2

with constants c′N and c′′N independent of n. This gives

∣

∣νm{|x| > Tn}
∣

∣ ≤
∫

|x|>Tn

|ϕm(x)| dx

≤
∫

|x|>Tn

ϕ(x) dx + c√
n

∫

|x|>Tn

(1+ |x|N) ϕ(x) dx

≤ P{|Z| > Tn} + c′′N√
n

log(n)
N
2 n−

(s−2)
2 ,

and thus

∣

∣νm{|x| > Tn}
∣

∣ = o
(

n−
s−2

2
)

.

Since we assume the smoothness condition (11.2), the densities pn are uniformly
bounded by some constant M for all n ≥ n0. Therefore, by Lemma 11.3.4, for all n
large enough,

JT (pn) ≤ Mr−1
∫

|x|>Tn

pn(x) dx = Mr−1
P{|Zn| > Tn}

≤ Mr−1
∣

∣νm{x : |x| > Tn}
∣

∣+ T −s
n o

(

n−
s−2

2
) = o

(

n−
s−2

2
)

.

Combining this relation with (11.20) and (11.21), we arrive at:

Lemma 11.4.1 Suppose that βs < ∞ for s ≥ 2. Then for all n large enough, Zn

have bounded densities pn. Moreover, for any r > 1, as n→∞,

∫ ∞

−∞
pn(x)

r dx =
∫ Tn

−Tn

ϕm(x)r dx + o
(

n−
s−2

2
)

, m = [s], (11.22)

where Tn =
√

(s − 2) logn. In particular, if s = m ≥ 3 is integer, we also have

∫ ∞

−∞
pn(x)

r dx =
∫ Tn

−Tn

ϕm−1(x)
r dx +O

(

n−
s−2

2
)

. (11.23)
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11.5 Truncated Lr -Norm of Approximating Densities ϕm

Let us now find an explicit expression for the second integral in (11.22), by applying
the Edgeworth approximation

ϕm(x) = ϕ(x)
(

1+
m−2
∑

k=1

Qk(x) n
−k/2

)

, m = [s]. (11.24)

In the case 2 < s < 3, when ϕm = ϕ2 = ϕ, one may extend the integration in
(11.22) to the whole real line at the expense of the error

∫

|x|>Tn

ϕ(x)r dx <

∫

|x|>Tn

ϕ(x) dx = P{|Z| > Tn} = o
(

n−
s−2

2
)

,

where Tn =
√

(s − 2) logn as before. Hence, (11.22) yields

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + o

(

n−
s−2

2
)

, 2 < s < 3. (11.25)

This assertion remains to hold for s = 2 as well (Theorem 11.1.1).
Next, assume that s ≥ 3. As we know, when n is large enough, ϕm(x) is positive

for |x| ≤ Tn, so the second integral in (11.22) makes sense, cf. (11.19). Moreover,
in order to raise ϕm(x) to the power r on the basis of (11.24), one may apply the
Taylor expansion

(1+ ε)r = 1+
N
∑

k=1

(r)k

k! εk +O(εN+1), N = 1, 2, . . . , (ε → 0),

where the constant in O depends on N only, as long as |ε| ≤ 1
2 . Here we used the

standard notation (r)k = r(r − 1) . . . (r − k + 1), with convention (r)0 = 1 to be
used later on. Choosing

ε =
m−2
∑

k=1

Qk(x) n
−k/2, |x| ≤ Tn,

for all n large enough the above Taylor expansion is thus valid. Hence, uniformly
over all x ∈ [−Tn, Tn], as n→∞,

(1+ ε)r = 1+
N
∑

k=1

(r)k

k! εk + εn(x) (11.26)
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with

εn(x) = O
(

(1+ |x|)3(m−2)(N+1) n−(N+1)/2
)

.

Furthermore, by the polynomial formula,

εk =
∑ k!

k1! . . . km−2! Q
k1
1 (x) . . .Q

km−2
m−2 (x) n

− 1
2 (k1+2k2+···+(m−2) km−2),

where the summation is running over all non-negative integers k1, . . . , km−2 such
that k1 + · · · + km−2 = k. Inserting this in (11.26) and recalling (11.24), we can
represent ϕm(x)r as

ϕ(x)r
∑ (r)k1+···+km−2

k1! . . . km−2! Q
k1
1 (x) . . .Q

km−2
m−2 (x) n

− 1
2 (k1+2k2+···+(m−2) km−2) + ϕ(x)r εn(x)

with summation over all non-negative integers k1, . . . , km−2 such that k1 + · · · +
km−2 ≤ N . One may now note that

∫ Tn

−Tn

ϕ(x)r εn(x) dx = O
(

n−
N+1

2
)

,

where the constant in O depends on N only, as long as n is large enough.
Let us then choose N = m−2. Integrating the above expression for ϕm(x)r over

the interval [−Tn, Tn], we can represent
∫ Tn
−Tn

ϕm(x)r dx as

∑ (r)k1+···+km−2

k1! . . . km−2!
∫ Tn

−Tn

ϕ(x)r Q
k1
1 (x) . . .Q

km−2
m−2 (x) dx

1

n
1
2 (k1+2k2+···+(m−2) km−2)

at the expense of an error O(n−m−1
2 ). Moreover, using the property

∫

|x|≥Tn

xNϕ(x)r dx = o(n−
s−2

2 ),

the above integration may be extended to the whole real line. Hence,
∫ Tn
−Tn

ϕm(x)r dx

is represented as

∑ (r)k1+···+km−2

k1! . . . km−2!
∫ ∞

−∞
ϕ(x)r Q

k1
1 (x) . . . Q

km−2
m−2 (x) dx

1

n
1
2 (k1+2k2+···+(m−2) km−2)

+ o
(

n−
s−2

2
)

.

Here, it is sufficient to keep only the powers of 1/n not exceeding (m − 2)/2.
But in that case, for any fixed value of

j = k1 + 2k2 + · · · + (m− 2) km−2,



11 Expansions for Rényi Entropy in the CLT 183

the constraint j ≤ m−2 implies that kj+1 = · · · = km−2 = 0. That is, we only need
to consider the collections k1, . . . , kj of length j . Thus, the above representation is
simplified to

∫ Tn

−Tn

ϕm(x)r dx =
∫ ∞

−∞
ϕ(x)r dx

+
∑ (r)k1+···+kj

k1! . . . kj !
∫ ∞

−∞
ϕ(x)r Q

k1
1 (x) . . .Q

kj
j (x) dx n−j/2 + o

(

n−
s−2

2
)

(11.27)

with summation over all j = 1, . . . ,m − 2 and over all non-negative integers
k1, . . . , kj such that k1 + 2k2 + · · · + j kj = j .

As the last simplifying step, we note that Q2k−1(x) represents a linear combina-
tion of the polynomials H2i−1(x) and has a leading term x3(2k−1) up to a constant.
In particular, it is an odd function. On the other hand, Q2k(x) represents a linear
combination of H2i(x)’s and has a leading term x6k, so it is an even function. It
follows that any function of the form

Q = Q
k1
1 (x) . . .Q

kj
j (x) (k1 + 2k2 + · · · + j kj = j) (11.28)

is either odd or even, depending on whether j is odd or even. Indeed, for
polynomials of the class 1, defined by

P(x) = c0 + c2x
2 + · · · + c2Nx2N,

let us put Ev(P ) = 2N (mod 2) = 0, and for the class 2, defined by

P(x) = c1x + · · · + c2N−1 x2N−1,

let us put Ev(P ) = 2N − 1 (mod 2) = 1. The products of such polynomials
belong to one of the classes, and we have the property Ev(P1P2) = (Ev(P1) +
Ev(P2)) (mod 2). Therefore, using Ev(Qi) = 3i (mod 2) = i (mod 2) and the
summation in the group Z2, we have

Ev(Q) = k1 Ev(Q1)+ · · · + kj Ev(Qj )

= k1 · 1 (mod 2)+ · · · + kj · j (mod 2) = (k1 + · · · + jkj ) (mod 2) = j (mod 2).

Thus, Q is an odd function in (11.28), as long as j is odd, and then the
corresponding integral in (11.27) is vanishing. As a result, (11.22) and (11.27) yield
the following asymptotic expansion, which also holds for 2 ≤ s < 3, in view of
(11.25).
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Proposition 11.5.1 Suppose that βs < ∞ for s ≥ 2. Then, with m = [s], for any
r > 1,

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx

(

1+
[m−2

2 ]
∑

j=1

aj

nj

)

+ o
(

n−
s−2

2
)

(11.29)

with coefficients defined by

aj

∫ ∞

−∞
ϕ(x)r dx =

∑ (r)k1+···+k2j

k1! . . . k2j !
∫ ∞

−∞
Q

k1
1 (x) . . .Q

k2j
2j (x) ϕ(x)r dx.

(11.30)

Here, the summation runs over all integers k1, . . . , k2j ≥ 0 such that k1 + 2k2 +
· · · + 2j k2j = 2j with notation (r)k = r(r − 1) . . . (r − k + 1).

It follows from Definition 11.3.1 that each polynomial Qk is determined by the
moments of X up to order k + 2. Hence, each aj in (11.30) is only determined by r

and by the moments, hence, by the cumulants of X up to order 2j + 2. Moreover,
aj = 0 if these cumulants are vanishing.

11.6 The Case Where the First Cumulants Are Vanishing

For 2 ≤ s < 4, we necessarily have m ≤ 3, so that the sum in (11.29) has no term,
and then

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + o

(

n−
s−2

2
)

. (11.31)

In the more interesting case s ≥ 4, the leading term in the Edgeworth expansion
(11.24) may be written explicitly, as was already done in the representation (11.18).
It implies that, for some unique 1 ≤ k ≤ m− 2,

ϕm(x) = ϕ(x)+ ϕ(x)
γk+2

(k + 2)! Hk+2(x) n
−k/2 + C(x)ϕ(x) (1+ |x|3(m−2)) n−(k+1)/2

(11.32)

with some function C(x) bounded by a constant which does not depend on x and
large n ≥ n0.

To study an asymptotic behavior of the truncated Lr -norm of ϕm, one may repeat
computations of the previous section in this simple particular case, or alternatively,
one may just refer to the general result described in Proposition 11.5.1. Indeed,
(11.32) is equivalent to saying that the first moments of X up to order k+1 coincide
with those of Z ∼ N(0, 1) for some 1 ≤ k ≤ m − 2. Therefore, as emphasized
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after Proposition 11.5.1, aj = 0 whenever 2j + 2 ≤ k + 1, that is, j ≤ k−1
2 . Then

also Qj = 0. In case 2j + 2 = k + 2, that is, j = k/2 with even k, all terms in
the sum (11.30) are vanishing, except (potentially) for the term corresponding to the
collection with k1 = · · · = k2j−1 = 0, k2j = 1. Then the right-hand side of (11.30)
becomes

r

∫ ∞
−∞

Q2j (x) ϕ(x)
r dx = r

∫ ∞
−∞

Qk(x) ϕ(x)
r dx = r

γk+2

(k + 2)!
∫ ∞
−∞

Hk+2(x) ϕ(x)
r dx,

and hence (11.29) yields

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx+An−k/2+O(n−

k+1
2 )+ o

(

n−
s−2

2
)

, (11.33)

where

A = r
γk+2

(k + 2)!
∫ ∞

−∞
Hk+2(x) ϕ(x)

r dx, γk+2 = EXk+2 − EZk+2.

In particular, A = 0 for odd k, since then the Chebyshev-Hermite polynomial
Hk+2(x) is odd.

To proceed, we focus on the integrals I (k, r) = ∫∞
−∞Hk(x) ϕ(x)

r dx with even
k.

Lemma 11.6.1 For any k = 1, 2, . . . ,

I (2k, r) = (2k − 1)!!
r

2k+1
2 (2π)

r−1
2

(1− r)k. (11.34)

Proof The k-th Chebyshev-Hermite polynomial

Hk(x) = (−1)k
(

e−x2/2)(k) ex
2/2 = E (x + iZ)k, Z ∼ N(0, 1), (11.35)

has generating function

∞
∑

k=0

Hk(x)
zk

k! = exz−z2/2, z ∈ C,

from which one can find the generating function for the sequence ck = I (k, r).
Namely,

∞
∑

k=0

ck
zk

k! =
∫ ∞

−∞
exz−z2/2 ϕ(x)r dx = 1

(2π)
r−1

2
√
r
e−

1
2 (1− 1

r
) z2

.
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Differentiating this equality 2k times and applying the definition (11.35), we arrive
at

c2k = 1

(2π)
r−1

2
√
r

(

1− 1

r

)k

H2k(0).

It remains to apply the equality (11.35), which gives H2k(0) = (−1)k EZ2k =
(−1)k (2k − 1)!! ��

For the first three even values k = 2, 4, 6, we thus have

I (2, r) = − 1

r3/2 (2π)
r−1

2

(r − 1), I (4, r) = 3

r5/2 (2π)
r−1

2

(r − 1)2,

I (6, r) = − 15

r7/2 (2π)
r−1

2

(r − 1)3. (11.36)

One may also evaluate the integrals
∫∞
−∞Hk(x)

2 ϕ(x)r dx. For example,

∫ ∞
−∞

H3(x)
2 ϕ(x)r dx = 1

√
r (2π)

r−1
2

E

(

( Z√
r

)3 − 3
( Z√

r

)

)2
= 3 (5− 6r + 3r2)

r7/2 (2π)
r−1

2

.

(11.37)

Thus, the formula (11.34) may be used in the asymptotic representation (11.33).
The particular case k = [s] − 2 should be mentioned separately.

Corollary 11.6.2 Suppose that EXl = EZl for l = 1, . . . ,m − 1 (m ≥ 3), where
Z ∼ N(0, 1). If βs < ∞ for some s ∈ [m,m + 1), then for all n large enough, Zn

have bounded densities pn. Moreover,

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + An−

m−2
2 + o

(

n−
s−2

2
)

(11.38)

with A = 0 in the case m = 2k − 1 is odd, while in the case where m = 2k is even,
we have

A = γ2k

2kk!
(1− r)k

(2π)
r−1

2 r
2k−1

2

, γ2k = EX2k − EZ2k.

If βs <∞ for s = m+ 1, then o-term in (11.38) may be replaced with O-term.

For example, if γ3 = EX3 = 0, so that m = 4, 4 ≤ s < 5, we have

A = γ4

8

1

(2π)
r−1

2

(1− r)2

r
3
2

, γ4 = EX4 − EZ4 = EX4 − 3,
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and (11.38) becomes

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + An−1 + o

(

n−
s−2

2
)

. (11.39)

By (11.33), a similar formula remains to hold in the case 5 ≤ s < 6, but then the
o-term should be replaced with O(n−3/2).

11.7 Moments of Order 4 ≤ s ≤ 8

Returning to the general expansion (11.29) in Proposition 11.5.1 with coefficients
aj described in (11.30), let us now derive formulas similar to (11.39) for two regions
of the values of s without additional assumptions on the first cumulants. To evaluate
the integrals in that definition, we will use the formulas for the polynomials Qj

described in Sect. 11.3 for the indexes j ≤ 4.
If 4 ≤ s < 6, the expansion (11.29) contains only one term, namely, we get

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + a1

n

∫ ∞

−∞
ϕ(x)r dx + o

(

n−
s−2

2
)

(11.40)

with the coefficient for j = 1 in front of 1/n, i.e.,

A1 ≡ a1

∫ ∞

−∞
ϕ(x)r dx = (r)1

1!
∫ ∞

−∞
Q2(x) ϕ(x)

r dx + (r)2

2!
∫ ∞

−∞
Q2

1(x) ϕ(x)
r dx

= r

∫ ∞

−∞

(γ4

4! H4(x)+ 1

2!
(γ3

3!
)2

H6(x)
)

ϕ(x)r dx

+ r(r − 1)

2

∫ ∞

−∞

(γ3

3! H3(x)
)2

ϕ(x)r dx.

Applying the formulas (11.36)–(11.37), we find that

A1 = r
γ 2

3

2! 3!2 I (6, r) + r
γ4

4! I (4, r) +
r(r − 1)

2

(γ3

3!
)2
∫ ∞

−∞
H3(x)

2 ϕ(x)r dx

= −r
γ 2

3

72

15

r7/2 (2π)
r−1

2

(r − 1)3 + r
γ4

24

3

r5/2 (2π)
r−1

2

(r − 1)2 + r(r − 1)
γ 2

3

24

5− 6r + 3r2

r7/2 (2π)
r−1

2

.

Equivalently,

(2π)
r−1

2
r5/2

r − 1
A1 = − 5

24
(r − 1)2 γ 2

3 +
1

8
r(r − 1) γ4 + 1

24
(5− 6r + 3r2) γ 2

3 .
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Collecting the coefficients in front of γ 2
3 , we arrive at the following refinement of

(11.40).

Proposition 11.7.1 Suppose that βs <∞ for 4 ≤ s < 6. Then, for any r > 1,

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + A1n

−1 + o
(

n−
s−2

2
)

, (11.41)

where the constant A1 = A1(r) is given by

(2π)
r−1

2
r3/2

r − 1
A1(r) = 2− r

12
γ 2

3 +
r − 1

8
γ4. (11.42)

In the case s = 6, the formula (11.41) remains valid with the remainder term
O(n−2).

Note that limr→1
A1(r)
r−1 = 1

12 γ 2
3 . Also, if γ3 = 0, then (11.42) is simplified and

defines exactly the constant A in the equality (11.39).
For the region 6 ≤ s < 8, the sum in (11.29) contains two terms, proportional

to 1
n

and 1
n2 . The coefficient a1 is as before, while according to (11.30), we arrive at

the following refinement.

Proposition 11.7.2 Suppose that βs <∞ for 6 ≤ s < 8. Then, for any r > 1,

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + A1n

−1 + A2n
−2 + o

(

n−
s−2

2
)

, (11.43)

where A1 is given in (11.42) and

A2 = r

∫ ∞

−∞
Q4(x) ϕ(x)

r dx + (r)2

2

∫ ∞

−∞
(

Q2
2(x)+ 2 Q1(x)Q3(x)

)

ϕ(x)r dx

+ (r)3

2

∫ ∞

−∞
Q2

1(x)Q2(x) ϕ(x)
r dx + (r)4

24

∫ ∞

−∞
Q4

1(x) ϕ(x)
r dx.

In the case s = 8, the formula (11.43) remains valid with the remainder term
O(n−3).

One can rewrite A2 explicitly in terms of the cumulants of X, cf. [6]. In the case
γ3 = 0, a long expression for this constant is simplified to

A2 = γ6 r

6!
∫ ∞

−∞
H6(x) ϕ(x)

r dx+ γ 2
4 r

2! 4!2
∫ ∞

−∞
H8(x) ϕ(x)

r dx+ γ 2
4 r(r − 1)

2! 4!2
∫ ∞

−∞
H4(x)

2 ϕ(x)r dx.
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11.8 Expansions for Rényi Entropies

Let us now reformulate the asymptotic results about the integrals
∫∞
−∞ pn(x)

r dx in
terms of the Rényi entropies and entropy powers

hr(Zn) = − 1

r − 1
log
∫ ∞

−∞
pn(x)

r dx, Nr(Zn) =
(∫ ∞

−∞
pn(x)

r dx

)− 2
r−1

.

Since these functionals represent smooth functions of the Lr -norm, from Proposi-
tion 11.5.1 together with Taylor’s formulas

log(a + b + c) = log a + a−1b +O(b2 + |c|), (11.44)

(a + b + c)q = aq + qaq−1 b +O(b2 + |c|),

holding with a > 0, q �= 0, and b, c → 0, we immediately obtain:

Proposition 11.8.1 Let E |X|s < ∞ for some s ≥ 2, and m = [s]. Then, for any
r > 1,

hr(Zn) = hr(Z)+
[m−2

2 ]
∑

j=1

bj

nj
+ o

(

n−
s−2

2
)

, (11.45)

Nr(Zn) = Nr(Z)

(

1+
[m−2

2 ]
∑

j=1

cj

nj

)

+ o
(

n−
s−2

2
)

, (11.46)

with coefficients bj and cj that are determined by r and by the moments of X up to
order 2j + 2.

Proof of Theorem 11.1.2 To evaluate the first coefficients in the expansions
(11.45)–(11.46), we apply Taylor’s formulas (11.44). For q = − 2

r−1 , the last
equality in (11.44) reads

(a + b + c)−
2

r−1 = a−
2

r−1 − 2

r − 1
a−

r+1
r−1 b +O(b2 + |c|). (11.47)

In particular (with b = 0), the expansion of the form

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + o

(

n−
s−2

2
)

,
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which corresponds to Proposition 11.5.1 to the region 2 < s < 4, implies

log
∫ ∞

−∞
pn(x)

r dx = log
∫ ∞

−∞
ϕ(x)r dx + o

(

n−
s−2

2
)

.

Equivalently, hr(Zn) = hr(Z) + o(n− s−2
2 ) or Nr(Zn) = Nr(Z) + o(n− s−2

2 ) for
Z ∼ N(0, 1).

More generally, applying (11.44)–(11.47) to the expansion

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + A1 n

−1 + o
(

n−
s−2

2
)

,

corresponding to Proposition 11.7.1 with its region 4 ≤ s < 6, we get

log
∫ ∞

−∞
pn(x)

r dx = log
∫ ∞

−∞
ϕ(x)r dx + A1 n

−1
(∫ ∞

−∞
ϕ(x)r dx

)−1

+ o
(

n−
s−2

2
)

,

and

(∫ ∞

−∞
pn(x)

r dx

)− 2
r−1 =

(∫ ∞

−∞
ϕ(x)r dx

)− 2
r−1

− 2A1

r − 1
n−1

(∫ ∞

−∞
ϕ(x)r dx

)− r+1
r−1 + o

(

n−
s−2

2
)

.

Thus,

hr(Zn) = hr(Z)− A1

r − 1
Nr(Z)

r−1
2 n−1 + o(n−

s−2
2 ), (11.48)

and (equivalently)

Nr(Zn) = Nr(Z)
[

1− 2A1

r − 1
Nr(Z)

r−1
2 n−1

]

+ o(n−
s−2

2 ). (11.49)

Recall that A1 = A1(r) is determined by r and the cumulants γ3 = EX3

and γ4 = EX4 − 3. More precisely, according to the formula (11.42) of Propo-
sition 11.7.1,

A1

r − 1
= 1

(2π)
r−1

2 r3/2

[

2− r

12
γ 2

3 +
r − 1

8
γ4

]

.

Since also

Nr(Z)
r−1

2 =
(∫ ∞

−∞
ϕ(x)r dx

)−1

= (2π)
r−1

2 r1/2,
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the coefficients b1 and c1 in (11.45)–(11.46) in front of n−1 are simplified according
to (11.48)–(11.49) as

b1 = − A1

r − 1
Nr(Z)

r−1
2 = −1

r

[

2− r

12
γ 2

3 +
r − 1

8
γ4

]

, c1 = 2b1.

��
Let us complement the expansions of Theorem 11.1.2 with similar assertions

corresponding to the scenario from Corollary 11.6.2, where the first m−1 moments
of X coincide with those of Z ∼ N(0, 1), for some integer m ≥ 3. If βs is finite for
s ∈ [m,m+ 1), in that case we have an expansion of the form

∫ ∞

−∞
pn(x)

r dx =
∫ ∞

−∞
ϕ(x)r dx + An−

m−2
2 + o

(

n−
s−2

2
)

.

Hence, by (11.44)–(11.47),

log
∫ ∞

−∞
pn(x)

r dx = log
∫ ∞

−∞
ϕ(x)r dx

+ An−
m−2

2

(∫ ∞

−∞
ϕ(x)r dx

)−1

+O(n−(m−2))+ o
(

n−
s−2

2
)

,

and

(∫ ∞

−∞
pn(x)

r dx

)− 2
r−1 =

(∫ ∞

−∞
ϕ(x)r dx

)− 2
r−1

− 2A

r − 1
n−

m−2
2

(∫ ∞

−∞
ϕ(x)r dx

)− r+1
r−1 +O(n−(m−2))+ o

(

n−
s−2

2
)

.

Since m − 2 > s−2
2 , here O-term may be removed. In addition, as before, the

last integral with its power can be written as Nr(Z)
r+1

2 . Therefore, we obtain the
asymptotic relations

hr(Zn) = hr(Z)− A

r − 1
Nr(Z)

r−1
2 n−

m−2
2 + o(n−

s−2
2 )

and

Nr(Zn) = Nr(Z)

[

1− 2A

r − 1
Nr(Z)

r−1
2 n−

m−2
2

]

+ o(n−
s−2

2 )

in full analogy with (11.48)–(11.49). The only difference is that we have a different
formula for the constant A = A(r). As stated in Corollary 11.6.2, here A = 0 in the
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case m = 2k − 1 is odd, while in the case m = 2k is even, we have

A = γ2k

2kk!
(1− r)k

(2π)
r−1

2 r
2k−1

2

, γ2k = EX2k − EZ2k.

Using again Nr(Z)
r−1

2 = (2π)
r−1

2 r1/2, the coefficients bk−1 and ck−1 in (11.45)–

(11.46) in front of n−m−2
2 = n−(k−1) are simplified to

bk−1 = − A

r − 1
Nr(Z)

r−1
2 = γ2k

2kk!
(1− r)k−1

rk−1 , ck−1 = 2bk−1.

Let us also remind that, if βs <∞ for s = m+1, then o-term may be replaced with

O(n−m−1
2 ). We are thus ready to make a corresponding statement.

Proposition 11.8.2 Suppose that EXl = EZl for l = 3, . . . ,m − 1 (m ≥ 3). If
βs <∞ for some s ∈ [m,m+ 1), then for any r > 1,

hr(Zn) = hr(Z)+ bn−
m−2

2 + o(n−
s−2

2 ),

Nr(Zn) = Nr(Z)
(

1+ 2b n−
m−2

2
)+ o(n−

s−2
2 )

with constant b = 0 in the case m = 2k − 1 is odd, while in the case m = 2k is
even,

b = bk−1 = γ2k

2kk!
(1

r
− 1

)k−1
, γ2k = EX2k − EZ2k.

If βs <∞ for s = m+ 1, then o-term may be replaced with O(n−m−1
2 ).

For example, if γ3 = EX3 = 0, we return to the equality (11.4) from
Theorem 11.1.2.

11.9 Comparison with the Entropic CLT: Monotonicity

Put

&n(r) = hr(Z)− hr(Zn), &n = &n(1).

The latter quantity, which may also be written as D(Zn||Z) = ∫∞−∞ pn(x) log pn(x)
ϕ(x)

dx, represents the Kullback-Leibler distance from the distribution of Zn to the
standard normal law (or, the relative entropy). As was mentioned, the sequence
&n is always non-negative and non-increasing. Moreover, the entropic CLT asserts
that &n → 0 as n → ∞, as long as &n is finite for some n (in general, it is a
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weaker condition in comparison with (11.2)). The basic references for these results
are [1, 2, 12].

The rate of convergence of &n to zero was studied in [8], and here we recall a few
asymptotic results, assuming that &n < ∞ for some n, and that βs = E |X|s < ∞
for a real number s ≥ 2. Namely, we have

&n = o

(

1

(n logn)
s−2

2

)

, 2 ≤ s < 4.

Modulo a logarithmic term, it is the same rate as for &n(r) indicated in Theo-
rem 11.1.2. Nevertheless, it is not yet clear, if one can similarly improve Theo-
rem 11.1.2. On the other hand, for any prescribed η > 1, it may occur that, for all n
large enough,

&n ≥ c

(n logn)
s−2

2 (logn)η

with some constant c= c(η, s)> 0 depending on η and s only ([8], Theorem 11.1.3).
The range s ≥ 4 is more interesting, since then one may control the speed of &n.

In particular,

&n = γ 2
3

12
n−1 + o

(

1

(n logn)
s−2

2

)

, 4 ≤ s < 6,

&n = γ 2
3

12
n−1 +O

(

1

(n logn)2

)

, s = 6.

Thus, if γ3 �= 0, then &n is equivalent to a decreasing sequence, which decreases at
rate n−1. (Strictly speaking, this property does not imply the monotonicity itself.)

Let us compare this asymptotic with what is given in Theorem 11.1.2. Namely,
for any r > 1, we have

&n(r) = B1 n−1 + o
(

n−
s−2

2
)

, 4 ≤ s < 6, (11.50)

&n(r) = B1 n−1 +O
(

n−2), s = 6, (11.51)

where

B1 = B1(r) = −b = 1

4r

[

2− r

3
γ 2

3 +
r − 1

2
γ4

]

.

We see that B(r) → 1
12 γ 2

3 as r → 1, so that we recover the main term in the
asymptotic for &n, and at the same rate modulo a logarithmic factor.
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However, what can one say about the sign of B1(r) with fixed r > 1? First
suppose that γ3 �= 0. When r is sufficiently close to 1, then B1(r) > 0, so that
&n(r) is equivalent to a decreasing sequence like for r = 1. More precisely, this is
true for all r > 1, whenever γ4 ≥ 2

3 γ 2
3 . But, if γ4 < 2

3 γ 2
3 , then B1(r) < 0 for all

r > r0 = 4γ 2
3 − 3γ4

2γ 2
3 − 3γ4

.

Hence &n(r) becomes to be equivalent to an increasing sequence. In that case,
necessarily hr(Zn) > hr(Z) for all n large enough, which is impossible in the
Shannon case r = 1. This shows that &n(r) may not serve as distance!

If γ3 = 0 (as in case of symmetric distributions), the constant is simplified to

B1 = B1(r) = r − 1

8r
γ4, γ4 = EX4 − 3,

and then the sign of B1 coincides with the sign of γ4. Both cases, γ4 > 0 or γ4 < 0,
are typical, and one can make a similar conclusion as before, but for the whole
range r > 1. Namely, if γ4 > 0, then &n(r) is equivalent to a decreasing sequence,
which decreases at rate n−1, and if γ4 < 0, then &n(r) is equivalent to an increasing
sequence, which increases also at rate n−1.

Proof of Theorem 11.1.3 in Case r <∞ In order to make a more rigorous conclu-
sion about the monotonicity of &n(r) for large n, the expansions for Rényi entropy
hr(Zn) such as (11.50)–(11.51) are insufficient. We need to use more terms in
the general Proposition 11.8.1 involving the quadratic terms b2/n

2 and c2/n
2.

This is possible under stronger moment assumptions, corresponding to the range
6 ≤ s < 8. Indeed, in that case, Proposition 11.8.1 provides the expansion (11.5) in
which the coefficient b1 = b is as before, and we also know that the coefficient b2
is only determined by r and by the moments of X up to order 6. In fact, one may
evaluate b2 on the basis of equality (11.43) of Proposition 11.7.2, which specializes
Proposition 11.5.1 to the range 6 ≤ s < 8. Since the formula for the coefficient
A2 = A2(r) is somewhat complicated, we will not go into tedious computations.

Now, from (11.5) it follows that

hr(Zn+1)− hr(Zn) = B1

n(n+ 1)
+ o(n−2),

which thus proves Theorem 11.1.3 in case of finite r . ��
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11.10 Maximum of Density (the Case r = ∞)

Recall that N∞(X) = ‖p‖−2∞ when a random variable X has density p. An
expansion similar to the one of Proposition 11.5.1 can also be obtained for ‖pn‖∞
and hence for N∞(Zn). In order to deduce monotonicity, let us assume that β6 <∞.

From the non-uniform local limit theorem it follows that ‖pn − ϕ6‖∞ = o(n−2)

as n→∞, where ϕ6 is the Edgeworth expansion of order 6. Hence

‖pn‖∞ = ‖ϕ6‖∞ + o(n−2). (11.52)

Here

ϕ6(x) = ϕ(x)
(

1+Q1(x)
1√
n
+Q2(x)

1

n
+Q3(x)

1

n
3
2

+Q4(x)
1

n2

)

,

where the polynomials Qk(x) are the same as in Sect. 11.3.
Let us find an asymptotic expansion for ‖ϕ6‖∞ (we refer to [6] for more

computational details). Since ϕ6(x) is vanishing at infinity, there exists a point x6(n)

such that ‖ϕ6‖∞ = |ϕ6(x6(n))|. Since also the functions ϕ(x)Qk(x) are bounded,
we have |ϕ6(x)| = O( 1√

n
) uniformly in the region |x| ≥ √logn. On the other hand,

ϕ6(0) = ϕ(0)+ ϕ(0)
4
∑

k=1

Qk(0) n−
k
2 ≥ 1

2
ϕ(0)

for n large. Therefore, ϕ6(0) > |ϕ6(x)| for all n large enough, as long as |x| ≥√
logn, and we conclude that

‖ϕ6‖∞ = sup
|x|≤√logn

|ϕ6(x)| and |x6(n)| ≤
√

logn. (11.53)

Since x = x6(n) is the point of local extremum, we have ϕ′6(x) = 0, that is,

x = Q′1(x)− xQ1(x)√
n

+ Q′2(x)− xQ2(x)

n
+ Q′3(x)− xQ3(x)

n
3
2

+ Q′4(x)− xQ4(x)

n2
.

(11.54)

Using (11.53), we deduce from (11.54) that x6(n) = O
( 1√

n
(logn)

13
2
)

and hence

|x6(n)| ≤ 1 for all n large enough. But then, from (11.54) again, x6(n) = O( 1√
n
).

For x = x6(n), we thus have

xQ3(x)

n
3
2

= O
(

n−5/2),
Q′

4(x)

n2 = O
(

n−5/2),
xQ4(x)

n2 = O
(

n−5/2),
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and (11.54) is simplified to

x = Q′
1(x)− xQ1(x)√

n
+ Q′

2(x)− xQ2(x)

n
+ Q′

3(x)

n
3
2

+O
(

n−5/2).

The Chebyshev-Hermite polynomials satisfy the relation H ′
k(x) − xHk(x) =

−Hk+1(x), so

H ′
3(x)− xH3(x) = −H4(x) = −3+ 6x2 − x4

H ′
4(x)− xH4(x) = −H5(x) = −15x + 10x3 − x5

H ′
6(x)− xH6(x) = −H7(x) = 105 x − 105 x3 + 21 x5 − x7.

Using these identities in the formulas for Qk’s, we easily find for x = O( 1√
n
) that

Q′
1(x)− xQ1(x)√

n
= − γ3

2
√
n
+ γ3

x2
√
n
+O

(

n−5/2),

Q′
2(x)− xQ2(x)

n
=
( 105

2! 3!2 γ 2
3 −

15

4! γ4

) x

n
+O

(

n−5/2),

Q′
3(x)

n
3
2

=
(945

3!4 γ 3
3 −

105

3! 4! γ3γ4 + 15

5! γ5

) 1

n
3
2

+O
(

n−5/2).

As a result,

x = x6(n) = − γ3

2
√
n
+ γ3

x2

√
n
+
( 105

2 · 3!2 γ 2
3 −

15

4! γ4

)x

n

+
(945

3!4 γ 3
3 −

105

3!4! γ3γ4 + 15

5! γ5

) 1

n
3
2

+O
(

n−5/2). (11.55)

One may use this asymptotic equation to find an expansion for x6(n) in powers
of 1/

√
n. Indeed, first we immediately obtain that

x = x6(n) = − γ3

2
√
n
+O

(

n−
3
2
)

,

implying

x2

√
n
= γ 2

3

4

1

n
3
2

+O
(

n−5/2),
x

n
= −γ3

2

1

n
3
2

+O
(

n−5/2).
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Inserting the above to (11.55), we deduce that

x = x6(n) = a1√
n
+ a2

n
3
2

+O
(

n−5/2)

with coefficients

a1 = −1

2
γ3, a2 = 1

4
γ 3

3 −
5

12
γ3γ4 + 1

8
γ5.

In particular, a1 = a2 = 0 and therefore x = x6(n) = O
(

n−5/2
)

, as long as the
distribution of X is symmetric about the origin (in which case γ3 = γ5 = 0).

Still in the general case, keeping these coefficients, we deduce for x = x6(n) that

x = 1√
n

(

a1 + a2
1

n

)

+O
(

n−5/2), x2 = 1

n

(

a2
1 + 2a1a2

1

n

)

+O
(

n−5/2),

x3 = 1

n
3
2

a3
1 +O

(

n−5/2), x4 = 1

n2
a4

1 +O
(

n−5/2), xp = O
(

n−5/2) (p ≥ 5).

Hence

Q1(x)√
n

= γ3

6
√
n
(x3 − 3x) = γ 2

3

4n
+ b1

n2 +O
(

n−5/2), b1 = γ3

3! (a
3
1 − 3a2).

Similarly,

Q2(x)

n
=
( 3

4! γ4 − 15

2! · 3!2 γ 2
3

) 1

n
+ b2

n2 +O
(

n−5/2),

Q3(x)

n
3
2

= b3

n2
+O

(

n−5/2),

Q4(x)

n2 = b4

n2 +O
(

n−5/2)

with

b2 =
( 45

2 · 3!2 γ 2
3 −

6

4! γ4

)

a2
1, b3 =

(945

3!4 γ 3
3 −

105

3!4! γ3γ4 + 15

5! γ5

)

a1,

and

b4 = 10 395

4! · 3!4 γ
4
3 −

945

2 · 3!24! γ
2
3 γ4 + 105

3! · 5! γ3γ5 + 105

2 · 4!2 γ 2
4 −

15

6! γ6.

Note that in the case of symmetric distributions, b1 = b2 = b3 = 0, while
b4 = 105

2·4!2 γ 2
4 − 15

6! γ6.
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Now, as x → 0,

ϕ(x)

‖ϕ‖∞ = 1− 1

2
x2 + 1

8
x4 +O(x6),

and recall that, for x = x6(n), we have x2 = 1
n
(a2

1 + 2a1a2
1
n
) + O(n−5/2) and

x4 = 1
n2 a4

1 +O(n−5/2). Thus,

ϕ(x)

‖ϕ‖∞ = 1− a2
1

2n
+
(a4

1

8
− a1a2

) 1

n2 +O
(

n−5/2).

Therefore, denoting b = b1 + b2 + b3 + b4, we get

‖ϕ6‖∞
‖ϕ‖∞ = ϕ6(x)

‖ϕ‖∞ = ϕ(x)

‖ϕ‖∞
(

1+ Q1(x)√
n

+ Q2(x)

n
+ Q3(x)

n
3
2

+ Q4(x)

n2

)

= 1+
(

− 1

2
a2

1 +
1

4
γ 2

3 +
3

4! γ4 − 15

2! · 3!2 γ 2
3

) 1

n

+
(

b + 1

8
a4

1 − a1a2 − 1

2

(1

4
γ 2

3 +
3

4! γ4 − 15

2! · 3!2 γ 2
3

)

a2
1

)

1

n2
+O

(

n−5/2).

Simplifying the term in front of 1/n, we arrive at

‖ϕ6‖∞ = ‖ϕ‖∞ + ‖ϕ‖∞
n

A+ ‖ϕ‖∞
n2

B +O
(

n−5/2),

where

A = 1

8

(

γ4 − 2

3
γ 2

3

)

, B = b + 1

8
a4

1 − a1a2 − 1

2

(1

4
γ 2

3 +
3

4! γ4 − 15

2! · 3!2 γ 2
3

)

a2
1 .

(11.56)

Using our assumptions, let us summarize by recalling the assertion (11.52). We
then get

‖pn‖∞ = ‖ϕ‖∞
(

1+ 1

n
A+ 1

n2 B
)

+ o
(

n−2), (11.57)

where A and B are as above with a1 = − 1
2 γ3 and a2 = 1

4 γ 3
3 − 5

12 γ3γ4 + 1
8 γ5.

One can now reformulate this result in terms of the Rényi entropy of index r =
∞. Since N∞(Zn) = ‖pn‖−2∞ and N∞(Z) = ‖ϕ‖−2∞ for Z ∼ N(0, 1), the expansion
(11.57) yields:

Proposition 11.10.1 If β6 is finite, then as n →∞,

N∞(Zn) = N∞(Z)
(

1− ˜A

n
+ ˜B

n2

)

+ o
( 1

n2

)
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with ˜A = 1
4 (γ4 − 2

3 γ 2
3 ), ˜B = 3A2 − 2B, where the constants A and B are given in

(11.56).

Proof of Theorem 11.1.3 in Case r =∞ Denoting &n = N∞(Z)−N∞(Zn), from
(11.57) we get &n+1 −&n = − ˜A

n(n+1) + o( 1
n2 ). ��

In the case γ3 = γ5 = 0, for example when X is symmetric, the coefficients
in Proposition 11.10.1 are simplified. Indeed, recalling the formula for b4 in such a
case, we have

A = 1

8
γ4, B = b4 = 105

2 · 4!2 γ 2
4 −

15

6! γ6,

and therefore,

˜A = 1

4
γ4, ˜B = 3A2 − 2B = 1

24
γ6 − 13

96
γ 2

4 .

As a consequence, the eventual monotonicity of N∞(Zn) can be deduced based on
the sign of γ4. However, if also γ4 = 0, we need to look at the sign of γ6.
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Chapter 12
Uniform-in-Bandwidth Functional Limit
Laws for Multivariate Empirical
Processes

Paul Deheuvels

Abstract We provide uniform-in-bandwidth functional limit laws for multivariate
local empirical processes. Statistical applications to kernel density estimation are
given to motivate these results.

Keywords Functional limit laws · Kernel density estimation · Weak laws

AMS 2000 Subject Classification Primary 60F15, 60F17; Secondary 60G07

12.1 Introduction and Motivation

We establish uniform-in-bandwidth functional limit laws for local empirical pro-
cesses in R

d . Our main result, stated in Theorem 12.2.1, is motivated by statistical
applications presented in Theorem 12.1.1. Let X∗ = (X, Y ) ∈ R

d+1, with X :=
(X(1), . . . , X(d)) ∈ R

d and Y ∈ R, denote a random vector [rv], with continuous
density gX,Y (·, ·) on R

d+1 = R
d × R, and support in J × L, where J and L are

bounded open subsets of R
d and R, respectively. Under these assumptions, the

marginal density f (·) of X is continuous on R
d , with f (x) = 0 for x �∈ J, and

f (x) :=
∫

L

gX,Y (x, y)dy for x ∈ R
d . (12.1)

Let K denote a family of kernels on R
d , namely, of mappings K : R

d → R,
fulfilling conditions (K.1)–(K.4) below. For u := (u1, . . . , ud) ∈ R

d and v :=
(v1, . . . , vd) ∈ R

d , we write u ≤ v when uj ≤ vj for j = 1, . . . , d . When
this condition holds, we set (u, v] := ∏d

j=1(uj , vj ], and define likewise, with

obvious notation, [u, v] and (u, v). In general, by an interval in [r, s]d will be

P. Deheuvels (�)
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meant a product of d subintervals of [r, s]. We set 0 := (0, . . . , 0) ∈ R
d and

1 := (1, . . . , 1) ∈ R
d , and adopt a similar notation for ∞ := (∞, . . . ,∞).

(K.1) There exist an A <∞, such that, for each K ∈ K, K(t) = 0 when |t| ≥ A

(with | · | denoting the Euclidian norm in R
d );

(K.2) There exists a B <∞ such that each K ∈ K has a Hardy-Krause variation
VHK(K) in R

d , fulfilling VHK(K) ≤ B (see Sect. 12.2.3 below for details);
(K.3) Each K(t) ∈ K is a right-continuous function of t = (t1, . . . , td );
(K.4) For all K ∈ K,

∫

Rd K(t)dt = 1 (where dt denotes Lebesgue measure).

Let ψ : R→ R denote a right-continuous function of bounded variation ‖dψ‖L
on L. We will denote by ‖dψ‖ := ‖dψ‖R the total variation of ψ on R. In most of
our examples, ψ will be a linear combination of the identity mapping, I(y) = y,
and of the unit function, 1I(y) = 1, for y ∈ R. Consider a sequence of independent
and identically distributed [iid] random replicæ X∗i = (Xi , Yi), i = 1, 2, . . ., of
X∗ = (X, Y ). Introduce the kernel statistic indexed by K ∈ K,

fψ;n;h;K(x) := (nh)−1
n
∑

i=1

ψ(Yi)K
(

h−1/d (Xi − x)
)

for x ∈ R
d, (12.2)

where h > 0 is a bandwidth parameter. In particular, fn;h;K(x) := f1I;n;h;K(x) is
the Parzen-Rosenblatt [29, 30] kernel estimator of f (x), which, under (K.1)–(K.4),
fulfills

∫

Rd f1I;n;h;K(x)dx = 1.

Let I := ∏d
j=1[uj , vj ] ⊂ J with −∞ < uj < vj < ∞ for j = 1, . . . , d , be

such that f (x) > 0 for all x ∈ I. The conditional expectation (or regression) of
ψ(Y ), given that X = x, is continuous over x ∈ I, and defined by

mψ(x) := E(ψ(Y )|X = x) = fψ(x)
f (x)

= fψ(x)
f1I(x)

(12.3)

= 1

f (x)

∫

L

ψ(y)gX,Y (x, y)dy for x ∈ I,

where, for each measurable φ : R→ R, rendering meaningful the expression below,
we set

fφ(x) :=
∫

L

φ(y)gX,Y (x, y)dy for x ∈ I. (12.4)

In view of (12.1) and (12.4), for φ = 1I, (12.4) reduces to f1I(x) = f (x). Under the
above assumptions, the conditional variance of ψ(Y ), given X = x, is continuous
over x ∈ I, and given by

σ 2
ψ(x) := Var (ψ(Y )|X = x) (12.5)

= 1

f (x)

∫

L

(

ψ(y)−mψ(x)
)2

gX,Y (x, y)dy for x ∈ I.
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The kernel estimator of the regression function mψ(x) = E(ψ(Y )|X = x) [25, 40],
is then defined, for x ∈ I, by

mψ;n;h;K(x) :=
⎧

⎨

⎩

fψ;n;h;K(x)
f1I;n;h;K(x)

when f1I;n;h;K(x) > 0,

Y := n−1∑n
i=1 Yi when f1I;n;h;K(x) ≤ 0.

(12.6)

Introduce, whenever properly defined, the centering factor

̂E
(

mψ;n;h;K(x)
) :=

E

(

ψ(Y )K(h−1/d (X− x))
)

E

(

K(h−1/d(X− x))
) . (12.7)

Remark 12.1.1 Under (K.1)–(K.4), for x ∈ I, we have E
(

fn;h;K(x)
)→ f (x) and

̂E
(

mψ;n;h;K(x)
) → mψ(x), as h → 0. (see, e.g., [9]). Thus, in the study of the

consistency of fn;h;K(x) and mψ;n;h;K(x), we will limit ourselves to the evaluation
of the limiting behavior of the random components fn;h;K(x) − E

(

fn;h;K(x)
)

and
mψ;n;h;K(x)−̂E (mψ;n;h;K(x)

)

of the estimators.

Let 0 < an ≤ bn, for n ≥ 1, be sequences of real constants, and set log+ x :=
log(x ∨ e) for x ∈ R. We have the following theorem.

Theorem 12.1.1 Assume (K.1)–(K.4), and let 0 < an ≤ bn be such that, as
n→∞,

nan/ logn→∞ and bn → 0. (12.8)

Then, with Hn := [an, bn], we have, as n→∞,

sup
K∈K

(

sup
h∈Hn

∣

∣

∣

∣

{

nh

2 log+(1/h)

}1/2

sup
x∈I

±
{

fn;h;K(x) (12.9)

−E (fn;h;K(x)
)

}

−
{

sup
x∈I

f (x)
∫

Rd

K(t)2dt
}1/2 ∣

∣

∣

∣

)

= oP(1),

and

sup
K∈K

(

sup
h∈Hn

∣

∣

∣

∣

{

nh

2 log+(1/h)

}1/2

sup
x∈I

±
{

mψ;n;h;K(x) (12.10)

−̂E (mψ;n;h;K(x)
)

}

−
{

sup
x∈I

σ 2
ψ(x)

f (x)

∫

Rd

K(t)2dt

}1/2 ∣
∣

∣

∣

)

= oP(1).
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Remark 12.1.2

1◦) When K = {K} and d = 1, (12.9) in Theorem 12.1.1 reduces to Theorem 2 of
Deheuvels and Ouadah [10]. This property does not hold for an arbitrary f (·),
when (12.8) is not fulfilled (see Remark 1 in [10]).

2◦) By Theorem 12.1.1, taken with K = {K} and hn := an = bn, the condition

hn → 0 and nhn/ logn →∞, (12.11)

implies that, as n→∞,

{

nhn

2 log+(1/hn)

}1/2

sup
x∈I

± {fn;hn;K(x)− E
(

fn;hn;K(x)
)}

(12.12)

P→
{

sup
x∈I

f (x)
∫

Rd

K(t)2dt
}1/2

,

and
{

nhn

2 log+(1/hn)

}1/2

sup
x∈I

±{mψ;n;hn;K(x)−̂E (mψ;n;hn;K(x)
)} (12.13)

P→
{

sup
x∈I

σ 2
ψ(x)

f (x)

∫

Rd

K(t)2dt

}1/2

.

The limiting statement (12.12) is due to Deheuvels [8] for d = 1, and [6]
for d ≥ 1 (see, e.g., Deheuvels and Einmahl [5], Deheuvels and Mason [9]).
Earlier, Silverman [32] had established (12.12) for d = 1, under more stringent
assumptions. Equation (12.13) is a particular case of Theorem 1.1 in Deheuvels
and Mason [9] for d = 1, and of Theorem 1.2 in Deheuvels [7] for d ≥ 2. The
case where the rv Y has an unbounded support, will be considered elsewhere.

3◦) The conclusion of Theorem 12.1.1 remains valid when an ≤ bn are random
sequences such that (12.8) holds in probability. As follows from the results of
Deheuvels and Mason [8] and Deheuvels [5], additional conditions are required
to obtain an almost sure [a.s.] version of this theorem.

4◦) The properties of the estimators (12.2) and (12.6) have been extensively
investigated since the seminal work of Rosenblatt [30], Parzen [29], Nadaraya
[25] and Watson [40]. To allow data-dependent bandwidths, several authors
(see, e.g., Mason et al. [24], Nolan and Marron [27], Deheuvels [4], Deheuvels
and Mason [9]) have provided uniform-in-bandwidth limit laws for fn,h(·), in
the spirit of (12.9) and (12.10). Einmahl and Mason [16, 17] initiated the use
of empirical processes indexed by functions to investigate this problem. For
example, Theorem 1 of [17] shows that, for each r > 0,

lim sup
n→∞

(

sup
r logn

n ≤h≤1

{

nh

log(1/h) ∨ loglogn

}1/2

(12.14)

sup
x∈I

|fn;h;K(x)− E
(

fn;h;K(x)
) |
)

=: K(I, r) <∞,
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a.s. for some K(I, r). We refer to Mason [22], Mason and Swanepoel [23],
Dony [11, 13], Dony and Einmahl [12, 13], Dony et al. [15], Mason [21],
Viallon [38], Varron [36, 37] and van Keilegom and Varron [35], for details
on this methodology. In particular, an adaptation of the arguments of [16, 17]
should allow us to prove that, under (12.8), as n→∞

sup
h∈Hn

{

nh

2 log+(1/h)

}1/2

sup
x∈I

∣

∣fn;h;K(x)− E
(

fn;h;K(x)
)∣

∣ (12.15)

−
{

sup
x∈I

f (x)
∫

Rd

K(t)2dt
}

= oP(1).

It is not clear whether a proof of (12.9) (which is a stronger statement
that (12.15)) can be achieved or not by these methods. Here, we make use
of a different argument, based on the ideas of Deheuvels and Mason [8]
and Deheuvels [5]. Further references are that of Dony and Mason [14] and
Mason [20].

An outline of the remainder of our paper is as follows. We establish, in
Theorem 12.2.1 below, a functional limit law for multivariate increments of a non-
uniform empirical process (which is new, even for d = 1). To prove this theorem,
we rely on classical arguments, to obtain, in the forthcoming Sect. 12.3.1, rough
upper bounds for the modulus of continuity of multivariate empirical processes.
Our proof then reduces to show that, for each fixed M ≥ 1, the N := Md properly
rescaled increments of the multivariate empirical process over sets of the form
∏d

j=1(
kj
M
,
kj+1
M
], cluster onto the unit ball of R

N . To establish this property, we
extend arguments of Deheuvels and Ouadah [10] to an dimension-free framework.
The proof of Theorem 12.1.1 given Theorem 12.2.1 is captured in Sect. 12.2.4
below. The proofs being quite lengthy, we limit ourselves to the main arguments.

12.2 Functional Limit Laws

12.2.1 Main Result

For d ≥ 1, let (B([0, 1]d),U) denote the set B([0, 1]d) of bounded functions
on [0, 1]d , endowed with the topology U , induced by the sup-norm ‖g‖ :=
sup u∈[0,1]d |g(u)|. Let AC([0, 1]d) denote the set of absolutely continuous (with
respect to the Lebesgue measure) functions on [0, 1]d , and set AC0([0, 1]d) :=
{g ∈ AC([0, 1]d) : g(0) = 0}, with 0 := (0, . . . , 0) ∈ R

d . For each ε > 0
and g ∈ B([0, 1]d), set Nε(g) :=

{

φ ∈ B([0, 1]d) : ‖φ − g‖ < ε
}

, and for each
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A ⊆ [0, 1]d , set Aε := ⋃

g∈ANε(g), with the convention that
⋃

∅(·) := ∅. Define

the sup-norm Hausdorff set-distance of A,B ⊆ B([0, 1]d) by

&(A,B) := inf{θ > 0 : A ⊆ Bθ and B ⊆ Aθ },
whenever such a θ exists, and

&(A,B) := ∞ otherwise.

Let ġ denote the Lebesgue derivative of g ∈ AC([0, 1]d), and consider the Hilbert
norm, defined on B([0, 1]d) by

|g|H :=
{∫

[0,1]d
ġ(t)2dt

}1/2

when g ∈ AC0([0, 1]d),

|g|H := ∞ otherwise.

Set Sd = {g ∈ B([0, 1]d) : |g|H ≤ 1}. For d = 1, we will use this notation
with subscripts omitted, and write, e.g., S for S1. The following relations follow
readily from the Schwarz inequality and the definitions of | · |H and Sd . For any
ψ ∈ B([0, 1]d), we have

‖ψ‖ ≤ |ψ|H and sup
g∈Sd

‖g‖ = 1. (12.16)

Letting X := X1,X2, . . . be as in Sect. 12.1, we denote the distribution function
[df] of X by F(x) := P(X ≤ x) for x ∈ R

d . Here, we write x ≤ y, for x =
(x(1), . . . , x(d)) ∈ R

d and y = (y(1), . . . , y(d)) ∈ R
d , whenever x(j) ≤ y(j) for

j = 1, . . . , d . Denote the empirical df based upon X1, . . . ,Xn, by

Fn(x) := n−1#{Xi ≤ x : 1 ≤ i ≤ n} for x ∈ R
d, (12.17)

where # denotes cardinality. Introduce the empirical process

an(x) := n1/2(Fn(x)− F(x)) for x ∈ R
d . (12.18)

Let I ⊂ J, with I = ∏d
j=1[uj , vj ], and −∞ < uj < vj < ∞ for j = 1, . . . , d ,

be as in Sect. 12.1. We assume that the density f (·) of X is defined and continuous
on J, and bounded away from 0 on I ⊂ J. For a > 0, and x ∈ I, we consider the
increment functions

υn(a; x; u) := {an(x+ a1/du)− an(x)}/
√

f (x), (12.19)

for u ∈ [0, 1]d,
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and set, for each a > 0, and L ⊆ I,

Fn;a;L =
{

υn(a; x; ·)
√

2a log+(1/a)
: x ∈ L

}

. (12.20)

Our main theorem may now be stated as follows.

Theorem 12.2.1 Let 0 < an ≤ bn be such that, as n→∞,

bn → 0 and nan/ logn →∞. (12.21)

Then, with Hn = [an, bn], we have, as n→∞,

sup
a∈Hn

&
(

Fn;a;I,Sd

) = oP(1). (12.22)

Remark 12.2.1

1◦) It will become obvious from our proofs that the conclusion of Theorem 12.2.1
remains valid if, in the definition (12.19) of υ(a; x; u), u is assumed to vary

in
[

− 1
2 ,

1
2

]

(or in any specified bounded interval [r, s], with r < s) instead of

[0, 1].
2◦) To our best knowledge, the only version of Theorem 12.2.1 available up to now

correspond to d = 1, and under the assumption that X uniformly distributed on
(0, 1) (see, e.g., Theorem 1(1) of Deheuvels and Ouadah [10]). When an = bn
the problem has been considered by Deheuvels and Mason [8] and Deheuvels
[5]) for d = 1, and by Mason [21] for d ≥ 1. We note that the methods
of [10] cannot be extended to d ≥ 2, since the proofs rely on invariance
principles for empirical processes, which are not presently available with the
proper approximation rates.

The proof of Theorem 12.2.1 is postponed until Sect. 12.3. In the forthcoming
Sect. 12.2.4, we shall provide a proof of Theorem 12.1.1 given Theorem 12.2.1.

12.2.2 A Limit Law for Local Empirical Processes Indexed
by Functions

Let K denote a class of measurable functions defined on R
d , with support in

[

− 1
2 ,

1
2

]d

, and fulfilling (K.1)–(K.3). Following (2.3)–(2.4) in Mason [21], for
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each n ≥ 1, h > 0 and x ∈ R
d , denote the local empirical process at x indexed

by K ∈ K by

En(h; x;K) := (nh)−1/2
n
∑

i=1

{

K(h−1/d(x− Xi )) (12.23)

−EK(h−1/d(x− Xi ))
}

= √
nh
{

fn;h;K(x)− E
(

fn;h;K(x)
)}

,

and set, for x ∈ I,

Ln(a; x;K) = En(a; x;K)
√

2 log+(1/a)f (x)
. (12.24)

Remark 12.2.2 Mason [21] make use of different conditions imposed upon K. He
assumes, namely that

lim‖t‖→0
sup
K∈K

∫

Rd
[K(x+ t)−K(x)]2 dx = 0,

lim
λ→1

sup
K∈K

∫

Rd
[K(λx)−K(x)]2 dx = 0,

12.2.3 Properties of Kernels

We discuss here (K.1)–(K.4). In (K.1), the choice of the interval [−A,A]d ⊂ R
d

supporting the kernels K ∈ K, is a matter of convenience, so that we will work,
without loss of generality, under the following variant of this assumption, for some
0 < ε < 1

2 .

(K.1)∗ Each K ∈ K is such that K(t) = 0 for all t �∈ Iε := [ε, 1 − ε]d .

The condition (K.2), requires each K ∈ K to be of Hardy-Krause bounded
variation. For functions of several variables, this notion is involved (see, e.g., Adams
and Clarkson [1, 3], Niederreiter [26]), and some details must be given. The most
common forms of variation [18, 19, 39], are as follows (see, e.g., Niederreiter [26,
p. 22]). Set I0 = [0, 1]d , and, for 1 ≤ k ≤ 1 and 1 ≤ i1 < . . . < ik ≤ d , define a
face of I0, by I0(i1, . . . , ik) := {t = (t1, . . . , td ) ∈ I0 : tj = 1 for j �∈ {i1, . . . , ik}}.
By an interval J ⊆ I0, will be meant a product of d subintervals of [0, 1]. Denote
the lower endpoint of J by t(J ). For any function κ defined on I0, let &(κ;J )
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denote the alternating sum of values of κ at vertices of J , where κ(t(J )) has
coefficient 1. The Vitali variation of κ on I0 is then given by

VV(κ; I0) := sup
P(I0)

∑

J ∈P(I0)

|&(κ;J )|,

where the supremum is taken over all partitions P(I0) of I0 into subintervals J ⊆
I0. The Hardy-Krause variation of κ on I0 is, in turn, defined by

VHK(κ; I0) :=
d
∑

k=1

{

∑

1≤i1<...<ik≤d

VV(κ; I0(i1, . . . , ik))

}

,

which sums, over all faces I0(i1, . . . , ik) of I0, the Vitali variation of the restriction
of κ to I0(i1, . . . , ik). For d = 1, the Vitali and Hardy-Krause variations coincide
with the usual total variation. In these definitions, we may replace I0 by other
intervals of R

d , via book-keeping arguments. In particular, we set, in (K.2),
VHK(κ) := VHK(κ;Rd) := supm≥1 VHK(κ; [−m,m]d).

Subject to the existence of continuous partial derivatives of κ , the Vitali and
Hardy-Krause variations of κ on I0 are given, respectively, by

VV(κ; I0) =
∫

I0

∣

∣

∣

∣

∂dκ(t)
∂t1 . . . ∂td

∣

∣

∣

∣

dt,

VHK(κ; I0) =
d
∑

k=1

{

∑

1≤i1<...<ik≤d

∫

I0(i1,...,ik )

∣

∣

∣

∣

∂kκ(t)
∂ti1 . . . ∂tik

∣

∣

∣

∣

dti1 . . . dtik

}

.

In this case, an induction on d allows us to write, for each 0 ≤ u ≤ v ≤ 1,

κ(v)− κ(u) =
d
∑

k=1

{

∑

1≤i1<...<ik≤d

∫

t∈I0(i1,...,ik ), u<t≤v
(12.25)

(−1)k−d ∂kκ(t)
∂ti1 . . . ∂tik

dti1 . . . dtik

}

,

In general, subject to VHK(κ; I0) < ∞, the totally bounded Lebesgue-Stieltjes
signed measure ν = dκ(·), associated with κ and supported by I0, is defined by
setting, for each continuous function φ on I0,

∫

I0

φ(t)dκ(t) =
d
∑

k=1

{

∑

1≤i1<...<ik≤d

lim
|P(I0(i1,...,ik))|→0

(12.26)

∑

J ∈P(I0(i1,...,ik))

(−1)k−dφ(t(J ))&(κ;J )

}

.
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Here, we set |P(I0(i1, . . . , ik))| → 0, when the supremum vertice length of the
intervals J ∈ P(I0(i1, . . . , ik)) tends to 0. The kernel functions we consider have
simple expressions in terms of ν = dκ . When κ is right-continuous, with κ(t) = 0
for t �∈ Iε = [ε, 1 − ε]d , κ(0) = κ(1) = 0, so that, by (12.26),

κ(t) = −ν((t, 1]) = ν((0, t]) for t ∈ I0. (12.27)

Observe that ν = dκ(·) in (12.27) is a totally bounded signed measure with support
in Iε . Letting ν = ν+ − ν− denote the Hahn-Jordan decomposition of ν into the
difference of nonnegative bounded measures with supports in Iε ⊂ I0, we infer
from (12.27) that these component measures fulfill

κ(0) = −ν((0, 1]) = −ν(I0) = −ν(Iε) = ν−(Iε)− ν+(Iε) = 0,

so that 0 ≤ ν+(Iε) = ν−(Iε) < ∞. Following Bouleau [2] (see, e.g., p. 166 in
Pagès and Xiao [28]), we define the measure variation of κ on I0, by

VM(κ; I0) = ‖dκ‖M := |ν|(I0) := ν+(I0)+ ν−(I0). (12.28)

The above-defined variations are related through the inequalities

VV(κ; I0) ≤ VM(κ; I0) ≤ VHK(κ; I0) ≤ (2d − 1)VM(κ; I0), (12.29)

where 2d − 1 stands for the number of faces I0(i1, . . . , ik) of I0. In view of (12.29),
under (K.1)∗–(K.3), the assumption (K.2) is equivalent to:

(K.2)∗ There exists a B∗ < ∞ such that each K ∈ K has a measure variation in
I0 fulfilling VM(K; I0) ≤ B∗.

Armed with these arguments, we establish, in Lemma 12.2.1 below, a useful
integration by parts formula. We consider nonnegative bounded measures μi , i =
1, 2 and νi , i = 1, 2, with supports in Iε := [ε, 1 − ε]d , and such that μ1(Iε) =
μ2(Iε), and ν1(Iε) = ν2(Iε). Set, for 0 ≤ s ≤ t ≤ 1,

M1(s, t) =
{

μ1 − μ2

}

((s, t]) and M2(s, t) =
{

ν1 − ν2

}

((s, t]) .

By (12.27), taken with ν = d{−M2(t, 1)} and κ(t) = −M2(t, 1), we see that ν1 −
ν2 = d{−M2(t, 1)} coincides with the Lebesgue-Stieltjes measure ν induced by
−M2(t, 1). Likewise, by (12.27), taken with ν = dM2(0, t) and κ(t) = M1(0, t),
we see that μ1 − μ2 = dM1(0, t) coincides with the Lebesgue-Stieltjes measure ν

induced by M1(0, t).
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Lemma 12.2.1 Under the assumptions above, we have the integration by parts
formula

∫

I0

M1(0, t)dM2(t, 1) =
∫

I0

M2(t, 1)dM1(0, t). (12.30)

Proof We limit ourselves to the case where M1(0, t) and M2(t, 1) have continuous
partial derivatives of order d over t ∈ R

d . The proof in the general case is achieved
by a smoothing argument which we omit. Observe that, for all 1 ≤ k < d and
1 ≤ i1 < . . . < ik ≤ d , we have M2(t, 1) = 0 for t ∈ I0(i1, . . . , ik). Therefore, we
may rewrite (12.25) into

M2(t, 1) = (−1)d
∫

s∈I0, t<s≤1

∂dM2(s, 1)
∂s1 . . . ∂sd

ds. (12.31)

By a similar argument, with the formal replacement of M2(t, 1) by M1(0, t), we
may rewrite (12.25) into

M1(0, t) =
∫

s∈I0, 0<s≤t

∂dM1(0, s)
∂s1 . . . ∂sd

ds. (12.32)

This shows that the signed measures μ1 − μ2 = dM1(0, t) and −{ν1 − ν2} =
dM2(t, 1) are absolutely continuous with respect to the Lebesgue measure in R

d ,
with densities given, respectively, by

m(t) := dM1(0, t)
dt

= ∂dM1(0, t)
∂t1 . . . ∂td

,

and

n(t) := dM2(t, 1)
dt

= (−1)d
∂dM2(t, 1)
∂t1 . . . ∂td

.

Set M1;0(t) = m(t), M2;0(t) = n(t), and, for 1 ≤ k ≤ d ,

M1;k(t) =
∫ t1

0
. . .

∫ tk

0
m(s)ds1 . . . dsk

and

M2;k(t) =
∫ 1

t1

. . .

∫ 1

tk

n(s)ds1 . . . dsk.

Observe that M1;d(t) = M1(0, t), M2;d(t) = M2(t, 1), and, for 1 ≤ k ≤ d ,
∂
dtk

M1;k(t) = M1;k−1(t) and ∂
dtk

M2;k(t) = −M2;k−1(t). In addition, for 1 ≤ k ≤ d ,
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M1;k(t) = 0 when tk = 0 and M2;k(t) = 0 when tk = 1. We may therefore write
the chain of equalities

∫

[0,1]d
M1(0, t)dM2(t, 1) = (−1)d

∫

[0,1]d
M1;d(t)n(t)dt

= (−1)d
∫

[0,1]d
M1;d(t)M2;0(t)dt = (−1)d

∫

[0,1]d
M1;d(t) ∂

∂t1
M2;1(t)dt

= (−1)d
∫

[0,1]d−1

{[

M1;d(t)M2;1(t)
]t1=1

t1=0

−
∫ 1

0

∂
∂t1

M1;d(t)M2;1(t)dt1
}

dt2 . . . dtd

= (−1)d−1
∫

[0,1]d
M1;d−1(t)M2;1(t)dt = . . . =

∫

[0,1]d
M1;0(t)M2;d(t)dt

=
∫

[0,1]d
M2;d(t)m(t)dt =

∫

[0,1]d
M2(t, 1)dM1(0, t),

which is (12.30). ��
Remark 12.2.3 The version of (12.30) corresponding to d = 1, is readily checked,
when m(·) and n(·) are continuous on [0, 1]. We obtain the relations

∫ 1

0

{∫ t

0
m(s)ds

}

d

{∫ 1

t

n(s)ds
}

=
[{∫ t

0
m(s)ds

}{∫ 1

t

n(s)ds
}]t=1

t=0

−
∫ 1

0

{∫ 1

t

n(s)ds
}

d

{∫ t

0
m(s)ds

}

= −
∫ 1

0

{∫ 1

t

n(s)ds
}

m(t)dt .

12.2.4 Proof of Theorem 12.1.1

For each K ∈ K, set ˜K(u) = K(−u), and let ˜K = {˜K : K ∈ K}. Following the
arguments pp. 1278–1281 of [8], we may reduce the proof of (12.9) to the case
where ˜K fulfills (K.1)∗–(K.2)∗ and (K.3), so that ˜K(u) := K(−u) = 0 for u �∈
(0, 1)d . In view of (12.27), let d˜K(·) be the Lebesgue-Stieltjes measure induced by
˜K, in such a way that

−˜K(t) =
∫

(t,1]
d˜K(u).
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Let h0 > 0 be so small that I+h
1/d
0 [0, 1]d ⊂ J. By an application of Lemma 12.2.1,

and making use of the definition (12.19) of υn(h; x; u), we see that, for each x ∈ I,
and 0 < h ≤ h0,

{

nh

2 log+(1/h)

}1/2
(

fn,h(x)− E
(

fn,h(x)
))

(12.33)

=
∫

[0,1]d
˜K(u)

{

d{an(x+ h1/du)− an(x)}
√

2h log+(1/h)

}

= −
∫

[0,1]d

{

an(x+ h1/du)− an(x)
√

2h log+(1/h)

}

d˜K(u)

= −√f (x)
∫

[0,1]d
υn(h; x; u)

√

2h log+(1/h)
d˜K(u).

We will need the following analytical result (see, e.g., Lemma 1 in [10]). Let M
denote a subset of B([0, 1]d), such that Sd ⊆ M ⊆ B([0, 1]d), and let T denote a
non-empty class of mappings $ :M→ R, continuous with respect to the uniform
topology on M. We assume that T has the following equicontinuity property. For
each ε > 0, there exists an η(ε) > 0 such that, for each φ ∈ M and g ∈ Sd , we
have

‖φ − g‖ < η(ε) ⇒ sup
$∈T

|$(φ)−$(g)| < ε. (12.34)

Lemma 12.2.2 Under the assumptions above, for each ε > 0, there exists a ζ(ε) >

0, such that, for any F ⊆M, we have

&(F ,S) < ζ(ε) ⇒ sup
$∈T

∣

∣

∣

∣

∣

sup
φ∈F

$(φ)− sup
g∈Sd

$(g)

∣

∣

∣

∣

∣

< ε. (12.35)

Consider an arbitrary $ ∈ T . By compactness of Sd and continuity of $, there
exists a g$ ∈ Sd such that $(g$) = supg∈Sd $(g). Letting η(ε) be as in (12.34),
we see that, for each ε > 0, and φ ∈ M such that ‖φ − g$‖ ≤ η(ε), we have
sup$∈T |$(φ) − $(g$)| < ε. In view of the implication &(F ,Sd) ≤ η(ε) ⇒
Sd ⊆ Fη(ε), we see that &(F ,Sd ) ≤ η(ε) implies the existence of a φ$ ∈ F such
that ‖φ$ − g$‖ < η(ε). By an application of (12.34), we obtain therefore, that,
whenever &(F ,Sd) ≤ η(ε),

∀$ ∈ T : sup
φ∈F

$(φ)− sup
g∈Sd

$(g) ≥ $(φ$)−$(g$) ≥ −ε. (12.36)
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Consider now the assumption

(H) :
{

∀ η > 0, ∃φ ∈M ∩ S
η
d : sup

$∈T

{

$(φ)− sup
g∈Sd

$(g)

}

≥ ε

}

.

Under (H), there exists a sequence (φn,$n) ∈ (M ∩ S
1/n
d ,T ), n = 1, 2, . . .,

such that φn ∈ M ∩ S
1/n
d , and $n(φn) ≥ supg∈Sd $n(g) + ε, for all n ≥ 1. The

condition φn ∈ S
1/n
d implies the existence, for each n ≥ 1, of a ψn ∈ S, such that

‖φn − ψn‖ ≤ 1/n. The compactness of S implies the existence of a convergent
subsequence ψnk → ψ ∈ Sd as k →∞. Since then, ‖φnk − ψ‖ → 0, as k →∞,
an application of (12.34) shows that, as k → ∞, sup$∈T

∣

∣$(φnk )−$(ψ)
∣

∣ → 0.
This entails that, for all k sufficiently large,

$nk(φnk ) < $nk (ψ)+ ε ≤ sup
g∈Sd

$nk (g)+ ε,

which contradicts (H). The impossibility of (H) implies the existence of an η1(ε)

such that whenever F ⊆ M fulfills &(F ,Sd ) ≤ η1(ε), and hence, F ⊆ S
η1(ε)
d , we

have

∀$ ∈ T : sup
φ∈F

$(φ)− sup
g∈Sd

$(g) ≤ ε. (12.37)

The conclusion (12.35) follows from (12.36) to (12.37), with ζ(ε) := η(ε)∧ η1(ε).
�

Example 12.2.1

1◦) Let M = B([0, 1]d), and T = {$0}, with $0(g) := ‖g‖. Since
sup$∈T |$(φ) − $(g)| = ‖φ − g‖, we see that (12.34) holds with η(ε) = ε,
so that the assumptions of Lemma 12.2.2 are fulfilled.

2◦) Let K, where K fulfill (K.1)∗–(K.2)∗–(K.3), and choose M as the set of
all bounded measurable functions on [0, 1]d . The inclusions Sd ⊆ M ⊆
B([0, 1]d) are then straightforward. Consider the functionals

g ∈ BV0;HK([0, 1]d)→ $K(g) =
∫

[0,1]d
g(u)dK(u),

for K ∈ K. In view of the obvious inequality, for g1, g2 ∈ BV0([0, 1]d),

|$K(g1)−$K(g2)| ≤ ‖g1 − g2‖ × VM(K, I0) ≤ B∗‖g1 − g2‖,

we see that (12.34) is fulfilled, with η(ε) = ε/B∗.
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By a rectangle in R
d will be meant a product of d subintervals of R. Below, we

will denote by |A| the Lebesgue measure of a measurable A ⊂ R
d . Since f (·) is

continuous on J ⊃ I, for each 0 < ε < ν := infx∈I
√
f (x), we may partition the

rectangle I into I = I1 ∪ . . . ∪ IM , where I1, . . . , IM ⊂ I are disjoint rectangles in
R

d such that, for j = 1, . . . ,M , |Ij | > 0 and

mj := sup
x∈Ij

√

f (x) ≥ inf
x∈Ij

√

f (x) > mj − ε ≥ ν − ε > 0.

By setting L = Ij , for j = 1, . . . ,M , and a = h in (12.20), we may therefore write,
for each j = 1, . . . ,M and 0 < h ≤ h0, the relations

sup
x∈Ij

∣

∣

∣

∣

{

mj −
√

f (x)
}

∫

[0,1]d
υn(h; x; u)

√

2h log+(1/h)
d˜K(u)

∣

∣

∣

∣

(12.38)

≤ ε

⎧

⎨

⎩

sup
g∈Fn;h;Ij

‖g‖
⎫

⎬

⎭

∫

[0,1]d
|d˜K(u)| = ε

⎧

⎨

⎩

sup
g∈Fn;h;Ij

‖g‖
⎫

⎬

⎭

‖dK‖,

where ‖dK‖ < ∞ denotes the total variation of K(·) on R
d . Set now $(g) =

$0(g) := ‖g‖ and F = Fn;h;Ij . In view of (12.16) and (12.20), and by a repeated
application of Theorem 12.2.1 with the formal replacement of I by Ij , for j =
1, . . . ,M , we infer from (12.22) that, whenever Hn = [an, bn] fulfills (12.21), we
have, as n→∞,

sup
h∈Hn

∣

∣

∣

∣

sup
g∈Fn;h;Ij

‖g‖ − sup
g∈Sd

‖g‖
∣

∣

∣

∣

= sup
h∈Hn

∣

∣

∣

∣

sup
g∈Fn;h;Ij

‖g‖ − 1

∣

∣

∣

∣

= oP(1). (12.39)

We infer readily from (12.38) and (12.39) that, as n →∞,

P

(

max
1≤j≤M

sup
h∈Hn

∣

∣

∣

∣

{

sup
x∈Ij

±
{

nh

2 log+(1/h)

}1/2
(

fn,h(x)− E
(

fn,h(x)
))

}

−mj sup
x∈Ij

{

± (−1)d
∫

[0,1]d
υn(h; x; u)

√

2h log+(1/h)
d˜K(u)

}∣

∣

∣

∣

≥ 2ε‖dK‖
)

≤ P

(

max
1≤j≤M

sup
h∈Hn

{

sup
x∈Ij

∣

∣

∣

∣

{

mj −
√

f (x)
}

∫

[0,1]d
υn(h; x; u)

√

2h log+(1/h)
d˜K(u)

∣

∣

∣

∣

}

≥ 2ε‖dK‖
)

→ 0. (12.40)
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Set now

$(g) = $1(g) := ±
∫

[0,1]d
g(u)˜K(u)du.

We may rewrite (12.40) into

P

(

max
1≤j≤M

sup
h∈Hn

∣

∣

∣

∣

{

sup
x∈Ij

±
{

nh

2 log+(1/h)

}1/2
(

fn,h(x)− E
(

fn,h(x)
))

}

−mj sup
g∈Fn;h;Ij

$(g)

∣

∣

∣

∣

≥ 2ε‖dK‖
)

→ 0. (12.41)

After integrating by parts, we combine the definition of Sd with the Schwarz
inequality, to obtain that

sup
g∈Sd

$(g) = sup
g∈Sd

{

∓
∫

[0,1]d
g(u)d˜K(u)

}

(12.42)

= sup
g∈Sd

{

±
∫

[0,1]d
ġ(u)˜K(u)du

}

=
{∫

[0,1]d
K(u)2du

}1/2

.

For j = 1, . . . ,M , set F = Fn;h;Ij . In view of (12.16)–(12.20), and by an
application of Theorem 12.2.1, with I = Ij , for j = 1, . . . ,M , we infer
from (12.22) that, whenever Hn = [an, bn] fulfills (12.21), we have, as n→∞,

max
1≤j≤M

sup
h∈Hn

∣

∣

∣

∣

sup
g∈Fn;h;Ij

$(g)− sup
g∈Sd

$(g)

∣

∣

∣

∣

= max
1≤j≤M

sup
h∈Hn

∣

∣

∣

∣

sup
g∈Fn;h;Ij

$(g)−
{∫

[0,1]d
K(u)2du

}1/2 ∣
∣

∣

∣

= oP(1).

This, when combined with (12.41), implies that, as n→∞,

P

(

sup
h∈Hn

∣

∣

∣

∣

{

sup
x∈I

±
{

nh

2 log+(1/h)

}1/2
(

fn,h(x)− E(fn,h(x))
)

}

(12.43)

−
{

sup
x∈I

√

f (x)
}{∫

[0,1]d
K(u)2du

}1/2 ∣
∣

∣

∣

≥ ε + 2ε‖dK‖
)

→ 0.

Since ε ∈ (0, h0] in (12.43) may be chosen arbitrarily small, we infer (12.9)
from (12.43). This, together with routine arguments completes the proof of (12.9),
given Theorem 12.2.1.
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12.3 Proof of Theorem 12.2.1

12.3.1 A Bound for the Oscillation Modulus

In Proposition 12.3.1 below, we establish a rough bound for the oscillation modulus
of the multivariate empirical process. This result will be instrumental in the proof
of Theorem 12.2.1. We will work under the assumption that the support of the
distribution of X is equal to [0, 1]d , and that the density f (·) of X is continuous and
bounded away from 0 on [0, 1]d . This implies the existence of constants C1, C2,
such that

0 < C1 ≤ f (x) ≤ C2 <∞ for x ∈ [0, 1]d. (12.44)

The assumption that
∫

[0,1]d f (x)dx = 1, implies that C1, C2 in (12.44) fulfill

0 < C1 ≤ 1 ≤ C2 <∞. (12.45)

Moreover, we may extend the definition of f (·) to R
d := [−∞,∞]d , by setting

f (x) = 0 for x �∈ [0, 1]d. (12.46)

This entails that the distribution function [df] F(x) := P(X ≤ x) of X =
(X(1), . . . , X(d)) ∈ R

d , is continuous on R
d
. For each j = 1, . . . , d , set x[j ] :=

(x1, . . . , xj−1, xj+1, . . . , xd) and dx[j ] := dx1 . . . dxj−1dxj+1 . . . dxd . As follows
from (12.44)–(12.46), for each j = 1, . . . , d , the j -th coordinate X(j) of X has a
continuous density f [j ](·) on [0, 1], fulfilling, for all xj ∈ [0, 1],

C1 ≤ f [j ](xj ) =
∫

x[j]∈[0,1]d−1
f (x)dx[j ] ≤ C2. (12.47)

This, in turn, implies that for each j = 1, . . . , d , the j -th marginal df of F(·),
denoted by F [j ](x) := P(X(j) ≤ x), x ∈ R, is continuous on R, and such that
U(j) := F [j ](X(j)) is uniformly distributed on [0, 1]. For j = 1, . . . , d , let
Q[j ](t) := inf{x : F [j ](x) ≥ t}, 0 < t < 1, Q[j ](0) := inf{x : F [j ](x) > 0},
Q[j ](1) := sup{x : F [j ](x) < 1}, denote the quantile function pertaining to F [j ](·).
For j = 1, . . . , d , we have, almost surely [a.s.], X(j) = Q[j ](U(j)). Without
loss of generality, will therefore work on the set of probability 1 on which these
relations hold. It is noteworthy that, unless f (x) = ∏d

j=1 f [j ](xj ) for all x =
(x1, . . . , xd) ∈ [0, 1]d , the components U(1), . . . , U(d) of U := (U(1), . . . , U(d))

are not independent. Their joint df, C(u) := P(U ≤ u), u ∈ R
d , is the copula

function of F(·) (see, e.g., Schweizer and Wolff [31]). We have the reciprocal
relations

F(x) = C(F [1](x1), . . . , F
[d](xd)) for x = (x1, . . . , xd) ∈ R

d
, (12.48)
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and

C(u) = F(Q[1](u1), . . . ,Q
[d](ud)) for u = (u1, . . . , ud) ∈ [0, 1]d. (12.49)

We infer from (12.47) that, for each j = 1, . . . , d , the j -th quantile density function
q [j ](t) := d

dt
Q[j ](t), t ∈ (0, 1), is defined and continuous on (0, 1), and fulfills, for

0 < t < 1,

0 <
1

C2
≤ q [j ](t) = d

dt
Q[j ](t) = 1

fj (Q[j ](t))
≤ 1

C1
<∞. (12.50)

The relations (12.44), (12.47)–(12.50), readily imply that the copula function C(·)
has a density c(·) on (0, 1)d , fulfilling the relations, for x = (x1, . . . , xd) ∈ (0, 1)d

and u = (u1, . . . , ud) ∈ (0, 1)d

0 < C1 ≤ f (x) = ∂d

∂x1 . . . ∂xd
F(x1, . . . , xd)

= c(F [1](x1), . . . , F
[d](xd))

d
∏

j=1

f [j ](xj ) ≤ C2 <∞, (12.51)

0 <
C1

Cd
2

≤ c(u) = ∂d

∂u1 . . . ∂ud

C(u1, . . . , ud)

= f (Q[1](u1), . . . ,Q
[d](ud))

d
∏

j=1

q [j ](uj ) ≤ C2

Cd
1

<∞. (12.52)

Let now Xi = (Xi(1), . . . , Xi(d)), i ≥ 1, be iid random copies of X, and set Ui =
(Ui(1), . . . , Ui(d)) := (F [1](Xi(1)), . . . , F [d](Xi(d))), i ≥ 1. In agreement with
the notation of Sect. 12.2.1, the empirical df’s based, respectively, upon U1, . . . ,Un

and X1, . . . ,Xn, are denoted by

Cn(u) := n−1#{Ui ≤ u : 1 ≤ i ≤ n}, u ∈ R
d,

and
Fn(x) := n−1#{Xi ≤ x : 1 ≤ i ≤ n}, x ∈ R

d .

The corresponding empirical processes are denoted by

an;C(u) := n1/2 {Cn(u)− C(u)} , u ∈ R
d
,

and
an;F(x) := n1/2 {Fn(x)− F(x)} , x ∈ R

d
.
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Denote the set of all rectangles in [0, 1]d by Rd . The empirical measures indexed
by Rd , based, respectively, upon U1, . . . ,Un and X1, . . . ,Xn, are denoted by

μn;C(I) = n−1# {Ui ∈ I : 1 ≤ i ≤ n} , I ∈ Rd ,

and
μn;F(I) = n−1# {Xi ∈ I : 1 ≤ i ≤ n} , I ∈ Rd ,

with expectations, given, respectively, by

μC(I) =
∫

I

c(u)du and μF(I) =
∫

I

f (x)dx for I ∈ Rd .

The corresponding empirical processes indexed by Rd are denoted by

an;C(I) := n1/2 {μn;C(I)− μC(I)
}

for I ∈ Rd ,

and
an;F(I) := n1/2 {μn;F(I)− μF(I)

}

for I ∈ Rd .

For 0 ≤ u, v ≤ 1, consider the modulus of continuity of an;C and an;F, defined,
respectively, by

ωn;C(v) = sup
{

|an;C(t+ vI)| : I ∈ Rd , (12.53)

t ∈ [0, 1]d, t+ vI ⊆ [0, 1]d
}

,

ωn;F(u) = sup
{

|an;F(x+ uI)| : I ∈ Rd , x ∈ R
d
}

. (12.54)

Recall the definition (12.44) of the constant C2.

Lemma 12.3.1 For all 0 ≤ u ≤ 1/C2, we have the inequality

ωn;F(u) ≤ ωn;C(C2u). (12.55)

Proof Denote by Rd the set of all closed rectangles of Rd . Since (12.55) is trivial
for u = 0, we assume that 0 < u ≤ 1, and set, for x := (x1, . . . , xd) ∈ [0, 1]d and
I :=∏d

j=1

[

yj , zj
] ⊆ [0, 1]d , I ∈ Rd , such that x+ uI ∈ [0, 1]d ,

x+ uI =
d
∏

j=1

[rj (u, x), sj (u, x)] ⊆ [0, 1]d, (12.56)

where, for j = 1, . . . , d , rj (u, x) and sj (u, x) are such that

0 ≤ rj (u, x) := xj + uyj ≤ sj (u, x) := xj + uzj ≤ 1, (12.57)
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and
0 ≤ sj (u, x)− rj (u, x) = u(zj − yj ) ≤ u ≤ 1. (12.58)

It is noteworthy that the mappings F and Q, defined by

x = (x(1), . . . , x(d)) ∈ [0, 1]d (12.59)

→ F(x) := (F [1](x(1)), . . . , F [d](x(d)) ∈ [0, 1]d,
u = (u(1), . . . , u(d)) ∈ [0, 1]d (12.60)

→ Q(u) := (Q[1](u(1)), . . . ,Q[d](u(d)) ∈ [0, 1]d,

are continuous mappings of [0, 1]d onto itself, fulfilling F ◦ Q = Q ◦ F = I,
where I denotes identity. Therefore, for each i ≥ 1, and I ∈ Rd , the event
{Xi ∈ x + uI } is identical to the event {F(Xi ) = Ui ∈ F(x + uI)}. Now we
infer from (12.56), (12.57)–(12.58) and (12.59)–(12.60), that, with x, u and I as
above,

F(x+ uI) =
d
∏

j=1

[

F [j ](rj (u, x)), F [j ](sj (u, x))
]

= t+ vJ,

where t ∈ [0, 1]d , v ∈ (0, 1] and J ∈ Rd are such that

t :=
(

F [1](r1(u, x)), . . . , F [d](rd (u, x))
)

,

vJ :=
d
∏

j=1

[

0, F [j ](sj (u, x))− F [j ](rj (u, x))
]

,

with

v := C2u and J :=
d
∏

j=1

[

0,
F [j ](sj (u, x))− F [j ](rj (u, x))

C2u

]

.

By (12.47) and (12.57)–(12.58), we see that, for j = 1, . . . , d and 0 < u ≤ 1,

0 ≤ F [j ](sj (u, x))− F [j ](rj (u, x))

≤
{

sup
0≤x≤1

f [j ](x)
}

(

sj (u, x)− rj (u, x)
) ≤ C2u.

Thus, we see that J ⊆ [0, 1]d , whereas the inequality 0 < v ≤ 1 is implied by
the assumption 0 < u ≤ 1/C2. By all this, whenever x ∈ [0, 1]d , I ∈ Rd and
0 < u ≤ 1/C2 are such that x + uI ⊆ [0, 1]d , then F(x + uI) ⊆ [0, 1]d is of the
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form t + vJ , for some t ∈ [0, 1]d , J ∈ Rd , and 0 < v = C2u ≤ 1. In view of
the definitions (12.53)–(12.54) of ωn;F(·) and ωn;C(·), and, making use of a similar
argument for non-closed rectangles of Rd , we readily obtain (12.55). ��
The following fact is a special case of Theorem 1.5 in Stute [34].

Fact 12.3.1 For each 0 < δ < 1
2 , there exist constants 0 < c1(δ), c2(δ) < ∞ and

C3(δ) > 0, such that, for all

ud ≤ c2(δ) and 0 < t ≤ c1(δ)

√

nud

2 log(1/ud)
,

we have

P

⎛

⎝

ωn;C(u)
√

2ud log+(1/ud)

≥ t
√

sup
x∈[0,1]d

c(x)

⎞

⎠ ≤ C3(δ)u
d((1−δ)t2−1). (12.61)

Lemma 12.3.2 There exist constants c3 > 0, c4 > 0, C4 > 0 and C5 > 0, such
that, whenever 0 < an ≤ bn <∞ fulfill

nad
n

log(1/ad
n)
≥ c3 and bn ≤ c4, (12.62)

we have, with Hn = [an, bn], as n →∞,

P

⎛

⎝ sup
a∈Hn

ωn;C(a)
√

2ad log+(1/ad)

≥ C4

⎞

⎠ ≤ C5b
2d
n . (12.63)

Proof First, we observe that, for any 1
2 ≤ λ ≤ 1 and hd ≤ 1/e, log+(1/hd) =

log(1/hd) ≤ log+(1/(λh)d) = log(1/(λh)d), and, therefore,

ωn;C(λh)
√

2(λh)d log+(1/(λh)d)
(12.64)

≤ ωn;C(h)
√

2hd log(1/hd)
×

√

log(1/hd)
√

λd log(1/(λh)d)
≤ 2d/2ωn;C(h)
√

2hd log(1/hd)
.
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Let now 0 < a ≤ 1 be such that ad ≤ 1/e and select any N ≥ 0. By a repeated
application of (12.64) for h = 2−ka for k = 0, . . . , N , we readily obtain that, for
each N ≥ 0,

AN := P

⎛

⎝ sup
2−N−1a≤h≤a

ωn;C(h)
√

2hd log+(1/hd)

≥ 21+d/2
√

sup
x∈[0,1]d

c(x)

⎞

⎠ (12.65)

P

⎛

⎝

N
⋃

k=0

⎧

⎨

⎩

sup
2−k−1a≤h≤2−ka

2−d/2ωn;C(h)
√

2hd log+(1/hd)

≥ 2
√

sup
x∈[0,1]d

c(x)

⎫

⎬

⎭

⎞

⎠

≤
N
∑

k=0

P

⎛

⎝ sup
1
2≤λ≤1

2−d/2ωn;C(λ2−ka)
√

2(λ2−ka)d log+(1/(λ2−ka)d)

≥ 2
√

sup
x∈[0,1]d

c(x)

⎞

⎠

≤
N
∑

k=0

P

⎛

⎝

ωn;C(2−ka)
√

2(2−ka)d log+(1/(2−ka)d)

≥ 2
√

sup
x∈[0,1]d

c(x)

⎞

⎠ .

Let now 0 < a ≤ 1 and N ≥ 0 be such that

ad ≤ c2(
1
4 ) ∧ {1/e} and 2 ≤ c1(

1
4 )

√

n(2−Na)d

2 log(1/((2−Na)d))
.

By combining (12.65) with a repeated application of Fact 12.3.1, taken with δ = 1
4 ,

t = 2 (so that (1− δ)t2−1 = 2) and u = 2−ka for k = 0, . . . , N , we readily obtain
that

AN ≤ C3(
1
4 )

N
∑

k=0

(

2−ka
)2d

(12.66)

≤ C3(
1
4 )a

2d
∞
∑

k=0

(

2−2d
)k ≤ 4

3C3(
1
4 )a

2d,

where we have used the fact that, independently of d ≥ 1,

∞
∑

k=0

(

2−2d
)k = 1

1− 2−2d
≤ 4

3 .

We now set a = bn and choose N ≥ 0 in such a way that

2−N−1a ≤ an ≤ 2−Na, (12.67)
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so that an ≤ 2−Na < 2an. Next, we observe that the function ψ(t) := t/ log(1/t) is
increasing on (0, e]. Thus, if we assume that (2bn)d ≤ e, we obtain that (2an)d ≤ e,
and (an)

d ≤ (2−Na)d ≤ e. We get therefore

nad
n

2 log(1/ad
n)
≤ n(2−Na)d

2 log(1/((2−Na)d))
.

By setting Hn = [an, bn], we infer from (12.65)–(12.67) that, whenever an ≤ bn
fulfill

bd
n ≤ c2(

1
4 ) ∧ {1/e} ∧

{

2−de
}

and
nad

n

2 log(1/ad
n)
≥ 4

c1(
1
4 )

2
,

we have

P

⎛

⎝ sup
a∈Hn

ωn;C(a)
√

2ad log+(1/ad)

≥ 21+1/d
√

sup
x∈[0,1]d

c(x)

⎞

⎠ (12.68)

≤ AN ≤ 4
3C3(

1
4 )b

2d
n .

Recalling (12.52), we set

C4 := 21+1/dC
1/2
2 C

−d/2
1 ≥ 21+1/d

√

sup
x∈[0,1]d

c(x).

We therefore infer from (12.68) that (12.63) holds under (12.62), when the constants
c3, c4 and C5 are defined by

c3 := 8/c1(
1
4 )

2,

c4 :=
(

c2(
1
4 ) ∧ {1/e} ∧

{

2−de
})1/d

,

and C5 := 4
3C3(

1
4 ). ��

Proposition 12.3.1 There exist constants c5 > 0, c6 > 0, C6 > 0 and C7 > 0,
such that, whenever 0 < an ≤ bn <∞ fulfill

nad
n

log(1/ad
n)
≥ c5 and bn ≤ c6,

we have, with Hn = [an, bn], as n →∞,

P

⎛

⎝ sup
a∈Hn

ωn;F(a)
√

2ad log+(1/ad)

≥ C6

⎞

⎠ ≤ C7b
2d
n . (12.69)
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Proof We infer from (12.44) and (12.45) that 0 < 1/C2 ≤ 1. Thus, by (12.55), we
have, for all 0 ≤ a ≤ {1/C2} ∧ 1 = 1/C2,

ωn;F(a)
√

2ad log+(1/ad)

≤ ωn;C(C2a)
√

2(C2a)d log+(1/(C2a)d)

× C
d/2
2

{

log(1/(C2a)
d)

log(1/ad)

}1/2

= ωn;C(C2a)
√

2(C2a)d log+(1/(C2a)d)

× C
d/2
2

{

1+ log(1/C2)

log(1/a)

}1/2

≤ ωn;C(C2a)
√

2(C2a)d log+(1/(C2a)d)

× C
d/2
2 .

��

12.3.2 Basic Arguments

For convenience, in the proof of Theorem 12.2.1 below, we will set I := I0 :=
[0, 1]d . The adaptation of our arguments to a general I is readily achieved, at the
price of heavier notation. Letting F(·) and Fn(·) be as in Sect. 12.2.1, we denote by
dFn(·) (resp. dF(·)) the empirical (resp. underlying) measure pertaining to {Xi :
1 ≤ i ≤ n}, and write dan(·) = n1/2(dFn(·)− dF(·)), where an(·) is as in (12.18).
For N ≥ 1, we denote by BN := {z ∈ R

N : ‖z‖ ≤ 1} the unit ball of the Euclidian

norm ‖z‖ := (

z′z
)1/2

in R
N . For each z ∈ R

N and ε > 0, we set Nε(z) := {y ∈
R

N : ‖y−z‖ < ε}, and for each E ⊆ R
N , Eε :=⋃z∈E Nε(z). For any E,F ⊆ R

N ,
we write

&(E,F) := inf{θ > 0 : E ⊆ Fθ and F ⊆ Eθ },
whenever such a θ exists, and

&(E,F) := ∞ otherwise.

Fix an integer M ≥ 1, and select an 0 < a0 < 1 such that, for all 0 < a ≤ a0

and x ∈ I0 =
[

0, 1
]d , we have x + a1/dI0 ⊆ J. Let i := (i1, . . . , id) ∈ N

d be such
that 0 ≤ i ≤ (M − 1)× 1, where 0 := (0, . . . , 0) ∈ R

d and 1 := (1, . . . , 1) ∈ R
d .

Consider the array of N :=Md random variables, defined, for 0 ≤ i ≤ (M−1)×1,
by

Zn;x;i(a) :=
√
N

√

2af (x) log+(1/a)

∫

x+(a/M)1/d(i+I0)

dan(t). (12.70)
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For each x ∈ I0 and 0 < a ≤ a0, denote by Zn;x(a) ∈ R
N the random vector of RN

obtained by sorting the array {Zn;x;i(a) : 0 ≤ i ≤ (M − 1) × 1} in lexicographic
order. For each 0 < a ≤ a0 and 0 < λ < 1 set

I(a; λ) =
{

x ∈ I0 : x = λj a1/d for some j ∈ N
d
}

.

Consider the set defined by

En;a;N(λ) := {Zn;x(a) : x ∈ I(a; λ)} .

We note for further use that, for 0 < a ≤ a0 and 0 < λ < 1,

#I (a; λ) = #{j ∈ N
d : 0 ≤ j ≤ 1(1/(λa1/d)2 × 1} ≤ 2dλ−da.

Observe that, for each x ∈ I0, there exists a x̃ = x̃(x) ∈ I(a; λ) such that

x̃ ≤ x ≤ x̃+ λa1/d1.

We will show that Theorem 12.1.1 is equivalent to the following statement.

Theorem 12.3.1 Set Hn = [an, bn], where 0 < an ≤ bn fulfill, as n→∞,

bn → 0 and nan/ logn →∞. (12.71)

Then, for each N = Md ≥ 1 and 0 < λ ≤ 1, we have, as n→∞,

sup
a∈Hn

&
(

En;a;N(λ),BN

) = oP(1). (12.72)

Proof of Theorem 12.3.1 To prove Theorem 12.1.1, we use of a discretization
argument due to Deheuvels and Ouadah [10]. For each 0 < ρ < 1 and Hn =
[an, bn], set

Hn(ρ) =
{

ρmbn ∈ [an, bn] : m ∈ N
}

.

We note that Hn(ρ) is never void, as long as 0 < an ≤ bn. Given this notation,
the proof of Theorem 12.1.1 reduces to show that, under (12.21), we have, for each
0 < ρ < 1,

sup
a∈Hn(ρ)

&
(

Fn;a;I,Sd

) = oP(1). (12.73)

The details of this argument are given in [10] for d = 1. However, it is easy to see
that the same methods apply to an arbitrary d ≥ 1, so that we omit details.
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In a second step, we show that Theorem 12.1.1 is equivalent to Theorem 12.3.1.
In view of the above preliminaries, this amounts to show that, under (12.71), the
property that the assertion (12.73) holds for each 0 < ρ < 1, is equivalent to the
property that, for each 0 < ρ < 1 and N = Md ≥ 1, as n→∞,

sup
a∈Hn(ρ)

&
(

En;a;N,BN

) = oP(1). (12.74)

To show the equivalence between (12.73) and (12.74), we follow the discretization
method used by Strassen [33] to establish his law of the iterated logarithm. The
corresponding details are given in the forthcoming Sect. 12.3.4 for d = 1. Their
extension to an arbitrary d ≥ 1 is mostly a matter of book-keeping, with tedious
notation for higher dimensions. We will therefore limit ourselves to the essential
part of the argument. Consider the modulus of continuity of an(·), defined, for 0 <

h ≤ 1, by

ωn(h) := sup
R∈R

∣

∣

∣

∣

∫

h1/dR

dan(x)

∣

∣

∣

∣

, (12.75)

where R denotes the set of all rectangles in I = [0, 1]d . Given these preliminaries,
the proof of the equivalence between (12.73) and (12.74) boils down to show that,
under (12.72), for each ε > 0, there exists an N = Md such that

P

(

sup
a∈Hn

ωn(a/M)
√

2a log+(1/a)
≥ ε

)

→ 0. (12.76)

This, in turn, will follow directly from Proposition 12.3.1 in the sequel. Given the
above arguments, the proof of the equivalence between Theorems 12.1.1 and 12.3.1
is now complete.

It remains to show that (12.74) holds for each choice of 0 < ρ < 1 and N =
Md ≥ 1. This property turns out to be a consequence of the limiting results (12.77)
and (12.78) below, which must hold, for each choice of ε > 0, 0 < ρ < 1 and
N =Md . In the first place, we have, under (12.72),

∑

k:ρkbn∈Hn

P
(

En;ρkbn;N �⊆ Bε
N

)→ 0. (12.77)

In the second place, we have, for each 0 ≤ ‖z‖ < 1,

∑

k:ρkbn∈Hn

P
(∃y ∈ En;ρkbn;N : y ∈ Nε(z)

)→ 0. (12.78)

The only remaining part of our proof is to obtain the appropriate probabilistic
bounds allowing us to establish (12.77) and (12.78). Here, we use a simple trick.
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Since the probabilities in (12.77) and (12.78) evaluate deviations of centered and
rescaled multinomial random vectors in R

N , for a specified N ≥ 1, we may
construct these multinomial laws in a space of arbitrary dimension d . This allows us
to make use of the probabilistic inequalities obtained by Deheuvels and Ouadah [10]
for d = 1. We note that the latter inequalities rely on strong invariance principles
whose extension in higher dimensions is not presently available. Fortunately, the use
of multinomial distributions allows us to avoid this technical difficulty. The proof
of (12.77) and (12.78), follows directly from the forthcoming Propositions 12.3.2
and 12.3.3. In view of these arguments, the proofs of Theorems 12.1.1 and 12.3.1 is
now completed. ��

In the remainder of our paper, we outline the proofs of the key properties (12.76)–
(12.78), on which rely the above-given proofs of Theorems 12.1.1 and 12.3.1.

12.3.3 Multinomial Inequalities

Let N ≥ 1 be an integer which will be specified later on. Let p := (p1, . . . , pN) ∈
R

N+ fulfill pj > 0 for j = 1, . . . , N and pN+1 := 1 − |p| := 1 −∑N
j=1 pj >

0. For each n ≥ 1, we denote the fact that the random vector Zn;p;N :=
(Zn;p;1, . . . , Zn;p;N) ∈ R

N follows a multinomial distribution with parameters n

and p, by Zn;p;N
d= Mult(n; p). This holds whenever, for any N-uple of nonnegative

integers k := (k1, . . . , kN ), such that kN+1 := n − |k| := n −∑N
j=1 kj ≥ 0, we

have

P
(

Zn;p;N = k
) = n!

k1! . . . kN+1! p
k1
1 . . . p

kN+1
N+1 .

For each δ = (δ1, . . . , δN ) ∈ R
N+ , set |δ| :=∑N

j=1 δj , and consider

DN =
{

δ := (δ1, . . . , δN ) ∈ R
N : δj > 0, j = 1, . . . , N; |δ| = N

}

. (12.79)

Whenever δ ∈ DN , set

0 < δmin := min
1≤j≤N

δj ≤ 1 ≤ δmax := max
1≤j≤N

δj . (12.80)

We will set p = aδ/N for some 0 < a ≤ 1, so that |p| = aN−1|δ| = a ≤ 1, and
consider the random vector

ζ n;a;δ :=
√
N

√

2na log+(1/a)

⎡

⎢

⎣

Zn;aδ/N;1 − naδ1/N
...

Zn;aδ/N;N − naδN/N

⎤

⎥

⎦
∈ R

N . (12.81)
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Denote by BN := {z ∈ R
N : ‖z‖ ≤ 1}, the unit ball of the Euclidian norm ‖z‖ :=

(

z′z
)1/2 in R

N . Let, for each z ∈ R
N and ε > 0, Nε(z) := {y ∈ R

N : ‖y− z‖ < ε},
and set, for each A ⊆ R

N , Aε := ⋃

z∈A Nε(z). We will need the following two
propositions.

Proposition 12.3.2 There exists a constant C0 such that the following holds. For
each 0 < ε ≤ 1, there exist constants 0 < a0(ε) ≤ 1/e and 0 < c0(ε) < ∞,
together with an n0(ε) <∞, such that, for all n ≥ n0(ε) and a > 0 fulfilling

na/ logn ≥ c0(ε) and a ≤ a0(ε), (12.82)

and for all N ≥ 1 and δ ∈ DN fulfilling

√

δmin ≥ 1+ 1
2ε

1+ ε
, (12.83)

we have

P
(

ζ n;a;δ �∈ Bε
N

) ≤ C0a
1+ε/(8N). (12.84)

The proof of Proposition 12.3.2 is captured in Sects. 12.3.4 and 12.3.5 below.
For the next proposition, we will need the following additional notation. We

consider a sequence δ(k) = (δ1(k), . . . , δN (k)) ∈ DN , k = 1, . . . ,K , and set
p(k) = (p1(k), . . . , pN(k)) := aδ(k)/N , for k = 1, . . . ,K and 0 < a ≤ 1/K , so
that

∑K
k=1 |p(k)| = aN−1∑K

k=1 |δk| = Ka ≤ 1. Given {δ(k) : k = 1, . . . ,K}, we
consider a sequence of random vectors

Z(k)
n;p(k);N := (Z

(k)
n;p1(k);1, . . . , Z

(k)
n;pN(k);N) ∈ R

N, k = 1, . . . ,K,

such that, with obvious notation,

(Z(1)
n;p(1);N, . . . ,Z(K)

n;p(K);N)
d= Mult(n; p(1), . . . ,p(K)).

In view of (12.81), we consider the random vectors, for k = 1, . . . ,K ,

ζ
(k)
n;a;δ(k) :=

√
N

√

2na log+(1/a)

⎡

⎢

⎢

⎣

Z
(k)
n;p1(k);1 − np1(k)

...

Z
(k)
n;pN(k);N − npN(k)

⎤

⎥

⎥

⎦

∈ R
N . (12.85)

Proposition 12.3.3 Fix any z ∈ BN such that 0 < ‖z‖ < 1. For each ε such that

0 < ε <

{

1

2
‖z‖
}

∧ 1

2N
,
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there exist an a2(ε, z), together with n2(ε) < ∞ and c2(ε) depending upon ε only,
such that the following holds. For each δ(1), . . . , δ(K) ∈ DN , and a1, . . . , ak ,
whenever

n ≥ n2(ε), c2(ε)n
−1 logn ≤ a1, . . . , ak ≤ a2(ε, g),

K
∑

k=1

ak ≤ 1

2
, (12.86)

we have, for all δ1, . . . , δK , fulfilling

1√
δ max

≥ 1− Nε and
1√
δmin

≤ 1+Nε, (12.87)

P

(

K
⋂

k=1

{

ζ
(k)
n;ak;δ(k) �∈ N9Nε(z)

}

)

≤ 2 exp

(

− 1
4

K
∑

k=1

a
1−ε/2
k

)

. (12.88)

The proof of Proposition 12.3.3 is postponed until Sect. 12.3.6.

12.3.4 Outer Bounds

Let U1, U2, . . . be iid rv’s with a uniform (0, 1) distribution. For n ≥ 1 and t ∈ R,
denote by Un(t) := n−1#{Ui ≤ t : 1 ≤ i ≤ n} the empirical df based upon
U1, . . . , Un, and by αn(t) := n1/2(αn(t) − t), the uniform empirical process. For
n ≥ 1, a > 0, t ∈ [0, 1] and u ∈ R, set

ξn(a; t; u) = αn(t + au)− αn(t). (12.89)

The following fact is Proposition 2 of Deheuvels and Ouadah [10].

Fact 12.3.2 There exists a constant C2 such that the following holds. For each 0 <

ε ≤ 1, there exist constants 0 < a1(ε) ≤ 1/e and 0 < c1(ε) <∞, together with an
n1(ε) <∞, such that, for all n ≥ n1(ε) and a > 0 fulfilling

na/ logn ≥ c1(ε) and a ≤ a1(ε), (12.90)

we have, for all t ∈ [0, 1− a],

P

(

ξn(a; t; ·)
√

2a log+(1/a)
�∈ S

ε

)

≤ C2a
1+ε. (12.91)
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The following lemmas are oriented towards the proof of Proposition 12.3.2.

Lemma 12.3.3 For any g ∈ B([0, 1]) and 0 ≤ s, t ≤ 1, we have

|g(t)− g(s)| ≤ |g|H
√|t − s| , (12.92)

and, for any 0 ≤ t ≤ t + h ≤ 1, we have

sup
0≤u≤1

|g(t + hu)− g(t) − u(g(t + h)− g(t))| ≤ |g|H
√

1
2h , (12.93)

Proof When g �∈ AC0([0, 1]), |g|H = ∞ and (12.92)–(12.93) are trivial. Therefore,
we limit ourselves to g ∈ AC0[0, 1]. The Schwarz inequality enables us to write the
relations

|g(t) − g(s)| =
∣

∣

∣

∣

∫ t

s

ġ(u)du

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

s

du

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

∫ t

s

ġ(u)2du

∣

∣

∣

∣

1/2

≤ |g|H
√|t − s| ,

which yield (12.92).
For g ∈ AC0([0, 1]), the function φ(u) := g(t+hu)−g(t)−u(g(t +h)−g(t)),

for 0 ≤ u ≤ 1, is such that

φ(0) = φ(1) =
∫ 1

0
φ̇(u)du = 0.

Moreover, setting ψ(u) := hġ(t + hu), for 0 ≤ u ≤ 1, we get

φ̇(u) = hġ(t + hu)− (g(t + h)− g(t)) = ψ(u)−
∫ 1

0
ψ(t)dt.

Observe that

∫ 1

0
φ̇(u)2du =

∫ 1

0
ψ(u)2du−

{∫ 1

0
ψ(t)dt

}2

≤
∫ 1

0
ψ(u)2du = h

∫ t+h

t

ġ(s)2ds ≤ h|g|2
H
.

An easy argument shows that the supremum of |ϕ(c)| = | ∫ c

0 ϕ̇(u)du| subject to the

constraints 0 ≤ c ≤ 1, ϕ(0) = 0,
∫ 1

0 ϕ̇(u)du = 0 and
∫ 1

0 ϕ̇(u)2du ≤ λ, is equal
to 1

2

√
λ, and reached when c = 1

2 and ϕ̇(u) = √
λ, 0 < u < 1

2 , ϕ̇(u) = −√λ,
1
2 < u < 1. Since ϕ = φ fulfills these conditions with λ := h|g|2

H
, it follows that

the maximal possible value of φ on [0, 1] is less than or equal to |g|H
√

1
2h. We so

obtain (12.93). ��
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Fix N ≥ 1, and let DN be as in (12.79). For any δ = (δ1, . . . , δN ) ∈ DN , set
tj (δ) = N−1 ∑j

k=1 δj , for j = 0, . . . , N , with the convention that
∑

∅(·) := 0. As
in (12.80), set δmin = min1≤j≤N δj , and δmax = max1≤j≤N δj . Consider the linear
maps PN;δ(·) and QN;δ(·), defined by

g ∈ B[0, 1] (12.94)

→ PN;δ(g) :=

⎡

⎢

⎢

⎢

⎣

√

N
δ1

(g(t1(δ))− g(t0(δ)))

...
√

N
δN

(g(tN (δ))− g(tN−1(δ)))

⎤

⎥

⎥

⎥

⎦

∈ R
N,

z =
⎡

⎢

⎣

z1
...

zN

⎤

⎥

⎦
∈ R

N → QN(z) ∈ AC[0, 1], (12.95)

where we define QN,δ(z) for z = (z1, . . . , zN ) ∈ R
N , by setting z0 = 0,

∑

∅(·) = 0,
and, for k = 1, . . . , N ,

QN,δ(z)(t) =
k−1
∑

j=1

√

δj

N
zj +

√

N

δk
zk (t − tk−1(δ)) (12.96)

when tk−1(δ) ≤ t ≤ tk(δ) .

Lemma 12.3.4 For N ≥ 1, δ ∈ DN , z ∈ R
N and g ∈ B([0, 1]), we have

PN,δ(QN,δ(z)) = z; (12.97)
∥

∥QN,δ(PN,δ(g))− g
∥

∥ ≤ (2N)−1/2|g|H
√

δmax ; (12.98)

‖PN,δ(g)‖ ≤ |g|H and |QN,δ(z)|H = ‖z‖; (12.99)

‖PN,δ(g)‖ ≤ 2N‖g‖/√δ min ; (12.100)

PN,δ(S) = BN := {t ∈ R
N : t′t ≤ 1}; (12.101)

QN,δ(BN) ⊆ S ⊆ QN,δ(BN)
√

δmax/(2N) . (12.102)

Proof By (12.96), QN,δ(z)(tj (δ)) − QN,δ(z)(tj−1(δ)) = zj
√

δj /N for j =
1, . . . , N . Thus, by (12.94), we have PN,δ(QN,δ(z)) = z, which is (12.97). Since
|g|H = ∞ when g �∈ AC0([0, 1]), there is no loss of generality to assume
in our proofs of (12.98)–(12.99) that g ∈ AC0([0, 1]). To establish (12.98) we
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observe that, for j = 0, . . . , N , QN,δ(PN(g))(tj (δ)) = g(tj (δ)), so that, by
applying (12.93), for j = 1, . . . , N , with h = δj /N , we get

∥

∥QN,δ(PN,δ(g))− g
∥

∥ ≤ max
1≤j≤N

(

sup
0≤u≤1

∣

∣

∣

∣

g

(

tj−1(δ)+ u
δj

N

)

− g(tj−1(δ))

−u

{

g

(

tj−1(δ)+ δj

N

)

− g

(

δj

N

)} ∣

∣

∣

∣

)

≤ |g|H max
1≤j≤N

√

δj

2N
,

which yields (12.98). To establish the first half of (12.99), we select a g ∈
AC0[0, 1] and set z = (z1, . . . , zd ) = PN,δ(g). It follows from (12.94) that

zj =
√

N
δj

(g(tj (δ)) − g(tj−1(δ))), for j = 1, . . . , d . Making use of the Schwarz

inequality, we get, in turn,

‖PN,δ(g)‖2 = z′z =
N
∑

j=1

z2
j = N

N
∑

j=1

1

δj

(

∫ tj (δ)

tj−1(δ)

ġ(u)du

)2

≤
N
∑

j=1

N

δj

(

∫ tj (δ)

tj−1(δ)

du

)(

∫ tj (δ)

tj−1(δ)

ġ(u)2du

)

=
∫ 1

0
ġ(u)2du = |g|2

H
,

as sought. Next, we choose a z ∈ R
N , and set g = QN,δ(z). We infer from (12.96)

that, for j = 1, . . . , N ,

ġ(t) = zj

√

N

δj
for tj−1(δ) ≤ t ≤ tj (δ) ,

whence

|QN,δ(z)|2H =
N
∑

j=1

∫ tj (δ)

tj−1(δ)

Nz2
j

δj
du =

N
∑

j=1

z2
j = ‖z‖2,

which yields the second half of (12.99). To establish (12.100), we infer from (12.94)
that, for an arbitrary g ∈ B([0, 1]),

‖PN,δ(g)‖2 =
d
∑

j=1

N

δj
(g(tj (δ))− g(tj−1(δ)))

2

≤ 4N‖g‖2
n
∑

j=1

1

δj
≤ (2N‖g‖)2

δmin
.
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To establish (12.101), we first infer from (12.99) that PN,δ(g) ∈ BN for each g ∈ S,
so that PN,δ(S) ⊆ BN . Conversely, by (12.99), for any z ∈ BN , we have g :=
QN,δ(z) ∈ S. This, in turn, implies, via (12.97), that PN,δ(g) = z, whence BN ⊆
PN,δ(S). We so obtain (12.101). Next, we infer from (12.99) that, for each z ∈
BN , QN,δ(z) ∈ S. This, in turn, implies that QN,δ(BN) ⊆ S. Finally, we infer
from (12.98) and (12.99) that, for each g ∈ S, we have y := PN,δ(g) ∈ BN and
‖QN,δ(y) − g‖ ≤ (2N)−1/2|g|H

√
δmax ≤ (2N)−1/2√δmax. This completes the

proof of (12.102). ��
Armed with Fact 12.3.1 and Lemmas 12.3.3–12.3.4, we recall (12.79), (12.89),

(12.91), and fix an N ≥ 1. For n ≥ 1, 0 < a < 1, t ∈ [0, 1− a] and δ ∈ DN , we set

zn,δ(a; t) = PN,δ

(

ξn(a; t; ·)
√

2a log+(1/a)

)

∈ R
N. (12.103)

By combining (12.89) with (12.94) and (12.103), we observe that

zn,δ(a; t) =
√
N

√

2na log+(1/a)
(12.104)

×
⎡

⎢

⎣

{αn(t + at1(δ))− αn(t + at0(δ))} /√δ1
...

{αn(t + atN(δ))− αn(t + atN−1(δ))} /√δN

⎤

⎥

⎦
.

Set, for convenience,

z∗n,δ(a; t) =
√
N

√

2a log+(1/a)
(12.105)

×
⎡

⎢

⎣

αn(t + at1(δ))− αn(t + at0(δ))
...

αn(t + atN(δ))− αn(t + atN−1(δ))

⎤

⎥

⎦
.

Recall the definition (12.81) of ζn;a;δ. In view of (12.105), we may write, for each
0 < a < 1 and t ∈ [0, 1− a], the distributional equality

ζn;a;δ
d= z∗n,δ(a; t). (12.106)

We infer from (12.104) and (12.105) the inequality

‖z∗n,δ(a; t)‖ ≤ ‖zn,δ(a; t)‖/
√

δmin . (12.107)

Below, we let C2, n1(·), c1(·) and a1(·) be as in Fact 12.3.2.
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Lemma 12.3.5 For each 0 < ε ≤ 1, and for all n ≥ n1(ε) and a > 0 fulfilling

na/ logn ≥ c1(ε) and a ≤ a1(ε), (12.108)

we have, for all t ∈ [0, 1− a],

P
(

zn,δ(a; t) �∈ Bε
N

) ≤ C2a
1+(ε√δmin )/(2N). (12.109)

Proof By (12.100), for any φ ∈ B([0, 1]), g ∈ S and ε > 0, we have the implication

‖φ − g‖ ≤ ε ⇒ ‖PN,δ(φ)− PN,δ(g)‖ = ‖PN,δ(φ − g)‖ ≤ 2Nε/
√

δmin,

which is equivalent to the implication

‖PN,δ(φ)− PN(g)‖ > 2Nε/
√

δmin ⇒ ‖φ − g‖ > ε. (12.110)

We recall from (12.101) that PN,δ(S) = BN . Thus, by setting z = PN,δ(g)

in (12.110), and letting g vary in S we obtain the implication
{

‖PN,δ(φ)− z‖ > 2Nε/
√

δmin : ∀ z ∈ BN

}

⇒
{

‖φ − g‖ > ε : ∀ g ∈ S

}

,

which may be rewritten into

{

PN,δ(φ) �∈ B2Nε/
√

δ min
N

}

⇒
{

φ �∈ S
ε
}

. (12.111)

Recalling the definition (12.103) of zn,δ(a; t), by setting ε = 2Nε/
√

δmin and φ =
ξn(a; t; ·)/

√

2a log+(1/a) in (12.111), we conclude our proof by an application of
Fact 12.3.2. ��

12.3.5 Proof of Proposition 12.3.2

Fix an 0 < ε ≤ 1. In view of (12.106) and (12.33), whenever

√

δmin ≥ 1+ 1
2ε

1+ ε
, (12.112)

we have, for 0 < a < 1 and 0 ≤ t ≤ 1− a,

P
(

ζ n;a;δ �∈ Bε
N

) = P
(‖ζ n;a;δ‖ > 1+ ε

)

(12.113)

= P
(‖z∗n;δ(a; t)‖ > 1+ ε

) ≤ P

(

‖zn;δ(a; t)‖ > (1+ ε)
√

δ min

)

≤ P

(

‖zn;δ(a; t)‖ > 1+ 1
2ε
)

= P

(

zn;δ(a; t) �∈ Bε/2
N

)

.
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The assumption that 0 < ε ≤ 1, when combined with (12.112) implies that

√

δmin ≥ 3

4
>

1

2
.

By an application of Lemma 12.3.5 with the formal replacement of ε by ε/2, we see
that, for all n ≥ n0(ε) := n1(ε/2) and a > 0 fulfilling

na/ logn ≥ c0(ε) := c1(ε/2) and a ≤ a0(ε) := a1(ε/2), (12.114)

we have, for all t ∈ [0, 1− a],

P

(

zn,δ(a; t) �∈ Bε/2
N

)

≤ C0a
1+(ε

√
δmin)/(4N) ≤ C0a

1+ε/(8N). (12.115)

By (12.113), this yields (12.84), with C0 := C2, and completes the proof of
Proposition 12.3.2. ��

12.3.6 Inner Bounds

The following fact is a version of Proposition 3 of Deheuvels and Ouadah [10],
taken with |I| =∑K

k=1 ak.

Fact 12.3.3 For each g ∈ S such that 0 < |g|H < 1, and 0 < ε < 1
2 |g|H, there exist

an a2(ε, g), together with n2(ε) < ∞ and c2(ε), depending upon ε only, such that
the following holds. Let, for K ≥ 1, t1, . . . , tK ∈ [0, 1], and 0 < a1, . . . , ak < 1,
be such that the intervals (tk, tk + a), k = 1, . . . ,K , are disjoint and in [0, 1], with
∑K

k=1 ak ≤ 1
2 . Then, whenever

n ≥ n2(ε), c2(ε)n
−1 logn ≤ a1 . . . , aK ≤ a2(ε, g), (12.116)

we have

P

(

K
⋂

k=1

{

ξn(ak; tk; ·)
√

2ak log+(1/ak)
�∈ Nε(g)

})

≤ 2 exp

(

− 1
4

K
∑

k=1

a
1−ε/2
k

)

. (12.117)

Fix any z ∈ BN , such that 0 < ‖z‖ < 1, and set g := QN;δ(z). Fix a > 0 and
t ∈ [0, 1− a], and set, as in (12.103),

φ := ξn(a; t; ·)
√

2a log+(1/a)
and zn,δ(a; t) = PN,δ (φ) ∈ R

N . (12.118)
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As follows from (12.99) and (12.99), we have PN;δ(g) = z and

0 < |g|H = ‖z‖ < 1.

Therefore, we infer from the linearity of PN;δ and (12.100) that

‖zn,δ(a; t)− z‖ = ∥∥PN,δ (φ)− PN,δ (g)
∥

∥ = ∥∥PN,δ (φ − g)
∥

∥

≤ 2N√
δmin

‖φ − g‖ = 2N√
δmin

∥

∥

∥

∥

∥

ξn(a; t; ·)
√

2a log+(1/a)
− g

∥

∥

∥

∥

∥

.

We have therefore the implication, for an arbitrary ε > 0,

∥

∥

∥

∥

∥

ξn(a; t; ·)
√

2a log+(1/a)
− g

∥

∥

∥

∥

∥

≤ ε ⇒ ‖zn,δ(a; t)− z‖ ≤ 2Nε√
δmin

which is readily shown to be equivalent to

{

‖zn,δ(a; t)− z‖ >
2Nε√
δmin

}

⊆
{

ξn(a; t; ·)
√

2a log+(1/a)
�∈ Nε(g)

}

. (12.119)

Recalling (12.104), and the definition (12.105) of z∗
n,δ

(a; t), set, for δ =
(δ1, . . . , δN),

z =
⎡

⎢

⎣

z1
...

zN

⎤

⎥

⎦
, z∗n,δ(a; t) =

⎡

⎢

⎣

y1
...

yN

⎤

⎥

⎦
and zn,δ(a; t) =

⎡

⎢

⎣

y1/
√
δ1

...

yN/
√
δN

⎤

⎥

⎦
.

By combining the triangle inequality with ‖z‖ < 1, we see that

‖zn,δ(a; t)− z‖ =
⎧

⎨

⎩

N
∑

j=1

(yj/
√

δj − zj )
2

⎫

⎬

⎭

1/2

(12.120)

≥
⎧

⎨

⎩

N
∑

j=1

(yj /
√

δj − zj /
√

δj )
2

⎫

⎬

⎭

1/2

−
⎧

⎨

⎩

N
∑

j=1

(zj
√

δj − zj )
2

⎫

⎬

⎭

1/2

≥ 1√
δmax

‖z∗n,δ(a; t)− z‖ − ‖z‖
{(

1− 1√
δ max

)

∨
(

1√
δ min

− 1

)}

≥ 1√
δmax

‖z∗n,δ(a; t)− z‖ −
{(

1− 1√
δ max

)

∨
(

1√
δ min

− 1

)}

.



12 Functional Limit Laws 237

Thus, if we assume that

1√
δ max

≥ 1−Nε and
1√
δmin

≤ 1+Nε, (12.121)

we infer from (12.120) that

‖zn,δ(a; t)− z‖ ≥ 1√
δmax

‖z∗n,δ(a; t)− z‖ +Nε.

This, when combined with (12.119), shows that

⎧

⎨

⎩

‖z∗n,δ(a; t)− z‖ > 3Nε

√

δ max

δmin

⎫

⎬

⎭

⊆
{

ξn(a; t; ·)
√

2a log+(1/a)
�∈ Nε(g)

}

. (12.122)

In view of (12.106), we infer from (12.122) the relation

K
⋂

k=1

⎧

⎨

⎩

‖ζ (k)
n;ak;δk − z‖ > 3Nε

√

δmax

δmin

⎫

⎬

⎭

(12.123)

⊆
K
⋂

k=1

{

ξn(ak; tk; ·)
√

2ak log+(1/ak)
�∈ Nε(g)

}

Now, we infer from (12.121) that, whenever Nε ≤ 1
2 ,

√

δ max

δmin
≤ 1+ Nε

1− Nε
≤ 3.

Thus, by (12.123), we have

P

(

K
⋂

k=1

{

‖ζ (k)
n;ak;δk − z‖ > 9Nε

}

)

(12.124)

≤ P

(

K
⋂

k=1

{

ξn(ak; tk; ·)
√

2ak log+(1/ak)
�∈ Nε(g)

})

≤ 2 exp

(

− 1
4

K
∑

k=1

a
1−ε/2
k

)

.

The remainder of the proof is given by routine arguments which we omit. ��
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Chapter 13
Universality of Limiting Spectral
Distribution Under Projective Criteria

Florence Merlevède and Magda Peligrad

Abstract This paper has double scope. In the first part we study the limiting
empirical spectral distribution of a n × n symmetric matrix with dependent entries.
For a class of generalized martingales we show that the asymptotic behavior
of the empirical spectral distribution depends only on the covariance structure.
Applications are given to strongly mixing random fields. The technique is based on
a blend of blocking procedure, martingale techniques and multivariate Lindeberg’s
method. This means that, for this class, the study of the limiting spectral distribution
is reduced to the Gaussian case. The second part of the paper contains a survey of
several old and new asymptotic results for the empirical spectral distribution for
Gaussian processes, which can be combined with our universality results.

13.1 Introduction

The distribution of the eigenvalues of random matrices is useful in many fields
of science such as statistics, physics and engineering. The celebrated paper by
Wigner [45] deals with symmetric matrices having i.i.d. entries below the diagonal.
Wigner proved a global universality result, showing that, asymptotically and with
probability one, the empirical distribution of eigenvalues is distributed according
to the semicircle law (see Chapter 2 in Bai and Silverstein [1] for more details).
The only parameter of this law is the variance of an entry. This result was
expanded in various directions. The first generalization was to decrease the degree of
stationarity by replacing the condition of equal variance by weaker assumptions of
the Lindeberg’s type. Another direction of generalization deals with weakening the
hypotheses of independence by considering various notions of weak dependence.
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For symmetric Gaussian matrices with correlated entries, works of Khorunzhy and
Pastur [23], Boutet de Monvel et al. [8], Boutet de Monvel and Khorunzhy [7],
Chakrabarty et al. [10], Peligrad and Peligrad [34] showed that the limiting spectral
distribution of the symmetric matrix depends only on the covariance structure of the
underlying Gaussian process. The limiting spectral distribution is rather complicated
and the best way to describe it is by specifying an equation satisfied by its Stieltjes
transform.

A way to symmetrize a matrix is to multiply it with its transpose. These matrices,
known under the name of Gram matrices or sample covariance matrices, play an
important role in statistical studies of large data sets. The spectral analysis of large-
dimensional sample covariance matrices has been actively studied starting with the
seminal work of Marchenko and Pastur [25] who considered independent random
samples from an independent multidimensional vector. A big step forward was the
study of the dependent case represented in numerous papers. Basically, the entries
of the matrix were allowed to be linear combinations of an independent sequence.
The first paper where such a model was considered is by Yin and Krishnaiah [50]
followed by important contributions by Yin [49], Silverstein [41], Silverstein and
Bai [42], Hachem et al. [22], Pfaffel and Schlemm [35], Yao [46], Pan et al. [31],
Davis et al. [12], among many others. Another type of models was considered by
Bai and Zhou [2] based on independent columns. The dependence type-condition
imposed to the columns is in particular satisfied for isotropic vectors with log-
concave distribution (see Pajor and Pastur [30]) but may be hard to verify for non
linear time series (such that ARCH models) or requires rate of convergence of
mixing coefficients. Let us also mention the recent papers by Yaskov [47, 48] where
a weaker version of the Bai-Zhou’s dependence type condition has been introduced.

In two recent papers Banna et al. [3] and Merlevède-Peligrad [27], have shown
that, for two situations, namely for symmetric matrices whose entries are functions
of independent and identically distributed random fields or for large sample
covariance matrices generated by random matrices with independent rows, the
limiting spectral distribution of eigenvalues counting measure always exists and can
be described via an equation satisfied by its Stieltjes transform.

Even if many models encountered in time series analysis can be rewritten as
functions of an i.i.d. sequence, this assumption is not completely satisfactory since
many stationary processes, even with trivial left sigma field, cannot be in general
represented as a function of an i.i.d. sequence, as shown for instance in Rosenblatt
[39]. Moreover, the assumption of independence of the rows or of the columns
generating the large sample covariance matrices may be too restrictive.

The main goal of our paper is then to continue the study of the asymptotic
behavior of the empirical eigenvalues distribution of symmetric matrices and large
sample covariance matrices associated with random fields when the variables are
not necessarily functions of an i.i.d. sequence or when the rows (or columns) are
not necessarily independent. In the first part of the paper we shall show that the
universality results hold for both symmetric and symmetrized random matrices
when the dependence is controlled by projective type coefficients. These coefficients
are easy to estimate in terms of strong mixing coefficients. By “universality” we
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mean that the limiting distribution of the eigenvalues counting measure depends
only of the process’ covariance structure. Therefore our result reduces the study
of the limiting spectral distribution (LSD) to the case where the entries of the
underlying matrix are observations of a Gaussian random field with the same
covariance structure. In the second part of the paper we survey old and new results
for the Gaussian case, which one can combine with the universality theorems, for
obtaining the existence and the characterization of LSD.

Our paper is organized as follows. Section 13.2 contains the notations and the
universality results. In Sect. 13.3 we apply our results to classes of strongly mixing
random fields. Then, Sect. 13.4 is dedicated to LSD results for symmetrized matrices
when the entries are observations of a Gaussian random field. All the proofs are
postponed to Sect. 13.5. Several auxiliary results needed in the proofs are given in
Sect. 13.6.

Here are some notations used all along the paper. The notation [x] is used to
denote the integer part of a real x. The notation 0p,q means a matrix of size p × q,

(p, q) ∈ N
2 with entries 0. For a matrix A, we denote by AT its transpose matrix,

by Tr(A) its trace. We shall also use the notation ‖X‖r for the L
r -norm (r ≥ 1) of

a real valued random variable X. For two sequences of positive numbers (an) and
(bn) the notation an 3 bn means that there is a constant C such that an ≤ Cbn
for all n ∈ N. We use bold small letters to denote an element of Z2, hence u =
(u1, u2) ∈ Z

2. For u = (u1, u2) and v = (v1, v2) in Z
2, the following notations will

be used: |u− v| = max(|u1− v1|, |u2− v2|) and u∧ v = (u1 ∧ u2, v1 ∧ v2) (where
u1 ∧ u2 = min(u1, u2)).

13.2 Results

Let (Xu)u∈N2 be a real-valued random field defined on a probability space
(�,F ,P). We consider the symmetric n × n random matrix Xn such that, for
any i and j in {1, . . . , n}

(Xn)ij = Xij for i ≥ j and (13.1)

(Xn)ij = Xji for i < j .

Denote by λn
1 ≤ · · · ≤ λn

n the eigenvalues of

Xn := 1

n1/2 Xn (13.2)

and define its spectral distribution function by

FXn(t) = 1

n

∑

1≤k≤n

I (λk ≤ t) ,
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where I (A) denotes the indicator of an event A. The Stieltjes transform of Xn is
given by

SXn(z) =
∫

1

x − z
dFXn(x) = 1

n
Tr(Xn − zIn)−1 , (13.3)

where z = u+ iv ∈ C
+ (the set of complex numbers with positive imaginary part),

and In is the identity matrix of order n. In particular, if the random field is an array
of i.i.d. random variables with variance σ 2 > 0, then Wigner [45] proved that, with
probability one, and for any z ∈ C

+, SXn(z) converges to S(z), which satisfies the
equation σ 2S2 + S + z−1 = 0. Its solution

S(z) = −(z−
√

z2 − 4σ 2)(2σ 2)−1 (13.4)

is the well-known Stieltjes transform of the semicircle law, which has the density

g(x) = 1

2πσ 2

√

4σ 2 − x2I (|x| ≤ 2σ) .

(See for instance Theorem 2.5 in Bai-Silverstein [1].) Note that it is not necessary
for the random variables to have the same law for this result to hold. Indeed, if
the random field (Xu)u∈Z2 is an array of independent centered random variables
with common positive variance σ 2, which satisfies the Lindeberg’s condition given
in Condition 13.1 below, then for all z ∈ C

+, SXn(z) converges almost surely to
the Stieltjes transform of the semicircle law with parameter σ 2 (see for instance
Theorem 2.9 in Bai and Silverstein [1]). Note that the necessity of the Lindeberg’s
condition has been stated in Girko’s book [19].

Another way to state the Wigner’s result is to say that the Lévy distance between
the distribution function FXn and G, defined by G(x) = ∫ x

−∞ g(u)du, converges to
zero almost surely. Recall that the Lévy metric d between two distribution functions
F and G, defined by

d(F,G) = inf{ε > 0 : F(x − ε)− ε ≤ G(x) ≤ F(x + ε)+ ε , ∀x ∈ R} .

The aim of this paper is to specify a class of random fields for which the
limiting behavior of FXn(t) depends only on the covariances of the random variables
(Xu)u∈N2 and not on the structural dependence structure. In other words, we shall
show that the limiting spectral distribution of FXn(t) can be deduced from that one
of FYn(t) where Yn is a Gaussian matrix with the same covariance structure as Xn.

Since the estimate of the Lévy distance between FXn and FYn can be given in terms
of their Stieltjes transforms (see, for instance, Theorem B.12 and Lemma B.18 in
Bai and Silverstein [1] or Proposition 2.1 in Bobkov et al. [6]), we shall compare
their Stieltjes transforms.

Our first result compares the Stieltjes transform of a matrix satisfying martingale-
like projective conditions with the Stieltjes transform of an independent matrix
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whose entries are observations of a Gaussian random field with the same covariance
structure. We shall assume that Xn is defined by (13.2), and satisfies the Lindeberg’s
condition below:

Condition 13.1

(i) The variables (Xij )i,j are centered at expectations.
(ii) There exists a positive constant C such that, for any positive integer n,

1

n2

∑

n≥i≥j≥1

E(X2
ij ) < C.

(iii) For every ε > 0,

Ln(ε) = 1

n2

∑

n≥i≥j≥1

E(X2
ij I (|Xij | > εn1/2))→ 0.

Clearly the items (ii) and (iii) of this condition are satisfied as soon as the family
(X2

ij ) is uniformly integrable or the random field is stationary and in L
2 (recall that

a random field (Xu)u∈Z2 is said to be (strictly) stationary if the law of (Xu+v)u∈Z2

does not depend on v ∈ Z
2).

To introduce our martingale-like projective conditions (13.6) and (13.7) below as
well as our regularity-type condition (13.8), we need to introduce the filtrations we
shall consider:

For any non-negative integer a, let us introduce the following filtrations:

Fa
i,∞ = σ(Xuv : 1 ≤ u ≤ i − a , v ≥ 1) if i > a and Fa

i,∞ = {�,∅} otherwise

(13.5)

Fa∞,j = σ(Xuv : u ≥ 1 , 1 ≤ v ≤ j − a) if j > a and Fa∞,j = {�,∅} otherwise

Fa
ij = Fa

i,∞ ∪ Fa∞,j .

Note that Xij is adapted to F0
ij . We are now in position to state our first result.

Theorem 13.2 Assume that Xn satisfies Condition 13.1 and, as n→∞,

sup
i≥j

‖E(Xij |Fn
ij )‖2 → 0 (13.6)

and

n2 sup ‖E(XijXab|Fn
i∧a,j∧b)− E(XijXab)‖1 → 0, (13.7)
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where the supremum is taken over all pairs (i, j) �= (a, b) with i ≥ j and a ≥ b. In
addition assume that

sup
i≥j

‖E(X2
ij |Fn

ij )− E(X2
ij )‖1 → 0 as n→∞. (13.8)

Then for all z ∈ C
+

SXn (z)− SYn (z)→ 0 in probability as n→∞, (13.9)

where Yn is a Gaussian matrix of centered random variables with the same
covariance structure as Xn and independent of Xn and Yn = Yn/

√
n.

Comment 13.3

(i) Conditions (13.6) and (13.7) can be viewed as a generalization of the martin-
gale condition given in Basu and Dorea [4] which is E(Xij |F1

i,j ) = 0 a.s. for
any i ≥ j ≥ 1. Both conditions (13.6) and (13.7) are obviously satisfied for this
type of martingale random field, and then, the conditions of Theorem 13.2 are
reduced just to Condition 13.1 and (13.8). Results for other type of martingale
random fields based on the lexicographic order can be found in Merlevède et
al. [28].

(ii) Note also that Condition (13.8) is a regularity condition. For instance, in
case where F∞

ij = ⋂

n≥0 Fn
ij is the trivial σ -field, then this condition is

automatically satisfied. Let us also mention that the conditions (13.6)–(13.8)
are natural extensions of projective criteria used for obtaining various limit
theorems for sequences of random variables. As in the case of random
sequences, the conditions (13.6)–(13.8) can be handled either with the help
of “physical measure of dependence” as developed in El Machkouri et al.
[18] for functions of i.i.d. random fields or by using mixing coefficients (see
Sect. 13.3.1).

(iii) We should also mention that we can allow for dependence of n of the variables
in Xn. The conditions in the theorem below have to be then generalized in a
natural way. For instance, conditions (13.6) and (13.7) should become

lim
m→∞ sup

n≥1
sup
i≥j

‖E(Xij,n|Fm
ij,n)‖2 = 0

and

lim
m→∞m2 sup

n≥1
sup

(i,j) �=(a,b)

‖E(Xij,nXab,n|Fm
i∧a,j∧b,n)− E(Xij,nXab,n)‖1 = 0 .

Based on the above theorem we shall treat two special cases of symmetric
random matrices, namely X + XT and the covariance matrix given in definition
(13.17).
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We consider first the symmetric n× n matrix Zn = [Zij ]ni,j=1 with Zij = Xij +
Xji and we set

Zn := 1√
2n

Zn . (13.10)

This type of symmetrization is important since it leads to a symmetric covariance
structure. Indeed, if (Xij )(i,j)∈Z2 is L2-stationary meaning that, for any (i, j) ∈ Z

2,
E(Yij ) = m and

cov(Xu,v,Xk+u,�+v) = cov(X0,0,Xk,�) = ck,� ,

for any integers u, v, k, �, we get that (Zij )(i,j)∈Z2 is also a L
2-stationary random

field satisfying

cov(Zi,j , Zk,�) = b(k − i, �− j)+ b(k − j, �− i) with b(u, v) = γu,v + γv,u .

Notice then that b(u, v) = b(v, u). This symmetry condition on the covariances
is used for instance in Khorunzhy and Pastur [23, Theorem 2] to derive the limiting
spectral distribution of symmetric matrices associated with a stationary Gaussian
random field when its associated series of covariances is absolutely summable.

Our next Theorem 13.4 shows that a similar conclusion as in Theorem 13.2
holds for Zn defined above. However, due to the structure of each of the entries,
the sequence (Xij ) has to satisfy the conditions of Theorem 13.2 but with the
conditional expectations taken with respect to a larger filtration. Roughly speaking
the filtrations in Theorem 13.2 are the union of two half planes, whereas in
Theorem 13.4 they are defined as the sigma-algebras generated by all the variables
outside the union of two squares. More precisely these latter filtrations are defined
as follows: for any non-negative integer a,

˜Fa
ij = σ

(

Xuv : (u, v) ∈ Z
2 such that max(|i − u|, |j − v|) ≥ a

)

. (13.11)

Note that Xij is adapted to ˜F0
ij .

Theorem 13.4 Assume that Zn is defined by (13.10) where the variables Xij satisfy
Condition 13.1. In addition assume that

sup
i≥j

‖E(Xij |˜Fn
ij )‖2 → 0 as n→∞, (13.12)

n2 sup ‖E(XijXab|˜Fn
ij ∩ ˜Fn

ab)− E(XijXab)‖1 → 0 as n→∞, (13.13)

where the supremum is taken over all pairs (i, j) �= (a, b). In addition assume that

sup
(i,j)

‖E(X2
ij |˜Fn

ij )− E(X2
ij )‖1 → 0 as n→∞. (13.14)
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Then, for all z ∈ C
+,

SZn (z)− SWn (z)→ 0 in probability as n→∞, (13.15)

where Wn = [Wij ]ni,j=1 with Wij = Yij + Yji , (Yij ) being a real-valued Gaussian
centered random field with the same covariance structure as Xn and independent of
Xn, and Wn = Wn/

√
2n.

Let (Xu)u∈Z2 be a random field of real-valued square integrable variables and
(Yu)u∈Z2 be a real-valued Gaussian random field with the same covariances, and
independent of (Xu)u∈Z2 . Let N and p be two positive integers and consider the
N × p matrices

XN,p =
(

Xij

)

1≤i≤N,1≤j≤p
, !N,p =

(

Yij

)

1≤i≤N,1≤j≤p
. (13.16)

Define now the symmetric matrices BN and GN of order N by

BN = 1

N
XN,pX T

N,p , GN = 1

N
!N,p!

T
N,p. (13.17)

The matrix BN is usually referred to as the sample covariance matrix associated
with the process (Xu)u∈Z2 . It is also known under the name of Gram random matrix.
In particular, if the random field (Xu)u∈Z2 is an array of i.i.d. random variables with
zero mean and variance σ 2, then the famous Marchenko and Pastur [25] theorem
states that, if p/N → c ∈ (0,∞), then, for all z ∈ C

+, SBN (z) converges almost
surely to S(z) = S, which is the unique solution with ImS(z) ≥ 0 of the quadratic
equation: for any z ∈ C

+,

zσ 2S2 + (z− cσ 2 + σ 2)S + 1 = 0 . (13.18)

This means that P(d(FGN , Fc)→ 0) = 1, where Fc is a probability distribution
function of the so-called Marchenko-Pastur distribution with parameter c > 0. That
is Fc has density

gc(x) = 1

2πxσ 2

√

(x − a)(b − x)I (a ≤ x ≤ b)

and a point mass 1 − c at the origin if c < 1, where a = σ 2(1 − √
c)2 and

b = σ 2(1 + √c)2. Note that this result still holds if the random field (Xu)u∈Z2 is
an array of independent centered random variables with common positive variance
σ 2, which satisfies the Lindeberg’s Condition 13.1 (see Pastur [32]). Moreover,
in this situation, the Lindeberg’s condition is necessary as shown in Girko [20,
Theorem 4.1, Chapter 3] (see also Corollary 2.3 in Yaskov [48]).

When we relax the independence assumption of the entries, the following result
holds.
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Theorem 13.5 Assume (Xu)u∈Z2 is as in Theorem 13.2. Then, if p/N → c ∈
(0,∞), for all z ∈ C

+,

SBN (z)− SGN (z)→ 0 in probability, as N →∞.

All our results can be easily reformulated for random matrices with entries from a
stationary random field. For some applications it is interesting to formulate sufficient
conditions in terms of the conditional expectation of a single random variable. For
this case it is natural to work with the extended filtrations.

Let now (Xij )(i,j)∈Z2 be a stationary real-valued random field. For any non-
negative integer a, let us introduce the following filtrations:

Fa
i,∞ = σ(Xuv : u ≤ i − a, v ∈ Z );

Fa∞,j = σ(Xuv : v ≤ j − a, u ∈ Z); Fa
ij = Fa

i,∞ ∪ Fa∞,j .

We call the random field regular if for any u ∈ Z
2, E(X0Xu|F∞

u∧0) = E(X0Xu) a.s.

Theorem 13.6 Assume that Xn is defined by (13.2) where (Xij ) is a stationary,
centered and regular random field. Assume the couple of conditions

∑

u∈V0

E|XuE(X0|F |u|
0 )| <∞ (13.19)

and

p2 sup
u∈V0:|u|>p

E|XuE(X0|Fp

0 )| → 0, as p →∞,

where V0 = {u = (u1, u2) ∈ Z
2 : u1 ≤ 0 or u2 ≤ 0}. Then the conclusions of

Theorems 13.2 and 13.5 hold.

Condition (13.19) implies that
∑

u∈Z2 |cov(X0,Xu)| < ∞ and is in the spirit
of condition (2.3) given in Dedecker [13] to derive a central limit theorem for
stationary random fields. As we shall see in Sect. 13.3.1, when applied to stationary
strongly mixing random fields, the conditions of Theorem 13.6 require a rate of
convergence of the strong mixing coefficients with only one point in the future
whereas the conditions of Theorems 13.2 and 13.5 require a rate of convergence
of the strong mixing coefficients with two points in the future.

Combining Theorem 13.6 with Theorem 13.11 concerning Gaussian covariance
matrices, the following corollary holds:

Corollary 13.7 Let BN be defined by (13.17). Under the assumptions of Theo-
rem 13.6 and if p/N → c ∈ (0,∞), d(FBN , F ) → 0 in probability where F

is a nonrandom distribution function whose Stieltjes transform S(z), z ∈ C
+, is

uniquely defined by the spectral density of (Xij ) and satisfies the equation stated in
Theorem 13.11.
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13.3 Examples

13.3.1 Strongly Mixing Random Fields

Let us first recall the definition of the strong mixing coefficient of Rosenblatt [38]:
For any two σ -algebras A and B, the strong mixing coefficient α(A,B) is defined
by:

α(A,B) = sup{|P(A ∩ B)− P(A)P(B)|;A ∈ A and B ∈ B} .

An equivalent definition is:

2α(A,B) = sup{|E(|P(B|A)− P(B)|) : B ∈ B} ,

and, according to Bradley [9], Theorem 4.4, item (a2), one also has

4α(A,B) = sup{‖E(Y |A)‖1 : Y B-measurable, ‖Y‖∞ = 1 and E(Y ) = 0} .
(13.20)

For a random field X = (Xu)u∈Z2 , let

α1,X(n) = sup
i,j

α(Fn
ij , σ (Xij )) and α2,X(n) = sup

(i,j) �=(a,b)

α(Fn
i∧a,j∧b, σ (Xij ,Xab)) .

Note that α1,X(n) ≤ α2,X(n). For a bounded centered random field, the mixing
condition required by Theorem 13.2 (or by Theorem 13.5) is

n2α2,X(n) → 0 ,

while for Theorem 13.6, provided the random field is stationary, we need the couple
of conditions:

α2,X(n)→ 0 and
∑

n≥1

nα1,X(n) <∞ .

If for some δ > 0 we have supu ‖Xu‖2+δ < ∞ and the random field is centered
then, by the properties of the mixing coefficients, applying, for instance, Lemma 4
in Merlevède and Peligrad [26] (see also Bradley [9] and Annex C in Rio [37]), we
infer that the conclusions of Theorems 13.2 and 13.5 are implied by

n2(α2,X(n))δ/(2+δ) → 0 .
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Moreover, if we assume stationarity of the random field, Theorem 13.6 requires
the couple of conditions:

α2,X(n)→ 0 and
∑

n≥1

n1+4/δα1,X(n) <∞ .

Slightly more general results can be given in terms of the quantile function of
|Xu| (see Rio [37] or the computations in the proof of Theorem 6.40 in Merlevède
et al. [29] where similar projective quantities as those involved in Theorems 13.2
or 13.6 are handled).

We refer to the monograph by Doukhan [17] for examples of strong mixing
random fields. Let us also mention the paper by Dombry and Eyi-Minko [16]
where, for max-infinitely divisible random fields on Z

d , upper bounds of the strong
mixing coefficients are given with the help of the extremal coefficient function
(examples such as the Brown-Resnick process and the moving maxima process
are considered). Strong mixing coefficients can also be controlled in the case of
bounded spin systems. For instance, in case where the family of Gibbs specifications
satisfies the weak mixing condition introduced by Dobrushin and Shlosman [15], the
coefficient α2(n) decreases exponentially fast. This is then the case for Ising models
with external fields in the regions where the temperature is strictly larger than the
critical one (we refer to Dedecker [14, Section 2.3] and to Laroche [24] for more
details).

Below, is another example of a random field for which the strong mixing
coefficients can be handled.

Example: Functions of Two Independent Strong Mixing Random Fields Let us
consider two real-valued independent processes U = (Uij , i, j ∈ Z) and V =
(Vij , i, j ∈ Z) such that, setting U(j) = (Uij , i ∈ Z), the processes U(j), j ∈ Z,
are mutually independent and have the same law as (Ui, i ∈ Z) and, setting
V(i) = (Vij , j ∈ Z), the processes V(i), i ∈ Z are also mutually independent
and have the same law as (Vj , j ∈ Z). For any measurable function h from R

2 to
R, let

Xij = h(Uij , Vij )− E(h(Uij , Vij )), (13.21)

provided the expectation exists. Note that the random field X = (Xij , i, j ∈ Z) does
not have independent entries across the rows nor the columns (except if we have that
for any j fixed, the r.v.’s Uij , i ∈ Z are mutually independent as well as the r.v.’s
Vij , j ∈ Z, for any i fixed). Hence, the results in Merlevède and Peligrad [27] do
not apply. Let FU

k = σ(U�, � ≤ k) and FV
k = σ(V�, � ≤ k), and define

α1,U(n) = sup
i

α(FU
i−n, σ (Ui)) , α2,U(n) = sup

i,j : j>i

α(FU
i−n, σ (Ui, Uj ))



252 F. Merlevède and M. Peligrad

and

α1,V(n) = sup
i

α(FV
i−n, σ (Vi)) , α2,V(n) = sup

i,j : j>i

α(FV
i−n, σ (Vi, Vj )) .

Due to the definition of the strong mixing coefficients, it follows that

α1,X(n) ≤ α1,U(n)+ α1,V(n) and α2,X(n) ≤ α2,U(n)+ α2,V(n) .

(See for instance Theorem 6.2 in Bradley [9].) So, if we assume for instance that
the function h is bounded and that n2(α2,U(n)+ α2,V(n)) → 0, then Theorem 13.2
applies. Moreover if we assume in addition that the sequences (Uij , i ∈ Z) and
(Vij , j ∈ Z) are stationary and that

∑

n≥1

n
(

α2,U(n)+ α2,V(n)) <∞ ,

then, according to Corollary 13.7, we derive that, if p/N → c ∈ (0,∞), for all
z ∈ C

+,

SBN (z)→ S(z) in probability as N →∞ ,

where BN is the Gram random matrix defined by (13.17) and S is defined in
Theorem 13.11.

13.3.2 A Convolution Example

Let U = (Uij , i, j ∈ Z) be a stationary centered regular martingale difference
random field in L

2, meaning that supi,j ‖Uij ‖2 < ∞ and that, setting Ga
ij =

σ(Vk�, k ≤ i − a or � ≤ j − a),

E(Uij |G1
ij ) = 0 a.s. and ‖E(U2

0 |Gn
0 )− E(U2

0 )‖1 → 0 as n →∞ .

Let ε = (εij , i, j ∈ Z) be an iid centered random field in L
∞, independent

of U and (ak�, k, � ∈ N) be a double indexed sequence of real numbers such
that

∑

k,�∈N(k2 + �2)|ak,�| < ∞. Set Vij = ∑

k,�∈Z ak,�εi−k,j−� and define the
stationary centered random field X = (Xu)u∈Z2 in L

2 by setting Xij = Uij +Vij . It
is easy to see that X satisfies the conditions of Theorem 13.6.
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13.4 LSD for Stationary Gaussian Random Fields

In this section we survey several old and new results for stationary Gaussian random
fields that could be combined with our universality results in order to decide that
the LSD exists and to characterize it. Relevant to this part is the notion of spectral
density. We consider a centered stationary Gaussian random field (Yij )(i,j)∈Z2 ,
meaning that for any (i, j) ∈ Z

2, E(Yij ) = 0 and

cov(Yu,v, Yk+u,�+v) = cov(Y0,0, Yk,�) = γk,� ,

for any integers u, v, k, �. According to the Bochner-Herglotz representation (see
for instance Theorem 1.7.4 in Sasvári [40]), since the covariance function is positive
definite, there exists a unique spectral measure such that

cov(Y0,0, Yk,�) =
∫

[0,1]2
e2π i(ku+�v)F (du, dv), for all k, � ∈ Z .

If F is absolutely continuous with respect to the Lebesgue measure λ ⊗ λ, we
have

γk,� := cov(Y0,0, Yk,�) =
∫

[0,1]2
e2π i(ku+�v)f (u, v)dudv, for all k, � ∈ Z .

(13.22)

Khorunzhy and Pastur [23] and Boutet de Monvel and Khorunzhy [7] treated a
class of Gaussian fields with absolutely summable covariances,

∑

k,�∈Z
|γk,�| <∞ , (13.23)

and a certain symmetry condition. They described the limiting spectral distribution
via an equation satisfied by the Stieltjes transform of the limiting distribution.
Since the covariance structure is determined by the spectral density, this limiting
spectral distribution can be expressed in terms of spectral density which generates
the covariance structure. More precisely, if we consider the n×n random matrix Yn

with entries Yk,� and the symmetric matrix

Wn = 1√
2n

(Yn + YT
n ) , (13.24)

Theorem 2 in Khorunzhy and Pastur [23] (see also in Theorem 17.2.1. in Pastur and
Shcherbina [33]) gives the following:

Theorem 13.8 Let (Yk,�)(k,�)∈Z2 be a centered stationary Gaussian random field
with spectral density f (x, y). Denote b(x, y) = 2−1(f (x, y) + f (y, x)). Assume
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that (13.23) holds. Let Wn be defined by (13.24). Then P(d(FWn, F ) → 0) = 1,
where F is a nonrandom distribution function whose Stieltjes transform S(z) is
uniquely determined by the relations:

S(z) =
∫ 1

0
g(x, z)dx , z ∈ C

+ , (13.25)

g(x, z) = −
(

z+
∫ 1

0
b(x, y)g(y, z)dy

)−1
, (13.26)

where for any z ∈ C
+ and any x ∈ [0, 1), g(x, z) is analytic in z and

Im g(x, z) · Im z > 0 , |g(x, z)| ≤ (Im z)−1 ,

and is periodic and continuous in x.

For the symmetric matrix Wn defined by (13.24) and constructed from a
stationary Gaussian random field, Chakrabarty et al. [10] proved the existence of
its limiting spectral distribution provided that the spectral density of the Gaussian
process exists. Their result goes then beyond the condition (13.23) requiring that
the covariances are absolutely summable. It was completed recently by Peligrad
and Peligrad [34] who obtained a characterization of the limiting empirical spectral
distribution for symmetric matrices with entries selected from a stationary Gaussian
field under the sole condition that its spectral density exists. Their Theorem 2 is the
following:

Theorem 13.9 Let (Yk,�)(k,�)∈Z2 be a centered stationary Gaussian random field
with spectral density f (x, y). Let Wn be defined by (13.24). Then, P(d(FWn, F )→
0) = 1, where the Stieltjes transform S(z) of F is uniquely defined by the relation
(13.25) where for almost all x, g(x, z) is a solution of Eq. (13.26).

If the spectral density has the structure f (x, y) = u(x)u(y), Eq. (13.25)
simplifies as

S(z) = −1

z
(1+ v2(z)) , z ∈ C

+ ,

where v(z) is solution of the equation

v(z) = −
∫ 1

0

u(y)dy

z+ u(y)v(z)
, z ∈ C

+ ,

with v(z) analytic, Im v(z) > 0 and |v(z)| ≤ (Im z)−1‖Y0,0‖2 (see the proof of
Remark 3 in Peligrad–Peligrad [34]).

In particular, if the random field is an array of i.i.d. random variables with zero
mean and variance σ 2, then u(x) is constant and S(z) satisfies Eq. (13.4).
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The following new result gives the existence of LSD for large covariance
matrices associated with a stationary Gaussian random field. Its proof is based on
the method of proof in Chakrabarty et al. [10].

Proposition 13.10 Let (Yij )(i,j)∈Z2 be a stationary real-valued Gaussian process

with mean zero. Assume that this process has a spectral density on [0, 1]2 denoted
by f . Let N and p be two positive integers and consider !N,p the N × p matrix
defined by !N,p = (

Yij

)

1≤i≤N,1≤j≤p
. Let also GN = 1

N
!N,p!

T
N,p. Then, when

p/N → c ∈ (0,∞), there exists a deterministic probability measure μf determined
solely by c and the spectral density f , and such that the spectral empirical measure
μGN

converges weakly in probability to μf .

For the case where the covariances are absolutely summable, we cite the
following result which is Theorem 2.1 in Boutet de Monvel et al. [8]. It allows to
characterize the LSD μf of GN via an equation satisfied by its Stieltjes transform.

Theorem 13.11 Assume that the assumptions of Proposition 13.10 and that condi-
tion (13.23) hold. Then, when p/N → c ∈ (0,∞), P(d(FGN , F ) → 0) = 1 where
F is a nonrandom distribution function whose Stieltjes transform S(z), z ∈ C

+ is
uniquely defined by the relations:

S(z) =
∫ 1

0
h(x, z)dx ,

where h(x, z) is a solution of the equation

h(x, z) =
(

− z + c

∫ 1

0

f (x, s)

1+ ∫ 1
0 f (u, s)h(u, z)du

ds
)−1

,

with f (x, y) the spectral density given in (13.22).

When we assume that the entries of !N,p is a sequence of i.i.d. random variables
with mean zero and variance σ 2, then S(z) satisfies Eq. (13.18) of the Marchenko-
Pastur distribution. In view of Proposition 13.10 and of Theorem 13.11, it is still
an open question if, without imposing the summability condition (13.23) on the
covariances, one could still characterize the LSD of GN .

13.5 Proofs

The notation V 1
n = {(i, j); i ≥ j with i and j in {1, . . . , n}} will be often used

along the proofs.
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13.5.1 Proof of Theorem 13.2

The proof is based on a Bernstein-type blocking procedure for random fields and
the Lindeberg’s method. The blocking argument, originally introduced by Bernstein
[5] in order to prove an extension of the central limit theorem to r.v.’s satisfying
dependent conditions, consists of making “big blocks” interlaced by “small blocks”
which have a negligible behavior compared to the one of the “big blocks”. In the
context of random fields, this blocking argument can also be used (see for instance
Tone [44], where the asymptotic normality of the normalized partial sum of a
Hilbert-space valued stationary and mixing random field is proved with the help
of a blocking procedure). In our context, the “big” blocks, called Bi,j in the figure
(13.28) below, are of size p (with p such that p/n → 0) and the “small” blocks will
consist of bands of width K with entries which are zero and with K negligible with
respect to p. As we shall see below, this blocking procedure can be efficiently done
because, roughly speaking, the limiting spectral density distribution is not affected
by changing a number of o(n2) variables.

Now the Lindeberg’s method will consist of replacing one by one each of the
“big” blocks with blocks of the same size but whose entries are those of a Gaussian
random field having the same covariance structure as the initial process.

The blocking procedure combined with the Lindeberg’s method does not seem
very classical in the context of random matrices. It has been however recently used
in Banna et al. [3] and in Merlevède and Peligrad [27], but in the context where the
entries of the matrices are functions of an i.i.d. random field in the first mentioned
paper, or in the context where the rows or the columns of the matrix are independent,
in the second one. These conditions are not assumed in the context of the present
paper. This makes the situation more delicate. Indeed, concentration inequalities for
the Stieltjes transform around its mean are not available, hence we cannot restrict
the study to the difference between the expectations of the two Stieltjes transforms.
However, as we shall see, this issue can be bypassed by approximating the random
matrix with “big” blocks B(Xn) defined in (13.28), by another one where the “big”
blocks will have a certain martingale difference property. Hence, in particular, they
are uncorrelated. This new uncorrelated block matrix will be called B(X′n) in the
proof below. A similar treatment will be done to the matrices with the Gaussian
field entries, having a suitable covariance structure.

We turn now to the details of the proof of Theorem 13.2, and first, to our
blocking procedure, which involves several steps. We then start by some preliminary
considerations.

Let (K), (cK) and (pK) be sequences of integers converging to ∞ such that
pK = cKK. Assume that

c2
KK2 sup

(i,j) �=(a,b);i≥j,a≥b

‖E(XijXab|FK
i∧a,j∧b)− E(XijXab)‖1 → 0 as K →∞.

(13.27)
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This selection of (cK) is possible by (13.7). In what follows, to soothe the
notation, we suppress the subscript K to denote the sequences (cK) and (pK).

We describe now the blocking procedure which is based on the known fact that
the limiting spectral density distribution is not affected by changing a number of
o(n2) variables. We first notice that, without restricting the generality we may and
do assume that n = q(p+K)+ p where q := qn is a sequence of positive integers
depending on n,K and p. Indeed, if (n − p)/(p + K) is not an integer, we set
n′ = q(p + K) + p where q = [(n − p)/(p + K)] and we notice that, by the
Cauchy’s interlacing law (see for instance Relation (2.96) in Tao’s monograph [43]
for more details),

|SXn − SXn′ | 3 n− n′

n
3 p +K

n
→ 0 as n →∞.

Therefore, we shall assume, from now on, that n = q(p +K)+ p.
To introduce the big blocks, for a given symmetric matrix Zn =

{

Zij

}n

i,j=1 we
shall associate the following checkerboard structure

B(Zn) = 1√
n

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0p,p

0K,p 0K,K

B1,1 0p,K 0p,p

0K,p 0K,K 0K,p 0K,K

B2,1 0p,K B2,2 0p,K 0p,p

. . . . . . . . . . . . . . . . . . . . . . . .

Bq−1,1 0p,K Bq−1,2 0p,K Bq−1,3 . . . 0p,p

0K,p 0K,K 0K,p 0K,K 0K,p . . . 0K,p 0K,K

Bq,1 0p,K Bq,2 0p,K Bq,3 . . . Bq.q 0p,K 0p,p

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(13.28)

The rest of the matrix is completed by symmetry. Here each Bk,� denotes a block
matrix p × p indexed by a set of indexes in Ek,� defined below, and whose entries
are identical to the matrix Zn. To be more precise, we define

Ek,� = {(u, v) ∈ Ek ×E�−1} where E� =
[

�(p +K)+ 1 , �(p +K)+ p
] ∩N .

(13.29)

We shall order the blocks in the lexicographic order starting with the top of
the matrix. To soothe the notations all along the paper, we shall use the following
convention: for any k = 1, . . . , qn and any � = 1, . . . , k,

Bu = Bk,� and Iu = Ek,� where u = k(k − 1)/2+ �. (13.30)

To avoid confusion, when block matrices are constructed from different symmet-
ric matrices, we shall also use the notation Bi = Bi (Zn) to identify the variables in
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the block matrix. Note that the “big” blocks Bi are separated by bands of K rows
and K columns. Variables in two different blocks are separated by at least either K
rows or K columns.

Using Lemma 13.14, Theorem A.43 in Bai and Silverstein [1] and taking into
account Condition 13.1, straightforward computations lead to

E|SXn − SB(Xn)|2 → 0 as n→∞.

Similarly, we define B(Yn), and one can prove that

E|SYn − SB(Yn)|2 → 0 as n→∞.

We introduce a filtration

Bu = σ(B1(Xn),B2(Xn), . . . ,Bu(Xn)) for u ≥ 1 and B0 = {∅,�}. (13.31)

To introduce martingale structure, for 1 ≤ u ≤ q(q + 1)/2 and j ∈ Iu define the
variables

X′
j = Xj − E(Xj|Bu−1).

Then we define a new block matrix, say B(X′n), with blocks B′i = Bi (X′n) having
a similar structure as B(Xn) where the entries in these big blocks are X′

j, j ∈ Iu.
Note that by Lemma 13.14

E|SB(Xn) − SB(X′n)|2 3 1

n2

∑

u≥1

∑

j∈Iu

E|E(Xj|Bu−1)|2 ≤ sup
i≥j

E|E(Xij |FK
ij )|2,

which converges to 0 uniformly in n when K → ∞ by (13.6). Here and in the
sequel we shall keep in mind that the range for the index u is from 1 to q(q + 1)/2.
For simplicity, we shall denote the sum from u = 1 to u = q(q + 1)/2 by a sum
over u ≥ 1.

We proceed similarly for the matrix B(Yn). We introduce the filtration

Hu = σ(B1(Yn),B2(Yn), . . . ,Bu(Yn)) for u ≥ 1 and H0 = {∅,�}, (13.32)

and for any j ∈ Iu define the variables

Y ′j = Yj − E(Yj|Hu−1).

Notice that (Y ′j , 1 ≤ u ≤ q(q + 1)/2, j ∈ Iu) is also a Gaussian vector. In
addition, by using the properties of conditional expectation we can easily notice
that the random vectors (Y ′j , j ∈ Iu)u are orthogonal. Therefore (Y ′j , j ∈ Iu)u are
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mutually independent. We shall also prove that for j ∈ Iu

‖E(Yj|Hu−1)‖2 ≤ ‖E(Xj|Bu−1)‖2. (13.33)

To prove the inequality above, it suffices to notice the following facts. Let

Vu = span(1, (Yj , 1 ≤ v ≤ u , j ∈ Iv))

and

V∗u = span(1, (Xj , 1 ≤ v ≤ u , j ∈ Iv)),

where the closure is taken in L
2. Denote by �Vu

(·) the orthogonal projection on Vu

and by �V∗u (·) the orthogonal projection on V∗u . Since (Y ′j , 1 ≤ u ≤ q(q+ 1)/2, j ∈
Iu) is a Gaussian process,

E(Yj|Hu−1) = �Vu−1

(

Yj
)

a.s. and in L
2 .

Since (Yk�)1≤�≤k≤n has the same covariance structure as (Xk�)1≤�≤k≤n, we
observe that

‖�Vu−1

(

Yj
)‖2 = ‖�V∗u−1

(

Xj
)‖2 .

But,

‖�V∗u−1

(

Xj
)‖2 ≤ ‖E(Xj|Bu−1)‖2 ,

which proves (13.33). Then we define a new block matrix, say B(Y′n), with blocks

′i = Bi (Y′n) having a similar structure as B(Yn) where the entries in these big
blocks are Y ′j . Therefore, by Lemma 13.14 and (13.33),

E|SB(Yn) − SB(Y′n)|2 3 1

n2

∑

u≥1

∑

j∈Iu

E|E(Yj|Hu−1)|2 ≤ 1

n2

∑

u≥1

∑

j∈Iu

E|E(Xj|Bu−1)|2

≤ sup
i≥j

E|E(Xij |FK
ij )|2,

which converges to 0 as K →∞ by (13.6), uniformly in n. The proof is reduced to
showing that

E|SB(X′n) − SB(Y′n)| → 0 as n→∞, (13.34)

which we shall achieve at the end of several steps.
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We write SB(X′n) and SB(Y′n) as function of the entries. So

SB(X′n) = s(B′1, . . . ,B′q(q+1)/2) and SB(Y′n) = s(
′1, . . . ,
′q(q+1)/2) . (13.35)

We note that in our proofs the order in which we treat the blocks is critically
important for using the power of the martingale structure, but the location of a
variable in a block is not going to matter. With our functional notation we use the
following decomposition:

SB(X′n) − SB(Y′n) = s(B′1, . . . ,B′q(q+1)/2)− s(
′1, . . . ,
′q(q+1)/2) (13.36)

=
∑q(q+1)/2

u=1

(

s(B′1, . . . ,B′u,
′u+1, . . . , !
′
q(q+1)/2)− s(B′1, . . . ,B′u−1,


′
u, . . . , !

′
q(q+1)/2)

)

.

We also denote

Cu = (B′1, . . . ,B′u−1, 0u, !
′
u+1, . . . , !

′
q(q+1)/2),

where 0u is a null vector with p2 entries 0. We shall use the Taylor expansion in
Lemma 13.12, applied for a fixed index u, to the function

s(B′1, . . . ,B′u−1,Bu(X′n),
′u+1, . . . ,

′
q(q+1)/2),

where s is defined in (13.35). We can view this function simply as a function of
a vector x = (xi, u ∈ {1, . . . , q(q + 1)/2} and i ∈ Iu). By using (13.36),
Lemma 13.12 with A = 4εn1/2 and (13.60), we obtain

SB(X′n) − SB(Y′n) = R′1 + R′2 + R′3, (13.37)

where

R′1 =
∑

u≥1

∑

j∈Iu

(X′
j − Y ′j )∂js(Cu),

R′2 =
1

2

∑

u≥1

((
∑

j∈Iu

X′
j∂j

)2 −
(
∑

j∈Iu

Y ′j ∂j

)2)

s(Cu)

and

|R′3| ≤
∑

u≥1

|Ru3| +
∑

u≥1

|R′u3|,

with

|Ru3| 3 1

n2 p
2
∑

j∈Iu

(X′
j)

2I (|X′
j| > 4εn1/2)+ εn1/2 1

n5/2 p
4
∑

j∈Iu

(X′
j)

2
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and

|R′u3| 3
1

n2 p
2
∑

j∈Iu

(Y ′j )2I (|Y ′j | > 4εn1/2)+ εn1/2 1

n5/2 p
4
∑

j∈Iu

(Y ′j )2 .

We treat first the term |R′3|. By taking the expected value and considering
Condition 13.1, we obtain

∑

u≥1

E|Ru3| 3 p2 1

n2

∑

(i,j)∈V 1
n

E(|X′
ij |2I (|X′

ij | > 4εn1/2))+ εp4.

Notice now the following fact: If U is a real-valued random variable and F is a
sigma-field, then setting V = U − E(U |F), the following inequality holds: for any
m ≥ 1 and any a > 0,

E
(|V |mI (|V | > 4a)

) ≤ 3× 2m
E
(|U |mI (|U | > a)

)

. (13.38)

This implies that

E(|X′
ij |2I (|X′

ij | > 4εn1/2))3 E(X2
ij I (|Xij | > εn1/2)).

Therefore

∑

u≥1

E|Ru3| 3 p2 1

n2

∑

(i,j)∈V 1
n

E(X2
ij I (|Xij | > εn1/2))+ εp4

= p2Ln(ε)+ εp4.

We let first n→∞ and take into account Condition 13.1 and then we let ε → 0.
It follows that

lim
n→∞

∑

u≥1

E|Ru3| = 0. (13.39)

We handle now the quantity
∑

u≥1
E|R′u3|. Taking into account that E(Y 2

u ) =
E(X2

u), Condition 13.1 and inequality (13.38), note first that

∑

u≥1

E|R′u3| 3 p2 1

n2

∑

(i,j)∈V 1
n

E(Y 2
ij I (|Yij | > εn1/2))+ εp4.
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To treat the first term in the right-hand side, some computations are needed. Note
first that if N is a centered Gaussian random variable with variance σ 2,

E(N2I (|N | > εn1/2)) = 2σ√
2π

ε
√
ne−ε2n/(2σ 2) + σ 2

P(|N | > ε
√
n) . (13.40)

Let now σ 2
ij = E(X2

ij ). For any η > 0, we then have

σ 2
ijP(|Yij | > ε

√
n) ≤ η2ε2nP(|Yij | > ε

√
n)+ E(X2

ij I (|Xij | > ηεn1/2))

≤ η2
E(Y 2

ij )+E(X2
ij I (|Xij | > ηεn1/2)) = η2

E(X2
ij )+E(X2

ij I (|Xij | > ηεn1/2)).

On another hand, let A be a positive real. Observe that, for any η > 0,

σij ε
√
ne
−ε2n/(2σ 2

ij )I (σij > ε
√
n/A) ≤ Aσ 2

ij I (σij > ε
√
n/A)

≤ AE(X2
ij I (|Xij | > ηn1/2))+ Anη2I (σij > ε

√
n/A)

≤ AE(X2
ij I (|Xij | > ηn1/2))+ η2A3σ 2

ij /ε
2.

Moreover

σij ε
√
ne
−ε2n/(2σ 2

ij )I (σij ≤ ε
√
n/A) = √

2σ 2
ij

ε
√
n√

2σij

e
−ε2n/(2σ 2

ij )I (σij ≤ ε
√
n/A) ≤ 2σ 2

ij e
−A2/4.

So, overall, taking into account the above considerations and (13.40), it follows
that, for any ε > 0, any η > 0 and any positive real A,

E(Y 2
ij I (|Yij | > εn1/2))3 η2

E(X2
ij )+ E(X2

ij I (|Xij | > ηεn1/2))

+ AE(X2
ij I (|Xij | > ηn1/2))+ η2A3σ 2

ij /ε
2 + E(X2

ij )e
−A2/4.

Hence, taking into account Condition 13.1, it follows that for any ε > 0, any
η > 0 and any A > 0,

∑

u≥1

E|R′u3| 3 εp4 + p2η2 + p2Ln(ηε)+ Ap2Ln(η)+ p2η2A3/ε2 + p2e−A2/4.

Letting n→∞, then η → 0 and finally A→∞, it follows that

lim sup
n→∞

∑

u≥1

E|R′u3| 3 εp4.

Letting then ε → 0 and taking into account (13.39), it follows that E|R′3| → 0,
as n→∞.
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We treat now the term R′1, and we shall compute E|R′1|2. Let

Du =
∑

j∈Iu

X′
j∂js(Cu) and ˜Du =

∑

j∈Iu

Y ′j ∂js(Cu),

and note that

E|R′1|2 ≤ 2E
∣

∣

∑

u≥1

Du

∣

∣

2 + 2E
∣

∣

∑

u≥1

˜Du

∣

∣

2
.

By definition of the X′
j for j in Iu, the random variables (Du)u≥1 are orthogonal.

Moreover, since the random vectors (Y ′j , j ∈ Iu)u are mutually independent, the

variables (˜Du)u≥1 are also orthogonal. Hence we get

E|R′1|2 ≤ 2
∑

u≥1

E|Du|2 + 2
∑

u≥1

E|˜Du|2.

Therefore, by using Cauchy–Schwarz’s inequality, taking into account (13.60),
the fact that E(Y 2

u ) = E(X2
u) and Condition 13.1, it follows that

E|R′1|2 3
p2

n3

∑

(i,j)∈V 1
n

E(X2
ij )3

p2

n
,

which converges to 0 when n→∞.
Now we treat the term R′2 = 2−1∑

u≥1
Ru2 where

Ru2 =
((
∑

j∈Iu

X′
j∂j

)2 −
(
∑

j∈Iu

Y ′j ∂j

)2)

s(Cu).

We write Ru2 as a sum of differences of the type
(

X′
jX

′
i − Y ′jY

′
i

)

∂j∂is(Cu) were
i, j ∈ Iu. To introduce martingale structure we add and substract some terms. Hence
we write

(

X′
jX

′
i − Y ′jY

′
i

)

∂j∂is(Cu) =
(

X′
jX

′
i − E(X′

jX
′
i|Bu−1)

)

∂j∂is(Cu)

+(E(X′
jX

′
i|Bu−1)− E(XjXi)

)

∂j∂is(Cu)+
(

E(XjXi)− Y ′jY ′i
)

∂j∂is(Cu)

:= I
(1)
uij + I

(2)
uij + I

(3)
uij . (13.41)

Taking into account the properties of the conditional expectation, we obtain

E(X′
jX

′
i|Bu−1) = E(XjXi|Bu−1)− E(Xj|Bu−1)E(Xi|Bu−1).
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Therefore
∣

∣

∣

∑

i,j∈Iu

I
(2)
uij

∣

∣

∣ ≤
∣

∣

∣

∑

i,j∈Iu

(

E(XjXi|Bu−1)− E(XjXi)
)

∂j∂is(Cu)

∣

∣

∣

+
∣

∣

∣

∑

i,j∈Iu

E(Xj|Bu−1)E(Xi|Bu−1)∂j∂is(Cu)

∣

∣

∣

:= I1,u + I2,u . (13.42)

Let us handle the term I2,u. By Lemma 13.13,

I2,u ≤ c4

n2

∑

i∈Iu

|E(Xi|Bu−1)|2 ,

and then

∑

u≥1

E(I2,u) ≤ c4

n2

∑

u≥1

∑

i∈Iu

‖E(Xi|Bu−1)‖2
2 . (13.43)

Therefore, using the contractivity of conditional expectation, we get

q(q+1)/2
∑

u=1

E(I2,u)3 1

n2

( n

p

)2
p2 sup

i≥j

E|E(Xij |FK
ij )|2 3 sup

i≥j

E|E(Xij |FK
ij )|2 .

Hence, by condition (13.6),

lim
K→∞ lim sup

n→∞

q(q+1)/2
∑

u=1

E(I2,u) = 0.

We handle now the term I1,u in (13.42). Using (13.60), we first write

E(I1,u)3 1

n2

∑

i,j∈Iu

‖E(XjXi|Bu−1)− E(XjXi)‖1.

By using the contractivity of conditional expectation, we then get

∑

u≥1

E(I1,u)3 1

n2

∑

u≥1

∑

i,j∈Iu

E|E(XjXi|Bu−1)− E(XjXi)| (13.44)

3 1

n2

( n

p

)2
p4 sup

(i,j) �=(a,b);i≥j,a≥b

E|E(XijXab|FK
i∧a,j∧b)− E(XijXab)|
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+ 1

n2

( n

p

)2
p2 sup

i≥j

E|E(X2
ij |FK

ij )− E(X2
ij )|

3 p2 sup
(i,j) �=(a,b);i≥j,a≥b

E|E(XijXab|FK
i∧a,j∧b)− E(XijXab)|

+ sup
i≥j

E|E(X2
ij |FK

ij )− E(X2
ij )|.

The first term converges to 0 by (13.27) and the second term is convergent to 0
by (13.8). Hence,

lim
K→∞ lim sup

n→∞
∑

u≥1

E(I1,u) = 0.

Overall, starting from (13.42) and taking into account the above considerations,
we get

∑

u≥1

E

∣

∣

∣

∑

i∈Iu

∑

j∈Iu

I
(2)
uij

∣

∣

∣ = 0.

We treat now the negligibility of the term
∑

u≥1
∑

i,j∈Iu I
(1)
uij in the following

way. First we truncate

X̄′
i = X′

iI (|X′
i| ≤ 4n1/2) and X̃′

i = X′
iI (|X′

i| > 4n1/2)

and write

X′
jX

′
i − E(X′

jX
′
i|Bu−1) = X′

jX̄
′
i − E(X′

jX̄
′
i|Bu−1)+X′

jX̃
′
i − E(X′

jX̃
′
i|Bu−1) .

Therefore, by the triangle inequality, the Cauchy–Schwarz inequality, the
Minkowski’s inequalities and the properties of conditional expectation, we easily
obtain

E

∣

∣

∣

∑

u≥1

∑

i,j∈Iu

I
(1)
uij

∣

∣

∣3 1

n2

∑

u≥1

∑

i,j∈Iu

‖X′
j‖2‖X̃′

i‖2

+∥∥
∑

u≥1

∑

i,j∈Iu

[X′
jX̄

′
i − E(X′

jX̄
′
i|Bu−1)]∂j∂is(Cu)

∥

∥

2

:= An +
∥

∥

∑

u≥1

D′
u

∥

∥

2 .
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By the fact that that the terms D′
u are orthogonal, by (13.60), the level of

truncation and Condition 13.1, we have

E

∣

∣

∣

∑

u≥1

D′
u

∣

∣

∣

2 3 1

n4

∑

u≥1

E

(
∑

i,j∈Iu

|X′
jX̄

′
i − E(X′

jX̄
′
i|Bu−1)|

)2

3 1

n4

∑

u≥1

(
∑

i,j∈Iu

‖X′
jX̄

′
i‖2

)2 3 p4

n4

∑

u≥1

∑

i,j∈Iu

‖X′
jX̄

′
i‖2

2

3 p6

n3

∑

u≥1

∑

j∈Iu

E(X2
j )3

p6

n
→ 0 as n→∞.

Also, by the Cauchy–Schwarz’s inequality and Condition 13.1,

An = 1

n2

∑

u≥1

∑

i,j∈Iu

‖X′
j‖2‖X̃′

i‖2 ≤ p2
( 1

n2

∑

u≥1

∑

j∈Iu

‖X′
j‖2

2

)1/2( 1

n2

∑

u≥1

∑

i∈Iu

‖X̃′
i‖2

2

)1/2

≤ p2
( 1

n2

∑

i∈V 1
n

E(X′2
i I (|X′

i| > 4n1/2))
)1/2

.

Using (13.38), we derive that An 3 p2 L
1/2
n (1), which converges to 0 for any

p fixed as n→∞. Overall, it follows that

E

∣

∣

∣

∑

u≥1

∑

i,j∈Iu

I
(1)
uij

∣

∣

∣→ 0 , as n →∞.

To end the proof, it remains only to treat the term containing the Gaussian random
variables. With this aim, we write I

(3)
uij = Auij + Buij , where

Auij := (E(XjXi)− E(Y ′jY
′
i ))∂j∂is(Cu)

and

Buij := (E(Y ′jY
′
i )− Y ′jY

′
i )∂j∂is(Cu) .

We use the orthogonality of
∑

i,j∈Iu Buij and (13.60). This leads to

E
∣

∣

∑

u≥1

∑

i,j∈Iu

Buij
∣

∣

2 3 1

n4

∑

u≥1

∥

∥

∑

i,j∈Iu

|E(Y ′jY ′i )− Y ′jY
′
i |
∥

∥

2
2

≤ 1

n4

∑

u≥1

(
∑

i,j∈Iu

‖E(Y ′jY ′i )− Y ′jY
′
i ‖2

)2 ≤ 4

n4

∑

u≥1

(
∑

i,j∈Iu

‖Y ′j‖4‖Y ′i ‖4

)2

≤ 43

n4

∑

u≥1

(
∑

i∈Iu

‖Yi‖4

)4 ≤ 43p6

n4

∑

u≥1

∑

i∈Iu

‖Yi‖4
4 .



13 Universality of Limiting Spectral Distribution Under Projective Criteria 267

Since the r.v.’s Yi are Gaussian, ‖Yi‖4
4 = 3‖Yi‖4

2 = 3‖Xi‖4
2. Therefore, for any

ε > 0,

E
∣

∣

∑

u≥1

∑

i,j∈Iu

Buij
∣

∣

2 3 p6

n4

∑

u≥1

∑

i∈Iu

‖Xi‖4
2

3 p6ε2

n3

∑

u≥1

∑

i∈Iu

‖Xi‖2
2 +

p6

n4

∑

u≥1

∑

i∈Iu

‖X2
i I (|Xi| > ε

√
n)‖2

1

3 p6ε2

n3

∑

(i,j)∈V 1
n

‖Xij ‖2
2 + p6

( 1

n2

∑

(i,j)∈V 1
n

‖X2
ij I (|Xij | > ε

√
n)‖1

)2
.

Letting n → ∞ and after ε → 0, and taking into account Condition 13.1, it
follows that

E
∣

∣

∑

u≥1

∑

i,j∈Iu

Buij
∣

∣

2 → 0 as n→∞.

On the other hand, since

E(Y ′jY
′
i ) = E(YjYi)− E

(

E(Yj|Hu−1)E(Yi|Hu−1)
)

and E(YjYi) = E(XjXi), we get, by the same arguments as those leading to (13.43),

E
∣

∣

∑

u≥1

∑

i,j∈Iu

Auij
∣

∣3 1

n2

∑

u≥1

∑

i∈Iu

‖E(Yi|Hu−1)‖2
2 .

Hence, by (13.33) and the contractivity of conditional expectation,

E
∣

∣

∑

u≥1

∑

i,j∈Iu

Auij
∣

∣3 1

n2

∑

u≥1

∑

i∈Iu

‖E(Xi|Bu−1)‖2
2 3 sup

i≥j

‖E(Xij |FK
ij )‖2

2 ,

which converges to 0, as K →∞, by condition (13.6). This completes the proof of
the theorem. ♦

13.5.2 Proof of Theorem 13.4

The proof follows the lines of the proof of Theorem 13.2 with Zij instead of Xij

and with Wij instead of Yij . We point here the differences. The filtrations Bu and
Hu respectively defined in (13.31) and (13.32) have to be defined as follows. If
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u = k(k − 1)/2+ � with 1 ≤ � ≤ k and 1 ≤ k ≤ q , then

Bu = B′u ∨ B′′u for u ≥ 1 and B0 = {∅,�} (13.45)

and

Hu = H′
u ∨H′′

u for u ≥ 1 and H0 = {∅,�}, (13.46)

where

B′u = B′k,� = σ
(

Xab , (a, b) ∈ ∪�
j=1Ekj or (a, b) ∈ ∪k−1

i=1 ∪i
j=1 Eij

)

,

B′′u = B′′k,� = σ
(

Xba , (a, b) ∈ ∪�
j=1Ekj or (a, b) ∈ ∪k−1

i=1 ∪i
j=1 Eij

)

,

and H′
u and H′′

u defined, respectively, as B′′u and B′′u with the Xab (resp. Xba)
replaced by Yab (resp. Yba). According to the proof of Theorem 13.2, the proof
will be achieved if we can show that if u = k(k − 1)/2 + � with 1 ≤ � ≤ k and
1 ≤ k ≤ q , then for any (i, j) and (a, b) in Ek,�

‖E(Zij |Bu−1)‖2 ≤ ‖E(Xij |˜FK
ij )‖2 + ‖E(Xji |˜FK

ji )‖2 (13.47)

and

‖E(ZijZab|Bu−1)− E(ZijZab)‖1 ≤ ‖E(XijXab|˜FK
ij ∩ ˜FK

ab)− E(XijXab)‖1

+‖E(XijXba |˜FK
ij ∩ ˜FK

ba)−E(XijXba)‖1+‖E(XjiXab|˜FK
ji ∩ ˜FK

ab)−E(XjiXab)‖1

+ ‖E(XjiXba |˜FK
ji ∩ ˜FK

ba)− E(XjiXba)‖1. (13.48)

To prove the inequalities above, we fix, all along the rest of the proof k and �

such that 1 ≤ k ≤ q and 1 ≤ � ≤ k and also a (i, j) in Ek�. We notice that if (u, v)
belongs to ∪�−1

m=1Ekm then j − v ≥ K , and if (a, b) belongs to ∪k−1
r=1 ∪r

m=1 Erm then
i − a ≥ K . So H′

u−1 ⊆ ˜FK
ij . In addition, if (a, b) belongs to ∪�−1

m=1Ekm then i− b ≥
p + 2K and if (a, b) belongs to ∪k−1

r=1 ∪r
m=1 Erm then i − b ≥ 2K + p. Therefore

the distance between (i, j) and all the points (v, u) such that (a, b) belongs either to
∪�−1
m=1Ekm or to ∪k−1

r=1 ∪r
m=1 Erm is larger than K . This shows that B′′u−1 ⊆ ˜FK

ij . The

two latter inclusions prove that Bu−1 ⊆ ˜FK
ij . Let us prove now that Hu−1 ⊆ ˜FK

ji . If

(a, b) belongs to ∪�−1
m=1Ekm then a− j ≥ K , and if (a, b) belongs to ∪k−1

r=1 ∪r
m=1 Erm

then i−b ≥ 2K+p. So H′
u−1 ⊆ ˜FK

ji . In addition, if (a, b) belongs to∪�−1
m=1Ekm then

j − b ≥ K and if (a, b) belongs to ∪k−1
r=1 ∪r

m=1 Erm then i − a ≥ K . Therefore the
distance between (j, i) and all the points (b, a) such that (a, b) belongs to ∪�−1

m=1Ekm
or to ∪k−1

r=1 ∪r
m=1 Erm is larger than K . Hence B′′u−1 ⊆ ˜FK

ji . This ends the proof of

Bu−1 ⊆ ˜FK
ji . Since Bu−1 ⊆ ˜FK

ji and Bu−1 ⊆ ˜FK
ji , (13.47) follows by applying
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the tower lemma and using contraction. To prove (13.48), we use again the tower
lemma together with the contractivity of the norm for the conditional expectation
and the fact that the above inclusions imply that for any (i, j) and (a, b) belonging
to Ek,�, Bu−1 ⊆ ˜FK

ij ∩ ˜FK
ab, Bu−1 ⊆ ˜FK

ij ∩ ˜FK
ba , Bu−1 ⊆ ˜FK

ji ∩ ˜FK
ab and Bu−1 ⊆ ˜FK

ji

∩ ˜FK
ba . ♦

13.5.3 Proof of Theorem 13.5

The proof is very similar to the proof of Theorem 9 from Merlevède and Peligrad
[27]. We give it here for completeness.

Let n = N + p and Xn the symmetric matrix of order n defined by

Xn = 1√
N

(

0N,N XN,p

X T
N,p 0p,p

)

.

Notice that the eigenvalues of X2
n are the eigenvalues of N−1XN,pX T

N,p together

with the eigenvalues of N−1X T
N,pXN,p. Assuming that N ≤ p (otherwise exchange

the role of XN,p andX T
N,p everywhere), the following relation holds: for any z ∈ C

+

SBN (z) = z−1/2 n

2N
SXn (z1/2)+ N − p

2Nz
. (13.49)

(See, for instance, page 549 in Rashidi Far et al. [36] for additional arguments lead-
ing to the relation above.) Consider now a real-valued centered Gaussian random
field (Yk�)(k,�)∈Z2 independent of (Xk�)(k,�)∈Z2 and with covariance function given
by:

E(Yk�Yij ) = E(Xk�Xij ) for any (k, �) and (i, j) in Z
2 , (13.50)

and define the N × p matrix

!N,p =
(

Yij

)

1≤i≤N,1≤j≤p
.

Let GN = 1
N
!N,p!

T
N,p and Hn be the symmetric matrix of order n defined by

Hn = 1√
N

(

0N,N !N,p

!T
N,p 0p,p

)

.

Assuming that N ≤ p, the following relation holds: for any z ∈ C
+

SGN (z) = z−1/2 n

2N
SHn (z1/2)+ N − p

2Nz
. (13.51)
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In view of relations (13.49) and (13.51), to prove that for any z ∈ C
+,

∣

∣SBN (z)− SGN (z)
∣

∣→ 0 in probability (13.52)

it suffices to prove that, for any z ∈ C
+,

∣

∣SXn(z)− SHn (z)
∣

∣→ 0 in probability (13.53)

(since n/N → 1 + c). Clearly (13.53) follows from the proof of Theorem 13.2
together with Comment 13.3 (iii), by noticing the following facts. The entries xi,j
and gi,j of the matrices n1/2

Xn and n1/2
Hn respectively, satisfy

xi,j = α
(n)
i,j Xji , gi,j = α

(n)
i,j Yji if 1 ≤ j ≤ i ≤ n and xi,j = xj,i , gi,j = gj,i if 1 ≤ j ≤ i ≤ n ,

where (α
(n)
i,j ) is a sequence of positive numbers defined by: α(n)

i,j = n1/2

N1/2 1N+1≤i≤n

11≤j≤N . HenceE(gk,�gi,j ) = α
(n)
k,�α

(n)
i,j E(Xk�Xij ), max1≤j≤i≤n αi,j = n1/2

N1/2 := α(n)

and limn→∞ α(n) = √
1+ c. ♦

13.5.4 Proof of Theorem 13.6

The proof of this theorem follows all the steps of the proof of Theorem 13.2 (with
the same notations) with the exception of the treatment of terms which appear in
(13.44). By stationarity

1

n2

q(q+1)/2
∑

u=1

∑

i,j∈Iu

E|E(XjXi|Bu−1)−E(XjXi)| ≤ 1

p2

∑

i,j∈Ep

E|E(XjXi|FK
0 )−E(XjXi)| ,

where above and below Ep = [1, p]2 ∩ N
2. For i fixed in Ep, we shall divide the

last sum in three parts according to j ∈ Ep, with |i− j| ≤ d or d ≤ |i− j| ≤ K or
|i−j| > K, where d is a positive integer less than K . Since for this case FK

0 ⊂ FK
i∧j,

by the properties of conditional expectations and stationarity we have

∑

j∈Ep,|i−j|≤d

E|E(XjXi|FK
0 )− E(XjXi)| ≤

∑

j∈Ep,|i−j|≤d

E|E(XjXi|FK
i∧j)− E(XjXi)|

=
∑

j∈Ep,|i−j|≤d

E|E(X0Xj−i|FK
(j−i)∧0)− E(X0Xj−i)| .

Therefore

1

p2

∑

i,j∈Ep,|i−j|≤d

E|E(XjXi|FK
0 )− E(XjXi)| ≤

∑

u,|u|≤d

E|E(X0Xu|FK
u∧0)− E(X0Xu)|,
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which converges to 0 for d fixed as K → ∞ by the regularity condition of the
random field.

Now we treat the part of the sum where j ∈ Ep, with d < |i − j| ≤ K. For this

case we note that FK
0 ⊂ F |i−j|

i and FK
0 ⊂ F |i−j|

j . By the properties of conditional
expectation, stationarity and some computations we infer that

∑

j∈Ep,d<|i−j|≤K

E|E(XiXj|FK
0 )− E(XjXi)| ≤ 2

∑

u∈V0,|u|>d

E|XuE(X0|F |u|
0 )| ,

where we recall that V0 = {u = (u1, u2) ∈ Z
2 : u1 ≤ 0 or u2 ≤ 0}. It follows that

1

p2

∑

i,j∈Ep,d<|i−j|≤K

E|E(XiXj|FK
0 )− E(XjXi)| ≤ 2

∑

u∈V0,|u|>d

E|XuE(X0|F |u|
0 )| ,

which converges to 0 as d →∞ uniformly in p and K by (13.19).
Finally, for the third sum where i, j ∈ Ep, |i−j| ≥ K we either have σ(Xi) ⊂ FK

j

or σ(Xj) ⊂ FK
i . Moreover FK

0 ⊂ FK
i and FK

0 ⊂ FK
j . By the properties of

conditional expectation, when σ(Xi) ⊂ FK
j we have

E|E(XiXj|FK
0 )− E(XjXi)| ≤ 2E(|E(XiXj|FK

j )|) = 2E(|Xi−jE(X0|FK
0 )|) .

When σ(Xj) ⊂ FK
i , similarly, we have

E|E(XiXj|FK
0 )− E(XjXi)| ≤ 2E(|Xj−iE(X0|FK

0 )|) .

Therefore

1

p2

∑

i,j∈Ep,|i−j|≥K

E|E(XiXj|FK
0 )− E(XjXi)| ≤ 2p2 sup

u∈V0:|u|>K

E|XuE(X0|FK
0 )| .

Since we can take K close to p, the result follows by letting first p → ∞
followed by d →∞. ♦

13.5.5 Proof of Proposition 13.10

The proof uses similar arguments as those given in the proof of Theorem 2.1 in
Chakrabarty et al. [10].

For any integers k and � define

ck� =
∫

[0,1]2
e−2π i(kx+�y)

√

f (x, y)dxdy .
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There are real numbers and satisfy
∑

k,�∈Z c2
k� < ∞. Let now (Uij )(i,j)∈Z2 be

i.i.d. real-valued random variables with law N (0, 1). Then, without restricting the
generality, we can write

Yij =
∑

k,�∈Z
ck�Ui−k,j−� . (13.54)

(See Fact 4.1 in Chakrabarty et al. [10].)
The result will follow if we can prove that when N,p tend to infinity such that

p/N → c, then there exists a deterministic probability measure μf depending only
on c and f , and such that for any ε > 0,

P
(

d(μGN
, μf ) > ε

)→ 0 as N →∞. (13.55)

Clearly the identity (13.54) holds in distribution, hence to prove (13.55), without
loss of generality, we may and do assume from now on, that Yij is given by (13.54).
To prove (13.55), we shall use Fact 4.3 in Chakrabarty et al. [10] and first truncate
the series (13.54). Hence we fix a positive integer m and we define

Y
(m)
ij =

m
∑

k=−m

m
∑

�=−m

ck�Ui−k,j−� .

Let !
(m)
N,p = (

Y
(m)
ij

)

1≤i≤N,1≤j≤p
. Define also G

(m)
N = 1

N
!

(m)
N,p(!

(m)
N,p)

T . By
Theorem 2.1 in Boutet de Monvel et al. [8], we have that for any positive
integer m, there exists a deterministic probability measure μm depending only
on c and on the complex-valued function χ(m) defined on [0, 1]2 by χ(m) =
∑

k,�∈Z E(Y
(m)
00 Y

(m)
k� )e−2π i(kx+�y), and such that for any ε > 0,

P
(

d(μ
G

(m)
N

, μm) > ε
)→ 0 as N →∞. (13.56)

Notice that

E(Y
(m)
00 Y

(m)
k� ) =

min(k+m,m)
∑

u=max(k−m,m)

min(�+m,m)
∑

v=max(�−m,m)

cuvck−u,�−v .

Since the ck�’s depend only on f , it follows that χ(m) depends only on m and f .
Therefore μm can be rewritten as μm,f . Notice now that by Corollary A.42 in Bai
and Silverstein [1], for any ε > 0,

P
(

d(μGN
, μ

G
(m)
N

) > ε
) ≤ 1

ε2 E(d
2(μGN

, μ
G

(m)
N

)

≤
√

2

p
√
Nε2

∥

∥Tr1/2(
G

(m)
N +GN

)

Tr1/2((!
(m)
N,p − !N,p)(!

(m)
N,p − !N,p)

T
)∥

∥

1.
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Therefore, by the Cauchy–Schwarz’s inequality and simple algebra,

P
(

d(μGN
,μ

G
(m)
N

)>ε
)≤

√
2

p
√
Nε2

∥

∥Tr
(

G
(m)
N +GN

)∥

∥

1/2
1

∥

∥Tr1/2((!
(m)
N,p − !N,p)(!

(m)
N,p − !N,p)

T
)∥

∥

1/2
1

3
(

∑

k,�∈Z : |k|∨|�|>m

c2
k�

)1/2
.

This proves that, for any ε > 0,

lim
m→∞ lim sup

n→∞
P
(

d(μGN
, μ

G
(m)
N

) > ε
) = 0 . (13.57)

Taking into account (13.56) and (13.57), Fact 4.3 in Chakrabarty et al. [10] and
the fact that the space of probability measures on R is a complete metric space when
equipped with the Lévy distance, (13.55) follows. ♦

13.6 Useful Technical Lemmas

Below we give a Taylor expansion of a more convenient type for using Lindeberg’s
method:

Lemma 13.12 Let f (·) be a function from R
� to C, three times differentiable, with

continuous third partial derivatives and such that

|∂i∂jf (x)| ≤ L2 and |∂i∂j ∂kf (x)| ≤ L3 for all i, j, k ∈ {1, . . . , �} and x ∈ R
� .

Then, for any a = (a1, . . . , a�) and b = (b1, . . . , b�) in R
�,

f (a)− f (b) =
2
∑

k=1

1

k! [(
�
∑

j=1

aj ∂j )
k − (

�
∑

j=1

bj∂j )
k]f (0, . . . , 0)+ R3

where |R3| ≤ R(a)+ R(b), with

R(c) ≤ 4�L2

�
∑

j=1

c2
j I (|aj | > A)+ 2AL3�

2
(

�
∑

j=1

c2
j

)

,

where c equals a or b.

This Lemma can be applied in conjunction with Stieltjes transform. Let A(x) be
the matrix defined by

(A(x))ij =
{

1√
n
xij i ≥ j

1√
n
xji i < j

(13.58)
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Let z ∈ C
+ and s := sz be the function defined from R

N to C by

s(x) = 1

n
Tr(A(x)− zIn)−1 , (13.59)

where In is the identity matrix of order n.
The function s, as defined above, admits partial derivatives of all orders. Next we

give a lemma concerning the derivatives of s(x) which is easily obtained by using
the computations in Chatterjee [11] (see the proof of Lemma 12 in Merlevède and
Peligrad [27] for a complete proof of its last inequality).

Lemma 13.13 Let z = u+ iv ∈ C
+ and let (aij )1≤j≤i≤n and (bij )1≤j≤i≤n be real

numbers. There exist universal positive constants c1, c2 and c3 depending only on
the imaginary part of z such that

|∂us| ≤ c1

n3/2
, |∂u∂vs| ≤ c2

n2
and |∂u∂v∂ws| ≤ c3

n5/2
. (13.60)

Furthermore there exists an universal positive constant c4 depending only on the
imaginary part of z such that for any subset In of {(i, j)}1≤j≤i≤n and any x,

∣

∣

∣

∑

u∈In

∑

v∈In

aubv∂u∂vsn(x)
∣

∣

∣ ≤ c4

n2

(
∑

u∈In

a2
u

∑

v∈In

b2
v

)1/2
.

The following lemma is Lemma 2.1 in Götze et al. [21].

Lemma 13.14 Let An and Bn be two symmetric n × n matrices. Then, for any
z ∈ C\R,

|SAn (z)− SBn (z)|2 ≤
1

n2| Im(z)|4 Tr
[

(An − Bn)
2
]

,

where An = n−1/2An and Bn = n−1/2Bn.
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Chapter 14
Exchangeable Pairs on Wiener Chaos

Ivan Nourdin and Guangqu Zheng

Dedicated to the memory of Charles Stein, in remembrance of
his beautiful mind and of his inspiring, creative, very original
and deep mathematical ideas, which will, for sure, survive him
for a long time.

Abstract Nourdin and Peccati (Probab Theory Relat Fields 145(1):75–118, 2009)
combined the Malliavin calculus and Stein’s method of normal approximation to
associate a rate of convergence to the celebrated fourth moment theorem of Nualart
and Peccati (Ann Probab 33(1):177–193, 2005). Their analysis, known as the
Malliavin-Stein method nowadays, has found many applications towards stochastic
geometry, statistical physics and zeros of random polynomials, to name a few. In
this article, we further explore the relation between these two fields of mathematics.
In particular, we construct exchangeable pairs of Brownian motions and we discover
a natural link between Malliavin operators and these exchangeable pairs. By
combining our findings with E. Meckes’ infinitesimal version of exchangeable pairs,
we can give another proof of the quantitative fourth moment theorem. Finally, we
extend our result to the multidimensional case.

Keywords Stein’s method · Exchangeable pairs · Brownian motion ·
Malliavin calculus

14.1 Introduction

At the beginning of the 1970s, Charles Stein, one of the most famous statisticians
of the time, introduced in [24] a new revolutionary method for establishing
probabilistic approximations (now known as Stein’s method), which is based on
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the breakthrough application of characterizing differential operators. The impact
of Stein’s method and its ramifications during the last 40 years is immense (see
for instance the monograph [3]), and touches fields as diverse as combinatorics,
statistics, concentration and functional inequalities, as well as mathematical physics
and random matrix theory.

Introduced by Malliavin [7], Malliavin calculus can be roughly described as an
infinite-dimensional differential calculus whose operators act on sets of random
objects associated with Gaussian or more general noises. In 2009, Nourdin and
Peccati [14] combined the Malliavin calculus and Stein’s method for the first
time, thus virtually creating a new domain of research, which is now commonly
known as the Malliavin-Stein method. The success of their method relies crucially
on the existence of integration-by-parts formulae on both sides: on one side, the
Stein’s lemma is built on the Gaussian integration-by-parts formula and it is one of
the cornerstones of the Stein’s method; on the other side, the integration-by-parts
formula on Gaussian space is one of the main tools in Malliavin calculus. Interested
readers can refer to the constantly updated website [13] and the monograph [15] for
a detailed overview of this active field of research.

A prominent example of applying Malliavin-Stein method is the obtention (see
also (14.1) below) of a Berry-Esseen’s type rate of convergence associated to the
celebrated fourth moment theorem [19] of Nualart and Peccati, according to which
a standardized sequence of multiple Wiener-Itô integrals converges in law to a
standard Gaussian random variable if and only if its fourth moment converges to 3.

Theorem 14.1.1

(i) (Nualart, Peccati [19]) Let (Fn) be a sequence of multiple Wiener-Itô integrals
of order p, for some fixed p � 1. Assume that E[F 2

n ] → σ 2 > 0 as n → ∞.
Then, as n→∞, we have the following equivalence:

Fn
law→ N(0, σ 2) ⇐⇒ E[F 4

n ] → 3σ 4.

(ii) (Nourdin, Peccati [14, 15]) Let F be any multiple Wiener-Itô integral of order
p � 1, such that E[F 2] = σ 2 > 0. Then, with N ∼ N(0, σ 2) and dTV standing
for the total variation distance,

dT V (F,N) � 2

σ 2

√

p − 1

3p

√

E[F 4] − 3σ 4.

Of course, (ii) was obtained several years after (i), and (ii) implies ‘⇐’ in
(i). Nualart and Peccati’s fourth moment theorem has been the starting point of a
number of applications and generalizations by dozens of authors. These collective
efforts have allowed one to break several long-standing deadlocks in several
domains, ranging from stochastic geometry (see e.g. [6, 21, 23]) to statistical physics
(see e.g. [8–10]), and zeros of random polynomials (see e.g. [1, 2, 4]), to name a few.
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At the time of writing, more than two hundred papers have been written, which use
in one way or the other the Malliavin-Stein method (see again the webpage [13]).

Malliavin-Stein method has become a popular tool, especially within the Malli-
avin calculus community. Nevertheless, and despite its success, it is less used by
researchers who are not specialists of the Malliavin calculus. A possible explanation
is that it requires a certain investment before one is in a position to be able to use it,
and doing this investment may refrain people who are not originally trained in the
Gaussian analysis. This paper takes its root from this observation.

During our attempt to make the proof of Theorem 14.1.1(ii) more accessible
to readers having no background on Malliavin calculus, we discover the following
interesting fact for exchangeable pairs of multiple Wiener-Itô integrals. When p � 1
is an integer and f belongs to L2([0, 1]p), we write IB

p (f ) to indicate the multiple
Wiener-Itô integral of f with respect to Brownian motion B, see Sect. 14.2 for the
precise meaning.

Proposition 14.1.2 Let (B,Bt )t�0 be a family of exchangeable pairs of Brownian
motions (that is, B is a Brownian motion on [0, 1] and, for each t , one has

(B,Bt )
law= (Bt , B)). Assume moreover that

(a) for any integer p � 1 and any f ∈ L2([0, 1]p),

lim
t↓0

1

t
E
[

IBt

p (f )− IB
p (f )

∣

∣σ {B}
]

= −p IB
p (f ) in L2(�).

Then, for any integer p � 1 and any f ∈ L2([0, 1]p),

(b) lim
t↓0

1

t
E
[

(

IBt

p (f )− IB
p (f )

)2|σ {B}
]

= 2p2
∫ 1

0
IB
p−1(f (x, ·))2dx in L2(�);

(c) lim
t↓0

1

t
E
[

(

IBt

p (f )− IB
p (f )

)4
]

= 0.

Why is this proposition interesting? Because, as it turns out, it combines perfectly
well with the following result, which represents the main ingredient from Stein’s
method we will rely on and which corresponds to a slight modification of a theorem
originally due to Elizabeth Meckes (see [11, Theorem 2.1]).

Theorem 14.1.3 (Meckes [11]) Let F and a family of random variables (Ft )t�0

be defined on a common probability space (�,F , P ) such that Ft
law= F for every

t � 0. Assume that F ∈ L3(�,G, P ) for some σ -algebra G ⊂ F and that in
L1(�),

(a) lim
t↓0

1

t
E[Ft − F |G] = −λF for some λ > 0,

(b) lim
t↓0

1

t
E[(Ft − F)2|G] = (2λ+ S)Var(F ) for some random variable S,

(c) lim
t↓0

1

t
(Ft − F)3 = 0.
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Then, with N ∼ N(0,Var(F )),

dT V (F,N) � E|S|
λ

.

To see how to combine Proposition 14.1.2 with Theorem 14.1.3 (see also
point(ii) in Remark 14.5.1), consider indeed a multiple Wiener-Itô integral of the
form F = IB

p (f ), with σ 2 = E[F 2] > 0. Assume moreover that we have at
our disposal a family {(B,Bt )}t�0 of exchangeable pairs of Brownian motions,
satisfying the assumption (a) in Proposition 14.1.2. Then, putting Proposition 14.1.2
and Theorem 14.1.3 together immediately yields that

dTV (F,N) � 2

σ 2 E

[∣

∣

∣

∣

p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

∣

∣

∣

∣

]

. (14.1)

Finally, to obtain the inequality stated Theorem 14.1.1(ii) from (14.1), it remains to
‘play’ cleverly with the (elementary) product formula (14.7), see Proposition 14.7.1
for the details.

To conclude our elementary proof of Theorem 14.1.1(ii), we are thus left to
construct the family {(B,Bt )}t>0. Actually, we will offer two constructions with
different motivations: the first one is inspired by Mehler’s formula from Gaussian
analysis, whereas the second one is more in the spirit of the so-called Gibbs
sampling procedure within Stein’s method (see e.g. [5, A.2]).

For the first construction, we consider two independent Brownian motions on
[0, 1] defined on the same probability space (�,F , P ), namely B and ̂B . We
interpolate between them by considering, for any t � 0,

Bt = e−tB +
√

1− e−2t
̂B.

It is then easy and straightforward to check that, for any t � 0, this new Brownian
motion Bt , together with B, forms an exchangeable pair (see Lemma 14.3.1). More-
over, we will compute below (see (14.10)) that E

[

IBt

p (f )
∣

∣σ {B}] = e−pt IB
p (f )

for any p � 1 and any f ∈ L2([0, 1]p), from which (a) in Proposition 14.1.2
immediately follows.

For the second construction, we consider two independent Gaussian white noise
W and W ′ on [0, 1] with Lebesgue intensity measure. For each n ∈ N, we introduce
a uniform partition {&1, . . . ,&n} and a uniformly distributed index In ∼ U{1,...,n},
independent of W and W ′. For every Borel set A ⊂ [0, 1], we define Wn(A) =
W ′(A ∩ &In) + W(A \ &In). This will give us a new Gaussian white noise Wn,
which will form an exchangeable pair with W . This construction is a particular
Gibbs sampling procedure. The analogue of (a) in Proposition 14.1.2 is satisfied,
namely, if f ∈ L2([0, 1]p), F = IW

p (f ) is the pth multiple integral with respect to

W and F (n) = IWn

p (f ), we have

nE
[

F (n) − F
∣

∣σ {W }]→ −pF in L2(�) as n→∞.
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To apply Theorem 14.1.3 in this setting, we only need to replace 1
t

by n and replace
Ft by F (n). To get the exchangeable pairs (B,Bn) of Brownian motions in this
setting, it suffices to consider B(t) = W([0, t]) and Bn(t) = Wn([0, t]), t ∈ [0, 1].
See Sect. 14.4 for more precise statements.

Finally, we discuss the extension of our exchangeable pair approach on Wiener
chaos to the multidimensional case. Here again, it works perfectly well, and it
allows us to recover the (known) rate of convergence associated with the remarkable
Peccati-Tudor theorem [20]. This latter represents a multidimensional counterpart
of the fourth moment theorem Theorem 14.1.1(i), exhibiting conditions involving
only the second and fourth moments that ensure a central limit theorem for random
vectors with chaotic components.

Theorem 14.1.4 (Peccati, Tudor [20]) Fix d � 2 and p1, . . . , pd � 1. For each
k ∈ {1, . . . , d}, let (F k

n )n�1 be a sequence of multiple Wiener-Itô integrals of order
pk . Assume that E[Fk

n F
l
n] → σkl as n → ∞ for each pair (k, l) ∈ {1, . . . , d}2,

with � = (σkl)1�k,l�d non-negative definite. Then, as n →∞,

Fn = (F 1
n , . . . , F

d
n )

law→ N ∼ N(0, �) ⇐⇒ E[(Fk
n )

4] → 3σ 2
kk for all k ∈ {1, . . . , d}.

(14.2)

In [16], it is shown that the right-hand side of (14.2) is also equivalent to

E[‖Fn‖4] → E[‖N‖4] as n→∞, (14.3)

where ‖ · ‖ stands for the usual Euclidean �2-norm of R
d . Combining the main

findings of [17] and [16] yields the following quantitative version associated
to Theorem 14.1.4, which we are able to recover by means of our elementary
exchangeable approach.

Theorem 14.1.5 (Nourdin, Peccati, Réveillac, Rosiński [16, 17]) Let F =
(F 1, . . . , F d) be a vector composed of multiple Wiener-Itô integrals Fk , 1 � k � d .
Assume that the covariance matrix � of F is invertible. Then, with N ∼ N(0,�),

dW(F,N) � ‖�‖
1
2
op‖�−1‖op

√

E[‖F‖4] − E[‖N‖4], (14.4)

where dW denotes the Wasserstein distance and ‖·‖op the operator norm of a matrix.

The currently available proof of (14.4) relies on two main ingredients: (1) simple
manipulations involving the product formula (14.7) and implying that

d
∑

i,j=1

Var
(

pj

∫ 1

0
Ipi−1(fi(x, ·))Ipj−1(fj (x, ·))dx

)

� E[‖F‖4] − E[‖N‖4],
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(see [16, Theorem 4.3] for the details) and (2) the following inequality shown in
[17, Corollary 3.6] by means of the Malliavin operators D, δ and L:

dW (F,N) � ‖�‖
1
2
op‖�−1‖op

√

√

√

√

√

d
∑

i,j=1

Var
(

pj

∫ 1

0
Ipi−1(fi (x, ·))Ipj−1(fj (x, ·))dx

)

.

(14.5)

Here, in the spirit of what we have done in dimension one, we also apply our
elementary exchangeable pairs approach to prove (14.5), with slightly different
constants.

The rest of the paper is organized as follows. Section 14.2 contains preliminary
knowledge on multiple Wiener-Itô integrals. In Sect. 14.3 (resp. 14.4), we present
our first (resp. second) construction of exchangeable pairs of Brownian motions,
and we give the main associated properties. Section 14.5 is devoted to the proof of
Proposition 14.1.2, whereas in Sect. 14.6 we offer a simple proof of Meckes’ Theo-
rem 14.1.3. Our new, elementary proof of Theorem 14.1.1(ii) is given in Sect. 14.7.
In Sect. 14.8, we further investigate the connections between our exchangeable pairs
and the Malliavin operators. Finally, we discuss the extension of our approach to the
multidimensional case in Sect. 14.9.

14.2 Multiple Wiener-Itô Integrals: Definition and
Elementary Properties

In this subsection, we recall the definition of multiple Wiener-Itô integrals, and
then we give a few soft properties that will be needed for our new proof of
Theorem 14.1.1(ii). We refer to the classical monograph [18] for the details and
missing proofs.

Let f : [0, 1]p → R be a square-integrable function, with p � 1 a given integer.
The pth multiple Wiener-Itô integral of f with respect to the Brownian motion
B = (B(x)

)

x∈[0,1] is formally written as

∫

[0,1]p
f (x1, . . . , xp)dB(x1) . . . dB(xp). (14.6)

To give a precise meaning to (14.6), Itô’s crucial idea from the fifties was to
first define (14.6) for elementary functions that vanish on diagonals, and then to
approximate any f in L2([0, 1]p) by such elementary functions.

Consider the diagonal set of [0, 1]p, that is, D = {(t1, . . . , tp) ∈ [0, 1]p : ∃i �=
j, ti = tj }. Let Ep be the vector space formed by the set of elementary functions on
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[0, 1]p that vanish over D, that is, the set of those functions f of the form

f (x1, . . . , xp) =
k
∑

i1,...,ip=1

βi1...ip1[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

where k � 1 and 0 = τ0 < τ1 < . . . < τk, and the coefficients βi1...ip are zero if any
two of the indices i1, . . . , ip are equal. For f ∈ Ep, we define (without ambiguity
with respect to the choice of the representation of f )

IB
p (f ) =

k
∑

i1,...,ip=1

βi1...ip (B(τi1)− B(τi1−1)) . . . (B(τip )− B(τip−1)).

We also define the symmetrization ˜f of f by

˜f (x1, . . . , xp) = 1

p!
∑

σ∈Sp

f (xσ(1), . . . , xσ(p)),

where Sp stands for the set of all permutations of {1, . . . , p}. The following
elementary properties are immediate and easy to prove.

1. If f ∈ Ep, then IB
p (f ) = IB

p (˜f ).

2. If f ∈ Ep and g ∈ Eq , then E[IB
p (f )] = 0 and

E[IB
p (f )IB

q (g)] =
{

0 if p �= q

p!〈˜f , g̃〉L2([0,1]p) if p = q
.

3. The space Ep is dense in L2([0, 1]p). In other words, to each f ∈ L2([0, 1]p)
one can associate a sequence (fn)n�1 ⊂ Ep such that ‖f − fn‖L2([0,1]p) → 0 as
n →∞.

4. Since

E
[

(IB
p (fn)− IB

p (fm))2] = p!‖˜fn −˜fm‖2
L2([0,1]p)

≤ p!‖fn − fm‖2
L2([0,1]p) → 0

as n,m → ∞ for f and (fn)n�1 as in the previous point 3, we deduce that the
sequence (Ip(fn))n�1 is Cauchy in L2(�) and, as such, it admits a limit denoted
by IB

p (f ). It is easy to check that IB
p (f ) only depends on f , not on the particular

choice of the approximating sequence (fn)n�1, and that points 1 to 3 continue to
hold for general f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q).

We will also crucially rely on the following product formula, whose proof is
elementary and can be made by induction. See, e.g., [18, Proposition 1.1.3].
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5. For any p, q � 1, and if f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q) are symmetric,
then

IB
p (f )IB

q (g) =
p∧q
∑

r=0

r!
(

p

r

)(

q

r

)

IB
p+q−2r (f ⊗r g), (14.7)

where f ⊗r g stands for the rth-contraction of f and g, defined as an element of
L2([0, 1]p+q−2r) by

(f ⊗r g)(x1, . . . , xp+q−2r )

=
∫

[0,1]r
f (x1, . . . , xp−r , u1, . . . , ur )g(xp−r+1, . . . , xp+q−2r , u1, . . . , ur )du1 . . . dur .

Product formula (14.7) has a nice consequence, the inequality (14.8) below. It is a
very particular case of a more general phenomenon satisfied by multiple Wiener-Itô
integrals, the hypercontractivity property.

6. For any p � 1, there exists a constant c4,p > 0 such that, for any (symmetric)
f ∈ L2([0, 1]p),

E
[

IB
p (f )4] � c4,p E

[

IB
p (f )2]2 . (14.8)

Indeed, thanks to (14.7) one can write IB
p (f )2 =

p
∑

r=0

r!
(

p

r

)2

IB
2p−2r (f ⊗r f ) so

that

E[IB
p (f )4] =

p
∑

r=0

r!2
(

p

r

)4

(2p − 2r)!‖f˜⊗rf ‖2
L2([0,1]2p−2r )

.

The conclusion (14.8) follows by observing that

p!2‖f˜⊗rf ‖2
L2([0,1]2p−2r )

� p!2‖f ⊗r f ‖2
L2([0,1]2p−2r )

� p!2‖f ‖4
L2([0,1]p) = E[IB

p (f )2]2.

Furthermore, for each n � 2, using (14.7) and induction, one can show that, with
c2n,p a constant depending only on p but not on f ,

E
[

IB
p (f )2n] � c2n,p E

[

IB
p (f )2]2n−1

.

So for any r > 2, there exists an absolute constant cr,p depending only on p, r

(but not on f ) such that

E
[|IB

p (f )|r] � cr,p E
[

IB
p (f )2]r/2

. (14.9)
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14.3 Exchangeable Pair of Brownian Motions: A First
Construction

As anticipated in the introduction, for this construction we consider two independent
Brownian motions on [0, 1] defined on the same probability space (�,F , P ),
namely B and ̂B , and we interpolate between them by considering, for any t � 0,
Bt = e−tB +√1− e−2t

̂B.

Lemma 14.3.1 For each t � 0, the pair (B,Bt ) is exchangeable, that is,

(B,Bt )
law= (Bt , B). In particular, Bt is a Brownian motion.

Proof Clearly, the bi-dimensional process (B,Bt ) is Gaussian and centered. More-
over, for any x, y ∈ [0, 1],
E[Bt(x)Bt (y)] = e−2tE[B(x)B(y)] + (1− e−2t )E[̂B(x)̂B(y)] = E[B(x)B(y)]
E[B(x)Bt (y)] = e−tE[B(x)B(y)] = E[Bt(x)B(y)].

The desired conclusion follows. ��
We can now state that, as written in the introduction, our exchangeable pair

indeed satisfies the crucial property (a) of Proposition 14.1.2.

Theorem 14.3.2 Let p � 1 be an integer, and consider a kernel f ∈ L2([0, 1]p).
Set F = IB

p (f ) and Ft = IBt

p (f ), t � 0. Then,

E
[

Ft

∣

∣σ {B}] = e−pt F. (14.10)

In particular, convergence (a) in Proposition 14.1.2 takes place:

lim
t↓0

1

t
E
[

IBt

p (f )− IB
p (f )

∣

∣σ {B}
]

= −p IB
p (f ) in L2(�). (14.11)

Proof Consider first the case where f ∈ Ep, that is, f has the form

f (x1, . . . , xp) =
k
∑

i1,...,ip=1

βi1...ip1[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

with k � 1 and 0 = τ0 < τ1 < . . . < τk , and the coefficients βi1...ip are zero if any
two of the indices i1, . . . , ip are equal. We then have

Ft =
k
∑

i1,...,ip=1

βi1...ip (B
t (τi1 )− Bt(τi1−1)) . . . (B

t(τip )− Bt(τip−1))

=
k
∑

i1,...,ip=1

βi1...ip

[

e−t (B(τi1 )− B(τi1−1))+
√

1− e−2t (̂B(τi1 )− ̂B(τi1−1))
]

× . . .× [e−t (B(τi1 )− B(τi1−1)) +
√

1− e−2t (̂B(τip )− ̂B(τip−1))
]

.



286 I. Nourdin and G. Zheng

Expanding and integrating with respect to ̂B yields (14.10) for elementary f .
Thanks to point 4 in Sect. 14.2, we can extend it to any f ∈ L2([0, 1]p). Indeed,
given a general kernel f ∈ L2([0, 1]p), there exists a sequence {gm,m � 1} of
simple functions such that ‖gm − f ‖L2([0,1]p) → 0, as m → +∞; and this implies

E
{[IBt

p (f ) − IBt

p (gm)]2} = p!‖gm − f ‖2
L2([0,1]p) → 0, as m → +∞. Since the

conditional expectation E
[ · |σ {B}] is a bounded linear operator in L2(�), we have

E
[

IBt

p (f )|σ {B}] = L2-limm→+∞E
[

IBt

p (gm)|σ {B}] = L2-limm→+∞e−pt IB
p (gm) = IB

p (f ) .

This concludes the proof of (14.10). We then deduce that

1

t
E
[

Ft − F
∣

∣σ {B}] = e−pt − 1

t
F,

from which (14.11) now follows immediately, as F ∈ L2(�) and
e−pt − 1

t
→ −p

when t ↓ 0. ��

14.4 Exchangeable Pair of Brownian Motions: A Second
Construction

In this section, we present yet another construction of exchangeable pairs via
Gaussian white noise. We believe it is of independent interest, as such a construction
can be similarly carried out for other additive noises. This part may be skipped in a
first reading, as it is not used in other sections. And we assume that the readers are
familiar with the multiple Wiener-Itô integrals with respect to the Gaussian white
noise, and refer to [18, pp. 8–13] for all missing details.

Let W be a Gaussian white noise on [0, 1] with Lebesgue intensity measure ν,
that is, W is a centred Gaussian process indexed by Borel subsets of [0, 1] such
that for any Borel sets A,B ⊂ [0, 1], W(A) ∼ N

(

0, ν(A)
)

and E
[

W(A)W(B)
] =

ν(A ∩ B). We denote by G := σ {W } the σ -algebra generated by
{

W(A): A Borel
subset of [0, 1]}. Now let W ′ be an independent copy of W (denote by G′ = σ {W ′}
the σ -algebra generated by W ′) and In be a uniform random variable over {1, . . . , n}
for each n ∈ N such that In, W,W ′ are independent. For each fixed n ∈ N, we
consider the partition [0, 1] = ⋃n

j=1 &j with &1 = [0, 1
n
], &2 = ( 1

n
, 2
n
], . . . ,

&n = (1− 1
n
, 1].

Definition 14.4.1 Set Wn(A) := W ′(A ∩ &In

) + W
(

A \ &In

)

for any Borel set
A ⊂ [0, 1].
Remark 14.4.2 One can first treat W as the superposition of

{

W |&j , j = 1, . . . , n
}

,
where W |&j denotes the Gaussian white noise on &j . Then according to In = j ,
we (only) replace W |&j by an independent copy W ′|&j so that we get Wn. This
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is nothing else but a particular Gibbs sampling procedure (see [5, A.2]), hence
heuristically speaking, the new process Wn shall form an exchangeable pair with W .

Lemma 14.4.3 W and Wn form an exchangeable pair with W , that is, (W,Wn)
law=

(Wn,W). In particular, Wn is a Gaussian white noise on [0, 1] with Lebesgue
intensity measure.

Proof Let us first consider m mutually disjoint Borel sets A1, . . . , Am ⊂ [0, 1].
Given D1,D2 Borel subsets of Rm, we have

P
(

(

W(A1), . . . ,W(Am)
) ∈ D1 ,

(

Wn(A1), . . . ,W
n(Am)

) ∈ D2

)

=
n
∑

v=1

P
(

(

W(A1), . . . ,W(Am)
) ∈ D1 ,

(

Wn(A1), . . . ,W
n(Am)

) ∈ D2 , In = v
)

= 1

n

n
∑

v=1

P
(

g(Xv, Yv) ∈ D1, g(X
′
v, Yv) ∈ D2

)

,

where for each v ∈ {1, . . . , n},
• Xv :=

(

W(A1 ∩&v), . . . ,W(Am ∩&v)
)

, X′
v :=

(

W ′(A1 ∩&v), . . . ,W
′(Am ∩

&v)
)

,
• Yv := (

W(A1 \ &v), . . . ,W(Am \ &v)
)

, and g is a function from R
2m to

R
m given by (x1, . . . , xm, y1, . . . , ym) �→ g

(

x1, . . . , xm, y1, . . . , ym
) = (

x1 +
y1, . . . , xm + ym

)

It is clear that for each v ∈ {1, . . . , n}, Xv,X
′
v and Yv are independent, therefore

g(Xv, Yv) and g(X′
v, Yv) form an exchangeable pair. It follows from the above

equalities that

P
(

(

W(A1), . . . ,W(Am)
) ∈ D1 ,

(

Wn(A1), . . . ,W
n(Am)

) ∈ D2

)

= 1

n

n
∑

v=1

P
(

g(X′
v, Yv) ∈ D1, g(Xv, Yv) ∈ D2

)

= P
(

(

Wn(A1), . . . ,W
n(Am)

) ∈ D1 ,
(

W(A1), . . . ,W(Am)
) ∈ D2

)

.

This proves the exchangeability of
(

W(A1), . . . ,W(Am)
)

and
(

Wn(A1), . . . ,

Wn(Am)
)

.
Now let B1, . . . , Bm be Borel subsets of [0, 1], then one can find mutually

disjoint Borel sets A1, . . . , Ap (for some p ∈ N) such that each Bj is
a union of some of Ai’s. Therefore we can find some measurable φ :
R

p → R
m such that

(

W(B1), . . . ,W(Bm)
) = φ

(

W(A1), . . . ,W(Ap)
)

.
Accordingly,

(

Wn(B1), . . . ,W
n(Bm)

) = φ
(

Wn(A1), . . . ,W
n(Ap)

)

, hence
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(

W(B1), . . . ,W(Bm)
)

and
(

Wn(B1), . . . ,W
n(Bm)

)

are exchangeable. Now our
proof is complete. ��
Remark 14.4.4 For each t ∈ [0, 1], we set B(t) := W([0, t]) and Bn(t) :=
Wn([0, t]). Modulo continuous modifications, one can see from Lemma 14.4.3 that
B, Bn are two Brownian motions that form an exchangeable pair. An important
difference between this construction and the previous one is that (B,Bt ) is bi-
dimensional Gaussian process whereas B, Bn are not jointly Gaussian.

Before we state the analogous result to Theorem 14.3.2, we briefly recall the
construction of multiple Wiener-Itô integrals in white noise setting.

1. For each p ∈ N, we denote by Ep the set of simple functions of the form

f
(

t1, . . . , tp
) =

m
∑

i1,...,ip=1

βi1...ip1Ai1×...×Aip

(

t1, . . . , tp
)

, (14.12)

where m ∈ N, A1, . . . , Am are pair-wise disjoint Borel subsets of [0, 1], and
the coefficients βi1...ip are zero if any two of the indices i1, . . . ip are equal. It is
known that Ep is dense in L2([0, 1]p).

2. For f given as in (14.12), the pth multiple integral with respect to W is defined as

IW
p (f ) :=

m
∑

i1,...,ip=1

βi1...ipW(Ai1) . . .W(Aip ) ,

and one can extend IW
p to L2([0, 1]p) via usual approximation argument. Note

IW
p (f ) is nothing else but IB

p (f ) with the Brownian motion B constructed in
Remark 14.4.4.

Theorem 14.4.5 If F = IW
p (f ) for some symmetric f ∈ L2([0, 1]p) and we set

F (n) := IWn

p (f ), then in L2(�,G, P ) and as n→+∞, nE
[

F (n)−F
∣

∣G
]→−pF .

Proof First we consider the case where f ∈ Ep, we assume moreover that
F = ∏p

j=1 W(Aj) with A1, . . . , Ap mutually disjoint Borel subsets of [0, 1], and

accordingly we define F (n) = ∏p
j=1 Wn(Aj). Then, (we write [p] = {1, . . . , p},

Av = A ∩&v for any A ⊂ [0, 1] and v ∈ {1, . . . , n})

nE
[

F(n)
∣

∣G
] = nE

⎧

⎨

⎩

n
∑

v=1

1{In=v}
p
∏

j=1

[

W ′(Av
j )+W(Aj \&v)

] ∣

∣G

⎫

⎬

⎭

=
n
∑

v=1

E

⎧

⎨

⎩

p
∏

j=1

[

W ′(Av
j )+W(Aj \&v)

] ∣

∣G

⎫

⎬

⎭

=
n
∑

v=1

p
∏

j=1

W
(

Aj \&v

)
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=
n
∑

v=1

{

⎛

⎝

p
∏

j=1

W(Aj )

⎞

⎠−
p
∑

k=1

W(Av
k)

⎛

⎝

∏

j∈[p]\{k}
W(Aj )

⎞

⎠

+
p
∑

�=2

(−1)�
∑

k1,...,k�∈[p]
all distinct

⎛

⎝

∏

j∈[p]\{k1,...,k�}
W(Aj )

⎞

⎠W
(

Av
k1

) · · ·W (Av
k�

)

}

= nF − p F + Rn(F) ,

where Rn(F) =
p
∑

�=2

(−1)�
∑

k1,...,k�∈[p]
all distinct

⎛

⎝

∏

j∈[p]\{k1,...,k�}
W(Aj )

⎞

⎠

n
∑

v=1

W
(

Av
k1

) · · ·W (Av
k�

)

.

Then Rn(F ) converges in L2(�,G, P ) to 0, due to the fact that
∑n

v=1
∏q

i=1 W(Av
ki
)

converges in L2(�) to 0, as n → +∞, if q � 2 and all ki’s are distinct numbers.
This proves our theorem when f ∈ Ep.

By the above computation, we can see that if F = IW
p (f ) with f given in

(14.12), then

Rn(F ) =
m
∑

i1,...,ip=1

βi1i2...ip

p
∑

�=2

(−1)�
p
∑

k1,...,k�=1
all distinct

⎛

⎝

∏

j∈[p]\{k1 ,...,k�}
W(Aij )

⎞

⎠

n
∑

v=1

W
(

Av
ik1

)···W(Av
ik�

)

.

Therefore, using Wiener-Itô isometry, we can first write
∥

∥Rn(F )
∥

∥

2
L2(�)

as

p!
m
∑

i1,...,ip=1

(

βi1i2 ...ip

)2
n
∑

v=1

∥

∥

∥

∥

p
∑

�=2

(−1)�
∑

k1,...,k�∈[p]
all distinct

⎛

⎝

∏

j∈[p]\{k1,...,k�}
W(Aij )

⎞

⎠W
(

Av
ik1

) · · ·W (Av
ik�

)

∥

∥

∥

∥

2

L2(�)

,

and then using the elementary inequality (a1 + . . .+ am)β � mβ−1∑m
i=1 |ai |β for

ai ∈ R, β > 1, m ∈ N, we have

∥

∥

∥

∥

p
∑

�=2

(−1)�
∑

k1,...,k�∈[p]
all distinct

⎛

⎝

∏

j∈[p]\{k1,...,k�}
W(Aij )

⎞

⎠W
(

Av
ik1

) · · ·W(Av
ik�

)

∥

∥

∥

∥

2

L2(�)

� $1

p
∑

�=2

∑

k1,...,k�∈[p]
all distinct

∥

∥

∥

∥

⎛

⎝

∏

j∈[p]\{k1,...,k�}
W(Aij )

⎞

⎠W
(

Av
ik1

) · · ·W(Av
ik�

)

∥

∥

∥

∥

2

L2(�)
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= $1

p
∑

�=2

∑

k1,...,k�∈[p]
all distinct

⎛

⎝

∏

j∈[p]\{k1,...,k�}
ν(Aij )

⎞

⎠ ν
(

Av
ik1

) · · · ν(Av
ik�

)

� $2

∑

k1,k2∈[p]
k1 �=k2

⎛

⎝

∏

j∈[p]\{k1,k2}
ν(Aij )

⎞

⎠ ν
(

Av
ik1

)

ν
(

Av
ik2

)

where $1,$2 (and $3 in the following) are some absolute constants that do
not depend on n or F . Note now for k1 �= k2,

∑n
v=1 ν

(

Av
ik1

) · ν(Av
ik2

)

�
ν
(

Aik1

)∑n
v=1 ν

(

Av
ik2

) = ν
(

Aik1

) · ν(Aik2

)

, thus,

∥

∥Rn(F )
∥

∥

2
L2(�)

� p!
m
∑

i1,...,ip=1

(

βi1i2...ip

)2
$2

∑

k1,k2∈[p]
k1 �=k2

⎛

⎝

∏

j∈[p]\{k1,k2}
ν(Aij )

⎞

⎠ ν
(

Aik1

)

ν
(

Aik2

)

� p!
m
∑

i1,...,ip=1

(

βi1i2...ip

)2
$3

∏

j∈[p]
ν(Aij ) = $3 · ‖F

∥

∥

2
L2(�)

.

Since
{

IW
p (f ) : f ∈ Ep

}

is dense in the pth Wiener chaos Hp, Rn :Hp → L2(�)

is a bounded linear operator with operator norm ‖Rn‖op �
√
$3 for each n ∈ N.

Note the linearity follows from its definition Rn(F ) := nE
[

F (n) − F
∣

∣G
] + pF ,

F ∈Hp.
Now we define

Cp :=
{

F ∈Hp : R∞(F ) := lim
n→+∞Rn(F ) is well defined in L2(�)

}

.

It is easy to see that Cp is a dense linear subspace of Hp and for each f ∈ Ep,
IW
p (f ) ∈ Cp and R∞(IW

p (f )) = 0. As

sup
n∈N

‖Rn‖op �
√

$3 < +∞ ,

R∞ has a unique extension to Hp and by density of
{

IW
p (f ) : f ∈ Ep

}

in Hp,

R∞(F ) = 0 for each F ∈ Hp. In other words, for any F ∈ Hp, nE
[

F (n) − F
∣

∣G
]

converges in L2(�) to −pF , as n→ +∞. ��
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14.5 Proof of Proposition 14.1.2

We now give the proof of Proposition 14.1.2, which has been stated in the
introduction. We restate it for the convenience of the reader.

Proposition 14.1.2 Let (B,Bt )t�0 be a family of exchangeable pairs of Brownian
motions (that is, B is a Brownian motion on [0, 1] and, for each t , one has

(B,Bt )
law= (Bt , B)). Assume moreover that

(a) for any integer p � 1 and any f ∈ L2([0, 1]p),

lim
t↓0

1

t
E
[

IBt

p (f )− IB
p (f )

∣

∣σ {B}
]

= −p IB
p (f ) in L2(�).

Then, for any integer p � 1 and any f ∈ L2([0, 1]p),

(b) lim
t↓0

1

t
E
[

(

IBt

p (f )− IB
p (f )

)2|σ {B}
]

= 2p2
∫ 1

0
IB
p−1(f (x, ·))2dx in L2(�);

(c) lim
t↓0

1

t
E
[

(

IBt

p (f )− IB
p (f )

)4
]

= 0.

Proof We first concentrate on the proof of (b). Fix p � 1 and f ∈ L2([0, 1]p), and
set F = IB

p (f ) and Ft = IBt

p (f ). First, we observe that

1

t
E
[

(Ft − F)2
∣

∣σ {B}] = 1

t
E
[

F 2
t − F 2

∣

∣σ {B}]− 2

t
F E

[

Ft − F
∣

∣σ {B}].

Also, as an immediate consequence of the product formula (14.7) and the definition
of f ⊗r f , we have

p2
∫ 1

0
IB
p−1(f (x, ·))2dx =

p
∑

r=1

rr!
(

p

r

)2

IB
2p−2r (f ⊗r f ).

Given (a) and the previous two identities, in order to prove (b) we are thus left to
check that

lim
t↓0

1

t
E
[

F 2
t − F 2

∣

∣σ {B}] = −2p F 2 + 2
p
∑

r=1

rr!
(

p

r

)2

IB
2p−2r (f ⊗r f ) in L2(�).

(14.13)

The product formula (14.7) used for multiple integrals with respect to Bt (resp. B)
yields

F 2
t =

p
∑

r=0

r!
(

p

r

)2

IBt

2p−2r (f ⊗r f )
(

resp. F 2 =
p
∑

r=0

r!
(

p

r

)2

IB
2p−2r (f ⊗r f )

)

.
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Hence it follows from (a) that

1

t
E
[

F 2
t − F 2

∣

∣σ {B}] =
p−1
∑

r=0

r!
(

p

r

)2 1

t
E[IBt

2p−2r (f ⊗r f )− IB2p−2r (f ⊗r f )|σ {B}]

−→
p−1
∑

r=0

r!
(

p

r

)2

(2r − 2p)IB2p−2r (f ⊗r f )

= −2p(F 2 − E[F 2])+ 2
p−1
∑

r=1

rr!
(

p

r

)2

IB2p−2r (f ⊗r f ),

which is exactly (14.13). The proof of (b) is complete.
Let us now turn to the proof of (c). Fix p � 1 and f ∈ L2([0, 1]p), and set

F = IB
p (f ) and Ft = IBt

p (f ), t � 0. We claim that the pair (F, Ft ) is exchangeable
for each t . Indeed, thanks to point 4 in Sect. 14.2, we first observe that it is enough
to check this claim when f belongs to Ep, that is, when f has the form

f (x1, . . . , xp) =
k
∑

i1,...,ip=1

βi1...ip1[τi1−1,τi1 )×...×[τip−1,τip )(x1, . . . , xp),

with k � 1 and 0 = τ0 < τ1 < . . . < τk , and the coefficients βi1...ip are zero if any
two of the indices i1, . . . , ip are equal. But, for such an f , one has

F = IB
p (f ) =

k
∑

i1,...,ip=1

βi1...ip (B(τi1 )− B(τi1−1)) . . . (B(τip )− B(τip−1))

Ft = IBt

p (f ) =
k
∑

i1,...,ip=1

βi1...ip (B
t (τi1)− Bt (τi1−1)) . . . (B

t (τip )− Bt(τip−1)),

and the exchangeability of (F, Ft ) follows immediately from those of (B,Bt ). Since
the pair (F, Ft ) is exchangeable, we can write

E
[

(Ft − F)4] = E
[

F 4
t + F 4 − 4F 3

t F − 4F 3Ft + 6F 2
t F

2]

= 2E[F 4] − 8E
[

F 3Ft

]+ 6E
[

F 2F 2
t

]

by exchangeability;

= 4E
[

F 3(Ft − F)
]+ 6E

[

F 2(Ft − F)2] after rearrangement;

= 4E
[

F 3E[(Ft − F)|σ {B}]]+ 6E
[

F 2E[(Ft − F)2|σ {B}]].
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Dividing by t and taking the limit t ↓ 0 into the previous identity, we deduce, thanks
to (a) and (b) as well, that

lim
t↓0

1

t
E
[

(

Ft − F
)4
]

= −4pE[F 4] + 12p2 E

[

F 2
∫ 1

0
IB
p−1(f (x, ·))2dx

]

.

(14.14)

In particular, it appears that the limit of 1
t
E
[

(Ft − F)4
]

is always the same,
irrespective of the choice of our exchangeable pair of Brownian motions (B,Bt )

satisfying (a). To compute it, we can then choose the pair (B,Bt ) we want, for
instance, the pair constructed in Sect. 14.3. This is why, starting from now and for
the rest of the proof, (B,Bt ) refers to the pair defined in Sect. 14.3 (which satisfies
(a), that is, (14.11)). What we gain by considering this particular pair is that it
satisfies a hypercontractivity-type inequality. More precisely, there exists cp > 0
(only depending on p) such that, for all t � 0,

E[(Ft − F)4] � cp E[(Ft − F)2]2. (14.15)

Indeed, going back to the definition of multiple Wiener-Itô integrals as given in
Sect. 14.2 (first for elementary functions and then by approximation for the general
case), we see that Ft − F is a multiple Wiener-Itô integral of order p with respect
to the two-sided Brownian motion B = (B(s))s∈[−1,1], defined as

B(s) = B(s)1[0,1](s)+ ̂B(−s)1[−1,0](s).

But product formula (14.7) is also true for a two-sided Brownian motion, so the
claim (14.15) follows from (14.8) applied to B . On the other hand, it follows from
(b) that 1

t
E
[

(Ft − F)2
]

converges to a finite number, as t ↓ 0. Hence, combining
this fact with (14.15) yields

1

t
E
[

(

Ft − F
)4
]

� cp t

(

1

t
E
[

(

Ft − F
)2
]

)2

→ 0 ,

as t ↓ 0. ��
Remark 14.5.1

(i) A byproduct of (14.14) in the previous proof is that

1

3

(

E[F 4] − 3σ 4) = E

[

F 2
(

p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

)]

. (14.16)

Note (14.16) was originally obtained by chain rule, see [15, equation (5.2.9)].
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(ii) As a consequence of (c) in Proposition 14.1.2, we have limt↓0
1
t
E
[|IBt

p (f ) −
IB
p (f )|3] = 0. Indeed,

1

t
E

[

|IBt

p (f )− IB
p (f )|3

]

�
(

1

t
E

[

(

IBt

p (f )− IB
p (f )

)2
]

) 1
2
(

1

t
E

[

(

IBt

p (f )− IB
p (f )

)4
]

) 1
2

→ 0 , as t ↓ 0.

(iii) For any r > 2, in view of (14.9) and (14.15), there exists an absolute constant
cr,p depending only on p, r (but not on f ) such that

E
[|IB

p (f )− IBt

p (f )|r] � cr,p E
[(

IB
p (f )− IBt

p (f )
)2]r/2

.

Moreover, if F ∈ L2(�, σ {B}, P ) admits a finite chaos expansion, say, (for
some p ∈ N) F = E[F ] + ∑p

q=1 IB
q (fq), and we set Ft = E[F ] +

∑p
q=1 I

Bt

q (fq), then there exists some absolute constant Cr,p that only depends
on p and r such that

E
[|F − Ft |r

]

� Cr,p E
[(

F − Ft

)2]r/2
.

14.6 Proof of E. Meckes’ Theorem 14.1.3

In this section, for sake of completeness and because our version slightly differs
from the original one given in [11, Theorem 2.1], we provide a proof of Theo-
rem 14.1.3, which we restate here for convenience.

Theorem 14.1.3 (Meckes [11]) Let F and a family of random variables (Ft )t�0

be defined on a common probability space (�,F , P ) such that Ft
law= F for every

t � 0. Assume that F ∈ L3(�,G, P ) for some σ -algebra G ⊂ F and that in
L1(�),

(a) lim
t↓0

1

t
E[Ft − F |G] = −λF for some λ > 0,

(b) lim
t↓0

1

t
E[(Ft − F)2|G] = (2λ+ S)Var(F ) for some random variable S,

(c) lim
t↓0

1

t
(Ft − F)3 = 0.

Then, with N ∼ N(0,Var(F )),

dT V (F,N) � E|S|
λ

.
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Proof Without loss of generality, we may and will assume that Var(F ) = 1. It is
known that

dT V (F,N) = 1

2
supE

[

ϕ(F )− ϕ(N)
]

, (14.17)

where the supremum runs over all smooth functions ϕ : R → R with compact
support and such that ‖ϕ‖∞ � 1. For such a ϕ, recall (see, e.g. [3, Lemma 2.4]) that

g(x) = ex
2/2
∫ x

−∞
(

ϕ(y)− E[ϕ(N)])e−y2/2 dy , x ∈ R,

satisfies

g′(x)− xg(x) = ϕ(x)− E[ϕ(N)] (14.18)

as well as ‖g‖∞ �
√

2π , ‖g′‖∞ � 4 and ‖g′′‖∞ � 2‖ϕ′‖∞ < +∞. In what
follows, we fix such a pair (ϕ, g) of functions. Let G be a differentiable function

such that G′ = g, then due to Ft
law= F , it follows from the Taylor formula in

mean-value form that

0 = E
[

G(Ft )−G(F)
] = E

[

g(F )(Ft − F)
]+ 1

2
E
[

g′(F )(Ft − F)2]+ E[R] ,

with remainder R bounded by 1
6‖g′′‖∞ |Ft − F |3.

By assumption (c) and as t ↓ 0,

∣

∣

∣

∣

1

t
E[R]

∣

∣

∣

∣

� 1

6
‖g′′‖∞ 1

t
E
[|Ft − F |3]→ 0.

Therefore as t ↓ 0, assumptions (a) and (b) imply that

λE
[

g′(F )− Fg(F)
]+ 1

2
E
[

g′(F )S
] = 0.

Plugging this into Stein’s equation (14.18) and then using (14.17), we deduce the
desired conclusion, namely,

dT V (F,N) � 1

2

‖g′‖∞
2λ

E|S| � E|S|
λ

. ��

Remark 14.6.1 Unlike the original Meckes’ theorem, we do not assume the

exchangeability condition (Ft , F )
law= (F, Ft ) in our Theorem 14.1.3. Our

consideration is motivated by Röllin [22].
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14.7 Quantitative Fourth Moment Theorem Revisited via
Exchangeable Pairs

We give an elementary proof to the quantitative fourth moment theorem, that is,
we explain how to prove the inequality of Theorem 14.1.1(ii) by means of our
exchangeable pairs approach. For sake of convenience, let us restate this inequality:
for any multiple Wiener-Itô integral F of order p � 1 such that E[F 2] = σ 2 > 0,
we have, with N ∼ N(0, σ 2),

dTV (F,N) � 2

σ 2

√

p − 1

3p

√

E[F 4] − 3σ 4. (14.19)

To prove (14.19), we consider, for instance, the exchangeable pairs of Brownian
motions {(B,Bt )}t>0 constructed in Sect. 14.3. We deduce, by combining Proposi-
tion 14.1.2 with Theorem 14.1.3 and Remark 14.5.1-(ii), that

dTV (F,N) � 2

σ 2
E

[∣

∣

∣

∣

p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

∣

∣

∣

∣

]

. (14.20)

To deduce (14.19) from (14.20), we are thus left to prove the following result.

Proposition 14.7.1 Let p � 1 and consider a symmetric function f ∈ L2([0, 1]p).
Set F = IB

p (f ) and σ 2 = E[F 2]. Then

E

[

(

p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

)2]

� p − 1

3p

(

E[F 4] − 3σ 4).

Proof Using the product formula (14.7), we can write

F 2 =
p
∑

r=0

r!
(

p

r

)2

IB
2p−2r (f ⊗r f ) = σ 2 +

p−1
∑

r=0

r!
(

p

r

)2

IB
2p−2r (f ⊗r f ),

as well as

p

∫ 1

0
IBp−1(f (x, ·))2dx = p

p−1
∑

r=0

r!
(

p − 1

r

)2

IB2p−2r−2

(∫ 1

0
f (x, ·)⊗r f (x, ·)dx

)

= p

p
∑

r=1

(r − 1)!
(

p − 1

r − 1

)2

IB2p−2r (f ⊗r f ) = σ 2 +
p−1
∑

r=1

r

p
r!
(

p

r

)2

IB2p−2r (f ⊗r f ) .
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Hence, by the isometry property (point 2 in Sect. 14.2),

E

[

(

p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

)2
]

=
p−1
∑

r=1

r2

p2
r!2
(

p

r

)4

(2p − 2r)!‖f˜⊗rf ‖2
L2([0,1]2p−2r )

.

On the other hand, one has from (14.16) and the isometry property again that

1

3

(

E[F 4] − 3σ 4) = E

[

F 2
(

p

∫ 1

0
IB
p−1(f (x, ·))2dx − σ 2

)]

= 1

3

(

E[F 4] − 3σ 4) =
p−1
∑

r=1

r

p
r!2
(

p

r

)4

(2p − 2r)!‖f˜⊗rf ‖2
L2([0,1]2p−2r )

.

The desired conclusion follows. ��

14.8 Connections with Malliavin Operators

Our main goal in this paper is to provide an elementary proof of Theorem 14.1.1(ii).
Nevertheless, in this section we further investigate the connections we have found
between our exchangeable pair approach and the operators of Malliavin calculus.
This part may be skipped in a first reading, as it is not used in other sections. It
is directed to readers who are already familiar with Malliavin calculus. We use
classical notation and so do not introduce them in order to save place. We refer
to [18] for any missing detail.

In this section, to stay on the safe side we only consider random variables F

belonging to

A :=
⋃

p∈N

⊕

r�p

Hr , (14.21)

where Hr is the rth chaos associated to the Brownian motion B. In other words,
we only consider random variables that are σ {B}-measurable and that admit a finite
chaotic expansion. Note that A is an algebra (in view of product formula) that is
dense in L2

(

�,σ {B}, P ).
As is well-known, any σ {B}-measurable random variable F can be written

F = ψF (B) for some measurable mapping ψF : RR+ → R determined P ◦ B−1

almost surely. For such an F , we can then define Ft = ψF (Bt ), with Bt defined
in Sect. 14.3. Another equivalent description of Ft is to define it as Ft = E[F ] +
∑p

r=1 I
Bt

r (fr ), if the family (fr )1�r�p is such that F = E[F ] +∑p

r=1 I
B
r (fr ).

Our main findings are summarized in the statement below.
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Proposition 14.8.1 Consider F,G ∈ A, and define Ft ,Gt for each t ∈ R+ as is
done above. Then, in L2(�),

(a) lim
t↓0

1

t
E
[

Ft − F
∣

∣σ {B}
]

= LF ,

(b) lim
t↓0

1

t
E
[

(

Ft −F
)

(Gt −G)|σ {B}
]

=L(FG)−FLG−GLF = 2 〈DF,DG〉.

Proof The proof of (a) is an immediate consequence of (14.11), the linearity of
conditional expectation, and the fact that LIB

r (fr ) = −r IB
r (fr ) by definition of

L. Let us now turn to the proof of (b). Using elementary algebra and then (a), we
deduce that, as t ↓ 0 and in L2(�),

1

t
E
[

(Ft − F)(Gt −G)
∣

∣σ {B}]

= 1

t
E
[

FtGt − FG
∣

∣σ {B}]− 1

t
F E

[

Gt −G
∣

∣σ {W }]− 1

t
GE

[

Ft − F
∣

∣σ {B}]

→ L(FG)− FLG−GLF .

Using L = −δD, D(FG) = FDG + GDF (Leibniz rule) and δ(FDG) =
Fδ(DG)−〈DF,DG〉 (see [18, Proposition 1.3.3]), it is easy to check that L(FG)−
FLG−GLF = 2〈DF,DG〉, which concludes the proof of Proposition 14.8.1. ��
Remark 14.8.2 The expression appearing in the right-hand side of (b) is nothing
else but 2 !(F,G), the (doubled) carré du champ operator.

To conclude this section, we show how our approach allows to recover the
diffusion property of the Ornstein-Uhlenbeck operator.

Proposition 14.8.3 Fix d ∈ N, let F = (F1, . . . , Fd ) ∈ Ad (with A given in
(14.21)), and � : Rd → R be a polynomial function. Then

L�(F) =
d
∑

j=1

∂j�(F)LFj +
d
∑

i,j=1

∂ij�(F )〈DFi,DFj 〉 . (14.22)

Proof We first define Ft = (F1,t , . . . , Fd,t ) as explained in the beginning of the
present section. Using classical multi-index notations, Taylor formula yields that

�(Ft )−�(F ) =
d
∑

j=1

∂j�(F )
(

Fj,t − Fj

)+ 1

2

d
∑

i,j=1

∂i,j�(F )
(

Fj,t − Fj

)(

Fi,t − Fi

)

+
∑

|β|=3

3

β1! . . . βd ! (Ft − F)β
∫ 1

0
(1− s)k

(

∂
β1
1 . . . ∂

βd

d �
)(

F + s(Ft − F)
)

ds .

(14.23)
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In view of the previous proposition, the only difficulty in establishing (14.22)
is about controlling the last term in (14.23) while passing t ↓ 0. Note first
(

∂
β1
1 . . . ∂

βd

d �
)(

F + s(Ft − F)
)

is polynomial in F and (Ft − F), so our problem
reduces to show

lim
t↓0

1

t
E
[|Fα(Ft − F)β |] = 0 , (14.24)

for α = (α1, . . . , αd ), β = (β1, . . . , βd) ∈
(

N ∪ {0})d with |β| � 3.
Indeed, (assume βj > 0 for each j )

1

t
E
[|Fα(Ft − F)β |] � 1

t
E
[|Fα |2]1/2

E
[|(Ft − F)β |2]1/2 by Cauchy-Schwarz inequality;

� E
[|Fα|2]1/2 1

t

⎛

⎝

d
∏

j=1

E
[

(Fj,t − Fj )
2|β|]

βj
|β|

⎞

⎠

1/2

by Hölder inequality;

� C E
[|Fα |2]1/2

t
|β|
2 −1

⎛

⎝

d
∏

j=1

1

tβj
E
[

(Fj,t − Fj )
2
]βj

⎞

⎠

1/2

,

where the last inequality follows from point-(iii) in Remark 14.5.1 with C > 0
independent of t . Since Fα ∈ A and |β| � 3, (14.24) follows immediately from the
above inequalities. ��

14.9 Peccati-Tudor Theorem Revisited Too

In this section, we combine a multivariate version of Meckes’ abstract exchangeable
pairs [12] with our results from Sect. 14.3 to prove (14.5), thus leading to a fully
elementary proof of Theorem 14.1.5 as well.

First, we recall the following multivariate version of Meckes’ theorem (see [12,
Theorem 4]). Unlike in the one-dimensional case, it seems inevitable to impose the
exchangeability condition in the following proposition, as we read from its proof in
[12].

Proposition 14.9.1 For each t > 0, let (F, Ft ) be an exchangeable pair of centered
d-dimensional random vectors defined on a common probability space. Let G be a
σ -algebra that contains σ {F }. Assume that � ∈ R

d×d is an invertible deterministic
matrix and � is a symmetric, non-negative definite deterministic matrix such that

(a) lim
t↓0

1

t
E
[

Ft − F |G] = −�F in L1(�),

(b) lim
t↓0

1

t
E
[

(Ft − F)(Ft − F)T |G] = 2�� + S in L1(�, ‖ · ‖HS) for some matrix

S = S(F ), and with ‖ · ‖HS the Hilbert-Schmidt norm
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(c) lim
t↓0

d
∑

i=1

1

t
E
[|Fi,t − Fi |3

] = 0, where Fi,t (resp. Fi) stands for the ith coordi-

nate of Ft (resp. F ).

Then, with N ∼ Nd(0,�),

(1) for g ∈ C2(Rd),

∣

∣E[g(F )] − E[g(N)]∣∣ � ‖�−1‖op
√
d M2(g)

4
E

⎡

⎢

⎣

√

√

√

√

√

d
∑

i,j=1

S2
ij

⎤

⎥

⎦
,

where M2(g) := supx∈Rd

∥

∥D2g(x)
∥

∥

op with ‖ · ‖op the operator norm.
(2) if, in addition, � is positive definite, then

dW(F,N) � ‖�−1‖op‖�−1/2‖op√
2π

E

⎡

⎢

⎣

√

√

√

√

√

d
∑

i,j=1

S2
ij

⎤

⎥

⎦
.

Remark 14.9.2 Constant in (2) is different from Meckes’ paper [12]. We took this
better constant from Christian Döbler’s dissertation [5], see page 114 therein.

By combining the previous proposition with our exchangeable pairs, we get the
following result, whose point 2 corresponds to (14.5).

Theorem 14.9.3 Fix d � 2 and 1 � p1 � . . . � pd . Consider a vector F :=
(

IB
p1
(f1), . . . , I

B
pd

(fd)
)

with fi ∈ L2
([0, 1]pi

)

symmetric for each i ∈ {1, . . . , d}.
Let � = (σij ) be the covariance matrix of F , and N ∼ Nd(0,�). Then

(1) for g ∈ C2(Rd),

∣

∣

∣E[g(F )] −E[g(N)]
∣

∣

∣ �
√
d M2(g)

2p1

√

√

√

√

√

d
∑

i,j=1

Var
(

pipj

∫ 1

0
Ipi−1(fi (x, ·))Ipj−1(fj (x, ·))dx

)

,

where M2(g) := supx∈Rd

∥

∥D2g(x)
∥

∥

op.
(2) if in addition, � is positive definite, then

dW(F,N) � 2‖�−1/2‖op

q1
√

2π

√

√

√

√

√

d
∑

i,j=1

Var
(

pipj

∫ 1

0
Ipi−1(fi (x, ·))Ipj−1(fj (x, ·))dx

)

.
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Proof We consider Ft =
(

IBt

p1
(f1), . . . , I

Bt

pd
(fd)

)

, where Bt is the Brownian motion
constructed in Sect. 14.3. We deduce from (14.10) that

1

t
E
[

Ft − F |σ {B}] =
(

e−p1t − 1

t
IBt

p1
(f1), . . . ,

e−pdt − 1

t
IBt

pd
(fd)

)

implying in turn that, in L2(�) and as t ↓ 0,

1

t
E
[

Ft − F |σ {B}]→−�F,

with � = diag(p1, . . . , pd) (in particular, ‖�−1‖op = p−1
1 ). That is, assumption

(a) in Proposition 14.9.1 is satisfied (with G = σ {B}). That assumption (c) in
Proposition 14.9.1 is satisfied as well follows from Proposition 14.1.2(c). Let us
finally check that assumption (b) in Proposition 14.9.1 takes place too. First, using
the product formula (14.7) for multiple integrals with respect to Bt (resp. B) yields

FiFj =
pi∧pj
∑

r=0

r!
(

pi

r

)(

pj

r

)

IB
pi+pj−2r

(

fi ⊗r fj

)

Fi,t Fj,t =
pi∧pj
∑

r=0

r!
(

pi

r

)(

pj

r

)

IBt

pi+pj−2r

(

fi ⊗r fj

)

.

Hence, using (14.11) for passing to the limit,

1

t
E
[

(Fi,t − Fi)(Fj,t − Fj )
∣

∣σ {B}]− 1

t
E
[

Fi,tFj,t − FiFj

∣

∣σ {B}]

= −1

t
Fi E

[

Fj,t − Fj |σ {B}
]− 1

t
Fj E

[

Fi,t − Fi

∣

∣σ {B}]

→ (pi + pj )FiFj =
pi∧pj
∑

r=0

r!
(

pi

r

)(

pj

r

)

(p + q)IB
pi+pj−2r

(

fi ⊗r fj

)

as t ↓ 0.

Now, note in L2(�),

1

t
E
[

Fi,tFj,t − FiFj

∣

∣σ {B}]

=
pi∧pj
∑

r=0

r!
(

pi

r

)(

pj

r

)

1

t
E
[

IB
t

pi+pj−2r

(

fi ⊗r fj

)− IBpi+pj−2r

(

fi ⊗r fj

)∣

∣σ {B}
]

→
pi∧pj
∑

r=0

r!
(

pi

r

)(

pj

r

)

(2r − pi − pj )I
B
pi+pj−2r

(

fi ⊗r fj

)

, as t ↓ 0, by (14.11) .
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Thus, as t ↓ 0,

1

t
E
[

(Fi,t − Fi)(Fj,t − Fj )
∣

∣σ {B}]→ 2

pi∧pj
∑

r=1

r!r
(

pi

r

)(

pj

r

)

IB
pi+pj−2r

(

fi ⊗r fj

)

= 2pipj

∫ 1

0
IB
pi−1(fi(x, ·))IB

pj−1(fj (x, ·))dx ,

where the last equality follows from a straightforward application of the product
formula (14.7). As a result, if we set

Sij = 2pipj

∫ 1

0
Ipi−1(fi(x, ·))Ipj−1(fj (x, ·))dx − 2piσij

for each i, j ∈ {1, . . . , d}, then assumption (b) in Proposition 14.9.1 turns out
to be satisfied as well. By the isometry property (point 2 in Sect. 14.2), it is
straightforward to check that

pj

∫ 1

0
E
[

Ipi−1(fi(x, ·))Ipj−1(fj (x, ·))
]

dx = σij .

Therefore,

E

⎡

⎢

⎣

√

√

√

√

√

d
∑

i,j=1

S2
ij

⎤

⎥

⎦
�

√

√

√

√

√

d
∑

i,j=1

E
[

S2
ij

] = 2

√

√

√

√

√

d
∑

i,j=1

Var
(

pipj

∫ 1

0
Ipi−1(fi (x, ·))Ipj−1(fj (x, ·))dx

)

.

Hence the desired results in (1) and (2) follow from Proposition 14.9.1. ��
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Chapter 15
Permanental Processes with Kernels That
Are Not Equivalent to a Symmetric
Matrix

Michael B. Marcus and Jay Rosen

Abstract Kernels of α-permanental processes of the form

ũ(x, y) = u(x, y)+ f (y), x, y ∈ S, (15.1)

in which u(x, y) is symmetric, and f is an excessive function for the Borel
right process with potential densities u(x, y), are considered. Conditions are given
that determine whether {̃u(x, y); x, y ∈ S} is symmetrizable or asymptotically
symmetrizable.

Keywords Permanental processes · Symmetrizable
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15.1 Introduction

An Rn valued α-permanental random variable X = (X1, . . . , Xn) is a random
variable with Laplace transform

E
(

e−
∑n

i=1 siXi

)

= 1

|I +KS|α , (15.2)

where K is an n× n matrix and S is an n× n diagonal matrix with diagonal entries
(s1, . . . , sn).
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We refer to K as a kernel of X. But note that K is not unique. For example, if
K satisfies (15.2) so does �K�−1 for any � ∈ Dn,+, the set of n × n diagonal
matrices with strictly positive diagonal entries.

Let K(X) denote the set of all kernels that determine X by (15.2). We are
particularly interested in α-permanental random variables X for which K(X) does
not contain any symmetric kernels. (We explain at the end of this section why we
are interested in such processes and kernels.)

If K(X) contains a symmetric matrix we say that X is determined by a symmetric
matrix or kernel and that any K ⊂ K(X) is equivalent to a symmetric matrix, or is
symmetrizable. It follows from (15.2) that a kernel K is equivalent to a symmetric
matrix if and only if there exists an n× n symmetric matrix Q such that

|I +KS| = |I +QS| for all S ∈ Dn,+. (15.3)

An α-permanental process {Xt, t ∈ T } is a stochastic process that has
finite dimensional distributions that are α-permanental random variables. An α-
permanental process is determined by a kernel {K(s, t), s, t ∈ T } with the property
that for all distinct t1, . . . , tn in T , {K(ti, tj ), i, j ∈ [1, n]} is the kernel of the
α-permanental random variable (Xt1, . . . , Xtn).

Definition We say that an α-permanental process {Xt, t ∈ T } with kernel
{K(s, t), s, t ∈ T } is determined by a symmetric kernel if for all n ≥ 1 and distinct
t1, . . . , tn in T , {K(ti, tj ), i, j ∈ [1, n]} is symmetrizable. When this is the case we
also say that {K(s, t), s, t ∈ T } is symmetrizable. (In what follows we always take
|T | ≥ 3.)

The next theorem is [6, Theorem 1.9]. It shows that we can modify a very large
class of symmetric potentials so that they are no longer symmetric but are still
kernels of permanental processes.

Theorem 15.1.1 Let S a be locally compact set with a countable base. Let X =
(�,Ft , Xt , θt , P

x) be a transient symmetric Borel right process with state space
S and continuous strictly positive potential densities u(x, y) with respect to some
σ -finite measure m on S. Then for any finite excessive function f of X and α > 0,

ũf (x, y) = u(x, y)+ f (y), x, y ∈ S, (15.4)

is the kernel of an α-permanental process.

A function f is said to be excessive for X if Ex (f (Xt )) ↑ f (x) as t → 0 for all
x ∈ S. It is easy to check that for any positive measurable function h,

f (x) =
∫

u(x, y)h(y) dm(y) = Ex

(∫ ∞

0
h (Xt) dt

)

(15.5)

is excessive for X. Such a function f is called a potential function for X.
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Unless the function f in (15.4) is constant, {̃uf (x, y); x, y ∈ S} is not
symmetric. We now show that, generally, we can choose f so that {̃uf (x, y); x, y ∈
S} is also not equivalent to a symmetric matrix. The next two theorems show how
restricted the symmetric matrix {u(x, y); x, y ∈ S}must be for {̃uf (x, y); x, y ∈ S}
to be symmetrizable for all potential functions f .

We use �+1 to denote strictly positive sequences in �1.

Theorem 15.1.2 Let X= (�,Ft , Xt , θt , P
x) be a transient symmetric Borel right

process with state space T ⊆ N, and potential U = {Uj,k}j,k∈T . Then

(i) Either

Uj,k = �jδj,k + d, j, k ∈ T , (15.6)

where �j ≥ 0 and d ≥ 0,
(ii) or we can find a potential function f = Uh, with h ∈ �+1 , such that

˜U
f
j,k := Uj,k + fk, j, k ∈ T , (15.7)

is not symmetrizable.

When we consider limit theorems for infinite sequences of permanental random
variables {Y (k), k ∈ N} with kernel V = {v(j, k), j, k ∈ N} it is not enough to
know that V is not symmetrizable since we are only concerned with the permanental
variables generated by V (n) = {v(j, k), j, k ≥ n} as n → ∞. We would like
to know that V (n) is not symmetrizable for large n. We say that the kernel V is
asymptotically symmetrizable if there exists an n0 such that V (n) is symmetrizable
for all n ≥ n0. We can modify Theorem 15.1.2 to handle this case also.

Theorem 15.1.3 Let X= (�,Ft , Xt , θt , P
x) be a transient symmetric Borel right

process with state space N, and potential U = {Uj,k}j,k∈N. Then

(i) Either there exists an n0 such that

Uj,k = �jδj,k + d, ∀j, k ≥ n0, (15.8)

where �j ≥ 0 and d ≥ 0,
(ii) or we can find a potential function f = Uh, with h ∈ �+1 , such that

˜U
f
j,k := Uj,k + fk, j, k ∈ N, (15.9)

is not asymptotically symmetrizable.

The next theorem shows that when the state space of a transient symmetric Borel
right process has a limit point, then under reasonable conditions on the potential
densities that determine the process, the process is not determined by a kernel that
is asymptotically symmetrizable.
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Theorem 15.1.4 Let S′ = {x0, x1, . . .} be a countable set with a single limit point
x0. Let X be a transient symmetric Borel right process with state space S′, and
continuous strictly positive potential densities u := {u(x, y), x, y ∈ S′} such that
u(y, x0) < u(x0, x0) for all y �= x0. Then we can find a potential function f = Uh,
with h ∈ �+1 , that is continuous at x0, and is such that,

ũf (x, y) = u(x, y)+ f (y), x, y ∈ S′, (15.10)

is not asymptotically symmetrizable.

Theorems 15.1.2–15.1.4 show that generally there exists an excessive function f

for X which gives a kernel for an α-permanental processes that is not determined
by a symmetric matrix. However, in specific examples we deal with specific
functions f and want to know that the kernels determined by these functions are
not symmetrizable. With some additional structure on the symmetric matrix u(x, y)

in (15.4) we can show that ũf (x, y) in (15.4) is not asymptotically symmetrizable.

Lemma 15.1.1 In the notation of (15.4), let u = {u(j, k); j, k ∈ N} be a symmetric
Toëplitz matrix, with at least two different off diagonal elements, and set v(|j−k|) =
u(j, k). Let

(i)

ũf (j, k) = v(|j − k|)+ f (k), j, k ∈ N, (15.11)

where f is a strictly monotone potential for u. Then {̃uf (j, k); j, k ∈ N} is not
asymptotically symmetrizable.

(ii) Let

ṽf (sj , sk) = sj ∧ sk + f (sk), j, k ∈ N, (15.12)

where f is a strictly monotone potential for {sj ∧ sk; j, k ∈ N}. Then for any
triple of distinct values sj , sk, sl ,

{̃vf (sp, sq)}p,q=j,k,l , (15.13)

is not symmetrizable. In particular {̃vf (sj , sk); j, k ∈ N} is not asymptotically
symmetrizable.

We can use this lemma to show that certain α-permanental processes, studied in
[6], are not determined by kernels that are asymptotically symmetrizable. When S

is an interval on the real line we say that {u(x, y); x, y ∈ S} is not asymptotically
symmetrizable at x0 ∈ S, if we can find a sequence {xk} in S such that limk→∞ xk =
x0, and {u(xj , xk); j, k ∈ N} is not asymptotically symmetrizable.
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Example 15.1.1 In [6, Example 1.3] we obtain a limit theorem for the asymptotic
behavior of the sample paths at 0 of α-permanental processes with the kernel,

ûf (s, t) = e−λ|s−t | + f (t), s, t ∈ [0, 1], (15.14)

where f = q + tβ , β > 2, and q ≥ q0(β), a constant depending on β. We show in
Sect. 15.4 that ûf (s, t) is not asymptotically symmetrizable at any s0 ∈ S.

Similarly

uf (j, k) = e−λ|j−k| + f (k), j, k ∈ N, (15.15)

is not asymptotically symmetrizable.

Example 15.1.2 In [6, Example 1.4] we obtain limit theorems for the asymptotic
behavior of the sample paths at zero and infinity of α-permanental processes with
the kernel,

ṽf (s, t) = s ∧ t + f (t), s, t ≥ 0, (15.16)

where f is a concave strictly increasing function. We show in Sect. 15.4 that for
any s0 ∈ R+ and any sequence of distinct values {sk} such that limk→∞ sk = s0,
ṽf (sj , sk) is not asymptotically symmetrizable.

In addition,

vf (j, k) = j ∧ k + f (k), j, k ∈ N, (15.17)

is not asymptotically symmetrizable.

We explain why we are particularly interested in α-permanental processes
determined by kernels K that are not equivalent to a symmetric matrix. When
{u(s, t); s, t ∈ T } is symmetric and is a kernel that determines α-permanental
processes, Yα = {Yα(t), t ∈ T }, then

Y1/2
law= {G2(t)/2, t ∈ T }, (15.18)

where G = {G(t), t ∈ T } is a mean zero Gaussian process with covariance u(s, t).
This is not true when the kernel of α-permanental processes is not symmetrizable.

In this case we get a new class of processes. These are the processes that we find
particularly interesting.

There is another reason why permanental processes with kernels that are not
equivalent to a symmetric matrix are interesting. Dynkin’s Isomorphism Theorem
relates the local times of a symmetric Markov process to the squares of a Gaussian
process, with covariance given by the potential densities of the Markov process.
This theorem was extended by Eisenbaum and Kaspi [2] to relate the local times of
Markov processes that are not symmetric to permanental process, which necessarily,
are not determined by symmetric kernels. Results about permanental processes that
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are not symmetrizable should lead to new results about the local times of Markov
processes that are not symmetric.

To study permanental processes with kernels that are not equivalent to a
symmetric matrix our first step is to characterize those kernels that are equivalent
to a symmetric matrix. This is done in Sect. 15.2. In Sect. 15.3 we give the proofs
of Theorems 15.1.2–15.1.4. In Sect. 15.4 we give the proof of Lemma 15.1.1 and
details about Examples 15.1.1 and 15.1.2.

15.2 Kernels That Are Equivalent to a Symmetric Matrix

Let M be an n × n matrix. For I ⊆ [1, . . . , n] we define MI to be the |I| × |I|
matrix {Mp,q}p,q∈I . (Recall that Dn,+ is the set of all n× n diagonal matrices with
strictly positive diagonal elements.)

Lemma 15.2.1 Let K be an n× n matrix and assume that

|I +KS| = |I +QS| for all S ∈ Dn,+. (15.19)

Then for all I ⊆ [1, . . . , n]

|KI | = |QI |. (15.20)

In particular

|K| = |Q| (15.21)

and

Kj,j = Qj,j for all j = 1, . . . n. (15.22)

Furthermore, if Q is symmetric, then

|Qj,k | = (Kj,kKk,j )
1/2 for all i, j = 1, . . . , n (15.23)

and for all distinct i1, i2, i3 ∈ [1, . . . , n]

Ki1,i2Ki2,i3Ki3,i1 = Ki1,i3Ki2,i1Ki3,i2 . (15.24)

Conditions such as (15.24) appear in [1, 3].

Proof Denote the diagonal elements of S by {si}ni=1. Let si → 0 for all si ∈ Ic in
(15.19) to get

|I +KIS| = |I +QIS| for all S ∈ D|I|,+. (15.25)
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Multiply both sides of (15.25) by |S−1| and let the diagonal components of S go to
infinity to get (15.20). The relationships in (15.21) and (15.22) are simply examples
of (15.20).

Let I = {j, k}. It follows from (15.20) that

Ki,iKj,j −Ki,jKj,i = Qi,iQj,j −Q2
i,j , (15.26)

which by (15.22) implies that Ki,jKj,i = Q2
i,j . This gives (15.23).

Finally, let I = {i1, i2, i3} and take the determinants |K(I)| and |Q(I)|. It
follows from (15.20), (15.22) and (15.23) that

Ki1,i2Ki2,i3Ki3,i1 +Ki1,i3Ki2,i1Ki3,i2

= Qi1,i2Qi2,i3Qi3,i1 +Qi1,i3Qi2,i1Qi3,i2

= 2Qi1,i2Qi2,i3Qi3,i1 . (15.27)

By (15.23) this is equal to

± 2(Ki1,i2Ki2,i3Ki3,i1Ki1,i3Ki2,i1Ki3,i2)
1/2. (15.28)

Set

x = Ki1,i2Ki2,i3Ki3,i1 and y = Ki1,i3Ki2,i1Ki3,i2 . (15.29)

Then we have

x + y = ±2
√
xy. (15.30)

It is clear from this that x and y have the same sign. If they are both positive, we
have

x + y = 2
√
xy, (15.31)

That is, (
√
x −√y)2 = 0, which gives (15.24).

On the other hand, if x and y are both negative, (15.30) implies that

(−x)+ (−y) = 2
√

(−x)(−y), (15.32)

which also gives (15.24). ��
Remark 15.2.1 Even when K is the kernel of α-permanental processes we must
have absolute values on the left-hand sides of (15.23). This is because when (15.19)
holds it also holds when |I + QS| is replaced by |I + VQVS| for any signature
matrix V . (A signature matrix is a diagonal matrix with diagonal entries ±1.) So
the symmetric matrix Q need not be the kernel of α-permanental processes On the
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other hand, by Eisenbaum and Kaspi [2, Lemma 4.2], we can find a symmetric
matrix ˜Q that is the kernel of α-permanental processes such that (15.19) holds with
Q replaced by ˜Q and we have ˜Qj,k = (Kj,kKk,j )

1/2.

15.3 Proofs of Theorems 15.1.2–15.1.4

We begin with a simple observation that lies at the heart of the proofs of
Theorems 15.1.2 and 15.1.3.

For y ∈ Rn we use Bδ(y) to denote a Euclidean ball of radius δ centered at x.

Lemma 15.3.1 Let W = {wj,k; j, k = 1, 2, 3} be a positive symmetric matrix such
that wj,k ≤ wj,j ∧wk,k . For any x = (x1, x2, x3) let ˜Wx be a 3× 3 matrix defined
by

˜Wx
j,k = wj,k + xk, j, k = 1, 2, 3. (15.33)

Suppose that ˜Wx is symmetrizable for all x ∈ Bδ(x0), for some x0 ∈ R3 and δ > 0.
Then, necessarily,

wj,k = �jδj,k + d, j, k = 1, 2, 3, (15.34)

where �j ≥ 0 and d ≥ 0.

Proof It follows from Lemma 15.2.1 that for all x ∈ Bδ(x0)

(

w1,2 + x2
) (

w2,3 + x3
) (

w3,1 + x1
) = (w1,3 + x3

) (

w2,1 + x1
) (

w3,2 + x2
)

.

(15.35)

We differentiate each side of (15.35) with respect to x1 and x2 in Bδ(x0) and see that

w2,3 + x3 = w1,3 + x3. (15.36)

Therefore, we must have w2,3 = w1,3. Differentiating twice more with respect to x1
and x3, and x2 and x3, we see that if (15.35) holds for all x ∈ Bδ (x0) then

w2,3 = w1,3, w1,2 = w3,2, and w3,1 = w2,1. (15.37)

This implies that for some (d1, d2, d3)

W =
⎛

⎝

w1,1 d2 d3

d1 w2,2 d3

d1 d2 w3,3

⎞

⎠ . (15.38)

Furthermore, since W is symmetric, we must have d1 = d2 = d3.
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Set d = di , i = 1, 2, 3. Then, since wi,i ≥ wi,j , i, j = 1, 2, 3, we can write
wi,i = λi + d for some λi ≥ 0, i = 1, 2, 3. This shows that (15.34) holds. ��

In using Lemma 15.3.1 we often consider 3× 3 principle submatrices of a larger
matrix. Consider the matrix {W(x, y)}x,y∈S, for some index set S. Let {x1, x2, x3} ⊂
S. Consistent with the notation introduced at the beginning of Sect. 15.2 we note that

W{x1,x2,x3} = {Wxj ,xk }3j,k=1. (15.39)

We also use 1n to denote an n× n matrix with all its elements equal to 1.

Proof of Theorem 15.1.2 If (i) holds then

˜Uf := �+ 1|T |G, (15.40)

where G is a |T | × |T | diagonal matrix with entries f1 + d, f2 + d, . . .. Let I be
any finite subset of T . Obviously,

(

˜Uf
)

I
= �I + 1|I|GI . (15.41)

Since

G
1/2
I
(

�I + 1|I|GI
)

G
−1/2
I = �I +G

1/2
I 1|I|G1/2

I , (15.42)

and �I+G
1/2
I 1|I|G1/2

I is symmetric, we see that ˜Uf is symmetrizable. This shows
that if (i) holds then (ii) does not hold.

Suppose that (i) does not hold. We show that in this case we can find a triple
{t1, t2, t3} such that U{t1,t2,t3} does not have all its off diagonal elements equal.

Since (i) does not hold there are two off diagonal elements of V that are not
equal, say ul,m = a and up,q = b. Suppose that none of the indices l,m, p, q are
equal. The kernel of (Xl,Xm,Xp) has the form.

U{l,m,p} =
⎛

⎝

· a ·
a · ·
· · ·

⎞

⎠ , (15.43)

where we use · when we don’t know the value of the entry. If any of the off diagonal
terms of U{l,m,p} are not equal to a we are done.

Assume then that all the off diagonal terms of U{l,m,p} are equal. This implies,
in particular, that (U{l,m,p})m,p = (U{l,m,p})p,m = a. Therefore, U{m,p,q} has the
form,

U{m,p,q} :=
⎛

⎝

· a ·
a · b
· b ·

⎞

⎠ . (15.44)
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Therefore, if none of the indices l, m, p, q are equal we see that there exists a triple
{t1, t2, t3} such that U{t1,t2,t3} does not have all its off diagonal elements equal.

If l = p the argument is simpler, because in this case

U{l,m,q} =
⎛

⎝

· a b

a · ·
b · ·

⎞

⎠ . (15.45)

If m = q the kernel of (Xl,Xp,Xm) is

⎛

⎝

· · a
· · b
a b ·

⎞

⎠ . (15.46)

Using the fact that U is symmetric we see that cases when l = q or m = p are
included in the above.

This shows that when (i) does not hold we can find a triple {t1, t2, t3} such
that U{t1,t2,t3} does not have all its off diagonal elements equal. We now show that
in this case (ii) holds, that is, we can find a potential f for which (15.7) is not
symmetrizable.

For convenience we rearrange the indices so that {t1, t2, t3} = {1, 2, 3}. We take
any h∗ ∈ �+1 and consider the potential f ∗ = Uh∗. If U1,2,3 := {Uj,k + f ∗k }3j,k=1
is not symmetrizable, we are done. That is, (ii) holds with f = f ∗. However, it is
possible that U{1,2,3} is not of the form of (15.34) but

(

U1,2 + f ∗2
) (

U2,3 + f ∗3
) (

U3,1 + f ∗1
) = (U1,3 + f ∗3

) (

U2,1 + f ∗1
) (

U3,2 + f ∗2
)

.

(15.47)

(See (15.35).) Nevertheless, since U{1,2,3} is not of the form (15.34), it follows from
Lemma 15.3.1 that for all δ > 0 there exists an (f1, f2, f3) ∈ Bδ(f

∗
1 , f ∗2 , f ∗3 ) such

that {Uj,k + fk}3j,k=1 is not symmetrizable. (Here we use the facts that a symmetric
potential density Uj,k is always positive and satisfies Uj,k ≤ Uj,j ∧ Uk,k , see [4,
(13.2)].)

Note that U{1,2,3} is invertible. (See e.g., [5, Lemma A.1].) Therefore, we can
find c1, c2, c3 such that

fj = f ∗j +
3
∑

k=1

Uj,kck, j = 1, 2, 3. (15.48)

Now, set h = h∗ + c, where c = (c1, c2, c3, 0, 0, . . .), i.e., all the components of c
except for the first three are equal to 0 and set f = Uh. The components f1, f2, f3
are given by (15.48). Furthermore, we can choose δ sufficiently small so that for
(f1, f2, f3) ∈ Bδ(f

∗
1 , f ∗2 , f ∗3 ), c1, c2, c3 are small enough so that h1, h2, and h3 are
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strictly greater than 0, which, of course, implies that h ∈ �+1 , (defined just prior to
Theorem 15.1.2). Therefore, (ii) holds with this potential f . ��

In Theorem 15.1.2 it is obvious that if (i) does not hold then there are functions
f for which (15.7) is not symmetrizable. What was a little difficult was to show
that f = (f1, f2, . . .), is a potential for X. We have the same problem in the proof
of Theorem 15.1.3 but it is much more complicated. If we start with a potential
f ∗ = Uh∗, to show that ˜Uf is not asymptotically symmetrizable, we may need to
modify an infinite number of the components of f ∗ and still end up with a potential
f . The next lemma is the key to doing this.

Lemma 15.3.2 Let X = (�,Ft , Xt , θt , P
x) be a transient symmetric Borel right

process with state space N, and potential U = {Uj,k}j,k∈N. Then we can find a
potential function f = Uh, with h ∈ �+1 , such that for all α > 0,

˜U
f
j,k = Uj,k + fk, j, k ∈ N, (15.49)

is the kernel of an α-permanental sequence.
Moreover, for Il = {3l + 1, 3l + 2, 3l + 3}, the following dichotomy holds for

each l ≥ 0:

(i) Either ˜Uf
Il

is not symmetrizable,
(ii) or

UIl = �+ d13, (15.50)

where � ∈ D3,+ and d ≥ 0.

Proof Let {il,j = 3l + j }l≥0,j∈{1.2.3}. For f = {fk}∞k=1 define,

Fl(f ) = Fl(fil,1 , fil,2 , fil3 ) (15.51)

= (Uil,1,il,2 + fil,2 )(Uil,2,il,3 + fil,3 )(Uil,3,il,1 + fil,1 )

−(Uil,1,il,3 + fil,3 )(Uil,3,il,2 + fil,2 )(Uil,2,il,1 + fil,1 ).

We note that when UIl is given by (15.50), then for any sequence {fi1 , fi2 , fi3},
Fl(f ) = 0 and ˜Uf

Il
is symmetrizable. The first assertion in the previous sentence

follows because all the terms {Uij .ik }3j �=k=1 are equal d . The second is proved in the
first paragraph of the proof of Theorem 15.1.2. On the other hand, it follows from
Lemma 15.2.1 that if Fl(f ) �= 0 then ˜Uf

Il
is not symmetrizable.

Therefore, to prove this theorem it suffices to find an h ∈ �+1 for which the
potential function f = Uh satisfies the following dichotomy for each l ≥ 0:

Either Fl(f ) �= 0 or UIl has the form (15.50). (15.52)
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To find h we take any function h∗ ∈ �+1 and define successively h(n) ∈ �+1 , n ≥ −1,
such that h(−1) = h∗ and

h
(n+1)
j = h

(n)
j , ∀j /∈ In, and 0 <

1

2
h∗j ≤ h

(n)
j ≤ 2h∗j , j ≥ 1, (15.53)

and such that f (n) := Uh(n) satisfies,

|Fl(f
(n+1))− Fl(f

(n))| ≤ |Fl(f
(l+1))|

2n+2 , n ≥ l + 1. (15.54)

As we point out just below (15.51), if UIl is of the form (15.50), (15.54) is satisfied
trivially since Fl(f ) = 0 for all f . However, when UIl is not of the form (15.50) we
also require that h(l+1) is such that

Fl(f
(l+1)) �= 0. (15.55)

(The actual construction of {h(n); n ≥ −1} is given later in this proof.) ��
By (15.53), ‖h(n)−h(m)‖1 ≤ 2

∑n
j=m h∗j for any n > m, hence h = limn→∞ h(n)

exists in �+1 . We set f = Uh and note that

|fj − f
(n)
j | = |(U(h− h(n)))j | ≤ Uj,j‖h− h(n)‖1. (15.56)

Here we use the property pointed out in the proof of Theorem 15.1.2 that Ui,j ≤
Ui,i ∧ Uj,j .

It follows from (15.56) that fj = limn→∞ f
(n)
j for each j ≥ 1 and consequently,

by (15.54),

|Fl(f )− Fl(f
(l+1))| ≤

∞
∑

k=l+1

|Fl(f
(k+1))− Fl(f

(k))| ≤ |Fl(f
(l+1))|
2

. (15.57)

We see from this that when UIl is not of the form (15.50), it follows from (15.55)
and (15.57) that Fl(f ) �= 0. This implies that (15.52) holds.

We now describe how the h(j), j = 0, 1, . . . are chosen. Assume that
h(−1), . . . , h(n) have been chosen. We choose h(n+1) as follows: If either
Fn(f

(n)) �= 0 or U
∣

∣

In×In
has the form (15.50), we set h(n+1) = h(n).

Assume then that Fn(f
(n)) = 0. If UIn does not have the form of (15.50),

it follows from the proof of Lemma 15.3.1 that for all εp ↓ 0, there exists

a (g1,p, g2,p, g3,p) ∈ Bεp(f
(n)
in,1

, f
(n)
in,2

, f
(n)
in,3

) such that Fn(g1,p, g2,p, g3,p) �=
0. We choose f (n+1) = f (n) for all indices except in,1, in,2, in,3 and
f

(n+1)
in,1

, f
(n+1)
in,2

, f
(n+1)
in,3

to be equal to one of these triples (g1,p, g2,p, g3,p). This
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gives (15.55) for l = n. Since εp ↓ 0 we can take f (n+1) arbitrarily close to f (n) so
that it satisfies (15.54).

As in the proof of Theorem 15.1.2 we can solve the equation

f
(n+1)
in,j

= f
(n)
in,j

+
3
∑

k=1

Uin,j ,in,k cin,k , j = 1, 2, 3. (15.58)

for cin,1 , cin,2 , cin,3 . To obtain h(n+1) we set h
(n+1)
q = h

(n)
q for all q /∈ In and for

q ∈ In we take

h(n+1)
q = h(n)

q + c(n)q . (15.59)

where c
(n)
q has all its components equal to zero except for the three components

cin,1 , cin,2 , cin,3 . By taking εp sufficiently small we can choose cin,1 , cin,2 , cin,3 so that
the third statement in (15.53) holds.

We set f (n+1) = Uh(n+1) and note that this is consistent with (15.58). ��
Proof of Theorem 15.1.3 It is clear from Theorem 15.1.2 that if (i) holds then U

is asymptotically symmetrizable, because in this case {Uti,tj }ki,j=1 is symmetrizable
for all distinct t1, . . . , tk greater than or equal to n0, for all k.

Suppose that (i) does not hold. Then, as in the proof of Theorem 15.1.2, we
can find a sequence {nk; k ∈ N} such that nk → ∞ and a sequence of triples
3nk < tk,1, tk,2, tk,3 ≤ 3nk+1, such that U{tk,1,tk,2,tk,3} does not have all of its off
diagonal elements equal. We interchange the indices tk,1, tk,2, tk,3 with the indices
in Ink ; (see Lemma 15.3.2). We can now use Lemma 15.3.2 to show that (ii) holds.

��
Proof of Theorem 15.1.4 Let S′ = {x0, x1, x2, . . .} with limk→∞ xk = x0. Assume
that for some integer n0

u(xj , xk) = �jδxj ,xk + d, ∀j, k ≥ n0. (15.60)

Then u(xj , xj ) = �j + d , and since, by hypothesis, u(x, y) is continuous,

lim
j→∞u(xj , xj ) = u(x0, x0), (15.61)

which implies that limit �0 := limj→∞�j must exist and

u(x0, x0) = �0 + d. (15.62)

It also follows from (15.60) that u(xj , xk) = d for all n0 ≤ j < k. In addition, since
limk→∞ u(xj , xk) = u(xj , x0), we see that for all j ≥ n0,

u(xj , x0) = d. (15.63)
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Comparing the last two displays we get that for all j ≥ n0,

u(x0, x0)− u(xj , x0) = �0. (15.64)

This contradicts (15.60), because the assumption that u(x0, x0) > u(xj , x0) implies
that �0 > 0, whereas the assumption that u is continuous and (15.64) implies that
�0 = 0.

Since (15.60) does not hold for any integer n0, (15.10) follows from Theo-
rem 15.1.3. The fact that f is continuous at x0 follows from the Dominated Conver-
gence Theorem since limj,k→∞ u(xj , xk) = u(x0, x0) implies that {u(x, y); x, y ∈
S′} is uniformly bounded. ��

15.4 Proof of Lemma 15.1.1 and Examples 15.1.1 and 15.1.2

Proof of Lemma 15.1.1

(i) Let m1,m2,m3 be increasing integers such that m2 − m1 = m3 − m2 and
u(m2 −m1) �= u(m3 −m1) and consider the 3× 3 Töeplitz matrix

⎛

⎝

u(0)+ f (m1) u(m2 −m1)+ f (m2) u(m3 −m1)+ f (m3)

u(m2 −m1)+ f (m1) u(0)+ f (m2) u(m2 −m1)+ f (m3)

u(m3 −m1)+ f (m1) u(m2 −m1)+ f (m2) u(0)+ f (m3)

⎞

⎠ .

(15.65)

By Lemma 15.2.1, if {̃uf (j, k); j, k ∈ N} is symmetrizable we must have

(u(m2 −m1)+ f (m2))(u(m2 −m1)+ f (m3))(u(m3 −m1)+ f (m1)) (15.66)

= (u(m3 −m1)+ f (m3))(u(m2 −m1)+ f (m1))(u(m2 −m1)+ f (m2)).

Note that we can cancel the term u(m2−m1)+f (m2) from each side of (15.66)
and rearrange it to get

(u(m2 −m1)− u(m3 −m1))(f (m1)− f (m3)) = 0. (15.67)

This is not possible because u(m2 −m1) �= u(m3 −m1) and f (m1) �= f (m3).
Since this holds for all m1,m2,m3 satisfying the conditions above we see

that Lemma 15.1.1 (i) holds.
(ii) Consider sj ∧ sk at the three different values, sj1, sj2 , sj3 , and the matrix

⎛

⎝

sj1 + f (sj1) sj1 + f (sj2) sj1 + f (sj3)

sj1 + f (sj1) sj2 + f (sj2) sj2 + f (sj3)

sj1 + f (sj1) sj2 + f (sj2) sj3 + f (sj3)

⎞

⎠ . (15.68)
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By Lemma 15.2.1, if ṽfsj1 ,sj2 ,sj3 is symmetrizable we must have

(sj1 + f (sj2 ))(sj2 + f (sj3 ))(sj1 + f (sj1)) = (sj1 + f (sj3))(sj1 + f (sj1 ))(sj2 + f (sj2))

(15.69)

or, equivalently,

(sj1 − sj2)(f (sj3)− f (sj2)) = 0. (15.70)

Since sj1 �= sj2 and f (sj3) �= f (sj2) this is not possible. Therefore, ṽfsj1 ,sj2 ,sj3
is not symmetrizable. ��

Proof of Example 15.1.1 Let s0 ∈ S. We choose a sequence sj → s0 with the
property that it contains a subsequence {sjk }, sjk → s0, such that

sj3k+1 − sj3k = sj3k+2 − sj3k+1 = ak, k ≥ 1. (15.71)

The kernel of the 3× 3 matrix

ûf (sj3k+p , sj3k+q ), p, q = 0, 1, 2, (15.72)

is

⎛

⎝

1+ f (sj3k ) e−λak + f (sj3k+1) e−λ2ak + f (sj3k+2)

e−λak + f (sj3k ) 1+ f (sj3k+1) e−λak + f (sj3k+2)

e−λ2ak + f (sj3k ) e−λak + f (sj3k+1) 1+ f (sj3k+2)

⎞

⎠ , (15.73)

similar to (15.65). Therefore, following the proof of Lemma 15.1.1, we see that the
kernel in (15.72) is not symmetrizable. Since this holds along the subsequence {sjk },
sjk → s0, we see that {̂uf (s, t); s, t ∈ S} is not asymptotically symmetrizable at s0.

The result in (15.15) is proved similarly. ��
Proof of Example 15.1.2 The proof of Example 15.1.2 is similar to the proof of
Example 15.1.2 but even simpler. This is because for all distinct values, sj1 , sj2 , sj3 ,
the matrix in (15.68) is not symmetrizable. ��
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Chapter 16
Pointwise Properties of Martingales
with Values in Banach Function Spaces

Mark Veraar and Ivan Yaroslavtsev

Abstract In this paper we consider local martingales with values in a UMD Banach
function space. We prove that such martingales have a version which is a martingale
field. Moreover, a new Burkholder–Davis–Gundy type inequality is obtained.
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spaces · Burkholder-Davis-Gundy inequalities · Lattice maximal function
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16.1 Introduction

The discrete Burkholder–Davis–Gundy inequality (see [3, Theorem 3.2]) states that
for any p ∈ (1,∞) and martingales difference sequence (dj )

n
j=1 in Lp(�) one has

∥

∥

∥

n
∑

j=1

dj

∥

∥

∥

Lp(�)
�p

∥

∥

∥

(
n
∑

j=1

|dj |2
)1/2∥

∥

∥

Lp(�)
. (16.1)

Moreover, there is the extension to continuous-time local martingales M (see [13,
Theorem 26.12]) which states that for every p ∈ [1,∞),

∥

∥ sup
t∈[0,∞)

|Mt |
∥

∥

Lp(�)
�p

∥

∥[M]1/2∞
∥

∥

Lp(�)
. (16.2)

Here t �→ [M]t denotes the quadratic variation process of M .
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In the case X is a UMD Banach function space the following variant of (16.1)
holds (see [24, Theorem 3]): for any p ∈ (1,∞) and martingales difference
sequence (dj )

n
j=1 in Lp(�;X) one has

∥

∥

∥

n
∑

j=1

dj

∥

∥

∥

Lp(�;X)
�p

∥

∥

∥

(
n
∑

j=1

|dj |2
)1/2∥

∥

∥

Lp(�;X)
. (16.3)

Moreover, the validity of the estimate also characterizes the UMD property.
It is a natural question whether (16.2) has a vector-valued analogue as well. The

main result of this paper states that this is indeed the case:

Theorem 16.1.1 Let X be a UMD Banach function space over a σ -finite measure
space (S,�,μ). Assume that N : R+ × � × S → R is such that N |[0,t ]×�×S is
B([0, t]) ⊗ Ft ⊗ �-measurable for all t ≥ 0 and such that for almost all s ∈ S,
N(·, ·, s) is a martingale with respect to (Ft )t≥0 and N(0, ·, s) = 0. Then for all
p ∈ (1,∞),

∥

∥ sup
t≥0

|N(t, ·, ·)|∥∥
Lp(�;X)

�p,X sup
t≥0

∥

∥N(t, ·, ·)∥∥
Lp(�;X)

�p,X ‖[N]1/2∞ ‖Lp(�;X).

(16.4)

where [N] denotes the quadratic variation process of N .

By standard methods we can extend Theorem 16.1.1 to spaces X which are
isomorphic to a closed subspace of a Banach function space (e.g. Sobolev and Besov
spaces, etc.)

The two-sided estimate (16.4) can for instance be used to obtain two-sided
estimates for stochastic integrals for processes with values in infinite dimensions
(see [25] and [26]). In particular, applying it with N(t, ·, s) = ∫ t

0 �(·, s) dW implies
the following maximal estimate for the stochastic integral

∥

∥

∥s �→ sup
t≥0

∣

∣

∣

∫ t

0
�(·, s) dW

∣

∣

∣

∥

∥

∥

Lp(�;X)

�p,X sup
t≥0

∥

∥

∥s �→
∫ t

0
�(·, s) dW

∥

∥

∥

Lp(�;X)
(16.5)

�p,X

∥

∥

∥s �→
(

∫ ∞

0
�2(t, s) dt

)1/2∥
∥

∥

Lp(�;X)
,

where W is a Brownian motion and � : R+ × � × S → R is a progressively
measurable process such that the right-hand side of (16.5) is finite. The second norm
equivalence was obtained in [25]. The norm equivalence with the left-hand side is
new in this generality. The case where X is an Lq -space was recently obtained in
[1] using different methods.
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It is worth noticing that the second equivalence of (16.4) in the case of X = Lq

was obtained by Marinelli in [18] for some range of 1 < p, q < ∞ by using an
interpolation method.

The UMD property is necessary in Theorem 16.1.1 by necessity of the UMD
property in (16.3) and the fact that any discrete martingale can be transformed to a
continuous-time one. Also in the case of continuous martingales, the UMD property
is necessary in Theorem 16.1.1. Indeed, applying (16.5) with W replaced by an
independent Brownian motion ˜W we obtain

∥

∥

∥

∫ ∞

0
� dW

∥

∥

∥

Lp(�;X)
�p,X

∥

∥

∥

∫ ∞

0
� d˜W

∥

∥

∥

Lp(�;X)
,

for all predictable step processes �. The latter holds implies that X is a UMD
Banach space (see [10, Theorem 1]).

In the special case that X = R the above reduces to (16.2). In the proof of
Theorem 16.1.1 the UMD property is applied several times:

• The boundedness of the lattice maximal function (see [2, 9, 24]).
• The X-valued Meyer–Yoeurp decomposition of a martingale (see Lemma 16.2.1).
• The square-function estimate (16.3) (see [24]).

It remains open whether there exists a predictable expression for the right-hand
side of (16.4). One would expect that one needs simply to replace [N] by its
predictable compensator, the predictable quadratic variation 〈N〉. Unfortunately,
this does not hold true already in the scalar-valued case: if M is a real-valued
martingale, then

E|M|pt �p E〈M〉
p
2
t , t ≥ 0, p < 2,

E|M|pt �p E〈M〉
p
2
t , t ≥ 0, p > 2,

where both inequalities are known not to be sharp (see [3, p. 40], [19, p. 297],
and [21]). The question of finding such a predictable right-hand side in (16.4)
was answered only in the case X = Lq for 1 < q < ∞ by Dirsken and the
second author (see [7]). The key tool exploited there was the so-called Burkholder-
Rosenthal inequalities, which are of the following form:

E‖MN‖p �p,X

∣

∣

∣

∣

∣

∣(Mn)0≤n≤N

∣

∣

∣

∣

∣

∣

p

p,X
,

where (Mn)0≤n≤N is an X-valued martingale, |||·|||p,X is a certain norm defined on
the space of X-valued Lp-martingales which depends only on predictable moments
of the corresponding martingale. Therefore using approach of [7] one can reduce
the problem of continuous-time martingales to discrete-time martingales. However,
the Burkholder-Rosenthal inequalities are explored only in the case X = Lq .
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Thanks to (16.2) the following natural question arises: can one generalize (16.4)
to the case p = 1, i.e. whether

∥

∥ sup
t≥0

|N(t, ·, ·)|∥∥
L1(�;X)

�p,X ‖[N]1/2∞ ‖L1(�;X) (16.6)

holds true? Unfortunately the outlined earlier techniques cannot be applied in the
case p = 1. Moreover, the obtained estimates cannot be simply extrapolated to the
case p = 1 since those contain the UMDp constant, which is known to have infinite
limit as p → 1. Therefore (16.6) remains an open problem. Note that in the case of
a continuous martingaleM inequalities (16.4) can be extended to the case p ∈ (0, 1]
due to the classical Lenglart approach (see Corollary 16.4.4).

16.2 Preliminaries

Throughout the paper any filtration satisfies the usual conditions (see [12, Defi-
nition 1.1.2 and 1.1.3]), unless the underlying martingale is continuous (then the
corresponding filtration can be assumed general).

A Banach space X is called a UMD space if for some (or equivalently, for all)
p ∈ (1,∞) there exists a constant β > 0 such that for every n ≥ 1, every
martingale difference sequence (dj )

n
j=1 in Lp(�;X), and every {−1, 1}-valued

sequence (εj )
n
j=1 we have

(

E

∥

∥

∥

n
∑

j=1

εjdj

∥

∥

∥

p) 1
p ≤ β

(

E

∥

∥

∥

n
∑

j=1

dj

∥

∥

∥

p) 1
p
.

The above class of spaces was extensively studied by Burkholder (see [4]). UMD
spaces are always reflexive. Examples of UMD space include the reflexive range
of Lq -spaces, Besov spaces, Sobolev, and Musielak-Orlicz spaces. Example of
spaces without the UMD property include all nonreflexive spaces, e.g. L1(0, 1) and
C([0, 1]). For details on UMD Banach spaces we refer the reader to [5, 11, 22, 24].

The following lemma follows from [27, Theorem 3.1].

Lemma 16.2.1 (Meyer-Yoeurp Decomposition) Let X be a UMD space and p ∈
(1,∞). Let M : R+×�→ X be an Lp-martingale that takes values in some closed
subspace X0 of X. Then there exists a unique decomposition M = Md +Mc, where
Mc is continuous, Md is purely discontinuous and starts at zero, and Md and Mc

are Lp-martingales with values in X0 ⊆ X. Moreover, the following norm estimates
hold for every t ∈ [0,∞),

‖Md(t)‖Lp(�;X) ≤ βp,X‖M(t)‖Lp(�;X),

‖Mc(t)‖Lp(�;X) ≤ βp,X‖M(t)‖Lp(�;X).
(16.7)
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Furthermore, if Ap,d
X and A

p,c
X are the corresponding linear operators that map M

to Md and Mc respectively, then

A
p,d
X = A

p,d

R
⊗ IdX,

A
c,d
X = A

c,d
R
⊗ IdX.

Recall that for a given measure space (S,�,μ), the linear space of all real-valued
measurable functions is denoted by L0(S).

Definition 16.2.2 Let (S,�,μ) be a measure space. Let n : L0(S) → [0,∞] be a
function which satisfies the following properties:

(i) n(x) = 0 if and only if x = 0,
(ii) for all x, y ∈ L0(S) and λ ∈ R, n(λx) = |λ|n(x) and n(x + y) ≤ n(x)+n(y),

(iii) if x ∈ L0(S), y ∈ L0(S), and |x| ≤ |y|, then n(x) ≤ n(y),
(iv) if 0 ≤ xn ↑ x with (xn)

∞
n=1 a sequence in L0(S) and x ∈ L0(S), then n(x) =

supn∈N n(xn).

Let X denote the space of all x ∈ L0(S) for which ‖x‖ := n(x) < ∞. Then X

is called the normed function space associated to n. It is called a Banach function
space when (X, ‖ · ‖X) is complete.

We refer the reader to [31, Chapter 15] for details on Banach function spaces.

Remark 16.2.3 Let X be a Banach function space over a measure space (S,�,μ).
Then X is continuously embedded into L0(S) endowed with the topology of
convergence in measure on sets of finite measure. Indeed, assume xn → x in X and
let A ∈ � be of finite measure. We claim that 1Axn → 1Ax in measure. For this it
suffices to show that every subsequence of (xn)n≥1 has a further subsequence which
convergences a.e. to x. Let (xnk )k≥1 be a subsequence. Choose a subsubsequence
(1Axnk� )�≥1 =: (y�)�≥1 such that

∑∞
�=1 ‖y�−x‖ <∞. Then by [31, Exercise 64.1]

∑∞
�=1 |y� − x| converges in X. In particular,

∑∞
�=1 |y� − x| < ∞ a.e. Therefore,

y� → x a.e. as desired.

Given a Banach function space X over a measure space S and Banach space E,
let X(E) denote the space of all strongly measurable functions f : S → E with
‖f ‖X(E) :=

∥

∥s �→ ‖f (s)‖E
∥

∥

X
∈ X. The space X(E) becomes a Banach space

when equipped with the norm ‖f ‖X(E).
A Banach function space has the UMD property if and only if (16.3) holds for

some (or equivalently, for all) p ∈ (1,∞) (see [24]). A broad class of Banach
function spaces with UMD is given by the reflexive Lorentz–Zygmund spaces (see
[6]) and the reflexive Musielak–Orlicz spaces (see [17]).

Definition 16.2.4 N : R+×�×S → R is called a (continuous) (local) martingale
field if N |[0,t ]×�×S is B([0, t])⊗ Ft ⊗ �-measurable for all t ≥ 0 and N(·, ·, s) is
a (continuous) (local) martingale with respect to (Ft )t≥0 for almost all s ∈ S.
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Let X be a Banach space, I ⊂ R be a closed interval (perhaps, infinite). A
function f : I → X is called càdlàg (an acronym for the French phrase “continue
à droite, limite à gauche”) if f is right continuous and has limits from the left-hand
side. We define a Skorohod space D(I ;X) as a linear space consisting of all càdlàg
functions f : I → X. We denote the linear space of all bounded càdlàg functions
f : I → X by Db(I ;X).

Lemma 16.2.5 Db(I ;X) equipped with the norm ‖ · ‖∞ is a Banach space.

Proof The proof is analogous to the proof of the same statement for continuous
functions. ��

Let X be a Banach space, τ be a stopping time, V : R+ × � → X be a càdlàg
process. Then we define &Vτ : �→ X as follows

&Vτ := Vτ − lim
ε→0

V(τ−ε)∨0.

16.3 Lattice Doob’s Maximal Inequality

Doob’s maximal Lp-inequality immediately implies that for martingale fields

∥

∥ sup
t≥0

‖N(t, ·)‖X
∥

∥

Lp(�)
≤ p

p − 1
sup
t≥0

‖N(t)‖Lp(�;X), 1 < p <∞.

In the next lemma we prove a stronger version of Doob’s maximal Lp-inequality. As
a consequence in Theorem 16.3.2 we will obtain the same result in a more general
setting.

Lemma 16.3.1 Let X be a UMD Banach function space and let p ∈ (1,∞). Let
N be a càdlàg martingale field with values in a finite dimensional subspace of X.
Then for all T > 0,

∥

∥ sup
t∈[0,T ]

|N(t, ·)|∥∥
Lp(�;X)

�p,X sup
t∈[0,T ]

‖N(t)‖Lp(�;X)

whenever one of the expression is finite.

Proof Clearly, the left-hand side dominates the right-hand side. Therefore, we can
assume the right-hand side is finite and in this case we have

‖N(T )‖Lp(�;X) = sup
t∈[0,T ]

‖N(t)‖Lp(�;X) <∞.

Since N takes values in a finite dimensional subspace it follows from Doob’s Lp-
inequality (applied coordinatewise) that the left-hand side is finite.
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Since N is a càdlàg martingale field and by Definition 16.2.2(iv) we have that

lim
n→∞

∥

∥ sup
0≤j≤n

|N(jT/n, ·)|∥∥
Lp(�;X)

= ∥∥ sup
t∈[0,T ]

|N(t, ·)|∥∥
Lp(�;X)

.

Set Mj = NjT/n for j ∈ {0, . . . , n} and Mj =Mn for j > n. It remains to prove

∥

∥ sup
0≤j≤n

|Mj(·)|
∥

∥

Lp(�;X)
≤ Cp,X‖Mn‖Lp(�;X).

If (Mj )
n
j=0 is a Paley–Walsh martingale (see [11, Definition 3.1.8 and Proposition

3.1.10]), this estimate follows from the boundedness of the dyadic lattice maximal
operator [24, pp. 199–200 and Theorem 3]. In the general case one can replace �

by a divisible probability space and approximate (Mj ) by Paley-Walsh martingales
in a similar way as in [11, Corollary 3.6.7]. ��
Theorem 16.3.2 (Doob’s Maximal Lp-Inequality) Let X be a UMD Banach
function space over a σ -finite measure space and let p ∈ (1,∞). Let M : R+×�→
X be a martingale such that

1. for all t ≥ 0, M(t) ∈ Lp(�;X);
2. for a.a ω ∈ �, M(·, ω) is in D([0,∞);X).

Then there exists a martingale field N ∈ Lp(�;X(Db([0,∞)))) such that for
a.a. ω ∈ �, all t ≥ 0 and a.a. s ∈ S, N(t, ω, s) = M(t, ω)(s) and

∥

∥ sup
t≥0

|N(t, ·)|∥∥
Lp(�;X)

�p,X sup
t≥0

‖M(t, ·)‖Lp(�;X). (16.8)

Moreover, if M is continuous, then N can be chosen to be continuous as well.

Proof We first consider the case where M becomes constant after some time T > 0.
Then

sup
t≥0

‖M(t, ·)‖Lp(�;X) = ‖M(T )‖Lp(�;X).

Let (ξn)n≥1 be simple random variables such that ξn → M(T ) in Lp(�;X). Let
Mn(t) = E(ξn|Ft ) for t ≥ 0. Then by Lemma 16.3.1

∥

∥ sup
t≥0

|Nn(t, ·)−Nm(t, ·)|∥∥
Lp(�;X)

�p,X

∥

∥|Mn(T , ·)−Mm(T , ·)|∥∥
Lp(�;X)

→ 0

as n,m → ∞. Therefore, (Nn)n≥1 is a Cauchy sequence and hence converges to
some N from the space Lp(�;X(Db([0,∞)))). Clearly, N(t, ·) = M(t) and (16.8)
holds in the special case that M becomes constant after T > 0.

In the case M is general, for each T > 0 we can set MT (t) = M(t ∧ T ). Then
for each T > 0 we obtain a martingale field NT as required. Since NT1 = NT2 on
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[0, T1 ∧ T2], we can define a martingale field N by setting N(t, ·) = NT (t, ·) on
[0, T ]. Finally, we note that

lim
T→∞ sup

t≥0
‖MT (t)‖Lp(�;X) = sup

t≥0
‖M(t)‖Lp(�;X).

Moreover, by Definition 16.2.2(iv) we have

lim
T→∞

∥

∥ sup
t≥0

|NT (t, ·)|∥∥
Lp(�;X)

= ∥∥ sup
t≥0

|N(t, ·)|∥∥
Lp(�;X)

,

Therefore the general case of (16.8) follows by taking limits.
Now let M be continuous, and let (Mn)n≥1 be as before. By the same argument

as in the first part of the proof we can assume that there exists T > 0 such that
Mt = Mt∧T for all t ≥ 0. By Lemma 16.2.1 there exists a unique decomposition
Mn =Mc

n+Md
n such that Md

n is purely discontinuous and starts at zero and Mc
n has

continuous paths a.s. Then by (16.7)

‖M(T )−Mc
n(T )‖Lp(�;X) ≤ βp,X‖M(T )−Mn(T )‖Lp(�;X) → 0.

Since Mc
n takes values in a finite dimensional subspace of X we can define a

martingale field Nn by Nn(t, ω, s) = Mc
n(t, ω)(s). Now by Lemma 16.3.1

∥

∥ sup
0≤t≤T

|Nn(t, ·)−Nm(t, ·)|∥∥
Lp(�;X)

�p,X

∥

∥|Mc
n(T , ·)−Mc

m(T , ·)|∥∥
Lp(�;X)

→ 0.

Therefore, (Nn)n≥1 is a Cauchy sequence and hence converges to some N from the
space Lp(�;X(Cb([0,∞)))). Analogously to the first part of the proof, N(t, ·) =
M(t) for all t ≥ 0. ��
Remark 16.3.3 Note that due to the construction of N we have that &Mτ(s) =
&N(·, s)τ for any stopping time τ and almost any s ∈ S. Indeed, let (Mn)n≥1 and
(Nn)n≥1 be as in the proof of Theorem 16.3.2. Then on the one hand

‖&Mτ −&(Mn)τ‖Lp(�;X) ≤
∥

∥ sup
0≤t≤T

‖M(t)−Mn(t)‖X
∥

∥

Lp(�)

�p ‖M(T )−Mn(T )‖Lp(�;X) → 0, n →∞.

On the other hand

‖&Nτ −&(Nn)τ‖Lp(�;X) ≤
∥

∥ sup
0≤t≤T

|N(t)−Nn(t)|
∥

∥

Lp(�;X)

�p,X

∥

∥|N(T )−Nn(T )|∥∥
Lp(�;X)

→ 0, n→∞.
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Since ‖Mn(t) − Nn(t, ·)‖Lp(�;X) = 0 for all n ≥ 0, we have that by the
limiting argument ‖&Mτ − &Nτ (·)‖Lp(�;X) = 0, so the desired follows from
Definition 16.2.2(i).

One could hope there is a more elementary approach to derive continuity of N

in the case M is continuous: if the filtration˜F := (˜Ft )t≥0 is generated by M , then
M(s) is ˜F-adapted for a.e. s ∈ S, and one might expect that M has a continuous
version. Unfortunately, this is not true in general as follows from the next example.

Example 16.3.4 There exists a continuous martingaleM : R+×�→ R, a filtration
˜F = (˜Ft )t≥0 generated by M and all P-null sets, and a purely discontinuous nonzero
˜F-martingale N : R+ × � → R. Let W : R+ × � → R be a Brownian motion,
L : R+ × � → R be a Poisson process such that W and L are independent. Let
F = (Ft )t≥0 be the filtration generated by W and L. Let σ be an F-stopping time
defined as follows

σ = inf{u ≥ 0 : &Lu �= 0}.

Let us define

M :=
∫

1[0,σ ] dW = Wσ .

Then M is a martingale. Let˜F := (˜Ft )t≥0 be generated by M . Note that ˜Ft ⊂ Ft

for any t ≥ 0. Define a random variable

τ = inf{t ≥ 0 : ∃u ∈ [0, t) such thatM is a constant on [u, t]}.

Then τ = σ a.s. Moreover, τ is a˜F-stopping time since for each u ≥ 0

P{τ = u} = P{σ = u} = P{&Lσ
u �= 1} ≤ P{&Lu �= 1} = 0,

and hence

{τ ≤ u} = {τ < u} ∪ {τ = u} ⊂ ˜Fu.

Therefore N : R+ ×�→ R defined by

Nt := 1[τ,∞)(t)− t ∧ τ t ≥ 0,

is an ˜F-martingale since it is˜F-measurable and since Nt = (Lt − t)σ a.s. for each
t ≥ 0, hence for each u ∈ [0, t]

E(Nt |˜Fu) = E(E(Nt |Fu)|˜Fu) = E(E((Lt − t)σ |Fu)|˜Fu) = (Lu − u)σ = Nu
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due to the fact that t �→ Lt − t is an˜F-measurable F-martingale (see [15, Problem
1.3.4]). But (Nt )t≥0 is not continuous since (Lt )t≥0 is not continuous.

16.4 Main Result

Theorem 16.1.1 will be a consequence of the following more general result.

Theorem 16.4.1 Let X be a UMD Banach function space over a σ -finite measure
space (S,�,μ) and let p ∈ (1,∞). Let M : R+×�→ X be a local Lp-martingale
with respect to (Ft )t≥0 and assume M(0, ·) = 0. Then there exists a mapping N :
R+ ×�× S → R such that

1. for all t ≥ 0 and a.a. ω ∈ �, N(t, ω, ·) = M(t, ω),
2. N is a local martingale field,
3. the following estimate holds

∥

∥ sup
t≥0

|N(t, ·, ·)|∥∥
Lp(�;X)

�p,X

∥

∥ sup
t≥0

‖M(t, ·)‖X
∥

∥

Lp(�)
�p,X ‖[N]1/2∞ ‖Lp(�;X).

(16.9)

To prove Theorem 16.4.1 we first prove a completeness result.

Proposition 16.4.2 Let X be a Banach function space over a σ -finite measure
space S, 1 ≤ p <∞. Let

MQp(X) := {N : R+ ×�× S → R : N is a martingale field,

N(0, ·, s) = 0 ∀s ∈ S, and ‖N‖MQp(X) <∞},

where ‖N‖MQp(X) := ‖[N]1/2∞ ‖Lp(�;X). Then (MQp(X), ‖ · ‖MQp(X)) is a Banach
space. Moreover, if Nn → N in MQp, then there exists a subsequence (Nnk )k≥1
such that pointwise a.e. in S, we have Nnk → N in L1(�;Db([0,∞))).

Proof Let us first check that MQp(X) is a normed vector space. For this only the
triangle inequality requires some comments. By the well-known estimate for local
martingales M,N (see [13, Theorem 26.6(iii)]) we have that a.s.

[M +N]t = [M]t + 2[M,N]t + [N]t
≤ [M]t + 2[M]1/2

t [N]1/2
t + [N]t =

([M]1/2
t + [N]1/2

t

)2
,

(16.10)

Therefore, [M + N]1/2
t ≤ [M]1/2

t + [N]1/2
t a.s. for all t ∈ [0,∞].

Let (Nk)k≥1 be such that
∑

k≥1 ‖Nk‖MQp(X) < ∞. It suffices to show that
∑

k≥1 Nk converges in MQp(X). Observe that by monotone convergence in � and
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Jensen’s inequality applied to ‖ · ‖X for any n > m ≥ 1 we have

∥

∥

∥

n
∑

k=m+1

E[Nk]1/2∞
∥

∥

∥

X

=
∥

∥

∥

n
∑

k=1

E[Nk]1/2∞ −
m
∑

k=1

E[Nk]1/2∞
∥

∥

∥

X

=
∥

∥

∥E

n
∑

k=m+1

[Nk]1/2∞
∥

∥

∥

X
≤ E

∥

∥

∥

n
∑

k=m+1

[Nk]1/2∞
∥

∥

∥

X
(16.11)

=
∥

∥

∥

n
∑

k=m+1

[Nk]1/2∞
∥

∥

∥

L1(�;X)
≤
∥

∥

∥

n
∑

k=m+1

[Nk]1/2∞
∥

∥

∥

Lp(�;X)

≤
n
∑

k=m+1

∥

∥

∥[Nk]1/2∞
∥

∥

∥

Lp(�;X)
→ 0, m, n →∞,

where the latter holds due to the fact that
∑

k≥1

∥

∥

∥[Nk]1/2∞
∥

∥

∥

Lp(�;X)
< ∞. Thus

∑n
k=1 E[Nk]1/2∞ converges in X as n →∞, where the corresponding limit coincides

with its pointwise limit
∑

k≥1 E[Nk]1/2∞ by Remark 16.2.3. Therefore, since any
element of X is finite a.s. by Definition 16.2.2, we can find S0 ∈ � such that
μ(Sc

0) = 0 and pointwise in S0, we have
∑

k≥1 E[Nk]1/2∞ < ∞. Fix s ∈ S0. In

particular, we find that
∑

k≥1[Nk]1/2∞ converges in L1(�). Moreover, since by the

scalar Burkholder-Davis-Gundy inequalities E supt≥0 |Nk(t, ·, s)| � E[Nk(s)]1/2∞ ,
we also obtain that

N(·, s) :=
∑

k≥1

Nk(·, s) converges in L1(�;Db([0,∞)). (16.12)

Let N(·, s) = 0 for s /∈ S0. Then N defines a martingale field. Moreover, by the
scalar Burkholder-Davis-Gundy inequalities

lim
m→∞

[
m
∑

k=n

Nk(·, s)
]1/2

∞ =
[
∞
∑

k=n

Nk(·, s)
]1/2

∞

in L1(�). Therefore, by considering an a.s. convergent subsequence and by (16.10)
we obtain

[
∞
∑

k=n

Nk(·, s)
]1/2

∞ ≤
∞
∑

k=n

[Nk(·, s)]1/2∞ . (16.13)

It remains to prove that N ∈ MQp(X) and N = ∑

k≥1 Nk with convergence in
MQp(X). Let ε > 0. Choose n ∈ N such that

∑

k≥n+1 ‖Nk‖MQp(X) < ε. It follows
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from (16.11) that E
∥

∥

∑

k≥1[Nk]1/2∞
∥

∥

X
< ∞, so

∑

k≥1[Nk]1/2∞ a.s. converges in X.
Now by (16.13), the triangle inequality and Fatou’s lemma, we obtain

∥

∥

∥

[
∑

k≥n+1

Nk

]1/2

∞

∥

∥

∥

Lp(�;X)
≤
∥

∥

∥

∞
∑

k=n+1

[Nk]1/2∞
∥

∥

∥

Lp(�;X)

≤
∞
∑

k=n+1

∥

∥

∥[Nk]1/2∞
∥

∥

∥

Lp(�;X)

≤ lim inf
m→∞

m
∑

k=n+1

∥

∥

∥[Nk]1/2∞
∥

∥

∥

Lp(�;X)
< εp.

Therefore, N ∈ MQp(X) and ‖N −∑n
k=1 Nk‖MQp(X) < ε.

For the proof of the final assertion assume that Nn → N in MQp(X). Choose a
subsequence (Nnk )k≥1 such that ‖Nnk − N‖MQp(X) ≤ 2−k . Then

∑

k≥1 ‖Nnk −
N‖MQp(X) < ∞ and hence by (16.12) we see that pointwise a.e. in S, the
series

∑

k≥1(Nnk − N) converges in L1(�;Db([0,∞))). Therefore, Nnk → N

in L1(�;Db([0,∞);X)) as required. ��
For the proof of Theorem 16.4.1 we will need the following lemma presented in

[8, Théorème 2].

Lemma 16.4.3 Let 1 < p < ∞, M : R+ × � → R be an Lp-martingales. Let
T > 0. For each n ≥ 1 define

Rn :=
n
∑

k=1

∣

∣MTk
n
−MT(k−1)

n

∣

∣

2
.

Then Rn converges to [M]T in Lp/2.

Proof of Theorem 16.4.1 The existence of the local martingale field N together with
the first estimate in (16.9) follows from Theorem 16.3.2. It remains to prove

∥

∥ sup
t≥0

‖M(t, ·)‖X
∥

∥

Lp(�)
�p,X ‖[N]1/2∞ ‖Lp(�;X). (16.14)

Due to Definition 16.2.2(iv) it suffices to prove the above norm equivalence in the
case M and N becomes constant after some fixed time T .

Step 1: The Finite Dimensional Case Assume that M takes values in a finite
dimensional subspace Y of X and that the right hand side of (16.14) is finite. Then
we can write N(t, s) = M(t)(s) = ∑n

j=1 Mj(t)xj (s), where each Mj is a scalar-
valued martingale with Mj(T ) ∈ Lp(�) and x1, . . . , xn ∈ X form a basis of Y .
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Note that for any c1, . . . , cn ∈ Lp(�) we have that

∥

∥

∥

n
∑

j=1

cjxj

∥

∥

∥

Lp(�;X)
�p,Y

n
∑

j=1

‖cj‖Lp(�). (16.15)

Fix m ≥ 1. Then by (16.3) and Doob’s maximal inequality

∥

∥ sup
t≥0

‖M(t, ·)‖X
∥

∥

Lp(�)
�p ‖M(T, ·)‖Lp(�;X)

=
∥

∥

∥

m
∑

i=1

MTi
m
−MT(i−1)

m

∥

∥

∥

Lp(�;X)

�p,X

∥

∥

∥

(
m
∑

i=1

∣

∣MTi
m
−MT(i−1)

m

∣

∣

2
) 1

2
∥

∥

∥

Lp(�;X)
,

(16.16)

and by (16.15) and Lemma 16.4.3 the right hand side of (16.16) converges to

‖[M]1/2∞ ‖Lp(�;X) = ‖[N]1/2∞ ‖Lp(�;X).

Step 2: Reduction to the Case Where M Takes Values in a Finite Dimensional
Subspace of X Let M(T ) ∈ Lp(�;X). Then we can find simple functions (ξn)n≥1
in Lp(�;X) such that ξn → M(T ). Let Mn(t) = E(ξn|Ft ) for all t ≥ 0 and n ≥ 1,
(Nn)n≥1 be the corresponding martingale fields. Then each Mn takes values in a
finite dimensional subspace Xn ⊆ X, and hence by Step 1

∥

∥ sup
t≥0

‖Mn(t, ·)−Mm(t, ·)‖X
∥

∥

Lp(�)
�p,X ‖[Nn −Nm]1/2∞ ‖Lp(�;X)

for any m,n ≥ 1. Therefore since (ξn)n≥1 is Cauchy in Lp(�;X), (Nn)n≥1
converges to some N in MQp(X) by the first part of Proposition 16.4.2.

Let us show that N is the desired local martingale field. Fix t ≥ 0. We need
to show that N(·, t, ·) = Mt a.s. on �. First notice that by the second part of
Proposition 16.4.2 there exists a subsequence of (Nn)n≥1 which we will denote by
(Nn)n≥1 as well such that Nn(·, t, σ ) → N(·, t, σ ) in L1(�) for a.e. σ ∈ S. On the
other hand by Jensen’s inequality

∥

∥E|Nn(·, t, ·)−Mt |
∥

∥

X
= ∥∥E|Mn(t)−M(t)|∥∥

X
≤ E‖Mn(t)−M(t)‖X → 0, n →∞.

Hence Nn(·, t, ·)→ Mt in X(L1(�)), and thus by Remark 16.2.3 in L0(S;L1(�)).
Therefore we can find a subsequence of (Nn)n≥1 (which we will again denote by
(Nn)n≥1) such that Nn(·, t, σ ) → Mt(σ) in L1(�) for a.e. σ ∈ S (here we use
the fact that μ is σ -finite), so N(·, t, ·) = Mt a.s. on � × S, and consequently by
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Definition 16.2.2(iii), N(ω, t, ·) = Mt(ω) for a.a. ω ∈ �. Thus (16.14) follows by
letting n→∞.

Step 3: Reduction to the Case Where the Left-Hand Side of (16.14) is Finite
Assume that the left-hand side of (16.14) is infinite, but the right-hand side is finite.
Since M is a local Lp-martingale we can find a sequence of stopping times (τn)n≥1
such that τn ↑ ∞ and ‖Mτn

T ‖Lp(�;X) < ∞ for each n ≥ 1. By the monotone
convergence theorem and Definition 16.2.2(iv)

‖[N]1/2∞ ‖Lp(�;X) = lim
n→∞‖[N

τn ]1/2∞ ‖Lp(�;X) �p,X lim sup
n→∞

‖Mτn
T ‖Lp(�;X)

= lim
n→∞‖M

τn
T ‖Lp(�;X) = lim

n→∞
∥

∥

∥ sup
0≤t≤T

‖Mτn
t ‖X

∥

∥

∥

Lp(�)

=
∥

∥

∥ sup
0≤t≤T

‖Mt‖X
∥

∥

∥

Lp(�)
=∞

and hence the right-hand side of (16.14) is infinite as well. ��
We use an extrapolation argument to extend part of Theorem 16.4.1 to p ∈ (0, 1]

in the continuous-path case.

Corollary 16.4.4 Let X be a UMD Banach function space over a σ -finite measure
space and let p ∈ (0,∞). Let M be a continuous local martingale M : R+ ×
� → X with M(0, ·) = 0. Then there exists a continuous local martingale field
N : R+ × � × S → R such that for a.a. ω ∈ �, all t ≥ 0, and a.a. s ∈ S,
N(t, ω, ·) =M(t, ω)(s) and

∥

∥ sup
t≥0

‖M(t, ·)‖X
∥

∥

Lp(�)
�p,X

∥

∥[N]1/2∞
∥

∥

Lp(�;X)
. (16.17)

Proof By a stopping time argument we can reduce to the case where ‖M(t, ω)‖X
is uniformly bounded in t ∈ R+ and ω ∈ � and M becomes constant after a
fixed time T . Now the existence of N follows from Theorem 16.4.1 and it remains
to prove (16.17) for p ∈ (0, 1]. For this we can use a classical argument due to
Lenglart. Indeed, for both estimates we can apply [16] or [23, Proposition IV.4.7] to
the continuous increasing processes Y,Z : R+ ×�→ R+ given by

Yu = E sup
t∈[0,u]

‖M(t, ·)‖X,

Zu = ‖s �→ [N(·, ·, s)]1/2
u ‖X,
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where q ∈ (1,∞) is a fixed number. Then by (16.9) for any bounded stopping time
τ , we have

EY q
τ = sup

t≥0
‖M(t ∧ τ, ·)‖qX �q,X E‖s �→ [N(· ∧ τ, ·, s)]1/2∞ ‖qX

(∗)= E‖s �→ [N(·, ·, s)]1/2
τ ‖qX = EZq

τ ,

where we used [13, Theorem 17.5] in (∗). Now (16.17) for p ∈ (0, q) follows from
[16] or [23, Proposition IV.4.7]. ��

As we saw in Theorem 16.3.2, continuity of M implies pointwise continuity of
the corresponding martingale field N . The following corollaries of Theorem 16.4.1
are devoted to proving the same type of assertions concerning pure discontinuity,
quasi-left continuity, and having accessible jumps.

Let τ be a stopping time. Then τ is called predictable if there exists a sequence
of stopping times (τn)n≥1 such that τn < τ a.s. on {τ > 0} for each n ≥ 1 and
τn ↗ τ a.s. A càdlàg process V : R+ × � → X is called to have accessible
jumps if there exists a sequence of predictable stopping times (τn)n≥1 such that
{t ∈ R+ : &V �= 0} ⊂ {τ1, . . . , τn, . . .} a.s.

Corollary 16.4.5 Let X be a UMD function space over a measure space (S,�,μ),
1 < p < ∞, M : R+ × � → X be a purely discontinuous Lp-martingale with
accessible jumps. Let N be the corresponding martingale field. Then N(·, s) is a
purely discontinuous martingale with accessible jumps for a.e. s ∈ S.

For the proof we will need the following lemma taken from [7, Subsection 5.3].

Lemma 16.4.6 Let X be a Banach space, 1 ≤ p < ∞, M : R+ × � → X be
an Lp-martingale, τ be a predictable stopping time. Then (&Mτ1[0,t ](τ ))t≥0 is an
Lp-martingale as well.

Proof of Corollary 16.4.5 Without loss of generality we can assume that there exists
T ≥ 0 such that Mt = MT for all t ≥ T , and that M0 = 0. Since M has accessible
jumps, there exists a sequence of predictable stopping times (τn)n≥1 such that a.s.

{t ∈ R+ : &M �= 0} ⊂ {τ1, . . . , τn, . . .}.

For each m ≥ 1 define a process Mm : R+ ×�→ X in the following way:

Mm(t) :=
m
∑

n=1

&Mτn1[0,t ](τn), t ≥ 0.

Note that Mm is a purely discontinuous Lp-martingale with accessible jumps by
Lemma 16.4.6. Let Nm be the corresponding martingale field. Then Nm(·, s) is a
purely discontinuous martingale with accessible jumps for almost any s ∈ S due
to Remark 16.3.3. Moreover, for any m ≥ � ≥ 1 and any t ≥ 0 we have that a.s.
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[Nm(·, s)]t ≥ [N�(·, s)]t . Define F : R+ ×�× S → R+ ∪ {+∞} in the following
way:

F(t, ·, s) := lim
m→∞[N

m(·, s)]t , s ∈ S, t ≥ 0.

Note that F(·, ·, s) is a.s. finite for almost any s ∈ S. Indeed, by Theorem 16.4.1
and [27, Theorem 4.2] we have that for any m ≥ 1

∥

∥[Nm]1/2∞
∥

∥

Lp(�;X)
�p,X ‖Mm(T , ·)‖Lp(�;X) ≤ βp,X‖M(T, ·)‖Lp(�;X),

so by Definition 16.2.2(iv), F(·, ·, s) is a.s. finite for almost any s ∈ S and

∥

∥F
1/2∞
∥

∥

Lp(�;X)
= ∥∥F 1/2

T

∥

∥

Lp(�;X)
= lim

m→∞
∥

∥[Nm]1/2
T

∥

∥

Lp(�;X)

�p,X lim sup
m→∞

‖Mm(T , ·)‖Lp(�;X) �p,X ‖M(T, ·)‖Lp(�;X).

Moreover, for almost any s ∈ S we have that F(·, ·, s) is pure jump and

{t ∈ R+ : &F �= 0} ⊂ {τ1, . . . , τn, . . .}.

Therefore to this end it suffices to show that F(s) = [N(s)] a.s. on � for a.e. s ∈ S.
Note that by Definition 16.2.2(iv),

∥

∥(F − [Nm])1/2(∞)
∥

∥

Lp(�;X)
→ 0, m→∞ (16.18)

so by Theorem 16.4.1 (Mm(T ))m≥1 is a Cauchy sequence in Lp(�;X). Let ξ be
its limit, M0 : R+ × � → X be a martingale such that M0(t) = E(ξ |Ft ) for all
t ≥ 0. Then by [27, Proposition 2.14] M0 is purely discontinuous. Moreover, for
any stopping time τ a.s.

&M0
τ = lim

m→∞&Mm
τ = lim

m→∞&Mτ1{τ1,...,τm}(τ ) = &Mτ ,

where the latter holds since the set {τ1, . . . , τn, . . .} exhausts the jump times of M .
Therefore M = M0 since both M and M0 are purely discontinuous with the same
jumps, and hence [N] = F (where F(s) = [M0(s)] by (16.18)). Consequently
N(·, ·, s) is purely discontinuous with accessible jumps for almost all s ∈ S. ��
Remark 16.4.7 Note that the proof of Corollary 16.4.5 also implies that Mm

t → Mt

in Lp(�;X) for each t ≥ 0.

A càdlàg process V : R+ × � → X is called quasi-left continuous if &Vτ = 0
a.s. for any predictable stopping time τ .

Corollary 16.4.8 Let X be a UMD function space over a measure space (S,�,μ),
1 < p < ∞, M : R+ × � → X be a purely discontinuous quasi-left continuous
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Lp-martingale. Let N be the corresponding martingale field. Then N(·, s) is a
purely discontinuous quasi-left continuous martingale for a.e. s ∈ S.

The proof will exploit the random measure theory. Let (J,J ) be a measurable
space. Then a family μ = {μ(ω; dt, dx), ω ∈ �} of nonnegative measures on
(R+ × J ;B(R+)⊗ J ) is called a random measure. A random measure μ is called
integer-valued if it takes values in N ∪ {∞}, i.e. for each A ∈ B(R+)⊗F ⊗ J one
has that μ(A) ∈ N ∪ {∞} a.s., and if μ({t} × J ) ∈ {0, 1} a.s. for all t ≥ 0.

Let X be a Banach space, μ be a random measure, F : R+ × � × J → X be
such that

∫

R+×J ‖F‖ dμ < ∞ a.s. Then the integral process ((F # μ)t )t≥0 of the
form

(F # μ)t :=
∫

R+×J

F (s, ·, x)1[0,t ](s)μ(·; ds, dx), t ≥ 0,

is a.s. well-defined.
Any integer-valued optional P ⊗ J -σ -finite random measure μ has a compen-

sator: a unique predictable P ⊗ J -σ -finite random measure ν such that E(W #

μ)∞ = E(W # ν)∞ for each P ⊗ J -measurable real-valued nonnegative W (see
[12, Theorem II.1.8]). For any optional P ⊗ J -σ -finite measure μ we define the
associated compensated random measure by μ̄ = μ− ν.

Recall that P denotes the predictable σ -algebra on R+×� (see [13] for details).
For each P ⊗ J -strongly-measurable F : R+ × � × J → X such that E(‖F‖ #

μ)∞ <∞ (or, equivalently,E(‖F‖#ν)∞ <∞, see the definition of a compensator
above) we can define a process F # μ̄ by F # μ − F # ν. Then this process is a
purely discontinuous local martingale. We will omit here some technicalities for the
convenience of the reader and refer the reader to [12, Chapter II.1], [7, Subsection
5.4–5.5], and [14, 19, 20] for more details on random measures.

Proof of Corollary 16.4.8 Without loss of generality we can assume that there exists
T ≥ 0 such that Mt = MT for all t ≥ T , and that M0 = 0. Let μ be a random
measure defined on R+ ×X in the following way

μ(A× B) =
∑

t≥0

1A(t)1B\{0}(&Mt),

where A ⊂ R+ is a Borel set, and B ⊂ X is a ball. For each k, � ≥ 1 we define a
stopping time τk,� as follows

τk,� = inf{t ∈ R+ : #{u ∈ [0, t] : ‖&Mu‖X ∈ [1/k, k]} = �}.

Since M has càdlàg trajectories, τk,� is a.s. well-defined and takes its values in
[0,∞]. Moreover, τk,� → ∞ for each k ≥ 1 a.s. as � → ∞, so we can find a
subsequence (τkn,�n)n≥1 such that kn ≥ n for each n ≥ 1 and infm≥n τkm,�m → ∞
a.s. as n → ∞. Define τn = infm≥n τkm,�m and define Mn := (1[0,τn]1Bn) # μ̄,
where μ̄ = μ − ν is such that ν is a compensator of μ and Bn = {x ∈ X : ‖x‖ ∈
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[1/n, n]}. Then Mn is a purely discontinuous quasi-left continuous martingale by
[7]. Moreover, a.s.

&Mn
t = &Mt1[0,τn](t)1[1/n,n](‖&Mt‖), t ≥ 0.

so by [27] Mn is an Lp-martingale (due to the weak differential subordination of
purely discontinuous martingales).

The rest of the proof is analogous to the proof of Corollary 16.4.5 and uses the
fact that τn →∞ monotonically a.s. ��

Let X be a Banach space. A local martingale M : R+ × � → X is called to
have the canonical decomposition if there exist local martingales Mc,Mq,Ma :
R+ × � → X such that Mc is continuous, Mq and Ma are purely discontinuous,
Mq is quasi-left continuous, Ma has accessible jumps, Mc

0 = M
q
0 = 0, and M =

Mc + Mq + Ma . Existence of such a decomposition was first shown in the real-
valued case by Yoeurp in [30], and recently such an existence was obtained in the
UMD space case (see [27, 28]).

Remark 16.4.9 Note that if a local martingale M has some canonical decomposi-
tion, then this decomposition is unique (see [13, 27, 28, 30]).

Corollary 16.4.10 Let X be a UMD Banach function space, 1 < p < ∞, M :
R+ × � → X be an Lp-martingale. Let N be the corresponding martingale field.
Let M = Mc + Mq + Ma be the canonical decomposition, Nc, Nq , and Na be
the corresponding martingale fields. Then N(s) = Nc(s) + Nq(s) + Na(s) is the
canonical decomposition of N(s) for a.e. s ∈ S. In particular, if M0 = 0 a.s., then M

is continuous, purely discontinuous quasi-left continuous, or purely discontinuous
with accessible jumps if and only if N(s) is so for a.e. s ∈ S.

Proof The first part follows from Theorem 16.3.2, Corollaries 16.4.5 and 16.4.8
and the fact that N(s) = Nc(s)+Nq(s)+Na(s) is then a canonical decomposition
of a local martingale N(s) which is unique due to Remark 16.4.9. Let us show the
second part. One direction follows from Theorem 16.3.2, Corollaries 16.4.5 and
16.4.8. For the other direction assume that N(s) is continuous for a.e. s ∈ S. Let
M = Mc + Mq + Ma be the canonical decomposition, Nc, Nq , and Na be the
corresponding martingale fields of Mc, Mq , and Ma . Then by the first part of the
theorem and the uniqueness of the canonical decomposition (see Remark 16.4.9)
we have that for a.e. s ∈ S, Nq(s) = Na(s) = 0, so Mq = Ma = 0, and hence
M is continuous. The proof for the case of pointwise purely discontinuous quasi-
left continuous N or pointwise purely discontinuous N with accessible jumps is
similar. ��
Remark 16.4.11 It remains open whether the first two-sided estimate in (16.9) can
be extended to p = 1. Recently, in [29] the second author has extended the second
two-sided estimate in (16.9) to arbitrary UMD Banach spaces and to p ∈ [1,∞).
Here the quadratic variation has to be replaced by a generalized square function.
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Chapter 17
Concentration Inequalities for Randomly
Permuted Sums

Mélisande Albert

Abstract Initially motivated by the study of the non-asymptotic properties of non-
parametric tests based on permutation methods, concentration inequalities for uni-
formly permuted sums have been largely studied in the literature. Recently, Delyon
et al. proved a new Bernstein-type concentration inequality based on martingale
theory. This work presents a new proof of this inequality based on the fundamental
inequalities for random permutations of Talagrand. The idea is to first obtain a rough
inequality for the square root of the permuted sum, and then, iterate the previous
analysis and plug this first inequality to obtain a general concentration of permuted
sums around their median. Then, concentration inequalities around the mean are
deduced. This method allows us to obtain the Bernstein-type inequality up to con-
stants, and, in particular, to recovers the Gaussian behavior of such permuted sums
under classical conditions encountered in the literature. Then, an application to the
study of the second kind error rate of permutation tests of independence is presented.

Keywords Concentration inequalities · Random permutations
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where
{

ai,j
}

1≤i,j≤n
are real numbers, and � is a uniformly distributed random

permutation of the set {1, . . . , n}. Initially motivated by hypothesis testing in the
non-parametric framework (see [28] for instance), such sums have been largely
studied from an asymptotic point of view in the literature. A first combinatorial
central limit theorem is proved by Wald and Wolfowitz in [28], in the particular case
when the real numbers ai,j are of a product form bi × cj , under strong assumptions
that have been released for instance by Noether [22]. Then, Hoeffding obtains
stronger results in such product case, and generalizes those results to not necessarily
product type real terms ai,j in [15]. More precisely, he considers

di,j = ai,j − 1

n

n
∑

k=1

ak,j − 1

n

n
∑

l=1

ai,l + 1

n2

n
∑

k,l=1

ak,l. (17.1)

In particular, Var(Zn) = 1
n−1

∑n
i=1 d2

i,j . Then he proves (see [15, Theorem 3])
that, if

lim
n→+∞

1
n

∑

1≤i,j≤n d
r
i,j

(

1
n

∑n
i,j=1 d2

i,j

)r/2 = 0, for some r > 2, (17.2)

then the distribution of Zn = ∑n
i=1 ai,�(i) is asymptotically normal, that is, for all

x in R,

lim
n→+∞P

(

Zn − E [Zn] ≤ x
√

Var(Zn)

)

= 1√
2π

∫ x

−∞
e−

y2

2 dy.

He also considers a stronger (in the sense that it implies (17.2)), but simpler
condition in [15, Theorem 3], precisely

max1≤i,j≤n

{∣

∣di,j
∣

∣

}

√

1
n

∑n
i,j=1 d2

i,j

−→
n→+∞ 0, (17.3)

under which such an asymptotic Gaussian limit holds. Similar results have been
obtained later, for instance by Motoo [21], under the following Lindeberg-type
condition that is for all ε > 0,

lim
n→+∞

∑

1≤i,j≤n

(

di,j

d

)2

1∣
∣

∣

di,j
d

∣

∣

∣>ε
= 0, (17.4)

where d2 = n−1∑
1≤i,j≤n d

2
i,j . In particular, Motoo proves in [21] that such

Lindeberg-type condition is weaker than Hoeffding’s ones in the sense that (17.4)
is implied by (17.2) (and thus by (17.3)). A few years later, Hájek [13] proves in
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the product case, that the condition (17.4) is in fact necessary. A simpler proof of
the sufficiency of the Lindeberg-type condition is given by Schneller [25] based on
Stein’s method.

Afterwards, the next step was to study the convergence of the conditional
distribution when the terms ai,j in the general case, or bi × cj in the product case,
are random. Notably, Dwass studies in [10] the limit of the randomly permuted
sum in the product case, where only the cj ’s are random, and proves that the
conditional distribution given the cj ’s converges almost surely (a.s.) to a Gaussian
distribution. Then, Shapiro and Hubert [26] generalized this study to weighted
U -statistics of the form

∑

i �=j bi,j h(Xi,Xj ) where the Xi’s are independent and
identically distributed (i.i.d.) random variables. In a first time, they show some a.s.
asymptotic normality of this statistic. In a second time, they complete Jogdeo’s [17]
work in the deterministic case, proving asymptotic normality of permuted statistics
based on the previous weighted U -statistic. More precisely, they consider the rank
statistic

∑

i �=j bi,j h(XRi ,XRj ), where Ri is the rank of Vi in a sample V1, . . . , Vn of
i.i.d. random variables with a continuous distribution function. In particular, notice
that considering such rank statistics is equivalent to considering uniformly permuted
statistics. In [2], the previous combinatorial central limit theorems is generalized to
permuted sums of non-i.i.d. random variables

∑n
i=1 Yi,�(i), for particular forms of

random variables Yi,j . The main difference with the previous results comes from the
fact that the random variables Yi,j are not necessarily exchangeable.

Hence, the asymptotic behavior of permuted sums has been vastly investigated
in the literature, allowing to deduce good properties for permutation tests based on
such statistics, like the asymptotic size, or the power (see for instance [23] or [2]).
Yet, such results are purely asymptotic, while, in many application fields, such as
neurosciences for instance as described in [2], few exploitable data are available.
Hence, such asymptotic results may not be sufficient. This is why a non-asymptotic
approach is preferred here, leading to concentration inequalities. In the sequel,
unless specified, we will thus drop the index n and denote Z = Zn.

Concentration inequalities have been vastly investigated in the literature, and the
interested reader can refer to the books of Ledoux [18], Massart [19], or the more
recent one of Boucheron et al. [8] for some overall reviews. Yet in many cases,
they provide precise tail bounds for well-behaved functions or sums of independent
random variables. For instance, let us recall the classical Bernstein inequality stated
for instance in [19, Proposition 2.9 and Corollary 2.10].

Theorem 17.1.1 (Bernstein’s Inequality, Massart [19]) Let X1, . . . , Xn be inde-
pendent real valued random variables. Assume that there exists some positive
numbers v and c such that

n
∑

i=1

E
[

X2
i

]

≤ v,
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and for all integers k ≥ 3,

n
∑

i=1

E
[

(Xi)
k+
]

≤ k!
2
vck−2,

where (·)+ = max{·, 0} denotes the positive part.
Let S =∑n

i=1(Xi − E [Xi ]), then for every positive x,

P
(

S ≥ √2vx + cx
)

≤ e−x . (17.5)

Moreover, for any positive t ,

P(S ≥ t) ≤ exp

(

− t2

2(v + ct)

)

. (17.6)

Notice that both forms of Bernstein’s inequality appear in the literature. Yet,
due to its form, (17.5) is rather preferred in statistics, even though (17.6) is more
classical.

The work in this article is based on the pioneering work of Talagrand (see [27] for
a review) who investigates the concentration of measure phenomenon for product
measures. Of main interest here, he proves the following inequality for random
permutations in [27, Theorem 5.1].

Theorem 17.1.2 (Talagrand [27]) Denote by Sn the set of all permutations of
{1, . . . , n}. Define for any subset A ⊂ Sn, and permutation τ ∈ Sn,

UA(τ) =
{

s ∈ {0, 1}n ; ∃σ ∈ A such that ∀1 ≤ i ≤ n, si = 0 "⇒ σ(i) = τ (i)
}

.

Then, consider VA(τ) = ConvexHull (UA(τ)), and

f (A, τ) = min

{

n
∑

i=1

v2
i ; v = (vi)1≤i≤n ∈ VA(τ)

}

.

Then, if Pn denotes the uniform distribution on Sn,

∫

Sn

e
1

16 f (A,τ)dPn(τ ) ≤ 1

Pn(A)
.

Therefore, by Markov’s inequality, for all t > 0,

Pn

(

τ ; f (A, τ) ≥ t2
)

≤ e−t2/16

Pn(A)
. (17.7)
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This result on random permutations is fundamental, and is a key point to many
other non-asymptotic works on random permutations. Among them emerges McDi-
armid’s article [20] in which he derives from Talagrand’s inequality, exponential
concentration inequalities around the median for randomly permuted functions
of the observation under Lipschitz-type conditions and applied to randomized
methods for graph coloring. More recently, Adamczak et al. obtained in [4] some
concentration inequality under convex-Lipschitz conditions when studying the
empirical spectral distribution of random matrices. In particular, they prove the
following theorem (precisely [4, Theorem 3.1]).

Theorem 17.1.3 (Adamczak et al. [4]) Consider x1, . . . , xn in [0, 1] and let
ϕ : [0, 1]n → R be an L-Lipschitz convex function. Let � be a uniform random
permutation of the set {1, . . . , n} and denote Y = ϕ

(

x�(1), . . . , x�(n)

)

. Then, there
exists some positive absolute constant c such that, for all t > 0,

P(Y −E [Y ] ≥ t) ≤ 2 exp

(

−ct2

L2

)

.

Yet, the Lipschitz assumptions may be very restrictive and may not be satisfied
by the functions considered in the application fields (see Sect. 17.3.1 for instance).
Hence, the idea is to exploit the attractive form of a sum. Based on Stein’s method,
initially introduced to study the Gaussian behavior of sums of dependent random
variables, Chatterjee studies permuted sums of non-negative numbers in [9]. He
obtains in [9, Proposition 1.1] the following first Bernstein-type concentration
inequality for non-negative terms around the mean.

Theorem 17.1.4 (Chatterjee [9]) Let
{

ai,j
}

1≤i,j≤n
be a collection of numbers

from [0, 1]. Let Z = ∑n
i=1 ai,�(i), where � is drawn from the uniform distribution

over the set of all permutations of {1, . . . , n}. Then, for any t ≥ 0,

P(|Z −E [Z]| ≥ t) ≤ 2 exp

(

− t2

4E [Z]+ 2t

)

. (17.8)

Notice that because of the expectation term in the right-hand side of (17.8), the
link with Hoeffding’s combinatorial central limit theorem (for instance) is not so
clear.

In [6, Theorem 4.3], this result is sharpened in the sense that this expectation term
is replaced by a variance term, allowing us to provide a non-asymptotic version of
such combinatorial central limit theorem. This result is moreover generalized to any
real numbers (not necessarily non-negative). More precisely, based on martingale
theory, they prove the following result.
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Theorem 17.1.5 (Bercu et al. [6]) Let
{

ai,j
}

1≤i,j≤n
be an array of real numbers

from [−Ma,Ma]. Let Z = ∑n
i=1 ai,�(i), where � is drawn from the uniform

distribution over the set of all permutations of {1, . . . , n}. Then, for any t > 0,

P(|Z −E [Z]| ≥ t) ≤ 4 exp

(

− t2

16(θ 1
n

∑n
i,j=1 a2

i,j +Mat/3)

)

, (17.9)

where θ = 5

2
ln(3)− 2

3
.

In this work, we obtain a similar result (up to constants) but based on a
completely different approach. Moreover, this approach provides a direct proof for
a concentration inequality of a permuted sum around its median.

The present work is organized as follows. In Sect. 17.2 are formulated the main
results. Section 17.2.1 is devoted to the permuted sums of non-negative numbers.
Based on Talagrand’s result, a first rough concentration inequality for the square
root of permuted sum is obtained in Lemma 17.2.1. Then by iterating the previous
analysis and plugging this first inequality, a general concentration of permuted sums
around their median is obtained in Proposition 17.2.1. Finally, the concentration
inequality of Proposition 17.2.2 around the mean is deduced. In Sect. 17.2.2, the
previous inequalities are generalized to permuted sums of not necessarily non-
negative terms in Theorem 17.2.1. Section 17.3 presents an application to the study
of non-asymptotic properties of a permutation independence test in statistics. In
particular, a sharp control of the critical value of the test is deduced from the
main result. The proofs are detailed in Sect. 17.4. Finally, the Appendix contains
technical results for the non-asymptotic control of the second kind error rate of the
permutation test introduced in Sect. 17.3.

17.2 Bernstein-Type Concentration Inequalities
for Permuted Sums

Let us first introduce some general notation. In the sequel, denote by Sn the set of
permutations of {1, 2, . . . , n}. For all collection of real numbers

{

ai,j
}

1≤i,j≤n
, and

for each τ in Sn, consider the permuted sum

Z(τ) =
n
∑

i=1

ai,τ (i).

Let � be a uniform random permutation in Sn, and Z := Z(�). Denote med (Z)

its median, that is which satisfies

P(Z ≥ med (Z)) ≥ 1/2 and P(Z ≤ med (Z)) ≥ 1/2.
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This study is divided in two steps. The first one is restrained to non-negative
terms. The second one extends the previous results to general terms, based on a
trick involving both non-negative and negative parts.

17.2.1 Concentration of Permuted Sums of Non-negative
Numbers

In the present section, consider a non-negative collection of numbers
{

ai,j
}

1≤i,j≤n
.

The proof of the concentration inequality around the median in Proposition 17.2.1
needs a preliminary step which is presented in Lemma 17.2.1. It provides concen-
tration inequality for the square root of the sum. It allows us then by iterating the
same argument, and plugging the obtained inequality to the square root of the sum of

the squares, namely
√

∑n
i=1 a2

i,�(i), to be able to sharpen Chatterjee’s concentration

inequality (17.8).

Lemma 17.2.1 Let
{

ai,j
}

1≤i,j≤n
be a collection of non-negative numbers, and �

be a uniform random permutation in Sn. Consider Z =∑n
i=1 ai,�(i). Then, for all

t > 0,

P

(√
Z ≥ √med (Z)+ t

√

max
1≤i,j≤n

{

ai,j
}

)

≤ 2e−t2/16, (17.10)

and

P

(√
Z ≤ √med (Z)− t

√

max
1≤i,j≤n

{

ai,j
}

)

≤ 2e−t2/16. (17.11)

In particular, one obtains the following two-sided concentration for the square root
of a randomly permuted sum of non-negative numbers,

P

(

∣

∣

∣

√
Z −√med (Z)

∣

∣

∣ > t

√

max
1≤i,j≤n

{

ai,j
}

)

≤ 4e−t2/16.

The idea of the proof is the same that the one of Adamczak et al. in [4,
Theorem 3.1], but with a sum instead of a convex Lipschitz function. In a similar
way, it is based on Talagrand’s inequality for random permutations recalled in
Theorem 17.1.2.

In the following are presented two concentration inequalities in the non-negative
case; the first one around the median, and the second one around the mean. It is well
known that both are equivalent up to constants, but here, both are detailed in order to
give the order of magnitude of the constants. The transition from the median to the
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mean can be obtained thanks to Ledoux’ trick in the proof of [18, Proposition 1.8]
allowing to reduce exponential concentration inequalities around any constant m

(corresponding in our case to med (Z)) to similar inequalities around the mean. This
trick consists in using the exponentially fast decrease around m to upper bound the
difference between m and the mean. Yet, this approach leads to drastic multiplicative
constants (of the order 8e16π as shown in [1]). Better constants can be deduced from
the following lemma.

Lemma 17.2.2 For any real valued random variable X,

|E [X]−med (X)| ≤
√

Var(X).

In particular, we obtain the following results.

Proposition 17.2.1 Let
{

ai,j
}

1≤i,j≤n
be a collection of non-negative numbers and

� be a uniform random permutation in Sn. Consider Z = ∑n
i=1 ai,�(i). Then, for

all x > 0,

P

⎛

⎝|Z −med (Z)| >
√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

x + x max
1≤i,j≤n

{

ai,j
}

⎞

⎠ ≤ 8 exp

(−x

16

)

.

(17.12)

Since in many applications, the concentration around the mean is more adapted,
the following proposition shows that one may obtain a similar behavior around the
mean, at the cost of higher constants.

Proposition 17.2.2 Let
{

ai,j
}

1≤i,j≤n
be a collection of non-negative numbers, and

� be a uniform random permutation in Sn. Consider Z =∑n
i=1 ai,�(i).

Then, for all x > 0,

P

⎛

⎜

⎝
|Z −E [Z]| ≥ 2

√

√

√

√

√

⎛

⎝

1

n

n
∑

i,j=1

a2
i,j

⎞

⎠ x + max
1≤i,j≤n

{

ai,j
}

x

⎞

⎟

⎠
≤ 8e1/16 exp

(

− x

16

)

.

(17.13)

This concentration inequality is called a Bernstein-type inequality restricted to
non-negative sums, due to its resemblance to the standard Bernstein inequality, as
recalled in Theorem 17.1.1. The main difference here lies in the fact that the random
variables in the sum are not independent. Moreover, this inequality implies a more
popular form of Bernstein’s inequality stated in Corollary 17.2.1.
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Corollary 17.2.1 With the same notation and assumptions as in Proposition 17.2.2,
for all t > 0,

P(|Z −E [Z]| ≥ t) ≤ 8e1/16 exp

⎛

⎝

−t2

16
(

4 1
n

∑n
i,j=1 a

2
i,j + 2 max1≤i,j≤n

{

ai,j
}

t
)

⎞

⎠ .

(17.14)

Comment Recall Chatterjee’s result in [9, Proposition 2.1], quoted in Theo-
rem 17.1.4, which can easily be rewritten with our notation, and for a collection
of non-negative numbers not necessarily in [0, 1], by

∀t > 0, P(|Z −E [Z]| ≥ t) ≤ 2 exp

(

−t2

4Ma
1
n

∑n
i,j=1 ai,j + 2Mat

)

,

where Ma denotes the maximum max1≤i,j≤n

{

ai,j
}

. As mentioned in [6], the
inequality in (17.14) is sharper up to constants, because of the quadratic term, since
the inequality

∑n
i,j=1 a2

i,j ≤Ma

∑n
i,j=1 ai,j always holds.

17.2.2 Concentration of Permuted Sums in the General Case

In this section, the collection of numbers
{

ai,j
}

1≤i,j≤n
is no longer assumed

to be non-negative. The following general concentration inequality for randomly
permuted sums directly derives from Proposition 17.2.2.

Theorem 17.2.1 Let
{

ai,j
}

1≤i,j≤n
be a collection of any real numbers, and � be

a uniform random permutation in Sn. Consider Z = ∑n
i=1 ai,�(i). Then, for all

x > 0,

P

⎛

⎜

⎝
|Z −E [Z]| ≥ 2

√

√

√

√

√2

⎛

⎝

1

n

n
∑

i,j=1

a2
i,j

⎞

⎠ x + 2 max
1≤i,j≤n

{∣

∣ai,j
∣

∣

}

x

⎞

⎟

⎠
≤ 16e1/16 exp

(

− x

16

)

.

(17.15)

Once again, the obtained inequality is a Bernstein-type inequality. Moreover,
it is also possible to obtain a more popular form of Bernstein-type inequalities
applying the same trick based on the non-negative and the negative parts from
Corollary 17.2.1.

Corollary 17.2.2 With the same notation as in Theorem 17.2.1, for all t > 0,

P(|Z −E [Z]| ≥ t) ≤ 16e1/16 exp

(

−t2

256
(

Var(Z)+max1≤i,j≤n

{∣

∣ai,j
∣

∣

}

t
)

)

.
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Comments One recovers a Gaussian behavior of the centered permuted sum
obtained by Hoeffding in [15, Theorem 3] under the same assumptions. Indeed,
in the proof of Corollary 17.2.2, one obtains the following intermediate result
(see (17.41)), that is

P(|Z −E [Z]| ≥ t) ≤ 16e1/16 exp

⎛

⎝

−t2

64
(

4 1
n

∑n
i,j=1 d

2
i,j +max1≤i,j≤n

{∣

∣di,j
∣

∣

}

t
)

⎞

⎠ ,

where the di,j ’s are defined in (17.1). Yet, Var(Z) = (n−1)−1∑n
i,j=1 d2

i,j (see [15,
Theorem 2]). Hence, applying this inequality to

t = x
√

Var(Z) ≥ x

√

√

√

√

1

n

n
∑

i,j=1

d2
i,j ,

for x > 0 leads to

P
(

|Z − E [Z]| ≥ x
√

Var(Z)

)

≤ 16e1/16 exp

⎛

⎜

⎜

⎜

⎜

⎝

−x2

256

(

1+ max1≤i,j≤n{|di,j |}
√

1
n

∑n
i,j=1 d2

i,j

x

)

⎞

⎟

⎟

⎟

⎟

⎠

,

Hence, under Hoeffding’s simpler condition (17.3), namely

lim
n→+∞

max1≤i,j≤n d
2
i,j

1
n

∑n
i,j=1 d2

i,j

= 0,

one recovers, (denoting Z = Zn depending on n),

lim
n→+∞P

(

|Zn − E [Zn]| ≥ x
√

Var(Zn)
)

≤ 16e1/16e−x2/256,

which is a Gaussian tail that is, up to constants, close in spirit to the one obtained
by Hoeffding in [15, Theorem 3].

17.3 Application to Independence Testing

17.3.1 Statistical Motivation

Let X represent a separable set. Given an i.i.d. n-sampleXn = (X1, . . . , Xn), where
each Xi is a couple (X1

i , X
2
i ) in X 2 with distribution P of marginals P 1 and P 2,
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we aim at testing the null hypothesis (H0) “P = (P 1 ⊗P 2)” against the alternative
(H1) “P �= (P 1 ⊗ P 2)”. The considered test statistic is defined by

T (Xn) = 1

n− 1

⎛

⎝

n
∑

i=1

ϕ(X1
i , X

2
i )−

1

n

n
∑

i,j=1

ϕ(X1
i , X

2
j )

⎞

⎠ , (17.16)

where ϕ is a measurable real-valued function on X 2. Denoting for any real-valued
measurable function g on X 2,

EP [g] =
∫

X 2
g
(

x1, x2
)

dP
(

x1, x2
)

and E⊥⊥[g] =
∫

X 2
g
(

x1, x2
)

dP 1
(

x1
)

dP 2
(

x2
)

,

(17.17)

one may notice that, T (Xn) is an unbiased estimator of

E [T (Xn)] = EP [ϕ]−E⊥⊥[ϕ] ,

which is equal to 0 under (H0).
For more details on the choice of the test statistic, the interested reader can

refer to [2] (motivated by synchrony detection in neuroscience for instance). The
particular case where X = [0, 1] and ϕ is a two-dimensional isotropic Haar wavelet
is studied in [1, Chapter 4] and recalled below. More precisely, consider a resolution
scale j in N, a translation k = (k1, k2) in Kj := {0, 1, . . . , 2j − 1}2. Consider the
functions defined for all (x1, x2) in [0, 1]2 by

ϕ0(x
1, x2) = φ(x1)φ(x2), and

⎧

⎨

⎩

ϕ(1,j,k)(x
1, x2) = φj,k1(x

1)ψj,k2(x
2),

ϕ(2,j,k)(x
1, x2) = ψj,k1(x

1)φj,k2(x
2),

ϕ(3,j,k)(x
1, x2) = ψj,k1(x

1)ψj,k2 (x
2),

where φ = 1[0,1) and ψ = 1[0,1/2) − 1[1/2,1) are respectively the one-dimensional
Haar father and Haar mother wavelets and

�j,k(·) = 2j/2�(2j · −k)

denotes the dilated/translated wavelet at scale j in N for � being either φ or ψ .
Notice that Kj corresponds to the set of translations k such that for any 1 ≤ i ≤ 3,
the intersection between the supports of the wavelets ϕ(i,j,k) and [0, 1)2 is not empty.

Then the function ϕ is taken out of the family {ϕδ, δ ∈ �}, with

� = {0} ∪ {(i, j, k) ∈ {1, 2, 3} ×N×Kj

}

,

which constitutes an orthonormal basis of L2
([0, 1]2). Notice that in this case, the

Lipschitz assumptions of Adamczak et al. (see Theorem 17.1.3) are not satisfied,
since the Haar wavelet functions are not even continuous.



352 M. Albert

The critical value of the test is obtained from the permutation approach, inspired
by Hoeffding [16], and Romano [23]. Let � be a uniformly distributed random
permutation of {1, . . . , n} independent of Xn and consider the permuted sample

X�
n = (X�

1 , . . . X�
n ), where ∀1 ≤ i ≤ n, X�

i = (X1
i , X

2
�(i)),

obtained from permuting only the second coordinates. Then, under (H0), the
original sampleXn and the permuted oneX�

n have the same distribution. Hence, the
critical value of the upper-tailed test, denoted by q1−α(Xn), is the (1 − α)-quantile
of the conditional distribution of the permuted statistic T (X�

n ) given the sample
Xn, where the permuted test statistic is equal to

T (X�
n ) = 1

n− 1

⎛

⎝

n
∑

i=1

ϕ(X1
i , X

2
�(i))−

1

n

n
∑

i,j=1

ϕ(X1
i , X

2
j )

⎞

⎠ .

More precisely, given Xn, if

T (1)(Xn) ≤ T (2)(Xn) ≤ · · · ≤ T (n!)(Xn)

denote the ordered values of all the permuted test statistic T (Xτ
n), when τ describes

the set of all permutations of {1, . . . , n}, then the critical value is equal to

q1−α(Xn) = T (n!−1n!α2)(Xn). (17.18)

The corresponding test rejects the null hypothesis when T (Xn) > q1−α(Xn), here
denoted by

&α(Xn) = 1T (Xn)>q1−α(Xn). (17.19)

In [2], the asymptotic properties of such test are studied. Based on a combina-
torial central limit theorem in a non-i.i.d. case, the test is proved to be, under mild
conditions, asymptotically of prescribed size, and power equal to one under any rea-
sonable alternatives. Yet, as explained above, such purely asymptotic properties may
be insufficient when applying these tests in neuroscience for instance. Moreover, the
delicate choice of ϕ, generally out of a parametric family {ϕδ}δ (which reduces to
the choice of the parameter δ), is a real question, especially, in neuroscience, where
it has some biological meaning, as mentioned in [2] and [3]. A possible approach
to overcome this issue is to aggregate several tests for different parameters δ, and
reject independence if at least one of them does. In particular, this approach should
give us information on how to choose this parameter. Yet, to do so, non-asymptotic
controls are necessary.

From a non-asymptotic point of view, since the test is non-asymptotically of
prescribed level by construction, remains the non-asymptotic control of the second
kind error rate, that is the probability of wrongly accepting the null hypothesis. In
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the spirit of [11, 12, 24], the idea is to study the uniform separation rates of testing,
in order to study the optimality in the minimax sense (see [5]).

From now on, consider an alternative P satisfying (H1), and an i.i.d. sample
Xn from such distribution P . Assume moreover that the alternative satisfies
EP [ϕ] > E⊥⊥[ϕ], that is E [T (Xn)] > 0. The initial step is to find some
condition on P guaranteeing the control of the second kind error rate, namely
P(&α(Xn) = 0), by a prescribed value β > 0. Intuitively, since the expectation of
the test statistic E [T (Xn)] is equal to zero under the null hypothesis, the test should
be more efficient in rejecting (H0) for large values of this expectation. So, the aim is
to find conditions of the form E [T (Xn)] ≥ s for some threshold s to be determined.
Yet, one of the main difficulties here comes from the randomness of the critical
value. The idea, as in [11], is thus to introduce qα

1−β/2 the (1− β/2)-quantile of the
critical value q1−α(Xn) and deduce from Chebychev’s inequality (see section “A
First Condition Ensuing from Chebychev’s Inequality” in the Appendix), that the
second kind error rate is controlled by β as soon as

E [T (Xn)] ≥ qα
1−β/2 +

√

2

β
Var(T (Xn)). (17.20)

Usually, the goal in general minimax approaches is to express, for well-chosen
functions ϕ, some distance between the alternative P and the null hypothesis (H0)

in terms of E [T (Xn)] for which minimax lower-bounds are known (see for instance
[11, 12]). The objective is then to control, up to a constant, such distance (and
in particular each term in the right-hand side of (17.20)) by the minimax rate
of independence testing with respect to such distance on well-chosen regularity
subspaces of alternatives, in order to prove the optimality of the method from a
theoretical point of view. The interested reader could refer to the thesis [1, Chapter
4] for more details about this kind of development in the density case. It is not in
the scope of the present article to develop such minimax theory in the general case,
but to provide some general tools providing some sharp control of each term in the
right-hand side of (17.20) which consists in a very first step of this approach. Some
technical computations imply that the variance term can be upper bounded, up to
a multiplicative constant, by n−1(EP

[

ϕ2
]+ E⊥⊥

[

ϕ2
]

) (see Lemma 17.3.1). Hence,
the challenging part relies in the quantile term. At this point, several ideas have been
explored.

17.3.2 Why Concentration Inequalities Are Necessary

A first idea to control the conditional quantile of the permuted test statistic is
based on the non-asymptotic control of the critical value obtained in section
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“Control of the Critical Value Based on Hoeffding’s Approach” in the Appendix
(see Eq. (17.49)), following Hoeffding’s idea (see [16, Theorem 2.1]), that leads to
the condition

E [T (Xn)] ≥ 4√
α

√

2

β

EP

[

ϕ2
]+E⊥⊥

[

ϕ2
]

n
. (17.21)

The proof of this result is detailed in section “A First Condition Ensuing from
Hoeffding’s Approach” in the Appendix. Yet, this result may not be sharp enough,
especially in α. Indeed, as explained above, the next step consists in aggregating
several tests for different functions ϕ out of a parametric family {ϕδ}δ in a purpose
of adaptivity. Generally, when aggregating tests, as in multiple testing methods,
the multiplicity of the tests has to be taken into account. In particular, the single
prescribed level of each individual test should be corrected. Several corrections
exist, such as the Bonferroni one, which consists in dividing the global desired level
α by the number of tests M . Yet, for such correction, the lower-bound in (17.21)
comes with a cost in

√
M , which is too large to provide optimal rates. Even with

more sophisticated corrections than the Bonferroni one (see, e.g., [11, 12, 24]), the
control by a term of order

√
1/α is too large, since classically in the literature, the

dependence on α should be of the order of
√

ln(1/α). Hence, the bound ensuing
from this first track being not sharp enough, the next idea was to investigate other
non-asymptotic approaches for permuted sums.

Such approaches have also been studied in the literature. For instance, Ho and
Chen [14] obtain non-asymptotic Berry-Esseen type bounds in the Lp-distance
between the cumulative distribution function (c.d.f.) of the standardized permuted
sum of i.i.d. random variables and the c.d.f. of the normal distribution, based
on Stein’s method. In particular, they obtain the rate of convergence to a normal
distribution in Lp-distance under Lindeberg-type conditions. Then, Bolthausen [7]
considers a different approach, also based on Stein’s method allowing to extend
Ho and Chen’s results in the non-identically distributed case. More precisely, he
obtains bounds in the L∞-distance in the non-random case. In particular, in the
deterministic case (which can easily be generalized to random cases), considering
the notation introduced above, he obtains the following non-asymptotic bound:

sup
x∈R

∣

∣

∣P
(

Z − E [Z] ≤ x
√

Var(Z)

)

−�0,1(x)

∣

∣

∣ ≤ C

n
√

Var(Z)
3

n
∑

i,j=1

∣

∣di,j
∣

∣

3
,

where C is an absolute constant, and �0,1 denotes the standard normal distribution
function. In particular, when applying this result to answer our motivation by
considering random variables ϕ(X1

i , X
2
j ) instead of the deterministic terms ai,j , and

working conditionally on the sample Xn, the permuted statistic T (X�
n ) corresponds
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to (n − 1)−1(Z − E [Z]). Therefore, the previous inequality implies that, for all t
in R,

P
(

T
(

X�
n

)

> t
∣

∣Xn

) ≤
⎡

⎣1−�0,1

⎛

⎝

t
√

Var
(

T
(

X�
n

)∣

∣Xn

)

⎞

⎠

⎤

⎦

+ C

n(n− 1)2/3
√

Var
(

T
(

X�
n

)∣

∣Xn

)
3

∑

i,j

∣

∣Di,j

∣

∣

3
,

(17.22)

where Di,j is defined by

Di,j = ϕ(X1
i , X

2
j )−

1

n

n
∑

l=1

ϕ(X1
i , X

2
l )−

1

n

n
∑

k=1

ϕ(X1
k ,X

2
j )+

1

n2

n
∑

k,l=1

ϕ(X1
k ,X

2
l ).

Yet, by definition of conditional quantiles, the critical value q1−α(Xn) is the smallest
value of t such that P(T (Xn) > t|Xn) ≤ α. Hence, considering (17.22), one can
easily make the first term of the sum in the right-hand side of the inequality as small
as one wants by choosing t large enough. However, the second term being fixed,
nothing guarantees that the upper-bound in (17.22) can be constrained to be smaller
than α. Thus, this result cannot be applied in order to control non-asymptotically
the critical value. Concentration inequalities seem thus to be adequate here, as
they provide sharp non-asymptotic results, with usually exponentially small controls
which leads to the desired logarithmic dependency in α, as mentioned above.

17.3.3 A Sharp Control of the Conditional Quantile and a New
Condition Guaranteeing a Control of the Second Kind
Error Rate

Sharp controls of the quantiles are provided in the following proposition.

Proposition 17.3.1 Consider the same notation as in Sect. 17.3.1 and let qα
1−β/2 be

the (1− β/2)-quantile of the conditional quantile q1−α(Xn). Then, there exists two
universal positive constants C′ and c0 such that

q1−α(Xn) ≤ C′

n− 1

⎧

⎨

⎩

√

√

√

√

1

n

n
∑

i,j=1

ϕ2(X1
i , X

2
j )

√

ln
(c0

α

)

+ ‖ϕ‖∞ ln
(c0

α

)

⎫

⎬

⎭

.

(17.23)
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As a consequence, there exists a universal positive constants C such that

qα
1−β/2 ≤ C

⎧

⎨

⎩

√

2

β
ln
(c0

α

)

⎛

⎝

√

EP

[

ϕ2
]

n
+
√

E⊥⊥
[

ϕ2
]

√
n

⎞

⎠+ ‖ϕ‖∞
n

ln
(c0

α

)

⎫

⎬

⎭

.

(17.24)

Moreover, a control of the variance term is obtained in the following lemma
based on the Cauchy-Schwartz inequality.

Lemma 17.3.1 Let n ≥ 4 and Xn be a sample of n i.i.d. random variables
with distribution P and marginals P 1 and P 2. Let T be the test statistic defined
in (17.16), and EP [·] and E⊥⊥[·] be notation introduced in (17.17). Then, if both
EP

[

ϕ2
]

< +∞ and E⊥⊥
[

ϕ2
]

< +∞,

Var(T (Xn)) ≤ 1

n

(

√

EP

[

ϕ2
]+ 2

√

E⊥⊥
[

ϕ2
]

)2

.

Proposition 17.3.1 and Lemma 17.3.1 both imply that the right-hand side
of (17.20) is upper bounded by

C′′
⎧

⎨

⎩

√

2

β

[

ln
(c0

α

)

+ 1
]

(

EP

[

ϕ2
]+E⊥⊥

[

ϕ2
])

n
+ ‖ϕ‖∞

n
ln
(c0

α

)

⎫

⎬

⎭

, (17.25)

where C′′ is a universal constant.
Indeed, the control of qα

1−β/2 is implied by (17.24) combined with the concavity
property of the square-root function. Lemma 17.3.1 directly implies that the
variance term satisfies

Var(T (Xn)) ≤ 8

n

(

EP

[

ϕ2
]

+E⊥⊥
[

ϕ2
])

,

Finally, if E [T (Xn)] is larger than the quantity in (17.25), then condition (17.20)
is satisfied which directly provides that P(&α(Xn) = 0) ≤ β, that is the second
kind error rate of the test &α is less than or equal to the prescribed value β. One may
notice that this time, the dependence in α is, as expected, of the order of

√
ln(1/α).

17.4 Proofs

17.4.1 Proof of Lemma 17.2.1

Sketch of Proof From now on, fix t > 0. Recall the notation introduced by
Talagrand in Theorem 17.1.2. The main purpose of these notation is to introduce
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some notion of distance between a permutation τ in Sn and a subset A of Sn. To
do so, the idea is to reduce the set of interest to a simpler one, that is [0, 1]n, by
considering

UA(τ) =
{

s ∈ {0, 1}n ; ∃σ ∈ A such that ∀1 ≤ i ≤ n, si = 0 "⇒ σ(i) = τ (i)
}

.

One may notice that the permutation τ belongs to A if and only if 0 belongs to the
set UA(τ). Hence, the corresponding distance between the permutation τ and the
set A is coded by the distance between 0 and the set UA(τ) and thus defined by

f (A, τ) = min

{

n
∑

i=1

v2
i ; v = (vi)1≤i≤n ∈ VA(τ)

}

,

where VA(τ) = ConvexHull (UA(τ)). One may notice in particular that A contains
τ if and only if the distance f (A, τ) = 0.

The global frame of the proof of Lemma 17.2.1 (and also Proposition 17.2.1)
relies on the following steps. The first step consists in proving that

P

(√
Z ≥ √CA + t

√

max
1≤i,j≤n

{

ai,j
}

)

≤ e−t2/16

P(Z ∈ A)
, (17.26)

for some subset A of Sn of the shape A = {σ ∈ Sn ; Z(σ) ≤ CA} for some
constant CA to be chosen later. For this purpose, since Talagrand’s inequality for
random permutations (see Theorem 17.1.2) provides that

P
(

f (A,�) ≥ t2
)

≤ e−t2/16

P(� ∈ A)
,

it is sufficient to prove that

P
(

f (A,�) ≥ t2
)

≥ P

(√
Z ≥ √CA + t

√

max
1≤i,j≤n

{

ai,j
}

)

,

to obtain (17.26). To do so, the idea, as in [4], is to show that the assertion

f (A,�) < t2 implies that
√
Z <

√
CA+ t

√

max1≤i,j≤n

{

ai,j
}

, and to conclude by
contraposition.

Then, the two following steps consist in choosing appropriate constants CA

in (17.26) depending on the median of Z, such that both

P
(√

Z ≥ √CA + t

√

max1≤i,j≤n

{

ai,j
}

)

and P(Z ∈ A) are greater than 1/2, in

order to control both probabilities

P

(√
Z ≥ √med (Z)+ t

√

max
1≤i,j≤n

{

ai,j
}

)

and P

(√
Z ≤ √med (Z) − t

√

max
1≤i,j≤n

{

ai,j
}

)
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respectively in (17.10) and (17.11).

First Step: Preliminary Study Assume f (A,�) < t2. Then, by definition of the
distance f , there exists some s1, . . . , sm in UA(�), and some non-negative weights
p1, . . . , pm satisfying

∑m
j=1 pj = 1 such that

n
∑

i=1

⎡

⎢

⎣

⎛

⎝

m
∑

j=1

pj s
j

i

⎞

⎠

2
⎤

⎥

⎦
< t2.

For each 1 ≤ j ≤ m, since sj belongs to UA(�), one may consider a permutation
σj in A associated to sj (that is satisfying s

j
i = 0 "⇒ σj (i) = �(i)). Then, since

the ai,j are non-negative, and from the Cauchy-Schwartz inequality,

Z −
m
∑

j=1

pjZ(σj ) =
n
∑

i=1

m
∑

j=1

pj

(

ai,�(i) − ai,σj (i)
)

=
n
∑

i=1

m
∑

j=1

pj

(

ai,�(i) − ai,σj (i)
)

s
j

i

≤
n
∑

i=1

⎡

⎣

⎛

⎝

m
∑

j=1

pj s
j
i

⎞

⎠ ai,�(i)

⎤

⎦

≤

√

√

√

√

√

n
∑

i=1

⎛

⎝

m
∑

j=1

pj s
j
i

⎞

⎠

2√
√

√

√

n
∑

i=1

a2
i,�(i)

< t

√

max
1≤i,j≤n

{

ai,j
}
√
Z.

Thus, as the σj ’s all belong to A = {σ ; Z(σ) ≤ CA},

Z < CA + t

√

max
1≤i,j≤n

{

ai,j
}
√
Z.

Therefore, by solving the second-order polynomial in
√
Z above, one obtains

√
Z <

t

√

max1≤i,j≤n

{

ai,j
}+

√

t2 max1≤i,j≤n

{

ai,j
}+ 4CA

2
≤ t

√

max
1≤i,j≤n

{

ai,j
}+√CA.
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Finally, by contraposition,

P

(√
Z ≥ √CA + t

√

max
1≤i,j≤n

{

ai,j
}

)

≤ P
(

f (A,�) ≥ t2
)

,

which, combined with (17.7) of Theorem 17.1.2 provides (17.26).

Second Step: Proof of (17.10) Taking CA = med (Z) guaranteesP(Z ∈ A) ≥ 1/2
and thus, (17.26) provides (17.10).

Third Step: Proof of (17.11) Taking CA =
(√

med (Z)− t

√

max1≤i,j≤n

{

ai,j
}

)2

implies

P

(√
Z ≥ √CA + t

√

max
1≤i,j≤n

{

ai,j
}

)

= P
(√

Z ≥ √med (Z)
)

= P(Z ≥ med (Z)) ≥ 1

2
.

So finally, again by (17.26),

P

(√
Z ≤ √med (Z)− t

√

max
1≤i,j≤n

{

ai,j
}

)

= P(Z ∈ A)

≤ e−t2/16

P
(√

Z ≥ √CA + t

√

max1≤i,j≤n

{

ai,j
}

)

≤ 2e−t2/16,

which ends the proof of the Lemma.

17.4.2 Proof of Lemma 17.2.2

Let X be any real random variable. Recall that

med (X) ∈ argmin
m∈R

E [|X −m|] .

In particular, thanks to Jensen’s inequality,

|E [X]−med (X)| ≤ E [|X −med (X)|]
≤ E [|X −E [X]|]
≤
√

E
[

(X −E [X])2]

≤ √Var(X). (17.27)
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17.4.3 Proof of Proposition 17.2.1

From now on, fix x > 0, and consider t = x2. This proof is again based
on Talagrand’s inequality for random permutations, combined with (17.10)
in Lemma 17.2.1. It follows exactly the same progression as in the proof of
Lemma 17.2.1; the preliminary step consists in working with subsets A ⊂ Sn

of the form A = {σ ∈ Sn ; Z(σ) ≤ CA} for some constant CA, in order to obtain
for all v > 0,

P

⎛

⎜

⎝
Z ≥ CA + t

⎛

⎜

⎝

√

√

√

√

√med

⎛

⎝

n
∑

i=1

a2
i,�(i)

⎞

⎠+ v max
1≤i,j≤n

{

ai,j
}

⎞

⎟

⎠

⎞

⎟

⎠
≤ e−t2/16

P(Z ∈ A)
+ 2e−v2/16.

(17.28)

The second and third step consist in picking up a well-chosen constant CA and a
well-chosen v > 0 in order to obtain respectively

P

⎛

⎜

⎝
Z ≥ med (Z)+ t

⎛

⎜

⎝

√

√

√

√

√med

⎛

⎝

n
∑

i=1

a2
i,�(i)

⎞

⎠+ (t ∨ C0) max
1≤i,j≤n

{

ai,j
}

⎞

⎟

⎠

⎞

⎟

⎠
≤ 4e−t2/16,

(17.29)

and

P

⎛

⎜

⎝
Z ≤ med (Z)− t

⎛

⎜

⎝

√

√

√

√

√med

⎛

⎝

n
∑

i=1

a2
i,�(i)

⎞

⎠+ (t ∨ C0) max
1≤i,j≤n

{

ai,j
}

⎞

⎟

⎠

⎞

⎟

⎠
≤ 4e−t2/16,

(17.30)

where C0 = 4
√

ln(8). The final step combines (17.29) and (17.30) in order to
prove (17.12).

First Step: Preliminary Study Let A = {σ ∈ Sn ; Z(σ) ≤ CA} with CA a
general constant, and fix v > 0. Assume, this time, that both

f (A,�) < t2 and

√

√

√

√

n
∑

i=1

a2
i,�(i) <

√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ v max
1≤i,j≤n

{

ai,j
}

.

(17.31)
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Then, as in the preliminary study of the proof of Lemma 17.2.1, from the first
assumption in (17.31), there exists some s1, . . . , sm in UA(�), and some non-
negative weights p1, . . . , pm satisfying

∑m
j=1 pj = 1 such that

n
∑

i=1

⎡

⎢

⎣

⎛

⎝

m
∑

j=1

pj s
j

i

⎞

⎠

2
⎤

⎥

⎦
< t2.

For each 1 ≤ j ≤ m, consider σj in A associated to sj , that is a permutation σj

in A satisfying s
j
i = 0 "⇒ σj (i) = �(i). Then, combining the Cauchy-Shwartz

inequality with the second assumption in (17.31) leads to

Z −
m
∑

j=1

pjZ(σj ) =
n
∑

i=1

m
∑

j=1

pj

(

ai,�(i) − ai,σj (i)
)

s
j

i

≤
n
∑

i=1

⎡

⎣

⎛

⎝

m
∑

j=1

pj s
j
i

⎞

⎠ ai,�(i)

⎤

⎦

≤

√

√

√

√

√

n
∑

i=1

⎛

⎝

m
∑

j=1

pj s
j
i

⎞

⎠

2√
√

√

√

n
∑

i=1

a2
i,�(i)

< t

⎛

⎝

√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ v max
1≤i,j≤n

{

ai,j
}

⎞

⎠ .

Notice that here, the reasoning begins exactly as in the proof of Lemma 17.2.1. Yet,
the second assumption in (17.31), which can be controlled using that lemma, allows
us to sharpen the inequality. Thus, as the σj ’s all belong to A = {σ ; Z(σ) ≤ CA},

Z < CA + t

⎛

⎝

√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ v max
1≤i,j≤n

{

ai,j
}

⎞

⎠ . (17.32)

Hence, by contraposition of (17.31) "⇒ (17.32), one obtains

P

⎛

⎝Z ≥ CA + t

⎛

⎝

√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ v max
1≤i,j≤n

{

ai,j
}

⎞

⎠

⎞

⎠

≤ P
(

f (A,�) ≥ t2
)

+P
⎛

⎝

√

√

√

√

n
∑

i=1

a2
i,�(i)

≥
√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ v max
1≤i,j≤n

{

ai,j
}

⎞

⎠ ,

and (17.28) follows from Theorem 17.1.2 and (17.10) in Lemma 17.2.1.
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Second Step: Proof of (17.29) Consider CA = med (Z) so that P(Z ∈ A) ≥ 1/2.
Thus, if v = t in (17.28),

P

(

Z ≥ med (Z)+ t

⎛

⎝

√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ (t ∨ C0) max
1≤i,j≤n

{

ai,j
}

⎞

⎠

)

≤ P

⎛

⎝Z ≥ med (Z)+ t

⎛

⎝

√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ t max
1≤i,j≤n

{

ai,j
}

⎞

⎠

⎞

⎠

≤ 4e−t2/16.

Notice that the maximum with the constant in (t ∨ C0) is not necessary in the case
only a control of the right-tail is wanted.

Third Step: Proof of (17.30) Consider now

CA = med (Z)− t

⎛

⎝

√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ v max
1≤i,j≤n

{

ai,j
}

⎞

⎠ ,

so that

P

⎛

⎜

⎝
Z ≥ CA + t

⎛

⎜

⎝

√

√

√

√

√med

⎛

⎝

n
∑

i=1

a2
i,�(i)

⎞

⎠+ v max
1≤i,j≤n

{

ai,j
}

⎞

⎟

⎠

⎞

⎟

⎠
= P(Z ≥ med (Z)) ≥ 1

2
.

Hence, on the one hand, from (17.28),

P(Z ∈ A) ≤ e−t2/16
(

1
2 − 2e−v2/16

) .

Thus, if v = C0 = 4
√

ln(8), then
(

1/2− 2e−v2/16
)

= 1/4, and P(Z ∈ A) ≤
4e−t2/16.

On the other hand, as (t ∨ C0) ≥ C0 = v,

P(Z ∈ A) ≥ P

⎛

⎜

⎝
Z ≤ med (Z)− t

⎛

⎜

⎝

√

√

√

√

√med

⎛

⎝

n
∑

i=1

a2
i,�(i)

⎞

⎠+ (t ∨ C0) max
1≤i,j≤n

{

ai,j
}

⎞

⎟

⎠

⎞

⎟

⎠
,

which ends the proof of (17.30).
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Fourth Step: Proof of (17.12) Both (17.29) and (17.30) lead to

P

⎛

⎜

⎝
|Z −med (Z)| > t

⎛

⎜

⎝

√

√

√

√

√med

⎛

⎝

n
∑

i=1

a2
i,�(i)

⎞

⎠+ (t ∨ C0) max
1≤i,j≤n

{

ai,j
}

⎞

⎟

⎠

⎞

⎟

⎠
≤ 8e−t2/16.

Thus, on the one hand, if t ≥ C0, that is t ∨C0 = t , and (17.12) holds. On the other
hand, if t < C0,

P

⎛

⎝|Z −med (Z)| > t

⎛

⎝

√

√

√

√med

(

n
∑

i=1

a2
i,�(i)

)

+ t max
1≤i,j≤n

{

ai,j
}

⎞

⎠

⎞

⎠ ≤ 1

≤ eC
2
0/16−t2/16 = 8e−t2/16,

which ends the proof of the Proposition by taking x = √t .

17.4.4 Proof of Proposition 17.2.2

First, for a better readability, let

M = max
1≤i,j≤n

{

ai,j
}

and V = E

[

n
∑

i=1

a2
i,�(i)

]

= 1

n

n
∑

i,j=1

a2
i,j .

Then, med
(

∑n
i=1 a2

i,�(i)

)

≤ 2V since by Markov’s inequality, for all non-negative

random variable X, med (X) ≤ 2E [X]. Indeed,

1

2
≤ P(X ≥ med (X)) ≤ E [X]

med (X)
.

Thus, by Proposition 17.2.1, one obtains that, for all x > 0,

P
(

|Z −med (Z)| ≥ √2V x +Mx
)

≤ 8e−x/16. (17.33)

The following is based on Lemma 17.2.2, and provides an upper-bound of the
difference between the expectation and the median of Z.

Lemma 17.4.1 With the notation defined above,

|E [Z]−med (Z)| ≤ √2V .
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Proof (Proof of Lemma 17.4.1) Lemma 17.2.2 implies that

|E [Z]−med (Z)| ≤ √Var(Z).

Let us prove that

Var(Z) ≤ 2V. (17.34)

Indeed,

Var(Z) = E

⎡

⎢

⎣

⎛

⎝

n
∑

i=1

ai,�(i) − 1

n

n
∑

i,j=1

ai,j

⎞

⎠

2
⎤

⎥

⎦

= E

⎡

⎢

⎣

⎛

⎝

n
∑

i,j=1

ai,j

(

1�(i)=j − 1

n

)

⎞

⎠

2
⎤

⎥

⎦

=
n
∑

i,j=1

n
∑

k,l=1

ai,j ak,lEi,j,k,l ,

where

Ei,j,k,l = E

[(

1�(i)=j − 1

n

)(

1�(k)=l − 1

n

)]

= E
[

1�(i)=j1�(k)=l

]− 1

n2 .

In particular,

Ei,j,k,l =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

n
− 1

n2 ≤
1

n
if i = k and j = l,

−1

n2 ≤ 0 if i = k and j �= l or i �= k and j = l,

1

n(n− 1)
− 1

n2 =
1

n2(n− 1)
if i �= k and j �= l.

Therefore, from the Cauchy-Schwarz inequality applied to the second sum below
(of n2(n− 1)2 terms), one obtains

Var(Z) ≤ 1

n

n
∑

i,j=1

a2
i,j +

1

n2(n− 1)

∑

i �=k

∑

j �=l

ai,j ak,l

≤ V +
√

n2(n− 1)2

n2(n− 1)

√

∑

i �=k

∑

j �=l

a2
i,j a

2
k,l
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Var(Z) ≤ V + 1

n

√

∑

i,j

a2
i,j

∑

k,l

a2
k,l

= 2V.

Finally, combining (17.27) and (17.34) ends the proof of Lemma 17.4.1. ��
Therefore, one deduces from Lemma 17.4.1 and Eq. (17.33) that for all x > 0,

P
(

|Z −E [Z]| ≥ √2V +√2V x +Mx
)

≤ 8e−x/16. (17.35)

Now, as in [8, Corollary 2.11], introduce h1 : u ∈ R+ �→ 1 + u − √
1+ 2u.

Then, in particular, h1 is non-decreasing, convex, one to one function on R+ with
inverse function h−1

1 : v ∈ R+ �→ v +√2v. Indeed,

h1

(

h−1
1 (v)

)

= 1+ v +√2v −
√

1+ 2v + 2
√

2v

= 1+ v +√2v −
√

(

1+√2v
)2 = v,

and

h−1
1 (h1(u)) = 1+ u−√1+ 2u+

√

2+ 2u− 2
√

1+ 2u

= u+ 1−√1+ 2u+
√

1− 2
√

1+ 2u+ 1+ 2u

= 1+ u−√1+ 2u+
√

(

1−√1+ 2u
)2 = u.

Consider a and c defined by a = V/M and c = M2/V , such that ac = M and
a2c = V and thus

√
2V x +Mx = ah−1

1 (cx).

Then, from (17.35),

P
(

|Z − E [Z]| ≥
√

2a2c+ ah−1
1 (cx)

)

≤ 8e−x/16.

Let t > 0, and consider the two following cases.
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First Case If t ≥ √
2V = √

2a2c, then define x = 1

c
h1

(

t

a
−√2c

)

such that

t = √
2a2c+ ah−1

1 (cx). Then,

P(|Z −E [Z]| ≥ t) ≤ 8 exp

(

− 1

16c
h1

(

t

a
−√2c

))

.

Yet, by convexity of h1,

h1

(

t

a
−√2c

)

≥ 2h1

(

t

2a

)

− h1

(√
2c
)

.

Hence,

P(|Z −E [Z]| ≥ t) ≤ 8 exp

(

1

16c
h1

(√
2c
)

)

exp

(

− 1

8c
h1

(

t

2a

))

.

Moreover,
√

2c ≤ c+√2c = h−1
1 (c) , hence

1

16c
h1

(√
2c
)

≤ 1

16
.

So finally in this case,

P(|Z −E [Z]| ≥ t) ≤ 8e1/16 exp

(

− 1

8c
h1

(

t

2a

))

. (17.36)

Second Case If t <
√

2V = √2a2c,

P(|Z −E [Z]| ≥ t) ≤ 1 = exp

(

1

8c
h1

(

t

2a

))

exp

(

− 1

8c
h1

(

t

2a

))

Moreover, in this case, since
√

2c/2 ≤ h−1
1 (c/4), hence

1

8c
h1

(

t

2a

)

≤ 1

8c
h1

(√
2c

2

)

≤ 1

32
,

and thus

P(|Z −E [Z]| ≥ t) ≤ e1/32 exp

(

− 1

8c
h1

(

t

2a

))

. (17.37)
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Finally, combining (17.36) and (17.37) leads, in all cases, to

P(|Z −E [Z]| ≥ t) ≤ 8e1/16 exp

(

− 1

8c
h1

(

t

2a

))

. (17.38)

Now, in order to obtain the Bernstein-type inequality, let x = 2

c
h1

(

t

2a

)

, then

t = 2ah−1
1

( cx

2

)

= acx + 2
√

a2cx = 2
√
V x +Mx,

and thus for all x > 0,

P
(

|Z − E [Z]| ≥ 2
√
V x +Mx

)

≤ 8e1/16 exp
(

− x

16

)

, (17.39)

which ends the proof of the Proposition.

17.4.5 Proof of Corollary 17.2.1

Consider the same notation as in both Proposition 17.2.2 and its proof. This proof
follows the one of [19, Corollary 2.10]. Notice that for all u ≥ 0,

h1(u) ≥ u2

2(1+ u)
.

Hence, from (17.38) in the proof of Proposition 17.2.2, for all t ≥ 0,

P(|Z −E [Z]| ≥ t) ≤ 8e1/16 exp

(

− 1

8c
h1

(

t

2a

))

≤ 8e1/16 exp

(

− t2

64a2c (1+ t/2a)

)

= 8e1/16 exp

(

− t2

32
(

2a2c+ act
)

)

= 8e1/16 exp

(

− t2

32 (V +Mt)

)

.

which ends the proof of the corollary.
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17.4.6 Proof of Theorem 17.2.1

For a better readability, let us introduce a+i,j = ai,j1ai,j≥0 (respectively

a−i,j = −ai,j1ai,j<0), and denote Z+ = ∑n
i=1 a+i,�(i) (respectively

Z− =∑n
i=1 a−i,�(i)). Then

Z =
n
∑

i=1

ai,�(i) = Z+ − Z−.

Moreover, if v (respectively v+ and v−) denotes 1
n

∑n
i,j=1 a2

i,j (respectively
1
n

∑n
i,j=1(a

+
i,j )

2 and 1
n

∑n
i,j=1(a

−
i,j )

2), then v = v+ + v− and, from the concavity
property of the square root function,

√
2v ≥ √v+ +√v−.

Furthermore, if M+ (respectively M−) denotes max1≤i,j≤n{a+i,j } (respectively

max1≤i,j≤n{a−i,j }), then 2M = 2 max1≤i,j≤n

{|ai,j |
} ≥ M+ +M−.

Finally, applying Proposition 17.2.2 to Z+ and Z− which are both sums of non-
negative numbers leads to

P
(

|Z−E [Z] | ≥ 2
√

2vx + 2Mx
)

≤ P
(

∣

∣Z+ −E
[

Z+
]∣

∣+ ∣∣Z− −E
[

Z−
]∣

∣ ≥ 2
√
v+x +M+x + 2

√
v−x +M−x

)

≤ P
(

∣

∣Z+ −E
[

Z+
]∣

∣ ≥ 2
√
v+x +M+x

)

+ P
(

∣

∣Z− −E
[

Z−
]∣

∣ ≥ 2
√
v−x +M−x

)

≤ 16e1/16 exp
(

− x

16

)

,

which ends the proof of the Theorem.

17.4.7 Proof of Corollary 17.2.2

Consider the same notation as in the proof of Theorem 17.2.1, and let t > 0. Let
M denote the maximum max1≤i,j≤n

{|ai,j |
}

. On the one hand, M+ ≤ M and
M− ≤ M , and on the other hand, v+ ≤ v and v− ≤ v. Therefore, applying
Corollary 17.2.1, one obtains

P(|Z −E [Z]| ≥ t) ≤ P
(∣

∣Z+ −E
[

Z+
]∣

∣+ ∣∣Z− −E
[

Z−
]∣

∣ ≥ t
)

≤ P
(∣

∣Z+ −E
[

Z+
]∣

∣ ≥ t/2
)+P

(∣

∣Z− −E
[

Z−
]∣

∣ ≥ t/2
)
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P(|Z −E [Z]| ≥ t) ≤ 8e1/16 exp

(

−(t/2)2

16
(

4v+ + 2M+t/2
)

)

+ 8e1/16 exp

(

−(t/2)2

16
(

4v− + 2M−t/2
)

)

≤ 16e1/16 exp

( −t2

64 (4v +Mt)

)

,

which leads to the following intermediate result

P(|Z −E [Z]| ≥ t) ≤ 16e1/16 exp

⎛

⎝

−t2

64
(

4 1
n

∑n
i,j=1 a

2
i,j +max1≤i,j≤n

{∣

∣ai,j
∣

∣

}

t
)

⎞

⎠ .

(17.40)

In order to make the variance appear, consider Hoeffding’s centering trick
recalled in (17.1) and introduce

di,j = ai,j− 1

n

n
∑

k=1

ak,j− 1

n

n
∑

l=1

ai,l+ 1

n2

n
∑

k,l=1

ak,l = 1

n2

n
∑

k,l=1

(

ai,j − ak,j − ai,l + ak,l
)

.

One may easily verify that for all i0 and j0,
∑n

i=1 di,j0 = ∑n
j=1 di0,j = 0.

Moreover,

n
∑

i=1

di,�(i) =
n
∑

i=1

ai,�(i)− 1

n

n
∑

i,j=1

ai,j = Z−E [Z] and E

[

n
∑

i=1

di,�(i)

]

= 1

n

n
∑

i,j=1

di,j = 0.

In particular, applying Eq. (17.40) to the permuted sum of the di,j ’s leads to

P(|Z −E [Z]| ≥ t) ≤ 16e1/16 exp

⎛

⎝

−t2

64
(

4 1
n

∑n
i,j=1 d

2
i,j +max1≤i,j≤n

{∣

∣di,j
∣

∣

}

t
)

⎞

⎠ .

(17.41)

Then, it is sufficient to notice that, on the one hand, from [15, Theorem 2],

Var(Z) = 1

n− 1

n
∑

i,j=1

d2
i,j ≥

1

n

n
∑

i,j=1

d2
i,j ,

and on the other hand,

max
1≤i,j≤n

{∣

∣di,j
∣

∣

} ≤ 4 max
1≤i,j≤n

{∣

∣ai,j
∣

∣

}

,

to end the proof of Corollary 17.2.2.
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17.4.8 Proof of Proposition 17.3.1

The proof of Proof of Proposition 17.3.1 is divided into two steps. The first step
consists in controlling the conditional quantile q1−α(Xn) and the second step
provides an upper-bound for qα

1−β/2.

First Step Let us prove (17.23), that is

q1−α(Xn) ≤ C′

n− 1

⎧

⎨

⎩

√

√

√

√

1

n

n
∑

i,j=1

ϕ2(X1
i , X

2
j )

√

ln
(c0

α

)

+ ‖ϕ‖∞ ln
(c0

α

)

⎫

⎬

⎭

.

Introduce Z̃(Xn) =∑n
i=1 ϕ(X1

i , X
2
�(i)). Then, notice that

T �(Xn) = 1

n− 1

(

Z̃(Xn)−E
[

Z̃(Xn)

∣

∣

∣Xn

])

. (17.42)

Therefore, applying Theorem 17.2.1 to the conditional probability given Xn, one
obtains that there exist universal positive constants c0 and c1 such that, for all x > 0,

P

⎛

⎜

⎝

∣

∣

∣Z̃(Xn)−E
[

Z̃(Xn)

∣

∣

∣Xn

]∣

∣

∣ ≥ 2

√

√

√

√

√2

⎛

⎝

1

n

n
∑

i,j=1

ϕ2(X1
i , X

2
j )

⎞

⎠ x + 2‖ϕ‖∞x

∣

∣

∣

∣

∣

∣

∣

Xn

⎞

⎟

⎠

≤ c0 exp (−c1x) .

In particular, from (17.42), one obtains

P

⎛

⎜

⎝

∣

∣T (X�
n )
∣

∣ ≥ 2

n− 1

⎛

⎜

⎝

√

√

√

√

√2

⎛

⎝

1

n

n
∑

i,j=1

ϕ2(X1
i , X

2
j )

⎞

⎠ x + ‖ϕ‖∞x

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

Xn

⎞

⎟

⎠

≤ c0 exp (−c1x) .

Yet, by definition of the quantile, q1−α(Xn) is the smallest u such that

P
(∣

∣T (X�
n )
∣

∣ ≥ u
∣

∣Xn

) ≤ α.

Thus taking x such that c0 exp (−c1x) = α, that is x = c−1
1 ln (c0/α), one

obtains (17.23) with C′ = 2 max
{√

2/c1, 1/c1
}

which is a universal positive
constant.

Second Step Let us now control the quantile qα
1−β/2. Since (17.23) is always true,

by definition of qα
1−β/2, one has that qα

1−β/2 is upper bounded by the (1 − β/2)-
quantile of the right-hand side of (17.23). Yet, the only randomness left in the right-
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hand side of (17.23) comes from the randomness of 1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j ), and thus

it is sufficient to control its (1− β/2)-quantile.
Besides, applying Markov’s inequality, one obtains for all x > 0,

P

⎛

⎝

1

n

n
∑

i,j=1

ϕ2(X1
i , X

2
j ) ≥ x

⎞

⎠ ≤
E
[

1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j )
]

x
,

with E
[

1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j )
]

= EP

[

ϕ2
]+ (n− 1)E⊥⊥

[

ϕ2
]

, and thus, taking

x = 2

β

(

EP

[

ϕ2
]

+ (n− 1)E⊥⊥
[

ϕ2
])

,

one has that the (1− β/2)-quantile of 1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j ) is upper bounded by x,

and thus, the (1 − β/2)-quantile of
√

1
n

∑n
i,j=1 ϕ2(X1

i , X
2
j ) is itself upper bounded

by

√

2

β

(
√

EP

[

ϕ2
]+√n

√

E⊥⊥
[

ϕ2
]

)

.

Finally,

qα
1−β/2 ≤

2C′

n

{
√

2

β

(
√

EP

[

ϕ2
]+√n

√

E⊥⊥
[

ϕ2
]

)√

ln
(c0

α

)

+ ‖ϕ‖∞ ln
(c0

α

)

}

.

which is exactly (17.24) for any constant C ≥ 2C′.

17.5 Proof of Lemma 17.3.1

Let us now prove Lemma 17.3.1. Let n ≥ 4 and Xn be an i.i.d. sample with
distribution P . First notice that one can write

T (Xn) = 1

n(n− 1)

∑

i �=j

(

ϕ(X1
i , X

2
i )− ϕ(X1

i , X
2
j )
)

.

In particular, one recovers that E [T (Xn)] = EP [ϕ]−E⊥⊥[ϕ].
For a better readability, let us introduce for all i �= j in {1, 2, . . . , n},

Yi = ϕ(X1
i , X

2
i )− EP [ϕ] and Zi,j = ϕ(X1

i , X
2
j )− E⊥⊥[ϕ] .
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Then,

E [Yi ] = E
[

Zi,j

] = 0, and

⎧

⎪

⎨

⎪

⎩

E
[

Y 2
i

]

= VarP (ϕ) ≤ EP

[

ϕ2
]

,

E
[

Z2
i,j

]

= Var⊥⊥(ϕ) ≤ E⊥⊥
[

ϕ2
]

.

(17.43)

One can write

T (Xn)− E [T (Xn)] = 1

n(n− 1)

∑

i �=j

(

Yi − Zi,j

)

,

and thus,

Var(T (Xn)) = E

⎡

⎢

⎣

⎛

⎝

1

n(n− 1)

∑

i �=j

(

Yi − Zi,j

)

⎞

⎠

2
⎤

⎥

⎦

= 1

n2(n− 1)2

∑

i �=j

∑

k �=l

E
[(

Yi − Zi,j

) (

Yk − Zk,l

)]

= An − 2Bn + Cn,

with

An = 1

n2

n
∑

i,k=1

E [YiYk] ,

Bn = 1

n2(n− 1)

n
∑

i=1

∑

k �=l

E
[

YiZk,l

]

,

Cn = 1

n2(n− 1)2

∑

i �=j

∑

k �=l

E
[

Zi,jZk,l

]

,

where each sum is taken for indexes contained in {1, 2, . . . , n}. In particular, since
just an upper-bound of the variance is needed, it is sufficient to write

Var(T (Xn)) ≤ |An| + 2|Bn| + |Cn|, (17.44)

and to study each term separately.
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Study of An Since by construction, the Yi’s are centered, and independent (as the
Xi’s are),

An = 1

n2

⎛

⎝

∑

i

E
[

Y 2
i

]

+
∑

i �=k

E [Yi]E [Yk]

⎞

⎠

= 1

n
E
[

Y 2
1

]

,

and in particular, from (17.43),

|An| ≤ 1

n
EP

[

ϕ2
]

. (17.45)

Study of Bn If i, k and l are all different, using once again the independence of the
Xi’s and a centering argument, then E

[

YiZk,l

] = E [Yi ]E
[

Zk,l

] = 0. Thus

Bn = 1

n2(n− 1)

∑

i �=k

(

E
[

YiZi,k

]+E
[

YiZk,i

])

= 1

n

(

E
[

Y1Z1,2
]+E

[

Y1Z2,1
])

.

In particular, applying the Cauchy-Schwartz inequality, and from (17.43), one
obtains

|Bn| ≤ 2

n

√

E
[

Y 2
1

]

E
[

Z2
1,2

]

≤ 2

n

√

EP

[

ϕ2
]

E⊥⊥
[

ϕ2
]

. (17.46)

Study of Cn Still by an independence and a centering argument, if i, j , k and l are
all different, E

[

Zi,jZk,l

] = E
[

Zi,j

]

E
[

Zk,l

] = 0. Thus, if I
[3]
n denotes the set of

triplets (i, j, k) in {1, . . . , n}3 which are all different, one obtains

Cn = 1

n2(n− 1)2

{

∑

(i,j,k)∈I [3]n

(

E
[

Zi,jZi,k

]+ 2E
[

Zi,jZk,i

]+E
[

Zj,iZk,i

]

)

+
∑

i �=j

(

E
[

Z2
i,j

]

+E
[

Zi,jZj,i

]

)

}

= n− 2

n(n− 1)

(

E
[

Z1,2Z1,3
]+ 2E

[

Z1,2Z3,1
]+E

[

Z2,1Z3,1
])

+ 1

n(n− 1)

(

E
[

Z2
1,2

]

+E
[

Z1,2Z2,1
]

)

.
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In particular, applying the Cauchy-Schwartz inequality, and using (17.43), each

expectation in the previous equation satisfies E
[

Zi,jZk,l

] ≤ E
[

Z2
1,2

]

≤ E⊥⊥
[

ϕ2
]

,

and thus

|Cn| ≤
(

4(n− 2)

n(n− 1)
+ 2

n(n− 1)

)

E⊥⊥
[

ϕ2
]

≤ 4

n
E⊥⊥

[

ϕ2
]

. (17.47)

Finally, combining (17.44), (17.45), (17.46), and (17.47) leads to

Var(T (Xn)) ≤ 1

n

(
√

EP

[

ϕ2
]+ 2

√

E⊥⊥
[

ϕ2
]

)2

,

which ends the proof of the lemma.
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Appendix: A Non-asymptotic Control of the Second Kind
Error Rates

Consider the notation from Sect. 17.3. Since this section focuses on the study of the
second kind error rate of the test, in all the sequel, the observation is assumed to
satisfy the alternative (H1). Let thus P be an alternative, that is P �= (P 1 ⊗ P 2),
n ≥ 4 and Xn = (Xi, . . . , Xn) be an i.i.d. sample from distribution P . Fix α and β

be two fixed values in (0, 1). Consider T the test statistic introduced in (17.16),
the (random) critical value q1−α(Xn) defined in (17.18), and the corresponding
permutation test defined in (17.19) by

&α(Xn) = 1T (Xn)>q1−α(Xn),

which precisely rejects independence when T (Xn) > q1−α(Xn). Notice that this
test is exactly the upper-tailed test by permutation introduced in [2].

The aim of this section is to provide different conditions on the alternative P

ensuring a control of the second kind error rate by a fixed value β > 0, that is
P(&α(Xn) = 0) ≤ β. The following steps constitute the first steps of a general
study of the separation rates for the previous independence test, and is worked
through in the specific case of continuous real-valued random variables in [1,
Chapter 4].

Recall the notation introduced in (17.17) for a better readability. For all real-
valued measurable function g on X 2, denote respectively

EP [g] = E
[

g(X1
1,X

2
1)
]

and E⊥⊥[g] = E
[

g(X1
1,X

2
2)
]

,
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the expectations of g(X) under the alternative P , that is if X ∼ P , and under the
null hypothesis (H0), that is if X ∼ (P 1 ⊗ P 2).

Assume the following moment assumption holds, that is

(

AMmt,2
)

both EP

[

ϕ2
]

< +∞ and E⊥⊥
[

ϕ2
]

< +∞,

so that all variance and second-order moments exist. Then, the following statements
hold.

1. By Chebychev’s inequality, one has P(&α(Xn) = 0) ≤ β as soon as Condi-
tion (17.20) is satisfied, that is

E [T (Xn)] ≥ qα
1−β/2 +

√

2

β
Var(T (Xn)).

2. On the one hand,

Var(T (Xn)) ≤ 8

n

(

EP

[

ϕ2
]

+E⊥⊥
[

ϕ2
])

, (17.48)

3. On the other hand, in order to control the quantile qα
1−β/2, let us first upper bound

the conditional quantile, following Hoeffding’s approach based on the Cauchy-
Schwarz inequality, by

q1−α(Xn) ≤
√

1− α

α
Var
(

T
(

X�
n

)∣

∣Xn

)

. (17.49)

4. Markov’s inequality allows us to deduce the following bound for the quantile:

qα
1−β/2 ≤ 2

√

1− α

α

√

2

β

(

E⊥⊥
[

ϕ2
]+EP

[

ϕ2
])

n
. (17.50)

5. Finally, combining (17.20), (17.48) and (17.50) ensures that P(&α(Xn) = 0) ≤
β as soon as Condition (17.21) is satisfied, that is

E [T (Xn)] ≥ 4√
α

√

2

β

EP

[

ϕ2
]+E⊥⊥

[

ϕ2
]

n
.

This section is divided in five subsections, each one of them respectively proving
a point stated above. The first one proves the sufficiency of Condition (17.20) in
order to control the second kind error rate. The second, third and fourth ones provide
respectively upper-bounds of the variance term, the critical value and the quantile
qα

1−β/2. Finally, the fifth one provides the sufficiency of Condition (17.21).
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A First Condition Ensuing from Chebychev’s Inequality

In this section, we prove the sufficiency of a first simple condition, derived from
Chebychev’s inequality in order to control the second error rate. Assume that (17.20)
is satisfied, that is

E [T (Xn)] ≥ qα
1−β/2 +

√

2

β
Var(T (Xn)).

Then,

P(&α(Xn) = 0) = P(T (Xn) ≤ q1−α(Xn)) (17.51)

= P
(

{T (Xn) ≤ q1−α(Xn)} ∩
{

q1−α(Xn) ≤ qα
1−β/2

})

+ P
(

{T (Xn) ≤ q1−α(Xn)} ∩
{

q1−α(Xn) > qα
1−β/2

})

≤ P
(

T (Xn) ≤ qα
1−β/2

)

+P
(

q1−α(Xn) > qα
1−β/2

)

≤ P
(

T (Xn) ≤ qα
1−β/2

)

+ β

2
, (17.52)

by definition of the quantile qα
1−β/2. Yet, from (17.20) one obtains from Chebychev’s

inequality that

P
(

T (Xn) ≤ qα
1−β/2

)

≤ P

(

T (Xn) ≤ E [T (Xn)]−
√

2

β
Var(T (Xn))

)

≤ P

(

|T (Xn)−E [T (Xn)]| ≥
√

2

β
Var(T (Xn))

)

≤ β

2
. (17.53)

Finally, both (17.52) and (17.53) lead to the desired controlP(&α(Xn) = 0) ≤ β

which ends the proof.

Control of the Variance in the General Case

To upper bound the variance term, we apply Lemma 17.3.1 which directly
implies that

Var(T (Xn)) ≤ 2

n

(

EP

[

ϕ2
]

+ 4E⊥⊥
[

ϕ2
])

,

which directly leads to (17.48).
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Control of the Critical Value Based on Hoeffding’s Approach

This section is devoted to the proof the inequality (17.49), namely

q1−α(Xn) ≤
√

1− α

α
Var
(

T
(

X�
n

)∣

∣Xn

)

.

The proof of this upper-bound follows Hoeffding’s approach in [16], and relies
on a normalizing trick, and the Cauchy-Schwarz inequality. From now on, for a
better readability, denote respectively E∗[·] and Var∗(·) the conditional expectation
and variance given the sample Xn.

As in Hoeffding [16], the first step is to center and normalize the permuted test
statistic. Yet, by construction the permuted test statistic is automatically centered,
that is E∗

[

T
(

X�
n

)] = 0, as one can notice that

T
(

X�
n

) = 1

n− 1

(

n
∑

i=1

ϕ
(

X1
i , X

2
�(i)

)

−E∗
[

n
∑

i=1

ϕ
(

X1
i , X

2
�(i)

)

])

.

Therefore, just consider the normalizing term

ν(Xn) = Var∗
(

T
(

X�
n

)) = E∗
[

T
(

X�
n

)2
]

= 1

n!
∑

τ∈Sn

(

T
(

Xτ
n

))2
.

Two cases appear: either ν(Xn) = 0 or not.
In the first case, the nullity of the conditional variance implies that all the per-

mutations of the test statistic are equal. Hence, for all permutation τ of {1, . . . , n},
one has T (Xτ

n) = T (Xn). Since the centering term E∗
[

∑n
i=1 ϕ

(

X1
i , X

2
�(i)

)]

=
n−1∑n

i,j=1 ϕ(X1
i , X

2
j ) is permutation invariant, one obtains the equality of the

permuted sums, that is

n
∑

i=1

ϕ
(

X1
i , X

2
τ (i)

)

=
n
∑

i=1

ϕ
(

X1
i , X

2
i

)

,

and this for all permutation τ . In particular, the centering term is also equal to
∑n

i=1 ϕ
(

X1
i , X

2
i

)

. Indeed, by invariance of the sum (applied in the third equality
below),

1

n

n
∑

i,j=1

ϕ
(

X1
i , X

2
j

)

= 1

n

n
∑

i,j=1

ϕ
(

X1
i , X

2
j

)

⎡

⎣

1

(n− 1)!
∑

τ∈Sn

1τ (i)=j

⎤

⎦

= 1

n!
∑

τ∈Sn

n
∑

i=1

ϕ
(

X1
i , X

2
τ (i)

)

⎡

⎣

n
∑

j=1

1τ (i)=j

⎤

⎦
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1

n

n
∑

i,j=1

ϕ
(

X1
i , X

2
j

)

= 1

n!
∑

τ∈Sn

(

n
∑

i=1

ϕ
(

X1
i , X

2
i

)

)

=
n
∑

i=1

ϕ
(

X1
i , X

2
i

)

.

Therefore, T (Xn) is equal to zero, and thus, so is q1−α(Xn). Finally, inequal-
ity (17.55) is satisfied since

q1−α(Xn) = 0 ≤ 0 =
√

1− α

α
Var
(

T
(

X�
n

)∣

∣Xn

)

.

Consider now the second case, and assume ν(Xn) > 0. Let us introduce the
(centered and) normalized statistic

T ′(Xn) = 1√
ν(Xn)

(T (Xn)) .

In particular, the new statistic T ′(Xn) satisfies

E∗
[

T ′
(

X�
n

)] = 0 and Var∗
(

T ′
(

X�
n

)) ≤ 1.

One may moreover notice that the normalizing term ν(Xn) is permutation
invariant, that is, for all permutations τ and τ ′ in Sn,

ν
(

Xτ
n

) = ν(Xn) = ν
(

Xτ ′
n

)

.

In particular, since ν(Xn) > 0,

T
(

Xτ
n

) ≤ T
(

Xτ ′
n

)

⇔ T ′
(

Xτ
n

) ≤ T ′
(

Xτ ′
n

)

.

Therefore, as the test &α depends only on the comparison of the
{

T
(

Xτ
n

)}

τ∈Sn
,

the test statistic T can be replaced by T ′, and the new critical value becomes

q ′1−α(Xn) = T ′(n!−1n!α2) (Xn) = T (n!−1n!α2) (Xn)

ν(Xn)
= q1−α(Xn)

ν(Xn)
. (17.54)

Moreover, following the proof of Theorem 2.1. of Hoeffding [16], one can show
(as below) that

q ′1−α(Xn) ≤
√

1− α

α
. (17.55)
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Hence, combining (17.55) with (17.54) leads straightforwardly to (17.49).
Finally, remains the proof of (17.55). There are two cases:

First Case If q ′1−α(Xn) ≤ 0, then (17.55) is satisfied.

Second Case If q ′1−α(Xn) > 0, then introduce Y = q ′1−α(Xn)− T ′
(

X�
n

)

.

First, since by construction, E∗
[

T ′
(

X�
n

)] = 0, one directly obtains
E∗[Y ] = q ′1−α(Xn). Hence,

0 < q ′1−α(Xn) = E∗[Y ] ≤ E∗[Y1Y>0] ,

and by the Cauchy-Schwarz inequality,

(

q ′1−α(Xn)
)2 ≤ (

E∗[Y1Y>0]
)2 ≤ E∗

[

Y 2
]

E∗[1Y>0] ,

Yet, on one hand,

E∗
[

Y 2
]

= E∗
[

(

q ′1−α(Xn)− T ′
(

X�
n

))2
]

= (q ′1−α(Xn)
)2 +E∗

[

(

T ′
(

X�
n

))2
]

− 2q ′1−α(Xn)E
∗[T ′

(

X�
n

)]

= (q ′1−α(Xn)
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And, on the other hand,
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So finally,
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q ′1−α(Xn)
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(

(

q ′1−α(Xn)
)2 + 1

)

,

which is equivalent to
(

q ′1−α(Xn)
)2 ≤ (1−α)/α, and thus ends the proof of (17.55).
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Control of the Quantile of the Critical Value

The control of the conditional quantile allows us to upper bound its own quantile
qα

1−β/2 as stated in (17.50), that is

qα
1−β/2 ≤ 2

√

1− α

α

√

2
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]+EP

[
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n
.

Indeed, (17.49) ensures that
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1− α

α

√

E
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T
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)2
∣

∣
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]

,

and in particular, the (1− β/2)-quantile of q1−α(Xn) satisfies

qα
1−β/2 ≤

√

1− α

α

√

ζ1−β/2, (17.56)

where ζ1−β/2 is the (1 − β/2)-quantile of E
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T
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. Yet, from Markov’s

inequality, for all positive x,
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In particular, the choice of x = 2E
[

T
(

X�
n

)2
]

/β leads to the control of the quantile
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. (17.57)

Moreover, noticing that one can write

T
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the second-order moment in (17.57) can be rewritten
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by independence between � and Xn, where
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n2 .

On the one hand, for all 1 ≤ i, j, k, l ≤ n, the Cauchy-Schwarz inequality always
ensures
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(17.58)

since for all 1 ≤ i, j ≤ n, E
[

ϕ2(X1
i , X

2
j )
]

≤ E⊥⊥
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]+EP

[

ϕ2
]

.

On the other hand, remains to control the sum (n− 1)−2∑n
i,j=1

∑n
k,l=1 Ei,j,k,l .

Three cases appear.

First Case If i �= k and j �= l (occurring [n(n− 1)]2 times), then

Ei,j,k,l = 1

n(n− 1)
− 1

n2
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n2(n− 1)
.

Second Case If [i �= k and j = l] or [i = k and j �= l], then
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Third Case If i = k and j = l (occurring n(n− 1) times), then
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≤ 1

n
.

Therefore,
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. (17.59)

Finally, both (17.58) and (17.59) imply that

E
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≤ 4

n
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[
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, (17.60)

Therefore, combining (17.56), (17.57) and (17.60) ends the proof of (17.50).
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A First Condition Ensuing from Hoeffding’s Approach

Back to the condition (17.20) derived from Chebychev’s inequality, both (17.48)
and (17.50) imply that

qα
1−β/2 +

√

2

β
Var(T (Xn)) ≤

√

2

β

(

EP

[

ϕ2
]+E⊥⊥
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+√8

)

,

with 2
√
(1− α)/α + √8 ≤ 4/

√
α, since

√
1− α + √α ≤ √

2. Finally, the right-
hand side of condition (17.20) being upper bounded by

4√
α

√

2

β

(

EP

[

ϕ2
]+E⊥⊥

[

ϕ2
])

n
,

which is exactly the right-hand side of (17.21), this ensures the sufficiency of
condition 17.21 to control the second kind error rate by β.
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Chapter 18
Uncertainty Quantification for Matrix
Compressed Sensing and Quantum
Tomography Problems

Alexandra Carpentier, Jens Eisert, David Gross, and Richard Nickl

Abstract We construct minimax optimal non-asymptotic confidence sets for low
rank matrix recovery algorithms such as the Matrix Lasso or Dantzig selector. These
are employed to devise adaptive sequential sampling procedures that guarantee
recovery of the true matrix in Frobenius norm after a data-driven stopping time
n̂ for the number of measurements that have to be taken. With high probability, this
stopping time is minimax optimal. We detail applications to quantum tomography
problems where measurements arise from Pauli observables. We also give a
theoretical construction of a confidence set for the density matrix of a quantum
state that has optimal diameter in nuclear norm. The non-asymptotic properties of
our confidence sets are further investigated in a simulation study.
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18.1 Introduction

18.1.1 Uncertainty Quantification in Compressed Sensing

Compressed sensing and related convex relaxation algorithms have had a profound
impact on high-dimensional statistical modelling in recent years. They provide
efficient recovery of low-dimensional objects that sit within a high-dimensional
ill-posed system of linear equations. Prototypical low-dimensional structures are
described by sparsity and low rank hypotheses. The statistical analysis of such
algorithms has mostly been concerned with recovery rates, or with the closely
related question of how many measurements are sufficient to reach a prescribed
recovery level—some key references are Refs. [3, 5–7, 16, 24, 25, 33].

A statistical question of fundamental importance that has escaped a clear answer
so far is the question of uncertainty quantification: Can we tell from the observations
how well the algorithm has worked? In technical terms: can we report confidence
sets for the unknown parameter? Or, in the sequential sampling setting, can we
give data-driven rules that ensure recovery of the true parameter at a given
precision? Answers to this question are of great importance in various applications
of compressed sensing. For one-dimensional subproblems, such as projection onto
a fixed coordinate of the parameter vector, recent advances have provided some
useful confidence intervals (see Refs. [8, 9, 22, 36]), but our understanding of valid
inference procedures for the entire parameter remains limited.

Whereas the ‘estimation theory’ for compressed sensing is quite similar for
sparsity and low rank constraints, this is not so for the theory of confidence sets.
On the one hand, if one is interested in inference on the full parameter, sparsity
conditions induce information theoretic barriers, as shown in Ref. [30]: unless one is
willing to make additional signal strength assumptions (inspired by the literature on
nonparametric confidence sets, such as Refs. [13, 19]), a uniformly valid confidence
set for the unknown parameter vector θ cannot have a better performance than
1/
√
n in quadratic loss. This significantly falls short of the optimal recovery rates

(k logp)/n for the most interesting sparsity levels k. On the other hand, and perhaps
surprisingly, we will show in this article that the low-rank constraint is naturally
compatible with certain risk estimation approaches to confidence sets. This will
be seen to be true for general sub-Gaussian sensing matrices, but also for sensing
matrices arising from Pauli observables, as is specifically relevant in quantum state
tomography problems (see the next section). In the latter case it will be helpful to
enforce the additional ‘quantum state shape constraint’ on the unknown matrix to
obtain optimal results. One can conclude that, in contrast to ‘sparse models’, no
signal strength assumptions are necessary for the existence of adaptive confidence
statements in low rank recovery problems. Our findings are confirmed in a simple
simulation study, see Sect. 18.4.

The honest non-asymptotic confidence sets we will derive below can be used
for the construction of adaptive sampling procedures: An experimenter wants to
know—at least with a prescribed probability of 1 − α—that the matrix recovery
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algorithm, the ‘estimator’, has produced an output θ̃ that is close to the ‘true state’
θ . The sequential protocol advocated here—which is related to ‘active learning
algorithms’ from machine learning, e.g., Ref. [29]—should tell the experimenter
whether a new batch of measurements has to be taken to decrease the recovery
error, or whether the collected observations are already sufficient. The data-driven
stopping time for this protocol should not exceed the minimax optimal stopping
time, again with high probability. We shall show that for Pauli and sub-Gaussian
sensing ensembles, such algorithms exist under mild assumptions on the true matrix
θ . These assumptions are in particular always satisfied under the ‘quantum shape
constraint’ that naturally arises in quantum tomography problems.

Our results depend on the choice of the Frobenius norm and the Hilbert space
geometry induced by it. For other natural matrix norms, such as for instance the
trace-(nuclear) norm, the theory is more difficult. We show as a first step that at
least theoretically a trace-norm optimal confidence set can be constructed for the
unknown quantum state (Theorem 18.4)—this suggests interesting directions for
future research.

18.1.2 Application to Quantum State Estimation

This work was partly motivated by a problem arising in present-day physics
experiments that aim at estimating quantum states. Conceptually, a quantum
mechanical experiment involves two stages (c.f. Fig. 18.1): A source (or preparation
procedure) that emits quantum mechanical systems with unknown properties, and
a measurement device that interacts with incoming quantum systems and produces
real-valued measurement outcomes, e.g. by pointing a dial to a value on a scale.
Quantum mechanics stipulates that both stages are completely described by certain
matrices.

The properties of the source are represented by a positive semi-definite unit
trace matrix θ , the quantum state, also referred to as density matrix. In turn, the
measurement device is modelled by a Hermitian matrix X, which is referred to as
an observable in physics jargon. A key axiom of the quantum mechanical formalism

Fig. 18.1 Caricature of a quantum mechanical experiment. With every source of quantum
systems, one associates a density matrix θ . Observations systems are performed by measurement
devices, which interact with incoming systems and produce real-valued outcomes. Each such
devices is modelled mathematically by a Hermitian matrix X, referred to as an observable
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states that if the measurement X is repeatedly performed on systems emitted by the
source that is preparing θ , then the real-valued measurement outcomes will fluctuate
randomly with expected value

〈X, θ〉F = tr(Xθ) (18.1)

(referred to as expectation value in the quantum physics literature). The precise
way in which physical properties are represented by these matrices is immaterial
to our discussion (cf. any textbook, e.g. Ref. [32]). We merely note that, while
in principle any Hermitian X can be measured by some physical apparatus, the
required experimental procedures are prohibitively complicated for all but a few
highly structured matrices. This motivates the introduction of Pauli designs below,
which correspond to fairly tractable ‘spin parity measurements’.

The quantum state estimation or quantum state tomography1 problem is to
estimate an unknown density matrix θ from the measurement of a collection of
observables X1, . . . , Xn. This task is of particular importance to the young field
of quantum information science [31]. There, the sources might be a carefully
engineered component used for technological applications such as quantum key
distribution or quantum computing. In this context, quantum state estimation is
the process of characterising the components one has built—clearly an important
capability for any technology.

A major challenge lies in the fact that relevant instances are described by
d × d-matrices for fairly large dimensions d ranging from 100 to 10,000 in
presently performed experiments [18]. Such high-dimensional estimation problems
can benefit substantially from structural properties of the objects to be recovered.
Fortunately, the density matrices occurring in quantum information experiments
are typically well-approximated by matrices of low rank r 3 d . In fact, in the
practically most important applications, one usually even aims at preparing a state
of rank one—a so-called pure quantum state. While environmental noise will drive
the actual state away from the perfect rank-one case, the error will usually be small.

As a result, quantum physicists have early on shown an interest in low-rank
matrix recovery methods [12, 15–17, 28]. Initial works [15, 16] focused on the
minimal number n of observables X1, . . . , Xn required for reconstructing a rank-
r density matrix θ in the noiseless case, i.e. under the idealised assumption
that the expectation values tr(θXi) are known exactly. The practically highly
relevant problem of quantifying the uncertainty of an estimate θ̂ arising from noisy
observations on low-rank states was addressed only later [12] and remains less well
understood.

1 The term ‘tomography’ goes back to the use of Radon transforms in early schemes for estimating
quantum states of electromagnetic fields [1, 27]. It has become synonymous with ‘quantum
density matrix estimation’, even though current methods applied to quantum systems with a finite
dimension d have no technical connection to classical tomographic reconstruction algorithms.
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More concretely, the basic approach taken in Ref. [12] for uncertainty quantifi-
cation is similar to the one pursued in the present paper. In a first step, one uses
a Matrix Lasso or Dantzig Selector to construct an estimate. Then, a confidence
region is obtained by comparing predictions derived from the initial estimate to new
samples. However, Ref. [12] suffers from two demerits. First, and most importantly,
the performance analysis of the scheme relies on a bound on the rank r of the
unknown true θ . Such a bound is not available in practice. Second, the dependence
of the rate on r is not tight. Both of these demerits will be addressed here.

We close this section pointing to more broadly related works. Uncertainty
quantification in quantum state tomography in general has been treated by numerous
authors—a highly incomplete list is Refs. [2, 4, 10, 34, 35]. However, the concept of
dimension reduction for low-rank states does not feature explicitly in these papers.
This contrasts with Ref. [17], where the authors propose model selection techniques
based on information criteria to arrive at low-rank estimates. The use of general-
purpose methods—like maximum likelihood estimation and the Akaike Information
Criterion—in Ref. [17] means that it is applicable to very general experimental
designs. In contrast to this, the present paper relies on compressed sensing ideas to
arrive at rigorous a priori guarantees on statistical and computational performance.
Also, it remains non-obvious how such model selection steps can be transformed
into ‘post-model selection’ confidence sets—typically such constructions result in
sub-optimal signal strength conditions that ensure model selection consistency (see
Ref. [26] and also the discussion after Theorem 2 in Ref. [30]). Our confidence pro-
cedures never estimate the unknown rank of the quantum state—not even implicitly.
Rather, they estimate the performance of a dimension-reduction technique directly
based on sample splitting.

18.2 Matrix Compressed Sensing

We consider inference on a d × d matrix θ that is symmetric, or, if it consists of
possibly complex entries, assumed to be Hermitian (that is θ = θ∗ where θ∗ is
the conjugate transpose of θ ). Denote by Md (K) the space of d × d matrices with
entries in K = C or K = R. We write ‖·‖F for the usual Frobenius norm on Md (K)

arising from the inner product tr(AB) = 〈A,B〉F . Moreover let Hd(C) be the set of
all Hermitian matrices, and Hd(R) for the set of all symmetric d × d matrices with
real entries. The norm symbol ‖ ·‖ without subindex denotes the standard Euclidean
norm on R

n or on C
n arising from the Euclidean inner product 〈·, ·〉.

We denote the usual operator norm on Md (C) by ‖ · ‖op. For M ∈ Md (C) let
(λ2

k : k = 1, . . . , d) be the eigenvalues of MTM (which are all real-valued and
positive). The l1-Schatten, trace, or nuclear norm of M is defined as

‖M‖S1 =
∑

j≤d

|λj |.
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Note that for any matrix M of rank 1 ≤ r ≤ d the following inequalities are easily
shown,

‖M‖F ≤ ‖M‖S1 ≤
√
r‖M‖F . (18.2)

We will consider parameter subspaces of Hd(C) described by low rank con-
straints on θ , and denote by R(k) the space of all Hermitian d × d matrices that
have rank at most k, k ≤ d . In quantum tomography applications, we may assume
an additional ‘shape constraint’, namely that θ is a density matrix of a quantum
state, and hence contained in state space

$+ = {θ ∈ Hd(C) : tr(θ) = 1, θ 7 0},

where θ 7 0 means that θ is positive semi-definite. In fact, in most situations, we
will only require the bound ‖θ‖S1 ≤ 1 which trivially holds for any θ in $+.

We have at hand measurements arising from inner products 〈Xi, θ〉F =
tr(Xiθ), i = 1, . . . , n, of θ with d × d (random) matrices Xi . This measurement
process is further subject to independent additive noise ε. Formally, the
measurement model is

Yi = tr(Xiθ)+ εi, i = 1, . . . , n, (18.3)

where the εi’s and Xi ’s are independent of each other. We write Y = (Y1, . . . , Yn)
T ,

and for probability statements under the law of Y,X, ε given fixed θ we will use
the symbol Pθ . Unless mentioned otherwise we will make the basic assumption of
Gaussian noise

ε = (ε1, . . . , εn)
T ∼ N(0, σ 2In),

where σ > 0 is known. See Remark 18.6 for some discussion of the unknown
variance case. In the context of quantum mechanics, the inner product tr(Xiθ) gives
the expected value of the observable Xi when measured on a system in state θ (cf.
Sect. 18.1.2). A class of physically realistic measurements (correlations among spin-
1/2 particles) is described by Xi ’s drawn from the Pauli basis. Our main results also
hold for measurement processes of this type. Before we describe this in Sect. 18.2.2,
let us first discuss our assumptions on the matrices Xi .

18.2.1 Sensing Matrices and the RIP

When θ ∈ Md (R), we shall restrict to design matrices Xi that have real-valued
entries, too, and when θ ∈ Hd(C) we shall consider designs where Xi ∈ Hd(C).
This way, in either case, the measurements tr(Xiθ)’s and hence the Yi’s are all
real-valued. More concretely, the sensing matrices Xi that we shall consider are
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described in the following assumption, which encompasses both a prototypical
compressed sensing setting—where we can think of the matrices Xi as i.i.d. draws
from a Gaussian ensemble (Xm,k) ∼iid N(0, 1)—as well as the ‘random sampling
from a basis ofMd (C)’ scenario. The systematic study of the latter has been initiated
by quantum physicists [15, 28], as it contains, in particular, the case of Pauli basis
measurements [12, 16] frequently employed in quantum tomography problems.
Note that in Part (a) the design matrices are not Hermitian but our results can
easily be generalised to symmetrised sub-Gaussian ensembles (as those considered
in Ref. [24]).

Condition 18.1

(a) θ ∈ Hd(R), ‘isotropic’ sub-Gaussian design: The random variables (Xi
m,k),

1 ≤ m, k ≤ d, i = 1, . . . , n, generating the entries of the random matrix Xi

are i.i.d. distributed across all indices i,m, k with mean zero and unit variance.
Moreover, for every θ ∈Md (R) such that ‖θ‖F ≤ 1, the real random variables
Zi = tr(Xiθ) are sub-Gaussian: for some fixed constants τi > 0 independent
of θ ,

EeλZi ≤ τ1e
λ2τ 2

2 ∀λ ∈ R.

(b) θ ∈ Hd(C), random sampling from a basis (‘Pauli design’): Let
{E1, . . . , Ed2} ⊂ Hd(C) be a basis of Md (C) that is orthonormal for the scalar
product 〈·, ·〉F and such that the operator norms satisfy, for all i = 1, . . . , d2,

‖Ei‖op ≤ K√
d
,

for some universal ‘coherence’ constant K . [In the Pauli basis case we have
K = 1.] Assume the Xi , i = 1, . . . , n, are draws from the finite family E =
{dEi : i = 1, . . . , d2} sampled uniformly at random.

The above examples all obey the matrix restricted isometry property, that we
describe now. Note first that if X : Rd×d → R

n is the linear ‘sampling’ operator

X : θ �→ X θ = (tr(X1θ), . . . , tr(Xnθ))T , (18.4)

so that we can write the model equation (18.3) as Y = X θ + ε, then in the above
examples we have the ‘expected isometry’

E
1

n
‖X θ‖2 = ‖θ‖2

F .
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Indeed, in the isotropic design case we have

1

n
E‖X θ‖2 = 1

n

n
∑

i=1

E

(

∑

m

∑

k

Xi
m,kθm,k

)2

=
∑

m

∑

k

EX2
m,kθ

2
m,k = ‖θ‖2

F ,

(18.5)

and in the ‘basis case’ we have, from Parseval’s identity and since the Xi ’s are
sampled uniformly at random from the basis,

1

n
E‖X θ‖2 = d2

n

n
∑

i=1

d2
∑

j=1

Pr(Xi = Ej)|〈Ej , θ〉F |2 = ‖θ‖2
F . (18.6)

The restricted isometry property (RIP) then requires that this ‘expected isometry’
actually holds, up to constants and with probability ≥ 1 − δ, for a given realisation
of the sampling operator, and for all d × d matrices θ of rank at most k:

sup
θ∈R(k)

∣

∣

∣

∣

∣

1
n
‖X θ‖2 − ‖θ‖2

F

‖θ‖2
F

∣

∣

∣

∣

∣

≤ τn(k), (18.7)

where τn(k) are some constants that may depend, among other things, on the rank
k and the ‘exceptional probability’ δ. For the above examples of isotropic and Pauli
basis design inequality (18.7) can be shown to hold with

τ 2
n (k) = c2 kd · logd

n
, (18.8)

where

logx := (log x)η,

for some η > 0 denotes a ‘polylog function’, and where c = c(δ) is a constant. See
Refs. [6, 28] for these results, where it is also shown that c(δ) can be taken to be at
least O(1/δ2) as δ → 0 (sufficient for our purposes below).

18.2.2 Quantum Measurements

Here, we introduce a paradigmatic set of quantum measurements that is frequently
used in both theoretical and practical treatments of quantum state estimation (e.g.
[16, 18]). For a more general account, we refer to standard textbooks [20, 31]. The
purpose of this section is to motivate the ‘Pauli design’ case (Condition 18.1(b) of
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the main theorem, as well as the approximate Gaussian noise model. Beyond this,
the technical details presented here will not be used.

18.2.2.1 Pauli Spin Measurements on Multiple Particles

We start by describing ‘spin measurements’ on a single ‘spin-1/2 particle’. Such a
measurement corresponds to the situation of having d = 2. Without worrying about
the physical significance, we accept as fact that on such particles, one may measure
one of three properties, referred to as the ‘spin along the x, y, or z-axis’ of R

3.
Each of these measurements may yield one of two outcomes, denoted by +1 and
−1 respectively.

The mathematical description of these measurements is derived from the Pauli
matrices

σ 1 =
[

0 1
1 0

]

, σ 2 =
[

0 −i

i 0

]

, σ 3 =
[

1 0
0 −1

]

(18.9)

in the following way. Recall that the Pauli matrices have eigenvalues ±1. For x ∈
{1, 2, 3} and j ∈ {+1,−1}, we write ψx

j for the normalised eigenvector of σx with
eigenvalue j . The spectral decomposition of each Pauli spin matrix can hence be
expressed as

σx = πx+ − πx−, (18.10)

with

πx± = ψx±(ψ
y
±)∗ (18.11)

denoting the projectors onto the eigenspaces. Now, a physical measurement of the
‘spin along direction x’ on a system in state θ will give rise to a {−1, 1}-valued
random variable Cx with

P(Cx = j) = tr
(

πx
j θ
)

, (18.12)

where θ ∈ H2(C). Using Eq. (18.10), this is equivalent to stating that the expected
value of Cx is given by

E(Cx) = tr
(

σxθ
)

. (18.13)

Next, we consider the case of joint spin measurements on a collection of N

particles. For each, one has to decide on an axis for the spin measurement. Thus,
the joint measurement setting is now described by a word x = (x1, . . . , xN) ∈
{1, 2, 3}N . The axioms of quantum mechanics posit that the joint state θ of the N

particles acts on the tensor product space (C2)⊗N , so that θ ∈ H2N (C).
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Likewise, the measurement outcome is a word j = (j1, . . . , jN ) ∈ {1,−1}N ,
with ji the value of the spin along axis xi of particle i = 1, . . . , N . As above, this
prescription gives rise to a {1,−1}N -valued random variable Cx . Again, the axioms
of quantum mechanics imply that the distribution of Cx is given by

P(Cx = j) = tr
(

(π
x1
j1
⊗ · · · ⊗ π

xN
jN

)θ
)

. (18.14)

Note that the components of the random vector Cx are not necessarily independent,
as θ will generally not factorise

It is often convenient to express the information in Eq. (18.14) in a way that
involves tensor products of Pauli matrices, rather than their spectral projections. In
other words, we seek a generalisation of Eq. (18.13) to N particles. As a first step
toward this goal, let

χ(j) =
{−1 number of − 1 elements in j is odd

1 number of − 1 elements in j is even
(18.15)

be the parity function. Then one easily verifies

tr((σ x1 ⊗ · · · ⊗ σxN )θ) =
∑

j∈{1,−1}N
χ(j) tr

(

θ(π
x1
j1
⊗ · · · ⊗ π

xN
jN

)
)

= E
(

χ(Cx)
)

.

(18.16)

In this sense, the tensor product σx1 ⊗ · · · ⊗ σxN describes a measurement of the
parity of the spins along the respective directions given by x.

In fact, the entire distribution of Cx can be expressed in terms of tensor products
of Pauli matrices and suitable parity functions. To this end, we extend the definitions
above. Write

σ 0 =
[

1 0
0 1

]

(18.17)

for the identity matrix in M2(C). For every subset S of {1, . . . , N}, define the ‘parity
function restricted to S’ via

χS(j) =
{−1 number of − 1 elements ji for i ∈ S is odd

1 number of − 1 elements ji for i ∈ S is even.
(18.18)

Lastly, for S ⊂ {1, . . . , N} and x ∈ {1, 2, 3}N , the restriction of x to S is

xS
i =

{

xi i ∈ S

0 i �∈ S.
(18.19)
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Then for every such x, S one verifies the identity

tr((σ xS
1 ⊗ · · · ⊗ σxS

N )θ) = E
(

χS(C
x)
)

. (18.20)

In other words, the distribution of Cx contains enough information to compute the

expectation value of all observables (σ xS
1 ⊗ · · · ⊗ σxS

N ) that can be obtained by
replacing the Pauli matrices on an arbitrary subset S of particles by the identity σ 0.
The converse is also true: the set of all such expectation values allows one to recover
the distribution of Cx . The explicit formula reads

P(Cx = j) = 1

2N

∑

S⊂{1,...,N}
χS(j)E

(

χS(C
x)
) = 1

2N

∑

S∈{1,...,N}
χS(j) tr

(

θ(σ xS
1 ⊗ · · · ⊗ σxS

N )
)

(18.21)

and can be verified by direct computation.2

In this sense, the information obtainable from joint spin measurements on N

particles can be encoded in the 4N real numbers

2−N/2 tr((σ y1 ⊗ · · · ⊗ σyN )θ), y ∈ {0, 1, 2, 3}N. (18.22)

Indeed, every such y arises as y = xS for some (generally non-unique) combination
of x and S. This representation is particularly convenient from a mathematical point
of view, as the collection of matrices

Ey := 2−N/2σy1 ⊗ · · · ⊗ σyN , y ∈ {0, 1, 2, 3}N (18.23)

forms an ortho-normal basis with respect to the 〈·, ·〉F inner product. Thus the terms
in Eq. (18.22) are just the coefficients of a basis expansion of the density matrix θ .3

From now on, we will use Eq. (18.22) as our model for quantum tomographic
measurements. Note that the Ey satisfy Condition 18.1(b) with coherence constant
K = 1 and d = 2N .

2 A more insightful way of proving the first identity is to realise that E
(

χS(C
x)
)

is effectively a
Fourier coefficient (over the group Z

N
2 ) of the distribution function of the {−1, 1}N -valued random

variable Cx (e.g., [11]). Equation (18.21) is then nothing but an inverse Fourier transform.
3We note that quantum mechanics allows to design measurement devices that directly probe the
observable of σy1⊗· · ·⊗σyN , without first measuring the spin of every particle and then computing
a parity function. In fact, the ability to perform such correlation measurements is crucial for
quantum error correction protocols [31]. For practical reasons these setups are used less commonly
in tomography experiments, though.
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18.2.2.2 Bernoulli Errors and Pauli Observables

In the model (18.3) under Condition 18.1(b) we wish to approximate d · tr(Eyθ) for
a fixed observable Ey (we fix the random values of the Xi ’s here) and for d = 2N .
If y = xS for some setting x and subset S, then the parity function By := χS(C

x)

has expected value 2N/2 · tr(Eyθ) = √
d · tr(Eyθ) (see Eqs. (18.20) and (18.23)),

and itself is a Bernoulli variable taking values {1,−1} with

p = P(By = 1) = 1+√dtr(Eyθ)

2
.

Note that

√
d|tr(Eyθ)| ≤ √d‖Ey‖op‖θ‖S1 ≤ 1,

so indeed p ∈ [0, 1] and the variance satisfies

VarBy = 1− d · tr(Eyθ)2 ≤ 1.

This is the error model considered in Ref. [12].
In order to estimate all Yi , i = 1, . . . , n, for given Ei := Ey , a total number nT

of identical preparations of the quantum state θ are being performed, divided into
batches of T Bernoulli variables Bi,j := B

y
j , j = 1, . . . , T . The measurements of

the sampling model Eq. (18.3) are thus

Yi =
√
d

T

T
∑

j=1

Bi,j = d · tr(Eiθ)+ εi

where

εi =
√
d

T

T
∑

j=1

(Bi,j − EBi,j )

is the effective error arising from the measurement procedure making use of T

preparations to estimate each quantum mechanical expectation value. Now note that

|εi | ≤ 2
√
d, Eε2

i ≤
d

T
Var(Bi,1) ≤ d

T
. (18.24)

We see that since the εi’s are themselves sums of independent random variables,
an approximate Gaussian error model with variance σ 2 will be roughly appropriate.
If T ≥ n then σ 2 = Eε2

1 is no greater than d/n, and if in addition T ≥ d2 then
all results in Sect. 18.3 below can be proved for this Bernoulli noise model too, see
Remarks 18.5 and 18.6 for details.
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18.2.3 Minimax Estimation Under the RIP

Assuming the matrix RIP to hold and Gaussian noise ε, one can show that the
minimax risk for recovering a Hermitian rank k matrix is

inf
θ̂

sup
θ∈R(k)

Eθ‖θ̂ − θ‖2
F 8 σ 2 dk

n
, (18.25)

where8 denotes two-sided inequality up to universal constants.
For the upper bound one can use the nuclear norm minimisation procedure or

matrix Dantzig selector from Candès and Plan [6], and needs n to be large enough
so that the matrix RIP holds with τn(k) < c0 where c0 is a small enough numerical
constant. Such an estimator θ̃ then satisfies, for every θ ∈ R(k) and those n ∈ N for
which τn(k) < c0,

‖θ̃ − θ‖2
F ≤ D(δ)σ 2 kd

n
, (18.26)

with probability greater than 1 − 2δ, and with the constant D(δ) depending on δ

and also on c0 (suppressed in the notation). Note that the results in Ref. [6] use a
different scaling in sample size in their Theorem 2.4, but eq. (II.7) in that reference
explains that this is just a question of renormalisation. The same result holds for
randomly sampled ‘Pauli bases’, see Ref. [28] (and take note of the slightly different
normalisation in the notation there, too), and also for the Bernoulli noise model from
Sect. 18.2.2.2, see Ref. [12].

A key interpretation for quantum tomography applications is that, instead of
having to measure all n = d2 basis coefficients tr(Eiθ), i = 1, . . . , d2, a number

n ≈ kdlogd

of randomly chosen basis measurements is sufficient to reconstruct θ in Frobenius
norm loss (up to a small error). In situations where d is large compared to k such a
gain can be crucial.

Remark 18.1 (Uniqueness) It is worth noting that in the absence of errors, so when
Y0 = X θ0 in terms of the sampling operator of Eq. (18.4), the quantum shape
constraint ensures that under a suitable RIP condition, only the single matrix θ0 is
compatible with the data. More specifically, let Y0 = X θ0 for some θ0 ∈ $+ of rank
k, and assume that X satisfies RIP with τn(4k) <

√
2− 1. Then

{θ ∈ $+ : X θ = Y0} = {θ0}. (18.27)
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This is a direct consequence of Theorem 3.2 in Ref. [33], which states that if RIP is
satisfied with τn(4k) <

√
2− 1 and Y0 = X θ0, the unique solution of

argmin ‖θ‖S1

subject to X θ = Y0 (18.28)

is given by θ0. If θ0 ∈ $+, then the minimisation can be replaced by (compare also
Ref. [23]).

argmin tr(θ)

subject to X θ = Y0, θ ≥ 0, (18.29)

giving rise to the above remark. This observation further signifies the role played by
the quantum shape constraint.

18.3 Uncertainty Quantification for Low-Rank Matrix
Recovery

We now turn to the problem of quantifying the uncertainty of estimators θ̃ that
satisfy the risk bound (18.26). In fact the confidence sets we construct could be
used for any estimator of θ , but the conclusions are most interesting when used for
minimax optimal estimators θ̃ . For the main flow of ideas we shall assume ε =
(ε1, . . . , εn)

T ∼ N(0, σ 2In) but the results hold for the Bernoulli measurement
model from Sect. 18.2.2.2 as well—this is summarised in Remark 18.5.

From a statistical point of view, we phrase the problem at hand as the one
of constructing a confidence set for θ : a data-driven subset Cn of Md (C) that is
‘centred’ at θ̃ and that satisfies

Pθ (θ ∈ Cn) ≥ 1− α, 0 < α < 1,

for a chosen ‘coverage’ or significance level 1 − α, and such that the Frobenius
norm diameter |Cn|F reflects the accuracy of estimation, that is, it satisfies, with
high probability,

|Cn|2F ≈ ‖θ̃ − θ‖2
F .

In particular such a confidence set provides, through its diameter |Cn|F , a data-
driven estimate of how well the algorithm has recovered the true matrix θ in
Frobenius-norm loss, and in this sense provides a quantification of the uncertainty
in the estimate.
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In the situation of an experimentalist this can be used to decide sequentially
whether more measurements should be taken (to improve the recovery rate), or
whether a satisfactory performance has been reached. Concretely, if for some ε > 0
a recovery level ‖θ̃ − θ‖F ≤ ε is desired for an estimator θ̃ , then assuming θ̃

satisfies the minimax optimal risk bound dk/n from (18.26), we expect to need,
ignoring constants,

dk

n
< ε2 and hence at least n >

dk

ε2

measurements. Note that we also need the RIP to hold with τn(k) from (18.8)
less than a small constant c0, which requires the same number of measurements,
increased by a further poly-log factor of d (and independently of σ ).

Since the rank k of θ remains unknown after estimation we cannot obviously
guarantee that the recovery level ε has been reached after a given number of
measurements. A confidence set Cn for θ̃ provides such certificates with high
probability, by checking whether |Cn|F ≤ ε, and by continuing to take further
measurements if not. The main goal is then to prove that a sequential procedure
based on Cn does not require more than approximately

n >
dklogd

ε2

samples (with high probability). We construct confidence procedures in the follow-
ing subsections that work with at most as many measurements, for the designs from
Condition 18.1.

18.3.1 Adaptive Sequential Sampling

Before we describe our confidence procedures, let us make the following definition,
where we recall that R(k) denotes the set of d × d Hermitian matrices of rank at
most k ≤ d .

Definition 18.1 Let ε > 0, δ > 0 be given constants. An algorithm A returning
a d × d matrix θ̂ after n̂ ∈ N measurements in model (18.3) is called an (ε, δ)—
adaptive sampling procedure if, with Pθ -probability greater than 1−δ, the following
properties hold for every θ ∈ R(k) and every 1 ≤ k ≤ d:

‖θ̂ − θ‖F ≤ ε, (18.30)

and, for positive constants C(δ), γ, the stopping time n̂ satisfies

n̂ ≤ C(δ)
kd(log d)γ

ε2 . (18.31)
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Such an algorithm provides recovery at given accuracy level ε with n̂ measure-
ments of minimax optimal order of magnitude (up to a poly-log factor), and with
probability greater than 1− δ. The sampling algorithm is adaptive since it does not
require the knowledge of k, and since the number of measurements required depends
only on k and not on the ‘worst case’ rank d .

The construction of non-asymptotic confidence sets Cn for θ at any sample size
n in the next subsections will imply that such algorithms exist for low rank matrix
recovery problems. The main idea is to check sequentially, for a geometrically
increasing number 2m of samples, m = 1, 2, . . . , if the diameter |C2m |F of a
confidence set exceeds ε. If this is not the case, the algorithm terminates. Otherwise
one takes 2m+1 additional measurements and evaluates the diameter |C2m+1 |F . A
precise description of the algorithm is given in the proof of the following theorem,
which we detail for the case of ‘Pauli’ designs. The isotropic design case is discussed
in Remark 18.9.

Theorem 18.1 Consider observations in the model (18.3) under Condition 18.1(b)
with θ ∈ $+. Then an adaptive sampling algorithm in the sense of Definition 18.1
exists for any ε, δ > 0.

Remark 18.2 (Dependence in σ of Definition 18.1 and Theorem 18.1) Defini-
tion 18.1 and Theorem 18.1 are stated for the case where the standard deviation of
the noise σ is assumed to be bounded by an absolute constant. It is straight-forward
to modify the proofs to obtain a version where the dependency of the constants on
the variance is explicit. Indeed, under Condition 1(a), Theorem 18.1 continues to
hold if Eq. (18.31) is replaced by

n̂ ≤ C(δ)
σ 2kd(log d)γ

ε2 .

For the ‘Pauli design case’—Condition 1(b)—Eq. (18.31) can be modified to

n̂ ≤ C(δ)
(σ 2kd(log d)γ

ε2 ∨ d(log d)γ

ε2

)

.

Remark 18.3 (Necessity of the Quantum Shape Constraint) Note that the assump-
tion θ ∈ $+ in the previous theorem is necessary (in the case of Pauli design):
Else the example of θ = 0 or θ = Ei—where Ei is an arbitrary element of the
Pauli basis—demonstrates that the number of measurements has to be at least of
order d2: otherwise with positive probability, Ei is not drawn at a fixed sample size.
On this event, both the measurements and θ̂ coincide under the laws P0 and PEi ,
so we cannot have ‖θ̂ − 0‖F < ε and ‖θ̂ − Ei‖F < ε simultaneously for every
ε > 0, disproving existence of an adaptive sampling algorithm. In fact, the crucial
condition for Theorem 18.1 to work is that the nuclear norms ‖θ‖S1 are bounded by
an absolute constant (here= 1), which is violated by ‖Ei‖S1 =

√
d .
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18.3.2 A Non-asymptotic Confidence Set Based on Unbiased
Risk Estimation and Sample-Splitting

We suppose that we have two samples at hand, the first being used to construct an
estimator θ̃ , such as the one from (18.26). We freeze θ̃ and the first sample in what
follows and all probabilistic statements are under the distribution Pθ of the second
sample Y,X of size n ∈ N, conditional on the value of θ̃ . We define the following
residual sum of squares statistic (recalling that σ 2 is known):

r̂n = 1

n
‖Y − X θ̃‖2

F − σ 2,

which satisfies Eθ r̂n = ‖θ − θ̃‖2
F as is easily seen (see the proof of Theorem 18.2

below). Given α > 0, let ξα,σ be quantile constants such that

Pr

(

n
∑

i=1

(ε2
i − 1) > ξα,σ

√
n

)

= α (18.32)

(these constants converge to the quantiles of a fixed normal distribution as n→∞),
let zα = log(3/α) and, for z ≥ 0 a fixed constant to be chosen, define the confidence
set

Cn =
{

v ∈ Hd(C) : ‖v − θ̃‖2
F ≤ 2

(

r̂n + z
d

n
+ z̄ + ξα/3,σ√

n

)}

, (18.33)

where

z̄2 = z̄2(α, d, n, σ, v) = zα/3σ
2 max(3‖v − θ̃‖2

F , 4zd/n).

Note that in the ‘quantum shape constraint’ case we can always bound ‖v− θ̃‖F ≤ 2
which gives a confidence set that is easier to compute and of only marginally larger
overall diameter. In many important situations, however, the quantity z̄/

√
n is of

smaller order than 1/
√
n, and the more complicated expression above is preferable.

It is not difficult to see (using that x2 � y + x/
√
n implies x2 � y + 1/n) that

the square Frobenius norm diameter of this confidence set is, with high probability,
of order

|Cn|2F � ‖θ̃ − θ‖2
F +

zd + zα/3

n
+ ξα/3,σ√

n
. (18.34)

Whenever d ≥ √n—so as long as at most n ≤ d2 measurements have been taken—
the deviation terms are of smaller order than kd/n, and hence Cn has minimax
optimal expected squared diameter whenever the estimator θ̃ is minimax optimal as
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in (18.26). Improvements for d <
√
n, corresponding to n > d2 measurements, will

be discussed in the next subsections.
The following result shows that Cn is an honest confidence set for arbitrary d×d

matrices (without any rank constraint). Note that the result is non-asymptotic—it
holds for every n ∈ N.

Theorem 18.2 Let θ ∈ Hd(C) be arbitrary and let Pθ be the distribution of Y,X
from model (18.3).

(a) Assume Condition 18.1(a) and let Cn be given by (18.33) with z = 0. We then
have for every n ∈ N that

Pθ (θ ∈ Cn) ≥ 1− 2α

3
− 2e−cn

where c is a numerical constant. In the case of standard Gaussian design, c =
1/24 is admissible.

(b) Assume Condition 18.1(b), let Cn be given by (18.33) with z > 0 and assume
also that θ ∈ $+ and θ̃ ∈ $+ (that is, both satisfy the ‘quantum shape
constraint’). Then for every n ∈ N,

Pθ (θ ∈ Cn) ≥ 1− 2α

3
− 2e−C(K)z

where, for K the coherence constant of the basis,

C(K) = 1

(16+ 8/3)K2 .

In Part (a), if we want to control the coverage probability at level 1− α, n needs
to be large enough so that the third deviation term is controlled at level α/3. In the
Gaussian design case with α = 0.05, n ≥ 100 is sufficient, for smaller sample
sizes one can reduce the coverage level. The bound in (b) is entirely non-asymptotic
(using the quantum constraint) for suitable choices of z. Also note that the quantile
constants z, zα, ξα all scale at least as O(log(1/α)) in the desired coverage level
α → 0.

Remark 18.4 (Dependence of the Confidence Set’s Diameter on K (Pauli Design)
and σ ) Note that in the case of the Pauli design from Condition 1(b), the confidence
set’s diameter depends on K only through the potential dependence of ‖θ − θ̃‖2

F

on K—the constants involved in the construction of C̃n and on the bound on its
diameter do not depend on K . On the other hand, the coverage probability of the
confidence set depends on K , see Theorem 18.2, (b).

In this paper we assume that σ is a universal constant, and so as such it does not
appear in Eqs. (18.33) and (18.34). It can however be interesting to investigate the
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dependence in σ . In the case of isotropic design from Condition 1(a), we could set

Cn =
{

v ∈ Hd(C) : ‖v − θ̃‖2
F ≤ 2

(

r̂n + zcσ 2 d

n
+ σ 2 z̄+ ξα/3,σ√

n

)}

,

(where σ 2 could be replaced by twice the plug-in estimator of σ 2, using θ̂ ) and one
would get

Eθ |Cn|2F � ‖θ̃ − θ‖2
F + σ 2 zd + zα/3

n
+ σ 2 ξα/3,σ√

n
,

and Theorem 18.2 also holds by introducing minor changes in the proof. In the case
of the Pauli design from Condition 1(b), we could set

Cn =
{

v ∈ Hd(C) : ‖v − θ̃‖2
F ≤ 2

(

r̂n + zc
d

n
+ σ 2 z̄+ ξα/3,σ√

n

)}

,

(where σ 2 could be replaced by twice the plug-in estimator of σ 2, using θ̂ ) and one
would get

Eθ |Cn|2F � ‖θ̃ − θ‖2
F +

zd + zα/3

n
+ σ 2 ξα/3,σ√

n
,

and Theorem 18.2 also holds by introducing minor changes in the proof. In this case
we do not get a full dependence in σ as in the isotropic design case from Condition
1(a). However if k2d � n, we could also obtain a result similar to the one for the
Gaussian design, using part (c) of Lemma 18.1.

Remark 18.5 (Bernoulli Noise) Theorem 18.2(b) holds as well for the Bernoulli
measurement model from Sect. 18.2.2.2 with T ≥ d2, with slightly different
constants in the construction of Cn and the coverage probabilities. See Remark 18.10
after the proof of Theorem 18.2(b) below. The modified quantile constants z, zα, ξα
still scale as O(

√
1/α) in the desired coverage level α → 0, and hence the adaptive

sampling Theorem 18.1 holds for such noise too, if the number T of preparations of
the quantum state exceeds d2.

Remark 18.6 (Unknown Variance) The above confidence set Cn can be constructed
with r̃n = 1

n
‖Y −X θ̃‖2 replacing r̂n—so without requiring knowledge of σ—if an a

priori bound σ 2 ≤ vd/n is available, with v a known constant. An example of such
a situation was discussed at the end of Sect. 18.2.2.2 above in quantum tomography
problems: when T ≥ n, the constant z should be increased by v in the construction
of Cn, and the coverage proof goes through as well by compensating for the centring
at Eε2

i = σ 2 by the additional deviation constant v.

Remark 18.7 (Anisotropic Design Instead of Condition 1(a)) It is also interesting to
consider the case of anisotropic design. This case is not very different, when it comes
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to confidence sets, than isotropic design, as long as the variance-covariance matrix
of the anisotropic sub-Gaussian design is such that the ratio of its largest eigenvalue
with the smallest eigenvalue is bounded. Lemma 18.1(a), which quantifies the effect
of the design, would change as follows: There exist constants c−, c+, c > 0 that
depend only on the variance-covariance matrix of the anisotropic sub-Gaussian
design and that are such that

Pr

(

c−‖ϑ‖2
F ≤

1

n
‖Xϑ‖2 ≤ c+‖ϑ‖2

F

)

≥ 1− 2e−cn.

Using this instead of the inequality in Lemma 18.1(a) in the proof of Theorem 18.2,
part (a) leads to a similar result as Theorem 18.2, part (a).

18.3.3 Improvements When d ≤ √
n

The confidence set from Theorem 18.2 is optimal whenever the desired performance
of ‖θ − θ̃‖2

F is no better than of order 1/
√
n. From a minimax point of view we

expect ‖θ−θ̃‖2
F to be of order kd/n for low rank θ ∈ R(k). In absence of knowledge

about k ≥ 1 the confidence set from Theorem 18.2 can hence be guaranteed to
be optimal whenever d ≥ √

n, corresponding to the important regime n ≤ d2

for sequential sampling algorithms. Refinements for measurement scales n ≥ d2

are also of interest—we present two optimal approaches in this subsection for the
designs from Condition 18.1.

18.3.3.1 Isotropic Design and U -Statistics

Consider first isotropic i.i.d design from Condition 18.1(a), and an estimator θ̃ based
on an initial sample of size n (all statements that follow are conditional on that
sample). Collect another n samples to perform the uncertainty quantification step.
Define the U -statistic

R̂n = 2

n(n− 1)

∑

i<j

∑

m,k

(YiX
i
m,k − θ̃m,k)(YjX

j
m,k − θ̃m,k) (18.35)

whose Eθ -expectation, conditional on θ̃ , equals ‖θ − θ̃‖2
F in view of

EYiX
i
m,k = E

∑

m′,k′
Xi

m′,k′X
i
m,kθm′,k′ = θm,k.



18 Uncertainty Quantification for Matrix Compressed Sensing and Quantum. . . 405

Define

Cn =
{

v ∈ Hd(R) : ‖v − θ̃‖2
F ≤ R̂n + zα,n

}

(18.36)

where

zα,n = C1‖θ − θ̃‖F√
n

+ C2d

n

and C1 ≥ ζ1‖θ‖F , C2 ≥ ζ2‖θ‖2
F with ζi constants depending on α, σ . Note that if

θ ∈ $+ then ‖θ‖F ≤ 1 can be used as an upper bound. In practice the constants
ζi can be calibrated by Monte Carlo simulations (see the implementation section
below), or chosen based on concentration inequalities for U -statistics (see Ref. [14],
Theorem 4.4.8). This confidence set has expected diameter

Eθ |Cn|2F � ‖θ̃ − θ‖2
F +

C1 + C2d

n
,

and hence is compatible with any minimax recover rate ‖θ̃ − θ‖2
F � kd/n

from (18.26), where k ≥ 1 is now arbitrary. For suitable choices of ζi we now
show that Cn also has non-asymptotic coverage.

Theorem 18.3 Assume Condition 18.1(a), and let Cn be as in (18.36). For every
α > 0 we can choose ζi(α) = O(

√
1/α), i = 1, 2, large enough so that for every

n ∈ N we have

Pθ (θ ∈ Cn) ≥ 1− α.

Remark 18.8 (Dependence of the Confidence Set’s Diameter on σ ) As what was
noted in Remark 18.4, Theorem 18.3 does not make explicit the dependence on σ ,
which is assumed to be (bounded by) an universal constant. In order to take the

dependence on σ into account, we could replace zα,n in Eq. (18.36) by C1‖θ−θ̃‖F√
n

+
σ 2 C2d

n
(where σ 2 could be replaced by twice the plug-in estimator of σ 2, using θ̂ ),

and we would get

Eθ |Cn|2F � ‖θ̃ − θ‖2
F + σ 2 C1 + C2d

n
,

and Theorem 18.3 also holds by introducing minor changes in the proof.

18.3.3.2 Re-averaging Basis Elements When d ≤ √
n

Consider the setting of Condition 18.1(b) where we sample uniformly at random
from a (scaled) basis {dE1, . . . , dEd2} of Md (C). When d ≤ √

n we are taking
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n ≥ d2 measurements, and there is no need to sample at random from the basis as we
can measure each individual coefficient, possibly even multiple times. Repeatedly
sampling a basis coefficient tr(Ekθ) leads to a reduction of the variance of the
measurement by averaging. More precisely, when taking n = md2 measurements
for some (for simplicity integer) m ≥ 1, and if (Yk,l : l = 1, . . . ,m) are the
measurements Yi corresponding to the basis element Ek, k ∈ {1, . . . , d2}, we can
form averaged measurements

Zk = 1√
m

m
∑

l=1

Yk,l = √
md〈Ek, θ〉F + εk, εk = 1√

m

m
∑

l=1

εl ∼ N(0, σ 2).

We can then define the new measurement vector Z̃ = (Z̃1, . . . , Z̃d2)T (using also
m = n/d2)

Z̃k = Zk −√n〈θ̃ , Ek〉 = √
n〈Ek, θ − θ̃〉F + εk, k = 1, . . . , d2

and the statistic

R̂n = 1

n
‖Z̃‖2

Rd2 − σ 2d2

n

which estimates ‖θ − θ̃‖2
F with precision

R̂n − ‖θ − θ̃‖2
F =

2√
n

d2
∑

k=1

εk〈Ek, θ − θ̃〉F + 1

n

d2
∑

k=1

(ε2
k − Eε2)

= OP

(

σ‖θ − θ̃‖F√
n

+ σ 2d

n

)

.

Hence, for zα the quantiles of a N(0, 1) distribution and ξα,σ as in (18.32) with d2

replacing n there, we can define a confidence set

C̄n =
{

v ∈ Hd(C) : ‖v − θ̃‖2
F ≤ R̂n + zα/2σ‖θ − θ̃‖F√

n
+ ξα/2,σ d

n

}

(18.37)

which has non-asymptotic coverage

Pθ (θ ∈ C̄n) ≥ 1− α

for every n ∈ N, by similar (in fact, since Lemma 18.1 is not needed, simpler)
arguments as in the proof of Theorem 18.2 below. The expected diameter of C̄n is
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by construction

Eθ |C̄n|2F � ‖θ − θ̃‖2
F +

σ 2d

n
, (18.38)

now compatible with any rate of recovery kd/n, 1 ≤ k ≤ d .

18.3.4 A Confidence Set in Trace Norm Under Quantum
Shape Constraints

The confidence sets from the previous subsections are all valid in the sense that they
contain information about the recovery of θ by θ̃ in Frobenius norm ‖ · ‖F . It is of
interest to obtain results in stronger norms, such as for instance the nuclear norm
‖ · ‖S1 , which is particularly meaningful for quantum tomography problems since
it then corresponds to the total variation distance on the set of ‘probability density
matrices’. In fact, since

1

2
‖θ − θ̃‖S1 = sup

‖X‖op=1
tr
(

X(θ − θ̃ )
)

, (18.39)

the nuclear norm has a clear interpretation in terms of the maximum probability
with which two quantum states can be distinguished by arbitrary measurements.

The absence of the ‘Hilbert space geometry’ induced by the relationship of the
Frobenius norm to the inner product 〈·, ·〉F makes this problem significantly harder,
both technically and from an information-theoretic point of view. In particular it
appears that the quantum shape constraint θ ∈ $+ is crucial to obtain any results
whatsoever, and for the theoretical results presented here it will be more convenient
to perform an asymptotic analysis where min(n, d)→∞ (with o,O-notation to be
understood accordingly).

Instead of Condition 18.1 we shall now consider any design (X1, . . . , Xn) in
model (18.3) that satisfies the matrix RIP (18.7) with

τn(k) = c

√

kd
log(d)

n
. (18.40)

As discussed above, this covers in particular the designs from Condition 18.1. We
shall still use the convention discussed before Condition 18.1 that θ and the matrices
Xi are such that tr(Xiθ) is always real-valued.
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In contrast to the results from the previous section we shall now assume a
minimal low rank constraint on the parameter space:

Condition 18.2 θ ∈ R+(k) := R(k) ∩$+ for some k satisfying

k

√

dlogd

n
= o(1),

This in particular implies that the RIP holds with τn(k) = o(1). Given this minimal
rank constraint θ ∈ R+(k), we now show that it is possible to construct a confidence
set Cn that adapts to any low rank 1 ≤ k0 < k. Here we may choose k = d but note
that this forces n 9 d2 (for Condition 18.2 to hold with k = d).

We assume that there exists an estimator θ̃Pilot that satisfies, uniformly in R(k0)

for any k0 ≤ k and for n large enough,

‖θ̃Pilot − θ‖2
F ≤ Dσ 2 k0d

n
:= r2

n(k0)

4
(18.41)

where D = D(δ) depends on δ, and where so-defined rn will be used frequently
below. Such estimators exist as has already been discussed before (18.26). We shall
in fact require a little more, namely the following oracle inequality: for any k and
any matrix S of rank k ≤ d , with high probability and for n large enough,

‖θ̃Pilot − θ‖F � ‖θ − S‖F + rn(k), (18.42)

which in fact implies (18.41). Such inequalities exist assuming the RIP and
Condition 18.2, see, e.g., Theorem 2.8 in Ref. [6]. Starting from θ̃Pilot one can
construct (see Theorem 18.5 below) an estimator that recovers θ ∈ R(k) in nuclear
norm at rate k

√
d/n, which is again optimal from a minimax point of view, even

under the quantum constraint (as discussed, e.g., in Ref. [24]). We now construct an
adaptive confidence set for θ centred at a suitable projection of θ̃Pilot onto $+.

In the proof of Theorem 18.4 below we will construct estimated eigenvalues
(λ̂j , j = 1, . . . , d) of θ (see after Lemma 18.3). Given those eigenvalues and θ̃Pilot,
we choose k̂ to equal the smallest integer ≤ d such that there exists a rank k̂ matrix
θ̃ ′ for which

‖θ̃ ′ − θ̃Pilot‖F ≤ rn(k̂) and 1−
∑

J≤k̂

λ̂J ≤ 2k̂
√

d/n

is satisfied. Such k̂ exists with high probability (since the inequalities are satisfied for
the true θ and λj ’s, as our proofs imply). Define next ϑ̂ to be the 〈·, ·〉F -projection
of θ̃Pilot onto

R+(2k̂) := R(2k̂) ∩$+
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and note that, since 2k̂ ≥ k̂,

‖θ̃Pilot − ϑ̂‖F = ‖θ̃Pilot − R+(2k̂)‖F ≤ ‖θ̃Pilot − θ̃ ′‖F ≤ rn(k̂). (18.43)

Finally define, for C a constant chosen below,

Cn =
{

v ∈ $+ : ‖v − ϑ̂‖S1 ≤ C

√

k̂rn(k̂)
}

. (18.44)

Theorem 18.4 Assume Condition 18.2 for some 1 ≤ k ≤ d , and let δ > 0 be given.
Assume that with probability greater than 1 − 2δ/3, (a) the RIP (18.7) holds with
τn(k) as in (18.40) and (b) there exists an estimator θ̃Pilot for which (18.42) holds.
Then we can choose C = C(δ) large enough so that, for Cn as in the last display,

lim inf
min(n,d)→∞ inf

θ∈R+(k)
Pθ (θ ∈ Cn) ≥ 1− δ.

Moreover, uniformly in R+(k0), 1 ≤ k0 ≤ k, and with Pθ -probability greater than
1− δ,

|Cn|S1 �
√

k0rn(k0).

Theorem 18.4 should mainly serve the purpose of illustrating that the quantum
shape constraint allows for the construction of an optimal trace norm confidence
set that adapts to the unknown low rank structure. Implementation of Cn is not
straightforward so Theorem 18.4 is mostly of theoretical interest. Let us also observe
that in full generality a result like Theorem 18.4 cannot be proved without the
quantum shape constraint. This follows from a careful study of certain hypothesis
testing problems (combined with lower bound techniques for confidence sets as in
Refs. [19, 30]). Precise results are subject of current research and will be reported
elsewhere.

18.4 Simulation Experiments

In order to illustrate the methods from this paper, we present some numerical
simulations. The setting of the experiments is as follows: A random matrix η ∈
Md (C) of norm ‖η‖F = R1/2 is generated according to two distinct procedures that
we will specify later, and the observations are

Ȳi = tr(Xiη)+ εi.

where the εi are i.i.d. Gaussian of mean 0 and variance 1. The observations are
reparametrised so that η represents the ‘estimation error’ θ − θ̂ , and we investigate
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how well the statistics

r̂n = 1

n
‖Ȳ‖ − 1 and R̂n = 2

n(n− 1)

∑

i<j

∑

m,k

ȲiX
i
m,kȲjX

j
m,k

estimate the ‘accuracy of estimation’ ‖η‖2
F = ‖θ − θ̂‖2

F , conditional on the
value of θ̂ . We will choose η in order to illustrate two extreme cases: a first one
where the nuclear norm ‖η‖S1 is ‘small’, corresponding to a situation where the
quantum constraint is fulfilled; and a second one where the nuclear norm is large,
corresponding to a situation where the quantum constraint is not fulfilled. More
precisely we generate the parameter η in two ways:

• ‘Random Dirac’ case: set a single entry (with position chosen at random on the
diagonal) of η to R1/2, and all the other coordinates equal to 0.

• ‘Random Pauli’ case: Set η equal to a Pauli basis element chosen uniformly at
random and then multiplied by R1/2.

The designs that we consider are the Gaussian design, and the Pauli design,
described in Condition 1. We perform experiments with d = 32, R ∈ {0.1, 1} and

n ∈ {100, 200, 500, 1000, 2000, 5000}.

Note that d2 = 1024, so that the first four choices of n correspond to the important
regime n < d2. Our results are plotted as a function of the number n of samples in
Figs. 18.2, 18.3, 18.4, and 18.5. The solid red and blue curves are the median errors
of the normalised estimation errors

√

R̂n − R

R1/2
, and

√

r̂n − R

R1/2
,

after 1000 iterations, and the dotted lines are respectively, the (two-sided) 90%
quantiles. We also report (see Tables 18.1, 18.2, 18.3, and 18.4) how well the
confidence sets based on these estimates of the norm perform in terms of coverage
probabilities, and of diameters. The diameters are computed as

(

R̂n + CUStatd

n
+ C′UStatR̂

1/2
n√

n

)1/2

,

for the U-Statistic approach and

(

r̂n + CRSS√
n
+ C′RSSr̂

1/2
n√

n

)1/2

,
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Fig. 18.2 Gaussian design, and random Dirac (a single entry, chosen at random, is non-zero on
the diagonal) η, with R = 0.1 (left picture) and R = 1 (right picture)
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Fig. 18.3 Gaussian design, and random Pauli η, with R = 0.1 (left picture) and R = 1 (right
picture)
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Fig. 18.4 Pauli design, and random Dirac (a single entry, chosen at random, is non-zero on the
diagonal) η, with R = 0.1 (left picture) and R = 1 (right picture)
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Fig. 18.5 Pauli design, and random Pauli η, with R = 0.1 (left picture) and R = 1 (right picture)
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Table 18.1 Gaussian design, and random Dirac (a single entry, chosen at random, is non-zero on
the diagonal) η, with R = 0.1 (left table) and R = 1 (right table)

R = 0.1 R = 1

n 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

Coverage U-Stat 0.97 0.98 0.99 1.00 1.00 1.00 0.93 0.96 0.97 0.98 0.98 0.98

Diameter U-Stat 1.10 0.64 0.34 0.24 0.18 0.14 2.43 1.84 1.44 1.27 1.17 1.10

Coverage RSS 0.97 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99

Diameter RSS 0.38 0.31 0.23 0.19 0.16 0.14 1.69 1.49 1.32 1.22 1.16 1.10

Table 18.2 Gaussian design, and random Pauli η, with R = 0.1 (left table) and R = 1 (right
table)

R = 0.1 R = 1

n 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

Coverage U-Stat 0.98 0.98 0.99 0.99 1.0 1.0 0.93 0.95 0.97 0.98 0.98 0.98

Diameter U-Stat 1.10 0.62 0.34 0.24 0.18 0.14 2.40 1.83 1.43 1.27 1.18 1.10

Coverage RSS 0.98 0.98 0.97 0.97 0.97 0.97 0.99 0.99 0.99 0.99 1.00 1.00

Diameter RSS 0.39 0.31 0.23 0.19 0.17 0.14 1.71 1.49 1.31 1.22 1.16 1.10

Table 18.3 Pauli design, and random Dirac (a single entry, chosen at random, is non-zero on the
diagonal) η, with R = 0.1 (left table) and R = 1 (right table)

R = 0.1 R = 1

n 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

Coverage U-Stat 0.97 0.98 0.98 0.99 0.98 0.98 0.85 0.54 0.69 0.69 0.70 0.71

Diameter U-Stat 1.10 0.63 0.34 0.24 0.18 0.14 2.28 1.87 1.43 1.26 1.18 1.10

Coverage RSS 0.96 0.96 0.96 0.96 0.97 0.97 0.88 0.89 0.88 0.88 0.88 0.88

Diameter RSS 0.39 0.29 0.23 0.19 0.16 0.14 1.70 1.50 1.30 1.21 1.16 1.10

Table 18.4 Pauli design, and random Pauli η, with R = 0.1 (left table) and R = 1 (right table)

R = 0.1 R = 1

n 100 200 500 1000 2000 5000 100 200 500 1000 2000 5000

Coverage U-Stat 0.97 0.97 0.96 0.86 0.65 0.58 0.82 0.22 0.25 0.27 0.30 0.37

Diameter U-Stat 1.09 0.57 0.34 0.25 0.18 0.15 2.45 2.09 1.33 1.38 1.19 1.09

Coverage RSS 0.93 0.86 0.77 0.77 0.77 0.77 0.12 0.19 0.40 0.63 0.56 0.53

Diameter RSS 0.38 0.29 0.22 0.19 0.16 0.14 1.71 1.56 1.31 1.26 1.14 1.08
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for the RSS approach, where we have chosen CUStat = 2.5, CRSS = 1 and C′UStat =
CRSS = 6 for all experiments—calibrated to a 95% coverage level.

From these numerical results, several observations can be made:

• In Gaussian random designs, the results are insensitive to the nature of η (see
Figs. 18.2 and 18.3 and Tables 18.1 and 18.2). This is not surprising since the
Gaussian design is ‘isotropic’.

• For Pauli designs with the quantum constraint (see Fig. 18.4 and Table 18.3) the
RSS method works quite well even for small sample sizes. But the U-Stat method
is not very reliable—indeed we see no empirical evidence that Theorem 18.3
should also hold true for Pauli design.

• For Pauli design and when the quantum shape constraint is not satisfied
our methods cease to provide reliable results (see Fig. 18.5 and in particular
Table 18.4). Indeed, when the matrix η is chosen itself as a random Pauli (which
is the hardest signal to detect under Pauli design) both the RSS and the U-Stat
approach perform poorly. The confidence set are not honest anymore, which is
in line with the theoretical limitations we observe in Theorem 18.2. Figure 18.5
illustrates that the methods do not detect the signal, since the norm of η is largely
under-evaluated for small sample sizes. These limitations are less pronounced
when n ≥ d2. In this case one could use alternatively the re-averaging approach
from Sect. 18.3.3.2 (not investigated in the simulations) to obtain honest results
without the quantum shape constraint.

18.5 Proofs

18.5.1 Proof of Theorem 18.1

Proof Before we define the algorithm and prove the result, a few preparatory
remarks are required: Our sequential procedure will be implemented in m =
1, 2, . . . , T potential steps, in each of which 2 ·2m = 2m+1 measurements are taken.
The arguments below will show that we can restrict the search to at most

T = O(log(d/ε))

steps. We also note that from the discussion after (18.7)—in particular since c =
c(δ) from (18.8) is O(1/δ2)—a simple union bound over m ≤ T implies that the
RIP holds with probability≥ 1− δ′, some δ′ > 0, simultaneously for every m ≤ T

satisfying 2m ≥ c′kdlogd , and with τ2m(k) < c0, where c′ is a constant that depends
on δ′, c0 only. The maximum over T = O(log(d/ε)) terms is absorbed in a slightly
enlarged poly-log term. Hence, simultaneously for all such sample sizes 2m,m ≤ T ,
a nuclear norm regulariser exists that achieves the optimal rate from (18.26) with
n = 2m and for every k ≤ d , with probability greater than 1− δ/3. Projecting this
estimator onto $+ changes the Frobenius error only by a universal multiplicative
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constant (arguing as in (18.43) below), and we denote by θ̃2m ∈ $+ the resulting
estimator computed from a sample of size 2m.

We now describe the algorithm at the m-th step: Split the 2m+1 observations into
two halves and use the first subsample to construct θ̃2m ∈ $+ satisfying (18.26)
with Pθ -probability ≥ 1 − δ/3. Then use the other 2m observations to construct a
confidence set C2m for θ centred at θ̃2m : if 2m < d2 we take C2m from (18.33) and
if 2m ≥ d2 we take C2m from (18.37)—in both cases of non-asymptotic coverage
at least 1 − α, α = δ/(3T ). If |C2m|F ≤ ε we terminate the procedure (m =
m̂, n̂ = 2m̂+1, θ̂ = θ̃2m̂), but if |C2m |F > ε we repeat the above procedure with
2 ·2m+1 = 2m+1+1 new measurements, etc., until the algorithm terminates, in which
case we have used

∑

m≤m̂

2m+1 � 2m̂ ≈ n̂

measurements in total.
To analyse this algorithm, recall that the quantile constants z, zα, ξα appearing in

the confidence sets (18.33) and (18.37) for our choice of α = δ/(3T ) grow at most
as O(log(1/α)) = O(logT ) = o(logd). In particular in view of (18.26) and (18.34)
or (18.38) the algorithm necessarily stops at a ‘maximal sample size’ n = 2T+1 in
which the squared Frobenius risk of the maximal model (k = d) is controlled at
level ε. Such T ∈ N is O(log(d/ε)) and depends on σ, d, ε, δ, hence can be chosen
by the experimenter.

To prove that this algorithms works we show that the event

{

‖θ̂ − θ‖2
F > ε2

}

∪
{

n̂ >
C(δ)kd(log d)γ

ε2

}

= A1 ∪A2

has probability at most 2δ/3 for large enough C(δ), γ . By the union bound it suffices
to bound the probability of each event separately by δ/3. For the first: Since n̂ has
been selected we know |Cn̂|F ≤ ε and since θ̂ = θ̃n̂ the event A1 can only happen
when θ /∈ Cn̂. Therefore

Pθ (A1) ≤ Pθ (θ /∈ Cn̂) ≤
T
∑

m=1

Pθ (θ /∈ C2m) ≤ δ
T

3T
= δ

3
.

For A2, whenever θ ∈ R(k) and for all m ≤ T for which 2m ≥ c′kdlogd , we have,
as discussed above, from (18.34) or (18.38) and (18.26) that

Eθ |C2m |2F ≤ D′ kd log T

2m
,

where D′ is a constant. In the last inequality the expectation is taken under the
distribution of the sample used for the construction of C2m , and it holds on the event
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on which θ̃2m realises the risk bound (18.26). Then let C(δ), γ be large enough so
that C(δ)kd(log d)γ /ε2 ≥ c′kdlogd and let m0 ∈ N be the smallest integer such
that

2m0 >
C(δ)kd(log d)γ

ε2
.

Then, for C(δ) large enough and since T = O(log(d/ε),

Pθ

(

n̂ >
C(δ)kd(log d)γ

ε2

)

≤ Pθ

(

|C2m0 |2F > ε2
)

≤ Eθ |C2m0 |2F
ε2

≤ D′ log T

C(δ)(log d)γ
< δ/3,

by Markov’s inequality, completing the proof. �
Remark 18.9 (Isotropic Sampling) The proof above works analogously for
isotropic designs as defined in Condition 18.1a). When 2m ≥ d2, we replace
the confidence set (18.37) in the above proof by the confidence set from (18.36).
Assuming also that ‖θ‖F ≤ M for some fixed constant M , we can construct a
similar upper bound for T and the above proof applies directly (with T of slighter
larger but still small enough order). Instead of assuming an upper bound on ‖θ‖F
one can simply continue using the confidence set (18.33) also when 2m ≥ d2, in
which case one has the slightly worse bound

n̂ ≤ C(δ)max

(

kdlogd

ε2 ,
1

ε4

)

for the number of measurements required.

18.5.2 Proof of Theorem 18.2

Proof By Lemma 18.1 below with ϑ = θ̃− θ the Pθ -probability of the complement
of the event

E =
{

∣

∣

∣

∣

1

n
‖X (θ̃ − θ)‖2 − ‖θ̃ − θ‖2

F

∣

∣

∣

∣

≤ max

(

‖θ − θ̃‖2
F

2
,
zd

n

)}

is bounded by the deviation terms 2e−cn and 2e−C(K)z, respectively (note z = 0 in
Case (a)). We restrict to this event in what follows. We can decompose

r̂n = 1

n
‖X (θ̃ − θ)‖2 + 2

n
〈ε,X (θ − θ̃ )〉 + 1

n

n
∑

i=1

(ε2
i − Eε2

i ) = A+ B + C.
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Since P(Y + Z < 0) ≤ P(Y < 0) + P(Z < 0) for any random variables Y,Z we
can bound the probability

Pθ (θ /∈ Cn, E) = Pθ

({

1

2
‖θ − θ̃‖2

F > A + B + C + zd

n
+ z̄+ ξα/3,σ√

n

}

, E
)

by the sum of the following probabilities

I := Pθ

({

1

2
‖θ − θ̃‖2

F >
1

n
‖X (θ̃ − θ)‖2 + zd

n

}

, E
)

,

II := Pθ

({

− 1√
n
〈ε,X (θ − θ̃ )〉 > z̄

}

, E
)

,

III := Pθ

(

− 1√
n

n
∑

i=1

(ε2
i − Eε2

i ) > ξα/3,σ

)

.

The first probability I is bounded by

Pθ

({

−1

n
‖X (θ̃ − θ)‖2 + ‖θ − θ̃‖2

F >
1

2
‖θ − θ̃‖2

F +
zd

n

}

, E
)

≤ Pθ

({

∣

∣

∣

∣

1

n
‖X (θ̃ − θ)‖2 − ‖θ̃ − θ‖2

F

∣

∣

∣

∣

> max

(

‖θ − θ̃‖2
F

2
,
zd

n

)}

, E
)

= 0

About term II : Conditional on X the variable 1√
n
〈ε,X (θ − θ̃ )〉 is centred Gaussian

with variance (σ 2/n)‖X (θ − θ̃ )‖2. The standard Gaussian tail bound then gives by
definition of z̄, and conditional on X ,

≤ exp{−z̄2/2(σ 2/n)‖X (θ − θ̃ )‖2}

= exp

{

−zα/3 max(3‖θ − θ̃‖2
F , 4zd/n)

2‖X (θ − θ̃ )‖2/n

}

≤ exp{−zα/3} = α/3

since, on the event E ,

max(3‖θ − θ̃‖2
F , 4zd/n) ≥ (2/n)‖X (θ − θ̃ )‖2.

The overall bound for II follows from integrating the last but one inequality over
the distribution of X. Term III is bounded by α/3 by definition of ξα,σ . �
Remark 18.10 (Modification of the Proof for Bernoulli Errors) If instead of Gaus-
sian errors we work with the error model from Sect. 18.2.2.2, we require a modified
treatment of the terms II, III in the above proof. For the pure noise term III
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we modify the quantile constants slightly to ξα,σ = √
(1/α). If the number T of

preparations satisfies T ≥ 4d2 then Chebyshev’s inequality and (18.24) give

Pθ

(∣

∣

∣

∣

∣

1√
n

n
∑

i=1

(ε2
i − Eε2

i )

∣

∣

∣

∣

∣

> ξα/3,σ

)

≤ α

3n

n
∑

i=1

Eε4
i ≤

α

3

4d2

T
≤ α

3
.

For the ‘cross term’ we have likewise with zα = √
1/α and ai = (X (θ − θ̃ ))i that,

on the event E ,

Pε

({

− 1√
n
〈ε,X (θ − θ̃ )〉 > z̄

}

, E
)

≤ 1

nz̄2
Eε

(

n
∑

i=1

εiai1E

)2

≤ d

T z̄2

‖X (θ − θ̃ )‖2

n
1E ≤ α/3,

just as at the end of the proof of Theorem 18.2, so that coverage follows from
integrating the last inequality w.r.t. the distribution of X. The scaling T ≈ d2 is
similar to the one discussed in Theorem 3 in Ref. [12].

Lemma 18.1

(a) For isotropic design from Condition 18.1(a) and any fixed matrix ϑ ∈ Hd(C)

we have, for every n ∈ N,

Pr

(

∣

∣

∣

∣

1

n
‖Xϑ‖2 − ‖ϑ‖2

F

∣

∣

∣

∣

>
‖ϑ‖2

F

2

)

≤ 2e−cn.

In the standard Gaussian design case we can take c = 1/24.
(b) In the ‘Pauli basis’ case from Condition 18.1(b) we have for any fixed matrix

ϑ ∈ Hd(C) satisfying the Schatten-1-norm bound ‖ϑ‖S1 ≤ 2 and every n ∈ N,

Pr

(

∣

∣

∣

∣

1

n
‖Xϑ‖2 − ‖ϑ‖2

F

∣

∣

∣

∣

> max

(

‖ϑ‖2
F

2
, z

d

n

))

≤ 2 exp {−C(K)z}

where C(K) = 1/[(16 + 8/3)K2], and where K is the coherence constant of
the basis.

(c) In the ‘Pauli basis’ case from Condition 18.1(b) we have for any fixed matrix
ϑ ∈ Hd(C) such that the rank of ϑ is smaller than 2k and every n ∈ N,

Pr

(

∣

∣

∣

∣

1

n
‖Xϑ‖2 − ‖ϑ‖2

F

∣

∣

∣

∣

> max

(

‖ϑ‖2
F

2
, z

d

n

))

≤ 2 exp
{

− n

17K2k2d

}

.

Proof We first prove the isotropic case. From (18.5) we see

Pr

(∣

∣

∣

∣

1

n
‖Xϑ‖2 − ‖ϑ‖2

F

∣

∣

∣

∣

> ‖ϑ‖2
F /2

)

= Pr

(∣

∣

∣

∣

∣

n
∑

i=1

(Z2
i − EZ2

1)/‖ϑ‖2
F

∣

∣

∣

∣

∣

> n/2

)
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where the Zi/‖ϑ‖F are sub-Gaussian random variables. Then the Z2
i /‖ϑ‖2

F are
sub-exponential and we can apply Bernstein’s inequality (Prop. 4.1.8 in Ref. [14])
to the last probability. We give the details for the Gaussian case and derive explicit
constants. In this case gi := Zi/‖ϑ‖F ∼ N(0, 1) so the last probability is bounded,
using Theorem 4.1.9 in Ref. [14], by

Pr

(∣

∣

∣

∣

∣

n
∑

i=1

(g2
i − 1)

∣

∣

∣

∣

∣

>
n

2

)

≤ 2 exp

{

− n2/4

4n+ 2n

}

,

and the result follows.
Under Condition 18.1(b), if we write D = max(n‖ϑ‖2

F /2, zd) we can reduce
likewise to bound the probability in question by

Pr

(∣

∣

∣

∣

∣

n
∑

i=1

(Yi − EY1)

∣

∣

∣

∣

∣

> D

)

where the Yi = |tr(Xiϑ)|2 are i.i.d. bounded random variables. Using ‖Ei‖op ≤
K/
√
d from Condition 18.1(b) and the quantum constraint ‖ϑ‖F ≤ ‖ϑ‖S1 ≤ 2 we

can bound

|Yi | ≤ d2 max
i
‖Ei‖2

op‖ϑ‖2
S1
≤ 4K2d := U

as well as

EY 2
i ≤ UE|Yi | ≤ 4K2d‖ϑ‖2

F := s2.

Bernstein’s inequality for bounded variables (e.g., Theorem 4.1.7 in Ref. [14])
applies to give the bound

2 exp

{

− D2

2ns2 + 2
3UD

}

≤ 2 exp {−C(K)z} ,

after some basic computations, by distinguishing the two regimes of D =
n‖ϑ‖2

F /2 ≥ zd and D = zd ≥ n‖ϑ‖2
F /2.

Finally for (c), using the same reasoning as above and using ‖Ei‖op ≤ K/
√
d

from Condition 18.1(b) and the fact that the estimator is also of rank less than k, we
have ‖ϑ‖F ≤ ‖ϑ‖S1 ≤

√
2k‖ϑ‖F we can bound

|Yi | ≤ d2 max
i
‖Ei‖2

op‖ϑ‖2
S1
≤ 2K2kd‖ϑ‖2

F := Ũ
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as well as

EY 2
i ≤ ŨE|Yi | ≤ 2K2dk2‖ϑ‖4

F := s̃2.

Bernstein’s inequality for bounded variables (e.g., Theorem 4.1.7 in Ref. [14])
applies to give the bound

2 exp

{

− D2

2ns̃2 + 2
3 ŨD

}

≤ 2 exp
{

− n

17K2k2d

}

,

after some basic computations. �

18.5.3 Proof of Theorem 18.3

Proof Since Eθ R̂n = ‖θ − θ̃‖2
F we have from Chebyshev’s inequality

Pθ (θ /∈ Cn) ≤ Pθ

(

|R̂n − ER̂n| > zα,n

)

≤ Varθ (R̂n − ER̂n)

z2
αn

.

Now Un = R̂n − Eθ R̂n is a centred U-statistic and has Hoeffding decomposition
Un = 2Ln +Dn where

Ln = 1

n

n
∑

i=1

∑

m,k

(YiX
i
m,k − Eθ [YiX

i
m,k])($m,k − $̃m,k)

is the linear part and

Dn = 2

n(n− 1)

∑

i<j

∑

m,k

(YiX
i
m,k − Eθ [YiX

i
m,k])(YjX

i
m,k − E[YjX

i
m,k])

the degenerate part. We note that Ln and Dn are orthogonal in L2(Pθ ).
The linear part can be decomposed into

Ln = L(1)
n + L(2)

n

where

L(1)
n = 1

n

n
∑

i=1

∑

m,k

⎛

⎝

∑

m′,k′
Xi

m′,k′X
i
m,k$m′,k′ −$m,k

⎞

⎠ ($m,k − $̃m,k)
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and

L(2)
n = 1

n

n
∑

i=1

εi
∑

m,k

Xi
m,k($m,k − $̃m,k).

Now by the i.i.d. assumption we have

Varθ (L(2)
n ) = σ 2 ‖θ̃ − θ‖2

F

n
.

Moreover, by transposing the indices m, k and m′, k′ in an arbitrary way into single
indices M = 1, . . . , d2,K = 1, . . . , d2, d2 = p, respectively, basic computations
given before eq. (28) in Ref. [30] imply that the variance of the second term is
bounded by

Varθ (L(1)
n ) ≤ c‖θ − θ̃‖2

F ‖θ‖2
F

n

where c is a constant that depends only on EX4
1,1 (which is finite since the X1,1 are

sub-Gaussian in view of Condition 18.1(a)). Moreover, the degenerate term satisfies

Varθ (Dn) ≤ c
d

n2
‖θ‖4

F

in view of standard U -statistic computations leading to eq. (6.6) in Ref. [21], with
d2 = p, and using the same transposition of indices as before. This proves coverage
by choosing the constants in the definition of zα,n large enough. �

18.5.4 Proof of Theorem 18.4

We prove the result for symmetric matrices with real entries—the case of Hermitian
matrices requires only minor (mostly notational) adaptations.

Given the estimator θ̃Pilot, we can easily transform it into another estimator θ̃ for
which the following is true.

Theorem 18.5 There exists an estimator θ̃ that satisfies, uniformly in θ ∈ R(k), for
any k ≤ d and with Pθ -probability greater than 1− 2δ/3,

‖θ̃ − θ‖F ≤ rn(k),

as well as,

θ̃ ∈ R(k),
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and then also

‖θ̃ − θ‖S1 ≤
√

2krn(k).

Proof Let θ̃Pilot and let θ̃ be the element of R(d) with smallest rank k′ such that

‖θ̃Pilot − θ̃‖2
F ≤

r2
n(k

′)
4

.

Such θ̃ exists and has rank≤ k, with probability≥ 1−2δ/3, since θ ∈ R(k) satisfies
the above inequality in view of (18.41). The ‖ · ‖2

F -loss of θ̃ is no larger than rn(k)

by the triangle inequality

‖θ̃ − θ‖F ≤ ‖θ̃ − θ̃Pilot‖F + ‖θ̃Pilot − θ‖F ,

and this completes the proof of the third claim in view of (18.2). �
The rest of the proof consists of three steps: The first establishes some auxiliary

empirical process type results, which are then used in the second step to construct
a sufficiently good simultaneous estimate of the eigenvalues of θ . In Step III the
coverage of the confidence set is established.

18.5.4.1 Step I

Let θ ∈ R+(k) = R(k) ∩ $+ and let θ̃ be the estimator from Theorem 18.5. Then
with probability≥ 1− 2δ/3, and if η = θ̃ − θ , we have

‖η‖2
F ≤ r2

n(k) ∀θ ∈ R+(k), (18.45)

and that

η ∈ R(2k).

For the rest of the proof we restrict in what follows to the event of probability greater
than or equal to 1− 2δ/3 described by (a) and (b) in the hypothesis of the theorem.

Write Y ′i = Yi − tr(Xi θ̃) for the ‘new observations’

Y ′i = tr(Xiη)+ εi, i = 1, . . . , n.

For any d × d ′ matrix V we set

γ̃η(V ) = V T

(

1

n

n
∑

i=1

XiY ′i

)

V
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which estimates

γη(V ) = V T ηV.

Let now U be any unit vector in R
d . Then in the above notation (d ′ = 1) we can

write

γ̃η(U) = 1

n

n
∑

i=1

∑

m,m′≤d

UmUm′X
i
m,m′Y

′
i

= 1

n

n
∑

i=1

∑

m,m′≤d

UmUm′X
i
m,m′(tr(X

iη)+ εi)

= 1

n

n
∑

i=1

∑

m,m′≤d

UmUm′X
i
m,m′

⎛

⎝

∑

k,k′≤d

Xi
k,k′ηk,k′ + εi

⎞

⎠ .

If U denotes the d × d matrix UUT , the last quantity can be written as

1

n
〈XU,Xη〉 + 1

n
〈XU, ε〉.

We can hence bound, for S = {U ∈ R
d : ‖U‖2 = 1}

sup
η∈R(2k),‖η‖F≤rn(k),U∈S

|γ̃η(U)− γη(U)|

≤ sup
η∈R(2k),‖η‖F≤rn(k),U∈S

∣

∣

∣

∣

1

n
〈XU,Xη〉 − 〈U, η〉

∣

∣

∣

∣

+ sup
U∈S

∣

∣

∣

∣

1

n
〈XU, ε〉

∣

∣

∣

∣

.

Lemma 18.2 The right hand side on the last inequality is, with probability greater
than 1− δ, of order

vn := O

(

rn(k)τn(k)+
√

d

n

)

.

Proof The first term in the bound corresponds to the first supremum on the right
hand side of the last inequality, and follows directly from the matrix RIP (and
Lemma 18.4). For the second term we argue conditionally on the values of X and
on the event for which the matrix RIP is satisfied. We bound the supremum of the
Gaussian process

Gε(U) := 1√
n
〈XU, ε〉 ∼ N(0, ‖XU‖2/n)
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indexed by elements U of the unit sphere S of Rd , which satisfies the metric entropy
bound

logN(δ,S, ‖ · ‖) � d log(A/δ)

by a standard covering argument. Moreover U = UUT ∈ R(1) and hence for any
pair of vectors U, Ū ∈ S we have that U− Ū ∈ R(2). From the RIP we deduce for
every fixed U, Ū ∈ S that

1

n
‖XU− X Ū‖2 = ‖U− Ū‖2

F

(

1+
1
n
‖X (U− Ū)‖2 − ‖U− Ū‖2

F

‖U− Ū‖2
F

)

≤ (1+ τn(2))‖U− Ū‖2
F ≤ C‖U − Ū‖2

since τn(2) = O(1) and since

‖U−Ū‖2
F =

∑

m,m′
(UmUm′−ŪmŪm′ )

2 =
∑

m,m′
(UmUm′−UmŪm′+UmŪm′−ŪmŪm′ )

2 ≤ 2‖U−Ū‖2.

Hence any δ-covering of S in ‖ · ‖ induces a δ/C covering of S in the intrinsic
covariance dGε of the (conditional on X ) Gaussian process Gε, i.e.,

logN(δ,S, dGε ) � d log(A′/δ)

with constants independent of X. By Dudley’s metric entropy bound (e.g., Ref. [14])
applied to the conditional Gaussian process we have for d > 0 some constant

E sup
U∈S

|Gε(U)| �
∫ d

0

√

logN(δ,S, dGε )dδ �
√
d

and hence we deduce that

Eε sup
U∈S

1

n
|〈XU, ε〉| = Eε

1√
n

sup
U∈S

|Gε(U)| �
√

d

n
(18.46)

with constants independent of X, so that the result follows from applying Markov’s
inequality. �

18.5.4.2 Step II

Define the estimator

θ̂ ′ = θ̃ + 1

n

n
∑

i=1

XiY ′i = θ̃ + γ̃η(Id ).
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Then we can write, using UT γ̃η(Id)U = γ̃η(U),

UT θ̂ ′U − UT θU = UT (θ̃ + γ̃η(Id ))U − UT (θ̃ + η)U

= γ̃η(U)− γη(U),

and from the previous lemma we conclude, for any unit vector U that with
probability≥ 1− δ,

|UT θ̂ ′U − UT θU | ≤ vn.

Let now θ̂ be any symmetric positive definite matrix such that

|UT θ̂U − UT θ̂ ′U | ≤ vn.

Such a matrix exists, for instance θ ∈ R+(k), and by the triangle inequality we also
have

|UT θ̂U − UT θU | ≤ 2vn. (18.47)

Lemma 18.3 Let M be a symmetric positive definite d×d matrix with eigenvalues
λj ’s ordered such that λ1 ≥ λ2 ≥ . . . ≥ λd . For any j ≤ d consider an arbitrary
collection of j orthonormal vectors Vj = (V ι : 1 ≤ ι ≤ j) in R

d . Then we have

(a) λj+1 ≤ sup
U∈S,U⊥span(Vj)

UT MU,

and

(b)
∑

ι≤j

λι ≥
∑

ι≤j

(V ι)TMV ι.

Let R̂ be the rotation that diagonalises θ̂ such that R̂T θ̂ R̂ = diag(λ̂j : j =
1, . . . , d) ordered such that λ̂j ≥ λ̂j+1 ∀j . Moreover let R be the rotation that does
the same for θ and its eigenvalues λj . We apply the previous lemma with M = θ̂ and
V equal to the column vectors rι : ι ≤ l − 1 of R to obtain, for any fixed l ≤ j ≤ d ,

λ̂l ≤ sup
U∈S,U⊥span(rι,ι≤l−1)

UT θ̂U, (18.48)

and also that

∑

l≤j

λ̂l ≥
∑

l≤j

rTl θ̂rl . (18.49)
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From (18.47) we deduce, that

λ̂l ≤ sup
U∈S,U⊥span(rι,ι≤j−1)

UT θU + 2vn = λj + 2vn ∀ l ≤ j,

as well as

∑

l≤j

λ̂l ≥
∑

l≤j

rTl θrl − 2jvn =
∑

l≤j

λl − 2jvn,

with probability≥ 1− δ. Combining these bounds we obtain

∣

∣

∣

∣

∣

∣

∑

l≤j

λ̂l −
∑

l≤j

λl

∣

∣

∣

∣

∣

∣

≤ 2jvn, j ≤ d. (18.50)

18.5.4.3 Step III

We show that the confidence sets covers the true parameter on the event of
probability≥ 1− δ on which Steps I and II are valid, and for the constant C chosen
large enough.

Let � = �
R+(2k̂) be the projection operator onto R+(2k̂). We have

‖ϑ̂ − θ‖S1 ≤ ‖ϑ̂ −�θ‖S1 + ‖�θ − θ‖S1 .

We have, using (18.50) and Lemma 18.5 below

‖�θ − θ‖S1 =
∑

J>2k̂

λJ = 1−
∑

J≤2k̂

λJ

≤ 1−
∑

J≤2k̂

λ̂J + 4k̂vn

≤ 6vnk̂ ≤ (C/2)
√

k̂rn(k̂)

for C large enough.
Moreover, using the oracle inequality (18.42) with S = �θ and (18.43),

‖ϑ̂ −�θ‖S1 ≤
√

4k̂‖ϑ̂ −�θ‖F
≤
√

4k̂(‖ϑ̂ − θ‖F + ‖�θ − θ‖F )

≤
√

4k̂(‖ϑ̂ − θ̃Pilot‖F + ‖θ̃Pilot − θ‖F + ‖�θ − θ‖F )

�
√

k̂(rn(k̂)+ ‖�θ − θ‖F ).
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We finally deal with the approximation error: Note

‖�θ − θ‖2
F =

∑

l>2k̂

λ2
l ≤ max

l>2k̂
|λl |

∑

l>2k̂

|λl |.

By (18.50) we know that

∑

l>k̂

λl = 1−
∑

l≤k̂

λl ≤ 1−
∑

l≤k̂

λ̂l + 2vnk̂ ≤ 4vnk̂.

Hence out of the λl’s with indices l > k̂ there have to be less than k̂ coefficients
which exceed 4vn. Since the eigenvalues are ordered this implies that the λl ’s with
indices l > 2k̂ are all less than or equal to 4vn, and hence the quantity in the last
but one display is bounded by (since k̂ < 2k̂), using again (18.50) and the definition
of k̂,

4vn

⎛

⎝1−
∑

l≤k̂

|λl |
⎞

⎠ � vn

⎛

⎝1−
∑

l≤k̂

|λ̂l |
⎞

⎠+ k̂v2
n � v2

nk̂ �
√

k̂rn(k̂).

Overall we get the bound

‖ϑ̂ −�θ‖S1 � k̂vn � (C/2)
√

k̂rn(k̂)

for C large enough, which completes the proof of coverage of Cn by collecting the
above bounds. The diameter bound follows from k̂ ≤ k (in view of the defining
inequalities of k̂ being satisfied, for instance, for θ̃ ′ = θ , whenever θ ∈ R+(k0).)

18.6 Auxiliary Results

18.6.1 Proof of Lemma 18.3

(a) Consider the subspaces E = span((V ι)ι≤j )
⊥ and F = span((eι)ι≤j+1) of Rd ,

where the eι’s are the eigenvectors of the d × d matrix M corresponding to
eigenvalues λj . Since dim(E)+ dim(F ) = (d − j)+ j + 1 = d + 1, we know
that E

⋂

F is not empty and there is a vectorial sub-space of dimension 1 in
the intersection. Take U ∈ E

⋂

F such that ‖U‖ = 1. Since U ∈ F , it can be
written as

U =
j+1
∑

ι=1

uιeι
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for some coefficients uι. Since the eι’s are orthogonal eigenvectors of the
symmetric matrix M we necessarily have

MU =
j+1
∑

ι=1

λιuιeι,

and thus

UTMU =
j+1
∑

ι=1

λιu
2
ι .

Since the λι’s are all non-negative and ordered in decreasing absolute value, one
has

UTMU =
j+1
∑

ι=1

λιu
2
ι ≥ λj+1

j+1
∑

ι=1

u2
ι = λj+1‖U‖2 = λj+1.

Taking the supremum in U yields the result.
(b) For each ι ≤ j , let us write the decomposition of V ι on the basis of eigenvectors

(el : l ≤ d) of M as

V ι =
∑

l≤d

vιl el .

Since the (el) are the eigenvectors of M we have

∑

ι≤j

(V ι)TMV ι =
∑

ι≤j

d
∑

l=1

λl(v
ι
l )

2,

where
∑d

l=1(v
ι
l )

2 = 1 and
∑

ι≤j (v
ι
l )

2 ≤ 1, since the V ι are orthonormal. The
last expression is maximised in (vιl )ι≤j,1≤l≤d and under these constraints, when
vιι = 1 and vιl = 0 if ι �= l (since the (λι) are in decreasing order), and this gives

∑

ι≤j

(V ι)TMV ι ≤
∑

ι≤j

λι.
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18.6.2 Some Further Lemmas

Lemma 18.4 Under the RIP (18.7) we have for every 1 ≤ k ≤ d that, with
probability at least 1− δ,

sup
A,B∈R(k)

∣

∣

∣

∣

∣

1
n
〈XA,XB〉 − 〈A,B〉F

‖A‖F ‖B‖F

∣

∣

∣

∣

∣

≤ 10τn(k). (18.51)

Proof The matrix RIP can be written as

sup
A∈R(k)

∣

∣

∣

∣

〈XA,XA〉
n〈A,A〉F − 1

∣

∣

∣

∣

= |〈A, (n−1M − I)A〉F |
〈A,A〉F ≤ τn(k), (18.52)

for a suitable M ∈ Hd2(C). The above bound then follows from applying the
Cauchy-Schwarz inequality to

1

n
〈XA,XB〉 − 〈A,B〉F = 〈A, (n−1M − I)B〉F . (18.53)

�
The following lemma can be proved by basic linear algebra, and is left to the

reader.

Lemma 18.5 Let M ≥ 0 with positive eigenvalues (λj )j ordered in decreasing
order. Denote with �R+(j−1) the projection onto R+(j − 1) = R(j − 1) ∩ $+.
Then for any 2 ≤ j ≤ d we have

∑

j ′≥j

λj ′ = ‖M −�R+(j−1)M‖S1 .
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Chapter 19
Uniform in Bandwidth Estimation
of the Gradient Lines of a Density

David Mason and Bruno Pelletier

Dedicated to the memory of Jørgen Hoffmann–Jørgensen

Abstract Let X1, . . . , Xn, n ≥ 1, be independent identically distributed (i.i.d.)
R

d valued random variables with a smooth density function f . We discuss how
to use these X′s to estimate the gradient flow line of f connecting a point x0 to
a local maxima point (mode) based on an empirical version of the gradient ascent
algorithm using a kernel estimator based on a bandwidth h of the gradient ∇f of
f. Such gradient flow lines have been proposed to cluster data. We shall establish a
uniform in bandwidth h result for our estimator and describe its use in combination
with plug in estimators for h.

Keywords Gradient lines · Density estimation · Nonparametric clustering ·
Uniform in bandwidth

19.1 Introduction

Let f be a differentiable density on R
d . Assuming that f is known, consider the

following iterative scheme. Fix a > 0 and, starting at x0 ∈ R
d , define iteratively the

gradient ascent method

x� = x�−1 + a∇f (x�−1), for � ≥ 1.
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When it exists, define x∞ = lim�→∞ x�. The rationale behind this iterative gradient
ascent scheme is to have the sequence (x� : � ≥ 0) converge to a local maxima point
(mode) of f —representing a cluster center.

In fact, one can use this scheme to cluster a set of data by assigning to each
observation the nearest mode along the direction of the gradient at the observation
point (Fukunaga and Hostetler [7]), where∇f is replaced by an estimator∇ ̂f based
on the data. This is close in spirit to Hartigan [9]. It would be interesting to compare
this clustering scheme to other clustering methods. However such a study is far
outside the scope the present paper.

In practice, the underlying density f is rarely known and has to be estimated
using a kernel density estimator. Let � : Rd → R be a kernel function—a non-
negative integrable function satisfying

∫

Rd �(x)dx = 1—and for a bandwidth 0 <

h ≤ 1, let �h(u) = h−d�(u/h). The corresponding kernel estimator of f based on
a random sample X1, . . . , Xn, i.i.d. with density f , is

f̂n,h(x) := 1

n

n
∑

i=1

�h(x −Xi), (19.1)

and if � is differentiable, then we estimate the gradient of f by the kernel type
estimator

∇f̂n,h(x) := 1

nh

n
∑

i=1

∇�h(x − Xi).

We shall establish a general uniform in bandwidth h result in a sense to be soon
made precise in Sect. 19.2 for the sequence of estimators beginning with x̂0 = x0

x̂� = x̂�−1 + a∇f̂n,h(x̂�−1), for � ≥ 1.

In our results, we are not interested in studying how to choose the starting point x0.
Rather, given a starting point x0 our aim is to consider the flow line of a function
with the property that it starts at x0 and ends at an isolated local maxima point x#,
and estimate this flow line from a random sample.

Before we can do this we must first establish some notation and state two general
results.

19.1.1 Two General Results

Let g : Rd → R be differentiable. Starting at x0 ∈ R
d , for fixed a > 0 we relate the

sequence

x� = x�−1 + a∇g(x�−1), for � ≥ 1, (19.2)
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with the gradient ascent line of g starting at x0. We study convergence of this
sequence towards the gradient ascent line of g starting at x0. In particular, we
characterize the limit x∞, providing a consistency result for the clustering algorithm
based on the local maxima point of g. Then, given another differentiable function ĝ,
meant to approximate g, we compare the sequence (x�) to (x̂�), where

x̂� = x̂�−1 + a∇ĝ(x̂�−1), for � ≥ 1, (19.3)

starting at the same point x̂0 = x0. In particular, when estimating the gradient ascent
lines of a density f based on a sample X1, . . . , Xn, ĝ can be taken to be some kernel
estimator ̂f of f .

Recall that a critical point of g is a point x∗ at which the gradient of g vanishes,
that is, such that ∇g(x∗) = 0. A flow line or integral curve of the positive gradient
flow of g is a curve x such that its derivative x ′(t) satisfies the differential equation

x ′(t) = ∇g(x(t)). (19.4)

Note that, along any flow line, the value of g increases, that is, the function t �→
g(x(t)) is increasing with t . By the theory of ordinary differential equations, through
any point x0 ∈ R

d passes a unique flow line x(t) defined for t ∈ [0, t0), where
t0 > 0, such that x(0) = x0 (see Section 7.2 of Hirsch et al. [10]); we say that x(t)
is the flow line starting at x0. Let x# be a critical point of g. We say that x0 is in
the attraction basin of x# if the flow line x(t) starting at x0 is defined for all t ≥ 0
and limt→∞ x(t) = x#. An accumulation point of a sequence of points through an
integral curve x(t), i.e., a sequence of the form {x(tn) : t1 < t2 < . . . }, tn →∞, is
called a limit point of x(t). Any limit point of a gradient flow line of g is necessarily
a critical point of g.

We start by stating a general result by Arias-Castro et al. [1] (also see [2] and the
remark at the end of this section) who established the convergence of the gradient
ascent scheme (19.2) towards the flow lines of the underlying function g. Starting
from a point x0 in the attraction basin of an isolated local maxima point x#, under
some conditions stated below, the iteration (19.2) converges to x#. By an isolated
local maxima point x# we mean that for all ε > 0 small enough the open ball of
radius ε around x#, B (x#, ε), contains no local maxima point other than x#. We
will show that in fact, the polygonal line defined by the sequence (x�) is uniformly
close to the flow line starting at x0 and ending at x#.

Theorem 19.1 (Convergence of Gradient Ascent Method) Let g be a function of
class C3. Let (x(t) : t ≥ 0) denote the flow line of g starting at x0 and ending at
an isolated local maxima point x# of g. Let (x�) be the sequence defined in (19.2)
starting at x0. Then there exists A = A(x0, g) > 0 such that, whenever a < A,

lim
�→+∞ x� = x#. (19.5)



434 D. Mason and B. Pelletier

Denote by xa(t) the following polygonal line

xa(t) = x�−1 + (t/a − �+ 1)(x� − x�−1), ∀t ∈ [(�− 1)a, �a).

Assume Hg(x
#), the Hessian of g evaluated at x#, has all eigenvalues in (−ν,−ν)

for some 0 < ν < ν. Then, there exists a C0 = C(x0, g, ν, ν) > 0 such that, for any
0 < a < A,

sup
t≥0

‖xa(t)− x(t)‖ ≤ C0a
δ, with δ := ν/

(

ν + ν
)

. (19.6)

Next, we state a version of a stability result of [1] for flows of smooth functions.
Under some conditions, when g and ĝ are close as C2 functions, then their flow
lines are also close. First we need some notation.

For a function ϕ : R
d → R, we let ϕ(�)(x), � ≥ 1, denote the differential

form of ϕ of order � at a point x ∈ R
d , and let Hϕ(x) denote the Hessian matrix

of ϕ evaluated at x when they exist. The differential form ϕ(�)(x) of ϕ at x is the
multilinear map from R

d × · · · ×R
d (� times) to R defined for � ≥ 1 by

ϕ(�)(x)[u1, . . . , u�] =
d
∑

i1,...,i�=1

∂�ϕ(x)

∂xi1 . . . ∂xi�
u1,i1 . . . u�,i� ,

where, for each 1 ≤ i ≤ �, ui has components ui = (ui,1, . . . , ui,d ). We write

ϕ(0)(x) = ϕ(x), x ∈ R
d .

Given a multilinear map L of order � ≥ 1 from R
d × · · · × R

d to R, which we
write as

L[u1, . . . , u�] =
d
∑

i1,...,i�=1

Li1,...,i�u1,i1 . . . u�,i� .

we denote by ‖L‖ its operator norm defined by

‖L‖ = sup {|L[u1, . . . , u�]| : ‖u1‖ = · · · = ‖u�‖ = 1} . (19.7)

Note that when � = 1, ‖L‖ =
√

∑d
i=1 L2

i , and when � = 2

‖L‖ = sup
‖u‖=‖v‖=1

∣

∣v′Lu
∣

∣ = sup
‖u‖=1

|Lu| ,
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where L is the d × d matrix
{

Li,j : 1 ≤ i, j ≤ d
}

, (cf. page 7 of Bhatia [3]), which
implies that for any x ∈ R

d

|Lx| ≤ ‖L‖‖x‖. (19.8)

When � = 0 we set ‖L‖ = |L|.
We denote by ‖L‖max the norm defined by

‖L‖max = max{|Li1...i� | : 1 ≤ i1, . . . , i� ≤ d}. (19.9)

We note for future reference that easy calculations show that

‖L‖max ≤ ‖L‖ ≤ d
�
2 ‖L‖max. (19.10)

For a set S ⊂ R
d , we define

κ�(ϕ, S) = sup
x∈S

∥

∥

∥ϕ
(�)(x)

∥

∥

∥ . (19.11)

Note that κ�(ϕ, S) is well-defined and is finite when ϕ is of class C� and S is
compact.

The upper level set of a function ϕ : Rd → R at b ∈ R is defined as

Lϕ(b) = {x ∈ R
d : ϕ(x) ≥ b}. (19.12)

We suppress the dependence on ϕ whenever no confusion is possible. For any x ∈
R

d and r > 0 denote the open ball

B (x, r) = {y : ‖x − y‖ < r}

and the closed ball

B (x, r) = {y : ‖x − y‖ ≤ r} .

Here is our stability result. It is a version of Theorem 2 of [1] designed to prove our
uniform in bandwidth result stated as Theorem 19.3 in the next section.

Theorem 19.2 (Stability of Smooth Flows) Suppose g and ĝ are of class C3. Let
(x(t) : t ≥ 0) be a flow line of g starting at x0, with g(x0) > 0, and ending at an
isolated local maxima point x# where Hg(x

#) has all eigenvalues in (−ν,−ν) for
some 0 < ν < ν. Let x̂(t) be the flow line of ĝ starting at x0. Let S = L(g(x0)/2)∩
B(x0, 3r0), where

r0 = max
t
‖x(t)− x0‖, (19.13)
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and define

ηm = sup
x∈S

‖g(m)(x)− ĝ(m)(x)‖.

Then for all D > 0 there exists a constant C := C(g, x0, ν, ν̄,D) ≥ 1 and a
function F(g, x0, ν, ν̄, 1/C,D) of D such that, whenever max{η0, η1, η2} ≤ 1/C
and η3 ≤ D, x̂(t) is defined for all t ≥ 0 and

sup
t≥0

‖x(t)− x̂(t)‖ ≤ F(g, x0, ν, ν̄, 1/C,D)max
{√

η0, η
δ
1

}

, (19.14)

where δ = ν/
(

ν + ν
)

.

Combining Theorems 19.1 and 19.2, we arrive at the following bound for
approximating the flow lines of a function g with the polygonal line obtained from
the gradient ascent algorithm (19.3) based on an approximation ĝ to g.

Corollary 19.1 In the context of Theorem 19.2, for a > 0, define

x̂a(t) = x̂�−1 + (t/a − �+ 1)(x̂� − x̂�−1), ∀t ∈ [(�− 1)a, �a), (19.15)

where (x̂�) is defined in (19.3). Then for all D > 0 there exists a constant
C := C(g, x0, ν, ν̄,D) ≥ 1 and a function F(g, x0, ν, ν̄, 1/C,D) of D such that,
whenever max{η0, η1, η2} ≤ 1/C and η3 ≤ D,

sup
t≥0

‖x̂a(t)− x(t)‖ ≤ F(g, x0, ν, ν̄, 1/C,D)
[

aδ +max
{√

η0, η
δ
1

}]

, (19.16)

where δ = ν/
(

ν + ν
)

.

In applications, the requirement that g(x0) > 0 can be sidestepped.

Remark 19.1 In Claim C on page 3 of [2], recall that t� is defined as t� = a�.
Therefore in the sentence “Let �ε be such that ‖x(t�ε ) − x#‖ ≤ ε/2”, in fact �ε
depends on a. But since the conclusion is for any small enough a, the conclusion
‖x�ε − x#‖ ≤ ε is potentially incorrect.

The argument requires the following modification starting after the second
sentence in Claim C of [2]:

Since x(t) → x# as t → ∞, there is tε such that ‖x(t) − x#‖ ≤ ε/2 for all
t ≥ tε . With a ≤ A1, let �ε,a be the smallest integer such that a�ε,a ≥ tε . Note that
a�ε,a ≤ tε + 1 for all a ≤ A1. By equation (33) of [2], for all a ≤ A1, we have

‖x(a�ε,a)− x�ε,a‖ ≤
[

ea�ε,aκ2
√
d − 1

]

κ1a ≤
[

e(tε+1)κ2
√
d − 1

]

κ1a.
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Let aε be such that
[

e(tε+1)κ2
√
d − 1

]

κ1aε = ε/2.

Assume now that a ≤ A1 ∧ aε . Then, by the triangle inequality, we get

‖x�ε,a − x#‖ ≤ ‖x�ε,a − x(a�ε,a)‖ + ‖x(a�ε,a)− x#‖ ≤ ε.

The remainder of the proof remains unchanged with �ε replaced by �ε,a.

19.2 The Estimation of Gradient Lines of a Density

Let f̂n,h be the kernel density estimator of f in (19.1) with kernel � and bandwidth
h. Sharp almost-sure convergence rates in the uniform norm of kernel density
estimators have been obtained by several authors, for example Einmahl and Mason
[5], Giné and Guillou [8], Einmahl and Mason [6], Mason and Swanepoel [12] (also
see [13]) and Mason [11].

We first state a bias bound from [1].

Lemma 19.1 Assume � is nonnegative, C3 on R
d with all partial derivatives up to

order 3 vanishing at infinity, and satisfies
∫

Rd

�(x)dx = 1,
∫

Rd

x�(x)dx = 0 and
∫

Rd

‖x‖2�(x)dx <∞.

(19.17)

Then for any C3 density f on R
d with bounded derivatives up to order 3, there is a

constant C > 0 such that for all 0 ≤ � ≤ 3

sup
x∈Rd

∥

∥

∥E
[

f̂
(�)
n,h(x)

]− f (�)(x)

∥

∥

∥ ≤ Ch(3−�)∧2. (19.18)

Next, by applying the main result of [12] (also see [13] and Theorem 4.1 with
Remark 4.2 in [11]), [1] derive the following uniform in bandwidth result for f̂n,h

and its derivatives.

Lemma 19.2 Suppose that � is of the form � : (x1, . . . , xd) �→∏d
k=1 φk(xk), and

that each φk is nonnegative, integrates to 1, and is C3 on R with derivatives up to
order 3 being of bounded variation and in L1(R

d). Then, for any bounded density
f on R

d , there exists a 0 < b0 < 1 such that almost surely

lim sup
n→∞

sup
logn
n
≤hd≤b0

sup
x∈Rd

√

nhd+2�

logn

∥

∥

∥f̂
(�)
n,h(x)− E

[

f̂
(�)
n,h(x)

]∥

∥

∥ <∞, ∀0 ≤ � ≤ 3.

(19.19)
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It is straightforward to design a kernel that satisfies the conditions of Lem-
mas 19.1 and 19.2. In fact, the Gaussian kernel �(x) = (2π)−d/2 exp(−‖x‖2/2)
is such a kernel.

Theorem 19.3 Consider a density f satisfying the conditions of Lemma 19.1.
Suppose f̂n,h is a kernel estimator of f of the form (19.1), where � satisfies the
conditions of Lemmas 19.1 and 19.2. Let (x(t) : t ≥ 0) be the flow line of f

starting at a point x0 with f (x0) > 0, ending at an isolated local maxima point
x# where Hf (x

#) has all eigenvalues in (−ν,−ν) for some 0 < ν < ν. For fixed
a > 0, 0 < h ≤ 1 and n ≥ 1 define (x̂a(t, n, h) : t ≥ 0) as in (19.15) with f̂ taken
as f̂n,h in (19.3). i.e. for t ∈ [(�− 1)a, �a), � ≥ 1,

x̂�,n (h) = x̂�−1,n (h)+ a∇f̂n,h(x̂�−1.n (h)),

with x̂0,n (h) = x0. Suppose that

cn → 0,
nc

1+6/d
n

logn
→∞ and cn < bn, with bn → 0, (19.20)

then there exists a constant C > 0 such that, with probability one, for all n large
enough, uniformly in cn ≤ hd ≤ bn,

sup
t≥0

‖x̂a(t, n, h)− x(t)‖ ≤ C
(

aδ + h2δ
)

, (19.21)

where δ = ν/
(

ν + ν
)

.

Remark 19.1 Let

ĥn = Hn(X1, . . . , Xn)

be a bandwidth estimator so that with probability 1

ĥn → 0 and lim inf
n

ĥd
n

cn
> 0,

where cn satisfies the conditions in (19.20). Notice that under the assumptions and
notation of Theorem 19.3 we have, with probability 1, for the plug in estimator
x̂a(t, n, ĥn), for all large enough n,

sup
t≥0

‖x̂a(t, n, ĥn)− x(t)‖ ≤ C
(

aδ + ĥ2δ
n

)

. (19.22)

Note that in Theorem 3, a denotes the (fixed) step size of the gradient ascent scheme
while (cn) is the lower bound imposed on the bandwidth sequence.
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For a general treatment of bandwidth selection and data-driven bandwidths
consult Sections 2.3 and 2.4 of Deheuvels and Mason [4], as well as the references
therein.

Remark 19.2 This nonparametric approach to the estimation of the flow line will
converge no faster than the convergence rate of the estimators of third order
derivatives of the density function. So it may potentially suffer from some curse
of dimensionality for which the usual approaches could apply, e.g. structural
assumptions (that could allow efficient dimension reduction as suggested by the
AE), or smoothness assumptions.

19.3 Proofs of Theorems 19.2 and 19.3

To show the reader how all of these results fit together, we shall prove Theorem 19.3
first.

19.3.1 Proof of Theorem 19.3

As in the proof of Theorem 19.2 in the next subsection, we may assume without loss
of generality that Lg(f (x0/2)) ⊂ B(x0, 3r0), with r0 = supt≥0 ‖x(t)− x0‖, which
implies that L(f (x0/2) is compact.

For any integer 0 ≤ � ≤ 3, n ≥ 1 and 0 < h ≤ 1, let

η�,n (h) = sup
x∈S

‖f̂ (�)
n,h(x)− f �(x)‖,

where the norm used is defined in (19.7). From (19.18) and (19.19), we see from the
triangle inequality that for some constant A� > 0, uniformly in cn ≤ hd ≤ bn, for
all large n

η�,n (h) ≤ A�

(

h(3−�)∧2 +
√

logn

nhd+2�

)

≤ A�

(

b(3−�)∧2
n +

√

logn

nc
1+2�/d
n

)

.

It is easily checked using (19.20) that for any 0 ≤ � ≤ 2

sup
cn≤hd≤bn

η�,n (h)→ 0, a.s.,
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while

lim sup
n→∞

sup
cn≤hd≤bn

η3,n (h) ≤ A3, a.s.

Also one finds that uniformly in cn ≤ hd ≤ bn for all large n for some constant
B > 0

h(3−�)∧2 +
√

logn

nhd+2�
≤ Bh2, for � = 0, 1.

Thus since δ < 1/2, uniformly in cn ≤ hd ≤ bn for all n large enough,

max{√η0,n (h), η
δ
1,n (h)} ≤ Ah2δ,

with A = max{√A0B, (A1B)δ}. We finish the proof by applying Corollary 19.1. �

19.3.2 Proof of Theorem 19.2

Our proof will follow that of Theorem 2 of [1], however with some major
modifications and clarifications needed to obtain the present result. We shall require
the following two lemmas, which we state here without proof. They are respectively
Lemma 5 and 6 of Theorem 2 of [1].

Lemma 19.3 Suppose that g is of class C3. Let x# be an isolated local maxima
point of g where Hg(x

#) has all eigenvalues in (−ν,−ν) with ν > ν > 0. For
ε > 0, let C(ε) be the connected component of Lg(g(x

#)−ε) that contains x#. Then
there is a constant C3 = C3(g, x

#) such that

B(x#,
√
(2ε/ν)) ⊂ C(ε) ⊂ B(x#,

√

2ε/ν), for all ε ≤ C3, (19.23)

and

g(x#)− g(x) ≤ ν

2
‖x − x#‖2, for all x such that ‖x − x#‖ ≤ √C3/ν.

(19.24)

Lemma 19.4 Suppose that g is of class C3. Let (x(t) : t ≥ 0) be the flow line of g
starting at x0 and ending at x# where Hg(x

#) has all its eigenvalues in (−∞,−ν),
with ν > 0. Then, there is C4 = C4(g, x0) such that, for all t ≥ 0,

‖x(t)− x#‖ ≤ C4e
−νt , (19.25)
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and

g(x#)− g(x(t)) ≤ C4e
−2νt . (19.26)

The following, adapted from Hirsch et al. [10, Section 17.5], is a stability result
for autonomous gradient flows.

Lemma 19.5 Suppose ϕ and ψ are of class C1 and for a measurable subset
S ⊂ R

d

‖∇ϕ(x)−∇ψ(x)‖ < ε, ∀x ∈ S.

Let K be a Lipschitz constant for ∇ϕ on S. Let (x(t) : t ≥ t0) and (y(t) : t ≥ t0)

with t0 ≥ 0, be the flow lines of ϕ and ψ starting at x1 and y1, respectively, i.e.
x(t0) = x1 and y(t0) = y1, and

x ′(t) = ∇ϕ(x(t)) and y ′(t) = ∇ψ(y(t)), for t ≥ t0.

Assume that the flow lines x(t) and y(t) are in S. Then,

‖x(t)− y(t)− (x1 − y1) ‖ ≤ ε

K

[

eKt − 1
]

, ∀t ≥ t0.

For the convenience of the reader we state here the Weyl Perturbation Theorem
(see Corollary III.2.6 of Bhatia [3]).

Weyl Perturbation Theorem Let M and H be n by n Hermitian matrices, where
M has eigenvalues μ1 ≥ · · · ≥ μn and H has eigenvalues ν1 ≥ · · · ≥ νn. If
‖M −H‖ ≤ ε, then |μi − νi | ≤ ε for i = 1, . . . , n.

Next is a result on the stability of local maxima points.

Lemma 19.6 Suppose f and g are of class C3, and have local maxima points at
x and y, respectively, with Hf (x) having all eigenvalues in (−∞,−ν] for some
ν > 0. Then for any 0 < b ≤ 1 and κ ≥ max

(

κ3(f, B (x, b)), κ3(g, B (x, b))
)

,

‖x − y‖ ≤ min

{

3ν

4κ
, b

}

⇒ ‖x − y‖ ≤ 2√
ν

( |f (x)− g(x)| + |f (y)− g(y)| )1/2
.

(19.27)

Proof Let Hf and Hg be short for the Hessian matrices Hf (x) and Hg(y),
respectively. We develop f and g around x and y, respectively. Assuming ‖x−y‖ ≤
min

{

3ν
4κ , b

}

, which implies that y ∈ B (x, b), we have

f (y) = f (x) + 1

2
Hf [x − y, x − y] + Rf (x, y), with |Rf (x, y)| ≤ κ

6
‖x − y‖3;

g(x) = g(y) + 1

2
Hg[x − y, x − y] + Rg(x, y), with |Rg(x, y)| ≤ κ

6
‖x − y‖3.
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Summing these two equalities, we obtain

1

2
(Hf +Hg)[x − y, x − y] = f (y)− g(y)+ g(x)− f (x)−Rf (x, y)−Rg(x, y).

Let ν > 0 be such that the largest eigenvalue of Hf is bounded by −ν. By the
triangle inequality and the fact that Hg is negative semidefinite,

ν‖x−y‖2 ≤ ‖(Hf +Hg)[x−y, x−y]‖ ≤ 2 |f (x)− g(x)|+2 |f (y)− g(y)|+ 2κ

3
‖x−y‖3.

Thus, when ‖x−y‖ ≤ min
{

3ν
4κ , b

}

, we have ν‖x−y‖2− 2κ
3 ‖x−y‖3 ≥ ν

2‖x−y‖2,

so that

‖x − y‖2 ≤ 4

ν
(|f (x)− g(x)| + |f (y)− g(y)|) ,

and from this we conclude (19.27). �
It would help the reader to make his or her way through the intricate arguments

that follow to always keep in mind that η0, η1, η2 and ε > 0 are assumed to be
sufficiently small and tε > 0 sufficiently large as needed, and η3 ≤ D, where
D > 0 is a pre-chosen constant.

Bound on ‖x̂# − x#‖
Our first goal is to derive a bound on ‖x̂#−x#‖. Arguing as in the proof of Theorem 1
of [1], we may assume, without loss of generality [WLOG], that Lg(g(x0)/2) ⊂
B(x0, 3r0), where r0 is as in (19.13). So from now on, we assume that Lg(g(x0)/2)
is compact and we set

S = Lg(g(x0)/2). (19.28)

Note that since g (x (t)) increases along t ≥ 0, x (t) ∈ S for all t ≥ 0.
We also let κ� be short for κ�(g, S), as defined in (19.11).

Claim 19.1 For η0 sufficiently small, x̂(t) ∈ S, for all t ≥ 0, with S as in (19.28).
Indeed, suppose there is t > 0 such that x̂(t) /∈ S. Fix 1 = g(x0)/2. Then, by
continuity, there is 0 ≤ t ′ < t such that g(x̂(t ′)) = g(x0)− 1. Since both x̂(t ′) and
x0 ∈ S, we have

ĝ(x̂(t ′)) = ĝ(x̂(t ′))− g(x̂(t ′))+ g(x̂(t ′))

≤ η0 + g(x0)− 1

= η0 + ĝ(x0)+ g(x0)− ĝ(x0)− 1

≤ ĝ(x0)+ 2η0 − 1,
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by the triangle inequality, applied twice. Since ĝ(x̂(t ′)) ≥ ĝ(x0), we see that this
situation does not arise when η0 < 1/2. This establishes Claim 19.1.

From now on we shall assume that η0 is sufficiently small, so that

x̂(t) ∈ S, for all t ≥ 0. (19.29)

Claim 19.2 For all η0, η1 and η2 sufficiently small, x̂# = limt→∞ x̂(t) is well
defined and is close to x#. Since ĝ is of class C3 by assumption, the map x �→ ∇ĝ(x)

is C1, and since by Claim 19.1 for all η0 sufficiently small x̂(t) stays in S and S is
compact, x̂(t) is defined for all t ≥ 0 by the first corollary to the first theorem in
[10, Section 17.5].

Applying Lemma 19.5 with t0 = 0 and x1 = y1 = x0 we get

‖x̂(t)− x(t)‖ ≤ η1√
dκ2

e
√
dκ2t , ∀t ≥ 0, (19.30)

For ε ∈ (0, C3), where C3 is as in Lemma 19.3, let tε be such that x(t) ∈
B(x#,

√
(2ε/ν)) for all t ≥ tε , which is well-defined since x(t) → x# as t → ∞.

Hence

‖x̂(tε)− x#‖ ≤ ‖x̂(tε)− x(tε)‖ + ‖x(tε)− x#‖

≤ η1√
dκ2

e
√
dκ2tε +

√

2ε

ν
=: δ1. (19.31)

Assume that η1 and ε are small enough so that δ1 <
√
C3/ν. Letting C (ε) be as

in Lemma 19.3, by (19.23) we have

B
(

x#, δ1
) ⊂ C (ε1) , with ε1 = ν

2
δ2

1,

noting that
√
ε12/ν = δ1 and ε1 < C3/2. Thus x̂(tε) belongs to C (ε1) and in

particular g(x̂(tε)) ≥ g(x#) − ε1. Using this last inequality, we deduce from the
triangle inequality and the fact that t �→ ĝ

(

x̂(t)
)

is increasing that for t ≥ tε ,

g(x̂(t)) ≥ ĝ(x̂(t))− η0 ≥ ĝ(x̂(tε))− η0

≥ g(x̂(tε))− 2η0 ≥ g(x#)− ε2,

where

ε2 := ε1 + 2η0. (19.32)
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Since x̂(tε) ∈ C (ε1) ⊂ C (ε2) and
(

x̂(t) : t ≥ tε
)

is connected and in Lg(g(x
#)−ε2),

we necessarily have
(

x̂(t) : t ≥ tε
) ⊂ C (ε2). Assume that ε, η0 and η1 are small

enough so that ε2 ≤ C3. Then, by Lemma 19.3, C (ε2) ⊂ B
(

x#,
√

2ε2/ν
)

, and so

‖x̂(t)− x#‖ ≤ ε3 :=
√

2ε2/ν, for all t ≥ tε . (19.33)

Assume ε, η0, η1 are small enough so that B (x#, ε3) ⊂ S. For any x and y in
B (x#, ε3) we get by (19.10) that

‖Hg(x)−Hg(y)‖ ≤ d‖Hg(x)−Hg(y)‖max ≤ d3/2κ3‖x − y‖. (19.34)

Using (19.34) and (19.33), for any x ∈ B (x#, ε3)

‖Hĝ(x)−Hg(x
#)‖ ≤ ‖Hĝ(x)−Hg(x)‖ + ‖Hg(x)−Hg(x

#)‖ (19.35)

≤ η2 + d3/2κ3‖x − x#‖ ≤ η2 + d3/2κ3ε3. (19.36)

Let ν > ν, but close enough such that all the eigenvalues of H are still in (−∞,−ν).
We then apply the Weyl Perturbation Theorem, cited above, to conclude that for all
η2 and ε3 small enough and x ∈ B (x#, ε3) so that

η2 + d3/2κ3ε3 ≤ ν − ν (19.37)

the eigenvalues of Hĝ(x) are all in (−∞,−ν). We shall assume that ε, η0, η1, η2 are
small enough so that this is the case. Using (19.33) and compactness of B (x#, ε3) ,

we get by Cantor’s intersection theorem that

K := ∩t≥tε {̂x (u) : u ≥ t}

is nonempty. In addition K is composed of critical points of ĝ. (See [10], Section
9.3, Proposition, p. 206 and Theorem p. 205). Therefore we conclude that K is a
singleton, which we denote x̂#. This is a critical point of ĝ in B (x#, ε3) and is the
limit of x̂ (t) as t → ∞. Moreover, x̂# is a local maxima point of ĝ. This proves
Claim 19.2.

We have just shown that for ε > 0, η0, η1 and η2 sufficiently small

‖x̂# − x#‖ ≤ ε3.

To summarize, the analysis from Eqs. (19.30) through (19.37) shows that for all ε >

0, η0, η1 and η2 small enough, B (x∗, ε3) ⊂ S, x̂∗ ∈ B (x∗, ε3) , η2 + d3/2κ3ε3 ≤
ν − ν and (19.33) holds, where

δ1 = η1√
dκ2

e
√
dκ2tε +

√

2ε

ν
, ε1 = ν

2
δ2

1, ε2 = ε1 + 2η0, (19.38)
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and

ε3 =
√

2ε2/ν. (19.39)

Notice that ε3 is a function of (ε, η0, η1, η2) and

ν − ν − η2

d3/2κ3
≥ ε3 =

√

2 (ε1 + 2η0)

ν
=
√

2
(

ν
2δ

2
1 + 2η0

)

ν
.

Letting κ = κ3+ η3 and b = ε3 in Lemma 19.6 we see by (19.27) that whenever

‖x̂# − x#‖ ≤ min

{

ε3,
3ν

4 (κ3 + η3)

}

,

then

‖x̂# − x#‖ ≤ 2
√

2η0√
ν

. (19.40)

Clearly when η3 ≤ D for some D > 0 and ε3 ≤ 3
4ν/ (κ3 +D) then

min

{

ε3,
3ν

4 (κ3 + η3)

}

≥ min

{

ε3,
3ν

4 (κ3 +D)

}

= ε3.

Putting everything together, we can conclude for every D > 0 there exists a constant

q0 := q0(g, x0, ν, ν̄,D) ≥ 1

such that whenever max{ε, η0, η1, η2} ≤ 1/q0 and η3 ≤ D

‖x̂# − x#‖ ≤ 2
√

2η0√
ν

=: Q0
√
η0. (19.41)

∗Throughout the remainder of the proof, we shall assume max{ε, η0, η1, η2} ≤ 1/q0
and η3 ≤ D so that (19.41) holds.

Bound on ‖x(t)− x̂(t)‖ for Large t

Next we obtain a bound on ‖x(t)− x̂(t)‖ for large t > 0. Let H and Ĥ be short for
Hg(x

#) and Hĝ(x̂
#), respectively. We proceed with a linearization of the flows near

the critical points. Let ν > ν, but close enough such that all the eigenvalues of H
are still in (−∞,−ν). By combining (19.36) and (19.41)

‖Ĥ−H‖ ≤ η2 + d
3
2 κ3Q0

√
η0. (19.42)
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Choose ν > ν2 > ν1 > ν. Clearly the eigenvalues of H are also in (−∞,−ν2).
Suppose that η0 and η2 are small enough that

η2 + d
3
2 κ3Q0

√
η0 < ν − ν2.

Thus ‖Ĥ−H‖ ≤ ν − ν2 and by Weyl’s inequality the eigenvalues of Ĥ are in

(−∞,−ν + (ν − ν2)) = (−∞,−ν2). (19.43)

Recall that WLOG we assume that S = Lg(g(x0)/2). By the definition
of S, clearly there is an r+ > 0 such that B̄(x#, r+) ⊂ S. Note that
for any D > 0 fixed the constant q0 ≥ 1 can be taken large enough so
that (19.29), (19.31), (19.33), (19.34), (19.36) and (19.41) hold simultaneously. Fix
an ε > 0 small enough so that this is the case, and also such that

√
ε < (

√

ν/2)r+/2.
Recall the constants (19.38) and note that ε2 ≥ ε. Then recall by (19.33) there is a
tε (depending on ε and the trajectory x(t)) such that

‖x̂(t)− x#‖ ≤ √2ε2/ν, for all t ≥ tε,

which in combination with (19.41) gives

‖x̂(t)− x̂#‖ ≤ √2ε2/ν +Q0
√
η0, for all t ≥ tε . (19.44)

Also by (19.25) for all t ≥ tε, where tε > 0 is large enough,

‖x(t)− x#‖ ≤ r+/2. (19.45)

We see by (19.41) that when η0 and η1 are small enough we get B̄(x̂#, r+/2) ⊂
B̄(x#, r+) and we see by (19.44) that when η0 and η1 are small enough, ‖x̂(t) −
x̂#‖ ≤ r+/2 (note that this is possible since we have fixed

√
ε < (

√

ν/2)r+/2).
Setting r‡ = r+/2 and

t‡ = tε, (19.46)

we get that

B̄(x#, r‡) ⊂ S and B̄(x̂#, r‡) ⊂ S,

and

x(t) ∈ B̄(x#, r‡) and x̂(t) ∈ B̄(x̂#, r‡), for any t ≥ t‡, (19.47)

when η0, η1, and η2 are small enough and η3 ≤ D, and also keeping (19.45) in
mind. (Note that t‡ depends only on g and the trajectory x(t)).
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Letting

x‡(t) = x(t)− x# and x̂‡(t) = x̂(t)− x̂#,

by a Taylor expansion, for all t ≥ t‡ we have

x ′‡(t) = ∇f (x(t)) = H x‡(t)+ R(t), with ‖R(t)‖ ≤
√
dκ3

2
‖x‡(t)‖2 ;

(19.48)

x̂ ′‡(t) = ∇f̂ (x̂(t)) = Ĥ x̂‡(t)+ R̂(t), with ‖R̂(t)‖ ≤
√
d(κ3 + η3)

2
‖x̂‡(t)‖2 .

(19.49)

The difference gives

x ′‡(t)− x̂ ′‡(t) = Hx‡(t)− ̂Hx̂‡(t))+ R(t)− R̂(t)

= H(x‡(t)− x̂‡(t))+ (H− Ĥ)x̂‡(t)+ R(t)− R̂(t). (19.50)

Claim 19.3 We get after integrating (19.50),

x‡(t)− x̂‡(t) = −etH(x# − x̂#)+
∫ t

0
e(t−s)H[(H− Ĥ)x̂‡(s)+ R(s)− R̂(s)

]

ds.

(19.51)

To check this note that x‡(0)− x̂‡(0) = x#− x̂#, and differentiating (19.51), we get

x ′‡(t)−x̂ ′‡(t) = −HetH(x#−x̂#)+HetH
∫ t

0
e−sH

[

(H− Ĥ)x̂‡(s)+ R(s)− R̂(s)
]

ds

+ (H− Ĥ)x̂‡(t)+ R(t) − R̂(t). (19.52)

From (19.51), etH(x# − x̂#) may be expressed as

etH(x# − x̂#) = − (x ′‡(t)− x̂ ′‡(t)
) +

∫ t

0
e(t−s)H[(H− Ĥ)x̂‡(s)+ R(s)− R̂(s)

]

ds.

(19.53)

Putting (19.53) in (19.52) we get (19.50). This verifies Claim 19.3.
Now since all of the eigenvalues of H are in (−∞,−ν) we have

∥

∥

∥e
αH
∥

∥

∥ ≤ e−να, for all α > 0.
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Using this fact with the triangle inequality along with (19.8), (19.42) and the
inequalities in (19.48) and (19.49) we get

‖x‡(t)− x̂‡(t)‖

≤ e−νt ‖x# − x̂#‖ +
∫ t

0
e−ν(t−s)

[

&‖x̂‡(s)‖ +
√
d

(

κ3

2
‖x‡(s)‖2 + κ3 + η3

2
‖x̂‡(s)‖2

)]

ds,

(19.54)

where

& = η2 + d
3
2 κ3Q0

√
η0.

Recall that by Lemma 19.4, for some C4 = C4(g, x0),

‖x‡(t)‖ ≤ C4e
−ν1t for all t ≥ 0. (19.55)

Claim 19.4 For ε > 0, η0, η1, and η2 small enough and that η3 ≤ D so
that (19.41), (19.43) and (19.47) hold, there is a constant C′4 := C′4(g, x0, ν, ν̄, ε,D)

such that

‖x̂‡(t)‖ ≤ maxC′4e−ν1t , for all t ≥ 0. (19.56)

Proof We assume WLOG that S = Lg (g (x0) /2) and is compact. Thus

sup
x,y∈S

‖x − y‖ = L <∞. (19.57)

Let κ̂3 be short for κ3(ĝ, S). We have that,

κ̂3 ≤ κ3 + η3 ≤ κ3 +D.

We assume that ε > 0, η0, η1, and η2 are small enough and that η3 ≤ D so
that (19.41) and (19.47) hold.

A Taylor expansion of ∇ĝ at x ∈ B̄(̂x#, r0) gives

∇̂g(x) = ̂H(x − x̂#)+ ̂R(x, x̂#), (19.58)

with

‖̂R(x, x̂#)‖ ≤ κ̂3

√
d

2 ‖x − x̂#‖2.
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Therefore by (19.58) and x̂ ′ (t) = ∇̂g(̂x (t)), we have,

d

dt

(

x̂(t)− x̂#
)− ̂H (x̂(t)− x̂#

) = ̂R
(

x̂(t), x̂#
)

, (19.59)

and since x̂(0) = x0 and x̂ (t) satisfies the differential Eq. (19.59) it is readily
checked that

x̂(t)− x̂# = et
̂H(x0 − x̂#)+

∫ t

0
e(t−s)̂H

̂R
(

x̂(s), x̂#
)

ds.

Since all the eigenvalues of ̂H are in (−∞,−ν2) we have

∥

∥

∥e
αĤ
∥

∥

∥ ≤ e−ν2α, for all α > 0.

Then,

‖x̂(t)− x̂#‖ ≤ e−ν2t‖x̂0 − x̂#‖ + κ̂3

√
d

2

∫ t

0
e−ν2(t−s)‖x̂(s)− x̂#‖2ds. (19.60)

Set

û(t) = eν2t‖x̂(t)− x̂#‖

and

̂U(t) = ‖x0 − x̂#‖ + κ̂3

√
d

2

∫ t

0
eν2s‖x̂(s)− x̂#‖2ds. (19.61)

Thus by (19.60), û(t) ≤ ̂U(t) and ̂U ′(t) = κ̂3

√
d

2 e−ν2t û2(t), so

̂U ′(t)
̂U(t)

= κ̂3

√
d

2 e−ν2t û(t)
û(t)

̂U(t)

≤ κ̂3

√
d

2 e−ν2t û(t) = κ̂3

√
d

2 ‖x̂(t)− x̂#‖

≤
√
d

2
(κ3 +D)‖x̂(t)− x̂#‖. (19.62)

Recall that ν2 > ν1 > ν. We can choose WLOG r‡ in (19.47) small enough so that

r‡ ≤
[√

d

2
(κ3 +D)

]−1

(ν2 − ν1).
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Assuming that this is the case, we get from (19.62)

Û ′(t)
Û (t)

≤ ν2 − ν1, for all t ≥ t‡.

By integrating between t‡ and t , we deduce that

log ̂U(t) ≤ log ̂U(t‡)+ (ν2 − ν1)(t − t‡),

and so

‖x̂(t)− x̂#‖ = e−ν2t û(t) ≤ e−ν2t Û (t) ≤ c1e
−ν1t , for all t ≥ t‡,

with

c1 := ̂U(t‡)e
−(ν2−ν1)t‡ .

For t < t‡, we simply have

‖x̂(t)− x̂#‖ ≤ c2e
−ν1t ,

where

c2 = max
0≤t≤t‡

‖x̂(t)− x̂#‖eν1t .

Notice that by (19.57) and (19.61), keeping in mind that we always assume by Claim
19.1 that η0 is sufficiently small so that x̂(t) ∈ S, for all t ≥ 0,

̂U(t‡) = ‖x0 − x̂#‖ + κ̂3

√
d

2

∫ t‡

0
eν2s‖x̂(s)− x̂#‖2ds

≤ L+ (κ3 +D)
√
dL2

2ν eν2t‡

and thus

c1 ≤
(

L+ (κ3 +D)
√
dL2

2ν eνt‡
)

e−(ν2−ν1)t‡ =: c1

and

c2 ≤ Leν1t‡ =: c2.

Hence (19.56) holds with the constant C′4 = max(c1, c2), which proves Claim 19.4.
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This, in combination with (19.55), shows that for all t ≥ 0

max(‖x‡(t)‖, ‖x̂‡(t)‖) ≤ CMe−ν1t , (19.63)

where CM = max(C4, C
′
4).

We shall use (19.63) to bound the integral in (19.54). We have by (19.63) and
ν > ν1 > ν

∫ t

0
e−ν(t−s)

[

&‖x̂‡(s)‖ +
√
d

(

κ3

2
‖x‡(s)‖2 + κ3 + η3

2
‖x̂‡(s)‖2

)]

ds,

≤
∫ t

0
e−ν(t−s)

[

&CMe−ν1s +√d

(

κ3

2
C2

Me−2ν1s + κ3 + η3

2
C2

Me−2ν1s

)]

ds

≤
∫ t

0
e−ν(t−s)

[

&CMe−ν1s +√d (κ3 + η3) C
2
Me−2νs

]

ds

≤ CMe−νt

[

&
1− e−(ν1−ν)t

ν1 − ν
+√d (κ3 + η3) CM

1− e−νt

ν

]

.

Applying this bound in (19.54) we get

‖x‡(t)− x̂‡(t)‖

≤ e−νt‖x∗ − x̂∗‖ + CMe−νt

[

&
1− e−(ν1−ν)t

ν1 − ν
+√d (κ3 + η3) CM

1− e−νt

ν

]

.

(19.64)

By the triangle inequality

‖x(t)− x̂(t)‖ ≤ ‖x∗ − x̂∗‖ + ‖x‡(t)− x̂‡(t)‖

and using (19.41) and (19.64) we deduce that for all t ≥ t‡,

‖x(t)− x̂(t)‖

≤ (1+ e−νt )Q0
√
η0 + CMe−νt

[

&
1− e−(ν1−ν)t

ν1 − ν
+√d(κ3 + η3)CM

1− e−νt

ν

]

.
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Keeping in mind that we assume that η3 ≤ D, η0, η1 and η2 ≤ 1/q0 ≤ 1, which
makes & ≤ 1 + d3/2κ3Q0. Therefore for t‡ = tε > 0 suitably large we get that for
some constant Q1 = Q1(g, x0, ν, ν, ε,D) > 0,

‖x(t)− x̂(t)‖ ≤ Q1
(√

η0 + e−νt
)

, for all t ≥ tε . (19.65)

(Recall that in (19.46) we defined t‡ := tε .)
Notice that since g is in C3, there is an ε > 0 such that all the eigenvalues of

Hg(x) exceed−ν when x ∈ B(x#, ε), ε > 0, being fixed. Note that this implies that
∇g is Lipschitz on B(x#, ε) with constant ν. Let tε be large enough such that for all
t ≥ tε , x(t) ∈ B(x#, ε/2). Assume that η0 is small enough so that ‖x̂#−x#‖ ≤ ε/2,
which is possible by (19.41). Moreover by (19.65) for a suitably large tε > 0 and
small η0 > 0 with η2 ≤ 1/q0 ≤ 1 and η3 ≤ D

‖x(t)− x̂(t)‖ ≤ Q1
(√

η0 + e−νtε
) ≤ ε/2, for all t ≥ tε , (19.66)

Then we also have x̂ (t) ∈ B (x#, ε) for all t ≥ tε . We may now apply Lemma 19.5
with S = B(x#, ε), t0 = tε , x1 = x(tε), y1 = x̂(tε), keeping in mind that ∇g is
Lipschitz on B(x#, ε) with constant ν, to get

‖x(t)− x̂(t)− (x(tε)− x̂(tε)
) ‖ ≤ η1

ν
eνt , ∀t ≥ tε . (19.67)

Bound on ‖x(t)− x̂(t)‖ for Small t
Since ε is fixed, by (19.30) we also get by Lemma 19.5 the following bound on
‖x(t)− x̂(t)‖ for small t ≥ 0

‖x(t)− x̂(t)‖ ≤ η1√
dκ2

e
√
dκ2t ≤ η1e

∣

∣

∣

√
dκ2−ν

∣

∣

∣tε

√
dκ2

eνt , 0 ≤ t ≤ tε . (19.68)

Completion of the Proof of Theorem 19.2

Combining (19.67) and (19.68) we get

‖x(t)− x̂(t)‖ ≤ Q2η1e
νt , ∀t ≥ 0, (19.69)

for some constant Q2 = Q2(g, x0, ν, ν, ε,D). Then from (19.65) and (19.69) we
arrive at

‖x(t)− x̂(t)‖ ≤ Q3 min
[√

η0 + e−νt , η1e
νt
]

, ∀t ≥ 0, (19.70)



19 Uniform in Bandwidth Estimation of the Gradient Lines of a Density 453

for some constant Q3 = Q3(g, x0, ν, ν, ε,D). Indeed, the curves t �→
Q1
(√

η0 + e−νt
)

and t �→ Q2η1e
νt intersect at some point t larger than tε if

Q1
(√

η0 + e−νtε
) ≥ Q2η1e

νtε ⇐⇒ Q1 ≥ Q2
η1e

νtε

√
η0 + e−νtε

,

and this is guaranteed if we choose Q1 large enough that Q1 ≥ Q2
1
q0
e(ν+ν)tε .

(Recall the bounds in (19.41) and note that Q2 does not depend on Q1.)

We are now ready to finish the proof of Theorem 19.2. We shall show that the
bound (19.14) follows from (19.70). To verify this, we start with

min
[√

η0 + e−νt , η1e
νt
] ≤ 2B(t), B(t) := min

[

max{√η0, e
−νt }, η1e

νt
]

.

Set t0 = 1
2ν log(1/η0) and note that

max{√η0, e
−νt } =

{

e−νt when t ≤ t0√
η0, when t > t0.

Suppose that η0 is small enough so that t0 ≥ t‡.

• When t ≥ t0, then we simply observe that B(t) ≤ η
1/2
0 .

• When t ≤ t0, we have B(t) = min
[

e−νt , η1e
νt
]

. Let t1 = 1
ν+ν

log(1/η1). Note

that the map defined on [0,∞) by t �→ min
[

e−νt , η1e
νt
]

is increasing over
[0, t1], decreasing [t1,∞) , and that

min{√η0, e
−νt } =

{

η1e
νt when t ≤ t1

e−νt , when t ≥ t1.

• When t1 ≥ t0 and t ≤ t0, we see that B(t) = η1e
νt0 ≤ η1η

− ν
2ν

0 .

• When t1 < t0 and t ≤ t0, then B(t) ≤ B(t1) = e−νt1 ≤ η

ν
ν+ν

1 .

Since t0 ≤ t1 if and only if η1η
− ν

2ν

0 ≤ η

ν
ν+ν

1 , we conclude that B(t) ≤
min

{

η

ν
ν+ν

1 , η1η
− ν

2ν

0

}

for all t ≤ t0.

Hence, we worked (19.70) into

sup
t≥0

‖x(t)− x̂(t)‖ = 2Q3 max
{√

η0,min
[

ηδ
1, η

δ−1
2δ

0 η1
]}

,

where δ = ν

ν+ν
. We note that

√
η0 ≤ ηδ

1 ⇐⇒ η
1
2δ
0 ≤ η1 ⇐⇒√

η0 ≤ η1η
1
2− 1

2δ
0 ⇐⇒√

η0 ≤ η
δ−1
2δ

0 η1
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and

ηδ
1 ≤ η

δ−1
2δ

0 η1 ⇐⇒ η
1−δ
2δ

0 ≤ η1−δ
1 ⇐⇒√

η0 ≤ ηδ
1.

Using these equivalences we deduce that

max
{√

η0,min
[

ηδ
1, η

δ−1
2δ

0 η1
]} = max

{√
η0, η

δ
1

}

.

Putting together our bounds on ‖x(t) − x̂(t)‖ for t > 0 large and t ≥ 0 small, we
can now conclude from (19.70) that for all ε > 0 small enough and all D > 0 there
exists a constant C := C(g, x0, ν, ν̄,D) ≥ 1 and a function F(g, x0, ν, ν̄, ε,D) of
ε and D such that, whenever max{ε, η0, η1, η2} ≤ 1/C and η3 ≤ D, x̂(t) is defined
for all t ≥ 0 and

sup
t≥0

‖x(t)− x̂(t)‖ ≤ F(g, x0, ν, ν̄, ε,D)max
{√

η0, η
δ
1

}

, (19.71)

holds, where δ := ν/
(

ν + ν
)

. We now take ε = 1/C in (19.71). This completes the
proof of Theorem 19.2. �
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